

Genetic
Algorithms and

Genetic
Programming
Modern Concepts and
Practical Applications

Numerical Insights
Series Editor

A. Sydow, GMD-FIRST, Berlin, Germany

Editorial Board
P. Borne, École de Lille, France; G. Carmichael, University of Iowa, USA;

L. Dekker, Delft University of Technology, The Netherlands; A. Iserles, University of
Cambridge, UK; A. Jakeman, Australian National University, Australia;

G. Korn, Industrial Consultants (Tucson), USA; G.P. Rao, Indian Institute of Technology,
India; J.R. Rice, Purdue University, USA; A.A. Samarskii, Russian Academy of Science,

Russia; Y. Takahara, Tokyo Institute of Technology, Japan

The Numerical Insights series aims to show how numerical simulations provide valuable insights
into the mechanisms and processes involved in a wide range of disciplines. Such simulations
provide a way of assessing theories by comparing simulations with observations. These models are
also powerful tools which serve to indicate where both theory and experiment can be improved.

In most cases the books will be accompanied by software on disk demonstrating working
examples of the simulations described in the text.

The editors will welcome proposals using modelling, simulation and systems analysis
techniques in the following disciplines: physical sciences; engineering; environment; ecology;
biosciences; economics.

Volume 1
Numerical Insights into Dynamic Systems: Interactive Dynamic System Simulation with
Microsoft® Windows™ and NT™
Granino A. Korn

Volume 2
Modelling, Simulation and Control of Non-Linear Dynamical Systems: An Intelligent Approach
using Soft Computing and Fractal Theory
Patricia Melin and Oscar Castillo

Volume 3
Principles of Mathematical Modeling: Ideas, Methods, Examples
A.A. Samarskii and A. P. Mikhailov

Volume 4
Practical Fourier Analysis for Multigrid Methods
Roman Wienands and Wolfgang Joppich

Volume 5
Effective Computational Methods for Wave Propagation
Nikolaos A. Kampanis, Vassilios A. Dougalis, and John A. Ekaterinaris

Volume 6
Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications
Michael Affenzeller, Stephan Winkler, Stefan Wagner, and Andreas Beham

Genetic
Algorithms and

Genetic
Programming
Modern Concepts and
Practical Applications

Michael Affenzeller, Stephan Winkler,
Stefan Wagner, and Andreas Beham

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742

© 2009 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑13: 978‑1‑58488‑629‑7 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can‑
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy‑
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that pro‑
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Genetic algorithms and genetic programming : modern concepts and practical
applications / Michael Affenzeller ... [et al.].

p. cm. ‑‑ (Numerical insights ; v. 6)
Includes bibliographical references and index.
ISBN 978‑1‑58488‑629‑7 (hardcover : alk. paper)
1. Algorithms. 2. Combinatorial optimization. 3. Programming (Mathematics)

4. Evolutionary computation. I. Affenzeller, Michael. II. Title. III. Series.

QA9.58.G46 2009
006.3’1‑‑dc22 2009003656

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

List of Tables xi

List of Figures xv

List of Algorithms xxiii

Introduction xxv

1 Simulating Evolution: Basics about Genetic Algorithms 1
1.1 The Evolution of Evolutionary Computation 1
1.2 The Basics of Genetic Algorithms 2
1.3 Biological Terminology . 3
1.4 Genetic Operators . 6

1.4.1 Models for Parent Selection 6
1.4.2 Recombination (Crossover) 7
1.4.3 Mutation . 9
1.4.4 Replacement Schemes 9

1.5 Problem Representation . 10
1.5.1 Binary Representation 11
1.5.2 Adjacency Representation 12
1.5.3 Path Representation 13
1.5.4 Other Representations for Combinatorial Optimization

Problems . 13
1.5.5 Problem Representations for Real-Valued Encoding . . 14

1.6 GA Theory: Schemata and Building Blocks 14
1.7 Parallel Genetic Algorithms 17

1.7.1 Global Parallelization 18
1.7.2 Coarse-Grained Parallel GAs 19
1.7.3 Fine-Grained Parallel GAs 20
1.7.4 Migration . 21

1.8 The Interplay of Genetic Operators 22
1.9 Bibliographic Remarks . 23

2 Evolving Programs: Genetic Programming 25
2.1 Introduction: Main Ideas and Historical Background 26
2.2 Chromosome Representation 28

2.2.1 Hierarchical Labeled Structure Trees 28

v

vi Genetic Algorithms and Genetic Programming

2.2.2 Automatically Defined Functions and Modular Genetic
Programming . 35

2.2.3 Other Representations 36

2.3 Basic Steps of the GP-Based Problem Solving Process 37

2.3.1 Preparatory Steps . 37

2.3.2 Initialization . 39

2.3.3 Breeding Populations of Programs 39

2.3.4 Process Termination and Results Designation 41

2.4 Typical Applications of Genetic Programming 43

2.4.1 Automated Learning of Multiplexer Functions 43

2.4.2 The Artificial Ant . 44

2.4.3 Symbolic Regression 46

2.4.4 Other GP Applications 49

2.5 GP Schema Theories . 50

2.5.1 Program Component GP Schemata 51

2.5.2 Rooted Tree GP Schema Theories 52

2.5.3 Exact GP Schema Theory 54

2.5.4 Summary . 59

2.6 Current GP Challenges and Research Areas 59

2.7 Conclusion . 62

2.8 Bibliographic Remarks . 62

3 Problems and Success Factors 65

3.1 What Makes GAs and GP Unique among Intelligent
Optimization Methods? . 65

3.2 Stagnation and Premature Convergence 66

4 Preservation of Relevant Building Blocks 69

4.1 What Can Extended Selection Concepts Do to Avoid
Premature Convergence? . 69

4.2 Offspring Selection (OS) . 70

4.3 The Relevant Alleles Preserving Genetic Algorithm (RAPGA) 73

4.4 Consequences Arising out of Offspring Selection and RAPGA 76

5 SASEGASA – More than the Sum of All Parts 79

5.1 The Interplay of Distributed Search and Systematic Recovery
of Essential Genetic Information 80

5.2 Migration Revisited . 81

5.3 SASEGASA: A Novel and Self-Adaptive Parallel Genetic
Algorithm . 82

5.3.1 The Core Algorithm 83

5.4 Interactions among Genetic Drift, Migration, and Self-Adaptive
Selection Pressure . 86

Table of Contents vii

6 Analysis of Population Dynamics 89

6.1 Parent Analysis . 89

6.2 Genetic Diversity . 90

6.2.1 In Single-Population GAs 90

6.2.2 In Multi-Population GAs 91

6.2.3 Application Examples 92

7 Characteristics of Offspring Selection and the RAPGA 97

7.1 Introduction . 97

7.2 Building Block Analysis for Standard GAs 98

7.3 Building Block Analysis for GAs Using Offspring Selection . 103

7.4 Building Block Analysis for the Relevant Alleles Preserving GA
(RAPGA) . 113

8 Combinatorial Optimization: Route Planning 121

8.1 The Traveling Salesman Problem 121

8.1.1 Problem Statement and Solution Methodology 122

8.1.2 Review of Approximation Algorithms and Heuristics . 125

8.1.3 Multiple Traveling Salesman Problems 130

8.1.4 Genetic Algorithm Approaches 130

8.2 The Capacitated Vehicle Routing Problem 139

8.2.1 Problem Statement and Solution Methodology 140

8.2.2 Genetic Algorithm Approaches 147

9 Evolutionary System Identification 157

9.1 Data-Based Modeling and System Identification 157

9.1.1 Basics . 157

9.1.2 An Example . 159

9.1.3 The Basic Steps in System Identification 166

9.1.4 Data-Based Modeling Using Genetic Programming . . 169

9.2 GP-Based System Identification in HeuristicLab 170

9.2.1 Introduction . 170

9.2.2 Problem Representation 171

9.2.3 The Functions and Terminals Basis 173

9.2.4 Solution Representation 178

9.2.5 Solution Evaluation 182

9.3 Local Adaption Embedded in Global Optimization 188

9.3.1 Parameter Optimization 189

9.3.2 Pruning . 192

9.4 Similarity Measures for Solution Candidates 197

9.4.1 Evaluation-Based Similarity Measures 199

9.4.2 Structural Similarity Measures 201

viii Genetic Algorithms and Genetic Programming

10 Applications of Genetic Algorithms: Combinatorial
Optimization 207
10.1 The Traveling Salesman Problem 208

10.1.1 Performance Increase of Results of Different Crossover
Operators by Means of Offspring Selection 208

10.1.2 Scalability of Global Solution Quality by SASEGASA 210
10.1.3 Comparison of the SASEGASA to the Island-Model

Coarse-Grained Parallel GA 214
10.1.4 Genetic Diversity Analysis for the Different GA Types 217

10.2 Capacitated Vehicle Routing 221
10.2.1 Results Achieved Using Standard Genetic Algorithms 222
10.2.2 Results Achieved Using Genetic Algorithms with

Offspring Selection . 226

11 Data-Based Modeling with Genetic Programming 235
11.1 Time Series Analysis . 235

11.1.1 Time Series Specific Evaluation 236
11.1.2 Application Example: Design of Virtual Sensors for

Emissions of Diesel Engines 237
11.2 Classification . 251

11.2.1 Introduction . 251
11.2.2 Real-Valued Classification with Genetic Programming 251
11.2.3 Analyzing Classifiers 252
11.2.4 Classification Specific Evaluation in GP 258
11.2.5 Application Example: Medical Data Analysis 263

11.3 Genetic Propagation . 285
11.3.1 Test Setup . 285
11.3.2 Test Results . 286
11.3.3 Summary . 288
11.3.4 Additional Tests Using Random Parent Selection . . . 289

11.4 Single Population Diversity Analysis 292
11.4.1 GP Test Strategies . 292
11.4.2 Test Results . 293
11.4.3 Conclusion . 297

11.5 Multi-Population Diversity Analysis 300
11.5.1 GP Test Strategies . 300
11.5.2 Test Results . 301
11.5.3 Discussion . 303

11.6 Code Bloat, Pruning, and Population Diversity 306
11.6.1 Introduction . 306
11.6.2 Test Strategies . 307
11.6.3 Test Results . 309
11.6.4 Conclusion . 318

Conclusion and Outlook 321

Table of Contents ix

Symbols and Abbreviations 325

References 327

Index 359

List of Tables

7.1 Parameters for test runs using a conventional GA. 99
7.2 Parameters for test runs using a GA with offspring selection. 104
7.3 Parameters for test runs using the relevant alleles preserving

genetic algorithm. 113

8.1 Exemplary edge map of the parent tours for an ERX operator. 138

9.1 Data-based modeling example: Training data. 160
9.2 Data-based modeling example: Test data. 164

10.1 Overview of algorithm parameters. 209
10.2 Experimental results achieved using a standard GA. 209
10.3 Experimental results achieved using a GA with offspring se-

lection. 209
10.4 Parameter values used in the test runs of the SASEGASA

algorithms with single crossover operators as well as with a
combination of the operators. 211

10.5 Results showing the scaling properties of SASEGASA with
one crossover operator (OX), with and without mutation. . 211

10.6 Results showing the scaling properties of SASEGASA with
one crossover operator (ERX), with and without mutation. 212

10.7 Results showing the scaling properties of SASEGASA with
one crossover operator (MPX), with and without mutation. 212

10.8 Results showing the scaling properties of SASEGASA with a
combination of crossover operators (OX, ERX, MPX), with
and without mutation. 213

10.9 Parameter values used in the test runs of a island model GA
with various operators and various numbers of demes. . . . 215

10.10 Results showing the scaling properties of an island GA with
one crossover operator (OX) using roulette-wheel selection,
with and without mutation. 215

10.11 Results showing the scaling properties of an island GA with
one crossover operator (ERX) using roulette-wheel selection,
with and without mutation. 216

10.12 Results showing the scaling properties of an island GA with
one crossover operator (MPX) using roulette-wheel selection,
with and without mutation. 216

xi

xii Genetic Algorithms and Genetic Programming

10.13 Parameter values used in the CVRP test runs applying a stan-
dard GA. 223

10.14 Results of a GA using roulette-wheel selection, 3-tournament
selection and various mutation operators. 226

10.15 Parameter values used in CVRP test runs applying a GA with
OS. 228

10.16 Results of a GA with offspring selection and population sizes
of 200 and 400 and various mutation operators. The configu-
ration is listed in Table 10.15. 232

10.17 Showing results of a GA with offspring and a population size
of 500 and various mutation operators. The configuration is
listed in Table 10.15. 234

11.1 Linear correlation of input variables and the target values
(NOx) in the NOx data set I. 240

11.2 Mean squared errors on training data for the NOx data set I. 241

11.3 Statistic features of the identification relevant variables in the
NOx data set II. 246

11.4 Linear correlation coefficients of the variables relevant in the
NOx data set II. 248

11.5 Statistic features of the variables in the NOx data set III. . 250

11.6 Linear correlation coefficients of the variables relevant in the
NOx data set III. 250

11.7 Exemplary confusion matrix with three classes 253

11.8 Exemplary confusion matrix with two classes 254

11.9 Set of function and terminal definitions for enhanced GP-
based classification. 264

11.10 Experimental results for the Thyroid data set. 270

11.11 Summary of the best GP parameter settings for solving clas-
sification problems. 271

11.12 Summary of training and test results for the Wisconsin data
set: Correct classification rates (average values and standard
deviation values) for 10-fold CV partitions, produced by GP
with offspring selection. 279

11.13 Comparison of machine learning methods: Average test ac-
curacy of classifiers for the Wisconsin data set. 280

11.14 Confusion matrices for average classification results produced
by GP with OS for the Melanoma data set. 280

11.15 Comparison of machine learning methods: Average test ac-
curacy of classifiers for the Melanoma data set. 281

11.16 Summary of training and test results for the Thyroid data
set: Correct classification rates (average values and standard
deviation values) for 10-fold CV partitions, produced by GP
with offspring selection. 282

List of Tables xiii

11.17 Comparison of machine learning methods: Average test ac-
curacy of classifiers for the Thyroid data set. 283

11.18 GP test strategies. 285
11.19 Test results. 286
11.20 Average overall genetic propagation of population partitions. 287
11.21 Additional test strategies for genetic propagation tests. . . . 289
11.22 Test results in additional genetic propagation tests (using ran-

dom parent selection). 290
11.23 Average overall genetic propagation of population partitions

for random parent selection tests. 290
11.24 GP test strategies. 293
11.25 Test results: Solution qualities. 294
11.26 Test results: Population diversity (average similarity values;

avg., std.). 295
11.27 Test results: Population diversity (maximum similarity val-

ues; avg., std.). 296
11.28 GP test strategies. 302
11.29 Multi-population diversity test results of the GP test runs

using the Thyroid data set. 303
11.30 Multi-population diversity test results of the GP test runs

using the NOx data set III. 304
11.31 GP parameters used for code growth and bloat prevention

tests. 307
11.32 Summary of the code growth prevention strategies applied in

these test series. 308
11.33 Performance of systematic and ES-based pruning strategies. 310
11.34 Formula size progress in test series (d). 311
11.35 Quality of results produced in test series (d). 311
11.36 Formula size and population diversity progress in test series

(e). 312
11.37 Formula size and population diversity progress in test series

(f). 313
11.38 Quality of results produced in test series (f). 313
11.39 Formula size and population diversity progress in test series

(g). 314
11.40 Quality of results produced in test series (g). 314
11.41 Formula size and population diversity progress in test series

(h). 315
11.42 Quality of results produced in test series (h). 316
11.43 Comparison of best models on training and validation data

(bt and bv, respectively). 317
11.44 Formula size and population diversity progress in test series

(i). 320
11.45 Quality of results produced in test series (i). 320

List of Figures

1.1 The canonical genetic algorithm with binary solution encod-
ing. 4

1.2 Schematic display of a single point crossover. 8
1.3 Global parallelization concepts: A panmictic population struc-

ture (shown in left picture) and the corresponding master–
slave model (right picture). 18

1.4 Population structure of a coarse-grained parallel GA. 19
1.5 Population structure of a fine-grained parallel GA; the special

case of a cellular model is shown here. 20

2.1 Exemplary programs given as rooted, labeled structure trees. 30
2.2 Exemplary evaluation of program (a). 31
2.3 Exemplary evaluation of program (b). 32

2.4 Exemplary crossover of programs (1) and (2) labeled as par-
ent1 and parent2, respectively. Child1 and child2 are possible
new offspring programs formed out of the genetic material of
their parents. 34

2.5 Exemplary mutation of a program: The programs mutant1,
mutant2, and mutant3 are possible mutants of parent. . . . 35

2.6 Intron-augmented representation of an exemplary program in
PDGP [Pol99b]. 38

2.7 Major preparatory steps of the basic GP process. 38

2.8 The genetic programming cycle [LP02]. 40
2.9 The GP-based problem solving process. 41
2.10 GA and GP flowcharts: The conventional genetic algorithm

and genetic programming. 42
2.11 The Boolean multiplexer with three address bits; (a) general

black box model, (b) addressing data bit d5. 44

2.12 A correct solution to the 3-address Boolean multiplexer prob-
lem [Koz92b]. 44

2.13 The Santa Fe trail. 45

2.14 A Santa Fe trail solution. The black points represent nodes
referencing to the Prog3 function. 46

2.15 A symbolic regression example. 48

2.16 Exemplary formulas. 49
2.17 Programs matching Koza’s schema H=[(+ x 3), y]. 51

xv

xvi Genetic Algorithms and Genetic Programming

2.18 The rooted tree GP schema ∗(=,= (x,=)) and three exem-
plary programs of the schema’s semantics. 53

2.19 The GP schema H = +(*(=,x),=) and exemplary u and l
schemata. Cross bars indicate crossover points; shaded re-
gions show the parts of H that are replaced by “don’t care”
symbols. 56

2.20 The GP hyperschema ∗(#,= (x,=)) and three exemplary
programs that are a part of the schema’s semantics. 56

2.21 The GP schema H = +(∗(=, x),=) and exemplary U and L
hyperschema building blocks. Cross bars indicate crossover
points; shaded regions show the parts of H that are modified. 57

2.22 Relation between approximate and exact schema theorems for
different representations and different forms of crossover (in
the absence of mutation). 58

2.23 Examples for bloat. 60

4.1 Flowchart of the embedding of offspring selection into a ge-
netic algorithm. 71

4.2 Graphical representation of the gene pool available at a cer-
tain generation. Each bar represents a chromosome with its
alleles representing the assignment of the genes at the certain
loci. 74

4.3 The left part of the figure represents the gene pool at gener-
ation i and the right part indicates the possible size of gen-
eration i + 1 which must not go below a minimum size and
also not exceed an upper limit. These parameters have to be
defined by the user. 74

4.4 Typical development of actual population size between the
two borders (lower and upper limit of population size) dis-
playing also the identical chromosomes that occur especially
in the last iterations. 76

5.1 Flowchart of the reunification of subpopulations of a SASEGASA
(light shaded subpopulations are still evolving, whereas dark
shaded ones have already converged prematurely). 84

5.2 Quality progress of a typical run of the SASEGASA algo-
rithm. 85

5.3 Selection pressure curves for a typical run of the SASEGASA
algorithm. 86

5.4 Flowchart showing the main steps of the SASEGASA. . . . 87

6.1 Similarity of solutions in the population of a standard GA
after 20 and 200 iterations, shown in the left and the right
charts, respectively. 93

List of Figures xvii

6.2 Histograms of the similarities of solutions in the population
of a standard GA after 20 and 200 iterations, shown in the
left and the right charts, respectively. 94

6.3 Average similarities of solutions in the population of a stan-
dard GA over for the first 2,000 and 10,000 iterations, shown
in the upper and lower charts, respectively. 95

6.4 Multi-population specific similarities of the solutions of a par-
allel GA’s populations after 5,000 generations. 96

6.5 Progress of the average multi-population specific similarity
values of a parallel GA’s solutions, shown for 10,000 genera-
tions. 96

7.1 Quality progress for a standard GA with OX crossover for
mutation rates of 0%, 5%, and 10%. 99

7.2 Quality progress for a standard GA with ERX crossover for
mutation rates of 0%, 5%, and 10%. 101

7.3 Quality progress for a standard GA with MPX crossover for
mutation rates of 0%, 5%, and 10%. 102

7.4 Distribution of the alleles of the global optimal solution over
the run of a standard GA using OX crossover and a mutation
rate of 5% (remaining parameters are set according to Table
7.1). 103

7.5 Quality progress for a GA with offspring selection, OX, and
a mutation rate of 5%. 105

7.6 Quality progress for a GA with offspring selection, MPX, and
a mutation rate of 5%. 106

7.7 Quality progress for a GA with offspring selection, ERX, and
a mutation rate of 5%. 107

7.8 Quality progress for a GA with offspring selection, ERX, and
no mutation. 108

7.9 Quality progress for a GA with offspring selection using a
combination of OX, ERX, and MPX, and a mutation rate of
5%. 109

7.10 Success progress of the different crossover operators OX, ERX,
and MPX, and a mutation rate of 5%. The plotted graphs
represent the ratio of successfully produced children to the
population size over the generations. 110

7.11 Distribution of the alleles of the global optimal solution over
the run of an offspring selection GA using ERX crossover
and a mutation rate of 5% (remaining parameters are set
according to Table 7.2). 111

7.12 Distribution of the alleles of the global optimal solution over
the run of an offspring selection GA using ERX crossover and
no mutation (remaining parameters are set according to Table
7.2). 112

xviii Genetic Algorithms and Genetic Programming

7.13 Quality progress for a relevant alleles preserving GA with OX
and a mutation rate of 5%. 114

7.14 Quality progress for a relevant alleles preserving GA with
MPX and a mutation rate of 5%. 115

7.15 Quality progress for a relevant alleles preserving GA with
ERX and a mutation rate of 5%. 115

7.16 Quality progress for a relevant alleles preserving GA using a
combination of OX, ERX, and MPX, and a mutation rate of
5%. 116

7.17 Quality progress for a relevant alleles preserving GA using a
combination of OX, ERX, and MPX, and mutation switched
off. 116

7.18 Distribution of the alleles of the global optimal solution over
the run of a relevant alleles preserving GA using a combi-
nation of OX, ERX, and MPX, and a mutation rate of 5%
(remaining parameters are set according to Table 7.3). . . . 118

7.19 Distribution of the alleles of the global optimal solution over
the run of a relevant alleles preserving GA using a combina-
tion of OX, ERX, and MPX without mutation (remaining are
set parameters according to Table 7.3). 119

8.1 Exemplary nearest neighbor solution for a 51-city TSP in-
stance ([CE69]). 126

8.2 Example of a 2-change for a TSP instance with 7 cities. . . 128

8.3 Example of a 3-change for a TSP instance with 11 cities. . . 129

8.4 Example for a partially matched crossover. 134

8.5 Example for an order crossover. 135

8.6 Example for a cyclic crossover. 136

8.7 Exemplary result of the sweep heuristic for a small CVRP. . 144

8.8 Exemplary sequence-based crossover. 149

8.9 Exemplary route-based crossover. 151

8.10 Exemplary relocate mutation. 152

8.11 Exemplary exchange mutation. 152

8.12 Example for a 2-opt mutation for the VRP. 153

8.13 Example for a 2-opt∗ mutation for the VRP. 153

8.14 Example for an or-opt mutation for the VRP. 154

9.1 Data-based modeling example: Training data. 160

9.2 Data-based modeling example: Evaluation of an optimally fit
linear model. 161

9.3 Data-based modeling example: Evaluation of an optimally fit
cubic model. 162

9.4 Data-based modeling example: Evaluation of an optimally fit
polynomial model (n = 10). 162

List of Figures xix

9.5 Data-based modeling example: Evaluation of an optimally fit
polynomial model (n = 20). 163

9.6 Data-based modeling example: Evaluation of an optimally fit
linear model (evaluated on training and test data). 163

9.7 Data-based modeling example: Evaluation of an optimally fit
cubic model (evaluated on training and test data). 164

9.8 Data-based modeling example: Evaluation of an optimally fit
polynomial model (n = 10) (evaluated on training and test
data). 165

9.9 Data-based modeling example: Summary of training and test
errors for varying numbers of parameters n. 165

9.10 The basic steps of system identification. 167
9.11 The basic steps of GP-based system identification. 170
9.12 Structure tree representation of a formula. 179
9.13 Structure tree crossover and the functions basis. 181
9.14 Simple examples for pruning in GP. 195
9.15 Simple formula structure and all included pairs of ancestors

and descendants (genetic information items). 202

10.1 Quality improvement using offspring selection and various
crossover operators. 210

10.2 Degree of similarity/distance for all pairs of solutions in a
SGA’s population of 120 solution candidates after 10 genera-
tions. 218

10.3 Genetic diversity in the population of a conventional GA over
time. 219

10.4 Genetic diversity of the population of a GA with offspring
selection over time. 219

10.5 Genetic diversity of the entire population over time for a
SASEGASA with 5 subpopulations. 220

10.6 Quality progress of a standard GA using roulette wheel se-
lection on the left and 3-tournament selection the right side,
applied to instances of the Taillard CVRP benchmark: tai75a
(top) and tai75b (bottom). 223

10.7 Genetic diversity in the population of a GA with roulette
wheel selection (shown on the left side) and 3-tournament
selection (shown on the right side). 225

10.8 Box plots of the qualities produced by a GA with roulette
and 3-tournament selection, applied to the problem instances
tai75a (top) and tai75b (bottom). 227

10.9 Quality progress of the offspring selection GA for the in-
stances (from top to bottom) tai75a and tai75b. The left col-
umn shows the progress with a population size of 200, while
in the right column the GA with offspring selection uses a
population size of 400. 229

xx Genetic Algorithms and Genetic Programming

10.10 Influence of the crossover operators SBX and RBX on each
generation of an offspring selection algorithm. The lighter
line represents the RBX; the darker line represents the SBX. 230

10.11 Genetic diversity in the population of an GA with offspring
selection and a population size of 200 on the left and 400 on
the right for the problem instances tai75a and tai75b (from
top to bottom). 231

10.12 Box plots of the offspring selection GA with a population size
of 200 and 400 for the instances tai75a and tai75b. 233

10.13 Box plots of the GA with 3-tournament selection against the
offspring selection GA for the instances tai75a (shown in the
upper part) and tai75b (shown in the lower part). 233

11.1 Dynamic diesel engine test bench at the Institute for Design
and Control of Mechatronical Systems, JKU Linz. 238

11.2 Evaluation of the best model produced by GP for test strategy
(1). 241

11.3 Evaluation of the best model produced by GP for test strategy
(2). 242

11.4 Evaluation of models for particulate matter emissions of a
diesel engine (snapshot showing the evaluation of the model
on validation / test samples). 244

11.5 Errors distribution of models for particulate matter emissions. 244
11.6 Cumulative errors of models for particulate matter emissions. 245
11.7 Target NOx values of NOx data set II, recorded over ap-

proximately 30 minutes at 20Hz recording frequency yielding
∼36,000 samples. 247

11.8 Target HoribaNOx values of NOx data set III. 248
11.9 Target HoribaNOx values of NOx data set III, samples 6000

– 7000. 249
11.10 Two exemplary ROC curves and their area under the ROC

curve (AUC). 255
11.11 An exemplary graphical display of a multi-class ROC (MROC)

matrix. 257
11.12 Classification example: Several samples with original class

values C1, C2, and C3 are shown; the class ranges result from
the estimated values for each class and are indicated as cr1,
cr2, and cr3. 261

11.13 An exemplary hybrid structure tree of a combined formula
including arithmetic as well as logical functions. 265

11.14 Graphical representation of the best result we obtained for
the Thyroid data set, CV-partition 9: Comparison of original
and estimated class values. 272

11.15 ROC curves and their area under the curve (AUC) values for
classification models generated for Thyroid data, CV-set 9. 273

List of Figures xxi

11.16 MROC charts and their maximum and average area under
the curve (AUC) values for classification models generated
for Thyroid data, CV-set 9. 274

11.17 Graphical representation of a classification model (formula),
produced for 10-fold cross validation partition 3 of the Thy-
roid data set. 275

11.18 pctotal values for an exemplary run of series I. 287
11.19 pctotal values for an exemplary run of series II. 287
11.20 pctotal values for an exemplary run of series III. 288
11.21 Selection pressure progress in two exemplary runs of test se-

ries III and V (extended GP with gender specific parent se-
lection and strict offspring selection). 291

11.22 Distribution of similarity values in an exemplary run of NOx

test series A, generation 200. 297
11.23 Distribution of similarity values in an exemplary run of NOx

test series A, generation 4000. 298
11.24 Distribution of similarity values in an exemplary run of NOx

test series (D), generation 20. 298
11.25 Distribution of similarity values in an exemplary run of NOx

test series (D), generation 95. 299
11.26 Population diversity progress in exemplary Thyroid test runs

of series (A) and (D) (shown in the upper and lower graph,
respectively). 299

11.27 Exemplary multi-population diversity of a test run of Thyroid
series F at iteration 50, grayscale representation. 305

11.28 Code growth in GP without applying size limits or complexity
punishment strategies (left: standard GP, right: extended
GP). 310

11.29 Progress of formula complexity in one of the test runs of series
(1g), shown for the first ∼400 iterations. 315

11.30 Progress of formula complexity in one of the test runs of series
(1h) (shown left) and one of series (2h) (shown right). . . . 316

11.31 Model with best fit on training data: Model structure and
full evaluation. 318

11.32 Model with best fit on validation data: Model structure and
full evaluation. 318

11.33 Errors distributions of best models: Charts I, II, and III show
the errors distributions of the model with best fit on training
data evaluated on training, validation, and test data, respec-
tively; charts IV, V, and VI show the errors distributions of
the model with best fit on validation data evaluated on train-
ing, validation, and test data, respectively. 319

11.34 A simple workbench in HeuristicLab 2.0. 323

List of Algorithms

1.1 Basic workflow of a genetic algorithm. 3
4.1 Definition of a genetic algorithm with offspring selection. . . . 72
9.1 Exhaustive pruning of a model m using the parameters h1, h2,

minimizeModel, cpmax, and detmax. 196
9.2 Evolution strategy inspired pruning of a model m using the

parameters λ, maxUnsuccRounds, h1, h2, minimizeModel,
cpmax, and detmax. 198

9.3 Calculation of the evaluation-based similarity of two models m1

and m2 with respect to data base data 200
9.4 Calculation of the structural similarity of two models m1 and

m2 . 205

xxiii

Introduction

Essentially, this book is about algorithmic developments in the context of
genetic algorithms (GAs) and genetic programming (GP); we also describe
their applications to significant combinatorial optimization problems as well
as structure identification using HeuristicLab as a platform for algorithm de-
velopment. The main issue of the theoretical considerations is to obtain a
better understanding of the basic workflow of GAs and GP, in order to estab-
lish new bionic, problem independent theoretical concepts and to substantially
increase the achievable solution quality.

The book is structured into a theoretical and an empirical part. The aim of
the theoretical part is to describe the important and characteristic properties
of the basic genetic algorithm as well as the main characteristics of the algo-
rithmic extensions introduced here. The empirical part of the book elaborates
two case studies: On the one hand, the traveling salesman problem (TSP) and
the capacitated vehicle routing problem (CVRP) are used as representatives
for GAs applied to combinatorial optimization problems. On the other hand,
GP-based nonlinear structure identification applied to time series and clas-
sification problems is analyzed to highlight the properties of the algorithmic
measures in the field of genetic programming. The borderlines between theory
and practice become indistinct in some parts as it is also necessary to describe
theoretical properties on the basis of practical examples in the first part of the
book. For this purpose we go back to some small-dimensioned TSP instances
that are perfectly suited for theoretical GA considerations.

Research concerning the self-adaptive interplay between selection and the
applied solution manipulation operators (crossover and mutation) is the basis
for the algorithmic developments presented in this book. The ultimate goal in
this context is to avoid the disappearance of relevant building blocks and to
support the combination of those alleles from the gene pool that carry solution
properties of highly fit individuals. As we show in comparative test series, in
conventional GAs and GP this relevant genetic information is likely to get lost
quite early in the standard variants of these algorithms and can only be rein-
troduced into the population’s gene pool by mutation. This dependence on
mutation can be drastically reduced by new generic selection principles based
upon either self-adaptive selection pressure steering (offspring selection, OS)
or self-adaptive population size adjustment as proposed in the relevant alleles
preserving genetic algorithm (RAPGA). Both algorithmic extensions certify
the survival of essential genetic information by supporting the survival of rel-

xxv

xxvi Genetic Algorithms and Genetic Programming

evant alleles rather than the survival of above average chromosomes. This
is achieved by defining the survival probability of a new child chromosome
depending on the child’s fitness in comparison to the fitness values of its own
parents. With these measures it becomes possible to channel the relevant
alleles, which are initially scattered in the entire population, to single chro-
mosomes at the end of the genetic search process.

The SASEGASA algorithm is a special coarse-grained parallel GA; the
acronym “SASEGASA” hereby stands for Self-Adaptive Segregative Genetic
Algorithm including aspects of Simulated Annealing. SASEGASA combines
offspring selection with enhanced parallelization concepts in order to avoid
premature convergence, one of the major problems with GAs. As we will
show for the TSP, it becomes possible to scale the robustness and particularly
the achievable solution quality by the number of subpopulations.

Due to the high focus on sexual recombination, evolution strategies (ES)
are not considered explicitly in this book. Nevertheless, many of the theoret-
ical considerations are heavily inspired by evolution strategies, especially the
aspect of selection after reproduction and (self-)adaptive selection pressure
steering. Aside from other variants of evolutionary computation, further in-
spirations are borrowed from fields, as for example, population genetics. The
implementation of bionic ideas for algorithmic developments is quite prag-
matic and ignores debates on principles that are discussed in natural sciences.
Of course, we are always aware of the fact that artificial evolution as per-
formed in an evolutionary algorithm is situated on a high level of abstraction
compared to the biological role model in any case.

The problem-oriented part of the book is dedicated to the application of
the algorithmic concepts described in this book to benchmark as well as real
world problems. Concretely, we examine the traveling salesman problem and
the capacitated vehicle routing problem (which is thematically related to the
TSP), but more in step with actual practice, as representatives of combina-
torial optimization problems.

Time series and classification analysis are used as application areas of data-
based structure identification with genetic programming working with for-
mula trees representing mathematical models. As a matter of principle, we
use standard problem representations and the appropriate problem-specific
genetic operators known from GA and GP theory for the experiments shown
in these chapters. The focus is set on the comparison of results achievable with
standard GA and GP implementations to the results achieved using the ex-
tended algorithmic concepts described in this book. These enhanced concepts
do not depend on a concrete problem representation and its operators; their
influences on population dynamics in GA and GP populations are analyzed,
too.

Introduction xxvii

Additional material related to the research described in this book is pro-
vided on the book’s homepage at http://gagp2009.heuristiclab.com.
Among other information this website provides some of the software used
as well as dynamical presentations of representative test runs as additional
material.

Chapter 1

Simulating Evolution: Basics about
Genetic Algorithms

1.1 The Evolution of Evolutionary Computation

Work on what is nowadays called evolutionary computation started in the
sixties of the 20th century in the United States and Germany. There have
been two basic approaches in computer science that copy evolutionary mech-
anisms: evolution strategies (ES) and genetic algorithms (GA). Genetic al-
gorithms go back to Holland [Hol75], an American computer scientist and
psychologist who developed his theory not only under the aspect of solving
optimization problems but also to study self-adaptiveness in biological pro-
cesses. Essentially, this is the reason why genetic algorithms are much closer
to the biological model than evolution strategies. The theoretical foundations
of evolution strategies were formed by Rechenberg and Schwefel (see for ex-
ample [Rec73] or [Sch94]), whose primary goal was optimization. Although
these two concepts have many aspects in common, they developed almost in-
dependently from each other in the USA (where GAs were developed) and
Germany (where research was done on ES).

Both attempts work with a population model whereby the genetic informa-
tion of each individual of a population is in general different. Among other
things this genotype includes a parameter vector which contains all necessary
information about the properties of a certain individual. Before the intrinsic
evolutionary process takes place, the population is initialized arbitrarily; evo-
lution, i.e., replacement of the old generation by a new generation, proceeds
until a certain termination criterion is fulfilled.

The major difference between evolution strategies and genetic algorithms
lies in the representation of the genotype and in the way the operators are used
(which are mutation, selection, and eventually recombination). In contrast
to GAs, where the main role of the mutation operator is simply to avoid
stagnation, mutation is the primary operator of evolution strategies.

Genetic programming (GP), an extension of the genetic algorithm, is a
domain-independent, biologically inspired method that is able to create com-
puter programs from a high-level problem statement. In fact, virtually all
problems in artificial intelligence, machine learning, adaptive systems, and

1

2 Genetic Algorithms and Genetic Programming

automated learning can be recast as a search for a computer program; genetic
programming provides a way to search for a computer program in the space
of computer programs (as formulated by Koza in [Koz92a]). Similar to GAs,
GP works by imitating aspects of natural evolution, but whereas GAs are
intended to find arrays of characters or numbers, the goal of a GP process is
to search for computer programs (or, for example, formulas) solving the opti-
mization problem at hand. As in every evolutionary process, new individuals
(in GP’s case, new programs) are created. They are tested, and the fitter ones
in the population succeed in creating children of their own whereas unfit ones
tend to disappear from the population.

In the following sections we give a detailed description of the basics of
genetic algorithms in Section 1.2, take a look at the corresponding biological
terminology in Section 1.3, and characterize the operators used in GAs in
Section 1.4. Then, in Section 1.5 we discuss problem representation issues,
and in Section 1.6 we summarize the schema theory, an essentially important
concept for understanding not only how, but also why GAs work. Parallel
GA concepts are given in Section 1.7, and finally we discuss the interplay of
genetic operators in Section 1.8.

1.2 The Basics of Genetic Algorithms

Concerning its internal functioning, a genetic algorithm is an iterative pro-
cedure which usually operates on a population of constant size and is basically
executed in the following way:

An initial population of individuals (also called “solution candidates” or
“chromosomes”) is generated randomly or heuristically. During each itera-
tion step, also called a “generation,” the individuals of the current population
are evaluated and assigned a certain fitness value. In order to form a new pop-
ulation, individuals are first selected (usually with a probability proportional
to their relative fitness values), and then produce offspring candidates which
in turn form the next generation of parents. This ensures that the expected
number of times an individual is chosen is approximately proportional to its
relative performance in the population. For producing new solution candi-
dates genetic algorithms use two operators, namely crossover and mutation:

• Crossover is the primary genetic operator: It takes two individuals,
called parents, and produces one or two new individuals, called offspring,
by combining parts of the parents. In its simplest form, the operator
works by swapping (exchanging) substrings before and after a randomly
selected crossover point.

• The second genetic operator, mutation, is essentially an arbitrary mod-

Simulating Evolution: Basics about Genetic Algorithms 3

ification which helps to prevent premature convergence by randomly
sampling new points in the search space. In the case of bit strings,
mutation is applied by simply flipping bits randomly in a string with a
certain probability called mutation rate.

Genetic algorithms are stochastic iterative algorithms, which cannot guar-
antee convergence; termination is hereby commonly triggered by reaching a
maximum number of generations or by finding an acceptable solution or more
sophisticated termination criteria indicating premature convergence. We will
discuss this issue in further detail within Chapter 3.

The so-called standard genetic algorithm (SGA), which represents the basis
of almost all variants of genetic algorithms, is given in Algorithm 1.1 (which
is formulated as in [Tom95], for example).

Algorithm 1.1 Basic workflow of a genetic algorithm.

Produce an initial population of individuals
Evaluate the fitness of all individuals
while termination condition not met do

Select fitter individuals for reproduction and produce new individuals
(crossover and mutation)
Evaluate fitness of new individuals
Generate a new population by inserting some new “good” individuals and
by erasing some old “bad” individuals

end while

A special and quite restricted GA variant, that has represented the basis for
theoretical considerations for a long period of time, is given in Figure 1.1. This
chart sketches a GA with binary representation operating with generational
replacement, a population of constant size, and the following genetic opera-
tors: roulette wheel selection, single point crossover, and bit flip mutation.
This special type of genetic algorithms, which is the basis for theoretical GA
research such as the well known schema theorem and accordingly the building
block hypothesis, is also called the canonical genetic algorithm (CGA).

1.3 Biological Terminology

The approximative way of solving optimization problems by genetic algo-
rithms holds a strong analogy to the basic principles of biological evolution.
The fundamentals of the natural evolution theory, as it is considered nowa-
days, mainly refer to the theories of Charles Darwin, which were published

4 Genetic Algorithms and Genetic Programming

FIGURE 1.1: The canonical genetic algorithm with binary solution encoding.

in 1859 in his well-known work “The Origin of Species By Means of Natural
Selection or the Preservation of Favoured Races in the Struggle for Life” (re-
vised edition: [Dar98]). In this work Darwin states the following five major
ideas:

• Evolution, change in lineages, occurs and occurred over time.

• All creatures have common descent.

• Natural selection determines changes in nature.

• Gradual change, i.e., nature changes somehow successively.

Simulating Evolution: Basics about Genetic Algorithms 5

• Speciation, i.e., Darwin claimed that the process of natural selection
results in populations diverging enough to become separate species.

Although some of Darwin’s proposals were not new, his ideas (particularly
those on common descent and natural selection) provided the first solid foun-
dation upon which evolutionary biology has been built.

At this point it may be useful to formally introduce some essential parts of
the biological terminology which are used in the context of genetic algorithms:

• All living organisms consist of cells containing the same set of one or
more chromosomes, i.e., strings of DNA. A gene can be understood
as an “encoder” of a characteristic, such as eye color. The different
possibilities for a characteristic (e.g., brown, green, blue, gray) are called
alleles. Each gene is located at a particular position (locus) on the
chromosome.

• Most organisms have multiple chromosomes in each cell. The sum of all
chromosomes, i.e., the complete collection of genetic material, is called
the genome of the organism and the term genotype refers to the partic-
ular set of genes contained in a genome. Therefore, if two individuals
have identical genomes, they are said to have the same genotype.

• Organisms whose chromosomes are arranged in pairs are called diploid,
whereas organisms with unpaired chromosomes are called haploid. In
nature, most sexually reproducing species are diploid. Humans for in-
stance have 23 pairs of chromosomes in each somatic cell in their body.
Recombination (crossover) occurs during sexual reproduction in the fol-
lowing way:

• For producing a new child, the genes of the parents are combined to
eventually form a new diploid set of chromosomes. Offspring are sub-
ject to mutation where elementary parts of the DNA (nucleotides) are
changed. The fitness of an organism (individual) is typically defined as
its probability to reproduce, or as a function of the number of offspring
the organism has produced.

For the sake of simplification, in genetic algorithms the term chromosome
refers to a solution candidate (in the first GAs encoded as a bit). The genes are
either single bits or small blocks of neighboring bits that encode a particular
element of the solution. Even if an allele usually is either 0 or 1, for larger
alphabets more alleles are possible at each locus.

As a further simplification to the biological role model, crossover typically
operates by exchanging genetic material between two haploid parents whereas
mutation is implemented by simply flipping the bit at a randomly chosen locus.

Finally it is remarkable that most applications of genetic algorithms employ
haploid single-chromosome individuals, although the evolution of mankind has

6 Genetic Algorithms and Genetic Programming

inspired the GA-community at most. This is most probably due to the easier
and more effective representation and implementation of single-chromosome
individuals.

1.4 Genetic Operators

In the following, the main genetic operators, namely parent selection,
crossover, mutation, and replacement are to be described. The focus hereby
lies on a functional description of the principles rather than to give a complete
overview of operator concepts; for more details about genetic operators the
interested reader is referred to textbooks as for example [DLJD00].

1.4.1 Models for Parent Selection

In genetic algorithms a fitness function assigns a score to each individual in
a population; this fitness value indicates the quality of the solution represented
by the individual. The fitness function is often given as part of the problem
description or based on the objective function; developing an appropriate
fitness function may also involve the use of simulation, heuristic techniques, or
the knowledge of an expert. Evaluating the fitness function for each individual
should be relatively fast due to the number of times it will be invoked. If
the evaluation is likely to be slow, then concepts of parallel and distributed
computing, an approximate function evaluation technique, or a technique,
that only considers elements that have changed, may be employed.

Once a population has been generated and its fitness has been measured,
the set of solutions, that are selected to be “mated” in a given generation, is
produced. In the standard genetic algorithm (SGA) the probability, that a
chromosome of the current population is selected for reproduction, is propor-
tional to its fitness.
In fact, there are many ways of accomplishing this selection. These include:

• Proportional selection (roulette wheel selection):
The classical SGA utilizes this selection method which has been pro-
posed in the context of Holland’s schema theorem (which will be ex-
plained in detail in Section 1.6). Here the expected number of descen-
dants for an individual i is given as pi = fi

f
with f : S → R

+ denoting

the fitness function and f representing the average fitness of all indi-
viduals. Therefore, each individual of the population is represented by
a space proportional to its fitness. By repeatedly spinning the wheel,
individuals are chosen using random sampling with replacement. In or-
der to make proportional selection independent from the dimension of
the fitness values, so-called windowing techniques are usually employed.

Simulating Evolution: Basics about Genetic Algorithms 7

Further variants of proportional selection aim to reduce the dominance
of a single or a group of highly fit individuals (“super individuals”) by
stochastic sampling techniques (as for example explained in [DLJD00]).

• Linear-rank selection:
In the context of linear-rank selection the individuals of the population
are ordered according to their fitness and copies are assigned in such a
way that the best individual receives a pre-determined multiple of the
number of copies the worst one receives [GB89]. On the one hand rank
selection implicitly reduces the dominating effects of “super individuals”
in populations (i.e., individuals that are assigned a significantly better
fitness value than all other individuals), but on the other hand it warps
the difference between close fitness values, thus increasing the selection
pressure in stagnant populations. Even if linear-rank selection has been
used with some success, it ignores the information about fitness differ-
ences of different individuals and violates the schema theorem.

• Tournament selection:
There are a number of variants on this theme. The most common one
is k-tournament selection where k individuals are selected from a pop-
ulation and the fittest individual of the k selected ones is considered
for reproduction. In this variant selection pressure can be scaled quite
easily by choosing an appropriate number for k.

1.4.2 Recombination (Crossover)

In its easiest formulation, which is suggested in the canonical GA for binary
encoding, crossover takes two individuals and cuts their chromosome strings
at some randomly chosen position. The produced substrings are then swapped
to produce two new full length chromosomes.
Conventional crossover techniques for binary representation include:

• Single point crossover:
A single random cut is made, producing two head sections and two
tail sections. The two tail sections are then swapped to produce two
new individuals (chromosomes); Figure 1.2 schematically sketches this
crossover method which is also called one point crossover.

• Multiple point crossover:
One natural extension of the single point crossover is the multiple point
crossover: In a n-point crossover there are n crossover points and sub-
strings are swapped between the n points. According to some re-
searchers, multiple-point crossover is more suitable to combine good fea-
tures present in strings because it samples uniformly along the full length
of a chromosome [Ree95]. At the same time, multiple-point crossover be-
comes more and more disruptive with an increasing number of crossover

8 Genetic Algorithms and Genetic Programming

Parents

Crossover Point

Crossover

Children

FIGURE 1.2: Schematic display of a single point crossover.

points, i.e., the evolvement of longer building blocks becomes more and
more difficult. Decreasing the number of crossover points during the
run of the GA may be a good compromise.

• Uniform crossover:
Given two parents, each gene in the offspring is created by copying
the corresponding gene from one of the parents. The selection of the
corresponding parent is undertaken via a randomly generated crossover
mask: At each index, the offspring gene is taken from the first parent
if there is a 1 in the mask at this index, and otherwise (if there is a 0
in the mask at this index) the gene is taken from the second parent.
Due to this construction principle uniform crossover does not support
the evolvement of higher order building blocks.

The choice of an appropriate crossover operator depends very much on the
representation of the search space (see also Section 1.5). Sequencing problems
as routing problems for example often require operators different from the ones
described above as almost all generated children may be situated outside of
the space of valid solutions.

In higher order representations, a variety of real-number combination op-
erators can be employed, such as the average and geometric mean. Domain
knowledge can be used to design local improvement operators which some-
times allow more efficient exploration of the search space around good solu-
tions. For instance, knowledge could be used to determine the appropriate
locations for crossover points.

As the number of proposed problem-specific crossover-techniques has been
growing that much over the years, it would go beyond the scope of the present
book even to discuss the more important ones. For a good discussion of
crossover-related issues and further references the reader is referred to [Mic92]
and [DLJD00].

Simulating Evolution: Basics about Genetic Algorithms 9

1.4.3 Mutation

Mutations allow undirected jumps to slightly different areas of the search
space. The basic mutation operator for binary coded problems is bitwise
mutation. Mutation occurs randomly and very rarely with a probability pm;
typically, this mutation rate is less than ten percent. In some cases mutation
is interpreted as generating a new bit and in others it is interpreted as flipping
the bit.

In higher order alphabets, such as integer numbering formulations, muta-
tion takes the form of replacing an allele with a randomly chosen value in the
appropriate range with probability pm. However, for combinatorial optimiza-
tion problems, such mutation schemes can cause difficulties with chromosome
legality; for example, multiple copies of a given value can occur which might
be illegal for some problems (including routing). Alternatives suggested in
literature include pairwise swap and shift operations as for instance described
in [Car94].

In addition, adaptive mutation schemes similar to mutation in the context
of evolution strategies are worth mentioning. Adaptive mutation schemes
vary either the rate, or the form of mutation, or both during a GA run. For
instance, mutation is sometimes defined in such a way that the search space
is explored uniformly at first and more locally towards the end, in order to do
a kind of local improvement of candidate solutions [Mic92].

1.4.4 Replacement Schemes

After having generated a new generation of descendants (offspring) by
crossover and mutation, the question arises which of the new candidates should
become members of the next generation. In the context of evolution strategies
this fact determines the life span of the individuals and substantially influ-
ences the convergence behavior of the algorithm. A further strategy influenc-
ing replacement quite drastically is offspring selection which will be discussed
separately in Chapter 4. The following schemes are possible replacement
mechanisms for genetic algorithms:

• Generational Replacement:
The entire population is replaced by its descendants. Similar to the
(µ, λ) evolution strategy it might therefore happen that the fitness of
the best individual decreases at some stage of evolution. Additionally,
this strategy puts into perspective the dominance of a few individuals
which might help to avoid premature convergence [SHF94].

• Elitism:
The best individual (or the n best individuals, respectively) of the pre-
vious generation are retained for the next generation which theoretically
allows immortality similar to the (µ + λ) evolution strategy and might

10 Genetic Algorithms and Genetic Programming

be critical with respect to premature convergence. The special and com-
monly applied strategy of just retaining one (the best) individual of the
last generation is also called the “golden cage model,” which is a special
case of n-elitism with n = 1. If mutation is applied to the elite in order
to prevent premature convergence, the replacement mechanism is called
“weak elitism.”

• Delete-n-last:
The n weakest individuals are replaced by n descendants. If n≪ |POP |
we speak of a steady-state replacement scheme; for n = 1 the changes
between the old and the new generation are certainly very small and n =
|POP | gives the already introduced generational replacement strategy.

• Delete-n:
In contrast to the delete-n-last replacement strategy, here not the n
weakest but rather n arbitrarily chosen individuals of the old generation
are replaced, which on the one hand reduces the convergence speed of
the algorithm but on the other hand also helps to avoid premature
convergence (compare elitism versus weak elitism).

• Tournament Replacement:
Competitions are run between sets of individuals from the last and the
actual generation, with the winners becoming part of the new popula-
tion.

A detailed description of replacement schemes and their effects can be found
for example in [SHF94], [Mic92], [DLJD00], and [Mit96].

1.5 Problem Representation

As already stated before, the first genetic algorithm presented in literature
[Hol75] used binary vectors for the representation of solution candidates (chro-
mosomes). Consequently, the first solution manipulation operators (single
point crossover, bit mutation) have been developed for binary representation.
Furthermore, this very simple GA, also commonly known as the canonical
genetic algorithm (CGA), represents the basis for extensive theoretical in-
spections, resulting in the well known schema theorem and the building block
hypothesis ([Hol75], [Gol89]). This background theory will be examined sep-
arately in Section 1.6, as it defines the scope of almost any GA as it should
ideally be and distinguishes GAs from almost any other heuristic optimization
technique.

The unique selling point of GAs is to compile so-called building blocks,
i.e., somehow linked parts of the chromosome which become larger as the

Simulating Evolution: Basics about Genetic Algorithms 11

algorithm proceeds, advantageously with respect to the given fitness function.
In other words, one could define the claim of a GA as to be an algorithm which
is able to assemble the basic modules of highly fit or even globally optimal
solutions (which the algorithm of course does not know about). These basic
modules are with some probability already available in the initial population,
but widespread over many individuals; the algorithm therefore has to compile
these modules in such a clever way that continuously growing sequences of
highly qualified alleles, the so-called building blocks, are formed.

Compared to heuristic optimization techniques based on neighborhood
search (as tabu search [Glo86] or simulated annealing [KGV83], for exam-
ple), the methodology of GAs to combine partial solutions (by crossover) is
potentially much more robust with respect to getting stuck in local but not
global optimal solutions; this tendency of neighborhood-based searches de-
notes a major drawback of these heuristics. Still, when applying GAs the
user has to draw much more attention on the problem representation in or-
der to help the algorithm to fulfill the claim stated above. In that sense the
problem representation must allow the solution manipulation operators, es-
pecially crossover, to combine alleles of different parent individuals. This is
because crossover is responsible for combining the properties of two solution
candidates which may be located in very different regions of the search space
so that valid new solution candidates are built. This is why the problem rep-
resentation has to be designed in a way that crossover operators are able to
build valid new children (solution candidates) with a genetic make up that
consists of the union set of its parent alleles.

Furthermore, as a tribute to the general functioning of GAs, the crossover
operators also have to support the potential development of higher-order
building blocks (longer allele sequences). Only if the genetic operators for
a certain problem representation show these necessary solution manipulator
properties, the corresponding GA can be expected to work as it should, i.e.,
in the sense of a generalized interpretation of the building block hypothesis.

Unfortunately, a lot of more or less established problem representations are
not able to fulfill these requirements, as they do not support the design of
potentially suited crossover operators. Some problem representations will be
considered exemplarily in the following attracting notice to their ability to
allow meaningful crossover procedures. Even if mutation, the second solution
manipulation concept of GAs, is also of essential importance, the design of
meaningful mutation operators is much less challenging as it is a lot easier
to fulfill the requirements of a suited mutation operator (which in fact is to
introduce a small amount of new genetic information).

1.5.1 Binary Representation

In the early years of GA research there was a strong focus on binary encod-
ing of solution candidates. To some extent, an outgrowth of these ambitions
is certainly the binary representation for the TSP. There have been different

12 Genetic Algorithms and Genetic Programming

ways how to use binary representation for the TSP, the most straightforward
one being to encode each city as a string of log2n bits and a solution candidate
as a string of n(log2n) bits. Crossover is then simply performed by applying
single-point crossover as proposed by Holland [Hol75]. Further attempts us-
ing binary encoding have been proposed using binary matrix representation
([FM91], [HGL93]). In [HGL93], Homaifar and Guan for example defined a
matrix element in the i-th row and the j-th column to be 1 if and only if in the
tour city j is visited after city i; they also applied one- or two- point crossover
on the parent matrices, which for one-point crossover means that the child
tour is created by just taking the column vectors left of the crossover point
from one parent, and the column vectors right of the crossover point from the
other parent.

Obviously, these strategies lead to highly illegal tours which are then re-
paired by additional repair strategies [HGL93], which is exactly the point
where a GA can no longer act as it is supposed to. As the repair strate-
gies have to introduce a high amount of genetic information which is neither
from the one nor from the other parent, child solutions emerge whose genetic
make-up has only little in common with its own parents; this counteracts the
general functioning of GAs as given in a more general interpretation of the
schema theorem and the according building block hypothesis.

1.5.2 Adjacency Representation

Using the adjacency representation for the TSP (as described in [LKM+99],
e.g.), a city j is listed in position i if and only if the tour leads from city i to
city j. Based on the adjacency representation, the so-called alternating edges
crossover has been proposed for example which basically works as follows:
First it chooses an edge from one parent and continues with the position of
this edge in the other parent representing the next edge, etc. The partial
tour is built up by choosing edges from the two parents alternatingly. In case
this strategy would produce a cycle, the edge is not added, but instead the
operator randomly selects an edge from the edges which do not produce a
cycle and continues in the way described above.

Compared to the crossover operators based on binary encoding, this strat-
egy has the obvious advantage that a new child is built up from edges of its
own parents. However, also this strategy is not very well suited as a fur-
ther claim to crossover is not fulfilled at all: The alternating edges crossover
cannot inherit longer tour segments and therefore longer building blocks can-
not establish. As a further development to the alternating edges crossover,
the so-called sub-tour chunks crossover aims to put things right by not alter-
nating the edges but sub-tours of the two parental solutions. However, the
capabilities of this strategy are also rather limited.

Simulating Evolution: Basics about Genetic Algorithms 13

1.5.3 Path Representation

The most natural representation of a TSP tour is given by the path repre-
sentation. Within this representation, the n cities of a tour are put in order
according to a list of length n, so that the order of cities to be visited is given
by the list entries with an imaginary edge from the last to the first list entry. A
lot of crossover and mutation operators have been developed based upon this
representation, and most of the nowadays used TSP solution methods using
GAs are realized using path representation. Despite obvious disadvantages
like the equivocality of this representation (the same tour can be described in
2n different ways for a symmetrical TSP and in n different ways for an asym-
metrical TSP) this representation has allowed the design of quite powerful
operators like the order crossover (OX) or the edge recombination crossover
(ERX) which are able to inherit parent sub-tours to child solutions with only
a rather small ratio of edges stemming from none of its own parents which is
essential for GAs. A detailed description of these operators is given in Chapter
8.

1.5.4 Other Representations for Combinatorial
Optimization Problems

Combinatorial optimization problems that are more in step with actual
practice than the TSP require more complex problem representations, which
makes it even more difficult for the designer of genetic solution manipulation
operators to construct crossover operators that fulfill the essential require-
ments.

Challenging optimization tasks arise in the field of logistics and production
planning optimization where the capacitated vehicle routing problem with
(CVRPTW, [Tha95]) and without time windows (CVRP, [DR59]) as well as
the job shop scheduling problem (JSSP [Tai93]) denote abstracted standard
formulations which are used for the comparison of optimization techniques on
the basis of widely available standardized benchmark problems. Tabu search
[Glo86] and genetic algorithms are considered the most powerful optimiza-
tion heuristics for these rather practical combinatorial optimization problems
[BR03].

Cheng et al. as well as Yamada and Nakano give a comprehensive review
of problem representations and corresponding operators for applying Genetic
Algorithms to the JSSP in [CGT99] and [YN97], respectively.

For the CVRP, Bräysy and Gendreau give a detailed overview about the
application of local search algorithms in [BG05a] and about the application
of metaheuristics in [BG05b]; concrete problem representations and crossover
operators for GAs are outlined in [PB96] and [Pri04]. Furthermore, the appli-
cation of extended GA concepts to the CVRP will be covered in the practical
part of this book within Chapter 10.

14 Genetic Algorithms and Genetic Programming

1.5.5 Problem Representations for Real-Valued Encoding

When using real-valued encoding, a solution candidate is represented as
a real-valued vector in which the dimension of the chromosomes is constant
and equal to the dimension of the solution vectors. Crossover concepts are
distinguished into discrete and continuous recombination where the discrete
variants copy the exact allele values of the parent chromosomes to the child
chromosome whereas the continuous variants perform some kind of averaging.

Mutation operators for real-valued encoding either slightly modify all po-
sitions of the gene or introduce major changes to only some (often just one)
position. Often a mixture of different crossover and mutation techniques leads
to the best results for real-valued GAs. A comprehensive review of crossover
and mutation techniques including also more sophisticated techniques like
multi-parent recombination is given in [DLJD00].

Although real-valued encoding is a problem representation which is espe-
cially suited for evolution strategies or particle swarm optimization rather
than for GAs, a lot of operators have been established also for GAs which are
quite similar to modern implementations of ES that make use of recombina-
tion [Bey01]. Real-valued encoding for GAs distinguishes itself from typical
discrete representations for combinatorial optimization problems in that point
that the evolvement of longer and longer building block sequences in terms of
adjacent alleles is of minor or no importance. Nevertheless, GA-based tech-
niques like offspring selection have proven to be a very powerful optimization
technique also for this kind of problem representation especially in case of
highly multimodal fitness landscapes [AW05].

1.6 GA Theory: Schemata and Building Blocks

Researchers working in the field of GAs have put a lot of effort into the
analysis of the genetic operators (crossover, mutation, selection). In order to
achieve better analysis and understanding, Holland has introduced a construct
called schema [Hol75]:

Under the assumption of a canonical GA with binary string representation
of individuals, the symbol alphabet {0,1,#} is considered where {#}(don’t
care) is a special wild card symbol that matches both, 0 and 1.
A schema is a string with fixed and variable symbols. For example, the schema
[0#11#01] is a template that matches the following four strings: [0011001],
[0011101], [0111001], and [0111101]. The symbol # is never actually manip-
ulated by the genetic algorithm; it is just a notational device that makes it
easier to talk about families of strings.

Essentially, Holland’s idea was that every evaluated string actually gives
partial information about the fitness of the set of possible schemata of which

Simulating Evolution: Basics about Genetic Algorithms 15

the string is a member. Holland analyzed the influence of selection, crossover,
and mutation on the expected number of schemata, when going from one
generation to the next. A detailed discussion of related analysis can be found
in [Gol89]; in the context of the present work we only outline the main results
and their significance.

Assuming fitness proportional replication, the number m of individuals of
the population belonging to a particular schema H at time t+ 1 is related to
the same number at the time t as

m(H, t+ 1) = m(H, t)
fH(t)

f(t)
(1.1)

where fH(t) is the average fitness value of the string representing schema H ,
while f(t) is the average fitness value over all strings within the population.
Assuming that a particular schema remains above the average by a fixed
amount cf(t) for a number t of generations, the solution of the equation given
above can be formulated as the following exponential growth equation:

m(H, t) = m(H, 0)(1 + c)t (1.2)

where m(H, 0) stands for the number of schemata H in the population at
time 0, c denotes a positive integer constant, and t ≥ 0.

The importance of this result is the exponentially increasing number of
trials to above average schemata.

The effect of crossover which breaks strings apart (at least in the case of
canonical genetic algorithms) is that they reduce the exponential increase by
a quantity that is proportional to the crossover rate pc and depends on the
defining length δ of a schema on the string of length l:

pc
δ(H)

l − 1
(1.3)

The defining length δ of a schema is the distance between the first and
the last fixed string position. For example, for the schema [###0#0101]
δ = 9 − 4 = 5. Obviously, short defining length schemata are less likely to
be disrupted by a single point crossover operator. The main result is that
above average schemata with short defining lengths will still be sampled at an
exponential increasing rate. These schemata with above average fitness and
short defining length are the so-called building blocks and play an important
role in the theory of genetic algorithms.

The effects of mutation are described in a rather straightforward way: If
the bit mutation probability is pm, then the probability of survival of a single
bit is 1 − pm; since single bit mutations are independent, the total survival
probability is therefore (1−pm)l with l denoting the string length. But in the
context of schemata only the fixed, i.e., non-wildcard, positions matter. This
number is called the order o(H) of schema H and equals to l minus the number
of “don’t care” symbols. Then the probability of surviving a mutation for a

16 Genetic Algorithms and Genetic Programming

certain schema H is (1− pm)o(H) which can be approximated by 1− o(H)pm

for pm ≪ 1.
Summarizing the described effects of mutation, crossover, and reproduction,

we end up with Holland’s well known schema theorem [Hol75]:

m(H, t+ 1) ≥ m(H, t)
fH(t)

f(t)
[1− pc

δ(H)

l − 1
− o(H)pm] (1.4)

The result essentially says that the number of short schemata with low order
and above average quality grows exponentially in subsequent generations of a
genetic algorithm.

Still, even if the schema theorem is a very important result in GA theory, it
is obtained under idealized conditions that do not hold for most practical GA
applications. Both the individual representation and the genetic operators are
often different from those used by Holland. The building block hypothesis has
been found reliable in many cases but it also depends on the representation and
on the genetic operators. Therefore, it is easy to find or to construct problems
for which it is not verified. These so-called deceptive problems are studied in
order to find out the inherent limitations of GAs, and which representations
and operators can make them more tractable. A more detailed description of
the underlying theory can for instance be found in [Raw91] or [Whi93].

The major drawback of the building block theory is given by the fact
that the underlying GA (binary encoding, proportional selection, single-point
crossover, strong mutation) is applicable only to very few problems as it re-
quires more sophisticated problem representations and corresponding oper-
ators to tackle challenging real-world problems. Therefore, a more general
theory is an intense topic in GA research since its beginning. Some theo-
retically interesting approaches like the forma theory of Radcliffe and Surry
[RS94], who consider a so-called forma as a more general schema for arbitrary
representations, state requirements to the operators, which cannot be fulfilled
for practical problems with their respective constraints.

By the end of the last millennium, Stephens and Waelbroeck ([SW97],
[SW99]) developed an exact GA schema theory. The main idea is to de-
scribe the total transmission probability α of a schema H so that α(H, t) is
the probability that at generation t the individuals of the GA’s population
will match H (for a GA working on fixed-length bit strings). Assuming a
crossover probability pxo, α(H, t) is calculated as1:

α(H, t) = (1− pxo)p(H, t) +
pxo

N − 1

N−1
∑

i=1

p(L(H, i), t)p(R(H, i), t) (1.5)

with L(H, i) and R(H, i) being the left and right parts of schema H , respec-
tively, and p(H, t) the probability of selecting an individual matching H to

1We here give the slightly modified version as stated in [LP02]; it is equivalent to the results
in [SW97] and [SW99] assuming pm = 0.

Simulating Evolution: Basics about Genetic Algorithms 17

become a parent. The “left” part of a schema H is thereby produced by re-
placing all elements of H at the positions from the given index i to N with
“don’t care” symbols (with N being the length of the bit strings); the “right”
part of a schema H is produced by replacing all elements of H from position
1 to i with “don’t care.” The summation is over all positions from 1 to N −1,
i.e., over all possible crossover points.
Stephens later generalized this GA schema theory to variable-length GAs; see
for example [SPWR02].

Keeping in mind that the ultimate goal of any heuristic optimization tech-
nique is to approximately and efficiently solve highly complex real-world prob-
lems rather than stating a mathematically provable theory that holds only
under very restricted conditions, our intention for an extended building block
theory is a not so strict formulation that in return can be interpreted for ar-
bitrary GA applications. At the same time, the enhanced variants of genetic
algorithms and genetic programming proposed in this book aim to support the
algorithms in their intention to operate in the sense of an extended building
block interpretation discussed in the following chapters.

1.7 Parallel Genetic Algorithms

The basic idea behind many parallel and distributed programs is to divide
a task into partitions and solve them simultaneously using multiple proces-
sors. This divide-and-conquer approach can be used in different ways, and
leads to different methods to parallelize GAs where some of them change the
behavior of the GA whereas others do not. Some methods (as for instance
fine-grained parallel GAs) can exploit massively parallel computer architec-
tures, while others (coarse-grained parallel GAs, e.g.) are better qualified for
multi-computers with fewer and more powerful processing elements. Detailed
descriptions and classifications of distributed GAs are given in [CP01], [CP97]
or [AT99] and [Alb05]; the scalability of parallel GAs is discussed in [CPG99].
A further and newer variant of parallel GAs which is based on offspring selec-
tion (see Chapter 4) is the so-called SASEGASA algorithm which is discussed
in Chapter 5.

In a rough classification, parallel GA concepts established in GA textbooks
(as for example [DLJD00]) can be classified into global parallelization, coarse-
grained parallel GAs, and fine-grained parallel GAs, where the most popular
model for practical applications is the coarse-grained model, also very well
known as the island model.

18 Genetic Algorithms and Genetic Programming

Slave1

Slave2
Slave3

Slaven

Slave4

Master

…

FIGURE 1.3: Global parallelization concepts: A panmictic population struc-
ture (shown in left picture) and the corresponding master–slave model (right
picture).

1.7.1 Global Parallelization

Similar to the sequential GA, in the context of global parallelization there is
only one single panmictic2 population and selection considers all individuals,
i.e., every individual has a chance to mate with any other. The behavior
of the algorithm remains unchanged and the global GA has exactly the same
qualitative properties as a sequential GA. The most common operation that is
parallelized is the evaluation of the individuals as the calculation of the fitness
of an individual is independent from the rest of the population. Because of
this the only necessary communication during this phase is in the distribution
and collection of the workload.

One master node executes the GA (selection, crossover, and mutation), and
the evaluation of fitness is divided among several slave processors. Parts of
the population are assigned to each of the available processors, in that they
return the fitness values for the subset of individuals they have received. Due
to their centered and hierarchical communication order, global parallel GAs
are also known as single-population master–slave GAs.

Figure 1.3 shows the population structure of a master–slave parallel GA:
This panmictic GA has all its individuals (indicated by the black spots) in the
same population. The master stores the population, executes the GA opera-
tions, and distributes individuals to the slaves; the slaves compute the fitness
of the individuals. As a consequence, global parallelization can be efficient
only if the bottleneck in terms of runtime consumption is the evaluation of
the fitness function.

Globally parallel GAs are quite easy to implement, and they can be a quite
efficient method of parallelization if the evaluation requires considerable com-
putational effort compared to the effort required for the operations carried out
by the master node. However, they do not influence the qualitative properties
of the corresponding sequential GA.

2In general, a population is called panmictic when all individuals are possible mating part-
ners.

Simulating Evolution: Basics about Genetic Algorithms 19

1.7.2 Coarse-Grained Parallel GAs

Island Model

Migration
direction

FIGURE 1.4: Population structure of a coarse-grained parallel GA.

In the case of a coarse-grained parallel GA, the population is divided into
multiple subpopulations (also called islands or demes) that evolve mostly
isolated from each other and only occasionally exchange individuals during
phases called migration. This process is controlled by several parameters
which will be explained later in Section 1.7.4. In contrast to the global paral-
lelization model, coarse-grained parallel GAs introduce fundamental changes
in the structure of the GA and have a different behavior than a sequential GA.
Coarse-grained parallel GAs are also known as distributed GAs because they
are usually implemented on computers with distributed memories. Litera-
ture also frequently uses the notation “island parallel GAs” because there is a
model in population genetics called the island model that considers relatively
isolated demes.

Figure 1.4 schematically shows the design of a coarse-grained parallel GA:
Each circle represents a simple GA, and there is (infrequent) communication
between the populations. The qualitative performance of a coarse-grained
parallel GA is influenced by the number and size of its demes and also by
the information exchange between them (migration). The main idea of this
type of parallel GAs is that relatively isolated demes will converge to differ-
ent regions of the solution-space, and that migration and recombination will
combine the relevant solution parts [SWM91]. However, at present there is
only one model in the theory of coarse-grained parallel GAs that considers
the concept of selection pressure for recombining the favorable attributes of
solutions evolved in the different demes, namely the SASEGASA algorithm
(which will be described later in Chapter 5). Coarse-grained parallel GAs
are the most frequently used parallel GA concept, as they are quite easy to
implement and are a natural extension to the general concept of sequential
GAs making use of commonly available cluster computing facilities.

20 Genetic Algorithms and Genetic Programming

1.7.3 Fine-Grained Parallel GAs

FIGURE 1.5: Population structure of a fine-grained parallel GA; the special
case of a cellular model is shown here.

Fine-grained models consider a large number of very small demes; Figure 1.5
sketches a fine-grained parallel GA. This class of parallel GAs has one spatially
distributed population; it is suited for massively parallel computers, but it
can also be implemented on other supercomputing architectures. A typical
example is the diffusion model [Müh89] which represents an intrinsic parallel
GA-model.

The basic idea behind this model is that the individuals are spread through-
out the global population like molecules in a diffusion process. Diffusion
models are also called cellular models. In the diffusion model a processor
is assigned to each individual and recombination is restricted to the local
neighborhood of each individual.

A recent research topic in the area of parallel evolutionary computation is
the combination of certain aspects of the different population models resulting
in so-called hybrid parallel GAs. Most of the hybrid parallel GAs are coarse-
grained at the upper level and fine-grained at the lower levels. Another way
to hybridize parallel GAs is to use coarse-grained GAs at the high as well as
at the low levels in order to force stronger mixing at the low levels using high
migration rates and a low migration rate at the high level [CP01]. Using this
strategy, computer cluster environments at different locations can collectively
work on a common problem with only little communication overhead (due to
the low migration rates at the high level).

Simulating Evolution: Basics about Genetic Algorithms 21

1.7.4 Migration

Especially for coarse-grained parallel GAs the concept of migration is con-
sidered to be the main success criterion in terms of achievable solution quality.
The most important parameters for migration are:

• The communication topology which defines the interconnections be-
tween the subpopulations (demes)

• The migration scheme which controls which individuals (best, random)
migrate from one deme to another and which individuals should be
replaced (worst, random, doubles)

• The migration rate which determines how many individuals migrate

• The migration interval or migration gap that determines the frequency
of migrations

The most essential question concerning migration is when and to which ex-
tent migration should take place. Much theoretical work considering this has
already been done; for a survey of these efforts see [CP97] or [Alb05]. It is
very usual for parallel GAs that migration occurs synchronously meaning that
it occurs at predetermined constant intervals. However, synchronous migra-
tion is known to be slow and inefficient in some cases [AT99]. Asynchronous
migration schemes perform communication between demes only after specific
events. The migration rate which determines how many individuals undergo
migration at every exchange can be expressed as a percentage of the popula-
tion size or as an absolute value. The majority of articles in this field suggest
migration rates between 5% and 20% of the population size. However, the
choice of this parameter is considered to be very problem dependent [AT99].
A recent overview of various migration techniques is given in [CP01].

Recent theory of self-adaptive selection pressure steering (see Chapters 4
and 5) plays a major role in defying the conventions of recent parallel GA-
theory. Within these models it becomes possible to detect local premature
convergence, i.e., premature convergence in a certain deme. Thus, local pre-
mature convergence can be detected independently in all demes, which should
give a high potential in terms of efficiency especially for parallel implementa-
tions. Furthermore, the fact that selection pressure is adjusted self-adaptively
with respect to the potential of genetic information stored in the certain demes
makes the concept of a parallel GA much more independent in terms of mi-
gration parameters (see [Aff05] and Chapter 5).

22 Genetic Algorithms and Genetic Programming

1.8 The Interplay of Genetic Operators

In order to allow an efficient performance of a genetic algorithm, a beneficial
interplay of exploration and exploitation should be possible. Critical factors
for this interplay are the genetic operators selection, crossover, and mutation.

The job of crossover is to advantageously combine alleles of selected (above
average) chromosomes which may stem from different regions of the search
space. Therefore, crossover is considered to rather support the aspect of
breadth search. Mutation slightly modifies certain chromosomes at times and
thus brings new alleles into the gene pool of a population in order to avoid
stagnation. As mutation modifies the genetic make-up of certain chromosomes
only slightly it is primarily considered as a depth search operator. However,
via mutation newly introduced genetic information does also heavily support
the aspect of breadth search if crossover is able to “transport” this new genetic
information to other chromosomes in other search space regions. As we will
show later in this book, this aspect of mutation is of prime importance for an
efficient functioning of a GA.

The aspect of migration in coarse-grained parallel GAs should also be men-
tioned in our considerations about the interplay of operators. In this kind
of parallel GAs, migration functions somehow like a meta-model of mutation
introducing new genetic information into certain demes at the chromosome-
level whereas mutation introduces new genetic information at the allele level.
Concerning migration, a well-adjusted interplay between breadth and depth
search is aimed to function in the way that breadth search is supported in
the intra-migration phases by allowing the certain demes to drift to different
regions of the search space until a certain stage of stagnation is reached; the
demes have expanded over the search space. Then migration comes into play
by introducing new chromosomes stemming from other search space regions
in order to avoid stagnation in the certain demes; this then causes the demes
to contract again slightly which from a global point of view tends to support
the aspect of depth search in the migration phases. The reason for this is that
migration causes an increase of genetic diversity in the specific demes on the
one hand, but on the other hand it decreases the diversity over all islands.
This global loss of genetic diversity can be interpreted as an exploitation of
the search space.

This overall strategy is especially beneficial in case of highly multimodal
search spaces as it is the case for complex combinatorial optimization prob-
lems.

Simulating Evolution: Basics about Genetic Algorithms 23

1.9 Bibliographic Remarks

There are numerous books, journals, and articles available that survey the
field of genetic algorithms. In this section we summarize some of the most
important ones. Representatively, the following books are widely considered
very important sources of information about GAs (in chronological order):

• J. H. Holland: Adaptation in Natural and Artificial Systems [Hol75]

• D. E. Goldberg: Genetic Algorithms in Search, Optimization and Ma-
chine Learning [Gol89]

• Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution
Programs [Mic92]

• D. Dumitrescu et al.: Evolutionary Computation [DLJD00]

The following journals are dedicated to either theory and applications of
genetic algorithms or evolutionary computation in general:

• IEEE Transactions on Evolutionary Computation (IEEE)

• Evolutionary Computation (MIT Press)

• Journal of Heuristics (Springer)

Moreover, several conference and workshop proceedings include papers re-
lated to genetic and evolutionary algorithms and heuristic optimization. Some
examples are the following ones:

• Genetic and Evolutionary Computation Conference (GECCO), a recom-
bination of the International Conference on Genetic Algorithms and the
Genetic Programming Conference

• Congress on Evolutionary Computation (CEC)

• Parallel Problem Solving from Nature (PPSN)

Of course there is a lot of GA-related information available on the inter-
net including theoretical background and practical applications, course slides,
and source code. Publications of the Heuristic and Evolutionary Algorithms
Laboratory (HEAL) (including several articles on GAs and GP) are available
at http://www.heuristiclab.com/publications/.

Chapter 2

Evolving Programs: Genetic
Programming

In the previous chapter we have summarized and discussed genetic algorithms;
it has been illustrated how this kind of algorithms is able to produce high
quality results for a variety of problem classes.

Still, a GA is by itself not able to handle one of the most challenging tasks
in computer science, namely getting a computer to solve problems without
programming it explicitly. As Arthur Samuel stated in 1959 [Sam59], this
central task can be formulated in the following way:

How can computers be made to do what needs to be done,
without being told exactly how to do it?

In this chapter we give a compact description and discussion of an extension
of the genetic algorithm called genetic programming (GP). Similar to GAs,
genetic programming works on populations of solution candidates for a given
problem and is based on Darwinian principles of survival of the fittest (selec-
tion), recombination (crossover), and mutation; it is a domain-independent,
biologically inspired method that is able to create computer programs from a
high-level problem statement.1

Research activities in the field of genetic programming started in the 1980s;
still, it took some time until GP was widely received by the computer sci-
ence community. Since the beginning of the 1990s GP has been established
as a human-competitive problem solving method. The main factors for its
widely accepted success in the academic world as well as in industries can be
summarized in the following way [Koz92b]:

• Virtually all problems in artificial intelligence, machine learning, adap-
tive systems, and automated learning can be recast as a search for com-
puter programs, and

• genetic programming provides a way to successfully conduct the search
in the space of computer programs.

1Please note that we here in general see computer programs as entities that receive inputs,
perform computations, and produce output.

25

26 Genetic Algorithms and Genetic Programming

In the following we

• give an overview of the main ideas and foundations of genetic program-
ming in Sections 2.1 and 2.2,

• summarize basic steps of the GP-based problem solving process (Sec-
tion 2.3),

• report on typical application scenarios (Section 2.4),

• explain theoretical foundations (GP schema theories, Section 2.5),

• discuss current GP challenges and research areas in Section 2.6,

• summarize this chapter on GP in Section 2.7, and finally

• refer to a range of outstanding literature in the field of theory and praxis
of GP in Section 2.8.

2.1 Introduction: Main Ideas and Historical
Background

As has already been mentioned, one of the central tasks in artificial intel-
ligence is to make computers do what needs to be done without telling them
exactly how to do it. This does not seem to be unnatural since it demands of
computers to mimic the human reasoning process - humans are able to learn
what needs to be done, and how to do it. In short, interactions of networks
of neurons are nowadays believed to be the basis of human brain information
processing; several of the earliest approaches in artificial intelligence aimed at
imitating this structure using connectionist models and artificial neural net-
works (ANNs, [MP43]). Suitable network training algorithms enable ANNs
to learn and generalize from given training examples; ANNs are in fact a
very successful distributed computation paradigm and are frequently used in
real-world applications where exact algorithmic approaches are too difficult to
implement or even not known at all. Pattern recognition, classification, data-
based modeling (regression) are some examples of AI areas in which ANNs
have been applied in numerous ways. Unlike this network-based approach,
genetic algorithms were developed using main principles of natural evolution.
As has been explained in Chapter 1, GAs are population-based optimization
algorithms that imitate natural evolution: Starting with a primordial ooze of
thousands of randomly created solution candidates appropriate to the respec-
tive problem, populations of solutions are progressively evolved over many
generations using the Darwinian principles.

Evolving Programs: Genetic Programming 27

Similar to the GA, GP is an evolutionary algorithm inspired by biological
evolution to find computer programs that perform a user-defined computa-
tional task. It is therefore a machine learning technique used to optimize a
population of computer programs according to a fitness landscape determined
by a program’s ability to perform the given task; it is a domain-independent,
biologically inspired method that is able to create computer programs from a
high-level problem statement (with computer programs being here defined as
entities that receive inputs, perform computations, and produce output).

The first research activities in the context of GP have been reported in
the early 1980s. For example, Smith reported on a learning system based on
GAs [Smi80], and in [For81] Forsyth presented a computer package producing
decision-rules (i.e., small computer programs) in forensic science for the UK
police by induction from a database (where these rules are Boolean expressions
represented by tree structures). In 1985, Cramer presented a representation
for the adaptive generation of simple sequential programs [Cra85]; it is widely
accepted that this article on genetic programming is the first paper to de-
scribe the tree-like representation and operators for manipulating programs
by genetic algorithms.

Even though there was noticeable research activity in the field of GP going
on by the middle of the 1980s, still it took some time until GP was widely
received by the computer science community. GP is very intensive from a
computational point of view and so it was mainly used to solve relatively
simple problems until the 1990s. But thanks to the enormous growth in CPU
power that has been going on since the 1980s, the field of applications for GP
has been extended immensely yielding human competitive results in areas such
as data-based modeling, electronic design, game playing, sorting, searching,
and many more; examples (and respective references) are going to be given
in the following sections.

One of the most important GP publications was “Genetic Programming:
On the Programming of Computers by Means of Natural Selection” [Koz92b]
by John R. Koza, professor for computer science and medical informatics at
Stanford University who has since been one of the main proponents of the
GP idea. Based on extensive theoretical background as well as test results
in many different problem domains he demonstrated GP’s ability to serve as
an automated invention machine producing novel and outstanding results for
various kinds of problems. By now there have been three more books on GP
by Koza (and his team), but also several other very important publications
(for example by Banzhaf, Langdon, Poli and many others); a short summary
is given in Section 2.8.

Along with these ad hoc engineering approaches there was an increasing
interest in how and why GP works. Even though GP was applied successfully
for solving problems in various areas, the development of a GP theory was
considered rather difficult even through the 1990s. Since the early 2000s it
has finally been possible to establish a theory of GP showing a rapid develop-
ment since then. A book that has to be mentioned in this context is clearly

28 Genetic Algorithms and Genetic Programming

“Foundations of Genetic Programming” [LP02] by Langdon and Poli since it
presents exact GP schema analysis.

As we have now summarized the historical background of GP, it is now
high time to describe how it really works and how typical applications are
designed. This is exactly what the reader can find in the following sections.

2.2 Chromosome Representation

As in the context of any GA-based problem solving process, the representa-
tion of problem instances and solution candidates is a key issue also in genetic
programming. On the one hand, the representation scheme should enable the
algorithm to find suitable solutions for the given problem class, but on the
other hand the algorithm should be able to directly manipulate the coded
solution representation. The use of fixed-length strings (of bits, characters,
or integers, e.g.) enables the conventional GA to solve a huge amount of
problems and also allows the construction of a solid theoretical foundation,
namely the schema theorem. Still, in the context of GP the most natural
representation for a solution is a hierarchical computer program of variable
size [Koz92b].

2.2.1 Hierarchical Labeled Structure Trees

2.2.1.1 Basics

So, how can hierarchical computer programs be represented? The repre-
sentation that is most common in literature and is used by Koza ([Koz92b],
[Koz94], [KIAK99], [KKS+03b]), Langdon and Poli ([LP02]), and many other
authors is the point-labeled structure tree. Originally, these structure trees
were for example seen as graphical representations of so-called S-expressions
of the programming language LISP ([McC60], [Que03], [WH87]) which have
for example been used by Koza in [Koz92b] and [Koz94].2 Here we do not
strictly stick to LISP-syntax for the examples given, but the main paradigms
of S-expressions are used.

The following key facts are relevant in the context of structure tree based
genetic programming:

• All tree-nodes are either functions or terminals.

2In fact, of course, any higher programming language is suitable for implementing a
GP-framework and for representing hierarchical computer programs. Koza, for example,
switched to the C programming language as described in [KIAK99], and the HeuristicLab
framework and the GP-implementation, which is realized as plug-ins for it, are programmed
in C# using the .NET framework - this is to be explained in further detail later.

Evolving Programs: Genetic Programming 29

• Terminals are evaluated directly, i.e., their return values can be calcu-
lated and returned immediately.

• All functions have child nodes which are evaluated before using the
children’s calculated return values as inputs for the parents’ evaluation.

• The probably most convenient string representation is the prefix no-
tation, also called Polish or Lukasiewicz3 notation: Function nodes are
given before the child nodes’ representations (optionally using parenthe-
ses). Evaluation is executed recursively, depth-first way, starting from
the left; operators are thus placed to the left of their operands.
In case of fixed arities of the functions (i.e., if the numbers of function’s
inputs is fixed and known), no parentheses or brackets are needed.

In a more formal way this program representation structure schema can be
summarized as follows [ES03]:

• Symbolic expressions can be defined using

– a terminal set T , and

– a function set F .

• The following general recursive definition is applied:

– Every t ∈ T is a correct expression,

– f(e1, . . . , en) is a correct expression if f ∈ F , arity(f) = n and
e1, . . . , en are correct expressions, and

– there are no other forms of correct expressions.

• In general, expressions in GP are not typed (closure property: any f ∈ F
can take any g ∈ F as argument). Still, as we see in the discussion of
genetic operators in Section 2.2.1.3, this might be not true in certain
cases depending on the function and terminal sets chosen.

In the following we give exemplary simple programs. We thereby give con-
ventional as well as prefix (not exactly following LISP notation) textual no-
tations:

• (a) IF (Y>X OR Y<4) THEN i:=(i+1), ELSE i:=0.
Prefix notation: IF(OR(>(Y,X),<(Y,4)),:=(i,+(i,1)),:=(i,0)).

• (b) X+5
2Y . Prefix notation: DIV(ADD(X,5),MULT(2,Y)).

Graphical representations of the programs (given as rooted, point-labeled
structure trees) are given in Figure 2.1.

3Jan Lukasiewicz (1878–1956), a Polish mathematician, invented the prefix notation which
is also the basis of the recursive stack (“last in, first out”; [Ham58], [Ham62]). In reference
to his nationality the notation is also referred to as “Polish” notation.

30 Genetic Algorithms and Genetic Programming

/

+ *

2 Y X 5

(a) (b)
IF / ELSE

OR := :=

> <

Y X Y 4

i +

i 1

i 0

FIGURE 2.1: Exemplary programs given as rooted, labeled structure trees.

2.2.1.2 Evaluation

As already mentioned previously, the execution (evaluation) of GP chromo-
somes representing hierarchical computer programs as structure trees is done
recursively, depth-first way, and starting from the left. In order to demon-
strate this we here simulate the evaluation of the example programs given in
Section 2.2.1.1; graphical representations are given in Figures 2.2 and 2.3.

• (a) Internal states before execution: X = 7, Y = 3, i = 2.
Execution:
IF(OR(>(Y,X),<(Y,4)),:=(i,+(i,1)),:=(i,0))

⇒ IF(OR(>(3,7),<(Y,4)),:=(i,+(i,1)),:=(i,0))

⇒ IF(OR(FALSE,<(Y,4)),:=(i,+(i,1)),:=(i,0))

⇒ IF(OR(FALSE,<(3,4)),:=(i,+(i,1)),:=(i,0))

⇒ IF(OR(FALSE,TRUE),:=(i,+(i,1)),:=(i,0))

⇒ IF(TRUE,:=(i,+(i,1)),:=(i,0))

⇒ :=(i,+(i,1))

⇒ :=(i,+(2,1))

⇒ :=(i,3).
Internal states after execution: X = 7, Y = 3, i = 3.

• (b) Internal states before execution: X = 7, Y = 3.
Execution:
DIV(ADD(X,5),MULT(2,Y))

⇒ DIV(ADD(7,5),MULT(2,Y))

⇒ DIV(12,MULT(2,Y))

⇒ DIV(12,MULT(2,3))

⇒ DIV(12,6)

⇒ 2

Return value: 2; internal states after execution: X = 7, Y = 3.

Evolving Programs: Genetic Programming 31

IF / ELSE

OR := :=

> <

Y X Y 4

i +

i 1

i 0

IF / ELSE

OR := :=

> <

3 7 Y 4

i +

i 1

i 0

IF / ELSE

OR := :=

FALSE <

Y 4

i +

i 1

i 0

IF / ELSE

OR := :=

FALSE <

3 4

i +

i 1

i 0

IF / ELSE

OR := :=

FALSE TRUE i +

i 1

i 0

IF / ELSE

:= := TRUE

i +

i 1

i 0

:=

i +

i 1

:=

i +

2 1

:=

i 3

(1) (2)

(3) (4)

(5) (6)

(7) (8) (9)

FIGURE 2.2: Exemplary evaluation of program (a).

2.2.1.3 Genetic Operations: Crossover and Mutation

As genetic programming is an extension to the genetic algorithm, GP also
uses two main operators for producing new solution candidates in the search

32 Genetic Algorithms and Genetic Programming

/

+ *

2 Y X 5

/

+ *

2 Y 7 5

/

12 *

2 Y 2

/

12 *

2 3

/ (1) (2) (3) (4) (5)

(6)

12 6

FIGURE 2.3: Exemplary evaluation of program (b).

space, namely crossover and mutation.
As we already know from Chapter 1, crossover, the most important repro-

duction operator, takes two parent individuals and produces new offspring by
swapping parts of the parents. Here we immediately see one of the major
advantages of hierarchical tree representations of computer programs: Single-
point crossover can be simply performed by replacing a subtree of (a copy
of) one of the parents by a subtree of the other parent; these subtrees are
chosen at random. There are several different strategies for selecting these
subtrees as it might be reasonable to choose either rather small, rather big,
or completely randomly chosen parts.

Mutation can be seen as an arbitrary modification introduced to prevent
premature convergence by randomly sampling new points in the search space.
In the case of genetic programming, mutation is applied by modifying a ran-
domly chosen node of the respective structure tree:

• A subtree could be deleted or replaced by a randomly re-initialized sub-
tree.

• A function node could for example change its function type or turn into
a terminal node.

Numerous other mutation variants are possible, many of them depending
on the problem and chromosome representation chosen. In Chapter 11, for
example, we describe mutation variants applicable for GP-based structure
identification (related to symbolic regression, see Section 2.4.3).

Figure 2.4 illustrates examples for sexual reproduction using the exemplary
programs (1) and (2) as parents, labeled as parent1 and parent2, respectively.
It thereby becomes obvious that in the context of GP there can be the chance
of creating invalid chromosomes: The second offspring (child2) seems to be
incorrect since it includes the comparison of a Boolean value (Y>X OR Y<4)
and a number (2*Y). Thus, also in GP there are certain constraints that affect
the crossover of solution candidates; these constraints have to be considered
when it comes to designing and implementing a GP framework.

Of course, it again depends on the chosen implementation, if the evaluation
of this syntactically dubious program can be executed or not. In case of
real-valued representation of Boolean values (TRUE represented by 1.0, FALSE

Evolving Programs: Genetic Programming 33

represented by 0.0, e.g.) this structure tree represents a valid program that
can be calculated without any further problems.

Figure 2.5 illustrates exemplary results of applying mutation to program
(1). In the first case, a Boolean function node (<) is turned into another
type of Boolean function node (>) yielding mutant1; mutant2 is produced by
omitting a subtree, namely the second child of the OR function node. While
these two first mutants are syntactically correct, mutant3 is an example for
an invalid mutation example: The first child of the conditional (IF) node has
been deleted leaving the root node with only two children - the evaluation of
this program is not possible.
Again, real-valued representation of Boolean values can help here. In this case
the value calculated by the first child of such a conditional node would have
to be interpreted as a Boolean value triggering the execution of the second
child subtree, the then-branch. As there is no third child node there is also
no else-branch, thus there is probably no action if the first (condition) node
is evaluated (or at least interpreted) as false.

These two examples of syntactically incorrect programs demonstrate what
was hinted in Section 2.2.1.1: Even though expressions are in general not
typed in GP, there are cases in which this is not true - a fact which has to
be considered during the design and implementation of a GP-based problem
solving system.

2.2.1.4 Advantages

As we are going to see later, the hierarchical structure tree is not the only
way how programs can be modeled and used in the GP process. Still, the
cumulation of the following reasons strongly favors the choice of this program
representation schema4:

• Even though structure trees show an (at least for many people) rather
unusual appearance and syntax, most programming language compilers
internally convert given programs into parse trees representing the un-
derlying programs (i.e., their compositions of functions and terminals).
In most programming languages, these parse trees are not (conveniently)
accessible to the programmer; here we present the programs directly as
parse trees as we need to genetically manipulate parts of the programs
(sub-trees).

• As evaluation is executed recursively starting from the root node, a
newly generated or manipulated program can be (re-)evaluated imme-
diately without any intermediate transformation step.

4In fact, these reasons partially correlate to Koza’s reasons for choosing LISP for his GP
implementation reported on in [Koz92b] and [Koz94], for example.

34 Genetic Algorithms and Genetic Programming

IF / ELSE

OR := :=

> <

Y X Y 4

i +

i 1

i 0

/

+ *

2 Y X 5

IF / ELSE

OR := :=

> <

Y X Y 4

i i 0 +

X 5

(1)

IF / ELSE

OR := :=

> <

Y X Y 4

i +

i 1

i 0

/

+ *

2 Y X 5

(2)

/

*

2 Y

OR

> <

Y X Y 4

parent 1 parent 2

parent 1 parent 2

child 1

child 2

FIGURE 2.4: Exemplary crossover of programs (1) and (2) labeled as par-
ent1 and parent2, respectively. Child1 and child2 are possible new offspring
programs formed out of the genetic material of their parents.

• Structure trees allow the representation of programs whose size and
shape change dynamically.

Evolving Programs: Genetic Programming 35

IF / ELSE

OR := :=

> <

Y X Y 4

i +

i 1

i 0

IF / ELSE

OR := :=

< <

Y X Y 4

i +

i 1

i 0

IF / ELSE

OR := :=

>

Y X

i +

i 1

i 0

IF / ELSE

:= :=

i +

i 1

i 0

parent 1

mutant 1 mutant 2 mutant 3

FIGURE 2.5: Exemplary mutation of a program: The programs mutant1,
mutant2, and mutant3 are possible mutants of parent.

2.2.2 Automatically Defined Functions and Modular
Genetic Programming

Numerous variations and extensions to Koza’s structure tree based genetic
programming have been proposed since its publication at the beginning of the
1990s. The probably best known and most frequently used one is the concept
of automatically defined functions (ADFs) proposed in “Genetic Programming
II: Automatic Discovery of Reusable Programs” [Koz94].

The main idea of ADFs is that program code (which has been evolved during
the GP process) is organized into useful groups (subroutines); this enables the
parameterized reuse and hierarchical invocation of evolved code as functions
that have not been taken from the original functions set F but are rather
defined automatically. The (re-)use of subroutines (subprograms, procedures)
is enabled in this way. In the meantime the idea of ADFs has been extended;
automatically defined iterations, loops, macros, recursions, and stores have
since then been proposed and their use demonstrated for example in [Koz94],
[KIAK99], and [KKS+03b].

With ADFs a GP chromosome program is split into a main program tree
(which is called and executed from outside) and arbitrarily many separate
trees representing ADFs. These separate functions can take arguments as
well as be called by the main program or another ADF.

36 Genetic Algorithms and Genetic Programming

Different approaches realizing modular genetic programming which have
gained popularity and are well known in the GP community are the genetic
library (presented by Angeline in [Ang93] and [Ang94], e.g.) and the adaptive
representation through learning (ARL) algorithm (proposed by Rosca, see for
example [Ros95a] or [RB96]). In both approaches, some parts of the evolved
code are automatically extracted from programs (usually of those that show
rather good fitness values). These extracted code fragments are then fixed
and kept in the GP library, thus they are available for the evolving programs
in the GP population.

Other advanced GP concepts that extend the tree concept are discussed
in [Gru94], [KBAK99], [Jac99], and [WC99]; basic features of these modular
GP approaches can be combined with multi-tree (multi-agent) systems which
shall be described a bit later.

2.2.3 Other Representations

We are not going to say much about GP systems that are not based on trees
in the context of this book; still, the reader could be prone to suspect that
there might be computer program representations other than the tree-based
approach. In fact, there are two other forms of GP that shall be mentioned
here whose program encoding differs significantly from the approach described
before: Linear and graphical genetic programming.

2.2.3.1 Linear Genetic Programming

The main difference between linear GP and tree-based GP is that in linear
GP individuals of the GP algorithm (the programs) are not represented by
structure trees but by linear chromosomes. These linear solutions represent
lists of computer instructions which are executed linearly.

Linear GP chromosomes are more similar to those of conventional GAs;
however, their size is usually not fixed so that a GP population is likely to
contain chromosomes of different sizes which is usually not the case with
conventional GA approaches. On the one hand this of course brings along
the loss of the advantages mentioned in Section 2.2.1.4, but on the other
hand this schema easily enables the representation of stack-based programs,
register-based programs, and machine code.

• In general, a stack is a data structure based on the “last in first out”
principle. If a program instruction is to be evaluated, it takes (pops) its
arguments from the stack, performs the calculation, and writes back the
result by adding (pushing) it back to the top of the stack. A chromosome
in stack-based GP represents exactly such a stack-based program by
storing the program instructions in a list and using a stack for executing
the program. A typical example can be seen in Perkins’ article “Stack-
Based Genetic Programming” [Per94]; a recent implementation has for
example been presented in [HRv07].

Evolving Programs: Genetic Programming 37

• Register-based and machine code GP are essentially similar [LP02]: In
both cases data are stored in (a rather small number of) registers, and
instructions read data from and write results back to these registers.
Initially, a program’s inputs are written to registers, and after executing
the program the results are given in one or more registers. The main
difference between these two GP approaches is the following:

– Programs in register-based GP (as also those of any other kind of
GP system) have to be interpreted, i.e., they are executed indirectly
or compiled before execution.

– On the contrary, programs in machine code GP consist of real hard-
ware machine instructions; thus, these programs can be executed
directly on a computer. The execution of machine code GP pro-
grams is therefore a lot faster than the evaluation of programs in
traditional implementations.
Nordin’s Compiling Genetic Programming System (CGPS) [Nor97]
for example presents an implementation of machine code GP.

2.2.3.2 Graphical Genetic Programming

Parallel Distributed Graphical Programming (PDGP, [Pol97], [Pol99b]) is
a form of GP in which programs are represented as graphs representing func-
tions and terminals as nodes; links between those nodes define the flow of
control and results. PDGP defines a fixed layout for the nodes whereas the
connections between them and the referenced functions are evolved by the
GP process. PDGP enables a high degree of parallelism as well as an efficient
and effective reuse of partial results; furthermore, it has been shown that it
performs better than conventional tree-based GP on a number of benchmark
problems.

Figure 2.6 shows the graphical representation of an exemplary program in
PDGP (adapted from [Pol99b]).

2.3 Basic Steps of the GP-Based Problem Solving
Process

2.3.1 Preparatory Steps

Before the GP process can be started there are several preparatory steps
that have to be executed. As explained in Section 2.2.1.1, the function and
terminal sets (F and T , respectively) have to be determined. Furthermore,
as in any GA application, a fitness measurement function also has to be es-
tablished so that a solution candidate can be evaluated and its fitness can be
measured (either explicitly or implicitly).

38 Genetic Algorithms and Genetic Programming

Output Node

Active Terminal

Active Function

Inactive Function

Inactive Terminal

FIGURE 2.6: Intron-augmented representation of an exemplary program in
PDGP [Pol99b].

In addition to these preparations that directly affect the construction and
management of individuals of the GP population, there are also some things
to be done regarding the execution of the GP algorithm:

• Parameters that control the GP run have to be set,

• a termination criterion has to be defined, and

• a result designation method has to be defined (as explained later in
Section 2.3.4).

These preparations in fact have to be done for any genetic algorithm; a similar
summary is for example given in [KIAK99]. Figure 2.7 summarizes the major
preparatory steps for the basic GP process.

GP Process

Solution (Program)

Fitness Measure f

Termination Criterion
Functions Set F

Parameters

Terminals
Set T Results Designation

FIGURE 2.7: Major preparatory steps of the basic GP process.

Evolving Programs: Genetic Programming 39

2.3.2 Initialization

At the beginning of each GA and GP execution, the population is ini-
tialized arbitrarily before the intrinsic evolutionary process can be started.
This initialization can be done either completely at random or using certain
(problem-specific) heuristics.

For hierarchical program structures as used in GP the random initialization
utilizes a maximum initial tree depth Dmax. As introduced in [Koz92b] and
for example reflected on in [ES03], there are two possibilities for creating
random initial programs:

• Full method: Nodes at depth d < Dmax point to randomly chosen func-
tions from function set F , and nodes at depth d = Dmax are randomly
chosen terminals (from terminal set T);

• Grow method: Nodes at depth d < Dmax become either a function or a
terminal (randomly chosen from F ∪ T), and nodes at depth d = Dmax

are again randomly chosen terminals (from T).

The so-called ramped half-half GP initialization method, proposed by Koza
[Koz92b], has meanwhile become one of the most frequently used GP initial-
ization approaches [ES03]. Both methods, grow and full, are hereby applied,
each delivering parts of the initial population.

Still, there is research work going on regarding this issue of finding optimal
initialization techniques as it is a fact that the use of different initialization
strategies can lead to very different overall results (as for example demon-
strated in [HHM04]). For example, there are approaches that produce initial
populations that are generated adequately distributed in terms of tree size
and distribution within the search space [GAMRRP07].

2.3.3 Breeding Populations of Programs

After preparing the GP process and initializing the population, the genetic
process can be started. As it is the case in any GA, new individuals (programs)
are created using recombination and mutation, tested, and become a part of
the new population. Fitter individuals have a bigger chance to succeed in
creating children of their own; thus, optimization happens during the run of
the evolutionary algorithm. Unfit programs (and with them also their genetic
material) wither out of the population.

As populations cannot grow infinitely in most applications, new programs
somehow have to replace old ones that die off. There are in fact several ways
how this replacement can be done:

• Generational replacement: The entire population is replaced by its de-
scendants. This corresponds to generations changes in nature when
for example annual plants or animals die in winter whereas their eggs
(hopefully) survive; thus, the next generation of the species is founded.

40 Genetic Algorithms and Genetic Programming

• Steady state replacement: New individuals are produced continuously,
and the removal of old individuals also happens continuously. Analogies
in nature are obvious as this is more or less how for example human
evolution happens.

• Selection of replaced programs: The individuals removed can be either
chosen from the unfit ones (worst replacement), from the older ones
(replacement with aging), or at random (random replacement), for ex-
ample.

This whole procedure is graphically displayed in Figure 2.8 (adapted from
[LP02]).

FIGURE 2.8: The genetic programming cycle [LP02].

In fact, the whole genetic programming process involves more than what is
displayed in Figure 2.8: The preparatory steps summarized in Section 2.3.1
also have to be considered, and of course a validation of the results produced
has to be done that might lead to a re-formulation of the pre-conditions. A
more comprehensive overview of the GP process is given in Figure 2.9.

The execution of the GP cycle is – as GP is an extension to the GA – similar
to the cyclic execution of the GA: Solutions are selected from the population,
by crossing them they become parents, mutation is applied with a rather
small probability, and thus a new offspring is produced. In the generational
replacement scheme this is repeated until the next generation’s population
is complete; in the steady state scheme there is no generational cycle but
this procedure is also repeated over and over again. The whole procedure is
repeated until some pre-defined termination criterion is met (see Section 2.3.4
for details).

Evolving Programs: Genetic Programming 41

Knowledge / Suspection
about the Search Space

Experimental Design,
Data Collection

GP Functions and
Terminals Library

GP Algorithm

GP Results

Expert Analysis,
Validation

Termination Criterion

Results Designation
Criteria

Result Designation

Fitness Measure

FIGURE 2.9: The GP-based problem solving process.

In fact, there is a veritable difference in the descriptions of this cyclic work-
flow for GAs and for GP regarding the offspring creation scheme applied5:

• In GAs, crossover and mutation are used sequentially, i.e., both are
applied (with mutation having a rather small probability).

• In GP, crossover or mutation (or a simple copy action) are executed
independently; each time a new offspring is to be created, one of these
variants is chosen probabilistically.

In fact, some researchers even recommend the GP-like offspring creation
schema for all evolutionary computation systems (as for example given by
Eick, see [Eic07]).

2.3.4 Process Termination and Results Designation

In general, the termination criteria of genetic algorithms are also applicable
for genetic programming. A termination criterion might monitor the number
of generations and terminate the algorithm as soon as a given limit is reached.
Problem-specific criteria are also used frequently, i.e., the algorithm is termi-
nated as soon as a problem-specific success predicate is fulfilled. In practice,
one may manually monitor and manually terminate the run when the values of
fitness for numerous successive best-of-generation individuals appear to have
reached a plateau [KKS+03b].

5The GA workflow was described in detail in Chapter 1; the GP workflow as it is summarized
here is also described in further detail in [Koz92b], [KKS+03b], and [ES03], for example.

42 Genetic Algorithms and Genetic Programming

yes
no

Go on to Next
Generation

Select Action to be
Performed

Select one
Individual

Perform
Mutation

Select 2 Parent
Individuals

Perform
Crossover

Perform
Mutation with
Probability pm

Add New
Offspring to
Intermediate

Pool

New Population
Complete?

yes
no

Go on to Next
Generation

Add New
Offspring to
Intermediate

Pool

New Population
Complete?

pmut

Select two
Individuals

Perform
Crossover

Add New
Offspring to
Intermediate

Pool

pcross

Select one
Individual

Copy
Individual

Add New
Offspring to
Intermediate

Pool

pcopy

The GA Workflow:
Production of a New

Generation

The GP Workflow:
Production of a New

Generation

FIGURE 2.10: GA and GP flowcharts: The conventional genetic algorithm
and genetic programming.

After terminating the algorithm it comes to the designation of the result
returned by the algorithm. Normally, the single best-so-far individual is then
harvested and designated as the result of the run [KKS+03b]. As we will
see in Chapter 11 there are applications (as for example data-based structure
identification) in which this is not the optimal strategy. In this case the use of
a validation data set V is suggested, i.e., a data collection that was not used
during the GP training phase; we eventually test the programs on V and pick
the one that performs best on V .

Evolving Programs: Genetic Programming 43

2.4 Typical Applications of Genetic Programming

As genetic programming is a domain-independent method, there is an enor-
mous number of applications for which it has been used for automatically pro-
ducing solutions of high quality. Here we give a very short summary of exem-
plary problem classes which have been used for demonstrating GP’s power in
automatically learning programs for solving problems for more than 15 years,
namely the automated learning of multiplexer functions (Section 2.4.1), the
artificial ant (2.4.2), and symbolic regression (2.4.3). Finally, in Section 2.4.4
we give a short list of various problems for which GP has proven to be able
to produce high quality results.

2.4.1 Automated Learning of Multiplexer Functions

The automated learning of functions requires the development of composi-
tions of functions that can return correct values of functions after seeing only
a relatively small number of specific examples; these training samples are com-
binations of values of the function associated with particular combinations of
arguments.

The problem of learning Boolean multiplexer functions has become famous
as a benchmark application for genetic programming since Koza’s work on it
for example presented in [Koz89] and [Koz92b]. The input to a Boolean
k-multiplexer function is a bit-string consisting of k address bits ai and
2k data bits di; normally, the bits are thereby aligned following the form
[ak−1 . . . a1a0d2k−1 . . . d1d0]. The value returned by the multiplexer function
is the value of the particular data bit that is addressed by the k address bits.
For example, let k be 3 and the three address bits a2a1a0 = 101, then the
multiplexer singles out data bit d5 to be its output.6 The abstract black box
model of the Boolean multiplexer with three address bits and 23 = 8 data bits
as well as the concrete addressing of data bit d5 is displayed in Figure 2.11.

A solution to this problem obviously has to be a function that uses input
information a and d and calculates a Boolean return value. Thus, the terminal
has (k + 2k) elements which correspond to the inputs to the multiplexer; in
the case of k = 3 the terminal set T = {A0, A1, A2, D0, D1, . . . , D7}. The
functions used contain Boolean functions and the conditional function, i.e.,
F = {AND, OR, NOT, IF}. The evaluation of a solution candidate is done
by applying the formula to all possible input bit combinations and counting
the number of correct output values. As there are (k + 2k) inputs to the

Boolean multiplexer, the number of possible input combinations is (2k+2k

);
in the case of k = 3, the number of possible input combinations is 2048.

6Data bit d5 is in fact the sixth data bit since if a2a1a0 = 000 data bit d0 is addressed, so
the indices of these data bits are zero-based.

44 Genetic Algorithms and Genetic Programming

a2
a1

a0

d7
d6

d5
d4

d3
d2

d1
d0

output

1
0

1

d7
d6

d5
d4

d3
d2

d1
d0

output

(a) (b)

FIGURE 2.11: The Boolean multiplexer with three address bits; (a) general
black box model, (b) addressing data bit d5.

Koza was able to show that GP is able to solve the 3-address multiplexer
problem 100% correctly [Koz92b]; this optimal result is shown in Figure 2.12.
Of course, various test series have been documented in which GP was used
for solving problem with multiplexers with more address bits in numerous
publications.

(IF A0 (IF A2 (IF A1 D7 (IF A0 D5 D0)) (IF A0 (IF A1 (IF A2 D7 D3) D1) D0)) (IF

A2 (IF A1 D6 D4) (IF A2 D4 (IF A1 D2 (IF A2 D7 D0)))))

IF

A0 IF IF

IF

IF

IF

IF

IF

IF IF

IF

IF

A2

A1 D7

D0 A0 D5

D3 A2 D7

D1 A1

D0 A0

A2

D4 A1 D6 A2 D4

A1 D2

D0 A2 D7

FIGURE 2.12: A correct solution to the 3-address Boolean multiplexer prob-
lem [Koz92b].

2.4.2 The Artificial Ant

The artificial ant problem ([CJ91a], [CJ91b], [JCC+92]) has also been a
frequently used benchmark problem for GP since Koza’s application [Koz92b];
meanwhile, it has become a well-studied problem in the GP community (see
for example [LW95], [IIS98], [Kus98], [LP98], and [LP02]).

In short, the problem is to navigate an artificial ant on a grid consisting of

Evolving Programs: Genetic Programming 45

32 × 32 cells. The grid is toroidal so that if the ant moves off the edge of the
grid, it reappears and continues on the opposite edge. On this grid, “food”
units are distributed (normally along a trail); each time the ant enters a square
containing food, the ant eats it. At the beginning of the ant’s wanderings it
starts at cell (0, 0) facing in a particular direction (east, e.g.); at each time
step, the ant is able to move forward in the direction it is facing, to turn right,
or to turn left. The goal is to find a program that is able to navigate the ant
so that as many food items as possible are eaten in a certain number of time
units. The program can use the following:

• Three operations are available, namely Move, Left, and Right which let
the ant move ahead, turn left, or turn right, respectively; these opera-
tions are used as terminals in the GP process.

• The sensing function IfFoodAhead investigates the cell the ant is cur-
rently facing and then executes the first child operation if food is ahead
or the second child action otherwise.

• Additionally, two more functions are available: Prog2 and Prog3 take
two and three arguments (operations), respectively, which are executed
consecutively.

S

Start

Food

FIGURE 2.13: The Santa Fe trail.

The most frequently used trail is the so-called “Santa Fe trail” designed
by Christopher Langton. This trail is displayed in Figure 2.13 (adapted from
[LP02]); the ant is allowed to wander around the map for 600 time units. This
problem is in fact considered a hard problem for GP; thorough explanations

46 Genetic Algorithms and Genetic Programming

for this statement are for example given by Langdon and Poli in “Why ants
are hard” ([LP98] and [LP02]). What makes it so hard is not that it is difficult
to find correct solutions but rather to find these efficiently and significantly
better than random search. As is listed in [LP98], the smallest solutions that
solve the Santa Fe trail problem (i.e., those that provide programs that let
the ant eat all food packets) are of length eleven7; one of them is exemplarily
shown in Figure 2.14.

IF FOOD
AHEAD

MOVE
AHEAD

TURN
LEFT

MOVE
AHEAD

TURN
RIGHT

TURN
RIGHT

IF FOOD
AHEAD

MOVE
AHEAD

TURN
LEFT

FIGURE 2.14: A Santa Fe trail solution. The black points represent nodes
referencing to the Prog3 function.

Even though it is a very “simple” problem, the artificial ant problem still
provides a good basis for many theoretical investigations in GP such as build-
ing blocks and schema analysis [LP02], operators discussions ([LS97] or [IIS98],
e.g.), further algorithmic development [CO07], and many other research ac-
tivities.

2.4.3 Symbolic Regression

In short, symbolic regression is the induction of mathematical expressions
on data. The key feature of this technique is, as Keijzer summarized in [Kei02],
that the object of search is a symbolic description of a model, not just a set
of coefficients in a pre-specified model. This is in sharp contrast with other

7In fact, there are 2,554,416 possible programs with length 11, but only 12 (i.e., 0.00047%)
of them are successes. For programs of length 14 this ratio is approximately 0.0007%, for
bigger program sizes (up to 200 – 500) it levels off between 0.0001% and 0.0002% [LP98].

Evolving Programs: Genetic Programming 47

methods of regression, including linear regression, polynomial approaches, or
also artificial neural networks (ANNs), where a specific model is assumed and
often only the complexity of this model can be varied.

The main goal of regression in general is to determine the relationship
of a dependent (target) variable t to a set of specified independent (input)
variables x. Thus, what we want to get is a function f that uses x and a set
of coefficients w such that

t = f(x,w) + ǫ (2.1)

where ǫ represents the error (noise) term.
The form of f is usually pre-defined in standard regression techniques as

for example linear regression (fLinReg) and ANNs (fANN):

fLinReg(x,w) = w0 + w1x1 + . . .+ wnxn (2.2)

fANN (x,w) = w0 · g(w1x) (2.3)

In linear regression, w is the set of coefficients w0, w1, . . . , wn. In ANNs
we usually use an auxiliary transfer function g (which normally is a sigmoid
function as for example the logistic function 1

1+e−t); the coefficients w are here
called weights and include the weights from the hidden nodes to the output
layer (w0) and those from the input nodes to the hidden nodes (w1) [Kei02].

In contrast to this, the function f which is searched for is not of any pre-
specified form when applying genetic programming to symbolic regression.
Instead, low-level functions are used and combined to more complex formu-
las during the GP process. Given a set of functions f1, . . . , fu, the overall
functional form induced by genetic programming can take a variety of forms.
Usually, standard arithmetical functions such as addition, subtraction, mul-
tiplication, and division are in the set of functions f , but also trigonometric,
logical, and more complex functions could be included.

An exemplary composed function therefore could be:

f(x,w) = f1(f4(x1), f5(x3, w1), f4(f2(x1, w2)), x2)

or, by filling in some concrete functions for the abstract symbols f and w we
could get:

f1(x) = +(∗(0.5, x), 1) ≡ 0.5 ∗ x+ 1

f2(x) = +(2, ∗(x, x)) ≡ 2 + x ∗ x

When it comes to evaluating solution candidates in a GP-based symbolic
regression algorithm, the formulas have to be evaluated on a certain set of
evaluation data X yielding the estimated values E. These estimated values
are then compared to the original values T , i.e., those which are known from
data retrieval (experiments) or calculated by applying the original formula to
X .
For example, let ftarget be the target function

ftarget(x) = −(∗(0.5, ∗(x, x)), 2) ≡ 0.5 ∗ x2 − 2 (2.4)

48 Genetic Algorithms and Genetic Programming

and the functions f1 and f2 solution candidates. Furthermore, let the input
data X be

X = [−5,−4, . . . ,+4,+5]. (2.5)

Thus, by evaluating ftarget, f1, and f2 on X we get T , E1, and E2:

T = [10.5, 6, 2.5, 0,−1.5,−2,−1.5, 0, 2.5, 6, 10.5] (2.6)

E1 = [−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5] (2.7)

E2 = [27, 18, 11, 6, 3, 2, 3, 6, 11, 18, 27] (2.8)

By crossing f1 and f2, these become parent functions (parent formula 1 and
2) and we could for example get the child formula f3:

f3(x) = +(∗(0.5, ∗(x, x)), 1) ≡ 0.5 ∗ x ∗ x+ 1 (2.9)

and by evaluating it on X we get E3:

E3 = [13.5, 9, 5.5, 3, 1.5, 1, 1.5, 3, 5.5, 9, 13, 5] (2.10)

Graphical displays of the formulas f1, f2, and f3 (labeled as parent and
child functions) and their evaluations are given in the Figures 2.16 and 2.15,
respectively.

-5

0

5

10

15

20

25

30

35

-8 -6 -4 -2 0 2 4 6 8

Target Function

Child Formula

Parent Formula (I)

Parent Formula (II)

FIGURE 2.15: A symbolic regression example.

The task of GP in symbolic regression thus is to find a composition of the
functions, input variables, and coefficients that minimizes the error of the
function with respect to the desired target values. There are several ways
how to measure this error, one of the simplest and probably most frequently

Evolving Programs: Genetic Programming 49

+

* 1

0.5 x
+

1 *

x x

+

* 1

0.5 *

x x

parent 1

parent 2

child

Crossover

FIGURE 2.16: Exemplary formulas.

used ones being the mean squared error (mse) function; the mean squared
error of the vectors A and B each containing n values is calculated as

mse(A,B) =
1

n
∗

n
∑

k=1

(Ak −Bk)2; |A| = |B| = n (2.11)

So, we can calculate the fitness of f1, f2, and f3 as mse(E1, T), mse(E2, T),
and mse(E3, T), respectively yielding

fitness(f1) = 26.0 (2.12)

fitness(f2) = 100.5 (2.13)

fitness(f3) = 9.0 (2.14)

Whereas the search for formulas that minimize a given error function (or
maximize some other given fitness function) is the major goal of GP-based
regression, the shape and the size of the solution could also be integrated into
the fitness estimation function. The number and values of coefficients used is
another issue that is tackled in the optimization process; the search process is
also free whether to consider certain input variables or not, and thus it is able
to perform variables selection (possibly leading to dimensionality reduction)
[Kei02].

2.4.4 Other GP Applications

Finally we shall here give a short list of problems for which GP has proven
to be able to produce high quality results - this list of course comes without
the claim of completeness.

Koza can be for sure seen as one of the pioneers of applying GP to a
variety of different problems: In [Koz92b], [Koz94], [KIAK99], and [KKS+03b]
he reports (together with co-authors) on the GP-based solving of problems
for example in classification, regression, pattern recognition, computational
molecular biology, emergent behavior, cellular automata, sorting networks,

50 Genetic Algorithms and Genetic Programming

design of topology and component sizing for complex hardware structures
(such as analog electrical circuits, controllers, and antenna), and many others.
Many of those results can be considered human-competitive results, some even
being patentable new inventions created by GP.

In hardware design, for example, one of the problem situations explained in
[KIAK99] is the automated design of amplifiers. In general, an amplifier is a
circuit with one input and one output which multiplies the voltage of its input
signal by a certain factor (the so-called voltage amplification factor) over a
specified range of frequencies. The goal then is to realize such an amplifier
only using resistors, capacitors, inductors, transistors, and power sources; the
functions set used thus includes component creating functions for creating
digital gates, inductors, transistors, power supplies, and resistors. Solution
candidates are tree structures representing complete hardware entities which
can be displayed in a way which we are used to.

Of course, there is a vast number of other fields of applications for genetic
programming. Numerous applications of GP to problems of practical and
scientific importance have for example also been documented in the confer-
ence proceedings of the GECCO, CEC, or EuroGP conferences ([CP+03a],
[CP+03b], [D+04a], [D+04b], [B+05], [K+06], [T+07], [KOL+04], [KTC+05],
[CTE+06], or [E+07], e.g.). Please see the GP bibliography (Section 2.8) for
a short list of sources of publications on those.

2.5 GP Schema Theories

As we have summarized how genetic programming works, we shall now
turn our minds towards investigations why it works so well. Holland’s work
in the mid-1970s produced the well-known GA schema theorem; schemata
have since then been frequently used to demonstrate how and why GAs work.
In fact, as is summarized in [PMR04], in the 1990s interest in GA theory
shifted towards exact microscopic Markov chain models possibly with aggre-
gated states. However, after the work of Stephens and collaborators in the
late 1990s on exact schema theories based on the notion of dynamic building
blocks and the connection highlighted by Vose between his model and a dif-
ferent type of exact schema-based model, it is now clear that Markov-chain
and schema-based models are, when exact, just different representations of
the same thing.

Genetic programming theory has had a “difficult childhood,” as Poli et
al. stated in [PMR04]: After some early works on approximate GP schema
theorems, it took quite some time until schema theories could be developed
that give exact formulations for expected frequencies of schemata at the next
generation.

Evolving Programs: Genetic Programming 51

In this section we give a rough overview of these GP schema theorems:
After summarizing early work on GP schema theories in Section 2.5.1, which
see schemata as components of programs, we give an introduction to rooted
tree GP schema theories (Section 2.5.2) and an exact GP schema theory (Sec-
tion 2.5.3). Finally, in Section 2.5.4 we summarize the GP schema theory
concept.

The classification of schemata given in this section follows the grand con-
cepts of [LP02], Chapters 3–6.

2.5.1 Program Component GP Schemata

First attempts to explain why GP works were given by Koza; in short, he
gave an informal argument showing that Holland’s schema theorem would
work also for GP as described in [Koz92b], pp. 116–119. In Koza’s definition,
a schema is defined as a set of program subtrees (S-expressions); a schema
can so be used for defining a subspace of the program trees search space by
collecting all programs that include all subtrees given by the schema. For
example, the schema H=[(+ x 3), y] includes the programs *(y,+(x,3)) and
*(+(y,3),+(2,+(x,3))) as they both include (at least) one occurrence of the
S-expressions (+ x 3) and y. This example is displayed graphically in Fig-
ure 2.17.

*

y +

x 3

*

+

2 +

+

y 3

x 3

FIGURE 2.17: Programs matching Koza’s schema H=[(+ x 3), y].

The first probabilistic model of GP that can be considered a mathematical
formulation of a schema theorem for GP [LP02] was given by Altenberg in
[Alt94a]. Also assuming very large populations, the neglection of mutation,
and the application of proportional selection, he was able to calculate the
frequency of a program at the next generation. Altenberg used a schema
concept in which schemata are subexpressions and not, as in Koza’s work,

52 Genetic Algorithms and Genetic Programming

collections of subexpressions.
O’Reilly formalized Koza’s work on schemata ([O’R95], [OO94]) and derived

a schema theorem for GP with proportional selection and crossover (but with-
out mutation). The main difference to Koza’s approach was that she defined
schemata as collections of subtrees and tree fragments; tree fragments in this
context are trees with at least one leaf being a “don’t care” symbol (‘#’).
O’Reilly was also able to calculate the frequency of a program at the next
generation; unfortunately, the frequency depends on the shape, the size, and
the composition of the trees containing the schemata investigated. Thus, fre-
quencies are given rather as lower bounds than as concrete values. As O’Reilly
argued in the discussion of her result, no hypotheses can be made on the basis
of this theorem regarding the real propagation and the use of building blocks
in GP.

Another approach was investigated by Whigham: He produced a definition
of schemata for context free grammars and the related schema theorem which
was published for example in [Whi95], [Whi96b], and [Whi96a]. Based on his
definition of schemata he was able to give equations for the probabilities of
disruption of schemata by crossover and mutation. Like in O’Reilly’s work,
also in Whigham’s theorem the propagation of the components of schemata
from one generation to the next is described.

In all these early attempts GP schemata were used for modeling how com-
ponents (or groups of components) propagate within the population and how
the number of these instances can vary over time.

2.5.2 Rooted Tree GP Schema Theories

In rooted tree GP schema theory, a schema can be seen as a set of points
of the search space that share some syntactic feature. This can be defined
in the following way [PMR04]: Let F be the set of functions used, and T
the set of terminals. Syntactically, a GP schema is then defined as a tree
composed of functions from the set F ∪ {=} and terminals from T ∪ {=};
the primitive = here means “don’t care” and stands for a single terminal or
function. Semantically, H is the set of programs that have the same shape
and the same labels for the non-“=” nodes as the tree representation of H .

A simple example is given in Figure 2.18: Let F be defined as F = {+,−, ∗}
and T as T = {x, y, z}, and the schema H given as ∗(=,= (x,=)). For ex-
ample, the programs ∗(y, ∗(x, x)), ∗(z,+(x, z)), and ∗(x,−(x, z)) are program
members of H , i.e., they are included in H ’s semantics.

Rosca proposed this kind of schemata in [Ros97] (using the symbol ‘#’
instead of ‘=’). He formulated his schema theorem so that it became possible
to calculate a lower bound for a schema’s frequency at the next generation.
As a matter of fact, here also schemata divide the space of programs into
subspaces containing programs of different sizes and shapes.

Contrary to this, the following fixed-size-and-shape theory for GP was de-
veloped by Poli and Langdon ([PL97c], [PL97a]):

Evolving Programs: Genetic Programming 53

*

= =

x =

Schema
Syntax:

Schema
Semantics:

, , ,…

*

y *

x x

*

z +

x z

*

x -

x z

FIGURE 2.18: The rooted tree GP schema ∗(=,= (x,=)) and three exem-
plary programs of the schema’s semantics.

Under the assumption that fitness proportional selection is applied, the
probability of a program h sampling the schema H to be selected is

Pr{h ∈ H} =
m(H, t)f(H, t)

Mf(t)
(2.15)

where m(H, t) denotes the number of programs matching the schema H at
generation t, f(H, t) the mean fitness of programs matching H , M the popu-
lation size, and f(t) the mean fitness of the programs in the population.

The main idea is that the probability of the disruption of a schema can
be estimated. Let Dc(H) be the event “H is disrupted when a program h

matching H is crossed over with a program ĥ”; as is described in full detail in
cite [LP02], the probability of such a disruption caused by one-point crossover
can be formulated as

Pr{Dc(H)} ≤ pdiff(t)

(

1−
m(G(H), t)f(G(H), t)

Mf(t)

)

+
L(H)

N(H)− 1

m(G(H), t)f(G(H), t) −m(H, t)f(H, t)

Mf(t)
(2.16)

where G(H) is the shape of all programs matching the schema H (which
is called the hyperspace of H), and L(H) the defining length of H ; pdiff is
the probability of the disruption of schema H by crossing h (matching H)

with program ĥ that has different shape than h, i.e., which is not in G(H):

pdiff (t) = Pr(Dc(H)|ĥ /∈ G(H)).
When it comes to point mutation, a schema H will survive mutation only

if all of its O(H) defining nodes are not modified. Thus, the probability of H
being disrupted by mutation Pr{Dm(H)} is dependent on the probability of
a node to be altered (pm):

Pr{Dm(H)} = 1− (1− pm)O(H) (2.17)

The overall formula uses these partial results and finally gives the expected
number of programs matching schema H at generation t+ 1:

E[m(H, t+1)] ≥MPr{h ∈ H}(1−Pr{Dm(H)})(1−pxoPr{Dc(H)}) (2.18)

54 Genetic Algorithms and Genetic Programming

By substituting (2.15), (2.16), and (2.17) in (2.18) we get the final overall
formula for the lower bound of individuals sampling H at generation t+ 1 in
generational GP with fitness proportional selection, one-point crossover, and
point mutation as it is given in [LP02].

This GP schema theorem, produced by generalizing Holland’s GA schema
theorem, thus gives a pessimistic lower bound for the expected number of
copies of a schema in the next generation. In the next chapter we will sum-
marize an exact GP schema theory, produced by generalizing an exact GA
schema theorem and using the concept of hyperschemata.

2.5.3 Exact GP Schema Theory

In the previous section we have summarized pessimistic GP schema theory
based on generalization of Holland’s GA schema theorem. As Langdon and
Poli summarize in [LP02], the usefulness of these schema theorems has been
widely criticized (see [CP94], [Alt94b], [FG97], [FG98], or [Vos99], e.g.). In
order to overcome its main drawbacks, namely that they are pessimistic and
only give lower bounds for the expected numbers of instances for a given
schema at the next generation, more exact schema theorems for GAs and GP
had to be developed. These are going to be summarized in this section: After
explaining the main idea of Stephen and Waelbroeck’s GA schema theory,
the hyperschema concept is summarized, and finally, on the basis of these
hyperschemata, exact GP schema theorems.

An exact GA schema theorem has been developed by the end of the last mil-
lennium ([SW97], [SW99]): The total transmission probability α of a schema
H is defined so that α(H, t) is the probability that at generation t the individ-
uals of the GA’s population will match H . Assuming a crossover probability
pxo, α(H, t) is calculated as:

α(H, t) = (1− pxo)p(H, t) +
pxo

N − 1

N−1
∑

i=1

p(L(H, i), t)p(R(H, i), t) (2.19)

with L(H, i) and R(H, i) being the left and right parts of schema H , respec-
tively, and p(H, t) the probability of selecting an individual matching H to
become a parent. The “left” part of a schema H is thereby produced by re-
placing all elements of H at the positions from the given index i to N with
“don’t care” symbols (with N being the length of the bit strings); the “right”
part of a schema H is produced by replacing all elements of H from position
1 to i with “don’t care.” The summation sums over all positions from 1 to
N −1, i.e., over all possible crossover points. A generalization of this theorem
to variable-length GAs has also been constructed [SPWR02].

After the publication of this exact GA schema theory, immediately the
question came to mind whether it would be possible to extend pessimistic
GP schema theories towards an exact GP schema theorem [LP02]. In fact,
it was: Poli developed an exact GP schema theorem (see [Pol99a], [Pol00c],

Evolving Programs: Genetic Programming 55

[Pol00b], [Pol00a], e.g.), a theorem which was then generalized by Poli and
McPhee to become known as Poli and McPhee’s Exact GP Schema Theorem
([PM01b], [PM01a], [PRM01], [PM01b], [Pol01], [PM03a], [PM03b], [PMR04],
and [LP02]).

Assuming equal size and shape for GP programs, (2.19) can be also used for
describing the transmission probability of a fixed-size-and-shape GP schema.
In the presence of one-point crossover, the transmission probability for a GP
schema H at generation t, α(H, t), can be thus given as

α(H, t) = (1 − pxo)p(H, t) +
pxo

N(H)

N−1
∑

i=1

p(l(H, i), t)p(u(H, i), t) (2.20)

with l(H, i) and u(H, i) being the lower and upper parts (building blocks)
of schema H , respectively, and N(H) the number of nodes in the schema
(which is assumed to have the same size and shape as all other programs in
the population). l(H, i) is defined as the schema produced by replacing all
nodes above cutting point i with “don’t care” symbols, and u(H, i) as the
schema produced by replacing all nodes below cutting point i with “don’t
care” symbols. In analogy to (2.19), the summation in (2.20) sums over all
possible crossover points.

Exemplary l and u schemata for the schema H = +(*(=,x),=) are shown in
Figure 2.19.

In order to generalize this exact GP schema theorem so that it can be ap-
plied to populations of programs of different sizes and shapes, a more general
schema approach is used, namely the GP hyperschema concept.

A GP hyperschema represents a set of schemata in the same way as a
schema represents a set of program trees (which is why it is called “hyper-
schema”). This can be defined in the following way [PMR04]: Let F be the
set of functions used, and T the set of terminals. Syntactically, a GP schema
is then defined as a tree composed of functions from the set F ∪ {=} and
terminals from T ∪ {=,#}. The primitives = and # here mean “don’t care”;
= stands for exactly one node, whereas # stands for any valid subtree.

Examples are shown in Figure 2.20: Let F be defined as F = {+,−, ∗}, T as
T = {x, y, z}, and the hyperschema H given as ∗(#,= (x,=)). The three ex-
emplary programs ∗(y, ∗(x, ∗)), ∗(∗(x, y),+(x, z)), and ∗(∗(∗(x, y), y),+(x, z))
are a part of H ’s semantics.

In analogy to l(H, i) and u(H, i) defined above and sketched in Figure 2.19,
the hyperschemata building blocks L(H, i) and U(H, i) are defined in the
following way: L(H, i) is the hyperschema obtained by replacing all nodes on
the path between crossover point i and the root of hyperschema H with =
nodes, and all subtrees connected with those nodes with # nodes. U(H, i)
is the hyperschema obtained by replacing the subtree below crossover point i
with a # node [PMR04].

As examples might here also help to make this concept clearer, Figure 2.21
shows an exemplary schema H = +(∗(=, x),=) and potential hyperschema

56 Genetic Algorithms and Genetic Programming

+

= *

= x

H

1 4

2 3

+

= *

= x

u(H,1)

1

+

= =

= =

+

= *

= x

l(H,1)

1

=

= *

= x

+

= *

= x

l(H,2)

2

=

= =

= =

FIGURE 2.19: The GP schema H = +(*(=,x),=) and exemplary u and l
schemata. Cross bars indicate crossover points; shaded regions show the parts
of H that are replaced by “don’t care” symbols.

*

=

x =

Hyperschema
Syntax:

Hyperschema
Semantics:

, , ,…

*

y *

x x

*

* +

x z x y

*

* +

x z * y

x y

FIGURE 2.20: The GP hyperschema ∗(#,= (x,=)) and three exemplary
programs that are a part of the schema’s semantics.

building blocks. As for example shown in the second column, L(H, 1) is
constructed by turning all nodes between crossover point 1 and the root (in
this case only the root node) into = nodes, and all subtrees of the so modified
nodes become # nodes. U(H, 1) is in column 3 constructed by replacing the
subtree under crossover point 1 into a # node. And finally, as can be seen
in column 4, L(H, 2) is again constructed by turning all nodes from crossover
point 2 to the root into = nodes, and all subtrees of the so modified nodes
become # nodes.

Evolving Programs: Genetic Programming 57

+

= *

= x

H

1 4

2 3

+

= *

= x

U(H,1)

1

+

= #

+

= *

= x

L(H,1)

1

=

= *

= x

+

= *

= x

L(H,2)

2

=

*

= x

=

= =

= x

=

=

= #

FIGURE 2.21: The GP schema H = +(∗(=, x),=) and exemplary U and L
hyperschema building blocks. Cross bars indicate crossover points; shaded
regions show the parts of H that are modified.

Using hyperschemata, it is possible to formulate a general, exact GP schema
theorem for populations of programs of any size or shape. The total trans-
mission probability of a fixed-size-and-shape GP schema H is, for GP with
one-point crossover and no mutation, given as

α(H, t) = (1− pxo)p(H, t)+ (2.21)

pxo

∑

h1

∑

h2

p(h1, t)p(h2, t)

NC(h1, h2)

∑

i∈C(h1,h2)

δ(h1 ∈ L(H, i))δ(h2 ∈ U(H, i))

where NC(h1, h2) is the number of nodes in the tree fragment representing the
common region of the programs h1 and h2, C(h1, h2) is the set of indices of
the crossover points in the common region of h1 and h2, and δ(x) is a function
that returns 1 if x is true and 0 otherwise. The first two summations sum
over all individuals in the population, i.e., we sum over all possible pairs of

58 Genetic Algorithms and Genetic Programming

programs; the second summation sums over all indices of crossover points of
the common region of the respective programs pair.

This GP schema theorem is called the “Microscopic Exact GP Schema
Theorem” in the sense that it is necessary to consider each member of the
population.

Via several transformations and lemmata (which are not given here) it is
finally possible to formulate the “Macroscopic Exact GP Schema Theorem”:

α(H, t) = (1− pxo)p(H, t)+ (2.22)

pxo

∑

j

∑

k

1

NC(Gj , Gk)

∑

i∈C(Gj,Gk)

p(L(H, i) ∩Gj , t)p(U(H, i) ∩Gk, t))

where G(H) denotes the schema that is obtained by replacing all nodes in a
schema H by “don’t care” symbols8; the sets L(H, i) ∩ Gj and U(H, i) ∩ Gk

are either schemata (of fixed size and shape), or the empty set ∅.
Thus, using this theorem (2.5.3), it is at last possible to give the exact

transmission probability of a schema for genetic programming under one-point
crossover and no mutation; an exact schema theorem for GP is established.
We have here omitted lots of transformation steps and proofs; for these, the
interested reader is for example referred to [PM03a], [PM03b], [LP02], or
[PMR04].

An overview of the development of approximate and exact schema theorems
for GAs and GP is graphically shown in Figure 2.22 (as given in [PMR04]).

Holland‘s GA Schema Theorem (1975);

Whitley‘s Version (1993)

Poli and Langdon‘s

GP Schema Theorem (1997)GAs with One-

Point Crossover

GP with

One-Point

Crossover

Refinement

Refinement

Stephens and Waelbroeck‘s GA

Schema Theorem (1997)

Stephens‘ GA Schema Theorem (2001)

Poli‘s Exact GP Schema

Theorem (2000)

Poli and McPhee‘s Exact

GAs with

Homologous

Crossover Generalization

Generalization

GP with

Homologous

Crossover

GP Schema Theorem (2001)

FIGURE 2.22: Relation between approximate and exact schema theorems for
different representations and different forms of crossover (in the absence of
mutation).

8G(H) is called the hyperspace of H.

Evolving Programs: Genetic Programming 59

2.5.4 Summary

Until the development of the GP schema theorems described in this section,
GP theory was typically considered scarce, approximate, and not terribly use-
ful [PM01c]. The facts, that GP is relatively young and that building theories
for variable size structures are very complex, are considered the reasons for
this.

Significant breakthroughs, which have been summarized in this section,
have fundamentally changed this understanding; after the development of GP
schema theorems, we now have an exact GP theory based on schema and
hyperschema concepts.

2.6 Current GP Challenges and Research Areas

Of course, theoretical work on GP was by far not finished after the devel-
opment of GP schema theorems. Even though they shall not be discussed in
detail here, we still want to line out a selection of current research areas in
GP theory.

For example, operators design for GP has been discussed in numerous publi-
cations; extensive analysis of initialization, crossover, and mutation operators
can be found in [Lan99], [ES03], or [LN00], for example.

The genetic programming search space has been subject to theoretical anal-
ysis (see [LP98], [LP02], e.g.). Experimental exploration of the GP search
space by random sampling can be used for comparing GP to random search
or other search techniques. Additionally, hypotheses have been stated regard-
ing minimum and maximum tree depth.

As has already been mentioned before, a Markov model for GAs has been
formulated by Vose, see [NV92], [VL91], and [Vos99] for explanations. In
short, a GA is modeled as a Markov chain; selection, mutation, and crossover
are incorporated into an explicitly given transition matrix, thus the method
is complete, and no special assumptions are made which restrict populations
or population trajectories.

This GA Markov model could also be extended to GP using the schema
GP theory described in the previous section, which gives exact formulas for
computing the probability that reproduction and recombination create any
specific program. A GP Markov chain model is then easily obtained by plug-
ging this ingredient into a minor extension of Vose’s model of GAs [PMR04];
in fact, an alternative approach for describing the dynamics of evolutionary
algorithms is provided by this theory.

One fact has been known for genetic programming since some of its first
applications and has been frequently reported: Programs in genetic program-
ming populations tend to grow in size ([Ang94], [Lan95], [NB95], [SFD96],

60 Genetic Algorithms and Genetic Programming

[AA05], [Ang98], [TH02]). “Redundancy,” “introns,” and, probably most fre-
quently used as well as with the most negative connotation, “bloat” have
(amongst others) been used since then as names for this tendency. In princi-
ple, it means that introns, i.e., code which has no effect on the performance
of the program containing it, grow during the GP process; it is in fact a
phenomenon also known from natural evolution [WL96].

Of course, this seems to be an unwanted phenomenon and does not con-
form to “Occam’s Razor”, a law attributed to the 14th-century Francisian friar
William of Ockham. This law is also known as the “law of parsimony,” the
Latin principle “entia non sunt multiplicanda praeter necessitatem” meaning
that “entities should not be multiplied beyond necessity” is also often quoted.
In principle, this law demands the selection of exactly that theory that pos-
tulates the fewest entities and introduces the fewest assumptions (of course,
in case if there are multiple competing theories which are considered equal in
other respects). Argumentations pointing out how and why GP does or does
not fulfill Occam’s law can be found in [Dro98] and [LP97], for example.9

Examples for bloat are given in Figure 2.23: In the left example, the left
subtree will always return (x− (0 ∗ y + x)) = x − x = 0 and since the multi-
plication of 0 with any other value always results in 0, the result of the whole
program will always be 0 regardless of the values of x, y, and z. In fact, the
whole right subtree becomes code that does not influence the whole program’s
evaluation. In the second example shown on the right part of Figure 2.23, A
will always be smaller than A + 4; thus the condition of the root condition
will always be fulfilled and “else”-branch will never be activated.

*

- +

x +

* x

0 y

z *

+ -

x y 3 x

IF

< IF

A +

A 4

< C

B D

D

B

FIGURE 2.23: Examples for bloat.

In contrary to the examples in Figure 2.23, in which bloat is rather obvious,

9Especially “The Myth of Occam’s Razor” [W18], a paper written by Thorburn in 1918, is
worth reading in this context as it discusses the origins of the principle. For more discussions
on Occam’s razor and its reception in philosophy and science the interested reader is referred
to [Jac94], [Nol97], [Pop92], or [RF99].

Evolving Programs: Genetic Programming 61

there are also of course examples in which it can be seen that GP will not
always automatically produce rather simple results.

In their article entitled “Fitness Causes Bloat” [LP97], Langdon and Poli
showed that fitness-based selection seems to be responsible for the solutions’
growth in size; fitness-based parent selection therefore leads to code bloat.
In this context bloat has also been ironically described as “survival of the
fattest.”

According to [Zha97], [Zha00], and [LP02], approaches used for preventing
or at least decreasing bloat include, but are not restricted to the following
anti-bloat techniques:

• Size and/or depth limitations: The growth of programs is limited, pro-
grams are not allowed to become bigger in size and/or depth (where the
size of a program is normally the size of its structure tree and its depth
the depth of its structure tree). Size limits are nowadays commonly
used, see for example [KIAK99].

• Incorporation of program size in the selection process: An also often
used technique to combat bloat is to include some preference for smaller
programs in the criterion used to select programs for reproduction; this
additional factor to selection is also called parsimony pressure. Exam-
ples and analysis can be for example found in [Kin93], [Zha97], [Zha00],
[SF98], and [SH98]

• Incorporation of program size in evaluation: The size of a program
could of course also be incorporated in its evaluation. It might also
be included as one of the goals which the GP population tries to reach
([LN00], [EN01]).

• Genetic operators: Besides selection and evaluation, several crossover
and mutation operators have been proposed which are designed so that
they combat bloating, see for example [Ang98], [PL97b], or [Lan00].

Often we see another tendency of GP that does not fulfill Occam’s law,
namely that it is prone to producing programs that are overspecified. This
means that programs that are too complex for the problem at hand and that
much simpler programs could fulfill the given task as well; especially in data-
based modeling this phenomenon is also known as “overfitting.” We shall come
back to this topic in Chapter 11.

Another field of GP research is the development of practical guides for ideal
parameter settings for GP. As we find in [SOG04], for example, GP researchers
and practitioners are often frustrated by the lack of theory available to guide
them in selecting key algorithm parameters; GP population sizes, for exam-
ple, run from ten to a million members or more, but at present there is no
practical guide to knowing when to choose which size. [SOG04] here gives
a population-sizing relationship depending on tree size, solution complexity,
problem difficulty, and building block expression probability.

62 Genetic Algorithms and Genetic Programming

Furthermore, numerous other theoretical topics are widely discussed in the
GP community, lots of them directly connected to well known problems (or
rather challenges) with GP. Selected ones are to be mentioned in the next
chapters.

As a part of the conclusions of [LP02], Langdon and Poli demand that GP
users might like to consider how their GP populations are evolving, whether
they are converging, and, if so, whether they are converging in the right direc-
tion. At the present, many GP packages offer only few possibilities to monitor
populations. As we are going to demonstrate in later chapters, this is exactly
what we try to accomplish by investigating dynamics in the populations of
our GA and GP implementations.

2.7 Conclusion

In this chapter, genetic programming has been summarized and described
as a powerful extension to the genetic algorithm. In fact, GP is more than a
GA extension: It can be rather seen as the art of evolving computer programs
and as a generic concept for the automated programming of computers.

After describing GP basics and a variety of applications for GP, we
have summarized theoretical concepts for GP-based on schemata and hyper-
schemata. Problems and challenges in the context of GP have also been
discussed.

In the following chapters we shall now come back to algorithmic devel-
opments in GAs. We will especially concentrate on enhanced algorithmic
concepts which have been developed in order to support crossover-based evo-
lutionary algorithms in their intention to combine those parts of chromosomes
that define high quality solutions; these advanced concepts can of course also
be used with GP.

In Chapter 11 we then come back to GP and its application to data-based
system identification; we also demonstrate the effects of these algorithmic
enhancements in GP.

2.8 Bibliographic Remarks

There are numerous books, journals, and articles available that survey the
field of genetic programming. In this section we summarize some of the most
important ones. Representatively, the following books are widely considered
very important sources of information about GP:

Evolving Programs: Genetic Programming 63

• J. R. Koza et al.: Genetic Programming I - IV ([Koz92b], [Koz94],
[KIAK99], [KKS+03b]): A series of books on theory and praxis of ge-
netic programming by John Koza and varying co-authors

• W. Banzhaf et al.: Genetic Programming – An Introduction [BNKF98]

• W. Langdon: Genetic Programming and Data Structures [Lan98]

• W. Langdon and R. Poli: Foundations of Genetic Programming [LP02]

The following journals are dedicated to either theory and applications of
genetic programming or evolutionary computation in general:

• Genetic Programming and Evolvable Machines (Springer Netherlands)

• IEEE Transactions on Evolutionary Computation (IEEE)

• Evolutionary Computation (MIT Press)

Moreover, several conference and workshop proceedings include papers re-
lated to genetic programming. Some examples are the following ones:

• Genetic and Evolutionary Computation Conference (GECCO), a recom-
bination of the International Conference on Genetic Algorithms and the
Genetic Programming Conference

• Congress on Evolutionary Computation (CEC)

• Parallel Problem Solving from Nature (PPSN)

• European Conference on Genetic Programming (EuroGP)

Of course there is lots of GP-related information available on the in-
ternet including theoretical background and practical applications, course
slides, and source code. Probably the most comprehensive overview
of publications in GP is The Genetic Programming Bibliography which
is maintained by Langdon, Gustavson, and Koza and available at
http://www.cs.bham.ac.uk/∼wbl/biblio/.

Finally, publications of the Heuristic and Evolutionary Algorithms Labo-
ratory (HEAL) (including several articles on GAs and GP) are available at
http://www.heuristiclab.com/publications/.

Chapter 3

Problems and Success Factors

3.1 What Makes GAs and GP Unique among Intelligent
Optimization Methods?

In contrast to trajectory-based heuristic optimization techniques such as
simulated annealing or tabu search, and also in contrast to population-based
heuristics which perform parallel local search as for example the conven-
tional variants of evolution strategies (ES without recombination), genetic
algorithms and genetic programming operate under fundamentally different
assumptions.

A neighborhood-based method usually scans the search space around a
current solution in a predefined neighborhood in order to take moves to more
promising directions, and are therefore often confronted with the problem of
getting stuck in a local, but not global optimum of a multimodal solution
space.

What makes GAs and GP unique compared to neighborhood-based search
techniques is the crossover procedure which is able to assemble properties of
solution candidates which may be located in very different regions of the search
space. In this sense, the ultimate goal of any GA or GP is to assemble and
combine the essential genetic information (i.e., the alleles of a globally optimal
or at least high quality solution) step by step. This information is initially
scattered over many individuals and must be merged to single chromosomes
by the final stage of the evolutionary search process. This perspective, which
is under certain assumptions stated in the variants of the schema theory and
the according building block hypothesis, should ideally hold for any GA or
GP variant. This is exactly the essential property that has the potential to
make GAs and GP much more robust against premature stagnation in local
optimal solutions than search algorithms working without crossover.

65

66 Genetic Algorithms and Genetic Programming

3.2 Stagnation and Premature Convergence

The fundamental problem which many meta-heuristic optimization meth-
ods aim to counteract with various algorithmic tricks is the stagnation in a
locally, but not globally optimal solution. As stated previously, due to their
methodology GAs and GP suffer much less from this problem.

Unfortunately, also users of evolutionary algorithms using crossover fre-
quently encounter a problem which, at least in its effect, is quite similar to
the problem of stagnating in a local, but not global optimum. This draw-
back, in the terminology of GAs called premature convergence, occurs if the
population of a GA reaches such a suboptimal state that the genetic solu-
tion manipulation operators (crossover and mutation) are no longer able to
produce offspring that outperform their parents (as discussed for example in
[Fog94], [Aff03]). In general, this happens mainly when the genetic informa-
tion stored in the individuals of a population does not contain that genetic
information which would be necessary to further improve solution quality.

Several methods have been proposed to combat premature convergence in
genetic algorithms (see [LGX97], [Gao03], or [Gol89], e.g.). These include,
for example, the restriction of the selection procedure, the operators, and the
according probabilities as well as the modification of the fitness assignment.
However, all these methods are heuristic per definition, and their effects vary
with different problems and even problem instances. A critical problem in
studying premature convergence therefore is the identification of its occur-
rence and the characterization of its extent. Srinivas and Patnaik [SP94],
for example, use the difference between the average and maximum fitness as
a standard to measure genetic diversity, and adaptively vary crossover and
mutation probabilities according to this measurement.

Classical Measures for Diversity Maintenance

The term “population diversity” has been used in many papers to study
premature convergence (e.g., [SFP93], [YA94]) where the decrease of popula-
tion diversity (i.e., a homogeneous population) is considered as the primary
reason for premature convergence. The basic approaches for retarding prema-
ture convergence discussed in GA literature aim to maintain genetic diversity.
The most common techniques for this purpose are based upon pre-selection
[Cav75], crowding [DeJ75], or fitness-sharing [Gol89]. The main idea of these
techniques is to maintain genetic diversity by the preferred replacement of
similar individuals [Cav75], [DeJ75] or by the fitness-sharing of individuals
which are located in densely populated regions [Gol89]. While methods based
upon those discussed in [DeJ75] or [Gol89] require some kind of neighbor-
hood measure depending on the problem representation, the approach given
in [Gol89] is additionally quite restricted to proportional selection.

Problems and Success Factors 67

Limitations of Diversity Maintenance

In basic GA literature the topic of premature convergence is considered
to be closely related to the loss of genetic variation in the entire popula-
tion ([SFP93], [YA94]). In the opinion of the authors this perspective, which
mainly stems from natural evolution, should be considered in more detail for
the artificial evolutionary process as being performed by an GA or GP. In nat-
ural evolution the maintenance of genetic diversity is of major importance as
a rich gene pool enables a certain species to adapt to changing environmental
conditions. In the case of artificial evolution, the environmental conditions,
for which the chromosomes are to be optimized, are represented in the fitness
function which usually remains unchanged during the run of an algorithm.
Therefore, we do not identify the reasons for premature convergence in the
loss of genetic variation in general but more specifically in the loss of what we
call essential genetic information, i.e., in the loss of alleles which are part of
a global optimal solution. Even more specifically, whereas the alleles of high
quality solutions are desired to remain in the gene pool of the evolutionary
process, alleles of poor solutions are desired to disappear from the active gene
pool in order to strengthen the goal-directedness of evolutionary search.

Therefore, in the following we denote the genetic information of the global
optimal solution (which is unknown to the algorithm) as essential genetic
information. If parts of this essential genetic information are missing or get
lost, premature convergence is already predetermined in a certain way as only
mutation (or migration in the case of parallel GAs) is able to regain this
genetic information.

A very essential question about the general performance of a GA is whether
or not good parents are able to produce children of comparable or even bet-
ter fitness – after all, the building block hypothesis implicitly relies on this.
Unfortunately, this property cannot be guaranteed easily for GA applications
in general: The disillusioning fact here is that the user has to take care of an
appropriate encoding in order to make this fundamental property hold.

Reconsidering the basic functionality of a GA, the algorithm selects two
above average parents for recombination and sometimes (with usually rather
low probability) mutates the crossover result. The resulting chromosome is
then considered as a member of the next generation and its alleles are therefore
part of the gene pool for the ongoing evolutionary process.

Reflecting the basic concepts of GAs, the following questions and associated
problems arise:

• Is crossover always able to fulfill the implicit assumption that two above-
average parents can produce even better children?

• Which of the available crossover operators is best suited for a certain
problem in a certain representation?

• Which of the resulting children are “good” recombinations of their par-
ents chromosomes?

68 Genetic Algorithms and Genetic Programming

• What makes a child a “good” recombination?

• Which parts of the chromosomes of above-average parents are really
worth being preserved?

Conventional GAs are usually not always able to answer these questions
in a satisfactory way, which should ideally hold for any GA application and
not only for a canonical GA in the sense of the schema theorem and the
building block hypothesis. These observations constitute the starting point
for generic algorithmic enhancements as stated in the following chapters. The
preservation of essential genetic information, widely independent of the actu-
ally applied representation and operators, plays a main role. These advanced
evolutionary algorithm techniques called offspring selection, relevant alleles
preserving genetic algorithm (RAPGA), and SASEGASA will be exemplarily
compared to a conventional GA in Chapter 7 and extensively analyzed in the
experimental part of the book on the basis of various problems.

Chapter 4

Preservation of Relevant Building
Blocks

4.1 What Can Extended Selection Concepts Do to Avoid
Premature Convergence?

The ultimate goal of the extended algorithmic concepts described in this
chapter is to support crossover-based evolutionary algorithms, i.e., evolution-
ary algorithms that are ideally designed to function as building-block assem-
bling machines, in their intention to combine those parts of the chromosomes
that define high quality solutions. In this context we concentrate on selection
and replacement which are the parts of the algorithm that are independent
of the problem representation and the according operators. Thus, the appli-
cation domain of the new algorithms is very wide; in fact, offspring selection
and the RAPGA (a special variant of adaptive population sizing GA) can

be applied to any application that can be treated by genetic algorithms (of
course also including genetic programming).

The unifying purpose of the enhanced selection and replacement strategies
is to introduce selection after reproduction in a way that checks whether or
not crossover and mutation were able to produce a new solution candidate
that outperforms its own parents. Offspring selection realizes this by claim-
ing that a certain ratio of the next generation (pre-defined by the user) has
to consist of child solutions that were able to outperform their own parents
(with respect to their fitness values). The RAPGA, the second newly intro-
duced selection and replacement strategy, ideally works in such a way that
new child solutions are added to the new population as long as it is possible
to generate unique and successful offspring stemming from the gene pool of
the last generation. Both strategies imply a self-adaptive regulation of the
actual selection pressure that depends on how easy or difficult it is at present
to achieve evolutionary progress. An upper limit for the selection pressure
provides a good termination criterion for single population GAs as well as a
trigger for migration in parallel GAs.

69

70 Genetic Algorithms and Genetic Programming

4.2 Offspring Selection (OS)

As already discussed at length, the first selection step chooses the parents
for crossover either randomly or in any other well-known way as for example
roulette-wheel, linear-rank, or some kind of tournament selection strategy.
After having performed crossover and mutation with the selected parents,
we introduce a further selection mechanism that considers the success of the
apparently applied reproduction. In order to assure that the progression of
genetic search occurs mainly with successful offspring, this is done in such
a way that the used crossover and mutation operators are able to create a
sufficient number of children that surpass their parents’ fitness. Therefore, a
new parameter called success ratio (SuccRatio ∈ [0, 1]) is introduced. The
success ratio is defined as the quotient of the next population members that
have to be generated by successful mating in relation to the total population
size. Our adaptation of Rechenberg’s success rule ([Rec73], [Sch94]) for genetic
algorithms says that a child is successful if its fitness is better than the fitness
of its parents, whereby the meaning of “better” has to be explained in more
detail: Is a child better than its parents, if it surpasses the fitness of the
weaker parent, the better parent, or some kind of weighted average of both?

In order to answer this question, we have borrowed an aspect from simu-
lated annealing: The threshold fitness value that has to be outperformed lies
between the worse and the better parent and the user is able to adjust a lower
starting value and a higher end value denoted as comparison factor bounds; a
comparison factor (CompFactor) of 0.0 means that we consider the fitness of
the worse parent, whereas a comparison factor of 1.0 means that we consider
the better of the two parents. During the run of the algorithm, the comparison
factor is scaled between the lower and the upper bound resulting in a broader
search at the beginning and ending up with a more and more directed search
at the end; this procedure in fact picks up a basic idea of simulated annealing.

In the original formulation of the SASEGASA (which will be described in
Chapter 5) we have defined that in the beginning of the evolutionary pro-
cess an offspring only has to surpass the fitness value of the worse parent
in order to be considered as “successful”; as evolution proceeds, the fitness
of an offspring has to be better than a fitness value continuously increasing
between the fitness values of the weaker and the better parent. As in the case
of simulated annealing, this strategy gives a broader search at the beginning,
whereas at the end of the search process this operator acts in a more and
more directed way. Having filled up the claimed ratio (SuccRatio) of the
next generation with successful individuals using the success criterion defined
above, the rest of the next generation ((1 − SuccRatio) · |POP |) is simply
filled up with individuals randomly chosen from the pool of individuals that
were also created by crossover, but did not reach the success criterion. The
actual selection pressure ActSelPress at the end of generation i is defined by

Preservation of Relevant Building Blocks 71

the quotient of individuals that had to be considered until the success ratio
was reached and the number of individuals in the population in the following
way:

ActSelPress =
|POPi+1|+ |POOLi|

|POPi|
(4.1)

child
'better' than

parents ?
yes

no

selection (roulette, linear rank, tournament, …)
crossover
mutation

fill up rest of next population after
enough 'better' children have
been created

|POP|

POPi.

. POOL

|POOL|

POPi+1.

|POP|

|POP| SuccRatio |POP| (1-SuccRatio)

FIGURE 4.1: Flowchart of the embedding of offspring selection into a genetic
algorithm. This figure is displayed with kind permission of Springer Science
and Business Media.

Figure 4.1 shows the operating sequence of the concepts described above.
An upper limit of selection pressure (MaxSelPress) defines the maximum

number of offspring considered for the next generation (as a multiple of the
actual population size) that may be produced in order to fulfill the success
ratio. With a sufficiently high setting of MaxSelPress, this new model also
functions as a detector for premature convergence:

If it is no longer possible to find a sufficient number (SuccRatio · |POP |)
of offspring outperforming their own parents even if (MaxSelPress · |POP |)
candidates have been generated, premature convergence has occurred.

As a basic principle of this selection model, higher success ratios cause
higher selection pressures. Nevertheless, higher settings of success ratio, and
therefore also higher selection pressures, do not necessarily cause premature
convergence. The reason for this is mainly that the new selection step does
not accept clones that emanate from two identical parents per definition. In

72 Genetic Algorithms and Genetic Programming

conventional GAs such clones represent a major reason for premature conver-
gence of the whole population around a suboptimal value, whereas the new
offspring selection works against this phenomenon (see Chapters 7, 10, and
11).

With all strategies described above, finally a genetic algorithm with the ad-
ditional offspring selection step can be formulated as stated in Algorithm 4.1.
The algorithm is formulated for a maximization problem; in case of minimiza-
tion problems the inequalities have to be changed accordingly.

Algorithm 4.1 Definition of a genetic algorithm with offspring selection.

Initialize total number of iterations nrOfIterations ∈ N

Initialize actual number of iterations i = 0
Initialize size of population |POP |
Initialize success ratio SuccRatio ∈ [0, 1]
Initialize maximum selection pressure MaxSelPress ∈]1,∞[
Initialize lower comparison factor bound LowerBound ∈ [0, 1]
Initialize upper comparison factor bound UpperBound ∈ [LowerBound, 1]
Initialize comparison factor CompFactor = LowerBound

Initialize actual selection pressure ActSelPress = 1
Produce an initial population POP0 of size |POP |

while (i < nrOfIterations) ∧ (ActSelPress < MaxSelPress) do

Initialize next population POPi+1

Initialize pool for bad children POOL

while (|POPi+1| < (|POP | ·SuccRatio))∧ ((|POPi+1|+ |POOL|) < (|POP | ·
MaxSelPress)) do

Generate a child from the members of POPi based on their fitness values
using crossover and mutation

Compare the fitness of the child c to the fitness of its parents par1 and par2

(without loss of generality assume that par1 is fitter than par2)
if fc ≤ (fpar2 + |fpar1 − fpar2 | · CompFactor) then

Insert child into POOL

else

Insert child into POPi+1

end if

end while

ActSelPress =
|POPi+1|+|POOL|

|POP |

Fill up the rest of POPi+1 with members from POOL

while |POPi+1| ≤ |POP | do

Insert a randomly chosen child from POOL into POPi+1

end while

Adapt CompFactor according to the given strategy
i = i + 1

end while

Preservation of Relevant Building Blocks 73

For a detailed analysis of the consequences of offspring selection the reader is
referred to Chapter 7 where the characteristics of a GA incorporating offspring
selection will be compared to the characteristics of a conventional GA on the
basis of a benchmark TSP.

4.3 The Relevant Alleles Preserving Genetic Algorithm
(RAPGA)

Assuming generational replacement as the underlying replacement strategy
the most essential question at generation i is which parts of genetic infor-
mation from generation i should be maintained in generation i + 1 and how
this could be done most effectively applying the available information (chro-
mosomes and according fitness values) and the available genetic operators
selection, crossover, and mutation.

The here presented variant of enhanced algorithmic concepts based upon
GA-solution manipulation operators aims to achieve this goal by trying to
bring out as much progress from the actual generation as possible and losing
as little genetic diversity as possible at the same time.

This idea is implemented using ad hoc population size adjustment in the
sense that potential offspring generated by the basic genetic operators are
accepted as members of the next generation if and only if they are able to
outperform the fitness of their own parents and if they are new in the sense
that their chromosome consists of a concrete allele alignment that is not rep-
resented yet in an individual of the next generation. As long as new and
(with respect to the definition given previously) “successful” individuals can
be created from the gene pool of the actual generation, the population size
is allowed to grow up to a maximum size. A potential offspring which is not
able to fulfill these requirements is simply not considered for the gene pool of
the next generation.

Figure 4.2 represents the gene pool of the alleles at a certain generation i
and Figure 4.3 illustrates how this genetic information can be used in order
to generate a next population i + 1 of a certain size which may be smaller
or larger than that of the actual population i. Whether the next population
becomes smaller or larger depends on the success of the genetic operators
crossover and mutation in the above stated claim to produce new and suc-
cessful chromosomes.

For a generic, stable, and robust realization of these RAPGA ideas some
practical aspects have to be considered:

• The algorithm should offer the possibility to use different settings also
for conventional parent selection, so that the selection mechanisms for
the two parents do not necessarily have to be the same. In many exam-

74 Genetic Algorithms and Genetic Programming

FIGURE 4.2: Graphical representation of the gene pool available at a certain
generation. Each bar represents a chromosome with its alleles representing
the assignment of the genes at the certain loci.

FIGURE 4.3: The left part of the figure represents the gene pool at generation
i and the right part indicates the possible size of generation i+ 1 which must
not go below a minimum size and also not exceed an upper limit. These
parameters have to be defined by the user.

ples a combination of proportional (roulette wheel) selection and random
selection has already shown a lot of potential (for example in combina-
tion with GP-based structure identification as discussed in [AWW08],
e.g.). The two different selection operators are called male and female
selection. It is also possible and reasonable in the context of the algo-
rithmic concepts described here to disable parent selection totally, as
scalable selection pressure comes along with the selection mechanisms
after reproduction. This can be achieved by setting both parent selec-
tion operators to random.

• Due to the fact that reproduction results are only considered in case they
are successful recombinations (and maybe mutations) of their parents’
chromosomes, it becomes reasonable to use more than one crossover op-

Preservation of Relevant Building Blocks 75

erator and more than one mutation operator at the same time. The
reason for this possibility is given by the fact that only successful off-
spring chromosomes are considered for the ongoing evolutionary process;
this allows the application of crossover and mutation operators which do
not produce good results mostly as long as they are still able to generate
good offspring at least sometimes. On the one hand the insertion of such
operators increases the average selection pressure and therefore also the
average running time, but on the other hand these operators can help a
lot to broaden evolutionary search and therefore retard premature con-
vergence. If more than one crossover and mutation operator is allowed,
the choice occurs by pure chance which has proven to produce better
results than a preference of more successful operators [Aff05].

• As indicated in Figure 4.3, a lower as well as an upper limit of pop-
ulation size are still necessary in order to achieve efficient algorithmic
performance. In case of a missing upper limit the population size would
snowball especially in the first rounds which is inefficient; a lower limit of
at least 2 individuals is also necessary as this indicates that it is no more
possible to produce a sufficient amount of chromosomes that are able to
outperform their own parents and therefore acts as a good detector for
convergence.

• Depending on the problem at hand there may be several possibilities
to fill up the next population with new individuals. If the problem
representation allows an efficient check for genotypical identity, it is
recommendable to do this and accept new chromosomes as members
for the next generation if there is no structurally identical individual
included in the population yet. If a check for genotypical identity is not
possible or too time-consuming, there is still the possibility to assume
two individuals are identical if they have the same fitness values as an
approximative identity check. However, the user has to be aware of
the fact that this assumption may be too restrictive in case of fitness
landscapes with identical fitness values for a lot of different individuals;
in such cases it is of course advisable to check for genotypical identity.

• In order to terminate the run of a certain generation in case it is not pos-
sible to fill up the maximally allowed population size with new successful
individuals, an upper limit of effort in terms of generated individuals is
necessary. This maximum effort per generation is the maximum number
of newly generated chromosomes per generation (no matter if these have
been accepted or not).

• The question, whether or not an offspring is better than its parents, is
answered in the same way as in the context of offspring selection.

Figure 4.4 shows the typical development of the actual population size dur-
ing an exemplary run of RAPGA applied to the ch130 benchmark instance of

76 Genetic Algorithms and Genetic Programming

FIGURE 4.4: Typical development of actual population size between the two
borders (lower and upper limit of population size) displaying also the identical
chromosomes that occur especially in the last iterations.

the traveling salesman problem taken from the TSPLib [Rei91]. More sophis-
ticated studies analyzing the characteristics of RAPGA will be presented in
Chapter 7.

4.4 Consequences Arising out of Offspring Selection and
RAPGA

Typically, GAs operate under the implicit assumption that parent individ-
uals of above average fitness are able to produce better solutions as stated
in Holland’s schema theorem and the related building block hypothesis. This
general assumption, which ideally holds under the restrictive assumptions of
a canonical GA using binary encoding, is often hard to fulfill for many prac-
tical GA applications as stated in the questions of Chapter 3 which shall be
rephrased and answered here in the context of offspring selection and RAPGA:

ad 1. Is crossover always able to fulfill the implicit assumption that two above-
average parents can produce even better children?

Unfortunately, the implicit assumption of the schema theorem, namely
that parents of above average fitness are able to produce even better
children, is not accomplished for a lot of operators in many theoreti-
cal as well as practical applications. This disillusioning fact has several

Preservation of Relevant Building Blocks 77

reasons: First, a lot of operators tend to produce offspring solution can-
didates that do not meet the implicit or explicit constraints of certain
problem formulations. Commonly applied repair strategies included in
the operators themselves or applied afterwards have the consequence
that alleles of the resulting offspring are not present in the parents which
directly counteracts the building block aspect. In many problem repre-
sentations it can easily happen that a lot of highly unfit child solution
candidates arise even from the same pair of above average parents (think
of GP crossover for example, where a lot of useless offspring solutions
may be developed, depending on the concrete choice of crossover points).
Furthermore, some operators have disruptive characteristics in the sense
that the evolvement of longer building block sequences is not supported.
By using offspring selection (OS) or the RAPGA the necessity that al-
most every trial is successful concerning the results of reproduction is
not given any more; only successful offspring become members of the
active gene pool for the ongoing evolutionary process.

ad 2. Which of the available crossover operators is best suited for a certain
problem in a certain representation?

For many problem representations of certain applications a lot of
crossover concepts are available where it is often not clear a priori which
of the possible operators is suited best. Furthermore, it is often also not
clear how the characteristics of operators change with the remaining
parameter settings of the algorithm or how the characteristics of the
certain operators change during the run of the algorithm. So it may
easily happen that certain, maybe more disruptive operators perform
quite well at the beginning of evolution whereas other crossover strate-
gies succeed rather in the final (convergence) phase of the algorithm.
In contrast to conventional GAs, for which the choice of usually one cer-
tain crossover strategy has to be done in the beginning, the ability to use
more crossover and also mutation strategies in parallel is an important
characteristic of OS-based GAs and the RAPGA as only the successful
reproduction results take part in the ongoing evolutionary process. It is
also an implicit feature of the extended algorithmic concepts that when
using more operators in parallel only the results of those will succeed
which are currently able to produce successful offspring which changes
over time. Even the usage of operator concepts that are considered
evidentially weak for a certain application can be beneficial as long as
these operators are able to produce successful offspring from time to
time [Aff05].

ad 3. Which of the resulting children are “good” recombinations of their par-
ents’ chromosomes?

Both OS and RAPGA have been basically designed to answer this ques-
tion in a problem independent way. In order to retain generality, these

78 Genetic Algorithms and Genetic Programming

algorithms have to base the decision if and to which extent a given repro-
duction result is able to outperform its own parents by comparing the
offspring’s fitness with the fitness values of its own parent chromosomes.
By doing so, we claim that a resulting child is a good recombination
(which is a beneficial building block mixture) worth being part of the
active gene pool if the child chromosome has been able to surpass the
fitness of its own parents in some way.

ad 4. What makes a child a “good” recombination?

Whereas question 3 motivates the way, how the decision may be carried
out whether or not a child is a good recombination of its parent chro-
mosomes, question 4 intuitively asks why this makes sense. Generally
speaking, OS and RAPGA direct the selection focus after reproduc-
tion rather than before reproduction. In our claim this makes sense,
as it is the result of reproduction that will be part of the gene pool
and that has to keep the ongoing process alive. Even parts of chromo-
somes with below average fitness may play an important role for the
ongoing evolutionary process, if they can be combined beneficially with
another parent chromosome which motivates gender specific parent se-
lection [WA05b] as is for example applied in our GP experiments shown
in the practical part (Chapter 11) of this book. With this gender spe-
cific selection aspect, which typically selects one parent randomly and
the other one corresponding to some established selection strategy (pro-
portional, linear-rank, or tournament strategies) or even both parents
randomly, we decrease selection pressure originating from parent selec-
tion and balance this by increasing selection pressure after reproduction
which is adjusted self-adaptively depending on how easy or difficult it
is to achieve advancement.

ad 5. Which parts of the chromosomes of parents of above-average fitness are
really worth being preserved?

Ideally speaking, exactly those parts of the chromosomes of above-
average parents should be transferred to the next generation that make
these individuals above average. What may sound like a tautology at the
first view cannot be guaranteed for a lot of problem representations and
corresponding operators. In these situations, OS and RAPGA are able
to support the algorithm in this goal which is essential for the building
block assembling machines GAs and GP.

Chapter 5

SASEGASA – More than the Sum of
All Parts

The concept of offspring selection as described in Chapter 4 is very well
suited to be transferred to parallel GA concepts. In the sense of parallel
GA nomenclature, our proposed variant called SASEGASA (which stands for
self-adaptive segregative genetic algorithm with simulated annealing aspects)
is most closely related to the class of coarse-grained parallel GAs. The well-
known island model supports global search by taking advantage of the steady
pulsating interplay between breadth search and depth search supported by
the forces of genetic drift and migration.

SASEGASA acts differently by allowing the certain subpopulations to drift
a lot longer through the solution space; exactly until premature convergence
is detected in each of the subpopulations, which will be denoted as local pre-
mature convergence. Then the algorithm aims very carefully to bring together
the essential genetic information evolved in the certain demes individually.

Concretely, the following main distinguishing features can be pointed out
comparing SASEGASA to a coarse-grained island model GA:

Dynamic Migration Intervals

Migration happens no longer in predefined fixed intervals but at those points
in time when local premature convergence is detected in the certain subpop-
ulations. The indicator of local premature convergence is the exceeding of a
certain amount of selection pressure which can be measured in an offspring
selection GA. New genetic information is then added from adjacent subpop-
ulations that suffer from local premature convergence themselves, but have
evolved different alleles due to the undirected forces of genetic drift. By this
strategy the genetic search process can be initiated again until local premature
convergence is detected next time.

From Islands to Growing Villages

The most important difference from SASEGASA to the well known island
model is given by the fact that in case of SASEGASA the size of the sub-
populations is slowly growing by decreasing the number of subpopulations.
Therefore, the migration aspect of SASEGASA can rather be associated with

79

80 Genetic Algorithms and Genetic Programming

a village-town-city model than with an island model. By this means the
certain (at the beginning rather small) villages can drift towards different
regions of the search space until they are all prematurely converged. Then
the total number of subpopulations is decreased by one and the individuals
are regrouped as sketched in Figure 5.1; then the new subpopulations evolve
independently until local premature convergence is detected again for each
subpopulation. So the initially rather small villages become larger and larger
towns, finally forming a large panmictic population. The main idea of this
strategy is that the essential alleles which may be shared over many different
villages can slowly and carefully be collected in a single population result-
ing in a high quality solution. As a consequence, parallelization is no more
that efficient as in the island model, due to the changing number of subpop-
ulations. More sophisticated communication protocols between the involved
CPUs become necessary for efficient parallel implementations.

5.1 The Interplay of Distributed Search and Systematic
Recovery of Essential Genetic Information

When applying GAs to higher dimensional problems in combinatorial opti-
mization, it happens that genetic drift also causes alleles to fix to suboptimal
properties, which causes a loss of optimal properties in the entire population.
This effect is especially observable, if attributes of a global optimal solution
with minor influence on the fitness function, are “hidden” in individuals with
a bad total fitness. In that case parental selection additionally promotes the
drop out of those attributes.

This is exactly the point where considerations about multiple subpopula-
tions, that systematically exchange information, come into play:

Splitting the entire population into a certain number of subpopulations
(demes) causes the separately evolving subpopulations to explore different ge-
netic information in the certain demes due to the stochastic nature of genetic
drift. Especially in the case of multimodal problems the different subpopu-
lations tend to prematurely converge to different suboptimal solutions. The
idea is that the building blocks of a global optimal solution are scattered in the
single subpopulations, and the aim is to develop concepts to systematically
bring together these essential building blocks in one population in order to
make it possible to find a global optimal solution by crossover. In contrast to
the various coarse- and fine-grained parallel GAs that have been discussed in
the literature (good reviews are given in [AT99] and [Alb05] for instance), we
have decided to take a different approach by letting the demes grow together
step by step in case of local premature convergence. Even if this property
does not support parallelization as much as established parallel GAs, we have

SASEGASA – More than the Sum of All Parts 81

decided to introduce this concept of migration as it proved to support the
localization of global optimal solutions to a greater extent [Aff05]. Of course,
the concept of self-adaptive selection pressure steering is essential, especially
immediately after the migration phases, because these are exactly the phases
where the different building blocks of different subpopulations have to be uni-
fied. In classical parallel GAs it has been tried to achieve this behavior just
by migration which is basically a good, but not very efficient idea, if no deeper
thoughts about selection pressure are spent at the same time.

As first experiments have already shown, there also should be a great po-
tential in equipping established parallel GAs with our newly developed self-
adaptive selection pressure steering mechanisms which leads to more stability
in terms of operators and migration rates, automated detection of migration
interval, etc.

5.2 Migration Revisited

In nature the fragmentation of the population of a certain species into more
subpopulations of different sizes is a commonly observable phenomenon. Many
species have a great area of circulation of various environments which leads
to the formation of subpopulations. An important consequence of the popu-
lation structure is the genetic differentiation of subpopulations, i.e., the shift
of allele frequencies in the certain subpopulations. The reasons for genetic
differentiation are:

• Local adjustment of different genotypes in different populations

• Genetic drift in the subpopulations

• Random differences in the allele frequency of individuals which build up
a new subpopulation

The structure of the population is hierarchically organized in different layers1:

• Individual

• Subpopulation

• Local population

• Entire population (species)

1The concept of hierarchical population structures has been introduced by Wright [Wri43].

82 Genetic Algorithms and Genetic Programming

An important goal of population genetics is the detection of population struc-
tures, the analyses of consequences and the location of the layer with most
diverse allele frequencies. In this context a deeper consideration of genetic
drift and its consequences is of major interest. The aspect of local adapta-
tion of different genotypes in different populations should give useful hints
for multi-objective function optimization or for optimization in changing en-
vironments.

One consequence of the population structure is the loss of heterozygosity
(genetic variation). The Swedish statistician and geneticist Wahlund [HC89]
described that genetic variation rises again, if the structure is broken up
and mating becomes possible in the entire population. The SEGA and the
SASEGASA algorithm, which will be described later, systematically take ad-
vantage of this effect step by step.

When talking about migration it is essential to consider some distinction
concerning the genetic connection between the subpopulations which mainly
depends on the gene flow (the exchange of alleles between subpopulations).
Migration, the exchange of individuals, causes gene flow if and only if the
exchanged individuals produce offspring. The most important effect of migra-
tion and gene flow is the introduction of new alleles into the subpopulations.
In that sense migration has effects similar to mutation, but can occur at much
higher rates. If the gene flow between subpopulations is high, they become ge-
netically homogeneous; in the case of little gene flow, the subpopulations may
diverge due to selection, mutation, and drift. Population genetics provides
a set of models for the theoretical analysis of gene flows. The most popu-
lar migration models of population genetics are the mainland-island model,
which considers migration in just one direction, and the island model, that
allows migration in both directions. As discussed in parallel GA theory, the
migration rate is an essential parameter for the description of migration. In
population genetics the migration rate describes the ratio of chromosomes
migrating among subpopulations.

5.3 SASEGASA: A Novel and Self-Adaptive Parallel
Genetic Algorithm

We have already proposed several new EA-variants. The first prototype of
this new class of evolutionary search which considers the concept of control-
lable selection pressure ([Aff01c], [Aff02]) for information exchange between
independently evolving subpopulations has been introduced with the Seg-
regative Genetic Algorithm (SEGA) [Aff01a], [Aff01b]. Even if the SEGA is
already able to produce very high quality results in terms of global solution
quality, selection pressure has to be set by the user which is a very time con-

SASEGASA – More than the Sum of All Parts 83

suming and difficult challenge. Further research, which aimed to introduce
self-adaptive selection principles for the steering of selection pressure ([AW03],
[AW04a]), resulted in the so-called SASEGASA-algorithm ([AW03], [Aff05]),
which already represents a very stable and efficient method for producing
high quality results without introducing problem-specific knowledge or local
search.

So far parallelism has “only” been introduced for improving global solution
quality and all experiments have been performed on single-processor machines.
Nevertheless, there is nothing to be said against transforming the concepts
evolved in the parallel GA community to also improve the quantitative perfor-
mance of our new methods. Empirical studies have shown that the theoretical
concepts of the SASEGASA-algorithm [AW03] allow global solution quality
to be steered up to the highest quality regions by just increasing the number
of demes involved. The algorithm turned out to find the global optimum for
all considered TSP benchmarks as well as for all considered benchmark test
functions up to very high problem dimensions [Aff05].

Therefore an enormous increase of efficiency can be expected when applying
concepts of supercomputing, allowing us to also attack much higher dimen-
sional theoretical and practical problems efficiently in a parallel environment.
Because of the problem independency of all newly proposed theoretical con-
cepts there is no restriction to a certain class of problems that allows the
attack of all problems for which GA theory (and also GP theory) offers ade-
quate operators.

5.3.1 The Core Algorithm

In principle, the SASEGASA introduces two enhancements to the basic con-
cept of genetic algorithms. Firstly, the algorithm makes use of variable selec-
tion pressure, as introduced as offspring selection (OS) in Chapter 4, in order
to self-adaptively control the goal-orientedness of genetic search. The second
concept introduces a separation of the population to increase the broadness of
the search process so that the subpopulations are joined after local premature
convergence has occurred. This is done in order to end up with a population
including all genetic information sufficient for locating a global optimum.

The aim of dividing the whole population into a certain number of sub-
populations (segregation) that grow together in case of stagnating fitness
within those subpopulations (reunification) is to combat premature conver-
gence which is the source of GA-difficulties. The basic properties (in terms of
solution quality) of this segregation and reunification approach have already
proven their potential in overcoming premature convergence [Aff01a], [Aff01b]
in the so-called SEGA algorithm.

By using this approach of breadth search, essential building blocks can
evolve independently in different regions of the search space. In the case
of standard GAs those relevant building blocks are likely to disappear early
on due to genetic drift and, therefore, their genetic information can not be

84 Genetic Algorithms and Genetic Programming

provided at a later phase of evolution, when the search for a global optimum
is of paramount importance.

However, within the SEGA algorithm there is no criterion to detect prema-
ture convergence, and there is also no self-adaptive selection pressure steering
mechanism. Even if the results of SEGA are quite good with regard to global
convergence [Aff01b], it requires an experienced user to adjust the selection
pressure steering parameters, and as there is no criterion to detect premature
convergence the dates of reunification have to be implemented statically.

FIGURE 5.1: Flowchart of the reunification of subpopulations of a
SASEGASA (light shaded subpopulations are still evolving, whereas dark
shaded ones have already converged prematurely). This figure is displayed
with kind permission of Springer Science and Business Media.

Equipped with offspring selection we have both: A self-adaptive selection
pressure (depending on the given success ratio), as well as an automated detec-
tion of local premature convergence, if the current selection pressure becomes
higher than the given maximal selection pressure parameter (MaxSelPress).
Therefore, a date of reunification has to be set, if local premature convergence

SASEGASA – More than the Sum of All Parts 85

has occurred within all subpopulations, in order to increase genetic diversity
again. Figure 5.1 shows a schematic diagram of the migration policy in the
case of a reunification phase of the SASEGASA algorithm. The dark shaded
subpopulations stand for already prematurely converged subpopulations. If
all subpopulations are prematurely converged (dark shaded) a new reunifica-
tion phase is initiated.

FIGURE 5.2: Quality progress of a typical run of the SASEGASA algorithm.
This figure is displayed with kind permission of Springer Science and Business
Media.

Figures 5.2 and 5.3 show typical shape of the fitness curves and selection
pressure progresses of a SASEGASA test run. The number of subpopulations
is in this example set to 10. The vertical lines indicate dates of reunifica-
tion. In the quality diagram (Figure 5.2) the lines give the fitness value of
the best member of each deme; the best known solution is represented by the
horizontal line. In the selection pressure diagram (shown in Figure 5.3) the
lines stand for the actual selection pressure in the certain demes, as the actual
quotient of evaluated solution candidates per round (in a deme) to the sub-
population size. The lower horizontal line represents a selection pressure of 1
and the upper horizontal line represents the maximum selection pressure. If
the actual selection pressure of a certain deme exceeds the maximum selection
pressure, local premature convergence is detected in this subpopulation and
evolution is stopped in this deme (which can be seen in the constant value of
the corresponding fitness curve) until the next reunification phase is started
(if all demes are prematurely converged).

With all the above described strategies, the complete SASEGASA algorithm

86 Genetic Algorithms and Genetic Programming

FIGURE 5.3: Selection pressure curves for a typical run of the SASEGASA
algorithm. This figure is displayed with kind permission of Springer Science
and Business Media.

can be stated as described in Figure 5.4.

Again, similar as in the context of offspring selection, it should be pointed
out that a corresponding genetic algorithm is unrestrictedly included in
SASEGASA, when the number of subpopulations (villages) is set to 1 and
the success ratio is set to 0 at the beginning of the evolutionary process.
Moreover, the introduced techniques also do not use any problem-specific in-
formation.

5.4 Interactions among Genetic Drift, Migration, and
Self-Adaptive Selection Pressure

Using all the introduced generic algorithmic concepts combined in
SASEGASA, it becomes possible to utilize the interactions between genetic
drift and the SASEGASA specific dynamic migration policy in a very advan-
tageous way in terms of achievable global solution quality:

Initially a certain number of subpopulations evolve absolutely indepen-
dently from each other until no further evolutionary improvement is possible
when using a genetic algorithm with offspring selection in the subpopulations,
i.e., until local premature convergence is detected in all subpopulations.

As a matter of principle, it is also the case that primarily those alleles
are fixed in the certain subpopulations which currently influence the fitness

SASEGASA – More than the Sum of All Parts 87

Initialize current number of villages noOfVillages
Initialize size of population |POP|
Initialize current size of subpopulations |subPOP| = |POP| / noOfVillages
Initialize upper bound for number of generations between recombination phases maxGenerations

Generate subpopulations subPOP1, …, subPOP|noOfVillages|Initialize all subpopulations subPOP1, …, subPOP|noOfVillages|

Initialize total number of generations totalGenerations = 0
Initialize number of generations since last recombination phase currGenerations = 0

Are all subpopulations
subPOP1, …, subPOP|noOfVillages| converged or iscurrGenerations = maxGenerations ?

Generate next generation for each subpopulation subPOP1, …, subPOP|noOfVillages|(as described in Fig. 4.1)

totalGenerations = totalGenerations + 1
currGenerations = currGenerations + 1

noOfVillages = noOfVillages - 1
|subPOP| = |POP| / noOfVillages
currGenerations = 0

Reset all subpopulations subPOP1, …, subPOP|noOfVillages| by joining anappropriate number of adjacent subpopulation members

Is noOfVillages = 1 ?

yes

no

no

yes

FIGURE 5.4: Flowchart showing the main steps of the SASEGASA. This
figure is displayed with kind permission of Springer Science and Business
Media.

function to a greater extent. The rest of the essential alleles with a currently
low influence on the fitness value, which may be required for a global optimal
solution later, are unlikely to be combined in any single subpopulation –

88 Genetic Algorithms and Genetic Programming

because basically these alleles are distributed over all subpopulations.
As after this first optimization stage all subpopulations are prematurely

converged to solutions with comparable fitness values, genetic information
that has not been considered before is suddenly taken into account by selec-
tion after a reunification phase. We so establish a step-by-step reunification
of independently evolving subpopulations, which is triggered by the detection
of convergence; in this way it becomes possible to systematically consider the
essential alleles at exactly those points in time when they are in the position
to become accepted in the newly emerging greater subpopulations. By means
of this procedure smaller building blocks2 of a global optimal solution are
step-by-step enriched with new alleles, in order to evolve to larger and larger
building blocks ending up in one single subpopulation, containing all genetic
information being required for a global optimal solution.

With an increasing number of equally sized subpopulations, the probability
that essential alleles are barred from dying off increases due to the greater
total population size; this results in a higher survival probability of the alleles
which are not yet considered.

As empirically demonstrated in Chapters 7, 10, and 11, the procedure de-
scribed above makes it possible to find high quality solutions for more and
more difficult problems by simply increasing the number of subpopulations.
Of course this causes increasing computational costs; still, this growth in com-
putational costs is not exponential, but linear.

2The notation of building blocks is considered in a more general interpretation than in
Holland’s definition.

Chapter 6

Analysis of Population Dynamics

There are several aspects of dynamics in populations of genetic algorithms
that can be observed and analyzed. In this section we shall describe these
aspects which we have concentrated on and which will also be analyzed for
evaluating different algorithmic GA settings on various problem instances:

• In Section 6.1 we describe how we analyze which individuals of the
population succeed in passing their genetic information on to the next
generation.

• In Section 6.2 we give a summary of approaches for analyzing the diver-
sity among populations of GAs using some kind of similarity measure
for solution candidates. We use these concepts to measure how diverse
the individuals of populations are as well as how similar populations of
multi-population GAs become during runtime.

Furthermore, in Chapter 10 we will analyze the dynamics of population di-
versity over time for the combinatorial optimization problems TSP (see Sec-
tion 10.1) and CVRP (see Section 10.2) on the basis of GA variants considered
in this book.

6.1 Parent Analysis

In the context of conventional GAs, parent selection is normally responsible
for selecting fitter individuals more often than those that are less fit. Thus,
fitter individuals are supposed to pass on their genetic material to more mem-
bers of the next generation.

When using offspring selection, several additional aspects have to be con-
sidered. As only those children survive this selection step that perform better
than their parents to a certain degree, we cannot guarantee that fitter parents
succeed more often than less fit ones.

This is why we document the parent indices of all successful offspring for
each generation step. So we can analyze whether all parts of the population
are considered for effective propagation of their genetic information, if whether
only better ones or rather bad ones are successful.

89

90 Genetic Algorithms and Genetic Programming

Formally, in parent analysis we analyze the genetic propagation of parents
P to their children C calculating the propagation count pc for each parent
as the number of successful children it was able to produce by being crossed
with other parents or mutation:

isParent(p, c) =

{

1 : p ∈ c.Parents
0 : otherwise

(6.1)

∀(p ∈ P) : pc(p) =
∑

c∈C

isParent(p, c) (6.2)

In addition, we can optionally weight the propagation count for each poten-
tial parent by weighting it with the similarity of the parent and its children
(supposing the availability of a similarity function sim which can be used for
calculating the similarity of solution candidates):

∀(p ∈ P) : pc′(p) =
∑

c∈C

isParent(p, c) ∗ sim(p, c) (6.3)

This kind of population dynamics analysis shall be used later in Section 11.3,
where we will see how enhanced selection models affect genetic propagation
in data-based modeling using genetic programming.

6.2 Genetic Diversity

In this section we describe the measures which we use to monitor the diver-
sity and population dynamics with respect to the genetic make-up of solution
candidates using some kind of similarity measurement function that estimates
the mutual similarity of solution candidates.

As we know that similarity measures do not have to be symmetric (see
Section 9.4 for examples and explanations), we can alternatively use the mean
value of the two possible similarity calls and so define a symmetric similarity
measurement:

symmetricAnalysis⇒ sim(m1,m2) =
sim(m1,m2) + sim(m2,m1)

2
(6.4)

6.2.1 In Single-Population GAs

In the context of single-population GAs we are mainly interested in the
similarity among the individuals of the population: For each solution s of
the population P we calculate the mean and the maximum similarity with all

Analysis of Population Dynamics 91

other individuals in the population:

meanSim(s, P) =
1

|P | − 1

∑

s2∈P,s26=s

sim(s, s2) (6.5)

maxSim(s, P) = max(s2∈P,s26=s)(sim(s, s2)) (6.6)

The mean values of all individuals’ similarity values are used for calculating
the average mean and average maximum similarity measures for populations:

meanSim(P) =
1

|P |

∑

s∈P

meanSim(s, P) (6.7)

maxSim(P) =
1

|P |

∑

s∈P

maxSim(s, P) (6.8)

6.2.2 In Multi-Population GAs

In the context of parallel evolution of populations in genetic algorithms,
which is summarized in Section 1.7, we can apply the population diversity
analysis for each population separately; in the following we will describe a
multi-population specific diversity analysis.

Basically, a solution s is compared to all solutions in another population P ′

which does not include s, and multiPopSim(s, P ′) is equal to the maximum
of the so calculated similarity values:

s /∈ P ′ ⇒ multiPopSim(s, P ′) = max(s2∈P ′)(sim(s, s2)) (6.9)

So we can calculate the multi-population similarity of a solution with respect
to a set of populations PP as the average multiPopSim of the solution to all
populations except the “own” one:

(s ∈ P ∧ P ∈ PP)⇒ PP ′ = {P ′ : P ′ ∈ PP ∧ P ′ 6= P}, (6.10)

multiPopSim(s, PP) =
1

|PP ′|

∑

P ′∈PP ′

multiPopSim(s, P ′), (6.11)

Finally, a population’s multiPopSim value is equal to all its solutions’ multi-
population similarity values with respect to the whole set of populations:

multiPopSim(P, PP) =
1

|P |

∑

s∈P

multiPopSim(s, PP) (6.12)

92 Genetic Algorithms and Genetic Programming

6.2.3 Application Examples

As we are aware that these formulas for calculating the genetic diversity
in populations might seem a bit confusing, we shall here give application
examples and some graphical illustrations of the results so that the main
ideas become a bit clearer.

For this purpose we have decided to let a genetic algorithm search for an
optimal solution for a specific instance of the traveling salesman problem,
namely the 130 cities problem ch130 taken from the TSPLIB [Rei91].

The first algorithm tested was a conventional GA with 100 solution can-
didates, order crossover, and 5% mutation rate; it was executed over 10,000
generations, and the similarity for each pair of solutions in the population was
measured every 10 iterations.

We hereby calculate the similarity of TSP solutions in the following way:
As each solution is given as a path, we can find out which city is visited
after another one for each step in the tour. These edges of the cities graphs
are considered for calculating the similarity of tours: The proportion of edges
that are common in both tour graphs represents the similarity of TSP solution
candidates. In a more formal way we can use the following edge definition1:

isedge([i, j], t)⇔

∃k : (t[k] = i ∧ t[k + 1] = j) ∨ (t[kn] = i ∧ t[0] = j) (6.13)

where n is the number of cities in the given TSP problem instance (in the
case of the ch130 problem, n = 130), and define the similarity of two tours t1
and t2 as sim(t1, t2) as

sim(t1, t2) =
|{[i, j] : (isedge([i, j], t1) ∧ isedge([i, j], t2))}|

n
. (6.14)

Figure 6.1 shows a graphical representation of the genetic diversity in the
GA’s population after 20 and 200 generations, shown on the left and right side
of the figure. For each pair of solutions (at indices i and j) the similarity of
these two solutions is represented by a square at position (i, j); light squares
represent small similarity values, while dark squares indicate high similarities.
Obviously the genetic diversity is high in the beginning of the GA run, but
decreases very soon as the similarity of solutions becomes very high already
after 200 rounds.

The histograms shown in Figure 6.2 sustain this impression: As most sim-
ilarity values are rather low (below 0.25) in the beginning, i.e., after 20 itera-
tions, most pairs of solutions show high similarity values between 0.5 and 0.8
after 200 generations.

1In the case of symmetric TSP instances isedge([i, j], t) of course implies isedge([j, i], t).

Analysis of Population Dynamics 93

100

50

0

100

50

0

 0 50 100 0.0 0 50 100

1.0

FIGURE 6.1: Similarity of solutions in the population of a standard GA after
20 and 200 iterations, shown in the left and the right charts, respectively.

Finally, Figure 6.3 shows the progresses of all solutions’ average similarity
values for the first 2,000 and 10,000 generations, respectively. As we can see
clearly, most similarity values reach a very high level very soon, after a bit
more than 500 iterations the overall average (shown as a black line) reaches
0.95; at the end of the GA run almost all pairs of solutions show a similarity
of more than 0.9, the average being approximately 0.96.

For demonstrating the possibilities how to graphically represent multi-
population specific similarities, we have set up a parallel GA with 4 popu-
lations each evolving exactly like the GA described for demonstrating single
population similarity. Thus, the algorithm contains 4 populations each stor-
ing 100 solutions for the ch130 problem, evolving over 10,000 generations by
order crossover and 5% mutation.

Figure 6.4 graphically represents the multi-population specific similarity
for each solution in the 4 given populations after 5,000 generations: In row i
of bar j we give the maximum similarities of the ith solution in population
j compared to all solutions of all other populations using Formula 6.9; the
maximum similarities with other populations are given column wise. In each
bar k we intentionally omit column k as the maximum similarity of a solution
with its own population does not make sense in the context of the analysis of
multi-population genetic diversity. For example, in column 1 of row 20 in bar
1 we represent the maximum similarity of solution 20 in population 1 with all
solutions in population 2, and in column 2 of row 10 in hyper-column 2 we
show the maximum similarity of solution 10 in population 2 with all solutions
in population 3. Again, higher similarity values are represented by darker
regions.

94 Genetic Algorithms and Genetic Programming

FIGURE 6.2: Histograms of the similarities of solutions in the population of
a standard GA after 20 and 200 iterations, shown in the left and the right
charts, respectively.

As we see in Figure 6.4, all solutions have rather high similarity with at
least one solution of all other populations. This tendency is also shown in
Figure 6.5 in which we give the average multi-population similarity values for
each solution calculated using 6.11; the black line stands for the average of
these values, which is equal to the overall average value calculated using 6.12.
As we see, the populations become more and more similar to each other as
the parallel GA is executed.

Analysis of Population Dynamics 95

1000

Iterations

0 2000

1

0.5

0

Similarity

 0 2000 4000 6000 8000 10000

Iterations

1

0.5

0

Similarity

FIGURE 6.3: Average similarities of solutions in the population of a standard
GA over for the first 2,000 and 10,000 iterations, shown in the upper and lower
charts, respectively.

96 Genetic Algorithms and Genetic Programming

 Population 0 Population 1 Population 2 Population 3

50

0

100

0.0

1.0

FIGURE 6.4: Multi-population specific similarities of the solutions of a par-
allel GA’s populations after 5,000 generations.

 0 2000 4000 6000 8000 10000

Iterations

0.5

0

Similarity

FIGURE 6.5: Progress of the average multi-population specific similarity val-
ues of a parallel GA’s solutions, shown for 10,000 generations.

Chapter 7

Characteristics of Offspring
Selection and the RAPGA

7.1 Introduction

In this chapter we will try to look inside the internal functioning of several
GA variants already discussed in previous chapters. For this purpose we
use the information about globally optimal solutions which is only available
for well studied benchmark problems of moderate dimension. Of course, the
applied optimization strategies (i.e., in our case variants of GAs) are not
allowed to use any information about the global optimum; we just use this
information for analysis purposes in order to obtain a better understanding
of the internal functioning and the dynamics of the most relevant algorithmic
concepts discussed so far.

A basic requirement for this (to a certain extent idealized) kind of analysis
is the existence of a unique globally optimal solution which has to be known.
Concretely, we aim to observe the distribution of the alleles of the global
optimal solution over the generations in order to observe the ability of the
certain algorithmic variants to preserve and possibly regain essential genetic
material during the run of the algorithm.

The main aim of this book in general and especially of this chapter is not
to give a comprehensive analysis of many different problem instances, but
rather to highlight the main characteristics of the certain algorithm variants.
For this kind of analysis as given in this chapter we have chosen the trav-
eling salesman problem (TSP), mainly because it is a well known and well
analyzed combinatorial optimization problem and a lot of benchmark prob-
lem instances are available. We here concentrate on the ch130 TSP instance
taken from the TSPLib [Rei91], for which the unique globally optimal tour
is known; the characteristics of the global optimum of this 130 city TSP in-
stance are exactly the 130 edges of the optimal tour which denote the essential
genetic information as stated in Chapter 3. In contrast to the analyses de-
scribed in Chapter 10, we here rather show results of single characteristical
test runs in order to identify the essentially important algorithmic features;
for statistically more significant tests the reader is referred to Chapter 10.

In a broader interpretation of the building block theory, these alleles should

97

98 Genetic Algorithms and Genetic Programming

on the one hand be available in the initial population of a GA run, and on the
other hand maintained during the run of the algorithm. If essential genetic
information is lost during the run, then mutation is supposed to help regaining
it in order to be able to eventually find the globally optimal solution (or at least
a solution which comes very close to the global optimum). In order to observe
the actual situation in the population we display each of the 130 essential edges
as a bar indicating the saturation of each allele in the population so there are
in total 130 bars. The disappearance of a bar therefore indicates the loss of
the corresponding allele in the entire population, whereas a full bar indicates
that the certain allele occurs in each individual (which is the desired situation
at the end of an algorithm run). As a consequence, the relative height of a
bar stands for the actual penetration level of the corresponding allele in the
individuals of the population and the observation of the dynamic behavior
allows observing the distribution of essential genetic information during the
run.

Of course one has to keep in mind that this special kind of analysis can
only be performed when the unique globally optimal solution is available;
usually, this information is not available in real world applications where we
can only observe genetic diversity which will be done in Chapters 10 and 11.
Nevertheless, these somehow idealized conditions allow very deep insight into
the dynamic behavior of certain algorithm variants which can also be extended
to other more practically relevant problem situations.

In the following, the distribution of essential genetic information and its
impact on achievable solution quality will be discussed for the standard GA,
a GA variant including offspring selection as well as for the relevant alleles
preserving GA (RAPGA) as introduced in Chapter 4.

7.2 Building Block Analysis for Standard GAs

For observing the distribution of essential alleles in a standard GA we have
used the following test strategy: First, our aim was to observe the solution
quality achievable with parameter settings that are quite typical for such kinds
of GA applications (as given in Table 7.1) using the well known operators
for the path representation, namely OX, ERX, and MPX; each algorithmic
variant has been analyzed applying no mutation as well as mutation rates of
5% and 10%.

The following Figures 7.1, 7.2, and 7.3 show the fitness curves (showing
best and average solution qualities of the GA’s population as well as the best
known quality) for a standard GA using OX (see Figure 7.1), ERX (Figure
7.2), and MPX (Figure 7.3), respectively; the parameter settings used for
these experiments are given in Table 7.1.

Characteristics of Offspring Selection and the RAPGA 99

Table 7.1: Parameters for test runs using a conventional GA.

Parameters for the conventional GA tests
(Results are graphically presented in Figures 7.1, 7.2, and 7.3)

Generations 20,000
Population Size 100
Elitism Solutions 1
Mutation Rate 0.00 or 0.05 or 0.1
Selection Operator Roulette
Crossover Operator OX (Fig. 7.1), ERX (Fig. 7.2) or MPX (Fig. 7.3)
Mutation Operator Simple Inversion

FIGURE 7.1: Quality progress for a standard GA with OX crossover for
mutation rates of 0%, 5%, and 10%.

For the OX crossover, which achieved the best results with the standard
parameter settings, the results are shown in Figure 7.1; it is observable that

100 Genetic Algorithms and Genetic Programming

the use of mutation rates of 5% and 10% leads to achieving quite good re-
sults (about 5% to 10% worse than the global optimum), whereas disabling
mutation leads to a rapid loss of genetic diversity so that the solution quality
stagnates at a very poor level.

The use of more edge preserving crossover operators ERX and MPX (for
which results are shown in Figures 7.2 and 7.3) shows different behavior in
the sense that, applying the same parameter settings as used for the OX,
the results are rather poor independent of the mutation rate. The reason for
this is that these operators require more selection pressure (as for example
tournament selection with tournament size 3); when applying higher selection
pressures it is possible to achieve comparably good results also with ERX and
MPX. Still, also when applying parameter settings which give good results
with appropriate mutation rates, the standard GA fails dramatically when
disabling mutation.1

When applying selection pressures which are sufficiently high to promote
the genetic search process beneficially, mutation is absolutely necessary to
achieve high quality results using a standard GA. Only if no alleles are fixed
and therefore no real optimization process takes place, disabling mutation
would not cause stagnation of evolutionary search.

Summarizing these aspects we can state for the SGA applied to the TSP
that several well suited crossover operators2 require totally different combina-
tions of parameter settings in order to make the SGA produce good results.
Considering the results achieved with the parameter setting as stated in Table
7.1, the use of the OX yields good results (around 10% worse than the global
optimum) whereas the use of ERX and MPX leads to unacceptable results
(more than 100% worse than the global optimum). On the contrary, tuning
the residual parameters (population size, selection operator) for ERX or MPX
would cause poor solution quality for OX.

Thus, an appropriate adjustment of selection pressures is of critical impor-
tance; as we will show in the following, self-adaptive steering of the selection
pressure is able to make the algorithm more robust as selection pressure is
adjusted automatically according to the actual requirements.

Figure 7.4 shows the distribution of the 130 essential alleles of the unique
globally optimal solution over time for the overall best parameter constellation
found in this section, i.e., the use of OX crossover with 5% mutation rate.
In order to make the snapshots for the essential allele distribution within the
SGA’s population comparable to those captured applying a GA with offspring
selection or the RAPGA, the timestamps are not given in iterations but rather

1In order to keep this chapter compact and on an explanatory level, detailed parameter
settings and the corresponding analysis are not given here; interested readers are kindly
invited to reproduce these results using HeuristicLab 1.1.
2OX, ERX, and MPX are all edge preserving operators and therefore basically suited for
the TSP.

Characteristics of Offspring Selection and the RAPGA 101

FIGURE 7.2: Quality progress for a standard GA with ERX crossover for
mutation rates of 0%, 5%, and 10%.

in the number of evaluations (which is in the case of the SGA equal to the
population size times the number of generations executed).

Until after about 10.000 evaluations, i.e., at generation 100, we can observe
quite typical behavior, namely the rise of certain bars (representing the exis-
tence of edges of the global optimum). However, what happens between the
10.000th and 20.000th evaluation is that some of the essential alleles (about
15 in our test run) become fixed whereas the rest (here about 130− 15 = 115
in our test run) disappears in the entire population. As we can see in Figure
7.4, without mutation the genetic search process would already be over at
that moment due to the fixation of all alleles; from now on mutation is the
driving force behind the search process of the SGA.

The effects of mutation in this context are basically as follows: Sometimes
high quality alleles are (by chance) injected into the population, and if those
are beneficial (not even necessarily in the mutated individual), then a suited
crossover operator is able to spread newly introduced essential allele informa-
tion over the population and achieve a status of fixation quite rapidly. Thus,
most of the essential alleles can be reintroduced and fixed approximately be-
tween the 20.000th and 2.000.000th evaluation.

102 Genetic Algorithms and Genetic Programming

FIGURE 7.3: Quality progress for a standard GA with MPX crossover for
mutation rates of 0%, 5%, and 10%.

However, even if this procedure is able to fulfill the function of optimiza-
tion reasonably good when applying adjusted parameters, it has not much in
common with the desired functioning of a genetic algorithm as stated in the
schema theorem and the according building block hypothesis. According to
this theory, we expect a GA to systematically collect the essential pieces of
genetic information which are initially spread over the chromosomes of the
initial population as reported for the canonical GA.3 As we will point out in
the next sections, GAs with offspring selection as well as RAPGA are able to
considerably support a GA to function in exactly that way even under not so
idealized conditions as required in the context of the canonical GA.

3This statement is in fact restricted to binary encoding, single point crossover, bit-flip
mutation, proportional selection, and generational replacement; see Chapter 1 for further
explanations.

Characteristics of Offspring Selection and the RAPGA 103

FIGURE 7.4: Distribution of the alleles of the global optimal solution over
the run of a standard GA using OX crossover and a mutation rate of 5%
(remaining parameters are set according to Table 7.1).

7.3 Building Block Analysis for GAs Using Offspring
Selection

The aim of this section is to highlight some characteristics of the effects of
offspring selection. In order to do so, we have chosen very strict parameter
settings (no parental selection, strict offspring selection with 100% success
ratio) which are given in Table 7.2. As the termination criterion of a GA
with offspring selection is self-triggered, the effort of these test runs is not
constant; however, the parameters are adjusted in a way that the total effort
is comparable to the effort of the test runs for the SGA building block analyses
discussed in Section 7.2.

104 Genetic Algorithms and Genetic Programming

Table 7.2: Parameters for test runs using a GA with offspring selection.

Parameter settings for the offspring selection GA runs
(Results are graphically presented in Figures 7.5, 7.6, 7.7, and 7.8)
Population Size 500
Elitism Solutions 1
Mutation Rate 0.00 or 0.05
Selection Operator Random
Crossover Operator OX , MPX, ERX, or combinations
Mutation Operator Simple Inversion
Success Ratio 1.0
Comparison Factor Bounds 1.0
Maximum Selection Pressure 300

Similarly as for the SGA, we here take a look at the performance of some
basically suited (edge preserving) operators. The results shown in Figures 7.5,
7.6, and 7.7 highlight the benefits of self-adaptive selection pressure steering
introduced by offspring selection: Independent of the other parameter set-
tings, the use of all considered crossover operators yields results near the
global optimum.

As documented in the previous section we have observed that the standard
GA heavily relies on mutation, when the selection pressure is adjusted at
a level that allows the SGA to search in a goal oriented way. Therefore,
we are now especially interested in how offspring selection can handle the
situation when mutation is disabled. Figure 7.8 shows the quality curves
for the use of the ERX crossover operator (which achieved the best results
with 5% mutation) without mutation and the same settings for the remaining
parameters. The remarkable result is that the result is practically as good as
with mutation, which at the same time means that offspring selection does
not rely on the genetic diversity regaining aspect of mutation. Furthermore,
this also means that offspring selection is able to keep the essential genetic
information which in the concrete example is given by the alleles of the globally
optimal solution. When using offspring selection (in contrast to the SGA)
the algorithm is not only able to keep the essential genetic information, but
slowly merges the essential building blocks step by step which complies with
the core statements of the building block theory and is not restricted to binary
encoding or the use of certain operators.

This behavior of offspring selection, which is very important for practical
applications, comes along with the property from which the method derived
its name: Due to offspring selection only those children take part in the ongo-
ing evolutionary process which were successful offspring of their own parents.
Thus, one implicit assumption of the schema theory and the building block
hypothesis holds, which would not be valid for a lot of practical applications:
We enhance the evolutionary process in such a way that two parents (with
above average qualities) are able to produce offspring of comparable or even

Characteristics of Offspring Selection and the RAPGA 105

FIGURE 7.5: Quality progress for a GA with offspring selection, OX, and a
mutation rate of 5%.

better fitness, and that exactly these children take part in the ongoing evolu-
tionary process.

In previous publications we have even gone one step further: We have
been able to show in [AW04b] and [Aff05] that even with crossover opera-
tors basically considered unsuitable for the TSP (as they inherit the position
information rather than the edge information like CX or PMX) it becomes
possible to achieve high quality results in combination with offspring selec-
tion. The reason is the sufficiency that a crossover operator is able to produce
good recombinations from time to time (as only these are considered for the
future gene pool); the price which has to be paid is that higher average selec-
tion pressure has to be applied, if the crossover operator is more unlikely to
produce successful offspring.

For the path representation of the TSP, the characteristics of the crossover
operators mentioned before are well analyzed. However, when it comes to
practical applications it is often not known a priori, which of the possible
crossover concepts will perform well. In this context a further interesting
aspect of offspring selection becomes obvious: As only the successful crossover
results are considered for the ongoing evolutionary process, we can simply

106 Genetic Algorithms and Genetic Programming

FIGURE 7.6: Quality progress for a GA with offspring selection, MPX, and
a mutation rate of 5%.

apply several different crossover operators and select one of those at random
for each crossover.

As a proof of concept for applying more than one crossover at the same
time, we have repeated the previous test runs with OX, MPX, and ERX with
the only difference that for these tests all crossover operators have been used.
Figure 7.9 shows the quality curves (best and average results) for this test
run and shows that the results are in the region of the global optimal solution
and therefore at least as good as in the test runs before. A further question
that comes along using multiple operators at once is their performance over
time: Is the performance of each of the certain operators relatively constant
over the run of the algorithm?

In order to answer this question, Figure 7.10 shows the ratio of successful
offspring for each crossover operator used (in the sense of strict offspring
selection which requires that successful children have to be better than both
parents). Figure 7.10 shows that ERX performs very well at the beginning
(approximately until generation 45) as well as in the last phase of the run (circa
from gen. 75). In between (approximately from generation 45 to generation
75), when the contribution of ERX is rather low, MPX shows significantly

Characteristics of Offspring Selection and the RAPGA 107

FIGURE 7.7: Quality progress for a GA with offspring selection, ERX, and
a mutation rate of 5%.

better performance. The performance of OX in terms of its ability to generate
successful offspring is rather mediocre during the whole run showing very little
success in the last phase. The analysis of reasons of the behavior of the certain
operators over time would be an interesting field of research; anyway, it is
already very interesting to observe that the performance characteristics of the
operators are changing over time to such an extent.

For a more detailed observation of the essential alleles during the runs
of the GA using offspring selection we show the allele distribution for the
ERX crossover, which achieved slightly better results than the other crossover
operators, in Figure 7.11. However, the characteristics of the distribution of
essential alleles are quite similar also for the other crossover operators when
using offspring selection. As a major difference in comparison to the essential
allele distributions during a standard GA, we can observe that the diffusion
of the essential alleles is established in a rather slow and smooth manner.
The essential alleles are neither lost nor fixed in the earlier stages of the
algorithm, so the bars indicating the occurrence of the certain essential allele
(edges of the optimal TSP path) in the entire population are growing steadily
until almost all of them are fixed by the end of the run. This behavior not

108 Genetic Algorithms and Genetic Programming

FIGURE 7.8: Quality progress for a GA with offspring selection, ERX, and
no mutation.

only indicates a behavior in accordance with the building block hypothesis,
but also implies that the algorithm performance no more relies on mutation
to an extent as observed for the corresponding SGA analyses. In order to
confirm this assumption we have repeated the same test without mutation
and indeed, as it can be seen by a comparison of Figures 7.11 and 7.12, the
saturation behavior of the essential building blocks is basically the same, no
matter if mutation is used or not. This is a remarkable observation as it
shows that offspring selection enables a GA to collect the essential building
blocks represented in the initial population and compile high quality solutions
very robustly in terms of parameters and operators like mutation, selection
pressure, crossover operators, etc. This property is especially important when
exploring new fields of application where suitable parameters and operators
are usually not known a priori.

Characteristics of Offspring Selection and the RAPGA 109

FIGURE 7.9: Quality progress for a GA with offspring selection using a
combination of OX, ERX, and MPX, and a mutation rate of 5%.

110 Genetic Algorithms and Genetic Programming

FIGURE 7.10: Success progress of the different crossover operators OX, ERX,
and MPX, and a mutation rate of 5%. The plotted graphs represent the ratio
of successfully produced children to the population size over the generations.

Characteristics of Offspring Selection and the RAPGA 111

FIGURE 7.11: Distribution of the alleles of the global optimal solution over
the run of an offspring selection GA using ERX crossover and a mutation rate
of 5% (remaining parameters are set according to Table 7.2).

112 Genetic Algorithms and Genetic Programming

FIGURE 7.12: Distribution of the alleles of the global optimal solution over
the run of an offspring selection GA using ERX crossover and no mutation
(remaining parameters are set according to Table 7.2).

Characteristics of Offspring Selection and the RAPGA 113

7.4 Building Block Analysis for the Relevant Alleles
Preserving GA (RAPGA)

Similar to the previous section we aim to highlight some of the most charac-
teristic features of the relevant alleles preserving GA as introduced in Section
4.3. The parameter settings of the RAPGA as given in Table 7.3 are also
described in Section 4.3.

Table 7.3: Parameters for test runs using the relevant alleles preserving genetic
algorithm.

Parameters for the RAPGA tests
(Results presented in Fig.7.13, Fig.7.14, Fig.7.15, Fig.7.16, and Fig.7.17)
Max. Generations 1,000
Initial Population Size 500
Mutation Rate 0.00 or 0.05
Elitism Rate 1
Male Selection Roulette
Female Selection Random

Crossover Operators

OX
ERX
MPX

combined (OX, ERX, and MPX)
Mutation Operator Simple Inversion
Minimum Population Size 5
Maximum Population Size 700
Twin Exclusion true
Check Structural Identity true
Effort 20,000
Comparison Factor Bounds 1 to 1
Attenuation 0

The main characteristics of the RAPGA are quite similar to a GA us-
ing offspring selection. The most important aspects of offspring selection
are implicitly included in RAPGA; additionally, the RAPGA also introduces
adaptive population size adjustment in order to support offspring selection
to exploit the available genetic information in the actual population to the
maximum in terms of achieving new (in order to maintain diversity) and even
better (the offspring selection aspect) solution candidates for the next gener-
ation. RAPGA is a rather young algorithmic idea which has been presented

114 Genetic Algorithms and Genetic Programming

in [AWW07]. Nevertheless, there is evidence that the RAPGA is comparably
generic and flexible as offspring selection has already proven to be for a wide
range of GA and GP applications.

The following experiments are set up quite similar to the offspring selection
experiments of the previous section. Firstly, the considered operators OX,
MPX, and ERX as well as their combination (OX, MPX, ERX) are applied
to the ch130 benchmark TSP problem taken from the TSPLib. Then the most
successful operator or operator combination, respectively, is also exemplarily
considered without mutation in order to show that the RAPGA like offspring
selection does not rely on mutation to such an extent as conventional GAs.

FIGURE 7.13: Quality progress for a relevant alleles preserving GA with OX
and a mutation rate of 5%.

Already the experiments using OX (see Figure 7.13) and MPX (Figure 7.14)
show good results (approximately 5% – 10% worse than the globally optimal
solution) which are even slightly better than the corresponding offspring se-
lection results. Even if only single test runs are shown in this chapter it has
to be pointed out that the authors have taken care that characteristical runs
are shown. Besides, as can be seen in the more systematical experiments of
Chapter 10, especially due to the increased robustness caused by offspring
selection and RAPGA the variance of the results’ qualities is quite small.

Similar to what we stated for the OS analyses, also for the RAPGA the
best results could be achieved using ERX (as shown in Figure 7.15) as well
as using the combination of OX, ERX, and MPX (see Figures 7.16 and 7.17).

Characteristics of Offspring Selection and the RAPGA 115

FIGURE 7.14: Quality progress for a relevant alleles preserving GA with
MPX and a mutation rate of 5%.

FIGURE 7.15: Quality progress for a relevant alleles preserving GA with ERX
and a mutation rate of 5%.

The achieved results using these operators are about 1% or even less worse
than the global optimal solution. In the case of the RAPGA the operator
combination turned out to be slightly better than ERX (in 18 of 20 test

116 Genetic Algorithms and Genetic Programming

runs). Therefore, this is the operator combination we have also considered for
a detailed building block analysis without mutation as well as applying 5%
mutation.

FIGURE 7.16: Quality progress for a relevant alleles preserving GA using a
combination of OX, ERX, and MPX, and a mutation rate of 5%.

FIGURE 7.17: Quality progress for a relevant alleles preserving GA using a
combination of OX, ERX, and MPX, and mutation switched off.

Characteristics of Offspring Selection and the RAPGA 117

Barely surprising, the results of RAPGA with the operator combination
consisting of OX, ERX, and MPX turned out to be quite similar to those
achieved using offspring selection and the ERX operator. Due to the name
giving aspect of essential allele preservation, disabling mutation (see Figures
7.16 and 7.17) has almost no consequences concerning achievable global solu-
tion quality. Even without mutation the results are just 1-2% worse than the
global optimum. The distributions of essential alleles over the generations of
the RAPGA run (as shown in Figure 7.18 and Figure 7.19) also show quite
similar behavior as already observed in the corresponding analyses of the ef-
fects of offspring selection. Almost all essential alleles are represented in the
first populations and their diffusion is slowly growing over the GA run, and
even without mutation the vast majority of essential alleles is fixed by the end
of the RAPGA runs.

Summarizing these results, we can state that quite similar convergence be-
havior is observed for a GA with offspring selection and the RAPGA, which
is characterized by efficient maintenance of essential genetic information. As
shown in Section 7.2, this behavior (which we would intuitively expect from
any GA) cannot be guaranteed in general for GA applications where it was
mainly mutation which helped to find acceptable solution qualities.

118 Genetic Algorithms and Genetic Programming

FIGURE 7.18: Distribution of the alleles of the global optimal solution over
the run of a relevant alleles preserving GA using a combination of OX, ERX,
and MPX, and a mutation rate of 5% (remaining parameters are set according
to Table 7.3).

Characteristics of Offspring Selection and the RAPGA 119

FIGURE 7.19: Distribution of the alleles of the global optimal solution over
the run of a relevant alleles preserving GA using a combination of OX, ERX,
and MPX without mutation (remaining are set parameters according to Ta-
ble 7.3).

Chapter 8

Combinatorial Optimization: Route
Planning

There are a great many of combinatorial optimization problems that genetic
algorithms have been applied on so far. In the following we will concentrate on
two selected route planning problems with a lot of attributes which are repre-
sentative for many combinatorial optimization problems, namely the traveling
salesman problem (TSP) and the vehicle routing problem (VRP).

The traveling salesman problem is certainly one of the classical as well as
most frequently analyzed representatives of combinatorial optimization prob-
lems with a lot of solution methodologies and solution manipulation opera-
tors. Comparing the TSP to other combinatorial optimization problems, the
main difference is that very powerful problem-specific methods as for example
the Lin-Kernighan algorithm [LK73] and effective branch and bound meth-
ods are available that are able to achieve a global optimal solution in very
high problem dimensions. These high-dimensional problem instances with a
known global optimal solution are very well suited as benchmark problems
for metaheuristics as for example GAs.

The VRP as well as its derivatives, the capacitated VRP (CVRP) and the
capacitated VRP with time windows (CVRPTW) which will be introduced
in this chapter, are much closer to practical problem situations in transport
logistics, and solving them requires the handling of implicit and explicit con-
straints. There are also no comparable powerful problem-specific methods
available, and metaheuristics like tabu search and genetic algorithms are con-
sidered the most powerful problem solving methods for VRP which is a dif-
ferent but not less interesting situation than handling the TSP problem.

8.1 The Traveling Salesman Problem

The TSP is quite easy to state: Given a finite number of cities along with
the cost of travel between each pair of them, the goal is to find the cheapest
way of visiting all the cities exactly once and returning to your starting point.
Usually the travel costs are symmetric. A tour can simply be described by
the order in which the cities are visited; the data consist of integer weights

121

122 Genetic Algorithms and Genetic Programming

assigned to the edges of a finite complete graph and the objective is to find a
Hamiltonian cycle, i.e., a cycle passing through all the vertices, of minimum
total weight. In this context, Hamiltonian cycles are commonly called tours.

Already in the early 19th century the TSP appeared in literature [Voi31].
In the 1920s, the mathematician and economist Karl Menger [Men27] pub-
lished it in Vienna; it reappeared in the 1930s in the mathematical circles
of Princeton. In the 1940s, it was studied by statisticians (Mahalanobis, see
[Mah40], e.g., and Jessen, see for instance [Jes42]) in connection with an agri-
cultural application. The TSP is commonly considered the prototype of a
hard problem in combinatorial optimization.

8.1.1 Problem Statement and Solution Methodology

8.1.1.1 Definition of the TSP

In a formal description the TSP is defined as the search for the shortest
Hamiltonian cycle of a graph whose nodes represent cities. The objective
function f represents the length of a route and therefore maps the set S of
admissible routes into the real numbers R [PS82]:

f : S → R

The aim is to find the optimal tour s∗ ∈ S such that f(s∗) ≤ f(sk), ∀sk ∈ S.
In order to state the objective function f we have to introduce a distance
matrix [dij], dij ∈ R

+ whose entries represent the distance from a city i to a
city j. In that kind of representation the cities are considered as the nodes of
the underlying graph. If there is no edge between two nodes, the distance is
set to infinity.

Using the notation given in [PS82], that πk(i) represents the city visited
next after city i in a certain tour sk, the objective function is defined as

f(sk) =

n
∑

i=1

diπk(i) (8.1)

By this definition the general asymmetric TSP is specified. By means of
certain constraints on the distance matrix it is possible to define several vari-
ants of the TSP. A detailed overview about the variants of the TSP is given
in [LLRKS85]. The most important specializations consider symmetry, the
triangle-inequality, and Euclidean distances:

Symmetry

A TSP is defined to be symmetric if and only if its distance matrix is
symmetric, i.e., if

dij = dji, ∀i, j ∈ 1, . . . , n (8.2)

If this set of equalities is not satisfied for at least one pair (i, j), for example
if “one-way streets” occur, we denote the problem as an asymmetric TSP.

Combinatorial Optimization: Route Planning 123

The Triangle Inequality

Symmetric as well as asymmetric TSPs can, but don’t necessarily have to
satisfy the triangle inequality:

dij ≤ (dik + dkj), ∀(i, j, k ∈ 1, . . . , n) (8.3)

i.e., that the direct route between two cities must be shorter than or as long
as any route including another node in between.
A reasonable violation of the triangle inequality is possible especially when the
entries in the distance matrix are interpreted as costs rather than as distances.

Euclidean Distances

As a rather important subset of symmetric TSP satisfying the triangle in-
equality we consider the so-called Euclidean TSP. For the Euclidean TSP it
is mandatory to specify the coordinates of each node in the n-dimensional
Euclidean space. For the 2-dimensional case the entries dij of the distance
matrix are consequently given by the Euclidean distance

dij =
√

(xi − xj)2 + (yi − yj)2 (8.4)

whereby xi and yi denote the coordinates of a certain city i.
In contrast to most problems that occur in practice, many TSP benchmark

tests use Euclidean TSP instances. Anyway, GA-based metaheuristics do not
take advantage of the Euclidean structure and can therefore also be used for
Non-Euclidean TSPs.

8.1.1.2 Versions of the TSP

Motivated by certain situations appearing in operational practice, some
more variants of the TSP have emerged. Appreciable standardizations that
will not be taken into further account within the scope of this book are the
following ones:

Traveling Salesman Subtour Problems (TSSP)

In contrast to the TSP not all cities have to be visited in the context of
the TSSP; only those cities are visited that are worth being visited which
implies the necessity of some kind of profit function in order to decide if the
profit is higher than the travel expenses. Vice versa, depending on the actual
implementation, this can also be realized by the introduction of penalties for
not visiting a certain node (city).

Postman Problems

For postman problems (e.g., [Dom90]) not certain sets of nodes (cities) have
to be visited but rather given sets of edges (which can be interpreted as streets

124 Genetic Algorithms and Genetic Programming

of houses) have to be passed at least once with the goal to minimize the total
route length. Therefore, the aim is a suitable selection of the edges to be
passed in a certain order for obtaining minimal cost.

Time Dependent TSP

In time dependent TSPs the cost of visiting a city j starting from a city
i does not only depend on dij but also on the position in the total-route or,
even more general, on the point of time a certain city is visited [BMR93].

Traveling Salesman Problem with Time Windows (TSPTW)

Like the TSP, the TSPTW is stated as finding an optimal tour for a set of
cities where each city has to be visited exactly once. Additionally to the TSP,
the tour must start and end at a unique depot within a certain time window
and each city must be visited within its own time window. The cost is usually
defined by the total travel distance and/or by the total schedule time (which
is defined as the sum of travel time, waiting time, and service time) [Sav85].

8.1.1.3 Review of Optimal Algorithms

Total Enumeration

In principle, total enumeration is applicable to all integer optimization prob-
lems with a finite solution space: All points of the solution space S are evalu-
ated by means of an objective-function storing the best solution so far. As the
TSP has a worst case complexity ofO(n!), total enumeration is only applicable
to very small problem instances. For example, even for a rather small and sim-

ple 30-city symmetric TSP one would have to consider (n−1)!
2 = (29)!

2 possible
solutions which would require a computational time of about 1.4 ∗ 1012 years
assuming the use of a very powerful computer which can evaluate 100,000
million routes per second.

Integer Programming

In order to apply integer programming to the TSP it is mandatory to in-
troduce a further n×n matrix X = [xij] with xij ∈ {0, 1} where xij indicates
whether or not there is a connection from city i to city j. Thus, the optimiza-
tion problem can be stated in the following way:
Find

min(

n
∑

i=1

n
∑

j=1

dijxij) (8.5)

such that

Combinatorial Optimization: Route Planning 125

n
∑

j=1

xij = 1; ∀i ∈ {1, . . . , n} (8.6)

n
∑

i=1

xij = 1; ∀j ∈ {1, . . . , n} (8.7)

xij ≥ 0; ∀i, j ∈ {1, . . . , n} (8.8)

These constraints ensure that each city has exactly one successor and is
the predecessor of exactly one other city. The representation given above is
also called an assignment problem and has firstly been applied to the TSP by
Dantzig [DR59]. However, the assignment problem alone does not assure a
unique Hamiltonian cycle, i.e., it is also possible that two or more subcycles
exist which does not specify a valid TSP.

Hence, for the TSP it is necessary to state further conditions in order to
define an assignment problem without subcycles, and therefore the integer
property of the assignment problem does not hold any more. Similar to linear
programming, in integer programming the admissible solution space can be
restricted by the given constraints – but the corners of the emerging polyhe-
dron won’t represent valid solutions in general. In fact, only a rather small
number of points inside the polyhedron will represent valid solutions of the
integer program.

As described in [Gom63] Gomory tried to overcome this drawback by in-
troducing the cutting-plane method that introduces virtual constraints, the
so-called cutting-planes, in order to ensure that all corners of the convex poly-
hedron are integer solutions. The crux in the construction of suitable cutting
planes is that it requires a lot of very problem-specific knowledge.

Grötschel’s dissertation [Grö77] was one of the first contributions that con-
sidered a special TSP instance in detail and a lot of articles about the solution
of specific TSP-benchmark problems have since then been published (as for
example in [CP80]) with problem-specific cutting-planes.

Unfortunately, the methods for constructing suitable cutting-planes are far
away from working in an automated way and require a well versed user. There-
fore, the main area of application of integer programming for the TSP is the
exact solution of some large benchmark problems in order to get reference
problems for testing certain heuristics.

8.1.2 Review of Approximation Algorithms and Heuristics

During the last four decades a variety of heuristics for the TSP has been
published; Lawler et al. have given a comparison of the most established ones
in [LLRKS85]. Operations research basically distinguishes between methods
that are able to construct new solutions routes, called route building heuristics

126 Genetic Algorithms and Genetic Programming

or construction heuristics, and methods that assume a certain (valid) route
in order to improve it, which are understood as route improving heuristics.

Nearest Neighbor Heuristics

The nearest neighbor algorithm [LLRKS85] is a typical representative of
a route building heuristics. It simply considers a city as its starting point
and takes the nearest city in order to build up the Hamiltonian cycle. At the
beginning this strategy works out quite well whereas adverse stretches have
to be inserted when only a few cities are left.

Figure 8.1 shows a typical result of nearest neighbor heuristics applied to a
TSP instance that demonstrates its drawbacks.

FIGURE 8.1: Exemplary nearest neighbor solution for a 51-city TSP instance
([CE69]).

Combinatorial Optimization: Route Planning 127

Partitioning Heuristics

Applying partitioning heuristics to the TSP means splitting the total num-
ber of cities into smaller sets according to their geographical position. The
emerging subsets are treated and solved as independent TSPs and the solution
of the original TSP is given by a combination of the partial solutions.

The success rate of partitioning heuristics for TSPs very much depends on
the size and the topological structure of the TSP. Partitioning heuristics do
not perform well in the general case. Particularly suitable for partitioning
heuristics are only higher dimensional Euclidean TSPs with rather uniformly
distributed cities. Algorithms based on partitioning have been presented in
[Kar77], [Kar79], and [Sig86].

Local Search

Typical representatives of route improving heuristics are the so-called k-
change methods that examine a k-tuple of edges of a given tour and test
whether or not a replacement of the tour segments effects an improvement of
the actual solution quality.

A lot of established improvement methods are based upon local search
strategies also causing the nomenclature “neighborhood search.” The basic
idea is to search through the surroundings of a certain solution si in order to
replace si by an eventually detected “better” neighbor sj .

The formal description of the neighborhood structure is given by N ⊆ S×S
with S denoting the solution space. The choice of N is up to the user with
the only restriction that the corresponding graph has to be connected and
undirected, i.e., the neighborhood structure should be designed in a way that
any point in the solution space is reachable and that si being a direct neighbor
of sj implies sj being a direct neighbor of si.

Mainly for reasons of implementation the following formal definition has
been established:

N ⊆ S × S

with

N(si) := {sj ∈ S | (si, sj) ∈ N}.

Choosing a neighborhood of larger size can cause problems concerning compu-
tational time whereas a rather small neighborhood increases the probability
of getting stuck in a local optimum [PS82]. The search process for a better
solution in the neighborhood is performed successively until no better solution
can be detected. Such a point is commonly referred to as a local minimum
with respect to a certain neighborhood structure and the neighborhood struc-
ture is termed definite if and only if any local optimum coincides with the
global optimum (optima) s∗ due to the neighborhood. Unfortunately, the
verification of a definite neighborhood itself mostly is a NP-complete problem
[PS82].

128 Genetic Algorithms and Genetic Programming

The 2-Opt Method

The most popular local edge-recombination heuristic is the 2-change re-
placement of two edges. In this context the neighborhood is defined in the
following way:

A tour si is adjacent (neighboring) to a tour sj if and only if sj

can be derived from si by replacing two of si’s edges.

1

2

3

4

5

6 7

1

2

3

4

5

6 7

2-opt

FIGURE 8.2: Example of a 2-change for a TSP instance with 7 cities.

Numbering the cities in the order they are visited with c1 . . . cn yields the
following representation of two adjacent routes:

(c1 . . . cici+1 . . . cjcj+1 . . . cn)←→ (c1 . . . cicj . . . ci+1cj+1 . . . cn)

Figure 8.2 illustrates one possible 2-change operation for a small TSP in-
stance. In this example (assuming that the left tour is transformed to the
right tour) the two edges 5− 7 and 6− 1 are removed and the edges 5− 6 and
7− 1 are inserted in order to reestablish a valid tour.

Any route sj can be derived from any other route si by at most (n− 2) 2-

change operations [AK89] and any solution si has exactly n(n−1)
2 neighboring

(adjacent) solutions. For a symmetrical TSP (as indicated in the example of

Figure 8.2) the number of neighboring solutions reduces to n(n−2)
2 [GS90].

Already half a century ago Croes [Cro58] published a solution technique
for the TSP which is based upon the 2-change method: The algorithm has to
check if an existing route si can be upgraded by the 2-change operator and
perform it where applicable. This process is repeated until f(sj) ≥ f(si) for
all sj that can be generated by using 2-change and the resulting route is called
2-optimal. Unfortunately, it is very unlikely that a 2-optimal tour is globally
optimal.

Combinatorial Optimization: Route Planning 129

The 3-Opt Method

The 3-opt method is very similar to the 2-opt method with the exception
that not two but three edges are replaced. Considering a route with n nodes

being involved n(n−1)(n−2)
2 different 3-change operations are possible [GS90].

(c1 . . . cici+1 . . . cjcj+1 . . . ckck+1 . . . cn)←→ (c1 . . . cicj+1 . . . ckci+1 . . . cjck+1 . . . cn)

1

2

3

4

5
6

7 8

9

10

1

2

3

4

5
6

7 8

9

10

3-opt11 11

FIGURE 8.3: Example of a 3-change for a TSP instance with 11 cities.

Figure 8.3 illustrates one possible 3-change operation for a small TSP in-
stance. In this example (assuming that the left tour is transformed to the
right tour) the three edges 4−9, 5−10, and 8−11 are removed and the edges
4− 5, 8− 9, and 10− 11 are inserted in order to reestablish a valid tour.

Also already half a century ago, Bock [Boc58] was the first one who applied
the 3-opt method to the TSP. Similar as for the 2-opt method the final route
was derived by successively applying 3-change operations terminates to a so-
called 3-optimal solution. The probability to obtain a global optimal solution
using the 3-opt method was empirically detected to be about 2−

n
10 [Lin65].

The k-opt Method

In principle, the k-opt method is the consequential generalization of the
methods described previously: k edges are replaced in a k-change neighbor-
hood structure and a route is called k-optimal if it cannot be improved by
any k-change. If k = n then it is proven that the k-optimal solution is the
global solution [PS82]. But as the complexity of locating a k-optimal solution
is given by O(nk) [GBD80], the computational effort is still enormous even for
rather small values of k. A very efficient implementation for Euclidean trav-
eling salesman problems is the Lin-Kernighan algorithm [LK73]. An efficient
implementation is given in [Hel00].

130 Genetic Algorithms and Genetic Programming

8.1.3 Multiple Traveling Salesman Problems

The multiple traveling salesman problem (MTSP) describes a generalization
of the TSP in the sense that there is not just one traveling salesman performing
the whole tour but rather a set of salesmen, each serving a subset of the cities
involved. Therefore, one of the cities has to be selected as the location for the
depot representing the starting as well as the end point of all routes. So the
MTSP is a combination of the assignment problem and the TSP. Usually a
tour denotes the set of cities served by one traveling salesman and the number
of tours is specified by m.

In literature there are mainly two definitions of the MTSP:

• In Bellmore’s definition (given in [BH74]) the task is to find exactly m
tours in such a way that each city in a tour and the depot are visited
exactly once with the objective to minimize the total way.

• The second definition of the MTSP (as given in [Ber98], e.g.) does not
postulate exactly but at most m routes and the goal is to minimize the
total distance if each tour includes the depot and each city is visited
exactly once in some tour.

At first sight the second definition seems more reasonable because there is no
comprehensible reason why one should consider m tours if there is a solution
involving only (m−1) tours, for example. Still, one has to be aware of the fact
that in the second definition with no additional constraints the solution will
always be a single tour including all cities for any distance matrix fulfilling
the triangle inequality.

8.1.4 Genetic Algorithm Approaches

Sequencing problems as for example the TSP are among the first applica-
tions of genetic algorithms, even if the classical binary representation as sug-
gested in [Gol89] is not particularly suitable for the TSP because crossover
hardly ever produces valid descendants.

In the following we will discuss some GA coding standards for the TSP as
proposed in the relevant GA and TSP literature:

8.1.4.1 Problem Representations and Operators

Adjacency Representation

In the adjacency representation [GGRG85] a tour is represented as a list of
n cities where city j is listed in position i if and only if the tour leads from
city i to city j. Thus, the list

(7 6 8 5 3 4 2 1)

represents the tour
3− 8− 1− 7− 2− 6− 4− 5.

Combinatorial Optimization: Route Planning 131

In the adjacency representation any tour has its unique adjacency list rep-
resentation. An adjacency list may represent an illegal tour. For example,

(3 5 7 6 2 4 1 8)

represents the following collection of cycles:

1− 3− 7, 2− 5, 4− 6, 8

Obviously, the classical crossover operator(s) (single or n-point crossover)
are very likely to return illegal tours for the adjacency representation. There-
fore, the use of a repair operator becomes necessary.

Other operators for crossover have been defined and investigated for this
kind of representation:

• Alternating Edge Crossover :
The alternating edge crossover [GGRG85] chooses an edge from the first
parent at random. Then, the partial tour created in this way is extended
with the appropriate edge of the second parent. This partial tour is
extended by the adequate edge of the first parent, etc. By doing so,
the partial tour is extended by choosing edges from alternating parents.
If an edge is chosen which would produce a cycle into the partial tour,
then the edge is not added; instead, the operator randomly selects an
edge from the edges which do not produce a cycle.
For example, the result of an alternating edge crossover of the parents

(2 3 8 7 9 1 4 5 6) (7 5 1 6 9 2 8 4 3)

could for example be

(2 5 8 7 9 1 6 4 3)

The first edge chosen is (1−2) included in the first parent’s genetic ma-
terial; the second edge chosen, edge (2− 5), is selected from the second
parent, etc. The only randomly introduced edge is 7−6 instead of 7−8.
Nevertheless, experimental results using this operator have been dis-
couraging. The obvious explanation seems to be that good subtours are
often disrupted by the crossover operator. Ideally, an operator ought
to promote longer and longer high performance subtours; this has mo-
tivated the development of the following operator.

• Subtour Chunks Crossover:
Using the subtour chunks crossover [GGRG85] an offspring is con-
structed from two parent tours in the following way: A random subtour
of the first parent is chosen, and this partial tour is extended by choosing
a subtour of random length from the second parent. Then, the partial
tour is extended by taking subtours from alternating parents. If the use

132 Genetic Algorithms and Genetic Programming

of a subtour, which is selected from one of the parents, would lead to
an illegal tour, then it is not added; instead, an edge is added which is
randomly chosen from the edges that do not produce a cycle.

• Heuristic Crossover:
The heuristic crossover [GGRG85] starts with randomly selecting a city
for being the starting point of the offspring’s tour. Then, the edges
starting from this city are compared and the shorter of these two edges
is chosen. Next, the city on the other side of the chosen edge is selected
as a reference city. The edges which start from this reference city are
compared and the shortest one is added to the partial tour, etc. If at
some stage a new edge introduces a cycle into the partial tour, then the
tour is extended with an edge chosen at random from the remaining
edges which do not introduce cycles.

The main advantage of the adjacency representation is that it allows
schemata analysis as described in [OSH87], [GGRG85], [Mic92]. Unfortu-
nately, the use of all operators described above lead to poor results; in partic-
ular, the experimental results with the alternating edge operator have been
very poor. This is because this operator often destroys good subtours of the
parent tours. The subtour chunk operator which chooses subtours instead of
edges from the parent tours performs better than the alternating edge op-
erator. However, it still has quite a low performance because it does not
take into account any information available about the edges. The heuristic
crossover operator performs far better than the other two operators; still, the
performance of the heuristic operator is not remarkable either [GGRG85].

Ordinal Representation

When using the ordinal presentation as described in [GGRG85] a tour is
also represented as a list of n cities; the i-th element of the list is a number
in the range from 1 to n− i+ 1, and there an ordered list of cities serving as
a reference point is also used.

The easiest way to explain the ordinal representation is probably by giving
an example. Assume, for instance, that the ordered list L is given as

L = (1 2 3 4 5 6 7).

Now the tour
1− 2− 7− 5− 6− 3− 4

in ordinal representation is given as

T = (1 1 5 3 3 1 1).

This can be interpreted in the following way: The first member of T is 1, which
means that in order to get the first city of the tour we take the first element of

Combinatorial Optimization: Route Planning 133

the list L and remove it from the list. So the partial tour is 1 at the beginning.
The second element of T is also 1 so the second city of the route is 2 which is
situated at the first position of the reduced list. After removing city 2 from
the list, the next city to add is in position 5 according to T , which is city 7 in
the again reduced list L, etc. If we proceed in this way until all elements of
L are removed, we will finally find the tour 1− 2− 7− 5− 6− 3− 4 with the
corresponding ordinal representation T = (1 1 5 3 3 1 1). The main
advantage of this rather complicated ordinal representation lies in the fact
that the classical crossover can be used. This follows from the fact that the i-
th element of the tour representation is always a number in the range from 1 to
n− i+ 1. It is self-evident that partial tours to the left of the crossover point
do not change whereas partial tours to the right of the crossover point are
split in a quite random way and, therefore, the results obtained using ordinal
representation have been generally poor (approximately in the dimension of
the results with adjacency representation) [GGRG85], [LKM+99].

Path Representation

The path representation is probably the most natural representation of a
tour. Again, a tour is represented as a list of n cities. If city i is the j-th
element of the list, city i is the j-th city to be visited. Hence the tour

1− 2− 7− 5− 6− 3− 4

is simply represented by

(1 2 7 5 6 3 4).

Since the classical operators are not suitable for the TSP in combination with
the path representation, other crossover and mutation operators have been
defined and discussed. As this kind of representation will be used for our
experiments in Chapter 10, we shall now discuss the corresponding operators
in a more detailed manner:

• Partially Matched Crossover (PMX):
The partially matched crossover operator has been proposed by Gold-
berg and Lingle in [GL85]. It passes on ordering and value information
from the parent tours to the offspring tours: A part of one parent’s string
is mapped onto a part of the other parent’s string and the remaining
information is exchanged.

Let us for example consider the following two parent tours

(a b c d e f g h i j) and (c f g a j b d i e h).

The PMX operator creates an offspring in the following way: First, it
randomly selects two cutting points along the strings. As indicated in
Figure 8.4, suppose that the first cut point is selected between the fifth

134 Genetic Algorithms and Genetic Programming

a b c d e f g h

c f g a j b d i

i j

e h

c f g a j b d i e hf g hb d i

Parent 1

Parent 2

Offspring

FIGURE 8.4: Example for a partially matched crossover (adapted from
[Wen95]).

and the sixth element and the second one between the eighth and ninth
string element. The substrings between the cutting points are called
the mapping sections. In our example they define the mappings f ↔ b,
g ↔ d, and h↔ i. Now the mapping section of the first parent is copied
into the offspring resulting

(2 2 2 2 2 f g h 2 2)

Then the offspring is filled up by copying the elements of the second
parent; if a city is already present in the offspring then it is replaced
according to the mappings. Hence, as illustrated in Figure 8.4, the
resulting offspring is given by

(c b d a j f g h e i)

The PMX operator therefore tries to keep the positions of the cities in
the path representation; these are rather irrelevant in the context of the
TSP problem where the most important goal is to keep the sequences.
Thus, the performance of this operator for the TSP is rather poor,
but we can easily imagine that this operator could perform well for
other combinatorial optimization problems like the machine scheduling
problem even if it has not been developed for such problem instances.

• Order Crossover (OX):
The order crossover operator has been introduced by Davis in [Dav85].
For the first time it employs the essential property of the path represen-
tation, that the order of cities is important and not their position.

It constructs an offspring by choosing a subtour of one parent preserving
the relative order of the other parent. For example let us consider the

Combinatorial Optimization: Route Planning 135

a b c d e f g h

c f g a j b d i

i j

e

c a j b d if g h

h

e

Parent 1

Parent 2

Offspring

FIGURE 8.5: Example for an order crossover (adapted from [Wen95]).

following two parent tours

(a b c d e f g h i j) and (c f g a h b d i e j)

and suppose that we select the first cut point between the fifth and sixth
position and the second cut point between the eighth and ninth position.
For creating the offspring the tour segment between the cut points of
the first parent is copied into it, which gives

(2 2 2 2 2 f g h 2 2)

Then the selected cities of the first parent’s tour segment are canceled
from the list of the second parent and the blank positions of the child
are filled with the elements of the shortened list in the given order (as
illustrated in Figure 8.5), which gives

(c a b d i f g h e j)

Since a much higher number of edges is maintained, the results are
unequivocally much better compared to the results achieved using the
PMX operator.

• Cyclic Crossover (CX):
The cyclic crossover operator, proposed by Oliver et al. in [OSH87],
attempts to create an offspring from the parents where every position is
occupied by a corresponding element from one of the parents.

For example, again consider the parents

(a b c d e f g h i j) and (c f g a h b d i e j)

and choose the first element of the first parent tour as the first element
of the offspring. As node c can no longer be transferred to the child

136 Genetic Algorithms and Genetic Programming

a b c d e f g h

c f g a h b d i

i j

e j

c f g a h b d i e ja c d g

Parent 1

Parent 2

Offspring

FIGURE 8.6: Example for a cyclic crossover (adapted from [Wen95]).

from the second parent, we visit node c in the first parent and transfer
it to the offspring which makes it impossible for the first parent’s node
g to occupy the same position in the child. Therefore, g is taken from
parent 2 and so on. This process is continued as long as possible, i.e.,
as long as the selected node is not yet a member of the offspring. In
our example this is the case after four successful copies resulting in the
following partial tour:

(a 2 c d 2 2 g 2 2 2).

The remaining positions can then simply be taken from one of the two
parents; in this example, which is graphically illustrated in Figure 8.6,
these are taken from from parent 2).
Oliver et al. [OSH87] concluded from theoretical and empirical results
that the CX operator gave slightly better results than the PMX opera-
tor. Anyway, the results of both position preserving operators CX and
PMX are definitely worse than those obtained with OX which fortifies
our basic assumption that in the context of the TSP it is much more
important to keep sequences rather than positions.

• Edge Recombination Crossover (ERX):
Even if the main aim of the OX operator is to keep the sequence of at
least one parent there are still quite a lot of new edges in the offspring.1

Whitley et al. [WSF89] tried to overcome this drawback and came up
with the edge recombination crossover which has been designed with the
objective of keeping as many edges defined by the parents as possible.
Indeed it can be shown that about 95%−99% of each child’s edges occur
in at least one of the two respective parents [WSF89]. Therefore, the
ERX operator for the first time represented an almost mutation-free

1In the present contents “new” means that those edges do not occur in any of the two
parents.

Combinatorial Optimization: Route Planning 137

crossover operator, but unfortunately this can only be achieved by a
quite complicated and time consuming procedure:
The ERX operator is an operator which is suitable for the symmetrical
TSP as it assumes that only the values of the edges are important and
not their direction. Pursuant to this assumption, the edges of a tour
can be seen as the carriers of heritable information. Thus, the ERX op-
erator attempts to preserve the edges of the parents in order to pass on
a maximum amount of information to the offspring whereby the break-
ing of edges is considered as an unwanted mutation. The problem that
usually occurs with operators that follow an edge recombination strat-
egy is that they often leave cities without a continuing edge [GGRG85]
whereby these cities become isolated and new edges have to be intro-
duced.
The ERX operator tries to avoid this problem by first choosing cities
that have few unused edges; still, there has to be a connection with a city
before it can be selected. The only edge that the ERX operator may fail
to enforce is the edge from the final city to the initial city which inhibits
the ERX operator of working totally mutation free. When constructing
an offspring (descendant), we first have to construct a so-called “edge
map” which gives the edges for each of the parents that start or finish in
it. Then, the ERX works according to the following algorithm [WSF89]

1. Choose the initial city from one of the two parent tours. It might
be chosen randomly or according to criteria outlined in step 4. This
is the “current city.”

2. Remove all occurrences of the “current city” from the left hand
side of the edge map.

3. If the current city has entities in its edge list go to step 4; otherwise,
go to step 5.

4. Determine which of the cities in the edge-list of the current city has
the fewest entities in its own edge list. The city with the fewest
entities becomes the “current city”; ties are broken at random.
Proceed with step 2.

5. If there are no remaining unvisited cities, then terminate; otherwise
randomly choose an unvisited city and continue with step 2.

We will explain the functioning of ERX on the basis of a small example
which has also been used in [Wen95]. Consider for instance the tours

(1 2 3 4 5 6 7 8 9) and (4 1 2 8 7 6 9 3 5)

The edge map for our example parent tours is given in Table 8.1.

138 Genetic Algorithms and Genetic Programming

Table 8.1: Exemplary edge map of the parent tours for an ERX operator.

city connected cities
1 9, 2, 4
2 1, 3, 8
3 2, 4, 9, 5
4 3, 5, 1
5 4, 6, 3
6 5, 9, 7
7 6, 8
8 7, 9, 2
9 8, 1, 6, 3

According to the procedure given before, we select city 1 as the initial
city. The edge map of city one shows that cities 9, 2, and 4 are the
candidates for becoming the next current city. As city 9 actually has
4 (8,1,6,3) further links, we have to decide between the cities 2 and 4
which both have 3 further links. Choosing city 4 as the next current
city we obtain 3 and 5 as the next candidates, etc. Proceeding in that
way, we might finally end up with the offspring tour

(1 4 5 6 7 8 2 3 9)

which for this special case of our example is totally mutation free, i.e.,
all edges of the offspring occur in at least one of the two parents.

As common sequences of the parent tours are not taken into account by
the ERX operator an enhancement, commonly denoted as “enhanced
edge recombination crossover (EERX)”, has been developed [SMM+91].
The EERX additionally gives priority to those edges starting from the
current city which are present in both parents.

For mutation in the context of applying genetic algorithms to the TSP, the
2 − change and 3− change techniques have turned out to be very successful
[WSF89]. A comprehensive review of mutation operators for the TSP is given
in [LKM+99]. In the following some of the most important mutation operators
are described which are also applied in the experimental part of this book:

• Exchange Mutation:
The exchange mutation operator selects two cities of the tour randomly
and simply exchanges them. In various publications the exchange mu-
tation operator is also referred to as swap mutation, point mutation,
reciprocal exchange, or order-based mutation [LKM+99].

• Insertion Mutation:
The insertion mutation operator [Mic92] randomly chooses a city, re-
moves it from the tour and inserts it at a randomly selected place. An

Combinatorial Optimization: Route Planning 139

alternative naming for insertion mutation is position-based mutation
[LKM+99].

• Simple Inversion Mutation:
The simple inversion mutation operator [Hol75], which is used in the
TSP experiments of the book, randomly selects two cut points and sim-
ply reverses the string between them.

• Inversion Mutation:
The inversion mutation operator [Fog93] randomly selects a subtour,
removes it, and inserts it in reverse order at a randomly chosen position.
An alternative naming for inversion mutation is cut-inversion mutation
[LKM+99].

8.2 The Capacitated Vehicle Routing Problem

In principle, the vehicle routing problem (VRP) is am-TSP where a demand
is associated with each city, and the salesmen are interpreted as vehicles each
having the same capacity. A survey of the VRP is for example given in [Gol84].
During the later years a number of authors have “renamed” this problem the
capacitated vehicle routing problem (CVRP). The sum of demands on a route
cannot exceed the capacity of the vehicle assigned to this route; as in the m-
TSP we want to minimize the sum of distances of the routes. Note that the
CVRP is not purely geographic since the demand may be constraining.

The CVRP is the basic model for a number of vehicle routing problems:

If a time slot, in which customers have to be visited, is added to each
customer, then we get the “vehicle routing problem with time windows”
(VRPTW or CVRPTW). In addition to the capacity constraint, a vehicle
now has to visit a customer within a certain time frame given by a ready
time and due date. It is generally allowed that a vehicle may arrive before
the ready time (in this case it simply waits at the customer’s place), but it is
forbidden to arrive after the due date. However, some models allow early or
late servicing but with some form of additional cost or penalty. These models
are denoted “soft” time window models (as for example in [Bal93]).

If customers are served from several depots, then the CVRP becomes the
“multiple depots vehicle routing problem” (MDVRP); in this variant each
vehicle starts and returns to the same depot. The problem can be solved by
splitting it into several single depot VRP problems if such a split can be done
effectively. Another variant of the CVRP is the “vehicle routing problem with
length constraints” (VRPLC or CVRPLC). Here each route is not allowed to
exceed a given distance; this variant is also known as the “distance constrained

140 Genetic Algorithms and Genetic Programming

vehicle routing problem” (DVRP) in case there are no capacity restrictions
and the length or cost is the only limiting constraint.

In the “split delivery” model the demand of a customer is not necessarily
covered by just one vehicle but may be split between two or more. The
solutions obtained in a split delivery model will always be at least as good
as for the “normal” CVRP and we often might be able to utilize the vehicles
better and thereby save vehicles.

Finally we shall also mention the “pickup and delivery” variant where the
vehicles not only deliver items but also pick up items during the routes. This
problem can be varied even more according to whether the deliveries must be
completed before starting to pick up items or the two phases can be inter-
leaved.

All of these problems have in common that they are “hard” to solve. For
the VRPTW exact solutions can be found within reasonable time for some
instances including up to about 100 customers. A review of exact methods
for the VRPTW is given in Subsection 8.2.1.2.

Often the number of customers combined with the complexity of real-life
data does not permit solving the problems exactly. In these situations it
is commendable to apply approximation algorithms or heuristics. Both can
produce feasible, but not necessarily optimal solutions; whereas a worst-case
deviation is known for approximation algorithms, nothing is known a priori
for heuristics. Some of these inexact methods will be reviewed in Subsection
8.2.1.3.

If the term “vehicle” is interpreted more loosely, numerous scheduling prob-
lems can also be modeled as CVRPs or VRPTWs. An example is the following
one: For a single machine we want to schedule a number of jobs for which we
know the flow time and the time to go from one running job to the next one.
This scheduling problem can be regarded as a VRPTW with a single depot, a
single vehicle, and the customers representing the jobs. The cost of changing
from one job to another is equal to the distance between the two customers,
and the time it takes to perform an action is the service time of the job. For a
general description of the connection between routing and scheduling see for
instance [vB95] or [CL98].

8.2.1 Problem Statement and Solution Methodology

8.2.1.1 Definition of the CVRP

In this section we present a mathematical formulation of the general ve-
hicle routing problem with time windows (VRPTW or CVRPTW) as the
(capacitated) vehicle routing problem ((C)VRP) is fully included within this
definition under special parameter settings. The formulation is based upon
the model defined by Solomon [SD88].

In this description the VRPTW is given by a fleet of homogeneous vehicles

Combinatorial Optimization: Route Planning 141

V , a set of customers C, and a directed graph G. The graph consists of
|C| + 2 vertices, whereby the customers are denoted as 1, 2, . . . , n and the
depot is represented by the vertices 0 (the “driving-out depot”) and n + 1
(the “returning depot”). The set of vertices 0, 1, . . . , n + 1 is denoted as N ;
the set of arcs A represents connections between customers and between the
depot and customers, where no arc terminates in vertex 0 and no arc originates
from vertex n + 1. With each arc (i, j), where i 6= j, we associate a cost cij
and a time tij , which may include service time at customer i.

Each vehicle j has a capacity qj and each customer i a demand di. Further-
more, each customer i has a time window [ai, bi]; a vehicle can arrive before
ai, but service does not start before ai); however, the vehicle must arrive at
the customer before bi. In the general description, the depot also has a time
window [a0, b0] = [an+1, bn+1], the scheduling horizon. Vehicles may not leave
the depot before a0 and must be back before or at time bn+1.

It is postulated that q, ai, bi, di, and cij are nonnegative integers, while the
tij values are assumed to be positive integers. Furthermore, it is assumed
that the triangular inequality is satisfied for both cij values as well as the tij
values.

This model contains two sets of decision variables, namely x and s. For
each arc (i, j), where i 6= j, i 6= n+ 1, j 6= 0, and each vehicle k we define xijk

in the following way:

xijk =

{

0 , if vehicle k does not drive from vertex i to vertex j
1 , if vehicle k drives from vertex i to vertex j

The decision variable sik is defined for each vertex i and each vehicle k
denoting the time vehicle k starts to service customer i. If the given vehicle
k doesn’t service customer i, then sik does not mean anything. We assume
a0 = 0 and therefore s0k = 0 for all k.

The goal is to design a set of routes with minimal cost, one for each vehicle,
such that

• each customer is serviced exactly once,

• every route originates at vertex 0 and ends at vertex n+ 1, and

• the time windows and capacity constraints are complied with.

The mathematical formulation for the VRPTW is stated as follows [Tha95]:

142 Genetic Algorithms and Genetic Programming

min
∑

k∈V

∑

i∈N

∑

j∈N

cijxijk s.t. (8.9)

∑

k∈V

∑

j∈N

xijk = 1 ∀i ∈ C (8.10)

∑

i∈C

di

∑

j∈N

xijk ≤ q ∀k ∈ V (8.11)

∑

j∈N

x0jk = 1 ∀k ∈ V (8.12)

∑

i∈N

xihk −
∑

j∈N

xhjk = 0 ∀h ∈ C, ∀k ∈ V (8.13)

∑

i∈N

xi,n+1,k = 1 ∀k ∈ V (8.14)

sik + tij −K(1− xijk) ≤ sjk ∀i, j ∈ N , ∀k ∈ V (8.15)

ai ≤ sik ≤ bi ∀i ∈ N , ∀k ∈ V (8.16)

xijk ∈ {0, 1} ∀i, j ∈ N , ∀k ∈ V (8.17)

The constraint (8.10) states that each customer is visited exactly once, and
(8.11) implies that no vehicle is loaded with more than its capacity allows.
Equations (8.12), (8.13), and (8.14) ensure that each vehicle leaves depot 0,
leaves again after arriving at a customer, and finally arrives at the depot n+1.
Inequality (8.15) states that a vehicle k cannot arrive at j before sik + tij if it
is traveling from i to j, whereby K is a large scalar. Finally, constraints (8.16)
ensure that the time windows are adhered to and (8.17) are the integrality
constraints. In this definition an unused vehicle is modeled by driving the
empty route (0, n+ 1).

As already mentioned earlier, the VRPTW is a generalization of TSP and
CVRP; in case the time constraints (8.15) and (8.16) are not binding, the
problem becomes a CVRP. This can be achieved by setting ai = 0 and bi = M
(where M is a large scalar) for all customers i. In this context it should
be noted that the time variables enable us to formulate the CVRP without
subtour elimination constraints. If only one vehicle is available, then the
problem is in fact a TSP.

8.2.1.2 Exact Algorithms

Almost all papers proposing an exact algorithm for solving the CVRP or
the VRPTW use one or a combination of the following three principles:

• Dynamic programming

• Lagrange relaxation-based methods

• Column generation

Combinatorial Optimization: Route Planning 143

The dynamic programming approach for the VRPTW was presented in
[KRKT87]. This paper is inspired by an earlier publication [CMT81] where
Christofides et al. used the dynamic programming paradigm to solve the
CVRP.

Lagrange relaxation-based methods have been published in a number of
papers using slightly different approaches. There are approaches applying
variable splitting followed by Lagrange relaxation as well as variants apply-
ing the k-tree approach followed by Lagrange relaxation. In [FJM97] Fisher
et al. presented a shortest path approach with side constraints followed by
Lagrangean relaxation. The main problem, which consists of finding the op-
timal Lagrange multipliers that yield the best lower bounds, is solved by a
method using both subgradient optimization and a bundle method. Kohl et
al. [KM97] managed to solve problems of 100 customers from the Solomon
test cases; among them some previously unsolved problems.

If a linear program contains too many variables to be solved explicitly, it
is possible to initialize the linear program with a smaller subset of variables
and compute a solution of this reduced linear program. Afterwards one has to
check whether or not the addition of one or more variables, currently not in
the linear program, might improve the solution; this check is commonly done
by the computation of the reduced costs of the variables. An introduction to
this method (commonly called “column generation method”) can for example
be found in [BJN+98].

Again, similar as for the TSP it takes well versed users in order to benefit
from the mentioned exact algorithms - especially if they are applied to large
problems.

Therefore, the main area of application of exact methods in the context of
CVRP is to locate the exact solution of some large benchmark problems in
order to get some reference-problems for testing certain heuristics which can
easily be applied to practical problems of higher dimension.

8.2.1.3 Approximation Algorithms and Heuristics

The field of inexact algorithms for the CVRP has been very active - far
more active than that of exact algorithms, and a long series of papers has
been published over the recent years. Heuristic algorithms that build a set
of routes from scratch are typically called route-building heuristics, while an
algorithm that tries to produce an improved solution on the basis of an already
available solution is denoted as route-improving.

The Savings Heuristic

The savings heuristic has been introduced in [CW64]. At the beginning of
the algorithm, each of the n customers (cities) is considered to be delivered
with an own vehicle. For every pair of two cities a so-called savings value is
calculated; this value specifies the reduction of costs which is achieved when

144 Genetic Algorithms and Genetic Programming

the two routes are combined. Then the routes are merged in descending order
of their saving values if all constraints are satisfied. According to [Lap92] the
time complexity of the savings heuristic is given as O(n2 logn).

A lot of papers based on savings heuristics have been published. Especially
Gaskell’s approach [Gas67] is appreciable in this context as it introduces a
different weighting of the savings with respect to the length of the newly
inserted route-part as well as the so-called parallel savings algorithm that not
only examines a pair but rather a n-tuple of routes.

The Sweep Heuristic

The sweep heuristic has been introduced by Gillett and Miller [GM74]. It
belongs to the so-called “successive methods” in the sense that the ultimate
goal of this approach is not necessarily the location of the final solution but
rather the generation of reasonable valid tours which can be optimized by
some kind of route improving heuristic.

The fundamental idea of the sweep heuristic can be described as follows:
Imagining a watch hand that is mounted at the depot, the sweep heuristic
builds up the first tour starting from an arbitrary angle and takes the cities
in the order the watch hand sweeps over them as long as all constraints are
fulfilled. Then the next cluster is established in the same way.

Depot

FIGURE 8.7: Exemplary result of the sweep heuristic for a small CVRP.

Combinatorial Optimization: Route Planning 145

Figure 8.7 shows a possible solution achieved by a simple sweep heuristic.
The more customers can be assigned to a route, the better the sweep heuristic
typically performs. The time complexity of sweep heuristics is O(n log n),
which is equal to the complexity of a sorting algorithm.

The Push Forward Insertion Heuristic

In [Sol87] Solomon describes and evaluates three insertion heuristics for
the VRPTW. Here a new route is started by a customer which minimizes
a certain cost function cf1. All unrouted customers are then evaluated for
insertion between any two customers i and j of the partial route according to
another cost function cf2. If no feasible insertion is possible for all customers,
cf1 is evaluated again for all unrouted customers in order to determine the
starting customer of a new route. Three different possible criteria for selecting
the next customer are the following ones:

• Farthest customer from the depot first

• Customer with the earliest due date first

• Customer with the minimum equally weighted direct route-time and
distance first

The third function basically describes the closest customer that will be
directly reached in time. During the evaluation of their performance Solomon
states that generally neither is better than the other. The farthest customer
first criterion is suited for problems with shorter scheduling horizons, while
selecting the customers regarding the earliest due date gives better results in
situations where the scheduling horizons are longer, i.e., where vehicles have
to visit more customers. The third alternative for cf1 was not examined closer
as it was not used in conjunction with the best performing alternative for cost
function cf2.

As Solomon notes, the three insertion heuristics that are described as al-
ternatives for cf2 are guided by both geographical and temporal criteria. The
insertion heuristic, which is described first and termed I1 , performed best in
a number of test cases. Basically it extends the savings heuristic insofar as it
takes into account the prolongation of the arrival time at the next customer.
This function evaluates the difference between scheduling a customer directly
and servicing it in an existing route between two customers. Mathematically
it can be described as

I1(i, u, j) = λt0u − (α1(tiu + tuj − µtij) + α2(bju
− bj)) (8.18)

with the following restrictions: λ, µ, α1, α2 ≥ 0 and α1 + α2 = 1. In this case
the VRP cost function cij equals to 1 for each pair of different customers i
and j.

146 Genetic Algorithms and Genetic Programming

Tests with a choice of some configurations for λ, µ, α1, and α2 showed that
good results were achieved with λ = 2, µ = 1, α1 = 0, and α2 = 1, thus using
only time-based savings instead of distance-based savings.

The name “push forward insertion heuristic” stems from a more efficient
computation of the feasibility of an insertion. At each point, where a customer
could be inserted, the time at which the vehicle would arrive later at the
preceding customer is propagated sequentially through the route. As soon as
this time becomes 0 the insertion is feasible as the remaining customers would
not be serviced later than they already are. If the old partial route is feasible,
then the new one thus will also be feasible. If the push forward value surpasses
the due date at a customer, then an infeasible insertion is encountered and
the rest of the route does not have to be checked. In the worst case this
method still needs to perform the calculation for every customer in the tour.
Feasibility regarding the capacity constraints, at least for the VRP variants
without pickup & delivery, is easier to compute.

Solomon concludes that a hybridization of I1 with a sweep heuristic could
achieve excellent initial solutions with a reasonable amount of computation.
Such an approach can be found in [TPS96] where cf1 is a function taking into
account three different properties: distance, due date, and the polar angle.
The mathematical description reads

cf1(u) = −αt0u + βbu + γϕu (8.19)

with empirically derived weights α = 0.7, β = 0.2, and γ = 0.1.

Other Methods

The problem of building one route at a time (which is done when using the
heuristics described above) is usually that the routes generated in the latter
part of the process are of worse quality because the last unrouted customers
tend to be scattered over the geographic area. Potvin and Rousseou [PR93]
tried to overcome this problem of the insertion heuristic by building several
routes simultaneously where the initialization of the routes is done by using
Solomon’s insertion heuristic:

On each route the customer farthest away from the depot is selected as a
“seed customer.” Then, the best feasible insertion place for each unserviced
customer is computed and the customer with the largest difference between
the best and the second best insertion place is inserted. Even if this method
works out better than the Solomon heuristic it is still quite far away from
optimum. Russell elaborates further on the insertion approach in [Rus95].

Another approach built up upon the classical insertion heuristic is presented
in [AD95]. Defined in a very similar way to the Solomon heuristics, every
unrouted customer requests an offer and receives a price for insertion from
every route in the schedule. Then unrouted customers send a proposal to the
route with the best offer, and each route accepts the best proposal among the

Combinatorial Optimization: Route Planning 147

customers with the fewest number of alternatives. Therefore, more customers
can be inserted in each iteration. If a certain threshold of routes is violated,
then a certain number of customers is removed and the process is started
again. The results of Antes and Derigs are comparable to those presented in
[PR93]. As a matter of principle it has turned out that building several routes
in parallel results in better solutions than building the routes one by one.

Similar to the route first schedule second principle mentioned previously,
Solomon also suggests doing it the other way round in the “giant tour heuris-
tic” [Sol86]. First all customers are scheduled in a giant route and then this
route is divided into a number of routes. In the paper no computational re-
sults are given for the heuristic. Implementations of route-building heuristics
on parallel hardware are reported for example in [FP93] and [Lar99].

8.2.2 Genetic Algorithm Approaches

Applying genetic algorithms to vehicle routing problems with or without
time constraints is a rather young field of research and therefore, even if a
lot of research work is done, no widely accepted standard representations or
operators have yet been established. In the following we will in short discuss
some of the more popular or promising proposals:

• A genetic algorithm for the VRPTW has been presented in [TOS94].
This algorithm uses the already mentioned cluster first route second
method whereby clustering is done by a genetic algorithm while routing
is done by an insertion heuristic. The GA works by dividing each chro-
mosome into K divisions of N bits. The algorithm is based on dividing
the plane by using the depot as the center and assuming the polar angle
to each customer. Each of the divisions of a chromosome then represents
the offset of the seed of a sector; the seeds here are polar angles that
bound the sector and thereby determine the members of the sector.

• The genetic algorithm of Potvin and Bengio [PB96] operates on chromo-
somes of feasible solutions. The selection of parent solutions is stochastic
and biased towards the best solutions. Two types of crossover, called
RBX and SBX, are used. They rarely produce valid solutions and the
results therefore have to undergo a repair phase as the algorithm only
works with feasible solutions. The reduction of routes is often obtained
by two mutation operators and the routes are optimized by local search
every k iterations.
The approach described in [PTMC02] is similar, but does not use trip
delimiters in the actual representation. Instead, the routes that a solu-
tion is composed of are saved separately as ordered sets. The number of
routes is not predefined and practically only limited by the number of
customers. The crossover described in [PTMC02] is biased insofar as it
uses distance information to decide where to insert a segment, though

148 Genetic Algorithms and Genetic Programming

an unbiased generic variant of this crossover has been defined later in
[TMPC03]. A repair method is applied (after applying the crossover)
which constructs a feasible solution by removing customers that are vis-
ited twice. Additionally, any route that has become too long (so that the
demand or time window constraints would not be satisfied) is split be-
fore the violating customer. This algorithm has been applied on several
benchmark instances of the CVRP and CVRPTW problem variants.

• An encoding similar to the TSP is used in [Zhu00] and [Pri04]. As
described in these publications, a GA optimizes solutions for the prob-
lem using a path representation that does not include the depot. The
representation is thus similar to the TSP and the subtours are iden-
tified deterministically whenever needed. [Pri04] describes a genetic
algorithm that is applied to the DVRP using a splitting procedure that
will find the optimal placement of the depots; this guarantees the fea-
sibility of solutions in any case. Additionally, classic operators like the
order crossover (as used for tackling the TSP) are applied without mod-
ifications. This approach does not rely solely on unbiased operators and
is hybridized with a local search procedure, while [Zhu00] makes use
of biased crossover operators in which distance information is used for
determining the point where a crossing might occur. In this approach
an initial population, consisting of individuals created by suited con-
struction heuristics as well as randomly generated individuals, is also
used. Additionally, the mutation probability is adjusted depending on
the diversity in the population leaving a minimum probability of 6%.

• A cellular genetic algorithm has been proposed in [AD04]. It uses an en-
coding with unique trip delimiters such that the customers are assigned
numbers from 0 to (|C| − 1) while the trip delimiters are numbers from
|C| to (|C|+ |V| − 1). The representation of a solution thus consists of a
string of consecutive numbers and is syntactically equal to a TSP path
encoding. This allows the use of crossover operators known from the
TSP such as the ERX. For mutating solutions the authors use insertion,
swap, and inversion operators which are similar to relocate, exchange,
and 2-opt as described below. The difference is that swap and inversion
are used in an inter- as well as an intraroute way. There is also a local
search phase which is conducted after every generation; in this phase all
individuals are optimized by 2-opt and λ-interchanges. The best results
have been achieved using both methods and setting λ = 2.

8.2.2.1 Crossover Operators

Sequence-Based Crossover (SBX)

The sequence-based crossover (SBX) operator has been proposed for the
CVRP in [PB96], but it is applicable also to other VRP variants as well.

Combinatorial Optimization: Route Planning 149

Generally, it assumes a path representation with trip delimiters, but can be
applied on a representation without trip delimiters in which case the subtours
have to be calculated first.

It works by breaking a subtour in each parent and linking the first part of
one parent to the second part of another parent. The newly created subtour
is then copied to a new offspring individual and completed with the genetic
information of one of the parents. This behavior is exemplarily illustrated in
Figure 8.8.

This operator is very likely to create ill-formed children with duplicate or
unrouted customers; therefore the authors also propose a repair method which
creates syntactically valid genetic representations. However, feasibility cannot
be guaranteed in every case as it is not always possible to find a feasible
insertion space for all unrouted customers. In such a case the offspring is
discarded and the crossover is executed anew with a new pair of parents. It
is stated in [PB96] that when applied on the Solomon benchmark set [Sol87]
50% of the offspring are infeasible.

FIGURE 8.8: Exemplary sequence-based crossover.

Let us for example consider the following tours in path representation with
trip delimiters where the depot is denoted as 0 and all other values represent
customers.

(0 1 2 3 0 4 5 6 0) and (0 2 5 3 0 1 4 6 0)

In this case the SBX would randomly select two cut points in both solutions,
for example at customer 2 in the first parent and customer 4 in the second

150 Genetic Algorithms and Genetic Programming

one. Then the first half of the route in the first solution is concatenated with
the second half of the route in the second solution yielding

(0 1 2 6 0)

This route then replaces the route with the selected customer in the first
solution; thus the solution becomes

(0 1 2 6 0 4 5 6 0)

Obviously, now customer 6 is served twice, while customer 3 is not served at
all and the repair procedure will have to correct this situation: First it will
remove all duplicate customers in all routes except the new one which was
just formed by the concatenation. This results in

(0 1 2 6 0 4 5 0)

Then it will try to route all unserviced customers in that location in which the
detour is minimal. For this example let us assume that this is after customer
5 and the final offspring solution thus is

(0 1 2 6 0 4 5 3 0)

Route-Based Crossover (RBX)

The route-based crossover (RBX) operator has also been proposed in
[PB96]. It differs from the SBX insofar as subtours are not merged, but rather
a complete subtour of one parent is copied to the offspring individual filling
up the rest of the chromosome with subtours from the other parent. This
procedure is exemplarily illustrated in Figure 8.9. Again, the operator does
not produce feasible solutions in all cases and a repair procedure is needed.

Let us again consider the following tours in path representation with trip
delimiters where 0 denotes the depot and all other values represent customers.

(0 1 2 3 0 4 5 6 0) and (0 2 5 3 0 1 4 6 0)

The RBX randomly selects a complete route in solution 1, in this case for
example the first route:

(0 1 2 3 0)

This route then replaces a route in the second solution and thus we get

(0 1 2 3 0 1 4 6 0)

Obviously, now customer 1 is served twice, while customer 5 is not served at
all. The same repair procedure as the one described for the SBX operator is
applied here as well, resulting in the following possible final solution:

(0 1 2 3 0 4 6 5 0)

Combinatorial Optimization: Route Planning 151

FIGURE 8.9: Exemplary route-based crossover.

Other Crossover Operators

The crossover that is introduced in [PTMC02] does not necessarily concate-
nate the opposite ends of two partial routes such as the SBX, but inserts a
partial route of one solution into a good location of another solution. The
fitness of such a location is determined by the distance between the customer
which would precede the new partial route and the first customer of that
partial route. Such an approach works well when solving the CVRP, but as
is noted in [TMPC03] it does not help in the CVRPTW; this is in fact not
surprising as distance alone might not be sufficient enough to determine the
fitness of an insert when there are additional constraints which to a certain
degree determine the shape of a route. Thus, a generic variant of the crossover
is proposed which works similar to the RBX, except that it does not replace,
but rather appends the new route to a given solution. Removing customers
which are served twice then is the only necessary repair method. Such a re-
moval also has the benefit that any solution remains feasible if it has been
feasible before.

Other genetic algorithm approaches such as the one described in [Pri04]
build on a path representation without trip delimiters as in the TSP. This
allows the application of those crossover operators that have been mentioned
in Section 8.1.4.1 without modifications. In [Zhu00] the PMX is compared
to two new crossovers called “heuristic crossover” and “merge crossover” that
take into account spatial and temporal features of the customers. However,
these new operators achieve slightly better results only for those problem
instances in which the customers are clustered, whereas for the other cases
of randomly placed customers and a mix of random and clustered customers
PMX showed better results.

152 Genetic Algorithms and Genetic Programming

8.2.2.2 Mutation Operators

Relocate

The relocate operator moves one of the customers within the solution string
from one location to another randomly chosen one. An example of this be-
havior is illustrated in Figure 8.10.

FIGURE 8.10: Exemplary relocate mutation.

Exchange

The exchange operator selects two customers within different tours and
switches them so that they are served by the other vehicle, respectively. Both
relocate and exchange operators are similar to a (1, 0) and (1, 1) λ-exchange
defined by Osman [Osm93]. An example of the exchange behavior is shown
in Figure 8.11.

FIGURE 8.11: Exemplary exchange mutation.

Combinatorial Optimization: Route Planning 153

2-Opt

The 2-opt operator selects two sites within the same route and inverts the
route between them, so that the vehicle travels in the opposite direction. An
example of this behavior is given in Figure 8.12.

FIGURE 8.12: Example for a 2-opt mutation for the VRP.

2-Opt∗

The 2-opt∗ operator behaves like a one point crossover operator in a tour:
It first selects two customers in two different tours and creates two new tours;
the first tour here consists of the first half of the first tour unified with the
second half of the second tour, and the second tour consists of the first half
of the second tour unified with the second half of the first tour. An example
for the behavior of this operator is illustrated in Figure 8.13.

FIGURE 8.13: Example for a 2-opt∗ mutation for the VRP.

154 Genetic Algorithms and Genetic Programming

Or-Opt

The or-opt operator takes a number of consecutive customers, deletes them
and inserts them at some point of the same tour. An example of this behavior
is given in Figure 8.14.

FIGURE 8.14: Example for an or-opt mutation for the VRP.

One Level Exchange (M1)

The one level exchange (M1) operator is mentioned in the context of the
GA proposed in [PB96]. It tries to eliminate routes by inserting the customers
into other routes while maintaining a feasible solution. This operator favors
small routes with higher probability, because these are in general easier to
remove. The probability is chosen such that a trip of size N is half as likely
to be chosen as one of size N

2 .

Two Level Exchange (M2)

The two level exchange (M2) operator looks one level deeper than the M1
operator as it removes routes from the whole route, but tries harder for each
of the customers. After selecting a trip using the same bias towards smaller
routes as the M1, each customer is tried to be inserted instead of another
customer in a different route which in turn is tried to be inserted in any other
place (except the originally selected trip). If such a feasible insertion is found,
then the second selected customer is inserted and the first customer is inserted
at the second customer’s original place. This operator is more likely to find
feasible insertion places, but requires quite a lot of computational effort; in
the worst case the runtime complexity is O(N2).

Local Search (LSM)

Another operator which is also proposed in [PB96] applies several or-opt
exchanges until a local optimum is reached. It first selects all possible combi-
nations of three consecutive customers and tries to insert them in any other

Combinatorial Optimization: Route Planning 155

place while still maintaining the feasibility of the solution. If no solution can
be found the process is repeated with two consecutive customers and finally
with every single customer. Once a better solution has been found, the op-
erator starts again with three consecutive customers and continues until no
further improvement is possible. Local search methods can improve solutions
on the one hand, but on the other hand they also might reduce the diversity
in a population when applied to several individuals which could end in the
same local minimum.

Chapter 9

Evolutionary System Identification

9.1 Data-Based Modeling and System Identification

9.1.1 Basics

In general, data mining is understood as the practice of automatically
searching large stores of data for patterns. Nowadays, incredibly large (and
quickly growing) amounts of data are collected in commercial, administrative,
and scientific databases. Several sciences (e.g., molecular biology, genetics, as-
trophysics, and many others) produce extreme amounts of information which
are often collected automatically. This is why it is impossible to analyze
and exploit all these data manually; what we need are intelligent computer
systems that can extract useful information (such as general rules or inter-
esting patterns) from large amounts of observations. In short, “data mining
is the non-trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data” [FPSS96].

One of the ways how genetic algorithms and, more precisely, genetic pro-
gramming can be used in data mining is its application in data-based model-
ing. A given system is to be analyzed and its behavior described by a mathe-
matical model; the process is therefore (especially in the context of modeling
dynamic physical systems) called system identification [Lju99].

The principles have already been summarized in the GP introduction chap-
ter, especially in Section 2.4.3 on symbolic regression, and they shall be re-
peated and extended in the following:

The main goal of regression is to determine the relationship of a dependent
(target) variable t to a set of specified independent (input) variables x. Thus,
what we want to get is a function f that uses x and a set of coefficients w
such that

t = f(x,w) + ǫ (9.1)

where ǫ represents the error (noise) term.

Applying this procedure we assume that a model can be created with which
it will also be possible to predict correct outputs for other data examples (test
samples); from the training data we want to generalize to situations not known
(or allowed to analyze) during the training phase.

157

158 Genetic Algorithms and Genetic Programming

When it comes to evaluating a model (i.e., a solution candidate in a GP-
based modeling algorithm), the formula has to be evaluated on a certain set of
evaluation (training) dataX yielding the estimated values E. These estimated
target values are compared to the original values T , i.e., those which are known
from data retrieval (experiments) or calculated applying the original formula
to X .

This comparison is done by calculating the error between original and cal-
culated target values. There are several ways how to measure this error, one of
the simplest and probably most frequently used one being the mean squared
error (mse) function; the mean squared error of the vectors A and B each
containing n values is calculated as

mse(A,B) =
1

n
∗

n
∑

k=1

(Ak −Bk)2 (9.2)

Some of the major problems of data-based modeling are noise and overfit-
ting:

• In common language, on the one hand we know noise as in general that
what is heard, but on the other hand also as unwanted sound which is
added to the audio signals that are of interest. Furthermore, the concept
of noise is also known in image and video processing, where it is used
more to describe unwanted signals that are rather disturbing. In the
context of data-based modeling we often see that additional and some-
how unwanted values are added to the original signals; this disturbing
additional data is called noise.

• In machine learning, overfitting is understood as the exceeding fitting
of models to given data. As already mentioned, data-based training of
models is done using training data, i.e., sets of training examples of the
functions which are searched for; the problem is that it can happen –
especially in cases where too complex models are trained or the training
process is executed too long – that the learner may adjust to very specific
features or samples of the training data. Even a structurally inadequate
model may fit to given training data perfectly if the model is complex
enough.
From the point of view of mathematical systems theory, we assume that
a system Σ can be described by a function φ(θ) : u → y, where u
and y are the system’s input and output, respectively, φ describes the
structure of the function and θ denotes the vector of parameters. Data-
based structure identification is supposed to find a function ψ(θ̂) : u→ y
that reproduces the system’s output. The more parameters are stored in
θ̂ the easier it becomes to reproduce the given training data, but it also
becomes more probable that ψ(θ̂) represents not the basic behavior of Σ
but rather the measured signal (which also includes noise). Of course,

Evolutionary System Identification 159

as we do not know the size of θ (or the structure of φ) in general, we

cannot know when θ̂ becomes “too big.”
Overfitting can also be seen as a violation of Occam’s razor (see Section
2.6 for explanations on this); fitting too exactly to (noisy) training data
might lead to a model whose ability to generalize is far worse than the
general applicability of a simpler model.
Unfortunately there is no rule how to generally avoid overfitting as we
often do not exactly know the complexity of the system whose behavior
is to be modeled. However, there are several techniques that can help
to avoid it: For instance, overfitting might cause a significant rise of the
variances of the estimated parameter values θ̂i, i.e., the parameter values
estimated in independent identification runs diverge (which should of

course not be the case if the structure of ψ and the size of θ̂ are correct);
early stopping and the use of validation sets which are not included in
the training data can also help to decrease the probability of overfitting.

Thus, accuracy (on training data) is not the only requirement for the re-
sult of the modeling process: Compact and (if possible) minimal models are
preferred as they can be used in other applications easier. It is, of course, not
easy to find models that ignore unimportant details and capture the behavior
of the system that is analyzed; due to this challenging character of the task
of system identification, modeling has been considered as “an art” [Mor91].

In the following section we are going to explain the problems of noise and
overfitting using a simple example.

9.1.2 An Example

9.1.2.1 Learning Polynomial Models

Let us consider the following example: Let S be a system whose behavior
is to be modeled using the input / output (target) training examples given in
Table 9.1 (where X and Y values denote input and output data, respectively).

By looking at these values as they are shown in Figure 9.1 the suspicion is
aroused that there might be a cubic connection between the X and Y values,
distorted by additive noise. This is in fact correct: The data were generated
using the model y = x3− 100x+ 100 and adding noise (uniformly distributed
in the interval [–250; +250]). This is why the original function x3−100x+100
is also depicted in Figure 9.1.

If we want to evaluate the original formula that was used for simulating
the system (x3 − 100x+ 100), we can for example evaluate this model on all
integral values for X in the range of the given training data (i.e., –15, –14, . . . ,
4, 5) and calculate the mean squared differences of these calculated values and

160 Genetic Algorithms and Genetic Programming

Table 9.1: Data-based modeling example: Training data.

X Y X Y

-15 -1571.1605 -4 229.6581
-14 -1405.3919 -3 249.9523
-13 -644.6956 -2 518.4009
-12 -398.4149 -1 294.8873
-11 -69.9755 0 22.0334
-10 -87.4658 1 -193.7337
-9 126.4967 2 -146.7154
-8 227.3979 3 -294.5191
-7 309.4894 4 -179.5208
-6 522.4300 5 -353.2186
-5 474.8867

−15 −10 −5 0 5
−2000

−1500

−1000

−500

0

500

1000
Original Data

x
3
 − 100x + 100

Mean squared error: 18556.4719

FIGURE 9.1: Data-based modeling example: Training data.

the given training target data for Y which yields 18,556.4719 – the “fitness”
of the original formula therefore is approximately 18,556.

Now let us suppose that we do not know or suspect anything about the
system or its order. We could therefore try for example polynomial approaches
of order 2, 3, 10, and 20; thus, we assume model structures of the form

y = a0 + a1x+ a2x
2 + . . .+ anx

n (9.3)

Evolutionary System Identification 161

for a model of order n. The parameters [a0, a1, a2, . . . , an] are now to be set
so that the model fits the given training data as exactly as possible.

As we see in the Figures 9.2, 9.3, 9.4, and 9.5, the quadratic model performs
fairly, the model of order 3 performs better on the given training data, and the
models of order 10 and especially 20 perform even a lot better; the polynomial
of order 20 is even able to explain the training data perfectly.

The quality of the so generated models of order 1, 3, 10, and 20 is approx-
imately 244,218, 14,435, 6,605, and 01, respectively.

−15 −10 −5 0 5
−2000

−1500

−1000

−500

0

500

1000
Order 1, MSE (training): 244217.8279

FIGURE 9.2: Data-based modeling example: Evaluation of an optimally fit
linear model.

9.1.2.2 Testing Polynomial Models

Now let us assume that test data are available for evaluating the models;
these test data are not included in the training data but rather used for esti-
mating the quality of the models produced (and of the identification method
itself). These test data are given in Table 9.2.

Now we see that the linear model performs even worse on the test data
(msetest ≈ 25 ∗ 106, see Figure 9.6); the cubic model, which performed a lot
better in training, is much more accurate also on test data (msetest ≈ 4.5∗106,
see Figure 9.7)

1Minor inaccuracies are here due to numerical imprecisions.

162 Genetic Algorithms and Genetic Programming

−15 −10 −5 0 5
−2000

−1500

−1000

−500

0

500

1000
Order 3, MSE (training): 14435.8497

FIGURE 9.3: Data-based modeling example: Evaluation of an optimally fit
cubic model.

−15 −10 −5 0 5
−2000

−1500

−1000

−500

0

500

1000
Order 10, MSE (training): 6605.174

FIGURE 9.4: Data-based modeling example: Evaluation of an optimally fit
polynomial model (n = 10).

So, does this trend go on and does better fit on training data guarantee better
fit on test data? Analyzing the test performance of the models of order 10
and 20 the answer to this question obviously is: No. In Figure 9.8 we see that
the polynomial model of order 10 predicts values out of the range of the given
test data yielding a mean squared error value of 5 ∗ 1016. The model of order
20 is not shown; its mean squared error on test data is 5.8 ∗ 1034.

Evolutionary System Identification 163

−15 −10 −5 0 5
−2000

−1000

0

1000

2000

3000

4000
Order 20, MSE (training): 3.4512e−005

FIGURE 9.5: Data-based modeling example: Evaluation of an optimally fit
polynomial model (n = 20).

−15 −10 −5 0 5 10 15 20 25
−2000

0

2000

4000

6000

8000

10000

12000

14000
Order 1, MSE (test): 25343377.6071

FIGURE 9.6: Data-based modeling example: Evaluation of an optimally fit
linear model (evaluated on training and test data).

Summarizing this example we give an overview of training and test errors
for the data and models mentioned above in Figure 9.9 (models of order 0 and
5 were created in the same way as the other models). This behavior is typical:
As the number of parameters increases, the training errors decrease; in the

164 Genetic Algorithms and Genetic Programming

Table 9.2: Data-based modeling example: Test data.

X Y X Y

6 -381.4362 16 2609.0386
7 -73.1285 17 3147.7311
8 -226.3715 18 3941.3802
9 60.7464 19 5006.4839

10 -84.9143 20 5957.1595
11 251.8633 21 7424.0707
12 877.4408 22 8664.473
13 1149.4064 23 9937.4536
14 1666.7466 24 11452.5263
15 1941.3963 25 12980.5208

−15 −10 −5 0 5 10 15 20 25
−2000

0

2000

4000

6000

8000

10000

12000

14000
Order 3, MSE (test): 4516768.3077

FIGURE 9.7: Data-based modeling example: Evaluation of an optimally fit
cubic model (evaluated on training and test data).

beginning, test errors also tend to decrease2, but after some time (as soon
as overfitting happens), test errors start to increase with increasing training
effort.
Please note that the training and test errors shown in Figure 9.9 are depicted
on a logarithmic y-axis.

2In the summary chart displayed in Figure 9.9 we have intentionally omitted the training
and test errors for n = 2. The reason is that it would have shown that in this particular
case the test error for the quadratic model is a lot worse than for the linear as well as the
cubic model; this would be correct, of course, but in this way it is easier to sketch the
characteristic behavior of first decreasing and then increasing test errors as the number of
parameters increases.

Evolutionary System Identification 165

−15 −10 −5 0 5 10 15 20 25
−2000

−1000

0

1000

2000

3000

4000

5000

6000

7000

8000
Order 10, MSE (test): 49584496262619024

FIGURE 9.8: Data-based modeling example: Evaluation of an optimally fit
polynomial model (n = 10) (evaluated on training and test data).

0 2 4 6 8 10 12 14 16 18 20
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

Training Error vs. Test Error

Test Error

Training Error

n

FIGURE 9.9: Data-based modeling example: Summary of training and test
errors for varying numbers of parameters n.

9.1.2.3 Implementation

All data generation and modeling steps used here have been implemented
in MATLAB R©, Version 7.0 (R14); the source code representing the imple-

166 Genetic Algorithms and Genetic Programming

mentation of this example can be found on the website of this book.3

For the fitting of a polynomial of order n we first compose a matrix M as
a concatenation of the input values (namely the x values of the training data,
i.e., all values in [−15; 5]) potentiated by 0, 1, . . . , n:

Z = [X0X1 . . .Xn], Xk = [xk
1x

k
2 . . . x

k
N]T (9.4)

where Xk is a column vector consisting of all N input values to the power of
n.

Secondly, the training target values Y are, after transposing the matrices,
divided by Z using the right matrix division function (/); this numerically
solves the system of linear equations defined by the order of the model n,
the input data Z, and the target values Y . Thus, we get the coefficients
a0, a1 . . . an in the result of this division (as a vector p) and calculate the
estimated target values Ŷ (denoted in the source code as Yhat) by multiplying
poly and Z; this represents the evaluation of the identified polynomial for each
given sample.

The training and test qualities are calculated using the mean squared errors
function, i.e., we calculate the sum of squared residuals and divide by the
number of samples considered.

The data documented in Section 9.1.2 were generated using a noise range
of 500.

9.1.3 The Basic Steps in System Identification

The following two phases in data-based modeling are often distinguished:
Structural identification and parameter optimization.

• First, structural identification is hereby seen as the determination of
the structure of the model for the system which is to be analyzed; phys-
ical knowledge, for example, can influence the decision regarding the
mathematical structure of the formula. This of course includes the de-
termination of the functions used, the order of the formula (in the case
of polynomial approaches, e.g.), and, in the case of dynamical models,
potential time lags for the input variables used.
In the simple example given previously this step was the decision to
use a polynomial modeling approach; for example, the decision to try a
polynomial model y = a0 + a1x + a2x

2 + . . . + anx
n of specific orders

was the structural identification part. As we tried several polynomials
of different orders we simply executed the procedure several times; this
is exactly what is indicated by the feedback loop in Figure 9.10 (a).

• Parameter identification is then the second step: Based on training data,
the parameters of the formula are determined (optimized) meaning that

3http://gagp2009.heuristiclab.com.

Evolutionary System Identification 167

Variable Selection

Modelling
(Structure & Paramer

Identification;
Lin, Polynomial, ANN, …)

Test Models

Evaluation
(Expert)

Evaluation
(Statistics)

Data Preprocessing
(Filtering, downsampling,

detection of redundancies, …)

Sensor Data
Structure

Identification

Parameter
Identification

ax’ + bx² = 0

Success? 1.24*x’ – 4.38*x² = 0
No

Yes

Sensor Data

Initialization

(a) (b)

Result

Result

FIGURE 9.10: The basic steps of system identification ([BES01], [WER06]).

the coefficients and, if used, time lags are fixed.
Basically, this is what we did in the previous example by calculating the
coefficients for the polynomials of different orders separately.

This separation is schematically shown in the left part (a) of Figure 9.10
(adapted from [BES01]).

Of course, the whole process of building models out of data includes more
steps than those mentioned above. Especially data preprocessing is a very
important issue, i.e., preparing data before it is used for the “real” modeling
process. Data downsampling, filtering, and the removal of data without in-
formation can be applied in order to retrieve preprocessed data on which it is
easier to efficiently generate appropriate models.

Variables selection is also often considered a key issue in data-based mod-
eling: Those variables are selected from the pool of variables available which
shall be used for the essential modeling process. For example, variables which
do not include information (since they are constant in the whole data set, e.g.)
or are redundant to other ones can be omitted for simplifying the modeling
process. Variables selection can thereby be done using expert knowledge or
statistical methods. Exhaustive statistical methods are available as well as
sequential iterative forward or backward variable selection:

• Exhaustive search is executed by computing all possible combinations of
variables and evaluating them; exactly that combination of channels will
be selected which provides best approximation of measurement data.
This method is able to provide an optimal solution (if the process is
linear), but especially for higher dimensional problems (including big
numbers of channels) it requires excessive computation time. In order

168 Genetic Algorithms and Genetic Programming

to overcome this drawback, forward and backward selection can be used
as alternatives even if they provide only suboptimal solutions.

• In sequential forward selection the algorithm sequentially derives the list
of input channels. In the first step, only one input channel is considered
where that channel is selected that minimizes the sum of squares errors.
In the next step, another input channel is selected where once again that
channel is chosen which minimizes the sum of squares errors; the algo-
rithm iteratively adds more and more input channels until a predefined
accuracy is reached and hence the algorithm terminates. Of course the
results depend on the chosen basis functions.

• The main difference when applying backward selection is that the al-
gorithm starts with all variables available in a set of selected variables
and then iteratively removes variables that do not have a statistically
measurable connection with the observed (measured) target values.

• Hybrid variants combining backward selection and a subsequent forward
selection step have also been investigated for producing good results very
efficiently.

These basic steps of the data driven modeling process are shown in the right
part (b) of Figure 9.10.

As we see in both diagrams shown in Figure 9.10, the total system identifi-
cation process based on measurement data is not finished as soon as models
are created. A decision whether the model at hand is appropriate and fulfills
the given quality requirements has to be made during a subsequent validation
step. If this validation (often also called test phase4) fails, the process might
be repeated starting again at the structural identification or data preprocess-
ing step.

The major drawback of this classical approach is obvious: As the structure
of the model has to be fixed before identifying parameters, thus it has to use
a priori knowledge. However, there is a large number of applications in which
the a priori model information is not available to the desired precision. For all
these cases, several generic so-called “model free” approaches are widely used,
ranging from simple static maps up to self-organizing neural networks; see for
instance [dRLF+05] for ANN-based identification of a Diesel engine’s NOx

emissions, [PP01] for a specific spectral analysis tool to describe the behavior
of a plant or [THL94] for a neural network approach to optimal filtering of
sensor data.

4Please note that in some cases the terms validation and test phase are used synonymously,
but often (and also in the following test case documentations) the validation and test
phase are separate model analysis phases. Detailed explanation is to come in the following
sections.

Evolutionary System Identification 169

In spite of the evident simplicity of generic approaches, the drawbacks are
known as well: Over-parameterization, lack of extrapolation and often even
of interpolation capabilities [dRLF+05], large data requirements, etc.

9.1.4 Data-Based Modeling Using Genetic Programming

Using Genetic Programming for data-based modeling has the advantage
that we are able to design an identification process that automatically in-
corporates variables selection, structural identification, and parameters opti-
mization in one process.

In GP, the function f which is searched for is not of any pre-specified
form when applying genetic programming to data-based modeling; low-level
functions are during the GP process combined to more complex formulas.
Given a set of functions f1, . . . , fu, the overall function induced by genetic
programming can take a variety of forms. Usually, standard arithmetical
functions such as addition, subtraction, multiplication, and division are in the
set of functions f , but also trigonometric, logical, and more complex functions
can be included.

Thus, the key feature of this technique is that the object of search is a
symbolic description of a model, not just a set of coefficients in a pre-specified
model. This is in sharp contrast with other methods of regression, including
linear regression, polynomial approaches, or also artificial neural networks,
where a specific structure is assumed and often only the complexity of this
model can be varied.

Of course, data preprocessing and a separate validation / test phase are
also parts of the GP-based modeling process; the main workflow is sketched
in Figure 9.11.

In the following we are going to give an overview of our system identifi-
cation implementation in HeuristicLab in Section 9.2 and discuss concepts
developed for analyzing the similarity of mathematical models produced by
GP in Section 9.4.

Two typical application scenarios for GP-based modeling are then analyzed
using real-world test data as well as benchmark data:

• In Section 11.1 we bring basics and examples for time series analysis
and the design of so-called virtual sensors;

• in Section 11.2 we demonstrate classification as a possible application
for GP-based structure identification.

In both cases we discuss the effects of using enhanced concepts for GAs that
have been discussed in the previous chapters as well as advanced GP concepts
that are to be described in the following sections.

170 Genetic Algorithms and Genetic Programming

FIGURE 9.11: The basic steps of GP-based system identification.

9.2 GP-Based System Identification in HeuristicLab

9.2.1 Introduction

The HeuristicLab (HL) is a framework for developing and testing optimiza-
tion methods, parameters and applying these on a multitude of problems.
The project was started in 2002 and has evolved to a stable and productive
optimization platform; it is continuously enhanced and topic of several pub-
lications ([WA04c], [WA04a], [WA04b], [WA05a], and [WWB+07]). On the
HeuristicLab website5 the interested reader can find installable software, in-

5http://www.heuristiclab.com.

Evolutionary System Identification 171

formation, documentation, and publications in the context of HeuristicLab
and the research group HEAL6.

This extensible and flexible framework enables us to combine the advanced
GA concepts with genetic operators for GP; operators for analyzing dynam-
ics in GP populations can be integrated as well as evaluators that compare
training, validation, and test qualities.

Here we want to summarize how system identification problems are repre-
sented in HeuristicLab, how we have designed an appropriate solution encod-
ing and respective operators, and finally show how we have defined a similarity
measure for these solution candidates.

9.2.2 Problem Representation

A system identification problem instance has to include all data which are
needed by genetic programming for generating models describing the under-
lying system’s behavior.

The most important part of the representation of a system identification
problem, that is to be tackled with genetic programming, is the data collection
storing all available measurement data; the index of the target variable also
has to be known and available for the modeling algorithm.

Furthermore, there also has to be an indication which data samples are
to be used as training, validation, and test data (in our case given as start
and end sample indices). The use of these data segments is different for each
particular partition:

• Training data are the real basis for the algorithm; the modeling al-
gorithm is able to use these training examples of the input / output
behavior of the system at hand (or rather of the model that is to be
learnt) for determining the quality of solution candidates (which in our
case here are models / formulas).

• Validation data are available for the training algorithm, but normally
not used for the real evolutionary optimization process. These data can
for example be used for detecting overfitting phenomena, for pruning,
or other additional model manipulation operations.

• Test data, finally, may not be considered by any part of the training
algorithm. Still, these data shall be used for testing the created mod-
els on new data, i.e., data not included in the algorithm’s data base,
so that we can determine whether the algorithm was able to generate
appropriate models or not.

Additionally, there also has to be a possibility to state which variables of
the data base are really available for the modeling algorithm. For example,

6Heuristic and Evolutionary Algorithms Laboratory, Linz / Hagenberg, Austria.

172 Genetic Algorithms and Genetic Programming

this becomes relevant when sensor data are included in the data base and used
for statistical analysis (correlation analysis, automated fault detection, etc.),
but the models that are to be generated for a certain target variable are still
not supposed to contain these variables.

Pure availability of a variable is still not sufficient information; what we
also need is whether or which time offsets are allowed when referencing a
variable. For example, let y be the target variable and u, v, and w possible
input variables for a model for y; as we want to model y for time (sample) t we
search for a model for yt. The first crucial decision to be made is whether we
want to generate static or dynamic models: In static models, only inputs at
time t are considered for describing the target variable at time t; our target yt

would be described as a function f : yt = f(ut, vt, wt). In dynamic modeling,
on the contrary, input variables can also be referenced with a certain time lag
meaning that not only values of time t are used but also “historic” data. For
example, f could then be a function modeling yt using ut−4, vt−1, vt−2, and
wt.

In several application scenarios one also explicitly excludes input values
of time t; what we get by excluding contemporary input data is a predic-
tion model that can also be used for modeling future values on the basis of
previously measures / recorded data.

Furthermore, the generation of autoregressive models also becomes possible:
Autoregressive models are formulas that model an output yt incorporating
previous outputs yt−1, yt−2, . . . , yt−tmax

; an exemplary autoregressive model
for our example could be fAR : yt = ut + yt−2 + wt−1.
So, as the target variable can also be used with certain time offsets, GP is
also able to generate autoregressive models.

Lots of additional information for system identification problem instances
can also be very useful in the modeling process:

• Complexity limits for the models that are to be created can be given as
maximum values for the height as well as the size of the models. Height
hereby is equal to the height of the respective model structure tree as
is to be described in Section 9.2.4; size refers to the number of nodes of
the structure tree.

• Meta-information such as descriptions of the data and the underlying
system, or descriptions and names of the variables in the data base, e.g.

• A collection of function and terminal definitions that can be used for
compiling and evaluating models – a detailed description about the man-
agement of function bases is about to come in Section 9.2.3.

• The best solutions found so far - this of course also has to include at
least information about

– the data partitions used as training and validation data,

Evolutionary System Identification 173

– the evaluation operator and respective parameter settings applied
for evaluating solution candidates,

– which variables were used in the modeling process applying which
minimum and maximum offsets, and

– the function and terminal definitions that were available for com-
piling and evaluating models.

Specific parameters for classification problems shall be described in Section
11.2 on learning classifiers using GP.

9.2.3 The Functions and Terminals Basis

9.2.3.1 Motivation, Introduction

The correct design of the functions and terminals basis used for compiling
and evaluating formulas is one of the most crucial issues in the design of a
GP-based system identification approach; for the sake of simplicity we will
in the following refer to this pool of definitions of functions and terminals
as functions basis. In fact, this is not wrong since terminal definitions are
also functions that take several inputs such as a reference to the data basis,
the variable and sample indices, a (time) offset, and a concrete coefficient for
calculating the returned value. Still, as the handling of terminals differs a lot
from the handling of functions, we will also treat them separately whenever
necessary.

Regarding the implementation, HeuristicLab and all plugins (at least until
now) are implemented in C# using the .NET framework, so the most obvious
approach would be to use the functions of the .NET framework for building
models; essentially, this was done in our GP implementation for the versions
1 and 1.1 of HL ([Win04], [WAW05a], [WAW05b], [WAW06a], [WAW06e],
[WAW06c], [WEA+06]).

During own research activities and in the course of discussion with research
partners in academics as well as industries we became more and more con-
vinced that it would be a great benefit for GP-based modeling if the users
were able to program and parameterize the functions and terminals by them-
selves. So, starting from the implementation in HL 2.0, a flexible and user-
programmable functions basis has been used.

The definition of the evaluation of functions and terminals surely is the core
of any functions and terminals management unit. So, for each function as well
as for every terminal definition we have to be able to manage the source code
that represents the definition of its evaluation, compile it, and provide the
compiled functions to the GP process.

In detail, these definitions are designed and implemented in HeuristicLab
as is explained in the following sections.

174 Genetic Algorithms and Genetic Programming

9.2.3.2 Definition of the Evaluation of Terminals

The definition of the evaluation of a terminal is given by a function that
requires a reference to the data basis, variable and sample indices, a sample
offset, and a coefficient as inputs; depending on the selected terminal defi-
nition, this information is processed and the return value calculated. So, a
terminal definition t is a function of the data collection D, the variable index
v, the sample (time) index s, a sample offset o, and a coefficient c.

Let us consider the following examples tvar, tdiff , and tconst representing
standard variable, differential, and constant definitions:

tvar(D, v, s, o, c) = c ∗D[v, s− o]

tdiff(D, v, s, o, c) = c ∗ (D[v, s− o]−D[v, s− o− 1])

tconst(D, v, s, o, c) = c

tvar calculates the product of the given coefficient multiplied with the value
of variable v at sample index s shifted by o indices, thus taking the value
D[v, s−o]. tdiff calculates the difference of the referenced values at D[v, s−o]
and its predecessor,D[v, s−o−1], and returns it multiplied with the coefficient
c. tconst, finally, simply returns the given coefficient and thus represents a
constant terminal definition.

The definition of such a terminal can of course become arbitrarily simple
or complex, depending on the user’s intention. Anyway, in HL the definition
of the evaluation functions has to be done in C# notation using the following
interface:

public double TerminalEvaluation(double[][] Data,

int Var, int Sample, int Offset, double Coeff);

The implementation of a terminal definition thus is a method following the
interface given above. The respective source codes for the exemplary terminals
tvar, tdiff , and tconst could be defined in the following way:

tvar : return Coeff * Data[Var][Sample-Offset];

tdiff : return Coeff * (Data[Var][Sample-Offset] -

Data[Var][Sample-Offset-1]) ;

tconst : return Coeff;

9.2.3.3 Definition of the Evaluation of Functions

The interface for function evaluation definitions is a lot simpler than the
evaluation interface for terminals as described above: A function is simply
defined by the way it calculates a value given a set of input values. Addition-
ally, we also use a variant index so that it is possible to define several variants
of functions within one function definition. So, a function definition f is a
function of the input data vector input and the variant v.

Evolutionary System Identification 175

Let us consider the following examples fadd, fdiv, and ttrig representing
addition, division, and trigonometric functions:

fadd(input, v) = sum(input)

fdiv(input, v) = input[1]/input[2]

ftrig(input, v) =

sin(input[1]) : v = 1
cos(input[1]) : v = 2
tan(input[1]) : v = 3

error : otherwise

fadd calculates the sum of all input values, fdiv divides the first argument by
the second one, and ftrig returns the sine, the cosine, or the tangent of the
first input, depending on the value of the variant index passed.

In HL the definition of the evaluation functions has to be done using the
following interface:

public double FunctionEvaluation(double[] Args, int Var);

The implementation of a function definition thus is a method following the
interface given above; the respective source codes for the exemplary terminals
fadd, fdiv, and ftrig could be defined in the following way:

fadd : double d = 0;

for (int i=0; i<Args.Length; i++)

d += Args[i];

return d;

fdiv : if(Args[1]==0) return double.NaN;

return (Args[0] Args[1]);

ftrig : if (Var==0) return Math.Sin(Args[0]);

if (Var==1) return Math.Cos(Args[0]);

if (Var==2) return Math.Tan(Args[0]);

throw new Exception("Unknown function variant");

Of course, logical functions can so be integrated into the functions pool as
well as boolean functions connecting logical and boolean functions.

Please note that the functions interface definition implemented in HL is a
bit more sophisticated. In fact, what is also handed over to the function is an
array storing a certain number of previously calculated values, i.e., a history
of exactly this function:

public double FunctionEvaluation(double[] Args, int Var,

double[] History);

If the history array is used in the evaluation function, then a number of
pre-defined calculated values are automatically saved in an appropriate array,
stored, and given to the function at its next evaluation. Thus, it is for example

176 Genetic Algorithms and Genetic Programming

possible to implement an integral function fint using the history hist:

fint(input, v, hist) = hist[1] + input[1]

which in HL / C# notation could be implemented as

fint : return = History[0] + Args[0];

9.2.3.4 String Representations of Terminals and Functions

Even though the evaluation on a given data basis is the most important
task for a model, appropriate string representations are also necessary for
representing formulas in prefix notation, standard notation (as a mixture of
infix and prefix notations), or in such a way that they can be immediately
incorporated in MATLAB R©, Mathematica R©, LATEX, or C/C++/C# program
code.

For each representation variant there are specific interfaces for terminals and
functions; in all cases character strings are returned, but the input parameters
vary significantly. The terminals’ string representations are given the same
parameters as the evaluation functions (except for a reference to the data
basis) and, in some cases, the variable name; string representation methods
for functions use the string representations of the function’s inputs and return
composed strings representing the function and its inputs.

In the following we will pick the standard (infix/prefix) notation for demon-
strating the mechanisms used. For terminals and variables we use the inter-
faces

public string Terminal Standard(int Var, string VarName, int Offset,

double Coeff);

public string Function Standard(string[] Args, int Var);

respectively. For standard variables and the addition function, for example,
the respective method implementations could be given in the following way:

tvar : string s = "[" + Coeff.ToString() + "*";

s = s + VarName;

if (Offset==0) s = s+"(t)";

else s = s+"(t-" + Offset.ToString() + ")";

return (s + ")]");

fadd : string s = "(" + Args[0];

for(int i=1; i<Args.Length; i++)

s = s + "+" + Args[i];

s = s + ")";

return s;

Evolutionary System Identification 177

The standard string representations of two terminals referencing variable w
with time-offset 4 and coefficients 1.2 and 0.9, respectively, would so result in
[1.2*w(t-4)] and [0.9*w(t-4)]; the standard string representation of the
addition of these two terminals would be ([1.2*w(t-4)]+[0.9*w(t-4)]).

9.2.3.5 Parametrization of Terminals and Functions

Apart from the definitions of evaluation and string representation of termi-
nals and functions there are several parameter settings for them that are to
be summarized in this section.

Terminal definitions can be parameterized in the following ways:

• The data type and the distribution function of the coefficients allowed
has to be defined: Coefficients can be

– either integral values or real-valued, and

– their distribution can be either uniform (defined by minimum and
maximum values) or Gaussian (defined by average µ and standard
deviation σ).

• The set of possible parent types can be defined, i.e., the user is able
to declare which functions are allowed to use the respective terminal as
input and which ones are not allowed to do so.
This selection of possible parent functions can be done either explicitly
by selecting a set of functions that are allowed as direct parents, or
implicitly by defining which functions are not allowed as parents of the
respective terminal type.

The parametrization possibilities for function definitions are even more than
those for terminals:

• An arbitrary number of variants can be defined. Apart from considering
these variants in the method code (as can be seen in the code for the
trigonometric function definition in Section 9.2.3.3), each variant can be
activated and de-activated independent of the other variants.

• Additionally, for each variant the function’s arity (its number of input
parameters) has to be defined. The arity can be either fixed or given as
a range defined by minimum and maximum values.

• Each function has to define its neutral element(s), also called identity
element(s). In binary operations working on elements of the set X , an
element e of X is called left identity with respect to the operation ◦ if
e ◦ a = a for all elements a in X ; in analogy to this, e is called right
identity with respect to ◦ if a ◦ e = a for all elements a in X .
This concept of elements that leaves other elements unchanged when
combined with them is here used in a slightly generalized way as we

178 Genetic Algorithms and Genetic Programming

define neutral (identity) elements for each possible input index of a
function:

– There can be one neutral element that is used for all input indices,
or

– neutral elements can be defined for each possible input index inde-
pendently.

For the addition or subtraction functions, e.g., the neutral element for
all possible indices is 0, for the multiplication function it is 1 for all
inputs. But when it comes to the division, then the identity elements
have to be defined separately for each input: As we divide the first input
by the second one, the neutral element for the first index is 0, whereas
for the second input it is 1 (because 0/a = 0 and a/1 = a for all a ∈ R).

• Similar to the parent type restrictions that can be set for terminals,
functions can also define a set of valid parent function definitions. Again,
this can be done either directly or indirectly by selecting functions that
are not allowed as parent function types.

• Finally, functions can also define child type restrictions. This can also
be done directly by selecting certain function or terminal definitions as
valid child types (i.e., types that are allowed as inputs for the function),
or by explicitly excluding certain types from the set of possible input
definitions.
In order to maximize the flexibility of this child type management con-
cept, these selections can be done either for all input indices uniformly
or for each input index separately.

Function and terminal definitions and their respective parametrizations are
collected in function and terminal management units which we here, as already
mentioned before, call “functions bases”. In each functions basis we not only
store function and terminal definitions, but also which ones are activated
and which ones are not, and an initial weighting factor is also given for each
definition denoting its relative probability to be chosen when it comes to
selecting a randomly chosen function or terminal.

9.2.4 Solution Representation

9.2.4.1 Representing Formulas by Structure Trees

As we have now described how function and terminal definitions are man-
aged, we shall take a look at the representation of solution candidates for
GP-based system identification. The most intuitive way to represent models
is modeling them as structure trees; starting with Koza’s first GP attempts us-
ing LISP structure trees, the concept of trees representing formulas has had a

Evolutionary System Identification 179

long tradition in GP (see [Koz92b], [KKS+03b], [LP02], [Kei02], or [PMR04],
e.g.).

Structure trees consist of nodes and references from parent nodes to their
children. Thus, for representing formulas we have to create node structures
that are able to store all parameters needed as well as references to the function
and terminal definitions used; this concept is visualized in Figure 9.12.

Functional Basis

Func 1

Func 2

Func 3

Term 1

Term 2

Params

Params Params Params

Params

Params
function

functionfunction

terminal terminal terminal

FIGURE 9.12: Structure tree representation of a formula.

The following parameters have to be stored by structure nodes in addition
to references to their function or terminal definition:

• Each terminal node has to store the index of the variable it references,
the sample (time) offset, and the value of the coefficient that is to be
used as a multiplicative factor.
Thus, when it comes to evaluating a terminal node for a given data base
and a certain sample index, the referenced terminal definition is called
using the given data and sample index as well as the parameters stored
in the node; the value returned by the terminal definition function is
returned as the result of the node’s evaluation or representation method.

• A function node has to store not only references to its child nodes and
a function definition, but also the index of the function’s variant. So,
when it comes to evaluating a function node or compiling its string
representation for a given data base and a specific sample index, the
children nodes are first evaluated with the given data and then the
referenced function is called with the children’s returned values and the
variant index stored. The result of this function call is then returned as
the result of the node’s evaluation.

180 Genetic Algorithms and Genetic Programming

As we have described in Section 9.2.3.3, some functions also consider
previously calculated values. So, function nodes additionally have to
manage history arrays in which the calculated values are stored and
which are also given to the function definition at the next sample’s
evaluation.

9.2.4.2 Initialization, Crossover, and Mutation

The initialization of structure trees is essentially the compilation of ran-
dom tree structures referencing to randomly chosen function and terminal
definitions. Of course, all constraints given by the functions basis have to be
considered:

• The number of children of each function node has to fulfill the arity
constraints given by the function definition parametrization; in the case
of fixed arity the number of children has to be exactly this value, and
in the case of variable arities the number of children may not fall below
the minimum or rise above the maximum arity limit.

• Of course, parent and child constraints also have to be considered.

• The structure complexity given in the problem representation (regarding
height and size of structure trees) may not be exceeded.

• Variable indices are chosen according to variable availabilities; sample
offsets are initialized according to minimum and maximum sample off-
sets defined by the problem instance.

• Coefficients of terminal nodes are initialized according to parameter set-
tings defined by the terminal definition.

The most frequently used crossover operator is the single-point subtree
exchanging crossover already described in detail in Section 2.2.1.3. Subtrees
are exchanged and new formulas are formed; the references to the function
and terminal definitions are copied into the new solution candidate. Figure
9.13 illustrates this mechanism.

Of course, all constraints defined by the functions basis have to be satisfied
here, too. Especially child and parent relations of the new combinations have
to be checked and invalid constellations avoided. The complexity limitation
requirements given by the problem instance also have to be fulfilled.
In fact, we have implemented and use three different types of crossover oper-
ators:

• The standard crossover variant chooses subtrees without considering
their size.

• The low level crossover variant tries to exchange rather small subtrees
of height 1 or 2, e.g.

Evolutionary System Identification 181

Functional Basis

Func 1

Func 2

Func 3

Term 1

Term 2

parent 1 parent 2

child

FIGURE 9.13: Structure tree crossover and the functions basis.

• The high level crossover variant tries to exchange rather big subtrees as
for example the roots’ children.

Finally, mutating a structure tree can be done in several different ways.
Some structural as well as parametric mutation variants are as follows:

• A subtree could be deleted or replaced by a randomly re-initialized sub-
tree.

• A function node could for example change its function type or turn into
a terminal node.

• A terminal node representing a variable could for example change its
index and thus in the following refer to another variable.

• A terminal node representing a constant could be multiplied with a fac-
tor. A good choice for the distribution of these multiplicative mutation
factors could be a Gaussian distribution with average 1.0 so that the
probability of smaller changes is greater than the probability of larger
modification.

Up to now we have always stressed the fact that complexity limitations are
given in the problem representation of the concrete system identification prob-
lem at hand. In fact, complexity limitations can also be defined by crossover

182 Genetic Algorithms and Genetic Programming

and mutation operators; these operators can be parameterized so that they
produce models by crossing parents or mutating formulas that fulfill size or
height restrictions independently of the settings given in the problem. These
limitations could for example also be modified during the execution of the GP
process.

9.2.5 Solution Evaluation

9.2.5.1 Standard Solution Evaluation Operators

The primary task of an evaluation operator estimating the fitness of a sys-
tem identification solution candidate is surely to measure how well the values
calculated using the model fit the original target values. Numerous different
evaluation functions are possible and have been reported on in the literature;
in principle, the estimated values e (calculated by evaluating the model on the
given data basis) are compared to the original target values o. In this context
it is irrelevant for the function whether the model is evaluated on training,
validation, test, or any other data partition.
Here we describe three rather simple functions that have also been imple-
mented as evaluation operators for HeuristicLab:

• The mean squared errors function (MSE) has already been described
in Sections 2.4.3 and 9.1: The function returns the average value of the
squared residuals of e and o:

MSE(e, o) =
1

N

N
∑

i=1

(ei − oi)
2;N = |e| = |o| (9.5)

• The coefficient of determination (R2) function can be used for measur-
ing the proportion of a variable’s variability that is accounted for by
the model that tries to explain it; it can also be seen as the ratio of the
variability of the modeled target values to the variability of the origi-
nal target values. R2 of original and modeled target values, o and e,
respectively, is defined as

R2(e, o) = 1−
SSE

SST
; (9.6)

SSE =

N
∑

i=1

(oi − ei)
2, SST =

N
∑

i=1

(oi − ō)
2, (9.7)

ō =
1

N

N
∑

i=1

oi, N = |e| = |o| (9.8)

where SSE stands for the explained sum of squares and SST for the
total sum of squares of the original values. The better a model is, the
more the R2 value converges to 1.

Evolutionary System Identification 183

• The variance accounted for (V AF) function is defined as the fraction of
the variances of the residuals and the original target values:

V AF (e, o) = 1−
var(o − e)

var(o)
; (9.9)

var(x) =
1

N

N
∑

i=1

(xi − x̄), x̄ =
1

N

N
∑

i=1

xi, N = |x| (9.10)

The variance of the residuals, i.e., the differences between the original
and modeled values, is so divided by the original values’ variance; the
smaller the residuals’ variance is, the nearer the calculated value con-
verges towards 1.
This main difference of this evaluation function compared to other ones
as for example mse or R2 is that it does not punish constant residu-
als; only the variance of the residuals is taken into account and might
decrease a model’s quality.

In the implementations of these evaluation functions we have introduced a
parameter for limiting the maximum contribution of a single sample’s error to
the total evaluation. The residual of each specific sample can so be limited in
relation to the original target values’ range; this is supposed to help to cope
with outliers and invalid values calculated by division by 0, for example.

9.2.5.2 Combined Solution Evaluation

Several advanced evaluation concepts are also realized in an advanced eval-
uation operator for HeuristicLab. Again, for the explanations given in this
section let o be the original and e the estimated target values, and N the
number of samples analyzed; furthermore, let range(o) be the range of the
original target values:

range(o) = max(o)−min(o) (9.11)

First, instead of mean squared errors we use the mean exponentiated error
function; the residuals are raised to the power of n, a parameter of this par-
ticular evaluation function, and the mean value of these exponentiated errors
is calculated:

MEE(o, e, n) =
1

N

N
∑

i=1

|ei − oi|
n
;N = |e| = |o| (9.12)

Additionally, this operator is able to combine the evaluation functions given
in the previous section; a combined fitness value is calculated as a linear
combination of the three separate fitness values.

First, the fitness values MEE(o, e, n), R2(o, e), and V AF (o, e) have to be
scaled so that they have comparable ranges. The exponentiated errors are

184 Genetic Algorithms and Genetic Programming

scaled by dividing them by a fourth of the target values’ range, so for calcu-
lating the scaled fitness value MSEE′(o, e, n), MSE(o, e, n) is divided by a
fourth of the target data’s range raised to the power of n since

MEE′(o, e, n) =
1

N

N
∑

i=1

(

|ei − oi|
range(o)

4

)n

;N = |e| = |o| (9.13)

MEE′(o, e, n) =
1

N

(

1
range(o)

4

)n N
∑

i=1

|ei − oi|
n (9.14)

MEE′(o, e, n) = MEE(o, e, n) ∗

(

1
range(o)

4

)n

(9.15)

where n is the exponent chosen for raising the errors to the power of n.
The scaled values R2′(o, e) and V AF ′(o, e) are calculated as simply as

R2′(o, e) = 1−R2(o, e), V AF ′(o, e) = 1− V AF (o, e) (9.16)

since the range of the R2 and V AF functions is [0,1], anyway.
The minimum and maximum residuals rmin(o, e) and rmax(o, e) can also

be considered; before using them in the combined fitness function, they are
scaled in the same way as the MEE values:

r = e− o; rmin(o, e) = min(r), rmax(o, e) = max(r) (9.17)

rmin
′(o, e) = rmin(o,e)

range(o)
4

, rmax
′(o, e) = rmax(o,e)

range(o)
4

(9.18)

All these scaled partial fitness contribution values are multiplied with coef-
ficients c1, c2, c3, c4, c5, summed, and the result divided by the sum of coeffi-
cients; the result is returned as the combined fitness value COMB(o, e, n, c):

a1 = c1 ∗MEE′(o, e, n) (9.19)

a2 = c2 ∗R
2′(o, e, n) (9.20)

a3 = c3 ∗ V AF
′(o, e, n) (9.21)

a4 = c4 ∗ rmin
′(o, e) (9.22)

a5 = c5 ∗ rmax
′(o, e) (9.23)

COMB(o, e, n, c) =
a1 + a2 + a3 + a4 + a5

c1 + c2 + c3 + c4 + c5
(9.24)

There are, in fact, even more sophisticated evaluation operators to be de-
scribed, namely a time series analysis specific one as well as a classification
specific one. These are about to be discussed in Sections 11.1 and 11.2.

9.2.5.3 Adjusted Solution Evaluation

A modification of the coefficient of determination function R2 is the so-
called adjusted R2; when evaluating a model m, then this extension of the R2

Evolutionary System Identification 185

function described above also takes into account the number of explanatory
terms of the model. Let N be the sample size, t the number of terms in m,
and o and e again the original and estimated target values, so R2

adj(o, e) is
calculated as

R2
adj(o, e) = 1− (1 −R2(o, e))

N − 1

N − t− 1
(9.25)

This add-on7 increases the calculated quality value only if the addition of
a new term to the model improves the model’s performance more than what
would be expected by chance; unlike R2 it can even become a negative value.

We have adapted this concept in a slightly modified manner so that it is
applicable to the partial R2 and V AF evaluations of the combined evaluator
COMB described in Section 9.2.5.2. These partial evaluation results can
be optionally corrected using the factor N−1

N−s−1 where s is the model’s size,
i.e., the number of nodes of the structure tree solution representing the model
which is to be evaluated. So, the adjusted evaluation resultsR2

adj and V AFadj

are calculated as

q =
N − 1

N − s− 1
(9.26)

R2
adj(o, e) = 1− (1−R2(o, e)) ∗ q (9.27)

V AF adj(o, e) = 1− (1− V AF (o, e)) ∗ q (9.28)

9.2.5.4 Runtime Consumption Considerations

As we have now described all basic genetic operators for data-based system
identification using genetic programming, we can try to estimate their relative
runtime consumption.

The initialization of structure trees is not just called only once, it is also rel-
atively cheap in terms of runtime consumption. This is because nodes, which
are relatively small entities, are created according to the rules and limitations
given in the problem instance and the functions basis; the connection between
nodes is established by references (pointers) from parent to child nodes.

Crossover and mutation are in our case also very inexpensive with respect
to runtime and memory consumption. Nodes and references are copied and
parameters are modified; only in case of the creation of invalid structure trees
it could be that repair routines have to be used which could, if implemented
in a suboptimal way, cost significant runtime.

Anyway, it boils down to the fact that most of the runtime of a GP based
system identification process is consumed by the evaluation of solution can-
didates. This is because models have to be evaluated on the training (and

7Of course, calling this modification an “add-on” may sound a bit misleading as it is no
additive but rather a multiplicative one. The reader is asked to be so kind as to forgive this
slight rhetorical incorrectness.

186 Genetic Algorithms and Genetic Programming

maybe also validation) data, i.e., on possibly hundreds or thousands of sam-
ples. Collecting these values and then calculating the fitness value can be again
relatively cheap (with respect to runtime consumption) when using rather sim-
ple evaluation functions as those summarized in the Sections 9.2.5.1, 9.2.5.2,
and 9.2.5.3; still, especially when using more complex functions as for exam-
ple time series analysis or classification specific ones given in Sections 11.1
and 11.2, then this part of the evaluation also might cause noticeable runtime
consumption.

In HeuristicLab, for instance, we have measured that even when using a
graphical user interface with results display and solution protocolling, more
than 99.5% of the algorithm’s runtime are consumed by evaluation operators.

9.2.5.5 Early Stopping of Model Evaluation

So, what can we do to fight this problem of high computational costs of
GP-based structure identification? The simplest answer would be to decrease
the size of the training (and validation) data partitions. Of course this is not
a generally applicable way to do this; training data should include as much
information as possible in a preferably efficient way - it should be as small as
possible, but at the same time also as extensive as necessary.

Sampling, i.e., evaluating the models not on the total training / validation
data sets but only on certain selected samples seems to be a better idea:
By only evaluating the models for a number of (at best randomly) selected
sample indices, the total quality is estimated. This on the one hand surely
decreases runtime consumption and on the other hand also might help to
avoid overfitting as the models are evaluated on different samples at each
evaluation step (so that they cannot be fit too closely to a set of samples).
Still, the quality measurement might so become somehow instable; a model
might be assigned completely different quality values each time it is evaluated
because the samples chosen are likely to differ.

When using offspring selection as described in Chapter 4 there is even a
possibility of how to speed up the evaluation without decreasing the quality
of the fitness estimation method:

During the offspring selection phase, solution candidates are compared to
their parents, i.e., their quality values are compared to their parents’ fitness
values. In the case of applying most restrictive settings, i.e., when the success
ratio is set to 1.0, then models are inserted into the next generation’s popula-
tion only if they fulfill the quality requirements given by the parent’s quality
values and the comparison factor; there is no pool of possible lucky losers,
solution candidates that do not fulfill the given fitness criterion are discarded.
In this case the evaluation of a model can be aborted as soon as it is clear
that the fitness value will surely not satisfy the fitness criterion even if the
rest of the evaluation produces no additional errors.

The issue, then, is how to detect when the evaluation of a model can be
aborted without decreasing the quality estimation’s accuracy with respect to

Evolutionary System Identification 187

the total GP process. We introduce a relative calculation interval size rcis
which is a value in the interval [0,1] (normally a value as for example 0.1, 0.2,
or 0.5) used in the following way:

Let m be a model which is to be evaluated for a system identification
problem p; furthermore let p1 and p2 be the parents of m, and qp1 and qp2

their respective quality values. The given comparison factor cf is then used for
calculating the comparison value cv depending on whether p is a maximization
or a minimization problem:

qmin = min(qp1, qp2); qmax = max(qp1, qp2) (9.29)

qrange = |qp1 − qp2| (9.30)

cv =

{

qmin + qrange ∗ cf : isMaximizationProblem(p)
qmax − qrange ∗ cf : isMinimizationProblem(p)

(9.31)

In system identification we normally deal with minimization problems when
using the MSE, MEE, or COMB evaluation operator as smaller fitness
values are favored; when using the R2 or V AF operator, p can be considered
a maximization model since better models are assigned higher fitness values.

Let us now assume that N samples are to be evaluated; mathbfo are then
the N original target values, and the calculation samples interval csi is calcu-
lated as

csi = N ∗ rcis (9.32)

The vector of estimated target values mathbfe is initialized as a copy of
mathbfo; the model’s quality qm is initially set to the worst possible fitness
value (-maxV al for maximization, maxV al for minimization problems), and
the indices i1 and i2 are set to 1.8

As long as qm is “better” than cv (i.e., smaller if p is a minimization and
greater if p is a maximization problem), the following evaluation steps are
executed:

1. The index i2 is set to i1 + csi− 1; if i2 > N , then i2 := N .

2. The estimated values ej are calculated for j = [i . . . i2]; these replace
the values at the respective indices in e so that

e = [e1, . . . , ei2 , oi2+1, . . . , oN] (9.33)

3. qm is calculated using the given fitness function f :

qm = f(o, e) (9.34)

8In this description we again use one-based indexing; in most modern programming lan-
guages as C, C++, Java, or C#, zero-based indexing would be used instead.

188 Genetic Algorithms and Genetic Programming

4. Now there are several ways how the evaluation is continued:

(a) If i2 is equal to N , i.e., if all samples have been considered, then
m is assigned the fitness value qm.

(b) Otherwise, if qm is no more “better” than cf , then the evaluation
of m can be aborted and m can be assigned the worst possible fit-
ness value (maxV al for maximization, −maxV al for minimization
problems).
As an alternative, we can also assign m an extrapolated fitness
value: If p is a minimization problem and the optimal possible
fitness value 0, as is the case if we use the MSE, MEE, or
COMB operator, then we can assign m the extrapolated fitness
value qm ∗

N
i2

.

(c) Otherwise, go back to step 1 and continue the evaluation of m.

By rearranging the evaluation as described above we guarantee that the
quality of models that fulfill the given offspring selection criterion is accurate
and calculated in the same way as when using the standard procedure. For
models that perform worse than demanded and are therefore not about to
fulfill the offspring selection criterion, the evaluation is aborted as soon as it
is clear that the evaluation will result in such a “bad” fitness value.

Thus, a lot of runtime can be saved. For the sake of completeness we of
course have to admit that the runtime consumption is increased slightly for
models that are evaluated on all samples since intermediate fitness values are
calculated; still, this minor drawback is accepted as the advantages outweigh
by far.

9.3 Local Adaption Embedded in Global Optimization

Genetic algorithms and genetic programming are in general global opti-
mization methods, i.e., their aim is to search the whole search space in an
intelligent way in order to find the (or an) optimal solution. In contrast to
this, local optimization methods are local search algorithms, which means that
they move from solution to solution and so search the search space until a so-
lution considered optimal is found (or a time-out condition is fulfilled). Well
known examples for local search algorithms are the hill climbing algorithm
and tabu search; please see [RN03] and [GL97] for respective explanations
and discussions.

In biology, an organism’s positive characteristic that has been favored by
natural selection is called adaption [SG99]. This is, in fact, the central concept
in evolutionary biology and of course also in evolutionary computation.

Evolutionary System Identification 189

In this section we shall summarize local adaptation concepts we have intro-
duced into the genetic programming process, namely parameter optimization
as well as model structure pruning.

9.3.1 Parameter Optimization

Parameter estimation has already been mentioned in connection with clas-
sical system identification: After determining and fixing the structure of the
model, appropriate parameters have to be estimated on the basis of empirical
data.

In GP, the genetic process is supposed to identify the set of relevant vari-
ables, the formula structure, and appropriate parameters automatically; there
are no explicit parameter estimation phases planned in the standard GP pro-
cess. Furthermore, GP is very flexible regarding function and terminal defi-
nitions as well as formula structures; it is not easy to formulate general pa-
rameter optimization methods for arbitrary nonlinear model structures.

Still, in GP we have to face the problem that often models with good
structures are assigned bad fitness values due to disadvantageous parameters
such as coefficients or time lags. This is the reason why we have implemented
a parameter optimization method based on evolution strategy (ES) concepts.

Evolution strategy is an optimization technique whose ideas are based on
the natural concepts of evolution and adaption; it was created and devel-
oped since the 1960s, primarily by a German research community around
Rechenberg and Schwefel ([Rec73], [Sch75], [Sch94]). As it is an evolution-
ary algorithm, the optimization process based on ES is executed by applying
operators in a loop, i.e., main operations are applied on the solution candi-
dates repeatedly until a given termination criterion is met. A comprehensive
overview of the theory of ES can for example be found in [Bey01].

There are several similarities of evolution strategies and genetic algorithms
or genetic programming; as they are all optimization methods based on evo-
lution, they are also considered the main representatives of evolutionary al-
gorithms (EAs). Still, there are some important differences of ESs and GAs,
the most important being as follows:

• Solution candidates are in ESs represented as vectors of real-valued pa-
rameters.

• The main factors that drive evolution in ESs are mutation and selection.
Whereas GAs use mutation only for avoiding stagnation, mutation is the
main reproduction operator in evolution strategies: Each component of
the parameter vector is mutated individually in each generation. An
additive mutation is carried out, and small mutations are more likely
than big ones.

190 Genetic Algorithms and Genetic Programming

• In addition to mutation, recombination can be used to create new indi-
viduals out of two parents, too.

• In contrast to nature and GAs, the selection of ESs works in a totally
deterministic way: In each generation only the best individuals survive,
whereas in GAs better individuals (normally) just have higher likelihood
to be considered for producing new solution candidates.

In each generation of the execution of an ES, λ individuals (children) are
(by mutation and optimal recombination) created out of µ individuals of the
current population. Depending on the chosen strategy, the µ members of the
new generation’s population are selected from all µ+ λ candidates (which is
referred to as the (µ+λ)-ES) or only from the λ children for λ≫ µ (which is
also called the (µ, λ)-ES model). This procedure is repeated until termination
criterion is reached, normally a maximum number of iterations or a state in
which no more improvement can be reached.

In Section 9.1.2 we have shown the general form of a polynomial model
which is characterized by its order and coefficients:

y = a0 + a1x+ a2x
2 + . . .+ anx

n (9.35)

In this case, the optimization of the model’s parameters is the task of finding
appropriate coefficients a0 . . . an. In the much more general point of view in
our GP-based approach, the parameters of a model contain a lot more; in
fact, all parameter settings of the terminal nodes included in the model are
also parameters for the formula which can be optimized without changing the
model’s structure.

For each terminal used in our GP approach, the following parameters are
to be considered:

• The variable index, i.e., the number of the variable which is referenced.

• The coefficient, a value which can be used for multiplying the refer-
enced variable’s value with a given constant; this constant can be either
real-valued or integral, and its distribution either uniform (defined by
minimum and maximum) or Gaussian (defined by mean and variance).

• The time offset, a value which can be used for referencing to the vari-
able’s values shifted by a certain number of samples.

Thus, when it comes to optimizing a model m containing t terminal nodes, we
have to consider 3 ∗ t that could be manipulated by the optimization method.

As mutation is (besides selection) the most important factor in ES, we
shall now discuss how mutation with respect to a model’s parameters can be
applied. A parameter σ is used for controlling the strength of mutation; we
here see σ simply as the standard deviation of the modification added to the
model’s parameter values. Thus, each parameter of the model’s parameters is

Evolutionary System Identification 191

modified, where again smaller modifications are more likely than bigger ones;
variable index changes are also to be applied rather seldom (for 20% of the
terminals, e.g.).

So, the whole parameter optimization procedure we have implemented for
optimizing a given model m using the parameters λ, σ, itmax and cfmax is
executed in the following way:

1. Collect all terminals of m in t.

2. Create λ copies of m, in the following called mutants.

3. Mutate all λ mutants individually; for each terminal of the mutant mod-
els

• mutate the coefficient,

• mutate the time offset, and

• with a rather small probability mutate the variable index.

4. Evaluate all λ mutants.

5. Optionally adjust σ, a parameter steering the mutation’s variance, ac-
cording to Rechenberg’s success rule.

6. If any of the mutants is assigned a better quality value than m, then m
is replaced by the best mutant, and

• If the number of iterations has reached a given limit (itmax), the
algorithm is terminated and m is returned as the optimized version
of the originally given formula.

• Otherwise, the procedure is repeated starting again at step 1.

7. Otherwise, we consider this iteration a failure. If a predefined number
of consecutive failures cfmax is reached by performing unsuccessfully
for cfmax times in a row, the algorithm is terminated; otherwise the
procedure is repeated starting again at step 1.

As we here always work on one particular model which is to be optimized
and create λmutants, this algorithm can be seen as a variant of the (1+λ)−ES
algorithm.

Obviously, the main advantage of this algorithm is that it can be applied
to any kind of model without any restrictions regarding its structure or the
given data basis. But, of course the major drawback of this procedure is
its immense runtime consumption due to the high number of models that
have to be evaluated for improving the parameters of one single model of the
GP population. The use of a smaller data set (or the validation set which is
normally also smaller than the training data sample) for evaluating the models
can help to fight this problem, but still the use of this parameter optimization

192 Genetic Algorithms and Genetic Programming

concept has to be thought out well and the parameters (σ, λ, itmax, and
cfmax) set so that the runtime consumption does not get completely out
of hand. As we will show in the test series analysis in later sections, this
parameter optimization method does not have to be applied in every round of
the GP process, and also not to all models in the population; partial use can
help to control the additional runtime consumption and still use the significant
benefits of this procedure.

9.3.2 Pruning

9.3.2.1 Basics and Method Parameters

Whenever gardeners and orchardists talk about pruning, then they most
probably refer to the act of cutting out dead, diseased, or for any other reason
unwanted branches of trees or shrubs. Even though this might harm the
natural form of plants, pruning is supposed to improve the plants’ health in
the long run.

In informatics and especially machine learning, this term is used in analogy
to describe the act of systematically removing parts of decision trees; regres-
sion or classification accuracy is decreased intentionally and thus traded for
simplicity and better generalization of the model evolved. Approaches and
benefits of the techniques used can be found for example in [Min89], [BB94],
[HS95], or [Man97].

Obviously, the concept of removing branches of a tree can be easily trans-
ferred to GP, especially when we deal with tree-based genetic programming.
Several pruning operators have already been presented for GP, see for example
[ZM96] [FP98], [MK00], or more recent publications such as [dN06], [EKK04],
[DH02], [FPS06], [GAT06]. In GP, pruning is often considered valuable be-
cause it helps to find more general and not over-parameterized programs; it is
also referred to as an appropriate anti-bloat technique as described in Section
2.6 or [LP02], e.g.

In the case of fixed functions bases, pruning can also include the detection of
really ineffective code or introns, i.e., code fragments that do not contribute to
the program’s (or, as in our case, model’s) evaluation. For example, simply by
using basic algebraic analysis, a simplification mechanism for formulas would
be able to detect that -(+(x;4);4) is equal to +(+(x;4);-4) due to basic
knowledge about subtraction and addition, and that this is again equal to
+(x;4;-4). This then can be easily simplified to x as it is easy to implement
a simplification program “knowing” that the addition of any value x and its
negative counterpart −x is always 0, and that 0 is the neutral element of the
addition function.

But, as soon as such a fixed functions basis is not available anymore, things
start to become a lot more complicated. We shall here describe pruning
methods suitable for use in combination with a flexible and parameterizable
set of function and terminal definitions as described in Section 9.2.3. We

Evolutionary System Identification 193

hereby try to consider the gain of simplicity as well as the deterioration of the
model’s quality caused by pruning it:

• The gain of simplicity with respect to the pruning of a model can be
calculated by comparing its original tree complexity and the complexity
of the pruned structure tree. The complexity of a model m, c(m), can
hereby be equal to the size or the height of the tree structure representing
m.
So, we calculate the model complexity decrease, mcd(m,mp), of a model
m and a pruned version of m, mp, as

mcd(m,mp) =
c(m)

c(mp)
(9.36)

Pruning a model by deleting subtrees will therefore always result in a
mcd value equal to or greater than 1 as the original model’s complexity
(in terms of size or height of the tree structure) will always be greater
than or equal to the pruned model’s complexity.

• The deterioration of model caused by pruning, deter(m,mp), can be
measured by calculating the ratio of the pruned model’s quality q(mp)
and the quality of the original formula q(m) as

deter(m,mp) =
q(mp)

q(m)
(9.37)

Thus, if for example the pruned model’s fitness value is 10% higher,
i.e., worse than the original model’s quality with respect to a given
evaluation operator, then the resulting deterioration coefficient will be
equal to 1.1.

Please note that this approach yields reasonable results only when us-
ing a minimization approach, i.e., if better models are assigned smaller
quality values as is the case with the MSE function, for example. If the
evaluation operator applied behaves reciprocally, i.e., if for example the
R2 or V AF function is used, then the reciprocal value of deter(m,mp),

1
deter(m,mp) , is to be used instead.

These measures for the effect of pruning, namely the complexity reduc-
tion as well as the quality deterioration, are now used for parameterizing the
effective pruning of models:

As we have stated above, accuracy is traded for simplicity, and now we
are able to quantify this trading aspect. By giving an upper bound for the
relation between the coefficients expressing the complexity deterioration and
the simplification effects, the pruning mechanism can be limited; we call this
composed coefficient cp(m,mp) and limit it with the upper bound cpmax de-
manding that

deter(m,mp)

mcd(m,mp)
= cp(m,mp) ≤ cpmax (9.38)

194 Genetic Algorithms and Genetic Programming

Thus, we demand that decrease with respect to the model’s quality shall not
be worse than the simplicity gain multiplied with a certain factor cpmax.

Still, there is one major problem with this approach as tremendous loss of
quality, as for example an increase of the mean squared error by a factor of
50, might be compensated by replacing a formula m1 consisting of 60 nodes
by one single constant, i.e., a model m2 with only one node:

cp(m1,m2) =
deter(m1,m2)

mcd(m1,m2)
=

q(m2)
q(m1)

c(m1)
c(m2)

=
50
60
1

=
50

60
< 1 (9.39)

So, in order to cope with this potential problem – it is in fact really a
problem since we do not want to replace all models with constant terminals –
we give a second parameter for the pruning method which limits the quality
deterioration, detmax, and so demand that

deter(m,mp) =
q(mp)

q(m)
≤ detmax ⇔ q(mp) ≤ detmax ∗ q(m) (9.40)

9.3.2.2 Pruning a Structure Tree

The actual pruning of a model (with respect to one particular part of the
model) in GP is rather easy as it simply consists of removing a sub-tree from
the tree structure representing the formula. In the case of pruning the root
node the model thereafter is simply a terminal representing the constant 0;
otherwise the resected subtree is to be replaced by a constant representing
the respective parent’s neutral element for the respective input index. For
example, pruning inputs of an addition results in the replacement of these
branches by zeros, whereas children of multiplication functions have to be
replaced by constants representing 1.0.

Furthermore, pruning could also include the excision of certain parts of the
model, i.e., a part of a tree could be simply cut out and replaced by one its
descendants.

Simple examples are shown in Figure 9.14: In the left part (a) we schemat-
ically show the replacement of the second input of an addition resulting in
the insertion of the constant 0, in the middle (b) we see the replacement of
a multiplication’s first input by the constant 1, and in the right part (c) we
see possible effects of excising two nodes and replacing them by either of their
two descendants.

So, as we now know how models are pruned in general as well as what we
want a pruning method to achieve, we will describe two pruning methods we
have designed and implemented as operators for HeuristicLab: The first one
is an exhaustive implementation that systematically tries to prune the model
as much as possible, whereas the second one is inspired by evolution strategy
for reducing runtime.

Evolutionary System Identification 195

-

e
x

+

2.6*X5t 0.7*X4t-2

+

e
x
 +

2.6*X5t 0.7*X4t-2 1.1*X2t-1

+

e
x

1.1*X2t-1

?

+

e
x

1.1*X2t-1

0

(a) (c)

6*X1t

*

e
x
 +

2.6*X5t 0.7*X4t-2 1.1*X2t-1

*

e
x

1.1*X2t-1

?

*

e
x

1.1*X2t-1

1

(b)

-

0.7*X4t-2 6*X1t

-

0.7*X4t-2 6*X1t

FIGURE 9.14: Simple examples for pruning in GP.

9.3.2.3 Exhaustive Pruning

When applying exhaustive pruning to a given model m we have to proceed
in the following way: For each possible subtree up to a given height h1 we
create a copy of m and remove the respective branch. Furthermore, for each
internal model fragment (tree) up to a given height h2 we create a copy of
m and cut out the respective fragment. After doing so, the resulting pruned
models’ qualities are calculated and their complexities are checked; if a pruned
model meets the requirements regarding maximum deterioration and maxi-
mum coefficient of simplification and deterioration, then we go on with the
procedure using this pruned formula. This routine is repeated until no more
pruned model that meets the given requirements can be produced by deleting
branches.

Finally, the algorithm’s result is either the minimal model meeting the
given requirements, or that model for which the minimal cp coefficient is
calculated. This decision is controlled by the parameter minimizeModel
denoting whether the minimal formula is to be returned or, if this flag is set
false, the model with the minimal cp value is to be considered the result of
pruning m.

In a bit more formal way we can describe this exhaustive pruning algorithm
as is given in Algorithm 9.1.

Exhaustive pruning is of course an extremely expensive method with respect

196 Genetic Algorithms and Genetic Programming

Algorithm 9.1 Exhaustive pruning of a model m using the parameters h1,
h2, minimizeModel, cpmax, and detmax.

Initialize mcurr as clone of m,
Evaluate m, store calculated fitness in f
Calculate complexity of m, store result in c
Initialize abort = false
while not(abort) do

Initialize set of pruned models M
Initialize structure tree t as tree representation of mcurr

for each branch b of t with height(b) < h1 do
Initialize mtmp as clone of mcurr

Remove b′, the corresponding branch to b in mtmp

Evaluate mtmp, store calculated fitness in ftmp

Calculate complexity of mtmp, store result in ctmp

Calculate model complexity decrease mcd = c/ctmp

Calculate quality deterioration det = f/ftmp

if det ≤ detmax ∧mcd ≤ cpmax then
Insert mtmp to M

end if
end for
for each internal sub-tree st of t with height(st) < h2 do

for each descendant d of st do
Initialize mtmp as clone of mcurr

Replace st′, the corresponding part to st in mtmp, by d
Evaluate mtmp, store calculated fitness in ftmp

Calculate complexity of mtmp, store result in ctmp

Calculate model complexity decrease mcd = c/ctmp

Calculate quality deterioration det = f/ftmp

if det ≤ detmax ∧mcd ≤ cpmax then
Insert mtmp to M

end if
end for

end for
if M is empty then

return mcurr

else
if minimizeModel then

Set mcurr to that model in M with minimum complexity value c
else

Set mcurr to that model in M with minimum mcd coefficient
end if

end if
end while

Evolutionary System Identification 197

to runtime consumption. As an alternative, a general pruning method inspired
by evolution strategies is described in the following section.

9.3.2.4 ES-Inspired Pruning

As a less runtime consuming pruning method we have designed an ES-
inspired pruning method: For pruning a model m, we create λ clones of m
and prune those randomly; again, we use parameters h1 and h2 that limit the
size of the branches and internal subtrees that are excised. All of the so created
λ pruned mutants are checked and those that fulfill the given requirements
regarding maximum deterioration and maximum coefficient of simplification
and deterioration are collected. This procedure is then repeated with the
best pruned mutant, whereas the best pruned model is again selected as the
minimal model or the one showing the best coefficient of simplification and
deterioration. As soon as this procedure is executed without any success for
a given number in a row, the algorithm is terminated.

Algorithm 9.2 describes this ES-inspired pruning method in a more formal
way.

9.4 Similarity Measures for Solution Candidates

Genetic diversity and population dynamics are very interesting aspects
when it comes to analyzing GP processes. Measuring the entropy of a popula-
tion of trees can be done for example by considering the programs’ scores (as
explained in [Ros95b], e.g.); entropy is there calculated as −

∑

k pk · log(pk)
(where pk is the proportion of the population P occupied by population par-
tition k). In [McK00] the traditional fitness sharing concept from the work
described in [DG89] is applied to test its feasibility in GP.

In this section we present more sophisticated measures which we have used
for estimating the genetic diversity in GP populations as well as among pop-
ulations of multi-population GP applications. What we use as basic measures
for this are the following two functions that calculate the similarity of GP
solution candidates or, a bit more specific, in our case formulas represented
as structure trees:

• Evaluation-based similarity estimation compares the subtrees of two GP
formulas with respect to their evaluation on the given training or vali-
dation data. The more similar these evaluations are with respect to the
squared errors or linear correlation, the higher is the similarity for these
two formulas.

• Structural similarity estimation directly compares the genetic material
of two solution candidates: All possible pairs of ancestor and descendant

198 Genetic Algorithms and Genetic Programming

Algorithm 9.2 Evolution strategy inspired pruning of a model m using
the parameters λ, maxUnsuccRounds, h1, h2, minimizeModel, cpmax, and
detmax.

Initialize mcurr as clone of m,
Evaluate m, store calculated fitness in f
Calculate complexity of m, store result in c
Initialize UnsuccessfulRounds := 0
Initialize abort := false
while not(abort) do

Initialize set of pruned models M
Initialize structure tree t as tree representation of mcurr

for i = 1 : λ do
Set r to random number in [0; 1[
Initialize mtmp as clone of mcurr

if r < 0.5 then
Remove b, a branch of mtmp with height(b) < h1

else
Select st, an internal subtree of t with height(st) < h2,
replace st by a randomly chosen descendant of d

end if
Evaluate mtmp, store calculated fitness in ftmp

Calculate complexity of mtmp, store result in ctmp

Calculate model complexity decrease mcd = c/ctmp

Calculate quality deterioration det = f/ftmp

if det ≤ detmax ∧mcd ≤ cpmax then
Insert mtmp to M

end if
end for
if M is empty then

Increase UnsuccessfulRounds
if UnsuccessfulRounds= maxUnsuccRounds then

return mcurr

end if
else

Set UnsuccessfulRounds := 0
if minimizeModel then

Set mcurr to that model in M with minimum complexity value c
else

Set mcurr to that model in M with minimum mcd coefficient
end if

end if
end while

Evolutionary System Identification 199

nodes in formula trees are collected and these collections compared for
pairs of formulas. So we can determine how similar the genetic make-up
of formulas is without considering their evaluation.

9.4.1 Evaluation-Based Similarity Measures

The main idea of our evaluation-based similarity measures is that the build-
ing blocks of GP formulas are subtrees that are exchanged by crossover and
so form new formulas. So, the evaluation of these branches of all individuals
in a GP population can be used for measuring the similarity of two models
m1 and m2:

For all subtrees in the structure-tree of modelm, collected in t, we collect the
evaluation results by applying these subformulas to the given data collection
data as

∀(sti ∈ t)∀(j ∈ [1;N]) : ei,j = eval(sti, data) (9.41)

where N is the number of samples included in the data collection, no matter
if training or validation data are considered.

The evaluation-based similarity of models m1 and m2, es(m1,m2), is cal-
culated by iterating over all subtrees of m1 (collected in t1) and, for each
branch, picking that subtree of t2 (containing all subtrees of m2) whose eval-
uation is most “similar” to the evaluation of that respective branch. So, for
each branch ba in t1 we compare its evaluation ea with the evaluation eb of
all branches bb in t2, and the “similarity” can be calculated using the sum of
squared errors (sse) or the linear correlation coefficient:

• When using the sse function, the sample-wise differences of the eval-
uations of the two given branches are calculated and their sum of
squared differences is divided by the total sum of squares tss of the
first branch’s evaluation. This results in the similarity measure s for the
given branches.

e1 =
1

N

N
∑

j=1

ea[j] (9.42)

sse =

N
∑

j=1

(ea[j]− eb[j])
2; tss =

N
∑

j=1

(ea[j]− ea)2 (9.43)

ssse(ba, bb) = 1−
sse

tse
(9.44)

• Alternatively the linear correlation coefficient can be used:

ea =
1

N

N
∑

j=1

ea[j]; eb =
1

N

N
∑

j=1

eb[j] (9.45)

200 Genetic Algorithms and Genetic Programming

slc(ba, bb) = |
1

n−1

∑N
j=1(ea[j]− ea)(eb[j]− eb)

√

1
n−1

∑N
j=1(ea[j]− ea)2

√

1
n−1

∑N
j=1(eb[j]− eb)2

|

(9.46)

No matter which approach is chosen, the calculated similarity measure for the
branches ba and bb, s(ba, bb), will always be in the interval [0; 1]; the higher this
value becomes, the smaller is the difference between the evaluation results.

As we can now quantify the similarity of evaluations of two given subtrees,
we can for each branch ba in ta elicit that branch bx in tb with the highest
similarity to ba; the similarity values s are collected for all branches in ta and
their mean value finally gives us a measure for the evaluation-based similarity
of the models ma and mb, es(ma,mb).

Optionally we can force the algorithm to select each branch in tb not more
than once as best match for a branch in ta for preventing multiple contribu-
tions of certain parts of the models.

Finally, this similarity function can be parameterized by giving minimum
and maximum bounds for the height and / or the level of the branches inves-
tigated. This is important since we can so control which branches are to be
compared, be it the rather small ones, rather big ones, or all of them.

Algorithm 9.3 summarizes this evaluation-based similarity measure ap-
proach.

Algorithm 9.3 Calculation of the evaluation-based similarity of two models
m1 and m2 with respect to data base data

Collect all subtrees of the tree structure of m1 in B1

Collect all subtrees of the tree structure of m2 in B2

Initialize s := 0
for each branch bj in B1 do evaluate bj on data, store results in e1,j

for each branch bk in B2 do evaluate bk on data, store results in e2,k

for each branch bj in B1 do
Initialize smax := 0, index := −1
if |B2| > 0 then

for each branch bk in B2 do
Calculate similarity stmp as similarity of bj and bk using e1,j , e2,k

and similarity function ssse or slc

if stmp > smax do smax := stmp; index = k
end for
if PreventMultipleContribution do remove bindex from B2

end if
s := s+ smax

end for
return s/|B1|

Evolutionary System Identification 201

9.4.2 Structural Similarity Measures

Structural similarity estimation is, unlike the evaluation-based described
before, independent of data; it is calculated on the basis of the genetic make-
up of the models which are to be compared.

Koza [Koz92b] used the term variety to indicate the number of different
programs in populations by comparing programs structurally and looking for
exact matches. The Levenshtein distance [Lev66] can be used for calculating
the distance between trees, but it is considered rather far from ideal ([Kei96],
[O’R97], [LP02]); in [EN00] an edit distance specific to genetic programming
parse trees was presented which considered the cost of substituting between
different node types.

A very comprehensive overview of program tree similarity and diversity
measures has been given for instance in [BGK04]. The standard tree struc-
tures representation in GP makes it possible to use more fine-grained struc-
tural measures that consider nodes, subtrees, and other graph theoretic prop-
erties (rather than just entire trees). In [Kei96], for example, subtree variety
is measured as the ratio of unique subtrees over total subtrees and program
variety as a ratio of the number of unique individuals over the size of the
population; [MH99] investigated diversity at the genetic level by assigning
numerical tags to each node in the population.

When analyzing the structure of models we have to be aware of the fact
that often structurally different models can be equivalent. Let us for example
consider the formulas *(+(2,X2),+(X3) and +(*(X2,X3),*(X3,2)): As we
know about distributivity we know that these formulas can be considered
equivalent, but any structure analysis approach taking into account size, shape
or parent / child relationships in the structure tree would assign these models
a rather low similarity value. This is why we have designed and implemented a
method that systematically collects all pairs of ancestor and descendant nodes
and information about the properties of these nodes. Additionally, for each
pair we also document the distance (with respect to the level in the model
tree) and the index of the ancestor’s child tree containing the descendant node.
The similarity of two models is then, in analogy to the method described
in the previous section, calculated by comparing all pairs of ancestors and
descendants in one model to all pairs of the other model and averaging the
similarity of the respective best matches.

Figure 9.15 shows a simple formula and all pairs of ancestors and descen-
dants included in the structure tree representing it; the input indices as well
as the level differences (“level delta”) are also given. Please note: The pairs
given on the right side of Figure 9.15 are shown intentionally as they sym-
bolize the pairs of nodes with level difference 0, i.e., nodes combined with
themselves.

We define a genetic item as a 6-tuple storing the following information about
the ancestor node a and descendant node d:

• typea, the type of the ancestor a

202 Genetic Algorithms and Genetic Programming

+

e
x
 0.7*X4t-2

1.1*X2t-1

+ e
x

1.1*X2t-1 +

+ 0.7*X4t-2

e
x
 1.1*X2t-1

Index: 1
Level Delta: 1

Index: 1
Level Delta: 2

Index: 2
Level Delta: 1

Index: 1
Level Delta: 1

1

2

3

4

1

2

3

4

+

1.1*X2t-1

+

0.7*X4t-2

e
x

1.1*X2t-1

Index: -
Level Delta: 0

Index: -
Level Delta: 0

Index: -
Level Delta: 0

Index: -
Level Delta: 0

0.7*X4t-2

e
x

FIGURE 9.15: Simple formula structure and all included pairs of ancestors
and descendants (genetic information items).

• typed, the type of the descendant d

• δl, the level delta

• index, the index of the child branch of a that includes d

• npa, the node parameters characterizing a

• npd, the node parameters characterizing d

where the parameters characterizing nodes are represented by tuples contain-
ing the following information:

• var, the variant (of functions)

• coeff , the coefficient (of terminals)

• to, the time offset (of terminals)

• vi, the variable index (of terminals)

Now we can define the similarity of two genetic items gi1 and gi2, s(gi1, gi2),
as follows:

Most important are the types of the definitions referenced by the nodes; if
these are not equal, then the similarity is 0 regardless of all other parameters:

∀(gi1, gi2) : gi1.typea 6= gi2.typea ⇒ s(gi1, gi2) = 0 (9.47)

∀(gi1, gi2) : gi1.typed 6= gi2.typed ⇒ s(gi1, gi2) = 0 (9.48)

If the types of the nodes correspond correctly, then the similarity of gi1 and
gi2 is calculated using the similarity contributors s1 . . . s10 of the parameters
of gi1 and gi2 weighted with coefficients c1 . . . c10.

The differences regarding input index, variant, and variable index are not
in any way scaled or relativized; their similarity contribution is 1 in the case

Evolutionary System Identification 203

of equal parameters for both genetic items and 0 otherwise. The differences
regarding level difference, coefficient, and time offset, on the contrary, are
indeed scaled:

• The level difference is divided by the maximum tree height heightmax,

• the difference of coefficients is divided by the range of the referenced
terminal definition (in case of uniformly distributed coefficients) or di-
vided by the standard deviation σ (in case coefficients are normally
distributed), and

• the difference of the time offsets is divided by the maximum time offset
allowed offsetmax.

∀(gi1, gi2 : gi1.typea = gi2.typea&gi1.typed = gi2.typed) : (9.49)

s1 = 1−
|gi1.δl − gi2.δl|

heightmax
(9.50)

s2 =

{

gi1.index 6= gi2.index : 0
gi1.index = gi2.index : 1

(9.51)

s3 =

{

gi1.npa.var 6= gi2.npa.var : 0
gi1.npa.var = gi2.npa.var : 1

(9.52)

s4 =

{

gi1.npd.var 6= gi2.npd.var : 0
gi1.npd.var = gi2.npd.var : 1

(9.53)

δca = |gi1.npa.coeff − gi2.npa.coeff | (9.54)

s5 = 1−

{

isUniformTerminal(gi1.typea) : δca

gi1.typea.max−gi1.typea.min

isGaussianTerminal(gi1.typea) : δca

gi1.typea.σ∗4

(9.55)
δcd = |gi1.npd.coeff − gi2.npd.coeff | (9.56)

s6 = 1−

{

isUniformTerminal(gi1.typed) : δcd

gi1.typed.max−gi1.typed.min

isGaussianTerminal(gi1.typed) : δcd

gi1.typed.σ∗4

(9.57)

s7 = 1−
|gi1.npa.to− gi2.npa.to|

offsetmax
(9.58)

s8 = 1−
|gi1.npd.to− gi2.npd.to|

offsetmax
(9.59)

s9 =

{

gi1.npa.vi 6= gi2.npa.vi : 0
gi1.npa.vi = gi2.npa.vi : 1

(9.60)

204 Genetic Algorithms and Genetic Programming

s10 =

{

gi1.npd.vi 6= gi2.npd.vi : 0
gi1.npd.vi = gi2.npd.vi : 1

(9.61)

Finally, there are two possibilities how to calculate the structural similarity
of gi1 and gi2, sim(gi1, gi2): On the one hand this can be done in an additive
way, on the other hand in a multiplicative way.

• When using the additive calculation, which is the obviously more sim-
ple way, sim(gi1, gi2) is calculated as the sum of these similarity con-
tributions s1...10 weighted using the factors c1...10 and, for the sake of
normalization of results, divided by the sum of the weighting factors:

sim(gi1, gi2) =

∑10
i=1 si · ci
∑10

i=1 ci
(9.62)

• Otherwise, when using the multiplicative calculation method, we first
calculate a punishment factor pi for each si (again using weighting fac-
tors ci, 0 ≤ ci ≤ for all i ∈ [1; 10]) as

∀(i ∈ [1; 10]) : pi = (1− si) · ci (9.63)

and then get the temporary similarity result as

simtmp(gi1, gi2) =
10
∏

i=1

(1 − pi). (9.64)

In the worst case scenario we get di = 0 for all i ∈ [1; 10] and therefore
the worst possible simtmp is

simworst =

10
∏

i=1

(1− ((1− di) · ci)) =

10
∏

i=1

(1− ci). (9.65)

As simworst is surely greater than 0 we linearly scale the results to the
interval [0; 1]:

sim(gi1, gi2) =
simtmp(gi1, gi2)− simworst

1− simworst
. (9.66)

In fact, we prefer this multiplicative similarity calculation method since
it allows more specific analysis: By setting a weighting coefficient cj to
a rather high value (i.e., near or even equal to 1.0) the total similarity
will become very small for pairs of genetic items that do not correspond
with respect to this specific aspect, even if all other aspects would lead
to a high similarity result.

Based on this similarity measure it is easy to formulate a similarity func-
tion that measures the similarity of two model structures. In analogy to the

Evolutionary System Identification 205

approach presented in the previous section, for comparing models m1 and m2

we collect all pairs of ancestors and descendants (up to a given maximum
level difference) in m1 and m2 and look for the best matches in the respective
opposite model’s pool of genetic items, i.e., pairs of ancestor and descendant
nodes. As we are able to quantify the similarity of genetic items, we can elicit
for each genetic item gi1 in the structure tree of m1 exactly that genetic item
gix in the model structure m2 with the highest similarity to gi1; the simi-
larity values s are collected for all genetic items contained in m1 and their
mean value finally gives us a measure for the structure-based similarity of the
models m1 and m2, sim(m1,m2).
Optionally we can force the algorithm to select each genetic item of m2 not
more than once as best match for an item in m1 for preventing multiple con-
tributions of certain components of the models.

This function is defined in a more formal way using pseudo-code in Algo-
rithm 9.4.

Algorithm 9.4 Calculation of the structural similarity of two models m1 and
m2

Collect all genetic items m1 in GI1
Collect all genetic items m2 in GI2
Initialize s := 0
for each branch gij in GI1 do

Initialize smax := 0, index := −1
if |B2| > 0 then

for each genetic item gik in GI2 do
Calculate similarity stmp as similarity of gij and gik
if stmp > smax do smax := stmp; index = k

end for
if PreventMultipleContribution do remove giindex from GI2

end if
s := s+ smax

end for
return s/|GI1|

Obviously, it is possible that some model contains all pairs of genetic items
that are also incorporated in another model, but not vice versa. Thus, this
similarity measure sim(m1,m2) is not symmetric, i.e., sim(m1,m2) does not
necessarily return the same result as sim(m2,m1) for any pair of models m1

and m2.

Of course, this similarity concept for GP individuals cannot be the basis of
theoretical concepts comparable to those based on GP (hyper)schemata, for
example; we do here not want to give any statements about the probability

206 Genetic Algorithms and Genetic Programming

of certain parts of formulas to occur in a given generation. In the presence of
mutation or other structure modifying operations (as for example pruning) we
are interested in measuring the structural diversity in GP populations; using
this structural similarity measure we are able to do so.

Chapter 10

Applications of Genetic Algorithms:
Combinatorial Optimization

Within Chapter 7 the knowledge about the global optimum has been used in
order to analyze and highlight certain properties of the considered algorithms.
In case of practical applications of considerable dimension this information is
not available.

The analyses described in this chapter do not consider information about
the genotypes of global optima and are therefore limited to the observation
of the dynamics of genetic diversity in populations and in subpopulations of
parallel GA concepts. The main conclusions of Chapter 7 were that it is most
beneficial for the evolutionary process of genetic algorithms if the essential
genetic information (the alleles of the globally optimal solution) establishes
slowly in the population, which is important for gaining high quality results.
As already indicated in previous chapters, this can be achieved by offspring
selection. In this chapter results for several benchmark problem instances will
be reported on in terms of achievable solution qualities, i.e., best and average
solution qualities. The results for the TSP benchmark problem instances ob-
tained using standard GAs, GAs with offspring selection, and the SASEGASA
have been taken from [Aff05] and [AW04b]. Additionally, some characteristic
aspects of certain algorithm variants are analyzed in greater detail by observ-
ing the genetic diversity over time similar to the genetic diversity analyses
reported on in Section 6.2. For the CVRP we have also compared the perfor-
mance of standard GAs to the performance of GAs with offspring selection.
By doing so, the observation of genetic diversity over time has again been
used to point out selected aspects that are representative for the respective
algorithms when applied to the CVRP.

Beside the increased robustness of offspring selection described in Chap-
ter 7 we here also consider the effects of a greater number of subpopulations
for the SASEGASA. The most important fact is that we can in this con-
text observe the scalability of achievable global solution qualities by applying
greater numbers of subpopulations.

As is shown in this chapter, in this context we can observe that a slow
decrease of genetic diversity caused by the evolutionary forces supports the
GA in producing high quality results.

207

208 Genetic Algorithms and Genetic Programming

10.1 The Traveling Salesman Problem

All TSP benchmark problems used here have been taken from the TSPLIB
[Rei91] using updated information1 about the best or at least the best known
solutions. The results for the TSP are represented as the relative difference
to the best known solution defined as

relativeDifference =

(

ResultQuality

OptimalQuality
− 1

)

· 100 [%] (10.1)

All values presented in the following tables are the best and average relative
differences of five independent test runs executed for each test case. The
average number of evaluated solutions gives a quite objective measure of the
computational effort.

10.1.1 Performance Increase of Results of Different
Crossover Operators by Means of Offspring Selection

The first aspect to be considered is the effect of the offspring selection model
on the quality improvement using different crossover operators. In order to
visualize the positive effects of the new methods in a more obvious way, we
also present results that were generated by a standard GA with proportional
selection, generational replacement, and 1-elitism.

In Table 10.2 the results achieved with the conventional GA are listed. The
fixed parameter values that were used for all algorithms in the different test
runs are given in Table 10.1.

As we want to see how the algorithmic concepts presented in the first part
of this book influence the ability of GAs to produce high quality results,
the effects of offspring selection are here given on the basis of a number of
experiments which were performed on a single population in order to not dilute
the effects of offspring selection principles with the effects of the segregation
and reunification strategies. Table 10.3 recapitulates the results for a selection
of commonly applied crossover operators suggested for the path representation
of the TSP ([Mic92], [LKM+99]) each on its own, as well as one combination
of more effective crossover operators.

Remarkable in this context is that also the use of crossover operators, that
are commonly considered rather unsuitable for the TSP [LKM+99], leads to
quite good results in combination with offspring selection. The reason for this
behavior is that in our selection principle only children that have emerged as
a good combination of their parents’ attributes are considered for the further
evolutionary process, if the success ratio is set to a higher range.

1Updates for the best (known) solutions can for example be found on
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

Applications of Genetic Algorithms: Combinatorial Optimization 209

Table 10.1: Overview of algorithm parameters.

Parameters for the standard GA
(Results presented in Tab. 10.2)

Generations 100,000
Population Size 120
Elitism Rate 1
Mutation Rate 0.05
Selection Operator Roulette
Mutation Operator Simple Inversion

Parameters for the offspring selection GA
(Results presented in Tab. 10.3)

Population Size 500
Elitism Rate 1
Mutation Rate 0.05
Selection Operator Roulette
Mutation Operator Simple Inversion
Success Ratio 0.7
Maximum Selection Pressure 250

Table 10.2: Experimental results achieved using a standard GA.

Evaluated
Problem Crossover Best Average Solutions
berlin52 OX 0.00 3.76 12,000,000
berlin52 ERX 5.32 7.73 12,000,000
berlin52 MPX 21.74 26.52 12,000,000
ch130 OX 3.90 5.41 12,000,000
ch130 ERX 142.57 142.62 12,000,000
ch130 MPX 83.57 85.07 12,000,000

kroa200 OX 3.14 4.69 12,000,000
kroa200 ERX 325.92 336.19 12,000,000
kroa200 MPX 146.94 148.08 12,000,000

Table 10.3: Experimental results achieved using a GA with offspring selection.

Evaluated Change to
Problem Crossover Best Average Solutions standard GA
berlin52 OX 0.00 1.90 14,250,516 -1.86
berlin52 ERX 0.00 1.97 6,784,626 -5.76
berlin52 MPX 0.00 0.76 6,825,199 -25.76
berlin52 OX,ERX,MPX 0.00 0.90 7,457,451 –
ch130 OX 1.54 2.26 13,022,207 -3.15
ch130 ERX 0.57 2.11 4,674,485 -140.51
ch130 MPX 1.11 3.18 9,282,291 -81.89
ch130 OX, ERX, MPX 0.68 1.18 5,758,022 –

kroa200 OX 2.73 3.51 15,653,950 -1.18
kroa200 ERX 3.21 5.40 19,410,458 -330.79
kroa200 MPX 3.28 4.65 13,626,348 -143.43
kroa200 OX, ERX, MPX 2.34 3.04 9,404,241 –

210 Genetic Algorithms and Genetic Programming

In combination with higher values for the maximum selection pressure, ge-
netic search can be guided advantageously also for poor crossover operators
as the larger amount of handicapped offspring are simply not considered for
the further evolutionary process. Figure 10.1 shows this effect in detail for
the berlin52 TSP instance. Quite good results in terms of global convergence
could also be achieved using a combination of different crossover operators,
as additional genetic diversity is so brought into the population and inferior
crossover results are not considered due to the enhanced offspring selection
model.

0

5

10

15

20

25

30

OX ERX MPX

Crossover Operators

S
o

lu
ti

o
n

 Q
u

a
li

ty

New Selection Scheme Standard GA

FIGURE 10.1: Quality improvement using offspring selection and various
crossover operators (taken from [AW04b]. This figure is displayed with kind
permission of Springer Science and Business Media.

10.1.2 Scalability of Global Solution Quality by SASEGASA

In this part of the experimental section we present the main effects of
SASEGASA when applied to a practical implementation in a distributed en-
vironment: A higher number of subpopulations at the beginning of the evo-
lutionary process allows to achieve scalable improvements in terms of global
convergence.

Applications of Genetic Algorithms: Combinatorial Optimization 211

Table 10.4: Parameter values used in the test runs of the SASEGASA algo-
rithms with single crossover operators as well as with a combination of the
operators.

Parameters for SASEGASA with 1 crossover operator (OX)
(Results presented in Tab. 10.5)

Subpopulation Size 100
Elitism Rate 1
Mutation Rate 0.05 resp. 0.00
Selection Operator Roulette
Crossover Operators OX
Mutation Operator Simple Inversion
Success Ratio 0.8
Maximum Selection Pressure 30

Parameters for SASEGASA with 1 crossover operator (ERX)
(Results presented in Tab. 10.6)

Subpopulation Size 100
Elitism Rate 1
Mutation Rate 0.05 resp. 0.00
Selection Operator Roulette
Crossover Operators ERX
Mutation Operator Simple Inversion
Success Ratio 0.8
Maximum Selection Pressure 30

Parameters for SASEGASA with 1 crossover operator (MPX)
(Results presented in Tab. 10.7)

Subpopulation Size 100
Elitism Rate 1
Mutation Rate 0.05 resp. 0.00
Selection Operator Roulette
Crossover Operators MPX
Mutation Operator Simple Inversion
Success Ratio 0.8
Maximum Selection Pressure 15

Parameters for SASEGASA with a combination of crossover operators (OX, ERX, MPX)
(Results presented in Tab. 10.8)

Subpopulation Size 100
Elitism Rate 1
Mutation Rate 0.05 resp. 0.00
Selection Operator Roulette
Crossover Operators OX, ERX, MPX
Mutation Operator Simple Inversion
Success Ratio 0.8
Maximum Selection Pressure 15

Table 10.5: Results showing the scaling properties of SASEGASA with one
crossover operator (OX), with and without mutation.

Results with mutation Results without mutation
Sub- Evaluated Evaluated

Problem populations Best Average Solutions Best Average Solutions
berlin52 1 12.13 20.86 41280 29.63 44.99 22,577
berlin52 5 4.92 8.67 731,191 18.58 27.20 242,195
berlin52 10 2.29 5.80 1,007,320 7.54 12.30 751,379
berlin52 20 0.72 3.21 2,802,620 5.48 7.36 2,368,694
berlin52 40 0.00 1.20 8,407,988 1.12 3.59 7,117,442
berlin52 80 0.00 0.72 25,154,907 0.00 2.21 25,045,133
berlin52 160 0.00 0.00 90,775,916 0.00 1.36 87,850,762
ch130 1 59.21 89.27 88,326 207.94 217.57 28,809
ch130 5 21.72 24.89 834,049 136.10 190.53 240,916
ch130 10 7.45 12.88 2,210,398 114.65 120.26 914,765
ch130 20 4.50 6.25 5,410,587 63.68 85.23 2,743,967
ch130 40 4.36 5.19 13,912,314 50.44 60.91 9,104,041
ch130 80 1.80 3.33 40,283,441 24.73 32.92 30,082,798
ch130 160 1.34 2.58 117,919,398 15.04 25.95 102,551,323

kroa200 1 90.87 136.71 139,629 371.87 412.20 34,315
kroa200 5 18.29 53.60 1,299,129 259.92 372.42 253,757
kroa200 10 16.55 21.18 3,155,000 199.69 227.65 1,066,148
kroa200 20 7.07 9.26 7,689,795 141.47 179.60 3,189,587
kroa200 40 4.02 5.30 21,251,916 120.60 148.41 9,688,113
kroa200 80 3.05 4.23 58,042,978 72.75 95.34 32,909,364
kroa200 160 2.59 2.85 175,599,138 45.77 75.30 116,522,803

212 Genetic Algorithms and Genetic Programming

Table 10.6: Results showing the scaling properties of SASEGASA with one
crossover operator (ERX), with and without mutation.

Results with mutation Results without mutation
Sub- Evaluated Evaluated

Problem populations Best Average Solutions Best Average Solutions
berlin52 1 4.77 7.11 34,578 1.40 5.39 30,031
berlin52 5 0.00 0.20 310,088 0.00 2.75 239,678
berlin52 10 0.00 0.00 809,083 0.00 0.00 692,015,
berlin52 20 0.00 0.00 2,229,713 0.00 0.00 1,962,213
berlin52 40 0.00 0.00 6,753,499 0.00 0.00 6,358,343
berlin52 80 0.00 0.00 23,020,154 0.00 0.00 22,299,205
berlin52 160 0.00 0.00 84,402,610 0.00 0.00 82,851,322
ch130 1 14.33 24.88 141,314 22.56 24.57 127,335
ch130 5 6.84 10.86 911,371 18.59 20.99 702,917
ch130 10 6.31 10.56 ´1,820,004 16.87 18.87 1,572,299
ch130 20 4.22 5.41 4,831,614 11.98 17.16 3,779,535
ch130 40 1.06 1.93 13,271,120 4.09 7.79 10,354,983
ch130 80 0.23 0.72 36,602,158 2.34 6.69 32,090,886
ch130 160 0.00 0.52 111,218,379 1.00 2.10 104,042,226

kroA200 1 29.82 37.11 453,954 40.42 46.01 441,940
kroA200 5 14.22 25.52 2,458,083 38.68 41.63 2,300,084
kroA200 10 8.89 18.08 ´5,462,657 32.51 36.57 4,624,114
kroA200 20 6.27 8.04 12,076,655 29.16 34.53 9,923,258
kroA200 40 3.86 5.03 28,810,360 27.23 32.10 22,506,282
kroA200 80 2.50 2.95 73,702,312 23.79 27.45 59,028,450
kroA200 160 0.36 1.82 171,391,466 21.26 26.26 146,796,110

Table 10.7: Results showing the scaling properties of SASEGASA with one
crossover operator (MPX), with and without mutation.

Results with mutation Results without mutation
Sub- Evaluated Evaluated

Problem populations Best Average Solutions Best Average Solutions
berlin52 1 9.15 18.98 80,635 8.46 20.72 58,985
berlin52 5 0.00 3.16 497,211 6.89 11.05 418,175
berlin52 10 0.00 1.08 1,216,238 1.75 4.93 1,153,493
berlin52 20 0.00 0.00 3,302,870 2.66 4.05 2,445,796
berlin52 40 0.00 0.00 10,875,130 0.00 1.00 9,227,596
berlin52 80 0.00 0.00 18,414,626 0.00 0.00 19,769,438
berlin52 160 0.00 0.00 92,662,669 0.00 0.00 56,682,137
ch130 1 141.16 160.39 59,847 140.38 158.13 63,547
ch130 5 22.05 101.46 504,065 36.73 79.08 585,371
ch130 10 14.27 32.64 1,867,440 26.40 35.14 1,602,154
ch130 20 5.48 10.27 4,665,532 10.85 22.84 3,875,043
ch130 40 1.83 6.11 11,096,130 14.62 18.81 8,837,255
ch130 80 2.24 3.90 27,379,806 4.70 10.07 26,085,696
ch130 160 0.44 1.72 75,905,160 4.11 5.98 74,759,771

kroA200 1 198.47 243.65 94,830 180.91 249.89 89,746
kroA200 5 26.52 102.53 1,461,829 61.80 135.68 942,102
kroA200 10 13.22 30.33 4,096,990 30.99 76.45 2,932,813
kroA200 20 4.56 24.94 9,154,913 17.59 37.14 7,907,319
kroA200 40 4.82 15.69 19,573,066 11.56 27.96 18,798,917
kroA200 80 4.41 7.43 44,363,179 4.62 14.08 57,105,958
kroA200 160 2.57 4.12 116,759,298 5.33 8.31 115,013,599

Indeed, as the Tables 10.5–10.8 show for the different crossover opera-
tors and their combinations, respectively, achievable solution quality can be
pushed to highest quality regions also for higher dimensional problems with
only linearly increasing computational effort by simply increasing the initial
number of subpopulations. Especially when using a combination of consid-
ered crossover operators (see Table 10.8), which becomes possible due to self-
adaptive offspring selection, the global optimum could be detected for all con-
sidered benchmark problems when using a combination of different crossover
operators. The SASEGASA parameter settings used for the results given be-
fore have been chosen in such a way in order to point out certain aspects;
the parameters used for achieving the results given in Table 10.8 are quite
advantageous for applying SASEGASA to the TSP. Therefore, also higher
dimensional test cases are shown in Table 10.8 for which the global optimum

Applications of Genetic Algorithms: Combinatorial Optimization 213

Table 10.8: Results showing the scaling properties of SASEGASA with a
combination of crossover operators (OX, ERX, MPX), with and without mu-
tation.

Results with mutation Results without mutation
Sub- Evaluated Evaluated

Problem populations Best Average Solutions Best Average Solutions
berlin52 1 0.72 6.12 76,920 3.79 11.20 49,866
berlin52 5 0.00 0.46 774,770 0.00 0.00 548,284
berlin52 10 0.00 0.00 1,670,107 0.00 0.00 1,296,130
berlin52 20 0.00 0.00 4,247,216 0.00 0.00 3,275,660
berlin52 40 0.00 0.00 11,240,451 0.00 0.00 7,394,200
berlin52 80 0.00 0.00 53,844,262 0.00 0.00 21,129,365
berlin52 160 0.00 0.00 246,725,814 0.00 0.00 61,538,007
ch130 1 20.32 34.57 131,650 35.24 43.22 117,720
ch130 5 6.30 7.12 1,243,637 4.86 6.74 961,172
ch130 10 4.12 4.45 3,275,072 3.01 4.24 2,578,121
ch130 20 0.98 1.78 9,092,937 1.60 2.58 6,475,903
ch130 40 0.23 0.98 32,446,649 0.62 1.13 15,027,715
ch130 80 0.23 0.32 77,406,460 0.00 0.24 41,921,823
ch130 160 0.00 0.08 170,273,008 0.00 0.17 96,545,540

kroA200 1 30.80 40.91 311,334 70.50 74.09 208,108
kroA200 5 6.91 10.34 2,094,110 17.03 22.90 1,555,680
kroA200 10 4.27 6.42 5,165,175 10.23 12.54 3,778,171
kroA200 20 1.88 2.25 18,477,477 3.74 4.44 9,321,037
kroA200 40 0.33 1.68 68,132,626 1.16 2.63 29,112,958
kroA200 80 0.33 1.16 134,467,940 1.06 1.53 68,299,249
kroA200 160 0.00 0.58 201,322,654 0.11 0.25 131,669,520
lin318 1 64.78 77.56 403,431 128.55 143.94 242,534
lin318 5 17.60 20.53 3,292,861 34.08 42.41 2,338,523
lin318 10 7.95 10.93 8,093,264 21.04 22.46 5,680,243
lin318 20 2.38 4.35 26,534,811 10.25 11.36 13,394,560
lin318 40 1.97 3.19 200,885,952 4.67 6.36 33,267,177
lin318 80 1.54 2.34 624,986,088 2.01 2.46 93,879,278
lin318 160 0.80 1.12 959,258,717 1.48 2.55 256,372,204
lin318 320 0.00 0.52 2,116,724,528 0.88 1.02 632,882,394
fl417 1 60.31 89.11 585,102 120.83 142.99 408,664
fl417 5 9.86 13.78 5,104,971 32.43 39.92 3,615,174
fl417 10 2.70 5.14 26,586,653 21.49 22.76 8,451,114
fl417 20 1.50 2.35 106,892,925 4.80 8.35 22,441,329
fl417 40 0.29 0.91 664,674,431 0.56 2.29 236,658,335
fl417 80 0.21 0.27 1,310,193,035 0.19 0.79 519,000,908
fl417 160 0.00 0.11 2,122,856,932 0.11 1.55 802,368,224
fl417 320 0.00 0.00 4,367,217,575 0.00 0.34 2,231,720,072

could also be found by simply increasing the number of demes. Apart from
the computational effort which becomes higher and higher in a single proces-
sor environment, the degree of difficulty may be increased by increasing the
problem dimension.

The scalability of achievable solution qualities, that comes along with a
linearly increasing number of generated solutions, is a real advancement to
classical serial and parallel GA concepts, where a greater number of evalu-
ated solutions cannot improve global solution quality anymore after the GA
has prematurely converged. As theoretically considered in the previous chap-
ters, the reasons for this beneficial behavior are given by the interplay between
genetic drift and migration embedded in the self-adaptive selection pressure
steering concept. Even if the achieved results without mutation are not quite
as good as those achieved by the SASEGASA with a standard mutation rate,
it is remarkable that the scaling property still holds. We have also executed
experiments with smaller numbers of larger subpopulations as well as with
greater numbers of smaller subpopulations. Still, these results are not doc-
umented here, as these test series showed basically the same results with a
comparable total effort of evaluated solutions. This is an interesting aspect
for an efficient practical adaptation to a concrete parallel environment.

214 Genetic Algorithms and Genetic Programming

Even if the achieved results are clearly superior to most of the results re-
ported for applications of evolutionary algorithms to the TSP [LKM+99], it
has to be pointed out again that all introduced and applied additions to a stan-
dard evolutionary algorithm are generic and absolutely no problem-specific
local pre- or post-optimization techniques have been used in our experiments.

10.1.3 Comparison of the SASEGASA to the Island-Model
Coarse-Grained Parallel GA

The island model is the most frequently applied parallel GA model. More-
over, the island model is closer related to the newly introduced concepts of the
present work than other coarse- and fine-grained parallel GA models. There-
fore, this part of the empirical studies discusses the results that are achievable
with a conventional island GA compared to the results of SASEGASA.

A main difference between an island GA and a SASEGASA is the self-
adaptive selection pressure steering concept which as a side effect allows the
detection of premature convergence in the algorithm’s subpopulations. It
therefore becomes possible to select the dates of migration phases dynamically
and the SASEGASA algorithm is no more dependent on static migration inter-
vals as the island model is. Furthermore, especially in the migration phases,
the self-adaptive selection pressure steering concept of the SASEGASA en-
ables the algorithm to join the genetic information of individuals descending
from different subpopulations in a more directed way than within the island
model. Less fit offspring, that may especially emerge in the migration phases
as children from parents descending from very different regions of the solu-
tion space, are simply not considered for the ongoing evolutionary process
due to offspring selection. In addition to this, it is also not useful to apply a
combination of crossover operators within the standard island model, as each
crossover result would become part of the ongoing evolutionary process since
no offspring selection steps are performed. In contrast to this, the SASEGASA
maintains only those crossover results that represent a successful combination
of their parents’ attributes, which makes a combination of more operators
reasonable.

The Tables 10.10–10.12 show the results for the island GA using the same
TSP benchmarks as those that we have also used for testing the SASEGASA
applying either OX (see Table 10.10), ERX (see Table 10.11), or MPX (see
Table 10.12) as crossover mechanisms, each with and without mutation.

Applications of Genetic Algorithms: Combinatorial Optimization 215

Table 10.9: Parameter values used in the test runs of a island model GA with
various operators and various numbers of demes.

Parameters for the Island GA
(Results presented in Tab. 10.10–Tab. 10.12)

Deme Population Size 100
Elitism Rate 1
Mutation Rate 0.05 resp. 0.00
Selection Operator Roulette
Crossover Operators OX, ERX, resp. MPX
Mutation Operator Simple Inversion
Migration Interval 20 Rounds
Migration Rate 0.15 (of deme)
Migration Topology unidirectional ring
Migration Selection Best
Migration Insertion Random

Table 10.10: Results showing the scaling properties of an island GA with
one crossover operator (OX) using roulette-wheel selection, with and without
mutation.

Results with mutation Results without mutation
Number of Evaluated Evaluated

Problem demes Best Average Solutions Best Average Solutions
berlin52 1 2.29 4.06 1,500,000 63.02 78.05 1,500,000
berlin52 5 2.29 5.44 7,500,000 20.67 28.90 7,500,000
berlin52 10 2.69 4.66 15,000,000 14.37 18.35 15,000,000
berlin52 20 2.29 3.68 30,000,000 9.67 19.64 30,000,000
berlin52 40 0.00 0.46 60,000,000 4.61 12.95 60,000,000
berlin52 80 0.00 0.61 120,000,000 4.55 7.73 120,000,000
berlin52 160 0.00 0.00 240,000,000 5.17 8.49 240,000,000
ch130 1 5.52 7.81 1,500,000 283.50 330.73 1,500,000
ch130 5 2.80 5.60 7,500,000 158.18 184.96 7,500,000
ch130 10 1.42 2.84 15,000,000 139.17 168.70 15,000,000
ch130 20 2.47 3.45 30,000,000 91.93 122.74 30,000,000
ch130 40 1.21 2.52 60,000,000 112.95 120.46 60,000,000
ch130 80 0.65 1.71 120,000,000 91.83 108.93 120,000,000
ch130 160 0.55 1.32 240,000,000 88.02 107.12 240,000,000

kroa200 1 14.19 17.00 1,500,000 479.92 526.06 1,500,000
kroa200 5 5.66 7.41 7,500,000 323.76 340.63 7,500,000
kroa200 10 5.79 6.39 15,000,000 245.37 308.34 15,000,000
kroa200 20 3.11 5.10 30,000,000 227.65 234.68 30,000,000
kroa200 40 2.35 4.05 60,000,000 189.73 226.60 60,000,000
kroa200 80 0.61 2.51 120,000,000 178.99 204.01 120,000,000
kroa200 160 1.30 2.20 240,000,000 167.42 194.77 240,000,000

As already noticed for the conventional GA (see Table 10.2), the results of
the island GA are also quite good when using the OX crossover operator (see
Table 10.10) and (in terms of solution quality) comparable to the SASEGASA
results obtained using the OX crossover. Still, the computational effort (i.e.,
the number of evaluated solutions) is comparatively high in order to achieve
the results as migration is in the island GA applied in a less goal-oriented way.
As only mutation and migration are qualified to regain alleles that are lost
due to genetic drift, there is further empirical evidence that migration works
less effectively in the island model when considering the island GA results;
these, in fact, are really bad when deactivating mutation. The SASEGASA
is, in contrast to this, still able to scale up solution quality to high quality
regions even without mutation (which can be seen in Tables 10.5– 10.8).

The results returned by the island GA using ERX and MPX crossovers are
rather weak regardless of mutation, and are significantly outperformed by the
SASEGASA results. As we have already seen for the conventional GA, the

216 Genetic Algorithms and Genetic Programming

Table 10.11: Results showing the scaling properties of an island GA with one
crossover operator (ERX) using roulette-wheel selection, with and without
mutation.

Results with mutation Results without mutation
Number of Evaluated Evaluated

Problem demes Best Average Solutions Best Average Solutions
berlin52 1 10.90 13.78 1,500,000 6.30 10.56 1,500,000
berlin52 5 0.00 5.20 7,500,000 2.77 4.57 7,500,000
berlin52 10 0.72 4.76 15,000,000 3.30 5.00 15,000,000
berlin52 20 0.00 2.42 30,000,000 0.00 0.40 30,000,000
berlin52 40 0.00 0.96 60,000,000 0.00 0.00 60,000,000
berlin52 80 0.00 0.00 120,000,000 0.00 0.20 120,000,000
berlin52 160 0.00 0.00 240,000,000 0.00 0.00 240,000,000
ch130 1 154.45 176.38 1,500,000 152.96 165.12 1,500,000
ch130 5 109.18 116.27 7,500,000 118.59 125.68 7,500,000
ch130 10 82.24 91.16 15,000,000 93.21 103.03 15,000,000
ch130 20 48.17 62.94 30,000,000 72.93 77.12 30,000,000
ch130 40 53.18 55.63 60,000,000 61.10 68.79 60,000,000
ch130 80 41.65 48.34 120,000,000 42.32 51.34 120,000,000
ch130 160 35.22 39.51 240,000,000 38.81 54.72 240,000,000

kroa200 1 401.47 421.13 1,500,000 405.27 420.05 1,500,000
kroa200 5 302.29 316.97 7,500,000 324.59 352.06 7,500,000
kroa200 10 247.51 268.50 15,000,000 280.62 309.44 15,000,000
kroa200 20 232.59 241.82 30,000,000 271.53 282.6ß 30,000,000
kroa200 40 209.18 220.53 60,000,000 237.78 253.12 60,000,000
kroa200 80 178.87 199.01 120,000,000 216.09 233.08 120,000,000
kroa200 160 180.91 190.64 240,000,000 220.42 224.12 240,000,000

Table 10.12: Results showing the scaling properties of an island GA with one
crossover operator (MPX) using roulette-wheel selection, with and without
mutation.

Results with mutation Results without mutation
Number of Evaluated Evaluated

Problem demes Best Average Solutions Best Average Solutions
berlin52 1 33.63 36.52 1,500,000 29.20 32.34 1,500,000
berlin52 5 11.32 18.77 7,500,000 12.83 16.53 7,500,000
berlin52 10 8.71 12.10 15,000,000 8.83 11.67 15,000,000
berlin52 20 3.74 7.27 30,000,000 9.06 12.41 30,000,000
berlin52 40 0.00 5.90 60,000,000 3.92 6.63 60,000,000
berlin52 80 0.00 4.66 120,000,000 1.31 4.44 120,000,000
berlin52 160 0.00 1.54 240,000,000 1.31 3.28 240,000,000
ch130 1 129.00 131.82 1,500,000 117.77 125.84 1,500,000
ch130 5 71.34 75.19 7,500,000 54.73 67.72 7,500,000
ch130 10 48.90 52.51 15,000,000 42.31 48.11 15,000,000
ch130 20 44.34 47.52 30,000,000 32.57 37.07 30,000,000
ch130 40 36.24 40.77 60,000,000 30.95 39.48 60,000,000
ch130 80 31.47 38.93 120,000,000 30.51 34.16 120,000,000
ch130 160 34.91 39.03 240,000,000 29.31 32.84 240,000,000

kroa200 1 208.52 219.21 1,500,000 201.85 209.58 1,500,000
kroa200 5 122.68 132.46 7,500,000 111.61 125.41 7,500,000
kroa200 10 100.13 108.64 15,000,000 87.75 102.55 15,000,000
kroa200 20 91.77 98.36 30,000,000 91.14 94.76 30,000,000
kroa200 40 83.34 91.31 60,000,000 84.85 88.23 60,000,000
kroa200 80 88.37 90.04 120,000,000 77.87 81.14 120,000,000
kroa200 160 77.34 80.94 240,000,000 80.64 83.29 240,000,000

island model also does not offer concepts for dropping out disadvantageous
crossover results.

Thus, in contrast to most of the enhanced GA concepts discussed in lit-
erature which are in most cases tuned for some specific purpose, it appears
that the SASEGASA algorithm acts very stabilizing under various condi-
tions. It is also quite impressive that the generic applicability and transference
of the positive attributes of SASEGASA appear unimpaired when consider-
ing a completely different optimization problem - namely the optimization
of hard real-valued benchmark test functions in high dimensions [Aff05]. It
has been reported in [Aff05] that the SASEGASA algorithm without any
problem-specific adaptations is able to find the global optimal solution for

Applications of Genetic Algorithms: Combinatorial Optimization 217

all considered benchmark test functions (Rosenbrock, Rastrigin, Griewangk,
Ackley, and Schwefel’s sine root function) in dimensions that have hardly been
discussed in GA literature (up to n = 2000).

10.1.4 Genetic Diversity Analysis for the Different GA
Types

As already mentioned in the introductory part of this chapter, we do not
confine ourselves to report the results in table form and try to compare the
internal functioning of the certain algorithmic variants also here. In contrast
to Chapter 7 we here consciously abandon information about globally optimal
solutions which are unknown also in practical applications.

Results that are as interesting as those achieved by observing the dynamics
of the global optimal alleles can be obtained by analyzing the genetic diversity
distribution during the run of a GA. For this purpose it is necessary to de-
fine an appropriate distance measure between two solution candidates for the
problem representation at hand. In contrast to GP-based structure identifi-
cation diversity analyses such a distance measure is quite intuitive and easy
to describe for the TSP.

The similarity measure between two TSP-solutions t1 and t2 used here is
defined as a similarity value sim between 0 and 1:

sim(t1, t2) =
| e : e ∈ E(t1) ∧ e ∈ E(t2) |

| E(t1) |
∈ [0, 1] (10.2)

giving the quotient of the number of common edges in the TSP solutions t1
and t2 and the total number of edges. E here denotes the set of edges in a
tour. The according distance measure can then be defined as

d(t1, t2) = 1− sim(t1, t2) ∈ [0, 1] (10.3)

Thus, the similarity or the distance of two concrete TSP solutions can be
measured on a linear scale between the values 0 and 1.

A very detailed representation of genetic diversity in a population is the
graphical display of pairwise similarities or distances for all members of a
population. An appropriate measure, which is provided in the HeuristicLab
framework, is to illustrate the similarity as a n× n matrix where each entry
indicates the similarity in form of a grey scaled value. Figure 10.2 shows
an example: The darker the (i, j) − th entry in the n × n grid is, the more
similar are the two solutions i and j. Not surprisingly, the diagonal entries,
which stand for the similarity of solution candidates with themselves, are
black indicating maximum similarity.

Unfortunately, this representation is not very well suited for a static
monochrome figure. Therefore, the dynamics of this n × n color grid over

218 Genetic Algorithms and Genetic Programming

FIGURE 10.2: Degree of similarity/distance for all pairs of solutions in a
SGA’s population of 120 solution candidates after 10 generations.

the generations is shown in numerous colored animations available at the
website of this book2.

For a meaningful figure representation of genetic diversity over time it is
necessary to summarize the similarity/distance information of the entire pop-
ulation in a single value. An average value of all

(

n
2

)

combinations of solution
pairs in form of a mean/max similarity value of the entire population as a
value between 0 and 1 can be calculated according to the Formulas 6.5 to 6.8
stated in Chapter 6. This form of representation allows to display genetic
diversity over the generations in a single curve. Small values around 0 in-
dicate low average similarity, i.e., high genetic diversity and vice versa high
similarity values of almost 1 indicate little genetic diversity in the population.
In the following we show results of exemplary test runs of GAs applied to the
kroA200 200 city TSP instance taken from the TSPLib using the parameter
settings given in Table 10.1 and OX crossover.

Figures 10.3 and 10.4 show the genetic diversity curves over the generations
for a conventional standard genetic algorithm as well as for a typical offspring
selection GA. The gray scaled values in the Figures 10.3, 10.4, and 10.5 show
the progress of mean similarity values of each individual (compared to all
others in the population); average similarity values are represented by solid
black lines.

For the standard GA it is observable that the similarity among the solu-
tion candidates of a population increases very rapidly causing little genetic

2http://gagp2009.heuristiclab.com

Applications of Genetic Algorithms: Combinatorial Optimization 219

FIGURE 10.3: Genetic diversity in the population of a conventional GA over
time.

diversity already after a couple of generations; it is only mutation which is
responsible for reintroducing some new diversity keeping the evolutionary pro-
cess going. As already explained in Chapter 7, without mutation the standard
GA tends to prematurely converge very rapidly.

FIGURE 10.4: Genetic diversity of the population of a GA with offspring
selection over time.

Equipped with offspring selection the results turn out to be completely dif-
ferent: The average similarity in the population increases slowly and steadily
from 0 to 1. This means that the high degree of genetic diversity, which is

220 Genetic Algorithms and Genetic Programming

available initially, is decreased very slowly and carefully yielding to a state of
convergence when no more diversity is available in the population which is de-
tected by the algorithm by reaching a maximum selection pressure value (see
Chapter 4). As already discussed in Chapter 7 by analyzing the dynamics of
the alleles of the global optimal solution, also the dynamic of genetic diversity
shows that an offspring selection GA is rarely dependent on mutation and
operates much closer to the general assumptions stated in the building block
hypotheses and the according schema theorem as a comparable conventional
GA is able to do for general problem formulations.

FIGURE 10.5: Genetic diversity of the entire population over time for a
SASEGASA with 5 subpopulations.

The analysis of genetic diversity over time for the SASEGASA is shown
in Figure 10.5. Similar to the diversity analyses for a conventional GA and
for the offspring selection GA, the genetic diversity analysis has also been
done for the SASEGASA applied to the kroA200 200-city benchmark TSP
instance using the parameters given in Table 10.4 and the combination of
crossover operators OX, ERX, and MPX. As we can see in Figure 10.5, the
genetic diversity is still rather high at the first reunification phase around iter-
ation 2000 where the genetic diversity in each single subpopulation is already
lost. This means that even if there is no more genetic diversity in each of the
subpopulations itself, there is still quite a lot of genetic diversity in the entire
population. This means that the certain subpopulations must have drifted to
quite different regions of the search space which is consistent with the theoret-
ical considerations of Chapter 5. After each reunification step (the next one

Applications of Genetic Algorithms: Combinatorial Optimization 221

from 4 to 3 subpopulations is around iteration 4000) the average similarity
(which is inversely proportional to the average genetic diversity) stabilizes at
a higher level indicating lower average genetic diversity after each reunifica-
tion. The iterations between the certain migration phases are responsible for
getting essential alleles (which are part of the global optimum or at least of
a high quality solution) fixed in order to let the SASGEASA operate benefi-
cially; this is in fact the case in our concrete example, as we also see in the
results stated in Table 10.8).

Summarizing these results it can be stated for the TSP experiments that
the analysis of genetic diversity in the population confirmed the results of
Chapter 7 without using any information about the concrete search space
topology. The illustration in form of a static figure is certainly some kind of
restriction when the dynamics of a system should be observed. For that reason
the book’s website contains some additional material showing the dynamics
of pairwise similarities for all members of the population (as indicated in
Figure 10.2) in the form of short motion pictures.

10.2 Capacitated Vehicle Routing

Similar to the practical study on the TSP problem we have also applied
several algorithms on the capacitated vehicle routing problem, to several in-
stances of the Taillard benchmark set [Tai93]. This set consists of 14 instances
from 75 to 385 cities of which we picked the first two instances of those with
75 cities, one with 100 cities, and one with 150 cities. There is no proven
globally optimal solution to these instances. Several authors, including Tail-
lard himself, have published best known solutions; a new best known solution
in one instance with 75 cities was discovered recently [AD06].

The instances were interp reted according to the definition of a CVRPTW
as presented in Chapter 8.2. Since the CVRP does not include time windows,
but only demands, artificial ready times, service times, and due dates have
been added such that the size of the time window is 216. This is high enough
so that the time windows do not constrain the solution. Additionally, there is
no maximum number of vehicles given; thus the number of possible vehicles
was predefined by the number of customers, so that in the worst case every
customer was serviced by a separate vehicle. Since any additional vehicle will
always remain unused, our constraint on the maximum number of vehicles did
not also constrain the solution space.

The representation that is chosen is a path encoding with trip delimiters,
similar to the approach given in [PB96]. The number 0 represents the depot;
all numbers greater than 0 represent customers which are visited in the order

222 Genetic Algorithms and Genetic Programming

they appear in the array when reading it from left to right. There are as many
0s in any array as there are vehicles plus an additional 0 which terminates a
representation. Since all customers have to be visited and no customer can
be visited more than one time, the size of the encoding is of fixed length
throughout the optimization process. Unused vehicles are marked as empty
routes and are represented by two subsequent 0s. During crossover, each
string is sorted so that empty routes are listed after the last active vehicle has
completed its tour. There is, however, no specific order for active vehicles.

10.2.1 Results Achieved Using Standard Genetic
Algorithms

The genetic algorithm which we applied uses some of the operators de-
scribed in Chapter 8 and was applied in six different configurations shown
in Table 10.13. The algorithm has been applied five times per instance. By
experimentation we want to analyze the GA on the one hand by using differ-
ent mutation operators and on the other hand by choosing different selection
operators.

The two following main test scenarios are set up, the first one with lower se-
lection pressure using roulette wheel selection and the second one with higher
selection pressure using 3-tournament selection with a group size of three.
Both of these scenarios are tested with different settings for mutation oper-
ators, among them the previously described M1, M2, and LSM as optimiz-
ing mutation operators which aim to improve solutions with some knowledge
about the fitness function (the distance between the cities) as well as non-
optimizing mutation operators which do not know about the fitness function
and therefore make unbiased choices. We group the mutation operators within
a single genetic algorithm and give them the same probability by dividing the
mutation rate through the number of mutation operators in the particular
test. The only exception is the LSM which only has a 0.0001% chance of
being selected due to its computational complexity.

The fitness function is described in Chapter 8; it simply calculates the total
traveled Euclidean distance.

10.2.1.1 Quality Progress of the Genetic Algorithm

The GA is barely able to thrive its population towards a high quality region.
Optimization mainly depends on the presence of 1-elitism, which preserves the
best found solution from generation to generation. Given this behavior it is
not completely puzzling that local search methods like tabu search achieve
good performances on these problems, as the GA in this form is not able
to exploit much of the genetic information in the population; this happens
especially when selection pressure is lower, as we see for example in the results

Applications of Genetic Algorithms: Combinatorial Optimization 223

Table 10.13: Parameter values used in the CVRP test runs applying a stan-
dard GA.

Parameters for the SGA
(Results presented in Tab. 10.14)

Generations 2000
Population Size 200
Elitism Rate 1
Mutation Rate 0.06
Selection Operator Roulette, 3-Tournament
Crossover Operators {SBX, RBX}

Mutation Operators
{M1, M2}

{M1, M2, LSM}
{Relocate, Exchange, 2-Opt}

shown for the SGA using roulette wheel selection. In Figure 10.6 we compare
the results according to the used parent selection operators. Using higher
selection pressure, the average and worst qualities are maintained at a slightly
better level when picking the best performing test for each. Still with both
selection strategies the average and worst qualities are not improving over the
course of 2,000 generations. From the quality charts we are able to see that
the diversity is very high, which will become obvious again when we take a
look at the diversity progress.

FIGURE 10.6: Quality progress of a standard GA using roulette wheel selec-
tion on the left and 3-tournament selection the right side, applied to instances
of the Taillard CVRP benchmark: tai75a (top) and tai75b (bottom).

224 Genetic Algorithms and Genetic Programming

From our observations it seems that the RBX is better suited to further
optimize the best solution. Analyzing one of the tests in a more detailed way,
we see that RBX is responsible in approximately 75% of the evolutionary
cycles of selection, crossover, and mutation in which a new best solution was
found whereas SBX is responsible for only 25% of the cases. We will find
similar behavior for the genetic algorithm using offspring selection where the
SBX operator is working better when the population is diverse and of worse
quality than when the population has converged and is of better quality. Both
operators also benefit from a local search like behavior in the repair procedure.
As already described in Chapter 8, many different approaches enhance the GA
with local search to treat the VRP.

10.2.1.2 Diversity Progress of the Genetic Algorithm

In the diversity progress charts shown in Figure 10.7 we see how lower
selection pressures leave individuals in the population which do not have
many common edges, while there is higher mutual similarity when using 3-
tournament selection for example. Similar individuals have several edges in
common, and when these are crossed, the common edges will remain and other
edges will be taken from either one of the two parents. Through selection by
fitness the common edges amounting in the population are those of good qual-
ity. So, ideally the mutual similarity of the GA’s individuals should increase
slowly in order to go from exploration to exploitation. Thus, the algorithm
should start with a diverse population and end up with a highly similar pop-
ulation with each solution being either the optimal solution or with a quality
close to it.

The similarity measure for two VRP solutions t1 and t2 is calculated in
analogy to the TSP similarity using edgewise comparisons. However, as big
routes in the VRP are subdivided into smaller routes, a maximum similarity
simmax is calculated for each route r ∈ t1 to all routes s ∈ t2. These values
are summed for all routes ri and finally divided by the number of routes.

As we have seen already in the quality chart the GA is in this example not
able to decrease the diversity over the course of the optimization. This could
also result in good solutions as is shown when examining the final achieved
solution qualities in Table 10.14. Overall, the GA shows a behavior closer
to that of a trajectory-based approach than a population-based approach. In
a trajectory-based approach, there is only a single solution which is slightly
modified by mutation and accepted as new solution if some criteria are met.
One characteristic of trajectory-based approaches is their ability to exploit the
search space in local regions by finding local optima. As is the case with the
GA here, the best individual of a generation is saved to the next generation
and maintains a strong line of good quality genes.

Applications of Genetic Algorithms: Combinatorial Optimization 225

FIGURE 10.7: Genetic diversity in the population of a GA with roulette
wheel selection (shown on the left side) and 3-tournament selection (shown
on the right side).

10.2.1.3 Empirical Results

Results are listed in Table 10.14 showing the average of the best qualities
found and the standard deviation from the mean in percent as well as the
quality of the best found solution. These results show that the selection
pressure applied by roulette wheel selection was not enough to guarantee
good solution qualities; the average best quality is worse than 20-30% worse
than the best known solution. Additionally, the quality values vary to a
greater degree, which also suggests that the results are not close to a potential
optimum.

When using higher selection pressure, for example by applying tournament
selection with higher group sizes, the GA is able to achieve formidable average
best qualities on the two benchmark instances used here. The results are
around 1% worse than the best known solution in most of the cases, but still
the GA was not able to find the best known solution. Interesting in this
context is that the choice of mutation operators matters more when the GA
performs worse, as is the case with roulette-wheel selection, than when it

226 Genetic Algorithms and Genetic Programming

performs better. In our example using 3-tournament selection the choice of
mutation operators is less important and good results can be achieved using
both optimizing as well as nonoptimizing mutation operators.

Table 10.14: Results of a GA using roulette-wheel selection, 3-tournament
selection and various mutation operators.

Roulette Wheel Selection Best Known
Relocate/

Problem Exchange/2-Opt M1/M2 M1/M2/LSM
tai75a 1729.57±1.65% 1665.86±1.48% 1670.18±0.98% 1618.36
Best found 1713.00 1641.36 1654.62

tai75b 1396.37±0.80% 1361.75±0.74% 1365.54±0.36% 1344.62
Best found 1387.64 1352.05 1360.36

3-Tournament Selection
Relocate/

Problem Exchange/2-Opt M1/M2 M1/M2/LSM
tai75a 1635.23±0.61% 1637.16±0.67% 1634.29±0.54% 1618.36
Best found 1622.66 1619.22 1623.57

tai75b 1353.51±0.17% 1358.12±1.15% 1355.35±0.23% 1344.62
Best found 1350.85 1347.05 1352.02

A statistical comparison on the results between the GA with roulette wheel
selection and 3-tournament selection shows the advantageous performance of
the GA with 3-tournament selection for these benchmark instances. A box
plot of the results is shown in Figure 10.8. We have compared these results
pairwise, on the one hand roulette-wheel selection and on the other hand
3-tournament selection each time with the same mutation operators using a
two sided t-test. The hypothesis that the mean values of the results are equal
is rejected at a significance level of 0.05 in four out of the six comparisons.
As the means of the results achieved using 3-tournament selection are lower
than those achieved using roulette-wheel selection, we conclude that a higher
selection pressure is responsible for better performance.

10.2.2 Results Achieved Using Genetic Algorithms with
Offspring Selection

A genetic algorithm with offspring selection is quite successful insofar as
it can direct the whole population towards the global optimum or a solution
with a quality close to it. In this test the GA with OS does not make use of
parental selection operators, but randomly selects parents, crosses them, and
mutates the children with a certain probability. Accepted offspring individuals
must have a quality better than the best parent (the comparison factor is set

Applications of Genetic Algorithms: Combinatorial Optimization 227

FIGURE 10.8: Box plots of the qualities produced by a GA with roulette and
3-tournament selection, applied to the problem instances tai75a (top) and
tai75b (bottom).

to 1). Infeasible solutions are penalized using high punishment factors; thus,
the algorithm, starting with a randomly created but feasible population, will
remain in the feasible region at any time. The parameters for these tests are
listed in Table 10.15.

Similar to the tests with the standard GA several scenarios have been se-
lected and compared. The GA with offspring selection is applied to 75 cus-
tomer CVRP instances using population sizes of 200 as well as 400, and also to
higher instances with population sizes of 500 and 1000. For each test scenario
the selection operators, crossover operators, and mutation rate are fixed, but
the mutation operators vary between nonoptimizing operators for which we
have chosen relocate, exchange, and 2-Opt similar to the GA tests as well as
optimizing operators such as M1, M2, and LSM with the same considerations
as above; one test was done without mutation.

We have used two termination criteria that will stop the execution as soon
as one of them is satisfied. The first one is based on reaching the maximum
selection pressure barrier and the other one limits the number of evaluated
solutions to 400,000 which is the same number of evaluations the standard GA
has been given on these instances. The GA with OS and a population size of
200 always terminates before the maximum number of evaluated solutions has
been reached and lists around 250,000 to 300,000 evaluated solutions at the
end. Using a population size of 400 it has always terminated because it reached
the upper limit of 400,000 evaluated solutions prior to reaching maximum
selection pressure. The GA with OS and a population size of 500 is given a

228 Genetic Algorithms and Genetic Programming

maximum amount of 1,500,000 evaluations for the 100 customer problem and
2,000,000 for the 150 customer problem due to the bigger complexity of the
instances it has to solve. A GA with offspring selection and a population size
of 1000 was also applied to the tai385 problem instance with a maximum of
10,000,000 evaluations.

Table 10.15: Parameter values used in CVRP test runs applying a GA with
OS.

Parameters for the GA with OS
(Results presented in Table 10.16–Table 10.17)

Population Size 200, 400, 500
Elitism Rate 1
Mutation Rate 0.06, 0.0
Selection Operator Random
Crossover Operators {SBX, RBX}

Mutation Operators
{M1, M2}

{M1, M2, LSM}
{Relocate, Exchange, 2-Opt}

Success Ratio 1
Comparison Factor Bounds 1–1
Maximum Selection Pressure 200

10.2.2.1 Improvement in Quality Progress with Offspring Selection

A benefit of using offspring selection is the automatic adaption of the nec-
essary selection pressure. Instead of choosing between roulette wheel, linear
rank or tournament selection, and an appropriate group size, it is feasible to
simply use random parent selection. The selection and reproduction phases
will be repeated as long as the necessary amount of individuals fulfilling the
success criterion can been generated. Thus, the algorithm will use less selec-
tion pressure when the criterion is easily satisfied and will apply more selection
pressure when the criterion is harder to be satisfied. Random selection allows
the worst individual to be selected as often as the best individual.

The GA with OS is quite successful even without mutation; this is what
we had expected given the analyses in Chapter 7. Figure 10.9 shows the
quality progresses of the offspring selection GA. The number of generations
is fairly low compared to a conventional genetic algorithm, but more work
is done per generation. The curves show the typical behavior of a GA with
OS where worst, average, and best quality values converge at the end of
the evolutionary process. The result is a highly similar population of good
quality; at this point genetic diversity, as we will see below, has mostly been
lost. So, the algorithm cannot proceed further to create new better solutions
and terminates. Using a higher population size such as 400 in our case, but
with the same number of evaluated solutions the algorithm terminates before

Applications of Genetic Algorithms: Combinatorial Optimization 229

it reduces the genetic diversity to the point where no further better solution
can be created. Nevertheless, the GA with OS finds better solutions as the
higher population size can hold more genetic information as well as it uses
about 100,000 evaluations more than with a population size of 200.

FIGURE 10.9: Quality progress of the offspring selection GA for the instances
(from top to bottom) tai75a and tai75b. The left column shows the progress
with a population size of 200, while in the right column the GA with offspring
selection uses a population size of 400.

In Figure 10.10 the influence of the crossover operators in each generation
is shown. It shows how many offspring in each generation are created by
crossing them with SBX or RBX in percent. The higher the values, the more
frequently one operator was able to create better offspring which exceeds the
quality of the best parent in the GA with OS here. It can be seen that SBX
initially is able to produce slightly more successful children as the RBX, but
as the population converges and improves in quality RBX produces better
offspring to a higher degree.

230 Genetic Algorithms and Genetic Programming

FIGURE 10.10: Influence of the crossover operators SBX and RBX on each
generation of an offspring selection algorithm. The lighter line represents the
RBX; the darker line represents the SBX.

10.2.2.2 Improved Diversity Progress with Offspring Selection

The diversity progress shown in Figure 10.11 is similar to what has been
observed for the TSP. The GA with OS starts with the same diverse initial
population that the GA starts with, but is able to slowly spread the good
genetic information among the population so that in the end the similarity
of the individuals rises and the algorithm progresses from exploration to ex-
ploitation. At the end of the search, genetic diversity is close to 1, so almost
all the individuals in the population share the same edges. This behavior has
already been analyzed in Chapter 7. The results are slightly different when
using a higher population size. The algorithm finishes before it can reduce the
genetic diversity in the population and thus the diversity progress looks cut
off. Nevertheless, as we will see in the next section, the results are improved.
Since the GA with OS and a population size of 400 has room for further op-
timization as there is still enough diversity, allowing more evaluations could
result in even better results.

10.2.2.3 Empirical Results

Results show a very sound performance of the GA using offspring selection:
It is able to get very close to the optimum and to find it in even much more
cases than the GA without offspring selection. Increasing the population size
to 400 individuals allowed offspring selection to find the best known solution
much more often. The only exception is the tai75b instance where the best

Applications of Genetic Algorithms: Combinatorial Optimization 231

FIGURE 10.11: Genetic diversity in the population of an GA with offspring
selection and a population size of 200 on the left and 400 on the right for the
problem instances tai75a and tai75b (from top to bottom).

known solution is not found that easily; it seems that it also requires a bit of
luck. Finding the “2nd best known solution”, which had been the best-known
solution for a while, is considerably easier: In 14 out of 20 runs the GA with
OS and a population size of 400 was able to find it, but only in a single run out
of 20 it could find the currently best known solution. It may be possible that
the best known solution does not lie within an attracting region for the GA,
which is probably also the reason for its late discovery in [AD06]. Regarding
solution quality, the currently best known solution quality is 1344.618 while
the “2nd best known solution” has a quality of 1344.637.

Analyzing the results reported in Table 10.15 we see that the choice of the
mutation operator in our genetic algorithm using offspring selection is again of
less importance. The best results are computed using nonoptimizing mutation
operators as well as a combination of M1 and M2 with local search. Omitting
mutation leads to good results in general with average best solution qualities
close to the best known solution qualities.

232 Genetic Algorithms and Genetic Programming

Table 10.16: Results of a GA with offspring selection and population sizes of
200 and 400 and various mutation operators. The configuration is listed in
Table 10.15.

Population Size 200 Best Known
Relocate/

Problem Exchange/2-Opt M1/M2 M1/M2/LSM No Mutation
tai75a 1620.26±0.16% 1622.03±0.15% 1622.48±0.06% 1622.72±0.07% 1618.36
Best found 1618.36 1618.36 1621.96 1621.95

tai75b 1346.26±0.24% 1345.78±0.06% 1345.85±0.12% 1345.71±0.16% 1344.62
Best found 1344.64 1344.64 1344.64 1344.64

Population Size 400
Relocate/

Problem Exchange/2-Opt M1/M2 M1/M2/LSM No Mutation
tai75a 1620.68±0.11% 1620.52±0.18% 1618.73±0.03% 1621.02±0.13% 1618.36
Best found 1618.71 1618.36 1618.36 1618.36

tai75b 1344.67±0.00% 1344.64±0.00% 1344.63±0.00% 1344.83±0.03% 1344.62
Best found 1344.64 1344.64 1344.62 1344.64

From the results we can also see that the GA with OS benefits from a higher
population size insofar as it is able to get closer to the best known solution
on average and finding it more often. Given the small number of replications,
however, no statistical significance can be drawn; still, as the box plots in
Figure 10.12 show, using a higher population size results in more robust tests
with smaller standard deviations of the results’ qualities as well as quality
values closer to that of the best known solutions. This is not surprising as it
has been discussed that a larger initial population is more likely to hold all the
relevant alleles which are to be identified and assembled in a single solution
during the optimization process. A larger population can hold more diverse
solutions which prevents important alleles from disappearing. Naturally, it
takes more effort for a larger population to converge and thus the number of
evaluated solutions increases with the population size. Population size in an
offspring selection genetic algorithm is a tradeoff between achievable quality
and effort; in a traditional GA, increasing the population size has a similar
effect only when the parent selection pressure is increased accordingly. This
may for example be achieved by using tournament selection with an increased
tournament group size.

The results returned by the standard GA and the GA with OS are compared
in Figure 10.13 which shows the box plots of the results’ qualities of these two
GA variants. Here we see that the results of the GA using offspring selection
are generally more robust insofar as they are of good quality and do not spread
as much as the results returned by the standard GA using 3-tournament
selection. Again, a pairwise two sided t-test of the results computed with the
standard GA compared to the offspring selection GA rejected the hypothesis
that the means of these results are equal at a significance level of 0.05. As the
means of the offspring selection GA are lower than standard GA, it is thus
feasible to assume that the offspring selection GA performs indeed better than
the standard GA.

Applications of Genetic Algorithms: Combinatorial Optimization 233

FIGURE 10.12: Box plots of the offspring selection GA with a population
size of 200 and 400 for the instances tai75a and tai75b.

FIGURE 10.13: Box plots of the GA with 3-tournament selection against the
offspring selection GA for the instances tai75a (shown in the upper part) and
tai75b (shown in the lower part).

We have also applied a GA with offspring selection for solving more complex
problem instances, specifically one with 100 and one with 150 customers as
well as on the most complex instance with 385 customers. The algorithm is

234 Genetic Algorithms and Genetic Programming

suited well to get very close to the best known solution in this configuration,
though it is likely that population size still needs to be increased as the best
known solution could not be reached in any of the test runs. The best solution
found for the tai100a instance has a quality of 2062.25 and is about 1% worse
than the currently best known solution; the offspring selection GA achieved
average best qualities 1-2% worse than the currently best known solution. In
all cases except two it could finish before reaching the maximum amount of
evaluated solutions, having evaluated on average 1.2 to 1.3 million solutions.
For the tai150a instance the algorithm finished on average having evaluated
1.9 million solutions; some runs, however, ran into the maximum of 2 million
solution evaluations. The best solution in 5 test runs has a quality of 3068.04
and is 0.42% worse than the best known one; it also achieves average best
qualities approximately 1% worse than the best known solution. The results
are given in Table 10.17.

For the tai385 problem instance, which is the largest instance in Taillard’s
benchmark set, a good result could be achieved as well. Here the customers
are modeled according to the locations of the most important towns or villages
in the smallest political entities in the Swiss canton of Vaud. The demand is
modeled proportional to the number of inhabitants living there [Tai93]. Using
an offspring selection GA with a population size of 1000 without mutation,
the final tour length found is 25,498.40 after 10 million evaluated solutions.
This is 4.37% higher than the currently best known solution with a tour
length of 24,431.44. It is likely that better results can be achieved with even
higher population sizes, a point where parallelization becomes more and more
important in order to achieve results in adequate time.

Table 10.17: Showing results of a GA with offspring and a population size
of 500 and various mutation operators. The configuration is listed in Table
10.15.

Population Size 500 Best Known
Relocate/

Problem Exchange/2-Opt M1/M2 M1/M2/LSM No Mutation
tai100a 2081.30±0.22% 2077.89±0.48% 2079.99±0.21% 2078.60±0.26% 2041.34
Best found 2074.56 2062.25 2073.22 2073.55

tai150a 3082.48±0.37% 3078.79±0.23% 3087.86±0.39% 3086.44±0.48% 3055.23
Best found 3068.04 3071.54 3074.44 3068.54

Chapter 11

Data-Based Modeling with Genetic
Programming

11.1 Time Series Analysis

Whenever (input or output) data of any kind of system are recorded over
time and compiled in data collections as sequences of data points, then these
sequences are called time series; typically, these data points are recorded at
time intervals which are often, but not always uniform.

The collection of methods and approaches which are used for trying to
understand the underlying mechanisms that are documented in time series is
called time series analysis; but not only do we want to know what produced
the data, but what we are also interested in is to predict future values, i.e.,
we want to develop models that can be used as predictors for the system at
hand.

There is a lot of literature on theory and different approaches to time series
analysis. One of the most famous approaches is the so-called Box-Jenkins ap-
proach as described in [BJ76] and [And76], e.g., which includes separate model
identification, parameter estimation, and model checking steps. Detailed dis-
cussions of other methods and their mathematical and statistic background
can be found for example in [And71], [Ken73], [Pan83], [KO90], [Pan91],
[BD91], [Ham94], and [BD96]; more recent research and applications are for
example given in [PTT01], [Cha01], [Dei04], [Wei06], and [MJK07].

The main principle can be formulated in the following way: For a given
target time series T storing the values T(1), . . . , T(n) and a given set of variables
X1, . . . , XN we search for a model f that describes T as

T(t) = f(X1(t), X1(t−1), . . . , X1(t−tmax),

. . . ,

XN(t), XN(t−1), . . . , XN(t−tmax)) +ǫt

where tmax is the maximum number of past values, and ǫt is an error term.
If the target variable’s values are also allowed to be considered, then a so-called

235

236 Genetic Algorithms and Genetic Programming

autoregressive part is added so that we search for a model f so that

T(t) = f(X1(t), X1(t−1), . . . , X1(t−tmax),

. . . ,

XN(t), XN(t−1), . . . , XN(t−tmax),

T(t−1), . . . , T(t−tmax)) + ǫt

Of course, the field of applications of time series analysis is huge and in-
cludes for example astronomy, sociology, economics, or, which is what we are
going to do in the course of the application examples given in this section,
the analysis of physical systems. Of course it is not at all natural that any
physical system, may it be technical or not, can be represented by a simple
and easily understandable model. In this context the authors strongly recom-
mend reading Eugene P. Wigner’s article “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences” [Wig60]. In this article Wigner points
out that, although so many natural phenomena such as, e.g., gravitation or
planetary motion can be described by astoundingly simple equations, it is not
at all natural that “laws of nature” exist and even much less that man is able
to discover them.

Especially in the context of analyzing physical systems, the models which
are to be created for describing a system can be seen as so-called virtual
sensors: The goal is to develop models of sufficient quality so that these
models (functions) can be used instead of real sensors, i.e., they are virtual
sensors. Of course, these virtual sensors can be used in various ways, for
example also in addition to real sensors enabling fault detection.

In this section we will concentrate on time series analysis with genetic pro-
gramming: GP is used for evolving models that describe target time series
using other data time series collections. Of course we in principle use the GP
methods for structure identification described in the previous sections, but
some time series specific details are to be described here, especially a time
series specific evaluation operator described in Section 11.1.1. Test results are
given and discussed in Section 11.1.2.

11.1.1 Time Series Specific Evaluation

In principle there is no reason why one should not use means squared errors
or any other of the evaluation functions presented in Section 9.2.3.3 for evalu-
ating time series models produced by GP. Still, in time series we do not only
want to produce models that approximate the given target values, but also
the dynamics of the underlying system that are represented in the measured
data. Thus, we also want to estimate a model’s quality with respect to the
local changes in the data as well as the accumulated values.

This can be done by calculating the differential and integral values. For a
given time series x, the differential of order o is defined as diff(x, o) and the

Data-Based Modeling with Genetic Programming 237

integral as int(x):

diff(x, o)i = xi − xi−o (11.1)

int(x)i =
∑i

i=1 xi (11.2)

for each index i ∈ [1; |x|].
For evaluating a time series model m on the basis of target values o we

calculate all respective values e by evaluating m and then calculate the com-
bined fitness values (as described in Section 9.2.5.2) for the plain values, the
differential (of a predefined order o), and the integral values. These partial
results are weighted using the coefficients c1, c2, and c3, and the final result
is calculated in the following way:

TS(o, e, o, cplain, cdiff , cint, c1, c2, c3) :

a1 = COMB(o, e, n, cplain) (11.3)

a2 = COMB(diff(o, o), diff(e, o), n, cdiff) (11.4)

a3 = COMB(int(o), int(e), n, cint) (11.5)

TS(o, e, o, n, cplain, cdiff , cint, c1, c2, c3) =

∑3
i=1 ai · ci
∑3

i=1 ci
(11.6)

with cplain, cdiff , and cint being the coefficients needed by the combined
evaluation function for weighting the partial MEE, V AF , and R2 results as
well as the maximum negative and positive errors.

Of course, early stopping of model evaluations as described in Section 9.2.5.5
is also possible for this time series evaluation function.

11.1.2 Application Example: Design of Virtual Sensors for
Emissions of Diesel Engines

The first research work of members of the Heuristic and Evolutionary Al-
gorithms Laboratory (HEAL) in the area of system identification using GP
was done in cooperation with the Institute for Design and Control of Mecha-
tronical Systems (DesCon) at JKU Linz, Austria. The framework and the
main infrastructure was given by DesCon who maintain a dynamical motor
test bench (manufactured by AVL, Graz, Austria) shown in Figure 11.1. A
BMW diesel motor is installed on this test bench, and a lot of parameters
of the ECU (engine control unit) as well as engine parameters and emissions
are measured; for example, air mass flows, temperatures, and boost pressure
values are measured, nitric oxides (NOx, to be described later) are measured
using a Horiba Mexa 7000 combustion analyzer, and an opacimeter is used
for estimating the opacity of the engine’s emissions (in order to measure the
emission of particulate matters, i.e., soot).

238 Genetic Algorithms and Genetic Programming

FIGURE 11.1: Dynamic diesel engine test bench at the Institute for Design
and Control of Mechatronical Systems, JKU Linz.

During several years of research on the identification of NOx and soot emis-
sions, members of DesCon have tried several modeling approaches, some of
them being purely data-based as for example those using artificial neural net-
works (ANNs). Due to rather unsatisfactory results obtained using ANNs, the
ability of GP to produce reasonable models was investigated in pilot studies;
we are here once again thankful to Prof. del Re for initiating these studies.

In this context, our goal is to use system identification approaches in order
to create models that are designed to replace or support physical sensors; we
want to have models that can be potentially used instead of these physical
sensors (which can be damageable or simply expensive). This is why we are
here dealing with the design of so-called virtual sensors.

11.1.2.1 Designing Virtual Sensors for Nitric Oxides (NOx)

In general, being able to predict NOx emissions on-line (i.e., during engine
operation) would be very helpful for low emissions engine control. While NOx

formation is widely understood (see for example [dRLF+05] and the references
given therein), the computation of NOx turns out to be too complex and -
at the moment - not easy to be used for control. The reason for this is
that in theory it would be possible to calculate the engine’s NOx emissions
if all relevant parameters (pressures, temperatures, . . .) of the combustion
chambers were known, but (at least at the moment) we are not able to measure
all these values.

As already mentioned above, ANNs have been used for data-based model-

Data-Based Modeling with Genetic Programming 239

ing of NOx emissions of a BMW diesel engine. These results were not very
satisfying, as is for example documented in [dRLF+05]: Even though mod-
eling quality on training data was very good, the model’s ability to predict
correct values for operating points not included in the training data was very
poor.

We therefore designed and implemented a first GP approach based on
the HeuristicLab 1.0; preliminary results were published in [WAW04a] and
[WAW04b]. In [WAW04b] we documented the ability of GP using offspring
selection to produce reasonable models for NOx, including lots of statistics
showing that the results obtained applying rigid offspring selection were sig-
nificantly better than those obtained without using OS or even OS with less
strict parameter settings, i.e., lower success ratio and comparison factor pa-
rameters.

NOx values were recorded by DesCon members following the standard pro-
cedure defined by the Federal Test Procedure (FTP); a whole standardized
test run is therefore called a FTP cycle. FTP tests were executed on the
DesCon test bench in two different ways as it is possible to activate or to
deactivate exhaust gas recirculation (EGR). In principle, recirculating a por-
tion of an engine’s exhaust gas back to the engine cylinders is called EGR;
the incoming air is intermixing with recirculated exhaust gas, which lowers
the adiabatic flame temperature and reduces the amount of excess oxygen (at
least in diesel engines). Furthermore, the peak combustion temperature is
decreased; since the formation of NOx progresses much faster at high temper-
atures, EGR can also be used for decreasing the generation of NOx. Further
information about EGR and its effects on the formation of NOx can for ex-
ample be found in [Hey88] and [vBS04].

We shall therefore here take a closer look at the following two modeling
tasks:

• Situation (1): Use data recorded with deactivated EGR;

• Situation (2): Use data recorded with activated EGR.

In both cases the data were recorded at 20 Hz; the execution of the cycles
took approximately 23 minutes. In total, 33 variables are recorded; here we
do not give a total overview of the statistic parameters of these variables but
rather restrict ourselves to the linear correlation of the input variables to the
target variable: All linear correlations1 of the potential input variables and
the target variable NOx are summarized in Table 11.1; all variables were
filtered using a median filter of order five2 before calculating the correlation
coefficients.

1We here use the same standard formula for calculating linear correlation coefficients of
time series as described in Section 9.4.1.
2Applying a median filter means that a moving window is shifted over the data and all
samples are replaced by the median value of their respective data environment. For calcu-
lating the filtered value yi using median filtering of order 5 we collect the original values

240 Genetic Algorithms and Genetic Programming

Table 11.1: Linear correlation of input variables and the target values (NOx)
in the NOx data set I.

Variable Correlation Coefficient Variable Correlation Coefficient
Situation (1) Situation (2) Situation (1) Situation (2)

time -0.141 -0.129 alpha 0.437 0.462
CO2 0.477 0.941 COH 0.099 0.259
COL 0.222 0.390 KW V AL 0.763 0.853
M T01F 0.414 0.515 ME MES1 0.408 0.416
ME MES2 0.460 0.488 ME MES3 0.043 0.054
ME MES4 0.000 0.000 ME MES5 -0.024 -0.007
ME MES6 0.000 0.000 ME MES7 -0.092 0.015
ME MES8 0.492 0.451 ME MES9 0.660 0.592
ME MES10 0.135 -0.133 ME MES11 0.449 0.532
ME MES12 0.253 0.321 ME MES13 -0.052 0.376
ME MES14 0.091 0.101 ME MES15 0.364 0.314
ME MES16 0.392 0.478 ME MES17 -0.438 -0.470
N MOT OR 0.404 0.413 OP A OP AC 0.248 0.419
T EXH 0.347 0.474 T LLNK 0.133 0.004
T LLV K 0.531 0.315 T OIL 0.096 -0.181
T HC V K -0.074 0.205 T WA 0.149 0.064

Obviously, activating EGR significantly increases the correlation of NOx

and all exhaust variables such as CO2 or THC, for example.

So, in addition to this, the next question is whether to incorporate gas emis-
sions as for example CO2 in the modeling process; of course, estimating NOx

is a lot easier if CO2 is known since there is a high correlation (especially
when EGR is activated), but NOx models that do not need CO2 informa-
tion are more useful as they can be applied without having to measure other
emission values. Furthermore, we also excluded the variables alpha, COH ,
COL, THC, M T 01F , ME MES01− 07, ME MES10, ME MES14, and
ME MES17 from the set of valid input variables for building models that do
not incorporate exhaust information.

We applied GP using populations of 700 individuals for modeling the mea-
sured NOx data; 1-elitism was applied, the mutation rate was set to 0.07,
and rigid offspring selection was applied (maximum selection pressure: 300).
The first 3,000 samples (representing 2.5 minutes) of the data sets were ne-
glected; in strategy (1) the samples 3,001 – 10,000 were used as training data,
in strategy (2) the samples 3,001 – 13,000. The rest of the data was used as
validation / test samples.

Amongst other tests, we attacked modeling situation (1) without using ex-
haust information (hereafter called test strategy (1)), and modeling situation
(2) using exhaust information (test strategy (2)); both test strategies were ex-
ecuted 5 times independently leading to the mean squared errors on training
data summarized in Table 11.2.

xi−2, xi−1, xi, xi+1, and xi+2; after sorting these values we get x′
i,j for j ∈ [1, 5] with

x′
i,j < x′

i,j+1
for j ∈ [1, 4]. yi is then set to the median value of x′

i, i.e., yi = x′
i,3.

Data-Based Modeling with Genetic Programming 241

Table 11.2: Mean squared errors on training data for the NOx data set I.

Test Strategy (1) Test Strategy (2)
Average 49.867 13.454
Minimum 43.408 11.259
Maximum 58.126 18.432

Let us now have a closer look at the best models (with respect to training
data) produced for these test scenarios; their evaluations are both displayed
in Figures 11.2 and 11.3, respectively.

NOx (no AGR, no CO2)

-20

0

20

40

60

80

100

120

150 250 350 450 550 650 750 850 950 1050 1150 1250

time [s]

N
O

x
 (

n
o
rm

)

Original

Estimated

Training Test

NOx_vK(t) = ((([0,950183*T_OEL(t-21)]^(([1,145998*T_LLVK(t-38)]-[1,023461*ME_MES17(t-28)])/([1,065444*ME_MES10(t-18)]+[0,951174*N_MOTOR(t-20)])))-((([0,825300*

 ME_MES9(t-27)]+([0,871124*ME_MES9(t-22)]/[0,933514*ME_MES9(t-13)]))/([1,006088*N_MOTOR(t-21)]/[0,991764*ME_MES9(t-26)]))*((([0,891293*

 ME_MES9(t-15)]/[0,705167*N_MOTOR(t-26)])/([0,947497*N_MOTOR(t-25)]/[1,136678*ME_MES11(t-8)]))/(([1,082096*N_MOTOR(t-1)]+[1,286062*T_LLVK(t-37)])/

 -9,654))))+((([1,205990*T_OEL(t-30)]+[0,937356*T_OEL(t-10)])^([1,065581*T_LLVK(t-40)]/([0,928334*T_OEL(t-6)]+[1,184806*ME_MES7(t-12)])))-([0,888947*

 ME_MES9(t-14)]*((([1,181614*ME_MES9(t-28)]/[0,666162*N_MOTOR(t-25)])/([0,631016*N_MOTOR(t-24)]/[1,301366*ME_MES11(t)]))/(([0,867211*

 N_MOTOR(t-40)]+[1,049105*T_LLVK(t-34)])/-7,628)))))

FIGURE 11.2: Evaluation of the best model produced by GP for test strategy
(1).

The best model for test strategy (1) has a worse fit on test data
(msetest(best1) = 60.636 in contrast to msetraining(best1) = 43.408); the
best model for test strategy (2) surprisingly even has a better fit on test data
(msetest(best2) = 5.809) than on training data (msetrain(best2) = 11.259).

We also tested standard GP without offspring selection, but with propor-
tional as well as tournament (k = 3) parent selection, 1000 individuals, 2000
iterations, 7% mutation rate and the same data base as the one described
previously.

242 Genetic Algorithms and Genetic Programming

NOx (AGR, CO2)

-20

0

20

40

60

80

100

120

150 250 350 450 550 650 750 850 950 1050 1150 1250

time [s]

N
O

x
 (

n
o
rm

)

Original

Estimated

Training Test

NOx_vK(t) = (((([0,838023*CO2_vK(t-6)]-([0,985178*T_LLVK(t-3)]/9,329))+(([1,096131*ME_MES13(t-14)]-9,835)/([1,075515*ME_MES13(t-2)]+1,117)))+(((9,269-[1,034379*THC_vK(t-8)])-

 ([1,033333*T_ABGAS(t-13)]+[COL_vK(t-17)]))/((-7,819+[0,908894*N_MOTOR(t-14)])*[1,216018*ME_MES13(t-15)])))-(([0,768676*CO2_vK(t-10)]-[0,899741*

 ME_MES13(t-3)])/((([1,089508*ME_MES3(t-9)]/([1,200488*N_MOTOR(t-9)]*[1,150031*ME_MES9(t-6)]))+([0,724729*CO2_vK(t-4)]+-1,733))+8,329)))

FIGURE 11.3: Evaluation of the best model produced by GP for test strategy
(2).

Especially the use of proportional selection did not yield reasonable results,
the evaluation of the best model for test strategy (1) returned mean squared
error 110.23 on training data, and for the best for test strategy (2) the mean
squared error was 21.34. The results obtained using tournament selection,
which is suggested in GP literature (as for example in [KKS+03a] or [LP02]),
were a lot better, but still not as good as those produced by extended GP: The
best model for test strategy (1) showed mean squared error 61.92 on training
data, and the best for test strategy (2) showed mean squared error 14.33.
These results were no surprise, especially as we had seen on synthetic data
sets that GP using rigid OS and gender specific parent selection performs a
lot better than standard GP ([WAW04b], [Win04]).

Comparing these results to those achieved using other methods, we saw that
they were indeed promising, but still not completely satisfactory. In fact, we
then started a series of data-based tests using GP in the context of the analysis
of mechatronical systems; this encouraged us to enforce research on the use
of extended GP concepts in the identification of mechatronical systems.

11.1.2.2 Designing Virtual Sensors for Particulate Emissions
(Soot)

A lot of research work was done by DesCon members on the identification
of particulate emissions of a BMW diesel engine. The main results have been

Data-Based Modeling with Genetic Programming 243

published in [AdRWL05] and [LAWR05]; we shall here only summarize these
results in a rather compact way.

In short, first attempts to use GP for producing models for soot were not
very successful; GP did not produce any useful solution without restriction of
the search space. Therefore, a two step approach was used:

“In a first step, a statistical analysis was done on the basis of steady state
measurements. Expert knowledge was combined with statistical correlations
to yield an accurate steady state model. The advantage of steady state anal-
ysis is the secure validation of the model; any delay time or sensor dynamics
are irrelevant. However, such a model could never meet the requirements of
estimating the highly dynamical process of an IC engine. Therefore the steady
state model is used as origin for the genetic programming cycle.” (Taken from
[AdRWL05] where this static model is given in detail.)

Using this static (steady state) model, an additional variable was calculated
and inserted into the set of potential input variables; this so enhanced variables
set was then used as basis for data-based identification of soot.

This extended data basis was used by two modeling approaches, namely a
neural network training algorithm as well as GP; the best results for the ANN
approach were achieved using a network structure with 2 hidden layers and
25 hidden nodes per layer. The parameters of the GP-based training algo-
rithm were set to our standard GP settings (1000 individuals, 10% mutation
rate, rigid OS, 1-elitism). Again, the data were measured during a standard
FTP engine test lasting approximately 23 minutes; the first approximately 8
minutes were taken as training, the rest as validation / test data set.

Figure 11.4 shows a detail of the evaluation of the models produced by GP
and ANN on validation data: As we see clearly, both virtual sensors do not
capture the behavior completely correctly, but the GP model’s fit seems to
be better than the one of the ANN model. This suspicion becomes clearer by
analyzing the distribution of errors which is shown in Figure 11.5: The errors
caused by the evaluation of the model produced by GP are more symmetric
than those of the ANN3 which can be considered an indication for a rather
good model. The cumulative errors of these models are shown in 11.6, and
we here see that the model produced by GP is able to reproduce the engine’s
cumulated soot emissions quite well.

Again, these results were by far not completely satisfactory; of course, the
ANN model could be improved by changing the network structure or the
number of training iterations, and the GP process was not enhanced with
local optimization or pruning operations. Still, again, these results sustained
our confidence in GP’s ability to produce reasonable models for mechatronical
systems.

3In addition to GP and ANN, an auto-regressive moving-average with exogenous inputs
(ARMAX) modeling approach was also calculated for reasons of comparison; the distribu-
tion of the errors caused by the evaluation of this model are also shown in Figure 11.5.
Please see [BJ76] for explanations and application examples of ARMA(X) models.

244 Genetic Algorithms and Genetic Programming

FIGURE 11.4: Evaluation of models for particulate matter emissions of a
diesel engine (snapshot showing the evaluation of the model on validation /
test samples), as given in [AdRWL05].

FIGURE 11.5: Errors distribution of models for particulate matter emissions,
as given in [AdRWL05].

11.1.2.3 NOx Data Sets Used for Further Empirical Studies

The NOx data set described previously in this section was used for several
research activities of DesCon members as well as in our project investigating
GP for the design of virtual sensors. Nevertheless, in the course of further

Data-Based Modeling with Genetic Programming 245

FIGURE 11.6: Cumulative errors of models for particulate matter emissions,
as given in [AdRWL05].

research work several other measurements were recorded and analyzed; two
of them were also used for test series that will be reported on in the following
chapters. This is why we describe and characterize these data sets here.

NOx Data Set II

Recorded in 2006 by members of the Institute for Design and Control of
Mechatronical Systems at JKU Linz at the test bench already mentioned,
this NOx data set includes the variables listed in Table 11.3. The data set
available in this context again contains measurements taken from a 2 liter 4
cylinder BMW diesel engine. Again, several emissions (including NOx, CO,
and CO2) as well as several other engine parameters were recorded at 100
Hz and downsampled to 20 Hz. 22 signals were recorded over approximately
18 minutes, but only 9 variables were considered in further identification test
series.

Several variables were measured over approximately 30 minutes at 100 Hz
recording frequency; they have been downsampled to 20 Hz, so that the result-
ing data set includes ∼36,000 samples. From the variables recorded several
have been removed (as for example CO, CO2, and time) due to irrelevance

246 Genetic Algorithms and Genetic Programming

or high correlations with the target variable Nox true; the 10 remaining vari-
ables are characterized in Table 11.3. Figure 11.7 shows a graphical represen-
tation of the target values over the whole recording time.

The variable NOx Can represents values given by a quick, but also rather
imprecise estimation for the NOx emissions; the actual NOx emissions were
again measured using a Horiba Mexa 7000 combustion analyzer; the respective
values are stored in variable Nox true.

Table 11.3: Statistic features of the identification relevant variables in the
NOx data set II.

Variable Minimum Maximum Mean Variance

(0) Eng nAvg 0.00 3,311.00 1,618.80 413,531.96
(1) AFSCD mAirPerCyl -44.56 1,161.36 453.12 60,952.03
(2) V SACD rOut 5.00 96.00 33.59 1,706.83
(3) NOx CAN -0.30 6.72 1.52 2.87
(4) T OEL 78.68 100.83 87.57 31.05
(5) (T) Nox true 62,46 1,115.23 225.25 60,673.98
(6) InjCrv qP il1Des 0.00 1.40 0.88 0.10
(7) InjCrv qMI1Des 0.00 57.93 12.63 122.73
(8) InjCrv phiMI1Des -3.86 10.61 2.80 18.70
(9) BPSCD pFltV al 986.20 2,318.00 1214.89 104,434.00

All pairwise linear correlations4 are summarized in Table 11.4; again,
all variables were filtered using a median filter of order 5 be-
fore calculating the correlation coefficients. Obviously, there is a
rather high linear correlation between the target variable and the in-
put variables BPSCD pFltV al and NOx CAN ; the values stored in
AFSCD mAirPerCyl and InjCrv qMI1Des are also remarkably correlated
to the designated target values.

NOx Data Set III

During the time in which we were doing the research work discussed here,
maintenance work was repeatedly done at the DesCon test bench; amongst
other aspects, several sensors were removed or replaced by newer ones.

4We here use the same standard formula for calculating linear correlation coefficients of
time series as described in Section 9.4.1.

Data-Based Modeling with Genetic Programming 247

FIGURE 11.7: Target NOx values of NOx data set II, recorded over approx-
imately 30 minutes at 20Hz recording frequency yielding ∼36,000 samples.

The third NOx data set was recorded in 2007 by members of DesCon;
again, several variables were measured at the test bench while testing a 2 liter
4 cylinder BMW diesel engine (simulated vehicle: BMW 320d Sedan). The
mean engine speed was set to 2,200 revolutions per minute (rpm), and in each
engine cycle 15mg fuel were injected.

Once again, several emissions (including NOx, CO, and CO2) as well as sev-
eral other engine parameters were recorded; this time the measurements were
recorded over approximately 18.3 minutes at 100 Hz and then downsampled
to 10 Hz, yielding a data set containing ∼11,000 samples. The target values
(the engine’s NOx emissions measured by a Horiba combustion analyzer) are
stored in variable HoribaNOx.

In [Win08], tests have been documented in which we have used this data
set for testing the ability of GP to incorporate physical knowledge. For this
purpose we have also used a synthetic variable HFM∗:

HFM∗ =
HFM

N
·

1000

60
(11.7)

248 Genetic Algorithms and Genetic Programming

Table 11.4: Linear correlation coefficients of the variables relevant in the NOx

data set II.
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) Eng nAvg 1.00 0.80 0.52 0.70 0.61 0.65 0.59 0.65 0.68 0.75
(1) AF SCD mAirP erCyl 0.80 1.00 0.78 0.90 0.80 0.91 0.60 0.88 0.63 0.95
(2) V SACD rOut 0.53 0.78 1.00 0.73 0.77 0.78 0.38 0.77 0.63 0.81
(3) NOx CAN 0.70 0.90 0.73 1.00 0.74 0.93 0.63 0.86 0.58 0.94
(4) T OEL 0.61 0.80 0.77 0.74 1.00 0.78 0.51 0.75 0.49 0.81
(5) (T) NOx true 0.65 0.91 0.78 0.93 0.78 1.00 0.61 0.90 0.60 0.95
(6) InjCrv qP il1Des 0.59 0.60 0.38 0.63 0.51 0.61 1.00 0.70 0.03 0.62
(7) InjCrv qMI1Des 0.65 0.88 0.77 0.86 0.75 0.90 0.70 1.00 0.50 0.87
(8) InjCrv phiMI1Des 0.68 0.63 0.63 0.58 0.49 0.60 0.03 0.50 1.00 0.66
(9) BP SCD pF ltV al 0.75 0.95 0.81 0.94 0.81 0.95 0.61 0.87 0.66 1.00

This synthetic variable is also included in NOx data set III; detailed expla-
nations regarding the meaning of this additional variable can be found in
[Win08].

Figure 11.8 visualizes all target HoribaNOx values available (in total ap-
proximately 11,000 samples); Figure 11.9 shows a detail of these data, namely
the HoribaNOx of samples 6000 – 7000.

FIGURE 11.8: Target HoribaNOx values of NOx data set III.

In detail, Table 11.5 summarizes the main statistic parameters of the vari-
ables relevant in this identification task. Again, all pairwise linear correlations
have also been calculated, with the results summarized in Table 11.6; all vari-
ables were again filtered using a median filter of order 5 before calculating
the correlation coefficients. As we see in this table, there are no remarkably

Data-Based Modeling with Genetic Programming 249

FIGURE 11.9: Target HoribaNOx values of NOx data set III, samples 6000
– 7000.

high correlations except for the obvious one between HFM and HFM∗; the
correlation coefficient of HFM∗ and the target, HoribaNOx, is above aver-
age (0.72), but not high enough to build a reasonable model only using this
variable as input.

In Sections 11.3, 11.4, and 11.6 we will present research results achieved
using these NOx data sets II and III.

250 Genetic Algorithms and Genetic Programming

Table 11.5: Statistic features of the variables in the NOx data set III.
Variable Minimum Maximum Mean Variance

(0) (T) HoribaNOx 0.011 0.670 0.171 0.011

(1) qMI 8.010 21.960 15.232 16.992
(2) pMI -0.727 8.016 3.424 6.525
(3) qPI 0.000 2.480 0.929 0.627
(4) tiP I 0.018 6.690 4.425 1.358
(5) pRAIL 487.900 927.400 709.355 13,334.040
(6) N 1,906.000 2,507.000 2,208.384 27,668.381
(7) pBOOST 981.000 1906.000 1209.841 28,618.435
(8) HFM 15.148 241.628 101.290 1,226.203
(9) HFM∗ 0.105 1.627 0.763 0.062

Table 11.6: Linear correlation coefficients of the variables relevant in the NOx

data set III.
NOx qMI pMI qP I tiP I pRAIL N pBOOST HF M HF M∗

(0) (T) NOx 1.00 0.01 0.15 -0.13 0.61 -0.05 -0.14 0.25 0.59 0.67

(1) qMI 0.01 1.00 0.03 0.04 -0.39 -0.04 -0.05 0.37 0.29 0.32
(2) pMI 0,15 0.03 1.00 -0.03 -0.11 0.01 0.18 -0.05 -0.06 -0.10
(3) qP I -0.13 0.04 -0.03 1.00 -0.14 -0.10 0.02 0.11 0.01 0.00
(4) tiP I 0,61 -0.39 -0.10 -0.14 1.00 -0.01 0.11 0.37 0.66 0.68
(5) pRAIL -0.05 -0.04 0.01 -0.10 -0.01 1.00 -0.02 -0.05 -0.02 -0.02
(6) N -0.14 -0.05 0.18 0.02 0.11 -0.02 1.00 0.14 0.30 0.08
(7) pBOOST 0.25 0.37 -0.05 0.11 0.37 -0.05 0.14 1.00 0.73 0.73

(8) HF M 0.59 0.29 -0.06 0.01 0.66 -0.02 0.30 0.73 1.00 0.97

(9) HF M∗ 0.67 0.32 -0.10 0.00 0.68 -0.02 0.08 0.73 0.97 1.00

Data-Based Modeling with Genetic Programming 251

11.2 Classification

11.2.1 Introduction

Classification is understood as the act of placing an object into a set of
categories, based on the object’s properties. Objects are classified according
to a (in most cases hierarchical) classification scheme also called taxonomy.
Amongst many other possible applications, examples of taxonomic classifica-
tion are biological classification (the act of categorizing and grouping living
species of organisms), medical classification, and security classification (where
it is often necessary to classify objects or persons for deciding whether a prob-
lem might arise from the present situation or not). A statistical classification
algorithm is supposed to take feature representations of objects and map them
to a special, predefined classification label. Such classification algorithms are
designed to learn (i.e., to approximate the behavior of) a function which maps
a vector of object features into one of several classes; this is done by analyzing
a set of input-output examples (“training samples”) of the function. Since sta-
tistical classification algorithms are supposed to “learn” such functions, we are
dealing with a specific area of machine learning and, more generally, artificial
intelligence.

In a more formal way, the classification problem can be formulated in the
following way: Let the data consist of a set of samples, each containing k
feature values xi1, . . . , xik and a class value yi. What we look for is a function
f that maps a sample xi to one of the c classes available:

f : X → C; (11.8)

∀(x ∈ X) : f(x) = f(x1, . . . , xk) = y; y ∈ {C1, . . . , Cc} (11.9)

where X denotes the feature vector space and C the set of classes.
There are several approaches which are nowadays used for solving data min-

ing and, more specifically, classification problems. The most common ones are
(as for example described in [Mit00]) decision tree learning, instance-based
learning, inductive logic programming (such as Prolog, e.g.), and reinforce-
ment learning.

11.2.2 Real-Valued Classification with Genetic
Programming

In this section we shall concentrate on GP-based classification. In fact, we
will here restrict ourselves to real-valued classification tasks, i.e.,

X ⊂ R
k, C ⊂ R (11.10)

Thus, we can apply the GP-based system identification approach described in
the previous sections; the representations of the problems (Section 9.2.2), the

252 Genetic Algorithms and Genetic Programming

solution candidates (9.2.4), and the genetic operators (9.2.4.2) can be used
without any restrictions.

The only critical aspect is that the evaluation and the quality estimation of
classifiers have to be modified: Evaluating a model m on a set of input features
(x1, . . . , xk) will lead to a target value y ∈ R, but y does not necessarily have
to be exactly one certain class value, i.e., we might get y /∈ C. The exact
mapping of feature vectors and their respective target values to class values
is done using sets of thresholds t1, . . . , tc−1 placed between the class values
C1, . . . , Cc:

∀(i ∈ [1; c− 1]) : Ci < ti < Ci+1 (11.11)

Based on a set of thresholds T we can classify a sample for which the target
value y has been calculated as belonging to class ct using the mapping function
f ′:

f ′ : {R,R} → C ; ct = f ′(ct, T) (11.12)

y < t1 ⇒ f ′(ct, T) = C1 (11.13)

y > tc−1 ⇒ f ′(ct, T) = Cc (11.14)

∀(i ∈ [1; c− 2]) : ti < y < ti+1 ⇒ f ′(ct, T) = Ci+1 (11.15)

11.2.3 Analyzing Classifiers

11.2.3.1 Classification Rates and Confusion Matrices

When it comes to analyzing classifiers, the most important aspect is of
course how many samples are classified correctly. For each feature vector
sample x we have an original classification y, and by applying the classifier
which is to be evaluated we get the predicted class y′. As described before,
this classification of x is done using a classification model yielding y = f(x)
and an optional post-processing step using thresholds T yielding y = f ′(y, T).

Let us assume that we analyze n samples x1...n (classified into c classes
C1 . . . Cc) with their respective original classifications y1...n; by applying a
classification model m we get the respective predicted classifications y′1...n as
described above. The ratios of correctly classified samples for all classes or
each class separately are calculated as cc and cci, respectively:

cc =
|j : j ∈ [1;n] ∧ yj = y′j |

n
(11.16)

∀(i ∈ [1; c]) : cci =
|j : j ∈ [1;n] ∧ yj = y′j ∧ yj = Ci|

|j : j ∈ [1;n] ∧ yj = Ci|
(11.17)

For more detailed analysis, confusion matrices [KP98] contain information
about actual and predicted classifications done by classification systems. In
general, a confusion matrix cm is a table containing c × c cells that states

Data-Based Modeling with Genetic Programming 253

how many samples of each given class are classified as belonging to a specific
class; for example, each column of the matrix can represent the instances of a
predicted class while each row represents the instances in the original (actual)
class (or vice versa). So, the value cmi,j stores the number of samples of class
i that are classified as class j.

An example is given in Table 11.7 in which each row of the matrix represents
the instances in a predicted class while each column represents the instances in
the original (actual) class; additionally, the numbers of samples not classified
(nc1 . . . ncc) are also given as well as the total rate of correct classifications.
Please note that the sum of all cells has to be equal to the number of samples
n, i.e.,

c
∑

i=1

c
∑

j=1

cmi,j +

c
∑

i=1

nci = n (11.18)

Table 11.7: Exemplary confusion matrix with three classes

Actual Class
“1” “2” “3”

Estimated “1” cm1,1 cm2,1 cm3,1

Class “2” cm1,2 cm2,2 cm3,2

“3” cm1,3 cm2,3 cm3,3

Not classified nc1 nc2 nc3

Correct Classifications Ratio
∑ c

i=1 cmi,i

n

The special case of binary classification into two classes (i.e., c = 2) is
frequently found as it is in many applications necessary to decide for given
samples whether or not some given condition is fulfilled. There are the four
different possible outcomes of a single predicted (estimated) classification in
the case of binary classification into classes “positive” (“yes,” “1,” “true”)
and “negative” (“no,” “0,” “false”):

• A false positive classification is done when a sample is incorrectly clas-
sified as “positive” which is in fact “negative,”

• a false negative classification is done when a sample is incorrectly clas-
sified as “negative” which is in fact “positive,” and

• true positive as well as true negative classifications are respective correct
classifications.

A typical “positive / negative” example is given in Table 11.8:

254 Genetic Algorithms and Genetic Programming

Table 11.8: Exemplary confusion matrix with two classes

Actual Class
Positive Negative

Estimated Positive a (true positive) b (false positive)
Class Negative c (false negative) d (true negative)

In this case,

• the accuracy is defined as ACC = a+d
a+b+c+d ,

• the true positive rate (also called sensitivity) as TP = a
a+c ,

• the true negative rate (also called specificity) as TN = d
b+d ,

• the false positive rate as FP = b
b+d (which is in fact the probability of

classifying a sample as “positive” when it is actually “negative”),

• the false negative rate as FN = c
a+c (which is in fact the probability of

classifying a sample as “negative” when it is actually “positive”), and
finally

• the precision as P = a
a+b .

11.2.3.2 Receiver Operating Characteristic (ROC) Curves

Receiver operating characteristic (ROC) analysis provides a convenient
graphical display of the trade-off between true and false positive classifica-
tion rates for two class (binary) problems [FE05]. Since its introduction in
the medical and signal processing literatures ([HM82], [Zwe93]), ROC analysis
has become a prominent method for selecting an operating point; for a recent
snapshot of applications and methodologies see [FBF+03] and [HOFLe04].
ROC analysis often includes the calculation of the area under the ROC curve
(AUC).

In the context of two class classification, ROC curves are calculated in the
following way: For each possible threshold value discriminating two given
classes (e.g., 0 and 1, “true” and “false” or “positive” and “negative”), the
numbers of true and false classifications for one of the classes are calculated.
For example, if the two classes “true” and “false” are to be discriminated
using a given classifier, a fixed set of equidistant thresholds is tested and the
true positives (TP) and the false positives (FP) are counted for each of them.
Each pair of TP and FP values produces a point of the ROC curve; examples
are graphically shown in Figure 11.10. Slightly different versions are also often
used; for example the positive predictive value (= TP / (TP + FP)) or the
negative predictive value (= TN / (FN + TN)) could be displayed instead.

Data-Based Modeling with Genetic Programming 255

FIGURE 11.10: Two exemplary ROC curves and their area under the ROC
curve (AUC).

The most common quantitative index describing an ROC curve is the area
under it. The bigger the area under a ROC curve is, the better the discrim-
inator model is; if the two classes can be ideally separated, the ROC curve
goes through the upper left corner and, thus, the area under it reaches its
maximal possible value which is exactly 1.0.

This method is very useful for analyzing the qualtity of two class classifiers,
but unfortunately it is not directly applicable for more than two classes. When
it comes to measuring or graphically illustrating the quality of multi-class
classifiers, one possibility is to define symmetric areas around the original
class values; for each class value Ci the corresponding area is defined as [Ci−

r, Ci + r]. Successively increasing the parameter value r from 0 to Ci+1−Ci

2
and calculating the numbers of correct and incorrect classifications for each r
yields a set of pairs of FP/TP values. Jiang and Motai [JM05], for example,
use this technique for illustrating and analyzing the classification performance
in the context of automatic motion learning.

Although this method can be used very easily, it is not generally applicable
because it is restricted to symmetric areas. Emerson and Fieldsend [FE05]
propose a different approach and define the ROC surface for the Q-class prob-
lem in terms of a multi-objective optimization problem in which the goal is
to simultaneously minimize misclassification rates when the misclassification
costs and parameters governing the classifier’s behavior are unknown. The
problem with this approach is that the estimated Pareto fronts presented in
[FE05] can be illustrated and used for graphical interpretation for a classifi-
cation problem involving not more than three classes. This is why we here
in the following section propose the use of sets of ROC curves for each class
separately.

256 Genetic Algorithms and Genetic Programming

11.2.3.3 Sets of Receiver Operating Characteristic Curves and
their Use in the Evaluation of Multi-Class Classification

In this section we present an extension to ROC analysis making it possible
to measure the quality of classifiers for multi-class problems. Unlike other
multi-class-ROC approaches which have been presented recently (see [FE05]
or [Sri99], e.g.) we propose a method based on the theory of ROC curves that
creates sets of ROC curves for each class that can be analyzed separately or
in combination. Thus, what we get is a convenient graphical display of the
trade-off between true and false classifications for multi-class problems. We
have developed a generalization of this AUC analysis for multi-class problems
which gives the operator the possibility to see not only how accurately, but
also how clearly classes can be separated from each other.

The main idea presented here is that for each given class Ci the numbers of
true and false classifications are calculated for each possible pair of threshold
between the classes Ci−1 and Ci as well as between Ci and Ci+1. This is
in fact done under the assumption that the c classes are ordered and that
Ci < Ci+1 holds for every i ∈ [1, (n−1)] (with c being the number of classes).

For a given class Ci the corresponding TP and FP values (on the basis of
the N original values ~o and estimated values ~e) are calculated as:

∀(〈ta, tb〉|(Ci−1 < ta < Ci) ∧ (Ci < tb < ci+1)) : (11.19)

TP (ta, tb) = |{ej : (ta < ej < tb) ∧ (ta < oj < tb)}| (11.20)

FP (ta, tb) = |{ej : (ta < ej < tb) ∧ (oj < ta ∨ oj > tb)}| (11.21)

This approach has been published first in [WAW06d] and then described in
detail (including application examples) in [WAW07].

The resulting tuples of (FP,TP) values are stored in a matrix which can be
plotted as is exemplarily illustrated in Figure 11.11: On the basis of synthetic
data 102 = 100 ROC points for 10 thresholds between the chosen class Ci and
Ci−1 as well as between Ci and Ci+1 were calculated. This obviously yields
a set of points which can be interpreted in analogy to the interpretation of
“normal” ROC curves: The closer the points are located to the upper left
corner, the higher is the quality of the classifier at hand.

For getting sets of ROC curves instead of ROC points, the following change
is introduced: An arbitrary threshold ta between the classes Ci−1 and Ci is
fixed and the FP and TP values for all possible thresholds tb between Ci and
Ci+1 are calculated. What we get is one single ROC curve; this calculation
is executed for all possible values of ta (i.e., for all possible threshold between
Ci−1 and Ci). This procedure also has to be executed the other way around,
i.e., also has to choose an arbitrary threshold tb between Ci and Ci+1, calculate
all corresponding ROC points, and repeat this for all values for all possible
values of ta.

Finally, what we get is a set of ROC curves; an example showing 10 ROC
curves is given in Figure 11.11.

Data-Based Modeling with Genetic Programming 257

False Positive Classifications

T
ru

e
 P

o
s
it
iv

e
 C

la
s
s
if
ic

a
ti
o
n
s

FIGURE 11.11: An exemplary graphical display of a multi-class ROC
(MROC) matrix.

Of course this procedure cannot be executed in exactly this way for the
classes C1 and Cn. For c1 it is only possible to calculate the ROC points (and
therefore the ROC curve) for all possible thresholds between C1 and C2; for
Cc this is done analogically with all possible thresholds between Cc−1 and Cc.
This is why sets of ROC curves can be calculated for the classes C2 . . . Cc−1

whereas only simple ROC curves can be produced for C1 and Cc.

As already mentioned in the previous section, the area under the ROC
curve (AUC) is a very common quantitative index describing the classifier’s
quality. In the context of multi-class ROC (MROC) curves the two following
values can be calculated assuming that all m ROC curves for a given class
have already been calculated:

• The maximum AUC (MaxAUC) is the maximum of all areas under the
ROC curves calculated for a specific class. It measures how exactly this
class is separated from the others using the best thresholds parameter
setting.

MaxAUC = max
i=1..m

AUC(ROCi)

• The average AUC (AvgAUC) is calculated as the mean value of all areas
under the ROC curves for a specific class. It measures how clearly this
class is separated from the others since it takes into account all possible
thresholds parameter settings.

AvgAUC =

∑

i=1..mAUC(ROCi)

m

258 Genetic Algorithms and Genetic Programming

We will in the following turn to a topic very much related to what we have
discussed in the previous sections, namely the evaluation of classifiers evolved
by GP.

11.2.4 Classification Specific Evaluation in GP

Of course, there is on the one hand no reason why standard evaluation
functions such as the MSE / MEE, V AF , or R2 functions could not be used
for estimating the quality of classification model during the GP process. The
reason for this is that we here want the identification algorithm to produce
a model that is able to reproduce the given target data as well as possible,
similar to when dealing with regression or time series analysis.

Still, on the other hand the evaluation of classification models may also
include several aspects for which the standard evaluation functions are not
suitable. This is why we shall describe several aspects that may contribute to
a classification specific evaluation function for GP solution candidates in the
context of real-valued learning of classifiers with genetic programming.

11.2.4.1 Preprocessing of Estimated Target Values

Before we compare original and estimated class values we suggest the fol-
lowing classification specific preprocessing step:

The errors of predicted values that are lower than the lowest class value or
greater than the greatest class value should not have a quadratic or even worse,
but rather partially only linear contribution to the fitness of a model. To be
a bit more precise: Given n samples with original classifications oi divided
into c classes C1, ..., Cc (with C1 being the lowest and Cc the greatest class
value), the so preprocessed estimated values preproc(ei) shall be calculated
as follows:

∀(i ∈ [1, n]) :

(ei < C1)⇒ preproc(ei, x) = C1 − (C1 − ei)
1
x (11.22)

(ei > Cc)⇒ preproc(ei, x) = Cc + (ei − Cc)
1
x (11.23)

with x being an exponential parameter which depends on the evaluation func-
tion that uses these preprocessed values. For example, when using the mean
squared error or any other function that incorporates the use of squared dif-
ferences between original and estimated value, x is to be set to 2, whereas
when using the MEE function it has to be set to the chosen exponent.

The reason for this is that values that are greater than the greatest class
value or below the lowest value are anyway classified as belonging to the
class having the greatest or the lowest class number, respectively; using a
standard evaluation function without preprocessing of the estimated values
would punish a formula producing such values more than necessary.

Data-Based Modeling with Genetic Programming 259

11.2.4.2 Considering Standard Evaluation Functions

For quantifying the quality of classifiers we can use all functions described
in Section 9.2.5; in contrast to standard applications, we can also apply these
functions for each class individually.

In the standard case, all n values are evaluated using the MEE, V AF ,
and R2 values as well as the minimum and maximum errors errormin and
errormax; these can optionally be calculated using the preprocessed values
preproc(ei) instead of ei for all i ∈ [1;n]. Thus, we get partial values mee,
vaf and r2, errormin and errormax which can be weighted using the factors
wmee, wvaf , wr2 , werrmin

, and werrmax
.

This approach of course does not consider the distribution of samples to
the classes; for example, if 98% of the samples belong to class 0 and only 2%
to class 1, then the evaluation of a model classifying all samples as 0 will be
fairly good when using these standard evaluation functions even though this
classifier is more or less useless.

In order to overcome this problem we could for example sample the data
so that all classes are represented by the same number of samples; we instead
here describe the application of these evaluation functions to the classes given
separately:

The sets of estimated values ec1 . . . ecc contain the values estimated for
each class C1 . . . Cc, and in analogy to this the sets oc1 . . . occ are sets of the
corresponding class values:

∀(i ∈ [1;n]) : oi = k ⇒ ei ∈ eck, oi ∈ ock (11.24)

Additionally, we also need class weights w1 . . . wc (with w =
∑c

i=1 wi) and
can so calculate the partial fitness values as

mee =
1

w

c
∑

i=1

mee(oci, eci, n) · wi (11.25)

r2 =
1

w

c
∑

i=1

r2(oci, eci) · wi (11.26)

vaf =
1

w

c
∑

i=1

(

1−
var(oci − eci)

var(o)

)

· wi (11.27)

errormin =
1

w

c
∑

i=1

rmin(oci, eci) · wi (11.28)

errormax =
1

w

c
∑

i=1

rmax(oci, eci) · wi (11.29)

Again, these values can optionally be calculated using the preprocessed values
preproc(ei) instead of ei for all i ∈ [1;n].

Of course, the adjusted functions described in Section 9.2.5.3 could be used
instead of the standard functions.

260 Genetic Algorithms and Genetic Programming

11.2.4.3 Considering Classification Specific Aspects

We propose the consideration of the following classification specific aspects
in the evaluation of classifier models:

• The range of the values estimated for each of the given classes,

• how well the classes are separated correctly from each other depending
on the choice of appropriate thresholds, and

• the area under ROC curves or, in the case of multi-class classification,
the area under sets of MROC curves.

Class Ranges

For calculating the class ranges cr1 . . . crc we definitively need the sets of
estimated values for each class, ec1 . . . ecc:

∀(i ∈ [1; c]) : cri = max(eci)−min(eci) (11.30)

and can so calculate the class ranges’ contribution cr as

cr =

c
∑

i=1

cri · wi (11.31)

Figure 11.12 exemplarily displays several samples with original class values
C1, C2, and C3; the class ranges result from the estimated values for each
class and are indicated as cr1, cr2, and cr3.

Thresholds Analysis

As is indicated in Figure 11.12 we do not only want to consider class ranges
but also a more classification-like approach. Between each pair of contiguous
classes we set m equally distributed temporary thresholds:

∀(i ∈ [1; c− 1])∀(k ∈ [1;m]) : ti,k = Ci + k ·
Ci+1 − Ci

m+ 1
(11.32)

Then, for each threshold we count the numbers of samples which are classified
incorrectly; here we also consider a given matrix storing misclassification pun-
ishments mcp for each pair of classes giving the misclassification punishment
for classifying a sample of class a as class b as mcpa,b for all a and b in [1; c]:

∀(i ∈ [1; c− 1])∀(k ∈ [1;m]) : ∀(j ∈ [1;n]) :

p(i, k, j) =

mcpi,i+1 ·
1

freqoj

: oj < ti,k ∧ ej > ti,k

mcpi+1,i ·
1

freqoj

: oj > ti,k ∧ ej < ti,k

0 : else

(11.33)

p(i, k) =
∑n

j=1 p(i, k, j) (11.34)

Data-Based Modeling with Genetic Programming 261

C1

C2

C3

Estimated Values

Original Class Values

cr1

cr2

cr3

t11

t12

t13

t14

t15

t21

t22

t23

t24

t25

FIGURE 11.12: Classification example: Several samples with original class
values C1, C2, and C3 are shown; the class ranges result from the estimated
values for each class and are indicated as cr1, cr2, and cr3.

assuming that a sample j is (temporarily) classified as class (i+ 1) if ej > ti,k
and as class i if ej < ti,k; freqa is the frequency of class a, i.e., the number
of samples that are originally classified as belonging to class a.

The thresholds’ contribution to the classifier’s fitness, thresh, can be now
calculated in two different ways: We can consider the minimum sum of pun-
ishments for each pair of contiguous classes as

thresh =

c−1
∑

i=1

mink∈[1;m]p(i, k) (11.35)

or consider all thresholds which are weighted using threshold weights tw1...m

as

thresh =

c−1
∑

i=1

1
∑m

k=1 twk

m
∑

k=1

p(i, k) · twk (11.36)

Normally, we define the threshold weights tw using minimum and maximum
weights, weighting the thresholds at near to the original class values minimally

262 Genetic Algorithms and Genetic Programming

and those in the “middle” maximally:

tw1 = twmin, twm = twmin; twrange = twmax − twmin (11.37)

m mod 2 = 0⇒

l = m/2
twl = twl+1 = twmax

∀(i ∈ [2; l− 1]) :

twi = twmin +
twrange

l−1 · (i− 1)

∀(i ∈ [l + 1;m− 1]) : twm−i+1 = twi

(11.38)

m mod 2 = 1⇒

l = (m+ 1)/2
twl = twmax

∀(i ∈ [2; l− 1]) :

twi = twmin +
twrange

(m−1)/2 · (i− 1)

∀(i ∈ [l + 1;m− 1]) : twm−i+1 = twi

(11.39)

(M)ROC Analysis

Finally, we also consider the area under the (M)ROC curves as described in
Section 11.2.3.3: For each class we calculate the AUC values for ROC curves
and sets of MROC curves (with a given number of thresholds checked for each
class), and then we can either use the average AUC or the maximum AUC
for each class weighted with the weighting factors already mentioned before:

auc =

{
∑c

i=1AvgAUC(Ci) · wi : consider average AUCs
∑c

i=1MaxAUC(Ci) · wi : consider maximum AUCs
(11.40)

11.2.4.4 Combined Classifier Evaluation

As we have now compiled all information needed for estimating the quality
of a classifier model in GP, CLASS, we calculate the final overall quality
using respective weighting factors:

a1 = mee · c1 (c1 = wmee)
a2 = vaf · c2 (c2 = wvaf)
a3 = r2 · c3 (c3 = wr2)
a4 = errormin · c4 (c4 = werrmin

)
a5 = errormax · c5 (c5 = werrmax

)
a6 = cr · c6 (c6 = wcr)
a7 = thresh · c7 (c7 = wthresh)
a8 = auc · c8 (c8 = wauc)

CLASS(o, e) =
∑ 8

i=1 ai·ci
∑ 8

i=1 ci

(11.41)

Data-Based Modeling with Genetic Programming 263

11.2.5 Application Example: Medical Data Analysis

11.2.5.1 Benchmark Data Sets

For testing GP-based training of classifiers here we have picked the following
data sets: The Wisconsin Breast Cancer, the Melanoma, and the Thyroid data
sets.

• The Wisconsin data set is a part of the UCI machine learning reposi-
tory5. In short, it represents medical measurements which were recorded
while investigating patients potentially suffering from breast cancer.
The number of features recorded is 9 (all being continuous numeric
ones); the file version we have used contains 683 recorded examples (by
now, 699 examples are already available since the data base is updated
regularly).

• The Thyroid data set represents medical measurements which were
recorded while investigating patients potentially suffering from hypo-
or hyperthyroidism; this data set has also been taken from the UCI
repository. In short, the task is to determine whether a patient is hy-
pothyroid or not. Three classes are formed: Euthyroid (the state of
having normal thyroid gland function), hyperthyroid (overactive thy-
roid), and hypothyroid (underactive thyroid).
In total, the data set contains 7200 samples. The samples of the Thyroid
data set are not equally distributed to the three given classes; in fact,
166 samples belong to class “1” (“subnormal functioning”), 368 samples
are classified as “2” (“hyperfunction”), and the remaining 6666 samples
belong to class “3” (“euthyroid”); a good classifier therefore has to be
able to correctly classify significantly more than 92% of the samples sim-
ply because 92 percent of the patients are not hypo- or hyperthyroid.
21 attributes (15 binary and 6 continuous ones) are stored in this data
set.

• The Melanoma data set represents medical measurements which were
recorded while investigating patients potentially suffering from skin can-
cer. It contains 1311 examples for which 30 features have been recorded;
each of the 1311 samples represents a pigmented skin lesion which has to
be classified as a melanoma or a nonhazardous nevus. This data set has
been provided to us by Prof. Dr. Michael Binder from the Department
of Dermatology at the Medical University Vienna, Austria.
A comparison of machine learning methods for the diagnosis of pig-
mented skin lesions (i.e., detecting skin cancer based on the analysis
of visual data) can be found in [DOMK+01]; in this paper the au-
thors describe the quality of classifiers produced for a comparable data

5http://www.ics.uci.edu/~mlearn/.

264 Genetic Algorithms and Genetic Programming

Table 11.9: Set of function and terminal definitions for enhanced GP-based
classification.

Functions
Name Arity Description

+ 2 Addition
∗ 2 Multiplication
- 2 Subtraction
/ 2 Division
ex 1 Exponential Function
IF 3 If [Arg0] then return [Then] branch ([Arg1]),

otherwise return [Else] branch ([Arg2])
≤, ≥ 2 Less or equal, greater or equal

&&, || 2 Logical AND, logical OR
Terminals

Name Parameters Description
var x, c Value of attribute x multiplied with coefficient c

const d A constant double value d

collection using k-NN classification, ANNs, decision trees, and SVMs.
The difference is that in the data collection used in [DOMK+01] all le-
sions were separated into three classes (common nevi, dysplastic nevi,
or melanoma); here we use data representing lesions that have been
classified as benign or malign, i.e., we are facing a binary classification
problem.

All three data sets were investigated via 10-fold cross-validation. This
means that each original data set was divided into 10 disjoint sets of (ap-
proximately) equal size. Thus, 10 different pairs of training (90% of the data)
and test data sets (10% of the data) can be formed and used for testing the
classification algorithm.

11.2.5.2 Solution Candidate Representation Using Hybrid Tree
Structures

The selection of the functions library is an important part of any GP mod-
eling process because this library should be able to represent a wide range of
systems; Table 11.9 gives an overview of the function set as well as the ter-
minal nodes used for the classification experiments documented here. As we
can see in Table 11.9, mathematical functions and terminal nodes are used as
well as Boolean operators for building complex arithmetic expressions. Thus,
the concept of decision trees is included in this approach together with the
standard structure identification concept that tries to evolve nonlinear math-
ematical expressions. An example showing the structure tree representation

Data-Based Modeling with Genetic Programming 265

of a combined formula including arithmetic as well as logical functions is dis-
played in Figure 11.13.

FIGURE 11.13: An exemplary hybrid structure tree of a combined formula
including arithmetic as well as logical functions.

11.2.5.3 Evaluation of Classification Models

There are several possible functions that can serve as fitness functions
within the GP process. For example, the ratio of misclassifications (using op-
timal thresholds) or the area under the corresponding ROC curves ([Zwe93],
[Bra97]) could be used. Another function frequently used for quantifying the
quality of models is the R2 function that takes into account the sum of squared
errors as well as the sum of squared target values; an alternative, the so-called
adjusted R2 function, is also utilized in many applications.

We have decided to use a variant of the squared errors function for estimat-
ing the quality of a classification model. There is one major difference of this
modified mean squared errors function to the standard implementation of this
function: The errors of predicted values that are lower than the lowest class
value or greater than the greatest class value do not have a totally quadratic,
but partially only linear contribution to the fitness value. To be a bit more
precise: Given N samples with original classifications oi divided into n classes

266 Genetic Algorithms and Genetic Programming

c1, ..., cn (with c1 being the lowest and cn the greatest class value), the fitness
value F of a classification model producing the estimated classification values
ei is evaluated as follows:

∀(i ∈ [1, N]) :

(ei < c1)⇒ fi = (oi − c1)2+ | c1 − ei |,

(c1 ≤ ei ≤ cn)⇒ fi = (ei − oi)
2, (11.42)

(ei > cn)⇒ fi = (oi − cn)2+ | cn − ei |

F =
1

N

N
∑

i=1

fi (11.43)

The reason for this is that values that are greater than the greatest class
value or below the lowest value are anyway classified as belonging to the
class having the greatest or the lowest class number, respectively; using a
standard implementation of the squared error function would punish a formula
producing such values more than necessary.

11.2.5.4 Finding Appropriate Class Thresholds: Dynamic Range
Selection

Of course, a mathematical expression alone does not yet define a classifica-
tion model; thresholds are used for dividing the output into multiple ranges,
each corresponding to exactly one class. These regions are defined before
starting the training algorithm in static range selection (SRS, see for example
[LC05] for explanations), which brings along the difficulty of determining the
appropriate range boundaries a priori. In the GP-based classification frame-
work discussed here we have therefore used dynamic range selection (DRS)
which attempts to overcome this problem by evolving the range thresholds
along with the classification models: Thresholds are chosen so that the sum
of class-wise ratios of misclassifications for all given classes is minimized (on
the training data, of course).

In detail, let us consider the following: Given N (training) samples with
original classifications oi divided into n classes c1, . . . , cn (with c1 being the
lowest and cn the greatest class value), models produced by GP can be in
general used for calculating estimated values ei for all N samples. Assuming
thresholds T = t1, . . . , tn−1 (with cj < tj < cj+1 for j ∈ [1;n − 1]), each
sample k is classified as eck:

ek < t1 ⇒ eck(T) = c1 (11.44)

tj < ek < tj+1 ⇒ eck(T) = cj+1 (11.45)

ek > tn−1 ⇒ eck(T) = cn (11.46)

Data-Based Modeling with Genetic Programming 267

Thus, assuming a set of thresholds Tm, for each class ck we get the ratio of
correctly classified samples crk as

totalk(Tm) = |{a : (∀(x ∈ a) : ox = eck(Tm))}| (11.47)

correctk(Tm) = |{b : (∀(x ∈ b) : ox = eck(Tm) ∧ ox = ck)}| (11.48)

crk(Tm) =
correctk(Tm)

totalk(Tm)
(11.49)

The sum of ratios of correctly classified samples is – dependent on the set of
thresholds Tm – calculated as

cr(Tm) =

n
∑

i=1

cri(Tm) (11.50)

So, finally we can define the set of thresholds applied as that set Topt so
that each other set of thresholds leads to equal or lower sums of classification
accuracies6:

Td 6= Topt ⇒ cr(Td) ≤ cr(Topt) (11.51)

These thresholds, that are optimal for the training samples, are fixed and also
applied on the test samples.

Please note that this sum of class-wise classification accuracies is not equal
to the total ratio of correctly classified samples which is used later on in
Sections 11.2.5.5 and 11.2.5.8; the total classification accuracy for a set of
thresholds acc(Tm) (assuming original and estimated values o and e) is defined
as

z(Tm) = |{a|(∀(x ∈ a) : ox = ecx(Tm))}| (11.52)

acc(Tm) =
z

N
. (11.53)

11.2.5.5 First Results, Identification of Optimal Operators and
Parameter Settings

As first reported in detail in [WAW07], during our thorough test series we
have identified the following GP-relevant parameter settings as the best ones
for solving classification problem instances:

• GP-algorithm: Enhanced GP using strict offspring selection.

• Mutation rate: 10% – 15%.

• Population size: 500 – 2,000.

6Please note here that it could happen that more than one combination of thresholds can
be optimal, simply because there could be more than one optimal threshold for any given
pair of class values. This is why we here give an inequation in (11.51).

268 Genetic Algorithms and Genetic Programming

• Selection operators: Whereas standard GA implementations use only
one selection operator, the SASEGASA requires two, namely the so-
called female selection operator as well as the male selection operator.
Similar to our experience gained during the tests on the identification
of mechatronical systems, it seems to be the best to choose the roulette-
wheel selection in combination with the random selection operator. The
reason for this is that apparently merging the genetic information of
rather good individuals (models, formulas) with randomly chosen ones
is the best strategy when using the SASEGASA for solving identification
problems.

• Success ratio and selection pressure: As for instance described
in [AW04b], there are some additional parameters of the SASEGASA
regarding the selection of those individuals that are accepted to be a
part of the next generation’s population. These are the success ratio
and the maximal selection pressure that steer the algorithm’s behavior
regarding offspring selection. For model structure identification tasks
in general and especially in case of dealing with classification problems,
the following parameter settings seem to be the best ones:

– Success ratio = 1.0, and

– Maximum selection pressure = 100 – 500 (this value has to be
defined before starting a identification process depending on other
settings of the genetic algorithm used and the problem instance
which is to be solved).

As has already been explained in further detail in previous chapters,
these settings have the effect that in each generation only offspring sur-
vive that are really better than their parent individuals (since the success
ratio is set to 1.0, only better children are inserted into the next gen-
eration’s population). This is why the selection pressure becomes very
high as the algorithm is executed, and therefore the maximum selection
pressure has to be set to a rather high value (as, e.g., 100 or 500) to
avoid premature termination.

• Crossover operators: We have implemented and tested three dif-
ferent single-point crossover procedures for GP-based model structure
identification: One that exchanges rather big subtrees, one that is de-
signed to exchange rather small structural parts (e.g., only one or two
nodes), and one that replaces randomly chosen parts of the respective
structure trees. Moreover, for each crossover operator we have also im-
plemented an extended version that additionally randomly mutates all
terminal nodes (i.e., manipulates the parameters of the represented for-
mula). The following 6 structure identification crossover operators are
available: StandardSPHigh, StandardSPMedium, StandardSPLow, Ex-
tendedSPHigh, ExtendedSPMedium, and ExtendedSPLow.

Data-Based Modeling with Genetic Programming 269

Since arbitrarily many crossover operators can be selected when apply-
ing the SASEGASA7, the task was not to find out which operator can
be used to produce the best results but rather which subset of operators
is to be chosen. According to what we experienced, the following set
of crossover operators should be applied: All three standard operators
(StandardSPHigh, StandardSPMedium, and StandardSPLow) plus one
of the extended ones, for instance ExtendedSPLow.

• Mutation operators: The basic mutation operator for GP structure
identification we have implemented and tested, GAStandard, works as
already described in Chapter 9: A function symbol could become an-
other function symbol or be deleted; the value of a constant node or
the index of a variable could be modified. Furthermore, we have also
implemented an extended version (GAExtended) that additionally ran-
domly mutates all terminal nodes (in analogy to the extended crossover
operators).
As the latest test series have shown, the choice of the crossover oper-
ators influences the decision which mutation operator to apply to the
SASEGASA: If one of the extended crossover operators is selected, it
seems to be best to choose the standard mutation operator. But if only
standard crossover methods are selected, picking the extended mutation
method yields the best results.

Selected experimental results of the standard GP implementation and the
SASEGASA algorithm for the Thyroid data set using various parameter set-
tings are presented in Table 11.10. For each parameter settings version the
10-fold cross validation test runs were executed, the resulting average results
are listed. In all cases, the population size was 1000; furthermore, the follow-
ing parameter settings were used:

(1) crossover: ExtendedSPMedium; mutation: GAStandard; selection:
roulette.

(2) crossover: StandardSPMedium; mutation: GAExtended; selection:
roulette.

(3) crossover: all 6 available operators; mutation: GAExtended; selection:
random and roulette (maximum selection pressure: 500).

(4) crossover: all 6 available operators; mutation: GAStandard; selection:
Random and roulette (maximum selection pressure: 500).

7Using more than one crossover operator within the SASEGASA does not mean using a
combination of several operators for creating one new solution, but rather in the following
way: Every time a new child is to be produced using two parent individuals, one of the
given crossover operators is chosen randomly; the chance of being applied is equal for each
operator.

270 Genetic Algorithms and Genetic Programming

Table 11.10: Experimental results for the Thyroid data set.

Using standard GP implementation
Parameter Correct classifications

settings Evaluation Prognosis
(1) 92.80% 92.13%
(2) 93.91% 93.25%

Using the SASEGASA
Parameter Correct classifications

settings Evaluation Prognosis
(3) 97.15% 96.34%
(4) 98.21% 98.07%
(5) 97.70% 97.25%
(6) 98.93% 98.53%

(5) crossover: all 3 standard operators plus ExtendedSPLow; mutation: GA-
Standard; selection: roulette and roulette (maximum selection pressure:
500).

(6) crossover: all 3 standard operators plus ExtendedSPLow; mutation: GA-
Standard; selection: random and roulette (maximum selection pressure:
500).

As an example, the model produced for cross validation partition 3 using
the parameter settings combination (6) is shown in Figure 11.17.

These insights have been used also in the more extensive test series docu-
mented later on in this chapter.

11.2.5.6 Graphical Classifier Analysis

Graphical analysis can often help analyzing results achieved to any kind of
problem; this is of course also the case in machine learning and in data-based
classification.

The most common and also simplest way how to illustrate classification
results is to plot the target values and the estimated values into one chart;
Figure 11.14 shows a graphical representation of the best result obtained for
the Thyroid data set, cross-validation set 9.

In Figure 11.15 we show 4 ROC chart examples that were generated for the
classes ‘0’ and ‘2’ of the Thyroid data set, 10-fold cross validation set number
9:

(a) ROC curve for an unsuitable classifier for class ‘2’, evaluated on training
data;

Data-Based Modeling with Genetic Programming 271

Table 11.11: Summary of the best GP parameter settings for solving classifi-
cation problems.

Parameter Optimal Value

GP algorithm SASEGASA (single population,
i.e., GP with offspring selection)

Mutation rate 10% – 15%
Population size 1,000
Maximum selection pressure 100 – 1,000
Parent selection operators Random, roulette

StandardSPLow,
Crossover StandardSPMedium,
Operators StandardSPHigh,

ExtendedSPLow
Mutation operator GAStandard
Ratio of weighting the evaluation
contributions (SumOfSquaredErrors :
separability : class ranges) 4 : 1: 1

(b) ROC curve for the best identified classifier for class ‘0’, evaluated on
training data;

(c) ROC curve for the best identified classifier for class ‘0’, evaluated on
test data;

(d) ROC curve for the best identified classifier for class ‘2’, evaluated on
test data.

In Figure 11.16 finally we show 4 MROC chart examples that were generated
for the intermediate classes ‘1’ of the Thyroid data set, again on the basis of
10-fold CV-set number 9:

(a) MROC curve for an unsuitable classifier for class ‘1’, evaluated on train-
ing data;

(b) MROC curve for an unsuitable classifier for class ‘1’, evaluated on test
data;

(c) MROC curve for the best identified classifier for class ‘1’, evaluated on
training data;

(d) MROC curve for the best identified classifier for class ‘1’, evaluated on
test data.

On the webpage of this book8 interested readers can find a collection of 10
example models (exactly one for each partition of the 10-fold cross-validation)

8http://gagp2009.heuristiclab.com/.

272 Genetic Algorithms and Genetic Programming

FIGURE 11.14: Graphical representation of the best result we obtained for
the Thyroid data set, CV-partition 9: Comparison of original and estimated
class values.

for the Thyroid data set, produced by GP; optimal thresholds are given as
well as resulting confusion matrices for each data partition.

11.2.5.7 Classification Methods Applied in Detailed Test Series

For comparing GP-based classification with other machine learning meth-
ods, the following techniques for training classifiers were examined: Genetic
programming (enhanced approach using extended parents and offspring selec-
tion), linear modeling, neural networks, the k-nearest-neighbor method, and
support vector machines.

GP-Based Training of Classifiers

We have used the following parameter settings for our GP test series:

• Single population approach; population size: 500 – 1000

• Mutation rate: 10%

• Maximum formula tree height: 8

• Parent selection: Gender specific (random and roulette)

Data-Based Modeling with Genetic Programming 273

FIGURE 11.15: ROC curves and their area under the curve (AUC) values for
classification models generated for Thyroid data, CV-set 9.

• Offspring selection: Strict offspring selection (success ratio as well as
comparison factor set to 1.0)

• 1-elitism

• Termination criteria:

– Maximum number of generations: 1000; not reached, all executions
were terminated via the

– Maximum selection pressure: 100

• Function set: All functions as described in Table 11.9.

• Fitness functions:

274 Genetic Algorithms and Genetic Programming

(a) [class 1, training] (c) [class 1, training]

(b) [class 1, test] (d) [class 1, test]

False Classifications

T
ru

e
 C

la
s
s

if
ic

a
ti

o
n

s

False Classifications

T
ru

e
 C

la
s
s

if
ic

a
ti

o
n

s

False Classifications

T
ru

e
 C

la
s
s

if
ic

a
ti

o
n

s

False Classifications

T
ru

e
 C

la
s
s

if
ic

a
ti

o
n

s

Avg. AUC:
0.3076477

Max. AUC:
0.3647628

Avg. AUC:
0.3607539

Max. AUC:
0.4361191

Avg. AUC:
0.9721313

Max. AUC:
0.9981604

Avg. AUC:
0.9740631

Max. AUC:
0.9976785

FIGURE 11.16: MROC charts and their maximum and average area under
the curve (AUC) values for classification models generated for Thyroid data,
CV-set 9.

– In order to keep the computational effort low, the mean squared
errors function with early abortion was used as fitness function for
the GP training process.

– The eventual selection of models is done by choosing those models
that perform best on validation data (or, if no validation samples
are specified, then the models’ performance on training data is con-
sidered). For this selection we have used the classification specific
evaluation function described in Section 11.2: The mean squared
error is considered as well as class ranges, thresholds qualities, and
AUC values; all other possible contributions have been neglected
in the test series reported and discussed here. Thus, c1 = 4.0,
ck = 1.0 for k ∈ {6, 7, 8}, and ck = 0.0 for k ∈ {2, 3, 4, 5}.

Data-Based Modeling with Genetic Programming 275

-

- -

+ IF / THEN / ELSE
0.825 *

Var17

<=
-0.32 *

Var16

3.683 *

Var20

-0.04 *

Var17

0.142 *

Var6

0.168 *
Var2

-0.38 *
Var16

1.26 *
Var19

-2.76 *

Var7

2.648 *
Var7

1.883 *

Var12

OR

+

+

+ - >= >=

+

-0.91

-0.435 -0.298 -0.964

-0.736

4.505 2.313

IF / THEN / ELSE

FIGURE 11.17: Graphical representation of a classification model (formula),
produced for 10-fold cross validation partition 3 of the Thyroid data set.

In addition to splitting the given data into training and test data, extended
GP-based training is implemented in such a way that a part of the given
training data is not used for training models and serves as validation set; in
the end, when it comes to returning classifiers, the algorithm returns those
models that perform best on validation data. This approach has been chosen
because it is assumed to help to cope with overfitting; it is also applied in other
GP-based machine learning algorithms as for example described in [BL04]. In
fact, this was also done in our standard GP tests for the Melanoma data set.

Linear Modeling

Given a data collection including m input features storing the informa-
tion about N samples, a linear model is defined by the vector of coefficients
θ1...m. For calculating the vector of modeled values e using the given input
values matrix u1...m, these input values are multiplied with the corresponding
coefficients and added:

e = u1...m ∗ θ (11.54)

The vector of coefficients can be computed by simply applying matrix divi-
sion. For conducting the test series documented here we have used the matrix
division function provided by MATLAB R©:

theta = InputValues \ TargetValues;

If a constant additive factor is to be included into the model (i.e., the coeffi-
cients vector), this command has to be extended:

276 Genetic Algorithms and Genetic Programming

r = size(InputValues,1);

theta = [InputValues ones(r,1)] \ TargetValues;

Theoretical background of this approach can be found in [Lju99].

Neural Networks

For training artificial neural network (ANN) models, three-layer feed-
forward neural networks with one output neuron were created using the back-
propagation as well as the Levenberg-Marquardt training method. Theoret-
ical background and details can be found in [Nel01] (Chapter 11, “Neural
Networks”), [Mar63], [Lev44], or [GMW82].

The following two approaches have been applied for training neural net-
works:

• On the one hand we have trained networks with 5 neurons in the hidden
layer (referred to as “NN1” in the test series documentation in Section
11.2.5.8) as well as networks with 10 hidden neurons (referred to as
“NN2” in the test series documentation); the number of iterations of
the training process was set to 100 (in the first variant, “NN1”) and
300 (in the second variant, “NN2”). In the context of analyzing the
benchmark problems used here, higher numbers of nodes or iterations
are likely to lead to overfitting (i.e., a better fit on the training data,
but worse test results).
The ANN training framework used to collect the results reported in this
book is the NNSYSID20 package, a neural network toolbox implement-
ing the Levenberg-Marquardt training method for MATLAB R©; it has
been implemented by Magnus Nørgaard at the Technical University of
Denmark [Nør00].

• On the other hand, the multilayer perceptron training algorithm avail-
able in WEKA [WF05] has also been used for training classifiers. In
this case the number of hidden nodes was set to (a + c)/2, where a is
the number of attributes (features) and c the number of classes. The
number of iterations was not pre-defined, but 10% of the training data
were designated to be used as validation data; in order to combat the
danger of overfitting, the training algorithm was terminated as soon as
the error on validation data got worse in 20 iterations consecutively.
This training method, which applies backpropagation learning, is in the
following referred to as the “NN3” method.

Data-Based Modeling with Genetic Programming 277

kNN Classification

Unlike other data-based modeling methods based on linear models, neural
networks or GP, k-nearest-neighbor classification works without creating any
explicit models. During the training phase, the data are simply collected;
when it comes to classifying a new, unknown sample xnew , the sample-wise
distance between xnew and all other training samples xtrain is calculated and
the classification is done on the basis of those k training samples (xNN) show-
ing the smallest distances from xnew .

The distance between two samples is calculated as follows: First, all features
are normalized by subtracting the respective mean values and dividing the
remaining samples by the respective variables’ standard deviation. Given a
data matrix x including m features storing the information about N samples,
the normalized values xnorm are calculated as

∀(i ∈ [1,m])∀(j ∈ [1, N]) : xnorm(i, j) =
x(i, j)− 1

N

∑N
k=1 x(i, k)

σ(x(i, 1 . . . N))
(11.55)

where the standard deviation σ of a given variable x storing N values is
calculated as

σ(x) =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − x̄)2 (11.56)

with x̄ denoting the mean value of x.
Then, on the basis of the normalized data, the distance between two samples
a and b, d(a, b), is calculated as the mean squared variable-wise distance:

d(a, b) =
1

n

n
∑

i=1

(anorm(i)− bnorm(i))2 (11.57)

where n again is the number of features stored for each sample.

In the context of classification, the numbers of instances (of the k nearest
neighbors) are counted for each given class and the algorithm automatically
predicts that class that is represented by the highest number of instances. In
the test series documented in this book we have applied weighting to kNN
classification: The distance between xnew and any sample xz is relevant for
the classification statement, and the weight of “nearer” samples is higher than
that of samples that are “further” away from xnew .

There is a lot of literature that can be found for kNN classification; very
good explanations and compact overviews of kNN classification (including
several possible variants and applications) are for example given in [DHS00]
and [RN03].

278 Genetic Algorithms and Genetic Programming

Support Vector Machines

Support vector machines (SVMs) are a widely used approach in machine
learning based on statistical learning theory [Vap98]; an example of the ap-
plication of SVMs in the medical domain has been reported in [MIB+00], for
example.

The most important aspect of SVMs is that it is possible to give bounds
on the generalization error of the models produced, and to select the respec-
tively best model from a set of models following the principle of structural
risk minimization [Vap98]. SVM are designed to calculate hyperplanes that
separate the data from each other and maximize the margin between sets of
data points. While the basic training algorithm is only able to construct linear
separators, so-called kernel functions can be used to calculate scalar products
in higher-dimensional spaces; if the kernel functions used are nonlinear, then
the separating boundaries will be nonlinear, too.

In this work we have used the SVM implementation described in [Pla99]
and [KSBM01]; we have used the implementation of this algorithm which is
available for the WEKA machine learning framework [WF05]. Polynomial
kernels have been used as well as Gaussian radial basis function kernels with
the γ parameter (defining the inverse variance) set to 0.01 and the complexity
parameter c set to 10,000.

11.2.5.8 Detailed Test Series Results

The results summarized in this section have been partially published in
[WAW06b], [WAW06e], and [WAW07].

Since the Wisconsin and the Thyroid data sets are publicly available, the
results produced by GP are compared to those that have been published
previously for various machine learning methods; the Melanoma is not openly
available, therefore we have used all machine learning approaches mentioned
for training classifiers for this data set.

All three data sets were investigated via 10-fold cross-validation (CV). For
each data collection, each of the resulting 10 pairs of training and test data
partitions has been used in 5 independent GP test runs; for the Melanoma
data set, all machine learning algorithms mentioned previously have also been
applied to all pairs of training and test data, the stochastic algorithms again
applied 5 times independently.

Results for the Wisconsin Data Set

Table 11.12 summarizes the results for the 10-fold cross validation produced
by GP with offspring selection; these figures boil down to the fact that ex-
tended GP has in this case been able to produce classifiers that on average
correctly classify 97.91% of training samples and 97.53% of test samples.

Data-Based Modeling with Genetic Programming 279

Table 11.12: Summary of training and test results for the Wisconsin data set:
Correct classification rates (average values and standard deviation values) for
10-fold CV partitions, produced by GP with offspring selection.

Partition Training Test
Avg. Std.Dev. Avg. Std.Dev.

0 97.69% 0.27 97.06% 1.04
1 97.69% 0.85 97.65% 2.23
2 98.40% 0.72 97.94% 1.32
3 98.37% 0.56 98.24% 1.23
4 97.52% 0.78 97.06% 2.08
5 97.95% 0.77 97.94% 1.32
6 98.05% 0.43 97.05% 1.47
7 98.05% 0.47 97.65% 1.68
8 97.75% 0.62 97.65% 1.32
9 97.62% 0.74 97.06% 1.47

Avg. 97.91% 0.62 97.53% 1.51

In order to compare the quality of these results to those reported in the
literature, Table 11.13 summarizes test accuracies that have been obtained
using 10-fold cross validation. For each method listed we give the references
to the respective articles in which these results have been reported9. Obviously
the results summarized in Table 11.12 have to be considered surprisingly good
as they outperform all other algorithms reported in the literature listed here.
In [LC05], for example, recent results for several classification benchmark
problems are documented; the Wisconsin data set was there analyzed using
standard GP as well as three other GP-based classification variants (POPE-
GP, DecMO-GP, and DecMOP-GP), and the respective results are also listed
in Table 11.13.

Of course, for the sake of honesty we have to admit that the effort of GP
to produce these classifiers is higher than the runtime or memory consumed
by most other machine learning algorithms; in our GP tests using the Wis-
consin data set and populations with 500 individuals the average number of
generations executed was 51.6 and the average number of solutions evaluated
∼1,296,742.

Results for the Melanoma Data Set

For the Melanoma data set no results are available in the literature; there-
fore we have tested all machine learning algorithms mentioned previously for
getting an objective evaluation of our GP methods.

9An even more detailed listing of test results for this data set can be found in [JHC04].

280 Genetic Algorithms and Genetic Programming

Table 11.13: Comparison of machine learning methods: Average test accuracy
of classifiers for the Wisconsin data set.

Algorithm Test Accuracy

GP with OS 97.53%
Probit [WHMS03] 97.20%
RLP [BU95] 97.07%
SVM [WHMS03] 96.70%
C4.5 (decision tree) [HSC96] 96.0%
ANN [TG97] 95.61%
DecMOP-GP [LC05] 95.60%
DecMO-GP [LC05] 95.19%
POPE-GP [LC05] 95.08%
StandardGP [LC05] 93.82%

First, in Table 11.14 we summarize original vs. estimated classifications
obtained by applying the classifiers produced by GP with offspring selection;
in total, 97.17% of the training and 95.42% of the test samples are classified
correctly (with standard deviations 0.87 and 2.13, respectively). These GP
tests using the Melanoma data set were done with populations containing
1,000 individuals; the average number of generations executed was 54.4 and
the average number of solutions evaluated ∼2,372,629.

Table 11.14: Confusion matrices for average classification results produced by
GP with OS for the Melanoma data set.

Training Original Classification
[0] (Benign) [1] (Malign)

Estimated [0] 1,043.21 (88.41%) 9.09 (0.77%)
Classification [1] 24.28 (2.06%) 103.42 (8.76%)

Test Original Classification
[0] (Benign) [1] (Malign)

Estimated [0] 115.18 (87.92%) 2.67 (2.04%)
Classification [1] 3.33 (2.54%) 9.82 (7.50%)

Test results obtained using other machine learning algorithms are collected
in Table 11.15. Support vector machine based training was done with radial
as well as with polynomial kernel functions. Furthermore we used γ values
0.001 and 0.01. In standard GP (SGP) tests we used tournament parent
selection (k = 3), 8% mutation, single point crossover and the same structural
limitations as in GP with OS; in order to get a fair comparison, the population

Data-Based Modeling with Genetic Programming 281

size was set to 1,000 and the number of generations to 2,500 yielding 2,500,000
evaluations per test run.

As we can see in Table 11.15, our GP implementation performs approxi-
mately as well as the support vector machines and neural nets applying those
settings that are optimal in this test case: GP with OS was able to classify
95.42% of the test cases correctly, SVMs correctly classified 94.89% – 95.47%
and neural nets (with validation set based stopping) 95.27% of the test cases
evaluated. Standard GP as well as kNN, linear regression, and standard ANNs
perform worse.

Even though it is nice to see that the average accuracy recorded for models
produced by GP with OS is quite fine, the relatively high standard deviation
of this method’s performance (2.13, compared to 0.41 recorded for optimal
SVMs) has to be seen as a negative aspect of these results.

Table 11.15: Comparison of machine learning methods: Average test accuracy
of classifiers for the Melanoma data set.

Algorithm Test Accuracy
Avg. Std.Dev.

SVM (radial, γ = 0.01) 95.47% 0.41
GP with OS 95.42% 2.13
SVM (polynomial, γ = 0.01) 95.40% 0.56
SVM (radial, γ = 0.001) 95.27% 0.74
NN3 95.27% 1.91
SVM (polynomial, γ = 0.001 94.89% 0.83
NN1 94.35% 2.39
kNN (k = 3) 93.59% 1.03
SGP 93.52% 3.72
NN2 92.90% 2.59
kNN (k = 5) 92.85% 0.94
Lin 92.45% 2.90

Results for the Thyroid Data Set

Finally, the results achieved for the Thyroid data set are to be reported here.
Table 11.16 summarizes the results for the 10-fold cross validation produced
by GP with offspring selection. For each class we characterize the classifica-
tion accuracy on training and test data, giving average as well as standard
deviation values for each partition. These figures boil down to the fact that
extended GP has in this case been able to produce classifiers that on average
correctly classify 99.10% of training samples and 98.76% of test samples, the
total standard deviation values being 0.73 and 0.92, respectively.

282 Genetic Algorithms and Genetic Programming

Table 11.16: Summary of training and test results for the Thyroid data set:
Correct classification rates (average values and standard deviation values) for
10-fold CV partitions, produced by GP with offspring selection.

Partition Training Test
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

0 avg. 94.67% 97.64% 99.63% 90.00% 95.68% 99.19%
std.dev. 1.70 2.65 0.52 7.13 4.10 0.64

1 avg. 94.93% 98.67% 99.01% 88.75% 96.76% 99.43%
std.dev. 3.58 4.23 0.46 5.23 5.86 0.44

2 avg. 96.67% 98.49% 99.49% 91.25% 96.22% 97.90%
std.dev. 1.89 2.00 0.55 3.42 6.51 2.02

3 avg. 96.00% 98.19% 99.15% 90.00% 95.68% 99.46%
std.dev. 2.87 1.56 0.42 5.59 4.10 0.31

4 avg. 95.33% 97.04% 99.19% 88.75% 96.22% 99.61%
std.dev. 2.45 5.38 0.35 11.18 3.63 0.27

5 avg. 95.07% 96.62% 99.22% 95.00% 94.59% 99.37%
std.dev. 1.92 5.29 0.40 5.23 4.27 0.29

6 avg. 93.47% 97.76% 99.16% 87.50% 94.59% 98.56%
std.dev. 2.18 7.64 0.49 7.65 4.27 0.91

7 avg. 98.80% 98.97% 99.16% 87.50% 92.97% 99.40%
std.dev. 2.18 5.92 0.49 7.65 4.52 0.30

8 avg. 94.40% 98.01% 99.23% 96.25% 94.05% 99.34%
std.dev. 5.11 4.99 0.64 5.23 3.52 0.57

9 avg. 97.73% 96.62% 99.31% 91.25% 92.43% 99.55%
std.dev. 2.69 2.65 0.52 3.42 3.52 0.15

Avg. avg. 95.71% 97.80% 99.26% 90.63% 94.92% 99.18%
std.dev. 2.66 4.23 0.48 6.17 4.43 0.59

In order to compare the quality of these results to those reported in the
literature, Table 11.17 summarizes a selection of test accuracies that have
been obtained using 10-fold cross validation; again, for each method listed
we give the references to the respective articles in which these results have
been reported. Obviously, the results summarized in Table 11.16 have to be
considered quite fine, but not perfect as they are outperformed by results
reported in [WK90] and [DAG01].

GP has also been repeatedly applied for solving the Thyroid problem; some
of the results published are the following ones:

In [LH06] (Table 8), results produced by a pareto-coevolutionary GP classi-
fier system for the Thyroid problem are reported, and here in Table 11.17 these
results are stated as the “PGPC” results; in fact, these results are not the
mean accuracy values but rather the median value, which is why these results
are not totally comparable to other results stated here. Loveard and Ciesielski

Data-Based Modeling with Genetic Programming 283

[LC01] reported that classifiers for the Thyroid problem could be produced
using GP with test accuracies ranging from 94.9% to 98.2% (depending on
the range selection strategy used).

According to Banzhaf and Lasarczyk [BL04], GP-evolved programs consist-
ing of register machine instructions turned out to eventually misclassify on
average 2.29% of the given test samples, and that optimal classifiers are able
to correctly classify 98.64% of the test data.

Furthermore, Gathercole and Ross [GR94] report classification errors be-
tween 1.6% and 0.73% as best result using tree-based GP, and that a classi-
fication error of 1.52% for neural networks is reported in [SJW92]. In fact,
Gathercole and Ross reformulated the Thyroid problem to classifying cases
as “class 3” or “not class 3”; as is stated in [GR94], it turned out to be rel-
atively straight-forward for their GP implementation (DSS-GP) to produce
function tree expressions which could distinguish between classes “1” and “2”
completely correctly on both the training and test sets. “To be fair, in split-
ting up the problem into two phases (class 3 or not, then class 1 or 2) the
GP has been presented with an easier problem [. . .]. This could be taken in
different ways: Splitting up the problem is mildly cheating, or demonstrating
the flexibility of the GP approach.” (Taken from [GR94].)

Table 11.17: Comparison of machine learning methods: Average test accuracy
of classifiers for the Thyroid data set.

Algorithm Accuracy
Training Test

CART [WK90] 99.80% 99.36%
PVM [WK90] 99.80% 99.33%
Logical Rules [DAG01] – 99.30%
GP [GR94] – 98.4% – 99.27%
GP with OS 99.10% 98.76%
GP [BL04] – 97.71% – 98.64%
GP [LC01] – 94.9% – 98.2%
BP + local adapt. rates [SJW93] 99.6% 98.5%
ANN [SJW92] – 98.48%
BP + genetic opt. [SJW93] 99.4% 98.4%
Quickprop [SJW93] 99.6% 98.3%
RPROP [SJW93] 99.6% 98.0%
PGPC [LH06] – 97.44%

GP with strict offspring selection was here applied with populations of 1000
individuals; on average, the number of generations executed in our GP tests

284 Genetic Algorithms and Genetic Programming

for the Thyroid test studies was 73.9, and on average 2,463,635.1 models were
evaluated in each GP test run.

11.2.5.9 Conclusion

We have here described an enhanced genetic programming method that was
successfully used for investigating machine learning problems in the context
of medical classification. The approach works with hybrid formula structures
combining logical expressions (as used for example in decision trees) and classi-
cal mathematical functions; the enhanced selection scheme originally success-
fully applied for solving combinatorial optimization problems using genetic
algorithms was also applied yielding high quality results.

We have intensively investigated GP in the context of learning classifiers for
three medical data collections, namely the Wisconsin and the Thyroid data
sets taken from the UCI machine learning repository and the Melanoma data
set, a collection that represents medical measurements which were recorded
while investigating patients potentially suffering from skin cancer. The results
presented in this section are indeed satisfying and make the authors believe
that an application in a real-world framework in the context of medical data
analysis using the techniques presented here is recommended. As documented
in the test results summary, our GP-based classification approach is able to
produce results that are – in terms of classification accuracy – at least com-
parable to or even better than the classifiers produced by classical machine
learning algorithms frequently used for solving classification problems, namely
linear regression, neural networks, neighborhood-based classification, or sup-
port vector machines as well as other GP implementations that have been
used on the data sets investigated in our test studies.

Data-Based Modeling with Genetic Programming 285

11.3 Genetic Propagation

11.3.1 Test Setup

When speaking of analysis of genetic propagation as described in Section
6.1, we analyze how well which parts of the population succeed in propagating
their genetic material to the next generation, i.e., to produce offspring that
will be included in the next generation’s population. In this section we shall
report on tests in this area; major parts have been published in our article on
offspring selection and its effects on genetic propagation in GP-based system
identification [WAW08] as well as in [Win08].

We have here used the NOx data set II already presented and described in
Section 11.1.2.3. Originally, this data set includes 10 variables, each storing
approximately 36,000 samples; the first 10,000 samples are neglected in the
tests reported on here, approximately 18,000 samples are training, and 4,000
samples are validation (which is in this case equivalent to test) data. The last
∼4,000 samples are again neglected.

In principle, we are using conventional GP (with tournament and propor-
tional selection) as well as extended GP (with gender specific selection as well
as offspring selection). The details of the test strategies used are given in
Table 11.18.

Table 11.18: GP test strategies.

Strategy Properties
(I) |Pop| = 1000;

Conventional GP Tournament parent selection (k = 3)
nr. of rounds: 1000

(II) |Pop| = 1000;
Conventional GP Proportional parent selection;

nr. of rounds: 1000
(III) |Pop| = 500;

Extended Gender specific parent selection
GP (proportional, random);

Offspring selection
(SuccessRatio = 1, MaxSelPres = 100)

In all three test strategies we used subtree exchange crossover, the time
series analysis specific evaluation function (with early abortion as described

286 Genetic Algorithms and Genetic Programming

in Section 11.1.1) for evaluating solutions, and applied 1-elitism as well as
15% mutation rate.

11.3.2 Test Results

We have executed independent test series with 5 executions for each test
strategy; the results are to be summarized and analyzed here.

With respect to solution quality and effort10, the extended GP algorithm
clearly outperforms the conventional GP variants (as summarized in Table
11.19).

Table 11.19: Test results.
I II III

Best min. 1,390.21 3,022.12 1,201.23
Quality avg. 1,513.84 5,014.96 1,481.69
(Training) max. 2,431.54 10,013.12 2,012.27

Best min. 8,231.76 12,312.83 4,531.56
Quality avg. 10,351.96 15,747.69 8,912.61
(Test) max. 13,945.23 21,315.23 16,123.34

Generations 500 64.31

Effort 1,000,000 898,332.23

Regarding parent analysis, in all test runs we documented the propagation
count for each individual and sum these over all generations. So we get

pctotal(i) =
∑

i∈[1;gen]

pc(i) (11.58)

for each individual index i and assume that gen is the number of generations
executed. Additionally, we form equally sized partitions of the population
indices and sum up the pctotal values for each partition.

In Table 11.20 we give the average pctotal values for percentiles of the pop-
ulations of test series I, II, and III; for test series I and II we collected the
pctotal of 100 indices for forming a partition, and for test series III we collected
50 indices for each partition. The Figures 11.18 and 11.19 show pctotal values
of exemplary test runs of the series I and II summed up for partitions of 10
solution indices each. Figure 11.20 shows pctotal values of exemplary test runs
of series III summed up for partitions of 5 solution indices each.

10The number of solutions evaluated is here interpreted as the algorithm’s total effort.

Data-Based Modeling with Genetic Programming 287

Table 11.20: Average overall genetic propagation of population partitions.

Population Test Strategy
Percentile I II III

0 27.88% 10.31% 13.54%
1 21.29% 10.35% 11.20%
2 16.65% 10.31% 11.67%
3 12.64% 10.26% 10.91%
4 9.06% 10.25% 10.63%
5 6.08% 10.28% 9.85%
6 3.71% 10.24% 9.39%
7 1.88% 10.16% 8.83%
8 0.72% 10.10% 7.92%
9 0.10% 7.74% 6.07%

FIGURE 11.18: pctotal values for an exemplary run of series I.

FIGURE 11.19: pctotal values for an exemplary run of series II.

288 Genetic Algorithms and Genetic Programming

FIGURE 11.20: pctotal values for an exemplary run of series III.

As we see from the results given in Tables 11.19 and 11.20 and Figure 11.18,
there is a rather high selection pressure when using tournament selection; the
results are rather good and (as expected) less fit individuals are by far not
able to contribute to the population as well as fitter ones, leading to a quick
and drastic reduction of genetic diversity.

The results for test series II, as given in Tables 11.19 and 11.20 and Figure
11.19, are significantly different: The results are a lot worse (especially on
training data) than those of algorithm variant I, and obviously there is no
strong selection pressure as almost all individuals (or, rather the individuals at
the respective indices) are able to contribute almost to the same extent. Only
the worst ones are not able to propagate their genetic material to the next
generations as well as better ones. This is due to the fact that in the presence
of very bad individuals roulette wheel selection selects the best individuals
approximately as often as those that perform middlingly well. Especially in
data-based modeling there are often individuals that score extremely badly
(due to divisions by very small values, for example), and in comparison to
those all other ones are approximately equally fit.

Finally, test series III obviously produced the best results with respect to
training as well as validation data (see also Table 11.19). Even more, the re-
sults that are given in Table 11.20, column III, and displayed in Figure 11.20,
show that the combination of random and roulette parent selection and off-
spring selection results in a very moderate distribution of the pctotal values:
Fitter individuals contribute more than less fit ones, but even the worst ones
are still able to contribute to a significant extent. Thus, genetic diversity is
increased which also contributes positively to the genetic programming pro-
cess.

11.3.3 Summary

Thus, in order to sum up this section, offspring selection in GP-based system
identification significantly influences the algorithm’s ability to create high
quality results as well as the genetic propagation dynamics: Not only fitter

Data-Based Modeling with Genetic Programming 289

individuals are able to propagate their genetic make-up, but also less fit ones
are able to contribute to the next population. This is also somehow the case
when using proportional selection, but in the presence of individuals with
very bad fitness values the selection pressure is almost lost which leads to
solutions of rather bad quality. When using offspring selection, extremely bad
individuals are eliminated immediately; when using OS in combination with
gender specific parent selection (applying random and proportional selection
mechanisms), GP is able to produce significantly better results than when
using standard techniques. Parents diversification and thus increased genetic
diversity in GP populations is considered one of the most influential aspects
in this context.

11.3.4 Additional Tests Using Random Parent Selection

In addition to the tests reported on in the previous parts of this section we
have also tested conventional as well as extended GP using random parent
selection. Thus, we have two more test cases to be analyzed.

Table 11.21: Additional test strategies for genetic propagation tests.

Strategy Properties

(IV) |Pop| = 2000;
Conventional GP Random parent selection

nr. of rounds: 500

(V) |Pop| = 500;
Extended Random parent selection

GP Offspring selection
(SuccessRatio = 1, MaxSelPres = 100)

As we had expected, the test results obtained for standard GP with random
parent selection were very bad; obviously, no suitable models were found.
When using OS, on the contrary, the test results for random parent selection
were not that bad at all: The models are (on training data) not quite as good
as those obtained using random/roulette and OS or conventional GP with
tournament parent selection, but still they perform (surprisingly) well on test
data11. In Table 11.22 we summarize the respective result qualities.

11Of course, these remarks are only valid for the tests reported on here - here we do not
give any general statement regarding result quality using random parent selection and OS.

290 Genetic Algorithms and Genetic Programming

Table 11.22: Test results in additional genetic propagation tests (using random
parent selection).

IV V

Best min. >50,000.00 5,041.22
Quality avg. >50,000.00 7,726.11
(Training) max. >50,000.00 8,843.73

Best min. >50,000.00 7,129.31
Quality avg. >50,000.00 8,412.31
(Test) max. >50,000.00 12,653.98

Generations 500 102.86

Effort 1,000,000 1,324,302

In Table 11.23 we give the average pctotal values for percentiles of the pop-
ulations of test series IV and V (collecting the pctotal values of 200 indices
for forming a partition for series IV and 50 indices for each partition for se-
ries V). Obviously (and exactly as we had expected) random parent selection
leads to all individuals having the approximately same success in propagating
their genetic make-up. When using OS, the result is (even a little bit surpris-
ingly) significantly different: Better individuals have a much higher chance
to produce successful offspring than worse ones; the probability of the best
10%, for example, to produce successful children is almost twice as high as
the probability of the worst 10% to do so.

Table 11.23: Average overall genetic propagation of population partitions for
random parent selection tests.

Population Test Strategy
Percentile IV V

0 10.03 % 13.16 %
1 10.02 % 12.07 %
2 9.98 % 11.41 %
3 9.99 % 10.66 %
4 10.02 % 10.30 %
5 9.99 % 9.33 %
6 10.00 % 8.96 %
7 9.98 % 8.62 %
8 9.99 % 7.81 %
9 10.00 % 7.68 %

Data-Based Modeling with Genetic Programming 291

Obviously, random parent selection leads to an increased number of gen-
erations that have to be executed until a given selection pressure limit is
reached. This is graphically shown in Figure 11.21, which gives the selection
pressure progress for two exemplary test runs of the test series including OS,
i.e., III and V. In the standard case using random / roulette parent selection
and offspring selection, III, the selection pressure obviously rises faster than
when using random parent selection in combination with strict offspring selec-
tion. Still, even though it takes longer when using random parent selection,
the characteristics are very similar, i.e., it rises steadily with some notable
fluctuations.

Average Selection Pressure Progress

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Generations

Sel.Pres. (III)

Sel.Pres. (V)

FIGURE 11.21: Selection pressure progress in two exemplary runs of test
series III and V (extended GP with gender specific parent selection and strict
offspring selection).

292 Genetic Algorithms and Genetic Programming

11.4 Single Population Diversity Analysis

11.4.1 GP Test Strategies

Within our first series of empirical tests regarding solutions similarity and
diversity we analyzed the diversity of populations of single population GP
processes. For testing the population diversity analysis method described in
Section 6.2 and illustrating graphical representations of the results of these
tests we have used the following two data sets:

• The NOx data set contains the measurements taken from a 2 liter 4
cylinder BMW diesel engine at a dynamical test bench (simulated ve-
hicle: BMW 320d Sedan); this data set has already been described in
Section 11.1 as NOx data set III.

• The Thyroid data set is a widely used machine learning benchmark data
set containing the results of medical measurements which were recorded
while investigating patients potentially suffering from hypothyroidism;
further details regarding this data set can be found in Chapter 11.2.

Both data collections have been split into training and validation / test data
partitions taking the first 80% of each data set as training samples available
to the identification algorithm; the rest of the data is considered as validation
data.

We have used various GP selection strategies for analyzing the NOx and
the Thyroid data sets:

• On the one hand, we have used standard GP with proportional as well
as tournament selection (tournament size k = 3).

• On the other hand we have also intensively tested GP using offspring
selection and gender specific parent selection (proportional and random
selection).

In general, we have tested GP with populations of 1,000 solution candidates
(with a maximum tree size of 50 and a maximum tree height of 5), standard
subtree exchange crossover, structural as well as parametric node mutation
and total 15% mutation rate; the mean squared errors function was used
for evaluating the solutions on training as well as on validation (test) data.
Other essential parameters vary depending on the test strategies; these are
summarized in Table 11.24.

Data-Based Modeling with Genetic Programming 293

Table 11.24: GP test strategies.

Strategy Properties
(A) Standard GP Tournament parent selection

(tournament size k = 3);
Number of generations: 4000

(B) Standard GP Proportional parent selection;
Number of generations: 4000

(C) GP with OS Gender specific parent selection;
(Random & proportional)

Success ratio: 0.8
Comparison factor: 0.8
(Maximum selection pressure: 50

(not reached)
Number of generations: 4000

(D) GP with OS Gender specific parent selection;
(Random & proportional)

Success ratio: 1.0
Comparison factor: 1.0
Maximum selection pressure: 100

11.4.2 Test Results

In Table 11.25 we summarize the quality of the best models produced using
the GP test strategies (A) – (D); for the NOx data set the quality is given
as the mean squared error; for the Thyroid data set we give the classification
accuracy, i.e., the ratio of samples that are classified correctly. The models
are evaluated on training as well as on validation data; as each test strategy
was executed 5 times independently, we here state mean average and standard
deviation values.

Obviously, the test series (A) and (D) perform best; the results produced
using offspring selection are better than those using standard GP. The classifi-
cation results for the Thyroid data set are not quite as good as those reported
in [WAW06e] and Section 11.2; this is due to the fact that we here used smaller
models and concentrated on the comparison of GP strategies with respect to
population diversity.

Solution quality analysis is of course important and interesting, but here
we are more interested in a comparison of population diversity during the
execution of the GP processes. We have calculated the similarity among the
GP populations during the execution of the GP test series described in Table
11.24: The multiplicative similarity approach (as defined in Equations 9.63
– 9.66) has been chosen; all coefficients c1 . . . c10 were set to 0.2, only the
coefficient c1 weighting the level difference contribution d1 was set to 0.8.

294 Genetic Algorithms and Genetic Programming

Table 11.25: Test results: Solution qualities.

Results for NOx test series
GP Strategy

(A) (B) (C) (D)
Training (mse) 2.518 5.027 2.674 1.923
Training (std(mse)) 1.283 2.142 2.412 0.912

Validation (mse) 3.012 5.021 2.924 2.124
Validation (std(mse)) 1.431 3.439 2.103 1.042

Evaluated solutions, avg. 4 · 106 4 · 106 10.2 · 106 3.91 · 106

Generations (avg.) 4,000 4,000 4,000 98.2

Results for Thyroid test series

GP Strategy
(A) (B) (C) (D)

Training (cl. acc., avg.) 0.9794 0.9758 0.9781 0.9812
Training (cl. acc., std) 0.0032 0.0017 0.0035 0.0012

Validation (cl. acc., avg.) 0.9764 0.9675 0.9767 0.9804
Validation (cl. acc., std) 0.0029 0.0064 0.0069 0.0013

Evaluated solutions, avg. 4 · 106 4 · 106 12.2 · 106 5.1 · 106

Generations (avg.) 4,000 4,000 4,000 167.8

In Table 11.26 we give the average population similarity values calculated
using Equation 6.7; again, as each test series was executed several times, we
give the average and standard deviation values (written in italic letters). As
we see in the first row, the average similarity values are approximately in the
interval [0.2; 0.25] at the beginning of the GP runs, i.e., after the initialization
of the GP populations. In standard GP, as can be seen in the first column, the
average similarity reaches values above 0.7 after 400 generations and stays at
approximately this level until the end of the execution of the GP process; in
the end, the average similarity was ∼0.87 in the NOx tests and ∼0.81 in the
Thyroid test series. Analyzing the second and the third column we notice that
this is not the case in test series (B) and (C): The similarity values do in test
series (B) by far not rise as high as in series (A) (especially when working on
the Thyroid data set), and also in test series (C) we have measured significantly
lower similarities than in series (A) (i.e., the population diversity was higher
during the whole GP process). Obviously, the use of offspring selection with
rather soft parameter settings (i.e., success ratio and comparison factor set to
values below 1.0) does not have the same effects on the GP process as strict
ones. The by far highest similarity values are documented for test series (D)
using maximally strict offspring selection (which has produced the best quality
models, as documented in Table 11.25): As is summarized in the far right
column, during the whole evolutionary process the mutual similarity among
the models increases steadily, while also the selection pressure increases. In
the end, when the selection pressure reaches a high level (in these cases, the

Data-Based Modeling with Genetic Programming 295

predefined limit was set to 100) and the algorithm stops, we see a very high
similarity among the solution candidates, i.e., the population has converged
and evolution is likely to have gotten stuck. This is in fact consistent with
the impression already stated in [WAW06a] or [WAW06e], e.g.; here we see
that this in fact really happens.

Table 11.26: Test results: Population diversity (average similarity values;
avg., std.).

NOx tests
Gen. GP Strategy Gen. GP Strategy

(A) (B) (C) (D)
0 0.247 0.250 0.270 0 0.197

0.041 0.031 0.037 0.039
100 0.723 0.491 0.517 10 0.397

0.073 0.051 0.038 0.039
400 0.813 0.497 0.564 20 0.603

0.035 0.058 0.059 0.049
1000 0.859 0.510 0.520 40 0.810

0.021 0.055 0.052 0.039
4000 0.871 0.518 0.526 End of 0.985

(End of run) 0.019 0.059 0.053 run 0.032

Thyroid tests

Gen. GP Strategy Gen. GP Strategy
(A) (B) (C) (D)

0 0.206 0.205 0.208 0 0.197
0.041 0.040 0.036 0.040

100 0.581 0.241 0.444 10 0.397
0.047 0.043 0.035 0.039

400 0.737 0.321 0,610 20 0.602
0.032 0.058 0.026 0.049

1000 0.808 0.341 0.692 40 0.810
0.029 0.049 0.031 0.041

4000 0.812 0.343 0.701 End of 0.975
(End of run) 0.038 0.056 0.030 run 0.019

In Table 11.27 we summarize the maximum population diversity values cal-
culated using Equation 6.8; again we give the average and standard deviation
values (written in italic letters). As we see in the first (left) column, in stan-
dard GP with tournament selection the average maximum similarity reaches

296 Genetic Algorithms and Genetic Programming

Table 11.27: Test results: Population diversity (maximum similarity values;
avg., std.).

NOx tests

Gen. GP Strategy Gen. GP Strategy
(A) (B) (C) (D)

0 0.919 0.934 0.904 0 0.936
0.116 0.095 0.123 0.109

100 0.995 0.825 0.944 10 0.961
0.014 0.074 0.059 0.049

400 0.998 0.809 0.978 20 0.971
0.006 0.075 0.037 0.033

1000 0.999 0.811 0.965 40 0.995
0.005 0.059 0.044 0.012

4000 0.999 0.819 0.969 End of 0.996
(End of run) 0.003 0.066 0.035 run 0.009

Thyroid tests
Gen. GP Strategy Gen. GP Strategy

(A) (B) (C) (D)

0 0.823 0.771 0.766 0 0.777
0.127 0.145 0.145 0.157

100 0,958 0.749 0.840 10 0.873
0.028 0.123 0.094 0.101

400 0.973 0.752 0.883 20 0.934
0.032 0.125 0.067 0.049

1000 0.977 0.744 0.913 40 0.976
0.022 0.117 0.061 0.022

4000 0.977 0.754 0.909 End of 0.999
(End of run) 0.021 0.111 0.058 run 0.004

values above 0.95 rather fast, i.e., for all models in the population rather
similar solutions can be found. This is not the case when using proportional
selection. When using offspring selection the same effect as in standard GP
with tournament selection can be seen, especially in the NOx test series.

The Figures 11.22 – 11.25 exemplarily show the average population diversity
by giving the distribution of similarities among all individuals. The Figures
11.22 and 11.23 show the similarity distributions of an exemplary test run of
series (A) at generation 200 and 4000; obviously, most similarity calculations
returned similarity values between 0.7 and 1.0, and the distribution at gen-
eration 200 is comparable to the distribution at the end of the test run. For
the GP runs incorporating offspring selection this is not the case, as we ex-
emplarily see in Figures 11.24 and 11.25: After 20 generations most similarity
values almost fit Gaussian distribution with mean value 0.8, and at the end
of the run all models are very similar to each other (i.e., the population has
converged, the selection pressure reaches the given limit and the algorithm

Data-Based Modeling with Genetic Programming 297

Similarity Values Histogram (NOx, A, Generation 200)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

p
o

rt
io

n
 o

f
S

im
il
a
ri

ty
 V

a
lu

e
s

FIGURE 11.22: Distribution of similarity values in an exemplary run of NOx

test series A, generation 200.

stops).
Finally, Figure 11.26 shows the average similarity values for each model

(calculated using Equation 6.5) for exemplary test runs of the Thyroid test
series (A)12 and (D). Obviously, the average similarity in standard GP reaches
values in the range [0.7;0.8] very early and then stays at this level during the
rest of the GP execution. When using gender specific selection and offspring
selection, otherwise, the average similarity steadily increases during the GP
process and almost reaches 1.0 at the end of the run, when the maximum
selection pressure is reached.

11.4.3 Conclusion

Structural similarity estimation has been used for measuring the genetic
diversity among GP populations: Several variations of genetic programming
using different types of selection schemata have been tested using fine-grained
similarity estimation, and two machine learning data sets have been used
for these empirical tests. The test results presented show that population
diversity differs a lot in the test runs depending on the selection schemata
used.

12In fact, for the test run of series (A) we here only show the progress over the first 2000
generations.

298 Genetic Algorithms and Genetic Programming

Similarity Values Histogram (NOx, A, Generation 4000)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

p
o

rt
io

n
 o

f
S

im
il
a
ri

ty
 V

a
lu

e
s

FIGURE 11.23: Distribution of similarity values in an exemplary run of NOx

test series A, generation 4000.

Similarity Values Histogram (NOx, D, Generation 20)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

p
o

rt
io

n
 o

f
S

im
il
a
ri

ty
 V

a
lu

e
s

FIGURE 11.24: Distribution of similarity values in an exemplary run of NOx

test series (D), generation 20.

Data-Based Modeling with Genetic Programming 299

Similarity Values Histogram (NOx, D, Generation 95)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

p
o

rt
io

n
 o

f
S

im
il
a
ri

ty
 V

a
lu

e
s

FIGURE 11.25: Distribution of similarity values in an exemplary run of NOx

test series (D), generation 95.

 0 400 800 1,200 1,600 2,000
 Iterations

 0 10 20 30 40 50
 Iterations

1

0.5

0

1

0.5

0

FIGURE 11.26: Population diversity progress in exemplary Thyroid test runs
of series (A) and (D) (shown in the upper and lower graph, respectively).

300 Genetic Algorithms and Genetic Programming

11.5 Multi-Population Diversity Analysis

Our second series of empirical tests regarding solutions similarity and di-
versity was dedicated to the diversity of populations of multi-population GP
processes; for testing the multi-population diversity analysis method described
in Section 6.2 and illustrating graphical representations of the results of these
tests we have again used the following two data sets: The NOx data set III
described in Section 11.1 as well as the Thyroid data set.

Both data collections have been split into training and validation / test
data partitions: In the case of the NOx data set the first 50% of the data set
were used as training samples; in the case of the Thyroid data set the first
80% were considered by the training algorithms.

11.5.1 GP Test Strategies

In general, 4 different strategies for parallel genetic programming have been
applied:

• Parallel island GP without interaction between the populations; i.e., all
populations evolve independently.

• Parallel island GP with occasional migration after every 100th gener-
ation in standard GP and every 5th generation in GP with offspring
selection: The worst 1% of each population pi is replaced by copies of
the best 1% of solutions in population pi−1; the best solutions of the last
population (in the case of n population that is pn) replace the worst ones
of the first population (p1). The unidirectional ring migration topology
has been used.

• Parallel island GP with migration after every 50th generation in stan-
dard GP and every 5th generation in GP with offspring selection: The
worst 5% of each population pi is replaced by copies of the best 5% of
solutions in population pi−1. Again, the unidirectional ring migration
topology has been used.

• Finally, the SASEGASA algorithm as described in Chapter 5 has been
used as well.

In all cases the algorithms have been initialized with 5 populations, each
containing 200 solutions (in our case representing formulas, of course). Addi-
tionally, each of the first 3 strategies has been tested with standard GP settings
as well as offspring selection; Table 11.28 summarizes the 7 test strategies that
have been applied and whose results shall be discussed here.

Data-Based Modeling with Genetic Programming 301

11.5.2 Test Results

All test strategies summarized in Table 11.28 have been executed 5 times
using the NOx as well as the Thyroid data set. Multi-population diversity
was measured using the equations given in Section 6.2.2: For each solution
we calculate the average as well as the maximum similarities with solutions
of all other populations of the respective algorithms (in the following, these
values are denoted as MPdiv values). Additionally, we have also collected
all solutions of the algorithms’ populations into temporary total populations
and calculate the average as well as the maximum similarities of all solutions
compared to all other ones (hereafter denoted as SPdiv values).

Again, the multiplicative structural similarity approach (as defined in Equa-
tions 9.63 – 9.66) has been used for estimating the similarity of model struc-
tures; all coefficients c1 . . . c10 were set to 0.2, only the coefficient c1 weighting
the level difference contribution d1 was set to 0.8.

In the following we summarize these values for all test runs by stating the
average values as well as standard deviations: Table 11.29 summarizes the
results of the test runs using the Thyroid data set, 11.30 those of the test runs
using the NOx data set.

Figure 11.27 exemplarily illustrates the multi-population diversity in a test
run of series F at iteration 50: The value represented in row i of column j in
bar k gives the average similarity of model i of population k with all formulas
stored in population j. Low multi-population similarity values are indicated
by light cells; dark cells represent high similarity values.

302 Genetic Algorithms and Genetic Programming

Table 11.28: GP test strategies.

Strategy Properties
(A) Parallel standard GP Tournament parent selection

(tournament size k = 3);
Number of generations: 2000

(B) Parallel GP with OS Random & roulette parent selection
Strict Offspring selection (success ratio: 1.0,

comparison factor: 1.0,
maximum selection pressure: 200)

(C) Parallel standard GP, Tournament parent selection
1% migration (tournament size k = 3);

Number of generations: 2000
1% best / worst replacement after

every 100th generation

(D) Parallel GP with OS, Random & roulette parent selection
1% migration Strict Offspring selection (success ratio: 1.0,

comparison factor: 1.0,
maximum selection pressure: 200)

1% best / worst replacement after
every 5th generation

(E) Parallel standard GP, Tournament parent selection
5% migration (tournament size k = 3);

Number of generations: 2000
5% best / worst replacement after

every 50th generation

(F) Parallel GP with OS, Random & roulette parent selection
5% migration Strict Offspring selection (success ratio: 1.0,

comparison factor: 1.0,
maximum selection pressure: 200)

5% best / worst replacement after
every 5th generation

(G) SASEGASA Random & roulette parent selection
Strict Offspring selection (success ratio: 1.0,

comparison factor: 1.0,
maximum selection pressure: 200)

Data-Based Modeling with Genetic Programming 303

Table 11.29: Multi-population diversity test results of the GP test runs using
the Thyroid data set.

Results for the Thyroid data set

Test Series Iteration MPdiv (avg) MPdiv (max) SPdiv (avg) SPdiv (max)

A 300 avg 0.2433 0.3301 0.2048 0.8973
std 0.0514 0.0496 0.0612 0.0291

2000 avg 0.3592 0.3925 0.3628 0.9027
std 0.0613 0.0610 0.0593 0.0351

B 20 avg 0.1698 0.2356 0.2130 0.9182
std 0.0497 0.0317 0.0317 0.0852

End of avg 0.3915 0.4037 0.3592 0.9850
Run std 0.0599 0.0769 0.0820 0.0202

C 300 avg 0.1778 0.2788 0.1836 0.6543
std 0.0587 0.0549 0.0296 0.0971

2000 avg 0.4145 0.4885 0.3834 0.9236
std 0.0551 0.0762 0.0665 0.0417

D 20 avg 0.3276 0.4269 0.3394 0.9312
std 0.0486 0.1094 0.0175 0.0459

End of avg 0.4412 0.5822 0.3866 0.9736
Run std 0.0734 0.0635 0.0772 0.0283

E 300 avg 0.3395 0.6271 0.2715 0.6116
std 0.0441 0.0975 0.0139 0.0811

2000 avg 0.5329 0.8710 0.3991 0.9129
std 0.0833 0.0509 0.0921 0.0821

F 20 avg 0.3721 0.5024 0.2711 0.5192
std 0.0629 0.0822 0.0981 0.0601

End of avg 0.5915 0.8802 0.4576 0.9828
Run std 0.1034 0.0996 0.0514 0.0437

G 20 avg 0.4839 0.5473 0.3173 0.5237
std 0.0823 0.0419 0.0581 0.0623

50 avg 0.4325 0.5512 0.3228 0.5828
std 0.0518 0.0920 0.0672 0.0660

100 avg 0.5102 0.7168 0.3783 0.7296
std 0.0730 0.0724 0.0861 0.0740

200 avg 0.8762 0.9314 0.4206 0.9512
std 0.0505 0.0458 0.0792 0.0249

End of avg – – 0.9792 0.9934
Run std – – 0.0256 0.0162

11.5.3 Discussion

As we see in Tables 11.29 and 11.30, the average diversity among popu-
lations in parallel island GP without interaction (i.e., in test series (A) and
(B)) rises up to values between 0.35 and 0.4, no matter whether or not OS is
applied; the maximum values eventually reach values between 0.45 and 0.5.
Considering all solutions collected in temporary total populations, as expected
the average similarities reach values below 0.4, the maximum similarities al-
most reach 1.0.

The similarity values monitored in test series (C) and (D) are, in com-
parison to those of series (A) and (B), slightly higher, but not dramatically.
This does not hold for the next pair of test series (with 5% migration): The
similarity values calculated for test series (E) and (F) are significantly higher
than those of test series (A) – (D); in other words, the exchange of only 5%
of the populations’ models can lead to a significant decrease of population
diversity among populations of multi-population GP.

When using the SASEGASA, the diversity among populations is high in
the beginning and then steadily decreases as the algorithm is executed. This

304 Genetic Algorithms and Genetic Programming

Table 11.30: Multi-population diversity test results of the GP test runs using
the NOx data set III.

Results for the NOx data set

Test Series Iteration MPdiv (avg) MPdiv (max) SPdiv (avg) SPdiv (max)

A 300 avg 0.3187 0.3991 0.2773 0.8613
std 0.0124 0.0685 0.0726 0.0799

2000 avg 0.3689 0.4627 0.3300 0.9887
std 0.0288 0.0390 0.0390 0.0434

B 20 avg 0.1997 0.1498 0.2902 0.8992
std 0.0698 0.0912 0.0604 0.0634

End of avg 0.3723 0.4811 0.3440 0.9743
Run std 0.0233 0.0244 0.0254 0.0482

C 300 avg 0.2515 0.3323 0.1935 0.8293
std 0.0968 0.0685 0.0607 0.1062

2000 avg 0.3329 0.4741 0.2821 0.9311
std 0.0365 0.0323 0.0402 0.0441

D 20 avg 0.2985 0.3922 0.3791 0.8862
std 0.0870 0.0825 0.0487 0.0829

End of avg 0.5544 0.6839 0.4208 0.9661
Run std 0.0542 0.1039 0.0280 0.0332

E 300 avg 0.5002 0.6697 0.3111 0.6037
std 0.0588 0.0696 0.0474 0.0453

2000 avg 0.6002 0.8523 0.4745 0.9763
std 0.0538 0.0263 0.0728 0.0910

F 20 avg 0.3597 0.5248 0.3901 0.5839
std 0.0743 0.0769 0.0662 0.0775

End of avg 0.5607 0.9080 0.4877 0.9906
Run std 0.0931 0.0799 0.0249 0.0181

G 20 avg 0.4471 0.5303 0.2694 0.4670
std 0.0619 0.0897 0.0802 0.0522

50 avg 0.4923 0.6102 0.3025 0.6120
std 0.0854 0.0749 0.0550 0.0902

100 avg 0.5889 0.6939 0.3923 0.7972
std 0.1184 0.0835 0.0812 0.0805

200 avg 0.9047 0.9148 0.5741 0.9128
std 0.0387 0.0258 0.1253 0.0401

End of avg – – 0.9683 0.9932
Run std – – 0.0412 0.0319

is of course due to the reunification of populations as soon as the maximum
selection pressure is reached.

By executing these test series and analyzing the results as given in this
section we have demonstrated how multi-population diversity can be moni-
tored using similarity measures as those described in Section 9.4.2. Reference
values are given by parallel GP without migration; of course, the higher the
migration rates become, the more migration affects the diversity among GP
populations. When using the SASEGASA, rather high multi-population spe-
cific diversity is given in the early stages of the parallel GP process, and due
to the merging of population the diversity decreases and in the end reaches
diversity values comparable to those of single population GP with offspring
selection.

Data-Based Modeling with Genetic Programming 305

FIGURE 11.27: Exemplary multi-population diversity of a test run of Thyroid
series F at iteration 50, grayscale representation.

306 Genetic Algorithms and Genetic Programming

11.6 Code Bloat, Pruning, and Population Diversity

11.6.1 Introduction

In Chapter 2.6 we have described one of the major problems of genetic
programming, namely permanent code growth, often also referred to as bloat;
evolution is also seen as “survival of the fattest,” and, as Langdon and Poli
expressed it, fitness-based selection leads to the fact that “fitness causes bloat”
[LP97]. There are several approaches for combating this unwanted unlimited
growth of chromosome size, some of them being

• limiting the size and / or the height of the program trees,

• pruning programs, and

• punishing complex programs by decreasing their quality depending on
their respective tree representations’ size and / or height.

Of course, there is no optimal strategy for fixing formula size parameters,
population size, or pruning strategies a priori (see also remarks in Chapter 2).
Still, some code prevention strategies are surely more recommendable than
others; we here report on an exemplary test series for characterizing some of
the possible approaches.

In all other test series executed and reported on in other sections in this
book we have used fixed complexity limits (limiting size and height of program
trees); we shall here report on our tests regarding code growth in GP-based
structure identification applying the pruning strategies presented in Section
9.3.2 as well as structure tree size dependent fitness manipulation and fixed
size limits (partially with additional pruning). All these approaches have been
tested using standard GP as well as extended GP including gender specific
selection and offspring selection. As an example, we have tested these GP vari-
ants on the NOx data set II presented and described in Section 11.1.2.3; pop-
ulation diversity, formula complexity parameters as well as additional pruning
effort (only in case of applying pruning, of course) have been monitored and
shall be reported on here.

We have again used 50% of the given data for training models (namely
samples 10,000 – 28,000), and 10% as validation data (samples 28,001 – 32,000
used by pruning strategies) and ∼7.5% as test data (samples 32,001 – 35,000).
As we are also aware of the problem of overfitting, we have systematically
collected each GP run’s best models with respect to best fit on training as
well as on validation data (using the mse function for estimating the formulas’
qualities). The algorithm is designed to optimize formulas with respect to
training data; validation data are only used for pruning strategies (if used at
all). At the end of each test run, the models with best fit on training as well as
on validation data are analyzed, and in order to fight overfitting we select the

Data-Based Modeling with Genetic Programming 307

best model on validation data as the result returned by the algorithm. Test
data, which are not available to the algorithm, are used for demonstrating
that this strategy is a reasonable one: Analyzing the evaluation of the best
models on test data we see that those that are best on validation data perform
better on test data than those that were optimally fit to training data.

During the GP process, the standard mean squared error function was
used; the time series specific fitness function considering plain values as well
as differential and integral values was used for selecting those models that
perform best on training and validation data. All three components (i.e.,
plain values, differentials, and integral values) have been weighted using equal
weighting factors. When comparing the quality of the results documented in
the following sections we again state the fitness values calculated using the
mean squared errors function.

11.6.2 Test Strategies

In detail, the following test strategies have been applied: On the one hand
the parameters for standard and extended GP are summarized in Table 11.31,
and the code growth prevention parameters are summarized in Table 11.32.
In all tests the initial population was created using a size limit of 50 nodes
and a maximum height of 6 levels for each structure tree.

Table 11.31: GP parameters used for code growth and bloat prevention tests.

Variant Parameters
1 Population size: 1000

(Standard GP, 2000 generations
SGP) Single point crossover; structural and

parametric node mutation
Parent selection: Tournament selection (k = 3)

2 Population size: 1000
(Extended GP, Single point crossover; structural and

EGP) parametric node mutation
Parent selection: Gender specific selection

(random & proportional)
Strict offspring selection

(maximum selection pressure: 100)

In the following table and in the explanations given afterwards, md is the
maximum deterioration limit and mc the maximum coefficient of deterioration
and structure complexity reduction as described in Section 9.3.2. For ES-

308 Genetic Algorithms and Genetic Programming

based pruning, mr denotes the maximum number of rounds, and mur the
maximum number of unsuccessful rounds.

In those tests including increased pruning (as applied in test series (h)
and (i)) the initial pruning ratio is set to 0.3, i.e., in the beginning 30% of
the population are pruned. Then, during the process execution, the pruning
rate steadily increases and finally reaches 0.8; in standard GP runs, the rate
is increased linearly, and in extended GP including offspring selection we
compute the actual pruning ratio in relation to the actual selection pressure
(so that in the end, when the selection pressure has reached its maximum
value, the pruning rate has also reached its maximum, namely 0.8).

Furthermore, fs stands for the formula’s size (i.e., the number of nodes in
the corresponding structure tree), and pf is the fitness punishment factor:
If structure complexity based punishment is applied, then the fitness f of a
model is modified as f ′ = f ∗ (1 + pf) (if pf > 0).

Table 11.32: Summary of the code growth prevention strategies applied in
these test series.

Variant Characteristics

a No code growth prevention strategy

b 20% systematic pruning: md = 0, mc = 1
c 20% ES-based pruning: md = 0, mc = 1,

λ = 5, mr = 5, mur = 1

d 50% ES-based pruning: md = 0.5, mc = 1,
λ = 10, mr = 10, mur = 2

e 100% ES-based pruning: md = 2, mc = 1.5,
λ = 20, mr = 10, mur = 2

f Increasing ES-based pruning: md = 1, mc = 1.5,
λ = 10, mr = 10, mur = 2

g Quality punishment: pf = (fs− 50)/50

h Fixed limits: Maximum tree height 6, maximum tree size 50
i Fixed limits: Maximum tree height 6, maximum tree size 50

combined with occasional ES-based pruning
standard GP: every 5th, extended GP: every 2nd generation
md = 1, mc = 1, λ = 10, mr = 5, mur = 2

Please note that in strategies (b) and (c) pruning is done after each genera-
tion step, whereas in (d) – (g) it is done after each creation of a new model by
crossover and / or mutation. In standard GP this does not make any differ-
ence, but when using offspring selection the decision whether to prune after

Data-Based Modeling with Genetic Programming 309

each creation or after each generation has major effects on the algorithmic
process.

The mean squared errors function (with early stopping, see Section 9.2.5.5)
was used here since we mainly concentrate on pruning and population dynam-
ics relevant aspects. Furthermore, all variables (including the target variable)
were linearly scaled to the interval [-100; +100].

11.6.3 Test Results

Once again, all test strategies have been executed 5 times independently;
formula complexity has been monitored (and protocolled after each generation
step) as well as structural population diversity which was protocolled after
every 10th generation: The multiplicative similarity approach (as defined in
Equations 9.63 – 9.66) has again been chosen; all coefficients c1 . . . c10 were
set to 0.2, only the coefficient c1 weighting the level difference contribution
d1 was set to 0.8. The similarity of models was calculated symmetrically (as
described in Equation 6.4).

11.6.3.1 No Formula Size Limitation

Exactly as we had expected, extreme code growth also occurs in GP-based
structure identification; Figure 11.28 illustrates the progress of formula com-
plexity in terms of formula size in exemplary test runs of series 1a and 2a:
The average formula size is given as well as minimum and maximum values
and the progress of the best individual’s size.

As we see here, formulas tend to grow very big rather quickly; when using
offspring selection, this effect is even a bit more obvious: On average, in
standard GP the formula size has reached 212.84 after 30 iterations; when
using OS the average formula size was even higher after 30 generations (namely
276.35).

11.6.3.2 Light Pruning

The results of test series (b) and (c) can be summarized in the following
way: Without any further mechanisms that limit the structural complexity
of formula trees, light pruning as described in strategies (b) and (c) is not an
appropriate way to prevent GP from growing enormous formula structures.
After 100 generations, the average formula size in standard GP has grown
to 471.34 in test series (1b) and 333.65 in test runs of series (1c) (average
standard deviation: 204.29 and 238.27, respectively); in extended GP the
average formula size at generation 30 on average reached 293.26 and 276.12 in
test runs (2b) and (2c), the respective standard deviations being 157.23 and
124.80.

Systematically analyzing the results of the pruning phases performed in test
runs (b) and (c) we can compare the performances of ES-based and systematic

310 Genetic Algorithms and Genetic Programming

FIGURE 11.28: Code growth in GP without applying size limits or complexity
punishment strategies (left: standard GP, right: extended GP).

pruning. For this purpose we have collected the pruning performance statistics
for the tests (b) and (c) and summarize them in Table 11.33:

Table 11.33: Performance of systematic and ES-based pruning strategies.

Parameter Systematic ES-based
pruning pruning

Solutions evaluated for 161.02 54.56
pruning one solution
Runtime consumed (per iteration) 31.27 sec 12.23 sec
Average coefficient of deterioration 0.2495 0.4053
and reduction of structural complexity

Obviously, both pruning methods performed approximately equally well
and were able to reduce the complexity of the formulas that were supposed to
be pruned. Additionally, we also see that especially for bigger model struc-
tures the runtime consumption is a lot higher when using systematic pruning;
in the course of a GP process it is not considered necessary or even beneficial
to reduce models as much as possible. Therefore we shall in the following

Data-Based Modeling with Genetic Programming 311

test runs concentrate on ES-based pruning phases. Thus, we suggest using
systematic pruning as a preparation step for results analysis, but not during
the execution of GP-based training processes.

11.6.3.3 Medium Pruning

Medium pruning, as applied in test series (d), is in fact able to reduce the
size of the formulas stored in the GP populations significantly.

Table 11.34: Formula size progress in test series (d).

Test series Iteration Formula size
avg std

(1d) 20 21.83 32.12
50 74.24 111.84
100 123.67 144.78
500 167.51 156.89
2000 168.23 147.56

(2d) 10 10.77 13.27
20 90.43 52.79
50 228.02 112.51

End of run 283.98 172.33

Table 11.35: Quality of results produced in test series (d).

Test Best model selection basis
series Evaluation data Training data Validation data

avg std avg std
(1d) Training data 1,178.13 205.20 8,231.38 1,041.87

Validation data 17,962.78 762.97 15,850.49 1,309.10
Test data 7,162.48 690.10 5,996.27 927.09

(2d) Training data 1,823.43 823.56 6,005.74 729.47
Validation data 14,590.83 1,476.25 10,506.30 981.35

Test data 6,341.28 770.42 4,439.27 918.72

The best results obtained in the (d) test series are summarized in Table
11.35: For each test run we have collected the models with best fit on training

312 Genetic Algorithms and Genetic Programming

data as well as those that perform best on validation data; average values are
given as well as standard deviations. Obviously, rather strong overfitting has
happened here; as we had expected, the production of very large formulas
leads to over-fit formulas that are not able to perform well on samples that
were not used during the training phase.

11.6.3.4 Strong Pruning

Rather strong pruning was applied in test series (e), and as we see in Ta-
ble 11.36, the formulas produced by GP are significantly smaller than those
produced in the previous test series. Still, we observed the fact that genetic
diversity is lost very quickly: Already in early stages of the evolutionary pro-
cesses, the average structural similarity of solutions reaches a very high level
(which is documented in the two most right columns of Table 11.36).

The quality of the best models produced is very bad (above 5,000), which
is why we do here not state any further details about the evaluation of these
models on the given data partitions. We suppose that this low results quality
is connected to the loss of population diversity (and of course also the fact that
the pruning operations applied were allowed to decrease the models’ quality).

Table 11.36: Formula size and population diversity progress in test series (e).

Test series Iteration Formula size Solutions similarity
avg std avg std

(1e) 50 12.82 15.76 0.8912 0.0912
100 18.27 18.15 0.9371 0.0289
500 19.75 23.52 0.9685 0.0187
2000 21.39 20.87 0.9891 0.0095

(2e) 10 15.77 9.23 0.9574 0.0318
20 19.86 10.83 0.9825 0.0247
50 21.64 16.34 0.9921 0.0082

End of run 20.03 18.27 0.9943 0.0093

11.6.3.5 Increased Pruning

As light, medium, and strong pruning did not lead to the desired results,
we have also tried increasing pruning as defined in test strategy (f). As we see
in Table 11.37, this strategy performs rather well: The size of the formulas
produced by GP rises especially in early stages of the GP process, but then
decreases and on average finally reaches values between 80 and 100.

In addition to this, the population diversity stays higher in the beginning

Data-Based Modeling with Genetic Programming 313

than in GP tests including constantly strong pruning, but eventually decreases
and the solutions finally show higher similarities due to the increased pruning
in later algorithmic stages.

Table 11.37: Formula size and population diversity progress in test series (f).

Test series Iteration Formula size Solutions similarity
avg std avg std

(1f) 50 62.72 95.76 0.3674 0.0943
100 91.27 130.77 0.3897 0.1059
500 92.43 107.41 0.6820 0.1124
2000 87.02 90.68 0.8035 0.0861

(2f) 10 40.78 31.47 0.5235 0.0612
20 63.59 59.34 0.7052 0.0803
50 80.26 40.99 0.9450 0.0588

End of run 79.45 47.67 0.9967 0.0156

The quality values of the results produced in this test series are summarized
in Table 11.38. Obviously, less overfitting has happened than in the tests with
light or medium pruning.

Table 11.38: Quality of results produced in test series (f).

Test Evaluation data Best model selection basis
series Training data Validation data

avg std avg std
(1f) Training data 2,597.35 542.04 7,781.28 827.83

Validation data 8,904.91 611.02 5,981.52 974.31
Test data 3,786.51 800.38 2,830.78 427.08

(2f) Training data 2,275.24 649.11 3,814.93 850.89
Validation data 9,712.98 767.56 5,862.62 518.53

Test data 4,912.38 1,198.58 2,275.03 931.62

11.6.3.6 Complexity Dependent Quality Punishment

In fact, our GP test runs including complexity dependent quality punish-
ment, i.e., those of test strategy (g), were also able to produce acceptable

314 Genetic Algorithms and Genetic Programming

results for the NOx data set investigated here. As we see in Table 11.39,
in standard GP the formula sizes are rather high in the beginning and then
decrease steadily, whereas in GP with offspring selection the models on aver-
age include between 50 and 60 nodes during the whole execution of the GP
processes. Population diversity values are comparable to those reported for
GP tests without pruning or quality dependent punishment as summarized
for example in Section 11.4.

Figure 11.29 illustrates the formula complexity progress of an exemplary GP
run of test series (2g). The qualities of the models with best fit on training
and validation are summarized in Table 11.40.

Table 11.39: Formula size and population diversity progress in test series (g).

Test series Iteration Formula size Solutions similarity
avg std avg std

(1g) 50 140.76 90.75 0.3824 0.0534
100 92.62 71.23 0.3916 0.0620
500 73.73 64.99 0.6381 0.0825
2000 79.07 47.61 0.7202 0.0696

(2g) 10 50.24 64.67 0.4873 0.0836
20 60.71 59.01 0.5412 0.0741
50 65.34 48.33 0.8904 0.0852

End of run 58.82 41.87 0.9315 0.0423

Table 11.40: Quality of results produced in test series (g).

Test Evaluation data Best model selection basis
series Training data Validation data

avg std avg std

(1g) Training data 1,837.84 526.10 4,729.42 480.36
Validation data 12,902.67 767.35 4,531.73 588.30

Test data 2,597.73 835.41 2,708.36 825.64

(2g) Training data 1,402.19 593.84 3,121.86 773.91
Validation data 9,345.87 738.60 3,949.64 962.03

Test data 2,853.62 812.51 2,618.94 664.07

Data-Based Modeling with Genetic Programming 315

FIGURE 11.29: Progress of formula complexity in one of the test runs of
series (1g), shown for the first ∼400 iterations.

11.6.3.7 Fixed Size Limits

In the case of fixed size limits the crossover and mutation operators have to
consider limits for the complexity of models. Model size and population di-
versity statistics for test series (h) are summarized in Table 11.41; in GP with
offspring selection all formulas eventually are maximally big, and the solutions
similarity values show results comparable to those reported in Section 11.4.
Table 11.42 summarizes the quality of the results produced, again evaluated
on training, validation, and test data. Figure 11.30 illustrates the formula
complexity progress of exemplary GP test runs of series (1h) and (2h).

Table 11.41: Formula size and population diversity progress in test series (h).

Test series Iteration Formula size Solutions similarity
avg std avg std

(1h) 50 37.4182 6.3174 0.4151 0.0935
100 40.2866 5.8133 0.7231 0.0729
500 41.7823 4.3973 0.8175 0.0326
2000 44.2108 5.0450 0.8629 0.0271

(2h) 10 22.4965 8.3763 0.3973 0.0386
20 27.6203 4.2514 0.6022 0.0493
50 44.9120 6.4871 0.8907 0.0371

End of run 50.0000 0.0000 0.9751 0.0189

316 Genetic Algorithms and Genetic Programming

Table 11.42: Quality of results produced in test series (h).

Test Evaluation data Best model selection basis
series Training data Validation data

avg std avg std

(1h) Training data 1,774.94 300.51 4,168.30 1,186.62
Validation data 10,801.77 923.04 4,248.37 858.02

Test data 5,791.25 1,266.51 2,610.64 930.44
(2h) Training data 1,568.12 382.04 3,083.64 502.75

Validation data 9,641.89 833.71 3,738.13 504.89
Test data 4,802.30 1,371.22 1,374.61 704.73

FIGURE 11.30: Progress of formula complexity in one of the test runs of
series (1h) (shown left) and one of series (2h) (shown right).

In addition to total statistics we shall also discuss two selected models re-
turned by one of the test runs of series (2h): Model bt is the model that
performs best on training data (shown in Figure 11.31), bv the one that per-
forms best on validation data (shown in Figure 11.32). The error distributions
on training, validation, and test data partitions are illustrated in Figure 11.33.

Data-Based Modeling with Genetic Programming 317

Table 11.43 characterizes the performance of bt and bv by means of mean
squared errors as well as the integral values. For this we have calculated the
sum of the target values on training, validation, and test data and compared
these integral values to those calculated using the models under investigation.
Obviously, bt shows a better integral fit on training (and also validation) data,
but when it comes to test data, the model that performed best on validation
data (bv) produces much more satisfying results (with an integral error of only
2.354% on test data).

Table 11.43: Comparison of best models on training and validation data (bt
and bv, respectively).

bt bv
Training quality (MSE) 1,434.65 2,253.62
Validation quality (MSE) 9,187.53 3,748.61
Test quality (MSE) 2,936,40 1,461.95

Target training values integral 6.010 ∗ 106

Estimated training values integral 6.037 ∗ 106 6.084 ∗ 106

(-0.452%) (+1.220%)

Target validation values integral 4.660 ∗ 105

Estimated validation values integral 4.620 ∗ 105 4.517 ∗ 106

(+0.872%) (+3.173%)

Target test values integral 3.978 ∗ 105

Estimated test values integral 3.198 ∗ 105 3.886 ∗ 106

(+24.395%) (+2.354%)

11.6.3.8 Fixed Size Limits and Occasional Pruning

Finally, test series with fixed size limits and occasional pruning have also
been executed and analyzed; the results regarding formula complexity, pop-
ulation diversity, and results qualities are summarized in Tables 11.44 and
11.45.

Obviously, the results produced are (with respect to evaluation quality)
comparable to those produced in the previous series. Still, of course the
formula sizes are a bit smaller (due to pruning), and also overfitting seems

318 Genetic Algorithms and Genetic Programming

FIGURE 11.31: Model with best fit on training data: Model structure and
full evaluation.

FIGURE 11.32: Model with best fit on validation data: Model structure and
full evaluation.

to have decreased: Even though the fit on training data is not as good as on
previous test series, the quality on test data is still very good and comparable
to the test performance reached in test series (g) and (h).

11.6.4 Conclusion

In this section we have demonstrated the effects of code bloat and selected
prevention strategies for GP. As expected and known from literature, with-
out any limitations or size reducing strategies GP tends to produce bigger
and bigger models that fit the given training data, but of course this also in-
creases the probability of producing over-fit models. Pruning strategies have
been analyzed, and the test results show that only strong pruning is able to
prevent GP from producing bigger and bigger models, which again decreases

Data-Based Modeling with Genetic Programming 319

FIGURE 11.33: Errors distributions of best models: Charts I, II, and III show
the errors distributions of the model with best fit on training data evaluated
on training, validation, and test data, respectively; charts IV, V, and VI show
the errors distributions of the model with best fit on validation data evaluated
on training, validation, and test data, respectively.

population diversity and leads to results which are not optimal. Complexity
dependent fitness punishment as well as fixed size limits enable GP to produce
quite good results; occasional pruning in combination with fixed size limits
can help to decrease overfitting.

320 Genetic Algorithms and Genetic Programming

Table 11.44: Formula size and population diversity progress in test series (i).

Test series Iteration Formula size Solutions similarity
avg std avg std

(1i) 50 34.8365 6.1534 0.4682 0.0852
100 37.1863 4.9901 0.7413 0.0711
500 39.2217 5.2673 0.8388 0.0450
2000 40.1260 4.9724 0.8992 0.0251

(2i) 10 18.5330 6.6114 0.4307 0.0518
20 21.5286 5.3083 0.7202 0.0772
50 38.5143 5.6305 0.9248 0.0403

End of run 48.2051 4.6228 0.9859 0.0178

Table 11.45: Quality of results produced in test series (i).

Test series Evaluation data Best model selection basis
Training data Validation data
avg std avg std

(1i) Training data 2,258.22 561.27 5,869.40 1.233.09
Validation data 6,608.26 1,463.49 4,819.26 730.51

Test data 2,238.61 983.57 1,811.05 834.83

(2i) Training data 1,723.07 623.11 4,209.57 499.89
Validation data 6,361.46 921.26 3,607.13 736.05

Test data 3,289.33 945.79 1,434.63 739.22

Conclusion and Outlook

In this book we have discussed basic principles as well as algorithmic improve-
ments in the context of genetic algorithms (GAs) and genetic programming
(GP); new problem independent theoretical concepts have been described
which are used in order to substantially increase achievable solution quali-
ties. The application of these concepts to significant combinatorial optimiza-
tion problems as well as structure identification in time series analysis and
classification has also been described.

We have presented enhanced concepts for GAs, which enable a self-adaptive
interplay of selection and solution manipulation operators. By using these
concepts we want to avoid the disappearance and support the combination
of alleles from the gene pool that represent solution properties of highly fit
individuals (introduced as relevant genetic information). As we have shown
in several test series, relevant genetic information is often lost in conventional
implementations of GAs and GP; if this happens, it can only be reintroduced
into the population’s gene pool by mutation. This dependence on mutation
can be reduced by using generic selection principles such as offspring selec-
tion (which is also used in the SASEGASA) or self-adaptive population size
adjustment (as used by the RAPGA). The survival of essential genetic infor-
mation by supporting the survival of relevant alleles rather than the survival
of above-average chromosomes is the main goal of both these approaches.

In the empirical part of this book we have documented and discussed our
experiences in applying these new algorithmic concepts to benchmark as well
as real world problems. Concretely, we have used traveling salesman prob-
lems as well as vehicle routing problems as representatives of combinatorial
optimization problems; time series and classification analysis problems have
been used as application areas of data-based structure identification with ge-
netic programming. We have compared the results achievable with standard
implementations of GAs and GP to the results achieved using extended al-
gorithmic concepts that do not depend on a concrete problem representation
and its operators; the influences of the new concepts on population dynamics
in GA and GP populations have also been analyzed.

321

322 Genetic Algorithms and Genetic Programming

Nevertheless, there is still a lot of work to be done in the context of the
research areas we have dealt with in this book. Furthermore, there are a lot
of potential synergies which have to be considered and should be explored.

• The most important aspect is the following one: As the enhanced algo-
rithmic concepts discussed in this book are problem independent, they
can be applied to any kind of optimization problem which can be tack-
led by a GA or GP. Of course, there are numerous kinds of optimization
problems beside traveling salesman and vehicle routing problems which
can be solved successfully by genetic algorithms; regarding GP we have
up to now more or less only gained experience in using offspring selec-
tion in the context of data-based modeling, but there is a huge variety
of other problems which should also be tried to be solved using the
approaches discussed in this book.

• HeuristicLab (HL) is our environment for developing and testing opti-
mization methods, tuning parameters, and solving a multitude of prob-
lems. The development of HL was started in 2002 and has meanwhile led
to a stable and productive optimization platform; it is continuously en-
hanced and a topic of several publications ([WA04c], [WA04a], [WA04b],
[WA05a], and [WWB+07]). On the respective website13 the interested
reader can find information about the design of HeuristicLab, its de-
velopment over the years, installable software packages, documentation,
and publications in the context of HeuristicLab and the research group
HEAL14.

One of the most beneficial aspects of HeuristicLab is its plug-in based
architecture. In software engineering in general, plug-in based software
systems have become very popular; by not only splitting the source code
into different modules, but compiling these modules into enclosed ready-
to-use software building blocks, the development of a whole application
or complex software system is reduced to the task of selecting, combin-
ing, and distributing the appropriate modules. Due to the support of
dynamic location and loading techniques offered in modern application
frameworks as for example Java or .NET, the modules do not need to
be statically linked during compilation, but can be dynamically loaded
at runtime. Thus, the core application can be enriched by adding these
building blocks, which are therefore called “plug-ins” as they are addi-
tionally plugged into the program.

Several problem representations, solution encodings, and numerous algo-
rithmic concepts have so far been developed for HeuristicLab, realizing
a large number of heuristic and evolutionary algorithms (genetic algo-
rithms, genetic programming, evolution strategies, tabu search, etc.) for

13http://www.heuristiclab.com.
14Heuristic and Evolutionary Algorithms Laboratory, Linz / Hagenberg, Austria.

Conclusion and Outlook 323

a wide range of problem classes including the traveling salesman prob-
lem, the vehicle routing problem, real-valued test functions in different
dimensions, and, last, but not least, also data-based modeling.

Still, not only the software platform itself is flexible and extensible, also
the algorithms provided in HL are (since version 2.0) not fixed and hard-
coded, but can be parameterized and even designed by the user. This is
possible by realizing all solution generating and processing procedures
as operators working on single solutions or sets of solutions.

By providing a set of plug-ins, each realizing a specific solution represen-
tation or operation, the process of developing new heuristic algorithms
is revolutionized. Algorithms do not need to be programmed anymore,
but can be created by combining operators of different plug-ins. This
approach has a huge advantage: By providing a graphical user inter-
face for selecting plug-ins and combining operators, no programming or
software engineering skills are necessary for this process. As a conse-
quence, algorithms can be modified, tuned, or developed by experts of
different fields with little or even no knowledge in the field of software
development.

FIGURE 11.34: A simple workbench in HeuristicLab 2.0.

In Figure 11.34 we show a screenshot of a simple HeuristicLab work-
bench (version HL 2.0): A structure identification problem is solved by
a GP algorithm using offspring selection. All relevant parts of the algo-
rithm (as for example population initialization, crossover, generational
replacement, and offspring selection) can be seen in the left part of the
workbench GUI; these parts can be easily rearranged or replaced by
users who are not necessarily experts in heuristic optimization or even

324 Genetic Algorithms and Genetic Programming

computer science. Thus, we want to transfer algorithm development
competence from experts in heuristic optimization to users working on
concrete applications; users, who work in domains other than heuristic
optimization, will thus no longer have to use heuristics as black box
techniques (as it is frequently done nowadays), but can use them as
algorithms which can be modified and easily tuned to specific problem
situations.

• One of our current research interests is to combine agent-based soft-
ware development techniques with heuristic optimization methods. Here
again Genetic Programming is one of the fields that would on the one
hand profit from the intrinsic parallelization of software agents as well as
improve the quality and expressiveness of found models. Agents could
be programmed to identify different variables in the given data sets and
examine a broader range of correlations. Each of these agents repre-
sents a GP process evolving a population of formulas (models); at given
synchronization points, these agents exchange information among each
other. Unlike other parallel GP approaches, in which parts of popula-
tions are exchanged which in principle all have the same goal (namely
to solve a given identification task), we here want to establish an in-
formation exchange mechanism by which partial information about re-
lationships in the data is passed and shared among the identification
agents.

The probably most important goal of such a parallel GP approach is
to develop an automated mechanism that can identify not only singular
relationships in data, but rather whole information networks that de-
scribe lots of relationships that can be found. This incorporates the use
of GP agents that aim to identify models for different target variables.
So it should become possible to identify classes of equivalent models
that differ only in the way certain input variables are described; these
results will hopefully help to find answers to one of the most important
questions in system identification, namely which of the potential models
are best suited for further theoretical analyses.

We hope that one of the results of this book will be an increased interest
in population dynamics analysis as well as generic algorithmic developments
as for example enhanced selection methods for evolutionary algorithms. By
showing the general applicability of enhanced selection concepts in GAs ap-
plied to combinatorial problems as well as in GP, we hope that we have been
able to inspire readers to apply these concepts to other problems as well as to
include them in other variants of evolutionary algorithms.

Symbols and Abbreviations

Symbol Description

ANN Artificial neural network
AUC Area under a ROC curve
CGA Canonical genetic algorithm
(C)VRP(TW) (Capacitated) vehicle routing problem (with time win-

dows)
CX Cyclic crossover for the TSP
EA Evolutionary algorithm
ERX Edge recombination crossover for the TSP
ES Evolution strategy
GA Genetic algorithm
GP Genetic programming
HL HeuristicLab
kNN k-nearest neighbor algorithm
NOx Nitric oxides
OS Offspring selection
OX Order crossover for the TSP
PMX Partially matched crossover for the TSP
RAPGA Relevant alleles preserving genetic algorithm
RBX Route-based crossover for the CVRP
ROC Receiver operating characteristic
SASEGASA Self-adaptive segregative genetic algorithm including

aspects of simulated annealing
SBX Sequence-based crossover for the CVRP
SGA Standard genetic algorithm
TS Tabu search
TSP Traveling salesman problem

325

References

[AA05] W. Ashlock and D. Ashlock. Single parent genetic pro-
gramming. In D. Corne et al., editors, Proceedings of the
2005 IEEE Congress on Evolutionary Computation, volume 2,
pages 1172–1179, Edinburgh, UK, 2-5 September 2005. IEEE
Press.

[AD95] J. Antes and U. Derigs. A new parallel tour algorithm for the
vehicle routing problem with time windows. Technical report,
Institut für Wirtschaftsinformatik und Operations Research,
Universität Köln, 1995.

[AD04] E. Alba and B. Dorronsoro. Solving the vehicle routing prob-
lem by using cellular genetic algorithms. In J. Gottlieb and
G. R. Raidl, editors, Evolutionary Computation in Combinato-
rial Optimization, volume 3004 of Lecture Notes in Computer
Science, pages 11–20, Coimbra, Portugal, 2004. Springer.

[AD06] E. Alba and B. Dorronsoro. Computing nine new best-so-far
solutions for capacitated VRP with a cellular genetic algo-
rithm. Information Processing Letters, 98(6):225–230, June
2006.

[AdRWL05] D. Alberer, L. del Re, S. Winkler, and P. Langthaler. Virtual
sensor design of particulate and nitric oxide emissions in a DI
diesel engine. In Proceedings of the 7th International Confer-
ence on Engines for Automobile ICE 2005, number 2005-24-
063, 2005.

[Aff01a] M. Affenzeller. A new approach to evolutionary computa-
tion: Segregative genetic algorithms (SEGA). In J. Mira and
A. Prieto, editors, Connectionist Models of Neurons, Learning
Processes, and Artificial Intelligence, volume 2084 of Lecture
Notes in Computer Science, pages 594–601. Springer, 2001.

[Aff01b] M. Affenzeller. Segregative genetic algorithms (SEGA): A hy-
brid superstructure upwards compatible to genetic algorithms
for retarding premature convergence. International Journal of
Computers, Systems and Signals (IJCSS), 2(1):18–32, 2001.

[Aff01c] M. Affenzeller. Transferring the concept of selective pressure
from evolutionary strategies to genetic algorithms. In Z. Bub-

327

328 References

nicki and A. Grzech, editors, Proceedings of the 14th Interna-
tional Conference on Systems Science, volume 2, pages 346–
353. Oficyna Wydawnicza Politechniki Wroclawskiej, 2001.

[Aff02] M. Affenzeller. New variants of genetic algorithms applied to
problems of combinatorial optimization. In R. Trappl, edi-
tor, Cybernetics and Systems 2002, volume 1, pages 75–80.
Austrian Society for Cybernetic Studies, 2002.

[Aff03] M. Affenzeller. New Hybrid Variants of Genetic Algorithms:
Theoretical and Practical Aspects. Schriften der Johannes
Kepler Universität Linz. Universitätsverlag Rudolf Trauner,
2003.

[Aff05] M. Affenzeller. Population Genetics and Evolutionary Com-
putation: Theoretical and Practical Aspects. Trauner Verlag,
2005.

[AK89] E. Aarts and J. Korst. Simulated Annealing and Boltzman Ma-
chines: A Stochastic Approach to Combinatorial Optimization
and Neural Computing. John Wiley and Sons, 1989.

[Alb05] E. Alba. Parallel Metaheuristics: A New Class of Algorithms.
Wiley Interscience, 2005.

[Alt94a] L. Altenberg. Emergent phenomena in genetic programming.
In A. Sebald and L. Fogel, editors, Evolutionary Programming
— Proceedings of the Third Annual Conference, pages 233–
241, San Diego, CA, USA, 24-26 February 1994. World Scien-
tific Publishing.

[Alt94b] L. Altenberg. The Schema Theorem and Price’s Theorem.
In D. Whitley and M. Vose, editors, Foundations of Genetic
Algorithms 3, pages 23–49, Estes Park, Colorado, USA, 31
July–2 August 1994. Morgan Kaufmann. Published 1995.

[And71] T. W. Anderson. The Statistical Analysis of Time Series.
Wiley, 1971.

[And76] O. D. Anderson. Time Series Analysis and Forecasting: the
Box-Jenkins Approach. Butterworth, 1976.

[Ang93] P. J. Angeline. Evolutionary Algorithms and Emergent Intel-
ligence. PhD thesis, Ohio State University, 1993.

[Ang94] P. J. Angeline. Genetic programming and emergent intelli-
gence. In K. E. Kinnear, Jr., editor, Advances in Genetic
Programming, chapter 4, pages 75–98. MIT Press, 1994.

[Ang98] P. J. Angeline. Subtree crossover causes bloat. In J. R. Koza
et al., editors, Genetic Programming 1998: Proceedings of the

References 329

Third Annual Conference, pages 745–752, University of Wis-
consin, Madison, Wisconsin, USA, 22-25 July 1998. Morgan
Kaufmann.

[AT99] E. Alba and J. M. Troya. A survey of parallel distributed
genetic algorithms. Complexity (USA), 4(4):31–52, 1999.

[AW03] M. Affenzeller and S. Wagner. SASEGASA: An evolution-
ary algorithm for retarding premature convergence by self-
adaptive selection pressure steering. In J. Mira and J. R.
Alvarez, editors, Computational Methods in Neural Modeling,
volume 2686 of Lecture Notes in Computer Science, pages 438–
445. Springer, 2003.

[AW04a] M. Affenzeller and S. Wagner. Reconsidering the selection
concept of genetic algorithms from a population genetics in-
spired point of view. In R. Trappl, editor, Cybernetics and
Systems 2004, volume 2, pages 701–706. Austrian Society for
Cybernetic Studies, 2004.

[AW04b] M. Affenzeller and S. Wagner. SASEGASA: A new generic
parallel evolutionary algorithm for achieving highest quality
results. Journal of Heuristics - Special Issue on New Advances
on Parallel Meta-Heuristics for Complex Problems, 10:239–
263, 2004.

[AW05] M. Affenzeller and S. Wagner. Offspring selection: A new
self-adaptive selection scheme for genetic algorithms. In
B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, and
N. C. Steele, editors, Adaptive and Natural Computing Algo-
rithms, Springer Computer Science, pages 218–221. Springer,
2005.

[AWW07] M. Affenzeller, S. Wagner, and S. Winkler. Self-adaptive pop-
ulation size adjustment for genetic algorithms. In Proceedings
of Computer Aided Systems Theory: EuroCAST 2007, Lecture
Notes in Computer Science, pages 820–828. Springer, 2007.

[AWW08] M. Affenzeller, S. Winkler, and S. Wagner. Advances in Evolu-
tionary Algorithms, chapter Evolutionary Systems Identifica-
tion: New Algorithmic Concepts and Applications. Artificial
Intelligence. I-tech, 2008.

[B+05] H.-G. Beyer et al., editors. GECCO 2005: Proceedings of the
2005 Conference on Genetic and Evolutionary Computation,
Washington DC, USA, 25-29 June 2005. ACM Press.

[Bal93] N. Balakrishnan. Simple heuristics for the vehicle routing
problem with soft time windows. Journal of the Operational
Research Society, 44(3):279–287, 1993.

330 References

[BB94] M. Bohanec and I. Bratko. Trading accuracy for simplicity in
decision trees. Machine Learning, 15:223 – 250, 1994.

[BD91] P. J. Brockwell and R. A. Davis. Time Series: Theory and
Methods. Springer, 1991.

[BD96] P. J. Brockwell and R. A. Davis. A First Course in Time
Series Analysis. Springer, 1996.

[Ber98] M. Bergmann. Tourenplanung mit Zeitfenstern - ein Überblick.
Shaker Verlag, 1998.

[BES01] E. Bradley, M. Easley, and R. Stolle. Reasoning about nonlin-
ear system identification. Artificial Intelligence, 133:139–188,
December 2001.

[Bey01] H. G. Beyer. The Theory of Evolution Strategies. Springer,
2001.

[BG05a] O. Bräysy and M. Gendreau. Vehicle Routing Problem with
Time Windows, Part I: Route Construction and Local Search
Algorithms. Transportation Science, 39(1):104–118, 2005.

[BG05b] O. Bräysy and M. Gendreau. Vehicle routing problem with
time windows, Part II: Metaheuristics. Transportation Sci-
ence, 39(1):119–139, 2005.

[BGK04] E. K. Burke, S. Gustafson, and G. Kendall. Diversity in ge-
netic programming: An analysis of measures and correlation
with fitness. IEEE Transactions on Evolutionary Computa-
tion, 8(1):47–62, 2004.

[BH74] M. Bellmore and S. Hong. Transformation of multisalesman
problem to the standard traveling salesman problem. Journal
of the Association of Computer Machinery, 21:500–504, 1974.

[BJ76] G. E. P. Box and G. M. Jenkins. Time Series Analysis: Fore-
casting and Control. Holden-Day, 1976.

[BJN+98] C. Bernhart, E. L. Johnson, G. L. Nemhauser, M. W. P.
Savelsbergh, and P. H. Vance. Branch-and-price: Column
generation for solving huge integer programs. Mathematical
Programming: State of the Art, 46(3):316–329, 1998.

[BL04] W. Banzhaf and C. W. G. Lasarczyk. Genetic programming of
an algorithmic chemistry. In U.-M. O’Reilly, T. Yu, R. L. Ri-
olo, and B. Worzel, editors, Genetic Programming Theory and
Practice II, chapter 11, pages 175–190. Springer, Ann Arbor,
13-15 May 2004.

References 331

[BMR93] L. Bianco, A. Mingozzi, and S. Ricciardelli. The traveling
salesman problem with cumulative costs. NETWORKS: Net-
works: An International Journal, 23:81–91, 1993.

[BNKF98] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone.
Genetic Programming – An Introduction; On the Automatic
Evolution of Computer Programs and its Applications. Morgan
Kaufmann, San Francisco, CA, USA, January 1998.

[Boc58] F. Bock. An algorithm for solving traveling-salesman and re-
lated network optimization problems. 14th National Meeting
of the ORSA, 1958.

[BR03] C. Blum and A. Roli. Metaheuristics in combinatorial opti-
mization: Overview and conceptual comparison. ACM Com-
puting Surveys, 35(3):268 – 308, 2003.

[Bra97] A. Bradley. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recogni-
tion, 30:1145–1159, 1997.

[BU95] C. E. Brodley and P. E. Utgoff. Multivariate decision trees.
Machine Learning, 19(1):45–77, 1995.

[Car94] H. Cartwright. Getting the timing right - the use of genetic
algorithms in scheduling. Proceedings of Adaptive Computing
and Information Processing Conference, pages 393–411, 1994.

[Cav75] D. Cavicchio. Adaptive Search Using Simulated Evolution.
PhD thesis, University of Michigan, 1975.

[CE69] N. Christofides and S. Eilon. An algorithm for the vehicle
dispatching problem. Operational Research Quarterly, 20:309–
318, 1969.

[CGT99] R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of
job-shop scheduling problems using genetic algorithms. Part
II: Hybrid genetic search strategies. Computers & Industrial
Engineering, 37(1-2):51–55, 1999.

[Cha01] C. Chatfield, editor. Time Series and Forecasting. Chapman
and Hall, 2001.

[CJ91a] R. J. Collins and D. R. Jefferson. Antfarm: Towards simulated
evolution. In C. G. Langton, C. Taylor, J. Doyne Farmer,
and S. Rasmussen, editors, Artificial Life II, pages 579–601.
Addison-Wesley, Redwood City, CA, 1991.

[CJ91b] R. J. Collins and D. R. Jefferson. Representations for artificial
organisms. In Jean-Arcady Meyer and Stewart W. Wilson,
editors, Proceedings of the First International Conference on

332 References

Simulation of Adaptive Behavior: From Animals to Animats,
pages 382–390. MIT Press, 1991.

[CL98] T. G. Crainic and G. Laporte. Fleet Management and Logis-
tics. Khuwer, 1998.

[CMT81] N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms
for solving the vehicle routing problem based on spanning trees
and shortest path relaxations. Mathematical Programming,
20(3):255–282, 1981.

[CO07] S. Christensen and F. Oppacher. Solving the artificial ant on
the Santa Fe trail problem in 20,696 fitness evaluations. In
D. Thierens et al., editors, GECCO ’07: Proceedings of the
9th Annual Conference on Genetic and Evolutionary Compu-
tation, volume 2, pages 1574–1579, London, 7-11 July 2007.
ACM Press.

[CP80] H. P. Crowder and M. Padberg. Solving large-scale symmet-
ric travelling salesman problems to optimality. Management
Science, 26:495–509, 1980.

[CP94] W. Sam Chung and R. A. Perez. The schema theorem consid-
ered insufficient. Proceedings of the Sixth IEEE International
Conference on Tools with Artificial Intelligence, pages 748–
751, 1994.

[CP97] E. Cantú-Paz. A survey of parallel genetic algorithms. Tech-
nical Report IlliGAL 97003, University of Illinois at Urbana-
Champaign, 1997.

[CP01] E. Cantú-Paz. Efficient and Accurate Parallel Genetic Algo-
rithms. Kluwer Academic Publishers, 2001.

[CP+03a] E. Cantú-Paz et al., editors. Genetic and Evolutionary Com-
putation – GECCO 2003, Part I, volume 2723 of Lecture Notes
in Computer Science, Chicago, IL, USA, 12-16 July 2003.
Springer.

[CP+03b] E. Cantú-Paz et al., editors. Genetic and Evolutionary Com-
putation – GECCO 2003, Part II, volume 2724 of Lecture
Notes in Computer Science. Springer, 12-16 July 2003.

[CPG99] E. Cantu-Paz and D. E. Goldberg. On the scalability of par-
allel genetic algorithms. Evolutionary Computation, 7(4):429–
449, 1999.

[Cra85] N. L. Cramer. A representation for the adapative generation
of simple sequential programs. International Conference on
Genetic Algorithms and Their Applications (ICGA85), pages
183–187, 1985.

References 333

[Cro58] G. Croes. A method for solving travelling-salesman problems.
Operations Research, 6:791–812, 1958.

[CTE+06] P. Collet, M. Tomassini, M. Ebner, S. Gustafson, and
A. Ekárt, editors. Proceedings of the 9th European Confer-
ence on Genetic Programming, volume 3905 of Lecture Notes
in Computer Science, Budapest, Hungary, 10 - 12 April 2006.
Springer.

[CW64] G. Clarke and J. Wright. Scheduling of vehicles from a central
depot to a number of delivery points. Operations Research,
12:568–581, 1964.

[D+04a] K. Deb et al., editors. Genetic and Evolutionary Computa-
tion – GECCO-2004, Part I, volume 3102 of Lecture Notes
in Computer Science, Seattle, WA, USA, 26-30 June 2004.
Springer-Verlag.

[D+04b] K. Deb et al., editors. Genetic and Evolutionary Computa-
tion – GECCO-2004, Part II, volume 3103 of Lecture Notes
in Computer Science, Seattle, WA, USA, 26-30 June 2004.
Springer-Verlag.

[DAG01] W. Duch, R. Adamczak, and K. Grabczewski. A new method-
ology of extraction, optimization and application of crisp and
fuzzy logical rules. IEEE Transactions on Neural Networks,
12:277–306, 2001.

[Dar98] C. Darwin. The Origin of Species. Wordsworth Classics of
World Literature. Wordsworth Editions Limited, 1998.

[Dav85] L. Davis. Applying adaptive algorithms to epistatic domains.
In Proceedings of the International Joint Conference on Arti-
ficial Intelligence, 1985.

[Dei04] M. Deistler. System identification and time series analysis:
Past, present, and future. In Stochastic Theory and Control:
Proceedings of a Workshop held in Lawrence, Kansas, Lec-
ture Notes in Control and Information Sciences, pages 97–110.
Springer Berlin / Heidelberg, 2004.

[DeJ75] K. A. DeJong. An Analysis of the Behavior of a Class of Ge-
netic Adaptive Systems. PhD thesis, University of Michigan,
1975.

[DG89] K. Deb and D. E. Goldberg. An investigation of niche and
species formation in genetic function optimization. In Pro-
ceedings of the Third International Conference on Genetic Al-
gorithms, pages 42–50. Morgan Kaufmann, 1989.

334 References

[DH02] J. E. Devaney and J. G. Hagedorn. The role of genetic pro-
gramming in describing the microscopic structure of hydrat-
ing plaster. In E. Cantú-Paz et al., editors, Late Breaking
Papers at the Genetic and Evolutionary Computation Confer-
ence (GECCO-2002), pages 91–98, New York, NY, July 2002.
AAAI.

[DHS00] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifica-
tion. Wiley Interscience, 2nd edition, 2000.

[DLJD00] D. Dumitrescu, B. Lazzerini, L. C. Jain, and A. Dumitrescu.
Evolutionary Computation. The CRC Press International Se-
ries on Computational Intelligence. CRC Press, 2000.

[dN06] L. M. de Menezes and N. Y. Nikolaev. Forecasting with genet-
ically programmed polynomial neural networks. International
Journal of Forecasting, 22(2):249–265, April-June 2006.

[Dom90] W. Domschke. Logistik: Rundreisen und Touren. Oldenburg
Verlag München Wien, 1990.

[DOMK+01] S. Dreiseitl, L. Ohno-Machado, H. Kittler, S. Vinterbo, H. Bill-
hardt, and M. Binder. A comparison of machine learning
methods for the diagnosis of pigmented skin lesions. Journal
of Biomedical Informatics, 34:28–36, 2001.

[DR59] G. B. Dantzig and R. H. Ramser. The Truck Dispatching
Problem. Management Science, 6:80–91, 1959.

[dRLF+05] L. del Re, P. Langthaler, C. Furtmüller, S. Winkler, and M. Af-
fenzeller. NOx virtual sensor based on structure identification
and global optimization. In Proceedings of the SAE World
Congress 2005, number 2005-01-0050, 2005.

[Dro98] S. Droste. Genetic programming with guaranteed quality. In
J. R. Koza et al., editors, Genetic Programming 1998: Pro-
ceedings of the Third Annual Conference, pages 54–59, Uni-
versity of Wisconsin, Madison, Wisconsin, USA, 22-25 July
1998. Morgan Kaufmann.

[E+07] M. Ebner et al., editors. Proceedings of the 10th European
Conference on Genetic Programming, volume 4445 of Lecture
Notes in Computer Science, Valencia, Spain, 11 - 13 April
2007. Springer.

[Eic07] C. F. Eick. Evolutionary Programming: Genetic Program-
ming (http://www2.cs.uh.edu/∼ceick/6367/eiben6.ppt). De-
partment of Computer Science, University of Houston, Texas,
2007.

References 335

[EKK04] J. Eggermont, J. N. Kok, and W. A. Kosters. Detecting and
pruning introns for faster decision tree evolution. In X. Yao
et al., editors, Parallel Problem Solving from Nature - PPSN
VIII, volume 3242 of LNCS, pages 1071–1080, Birmingham,
UK, 18-22 September 2004. Springer-Verlag.

[EN00] A. Ekart and S. Z. Nemeth. A metric for genetic programs and
fitness sharing. In R. Poli et al., editors, Genetic Program-
ming, Proceedings of EuroGP’2000, volume 1802 of LNCS,
pages 259–270, Edinburgh, 15-16 April 2000. Springer-Verlag.

[EN01] A. Ekart and S. Z. Nemeth. Selection based on the pareto
nondomination criterion for controlling code growth in genetic
programming. Genetic Programming and Evolvable Machines,
2(1):61–73, March 2001.

[ES03] A. E. Eiben and J. E. Smith. Introduction to Evolutionary
Computing. Springer, 2003.

[FBF+03] P. Flach, H. Blockeel, C. Ferri, J. Hernández-Orallo, and
J. Struyf. Decision support for data mining: Introduction to
ROC analysis and its applications. Data mining and decision
support: Integration and collaboration, 2003.

[FE05] J. E. Fieldsend and R. M. Everson. Formulation and com-
parison of multi-class ROC surfaces. Proceedings of the ICML
2005 Workshop on ROC Analysis in Machine Learning, pages
41–48, 2005.

[FG97] D. B. Fogel and A. Ghozeil. Schema processing under propor-
tional selection in the presence of random effects. IEEE Trans-
actions on Evolutionary Computation, 1(4):290–293, 1997.

[FG98] D. B. Fogel and A. Ghozeil. The schema theorem and the mis-
allocation of trials in the presence of stochastic effects. Pro-
ceedings of the 7th International Conference on Evolutionary
Programming VI, 1447:313–321, 1998.

[FJM97] M. L. Fisher, K. Jörnsteen, and O. B. G. Madsen. Vehicle
routing with time windows: Two optimization algorithms. Op-
erations Research, 45(3):488–492, 1997.

[FM91] B. R. Fox and M. B. McMahon. Genetic operators for sequenc-
ing problems. In Gregory J. E. Rawlins, editor, Foundations of
Genetic Algorithms, pages 284–300. Morgan Kaufmann Pub-
lishers, 1991.

[Fog93] D. B. Fogel. Applying evolutionary programming to selected
travelling salesman problems. Cybernetics and Systems, 24:27–
36, 1993.

336 References

[Fog94] D. B. Fogel. An introduction to simulated evolutionary opti-
mization. IEEE Transactions on Neural Networks, 5(1):3–14,
1994.

[For81] R. Forsyth. BEAGLE – A Darwinian approach to pattern
recognition. Kybernetes, 10:159–166, 1981.

[FP93] C. Foisy and J. Potvin. Implementing an insertion heuristc
on parallel hardware. Computers and Operations Research,
20(7):737–745, 1993.

[FP98] P. Funes and J. Pollack. Evolutionary body building: Adap-
tive physical designs for robots. Artificial Life, 4(4):337–357,
Fall 1998.

[FPS06] G. Folino, C. Pizzuti, and G. Spezzano. Improving cooperative
GP ensemble with clustering and pruning for pattern classifi-
cation. In M. Keijzer et al., editors, GECCO 2006: Proceedings
of the 8th Annual Conference on Genetic and Evolutionary
Computation, volume 1, pages 791–798, Seattle, Washington,
USA, 8-12 July 2006. ACM Press.

[FPSS96] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From
data mining to knowledge discovery: An overview. Advances
in Knowledge Discovery and Data Mining, 1996.

[GAMRRP07] M. Garcia-Arnau, D. Manrique, J. Rios, and A. Rodriguez-
Paton. Initialization method for grammar-guided genetic pro-
gramming. Knowledge-Based Systems, 20(2):127–133, March
2007. AI 2006, The 26th SGAI International Conference on
Innovative Techniques and Applications of Artificial Intelli-
gence.

[Gao03] Y. Gao. Population size and sampling complexity in genetic
algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO) 2003, 2003.

[Gas67] T. Gaskell. Bases for vehicle fleet scheduling. Operational
Research Quarterly, 18:281–295, 1967.

[GAT06] A. L. Garcia-Almanza and E. P. K. Tsang. Simplifying deci-
sion trees learned by genetic programming. In Proceedings of
the 2006 IEEE Congress on Evolutionary Computation, pages
7906–7912, Vancouver, 6-21 July 2006. IEEE Press.

[GB89] J. J. Grefenstette and J. Baker. How genetic algorithms work:
A critical look at implicit parallelism. In J. D. Schaffer, editor,
Proceedings of the Third International Conference on Genetic
Algorithms. Morgan Kaufmann Publishers, 1989.

References 337

[GBD80] B. L. Golden, L. Bodin, and T. Doyle. Approximate traveling
salesman algorithm. Operations Research, 28:694–711, 1980.

[GGRG85] J. J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht.
Genetic algorithms for the traveling salesperson problem. In-
ternational Conference on Genetic Algorithms and Their Ap-
plications, pages 160–168, 1985.

[GL85] D. Goldberg and R. Lingle. Alleles, loci, and the traveling
salesman problem. International Conference on Genetic Al-
gorithms, 1985.

[GL97] F. Glover and F. Laguna. Tabu Search. Kluwer Academic
Publishers, 1997.

[Glo86] F. Glover. Future paths for integer programming and links
to artificial intelligence. Computers & Operations Research,
13:533–549, 1986.

[GM74] B. Gillett and L. Miller. A heuristic for the vehicle–dispatch
problem. Operations Research, 22:340–349, 1974.

[GMW82] P. Gill, W. Murray, and M. Wright. Practical Optimization.
Academic Press, 1982.

[Gol84] B. L. Golden. Introduction to and recent advances in vehicle
routing methods. Transportation Planning Models, pages 383–
418, 1984.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison Wesley Longman, 1989.

[Gom63] R. E. Gomory. An algorithm for integer solutions to linear pro-
grams. In R. L. Graves and P. Wolfe, editors, Recent Advances
in Mathematical Programming, pages 269–302. McGraw-Hill,
New York, 1963.

[GR94] C. Gathercole and P. Ross. Dynamic training subset selection
for supervised learning in genetic programming. In Y. Davi-
dor, H.-P. Schwefel, and R. Männer, editors, Parallel Problem
Solving from Nature III, volume 866 of LNCS, pages 312–321,
Jerusalem, 9-14 October 1994. Springer-Verlag.

[Grö77] M. Grötschel. Polyedrische Charakterisierung kombina-
torischer Optimierungsprobleme. PhD thesis, University of
Bonn, 1977.

[Gru94] F. Gruau. Neural Network Synthesis using Cellular Encod-
ing and the Genetic Algorithm. PhD thesis, Laboratoire de
l’Informatique du Parallilisme, Ecole Normale Supirieure de
Lyon, France, 1994.

338 References

[GS90] M. Gorges-Schleuter. Genetic Algorithms and Population
Structures — A Massively Parallel Algorithm. PhD thesis,
University of Dortmund, 1990.

[Ham58] C. L. Hamblin. Computer languages. The Australian Journal
of Science, 20:135–139, 1958.

[Ham62] C. L. Hamblin. Translation to and from Polish notation. Com-
puter Journal, 5:210–213, 1962.

[Ham94] J. D. Hamilton. Time Series Analysis. Princeton University
Press, 1994.

[HC89] D. L. Hartl and A. G. Clark. Principles of Population Genet-
ics. Sinauer Associates Inc., 2nd edition, 1989.

[Hel00] K. Helsgaun. An effective implementation of the Lin-
Kernighan traveling salesman heuristic. European Journal of
Operational Research, 126(1):106–130, 2000.

[Hey88] J. B. Heywood. Internal Combustion Engine Fundamentals.
McGraw-Hill, 1988.

[HGL93] A. Homaifar, S. Guan, and G. E. Liepins. A new approach
on the traveling salesman problem by genetic algorithms. In
Proceedings of the 5th International Conference on Genetic Al-
gorithms, pages 460–466. Morgan Kaufmann Publishers Inc.,
1993.

[HHM04] H. Tuan Hao, N. Xuan Hoai, and R. I. McKay. Does it matter
where you start? A comparison of two initialisation strategies
for grammar guided genetic programming. In R. I. Mckay and
S.-B. Cho, editors, Proceedings of The Second Asian-Pacific
Workshop on Genetic Programming, Cairns, Australia, 6-7
December 2004.

[HM82] J. Hanley and B. McNeil. The meaning and use of the area
under a receiver operating characteristic (ROC) curve. Radi-
ology, 143:29–36, 1982.

[HOFLe04] J. Hernández-Orallo, C. Ferri, C. Lachiche, and P. Flach (ed-
itors). ROC Analysis in Artificial Intelligence, 1st Interna-
tional Workshop ROCAI-2004. 2004.

[Hol75] J. H. Holland. Adaption in Natural and Artifical Systems.
University of Michigan Press, 1975.

[HRv07] K. Holladay, K. Robbins, and J. von Ronne. FIFTH: A stack
based GP language for vector processing. In M. Ebner et al.,
editors, Proceedings of the 10th European Conference on Ge-
netic Programming, volume 4445 of Lecture Notes in Computer

References 339

Science, pages 102–113, Valencia, Spain, 11 - 13 April 2007.
Springer.

[HS95] D. P. Helmbold and R. E. Schapire. Predicting nearly as well
as the best pruning of a decision tree. Proceedings of the Eighth
Annual Conference on Computational Learning Theory, pages
61–68, 1995.

[HSC96] H. J. Hamilton, N. Shan, and N. Cercone. RIAC: A rule induc-
tion algorithm based on approximate classification. Technical
Report CS 96-06, Regina University, 1996.

[IIS98] T. Ito, H. Iba, and S. Sato. Non-destructive depth-dependent
crossover for genetic programming. In W. Banzhaf et al., edi-
tors, Proceedings of the First European Workshop on Genetic
Programming, volume 1391 of LNCS, pages 71–82, Paris, 14-
15 April 1998. Springer-Verlag.

[Jac94] D. Jacquette. Philosophy of Mind. Prentice Hall, 1994.

[Jac99] C. Jacob. Lindenmayer systems and growth program evolu-
tion. In T. S. Hussain, editor, Advanced Grammar Techniques
Within Genetic Programming and Evolutionary Computation,
pages 76–79, Orlando, Florida, USA, 13 July 1999.

[JCC+92] D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flowers,
R. Korf, C. Taylor, and A. Wang. Evolution as a theme in
artificial life: The genesys/tracker system. Artificial Life II,
pages 417–434, 1992.

[Jes42] R. J. Jessen. Statistical investigation of a sample survey for
obtaining farm facts. Research Bulletin 304, Iowa State Col-
lege of Agriculture, 1942.

[JHC04] I. Jonyer, L. B. Holder, and D. J. Cook. Attribute-value selec-
tion based on minimum description length. In Proceedings of
the International Conference on Artificial Intelligence, pages
1154–1159, 2004.

[JM05] X. Jiang and Y. Motai. Incremental on-line PCA for automatic
motion learning of eigen behavior. Proceedings of the 1st In-
ternational Workshop on Automatic Learning and Real-Time
ALaRT ‘05, pages 153–164, 2005.

[K+06] M. Keijzer et al., editors. GECCO 2006: Proceedings of the
8th Annual Conference on Genetic and Evolutionary Compu-
tation, Seattle, Washington, USA, 8-12 July 2006. ACM Press.

[Kar77] R. M. Karp. Probabilistic analysis of partitioning algorithms
of the traveling salesman problem in the plane. Mathematics
of Operations Research, 2:209–224, 1977.

340 References

[Kar79] R. M. Karp. A patching algorithm for the nonsymmetric trav-
eling salesman problem. SIAM Journal of Computing, 8:561–
573, 1979.

[KBAK99] J. R. Koza, F.H. Bennett III, D. Andre, and M. A. Keane.
The design of analog circuits by means of genetic program-
ming. In P. Bentley, editor, Evolutionary Design by Com-
puters, chapter 16, pages 365–385. Morgan Kaufmann, San
Francisco, USA, 1999.

[Kei96] M. Keijzer. Efficiently representing populations in genetic pro-
gramming. In P. J. Angeline and K. E. Kinnear, Jr., editors,
Advances in Genetic Programming 2, chapter 13, pages 259–
278. MIT Press, Cambridge, MA, USA, 1996.

[Kei02] M. Keijzer. Scientific Discovery using Genetic Programming.
PhD thesis, Danish Technical University, Lyngby, Denmark,
March 2002.

[Ken73] M. G. Kendall. Time Series. Griffin, 1973.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220:671–680, 1983.

[KIAK99] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane.
Genetic Programming III: Darvinian Invention and Problem
Solving. Morgan Kaufmann Publishers, 1999.

[Kin93] K. E. Kinnear, Jr. Generality and difficulty in genetic pro-
gramming: Evolving a sort. In S. Forrest, editor, Proceedings
of the 5th International Conference on Genetic Algorithms,
ICGA-93, pages 287–294, University of Illinois at Urbana-
Champaign, 17-21 July 1993. Morgan Kaufmann.

[KKS+03a] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu,
and G. Lanza. Genetic Programming IV: Routine Human-
Competitive Machine Intelligence. Kluwer Academic Publish-
ers, 2003.

[KKS+03b] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu,
and G. Lanza. Genetic Programming IV: Routine Human-
Competitive Machine Learning. Kluwer Academic Publishers,
2003.

[KM97] N. Kohl and O.B.G. Madsen. An optimization algorithm
for the vehicle routing problem with time windows based on
lagrangean relaxation. Operations Research, 45(3):395–406,
1997.

[KO90] M. G. Kendall and J. K. Ord. Time Series. Edward Arnold,
1990.

References 341

[KOL+04] M. Keijzer, U.-M. O’Reilly, S. M. Lucas, E. Costa, and
T. Soule, editors. Genetic Programming 7th European Con-
ference, EuroGP 2004, Proceedings, volume 3003 of LNCS,
Coimbra, Portugal, 5-7 April 2004. Springer-Verlag.

[Koz89] J. R. Koza. Hierarchical genetic algorithms operating on pop-
ulations of computer programs. In N. S. Sridharan, editor,
Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence IJCAI-89, volume 1, pages 768–774.
Morgan Kaufmann, 20-25 August 1989.

[Koz92a] J. R. Koza. A genetic approach to the truck backer upper
problem and the inter-twined spiral problem. In Proceedings
of IJCNN International Joint Conference on Neural Networks,
volume IV, pages 310–318. IEEE Press, 1992.

[Koz92b] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. The MIT Press,
1992.

[Koz94] J. R. Koza. Genetic Programming II: Automatic Discovery of
Reusable Programs. The MIT Press, 1994.

[KP98] R. Kohavi and F. Provost. Glossary of terms. Machine Learn-
ing, Special Issue on Applications of Machine Learning and
the Knowledge Discovery Process, 30:271–274, 1998.

[KRKT87] A. Kolen, A. Rinnooy-Kan, and H. Trienekens. Vehicle routing
with time windows. Operations Research, 35(2):266–274, 1987.

[KSBM01] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K.
Murthy. Improvements to platt’s SMO algorithm for SVM
classifier design. Neural Computation, 13(3):637–649, 2001.

[KTC+05] M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert, and
M. Tomassini, editors. Proceedings of the 8th European Con-
ference on Genetic Programming, volume 3447 of Lecture
Notes in Computer Science, Lausanne, Switzerland, 30 March
- 1 April 2005. Springer.

[Kus98] I. Kuscu. Evolving a generalised behavior: Artificial ant prob-
lem revisited. In V. William Porto, N. Saravanan, D. Waagen,
and A. E. Eiben, editors, Seventh Annual Conference on Evo-
lutionary Programming, volume 1447 of LNCS, pages 799–808,
Mission Valley Marriott, San Diego, California, USA, 25-27
March 1998. Springer-Verlag.

[Lan95] W. B. Langdon. Evolving data structures using genetic
programming. In L. Eshelman, editor, Genetic Algorithms:
Proceedings of the Sixth International Conference (ICGA95),

342 References

pages 295–302, Pittsburgh, PA, USA, 15-19 July 1995. Morgan
Kaufmann.

[Lan98] W. B. Langdon. Genetic Programming and Data Struc-
tures: Genetic Programming + Data Structures = Automatic
Programming!, volume 1 of Genetic Programming. Kluwer,
Boston, 24 April 1998.

[Lan99] W. B. Langdon. Size fair tree crossovers. In Eric Postma
and Marc Gyssen, editors, Proceedings of the Eleventh
Belgium/Netherlands Conference on Artificial Intelligence
(BNAIC’99), pages 255–256, Kasteel Vaeshartelt, Maastricht,
Holland, 3-4 November 1999.

[Lan00] W. B. Langdon. Size fair and homologous tree genetic pro-
gramming crossovers. Genetic Programming and Evolvable
Machines, 1(1/2):95–119, April 2000.

[Lap92] G. Laporte. The vehicle routing problem: An overview of
exact and approximate algorithms. European Journal of Op-
erational Research, 59:345–358, 1992.

[Lar99] J. Larsen. Parallelization of the Vehicle Routing Problem with
Time Windows. PhD thesis, Department of Computer Science,
University of Copenhagen, 1999.

[LAWR05] P. Langthaler, D. Alberer, S. Winkler, and L. Del Re. Design
eines virtuellen Sensors für Partikelmessung am Dieselmotor.
In M. Horn, M. Hofbauer, and N. Dourdoumas, editors, Pro-
ceedings of the 14th Styrian Seminar on Control Engineer-
ing and Process Automation (14. Steirisches Seminar über
Regelungstechnik und Prozessautomatisierung), pages 71–87,
2005.

[LC01] T. Loveard and V. Ciesielski. Representing classification prob-
lems in genetic programming. In Proceedings of the Congress
on Evolutionary Computation, volume 2, pages 1070–1077,
COEX, World Trade Center, 159 Samseong-dong, Gangnam-
gu, Seoul, Korea, 2001. IEEE Press.

[LC05] D. P. X. Li and V. Ciesielski. Multi-objective techniques in
genetic programming for evolving classifiers. Proceedings of
the 2005 Congress on Evolutionary Computation (CEC ’05),
pages 183–190, 2005.

[Lev44] K. Levenberg. A method for the solution of certain non-linear
problems in least squares. The Quarterly of Applied Mathe-
matics, 2:164–168, 1944.

References 343

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10(8):707–
710, 1966.

[LGX97] Y. Leung, Y. Gao, and Z. B. Xu. Degree of population di-
versity - a perspective on premature convergence in genetic
algorithms and its Markov chain analysis. IEEE Transactions
on Neural Networks, 8(5):1165–1176, 1997.

[LH06] P. Lichodzijewski and M. I. Heywood. Pareto-coevolutionary
genetic programming for problem decomposition in multi-class
classification. Proceedings of the Genetic and Evolutionary
Computation Conference GECCO’07, pages 464–471, 2006.

[Lin65] S. Lin. Computer solutions of the traveling salesman problem.
Systems Technical Journal, 44:2245–2269, 1965.

[Lju99] L. Ljung. System Identification – Theory For the User, 2nd
edition. PTR Prentice Hall, Upper Saddle River, N.J., 1999.

[LK73] S. Lin and B. W. Kernighan. An effective heuristic algo-
rithm for the traveling-salesman problem. Operations Re-
search, 21:498–516, 1973.

[LKM+99] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and
D. Dizdarevic. Genetic algorithms for the travelling salesman
problem: A review of representations and operators. Artificial
Intelligence Review, 13:129–170, 1999.

[LLRKS85] E. L. Lawler, J. K. Lenstra, A. Rinnooy-Kan, and D. B.
Shmoys. The Travelling Salesman Problem. Wiley, New York,
1985.

[LN00] W. B. Langdon and J. P. Nordin. Seeding GP populations.
In Riccardo Poli, Wolfgang Banzhaf, William B. Langdon, Ju-
lian F. Miller, Peter Nordin, and Terence C. Fogarty, editors,
Genetic Programming, Proceedings of EuroGP’2000, volume
1802 of LNCS, pages 304–315, Edinburgh, 15-16 April 2000.
Springer-Verlag.

[LP97] W. B. Langdon and R. Poli. Fitness causes bloat. In P. K.
Chawdhry, R. Roy, and R. K. Pant, editors, Soft Comput-
ing in Engineering Design and Manufacturing, pages 13–22.
Springer-Verlag London, 23-27 June 1997.

[LP98] W. B. Langdon and R. Poli. Why ants are hard. In J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel,
M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors,
Genetic Programming 1998: Proceedings of the Third Annual

344 References

Conference, pages 193–201, University of Wisconsin, Madison,
Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann.

[LP02] W. B. Langdon and R. Poli. Foundations of Genetic Program-
ming. Springer Verlag, Berlin Heidelberg New York, 2002.

[LS97] S. Luke and L. Spector. A comparison of crossover and mu-
tation in genetic programming. In J. R. Koza et al., editors,
Genetic Programming 1997: Proceedings of the Second Annual
Conference, pages 240–248, Stanford University, CA, USA, 13-
16 July 1997. Morgan Kaufmann.

[LW95] J. Y. B. Lee and P. C. Wong. The effect of function noise
on GP efficiency. In X. Yao, editor, Progress in Evolutionary
Computation, volume 956 of Lecture Notes in Artificial In-
telligence, pages 1–16. Springer-Verlag, Heidelberg, Germany,
1995.

[Mah40] P. Mahalanobis. A sample survey of the acreage under jute in
Bengal. Sankhyu, 4:511–530, 1940.

[Man97] Y. Mansour. Pessimistic decision tree pruning based on tree
size. Proceedings of the Fourteenth International Conference
on Machine Learning, pages 195–201, 1997.

[Mar63] D. W. Marquardt. An algorithm for least-squares estimation of
nonlinear parameters. SIAM Journal on Applied Mathematics,
11:431–441, 1963.

[McC60] J. L. McCarthy. Recursive functions of symbolic expressions
and their computation by machine, part I. Communications
of the ACM, 3(4):184–195, 1960.

[McK00] R. I. McKay. Fitness sharing in genetic programming. In
D. Whitley et al., editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2000), pages
435–442, Las Vegas, Nevada, USA, 10-12 July 2000. Morgan
Kaufmann.

[Men27] K. Menger. Zur allgemeinen Kurventheorie. Fundamenta
Mathematicae, 10:96–115, 1927.

[Müh89] H. Mühlenbein. Parallel genetic algorithms, population ge-
netics and combinatorial optimization. Proceedings of the 3rd
International Conference on Genetic Algorithms, pages 416–
421, 1989.

[MH99] N. F. McPhee and N. J. Hopper. Analysis of genetic diversity
through population history. In W. Banzhaf et al., editors, Pro-
ceedings of the Genetic and Evolutionary Computation Con-

References 345

ference, volume 2, pages 1112–1120, Orlando, Florida, USA,
13-17 July 1999. Morgan Kaufmann.

[MIB+00] K. Morik, M. Imhoff, P. Brockhausen, T. Joachims, and
U. Gather. Knowledge discovery and knowledge validation in
intensive care. Artificial Intelligence in Medicine, 19:225–249,
2000.

[Mic92] Z. Michalewicz. Genetic Algorithms + Data Structures = Evo-
lution Programs. Springer, 1992.

[Min89] J. Mingers. An empirical comparison of pruning methods for
decision tree induction. Machine Learning, 4:227 – 243, 1989.

[Mit96] M. Mitchell. An Introduction to Genetic Algorithms. The MIT
Press, 1996.

[Mit00] T. M. Mitchell. Machine Learning. McGraw-Hill, New York,
2000.

[MJK07] D. C. Montgomery, C. L. Jennings, and M. Kulahci. Introduc-
tion to Time Series Analysis and Forecasting. Wiley & Sons,
2007.

[MK00] Y. Maeda and S. Kawaguchi. Redundant node pruning and
adaptive search method for genetic programming. In D. Whit-
ley et al., editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), page 535, Las Ve-
gas, Nevada, USA, 10-12 July 2000. Morgan Kaufmann.

[Mor91] F. Morrison. The Art of Modeling Dynamic Systems: Forecast-
ing for Chaos, Randomness, and Determinism. John Wiley &
Sons, Inc, 1991.

[MP43] W. S. McCulloch and W. H. Pitts. A logical calculus of the
ideas imminent in nervous activity. In Bulletin of Mathemat-
ical Biophysics, volume 5, pages 115–137, 1943.

[NB95] P. Nordin and W. Banzhaf. Complexity compression and evo-
lution. In L. Eshelman, editor, Genetic Algorithms: Proceed-
ings of the Sixth International Conference (ICGA95), pages
310–317, Pittsburgh, PA, USA, 15-19 July 1995. Morgan
Kaufmann.

[Nel01] O. Nelles. Nonlinear System Identification. Springer Verlag,
Berlin Heidelberg New York, 2001.

[Nol97] D. Nolan. Quantitative parsimony. British Journal for the
Philosophy of Science, 48(3):329–343, 1997.

346 References

[Nor97] P. Nordin. Evolutionary Program Induction of Binary Ma-
chine Code and its Applications. PhD thesis, Universität Dort-
mund, Fachbereich Informatik, 1997.

[Nør00] M. Nørgaard. Neural network based system identification tool-
box. Technical Report 00-E-891, Technical University of Den-
mark, 2000.

[NV92] A. E. Nix and M. D. Vose. Modeling genetic algorithms with
markov chains. Annals of Mathematics and Artificial Intelli-
gence, 5(1):79–88, 1992.

[OO94] U.-M. O’Reilly and F. Oppacher. The troubling aspects of a
building block hypothesis for genetic programming. In L. D.
Whitley and M. D. Vose, editors, Foundations of Genetic Algo-
rithms 3, pages 73–88, Estes Park, Colorado, USA, 31 July–2
August 1994. Morgan Kaufmann. Published 1995.

[O’R95] U.-M. O’Reilly. An Analysis of Genetic Programming. PhD
thesis, Carleton University, Ottawa-Carleton Institute for
Computer Science, Ottawa, Ontario, Canada, 22 September
1995.

[O’R97] U.-M. O’Reilly. Using a distance metric on genetic programs
to understand genetic operators. In IEEE International Con-
ference on Systems, Man, and Cybernetics, Computational
Cybernetics and Simulation, volume 5, pages 4092–4097, Or-
lando, Florida, USA, 12-15 October 1997.

[OSH87] I. M. Oliver, D. J. Smith, and J. R. C. Holland. A study of
permutation crossover operators on the travelling salesman
problem. In J. J. Grefenstette, editor, Genetic algorithms
and their applications: Proceedings of the Second International
Conference on Genetic Algorithms, pages 224–230, Hillsdale,
NJ, 1987. Lawrence Erlbaum Assoc.

[Osm93] I. H. Osman. Metastrategy simulated annealing and tabu
search algorithms for the vehicle routing problem. Annals of
Operations Research, 41(1–4):421–451, 1993.

[Pan83] A. Pankratz. Forecasting With Univariate Box-Jenkins Mod-
els: Concepts and Cases. Wiley, 1983.

[Pan91] A. Pankratz. Forecasting With Dynamic Regression Models.
Wiley, 1991.

[PB96] J.-Y. Potvin and S. Bengio. The Vehicle Routing Problem
with Time Windows - Part II: Genetic Search. INFORMS
Journal on Computing, 8(2):165–172, 1996.

References 347

[Per94] T. Perkis. Stack-based genetic programming. In Proceedings
of the 1994 IEEE World Congress on Computational Intelli-
gence, volume 1, pages 148–153, Orlando, Florida, USA, 27-29
June 1994. IEEE Press.

[PL97a] R. Poli and W. B. Langdon. An experimental analysis of
schema creation, propagation and disruption in genetic pro-
gramming. In T. Back, editor, Genetic Algorithms: Proceed-
ings of the Seventh International Conference, pages 18–25,
Michigan State University, East Lansing, MI, USA, 19-23 July
1997. Morgan Kaufmann.

[PL97b] R. Poli and W. B. Langdon. Genetic programming with one-
point crossover. In P. K. Chawdhry, R. Roy, and R. K. Pant,
editors, Soft Computing in Engineering Design and Manufac-
turing, pages 180–189. Springer-Verlag London, 23-27 June
1997.

[PL97c] R. Poli and W. B. Langdon. A new schema theory for ge-
netic programming with one-point crossover and point muta-
tion. In J. R. Koza et al., editors, Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages 278–285,
Stanford University, CA, USA, 13-16 July 1997. Morgan Kauf-
mann.

[Pla99] J. Platt. Fast training of support vector machines using se-
quential minimal optimization. In B. Schoelkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods - Support
Vector Learning, pages 185–208. MIT Press, 1999.

[PM01a] R. Poli and N. F. McPhee. Exact GP schema theory for
headless chicken crossover and subtree mutation. In Pro-
ceedings of the 2001 Congress on Evolutionary Computation
CEC2001, pages 1062–1069, COEX, World Trade Center, 159
Samseong-dong, Gangnam-gu, Seoul, Korea, 27-30 May 2001.
IEEE Press.

[PM01b] R. Poli and N. F. McPhee. Exact schema theorems for GP with
one-point and standard crossover operating on linear struc-
tures and their application to the study of the evolution of
size. In J. F. Miller, M. Tomassini, P. L. Lanzi, C. Ryan,
A. G. B. Tettamanzi, and W. B. Langdon, editors, Genetic
Programming, Proceedings of EuroGP’2001, volume 2038 of
LNCS, pages 126–142, Lake Como, Italy, 18-20 April 2001.
Springer-Verlag.

[PM01c] R. Poli and N. F. McPhee. Exact schema theory for GP and
variable-length GAs with homologous crossover. In L. Spec-

348 References

tor et al., editors, Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO-2001), pages 104–111,
San Francisco, California, USA, 7-11 July 2001. Morgan Kauf-
mann.

[PM03a] R. Poli and N. F. McPhee. General schema theory for ge-
netic programming with subtree-swapping crossover: Part I.
Evolutionary Computation, 11(1):53–66, March 2003.

[PM03b] R. Poli and N. F. McPhee. General schema theory for ge-
netic programming with subtree-swapping crossover: Part II.
Evolutionary Computation, 11(2):169–206, June 2003.

[PMR04] R. Poli, N. F. McPhee, and J. E. Rowe. Exact schema the-
ory and markov chain models for genetic programming and
variable-length genetic algorithms with homologous crossover.
Genetic Programming and Evolvable Machines, 5(1):31–70,
March 2004.

[Pol97] R. Poli. Evolution of graph-like programs with parallel dis-
tributed genetic programming. In T. Back, editor, Genetic
Algorithms: Proceedings of the Seventh International Confer-
ence, pages 346–353, Michigan State University, East Lansing,
MI, USA, 19-23 July 1997. Morgan Kaufmann.

[Pol99a] R. Poli. New results in the schema theory for GP with one-
point crossover which account for schema creation, survival
and disruption. Technical Report CSRP-99-18, University of
Birmingham, School of Computer Science, December 1999.

[Pol99b] R. Poli. Parallel distributed genetic programming. In David
Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in
Optimization, Advanced Topics in Computer Science, chap-
ter 27, pages 403–431. McGraw-Hill, Maidenhead, Berkshire,
England, 1999.

[Pol00a] R. Poli. Exact schema theorem and effective fitness for GP
with one-point crossover. In D. Whitley et al., editors, Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2000), pages 469–476, Las Vegas, Nevada,
USA, 10-12 July 2000. Morgan Kaufmann.

[Pol00b] R. Poli. Hyperschema theory for GP with one-point crossover,
building blocks, and some new results in GA theory. In R. Poli,
W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and
T. C. Fogarty, editors, Genetic Programming, Proceedings of
EuroGP’2000, volume 1802 of LNCS, pages 163–180, Edin-
burgh, 15-16 April 2000. Springer-Verlag.

References 349

[Pol00c] R. Poli. A macroscopic exact schema theorem and a redefini-
tion of effective fitness for GP with one-point crossover. Tech-
nical Report CSRP-00-1, University of Birmingham, School of
Computer Science, February 2000.

[Pol01] R. Poli. Exact schema theory for genetic programming and
variable-length genetic algorithms with one-point crossover.
Genetic Programming and Evolvable Machines, 2(2):123–163,
June 2001.

[Pop92] K. Popper. The Logic of Scientific Discovery. Taylor & Fran-
cis, 1992.

[PP01] F. Previdi and T. Parisini. Model-free fault detection: a spec-
tral estimation approach based on coherency functions. Inter-
national Journal of Control, 74:1107–1117, 2001.

[PR93] J. Potvin and J. Rousseau. A parallel route building algorithm
for the vehicle routing and scheduling problem with time win-
dows. European Journal of Operations Research, 66:331–340,
1993.

[Pri04] C. Prins. A simple and effective evolutionary algorithm for the
vehicle routing problem. Computers & Operations Research,
31(12):1985–2002, 2004.

[PRM01] R. Poli, J. E Rowe, and N. F. McPhee. Markov models for GP
and variable-length GAs with homologous crossover. Techni-
cal Report CSRP-01-6, University of Birmingham, School of
Computer Science, January 2001.

[PS82] C. Papadimitriou and K. Steiglitz. Combinatorial Optimiza-
tion: Algorithms and Complexity. Prentice-Hall, 1982.

[PTMC02] F. B. Pereira, J. Tavares, P. Machado, and E. Costa. GVR: A
New Genetic Representation for the Vehicle Routing Problem.
In AICS ’02: Proceedings of the 13th Irish International Con-
ference on Artificial Intelligence and Cognitive Science, pages
95–102, London, UK, 2002. Springer-Verlag.

[PTT01] D. Peña, G. C. Tiao, and R. S. Tsay. A Course in Time Series
Analysis. Wiley, 2001.

[Que03] Christian Queinnec. LISP in Small Pieces. Cambridge Uni-
versity Press, 2003.

[Raw91] G. J. E. Rawlins, editor. Foundations of Genetic Algorithms,
volume 1. Morgan Kaufmann Publishers, 1991.

[RB96] J. P. Rosca and D. H. Ballard. Discovery of subroutines in
genetic programming. In Peter J. Angeline and K. E. Kinnear,

350 References

Jr., editors, Advances in Genetic Programming 2, chapter 9,
pages 177–202. MIT Press, Cambridge, MA, USA, 1996.

[Rec73] I. Rechenberg. Evolutionsstrategie. Friedrich Frommann Ver-
lag, 1973.

[Ree95] C. Reeves. Modern Heuristic Techniques for Combinatorial
Optimization. McGraw-Hill International Ltd., 1995.

[Rei91] G. Reinelt. TSPLIB - A traveling salesman problem library.
ORSA Journal on Computing, 3:376–384, 1991.

[RF99] J. L. Rodŕıguez-Fernández. Ockham’s razor. Endeavour,
23:121–125, 1999.

[RN03] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2nd edition, 2003.

[Ros95a] J. Rosca. Towards automatic discovery of building blocks in
genetic programming. In E. V. Siegel and J. R. Koza, ed-
itors, Working Notes for the AAAI Symposium on Genetic
Programming, pages 78–85, MIT, Cambridge, MA, USA, 10–
12 November 1995. AAAI.

[Ros95b] J. P. Rosca. Entropy-driven adaptive representation. In Jus-
tinian P. Rosca, editor, Proceedings of the Workshop on Ge-
netic Programming: From Theory to Real-World Applications,
pages 23–32, Tahoe City, California, USA, 9 July 1995.

[Ros97] J. P. Rosca. Analysis of complexity drift in genetic program-
ming. In J. R. Koza et al., editors, Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages 286–294,
Stanford University, CA, USA, 13-16 July 1997. Morgan Kauf-
mann.

[RS94] N. J. Radcliffe and P. D. Surry. Fitness variance of formae
and performance prediction. In L. D. Whitley and M. D. Vose,
editors, Foundations of Genetic Algorithms, volume 3, pages
51–72. Morgan Kaufmann Publishers, 1994.

[Rus95] R. A. Russell. Hybrid heuristics for the vehicle routing prob-
lem with time windows. Transportation Science, 29:156–166,
1995.

[Sam59] A. L. Samuel. Some studies in machine learning using the game
of checkers. In IBM Journal of Research and Development,
volume 3, pages 211 – 229, 1959.

[Sav85] M. W. P. Savelsbergh. Local search in routing problems with
time windows. Annals of Operations Research, 4:285–305,
1985.

References 351

[Sch75] H.-P. Schwefel. Evolutionsstrategie und numerische Opti-
mierung. PhD thesis, Technische Universität Berlin, 1975.

[Sch94] H.-P. Schwefel. Numerische Optimierung von Computer-
Modellen mittels der Evolutionsstrategie. Birkhäuser Verlag,
Basel, Switzerland, 1994.

[SD88] M. Solomon and J. Desrosiers. Time window constrained rout-
ing and scheduling problems. Transportation Science, 22(1):1–
13, 1988.

[SF98] T. Soule and J. A. Foster. Removal bias: a new cause of code
growth in tree based evolutionary programming. In 1998 IEEE
International Conference on Evolutionary Computation, pages
781–186, Anchorage, Alaska, USA, 5-9 May 1998. IEEE Press.

[SFD96] T. Soule, J. A. Foster, and J. Dickinson. Code growth in
genetic programming. In J. R. Koza et al., editors, Genetic
Programming 1996: Proceedings of the First Annual Confer-
ence, pages 215–223, Stanford University, CA, USA, 28–31
July 1996. MIT Press.

[SFP93] R. E. Smith, S. Forrest, and A. S. Perelson. Population di-
versity in an immune systems model: Implications for genetic
search. In Foundations of Genetic Algorithms, volume 2, pages
153–166. Morgan Kaufmann Publishers, 1993.

[SG99] K. Sterelny and P. E. Griffiths. Sex and Death: An Introduc-
tion to Philosophy of Biology. University of Chicago Press,
1999.

[SH98] P. W. H. Smith and K. Harries. Code growth, explicitly de-
fined introns, and alternative selection schemes. Evolutionary
Computation, 6(4):339–360, Winter 1998.

[SHF94] E. Schöneburg, F. Heinzmann, and S. Feddersen. Genetische
Algorithmen und Evolutionsstrategien. Addison-Wesley, 1994.

[Sig86] I. K. Sigal. Computational implementation of a combined
branch and bound algorithm for the travelling salesman prob-
lem. Computational Mathematics and Mathematical Physics,
26:14–19, 1986.

[SJW92] W. Schiffmann, M. Joost, and R. Werner. Optimization of
the backpropagation algorithm for training multilayer percep-
trons. Technical Report 15, University of Koblenz, Institute
of Physics, 1992.

[SJW93] W. Schiffmann, M. Joost, and R. Werner. Comparison of op-
timized backpropagation algorithms. Proceedings of the Eu-

352 References

ropean Symposium on Artificial Neural Networks ESANN ’93,
pages 97–104, 1993.

[Smi80] S. F. Smith. A Learning System Based on Genetic Adaptive
Algorithms. PhD thesis, University of Pittsburgh, 1980.

[SMM+91] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, and
C. Whitley. A comparison of genetic scheduling operators.
Proceedings of the Fourth International Conference on Genetic
Algorithms, pages 69–76, 1991.

[SOG04] K. Sastry, U.-M. O’Reilly, and D. E. Goldberg. Population
sizing for genetic programming based on decision making. In
U.-M. O’Reilly et al., editors, Genetic Programming Theory
and Practice II, chapter 4, pages 49–65. Springer, Ann Arbor,
13-15 May 2004.

[Sol86] M. M. Solomon. On the worst-case performance of some
heuristics for the vehicle routing and scheduling problem with
time window constraints. Networks, 16:161–174, 1986.

[Sol87] M. M. Solomon. Algorithms for the Vehicle Routing and
Scheduling Problem with Time Window Constraints. Oper-
ations Research, 35:254–265, 1987.

[SP94] M. Srinivas and L. Patnaik. Adaptive probabilities of crossover
and mutation in genetic algorithms. In IEEE Trans. on Sys-
tems, Man, and Cybernetics, volume 24, pages 656–667, 1994.

[SPWR02] C. R. Stephens, R. Poli, A. H. Wright, and J. E. Rowe. Exact
results from a coarse grained formulation of the dynamics of
variable-length genetic algorithms. In W. B. Langdon et al.,
editors, GECCO 2002: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pages 578–585, New York,
9-13 July 2002. Morgan Kaufmann Publishers.

[Sri99] A. Srinivasan. Note on the location of optimal classifiers in
n-dimensional ROC space (technical report PRG-TR-2-99).
Technical report, Oxford University Computing Laboratory,
1999.

[SW97] C. R. Stephens and H. Waelbroeck. Effective degrees of free-
dom in genetic algorithms and the block hypothesis. Pro-
ceedings of the Seventh International Conference on Genetic
Algorithms (ICGA97), pages 34–40, 1997.

[SW99] C. R. Stephens and H. Waelbroeck. Schemata evolution and
building blocks. Evolutionary Computation, 7(2):109–124,
1999.

References 353

[SWM91] T. Starkweather, D. Whitley, and K. Mathias. Optimization
using distributed genetic algorithms. Parallel Problem Solving
from Nature, pages 176–185, 1991.

[T+07] D. Thierens et al., editors. GECCO 2007: Proceedings of the
9th Annual Conference on Genetic and Evolutionary Compu-
tation, London, UK, 7-11 July 2007. ACM Press.

[Tai93] E. D. Taillard. Benchmarks for basic scheduling problems.
European Journal of Operational Research, 64:278–285, 1993.

[TG97] I. Taha and J. Ghosh. Evaluation and ordering of rules ex-
tracted from feedforward networks. Proceedings of the IEEE
International Conference on Neural Networks, pages 221–226,
1997.

[TH02] M. Terrio and M. I. Heywood. Directing crossover for reduc-
tion of bloat in GP. In W. Kinsner, A. Seback, and K. Ferens,
editors, IEEE CCECE 2003: IEEE Canadian Conference on
Electrical and Computer Engineering, pages 1111–1115. IEEE
Press, 12-15 May 2002.

[Tha95] S. R. Thangiah. Vehicle Routing with Time Windows using
Genetic Algorithms, chapter Chapter 11, pages 253–278. The
Practical Handbook of Genetic Algorithms: New Frontiers.
CRC Press, 1995.

[THL94] J. Ting-Ho-Lo. Synthetic approach to optimal filtering. IEEE
Transactions on Neural Networks, 5:803–811, 1994.

[TMPC03] J. Tavares, P. Machado, F. B. Pereira, and E. Costa. On the
influence of GVR in vehicle routing. In SAC’03: Proceedings
of the 2003 ACM Symposium on Applied Computing, pages
753–758. ACM, 2003.

[Tom95] M. Tomassini. A survey of genetic algorithms. Annual Reviews
of Computational Physics, 3:87–118, 1995.

[TOS94] S. Thangiah, I. Osman, and T. Sun. Hybrid genetic algorithm
simulated annealing and tabu search methods for vehicle rout-
ing problem with time windows. Technical report, Computer
Science Department, Slippery Rock University, 1994.

[TPS96] S. R. Thangiah, J.-Y. Potvin, and T. Sun. Heuristic ap-
proaches to vehicle routing with backhauls and time windows.
International Journal on Computers and Operations Research,
23(11):1043–1057, 1996.

[Vap98] V. Vapnik. Statistical Learning Theory. Wiley, New York,
1998.

354 References

[vB95] A. v. Breedam. Vehicle routing: Bridging the gap between
theory and practice. Belgian Journal of Operations Research,
Statistics and Computer Science, 35(1):63–80, 1995.

[vBS04] R. van Basshuysen and F. Schäfer. Internal Combustion En-
gine Handbook. SAE International, 2004.

[VL91] M. D. Vose and G. E. Liepins. Punctuated equilibria in genetic
search. Complex Systems, 5:31–44, 1991.

[Voi31] B. F. Voigt. Der Handlungsreisende, wie er sein soll und was
er zu thun hat, um Aufträge zu erhalten und eines glücklichen
Erfolgs in seinen Geschäften gewiss zu sein. Von einem alten
Commis Voyageur, 1831.

[Vos99] M. D. Vose. The Simple Genetic Algorithm: Foundations and
Theory. MIT Press, Cambridge, MA, 1999.

[W18] M. Thorburn W. The myth of occam’s razor. Mind, 27:345–
353, 1918.

[WA04a] S. Wagner and M. Affenzeller. HeuristicLab grid - a flex-
ible and extensible environment for parallel heuristic opti-
mization. In Z. Bubnicki and A. Grzech, editors, Proceed-
ings of the 15thInternational Conference on Systems Science,
volume 1, pages 289–296. Oficyna Wydawnicza Politechniki
Wroclawskiej, 2004.

[WA04b] S. Wagner and M. Affenzeller. HeuristicLab grid - a flexible
and extensible environment for parallel heuristic optimization.
Journal of Systems Science, 30(4):103–110, 2004.

[WA04c] S. Wagner and M. Affenzeller. The heuristicLab optimization
environment. Technical report, Institute of Formal Models
and Verification, Johannes Kepler University, Linz, Austria,
2004.

[WA05a] S. Wagner and M. Affenzeller. HeuristicLab: A generic and
extensible optimization environment. In B. Ribeiro, R. F. Al-
brecht, A. Dobnikar, D. W. Pearson, and N. C. Steele, editors,
Adaptive and Natural Computing Algorithms, Springer Com-
puter Science, pages 538–541. Springer, 2005.

[WA05b] S. Wagner and M. Affenzeller. SexualGA: Gender-specific
selection for genetic algorithms. In N. Callaos, W. Lesso,
and E. Hansen, editors, Proceedings of the 9th World Multi-
Conference on Systemics, Cybernetics and Informatics (WM-
SCI) 2005, volume 4, pages 76–81. International Institute of
Informatics and Systemics, 2005.

References 355

[WAW04a] S. Winkler, M. Affenzeller, and S. Wagner. Identifying nonlin-
ear model structures using genetic programming techniques.
In R. Trappl, editor, Cybernetics and Systems 2004, volume 1,
pages 689–694. Austrian Society for Cybernetic Studies, 2004.

[WAW04b] S. Winkler, M. Affenzeller, and S. Wagner. New meth-
ods for the identification of nonlinear model structures based
upon genetic programming techniques. In Z. Bubnicki and
A. Grzech, editors, Proceedings of the 15thInternational Con-
ference on Systems Science, volume 1, pages 386–393. Oficyna
Wydawnicza Politechniki Wroclawskiej, 2004.

[WAW05a] S. Winkler, M. Affenzeller, and S. Wagner. Genetic program-
ming based model structure identification using on-line system
data. In F. Barros, A. Bruzzone, C. Frydman, and N. Gam-
biasi, editors, Proceedings of Conceptual Modeling and Simu-
lation Conference CMS 2005, pages 177–186. Frydman, LSIS,
Université Paul Cézanne Aix Marseille III, 2005.

[WAW05b] S. Winkler, M. Affenzeller, and S. Wagner. New methods for
the identification of nonlinear model structures based upon
genetic programming techniques. Journal of Systems Science,
31(1):5–13, 2005.

[WAW06a] S. Winkler, M. Affenzeller, and S. Wagner. Advances in ap-
plying genetic programming to machine learning, focussing
on classification problems. In Proceedings of the 9th Inter-
national Workshop on Nature Inspired Distributed Computing
NIDISC ’06, part of the Proceedings of the 20th IEEE Inter-
national Parallel & Distributed Processing Symposium IPDPS
2006. IEEE, 2006.

[WAW06b] S. Winkler, M. Affenzeller, and S. Wagner. Automatic data
based patient classification using genetic programming. In
R. Trappl, R. Brachman, R.A. Brooks, H. Kitano, D. Lenat,
O. Stock, W. Wahlster, and M. Wooldridge, editors, Cyber-
netics and Systems 2006, volume 1, pages 251–256. Austrian
Society for Cybernetic Studies, 2006.

[WAW06c] S. Winkler, M. Affenzeller, and S. Wagner. HeuristicModeler:
A multi-purpose evolutionary machine learning algorithm and
its applications in medical data analysis. In A. Bruzzone,
A. Guasch, M. Piera, and J. Rozenblit, editors, Proceedings
of the International Mediterranean Modelling Multiconference
I3M 2006, pages 629–634. Piera, LogiSim, Barcelona, Spain,
2006.

[WAW06d] S. Winkler, M. Affenzeller, and S. Wagner. Sets of receiver
operating characteristic curves and their use in the evalua-

356 References

tion of multi-class classification. In Proceedings of the Genetic
and Evolutionary Computation Conference GECCO 2006, vol-
ume 2, pages 1601–1602. Association for Computing Machin-
ery (ACM), 2006.

[WAW06e] S. Winkler, M. Affenzeller, and S. Wagner. Using enhanced
genetic programming techniques for evolving classifiers in the
context of medical diagnosis - an empirical study. In Proceed-
ings of the GECCO 2006 Workshop on Medical Applications
of Genetic and Evolutionary Computation (MedGEC 2006).
Association for Computing Machinery (ACM), 2006.

[WAW07] S. Winkler, M. Affenzeller, and S. Wagner. Advanced genetic
programming based machine learning. Journal of Mathemat-
ical Modelling and Algorithms, 6(3):455–480, 2007.

[WAW08] S. Winkler, M. Affenzeller, and S. Wagner. Offspring selection
and its effects on genetic propagation in genetic programming
based system identification. In Robert Trappl, editor, Cyber-
netics and Systems 2008, volume 2, pages 549–554. Austrian
Society for Cybernetic Studies, 2008.

[WC99] P. A. Whigham and P. F. Crapper. Time series modelling
using genetic programming: An application to rainfall-runoff
models. In L. Spector et al., editors, Advances in Genetic Pro-
gramming 3, chapter 5, pages 89–104. MIT Press, Cambridge,
MA, USA, June 1999.

[WEA+06] S. Winkler, H. Efendic, M. Affenzeller, L. Del Re, and S. Wag-
ner. On-line modeling based on genetic programming. In-
ternational Journal on Intelligent Systems Technologies and
Applications, 2(2/3):255–270, 2006.

[Wei06] W. S. Wei. Time Series Analysis – Univariate and Multivari-
ate Methods. Addison-Wesley, 2006.

[Wen95] O. Wendt. Tourenplanung durch Einsatz naturanaloger Ver-
fahren. Deutscher Universitätsverlag, 1995.

[WER06] S. Winkler, H. Efendic, and L. Del Re. Quality pre-assessment
in steel industry using data based estimators. In S. Cier-
pisz, K. Miskiewicz, and A. Heyduk, editors, Proceedings of
the IFAC Workshop MMM’2006 on Automation in Mining,
Mineral and Metal Industry. International Federation for Au-
tomatic Control, 2006.

[WF05] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, San Fran-
cisco, 2005.

References 357

[WH87] P. H. Winston and B. K. P. Horn. LISP. Addison Wesley,
1987.

[Whi93] D. Whitley, editor. Foundations of Genetic Algorithms, vol-
ume 2. Morgan Kaufmann Publishers, 1993.

[Whi95] P. A. Whigham. A schema theorem for context-free gram-
mars. In 1995 IEEE Conference on Evolutionary Computa-
tion, volume 1, pages 178–181, Perth, Australia, 29 November
- 1 December 1995. IEEE Press.

[Whi96a] P. A. Whigham. Grammatical Bias for Evolutionary Learn-
ing. PhD thesis, School of Computer Science, University Col-
lege, University of New South Wales, Australian Defence Force
Academy, Canberra, Australia, 14 October 1996.

[Whi96b] P. A. Whigham. Search bias, language bias, and genetic pro-
gramming. In John R. Koza, David E. Goldberg, David B.
Fogel, and Rick L. Riolo, editors, Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 230–237,
Stanford University, CA, USA, 28–31 July 1996. MIT Press.

[WHMS03] J. Wen-Hua, D. Madigan, and S. L. Scott. On bayesian learn-
ing of sparse classifiers. Technical Report 2003-08, Avaya Labs
Research, 2003.

[Wig60] E. P. Wigner. The unreasonable effectiveness of mathemat-
ics in the natural sciences. In Communications on Pure and
Applied Mathmatics, volume XIII, pages 1–14. John Wiley &
Sons, Inc, New York, 1960.

[Win04] S. Winkler. Identifying nonlinear model structures using ge-
netic programming. Master’s thesis, Johannes Kepler Univer-
sity, Linz, Austria, 2004.

[Win08] S. Winkler. Evolutionary System Identification - Modern Con-
cepts and Practical Applications. PhD thesis, Institute for
Formal Models and Verification, Johannes Kepler University
Linz, 2008.

[WK90] S. M. Weiss and I. Kapouleas. An empirical comparison of
pattern recognition, neural nets, and machine learning clas-
sification methods. In J. W. Shavlik and T. G. Dietterich,
editors, Readings in Machine Learning, pages 177–183. Kauf-
mann, San Mateo, CA, 1990.

[WL96] A. S. Wu and R. K. Lindsay. A survey of intron research in
genetics. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P.
Schwefel, editors, Parallel Problem Solving From Nature IV.
Proceedings of the International Conference on Evolutionary

358 References

Computation, volume 1141 of LNCS, pages 101–110, Berlin,
Germany, 22-26 September 1996. Springer-Verlag.

[Wri43] S. Wright. Isolation by distance. Genetics, 28:114–138, 1943.

[WSF89] D. Whitley, T. Starkweather, and D. Fuguay. Scheduling prob-
lems and traveling salesman: The genetic edge recombination
operator. Proceedings of the Third International Conference
on Genetic Algorithms and Their Applications, pages 133–140,
1989.

[WWB+07] S. Wagner, S. Winkler, R. Braune, G. Kronberger, A. Beham,
and M. Affenzeller. Benefits of plugin-based heuristic opti-
mization software systems. 2007.

[YA94] Y. Yoshida and N. Adachi. A diploid genetic algorithm for
preserving population diversity - pseudo-meiosis GA. In Lec-
ture Notes in Computer Science, volume 866, pages 36–45.
Springer, 1994.

[YN97] T. Yamada and R. Nakano. Genetic algorithms for job-shop
scheduling problems, 1997.

[Zha97] B.-T. Zhang. A taxonomy of control schemes for genetic code
growth. Position paper at the Workshop on Evolutionary
Computation with Variable Size Representation at ICGA-97,
20 July 1997.

[Zha00] B.-T. Zhang. Bayesian methods for efficient genetic pro-
gramming. Genetic Programming and Evolvable Machines,
1(3):217–242, July 2000.

[Zhu00] K. Q. Zhu. A new genetic algorithm for VRPTW. In Proceed-
ings of the International Conference on Artificial Intelligence,
2000.

[ZM96] B.-T. Zhang and H. Mühlenbein. Adaptive fitness functions
for dynamic growing/pruning of program trees. In P. J. An-
geline and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming 2, chapter 12, pages 241–256. MIT Press, Cam-
bridge, MA, USA, 1996.

[Zwe93] M. H. Zweig. Receiver-operating characteristic (ROC) plots:
A fundamental evaluation tool in clinical medicine. Clinical
Chemistry, 39:561–577, 1993.

Index

λ-interchange, 148, 152
k-change methods, see k-opt
k-opt, 127, 129
k-optimal, 129
I1 heuristic, 145, 146
2-change, see 2-opt
2-opt, 128, 138, 148, 153
2-opt∗, 153
2-optimal, 128
3-opt, 129, 138
3-optimal, 129

actual population size, 71, 75, 76
actual selection pressure, 69, 70,

85
adaptive mutation schemes, 9
ADF, see genetic programming
adjacency representation, 12, 130,

132
allele, 5, 10, 11
alternating edges crossover, 12,

131, 132
artificial ant, 44
artificial evolution, 67
artificial neural network, 26, 47,

276
assignment problem, 125
asynchronous migration, 21

binary representation, 3, 4, 7, 10,
11, 14

biological evolution, 3
bitwise mutation, 8
bloat, 60, 61, 306, 307, 309, 312,

313, 315, 317, 318
Box-Jenkins approach, 235
building block, 10, 14, 15

building block hypothesis, 10, 16,
76, 97, 102

canonical genetic algorithm, 3, 4,
10, 14

capacitated vehicle routing
problem (CVRP), see
vehicle routing problem

capacitated vehicle routing
problem with time
windows (VRPTW), see
vehicle routing problem

capacity constraint, 142
cellular genetic algorithm, 148
chromosome, 5, 28
classification, 251

classification rate, 252
classifier evaluation, 265
dynamic range selection, 266
graphical classifier analysis,

270
medical data analysis, 263,

272, 278
using PG, 251

cluster first route second method,
147

coarse-grained parallel GA, 17,
18, 21, 79, 214

coefficient of determination
function, 182

column generation method, 143
combinatorial optimization, 13,

121, 122
communication topology, 20
comparison factor, 70
confusion matrix, 252
construction heuristic, 126, 143
continuous crossover, 13

359

360 Index

crossover, 2, 5, 11, 21, 31, 65, 76
alternating edges crossover,

12, 131, 132
continuous crossover, 13
cyclic crossover, 105, 135
discrete crossover, 13
edge recombination crossover,

100, 136, 215
enhanced edge recombination

crossover, 138
heuristic crossover, 132
maximal preservative

crossover, 100, 215
multiple point crossover, 7
order crossover, 99, 134, 214
partially matched crossover,

105, 133, 151
route-based crossover, 150,

224, 229
sequence-based crossover,

148, 224, 229
single point crossover, 7
structure tree crossover, 31
subtour chunks crossover, 131
uniform crossover, 7

crowding, 66
cut-inversion mutation, see

inversion mutation
cutting-plane method, 125
cyclic crossover (CX), 105, 135

data-based modeling, 157, 167,
188, 189, 191–194, 235,
251

a priori knowledge, 168
artificial neural network, 276
autoregressive modeling, 172
classification, 251

evaluation, 258, 259
medical data analysis, 263,

272, 278
using GP, 251

data preprocessing, 167
functions basis, 173
implementation in HL, 170

k-nearest neighbor
classification, 277

linear modeling, 275
overfitting, 61, 158, 306, 312,

313, 318
parameter optimization, 188,

189
polynomial models, 159
pruning, 191–194
static vs. dynamic modeling,

171
support vector machine, 278
time series analysis, 235

evaluation, 236
training, validation and test

data, 171
using genetic programming,

169, 170
virtual sensor, 236

defining length, 15
definite neighborhood, 127
delete-n replacement, 10
delete-n-last replacement, 10
deme, see subpopulation
diesel engine emissions, 237
diffusion model, 19
diploid chromosomes, 5
discrete crossover, 13
distance constrained vehicle

routing problem
(DVRP), 139

distance matrix, 122
distance measure, 217
divide-and-conquer, 17
dynamic programming, 143
dynamic range selection, 266

edge map, 137
edge recombination crossover

(ERX), 100, 136, 215
elitism, 9, 222
enhanced edge recombination

crossover (EERX), 138
essential genetic information, 67,

68, 97, 98, 104, 207

Index 361

Euclidean distance, 123, 222
evaluation, 30
evolution strategy, 1, 9, 189
evolutionary algorithms, 69
evolutionary computation, 1
exact algorithm, 142
exact GA schema theory, 16
exact GP schema theory, 54
exchange mutation, 138, 148, 152
exhaust gas recirculation, 239

Federal Test Procedure, 239
fine-grained parallel GA, 17, 19
fitness, 5
fitness function, 6, 67
fitness value, 6, 15, 70
fitness-sharing, 66
forma theory, 16
function, 28, 174

arity, 177
evaluation, 174
neutral elements, 177
parametrization, 177
string representation, 175

functions basis, 173

generational replacement, 9, 73
genetic algorithm, 1, 2, 69, 72,

130, 147
genetic diversity, 22, 66, 73,

90–92, 100, 207, 219,
292, 293, 300, 306, 307,
309, 312, 313, 315, 317,
318

genetic drift, 79–82
genetic programming, 1, 25, 25

applications, 43
automatically defined

function (ADF), 35
basic steps, 37
bibliography, 62, 63
bloat, 60, 61, 306, 307, 309,

312, 313, 315, 317, 318
challenges, 59

chromosome representation,
28, 178

evaluation, 30
genetic operators, 31
history, 26
hyperschema, 56, 58
linear genetic programming,

36, 37
macroscopic schema theorem,

58
schema, 50–52, 54
schema theories, 50–52, 54
structure tree, 178

genetic propagation, 89, 285, 286,
288–290

genome, 5
genotype, 5
genotypical identity, 75
giant tour heuristic, 147
global convergence, 84, 210
global parallel GA, 18
graphical genetic programming,

37

Hamiltonian cycle, 122
haploid chromosomes, 5
heuristic crossover, 132
HeuristicLab, 170, 173
higher order representation, 8
hybrid parallel GA, 20
hyperschema, 56, 58

improvement heuristic, 126, 143
insertion mutation, 138, 148
integer programming, 124
inversion mutation, 139, 148
island, see island model
island GA, see coarse-grained

parallel GA
island model, 17, 79, 82, 214

job shop scheduling problem, 13

k-nearest neighbor classification,
277

362 Index

Lagrange relaxation-based
method, 143

Levenshtein distance, 200
Lin-Kerninghan algorithm, 121
linear correlation, 239, 246, 248
linear genetic programming, 36
linear modeling, 47, 275
linear regression, 47, 275
linear-rank selection, 6
LISP, 28
local adaption, 188
local premature convergence, 21,

79, 80, 83–86
local search, 127, 155, 222
local search (LSM), 154
 Lukasiewicz notation, 29

master–slave parallel GA, see
global parallel GA

MATLAB R©, 165
maximal preservative crossover

(MPX), 100, 215
maximum effort, 75
maximum selection pressure, 71,

84, 210
mean squared error function, 49,

158, 182
melanoma data set, 263, 279
migration, 18, 20, 21, 79, 82
multiple depots vehicle routing

problem (MDVRP), 139
multiple point crossover, 7
multiple traveling salesman

problem (MTSP), 130
multiplexer, 43
mutation, 2, 8, 11, 21, 31, 101,

138
2-opt mutation, 128, 148, 153
2-opt∗ mutation, 153
3-opt mutation, 129
bitwise mutation, 8
exchange mutation, 138, 148,

152
insertion mutation, 138, 148
inversion mutation, 139, 148

local search mutation, 154
one level exchange mutation,

154
or-opt mutation, 154
real-valued mutation, 13
relocate mutation, 148, 152
shift mutation, 9
simple inversion mutation,

138, 209, 211, 215
structure tree mutation, 31
two level exchange mutation,

154

natural evolution, see biological
evolution

nearest neighbor algorithm, 126
neighborhood, 65
neighborhood search, see local

search
neighborhood structure, 127
noise, 158

objective function, 6
Occam’s razor, 60, 159
offspring selection, 14, 68, 69, 70,

71–73, 77–79, 103, 186,
208

one level exchange (M1), 154,
222, 231

one point crossover, see single
point crossover

or-opt, 154
order crossover (OX), 99, 134, 214
order of schema, 15
ordinal representation, 132
overfitting, 61, 158, 306, 312, 313,

318

panmictic population, 18, 80
parameter optimization, 188, 189
parent analysis, 89, 285, 286,

288–290
parent selection, 2, 6, 78, 228
partially matched crossover

(PMX), 105, 133, 151

Index 363

partitioning heuristic, 127
path representation, 12, 133, 134,

148, 221
PDGP, 37
Polish notation, see Lukasiewicz

notation
population, 25–27, 36, 38, 39
population diversity, see genetic

diversity
population dynamics, 89

genetic diversity, 90–92, 292,
293, 300, 306, 307, 309,
312, 313, 315, 317, 318

genetic propagation, 89, 285,
286, 288–290

parent analysis, 89, 285, 286,
288, 289

parents analysis, 290
population size adjustment, 73,

113
population-based heuristic, 65
position-based mutation, see

insertion mutation
postman problem, 123
pre-selection, 66
prefix notation, 29
premature convergence, 3, 9, 66,

67, 71, 79, 83
premature stagnation, see

premature convergence
problem representation, see

representation
program component GP schema,

51
proportional selection, see

roulette wheel selection
pruning, 191–194, 306, 307, 309,

312, 313, 315, 317, 318
push forward insertion heuristic,

145, 146

quality, see fitness value

R2 function, see coefficient of
determination function

random selection, 74
RAPGA, 68, 69, 73, 75, 77, 78,

113
real-valued benchmark test

functions, 216
real-valued mutation, 13
real-valued representation, 13
receiver operating characteristic

analysis, 254, 270
AUC, 254
MROC analysis, 256
ROC curve, 254, 270

recombination, see crossover
relocate mutation, 148, 152
repair operator, 131, 147
replacement, 9
representation, 8, 11, 77, 147
reunification, 83, 84
rooted tree GP schema, 52
roulette wheel selection, 6, 74, 222
route planning problem, 121
route-based crossover (RBX),

150, 224, 229
runtime consumption, 185

Santa Fe trail, 45
SASEGASA, 17, 68, 79, 83, 210
savings heuristic, 143, 145
scalable selection pressure, 74
schema, 14, 50–52, 54
schema theorem, 10, 16, 76, 102
schemata analysis, 132
SEGA, 82–84
selection, 2, 6, 78

offspring selection, 14, 68, 69,
70, 71–73, 77–79, 103,
186, 208

parent selection, 2, 6, 78, 228
selection pressure, 7, 19, 21, 78,

79, 81, 100
sequence-based crossover (SBX),

148, 224, 229
shift mutation, 9
similarity value, 217

364 Index

simple inversion mutation, 138,
209, 211, 215

simulated annealing, 11, 70
single machine scheduling, 140
single point crossover, 7
soft time window model, 139
Solomon heuristic, see push

forward insertion
heuristic

solution similarity, 92, 198
structure tree solution

similarity, 198, 200, 202
TSP solution similarity, 92

split delivery vehicle routing
problem (SDVRP), 139

standard genetic algorithm
(SGA), 3, 6, 98

strict offspring selection, 106
structural identity, see

genotypical identity
structure tree, 28, 179, 194, 195,

198, 200, 202
adjusted evaluation, 184
combined evaluation, 183
crossover, 180
evaluation, 30, 181, 183–185,

236, 258, 259
early stopping, 185

genetic item, 202
hybrid structure, 264
initialization, 179
mutation, 181
pruning, 194

ES-inspired pruning, 195
exhaustive pruning, 195

similarity, 198, 200, 202
evaluation-based similarity,

198
structural similarity, 200

structure tree crossover
crossover, 31
mutation, 31

subpopulation, 20, 79–82, 207,
212, 220

subtour chunks crossover, 131

success ratio, 70, 71
success rule, 70
successive method, 144
support vector machine, 278
swap mutation, see exchange

mutation
sweep heuristic, 144, 146
symbolic expression, 29
symbolic regression, 46, 157
synchronous migration, 21
system identification, 157, 166,

166, 167
basic steps, 166
parameter identification, 167
structural identification, 166

tabu search, 11
terminal, 28, 173

constant, 173
differential, 173
evaluation, 173
parametrization, 176
string representation, 175
variable, 173

thyroid data set, 263, 281
time dependent traveling salesman

problem (TDTSP), 124
time series analysis, 235, 237, 242

Box-Jenkins approach, 235
total enumeration, 124
tournament replacement, 10
tournament selection, 7, 222
trajectory-based heuristic, 65, 224
transmission probability, 16
traveling salesman problem

(TSP), 76, 97, 121, 208
traveling salesman problem with

time windows (TSPTW),
124

traveling salesman subtour
problem (TSSP), 123

triangle inequality, 123, 130
trip delimiter representation, 147,

148

Index 365

two level exchange (M2), 154,
222, 231

uniform crossover, 7

variables selection, 167
backward search, 168
exhaustive search, 167
sequential search, 168

variance accounted for function,
182

vehicle routing problem (VRP),
13, 121, 139, 141, 147,
221

village-town-city model, 80
virtual sensor, 236

diesel engine emissions, 237,
242

NOx, 238, 243, 246
soot, 242

Wisconsin data set, 263, 278

	Cover
	Title
	Copyright
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Chapter 1: Simulating Evolution: Basics about Genetic Algorithms
	Chapter 2: Evolving Programs: Genetic Programming
	Chapter 3: Problems and Success Factors
	Chapter 4: Preservation of Relevant Building Blocks
	Chapter 5: SASEGASA – More than the Sum of All Parts
	Chapter 6: Analysis of Population Dynamics
	Chapter 7: Characteristics of Offspring Selection and the RAPGA
	Chapter 8: Combinatorial Optimization: Route Planning
	Chapter 9: Evolutionary System Identification
	Chapter 10: Applications of Genetic Algorithms: Combinatorial Optimization
	Chapter 11: Data-Based Modeling with Genetic Programming
	Conclusion and Outlook
	Symbols and Abbreviations
	References
	Index

