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Foreword

The field of circuit design for communications is a rapidly evolving area of research,
with new technologies and applications emerging all the time. One of the challenges
in this field is the need to accurately model and analyze the behavior of nonlinear
systems. This book offers an approach to this problem, that is both more rigorous
and intuitive than previously published.

The book is organized into two main parts: signals and systems. The first part
introduces the theory of distributions and covers topics such as basic properties of
distributions, convolution, Fourier and Laplace transforms, and summable distribu-
tions. The second part focuses on the application of distributions in the study of
convolution equations and their solutions.

In contrast to the few existing treatments, the approach taken highlights the alge-
braic structure underlying weakly nonlinear systems and is based on distributions,
rather than functions. The use of distributions leads naturally to the convolution
algebras of Linear Time-Invariant (LTI) systems and the ones suitable for weakly
nonlinear systems emerges as simple extensions to higher order distributions, without
having to resort to ad hoc operators. The main advantages of the approach include
a new justification for the validity of the Volterra series; with a much-simplified
notation, free of multiple integrals. The net result being a conceptual simplification
and the ability to solve the associated nonlinear differential equations in a purely
algebraic way.

Throughout the book, the author provides clear explanations of the key concepts
and techniques, with numerous examples drawn from the area of circuits for wireless
communications. As well as being of practical use to practitioners, these should help
the reader to gain a deeper understanding of the material covered in the earlier part
of the book. Of particular interest, to those interested in modern high-frequency
circuit design, analysis of the classic amplifier cascode (common gate) shows the
origin of nonlinear phenomenon, such as intermodulation, that can be accurately
quantified from very simple models of the underlying transistors without having to
resort to simulation.A similar analysis of local feedback in common source amplifiers
(degeneration) shows similar rich behavior. Aswell as being theoretically interesting,
this provides practical methods to the optimal design of such circuits.
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viii Foreword

This book is primarily intended for graduate students in engineering, who are
interested in the theory of nonlinear systems and its application. However, it is likely
that researchers in mathematics and physics will also find the material useful.

I’m sure that this book will serve as a valuable resource for anyone working
with nonlinear dynamical systems who wish to learn more about this interesting and
relevant topic.

Surrey, England
April 2023

Jon Strange



Preface

When I started working in industry I was immediately confronted with systems
whose performance was invariably limited by noise and nonlinearities. For noise,
there is a well-developed theory that can be used to guide the design and suggest
ways to improve the system. For distortion, I was not aware of good theories and the
investigations and developments were done entirely by numerical simulations. It’s
not that I didn’t have interest in nonlinear systems. But rather than that, despite the
fact that I graduated from a good university, the only courses offered on nonlinear
systems were in the field of control theory and almost entirely devoted to stability
questions. No course taught widely applicable methods to calculate the response of
nonlinear systems.

While working on trying to improve the linearity of a system, I read a paper
making use of nonlinear transfer functions. Although I had heard the name “Volterra
Series”, I did not knowwhat it was, nor did anyone I knew. Stimulated by that paper I
looked for a book, but didn’t find any in print. So, I looked in the second-hand market
and found an out-of-print book mentioned in the paper. The book was very focused
on practical applications, and didn’t say much about the broader theory. In any case,
having learnt how to use nonlinear transfer functions, I started using them, and they
immediately illuminated the reasons for some effects that I saw in simulations and
that I didn’t fully grasp. Since then, I kept using that method very fruitfully. I also
used nonlinear transfer functions in design reviews to try to pass on to colleagues
the intuition that it gave me about nonlinear effects.

After some time, some colleagues started to see the usefulness, and I was asked
to prepare an internal tutorial on the subject. In preparing it, I realized how limited
my theoretical understanding on the subject was and developed a desire for a much
deeper understanding: I was hooked. I started studying it more by myself as well
as through other (old) books, reports, and papers. While all studies that I saw did
introduce some ad-hoc operators, I tried to develop a formulation using standard
ones. When I realized that pairing convolution with tensor product would do, it
became self-evident that the Volterra series could be seen as a generalization of the
Taylor series. Convolution took front and center, but to make the mathematics solid, I

ix



x Preface

had to resort to Schwartz’s distributions. Differential equations became convolution
equations and the Volterra series became a generalized formal power series.

This book is a summary of my investigations in which I tried to develop the theory
in a new and, I believe, simpler form. I included many examples. Some of them
are short and serve to illustrate some points just discussed. Others are (condensed
versions of) real-world applications where I try to illustrate the power of the theory.

The book was written primarily for engineers. As is common in electrical engi-
neering, I use the symbol j to denote the imaginary unit of complex numbers. This is
to avoid confusing it with currents which are commonly denoted by i. All plots in the
book were generated with the open-source CAS system maxima [1] which I also
used to check many calculations and to compute all numerical solutions of differ-
ential equations. All numerical simulations of nonlinear networks were performed
with the open-source circuit simulator Xyce [2].

I would like to take the opportunity to thank some people that in a direct or
indirect way have contributed to this book. First of all, I would like to thank my wife
Alessandra for her constant encouragement and support during this project. I would
also like to thank many colleagues at Analog Devices andMediatek who shared their
insights with me and stimulated me to go deeper. In particular, I would like to thank
Jon Strange who, among other things, did put a lot of trust in me and involved me in
many stimulating and future-looking projects. They were the stimulus that ultimately
lead me to write this book.

Alto Malcantone, Switzerland
February 2023

Federico Beffa
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Chapter 1
Introduction

Nonlinear systems are everywhere, yet most engineering curricula devote very little
time, if any, to them. The reason is twofold: first of all, there is no general theory
describing arbitrary nonlinear systems. Second, the theory of linear systems is effec-
tive in facilitating the design of many real-world systems. In fact, for sufficiently
small input signals, the behaviour of most nonlinear systems can be approximated
by a linear model. As a consequence the majority of engineered systems are designed
based on linear system theory and their usability is limited in one way or another
by the deviation of the real system from the assumed linear behaviour. This book
is intended to give engineers a powerful tool to model, understand and reduce the
impact of mild deviations from linear behaviour and thereby design better systems.

This chapter tries to develop some intuition for what we call weakly-nonlinear
systems. It also tries to give an idea of the theory to which this book is devoted and to
its applicability. The chapter is not meant to introduce in a precise way any concept.
In fact the exposition is rather informal. A proper systematic development of the
theory will start with the next chapter.

1.1 Nonlinear Phenomena

The range of phenomena exhibited by nonlinear systems is much richer than the
one of linear systems. To understand the applicability of the presented theory it’s
useful to have an idea of the main ones that may appear. In the following we give a
bird’s-eye view of them with qualitative descriptions.

1.1.1 Multiple Equilibrium Points

Most dynamical systems can be described by a system of differential equations that
can be written in the form

© The Author(s) 2024
F. Beffa,Weakly Nonlinear Systems, Understanding Complex Systems,
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Fig. 1.1 Pendumum in
Earth’s gravitational field

d

dt
u = f (u, x, t) ,

with u ∈ R
n the state of the system and x ∈ R

m the driving or input signal. For sim-
plicity in this chapter we limit ourselves to autonomous systems. These are systems
described by the simpler equation

d

dt
u = f (u) . (1.1)

In the case of first and second order systems one can obtain a good qualitative
understanding by examining the phase portrait of the system. This is a graphical
representation of a family of state trajectories t �→ u(t) for various initial conditions
u0 in the plane spanned by the components u1 and u2 of u that in this context is called
the state or phase space. Note that the phase portrait can be sketched without having
to solve the equation by considering the vector field defined by f in the state plane.
With it, it’s easy to estimate the trajectory of the state u for every initial condition u0.

Of special interest are the zeros of the vector function f . That’s because in those
states the derivative with respect to time of the state vector u vanishes. In other words,
the zeros of f are the equilibrium points of the system. A nonlinear function f in
general has several equilibrium points and that’s a first fundamental difference from
linear systems which always have only one equilibrium point.

If f is well-behaved,1 for every initial state u0, the system (1.1) has a unique solu-
tion. This means that the trajectories in the phase plane do not intersect. Therefore,
the trajectories can only begin or end at equilibrium points, at infinity or on limit
cycles (see below).

As an example consider the ideal friction-less pendulum shown in Fig. 1.1 and
described by the differential equation

d2

dt2
φ + ω2

0 sin(φ) = 0 , ω0 =
√
g

l

1 We will make this statement precise in a later chapter.
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Fig. 1.2 Phase portrait of an
ideal pendulum with ω0 = 1

with φ the angle from the vertical, g the gravitational acceleration and l the length
of the arm. The equation can be rewritten as

d

dt

(
u1
u2

)
=

(
u2

−ω2
0 sin(u1)

)

where we have set u1 = φ, u2 = dφ/dt . The phase portrait of this system is
clearly periodic along the u1 axis. We can therefore limit the study to the range
u1 = [−π, π).2 In this range the system has two equilibrium points: u0a = (0, 0)
and u0b = (π, 0).

The phase portrait of this system is depicted in Fig. 1.2 with the equilibrium
points shown as black dots. The dashed lines connect the two equilibrium points and
separates the phase plane in two distinct regions in which the system has different
behaviour. The boundary between the two regions (the surface constituted by the
dashed lines) is called the separatrix. Trajectories surrounding the equilibrium point
u0a are closed curves that represent oscillations. The trajectories above and below
the separatrix represent the pendulum perpetually rotating around the pivot.

This shows a second fundamental difference from linear systems. Nonlinear sys-
tems can exhibit different behaviour and characteristics in different regions of the
phase space.

2 Given that physically the angle φ and φ + 2π describe the same location, we should think of the
phase space as a cylinder rather than a plane.
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Fig. 1.3 a Electrical RLC oscillator with nonlinear feedback b Voltage-controlled current-source
characteristic

1.1.2 Limit Cycles

A further phenomenon present in some nonlinear systems that doesn’t exist in linear
ones is that of the limit cycles. These are periodic solutions of the equations at specific
signal levels. As a simple example, consider the oscillator shown in Fig. 1.3a. It
consists of a passive RLC resonator and a nonlinear saturating voltage-controlled
current source (VCCS) with characteristic

i(v) = I0 tanh
( v

Vs

)

and plotted in Fig. 1.3b. The system is described by

d2

dt2
v + ωo

q

[
1 − Gm(v)R

] d

dt
v + ω2

0v = 0. (1.2)

with

ω0 = 1√
LC

q = R

ω0L

and the nonlinear transconductance

Gm(v) = d

dv
i(v) = I0

Vs
sech2

( v

Vs

)
.

If the maximum of |v(t)| over a full period T = 2π/ω0 remains small compared to
Vs then the value of sech(v(t)/Vs) remains very nearly 1 over a full cycle. Therefore,
under this assumption, if Gm(0)R > 1 the coefficient of the first order derivative of
v in (1.2) is negative and the (0, 0) equilibrium point of the equation is unstable.
Differently from this, if the maximum of |v(t)| over a period is much larger than
Vs then the value of sech(v(t)/Vs) approaches 0 for most part of a period. Hence,
in this regime of operation the system is governed by an equation corresponding to
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Fig. 1.4 Phase portrait of an
electrical oscillator.
ω0 = 1 rad/s, q = 4, R =
1 �, Vs = 1 V, I0 = 3Vs/R

the one of a damped oscillator. Between these two extreme cases there is a periodic
trajectory, a limit cycle. On this trajectory the energy dissipated during one cycle by
the resistor R is perfectly balanced by the energy injected in the resonator by the
controlled source. This behaviour of the system is clearly discernible in the phase
portrait shown in Fig. 1.4 in which we chose the current flowing through the inductor
(downwards) iL and v as state variables.

This example has a stable limit cycle, but there are systems with unstable limit
cycles: any infinitesimally small deviation from the perfectly periodic trajectory leads
to a trajectory diverging from the limit cycle. Limit cycles can also be stable on one
side and unstable on the other one.

1.1.3 Bifurcations

All practical systems depend upon some parameters. For example the oscillator of the
previous section depends on the value of the resistor R, and it is interesting to study
how the value of that parameter affects the behaviour of the system. In particular
the number and type of equilibrium points of a system may depend on the value
of some parameter. This is in fact the case for our oscillator: For Gm(0)R < 1 the
system has a single stable equilibrium point, while for Gm(0)R > 1 that equilibrium
point becomes unstable and a limit cycle makes its appearance. Parameter values at
which the character of the system behaviour changes are called critical or bifurcation
points.

As a second example, consider a system described by the differential equation

d2

dt2
u = −λu + u3.
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Fig. 1.5 a Pitchfork
bifurcation potential b
Pitchfork bifurcation
equilibrium points

The system can be interpreted as having a potential energy

Uλ(u) = u4

4
− λ

u2

2
.

For λ < 0 the potential energy has a single minimum at u = 0, while for λ > 0 it has
two minima as shown in Fig. 1.5a. In the latter case u = 0 is an unstable equilibrium
point and two new stable equilibrium points at ±√

λ do appear. If we draw the
equilibrium points of the system as a function of λ one obtain the so-called pitchfork
shown in Fig. 1.5b.
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Fig. 1.6 Driven pendumum
in Earth’s gravitational field

1.1.4 Chaos

Consider the driven pendulum shown in Fig. 1.6. It is similar to the one of Sect. 1.1.1,
with the difference that now the pivot moves in time in the vertical direction as
described by the function yp. This movement introduces a driving term in the differ-
ential equation that then becomes

d2

dt2
φ + ω2

0 sin φ = − sin φ

l

d2

dt2
yp(t).

Lets assume that the drive is periodic yp(t) = A cos(ωt). Figure1.7 shows the time
evolution of φ for two almost identical initial conditions. The upper curve was
computed with the pendulum starting with d

dt φ(0) = 0 rad/s and at an angle of
φ(0) = 1 rad. The lower curve was computed with almost identical initial conditions
d
dt φ(0) = 0 rad/s and φ(0) = 1 + 10−10/ l rad. The lower curve was thus started with
a displacement corresponding to approximately an atom diameter from the upper
one. The evolution of the two is initially very similar. However, after some time
they become completely different and uncorrelated. This extreme sensitivity to ini-
tial conditions is the characteristic defining chaotic systems and makes long term
predictions essentially impossible. In those systems the initial difference between
adjacent trajectories grows on average exponentially [3].

In this simple case the phenomenon is intuitively understandable. When the pen-
dulum reaches a position very close to the vertical, an infinitesimal difference in
velocity can determine if it makes a full turn or if it goes back.

Note that if the initial oscillation is sufficiently small, the force exercised by the
vertical drive is almost orthogonal to the direction in which the mass is free to move.
For this reason, small oscillations are not pushed to large swings and do not show
chaotic behaviour. There are therefore regions of the phase space exhibiting chaotic
behaviour and regions not exhibiting it. The areas of these regions depend of course
on the amplitude A of the drive. Small values of A lead to large areas in which the
system behaves predictably and only small areas displaying chaotic behaviour.
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Fig. 1.7 Time evolution of the driven pendulum with ω0 = 1 rad/s, ω = 2ω0, g = 9, 8m/s2, l =
9.8m, A = l/10. The upper curve was computed with initial conditions φ(0) = 1 rad, d

dt φ(0) =
0 rad/s, the lower one with initial conditions φ(0) = 1 + 10−10/ l rad, d

dt φ(0) = 0 rad/s

1.2 Weakly-Nonlinear Systems

Chaos, bifurcations and other phenomena of nonlinear systems are fascinating,
important and sometimes fundamental to the problem at hand. However, the vast
majority of engineered system operate around stable equilibrium points by design.
From an engineering point of view a quantitative theory to study the behaviour of
nonlinear systems in the proximity of stable equilibrium points is therefore very
important.

Inspection of the presented phase portraits suggest that in the neighbourhood of
equilibriumpoints the behaviour of nonlinear systems is not too different from the one
of linear systems, the deviation increasing with increasing distance of the state from
the equilibrium points. In fact this statement can be made more precise. Consider
a time invariant, single-input single-output (SISO) system with input x whose state
dynamics is governed by the system of first order differential equations

d

dt
u(t) = f (u(t), x(t)) , f : Rn × R → R

n

and its output y by the algebraic equation

y(t) = g(u(t), x(t)) , g : Rn × R → R .
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If around the equilibrium point u0 = 03 and x = 0 the functions f and g are differ-
entiable, then, using a Taylor expansion, the system behaviour can be approximated
by the linear equations

d

dt
u(t) ≈ Au(t) + Bx(t) A ∈ R

n×n , B ∈ R
n×1

and
y(t) ≈ Cu(t) + Dx(t) , C ∈ R

1×n , D ∈ R .

The response of the system to the input signal can then be expressed by a convolution
integral between the impulse response h of the system and the input signal

y(t) = h(τ ) ∗ x(t) . (1.3)

Note that in this chapter by stable equilibrium point we mean one for which all
eigenvalues of the linearized state equation are negative.

The linear systems theory is very useful. However, for many practical applications
this idealisation is too crude and doesn’t capture effects that limit the usability of
a vast array of systems. The theory presented in this book enables one to solve the
system equations when f and g are approximated by a higher order polynomial or
even by power series. The theory therefore is able to give a more faithful description
of the behaviour of many real systems. In particular, it allows probing into effects
outside the reach of linear systems theory.

Consider first a memory-less system, that is, a system whose output y(t) at time
t depends only on the value of its input signal x(t) at time t and not on any of its
past (or future) values. Such a system can be represented by a function g mapping
for every value of t the value x(t) to y(t)

y(t) = g(x(t)) .

Let’s assume that for a zero input signal the output is zero and that g can be expanded
in a Taylor series. Then we can write

y(t) =
∞∑
k=1

gkx
k(t) .

Using the Dirac δ distribution this expression can be written in the different form

y(t) =
∞∑
k=1

gk δ(τ1, . . . , τk) ∗ x⊗k(t) .

3 By a change of variables it’s always possible to move the equilibrium point of interest to the origin.
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That’s because, under assumptions to be made precise later, the δ distribution is the
unit of the convolution product

δ(τ ) ∗ x(t) = x(t) .

The response of a linear memory-less system can therefore be written as

y(t) = g1δ(τ ) ∗ x(t)

which shows a striking similaritywith (1.3), the response of a linear dynamical system
with impulse response h. In fact g1δ is the impulse response of a linear memory-less
system, and it vanishes everywhere except at the origin as expected.

From these considerations it’s natural to hypothesise that the response of a class of
nonlinear systems, around a stable equilibrium point, can be represented by a series
of the form

y(t) =
∞∑
k=1

hk(τ1, . . . , τk) ∗ x⊗k(t) .

This is in fact true, and it is the Volterra series representation of the system with hk
its kth order impulse response. This representation is valid only for sufficiently small
input signals not pushing the state of the system beyond a separatrix. This limitation
of the Volterra series should not surprise. In fact power series, which are a subset of
the Volterra series, in general also have a finite convergence radius.

The similarity between power series and the Volterra series doesn’t end here. By
introducing suitable definitions, we can represent the cascade of nonlinear systems
represented by their respective Volterra series in a similar way as the composition of
power series.

We call systems that can be represented by a Volterra series weakly-nonlinear
systems.A feature ofweakly-nonlinear systems sharedwith linear ones is the fact that
the differential equations describing the system have to be solved only once to obtain
the impulse responses. The response of the system to a large set of different input
signals can then be computed directly from them. The impulse responses therefore
completely characterise weakly-nonlinear systems. As with linear systems, weakly-
nonlinear ones have a frequency domain representation in terms of nonlinear transfer
functions.

The theory can be extended to cover time-varying systems. In this case the impulse
responses (or nonlinear transfer functions) have an explicit dependence on time

hk(t, τ1, . . . , τk) .
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1.3 Distributions

The Dirac δ distribution plays a key role in highlighting the relationship between
power and Volterra series. An ad-hoc use of the δ distribution however easily leads
to problems.

Consider for example the Heaviside unit step function (or unit step function)

1+(t) :=
{
0 t < 0

1 t ≥ 0
(1.4)

and the theorem stating that the Laplace transform of the derivative of a function f
continuous for t > 0 is

sF(s) − f (0+)

with F the Laplace transform of f and f (0+) the right-hand side limit to 0 of the
function. A careless application of this theorem to 1+ gives

L
{
d

dt
1+

}
= s

1

s
− 1 = 0

where we have used the fact that L {1+} = 1/s. However, we will show that the
derivative of 1+ is the δ impulse whose Laplace transform is 1. The error lies in the
fact that δ is not a function, but rather a Schwartz’s distribution, or distribution for
short. The above theorem, in the stated form, is therefore not applicable.

Distributions are the proper setting for studying linear and weakly-nonlinear sys-
tems. In this setting the convolution product comes to play a central role. In fact,
distributions allow defining convolution algebras with δ playing the role of the unit.
The Laplace transform then not only maps convolution products into multiplications,
but it also maps the unit of the convolution algebra into the unit of multiplication. In
addition, in this setting, the derivative of a distribution f can be represented as the
convolution of the distribution with the derivative of the unit

d

dt
f = d

dt
δ ∗ f .

Differential equations can therefore be transformed into convolution equations to
obtain a complete time-domain mirror image of the Laplace domain algebraic equa-
tions. Distributions enable a uniform representation in terms of convolution products
of ubiquitous and embarrassingly simple linear systems such as inductors, which a
theory based on functions is unable to do

v = L
d

dt
δ ∗ i .

Here we see the current i as the input and the voltage v as the output of the system.
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While we have been implicitly assuming causal systems and signals vanishing for
t < 0, there are other convolution algebras. One of them is the convolution algebra of
periodic distributions intimately related to the Fourier series, where the δ distribution
plays a central role as well.

1.4 Numerical Simulations

Learning a theory requires some investment of time. The question is: is it worth it in
a world full of computers and where numerical methods able to solve most nonlinear
equations are readily available? In our view the answer is definitely a resounding yes.
Numerical simulations and theory are not in competition, but rather they complement
each other.

The theory is able to reveal the origin of the various effects at play and to clarify
how each parameter affects the performance of a system. However, to do so we must
use relatively simple models and therefore, most of the time, obtain approximate
results.

Simulations on the other hand can be used to obtain accurate answers taking into
account all details. However, the results are presented as tables of numbers (or curves)
valid only for a specific set of values of the parameters. We can of course run many
simulations and sweep parameters, but complex simulations are not fast and this
poses practical limits. In addition, inferring the relationship between parameters and
a specific effect from simulation results only is often challenging. We can say that
a good theory based engineering model is like a (slightly distorted) picture, while
numerical simulations are like dots of a halftone image. A good model is worth
thousands of simulations.

Most of the time the difficulty in engineering problems lies in finding the simplest
model able to correctly characterise the effects of interest. During the phase of model
development, numerical simulators can be extremely useful by using them as ideal
laboratories in which to validate hypotheses. In these virtual laboratories it’s easy
to change the laws of physics and suppress or decouple phenomena in a way that’s
impossible in the real world. Experiments conducted in these virtual laboratories
can therefore be an invaluable guide in the development of a model. Once a good
model has been found, it will rapidly guide the development of the system.Numerical
simulations will then serve further for final tuning and verification.

1.5 Historical Notes

Around 1887 Vito Volterra developed the concept of functionals as an extension of
functions of multiple variables to ones with an uncountable infinite number [4, 5].
Let f (x1, . . . , xk) be a real valued function of the k real variables x1 to xk . The latter
can be interpreted as the values of a function x. evaluated at the discrete points 1 to
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k. He therefore conceived a functional as a function of another function x defined
over a continuous finite interval. He then proposed the series now bearing his name
as an extension of the Taylor series from functions to functionals.

In 1910 the mathematician M. Fréchet published a more detailed analysis of the
conditions under which a functional can be expanded into a Volterra series [6]. This
work is regarded by most as the foundation demonstrating the validity of Volterra’s
series expansion.

Volterra was well known and was invited to present his works in several countries,
including the United States. During the second World War there was great pressure
to develop anti-aircraft systems and N. Wiener of the Massachusetts Institute of
Technology (MIT) found that by usingVolterra’s series he could analyse the response
of a nonlinear device to noise [7]. His report was initially restricted. Its release
after the war sparked interest in the engineering community at MIT and elsewhere.
Several studies followed in the 50s to the 70s applying Volterra’s series to nonlinear
engineering problems, with [8–10] among the most significant ones. Wiener himself
remained interested in the subject and developed his own variant of the theory based
on Browning motion and leading to what’s now called theWiener series [11]. At the
beginning of the 80s some books summarised the Volterra and Wiener theories [12,
13]. At around the same time,with the raise of desktop computers, engineering efforts
started more and more to embrace numerical methods.

During the first decades of the 20th century there were twomathematical methods
used by engineers and physicists that kept mathematicians occupied. The first was to
find a solid mathematical justification for the operational calculus popularised by O.
Heaviside. The second was the search for a solid mathematical interpretation for the
δ distribution and its derivatives extensively used by P. A. M. Dirac in his landmark
treatise on quantum mechanics which first appeared in 1930 [14].

The former was solved in two ways:

(i) With the help of the Laplace- and Fourier-transforms, highlighting the frequency
domain aspects, and

(ii) by Mikusinski [15] using purely algebraic methods.

The second was solved by L. Schwartz by introducing new mathematical objects
called distributions [16]. These are a special class of functionals with particularly
attractive properties such at the fact that they are indefinitely differentiable. In addi-
tion, differentiation of distributions is a linear operation making series always differ-
entiable term by term. With distributions Schwartz not only did put the δ “function”
and its derivatives on a solid ground, but he also introduced convolution algebras and
unified the two justifications for the operational calculus.

A deep understanding of distributions requires familiarity with advanced con-
cepts of topological vector spaces [16, 17], which is probably why they are rarely
introduced to engineers. However, the elementary part of the theory can be devel-
oped without recurring to particularly deep mathematical concepts and is of great
practical value in physics and engineering problems. The aim of this book is to intro-
duce distributions to engineers and use them to view the Volterra series and, more
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generally, weakly-nonlinear systems from a point of view different from the tradi-
tional one. The advantages are, among others, a conceptual simplification, a simpler
notation freeing expressions from multiple integrals and an exposition of the theory
of weakly-nonlinear systems as a natural extension of the linear one.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
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Signals



Chapter 2
Distributions

We investigate the mathematical description of signals that are commonly used in
the analysis of technical problems. From a mathematical point of view it would be
useful to limit the signals of interest to the set of continuous functions. However,
this has several disadvantages. For example, suppose we are interested in the tran-
sient response of, say, a series RC low-pass-filter (LPF) to an input step voltage.
If we describe the input signal with a continuous function, then the details of the
calculations depend on the chosen description of the input signal rise transient. This
however tends to mask the fact that, if the LPF time constant is much larger than
the input signal rise-time, the output response is essentially independent of the input
signal transient shape. For this reason, in these situations, it is much more convenient
to use an idealized input unit step function such as the Heaviside unit step function

1+(t) =
{
0 t < 0
1 t ≥ 0

which is not continuous at t = 0.
Consider further the LPF example. If we write the differential equation using the

current as unknown, then we need the derivative of the driving signal. However, the
derivative of the function 1+ does not exist at t = 0 and is zero at every other point.
We are therefore led to introduce the so-called Dirac impulse δ which however is not
even a function, but rather a generalized function or distribution.

It follows from these considerations that a correct description of commonly used
signals belongs to the theory of distributions. Distributions have many useful prop-
erties. The key one being that they can be differentiated any number of times. The
main contributor to the development of this theory was Schwartz [16].
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2.1 Test Functions

The key idea in the theory of distributions, is not to direct attention to the value of
a function at every point of its domain, but instead to “measure” the behavior of a
functionwhen acting on a class of particularly well-behaved functions. In this section
we introduce one such class of functions, the class of test functions.

Let k = (k1, . . . , kn) be an n-tuple of non-negative integers called a multi-index.
The differential operator of order |k| is defined by

Dk := Dk1
1 · · · · · Dkn

n , Di := ∂

∂τi
(2.1)

with
|k| := k1 + · · · + kn (2.2)

the length of the multi-index k and τ ∈ R
n . For functions of a single variable we also

use the following shorter notation for the kth order derivative

f (k) := dk f

dτ k
(2.3)

where in this case k is of course a single non-negative integer.
Given an open set U ⊂ R

n , the set of all k-times continuously differentiable
functions f : U → C is denoted by Ck(U ) or simply Ck .

Definition 2.1 (Test function) A function φ : Rn → C is called a test function if
it is indefinitely differentiable and has compact support, that is, if φ ∈ C∞ and
φ(τ1, . . . , τn) = 0 outside a compact set K . The vector space of all such functions
is denoted by D.

To define a continuity criterion for distributions we need to define a topology that
can be encoded in the form of a convergence principle inD.

Definition 2.2 (Convergence of test functions) A sequence of functions φm ∈
D,m ∈ N is said to converge to φ ∈ D, in symbols

φm −→
D

φ or lim
m→∞ φm = φ ,

if the following two conditions are met:

1. There exist a compact set K such that it includes the support of all φm and of φ.
2. For every n-tuple k the sequence of functions Dkφm converges uniformly toward

Dkφ.

These conditions ensure that the limiting function (i) has compact support and (ii)
that it is indefinitely differentiable, in other words, that the limiting function is also
a test function.



2.1 Test Functions 19

Fig. 2.1 Example test
function

Example 2.1: Test function

Consider the following functions (see Fig. 2.1)

βν(t) :=
{

ν
B e

−1
1−(νt)2 for |νt | < 1

0 for |νt | ≥ 1
(2.4)

B :=
∫ 1

−1
e

−1
1−t2 dt

For each value of ν > 0 and for |νt | < 1 the function βν is the composition of
a rational function with no singularities and the exponential function. Since the
latter two functions are indefinitely differentiable and the composition of indefinitely
differentiable functions is also indefinitely differentiable, it follows that, in this range,
βν is indefinitely differentiable.

To establish that βν is a test function we have further to show that

lim|νt |↑1 D
kβν(t) = 0 (2.5)

for all values of k. This can be done by induction: assume that the kth order derivative
is the product of βν and a polynomial in the two variables τ1 = 1/(1 − νt) and
τ2 = 1/(1 + νt)

Dkβν(t) = pk

(
1

1 − νt
,

1

1 + νt

)
βν(t) . (2.6)

This is clearly the case for k = 0. We show that this is then true for k + 1:
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Dk+1βν(t)

=
[
−ν (D2 pk)

(
1

1−νt ,
1

1+νt

)
(ν t + 1)2

+ ν pk
(

1
1−νt ,

1
1+νt

)
2 (ν t + 1)2

+ν (D1 pk)
(

1
1−νt ,

1
1+νt

)
(ν t − 1)2

− ν pk
(

1
1−νt ,

1
1+νt

)
2 (ν t − 1)2

]
βν(t)

=: pk+1

(
1

1 − νt
,

1

1 + νt

)
βν(t) . (2.7)

If we express the limit as νt tends to 1 in terms of τ1, we see that it is the limit of the
product of a polynomial and a decreasing exponential which converges to 0

lim
νt↑1 D

kβν(t) = lim
τ1→∞ pk(τ1,

τ1

2τ1 − 1
)

ν

B
e− τ21

2τ1−1 = 0 . (2.8)

Similarly, the limit towards –1 can be expressed in terms of τ2 with the same result.
Hence βν ∈ C∞.

While βν is a test function for each value of ν, the sequence (βm),m ∈ N doesn’t
converge inD. For t �= 0,m → ∞ the value of βm(t) converges toward zero, while
the value of the functions at t = 0 grows without bounds. The limiting function is
therefore not continuous.

The sequence (β1/m) also doesn’t converge in D. As m → ∞ the support of the
functions grows without bounds. It is therefore not possible to find a compact set K
containing the support of all members of the sequence as well as that of the limiting
function.

An example of a converging sequence is βm/m2 which converges toward the zero
function.

Example 2.2: Regularisation

Consider an impulse of finite duration (see Fig. 2.2a)

1k(t) := 1+(t) − 1+(t − k) =
{
1 0 ≤ t < k
0 otherwise

This function is clearly not continuous at t = 0 and t = k. These jump discontinuities
can be removed by convolving 1k with the function βν of the previous example

1k ∗ βν(t) =
∫ ∞

−∞
1k(τ ) βν(t − τ) dτ =

∫ k

0
βν(t − τ) dτ . (2.9)

We say that the so obtained function is the regularised of 1k by βν (see Fig. 2.2a).
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Fig. 2.2 a Regularized of the discontinuous function 12(.) b Construction of the regularized of
12(.)

Observe that 1k ∗ βν is just a definite integral of βν and is therefore indefinitely
differentiable. If the support of βν lies completely within the integration range, then,
given the chosen normalization constant forβν , the value of1k ∗ βν is 1. If the support
of βν doesn’t intersect the integration range, then the value of 1k ∗ βν is 0. For the
remaining values of the independent variable t , 0 < 1k ∗ βν(t) < 1 (see Fig. 2.2b)

1k ∗ βν(t) =
⎧⎨
⎩
1 1/ν ≤ t ≤ k − 1/ν
0 t ≤ −1/ν or t ≥ k + 1/ν
> 0 and < 1 otherwise.

(2.10)

We have thus established that 1k ∗ βν ∈ D.
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From this example we see that for any open interval U and any closed interval
K ⊂ U we can construct a real valued test function φ with 0 ≤ φ(t) ≤ 1, a value
of 1 within K and a value of 0 outside of U . This is a useful property that we will
exploit later.

A similar construction can be made for test functions of more than one variable.
For later reference we define a real valued test function with values between 0 and 1
that we call α such that

α : Rn → [0, 1], τ �→
{
1 |τ | ≤ 1
0 |τ | ≥ 2 .

(2.11)

2.2 Distributions

Akeyaspect of the theoryof distributions is the fact that itmakes continuous functions
differentiable any number of times. To see how this goes, remember from calculus
that by partial integration we can transfer the operation of differentiation from one
function to another one. Thus, if we pair the function of interest f with a function φ

differentiable everywhere, then we can relate the derivative of f with a well-defined
expression

∫ ∞

−∞
Df (τ ) φ(τ) dτ = f (τ ) φ(τ)|∞−∞ −

∫ ∞

−∞
f (τ ) Dφ(τ) dτ . (2.12)

To make the expression independent of the limits of integration, the first term on the
right-hand side should disappear. This can be achieved, for example, by choosing a
function φ with compact support. In addition, to be able to assign a meaning to the
derivative of any order, the function φ should be indefinitely differentiable. Note that
these are precisely the properties of test functions.

An additional requirement is that of the assignment being unique. For example,
the right-hand side expression should be identically zero only if Df = 0 (almost
everywhere). Suppose that f has compact support. If the support of Dφ doesn’t
overlap with the one of f then the right-hand expression is also zero and the assign-
ment is not unique. To avoid this situation we are forced to pair the function f with
every test function φ ∈ D.

A distribution is a generalization of these ideas and is defined as follows.

Definition 2.3 (Distribution) A distribution is defined as a linear, continuous func-
tion on the set of test functions

T : D(Rn) → C , φ �→ 〈T, φ〉 (2.13)
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This means that a distribution T has the following properties:

1. 〈T, φ1 + φ2〉 = 〈T, φ1〉 + 〈T, φ2〉 for all φ1, φ2 ∈ D.
2. 〈T, c φ〉 = c 〈T, φ〉 for all φ ∈ D and c ∈ C.
3. From φk −→

D
φ it follows that 〈T, φk〉 → 〈T, φ〉, where the latter is the normal

convergence of complex numbers.

Since distributions are linear by definition, the condition of continuity can be
expressed in a slightly different, but equivalent way:

3’. From φk −→
D

0 it follows that 〈T, φk〉 → 0.

Two distributions T1 and T2 are equal if 〈T1, φ〉 = 〈T2, φ〉 for every test function
φ ∈ D. A distribution is called real if it evaluates to a real number when applied to
any real valued test function.

The set of all distributions forms a vector space denoted byD′, where addition of
two distributions T1 and T2 and multiplication with a complex constant c are defined
by

〈T1 + T2, φ〉 := 〈T1, φ〉 + 〈T2, φ〉
〈cT, φ〉 := c〈T, φ〉 = 〈T, c φ〉.

A mapping assigning a number to every element of a vector space is called a func-
tional. Distributions are therefore functionals on test functions.

Example 2.3: Functions as distributions

Consider a continuous function f ∈ C(Rn). We can associate with it a distribution
T f by the procedure outlined at the beginning of the section

〈T f , φ〉 =
∫
Rn

f (τ ) φ(τ) dnτ . (2.14)

Linearity is clear from the properties of integrals. To see that it is continuous, consider
a sequence of test functions converging to zero φm −→

D
0. Then

∫
Rn

f (τ ) φm(τ ) dnτ ≤ sup
t∈K

|φm(t)|
∫
K

| f (τ )| dnτ −→ 0

with K a compact set including the support of all φm .
Consider now two continuous functions f1 and f2. If 〈T f1 , φ〉 = 〈T f2 , φ〉 for every

φ ∈ D, then, by the properties of integrals of continuous functions, it follows that
f1 = f2. We thus have an injective mapping from continuous functions to distri-
butions. We can therefore identify continuous functions with their corresponding
distributions and write 〈 f, φ〉 instead of 〈T f , φ〉.
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The theory of distributions requires the use of Lebesgue integrals as opposed
to Riemann ones, as Lebesgue’s integration theory is more powerful and allows
integrating a broader set of functions. Of course, when both integrals do exist, they
coincide. A key concept in the Lebesgue theory of integration is that of themeasure.
For our purposes we can think of the Lebesgue measure as a volume and a set of zero
measure in R

n as a (sufficiently regular) subspace of dimension k < n. A point on
the real line R, a line on a plane and a surface in R

3 are all examples of sets of zero
measure. The union of a denumerable family of sets of zero measure is itself a set
of zero measure. Therefore, the set of rational numbers on the real line R has zero
measure. Two locally integrable functions differing only on a set of zero measure are
said to be equal almost everywhere.

Example 2.4: Locally integrable functions

Consider a locally integrable function f ∈ L1
loc(R

n), a function that is Lebesgue
integrable over every compact set K ⊂ R

n . As in the previous example we can
associate it with a distribution through the integral (2.14). In this case however the
mapping is not injective. Any two locally integrable functions f1 and f2 differing
only in a set of measure zero produce the same value 〈 f1, φ〉 = 〈 f2, φ〉 for every
φ ∈ D. That means that they map to the same distribution.

In physical and engineering applications the values of a function in a set of zero
measure is often unimportant. It is therefore natural to consider the equivalence class
of all functions differing at most on a set of zero measure. In this way we obtain
again an injective mapping, but now from the equivalence class of locally integrable
functions differing at most on a set of zero measure (equal almost everywhere) to
distributions, and we can again identify without ambiguity the former with the latter.
To avoid overloading the notation we write a representative for the equivalence class,
that is, we write 〈 f, φ〉 where f is a representative.

All distributions that can be represented by locally integrable functions through
(2.14) are called regular distributions. However, not all distributions are regular
and distributions that aren’t regular are called singular distributions. Nonetheless,
regular distributions are dense in D′. That is, in a similar way as real numbers arise
as a limiting process from rational ones, any distribution can be represented as a limit
of regular distributions, where the convergence of distributions is defined as follows.

Definition 2.4 (Convergence of distributions) A sequence of distributions (Tm)m∈N
is said to converge to the distribution T , if the sequence of numbers 〈Tm, φ〉 converges
to the number 〈T, φ〉 for every φ ∈ D. In symbols

Tm −→
D′ T or lim

m→∞ Tm = T
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if
〈Tm, φ〉 −→ 〈T, φ〉 for every φ ∈ D .

It is not obvious that the limit T is in fact a distribution, that is, linear and continuous.
However, this is indeed the case. The space D′ is thus closed under convergence. A
proof can be found in [18].

This definition is based on a discrete parameterm traversing the natural numbers.
If the parameter traverses a continuous set of values the situation is similar and can
be reduced to the discrete case. Consider the sequence of distributions Tν depending
on the continuous parameter ν ∈ R. For each value of ν and each test function φ,
the functional 〈Tν, φ〉 evaluates to a number. For each test function φ the set of
distributions Tν therefore defines a function of ν

ζ(ν) = 〈Tν, φ〉.

Lets define a sequence (νm)m∈N of values converging toward infinity. If for every
such sequence and every test function

lim
k→∞ ζ(νk) = lim

k→∞〈Tνk , φ〉 = 〈T, φ〉

then
lim

ν→∞〈Tν, φ〉 = 〈T, φ〉.

Similarly for a continuous parameter converging toward a finite limit η.

Example 2.5: Dirac delta distribution

Consider the functions βm of Example 2.1. The regular distributions associated with
these functions form a sequence converging to a singular distribution. We have

limm→∞〈βm, φ〉
= limm→∞

∫ 1/m
−1/m βm(τ ) φ(τ) dτ

= limm→∞
{∫ 1/m

−1/m βm(τ ) φ(0) dτ + ∫ 1/m
−1/m βm(τ ) [φ(τ) − φ(0)] dτ

}

Since test functions are continuous and differentiable we can use the mean value
theorem to express φ as

φ(τ) = φ(0) + Dφ(λ) τ

for some λ ∈ (0, τ ). With this we can see that the second term converges to zero
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∫ 1/m

−1/m
βm(τ ) [φ(τ) − φ(0)] dτ ≤

∫ 1/m

−1/m
|βm(τ )| |φ(τ) − φ(0)| dτ

≤ sup
λ∈(− 1

m , 1
m )

|Dφ(λ)|
m

∫ 1/m

−1/m
|βm(τ )| dτ

−→ 0

We therefore obtain

lim
m→∞〈βm, φ〉 = φ(0) lim

m→∞

∫ 1/m

−1/m
βm(τ ) dτ

= φ(0) lim
m→∞ 1

= φ(0).

The sequence βm thus converge to the Dirac delta distribution δ which is defined by

〈δ, φ〉 := φ(0). (2.15)

Besides the sequence βm there are many other regular distribution sequences
converging to δ. For example, with the same procedure used above, it is simple to
show that the sequence defined by the following functions does also converge to δ

fm(t) =
{
m/2 |t | ≤ 1/m
0 |t | > 1/m

Note that the notation used in many technical texts to define the Dirac delta
distribution is not mathematically correct and only has a symbolic value

∫ ∞

−∞
δ(τ ) φ(τ) dτ = φ(0).

This notation imply the existence of a function with a value of zero everywhere but
at τ = 0 where its value is infinite. However, the value of the Lebesgue integral of
such a function is zero since a single point of the real line has zero measure. This
notation is however useful as it helps to remember several properties that we will see
shortly.

Example 2.6: Cauchy principal value

The function f (τ ) = 1/τ is not locally integrable. For this reason we can’t associate
with it a regular distribution through (2.14). A way around this is to use the Cauchy
principal value of the integral to define the following singular distribution
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〈
pv

1

τ
, φ

〉
:= pv

∫ ∞

−∞
φ(τ)

τ
dτ

= lim
ε↓0

{∫ −ε

−∞
φ(τ)

τ
dτ +

∫ ∞

ε

φ(τ )

τ
dτ

}
(2.16)

Integrating by parts the first integral we obtain

∫ −ε

−∞
φ(τ)

τ
dτ = (φ(τ) ln |τ |)|−ε

−∞ −
∫ −ε

−∞
ln |τ | Dφ(τ) dτ

= φ(−ε) ln |ε| −
∫ −ε

−∞
ln |τ | Dφ(τ) dτ

and similarly for the second integral

∫ ∞

ε

φ(τ )

τ
dτ = −φ(ε) ln(ε) −

∫ ∞

ε

ln(τ ) Dφ(τ) dτ .

We see that the first term of both integrals do diverge as ε goes to 0. However, using
the mean value theorem, we note that there are values λ1 ∈ (0, ε) and λ2 ∈ (−ε, 0)
such that

φ(ε) = φ(0) + εDφ(λ1)

φ(−ε) = φ(0) − εDφ(λ2)

With M = − (Dφ(λ1) + Dφ(λ2)), the limit of the sum of the diverging parts there-
fore do cancel

lim
ε↓0 M ε ln |ε| = 0

and we finally obtain

〈pv 1

τ
, φ〉 = −

∫ ∞

−∞
ln |τ | Dφ(τ) dτ .

This last integral is well defined as ln |τ | is locally integrable and therefore defines a
well defined regular distribution. We will meet this distribution again in the context
of the Fourier transform of distributions.
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2.3 Basic Properties

There are some useful operations that we can perform on locally integrable functions
that can be carried over to distributions. A common operation is to shift a function f
by an amount τ to obtain t �→ f (t − τ). If we apply the change of variable λ = t − τ

to the regular distribution associated with the shifted function we obtain

∫ ∞

−∞
f (t − τ) φ(t) dt =

∫ ∞

−∞
f (λ) φ(λ + τ) dλ.

By generalizing this result we define the operation of shifting a distribution by

〈T (t − τ), φ(t)〉 := 〈T (t), φ(t + τ)〉. (2.17)

With this definition we can for example denote a Dirac pulse at time τ by δ(t − τ)

〈δ(t − τ), φ(t)〉 := φ(τ).

•! Notation

Note that a distribution T isn’t a function of the variable t . In spite of this it is useful
to write T (t) to indicate the symbol used for the independent variable of the testing
function (this will be useful whenwe’ll introduce operations such as the convolution)
and as a convenient notation to indicate some operations such as shifting. In no way
this is meant to imply the existence of a function or that the distribution is regular.

Another useful operation ismultiplicationof the independent variable of a function
by a constant a. By generalizing what happens with regular distributions, we define
multiplication of the independent variable by a constant a for any distribution in
D′(Rn) by

〈T (a t), φ(t)〉 :=
〈
T (t),

1

|a|n φ

(
t

a

) 〉
. (2.18)

This operation is closely related to the concepts of even and odd distributions.

Definition 2.5 (Even and odd distributions) An even distribution T is defined as a
distribution for which, for every test function φ

〈T (t), φ(−t)〉 = 〈T (t), φ(t)〉. (2.19)

Similarly, an odd distribution satisfies
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〈T (t), φ(−t)〉 = −〈T (t), φ(t)〉 (2.20)

for every test function φ.

A further useful operation is multiplication of a distribution with an indefinitely
differentiable function γ . First note that multiplication of a test function φ with an
indefinitely differentiable function results in another test function. For this reason
we can again generalize the behavior of regular distributions and define

〈γ T, φ〉 := 〈T, γ φ〉 . (2.21)

2.4 Differentiation of Distributions

At the beginning of Sect. 2.2 we mentioned that one of the distinguishing features
of distributions is the fact that they can be differentiated any number of times. We
also argued that, for regular distributions, partial integration leads to an expression
which can be considered as the definition of the derivative of regular distributions

〈 f (1), φ〉 =
∫ ∞

−∞
f (1)(τ ) φ(τ) dτ

= −
∫ ∞

−∞
f (τ ) φ(1)(τ ) dτ

= 〈 f,−φ(1)〉. (2.22)

In fact, this definition can be extended to singular distributions and to distributions
of several variables, that is to arbitrary distributions.

Definition 2.6 The first order partial derivative of a distribution T on D(Rn) is
defined by

〈DiT, φ〉 := 〈T,−Diφ〉 i = 1, . . . , n . (2.23)

Since the derivative of a test function Diφ is still a test function, it follows that
the derivative of a distribution is always a distribution and that distributions can be
differentiated an arbitrary number of times.

With k an n-tuple of non-negative integers, the derivative of order |k| follows from
the above definition

〈DkT, φ〉 = (−1)|k|〈T, Dkφ〉 . (2.24)

The order of differentiation is irrelevant since test functions have continuous partial
derivatives of all orders and hence

〈Di DjT, φ〉 = 〈T, Dj Diφ〉 = 〈T, Di Djφ〉 = 〈Dj DiT, φ〉 .
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The rule for the differentiation of the product of a distribution T and an indefinitely
differentiable function γ is the same as the rule of differentiation for the product of
two functions

〈Di (γ T ), φ〉 = −〈γ T, Diφ〉 = −〈T, γ Diφ〉
= −〈T, Di (γ φ)〉 + 〈T, Diγ φ〉
= 〈DiT, γ φ〉 + 〈Diγ T, φ〉
= 〈γ DiT, φ〉 + 〈Diγ T, φ〉

or
Di (γ T ) = γ DiT + (Diγ ) T . (2.25)

Two important properties of distributional differentiation follow immediately
from the definition. The first is that differentiation is a linear operation: given two
distributions T1 and T2 and two numbers c1 and c2

Dk(c1 T1 + c2 T2) = c1 D
kT1 + c2 D

kT2 . (2.26)

The second is continuity: given a sequence of distributions (Tm)m∈N converging
toward a distribution T , the sequence of corresponding partial derivatives (DkTm)m∈N
converges to DkT

lim
m→∞〈DkTm, φ〉 = lim

m→∞(−1)|k|〈Tm, Dkφ〉
= (−1)|k|〈T, Dkφ〉
= 〈DkT, φ〉 . (2.27)

In other words, the operations of limit-taking and differentiation can always be
exchanged. In particular this means that if a sequence of partial sums Sm = ∑m−1

i=0 Ti
converges to a series S = ∑∞

i=0 Ti , then the series can be differentiated term by term.

•! Notation

To distinguish a regular distribution defined by the usual derivative of a function f
from the derivative in the sense of distributions of the regular distribution defined
by f , we are going to always denote the former by T f (k) or TDk f . The later will be
denoted interchangeably by f (k), Dk f , T (k)

f or DkT f .

Example 2.7: Derivative of δ

The first order derivative of the Dirac delta distribution is

〈δ(1), φ〉 = −〈δ, φ(1)〉 = −φ(1)(0) .
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The kth order one is
〈δ(k), φ〉 = (−1)kφ(k)(0) .

This example shows that, in general, to calculate the value 〈T, φ〉 of a distribution
T when applied to a test function φ, it’s not enough to know the values of φ over
supp(T ). We need to know the values of φ over a neighborhood of supp(T ).

Example 2.8: Derivative of 1+

The derivative of the Heaviside unit step 1+ as a function is zero everywhere but
at t = 0 (a set of zero measure) where it is undefined. The function 1(1)

+ is therefore
locally integrable, and we can define the regular distribution T1(1)

+
which evaluates to

zero for every test function φ.
Differently from this, the derivative of 1+ as a distribution is defined everywhere

and, applying the definition, we find

〈1(1)
+ , φ〉 = −〈1+, φ(1)〉 = −

∫ ∞

0
φ(1)(τ ) dτ = −φ(τ)|∞0 = φ(0) = 〈δ, φ〉 ,

that is
1(1)

+ = δ .

Example 2.9: Function versus distributional derivative

Consider a function f : R → C continuously differentiable k times everywhere but
at t = 0, where it has a discontinuity such that both limits

lim
t↓0 f (i)(t) and lim

t↑0 f (i)(t)

exist for all i ≤ k. Let’s denote the difference between these limits by

αi = lim
t↓0 f (i)(t) − lim

t↑0 f (i)(t) .

Then we may represent the function f as

f (t) = fc,0(t) + α01+(t)

with fc,0 a continuous function. It is easy to see that for t �= 0, f (1)
c,0 (t) = f (1)(t).

Thus, using the results of Example 2.8 the first order derivative of f is
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T (1)
f = T f (1) + α0δ .

To compute the second-order derivative we can use the same procedure. We
decompose the function f (1) into a continuous function fc,1 and a step

f (1)(t) = fc,1(t) + α11+(t) .

Differentiating term by term we therefore obtain

T (2)
f = T (1)

f (1) + α0δ
(1)

= T (1)
fc,1

+ α1T
(1)
1+ + α0δ

(1)

= T f (1)
c,1

+ α1δ + α0δ
(1)

= T f (2) + α1δ + α0δ
(1)

The kth order derivative can be obtained by iterating this procedure

T (k)
f = T f (k) + α0δ

(k−1) + α1δ
(k−2) + · · · + αk−1δ . (2.28)

Example 2.10: Logarithm derivative

In Example 2.6 we showed that the Cauchy principal value of 1/τ is a distribution

〈pv 1

τ
, φ〉 = −

∫ ∞

−∞
ln |τ | Dφ(τ) dτ.

We now recognize this result as saying

pv
1

τ
= D ln |τ | .

Example 2.11: Limit to ∞ of trigonometric functions

Consider the following parameterized distribution

fω(t) = −cosωt

ω
ω > 0.

As ω tends to infinity, it converges to
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lim
ω→∞ |〈 fω, φ〉| = lim

ω→∞

∣∣∣∣
∫
supp(φ)

−cosωt

ω
φ(t) dt

∣∣∣∣
≤ lim

ω→∞

∫
supp(φ)

|φ(t)|
ω

dt

≤ lim
ω→∞

sup |φ(t)|
ω

K

= 0

with K = supp(φ). Since distributions can always be differentiated and for distri-
butions arising from continuous functions the derivative as a distribution coincides
with the derivative as a function, we have the following result

lim
ω→∞〈sinωt, φ〉 = lim

ω→∞〈−D
cosωt

ω
, φ〉

= lim
ω→∞〈cosωt

ω
, Dφ〉

= 0

or

lim
ω→∞ sinωt = 0. (2.29)

Similarly one obtains

lim
ω→∞ cosωt = 0 and (2.30)

lim
ω→∞ ejωt = 0. (2.31)

Note that these limits do not exist for the corresponding functions.

2.5 Distributions with Compact Support

The property of multiplication of a distribution with an indefinitely differentiable
function suggests another interesting generalization. Let’s start again with a regular
distribution f . Then, if we write out explicitly the integral of the distribution γ f

〈γ f, φ〉 =
∫ ∞

−∞
f (τ ) γ (τ ) φ(τ) dτ
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we see that in principle we could group the functions differently and write 〈φ f, γ 〉.
This is however not a distribution in D′ since γ is not a test function as its support
is not compact. In spite of this, the number 〈φ f, γ 〉 is the same as 〈γ f, φ〉 for every
test function φ and every function γ ∈ C∞. A moment’s reflection reveals that what
makes these two expressions have the same value for every value of γ is the fact that,
as a function, φ f has compact support.

To generalize this observation to arbitrary distributions we must first define what
the support of a distribution T is.

A distribution is said to vanish on an open set U ∈ R
n if 〈T, φ〉 = 0 for all test

functions φ with supp(φ) ⊂ U , where supp(φ) is the support of the test function φ.

Definition 2.7 (Support of a distribution) The support of a distribution T is the
complement of the largest open set U on which the distribution vanishes and is
denoted by supp(T ).

The set of all distributions with compact support is denoted by E′ and forms a
vector subspace of D′, that is E′ ⊂ D′.

Example 2.12: Support of δ

The value of the Dirac delta distribution δ applied to any test function φ with
supp(φ) ∈ U = (−∞, 0) ∪ (0,∞) is zero. That is, δ vanishes on U. Its support
is supp(δ) = R \U = {0} and is therefore compact.

With the notion of the support of a distribution we can generalize our observation
that 〈φ f, γ 〉 = 〈γ f, φ〉 by saying that distributions with compact support T ∈ E′
can be extended to continuous, linear functionals L on indefinitely differentiable
functions with arbitrary support. In this context the vector space of all indefinitely
differentiable functions is denoted by E and, to give a meaning to the continuity of
the functionals, it is equipped with the following convergence criteria.

Definition 2.8 (Convergence in E) A sequence (γm)n∈N ∈ E is said to converge to
γ if for every compact subset K ofRn and every n-tuple k, the set of functions Dkγm
converges uniformly to Dkγ

sup
x∈K

∣∣Dkγm − Dkγ
∣∣ → 0, m → ∞.

Assume that the support of T is the compact set K and let α be a test function
equal to 1 in a neighborhood U of K . Then for every function γ ∈ E and for every
point τ ∈ U , α(τ) γ (τ ) = γ (τ). Therefore, there is a functional L such that

〈L , γ 〉 = 〈T, αγ 〉 γ ∈ E. (2.32)

That it is independent of the choice of α is easily verified: Suppose that α1 and α2 are
two test functions equal to 1 in a neighborhood of K . Then in the smallest of these
neighborhoods α1 − α2 = 0 and 〈T, α1 γ 〉 = 〈T, α2 γ 〉.
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The functional thus defined is unique since, for every sequence of test functions
αm equal to 1 for |τ | < m we have: on the one hand, by continuity of L

lim
m→∞〈L , αm γ 〉 = 〈L , γ 〉

and on the other hand, for sufficiently large m

〈T, αm γ 〉 = 〈L , γ 〉 .

Therefore every distribution with compact support T defines a unique continuous,
linear functional L on E.

The converse is also true: Every continuous, linear functional L restricted to
D ⊂ E defines a distribution T with compact support. For, if this was not the case
and the support of T was not compact, then we could find a sequence of test functions
φm ∈ D with support in the complement of |τ | < m, such that 〈T, φm〉 = 1 for all
m. However, since in E limm→∞ φm = 0, by continuity of L

lim
m→∞〈L , φm〉 = 0 .

Therefore if 〈L , φ〉 = 〈T, φ〉 for all φ ∈ D, then the support of T must be compact.
There are other vector sub-spaces of D′ which can be extended to larger sets

of functions than D. We will encounter another one in the context of the Fourier
transform. The set of test functionsD are the common set on which all distributions
are defined.

2.5.1 Single-Point Support

We now investigate distributions satisfying the following equation

t k T = 0 , (2.33)

that is, distributions for which, for every k ≥ 1 and test function φ

〈t k T, φ〉 = 〈T, t k φ〉 = 0 .

For simplicity we limit ourselves to the one dimensional case.
First observe that on the open set U = (−∞, 0) ∪ (0,∞) the function t �→ t k

doesn’t assume the zero value. For this reason, to satisfy the equation, T must vanish
on U , or, stated in other words, the support of T must be the origin: supp(T ) = {0}.
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Since the support of T is compact (a single point) and, for any test function φ,
the value of 〈T, φ〉 is determined by the values of φ in a neighborhood (however
small) of supp(T ), we can expand φ using Taylor’s formula with remainder [19]. For
our purposes it is convenient to express the remainder in integral form which can be
obtained by integrating by parts multiple times

φ(t) = φ(0) +
∫ t

0
φ(1)(τ ) dτ

= φ(0) − (t − τ)φ(1)(τ )
∣∣t
0 +

∫ t

0
(t − τ) φ(2)(τ ) dτ

= φ(0) + t φ(1)(0) − (t − τ)2

2
φ(2)(τ )

∣∣∣∣
t

0

+
∫ t

0

(t − τ)2

2
φ(3)(τ ) dτ

= · · ·
=

k−1∑
m=0

φ(m)(0)

m! tm +
∫ t

0

(t − τ)k−1

(k − 1)! φ(k)(τ ) dτ.

By performing the substitution τ = t λ the remainder can be transformed in the
following form

t k
∫ 1

0

(1 − λ)k−1

(k − 1)! φ(k)(t λ) dλ = t k

(k − 1)! ψ(t)

which makes it apparent that it is proportional to the product of t k and an indefi-
nitely differentiable function ψ ∈ E. Note that, differently from φ, no addend has
compact support. This poses no problem since T , having itself compact support, can
be extended uniquely to a distribution on E (see Sect. 2.5).

With this expansion we can express the value of 〈T, φ〉 as a finite sum. Taking
into account (2.33)

〈T, φ〉 =
k−1∑
m=0

φ(m)(0)

m! 〈T, tm〉 + 1

(k − 1)! 〈T, t k ψ(t)〉

=
k−1∑
m=0

φ(m)(0)

m! 〈T, tm〉

=
k−1∑
m=0

cm 〈δ(m), φ〉

or

T =
k−1∑
m=0

cmδ(m) (2.34)
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with

cm = (−1)m
〈T, tm〉
m! .

We have therefore established that the homogeneous equation

t k T = 0

has an infinity of non-trivial solutions, each being a weighted sum of the Dirac delta
distribution δ and its derivatives up to order k − 1. In addition, this shows that δ and
its derivatives are the only distributions with the support consisting of a single point.

Example 2.13: Solutions of t T = 1

We want to find all solutions of the equation

t T = 1 .

If T would be a function then the equation would have no solution at t = 0 and 1/t
at all other points. From this we guess that the solution as a distribution could be
T = pv 1/t . Indeed, this distribution satisfies the equation

〈
t pv

1

t
, φ

〉
=

〈
pv

1

t
, t φ

〉

= lim
ε↓0

∫
t≥ε

1

t
t φ(t) dt

=
∫ ∞

−∞
φ(t) dt

= 〈1, φ〉 .

However, this is not the only solution as the homogeneous equation has non-trivial
solutions given by (2.34) (k = 1). The equation is therefore satisfied by all distribu-
tions of the form

T = pv
1

t
+ c δ(t)

with c an arbitrary constant.
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Table 2.1 Main properties and operations on distributions

〈T,
∑

m cm φm〉 =
∑

m cm〈T, φm〉
〈∑m cm Tm , φ〉 =

∑
m cm〈Tm , φ〉

〈T (t − τ), φ(t)〉 = 〈T (t), φ(t + τ)〉
〈T (a t), φ(t)〉 = 〈T (t), 1

|a|n φ
( t
a

)〉
〈γ T, φ〉 = 〈T, γ φ〉

〈DkT, φ〉 = (−1)|k|〈T, Dkφ〉
limm→∞〈DkTm , φ〉 = 〈DkT, φ〉
〈Dk(

∑
m cm Tm), φ〉 =

∑
m cm〈DkTm , φ〉

〈∑k−1
m=0 t

k Dmδ, φ〉 = 0

〈S ⊗ T, φ〉 = 〈S, 〈T, φ〉〉 = 〈T, 〈S, φ〉〉
〈S ∗ T, φ〉 = 〈S(τ ) ⊗ T (λ), φ(τ + λ)〉

The properties of distributions discussed in this chapter and some that will be
discussed in the following ones are summarised in Table2.1.
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Chapter 3
Convolution of Distributions

The convolution product plays a central role in the description of linear and weakly-
nonlinear systems. In this chapter we develop its theory based on distributions. In
addition, the chapter introduces the tensor product which will also come to play an
important role in the description of weakly-nonlinear systems.

3.1 Tensor Product

The general notion of convolution of distributions is defined in terms of the ten-
sor product. We therefore start by defining this product and, as before, we start by
considering regular distributions.

The tensor product is a bilinear operation that can be used to generate a vector
space out of other vector spaces. If f is a function on R

m and g a function on R
n ,

then the tensor product of f and g is defined as the function

f ⊗ g : Rm+n → C (τ, λ) �→ f (τ )g(λ) .

The tensor product of two locally integrable functions is itself locally integrable.
Therefore, if we now assume f and g to be locally integrable, we can try to build
the tensor product of the regular distributions T f and Tg based on the tensor product
f ⊗ g. If we use as test function the tensor product of two suitable test functions ξ

and ψ then we obtain

〈T f ⊗ Tg, ξ ⊗ ψ〉 = 〈T f , ξ 〉〈Tg, ψ〉

which is well-defined. However, for an arbitrary test function φ ∈ D(Rm+n) it is
not immediately apparent that the result is a distribution. Taking m = n = 1 for
simplicity, we have

© The Author(s) 2024
F. Beffa, Weakly Nonlinear Systems, Understanding Complex Systems,
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〈T f ⊗ Tg, φ〉 =
∞∫

−∞

∞∫

−∞
f (τ ) g(λ) φ(τ, λ) dλ dτ

=
∞∫

−∞
f (τ )

∞∫

−∞
g(λ) φ(τ, λ) dλ dτ .

The inner integral evaluates to a number for every value of the variable τ , that is,
it is a complex valued function of τ that we call ζ(τ ). Furthermore, the variable τ

only appears as an argument of the test function φ. Therefore ζ must have compact
support. In addition, when computing its derivative, differentiation can be moved
under the integral and ζ is therefore indefinitely differentiable. In other words ζ is a
test function. We therefore have

〈T f ⊗ Tg, φ〉 = 〈T f , 〈Tg, φ〉〉 = 〈Tg, 〈T f , φ〉〉

where the last equality comes from the fact that we could reverse the order of integra-
tion without changing the result. This last property is referred to as Fubini’s theorem.

The above arguments can be generalized to arbitrary distributions. That the inner
functional is a function of τ and that has compact support is clear. The fact that it
can be differentiated comes from the continuity and linearity of distributions

D ζ(τ ) = lim
ε→0

ζ(τ + ε) − ζ(τ )

ε

= lim
ε→0

〈T (λ), φ(τ + ε, λ))〉 − 〈T (λ), φ(τ, λ)〉
ε

= lim
ε→0

〈T (λ),
φ(τ + ε, λ) − φ(τ, λ)

ε
〉

= 〈T (λ), D1φ(τ, λ)〉 . (3.1)

With this we see that ζ can be differentiated an arbitrary number of times and is thus
a test function. We therefore obtain the following general definition for the tensor
product of distributions.

Definition 3.1 (Tensor product) Given two distributions S ∈ D′(Rm) and T ∈
D′(Rn) the tensor product S ⊗ T is the distribution inD′(Rm+n) defined by

〈S ⊗ T, φ〉 := 〈S, 〈T, φ〉〉 = 〈T, 〈S, φ〉〉 . (3.2)

It’s easy to see that the tensor product of distributions is bilinear

(S + T ) ⊗ U = S ⊗ U + T ⊗ U

S ⊗ (T + U ) = S ⊗ T + S ⊗ U ,
(3.3)
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and associative
(S ⊗ T ) ⊗ U = S ⊗ (T ⊗ U ) . (3.4)

As a useful abbreviation of notation we define the tensor power by

T ⊗k := T ⊗ . . . ⊗ T︸ ︷︷ ︸
k times

, k > 0

T ⊗0 := 1 ∈ C .

(3.5)

Example 3.1: Higher Dimensional Dirac Pulse

The tensor product of two Dirac pulses is

〈δ ⊗ δ(τ, λ), φ(τ, λ)〉 = 〈δ(τ ), 〈δ(λ), φ(τ, λ)〉〉 = 〈δ(τ ), φ(τ, 0)〉
= φ(0, 0)

=: 〈δ(τ, λ), φ(τ, λ)〉 .

3.2 Convolution of Distributions

We now come to the main objective of this section: the convolution of distributions.
Remember that the convolution of integrable functions f, g ∈ L1 is defined as follows

f ∗ g (t) :=
∞∫

−∞
f (τ ) g(t − τ) dτ .

To obtain a distribution we may write

〈 f ∗ g, φ〉 =
∞∫

−∞

∞∫

−∞
f (τ ) g(t − τ) dτ φ(t) dt

=
∞∫

−∞

∞∫

−∞
f (τ ) g(λ) φ(λ + τ) dτ dλ

which can be represented as the following tensor product

〈 f ∗ g, φ〉 = 〈 f (τ ) ⊗ g(λ), φ(λ + τ)〉 .

However, while indefinitely differentiable, the function ψ(τ, λ) = φ(λ + τ) is not a
test function because its support is not compact. In fact, ψ(τ, λ) assumes the same
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Fig. 3.1 Support of
ψ(τ, λ) = φ(τ + λ)

value φ(t) for every point on the diagonal line t = λ + τ of the (τ, λ)-plane (see
Fig. 3.1). In spite of this, on account of our assumption that f and g are integrable
functions (and not merely locally integrable), the above integral is well-defined.
We therefore conclude that, similarly to the case of functions, the convolution of
distributions only exists for a subset of distributions with additional characteristics.

Definition 3.2 (Convolution) Given twodistributions S and T inD′(Rn), if for every
test function φ ∈ D(Rn) the tensor product S ⊗ T can be extended to functions of
the form ψ(τ, λ) = φ(τ + λ), then the convolution product S ∗ T is defined by

〈S ∗ T, φ〉 := 〈S(τ ) ⊗ T (λ), φ(τ + λ)〉 (3.6)

and is commutative
S ∗ T = T ∗ S . (3.7)

A sufficient condition for the existence of the convolution is as follows: if the
intersection of the support of S ⊗ T , that is supp(S ⊗ T ) = supp(S) × supp(T ) and
the support of ψ(τ, λ) = φ(τ + λ) is bounded, then S ∗ T is well defined. In other
words, if for τ ∈ supp(S) and λ ∈ supp(T ) the sum τ + λ can only remain bounded
if both τ and λ remain bounded, then the convolution product S ∗ T is well defined.

Note that this condition is sufficient but not necessary as shown for instance by
the introductory example with integrable functions f, g ∈ L1. In fact the convolution
f ∗ g of integrable functions does always exist and is itself an integrable function

|〈 f ∗ g, φ〉| =
∣∣∣∣∣∣

∞∫

−∞

∞∫

−∞
f (τ ) g(λ) φ(λ + τ) dτ dλ

∣∣∣∣∣∣

≤ sup |φ|
∞∫

−∞
| f (τ )| dτ

∞∫

−∞
|g(λ)| dλ .
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Fig. 3.2 Support of
S(τ ) ⊗ T (λ) and of
ψ(τ, λ) = φ(τ + λ)

Example 3.2: One Sided Distributions

A subset of the real line U ∈ R is said to be bounded on the left if there is a real
constant b such thatU ⊂ (b,∞). Similarly, a subsetU is called bounded on the right
if there is a constant b such that U ⊂ (−∞, b).

Distributions whose support is bounded on the left (right) are called right-sided
(left-sided) distributions. The set of all such distributions forms a vector space
denoted by D′

R (D′
L ). Of particular interest for our purposes are right-sided distri-

butions T with supp(T ) ∈ [0,∞). We denote the space of all such distributions by
D′+.

Figure3.2 shows the support of S(τ ) ⊗ T (λ) and of ψ(τ, λ) = φ(τ + λ) for two
distributions S and T in D′+. It is clear that, for any test function φ, their overlap is
always bounded. Therefore, the convolution of right-sided or left-sided distributions
is always well defined. Not so the convolution of a left-sided distribution with a
right-sided one.

Example 3.3: Convolution with δ

Let T be any distribution in D′(Rn) and δ the n dimensional Dirac pulse (see
Example 3.1), then

〈T ∗ δ, φ〉 = 〈T (τ ) ⊗ δ(λ), φ(τ + λ)〉
= 〈T (τ ), 〈δ(λ), φ(τ + λ)〉〉
= 〈T, φ〉
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or
T ∗ δ = T . (3.8)

Thus, δ is a unit of convolution.
Similarly, for any |k|th order derivative of the Dirac pulse

〈T ∗ Dkδ, φ〉 = 〈T (τ ) ⊗ Dkδ(λ), φ(τ + λ)〉
= 〈T (τ ), 〈Dkδ(λ), φ(τ + λ)〉〉
= 〈T (τ ), 〈δ(λ), (−1)|k| Dk

λφ(τ + λ)〉〉
= 〈T (τ ), 〈δ(λ), (−1)|k| Dk

τ φ(τ + λ)〉〉
= 〈T (τ ), (−1)|k| Dkφ(τ)〉
= 〈Dk T (τ ), φ(τ)〉

or
T ∗ Dkδ = Dk T (3.9)

where Dk
λ and Dk

τ mean differentiation with respect to the variable λ and τ , respec-
tively; and we made use of the fact that Dk

λφ(τ + λ) = Dk
τ φ(τ + λ).

In our notation we use T (t) to indicate a distribution to be associated with a test
function whose independent variable is indicated by the symbol t . With this notation
it seems natural to write S(t) ∗ T (t) to denote the convolution of two distributions.
However, when we build the convolution of two shifted distributions this leads to
confusion as S(t − a) ∗ T (t − a) does not represent the distribution S ∗ T shifted by
a. To give a precise meaning to such expressions we introduce the shifting operator
defined by

〈τaT, φ(t)〉 := 〈T (t), φ(t + a)〉 . (3.10)

With it we fix the following notation

(S ∗ T )(t − a) := τa(S ∗ T ) (3.11)

S(t − a) ∗ T (t − b) := τa S ∗ τbT . (3.12)

The convolution product has several useful properties. The first one that we want
to discuss is distributivity. If all appearing convolutions are well defined, then
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〈(S + T ) ∗ U, φ〉 = 〈(S(τ ) + T (τ )) ⊗ U (λ), φ(τ + λ)〉
= 〈S(τ ) + T (τ ), 〈U (λ), φ(τ + λ)〉〉
= 〈S(τ ), 〈U (λ), φ(τ + λ)〉〉 +

〈T (τ ), 〈U (λ), φ(τ + λ)〉〉
= 〈S ∗ U, φ〉 + 〈T ∗ U, φ〉
= 〈S ∗ U + T ∗ U, φ〉 (3.13)

and similarly

S ∗ (T + U ) = S ∗ T + S ∗ U . (3.14)

Further, differentiation of a convolution product is equivalent to differentiation of
one of the products

〈Di (S ∗ T ), φ〉 = −〈S ∗ T, Diφ〉
= −〈S(τ ) ⊗ T (λ), Dτ,iφ(τ + λ)〉
= −〈S(τ ), 〈T (λ), Dτ,iφ(τ + λ)〉〉
= 〈Di S(τ ), 〈T (λ), φ(τ + λ)〉〉
= 〈(Di S) ∗ T, φ〉

where Dτ,i is the partial differential operator with respect to the i th component of the
variable τ . Since Dτ,iφ(τ + λ) = Dλ,iφ(τ + λ) differentiation can also be moved
to the second factor so that

Di (S ∗ T ) = (Di S) ∗ T = S ∗ (Di T ) . (3.15)

In a similar way one shows that the operation of shifting a convolution product
can also be moved to one of the factors

(S ∗ T )(τ − a) = S(τ − a) ∗ T (τ ) = S(τ ) ∗ T (τ − a) . (3.16)

Example 3.4: Convolution with δ

Consider two Dirac pulses and an arbitrary distribution T inD′(Rn). By the shifting
property of convolution we have

δ(τ − a) ∗ δ(τ − b) = δ(τ − a − b) (3.17)

T (τ ) ∗ δ(τ − a) = T (τ − a) . (3.18)
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The convolution of a distribution T with an indefinitely differentiable function γ

is an indefinitely differentiable function. For, by keeping in mind that φ has compact
support and therefore, as a distribution can be uniquely extended to functions in E,
we have

〈T ∗ γ, φ〉 = 〈T (τ ), 〈γ (λ), φ(τ + λ)〉〉
= 〈T (τ ), 〈γ (λ − τ), φ(λ)〉〉
= 〈T (τ ), 〈φ(λ), γ (λ − τ)〉〉
= 〈φ(λ), 〈T (τ ), γ (λ − τ)〉〉 .

Then, by arguments similar to the ones that led to the definition of the tensor product,
one deduces that the inner distribution is an indefinitely differentiable function that
we call ζ . We can therefore proceed further

〈T ∗ γ, φ〉 = 〈φ(λ), ζ(λ)〉
= 〈ζ, φ〉

and obtain as claimed that T ∗ γ = ζ .
The convolution product is a continuous operation in the following sense. If T is

a fixed convolution, (Sm)m∈N a sequence of distributions converging in D′ to S and
all involved convolutions are well defined, then

lim
m→∞〈Sm ∗ T, φ〉 = lim

m→∞〈Sm(τ ), 〈T (λ), φ(τ + λ)〉〉
= 〈S(τ ), 〈T (λ), φ(τ + λ)〉〉
= 〈S ∗ T, φ〉

or
lim

m→∞ Sm ∗ T = S ∗ T . (3.19)

In particular we saw in Example 2.5 that δ can be represented as the limit of a
sequence of test functions βm and in Example 3.3 that δ is a unit of convolution.
With continuity of convolutions we therefore deduce that each distribution is the
limit of a sequence of indefinitely differentiable functions of the form T ∗ φ with φ

a test function. We saw an instance of this in Example 2.2.
The last property that we want to discuss in this section is associativity. In general

the convolution of three or more distributions is not associative as is easily verified
with simple examples.

Example 3.5: Convolution may not be Associative

Let’s denote by1 and0 the constant functions evaluating to one and zero, respectively.
Then
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1 ∗ (δ(1) ∗ 1+) = 1 ∗ δ = 1

(1 ∗ δ(1)) ∗ 1+ = 0 ∗ 1+ = 0

(δ(1) ∗ 1+) ∗ 1 = δ ∗ 1 = 1

δ(1) ∗ (1+ ∗ 1) = undefined .

We can guarantee associativity by imposing a restriction similar to the one for
the existence of the convolution of two distributions. Let’s write the convolution of
three distributions in terms of the tensor product

〈S ∗ T ∗ U, φ〉 = 〈S(τ ) ⊗ T (λ) ⊗ U (κ), φ(τ + λ + κ)〉 . (3.20)

If the intersection of the support of S(τ ) ⊗ T (λ) ⊗ U (κ) and the support of φ(τ +
λ + κ) is bounded, then, by the properties of the tensor product, the convolution is
guaranteed to be associative. It’s easily verified that the following is a sufficient con-
dition: if all, but possibly one distribution have compact support, then the convolution
product is associative.

Example 3.6: One-Sided Distributions

Consider three distributions S(τ ), T (λ) andU (κ) inD′+. Then τ, λ and κ are≥ 0. If
the value of τ + λ + κ is bounded then there is a constant c for which τ + λ + κ < c.
It follows that τ is bounded by τ < c − (λ + κ) and similarly for the other variables.
The convolution of distributions in D′+ is therefore always associative. This is also
true for distributions in D′

R and D′
L .

In addition, it’s easily seen that D′+ is closed under convolution. That is, a con-
volution between distributions in D′+ results in another distribution inD′+.

The discussed properties of the convolution product are summarized in Table3.1.

3.3 Approximation of Distributions

In this section we show how the convolution product can be used to obtain approxi-
mations of arbitrary distributions.

We saw that if T is a distribution in D′ and φ is a test function in D then the
convolution product T ∗ φ is an indefinitely differentiable function. Its support is not
necessarily bounded. However, let α be the test function defined by (2.11) and set
αm(τ ) = α(τ/m). Then for every m ∈ N the product αm · (T ∗ φ) is an indefinitely
differentiable function with compact support and hence a test function.
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Table 3.1 Properties of the convolution product

S ∗ T = T ∗ S

S ∗ (T + U ) = S ∗ T + S ∗ U

(S ∗ T ) ∗ U = S ∗ (T ∗ U )

Dk(S ∗ T ) = (Dk S) ∗ T = S ∗ (Dk T )

(S ∗ T )(τ − a) = S(τ − a) ∗ T (τ ) = S(τ ) ∗ T (τ − a)

limm→∞ Sm ∗ T = S ∗ T

T (τ ) ∗ δ(τ − a) = T (τ − a)

T ∗ Dkδ = Dk T

Let (βm) be a sequence of test functions converging to the δ distribution. Then,
with the continuity of convolution, we see that inD′

lim
m→∞ αm · (T ∗ βm) = T . (3.21)

This shows that every distribution in D′ is the limit of a sequence of test functions in
D. In other words,D is a dense sub-vector space ofD′. Every distribution can thus
be approximated to an arbitrary accuracy by a test function inD.

Next we construct another dense sub-vector space of D′. For simplicity we only
treat the one dimensional case and for brevity we write κm for αm · (T ∗ βm). As we
just discussed κm is a test function for every m ∈ N. Let φ be another arbitrary test
function. Then, for every m, we can find constants a and b such that the interval
[a, b] includes both, the support of κm as well as the one of φ. If we construct the
finite sum of δ distributions weighted by km

Sn,m = b − a

n

n∑
j=1

κm(a + j
b − a

n
)δ(t − a − j

b − a

n
)

and apply it to φ we obtain

〈Sn,m, φ〉 = b − a

n

n∑
j=1

κm(a + j
b − a

n
)φ(a + j

b − a

n
) .

In the limit as n tends to infinity we obtain

lim
n→∞〈Sn,m, φ〉 =

b∫

a

κm(τ )φ(τ) dτ .

By the choice of the interval [a, b] we can extend it to the whole of R without
changing the value of the integral. Hence, by letting m tend to infinity we finally
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obtain

lim
m→∞

b∫

a

κm(τ )φ(τ) dτ = lim
m→∞〈κm, φ〉 = 〈T, φ〉 .

We thus see that every distribution T ∈ D′ is the limit of a finite sum of weighted
Dirac pulses Sn := Sn,n . That is, finite sums of weighted δ distributions form a dense
sub-vector space of D′.

Note that a regular spacing between the δ distributions is not necessary and was
chosen purely for convenience. In general any distribution can be approximated by
a finite sum of the following form

Tn =
n∑

j=1

an, j δ(t − τn, j ) (3.22)

with an, j ∈ C and τn, j ∈ R .

3.4 Convolution of Periodic Distributions

In this section we investigate periodic distributions and their convolution. Oneway to
define periodic distributions is to define them in a similar way as periodic functions.

Definition 3.3 (Periodic distribution I) A periodic distribution T is a distribution
for which there exist a positive number T such that for all test functions φ

〈T (τ ), φ(τ)〉 = 〈T (τ + T ), φ(τ )〉. (3.23)

The smallest such number T is called the fundamental period of the distribution.

Periodic distributions have unbounded support. For this reason the convolution of
two periodic distributions as defined by (3.6) does not exist. By exploiting their peri-
odicity it is however possible to find an alternative definition for periodic distributions
that allows for a well defined convolution product.

Consider a regular distribution arising fromaT -periodic function f . By exploiting
its periodicity we find that
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〈 f, φ〉 =
∞∫

−∞
f (t) φ(t) dt

=
∞∑

m=−∞

a+(m+1)T∫

a+mT

f (t) φ(t) dt

=
a+T∫

a

f (t)
∞∑

m=−∞
φ(t − mT ) dt

=
a+T∫

a

f (t)�(t) dt

with a a constant,

�(t) =
∞∑

m=−∞
φ(t − mT ) (3.24)

and where the exchange of summation and integration is justified by the fact that
for every value of t the sum is finite. The function � is T -periodic and indefinitely
differentiable.

By introducing the identity

f (t) ≡ f ◦([t]) (t ∈ R) (3.25)

with [t] the equivalence class of real numbers moduloT , we effectively and uniquely
define a function f ◦. Bywriting [t] asT /(2π)[ϕ] andnoting that [ϕ] is an equivalence
class modulo 2π , we can think of f ◦ as a function defined on a circle of radius
T /(2π) at the origin of a plane, with [ϕ] the polar angle. With this interpretation,
the equivalence class [t] is seen to represent the distance along the arc of the circle T
from the reference [0]. In the following, to simplify notation, we are going to write
a representative for an equivalence class.

Conversely, given a function f ◦, the identity (3.25) uniquely defines a periodic
function f (see Fig. 3.3). The last integral above is therefore identical to the integral
of f ◦ �◦ on the circle T

a+T∫

a

f (t)�(t) dt =
∫

T

f ◦(p)�◦(p) dp.

We have thus obtained that to every regular periodic distribution f there corre-
sponds a continuous linear functional f ◦ on indefinitely differentiable functions �◦
on the circle T. The set of all the latter functions is denoted by D(T). This space
is isomorphic to the vector sub-space of E consisting of all indefinitely differen-
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Fig. 3.3 Periodic function
versus function on T

tiable T -periodic functions � and from which it inherits the following definition of
convergence.

Definition 3.4 (Convergence in D(T)) A sequence of functions �◦
m ∈ D(T) is said

to converge to �◦ ∈ D(T) if, for every natural number k, the functions Dk�◦
m con-

verge uniformly to Dk�◦.

In Sect. 3.2 we saw that every distribution T can be generated as the limit of a
sequence of regular distributions fm . Applying this result

〈T, φ〉 = lim
m→∞〈 fm, φ〉 = lim

m→∞

∫

T

f ◦
m(p)�◦(p) dp = 〈T ◦,�◦〉

we see that not only regular, but every periodic distribution can be equivalently
represented by a continuous, linear functional on D(T).

To see the converse, that is that every continuous, linear functional onD(T) rep-
resents a distribution onD(R), we have to show that every indefinitely differentiable
T -periodic function � can be generated by some test function φ as in (3.24). To this
end we introduce the so-called unitary functions. These are test functions for which
there is a number T such that

∞∑
m=−∞

ξ(t − mT ) = 1. (3.26)

Note that, here again, the sum is finite for every bounded range of t . We can find
several such functions. The following example satisfies (3.26) forT = 1 (seeFig. 3.4)

ξ1(t) =

⎧⎪⎨
⎪⎩

1∫
|t |

e
−1

τ(1−τ) dτ

/
1∫
0

e
−1

τ(1−τ) dτ |t | < 1

0 |t | ≥ 1
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Fig. 3.4 Example unitary
test function

With it we can construct unitary functions for arbitrary periods T by ξT (t) =
ξ1(t/T ).

Now, given any T -periodic test function � and an unitary function ξT we have

�(t) = �(t)
∞∑

m=−∞
ξT (t − mT )

=
∞∑

m=−∞
ξT (t − mT )�(t − mT ). (3.27)

Since ξT is a test function, so is ξT �.We have thus established that every indefinitely
differentiable periodic function � can be represented as the sum of a test function
φ. We conclude that periodic distributions are in one-to-one correspondence with
continuous, linear functionals onD(T). It is therefore natural to call these functionals
distributions on T. They form a vector space that is denoted byD′(T).

We now have a second way to define periodic distributions.

Definition 3.5 (Periodic distribution II) A periodic distribution T is defined by

〈T, φ〉 := 〈T ◦,�◦〉 (3.28)

with T ◦ a distribution in D′(T) and where φ and �◦ are related by Eqs. (3.24) and
(3.25).

This definition is compatible with the first one since replacing φ(t) by φ(t + T )

doesn’t change �◦.

Example 3.7: Dirac comb δT
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Consider the distribution inD′(T) defined by aDirac pulse δ◦ with support consisting
of the point at arc-length p = 0. Its value on a test function inD(T) is

〈δ◦(p),�◦(p)〉 = �◦(0) .

The corresponding periodic distribution in D′(R) is

δT (t) :=
∞∑

m=−∞
δ(t + mT )

and evaluates to the same value as δ◦

〈∗,

∞∑
m=−∞

δ(t + mT )〉φ(t) =
∞∑

m=−∞
〈δ(t + mT ), ξT (t)�(t)〉

=
∞∑

m=−∞
ξT (−mT )�(−mT )

= �◦(0)
∞∑

m=−∞
ξT (−mT )

= �◦(0) .

Since the support of distributions inD′(T) is bounded, with the second definition,
the convolution of periodic distributions is always well-defined and associative

〈S ∗ T, φ〉 = 〈S(τ ) ⊗ T (λ), φ(τ + λ)〉
= 〈S◦(τ ), 〈T ◦(λ),�◦(τ + λ)〉〉
= 〈S◦ ∗ T ◦,�◦〉.

In addition it’s easily verified by replacing φ(t) by φ(t + T ) that the resulting dis-
tribution is also T -periodic. In other words, D′(T) is closed under convolution.
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Chapter 4
Fourier Transform of Distributions

The Fourier transform is a major tool in the analysis of signals and systems. We will
see that its extension to distributions will make the derivation of many results simpler
and more direct than when working with functions.

4.1 Test Functions of Fast Descent

Consider a Lebesgue integrable function f . Its Fourier transform is defined by

F { f }(ω) := f̂ (ω) :=
∞∫

−∞
f (t) e−jωt dt (4.1)

which is a continuous function of ω. If f is such that f̂ is also integrable, then

f (t) = F −1{ f̂ }(t) := 1

2π

∞∫

−∞
f̂ (ω) ejωt dω (4.2)

almost everywhere, with F −1{ f̂ } the inverse Fourier transform. F −1{ f̂ } may differ
from f at the points where f is not continuous.

The Fourier transform of the regular distribution f is thus

〈
f̂ (ω), φ(ω)

〉
=

∞∫

−∞

∞∫

−∞
f (t) e−jωt dt φ(ω) dω

=
∞∫

−∞
f (t)

∞∫

−∞
φ(ω) e−jωt dω dt
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=
∞∫

−∞
f (t)φ̂(t) dt . (4.3)

The last integral looks like a distribution in a form suitable to be generalized to arbi-
trary distributions. However, the support of φ̂ is not compact. This is a manifestation
of the uncertainty principle of the Fourier transform and can readily be seen by

φ̂(ω) =
∞∫

−∞
φ(t) e−jωt dt =

b∫

−a

∞∑
m=0

(−jω)m

m! tm φ(t) dt

=
∞∑

m=0

(−jω)m

m!
b∫

−a

φ(t) tm dt (4.4)

with a and b constants such that the interval [a, b] includes the support of φ.
To obtain a definition of the Fourier transform suitable for arbitrary distributions

we have to replace the space of test functions D with a space closed under Fourier
transformation. Suitable characteristics for the functions in this space can be inferred
from the above expression for φ̂. First, given the uncertainty principle, the space has
to be extended to functions of unbounded support (and therefore, the last step, the
exchange of summation and integration, may not be valid). Then, if all summands
have to remain finite, the limits limt→±∞ φ(t) tm have to converge to zero for all
values of m. Finally, to preserve arbitrary differentiability, the above characteristics
must be satisfied by all derivatives of φ. These are the characteristics of the so-called
Schwartz space S of which we give the general definition.

Definition 4.1 (Schwartz space S(Rn)) The Schwartz space S(Rn) is the vector
space of indefinitely differentiable functions φ : Rn → C that, together with all their
derivatives, decrease more rapidly than any power of 1/|τ | as |τ | → ±∞. That is,
for any n-tuples m, k ∈ N

n and τ ∈ R
n

lim|τ |→±∞ |τm Dkφ(τ)| = 0 . (4.5)

Functions φ in the Schwartz space are called test functions of rapid descent, or
Schwartz functions.

To see that the Fourier transformof a functionφ ∈ S(R) is indeed another function
in the same space, consider the kth derivative of φ̂. By integrating by parts we find
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Dk φ̂(ω) =
∞∫

−∞
(−j t)k φ(t) e−jωt dt

= 1

jω

∞∫

−∞
e−jωt D

[
(−j t)k φ(t)

]
dt

and by iterating m times

∣∣∣(jω)m Dk φ̂(ω)

∣∣∣ =
∣∣∣∣∣∣

∞∫

−∞
e−jωt Dm

[
(−j t)k φ(t)

]
dt

∣∣∣∣∣∣

≤
∞∫

−∞

∣∣Dm
[
t k φ(t)

]∣∣ dt .

Since this is valid for arbitrary k and m it shows that φ̂ is in fact a function in the
Schwartz space. In addition, given that the Fourier transform, and its inverse are
almost symmetric, a similar calculation shows that the inverse Fourier transform of a
Schwartz function φ̂ is a function φ ∈ S. That is, the Fourier transform is a bijection
from the space S into itself.

Example 4.1: Gauss Function

An important example of a function of rapid descent is the Gauss function

φ(t) = 1√
2πσ

e−t2/(2σ 2) .

It’s widely known that its Fourier transform is

φ̂(ω) = e−ω2σ 2/2 .

One of the defining characteristics of distributions is their continuity. To talk about
continuity we introduce a convergence principle (topology) similar to the ones we
defined for D and E.

Definition 4.2 (Convergence inS(Rn)) A sequence of functions φm ∈ S(Rn) is said
to converge in S(Rn) to a function φ ∈ S(Rn), if for each n-tuples k, p ∈ N

n and
τ ∈ R

n the sequence |τ |p Dkφm(τ ) converges uniformly to |τ |p Dkφ(τ), that is if

lim
m→∞ |τ |p Dkφm(τ ) = |τ |p Dkφ(τ) .
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4.2 Fourier Transform of Tempered Distributions

For (4.3) to be an expression suitable for the definition of the Fourier transform for
an arbitrary distribution, we must verify its linearity and continuity. The former is
clear. To show the latter we have to verify that, if a sequence of test functions φm ∈ S
converges to zero, so does the sequence of their Fourier transforms φ̂m . That this is
the case is shown by the following upper bound

|φ̂m(ω)| =
∣∣∣∣

∞∫

−∞
φm(t) e−jωt dt ≤

∫
|t |<1

|φm(t)| dt +
∫

|t |≥1
|φm(t)| dt

≤ 2 sup
|t |<1

|φm(t)| +
∫

|t |≥1
|φm(t) t2

t2
| dt

≤ 2 sup
|t |<1

|φm(t)| + sup
|t |≥1

|φm(t) t2|
∫

|t |≥1

1

|t2| dt

= 2 sup
|t |<1

|φm(t)| + 2 sup
|t |≥1

|φm(t) t2| .

Wehave agood candidate for the definition of theFourier transform for an arbitrary
distribution. However, since the space S is larger thanD, the Fourier transform can
only be defined for the following subset of distributions.

Definition 4.3 (Tempered distributions) Tempered distributions (also called distri-
butions of slow growth) are distributions that can be extended to continuous, linear
functionals on the Schwartz space S.

The space of all continuous, linear functionals onS is denoted byS′ and, since the
Schwartz spaceS is a subspace ofE, we have the following inclusion:E′ ⊂ S′ ⊂ D′.
Consequently, from Sect. 2.5, we conclude that, if a distribution T ∈ D′ can be
extended to a continuous, linear functional on S, then this extension is unique (and
the other way around). S′ can therefore be identified with tempered distributions.

Example 4.2: Slowly Increasing Function

Consider a locally integrable function f satisfying

| f (t)| ≤ C |t |m as |t | → ∞

for some constant C and some natural number m. Then, f is a tempered distribu-
tion, since

|〈 f, φ〉| ≤
∫

|t |<1
| f (t) φ(t)| dt +

∫
|t |≥1

| f (t) φ(t)| dt

≤ sup
|t |<1

|φ(t)|
∫

|t |<1
| f (t)|dt + sup

|t |≥1

(
|tm+2| |φ(t)|

) ∫
|t |≥1

C

|t |2 dt

is bounded for every φ ∈ S.
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Example 4.3: Distributions in E′

Distribution with bounded support are defined on all indefinitely differentiable func-
tion, independently of their asymptotic behavior as t → ∞. For this reason the
Fourier transform of distributions in E′ is always well-defined.

Example 4.4: Multiplication with Polynomial

If T is a tempered distribution and p a polynomial, then p T is a tempered distribution.
p T is in fact defined as

〈p T, φ〉 = 〈T, p φ〉

and it’s easy to see that p φ ∈ S.

We can finally define the Fourier transform for tempered distributions.

Definition 4.4 (Fourier transform on S′) The Fourier transform of a tempered dis-
tribution T and its inverse, are defined by

〈F {T }, φ〉 := 〈T,F {φ}〉 (4.6)〈
F −1{T }, φ〉 := 〈

T,F −1{φ}〉 (4.7)

for every function φ ∈ S.

Clearly, the Fourier transform of a tempered distribution is a tempered distribution.
Note that, given the properties of Schwartz functions, for a tempered distribution it’s
always the case that

F −1{F {T }} = F
{
F −1{T }} = T .

In addition the Fourier transform and its inverse satisfy the following symmetry
relation

〈F {T } , φ〉 = 〈T,F {φ}〉 =
〈
T (ω),

∞∫

−∞
φ(t)e−jωt dt

〉

= 〈
T (ω), 2πF −1{φ}(−ω)

〉
= 〈

2π F −1{T (−ω)}, φ〉
.
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If in this expression we replace T by its Fourier transform and denote it by T̂ , then
this symmetry relation can also be expressed as

F
{
T̂ (t)

}
= 2π T (−ω) . (4.8)

As with functions, we will often use the convention of denoting by T̂ the Fourier
transform of a tempered distribution T .

Example 4.5: Fourier Transform and δ

The Fourier transform of the delta distribution δ is

〈
δ̂, φ

〉
=

〈
δ, φ̂

〉
= φ̂(0) =

∞∫

−∞
φ(t)dt = 〈1, φ〉

or

δ̂ = 1 .

Conversely, the Fourier transform of the constant function 1 is

〈
1̂, φ

〉
=

〈
1, φ̂

〉
=

∞∫

−∞
φ̂(ω) dω = 2π

〈
δ,F −1{φ̂}

〉
= 2π 〈δ, φ〉

or

1̂ = 2π δ .

This expression is often found in the technical literature symbolically written as

δ(t) = 1

2π

∞∫

−∞
e−jωt dω = 1

2π

∞∫

−∞
ejωt dω .

The Fourier transform of the derivative of δ is

〈F {Dδ} , φ〉 =
〈
Dδ, φ̂

〉
= −

〈
δ,−jωφ̂

〉
= jω

〈
δ̂, φ

〉
= 〈jω, φ〉

and, by iterating this procedure, for the higher order derivatives we find

F
{
Dkδ

} = (jω)k .



4.2 Fourier Transform of Tempered Distributions 61

Example 4.6: Complex Tones

The Fourier transform of a complex tone is

〈
F

{
ejωct

}
, φ

〉 =
〈
ejωct , φ̂

〉
=

∞∫

−∞
ejωct φ̂(t) dt = 2π φ(ωc)

= 2π 〈δ(ω − ωc), φ〉

or

F
{
ejωct

} = 2π δ(ω − ωc) .

Similarly, the Fourier transform of a shifted Dirac pulse is found to be

F {δ(t − τo)} = e−jωτ0 .

Example 4.7: Dirac comb

An equally spaced sequence of Dirac pulses is a tempered distribution called a Dirac
comb with period T

δT (t) :=
∞∑

m=−∞
δ(t − mT ) .

The linearity and continuity of distributions permit to calculate its Fourier transform
term by term and, by using previous results, we obtain

F {δT } =
∞∑

m=−∞
ejωmT .

This distribution is formally the limit

lim
K ,M→∞

〈
sP,K (ω) + sN ,M(ω) − 1, φ(ω)

〉

with

sP,K (ω) :=
K−1∑
m=0

ejωmT
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sN ,M(ω) :=
M−1∑
m=0

e−jωmT .

For values of ω �= k 2π/T , k ∈ Z the partial sums can be represented by

sP,K (ω) = 1 − ejωKT

1 − ejωT = 1

1 − ejωT − ejωKT

1 − ejωT

sN ,M(ω) = 1 − e−jωMT

1 − e−jωT = 1

1 − e−jωT − e−jωMT

1 − e−jωT .

The sum of the first terms is easily seen to equal 1 and, with the results of
Example 2.11, the limit of the second ones do vanish. The support of F {δT } there-
fore consists in the set of points ω = k 2π/T , k ∈ Z. Consequently, when applied
to any test function φ ∈ S, its value must be a weighted sum of the values of the
test function at these points. Since, replacing φ(t) by φ(t + T ) doesn’t change the
result, we can also deduce that the weighting factor must be the same for all terms.
We thus have

〈F {δT } , φ〉 =
∞∑

m=−∞
Cφ(mωc) = C

〈
δωc , φ

〉

with C a constant and ωc = 2π/T . The value of the constant can be found by
inserting any Schwartz function. A convenient choice is the one of Example 4.1 with
σ = √

2π/T . With it, on the one hand we have

〈F {δT } , φ〉 = C

〈
δωc

T
2π

e−(tT )2/(4π),=
〉
C

T
2π

∞∑
m=−∞

e−m2π

and on the other hand

〈F {δT } , φ〉 =
〈
δT , φ̂

〉
=

〈
δT , e−(t/T )2π

〉
=

∞∑
m=−∞

e−m2π

so that C = 2π/T . We have thus established the following important result

F {δT } = ωc δωc . (4.9)

The Fourier transforms of the δ and related distributions are summarized in
Table4.1.

A useful property of the Fourier transform is that it preserves parity. This means
that the Fourier transform of an odd tempered distribution T is odd
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Table 4.1 Fourier
transformation of the δ and
related distributions

T F {T }
δ 1

1 2πδ

Dkδ (jω)k

(−j t)k 2π Dkδ

δ(t − τc) e−jωτc

ejωct 2πδ(ω − ωc)

δT
2π
T δ2π/T

〈F {T } , φ(−t)〉 = 〈T,F {φ(−t)}〉 =
〈
T,

∫
R

φ(−t) e−jωt dt

〉

=
〈
T,

∫
R

φ(t) ejωt dt

〉

=
〈
T, φ̂(−ω)

〉
= −

〈
T, φ̂(ω)

〉

= −〈F {T } , φ(t)〉

and, similarly, the Fourier transform of an even tempered distribution is even.
We conclude this section with an important property of the Fourier transform of

real distributions. Let T be a real distribution, φ a real valued Schwartz function and
let denote complex conjugation by an over bar. Then

〈
T̂ , φ

〉
=

〈
T̂ , φ

〉
=

〈
T, φ̂

〉
=

〈
T, φ̂

〉

=
〈
T, φ̂(−ω)

〉
=

〈
T̂ (−ω), φ

〉

or
T̂ (ω) = T̂ (−ω) (4.10)

as for real functions.

4.3 Distributions with Bounded Support

The Fourier transform of distributions with bounded support can be expressed in a
simpler, useful form that we explore in this section. To this end, consider first the
convolution between a distribution of bounded support T and the regular constant
distribution 1
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〈1 ∗ T, φ〉 = 〈T, 〈1, φ〉〉 =
〈
T (τ ),

∫
R

φ(τ + λ) dλ

〉

= 〈1, 〈T, φ〉〉 =
∫
R

〈T (τ ), φ(τ + λ)〉 dλ

and note the two equivalent integral representations. With these equalities we can
then proceed to represent the Fourier transform of T by

〈
T̂ , φ

〉
=

〈
T (t),

∫
R

φ(ω)e−j tω dω

〉

=
∫
R

〈
T (t), φ(ω)e−j tω

〉
dω

=
∫
R

〈
T (t), e−jωt

〉
φ(ω) dω

= 〈〈
T (t), e−jωt

〉
, φ(ω)

〉

with
T̂ (ω) = 〈

T (t), e−jωt
〉

(4.11)

an indefinitely differentiable function of slow growth. In a similar way we obtain

F −1{T } = 1

2π

〈
T (ω), ejωt

〉
. (4.12)

4.4 Fourier Transform and Convolution

Consider a tempered distribution S and a distribution with bounded support T . Their
convolution is well-defined if, for every test function φ ∈ S

〈S ∗ T, φ〉 = 〈S(τ ), 〈T (λ), φ(τ + λ)〉〉 = 〈T (λ), 〈S(τ ), φ(τ + λ)〉〉 .

In the first case,

〈T (λ), φ(τ + λ)〉

is a function ζ(τ ) ∈ S and the outer functional is thereforewell-defined. In the second
case,

〈S(λ), φ(τ + λ)〉

is an indefinitely differentiable function γ (τ) ∈ E. Consequently, the outer functional
is againwell-defined. Equality of the two expressions is guaranteed by the uniqueness
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Table 4.2 Properties of the
Fourier transformation

T F {T }∑
m amTm

∑
m am T̂m

S ∗ T Ŝ T̂

S T 1
2π Ŝ ∗ T̂

T (t − τ) T̂ e−jωτ

T ejωct T (ω − ωc)

DkT (jω)k T̂

(−j t)k T Dk T̂

T̂ 2π T (−ω)

of the extension of the distributions T and S to E′ and S′ respectively (and the other
way around).

We now show that the Fourier transform of the convolution of S and T is the
product of their Fourier transforms Ŝ and T̂ :

〈F {S ∗ T } , φ〉 = 〈S ∗ T,F {φ}〉 = 〈S, 〈T,F {φ}〉〉
=

〈
S(ω),

〈
T (λ),

∫
R

φ(t)e−j (ω+λ)t dt

〉〉

=
〈
S(ω),

∫
R

φ(t)
〈
T (λ), e−jλt

〉
e−jωt dt

〉

= 〈
F {S(ω)} , φ(t)

〈
T (λ), e−jλt

〉〉
= 〈

F {S(ω)} 〈
T (λ), e−jλt

〉
, φ(t)

〉
=

〈
Ŝ T̂ , φ

〉

or
F {S ∗ T } = Ŝ T̂ . (4.13)

The product is well-defined since T̂ is an indefinitely differentiable function of slow
growth. A similar result is readily obtained for the inverse Fourier transform

F −1{S ∗ T } = 2π F −1{S}F −1{T } . (4.14)

These are central results and arguably the most important properties of the Fourier
transformation. It can be shown that this relation is valid in other cases as well. For
example, in the case of locally integrable functions which are slowly increasing [20].

With these properties, the previously obtained Fourier transforms for the Dirac δ

distribution and the properties of the convolution product we immediately obtain the
properties listed in Table4.2. In particular, it’s noteworthy the fact that the Dirac δ

distribution acting as a unit with respect to the convolution product is related to the
fact that its Fourier transform is 1.
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Example 4.8: Fourier Transform of pv 1/ t

In Example 2.13 we saw that the equation

t T = 1

has solutions

T = pv
1

t
+ Cδ.

with C a constant. By noting that pv 1/t is odd, while δ is even, we can find the
Fourier transform of the former. First observe that

F {(−j t) T } = DT̂

and hence, by transforming both sides of the equation we have that

j DT̂ = 2π δ .

Since the Fourier transform preserves parity, we have to look for an odd solution of
this equation, and we find

T̂ (ω) = −jπ sign(ω) or F
{
pv

j

π t

}
(ω) = sign(ω) .

With this result and the symmetry of the Fourier transform (Eq. (4.8)) we also find

F {sign} (ω) = 2π pv
j

π (−ω)
= pv

2

jω
.

Example 4.9: Fourier transform of 1+

The Heaviside step function 1+ can be written as

1+(t) = 1

2

[
1 + sign(t)

]
.

Its Fourier transform is therefore

F {1+(t)} = 1

2

[
2π δ(ω) + pv

2

jω

]
= π δ + pv

1

jω
.

From the symmetry of the Fourier transform we also obtain
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F
{
π δ + pv

1

j t

}
= 2π 1+(−ω)

or

F
{
1

2
δ + pv

j

2π t

}
= 1+(ω) .

4.5 Periodic Distributions

In this sectionwe investigate the Fourier transformof periodic distributions. Consider
first a regular distribution arising from a locally integrable periodic function f . If we
introduce a function f�

f�(t) =
{
f (t) a ≤ t < a + T
0 otherwise

with a a constant, then f can be expressed as a convolution product

f (t) = f�(t) ∗ δT . (4.15)

The Fourier transform of f can therefore be written as the product of the transforms
of f� and δT , which is well-defined since f� has compact support

F { f } = 〈
f�, e−jωt

〉
ωcδωc = 2π

T

∞∑
m=−∞

〈
f�, e−jmωct

〉
δ(ω − mωc) .

From this we see that the Fourier transform of f consists of a train of equally spaced
Dirac pulses, each weighted by a numerical coefficient, and that this set of weighting
numbers fully characterize it.

If we now represent f as the inverse Fourier transform of F { f } and make use of
the results of Example 4.6, we obtain a trigonometric series

f (t) = 2π

T

∞∑
m=−∞

〈
f�, e−jmωct

〉
F −1{δ(ω − mωc)}

= 1

T

∞∑
m=−∞

〈
f�, e−jmωct

〉
ejmωct . (4.16)

called the Fourier series of f . The coefficients are values obtained by evaluating f�
on indefinitely differentiable periodic functions which are members ofD(T) and the
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values are identical to the ones obtained by evaluating the distribution f ◦ ∈ D′(T)

corresponding to f (see Sect. 3.4) on the same functions. Consequently, the above
trigonometric series is both a representation of a periodic distribution in D′(R) as
well as that of a distribution in D′(T).

These arguments can be extended to general periodic distributions without any
difficulty so that we have the following general definition of the Fourier series of a
periodic distribution.

Definition 4.5 (Fourier Series) The Fourier series of a distribution T ◦ ∈ D′(T), or
a periodic distribution T ∈ D′(R), is the trigonometric series

∞∑
m=−∞

cme
jmωc p (4.17)

with coefficients

cm = 1

T
〈
T ◦, e−jmωc p

〉
. (4.18)

The coefficients are called the Fourier coefficients of the series.

The Fourier series is the only trigonometric series that converges to the distribution
T ◦ inD′(T). In fact, if for any � ∈ D(T) the series

∞∑
m=−∞

dm
〈
ejmωc p,�

〉

does converge, then by putting � = e−jmωc p and using the orthogonality of trigono-
metric functions we find that

〈
T ◦, e−jmωc p

〉 = T dm

which shows that the coefficients dm correspond to the Fourier coefficients of T ◦.
As every distribution, the Fourier series of a distribution can be differentiated

term by term. Therefore, if we designate by cm(T ◦) the mth Fourier coefficient of
the distribution T ◦, we have that

cm(DkT ◦) = (jmωc)
kcm(T ◦) . (4.19)

A natural question to ask is: How do we know if a certain trigonometric series
converges to a periodic distribution? To answer this question first note that the series
of numbers

∞∑
m=1

1

m2
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is absolutely convergent. Therefore, if the magnitude of the coefficients |cm |, as
m → ∞, are bounded above byC/|m|2, withC a constant, then the series converges
to a continuous function f and hence to a distribution. But distributions are always
differentiable term by term an arbitrary number of times. Using (4.19) we therefore
conclude that, if the magnitude of the coefficients of the series, asm → ∞ are bound
by C |m|k for some number k ≥ 0 and a constant C , then the series converges to a
distribution.

We derived the Fourier series starting from the Fourier transform and its property
that converts convolution into a product. We therefore expect a similar property for
the Fourier series. Consider the convolution of two distributions S◦ and T ◦ with the
same period T . The Fourier coefficients of the resulting series are

cm(S◦ ∗ T ◦) = 1

T
〈
S◦ ∗ T ◦, e−jmωct

〉

= 1

T
〈
S◦(t) ⊗ T ◦(λ), e−jmωc(t+λ)

〉

= 1

T
〈
S◦(t), e−jmωct

〉 〈
T ◦(t), e−jmωcλ

〉
= T cm(S◦) cm(T ◦) . (4.20)

Consequently the Fourier series of the convolution of S◦ and T ◦ is

S◦ ∗ T ◦ = T
∞∑

m=−∞
cm(S◦) cm(T ◦)ejmωct (4.21)

and, indeed we see that the Fourier series representation of periodic distributions
transforms convolutions into products.

Example 4.10: Fourier series of δT

The mth Fourier coefficient of the Dirac comb δT is

cm(δT ) = 1

T
〈
δ◦, e−jmωct

〉 = 1

T

with ωc = 2π/T . Hence, its Fourier series is

δT =
∞∑

m=−∞

1

T
ejmωct .

If we now compute the convolution of δT with another T -periodic distribution T
with Fourier coefficients cm(T ), from (4.21) we see that, as expected, δT act as a unit

cm(T ∗ δT ) = T cm(δT ) cm(T ) = cm(T ) .
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A periodic distribution can be represented as a convolution product between the
Dirac comb δT and a distribution different from the one of (4.15). For example, with
ξT any unitary function we have

T = T
∞∑

m=−∞
ξT (t − mT )

=
∞∑

m=−∞
T (t − mT ) ξT (t − mT )

=:
∞∑

m=−∞
S(t − mT ) = S ∗ δT (4.22)

which defines a distribution S whose support is finite and larger than a single period
of T . Using this representationwe can express the Fourier coefficients and the Fourier
transform of T in terms of the one of S as

T̂ = ωc Ŝ δωc = 2π

T

∞∑
m=−∞

Ŝ(ω) δ(ω − mωc) (4.23)

cm(T ) = Ŝ(mωc)

T
. (4.24)

For this reason, if in some calculation we obtain the Fourier transform of a signal in
this form, with Ŝ the transform of a known non-periodic distribution, then we can
immediately write T in terms of S as in (4.22).

We close this section with a property that is the counterpart of (4.10) for the
Fourier coefficients of a real periodic distribution

cm = c−m . (4.25)

4.6 Extension to Several Variables

The Fourier transform can be extended to functions of several variables by trans-
forming each variable individually. That is, if f is an integrable function on R

n ,
then we can apply the one-dimensional Fourier transform to each variable individ-
ually, keeping the other ones constant. After performing this operation with respect
to each variable in turns, we obtain the following expression which defines of the
n-dimensional Fourier transform
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f̂ (ω1, . . . , ωn) := F { f } (ω1, . . . , ωn)

:=
∞∫

−∞
. . .

∞∫

−∞
f (τ1, . . . , τn) e

−j (ω1τ1+···+ωnτn) dτ1 . . . dτn .

To shorten the notation we will write

f̂ (ω) = F { f } (ω) =
∫
Rn

f (τ ) e−j(ω,τ) dnτ (4.26)

with τ, ω ∈ R
n and

(ω, τ) :=
n∑

m=1

ωmτm .

The n-dimensional inverse Fourier transform can be derivedwith the same procedure,
and we obtain the following definition

F −1{ f }(τ ) := 1

(2π)n

∫
Rn

f (ω) ej(ω,τ) dnω . (4.27)

With these definitions it’s easy to see that our definition of Fourier transform for
tempered distributions remains valid for n > 1 as well. All properties carry over in
similar form. For example, looking back at the derivation of the symmetry relation
given by (4.8), we see that in the n-dimensional case it becomes

F
{
T̂ (τ )

}
= (2π)n T (−ω) . (4.28)

The only difference from the one dimensional case is the fact that the factor of 2π
becomes (2π)n . This happens to all properties involving factors of 2π .

The most important convolution property (4.13) remains unchanged, as can easily
be verified by inspecting the derivation for the one-dimensional case.

Before proceeding, it’s convenient to extend the multi-index notation that up to
nowwe only used in conjunction with the differential operator. Let a be an n-tuple in
C

n and k a multi-index that we allow to include negative numbers (k1, . . . , kn) ∈ Z
n .

Then we can define

ak := ak11 . . . aknn (exponentiation)
k a := (k1a1, . . . , knan) (direct product)∑lu

k=ll
fk :=

u1∑
k1=l1

. . .
un∑

kn=ln

fk1,...,kn (summation)
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with fk some function parameterized by the multi-index k and l, u lower resp. upper
multi-indices. If in a summation we write integer numbers instead of l and u, we
intend multi-indices equal to that number in every position.

We can introduce a multi-index notation for the factorial as well. However, this
only makes sense for tuples of natural numbers k ∈ N

n

k! :=
n∏

i=1

(ki )!.

Example 4.11: Fourier transform of δ

In Example 3.1 we saw that the δ distribution inD′(Rn) is the tensor product of one
dimensional δ’s. Hence, with τ, λ ∈ R

n and the results of Example 4.5 the Fourier
transform of the n-dimensional shifted δ becomes

F {δ(τ − λ)} = e−j(ω,τ)

and it’s partial derivative

F {Diδ(τ )} = (jωi ) i = 1, . . . , n .

Using the multi-index notation, the higher order partial derivatives can be conve-
niently expressed as

F
{
Dkδ(τ )

} = (jω)k .

Using the n-dimensional symmetry relation given by (4.28) we also immediately
find

F
{
ej(ωc,τ )

} = (2π)n δ(ω − ωc)

and

F
{
(−jτ)k

} = (2π)nDkδ(ω) .

As in the one-dimensional case, the other properties of the n-dimensional Fourier
transform are immediate consequences of the convolution property and the convo-
lution and transform of the δ distribution.

Aperiodic function onRn is a function that is periodic in each independent variable
individually, that is, such that there are positive numbers Ti for i = 1, . . . , n, called
the period of the i th independent variable, so that
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f (τ1, . . . , τi + Ti , . . . , τn) = f (τ1, . . . , τi , . . . , τn) .

This extension of the concept of a periodic function to higher dimensions permits
us to widen the definition of periodic distributions (3.23) on test function of higher
dimensions D(Rn) in a straightforward way

〈T (τ1, . . . , τi + Ti , . . . , τn), φ(τ1, . . . , τi , . . . , τn)〉
= 〈T (τ1, . . . , τi , . . . , τn), φ(τ1, . . . , τi , . . . , τn)〉 .

From this follows without any difficulty an extension of the second Definition 3.5 as
well.

The n-dimensional Fourier series of a periodic distribution T ∈ D′(Rn) is

∞∑
k=−∞

ck(T ) ej(kωc,τ )

with k an n-dimensional multi-index, ωc the n-tuple (2π/T1, . . . , 2π/Tn) and ck(T )

the Fourier coefficients

ck(T ) = 1

T1 · · · · · Tn

〈
T ◦, e−j(kωc,τ )

〉
.
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Chapter 5
Laplace Transform of Distributions

5.1 Definition

The classic Laplace transform is closely related to the Fourier one and has similar
properties. In away it canbe seen as amodificationof the latter in such away that it can
handle exponentially growing functions. To achieve this the transformable functions
are required to be bounded on the left.1 Concretely, the classic one-dimensional
Laplace transform is defined on so-called original functions f : R → C with the
following properties:

1. f(t) = 0 for t < 0.
2. There is a real number σ0 such that f (t)e−σ0t is absolutely integrable over R.

The greatest lower bound σ f satisfying the last property is called the abscissa of
convergence of f .

The Laplace transform of an original function f is a function of the complex
variable s := σ + jω (σ, ω ∈ R) defined by

F(s) := L { f } (s) :=
∫ ∞

0
f (t)e−st dt �{s} > σ f . (5.1)

We adopt the common convention of denoting the Laplace transform of a function
f with the same letter, but capitalized. That is, for this example F = L { f }.
Wewant to extend this definition to distributionswith support contained in [0,∞),

that is to right-sided distributions T ∈ D′+. To this end note that the integrand in
the above definition is the product of an original function f with an indefinitely
differentiable function with unbounded support. If we multiply the latter by any
indefinitely differentiable function γ (t) with support bounded on the left and equal
to 1 on a neighborhood of [0,∞), then we obtain the product of two functions

1 There are left-sided and two-sided Laplace transforms as well, but we are not going to discuss
them.
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with support bounded on the left without changing the value of the integral. Then,
since f is an original function, for any σ0 > σ f the product f (t)e−σ0t is a (regular)
tempered distribution and γ (t)e−steσ0t , for�{s} > σ0, a test function of fast descent.
We have thus obtained a way to define the Laplace transform for a restricted class of
distributions.

Definition 5.1 (Laplace transformable) A distribution T ∈ D′+ is said to be Laplace
transformable if there exists a constant σ0 ∈ R such that

T (t) e−σ0t

is a distribution in S′(R). The greatest lower bound σT is called the abscissa of
convergence of T .

Definition 5.2 (Laplace transform) The Laplace transform of a Laplace trans-
formable distribution T is defined by

L {T } := 〈T (t) e−σ0t , γ (t)e−(s−σ0)t 〉 for �{s} > σ0 > σT

with γ any indefinitely differentiable function with support bounded on the left and
equal to 1 on a neighborhood of the support of T . It is commonly abbreviated by

〈T (t), e−st 〉 for �{s} > σT .

The right-half plane �{s} > σT is called region of convergence (ROC).

If T is Laplace transformable, its transform is a well-defined number for any value
of the complex parameter s with �{s} > σT . In other words, it is a function of s.
Since s only appears as a parameter of the test function of fast descent γ (t)e−(s−σ0)t ,
with the continuity and linearity of distributions it is easy to see that

Ds〈T (t), e−st 〉 = 〈T (t),−te−st 〉 = 〈−tT (t), e−st 〉 .

In addition, since e−st is an entire analytic function, in the right half-plane�{s} > σT ,
L {T } is a holomorphic function. This is an important result as it allows to use many
results from complex analysis.

Higher order derivatives are obtained by iterating the above result so that we have

Dk
sL {T } (s) = L {

(−t)kT
}
(s) . (5.2)

Note that the abscissa of convergence of the derivatives is the same as the one of T .
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Example 5.1: Laplace Transform of δ

The Laplace transform of δ, of δ(t − a) and of Dkδ are

〈δ, e−st 〉 = 1

〈δ(t − a), e−st 〉 = e−sa

〈Dkδ, e−st 〉 = 〈δ, (−1)k Dke−st 〉 = sk .

In all cases the region of convergence is the entire complex plane C.

Example 5.2: Laplace Transform of 1+(t) t k/k! eat
Let a be a complex number. The Laplace transform of the regular distribution
1+(t) eat is

〈eat , e−st 〉 =
∫ ∞

0
e−(s−a)t dt = 1

s − a

with abscissa of convergence σexp(at) = a.
From this and (5.2), the Laplace transform of

1+(t)
t k

k! e
at

is readily found to be

L
{
1+(t)

t k

k! e
at

}
= (−1)k

k! Dk 1

s − a
= 1

(s − a)k+1
.

5.2 Properties

The Laplace transform is a linear operation: given two Laplace transformable
distribution S and T with abscissa of convergence σS resp. σT , the transform of
their weighted sum is

L {c1S + c1T } = c1L {S} + c2L {T } for �{s} > max(σS, σT ) .

Let a be a complex number. Then, from the definition, the Laplace transform of
eat T (t)

L {
e−at T

}
(s) = 〈e−at T (t), e−st 〉 = 〈T (t), e−(s+a)t 〉 = L {T } (s + a)
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with region of convergence �{s} > σT − �{a}.
We saw in Example 3.6 that the convolution of distributions in D′+ is always

well-defined. Therefore, the convolution of two Laplace transformable distributions
S and T is well-defined. Then, for �{s} > σ0 = max(σS, σT ), the transform of their
convolution product is by definition

L {S ∗ T } (s)

= 〈(S ∗ T )e−σ0t , γ (t)e−(s−σ0)t 〉
= 〈S(t) ⊗ T (λ)e−σ0λ, γ (t + λ)e−(s−σ0)(t+λ)〉 .

By noting that, over a neighborhood of the support of S ⊗ T , γ (t + λ) = 1 =
γ (t)γ (λ) we can proceed further and obtain

L {S ∗ T } (s)

= 〈S(t)e−σ0t ⊗ T (λ)e−σ0λ, γ (t)e−(s−σ0)tγ (λ)e−(s−σ0)λ〉
= 〈S(t)e−σ0t , 〈T (λ)e−σ0λ, γ (λ)e−(s−σ0)λ〉γ (t)e−(s−σ0)t 〉
= 〈S(t)e−σ0t , γ (t)e−(s−σ0)t 〉〈T (λ)e−σ0λ, γ (λ)e−(s−σ0)λ〉
= L {S} (s)L {T } (s)

which is well-defined since, in the specified ROC, the Laplace transforms of S and
T are holomorphic functions. We thus see that, as the Fourier transform, the Laplace
transform converts convolutions into products

L {S ∗ T } = L {S}L {T } for �{s} > max(σS, σT ) . (5.3)

A key advantage over the Fourier transform is that here the multiplication is between
functions that are holomorphic in the specified open right-half plane.

In a similar way as we did for the Fourier transform, we can use this property
to derive several additional properties in a straightforward way. Specifically, using
the properties of the convolution product and the Laplace transform of the Dirac
δ and related distributions (Example 5.1), we immediately obtain the properties in
Table5.1 that we have not yet discussed.

Example 5.3: Convolution of exp’s

Let k and l be natural numbers and a a complex constant. We want to calculate the
following convolution product

1+(t)
t k

k! e
at ∗ 1+(t)

t l

l! e
at .

From the convolution property of the Laplace transform and the results of Exam-
ple 5.2 the transform of the above convolution product is
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Table 5.1 Properties of the Laplace transformation

T L {T } ROC∑
m amTm

∑
m amL {T }m �{s} > supm(σm)

S ∗ T L {S} L {T } �{s} > max(σS, σT )

T (t − τ) e−sτL {T } �{s} > σT

e−at T T (s + a) �{s} > σT − �{a}
DkT sk L {T } �{s} > σT

(−t)k T DkL {T } �{s} > σT

1

(s − a)k

1

(s − a)l
= 1

(s − a)k+l
.

With it, we find the desired result as

1+(t)
t k+l

(k + l)! e
at .

5.3 Inverse Laplace Transform

The Laplace transform isn’t only similar to the Fourier one, it can also be formally
related to it. Consider first an original function f . By writing its Laplace transform
as ∫ ∞

0
f (t)e−σ te−jωt dt

we see that, for every value of σ > σ f , it can be interpreted as the Fourier transform
of the function f (t)e−σ t .

This relation between the two transforms can be extended to distributions.
Consider a Laplace transformable distribution T . We have established that, for
�{s} > σT , its Laplace transform is a holomorphic function of s. In addition, by
definition, for every value σ0 > σT , T (t) e−σ0t is a distribution of slow growth and
for σ > σ0, γ (t)e−(σ−σ0)te−jωt is a test function of fast descent for every value of
ω. We conclude that the Laplace transform of T considered as a function of ω for
fixed σ must be a regular distribution of slow growth. Hence, the following integral
is well-defined ∫

R

〈T (t) e−σ0t , γ (t)e−(σ−σ0)te−jωt 〉φ(ω) dω

for any φ(ω) ∈ S. This integral can be recognized as the tensor product 1(ω) ⊗
T (t) e−σ0t and, using Fubini’s theorem, it can be rearranged to become
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〈T (t) e−σ0t , γ (t)e−(σ−σ0)t
∫
R

e−jωtφ(ω) dω〉
= 〈T (t) e−σ t , φ̂(t)〉 = 〈F {T (t) e−σ t }, φ(ω)〉 .

We thus obtain the claimed relation between Laplace and Fourier transforms

L {T } = F {e−σ t T } for σ > σT (5.4)

which gives us a formal way to invert the Laplace transform.
A first consequence of this relation is that, given the Laplace transform of a

distribution T with abscissa of convergence σT < 0, we can immediately find its
Fourier transform by setting s = jω

T̂ (ω) = L {T } (jω) .

Another important consequence of (5.4) is that, if L {T } = 0 on a vertical line
with �{s} > σT , then T = 0. In fact, with the above result we have that

0 = 〈L {T } , φ〉 = 〈F {e−σ t T }, φ〉 = 〈e−σ t T, φ̂〉

from which we conclude that e−σ t T and hence T must vanish. In addition, with
T = S −U this implies that, if L {S} = L {U } on a vertical line of the region of
convergence, then S = U . In other words, if a function, holomorphic in an open
right-half plane, is the Laplace transform of a distribution in D′+, then it is the
transform of a unique distribution.

The next logical question to ask is: which holomorphic functions are transforms
of a distribution? To answer this question, consider first an holomorphic function F
bounded by

|F(s)| ≤ C

|s|2 for �{s} ≥ σ0 > 0

with C a constant. Then
∫ ∞

−∞

∣∣F(σ0 + jω)ejωt
∣∣ dω ≤

∫ ∞

−∞
C

σ 2
0 + ω2

dω < ∞

and the inverse Fourier integral

1

2π

∫ ∞

−∞
F(σ0 + jω)ejωt dω

exists and defines a continuous function that we may write as e−σ0t f (t). The thus
defined function f is therefore
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Fig. 5.1 Integration path for
t < 0

f (t) = eσ0t

2π

∫ ∞

−∞
F(σ0 + jω)ejωt dω

= 1

2π

∫ ∞

−∞
F(σ0 + jω)e(σ0+jω)t dω

= 1

2πj

∫ σ0+j∞

σ0−j∞
F(s) est ds (5.5)

and corresponds to the integral of an holomorphic function along the vertical line
defined by �{s} = σ0. If we write the variable s in its polar representation s = Rejϕ

it’s easy to verify that in the right-half plane and for t < 0

|F(s)est | ≤ C

R2
.

Therefore, if we close the integration path of the above integral by first making the
line finite, then closing it along the half-circle shown in Fig. 5.1 and then taking the
limit R → ∞, the value of the integral remains unchanged. In fact

lim
R→∞

∣∣∣∣ 1

2πj

∫
�2

F(s) est ds

∣∣∣∣ ≤ lim
R→∞

C

2π R2
Rπ = 0 .

Having closed the integration path we can now use Cauchy’s theorem and conclude
that for t < 0, f (t) = 0.

Cauchy’s theorem can also be used to show that the value of the integral is the
same along any vertical line with �{s} > 0. To show this, we integrate along two
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vertical segments and close the path with horizontal ones. Since the contribution of
the horizontal paths vanishes as we extend the length of the vertical ones toward
infinity, we conclude that the value of the integral along the two vertical lines must
be the same.

We have thus established that the function f doesn’t depend on the value of
σ0, is continuous and vanishes for t < 0. These characteristics make f an original
function and hence a Laplace transformable distribution in D′+. Furthermore, from
the definition of f and (5.4) we see that F is its Laplace transform.

Now consider the more general function G(s) = sk F(s − σG) with σG ∈ R, k ∈
N and F as before. From the properties of the Laplace transform we know that it
is the transform of the distribution g = Dk(eσGt f ) which is also clearly in D′+. We
therefore conclude that every function G that, for some σG ∈ R, is holomorphic in
the open right-half plane �{s} > σG and is bounded above by a polynomial P

|G(s)| ≤ P(|s|) �{s} > σG (5.6)

is the Laplace transform of a distribution inD′+.
Without going into the details we also mention that the converse is also true. That

is, every Laplace transformable distribution T ∈ D′+ is a derivative of some regular
distribution associated with a continuous original function [16].

With the transforms of Examples 5.1 and 5.2 we can find the inverse Laplace
transform of any rational function of s by partial fraction expansion. Note also that
(5.5) corresponds to the classic inverse Laplace transform for functions.

Example 5.4: Laplace versus Fourier Transform of 1+

In this example we calculate the Laplace transform of the Heaviside step function
1+. While it’s easy to obtain it directly from the definition, we calculate it from
our previous results D1+ = δ (Example 2.8) and L {Dδ} = s (Example 5.1). This
is to compare it with the methods used in Examples 4.8 and 4.9 to obtain its Fourier
transform.

By using
D1+ = Dδ ∗ 1+

and the convolution property of the Laplace transform, we obtain the following
equation for the Laplace transform of 1+

s L {1+} = 1 .

Then, since all Laplace transforms are holomorphic functions in an open right-half
plane and only the zero distribution has zero as its transform, we can conclude that

L {1+} = 1

s
�{s} > 0 .
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As an extra step we want to obtain the Fourier transform of 1+ from its Laplace
transform. The abscissa of convergence ofL {1+} is not smaller than zero. Therefore,
we can’t obtain it by simply setting s = jω. However, in cases like this, where the
abscissa of convergence is zero, given the continuity of distributions, it’s still possible
to obtain the Fourier transform as a limit, so that

〈F {1+}, φ〉 = lim�{s}↓0

∫
�

φ(�{s})
s

ds

j

with � a vertical line in the ROC@. The limit is only problematic around the origin,
where we can integrate along a small half-circle of radius ε

lim�{s}↓0
1

j

∫
�

φ(�{s})
s

ds

= lim
ε↓0

1

j

{∫
|ω|>ε

φ(ω)

jω
j dω +

∫ π/2

−π/2

φ(ε sin(ϕ))

εejϕ
jε ejϕ dϕ

}

= lim
ε↓0

{∫
|ω|>ε

φ(ω)

jω
dω

}
+

∫ π/2

−π/2
φ(0) dϕ

= 〈pv 1

jω
+ πδ, φ〉 .

Example 5.5: Exploiting Continuity

To simplify the notation we assume that all appearing functions (more correctly,
regular distributions) disappear for t < 0. For example, we write t k for 1+(t) t k .

From the results of Example 5.2, by setting a = 0, we can note a dualism between
positive and negative powers

L
{
t k

k!
}

= 1

sk+1
�{s} > 0 .

If we sum the first N powers of t we obtain

L
{

N−1∑
k=0

t k

k!

}
=

N−1∑
k=0

1

sk+1
= 1

s

N−1∑
k=0

1

sk
.

Using the continuity of distributions we can let N tend to infinity. The original
distribution converges to the exponential function, while the transform becomes a
geometric series (plus a factor)



84 5 Laplace Transform of Distributions

L {
et

} = 1

s

∞∑
k=0

1

sk

that converges for |s| > 1. This means that there is a right-half plane�{s} > 1 where
the series converges and can be summed to obtain the expected result

L {
et

} = 1

s

1

1 − 1/s
= 1

s − 1
�{s} > 1 .

Note that the last expression can also be expressed as a geometric series of positive
powers of s

1

s − 1
= −

∞∑
k=0

sk .

However, this series only converges if |s| < 1. Consequently, there is no right-half
plane where the series is holomorphic and hence it isn’t the Laplace transform of a
distribution.

5.4 Extension to Several Variables

The Laplace transform can be extended to functions of several variables in the same
way as we did for the Fourier transform. Let τ be an n-tuple in Rn . A multi-variable
original function f : Rn → C is a function that is an original function with respect
to each variable independently, that is

1. f (τ ) = 0 if any τi < 0, i = 1, . . . , n.
2. There is a σ0 ∈ R

n such that f (τ )e−(σ0,τ ) is absolutely integrable over Rn .

The classic Laplace transform is then defined as

L { f } (s) =
∫
R

n+
f (τ ) e−(s,τ ) dnτ (5.7)

with s ∈ C
n and R

n+ the n-dimensional Cartesian product of the half-line [0,∞).
With this definitionwe see that the definition of the Laplace transform for distribu-

tions extends to higher dimensions essentially without modification. By interpreting
k as a multi-index and all variables as n-dimensional ones, all properties of Table 5.1
remain valid. The only exception is the classic inverse Laplace transform integral
(5.5). As we have seen, this integral is based on the inverse Fourier transform and
the factor 2πj has therefore to be replaced by (2πj)n .
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Chapter 6
Summable Distributions

In this chapter we study a class of distributions, summable distributions, that can
be extended on smooth bounded functions. These distributions have properties that
are well suited to describe some classes of systems. However, the material is more
technical than the rest of the book and can be skipped without loss of continuity.

6.1 Definition and Canonical Extension

One can define summable distributions in several equivalentways [16]. The following
one is the most suitable for our purposes.

Definition 6.1 (Summable distributions)A summable distribution T is a distribution
that can be represented as a finite sum of derivatives (in the sense of distribution) of
functions fk ∈ L1

T =
∑

|k|≤m

Dk fk

with k an n-tuple in Nn and m ∈ N.

We denote the vector space of summable distributions by D′
L1 .

An important property of summable distributions is the fact that they can be
extended to continuous linear functionals on B, the set of indefinitely differentiable
functions that, together with all their derivatives, are bounded

B := {
φ ∈ C∞| Dkφ is bounded, k ∈ N

n
}
.

As usual, to talk about continuity, we need to define a convergence criterion
(topology).
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Definition 6.2 (Convergence in B) A sequence of functions (η j ) in B converges
to zero if the sequence as well as all sequences of the derivatives (Dkη j ) converge
uniformly to zero as j tends to infinity. That is, given the norms

pm(η) :=
∑

|k|≤m

sup
τ∈Rn

|Dkη(τ)|,

the sequence (η j ) converges to zero if, as j tends to infinity, the sequence of numbers
(pm(η j )) converges to zero for all m ∈ N.

The application of a summable distribution T to a function η ∈ B is well defined
since ∣∣〈Dk fk, η

〉∣∣ ≤ sup
τ∈Rn

|Dkη(τ)|
∫

Rn

| fk(τ ) | dnτ < ∞ .

This shows that it’s possible to extend a summable distribution to B. However, the
extension in general is not unique. The reason being that the set of test functions
D is not dense in B. That is to say that it’s not possible to approximate to arbitrary
accuracy any function in B with functions from D.

Example 6.1: Constant Function

Consider the constant function 1 : t �→ 1, the function α ∈ D defined by (2.11), and
functions α j ∈ D defined by α j (t) = α(t/j), j ∈ N. The product α j1 is clearly a
test function satisfying α j (2 j) = 0 for all values of j . From this we see that

p0(α j1 − 1) = sup
t∈R

|α j (t)1(t) − 1(t)| = 1

no matter how large j is.

Example 6.2: Average Functional

Consider the functions 1, α j from Example 6.1 and the following functional L on B

L(η) := lim
C→∞

1

C

∫ C/2

−C/2
η(τ) dτ .

It is easily seen that L is linear and continuous. Its value on the constant function 1
is 1 while its value on the test functions α j1 is zero for all values of j

|L(α j1)| ≤ lim
C→∞

1

C

∫ 2 j

−2 j
|α j (τ )| dτ ≤ lim

C→∞
4 j

C
= 0.
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The functional L is therefore a valid extension to B of the zero distribution as is the
zero functional on B.

We can define a unique, canonical extension of a summable distribution T by
requiring an additional condition on the extension [19]. A suitable condition can be
obtained from the properties of Lebesgue integrals. Consider again the test functions
α j ∈ D from Example 6.1 and a function η ∈ B. If we apply T to α jη we obtain

〈
T, α jη

〉 =
∑

|k|≤m

(−1)|k|
∫

Rn

fk(τ ) Dk(α j (τ )η(τ )) dnτ

=
∑

|k|≤m

(−1)|k|
(∫

|τ |≤ j
fk(τ ) Dkη(τ) dnτ +

∫

|τ |> j
fk(τ ) Dk(α j (τ )η(τ )) dnτ

)
.

The integral of an L1 function can be approximated up to an arbitrary ε > 0 by an
integral over a suitably chosen compact subset K of Rn . Therefore we can find a
large enough N such that for j > N

〈
T, α jη

〉 = ε +
∑

|k|≤m

(−1)|k|
∫

|τ |≤ j
fk(τ )Dkη(τ) dnτ .

Thus, in the limit as j tends to infinity we obtain a well-defined continuous linear
functional on B.

The important observation from this derivation is the fact that, to find an extension
to B of a summable distribution, it is not necessary to require uniform convergence
on the whole ofRn . An extension can be obtained by requiring uniform convergence
on every compact subset K ⊂ R

n . More precisely, by requiring the convergence cri-
terion that we defined for the space E. From this observation we define the following
property.

Definition 6.3 (Bounded convergence property) A continuous linear functional on
B has the bounded convergence property if, given any sequence (η j ) of functions
η j ∈ Bwith pm(η j ) < ∞ for all m, and converging to zero in the spaceE as j → ∞,
then 〈

T, η j
〉 → 0 , j → ∞ .

The sequence (α jη) does converge to η in E. Hence, by continuity, there is a
unique extension of T to B with the bounded convergence property

lim
j→∞

〈
T, α jη

〉 = 〈T, η〉 . (6.1)

In particular this shows that this extension does not depend on the particular repre-
sentation of T in terms of derivatives of integrable functions.
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The converse is also true. The restriction toD of any continuous linear functional
onBwith the bounded convergence property defines a unique summable distribution.
Thus, there is a one to one correspondence between summable distributions and
continuous linear functionals on B with the bounded convergence property.

Definition 6.4 (Canonical extension) The canonical extension to B of a summable
distribution is the unique extension to a continuous linear functional on B with the
bounded convergence property.

In the following, whenever we use the extension of a summable distribution it
will always be assumed to be the canonical one.

While our previous definition of differentiation carries over to summable distribu-
tions without problems, this is not the case for multiplication. In general the product
of a bounded function η ∈ Bwith an unbounded one γ ∈ E is not bounded and there-
fore not in B. Differently from this, the product of two bounded functions η, ζ ∈ B
is always in B. Therefore, for summable distributions T ∈ D′

L1 multiplication has
to be restricted to functions in B

〈ηT, ζ 〉 = 〈T, ηζ 〉 .

6.2 Convolution of Summable Distributions

In Sect. 3.2 we defined the convolution product between two distributions S, T ∈ D′
by

〈S ∗ T, φ〉 = 〈S(τ ) ⊗ T (λ), φ(τ + λ)〉

and saw that in general, if the support of both S and T is unbounded, it may not exist.
In this section we show that if S and T are summable, then their convolution product
is well-defined despite the fact that their support is unbounded.

Consider the application of a summable distribution T to a function τ �→ η(λ +
τ) ∈ B with λ a parameter. Following the same arguments as in Sect. 3.1, given
the linearity and continuity of T , we deduce that it is a continuous and indefinitely
differentiable function ζ belonging to B

ζ(λ) = 〈T (τ ), η(λ + τ)〉 .

For this reason the convolution of two summable distributions S and T is always
well-defined

〈S ∗ T, η〉 = 〈S(λ), 〈T (τ ), η(λ + τ)〉〉 = 〈S, ζ 〉

and commutative.
Next we investigate the convolution of a summable distribution T with a function

inB. Consider the application of T to the function τ �→ η(λ − τ) ∈ B parameterised
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by λ. As we just saw, it is a function that we call again ζ and that is clearly locally
integrable. Hence, it defines a distribution inD′ and with φ ∈ D we can write

〈〈T (τ ), η(λ − τ)〉 , φ(λ)〉 = 〈ζ, φ〉 = 〈φ, ζ 〉 = 〈φ(λ), 〈T (τ ), η(λ − τ)〉〉
= 〈φ(λ) ⊗ T (τ ), η(λ − τ)〉
=

〈
T (τ ),

∫

Rn

φ(λ)η(λ − τ) dnλ

〉

=
〈
T (τ ),

∫

Rn

φ(ξ + τ)η(ξ) dnξ

〉

= 〈T (τ ) ⊗ η(ξ), φ(ξ + τ)〉 = 〈T ∗ η, φ〉 .

or
〈T (τ ), η(λ − τ)〉 = (T ∗ η)(λ) (6.2)

This shows that a summable distribution can be regularised by a function in B and
that the resulting regularised is also a function in B.

6.3 Fourier Transform of Summable Distributions

The functions τ �→ e−j(ω,τ) with ω ∈ R
n belong to B. For this reason the Fourier

transform of a summable distribution T can be expressed in a simple way. Let φ ∈ D,
then

〈F {T }, φ〉 = 〈T (τ ),F {φ}(τ )〉 =
〈
T (τ ),

∫

Rn

φ(ω)e−j(τ,ω) dnω

〉

= 〈
T (τ ),

〈
φ(ω), e−j(τ,ω)

〉〉 = 〈
T (τ ) ⊗ φ(ω), e−j(τ,ω)

〉

= 〈
φ(ω),

〈
T (τ ), e−j(τ,ω)

〉〉 = 〈〈
T (τ ), e−j(τ,ω)

〉
, φ(ω)

〉

or
F {T }(ω) = 〈

T (τ ), e−j(τ,ω)
〉
. (6.3)

F {T } is thus a continuous function. Moreover it has at most polynomial growth, for,
by representing T as a sum of integrable functions and the properties of the Fourier
transform, for some m ∈ N we have

|F {T }(ω)| =
∣∣∣∣∣∣

∑

|k|≤m

(jω)kF { fk}(ω)

∣∣∣∣∣∣

≤
∑

|k|≤m

|ω|k
∫

Rn

| fk(τ )| dnτ ≤ C(1 + |ω|)m
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with C a constant. Thus, the Fourier transformed of a summable distribution is a
function of slow growth.

The converse is not in general true, but we can find a class of functions for which
it is. This is the set OM , the set of functions of slow growth that are indefinitely
differentiable.

To see that this is the case, consider the Fourier transformed T̂ of some tempered
distribution T and assume that T̂ ∈ OM . If φ ∈ D ⊂ S then its Fourier transformed
φ̂ as well as φ̂T̂ are in S. Therefore we see that

φ ∗ T = F −1{φ̂T̂ } ∈ S ⊂ L1

is a summable distribution and we can apply it to a function η ∈ B to obtain

〈φ ∗ T, η〉 = 〈φ(λ) ⊗ T (τ ), η(λ + τ)〉 = 〈T (τ ), 〈φ(λ), η(λ + τ)〉〉 .

Since φ ∈ D and η ∈ B are arbitrary and 〈φ(λ), η(λ + τ)〉 ∈ B we deduce that T is
a summable distribution.

We conclude this section by showing that the property of the Fourier transform
of transforming convolution products into ordinary products is valid for arbitrary
summable distributions. Let S, T be summable distributions, then using (6.3) and
the property of the exponential function e−j(τ+λ,ω) = e−j(τ,ω)e−j(λ,ω) one readily
obtain that

F {S ∗ T } = F {S}F {T } . (6.4)

The product is well defined as F {S} and F {T } are both functions.
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Chapter 7
Convolution Equations

The objective of this chapter is to show that the solution of ordinary differential equa-
tions, if based on distributions as opposed to functions, can be obtained by (mostly)
algebraic methods. These methods are rigorous forms of the so-called Heaviside’s
operational or symbolic calculus. The close relationship to the integral transforms
that convert convolution into the ordinary multiplication is also shown.

•! Notation

With this chapter we stop using uppercase letters such as T to denote distributions.
Instead, we start using lowercase letters such as the ones typically used to denote
functions, for example f . We also adopt the convention of denoting the Laplace
transformof a distribution, say f , with the same letter, but changed to uppercase, e.g. ,
F = L{ f }. When we need to distinguish between the ordinary and the distributional
differential operator, we will in general denote the former by d

dt and continue to
denote the latter by D.

7.1 Convolution Algebra

An algebra A is a vector space together with an associative product � such that
multiplication of any two vectors produces another vector inA and such that for any
constants a, b and any vectors f, g, h ∈ A the following distributivity laws are valid

(a f + bg) � h = a( f � h) + b(g � h) (7.1)

f � (ag + bh) = a( f � g) + b( f � h) . (7.2)

© The Author(s) 2024
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The convolution product seems like an adequate product to make an algebra out
of distributions. Unfortunately, as we saw, the convolution product is not defined for
arbitrary distributions. The solution is to restrict the set of distributions to a vector
subspace ofD′ on which the convolution is well-defined.

Definition 7.1 (Convolution algebra) A convolution algebraA′ is a vector subspace
of D′ with the following properties:

• The convolution product is associative.
• A′ with the convolution product forms an algebra.
• δ is inA′.
A convolution algebra is thus an algebra with a unit and for which the product is
always commutative. We also note that the triple (A′,+, ∗) forms a commutative
ring.

We have already met three examples of convolution algebras: (i) the set of right-
sided distributionsD′+, (ii) the set of periodic distributions and (iii) the set of distri-
butions with compact support E′.

7.2 Convolution Equations

In this section we study convolution equations. We will see that they provide a
framework for studying a broad class of systems that is the time-domain counterpart
of one based on the Laplace transform.

A convolution equation is an equation of the form

g ∗ y = x (7.3)

with g and x given distributions and y a distribution to be determined. In this section
we assume g, x and y to be elements of a convolution algebra A′. Suppose that g
has an inverse inA′, that is, there is an element denoted by g∗−1 ∈ A′ such that

g ∗ g∗−1 = g∗−1 ∗ g = δ .

Then g∗−1 ∗ x is a solution of the equation for any x , since

y = g∗−1 ∗ g ∗ y = g∗−1 ∗ x .

Note that if there is an inverse g∗−1 then it must be unique, since if g∗−1
1 is another

inverse we have

g ∗ (g∗−1 − g∗−1
1 ) = (g ∗ g∗−1) − (g ∗ g∗−1

1 ) = 0

Conversely, suppose that (7.3) has a solution for any right-hand x . Then it has a
solution for x = δ and the solution is by definition the inverse of g. Consequently,
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we can say that, if g has an inverse inA′, then the equation has a unique solution for
any right-hand side x and the solution is

y = g∗−1 ∗ x . (7.4)

Therefore, knowledge of g∗−1 permits to find the solution of (7.3) for any right-hand
side x . For this reason g∗−1 is called the elementary or fundamental solution of the
convolution equation.

Note that if g has an inverse g∗−1, but it’s not an element of the convolution
algebraA′, then the expression g∗−1 ∗ x may not exist and g∗−1 ∗ g ∗ y may not be
associative (see Example 3.5). Hence, (7.4) can not be proved to be equivalent to
(7.3).

Suppose that g1 and g2 are two elements of the convolution algebra A′ having
inverses g∗−1

1 and g∗−1
2 , respectively. Then their convolution product g1 ∗ g2 has an

inverse as well and it is given by

(g1 ∗ g2)
∗−1 = g∗−1

1 ∗ g∗−1
2 (7.5)

for

(g1 ∗ g2)
∗−1 ∗ (g1 ∗ g2) = δ

= g1 ∗ g∗−1
1 ∗ g2 ∗ g∗−1

2

= (g∗−1
1 ∗ g∗−1

2 ) ∗ (g1 ∗ g2) .

From this we see that, if in (7.3) g can be represented as the convolution product
of m invertible elements gi , i = 1, . . . ,m, then the solution of the equation can be
expressed as the convolution product of their inverses

y = g∗−1
1 ∗ . . . ∗ g∗−1

m ∗ x . (7.6)

In every algebrawith a unit, one can perform a partial fraction expansion and every
convolution algebra has a unit by definition. Therefore, every convolution product
of inverses can be represented as a sum of inverses.

Example 7.1: Partial Fraction Expansion

Consider the following convolution product

(Dδ + aδ)∗−1 ∗ (Dδ − bδ)∗−1

with a and b different constants. Its partial fraction expansion has the form

ca(Dδ + aδ)∗−1 + cb(Dδ − bδ)∗−1



98 7 Convolution Equations

with ca and cb constants to be determined. If we take the convolution of both expres-
sions with

(Dδ + aδ) ∗ (Dδ − bδ)

we obtain the following equation

δ = ca(Dδ − bδ) + cb(Dδ + aδ) .

Equating the coefficients of δ and Dδ we obtain two equations for ca and cb whose
solution is

cb = −ca = 1

a + b
.

A (convolution) algebra is said to be free from zero divisors if

g1 ∗ g2 = 0

implies that either g1 = 0 or g2 = 0. In this case the algebra is called an integral
domain and a convolution equationwith common factors on both sides of the equation
can be simplified. For example, assuming f �= 0, the equation

f ∗ g ∗ y = f ∗ x

can be simplified to
g ∗ y = x .

In fact, the original equation can be written as

f ∗ (g ∗ y − x) = 0

and since f is different from zero, we can deduce the simplified form.
We will see that the convolution algebra of right-sided distributions D′+ is an

integral domain. The algebra of periodic distributionsD′(T) is not.

7.3 Initial Value Problems

In this section we want to apply the results of the previous section to study initial
value problems. In particular let L denote the linear differential operatorwith constant
coefficients of order m

L = Dm + am−1D
m−1 + · · · + a1D + a0
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where for convenience we have set am = 1. We are interested in the solution of the
differential equation

Ly(t) = x(t) (7.7)

for t ≥ 0 with initial conditions

(Dk y)(0) = yk k = 0, . . . ,m − 1 (7.8)

x and y functions and differentiation intended in the usual sense of differentiation of
functions.

As a first step in translating this problem into the language of distributions, we
note that the convolution algebra D′+ is well suited for the study of initial value
problems. Every element of the algebra can be thought of as being in a zero state for
t < 0 and representing some excitation or state evolution for t ≥ 0. The functions
x and y can be associated with distributions of D′+ by extending them to negative
values of t where we assign them the value of zero. To make this explicit it’s usual
to show them multiplied by the unit step 1+.

The second step is to perform differentiation in the sense of distributions. With
the results of Example 2.9, for the first derivative of 1+y we have

D(1+(t)y(t)) = 1+(t)Dy(t) + y0δ

and similarly, for the higher order derivatives

D2(1+(t)y(t)) = 1+(t)D2y(t) + y0Dδ + y1δ

. . .

Dm(1+(t)y(t)) = 1+(t)Dmy(t) + y0D
m−1δ + · · · + ym−1δ .

Note that in all these expressions the first term on the right-hand side is the conven-
tional derivative of the function y (multiplied by 1+). Putting these results in the
differential equation we obtain an equivalent equation for the distribution 1+y

L(1+y) = 1+Ly +
m−1∑

k=0

σk D
kδ

= 1+x +
m−1∑

k=0

σk D
kδ

with

σk = a1+k y0 + a2+k y1 + · · · + ym−k−1

=
m−1−k∑

i=0

ai+1+k yi , k = 0, . . . ,m − 1 (7.9)
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and am = 1.
The last step required to translate the initial value problem into a convolution

equation is to use the fact that the kth order derivative of a distribution can be
expressed as the convolution product with Dkδ so that

L(1+y) = Lδ ∗ 1+y .

The initial value problem defined by (7.7) and (7.8) is therefore equivalent to the
following convolution equation of distributions

Lδ ∗ 1+y = 1+x +
m−1∑

k=0

σk D
kδ . (7.10)

With the results of the previous section, if the distribution Lδ has an inverse in D′+
(the elementary solution of the equation), the solution of the equation for arbitrary
right-hand side 1+x and initial conditions is given by

1+y = (Lδ)∗−1 ∗ 1+x +
m−1∑

k=0

σk D
k
[
(Lδ)∗−1

]
. (7.11)

It’s worth highlighting two important points. The first one is the fact that the
differential equation (7.7) is not a full description of the problem. To fully specify
the problem it has to be accompanied by the initial conditions expressed by Eq. (7.8).
Differently from this, the convolution Eq. (7.10) is a full description of the problem.

The second point that we want to highlight is the fact that (7.11) is a global
solution of the problem, that is, the solution is specified for all times. Differently
from this, the classical solution of the original initial value problem is a function
only valid for t ≥ 0.

Next we show that the inverse (Lδ)∗−1 exists. To this end note that if we insert it
in (7.10) and set x = 0 as well as σ0 = 1 and σk = 0, k = 1, . . . ,m − 1 we obtain
the equation defining the inverse

Lδ ∗ (Lδ)∗−1 = δ .

The inverse of Lδ is thus the distribution 1+ewith e the functionwhich is the solution
of the homogeneous equation

Le(t) = 0

with initial conditions

Dm−1e(t) = 1 and Dke(t) = 0 , k = 0, . . . ,m − 2 .



7.3 Initial Value Problems 101

Example 7.2: Fundamental Solution

Consider the differential operator

L = D + a.

The solution of the homogeneous differential equation Le(t) = 0 with initial condi-
tion e(0) = 1 is

e(t) = e−at .

The inverse of Lδ in the convolution algebra D′+ is therefore

(Lδ)∗−1 = (Dδ + aδ)∗−1 = 1+(t)e−at .

This is easily verified by inserting it into the convolution equation for the operator L

Lδ ∗ (Lδ)∗−1 = (Dδ + aδ) ∗ 1+(t)e−at = D(1+(t)e−at ) + a1+(t)e−at

= −a1+(t)e−at + δ + a1+(t)e−at = δ .

In a similar way we find

(Dδ + a)−m = 1+(t)
tm−1

(m − 1)!e
−at

with m a positive natural number.

Let’s focus for a moment on the distribution Lδ and observe that it looks like a
polynomial P with Dδ playing the role of the independent variable

Lδ = Dmδ + am−1D
m−1δ + · · · + a1Dδ + a0δ .

Any polynomial can be represented as a product of factors

P(z) = (z − z1)(z − z2) · · · (z − zm)

with z j the zeros that may or may not be distinct. From this and remembering that

Dkδ ∗ Diδ = Dk+iδ

we deduce that the distribution Lδ can be factored in a similar way. If we denote
by f ∗k the convolution product of k ≥ 0 distributions equal to f with f ∗0 = δ and
group common factors, then Lδ can be represented as

Lδ = (Dδ − z1δ)
∗l1 ∗ (Dδ − z2δ)

∗l2 ∗ · · · ∗ (Dδ − znδ)
∗ln
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with l j themultiplicity of the j th factor. The inverse (Lδ)∗−1 can then also be factored

(Lδ)∗−1 = (Dδ − z1δ)
∗−l1 ∗ (Dδ − z2δ)

∗−l2 ∗ · · · ∗ (Dδ − znδ)
∗−ln

f ∗−k denoting the inverse of f ∗k . With this factorization the elementary solution can
either be directly expressed as a convolution product

1+(t) e(t) = 1+(t)
t l1−1

(l1 − 1)!e
z1t ∗ · · · ∗ 1+(t)

t ln−1

(ln − 1)!e
znt

or, by first performing a partial fraction expansion, can be expressed as a sum of
convolution-free known distributions.

To show the relation to the Laplace method, we Laplace transform Eq. (7.10). The
Laplace transform of the distribution Lδ becomes a true polynomial in the variable
s and the convolution product becomes the conventional multiplication so that the
convolution equation becomes an algebraic equation

P(s) Y (s) = X (s) +
m−1∑

k=0

σks
k

P(s) = (sm + am−1s
m−1 + · · · + a1s + a0)

= (s − z1)
l1(s − z2)

l2 · · · · · (s − zn)
ln .

The Laplace transformed of the inverse (Lδ)∗−1 is the reciprocal of P(s) and corre-
sponds to the Laplace transform of the elementary solution e

E(s) = 1

P(s)
.

With it the solution of the convolution equation can be written as

Y (s) = E(s)X (s) + E(s)
m−1∑

k=0

σks
k .

The solution y of the original equation is then found by inverse Laplace transforming
Y . Inmost cases this ismost conveniently accomplished by partial fraction expansion.

This shows the parallelism between convolution equations inD′+ on one side and
the Laplace transformmethod on the other one. In particular the distribution Dδ is the
time-domain counterpart of the variable s, the convolution product the counterpart
of the ordinary multiplication and δ the one of the multiplicative unit element 1.
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Example 7.3

Consider the differential equation

[
D2 + (a − b)D − ab

]
y(t) = x(t)

with initial conditions (Dy)(0) = y(0) = 0 and assume that a and b are different
constants. The corresponding convolution equation

(Dδ + aδ) ∗ (Dδ − bδ) ∗ y = x

has as elementary solution the convolution product

e = (Dδ + aδ)∗−1 ∗ (Dδ − bδ)∗−1

with partial fraction expansion (see Example 7.1)

e = 1

a + b

[−(Dδ + aδ)∗−1 + (Dδ − bδ)∗−1
]
.

The inverse elements appearing in e were calculated in Example 7.2. Using those
results we can express the elementary solution of the equation as

e(t) = 1

a + b

[−1+(t) e−at + 1+(t) ebt
]
.

If we Laplace transform the equation, the procedure is completely parallel. The
Laplace transformed of the elementary solution is

E(s) = 1

a + b

[ −1

s + a
+ 1

s − b

]

and by inversion we obtain the same distribution e.

We have seen that the initial value problem described by (7.7) and (7.8) can
equivalently be described by the convolution (7.10). While the differential equation
only has a meaning if x is a continuous function with isolated jump discontinuities,
the convolution equation remain well-defined if 1+x is replaced by any distribution
inD′+. In particular, we can consider more general convolution equations of the form

Lδ ∗ y = Nδ ∗ x +
m−1∑

k=0

σk D
kδ
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with
N = bnD

n + bn−1D
n−1 + · · · + b0 ,

x any distribution inD′+ and where it’s understood that the solution y must belong to
the convolution algebra of distributions inD′+. As before, the solution of the equation
is found by convolving with the convolutional inverse of Lδ

y = (Lδ)∗−1 ∗ Nδ ∗ x +
m−1∑

k=0

σk(Lδ)∗−1 ∗ Dkδ .

Wewant to establish if it’s possible to replace the second summand on the right-hand
side, representing the initial conditions, by a suitably selected input signal composed
by a weighted sum of a Dirac pulse and it’s derivatives, such that, in the complement
of t = 0, the solution y remains unchanged. To this end its convenient to consider
the Laplace transformed of y

Y (s) = Z(s)

P(s)
X (s) +

∑m−1
k=0 σksk

P(s)

with Z = L{Nδ} a polynomial of degree n and the other symbols having the same
meaning as before. The Laplace transform of the sought for input signal is a poly-
nomial

X (s) = xqs
q + · · · + x0

and it must be selected in such a way as to satisfy the equality

Z(s)

P(s)
X (s) =

∑m−1
k=0 σksk

P(s)
+ W (s)

withW (s) another polynomial. This polynomial corresponds also to a weighted sum
of Dirac pulses and its derivatives, and hence only changes y at t = 0, which we
allow.

The conditions for the existence of such an input signal X (s) can be determined
with the help of the division theorem of polynomials. It states that, given polynomials
Q(s) and P(s) �= 0, there are unique polynomials R(s) and W (s) satisfying

Q(s) = P(s)W (s) + R(s)

with the degree of R(s) being lower than the one of P(s) [21]. From this theorem
we deduce that, provided Z(s) and P(s) are relatively prime, that is, assuming that
they have no common factors, we can select X (s) so that the rest of the division of
Z(s)X (s) by P(s) corresponds to

∑m−1
k=0 σksk . To achieve this we need m degrees

of freedom, one for each σk . In other words, the input polynomial X (s) must have
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degreem − 1. Then we can choose the coefficients of X (s) in such a way as to obtain
the desired values for the rest of the division.

If Z(s) and P(s) have a common factor K (s) then

Z(s)X (s)

P(s)
= K (s)Z ′(s)X (s)

K (s)P ′(s)
= K (s)

K (s)

(
R(s)

P ′(s)
+ W (s)

)

= K (s)R(s)

P(s)
+ W (s)

and we see that the rest of the division K (s)R(s) has a constrained form that can’t
be made to match

∑m−1
k=0 σksk for arbitrary σks.

We have therefore established that, in a convolution equation derived from an
initial value problem, the terms representing the initial conditions can be replaced by
a distribution x composed by a weighted sum of a Dirac pulse and its derivatives if
and only if Z(s) and P(s) have no common factors. If we perform this substitution,
in the complement of t = 0, the solution of the equation y remains unchanged.

Example 7.4: Replacing Initial Conditions

Consider the initial value problem

(
D2 + a1D + a0

)
y = (b1D + b0) x

(Dy)(0) = y1, y(0) = y0 .

The corresponding convolution equation is

(Dδ2 + a1Dδ + a0δ) ∗ y = (b1Dδ + b0) ∗ x + y0Dδ + (a1y0 + y1)δ .

Our objective is to replace the initial conditions by an input signal composed by a
Dirac pulse and its derivatives so that in the complement of t = 0 the solution y
of the convolution equation with this input signal is identical to the solution of the
equation with initial conditions and no input signal.

Expressed in the Laplace domain the problem is thus to find the coefficients of
the polynomial

X (s) = x1s + x0

such that
Z(s)X (s)

P(s)
= R(s)

P(s)
+ W (s)

with

Z(s) = b1s + b0, P(s) = s2 + a1s + a0, R(s) = y0s + a1y0 + y1
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and W (s) an arbitrary polynomial of degree lower than 2. By performing the poly-
nomial division of the left-hand side of the equation we obtain

s(−a1b1x1 + b0x1 + b1x0) − a0b1x1 + b0x0
s2 + a1s + a0

+ b1x1 .

Thus W (s) = b1x1 and, by comparing coefficients of this expression with the right-
hand side of the equation, the coefficients of X (s) are found to be

x0 = (a1b1 − b0)y1 + [(a21 − a0)b1 − a1b0]y0
a0b21 − a1b0b1 + b20

x1 = b1y1 + (a1b1 − b0)y0
a0b21 − a1b0b1 + b20

.

This solution is well-defined except when the denominator, which is the same for
both x1 and x0, becomes zero. This happens when

a1 = a0b1
b0

+ b0
b1

.

In this case the polynomial Z(s) becomes a factor of P(s)

s2 + (
a0b1
b0

+ b0
b1

)2 + a0 = (b1s + b0)(
1

b1
s + a0

b0
)

in accordance with our general treatment of the problem.

Before concluding this section we show the important fact mentioned before that
the convolution algebraD′+ has no zero divisors. To see this, consider a test function
φ that is real-valued and positive everywhere on its support, for example βν from
Example 2.1. We call such a function a positive test function. In Chap. 3 we saw
that every distribution can be represented as the limit of a sequence of indefinitely
differentiable functions. Let (gm) and (ym) be such sequences converging to g and y
respectively and, for simplicity, assume that all functions are real-valued. Then, for
every m there exists an open interval U contained in the support of gm where, for
every positive test function ζ with support in U , its value always has the same sign,
for example positive

〈gm, ζ 〉 > 0 .

We can make a similar construction for yi as well. In addition, we can introduce a
parameter λ such that

λ 
→ 〈yi (τ ), φ(τ + λ)〉
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is a positive (or negative) test functions of λwith support inU . Then, assuming again
a positive sign,

〈gm ∗ yi , φ〉 = 〈gm(λ), 〈yi (τ ), φ(τ + λ)〉〉

must be positive for every m and i and, with the continuity of distributions and
convolution, somust be the limit. Consequently, if g ∗ y vanish for every test function
then either g or y must be the zero distribution.

7.4 Integro-Differential Equations

Some initial value problems are naturally formulated as ordinary integro-differential
equations

Dmy(t) + am−1D
m−1y(t) + · · · + a1Dy(t) + a0y(t)

+ a−1

∫ t

0
y(τ1) dτ1 + · · · + a−n

∫ t

0
· · ·

∫ τn−1

0
y(τn) dτn · · · dτ1

= x(t)

with initial conditions

(Dk y)(0) = yk k = 0, . . . ,m − 1 . (7.12)

We still need initial conditions, but this time only m of them as the remaining infor-
mation is included in the integrals.

These problems can be converted into convolution equations in the convolution
algebraD′+ in a similar way as we discussed before. The new terms are the ones that
are expressed as integrals and these can be written as convolution products

∫ t

0
y(τ1) dτ1 = 1+(t) ∗ 1+(t)y(t)

. . .∫ t

0
· · ·

∫ τn−1

0
y(τn) dτn · · · dτ1 = 1∗n

+ (t) ∗ 1+(t)y(t) .

The corresponding convolution equation is therefore

(
Dmδ + am−1D

m−1δ + · · · + a1Dδ + a0δ

+ a−11+ + · · · + a−n1∗n
+

) ∗ 1+(t)y(t)

= 1+(t)x(t) +
m−1∑

k=0

σk D
kδ
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with σk, k = 0, . . . ,m − 1 as defined in (7.9).
As we have seen, the convolution algebra D′+ is an integral domain. For this

reasonwe canmultiply both sides of the equationwith a non-zero distributionwithout
changing the result. If we choose Dnδ as the distribution and make use of the fact
that 1+(t) is the inverse of Dδ

Dδ ∗ 1+ = δ

the equation becomes

(
Dm+nδ + am−1D

m−1+nδ + · · · a−nδ
) ∗ 1+(t)y(t)

= Dnδ ∗ 1+(t)x(t) +
m−1∑

k=0

σk D
k+nδ .

This is the type of convolution equation that we discussed in Sect. 7.3 and is solved
by the same method. The solution of integro-differential equations thus requires no
new technique.

The procedure of transforming the convolution equation that we just discussed
is similar to the standard procedure used to convert an integro-differential equation
into a differential equation by differentiating the equation. The key difference is that,
while the former handles initial conditions automatically, the latter method requires
extraction of additional conditions from the original equation.

7.5 Periodic Solutions

One is often interested in periodic solutions of differential equations. These solutions
are most conveniently found with the help of the convolution algebra of periodic
distributions.

Consider again the convolution equation obtained from the differential operator
L of Sect. 7.3 where now the unit element of the algebra is the Dirac comb δT

LδT ∗ y = x .

In Sect. 4.5 we established two important properties of the Fourier series:

1. The first one being that the Fourier coefficients of the convolution product of two
Fourier series is equal to the product of the coefficients of the individual series
times the period (Eq. (4.20)).

2. The second one being the fact that differentiation corresponds to multiplication
of the kth Fourier coefficient by the factor jkωc with ωc = 2π/T . For this reason
the kth Fourier coefficient of the distribution LδT is proportional to a polynomial
P evaluated at jkωc
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ck(LδT ) = [
(jkωc)

m + am−1(jkωc)
m−1 + · · · + a1(jkωc) + a0

] 1

T

= P(jkωc)
1

T
.

By representing both x and y by their respective Fourier series and using these two
properties, we can transform the above convolution equation into algebraic equations
for the Fourier coefficients. Let’s denote by ck the kth Fourier coefficient of x and
by dk the one of y. Then the equation becomes

(jkωc − z1)
l1(jkωc − z2)

l2 · · · · · (jkωc − zn)
ln dk = ck

where, as before, we have expressed the polynomial P by its zero factors. To solve
the equation we have to distinguish three cases:

1. If one or more zeros z j of the polynomial equals jkωc for some integer k and the
coefficient ck of x is different from zero, then the equation has no solution.

2. If one or more zeros z j of the polynomial equals jkωc for some integer k and
the coefficient ck is zero, then the equation has an infinity of solutions. In fact
in this case dk can be any number. Note also that if z j is equal to jkωc then the
convolution product

LδT ∗ ejkωct = 0

vanishes, which means that the convolution algebra of periodic distributions has
zero divisors.

3. If no zero z j equals jkωc for any value of k then the equation has the unique
solution given by the Fourier series with coefficients

dk = ck
P(jkωc)

.

Example 7.5: Cont. of Example 7.3

We look for a periodic solution of the convolution equation of Example 7.3

(DδT + aδT ) ∗ (DδT − bδT ) ∗ y = x

assuming that the real part of a and b are both positive. In particular, we are interested
in the elementary solution e of the equation. By setting x = δT and expanding it by
its Fourier series we obtain the following equation for the kth Fourier coefficient of e

ek = 1

T
· 1

(jkωc + a)(jkωc − b)
.



110 7 Convolution Equations

By performing a partial fraction expansion and with the help of (4.24), we recognize
them as the coefficients of the Fourier series of the distribution

e(t) = g(t) ∗ δT

with

g(t) = −1

a + b

[
1+(t) e−at + 1+(−t) ebt

]
.

In fact the Fourier transform of g is

ĝ(ω) = 1

a + b

[ −1

jω + a
+ 1

jω − b

]

= 1

(jω + a)(jω − b)
.

Note that g is a distribution of slow growth. The elementary solution of the equation
in the algebra of periodic distributions is therefore the sum of periodically shifted
tempered solutions of the differential equation.

Suppose now that we are interested in the solution for x(t) = Aejωct . The only
Fourier coefficient of x different from zero is c1 = A. The Fourier coefficients of y
are then also all zero except for

d1 = T c1 e1 = A ĝ(ωc) .

In this case the solution y of the equation is therefore

y(t) = A ĝ(ωc) e
jωct .

7.6 General Convolution Equations

7.6.1 General Solutions

In this section we consider generic convolution equations of the form

g ∗ y = x

with g, y and x generic distributions in D′. Here the situation is different from
when working in a convolution algebra. First the convolution between g and y may
not exit. To guarantee its existence g must have compact support. This includes
many important cases, for example, all linear differential operators with constant
coefficients.
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Second, gmaynot have an inverse. For example, if g ∈ Dwehave seen in Sect. 3.2
that g ∗ y ∈ E and so can’t equal δ for any y ∈ D′. If it does, then the equation has
an elementary solution, but it only serves to find solutions for x having compact
support, otherwise the last convolution in

y = g∗−1 ∗ g ∗ y = g∗−1 ∗ x

may not make sense.
Further, the homogeneous equation

g ∗ y = 0

may have solutions different from y = 0. For this reason there may be an infinity
of elementary solution, two of them differing by a solution of the homogeneous
equation.

Despite these facts, general convolution equations have many practical applica-
tions.

Example 7.6: Electrostatics

Let ρ denote the electric charge density and u the electrostatic potential, both func-
tions of the position in space. In empty space the two quantities are related by
Poisson’s equation

�u(x) = −ρ(x)

ε0

with � the Laplace operator, x ∈ R
3 the vector specifying position and ε0 the per-

mittivity of free space. This equation can be written as a convolution equation

�δ ∗ u = −ρ(x)

ε0
.

One can show that the inverse of �δ is

− 1

4π |x | .

If the charge density ρ is distributed over a finite region � ⊂ R
3 then the generated

potential is

u(x) = 1

4πε0 |x | ∗ ρ(x) .

The homogeneous equation has solutions different from the trivial one: the so-
called harmonic functions.
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7.6.2 Tempered Solutions

If x is tempered and one is interested in tempered solutions of the equation then the
convolution equation has a sense not only for g of compact support, but for the larger
class of distributions of rapid descent O′

C [16]. This case is particularly important
because one can then use the Fourier transform which may make it easier to find a
solution.

In the following we briefly consider the one dimensional case where g is a linear
differential operator with constant coefficients L and the convolution equation has
the form

Lδ ∗ y = x .

In this case there always is at least an elementary solution. If we Fourier transform
both sides of the equation we find the equivalent equation

P ŷ = x̂

with P a polynomial (and thus in OM ).
If P has no zeros, then the only solution of the homogeneous equation is the

trivial one and the inverse of P is a function of slow growth 1/P ∈ OM . The only
elementary solution of the equation is therefore the summable distribution

e = F −1{ 1
P

} .

If P has a zero at ωp then the homogeneous equation has nontrivial solutions. In
particular, we saw Sect. 2.5.1 that if the multiplicity of the zero is k then the sums

k−1∑

m=0

cm Dmδ(ω − ωp)

with cm constants, are all solutions of the Fourier transformed homogeneous equation
P ŷ = 0. The solutions of the original homogeneous equation are found by inverse
Fourier transformation to be

k−1∑

m=0

cm
2π

(−j t)m ejωpt .

The equation has therefore an infinity of elementary solutions. In addition, since
1/P /∈ OM , the solutions are not summable distributions.

Note that the equation may have non-tempered solutions that are not captured by
Fourier transform techniques.
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Example 7.7: Cont. of Example 7.3

We look for a tempered solution of the convolution equation of Example 7.3

(Dδ + aδ) ∗ (Dδ − bδ) ∗ y = x

assuming that the real part of a and b are both positive. A tempered elementary
solution is easily found by solving the Fourier transformed the equation

ê(ω) = 1

P(ω)
= 1

(jω + a)(jω − b)
.

and determining its inverse

e(t) = −1

a + b

[
1+(t) e−at + 1+(−t) ebt

]
.

Note that despite the similarity between ê(ω) and E(s) of Example 7.3 the tempered
elementary solution is different from the solution found in the convolution algebra
D′+.

Since P(ω) has no zeros, e is the only elementary tempered solution of the equa-
tion. Other solutions obtained by adding any linear combination of the solutions of
the homogeneous equation (e−at and ebt ) growth exponentially as t tends either to
∞ or to −∞ and are therefore not tempered distributions.

7.7 Systems of Convolution Equations

One often has to solve a set of n simultaneous equations in n unknown distributions
y1, . . . , yn

g11 ∗ y1 + g12 ∗ y2 + · · · + g1n ∗ yn = x1
g21 ∗ y1 + g22 ∗ y2 + · · · + g2n ∗ yn = x2

...
...

...

gn1 ∗ y1 + gn2 ∗ y2 + · · · + gnn ∗ yn = xn

with g jm coefficients distributions, x1, . . . , xn right-hand side distributions andwhere
all distributions belong to a distribution algebra A′. This system of equations can
conveniently be written in matrix form

G ∗ Y = X (7.13)

with G the n × n matrix with elements g jm and Y, X vector valued distributions
(column matrices) with elements y j and x j respectively. The space of vector valued
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distributions is denoted byD′(Rm,Cn) and application of a test function φ ∈ D(Rm)

to a vector X is defined as the application of φ to each component individually

〈X, φ〉 :=
⎡

⎢⎣
〈x1, φ〉

...

〈xn, φ〉

⎤

⎥⎦ .

The determinant of the matrix G is defined as usual, with the convolution product
replacing the standard product. It is a convolution belonging to the convolution
algebra A′. For example, the determinant of a 2 × 2 matrix G is

det

[
g11 g12
g21 g22

]
= g11 ∗ g22 − g21 ∗ g12 .

Suppose that the matrix G has an inverse G∗−1

G ∗ G∗−1 = δ I

where δ I is the identity matrix with the unit ofA′ on the diagonal and 0 everywhere
else. If we compute the determinant of both sides of this equation we obtain

det(G ∗ G∗−1) = det(G) ∗ det(G∗−1) = det(δ I ) = δ

fromwhich we deduce that, if the matrix G has an inverse then det(G) has an inverse
in A′. Conversely, if det(G) has an inverse, then we can compute the inverse of G
by

G∗−1 = det(G)∗−1 ∗ G̃T

with G̃ the matrix of cofactors and G̃T its transpose.
We conclude that (7.13) has a solution for arbitrary right-hand side X if and only

if det(G) has an inverse in A′. The solution is given by

Y = G∗−1 ∗ X . (7.14)

One shows in a similar way as for a single equation (see Sect. 7.2) that G∗−1 and
hence the solution of the equation is unique.
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Chapter 8
Linear Time Invariant Systems

We assume the reader to have familiarity with linear time-invariant (LTI) systems.
In this chapter we merely summarise the main results of this theory. We are going to
call the quantities that are considered the input, the output and some characterization
of the system signals. This should evoke a meaningful interpretation in most of the
systems that we are going to discuss. Mathematically they are distributions.

8.1 Basic Definitions

The meaning of time-invariant is very intuitive: suppose that we apply the input
signal x(t) to a system represented by an operator H and observe the signal

y(t) = H[x(t)]

as its output (Fig. 8.1). The system is said to be time-invariant if by applying the
delayed input signal x(t − τ) we observe the same output signal as before, except
for a delay in time by an amount τ , that is, if

y(t − τ) = H[x(t − τ)] . (8.1)

The concept of linearity is subtler. A defining property of a linear system is the
validity of the superposition principle: if y1(t) is the response of the system to the
input x1(t) and y2(t) the one to x2(t), then the response to a linear combination of
these inputs is

y(t) = H[c1x1(t) + c2x2(t)] = c1H[x1(t)] + c2H[x2(t)]
= c1y1(t) + c2y2(t) (8.2)

with c1 and c2 constants. However, if we limit the definition of a linear system to this
property, then we admit pathological systems as the following one.

© The Author(s) 2024
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Fig. 8.1 Representation of a single-input single-output LTI system H

Example 8.1: A Discontinuous System [22]

Consider a system accepting as input a piece-wise continuous function with at most
a finite number of isolated jump discontinuities. The system response consists in the
sum of the input signal jumps from −∞ to the present time t .

The system satisfies (8.2). However, the behaviour is rather peculiar. If we apply,
say, a rectangular input then the output is also rectangular. But, if we approximate
to any degree of accuracy the rectangular input with a continuous function, then the
output is always zero.

To exclude systems with such a bizarre behavior, we require linear systems to be
continuous: if as m ∈ N tends to ∞ the sequence of input signals xm(t) converges
(in the sense of distributions) to the signal x(t), then the system response ym(t)
corresponding to input xm(t) converges to the response y(t) corresponding to x(t).

Suppose that we apply an impulse δ(t) to the input of the systemH and observe
the signal h(t) at its output. Then, by linearity, if we apply a finite number of pulses
the output must be

H[
n∑

j=1

a j δ(t − τ j )] =
n∑

j=1

a j h(t − τ j ) = h(t) ∗
n∑

j=1

a j δ(t − τ j ) .

In Sect. 3.3 we saw that every distribution can be represented as the limit of a finite
series of Dirac impulses. From this and the linearity of convolution (Eq. (3.19)) we
obtain that, in the limit as n tends to infinity, if the input converges to the signal x(t)
the output of the system converges to

y(t) = h(t) ∗ x(t) .

We therefore define

Definition 8.1 (LTI System) A single-input, single-output (SISO), linear time-
invariant (LTI) system is a system that, when driven by an input signal x(t) produces
the output

y(t) = h(t) ∗ x(t) (8.3)

with h(t) the impulse response of the system.

A system is called real if, when driven by a real distribution, its response is a real
distribution. In other words, if its impulse response is a real distribution.
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While we have been talking about signals depending on time, we can abstract
from that and talk about signals depending on a generic n dimensional independent
variable λ ∈ R

n . In this case, instead of time-invariance, it makesmore sense to adapt
(8.1) to

y(λ − τ) = H[x(λ − τ)]

and talk about translation invariance. A single-input single-output, linear translation-
invariant system is then still described by a convolution product similar to (8.3) where
however the independent variable t is replaced by the abstract n dimensional variable
λ. We are going to call a system of this type an LTI system as well.

8.2 Causality

Assume for simplicity that h and x are integrable functions of time. The response
of a system characterized by h when driven by the input x can then be written in
integral form

y(t) =
∞∫

−∞
h(τ ) x(t − τ) dτ =

∞∫

−∞
h(t − τ) x(τ ) dτ .

Suppose now that the input vanishes for t < 0. Then from

y(t) =
∞∫

0

h(t − τ) x(τ ) dτ

we see that in general the system may produce a nonzero response y(t) for t < 0,
that is, before the input signal x(t) has been applied.

If a system is causal, that is, if its output at time t0 can only depend on values of
the input signal at times t ≤ t0, then its impulse response h(t) must vanish for t < 0.
In other words h must be a right-sided distribution inD′+.

Note that in our interpretation of signals as being functions of time, non-causal
systems are not physically implementable and appear to be meaning-less. However,
non-causal systems are sometimes useful in theoretical studies. In addition, in many
situations the theory of LTI systems can be applied to systems where the quantities
of interest (the input and output) are not functions of time (see Example 7.6).
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8.3 Stability

An important aspect of a system is its stability. Let x(t) be a bounded function, that
is, satisfying

‖x‖∞ := sup
t∈R

|x(t)| < ∞ .

The response of a system characterized by the impulse response h(t) to such an input
signal is

y(t) = h(t) ∗ x(t) .

The output y(t) is well-defined if

〈h ∗ x, φ〉 < ∞

for every test function φ ∈ D and for every sequence (φm) converging to zero inD

lim
m→∞〈h ∗ x, φm〉 = 0 .

In this case we say that the system is bounded-input bounded-output (BIBO) stable.
For a system to be BIBO stable

〈h(t) ∗ x(t), φ(t)〉 = 〈h(t),
∫

R

x(τ )φ(t + τ) dτ 〉

must have a meaning. Observe that the inner integral is an indefinitely differentiable
bounded function. For the convolution to have a meaning the impulse response of
the system must therefore be extensible to a continuous linear form onB. As we saw
in Sect. 6.1 this is only the case if h is a summable distribution. Thus, for a system
to be BIBO stable, its impulse response must be a summable distribution.

We mention without going into details that the definition of a BIBO stable system
can be extended to input signals that are so-called bounded distributions and usually
denoted by B′ or D′

L∞ [16].
The series connection, or cascade of two stable systems results in a stable system.

This is so because the convolution of summable distributions is always well-defined
and is itself a summable distribution. In addition, for linear systems the order of the
connection is irrelevant as, if hA and hB are the impulse responses of the two systems

hA ∗ hB = hB ∗ hA .
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8.4 Transfer Function

8.4.1 Stable Systems

If a system is stable then its impulse response h can be Fourier transformed and the
transformed ĥ is a continuous function of slow growth called the frequency response
of the system. If the input signal x is also a summable distribution then it can also be
Fourier transformed and the Fourier transform of the output signal can be represented
by the product

ŷ(ω) = ĥ(ω)x̂(ω) . (8.4)

If the input signal x is T -periodic, then the system can be analysed in the convo-
lution algebra of periodic distributions. To do so the impulse response h is converted
in a periodic distribution by convolving it with the unit of the convolution algebra of
periodic distributions δT

hT := h ∗ δT .

Provided that hT is well-defined, which for stable systems is always the case, then
the output of the system can be represented by

y = hT ∗ x .

Note that while the convolution used to define hT is the convolution in D′(R), the
latter is the convolution in D′(T). As discussed in Sect. 7.5, the equation is most
conveniently solvedwith the help of the Fourier series. Ifwe denote by cm(y), cm(hT )

and cm(x) the mth Fourier coefficient of y, hT and x respectively, then the equation
is solved if

cm(y) = T cm(hT )cm(x)

for every m ∈ Z. From (4.24) we know that

cm(hT ) = ĥ(mωc)

T

with ωc = 2π/T . Therefore, by knowing the Fourier transform of the impulse
response we can immediately obtain the Fourier coefficients of the output signal
by

cm(y) = ĥ(mωc)cm(x) . (8.5)

In particular, if the input is the complex tone ejωct , the output is also a complex tone
at the exact same frequency

y(t) = ĥ(ωc)e
jωct .
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If the input of the system is the sum of two (or more) periodic signals xA and
xB with incommensurate frequencies ωA and ωB , that is, if the ratio of the two
frequencies ωA/ωB is an irrational number, then the input signal is not periodic, but
almost periodic. Due to the linearity and continuity of the system, the response can
still be calculated by the above technique for each input separately and the result
combined

y(t) =
∞∑

m=−∞
ĥ(mωA)cm(xA)e

jmωAt + ĥ(mωB)cm(xB)ejmωB t .

8.4.2 Causal Systems

If the system is causal, that is, if its impulse response h is a distribution in D′+, and
one is interested in the system response for right-sided input signals x ∈ D′+, then the
system response y can be calculated in the convolution algebraD′+. In particular, if
h and x are Laplace transformable then the Laplace transformed of the output signal
can be calculated by

Y (s) = H(s)X (s) . (8.6)

The Laplace transformed H(s) of the impulse response h is called the system transfer
function.

If the system is BIBO stable, then the ROC of H(s) includes the imaginary axis
s = jω. In this case the Fourier transformed of h is immediately obtained from the
transfer function by

ĥ(ω) = H(jω) . (8.7)

Note that if the system is not BIBO stable then this relation is not valid even if the
Fourier transform of h does exits. See Example 5.4 for a simple example where the
system corresponds to an ideal integrator.

In the following we are going to denote distributions belonging to D′+ ∩ D′
L1 by

D′
L1+.

8.5 Rational Transfer Functions

Consider a causal system described by a rational transfer function

H(s) = N (s)

P(s)
= bnsn + bn−1sn−1 + · · · + b0

sm + am−1sm−1 + · · · + a0
.
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Given the Laplace transform X (s) of the input signal x , the Laplace transformed of
the output is

Y (s) = N (s)

P(s)
X (s) .

If we multiply both sides of this equation by P(s) we obtain

P(s)Y (s) = N (s)X (s)

and by inverse Laplace transforming the equation we obtain the convolution equation

(
Dnδ + an−1D

n−1δ + · · · + a0δ
) ∗ y

= (
bmD

mδ + bm−1D
m−1δ + · · · + b0δ

) ∗ x .

With the results of Sect. 7.3 we see that this equation corresponds to the initial value
problem described by the linear differential equation with constant coefficients

Ly(t) = xa(t)

with

L = Dm + am−1D
m−1 + · · · + a0,

xa(t) = (bnD
n + bn−1D

n−1 + · · · + b0)x(t)

and zero initial conditions

(Dk y)(0) = 0, k = 0, · · · ,m − 1 .

For this reason y(t) = h(t) ∗ x(t) is called the zero state response of the system.
It is obvious that the procedure can be reversed. We have therefore established a

one-to-one correspondence between systems described by a rational transfer function
and systems described by a linear differential equation with constant coefficients and
zero initial conditions.

If the transfer function H of the system is minimal, that is, if its numerator and
its denominator are relatively prime polynomials, then, in the complement of t = 0,
it is possible to recreate the same output that would be produced by solving the
corresponding initial value problemwith non-zero initial conditions. This is achieved
by driving the system with an input signal consisting of a weighted sum of a Dirac
pulse and its derivatives

x = xm−1D
m−1δ + · · · + x0δ
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and by suitably selecting the weighting coefficients x0, . . . , xm−1 as described in
Sect. 7.3 (see Example 7.4). Such a system is said to have order m and to be observ-
able and controllable (see Sect. 8.6).

If H(s) is a proper rational transfer function, that is if m < n, then it can be
expanded into a sum of partial fractions of the form

c jk j

(s − p j )
k j

, k j = 1, . . . , l j

with p j the j th zero of P(s), l j its multiplicity and c jk j constants. From Example 7.2
and the properties of the Laplace transformwe therefore see that the impulse response
h is the sum of products of polynomials and exponential functions. In particular, we
see that the system is stable if the real part of the poles of H(s) are negative

�{p j } < 0 .

If n is not smaller than m then H(s) can be decomposed into the sum of a poly-
nomial and a proper rational function. The impulse response h is then the sum of the
above polynomial-exponential functions and a weighted sum of Dirac impulses and
its derivatives.

8.6 System State

In this section we review the concept of the state of a system. To this end consider
the initial value problem described by the system of n differential equations

d

dt
u = Au + x, u(0) = u0 ∈ C

n

with A ∈ C
n×n an n × nmatrix and u and x n dimensional vectors of complex valued

functions of time.As beforewe can translate this initial value problem in the language
of distributions by replacing the (conventional) derivative with the distributional one
and work in the convolution algebra of right sided distributions

Du = Au + uoδ + x .

If we rearrange the equation and convolve each term with I1+ we obtain the equiv-
alent equation

(I δ − A1+) ∗ u = I1+ ∗ (u0δ + x) . (8.8)

This form shows that the equation can be solved by left convolving both sides of
the equation with the inverse of (I δ − A1+). Observing the analogy with the geo-
metric series, provided it converges, the latter can be represented by the following
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series, where the standard product of the geometric series has been replaced by the
convolution product

(I δ − A1+)∗−1 = I δ + A1+ + (A1+)∗2 + · · · .

The iterated convolutions are easily evaluated

(A1+)∗n = An1∗n
+ = An tn−1

(n − 1)!
and using the identity

1∗n
+ = 1∗n

+ ∗ δ = 1∗n
+ ∗ 1+ ∗ Dδ = 1∗n+1

+ ∗ Dδ

we obtain

(I δ − A1+)∗−1 = I δ +
∞∑

n=1

An tn−1

(n − 1)! =
∞∑

n=0

An t
n

n!1+ ∗ Dδ .

The last series can be expressed with the help of the exponential matrix defined by

eAt :=
∞∑

n=0

An t
n

n! (8.9)

which converges for every value of t

(I δ − A1+)∗−1 = 1+eAt ∗ Dδ . (8.10)

Having established the convergence of the series, using the linearity and continuity
of convolution one readily sees that indeed it defines the desired inverse

(I δ − A1+) ∗ [I δ + A1+ + (A1+)∗2 + · · · ] = I δ .

The solution of the equation is therefore given by

u = 1+eAt ∗ I (Dδ ∗ 1+) ∗ (u0δ + x) = 1+eAtu0 + 1+eAt ∗ x . (8.11)

The exponential matrix has several useful properties that are immediately verified
using its defining series

eAteAτ = eA(t+τ) eA0 = I

(eAt )−1 = e−At DeAt = AeAt = eAt A .
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Note however that in general
eAeB = eA+B .

This is only valid if A and B commute, that is AB = BA.
Consider now the state space representation of a SISO LTI system

Du = Au + uoδ + Bx, A ∈ C
n×n, B ∈ C

n×1 (8.12)

y = Cu + Dx C ∈ C
1×n, D ∈ C (8.13)

where now x represents the input signal of the system and y its output. The vector u
is called the state of the system and (8.11) shows that it’s value u0 at a given point in
time t0 is the minimum amount of information required that together with the input
signal at times t ≥ to allows determining the system behaviour at all future times
t > t0. In other words, the system state u0 at time t0 summarises the effect on the
system of all past values of the input signal and of previous states.

8.6.1 Controllability

It’s interesting to ask if it’s possible to design the input signal in such a way that the
system can be set in an arbitrary state u0 in finite time. That is, can we design the
input signal such that for t > t0 the state vector equals u(t) = eAtu0?

The problem is most easily analysed using impulsive inputs, starting from the
zero state. From the above results we know that the system state dependence on the
input signal x is given by

u = 1+eAt B ∗ x .

Suppose that for an n dimensional system we use an input signal consisting of a
weighted sum of a Dirac impulse and its derivatives up to order n − 1

x = x0δ + x1Dδ + · · · + xn−1D
n−1δ .

Since the system is linear, we can analyse the contribution of each term individually

1+eAt B ∗ x0δ = 1+eAt Bx0
1+eAt B ∗ x1Dδ = D(1+eAt Bx1) = 1+eAt ABx1 + δBx1

. . .

1+eAt B ∗ xn−1D
n−1δ = Dn−1(1+eAt Bxn−1) = 1+eAt An−1Bxn−1 + · · ·

The terms replaced by dots on the last line are constituted by a weighted sum of a
Dirac impulse and its derivative which are zero for t > 0. Putting all terms together
we obtain for t > 0
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1+eAt ∗ x = 1+eAt
[
B AB . . . An−1B

] ·

⎡

⎢⎢⎢⎣

x0
x1
...

xn−1

⎤

⎥⎥⎥⎦

From this we conclude that we can use a suitably designed input signal x to mimic
the effect of an arbitrary initial state u0 if and only if the matrix

C := [
B AB . . . An−1B

]
(8.14)

is invertible, in which case the weighting factors are

⎡

⎢⎢⎢⎣

x0
x1
...

xn−1

⎤

⎥⎥⎥⎦ = C−1u0 .

The matrix C is called controllability matrix.
While the state of a system plays an important theoretical and conceptual role, in

practice, when dealing with controllable systems we can always start from the zero
state and drive the system in any desirable state. Things are completely different for
non-controllable systems. As discussed in Sect. 8.6.3, these are systems possessing
sub-systems that are not influenced by the input signal. In those systems the initial
state may play an important role.

8.6.2 Observability

Another interesting question is whether it’s possible to reconstruct the initial state of
a system at time t0 from the observation of its output at times t > t0 assuming that
A, B,C, D and the input signal x are known. From linearity and knowledge of the
input signal we can assume x to be zero. (Alternatively we could compute the part of
the output signal due to the input signal—the zero state response of the system—and
subtract it from the observed output.) The question is then if we can calculate uo
from the observation of

y = C1+eAtu0.

Suppose that the system is n dimensional. Then if we compute the first n − 1
derivatives of the output signal we obtain
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Dy = C1+eAt Au0 + Cδu0
. . .

Dn−1y = C1+eAt An−1u0 + · · ·

where in the last equation we have represented by dots a weighted sum of a Dirac
pulse and its derivatives as before. Thus, the observation of the output signal and of
its first n − 1 derivatives at times t > 0 allows setting up the following system of
equations

lim
t→0+

⎡

⎢⎢⎢⎣

y(t)
Dy(t)

...

Dn−1y(t)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

C
CA
...

CAn−1

⎤

⎥⎥⎥⎦ · u0 .

This system of equations can only be solved for u0 if the matrix

O :=

⎡

⎢⎢⎢⎣

C
CA
...

CAn−1

⎤

⎥⎥⎥⎦ (8.15)

is not singular. The matrix O is called the observability matrix.

8.6.3 Jordan Normal form

The simplestway to understand the structure of a system that is either not controllable,
or not observable is by considering the system in Jordan normal form.

Consider a system in the state space representation

Du = Au + Bx, A ∈ C
n×n, B ∈ C

n×1

y = Cu C ∈ C
1×n .

In linear algebra is shown that, by choosing a suitable basis, every linear operator
can be represented by a matrix of the following block form, called the Jordan normal
form

A =

⎡

⎢⎢⎢⎣

J1 0
J2

. . .

0 Jr

⎤

⎥⎥⎥⎦
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Fig. 8.2 Jordan normal form representation of a system

with

Ji =

⎡

⎢⎢⎢⎣

λi 1 0
λi 1

. . .
. . .

0 λi

⎤

⎥⎥⎥⎦

the elementary Jordan matrix. The diagonal elements of Ji correspond all to the i th
eigenvalue λi of A. If ni correspond to the algebraic multiplicity of eigenvector λi

and νi to its geometric multiplicity, then there are νi Jordan blocks Ji corresponding
to eigenvalue λi . Thus, the total number of Jordan blocks corresponds to the number
of independent eigenvectors of A. The Jordan normal form of a linear operator is
unique up to permutations of the blocks.

A matrix for which the geometric multiplicity equals the algebraic multiplicity
for each eigenvalue is called semi simple. In this case each block Ji is a 1 × 1 matrix
and the Jordan normal form reduces to diagonal form.

A system in Jordan normal form can be interpreted as the parallel connection of
independent sub-systems, each represented by a Jordan block Ji . Figure8.2 shows
the block diagram for a system with a simple eigenvalue λ0 and a double eivenvalue
λ1 with ν1 = 1. From the figure it’s easy to see that if b0 = 0 then the state variable
u0 can’t be excited by the input signal x . The same is true for u2 if b2 = 0. In either
case the system is not controllable. One can check that these are the two conditions
under which the determinant of the matrix C vanishes.

In a similar way the figure shows that if c0 = 0 there is no path from u0 to the
output of the system and for c1 = 0 there is no path from u1. These are the two cases
under which the system is not observable and correspond to the two conditions under
which the determinant of the matrix O vanishes.
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Fig. 8.3 a Not controllable
system. b Not observable
system

From these considerations we conclude that a non-observable system includes a
sub-system whose output does not reach the global system output as schematically
depicted in Fig. 8.3b. A non-controllable system includes a sub-system that is not
reached by the input signal as schematically depicted in Fig. 8.3a.

Example 8.2: Jordan Block

Consider the system described by the following state-space representation

Du = Au + Bx

y = Cu

with

A =
[
ω3dB 1
0 ω3dB

]
, B =

[
b0
b1

]
, C = [

c0 c1
]

.

We want to compute an explicit expression for the exponential matrix et A allowing
us to compute the response of the system to an arbitrary input signal x .

The matrix

A =
[
ω3dB 1
0 ω3dB

]

is an elementary Jordan matrix and can’t be transformed in a diagonal matrix by a
similarity transformation. In fact, as can be seen from the characteristic polynomial

det(A − λI ) = (ω3dB − λ)2 ,

the matrix has a single eigenvalue λ = ω3dB with an algebraic multiplicity of 2 and
the eigenspace belonging to this eigenvalue has dimension 1

(
A − ω3dB I

)
v =

[
0 1
0 0

]
v = 0 =⇒ v = α

[
1
0

]
, α ∈ C .

The matrix A can however be written as the sum of a diagonal matrix Ad and a
particularly simple matrix Ac

A = Ad + Ac =
[
ω3dB 0
0 ω3dB

]
+

[
0 1
0 0

]
.
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Observe that the matrices Ad and Ac do commute. For this reason we can use the
following property of the exponential matrix

et (Ad+Ac) = et Ad et Ac .

Since Ad is diagonal, the first exponential matrix et Ad is easily calculated to be

et Ad = eω3dB t I .

The second exponential matrix et Ac is easily calculated from the series defining the
exponential matrix by noting that the square of the matrix Ac vanishes

et Ac = I + t Ac .

Putting these results together we obtain

et A = eω3dB t

([
1 0
0 1

]
+

[
0 t
0 0

])
= eω3dB t

[
1 t
0 1

]
.

The above method can be used to calculate the exponential of any elementary
Jordan matrix with the only modification that for an n × n matrix A it is the nth
power of the matrix Ac that vanishes.

In the following we are always going to assume that the systems under consider-
ation are controllable and observable.
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Chapter 9
Weakly Nonlinear Time Invariant
Systems

9.1 Introduction

As outlined in Chap. 1, the behavior of nonlinear systems is substantially richer than
the one of linear systems. To deal with them there is a set of techniques, each one best
suited to analyse particular aspects or particular classes of nonlinear systems. We
target systems that are stable about an equilibriumpoint and that depend continuously
on the input signal.

Before analysing in more details this class of systems, we give a short overview,
mostly by way of examples, of systems described by nonlinear ordinary differential
equations of the form

Dy = f (t, y), f : I × X → R
n (9.1a)

with I ⊂ R, X ⊂ R
n and initial conditions

y(0) = y0 ∈ X . (9.1b)

We limit ourselves to the aspects that are helpful in better framing the concept of
weakly nonlinear systems.

A first important difference compared to systems described by linear differential
equations with constant coefficients is the fact that a solution may not exist for all
t > 0 or may not be unique.

Example 9.1: IVP with many Solutions

Consider the following initial value problem (IVP)

Dy = √|y| y(0) = y0 .
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If y0 > 0 then the equation can be solved by themethod of separation of the variables,
and we obtain the unique solution

y(t) = 1

4
(t + 2

√
yo)

2 , t ≥ 0 .

If y0 = 0 then y(t) = 0 is a solution. However, it is not the only one. For any
constant c > 0 the function

yc(t) = 1+(t − c)

4
(t − c)2 , t ≥ 0

is also a solution as one easily verifies by inserting it in the equation.
For y0 < 0 we can again use the method of the separation of the variables to find

the solution

y(t) = −1

4
(2
√|y0| − t)2 .

However, due to the fact that at y = 0 the function 1/
√|y| is not continuous (not

even defined) this solution is only valid as long as y(t) < 0. When y(t) reaches zero
the equation can again be satisfied by multiple solutions

yc(t) =

⎧
⎪⎨

⎪⎩

− 1
4 (2

√|y0| − t)2 t ∈ [0, 2√|y0|)
0 t ∈ [2√|y0|, c)
1
4 (t − c)2 t ∈ [c,∞) .

Therefore, for some initial conditions the equation has uncountably many solutions
(Fig. 9.1).

Fig. 9.1 Two solutions of
the initial value problem of
Example 9.1 with y0 = −0.5
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From the above example we see that continuity of f is not enough to guarantee
the existence of a unique solution of the initial value problem (9.1a). To guarantee
uniqueness of a solution the function f (t, y) must be more regular with respect to y.

Let I ⊂ R and X ⊂ R
n . A function f ∈ C(I × X,Rn) is called locally Lipschitz

continuous in x if every point (t0, y0) ∈ I × X has a neighborhoodU × V such that,
for some constant M > 0

‖ f (t, y) − f (t, x)‖ ≤ M‖y − x‖ , t ∈ U, x, y ∈ V .

If the function f (t, y) in (9.1b) is continuous in t and locally Lipschitz continuous
in y then Picard-Lindelöf’s theorem guarantees the existence and uniqueness of the
solution of the initial value problem (9.1a) [23].

If the function f doesn’t depend explicitly on time, then the system is time invari-
ant and the system equation becomes

Dy = f (y) , f : X → R
n, X ⊂ R

n . (9.2)

A solution of the equation for which Dy = 0 is called an equilibrium point of the
system.When one investigates the stability of an equilibrium point ye one can always
assume it to be at the origin. In fact, by the change of variable u = y − ye one can
always transform the system differential equation in one whose equilibrium point of
interest is ue = 0

Du = D(u + ye) = f (u + ye) =: g(u).

An equilibrium point is stable if for each c > 0 one can find an ε > 0 such that

‖y(t0)‖ < ε =⇒ ‖y(t)‖ < c, t ≥ t0 .

It is asymptotically stable if it is stable and in addition ε can be chosen such that

‖y(t0)‖ < ε =⇒ lim
t→∞‖y(t)‖ = 0 .

The set of all points y(t0) such that ‖y(t)‖ converges to zero as t tends to infinity is
called the domain of attraction of the equilibrium point. If an equilibrium point is
not stable it is called unstable.

As already highlighted in Chap. 1, an important difference of time invariant non-
linear systems compared to LTI ones is the possibility of the existence of multiple
isolated equilibrium points.

Example 9.2

Consider the system described by the following differential equation

Dy = −ay + cy2
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with a and c positive constants. From

0 = −ay + cy2 = cy(y − a/c)

we see that the system has two equilibrium points:

y(t) = 0 and y(t) = a/c .

We are interested in the dynamic of the system starting from the initial condition
y(0) = y0 assuming that y0 doesn’t coincide with an equilibrium point. Since the
function f (y) = −ay + cy2 is locally Lipschitz continuous, there is a unique solu-
tion and this solution doesn’t intersect the equilibrium points. The initial value prob-
lem can therefore be solved by separating the variables and integrating

y∫

y0

dy

cy(y − a/c)
=

t∫

0

dt .

The solution is found to be

y(t) = y0
e−at

1 − y0
c
a (1 − e−at )

.

If y0 is negative or 0 < y0c/a < 1 the solution converges toward zerowhich therefore
is an asymptotically stable equilibrium point (see Fig. 9.2). If y0c/a > 1 the solution
diverges and reaches infinity in the finite time

t∞ = 1

a
ln

(
1

1 − a
y0c

)

.

From the above example we see that a nonlinear system can have multiple equi-
librium points some of which can be stable, and some unstable. For a system to
remain stable around a stable equilibrium point the initial condition may have to
remain within a limited region around that point. Also, divergence from initial con-
ditions near unstable equilibrium points can diverge faster than exponentially and
reach infinity in finite time (finite escape time).

One of themost useful tools in the study of the stability of equilibrium points is the
Lyapunov stability theory [24]. In particular Lyapunov’s linearization (or indirect)
method, states that

• If the linear approximation of the system about an equilibrium point is asymptot-
ically stable then, in a neighborhood U of the equilibrium point, the (nonlinear)
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Fig. 9.2 Solutions for
various initial conditions of
the initial value problem of
Example 9.2 with a = 1 and
c = 1/2

system is asymptotically stable. The largest neighborhood U is the domain of
attraction of the equilibrium point.

• If the linear approximation of the system about an equilibrium point is unstable,
then the (nonlinear) system is unstable.

If the linear approximation of the system is neither asymptotically stable nor unstable
then this method is inconclusive and one must turn to other methods, for example,
Lyapunov’s direct method [24].

Example 9.3

Consider the initial value problem described by the differential equation

Dy = cy3

with c a constant; and the initial condition

y(0) = y0 .

The only equilibrium point of the equation is the zero solution ye(t) = 0. As it’s
immediately seen, the linearized equation is stable, but not asymptotically stable
about the equilibrium point.

The nonlinear equation can be solved by the method of the separation of the
variables

y∫

y0

dy

y3
= c

t∫

0

dt .

Performing the integrations and solving for y we find
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Fig. 9.3 Solutions for
various initial conditions of
the initial value problem of
Example 9.3 with c = −1

y(t) = y0√
1 − 2cy20 t

.

If c > 0 the solution diverges and reaches infinity at

t∞ = 1

2cy20
.

If c < 0 the equation is asymptotically stable for any value of the initial value y0 (see
Fig. 9.3).

Differently from what the above examples may suggest, most nonlinear differen-
tial equations can’t be solved analytically. Therefore we are interested in methods
to find approximate solutions around asymptotically stable equilibrium points in the
spirit of a perturbation theory. Weakly nonlinear systems are a class of systems for
which such a method exists and the solution is obtained in the form of a functional
series.

Informallyweakly nonlinear systems can be described as systems operated around
an asymptotically stable equilibriumpoint andwhose response depends continuously
on the input signal x . They include systems described by a differential equation of
the form

Dy = Cx + f (y) ,

f : Y → R
n, C : X → R

n , X ⊂ R , Y ⊂ R
n

with C a linear function and f a function that, within the excursion range of interest
of y, can be approximated to any desired accuracy by a Taylor expansion. Note
that polynomials are locally Lipschitz continuous. For this reason weakly nonlinear
systems are well-behaved and produce a well-defined and unique output response.
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9.2 Graded Algebra of Test Functions

In the previous section we illustrated some aspects of weakly nonlinear systems
based on examples of systems described by nonlinear differential equations. We now
look for a description based on distributions. We’ll see that this allows reducing the
problem of solving some classes of nonlinear differential equations to an essentially
algebraic problem. However, before discussing systems, we need some preparation
that we provide in this and the next section.

Let Vk, k ∈ N be vector spaces onC such that Vk ∩ Vj = {0} for k �= j . The direct
sum

V :=
∞⊕

k=0

Vk :=
⊕

k≥0

Vk (9.3)

is the vector space whose elements are the sequences (xk) in
⋃∞

k=0 Vk with xk ∈ Vk

and xk = 0 for fast every k. That is, the set of all finite sequences with xk ∈ Vk . The
vector space structure of V is defined by the following addition and multiplication
with scalars

(xk) + c(yk) := (xk + cyk), (xk), (yk) ∈ V , c ∈ C . (9.4)

Each Vk is evidently a sub-vector space of V .
If furthermore V is provided with a multiplication

V × V → V, (x, y) → x � y

such that it forms an algebra and in addition

Vk � Vj ⊂ Vk+ j , k, j ∈ N

then it is called a graded algebra.
Let Vk = D(Rk) be the vector space of test functions on Rk with V0 = C. Then

D⊕ :=
⊕

k≥0

D(Rk)

with the tensor product as multiplication

φ ⊗ ψ(τ1, . . . , τk, τk+1, . . . , τk+ j ) := φ(τ1, . . . , τk)ψ(τk+1, . . . , τk+ j )

is a graded algebra thatwe call the graded algebra of test functions.Wewrite elements
of D⊕ as sums with indices denoting the grade of the element
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φ =
N∑

j=0

φ j , φ j ∈ D(R j ) , N ∈ N .

In the graded algebra of test functions we define the following convergence cri-
terion. A sequence (φm), φm ∈ D⊕ with

φm =
Nm∑

j=0

φ j,m , φ j,m ∈ D(R j )

converges to zero if

1. There exist compact sets K j ⊂ R
j , j = 1, . . . , N with N = maxm∈N(Nm) such

that for each j and m
supp(φ j,m) ⊂ K j .

2. For every j > 0 and every j-tuple k ∈ N
j the sequence (Dkφ j,m)m∈N converges

uniformly to zero. For j = 0 the sequence of numbers (φ0,m)m∈N converges to
zero.

9.3 Direct Product of Distributions

The direct product V of vector spaces Vk on C is the vector space whose elements
are the sequences (xk) with xk ∈ Vk, k ∈ N. The vector space structure is defined as
for the direct sum by (9.4). It is denoted by

V :=
∏

k≥0

Vk :=
∞∏

k=0

Vk . (9.5)

The key difference from the direct sum is that, in a direct product, the sequence does
not have to be finite.

Let Vk = D′(Rk), with V0 = C. Then the direct product

D′
⊕ :=

∏

k≥0

D′(Rk)

is the set of linear continuous functionals on D⊕ defined by

h : D⊕ → C, φ → 〈h, φ〉 :=
∞∑

j=0

〈h j , φ j 〉 (9.6)

with
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φ =
∞∑

j=0

φ j , h =
∞∑

j=0

h j , φ j ∈ D(R j ), h j ∈ D′(R j ) .

Since φ only has a finite number of terms different from zero, 〈h, φ〉 is well-defined.
As for k �= j ,D′(Rk) ∩ D′(R j ) = {0}, here and in the following we denote elements
of D′⊕ by sums in a similar way as we do for elements of D⊕.

Continuity inD′⊕ is defined by the convergence thatwedefined forD⊕ and follows
from the continuity of distributions. SinceD′⊕ is a vector space, it’s enough to verify
continuity at the origin. Let h ∈ D′⊕ and φ ∈ D⊕, then there exists an N ∈ N such
that

|〈h, φ〉| ≤
N∑

j=0

|〈h j , φ j 〉| ≤ (N + 1) sup
j∈{0,...,N }

|〈h j , φ j 〉|

and according to our definition of convergence, when φ converges to zero, so does
sup j |〈h j , φ j 〉| and hence 〈h, φ〉.

In Sect. 3.1 we have introduced the tensor product of distributions and have seen
that it is well defined between any pair of distributions. With it we can define a
product g · h between elements g and h of D′⊕. It’s kth component is defined by

(gh)k := (g · h)k :=
k∑

j=0

g j ⊗ hk− j , k ∈ N (9.7)

with g j and h j the j th components of g and h respectively. With this product
(D′⊕,+, ·) becomes an algebra. As is common practice, we will often denote g · h
simply by gh. Being based on an associative operation (the tensor product) the prod-
uct that we just defined is associative.

Note the close similarity between the algebra of formal power series and the one
that we have defined for D′⊕. In both cases addition is defined component wise and
the product has the form of a convolution.

9.4 Symmetric Distributions

Let Sk denote the set of all permutations of {1, . . . , k}. A distribution hk ∈ D′(Rk)

is symmetric if

〈hk, φ(τσ(1), . . . , τσ(k))〉 = 〈hk, φ(τ1, . . . , τk)〉 (9.8)

for all permutations σ ∈ Sk and every φ ∈ D(Rk). Symmetric distributions are fully
characterized by symmetric test functions for
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〈hk, φ(τ1, . . . , τk)〉 =
〈

hk,
1

k!
∑

σ∈Sk

φ(τσ(1), . . . , τσ(k))

〉

and the sum of test functions on the right-hand side is a symmetric test function. The
sum of symmetric distributions is a symmetric distribution. Therefore, they form a
vector subspace of distributions that we denote by D′

sym(Rk). Similarly, we denote
the vector subspace of all symmetric test functions on R

k by Dsym(Rk), the one of
the direct sum of symmetric test functions by D⊕,sym(Rk) and the one of the direct
product of symmetric distributions by D′⊕,sym(Rk).

A symmetric distribution can be constructed from an arbitrary distribution f ∈
D′(Rk) by averaging over all permutations of the independent variables

[ f ]sym := 1

k!
∑

σ∈Sk

f (τσ(1), . . . , τσ(k)) (9.9)

with

〈 f (τσ(1), . . . , τσ(k)), φ(τ1, . . . , τk)〉 := 〈 f (τ1, . . . , τk), φ(τσ(1), . . . , τσ(k))〉 .

Such an operation is called symmetrisation.
The tensor product is a bi-linear operation. Therefore, the power of an element

of D′⊕ composed by a finite number of distributions f j ∈ D′(Rn j ), n j ≥ 1, j =
1, . . . ,m, m ≥ 2 can be expressed as a sum of tensor products

⎛

⎝
m∑

j=1

f j

⎞

⎠

k

=
m∑

j1=1

· · ·
m∑

jk=1

f j1 ⊗ · · · ⊗ f jk , k ∈ N

with the sum ranging over all possible combinations of the indexes j1, . . . , jk . If the
distributions f1, . . . , fm are symmetric then one can reorder the indexes j1, . . . , jk
by any permutation σ without changing the value of the sum. Hence, the tensor
products on the right-hand side can be replaced by symmetrized products

m∑

j1=1

· · ·
m∑

jk=1

f j1 ⊗ · · · ⊗ f jk =
m∑

j1=1

· · ·
m∑

jk=1

[
f j1 ⊗ · · · ⊗ f jk

]
sym .

The tensor product of symmetric distributions inside the symmetrisation operator act
as a commutative operator. For this reason the sum includes summands that are equal
and, by grouping them, we obtain an expression that is similar to the multinomial
formula [21]
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⎛

⎝
m∑

j=1

f j

⎞

⎠

k

=
∑

|α|=k

k!
α!

[
f ⊗α

]
sym , f = ( f1, . . . , fm) (9.10)

with α an m-tuple in Nm ,

f ⊗α := f ⊗α1
1 ⊗ · · · ⊗ f ⊗αm

m (9.11)

and where we made use of the multi-index notation introduced in Sect. 4.6.
In general the product that we defined on D′⊕ applied to two elements ofD′⊕,sym

does not result in an element of D′⊕,sym. This can be remedied by symmetrizing the
product

(gh)k := (g · h)k :=
k∑

j=0

[
g j ⊗ hk− j

]
sym , g, h ∈ D′

⊕,sym . (9.12)

Unless explicitly stated otherwise, when working in D′⊕,sym we will always assume
the use of this symmetrized product.

The last property of symmetric distributions that we want to mention is the fact
that, in a convolution algebra, the inverse of a symmetric distribution is symmetric,
for

δ(τ1, τ2) = f (τ1, τ2) ∗ f ∗−1(τ1, τ2)

= f (τ2, τ1) ∗ f ∗−1(τ1, τ2)

= f (τ1, τ2) ∗ f ∗−1(τ2, τ1) .

9.5 Weakly Nonlinear Systems

We are looking for a representation, in the spirit of a perturbation theory, of a class of
nonlinear systems including the ones described by differential equations of the form

Ly = x +
K∑

k=2

ck y
k (9.13)

with x ∈ D′(R) a given input signal, L a linear differential operator with constant
coefficients

L = Dm + am−1D
m−1 + · · · + a1D + a0

and where we assume that the linearized system is stable.
In Chap. 7 we saw that, in the language of distributions, a linear differential

equation with constant coefficients becomes a convolution equation. If we want to
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apply the results obtained for convolution equations, we need to give a meaning to
the nonlinear terms appearing in the above equation.

In general, it’s not possible to define a multiplication valid for arbitrary distribu-
tions. Therefore, the terms yk, k > 1 can’t be assumed to belong toD′(R). To work
around this problem we can assume y to belong to a direct product of distributions,
y = (y0, y1, y2, . . . ), and use the product defined on that space. Since the product
between functions with values in C is commutative f · g = g · f , we require y to
belong to the direct product of symmetric distributions D′⊕,sym. Then, if y1 is the
solution of the linearized equation its powers become tensor powers

(y1)
k = y⊗k

1 .

If y1 is a regular distribution, that is a locally integrable function, then we can recover
the meaning of the powers in the differential equation by evaluating y⊗k

1 on the
diagonal

y⊗k
1 (t, . . . , t) = yk1 (t) .

The same remains true if we replace y1 by a sum of distributions.
To complete the interpretation of the differential equation in the language of

distributions it remains to be clarified what is the effect of the one dimensional
differential operator D appearing in (9.13) on the components yk ∈ D′

sym(Rk) of y.
To this end, suppose yk to be a regular distribution. Then it is a locally integrable
function

yk : τ → yk(τ1, . . . , τk) , τ ∈ R
k

andwe can associatewith it a function of the single variable t by defining an operation
that we call “evaluating on the diagonal”

evd(yk) := t → yk(t, . . . , t) , t ∈ R .

If we assume this function to be differentiable, then the derivative with respect to t
is well-defined

Devd(yk)(t) = D1yk(t, . . . , t) + · · · + Dk yk(t, . . . , t)

and, as a distribution, can be represented by

Dyk :=
( k−1∑

j=0

δ⊗ j ⊗ Dδ ⊗ δ⊗k−1− j

)
∗ yk . (9.14)

This last expression is symmetric and is valid for arbitrary distributions.Therefore,we
can take it as the definition of the effect of the differential operator D on distributions
yk ∈ D′

sym(Rk). For y ∈ D′⊕,sym and any φ ∈ D⊗, 〈y, φ〉 only has a finite number
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of terms different from zero. For this reason the effect of D on y can be defined as
acting on each component individually.

For y ∈ D′⊕,sym to be a solution of (9.13) in a convolution algebra, the equation
must be satisfied by each component yk of y individually. If y has to be compatible
with our assumption of the system being described around the zero equilibrium point,
then the 0th component y0 must always be zero

y0 = 0 .

In analogy with the theory of formal power series we call distributions y ∈ D′⊕ with
y0 = 0 nonunits [25].

For k = 1 the only terms belonging toD′(R) appearing in the equation are y1 and
x . Hence, y1 is the solution of the linearized equation and, as discussed in Sect. 8.1,
can be represented by

y1 = h1 ∗ x .

For k = 2 we have

Lδ ∗ y2 = c2 y
⊗2
1 δ ∈ D′(R2)

and we see that, for the computation of y2, the tensor power of y1 plays the role of an
input signal applied to a linear system. Assuming that Lδ has an inverse, we obtain

y2 = c2 (Lδ)∗−1 ∗ y⊗2
1 .

The above expression can be further manipulated by noting that

〈(a(τ1) ⊗ b(τ2)) ∗ ( f (τ1) ⊗ g(τ2)) , φ(τ1, τ2)〉
= 〈(a(τ1) ⊗ b(τ2)) ⊗ ( f (λ1) ⊗ g(λ2)) , φ(τ1 + λ1, τ2 + λ2)〉
= 〈(a(τ1) ∗ f (τ1)) ⊗ (b(τ2) ∗ g(τ2)) , φ(τ1, τ2)〉

or
(a ⊗ b) ∗ ( f ⊗ g) = (a ∗ f ) ⊗ (b ∗ g) . (9.15)

With this expression and the solution found for y1 we can express y2 as

y2 = h2 ∗ x⊗2 , h2 := c2 (Lδ)∗−1 ∗ h⊗2
1

where raising to a tensor power is assumed to have higher priority than convolution.
From this it is not difficult to see that every component yk can be expressed as the

convolution of a distribution hk specific to the problem and the input signal x raised
to the tensor power of k

yk = hk ∗ x⊗k .
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Fig. 9.4 Block diagram
representation of a
time-invariant weakly
nonlinear system. If the input
signal is proportional to the
constant c ∈ C, the output of
the block characterized by
the kth order impulse
response hk is proportional
to ck

Weare therefore led to define aweakly nonlinear (or analytic) time-invariant (WNTI)
system as a system H whose behavior around the zero equilibrium point can be
described by an element h of D′⊕,sym such that, when driven by the input signal x ,
its output is given by

y = h[x] :=
∞∑

k=1

hk ∗ x⊗k , hk ∈ A′
k , x ∈ A′

1 (9.16)

withA′
1 a convolution algebra inD′(R) and A′

k a convolution algebra inD′
sym(Rk)

compatible with A1 and the tensor product. This means that, if x ∈ A′
1, then x⊗k

must be an element ofA′
k . We denote such a set of convolution algebras byA′⊕,sym.

The distribution hk is called the kth order impulse response (or kernel) of the system.
A block diagram representation of a weakly nonlinear system is shown in Fig. 9.4.
Note that, if the input signal is multiplied by a constant c ∈ C, yk is scaled by a factor
of ck

yk = hk ∗ (c x)⊗k = ck
(
hk ∗ x⊗k

)
.

The interpretation of the output of our definition of a weakly nonlinear system
requires some comment as it doesn’t always represent a quantity that can be inter-
preted as a signal depending on time. Under the assumption that all involved dis-
tributions belong to a convolution algebra, then one can distinguish the following
cases

• If the impulse responses hk as well as the input signal x are regular distributions
and the convolutions hk ∗ x⊗k are well-defined (see Sect. 3.2) then all output
components yk are locally integrable functions. In this case we can evaluate the yk
on the diagonal



9.5 Weakly Nonlinear Systems 147

evd(yk)(t) = evd(hk ∗ x⊗k)(t) =
∞∫

−∞
· · ·

∞∫

−∞
hk(τ1, . . . , τk)x(t − τ1) · · · · · x(t − τk)dτ1 · · · dτk (9.17)

and obtain an interpretation for the yk as signals of time.
If the input signal is scaled by the constant c, then, at each time t , the output
evd(y)(t) is seen to be a power series in c

evd(y)(t) :=
∞∑

k=1

ckevd(hk ∗ x⊗k)(t) .

If this series has a convergence radius greater than zero valid at all times, then
evd(y) represents a well-defined function of time and we have a clear procedure
to interpret the output of the system.

• If some or all of the impulse responses hk are not regular, there is still a class
of input signals for which all yk are regular distributions. (Remember that the
convolution of any distribution with a test function is an indefinitely differentiable
function.) The system restricted to this class of input signals may still be evaluated
on the diagonal to obtain a function of time evd(y) as in the previous case.

• If for no input signal (different from zero) there is a constant c > 0 such that
evd(y)(t) remains finite at all times then the system can’t be represented using an
element of D′⊕,sym.

Example 9.4: Polynomial System

In this example we consider a class of systems whose impulse responses are not
regular.

Suppose that the output of a system H is represented by a nonlinear function f
of the input signal x and that the function f can be adequately approximated by a
Taylor polynomial around the origin

y = f (x) ≈
K∑

k=1

f (k)(0)

k! xk , f (0) = 0 , K > 1 . (9.18)

It is readily seen that such a system can be represented by the impulse responses

hk = f (k)(0)

k! δ⊗k , k = 1, . . . , K .

The response of the system to the input signal x as represented by these impulse
responses is
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y = h[x] =
K∑

k=1

f (k)(0)

k! δ⊗k ∗ x⊗k .

If the input signal is not a regular distribution, for example if it is a Dirac pulse, then
neither the initial representation given by (9.18), nor the evaluation on the diagonal
evd(h[δ]) do have a meaning. In spite of this, the impulse responses and their outputs
yk are mathematically well-defined.

If the class of input signals is restricted to regular distributions then the output
obtained from the representation in terms of impulse responses by evaluating on the
diagonal evd(h[x]) agrees with the original one.

If f is analytic, then it can be represented by a power series (K → ∞). In this
case the output of the system is only well defined if the magnitude of the input signal
|x(t)| remains smaller than the convergence radius of the series at all times.

Let hk be the kth order impulse responses of the weakly nonlinear systemH and x
its input signal. In Sect. 3.3 we saw that an arbitrary distribution can be approximated
to any desired accuracy by a finite sumofDirac pulses. Hence, x can be approximated
by

x ≈
M∑

j=1

a j δ(t − λ j ) , a j ∈ C, λ j ∈ R

and the output of hk by

yk ≈
M∑

j1=1

· · ·
M∑

jk=1

hk ∗ a j1δ(τ1 − λ j1) ⊗ · · · ⊗ a jk δ(τk − λ jk )

=
M∑

j1=1

· · ·
M∑

jk=1

a j1 · · · · · a jk hk(τ1 − λ j1 , . . . , τk − λ jk) .

This expression suggests the interpretation for hk as that portion of the system defin-
ing how the response of the system depends on the combination of k simultaneous
points in time of the input signal.

In addition, if we compare the expression representing the output at time t of the
(causal) impulse response hk

evd(hk ∗ x⊗k)(t)

with the one of a polynomial system (see Example 9.4)

evd(ckδ
⊗k ∗ x⊗k)(t) = ck x

k(t)

we see that, the output at time t of the latter only depends on the kth power of the
current value of the input signal. In contrast to this, the output at time t of the former



9.6 Nonlinear Transfer Functions 149

depends on all combinations of products of k (past) values of the input signal. The
impulse responses hk can thus be interpreted as the memory of the system. The given
representation of weakly nonlinear systems can be seen as a generalization of the
Taylor approximation method for memory-less systems to systems with memory.
It is called the Volterra functional series in honor of V. Volterra who first proposed
it [5].

9.6 Nonlinear Transfer Functions

All impulse responses hk of a causal weakly nonlinear system must vanish if any
argument τ j is less than zero. This is most easily seen if we consider the case where
the impulse responses as well as the input signal x are regular distributions, for then

evd(yk)(t) =
∞∫

−∞
· · ·

∞∫

−∞
hk(t − τ1, . . . , t − τk)x(τ1) · · · · · x(τk)dτ1 · · · dτk .

As every distribution is the limit of smooth functions, this must then be true for
arbitrary distributions. The impulse responses of all orders of causal systems are
therefore right-sided distributions.

The Laplace transform of the k-order impulse response hk is called the nonlinear
transfer function of order k

Hk(s1, . . . , sk) = 〈hk(τ1, . . . , τk), e−s1τ1−···−skτk 〉 . (9.19)

Due to the symmetry of hk , it is a symmetric function of the variables s1 to sk

Hk(s1, . . . , sk) = Hk(sσ(1), . . . , sσ(k)) , σ ∈ Sk . (9.20)

As the Laplace transform converts convolution products into ordinary products, the
Laplace transform of yk = hk ∗ x⊗k is

Yk(s1, . . . , sk) = Hk(s1, . . . , sk)X (s1) · · · · · X (sk) .

Just as with LTI systems, the many useful properties of the Laplace transform
makes it a very valuable tool for solving convolution equations describing weakly
nonlinear systems. In particular, on top of converting convolution products into ordi-
nary multiplications, in their region of convergence, the Laplace transformed of
distributions are holomorphic functions.

Consider a system described by a differential equation with constant coefficients
of the type considered before
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Ly = Nx + ∑J
j=2 c j y

j

L = Dn + an−1Dn−1 + · · · + a0
N = bmDm + bm−1Dm−1 + · · · + b0.

(9.21)

The part of the corresponding convolution equation relevant for the calculation of
yk , k > 1, is

(Lδ⊗k) ∗ yk =
k∑

j=2

c j (y1 + · · · + yk−1)
j .

As the Laplace transform of Dδ⊗k is

L{Dδ⊗k}(s1, . . . , sk) = s1 + · · · + sk

(see (9.14)), the Laplace transform of Lδ⊗k is a polynomial in s1 + · · · + sk

P(s1 + · · · + sk) = (s1 + · · · + sk)
n + an−1(s1 + · · · + sk)

n−1 + · · · + a0 .

Note that the coefficients of this polynomial are the same for all k, including k = 1.
The only difference between the various values of k is in the argument. If we factor
it, we see that the denominator of Hk adds to the denominator of the lower order
transfer functions Hj , j = 1, . . . , k − 1 terms of the form

(s1 + · · · + sk − p j )
l j

with p j the j th pole and l j its multiplicity. If we assume Hk to be a proper rational
function, then its partial fraction expansion will include terms of the form

F(s1, . . . , sk−1)

(s1 + · · · + sk − p j )
l j

and similar ones where some of the variables s1, . . . , sk−1 may be missing. If by the
calculation of the inverse Laplace transform we start by inverse transforming with
respect to sk we obtain the expression

F(s1, . . . , sk−1) τ
l j−1
k e[p j−(s1+···+sk−1)]τk 1+(τk) .

By using the shifting property of the Laplace transform and denoting by f the inverse
transform of F , the complete inverse transform of the above expression is

f (τ1 − τk, . . . , τk−1 − τk) ⊗ τ
l j−1
k ep j τk 1+(τk) .

If Hk is not a proper rational function, then it can be decomposed into a polynomial
and a proper rational function. The inverse Laplace transform of the polynomial part
results in Dirac pulses and its derivatives.
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This shows that, if the system under consideration can be described by a differ-
ential equation with constant coefficients of the indicated type, then, similarly to the
first order impulse response h1, the higher order impulse responses are sums of Dirac
pulses, their derivatives and products of polynomials and exponential functions in
the variables τ1, . . . , τk . In addition, it also shows that, if the linear transfer function
H1(s1) has all its poles in the left-hand side of the complex plane, then not only does
the regular part of h1 (that is discarding the Dirac pulses and its derivatives) decay
exponentially as its argument tends to infinity, but so also do the regular part of all
higher order impulse responses hk . In particular, we see that all impulse responses
are summable distributions

hk ∈ D′
L1+(Rk) , k = 1, 2, . . . .

In the following, unless explicitly stated otherwise, we are always going to assume
the systems to be of this type.

Example 9.5

We revisit Example 9.2 and find an approximate solution of the initial value problem

Dy = −ay + cy2 , y(0) = y0 , a, c > 0 ,

valid around its zero equilibrium point.
Aswe saw, in translating an initial value problem into the languageof distributions,

the initial conditions become part of the equation which, in this case, comes to be

(D + a)y = y0δ + cy2 .

We can think of this equation as an equation describing a system driven by the input
signal x = y0δ. The solution of the equation y is an element of D′⊕,sym and has the
form

y =
∞∑

k=1

hk ∗ x⊗k .

The system is therefore fully characterized if we find the impulse responses hk . The
solution of the original problem is then found by multiplying each impulse response
hk by yk0

yk = hk y
k
0 .

To find the impulse responses we apply the input signal x = δ and insert y = h
into the equation. The equation is solved if it is satisfied by each component hk of h
individually. The component hk can be computed from the equation and the impulse
responses of lower order h j , j = 1, . . . , k − 1.



152 9 Weakly Nonlinear Time Invariant Systems

To find h1 we retain only terms of the equation belonging to D′(R)

(Dδ + aδ) ∗ h1 = δ .

If we Laplace transform the equation we obtain

(s1 + a)H1(s1) = 1

from which we immediately obtain the first order transfer function

H1(s1) = 1

s1 + a

and, by inverse Laplace transformation, the first order impulse response

h1(τ1) = 1+(τ1) e
−aτ1 .

The second order impulse response h2 is found by retaining in the equation only
terms belonging toD′(R2)

(D + a)δ⊗2 ∗ h2 = c h⊗2
1 .

From the Laplace transformed equation

(s1 + s2 + a)H2(s1, s2) = c H1(s1)H1(s2)

we immediately obtain the second order nonlinear transfer function

H2(s1, s2) = c H1(s1)H1(s2)

s1 + s2 + a
.

Note that it’s often convenient to write higher-order transfer functions in terms of
the first-order one. In this example

H2(s1, s2) = c H1(s1 + s2)H1(s1)H1(s2) .

To obtain the second order impulse response we can inverse Laplace transform,
first with respect to one Laplace variable, then with respect to the other one, and
finally by symmetrizing the result. We first inverse transform with respect to s2 the
expression

H1(s1 + s2)H1(s2) = 1

[s2 + (s1 + a)](s2 + a)
.

Assuming s1 �= 01 and expanding in partial fractions we find

1 The obtained expression is a continuous function of s1 which we extend by continuity to s1 = 0.
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1

s1

(
1 − e−s1 τ2

)
e−a τ2 1+(τ2) .

We then combine this expression with the other factors of H2

c

(s1 + a)s1

(
1 − e−s1 τ2

)
e−a τ2 1+(τ2)

and inverse transform with respect to s1. This can be done by expanding in partial
fractions the first factor

L−1

{
c

(s1 + a)s1

}
(τ1) = c

a

(
1 − e−aτ1

)
1+(τ1)

and by using the shifting property of the Laplace transform to find

c

a

[(
1 − e−aτ1

)
1+(τ1) − (

1 − e−a(τ1−τ2)
)
1+(τ1 − τ2)

]
e−aτ2 1+(τ2) .

Note that this expression is not symmetric and that if we had first inverse transformed
with respect to s1 and then to s2, we would have obtained an expression with τ1 and
τ2 exchanged.

The second-order impulse response is obtained from the above expression by
symmetrisation

h2(τ1, τ2) =
[ c
a

[(
1 − e−aτ1

) − (
1 − e−a(τ1−τ2)

)
1+(τ1 − τ2)

]
e−aτ2

]

sym

where we have suppressed the explicit Heavyside step functions with the understand-
ing that the expression is zero if τ1 < 0 or τ2 < 0. As h2 is a regular distribution, it
can be evaluated on the diagonal and we obtain

evd(h2)(t) = c

a

(
e−at − e−2at

)
.

The third order impulse response h3 is found by retaining only elements belonging
toD′(R3) in the equation. As a first step we write

(D + a)δ⊗3 ∗ h3 = c (h1 + h2)
2

for no other term can produce distributions belonging toD′(R3). The right hand side
can be expanded with the help of (9.10) and, retaining only the terms of interest, we
obtain

(D + a)δ⊗3 ∗ h3 = 2c [h1 ⊗ h2]sym .
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The Laplace transformed equation is

(s1 + s2 + s3 + a)H3(s1, s2, s3) = 2c [H1(s1)H2(s2, s3)]sym

and with it the third order nonlinear transfer function is readily obtained

H3(s1, s2, s3) = 2c H1(s1 + s2 + s3) [H1(s1)H2(s2, s3)]sym .

By expressing H2 in terms of H1 we can write H3 in terms of H1 alone

H3(s1, s2, s3) = 2

3
c2 H1(s1 + s2 + s3)H1(s1)H1(s2)H1(s3)

· [H1(s1 + s2) + H1(s1 + s3) + H1(s2 + s3)] .

The computation of the third order impulse response proceeds along the same lines as
the computation of h2. After some algebraic manipulations and exploiting the prop-
erties of the Laplace transform we obtain a rather long expression whose evaluation
on the diagonal is

evd(h3)(t) =
( c
a

)2 (
e−at − 2e−2at + e−3at

)
.

At this point it’s interesting to compare the first three elements of the approxi-
mate solution that we computed here with the exact solution that we calculated in
Example 9.2 and that we reproduce here for convenience

y(t) = y0
e−at

1 − y0
c
a (1 − e−at )

.

If |y0c/a| < 1 the exact solution can be expanded in a geometric power series

y(t) = y0e
−at

∞∑

j=0

[ y0c
a

(1 − e−at )
] j

= y0e
−at + y20

c

a

(
e−at − e−2at

)

+ y30
( c
a

)2 (
e−at − 2e−2at + e−3at

) + · · ·
= evd(h1y0 + h2y

2
0 + h3y

3
0)(t) + · · ·

and see that the lowest order terms correspond to the calculated response components
y1, y2 and y3. Note also that the convergence radius of the power series derived from
the exact solution corresponds to the radius of the largest open ball, centered at the
origin and contained in the domain of attraction of the equilibrium point
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Fig. 9.5 Comparison of the
approximate solutions of the
logistic differential equation
in terms of y1, y2 and y3
against the exact solution
y(t) for
a = 1, c = 1/2, y0 = 1

B(0, a/c) :=
{
y0 ∈ R | y0 <

a

c

}
.

Figure9.5 compares the exact solution of the initial value problem with the approx-
imation given by evd(y1 + y2 + y3) for a = 1, c = 1/2, y0 = 1.

While for this particular example it was easier to compute the exact solution than
to calculate the approximation, the latter allows us to obtain the output of the system
described by the differential equation

Dy + ay = x + cy2 (9.22)

for any input signals x ∈ D′+(R)maintaining the systemwithing the region of attrac-
tion of the equilibrium point

evd(y)(t) ≈ evd(y1 + y2 + y3)(t)

with

y1(t) =
t∫

0

h1(t − τ1)x(τ1)dτ1

evd(y2)(t) =
t∫

0

t∫

0

h2(t − τ1, t − τ2)x(τ1)x(τ2)dτ1dτ2

evd(y3)(t) =
t∫

0

t∫

0

t∫

0

h3(t − τ1, t − τ2, t − τ3)x(τ1)x(τ2)x(τ3)dτ1dτ2dτ3 .
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Fig. 9.6 Comparison of the
approximate solutions of
(9.22) with a sinusoidal input
x(t) = 1+(t) sin(t) in terms
of the three lowest order
response components y1, y2
and y3 against the solution
y(t) obtained by numerical
integration for
a = 1, c = 1/2

Here and in many problems, this amounts to limiting the magnitude of the input
signal to sufficiently small values. Figure9.6 show the approximate solution for a
sinusoidal input x(t) = 1+(t) sin(t) and compares it to the solution obtained by
numerical integration of the differential equation for a = 1, c = 1/2.

This example shows how by representing the solution of a nonlinear differential
equation describing a weakly nonlinear system by a sequence of distributions y ∈
D′⊕,sym we have reduced the problem of solving a nonlinear differential equation to
an essentially algebraic problem. While some expressions are rather long, they can
be manipulated rather easily by modern computer algebra systems (CAS).

Example 9.6

We revisit Example 9.3 and try to find an approximate solution in D′⊕,sym of the
initial value problem

Dy = cy3 , y(0) = y0 , c < 0

valid around its zero equilibrium point. Note that the linearized equation is stable,
but not asymptotically stable.

As before we calculate the impulse responses by setting y0 = 1. The solution for
an arbitrary y0 is then found by multiplying the kth order impulse response hk by yk0 .

The first order impulse response h1 is found by writing the convolution equation
corresponding to the above initial value problem and retaining only terms of first
order

Dδ ∗ h1 = δ .
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By Laplace transforming the equation, the first order transfer function H1(s1) is
found to be

H1(s1) = 1

s1
.

From it, the first order impulse response is

h1(τ1) = 1+(τ1) .

The equation doesn’t have second order nonlinearities. Therefore the second order
impulse response and the second order transfer function are both zero

h2(τ1, τ2) = 0 , H2(s1, s2) = 0 .

The third order impulse response is found by retaining all third order terms in the
convolution equation

Dδ ∗ h3 = c h⊗3
1 .

By Laplace transforming the equation we find for the third order transfer function

H3(s1, s2, s3) = c

(s1 + s2 + s3)s1s2s3
.

From this, the third order impulse response is obtained by inverse Laplace transform-
ing with respect to one variable at a time and by symmetrizing the result

h3(τ1, τ2, τ3) = c
[
τ31+(τ3) + (τ2 − τ3)1+(τ3 − τ2)

+1+(τ2 − τ1)
[
(τ1 − τ3)1+(τ3 − τ1) + (τ3 − τ2)1+(τ3 − τ2)

]]

sym
.

From the above results we could conclude that, to third order, the approximate solu-
tion of the initial value problem is

evd(y)(t) = y01+(t) + cy301+(t)t + · · · .

This is however only valid for sufficiently small values of t . The reason is best seen by
comparing the above expression with the exact solution of the initial value problem
that we obtained in Example 9.3 and that we repeat here for convenience

y(t) = y0√
1 − 2cy20 t

.

The Taylor expansion around zero of the function

x → 1√
1 − x
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is

1 + 1

2
x + 1 · 3

2 · 4 x
2 + 1 · 3 · 5

2 · 4 · 6 x
3 + 1 · 3 · 5 · 7

2 · 4 · 6 · 8 x
4 + · · ·

and has a convergence radius of 1. Therefore, as long as |2cy20 t | < 1, the exact
solution can be represented by the power series

y(t) = y0

[
1 + cy20 t + 3

2
(cy20 t)

2 + 5

2
(cy20 t)

3 + 35

8
(cy20 t)

4 + · · ·
]

whose first two terms coincide with y0h1(t) and evd(y30h3)(t) respectively. However,
as t increases, the higher order terms become more and more important and, when
|2cy20 t | = 1, the Taylor expansion stops being a valid representation of the exact
solution of the initial value problem.

The last example shows that, in general, the solution of a nonlinear differential
equation in terms of an element ofD′⊕,sym is only meaningful around an equilibrium
point for which the linearized equation is asymptotically stable. The reason being
that, if this is not the case then the response of the system to any part of the input
signal can persist indefinitely in time without ever decreasing to negligible levels.
Since this is true for the response of any order, the output evd(y) can not in general
be represented by a power series. We can say that systems that are representable by
a Volterra series are those whose output does not depend on the too distant past.

In the case in which the linearized system is asymptotically stable all impulse
responses are summable distributions. Their Fourier transforms are therefore con-
tinuous functions that can be obtained from the nonlinear transfer functions Hk by

ĥk(ω1, . . . , ωk) = Hk(jω1, . . . , jωk) .

As the nonlinear transfer functions are rational functions, the Fourier transforms ĥk
are indefinitely differentiable and of polynomial growth, so they belong to OM .

9.7 Periodic Input Signals

In this section we investigate the response of weakly nonlinear systems to periodic
input signals. Given a periodic input signal x , every tensor power x⊗k is evidently
also a (higher dimensional) periodic distribution. Therefore, every component yk
of the system response y can be calculated in the convolution algebra of periodic
distributions and represented by a Fourier series.



9.8 Multi-tone Input Signals 159

Let x be a T -periodic input signal with Fourier coefficients

cm(x) = 1

T
〈x, e−jm 2π

T t 〉 , m ∈ Z .

Further, let m = (m1, . . . ,mk) ∈ Z
k be a multi-index and ωc = 2π/T , then the

Fourier coefficients of the kth tensor power of x are

cm(x⊗k) = 1

T k
〈x⊗k, e−jωc(m,τ )〉

= 1

T
〈x, e−jm1ωcτ1〉 · · · 1

T
〈x, e−jmkωcτk 〉

= cm1(x) · · · cmk (x) .

With this expression and a straightforward generalization of Eqs. (4.21) and (4.24)
to higher dimensional distributions, the Fourier coefficients of yk are readily seen to
be

cm(yk) = ĥk(m1ωc, . . . ,mkωc) cm1(x) · · · cmk (x) (9.23)

with ĥk the Fourier transform of the kth order impulse response of the system.

9.8 Multi-tone Input Signals

In some applications, for example in the study of interference and distortion in com-
munication systems, one is often interested in the response of a system to input
signals consisting of sinusoidal tones. If the frequencies of the tones are commensu-
rate, that is, if their ratios are rational numbers, then one can find a common period
and the input signal is periodic. The system response can thus be obtained by using
the results of the previous section. However, for multi-tone input signals the results
are often more directly interpretable by using a different indexing scheme for the
tones composing the output components yk [13].

9.8.1 General Case

Let’s consider a system driven by an input consisting of N complex tones

x(t) =
N∑

n=1

Anχn(t), χn(t) := ejωn t , An := |An|ejϕn
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initially assumed to have commensurate angular frequenciesω1, . . . , ωN . Our objec-
tive is to calculate the system response of order k

yk = hk ∗ x⊗k .

Consider first the tensor power x⊗k . It can be expanded with the help of (9.10)

x⊗k =
(

N∑

n=1

Anχn

)⊗k

=
∑

|m|=k

k!
m! A

m1
1 · · · AmN

N · [χ⊗m1
1 ⊗ χ

⊗mN
N

]
sym

with m the multi-index m = (m1, . . . ,mN ) whose elements range from 0 to N .
Observe that this expression is the Fourier series representation of x⊗k . With it and
(9.23) the Fourier series representation of yk is thus found to be

yk =
∑

|m|=k

k!
m! A

m1
1 · · · AmN

N ĥk,m · [χ⊗m1
1 ⊗ · · · ⊗ χ

⊗mN
N

]
sym

ĥk,m := ĥk(ω1, . . . , ω1︸ ︷︷ ︸
m1

, . . . , ωN , . . . , ωN︸ ︷︷ ︸
mN

) (9.24)

with ĥk the Fourier transform of the impulse response of order k. As this sum is finite
and only composed by indefinitely differentiable functions, it is itself an indefinitely
differentiable function that can be evaluated on the diagonal

yk(t) := evd(yk)(t) =
∑

|m|=k

yk,m(t) (9.25)

yk,m(t) := k!
m! A

m1
1 · · · AmN

N ĥk,m ejωmt (9.26)

ωm :=
N∑

n=1

mn ωn = m1ω1 + · · · + mNωN . (9.27)

The kth order response of the system is therefore a sum composed by

(N − 1 + k)!
(N − 1)!k! (9.28)

complex tones, each one uniquely determined by a specific multi-index m. In this
context the multi-index m is also called a frequency mix and |m| its order.
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These results show several important properties of weakly nonlinear systems.

• In contrast to linear systems, weakly nonlinear systems generate tones at frequen-
cies not present at its input.

• In general, tones at a specific frequency are generated by frequency mixes of
various orders.

• To fully characterize ĥk (and hence hk) one needs k input tones.

At the beginning of this section we assumed the input frequencies to be commen-
surate. If this is not the case then the input signal is not periodic, but almost periodic.
For such signals one can still define a Fourier series [16, Sect. VI.9] and the obtained
results remains valid.

9.8.2 Real Case

In this section we specialize the above results to the case of a real system driven by
an input consisting of N sinusoidal signals

x(t) =
N∑

n=1

|An| cos(ωnt + ϕn)

and where we assume ω1, . . . , ωN > 0. To re-use previous results it’s convenient to
represent the input signal in terms of complex exponentials and use separate indexes
for positive and negative angular frequencies

x(t) = 1

2

N∑

n=1

Anχn(t) + A−nχ−n(t), χn(t) := ejωn t

An := |An|ejϕn , A−n := An = |An|e−jϕn , ω−n := −ωn .

The quantity An is called the phasor of the sinusoidal signal

|An| cos(ωnt + ϕn) .

With this notation and using the multi-indexm = (m−N , . . . ,m−1,m1, . . . ,mN ) the
output component yk is easily calculated with the help of (9.24)–(9.27)

yk(t) =
∑

|m|=k

yk,m(t)

yk,m(t) = 1

2k
k!
m! A

m−N

−N · · · Am−1
−1 Am1

1 · · · AmN
N ĥk,m ejωmt

ĥk,m = ĥk(ω−N , . . . , ω−N︸ ︷︷ ︸
m−N

, . . . , ωN , . . . , ωN︸ ︷︷ ︸
mN

)
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ωm =
N∑

n=−N
n �=0

mn ωn = (m1 − m−1)ω1 + · · · + (mN − m−N )ωN .

To N sinusoidal input tones there correspond 2N complex tones. Therefore, in the
real case, the sum is composed by

(2N − 1 + k)!
(2N − 1)!k! (9.29)

frequency mixes.
In the real case there is some extra structure thatwe can exploit. Consider a specific

frequency mix m = (m−N , . . . ,m−1,m1, . . . ,mN ). From the above expression, it’s
apparent that the multi-index

rv(m) := (mN , . . . ,m1,m−1, . . . ,m−N ) (9.30)

obtained from m by reversing the order of the entries does also appear in the Fourier
series of yk . If m �= rv(m) then from k!/rv(m)! = k!/m!, ωrv(m) = −ωm , Arv(m) =
Am and ĥk,rv(m) = ĥk,m wededuce that the sumof yk,m(t) and yk,rv(m)(t) is a sinusoidal
signal

yck,m(t) := yk,m(t) + yk,rv(m)(t) = 2�{yk,m}
= 1

2k−1

k!
m! |A1|m1+m−1 · · · |AN |mN+m−N |ĥk,m |

· cos(ωmt + ϕm + ψk,m)

(9.31)

with

ĥk,m = |ĥk,m | ejψk,m (9.32)

ϕm =
N∑

n=−N
n �=0

mn ϕn = (m1 − m−1)ϕ1 + · · · + (mN − m−N )ϕN . (9.33)

If m = rv(m) then the multi-index rv(m) is not distinct from m and the Fourier
series component described by rv(m) coincides with the one described by m. In this
caseωm = 0 and, as the system is assumed to be real, ĥk,m must be real. The response
yk,m therefore becomes

yk,m(t) = 1

2k
k!
m! |A1|2m1 · · · |AN |2mN ĥk,m , m = rv(m) (9.34)

Note that m and rv(m) can only be equal for even values of k. Also, note that there
can be multi-indexes m resulting in ωm = 0 for which m = rv(m) doesn’t hold.
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Example 9.7

Consider again the system described by the differential equation

Dy + ay = x + cy2 a, c > 0 .

that we analysed in Example 9.5. Here we are interested in the steady state response
of the system when driven by the input signal

x(t) = |A| sin(ω1t) = |A| cos(ω1t − π/2).

In our previous analysis of this system we calculated the first three nonlinear
transfer functions H1, H2 and H3. Using those results, the output components y1, y2
and y3 are immediately obtained from (9.31) and (9.34) without having to calculate
any inverse Laplace transform.

Concretely, as the input signal consists of a single sinusoidal tone, the frequency
mixes are composed by two entries m = (m−1,m1). The output of first order y1 is
obtained from the above equations by setting k = 1 and by summing over all multi-
indexes satisfying the constraint |m| = m−1 + m1 = 1. There are only two such
multi-indexes: (0, 1) and rv((0, 1)) = (1, 0). The first order output of the system is
therefore given by

y1(t) = � {
H1(jω1)Ae

jω1t
}

with A = |A|e−jπ/2.
The second order response of the system y2 is obtained by setting k = 2 and

summingover allmulti-indexes under the constraint |m| = 2. There are three of them:
(2, 0), (0, 2) and (1, 1). The first one is the reverse of the second one. Therefore, the
contribution of these two is obtained from (9.31)

yc2,(0,2)(t) = 1

2
� {

H2(jω1, jω1)A
2ej2ω1t

}
.

Since the remaining multi-index is equal to its reverse (1, 1) = rv((1, 1)), its contri-
bution is the constant given by (9.34)

y2,(1,1) = |A|2H2(−jω1, jω1) .

The response of second order is thus

y2(t) = yc2,(0,2)(t) + y2,(1,1).

The third order response of the system y3 is obtainedby setting k = 3 and summing
over all multi-indexes for which |m| = 3. There are four of them: (3, 0), (2, 1), (1, 2)
and (0, 3). Two of them are the reverse of the other two. For this reason the response
of third order of the system y3 is given by
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y3(t) = yc3,(0,3)(t) + yc3,(1,2)(t)

with

yc3,(0,3)(t) = 1

4
� {

H3(jω1, jω1, jω1)A
3ej3ω1t

}

yc3,(1,2)(t) = 3

4
� {

H3(−jω1, jω1, jω1)|A|2 Aejω1t
}

.

Example 9.8: Two Tones Input

Suppose that we would like to implement a causal real LTI system. However, due
to unavoidable limitations of physical components, the implementation behaves as
a real weakly nonlinear system characterized by the nonlinear transfer functions Hk

(see Fig. 9.4).We are interested in its output when driven by an input signal consisting
in two sinusoidal tones

x(t) = |A1| cos(ω1t + ϕ1) + |A2| cos(ω2t + ϕ2) .

We think of the two tones as closely spaced in frequency and denote the difference
of their angular frequencies by �ω = ω2 − ω1.

As the input is composed by two sinusoidal signals, the frequency mixes have
four entries m = (m−2,m−1,m1,m2). From (9.29) we calculate that there are 4, 10
and 20 frequency mixes of order one, two and three, respectively. They are listed in
Table9.1.

The first order output y1 is the output that would be produced by a perfectly
linear system. All other tones are undesired. In particular, while tones relatively
distant in frequency fromω1 andω2 are relatively easily suppressedwith filters, tones
close to them are much more difficult to filter out. The tones closest in frequency
to ω1 and ω2 listed in Table9.1 are the tones associated with the frequency mixes
(1, 0, 2, 0), (0, 1, 0, 2) end their reverses

yc3,(1,0,2,0)(t) = 3

4
� {

A2 A
2
1 H3(−jω2, jω1, jω1)e

j (ω1−�ω)t
}

and

yc3,(0,1,0,2)(t) = 3

4
� {

A1 A
2
2 H3(−jω1, jω2, jω2)e

j (ω2+�ω)t
}

both produced by nonlinearities of third order.
The frequency mixes of fifth order are 56. Among them we can easily identify

frequency mixes producing tones at every frequency generated by third order non-
linearities, in particular at ω1 − �ω = 2ω1 − ω2. To see this, start with a frequency
mixm producing the frequency of interest and add the same number l > 0 tomn and
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Table 9.1 Frequencymixes generated by the first, second and third order nonlinearities of a weakly
nonlinear system driven by two sinusoidal tones

order m = (m−2,m−1,m1,m2) ωm

k = 1 (1, 0, 0, 0) −ω2 = −ω1 − �ω

(0, 1, 0, 0) −ω1 = −ω1

(0, 0, 1, 0) ω1 = ω1

(0, 0, 0, 1) ω2 = ω1 + �ω

k = 2 (2, 0, 0, 0) −2ω2 = −2ω1 − 2�ω

(0, 2, 0, 0) −2ω1 = −2ω1

(0, 0, 2, 0) 2ω1 = 2ω1

(0, 0, 0, 2) 2ω2 = 2ω1 + 2�ω

(1, 1, 0, 0) −ω2 − ω1 = −2ω1 − �ω

(1, 0, 1, 0) −ω2 + ω1 = −�ω

(1, 0, 0, 1) 0 = 0

(0, 1, 1, 0) 0 = 0

(0, 1, 0, 1) −ω1 + ω2 = �ω

(0, 0, 1, 1) ω1 + ω2 = 2ω1 + �ω

k = 3 (3, 0, 0, 0) −3ω2 = −3ω1 − 3�ω

(0, 3, 0, 0) −3ω1 = −3ω1

(0, 0, 3, 0) 3ω1 = 3ω1

(0, 0, 0, 3) 3ω2 = 3ω1 + 3�ω

(2, 1, 0, 0) −2ω2 − ω1 = −3ω1 − 2�ω

(2, 0, 1, 0) −2ω2 + ω1 = −ω1 − 2�ω

(2, 0, 0, 1) −ω2 = −ω1 − �ω

(1, 2, 0, 0) −ω2 − 2ω1 = −3ω1 − �ω

(0, 2, 1, 0) −ω1 = −ω1

(0, 2, 0, 1) −2ω1 + ω2 = −ω1 + �ω

(1, 0, 2, 0) −ω2 + 2ω1 = ω1 − �ω

(0, 1, 2, 0) ω1 = ω1

(0, 0, 2, 1) 2ω1 + ω2 = 3ω1 + �ω

(1, 0, 0, 2) ω2 = ω1 + �ω

(0, 1, 0, 2) −ω1 + 2ω2 = ω1 + 2�ω

(0, 0, 1, 2) ω1 + 2ω2 = 3ω1 + 2�ω

(1, 1, 1, 0) −ω2 = −ω1 − �ω

(1, 1, 0, 1) −ω1 = −ω1

(1, 0, 1, 1) ω1 = ω1

(0, 1, 1, 1) ω2 = ω1 + �ω
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Fig. 9.7 Hypothetical
phasor diagram for the
response at ω1 − �ω under
the assumption that
components of order higher
than fifth are negligible

m−n for any n ranging from 1 to N (the number of input sinusoidal tones, here 2)

m ′ = (m−N , . . . ,m−n + l, . . . ,mn + l, . . . ,mN ) .

Then the order of the new frequency mix m ′ is 2l higher than the one of m and
the angular frequencies ωm and ωm ′ associated with the two frequency mixes are
identical (see (9.27)).

Using this construction starting from (1, 0, 2, 0), we see that the fifth order mixes
(2, 0, 2, 1), (1, 1, 3, 0) and their reverses produce tones at ω1 − �ω

yc5,(2,0,2,1)(t) = 15

8
�
{
A2

2
A2
1 A2H5(−jω2,−jω2, jω1, jω1, jω2)e

j (ω1−�ω)t
}

yc5,(1,1,3,0)(t) = 5

4
� {

A2 A1 A
3
1 H5(−jω2,−jω1, jω1, jω1, jω1)e

j (ω1−�ω)t
}

.

The total response of the system at the frequency ω1 − �ω is therefore a possibly
infinite sum composed by the above mixes and higher order ones

yc3,(1,0,2,0) + yc5,(2,0,2,1) + yc5,(1,1,3,0) + · · · .

This sum can be represented graphically by drawing the phasor of each summand
as a vector in the complex plane and summing them by vector addition. Figure9.7
shows the phasor diagram for the above sum under the assumption that summands
of order higher than fifth can be neglected.

Observe that summands of different order depend differently on the amplitude
of the input signals |A1| and |A2|. For small input amplitudes the third order one
is usually the dominant. As the amplitude of the input tones grows, higher order
summands become first significant and then dominant. This means that both the
magnitude as well as the phase of the output tone does change with the amplitude
of the input signals. At some level of the input tones there may even be a canceling
effect where the output tone becomes very small.

Among the 56 frequency mixes of fifth order there are several of them generating
tones at new frequencies. In particular the closest in frequency to ω1 and ω2 (not
generated by lower order mixes) are at ω1 − 2�ω and ω2 + 2�ω. Similarly, higher
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Fig. 9.8 Positive part of a typical magnitude output spectrum of a weakly nonlinear system driven
by two sinusoidal input tones. The number q above each spectral line indicates the lowest order
nonlinearity generating the line. The same line is also generated by every nonlinearity of order
q + 2l, l ∈ N. Only lines generated by fifth or lower order nonlinearities are shown

odd order frequency mixes introduce tones at new frequencies spaced by �ω from
the previous ones. Figure9.8 illustrates a typical spectrum of the output signal. For
simplicity of representation the figure only shows lines generated by fifth or lower
order nonlinearities.
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Chapter 10
Composition of Weakly Nonlinear Time
Invariant Systems

10.1 Cascade of Noninteracting Systems

When building large systems, it’s common to construct them by combining smaller
subsystems. To gain the ability to investigate such systems, in this section we study
the fundamental operation of cascading two systems, that is, of connecting the output
of one system to the input of another one. In our treatment we are going to assume
that this connection doesn’t change the behavior of the involved systems. This is not
always the case. Therefore, before applying what follows, we must carefully ponder
this aspect.

Consider the cascade of the weakly nonlinear systems G and H as shown in
Fig. 10.1. Both systems are characterised by their respective impulse responses gk
and hk that we assume to belong to a convolution algebra A′⊕,sym. We are looking
for an expression to represent

y = (h ◦ g)[x] := h[g[x]] ,

the composition of H after G that we denote by H ◦ G.
Let’s first consider the systemG. It’s output z when driven by the one dimensional

distribution x1 is

z =
∞∑

k=1

gk ∗ x⊗k
1 .

If instead of representing the input signal by a one dimensional distribution x1, we
represent it by a sequence x = (0, x1, 0, . . .) ∈ A′⊕,sym with all its components but
x1 equal to zero and use the product that we defined onD′⊕,sym, then we can express
z in the equivalent form

z =
∞∑

k=1

gk ∗ xk .

© The Author(s) 2024
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Table 10.1 Lowest order impulse responses of the composite system h ◦ g in terms of the impulse
responses of h and g

The obtained expression is even more reminiscent of a power series than the original
one and,more importantly, it ismore amenable to generalisation. In fact, if we assume
that this expression remains valid for arbitrary input signals belonging toA′⊕,sym then
the same expression can be used to describe the output of H in terms of z

y =
∞∑

k=1

hk ∗ zk .

We can then define the composition of weakly nonlinear systems by

(h ◦ g)[x1] :=
∞∑

k=1

(h ◦ g)k ∗ x⊗k
1 :=

∞∑

k=1

hk ∗ zk

= h1 ∗ (g1 ∗ x1 + g2 ∗ x⊗2
1 + · · · )

+ h2 ∗ (g1 ∗ x1 + g2 ∗ x⊗2
1 + · · · )2

+ h3 ∗ (g1 ∗ x1 + g2 ∗ x⊗2
1 + · · · )3

+ · · ·

(10.1)

with (h ◦ g)k denoting the kth order impulse response of the overall system and
consisting of all terms of dimension k. Note that, for every value of k, there are only
a finite number of them as the lowest tensor power of x1 appearing in zn is the nth
one and thus

(zn)k = 0 for n > k .

The first five components are listed in Table10.1 for easy reference. Note, here as
well, the analogy with power series and their composition [25].

The above definition by itself is not complete as the convolution between distri-
butions of different dimensions is not defined. To complete the definition we have
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Fig. 10.1 Cascade of the
system G with H

Table 10.2 Convolutions between impulse responses of different order appearing in the composi-
tion of weakly nonlinear systems and their definition. They are grouped by the resulting order, from
second to fifth. To simplify the notation the symmetrization operation is not explicitly shown

Convolution Definition

h1 ∗ g2 [h1(τ1) ⊗ δ(τ2 − τ1)] ∗ g2(τ1, τ2)

h1 ∗ g3 [h1(τ1) ⊗ δ(τ2 − τ1, τ3 − τ1)] ∗ g3(τ1, τ2, τ3)

h2 ∗ (g1 ⊗ g2) [h2(τ1, τ2) ⊗ δ(τ3 − τ2)] ∗ [g1(τ1) ⊗ g2(τ2, τ3)]
h1 ∗ g4 [h1(τ1) ⊗ δ(τ2 − τ1, τ3 − τ1, τ4 − τ1)] ∗ g4(τ1, τ2, τ3, τ4)

h2 ∗ (g2 ⊗ g2) [h2(τ1, τ3) ⊗ δ(τ2 − τ1, τ4 − τ3)] ∗ [g2(τ1, τ2) ⊗ g2(τ3, τ4)]
h2 ∗ (g1 ⊗ g3) [h2(τ1, τ2) ⊗ δ(τ3 − τ2, τ4 − τ2)] ∗ [g1(τ1) ⊗ g3(τ2, τ3, τ4)]
h3 ∗ (g⊗2

1 ⊗ g2) [h3(τ1, τ2, τ3) ⊗ δ(τ4 − τ3)] ∗ [g1(τ1) ⊗ g1(τ2) ⊗ g2(τ3, τ4)]
h1 ∗ g5 [h1(τ1) ⊗ δ(τ2 − τ1, τ3 − τ1, τ4 − τ1, τ5 − τ1)] ∗ g4(τ1, τ2, τ3, τ4, τ5)

h2 ∗ (g1 ⊗ g4) [h2(τ1, τ2) ⊗ δ(τ3 − τ2, τ4 − τ2, τ5 − τ2)] ∗ [g1(τ1) ⊗ g4(τ2, τ3, τ4, τ5)]
h2 ∗ (g2 ⊗ g3) [g2(τ1, τ3) ⊗ δ(τ2 − τ1, τ4 − τ3, τ5 − τ3)] ∗ [g2(τ1, τ2) ⊗ g3(τ3, τ4, τ5)]
h3 ∗ (g⊗2

1 ⊗ g3) [h3(τ1, τ2, τ3) ⊗ δ(τ4 − τ3, τ5 − τ3)] ∗ [g1(τ1) ⊗ g1(τ2) ⊗ g3(τ3, τ4, τ5)]
h3 ∗ (g1 ⊗ g⊗2

2 ) [h3(τ1, τ2, τ4) ⊗ δ(τ3 − τ2, τ5 − τ4)] ∗ [g1(τ1) ⊗ g2(τ2, τ3) ⊗ g2(τ4, τ5)]
h4 ∗ (g⊗3

1 ⊗ g2) [h4(τ1, τ2, τ3, τ4) ⊗ δ(τ5 − τ4)] ∗ [g1(τ1) ⊗ g1(τ2) ⊗ g1(τ3) ⊗ g2(τ4, τ5)]

thus to give a meaning to all undefined convolutions appearing in the expression for
(h ◦ g).

Let’s consider the convolutions appearing in (h ◦ g)k . The undefined ones are
the ones involving hl with l < k. The first thing to note is that, for every l, all
of them are convolution products between hl and a distribution that is the tensor
product of l distributions. In addition, by definition, the sum of the dimensions of
these l distributions must be k. The convolution products that we have to define have
therefore all the form

hl ∗
[
g⊗α1
1 ⊗ · · · ⊗ g⊗αk−l+1

k−l+1

]

sym
, αi ∈ N (10.2)

with
k−l+1∑

i=1

i αi = k,
k−l+1∑

i=1

αi = l. (10.3)

The simplest case is the one for l = 1

h1 ∗ gk
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which represents a nonlinearity of order k, gk , followed by a linear system h1. To
find a suitable general definition for this convolution we let us guide by regular
distributions belonging to L1, evaluated on the diagonal. Setting k = 2 for simplicity
we have

evd(z2)(t) = evd(g2 ∗ x⊗2
1 )(t)

=
∞∫

0

∞∫

0

g2(λ1, λ2)x1(t − λ1)x1(t − λ2)dλ1dλ2 .

Using this expression as the input of h1 we obtain

evd(y2)(t) =
∞∫

0

h1(τ1)evd(z2)(t − τ1) dτ1

=
∞∫

0

h1(τ1)

∞∫

0

∞∫

0

g2(λ1, λ2)

· x1(t − λ1 − τ1)x1(t − λ2 − τ1) dλ1dλ2dτ1

=
∞∫

0

∞∫

0

∞∫

0

h1(τ1)g2(λ1 − τ1, λ2 − τ1) dτ1

· x1(t − λ1)x1(t − λ2) dλ1dλ2 .

Note that the innermost integral in the last expression is a convolution integral
between h1 and g2. It can be generalised to arbitrary distributions by building the ten-
sor product of h1(τ1)with δ(τ2 − τ1), the Dirac delta distribution in τ2 parameterised
(shifted) by τ1

〈[h1(τ1) ⊗ δ(τ2 − τ1)] ∗ g2(τ1, τ2), φ(τ1, τ2)〉
= 〈h1(τ1) ⊗ δ(τ2 − τ1) ⊗ g2(λ1, λ2), φ(τ1 + λ1, τ2 + λ2)〉
= 〈h1(τ1) ⊗ g2(λ1, λ2), 〈δ(τ2 − τ1), φ(τ1 + λ1, τ2 + λ2)〉〉
= 〈h1(τ1) ⊗ g2(λ1, λ2), φ(τ1 + λ1, τ1 + λ2)〉 .

The above derivation generaliseswithout any difficulty to the convolution between
h1 and the impulse response of order k of G. Taking into account that impulse
responses have to be symmetric, we thus define the convolution between h1 and gk
by

(h1 ∗ gk)(τ1, . . . , τk) := [h1(τ1) ⊗ δ(τ2 − τ1, . . . , τk − τ1)]sym ∗ gk(τ1, . . . , τk) .
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In other words, to convolve h1 with a distribution of dimension k we promote h1 to
a distribution of k dimensions by building the indicated tensor product and use the
standard definition of convolution.

The Laplace transformed of h1 ∗ gk has a very simple representation and leads to
an easy interpretation. With

〈
h1(τ1) ⊗ δ(τ2 − τ1, . . . , τk − τ1), e

−s1τ1−···−skτk
〉

= 〈
h1(τ1),

〈
δ(τ2 − τ1, . . . , τk − τ1), e

−s1τ1−···−skτk
〉〉

= 〈
h1(τ1), e

−(s1+···+sk )τ1
〉

we find
L{h1 ∗ gk}(s1, . . . , sk) = H1(s1 + · · · + sk)Gk(s1, . . . , sk) .

Therefore, if the input signal x1 consists of N tones, the nonlinear system component
gk generates new tones at frequencies that are linear combinations of k of the input
frequencies at a time (see (9.25)). The linear system h1 following it simply filters
these newly generated tones as prescribed by its transfer function H1, in accordance
with expectation.

Consider next the next simplest undefined convolution

h2 ∗ [g1 ⊗ g2]sym .

As for the previous case, we look for a way to promote h2 to a distribution of
dimension k = 3 so that we can use the standard definition of convolution. We do so
by working with multi-tone input signals as this leads to easier interpretations.

Let g1 ⊗ g2 be driven by 3 unit tones

x1(t) = ejω1t + ejω2t + ejω3t ,

then its output is

[g1 ⊗ g2]sym ∗ x⊗3
1

=
3∑

n1=1

3∑

n2=1

3∑

n3=1

G1(jωn1)G2(jωn2 , jωn3)e
j (ωn1 τ1+ωn2 τ2+ωn3 τ3)

=
3∑

n1=1

3∑

n2=1

3∑

n3=1

G1(jωn1)e
jωn1 τ1 G2(jωn2 , jωn3)e

j (ωn2 τ2+ωn3 τ3)

with G1(s1)G2(s2, s3) the Laplace transform of g1 ⊗ g2. This expression suggests
that g1 ⊗ g2 can be interpreted as the parallel combination of a linear system and
a second order one. For each term of the sum, the tone at ωn1 passes through the
linear system g1 while the other two pass through g2. The output evd(g1 ⊗ g2)(t) can
thus be considered as consisting of a sum of pairs of tones, one at ωn1 and the other
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at ωn2 + ωn3 . This sum of tones couples constitute the input of h2 which processes
them and, for each tone couple generates the signal

H2(jωn1 , jωn2 + jωn3)G1(jωn1)G2(jωn2 , jωn3)e
j (ωn1+ωn2+ωn3 )t .

Given these considerations,wedefine the convolutionbetweenh2 and [g1 ⊗ g2]sym
by

h2 ∗ [g1 ⊗ g2]sym := [(h2(τ1, τ2) ⊗ δ(τ3 − τ2)) ∗ (g1(τ1) ⊗ g2(τ2, τ3))]sym .

Its Laplace transform is

L{h2 ∗ [g1 ⊗ g2]sym}(s1, s2, s3) = [H2(s1, s2 + s3)G1(s1)G2(s2, s3)]sym .

The above considerations can be extended to the general case (10.2). The tensor
product of l distributions

g⊗α1
1 ⊗ · · · ⊗ g⊗αk−l+1

k−l+1 ,

k−l+1∑

i=1

αi = l

canbe thought of as a set of l parallel subsystemsof order lower than k. The constraints
(10.3) make sure that with k input tones, its output can be made to consists of l tones
at linear combinations of the original input frequencies. These can then be passed as
input to hl .

The intendedmeaning of the generalised convolution expressed by (10.2) can thus
be captured by promoting hl to a k dimensional distribution obtained by building
the tensor product of hl and k − l appropriately shifted δ distributions constructed
as follows.

• The first independent variable of each of the l distributions

gm1(τ1, . . . , τm1) ⊗ · · · ⊗ gm j (τn+1, . . . , τn+m j ) ⊗ · · · ⊗ gml (τk−ml+1, . . . , τk)

form the list of independent variables of hl

hl(τ1, . . . , τn+1, . . . , τk−ml+1) .

• For each additional variable of gm j , m j > 1, we tensor-multiply hl by a Dirac
distribution in this same variable, shifted by the first one

δ(τn+2 − τn+1) ⊗ · · · ⊗ δ(τn+m j − τn+1) .

• The resulting k dimensional distribution has finally to be symmetrized.
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Table 10.3 Convolutions between impulse responses of different order appearing in the composi-
tion of weakly nonlinear systems and their Laplace transforms. They are grouped by the resulting
order, from second to fifth. To simplify the notation the symmetrization operation is not explicitly
shown

Convolution Laplace transform

h1 ∗ g2 H1(s1 + s2)G2(s1, s2)

h1 ∗ g3 H1(s1 + s2 + s3)G3(s1, s2, s3)

h2 ∗ (g1 ⊗ g2) [H2(s1, s2 + s3)]G1(s1)G2(s2, s3)

h1 ∗ g4 H1(s1 + s2 + s3 + s4)G4(s1, s2, s3, s4)

h2 ∗ (g2 ⊗ g2) [H2(s1 + s2, s3 + s4)]G2(s1, s2)G2(s3, s4)

h2 ∗ (g1 ⊗ g3) [H2(s1, s2 + s3 + s4)]G1(s1)G3(s2, s3, s4)

h3 ∗ (g⊗2
1 ⊗ g2) [H3(s1, s2, s3 + s4)]G1(s1)G1(s2)G2(s3, s4)

h1 ∗ g5 H1(s1 + s2 + s3 + s4 + s5)G4(s1, s2, s3, s4, s5)

h2 ∗ (g1 ⊗ g4) [H2(s1, s2 + s3 + s4 + s5)]G1(s1)G4(s2, s3, s4, s5)

h2 ∗ (g2 ⊗ g3) [H2(s1 + s2, s3 + s4 + s5)]G2(s1, s2)G3(s3, s4, s5)

h3 ∗ (g⊗2
1 ⊗ g3) [H3(s1, s2, s3 + s4 + s5)]G1(s1)G1(s2)G3(s3, s4, s5)

h3 ∗ (g1 ⊗ g⊗2
2 ) [H3(s1, s2 + s3, s4 + s5)]G1(s1)G2(s2, s3)G2(s4, s5)

h4 ∗ (g⊗3
1 ⊗ g2) [H4(s1, s2, s3, s4 + s5)]G1(s1)G1(s2)G1(s3)G2(s4, s5)

A few convolution examples are given in Table10.2. The Laplace transformed of
these examples are tabulated in Table10.3. With this definition we have completed
the description of how to compose weakly nonlinear systems.

Example 10.1: Third-Order Nonlinearity

The third order nonlinearity of H ◦ G is generated in three distinct ways: First, by
the nonlinearity of third order of H applied to the output of the linear part of G

H3(s1, s2, s3)G1(s1)G1(s2)G1(s2)X1(s1)X1(s2)X1(s3) ,

second, by the nonlinearity of third order of G passing through the linear part of H

H1(s1 + s2 + s3)G3(s1, s2, s2)X1(s1)X1(s2)X1(s3)

and third, by the second order nonlinearity of H applied to the output of first and
second order of G

2 [H2(s1, s2 + s3)G1(s1)G2(s2, s3)]sym .

These mechanisms are represented graphically in Fig. 10.2. In particular one
should note that, even if neither G nor H shows nonlinearities of third order, the
combined system H ◦ G in general still has an impulse response of third order dif-
ferent from zero.
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Fig. 10.2 Graphical representation of the third order nonlinearity generated by the composition
H ◦ G. Each path has to be understood as symmetrised

Example 10.2: Memory-Less Systems

Consider the convolution(10.2) with hl a Dirac distribution of dimension l < k

δ⊗l ∗
[
g⊗α1
1 ⊗ · · · ⊗ g⊗αk−l+1

k−l+1

]

sym
.

By definition, the lower dimensional distribution δ⊗l is promoted to a distribution
of dimension k by building the tensor product with shifted Dirac distributions as
explained. For simplicity, we denote the promoted distribution by hk . Application of
the convolution to a test function φ ∈ D(Rk) is defined by

〈
hk(τ ) ⊗

[
g⊗α1
1 ⊗ · · · ⊗ g⊗αk−l+1

k−l+1 (λ)
]

sym
, φ(τ + λ)

〉

=
〈[
g⊗α1
1 ⊗ · · · ⊗ g⊗αk−l+1

k−l+1 (λ)
]

sym
, 〈hk(τ ), φ(τ + λ)〉

〉

with τ, λ ∈ R
k . The inner distribution is easily evaluated

〈hk(τ ), φ(τ + λ)〉 = φ(λ)

and from this we conclude that for any l ≤ k

δ⊗l ∗
[
g⊗α1
1 ⊗ · · · ⊗ g⊗αk−l+1

k−l+1

]

sym
=

[
g⊗α1
1 ⊗ · · · ⊗ g⊗αk−l+1

k−l+1

]

sym
.

With this result we see that the response of amemorylessweakly-nonlinear system
can be written in the following equivalent forms
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y =
∞∑

k=1

ckx
k =

∞∑

k=1

ckδ
⊗lk ∗ xk , lk ≤ k . (10.4)

In general we will use lk = k so that, if the input signal is a one dimensional distri-
bution x1, we do not need to use the extended definition of convolution.

Our definition of convolution between distributions of different dimensions and
our definition of the one dimensional differential operator operating on higher dimen-
sional distributions (9.14) are compatible. In fact the former is a generalization of
the latter. Consider the differential operator acting on the k dimensional Dirac dis-
tribution δ⊗k . Application to a test function φ ∈ D(Rk) results in

〈
Dδ⊗k, φ

〉 =
〈

k∑

j=1

Djδ
⊗k, φ

〉
= −

〈
δ⊗k,

k∑

j=1

Djφ

〉

= −
k∑

j=1

Djφ(0, . . . , 0) .

If we now consider φ as a function of the variable τ1 only and Dτ1 the total differential
operator, then we can write

−
k∑

j=1

Djφ(0, . . . , 0) = − 〈
δ(τ1), Dτ1φ(τ1, . . . , τ1)

〉

= 〈
Dτ1δ(τ1), φ(τ1, . . . , τ1)

〉

= 〈
(Dδ) ∗ δ⊗k, φ

〉

which shows that our definition of the differential operator acting on a higher dimen-
sional distribution is equal to the convolution of the one dimensional distribution Dδ

promoted by our definition of convolution to a k dimensional distribution

Dδ⊗k = (Dδ) ∗ δ⊗k . (10.5)

This is also apparent from the Laplace transformed that in both cases are equal to

s1 + · · · + sk .

The differential operator and the extended definition of convolution do satisfy
(3.15). We show this by way of an example. Consider the convolution between h2
and g1 ⊗ g2. Suppose further that h2 is the derivative in the sense of (9.14) of another
distribution w2

h2 = Dw2 .
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Applying the convolution product to a test function φ ∈ D(R3) and using the
extended definition of convolution we obtain

〈h2 ∗ (g1 ⊗ g2), φ〉 = 〈Dw2 ∗ (g1 ⊗ g2), φ〉
= 〈{[Dw2(τ1, τ2)] ⊗ δ(τ3 − τ2)} ⊗ [g1(λ1) ⊗ g2(λ2, λ3)],

φ(τ1 + λ1, τ2 + λ2, τ3 + λ3)〉
= 〈[Dw2(τ1, τ2)] ⊗ [g1(λ1) ⊗ g2(λ2, λ3)],

φ(τ1 + λ1, τ2 + λ2, τ2 + λ3)〉 .

Further, using the definition of differentiation and noting that

Dτ2φ(τ1 + λ1, τ2 + λ2, τ2 + λ3) = (Dλ2 + Dλ3)φ(τ1 + λ1, τ2 + λ2, τ2 + λ3)

we obtain

− 〈[w2(τ1, τ2)] ⊗ [g1(λ1) ⊗ g2(λ2, λ3)],
(Dτ1 + Dτ2)φ(τ1 + λ1, τ2 + λ2, τ2 + λ3)

〉

= −〈[w2(τ1, τ2)] ⊗ [g1(λ1) ⊗ g2(λ2, λ3)],
(Dλ1 + Dλ2 + Dλ3)φ(τ1 + λ1, τ2 + λ2, τ2 + λ3)

〉

= 〈w2(τ1, τ2) ⊗ D[g1(λ1) ⊗ g2(λ2, λ3)],
φ(τ1 + λ1, τ2 + λ2, τ2 + λ3)〉

or, summarising
(Dw2) ∗ (g1 ⊗ g2) = w2 ∗ D(g1 ⊗ g2) . (10.6)

10.2 Feedback

Apowerful technique used in the design of all sorts of systems is feedback. In control
systems design, this technique is used to stabilise and adjust the dynamics of a system
to achieve a desired behaviour. It’s also used to reduce the sensitivity of systems to
poorly controlled parameters. Here we are interested in describing the nonlinearities
of a systemmaking use of feedback based on the ones of its constituting subsystems.

Consider the system shown in Fig. 10.3 composed by a forward subsystem G and
a feedback subsystem H . The input of G is the difference between the input signal
x and the signal z, a signal obtained by sensing the output y and suitably processed
byH . The system is described by the following equations
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Fig. 10.3 Weakly nonlinear
system with feedback

e = x − z

z = (h ◦ g)[e]
y = g[e] .

Our objective is to obtain the impulse responses of the system based on the ones of
G and H . We denote the overall system by W and its impulse response of order k
by wk .

We start by computing the linear impulse response. The composition of linear sys-
tems is obtained by convolving their first order impulse responses. We can therefore
write the equation

e1 = δ − z1 = δ − h1 ∗ g1 ∗ e1

and, solving for e1, we obtain

e1 = (δ + h1 ∗ g1)
∗−1 .

With e1 the calculation of the linear impulse response is immediate

w1 = g1 ∗ e1 = (δ + h1 ∗ g1)
∗−1 ∗ g1 .

Its Laplace transform is a classical result of linear system theory

W1(s) = G1(s)

1 + H1(s)G1(s)
.

If in the frequency range of interest the magnitude of the linear loop gain is large
|H1(jω)G1(jω)| � 1 then the linear response of the system is almost exclusively
determined by the feedback network

W1(jω) ≈ 1

H1(jω)
.

For completeness, we give the Laplace transform of e1 as well

E1(s1) = 1

1 + H1(s)G1(s)
.
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With it the first order transfer function can be written as

W1(s1) = G1(s1)E1(s1) .

Next we compute the impulse response of second orderW2. Using the generalised
response of weakly nonlinear systems (10.1), the second order component of the
output signal y and of the feedback signal z are given by

y2 = g2 ∗ e⊗2
1 + g1 ∗ e2

z2 = h2 ∗ y⊗2
1 + h1 ∗ y2 .

Note that, since we used a Dirac impulse as input, the output components y2 and y1
correspond to the impulse responsesw2 andw1 respectively. By substituting the first
equation into the second, using the previous result forw1 and taking into account the
fact that the input signal is a one dimensional distribution, we obtain an equation in
e2

z2 = −e2 = h2 ∗ (g1 ∗ e1)
⊗2 + h1 ∗ (g2 ∗ e⊗2

1 + g1 ∗ e2) .

whose solution is

e2 = −(δ⊗2 + h1 ∗ g1)
∗−1 ∗ (h2 ∗ w⊗2

1 + h1 ∗ g2 ∗ e⊗2
1 ) .

With e2 and the previous results for e1 and w1 the second order impulse response is
thus given by

w2 = g2 ∗ e⊗2
1 + g1 ∗ e2 .

Its Laplace transform is

W2(s1, s2) = G2(s1, s2)E1(s1)E1(s2) + G1(s1 + s2)E2(s1, s2)

with

E2(s1, s2) =
− H2(s1, s2)W1(s1)W1(s2) + H1(s1 + s2)G2(s1, s2)E1(s1)E1(s2)

1 + H1(s1 + s2)G1(s1 + s2)
.

Combining these expressions and using previous results, we can write W2 in the
following form

W2(s1, s2) =
{
E1(s1 + s2)G2(s1, s2)

− W1(s1 + s2)H2(s1, s2)G1(s1)G1(s2)
}
E1(s1)E1(s2) (10.7)
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Fig. 10.4 Signal flow graph
of a weakly nonlinear system
with feedback

which is easily interpretable with the help of the signal flow graph (SFG) shown in
Fig. 10.4 (see Appendix A).

The first term is composed by the transmission of the input signal—we think
of it as composed by k tones — through the linear system to node E , the input
of the nonlinear subsystem G. This part of the signal flow is represented by the
factor E1(s1)E1(s2). The second order nonlinearity of G then generates a new tone
as determined by G2(s1, s2). This newly generated tone is represented in the SFG
by a source node because it is different from the input ones. The propagation of the
new tone to the output of the system is accounted for by the last factor, E1(s1 + s2).

The second summand in (10.7) has a similar interpretation. The input signal first
propagates through the linear system to the input of the other nonlinear subsys-
tem H . This part of the signal flow is represented by G1(s1)E1(s1)G1(s2)E1(s2) =
W1(s1)W1(s2). The second order nonlinearity of H then generates a new tone as
determined and accounted for by the H2(s1, s2) factor. Finally, the new tone propa-
gates to the output of the system, contributing the last factor, −W1(s1 + s2).

We now proceed with the calculation of the third order impulse response of the
system. The procedure is similar to the one used for the computation of the second
order one. From

y3 = g3 ∗ e⊗3
1 + 2g2 ∗ [e1 ⊗ e2]sym + g1 ∗ e3

z3 = h3 ∗ y⊗3
1 + 2h2 ∗ [y1 ⊗ y2]sym + h1 ∗ y3

and the previous results we obtain an equation for e3

z3 = −e3 = h3∗(g1 ∗ e1)
⊗3

+ 2h2 ∗ [
(g1 ∗ e1) ⊗ (g2 ∗ e⊗2

1 + g1 ∗ e2)
]
sym

+ h1 ∗ (g3 ∗ e⊗3
1 + 2g2 ∗ [e1 ⊗ e2]sym + g1 ∗ e3)

whose solution is
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e3 = −(δ⊗3 + h1 ∗ g1)
∗−1 ∗

{
h3 ∗ (g1 ∗ e1)

⊗3

+ 2h2 ∗ [
(g1 ∗ e1) ⊗ (g2 ∗ e⊗2

1 + g1 ∗ e2)
]
sym

+ h1 ∗ (g3 ∗ e⊗3
1 + 2g2 ∗ [e1 ⊗ e2]sym)

}
.

The third order impulse response is obtained by inserting this expression for e3 and
the previous ones for e1 and e2 into

w3 = g3 ∗ e⊗3
1 + 2g2 ∗ [e1 ⊗ e2]sym + g1 ∗ e3 .

As we find the expressions more easily interpretable, we perform this calculation in
the Laplace domain. The Laplace transform of the last expressions for w3 and e3 are

W3(s1, s2, s3) =G3(s1, s2, s3)E1(s1)E1(s2)E1(s3)

+ 2 [G2(s1, s2 + s3)E1(s1)E2(s2, s3)]sym
+ G1(s1 + s2 + s3)E3(s1, s2, s3)

and

E3(s1, s2, s3) = −1

1 + H1(s1 + s2 + s3)G1(s1 + s2 + s3){
H3(s1, s2, s3)W1(s1)W1(s2)W1(s3)

+ 2
[
H2(s1, s2 + s3)W1(s1)

[
G2(s2, s3)E1(s2)E1(s3)

+ G1(s2 + s3)E2(s2, s3)
]]

sym

+ H1(s1 + s2 + s3)
[
G3(s1, s2, s3)E1(s1)E1(s2)E1(s3)

+ 2 [G2(s1, s2 + s3)E1(s1)E2(s2, s3)]sym
]}

respectively. Combining these and previous results we can express W3 as follows

W3(s1, s2, s3) = E1(s1 + s2 + s3)G3(s1, s2, s3)E1(s1)E1(s2)E1(s3)

−W1(s1 + s2 + s3)H3(s1, s2, s3)W1(s1)W1(s2)W1(s3)

+2W1(s1 + s2 + s3)H2(s1, s2 + s3)W1(s1)

·
[
W1(s2 + s3)H2(s2, s3)W1(s2)W1(s3)

−E1(s2 + s3)G2(s2, s3)E1(s2)E1(s3)
]

sym

−2E1(s1 + s2 + s3)G2(s1, s2 + s3)E1(s1)



10.2 Feedback 183

·
[
H1(s2 + s3)E1(s2 + s3)G2(s2, s3)E1(s2)E1(s3)

+E1(s2 + s3)H2(s2, s3)W1(s2)W1(s3)
]

sym
. (10.8)

While this expression is rather long, it can be readily interpreted with the help of
the SFG of Fig. 10.4. The first term is composed by the factor E1(s1)E1(s2)E1(s3)
representing the input signal propagating through the linear part of the system to the
input of G. The third order nonlinearity of G then generates a new tone as witnessed
by G3(s1, s2, s3). Finally, the newly generated tone propagates through the linear
part of the system to the output, E1(s1 + s2 + s3).

The second term has a similar structure and represents the contribution to the third
order nonlinearity of W by the third order nonlinearity ofH .

The next summand represents themixing of the second order nonlinear component
ofH with the input signal in the second order nonlinearity ofH (again). Specifically,
thinking of the input signal as composed by three tones, the factors W1(s1),W1(s2)
andW1(s3) represent the input tones propagating through the linear part of the system
to the input of H . There, the second and third tones pass through the second order
nonlinearity ofH generating a new second order tone, H2(s2, s3). This second order
tone then propagates through the linear part of the system to the input ofH ,−W1(s2 +
s3). There the second order tone and the first input tone pass through the second
order distortion of H together and generate a new third order tone as witnessed by
2H2(s1, s2 + s3). Finally, the third order tone propagates through the linear part of
the system to the output, −W1(s1 + s2 + s3).

The remaining summands have all a similar structure and interpretation as the one
just described. They describe the first input tone mixing with a second order tone.
The difference between them lies in which subsystem generates the second order
tone and which one mixes the first tone with the second order one.

Higher order impulse responses and nonlinear transfer functions of W can be
obtained in a similar way. While the expressions become long, they can easily be
computed with the help of computer algebra systems (CAS) computer programs and,
referring to the SFG in Fig. 10.4, can be interpreted without difficulty.

From the first three nonlinear transfer functions of the feedback based systemW
we can draw the following conclusions.

• The nonlinear transfer functions of the constituting subsystems play the role of
controlled sources.

• The linear part of the subsystems plays a pivotal role. It describes the propagation
around the system of all input and generated signals.

• The system W can have an impulse response of order k different from zero even
if the impulse responses of order k of both subsystems G and H are zero. In
particular, we saw how a third order nonlinearity can be generated by various
combinations of the nonlinearities of second order of G and H .

• The nonlinear terms generated exclusively by the forward subsystem G can be
suppressed by making the magnitude of the loop gain |H1(s)G1(s)| large (in a
suitable portion of the spectrum). This is so because all such terms in the nonlinear
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transfer function of order k are proportional to

E1(s1) · · · E1(sk)E1(s1 + · · · + sk)

and, as the loop gain is made large, E1 becomes small.
• The nonlinear terms generated exclusively by the feedback subsystem H are not
suppressed by making the magnitude of the loop gain |H1(s)G1(s)| large. That’s
because none of these terms are proportional to the linear component of the error
signal E1. Instead, they are all proportional to

W1(s1) · · ·W1(sk)W1(s1 + · · · + sk)

which doesn’t necessarily become small as the loop gain is made large.
• Nonlinear terms generated by combinations of nonlinearities of G as well as of
H include factors in E1 and therefore do experience some level of suppression at
large loop gains.

Example 10.3: Linear Feedback

As a special case we consider a system with linear feedback. This means that all
transfer functions of H are zero, except for H1. In this case the second and third
order nonlinear transfer functions of the system are

W2(s1, s2) = G2(s1, s2)E1(s1)E1(s2)

1 + H1(s1 + s2)G1(s1 + s2)

= E1(s1 + s2)G2(s1, s2)E1(s1)E1(s2)

and

W3(s1, s2, s3) = E1(s1 + s2 + s3)
{
G3(s1, s2, s3)

− 2
[
G2(s1, s2 + s3)H1(s2 + s3)E1(s2 + s3)G2(s2, s3)

]
sym

}

· E1(s1)E1(s2)E1(s3)

respectively. Both of them are proportional to

E1(s1) · · · E1(sk)E1(s1 + · · · + sk)

and can therefore be suppressed by making the loop gain large.
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Fig. 10.5 Signal flow graph
for the system of
Example 10.4

Example 10.4

We revisit Example 9.5 again. Here however we replace the initial condition y0δ by
a generic input signal x so that the system equation becomes

(Dδ + aδ) ∗ y = x + cy2.

Using (10.1) we can rewrite the equation in the following form

y = (Dδ + aδ)∗−1 ∗ (x + cy2)

which can be interpreted as describing a linear system with nonlinear feedback. The
problem can therefore be recast as the problem of finding the nonlinear transfer
functions of a systemW constituted by the forward subsystemGwith linear transfer
function

G1(s1) = 1

s1 + a

and a feedback subsystemH described by the second order nonlinear transfer func-
tion

H2(s1, s2) = −c

as shown in Fig. 10.5. Note that we have assumed negative feedback for consistency
with our general treatment. This last expression is obtained by specialising the general
expression cy2 to an input signal having only a one dimensional component y1

cy21 = cy⊗2
1 = cδ⊗2 ∗ y⊗2

1 .

The obtained expression clearly describes a system whose only impulse response
differing from zero is the second order one h2 = cδ⊗2 (see also Example 10.2).

In this formulation of the problem the solution is found by inserting the above
expressions for the transfer functions of the subsystems into Eqs. (10.7) and (10.8).
The obtained expressions obviously agree with the ones obtained in Example 9.5 by
calculation from the convolution equation.
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10.3 Linearisation

Many systems are designed based on the theory of linear systems and the deviation
from linear behavior in practical implementations is undesired. For this reason in
practical implementations one often tries to minimise the responses of order higher
than one. In this section we investigate the possibility of suppressing higher order
responses by preceding the system in question H with another system G or by
following it with a system K .

We call a systemK designed to suppress all nonlinear transfer functions ofK ◦ H
up to order k a post-lineariser of order k and a system K suppressing all responses
of K ◦ H of order higher than one a post-lineariser. Similarly, we call a system G
designed to suppress all nonlinear transfer functions of H ◦ G up to order k a pre-
lineariser of order k and a system G suppressing all responses of H ◦ G of order
higher than one a pre-lineariser or pre-distorter.

We first investigate post-linearisers. The first requirement is that the system K
should not change the linear response ofH . This is only the case if the linear impulse
response of K is a Dirac impulse

k1 = δ .

Next, we look for a condition to suppress the response of second order. Referring to
Table10.2 we see that the second order response of K ◦ H disappears if

(k ◦ h)2 = k1 ∗ h2 + k2 ∗ h⊗2
1 = 0 .

Therefore, if h1 has an inverse, we can make (k ◦ h)2 disappear by choosing

k2 = −h2 ∗ (h⊗2
1 )∗−1 . (10.9)

In the Laplace domain this is

K2(s1, s2) = − H2(s1, s2)

H1(s1)H1(s2)
. (10.10)

Next we look for a condition to suppress on top of (k ◦ h)2 also (k ◦ h)3. Referring
again to Table10.2 we find the following condition

(k ◦ h)3 = k1 ∗ h3 + 2 k2 ∗ [h1 ⊗ h2]sym + k3 ∗ h⊗3
1 = 0 .

As for the second order, this equation can be solved for k3 only if h1 has an inverse,
in which case, using the previously obtained values for k1 and k2, we find

k3 = (−h3 + 2h2 ∗ (h⊗2
1 )∗−1 ∗ [h1 ⊗ h2]sym

) ∗ (h⊗3
1 )∗−1 (10.11)

with Laplace transform
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K3(s1, s2, s3) =
−H3(s1, s2, s3) + 2

[
H2(s1,s2+s3)
H1(s2+s3)

H2(s2, s3)
]

sym

H1(s1)H1(s2)H1(s3)
. (10.12)

This procedure can be extended to find the transfer functions of K up to order
j such that they cancel the nonlinear responses of K ◦ H up to the j th order. The
condition for the existence of k j is always the same: the existence of the inverse
of h1. This is so because in each equation (k ◦ h) j = 0, k j appears convolved with
h⊗k
1 . If we let j tend to infinity we obtain a post-lineariser suppressing all nonlinear

responses of H .
The impulse responses of a pre-lineariser G can be obtained following a similar

procedure. To preserve the response ofH , its linear responsemust be aDirac impulse
as for a post-lineariser

g1 = δ.

The second order response ofH ◦ G disappears if

g2 = −h∗−1
1 ∗ h2 (10.13)

or, expressed in the Laplace domain, if

G2(s1, s2) = − H2(s1, s2)

H1(s1 + s2)
. (10.14)

The third order response ofH ◦ G disappears if

g3 = h∗−1
1 ∗ (−h3 + 2h2 ∗ [

δ ⊗ (h∗−1
1 ∗ h2)

]
sym

)
(10.15)

whose Laplace transform is

G3(s1, s2, s3) =
−H3(s1, s2, s3) + 2

[
H2(s1, s2 + s3)

H2(s2,s3)
H1(s2+s3)

]

sym

H1(s1 + s2 + s3)
(10.16)

and so on. Again, the prerequisite for the existence of these solutions is the existence
of the inverse of h1. Note also that in general the transfer functions of a pre-lineariser
are different from the ones of a post-lineariser.

In summary, we can state that a weakly nonlinear system can be linearised with a
pre- or a post-lineariser only if its linear transfer function has a stable inverse in the
convolution algebra of interest. In the convolution algebra of right sided distributions
this means the existence of a causal and stable inverse.

A generic linear systemmay not have an inverse. For example, if the linear impulse
response h1 is a right-sided, indefinitely differentiable function then h1 ∗ w is an
indefinitely differentiable function independently from the choice of w. This means
that h1 ∗ w = δ has no solution and hence h1 has no inverse.
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A class of systems of special interest to us is the class of causal systems whose
transfer functions are rational functions

H1(s) = N (s)

P(s)
.

For this class of systems H1(s) is stable and has a causal stable inverse if all poles
and zeros of H1(s) are in the left-half of the complex plane.

Example 10.5: Memory-less System Linearisation

In this example we consider a third order memory-less system H with impulse
responses

h1 = a1δ h2 = 0 h3 = −a3δ
⊗3 .

We would like to find a pre-lineariser G suppressing the responses of third order.
The linear impulse response of the system has an inverse

a1δ ∗ 1

a1
δ = δ.

Therefore it can be linearised using the results of this section. As h2 = 0, the second-
order impulse response of the pre-lineariser must also vanish

g2 = 0 .

The third order impulse response of the pre-lineariser is obtained by applying (10.15)
and we find

g3 = 1

a1
δ ∗ a3δ

⊗3 = a3
a1

δ⊗3 .

Note that while the pre-lineariser suppresses responses of third order, it does
introduce responses of higher order

h ◦ g = a1δ ∗ (δ + a3
a1

δ⊗3) − a3δ
⊗3 ∗ (δ + a3

a1
δ⊗3)3

= a1δ − 3
a23
a1

δ⊗5 − 3
a33
a21

δ⊗7 − a43
a31

δ⊗9 .

It’s easy to see that to suppress the nonlinear responses up to order k the pre-lineariser
must be of order k. To suppress them all a full pre-lineariser is needed.
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10.4 System Manipulations

In this section we highlight some properties of weakly nonlinear systems that allow
us tomanipulate weakly nonlinear system composed by sub-systems in such away as
to obtain different interconnections of the sub-systemswithout changing the behavior
of the overall system.

The first property that we discuss is the associativity of addition which comes
from the fact that D′⊕,sym is a vector space. Thus if f, g and h are three weakly
nonlinear systems driven by the same input signal x , the ways in which the outputs
are summed is irrelevant

( f [x] + g[x]) + h[x] = f [x] + (g[x] + h[x]) = f [x] + g[x] + h[x] .

The same is true for the product of the output signals

( f [x] · g[x]) · h[x] = f [x] · (g[x] · h[x]) = f [x] · g[x] · h[x] .

This is the case because the product that we defined onD′⊕,sym is defined in terms of
the tensor product and the latter is associative.

A second important property is commutativity. Addition is always commutative,
therefore the order in which the signal appears as input to adders is irrelevant

f [x] + g[x] = g[x] + f [x] .

While the tensor product is not commutative the symmetrised tensor product is and
with it the product inD′⊕,sym

f [x] · g[x] = g[x] · f [x] .

Thus the order in which the signals appearing as input to multipliers is irrelevant
as well. In fact, because it’s cumbersome to draw symmetrised block diagrams, we
will generally draw unsymmetrised block diagrams and, if not stated explicitly, imply
symmetrisation.

A further equivalence of block diagrams comes from the distributivity of the
product over addition

( f [x] + g[x]) · h[x] = f [x] · h[x] + g[x] · h[x] ,

f [x] · (g[x]) + h[x]) = f [x] · g[x] + f [x] · h[x] .

This property originates from the multi-linearity of the tensor product. A block
diagram representation of the first equality is shown in Fig. 10.6.

Another equivalence is given by the equation

(g ◦ f )[x] + (h ◦ f )[x] = (g + h) ◦ f [x] .
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To prove the validity of this equationwe prove its validity for terms of each order indi-
vidually. To simplify the expressions, let’s denote the sum of all lth tensor products
resulting in a distribution of order k by

f (l)
k :=

∑

|α|=l
|κα|=k

[
f ⊗α

]
sym

with α a multi-indexe in N
k and κ = (1, 2, . . . , k). With this notation the kth order

impulse responses of the summands on the left-hand side can be written as

(g ◦ f )k =
k∑

l=1

gl ∗ f (l)
k , (h ◦ f )k =

k∑

l=1

hl ∗ f (l)
k .

The two can be combined using the distributivity of convolution (3.13) to obtain

k∑

l=1

(gl + hl) ∗ f (l)
k

which is the kth order impulse response of the expression on the right-hand side.
The last useful property in manipulating block diagrams is the right distributivity

of composition
(g ◦ f )[x] · (h ◦ f )[x] = (g · h) ◦ f [x] .

We prove again this equality by proving its validity for terms of each order individ-
ually. The impulse response of order k on the left-hand side is

∑

i+ j=k

i∑

l=1

gl ∗ f (l)
i

j∑

m=1

hm ∗ f (m)
j .

Hence, dropping symmetrisation operators for simplicity of notation

Fig. 10.6 Distributivity of WNTI systems
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Fig. 10.7 Right distributivity of composition of WNTI systems. The empty circle represents either
a sum or a product

∑

i+ j=k

∑

l+m≤k

(gl ∗ f (l)
i ) ⊗ (hm ∗ f (m)

j ) =
∑

i+ j=k

∑

l+m≤k

(gl ⊗ hm) ∗ ( f (l)
i ⊗ f (m)

j )

=
k∑

s=1

∑

l+m=s

(gl ⊗ hm) ∗ f (s)
k

which corresponds to the kth order impulse response of the right-hand side of the
equation. A block diagram representation of the property is shown in Fig. 10.7.

10.5 Structure

A review of our development of the theory of weakly nonlinear systems up to this
point reveals that weakly nonlinear systems arise out of stable linear systems and
multipliers. In particular, multipliers are the only mean by which we can combine
linear systems to produce systems of higher order.1 In this section we investigate the
overall structure of systems constructed this way.

Let’s start by considering the most generic impulse response of second-order that
can be constructed out of a single multiplier and linear systems hA, hB and hC

h2(τ1, τ2) = [hC ∗ (hA ⊗ hB)]sym .

The block diagram of a system whose only impulse response is h2 is shown in
Fig. 10.8a. We call a system whose only impulse response is hi a monomial system
of i th order.

In Sect. 3.3 we showed that every distribution can be approximated to arbitrary
accuracy by a set of weighted Dirac impulses. We can thus approximate the linear
system hC by

hC(τ ) ≈
N∑

n=0

cnδ(τ − λn), cn ∈ C, λn ∈ [0,∞).

1 In our formalism multiplication is represented by the tensor product. It is only at the end, when
the output signal of interest is “evaluated on the diagoman” with the operator evd() that the tensor
product collapses to a multiplication.
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Fig. 10.8 a Block diagram of the most generic monomial system of second-order constructed with
a single multiplier and linear systems hA, hB and hC . b Approximation of the system in Fig. 10.8 a

where we assume the system to be causal. Using this approximation in h2 we obtain

h2(τ1, τ2) ≈
N∑

n=0

[
cnδ(τ1 − λn) ∗ (

hA(τ1) ⊗ hB(τ2)
)]

sym .

The shifting property of convolution (3.16) extends to convolutions between dis-
tributions of different dimensions in a similar way as the differentiation rule (10.6).
In particular for the one dimensional convolution f1 and the i th dimensional one gi
we have

f1(τ1 − λ) ∗ gi (τ1, . . . , τi ) = f1(τ1) ∗ gi (τ1 − λ, . . . , τi − λ).

Using this property the response of the system can be expressed as

y2(τ1, τ2) = h2(τ1, τ2) ∗ (
x(τ1) ⊗ x(τ2)

)

≈
N∑

n=0

cn [hA(τ1) ⊗ hB(τ2)]sym ∗ (
x(τ1 − λn) ⊗ x(τ2 − λn)

)
.

This shows that all delays required to approximate hC to any desired accuracy can
be moved to delays of the input signal as illustrated in Fig. 10.8b.

If we use a similar approximation for hA and hB we obtain
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Fig. 10.9 Conceptual structure of a WNTI system

y2(τ1, τ2)

≈
Nc∑

nc=0

Nb∑

na=0

Na∑

nb=0

cnc
[
anabnb

]
sym x(τ1 − λ(na + nc)) ⊗ x(τ2 − λ(nb + nc))

where we have assumed the use of equal and uniform delays for all sub-systems.
Monomial systems of higher order can be constructed in a similar way by com-

bining linear systems and more multipliers. If we approximate all linear sub-systems
as we did above for the second-order monomial system, it’s easy to see that all delays
can be moved to the input of the system. A system of order K is the sum of monomial
sub-systems of order up to K . Therefore,weakly nonlinear systems of finite order can
be represented as composed by two sections: An input tapped delay line sub-system
that represents the memory of the system and a memoryless sub-system composed
by adders and multipliers as illustrated in Fig. 10.9.

An estimate for the maximum delay necessary to faithfully represent a given
system of order K can be obtained from the sampling theorem (see Example 12.5):
If the maximum frequency component of the input signal is fmax, then the highest
frequency at the output of the system is K fmax and the delay must be bounded by

λ <
1

2 K fmax
.

The number of taps depends on the amount of memory of the linear sub-systems to
be approximated.

The system structure represented in Fig. 10.9 is not the most economical one.
A comparison between Fig. 10.8a and b reveals that if one moves all the system
memory to the input of the system then one needs a larger number of multipliers
than by distributing the memory across sub-systems. This is entirely analogous to
the trade-off in the implementation of discrete time filters as finite-impulse response
(FIR) versus infinite-impulse response (IIR) filters.
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Chapter 11
Weakly Nonlinear Time Invariant
Circuits

The aim of this chapter is to show the utility of the theory that we developed. This is
done by applying it to the analysis of nonlinear effects, that is of deviation from linear
behaviour, in analog circuits. The vast majority of analog circuits are limited by noise
on the bottom end of their dynamic range and by nonlinear effects on the upper end.
While the analysis of noise is well understood by practising engineers, the analysis
of nonlinear effects is much less so, and their minimisation poses great practical
challenges. The applications presented in this chapter are therefore of practical utility.

The components serving as the building blocks of analog circuits can be repre-
sented by linear elements and controlled sources representing nonlinear behaviour.
The total response of the circuit can be calculated from a hierarchy of electrical net-
works with the familiar small-signal linear network forming its core. The hierarchy
of networks is constituted by the linear core driven by sources of increasing order.
This can be seen as a specialisation to electrical networks of the signal-flow graph
method that we saw in Sect. 10.2.

Analog electrical circuits are operated around a stable equilibrium point called
the (quiescent) operating point of the circuit. The dynamic variables of interest in the
theory of weakly nonlinear systems are the ones describing the deviation from the
operating point (see Sect. 9.1). We call such variables small-signal (or incremental)
variables. In the following, to distinguish the incremental part of a quantity from the
total quantity, we will adopt the notational conventions summarised in Table11.1.

In Sects. 11.2 and 11.3 of this chapter we develop equivalent circuits for electronic
components allowing us to model arbitrary weakly nonlinear analog circuits. In the
remaining sections we study concrete circuits used in many types of systems and
in particular in communication systems. Before that, in the following section we
review a few standard metrics used to characterise the nonlinear behaviour of weakly
nonlinear analog circuits.
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Table 11.1 Definition of symbols used for various quantities

Definition Quantity Subscript Example

Total quantity Lower-case Upper-case vC

Operating point Upper-case Upper-case VC
Small-signal quantity Lower-case Lower-case vc

kth component of the
small-signal quantity

Lower-case Lower-case and index k vc.k

Laplace transform of the kth
component of the
small-signal quantity

Upper-case Lower-case and idex k Vc,k

11.1 Metrics for Nonlinear Effects

It’s common to distinguish between two classes of nonlinear effects. The first is
characterised with input signals of large magnitude, the compression characteristics
being the archetypal example. The second is characterised using small signals with
intermodulation as the archetypal example. In the following we analyse these and
related effects.

11.1.1 Gain Compression and Expansion

Gain compression and gain expansion refer to the change in the gain experienced
by a signal passing through a weakly nonlinear system as the amplitude of the input
signal changes. At sufficiently large input signal levels all electronic circuits exhibit
saturation. However, at the onset of deviation of gain from the small signal value, we
may observe a gradual gain reduction, referred to as gain compression; or some gain
increase, referred to as gain expansion (see Fig. 11.1). Which of these effects occurs
and at which signal level depends on the nonlinear characteristics of the system.

Fig. 11.1 Output signal
magnitude versus input
signal one of a typical
weakly nonlinear system
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Consider a weakly nonlinear system H driven by a sinusoidal signal

x(t) = |Ai | cos(ω1t + ϕ1) = �{Aie
jω1t

}
.

As discussed in Sect. 9.8.2 its output is composed by tones at ω1 and at integer
multiples of it, the harmonics. Let’s denote by yω1 the sum of all the terms at ω1

yω1(t) := |Ao| cos(ω1t + ψ1) = �{Aoe
jω1t

}

= yc1,(0,1)(t) + yc3,(1,2)(t) + yc5,(2,3)(t) + · · ·
= �

{[
ĥ1,(0,1) + 3

4
|Ai |2 ĥ3,(1,2) + 5

8
|Ai |4 ĥ5,(2,3) + · · ·

]
Aie

jω1t

}
.

From this expression we see that yω1 is proportional to the input signal. Therefore,
in a similar way as we do with LTI systems, we can consider the ratio of the output
signal phasor to the one of the input signal and obtain a sort of frequency response.
However, differently from the frequency response of linear systems, the obtained
ratio is a function of the input signal amplitude and is called the describing function

K (|Ai | , ω1) := Ao

Ai
= ĥ1,(0,1) + 3

4
|Ai |2 ĥ3,(1,2) + 5

8
|Ai |4 ĥ5,(2,3) + · · · . (11.1)

Its magnitude is called the gain of the system

G(|Ai | , ω1) := |K (|Ai | , ω1)| = |Ao|
|Ai | .

At sufficiently small input signal levels, at the onset of nonlinear behaviour, the
third order nonlinearity usually dominates and the describing function can be approx-
imated by

K (|Ai | , ω1) ≈ ĥ1,(0,1) ·
(
1 + 3

4
|Ai |2 ĥ3,(1,2)

ĥ1,(0,1)

)
. (11.2)

Note thatwehave factored the linear frequency response to obtain an explicit factor
representing the deviation of the system’s behaviour from the one of a perfectly linear
system. This factor can be visualised in the complex plane as the sum of the vector

� = �r + j�i := 3

4
|Ai |2 ĥ3,(1,2)

ĥ1,(0,1)
; �r , �i ∈ R

and the unit vector 1 (see Fig. 11.2). If the angle of� is around 0° then the two vectors
point approximately in the same direction. Therefore, as the amplitude of the input
signal grows, the magnitude of the output signal grows faster than linearly and the
system exhibits gain expansion. If the angle of� is around 180◦ then the two vectors
point approximately in opposite directions and the system exhibits gain compression.
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Fig. 11.2 Visualisation of
K (|Ai | , ω1)/ĥ1,(0,1) as the
sum in the complex plane of
� and the unit vector

If the angle is around±90° then the vectors are approximately perpendicular and the
gain of the system is less sensitive to variations of the input signal (terms of order
higher than third will become important). However, in this case it is the angle of the
output signal that is sensitive to changes in the input signal magnitude. Such a system
is said to exhibit amplitude-modulation (AM) tophase-modulation (PM) conversion.

Let’s have a closer look at the gain of the system. The ratio of the system gain
to the one of the system if it would be perfectly linear is called the gain compres-
sion/expansion ratio and denoted by GCER

GCER := G(|Ai | , ω1)∣∣∣ĥ1,(0,1)
∣∣∣

. (11.3)

Using (11.2), at the onset of deviation from linear behaviour, it is given by

GCER ≈
√

(1 + �r )2 + �2
i

= (1 + �r )

√

1 + �2
i

(1 + �r )2
.

If we expand the square root in a Taylor series

GCER ≈ (1 + �r )(1 + 1

2

�2
i

(1 + �r )2
+ · · · )

we see that, to first order, the GCER can be estimated by

GCER ≈ 1 + 3

4
�
{ ĥ3,(1,2)
ĥ1,(0,1)

}
|Ai |2 . (11.4)

Given our small signal assumption, this expression should only be used to estimate
gain compression or expansion up to ca. 1dB.

A standard linearity metric used to test analog circuits is the 1 dB compression
point which is the signal magnitude causing the system gain to decrease by 1dB.
Equation (11.4) allows estimating the magnitude of the input signal producing a
given gain compression or expansion
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|Ai | ≈
√√√√

4

3

∣∣∣∣
(GCER − 1)

�
{
ĥ3,(1,2)
ĥ1,(0,1)

}
∣∣∣∣ . (11.5)

If�{ĥ3,(1,2)/ĥ1,(0,1)} is negative the 1dB compression point can thus be estimated by

A1dB := 0.381
√∣∣∣�

{
ĥ3,(1,2)
ĥ1,(0,1)

}∣∣∣

. (11.6)

For small input signals the phase change can also be calculated from the ratio
K (|Ao| , ω1)/ĥ1,(0,1)

�ψ1 = arctan
�i

1 + �r
≈ �i

1 + �r
≈ �i .

From this we can estimate the input signal magnitude producing a phase change of
�ψ1 radiants by

|Ai | ≈
√√√√

4

3

∣∣∣∣
�ψ1

�
{
ĥ3,(1,2)
ĥ1,(0,1)

}
∣∣∣∣ . (11.7)

11.1.2 Intermodulation

In Example 9.8 we analyzed the response of a weakly nonlinear system to a two tones
input signal and found that it is composed by several tones at various frequencies.
In the context of communication systems and analog circuit design all signal tones
at a frequency that is not a multiple of one of the input frequencies are referred to
asintermodulation products. An intermodulation product is said to be of order k and
denoted by IMk if k is the lowest order nonlinearity able to produce it (see Fig. 9.8).
For example, given input tones ω1 and ω2, the tones at 2ω1 − ω2 and 2ω2 − ω1 are
intermodulation products of third order (IM3); the ones at 3ω1 − 2ω2 and 3ω2 − 2ω1

of fifth order (IM5).
As an example showing the importance of controlling and limiting the strength of

intermodulation products, consider a communication receiver designed for a specific
service.Most communication services divide the allocated frequency band in equally
spaced channels. Suppose that we are interested in receiving a signal transmitted by
a distant transmitter on channel j . Suppose further that the receiver also receives
relatively strong interfering signals on channels j + m and j + 2m destined to other
users. If the receiver is not sufficiently linear then the two interfering signals will
produce intermodulation products degrading and possibly completely masking the
wanted signal. While the modulation of the involved signals plays a role, due to its
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Fig. 11.3 Interfering signals
causing the IM3 product to
mask the wanted signal

simplicity, communication receivers are also invariably benchmarked and testedwith
tones as shown in Fig. 11.3.

Consider the two tones input signal

x(t) = |A1| cos(ω1 + ϕ1) + |A2| cos(ω2 + ϕ2) = �{A1e
jω1 + A2e

jω2}

wherewe assumeω2 > ω1 > 0.The intermodulation product of order k characterised
by the frequency mix m is

yck,m(t) = 1

2k−1

k!
m!�{Am1

1 A1
m−1 Am2

2 A2
m−2 ĥk,me

ωmt } .

At relatively low input signal levels the strongest intermodulation products are
the second and the third order ones with amplitudes

AIM2L := ∣∣yc2,(0,1,0,1)(t)
∣∣ = |A1| |A2|

∣∣∣ĥ2,(0,1,0,1)
∣∣∣

AIM2H := ∣∣yc2,(0,0,1,1)(t)
∣∣ = |A1| |A2|

∣∣∣ĥ2,(0,0,1,1)
∣∣∣

AIM3L := ∣∣yc3,(0,2,0,1)(t)
∣∣ = 3

4
|A1|2 |A2|

∣∣∣ĥ3,(0,2,0,1)
∣∣∣

AIM3H := ∣∣yc3,(0,1,0,2)(t)
∣∣ = 3

4
|A1| |A2|2

∣∣∣ĥ3,(0,1,0,2)
∣∣∣ .

These expressions show that the IM2 products are proportional to the amplitudes
of each of the two input tones while the IM3 products are proportional to the square
of the magnitude of the closest tone and proportional to the magnitude of the more
distant one (see Fig. 11.3).

The standard intermodulation test is performed with two tones of equal amplitude

|A1| = |A2| = A .
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Fig. 11.4 Second and third
order intermodulation
intercept points

In this case the magnitude of the IM product of order k is proportional to Ak (remem-
ber that |m| = k)

1

2k−1

k!
m! A

k
∣∣∣ĥk,m

∣∣∣ .

Thus knowing the IMk product level at one value of A is enough to compute its
value at a different value of A. This is of course only true at sufficiently small input
signals, when the contributions to the IMk product of nonlinearities of order higher
than k can be neglected. Instead of specifying the IMk at a specific value of A it
is common practice to specify the intermodulation intercept point of order k (IPk).
This is the level, extrapolated from sufficiently small values of A, at which the IMk
reaches the same magnitude as the (linear) output of the system at ωm when driven
by a single tone of magnitude A and frequency ωm (see Fig. 11.4). The kth order
intercept point is thus defined by the equation

1

2k−1

k!
m! A

k
∣∣∣ĥk,m

∣∣∣ = A
∣∣∣ĥ1(ωm)

∣∣∣ .

Solving for the amplitude we find

AIIPk := k−1

√
2k−1m!

k!
∣∣∣∣
ĥ1(ωm)

ĥk,m

∣∣∣∣ . (11.8)

This quantity is also called the input referred IPk and denoted by IIPk. Sometimes it
is more convenient to refer this quantity to the output of the circuit in which case it is
called the output referred IPk and denoted by OIPk. Its value is found by multiplying
the IIPk by the linear gain at ωm
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AOIPk :=
∣∣∣ĥ1(ωm)

∣∣∣ AIIPk . (11.9)

The second and third order intercept points are the most important ones and can
be estimated by

AIIP2 =
∣∣∣∣
ĥ1(ωm)

ĥ2,m

∣∣∣∣ (11.10)

AIIP3 =
√
4

3

∣∣∣∣
ĥ1(ωm)

ĥ3,m

∣∣∣∣ . (11.11)

Expressed in decibels the IPk assumes a particularly simple form. To that end,
let’s first rewrite the output referred IP k as

AOIPk =
∣∣∣ĥ1(ωm)

∣∣∣ k−1

√
2k−1m!

k!
∣∣∣∣
Ak

Ak

ĥ1(ωm)

ĥk,m

∣∣∣∣

= A
∣∣∣ĥ1(ωm)

∣∣∣ k−1

√√√√√
A
∣∣∣ĥ1(ωm)

∣∣∣

Ak k!
2k−1m!

∣∣∣ĥk,m
∣∣∣
.

Then note that (
A
∣∣∣ĥ1(ωm)

∣∣∣
)2

is the output power of the fundamental tone normalised to a load of 1/2�. Similarly,

(
Ak k!

2k−1m!
∣∣∣ĥk,m

∣∣∣
)2

is the one of the IMk product. Thus, if for a fixed and sufficiently small value of A
we denote by Po the output power of the fundamental expressed in dB relative to
some reference power and by PIMk the one of the IMk product relative to the same
reference level, then we can express the OIPk by

OIPk = Po + Po − PIMk

k − 1
. (11.12)

Similarly, by denoting the normalised power of an input tone by Pt , the IIPk can
be expressed by

IIPk = Pt + Po − PIMk

k − 1
. (11.13)

These relationships are easily checked geometrically for the IP2 and IP3 in Fig. 11.4.
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In memory-less weakly nonlinear systems for which, for every k, ĥk,m is a real
number ck independent of m, the IP3 and the input signal level producing a gain
compression/expansion of GCER are both proportional to (see (11.5))

√∣∣∣
c1
c3

∣∣∣ .

Therefore, in this type of systems, these two quantities are proportional to each other

20 log

(
A1dB

AIIP3

)
= 20 log

√|GCER − 1| .

For a memory-less system exhibiting gain compression, the difference between the
IP3 and the 1dB compression point is

20 log

(
A1dB

AIIP3

)
= 20 log

√
1 − 10−1/20 ≈ −9.6 dB .

11.1.3 Desensitisation

The response of an LTI system to a signal is unaffected by the presence of a second
signal. As long as we have a way of distinguishing the two signals, for example by
separating them in frequency, we can ignore the presence of the second one. This is
not the case in nonlinear systems where the response to one signal is affected by the
presence of other ones. The effect is again most easily illustrated using a two tones
input signal.

Let H be a weakly nonlinear system driven by the two tones input signal

x(t) = |A1| cos(ω1 + ϕ1) + |A2| cos(ω2 + ϕ2) = �{A1e
jω1 + A2e

jω2} .

The first tone represents the signal of interest, while the second one is an undesired
signal that is referred to as a blocking signal or a jammer. As discussed, the response
of the system is composed by several tones at various frequencies, among which
several at ω1. As in Sect. 11.1.1, we denote by yω1 the sum of all terms at ω1

yω1(t) := |Ao| cos(ω1t + ψ1) = �{Aoe
jω1t

}

= yc1,(0,0,1,0)(t) + yc3,(0,1,2,0)(t) + yc3,(1,0,1,1)(t) + · · ·
= �

{[
ĥ1,(0,0,1,0) + 3

4
|A1|2 ĥ3,(0,1,2,0) + 3

2
|A2|2 ĥ3,(1,0,1,1) + · · ·

]
A1e

jω1t

}
.

and find again an expression that is proportional to the phasor of the first input tone.
At relatively small input signal levels the contributions of order higher than third
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can usually be neglected. In addition, we assume that the magnitude of the blocking
signal is much larger than the one of the desired signal

|A1| � |A2| .

Under these assumptions yω1 can be simplified to

yω1(t) ≈ �
{[

ĥ1,(0,0,1,0) + 3

2
|A2|2 ĥ3,(1,0,1,1)

]
A1e

jω1t

}
.

Following a procedure similar to the one that we used to analyse gain compression
and expansion, we build the ratio of the output phasor to the one of the first tone

XM(|A2| , ω1) := Ao

A1
= ĥ1,(0,0,1,0) ·

(
1 + 3

2
|A2|2 ĥ3,(1,0,1,1)

ĥ1,(0,0,1,0)

)

to obtain a sort of frequency response. Similarly to the approximation of the describ-
ing function (11.2), it is the product of the linear frequency response of the system
and a factor that characterises the deviation from linear behaviour. Differently from
the describing function, however, this second factor depends on the amplitude of the
second tone, the blocking signal.

The ratio XM(|A2| , ω1)/ĥ1,(0,0,1.0) can again be visualised in the complex plane
as the sum of the unit vector and the vector

3

2
|A2|2 ĥ3,(1,0,1,1)

ĥ1,(0,0,1,0)
.

If the angle of the latter is close to 180° then the second tone will induce a reduction
in the gain experienced by the first one. If the angle is close to 0° it will induce a
gain expansion and, if the angle is close to ±90° it will induce mostly a change in
the phase of the first tone. The change in gain can be characterised by the magnitude
of the above ratio, the desensitisation ratio

DR :=
∣∣∣∣
XM(|A2| , ω1)

ĥ1,(0,0,1.0)

∣∣∣∣ =
∣∣∣1 + 3

2
|A2|2 ĥ3,(1,0,1,1)

ĥ1,(0,0,1,0)

∣∣∣ (11.14)

and to second order in |A2| can be estimated by

DR ≈ 1 + 3

2
|A2|2 �

{ ĥ3,(1,0,1,1)
ĥ1,(0,0,1,0)

}
. (11.15)

From this expression we can estimate the magnitude of the blocker causing a certain
wanted signal gain change
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|A2| ≈
√√√√

2

3

∣∣∣∣
(DR − 1)

�
{
ĥ3,(1,0,1,1)
ĥ1,(0,0,1,0)

}
∣∣∣∣ . (11.16)

If �{ĥ3,(1,0,1,1)/ĥ1,(0,0,1,0)} is negative, a desensitisation of 1dB is produced by a
blocker at the 1dB blocking level

AB1dB := 0.269
√∣∣∣�

{
ĥ3,(1,0,1,1)
ĥ1,(0,0,1,0)

}∣∣∣

. (11.17)

The change in phase of the first tone caused by the presence of the blocker can
also be estimated from XM(|A2| , ω1)/ĥ1,(0,0,1.0). To first order a phase change of
�ψ1 radiants is produced by a blocker of magnitude

|A2| ≈
√√√√

2

3

∣∣∣∣
�ψ1

�
{
ĥ3,(1,0,1,1)
ĥ1,(0,0,1,0)

}
∣∣∣∣ . (11.18)

Note that if the blocker is modulated, then the modulation will be transferred
from it to the wanted signal. For example, if the blocker is amplitude modulated
(AM) and the angle of ĥ3,(1,0,1,1)/ĥ1,(0,0,1,0) is close to either 180°or 0° then the gain
experienced by the wanted signal is modulated and, as a result, its output amplitude
will also be modulated. If the angle of ĥ3,(1,0,1,1)/ĥ1,(0,0,1,0) is close to ±90° then an
amplitude modulation of the blocker will produce a phase modulation of the wanted
signal. This effect of transferring themodulation of one signal to another one is called
cross-modulation.

11.2 Nonlinear Two-Terminal Elements

In this section we investigate two-terminal electrical components that can be char-
acterised by two quantities xE and yE , related by an equation of the form

f (xE , yE ) = 0

with f a function called the element x-y characteristic (see Fig. 11.5). If the equation
can be expressed as a function of xE , yE = f̃ (xE ) then the element is called anx-
controlled device. Similarly, if it can be expressed as a function of yE , xE = f̃ (yE )

then it is called a y-controlled device.
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Fig. 11.5 Characteristic of
an x-controlled two-terminal
element

The devices that interest us are the ones that, in a region of interest around a
quiescent operating point (XE ,YE ), are either x- or y-controlled and whose function
f̃ can be approximated to any desired accuracy by a power series

ye =
∞∑

k=1

f̃k x
k
e (x-controlled)

or

xe =
∞∑

k=1

f̃k y
k
e (y-controlled)

with
ye = yE − YE , xe = xE − XE .

11.2.1 Nonlinear Resistors

A nonlinear resistor is a device characterised by the current iR flowing through it,
the voltage vR across its terminals and by an i-v characteristic fR(iR, vR) = 0. In
the following we are going to represent a nonlinear resistor by the symbol shown in
Fig. 11.6. A current controlled resistor can be characterised by a function

vR = r(iR)

which, by assumption, around the operating point (IR, VR), can be approximated by
a power series

v =
∞∑

k=1

rki
k , v = vr = vR − VR , i = ir = iR − IR .
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Fig. 11.6 Symbols used to
represent nonlinear
two-terminal devices. a
resistor. b capacitor. c
inductor

If we consider the current i and the voltage v as signals, or, more precisely, elements
of D′⊕,sym, then a nonlinear resistor can be regarded as a weakly nonlinear system
and the components of v can be expressed in terms of the ones of i using (10.1) and
Table 10.1

v1 = r1i1

v2 = r1i2 + r2i
⊗2
1

v3 = r1i3 + 2r2 [i1 ⊗ i2]sym + r3i
⊗3
1

· · ·

(11.19)

From this representation we observe that each voltage component vk is determined
(i) by a term proportional to the kth current component ik and (ii) by other terms
proportional to current components of order lower than k. In an electric network, the
former can be represented by a linear resistor of value r1, the latter by a voltage source
ṽR,k whose value is determined by the current components in, n = 1, . . . , k − 1 (see
Fig. 11.7a)

vk = r1ik + ṽR,k(i1, . . . , ik−1) .

The various current and voltage components can therefore be calculated using
a hierarchy of linear networks. First, we find the linear current i1 using linearised
components and the sources representing the system input. Once i1 is found, ṽR,2

can be determined. With it we can draw the second order network. It is obtained
from the linearised network by removing the system input sources (since they are of
first order), by adding the second order source ṽR,2 and, if the case, the ones of other
nonlinear components. With this network we compute i2. Having found the first two
components of i , the third order source ṽR,3 can be calculated. We then proceed to
draw the third order network which is again composed by the linearised network
with the addition of independent sources of third order only. With it, we find i3 and
so on.

If the nonlinear resistor is voltage controlled, then its characteristic around the
operating point can be described by a power series where the role of the independent
variable is played by the voltage v

i =
∞∑

k=1

gkv
k .
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Fig. 11.7 a Weakly nonlinear resistor current-controlled equivalent model b Weakly nonlinear
resistor voltage-controlled equivalent model

Proceeding as for the case of a current controlled nonlinear resistor, but with the
roles of the signals i and v exchanged, we can express the first few components of
the current i in terms of the ones of the voltage

i1 = g1v1

i2 = g1v2 + g2v
⊗2
1

i3 = g1v3 + 2g2 [v1 ⊗ v2]sym + g3v
⊗3
1

· · ·

(11.20)

As before, each current component ik is the sum of a term linear in vk and other terms
only depending on components of v of order lower than k

ik = g1vk + ĩ R,k(v1, . . . , vk−1) .

From this representation we deduce the equivalent circuit shown in Fig. 11.7b.
If a nonlinear resistor is voltage as well as current controlled, then we can choose

the most convenient representation for the problem at hand. If one representation is
known, then the other one can be obtained by power series inversion. For example, if
we know the voltage-controlled representation, the current-controlled one is obtained
by inserting the expression for the components given by (11.20) into (11.19) and by
choosing the coefficients rk so that the equations are satisfied. Specifically, r1 is found
by solving

i1 = g1v1 = g1r1i1

which gives

r1 = 1

g1
.

r2 is obtained by solving

i2 = g1v2 + g2v
⊗2
1 = g1(r1i2 + r2i

⊗2
1 ) + g2r

2
1 i

⊗2
1 .
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Using the previously obtained value for r1, the equation is satisfied if

g1r2 + g2r
2
1 = 0

or
r2 = − g2

g31
.

r3 is found in a similar way to be

r3 = 2g22 − g1g3
g51

.

Higher order coefficients are easily calculated using the same procedure.

11.2.2 Nonlinear Capacitors

A nonlinear capacitor is a two-terminal device whose voltage vC across the terminals
and the charge qC stored in it are related by a q-v characteristic fC(qC , vC) = 0. In
the following, we are going to represent a nonlinear capacitor by the symbol shown in
Fig. 11.6. A voltage controlled capacitor is a capacitor whose charge is a function of
the voltage qC = f̃C(vC). Since the electric current is the time derivative of electric
charge, if the voltage vC is a differentiable function of time, the capacitor current is
related to the voltage across its terminals by

iC = d f̃C (vC)

dvC

dvC
dt

.

The slope of the q-v characteristic is called the small signal (or incremental) capac-
itance of the nonlinear capacitor

C(vC) := d f̃C(vC)

dvC
.

As before, we assume it to be expandable in a power series around the operating
point (QC , VC)

c(v) := C(v + VC) =
∞∑

k=0

ck+1v
k , v = vC − VC .

Using this expression in the equation for the current, we can express the latter as the
following power series
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iC =
∞∑

k=0

ck+1v
k dv

dt
=

∞∑

k=1

ck
k

d

dt
vk .

This last expression can be extended to currents and voltages represented by elements
ofD′⊕,sym, so that we take it as defining the relationship between current and voltage
of a voltage-controlled weakly-nonlinear capacitor

i = iC =
∞∑

k=1

ck
k
Dvk . (11.21)

The first few components of the current expressed in terms of the components of the
voltage are given by

i1 = c1Dv1

i2 = c1Dv2 + c2
2
Dv⊗2

1

i3 = c1Dv3 + c2D [v1 ⊗ v2]sym + c3
3
Dv⊗3

1

· · ·

(11.22)

Each current component ik is the sum of a term linear in Dvk and others that only
depend on the voltage components of order lower than k. In an electric network the
kth component of the current can therefore be represented by a linear capacitor of
value c1 and a current source (see Fig. 11.8b)

ik = c1Dvk + ĩC,k(v1, . . . , vk−1) .

The various components are calculated with the same hierarchy of networks that we
described for nonlinear resistors.

An initial charge q0 on the capacitor can be represented as usual by a current pulse
q0δ applied across the capacitor in the linear convolution equation.

Note that the linearised current-voltage characteristic of a capacitor is not by
itself an asymptotically stable differential equation. The nonlinear transfer function
formalism is therefore only applicable when the nonlinear capacitor is embedded in
a network whose linear approximation is asymptotically stable.

A charge controlled nonlinear capacitor is a capacitor whose voltage is a func-
tion of the charge vC = ς(qC). Expanding this function around the operating point
(QC , VC ) we obtain

v =
∞∑

k=1

ςkq
k , v = vC − VC , q = qC − QC .
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The electric charge is the integral of the current. In the convolution algebra of right
sided distributions this can be expressed by the convolution product between current
and the Heaviside step function

q(t) =
∫ t

0
i(τ ) dτ = 1+(t) ∗ i(t) .

Substituting this equation in the preceding series we obtain a relation between current
and voltage

v =
∞∑

k=1

ςk(1+ ∗ i)k .

The first few voltage components expressed as a function of the current components
are given by

v1 = ς11+ ∗ i1

v2 = ς11+ ∗ i2 + ς2(1+ ∗ i1)
⊗2

v3 = ς11+ ∗ i3 + ς22
[
(1+ ∗ i1) ⊗ (1+ ∗ i2)

]
sym + ς3(1+ ∗ i1)

⊗3

· · ·

As for the previous cases we see that each voltage component vk is composed by a
term linear in the current ik and other ones that only depend on current components
of order lower than k

vk = ς11+ ∗ ik + ṽC,k(i1, . . . , ik−1) .

This expression can be represented in an electric network by the equivalent circuit
shown in Fig. 11.8a.

If a capacitor is voltage controlled as well as charge controlled, then one can
use either representation and one can be converted in the other one. The following

Fig. 11.8 a Weakly nonlinear capacitor current-controlled equivalent model b Weakly nonlinear
capacitor charge-controlled equivalent model
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equations give the first three coefficients of the charge controlled representation
expressed in terms of the ones of the voltage controlled ones

ς1 = 1

c1

ς2 = − c2
2c31

ς3 = c22
2c51

− c3
3c41

.

They were obtained by the same inversion procedure that we used to relate the two
representations of nonlinear resistors.

11.2.3 Nonlinear Inductors

A nonlinear inductor is a two-terminal device whose current iL and magnetic flux
φL are related by the φ-i characteristic fL(φL , iL) = 0. In the following we are
going to represent a nonlinear inductor by the symbol shown in Fig. 11.6. A current
controlled inductor is an inductor whose flux is a function of the currentφL = f̃L(iL).
The voltage across the terminals of an inductor is the time derivative of the flux. Thus,
if the current is a differentiable function of time, the voltage is

vL = d f̃L(iL)

diL

diL
dt

.

The slope of the φ-i characteristic is called the small signal (or incremental) Induc-
tance of the inductor

L(iL) := d f̃L(iL)

diL
(11.23)

that we assume, around the quiescent operating point (L , IL), to be expandable in
a power series

l(i) := L(i + IL) =
∞∑

k=0

lk+1i
k , i = iL − IL .

It is apparent that inductors and capacitors are “dual” of each other, with the roles
of current and voltage exchanged. We can therefore adapt previous results and define
the voltage and current relationship of a current controlled weakly nonlinear inductor
by

v = vC =
∞∑

k=1

lk
k
Dik . (11.24)
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Fig. 11.9 a Weakly nonlinear inductor current-controlled equivalent model b Weakly nonlinear
inductor flux-controlled equivalent model

The first few components of the voltage expressed in terms of the components of
the current are given by

v1 = l1Di1

v2 = l1Di2 + l2
2
Di⊗2

1

v3 = l1Di3 + l2D [i1 ⊗ i2]sym + l3
3
Di⊗3

1

· · ·

(11.25)

The component k has the form

vk = l1Dvk + ṽL ,k(i1, . . . , ik−1)

from which we read the equivalent circuit shown in Fig. 11.9a.
Similarly, the flux controlled representation of a weakly nonlinear inductor is

i =
∞∑

k=1

�k(1+ ∗ v)k ,

with the first few voltage components expressed as a function of the current compo-
nents given by

i1 = �11+ ∗ v1

i2 = �11+ ∗ v2 + �2(1+ ∗ v1)
⊗2

i3 = �11+ ∗ v3 + �22
[
(1+ ∗ v1) ⊗ (1+ ∗ v2)

]
sym + �3(1+ ∗ v1)

⊗3

· · ·
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Fig. 11.10 Current source representation in the Laplace domain of nonlinearities of weakly non-
linear elements
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Fig. 11.11 Voltage source representation in the Laplace domain of nonlinearities of weakly non-
linear elements

The component k has the form

ik = �11+ ∗ vk + ĩL ,k(v1, . . . , vk−1) .

which leads to the equivalent circuit shown in Fig. 11.9b.
As for nonlinear capacitors, the nonlinear impulse responses formalism can only

be applied to circuits including nonlinear inductors when they are part of networks
whose linear approximation is asymptotically stable.
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11.3 Nonlinear Multi-port Elements

Weakly nonlinear multi-port and multi-terminal elements can be represented by two-
terminal elements and controlled sources. Therefore, in this section we introduce
weakly nonlinear controlled sources. With them, we will have at disposal all the
necessary circuit elements necessary to model arbitrary weakly nonlinear electronic
components.

A controlled source is a two terminal element whose voltage vCS or current iCS

is controlled by a control voltage vX or current iX , a quantity in another part of the
electric network of which it is part. There are four types of controlled sources:

• the voltage-controlled voltage source (VCVS), characterised by the equation
vCS = μ(vX );

• the voltage-controlled current source (VCCS), characterised by the equation iCS =
gm(vX );

• the current-controlled voltage source (CCVS), characterised by the equation vCS =
rm(iX ), and

• the current-controlled current source (CCCS), characterised by the equation iCS =
α(iX ).

As before, we assume that, around a quiescent operating point, the characterising
function can be approximated to any desired accuracy by a power series. The incre-
mental quantities can then be represented by elements of D′⊕,sym. For example, we
assume that a VCCS can be represented by

i =
∞∑

k=1

gmkv
k , i = iCS − ICS , v = vX − VX .

The first three components of the current expressed in terms of the components
of the voltage can be derived in the same way as we did for a voltage-controlled
weakly-nonlinear resistor and are

i1 = gm1v1

i2 = gm1v2 + gm2v
⊗2
1

i3 = gm1v3 + 2gm2 [v1 ⊗ v2]sym + gm3v
⊗3
1

· · ·

(11.26)

Note that each current component ik is the sum of a term linear in the kth component
of the incremental control voltage vk and other terms that only depend on components
of the voltage v of order lower than k

ik = gmkvk + ĩCS,k(v1, . . . , vk−1) .
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Fig. 11.12 Equivalent
circuit of a weakly-nonlinear
VCCS

In an electric network aVCCScan thus be represented by a linearVCCSand indepen-
dent current sources only depending on control voltage components of order lower
than k. As for the two terminal weakly-nonlinear elements considered in Sect. 11.2,
the linear term of a VCCS plays a special role. For this reason the quantity gm1

has been given a name: it is called the transconductance of the source. A two-port
representation of a VCCS is shown in Fig. 11.12.

The situation is entirely analogous for the other types of controlled sources. The
coefficient of the linear term of a CCVS rm1 is called the transresistance, the one of
a CCCS α1 is called the current transfer ratio and the one of a VCVS μ1 the voltage
transfer ratio.

11.4 Low-Pass Filter with Nonlinear Capacitor

In this section we investigate the low-pass filter (LPF) shown in Fig. 11.13a. When
implemented in an integrated circuit technology, a considerable fraction of the circuit
area is often occupied by the capacitor. Given that the price of integrated circuits is
determined to a large extent by occupied area, to reduce the cost of the circuit,
it is desirable to use a capacitor type with a high capacitance per unit area. The
highest capacitance per unit area available in CMOS technologies is offered byMOS
capacitors which however have a rather nonlinear characteristic. For this reason we
investigate the effects introduced in the circuit by the use of a nonlinear capacitor. In
particular, we are interested in the upper linearity limit set by the nonlinear capacitor
and therefore assume the operational amplifier (OpAmp) to be ideal.

11.4.1 Nonlinear Transfer Functions

Under the assumptionof an idealOpAmp, the circuit of Fig. 11.13a canbe represented
by the small-signal equivalent circuit shown in Fig. 11.13b. Since MOS capacitors
are voltage controlled, we represent the nonlinear capacitor as a voltage controlled
device. Then, using Kirchhoff’s current law (KCL) the system equation is
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Fig. 11.13 a Active RC low-pass filter circuit b Active RC low-pass filter with ideal OpAmp
model

vo

R
+ c1Dvo = −is −

∞∑

k=2

ck
k
Dvk

o . (11.27)

To highlight that the nonlinear part of the capacitor characteristic act as a source,
we have moved that part of the characteristic to the right-hand side of the equation
together with the source is and collected all linear terms on the left-hand side.

We solve the equation in the Laplace domain using the equivalent circuits that we
developed in Sects. 11.2 and 11.3. The first order output voltage component Vo.1 is
obtained by replacing the nonlinear capacitor with an ideal capacitor with a value c1
corresponding to the value of the nonlinear capacitor at the operating point

Vo,1(s1)

R
+ c1s1Vo,1(s1) = −Is(s1) .

Using a Dirac impulse as input signal, the first order transfer function is found to be

H1(s1) = .Vo.1

∣∣∣∣
Is (s1)=1

= −R

1 + s1
ω3dB

with

ω3dB := 1

Rc1

the 3 dB cut-off frequency of the filter.
Having found the first order output component of the voltage, we can calculate

the equivalent source representing the second order nonlinearity of the capacitor
Ĩc,2(s1, s2) (see Fig. 11.10). With a Dirac pulse as the first order input we find

Ĩc,2(s1, s2) = c2
2

(s1 + s2)H1(s1)H1(s2) .
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Fig. 11.14 LPF 2nd order
equivalent circuit

The second order transfer function is found with the help of the second order
equivalent circuit. It is obtained from the first order one by removing the current
source Is(s1), which is of first order, and by inserting the source Ĩc,2(s1, s2) repre-
senting the second order nonlinearity of the capacitor. The second order equivalent
circuit is shown in Fig. 11.14. Note how the current generated by second (and higher)
order nonlinearity is injected into the input node of the filter. For this reason, as dis-
cussed in Sect. 10.2, feedback is unable to suppress it. Since the variables in this
network are of second order, we have to use the definition of the derivative for sec-
ond order distributions (Eq. (9.14)). The second order transfer function is thus found
to be

H2(s1, s2) = −R

1 + (s1 + s2)Rc1
Ĩc,2(s1, s2)

= c2
2

(s1 + s2)H1(s1 + s2)H1(s1)H1(s2) .

With the first two components of the output voltagewe can compute the equivalent
source representing the capacitor nonlinearity of third order (see Fig. 11.10)

Ĩc,3(s1, s2, s3)

= (s1 + s2 + s3)
{
c2 [H1(s1)H2(s2, s3)]sym + c3

3
H1(s1)H1(s2)H1(s3)

}

and with it the equivalent circuit of third order. Using the definition of the derivative
for third order distributions, the third order transfer function is found to be

H3(s1, s2, s3) = −R

1 + (s1 + s2 + s3)Rc1
Ĩc,3(s1, s2, s3)

= (s1 + s2 + s3)H1(s1 + s2 + s3)

· {c
2
2

2
[H1(s1)H1(s2)H1(s3)(s2 + s3)H1(s2 + s3)]sym

+ c3
3
H1(s1)H1(s2)H1(s3)

}
.
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11.4.2 Second Order Intermodulation

Having found the first three transfer functions of the filter, we can evaluate the impact
of the nonlinearities in concrete situations. As a first situation, suppose that there is a
strong modulated signal in the stop-band of the filter. If the even order nonlinearities
generate strong IM products masking the wanted signal in the pass-band, then the
filter is of little use. To have a first indication of the strength of this effect, we
only consider the nonlinearity of second order and calculate the IP2. We model the
modulated signal in the stop-band with two tones at ω1 and ω2. We further assume
ω2 > ω1 and

�ω := ω2 − ω1 < ω3dB

so that one of the IM2 products falls in the pass-band of the filter. The IM2 of interest
is characterized by the frequency mix m = (0, 1, 0, 1) and thus by the frequency
response

H2(−jω1, jω2) = c2
2

j�ωH1(j�ω)H1(−jω1)H1(jω2)

≈ −c2
2

j�ωR
R ω3dB

−jω1

R ω3dB

jω2
≈ −c2

2
j�ω

R3ω2
3dB

ω2
1

.

With it the IIP2 and OIP2 are obtained from (11.10)

IIIP2 ≈
∣∣∣∣

2

c2�ωR2

∣∣∣∣
( ω1

ω3dB

)2
(11.28)

VOIP2 ≈
∣∣∣∣

2

c2�ωR

∣∣∣∣
( ω1

ω3dB

)2
. (11.29)

We have denoted the two intercept points by IIIP2 and VOIP2 to make it clear that the
first characterizes the magnitude of the input current while the latter the magnitude
of the output voltage.

These expressions reveal that the more the blocker is in the stop band, the lower
the IM2. This makes intuitive sense as the voltage generated across the nonlinear
capacitor by the interfering signal is the smaller, the lower the capacitor impedance.
Since we have assumed a voltage-controlled capacitor, a small voltage will produce
small intermodulation products. The above expressions also reveal that the IM2 is
not homogeneous across the pass-band, but it is stronger when �ω approaches the
filter 3dB cut-off frequency of the filter.

The IP2 can also be expressed in a slightly different form. If we replace one
occurrence of ω3dB by 1/(c1R) in the above expression we obtain

VOIP2 ≈ 2

∣∣∣∣
c1
c2

∣∣∣∣
ω2
1

�ω ω3dB
. (11.30)
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Fig. 11.15 a Typical characteristic of an n-type accumulation-mode MOS varactor with a channel
length of 0.2µm in a 40nm CMOS technology b Small-signal model coefficients of an n-type
accumulation-mode MOS varactor with a channel length of 0.2µm in a 40nm CMOS technology

This form highlights the value of the OIP2 as a function of the ratio of the linear
capacitor coefficient to the coefficient of the second order nonlinearity.

Figure11.15a shows the typical characteristic of an n-type accumulation-mode
MOS varactor [26] with a channel length of 0.2 µm in a 40nm CMOS technology.
Figure11.15b shows the small-signal model coefficients normalized to the linear
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Fig. 11.16 Simulated IM2 of the LPF with the capacitor having the characteristic shown in
Fig. 11.15a and driven by two tones of equal magnitude at 48.75 and 51.25MHz respectively

capacitance c1 as a function of the voltage across the capacitor. If we use such a
capacitor biased at 0V to implement a LPF with a cut-off frequency of 5MHz to
suppress a signal at 50MHz modeled as two tones at 48.75 and 51.25MHz respec-
tively, (11.30) predicts that the filter will have an OIP2 of

OIP2 ≈ 44 dBV .

For comparison we simulated the LPF IP2 numerically. To obtain a cut-off frequency
of 5MHzweused a resistor of 1k� and a nominal capacitance of 31.58pF.The results
of the simulation are shown in Fig. 11.16. The value of the IP2 agrees very well with
the predicted value. The IM2 starts to deviate from the ideal slope of 2 at a level
of the input tones of ca. –55dBA. This means that at that level the contribution of
higher order nonlinearities to the IM2 become important. A -55dBA tone at 50MHz
passing through a linear LPF with a transfer function equal to H1(jω) and the above
component values produces an output tone with a magnitude of approximately

√
2 10−55/20 R

ω3dB

ω
≈ 251 mV .

The capacitor characteristic in Fig. 11.15a shows that a linear c-v approximation
is only reasonably accurate up to this value. We thus see that a rough estimate
of the range of validity of the approximation can be obtained by overlapping the
approximation with the real characteristic. At larger positive and negative voltage
levels the capacitor characteristic flattens out, and we can speculate that this is the
reason for the slower increase of the IM2 at large signal levels.
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Fig. 11.17 a LPF with back-to-back capacitors ideal OpAmp model b LPF with back-to-back
capacitors 2nd order equivalent circuit

Fig. 11.18 Characteristic of two back-to-back n-type accumulation-modeMOS varactor each with
the characteristic shown in Fig. 11.15a

Formany applications, such as in communication receivers, this IP2 is insufficient.
One way to improve it is by using two equal nonlinear capacitors connected back-
to-back as shown in Fig. 11.17a, each providing half of the required capacitance. In
this way, when vo increases, the capacitance of one capacitor increases, while the
one of the other capacitor decreases.

Oneway to analyze this circuit is to consider the combination of the two capacitors
as a single nonlinear capacitor with the effective characteristic shown in Fig. 11.18.
Figure11.19 shows that, with identical devices, c2 is identically zero. Hence, the IM2
is completely suppressed.

Another way to analyze the circuit is to consider each capacitor individually. If the
linear transfer function has to remain the same as the one of the original circuit with
a single capacitor, then we must have cp,1 + cn,1 = c1. The second order network is
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Fig. 11.19 Small-signal model coefficients of two back-to-back n-type accumulation-mode MOS
varactor

therefore composed by the same linear components as before, but now it includes two
sources, each representing the second-order nonlinearity of one of the two capacitors
(see Fig. 11.17b). The one of cp has the same reference direction as the one of the
original circuit and has a value of

Ĩcp,2(s1, s2) = cp,2
2

(s1 + s2)Vo,1(s1)Vo,1(s2) .

The one of cn has the opposite reference direction and a value of

Ĩcn ,2(s1, s2) = cn,2

2
(s1 + s2)

(−Vo,1(s1)
)(−Vo,1(s2)

)

= cn,2

2
(s1 + s2)Vo,1(s1)Vo,1(s2) .

As the two negative signs coming from vn = −vo cancel, the two currents flow in
opposite directions and, if cn,2 = cp,2 they cancel each other.

Note that this cancelling effect of even order responses is quite general. Given an
arbitrary even order frequency response ĥk,m , the response of (even) order k to N
input tones with phasors A1, . . . , An is

yck,m(t) = �
{ 1

2k−1

k!
m! A

m−N

−N · · · Am−1
−1 Am1

1 · · · AmN
N ĥk,m ejωmt

}
.
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If the sign of all input tones is reversed, every phasor will be multiplied by ejπ . As
k is assumed to be even and |m| = k these factors will multiply to 1

ejπk = 1; k even.

For this reason the response remains unchanged, but with opposite reference direc-
tion. Therefore, all even order harmonics and intermodulation products will be sup-
pressed.

In reality there are two limitations to the amount of canceling that is practically
achievable. The first one is due to the fact that small unavoidable manufacturing
imperfectionsmakenominally identical devices slightly different. This effect is called
mismatch. For this reason the coefficients of cp will be slightly different from the
one of cn . Let’s represent the small variations due to mismatch in the following way

cp,1 = cnom,1 + �cp,1 cn,1 = cnom,1 + �cn,1

cp,2 = cnom,2 + �cp,2 cn,2 = cnom,2 + �cn,2

with

cnom,1 = c1
2

�cp,1,�cn,1 � cnom,1

cnom,2 = c2
2

�cp,2,�cn,2 � cnom,2 .

Then, the two current sources Ĩcp,2(s1, s2) and Ĩcn ,2(s1, s2) can be represented by a
single source with the same reference direction of the former and a value of

Ĩcp,2(s1, s2) − Ĩcn ,2(s1, s2) = �cp,2 − �cn,2

2
(s1 + s2)Vo,1(s1)Vo,1(s2) .

The resulting network is similar to the one of the original circuit, the only difference
being that the coefficient c2 is replaced by �cp,2 − �cn,2. The OIP2 is therefore

VOIP2,B2B ≈ 2

∣∣∣∣
c1 + �cp,1 + �cp,1

�cp,2 − �cn,2

∣∣∣∣
ω2
1

�ω ω3dB

≈ 2

∣∣∣∣
c2

�cp,2 − �cn,2

∣∣∣∣

∣∣∣∣
c1
c2

∣∣∣∣
ω2
1

�ω ω3dB

=
∣∣∣∣

c2
�cp,2 − �cn,2

∣∣∣∣ VOIP2 .

(11.31)

Compared to the original circuit the IP2 has been improved by the mismatch limited
factor ∣∣∣∣

c2
�cp,2 − �cn,2

∣∣∣∣ .
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Fig. 11.20 Simulated IM2 of the LPF with the capacitor having the characteristic shown in
Fig. 11.15a and driven by two tones of equal magnitude at 48.75 and 51.25MHz respectively

Figure11.20 shows the results of simulations with two identical nonlinear capaci-
tors, and for the case where�cp,2/cnom,2 = −�cn,2/cnom,2 = 0.01. In the latter case
we observe the expected improvement of

20 log
( c2
0.02c2/2

)
= 20 log

( 1

0.01

)
= 40 dB .

In the former, at input signal levels up to –65 dBA the value of the IM2 is limited by
numerical noise. At larger input signal levels the simulation result is the product of
the limited accuracy of the used numerical algorithm.

The second practical limitation is constituted by the fact that the terminals of
real components are often coupled to other nodes of the circuit. This coupling can
be modeled with parasitic components connected to the terminals. The parasitic
components of the positive terminal are often different from the ones of the negative
terminal. In addition, parasitic components are often nonlinear.

We conclude this section by noting that if the two tones are in the pass-band of
the filter the OIP2 is

VOIP2 ≈
∣∣∣∣

2

c2�ωR

∣∣∣∣ = 2

∣∣∣∣
c1
c2

∣∣∣∣
ω3dB

�ω
. (11.32)
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11.4.3 Third Order Intermodulation

In this section we investigate the situation where there are two interfering signals,
one at ω1 and a second one close to twice this frequency ω2 = 2ω1 − �ω so that the
lower side-band IM3 falls in the pass-band of the filter

2ω1 − ω2 = �ω < ω3dB ω1, ω2 > ω3dB > 0 .

To characterize this situation we compute the IP3.
The IM3 of interest is obtained from the third order transfer function

H3(s1, s2, s3) = (s1 + s2 + s3)H1(s1 + s2 + s3)

·
{
c22
2
[H1(s1)H1(s2)H1(s3)(s2 + s3)H1(s2 + s3)]sym

+ c3
3
H1(s1)H1(s2)H1(s3)

}
.

evaluated at the frequency mix m = (1, 0, 2, 0). Setting s1 = jω1, s2 = jω1 and
s3 = −jω2 the term enclosed in the symmetrization operator becomes

H1(jω1)H1(jω1)H1(−jω2)

· 1
6

[
2j (2ω1)H1(j2ω1) + 4j (−ω1 + �ω)H1(j (−ω1 + �ω))

]
.

If we assume |ω1 − �ω| > ω3dB and use the approximation

jωH1(jω) ≈ jω
−R

jωc1R
= −1

c1

we can simplify it to

H1(jω1)H1(jω1)H1(−jω2)
−1

c1
.

Using these results we obtain

H3(jω1, jω1,−jω2)

≈ j�ωH1(j�ω)H1(jω1)H1(jω1)H1(−jω2)
[
− c22
2c1

+ c3
3

]

≈ j�ω(−R)
( −1

jω1c1

)2( −1

−2jω1c1

)[
− c22
2c1

+ c3
3

]

= �ωR

(ω1c1)3

[c3
6

− c22
4c1

]
.
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The IIP3 and OIP3 are obtained by inserting this result in (11.11)

IIIP3 ≈

√√√√√
4

3

∣∣∣∣∣∣

(ω1c1)3

�ω
[ c3
6 − c22

4c1

]

∣∣∣∣∣∣
(11.33)

VOIP3 ≈
√√√√4

3

ω3
1

�ω ω2
3dB

∣∣∣∣∣
1

c3
6c1

− 1
4

( c2
c1

)2

∣∣∣∣∣
. (11.34)

These expressions reveal that the IP3 depends not only on the third order coefficient
c3, but also from the second order one c2. The reason is the fact that second order
intermodulation products are fed back to the input of the nonlinear component,where,
in combination with the fundamental tones, they pass again through the second order
nonlinearity. This is the effect that was discussed in Sect. 10.2 with the help of the
signal-flow graph of Fig. 10.4 and the reason for c2 being squared. The expression
for the OIP3 highlights the fact that it is the ratio of the coefficients c2 and c3 to the
linear capacitance c1 that matters. The expressions also reveal that the IM3 generated
by second order and third order nonlinearities have either the same or opposite phase
and that, if

c3
c1

= 3

2

(c2
c1

)2
, (11.35)

the two cancel each other.
In the previous section we discussed the fact that using equal nonlinear capacitors

connected back-to-back eliminates even order components from the response of the
system. This is not the case for odd order nonlinearities. To see this, we can draw
the third order equivalent network of the filter with back-to-back capacitors. The
equivalent sources representing the third order nonlinearities of cp and cn are

Ĩcp,3(s1, s2, s3) = cp,3
3

(s1 + s2 + s3)Vo,1(s1)Vo,1(s2)Vo,1(s3)

and
Ĩcn ,3(s1, s2, s3) = −cn,3

3
(s1 + s2 + s3)Vo,1(s1)Vo,1(s2)Vo,1(s3)

respectively, where we have considered that Vo,2(s2, s3) is zero. For equal capacitors
cp,3 = cn,3 = c3/2, therefore, having the sources opposite reference directions, they
combine to form a single source equivalent to the one of a single nonlinear capacitor
with c2 = 0.

As an example, we consider again a filter with a cur-off frequency of 5MHz
implemented with a nonlinear MOS capacitor having the characteristic shown in
Fig. 11.15a and biased at 0V. At this bias point the ratios c2/c1 and c3/c1 are 1.73
and –0.94 respectively. If the filter is driven by a tone at 15MHz and a second one
at 27.5MHz (11.34) predicts an OIP3 of
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OPI3 ≈ 16.0 dBV .

Note that in this example it is the second order nonlinearity that dominates the IM3
as ∣∣∣∣

c3
6c1

∣∣∣∣ ≈ 0.16 <
1

4

(c2
c1

)2 ≈ 0.75 .

Thus, using back-to-back capacitors improves the OIP3 up to

OIP3B2B ≈ 23.6 dBV .

For comparison, we simulated the filter with the full nonlinear capacitor charac-
teristic of Fig. 11.15a. The obtained IM3 as a function of the input tones magnitude
is shown in Fig. 11.21. The figure also shows the IM3 obtained using back-to-back
capacitors. In both cases the obtained IP3 is in good agreement with the above cal-
culations. The IM3 starts to depart from a straight line with a slope of three at a
level of the input tones of ca. –67dBA. This corresponds to an output fundamental
magnitude of ca. 0.2V for the tone at ω1 and is close to the level at which the poly-
nomial approximation starts to deviate significantly from the real characteristic of
the capacitor.

Further, we verified the occurrence of canceling between the IM3 produced by
the third order nonlinearity with the one produced by second order. Figure11.22
shows the magnitude of the IM3 as a function of the bias voltage of the capacitor.
The curve shows a clear notch at a bias voltage of ca. –0.19V, the bias voltage at

Fig. 11.21 Simulated IP3 of the LPF with the capacitor having the characteristic shown in
Fig. 11.15a and with two equal back-to-back (B2B) capacitors. The two input tones were of equal
magnitude at 15 and 27.5MHz respectively
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Fig. 11.22 Simulated IM3 of the LPF with the capacitor having the characteristic shown in
Fig. 11.15a as a function of the capacitor bias voltage VO . The filter was driven by two equal
tones of magnitude 0.1 at 15 and 27.5MHz respectively

which the coefficient ratios c2/c1 and c3/c1 satisfy the canceling condition expressed
by (11.35). This notch disappears at large signal levels, where contributions to the
IM3 from higher order nonlinearities become important. The curve also suggest that,
to obtain the best linearity, one should use a large bias voltage bringing the MOS
capacitor in strong inversion, where its capacitance becomes almost constant.

Before concluding this section we investigate the case in which the two tones are
in the pass-band of the filter. In this case the term in the symmetrization operator in
H3(jω1, jω1,−jω2) is

H1(jω1)H1(jω1)H1(−jω2)

· 1
6

[
2j (2ω1)H1(j2ω1) + 4j (−ω1 + �ω)(−R)

]

= H1(jω1)H1(jω1)H1(−jω2) · 2
3
j
[
ω1H1(j2ω1) + (ω1 − �ω)R

]
.

If we further assume that 2ω1 also falls in the pass-band of the filter it simplifies to

−H1(jω1)H1(jω1)H1(−jω2) · 2
3
j�ωR .

The third order nonlinear transfer function evaluated at the frequency mix m =
(1, 0, 2, 0) is therefore
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Fig. 11.23 Simulated IP3 of the LPF with the capacitor having the characteristic shown in
Fig. 11.15a and with two equal back-to-back (B2B) capacitors. The two input tones were of equal
magnitude at 1 and 1.1MHz respectively

H3(jω1, jω1,−jω2) ≈ j�ωR4
[c3
3

− j
c22
3

�ωR
]

= j
�ω

ω3dB

R3

3

[c3
c1

− j
c22
c1

�ωR
]
.

With this, the OIP3 is

VOIP3,IB ≈
√√√√

4ω3dB

�ω

1
∣∣∣ c3c1 − j

( c2
c1

)2 �ω
ω3dB

∣∣∣
. (11.36)

The results of a simulationwith one tone at 1MHzand the secondone at 1.1MHz is
shown in Fig. 11.23. The results are again in good agreement with the OIP3 estimated
with the help of the above equation which gives 10.1 and 10.7dBV for a single
capacitor and for back-to-back capacitors respectively.

11.4.4 Large Signal Effects

In this section we evaluate gain compression and amplitude-modulation to phase-
modulation due to the nonlinear capacitor. The onset of both of these effects is
governed by the third order transfer function evaluated at the frequency mix m =
(0, 1, 2, 0) relative to the linear transfer function at the fundamental
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H3(jω1, jω1,−jω1)

H1(jω1)
≈ −jω1R

3[c3
3

− j
c22
3

ω1R
]

= − ω1

ω3dB

R2

3

[(c2
c1

)2 ω1

ω3dB
+ j

c3
c1

]
.

where we have assumed 2ω1 < ω3dB. The phase of this expression determines the
presence of gain compression or expansion and AM2PM.

As a concrete example, we consider again a low-pass filter with a cut-off fre-
quency of 5MHz, R = 1k�, the nonlinear capacitor with the characteristic shown
in Fig. 11.15a and driven by a sinusoidal tone at 1MHz. In this case the term in
the square bracket in the above expression, multiplied by minus one, evaluates to
−0.6 + j0.94. As the real part is negative we expect some gain compression. How-
ever, the imaginary part has a larger magnitude which implies that AM2PM should
be somewhat more pronounced. If we use (11.7) to estimate the amplitude of the
input tone producing a phase change of 1◦ we obtain a value of –67.3dBA which
corresponds to an output swing of 0.61mV. A look at Fig. 11.15a shows that at these
levels a second order approximation of the capacitor characteristic is a very poor
approximation of the real characteristic. For this reason we can’t expect this estimate
to be accurate.

A believable prediction can be made for levels where the approximation is good.
For example, a phase change of 0.1◦ is predicted to happen at an input signal level
of –77.3dBA which corresponds to an output swing of 0.193mV. Similarly, (11.5)
predicts a 10mdB gain compression at an input level of –77.2dBA. These levels
compare quite favorably with the values obtained by a numerical simulation and
shown in Fig. 11.24. The simulation shows that these effects remain very small up to
the large output swing of 1V RMS which is close to the reliability limit supported
by these devices.

11.5 Class-AC Common-Source Stage

In this section we analyse the common-source stage shown in Fig. 11.25a for use as
an RF amplifier. In particular, we are interested in the distortion introduced by the
nonlinear i − v characteristic of the transistor and in the influence on distortion of
the choice of gate bias voltage VG . For simplicity in this section we neglect the Cgd

capacitance. We will consider circuits with some form of local feedback in a later
section.

The following is a simple large-signal MOSFET model presented in many text-
books [27, 28]

iD =

⎧
⎪⎨

⎪⎩

0 vGS − VT ≤ 0

K ′ W
L (vGS − VT − vDS

2 )vDS(1 + λvDS) 0 < vDS ≤ (vGS − VT )
K ′
2

W
L (vGS − VT )2(1 + λvDS) 0 ≤ (vGS − VT ) ≤ vDS .
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Fig. 11.24 Simulated AM2PM and gain compression of the LPF with a nonlinear capacitor having
the characteristic shown in Fig. 11.15a and driven by a tone at 1MHz

Fig. 11.25 a Common-source amplifier AC schematic b Common-source amplifier small-signal
model

The second equation describes the so-called linear region of the characteristic. This
is the region where the overdrive voltage vGS − VT is sufficiently large to cause a
conductive surface charge channel in the active area at the surface between source
and drain of the transistor and vDS is sufficiently small that the channel extends
all along from the source to the drain terminal of the transistor. In this region the
transistor behaves essentially as a nonlinear resistor.

The third equation describes the saturation region of the characteristic and is the
one of interest for implementing amplifiers and most other analogue circuits. In this
region vGS − VT is sufficiently large to cause the formation of a conductive channel.
However, vDS is larger than the saturation voltage which means that the channel
is present close to the source side of the transistor, but doesn’t extend all along
to the drain terminal. In this region the current through the transistor iD is almost
independent of the drain voltage and the transistor behaves to a good approximation
as a voltage-controlled current source with vGS the control voltage. The parameter
λ takes into account the fact that the length of the channel does depend on the drain
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Fig. 11.26 a FinFET input side characteristic. L = 22 nm, nfin = 10, n f = 16,m = 1,Weff =
nfinn f m71 nmbFinFEToutput side characteristic. L = 22 nm, nfin = 10, n f = 16,m = 1,Weff =
nfin n f m 71 nm

voltage and makes iD a weak function of the drain voltage [28]. In this simple model
the saturation voltage is equal to the overdrive voltage vGS − VT .

The characteristic of real transistors depends on many effects not captured by
this simple model. To enable the design of analogue circuits, very accurate transistor
models have been developed andmade available in circuit simulators. Unfortunately,
most of those models depend on several dozens to hundreds of parameters making
them unsuitable for analytical estimates. Figure11.26a shows the characteristic of a
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FinFET with a channel length L = 22nm as given by the CMG-BSIM model [29]
with parameters from [30]. Figure11.26a shows

√
iD as a function of vG with the

source connected to ground and vD at a fix potential of 0.4V. It shows that between
0.35 and 0.65V the deviation of the characteristic from a straight line as predicted
by the above simple model is quite small. Figure11.26b shows iD as a function of
vD for a fix gate voltage of 0.5V. Here as well, the simple model gives a fairly good
approximation over an extended range of the characteristic. The pictures show the
values of K ′, VT and λ obtained by fitting the model to the curves.

Using the simple model the current iD can be split in two parts

iD = iD,a + iD.b

with

iD,a = K ′

2

W

L
(vGS − VT )2

iD,b = gO(iD,a)vDS = iD,aλvDS .

The current iD,a canbe interpreted as the output of an ideal voltage-controlled current-
source, while the current iD,b can be interpreted as the current due to a nonlinear load
resistance. Since an ideal current source is not affected by its load, from an analysis
point of view, it is convenient to analyse the two parts separately and combine the
effects with the results of Sect. 10.1. For this reason we lump the components to the
right of line A in Fig. 11.25b into a nonlinear load. In this section we focus on iD,a . A
common nonlinear load will be considered in the next section. Similarly, for analysis
purposes, the nonlinear Cgs capacitance can be considered part of the driving circuit.
In the case of a resistive source we can reuse the results of the previous section
with minor modifications. Often however, the distortion introduced by Cga is small
compared to the one introduced by the i-v characteristic. In the following we will
simply write iD for iD,a .

While the above model can be used to obtain a relatively good approximation
of the transconductance gm of the transistor, it doesn’t provide a good estimate of
higher order distortion terms. Therefore, to analyse distortion we approximate the
transistor characteristic around the operating point by a third order polynomial

id = gmvgs + g2v
2
gs + g3v

3
gs

and extract the coefficients from simulation. Figure11.27 compares first, second and
third order polynomial approximations to the full characteristic at a bias level of VG

= 0.5V and VD = 0.4V. At this bias level a third order approximation provides a
good approximation up to a signal level of about 150 mV. Figure11.28 shows the
three coefficients gm, g2 and g3 as a function of the gate bias voltage VG simulated
using CMG-BSIM models. While the simple model predicts a vanishing third order
coefficient g3 the picture shows that it disappears only at a single gate bias point.
For small gate bias voltages the g3 coefficient is positive, while for large values it’s
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Fig. 11.27 Polynomial approximations of the transistor characteristic around VG = 0.5V. VD =
0.4V, same transistor size as in Fig. 11.26a

Fig. 11.28 First three coefficients of a polynomial approximation of the transistor characteristic as
a function of the gate bias point. VD = 0.4V, same transistor size as in Fig. 11.26a
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Fig. 11.29 Second and third order coefficients of a polynomial approximation of the Class-AC
stage characteristic as a function of the gate bias deviation from the nominal gate bias point �VG
for VD = 0.4V

negative. We may try to minimize third order distortion by biasing the transistor at
the bias point at which g3 is zero. However, this strategy doesn’t lead to a robust
design. In fact mismatch between the transistor and the bias devices introduces a
statistical Gaussian bias error with a typical standard deviation of order [31]

σVT ≈ 5 mV · µm√
WL

where L and W are the length respectively the width of the active channel. A more
fruitful approach is to use two transistors connected in parallel, but biased at different
bias levels. One biased at the minimum of g3 and the second at its maximum. The
relative size of the two transistors is chosen in such a way as to make the sum of
the g3s cancel. In this way the deviation of the bias point of each transistor due to
mismatch has a smaller impact on the value of g3. The resulting effective g3 of the
transistor couple, a so called Class-AC stage, is shown in Fig. 11.29.

The IIP3 of the stage can be estimated from (11.11). For a single transistor biased
at VG = 0.46V we read from Fig. 11.28 gm ≈ 15mS, g3 ≈ −110mA/V2 giving an
IIP3 of ca. –10.4dBV. From Fig. 11.29 we see that a Class-AC stages reduces g3 by
ca. a factor of 10, while leaving gm almost unchanged. From this datawe estimate that
the IIP3 should be ca. 10 dB higher or approximately –0.4 dBV. The results obtained
by numerical simulation with the full transistor models are shown in Fig. 11.30.
To suppress the effect of the nonlinear output conductance go the drain was held
at 0.4V using an ideal voltage source. The circuit was driven by a voltage source
with a resistance of 50� generating two tones of equal amplitude at f1 = 1.01GHz
and f2 = 1.02GHz. Note that the simulation does include the effect of a slightly
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Fig. 11.30 Simulated IM3 of a Class-AC stage compared to the one of a simple common-source
stage consisting of the Class-A device only. Class-A device: L = 22nm, nfin = 10, n f = 16,m = 1
biased at VG = 0.453V. Class-C device: L = 22nm, nfin = 10, n f = 8, m = 1 biased at VG =
0.342V. VD = 0.4V. |vt | is the magnitude of each of the two input tones

nonlinear Cgs as well as the one of Cgd . The results are in good agreement with our
estimates up to a level of about –25dBV (≈ 80mV) per tone that translates in a peak
input voltage of 160mV. This is in line with expectation as beyond this level the third
order approximation of the characteristic starts to break down as noted earlier.

The Class-AC stage reduces g3, but doesn’t reduce g2. Therefore, if the second
order transfer function of the preceding or following stage is also large, then the
combined systemwill still produce third order distortion. Ifwe call the first subsystem
G and the second one H the combined third order impulse response is in fact (see
Table 10.1)

(h ◦ g)3 = h1 ∗ g3 + 2 h2 ∗ [g1 ⊗ g2]sym + h3 ∗ g⊗3
1

which doesn’t disappear even if g3 and h3 are both zero. One approach to reduce g2
(on top of g3) is to use a complementary structure comprised of an nMOS Class-AC
stage and a pMOS one as sketched in Fig. 11.31. Here we use common-gate stages
(see the next section) to reduce the effects of Cgd and combine the currents through
a transformer. For good results one needs large coupling between the primary and
secondary of the transformer. In a monolithic implementation this is best achieved
using equal coils stacked one on top of the other. We can also directly connect the
drains of the two stages. In this case the bias currents of the two stages must coincide
and a mean of controlling the DC drain voltage is necessary.
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Fig. 11.31 Complementary Class-AC stage suitable for RF applications

11.6 Common-Gate Stage

In this sectionwe investigate the linearity properties of the common-gate stage shown
in Fig. 11.32a. We first consider the case in which the stage is driven by a source with
internal resistance Rs and then specialise to the case inwhich the stage is used to form
a Cascode. A basic variant of the Cascode stage suitable for use at RF frequencies
is the combination of a common-source stage followed by a common-gate one. The
combination of the two stages behaves as an improved common-source stage with
much reduced Cgd and output conductance go [27]. In this section we will show that,
under suitable conditions that we will work out, the addition of a common-gate stage
does not degrade distortion either. Due to these very desirable benefits the Cascode
stage is a widely used configuration.

Fig. 11.32 a Common-gate stage AC schematic b Common-gate stage Small-signal model
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Consider the small-signal model shown in Fig. 11.32b. The input voltage vi corre-
sponds to the source voltage. The input current is the current entering into the source
terminal. The part of the input current that doesn’t flow through Csg is labeled ic and
represents the current that flows through the transistor active channel to the drain.
The current leaving the drain terminal must therefore have the same value. This is
represented by the output side current-controlled current source with unit gain. For
simplicity, we neglect the distortion introduced by the nonlinear capacitance Csg as
well as the one introduced by the drain capacitance that in the figure was lumped
together with the load ZL . As before we characterise the linearity of the circuit by
calculating the nonlinear terms present in the output current ic.

11.6.1 Nonlinear Transfer Functions

According to the model presented in Sec. 11.5 (with λ = 0) the static characteristic
of the transistor in saturation is given by

iD = β

2
v2
OD

with vOD = vGS − VT the overdrive voltage and β = K ′W/L . In the present situa-
tion it is more convenient to express the input voltage as a function of the current.
This is easily achieved by inverting the equation. If we further separate the DC bias
terms from the small signal quantities we obtain

vgs =
√
2(ID + id)

β
− VOD

which we approximate by a third order Taylor polynomial around the operating point

vgs ≈ VOD

[
1

2

id
ID

− 1

8

( id
ID

)2 + 1

16

( id
ID

)3]
.

Using the relations vi = −vgs and ic = −id we obtain that the input characteristic
corresponds to the one of a nonlinear resistor

vi = r1ic + r2i
2
c + r3i

3
c (11.37)

with

r1 = 1

gm
= VOD

2ID
, r2 = VOD

8I 2D
, r3 = VOD

16I 3D
. (11.38)

Note that while the original expression giving iD as a function vOD doesn’t include
any third order term, the inverted expression gives a well-defined term of third order.
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Fig. 11.33 Equivalent
circuit for the calculation of
the nonlinear transfer
functions of the
common-gate circuit

As a result, the latter is less sensitive to modeling inaccuracies than the former. We
will therefore use the above values as estimates for ri , i = 1, . . . , 3.

Using the above third order polynomial to model the source-gate nonlinear char-
acteristic we obtain the equivalent circuit shown in Fig. 11.33 with V2 and V3 the
second resp. third order equivalent nonlinear source as given in Table11.11.

The first order transfer function is calculated by discarding the contribution of all
sources of order different from one. This amounts to calculating the contribution due
to the input source and using a Dirac impulse as input signal. Working in the Laplace
domain, the Kirchhoff’s voltage law gives

Rs(Ic,1 + sCsgr1 Ic,1) + r1 Ic,1 = 1 .

Solving for the first order component of Ic we find

Ic,1(s) = H1(s) = 1

Rs + r1 + sCsgr1Rs
= 1

Rs + r1

1

1 + s
ω0

with ω0 = (Rs + r1)/(Csgr1Rs).
With Ic,1 and referring to Table11.11 we can now compute the equivalent source

of second order V2 = r2 Ic,1(s1)Ic,1(s2). The second order transfer function is the
response to this source which is easily calculated to be

Ic,2(s1, s2) = H2(s1, s2) = − 1 + (s1 + s2)Csg Rs

Rs + r1 + (s1 + s2)Csgr1Rs
r2 Ic,1(s1)Ic,1(s2)

or, expressed in terms of H1

H2(s1, s2) = −r2[1 + (s1 + s2)Csg Rs]H1(s1 + s2)H1(s1)H1(s2) .

With Ic,2 we can compute the equivalent source of third order

V3 = 2r2
[
Ic,1(s1)Ic,2(s2, s3)

]
sym + r3 Ic,1(s1)Ic,1(s2)Ic,1(s3) .
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The third order transfer function is the response to V3 which is calculated in a similar
way as H2

H3(s1, s2, s3) = −[1 + (s1 + s2 + s3)Csg Rs]H1(s1 + s2 + s3)V3(s1, s2, s3) .

11.6.2 Cascode

We now specialise to the case of a Cascode. Since the transfer functions are found
by analysing a sequence of linear networks, we can use the Thévenin-Norton theo-
rem [32] to transform the source into the parallel connection of an ideal current source
and the internal resistor Rs as shown in Fig. 11.34. The resistor Rs corresponds now
to the reciprocal of the output conductance go of the driving common-source stage.
The latter is usually much larger than r1, so it has little effect on the operation of the
circuit. For this reason and to obtain easier to interpret expressions we calculate the
transfer functions in the limit as Rs tends to infinity. Under this assumption and using
the results of the previous section, the first, second and third order transfer functions
from the ideal source Is to the output current Ic are

Hc1(s) := lim
Rs→∞ H1(s)Rs = 1

1 + s
ω0

, (11.39)

Hc2(s1, s2) := lim
Rs→∞ H2(s1, s2)R

2
s

= −r2(s1 + s2)CsgHc1(s1)Hc1(s2)Hc1(s1 + s2)
(11.40)

and

Hc3(s1, s2, s3) := lim
Rs→∞ H3(s1, s2, s3)R

3
s

= (s1 + s2 + s3)Csg

{
2r22

[
Hc1(s1 + s2)(s1 + s2)Csg

]
sym − r3

}

· Hc1(s1)Hc1(s2)Hc1(s3)Hc1(s1 + s2 + s3)
(11.41)

Fig. 11.34 Equivalent
circuit for the calculation of
the nonlinear transfer
functions of the Cascode
circuit
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respectively, where now ω0 = 1/(Csgr1). Note that the symmetrization in Hc3 is
intended over all three Laplace variables s1, s2 and s3

[
Hc1(s1 + s2)(s1 + s2)Csg

]
sym = 1

3

{
Hc1(s1 + s2)(s1 + s2)Csg

+ Hc1(s1 + s3)(s1 + s3)Csg

+ Hc1(s3 + s2)(s3 + s2)Csg

}
.

Consider now the classic two-tones third order intermodulation test with one tone
at ω1 and the second one at ω2 = ω1 + �ω. In particular consider the IM3 tone
characterised by m = (1, 0, 2, 0). Assuming |�ω| � |ω1| the above symmetrised
expression can be approximated by

[
Hc1(s1 + s2)(s1 + s2)Csg

]
sym ≈ 2

3

jω1Csg

1 + j 2ω1
ω0

and, with it, the third order transfer function by

Hc3(jω1, jω1,−jω2)

≈ jω1Csg

{4
3
r22 jω1CsgHc1(2jω1) − r3

}
Hc1(jω1)Hc1(jω1)Hc1(−jω1)Hc1(jω1) .

If ω1 ≤ ω0/5 the value of |Hc1(jω1)| can be approximated by 1 with an error of less
than 2% and the magnitude of |Hc3| becomes very nearly

ω1Csg

∣∣∣
4

3
r22 jω1CsgHc1(2jω1) − r3

∣∣∣ .

Using (11.38) for the coefficients of the nonlinear characteristic of the transistor we
thus obtain

|Hc3(jω1, jω1,−jω2)| ≈ 1

8I 2D

ω1Csg

gm

∣∣∣
2

3

jω1Csg

gm
Hc1(2jω1) − 1

∣∣∣ . (11.42)

The magnitude of the IM3 tone normalised to the DC current ID is therefore

∣∣∣
Ic3,m
ID

∣∣∣ ≈ 3

32

ω1Csg

gm

∣∣∣
2

3

jω1Csg

gm
Hc1(2jω1) − 1

∣∣∣
∣∣∣
Is
ID

∣∣∣
3
.

From this expressionwe can read several interesting aspects. First, both the second
and the third order nonlinearities of the transistor characteristic contribute to the IM3
tone. This is visible from the appearance of r3 as well as r2 in the expression for
Hc3. The contribution to an intermodulation product of third order by second-order
nonlinearities is due to the presence of (local) feedback. This can be appreciated
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graphically by looking at Fig. 11.34. The second order source V2 creates a current
that circulates again through the input of the circuit. Therefore, the generated second
order tones pass again through the second order distortion where they can mix with
the input tones to produce frequency mixes of third order.

The contribution to the IM3 tone from second-order distortion is approximately
orthogonal to the one from third order distortion. Therefore, it’s not possible to size
the transistor in such away as tomake the two cancel each other, not even at a specific
frequency.

The IM3 is largely dominated by r3 up to very high frequencies and for ω1 up to
ca.ω0/10 it is proportional toω1. The quantity gm/Csg corresponds (neglectingCgd )
to the angular frequency at which a common-source stage has unity current gain. It
is called transit frequency and denoted by

ωT = gm
Csg

. (11.43)

It is one of the key parameters used to characterise the high-frequency capabili-
ties of transistors. With it the magnitude of the IM3 up to ca. ω1 ≤ ωT /10 can be
approximated by ∣∣∣

Ic3,m
ID

∣∣∣ ≈ 3

32

ω1

ωT

∣∣∣
Is
ID

∣∣∣
3
.

This shows that for low distortion one needs fast transistors. Looking again at
Fig. 11.34 we can appreciate that in the limit as ω1/ωT tends to zero (which means
that Csg tends to zero) the nonlinear sources become floating and can’t generate any
frequency mix current (remember that we also assume Rs → ∞).

In general, distortion introduced by the input (common-source) stage of the Cas-
code configuration generates frequency mixes of second-order. These can mix with
the fundamental tones in the second-order distortion of the output (common-gate)
stage to produce other IM3 components. However, since |Hc2(j2ω1,−jω2)| is also
proportional to ω1/ωT this does not substantially change the situation.

For simplicity in our discussion we assumed Rs → ∞. From the gained insight
we can appreciate that at low frequencies it is a finite value of Rs which will limit
IM3 and, the lower Rs , the higher the IM3. In general however, the common-gate
stage of a Cascode is not the stage limiting low frequency linearity.

11.7 Degenerated Common-Source Stage

In this section we investigate the effect of local feedback on distortion and show
that introduction of feedback may lead to degraded linearity. As a concrete example
we analyse the degenerated common-source amplifier depicted in Fig. 11.35a. The
impedance Ze is called the degeneration impedance. Its presence reduces the gate-
source voltage across the transistor by an amount proportional to the output current. In
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Fig. 11.35 a Degenerated common-source stage AC schematic b Degenerated common-source
stage small-signal model

otherwords it introduces feedback around the transistor. The impedance Zs represents
a generic driving impedance.

One way to analyse the circuit is to model the transistor as a nonlinear voltage-
controlled current-source characterised by a third (or higher) order polynomial

id = gmvgs + g2v
2
gs + g3v

3
gs

and solve Kirchhoff’s equations for vgs . Having found the voltage components
vgs,1, . . . , vgs,k up to some order of interest k, one then finds the output current
components io,1, . . . , io,k by use of the polynomial approximating the transistor char-
acteristic. Instead of using this method we show how the use of a nullor allows the
problem to be solved in amore directway, by permitting to directly obtain an equation
for the output current io.

Nullators and Norators are pathological network elements. A Nullator is a two
terminal element represented by the symbol shown in Fig. 11.36a and characterised
by the two equations

V = 0 I = 0 .

A Norator is a two terminal element represented by the symbol shown in Fig. 11.36b
whose current and voltage are arbitrary and completely determined by the surround-
ing network. In other words it is characterised by zero equations. For a linear network
to have a well-defined solution a Nullator must therefore always appear alongside a
Norator. Such a pair is called a Nullor and can be used to model several elements
such as controlled sources, OpAmps and transistors. In particular, we can use it to
represent the inverted series (see Sect. 11.6.2)

vgs = r1id + r2i
2
d + r3i

3
d

of the transistor characteristic. A nullor based small-signal model of the degenerated
common-source stage using this transistor characteristic representation is shown in
Fig. 11.37.Note that the transistor characteristic is represented by a nonlinear resistor.
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Fig. 11.36 a Symbol of the Nullator reminding the shape of the zero digit 0 b Symbol of a Norator
reminding the infinity symbol ∞

11.7.1 Nonlinear Transfer Functions

From the model in Fig. 11.37 and Kirchhoff’s laws we obtain the following system
of equations relating the output current Io to the input signal Vs

Vs = (Zs + 1

sCgs
)Is + Ze(Is + Io)

Vgs = 1

sCcs
Is

Vgs = r1 Io + r2 I
2
o + r3 I

3
o .

After eliminating Vgs and Is we obtain the single equation

Vs = [
r1 + Ze + (Zs + Ze)r1Cgss

]
Io

+ [
1 + (Zs + Ze)Cgss

]
(r2 I

2
o + r3 I

3
o ) .

(11.44)

The first order transfer function is obtained by applying a Dirac impulse as input
and discarding all terms of order higher than one in the equation. This is equivalent

Fig. 11.37 Nullor based
small-signal model of a
degenerated common-source
stage
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to removing the nonlinear sources from the equivalent circuit. Using the relation
r1 = 1/gm we obtain

H1(s) = gm
L(s)

= gm
1 + gm Ze + sCgs(Ze + Zs)

. (11.45)

To compute the second order nonlinear transfer function we first insert the first
order solution into the nonlinear terms and retain only second order ones. Alterna-
tively we can use Fig. 11.11 to read the value of the second order nonlinear source for
a nonlinear resistor. In both cases, after adjusting the representation of the differential
operator by replacing the variable s by s1 + s2, we obtain

0 = [
r1 + Ze + (Zs + Ze)r1Cgs(s1 + s2)

]
H2(s1, s2)

+ [
1 + (Zs + Ze)Cgs(s1 + s2)

]
r2H1(s1)H1(s2) .

Note that for brevity we didn’t explicitly write the argument of impedances. Their
value has of course to be evaluated at s1 + s2. The second order nonlinear transfer
function is thus

H2(s1, s2) = −r2H1(s1)H1(s2)H1(s1 + s2)
[
1 + (Zs + Ze)Cgs(s1 + s2)

]
. (11.46)

To find the third order nonlinear transfer function we proceed in a similar way
and obtain

H3(s1, s2, s3) = − {
2r2 [H1(s1)H2(s2, s3)]sym + r3H1(s1)H1(s2)H1(s3)

}

H1(s1 + s2 + s3)
[
1 + (Zs + Ze)Cgs(s1 + s2 + s3)

]
. (11.47)

11.7.2 Resistive Degeneration

Wenowspecialise to the case of resistive degeneration Ze = Re and a resistive driving
impedance Zs = Rs and calculate the intermodulation products of third order when
driven by two tones of equal amplitudes at frequency ω1 and ω1 + �ω respectively.
As usual we assume �ω � ω1.

As a first step, to calculate H3 for the mix (1, 0, 2, 0) we evaluate

[H1(jω1)H2(jω1,−j (ω1 + �ω))]sym

≈ −r2
g4m

3 L(jω1)2L(−jω1)

[
2
N (−j�ω)

L(−j�ω)
+ N (2ω1)

L(2ω1)

]

with
N (s) := 1 + (Zs + Ze)sCgs .
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Inserting this expression into H3 we obtain

H3(jω1, jω1,−j (ω1 + �ω))

≈ g4m N (jω1)

L(jω1)3L(−jω1)

{
2

3
r22 gm

[
2
N (−j�ω)

L(−j�ω)
+ N (2ω1)

L(2ω1)

]
− r3

}
.

Since in Sect. 11.5 we characterised the transistor in terms of gm, g2 and g3, we
express the coefficients r2 and r3 in terms of them using the results of Sect. 11.2.1

r2 = −g2
g3m

r3 = 2g22 − gmg3
g5m

.

Substituting these expressions leads finally to

H3(jω1, jω1,−j (ω1 + �ω))

≈ N (jω1)

L(jω1)3L(−jω1)

{
2
g22
gm

[
2

3

N (−j�ω)

L(−j�ω)
+ 1

3

N (2ω1)

L(2ω1)
− 1

]
+ g3

}
.

(11.48)

We can now discuss the effect of a small amount of feedback introduced by a small
resistor Re on linearity. First note that, as expected, for Ze = 0 � the term in square
brackets vanishes making the IM3 depend only on g3. As Re is increased the contri-
bution of g2 increases and at low to moderate frequencies there is some possibility
of cancelling between the contribution due to g3 and g2. As Re increases beyond
this value, the second order contribution starts to dominate. At high frequencies only
imperfect cancelling is possible due to shift in phase of the g2 contribution.

Figure11.38b shows the low to moderate frequency IIP3 of the Class-AC stage
from Sect. 11.5. It shows that cancelling occurs for very small amounts of feedback
and, as is typical for cancelling effects, the performance is very sensitive to small
variations in component values. Due to the large value of g2, a small to moderate
amount of feedbackwith gm Re in the range of 0.03–2.5 leads to an actual degradation
in IIP3. Note that small values of Ze may be introduced unintentionally by parasitic
effects due to the interconnections between components.

A linearity improvement can be obtained by using a large amount of feedback
gm Re � 1. To simplify calculations let’s assume

∣∣ω1Cgs(Rs + Re)
∣∣ � 1, then

H3(jω1, jω1,−j (ω1 + �ω)) ≈ 1

L(jω1)3L(−jω1)

{
− 2

g22
gm

+ g3

}

and

H1(jω1) ≈ 1

Re
.



11.7 Degenerated Common-Source Stage 249

Fig. 11.38 a Weak feedback
region of Fig. 11.38b b
Moderate-frequency
resistively degenerated
common-source
transconductance stage IIP3.
The solid curves are
calculated using
(11.45), (11.47); the dashed
line with (11.49). The
transistor parameters are
approximate values taken
from Figs. 11.28 and 11.29:
gm = 17mS, g2 = 70mS/V,
g3 = 10mS/V2, Rs = 50�

(a)

(b)

Using (11.11) to calculate the IIP3 shows that under these conditions the latter does
in fact increase with increasing Re

IIP3 ≈
√√√√

4(gm Re)3

3
∣∣∣ g3gm − 2

( g2
gm

)2∣∣∣
, gm Re � 1 . (11.49)

The reason for the improvement is a substantially reduced amplitude of the voltage
Vgs controlling the nonlinear sources compared to the circuit input signalVs . Linearity
thus comes at the expenses of a much reduced signal transconductance which for RF
circuits is often not acceptable.
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11.7.3 Inductive Degeneration

A second type of degeneration widely used ar RF frequencies is the inductive one.
This type of degeneration is often used in the input stage of low-noise RF amplifiers
(LNAs), a basic small-signal model of which is shown in Fig. 11.39.

An important characteristic of RF amplifiers is the input impedance Zi . In many
situations it is required to be real and equal to the source impedance Rs , or some
standard value. From our model a simple calculation shows that Zi is given by

Zi = Ri + j Xi = gm
Le

Cgs
+ s(Ls + Le) + 1

sCgs
.

A degeneration inductor Le thus allows a real part to be introduced to the input
impedance without using resistors. Avoiding resistors at the input of LNAs is neces-
sary to avoid limiting the achievable sensitivity. The reactive part of the impedance
can be cancelled over some frequency band by resonating it, in our example using
the inductor Ls . The input network thus consists of a series resonator tuned at the
center frequency of the band of interest.

In this sectionwe analyse the linearity characteristics of this stage and in particular
its IP3. The nonlinear transfer functions are readily obtained fromour previous results
by setting Ze = sLe and Zs = Rs + sLs . Doing so, the first order transfer function
becomes

H1(s) = gm
1 + s(gmLe + Cgs Rs) + s2Cgs(Le + Ls)

.

Fig. 11.39 Small-signal
model of an inductively
degenerated common-source
stage
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Note that gmLe = Cgs Ri . We can therefore write the denominator in the standard
form

H1(s) = gm

1 + s
ω0

1
qt

+ (
s
ωo

)2 (11.50)

with

ω2
0 = 1

Cgs(Le + Ls)
qi = 1

Riω0Cgs

1

qt
= 1

qi
+ 1

qs
qs = 1

Rsω0Cgs
.

The same parameters can also be used to put N (s) in standard form

N (s) = 1 + s

ω0

1

qs
+
( s

ωo

)2
.

The value of H3 relevant for the two-tones IP3 test can then be obtained by substi-
tuting these expressions in (11.48). The resonance frequency of the input resonator
is evidently set to the frequency of the input signal ω0 = ω1 so that

N (jω1) = j

qs
, L(jω1) = j

qt
, H1(jω1) = −jqt gm .

and

H3(jω1, jω1,−j (ω1 + �ω)) ≈ −jq4
t )

qs

{
2
g22
gm

[
2

3
+ 1

3

N (2ω1)

L(2ω1)
− 1

]
+ g3

}
.

With these results we can compute the IIP3 using Eq. (11.11) as before

IIP3 ≈ 2

qt

√√√√√
qs
qt

1
∣∣∣∣2
( g2
gm

)2
[
2
3 + 1

3
N (2ω1)

L(2ω1)
− 1

]
+ g3

gm

∣∣∣∣

. (11.51)

In the common case in which the input resistance Ri is equal to the source impedance
qs/qt = 2. The IP3 of the circuit is thus approximately inversely proportional to the
quality factor of the input resonance. This is due to the fact that at resonance the
magnitude of the voltage across the reactive components is roughly qt times the one
across the resistive part. In other words, the voltage Vgs controlling the nonlinear
sources is amplified by a factor of ca. qt compared to the input signal Vs . This very
same characteristic is also the reason for the good noise characteristic of the circuit:
the input network provides some voltage gain before the first noisy device.
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The quality factor of the network also influences the relative contributions of g2
and g3 to distortion through the term

N (2jω1)

L(2jω1)
= −3 + j 2

qs

−3 + j 2
qt

.

For large quality factors qt , qs � 1 the ratio approaches 1 which makes the IP3
essentially independent of g2. For small quality factor values the contribution due to
g2 is not negligible, especially if g3/gm is small compared to (g2/gm)2 as is the case
with Class-AC stages.

In practical implementations the component values are affected by manufacturing
variations. For this reason and to avoid the need for tuning, the quality factor qt is
most often chosen to have a value smaller than 5.

11.8 Pseudo-Differential Circuits

The analog signal path ofmanyRF andmixes-signal integrated circuits is differential.
This means that the signal of interest is transmitted on two equal lines carrying the
same signal, but with opposite polarities. The main objective is to make the system
insensitive to noise affecting both lines equally. This can be, for example, noise due
to the activity of digital circuits propagating through the common substrate of the
IC. A differential circuit is one that is designed to process the difference between
the two input terminals sensing the two lines carrying the signal and rejecting the
common component. Formally, if v+

i and v−
i are the two input voltages (relative to

ground), the differential-mode voltage is defined as

vd := v+
i − v−

i

and the common-mode voltage as

vc := v+
i + v−

i

2
.

Using this representation the two input voltages can be written as

v+
i = vc + vd

2
, v−

i = vc − vd

2
.

The prototypical differential circuit is the differential-pair shown in Fig. 11.40. In the
ideal drawn form the output currents are always i+o = i−o = I0/2 as long as v1

i = v−
i .

Any common-mode signal component is thus fully rejected.
Differential circuits do also have disadvantages. A real current source is imple-

mented with transistors and requires a certain voltage across its terminals to work
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Fig. 11.40 Differential pair

Fig. 11.41 Pseudo-
differential transconductance

properly. This reduces the headroom left for signal processing and in modern pro-
cesses operating at supplies voltages below 1.0V poses severe challenges. In addi-
tion, a current source does not only generate a DC current, but it also generates noise,
reducing the sensitivity of the circuit to small signals.

Pseudo-differential circuits are a class of circuits that alleviate some of these prob-
lems while retaining some of the benefits of differential circuits. They are circuits
composed by two equal single-ended sub-circuits each connected to one of the two
lines carrying the differential signal. An example pseudo-differential transconduc-
tance is shown in Fig. 11.41.

In pseudo-differential circuits the input common-mode signal component is not
rejected, but, if the circuit is sufficiently linear, the common-mode input appears
as a common-mode signal at the output and remains separable from the wanted
differential signal which appears at the output in differential form. The objective of
this section is to quantify the conversion between common-mode and differential-
mode in weakly nonlinear circuits.

We first show that weakly nonlinear circuits driven by a purely differential input
signal produce a mixture of differential- and common-mode output signals. Let’s
denote the input signals by x+, x−. the output signals by y+, y−, the relative common-
and differential-mode components by the same letter with index c and d respectively;
and the nonlinear transfer function of order k of the single-ended subsystems by hk .
By assumption the input signal is purely differential

x+ = xd
2

x− = − xd
2

.
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The outputs of order k are therefore

y+
k = 1

2k
hk ∗ x⊗k

d , y−
k = (−1)k

2k
hk ∗ x⊗k

d

from which we conclude that for k even the output is a common-mode signal, while
for k odd it is differential.

Let’s now consider the response of a weakly nonlinear circuit to a mixture of
differential- and common-mode signals

x+ = xc + xd
2

x− = xc − xd
2

.

Let’s first consider the second-order response of the two circuit halves. The positive
and negative outputs are

y+
2 = h2 ∗

(
xc + xd

2

)⊗2

= h2 ∗ x⊗2
c + 1

4
h2 ∗ x⊗2

d + h2 ∗ [xd ⊗ xc]sym

and

y−
2 = h2 ∗

(
xc − xd

2

)⊗2

= h2 ∗ x⊗2
c + 1

4
h2 ∗ x⊗2

d − h2 ∗ [xd ⊗ xc]sym

respectively. The second-order differential output signal component is therefore

yd,2 = 2h2 ∗ [xd ⊗ xc]sym

which includes the common-mode input signal. A similar calculation for the third
order component gives

yd,3 = h3 ∗
(
x⊗3
d

4
+ 3

[
xd ⊗ x⊗2

c

]
sym

)

which also includes a termdepending on the input common-mode.One can generalise
the calculations and show that the differential- and common-mode input components
are mixed by nonlinearities of all orders.

Consider now the cascade of two pseudo-differential weakly nonlinear circuits
driven by a purely differential signal. If the two subsystems are optimised inde-
pendently to maximise IP3 without paying attention to even order distortion com-
ponents, then, when the two subsystems are put together, one may obtain a lower
than expected total IP3. This is because the first stage produces second (and higher
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even) order mixes as common-mode signals which are also fed as input to the sec-
ond subsystem. The second (and higher order) distortion components of the latter
will then mix differential- and common-mode to produce differential output signal
components at the IM3 frequencies.
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Chapter 12
Linear Time-Varying Systems

12.1 Linear Time-Varying Systems

In this chapter we consider linear time-varying (LTV) systems. These are systems
whose behaviour depends on the particular moment in time at which they are used.
The change with time may arise for example due to the sensitivity of system com-
ponents to environmental changes. Examples of systems suffering from this type
of sensitivity include wireless communication systems in which the communication
channel between the transmitter- and the receiver-antennas is highly dependent on
the environment in between and around the antennas. The variation in time may also
be imposed intentionally by design to achieve functions that can’t be realised with
LTI-systems. This is the case for example in communication mixers whose function
is to shift in frequency the spectrum of a signal.

In this section we introduce a definition of linear time-varying systems valid
under the assumption that all signals are regular distributions. A generalisation will
be given in Sect. 12.3. The assumption of linearity means that the superposition
principle must hold. In addition, as for LTI-systems, we require that LTV-systems
depend continuously on the input signal. We therefore define

Definition 12.1 (LTV-system)A single-input, single-output, linear time-varying sys-
tem is a system that when driven by the input signal x produces a response y that
can be expressed by

y(t) = h(t, ξ) ∗t x(t) :=
∫ ∞

−∞
h(t, ξ)x(t − ξ)dξ . (12.1)

h(t, ξ) is the time-varying impulse response of the system.

The meaning of the variable ξ is best illustrated by anticipating somewhat the results
of Sect. 12.3 and apply as input signal a Dirac impulse at time t0

y(t) = h(t, ξ) ∗t δ(t − t0) = h(t, t − t0) .
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Thus ξ represents the time lapsed since the application of the input impulse.
For causal systems the outputmust vanish before the input is applied. This implies

that the impulse response must vanish for negative values of ξ

h(t, ξ) = 0 , ξ < 0 . (12.2)

Therefore, the response of a causal system driven by a regular distributions x ∈ D′+
is given by

y(t) =
∫ t

0
h(t, ξ)x(t − ξ)dξ =

∫ t

0
h(t, t − ξ)x(ξ)dξ .

12.2 Linear Ordinary Differential Equations

An important class of LTV-systems is the one of systems described by differential
equations with variable coefficients of the form

L

(
t,

d

dt

)
y(t) = N

(
t,

d

dt

)
x(t)

with

L

(
t,

d

dt

)
= dm

dtm
+ am−1(t)

dm−1

dtm−1
+ · · · + a0(t),

N

(
t,

d

dt

)
= bn(t)

dn

dtn
+ bn−1(t)

dn−1

dtn−1
+ · · · + b0(t)

time-dependent differential operators. It’s easy to verify that every such system with
n < m can be represented in a state-space representation with time dependent matri-
ces

d

dt
u = A(t)u + B(t)x A(.) ∈ C(R,Cn×n), B(.) ∈ C(R,Cn×1) (12.3)

y = C(t)u + D(t)x C ∈ C(R,C1×n), D ∈ C(R,C) (12.4)

with u the system state. Given an input signal x , the system response y is fully
determined if one can find a state u satisfying the first equation and suitable initial
conditions. The study of the dynamics of the system can therefore be reduced to the
study of a system of n differential equations of first order.
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12.2.1 Fundamental Solution

Consider the initial value problem described by the system of n differential equations

d

dt
y = A(t)y (12.5)

and initial conditions
y(0) = y0 ∈ C

n (12.6)

with A(.) an n × n matrix of complex valued functions of time ai j (.). If the functions
forming A(.) are bounded and continuous, then the right-hand side of the equation
is Lipschitz continuous and, as discussed in Sect. 9.1, the equation has a unique
solution. By choosing the initial value equal to the unit vector e j ∈ C

n pointing in
direction j , for j = 1, . . . , n we can thus obtain n independent solutions y j of the
equation. The matrix formed by the column vectors y j

Y (t) := [
y1(t), . . . , yn(t)

]
(12.7)

is called principal fundamental matrix of the system and satisfies the matrix equation

d

dt
Y = A(t)Y, Y (0) = I . (12.8)

Knowing Y , the solution of the initial value problem is thus given by

y(t) = Y (t)y0 t ≥ 0 .

In addition, since the columns of Y are independent at all times, det(Y (t)) �= 0 at all
times. The inverse of Y , Y−1, is thus well-defined as is the evolution operator (also
called state transition matrix)

U (t, τ ) := Y (t)Y−1(τ ) . (12.9)

Note that the evolution operator satisfies

d

dt
U (t, τ ) =

( d

dt
Y (t)

)
Y−1(τ ) = A(t)Y (t)Y−1(τ ) = A(t)U (t, τ )

and
U (τ, τ ) = I

and is thus the principal fundamental matrix of the system at time τ . From (12.9) we
also immediately obtain

U (t, λ)U (λ, τ ) = U (t, τ )
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and
U (τ, t) = [U (t, τ )]−1 .

The initial value problem described by (12.5) and initial conditions y(t0) = y0
can be translated in the language of distributions by extending the functions by zero
for t < t0 and by replacing the differential operator by the distributional one

Dy = A(t)y + y0δ(t − t0) (12.10)

as usual. Differently from the case where A(.) is constant, this equation can not be
written as a convolution equation. For this reason and since for arbitrary distribu-
tions multiplication is only well-defined with smooth functions, for the equation to
be well-defined the functions ai j (.) must belong to E. This may seem like a very
serious limitation, but remember that any distribution can be approximated to arbi-
trary accuracy by such a function (see Sect. 3.3). In this case the fundamental (or
elementary) solution of the equation relative to time τ is defined as the solution of
the matrix equation

LEτ = I δ(t − τ) (12.11)

with L the differential operator

L := L(t, D) := D − A(t) .

If U (t, τ ) is the evolution operator of the original differential equation (12.5) then

D1+(t − τ)U (t, τ ) = δ(t − τ)I + 1+(t − τ)A(t)U (t, τ )

shows that
Eτ (t) = 1+(t − τ)U (t, τ ) (12.12)

is the fundamental solution relative to τ of the above distributional equation and

y(t) = Et0(t)y0 (12.13)

is the solution of (12.10).

12.2.2 Formal Solution

We now look for an explicit formal solution inD′+(R,Cn) of the equation

Dy = A(t)y + y0δ + x (12.14)
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with A(.) a matrix of functions in E as before. As a first step we rewrite the equation
as an integral equation. To do this we write Dy as Dδ ∗ y and convolve both sides
of the equation with 1+ to obtain

y − 1+ ∗ (A(t)y
) = y01+ + 1+ ∗ x .

Thus, if x is a bounded regular distribution then the equation can be written as

y(t) −
t∫

0

A(τ )y(τ )dτ = y01+(t) +
t∫

0

x(τ )dτ . (12.15)

Instead of solving this equation directly, we consider amore general integral equation
and then specialise to this case.

A Volterra integral equation of the second kind is an equation of the form

y(t) =
t∫

0

k(t, τ )y(τ ) dτ + x(t) , t ≥ 0 (12.16)

with x a given regular distribution in D′+(R,Cn), k an n × n matrix of continuous
functions [ki j ], i, j = 1, . . . , n and y the required unknown in D′+(R,Cn). This
equation can be solved by an algebraic method based on a group [33, 34].

Definition 12.2 (Group) A group is a pair (G, •) consisting of a non-empty set of
objectsG and a binary operation •, usually called the groupmultiplication, satisfying
the following properties

1. • is associative: (g1 • g2) • g3 = g1 • (g2 • g3).
2. • has an identity element e: g • e = e • g = g.
3. Every element g ∈ G has an inverse element g−1 ∈ G:

g • g−1 = g−1 • g = e.

Note that the unit element is unique, since if e′ is a second unit e = e • e′ = e′ shows
that it must be equal to the first one. A group G acts (from the left) on a non-empty
set X if there is a function

G × X → X , (g, x) 	→ g · x

such that the following hold:

1. e · x = x for all x ∈ X .
2. g1 · (g2 · x) = (g1 • g2) · x for all g1, g2 ∈ G and x ∈ X .

Let now k(t, τ ) be an n × n matrix of functions [ki j ], i, j = 1, . . . , n continuous
in the two variables t, τ , with 0 ≤ τ ≤ t and x a locally bounded, locally integrable
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function inD′+(R,Cn). That x is locally bounded means that it is bounded on every
finite interval. We define the operation of I + k on x by

(I + k) · x := x(t) +
t∫

0

k(t, τ )x(τ ) dτ .

The resulting function is again a locally bounded, locally integrable function in
D′+(R,Cn) as x and the elements I + k can be made to form a group. A suitable
group multiplication can be found by writing

(I + k1) · [(I + k2) · x] = x(t) +
t∫

0

k2(t, τ )x(τ ) dτ

+
t∫

0

k1(t, τ )x(τ ) dτ +
t∫

0

k1(t, τ1)

τ1∫

0

k2(τ1, τ2)x(τ2) dτ2 dτ1

and noting that

t∫

0

k1(t, τ1)

τ1∫

0

k2(τ1, τ2)x(τ2) dτ2 dτ1

=
t∫

0

t∫

τ2

k1(t, τ1)k2(τ1, τ2) dτ1 x(τ2) dτ2 .

Since the inner integral on the right-hand side results in a matrix of continuous
functions, we can define the group multiplication by

(I + k1) • (I + k2) := I + k1 + k2 + k1 � k2

with

k1 � k2(t, τ ) :=
t∫

τ

k1(t, λ)k2(λ, τ ) dλ . (12.17)

For convenience we also put

k � x(t) := k � x(t, 0) :=
t∫

0

k(t, τ )x(τ )dτ (12.18)

so that we can write
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(I + k) · x = x + k � x .

The unit of the group is readily seen to be I .
It remains to show that every element of the group I + k has an inverse (I + k)−1.

From the similarity with the geometric series we infer that the inverse is given by

(I + k)−1 := I +
∞∑
n=1

(−1)nk�n (12.19)

and show that this series converges in every interval 0 ≤ τ ≤ t ≤ T . By definition, for
every locally bounded function x = (x1, . . . , xn) and every finite interval 0 ≤ t ≤ T
we can find an upper bound given by

pT (x) := max
1≤i≤n

{
sup

0≤t≤T
|xi (t)|

}

so that, given the linearity of k,

pT (k � x) ≤ pT (k) pT (x) T

with

pT (k) := max
i

⎧⎨
⎩

n∑
j=1

sup
0≤τ≤t≤T

|ki j (t, τ )|
⎫⎬
⎭ .

Thus
pT (k � k) ≤ pT (k)2 T

and by induction

pT (k�n) ≤ pT (k)n
T n−1

(n − 1)! .

This upper bound is the nth term of a convergent series and implies the converges
of (12.19) for every value of T . Having established convergence one immediately
verifies that indeed

(I + k) • (I − k + k�2 ∓ · · · ) = I

and
(I − k + k�2 ∓ · · · ) • (I + k) = I .

With this group the Volterra equation (12.16) can be written as

(I − k) · y = x .

and is solved by multiplying on the left with (I − k)−1
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y(t) = x(t) + w � x(t) (12.20)

w :=
∞∑
n=1

k�n. (12.21)

The matrix function w is called the resolvent kernel of the equation.
The group can’t be extended to a ring or an algebra with the natural addition as

these would include the elements k. These elements pose two problems. First, the
inverse of these elements are not necessarily functions. For example, the inverse
of (t − τ)m−1/(m − 1)! is Dmδ and for singular distributions multiplication is only
defined with functions in E. Second, such a ring includes zero divisors. From now on
wewill generally drop the symbols • of groupmultiplication and · of group operation
as is commonly done with multiplication symbols.

We now come back to the special case of (12.15) for which

k(t, τ ) = A(τ ) .

The solution is given by (12.20) with

k�n �

(
y01+(t) +

t∫

0

x(τ ) dτ

)

=
t∫

0

τ1∫

0

· · ·
τn−1∫

0

A(τ1) · · · A(τn) dτn · · · dτ1 y0

+
t∫

0

τ1∫

0

· · ·
τn−1∫

0

A(τ1) · · · A(τn)

τn∫

0

x(λ) dλ dτn · · · dτ1 .

These expressions can be written more compactly by introducing the notion of a
time-ordered product of operators. We define T {A1(τ1) · · · An(τn)} as the product
with factors arranged from left to right in order of decreasing times. For example

T {A1(τ1)A2(τ2)} =
{
A1(τ1)A2(τ2) τ1 ≥ τ2

A2(τ2)A1(τ1) τ1 < τ2 .

With this meta-operator we can now write

T
{( t∫

0

A(τ ) dτ
)2} =

t∫

0

t∫

0

T {A(τ1)A(τ2)} dτ2 dτ1
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=
t∫

0

τ1∫

0

A(τ1)A(τ2) dτ2 dτ1 +
t∫

0

t∫

τ1

A(τ2)A(τ1) dτ2 dτ1

=
t∫

0

τ1∫

0

A(τ1)A(τ2) dτ2 dτ1 +
t∫

0

τ2∫

0

A(τ2)A(τ1) dτ1 dτ2

= 2

t∫

0

τ1∫

0

A(τ1)A(τ2) dτ2 dτ1 .

and more generally

T
{( t∫

0

A(τ ) dτ
)n} = n!

t∫

0

· · ·
τn−1∫

0

A(τ1) · · · A(τn) dτn · · · dτ1 (12.22)

because there are n! possible orderings of the n times τ1, . . . , τn . Using these expres-
sions we have

k�n � y01+(t) = 1

n!T
{( t∫

0

A(τ ) dτ
)n}

y0 (12.23)

and

k�n�

t∫

0

x(τ ) dτ

=
t∫

0

λ1∫

0

· · ·
λn−1∫

0

A(λ1) · · · A(λn)

λn∫

0

x(τ ) dτ dλn · · · dλ1

=
t∫

0

t∫

τ

λ1∫

τ

· · ·
λn−1∫

τ

A(λ1) · · · A(λn) dλn · · · dλ1 x(τ ) dτ

= 1

n!T
{( t∫

τ

A(λ) dλ
)n}

� x . (12.24)

The solution of (12.15) can thus be written in the simple form

y(t) = E0(t)y0 + Eτ (t) � x(t) (12.25)
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with
Eτ (t) = 1+(t − τ)T {e

∫ t
τ
A(λ) dλ} (12.26)

the fundamental solution of the equation relative to τ and where we have made
explicit the fact that for t < τ it is zero.

In the special case in which A(.) commutes with
∫ t
τ
A(λ) dλ the time ordering

operator has no effect and the solution of the equation is a direct generalisation of
the solution obtained using the method of separation of the variables for the scalar
equation

Eτ (t) = 1+(t − τ)e
∫ t
τ
A(λ) dλ .

In particular this is the case if A(.) is constant, in which case the fundamental solution
becomes

Eτ (t) = 1+(t − τ)eA(t−τ) , A ∈ C
n×n

and the expression for the solution y becomes a convolution identical to (8.11).
For this particular case it is interesting to observe that, for a small-time increment

�t , the evolution from an initial state y0 can be approximated (to first order) by

y(�t) ≈ (I + A�t) · y0
so that, by iteration

y(n�t) ≈ (I + A�t)•n · y0 .

Now if we set �t = t/n we obtain that, in the limit as n tends to infinity

lim
n→∞

(
I + A

t

n

)•n = eAt .

The fundamental solution of (12.14) given by (12.26) can also be interpreted as
a matrix function of the two variables t and τ

W (t, τ ) := 1+(t − τ)T
{
e
∫ t
τ
A(λ) dλ

}
.

As every element of the matrix is locally integrable, it is also a regular distribution
that can be applied to test functions φ ∈ D(R2). In particular, we can choose test
functions of the form ψ(t)x j (τ ) with ψ, x j ∈ D(R), j = 1, . . . n in which case we
obtain

∞∫

−∞

∞∫

−∞
W (t, τ )ψ(t)x(τ ) dt dτ =

∞∫

−∞

∞∫

−∞
W (t, τ )ψ(t) dt x(τ ) dτ
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with x = (x1, . . . , xn). The inner integral on the right-hand side evaluates to a matrix
of indefinitely differentiable functions inE [16, 35]. For this reason and remembering
that every distribution f is the limit of a sequence of indefinitely differentiable
functions (for example fm = f ∗ βm with βm the test functions of Example (2.4)) we
can extendW � x by continuity to operate on vector valued distributions inE′(R,Cn)

by defining it as the distribution satisfying the system of equations

〈(W � x)i , ψ〉 =
n∑
j=1

〈
x j ,

∞∫

−∞
wi j (t, τ )ψ(t) dt

〉
, i = 1, . . . , n . (12.27)

The thus extended linear map W� is a distribution valued continuous function

W� : E′(R,Cn) → D′(R,Cn) .

With this definition we obtain for example that the solution of the equation with
an input signal

x = y0δ(t − t0), y0 ∈ C
n

is

〈(W � y0δ(t − t0)
)
i
, ψ〉 =

n∑
j=1

y0, j

∞∫

−∞
wi j (t, t0)ψ(t) dt

or
W � y0δ(t − t0) = W (t, t0)y0 .

This shows that the matrix W plays a similar role as the fundamental solution Eτ (t)
and is called the (two-sided) fundamental kernel (or elementary kernel) of the differ-
ential operator D − A(t). It also shows that, aswithLTI systems, the initial conditions
can be absorbed in the input vector signal x .

Example 12.1: Oscillator with Increasing Resonance [33]

Consider an ideal oscillator with a resonance frequency increasing with the square
root of time

D2y + ω2
0 t y = x (12.28)

to which we apply an input signal

x = y0Dδ + y1δ

corresponding to initial conditions y(0) = y0 and y′(0) = y1.
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The equation can be rewritten in the state-space form by defining the state

u =
[

y
Dy

]

to obtain
Du = A(t)u + Bδ, y = Cu

with

A(t) =
[

0 1
−ω2

0t 0

]
, B =

[
y0
y1

]
, C = [

1 0
]

.

In essence we need to calculate W (t, 0). Using (12.23) and remembering (12.22)
we have, for n even

A(τ )�n � 1+(t) =
⎡
⎣− t3n/2ωn

0∏n
k=1 ak

0

0 − t3n/2ωn
0∏n−1

k=1 bk

⎤
⎦ , n even

and for n odd

A(τ )�n � 1+(t) =
⎡
⎣ 0 t3(n−1)/2+1ωn−1

0∏n−1
k=1 bk

t3(n+1)/2−1ωn+1
0∏n

k=1 ak
0

⎤
⎦ , n odd

where (ak)k≥1 and (bk)k≥1 are the following sequences of integers

(ak)k≥1 := (2, 3, 5, 6, 8, 9, 11, 12, . . . )

(bk)k≥1 := (3, 4, 6, 7, 9, 10, 12, 13, . . . ) .

The fundamental kernel at (t, 0) is thus

W (t, 0) = I +
∞∑
n=1

A(τ )�n � 1+(t)

=
[
1 − ω2

0 t
3

6 + ω4
0 t

6

180 ∓ · · · t − ω2
0 t

4

12 ± · · ·
−ω2

0 t
2

2 + ω4
0 t

5

30 ∓ · · · 1 − ω2
0 t

3

3 + ω4
0 t

6

72 ∓ · · ·

]
.

The series can be recognised as linear combinations of the Airy Ai and Bi functions
and their derivatives Ai′ and Bi′

W (t, 0) = [
w0(t) w1(t)

]
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Fig. 12.1 Solutions of
(12.28) for y0 = 1, y1 = 0
and ω0 = 2π

with

w0(t) = 31/6(2/3)

2

[
(
√
3Ai(−tω2/3

0 ) + Bi(−tω2/3
0 ))

−ω
2/3
0 (

√
3Ai′(−tω2/3

0 ) + Bi′(−tω2/3
0 ))

]

and

w1(t) = (1/3)

2 · 32/3
[

3Ai(−tω2/3
0 )−√

3Bi(−tω2/3
0 )

ω
2/3
0

−3Ai′(−tω2/3
0 ) + √

3Bi′(−tω2/3
0 )

]
.

The signal of interest y is thus given by

y(t) = CW (t, 0)B.

Specifically, for y0 = 1 and y1 = 0 (see Fig. 12.1)

y(t) = 31/6(2/3)

2

(√
3Ai(−tω2/3

0 ) + Bi(−tω2/3
0 )

)
.

The full fundamental kernelW (t, τ ) can be obtained using Eqs. (12.9) and (12.12)
and computing the inverse of W (t, 0)

W (t, τ ) = 1+(t − τ)W (t, 0)[W (τ, 0)]−1.
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12.2.3 Perturbation Theory

The solution of (12.14) presented above is of great theoretical value. However, when
it comes to solving practical problems it is in general very difficult to find a closed
form for the fundamental kernel W (t, τ ). In many situations the problem at hand
looks similar to a solvable problem, but with additional terms. If those terms are
small in comparison to the ones of the solvable problem then one can obtain a good
approximation to the solution of the problem by the following perturbative method.

Suppose that the matrix A(.) can be split in two parts: one that leads to a solvable
problem and that we denote by A0(.) and one with relatively small elements, the
perturbation term, that makes the equation unsolvable and that we denote by Ã(.)

Dy = [A0(t) + Ã(t)]y + x .

Let W0(t, τ ) be the fundamental kernel of the solvable part of the equation, Y0(.) its
principal fundamental matrix, that is, the solution of the matrix equation

DY0(t) = A0(t)Y0(t) , Y0(0) = I .

and let express y in terms of a new vector ỹ defined by

y = Y0(t)ỹ .

Then the equation becomes

DY0(t)ỹ + Y0(t)Dỹ = [A0(t) + Ã(t)]Y0(t)ỹ + x

which reduces to
Dỹ = Q(t)ỹ + Y−1

0 (t)x

with
Q(t) := Y−1

0 (t) Ã(t)Y0(t) .

This equation has the same form as the original one. Its solution is therefore given
by

ỹ(t) = 1+(t − τ)T
{
e
∫ t
τ
Q(λ) dλ

}
�
[
Y−1
0 (t)x(t)

]
.

The advantage that we gain is the fact that, if the elements of Ã(.) are small, then
the series expansion of this solution converges very quickly. Differently from this,
to obtain a good approximation using the series of the original formulation of the
problem requires a large number of terms (compare with Example 12.1).

If x is composed by regular distributions then the first terms of the solution of the
equation are given by
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y(t) = Y0(t)

t∫

0

Y−1
0 (λ)x(λ) dλ

+ Y0(t)

t∫

0

τ∫

0

Q(τ )Y−1
0 (λ)x(λ) dλ dτ + · · ·

=
t∫

0

W0(t, λ)x(λ) dλ +
t∫

0

τ∫

0

W0(t, τ ) Ã(τ )W0(τ, λ)x(λ) dλ dτ + · · · .

The first term that we denote by y0 is the solution of the unperturbed equation. In
general, it is given by

y0 = W0 � x .

The next term is the first order perturbation term that we denote by y1. Note that
it can be expressed as the action of the unperturbed system on an input signal x1
constructed by multiplying y0 by the perturbation Ã

y1 = W0 � x1, x1(t) = Ã(t)y0(t) .

Similarly, the nth order perturbation term can be represented as the action of the
unperturbed system on an input signal obtained by multiplying the perturbation term
of order n − 1 by Ã

yn = W0 � xn, xn(t) = Ã(t)yn−1(t) .

The output of the system

y(t) =
∞∑
n=0

yn(t)

can thus be calculated iteratively starting from the response of the unperturbed system
where each successive term is the result of multiplying the output of the previous
term by Ã and feeding it back as input of the unperturbed system. This reminds of
a feedback system with the unperturbed system playing the role of the forward path
and Ã of the feedback one.

12.2.4 Non-smooth Coefficients

For several applications the requirement of differential operators with indefinitely
differentiable coefficients is too restrictive. In those situations it’s useful to work in
the subspace of D′ constituted by distributions that are m times differentiable and
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denoted byD′m . These distributions are said to be of order m and are the continuous
linear functionals on the set of m times continuously differentiable functions with
compact support Dm . Convergence is defined in a similar way as for distributions
inD′.

Given a distribution f ∈ D′m the product of f with an m times continuously
differentiable function g is well-defined

〈 f g, φ〉 = 〈 f, gφ〉

since if φ ∈ Dm then gφ is also inDm . Note that we can exchange the roles of f and
g and still obtain a well-defined multiplication. Thus if f is anm times continuously
differentiable function, it can be multiplied by a distribution of order m.

Example 12.2: Dirac Distribution

The Dirac distribution δ belongs toD′0 and its multiplication with continuous func-
tions is well-defined as long as one restricts considerations toD′m .

12.3 Impulse Response Generalisation

In the previous section we saw that differential equations describing LTV systems
aren’t convolution equations. In spite of thiswe found that the solution of the equation
can be written with the help of the operator � acting on a (matrix) function charac-
terising the system (the fundamental kernel) and the input vector x . In particular, for
a system described by the state-space representation (12.3)–(12.4) with D(t) = 0,
the input-output characteristic is given by

y(t) = C(t)1+(t − τ)T {e
∫ t
τ
A(λ) dλ} � B(t)x(t)

= C(t)1+(t − τ)T {e
∫ t
τ
A(λ) dλ}B(τ ) � x(t) .

This expression highlights how in LTV systems the operator � is the natural operator
taking the place of convolution in LTI systems. However, because the Fourier- and
Laplace-transform convert convolutions into products and because for many pur-
poses the frequency domain characteristics of a system are more interesting than the
time domain ones, in engineering circles it is common to express the input-output
characteristic of LTV systems in terms of a convolution like operator as we did in
Sect. 12.1. This is easily done by the change of variable

ξ = t − τ
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and by defining the time-varying impulse response h(t, ξ) as a function of the vari-
ables t and ξ

y(t) =
t∫

0

h(t, t − ξ) x(ξ) dξ.

h(t, ξ) = C(t)1+(ξ)T
{
e
∫ t
t−ξ

A(λ) dλ
}
B(t − ξ)

where we have assumed x to be a regular distribution in D′+. Note that, while the
above integral looks very similar to a convolution, it differs from the convolution
that we defined in Sect. 3.2. A generalisation of the above convolution like operation
for LTV systems is obtained by adapting (12.27) and defining it as the distribution
satisfying the following equality

〈h ∗t x, φ〉 = 〈x(ξ), 〈h(t, t − ξ), φ(t)〉〉 (12.29)

wherewehave generalised the inner integral of (12.27) to the application of a parame-
teriseddistribution to the test functionφ. Since this operation shares several properties
with convolution, the operator ∗t is called the convolution product for time-varying
systems. In the technical literature it is most often called convolution and denoted by
the same symbol as the one used for convolution. In the following we will also often
simply call it convolution, but maintain the use of the symbol ∗t to make it clear that
it is not the operation defined by (3.6).

In the special case in which the time-varying impulse response is the product of
an indefinitely differentiable function f and a distribution g

h(t, ξ) = f (t)g(ξ)

the convolution product for time-varying systems can be expressed in terms of a
proper convolution by

〈h ∗t x, φ〉 = 〈g ∗ x, f φ〉 .

In the previous section we discussed the fact that, for systems described by a
differential equation, the application 〈h(t, t − ξ), φ(t)〉 appearing on the right-hand
side of (12.29), regarded as a function of the parameter ξ , is a function belonging
to E. For this reason, for the equation to have a meaning, x must be restricted to
distributions in E′. However, if we define a function γ ∈ E bounded from the left
with γ (t) = 1 in a neighbourhood of [0,∞) and assume h to be such that

ξ 	→ γ (ξ)〈h(t, t − ξ), φ(t)〉

is a Schwartz function for every φ ∈ S, then (12.29) remains valid for right-sided
tempered distributions

x ∈ S′ ∩ D′
+ .
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Note the similarity with the definition of the Laplace transform and the fact that, as
for the Laplace transform, the value of the distribution does not depend on the choice
of γ . For this reason and as is commonly done for the Laplace-transform, we will
generally not write γ explicitly.

Before concluding this section we note some properties of the operator ∗t . The
first is that it is associative

(hB ∗t h A) ∗t x = hB ∗t (hA ∗t x)

with hA and hB the time-varying impulse responses of two systems. This is a direct
consequence of the fact that ∗t is related to � by a simple variable transformation and
by the definition of the latter (see Eqs. (12.17) and (12.18)).

A second important property, or rather the lack of it, is that, ∗t is not commutative.
Therefore, differently from LTI systems, the order of LTV systems is important. As
an example consider the cascade of a low-pass filter with a 3 dB cut-off frequency of
ω3dB and the frequency shifting system of Example 12.4 with w0 � ω3dB . Suppose
that the system is driven by a signal with a frequency falling in the pass-band of
the LPF. Then if the signal passes first through the LPF and then into the frequency
shifting system, the output will have a large magnitude. Differently from this, if the
input signal first passes through the frequency translating system then the signal at
the input of the LPF will lie in the stop-band of the latter and will appear much
attenuated at its output.

12.4 Time-Varying Frequency Response

12.4.1 Definition

Consider a system described by the time-varying impulse response h(t, ξ). Under the
assumption that the input signal x is a right-sided tempered distribution the system
response y can be written as

〈y(t), φ(t)〉 =
〈
F −1{F {x}},

∞∫

−∞
h(t, t − ξ)φ(t) dt

〉

=
〈
x̂(ω),

1

2π

∞∫

−∞

∞∫

−∞
h(t, t − ξ)φ(t) dt ejωξ dξ

〉

=
〈
x̂(ω),

1

2π

∞∫

−∞

∞∫

−∞
h(t, t − ξ)e−jω(t−ξ) dξ ejωt φ(t) dt

〉
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=
〈
x̂(ω),

1

2π

∞∫

−∞
ĥ(t, ω) ejωt φ(t) dt

〉

=
〈
1

2π
ĥ(t, ω) ejωt � x̂(t), φ(t)

〉

or

y(t) = 1

2π
ĥ(t, ω) ejωt � x̂(t) (12.30)

where ĥ(t, ω) is the Fourier transform with respect to ξ of h(t, ξ) and is called the
time-varying frequency response of the system

ĥ(t, ω) :=
∞∫

−∞
h(t, ξ)e−jωξ dξ . (12.31)

In particular, for regular distributions we have

y(t) = 1

2π

∞∫

−∞
ĥ(t, ω)x̂(ω) ejωt dω .

It’s easy to check that for real systems the time-varying frequency response at −ω is
equal to the conjugate complex of the value at ω

ĥ(t,−ω) = ĥ(t, ω)

for each value of t .
To obtain a physical interpretation for ĥ(t, ω) we apply a complex tone ejω0t

as input signal. This is allowed because periodic distributions are isomorphic to
distributions with compact support (see Sect. 3.4). With this input signal the output
of the system is found with the help of (12.30) to be

y(t) = ĥ(t, ω0)e
jω0t

and suggests the interpretation for the time-varying frequency response ĥ(t, ω) as
the complex envelope at ω0 of the output signal (see Fig. 12.2).

If the output signal y is a tempered distribution it can be Fourier transformed. A
useful expression relating the spectrum of y and the one of the input signal x can be
obtained by expressing y with the help of (12.30)
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Fig. 12.2 Illustrative representation of the response of a real LTV system to an input tone

〈ŷ, φ〉 =
〈
F { 1

2π
ĥ(t, ω) ejωt � x̂}, φ(t)

〉

=
〈
x̂(ω),

1

2π

∞∫

−∞
ĥ(t, ω) ejωt φ̂(t) dt

〉

=
〈
x̂(ω),

1

2π

∞∫

−∞

∞∫

−∞
ĥ(t, ω) e−j (w−ω)t dt φ(w) dw

〉

=
〈
x̂(ω),

1

2π

∞∫

−∞

ˆ̂h(w − ω,ω) φ(w) dw

〉

=
〈
1

2π
ˆ̂h(w − ω,ω) � x̂(w), φ(w)

〉

or

ŷ(w) = 1

2π
ˆ̂h(w − ω,ω) � x̂(w) (12.32)

with

ˆ̂h(w, ω) :=
∞∫

−∞
ĥ(t, ω) e−jwt dt . (12.33)

The function ˆ̂h is the two-dimensional Fourier transform of the time-varying impulse
response h and, in the context of communication systems, is called thedoppler-spread
function. Equation (12.32) shows that the input and output spectra of an LTV system
are related by a convolution like operation. In particular, for regular distributions
they are related by the following integral

ŷ(w) = 1

2π

∞∫

−∞

ˆ̂h(w − ω,ω)x̂(ω) dω .

For tempered distributions the time-varying impulse response h, the time-varying

frequency response ĥ and the doppler-spread function ˆ̂h are isomorphic to each other.
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For this reason an LTV system with a tempered time-varying impulse response can
be described by any of these functions.

Example 12.3

In this example we investigate the relationship between an LTI system to which we
apply a right-sided input tone and an LTV system activated at t = 0 s and driven by
a tone, resulting in equal output signals.

Consider an LTI system described by the differential equation

Dy + ay = x , a > 0

to which we apply the signal x(t) = 1+(t)ejωt ∈ D′+. The response of the system
can be calculated with the help of the Laplace transform. The transfer function of
the system and the Laplace transformed of the input signals are

H(s) = 1

s + a
, �{s} > −a

and

X (s) = 1

s − jω
, �{s} > 0

respectively. The system response is thus found by inverse Laplace transforming

Y (s) = H(s)X (s) = 1

(s + a)(s − jω)
, �{s} > 0

which gives

y(t) = e−at

a + jω

(
e(a+jω)t − 1

)
.

We now re-interpret the system as a time-variable one consisting of the above LTI
system and an ideal switch at its input. For t < 0 the input is disconnected from the
system (switch open) which therefore produces the constant output signal y(t) = 0.
At t = 0 the input signal is connected to the input of the LTI system by closing the
switch. The full system is therefore described by the differential equation

Dy + ay = 1+(t)x .

The input signal is now the complex tone x(t) = ejωt .
To obtain the system responsewefirst compute the time evolution operatorU (t, τ )

which is the solution of

Dy + ay = δ(t − τ) , t ≥ τ > 0
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and given by
U (t, τ ) = 1+(t)1+(t − τ)e−a(t−τ) .

With it the response of the system to the input x(t) = ejωt is calculated to be

y(t) = U (t, τ ) � x(t) =
t∫

0

e−a(t−τ)ejωτdτ

= e−at

a + jω

(
e(a+jω)t − 1

)

which of course agrees with the calculation through Laplace transform. However,
with the new interpretation we see that the system posses a time-varying fre-
quency response ĥ(t, ω). The easiest way to calculate it is through the relation
y(t) = ĥ(t, ω)ejωt and we obtain

ĥ(t, ω) = e−(a+jω)t

a + jω

(
e(a+jω)t − 1

)
.

This shows the relationshipbetween ĥ(t, ω) and theLTI frequency responseH(jω) =
1/(a + jω). Differently from the latter, ĥ(t, ω) includes the full information about
the variation in time of the system. In this particular example, about when the switch
is closed.

Example 12.4: Frequency Translation

Consider a system described by the doppler-spread function

ˆ̂h(w, ω) = 2πδ(w − w0) .

According to (12.32) the spectrum of the output signal is given by

ŷ(w) = δ(w − w0 − ω) � x̂(w) = x̂(w − w0) .

Therefore, the effect of the system described by the above doppler-spread function is
to shift in frequency the spectrum of the input signal by w0. Such a device is referred
to as a mixer.

The time-varying frequency response and the time-varying impulse response cor-
responding to this delay-spread function are easily calculated to be

ĥ(t, ω) = ejw0t
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Fig. 12.3 Block diagram of a frequency-translating LTV system

Fig. 12.4 Ideal sample and hold

and
h(t, ξ) = ejw0tδ(ξ)

respectively. If we apply a complex tone ejω0t as input signal we can calculate the
output signal from the former and (12.30) as

y(t) = 1

2π
ej (w0+ω)t � 2πδ(t − ω0) = ej (w0+ω0)t

or from the latter and (12.29) as

y(t) = ejw0tδ(ξ) ∗t e
jω0t = ej (w0+ω0)t .

In both cases the angular frequency of the input tone is shifted by w0 as expected.
The time-varying impulse response shows clearly that the system is memory-less,

that is, the value of the output signal at time t only depends on the input signal at
time t . The effect of the system is to simply multiply the input signal by the complex
tone ejw0t as illustrated in Fig. 12.3.

Example 12.5: Sample and Hold

In this example we consider an ideal sample and hold: the output of the system is
constructed by sampling the input signal x at regular intervals T and by holding the
value of each sample constant for the duration of a periodT . Sample and hold blocks
are used for example at the input of analog-to-digital converters (ADC) to give the
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converter enough time to compare the value of a sample with one or more reference
signal levels. The operation of a sample and hold is illustrated in Fig. 12.4.

The ideal sample and hold is characterised by the following time-varying impulse
response

h(t, ξ) = δT (t − ξ)1T (ξ) =
∞∑

n=−∞
δ(t − ξ − nT )1T (ξ)

with

1T (ξ) =
{
1 0 ≤ ξ < T
0 otherwise .

Note that in this case (12.29) doesn’t make sense as h is a singular distribution and
in the right-hand side expression x is not applied to a smooth function. To give a
meaning to

y(t) = h(t, ξ) ∗t x(t)

we have to restrict the input signal x to belong to E. Then we can write

〈y, φ〉 = 〈h(t, ξ) ∗t x(t), φ(t)〉

=
∞∑

n=−∞

〈
x(ξ)δ(ξ − nT ),

ξ+T∫

ξ

φ(t) dt

〉

=
∞∑

n=−∞
x(nT )〈1T (t − nT ), φ(t)〉

or

y(t) =
∞∑

n=−∞
x(nT )1T (t − nT )

and we obtain the desired system response. The system response can also be written
as a (proper) convolution

y(t) = T δT (t)x(t) ∗ 1

T
1T (t) .

From this expression, assuming x to be Fourier transformable, it’s easy to compute
the output spectrum. From (4.14) we read that the Fourier transform of T δT x is the
convolution of the transforms of the factors divided by 2π

F {T δT x} = δωs ∗ x̂

with ωs the sampling angular frequency 2π/T . Thus, the output spectrum is
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ŷ(ω) = [δωs ∗ x̂(ω)] 1
T
1̂T (ω)

with

1̂T (ω) = T
sin π ω

ωs

π ω
ωs

e−jω T
2 .

This expression shows clearly the effects of sampling and of holding in the frequency
domain. The operation of sampling is represented by the factor in square brackets. Its
effect is to produce an infinite number of copies of the spectrum of the input signal
shifted by multiples of ωs

δωs ∗ x̂(ω) =
∞∑

n=−∞
x̂(ω − nωs) .

If the original signal has to be recovered from the samples then one must avoid (or
reduce to negligible levels) overlapping between the copies. This amount to saying
that the power of the input signal residing outside the frequency range (−ωs/2, ωs/2)
must be negligible. Or, in other words, the sampling frequency must be at least twice
the frequency of the highest component of the input signal spectrum containing
a non-negligible amount of power. This is the statement of the famous sampling
theorem. If this condition is satisfied then the input signal can be recovered with
the help of a low-pass-filter eliminating the copies with n �= 0. When the copies of
the input signal do overlap one says that sampling causes aliasing. Note that, if the
spectrum of the input signal x only occupies a small fraction of the frequency range
(−ωs/2, ωs/2) then one may find a sampling frequency lower than ωs not causing
aliasing.

The effect of holding act as an LTI filter introducing a delay of T /2. The filter
has a low-pass characteristic with notches at multiples of ωs . The effects of sampling
and of holding on the spectrum on a signal are illustrated in Fig. 12.5.

The need to restrict x to being an indefinitely differentiable functionmay seem like
excess of rigor.Note however that if x is not continuous at the sample instants nT then
the problem is not “merely” a mathematical one, but any physical implementation
will fail to work properly. This is so because if the input signal varies very rapidly
compared to the actual speed of the physical sampling switch, then the value of the
sample will be affected by many implementation details and in particular by noise.
The result is a system producing unpredictable sample values.

From a mathematical point of view one may enlarge the type of allowed input
signals to the class of continuous functions. Then the system response is mathemat-
ically well-defined, but it’s not a distribution anymore. In fact, the value of a Dirac
impulse is defined as the value of the test function at zero. If we multiply the test
function with a continuous function, the value is still well-defined. However, we
can’t expect to be able to compute the derivatives of the output signal. Compare also
with Sect. 12.2.4.



282 12 Linear Time-Varying Systems

Fig. 12.5 Illustration of the
effect of sampling and of a
sample and hold on the
spectrum of a signal

We started this section by performing a calculation leading to the definition of the
time-varying frequency response of a system and a relation expressing the output of
the system in terms of it. If we assume Laplace transformable, right-sided signals
and redo a similar calculation replacing the Fourier transform by the Laplace one we
obtain the time-varying transfer function of the system

H(t, s) =
∞∫

0

h(t, ξ)e−sξ dξ �{s} > σ . (12.34)

With it the output of the system is given by

y(t) = 1

2πj
H(t, s)est � X (s) . (12.35)

12.4.2 Differential Equation

Consider again a linear time-varying systemwhose state u is described by the system
of differential equations

Du = A(t)u + B(t)x

and assume that it is driven by a complex tone

x(t) = ejωt .

From (12.30) we know that the components of the state u can be represented by
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ui (t) = ûi (t, ω)ejωt , i = 1, . . . , n .

Inserting this representation for u and the complex tone for x in the equation we
obtain

Dû(t, ω)ejωt = A(t)û(t, ω)ejωt + B(t)ejωt .

The left-hand side can be written as

Dû(t, ω)ejωt = ejωt (jω + D)û(t, ω)

so that we obtain an equation for û(t, ω)

(jω + D)û(t, ω) = A(t)û(t, ω) + B(t) . (12.36)

With û(t, ω)wecandirectly obtain the time-varying frequency response of the system
without having to first compute the fundamental kernel

ĥ(t, ω) = C(t)û(t, ω) + D(t) .

In particular, if the system is described by a (possibly) higher-order differential
equation

L(t, D)y = N (t, D)x

with

L(t, D) = Dm + am−1(t)D
m−1 + · · · + a0(t),

N (t, D) = bn(t)D
n + bn−1(t)D

n−1 + · · · + b0(t)

we can directly obtain an equation for the time-varying frequency response of the
system by replacing the differential operator D in L by the operator jω + D and in
N by jω [36]

L(t, jω + D)ĥ(t, ω) = N (t, jω) . (12.37)

Note that this formulation in terms of distributions and distributional derivatives
takes care of the initial conditions automatically. If one works with functions and the
standard derivative then the initial conditions for the problem are obtained from

y(t) = ĥ(t, ω)ejωt .



284 12 Linear Time-Varying Systems

Example 12.6

Consider a system that is switched off up to time t = 0 (y(t) = 0, t < 0) at which
point it is turned on and is then described by the differential equation

Dy + t y = x .

We are interested in the time-varying frequency response of the system.We compute
it in three different ways.

First we compute it via the time evolution operator U . For t ≥ τ > 0 it is found
by solving the differential equation

Dy + t y = δ(t − τ) .

As can be verified by inserting it into the equation, it is given by

U (t, τ ) = e−t2/2+τ 2/2 .

To obtain the time-varying frequency response we apply the input x(t) = ejωt and
obtain

y(t) =
t∫

0

U (t, τ )x(τ )dτ = e−t2/2

t∫

0

eτ 2/2+jωτdτ.

From this and
y(t) = ĥ(t, ω)ejωt

we deduce that

ĥ(t, ω) = e−t2/2−jωt

t∫

0

eτ 2/2+jωτdτ .

The time-varying frequency response of the systemcan also be obtained byFourier
transforming the time-varying impulse response. The latter is obtained from the time
evolution operator using the variable substitution ξ = t − τ

h(t, ξ) = 1+(ξ)1+(t)e−t2/2+(t−ξ)2/2

where we made explicit that for t < 0 the response of the system vanishes. The
time-varying frequency response is thus
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ĥ(t, ω) =
∞∫

−∞
h(t, ξ)e−jωξdξ = e−t2/2

t∫

0

e(t−ξ)2/2e−jωξdξ

= e−t2/2

t∫

0

eτ 2/2e−jω(t−τ)dτ = e−t2/2−jωt

t∫

0

eτ 2/2+jωτdτ

which matches the one obtained with the previous method.
A third method to compute the time-varying frequency response is by solving the

corresponding differential equation

(D + jω)ĥ + t ĥ = 1+(t) .

The solution is

ĥ(t, ω) = 1+(t)e−t2/2−jωt

t∫

0

eτ 2/2+jωτdτ .

as is verified by inserting it in the equation and where we made explicit that for t < 0
it is zero.

12.5 Linear Periodically Time-Varying Systems

12.5.1 Floquet Theory

In this section we consider in more details linear periodically time-varying (LPTV)
systems. In particular, we study systems that can be described by a state-space repre-
sentation with matrices A(.), B(.),C(.) and D(.) having periodic smooth functions
as elements. These include systems described by differential equations with periodic,
indefinitely differentiable coefficients.

Consider the differential equation

ẏ = A(t)y + B(t)x (12.38)

with A(.) an n × n-matrix and B(.) an n × 1 one, both with T -periodic indefinitely
differentiable elements and where, for brevity, we denote by ẏ the (distributional)
derivative of y and similarly for other quantities. Let further Y (.) be the principal
fundamental matrix of the equation and

U (t, τ ) = Y (t)Y−1(τ )
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the evolution operator. From the periodicity of A(.) we obtain

U̇ (t + T ,T ) = Ẏ (t + T )Y−1(T )

= A(t + T )Y (t + T )Y−1(T )

= A(t)U (t + T ,T )

from which, with U (t, t) = I and the uniqueness of the solution of the equation we
deduce

U (t + T ,T ) = U (t, 0)

and
Y (t + T ) = Y (t)Y (T ) .

Let now introduce
P(t) = Y (t)e−t F , F ∈ C

n×n

with F an n × n matrix with constant coefficients and define the variable transfor-
mation

y(t) = P(t)z(t) .

In terms of z the equation becomes

Ṗ(t)z + P(t)ż = A(t)P(t)z + B(t)x

or
ż = P−1(t)

[
A(t)P(t) − Ṗ(t)

]
z + P−1(t)B(t)x .

To simplify this equation we calculate the derivative of P

Ṗ(t) = Ẏ (t)e−t F − Y (t)e−t F F

= A(t)Y (t)e−t F − Y (t)e−t F F

= A(t)P(t) − P(t)F .

Using this result in the previous expression we finally obtain

ż = Fz + P−1(t)B(t)x .

This equation is similar to the original one, but with the important difference that
the periodically time-varying matrix A(.) of the original equation has been replaced
by a constant matrix F . This shows that the evolution operator of any system of
differential equations with A(.) a T -periodic smooth matrix can be represented in
the form

U (t, τ ) = P(t)e(t−τ)F P−1(τ ) , (12.39)



12.5 Linear Periodically Time-Varying Systems 287

This is called the Floquet representation of the evolution operator.
Let y0 ∈ C

n , from the analysis of LTI-systems we know that et F y0 is a linear
combination of functions of the form

pi (t)e
λi t

with λi an eigenvalue of F and pi a polynomial of degree lower than the algebraic
multiplicity of λi . The Floquet representation tells us that the solution of (12.38) is
a linear combination of functions of the form

p̃i (t)e
λi t

where p̃i are again polynomials, but in this case withT -periodic smooth coefficients.

Example 12.7

In this example we look for the solution of the equation

Dy = A(t)y + x

with

A(t) =
[
ω3dB + �ω cosωmt 1

0 ω3dB + �ω cosωmt

]
.

In particular we are interested in the evolution operator of the equation as it allows
us to calculate the solution for an arbitrary input x .

First observe that A(.) can be written as a sum of two matrices

A(t) =
[
ω3dB 1
0 ω3dB

]
+
[
�ω cosωmt 0

0 �ω cosωmt

]
,

the first of which is constant, andwe denote it by F . To find the principal fundamental
matrix we make the ansatz

Y (t) = P(t)et F , P(t) = p(t)I

with p an indefinitely differentiable periodic function with period 2π/ωm . Inserting
this ansatz in the equation we find

DY = D
[
p(t)Iet F

]
= ṗ(t)Iet F + p(t)I Fet F

= [
F + ṗ

p
I
]
Y (t) .

From this expression we see that it satisfies the equation if
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ṗ

p
= �ω cosωmt.

The function p can be calculated from this equation and the condition Y (0) = I
using the method of the separation of variables from which we obtain

p(t) = e
�ω
ωm

sinωmt .

The principal fundamental matrix is thus

Y (t) = e
�ω
ωm

sinωmtet F .

With Y and using the results of Example 8.2 for et F the evolution operator is found
to be

U (t, τ ) = e
�ω
ωm

sinωmt

e
�ω
ωm

sinωmτ
eω3dB (t−τ)

[
1 t − τ

0 1

]
.

12.5.2 Time-Varying Frequency Response

Consider a SISO linear periodically time-varying system described by the state-space
representation

Du = A(t)u + B(t)x (12.40)

y = C(t)u + D(t)x (12.41)

with A(.), B(.),C(.) and D(.) indefinitely differentiable T -periodic matrix func-
tions. Thanks to linearity we can analyse the response of the system for D(t) = 0
and add the contribution of D(t)x at the end.

In the previous section we established that the evolution operator of (12.40) can
be expressed in the form

U (t, τ ) = P(t)e(t−τ)F P−1(τ )

with P(t) an invertible, indefinitely differentiable T -periodic matrix function and F
a constant matrix. Using this representation for the response of the system we obtain

y(t) = 1+(t − τ)C(t)P(t)e(t−τ)F P−1(τ )B(τ ) � x(t)

or, in terms of the time-varying impulse response

y(t) = hC ∗t x(t)
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Fig. 12.6 Representation of
a stable LPTV system

with
hC(t, ξ) = 1+(ξ)C(t)P(t)eξF P−1(t − ξ)B(t − ξ) .

If we now add the contribution to the output from D(t)x we finally find

y(t) = h ∗t x(t)

with
h(t, ξ) = hC(t, ξ) + D(t)δ(ξ) .

The fist term hC is a regular distribution growing at most exponentially with respect
to ξ while the second has bounded support. The impulse response h is therefore
Laplace transformable with respect to ξ . This implies that the system possess a time-
varying transfer function H(t, s). H(t, s) is a function in the variables t and s and
the above expression makes it clear that it is periodic in t . Therefore, with respect to
t , we can expand it in a Fourier series

H(t, s) =
∞∑

n=−∞
Hn(s)e

jnωT t

with ωT = 2π/T and Hn(s) functions of the variable s alone.
The last expression shows that LPTV systems can be regarded as the parallel

connection of LTI subsystems with transfer functions Hn whose outputs are shifted
in frequency by nωT (see Fig. 12.6 and Example 12.4). This is best seen by applying
a complex tone to a stable system. Thus, assume that all the eigenvalues of F have a
negative real part, then the time-varying frequency response ĥ(t, ω) does also exist
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and is also a regular distribution that can be identified with a function in the variables
t and ω. Proceeding as above we can write it as

ĥ(t, ω) =
∞∑

n=−∞
ĥn(ω)ejnωT t

with ĥn(ω) = Hn(jω). If we now apply a complex input tone ejω0t to the system and
use (12.30) to calculate the system response we obtain

y(t) =
∞∑

n=−∞
ĥn(ω0)e

j (nωT +ω0)t .

The output is thus seen to consist of a sum of tones at ω0 + nωT , n ∈ Z, each one
weighted by ĥn(ω0). It is readily seen that for a real system the following relation
must hold

ĥ−n(−ω) = ĥn(ω) .

Example 12.8: LPTV LPF

In this example we examine a series RC low-pass filter (LPF) where, to reduce
the physical area occupied by the circuit, the series resistor is implemented with a
MOSFET. While this will produce some distortion, here we are interested in what
happens if the gate bias voltage is disturbed by a periodic signal (see Fig. 12.7).
This could happen for example if in a mixed-signal system (both analog and digital
signals present) a line distributing the system clock is in proximity of the gate bias
line, and the two are not properly isolated. The system is described by the following
differential equation

[
D + ω3dB(t)

]
y = ω3dB(t)x(t) , ω3dB(t) = 1

R(t)C

with y the voltage across the capacitor, x the source voltage and R(.) a periodic
function. Given the periodicity of R(.), ω3dB(.) is also a periodic function with the
same period that we assume to be smooth. ω3dB(.) can therefore be expanded in a

Fig. 12.7 RC low-pass filter
with a PTV resistor



12.5 Linear Periodically Time-Varying Systems 291

Fourier series that, for simplicity of analysis, we assume to be given by

ω3dB(t) = ω0 + �ω cos(ωmt) , ω0,�ω,ωm > 0

with �ω � ω0. We are interested in characterising the frequency response of the
filter.

The equation describing the system separates into a differential equation with
constant coefficients and a small perturbation term

(
D + ω0

)
y + �ω cos(ωmt)y = ω3dB(t)x(t) .

We can therefore solve the problem using the perturbation theory that we developed
in Sect. 12.2.3. In addition, instead of solving for the time-varying impulse response
and obtain the time-varying frequency response by Fourier transformation, it is con-
venient to solve directly the equation for the latter. Proceeding as in Sect. 12.4.2 we
obtain (

D + jω + ω0
)
ĥ(t, ω) + �ω cos(ωmt)ĥ(t, ω) = ω3dB(t)

and we can identify −�ω cos(ωmt) with the perturbation term Ã and −(jω + ω0)

with the matrix A0 of the unperturbed system.
We start by computing the time-varying frequency response of the unperturbed

system that we denote by ĥ0(t, ω) and which has to satisfy

(
D + jω + ω0

)
ĥ0(t, ω) = ω0 + �ω

2

(
ejωmt + e−jωmt

)

where we have represented cosωmt by complex tones. Note that the variation in R(.)

results in additional input tones to an otherwise time invariant system. The solution
of the equation is readily calculated to be

ĥ0(t, ω) = H(ω) + �ω

2ω0

[
H(ω + ωm)ejωmt + H(ω − ωm)e−jωmt

]

with

H(ω) = 1

1 + j ω
ω0

the frequency response of the RC filter without disturbances (that is for ω3dB(t) =
ω0). H(ω)/ω0 plays the role of the fundamental kernelW0 of Sect. 12.2.3. However,
because A0 is time invariant we can work in the convolution algebra of periodic dis-
tributions and instead of the fundamental kernel, the system can be characterised by
the fundamental solution of the equation. In this example the kth Fourier coefficient
of the fundamental solution of the equation is given by (see Example 7.5)
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ek = H(ω + kωm)

Tω0
; T = 2π/ωm .

We now calculate the first order perturbation term. The first step consists in cal-
culating the new “input signal” produced by the perturbation Ã

x1(t) = Ã(t)ĥ0(t, ω) = −�ω

2

(
ejωmt + e−jωmt

)
ĥ0(t, ω) .

The first order perturbation term of the frequency response ĥ1(t, ω) is then obtained
by applying this signal to the unperturbed system

(
D + jω + ω0

)
ĥ1(t, ω) = −�ω

2

(
ejωmt + e−jωmt

)
ĥ0(t, ω) .

The solution of the equation is given by

ĥ1(t, ω) = −�ω

2ω0
H(ω)

[
H(ω + ωm)ejωmt + H(ω − ωm)e−jωmt

]

−
(�ω

2ω0

)2{
H(ω)

[
H(ω + ωm) + H(ω − ωm)

]

+ H(ω + ωm)H(ω + 2ωm)ej2ωmt

+ H(ω − ωm)H(ω − 2ωm)e−j2ωmt
}

.

Note that both ĥ0 and ĥ1 include terms of order �ω. Since Ã is proportional to �ω

and all terms of ĥ1 are proportional to powers of this quantity, no higher perturbation
term will include a contribution of order �ω. The first two terms ĥ0 and ĥ1 are
therefore enough to establish the effects of the perturbation of order �ω. To obtain
an estimate to second order in �ω we would need to calculate ĥ2 as well.

With these results the first order response of the system when driven by a tone at
ω is given by

y(t) = [
ĥ0(t, ω) + ĥ1(t, ω)

]
ejωt .

It is comprised by tones at ω + nωm, n = −2,−1, 0, 1, 2. It’s not difficult to see that
if we would calculate higher order terms we would obtain similar tones for larger
values of |n| and in the limit, when including all perturbation terms, for all n ∈ Z.

Let’s consider more closely the component at ω + ωm

y1(t) = �ω

2ω0
H(ω + ωm)

[
1 − H(ω)

]
ej (ωm+ω)t

= �ω

2ω0
H(ω + ωm)

j ω
ω0

1 + j ω
ω0

ej (ωm+ω)t
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and assume that ωm � ω0. If the filter is part of a transmitter and used to suppress
noise outside the channel allocated to the user or service, then a 2π/ωm-periodic
perturbation is seen to create spurious emissions that can fall in frequency ranges
reserved for other users or services and violate themaximumallowed emission levels.
From the above expression we note that a wide nominal filter bandwidth ω0 helps
in reducing the emission level caused by the perturbation. This can be interpreted
intuitively as follows. If the input signal frequency is much smaller than the 3 dB
cut-off frequency of the filter, then it produces a very small current flowing through
the filer components and, in the limit of zero current, the output signal doesn’t depend
on the value of the filter components.

If the input tone is well above the nominal 3 dB cut-off frequency of the filter
|ω| � ω0 then |H(ω)| � 1 and the output tone at ω + ωm can be approximated by

y1(t) ≈ �ω

2ω0
H(ω + ωm)ej (ωm+ω)t .

If the frequency of the input tone is such that |ω + ωm | < ω0 then the tone falls in a
spurious pass band of the filter and for |ω + ωm | � ω0 it can be approximated by

y1(t) ≈ �ω

2ω0
ej (ωm+ω)t .

If the filter is part of a communication receiver responsible to suppress interfering
signals (the channel filter) then we see that 2π/ωm-periodic perturbations introduce
spurious responses in the stop band of the filter at multiples of ωm that down-convert
interfering signals in band, possibly masking the wanted signal. The amplitude of
the dominant spurious response is proportional to the perturbation magnitude �ω

relative to the nominal 3 dB cut-off frequency of the filter.

Example 12.9: Quadrature (De-)Modulator

Consider the frequency translating system of Example 12.4 with time-varying
impulse response

hmod(t, ξ) = ejw0tδ(ξ) .

It is a complex system in the sense that if we apply a real valued input signal its
response is complex valued. In this example we show that the system can be imple-
mented using two real sub-systems.

Let’s decompose the input signal into its real and imaginary parts

x(t) = r(t) + jq(t).

The system response is given by
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y(t) = hmod(t, ξ) ∗t x(t) = [r(t) + jq(t)]ejw0t

and can be written as

[r(t) + jq(t)] cosw0t − [q(t) − jr(t)] sinw0t .

In this form the system response is seen to be the sum of the responses of two real
systems driven by correlated signals (see Fig. 12.8). By linearity, if the two systems
are driven by the real part only of the input signals, that is by r and q respectively,
then the response of the system is

y(t) = �{[r(t) + jq(t)]ejw0t } .

The combination of the two real systems is called a quadrature modulator. Each of
the two real subsystems is calledmixer and effectively multiply the input signal with
a second real valued signal l called the local oscillator (LO) signal. A mixer can
therefore be considered a system having two input ports.

Consider now a system that shifts the spectrum of the input signal in the opposite
direction

hdemod(t, ξ) = e−jw0tδ(ξ) .

We would like to find a real system implementation that when driven by the signal

[r(t) + jq(t)]ejw0t

allows us to recover the signals used at the input of the quadrature modulator used
to generate it. Such a system is readily found by observing that

[r(t) + jq(t)]ejw0t cosw0t = [r(t) + jq(t)]1
2
[ej2w0t + 1]

and similarly

[r(t) + jq(t)]ejw0t (−1) sinw0t = [r(t) + jq(t)]−j

2
[ej2w0t − 1] .

Thus, if the signals r and q are band-limited to frequencies smaller than w0, the
original signals can be recovered (up to a fixed scaling factor) by use of two mixers
driven by quadrature (orthogonal) local oscillator signals followed by low-pass filters
(see Fig. 12.9). Such a system is called a quadrature demodulator. By linearity, if the
system is driven by the real signal

�{[r(t) + jq(t)]ejw0t }
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Fig. 12.8 Quadrature modulator

Fig. 12.9 Quadrature demodulator

Fig. 12.10 a Typical local
oscillator unipolar waveform
b Typical local oscillator
bipolar waveform

the two output signals are the real parts of what we found above, that is r/2 and q/2
respectively.

Example 12.10: Harmonic-Reject Mixer

We saw in Example 12.9 that a mixer is a system multiplying the input signal with
a T -periodic signal called the local oscillator signal

h(t, ξ) = l(t)δ(ξ) .
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Fig. 12.11 Generic N-path receiver

Fig. 12.12 Quadrature N-path demodulator

In practical implementations, to minimise the signal-to-noise degradation caused by
the circuit, the local oscillator signal is not a pure sinusoidal. Instead, it is most
often designed to approach a rectangular waveform as depicted in Fig. 12.10b. Being
periodic the signal l can be represented by a Fourier series

l(t) =
∞∑

n=−∞
ane

jnωT t , ωT = 2π/T
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with

an =
{

τ
T n = 0
1

πn sin(nπ τ
T ) n �= 0

for the waveform in Fig. 12.10a and

an =
{
0 n even
2

πn sin(nπ τ
T ) n odd

for the one in Fig. 12.10b. Therefore, a mixer driven by an input tone

x(t) = ej (nωT +ω1)t (12.42)

produces an output tone at ω1 for every value of n for which an �= 0. When the
mixer is part of a receiver designed to down-convert a signal at ωT + ω1 to ω1 for
further processing and detection, the spurious responses (n �= −1) are undesired as
they could cause an interfering signal to overlap in frequency with the desired signal
and prevent reception of the latter. The spurious responses are most often suppressed
by preceding the mixer with a suitable filter. However, in some situations such a
filter is undesired. In the following we present a method to suppress the dominant
spurious responses of a mixer without the need for filters and still using rectangular
waveforms as local oscillator signals.

Note that, while the idealised local oscillator waveforms shown in Figs. 12.10a
and 12.10b are discontinuous, their Fourier series representations truncated at an
arbitrarily high value of |n| are indefinitely differentiable functions. Suitably trun-
cated Fourier series are adequate representations of practical signals and do not cause
any mathematical difficulty.

Consider the generic N -path receiver shown in Fig. 12.11. It is composed by
N subsystems that are equal apart from the fact that the local oscillator signal of
path k, k = 0, . . . , N − 1 is delayed by T k/N with respect to path 0. The blocks
preceding the output signals yk represent LTI subsystem with impulse response h.
Let the input signal be as in (12.42). Then, due to the tone at −nωT in the Fourier
series of l, the kth output signal includes a tone at ω1 given by

yk,−n = h(t) ∗ [a−ne
−jnωT (t−T k

N )δ(ξ) ∗t e
j (nωT +ω1)t ]

= [a−nH(jω1)e
jω1t ]ejnk 2π

N

= y0,−n(t)e
jnk 2π

N

with H the Laplace transform of h. This shows that the output components of interest
(atω1) are the product of the signal y0,−n and the constants ejn2π k

N , k = 0, . . . , N − 1.
By exploiting the properties of trigonometric functions we can form weighted sums
of the outputs yk such that the resulting tone at ω1 vanishes for some values of n
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z−n(t) =
N−1∑
k=0

wk yk,−n(t) = y0,−n(t)
N−1∑
k=0

wke
jnk 2π

N .

Note that the sum on the right-hand side corresponds to a discrete Fourier transform
of the weighting coefficients. For example, by choosing

wk = cos
(2π
N

k
)

(12.43)

we obtain

z−n(t) = y0,−n(t)
N−1∑
k=0

cos
(2π
N

k
)
ejnk 2π

N

= y0,−n(t)

2

N−1∑
k=0

ej 2π
N (n+1)k + ej 2π

N (n−1)k .

The sums are geometric series that evaluate to

N−1∑
k=0

ej 2π
N (n±1)k =

{
1−ej2π(n±1)

1−ej 2π
N (n±1)

= 0 n ± 1 �= Nm,m ∈ Z

N otherwise

and therefore the signal z−n is

z−n(t) =
{
0 n �= Nm ± 1
N
2 y0,−n(t) otherwise .

For example, for N = 8 all harmonics below the 15th except for the 7th and the 9th
are suppressed. A mixer with no spurious responses at some odd harmonics is called
a harmonic-reject mixer.

The weighting factors of (12.43) are not the only possible choice. For example,
any rotation of the indexesw(k+m) mod N produces a similar result with the addition of
a phase factor to the output signal. For N even we can thus construct a full quadrature
demodulator by building two weighted sums, one with weighting factors as given
by (12.43) and the other by factors rotated by N/2 (wk+N/2; see Fig. 12.12). The
case with N = 4 corresponds to classical situation with differential output signals.
Further choices of weighting factors allow isolating responses at values of n different
from 1.

While we discussed summing the signals after the LTI systems characterised by h,
the same results apply if the signals are summed right after the mixers. The rejection
obtained in practice is limited by mismatch between the paths. The place where the
summation is implemented plays a role in this respect.

If we revert the direction of the signals in the system of Fig. 12.11 we obtain an
N -path transmitter. This is a generalisation of the classic case with N = 4 with the
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4 input signals being differential versions of the r and q modulator input signals.
As with the receiver, a larger value of N allow suppressing spurious emissions at
harmonics of the local oscillator signal without the use of filters.
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Chapter 13
Weakly Nonlinear Time-Varying Systems

The theory of linear time-varying systems can be extended to weakly-nonlinear
time-varying (WNTV) systems in a similar way as we did for linear time-invariant
systems. In this chapter we first define WNTV systems mathematically and high-
light some important differences from the theory of WNTI systems. We then discuss
weakly-nonlinear periodically time-varying (WNPTV) systems. These type of sys-
tems generate a characteristic spectrum that is relatively easy to describe and is
relevant, for example, in the study and design of communication systems.

13.1 Weakly Nonlinear Time-Varying Systems

13.1.1 Definition

A Weakly-nonlinear time-varying system is defined as a system whose response to
the input signal x can be described by

y(t) =
∞∑

k=1

wk(t, τ1, . . . , τk) � x⊗k(τ1, . . . , τk) . (13.1)

The operator � is the extension of the operator introduced in Sect. 12.2.2 to higher
dimensions. For causal systems described by regular distributions and driven by a
right sided input x it is defined by

wk(t, τ1, . . . , τk)�x
⊗k(τ1, . . . , τk) :=
t∫

0

· · ·
t∫

0

wk(t, τ1, . . . , τk)x(τ1) · · · x(τk)dτ1 · · · dτk . (13.2)
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wk is the kth order fundamental kernel of the system. As for WNTI systems, to
guarantee uniqueness, we require it to be symmetric in the variables τ1, . . . , τk .

Generalizations valid for a wider class of input signals can be done in the same
way as was done for LTV systems. Note that wk � x⊗k is a distribution of the single
variable t and not a higher dimensional distribution as forWNTI systems. The reason
for this is explained next.

Consider a WNTV system described by a differential equation of the form

L(t, D)y = N (t, D)x + c2(t)y
2 + c3(t)y

3 + · · ·

with

L(t, D) = Dm + am−1(t)D
m−1 + · · · + a0(t)

N (t, D) = bn(t)D
n + bn−1(t)D

n−1 + · · · + b0(t)

and where all coefficients ai , bi and ci are indefinitely differentiable functions. The
equation can be solved iteratively as in the case of WNTI systems. We first solve
the linear part of the equation. The solution y1 is then used in the nonlinear terms
to compute “nonlinear sources” of second order. With them we solve the part of the
equation consisting of terms of second order only, a linear equation, and so on.

There is an important difference compared to the case of WNTI systems: in the
case of WNTI systems, to get around the lack of a general multiplication between
arbitrary distributions,wemade use of a direct product of distributions and introduced
a multiplication based on the tensor product. Here the same method doesn’t work as
the coefficients of the differential equation are functions of the single time variable
t and it is unclear how to adapt them for use with higher order distributions. For
this reason here the responses of all orders yk are distributions of the single variable
t . To solve the equation we must therefore assume the existence of all appearing
multiplications and powers yn, k = 2, 3, . . . .

If we consider t as a fix parameter then the multiplication between components
of y act as a tensor product like operation. Consider the product between yk and yl

yk(t)yl(t) =
t∫

0

· · ·
t∫

0

wk(t, τ1, . . . , τk)x
⊗k(τ1, · · · , τk)dτ1 · · · dτk

·
t∫

0

· · ·
t∫

0

wl(t, τ1, . . . , τl)x
⊗l(τ1, · · · , τl)dτ1 · · · dτl

=
t∫

0

· · ·
t∫

0

wk(t, τ1, . . . , τk)wl(t, τk+1, . . . , τk+l)

· x⊗k+l(τ1, · · · , τk+l)dτ1 · · · dτk+l . (13.3)
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The result has the form of a response of order k + l which can be interpreted as a
“nonlinear source” generated by nonlinearities and lower order responses as desired.

To solve the equationwemust be able to solve the equation for each order indepen-
dently and verify that it has the desired form. Solving the equations is (in principle)
simple as all equations are linear. The solution of the equation consisting of terms of
order k is given by

yk(t) =
t∫

0

τ∫

0

· · ·
τ∫

0

v(t, τ )zk(τ, τ1, . . . , τk)x
⊗k(τ1, · · · , τk)dτ1 · · · dτkdτ

with zk � x⊗k the nonlinear source and v the fundamental kernel of the equation.
To show that this expression can be transformed in the desire form, consider the

integral
t∫

0

τ∫

0

τ∫

0

f (τ, τ1, τ2)dτ2dτ1dτ .

As a first step we exchange the order of integration between τ and τ1 and obtain

t∫

0

t∫

τ1

τ∫

0

f (τ, τ1, τ2)dτ2dτdτ1 .

We then perform a second exchange between τ2 and τ (refer to Fig. 13.1) which
results in

t∫

0

t∫

0

t∫

max(τ1,τ2)

f (τ, τ1, τ2)dτdτ2dτ1 .

If the integral would involve more integrations between 0 and τ then we could repeat
the last step more times giving

t∫

0

· · ·
t∫

0

t∫

max(τ1,...,τk )

f (τ, τ1, . . . , τk)dτdτk · · · dτ1 . (13.4)
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Fig. 13.1 Domain of
integration (refer to text)

Using this result we can transform the above expression for yk(t) into

yk(t) =
t∫

0

· · ·
t∫

0

t∫

max(τ1,...,τk )

v(t, τ )zk(τ, τ1, . . . , τk)dτ

·x⊗k(τ1, . . . , τk)dτ1 · · · dτk
which has the desired form wk � x⊗k .

13.1.2 Time-Varying Nonlinear Impulse Responses

As for LTV systems, the response of WNTV systems can also be expressed in terms
of the time-varying nonlinear impulse responses

hk(t, ξ1, . . . , ξk) := wk(t, t − ξ1, . . . , t − ξk) (13.5)

and the convolution operator ∗t for time varying systems

hk(t, ξ1, . . . , ξk) ∗t x
⊗k(ξ1, . . . , ξk) :=

t∫

0

· · ·
t∫

0

hk(t, t − ξ1, . . . , t − ξk)x(ξ1) · · · x(ξk)dξ1 · · · dξk . (13.6)
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Example 13.1

Consider a WNTV system described by the following differential equation

Dy + a(t)y = x + y2 .

We are interested in the second order fundamental kernel of the system.
The fundamental kernel of the linearized equation is given by (12.26) which,

taking into account the commutativity of the product of scalar functions simplifies
to

w1(t, τ1) = e− ∫ t
τ1
a(λ)dλ

.

With it the linear response of the system is

y1(t) = w1(t, τ1) � x(t) .

Given y1 we can compute the “nonlinear source” of second order

y21 (t) =
t∫

0

t∫

0

w1(t, τ1)w1(t, τ2)x(τ1)x(τ2)dτ1dτ2 .

With it we can then solve the equation consisting of terms of second order only

(
D + a(t)

)
y2 = y21 .

The fundamental kernel of this equation is the same as the one of the first order
equation. The second order response of the system is therefore

y2(t) =
t∫

0

w1(t, τ )y21 (τ )dτ

=
t∫

0

t∫

0

t∫

max(τ1,τ2)

w1(t, τ )w1(τ, τ1)w1(τ, τ2)dτ x(τ1)x(τ2)dτ1dτ2 .

The second order fundamental kernel of the system can be found by comparing this
expression with y2 = w2(t, τ1, τ2) � x⊗2(τ1, τ2) giving

w2(t, τ1, τ2) =
t∫

max(τ1,τ2)

e− ∫ t
τ
a(λ)dλ−∫ τ

τ1
a(λ)dλ−∫ τ

τ2
a(λ)dλdτ .
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As a check we verify that in the special case in which a(t) is constant we obtain the
same result as in Example 9.5. Evaluating the integrals gives

w2(τ1, τ2) = 1

a

(
e−a[t−min(τ2,τ1)] − e−a(2t−τ1−τ2)

)

and, after the variable substitutions ξi = t − τi , i = 1, 2 we indeed obtain an expres-
sion equivalent to h2 in Example 9.5.

13.1.3 Time-Varying Nonlinear Frequency Responses

Weakly-nonlinear time-varying systems can equivalently be characterised by time-
varying nonlinear frequency responses. The kth order one is defined as the Fourier
transform with respect to ξ1, . . . , ξk of the impulse response hk(t, ξ1, . . . , ξk). For
regular distributions

ĥk(t, ω1, . . . , ωk) :=
∞∫

−∞
· · ·

∞∫

−∞
hk(t, ξ1, . . . , ξk)e

−j(ω,ξ)dkξ (13.7)

with ω, ξ ∈ R
k .

The response of order k of a system can be calculated by

yk(t) = 1

(2π)k
ĥk(t, ω1, . . . , ωk) e

j (ω1+···+ωk )t � x̂⊗k(ω1, . . . , ωk) . (13.8)

The derivation is entirely analogous to the one dimensional case carried out in
Sect. 12.4.1.

13.2 Weakly Nonlinear Periodically Time-Varying Systems

Weakly nonlinear periodically time-varying (WNPTV) systems are weakly nonlin-
ear systems whose characteristics vary periodically in time. In other words, their
fundamental kernels, impulse responses and frequency responses are periodic func-
tions of time and can therefore be expanded in Fourier series. For example, the kth
order frequency response of a T -periodic system can be represented by the series

ĥk(t, ω1, . . . , ωk) =
∞∑

n=−∞
ĥk,n(ω1, . . . , ωk)e

jnωT t
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Fig. 13.2 Generic representation of a WNPTV system

with ωT = 2π/T . This representation highlights the fact that such systems can be
represented by a parallel connection of a countable set of weakly nonlinear time-
invariant networks whose outputs are shifted in frequency by a multiple of ωT
(see Fig. 13.2). Practical applications where this representation is particularly useful
include the analysis and design of communication systems.

In the rest of this section we focus on the special case in which weakly nonlinear
periodically time-varying systems are driven by a set of tones. This will reveal a
spectrum characteristic of this type of systems.

13.2.1 Discrete Convolution

Before turning to actually calculating the response of WNPTV systems driven by
a set of tones, it’s convenient to introduce some notation that will simplify many
expressions.

A series
∞∑

n=−∞
an is absolutely convergent if the sum of the absolute values of the

terms converges
∞∑

n=−∞
|an| < ∞ .

In this case the value of the series doesn’t depend on the order of the elements.
The product of two absolutely convergent series

∑∞
n=−∞ an and

∑∞
n=−∞ bn is also

absolutely convergent



308 13 Weakly Nonlinear Time-Varying Systems

|
∞∑

n=−∞
an

∞∑

n=−∞
bn| ≤

∞∑

n=−∞
|an|

∞∑

n=−∞
|bn| < ∞

and can be expressed as

∞∑

n=−∞
an

∞∑

n=−∞
bn =

∞∑

n=−∞

( ∞∑

q=−∞
aqbn−q

)
.

The inner sum in the last expression is called discrete convolution (or Cauchy prod-
uct). For convenience, we are going to denote it by

(a. ∗d b.)n :=
∞∑

q=−∞
aqbn−q (13.9)

The discrete convolution is associative and commutative

(
(a. ∗d b.) ∗d c.

)
n = (

a. ∗d (b. ∗d c.)
)
n

(a. ∗d b.)n = (b. ∗d a.)n

and has a unit element, the Kronecker delta

δn =
{
1 n = 0

0 n �= 0 .
(13.10)

13.2.2 Product of Fourier Series

In the following we use the convention introduced in Sect. 4.5 of denoting the kth
Fourier coefficient of a distribution f by ck( f ).

It is well known that if t �→ f (t) is a continuous T -periodic function, its Fourier
series is absolutely convergent for all values of t [23]. If f and g are two such functions
then their product is well-defined and continuous. In addition, the Fourier coefficients
of the product can be expressed in terms of the coefficients of the individual series

∞∑

n=−∞
cn( f )e

jnωT t
∞∑

n=−∞
cn(g)e

jnωT t =
∞∑

n=−∞

( ∞∑

q=−∞
cq( f ) cn−q(g)

)
ejnωT t .

The coefficients of the product are evidently the convolution product of the coeffi-
cients of the two series
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(
c.( f ) ∗d c.(g)

)
n =

∞∑

q=−∞
cq( f ) cn−q(g) . (13.11)

Let now f and g be two T -periodic distributions. Let further introduce the
sequences ( fk) and (gk) defined by

fk = f ∗ βk and gk = g ∗ βk

with (βk) a sequence of functions in D converging to δ (for example the sequence
of Example 2.5). Then ( fk) and (gk) are sequences of indefinitely differentiable
functions converging as distributions to f and g respectively. The Fourier series of
each member of each sequence is thus absolutely convergent.

If the product f g exists, then it defines a T -periodic distribution which must
coincide with the limit of the sequence

f g = lim
k→∞ fk gk .

The Fourier series of each member of the sequence can be written as

fk gk =
∞∑

n=−∞

(
c.( fk) ∗d c.(gk)

)
ne

jnωT t .

Therefore, from the assumption of convergence and the uniqueness of the Fourier
series representation of periodic distributions we conclude that the Fourier coeffi-
cients of f g must be

cn( f g) = (
c.( f ) ∗d c.(g)

)
n := lim

k→∞
(
c.( fk) ∗d c.(gk)

)
n .

Example 13.2

Consider the regular T -periodic distribution shown in Fig. 13.3 that we denote by f
and whose Fourier coefficients are

cn( f ) =
{
0 n even
2

πn (−1)
n−1
2 n odd .

From the graph it’s apparent that the product of f with itself is well-defined and
produces the regular distribution with constant value 1. The Fourier coefficients are
evidently all zero apart from the zeroth one whose value is one c0( f f ) = 1. We
show that, despite the fact that the Fourier series of f is not absolutely convergent,
c.( f ) ∗d c.( f ) produces the right answer.
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Fig. 13.3 Square regular
T -periodic distribution

First note that for n odd either cq( f ) or cn−q( f ) is zero for every value of q.
Hence, (

c.( f ) ∗d c.( f )
)
n = 0 n odd .

For n even the convolution product is

(
c.( f ) ∗d c.( f )

)
n =

∞∑

k=−∞

2

π(2k + 1)
(−1)k

2

π(n − (2k + 1))
(−1)

n−2(k+1)
2

= (−1)
n
2 −1

( 2

π

)2 ∞∑

k=−∞

1

(2k + 1)(n − (2k + 1))
.

For the particular case n = 0 the summation in the last expression can be written as

∞∑

k=−∞

−1

(2k + 1)2
= −2

∞∑

k=0

1

(2k + 1)2
= −π2

4
.

The zeroth coefficient is therefore

(
c.( f ) ∗d c.( f )

)
0 =

( 2

π

)2 π2

4
= 1 .

To evaluate the Fourier coefficient for n �= 0 it’s convenient to rewrite the sum-
mation as

∞∑

k=−∞

1

(2k + 1)(n − (2k + 1))
=

∞∑

k=−∞

1/n

2k + 1
+ 1/n

(n − (2k + 1))
.

In this form it’s apparent that for each value of n all terms cancel in pair (the kth with
the (n/2 + k)th), thus giving

(
c.( f ) ∗d c.( f )

)
n = 0 n �= 0 even .
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13.2.3 Response to Multi-tones

Consider a weakly nonlinear periodically time-varying system described by the dif-
ferential equation

L(t, D)y = N (t, D)x + c2(t)y
2 + c3(t)y

3 + · · ·

with

L(t, D) = Dm + am−1(t)D
m−1 + · · · + a0(t)

N (t, D) = bn(t)D
n + bn−1(t)D

n−1 + · · · + b0(t)

and where all coefficients ai , bi and ci are smooth T -periodic functions. We assume
that the system is driven by N complex tones

x(t) = A1e
jω1t + · · · + ANe

jωN t

with A1, . . . , AN the phasors of the tones.
In Sect. 12.4.2 we saw that the solution of the linear part of the equation is given

by

y1(t) =
N∑

n=1

Anĥ1(t, ωn)e
jωn t

with ĥ1 the (first order) time-varying frequency response of the system. We also saw
(Sect. 12.5.2) that t �→ ĥ(t, ω1) is a T -periodic function. Expanding it in a Fourier
series, y1 can be written as

y1(t) =
N∑

n=1

Ane
jωn t

∞∑

q=−∞
ĥ1,q(ωn)e

jqωT t .

y1 is therefore a sum of tones at qωT + ωn .
We now solve the nonlinear equation by adding terms to y1 in a similar way as

we did for weakly nonlinear time invariant systems in Sect. 9.5. As explained in
Sect. 13.1 here we must assume the existence of the powers yk1 , k = 2, 3, . . . and the
others that will appear below.

For the sake of solving the equation let’s assume that the frequencies ωT , ω1, . . . ,

ωN are all incommensurate. Under this assumption, the only power resulting in terms
proportional to A j Alej (ω j+ωl )t ; j, l = 1, . . . , N is the second order one

c2(t)y
2
1 (t) =

∑

|m|=2

2!
m! A

m1
1 · · · AmN

N ejωmt

∞∑

q=−∞

(
c.(c2) ∗d ĥ1,.(ω1)

∗dm1 ∗d · · · ∗d ĥ1,.(ωN )∗dmN
)
qe

jqωT t



312 13 Weakly Nonlinear Time-Varying Systems

with m the multi-index m = (m1, . . . ,mN ) whose elements range from 0 to k (=2)
and ωm as defined in (9.27) and repeated here for convenience

ωm =
N∑

n=1

mn ωn = m1ω1 + · · · + mNωN .

Similarly to the time invariant case we can assume that the solution of the
nonlinear differential equation includes a term of second order y2 proportional to
A j Alej (ω j+ωl )t ; j, l = 1, . . . , N . y2 can be found by retaining only those terms in
the equation that are proportional to A j Alej (ω j+ωl )t . The resulting equation is linear
with c2(t)y21 (t) playing the role of a source composed by tones. Exploiting linearity
we can solve the equation for a single tone at qωT + ω1 + ω2 and combine the results
at the end

L(t, D)ĝ2,q(t, ω1, ω2)e
j (qωT +ω1+ω2)t = ej (qωT +ω1+ω2)t .

t �→ ĝ2,q(t, ω1, ω2) is also T -periodic and can be expanded in a Fourier series

ĝ2,q(t, ω1, ω2)e
j (qωT +ω1+ω2)t =

∞∑

q2=−∞
cq2(ĝ2,q)e

j

(
(q+q2)ωT +ω1+ω2

)
t
.

With it the second order term y2 is given by

y2(t) =
∑

|m|=2

2!
m! A

m1
1 · · · AmN

N ejωmt

·
∞∑

q1=−∞

(
c.(c2) ∗d ĥ1,.(ω1)

∗dm1 ∗d · · · ∗d ĥ1,.(ωN )∗dmN
)
q1
ejq1ωT t

·
∞∑

q2=−∞
cq2(ĝ2,q1)e

jq2ωT t

which, with the change of variable l = q1 + q2, can be rewritten as

y2(t) =
∑

|m|=2

2!
m! A

m1
1 · · · AmN

N

∞∑

l=−∞
ĥ2,m,le

j (lωT +ωm )t

with

ĥ2,m,l :=
∞∑

q1=−∞

(
c.(c2) ∗d ĥ1,.(ω1)

∗dm1 ∗d · · · ∗d ĥ1,.(ωN )∗dmN
)
q1
cl−q1(ĝ2,q1) .
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The second order response of the system thus consists of tones at all possible sums
of two of the input tone frequencies at a time, around each of the harmonics of the
fundamental frequency of the system.

The higher order responses can be calculated in a similar manner. The kth order
response has the form

yk(t) =
∑

|m|=k

k!
m! A

m1
1 · · · AmN

N

∞∑

l=−∞
ĥk,m,le

j (lωT +ωm )t (13.12)

and is composed by tones at all possible sums of k input tone frequencies at a time,
around each of the harmonics of the system fundamental frequency. A comparison
of the typical two tones response of LTI-. WNTI-, LPTV- and WNPTV-systems is
shown in Fig. 13.4.

Fig. 13.4 Comparison of typical two (real) tones spectral response of LTI-, LPTV-, WNTI- and
WNPTV-systems
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Note that the factor ∞∑

l=−∞
ĥk,m,le

j lωT t

appearing in the kth order response yk is the Fourier series of the time-varying kth
order nonlinear frequency response of the system ĥk(t, ω1, . . . , ωk). It is related to
ĥk,m,l by

ĥk,m,l = cl
(
ĥk(t, ω1, . . . , ω1︸ ︷︷ ︸

m1

, . . . , ωN , . . . , ωN︸ ︷︷ ︸
mN

)
)
, |m| = k .
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Chapter 14
Periodically Switched Circuits

This chapter is devoted to illustrating applications of the theory of weakly nonlinear
time-varying systems with practical examples. After introducing the class of electri-
cal networks called switched circuits, we analyse in details some instantiations. We
analyse a practical implementation of a quadraturemodulator, including its distortion
and other aspects of fundamental importance in applications. As another example of
the usefulness of time-varying circuits, we illustrate how they allow implementing
highly selective filters that are otherwise unfeasible in small integrated form.

14.1 Switched Circuits

An important class of circuits that findsmanyapplications is theSwitched circuitsone.
These are circuits whose only time varying components are switches. Despite the
fact that switches are time-varying resistors, this class of systems can be analysed as
a sequence of time invariant circuits, each one valid over an interval over which all
switches remain in the same state.

LetO denote an open interval ofRn . The spaceDO of test functionsφwith support
contained in O is a vector subspace ofD. A distribution on O is a distribution defined
onDO . The vector space of distributions defined on O is denoted by D′

O .
Consider a linear switched circuit including at least a capacitor or an inductor.

Without loss of generality we can assume the network to be driven by a single
independent source x (superposition principle). Let ti , i ∈ N denote the times at
which any of the ideal switches changes state and Oi the open intervals (ti , ti+1).
In any of these intervals the network is described by a system of first order linear
differential equations

Du = Aiu + Bi x

© The Author(s) 2024
F. Beffa,Weakly Nonlinear Systems, Understanding Complex Systems,
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with u the state of the network that we can represent by the voltage across the
capacitors and the currents through the inductors. Suppose that the network is in the
zero state and that we apply a Dirac impulse at time τ with ti < τ < ti+1. Then,
for τ < t < ti+1 the state u evolves as a continuous function. At time ti+1 some of
the switches change state. If we exclude circuits including closed loops composed
exclusively by ideal inductors, ideal voltage sources and (closed) ideal switches, then
at this time one of the following happens

• If an ideal switch across a capacitor is closed, then the voltage across that capac-
itor immediately after ti+1 becomes zero: vC(ti+1+) = 0. Since charge must
be conserved, this change in state must be accompanied by a current impulse
vC(ti+1−)Cδ(t − ti+1) discharging the capacitor through the switch.

• If the closing of a switch forms a closed loop formed exclusively of (ideal) capac-
itors then at time ti+1 the charge in the capacitors will instantly redistribute under
the constraint of charge and energy conservation. This will be accompanied by cur-
rent impulses through the capacitors. For example, if at ti+1 two capacitors with
capacitance C1 and C2 respectively are connected in parallel by an ideal switch
then the voltage across the capacitors immediately after the closing of the switch
will be

v1(ti+1+)[C1 + C2] = v2(ti+1+)[C1 + C2] = v1(ti+1−)C1 + v2(ti+1−)C2 .

• If an ideal switch in series with an inductor is opened then the current through
the inductor immediately after ti+1 becomes zero: iL(ti+1+) = 0. Faraday’s
law implies that this change in state is accompanied by a voltage impulse
−iL(ti+1−)Lδ(t − ti+1) across the inductor.

• In all other cases the voltages across the capacitors and the currents through the
inductors remain unchanged. In other words the state component um representing
any of those quantities immediately after ti+1 must equal the state component
before that time instant: um(ti+1+) = um(ti+1−).

These conditions specify initial conditions for the interval Oi+1 that, together with
the differential equation, allow to calculate the evolution of the state u of the network
in that interval. The same arguments apply to all subsequent switching times. The
state u is therefore fully determined and can be extended to a distribution on the hole
of R. The fundamental kernel W is therefore well defined for τ ∈ Oi , i ∈ N.

The only problematic cases are when τ coincides with one of the switching times.
To work around this problem we limit the set of allowed input signals to the set of
regular bounded distributions. Then, assuming further x to be right-sided, the state
of the circuit can be represented by the integral

u(t) =
t∫

0

W (t, τ )B(τ )x(τ )dτ .
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Fig. 14.1 Voltage-mode
quadrature modulator

Since the values of τ at which W is not defined is a set of zero measure, the output
is well-defined at all times.

The above discussion shows that for switched circuits the computation of the
time-varying impulse response is a straightforward process. In addition, since the
impulse response in each interval Oi corresponds to the one of an LTI system, the
computation of the time varying frequency response by Fourier transformation of
h(t, ξ) does not pose any problem.

Linear periodically switched circuits are linear switched circuits in which the
operation of the switches is periodic. For these circuits the time-varying impulse
response h(t, ξ) and the time-varying frequency response ĥ(t, ω) are periodic in
time.

In the followingwe illustrate the use of this technique to analyse idealised versions
of some practical periodically switched circuits used in communication receivers and
transmitters.

14.2 Voltage-Mode Quadrature Modulator

In this section we analyse an implementation of the quadrature modulator of Exam-
ple 12.9 suitable for realisation in a CMOS technology and shown in Fig. 14.1. The
input signals vI and vQ (called r and q in Example 12.9) are applied differentially.
We assume the LO signals to be non-overlapping and to have very fast edges. In fact
we model the gate signals as having rectangular waveform high 25% of the time and
with a relative delay among them of T /4. We assume further that when the corre-
sponding LO signal is high each MOSFET can be modeled as a resistor of value
rON , while when the LO signal is low it can be modeled as an open circuit (infinite
resistance). We are interested in the signal vA at the input of the amplifier following
the switching transistors and assume that the input impedance of the latter can be
adequately modeled as a capacitor.
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Fig. 14.2 Voltage-mode quadrature modulator model

Under these assumptions the circuit is linear. Hence, we can analyse the contri-
bution to the output of each input signal independently. Figure14.2 shows the model
used to analyse the contribution of signal v+

I where we have combined rON with the
source resistance (assumed equal at all inputs)

r = rON + RS

and where we assume the switches to be closed when the corresponding LO control
signal li , i = 0, . . . , 3 is high and open when low. The control signals are defined by

li (t) := l(t − iT /4) i = 0, . . . , 3

with l the signal introduced in Example 12.10 and shown in Fig. 12.10a with τ =
T /4.

14.2.1 Single Input Response

In this subsection we analyse the response to v+
I . To compute its contribution to the

output, we apply an input impulse at time τ . If the impulse is applied when the input
switch is open, then its contribution is zero. If it’s applied when the switch is closed,
τ ∈ (−T /8,T /8) mod T , its contribution is described by the differential equation

(1 + rCD)vA = δ(t − τ) .

Note that the capacitor C is connected in parallel with a resistor of value r at all
times! The fundamental kernel is therefore

W (t, τ ) = ω3dB e
−ω3dB (t−τ) 1+(t − τ) l0(τ ) , ω3dB = 1

rC

and can be interpreted as the impulse response of an LTI system whose input signal
is v+

I (t)l0(t).
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The time-varying impulse response of the system can be obtained from the above
fundamental kernel by applying the variable transformation ξ = t − τ

h(t, ξ) = ω3dB e
−ω3dBξ 1+(ξ) l0(t − ξ) .

We compute the response of the system to a complex tone through the time-
varying frequency response. The latter is obtained by Fourier transforming h(t, ξ)

with respect to ξ

ĥ(t, ω) =
∞∫

−∞
h(t, ξ) e−jωξ dξ .

Using the Fourier series of l0

l0(t) =
∞∑

n=−∞
ane

jnωT t , an = a−n =
{

1
4 n = 0
1

πn sin(n
π
4 ) n > 0

where ωT = 2π/T , we have

ĥ(t, ω) = ω3dB

∞∫

0

e−(ω3dB+jω)ξ

∞∑
n=−∞

ane
jnωT (t−ξ) dξ

= ω3dB

∞∑
n=−∞

an

∞∫

0

e−[ω3dB+j (ω+nωT )]ξ dξ ejnωT t

=
∞∑

n=−∞
ĥn(ω) ejnωT t (14.1)

with

ĥn(ω) = ω3dBan

∞∫

0

e−[ω3dB+j (ω+nωT )]ξ dξ

= an
1 + j ω+nωT

ω3dB

. (14.2)

The response of the system to a complex tone of angular frequency ω is thus

vA(t) =
∞∑

n=−∞
ĥn(ω) ej (ω+nωT )t (14.3)

and, as remarked above, is seen to be equal the response of an LTI system with
transfer function
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H(s) = 1

1 + s
ω3dB

(14.4)

to the input

v+
I (t)l0(t) =

∞∑
n=−∞

ane
j (ω+nωT )t .

14.2.2 Input Current and Switched Resistor

Before combining the outputs from the four input signals v+
I , v−

I , v+
Q and v−

Q we
compute the input current drawn from the input v+

I when the other sources are
disabled. When the input switch is closed, the input current is equal to the current
flowing into the capacitor, while when the switch is open, the current is zero

iS(t) = l0(t)iC(t), iC(t) = CDv+
I (t) .

The current is therefore given by

iS(t) =
∣∣∣∣∣

∞∑
n=−∞

ane
jnωT t

∣∣∣∣∣
∣∣∣∣∣

∞∑
n=−∞

an
r

j (ω+nωT )

ω3dB

1 + j ω+nωT
ω3dB

ej (ω+nωT )t

∣∣∣∣∣

=
∞∑

m=−∞

∞∑
n=−∞

aman
r

j (ω+nωT )

ω3dB

1 + j ω+nωT
ω3dB

ej [ω+(n+m)ωT ]t

=
∞∑

k=−∞
yk(ω) ej (ω+kωT )t (14.5)

with

yk(ω) :=
∞∑

n=−∞
ak−nan

j (ω + nωT )C

1 + j ω+nωT
ω3dB

(14.6)

where in the last step we made the substitution k = m + n.
Let’s consider more closely the term for k = 0. Substituting the expression for an

we obtain

y0(ω) = jω
C

16
+

∑
n �=0

sin2(n π
4 )

(πn)2

j (ω + nωT )C

1 + j ω+nωT
ω3dB

.

To find an approximate value for this series it’s useful to separate real- and imaginary-
parts

y0(ω) = g0(ω) + jb0(ω) .
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We start by simplifying the imaginary part

b0(ω) = ω
C

16
+

∑
n �=0

sin2(n π
4 )

(πn)2

(ω + nωT )C

1 +
(

ω+nωT
ω3dB

)2

The first thing to note is that the terms proportional to nωT with n > 0 cancel with
the ones for n < 0 so that we obtain

b0(ω) = ωC

[
1

16
+

∑
n �=0

sin2(n π
4 )

(πn)2

1

1 +
(

ω+nωT
ω3dB

)2

]
. (14.7)

All terms in the square bracket are positive. If we assume |ω| � ωT < ω3dB the
terms decrease as 1/n2 for n < ωT /ω3dB and as 1/n4 for larger values of n. We can
therefore bound the series by

∑
n �=0

sin2(n π
4 )

(πn)2

1

1 +
(

ω+nωT
ω3dB

)2 <
∑
n �=0

1

(πn)2
.

Using the known result
∞∑
n=1

1

n2
= π2

6

we thus obtain the upper bound

b0(ω)

ωC
<

1

16
+ 2

∞∑
n=1

1

(πn)2
= 19

48
≈ 0.40 .

This bound is tighter for large values of ω3dB/ωT .
To obtain a value closer to the actual value of the series we note that for N � 1

N∑
n=1

sin2(n
π

4
) ≈ N

2
. (14.8)

Instead of bounding sin2(nπ/4) by 1, we approximate its value by 1/2 independently
of n to obtain

b0(ω)

ωC
<

1

16
+ 1

6
= 11

48
≈ 0.23 .

Figure14.3 shows the normalized value of b0 as a function of ω3dB/ωT computed
from (14.7). We see that, while the argument to obtain the above approximate value
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Fig. 14.3 Normalized
values of the real- and
imaginary parts of
y0(0.1ωT ) as a function of
the ratio ω3dB/ωT

is questionable, for large values of ω3dB/ωT the approximation is remarkably close
to the real value.

We next turn to the real part of y0(ω)

g0(ω) = 1

r

∑
n �=0

sin2(n π
4 )

(πn)2

(
ω+nωT
ω3dB

)2

1 +
(

ω+nωT
ω3dB

)2 (14.9)

If we assume |ω| � ωT < ω3dB then to a good approximation we have

g0(ω) ≈ 2

r

∞∑
n=1

sin2(n π
4 )

π2

(
ωT

ω3dB

)2

1 +
(

nωT
ω3dB

)2

If ωT /ω3dB � 1 then the quadratic term in the denominator can be neglected in
a large number of terms up to approximately N = 	ω3dB

ωT

. The first N terms of

the series contribute the largest part of its total value. Therefore, referring again
to the approximation (14.8), we approximate again sin2(nπ/4) by 1/2. Instead of
neglecting the terms for n > N we approximate the series by the integral

1

π2r

ωT

ω3dB

∞∫

0

1

1 + x2
dx

with
n

ωT

ω3dB
→ x,

ωT

ω3dB
→ dx .
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Fig. 14.4 Normalized iS(t)
for a cosinusoidal input with
ω = 0.1ωT , ω3dB = 2ωT
computed using (14.5)
truncated at |k| = 60 and
|n| = 200

This integral is easily solved and we finally obtain

g0(ω) ≈ 1

rπ2

ωT

ω3dB

π

2
= C

T
.

Figure14.3 shows the normalized value of g0 as a function of ω3dB/ωT computed
fromEq. (14.9). Forω3dB/ωT > 3 it’s in very good agreementwith the given approx-
imation.

Figure14.4 shows the normalized current iS(t) for a cosinusoidal input with
ω = 0.1ωT and ω3dB = 2ωT . The curve consists of peaks in concomitance with
the closing instants of switch 0, followed by an exponential decay with a time con-
stant of approximately 1/ω3dB and a sudden jump to zero at the instants where switch
0 is opened. (The oscillations around the instants where switch 0 changes state are
due to the Gibbs phenomenon of the Fourier series.) As the time constant is short-
ened by reducing the value of r , the curve converges to a series of Dirac pulses at the
closing instants of switch 0. If we shift the closing instants of switch 0 at multiples
of T we can express this behavior by

lim
r→0
ω→0

iS

(
t − T

8

)
=

∞∑
k=−∞

C

T
ejkωT t .

The discrete spectrum of iS(t − T /8) for ω3dB = 3ωT , 20ωT and ω = 0.1ωT is
shown in Fig. 14.5. The figure shows that as the value of ω3dB/ωT is increased,
an increasing number of coefficients yk(ω) tend to approach the value of C/T as
expected. At a value of k ≈ ω3dB/ωT the real and imaginary parts have roughly the
same value and for larger values of k the magnitude of yk(ω) decreases.
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Fig. 14.5 Normalized real-
and imaginary-part of
yk(ω)e−j (ω+kωT )T /8 for
ω = 0.1ωT as a function of
k computed with (14.6)
truncated to |n| = 2000. The
points between the discrete
values of k were joined to
better highlight the trend

14.2.3 Full Response

We now go back to the voltage across the capacitor vA and calculate the combined
response to all four signals v+

I , v−
I , v+

Q and v−
Q . To distinguish the four responses we

will add a subscript equal to the one of the corresponding LO signal. Thus in the
following we will denote the response to the signal v+

I given in (14.3) by vA,0. The
contribution of v−

I differs from the one of v+
I by (i) a shift byT /2 in the LOwaveform

and (ii) a reversal of sign of the input signal. Its contribution to vA is therefore

vA,2(t) = −ejωt
∞∑

n=−∞
ĥn(ω) ejnωT (t−T /2)

=
∞∑

n=−∞
(−1)n+1ĥn(ω) ej (ω+nωT )t .

Note that the even harmonics have opposite sign compared to the ones of vA,0, while
the odd ones have the same sign. Therefore the combined response of v1

I and v−
I

consists of odd harmonics only

vA,0(t) + vA,2(t) = 2
∑
n odd

ĥn(ω) ej (ω+nωT )t .

The response to the signal v+
Q differs from the one to v+

I by (i) a shift by −T /4
of the LO signal and (ii) a shift of T /4 in the input signal

v+
Q = −jejωt .

Its contribution to vA is therefore



14.2 Voltage-Mode Quadrature Modulator 325

vA,3(t) = −jejωt
∞∑

n=−∞
ĥn(ω) ejnωT (t+T /4)

= −
∞∑

n=−∞
j n+1ĥn(ω) ej (ω+nωT )t .

Similarly, the response to the signal v−
Q differs from the one to v+

I by (i) a shift by
T /4 of the LO signal and (ii) a shift of −T /4 in the input signal

vA,1(t) = jejωt
∞∑

n=−∞
ĥn(ω) ejnωT (t−T /4)

= −
∞∑

n=−∞
(−j)n+1ĥn(ω) ej (ω+nωT )t .

Again we note that odd harmonics of vA,3 and vA,1 have the same sign, while even
ones have opposite sign. The combined response of these two signals is therefore
also composed of odd harmonics only

vA,3(t) + vA,1(t) = −2
∑
n odd

j n+1ĥn(ω) ej (ω+nωT )t

= −2
∑
n odd

(−1)(n+1)/2ĥn(ω) ej (ω+nωT )t .

We now combine the two partial sums vA,0 + vA,2 and vA,3 + vA,1. The terms
for n = 1 + 4m,m ∈ Z have the same sign, while the terms at n = −1 + 4m have
opposite sign. The total sum is therefore

vA(t) = vA,0(t) + vA,2(t) + vA,3(t) + vA,1(t)

= 4
∞∑

m=−∞
ĥ1+4m(ω) ej [ω+(1+4m)ωT ]t .

Note again that the response of the system is equal to the one of an LTI system with
the transfer function given by (14.4) and driven by the input signal

x(t) = v+
I (t) l0(t) + v−

I (t) l2(t) + v+
Q(t) l3(t) + v−

Q(t) l1(t) .

Using four signal paths (two differential) this quadrature modulator cancels three
spurious emission tones every four. It’s a transmitter implementation of the harmonic-
reject mixer presented in Example 12.10 where we showed that to suppress more
harmonics requires a larger number of signal paths.

The above derivation of the output signal highlights the fact that suppression of
harmonics relies on exact cancelling of strong tones.Wewill investigate some imper-
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fections limiting the amount of cancelling achievable in practical implementations in
later sections. Before turning to that question we investigate the effect called carrier
leakage.

14.2.4 Carrier Leakage

Carrier leakage refers to the presence of a tone at ±ωT in the output spectrum of
the modulator. In transmitters, it is one of the undesired tones close to the signal of
interest (or, depending on the architecture, indeed overlapping with the modulated
wanted signal) that can’t be easily filtered. It is caused by the presence of small, DC
offset voltages at the inputs of the modulator. These offset voltages are the result of
mismatch in the driving circuits and are therefore Gaussian random variables.

We denote the DC offset random variables by Xk, k = 0, . . . , 3 where the index
matches the one of the corresponding switch. They form the following signal at the
input of the equivalent LTI system

X0 l0(t) + X1 l1(t) + X2 l2(t) + X3 l3(t)

=
∞∑

n=−∞

(
X0 + X1e

−j π
2 n + X2e

−jπn + X3e
−j 3π

2 n
)
ane

jnωT t

=
∞∑

n=−∞

(
X0 + X1(−j)n + X2(−1)n + X3(j)n

)
ane

jnωT t . (14.10)

Since usually the most problematic tone is the one at ±ωT we only consider the
terms for n = −1, 1. The term for n = 1 is

[
X0 − X2 + j (X3 − X1)

]
a1e

jωT t

and the one at n = −1 is its conjugate complex. The sum of the two terms gives

2a1
[
Xc cos(ωT t) − Xs sin(ωT t)

]
, Xc = X0 − X2 , Xs = X3 − X1 .

Linear combinations of independentGaussian randomvariables areGaussian. There-
fore, if we assume Xk, k = 0, . . . , 3 to be independent of each other, Xc and Xs are
independent Gaussian random variables as well. We denote the standard deviation
of Xc and Xs by σX . Their joint probability density function (PDF) is

pXc,Xs (xc, xs) = pXc(xc)pXs (xs) = 1

2πσ 2
X

e− x2c +x2s
2σX .
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It is now convenient to pass to polar random variables. Specifically, using the
relation

cos(ωt + φ) = cos(φ) cos(ωt) − sin(φ) sin(ωt)

the sum of the input terms for n = 1 and -1 can be rewritten as

2a1Xr cos(ωT t + Xφ)

with the new polar random variables

Xr =
√
X2
c + X2

s

Xφ = arctan
Xs

Xc
.

Given that the probability density in terms of Xc, Xs must agree with the one in terms
of Xr , Xφ , we must have

pXc,Xs (xc, xs)dxcdxs = pXr ,Xφ
(xr , xφ)dxrdxφ .

From this equation and dxcdxs = xrdxrdxφ we therefore deduce

pXr ,Xφ
(xr , xφ) = xr

2πσ 2
X

e
− x2r

2σ2X .

This joint probability density function is easily factored

pXr ,Xφ
(xr , xφ) = pXr (xr )pXφ

(xφ)

which implies that Xr and Xφ are independent random variables with the following
probability density functions

pXr (xr ) = 1

σ 2
X

xre
− x2r

2σ2X , xr ≥ 0 (14.11)

pXφ
(xφ) =

{
1
2π 0 ≤ xφ < 2π

0 otherwise .
(14.12)

The phase random variable Xφ is uniformly distributed over the full circle. The distri-
bution of the variable Xr is called Rayleigh distribution. Its PDF and complementary
cumulative density function 1 − FXr (xr ) are plotted in Fig. 14.6. The PDF assumes
its maximum at xr = σX . The expected value and variance of Xr are
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Fig. 14.6 Rayleigh
distribution for σX = 1. a
Probability density function.
b Complementary
cumulative density function
1 − FXr (xr )

E[Xr ] =
∞∫

0

xr pXr (xr )dxr =
√

π

2
σX

and

Var(Xr ) = E[(xr − E[Xr ])2] = 4 − π

2
σ 2
X

respectively.
The carrier leakage of the modulator is therefore given by

Xr

√
2

π
�{H(jωT )ej (ωT t+Xφ)}

with the phase uniformly distributed over the full circle, The magnitude of the tone
is Rayleigh distributed and if ωT � ω3dB has an expected value of
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σX√
π

From Fig. 14.6 we read that, under the same assumption, 0.1% of the modulators
have a carrier leakage magnitude exceeding

3.7

√
2

π
σX ≈ 1.67σX .

14.2.5 Image-Rejection

In this subsection we come back to the finite cancelling of harmonics in practical
implementations. We assume again the common case of a transmitter up-converting
the input signal to ω + ωT with |ω| � ωT � ω3dB .

In previous calculations we assumed perfectly balanced signals v−
I = −v+

I , v
−
Q =

−v+
Q , equal amplitudes for all signals, a phase difference between v+

I and v+
Q of

exactly π/2 and delays between the LO signals of exactly T /4. If we now introduce
small differences in the amplitudes

v+
I (t) = (AI + 
AI /2)e

jωt , v−
I (t) = −(AI − 
AI /2)e

jωt

the even harmonics of v+
I (t)l0(t) + v−

I (t)l2(t) do not cancel perfectly anymore

v+
I (t)l0(t) + v−

I (t)l2(t) =
∑
n odd

2AI ane
j (nωT +ω)t +

∑
n even


AI ane
j (nωT +ω)t

and similarly for the signal v+
Q(t)l3(t) + v−

Q(t)l1(t)

v+
Q(t)l3(t) + v−

Q(t)l1(t) = −
∑
n odd

j n+12AQane
j [(nωT +ω)t−n
φ]

−
∑
n even

j n+1
AQane
j [(nωT +ω)t−n
φ]

where in addition we have added a small delay error in l3 and l1 of 
τ and set

φ = 2π
τ/T . If we now sum these partial sums, the complete cancelling that
was happening for three harmonics out of four becomes a partial cancelling. In
particular this partial cancelling causes the appearance of a tone at |ωT − ω| (for
n = −1) which is difficult to filter as, in a single-sided representation, it appears
very close to the wanted signal at ωT + ω. The tone at |ωT − ω| is called the image
of the wanted signal. The ratio of the magnitude of the image to the one of the signal
is called the image-reject ratio (IRR) and is given by



330 14 Periodically Switched Circuits

Fig. 14.7 Mixer
image-reject ratio

I RR =
∣∣∣∣ AI − AQej
φ

AI + AQe−j
φ

∣∣∣∣ =
∣∣∣∣ AI e−j
φ/2 − AQej
φ/2

AI ej
φ/2 + AQe−j
φ/2

∣∣∣∣

=
√

(AI − AQ)2 cos2(
φ/2) + (AI + AQ)2 sin2(
φ/2)

(AI + AQ)2 cos2(
φ/2) + (AI − AQ)2 sin2(
φ/2)

≈
√( AI − AQ

AI + AQ

)2 + tan2(
φ/2) (14.13)

where in the last step we neglected the term (AI − AQ)2 sin2(
φ/2) in the denom-
inator which is of second order in the errors. Note that part of the phase error could
well come from the input signal. This is the IRR of the effective signal at the input
of the LTI system H(s). It is plotted in Fig. 14.7.

14.2.6 Effect of Mismatch

In this subsection we investigate the effect of mismatch which, as we will see, is
another phenomenon limiting the amount of harmonic cancelling achievable in prac-
tical implementations.

Due to mismatch, each of the four transistors with which the modulator is imple-
mented (see Figs. 14.1 and 14.2) presents a slightly different rON resistance and
similarly for the four source resistors. Therefore, the value of the resistance con-
nected to the capacitor is not independent of time, but is time-varying

r(t) =
3∑

k=0

rk lk(t) , rk ∈ R, k = 0, . . . , 3 .
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Fig. 14.8 Possible sample
waveform of the time
varying cut-off frequency
ω3dB(t). Variation greatly
exaggerated for illustration

The differential equation describing the system therefore becomes

[D + ω3dB(t)]vA = ω3dB(t)x(t) , ω3dB(t) := 1

r(t)C

x(t) := v+
I (t) l0(t) + v−

I (t) l2(t) + v+
Q(t) l3(t) + v−

Q(t) l1(t)

where we denoted the sum of the input signals by x . Since the variation of the
resistance from the nominal value is small, we can solve the equation using the
perturbation method and proceed as in Example 12.8 (Fig. 14.8).

As a first step we develop ω3dB(t) in a Fourier series and decompose it in two
parts

ω3dB(t) = ωc(t) + ωs(t) (14.14)

ωc(t) = r0 l0(t) + r2 l2(t) = ωc,0 + Xc

∞∑
n=1

wn cos(nωT t) (14.15)

ωs(t) = r1 l1(t) + r3 l3(t) = ωs,0 − Xs

∞∑
n=1

wn sin(nωT t) (14.16)

with

wn = 4

πn
sin(n

π

4
) , n > 0 .

ωc(t) corresponds to the curve of Fig. 12.10b with τ = T /4 scaled by Xc plus a
constant term.ωs(t) is constructed similarly, but with the curve of Fig. 12.10b shifted
by −T /4. We use the symbols Xc and Xs to denote independent Gaussian random
variables as in Sect. 14.2.4, but they are not related to the quantities of that section.
We also denote again their standard deviation by σX .

The sum of the constant terms (which are also random variables) is the average
frequency

ω0 = ωc,0 + ωs.0 .
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The variable part of ω3dB(t) can be written as

∞∑
n=1

wn[Xc cos(nωT t) − Xs sin(nωT t)]

Proceeding as in the analysis of carrier leakage we can express it in terms of the polar
random variables Xr and Xφ

∞∑
n=1

wn Xr cos(nωT t + Xφ) .

Using this form for ω3dB(t) the differential equation can be written as

(D + ω0)vA = ω3dB(t)x(t) −
∞∑
n=1

wn Xr cos(nωT t + Xφ)vA(t) .

We solved this equation to first order in Xr for one input tone and one cos term
in Example 12.8. Referring to that example for details, we conclude that mismatch
produces tones at all frequencies nωT + ω, n ∈ Z. The amplitude of these tones is
proportional to the random variable Xr which is Rayleigh distributed. The phase is
uniformly distributed over the full circle.

While in this subsection we focused on mismatch, the same method can be used
to analyse other effects causing variations in the resistance such as overlapping LO
signals.

14.2.7 Second-Order Distortion

In this subsection we analyse the distortion of second order introduced by the nonlin-
ear characteristic of the MOSFETs. As discussed, if we neglect mismatch the circuit
can be modeled as a time-invariant system drived by the input signal

x(t) = v+
I (t) l0(t) + v−

I (t) l2(t) + v+
Q(t) l3(t) + v−

Q(t) l1(t) . (14.17)

To simplify the calculations we discard the source resistors RS and consider the
situation shown in Fig. 14.9a. We assume the transistor to remain in the so-called
linear region of its characteristic which is described by

iD = β(vG − VT )(vD − vS) − β

2
(v2

D − v2
S) .

In our model the gate voltage is assumed to be constant at a sufficiently high level
VG , in which case the characteristic can be modeled by the linear resistor r that we
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Fig. 14.9 a Equivalent WNTI schematic of the quadrature modulator of Fig. 14.1 b Equivalent
WNTI circuit of the quadrature modulator of Fig. 14.1

used before and two nonlinear VCCS that we combine in a single one controlled by
the two voltages vD and vS

iD = g1(vD − vS) + g2(v
2
D − v2

S)

with

g1 = 1

r
= β(VG − VT ) and g2 = −β

2

and represented in Fig. 14.9b. Using this transistor model the differential equation
describing the system is

(1 + rCD)vA = x + g2
g1

(x2 − v2
A) .

The first order response of the system is described by the transfer function H that
we calculated before, that we repeat here for convenience and to which we add an
index representing the order as usual

H1(s1) = 1

1 + s1
ω3dB

.

We compute the higher order responses by Laplace transforming the differen-
tial equation and retaining only terms of the relevant order. To obtain the transfer
functions directly we use a Dirac pulse as input. The Laplace transformed of the
second-order part of the differential equation is

[1 + rC(s1 + s2)]H2(s1, s2) = g2
g1

[1 − H1(s1)H1(s2)] .
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The second-order transfer function therefore is

H2(s1, s2) = g2
g1

H1(s1 + s2)[1 − H1(s1)H1(s2)] . (14.18)

Consider the case in which the modulator is driven by two baseband
(v+

I , v−
I , v+

Q, v−
Q) real tones at ω1 and ω2. The tones of interest in the effective input

signal x of the WNTI model are at ±(ωT ± ωi ), i = 1, 2. Under the assumption that
|ωi | � ωT � ω3dB we can approximate H1 at these frequencies by

H1(jω) ≈ 1 − j
ω

ω3dB
.

Using this approximation in H2 we find

H2(jω1, jω2) ≈ g2
g1

1 − (1 − jω1/ω3dB)(1 − jω2/ω3dB)

1 + j ω1+ω2
ω3dB

≈ −1

2(VG − VT )

j ω1+ω2
ω3dB

1 + j ω1+ω2
ω3dB

. (14.19)

where in the last step we have neglected the small quantity ω1ω2/ω
2
3dB . This expres-

sion shows that, to reduce the principal second order distortion components under
the given assumptions, it is more convenient to choose a voltage VG − VT as large
as possible than merely reduce r by using a wider transistor.

14.2.8 Third-Order Distortion

Wenext compute the third-order transfer function. The third-order part of the Laplace
transformed differential equation is

[1 + rC(s1 + s2 + s3)]H3(s1, s2, s3) = −2
g2
g1

[H1(s1)H2(s2, s3)]sym .

From it we immediately obtain

H3(s1, s2, s3) = −2
g2
g1

H1(s1 + s2 + s3) [H1(s1)H2(s2, s3)]sym . (14.20)

To gain some insight from this expression we assume again two real input tones
with |ωi | � ωT � ω3dB . Under these assumptions we can expand H3 in a first order
Taylor polynomial and obtain
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Fig. 14.10 Quadrature
modulator IP3 as a function
of ω3dB/ωT normalized to
|g1/g2|. Solid line computed
with the full H3 in (14.20),
dashed line IP3 computed
with (14.22). ω1 = ω2 =
(1 + 0.1)ωT , ω3 =
−(1 + 0.2)ωT

H3(jω1, jω2, jω3) ≈ −j
4

3

(g2
g1

)2 ω1 + ω2 + ω3

ω3dB

= −j (ω1 + ω2 + ω3)C

3β(VG − VT )3
. (14.21)

As for second-order distortion we find that it’s more convenient to choose a large
VG − VT than to increase the width of the transistor. Using this expression we can
estimate the IP3 of the modulator as

AIP3 ≈ g1
g2

∣∣∣∣
√

ω3dB

ωT
= 2(VG − VT )

√
ω3dB

ωT

∣∣∣∣ . (14.22)

The value of this approximation is compared with the value calculated from the full
H3 (14.20) as a function of ω3dB/ωT in Fig. 14.10 for ω1 = ω2 = (1 + 0.1)ωT and
ω3 = −(1 + 0.2)ωT . The approximation gives a reasonable value from ω3dB/ωT �
2. For values of ω3dB/ωT < 1 the IP3 is seen to raise. This is however related to
the fact that the wanted signals do also experience substantial attenuation compared
with the case of a large ratio ω3dB/ωT .

It is important to realize that the effective input signal x of the model includes
many tones that produce many intermodulation products. In particular, the tones
at 3ωT − ωi , i = 1, 2 together with the main tones at ωT + ωi produce third-order
intermodulation products that falls close to the wanted signal and are difficult to
suppress

3ωT − ωi − 2(ωT + ωi ) = ωT − 3ωi .

These tones are called third order counter intermodulation products (CIM3). We
saw in previous paragraphs that many practical imperfections introduce tones at the
second harmonic of the input signals 2(ωT ± ωi ). In this case second-order distortion
does also produce tones around the signal of interest. In particular the combination
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Fig. 14.11 Single-sided output spectrumof themodulator simulatedwith accurate transistormodels

2(ωT − ωi ) − (ωT + ωi ) = ωT − 3ωi

results in a tone at the CIM3 frequency as does the second-order distortion between
3ωT − ωi and 2(ωT − ωi )

(3ωT − ωi ) − 2(ωT + ωi ) = ωT − 3ωi .

Depending on the details of the design, these second order distortion components
may contribute significantly to the overall CIM3 level of the modulator.

Figure14.11 shows part of the output spectrum magnitude obtained by numerical
simulation of the modulator with accurate transistor models, a load capacitance of
1 pF, an LO frequency of 1GHz, and two input tones given by

v+
I (t) = −v−

I (t) = A cos(ω1t) + A cos(ω2t)

v+
Q(t) = −v−

Q(t) = A sin(ω1t) + A sin(ω2t)

with
A = 0.15V, ω1 = ωT

8
, ω2 = ω1 + ωT

64
.

We used 22nm FinFETs modelled with BSIM-CMG compact models [29] with
technology parameters from [30]. The transistors were sized to have an rON of 20�

at VG − VT = 0.5V. Since the threshold voltage of the transistors is 0.311V, the LO
voltage high level was chosen to be 0.811V, while the low level was set to –0.189V.
To avoid overlapping the duration of the high pulses was reduced slightly from the
nominal value of T /4 to produce a cross point between successive LO signals ca.
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Fig. 14.12 LO signal waveforms used in the simulation of the modulator

0.1V below VT . The raise- and fall-times were set to 0.125ns giving an LO transient
slope K of 8GV/s. The LO signals used in the simulation are shown in Fig. 14.12.

The spectral component levels obtained by simulation compare favorably with
our analysis. The expected level of the main tones is

A
4√
2π

≈ 0.135V

and is very close to simulated one of 0.131V. Our choice of parameters is such that
ω3dB/ωT ≈ 7.9. We can therefore estimate the expected second- and third order
intermodulation products from the approximate transfer functions given by (14.19)
and (14.22) respectively. The expected level of the second order tone at 2(ωT − ω1)

is estimated to be
∣∣∣∣
(
A

4√
2π

)2 1

2
H2(j (ωT − ω1), j (ωT − ω1))

∣∣∣∣ ≈ 2.29mV

The expected IM3 level at ωT + 2ω1 − ω2 is

∣∣∣∣
(
A

4√
2π

)3 3

4
H3(j (ωT + ω1), j (ωT + ω1),−j (ωT + ω2))

∣∣∣∣ ≈ 0.23mV .

The simulated values are 5.44 and 0.35 mV respectively, reasonably close to the
predicted values.

In our simplified analysis we assumed zero LO signal raise- and fall-times. It is
interesting to investigate how fast theLO transients have to be before the intermodula-
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Fig. 14.13 Simulated IM3 versus LO transient slope K

tion products start to deviate significantly from the predicted values. We investigated
this question by simulation. The IM3 level is plotted as a function of the LO tran-
sients slope K in Fig. 14.13. For all values of K the crossing point was kept constant.
Note that the LO waveforms corresponding to the lowest K values are essentially
triangular with no flat high level region. This simulation suggest that the analysis
gives reasonable IM3 estimates for values of fT /K � 0.14.

14.3 Sampling Mixer

A communication receiver should ideally be able to detect a single signal on a
channel of a frequency band allocated to the service of interest and completely
suppress all other signals. Due to limitations in the selectivity of filters and the
difficulty of implementing tuneable filters, this can only be achieved approximately.
Virtually all receivers are composed by a fixed highly selective filter (the preselection
filter) typically implemented with surface- (SAW) or bulk-acoustic wave (BAW)
technologies suppressing all signals outside the band of interest. This filter is then
followed by some signal amplification and by a shift of the signal of interest to a
lower fixed frequency with the help of a mixer. At this lower frequency another
fixed filter (the channel filter) with a bandwidth corresponding to the bandwidth of
a channel separates the wanted signal from other signals on adjacent channels. The
channel of interest is selected by shifting in frequency of the input spectrum in such a
way that the desired signal falls in the passband of the channel filter. This is done by
appropriately choosing the frequency of the so-called local oscillator (LO) driving
the LO port of the mixer.
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The sampling mixer analysed hereafter is an attempt to remove the preselection
filter and implement a tuneable filter capable of selecting a single channel only
using components available in a standard CMOS technology. This is driven by the
desire for miniaturisation and cost reduction. While this type of circuits have their
own drawbacks they are a nice example showing some capabilities of time-varying
systems that can’t be matched by LTI ones.

14.3.1 Time-Varying Impulse Response

Consider the highly idealised samplingmixer shown in Fig. 14.14. The input signal is
represented by the voltage source Vs and the nodes labelled V0, . . . , VN−1 represent
output signals. The ideal switches Sn, n = 0, . . . , N − 1 are driven by theT -periodic
clock signals φn . A switch is closed when the corresponding clock signal is high and
open when low. We assume that the clock signals are non-overlapping. Since no
reactive component is present on the source side of the switches the output signals
can be analysed independently of each other. In the following we assume that each
clock phase has the same duration so that

tn = n
T
N

; n = 0, . . . , N − 1.

In this case it’s enough to compute the time-varying impulse response of one output
signal only. The other ones are then obtained by a simple translations in time.Wewill
therefore compute the time-varying impulse response corresponding to the output
V0 that in the following we will denote by y. Similarly, we will denote the source
signal by x .

Fig. 14.14 Linear periodic
switched capacitor circuit
that can be used as a
sampling mixer or as an
N -path filter
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The circuit, having twophases, is described by twodifferential equations.Between
0 < t < t1, when the switch is closed, it is described by

Dy + ω0y = ω0x, ω0 := 1

RC

while for t1 < t < T , when the switch is open, by

Dy = 0 .

We start by computing the fundamental kernel of the system W (t, τ ) which is the
solution of the differential equation when driven by a Dirac impulse occurring at
time τ . Since the circuit varies periodically in time, it’s enough to compute it for
0 < τ < T .

For 0 < τ < t1 the output is zero up to time τ at which point it will jump to
1/RC and start to decay exponentially as in an LTI system. At time t1 the switch
is opened, leaving the output capacitor floating. The output voltage will therefore
remain constant up to timeT . At timeT , since there is a resistor between the capacitor
and the source, the output will simply start to decrease exponentially again with the
same time constant 1/RC as during the first part of the response. Continuing this
process we obtain (see Fig. 14.15)

W (t, τ )
0<τ<t1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 t < τ

ω0e−ω0(t−τ) τ < t < t1
ω0BAk−1e−ω0(t−kT ) kT < t < kT + t1 , k ≥ 1

BAk t1 + kT < t < (k + 1)T , k ≥ 0

Fig. 14.15 Fundamental
kernel of the sampling mixer
for τ = 0.1T , N =
4, ω0T = 0.5
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with
A := e−ω0t1 B := e−ω0(t1−τ) .

For t1 < τ < T , given that the output is disconnected from the input, the output
remains zero

W (t, τ )
t1<τ<T

= 0 .

The time varying impulse response can be derived from the fundamental kernel
with the help of the variable substitution ξ = t − τ and by keeping in mind that the
value of the impulse response h(t, ξ) is the value of the output at time t assuming
that a Dirac impulse was applied ξ seconds in the past. As the impulse response is
periodic, it’s enough to compute its value over the first period. For 0 < t < t1 it is
given by (see Fig. 14.16a)

Fig. 14.16 a Time-varying
impulse response of the
sampling mixer as a function
of time for ξ = 0.1T ,
N = 4, ω0 = 0.5T b
Time-varying impulse
response of the sampling
mixer as a function of ξ for
t = 0.1T ,
N = 4, ω0 = 0.5T
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h(t, ξ)
0<t<t1

=

⎧⎪⎨
⎪⎩

ω0e−ω0ξ 0 < ξ < t

ω0Ake−ω0(ξ−kT ) t − t1 + kT < ξ < t + kT , k ≥ 1

0 otherwise

and for t1 < t < T by

h(t, ξ)
t1<t<T

=
{

ω0Ake−ω0[ξ−(kT+t−t1)] t − t1 + kT < ξ < t + kT , k ≥ 1

0 otherwise .

14.3.2 Time-Varying Transfer Function

While the circuit is fully characterised by the above time-varying impulse response,
its filtering characteristics are best understood by analysing its time-varying fre-
quency response. This will allow us to easily obtain the output signal when the
circuit is driven by a tone.

We compute the time-varying transfer function ĥ(t, ω) by Fourier transforming
h(t, ξ). For 0 < t < t1 we have

ĥ(t, ω) =
t∫

0

ω0e
−ω0ξe−jωξdξ +

∞∑
k=1

t+kT∫

t−t1+kT

ω0A
ke−ω0(ξ−kT )e−jωξdξ .

The terms in the right summation are powers of the summation variable k multiplied
by a constant and reminds of a geometric series with a missing first term. As a first
step we therefore add the missing term by adjusting the limits of the first integral

ĥ(t, ω) = −
0∫

t−t1

ω0e
−ω0ξ−jωξdξ +

∞∑
k=0

ω0A
keω0kT

t+kT∫

t−t1+kT

e−ω0ξ−jωξdξ .

Evaluating the integrals and simplifying we find

1 − e−(ω0+jω)(t−t1)

1 + j ω
ω0

+ e−(ω0+jω)t e
(ω0+jω)t1 − 1

1 + j ω
ω0

∞∑
k=0

Ake−jωkT .

Performing the summation of the geometric series we finally obtain

ĥ(t, ω)
0<t<t1

= 1 − e−(ω0+jω)(t−t1)

1 + j ω
ω0

+
(
e(ω0+jω)t1 − 1

)
e−(ω0+jω)t(

1 + j ω
ω0

)(
1 − e−jωT e−ω0t1

) . (14.23)
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For t1 < t < T the time-varying frequency response is given by

ĥ(t, ω) =
∞∑
k=0

t+kT∫

t−t1+kT

ω0A
ke−ω0[ξ−(kT+t−t1)]e−jωξdξ .

This is again a geometric series and proceeding as above we obtain

ĥ(t, ω)
t1<t<T

=
(
ejωt1 − e−ω0t1

)
e−jωt(

1 + j ω
ω0

)(
1 − e−jωT e−ω0t1

) . (14.24)

14.3.3 Selectivity

With ĥ(t, ω) the output of the circuit when driven by x(t) = cos(ωt) is immediately
obtained

y(t) = �{ĥ(t, ω)ejωt } .

The output is shown in Fig. 14.17 for two values of the input frequency and N = 4.
During the time intervals t1 + kT < t < (k + 1)T , k ∈ Z the output is constant and
assumes the value

y(t) = �{ĥ(t, ω)ejωt } = �
{ (

ejωt1 − e−ω0t1
)
ejωkT(

1 + j ω
ω0

)(
1 − e−jωT e−ω0t1

)
}

.

where we used the periodicity in time of ĥ(t, ω) and the previously computed expres-
sion valid for t1 < t < T

ĥ(t, ω) = ĥ(t − kT , ω)
t1<t−kT<T

.

These values are the output sample values of the sampling mixer. Let’s denote them
by y[k] and set ω = nωs + 
ω, n ∈ Z with ωs = 2π/T and 
ω < ωs/2. Then the
above expression becomes

y[k] = �
{
heff(nωs + 
ω)ej
ωkT

}

:= �
{ (

ej (nωs+
ω)t1 − e−ω0t1
)
ej
ωkT

(
1 + j nωs+
ω

ω0

)(
1 − e−j
ωT e−ω0t1

)
}

.
(14.25)

These are the samples of a sinusoidal with angular frequency 
ω and amplitude

∣∣∣∣
(
ej (nωs+
ω)t1 − e−ω0t1

)
(
1 + j nωs+
ω

ω0

)(
1 − e−j
ωT e−ω0t1

)
∣∣∣∣ .
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Fig. 14.17 Sampling mixer
output V0 when driven by
cos(ωt) with
N = 4, ω0 = 0.5T . a
ω = 1.01ωs . b ω = 1.2ωs

The fact that the output samples correspond to samples of a sinusoidal with a fre-
quency independent of n is a manifestation of aliasing inherent in every sampling
process. The interesting aspect of the sampling mixer is the fact that only samples
of tones with a frequency very close to nωs have a significant amplitude while the
ones of signals with frequencies at a distance larger than approximately ω0/N from
nωs are attenuated. This effect is due to the factor

1 − e−j
ωT e−ω0t1 = 1 − e−j2π 
ω
ωs e− 2π

N
ω0
ωs

in the denominator of the above expression. For ω0 � Nωs the last exponential
on the right is only slightly smaller than 1. Therefore, for 
ω < ω0/N this factor
becomes small thereby boosting the value of the samples around those frequencies
(see Fig. 14.18). From this we conclude that the sampling mixer not only behaves as
a sample and hold, but it also acts as a highly selective (large quality factor) filter
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Fig. 14.18 Equivalent
magnitudes of the output
samples of a sampling mixer
with N = 4, ω0 = 0.5T

around the sampling frequency and its harmonics. The achievable selectivity is much
higher than the one of LTI RLC filters integrable in a standard CMOS technology.

14.3.4 Even Harmonic Response Suppression

The response around the harmonics is generally undesired and can be suppressed by
usingweighted sums of the N outputs as discussed inExample 12.10. In the following
we assume N even and investigate the possibility to suppress the responses at even
harmonics by making use of the sample values on the capacitors as opposed to the
full waveforms. Consider the sample value on capacitor i = N/2

VN/2(t) = �{ĥ(t − T /2, ω)ejωt }
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Denoting the sample value held by the capacitor during the interval t1 + t1N/2 +
kT < t < T + t1N/2 + kT by yN/2[k] and using the periodicity in time of ĥ(t, ω)

as before we obtain

yN/2[k] = �
{(

ejωt1 − e−ω0t1
)
e−jω(t−kT−T /2)(

1 + j ω
ω0

)(
1 − e−jωT e−ω0t1

) ejωt

}

= �
{ (

ejωt1 − e−ω0t1
)

(
1 + j ω

ω0

)(
1 − e−jωT e−ω0t1

)ejω(kT+T /2)

}

= �
{
heff(ω)ejωkT ejωT /2

}

If the frequency of the signal is close to the nth harmonic of the sampling frequency
ω = nωs + 
ω,
ω � ωs the last expression becomes

yN/2[k] = �
{
heff(nωs + 
ω)ej
ωkT (−1)nejπ 
ω

ωs

}
.

The difference between sample values on capacitor C0 and CN/2 is thus given by

y[k] − yN/2[k] = �
{
heff(nωs + 
ω)ej
ωkT [

1 − (−1)nejπ 
ω
ωs

]}
.

Under the assumption 
ω � ωs the right most exponential is close to 1 so that

y[k] − yN/2[k] ≈
{
0 n even

2y[k] n odd .

For N = 4 the four output samples can be combined in pairs forming signals
corresponding to the in-phase (VI [k] = V0[k] − V2[k]) and quadrature (VQ[k] =
V1[k] − V3[k]) output of a quadrature mixer.

Before concluding this section we note that a loss of charge from the capacitor
during the hold phase results in a lower boost of the samples around the frequencies
nωs, n ∈ Z. A loss of charge could be caused for example by a finite load resistance
or by a switched-capacitor circuit following the sampling mixer. The reduction in the
magnitude of the samples comes from the fact that the value of A appearing in the
definition of h(t, ξ) will become smaller and as a consequence the boosting factor

1 − e−j
ωT A

in the denominator of ĥ(t, ω) will not become as small as calculated above.
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14.4 N-Path Filters

The block diagram of a general N -path filter is shown in Fig. 14.19 and can be
thought of as the cascade of an N -path receiver and an N -path transmitter (com-
pare with Example 12.10). Among other things they permit to implement transfer
functions that, under suitable assumptions, mimic the ones of LTI networks that are
difficult or not manufacturable with RLC elements due to the limited range of actu-
ally implementable values or due to limitations in their quality (quality factor). The
time-varying transfer function of a general N -path filter can be analysed using the
same methods used to analyse the N -path receiver of Example 12.10. Here instead
of the general case we analyse a concrete implementation that shows some useful
applications.

In the following we analyse the simple case in which the N LTI subsystems are
simple shunt capacitors and where the periodic input and output functions are equal
switching functions. Under these conditions, when the switches of path k are closed,
the upper plate of the kth capacitor is simultaneously connected to the input as to
the output and we obtain the circuit shown in Fig. 14.14 where now the output is
constituted by the node labeled V f .

14.4.1 Time-Varying Frequency Response

During clock phase k, 0 ≤ k ≤ N − 1, during which the switch Sk is closed, the
voltage V f is equal to the voltage Vi . For this reason we can express V f in terms
of the time-varying frequency response that we obtained in the previous section. In
particular, when the input is a complex tone ejωt the output is given by

Fig. 14.19 Block diagram
of a generic N -path filter
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V f (t) = ejωt
N−1∑
k=0

ĥsm(t − kt1, ω)1t1(t − kt1 mod T )

with

1t1(t) =
{
1 0 < t < t1
0 otherwise

and where we denoted the time-varying frequency response of the sampling mixer
by ĥsm to avoid confusion with the one of the whole N -path filter that we’ll denote
by ĥ. For 0 < t < T , using (14.23) the frequency response of the filter is thus given
by

ĥ(t, ω) = 1

1 + j ω
ω0

+
[−e(ω0+jω)t1

1 + j ω
ω0

+
(
e(ω0+jω)t1 − 1

)
(
1 + j ω

ω0

)(
1 − e−jωT e−ω0t1

)
] N−1∑

k=0

e−(ω0+jω)(t−kt1)1t1(t − kt1) .

As the time-varying frequency response is T -periodic, we can expand it in a Fourier
series. The nth Fourier coefficient of the summation on the right is

an = 1

T

T∫

0

N−1∑
k=0

e−(ω0+jω)(t−kt1)1t1(t − kt1)e
−jnωs tdt

= 1

T

N−1∑
k=0

e(ω0+jω)kt1

(k+1)T /N∫

kT /N

e−[ω0+j (ω+nωs )]tdt

= 1

T
1 − e−[ω0+j (ω+nωs )]t1

ω0 + j (ω + nωs)

N−1∑
k=0

e−jnωs kt1 .

The last summation is zero unless n is a multiple of N in which case it evaluates
to N

an =
{

N
T

1−e−[ω0+j (ω+nωs )]t1
ω0+j (ω+nωs )

n = Nm,m ∈ Z

0 otherwise.

The time-varying frequency response of the filter is therefore given by

ĥ(t, ω) =
∑

n=...,−4,0,4,...

hn(ω)ejnωs t (14.26)
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with

hn(ω) = 1

1 + j ω
ω0

+
[−e(ω0+jω)t1

1 + j ω
ω0

+
(
e(ω0+jω)t1 − 1

)
(
1 + j ω

ω0

)(
1 − e−jωT e−ω0t1

)
]
an

or, after some simplification

hn(ω) = 1

1 + j ω
ω0

[
1 + 1

t1ω0

(
e−jω(T−t1) − 1

)(
1 − e−[ω0+j (ω+nωs )]t1)(

1 − e−jωT e−ω0t1
)(
1 + j ω+nωs

ω0

)
]

. (14.27)

The last term of hn(ω) includes the same factor that we discussed in the analysis of
the sampling mixer and responsible, under the condition ω0t1 � 1, for boosting the
response of the circuit at frequencies ω = kωs + 
ω, k ∈ Z,
ω < ω0/N . There-
fore, forω0t1 � 1 the transfer function h0(ω) represents a highly selective band-pass
filter with pass bands centered at kωs with k �= Nm,m ∈ Z (see Fig. 14.20).

Fig. 14.20 N -path filter
transfer functions magnitude
for N = 4, ω0 = 0.5T .
a n = 0. b Detail around
f/ fs ≈ 1 for n = −4, 0, 4
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The transfer functions hn(ω), n �= 0 are also highly selective, but they also intro-
duce a shift in frequency. In particular an input tone at ω − nωs passing through
hn(ω) results in an output tone at ω which will overlap with the response of h0(ω)

to an input tone at ω. Therefore, if this N -path filter is used in a receiver to suppress
interfering signals, while it possess undesired pass-bands, the closest frequency of
an interfering signal that at the output of the circuit will overlap in frequency with
the wanted signal is Nωs . The magnitude of a few transfer functions producing an
output tone at ω are shown in Fig. 14.20.

14.4.2 Selectivity

By applying some approximations to h0 valid in the vicinity of ωs we can obtain a
transfer function that can be implemented with fixed RLC components. This will
allow us to quantify the selectivity of the filter in terms of standard metrics.

As a first stepwe set againω = ωs + 
ω and use
ω � ωs tomake the following
approximation

1

1 + j ωs+
ω

ω0

1

t1ω0

((
e−jω(T−t1) − 1

)) ≈ 1

jωs t1
ejωs t1/2

(
ejωs t1/2 − e−jωs t1/2

)

= ejπ/N sin(π/N )

π/N
.

Similarly, using in addition ω0 � ωs

(
1 − e−[ω0+j (ωs+
ω)]t1)(

1 − e−j (ωs+
ω)T e−ω0t1
)(
1 + j ωs+
ω

ω0

) ≈ e−jπ/N 2j sin(π/N )

(j
ωT + ω0t1)j
ωs
ω0

≈ e−jπ/N sin(π/N )

(1 + jN 
ω
ω0

)π/N
.

Finally, using these approximations and noting that the first summand in h0(ω) is
small compared to the second we obtain

h0(ω) ≈
( sin(π/N )

π/N

)2 1

1 + jN 
ω
ω0

. (14.28)

The impedance of a parallel LTI RLC resonator with a resonance frequency of
ωs is given by

Zr (ω) =
jω

ωs

Rr
q(

jω

ωs

)2 + jω

ωsq
+ 1
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Fig. 14.21 Model for the
N -path filter h0(ω) valid
around ωs

with q the quality factor of the resonator and Rr the impedance at resonance. Around
the resonance frequency it can be approximated by

Zr (ωs + 
ω) ≈ Rr

1 + j2q 
ω
ωs

.

The transfer function to V f around the resonance frequency of the circuit shown in
Fig. 14.21 is therefore given by

Rr

R + Rr
· 1

1 + j2q R
R+Rr


ω
ωs

, ω2
s = 1√

LrCr
, q = Rr

ωs Lr

and has the same form as the approximation of h0(ω) given in (14.28). The two are
equal if ⎧⎪⎪⎨

⎪⎪⎩

Rr

R + Rr
= K

2q
R

R + Rr


ω

ωs
= N

ω0

with

K :=
( sin(π/N )

π/N

)2
.

This shows that around ωs h0(ω) can be modelled as a parallel resonator with reso-
nance frequency ωs and characterised by

Rr = R
K

1 − K
, q = Nπ

(1 − K )ω0T
.

The transfer function of this model is compared with the exact h0(ω) in Fig. 14.22.
For N = 4, ω0T = 0.5 the quality factor has a value close to 133. For comparison,
the highest resonance quality factor implementable at RF frequencies with inductors
and capacitors available in standard CMOS technologies is in the range of 20, with
typical values substantially lower than this.
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Fig. 14.22 Comparison
between the N -path filter
transfer function using the
RLC model valid around the
sampling frequency and the
transfer function h0 for
N = 4 and ω0 = 0.5T
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Appendix A
Signal-Flow Graphs

Signal-flow graphs (SFGs) are a graphical way to represent systems. While this is
true of block diagrams, the conventions used with the former make them simpler and,
for many purposes, more powerful than the latter. SFGs are sometimes used with
nonlinear systems, but are most useful to manipulate and transform linear systems.
In this appendix we first review some of the most useful transformations applicable
to SFGs used to describe linear systems, so called linear signal-flow graphs. We then
review their more limited use with general nonlinear systems. Finally, we show how
all the rules valid for linear SFGs can be extended to weakly-nonlinear time-invariant
systems.

A.1 Linear Signal-Flow Graphs

A.1.1 Construction Rules

Signal-flow graphs are directed graphs. Each node represents a variable, in our case
a signal. Signals flow along the branches (or edges) of the graph in the indicated
direction. Each branch is labelled by the transmission factor of the branch. A signal
flowing along a branch is composed with the branch transmission factor: in the
time domain composition is effected by using the convolution product, while in the
Laplace or frequency domain by using standard multiplication. The transmission
factors in the time domain representation of a system are impulse responses while in
the Laplace representation are transfer functions.

All signals entering a node through branches are summed at that node. In other
words, the value of the variable represented by a node is the sum of the entering sig-
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Fig. A.1 Signal-flow graph
corresponding to Eq. (A.1)

nals. The value of the variable represented by any node is transmitted to all branches
leaving the node. Nodes without incoming branches are source nodes. Nodes with
only incoming branches are sink nodes.

Using the above rules SFGs can be used to represent systems of linear algebraic
and convolution equations. The usefulness of SFGs comes from the fact that their
graphical nature helps clarify the relation between variables and the existence of
feedback loops. For example, the system of equations

x1 = ax0 + dx2 + ex2
x2 = bx1
x3 = cx2

(A.1)

can be represented by the SFG shown in Fig.A.1.
Here and in the following, for simplicity of notation, we will use single letters to

represent transmission factors and suppress all product symbols. Before proceeding
discussing more aspects of SFGs it’s convenient to introduce some specific termi-
nology [37].

Intermediate node: A node with incoming and outgoing branches.
Path: A connection from a starting node to an end node by a continuous, uni-

directional succession of branches all of which are traversed along the branch
direction.

Open path: Any path not touching a node more than once.
Loop: A path starting and ending at the same node. All other nodes are touched at

most once.
Self-loop: A loop touching a single node.
Non-touching loops: Loops without common nodes.
Path-/Loop-gain: The product of the transmission factors of the branches forming

the path resp. the loop.

A.1.2 Reduction Rules

Many of the algebraic manipulations performed in solving linear equations can be
translated in reduction rules for SFGs [37]. These are graphical rules to transform a
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given SFG in an equivalent, but simpler form. Hereafter we list the most useful rules
together with the algebraic equations proving the equivalence.

1. Parallel transformation:

x1 = ax0 + bx0 x1 = (a + b)x0

2. Cascade transformation:

x2 = bx1, x1 = ax0 x2 = abx0

3. Star to mesh transformation:

x1 = bx4 x1 = abx0 + cbx2
x3 = dx4 x3 = adx0 + cdx2
x4 = ax0 + cx2

This rule can also be applied in the case in which a transmission factor is zero
and in the case in which some nodes coincide.

4. Node elimination:
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x0 = cx1 x0 = cax0 + cdx2
x2 = bx1 x2 = bax0 + bdx2
x1 = ax0 + dx2

This is a special case of the star to mesh rule.
5. Shifting start point:

x1 = ax0 x1 = ax0
x2 = bx1 + cx0 x2 = (b + c/a)x1

6. Shifting end point:

x1 = ax0 x ′
1 = (a + c/b)x0

x2 = bx1 + cx0 x2 = bx ′
1

Note that this transformation changes the variable x1 into a new one x ′
1 �= x1. In

spite of this the total transmission factor from x0 to x2 remains unaffected.
7. Path inversion: A branch can only be inverted if it starts at a source node (no

incoming branches) as the branch with transmission factor b in the illustration.

x3 = ax0 + bx1 + cx2 x1 = −a

b
x0 − c

b
x2 + 1

b
x3

Note that application of this rule moves a source of the graph. Consecutive appli-
cation of the rule allows inverting a path from a source to an arbitrary node.
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8. Self-loop elimination:

x0 = cx1 x0 = cx1
x2 = bx1 x2 = bx1

x1 = ax0 + dx2 + ex1 x1 = a

1 − e
x1 + d

1 − e
x2

In the first few transformation rules only summations and multiplication of trans-
mission factors occur. Therefore, if the initial transmission factors correspond to
transfer functions (or impulse responses) of stable systems, so do the ones of the
transformed graph. This is not necessarily the case with later rules entailing divi-
sions.

A.1.3 Mason’s Rule

One of the strength of SFGs is the fact that Mason’s rule allow writing the transfer
function (or impulse response) from a source node to another node by inspection
[38]. Before stating the general rule we first focus on graphs with a single open path
from a source node xs to another node x j and where the path touches every loop in
the graph (that means that it has at lease a node in common with every loop). For
this case the transmission is given by

Tsj = Psj
�

with Psj the gain of the open path and � the graph determinant (or system determi-
nant). If we denote the loop gain of loop i by Li , the graph determinant is defined
by

� := 1 −
∑

Li +
∑

Li L j −
∑

Li L j Lk + · · · ,

the first summation being over all loops, the second over all pairs of non-touching
loops, the third over all triplets of non-touching loops, etc.

As an example consider the SFG depicted in Fig.A.2. From x0 to x4 there is a
single path touching all three loops. The transmission T04 is
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Fig. A.2 Single path
multi-loop SFG

T04 = P04
1 − (L1 + L2 + L3) + L1L2

= abcd

1 − (be + dg + bc f ) + bedg
.

Consider now the case of two open paths froma source node to another node. Since
the graph represents a linear system, the output is the sum of the two contributions

T = P1
�1

+ P2
�2

where the individual contributions are calculated as for the single path case, with Pj

the gain of path j and � j the determinant associated with path j , that is, calculated
discarding the loops not touched by path j . This expression can be rewritten as

T = P1�2 + P2�1

�
; � = �1�2 .

The denominator of this expression � is the determinant of the full SFG and each
path transmission Pj is multiplied by the determinant of that part of the graph with
no nodes in common with the path. Generalising this expression to more paths we
obtain Mason’s rule

T =
∑

j Pj� j

�
(A.2)

where here, differently from above,� j denotes the co-factor of path k defined as the
determinant of that part of the graph which doesn’t have any node in common with
path j . A formal proof can be found in [39].

A.2 Nonlinear Systems

The use of signal-flow graphs with nonlinear systems is more limited. One (and the
first) application is in studying the smallest number of implicit equations in a system
of nonlinear equations [38]. In this context a branch simply represents a dependence
of the variable represented by the node pointed to by the branch in question by the
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Fig. A.3 Example
signal-flow graph
representing Eq. (A.3)

variable represented by the node where the branch originates. For example the set of
nonlinear equations

x1 = f1(x0, x2)

x2 = f2(x0, x1, x2)
(A.3)

is represented as in Fig.A.3. In this setting there is no concept of branch transmis-
sion. Also, parallel branches between nodes make no sense. In spite of this one can
adapt those reduction rules based only on variable substitutions. For example, in the
above example we can remove x1 by a simple substitution obtaining a single implicit
equation

x2 = f2(x0, f1(x0, x2), x2) = f̃ (x0, x2) .

A second way in which signal-flow graphs are used in conjunction with nonlinear
systems consists in retaining most construction rules of linear SFGs, but allow the
use of nonlinear functions instead of transmission factors. This approach is popular
for example in the study of neural networks [40]. As an example Fig.A.4 shows the
signal-flow graph of Rosenblatt’s perceptron. In this model the input branches posses
transmission factors labelledw j , but the branch connecting to the output y represents
the application of the nonlinear function ϕ(.) to the signal v. The function ϕ(.) is
called activation function and in this context has a monotonic, limiting character.

This method is useful to analyse graphs without feedback loops. There is no
equivalent of Mason’s rule applicable in the presence of feedback loops.

Fig. A.4 Signal-flow graph
of a Perceptron
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A.3 Weakly-Nonlinear Systems

The equations describing weakly-nonlinear time-invariant systems can be solved in
an iterative way as described in Chap. 9. The component of order k of the Volterra
series representation of a signal is calculated by solving a linear system of equations
with products and powers of terms of order lower than k acting as sources. The
signal-flow graph of a weakly-nonlinear system can thus be constructed as a linear
SFG representing the linear part of the equations and where products and powers of
signals are added as source nodes. In this way, all features of linear SFGs can be
used, including Mason’s rule.

One starts by calculating the first order response due to the external source (which
is of order one) as with linear systems. With it one can then compute the value of
the sources of second order. More generally, with the responses of order up to k − 1
one can compute the sources of order k. The latter drive a linear system. The transfer
function of order k can often be written by inspection using Mason’s rule as follows

1. Compute the linear transfer function from the source to the node of interest.
2. Replace the single Laplace variable s of the linear transfer function by the sum

s1 + · · · + sk (see Sect. 10.1).

The procedure works in the time domain as well. One has simply to use impulse
responses and the convolution product, and adapt the second step.

The following example illustrates the use of SFGs to analyse WNTI systems. In
Sect. 10.2 we use SFGs to illuminate the effect of distortion within a feedback loop.

Example A.1: Driven Pendulum

In this example we analyse the pendulum shown in Fig.A.5. A weight of mass m
at the end of a massless rod is suspended from a pivot in Earth’s gravitational field.
We model the weight as a point mass whose position is specified by the angle φ.
We assume the presence of some viscous fluid causing a drag proportional to the
velocity of the weight. A motor drives the pendulum exerting a periodic torque M .
The equation governing the dynamics of the system can be obtained from Newton’s
second law

D2φ + b

lm
Dφ + g

l
sin φ = 1

l2m
K cos(ωt)

with M(t) = K cos(ωt).
For convenience, we re-express the coefficients of the equation in terms of the

standard parameters for systems of second order and normalise the amplitude of the
torque

ω0 =
√
g

l
; q = √

gl
m

b
; A = K

mlg
.
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Fig. A.5 Driven pendumum
in Earth’s gravitational field

Further, using the generalised velocity α = Dφ, expanding the sin function in its
Taylor series

sin φ =
∑

n=1,3,5,...

(−1)(n−1)/2

n! φn

and defining the input signal x as

x(t) = A cos(ωt) ,

the equation can be written as a system of two convolution equations relating α and
φ

α = Dδ ∗ φ

φ = −(
1

ω2
0

Dδ + 1

ω0q
δ) ∗ α + x +

∑

n=3,5,...

(−1)(n−1)/2

n! φn .
(A.4)

A signal-flow graph representing these equations is shown in Fig.A.6.
We are interested in the steady-state oscillation when the pendulum is driven

with a frequency equal to ω0. For this reason it’s convenient to work with transfer
functions. The various transfer functions can be determined by inspection from the
SFGusingMason’s rule, using the transformof each transmission factor and applying
the transform of an impulse as input. The first order transfer function is

Fig. A.6 Signal-flow graph
corresponding to Eq. (A.4)
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H1(s1) = 1
s2

ω2
0
+ 1

q
s
ω0

+ 1
.

The linear part of the response is thus

φ1(t) = �{
H1(jω0)Ae

jω0t
} = Aq sin(ω0t) .

From the signal-flow graph it’s immediately apparent that the transmission from
the source representing the nonlinear terms to the node φ is the same as the one from
x to φ. Using the fact that the response of a linear system to a source of order k is
obtained by multiplying the Laplace transform of the source by the linear transfer
function of the system and by replacing in the latter s1 with the sum s1 + · · · + sk
(see Sect. 10.1), the transfer function of order k from the “nonlinear” source of order
k is therefore

H1(s1 + · · · + sk) .

There is no second order power in the source terms. Hence, the second order
transfer function H2 is identically zero. The third order transfer function is obtained
by substituting H1 + H2 in the “nonlinear source” terms φn and retaining only terms
of third order. This gives

1

6
H1(s1)H1(s2)H1(s3) ,

hence

H3(s1, s2, s3) = 1

6
H1(s1)H1(s2)H1(s3)H1(s1 + s2 + s3) .

Note that H3 is already symmetric.
The contribution of third order to the steady-stage oscillation at ω0 is given by the

frequency mix m = (1, 2)

φ3,m(t) = A3

24

3!
2!�

{
H1(−jω1)H1(jω1)H1(jω1)H1(jω1)e

jω0t
}

= −A3 q
4

8
cos(ω0t) .

The fourth order transfer function is identically zero. The fifth order is obtained
by inserting H1 + · · · + H4 into the “nonlinear source” terms φn and retaining only
terms of fifth order, giving

1

6

3!
2!

[
H⊗2

1 ⊗ H3
]
sym − 1

5!H
⊗5
1 .

The fifth order transfer function is then found by multiplying it by H1(s1 + · · · + s5)
giving
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H5(s1, s2, s3, s4, s5) =
{
1

2
[H1(s1)H1(s2)H3(s3, s4, s5)]sym

− 1

5!H1(s1)H1(s2)H1(s3)H1(s4)H1(s5)

}
H1(s1 + s2 + s3 + s4 + s5) .

The fifth order component at ω0 produced by the frequency mix m = (2, 3) is

y5,m(t) = A5 1

24
5!
2!3!�

{
H5(−jω0,−jω0, jω0, jω0, jω0)e

jω0t
}
.

There are in total 10 ways to fill the slots of
[
H⊗2

1 ⊗ H3
]
sym with permutations

of the tuple (−jω0,−jω0, jω0, jω0, jω0). One possibility is to put the negative
frequencies in the first two slots giving

H1(−jω0)H1(−jω0)H3(jω0, jω0, jω0) = jq5

6(8 − 3j
q )

.

There are 3 cases in which both H1s are applied to positive frequencies

H1(jω0)H1(jω0)H3(jω0,−jω0,−jω0) = q6

6
.

and 6 in which the two H1s appear one with a positive frequency and the other with
a negative frequency

H1(−jω0)H1(jω0)H3(jω0, jω0,−jω0) = −q6

6
.

Summing all terms we obtain

H5(−jω0,−jω0, jω0, jω0, jω0) =
[ 1

10

( jq5

12(8 − 3j
q )

− q6

4

)
+ j

q5

120

]
(−jq) .

The first, third and fifth order approximations that we have found are compared to
a numerical solution of the differential equation for q = 7 and A = 0.1 in Fig.A.7.
Even thoughwe didn’t took into account the harmonics produced by nonlinear terms,
the fifth order approximation atω0 gives a fairly accurate approximation up to a swing
of ca. 40◦. A linear model predicts that the pendulum dynamics settles in such a way
that the peak of the applied torque occurs when the pendulum is in the vertical
position (φ = 0◦). The more accurate model shows that at moderate swing levels
this is not the case. The peak torque happens before the pendulum passes through
the vertical position. It’s also interesting to note that the main phase correcting term
is φ3,m whose phasor is perpendicular to the one of the linear term. However, being
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Fig. A.7 Comparison of the
steady-stage solution of the
driven pendumum obtained
by numerical integration
with the Volterra series of
order one, three and five.
q = 7, A = 0.1

at 90◦, φ3,m is unable to produce a good amplitude correction. For that we need to
consider at least one more term.
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Index

Symbols
evd(), 144
rv(), 162
[]sym, 142

A
Airy functions, 268
Algebra, 95

convolution, 11–13, 96
graded, 139

Aliasing, 281
Almost everywhere, 24
Almost periodic, 122, 161
α, 22
Amplitude-modulation, 198

B
B, 87
Blocking level, 205
Bounded, 87

locally, 262

C
Capacitance, 209
Cauchy principal value, 26
Cauchy product, 308
Chaos, 7
CIM3, 335
Ck , 18
Convolution

algebra, 11–13, 96
associativity, 46
continuity, 46
differentiation, 45

discrete, 308
distributivity, 44
for tome-varying systems, 273
generalised, 174
product, 10, 11, 42
shift, 45
unit, 44

Convolution equation, 96
elementary solution, 97
fundamental solution, 97

Cross-modulation, 205

D
D, 18, 48
D′, 23
D′(T), 52
D′+, 43
D′

L , 43
D′

L1 , 87
D′

L1+, 122
D⊕’, 140
D′⊕,sym(Rk), 142
D′

R , 43
D(T), 50
Degeneration impedance, 244
δ, 9, 11, 13, 26

derivative, 30
Fourier transform, 60

Dense, 24
Describing function, 197
Desensitisation ratio, 204
Device

characteristic, 205
x-controlled, 205
y-controlled, 205

© The Editor(s) (if applicable) and The Author(s) 2024
F. Beffa,Weakly Nonlinear Systems, Understanding Complex Systems,
https://doi.org/10.1007/978-3-031-40681-2

367

https://doi.org/10.1007/978-3-031-40681-2


368 Index

Differential circuit, 252
Differential equation

elementary solution, 260
fundamental solution, 260

Differential operator, 18
Dirac

comb, 53, 61
delta, see δ

impulse, see δ

Paul A. M., 13
Direct product, 140
Direct sum, 139
Distribution, 11, 22

approximation, 48, 49
canonical extension, 90
convergence, 24
Dirac impulse, see δ

even, 28
Laplace transformable, 76
left-sided, 43
multiplication, 29
odd, 28
partial derivative, 29
periodic, 49, 52
real, 23
regular, 24
regularised, 20, 91
right-sided, 43
scaling of independent, 28
shifting, 28
singular, 24
slow growth, 58
summable, 87
support, 34
symmetric, 141
tempered, 58
vanish, 34
vector valued, 113
with compact support, 34

DO , 315
D′

O , 315
D⊕, 139
Doppler-spread function, 276
DR, 204
δT , 53, 61

E
E , 34
E ′, 34
Equilibrium point, 2, 135

asymptotically stable, 135
domain of attraction, 135

stable, 8, 135
unstable, 135

Evaluating on the diagonal, 144
Exponential matrix, 125

properties, 125

F
Floquet representation, 287
Formal power series, 141
Fourier series, 68

coefficients, 68
n-dimensional, 73
unit, 69

Fourier transform, 55, 59
inverse, 55
n-dimensional, 70
properties, 65
symmetry, 59
uncertainty principle, 56

Fréchet, M., 13
Frequency mix, 160

order, 160
Frequency response

time-varying, 275
time-varying nonlinear, 306

Fubini’s theorem, 40
Function

bounded, 87, 120
Gauss, 57
original, 75
periodic, 73
rapid descent, 56
Schwartz, 56
slow increase, 58

Functional, 12, 23
bounded convergence property, 89

Fundamental kernel, 267
Fundamental period, 49

G
Gain, 197

compression, 196
expansion, 196
1 dB compression point, 198

Group, 261

H
Heaviside

Oliver, 13
unit step, 11
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I
IIPk, 201
Image-reject ratio, 329
IMk, 199
Impulse response, 9

kth order, 146
time-varying, 257
time-varying nonlinear, 304

Inductance, 212
Integrable

locally, 24
Integral domain, 98
Intercept point, 201
Intermodulation

intercept point, 201
product, 199
products, counter, 335

Inverse, 96
IPk, 201

J
Jammer, 203
Jordan normal form, 128

K
Kernel, 146
Kronecker delta, 308

L
Laplace transform, 76

abscissa of convergence, 75, 76
inverse, 82
n-dimensional, 84
properties, 78
region of convergence, 76

Lebesgue
integral, 24
measure, 24

Limit cycles, 4
Lineariser

post-, 186
pre-, 186

Lipschitz continuous
locally, 135

M
Mason’s rule, 358
Matrix

controllability, 127
exponential, 125

observability, 128
principal fundamental, 259
semi simple, 129
state transition, 259

Measure
Lebesgue, 24
zero, 24

Mikusinski, J., 13
Mismatch, 225
Mixer, 278

harmonic-reject, 298
image response, 329
image-reject ratio, 329
sampling, 339

MOSFET
linear region, 233
overdrive voltage, 233
saturation region, 233
saturation voltage, 233

Multi-index, 18
direct product, 71
exponentiation, 71
factorial, 72
length, 18
summation, 72

N
Nonunit, 145
Norator, 245
N -path filter, 347
Nullator, 245
Nullor, 245
Numerical simulations, 12

O
OIPk, 201
OM , 92
Operatinal calculus, 13
Operating point, 195, 206
Operator

differential, 18
evolution, 259
shift, 44
time-ordered product, 264

Original functions, 75

P
Parity, 62
Period

fundamental, 49
Permutation, 141
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Phase-modulation, 198
Phase portrait, 2
Phase space, 2
Phasor, 161
Pitchfork, 6
Point

bifurcation, 5
critical, 5
equilibrium, see Equilibrium point

Polynomial
relatively prime, 104

Principal value, 26
Product

convolution, 10, 11, 42
tensor, 39, 40

Q
Quadrature demodulator, 294
Quadrature modulator, 294

R
Rayleigh distribution, 327
Resolvent kernel, 264

S
S ′, 58
S, 56
Sample and hold, 279
Sampling, 281
Schwartz

distributions, see Distribution
functions, 56
Laurent, 13
space, 56

Separatrix, 3
Series

absolutely convergent, 307
Fourier, 68
Volterra, 10, 149
Wiener, 13

Signal, 117
blocking, 203
common-mode, 252
differential-mode, 252

Signal-flow graph, 353
co-factor, 358
determinant, 357
linear, 353
Mason’s rule, 358
transmission factor, 353

Sk , 141

Small-signal, 195
capacitance, 209
inductance, 212

Source
controlled, 216

Stability
bounded-input bounded-output, 120
Lyapunov, 136

Stage
Cascode, 239, 242
class-AC, 237
common-gate, 239
common-source, 232
differential-pair, 252
Pseudo-differential, 253

State, 2
State space representation, 126
Superposition principle, 117
Support, 34

compact, 18
Switched circuits, 315
Symmetrisation, 142
System

autonomous, 2
cascade, 169
causal, 119, 149
chaotic, 7
composition, 170
continuous, 118
controllable, 124
frequency response, 121
impulse response, 9, 118
kth order fundamental kernel, 302
linear time-invariant, 118
memory, 149
memory-less, 9, 149, 176, 203
monomial, 191
nonlinear, 1
observable, 124
order, 124, 193
real, 118
state, 2, 126
state space representation, 126
time-invariant, 117
time-varying impulse response, 257
time-varying nonlinear frequency
responses, 306

time-varying nonlinear impulse
responses, 304

time-varying transfer function, 289
transfer function, 122
translation invariance, 119
weakly-nonlinear, 10, 138, 146
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weakly-nonlinear time-varying, 301
zero state response, 123

T
T , 49
Tempered distribution, 58
Tensor product, 40
Test functions, 18

convergence, 18
graded algebra, 139
topology, 18

Theorem
Fubini, 40
Picard-Lindelöf’s, 135
sampling, 281
Thévenin-Norton, 242

Transconductance, 217
Transfer function, 122

minimal, 123
nonlinear, 149
time-varying, 282

Transfer ratio
current, 217
voltage, 217

Transit frequency, 244
Transresistance, 217

U
Unitary function, 51
Unit step, 11

derivative, 31

V
Vanish, 34
Volterra

integral equation of the second kind, 261
series, 10, 149
Vito, 12, 149

W
Wiener, N., 13

X
XM, 204

Z
Zero divisors, 98
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