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FOREWORD 
 
This book of Proceedings includes the contributions presented at the 13th International Workshop on Models and 
Analysis of Vocal Emissions for Biomedical Applications – MAVEBA 2023, held in Firenze from 12 to 13 September, 
2023. The previous edition of MAVEBA, held in December 2021 was celebrated in mixed mode just one year after the  
COVID-19 pandemic: a demonstration of strength and continuity despite the difficulties, which allowed us to meet once 
again from all over the World.   
The series of MAVEBA International Workshops started in 1999 and is continuously proposed every two years as a 
multidisciplinary meeting. It concerns the study of the human voice both from the methodological point of view and its 
biomedical applications. The aim is that of assessing reliable procedures for objective and quantitative definition of 
levels of voice disorders, singing voice parameters, newborn cry features, vocal fold and vocal tract modelling and 
mechanics. It welcomes contributions ranging from fundamental research and advanced technologies, with emphasis 
on translational research, the link with the “real” complex world of the human being.  
This 13th Workshop will offer again the participants an interdisciplinary platform for presenting and sharing knowledge 
and recent results in this multifaceted subject that involves bioengineers, otolaryngologists, phoniatricians, neurologists, 
logopaedicians, linguistics, singers, actors, and any specialist in related fields, with applications ranging from the 
newborn to the elderly. 
 
The papers presented at MAVEBA 2023 are divided into four Sessions: 
SESSION I – BIOMECHANICS AND MODELS 
SESSION II – VOCAL FOLDS AND VOCAL TRACT 
SESSION IIII – SINGING, DRAMA AND VOICE QUALITY  
SESSION IV – TOOLS AND METHODS FOR SPEECH AND VOICE ANALYSIS 
 
The Workshop also includes two stimulating Round Tables, respectively organized by Prof. Johan Sundberg and Prof. 
Philippe DeJonckere: 
ROUND TABLE I: ACOUSTIC AND PHYSIOLOGICAL ASPECTS OF SINGING 
Moderator: J. Sundberg 
Panelists: S. Capobianco, N. Henrich Bernardoni, M. Kob  
ROUND TABLE II: FOCUSING ON VOICE ONSET: A CRITICAL MOMENT OF PHONATION. FROM 
BASIC SCIENCE TO THERAPY 
Moderator: P. H. DeJonckere 
Panelists: J. Sundberg, G. Cantarella, M. Kob, P. Aichinger  
 
Moreover, a couple of Sessions are devoted to a STUDENT COMPETITION: the winner will be granted by a prize 
offered by the Journal Bioengineering (MDPI), an international, scientific, peer-reviewed, open access journal. 
 
Last but not least, Prof. Dejonckere will give the following exciting lecture: 
THE «VIRTUAL MUSEUM OF PHONIATRICS»: A GUIDED TOUR BY THE CURATOR-IN-CHIEF 
P.H.DEJONCKERE  
 
ACKNOWLEDGEMENTS 
I greatly acknowledge my colleague Prof. Antonio Lanatà for his valuable contribution to the Workshop organization, 
PhD. Eng. Lorenzo Frassineti and PhD. student Eng. Federico Calà, who managed and constantly updated the website, 
collaborated in reviewing the Proceedings and in solving the daily difficulties with patience and professionalism. 
Thanks also to my Department, which supplied the congress material, to the FCRF for the economic contribution, to 
UNIFI, to the World Voice Day and to La Voce Artistica for the advertising on their respective websites. 
Finally, a sincere and friendly thanks to the Scaramuzzi Team for their professionalism, that supported me for many 
years in this adventure.But above all I thank all the participants who, with their presence, wanted to be next to me once 
again. They stimulated the discussion and helped to propose new research themes and methodologies of analysis in the 
continuously evolving field of the study of the human voice. 
 
Claudia Manfredi 
MAVEBA 2023 Chair 
Antonio Lanatà – Local organizing Committee 
Lorenzo Frassineti - Local organizing Committee  
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BIOMECHANICS AND MODELS 

 

  





  
Abstract: Muscular activations of lip and face 
muscles have been studied while performing beatbox 
sounds in comparison to speech sounds. Five trained 
beatboxers were recorded for various tasks involving 
the production of beatboxed sounds (kick, hi-hat, 
and rimshot) and related spoken syllables ([pu] for 
kick, [ti] for hi-hat, and [ka] for rimshot). 
Activations of orbicularis-oris lip muscle and 
zygomaticus-major face muscles were recorded by 
surface electromyography (EMG) during the 
production of isolated and repeated sounds in both 
beatboxing and speaking condition. Sound pressure 
level was much greater in beatboxing than in 
speaking. As expected, bilabial sounds kick and [p] 
involved higher levels of orbicularis muscle 
activation than the other sounds studied. This 
activity was significantly higher for kick than for [p]. 
A difference in lip and face muscular activity 
between beatbox and speech was not found for hi-hat 
and rimshot, even though the boxemes were 
produced louder than the consonants at same place 
of articulation. These results underline the value of 
beatbox exercises for working on labial and facial 
praxis, and on speech intelligibility. 
 
Keywords: beatbox, electromyography, speech, 
consonant, orofacial muscle activity 

 
I. INTRODUCTION 

 
Human Beatboxing is a recent and evolving musical 

practice, for which the beatboxer develops a particular 
motor skill in vocal instrumental playing [4, 5]. 
Recently, beatboxing exercises have been proposed in 
speech rehabilitation of articulation disorders in the case 
of young adults with congenital dysarthria and reduced 
speech intelligibility [1–3]. These studies have 
demonstrated that beatboxing could be an effective tool 
for improving articulatory deficiencies, speech 
production, and intelligibility. Yet, no study has ever 
assessed the orofacial muscular load in such sound 
production. The aim of the present study is to explore 
how muscular activity differs between producing 
kick/hi-hat/rimshot beatboxing effects, also called 

boxemes [4], and three speech /p,t,k/ consonants with 
similar place of articulation uttered in syllabic 
consonant-vowel (CV) context.  
 

II. METHODS 
 

Subjects: Five trained French-speaking beatboxers 
were recorded for various tasks involving the production 
of beatboxed sounds (kick, hi-hat, and rimshot). The 
related spoken syllables were also recorded ([pu] for 
kick, [ti] for hi-hat, and [ka] for rimshot). For each task, 
the beatboxer performed a series of twelve repeated 
sounds or spoken syllables. For the subsequent analyses, 
nine occurrences in the middle of the series were 
retained. 

Equipment and audio analysis: The recordings took 
place in a semi-anechoic laboratory room authorized for 
biomedical research. Audio and electroglottographic 
(EGG) signals were recorded synchronously and 
sampled at 20 kHz on 16 bits (dual-channel 
electroglottograph Glottal Enterprise EG2). Sound files 
were annotated by means of Praat software. Burst 
instants (release of occlusion and start of sound) and end 
of sound were manually detected on audio signal. For 
speech, end of consonant sound corresponded to start of 
voicing as assessed on audio and EGG signal. Sound 
pressure level (SPL) was computed on the annotated 
sound window (either boxeme or consonant part of the 
spoken syllable) with Matlab software.  

Electromyographic analysis: Electrodes were 
placed on the lips in correspondence with the four 
sections of orbicularis oris (OO) muscle and bilaterally 
on the face in the region of zygomaticus major (ZYG) 
muscles (see Fig. 1). Activation of these lip and face 
muscles was recorded by surface electromyography 
(EMG) during the production of isolated and repeated 
sounds (MP150 BIOPAC, 20 kHz). For each task, EMG 
signals were bandpass filtered (5-450 Hz) and root-
mean-squared (RMS) over a 25-ms sliding window to 
produce a linear envelope for each muscle activity 
pattern. Finally, RMS values were averaged over a time 
window including both the sound (boxeme/consonant) 
and the 100 ms preceding the burst instant (see Fig. 2). 
 

ELECTROMYOGRAPHIC ANALYSIS OF LIP AND FACE MUSCLES IN 
BEATBOXING 

N. Henrich Bernardoni 1, J. Frère1, A. Paroni1, S. Gerber 1, H. Lœvenbruck 2 

 
 

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, F-38000 Grenoble  
2 Univ. Grenoble Alpes, Univ. Savoie Mont-Blanc, CNRS, LPNC, F-38000 Grenoble 

Nathalie.Henrich@gipsa-lab.fr, Julien.Frere@gipsa-lab.fr 
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Fig. 1 : Placement of EMG surface electrodes. 
ZYG_L/ZYG_R: left and right zygomatic muscles. 

OO_SR/SL: right and left superior orbicularis oris, 
OO_IR/IL right and left inferior orbicularis oris. 

Fig. 2 : audio waveform (upper panel) and OO_SL
muscle activity (lower panel) of one participant 

performing a series of kick sounds. Each vertical line 
represents the beginning and the end of the time 

window of interest. Lower panel: filtered EMG signal 
(in grey) and RMS envelope (black bold line). 

Statistical analysis: Statistical models were 
implemented in R language, using a linear mixed 
modeling approach (function lme of package nlme). 

They aimed to explore the impact of BOXEME factor 
(6 modalities, p, t, k, kick, hi-hat, rimshot), MUSCLE 
factor (OO and ZYG) and their interaction on variation 
in the response variable RMS in voltage. The hypothesis 
that labial and facial muscular activities measured by 
surface EMG would be higher in beatboxing than in 
speech was tested. 

III. RESULTS 

A. Sound pressure level in beatboxing and speaking. 

As shown in Fig. Fig. 1Fig. 3, sound intensity was 
always found to be greater in beatboxing than in 
speaking, whatever the place of articulation.  

Fig. 3 : SPL values in dB for five beatboxers either 
beatboxing or speaking (consonant part). 

B. Muscular activation in beatboxing and speaking 

Fig. 4 presents the EMG activation amount for lip 
and face muscles in human beatboxing and in speech. 
Kick and [p] are bilabial sounds, i.e. sounds that are 
produced via complete occlusion and subsequent release 
of the vocal tract at the lips. In both cases, the occlusion 
is achieved by recruiting the orbicularis oris muscle. 
Yet, muscular activities were significantly higher for 
kick than for [p] (p < 0.001) for all the studied muscles. 
Rimshot compared to [k] did not significantly increased 
the muscle activities, except for OO_SR (p = 0.024), 
even though the vocal-tract occlusion to produce these 
two sounds is situated far from the lips, in the back 
region of the oral cavity. Finally, hi-hat sound did not 
lead to higher level of muscle activity compared to [t], 
except for ZYG_R (p = 0.010). In such sounds,  
occlusion is achieved by the action of tongue pushing 
against upper teeth. 
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Fig. 4 : Amount of EMG RMS signal for beatboxing 
and speaking, depending on the place of articulation 
(bilabial, dental, velar). For muscles abbreviations, 

see Fig. 1.

IV. DISCUSSION AND CONCLUSION

An underlying question in this study was whether 
beatboxing exercises would be suitable for 
rehabilitation in the case of dysarthria and orofacial 
myofunctional disorders. Enhanced lip and facial 
muscular activities have been evidenced in beatboxing 
sounds as compared to speaking CV syllables with 
similar place of articulation for consonants. This has 
been verified for kick boxemes essentially. It has not 
been found for rimshot and hi-hat boxemes articulated 

respectively in the velar and dental region. These sounds 
did not activate the lip and face muscles more than 
speech ones, even though they resulted in louder sounds. 

An enhanced muscular contraction can be beneficial 
for working on labial and facial praxis in the context of 
dysarthria. It could contribute to muscle strengthening 
in the case of orofacial myofunctional disorders. 
However, the speech therapist who would use such 
beatboxing exercises should take great care in avoiding 
muscular overload or fatigue that may be induced. In 
this respect, hi-hat and rimshot boxemes are of much 
interest as they can be produced loud with a muscular 
effort comparable to speaking consonants.  

Lip and face muscles were explored here. Another 
major articulator in beatboxing is the tongue. In a further 
study, it would be worth exploring whether beatboxing 
may require enhanced tongue muscular activation. 
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I. INTRODUCTION

Videokymography, introduced by Švec and Schutte

in 1996 [1], is a low-cost, high-speed imaging method

for the examination of the vocal folds, which allows the

visualization of regular and irregular vibration patterns.

Its usefulness in phonation investigation and diagnosis

of voice pathologies has been documented, e.g., in [2],

[3].

In this communication, we describe the processing of

VKG data through the fitting of a biomechanical model

within a Bayesian setting to enhance the estimation

of the position of fold edges during the glottal cycle.

Specifically, the method addresses the tuning of the

model during the glottal open phase to fit the position of

the edge of the folds, and uses in turn the tuned model to

predict the observation in the next analysis windows. It

is also investigated the possibility to infer the position of

vocal fold edge position in those intervals of the glottal

cycle in which edges are not clearly distinguishable

or in which no observation data is available due to

visual occlusion. E.g., when top of the vocal folds

are more adducted than the bottom (convergent glottal

configurations), lower edges are not visible from above.

The fitting algorithm relies on a biomechanical model

whose parameters are adapted so that his time evolution

is coherent with the folds edge position estimated from

the VKG data. We have recently investigated the use

of this class of models to interpret acoustic and visual

data recordings related to the fold oscillations [4], [5],

[6]. In the present communication, the biomechanical

model is used for the Bayesian inference as a state

transition model, with a dual role: on one hand, it

models the folds edge motion to compute the likelyhood

of their position in given portions of the glottal cycle;

on the other hand, its parameters are finely tuned to

maximize the likelyhood of the visual observations. The

method is assessed on VKG data from healthy subjects

uttering sustained vowels. It is shown that the use of a

biomechanical model of the folds as a state transition

model permits to accurately fit the upper and lower

vocal fold edges during the intervals in which both

are clearly visible, and permits to infer their position

in partial or complete fold occlusion conditions of the

glottal cycle.

II. METHOD: VIDEO PROCESSING,

BIOMECHANICAL MODEL, EDGE TRACKING

The video analysis procedure described in the follow-

ing is aimed at estimate the motion of the vocal fold

edges from a high-speed video sequence I(x, y, t) in

the form of a Videokymogram, in which the vocal fold

vibration is represented by the displacement trajectories

in time of their upper and lower edges observed at

a given medial position of the glottis. The whole

process is sketched in Figure 1. Starting from top,

the process is organized in three subsequent processing

steps: a preliminary video analysis step, followed by

a model fitting and motion prediction step, terminated

by a model-to data superposition step for visualization

purposes. In the upper part of the figure, the plots show

the interpretation of a fragment of videokymographic

data, corresponding to two glottal cycles, and sketches

the image preprocessing step in wich the open phase of

each cycle is isolated and various spatial cues related

to edges are quantified. Note that actual recorded data

is characterized by clearly distinguishable romboidal-

shaped regions related to the open phase, but provide

barely visible information concerning the upper folds

edge position during the closing interval and no infor-

mation at all concerning the lower folds edge position

during the opening interval (due to camera occlusion).

Moreover, the VKG data is often characterized by

asymmetries with respect to the L/R direction.

The middle part of the figure illustrate how the mass-

spring model is used within a Bayesian framework,
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models the folds edge motion to compute the likelyhood
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on the other hand, its parameters are finely tuned to
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biomechanical model of the folds as a state transition

model permits to accurately fit the upper and lower

vocal fold edges during the intervals in which both

are clearly visible, and permits to infer their position

in partial or complete fold occlusion conditions of the

glottal cycle.
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The video analysis procedure described in the follow-

ing is aimed at estimate the motion of the vocal fold

edges from a high-speed video sequence I(x, y, t) in

the form of a Videokymogram, in which the vocal fold

vibration is represented by the displacement trajectories

in time of their upper and lower edges observed at

a given medial position of the glottis. The whole

process is sketched in Figure 1. Starting from top,

the process is organized in three subsequent processing

steps: a preliminary video analysis step, followed by

a model fitting and motion prediction step, terminated

by a model-to data superposition step for visualization

purposes. In the upper part of the figure, the plots show

the interpretation of a fragment of videokymographic

data, corresponding to two glottal cycles, and sketches

the image preprocessing step in wich the open phase of
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to edges are quantified. Note that actual recorded data

is characterized by clearly distinguishable romboidal-

shaped regions related to the open phase, but provide

barely visible information concerning the upper folds

edge position during the closing interval and no infor-

mation at all concerning the lower folds edge position
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Moreover, the VKG data is often characterized by
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Fig. 1. Schematic view of the whole process.

namely that of particle filtering, to tune the model and to

use it to predict the dold behaviour in the next analysis

time window (forecast). In the model, the inferior edge

of each fold is represented by a single mass-spring

system with stiffness k, damping r and mass m. The L-

R asymmetry is modelled by using two different single-

mass systems, one for each fold. The phase difference

of the vibration between the lower and the upper edge,

which is essential for the modeling of self-sustained

oscillations, is modeled by a delay of the displacement

induced by its propagation along the cover of the fold

[7], [8]. Let us call x1,l the displacement of the left

fold at the entrance of the glottis (lower edge), and

x2,l the displacement at the exit (upper edge). The

displacements of the right fold are named accordingly

x1,r and x2,r. Other details of the model can be found

in [6] and are not reported here.

The discretization of the model equations leads to

a discrete-time system that is numerically solved to

obtain an estimate of the glottal flow Ug(nTs) and

of the folds displacements xi,α
j (nTs) and xs,α

j (nTs),
at discrete time n. The model is run with sampling

frequency Fs = (1/Ts) = 22050 Hz, and the oscillatory

patterns are visualized as if the folds were observed

from above using a line scan device. The oscillation

patterns obtained are then superimposed to the actual

VKG data.

The fitting of the model to the visual observation

is obtaiend by a joint model parameter estimation and

model state estimation, using a Bayesian estimation

process. If z1:k is the set of observations up to time

instant k, xk is the state of the fold edge at time

instant k, and θk is the set of parameters at time

k, then we are interested in the computation of the

posterior probability p(xk, θk|z1:k). This probability

can be recursively computed as

p(xk, θk|z1:k) =
p(zk|xk, θk)p(xk|θk, z1:k−1)p(θk|z1:k−1)

p(zk|z1:k−1)
(1)

where p(zk|xk, θk) is the likelyhood probability,

p(xk|θk, z1:k−1) is the state prior, p(θk|z1:k−1) is the

parameter set prior, and p(zk|z1:k−1) is the marginal

likelyhood. Since it is p(xk|θk, z1:k−1)p(θk|z1:k−1) =
p(xk, θk|z1:k−1), joint parameter and state estimation

can be achieved through augmentation of the state space

by the parameter vector [9]. Assuming that the posterior

pdf is available at time k − 1, the prior (or prediction)

pdf can be computed as

p(xk, θk|z1:k−1) =
∫

p(xk, θk|xk−1, θk−1)p(xk−1, θk−1|z1:k−1)dxk−1, dθk−1

(2)

To complete the Bayesian estimation scheme, a

likelihood function is required that provide a reliable

measure of how well an image observation I(x, y, k) is

explained by a particular hypothesis (model prediction).

If we suppose that a set of video features f(I(x, y, k))
related to the folds edge can computed from the image

frame, then we can define the likelyhood p(zk|xk) at

discrete instant k as

p(zk|xk) =
1√
2πσ

exp(−|f(I(x, y, k))− xk|2
2σ2

) (3)

In our case, we compute from the romboidal patterns

in the VKG image a set of features that can be related

to the observable state of the folds model, i.e. the lower

and upper edge of both left and right vocal folds. The

edge-related features are skcetched in the top image

of Figure 1, and a likelyhood function is built upon

these features (a detailed description can be found in

[6]). The use of such function within the particle filter

framework will allow to fit the folds displacement in

the regions where features can be computed from the

available information, and to provide an estimation of

the position based on the prediction of the model in

those time intervals in which information is missing.

Note that the temporal prior pdf

p(xk, θk|xk−1, θk−1) provides an estimate of the

update of the state and parameters at time k, given the

state and parameters at time k − 1, in other words it

models the dynamics of the process under observation.

We propose in this case to use the biomechanical

numerical model of the vocal folds as state transition

model, and assume that the state vector xk is the

displacement of the vocal fold as predicted by the

numerical simulation of the model. For the update

of the parameters, a pitch-synchronous random walk

model is assumed, i.e.

θTk = θTk−1 + φk (4)

where φk ∈ N(0,Wφ) satisfies a Gaussian distribution

with zero mean and covariance matrix Wφ. The param-

eters are thus assumed constant during a glottal cycle.

Note that the optimization process of the parameters

can be very sensitive to the initial hypothesis and to

the variance of the parameter. An advantage of using a

physically informed model in the process is that often a

starting hypothesis can be done on a physiological basis

(see, e.g. [8] for a discussion on the empirical tuning

of these parameters).

The natural frequency of a mass-spring system is

f0 = 1/2π
√

k/m, thus its parameters k and m can

be tuned accordingly when a given oscillation period

of the model is desired.

A closed-form solution of eq. 1 and eq. 2 is in general

not feasible, and a numerical approximation is often

sought instead. We propose here the use of a Particle

Filtering scheme (PF), with a Sequential Importance

Resampling algorithm (SIR) to represent the posterior

[10], [11], [12], [13]. The underline principle is to

form a weighted particle representation of the posterior

distribution, as p(xk, θk|z1:k) ≈ ∑

i w
(i)δ(xk − x

(i)
k ),

where {(w(i)
k , x

(i)
k ), i = 1, . . . , N} is the set of particles

and of the corresponding weigths at instant k.

The biomechanical model is involved in the pre-

diction step, where each particle can be considered

as an independent instance of the model simulation.

In the following, we will include in the estimation

process three model parameters for each fold, i.e. the

natural frequency fα, the vertical phase delay τα, and

the upper-to-lower edge amplitude ratio ξα. Hence the

parameter vector is θ = {fl, fr, τl, τr, ξl, ξr}.

III. RESULTS

Some experimental results obtained using the pro-

cedure on actual VKGs data from publicly available

datasets can be observed in Figs. 1, 2, and 3. In Figure

1, the bottom plot shows a fragment of approximately

140 msec, and the particle filtering fit to the obser-

vation (yellow and white scatter plot refer to x1 and

x2 estimates respectively). The process is iterated on

short overlapping time windows of two pulses each.

The plot evidentiates the pulse-to-pulse adaptation of

the model to the slowly varying open phase patterns

and to the trend induced by the relative shifts of the

endoscope with respect to the oscillating folds during

the recording.

In Figure 2 the details of two subsequent short

analysis windows are shown, evidentiating the evolution

of L/R and x1/x2 asymmetries and the adaptation of the

model-driven particles to the data. In Figure 3, the plots
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Fig. 2. VKG video analysis and vocal fold edge fitting referred to two
analysiis windows: asymmetries L vs R and x1 vs x2. The scattered
plots superimposed to the VKG image represent the evolution of
particles related to x1,r (magenta, upper portion), x1,l (magenta,
lower portion), x2,r (white, upper portion), and x2,l (white, lower
portion).

show the details of a frame from a different dataset,

characterized by lower resolution and noisy/blurred

image quality.
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Fig. 3. Fitting results for a VKG recording from an healthy
male subject, modal phonation, pitch: 160 Hz. Recordings from the
database by E. Bianco and G. Degottex, IRCAM.

IV. CONCLUSIONS

We discussed the analysis of videokymographic data

with a Bayesian estimation procedure based on the fit-

ting of a biomechanical model of the folds to the visual

data. The method is shown to be able to accurately fit

the vocal folds edge displacement extracted from the

videokymogram, at least in the open-phase intervals of

the glottal cycle, where the edges are clearly visible, and

to track the time-varying oscillatory patterns observed

in the data. In the portions of the cycle where edges are

not clearly visible or where partial occlusion occurs, the

method provides a prediction of the fold edge position

based on the dynamics of the vocal folds model. In

these particular regions, however, it is not possible to

measure the accuracy of the predicted cues with the

data at hand, due to the lack of a ground truth. Fur-

ther investigation is thus foreseen in this direction, by

using different datasets, built e.g. with highly realistic

numerical models of the folds or collected by in-vitro
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[9] S. Särkkä, Bayesian Filtering and Smoothing, ser. IMS Text-
books. Cambridge University Press, 2013, vol. 3.

[10] M. S. Arulampalam, S. Maskell, and N. Gordon, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian
tracking,” IEEE Transactions on Signal Processing, vol. 50, pp.
174–188, 2002.

[11] J. Vermaak, C. Andrieu, A. Doucet, and S. J. Godsill, “Particle
methods for Bayesian modeling and enhancement of speech
signals,” Speech and Audio Processing, IEEE Transactions on,
vol. 10, no. 3, pp. 173–185, Mar. 2002.

[12] M. Vondrak, L. Sigal, and O. C. Jenkins, “Physical simulation
for probabilistic motion tracking.” in Proceedings of Computer

Vision and Pattern Recognition Conference (CVPR). IEEE
Computer Society, 2008.

[13] A. Dore, M. Soto, and C. Regazzoni, “Bayesian tracking for
video analytics,” Signal Processing Magazine, IEEE, vol. 27,
no. 5, pp. 46–55, 2010.

AN ACOUSTIC ANALYSIS OF VOWELS TO PREDICT VOICE CHANGES

IN A LONG READING TASK

Martin Hagmüller1, Julian Linke1, Simon Lohrmann1, Florian Pokorny2,3, Barbara Schuppler1
1Signal Processing and Speech Communication Laboratory, Graz University of Technology, Austria

2 Division of Phoniatrics, Medical University of Graz, Austria
3 Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany

{hagmueller, linke, b.schuppler}@tugraz.at, simon.lohrmann@student.tugraz.at, florian.pokorny@medunigraz.at

The human voice is the central instrument for many
professions and keeping a healthy voice is thus of high
importance for, among others, teachers, singers and call-
center employees. High vocal load may lead to vocal
fatigue, a phenomenon which has been investigated with
respect to its acoustic characteristics and its potential
to be automatically predicted from acoustic features.
The features used in most of these studies, however,
do not only change over the course of a speaking task
given vocal fatigue, but might also change due to other
aspects of speaking for a long time, such as reduced
articulatory effort and/or emotional accommodation to
the task. This paper analyzes different types of acoustic
features (MFCCs, voice-quality related, formants) which
potentially reflect different articulatory phenomena occur-
ring in a 90-minute-long reading task. Given the speakers’
perception of their own vocal effort during the task,
we provide a speaker-dependent discussion about which
acoustic features most reflect vocal fatigue. For most
speakers, we observe a vowel space reduction during the
long reading task.
Keywords: vocal fatigue, voice quality features, vowel space

I. INTRODUCTION

For many occupations, the human voice is the most
important instrument, which depending on the required
vocal load and subjective disposition might lead to
vocal fatigue. If the speaker is keeping up the high
voice use without sufficient rest, a voice disorder will
develop [1]. Some even experience temporal muteness
that prohibits to exercise their job. Especially affected
are, among others, (kindergarten) teachers, call-center
employees, and singers.

Several approaches to detect vocal fatigue have been
proposed. One approach is the use of questionnaires
such as the Vocal Fatigue Index (VFI) [2], another –
albeit elaborate – approach is a phoniatric assessment
that is usually performed at a clinic. Both approaches
do not provide continuous monitoring of a speaker
or singer. Voice dosimeters have been developed to
measure how much a speaker is using the voice over
a certain period and can give a warning in case of
voice overuse [3]. Voice dosimetry is only measuring
the voice usage, but does not evaluate any degradation
of voice quality that might indicate negative effects of
voice overuse.

Acoustic signal analysis promises to provide non-
invasive easy or continuous monitoring of the voice.
While many studies have used voice-related features,

such as based on fundamental frequency (F0) or
Harmonics-to-Noise (HNR) ratio [1], [4], more gen-
eral features like Mel-frequency cepstral coefficients
(MFCCs) [5], [6] have been used as well. MFCCs
are widely used in speech analysis for tasks such as
automatic speech recognition, speaker recognition and
verification, as well as emotion recognition, among oth-
ers [7]. Since MFCCs describe the power spectrum of
a signal, they are effective for detecting voice changes,
but other phenomena are represented as well, as shown
by their wide range of application areas. We therefore
hypothesize that MFCCs are also sensitive to vocal
fatigue, as evoked in a long reading task [4], [5].

As discussed by Caraty et al. [5], reading is a
complex task that can lead to cognitive fatigue when
performed over a long period of time. Cognitive fatigue
has been successfully detected from the voice signal,
e.g. by using MFCCs as features [8], [9]. We therefore
assume that when MFCCs are used to detect vocal
fatigue, they might respond also to other phenomena
typical for long speaking tasks, such as for instance a
change in articulation due to a reduction of the vowel
space [10].

On the basis of recordings from a 90 min long reading
task, this study aims to untangle voice changes poten-
tially indicating vocal fatigue from other changes due to
accommodation to the reading situation and/or cognitive
tiredness. The first part (Sec. III) analyzes voice quality
and MFCC features in a speaker-dependent way by
comparing feature importances and classification re-
sults from random forest classifiers. The second part
(Sec. IV) analyzes the vowel space changes of each
speaker by comparing the first and second formant fre-
quencies at the beginning and the end of each recording.

II. DATASET

A. Data and Forced Alignment with MAUS

The data of this study comes from 90 minutes-
long simulated lecturer presentations from four different
male speakers. For each speaker, we recorded speech
data with a Tascam DRX-05 stereo field recorder in
a lecture hall of the Graz University of Technology,
Austria. The speakers were distanced approx. 1 m from
the microphone and all of them read the same German
text from a scientific book [11]. For each recording, we
created audio chunks of 10–15s and orthographically
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Fig. 2. VKG video analysis and vocal fold edge fitting referred to two
analysiis windows: asymmetries L vs R and x1 vs x2. The scattered
plots superimposed to the VKG image represent the evolution of
particles related to x1,r (magenta, upper portion), x1,l (magenta,
lower portion), x2,r (white, upper portion), and x2,l (white, lower
portion).
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Fig. 3. Fitting results for a VKG recording from an healthy
male subject, modal phonation, pitch: 160 Hz. Recordings from the
database by E. Bianco and G. Degottex, IRCAM.

IV. CONCLUSIONS

We discussed the analysis of videokymographic data

with a Bayesian estimation procedure based on the fit-

ting of a biomechanical model of the folds to the visual

data. The method is shown to be able to accurately fit

the vocal folds edge displacement extracted from the

videokymogram, at least in the open-phase intervals of

the glottal cycle, where the edges are clearly visible, and

to track the time-varying oscillatory patterns observed

in the data. In the portions of the cycle where edges are

not clearly visible or where partial occlusion occurs, the

method provides a prediction of the fold edge position

based on the dynamics of the vocal folds model. In

these particular regions, however, it is not possible to

measure the accuracy of the predicted cues with the

data at hand, due to the lack of a ground truth. Fur-

ther investigation is thus foreseen in this direction, by

using different datasets, built e.g. with highly realistic

numerical models of the folds or collected by in-vitro

experiments.
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The human voice is the central instrument for many
professions and keeping a healthy voice is thus of high
importance for, among others, teachers, singers and call-
center employees. High vocal load may lead to vocal
fatigue, a phenomenon which has been investigated with
respect to its acoustic characteristics and its potential
to be automatically predicted from acoustic features.
The features used in most of these studies, however,
do not only change over the course of a speaking task
given vocal fatigue, but might also change due to other
aspects of speaking for a long time, such as reduced
articulatory effort and/or emotional accommodation to
the task. This paper analyzes different types of acoustic
features (MFCCs, voice-quality related, formants) which
potentially reflect different articulatory phenomena occur-
ring in a 90-minute-long reading task. Given the speakers’
perception of their own vocal effort during the task,
we provide a speaker-dependent discussion about which
acoustic features most reflect vocal fatigue. For most
speakers, we observe a vowel space reduction during the
long reading task.
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I. INTRODUCTION

For many occupations, the human voice is the most
important instrument, which depending on the required
vocal load and subjective disposition might lead to
vocal fatigue. If the speaker is keeping up the high
voice use without sufficient rest, a voice disorder will
develop [1]. Some even experience temporal muteness
that prohibits to exercise their job. Especially affected
are, among others, (kindergarten) teachers, call-center
employees, and singers.

Several approaches to detect vocal fatigue have been
proposed. One approach is the use of questionnaires
such as the Vocal Fatigue Index (VFI) [2], another –
albeit elaborate – approach is a phoniatric assessment
that is usually performed at a clinic. Both approaches
do not provide continuous monitoring of a speaker
or singer. Voice dosimeters have been developed to
measure how much a speaker is using the voice over
a certain period and can give a warning in case of
voice overuse [3]. Voice dosimetry is only measuring
the voice usage, but does not evaluate any degradation
of voice quality that might indicate negative effects of
voice overuse.

Acoustic signal analysis promises to provide non-
invasive easy or continuous monitoring of the voice.
While many studies have used voice-related features,

such as based on fundamental frequency (F0) or
Harmonics-to-Noise (HNR) ratio [1], [4], more gen-
eral features like Mel-frequency cepstral coefficients
(MFCCs) [5], [6] have been used as well. MFCCs
are widely used in speech analysis for tasks such as
automatic speech recognition, speaker recognition and
verification, as well as emotion recognition, among oth-
ers [7]. Since MFCCs describe the power spectrum of
a signal, they are effective for detecting voice changes,
but other phenomena are represented as well, as shown
by their wide range of application areas. We therefore
hypothesize that MFCCs are also sensitive to vocal
fatigue, as evoked in a long reading task [4], [5].

As discussed by Caraty et al. [5], reading is a
complex task that can lead to cognitive fatigue when
performed over a long period of time. Cognitive fatigue
has been successfully detected from the voice signal,
e.g. by using MFCCs as features [8], [9]. We therefore
assume that when MFCCs are used to detect vocal
fatigue, they might respond also to other phenomena
typical for long speaking tasks, such as for instance a
change in articulation due to a reduction of the vowel
space [10].

On the basis of recordings from a 90 min long reading
task, this study aims to untangle voice changes poten-
tially indicating vocal fatigue from other changes due to
accommodation to the reading situation and/or cognitive
tiredness. The first part (Sec. III) analyzes voice quality
and MFCC features in a speaker-dependent way by
comparing feature importances and classification re-
sults from random forest classifiers. The second part
(Sec. IV) analyzes the vowel space changes of each
speaker by comparing the first and second formant fre-
quencies at the beginning and the end of each recording.

II. DATASET

A. Data and Forced Alignment with MAUS

The data of this study comes from 90 minutes-
long simulated lecturer presentations from four different
male speakers. For each speaker, we recorded speech
data with a Tascam DRX-05 stereo field recorder in
a lecture hall of the Graz University of Technology,
Austria. The speakers were distanced approx. 1 m from
the microphone and all of them read the same German
text from a scientific book [11]. For each recording, we
created audio chunks of 10–15s and orthographically
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TABLE I: Used vowels and number of their occurrences
(for all speakers).

vowel # vowel # vowel # vowel #

/a/ 453 /a:/ 327 /i/ 88 /i:/ 401
/I/ 50 /e/ 59 /e:/ 323 /E/ 360
/E:/ 42 /u/ 77 /u:/ 77 /U/ 251
/o/ 55 /o:/ 178 /O/ 243 /aU/ 146
/aI/ 419 /OY/ 39 /Y/ 22 /y:/ 79
/2:/ 39 /6/ 405 /9/ 16

transcribed those audio chunks such that the text-files
contained the spoken words of the corresponding 10–
15s long wav-snippets. The wav-snippets along with the
Praat TextGrid-files [12] were uploaded to the Web-
MAUS Basic tool [13], which automatically delivered
us phonetic segments of the speech material. Using
these segments, we extracted approx. 1000 vowels per
speaker resulting in 4149 vowel segments in total. Table
I shows an overview of the number of vowels per type
used for this paper (for all speakers).

B. Speaker Characteristics

The four male speakers with IDs 101M, 102M, 103M
and 104M were aged 30, 31, 30, and 50 years, respec-
tively. None of them had a voice disorder at the time of
recording. Speakers 101M and 104M lived most of their
lives in Vienna and Graz, respectively (both belonging
to the Eastern Austrian dialectal area) and speakers
102M and 103M in Tuttlingen and Bamberg, respec-
tively (both Southern German). The younger speakers
(101M, 102M and 103M) had little experience as pre-
senters, whereas speaker 104M (50 years) had more
speaking experience. The recording sessions were inter-
rupted every 10 minutes to ask the speakers five short
questions related to stress, fatigue, vocal roughness, ex-
citement, alertness and concentration. These questions
had to answered verbally. For each question, speakers
gave ratings which ranged between 0 (not applicable at
all) and 10 (entirely applicable). In general, answers
which related to stress, fatigue and vocal roughness
showed that the less experienced speakers (101M, 102M
and 103M) introduced higher ratings than the more
experienced speaker (104M). Simultaneously, in case
of answers which related to excitement, alertness and
concentration, speaker 104M gave a rating of 0 at each
questioning relating to excitement and higher ratings
for questions relating to alertness and concentration. In
case of the less experienced speakers all of those ratings
were more varying while indicating descending ratings
in excitement (101M and 102M), alertness (101M and
103M) and concentration (101M and 103M).

III. ANALYSIS OF VOICE QUALITY

A. Materials and Method

1) MFCC Features: We extracted the Mel-frequency
cepstral coefficients (MFCCs) which relate directly to
spectral characteristics while indirectly incorporating

TABLE II: Mean F1 scores from a 10-fold cross-
validation for each speaker when training binary ran-
dom forest classifiers (negative class: start; positive
class: end) with three different feature sets.

Feature Set 101M 102M 103M 104M

VQ 0.73 0.66 0.59 0.55
MFCCs 0.59 0.70 0.69 0.62
VQ+MFCCs 0.73 0.72 0.71 0.65

also voice quality characteristics. MFCCs 1–13 were
calculated by using librosa2 [14] version 0.9.1. An
FFT-window with a length of 23 ms and an overlap of
6 ms was used by applying a Hanning window. The
number of filters in the Mel-filter bank was set to 128,
the frequency range was from 50 Hz to 22 050 Hz. The
resulting MFCCs were averaged over all FFT-windows
of one vowel segment, such that we receive one mean
value per vowel segment for each of the MFCCs. Those
values were then normalized to have zero mean and unit
variance on a single-speaker basis.

2) Voice Quality Features: We extracted 10 voice
quality (VQ) features which assess the phonation and
resonance characteristics of the voice of each speaker.
We employed the toolbox outlined in [15] which utilizes
the two Python toolkits parselmouth1 (version 0.4.1)
and librosa2 in order to calculate the VQ features
Jitter1, Shimmer1, HNR1, mean of F0 (fundamental

frequency)1, CPP (Cepstral Peak Prominence)1, mean

of F3 (third vowel formant)1, mean of RMS2, ZCR (Zero
Crossing Rate), STE (Short Time Energy) and H1 H2

(energy between first two harmonics).

3) Random Forest Classifiers: We compared the first
five minutes of every 90 minutes-long simulated lecturer
presentation to its last five minutes on a speaker-
dependent basis. For all binary classification tasks, we
trained and tested a random forest classifier (RFC)
with default settings given the scikit learn toolkit (ver-
sion 1.0.2) [16] (Python 3.9.7) with a 10-fold cross-
validation and present respective averaged F1 scores.
We tested three different feature combinations, namely
voice quality features (VQ), MFCC features (MFCCs)
and a combination of both feature sets (VQ+MFCCs),
leading to 12 binary classification tasks (three feature
combinations x four speakers), while defining the end of
a recording as the positive class. One purpose of using
RFCs is its ability to provide both, classification results
and impurity-based feature importances. Hence, RFCs
make it possible to analyze not only which features are
decisive in making a difference between the first and
the last five minutes of a recording, but also how large
the features’ impact is relative to each other, allowing
us to learn which acoustic features most represent vocal
fatigue.

1https://parselmouth.readthedocs.io/en/stable/
2https://librosa.org/doc-playground/main/index.html

TABLE III: Vowel space areas (Bark) and their dif-
ferences (∆) between the beginning and the end of
a recording for each speaker. Vowel space areas were
measured with convex hulls derived from vowel means.

101M 102M 103M 104M

start 11.17 9 10.19 12.12
end 11.28 7.72 8.69 12.05

∆ -0.11 1.28 1.5 0.07

B. Results

Table II summarizes F1 scores for each speaker when
training binary RFCs with three different feature sets.
We observe that RFCs which were trained entirely on
VQ features led to worse F1 scores in case of speakers
103M and 104M (≤ 0.59) but to better F1 scores
in case of speaker 101M (0.73) and 102M (0.66). In
contrast, RFCs which were trained entirely on MFCC
features achieved best F1 scores in case of speakers
102M (0.7) and 103M (0.69), whereas speakers 101M
and 104M had worse F1 scores of 0.59 and 0.62. When
the two feature sets were combined (VQ+MFCCs),
the best overall F1 scores were achieved. Specifically,
for speakers 101M, 102M and 103M, we achieved
F1 scores of 0.73, 0.72 and 0.71. Yet, for the most
experienced speaker 104M the incorporation of VQ
features only yielded an F1 score of 0.65. Overall,
classification results indicate that speaker 101M varies
more over time with respect to voice quality related
features, whereas the vocal changes of speakers 102M,
103M and 104M are rather represented by MFCC
features.

With respect to the feature importances for the RFC
with VQ+MFCCs, we observe that the 4 most important
features of speaker 101M comprised mean of F0 , STE,
mean of RMS and H1 H2, which all had average
importances > 6% (capturing 34% of the overall
importance). In contrast, the four best features for
speakers 102M and 103M were MFCCs capturing 30%

(102M) and 31% (103M) of the overall importance.
In case of speaker 102M, the next best feature was
mean of F0 with an average importance of 6%. In
case of speaker 103M, the best MFCC (coefficient 8)
had an average importance of 13% while the next best
MFCC (coefficient 2) had an average importance of
7%. The next best VQ features were CPP, ZCR and
mean of F3 with average importances of approx. 5%.
In case of speaker 104M all features had similar average
importances (between approx. 3, 5%−6, 5%) where the
10 best features captured 53% of the overall importance
and they comprised MFCCs (coefficients 7, 12, 2, 1, 10,
9 and 8), ZCR, HNR and CPP.

IV. ANALYSIS OF THE VOWEL SPACE

A. Materials and Method

We extracted the first (F1) and the second (F2) vowel
formants in order to analyze the speaker’s vowel spaces

resulting in the two features mean of F1 and mean

of F2. Both features were calculated with parselmouth

with a window length of 25 ms and a formant ceiling
of 5000 Hz.

We analyzed the formant features by comparing the
cardinal, tense vowels (/a/,/a:/, /e:/, /i/,/i:/, /o/,/o:/,
and /u/,/u:/) given the means and standard deviations
of mean of F1 and mean of F2 at the beginning and at
the end of the recordings. For each speaker separately,
we calculated vowel space areas by measuring convex
hulls in the formant’s Bark space by utilizing the Qhull

library [17].

B. Results

Fig. 1 shows the mean values and the standard
deviations of the formants F1 and F2 of all vowels
per speaker. The red values represent the means and
standard deviations of the first five minutes of the
speech recording and the blue values represent the last
5 minutes of the recording.

From visual inspection of Fig. 1 it is clearly visible
that the two Austrians (101M and 104M) and the two
Germans (102M and 103M) are more similar. Also it is
visible that the most experienced speaker (104M) makes
the least change in vowel space over the course of
speaking. Looking at the vowel space areas in Table III
one can observe a clearly smaller vowel space area
at the end for speakers 102M and 103M, whereas the
vowel space areas for speakers 101M and 104M don’t
change significantly. In general, the vowels /o/ and
/u/ differed the most between the start and the end
across all speakers and in most cases the mean of the
vowels moved towards the central vowel. Noticeable
differences from this observation are vowel /u/ of
speaker 101M and vowel /a/ of speaker 104M.

V. GENERAL DISCUSSION AND CONCLUSION

The results of the analysis of the voice quality at the
beginning and the end of the reading session showed
that the addition of MFCCs for the classification does
increase the F1 score either alone or in combination
with the VQ features. The study of the vowel space
indicates that the vowel space area decreases for three
of the speakers, i.e. the vowels move to the center of
the vowel space. This might be due to less accurate
pronunciation that is rather related to cognitive than
vocal fatigue. Even though this pilot study only contains
four speakers, we want to point out that when using
MFCCs or other features that represent the speech
spectrum, the discriminating properties used might not
be caused by vocal fatigue.
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TABLE I: Used vowels and number of their occurrences
(for all speakers).

vowel # vowel # vowel # vowel #

/a/ 453 /a:/ 327 /i/ 88 /i:/ 401
/I/ 50 /e/ 59 /e:/ 323 /E/ 360
/E:/ 42 /u/ 77 /u:/ 77 /U/ 251
/o/ 55 /o:/ 178 /O/ 243 /aU/ 146
/aI/ 419 /OY/ 39 /Y/ 22 /y:/ 79
/2:/ 39 /6/ 405 /9/ 16

transcribed those audio chunks such that the text-files
contained the spoken words of the corresponding 10–
15s long wav-snippets. The wav-snippets along with the
Praat TextGrid-files [12] were uploaded to the Web-
MAUS Basic tool [13], which automatically delivered
us phonetic segments of the speech material. Using
these segments, we extracted approx. 1000 vowels per
speaker resulting in 4149 vowel segments in total. Table
I shows an overview of the number of vowels per type
used for this paper (for all speakers).

B. Speaker Characteristics

The four male speakers with IDs 101M, 102M, 103M
and 104M were aged 30, 31, 30, and 50 years, respec-
tively. None of them had a voice disorder at the time of
recording. Speakers 101M and 104M lived most of their
lives in Vienna and Graz, respectively (both belonging
to the Eastern Austrian dialectal area) and speakers
102M and 103M in Tuttlingen and Bamberg, respec-
tively (both Southern German). The younger speakers
(101M, 102M and 103M) had little experience as pre-
senters, whereas speaker 104M (50 years) had more
speaking experience. The recording sessions were inter-
rupted every 10 minutes to ask the speakers five short
questions related to stress, fatigue, vocal roughness, ex-
citement, alertness and concentration. These questions
had to answered verbally. For each question, speakers
gave ratings which ranged between 0 (not applicable at
all) and 10 (entirely applicable). In general, answers
which related to stress, fatigue and vocal roughness
showed that the less experienced speakers (101M, 102M
and 103M) introduced higher ratings than the more
experienced speaker (104M). Simultaneously, in case
of answers which related to excitement, alertness and
concentration, speaker 104M gave a rating of 0 at each
questioning relating to excitement and higher ratings
for questions relating to alertness and concentration. In
case of the less experienced speakers all of those ratings
were more varying while indicating descending ratings
in excitement (101M and 102M), alertness (101M and
103M) and concentration (101M and 103M).

III. ANALYSIS OF VOICE QUALITY

A. Materials and Method

1) MFCC Features: We extracted the Mel-frequency
cepstral coefficients (MFCCs) which relate directly to
spectral characteristics while indirectly incorporating

TABLE II: Mean F1 scores from a 10-fold cross-
validation for each speaker when training binary ran-
dom forest classifiers (negative class: start; positive
class: end) with three different feature sets.

Feature Set 101M 102M 103M 104M

VQ 0.73 0.66 0.59 0.55
MFCCs 0.59 0.70 0.69 0.62
VQ+MFCCs 0.73 0.72 0.71 0.65

also voice quality characteristics. MFCCs 1–13 were
calculated by using librosa2 [14] version 0.9.1. An
FFT-window with a length of 23 ms and an overlap of
6 ms was used by applying a Hanning window. The
number of filters in the Mel-filter bank was set to 128,
the frequency range was from 50 Hz to 22 050 Hz. The
resulting MFCCs were averaged over all FFT-windows
of one vowel segment, such that we receive one mean
value per vowel segment for each of the MFCCs. Those
values were then normalized to have zero mean and unit
variance on a single-speaker basis.

2) Voice Quality Features: We extracted 10 voice
quality (VQ) features which assess the phonation and
resonance characteristics of the voice of each speaker.
We employed the toolbox outlined in [15] which utilizes
the two Python toolkits parselmouth1 (version 0.4.1)
and librosa2 in order to calculate the VQ features
Jitter1, Shimmer1, HNR1, mean of F0 (fundamental

frequency)1, CPP (Cepstral Peak Prominence)1, mean

of F3 (third vowel formant)1, mean of RMS2, ZCR (Zero
Crossing Rate), STE (Short Time Energy) and H1 H2

(energy between first two harmonics).

3) Random Forest Classifiers: We compared the first
five minutes of every 90 minutes-long simulated lecturer
presentation to its last five minutes on a speaker-
dependent basis. For all binary classification tasks, we
trained and tested a random forest classifier (RFC)
with default settings given the scikit learn toolkit (ver-
sion 1.0.2) [16] (Python 3.9.7) with a 10-fold cross-
validation and present respective averaged F1 scores.
We tested three different feature combinations, namely
voice quality features (VQ), MFCC features (MFCCs)
and a combination of both feature sets (VQ+MFCCs),
leading to 12 binary classification tasks (three feature
combinations x four speakers), while defining the end of
a recording as the positive class. One purpose of using
RFCs is its ability to provide both, classification results
and impurity-based feature importances. Hence, RFCs
make it possible to analyze not only which features are
decisive in making a difference between the first and
the last five minutes of a recording, but also how large
the features’ impact is relative to each other, allowing
us to learn which acoustic features most represent vocal
fatigue.

1https://parselmouth.readthedocs.io/en/stable/
2https://librosa.org/doc-playground/main/index.html

TABLE III: Vowel space areas (Bark) and their dif-
ferences (∆) between the beginning and the end of
a recording for each speaker. Vowel space areas were
measured with convex hulls derived from vowel means.

101M 102M 103M 104M

start 11.17 9 10.19 12.12
end 11.28 7.72 8.69 12.05

∆ -0.11 1.28 1.5 0.07

B. Results

Table II summarizes F1 scores for each speaker when
training binary RFCs with three different feature sets.
We observe that RFCs which were trained entirely on
VQ features led to worse F1 scores in case of speakers
103M and 104M (≤ 0.59) but to better F1 scores
in case of speaker 101M (0.73) and 102M (0.66). In
contrast, RFCs which were trained entirely on MFCC
features achieved best F1 scores in case of speakers
102M (0.7) and 103M (0.69), whereas speakers 101M
and 104M had worse F1 scores of 0.59 and 0.62. When
the two feature sets were combined (VQ+MFCCs),
the best overall F1 scores were achieved. Specifically,
for speakers 101M, 102M and 103M, we achieved
F1 scores of 0.73, 0.72 and 0.71. Yet, for the most
experienced speaker 104M the incorporation of VQ
features only yielded an F1 score of 0.65. Overall,
classification results indicate that speaker 101M varies
more over time with respect to voice quality related
features, whereas the vocal changes of speakers 102M,
103M and 104M are rather represented by MFCC
features.

With respect to the feature importances for the RFC
with VQ+MFCCs, we observe that the 4 most important
features of speaker 101M comprised mean of F0 , STE,
mean of RMS and H1 H2, which all had average
importances > 6% (capturing 34% of the overall
importance). In contrast, the four best features for
speakers 102M and 103M were MFCCs capturing 30%

(102M) and 31% (103M) of the overall importance.
In case of speaker 102M, the next best feature was
mean of F0 with an average importance of 6%. In
case of speaker 103M, the best MFCC (coefficient 8)
had an average importance of 13% while the next best
MFCC (coefficient 2) had an average importance of
7%. The next best VQ features were CPP, ZCR and
mean of F3 with average importances of approx. 5%.
In case of speaker 104M all features had similar average
importances (between approx. 3, 5%−6, 5%) where the
10 best features captured 53% of the overall importance
and they comprised MFCCs (coefficients 7, 12, 2, 1, 10,
9 and 8), ZCR, HNR and CPP.

IV. ANALYSIS OF THE VOWEL SPACE

A. Materials and Method

We extracted the first (F1) and the second (F2) vowel
formants in order to analyze the speaker’s vowel spaces

resulting in the two features mean of F1 and mean

of F2. Both features were calculated with parselmouth

with a window length of 25 ms and a formant ceiling
of 5000 Hz.

We analyzed the formant features by comparing the
cardinal, tense vowels (/a/,/a:/, /e:/, /i/,/i:/, /o/,/o:/,
and /u/,/u:/) given the means and standard deviations
of mean of F1 and mean of F2 at the beginning and at
the end of the recordings. For each speaker separately,
we calculated vowel space areas by measuring convex
hulls in the formant’s Bark space by utilizing the Qhull

library [17].

B. Results

Fig. 1 shows the mean values and the standard
deviations of the formants F1 and F2 of all vowels
per speaker. The red values represent the means and
standard deviations of the first five minutes of the
speech recording and the blue values represent the last
5 minutes of the recording.

From visual inspection of Fig. 1 it is clearly visible
that the two Austrians (101M and 104M) and the two
Germans (102M and 103M) are more similar. Also it is
visible that the most experienced speaker (104M) makes
the least change in vowel space over the course of
speaking. Looking at the vowel space areas in Table III
one can observe a clearly smaller vowel space area
at the end for speakers 102M and 103M, whereas the
vowel space areas for speakers 101M and 104M don’t
change significantly. In general, the vowels /o/ and
/u/ differed the most between the start and the end
across all speakers and in most cases the mean of the
vowels moved towards the central vowel. Noticeable
differences from this observation are vowel /u/ of
speaker 101M and vowel /a/ of speaker 104M.

V. GENERAL DISCUSSION AND CONCLUSION

The results of the analysis of the voice quality at the
beginning and the end of the reading session showed
that the addition of MFCCs for the classification does
increase the F1 score either alone or in combination
with the VQ features. The study of the vowel space
indicates that the vowel space area decreases for three
of the speakers, i.e. the vowels move to the center of
the vowel space. This might be due to less accurate
pronunciation that is rather related to cognitive than
vocal fatigue. Even though this pilot study only contains
four speakers, we want to point out that when using
MFCCs or other features that represent the speech
spectrum, the discriminating properties used might not
be caused by vocal fatigue.

VI. ACKNOWLEDGMENTS

We express our gratitude to the four speakers who
participated in the long recording task.
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(a) Speaker 101M (Eastern Austria, little experience) (b) Speaker 102M (Southern Germany, little experience)

(c) Speaker 103M (Southern Germany, little experience) (d) Speaker 104M (Eastern Austria, more experience)

Fig. 1: Ellipses from combinations of the tense vowels /a/, /a:/, /e:/, /i/, /i:/,/o/, /o:/, and /u/, /u:/ based on means
and standard deviations of formants F1 and F2. Ellipses capture statistics of vowel positions for each speaker at the
start (red) and the end (blue) of a recording. The speaker information provided in brackets specifies the location
where the speakers have primarily resided and whether they are experienced presenters.
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Abstract: Characterization of the first (F1) and 
second (F2) formants in vowels represents a reliable 
method to describe articulatory abilities. In patients 
affected by neurodegeneration tongue movement is 
reduced, with subsequent increase in F1 and 
simultaneous decrease in F2. To describe this 
phenomenon two parameters were used: Vowel 
Space Area (VSA) and Formant Centralization 
Ratio (FCR). 91 patients affected by 
neurodegenerative diseases and 174 non-dysarthric 
control subjects underwent voice analysis with 
formant characterization of the vowels /a/, /e/, /i/, 
/u/. By computing F1 and F2 for the vowel sounds, 
triangular (tVSA) and quadrangular (qVSA) VSA 
were obtained. Both tVSA and qVSA were shown to 
decrease significantly (p<0.0001) in dysarthric 
compared with non-dysarthric subjects, while FCR 
increased (p<0.0001). These changes correlated 
positively with dysarthria progression as described 
by the clinical Radbound Dysarthria Assessment 
(RDA), especially for the vowels /e/, /i/ and /u/. Both 
VSA and FCR statistically differed (p<0.001) 
between non-dysarthric and mildly dysarthric 
subjects, demonstrating their early alteration in 
disease onset. It is possible to suggest that 
characterization of F1 and F2 may be useful as an 
early biomarker of dysarthria and 
neurodegeneration and a possible biomarker of 
disease progression. Keywords:  Neurodegeration, 
Voice, Biomarkers, Acoustics, Dysarthria 

 
I. INTRODUCTION 

Dysarthria is an impairment of speech characterized by 
"abnormalities in the strength, speed, range, steadiness, 
tone, or accuracy of movements required for breathing, 
phonatory, resonatory, articulatory, or prosodic aspects 
of speech production due to damage of the central or 
peripheral nervous systems" [1]. In Parkinson’s disease 
(PD) vocal impairments are present in up to 90% of 
patients [2], being reported as some of the earliest 
indicators of the disease, present years before the 
diagnosis [3-6]. Dysarthria is the most common 
expressive communication deficit in Multiple Sclerosis 
(MF) patients, with a prevalence of 45% [7-9]. In 

Amyotrophic Lateral Sclerosis (ALS), more than 80% 
of patients are affected by dysarthria, which develops 
earlier in patients with a bulbar onset of disease, 
leading to anarthria in few months [10]. In 23% of 
ALS patients, dysarthria has been reported as the first 
predominant symptom in the early stage of disease, 8% 
more frequent than dysphagia [11].  Overall, acoustic 
analysis of voice may represent a good candidate as an 
early biomarker of neurodegeneration because it allows 
a transversal evaluation of neural control, it is impaired 
with specific patterns from the earliest stage of most 
NDD, it is objective, simple and non-invasive, sensible 
to subtle pre-clinical changes, and it can be acquired 
even remotely [12]. Most types of dysarthria are 
characterized by articulatory undershoot, as the 
intended place and degree of vocal tract constrictions 
are not fully achieved due to a reduced range of 
movements of articulatory movements [13] (i.e., 
reduced range of articulatory movements), to the extent 
that the intended place and degree of vocal tract 
constriction are not fully achieved [14]. To acoustically 
quantify the articulatory abilities of a subject vowel 
metrics are used, based on formant frequencies, which 
are spectral peaks produced by specific articulatory 
configurations of the vocal tract, with a particular role 
of the tongue body, whose excursion in height is 
inversely related the first formant (F1), and whose 
frontness is directly related to the second formant (F2). 
F1 and F2 are used to acoustically characterize 
different vowels, and by plotting their respective 
frequencies on orthogonal axes of a bi-dimensional F1-
F2 plane, the Vowel Space Area (VSA) is created: the 
triangular VSA (tVSA) is made by the vowels /a/, /i/, 
and /u/, while by adding the vowel /e/ the quadrangular 
VSA (qVSA) results [15]. In 2010, Sapir and 
colleagues proposed an additional parameter to 
describe the articulatory range of the vocal tract, the 
Formant Centralization Ratio (FCR) [16], with the goal 
of maximizing the sensitivity of pathological vowel 
centralization when FCR>1 [17], and decreasing 
intersubject variability with respect to VSA-based 
parameters [18]. The overall reduction of working 
space for vowel articulation in dysarthric patients is 
likely to result in vowel formant centralization, i.e., 
formants that normally have high frequencies tend to 
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have lower frequencies, and formants that normally 
have low frequencies tend to have higher frequencies. 
This phenomenon can be quantified by a decrease of 
tVSA and qVSA and an increase in FCR [14,19]. Such 
findings have been reported in a number of studies 
comparing acoustic formant-based parameters in 
patients affected by PD with matched healthy controls 
[20-26]. Acoustic analysis of voice and vowel metrics 
has been also applied to MS, detecting significant 
differences with healthy controls [27]. In patients 
affected by ALS a reduction in the VSA accounting for 
45% of variance in speech intelligibility was described, 
with a faster and more prominent impact on bulbar-
onset patients [10, 28, 29]. A number of studies have 
detected early changes in speech among highly 
intelligible individuals affected by ALS in the early 
stages of disease, however results and acoustic 
parameters considered were highly variable across 
different papers [30-32]. Although vowel metrics have 
been reported as potential biomarkers of dysarthria, 
most studies have focused on one pathology or few 
pathologies at the same time, the most studied disease 
being PD. The aim of this study is to investigate the 
role of acoustic analysis of voice to characterize 
dysarthria across a wider variety of diseases, with a 
focus on the potential carried by formant-based 
parameters as early biomarkers of neurodegeneration 
and as markers of disease progression and severity. 
 

II. METHODS 
Participants: 265 subjects were included in the study. 
Among them, 91 (41 F, 50 M; mean age 65.3 ± 13.8) 
were affected by neurodegenerative diseases (NDD) of 
both the Central (72) and the Peripheral (19) Nervous 
Systems. 174 non-NDD subjects represented the 
control group (99 F, 75 M; mean age 52.9 ± 16.34), 87 
of them being euphonic (54 F, 33 M; mean age 49.8 ± 
17.5), while 87 were perceptively dysphonic but non-
dysarthric (45 F, 42 M; mean age 56 ± 14.54). The 
dysphonic group underwent laryngostroboscopy to 
highlight functional or organic diseases of the glottis. 
Regarding the dysphonia perceptive grading, 49 
subjects were mildly dysphonic, 27 moderately 
dysphonic, 11 severely dysphonic. 
Protocol: All patients underwent a clinical evaluation 
of dysarthria severity according to the Radboud 
Dysarthria Assessment (RDA)[33], combining the 
different dimensions of speech production 
(articulation, resonance, phonation, respiration and 
prosody) to classify dysarthria as clinically absent 
(n°6), mild (n°34), moderate (n°29), and severe (n°22). 
In the control group of 174 non-NDD subjects (87 
euphonic and 87 dysphonic), no clinically evident 
dysarthria was recorded. The vocal sign was recorded 
using a Kay Computer Speech Lab (CSL) 4500B 
supported by a personal computer including a Shure-
Prolog SM48 microphone. Analysis of a voice sample 
was carried out using the 2.3 version of MDVP 5105 

software. Each patient kept the vowel /a/, /e/, /i/, /u/ at 
a constant conversation intensity (range 55-65 dB) for 
at least 7 seconds; the central 4 seconds of each 
phonation were used for further analysis. The first and 
second formant frequencies for each vowel considered 
were extracted (F1a, F2a, F1e, F2e, F1i, F2i, F1u, 
F2u). The working range for vowel articulation can be 
visually assessed by the triangular and quadrangular 
Vowel Space Areas, which are constructed by the 
Euclidean distances between the F1 and F2 coordinates 
of the corner vowels /i/, /u/, and /a/ (tVSA), or the 
corner vowels /i/, / u/, /a/, and /e/ (qVSA) in the F1-F2 
plane, according to the formulas [14,16]: 
 

tVSA= 0.5*[F1i(F2a-F2u)+F1a(F2u-F2i)+F1u(F2i-
F2a)]               (1) 

 
qVSA=0.5*[(F2iF1e+F2eF1a+F2aF1u+F2uF1i)(F1iF2
e+F1eF2a+F1aF2u+F1uF2i)]      (2) 

  
In 2010 Sapir and coworkers16 introduced a frequency 
normalization parameter, the Formant Centralization 
Ratio (FCR), with the goal of reducing inter-subject 
variability [18] and maximizing the sensitivity of 
vowel centralization [17,] calculated according to the 
formula: 
 
FCR= (F2u+F2a+F1i+ F1u)/(F21+F1a)    (3) 

 
For each of the 265 subjects in this study, tVSA, qVSA 
and FCR were calculated. All statistical analyses were 
completed using SPSS Version 24 (SPSS, Chicago, 
Illinois) and significance was set at p <0.05. For the 
age, gender, and for the clinical and instrumental 
evaluation (all vowel-formant elements, F1a, F2a, F1e, 
F2e, F1i, F2i, F1u, F2u and for tVSA, qVSA, FCR), 
the difference between groups was performed using 
parametric (independent T test or Anova) and non-
parametric statistics (Mann–Whitney U or Kruskal-
Wallis test). In both neurological and non-neurological 
groups parametric (Pearson) and non-parametric 
(Spearman) correlation coefficient was performed to 
evaluate the relation between age, triangular vowel 
space area (tVSA), quadrilateral vowel space area 
(qVSA) and formant centralization ratio (FCR). 
 

III. RESULTS 
 
3.1 Neuro vs Non-Neuro: In the comparison between 
the control (n°174) and the study group (n°91), 
differences were found for the three composite 
indicators measured. For both tVSA (p-value 0.000)  
and qVSA (p-value 0.000) the means and medians 
were lower in the neurological group. Also considering 
FCR the value of the mean and the median in the 
neurological group was significantly different from the 
non-neurological group (p-value 0.000). 
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3.2 Euphonic vs Dysphonic vs Neurological: 
Considering the whole sample (n°265) in the 
classification between euphonic (n°87), dysphonic 
(n°87) and neurological (n°91) subjects, and 
performing ANOVA analysis for tVSA, qVSA and 
FCR, statistically significant differences (p<0.001) 
were observed in the comparison of neurological 
subjects with both the euphonic group and the 
dysphonic group for all three parameters, tVSA, qVSA 
and FCR. On the contrary, the comparison between the 
euphonic and dysphonic subgroups of patients not 
affected by NDD did not highlight any statistically 
significant difference. 
3.3 Dysarthria severity in the neurological group: 
Evaluating only the sample of patients affected by 
NDD (n°91), classified according to the clinical 
evaluation of dysarthria severity by the Radbound 
Dysarthria Assessment (RDA) scale [33] in absent 
(n°6), mild (n°34) moderate (n°29) and severe (n°22), 
by performing ANOVA analysis for tVSA, differences 
were observed between moderate vs absent (p-value 
0.05), and severe vs moderate (p-value 0.01). For 
qVSA, differences were observed only between severe 
vs absent (p-value 0.01), while for FCR, statistically 
significant differences were recorded between absent 
vs severe (p-value 0.01), and between mild vs severe 
(p-value 0.01).  
3.4 Mild-dysarthria vs non-neurological: In the 
comparison between the non-neurological (n°174) and 
mild dysarthric patients (n°34), differences were found 
for all the three vowel metrics calculated. For both 
tVSA and qVSA the means and medians were lower 
among mildly dysarthric patients than non-NDD 
subjects (p-value 0.001). Also for the others two 
indices, qVSA and FCR, the values of the mean and 
the median among mildly dysarthric patients were 
significantly different from the non-neurological group 
(qVSA p-value 0.001/FCR p-value 0.001). 
3.5 Correlation between age, tVSA and qVSA in 
non-neurological and neurological groups:  
Evaluating the correlation between age, tVSA (p-value 
0.021) and qVSA (p-value 0.001) both in the non-
neurological and in the NDD group, a significant 
correlation was observed only in the non-neurological 
group, while in the NDD no correlation between age, 
tVSA and qVSA was recorded. 
3.6 Dysarthria type: Evaluating by ANOVA analysis 
89 patients affected by NDD presenting a clinical 
picture of dysarthria classified according to the Mayo 
perceptive classification system (Darley, Aronson and 
Brown)[1] in hypokinetic, spastic, flaccid and ataxic, 
no statistical significance was detected for tVSA and 
for qVSA between Hypokinetic (n°34), Spastic (n°31) 
Flaccid (n°18) and Ataxic (n°6). 2 patients presenting 
hyperkinetic kinetic dysarthria were removed from this 

analysis as this class did not provide enough power to 
perform statistical comparisons. A statistical 
significant difference was recorded in FCR between 
the Flaccid and Ataxic groups (p-value <0.05). 
 

IV. DISCUSSION 
The aim of this study was to investigate the role of 
formant-based vowel metrics (tVSA, qVSA and FCR) 
to characterize dysarthria across a wide variety of 
neurodegenerative diseases (NDD), by comparing a 
population of 91 subjects affected by NDD of both the 
CNS and PNS with a control group of 174 subjects (87 
euphonic and 87 dysphonic), with a total of 265 
subjects considered.  
By comparing the study group with the control group 
as a whole (considering both dysphonic and euphonic 
subjects), it was possible to highlight a statistically 
significant reduction in tVSA (p<0.0001) and qVSA 
(p<0.0001), and an increase in FCR (p<0.0001) in the 
neurological group. These parameters have already 
been demonstrated sensible to differences in speech 
between healthy controls and patients affected by 
various NDD, especially Parkinson’s [21-24,26], 
Multiple Sclerosis [24] and Amyotrophic Lateral 
Sclerosis [28]. Also in the present study, considering a 
more heterogeneous population comprising patients 
affected by a wide variety of NDD, tVSA, qVSA and 
FCR proved to be reliable parameters in differentiating 
dysarthric patients from healthy controls. Similar 
results were obtained when comparing the neurological 
group with the euphonic and the dysphonic groups 
separately. As expected, the comparison between the 
control subgroups (euphonic vs dysphonic) did not 
highlight any statistically significant difference. In fact, 
dysphonic patients present a wide variety of organic 
and/or functional diseases of the glottis (i.e. the voice 
source) but not at the acoustic filter represented by the 
vocal tract. Inversely, dysarthric patients, though 
euphonic in their glottal emission, present alterations in 
the filtering action of the vocal tract. By considering 
only the neurological group and performing ANOVA 
analysis comparing different severity grades of 
dysarthria, it was possible to highlight how tVSA, 
qVSA and FCR represent all reliable markers of 
disease progression, as reported also in other studies, 
considering mostly PD in a longitudinal setting 
[21,22]. When comparing mildly dysarthric patients 
with non-neurological patients, tVSA, qVSA and FCR 
showed statistically significant differences (p<0.001). 
Therefore, tVSA, qVSA and FCR may have a role as 
early markers of dysarthria and possibly of 
neurodegeneration, as previous studies have reported 
acoustic alterations in voice in the early stages of 
numerous neurodegenerative diseases [25,26,32]. 
While among patients affected by NDD VSA-based 
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parameters (tVSA and qVSA) were not affected by 
age, in the control group a significant correlation was 
found, as tVSA and qVSA significantly reduce as the 
articulatory abilities of subjects physiologically 
decrease with age. According to the Mayo 
classification system (Darley, Aronson and Brown) [1], 
perceptively dysarthria can be classified as spastic 
(n°31), ataxic (n°6), hypokinetic (n°34), hyperkinetic 
(n°2), flaccid, and mixed. When considering 89 
dysarthric patients, no statistical differences were 
recorded in terms of tVSA, qVSA and FCR values 
with regard to different perceptive classes of 
dysarthria.  

V. CONCLUSION 
The aim of the present study was to characterize 
dysarthria across a wide variety of neurodegenerative 
diseases by means of formant-based parameters (tVSA, 
qVSA and FCR), which  differed significantly between 
the study and the control group, in the former being 
also markers of disease severity. Moreover, these 
parameters significantly differentiated mildly 
dysarthric patients from non-dysarthric controls, 
possibly inferring their role as early biomarkers of 
neurodegeneration. Overall, it is possible to suggest 
that characterization of F1 and F2 may be useful as an 
early biomarker of dysarthria and neurodegeneration 
and a possible biomarker of disease progression. 
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Abstract: Mechanical impact stress on the vocal fold 
surface, particularly when excessive, has been 
postulated to cause the so-called phonotraumatic 
tissue lesions, such as nodules and polyps. The 
collision stress between the vocal folds is a function 
of the vocal fold velocity at the time of impact. 
Combining a precise photometric measurement of 
glottal area and simultaneous measurements of 
translaryngeal impedance (electroglottogram) for 
identifying the time of the maximum rate of 
increase of vocal fold contact allows computing the 
vocal fold collision speed in a wide range of 
loudnesses. The vocal fold collision speed is - for 
modal voicing - always smaller than the maximum 
vocal fold velocity during the closing phase, but it 
strongly increases with intensity. Moreover, this 
increase shows a biphasic pattern, with a significant 
enhancement from around 78 dB on. 
 
Keywords: Vocal fold collision − Voice intensity − 
Glottal area − EGG. 
 

I. INTRODUCTION  
 

Mechanical impact stress on the vocal fold (VF) 
surface, particularly when excessive, has been 
postulated to cause the so-called phonotraumatic tissue 
lesions [1]. VF nodules and polyps are the best-known 
examples [2]. The maximum area declination rate 
(MADR) in the closing phase of the glottis during VFs’ 
vibration has been reported as a measure of the impact 
stress loading the VFs during collision [4], thus, as a 
relevant parameter when considering biomechanical 
economy of phonation [5]. The collision stress between 
the VFs can be estimated from basic physical 
principles [6]: Assuming the mass of a tissue element 
at the medial surface of the VF edge to be 

 
m = ρ ΔxΔyΔz       (1) 

  
where ρ is tissue density (1040 kg/m3) and ΔxΔyΔz 

is a small volume, then, from Newton's second law, the 
average collision force over an impact interval Δt is  

 

F = m Δv/Δt      (2)  
 
where Δv is the change in velocity during impact. Jiang 
& Titze [7] estimated the impact interval to be of the 
order of    

Δt = T0 /10      (3)  
 
where T0 is the fundamental period. The velocity 
change in Eq. (2) can be estimated by assuming a 
sinusoidal motion of amplitude A and radian frequency 
ω = 2π F0. The maximum velocity, which occurs near 
impact, is  

 
Δv = ω A = 2 π F0 A     (4)  

 
This velocity is reduced to zero during the collision 
interval, such that  

 
 v = v - 0 = 2 π  F0 A         (5) 
 

Substituting (1), (3), and (5) in (2),  
 

F = 20 π A F0 2 ρ ΔxΔyΔz     (6)  
 
when the impact starts from the phase when the VF 
velocity is at its maximum value. If Δy Δz is the 
impact surface and Δx the depth of the vibrating tissue, 
then the collision stress is  
 

σ = F / ΔyΔz = 20 π A F0 2 ρ  Δx   (7)  
 

To set these ideas on an example corresponding 
with modal male speech, for an amplitude of vibration 
of 10-3 m, a depth of vibration of 10-3 m, and a F0 of 
120 Hz, the stress is 9.4 hPa.. 

 
Direct measurements on human subjects also 

yielded a range of 1−5 kPa. 
 
Eq. 7 shows that collision stress increases with F0

2; 
however, both amplitude and depth of vibration are 
expected to decrease with F0, making the exact stress 
uncertain. At habitual speaking frequency, when F0 
remains within a limited range, the velocity change 
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during impact is the essential parameter (Eq. 2). As 
velocity is reduced to zero during the collision interval, 
the peak velocity and the moment at which this peak 
occurs with respect to the impact are major 
determinants. Titze hypothesized that the maximum 
velocity occurs near impact [4]. This is indeed what 
can be expected in the case of a closed quotient of 0.5, 
i.e., when the closed phase and the open phase have the 
same duration. It is interesting to know what happens 
when the closed quotient departs from 0.5. 

 
Hence it is relevant to more precisely know the 

actual VFs velocity at the time they collide, and the 
relationship between impact velocity and voicing 
intensity.  

 
It would indeed be desirable to weigh increases in 

vocal loudness against increases in tissue stress to 
obtain a cost and/or benefit ratio for certain vocal 
productions like teaching, acting or speaking in public, 
and consequently to define the level absolutely 
requiring electrical amplification.  

 
II. METHODS 

 
Glottal area and sound signal  
 
The glottal area was derived from a photometric 

record obtained by transilluminating the trachea, as 
described in previous work [8,9]. The light flux was 
detected by a nondirectional photovoltaic transducer 
positioned as dorsally as possible in the pharynx 
(photoglottography PGG).  

The photoglottographic signals are more accurate 
than those provided by image processing from high-
speed video; the high sampling frequency allowing 
adequate time resolution for computation of the 
derivative much better than that of the imaging 
techniques. 

By inspecting still stroboscopic pictures at the time 
of maximal opening, we found that the contour of the 
glottal image could be well fitted with an ellipse, the 
major and the minor axes of which were the 
ventrodorsal length and the maximal width of the 
glottis picture respectively. 

 The sound signal, measured in Vrms, was first 
calibrated in dB by recording series of short (~ 4−5 s) 
voice utterances at stable SPL (controlled by visual 
feedback) at intervals of 5 dB, from ~ 55 dB on. 

The correlation coefficient between the maximum 
glottal width and the SPL is 0.98. As the length of the 
glottis is constant, maximal width and glottal length 
were used to calculate the area (in mm2) of the 
equivalent ellipse by applying the simple geometrical 
equation of the area of the ellipse, and this value is 
equivalent to the maximum value of the PGG signal 

during each cycle, or 100% of the glottal area. All 
values of the PGG signal, expressed in % of the 
maximum area, were then transformed into units of 
area; from area, the half width of the glottis was finally 
calculated by the equation of the ellipse. Similarly, all 
values of the derivative of the PGG signal were 
expressed in rate of change of area (in mm2/s), from 
which the speed of the edge of each VF (in m/s) was 
obtained.  

This approach makes it easily possible to calculate 
the speed of each VF edge at its middle length, with 
the assumption that, in normal conditions, VFs are 
vibrating approximately symmetrically. 

 
Translaryngeal impedance (Electroglottography 

EGG)  
  
The EGG-signal, used as a reference for monitoring 

the contact surface changes, was detected using a 
portable electroglottograph (Laryngograph Ltd, 
London, UK) Model EG90. As for the 
photoglottogram, the very high sampling frequency 
makes it possible to accurately compute the derivative. 
The positive peak of the EGG-derivative indicates the 
maximum rate of increase in VF contact. [10]. 

Time delays due to electronic circuitries were 
measured and the necessary corrections applied: 0.102 
ms for PGG and 0.056 ms for EGG). 

 
Vocal material  
 
A corpus of about 140 recordings was created with 

short sustained vocal emissions on /ǝ/ with the 
photoglottograph in situ, and simultaneous EGG and 
sound monitoring, at spontaneous speaking pitch (F0 
between 95 and 125 Hz) in a large range of loudnesses, 
Out of this corpus, 32 records were suited for detailed 
analysis (criterion: full display of all traces in the 
central part of the recording). 

 
III. RESULTS & DISCUSSION 

 
Fig.1 shows an example of an original raw tracing 

with the three signals: PGG (glottal area), EGG 
(translaryngeal electrical impedance) and microphone 
signal. Intensity is moderate (70.24 dB), as is the 
closed quotient (0.35).  

The horizontal axis is time (ref. = 2 ms). The y axis 
represents the calibrated glottal area (increasing 
upwards, ref. = 10 mm2) for the PGG, the 
translaryngeal electrical impedance (decreasing 
upwards) for the EGG and the acoustic pressure 
(microphone). Fundamental frequency is about 115 Hz, 
and intensity 70.24 dB. 

 An estimate of the maximum glottal area during 
one cycle of a sustained phonation (28.9 mm2) is 
obtained by using videokymography and 

videostroboscopy in similar voicing conditions and in 
the same subject. 

 
                               Fig. 1 
 
Fig. 2 is as Figure 1 but at a higher intensity (82.90 

dB) with a larger closed quotient (0.58). Fundamental 
frequency is about 117 Hz. The estimate of the 
maximum glottal area during one cycle of a sustained 
phonation is here 46.3 mm2. 
  

 
     Fig. 2 
 
The most relevant information is the actual velocity 

of one single VF (m/s) at the time of collision (cf. 
Eq.2). This velocity depends on (1) the maximum 
velocity, given by the magnitude of the negative PGG 
peak, and (2) the extent of the reduction (in %) of this 
maximum velocity during the interval between the time 
this maximum closing velocity is reached and the VF 
collision peak. The extent of the deceleration depends 
itself on this delay, but also on the shape of the closing 
phase, which is not linear and involves, at its terminal 
phase, aspects like tissue compression and 
deformation, i.e., what occurs between the first contact 
of the VF and the maximum rate of increase in VF 
contact when VF collide, which has been considered as 

the collision peak. At low voicing intensities, the 
collision velocity is not more than 5%−25 % of the 
maximum velocity, while at higher intensities the 
percentage promptly becomes 
25%−70%.

 
Fig. 3 
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Examples of the first derivatives of the PGG 

(dPGG/dt) and EGG (dEGG/dt) signals, calculated 
from two original tracings corrected for the respective 
time delays of 0.102 ms and 0.056 ms can be compared 
in Figures 3 and 4. The vertical arrows indicate the 
positive peak for EGG (i.e., the max. rate of increase in 
VF contact when VF collide, considered as the 
collision peak) and the negative peak for PGG (i.e., the 
max. glottal closing velocity). At the lower intensity 
(70.95 dB) (Figure 3), the delay between the two peaks 
is quite large (1.419 ms). At the higher intensity (86,89 
dB) (Figure 4), the delay between the two peaks 
becomes much shorter (0.188 ms). When a vertical 
straight line is drawn through the peak of the EGG-
derivative, it can be seen that the time of this peak 
(collision peak) corresponds in Figure 3 (horizontal 
arrow) to a value of 6.9% of the maximum negative 
amplitude of the PGG-derivative (= max. glottal 
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during impact is the essential parameter (Eq. 2). As 
velocity is reduced to zero during the collision interval, 
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positive peak for EGG (i.e., the max. rate of increase in 
VF contact when VF collide, considered as the 
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is quite large (1.419 ms). At the higher intensity (86,89 
dB) (Figure 4), the delay between the two peaks 
becomes much shorter (0.188 ms). When a vertical 
straight line is drawn through the peak of the EGG-
derivative, it can be seen that the time of this peak 
(collision peak) corresponds in Figure 3 (horizontal 
arrow) to a value of 6.9% of the maximum negative 
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closing velocity), giving a calculated VF velocity of 
0.04 m/s. Similarly, in Figure 4, the peak of the EGG-
derivative (collision) corresponds (horizontal arrow) to 
44.2% of the maximum negative amplitude of the 
PGG-derivative and to a calculated VF velocity of 1.02 
m/s. 

To oversimplify, if we compare the oscillation 
pattern of the VF edge with a sinusoidal motion 
clipped at half-height (one-mass model), clipping 
begins at the time of maximum velocity. This is the 
equivalent of a closed quotient of 0.5. In a situation 
where VFs freely oscillate without making contact, 
there is no glottal closure, the closed quotient is 0 and 
the velocity is also 0 at the time the VF edges are 
closest to each other. Between these extremes, every 
percentage (0%−100%) of the maximum velocity at the 
moment of clipping (contact) is possible.  

The actual velocity of one single VF at the collision 
peak is plotted as a function of intensity (dB) in Figure 
5. Globally, the velocity at the time of impact clearly 
increases with intensity. Yet the relation is not linear, 
and two different patterns can be identified: from about 
78 dB on, the regression slope becomes substantially 
steeper, even if the correlation is strong and highly 
significant both in the range 65−78 dB and in the range 
78-87dB. Covariance analysis demonstrates that the 
difference in slope between the two regression lines is 
highly significant (t = -3.3029; p = 0.0026). 
 

 
 

Fig. 5 
 
               CONCLUSION 
 

At modal speaking pitch, the actual VF collision 
velocity is significantly lower than the maximum 
closing velocity, and the extent of the deceleration 
effect strongly depends on the intensity of voicing. 
Moreover, the relationship between collision velocity 
and intensity shows a biphasic shape: the deceleration 
(“braking”) effect is increasingly reduced at loud 
voicing, from about 78 dB on. Hence the MADR in the 
closing phase of the glottis during VFs’ vibration may 
not be considered as a measure of the impact stress 

loading the VFs during collision. Mechanical stress has 
been considered as the key to the etiology of VF 
nodules [7]. In depth understanding of physiological 
variables that influence VF collision forces provides 
relevant insight into the pathophysiology and the 
prevention of voice disorders associated with 
phonotraumatic vocal hyperfunction 
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Abstract: This paper compares formant transitions 
in English, French and German monophthongs 
after labial and lingual (tip, front and back) 
consonants. The monophthongs were extracted 
from speech samples read by female speakers. The 
formant values were measured in 9 points within 
each vowel. The line graphs representing formant 
transitions were plotted. The derivatives of the 
resulting functions at 9 points were calculated to 
compare the slopes of different formant 
trajectories. The formant values were converted 
from Hertz to Bark scale in order to evaluate the 
formant structure variability. F2 values were the 
highest in German vowels and the lowest in English 
monophthongs. However, English vowels 
demonstrated the highest F1 values. Differences in 
the steepness of the first transition region were 
observed in French rounded and unrounded 
monophthongs. The region in which the greatest 
slope occurred was the same for English and 
German monophthongs, but different for French 
vowels. The highest variability of formant structure 
was observed in F1 of English vowels. Overall, the 
formant structure of German vowels was the least 
variable. In English and German, formant 
structure variability was lower in the back 
monophthongs compared to the front vowels. 
However, French monophthongs showed the 
opposite tendency.  
Keywords:  Speech acoustics, phonetics, formant 
transitions, Bark scale, formant slopes 

 
I. INTRODUCTION 

 
The quality of a speech sound is determined by the 

movement of articulators. Another important factor is 
the regions of the vocal tract that influence the sound 
spectrum. The spectrum is formed as a sound passes 
through the upper vocal tract (i.e., the oral cavity and 
the nasal cavity). The cavities of the upper vocal tract 
perform as resonators increasing those sound 
frequencies that are equal or close to natural resonating 
frequencies of the resonators. The increased 
frequencies are referred to as formants. A natural 

resonating frequency of a cavity is determined by its 
shape, which can be changed by certain movements of 
articulators located in this cavity [2].  

Since 1950s, there has been a number of studies that 
have reported a crucial role of the first two formants in 
vowel quality. The value of the first formant (F1) 
correlates with vowel height, while the second formant 
(F2) correlates with vowel backness. These parameters 
are essential for vowel discrimination and, 
consequently, for automatic speech recognition [2]. 

Beside formant values, formant trajectories (or, 
formant transitions) are also important for vowel 
discrimination [3]. In connected speech, vowels rarely 
occur in isolation. Therefore, the acoustic features of 
vowels can change depending on the characteristics of 
neighboring consonants or vowels. Vowel quality is 
primarily affected by the loci of neighboring 
consonants and by secondary consonantal articulations 
(e.g., palatalization, labialization, etc.) that modify the 
shape of the vocal tract [5].  

Watson and Harrington [9] argue that vowels can 
also be characterized by the slope of their formant 
trajectories. This feature is determined by the distance 
between the consonantal locus and vowel target and, 
consequently, by the formant values of the consonant 
and the vowel. However, likewise mean formant 
values, slopes cannot possibly be used as a single 
parameter for vowel recognition as the slopes of most 
monophthongs are similar. 

The aim of this study is to investigate formant 
trajectories in English, French and German 
monophthongs after labial and lingual (tip, front and 
back) consonants. This paper compares formant 
transitions of vowels in different languages in similar 
consonantal contexts. 
 

II. METHODS 
 

The monophthongs in labial and lingual (tip, front, 
and back) consonantal contexts were obtained from 
sentences, words and texts read by female speakers. 
Only female informants were considered for the reason 
that more female speakers were found than male ones. 
Male voices were not included to the data for this 
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closing velocity), giving a calculated VF velocity of 
0.04 m/s. Similarly, in Figure 4, the peak of the EGG-
derivative (collision) corresponds (horizontal arrow) to 
44.2% of the maximum negative amplitude of the 
PGG-derivative and to a calculated VF velocity of 1.02 
m/s. 

To oversimplify, if we compare the oscillation 
pattern of the VF edge with a sinusoidal motion 
clipped at half-height (one-mass model), clipping 
begins at the time of maximum velocity. This is the 
equivalent of a closed quotient of 0.5. In a situation 
where VFs freely oscillate without making contact, 
there is no glottal closure, the closed quotient is 0 and 
the velocity is also 0 at the time the VF edges are 
closest to each other. Between these extremes, every 
percentage (0%−100%) of the maximum velocity at the 
moment of clipping (contact) is possible.  

The actual velocity of one single VF at the collision 
peak is plotted as a function of intensity (dB) in Figure 
5. Globally, the velocity at the time of impact clearly 
increases with intensity. Yet the relation is not linear, 
and two different patterns can be identified: from about 
78 dB on, the regression slope becomes substantially 
steeper, even if the correlation is strong and highly 
significant both in the range 65−78 dB and in the range 
78-87dB. Covariance analysis demonstrates that the 
difference in slope between the two regression lines is 
highly significant (t = -3.3029; p = 0.0026). 
 

 
 

Fig. 5 
 
               CONCLUSION 
 

At modal speaking pitch, the actual VF collision 
velocity is significantly lower than the maximum 
closing velocity, and the extent of the deceleration 
effect strongly depends on the intensity of voicing. 
Moreover, the relationship between collision velocity 
and intensity shows a biphasic shape: the deceleration 
(“braking”) effect is increasingly reduced at loud 
voicing, from about 78 dB on. Hence the MADR in the 
closing phase of the glottis during VFs’ vibration may 
not be considered as a measure of the impact stress 

loading the VFs during collision. Mechanical stress has 
been considered as the key to the etiology of VF 
nodules [7]. In depth understanding of physiological 
variables that influence VF collision forces provides 
relevant insight into the pathophysiology and the 
prevention of voice disorders associated with 
phonotraumatic vocal hyperfunction 
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Abstract: This paper compares formant transitions 
in English, French and German monophthongs 
after labial and lingual (tip, front and back) 
consonants. The monophthongs were extracted 
from speech samples read by female speakers. The 
formant values were measured in 9 points within 
each vowel. The line graphs representing formant 
transitions were plotted. The derivatives of the 
resulting functions at 9 points were calculated to 
compare the slopes of different formant 
trajectories. The formant values were converted 
from Hertz to Bark scale in order to evaluate the 
formant structure variability. F2 values were the 
highest in German vowels and the lowest in English 
monophthongs. However, English vowels 
demonstrated the highest F1 values. Differences in 
the steepness of the first transition region were 
observed in French rounded and unrounded 
monophthongs. The region in which the greatest 
slope occurred was the same for English and 
German monophthongs, but different for French 
vowels. The highest variability of formant structure 
was observed in F1 of English vowels. Overall, the 
formant structure of German vowels was the least 
variable. In English and German, formant 
structure variability was lower in the back 
monophthongs compared to the front vowels. 
However, French monophthongs showed the 
opposite tendency.  
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occur in isolation. Therefore, the acoustic features of 
vowels can change depending on the characteristics of 
neighboring consonants or vowels. Vowel quality is 
primarily affected by the loci of neighboring 
consonants and by secondary consonantal articulations 
(e.g., palatalization, labialization, etc.) that modify the 
shape of the vocal tract [5].  

Watson and Harrington [9] argue that vowels can 
also be characterized by the slope of their formant 
trajectories. This feature is determined by the distance 
between the consonantal locus and vowel target and, 
consequently, by the formant values of the consonant 
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values, slopes cannot possibly be used as a single 
parameter for vowel recognition as the slopes of most 
monophthongs are similar. 

The aim of this study is to investigate formant 
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monophthongs after labial and lingual (tip, front and 
back) consonants. This paper compares formant 
transitions of vowels in different languages in similar 
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Only female informants were considered for the reason 
that more female speakers were found than male ones. 
Male voices were not included to the data for this 
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research as male formant values are, on average, lower 
than formant values in female speakers.  

The English speech samples were taken from the 
LUCID corpus (London UCL Clear Speech in 
Interaction Database), designed by Baker and Hazan 
[1], and also from the audio recordings for the manual 
«MyGrammarLab: Advanced C1/C2» [4]. The French 
data was drawn from the audio application for the 
manual «EDITO C1 Méthode de français» [7]. The 
German recordings were gathered from the audio 
course which was a part of the manual «Wir-3» [6]. 

The combinations of 12 English, 10 French and 16 
German phonemes with labial, tip, front and back 
consonants were selected for analysis. In total, 100 
samples per vowel in each context were examined. 
Diphthongs and nasal vowels were not included in this 
set for the reason that diphthongs are not presented in 
the phoneme inventory of French, while nasal vowels 
do not exist as phonemes in English and German.  

To plot formant trajectories, F1 and F2 values were 
measured in 9 points within each vowel using a script 
from the SpeCT (The Speech Corpus Toolkit for 
Praat). After that, the derivatives of the resulting 
functions were calculated in order to compare the 
slopes of formant transitions in the three languages. To 
evaluate formant structure variability, the formant 
values were converted from Hz to Bark. 

The formant trajectories in English, French and 
German monophthongs were compared on the basis of 
shape, slope, and the variability of formant structure. 

 
 

III. RESULTS 
 

A. The shapes of formant transitions 
 
To illustrate the formant transitions that are 

characteristic of each vowel in all the three languages 
in each of the contexts, averaged plots were designed. 
The formant values in the plotted trajectories were 
averaged over all the samples of the given vowel in the 
given context. 

 

 
Fig. 1: An averaged plot of the formant trajectories 

of the French vowel /e/ after labial consonants. 

 

 
Fig. 2: An averaged plot of the formant trajectories 

of the English vowel /e/ after labial consonants. 
 

 
Fig. 3: An averaged plot of the formant trajectories 

of the German vowel /e:/ after labial consonants. 
 

The results indicated that formant transitions 
differed the most after nasal consonants. Interestingly, 
formant values were observed to decrease as well as to 
increase in nasal context, although formant values 
generally fall when surrounded by nasal consonants 
[5]. F2 values in German vowels in each context were 
higher than in the other languages. Relative to German 
and French monophthongs, F2 values in English 
vowels were the lowest. Nevertheless, F1 values were 
as a rule the greatest in English monophthongs (see 
Fig. 1, Fig. 2, Fig. 3).  

Regarding French vowels, a difference was observed 
between rounded and unrounded phonemes. French 
unrounded monophthongs were characterized by less 
significant formant movements in the first transition 
region compared to English and German unrounded 
vowels. However, French rounded vowels showed 
more steep contours of the first transition region in 
comparison with rounded monophthongs of the other 
languages.  
 
B. The slopes of formant trajectories 

 
To calculate the derivatives of F1 and F2 functions, 

trend lines were constructed in Excel. The roots of the 
trend line equations were then identified. These values 

were plotted in order to illustrate the rate of change of 
the formant values. 

 

 
Fig. 4: The slopes of F1 and F2 trajectories of the 
French vowel /y/. 
 

 
Fig. 5: The slopes of F1 and F2 trajectories of the 
English vowel /ɒ/. 
 

 
Fig. 6: The slopes of F1 and F2 trajectories of the 
German vowel /a:/. 
 
The results revealed that F2 slopes were generally 
higher than F1 slopes in every language (see Fig. 4 and 
Fig. 5). However, the languages differed from each 
other to a certain extent. Firstly, in English and 
German, higher slopes were observed in back vowels 
in all the contexts (see Fig. 5 and Fig. 6). On the 
contrary, in French, front close vowels showed higher 
slopes. The highest slopes in this language occurred in 
vowel center or near the end of a formant trajectory 
(see Fig. 4). In English and German vowels, by 

contrast, the highest slopes occurred more often in the 
transition region from a preceding consonant to a 
vowel (see Fig. 5 and Fig. 6). 
 
C. Formant structure variability 

 
In order to evaluate the formant structure variability 

in the monophthongs, the formant values calculated 
before in Hz were converted into values on the 
psychoacoustic Bark scale. The following formula was 
used [8]: 

 

6∗ sinh− 1(Hz600)
40

                      (1) 

 
Table 1: Averaged F1 and F2 values of the French 
vowel /ɔ/ in labial context given in Hz and Bark. 
 

French /ɔ/ 
F1 F2 

Hz Bark Hz Bark 
694 5.9 1208 8.7 
689 5.9 1204 8.7 
689 5.9 1216 8.7 
684 5.9 1270 9.0 
688 5.9 1280 9.0 
721 6.1 1380 9.4 
717 6.1 1377 9.4 
724 6.1 1397 9.5 
723 6.1 1329 9.2 

 
Table 2: Averaged F1 and F2 values of the English 
vowel /ɒ/ in labial context given in Hz and Bark. 
 

English /ɒ/ 
F1 F2 

Hz Bark Hz Bark 
490 4.5 1086 8.1 
418 3.9 1091 8.2 
582 5.2 1078 8.1 
573 5.1 1094 8.2 
579 5.1 1105 8.2 
538 4.8 1119 8.3 
446 4.1 1140 8.4 
425 4.0 1144 8.4 
555 5.0 1128 8.3 
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research as male formant values are, on average, lower 
than formant values in female speakers.  
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LUCID corpus (London UCL Clear Speech in 
Interaction Database), designed by Baker and Hazan 
[1], and also from the audio recordings for the manual 
«MyGrammarLab: Advanced C1/C2» [4]. The French 
data was drawn from the audio application for the 
manual «EDITO C1 Méthode de français» [7]. The 
German recordings were gathered from the audio 
course which was a part of the manual «Wir-3» [6]. 

The combinations of 12 English, 10 French and 16 
German phonemes with labial, tip, front and back 
consonants were selected for analysis. In total, 100 
samples per vowel in each context were examined. 
Diphthongs and nasal vowels were not included in this 
set for the reason that diphthongs are not presented in 
the phoneme inventory of French, while nasal vowels 
do not exist as phonemes in English and German.  

To plot formant trajectories, F1 and F2 values were 
measured in 9 points within each vowel using a script 
from the SpeCT (The Speech Corpus Toolkit for 
Praat). After that, the derivatives of the resulting 
functions were calculated in order to compare the 
slopes of formant transitions in the three languages. To 
evaluate formant structure variability, the formant 
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Table 3: Averaged F1 and F2 values of the French 
vowel /ɔ/ in labial context given in Hz and Bark. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Formant variability was the most significant in F1 of 
English vowels. Overall, F1 variability was higher than 
that of F2. Contrary to English monophthongs, German 
vowels demonstrated the lowest variability.  
In addition, English and German back vowels showed 
less formant variability in comparison with front 
vowels in these languages. The opposite tendency was 
observed in French monophthongs. The formant 
structure variability increased from front to back 
French vowels. 
 

V. CONCLUSION 
 

This study has shown that both similarities and 
differences could be observed in the formant 
trajectories of English, French and German vowels. 
Monophthongs differ from each other not only in terms 
of formant transitions, but also in terms of formant 
structure variability.  

As it is known from many theoretical works, 
acoustic features of vowels are determined by their 
articulatory characteristics [2, 6]. Some findings of this 
research illustrate this correlation. For example, the 
formant values of back vowels were more variable than 
those of front vowels in French. Similarly, the 
steepness of the first transition regions varied between 
French rounded and unrounded vowels. It was also 
revealed that F1 values are overall more variable than 
F2 values. This implies that tongue position in oral 
cavity from back to front changes more frequently than 
tongue location in the vertical plane. However, the 
slopes of F2 trajectories appeared to be higher than 
those of F1 trajectories. This indicates that vowel 
height generally changes more significantly within 
monophthongs than backness does. 
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Abstract: Voice professionals constitute more than 
40% of phoniatric patients. Among them there is a 
peculiar group of patients composed of actors, 
specialized in speaking voice. 
As in other groups of voice users, vocal folds 
problems can lead the actors to have emotional 
consequences, technical impairment and 
occupational difficulties. Recent studies underscore 
the fact that functional and inflammatory vocal fold 
diseases have higher prevalence in acting students 
than in the general population. The data collected in 
some of the most important drama schools in Italy 
confirm the higher risk for voice impairment in 
acting students. 
Close collaboration is therefore required between 
theater schools and voice specialists, as 
phoniatricians and voice therapists. This is 
necessary to increase awareness of healthy voice use 
in young acting students and to recognize and 
manage the presence of voice problems.  
Keywords:  acting voice, speaking voice, dysphonia 

 
I. INTRODUCTION 

 
Theatre actors constitute a specific population of 

artists, whose characteristics in terms of voice 
disorders have not still been fully investigated. 

They are generally included in the group of 
professional voice users by authors dealing with 
occupational voice, but they constitute a small 
percentage of the materials inherent in these studies. 
As all professional voice users, actors are a population 
at risk for voice disorders [1-4]. Indeed, even a slight 
dysphonia in this group of workers can have serious 
professional consequences that produce occupational, 
emotional and morale problems. This unique 
population requires a specific voice usage and a strong 
vocal demand: for example, they must adjust their 
voice production to theatres of varying size or outdoor 

stages, while maintaining the ability to express the 
entire range of human emotions, their performance is at 
times characterized by extreme vocal behaviors and 
sudden emotional outbursts like screaming, shouting, 
crying and sobbing. Furthermore, they are expected to 
portray various characters (eg young or old, healthy or 
unhealthy, loud and aggressive or soft spoken) to meet 
the artistic demands of their role and have to combine 
voice projected emissions [1]. The actor adjusts his or 
her voice in order to produce the required vocal quality 
authentically and may possibly introduce damaging 
effects to the vocal mechanism. If actors constitute a 
population at risk for vocal disorders, a drama student 
must learn to pay attention to his or her voice. In drama 
schools, students receive an intensive training in voice 
technique, singing, acting voice, physical activity 
(about 8 hours per day), and are expected to participate 
in stages, rehearsals and full performances. They often 
participate in highly demanding vocal activities before 
they acquire the required knowledge and techniques to 
preserve their voices. Students undergo an extensive 
vocal loading before they can learn the necessary 
awareness of their vocal health [5]. Consequently, it 
would be recommendable to assess their vocal status to 
preserve voice health conditions. We present some 
clinical data collected in professional acting schools. 
 

II. METHODS 
 

All data are collected by students attending the first 
year of a professional drama academy. This group of 
subjects is composed of 56 students (27 males and 29 
females), between the ages of 20 to 27 years. We do 
not consider any exclusion criteria.  The control group 
is composed of 60 subjects (26 males and 34 females), 
between the ages of 21 and 44 years, without voice 
problems.  

All subjects underwent voice assessment: 
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 Interview regarding voice use, vocal 
disturbances, exposition to risk factors 
(smoking, laryngopharyngeal reflux 
symptoms, allergies, immune or hormonal 
problems) 

 GRB evaluation from the GRBAS scale by 3 
independent judges (1 voice teacher, 2 
phoniatricians and/or voice therapists) 

 Videolaryngostroboscopic recordings evaluated 
by 2 independent judges (classification of the 
vocal folds abnormalities in: presence of 
masses, inflammatory aspects, dysfunctional 
aspects and presence of scars) 
 

Statistical analysis is still in progress 
 

III. PRELIMINARY OBSERVATIONS 
 
A. Voice interview 
 

In the study group we found 33 smokers 
corresponding to 59% of the subjects, 20 students with 
laryngopharyngeal reflux symptoms (17 with mild 
symptoms corresponding to 31% of the sample and 3 
with moderate symptoms corresponding to 5% of the 
sample), 9 subjects with pollinosis corresponding to 
16% of the sample. Nobody reported immune or 
hormonal problems. 

 
B. GRB perceptual evaluation 

 
Concerning GRB perceptive evaluation in the study 

group, we observed that: 
 G parameter: there was no dysphonia in 

50% of the students, mild dysphonia in 
46.4% of the students, moderate 
dysphonia in 3.6% of the students 

 R parameter: there was no roughness in 
64.3% of the voices, mild roughness in 
32.1% of the voices, moderate roughness 
in 3.6% of the voices 

 B parameter: there was no breathiness in 
71.4% of the voices, mild breathiness in 
28.6% of the voices 

 
C. Videolaryngostroboscopic evaluation 
 
 We observed a prevalence of vocal folds 
abnormalities in 37 students, corresponding to 68.5% 
of the study group. More in detail, 18 cases were 
categorized as presence of masses on the vocal folds, 
14 students showed inflammatory aspects like edema 
and hyperemia, 13 students showed dysfunctional 
characteristics such as glottal incompetence, 1 student 
had a scar. Some students showed more than one 

pathological aspect. Data analyses and comparison 
with the control group are in progress.  

 
IV. DISCUSSION 

 
Actors are considered a professional category at risk 

for voice problems, even they are not deeply 
investigated. The most common vocal symptoms 
reported by actors include hoarseness, voice breaks, 
vocal weakness and fatigue [1,2], increased effort 
during phonation, difficulties in producing high-pitch 
tones and reduction in pitch range [6], physical 
complaints including shortness of breath, dry throat, 
laryngeal discomfort, strain, pain and physical tension 
[1,7]. Laryngeal findings in actors include altered vocal 
folds vibratory pattern, decreased mucosal wave, vocal 
fold edema and abnormal vascularity patterns [8], non 
infective laryngitis, asthenicity, nodules and upper 
respiratory infections [9].  
Acoustic analysis of actors’ voices is characterized by 
high perturbances values and high noise-to-harmonic 
ratio values [8]. The high prevalence of voice 
disturbances in actors leads to consider drama students 
as a population that needs voice education and 
assessment. Our preliminary clinical observations in 
drama academies are in agreement with data from the 
literature. We confirm that frequently acting students 
have poor hygiene habits: they often smoke too much 
and they tend to have poor eating habits eliciting reflux 
problems [10]. Furthermore, they are used to perform 
or watch performances in the evenings and do not have 
a regular rhythm for eating or sleeping. They use to 
shout and speak excessively outside the school 
environment, because they do not consider ordinary 
vocal activity as being of the same vocal folds. They 
could underestimate the risk of vocal damage 
compared to singers, because the voice is considered 
merely one of the instruments inherent to acting. The 
prevalence of alterations of the vocal folds observed 
through the videolaryngostroboscopic examination 
could be related to the lack of awareness of voice cure 
and attention. The most important point is that theatre 
actors are at risk for developing vocal disorders from a 
young age. In addition, due to the dependance of these 
performers on their vocal quality and capacity, an 
education regarding vocal hygiene and vocal training 
starting from the first year of drama school should be 
recommended. 
 

V. CONCLUSION 
 

We observed a high prevalence of vocal problems 
during the first year of attendance in professional 
drama schools, with a reduced self-awareness of 
healthy vocal use. Voice assessment and education 

should start at the beginning of the theater school to 
prevent vocal damage and acquire healthy voice 
conditions. 
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Abstract: Since 2016, the Laboratory of Music 
acoustics and Technology (LabMAT) at the 
Department of Music Studies, NKUA has carried 
various research and projects on the acoustic 
analysis of the singing voice applied in 
computational acoustic musicology as also in the 
fields of vocal performance, digital creation, and 
pedagogy through the development of new 
technologies related to room acoustics. This studio 
report presents the research carried on the analysis 
of the Byzantine singing, the Cretan singing 
idiomatic technique, the somatosensory education 
of singers through a multimodal system, the 
phonological aspects of singing in different 
languages, the education of choral singing using XR 
technologies, and the ASMA project. 
Keywords:  singing voice, vocal performance, choral 
singing, XR technology, vocal pedagogy. 

 
I. ACOUSTIC ANALYSIS OF THE SINGING 
VOICE IN SYSTEMATIC MUSICOLOGY: 
EXPLORING DIFFERENT SINGING STYLES 
THROUGH PRAAT  

 
The richness of the different singing styles that exist 

in the Greek music heritage has led us to better 
understand the voice in different singing performance 
practices, having as a starting point musicological 
problems that remain to be solved. In order to structure 
the common conception of the elements of historical 
musical reconstruction, it is necessary to understand 
the acoustic cues of different signing styles that exist 
mostly in the Greek Territory, or even to reconstruct 
lost models of Prosody used in drama performance.  

In these preliminary studies we analyze the 
performance acoustic parameters of experts in singing, 
in order to compose a database with the melodic 
contours, ornamentation, timber quality (formants), 
and voice positioning, and to explore the 
micromelismatic characteristics of the Greek singing 
voice.  

A. Analysis of the Prosodic style in ancient Greek 
tragic poetry 
 

From an historical point of view, we have been 
interested in listening to the reconstructed ancient 
Greek prosody in tragic poetry by analyzing different 
recitation of experts in order to understand the 
intonation, rhyme, and articulation/phonological 
techniques which are believed to work in the Erasmian 
context. [18] 
 
B. Exploring the performance modes of Byzantine 
Chant 

 
Following this historical there have also been studies 

on the singing performance style in Byzantine 
hymnology, by examining the microtonality system in 
different modes (systaltikon, diastaltikon, 
isychastikon). This work is realized through data 
extraction from extended measurements and recordings 
of Byzantine chant. [16] 
 
C. Exploring Cretan singing 

 
The particularities of Cretan singing have been 

approached through computational ethnomusicology 
methods, focusing on the analysis of the idiomatic 
singing style of the Cretan rizitiko song, by analyzing 
the vocal characteristics of various singers through 
Praat and formant tuning. [15][14] 
 
II. MUSIC TECHNOLOGY FOR THE VOCAL 
PEDAGOGY: FROM ELEMENTARY SCHOOL TO 
THE OPERA SINGER 
 

The development for digital technologies 
assisting/supporting vocal pedagogy of lyrical singers 
but also young children has been a focal research point 
for LabMAT over the past ten years. This work has 
been realized through extended singing voice 
recordings, the exploration of visual feedback, 
visualization technologies, and interactive 
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technologies, as a means of assessment helping users 
better understand pitch accuracy, timber quality, and 
intonation, in order to improve under the informed 
guidance of their teachers.  

 
A. Analytical approaches for the pedagogy and 
performance of classical singers 

 
Research is being carried on the development of a 

prototype system which lead to a multifaceted 
approach to lyrical singing pedagogy, through the 
collection and analysis of biofeedback from lyrical 
singers (respiration, vocal cords, positioning of the 
vocal cavity and articulation) through the use of 
different somatosensory singing technologies  

The somatosensory pedagogy of the voice of lyrical 
singers concerns with a newly designed multi-sensor 
recording prototype for operatic singing which 
employs sensors that record acoustic and 
electroglottographic data, breathing kinetic actions, and 
data regarding pertinent postural and body movement 
behavior. It was recently utilized for the recording of 
28 operatic singers in a controlled experiment setup. 
[3][4][5] 

Research is also being carried on the phonological 
analysis of the lyrical singing voice in different 
registers and different languages. Currently, the focus 
lies on examines the degree to which the substantial 
knowledge of a foreign language (French) can assist a 
Greek-speaking classical singer in performing 
authentically in it. [13][10] 
 
B. Developing visual feedback technologies for the 
vocal pedagogy in primary education 

 
We have also developed different techniques for 

vocal pedagogy to young students in primary school 
through the ASMA project. ASMA (Assistance for 
students in Singing and Music Aesthetics) was a 
nationally funded research project which proposed 
through a theoretical/practical substantiation and 
development interactive applications, the support of 
singing instruction to elementary school music 
teachers, using applied scientific approaches and 
digital tools of visual feedback. ASMA also proposed 
solutions to problems related to the signing voice 
quality (timber breathiness, nasality) as also singing 
skills of primary education students.  

Teaching singing in primary school is important to 
be seen through the lens of voice applied science and 
technology in order to help students understand and 
control better the mechanisms of their voice, improve 
their performance, correct their errors, and better 
express themselves in different singing styles. The 
main outcomes of ASMA include an interactive voice 

guide with exercises, and tools that improve timbre, 
pitch accuracy, tempo, and other vocal qualities.[1] [2] 

 
III. DEVELOPING CREATIVE TECHNOLOGIES 

FOR EXTENDED VOCALITY IN ANCIENT 
GREEK DRAMA 

 
The field of interactive technologies in the 

performing arts is increasingly drawing attention, both 
from the perspective of directors and the performers.  
When thinking of interactive /creative technology 
research input on vocal pedagogy, questions like, how 
can new technologies provide tools to increase the 
expressiveness of the voice or how can new 
technologies assist performers improvise and 
dynamically change the final outcome, arise. 
 
A. Drama tools 

 
Under this scope, LabMAT has been concerned with 

the development of interactive tools used in the context 
of ancient Greek Drama and Prosodic recitation. The 
designed Drama tools are based on the rules of Prosody 
and on the theories of ancient Greek music. Thus, they 
transform individual elements of the ancient Greek 
language and transposed ancient music theories, such 
as the curve of “logodes melos” of Aristoxenus, into an 
interactive process.[17] 
 
B. Kinesthesis tool 

 
Kinestisia presents a novel human-centered gestural 

system for vocal improvisation in drama, 
“Kinesthesis”, to be used in new opera and musical 
theatre, and redraws the relationship between music 
composition, gesture, and programming. The system 
takes advantage of multimodal interaction techniques 
through the invisible interface (signal processing), 
which examine the use of electroacoustic techniques in 
the human voice. It explores the use of live or 
recorded, digitally processed voice as a sound source 
for the development of music cues for playback 
through a multi-channel speaker system. [12] 

 
IV. ACOUSTIC STUDY OF THE SINGING 

VOICE RELATED TO ROOM ACOUSTICS AND 
EXTENDED REALITY 

 
The importance of room acoustics on accurate vocal 

performance simulations, the impact of the acoustic 
conditions on a singer’s (amateur or professional) 
performance, as well as the possibility of leveraging 
from extended reality technology educational tools for 
vocal training are also of interest to LabMAT. On that 
end there has been extensive research conducted on the 
directivity characteristics and vocal projection qualities 
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of the Greek singing voice, as well as on the 
development of immersive, individualized, acoustically 
accurate applications supporting vocal training.  
 
A. Analytical examination of the spherical directivity 
characteristics and formant analysis of the Greek 
singing voice 

 
This work is part of a larger study investigating the 

sound projection and directivity characteristics of a 
wide variety of traditional Greek musical instruments 
and professional singers, performing in various 
common Greek music genres and in realistic 
performance scenarios, i.e., in places where musicians 
would be expected to perform and/or be recorded. 
Vocal directivity and projection analysis is based on 
data collected from professional and amateur singers as 
well as children in various singing styles (classical, 
byzantine, modern) in the Greek language. Unlike 
previous works focusing mainly on the horizontal 
plane, this study reports results on four elevation 
angles (+90°, +30°, 0°, and -30°), captured using a 29 
semi-spherical microphone array. The collected data 
consists of short song excerpts and vowel sounds at 
different pitches. 

 
B. Studying the impact of room acoustic conditions on 
the singers’ performance quality, using immersive 
audio and extended reality (XR) techniques.  

 
The broader goal of this work is to understand the 

impact of on-stage acoustic impression on the 
performers’ musicality and performance quality. On-
stage acoustic conditions vary among performance 
spaces, and, more often than not, between the latter and 
rehearsal spaces. As a result, musicians develop certain 
strategies to overcome difficulties arising during a 
performance due to the said acoustic mismatches.  
Virtual and Augmented reality technology has been 
suggested as a means for studying the effects of room 
acoustics and on-stage acoustic impressions on one’s 
performance, and as a tool for helping performers 
adapt to the acoustic conditions of a performance hall 
without being physically present in it. Stemming from 
this work, LabMAT is focusing on the development 
and assessment of a tool aiming to virtually place users 
in various spots within a virtual choir on a virtual 
stage, by augmenting audio recordings with auditory 
spatialization and room-acoustic cues. 
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Abstract:  Phonatory quality of consonant voicing is
compared  to  that  of  the  surronding  vowels  (i.e.
VCV  context)  using  voice  quality  parameters
(VQPs). The parameters are based on the decay rate

of the short term spectrum. The results indicate that
(i) the  analysis  procedure  is  also  appropriate  to
analyze  voiced  consonant  segments  and that  (ii)  the
direction of the VQP vector changes about 15 degrees
when the  phonatory quality  stays  the  same  as  for
consonant surrounding vowels. E.g. phonatory quality
of the nasal consonant /n/ in comparison to that of the
vowel  /a/.  Statistical  analysis  shows  no  significant
change in the spectral  gradient VQPs. However,  the
relative  bandwidth  of  the  first  formant  VQP  IC
changes significantly. Leaving out IC from the VQP
vector  definition  only  slightly  reduces  some  of  the
angles by one degree.

Keywords:   Voice  quality  parameters,  phonatory
quality of consonant voicing and vowels

I. INTRODUCTION

Voice quality is a suprasegmental property of voiced

sounds, usually attributed to prosody beside intensity

and fundamental frequency (pitch). A neutral, relaxed

voice  is  named  modal.  Deviations  from  that  may

contain the psycho-acoustic dimensions like roughness,

breathyness,  hoarseness.  This  holds  for  healthy  and

pathological  voice  qualities.  These  dimensions  are

usually  rated by  experienced  listeners  using  ordinal

rating  scale  protocols  with four  levels  of  expression

(none,  low,  mid,  high).  Voice  quality  parameters

(VQPs) are sets of numeric quantities, computed from

the speech recording by signal processing. An aim of

many works is to predict the perceptual assignments by

instrumental  analytical  results  (i.e.  VQPs) or  at  least

find  reasonable  correlates.  In  contrast  to  that,  the

present study extends a method that was developed for

vowels, to consonants. In particular, whether and how

the parameters change between the consonant and the

two  adjacent  vowels.  This  is  a  pilot study  with

recordings from a single male speaker and it focuses on

modal phonatory quality of the nasal consonant /n/ and

the vowel /a/.

II. METHODS

VQPs  have  been  defined  on  the  sound  pressure

signal  [1]  or  on the electroglottogram (EGG) [2],  in

time domain [2] or in frequency domain [1]. Frequency

domain VQPs are used here. 

A. Voice Quality Parameters

The voice quality parameters (VQP) were originally

defined  in  [1]  These  voice  quality  parameters  have

been shown to be noise robust [3]. The version used

here modifies the amplitude ratios (decibel differences,

e.g.  H1-A1)  to  spectral  decay  rates  (decibels  per

octave) by division by the frequency ratios (ld F1p / ld

F0). F1p denotes the frequency of the harmonic peak

nearest  to  F1.  This  modification  was  introduced  to

make the voice quality parameters less dependent of F0

changes. It is indicated by a G (for gradient) appended

to the original parameter name.

The  harmonic  peak  amplitudes  used  in  the  voice

quality parameter definitions include inverse filtering

to  reduce  the  influence  of  voice  quality,  since  a

microphone  in  front  of  the  speaker  is  used.  Stevens

compensated only for the most prominent neighboring

formants, and did not include their bandwidths. Here

linear  prediction  estimates  of  the  first  four  formants

including their bandwidths are used to compensate for

articulation  by  subtracting  the  transfer  function

estimate from all used spectral peak amplitudes. This is

indicated by the trailing i (for inverse filtered) in the

parameter names.

Tab. 1: Voice Quality Parameters Names

OQGi Open Quotient (H1i-H2i,T0Gi)

GOGi Glottal Opening (T1Gi)

SKGi Skewness (T2Gi)

RCGi Rate of Closure (T3Gi)

T4Gi Triangle to the 4th formant

IC Incompleteness of Closure (B1/F1)
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Tab. 1 shows the abbreviations, the classical names

of the voice quality parameters used, and some hints.

These classical names arouse interest that can hardly

be  verified  when a  large  number  of  speakers  (some

hundred) is analyzed. More neutral names based on the

geometric construction of the gradient parameters are

proposed in the third column. OQGi (T0Gi) is special

because  it  involves  the  first  two harmonics,  that  are

always  separated  by  an  octave.  Hence,  the  decay

triangle matches the original definition.

Incompleteness  of  Closure  IC is  not  defined by a

spectral  decay  triangle  but  by  the  normalized

bandwidth of the first formant. The amount of glottal

opening  introduces  energy  loss  of  the  first  formant

oscillation  to  the  subglottal  system and increases  its

bandwidth.

B. Vector of Voice Quality Parameters, Angle

To  enable  angle  measurements  between  averaged

voice quality parameters of sound segments, the vector

of voice quality parameters v is defined in (1).

v = (OQGi, GOGi, SKGi, RCGi, T4Gi, IC)* (1)

All  vector  coordinates  are  normalized  quantities

and  therefore  dimensionless.  Since  the  aim  of  this

vector  is  averaging  and  angle  measurements  an

euclidean metric is used. The angle a12 between the

vectors v1 and v2 results from (2).

a12=180/pi*acos( v1/|v1| * v2/|v2| ) (2)

The *  in  the  argument  of  the  arcus  cosine  is  an

inner  product  and  |v|  is  the  length  (2-norm)  of  the

vector v.

C. Speech Analysis

The computation of the VQP is automatized with

ESPS programs and PERL scripts [4]

Since  the  VQPs  are  based  on  harmonic  peak

amplitudes and their frequencies, the procedure starts

with a short time spectrum using a window that is long

enough to effectively contain two or more fundamental

periods of the voiced segments (i.e. a 25.6 millisecond

long hamming window using fft).

A  fundamental  frequency  estimate,  and  the

probability  of  voicing  is  obtained  by  get_f0.

By means of  formant,  linear prediction is used

for estimates of the first  4 formants,  i.e.  their  center

frequencies and bandwidths.

D. Inverse Filtering

The  influence  (i.e.  the  magnitude  of  the  transfer

function) of a single formant with center frequency F

and bandwidth B on the amplitude of the source signal

at frequency f is modeled by (3), Fant, Stevens.

Formant(f,F,B)=

(F^2+(B/2)^2)/sqrt(

((f-F)^2+(B/2)^2)*((f+F)^2+(B/2)^2)))

(3)

The inverse filtering on a harmonic peak measured

at frequency f (usually near an integer multiple of F0)

in decibels H is done by subtracting the result of (3)

converted to decibels for all 4 formants.

E. Speech Material

The  CV-syllable

repetitions  /’tatata/,  /’dadada/,  /’nanana/  utterances

were selected to be recorded with rough,  modal and

breathy  voice  quality  to  study  the  VQPs.  Only  the

production  one  modal  /’nanana/  is  analyzed  in  this

pilot study. Of particular interest was (i) whether the

VQPs  are  applicable  in  the  voiced  segments  of  the

consonant  and  (ii)  whether  they  differ  from  the

surrounding vowel segments. The vowel was restricted

to  a  because  our  previous  studies  showed  that  the

VQPs change significantly with the vowel quality and

it  is  not  clear  whether this  is  an analysis  artefact  or

caused by a change of the glottal pressure and volume

velocity waveforms.

F. Speech Recordings

The  recordings  were  made  in  the  sound  treated

room  of  the  IMS  (Institut  für  Maschinelle

Sprachverarbeitung).  The  sound  pressure  signal  was

recorded with an omnidirectional capacitor microphone

AKG-CK62-ULS.  The  microphone  was  located  in

front  of  the  speaker  in  a  distance  of  about  40cm

slightly out of the speaking direction. This distant setup

without popkiller was chosen because the speaker held

additional recording equipment, a rothenberg mask at

his  face and an EGG and accelleration sensor at  his

neck.
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G. Statistical Analysis

The data were analyzed using SPSS version 29. For

each  of  the  parameters  as  a  dependent  variable  a

MANOVA  and/or  a  nonparametric  test  (Mann-

Whitney-U  tests,  depending  on  normal  distribution)

were carried out for the effects of conditions vowel /a/

and nasal /n/.

III. RESULTS

A. Sound Pressure Signal

Fig.  1  shows  the  microphone  signal  (sound

pressure)  of  the  /’nanana/  recording.  The  sound

segments  in  milliseconds  are:  n1=30-70,  a1=80-180,

n2=190-290, a2=300-380, n3=390-520, a3=530-730

Fig. 1: Sound pressure of /’nanana/

B. VQP Contours

The  analysis  procedure  yields  a  new  set  of

estimates every 10 milliseconds. Fig. 2 shows all VQPs

for the /’nanana/ utterance. 

Fig. 2: VQPs of /’nanana/

None  of  the VQPs  is  unchanged  along  the

utterance. 

C. Angles

The  observation  that  SKGi,  RCGi,  amd T4Gi  are

smaller during some n-s than in their surrounding a-s,

supports  a  closer  look  to  the  direction  of  the  VQP

vectors.

Tab.  2: Angles between the averaged voice quality

vectors of the six sounds of /’nanana/ in degrees.

Tab.  2  shows  the  angles  between  all  sounds

of /’nanana/. The VQP direction of the first vowel /a1/

differs strongest from that of all subsequent sounds by

26 degrees and more. The vowels /a2/ and /a3/ are only

7  degrees  apart.  All  three  /n/  directions  are  closer

together. The /n/-/a/ changes with 29, 12, 18 degrees

are comparable to that at the CV-CV boundaries /a/-/n/

27, 14. The largest angle is between the first and last

vowel /a1/ and /a3/. 

Tab.  3: Angles between the averaged voice quality

vectors without IC of the six sounds of /’nanana/  in

degrees.

The  statistics  in  the  next  section  D  reveals  no

significant  difference  of  the  spectral  gradient  VQPs

between nasals and vowels, but significant difference

of IC. The obvious question: do the angles shrink, if IC

is left out in the VQP vector definition? The modified

vector of voice quality parameters vd is defined in (4).

vd = (OQGi, GOGi, SKGi, RCGi, T4Gi)* (4)

Tab. 3 shows that only few of the angles shrink by

one degree. Those angles, that differ from Tab. 2 are
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displayed  boldface.  A  closer  look  reveals  that  the

first /na/ gets now a little closer to the subsequent two.

D. Statistics

Only  for  the  parameter  IC  (incompleteness  of

closure)  a  significant  difference  between  vowel  and

nasal productions can be found. The parameter refers

to the bandwidth of the first formant. It is significantly

larger for the nasal /n/ than for the vowel /a/ (p<0.01).

A physiological explanation for this result can be seen

in  the  fact,  that  adding  the  nasal  tract  as  a  second

resonant  cavity  increases  the  bandwidth  of  the  first

formant. The bandwidth reflects a lower or higher loss

of  acoustic  energy  depending  on  whether  the  nasal

tract is added or not. A change of subglottal pressure

during the nasal may also influence the glottal opening

and  hence,  the  IC.  In  particular,  a  higher  loss  of

acoustic  energy  at  the  glottal  level  increases  the

banwidth of the first formant.

 

IV. DISCUSSION

The VQP space currently lacks cartographic maps.

Previous  studies  compared  utterances  of  different

phonation  qualities  or  pathologies  and  identified

significantly differing sets of VQPs. But a mapping of

a  given  VQP  vector  to  phonation  qualities  is  not

available.

One reason for that situation is the lack of manually

and  continuously  phonation  quality  labeled  speech

recordings – not even to wish for corpora. 

The study is planned to be continued by labeling

and  analyzing  all  the  recorded  utterances.  This  will

show whether the first observations reported here hold.

Then,  the  extension  to  rough  and  breathy  voice

quality will be tried. 

Applying the analysis to the nasal microphone of

the rothenberg mask may show whether the VQPs are

appplicable there. 

The dadada recordings add a stop closure, but /d/

may  contain  some  sonorant  frames  of  sufficient

duration to allow the VQPs to be computed. Here the

comparison  of  the  VQPs  between  the  mouth

microphone  of  the  rothenberg  mask  and  the

microphone in front of the speaker may reveal a further

aspect of robustness of the VQPs.

 

V. CONCLUSION

The  spectral  gradient  VQPs  do  not  change

significantly between nasal and vowel segments in the

sound  pressure  recording  of  /’nanana/  that  was

analyzed in this pilot study. However, the VQP IC, the

relative  bandwidth  of  the  first  formant,  changes

significantly.  Leaving  out  IC  from  the  VQP  vector

definition only slightly reduces the angles between the

sounds of the first /na/ to the subsequent ones by one

degree.
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Abstract: Crying in babies is a primary 
communication function, governed directly by the 
brain; any alteration of the normal functioning of 
the babies’ body is reflected in the cry. Based on the 
information carried by the cry’s wave, the infant’s 
physical state can be determined; and even 
pathologies in very early stages of life detected. To 
perform the identification of pathologies, a Deep 
learning algorithm was developed and applied. The 
input features are presented as spectrogram and 
Mel Frequency Cepstral Coefficient (MFCC) image 
representations.  The combination of the deep 
learning model with the image representation of the 
acoustic features brings a very high classification 
accuracy around 95%. 
Keywords:  Infant Cry, Pathologies Classification, 
Deep Learning. 

 
I. INTRODUCTION 

 
The number of researchers interested in the study of 
infant cry has exponentially increased in recent years, 
as well as the areas of interest, technological and 
medical approaches, and experimented methodologies. 
Two main things have motivated the fast growing of 
the interest in this field: one is to uncover the 
unambiguous interpretation of the rich information 
hidden in the crying wave. The second is to develop 
robust intelligent recognition systems as the main 
components of supporting tools to help medical 
specialists make accurate and objective diagnostics 
based on the crying waves representations.  
It is well known that during the early days of life the 
Central Nervous System (CNS) is in charge of all vital 
functions. Among those functions, one that is even 
essential for survival is infant cry. Given its reliance on 
the CNS, any changes in the baby's physical and 
emotional state will manifest in the form of alterations 
in the crying pattern. If the needed knowledge or the 
right technological tools are available, the information 
carried by the crying wave can be extracted for its 
decoding and interpretation. In general, the automatic 
infant cry analysis is focused on determining either the 
cause or the type of crying. When attempting to 
determine the cause of a baby's cry, the focus is on 
identifying the underlying reason, whereas determining 

the type of cry aims to distinguish between normal and 
pathological crying. In this context, innovative 
intelligent methodologies have emerged to not only 
recognize pathological cries but also classify the 
specific conditions affecting the baby. The present 
work is driven by this objective. The analysis of 
newborn crying, conducted through spectrogram 
observations, has played a crucial role in defining its 
key characteristics. Starting from the seminal studies of 
Michelsson and Wasz-Hockert [1] on healthy infants 
and those with asphyxia in the 1960s, advancements 
have been made in automated methods for cry analysis. 
Traditionally, crying can be examined from two 
perspectives: quantitative analysis and qualitative 
analysis. 
 
1.1. Related Works 
In earlier studies focused on acoustical analysis of 
infant crying, significant distinctions were observed 
among different cry types, such as healthy cries, cries 
of pain, and pathological cries. These distinctions were 
made possible through the utilization of classification 
methodologies based on Self-Organizing Maps [2], 
neural networks (NN) [3], and spectral analysis [4]. In 
a particular study conducted by Petroni, Neural 
Networks [5] were employed to differentiate between 
pain and no-pain crying. Cano directed several works 
devoted to the extraction and automatic classification 
of acoustic characteristics of infant cry. In a notable 
study conducted in 1999, Cano demonstrated the 
effectiveness of Kohonen’s Self-Organizing Maps in 
classifying Infant Cry Units [6]. More recently, in [7] 
our team reported the classification of cry samples 
from deaf and normal babies with feed-forward neural 
networks. In 2004 Cano and his group further 
investigate the presence of CNS diseases, employing a 
radial basis network (RBN) [8]. Additionally, in [9] we 
showcased the implementation of a Fuzzy Relational 
Neural Network (FRNN) for Detecting Pathologies 
through Infant Cry Recognition. 
In the connectionist approach (ANN), pattern 
classification is done with a multi-layer neural 
network. A weight is assigned to every link between 
neurons in contiguous layers. In the input layer, each 
neuron receives one of the features present in the input 
pattern vectors. Each neuron in the output layer 
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corresponds to each speech unit class (word or sub-
word). The neural network associates input patterns to 
output classes by modeling the relationship between 
the two pattern sets. The pattern is estimated or learned 
by the network with a representative sample of input 
and output patterns [10]. A very important stage in the 
search for more robust classification models was the 
development of a new approach that has been known 
as deep learning. Deep neural networks are powerful 
machine learning models with successive layers of 
nonlinear processing to extract features from the data 
[11].   
 
1.2. The Baby Chillanto Data Base 
The Baby Chillanto Data Base is a collection of 
Mexican samples recorded by medical doctors who 
were instructed to capture the crying sounds of infants. 
After each recording, the doctors were required to 
capture the cause or type of crying, enabling us to 
accurately identify and label them within the digital 
database. The data base comprises cry samples 
collected from 98 babies, including six babies suffering 
from asphyxia, six with deafness, and the rest from 
normal babies. For cases of deafness and normal cry  
multiple samples were recorded from the same baby 
during different crying episodes, resulting in a total of 
53 complete samples from deaf infants. The recordings 
were obtained from babies aged between 2 days up to 
six months. The duration of these recordings ranged 
from 7 seconds to 3 and a half minutes. It is important 
to note that cry samples associated with full hunger and 
full pain were classified within the Normal Cry 
category. The recordings were conducted in a 
controlled environment, specifically in a closed room, 
with the only source of contamination being the noise 
generated by the air conditioning system. Next, the 
original recordings were segmented into one second 
segments, each of which is taken as a training sample. 
It is worth to mention that this database is nowadays 
the standard infant cry database more used as a 
reference in the worls. 
 

II. METHODS 
 

The crying recordings underwent a pre-processing 
process to ensure the consistency of the data and 
facilitate efficient processing. Plus, our main goal was 
to avoid the need of additional tools beyond Python 
libraries. To pre-process the data, the Librosa library 
was used, which is used for audio processing. This 
library was developed by Brian McFee [12]. The tools 
from this library allowed us to read the audio data and 
convert them into a NumPy data structure. When 
converting audio data into vectors, the default process 
involved converting the sample rate to 22.05 KHz, 
normalizing the data to a bit depth that ranges from -1 

to 1, and flattening the channels into a single (mono) 
channel. 

 
2.1. Feature Extraction 
The next step involved extracting the necessary 

features for model training. To achieve this, 
spectrograms were created as visual representations of 
each audio sample. This allows us to derive features 
for classification. Thus, note that the model was trained 
not on the audio features themselves, but on the visual 
representations of the spectrograms treated as images. 
Spectrograms are a valuable technique used to 
visualize the frequency spectrum of a sound temporal 
variations. Furthermore, another representation similar 
to spectrograms, known as Mel Frequency Cepstral 
Coefficients (MFCC), was extracted, which have been 
widely used in crying analysis. The difference between 
these two representations is that a spectrogram uses a 
linear spaced frequency scale (ensuring even frequency 
distribution), while MFCC use a quasi-logarithmic 
spaced frequency scale, which is more similar to how 
the human auditory system perceives and processes 
sounds. For each audio file in the data set, MFCC 
features are extracted and converted into images, 
which are then stored alongside their respective class 
labels in an array. 

 
2.2. Deep Learning Model 
For the classification process, the subsequent step 

involved constructing and training a deep learning 
neural network using the image sets. The implemented 
neural network is a Convolutional Neural Network 
(CNN), renowned for its proficiency in image 
classification tasks. CNN models excel at extracting 
features and performing classification within their 
architecture, enabling them to effectively learn the 
shapes and spatial patterns inherent in the input 
images. The model was sequentially built using the 
Keras library, which is based on TensorFlow [13]. It 
comprises four convolutional layers (Conv2D) and one 
dense output layer. The output layer has 5 nodes, 
corresponding to five infant cry classes: asphyxia, 
deafness, hunger, normal and pain.  

Each convolutional layer has filters that extract 
features from the sound wave representations captured 
in the images. The first layer has 16 filters, followed by 
32 in the second layer, 64 in the third, and 128 in the 
fourth. These extracted features play a pivotal role in 
classifying the different types of crying. To aid in 
feature selection, each convolutional layer is 
accompanied by a maximum pooling layer, which 
computes the maximum value within each “patch” of 
the feature map (sections extracted by each filter). 
Additionally, a dropout layer is included after each 
convolutional layer. This layer introduces noise during 
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training, serving as a regularization technique to 
mitigate the risk of overtraining or overfitting the 
model. Figure 1 illustrates the proposed CNN 
architecture.  

Figure 1. Convolutional Neural Network 
architecture. 

 
III. RESULTS 

 
To assess the effectiveness of our model, we used 

various evaluation parameters, including a categorical 
cross-entropy loss function, and an accuracy metric 
(i.e., MSE) to gauge network performance based on 
validation data. To optimize the model we used Adam, 
which is a stochastic optimization method.  

The model underwent training for 70 epochs, with 
the classification accuracy being verified and measured 
at the end of each epoch. Only if the model 
demonstrated improvement compared to the previous 
epoch, it automatically saved. To gain further insights, 
we used confusion matrices to identify any troubles 
encountered by the final model in distinguishing 
between the expected classes and examine the nature 
of these misclassifications. 

 

 
 

Figure 2. Confusion matrix of the Train Set (left) 
and of the Test Set (right) 

 
The initial untrained model exhibited a loss of 6.35 

and a validation accuracy of 16.52%. After training, 
the model’s loss significantly improved to 0.2271, 
accompanied by a validation accuracy of 95.31%. 
Analyzing the confusion matrix for the Test Set, it is 
evident that the model demonstrated generalization 

across all five classes.  Notably, it achieved a 100% 
classification accuracy for the asphyxia and deafness 
classes, 94% for the hunger class, and 88% for the 
normal class. However, the pain class exhibited a 
lower classification percentage due to the model 
occasionally confusing it with normal crying. This can 
be attributed to the fact that the pain cry was emitted 
by babies who are otherwise normal and do not exhibit 
any specific pathologies; they are simply experiencing 
a painful episode. 

  
IV. CONCLUSION 

 
We have successfully demonstrated the feasibility of 

automating the classification of infant cry. And that, 
once a robust classification system is developed, the 
results can potentially assist pediatricians, nurses, or 
general doctors in identifying certain pathologies, such 
as deafness or asphyxia, in recently born babies. A 
system like the one described here, is not intended to 
substitute the medical specialist; to the contrary, it is 
thought as a non-invasive tool to warn doctors of 
possible malfunctions or pathologies present in babies. 
By providing timely warnings regarding such 
pathologies, doctors can pay special attention on 
suspicious cases, in order to detect the extent of a 
pathology as early as possible. This early diagnosis 
facilitates the application of appropriate therapies, 
preventing learning delays, future disabilities, and even 
potential mortality. We also showed that CNN is a 
reliable classification model, which offers very 
acceptable performance results. Compared to other 
classifiers we have tested; a CNN offers some 
advantages including the ability to directly process the 
spectrograms of the recordings without having to 
extract additional acoustic features. 
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Abstract:  Vocal fatigue in university teachers is an

important  problem which has been focused on in

both  acoustic  and  medical  studies.  It  results  in

perceptual and acoustic voice changes and can lead

to  serious  pathological  conditions.  The  shift  to

online   synchronous  teaching due  to  the  onset  of

COVID-19  pandemic  in  2020 brought  a  new

challenge causing the significant  increase  in  vocal

fatigue.  The  goal  of  this  study  is  to   analyse  the

impact of different teaching modes on vocal fatigue

in university professors. We compared acoustic and

clinical data obtained  during pre-pandemic years

(classroom  teaching  mode);  pandemic  semesters

2020-2021  (online  synchronous  teaching);  post-

pandemic semesters 2021-2022 (a hybrid teaching 

mode);  post-pandemic  semesters  2022-2023

(classroom teaching mode).

Keywords:  vocal fatigue, teacher’s voice,  voice load.

online synchronous teaching, COVID-19 pandemic.

I. INTRODUCTION

Vocal fatigue in voice professionals is an important

multifaceted issue which has been focused on in many

studies  [1-4],  [6-17].  It  has  clinical  symptoms

(associated with different  types of  dysphonia)  shown

by laryngoscopy and self-reporting complaints such as

a  sense  of  increased  vocal  effort  and  a sensation  of

laryngeal  and pharyngeal  constriction. There are also

physiological and pscychological symptoms which can

appear as a result of vocal overloading. Another aspect

of  the  phenomenon  is  an  acoustic  one.  The  vocal

fatigue  can  be  manifested  in  the  variation  of

fundamental frequency. 

We performed acoustic and clinical assesments as

well  as  psychometric  evaluation  of  self-report

questionnaires to compare the symptoms and degree of

vocal fatigue in the professors of Saint Petersburg State

university  (pronunciation  teachers  and  lecturers)

working in different types of teaching modes. 

We compared the data obtained during 

1) pre-pandemic years (classroom teaching mode);

2) pandemic  semesters   2020-2021  (online

synchronous teaching);

3) post-pandemic semesters 2021-2022 (a mixture of

distant and classroom activities); 

4) post-pandemic  semesters  2022-2023  (classroom

teaching mode applied  only).

The goal of this paper was to compare and describe

the impact of each type of teaching modes on the level

of the vocal fatigue in university professors.

II. METHODS

To  obtain  the  data  during  the  post-pandemic

semesters, we sticked to the protocol used in the  pre-

pandemic and pandemic vocal fatigue studies  [6-10].

The experimental design, tasks and recording material

were kept, although  the set of subjects and recording

conditions differed.

In  the  pre-pandemic  studies  20  male  and  female

subjects  were  recorded.  We  had  involved

pronunciation teachers employed at the department of

Phonetics  (Saint  Petersburg University)  with average

work experience of 7 years. The recordings were made

in the recording studio at the Department of Phonetics,

Saint-Petersburg  State  University.  Multi-channel

recording system Motu Traveler,  capacitomicrophone

AKG  and  WaveLab  program  were  used.  The

recordings had a sample rate of 44100 Hz and a bit rate

of 16 bits.

However,  in pandemic and post-pandemic studies

10 female teachers currently employed at the period at

the  Department  of  Phonetics  and  the  Department  of

English Philology and Cultural studies were involved.

They performed different  types  of  teaching activities

(i.e.: lecturing on linguistics;  running practical English

classes,  and  pronunciation  coaching).  The  minimum

workload a day was 3 hours while the maximum was 6

hours.  
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Due  to  Covid-19  restrictions,  experimental

recordings at the studio were not availble. The teachers

were instructed to record their voices before and after

teaching  activity  using  their  mobile  phones. 

Nevertheless,  smart  phone   microphones are

assessed  in  terms  of  the reliability of  acoustic  voice

parameters in a number of relevant studies.  It is shown

than  measures  obtained  from voice  recordings  using

regular  microphones  in  a  sound-proof  room  and

smartphone  microphones  have  no  statistically

significant difference. [17] In order to obtain reliable

acoustic  data  for  subsequent  acoustic  analysis,  the

participants  were  provided  with  a  set  of  recording

guidelines. During the post-pandemic semesters  2022-

2023 the recordings were made in the recording studio

at the Department of Phonetics again.

At  the moment  of  the  experiments  in  each  study

(pre-pandemic/pandemic/post-pandemic) participants

did not  report  any  chronic  voice  pathologies.  All  of

them had been undergoing regular laryngeal exams. 

The  subjects  read  a  four  minute  phonetically

representative  text  in  Russian  (their  native  tongue).

They were asked to read at  habitual  loudness before

classes  in  the  morning.  After  continuous

classroom/online teaching during the working day they

were asked to record the same text.

In all the studies the WAM questionnaire was used

to  evaluate  psychoemotional  state  of  the  teachers

before and after their work. WAM (wellbeing, activity,

mood) is  used to assess the mental  state of subjects,

their  psychoemotional  response  to  loading.  [5]  The

WAM questionnaire  has  the  form of  the  scale  with

indices  (3 2 1 0 1 2 3)  and 30 pairs  of  words with

opposite  meaning  (active  -  passive,  strong-weak,

cheerful-sad).  Besides,  each  participant  wrote  a

detailed  report  describing  their  self-perception  of

voice, mood, physical condition, type of voice activity,

working  conditions,  and  platforms  used  for  online

synchronous teaching.

All the participants had the laryngoscopy of vocal

cords done regularly during the period of 2021-2023.

III. RESULTS

A. Acoustic results

The main acoustic parameter which tended to vary

were  mean  F0  values.  Besides,  the  ratio  of

laryngealization  passages  to  the whole text  was  also

different. 

The values of these parameters in non-fatigued and

fatigued female speech in pre-pandemic, pandemic and

post-pandemic  recordings  are  presented  in  Table1

below.

Table 1. Mean F0 variation (female voice)

Female

subjects

F0, 

Hz
Pitch

max, Hz

Laryngaliz

ation, %

Classroom teaching mode

(pre-pandemic)

 N/F 209 351 1,5

F 212 445 1,2

Online synchronous teaching

(pandemic)

 N/F 239 365 1,8

F 251 468 2,3

Hybrid mode of teaching

(post-pandemic)

 N/F 217 360 1,4

F 222 452 1,9

Classroom teaching mode

(post-pandemic)

 N/F 205 348 1,3

F 208 447 1,5

F0  increase  is  noticeable  in  the  fatigued  speech

across  all  types  of  the  recordings,  but  the  pandemic

maximum  pitch  value  tends  to  be  the  highest.

Meanwhile, the  post-pandemic values appear to have

returned to the pre-pandemic ones. 

The mean ratio of laryngealized speech segments to

the  whole  text  is  the  biggest  during  the  pandemic

period  and  also  has reduced  in  the  post-pandemic

material

Laryngealization (occurs typically in the end of an

utterance  before  a  pause)  which  is  marked  by

significant decrease in pitch value and pitch breaks is

associated with a creaky voice quality. This symptom

was frequently reported by the teachers during the self-

assessment  of  voice  quality.  The  mean  ration  of

laryngealized speech segments to the whole text is the

longest  during  the  pandemic  period  and  also  has

reduced in the post-pandemic material. 

A.  Psychometric  evaluation  of  self-report

questionnaires

The WAM questionnaires showed that in all types

of  the  studies   before  and  after  the  workload

Wellbeing scale  exceeded  4  points  (Table  2).  

However,  on  average,   the  after  self-assessment

showed decreased wellbeing index, but it did not fall

out  of  the  range  of  4.0  points.  According  to  the
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Activity scale the rates exceeded 4 points. The Mood

rates increased after the workload. 

In  total,  the  results  of  pre-pandemic  and  post-

pandemic  tests  look  similar,  whereas  well-being,

activity and mood rates are lower in pandemic data.  

These results are compliant with the complaints in

the self-reports presented in the pandemic period.

Table 2.The mean rates of  WAM test 

Before After

Classroom teaching mode

(pre-pandemic)

Wellbeing

5.9 (min. 5.3 – max. 5.8) 5.8 (min. 5.2 – max .6.1) 

Activity 

4.8 (min. 4.1 – max. 6.5) 5.5  (min. 5.1 – max. 6.2) 

Mood 

6.0 (min. 4.3 – max. 6.7) 6.3 (min. 5.9 – max. 6.7) 

Online synchronous teaching

(pandemic)

Wellbeing

5.5 (min. 4.3 – max. 5.8) 4.3 (min. 4 – max.5.1) 

Activity 

4.3 (min. 4.1 – max. 5.5) 5.4 (min. 4.1 – max. 6.1) 

Mood 

5.0 (min. 4.3 – max. 5.2) 5.3 (min. 4.9 – max. 6.3) 

Hybrid mode of teaching

(post-pandemic)

Wellbeing

5.8 (min. 4.9 – max. 6.7) 5.5 (min. 5.0– max. 5.9) 

Activity 

4.7 (min. 4.2– max. 6.2) 5.8 (min. 5.2 – max. 6.5) 

Mood 

5.9 (min. 4.5 – max. 6.2) 6.1 (min. 4.9 – max. 6.3) 

Classroom teaching mode

(post-pandemic)

Wellbeing

5.7 (min. 5.4 – max. 5.9) 5.9(min. 5.2 – max .6.0) 

Activity 

4.5 (min. 4.1 – max. 5.6) 5.4 (min. 4.1 – max. 6.1) 

Mood 

5.3 (min. 4.3 – max. 5.4) 5.35 (min. 4.9 – max. 6.4)

C. Clinical results

The clinical analysis showed that online synchronous

teaching mode caused the most alarming voice fatigue

symptoms.  The  self-reports  included  the  following

complaints:  hoarse  voice  quality,  creaky/fry  voice,

breathy  voice,  unsteady  pitch,  dry/scratchy  throat,

frequent  throat  clearing,  sore throat,  dry cough.  It  is

evident  that  vocal  overload,  inadequate  posture  and

continuous talking while sitting, lack of auditory and

visual  feedback/student  interaction,  technical

problems,  online  connection  failures  lead  to

psychological  stress  and  difficulties  in  voice

production.  

The  laryngoscopy  analysis  showed  hypotonic

dysphonia in several subjects. It is marked by decrease

in the density of closure of the true vocal folds, linear

and oval fissure in all parts of the range, visibility of

the  ventricles of  the  larynx,  absence  of  stroboscopic

comfort.  Besides,  one  severe  case  was  observed  in

which  voice  overloading   brought  the  pre-nodule

condition of vocal cords [10]

IV. DISCUSSION

We believe that online synchronous teaching mode

triggers excess voice use due to the necessity to use

remote microphones which leads to forced manner of

voice  production  often  resulting  in  vocal  fry/creaky

voice. 

Besides,  stress,  asthenia,  and  general  decrease  in

physical activity imposed by COVID-19 isolation were

found  to  be  additional  factors  of  the  hypotonic

dysphonia development. Fast vocal fatigue and overall

lack  of  energy  are  often  seen  as  subjective

manifestations of MTD [12], [14-16]. 

  Switching  to  hybrid  mode  of  teaching  and

returning to  entirely classroom teaching  in  the  post-

pandemic  period  along  with  developing  adaptation

mechanisms brought the relief in voice fatigue to the

educators.  No  microphone  use  and  visible  audience

follow-up  and  students'  reaction  has  had  a  positive

impact on the vocal functions which prevented possible

pathological changes in the larynx.  

The data obtained during the period of hybrid mode

of teaching demonstrated that the teachers were able to

develop  specific  voice  strategies,  which  prevented

voice fatigue.  They included reducing rate of speech,

increasing vocal pauses in connected speech, focusing

on clear articulation to avoid increasing loudness.

V. CONCLUSION

The analysis of acoustic and clinical data on vocal

fatigue  in  university  teachers  shows  that  online

synchronous teaching activity is the most challenging
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one. The most alarming symptoms of dysphonia due to

voice  overstrain  were  present  during  pandemic

semesters. However, the adaptation strategies were

developed which helped the educators to cope with the

excess voice use during the hybrid mode period.  The

return  to  the  regular  working  conditions  has  had  a

positive  effect  on  the  vocal  functions,  although  the

vocal  quality  and  the  clinical  picture  still  do  not

resemble the pre-pandemic data which may be related

to the long covid syndrome in some of the subjects. 

In the further study we plan to analyse the impact

of  long  covid  syndrome  on  vocal  endurance  in  our

subjects.
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Abstract: This study aimed to assess the reliability 
of the VoiceScreen app in measuring the Acoustic 
Voice Quality Index (AVQI) and distinguishing 
between normal and pathological voices. The study 
included 135 adult participants, consisting of 49 
individuals with normal voices and 86 patients with 
pathological voices. The "VoiceScreen" app was 
utilized on five iOS and Android smartphones to 
estimate AVQI. The AVQI values obtained from 
voice recordings using a reference studio 
microphone were compared with those obtained 
from smartphones. The accuracy of the app in 
distinguishing between normal and pathological 
voices was evaluated using receiver-operating 
characteristics. The study found a nearly perfect 
positive linear correlation (r= 0.991-0.987) between 
the AVQI results obtained from the studio 
microphone and various smartphones. The AVQI 
demonstrated an acceptable level of precision in 
distinguishing between normal and pathological 
voices, with areas under the curve (AUC) ranging 
from 0.834 to 0.862. There were no statistically 
significant differences in the AUC values obtained 
from studio microphones compared to those 
obtained from smartphones. These findings indicate 
that the "VoiceScreen" app is a reliable and robust 
tool for measuring voice quality and screening for 
normal versus pathological voices. It has the 
potential to be utilized by both patients and 
clinicians for voice assessment purposes. 

 
I. INTRODUCTION 

 
Previous studies have demonstrated the feasibility of 

using smartphone voice recordings, whether obtained 
in acoustically treated sound-proof rooms or in 
everyday environments, to estimate the Acoustic Voice 
Quality Index (AVQI) [1-2]. However, there is limited 
existing literature that provides data on AVQI 
estimation using various mobile communication 
applications [3-5]. 

The primary aim of this study was to address the 
following inquiries regarding the potential of the 
smartphone-based "VoiceScreen" application for 

AVQI estimation: (1) Are the average AVQI values 
obtained from different smartphones consistent and 
comparable? (2) Does the diagnostic accuracy of 
AVQIs estimated by various smartphones have 
relevance in distinguishing between normal and 
pathological voices? 

 
II. METHODS 

 
The study included a total of 135 adult participants, 

consisting of 58 men and 77 women. The average age 
of the participants in the study group was 42.9 years 
(standard deviation [SD] of 15.26). The subgroup of 
individuals with pathological voices comprised 86 
patients, including 42 men and 44 women, with an 
average age of 50.8 years (SD 14.3). These patients 
presented with various common laryngeal diseases 
known to cause voice disturbances, such as benign and 
malignant mass lesions on the vocal folds and 
unilateral paralysis of the vocal fold. The subgroup of 
individuals with normal voices consisted of 49 
carefully selected healthy volunteers, including 16 men 
and 33 women, with an average age of 31.69 years (SD 
9.89). For AVQI estimation, the "VoiceScreen" 
application, which was developed as a uniform-
platform-based (UPB) tool compatible with both iOS 
and Android operating systems was utilized. The 
application was installed on five different smartphones: 
iPhone Pro Max 13, iPhone SE (running on the iOS 
operating system), OnePlus 9 PRO, Samsung S22 
Ultra, and Huawei P50 Pro (running on the Android 
operating system). The AVQI calculation and its 
characteristics were performed on a server, eliminating 
the need for the user's device to have high 
computational capabilities. The AVQI measures 
obtained from voice recordings captured with a studio 
microphone (AKG Perception 220) featuring a flat 
frequency response were compared with the AVQI 
results obtained using these smartphone devices. 

 
III. RESULTS 

 
Table 1 presents the Pearson's correlation 

coefficients demonstrating almost perfect direct linear 
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correlations between the AVQI results obtained using a 
studio microphone and various smartphones. The 
coefficients ranged from 0.991 to 0.987.  

Figure 1 displays the receiver-operating 
characteristic (ROC) curves of AVQI derived from 
both studio microphone recordings and smartphone 
voice recordings. Upon visual inspection, it was 
evident that all the ROC curves exhibited a high degree 
of similarity and occupied a significant portion of the 
graph. This indicates the considerable ability of the 
AVQI to effectively differentiate between normal and 
pathological voices. 

Table 2 presents the results of the receiver-
operating characteristic (ROC) statistical analysis, 
which demonstrated a high level of precision in 
differentiating between normal and pathological voices 
using the AVQI. The analysis yielded a suggested 
threshold of AUC = 0.800, indicating a strong 

discriminatory capability. 
Table 2 presents the results of the receiver-

operating characteristic (ROC) analysis, which 
determined the optimal cut-off values of the AVQI for 
differentiating between normal and pathological voices 
on each smartphone. All microphones used in the study 
surpassed the suggested threshold of AUC = 0.8 and 
exhibited acceptable Youden-index values. 

The DeLong et al. test confirmed that there were no 
statistically significant differences between the areas 
under the curve (AUCs) of the ROC curves (p > 0.05). 
The greatest observed difference between the AUCs 
was only 0.028. These findings indicate that the 
diagnostic accuracy of the AVQI in differentiating 
between normal and pathological voices remains 
consistent when using voice recordings from both a 
studio microphone and various smartphones. 
 

Table 1. Correlations of AVQI scores obtained with studio microphone and different smartphones.  

Microphones  iPhone 
SE 

iPhone Pro Max 
13 

Huawei P50 
pro 

Samsung S22 
Ultra 

OnePlus 9 
PRO 

AKG Perception 
220 

r 0.991 0.987 0.970 0.979 0.992 
p .001 .001 .001 .001 .001 
n 135 135 135 135 135 

Abbreviations: r- Pearsons's correlation coefficient; p - statistical significance 

 
Figure 1. ROC curves illustrating the diagnostic accuracy of studio and different smartphone microphones in 
discriminating normal/pathological voice. 
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IV. DISCUSSION 

 
The present study employed the innovative uniform-

platform-based (UPB) "VoiceScreen" application to 
estimate the Acoustic Voice Quality Index (AVQI) and 
detect voice impairments in patients with various voice 
disorders and healthy individuals using different 
smartphones. 

The results of the analysis of variance (ANOVA) 
revealed no statistically significant differences in mean 
AVQI scores obtained using different smartphones (F= 
0.759; p = 0.58). Additionally, the mean differences in 
AVQI scores ranged from 0.01 to 0.4 points when 
comparing AVQI values estimated with different 
smartphones, indicating a low level of variability. 
These findings align with the absolute retest difference 
of AVQI values proposed by Barsties and Maryn in 
2013, which suggested a value of 0.54 [6,7]. 
Consequently, the differences in AVQI measurements 
between different smartphones were deemed both 
statistically and clinically insignificant, supporting the 
practical usability of the UPB "VoiceScreen" app. 
Furthermore, the analysis demonstrated that the AVQI 
exhibited a remarkable ability to distinguish between 
normal and pathological voices based on auditory-
perceptual judgment. 

These results affirm the consistent diagnostic 
accuracy of the AVQI in differentiating between 
normal and pathological voices when using voice 
recordings from both a studio microphone and various 
smartphones. This holds significant practical 
importance. 

In summary, combining the findings from previous 
and current studies suggests that the performance of 
the UPB "VoiceScreen" app using different 
smartphones is reliable and yields compatible results 
for AVQI estimation. However, it is crucial to note that 
variations in recording conditions, microphones, 
hardware, and software may lead to differences in 
acoustic voice quality measurements across recording 
systems. Therefore, caution is advised when using the 
UPB "VoiceScreen" app. For voice screening purposes, 

it is more reliable to perform AVQI measurements 
using the same device, particularly when conducting 
repeated measurements. Additionally, these 
considerations should be taken into account when 
comparing data of acoustic voice analysis between 
different voice recording systems, such as different 
smartphones or other mobile communication devices, 
and when utilizing them for diagnostic purposes or 
monitoring voice treatment outcomes. 

 
V. CONCLUSION 

 
The uniform-platform-based (UPB) "VoiceScreen" 

app proves to be a precise and reliable tool for 
measuring voice quality and differentiating between 
normal and pathological voices. It exhibits accuracy 
and robustness, making it suitable for voice assessment 
by both patients and clinicians. Moreover, the app is 
compatible with both iOS and Android smartphones, 
further enhancing its potential for widespread use. 
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Abstract: Deep learning has gained popularity in 
detecting Parkinson's disease (PD) from speech due 
to its ability to automatically extract meaningful 
representations from raw data. The most popular 
approaches are based on Convolutional Neural 
Network (CNN) models fed with spectrograms. 
However, the use of these algorithms is constrained 
due to the cross-dataset accuracy obtained during 
the validation process. Thus, in this work, we focus 
on studying the cross-domain effect -specifically due 
to different databases- for the screening of PD using 
a CNN-based model and two different speech 
corpora. To address the cross-domain challenge, we 
propose the use of domain adversarial (DA) 
training as a method to obtain discriminant and 
domain-invariant models. The visualization of the 
feature space distribution extracted by this model, 
using t-distributed stochastic neighbor embeddings, 
along with its divergence and variance by class, 
indicates a significant improvement in domain 
adaptation. These initial results provide valuable 
insights for further model refinement and constitute 
a proof of concept that domain adversarial methods 
offer a feasible option for creating a more 
generalizable speech-based PD detection model. 
 
Keywords:  Convolutional Neural Networks, Deep 
learning, Domain Adversarial, Parkinson’s Disease. 
 

I. INTRODUCTION 
 
Several studies have explored end-to-end deep learning 
techniques for screening PD directly from raw speech 
and time–frequency spectrograms. These techniques 
include CNNs [1-4], recurrent neural networks (RNNs) 
[5], long short-term memory (LSTM) models [6], and 
others [1]. Among them, CNNs have emerged as the 
most popular technique. 

Most of the reported end-to-end deep learning 
methods have demonstrated high discriminative 
capacity in distinguishing between healthy controls 
(HC) and PD compared to traditional machine learning 
approaches. However, it is worth noting that the 
training and validation processes of these algorithms 
have been developed using a single domain, meaning a 
single corpus with participants sharing similar 

demographics, dialectal and recording conditions. 
In this line, [1, 2, 4] reveal the limitations of these 

models for the screening of PD when they are applied 
to a new dataset, resulting in a drop of accuracy of 20 
absolute points. This fact highlights a significant 
limitation of current methods, demonstrating a 
noticeable degradation in their discriminative 
capabilities across domains. Additionally, the model 
relies on shortcut learning when possible, meaning it 
learns characteristics that differentiate between the 
groups but do not generalize well with respect to the 
underlying pathology. 

In this context, we propose adding a domain 
adaptation step into the representation learning process, 
which would help to reduce the existing gap between 
different corpora. The goal is to ensure that the 
automatic screening of PD is based on features that are 
both discriminative and invariant to dataset changes.  

In the deep learning literature, we came across the 
domain adversarial training method proposed in [7]. 
This method suggests an adversarial framework to 
learn domain-invariant representations. Recently, [8] 
proposed a speech PD classification using adversarial 
training to obtain speaker identity-invariant 
representations within a single corpus. However, they 
do not consider the effect of multi-dataset scenarios. 

The contributions of this work are twofold: First, to 
analyze the robustness of an end-to-end deep learning 
method for PD diagnosis with respect to the shift 
between domains (different speech databases). Second, 
to study the capacity of domain adversarial training in 
providing more generic and reliable models for the 
automatic screening of PD from the speech, addressing 
undesired speech recording variability. 
 

II. MATERIALS AND METHODS 
 
In this preliminary study, we establish a baseline model 
to detect PD from Mel-spectrograms by combining a 
CNN and a multi-layer perceptron (MLP) network, 
similar to those evaluated in [2-3]. We use two speech 
corpora to train and test the baseline model, first in a 
cross-domain test and then by mixing both datasets. 
Subsequently, the baseline model is adapted using a 
domain adversarial approach.  
 

DOMAIN ADVERSARIAL CONVOLUTIONAL NEURAL NETWORK FOR 
PARKINSON’S DISEASE DETECTION FROM SPEECH 

 
E. J. Ibarra-Sulbaran1, J. D. Arias-Londoño 2, M. Zañartu1, J. I. Godino-Llorente2 

 

1 Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile. 
2 Bioengineering and Optoelectronics lab (ByO), Universidad Politécnica de Madrid, Madrid, Spain  

emiro.ibarra@sansano.usm.cl; julian.arias@upm.es; matias.zanartu@usm.cl; ignacio.godino@upm.es  

 



 

 
Abstract: Deep learning has gained popularity in 
detecting Parkinson's disease (PD) from speech due 
to its ability to automatically extract meaningful 
representations from raw data. The most popular 
approaches are based on Convolutional Neural 
Network (CNN) models fed with spectrograms. 
However, the use of these algorithms is constrained 
due to the cross-dataset accuracy obtained during 
the validation process. Thus, in this work, we focus 
on studying the cross-domain effect -specifically due 
to different databases- for the screening of PD using 
a CNN-based model and two different speech 
corpora. To address the cross-domain challenge, we 
propose the use of domain adversarial (DA) 
training as a method to obtain discriminant and 
domain-invariant models. The visualization of the 
feature space distribution extracted by this model, 
using t-distributed stochastic neighbor embeddings, 
along with its divergence and variance by class, 
indicates a significant improvement in domain 
adaptation. These initial results provide valuable 
insights for further model refinement and constitute 
a proof of concept that domain adversarial methods 
offer a feasible option for creating a more 
generalizable speech-based PD detection model. 
 
Keywords:  Convolutional Neural Networks, Deep 
learning, Domain Adversarial, Parkinson’s Disease. 
 

I. INTRODUCTION 
 
Several studies have explored end-to-end deep learning 
techniques for screening PD directly from raw speech 
and time–frequency spectrograms. These techniques 
include CNNs [1-4], recurrent neural networks (RNNs) 
[5], long short-term memory (LSTM) models [6], and 
others [1]. Among them, CNNs have emerged as the 
most popular technique. 

Most of the reported end-to-end deep learning 
methods have demonstrated high discriminative 
capacity in distinguishing between healthy controls 
(HC) and PD compared to traditional machine learning 
approaches. However, it is worth noting that the 
training and validation processes of these algorithms 
have been developed using a single domain, meaning a 
single corpus with participants sharing similar 

demographics, dialectal and recording conditions. 
In this line, [1, 2, 4] reveal the limitations of these 

models for the screening of PD when they are applied 
to a new dataset, resulting in a drop of accuracy of 20 
absolute points. This fact highlights a significant 
limitation of current methods, demonstrating a 
noticeable degradation in their discriminative 
capabilities across domains. Additionally, the model 
relies on shortcut learning when possible, meaning it 
learns characteristics that differentiate between the 
groups but do not generalize well with respect to the 
underlying pathology. 

In this context, we propose adding a domain 
adaptation step into the representation learning process, 
which would help to reduce the existing gap between 
different corpora. The goal is to ensure that the 
automatic screening of PD is based on features that are 
both discriminative and invariant to dataset changes.  

In the deep learning literature, we came across the 
domain adversarial training method proposed in [7]. 
This method suggests an adversarial framework to 
learn domain-invariant representations. Recently, [8] 
proposed a speech PD classification using adversarial 
training to obtain speaker identity-invariant 
representations within a single corpus. However, they 
do not consider the effect of multi-dataset scenarios. 

The contributions of this work are twofold: First, to 
analyze the robustness of an end-to-end deep learning 
method for PD diagnosis with respect to the shift 
between domains (different speech databases). Second, 
to study the capacity of domain adversarial training in 
providing more generic and reliable models for the 
automatic screening of PD from the speech, addressing 
undesired speech recording variability. 
 

II. MATERIALS AND METHODS 
 
In this preliminary study, we establish a baseline model 
to detect PD from Mel-spectrograms by combining a 
CNN and a multi-layer perceptron (MLP) network, 
similar to those evaluated in [2-3]. We use two speech 
corpora to train and test the baseline model, first in a 
cross-domain test and then by mixing both datasets. 
Subsequently, the baseline model is adapted using a 
domain adversarial approach.  
 

DOMAIN ADVERSARIAL CONVOLUTIONAL NEURAL NETWORK FOR 
PARKINSON’S DISEASE DETECTION FROM SPEECH 

 
E. J. Ibarra-Sulbaran1, J. D. Arias-Londoño 2, M. Zañartu1, J. I. Godino-Llorente2 

 

1 Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile. 
2 Bioengineering and Optoelectronics lab (ByO), Universidad Politécnica de Madrid, Madrid, Spain  

emiro.ibarra@sansano.usm.cl; julian.arias@upm.es; matias.zanartu@usm.cl; ignacio.godino@upm.es  

 

Referee List (DOI 10.36253/fup_referee_list)
FUP Best Practice in Scholarly Publishing (DOI 10.36253/fup_best_practice)
Claudia Manfredi (edited by), Models and Analysis of Vocal Emissions for Biomedical Applications. 13th International Workshop, September, 12-13, 2023,  
© 2023 Author(s), CC BY 4.0, published by Firenze University Press, ISBN 979-12-215-0146-9, DOI 10.36253/979-12-215-0146-9

https://doi.org/10.36253/fup_referee_list
https://fupress.com/fup-best-practice-in-scholarly-publishing
http://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.36253/979-12-215-0146-9


70

 

A. Speech Corpora 
 

The datasets used in this work were previously 
reported as Gita [9] and Neurovoz [10].  

The Gita dataset was recorded by Clínica Noel in 
Medellín, Colombia. This dataset includes, among 
other data, diadochokinetic (DDK) tasks (i.e., 
repetitions of the syllable sequence /pa-ta-ka/) from 
100 Colombian Spanish native speakers, with 50 HC 
and 50 PD patients. 

The Neurovoz dataset was collected by 
Universidad Politécnica de Madrid in collaboration 
with Gregorio Marañón Hospital in Madrid, Spain. 
This dataset includes, among other material, DDK 
sequences from 86 adult speakers whose mother 
tongue is Castilian Spanish (44 HC and 42 PD).  

Recordings for both corpora were obtained under 
controlled ambient conditions using a sampling rate of 
44.1 kHz and 16 bits of quantization. Both datasets 
were recorded in compliance with the Helsinki 
Declaration and approved by their respective Ethics 
Committee.  
 
B. Method 
 
The DDK speech recordings were first normalized 
using the maximum absolute value of amplitude. They 
were then segmented into 400 ms intervals overlapped 
50%. Each segment was transformed into a time-
frequency representation using Mel-scale spectrograms 
with a window size of 15 ms, a hop length of 10 ms, 
and 65 Mel bands. This pre-processing resulted in Mel-
spectrograms of 65x41 points, which were individually 
normalized following a Z-score. 

The baseline model consists of two modules, which 
we have named the feature generation network and the 
PD prediction network. The feature generation network 
receives Mel-spectrograms as input. This first module 
is composed of a two-dimensional convolutional layer, 
where each convolutional layer is followed by a batch 
normalization, a ReLU activation function, max-
pooling (filter size: 3×3), and a dropout layer. 
Subsequently, the dynamic features obtained from the 
feature generation network are flattened to connect 
with the PD predictor network. This second module 
consists of two fully connected layers with a dropout 
layer in between to regularize the weights. ReLU 
activation is used in the first hidden layers, and a 
SoftMax activation function is used for classification.  

For domain adversarial training, the baseline model 
is adapted following the Domain-Adversarial Neural 
Network proposed in [7]. This is accomplished by 
attaching a domain predictor network to the feature 
extractor network via a Gradient Reversal Layer 
(GRL). This new module contains the same 
architecture as the PD prediction network. The only 
non-standard component of the domain adversarial 

architecture is the GRL, which leaves the input 
unchanged during forward propagation and reverses 
the gradient by multiplying it by a negative scalar 
during backpropagation [7]. The gradient reversal 
ensures that the feature distributions over the two 
domains are as indistinguishable as possible for the 
domain classifier, providing domain-invariant features.  

Regarding training and evaluation, a stratified 
speaker-independent 10-fold cross-validation was used, 
ensuring no overlap of speakers across different folds. 
The hyperparameters of the baseline model were tuned 
with the 10-fold set of mixed data (Gita and Neurovoz) 
using Talos [11]. The hyperparameter search space is 
summarized in Table 1. The model with the best 
performance on the validation set for the 10 folds was 
selected for all experiments, including domain 
adversarial training (DA), where the domain predictor 
network parameters were set to the same values as the 
PD prediction network parameters. 

The models were trained using the Stochastic 
Gradient Descent (SGD) algorithm with cross-entropy 
as the loss function. A learning rate schedule was used, 
initialized at 0.1. The PyTorch implementation of our 
approach is available online1. 
 

Table 1. Hyperparameters search space for the 
baseline model 

Hyperparameter values 
Training Batch size 16, 32, 64 
Kernel size of conv. layer I 4, 6, 8 
Kernel size of conv. layer II 5, 7, 9 
Dropout rate 0.2, 0.5 
Depth of convolutional layers 32, 64, 128 
Units of each fully connected layer 16, 32, 64 

 
III. RESULTS 

 
For mixed data training, the features extracted from the 
last layer of the PD prediction network for each model 
were labelled by class (PD and HC) and domain (Gita 
and Neurovoz). These features were visualized in a 
two-dimensional map using t-distributed stochastic 
neighbor embeddings (t-SNE) to study the domain 
adaptation effect of the baseline model in comparison 
to the domain adversarial network. A divergence 
measure was used to quantify the differences in the 
distribution of domain-labelled features for each class. 
This measure is computed using the Kullback-Leibler 
algorithm proposed in [12]. Additionally, the trace of 
the covariance matrix of the features for each class is 
used to quantify its variability.  
 
A. Cross-Domain Results 
 
Table 2 shows the validation results obtained for the 

                                                           
1https://github.com/Emiroji/Domain_Adversarial_CNN_Speech_Par
kinson_Clasification  
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as the loss function. A learning rate schedule was used, 
initialized at 0.1. The PyTorch implementation of our 
approach is available online1. 
 

Table 1. Hyperparameters search space for the 
baseline model 

Hyperparameter values 
Training Batch size 16, 32, 64 
Kernel size of conv. layer I 4, 6, 8 
Kernel size of conv. layer II 5, 7, 9 
Dropout rate 0.2, 0.5 
Depth of convolutional layers 32, 64, 128 
Units of each fully connected layer 16, 32, 64 

 
III. RESULTS 

 
For mixed data training, the features extracted from the 
last layer of the PD prediction network for each model 
were labelled by class (PD and HC) and domain (Gita 
and Neurovoz). These features were visualized in a 
two-dimensional map using t-distributed stochastic 
neighbor embeddings (t-SNE) to study the domain 
adaptation effect of the baseline model in comparison 
to the domain adversarial network. A divergence 
measure was used to quantify the differences in the 
distribution of domain-labelled features for each class. 
This measure is computed using the Kullback-Leibler 
algorithm proposed in [12]. Additionally, the trace of 
the covariance matrix of the features for each class is 
used to quantify its variability.  
 
A. Cross-Domain Results 
 
Table 2 shows the validation results obtained for the 

                                                           
1https://github.com/Emiroji/Domain_Adversarial_CNN_Speech_Par
kinson_Clasification  

 

baseline model trained using individual datasets. The 
accuracy, sensitivity, specificity, and area under the 
ROC curve obtained for the validation sets for both 
Gita and Neurovoz are consistent with those reported 
in previous work [1-3]. We emphasize the accuracy 
difference between the validation and cross-domain 
test, which is over 30 and 20 absolute points for Gita 
and Neurovoz respectively. This drop in accuracy is 
aligned with what has been reported in the literature [1, 
2, 4], confirming the mentioned limitation of end-to-
end approaches trained with a limited dataset. 
 
Table 2. Classification with the baseline model for 
each corpus. Acc: accuracy. Sens: Sensitivity. Spec: 
Specificity. AUC: Area under the ROC curve. Values 
represent the mean of 10-folds ± standard deviation. 

 Gita Neurovoz 
Acc. (%) 80.8 ± 13.4 80.1 ± 16.7 
Sens. (%) 81.8 80.5 
Spec. (%) 80.0 81.00 

AUC 0.9  0.9 
Cross-Domain Acc. (%) 47.7 ± 3.5 56. 3 ± 2.6 

 
B. Domain Adversarial results. 
 
Table 3 contrasts the results obtained by the baseline 
model and the domain adversarial network, both 
trained using the mixed speech corpora. The mean 
validation metrics decrease in comparison with 
experiment one (where only one dataset is used in the 
training process), especially for the baseline model. For 
example, the accuracy in the baseline model dropped 
by almost 8 and 4 absolute points for Gita and 
Neurovoz, respectively, whereas for the DA model, it 
was less than 5 absolute points for both validation sets, 
with a standard deviation slightly lower for the 
adversarial scheme. 

It is important to highlight that the validation 
metrics in Table 3 are computed based on estimations 
by subject. Therefore, the training and validation 
accuracies in terms of samples with respect to the 
epochs are shown in Figure 1. From these learning 
curves, we observe that the models reach stability 
before 100 epochs. As expected, the small size of the 
training dataset leads to overfitting of these deep 
learning models. These curves are consistent with 
those shown in [1].  

The most relevant result obtained in this work is 
shown in Figure 2. The t-SNE representations show the 
features extracted by the baseline model and domain 
adversarial models for the fold with the best validation 
accuracy (the t-SNE representations for the remaining 
folds are available in the online GitHub repository1). 
The features extracted by the baseline model in the 
training set (Figure 2.a) report more than two 
classification clusters. In contrast, the domain 
adversarial model shows that the features of the PD 

cluster for both Gita and Neurovoz share the same 
space, as well as for HC (see Figure 2.b). A similar 
trend is observed in the validation set (Figure 2.c and 
2.d). However, as expected, this behavior is affected by 
the model's classification performance, being more 
evident in those folds where the model shows high 
accuracy. 
 
Table 3. Classification with the baseline and DA models for 

mixed speech corpora. Acc: Accuracy. Sens: Sensitivity. 
Spec: Specificity. AUC: Area under the ROC curve. Values 
represent the mean of 10-folds ± standard deviation. 

 Baseline model DA Model 
Gita Neurovoz Gita Neurovoz 

Acc.  71.9±8.8 76.7±21.6 76.1±11.8 80.6±19.6 
Sens. 70.5 80.0 76.5 80.5 
Spec.  74.0  73.5 76.0 81.0 
AUC 0.9±0.1 0.9±0.2 0.8±0.2 0.9±0.2 

 
 
 
 
 
 
 

(a)        (b) 
Fig. 1. Accuracy learning Curves during the k-

fold cross-validation: (a) Baseline Model; (b) DA 
model. The solid line represents the mean values and 

the shaded regions standard deviation. 
 

On the other hand, Table 4 shows that both the 
divergence and the trace of the covariance matrix 
between domains for each class are higher for the 
baseline model in contrast to its DA version. The high 
divergence shown in both HC and PD classes for the 
baseline model indicates that it presents a higher 
dissimilarity between the feature distributions extracted 
for Gita and Neurovoz. On the other hand, the results 
of the trace of the covariance matrix show that the 
baseline model exhibits a higher spread for each class.  
 

IV. DISCUSSION AND CONCLUSIONS 
 

In this study, domain adaptation of an end-to-end 
CNN-based model for automatically PD detection 
using a DDK was analyzed. Although most recent 
work continues to compare models based solely on 
their accuracy in a single database, this work provides 
new evidence that these approaches require domain 
adaptation strategies to be more generalizable 

The first experiment showed that the CNN-based 
model learns characteristics of PD speech during 
internal validation. However, when tested on unseen 
datasets, the model failed to identify PD with sufficient 
accuracy. Subsequently, when both datasets were 
mixed during training, the features learned by the 
baseline model for a specific class presented a different 
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distribution. This behavior indicates that the model is 
extracting additional information relative to domain 
variability instead of solely obtaining PD 
discriminative features. 
 

   
 (a)         (b) 

   
(c)         (d) 

Fig. 2. T-SNE of the extracted features for the training 
set: (a) baseline model; (b) DA model. And for the 
validation set: (c) baseline model; (d) DA model. 

 
Table 4. Divergence and trace of the covariance matrix 

between domain distributions for each class. Values 
represent the mean of 10-folds ± standard deviation. 

 Divergence Variance 
HC PD HC PD 

Baseline 48.8±13.5 50.6±9,9 33.2±15.0 17.1±4.5 
DA 15.5±9.3 13.5±5.5 11.3±2.2 9.8±2.9 
  
In contrast, domain adversarial training ensures that the 
model learns invariant domain features. This is 
evidenced by the t-SNE visualizations and by the 
divergence and variance metrics. These preliminary 
results suggest that domain adversarial training 
improves the generalization abilities of the network. 
Nevertheless, more experiments, including new speech 
corpora, different phonation tasks, and new 
architectural models, are needed. 
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Abstract: Neurological disorders (NDs) display a variety
of clinical manifestations and represent a challenge to
global health. Few diagnostic metrics can be reliably
employed to distinguish NDs without costly imaging tech-
niques or invasive procedures. Vowel articulation from
speech can be assessed in a non-invasive manner and can
provide potential biomarkers of NDs. In this study, we
employed a validated library called VSAmeter to evaluate
the articulation of vowels from people with different NDs,
i.e., Parkinson’s and Alzheimer’s Disease (PD, AD), and
Parkinson’s mimics (PDM) and compared them with a
control group (CN). We also analyzed the effect of differ-
ent types of speech tasks. In addition to Vowel Space Area
and Vowel Articulation Index, a new metric, Cumulative
Pair-wise Vowel Distance (CPVD), was explored. CPVD-
k, measuring the top k shortest distance pairs between
vowels in the F1-F2 space, provided significant differences
between PD and PDM, and the control group in two
different speech tasks.

Keywords: Neurological Disorders, Atypical Speech,
Parkinson’s disease, Vowel Space Area

I. INTRODUCTION

Neurological Disorders (NDs) are diseases of the

central and peripheral nervous system, which vary in

signs, symptoms, speed of onset, or progression of

disease [1]. Among all NDs, Alzheimer’s disease (AD)

is the most common type of dementia, followed by

Vascular Dementia and Lewy Body Disease [2]. Parkin-

son’s Disease (PD) is also a common ND caused by

the neurodegenerative process in the substantia nigra,

affecting dopamine production [3]. Early detection of

NDs is crucial for targeted interventions that may slow

the progression of these conditions [4], but there are

very few diagnostic tools that can be reliably employed

to easily distinguish neurological disorders without us-

ing costly imaging methods or invasive procedures such

as lumbar punctures to examine cerebrospinal fluid.

Distinguishing PD from many conditions such atypical

parkinsonian disorders or secondary parkinsonism can

be challenging as these diseases share many signs and

symptoms. Patients with these PD mimics (PDM) are

often misdiagnosed as having PD [5]. Consequently,

more precise biomarkers are needed.

Speech and language impairments often occur in

various NDs due to motor and cognitive decline [6].

Features extracted from speech and language can serve

as rapid, cost-efficient, and non-invasive biomarkers

of NDs. Studies have used speech formants, partic-

ularly Vowel space area (VSA)-related features, to

assess PD and AD [7], [8]. VSA measures the area

in the first and second formant frequency plane, in

which each corner is determined by a target vowel

[9], [10]. In English, the VSA is usually constructed

by the Euclidean distances in the F1/F2 plane of the

corner vowels /i/, /u/, and /a/, i.e., triangular VSA

(tVSA), or the corner vowels /i/, /u/, /a/ and /ae/,

i.e., quadrilateral VSA (qVSA) [7]. VSA has been

found to be smaller in dysarthric speakers and patients

with PD compared to CNs [11]. A recent study also

found a smaller VSA in AD patients compared to the

control group, although the results of that study are

inconclusive due to a significant age difference between

groups, which could motivate the VSA differences [8].

Another metric, Vowel Articulation Index (VAI), was

proposed to reduce inter-speaker variability inherent to

VSA. Some studies suggest that VAI is significantly

reduced in PD patients [7]. These and most previous

studies focused on single speech tasks and one specific

ND at a time, with limited exploration of differences

between NDs. In this study, we utilized a validated

library, VSAmeter [10], to automatically measure and

compare VSA and related features like VAI in PD, AD,

and PDM patients. Speech recordings from different

tasks were used, e.g., Rainbow Passage (RP) reading

task (read speech) and Cookie Theft Picture (CTP)

description task (spontaneous speech). A new formant-

based metric called CPVD was explored. The code to

reproduce our experiments is publicly available1.

1https://github.com/Neuro-Logical/VSAmeter
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Fig. 1: A block diagram of the pipeline to obtain the metrics included in this study. (a) Fifteen vowel sounds in

American English are represented as K-/P/, where K is the symbol employed by the Kaldi forced alignment and P

is the equivalent IPA symbol. The dashed lines divide it into several areas, indicating the tongue’s position from

front to back and high to low, which is the primary factor in vowel shaping. (b) The pipeline of VSAmeter.

II. MATERIALS

NeuroLogical Signals (NLS) [6], [12] is a dataset

that contains spoken responses to different tasks, e.g.,

object naming, picture description, or passage reading.

The participants, who signed an informed consent,

varied from different NDs as well as control (CN) par-

ticipants. Speech signals were recorded with a headset

microphone and a 24 kHz sampling rate.

TABLE I: Demographics of the study population in

NLS dataset.

Category
Sample Age

Total Female Male Average Range

PD 27 10 17 66.55 41-82
AD/MCI 15 3 12 70.80 57-84
PDM 14 7 7 57.29 43-74
CN 33 15 18 68.64 42-79

PD, AD/Mild Cognitive Impairment (MCI), and

PDM groups are considered in this study. The partici-

pants in the PDM group were diagnosed with atypical

Parkinsonian Disorders or secondary parkinsoinism by

the highest clinical diagnostic criteria, including: mul-

tiple system atrophy, dystonia, spinocerebellar ataxias,

dementia with Lewy body in mixed pathology, corti-

cobasal syndrome, and essential tremor. Even though

cognitive and speech disorders might differ across the

diseases contained in the PDM group, we group these

subjects together as a neurodegenerative control group,

representative of what neurologists and geriatricians

can see in their daily practice in contrast to PD or AD.

This group allows us to observe if the analyzed features

are PD or AD specific. The AD/MCI group consists

of participants with AD or Mild Cognitive Impairment

due to AD by biomarker positivity (prodromal AD).

Sex and age distribution for each experimental group

are reported in Table I. All the participants were given

unlimited time to read the RP and 1min to describe the

CTP. Transcriptions were generated using Whisper2,

2at: https://openai.com/blog/whisper/

and manually supervised and corrected if necessary.

III. METHODS

The tVSA and VAI values for each participant were

firstly calculated by the VSAmeter [10]. Then, one

new formant-related metric, called CPVD, was ex-

plored to distinguish people with NDs from the CN

group. The scheme of the feature extraction pipeline is

included in Figure 1. Finally, we conducted pairwise

Kruskal–Wallis tests for each metric among the four

groups of participants based on the RP reading task

and CTP description task, which determined whether

there were statistically significant differences between

the median of each group per task.

A. tVSA and VAI

In the VSAmeter, Kaldi is employed to build a forced

alignment model that can align and segment the speech

recordings automatically [10]. The F1 and F2 formants

are extracted by the KARMA algorithm [13] with the

default settings introduced in [10], [13] for several

targeted vowels. For each vowel in a transcription, we

obtained the formants at 35% temporal point of the

vowel segment and averaged across all the repetitions

of each target vowel, as indicated in [10]. We used

/i/, /u/, /a/ to calculate tVSA and VAI among the four

experimental groups based on two different tasks.

B. Cumulative Pair-wise Vowel Distance (CPVD)

We propose the CPVD metric to investigate if the

distance between each pair of possible vowels in a

certain language (English, in our case) in the F1/F2

plane can provide insights about vowel misarticulation

in speakers with NDs. As dysarthric speakers tend to

have problems articulating, measuring the individual

distances between pairs of vowels can also provide

insights into how close similar vowels are in the F1/F2

plane. We hypothesize that, even when there is no over-

all centralization or reduction of the tVSA, some people

with dysarthria can have problems articulating cetain

vowels, which would lead to vowel spirantization, i.e.,

two vowels that are so close that might overlap.
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(a) CN (b) PD

Fig. 2: Two examples of vowel sounds in F1/F2 plane

generated by VSAmeter from NLS dataset.

Fifteen vowel sounds in American English, based

on the International Phonetic Alphabet (IPA), were

selected [14]. Their relative typical localization with

respect to the F1/F2 plane is shown in Fig. 1 (a). We

calculated the Euclidean pair-wise distances between

the 15 vowels (all possible combinations) in the F1/F2

plane, and the top k (k = [5, 10, 15, 20]) shortest

distance pairs for each participant were summed up as

a new feature named CPVD-k.

Two examples of vowel sounds in F1/F2 plane are

shown in Fig. 2. The participant from the PD group

(right) tends to have the vowels closer to each other

than the participant in the CN group.

IV. RESULTS

The results of pairwise Kruskal–Wallis tests for each

metric among the four different groups of participants

are reported based on two different tasks: the RP

reading task (read speech) and CTP description task

(spontaneous speech). The Kruskal-Wallis test, a rank-

based non-parametric approach, is considered for test-

ing whether there is a significant difference in medians

between two groups [15] with non-normal distribution

of the data. The statistical analyses of the significance

of the differences between groups are shown in Fig. 3.

V. DISCUSSION AND CONCLUSIONS

As shown in Fig. 3, participants in PD and PDM

tend to have a statistically significant smaller median

of tVSA than those in the CN group during the RP

(read speech) task but not in the CTP (spontaneous

speech) task. These results suggest that the reduction

of typical vowel space-related metrics for PD or other

diseases can be task-dependent, which is consistent

with the findings in [8]. In this regard, on the RP task,

each participant reads the same passage so that each

recording contains the same vowels, making it easier

to compare differences in vowel formants across groups

than in the CTP (spontaneous speech) task, in which

each participant uses different words to describe the

picture and, hence, vowel distribution. In a hypothetical

case, some speakers might not even use some of the

corner vowels making it impossible to calculate tVSA.

This could make the spontaneous speech task less

suitable to compare tVSA across groups. Besides, our

results suggest that people with AD tend to have a

larger tVSA than those with PD, and their values

are more similar to the control group. Similar trends

are observed in CTP (spontaneous speech) task in

Fig. 3, although no statistically significant difference

between groups was found for that task and tVSA. As

suggested by [8], during spontaneous and read speech

tasks, the VSA is reduced in people with AD with

respect to control speakers. However, we did not find

statistically significant differences. Regarding VAI, it

can be observed in Fig. 3 that PDM has statistically

significant differences with the CN group in RP (read

speech) task. However, PD shows no significant dif-

ference in median compared with the CN group. In

the CTP task, the median of VAI for the PD groups

is significantly smaller than that for the AD group.

Except for these two cases, no statistically significant

differences are observed between each pair among the

four experimental groups for VAI.

CPVD-20 for the CN group is significantly larger

than that for the PD group in the RP task in Fig. 3. This

significant trend always holds as k decreases from 20 to

5. When k = 20, the sum of the shortest vowel distance

pairs for the PD and PDM group are both significantly

smaller than that for the CN group in CTP (spontaneous

speech) task. When k decreases, i.e., k = 15, 10, 5,

these differences are not significant anymore. However,

this metric provides significant differences between

control speakers and those with motor impairment (PD

and PDM) in spontaneous speech, where comparing

subjects is more difficult for tVSA. This proposed met-

ric is more effective in differentiating PD or PDM from

controls when using spontaneous speech, and could

be complementary to traditional VSA measures. More-

over, differences in articulation between close vowels

in the F1/F2 space can be indicative of dysarthria or

neurological disorders, and these are not considered by

tVSA and VAI. Regarding the AD group, these always

showed higher tVSA, VAI, and CPVD than PD and

PDM subjects and no significant differences with the

CN group. In conclusion, results suggest that tVSA,

VAI, and CPVD do not provide differentiation between

the AD and CN groups; moreover, these metrics are

not PD-specific biomarkers as no significant differences

were found between the PD and PDM groups.

In the future, additional experiments are needed to

explore the impact of other factors, e.g., language or

speech task length, as reduction of vowel space-related

metrics in NDs was found to be task-dependent. The

VSAmeter will be applied to PD datasets in Spanish

to assess significant differences between PD patients
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Fig. 3: Boxplots of vowel space metrics based on formant for RP and CTP tasks: tVSA (top left), VAI (top middle),

CPVD-20 (top right), CPVD-15 (bottom left), CPVD-10 (bottom middle) and CPVD-5 (bottom right).Asterisks are

employed to highlight statistically significant differences in the median between groups, where ∗ means 0.01 <
p <= 0.05, and ∗∗ means 0.001 < p <= 0.01

and CNs. New metrics and the influence of other

speech tasks like shorter speech segments on VSA-

related metrics will be studied. The promising VSA-

related metrics measured by VSAmeter and the newly

proposed CPVD-k metric will be combined with other

features in future studies to distinguish different NDs.

Besides, a longitudinal study is underway with a larger

dataset and recordings collected at different stages of

the disease. Accuracy of automatic VSA measurements

and phone alignment will also be improved.
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Abstract: This work presents preliminary findings on 
the connection between formant frequencies and 
directivity of the Greek singing voice, aiming to 
contribute to vocal production research, and to the 
design of simulation, auralization, and virtual reality 
systems with application in speech and music 
domains. The present study focuses on the 
recordings of four professional singers, two in 
classical music and two in Byzantine chant, recorded 
in a sound-treated space, singing the Greek vowels at 
different pitches. Directivity results are reported for 
each vowel in third-octave bands centered on the 
first three formant frequencies (F1, F2, F3) of each 
singer. 
Keywords:  Directivity, formants, Greek vowels, 
singing voice 

 
I. INTRODUCTION 

 
Extensive research has been conducted on the 

directional characteristics of the human voice, both 
spoken and sang. Directivity data has been studied on 
the horizontal plane on both the horizontal and vertical 
planes or on a complete sphere. Studies comparing the 
directivity characteristics of the singing and speaking 
voice have shown evidence of variations between the 
two. For example, that classical singers tend to have 
higher directivity compared to speech [1]. 

Kocon & Monson [2] reported that vocal tract 
configuration and mouth opening change during speech 
which has an influence on vocal radiation. It has also 
been shown that mouth opening affects the directivity of 
the singing voice [3]. Directivity can also be affected by 
one’s posture and head inclination, their vocal tract 
configurations [4] and the spectral emphasis that can be 
manipulated through singing techniques. One’s torso 
and head size also have an impact on directivity, but 
these are fixed parameters [3]. It has also been 
suggested, based on a study with sustained German 
vowels, that directivity can be affected by the position 
of the sound in the mouth cavity (e.g., front vowels are 
more directional), pitch (e.g., higher directivity in higher 
pitches) and less on the type of phonation (increased in 
pressed versus breathy) [1]. 

However, factors such as the opening of one’s mouth 
and the shape of their vocal tract are considered to be 
important for the frequency of the formants, with the 
first and second formant mainly shaping the vowel 
quality and the third, fourth and fifth, the voice quality 
(“timbre”) [5]. These frequencies also affect the 
spectrum of the vowel [6]. Moreover, there are singing 
techniques that can be used to alter these frequencies, 
(e.g., widening one’s lips or changing one’s jaw opening 
can raise the first formant [6]). Such formant 
frequencies adjustments (used by singers to modify the 
spectral content of their voices) can affect directivity 
[7]. Thus, it would be interesting to study vocal 
directivity centered around formant frequencies. 

Although, some research has been done concerning 
the phonetics aspects of the Greek language and, 
especially, the formants corresponding to it (e.g., [8]), 
little research has been conducted concerning the 
relevant formants in singing [9], with this also being the 
case with directivity [10]. Furthermore, studies on this 
topic cannot be easily compared mainly due to the lack 
of a common measurement protocol [8]. 

This study focuses on the horizontal plane directivity 
characteristics of the Greek sung vowels sounds 
(monophthongs) /a/ (α), /e/ (ε, αι), /i/ (ι, η, υ, οι, ει), /o/ 
(ο, ω), /u/ (ου), when investigated on the relevant 
formant frequencies, taking into consideration the 
singing style of two professional classical singers and 
two Byzantine chant singers, a style of singing where 
studies focusing on formants [11], formant tuning [12] 
and vocal ornamentation [13] are quite scarce. 
 

II. METHODOLOGY 
 

This research is part of a larger study focused on the 
sound projection and directivity characteristics of 
various traditional Greek musical instruments and 
professional singers, replicating realistic performance 
scenarios encountered by musicians. Measurements 
were conducted using 29 RODE-M5, small diaphragm 
condenser microphones, placed symmetrically on a 
hemispherical thin-shell structure with a radius of 
158,5cm at four elevations (+90°, +30°, 0°, -30°), which 
was set up in the hemi-anechoic live room at the 
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facilities of the Laboratory of Music Acoustics and 
Technology (LabMAT), NKUA. This study, because of 
the limited space, will only focus on the measurements 
on the horizontal plane, which consists of 12 
microphones placed at 30° azimuthal increments. The 
individual impulse responses of the microphones were 
collected using ScanIR [14] on an M1 MacBook Pro 
2020 running Matlab 2021a. 

Participants were positioned at the center of the 
microphone array in a standing posture. The height of 
the configuration was adjusted using elevation probes to 
align with each singer's mouth position. A plumb and 
laser beams were used to maintain proper alignment 
throughout the measurements, while creating a more 
natural singing experience, allowing for small body and 
head movements related to technique and vocal 
projection. These movements have been shown not to 
have any perceptual impact on the collected directivity 
data [10]. 

Prior to measurements, all input signals were level 
calibrated using pink noise (78 dBA), generated by a 
Brüel & Kjær omnidirectional loudspeaker 
(OmniPower SoundSource Type 4292-L) placed at the 
singer's position, ensuring consistent levels across the 
array microphones with a tolerance of ±0.5dB. The pink 
noise signals were analyzed in third-octave bands, and 
calibration levels were obtained to equalize the RMS 
levels in each band. Data acquisition was performed 
using two Yamaha TF1 digital mixers (interconnected 
via DANTE), utilizing their built-in preamplifiers, and 
recorded on an i5 laptop running Cubase 11. 

Once aligned with the microphone array, participants 
(2 male professional classical singers and 2 male 
Byzantine chant singers) were asked to intone each of 
the five vowel sounds /a/ (α), /e/ (ε, αι), /i/ (ι, η, υ, οι, 
ει), /o/ (ο, ω), /u/ (ου) twice on pitches A2, E3 and C#4 
for about two seconds each. The audio recordings per 
participant and microphone were deconvolved with the 
microphone responses to minimize the impact of the 
measurement setup on the analyzed data and level 
calibrated per third-octave band, to obtain omni-
directional responses. In order to suppress the impact of 
noise introduced in the data by frequency bands with 
insufficient energy, the signal-to-noise level was 
calculated and a noise floor threshold was derived 
suppressing any data within 3dB of its level [10]. 
Formant analysis was done using Fast Track [15], 
carefully adjusting the parameters according to the 
participants.  

 
III. RESULTS 

 
For each vowel and pitch, the horizontal plane 

directivity data was calculated on third-octave bands 
centered around the corresponding F1, F2, and F3 
frequencies of each singer. These frequencies were 

calculated from the mean values of the nine front 
microphones (front, front-left, front-right on the three 
elevation angles: +30°, 0°, -30°). 

The directivity of all vowels at the F1 frequency 
exhibit a more omnidirectional-like pattern due to the 
low frequency range of F1 (around 250Hz to 1000Hz), 
while F2 and F3 frequency bands exhibit varying 
directional characteristics. For brevity, “Fig. 1” depicts 
the difference in directivity between the F1 and F2, and 
the F1 and F3 frequency bands for the four measured 
participants: Classical Male 1 (CM1), Classical Male 2 
(CM2), Byzantine Male 1 (BM1), Byzantine Male 2 
(BM2). 

As can be seen, the projection of vowel /a/ in the F2 
and F3 formant regions is less omni than in F1. 
However, that is not always the case, as CM2 seems to 
have greater dispersion in the F2 region (1044,5Hz) at 
C#4, with differences ranging from 2,23dB (side) to 
4,85dB (front and back). CM1 has greater dispersion at 
E3 and C#4 in the F2 region (1005Hz and 1064Hz, 
respectively), only on the sides and back. BM1 appears 
to have greater projection in the front, across all three 
pitches, in the F2 region (1065Hz, 1070Hz and 1105Hz 
respectively), but the difference is very small (0,68dB to 
1,99dB). 

Vowel /e/ seems to exhibit more directional 
properties in the F2 and F3 regions, with the F1 region 
being the one with the most dispersion. There is a slight 
indication that CM2 might exhibit greater dispersion at 
E3 in the F2 region (1505Hz), but the difference is very 
small (-0,35dB to 2,83dB in 30°). Similarly, BM2 seems 
to have slightly greater dispersion in the F2 region 
(1626,5Hz) at the front and sides, at A2. 

For the vowel /i/, all singers but BM2, appear to have 
significantly greater dispersion in the F2 and F3 regions, 
to all directions, when singing C#4. In addition, CM1 
has greater dispersion in the F2 and F3 regions 
(1852.2Hz, 2702Hz, respectively) at A2, across all 
directions. BM1 seems to have greater dispersion in F2 
and F3 regions, at A2 and E3, on the front and sides, but 
to a lesser extent. 

Moving on to the /o/ vowel, the data shows that the 
F2 and F3 regions appear to have less dispersion than 
the F1, to most of the singers. However, BM2 appears 
to have greater dispersion in the F2 region (755,5Hz), at 
A2, to all directions. Similarly, there is slight indication 
that CM1 also exhibits the same behavior in F2 region, 
albeit to a lesser extent. 

Finally, vowel /u/, exhibits similar behavior to vowel 
/i/, i.e., CM1, CM2 and BM1 appear to have greater 
dispersion in the F2 region (847,5Hz) at C#4 towards all 
directions, while CM1 and CM2 have similar results in 
their F3 region (2538,5Hz, 2565,5Hz respectively). 
Additionally, there is a slight indication that, for CM1, 
M2, and BM1, the F2 region exhibits greater dispersion 
than F1 at E3, although to a lesser extent. 
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Fig.1 Directivity plots for the four singers, on the 

horizontal plane (5 vowels, 3 pitches). The left side of 
each plot shows the directivity of the 2nd formant in 
relation to the 1st (F2-F1), and the right side the 3rd 

formant in relation to the 1st (F3-F1). 
 

IV. DISCUSSION 
 
The reported results are in line with the relevant 

literature concerning the left/right symmetric projection 
of the singing voice [10], [16], [17]. Directivity patterns 
can change according to pitch and center frequency they 
are measured [1], [18]. However, it is difficult to infer a 
safe conclusion concerning the type of singing 
(classical, Byzantine chant) and the way it might affect 
directionality, as no specific pattern seems to emerge, 
although there is some indication that classical singers 
tend to widen their projection at the F3 region (ranging 

from 2219,5Hz to 2719Hz), in relation to the F1 at C#4 
of the Greek vowels /i/ and /u/. Furthermore, BM1 and 
BM2, although both Byzantine chant singers, have 
different values for the vowel /i/ in the F2 and F3 region 
at C#4 and the vowel /u/ in the F2 region at C#4 and E3, 
where BM1 appears to follow the classical singers’ 
pattern. A larger sample size of Byzantine chant singers 
could provide more insight into this difference. 

It has also been reported that, on a scale from the most 
to the least directional, vowels appear in the following 
order /a/, /e/, /i/, /o/, /u/ [18], [19], which seems to 
correspond to the opening of one’s mouth [3], [19]. Our 
data shows that the Greek /u/ and /i/ vowels are less 
directional, especially at C#4 in the F3 region, while the 
/e/ appears to be the most directional in relation to F1. 
This finding can partly be attributed to the different 
mouth opening of the singers, as it is suggested that the 
larger the opening (such as in the case of /a/) the 
narrower the direction [3], and, partly, to the way the 
Greek vowels may be pronounced in relation to other 
languages researched, which also has implication on the 
formant frequencies (especially the 1st and the 2nd). 

One limitation of the current study is the small 
number of the participants which prohibits overall 
statistics. Although many studies in the relevant 
literature have been carried out with similar sample size, 
a larger sample could provide more generalized results. 
Another shortcoming is that the formant frequencies are 
calculated as a mean of nine microphones rather than 
one microphone placed closely in front of the mouth of 
the singer. Although it has been suggested that the 
recording distance can affect the formant frequencies, 
this seems to mostly affect the weaker formants and the 
resulting deviation could be found in the range of same 
speaker variations [20]. 
 

V. CONCLUSION 
 

This study considered the directivity patterns of 
Greek sustained vowels in third-octave bands centered 
on the first three formant frequencies (F1, F2, F3), of 
two professional classical and two Byzantine chant 
singers respectively. The results extended the relevant 
literature, given the very limited published research on 
formant and directivity analysis on the singing voice in 
the Standard Modern Greek language and Byzantine 
chant. Future work will focus on centering the 
directivity at the frequencies of the fourth and fifth 
formants (F4, F5), while offering more insight into the 
directivity of the singer’s formant region. Additionally, 
the analysis will expand to include directions beyond the 
horizontal plane and more singers of various training 
levels and singing genres. Our aim is to find possible 
connections between the Greek language, formant 
analysis, singing genres and training, with directivity 
and vocal projection. 
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Abstract: Automatic assessment of voice disorders 
can support otolaryngologists’ diagnosis. In this 
study, features extracted from the sustained vowel 
/a/ and the Italian word /aiuole/ were considered 
separately and concurrently in three machine 
learning experiments. The dataset is made of 55 
male and 100 female subjects. The aim was to 
distinguish between subjects diagnosed with benign 
lesions and unilateral vocal fold paralysis. The best 
classification performance was obtained by merging 
feature sets of both /a/ and /aiuole/, with up to 84% 
and 88% accuracy for female and male cohorts, 
respectively. Such results are also confirmed by 
statistical analysis, with significant differences in 
several parameters.  
Keywords:  voice disorders, machine learning, 
statistical analysis, BioVoice 
 

I. INTRODUCTION 
 
Dysphonia is characterized by higher irregular pitch, 
lower vocal quality and loudness with respect to 
normophonic subjects, related to gender and age [1]. It 
represents one of the most evident markers of voice 
pathologies and disorders. The etiopathogenesis 
includes tissue infections and surface irritations, 
mechanical stress (e.g., vocal nodules and polyps), 
tissue changes (e.g., tumors or cysts), neuromuscular 
anomalies (e.g., bi- and unilateral paralysis, spasmodic 
dysphonia, Parkinson's disease) and cognitive 
impairment (e.g., Alzheimer’s disease) [2]. Clinical 
diagnosis is typically based on direct visualization of 
the vocal folds by laryngoscopy [3]. Although this 
method represents the gold standard, several 
alternatives were proposed to take into account the lack 
of high-resolution endoscopy in decentralized 
ambulatories, inter-rater variability, physicians' 
experience, and the need to be physically present in 

hospitals, which can be demanding for the elderly and 
severely ill patients [4]. Acoustical analysis and the 
application of artificial intelligence techniques can 
provide powerful tools to support diagnosis, monitor 
vocal properties after treatments, and early detect voice 
pathology symptoms. As pointed out in [1], the choice 
of the input utterance plays a relevant role in feature 
extraction and depends on the type of voice pathology. 
Most studies rely on the sustained vowel /a/ due to 
open vocal tract, stable tongue and jaw position [5], 
relative independence from language and dialects, and 
intonation [1]. However, sustained vowels might not 
fully reflect voice characteristics and do not take into 
account some aspects of speech that other tasks may 
reveal. Therefore, other utterances have been proposed, 
e.g., running speech [4, 6] or enumeration tasks [7]. In 
this paper, acoustical features are extracted both from 
the sustained vowel /a/ and a standardized constantly 
voiced Italian word /aiuole/.  The aim was that of 
finding which vocal task performs better in 
distinguishing patients affected by benign lesions (BL) 
(nodules, polyps, cysts) and unilateral vocal fold 
paralysis (UVFP) and to understand whether the 
concurrent use of acoustical parameters from both 
utterance types can lead to an improved outcome. The 
approach proposed here was already explored in [8] 
but, to the authors' knowledge, it was never applied to 
Italian pathological voices. Therefore, it could 
represent a useful procedure to be used in the future 
also for other cases. 
 

II. METHODS 
 
Adult patients (55 males, M, 100 females, F) were 
recruited for this study. They were diagnosed with BL 
(27 M, 43 F), including nodules, polyps, and cysts, and 
UVFP (28 M, 57 F). The voice samples were recorded 
using a dynamic microphone (C1000S, AKG, Wien, 
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Austria) at a fixed distance of 5 cm from the patient's 
mouth during the production of a sustained /a/ and the 
word /aiuole/. After manual segmentation, audio files 
were processed using the BioVoice [9] open-source 
software for feature extraction. Among them, T0(F0 
min) and T0(F0 max) parameters, which respectively 
represent the time instant where the minimum and 
maximum of the fundamental frequency occur, were 
normalized with respect to the total duration of the 
utterance. This allowed obtaining a reliable estimation 
of the timing where the minimum or maximum of F0 
occurs, i.e., at the beginning, in the middle, or at the 
end of each recording. 
BioVoice acoustical features were used to perform a 
machine-learning experiment to evaluate if supervised 
classifiers can distinguish between BL and UVFP. 
Several supervised binary classifiers were implemented 
and validated using a k-fold cross-validation 
framework (k=10) [10]. The following models were 
considered: Support Vector Machine (SVM, linear and 
with Gaussian kernel), Ensemble models (AdaBoost 
and RobustBoost), and k-NN (The MathWorks, Inc., 
Natick, MS, USA). Bayesian hyperparameter 
optimization was used, choosing the model with the 
highest Accuracy (ACC) value. The number of 
iterations was set to 200. Each predictor was 
standardized during each cross-validation step for the 
training and validation sets, according to the current 
training statistics avoiding possible data leakage. 
Furthermore, in order to reduce the number of 
predictors, the following feature selection methods 
were investigated: Pearson correlation, ReliefF, 
LASSO, and mrMR. More precisely, before ReliefF, 
LASSO and mrMR, the highly correlated predictors 
were removed from the training and validation set, 
retaining only those with an absolute Pearson 
correlation coefficient (PCC) < 0.8 in the training set 
[11]. For all the validated models, the True Positive 
Rate (TPR) for each class was also considered, 
hereinafter denoted as TPR1 for the BF class and TPR2 
for the UVFP one.  
Machine-learning models were developed considering 
M and F observations separately. Moreover, models 
were trained using three different sets of features: 
1) Features extracted from the sustained vowel /a/. 
2) Features extracted from the Italian word /aiuole/ 
3) Merge of the two sets of features 1) and 2). 
Finally, a statistical analysis was performed, both for 
the F and the M cohort, considering all the features 
extracted by BioVoice from /a/ and /aiuole/. A Mann-
Whitney test was used, with a level of significance 
α=0.05. These tests were performed to evaluate if 
statistical differences exist between BL and UFVP.  
 
 
 

III. RESULTS 
 
Table 1 shows the results of the F dataset. In addition 
to the mean and standard deviation of classifiers’ 
performance, the number of features (NF) used for 
each model is also reported.  
 
Table 1. Cross-validation results for the F Dataset. 
NF=number of features. Mean μ and standard 
deviation σ, obtained considering the performance 
from each validation folder are reported.  

Feature set 

F Dataset 
ACC 
(%) 
μ±σ 

TPR1 
(%) 
μ±σ 

TPR2 
(%) 
μ±σ 

NF Model 

/ a / 80±3 70±7 88±4 20 RobustBoost 
/ aiuole/ 74±4 67±8 80±7 19 AdaBoost 
/a/+/aiuole/ 84±5 76±9 90±3 39 SVM 
 
Table 2 reports the cross-validation results for the M 
Dataset. 
 
Table 2. Cross-validation results for the M Dataset. 
NF=number of features. Mean μ and standard 
deviation σ, obtained considering the performance 
from each validation folder are reported.  

Feature set 

M Dataset 
ACC 
(%) 
μ±σ 

TPR1 
(%) 
μ±σ 

TPR2 
(%) 
μ±σ 

NF Model 

/ a / 79±4 71±10 80±6 16 AdaBoost 
/ aiuole / 81±5 85±7 79±10 14 RobustBoost 
/a/+/aiuole/ 88±5 90±6 92±5 37 AdaBoost 
 
Tables 5 and 6 report only the significant differences 
for the F group for /a/ and /aiuole/, respectively. 
Analogously, Table 7 and 8 summarizes significant 
differences for the M cohort. In Tables 5-8, directions 
of effect between class BL and UVFP are reported. 
Specifically, BL↑ UVFP↓ denotes a feature with a 
higher median value for the BL class than the UVFP 
one.  
 
Table 3. Statistical results for the F dataset: acoustical 
features obtained from /a/. 

Feature p-value Direction 
(Median) 

F2 Std 0.004 BL↓ UVFP ↑  
F2 max 0.02 BL↓ UVFP ↑ 
F1 max 0.02 BL↓ UVFP ↑ 
F2 mean 0.04 BL↓ UVFP ↑ 
% voiced 0.045 BL↓ UVFP ↑ 
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Table 4. Statistical results for the F dataset: acoustical 
features obtained from /aiuole/  

Feature p-value Direction 
(Median) 

% voiced e-04 BL↓ UVFP ↑ 
signalDuration 0.002 BL↑ UVFP ↓ 
F0 median 0.003 BL↓ UVFP ↑ 
F0 mean 0.004 BL↓ UVFP ↑ 
T0(F0 max) 0.005 BL↑ UVFP ↓ 
T0(F0 min) 0.01 BL↑ UVFP ↓ 
voicedDuration 0.02 BL↓ UVFP ↑ 
F1max 0.02 BL↓ UVFP ↑ 
F1 std 0.02 BL↓ UVFP ↑ 

 
Table 5. Statistical results for the M dataset: acoustical 
features obtained from /a/. 

Feature p-value Direction 
(Median) 

F1 max e-04 BL↓ UVFP ↑ 
F2 std e-04 BL↓ UVFP ↑ 
F1 std 0.001 BL↓ UVFP ↑ 
voicedDuration 0.001 BL↑ UVFP ↓ 
signalDuration 0.004 BL↑ UVFP ↓ 
Jitter 0.004 BL↓ UVFP ↑ 
F0 std 0.009 BL↓ UVFP ↑ 
F1 min 0.01 BL↓ UVFP ↑ 
NNE 0.01 BL↓ UVFP ↑ 
F1 mean 0.01 BL↓ UVFP ↑ 
F1 median 0.03 BL↓ UVFP ↑ 
F0 min 0.03 BL↑ UVFP ↓ 
F2 mean 0.03 BL↓ UVFP ↑ 

 
Table 6. Statistical results for the M dataset: acoustical 
features obtained from /aiuole/. 

Feature p-value Direction 
(Median) 

T0(F0 min) e-05 BL↑ UVFP ↓ 
signalDuration e-04 BL↑ UVFP ↓ 
% voiced e-04 BL↓ UVFP ↑ 
F0 max 0.007 BL↓ UVFP ↑ 
F1 mean 0.008 BL↓ UVFP ↑ 
F0 std 0.008 BL↓ UVFP ↑ 
voicedDuration 0.02 BL↓ UVFP ↑ 
F1max 0.03 BL↓ UVFP ↑ 
F1 median 0.03 BL↓ UVFP ↑ 
Jitter 0.04 BL↓ UVFP ↑ 
F2 mean 0.04 BL↓ UVFP ↑ 

 
Figure 1 shows the boxplots for the T0(F0 min) 
parameter for F and M cohorts. 

 
 

IV. DISCUSSION 
 
This work proposes a voice pathology binary detection 
system based on machine learning techniques and 
acoustical parameters extracted from the sustained 
vowel /a/ and a constantly voiced Italian word /aiuole/. 
It was investigated whether the vocal task can 
influence the classification performance and if the 
combination of their features may lead to 
improvements [8]. Tables 1 and 2 show that models 
based on features extracted from a single utterance 
type present a similar global accuracy, in line with [6]. 
Table 1 shows that for the F group, the UVFP class is 
characterized by a higher TPR when considering both 
vocal tasks. This outcome can be of interest in the 
clinical practice since a model that can reduce the 
number of false positives for this pathology might 
spare patients undergoing long and expensive 
diagnostic procedures (e.g., MRI, CT). On the 
contrary, vocal task influences TPR direction for the M 
cohort: a higher TPR for the BL class can be noted in 
the case of /aiuole/, whereas a higher TPR for UVFP 
occurs with /a/. This might suggest that UFVP can be 
better detected with a sustained phonation rather than 
an articulation task. 
Moreover, the concurrent use of /a/ and /aiuole/ 
acoustical features led to models’ performance 
improvements. Though there is an increase of 10% for 
the M cohort, this result should be taken with caution 
as these classifiers were trained and validated with a 
smaller number of observations with respect to the F 
group. Nevertheless, an improvement can be seen for 
the F cohort as well. In the case of classifiers belonging 
to the ensemble family (AdaBoost, RobustBoost), the 
predictorImportance.m (MATLAB 2020b, The 
MathWorks, Inc., MS, USA) function was applied in 
order to evaluate the relevance of acoustical features in 
separating data into two classes, and to investigate 
whether these metrics were significantly different. In 
the F cohort, the most relevant parameter for /a/ was % 
voiced (i.e., the percentage of voiced parts over the 
total audio duration). Table 3 shows that such a metric 
is also statistically significant, although the lowest p-

Fig. 1: Boxplots of T0(F0 min) for F (left) and M (right) 
datasets. 
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value does not characterize it. Similarly, in the /aiuole/ 
classification experiment, the most important predictor 
was T0(F0 min), which also appears in Table 4. It is 
interesting to notice that parameters associated with 
vocal instability or noise (e.g., jitter, Normalized Noise 
Energy) were neither relevant for models nor for 
statistical analysis. A similar result was found in [12] 
when assessing the severity of spasmodic dysphonia 
probably because no control group is included and 
comparisons are made only between pathological 
classes. Therefore, it seems that such parameters 
should not be used to differentiate these classes. 
In the M cohort, the most important parameter for /a/ 
was F2std (i.e., the standard deviation of the second 
formant), which interestingly appears as the most 
significant feature as well. In the /aiuole/ experiment, 
the most relevant parameter was F0std (standard 
deviation of F0), and Table 6 confirms it as a 
statistically significant measure. Furthermore, when 
both feature sets are used, the most relevant parameter 
matches the most significant one in Table 6, i.e., T0(F0 
min). It is also important to notice that, in this group, 
jitter seems to be statistically different between the two 
pathological classes in both vocal tasks. However, 
since the M dataset is smaller than the F one, such 
result should be validated on a larger dataset.  
Finally, it is noteworthy that T0(F0 min) is significant 
for /aiuole/ in both groups (Table 4 and 6). Moreover, 
it presents a distribution with higher variance for 
UVFP with respect to BL and the same direction of 
effect regardless of gender: a lower value characterizes 
UVFP with respect to BL (Fig. 1). 
In future works, a larger dataset will be considered, and 
the proposed approach will consider separately 
nodules, polyps, and cysts, comparing pre- and post-
treatment vocal quality, as well as other voice 
disorders. 
 

V. CONCLUSION 
 
Machine learning applied to voice pathology 
assessment is a powerful tool that may support clinical 
diagnosis. In this paper, binary classifiers showed high 
accuracy up to 88% in distinguishing patients with BL 
and UVFP when merging feature sets extracted from 
/a/ and /aiuole/ vocal tasks. Moreover, statistical 
analysis showed significant differences between the 
two considered categories of pathologies for both 
utterances. 
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Abstract: This paper reports the performance of 2D 
and 3D deep learning models for glottis segmentation 
in high-speed videoendoscopy (HSV). Using a public 
dataset for training and the BAGLS and in-house 
datasets for evaluation, we assess the model's 
capabilities. Both models exhibit satisfactory 
accuracy on BAGLS, achieving intersection over 
union (IoU) scores of 0.81 and 0.84, respectively. 
However, the 3D model outperforms the 2D model 
on the in-house dataset with an IoU score of 0.76 
compared to 0.63. By augmenting the data with 
various perturbations, we observe different 
behaviors for the two architectures. The 3D model 
excels in handling rotations and grid dropout, while 
the 2D model performs better in handling textural 
changes. We discuss the models' generalization 
capabilities, suggesting that the 3D model's rotation 
invariance contributes to its superior performance 
on unseen data. We emphasize the importance of 
comprehensive evaluations to uncover model 
behavior in challenging scenarios and identify 
potential issues in real-world applications. 
Keywords:  High Speed Videoendoscopy, Deep 
Learning, Computer Vision, Performance 
Characterization, Segmentation 

 
I. INTRODUCTION 

 
Data-driven analysis of High-speed videoendoscopy 
(HSV) is opening new fields of research regarding 
phonatory mechanisms and diagnostic measures. The 
resulting videos offer with framerates of up to 5000 
frames per second precise recordings of glottal 
movements during speech. To analyze this large amount 
of information further automated processing needs to be 
comprehensible for a human reader. Existing methods 
rely on the delineation of the glottis and subsequent 
surface measurement for every frame. These numeric 
features, e.g. the GAW or PVG have been exploited 
successfully in the past for numerous classification tasks 
[1].  
To obtain reliable results it is crucial to ensure that the 
initial segmentation of the glottis is sufficiently 
accurate. To segment the images semi-automatic or 
automatic techniques such as region growing [2] or 

active contour models [3] have been applied in the past. 
They sometimes still rely on human input and show 
limited performance. In recent years so-called deep 
learning techniques have proven to be superior when 
large amounts of data are available. These perform 
quantitatively well but sometimes fail completely on 
difficult cases. We try to advance this line of research 
by evaluating the performance of these automatic 
methods with and without the temporal component on 
challenging cases.  
 

II. METHODS 
A. Data 
 
For training we used the public dataset from Trier 
University [4]. It consists of 130 unique Videos with 
100 images per Video. We used the same 
train/test/validation split of 100/15/15 as in the original 
paper. 
For evaluation we use a subset of the BAGLS dataset 
which contains manually segmented videos [5] and an 
inhouse dataset. The BAGLS dataset contains 59.250 
single annotated frames and 19.200 annotated 
consecutive frames. 
We created our inhouse dataset using 150 videos that 
were recorded at the medical university Vienna [6] 
using an HRES Endocam 5562 from Richard Wolf with 
a resolution of 256x256, RGB and 4000 fps. Each video 
has 8192 frames and is presegmented using the GAT 
software [7]. The segmentations are controlled and 
corrected by a human reader if necessary. For evaluation 
we randomly sample 4050 sets of 12 consecutive 
frames.  
To make use of the temporal dimension of the data we 
define a timeframe within the video and treat it like a 3D 
object as input for the network. We choose a frame size 
of 12 as suggested in [5] because it approximately 
captures one cycle of the glottis.  
 
B. Architecture 
 
For our experiments, we trained a 2D and a 3D variant 
of the commonly used U-net architecture [8]. As 
preprocessing the images are converted into grayscale, 
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scaled to 256x256 pixels, and normalized between 0 and 
1.  
We follow the results from [9] where it has been shown 
that a reduced parameter size is better suited for glottis 
segmentation. Thereby we reduced the size of the 
channels, especially in the bottleneck (see Table 1). Our 
2D Unet has 1.4M parameters, whereas the standard 
Unet has 7.7M parameters. The 3D model we used had 
3M parameters. In comparison the original 3D Unet [10] 
has 19M parameters.  

Table 1: Differences in training setup between architectures
3D Unet Channels: [16, 32, 64, 128, 32]

Batch Size: 8
Gradient Clipping: yes (1)

2D Unet Channels: [32, 64, 128, 256, 64]
Batch Size: 32
Gradient Clipping: no

C. Training  

As an activation function we use a sigmoid for the 2D 
Unet. We use the arctangent and gradient clipping to the 
value of 1 for the 3D Unet to avoid local minima. As 
initialization technique ‘Kaiming’ is applied.
We use the DICE score as loss [11] (see E.) and train 
our networks on a A100 GPU for 100 Epochs. Our code 
is implemented using the Pytorch library. 

       Fig. 1: Data augmentations on BAGLS with amp=2.5 

For training we make use of five light data augmentation 
techniques with the standard values of the 
Volumentation library [12] (see Table 2). They are 
applied randomly with probability p during training.  

Table 2: Augmentation parameters, p only applies during training,  
amp = 1 during training 

Augmentation Values p

Rotation x_limit = (-10, 10 * amp), 
y_limit = (-5, 5 * amp), 
z_limit = (-5, 5 * amp) 

.75 

Brightness/
Contrast

brightness_limit=0.2 * amp 
contrast_limit=0.2 * amp 

.75 

Gamma gamma_limit=(int(80 / amp),  
120 * amp) 

.75 

Gaussian Noise var_limit=(0.10 * amp,  
0.50 * amp) 

.5 

Grid Dropout blocks=int(amp*8) 0 

D. Evaluation 

During evaluation we test data augmentations separately 
with p=1 and increasingly amplify them by a factor 
amp. During training amp is equal to 1. In addition, we 
implement our own version of grid dropout for 
evaluation, where cutouts of random size in the range of 
9x50x50 pixel are placed randomly within the 3D 
object. The amp factor changes the number of blocks.  
We run the segmentation with the 3D net once for every 
frame, such that we only evaluate the frame in the 
middle of the window (i.e., position 6 with a frame size 
of 12) and compare the performance to segmenting the 
whole window once. To test the usage of the temporal 
component we also replace single frames of the window 
randomly with noise.  

E. Error measures 

For evaluation we use intersection over union (IoU) 
instead of DICE, as it is widespread practice in related 
papers with the given segmentation task. These metrics 
are based on the ratio of True/False (T/F) 
Positives/Negatives (P/N):  

𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹     (1) 

�𝐼𝐼�� 𝐼 2𝑇𝑇𝑇𝑇2𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹     (2) 

III. RESULTS 

We evaluated our 2D and 3D models using BAGLS and 
our inhouse experiment on different data augmentations 
with increasing amp. Moreover, we tested the 3D 
capabilities of our 3D network by replacing single 
frames with noise and comparing segmenting the videos 
in chunks vs. one frame at a time with a sliding window. 
Our experiments show no significant difference (less 
than 0.01 IoU) between segmenting single frames with 
the 3D net or the whole window. This means 
computational cost of segmenting can be reduced by a 
factor of the window size (here 12) without loss of 
accuracy in comparison to the sliding window approach. 
The replacement of random frames with noise also did 
not hurt performance by more than 0.01 IoU . Left out 
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frames were segmented correctly using neighboring 
frames.  

Table 3: Evaluation IoU±variance among frames without 
augmentations 

Dataset/
Architecture 

Trier 
Validation

BAGLS Inhouse

3D Unet 0.84±0.014 0.80±0.02 0.76±0.035 
2D Unet 0.81±0.021 0.79±0.018 0.63±0.021 

Both networks performed well on the validation set 
from trier. The 3D net reached an IoU of 0.84 while the 
2D net also showed a satisfactory performance with 
0.81. The difference vanishes on the BAGLS data. 
Despite using data from different sources for training 
both perform well (0.8/0.79 IoU). In the case of the 
inhouse dataset the 3D still performs with an IoU of 
0.76, whereas the 2D net drops to an IoU of 0.63. 
According to [13] performances below 0.74 are 
considered unreliable for further processing.  

Table 4: Mean Evaluation IoU±variance among frames with amplified 
augmentations 

Dataset/
Architecture 

BAGLS Inhouse

3D Unet 0.75±0.024 0.72±0.037 
2D Unet 0.72±0.02 0.60±0.019 

The data augmentations result in different behavior for 
both architectures. While the Unet shows more stability 
in gamma correction, brightness/contrast changes and 
gaussian noise, the 3D Unet was clearly superior when 
rotations and grid dropout were applied (see Fig. 2). 
Small irregularities, where the performance increases 
non-monotonically in more difficult settings, are due to 
the randomized augmentation parameters. 

      Fig. 2 Evaluation results of 3D net on inhouse set

Depending on the used evaluation set, the order in which 
augmentations decrease accuracy changes slightly. Grid 
dropout causes significantly more difficulties with the 

inhouse dataset (see Fig. 2) for the 3D net. Since the 
accuracy already differs strongly without augmentations 
a comparison with the 2D net on the inhouse set is not 
feasible.  

      Fig. 3 Evaluation results using data augmentations 

IV. DISCUSSION

Our results show that 3D features may be more stable 
among different datasets. We hypothesize that the 
rotation invariance of the 2D neural network is inferior 
to the 3D variant since the augmentations are also 
performed in 3D space. This could also mean that the 
2D network is more vulnerable to changes due to camera 
positions and angles. However textural changes, 
simulated using noise, brightness contrast and gamma, 
are easier for the 2D features to handle.  
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The increased severity of grid dropout may be due to the 
view of our inhouse set. While we decided for the native 
camera view, the BAGLS set is cropped to a region of 
interest. Therefore, random crops can include a wider 
variety of visual appearances in the inhouse set.  
Our networks reached their maximum accuracy after 25 
epochs for the 3D model and 34 epochs for the 2D 
model. Since we wanted to keep the training setting 
similar, we did not do more exhaustive hyper parameter 
optimization. More advanced techniques like self-
supervised learning or attention modules for example 
may furthermore affect the performance of the networks 
differently.  
 
 

V. CONCLUSION 
 
We investigated the effect of different perturbations of 
the input data on 3D and 2D networks. Our result shows 
the utility of 3D features on unseen data and highlights 
the importance of more exhaustive evaluation tasks. The 
performance may not differ too strongly on the 
validation set and BAGLS, but our 3D model 
generalizes better on unseen data than the 2D model. 
Stronger data augmentations shed light on the behavior 
in challenging cases which may help to identify 
unforeseen problems in real settings 
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Abstract: HermeSpeech Recorder is a user-friendly and
open-source platform designed to record speech from a
large cohort of participants. The platform allows users
to easily initiate, pause, and stop recordings of their
assigned scripts or speech tasks. The completed speech
recordings are encrypted and stored in a cloud service,
complying with HIPAA regulations for data privacy, if
needed. The resulting files are uploaded asynchronously
to enable recordings in areas with low connectivity. The
platform also provides features for administrators to
easily create new participants, load and manage many
scripts at once and assign tasks to participants, simpli-
fying the management of large cohorts, and making it
a streamlined solution for remote speech recording in
a HIPAA compliant and efficient manner. Finally, we
describe our experience recording a group of participants
with atypical speech using this open-source tool.

Keywords: speech recording, spoken language under-
standing, open-source

I. INTRODUCTION

Speech recording platforms are fundamental tools for

collecting voice samples that can be used in speech and

language technologies, including speech and speaker

recognition, spoken language understanding (SLU), or

text-to-speech. These become essential when we want

to collect data that is difficult to crawl from publicly

available resources, such as pathological and atypical

speech. Existing offline speech recording platforms,

while helpful, require in-person recording [1], whereas

platforms that allow for remote recordings can be more

flexible and accessible, as they can be used in-person

to record under controlled conditions, and at home.

Some current web platforms [2] are not compliant with

the requirements of the Health Insurance Portability

and Accountability Act (HIPAA), are not adapted to

provide intent annotations, or are not very flexible when

it comes to predefining a large list of participants and

assigned speech tasks, which might be required for

clinical studies.

To address these challenges, we present Herme-

Speech Recorder,1 a new open-source speech record-

ing web platform designed to record speech remotely.

HermeSpeech provides the participant (speaker) with

a certain speech task, i.e., text to read aloud, and

associates the resulting recordings with the read text

and intent annotations, if any. Our platform leverages

encrypted cloud storage and a secure transport design

while offering a user-friendly interface that allows for

easy setup and management of recording sessions. In

contrast to real-time audio streaming platforms, the

recordings are generated locally within the speaker’s

browser and then uploaded to the cloud to avoid net-

work bandwidth limitations that could affect streaming

audio quality.

In this paper, we describe the platform, which has the

potential to expand the pool of available speech data

for research and development of speech technologies.

Our ultimate goal is to facilitate access to a speech

recording tool for underresourced scenarios, such as

atypical and pathological speech applications, enabling

more inclusive spoken language technologies. Then, we

summarize our experience using the platform with a

group of participants with atypical speech.

II. TOOL DESCRIPTION

When HermeSpeech is deployed to a web server,

it provides participants with a login screen to access

a task dashboard using a unique token previously

assigned (Fig. 1). Once users gain access, they can

record the assigned set of text scripts. The platform

also allows recording unscripted speech or monologues

1https://github.com/Neuro-Logical/HermeSpeechRecorder

Referee List (DOI 10.36253/fup_referee_list)
FUP Best Practice in Scholarly Publishing (DOI 10.36253/fup_best_practice)
Claudia Manfredi (edited by), Models and Analysis of Vocal Emissions for Biomedical Applications. 13th International Workshop, September, 12-13, 2023,  
© 2023 Author(s), CC BY 4.0, published by Firenze University Press, ISBN 979-12-215-0146-9, DOI 10.36253/979-12-215-0146-9

https://doi.org/10.36253/fup_referee_list
https://fupress.com/fup-best-practice-in-scholarly-publishing
http://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.36253/979-12-215-0146-9


92

(elicited tasks). Finally, those recordings and associated

metadata are uploaded to a cloud service.

(a)

(b)

Fig. 1: Login interface of HermeSpeech Recorder (a)

and script dashboard listing two scripts to be completed

by the participant (b). Background images can be easily

changed.

A. User Interface

The user interface of the platform is designed to be

user-friendly and efficient, using React2 and various

open-source libraries for frontend components. Once

logged in, participants are presented with a task dash-

board that provides an overview of their assigned and

completed tasks, which are the text scripts to record.

The dashboard provides a clear and organized view of

the tasks, allowing participants to track their progress

easily. Participants are assigned scripts to record using

the admin management console detailed in Section

II-C.

B. Script Recording

Within each task or script, the user interface offers

a recording module that allows participants to control

the recording process. This recording module includes

intuitive controls, such as buttons for starting, stopping,

and repeating the recording. The interface also pro-

vides options for participants to review and listen to

2https://react.dev/

Fig. 2: Recording module interface. The upper part of

the screen contains the text to be read (Switch off the

lights, in this case), the central includes the speech

waveform to indicate the participant that there is signal

and it is being recorded, and the bottom part allows

the participant to listen to the last recording, re-record

it if something went wrong, or move on to the next

utterance.

their recordings before submission. This review feature

allows participants to playback their recordings to en-

sure they contain the required information. This helps

participants to verify the quality and word errors of

their recorded speech segments and re-record sentences

when needed. The different controls of the recording

module are included in Fig. 2.

To ensure that the speech segments are not cut at the

beginning or end, the platform provides pre- and post-

buffer features. These features allow platform admin-

istrators to set a predetermined amount of time that is

recorded before the sentence to be read or speech task

appears on screen and after clicking the stop button,

ensuring that the full utterance is captured. This means

that when participants initiate the recording, the text to

be read is slightly deferred (pre-buffer). Similarly, when

participants stop the recording, the platform continues

to record for a specified duration (post-buffer). This

avoids that the participant starts speaking before the

platform is recording, or stops recording in the last

word of the utterance, which are both common errors

in some participants.

After a text script is recorded, the platform uploads

the recordings and a descriptor file to a cloud service.

The descriptor file contains the name of the recorded

files, the participant who recorded them, the text that

was read in each file, intents annotations, if the script

had them associated, and other extra fields, depending

on the project’s needs.
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Fig. 3: Admin management interface including a list

of possible scripts and their text. The interface allows

loading new scripts, assigning them to users, and

modifying them.

C. Admin management

The admin management side of the platform is

also designed with intuitive and streamlined interfaces,

providing means for managing and creating scripts, as-

signing scripts to participants, and creating participant

profiles (Fig. 3).

One key feature of the admin console is the ability

to easily populate the script database by uploading a

CSV file with script information, such as text to be

read and the intent of the text for SLU-related projects.

The admin console automatically processes the data

in the CSV file, which must have a specific format,

creating scripts based on the provided information.

Similarly, administrators can create participant profiles

by uploading a CSV file, simplifying the process of

adding multiple participants to the platform at once.

This data management feature saves time and effort for

administrators, ensuring that scripts and participants are

quickly and accurately added to the system.

III. DATA STORAGE AND MANAGEMENT

The platform utilizes MySQL and the Sequelize

Object Relational Mapper (ORM) as the foundation

for the database infrastructure. In the initial version of

HermeSpeech Recorder, we include the instructions to

securely encrypt and save the recordings into Microsoft

Azure, a cloud computing platform that is HIPAA

compliant, for health data privacy. Adaptation to other

cloud services such as AWS will be implemented in

future releases. The use of MySQL and Sequelize ORM

in conjunction with Microsoft Azure allows for efficient

data management, retrieval, and analysis. Sequelize

ORM simplifies the interaction between the platform

and the MySQL database.

HermeSpeech uses Internet-standard Transport Layer

Security (TLS) for all web-based interactions. This pro-

tects participant’s Protected Health Information (PHI)

between their web browser and our servers. Data is

not persisted within the browser, mitigating PHI risk

on the participant’s side. Within our servers, data is

stored encrypted at rest, and is transported to back-

ing long-term storage using an API-authenticated TLS

communication, after which it is also stored encrypted

at rest. Credentials for API communication are man-

aged at the Azure system level, protecting them from

compromise in the course of regular application use.

Administrators are individually identified by their login

credentials. Further, all involved systems are configured

according to cybersecurity hardening best practices. We

have engineered the HermeSpeech platform to comply

with all relevant tenets of HIPAA regarding PHI data

protection, portability, and accountability.

IV. RECORDING WITH HERMESPEECH

We are using HermeSpeech in the collection of a

new corpus of atypical speech. All the speakers are

being recorded at the Johns Hopkins Medical Institu-

tions, where the Institutional Review Board approved

the data collection. All participants signed informed

consent. The goal of the corpus is to provide the

scientific community and developers with a new corpus

of atypical speech including annotated transcriptions

and intent. SLU and Automatic speech recognition

(ASR) systems are not always trained to have a good

performance with atypical speech, because this type of

data is not commonly available. The collection of new

corpora including atypical speech and intent labels will

facilitate to train and adapt new SLU systems, which

can be crucial for the interaction between atypical

speakers and speech assistants. Table I includes the de-

mographics, word error rate (WER) and character error

rate (CER) of the first 18 atypical speakers recorded

with HermeSpeech. We automatically transcribed all

the utterances with Whisper3. The average number of

utterances recorded per speaker is 239. The speakers

read sentences that overlapp on intent with the Fluent

Speech Commands (FSC) dataset [4], which will allow

us to perform comparative analyses and use models pre-

trained with FSC for ASR and SLU. In our case, all

the sentences started with the wakeword ”Hey Jay”, in

contrast to FSC where there is no wakeword. The table

also includes the average WER and CER of the FSC

corpus for comparison, also transcribed with Whisper.

3https://github.com/openai/whisper
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TABLE I: ASR results on the collected data and Fluent Speech Command dataset with Whisper [3]. Here, we report

word error rates (%) and character error rates (%).

Dataset Speaker Diagnosis Number of audios Sex Age WER CER

Atypical speech

0005 Episodic Ataxia 256 Male 65 28.7 17.3
0006 Episodic Ataxia 228 Male 39 1.75 1.13
0007 Idiopathic Cervical Dystonia 281 Male 40 0.36 0.14
0008 Acute Ischemic Stroke 208 Female 80 48.86 36.70
0009 Cerebral and Focal Dystonia 554 Male 41 37.18 23.45
0010 Wernicke-Korsakoff syndrome 168 Female 72 36.91 23.07
0011 Episodic Ataxia 160 Male 75 22.85 14.22
0012 Parkinson’s Disease 208 Male 53 1.29 0.75
0013 Parkinson’s Disease 208 Female 80 27.09 16.10
0014 Sensorineural Hearing Loss 208 Male 80 0.50 0.43
0015 Parkinson’s Disease 150 Male 60 42.86 25.15
0017 Control Subject 285 Female 75 23.91 13.92
0018 Multiple System Atrophy 206 Female 65 15.96 10.13
0019 Spinocerebellar ataxia 285 Male 50 61.00 42.82
0020 Spinocerebellar ataxia 181 Female 56 4.30 2.03
0021 Amyotrophic Lateral Sclerosis 289 Male 75 6.62 3.74
0022 Parkinson’s Disease 317 Male 68 4.06 1.76
0023 Stiff Person Syndrome 218 Female 58 35.88 22.18

all - 4306 - - 23.14 14.80

FSC - - - - - 6.19 3.70

The comparison between FSC and our recordings

evidence the differences of WER and CER between

atypical speech and the FSC speakers. The recorded

speakers, with a variety of etiologies and speech dis-

fluency severity ranging from mild to severe, have an

absolute 17% higher WER than the FSC speakers, even

when the latter contain native and non-native English

speakers [4].

During the collection of this first part of the cohort,

we observed that some participants said the wakeword

right before clicking on ”Start recording” if the text

to be read was already present on the screen. In

other cases some participants tended to click on the

button to continue to the next line before fininshing the

current utterance. This leaded to incomplete recordings.

Therefore, we empirically set up a pre-buffer time of

1 s and a post-buffer time of 2 s. This means that the

sentence was not shown on screen until 1 s after the

platform started recording, and the recording did not

stop until 2 s afther the participants clicked on ”Move

Onto Next Line”.

Although most atypical speakers can get tired of

speaking sooner, in comparison to typical speakers, we

observed that recording more than 230 utterances in a

single session of less than 1 h was feasible and did not

cause any significant fatigue to most of them.

This ongoing corpus will be made available after

completion, and it will include speech recordings, tran-

scriptions, intent annotations, type of speech disfluency,

severity, and other annotations and rating scales made

by speech pathologists and neurologists.

V. CONCLUSIONS

In conclusion, HermeSpeech Recorder is an open-

source comprehensive web solution that facilitates the

recording of speech segments from participants re-

motely. The platform provides means of capturing and

managing speech recordings for research and develop-

ment purposes.

We aim to provide this platform to researchers and

institutions seeking a streamlined and efficient solution

for medium- and large-scale semi-automated speech

recording practices, while we are committed to con-

tinuously improving and customizing the platform. We

plan to expand the platform by adding more cloud and

data storage options, as well as incorporating additional

buffer and blob storage architecture parameters and

features. We are dedicated to ongoing development and

enhancement of the platform to ensure it remains a

valuable open-source option for researchers and insti-

tutions alike.
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Abstract: The Operatic singing music genre is 
characterized by the utilization of the vocal 
mechanism in some of its most demanding and 
complex kinetic manifestations. The study presented 
here serves as a) an introduction to a newly designed 
multi-sensor recording prototype for operatic 
singing, b) an account of its use in a research project, 
as well as c) a preliminary test for the prototype’s 
evaluation. The proposed prototype employs sensors 
that record acoustic and electroglottographic data, 
breathing kinetic actions, and data regarding 
pertinent postural and body movement behavior. It 
was recently utilized for the recording of an 
experiment with 28 operatic singers. Captured data 
for three of the participants was used for the present 
pilot study, and short videos of these three singers 
were given to an expert vocal trainer for ‘vocal 
technique problems’ empiric evaluation via a 
questionnaire. A subsequent examination of the 
recorded multi-sensor data resulted to the successful 
detection of objective evidence to support the ‘vocal 
technique problems’ reported by the expert.  
Keywords:  operatic singing, sensors, EGG, posture, 
breathing 

 
I. INTRODUCTION 

 
Operatic singing is an art form that spans more than 

400 years. It is an empiric trait delivered from singer to 
singer through the ages, one that demands great 
precision, control, and artistry. Although scientific 
research on the subject has progressed much during the 
last few decades, and numerous studies have been 
conducted [1], there is still much to be uncovered 
regarding the details of the mystifying functions of the 
singing voice, and operatic singing in particular. 
Singing, in any genre, is essentially the result of 
neuromuscular processes which involve voluntary and 
involuntary control of both external and internal 
mechanisms of the human body [2]. 

It thus stands to reason that an examination and 
tracing of such biomechanical functions would be 
essential in order to delve deeper into the ‘secrets’ of 
this extremely rigorous art. Voice research “concern 

with functionality is increasing” since 2010 [1], and 
multi-sensor research [3,4] and software/hardware 
applications for the singing voice -such as VoceVista 
Video Pro (Sygyt Software, Bochum, Germany)- are 
expanding sectors. Practical implementations of the 
above, concerning the art form of singing, can be found 
in vocal pedagogy [5], but have also been used for the 
recording of rare vocal music genres [6].    

This paper discusses the design of an operatic voice 
multi-sensor recording prototype and its pilot evaluation 
study. The prototype features the possibility to record 
with 6 sensors (using commercial software), a control 
interface programmed in Max/MSP for reading and 
recording data from the skeletal tracking camera, and 
MATLAB code for synchronizing and manipulating all 
the recorded data. The prototype comprises the 
following sensors:   
✓ Condenser microphone – Behringer ECM8000 
✓ Electroglottograph (EGG) - Glottal Enterprises EG2-

PCΧ2 (recording both vocal fold degree of contact 
and Vertical Laryngeal Position -VLP)   

✓ Two distinct Respiratory Effort Transducers – Biopac 
SS5LB 

✓ Time-of-Flight (ToF) Skeletal tracking camera – 
Azure Kinect Microsoft 

✓ HD video – iPhone 13 Pro. 

The sensors were selected taking into consideration 
the requirements for high portability, low invasiveness, 
and representation of a relatively large number of 
pertinent-to-singing kinetic functions. The innovation of 
the proposed prototype lies in its ability to generate 12 
sensor data streams, seven of which calculated by its 
gesture-following functionality. This enables the 
acquisition of synchronized, quantifiable data regarding 
singing-related biometrics. The present pilot study was 
conducted with the aim of investigating whether the 
combined use of these sensors yields data that is relevant 
for the comprehensive evaluation required for the final 
prototype assessment. 
 

II. METHODS 
 

Multi-sensor Recording Protocol: The proposed 
prototype was used to record an experimental part of a 
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larger project led by the Haute Ecole de Musique de 
Genève. The recordings took place in three venues. A 
total of 28 singers were recorded, all of them graduate 
or post-graduate students and some young professionals.  

Prior to the measurements, participants were 
instructed to arrive for the study vocally warmed-up and 
in good vocal condition. They were also asked to 
memorize an Italian aria of their choice, a song in their 
native language, and the first two phrases of the Aria 
Antica 'Caro mio ben'. All participants were requested 
to sign informed consents, as well as to complete a 
demographics and vocal health questionnaire.  

The measurement protocol for each participant 
began with a calibration process during which all 
sensors were manually adjusted. The recording phase 
commenced with data synchronization events, followed 
by various vocal exercises, the 'Caro mio ben' phrase, 
the Italian aria, the song, and concluded with ending 
synchronization events. 

Data Collection: Microphone (voice) and 
Electroglottograph (EGG and Laryngeal Tracking 
signals) data were recorded on 3 mono channels using a 
Steinberg UR44-C external sound card, and Cubase 12 
at a 48 kHz sampling rate. The thoracic and abdominal 
breath monitoring transducers were connected onto the 
specialized ‘Biopac MP35 Four Channel Data 
Acquisition System’ and their data were recorded at a 
25 kHz frame rate, using BSL4 Pro Software (Biopac 
Systems, Inc., Santa Barbara, CA). Both devices (MP35 
and UR44-C) were connected to the same laptop pc 
through USB-C and Hi-speed USB ports respectively. 
Breathing transducer data streams were exported 
as .wav sound files. 

A second laptop was used to read and record the 
skeletal tracking data from the Kinect Azure DK 
camera. A Max/MSP patch was developed to record the 
coordinates and orientation of 15 body ‘joints’ (head, 
right eye, left eye, right ear, left ear, nose, head centre, 
neck, thorax, right shoulder, left shoulder, navel, pelvis, 
right hip, left hip). These data were automatically 
exported along with their corresponding timestamps and 
sound level values into a .txt file with a sample rate of 
60 Hz. Video recordings of all experiment trials were 
made in 1080p 30 fps video using an iPhone 13 Pro. 

Each measurement started and was concluded with a 
short synchronization sequence, which consisted of 
three hand claps, followed by three small ‘cough-like’ 
glottal attack sounds, produced simultaneously with an 
abdominal muscle inward activation, and a small, sharp 
downward head bend. This latter event was selected as 
it provides information recorded by all sensors 
(microphone, EGG, breathing transducers, skeletal 
tracking) and can thus be used for data synchronization 
verification. A large pause of about 10 seconds was 
introduced between the first and second clap, during 
which participants were asked to stand, in complete 

silence, in what they considered their personal optimal 
upright posture. Skeletal tracking data from this pause 
was used to set each user’s reference posture.   

Data Processing: The collected data were resampled 
to 44.1 kHz, synchronized, and clipped automatically in 
MATLAB. Synchronization was achieved by automatic 
alignment of the audio streams recorded in all data 
packages (DAW, BSL4, Kinect Patcher, Video). 
MATLAB was also used to process the skeletal tracking 
data and output 7 distinct data streams of specific 
movements of the singer’s body. These movements 
were selected upon consultation with internationally 
acclaimed singing teachers as the most appropriate for 
this study. They were clearly visible movements that 
could either impact vocal production, or be good 
indicators of a technical, habitual, or physiological 
‘issue’ that can impede the optimal function of the 
voice’s kinetic mechanisms. These selected movements 
were: 1) body posture, 2) up-down head bend, 3) left-
right head turn, 4) parallel front-back head movement, 
5a) right shoulder up-down, 5b) left shoulder up-down, 
6) shoulder front-back (kyphosis-backward stretch).  

Evaluation: The preliminary evaluation of the multi-
sensor prototype relied on the objective and subjective 
assessment of a subset of the collected data (three 
participants), selected using the following criteria: a) 
same gender, b) recorded at the same venue c) different 
level of expertise (advanced: singer01, novice: singer02, 
and young professional: singer03). The videos of these 
three singers were exported synced with the audio from 
the measurement microphone, and the following 
excerpts were selected for subsequent evaluation: two 
scale exercises, the ‘Caro mio ben’ phrases, and the 
most demanding part of their selected aria. Their 
approximate duration ranged between 2’20’’ and 2’40’’. 
These excerpts were used for the subjective assessment 
section of the preliminary evaluation, which aimed 
towards a two-fold objective. First and foremost, to 
demonstrate as to whether ‘vocal technique problems’ 
(VTPs) and their indications (as reported by an expert) 
had been recorded and were discernable within the 
research data. The second objective was to establish a 
methodology for a large-scale study with many expert 
judges. In the above scope, the data was sent to an expert 
assessor for subsequent evaluation along with a 
questionnaire and detailed instructions. The selected 
expert judge is an internationally acclaimed operatic 
singer with a 23-year singing career, 18 years of 
teaching experience, and a comprehensive 
understanding of the physiological mechanisms 
pertinent to vocal production. The questionnaire which 
they were asked to follow consisted of 9 questions 
regarding mainly a) the VTPs they perceived, b) the 
indications that led to the detection of each VTP, and c) 
suggestions on muscular systems each participant 
should work on. 
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III. RESULTS 

 
A. Expert judge report and examination of multi-sensor 
data: Questionnaire answers from the expert who 
judged the three participants’ videos were examined and 
the reported VTPs are listed below, sorted by sensor data 
stream where they have been recorded, or where 
evidence for these ‘problems’ can be detected. 
✓ EGG signal: insufficient glottal adduction, arytenoid 

cartilages strain, increased air pressure, 
✓ VLP signal: low position of larynx, downwards pressure 

of larynx, lack in laryngeal control of movement,  
✓ Kinect spinal posture in conjunction with abdominal 

breathing sensor: Insufficient body support, air control, 
✓ Kinect shoulder forward/backward bend/stretch in 

conjunction with thoracic breathing sensor: thoracic 
spinal region tension,  

✓ Uncategorized (no pertinent recorded data): tongue 
lower part stiffness. 

The expert was also requested to provide indications 
that led to the report of VTPs. These indications are 
listed here and can mostly be detected in an audio 
spectrographic analysis, EGG signal analysis, and 
supported by data from the breathing sensors and 
postural data. 

Indications: instability in vibrato & intonation and 
voice quality change, unstable intonation and vibrato, 
breathy sound, unstable dynamics, sound distortion, 
growling sound, short duration of high note, face 
observation, posture observation. 
 

B. Data analysis:  
In order to provide a few characteristic examples of 

quantifiable indications for reported ‘vocal technique 
problems’, a selection of recorded data analysis for 
participant singer01 is presented in this section. 
Reported issues for this singer that can be observed here 
are: “Larynx position without adequate control”, 
“insufficient air pressure control through body support”, 
“intense subglottal air pressure”, “vibrato frequency 
decrease”, “breathy sound”, “muscular tension” in the 
thoracic spinal region.  

Example #1: Evidence of a reported VTP is 
illustrated in Fig. 1 from an analysis of the VLP and 
audio data streams. It concerns a sustained note of 
singer01 on a G3 note (196 Hz) and the word “ben” (first 
phrase of ‘Caro mio ben’ Aria), which was indicated as 
problematic by the expert judge. The expert’s report for 
lowering of the larynx is apparent on the onset of this 
and the following syllable, while lack of its control 
could be attested by the constant variation of the VLP 
during the sustained vowel/tone, which is connected 
also to the reported vibrato instability.  

 
Figure 1. Example #1 depiction of VLP (top) and 

microphone (bottom) waveforms for reported G3 note. 
 
Example #2: Vibrato rate for singer01 has been 

measured in VoceVista, as seen in Fig. 2, to 
occasionally decrease from an already relatively low 6 
Hz [7] to values between 4.5-5.0 Hz in sustained notes, 
thus confirming the expert’s report for “vibrato 
frequency decrease”. Analysis also interestingly 
revealed a high vibrato extent. While vibrato extent in 
operatic singers has been found to range “between ±34 
and ±123 cent” and “the mean across tones and singers 
amounted to ±71 cent.”  [8], singer01 was measured to 
have an extent range of about ±49 to ±200 cent, with an 
astonishing extent rise during the note in question 
(among others) up to a range of ±159 to ±282 cent, 
which should greatly add to the audible vibrato 
fluctuation effect. 

 
Figure 2. Example #2 vibrato rate in Hz (top), vibrato 

extent in cents (middle), and spectrogram (bottom) for the first 
4-note except of ‘Caro mio ben’ aria, with the last note being 
the note used for Example #1. 

 
Example #3: Reported muscular tension in the 

thoracic part of the spine cannot easily be measured with 
non-invasive techniques, such as the ones deployed in 
the present prototype. However, recorded data (as 
shown in Fig. 3 for the whole first phrase of ‘Caro mio 
ben’) demonstrate that singer01 tended to employ a 
combination of abdominal and thoracic breathing that 
seem to commence simultaneously but follow distinct 
recession slopes. 
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Figure 3. Example #3 selected waveforms (top to bottom): 

1) microphone in Hz, 2) abdominal circumference relative 
variation, 3) thoracic circumference relative variation, 4) 
spinal posture relative variation from lordotic (negative 
values) to kyphotic (positive values), 5) shoulders bend 
relative variation from backward (negative values) to forward 
(positive values). Depiction pertains to the first 8-note except 
of ‘Caro mio ben’ aria. 

 
More specifically, thoracic volume appears to 

collapse rapidly, while abdominal muscle activation 
seems to persist a while longer. Consequently, the 
second part of the singer’s phrase is sung with what the 
expert described as “insufficient air pressure control 
through body support”. This lack of proper muscular 
activation, and especially the chest cavity collapse, is 
coupled with a tendency for a kyphosis-like spinal and 
shoulder forward bend (which can be seen in lines 4 and 
5 of Fig. 3). This conjunction of elements that are 
apparent in the data streams, illustrate a condition in 
which the singers’ breathing muscles are contracted and 
tension starts to build up, as the body has no resources 
with which to control the subglottal pressure. The above 
effect could be what the expert judge noted as “muscular 
tension” in the thoracic spinal region. 

Example #4: Contact Quotient (CQ) appeared to be 
over 0,60 for the most part of the trial, when computed 
with VoceVista using a hybrid method, where contact 
instant computed by the derivative of EGG signal, 
opening instant computed using a threshold set at 0,43 
as indicated by Herbst [9]. For comparison with a 
previous study on CQ in pressed phonation [10], CQ 
was also calculated using a criterion method with a 
threshold set at 0,35 and was found to range between 
0.61 and 0.73 for the specified note, values higher than 
previously reported even for pressed phonation [10]. 
This seems to be in accordance with the expert judge’s 
mention of increased subglottal pressure. 

Example #5: Vocal sound ‘breathiness’ 
characteristic in singing has been shown to be 
predictable from the audio and the EGG data, using 
computations, such as the Multi-Dimensional Voice 
Profile [3], or the (currently expanded/revised) multiple 
regression model CDH [11]. 

IV. DISCUSSION 
 

A comprehensive inspection of the recorded data 
revealed evidence of expert-reported VTPs in most 
cases. Such information could be obtained either from 
singular sensor output, or through combinatory analysis 
of two or more synchronized data-streams. The sole case 
of reported VTP that was not recordable in the prototype 
data was “tongue lower part stiffness”. Similarly, the 
sole ’indication’ not quantified was “facial muscle 
activation”, which was nevertheless recorded in video. 
Moreover, in response to a questionnaire question, the 
expert judge provided a list of suggested vocal exercises 
targeting various muscular systems, most of which can 
be monitored by the proposed prototype. This positions 
the prototype as a promising candidate to evolve into an 
assistive tool for vocal pedagogy. 

Limitations and Future work: The present study 
served as a pilot study and, therefore, was conducted 
using a limited number of participants and judges. A 
large-scale study is already in progress, using a revisited 
analysis methodology, more participants and experts, 
and participant questionnaire analysis. Finally, there is 
the possibility of replacing the breathing sensors with 
more readily available options, as well as the potential 
evolution of the synchronization method and code. 

Acknowledgements: The authors would like to thank 
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     Abstract: Non-words are meaningless terms used 
in clinical research to detect and assess speech and 
language disorders. As an alternative to 
standardized scoring methods, this work proposes 
an innovative approach based on electrodermal 
activity (EDA) and speech, to evaluate possible 
physiological changes during a word/non-word 
reading task. A group of forty-five healthy 
volunteers were involved into experimental sessions. 
After preprocessing and male/female cohort 
separation, fifty features were extracted for each 
group. The aim was to investigate differences in the 
sympathetic nervous system activation between 4-
syllables non-words, 4-syllables words and baseline 
conditions. Moreover, possible relationships 
between EDA and speech parameters for both 
groups were investigated. Results show that EDA 
can discriminate between tasks. For non-words, 
significant correlations were found between EDA 
signal complexity metrics, fundamental frequency 
and voice intensity. 
Keywords:  Words/non-words, sympathetic nervous 
system, electrodermal activity, speech analysis. 
 

I. INTRODUCTION 
 
Speech and language disorders (SLD) concern up to 
12% of the global population [1]. The American 
Speech-Language-Hearing Association defines 
language disorders as an impaired comprehension or 
use of spoken, written, or other symbol systems. It may 
involve and undermine language syntax, semantics and 
communication [1]. Such conditions can be caused by 
neurodegenerative diseases or traumatic events, and 
they usually appear during childhood. Early symptoms 
of SLDs are represented by a delay in speaking 
abilities, at around 2 years of age, with a significantly 
reduced expressive vocabulary with respect to typically 
developing children, without other concurrent 
developmental delays or sensory disorders [2]. These 
subjects present a higher risk of developing a form of 

SLD, which can later negatively affect verbal 
communication and educational progress. Several 
methods exist for the screening, detection and 
monitoring of SLDs, such as questionnaires or test 
batteries [1, 3, 4]. Non-words repetition (NWR) and 
word/non-word aloud reading (WNWAR) represent 
standardized techniques based on meaningless terms, 
specifically designed to respect phonotactic 
characteristics and prosodic features of real words. As 
compared to other language measures, these tasks 
proved to be a relevant clinical marker in SLD 
research. WNWAR was successfully used to track 
changes and monitor improvements in fluency and 
pronunciation correctness in children with SLD before 
and after rehabilitation sessions [5, 6]. These 
evaluations are qualitative: clinicians listen to non-
words utterances and note errors, stops, omissions and 
give scores. A useful integration is given by acoustical 
analysis, that allows an objective quantification of 
speech production capabilities and detect discomfort in 
participants' voice and speech in various experimental 
conditions [7, 8]. Another physiological signal that 
may be considered to quantify the activation of the 
sympathetic nervous system (SNS) is the electrodermal 
activity (EDA). Walsh and Ulser [9] have used its 
features to assess the awareness of stuttering in 
preschool children considering the relationship 
between SNS and speech production, whereas Marzi et 
al. [10] discovered a significant relationship between 
electrodermal activity and arousal in an affective word 
reading task. However, to the best of authors' 
knowledge, no studies investigated possible 
relationships between EDA and speech production. 
The aim of this study is to detect whether a NWAR 
task elicits any alteration in physiological responses 
and understand if relationships between them exist. 
The adopted paradigm is the same as in clinical and 
logopedic procedures. To evaluate and validate its 
robustness and accuracy, an exploratory analysis is 
performed on healthy subjects aiming at modelling 
their physiological elicited responses.  
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II. MATERIALS AND METHODS 

 
A. Experimental set-up 
Forty-five healthy volunteers (18 male M, 27 female F, 
mean age = 22,4±2,1 years) were recruited for this 
study. A DSI-24 (Wearable Sensing, San Diego, CA, 
USA) dedicated module was used to acquire EDA 
recordings. A Shure SM58 (Shure Inc., Niles, IL, 
USA) microphone was used for voice recordings. 
Sampling frequency was set at 300Hz for EDA and at 
44.1kHz for voice recordings. Five Italian words (W) 
and five non-words (NW) of two, three and four 
syllables each were selected from the test battery 
developed by Dispaldro et al. [11], for a total of 30 
stimuli. They were presented in two separate blocks to 
each participant: W first and then NW. The order of 
appearance of words and non-words within trials was 
randomised [12]. The entire dataset was not used to 
reduce the negative impact that instrumentation and 
experiment duration might have on fatigue and stress. 
Instead of repeating listened NW [4], subjects read 
stimuli from a monitor and then uttered them without 
time limits or correction from experimenters [5,6]. In 
this way, the role of phonological short-term memory, 
activated in the NWR task, was reduced. A motion 
artifact and three testing utterances were used to 
synchronize all devices. After a 180s baseline period, 
the experiment started and it was divided into three 
sections: 
I - subjects completed a counting number task, read a 
standardized sentence and uttered three sustained 
cardinal vowels (/a/, /i/, /u/), following the guidelines 
of the Società Italiana di Fonologia e Logopedia [13]. 
II - subjects read 15 W. 
III - subjects read 15 NW. 
An optical sensor-based triggering system was used to 
track sections and transitions between stimuli. 
In this work, only the results concerning electrodermal 
activity and speech, related to II and III will be 
presented. 
 
B. EDA Analysis  
EDA signals were preprocessed with a low-pass FIR 
filter of order 500, with cut-off frequency 5 Hz and z-
scored. The cvxEDA algorithm [14] was then applied 
for artifact removal, tonic (skin conductance level, 
SCL) and phasic (skin conductance response, SCR) 
component separation. SCL accounts for the slow-
varying, spontaneous changes in the baseline of SC 
signal, and is related to the general 
psychophysiological state of the subject [15]. SCRs 
represent fast varying SC changes, directly evoked by 
stimuli. Features extraction was based on [16]: PS 
MSymp (SC mean spectral power in the 0.045-0.25Hz 
band), SCL Mean, SCL Std, SCR Peak (max peak 

amplitude in SCR), SCR N (number of SCR peaks), 
SCR AmpSum (SCR peaks amplitude sum), Lat2 
(latency between stimulus and peak). Moreover, Phasic 
and Tonic Sample Entropy (SE), and CompEDA [17] 
were included. These parameters were calculated both 
considering the whole duration of each task and single 
stimuli. 
 
C. Acoustical Analysis 
Triggering signal and MATLAB 2020b (The 
MathWorks Inc., Natick, MS, USA) function 
detectSpeech.m were concurrently used to 
automatically segment audio files. Each utterance was 
processed with the open-source software BioVoice 
[18] giving 34 acoustical parameters concerning both 
frequency domain, such as fundamental frequency F0, 
formants and jitter, and time domain, such as voiced 
duration, pause duration, voiced/unvoiced percentage. 
According to [9] six more parameters were computed: 
amplitude envelope (AmpEnv), root-mean square 
(RMS) and zero crossing rate (ZCR), spectral roll-off, 
spectral bandwidth and spectral centroid. All 40 
parameters were computed separately for F and M 
groups to account for physiological differences 
between genders. 
 
D. Statistical Analysis 
The first aim of this work was to evaluate whether 
EDA features only can discriminate between baseline, 
W and NW tasks. A Kruskal-Wallis test was performed 
on EDA metrics computed on the whole duration of the 
three tasks, both for tonic and phasic component. 
Pairwise differences were investigated by applying 
Bonferroni post-hoc correction. The remaining EDA 
features have been evaluated between W and NW tasks 
by means of a Mann-Whitney test. Level of 
significance was set at 0.05 for both tests. 
Pearson correlation analysis between acoustical and 
EDA features was performed to understand whether 
SNS activation, expressed by EDA features, induces 
concurrent vocal properties alterations. Overall, 430 
comparisons were investigated between each EDA and 
acoustical feature. The level of significance was 0.01. 
Correlations were calculated separately for the F and 
M cohorts.  
 

III. RESULTS 
 
Table 2 shows the results of statistical analysis for 
EDA features computed for baseline, W and NW. 
Table 3 shows statistical results related to EDA 
features in the WNWAR tasks. 
 
Table 2 – Statistical results for EDA analysis, considering 
features available for all the conditions. (*), (#) and (+) denote 
significant differences between baseline and W, baseline and 
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NW, W and NW, respectively. The Bonferroni post-hoc 
correction was applied (Kruskal-Wallis test, level of 
significance 0.05). Median and interquartile range (iqr) 
values are reported. 

EDA feature 
Baseline 

Median (iqr) 

Task 
W 

Median (iqr) 
NW 

Median (iqr) 
PS MSymp*+ 0.89 (0.16) 0.48 (0.18) 0.96 (0.45) 
SCL Mean*#+ -0.44 (0.22) 0.21 (0.26) 0.72 (0.33) 
SCL Std*#+ 0.90 (0.15) 0.58 (0.21) 0.24 (0.22) 
CompEDA#+ 0.14 (0.15) 0.10 (0.12) 0.29 (0.16) 
SE Phasic*# 0.04 (0.04) 0.08 (0.07) 0.10 (0.09) 
SE Tonic*#+ 0.006 (0.005) 0.009 (0.006) 0.019 (0.014) 

 
Table 3 – Statistical results for EDA analysis, considering 
features available only for the W and NW tasks. (+) denotes a 
statistical difference between W and NW (Mann-Whitney 
test, level of significance 0.05). Median and interquartile 
range (iqr) values are reported. 

EDA feature 

Task 
W 

Median (iqr) 
NW 

Median (iqr) 
SCR peak+ 1.13 (1.02) 0.76 (0.82) 
SCR N+ 84 (29) 56 (21) 
SCR AmpSum+ 28.2 (29.0) 14.7 (11.3) 
Lat2 45.1 (59.8) 37.3 (94.2) 

 
Concerning the correlation analysis between acoustical 
and EDA features, Table 4 reports Pearson’s ρ 
coefficient and the p-value for the W and the NW 
tasks, limited to four syllables stimuli. Only the 
significant correlations in common between M and F 
are reported.  
 
Table 4 – Correlation results between EDA and acoustical 
parameters. Level of significance 0.01.  

W 

Correlation 
F M 

ρ p-value ρ p-value 
SCR N – F0median  0.24 0.003 -0.37 e-0.4 
SE Tonic – ZCR -0.24 0.004 -0.27 0.008 

NW 

Correlation 
F M 

ρ p-value ρ p-value 
Comp EDA – RMS -0.23 0.006 0.37 e-04 
SCR N – F0median  0.22 0.007 -0.36 e-04 
Comp EDA – 
AmpEnv -0.24 0.004 0.29 0.004 

 
Figure 1 shows the scatter plot for CompEDA and 
RMS for M (observations are denoted by ‘x’) and F 
(‘○’) groups, as well as their respective regression lines 
(solid and dashed for M and F cohorts, respectively).  
 

 

Figure 1: Scatter plot between CompEDA and RMS for M 
(x) and F (o) groups.  

IV. DISCUSSION 
This work reports a preliminary analysis of 
physiological signals acquired during W and NW 
tasks. The aim is assessing possible physiological 
changes during NW reading that can be detected by 
EDA and speech analysis.  
Firstly, it was evaluated if EDA features are able to 
discriminate between tasks and baseline. EDA features 
related to the tonic component (e.g., SCL Mean, SCL 
Std) allowed a pairwise discrimination between the 
three tasks. Significant differences were obtained as 
well on EDA phasic component features. For instance, 
SE phasic or SCR peak allowed discriminating 
between W and NW tasks. Furthermore, the NW task 
has the highest entropy values for the phasic 
component (SE Phasic) as compared to the W task and 
the baseline (Table 2).  
The M cohort presents a negative correlation on F0 
median (ρ=-0.37, p-value e-04), while the F cohort 
shows a positive correlation for the same parameter 
(ρ=0.24, p-value 0.003). An alteration of F0 may be 
associated with discomfort, stress or cognitive 
workload [9, 19]. Giddens et al. [19] highlighted that 
both increases and decreases of F0 can be detected in 
response to such conditions. Table 4 shows that the 
correlation of F0 median with EDA feature was found 
significant both for the W and NW tasks: thus, this 
shift may be simply induced by experimental 
conditions regardless of the proposed tasks.  
Table 4 shows a relevant difference between W and 
NW tasks. Specifically, while EDA signal complexity 
increases during NW reading, which is expressed by 
CompEDA, opposite effects on RMS and AmpEnv 
acoustical features appear, in line with [19]. These 
parameters represent good approximations of vocal 
intensity, therefore it seems that, when uttering NW, M 
tend to increase their loudness, whereas F decrease it 
(Figure 1).  
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To assess if the considered features, as well as the 
administered tasks, could be sensitive to SLDs this 
approach must be applied on a larger dataset and on 
pathological subjects. Also, future work should be 
devoted to account for various inter-physiological 
factors such as higher sensitivity to stress or stress 
unresponsiveness to this task. Nevertheless, results 
suggest that EDA and speech features can be used as 
an objective alternative to scoring methods in their 
assessment. Future work will extend analyses to words 
with different syllable length and will consider EEG 
analysis for brain activity differences during the 
proposed tasks, correlating its features with speech and 
EDA ones, as well as investigating possible causality 
relationships among them.  
 

V. CONCLUSION 
This paper proposes a first exploratory analysis of 
physiological signals acquired on healthy subjects 
during a W and NW reading test. Preliminary results 
suggest that EDA features allow discriminating SNS 
activity during three tasks. Moreover, significant 
relationships between EDA complexity measures, F0 
and voice intensity were observed. These outcomes 
open the way to the application of the proposed 
approach to pathological subjects, to better characterize 
SLDs and cognitive delays.  
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ROUND TABLE I: 
ACOUSTIC AND PHYSIOLOGICAL ASPECTS OF SINGING 

 
Moderator: Johan Sundberg. 
Panelists: Silvia Capobianco, Nathalie Henrich Bernardoni, Malte Kob. 
 
Acoustic and physiological aspects of singing is relevant from several points of view.  
First, singing develops for esthetical purposes, such as in Lieder Abend, as well as for practical purposes, such as in 
kulning, for calling cattle in the forest singing. Hence singing is a manifestation of human culture deserving scientific 
analysis aiming at deepening the understanding of mankind.  
Second, professional singers can use their voices extensively without detrimental effects on the voice organ. This 
implies that they have developed a vocal technique that contains the principle of vocal economy. This makes 
professional singing highly relevant also to voice care, education and training. 
Third, singers learn how to orthogonalize the three phonatory dimensions vocal loudness, pitch and phonation type. 
For non-singers, by contrast, these dimensions are typically interdependent; increase of vocal loudness is typically 
associated with increase of both pitch and phonation type. This makes research on singers’ voice function 
particularly worthwhile.  
 
In this session three aspects of vocal art in singing will be elucidated. Silvia Capobianco will report on her and her 
associates’ study of Acoustical features of Early Music Singing. Since the recent Early Music (EM) revival, a subset 
of singers has begun to specialize in a style of singing that is perceptually different from the more “mainstream” 
Romantic Operatic (RO) singing style. The aim of this contribution is to describe EM singing in terms of acoustic 
analysis of voice and breathing patterns. 
In a first study, 10 professional singers (5 F; 5M) versed in both the EM and the RO repertoire were enrolled in the 
study. Each singer recorded the first 10 bars of the famous Aria “Amarilli Mia Bella” (Giulio Caccini, 1602) a 
cappella, in RO and EM styles, in random order. Vibrato features and the Singer’s Formant power were analyzed 
using the software Biovoice. Vibrato in EM singing was characterized by a higher rate, a smaller extent, and less 
regular cycle-cycle period duration compared to RO singing. As in previous studies, RO singing presented a more 
prominent Singer’s Formant, as indicated by a smaller QR. 
In a second study, a novel portable device that simultaneously monitors vocal activity and breathing patterns without 
interfering with natural singing was developed, combining a miniature accelerometer to measure vocal doses from 
skin vibrations on the neck and two respiratory inductive plethysmography (RIP) bands to estimate the breathing 
pattern by measuring changes in the thoracoabdominal cross-sectional area. The device was tested on 13 professional 
EM singers and 14 untrained individuals during the execution of singing tasks. EM singers demonstrated a higher 
asynchronous motion between ribcage and abdomen during singing and a reduced use of the thoracic compartment in 
favor of a more compliant abdominal compartment. Comparing vocal doses with breathing patterns, it was possible 
to build graphs where “efficiency regions” identified strategies applied only by singers.  
Acoustical and breathing patterns analysis was used to characterize EM singing, highlighting peculiar features in 
comparison with Romantic Operatic singing. Given the acoustical distinctions between EM and RO styles, future 
scientific and musicological studies should consider distinguishing between the two styles rather than using a 
singular term for Western Classical singing.  
In the second talk Nathalie Henrich Bernardoni will present Insights Into Mixing in Classical and Modern Singing.  
Among the world of singing-voice registers, the notion of «mixed voice» is one of the most puzzling. Both classical 
and non-classical singers use this particular register to avoid vocal breaks during passaggio. In this presentation we 
will explore the physiological and acoustical characteristics of mixing in singing on two main databases: a database 
composed of professional lyrical singers and a database composed of modern pop-rock singers. We will discuss the 
main behaviours shared by all singers and the specificities of each singing style.  
In the third talk, Studies of Singers’ Use of Velopharyngeal Opening I will overview of a series of investigations I 
have had the privilege of carrying out together with colleagues from different fields, phoniatrician Miriam Havel, 
singing teacher Brian Gill, singer Jessica Lee, voice researcher and singer Filipa MB Lã, and acoustician Svante 
Granqvist.  
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Advantages and disadvantages of singing with a velopharyngeal (VP) opening has long been a theme of 
controversies between teachers of singing and between voice experts. Some argue that the VPO should be “patently 
closed” in vowel production, while others report voice improvements after instructing students to sing vowels with a 
narrow VP opening. I will present a family of studies, which I have had the privilege of carrying out with friends and 
colleagues from different fields, and which seem to shed light on effects of such an opening. 
Together with Birch and associates I examined the VP port in 17 professionally performing opera singers by means 
of a nasofiberscope.  For the vowels /u, a/, but rarely for the vowel /i/, we found VP openings of different sizes in 
many of these singers. A listening test revealed that a narrow VP port did not necessarily result in a nasalized vowel 
quality. In a follow-up study we analyzed the effect of connecting a 10 cm long quasi-nasal-tube resonator to a 20 cm 
long-quasi-vocal tract tube. We found, as expected, that the resonance frequency of the shorter tube created a dip in 
the transfer function of the quasi-vocal tract tube.   
In an experiment with Gill and associates we asked singers to sing a vowel sequence at different pitches with the VP 
port (i) closed, (ii) slightly open and (iii) wide open. We measured the audio signal and also the oral and nasal 
airflow signals as picked up by a Glottal Enterprises flow mask. The latter signals allowed us to verify that the 
singers managed to produce reliable examples of the three conditions. The audio signal was analyzed in terms of 
long-term-average spectra (LTAS). The results showed that, as an average across participants, a narrow VP opening 
enhanced the level of the 2 – 4 kHz range of the LTAS by about 5 dB relative to the overall LTAS level. In other 
words, a narrow VP opening tended to change the spectrum balance in favor of the spectrum partials in the frequency 
range of the singers’ formant cluster. 
Recent experiments with Filipa MB Lã and Svante Granqvist support the assumption that an open VP port can 
reduce the risk for voice breaks caused by source-filter interaction. Nine student choir singers sang glide tones on an 
intended neutral vowel while pressing against the mouth the end of a 70 cm long tube. They did this under three 
conditions: (i) with the far end of the tube open, (ii) with the far end of the tube open but while nasalizing the vowel 
and (iii) with a piece of cotton wool in the far end, thus attenuating the lowest resonances of the compound vocal 
tract&tube resonator. Under condition (i) a great number of voice breaks were observed, but the number of breaks 
was almost halved in (ii), when the participants nasalized the vowel. Likewise, it was almost halved under condition 
(iii) when a piece of cotton wool attenuated the lowest resonances. Thus, the risk of voice breaks was reduced when 
the lowest resonances were attenuated.  
Together with Miriam Havel and associates I have experimentally measured effects of a VP opening on the sound 
transfer of the vocal tract. We used 3-D models of vocal tracts coupled to 3-D models of nasal tracts via coupling 
tubes of different sizes. Increasing the cross-sectional area of the coupling tubes left the high frequency range 
basically unaffected but systematically attenuated the low frequency range, like the piece of cotton wool did in the 70 
cm long tube. This supports the assumption that a VP opening can reduce the risk for voice breaks caused by source-
filter interaction. However, it also shows that it can increase the levels in the high frequency range, an effect that 
otherwise typically requires an increase of vocal effort.  
Taken together, these studies suggest that a narrow VP opening, habitually used by many professional opera singers, 
can reduce the risk for voice breaks due to source-filter interaction and at the same time automatically enhance the 
singers’ formant cluster without requiring increase of vocal effort. 
 
 
Author: Malte Kob 
Abstract: The interaction of voice source and voice filter play a major role for voice timbre. On one hand the source 
characteristics is altered by the transfer through vocal and nasal tracts which challenges the estimation of source 
properties using acoustic methods. On the other hand the voice source is the end part of the tracts and provides a 
time-variant boundary condition to these resonators, ranging from open to closed. The mouth opening finally 
provides another boundary condition which balances the energy between internal resonance support and projection to 
the listeners. Singers can modulate all boundaries to achieve specific timbres. This part of the round table discusses 
the potential use of pedagogic and physical methods to teach and understand these interactions. 

 
 



ROUND TABLE II: 
FOCUSING ON VOICE ONSET: A CRITICAL MOMENT OF 

PHONATION. FROM BASIC SCIENCE TO THERAPY 
 
Moderator: P. H. DeJonckere. 
Panelists: Johan Sundberg, Giovanna Cantarella, Malte Kob, Philipp Aichinger. 
 
Outline: 

• Introduction and presentation of the topic 
• Typology – imaging – biophysics 
• Acoustics / EGG 
• Glottal and vocal tract impedance in the prephonatory and phonatory status 
• Modelling 
• Heath and deviant/dyskinetic modalities of voice onset in (artistic) speech & song 
• Clinical aspects, phonotraumatic tissue reactions and treatment options 

 
The onset of vocal fold vibration is a complex transient event, in which the forces at play progressively adjust until a 
stationary state is reached. The acting forces are lung pressure, intraglottal pressure, myoelastic tension of the vocal 
fold oscillator generating the glottal impedance, and inertance of the supraglottal vocal tract. 
 
Three categories of vocal onsets are generally recognized: soft (or “coordinated”), hard, and breathy (or “aspirate”). 
In normal subjects, the most frequently observed type of voice onset in spontaneous speech is the soft onset, and it 
may be considered as the “physiological” onset, with a few oscillations (possibly a single one) preceding the first 
glottal closure (‘collision-free oscillations’). Singers sometimes use the term ‘articulations’, e.g. differentiating: (1) 
staccato, that is short tones separated by short voiceless segments; (2) voiceless aspirated bilabial plosive followed 
by a vowel and (3) unaspirated bilabial plosive followed by a vowel. Accurate synchronization of glottal adduction 
and building up of subglottal pressure is essential and fails in pathology. 
 
Different types of phonation onset have different acoustic characteristics, as well as typical airflow patterns. 
According to Sundberg, in a breathy onset the transglottal airflow waveform results in a voice source with strongly 
dominating fundamental, whereas the higher overtones arrive with a slight delay. In hard glottal attacks, this delay is 
typically minimized or eliminated. 
 
The combined physical, physiological, imaging and acoustic parameters measured simultaneously in vivo provide a 
detailed qualitative and quantitative insight into the complex mechanisms of vocal onset and make possible a 
comprehensive understanding of the intraglottal mechanical events and fluid dynamics, particularly turbulence, at the 
precise moment when oscillation starts. This is essential for vocal modelling and voice synthesis, as well as for 
automated speech recognition and substitution voicing.  
Also, the specific acoustic and airflow patterns characterizing the different types of onset, are suited for 
differentiation by machine learning and practical applications in pedagogy of artistic voice (singing / acting) as well 
as in early detection of voice diseases. 
Relevance of specifically assessing the mechanism of voice onset is supported by the clinical experience: Habitual, 
dyskinetic respiratory and laryngeal behaviors may lead to voice complaints and phonotraumatic tissue reactions 
requiring therapeutic approaches. 
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Title: Advances and Frontiers in the Analysis and Synthesis of Pathological Voices: Voice 
Onsets and Offsets  
Author: Philipp Aichinger. 
Affiliation: Speech and Hearing Science Lab, Div. Phoniatrics-Logopedics, Dept. 
Otorhinolaryngology, Medical University of Vienna. 
 
Abstract: Voice onsets have a profound influence on voice quality. Classical features of the voice onset include the 
voice onset time and phonation threshold pressure. However, in the past, the analysis of midvowel segments often 
took priority over the analysis of the voice onset. In this presentation, we will revisit onsets and offsets in 
diplophonic voice, voice onsets in simulated high-speed videos of vocal fold vibration, as well as recent advances in 
deep learning-based speech synthesis. 
For analyzing and modeling onsets and offsets in diplophonia, a hidden Markov model (HMM) was used [1]. It relies 
on modeling the onset and offset probabilities of glottal oscillators over time. In the analysis-by-synthesis of glottal 
area waveforms of sustained phonation, it was shown that the model fidelity achieved by an HMM-based system 
exceeded the fidelity achieved by a deep autoencoder and was approximately on par with the so-called 'WaveGlow' 
approach. As an added value, the HMM has a larger explanatory power than the other two approaches. 
The HMM-based model was also used to model the frequency of occurrence of diplophonation in audio recordings of 
German standard text readings [2]. A feature termed 'diplophonia rate (%)' enabled the distinction between frequently 
diplophonic speakers, rarely diplophonic speakers, and non-diplophonic speakers. 
For simulating voice onsets in high-speed videos of vocal folds, a kinematic model was combined with computer 
graphics [3]. The most important control parameters for modeling voice onset are the posterior glottal opening (mm), 
enabling abduction and adduction of the vocal folds, as well as the vibratory amplitude (mm), enabling the start and 
stop of the vibration. For an example of a breathy voice onset, temporally smooth adduction and amplitude transition 
were combined. The initial posterior glottal width was 4 mm and reduced to 0 mm within 25 ms, approximately. 
Simultaneously, the amplitude was increased from 0 mm to 0.7 mm. For modeling an example of a pressed voice 
onset, glottal width was 0 prior to the fade-in of the amplitude, which is faster in the pressed example than in the 
breathy example. 
In conclusion, recent advances in the modeling of voice onset have improved our understanding of voice function. 
Deep learning-based synthesis is astonishingly realistic but lacks physiological explanation. For clinical assessment 
and the control of treatment, features of voice onset and offset may contain relevant information. For example, voice 
disorders influencing the voice onset include vocal fold paralysis, laryngitis, and functional dysphonia. Detailed 
analyses of the vocal fold kinematics and acoustics at voice onset and offset most likely require the simultaneous use 
of high-speed videolaryngoscopy and audio recordings, which should be considered to become the standard. 
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Author: Malte Kob 
Abstract: The conditions of respiratory organs, larynx and vocal articulators determine the source characteristics as 
well as the timbre and radiation of the voice. Whereas the glottal status determines pitch, source spectrum, and the 
voice quality (from pressed to breathy), the articulatory organs adjust the resonators of the vocal and nasal tracts for a 
desired voice timbre (formants) and projection (mouth opening).  The pre-phonatory configuration implements the 
intended voice characteristics by adjustment of laryngeal and articulatory muscles, cartilages and ligaments, shortly 
before phonation starts. In this part of the round table methods for potential assessment of the physiology before, 
during and after voice onset are discussed. 



LECTURE: 
THE « VIRTUAL MUSEUM OF PHONIATRICS »  
A GUIDED TOUR BY THE CURATOR-IN-CHIEF 

P. H. DEJONCKERE 
 
As a multifaceted discipline, Phoniatrics has a rich and diverse history. This worthwhile past constitutes a heritage 
that we need to safeguard and to organize, in order to make it better known, available for more in depth investigation 
and for referral. 
These are the main aims of the “Virtual Museum of Phoniatrics”, that has been named, as a respectful tribute, after 
Prof. Dr. Antoinette Am Zehnhoff-Dinnesen, former President of the UEP. 
Like for most medical disciplines, the history of Phoniatrics involves aspects related both to basic sciences and to 
clinical practice, but to societal and cultural issues as well, with prominent figures, writings, instruments, techniques 
and significant milestones marking the progress in understanding and managing disease and cure. All these items 
receive an appropriate place within one of the seven galleries of the Museum: 
Persons (not including persons who are still alive) 
Instruments and devices (for physiology / diagnosis / assessment / treatment) 
Congresses (programs / proceedings…) 
Historical books 
Historical articles 
Articles on history 
Historical videos / films 
  
Nowadays, digitization makes possible a true ‘virtual’ museum, designed to be freely accessible at any time within 
the UEP-website. 
Obviously, the current collection is but a starting point, and it requires being complemented and upgraded by 
additional material and documentation over time. 
The presentation will consist in a guided tour, giving a general overview of the current collection and illustrating 
more in detail some noteworthy items. 
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Organizers: Lorenzo Frassineti, Federico Calà, Pietro Tarchi, Valentina Guarguagli, Claudia 
Manfredi, Antonio Lanatà. 
 
In the last years, the possibility to integrate more sources of information has allowed a better characterization and a 
deeper comprehension of the neurophysiological dynamics involved in several cognitive and decisional processes 
(Lahat et al., 2015, Verma and Tiwary 2014, Ha et al., 2015). This multimodal approach was applied in several Event 
Related Potential (ERP) tasks, and it has successfully highlighted significant correlations between different types of 
biosignals which might underline relationships between physiological systems as well (Muhammad et al. 2021, 
Nweke et al. 2019).  
During the experimental session, a multimodal system will be shown and applied to volunteer subjects. A number of 
biosignals will be recorded in two separate experiments: a subset of the SIFEL Italian protocol (Lucchini et al. 2002) 
and a protocol for the assessment of dyslexia (Job and Tressoldi 2007), based on Words and Non-Words reading 
(Dispaldro et al. 2013). 
 
In detail, during the experience the following devices and their integration/synchronization will be presented: 

• Electroencephalogram DSI-24 (dry-EEG) (Wearable Sensing, San Diego, CA, USA)  
• Electrocardiogram Shimmer Sensing 3 (Shimmer Research Ltd, Dublin, Ireland) 
• Galvanic Skin Response (GSR) device (Wearable Sensing, San Diego, CA, USA) 
• Microphone SHURE 
• Trigger HUB (Wearable Sensing, San Diego, CA, USA) and photodiode for the device synchronization 
• Display on a monitor for task presentation. 

 
Volunteers from MAVEBA 2023 will perform the following reading tasks: 

• From the SIFEL protocol  (Lucchini et al. 2002): 
o number listing task (from 1 to 10)  
o the italian sentence “io amo la aiuole della mamma” 
o vowels /a/, /i/, /u/ sustained for three seconds 

• From the Italian Words-Non/Words task for dyslexia assessment proposed by Dispaldro et al. 2013: 
o 15 Words  
o 15 Non-Words 

 
The aim of these experiments was to evaluate and demonstrate that, by combining different sources of information, it 
is possible to obtain a deeper insight into physiological dynamics regarding speech processing aspects not yet 
investigated, allowing a better understanding of several voice and speech disorders. Such systems may also be used 
to quantify both the disease progression and the effects of rehabilitation program (e.g. logopedics).  
Although the experiment was designed for Italian speakers, at MAVEBA 2023 participation is open/encouraged and 
extended to all the attendees. This could represent an interesting point of discussion regarding the evaluation of 
signals recorded from non-Italian speakers or possibly bilingual speakers.  
 

LABORATORY: 
A MULTIMODAL SYSTEM FOR THE CHARACTERIZATION OF 
PHYSIOLOGICAL DYNAMICS DURING SIFEL PROTOCOL AND 

WORDS/NON-WORDS READING TASKS 
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Although the experiment was designed for Italian speakers, at MAVEBA 2023 participation is open/encouraged and 
extended to all the attendees. This could represent an interesting point of discussion regarding the evaluation of 
signals recorded from non-Italian speakers or possibly bilingual speakers.  
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