
Scripting
Farming Simulator
with Lua

Unlocking the Virtual Fields
—
Zander Brumbaugh
Manuel Leithner

Scripting Farming
Simulator with Lua
Unlocking the Virtual Fields

Zander Brumbaugh
Manuel Leithner

Scripting Farming Simulator with Lua: Unlocking the Virtual Fields

ISBN-13 (pbk): 979-8-8688-0059-7 ISBN-13 (electronic): 979-8-8688-0060-3
https://doi.org/10.1007/979-8-8688-0060-3

Copyright © 2024 by GIANTS Software GmbH

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduc-
tion on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you

give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham
Editorial Assistant: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by GIANTS Software – Sandra Meier

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza, Suite 4600,
New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback, or audio
rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are
also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.
apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub. For
more detailed information, please visit https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

Zander Brumbaugh
Seattle, WA, USA

Manuel Leithner
Buttenheim, Bayern, Germany

https://doi.org/10.1007/979-8-8688-0060-3

iii

Table of Contents

About the Authors ��xiii

About the Technical Reviewer ��xv

Introduction ��xvii

Foreword ���xix

Chapter 1: Introduction, GDN, ModHub, Modding Tutorial Videos,
LuaDoc, FarmCon… ��1

Technical Requirements ��1

Exploring the GDN ���1

Modding Resources ���3

Video Tutorials ���3

Documentation ��4

Community Forum ���5

Downloads ���8

LuaDoc ���9

YouTube ���10

Looking at the ModHub ���10

Financial Opportunities of Mod Creation ���11

How to Attend FarmCon ��12

Participating in the Mod Contest ���14

Summary���15

iv

Chapter 2: Getting Started with the GIANTS Editor �����������������������������17

Technical Requirements ��17

Installing the GIANTS Editor ��18

The Viewport ���19

Movement and Camera Manipulation ��20

Viewport Options ���21

The Scenegraph Panel ��23

Entities and the Parent-Child Hierarchy ��24

Application Menus ��25

The File Menu ��26

The Edit Menu ��27

The Create Menu ���29

The View Menu ��30

The Scripts Menu ��31

The Window Menu ���31

The Help Menu ��31

The Attributes Panel ��32

The Toolbar ��34

File Section ��35

Play Section ���35

Mode Section ���36

Miscellaneous Section ���39

Terrain Section ��39

Scripting ��42

The Console ���43

Summary���44

Table of ConTenTs

v

Chapter 3: The Lua Programming Language ��������������������������������������45

Technical Requirements ��46

Learning About Data Types and Creating Variables ���46

Data Types ���47

Setting and Manipulating Variables ���48

Numbers ��49

Booleans ��50

Strings ���51

Tables ��54

Dictionaries ���57

Conditional Statements ���59

Declaring and Using Loops ���64

for Loops ��64

Iterator Function ��66

while Loops ���68

repeat Loops ��69

Learning About Functions ���70

Functions in Programming ��70

Recursion ��74

Classes ��78

Demonstrating Programming Style and Efficiency ���80

General Programming Style Rules ���80

Summary���82

Chapter 4: The GIANTS Studio ���85

Technical Requirements ��85

Installing the GIANTS Studio ���86

Application Menus ��86

The File Menu ��86

Table of ConTenTs

vi

The Edit Menu ��87

The View Menu ��88

The Debug Menu ���89

The Window Menu ���89

The Help Menu ��90

New Project ���90

Starting the Game ���94

Debugging Scripts ���97

Using Breakpoints ���98

Using the Locals Tab and the Callstack ���99

Summary���101

Chapter 5: Making a Diner with a Rotating Sign ������������������������������103

Technical Requirements ��104

Preparing the Mod Folder Structure��104

Creating Mod Scripts ��109

Creating XML Files ���109

Creating Lua Files ��117

Testing the Mod ��123

Summary���124

Chapter 6: Rotating Mower Mod ���127

Technical Requirements ��128

Creating Mod Scripts ��128

Creating XML Files ���128

Creating Lua Files ��144

Testing the Mod ��172

Summary���172

Table of ConTenTs

vii

Chapter 7: Speed Trap Trailer Mod ���175

Speed Trap Trailer Mod��175

Technical Requirements ��176

Creating Mod Scripts ��176

Creating XML Files ���176

Creating Lua Files ��193

Testing the Mod ��204

Summary���205

Chapter 8: Mileage Counter HUD Mod���207

Technical Requirements ��208

Creating Mod Scripts ��208

Creating XML Files ���208

Creating Lua Files ��210

Testing the Mod ��222

Summary���223

Chapter 9: Multibale Spawner Mod ��225

Technical Requirements ��226

Creating Mod Scripts ��226

Creating XML Files ���226

Creating Lua Files ��236

Testing the Mod ��252

Summary���252

Table of ConTenTs

viii

Chapter 10: Money Cheat Mod ���255

Technical Requirements ��256

Creating Mod Scripts ��256

Creating XML Files ���256

Creating Lua Files ��262

Testing the Mod ��270

Summary���270

Chapter 11: Publishing on the ModHub ��273

Technical Requirements ��273

What Is the ModHub? ��273

Creating an Account ��274

ModHub Creation Guidelines ���276

Using the TestRunner ��279

Uploading Your First Mod ��280

Getting Feedback and Updating Your Mod ��282

Rewards and Awards ��283

Summary���284

Chapter 12: Documentation and Appendix ���������������������������������������287

Debugging ���287

print ���287

printCallstack ��288

Position, Orientation, and Size ��288

getWorldTranslation ���288

setWorldTranslation ���289

setTranslation ��289

getTranslation ��289

worldToLocal ���290

Table of ConTenTs

ix

localToWorld ��290

localToLocal ���291

setRotation ��291

getRotation ��292

getWorldRotation ���292

setWorldRotation ���293

localRotationToWorld ���293

worldRotationToLocal ��293

worldDirectionToLocal ���294

localDirectionToLocal���294

localDirectionToWorld ��295

setDirection ���296

setScale ���296

getScale ���296

Entities ��297

clone ��297

createTransformGroup ���297

setName ��298

getName ��298

setVisibility ��298

getVisibility ��299

setUserAttribute���299

getUserAttribute ��299

getHasClassId ��300

ClassIds Enum ���300

Entity Relations ���301

link ���301

unlink ���301

Table of ConTenTs

x

getParent ���302

getChild ���302

getChildAt ��302

getNumOfChildren ���303

getRootNode ��303

Camera ��303

getCamera ���303

setCamera ���304

I3D ���304

loadI3DFile ���304

loadSharedI3DFile ���304

LoadI3dFailedReason Enum ��305

streamI3DFile ��305

cancelStreamI3DFile ���306

streamSharedI3DFile ���306

releaseSharedI3DFile ��307

Physics ��308

getRigidBodyType ��308

RigidBodyType Enum ���308

setRigidBodyType ��308

getCenterOfMass ���309

setCenterOfMass ���309

getMass ���309

setMass ���310

raycastAll ���310

raycastClosest ���311

raycastCallback ���312

overlapBox ���312

Table of ConTenTs

xi

overlapSphere ���313

overlapCallback ���314

Network ��314

streamReadBool ��314

streamReadFloat32 ���314

streamReadInt16 ���315

streamReadInt32 ���315

streamReadInt8 ���316

streamReadIntN ���316

streamReadString ��316

streamReadUInt16 ���317

streamReadUInt8 ���317

streamReadUIntN ��317

streamWriteBool ��318

streamWriteFloat32 ���318

streamWriteInt16 ���318

streamWriteInt32 ���319

streamWriteInt8 ���319

streamWriteIntN ��319

streamWriteString ���320

streamWriteUInt16 ���320

streamWriteUInt8 ���320

streamWriteUIntN ��320

 Index ���323

Table of ConTenTs

xiii

Zander Brumbaugh is a programmer, game

designer, technical author, and AI researcher

based in Seattle, Washington. His work as an

independent developer on the Roblox platform

has been played more than 300 million times.

He has created popular games like My Salon,

Power Simulator, Munching Masters, and more.

Zander is also a multiple-time best-selling

textbook author, with works on programming

and game development. He currently attends the the Paul G. Allen School

of Computer Science and Engineering at the University of Washington

where his research focuses on the improvement of language models for

real-world settings.

Manuel Leithner is a senior gameplay

programmer based in Buttenheim, Germany.

While working on his bachelor’s and master’s

degrees in business informatics/information

systems, he started modding for Farming

Simulator 2008, the first title of the series.

A few years later, he worked as a freelancer

for GIANTS Software on several DLCs and

major game releases. In 2015, a branch office

in Erlangen, Germany, was opened, and he

became the head of the office as a branch manager. Since then, he has also

become the lead gameplay programmer and responsible for gameplay

across the whole franchise.

About the Authors

xv

About the Technical Reviewer

Simon Jacksonis a long-time software

engineer and architect with many years

of Unity game development experience,

as well as an author of several Unity game

development titles. He loves to both

create Unity projects as well as lend a

helping hand to educate others, whether

it’s via a blog, vlog, user group, or major

speaking event.

His primary focus is with the Reality Toolkit project, which is aimed

at building a cross-platform Mixed Reality framework to enable both VR

and AR developers to build efficient solutions in Unity and then build/

distribute them to as many platforms as possible.

xvii

Introduction

 About Farming Simulator
Since its initial release in 2008, Farming Simulator has been the premier

farming simulation video game. As new generations of the game have

been released, there have been increasingly new ways to play and build

any farm you can imagine. Something that makes Farming Simulator truly

unique is the ability to create your very own mods.

Mods are a way for you to make Farming Simulator your own, unique

experience through modifying the game in a variety of ways. With mods,

you can create something as simple as a new vehicle or a whole map, give

yourself infinite money, or even change the game in its entirety. With many

resources available and a large community of passionate creators, getting

started with mod development is easier than ever.

The best part of this system is that many creators are already earning

a living by making new mods. Whether you wish to be a mod creator only

as a hobby or want to pursue it full-time, there are plenty of opportunities

for you.

 What You’ll Learn
This book will take you on a deep dive into the many resources, tools,

techniques, and opportunities available to you as you begin or continue

your journey as a mod creator. By the end, you should feel confident in

your ability to make programs in the Lua programming language, import

3D models, and ultimately create any mod you can envision.

xix

Foreword

As the CEO of GIANTS Software, I am pleased to introduce this book on

scripting with Farming Simulator Lua. The modding community has

always been an essential part of Farming Simulator’s success, and our

developers have worked tirelessly to ensure that they have the tools they

need to create incredible mods.

Since its inception in 2008, the Farming Simulator franchise has

seen tremendous growth. Our community has been a significant factor

in this success, and we continue to support and encourage modders to

create innovative and exciting mods for our game. Scripting is a critical

aspect of modding in Farming Simulator, and we recognize that it can be

challenging for newcomers to grasp. With this book, we aim to demystify

the scripting process and provide a comprehensive guide to creating Lua

scripts that can enhance gameplay and introduce new features.

This book is the result of our collaboration with Zander Brumbaugh.

The book provides a step-by-step approach to scripting, starting with the

basics and progressing to more advanced topics, making it suitable for

beginners and experienced modders alike. Our hope is that this book will

inspire and encourage modders to push the limits of what is possible in

Farming Simulator. I am constantly amazed by the creativity and ingenuity

of our community, and we believe that this book will help take modding to

the next level.

xx

Finally, I would like to express my gratitude to the global Farming

Simulator modding community for their continued support and

contribution to the Farming Simulator franchise. With this in mind, we

have made every effort to ensure that this book is accessible to modders

of all backgrounds and skill levels. We have included examples and

explanations that are easy to understand, regardless of your experience

with scripting. In conclusion, I would like to thank the two authors of this

book for their hard work and dedication. They have done an outstanding

job of creating a comprehensive guide to scripting with Lua in Farming

Simulator. I am confident that this book will become an invaluable

resource for modders and will help drive the modding community

forward.

Happy modding!

Christian Ammann

Founder and CEO, GIANTS Software

foreword

1© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3_1

CHAPTER 1

Introduction, GDN,
ModHub, Modding
Tutorial Videos,
LuaDoc, FarmCon…
In this chapter, we will explore the GIANTS Developer Network (GDN) and

other important resources and materials available to mod creators (you!).

 Technical Requirements
You will not need any software or additional materials for this chapter as

it will mostly cover information. However, it may be beneficial to have an

Internet connection and web browser available to you to search any topics

covered in further detail or visit any websites mentioned.

 Exploring the GDN
The GIANTS Developer Network (GDN) is the hub for all mod creation–

related materials for Farming Simulator. Through the GDN, you can talk

with other mod developers, view documentation for Farming Simulator

https://doi.org/10.1007/979-8-8688-0060-3_1

2

and mod creation tools, watch tutorials, and make sure all the software you

are using is up to date. Please note that you need to create an account to

access the full feature set of the website. You can see a preview of the GDN

website in Figure 1-1.

Figure 1-1. The GDN contains all of the necessary resources to make
great mods of your own

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

3

In this section, we will explore all aspects of the GDN. If you want to

navigate the website yourself while reading, you can use the following link:

https://gdn.giants-software.com

 Modding Resources
The GDN includes different sections that can prove to be excellent

resources at any level of mod creation experience. In this section, we will

cover each section and discuss what information they cover.

 Video Tutorials
The Video Tutorials section of the GDN contains groups of videos which

give you a step-by-step guide on how to create a variety of in-game systems

for your mods from scratch. Some of these topics include map creation,

gameplay mods, sound design, effects, and more. These tutorials can be a

helpful addition to this book for learning critical modding skills.

In addition to the free tutorials, there are other video contents from

events such as FarmCon, which we will discuss in greater detail in the

FarmCon section of this chapter. These videos are a good source of

information about the best techniques and practices when creating mods

of your own.

The newest 5.0 tutorials are paid tutorials that cover most recent

release content. While access to these tutorials is paid, they are included

with the collector’s edition of Farming Simulator.

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

https://gdn.giants-software.com

4

 Documentation
The documentation section is one of the most important parts of the GDN,

as it contains all official information for working with the GIANTS Editor,

in-game interactions, mod creation, and the Lua programming language.

Do note that the documentation section of the GDN is different from the

documentation section on the main Farming Simulator website, which

teaches you how to play the game rather than develop mods.

Under the Fundamental Reading section, there are links to the Editor

and Studio documentation. The Editor documentation contains detailed

information about using the GIANTS Editor, the main piece of software

you will use when creating your mods. The editor allows you to combine

both programming elements and physical, 3D elements to create more

advanced mod types. You will learn how to navigate and use the GIANTS

Editor in Chapter 2, “Getting Started with the GIANTS Editor.” The Editor

section of the GDN is something we will refer back to frequently.

The GIANTS Studio is a new tool for creating, editing, and debugging

script mods. It works as an editor and a “remote” debugger in one. It

interacts with the game as you create your mod and provides you with

valuable information. Because of how the application is designed, it is a

powerful environment that allows you to work on multiple mods at once.

The studio is a separate application from the editor and will be important

when you begin creating your own scripts in Lua.

The Scripting section of the GDN covers all of the vital information

relating to the Lua programming language and how it relates to creating

mods for Farming Simulator. We will cover this section in more detail in

the LuaDoc section later in this chapter.

The Content Creation section covers fundamental information about

importing 3D assets from various popular 3D modeling applications,

including Maya and Blender. For clarity, 3D modeling is the process of

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

5

making all of the items you see and are able to interact with in the game;

people who make 3D models are called 3D modelers. To put it simply, 3D

models include all of the “things” you see in the environment around you.

 Community Forum
The forum is an excellent place to connect with other mod creators. Here,

you can ask for help with specific issues you run into when developing

your mods and get answers from other experienced users in a short

amount of time. Additionally, you can have general developer discussion

about best practices, software tips, and more. Like the Documentation

section, do note that the forum of the GDN is different from the forum on

the main website, which is for general discussion about Farming Simulator

and the player community rather than mod creation. Figure 1-2 contains a

preview of the forum.

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

6

Figure 1-2. The GDN Forum is valuable for getting feedback and
support from other creators

Let us look now at each category of the forum and its purpose.

The Engine category of the forum is dedicated to discussion about

the game engine of Farming Simulator. If you are a beginning developer,

you will likely not need to interact with this section as it mostly covers

advanced topics of how the programming language interacts with the

game engine or how applications like the GIANTS Editor are implemented

at the technical level.

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

7

The Exporter category of the forum is where mod creators can request

help or talk about methods of using 3D modeling applications for creating

or importing models for use with their mods. For example, if there is a

tractor model you want to include in your mod but are having difficulty

exporting it, you can post in this section and see if other creators have a

solution to your problem.

The Modding category is an important part of the forum as it is where

you should post any questions related to your work on mods. For instance,

if you are not sure how to accomplish some sort of behavior or have an

idea but are running into an issue, you can post your question here and

have other members of the community assist you.

Additionally, there is a Miscellaneous category which includes four

subcategories, those being Feedback, Feature Requests, Documentation,

and Off Topic. The Feedback category is where you can make general

comments about your experience with Farming Simulator or any

applications you use for making your mods. The GIANTS Software team

always values community feedback when making updates and deciding

which direction to take the game.

The Feature Requests category is like the Feedback category but

specifically where you can request new features or make suggestions for

changes. While your suggestions are not guaranteed to be implemented,

features and other additions that improve the gameplay or development

experience will always be considered.

The Documentation category of the forum is where you can ask

questions or make suggestions regarding the Documentation section of

the GDN.

The Off Topic category is used for general development discussions or

any topics that do not fall into any of the other categories.

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

8

 Downloads
The Downloads section of the GDN is where you should always look to

find the newest, updated versions of development applications made by

GIANTS Software, including the GIANTS Editor and the GIANTS Studio.

In addition to applications, there are also plug-ins and other add-ons for

third-party software to make a more streamlined development experience.

In this section, we will review which each category of the Downloads

section offers.

The Editor category contains a list of releases for the GIANTS Editor.

To ensure that you are able to take advantage of the newest features,

make sure to download the most recent release version. We will walk you

through the download process in Chapter 2, “Getting Started with the

GIANTS Editor,” which covers the GIANTS Editor.

The Exporter category includes plug-ins for various popular 3D

modeling applications. These plug-ins create a more streamlined

development experience by handling metadata and doing certain tasks

as you export your 3D models for use in Farming Simulator mods. The

applications currently supported include Blender and Maya.

The Studio category has a list of releases for the GIANTS Studio. As

mentioned in the “Documentation” section, the Studio is a relatively new

tool, so there are fewer versions released compared to the editor. Like the

GIANTS Editor, you will want to make sure you have the latest version of

the application installed to take advantage of the newest features and bug

fixes. We will also cover the setup process for this application in Chapter 4,

“The GIANTS Studio.”

The Other Tools category of the Downloads section includes a limited

amount of task-specific tools that may improve your experience creating

mods. You are unlikely to interact with these tools until you are somewhat

advanced as a creator but you are encouraged to explore nonetheless.

The Modding category includes applications, documents, images, and

other media related to mod creation.

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

9

The Miscellaneous category includes any relevant downloads that do

not fall into any other listed categories.

 LuaDoc
In Chapter 3, “The Lua Programming Language,” you will learn how to

use the Lua programming language. Programming is what brings life

to games and game systems. Any interactions you see, such as clicking a

button and causing something to happen, are a result of programming.

Those who program are called programmers. Lua is a fast, lightweight

programming language that uses many universal programming constructs.

So whether you are already an experienced programmer or have never

done any programming before, you will learn everything from the basics to

intermediate concepts in this book.

LuaDoc refers to the Lua documentation made by GIANTS Software.

This documentation is included under the Documentation section of the

GDN. For convenience, a link directly to the FS22 version of LuaDoc has

been included here:

https://gdn.giants-software.com/documentation_scripting_

fs22.php

LuaDoc includes information not only about the Lua language but

specifically how your programs are meant to interact with existing systems

within Farming Simulator. Furthermore, much of the source code for

the game systems within Farming Simulator are documented here and

available to view through the GIANTS Studio.

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

https://gdn.giants-software.com/documentation_scripting_fs22.php
https://gdn.giants-software.com/documentation_scripting_fs22.php

10

 YouTube
YouTube and other video streaming platforms also have many video

tutorials available that you may find useful. Often, these videos may make

a specific system or cover a specific issue that you will not find on the

official site. However, as these videos are not official, they may not use the

best practices and are not officially endorsed.

 Looking at the ModHub
The ModHub is where you will publish your mods for all players to be

able to use. The ModHub has different categories including maps, many

different types of vehicles, and different buildings or farm technologies for

players to include in their game.

The best-performing and highest-quality mods can appear in several

algorithmic categories including Latest and Top Downloaded. These

categories are then featured to players on the front page of the ModHub.

When users download your mod, they can leave a review on a five-

star scale. Naturally, mods with a higher rating are more likely to be

downloaded by other players and find their way into the sorts shown

earlier. With dedication, your mods can also see wide usage and be shown

at the top of these sorts. You can see a preview of the ModHub and the

mentioned categories in Figure 1-3.

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

11

Figure 1-3. The ModHub lets users discover new mods and enhance
their Farming Sim experience

Next, we will look at how many mod creators are already earning

money by making their Farming Simulator mods available to the

community.

 Financial Opportunities of Mod Creation
As mentioned in the introduction, there are ways to earn money by

creating mods and making them available for all Farming Simulator

players to use. Once you create a quality mod, it must go through a manual

approval process. This process ensures that the mod does what it claims

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

12

to do and that it is free of any prohibited content. This content can vary,

but copyrighted material, such as specific brands or companies, are

generally not permitted to appear in your mod. If your mod is approved to

be published on the ModHub, you may be eligible to receive payouts from

GIANTS Software based on how many times your mod is downloaded.

Remember, quality mods that receive the best reviews are more likely to

appear in certain categories of the ModHub. When your mod is featured,

more users will be able to see it and download, allowing you to earn more

money from your mod.

In the next section, we will look at the annual Farming Simulator event,

FarmCon.

 How to Attend FarmCon
If you become a successful mod creator or just want a new way to engage

with all things Farming Simulator, FarmCon is an annual convention

that attracts members of the community from around the world. There is

simply no better place to connect with other mod creators and community

members.

FarmCon attendees are often the first to see new teasers, trailers,

and announcements about the future of FarmCon. There are also many

presenters with talks focusing on best techniques for players to build their

farming empires and the best tips and tricks for mod creation. You can

see a promotional image from FarmCon 22 in Mannheim, Germany, in

Figure 1-4.

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

13

Figure 1-4. FarmCon is an annual convention for all things Farming
Simulator

You may have some questions about what your FarmCon experience

might look like or about the logistics of going. The following are some

FarmCon FAQ that might be insightful:

• Do I need a ticket for FarmCon?

A ticket is generally required for admission into the venue

and in-person attendance.

• Do I have to visit FarmCon to get all the new info?

We will not hide any new information about Farming

Simulator at the event. You can follow announcements on

the blog after the event.

• What language is FarmCon presented in?

Most presentations at FarmCon in person will be held

in German.

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

14

• I have further questions, how can I contact you?

 If you have any further questions about FarmCon, you can

contact us via email at farmcon@giants-software.com.

If you want to stay informed about FarmCon, Farming Simulator, and

other exciting GIANTS Software projects, follow our social media accounts

listed here:

@farmingsimulator @farmingsim @FarmingSimulator

In the next section, we will look at official mod creation contests hosted

by GIANTS Software.

 Participating in the Mod Contest
With each major release of Farming Simulator, there is a contest for mod

creators to participate in. Those who create the best mods or maps can win

some incredible prizes when the winners are announced at the FarmCon

the year following the release. For the winners, prizes have included

computer accessories, cameras, high-end computer graphics cards, and

trips to the factories of various farm equipment manufacturers.

If this excites you, you will have all the skills you need to participate

by the end of this book. The following are some of the general rules for

participating in the contest:

• Contestants – Teams or individuals may create

submissions.

• Allowed in submission – New mod or map. No skins or

prefabs.

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

15

• Origin – Only self-created mods (3D models, 2D

textures, programming) will be accepted.

• Entry – A person or team may only enter once.

In the next section, we will briefly review what you have learned in this

chapter and what to expect in the next.

 Summary
In this chapter, you learned about the GIANTS Developer Network and

what resources are available to you as you begin your journey as a mod

creator. You also learned how to engage with other members of the

community and the best ways to learn about events and see important

updates relating to Farming Simulator.

With what you have learned about the mod-making process and

environment from this chapter, you have been set on the path of being able

to make anything you can envision in your mods. In the following chapter,

you will familiarize yourself with the GIANTS Editor, the main software you

will be using for creating your mods.

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

16

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

CHAPTER 1 INTRODUCTION, GDN, MODHUB, MODDING TUTORIAL VIDEOS, LUADOC,
FARMCON…

http://creativecommons.org/licenses/by/4.0/

17© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3_2

CHAPTER 2

Getting Started with
the GIANTS Editor
The GIANTS Editor is the main application you will use to create mods. In

the editor, you can run scripts, preview and manipulate models, and stage

your creations before publishing them to the ModHub. In this chapter,

we will explore the features and tools of the GIANTS Editor. Familiarizing

yourself with the interfaces that mod creators work with is the first step in

the path to making your own.

After reading this chapter, you will know the tools and features of the

GIANTS Editor, be able to create and change the properties of objects in

your mod, and manage application settings.

 Technical Requirements
You will need to download the GIANTS Editor and optionally additional

software for this chapter. As such, you will need an Internet connection

and web browser available to you. The minimum requirements for the

GIANTS Editor and other applications are as follows:

• Farming Simulator 22

• Windows 10 64-bit

• Intel Core i5-3330 or AMD FX-8320 or better

https://doi.org/10.1007/979-8-8688-0060-3_2

18

• Nvidia GeForce GTX 660, AMD Radeon R7 265 graphics

card or better (min. 2 GB VRAM, DX11/DX12 support)

• 8 GB RAM

• 35 GB free hard drive space

 Installing the GIANTS Editor
To begin this chapter, we will return to the GDN website (https://gdn.

giants-software.com) and head to the Downloads section. If you have

not already made a GDN account, you will need to do so before you can

download any of the free software on your computer. When you have

navigated to the Downloads page, look for the most recent version of

the GIANTS Editor available for your platform and game (e.g., Farming

Simulator 22). By clicking the product name, you should be prompted to

download the executable for the GIANTS Editor. You can see the relevant

section of the Downloads page in Figure 2-1.

Figure 2-1. All GIANTS Software applications can be downloaded
through the GDN

Chapter 2 GettinG Started with the GiantS editor

https://gdn.giants-software.com
https://gdn.giants-software.com

19

Once you have downloaded the executable, run it and proceed

through the steps listed in the setup wizard. When the setup tasks have

been completed, launch the GIANTS Editor application, and you should

be greeted by a welcome menu. That is the first step complete!

In the next section, you will learn how to navigate the GIANTS Editor.

 The Viewport
With the GIANTS Editor opened for the first time, a “Getting Started”

window will pop up showing some useful information to get help about the

editor. After closing it, you should see several panels on each side of a gray

space. This space, called the viewport, is where you will see the models,

map elements, and any other visual part of your mod. Your viewport will

not be very interesting without any objects in your scene. Let’s follow these

steps to create your first object:

 1. Go to the Create menu at the top left of the

editor window.

 2. Click the Cube button from the Primitives

dropdown menu.

We will explore the Create menu and other application menus in

greater detail in the “Application Menus” section of this chapter. For now,

you should see the cube you have inserted into your scene. Your viewport

should look something like what is depicted in Figure 2-2.

Chapter 2 GettinG Started with the GiantS editor

20

Figure 2-2. The viewport is the main element you use to see and
interact with your scene

Let us now look at how to examine this cube and anything else you

may add to your scene.

 Movement and Camera Manipulation
Manipulation of your camera in the GIANTS Editor is quite simple. Your

camera will move relative to the direction you are facing while holding the
right mouse button (RMB):

• The W key will move your camera forward.

• The A key will move your camera left.

• The S key will move your camera back.

• The D key will move your camera right.

• Holding the Shift key while moving your camera will

cause movement to occur at a faster rate, which is

convenient for moving across large areas in the scene.

Chapter 2 GettinG Started with the GiantS editor

21

If you feel that the camera is moving too fast or too slow, you can

adjust the speed of the camera by pressing KEY_NUM_MINUS and KEY_

NUM_PLUS, respectively. For clarity, these are the plus (+) and minus (−)

buttons on the number pad of a keyboard. The current navigation speed is

displayed in the bottom-right corner of the window.

Let us now cover how you interact with objects in your scene. To select

an object in your viewport, simply click the physical object with the left

mouse button (LMB) or via the Scenegraph Panel, which we will cover in

more detail in the “The Scenegraph Panel” section of this chapter. When

you have an object selected, you can press F to bring your camera to the

object. This is convenient when you have many objects in your scene and

want to move your camera to one specifically.

Let us now look at some of the options available to change how we look

at objects with the viewport and more.

 Viewport Options
By right-clicking anywhere in the viewport, you will bring up a new menu

with a list of options as seen back in Figure 2-2. Let us now look at what

each of these options does.

 Camera

The first option from this list is Camera, which allows you to set your

perspective to any camera object within your scene. You may find this

feature useful in instances where you want to test a camera object

players will eventually use as part of your mod or simply to have multiple

viewpoints available in different areas of your scene while in the Editor.

Note that you cannot delete a camera object if your perspective is currently

set to it.

Chapter 2 GettinG Started with the GiantS editor

22

 Framed Rotate

The next option from the list is a toggle for Framed Rotate mode. When

this option is enabled, you can move your camera around an arbitrary

point in space; this is a very useful feature for examining an object in your

scene. To do this, enable Framed Rotate, select an object and press the F

key to bring your camera to it, zoom out, and press ALT+LMB to move your

camera around its new pivot point.

 First-Person Mode

This option enables a special mode that is useful for creating maps. It

allows the user to walk through a map like a player using the mouse and

the A, S, D, W keys for movement. Note that you should only enable this

mode when editing a map as it requires a terrain object in the scene. Use

the ESC key to disable the mode again.

 Shading Modes

Listed after these options are two modes for viewing your scene; these

two modes are called wireframe and shaded. When viewing your scene

in shaded mode (the default mode), objects will be rendered (displayed)

with shadows and appear as they would in the game. In wireframe mode,

you will always be able to see the topology of objects in your scene and see

objects through other objects. If you are unfamiliar with the process of 3D

modeling, topology refers to the layout of the smaller 3D components that

make up your model, often called polygons or tris (triangles).

 Show and Selectable

Following these viewing mode options are options for what objects you

can see and interact with in your scene. The first Show option includes

a dropdown menu and list of object types that are shown only when

Chapter 2 GettinG Started with the GiantS editor

23

enabled. Similarly, the Selectable option also produces a dropdown menu

where you can choose which types of objects you are able to select with

your mouse in the viewport. These settings are convenient when you are

working in complex scenes and want to filter only for the types of objects

you want to interact with.

 Grid

The Grid option shows a grid with 1×1 squares when enabled. The grid

can help to give you a frame of reference when creating your scene when

terrain is not present as well as keeping objects aligned.

 Polycount

Lastly, the Polycount option when enabled will show you additional

information about objects you are selecting. This relates back to what

you are able to see in the wireframe viewing mode. Because of how

computer processing works, the lower the polycount of an object, the less

computationally expensive it is to render.

In the following section, we will learn how objects in your scene are

structured and how to navigate them all most efficiently.

 The Scenegraph Panel
As previously mentioned, the Scenegraph Panel is an important menu

that allows you to see all of the objects in your scene. This will become

important when you begin programming as you will need to refer to

objects in your scene, and this reference will be based on the organization

of objects in your scene. You can see how your Scenegraph Panel might

look when there are multiple objects in your scene in Figure 2-3.

Chapter 2 GettinG Started with the GiantS editor

24

Figure 2-3. The Scenegraph shows all of the objects contained within
your scene

You may notice some objects in Figure 2-3 seem to be a list under

another object. This descent is related to how objects are organized in the

GIANTS Editor. Let us now explore what this hierarchy is called and how to

navigate it.

 Entities and the Parent-Child Hierarchy
In the GIANTS Editor (and many other applications like it), objects are

stored in what is called a parent-child hierarchy. A parent-child hierarchy

is one where an object is stored inside of something (its parent) and the

object is the child to its parent. Each object in the engine is an entity

with a unique ID used to access it. Please keep in mind that this ID is not

persistent and can change on every game or editor startup. An entity can

be a TransformGroup, a shape, a camera, etc. The entity type defines a

feature set for the object. For example, a camera entity can be used as

a viewport camera, a Shape entity has special functions like materials,

Chapter 2 GettinG Started with the GiantS editor

25

and Transform entities can be used in the parent-child hierarchy and

have a position in the world. Looking at Figure 2-4, you can see three

objects: the Scenegraph, a Camera object named perspectiveCamera,

and two Transform Group objects named parentTransformGroup and

childTransformGroup. In the GIANTS Editor, the Scenegraph is always

at the top of the parent-child hierarchy; that is, any objects in your scene

are a descendant of the Scenegraph. In this example, perspectiveCamera

and parentTransformGroup are direct descendants of the Scenegraph

or its children. The Transform object named childTransformGroup

is the child of parentTransformGroup; you can alternatively say that

childTransformGroup is parented to parentTransformGroup:

Figure 2-4. This example shows the parent-child hierarchy of the
GIANTS Editor

In the next section, we will look at the application menus of the editor

 Application Menus
In this section, we will explore the various application menus in the

GIANTS Editor and discuss which options you should know about as a

beginning mod creator.

Chapter 2 GettinG Started with the GiantS editor

26

 The File Menu
The File menu contains many options related to what you are currently

working with inside of the GIANTS Editor. Let us look at each menu option

and what they do.

The New button will reset the editor to an empty environment when

pressed. Before the environment is cleared, you will be prompted to save

any unsaved changes to the current file or to create a new file if you have

not saved your work before.

The Open button will open your file explorer and allow you to open

any .i3d files you have saved and continue editing them.

The Save and Save As buttons will save your current environment to

an .i3d file. If you have not previously saved your work to a file, only the

Save As button will be available and will prompt you to select a location

on your computer and file name for the file to be stored with. If you have

previously saved your work to a file, only the Save As button will prompt

you to choose a new location and file name, whereas the Save option will

simply overwrite your existing file.

Clicking the Open Mod button will allow you to open mods that have

already been exported to mod file formats such as .zip or .xml instead of an

.i3d file. Alternatively, selecting the New Mod from Game option will allow

you to import game assets to your environment and use them to create a new

mod, creating all of the relevant files in a directory of your choice. You can

freely use any of the assets or components of them in your new creations.

The Import and Import as Reference options allow you to add 3D

models and assets in .i3d or .fbx file formats to your scene. The difference

between these options is that Import as Reference will create a link to the

file you import. That is, any modifications you make to the original file you

imported as a reference will be instantly shown in the file you imported to.

This behavior does not occur when using the Import feature – with this,

you would need to reimport the file if you wish to bring over any changes

you have made.

Chapter 2 GettinG Started with the GiantS editor

27

If you wish to export the 3D elements of your mod, there are three

options to choose from. The Export all with Files, Export Selection, and

Export Selection with Files options all allow you to convert the objects

in your environment into 3D model file formats, such as .i3d and .obj. The

meaning of with Files is that it will include files like textures in addition

to the base .i3d file. Without exporting with files, textures are referenced

only with absolute or relative file paths and thus will not appear if shared

with others. The functional difference between the export all and export

selection is that export selection will only include objects that you are

currently selecting in your scene as opposed to every object in your scene.

The Preferences button will open a menu that contains various

settings related to the tools and interfaces of the GIANTS Editor. Not all of

these settings will be relevant to you as a beginner, but feel free to explore

each of them. If you have set preferences in a previous version of the

GIANTS Editor, you can select the Import Preferences option, and the

editor will automatically transfer over your preferences.

Lastly, hovering over the Recent Files button will produce a dropdown

menu of any files you have recently worked with in the GIANTS Editor.

Do note that opening recent files from this menu will change your scene

without prompting you to save. Save any changes you have made to your

scene before opening a recent file from this menu.

In the next section, we will discuss the Edit menu and the meaning of

each option it contains.

 The Edit Menu
The Edit menu contains a list of options related to actions you make in the

editor in addition to the key bindings associated with them. Let us look at

some of these options and what each of them does:

• Undo – Undo your last action

• Redo – Redo your last action

Chapter 2 GettinG Started with the GiantS editor

28

• Clear History – Clear the list of last actions

• Cut – Copy and remove an item from your scene

• Copy – Copy an item from your scene

• Paste – Add a copied item to your scene

• Delete – Delete a selected item from your scene

• Duplicate – Duplicate a selected item in your scene

• Replace – Replace objects of one type with another

throughout the scene

Some other options this menu provides include Freeze

Transformation, Move to Camera, and Interactive Placement. Freeze

Transformations will allow you to set the frame of reference for a selected

object to its parent for different properties. For example, if an object

parented to your scene (top of the hierarchy) is moved from the origin

(global center of your scene) and you apply this option to the Translate

property, it will treat it as unmoved from the origin. Another example is if

your object is rotated and you apply this option with the Rotate property

selected, the rotation arcs will reset as if the object was not rotated. You will

likely not need to use this option until you are a more advanced creator or

find a situation where this is particularly helpful.

The Move to Camera option allows you to set the position and

orientation of a selected object to that of your camera. This is convenient

if you want to orient something based on your camera’s perspective rather

than trying to estimate with your tools.

Finally, the interactive placement button lets you freely place a

selected object where your mouse is when the left mouse button is held

down if your mouse is intersecting another object in your scene.

Do note the key bindings associated with each action we have covered

as pressing these will be quicker than navigating to the menu.

You are also able to detach this application menu for quick access.

In the next section, we will look at the options in the Create menu.

Chapter 2 GettinG Started with the GiantS editor

29

 The Create Menu
The Create menu displays options to insert objects into your scene. In the

GIANTS Editor, there are six primary types of objects:

 1. Transform Group

 2. Light

 3. Camera

 4. Audio Source

 5. Spline

 6. Navigation Mesh

 7. Note

 8. Primitives (e.g., Cube, Plane, etc.)

Clicking a create option will create the object (see Figure 2-5), add it

in the Scenegraph, select it, and show its values in the attribute window

on the right-hand side of the GIANTS Editor. The Edit Menu section, we

already created a cube primitive by using the Create menu. Try to explore

the other actions of the Edit menu and see the effects of each.

Chapter 2 GettinG Started with the GiantS editor

30

Figure 2-5. You can insert primitive objects and more via the
Create menu

In the next section, we will look at the View menu.

 The View Menu
The View menu is, as the name implies, important to how you view your

scene – particularly in viewing 3D models. Most of the options contained

in this menu were covered in the earlier “Viewport Options” section. We

will discuss only the options that were not covered previously.

The first of these is the Enable TAA option; when enabled, temporal

anti-aliasing will be used in rendering your scene, resulting in less

jaggedness around objects and textures which creates a better appearance.

The Profile menu produces a dropdown menu when hovered over that

shows presets for graphical quality in the viewport. If you are experiencing

a low frame rate or other poor performance while editing, you should

lower this setting.

Chapter 2 GettinG Started with the GiantS editor

31

Debug and Texture Streaming items show more advanced features

of the editor that are normally not used by modders. They are included in

the editor because the GIANTS Editor is also used by the GIANTS Software

team internally to develop the game.

The following section will explore the contents of the Scripts menu.

 The Scripts Menu
The Scripts menu contains a list of all available scripts. Through this menu,

you can select the Create new script option to create new scripts. We will

explore this more in the “Scripting” section of this chapter. For now, we

will continue to the next section and discuss the Window menu.

 The Window Menu
The Window menu allows you to toggle visibility or window mode for the

various menus of the GIANTS Editor. Many of these windows are visible

by default, including the Scenegraph, Viewport, Console, and Attributes

windows. Feel free to look at any windows that are not visible by default,

but we will cover almost all of these in future chapters as they become

relevant. In the meantime, you can change where in the application most

windows are displayed by clicking and dragging the top of most windows

you currently have visible. This is a point of customization for you to make

your environment as efficient for you to work in as possible.

We will now look at the options in the Help menu.

 The Help Menu
The final application menu of the GIANTS Editor is the Help menu. This

menu contains a list of options related to information about the editor

itself and additional resources for its use. Almost all of these options will

Chapter 2 GettinG Started with the GiantS editor

32

redirect you to the GDN, which we covered in the first chapter. This serves

as a good reminder of the value of the resources that can be found on

the GDN.

Now that we have covered all of the application menus of the GIANTS

Editor, we will look at other windows and elements you should familiarize

yourself with.

 The Attributes Panel
When an object in your scene is selected, you will see properties about

the object displayed in the Attributes Panel. Properties are values that

change the behavior or appearance of an object in your scene. For objects

of the Primitive type, some properties include Translate, Rotate, and Scale

which refer to the position, orientation, and size of the object, respectively.

The properties displayed in the Attributes Panel will change depending

on the type of object you have selected as different objects have different

functionalities. You can see what the Attributes Panel might look like when

a Cube is selected in Figure 2-6.

Chapter 2 GettinG Started with the GiantS editor

33

Figure 2-6. The Attributes Panel shows the properties of a selected
object, a cube in this case

Chapter 2 GettinG Started with the GiantS editor

34

An important attribute shown in Figure 2-6 is Clip Distance and Min
Clip Distance. These properties are used to determine from how far or

near away an object should be visible. In the figure, the cube will not be

visible once it is 300 meters away from the current camera (the hardware

scalability settings can have an effect on this value). Setting a sensible

value for this property can greatly improve performance when there are

many objects in your scene. Min Clip Distance is set to 0 in our example.

That means it’s visible in the range of 0–300 meters. If you want to hide an

object within a certain distance, you can set Min Clip Distance to 40, for

example. With this setup, the object will be invisible if the camera to object

distance is lower than 40 meters or greater than 300 meters.

As a creator, you can also define custom properties for objects via the

User Attributes window. These custom properties can be valuable for

keeping track of information or making settings for systems when creating

your mods.

In the following section, we will discuss the tools and benefits of the

Toolbar.

 The Toolbar
The Toolbar is an element of the editor where you can quickly access a

variety of tools and actions. In the toolbar are five primary sections called

File, Play, Mode, Terrain, and Miscellaneous. You can additionally create
buttons in your toolbar that will run programs you’ve written when
pressed; we will cover this in the “Scripting” section of this chapter. You

can see the whole Toolbar in Figure 2-7.

Figure 2-7. The Toolbar contains buttons for different actions
and tools

Chapter 2 GettinG Started with the GiantS editor

35

 File Section
The File section includes nine buttons as shown in Figure 2-8. The

following actions are available:

 1. Create a new i3D file

 2. Open an existing i3D file

 3. Open the current file in a text editor

 4. Reload the current file

 5. Save the current file

 6. Save the current scene in a new file

 7. Import an i3D file to the current scene

 8. Undo the last action

 9. Redo the last action

Figure 2-8. File toolbar

 Play Section
The Play toolbar allows you to test your mod, in different ways. The first

test option, indicated by the play button icon (Figure 2-9), will begin

physics simulation, play sounds, and additional rendering like showing

particle emission and animations. The option indicated by the eye icon

lets you test your mod in first-person mode. In this mode, you will be able

to walk around the map of your mod and interact with objects from a first-

person perspective and feel the effects of gravity like walking around in

Farming Simulator.

Chapter 2 GettinG Started with the GiantS editor

36

Figure 2-9. Play toolbar

 Mode Section
Let us now look at some of the different options shown in the Mode section

of the Toolbar for manipulating objects within your scene (Figure 2-10).

Figure 2-10. Mode toolbar

 Local/World Mode

This button toggles the object mode between world space and local space

manipulation. In the scenegraph hierarchy, the transform attributes of

an object are stored relative to the parent object, so-called local space

attributes. By default, the manipulation of the object within the viewport is

based on local space transformation. You can change this by activating the

world space mode. Now the movement is independent of the parent object.

 Snapping

With the snapping button, you can toggle the snapping mode. Using the

down pointing arrow, you can set the snap deltas. For example, if you

set the snap value to “1.000” and try to move an object, it will move in

1 m steps.

Let’s now have a look at the different manipulation modes. Note

that when none of these modes are selected (default), all three tools

are available when an object is selected. If you gain mastery over these

different modes, this setting may be preferable to quickly manipulate an

object without any switching.

Chapter 2 GettinG Started with the GiantS editor

37

 Translation Mode

When in Translation mode (shortcut: W key), selected objects will show

three arrows and three planes through which to move the selected object.

When using the arrows, the object will simply follow in the direction you

drag your mouse along the axis indicated by the arrow you grab.

When using the planes to move objects, the object will freely follow the

movement of your mouse except on the axis of the plane you selected. Try

translating a primitive object using the arrows; notice how the Translate

attributes change and how each axis (X, Y, or Z) is affected by exactly one

of the arrows. You can see a reference for these axes and their color-coded

handles in Figure 2-11.

Figure 2-11. The Translate tool allows you to move objects along the
X, Y, and Z axes

 Rotation Mode

The Rotation mode (shortcut: E key) shows three arcs with which to

rotate a selected object. Like the Translate mode, each color-coded

arc corresponds to an axis of rotation. Try rotating a primitive object

Chapter 2 GettinG Started with the GiantS editor

38

and seeing how the Rotate attributes are changed. Do note which arc

corresponds to which axis may not be intuitive as the arcs rotate around

the previously illustrated axes. Figure 2-12 visualizes this difference.

Figure 2-12. The Rotate tool allows you to rotate around the
Translation axes

 Scaling Mode

The Scaling mode (shortcut: R key) allows you to scale objects in your

scene with a set of three handles similar to the translation arrows. When

scaling a primitive object, the amount you scale by is mirrored across

the axis. That is, positively scaling along the Y axis (vertically) 1 unit in

this mode increases the total size by 2 units. Whenever you want to make

something bigger or smaller in your scene, you should use this mode.

Chapter 2 GettinG Started with the GiantS editor

39

 Miscellaneous Section
The Miscellaneous section brings up three different actions (Figure 2-13):

 1. Prefab Explorer to download existing objects (e.g.,

buildings)

 2. Reload all textures of the current scene

 3. Reload textures of the selected object

Figure 2-13. Miscellaneous toolbar

 Terrain Section
If you want to create maps of your own, you will need something to stand

on; this is where terrain comes in. The toolbar (Figure 2-14) has the

following elements to modify the terrain:

 1. Terrain sculpting

 2. Terrain painting

 3. Mesh/object painting

 4. InfoLayer painting

 5. Procedural painting

 6. Foliage painting

Figure 2-14. Terrain toolbar

Chapter 2 GettinG Started with the GiantS editor

40

But first of all, you need a terrain node in your scenegraph. To add one,

follow these steps:

 1. Go to the File menu.

 2. Select the New Mod From Game option.

 3. Import one of the maps from the Item

dropdown menu.

This will import all of the files and assets from the game into a new

working directory of your choice. With a map now imported, we can begin

to modify its terrain with the different terrain modification modes of the

GIANTS Editor. Before exploring the tools and modes for editing, we will

need to open the Terrain Editing window from the Window application

menu to see and control how we modify our terrain. With this window

opened, we will start by using the Terrain sculpt mode as an example.

Let us first select terrain sculpt mode, which is indicated in the Toolbar

by the icon with the up and down arrows as seen in Figure 2-15.

Once you have the tool selected, you will not be able to move your

camera as usual until you deselect the tool, which can be done by clicking

the icon again. To move your camera when in this mode, you can use

Alt+RMB to move forward and backward in the direction the camera

is facing. Additionally, you can use Alt+LMB to rotate the camera and

Alt+LMB+RMB to move the camera along the relative X and Y directions.

Do note these movement modes are also available when not using the

terrain editing modes.

Returning to the sculpt mode, you can use LMB to grow terrain

upward, RMB to shrink terrain downward, and middle mouse button

(MMB) to smooth terrain by default. Additionally, by pulling your mouse

Figure 2-15. Terrain sculpt mode can be toggled via the Toolbar

Chapter 2 GettinG Started with the GiantS editor

41

wheel back, you can increase the size of the area that will be affected by

the tool. Oppositely, you can push the mouse wheel forward to decrease

the size of the affected terrain area. These settings, among others, can be

changed in the Brush section of the Terrain Editing window. Note also that

from this window you can change the shape of your brush from a circle to

a square. You can see what sculpting grass-textured terrain in your scene

with a circular brush might look like in Figure 2-16.

Figure 2-16 You can use terrain sculpt mode to modify terrain in
your scene

While there are more terrain editing features and modes, these will be

the most relevant to you as a beginner making your mod. As with other

topics we have covered, you are encouraged to explore anything we did not

cover. The next section will give you a first look at programming and some

of the elements of the GIANTS Editor relevant to it.

Chapter 2 GettinG Started with the GiantS editor

42

 Scripting
In this last section, you will get your first taste of programming by creating

your first script, which is what we call a file that holds code. To add a new

script, follow these steps:

 1. Navigate to the Scripts application menu.

 2. Select Create New Script.

 3. You will be prompted to enter a name for

your script.

 4. Enter a name of your choice – perhaps test.

The Script Editor should appear within a new window in the GIANTS

Editor and include some comments by default. Comments are lines of

code that don’t do anything and simply hold text; in Lua, comments are

lines that begin with two dashes (--). After these lines, add a new line with

the following content:

print("Hello world!")

Hello world! is a traditional first line of code for many programmers.

With this line written in your script, click Save and then Execute. You

should see the output of your program in the Output window of the

GIANTS Editor. Note that you can access the Script Editor at any time via

the Windows application menu. As mentioned in “The Toolbar” section

of this chapter, you can assign a script you create to a button in one of

five custom script toolbars. Having a shortcut to a script in the toolbar

is a handy way to speed up the modding process. For example, as a map

creator, you could create a script that perfectly aligns fences. With the

shortcut button in the toolbar, you would simply need one click to align

the fences.

Chapter 2 GettinG Started with the GiantS editor

43

To add a script to the toolbar, open it in the Script Editor; at the top

of the window, select one of the script button slots from the dropdown

menu next to the Toolbar label for your script to be assigned to, as seen in

Figure 2-17. You can upload an icon so that you can easily identify each

of your scripts. Once you’ve done this, simply click the button with your

chosen icon in the Toolbar, and you should see the output of the script in

the console.

Figure 2-17. You can bind scripts to Toolbar buttons to be
conveniently run when pressed

There you go, your first program is complete! You will learn the

fundamentals of Lua and how to make more complex systems in Chapter 3,

“The Lua Programming Language.” For now, let’s look at what other editor

elements are relevant to writing and running Lua code.

 The Console
The Console is a window of the GIANTS Editor that can be used to write

and execute Lua code. After writing your code in the textbox of the

Console, press Shift+Enter to have that code execute instantly. This is

useful when running simple commands or doing math with what’s offered

by the Lua libraries but also to affect things in your scene, such as changing

fog or other properties. In the next chapter, you will gain experience with

the Console as you execute simple programs to gain familiarity with the

Lua programming language.

Chapter 2 GettinG Started with the GiantS editor

44

 Summary
In this chapter, you learned how to use the GIANTS Editor and what

tools and features it offers. You should now feel comfortable creating and

changing the properties of new objects, managing application settings,

creating and executing a script, and manipulating elements of your

environment like terrain with built-in tools.

The next chapter will teach you to program in the Lua programming

language and about general programming constructs that will be key

components of your future as a mod creator and as a programmer more

generally. By the end of the following chapter, you will be able to make

your own programs in Lua with proper style and the knowledge to produce

optimized code.

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 2 GettinG Started with the GiantS editor

http://creativecommons.org/licenses/by/4.0/

45© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3_3

CHAPTER 3

The Lua Programming
Language
The Lua language is a fast, procedural programming language used by the

GIANTS Engine and many other applications. Lua was originally created in

1993 due to software trade barriers in Brazil, which prevented many from

buying specialized software from outside the country. Because of this, the

language was designed to be highly customizable with a simple API in the

C programming language so that programmers could easily make changes

to fit their needs.

The goal of this chapter is to give you the knowledge you need to

make your first programs in Lua so that you’re ready to become a fully

proficient programmer. No prior programming experience is assumed,

so we will start by covering the concept of variables and other universal

programming constructs. Then, within a few chapters, you will be able to

create full programs to interact with your Farming Simulator mods. If you

find some material difficult, don’t be worried! You’re taking a crash course

in a skill that you will build upon for the rest of your life, and this is just

the beginning. If you feel the need to move between different sections or

review some earlier ones, you are encouraged to do so!

https://doi.org/10.1007/979-8-8688-0060-3_3

46

 Technical Requirements
In this chapter, you will be working entirely in the GIANTS Editor and

must meet the requirements mentioned in the “Technical Requirements”

section of Chapter 2, “Getting Started with the GIANTS Editor.” While

releases are infrequent, make sure you are always using the most recent

version of the GIANTS Editor. This will ensure that you are able to take

advantage of any new features. You can find all the code used in this

chapter in the book’s code repository on the GDN at the following link:

https://gdn.giants-software.com/lp/scriptingBook.php

 Learning About Data Types
and Creating Variables
In programming, a variable is a way for your code to hold a piece of
information; different types of information are called data types. Variables

are convenient because when you create one, you can give it an identifier

(a name) so that it may be easily referenced and used later. In many

programming languages, these variables are typed; this means that the

type of the variable, be it a number or a word, must be decided when it is

created. In Lua, variables are untyped which means you may assign any

type of data to a variable without stating what that type is.

It is important that you know what the most common data types are

before you begin programming.

Chapter 3 the Lua programming Language

https://gdn.giants-software.com/lp/scriptingBook.php

47

 Data Types
In Lua, the number data type can hold both whole and fractional portions

of numeric values. Examples of a number can include 1, 0.33, −1.2,

etc. This is the only numeric type used in Lua, but it may be helpful to

remember that an integer is simply a whole number, positive, negative,

or zero. The number data type is actually named a double-precision
floating-point number, though it is more commonly called a double,

which is a type of float. Some values cannot be perfectly represented

by this system because of how computers work; such inaccuracies are

referred to as floating-point errors. An example of how one of these errors

might look is when the value 0.2 is instead shown as 0.20000000000000018.

It’s important to be aware of these errors when processing data, and you

may run into them in a game development environment.

Booleans are a simple data type with a binary true or false value; when

stored in a variable, they are more frequently called bools. It is important

to note that in Lua, 1 and 0 only have numeric values and do not have any

uses in Boolean logic, as seen in other languages. That is to say, 1 and 0

only represent numbers, not true or false or any other value.

Strings, as a data type, are best explained as any kind of text. Strings

can represent words, sentences, letters, and more. In most languages,

strings are an array or sequence of individual characters; in Lua, however,

characters are not a data type.

In Lua, tables are a data structure that can be used in many different

ways. We will discuss two uses of tables in this section: arrays and

dictionaries. Unlike arrays in other programming languages, tables

when used as an array can act more like lists, as they are not limited to

an initialized size, nor do they require one; as a result, additional table

positions do not need to be preemptively reserved. Elements contained in

these tables are indexed from 1 to n, with n being how many elements are

in your table. It should be noted that in most other languages, the starting

index value of a table is 0, whereas it is 1 in Lua; these are called zero-based

Chapter 3 the Lua programming Language

48

and one-based indexing styles, respectively. Additionally, tables are not

typed by default; it could be said that this has many advantages, as in other

languages you would be restricted to only adding values of the same type

into a single array. However, you should still keep your tables organized

and not loosely throw any type of data into them like a virtual colander.

The greatest benefit of using a table as a dictionary is the ability to

index anything with a convenient key instead of numbered indices. For

example, if you had a farm in your experience and you wanted all the

apples in your experience to have one functionality and all bananas to

have another, you could use the name of the fruit as a dictionary key that

has an associated function; you could even use the physical fruit itself as

the key since keys are not limited just to strings. As before, dictionaries

have an infinite capacity, and elements within them can be of any type.

 Setting and Manipulating Variables
Initializing and changing variables in Lua is a process that utilizes a

variety of different operators to achieve a desired result. A convenient

way to check the value of your variable is by using the print() function.

You learned this function in Chapter 2, “Getting Started with the GIANTS

Editor,” where you used it to output Hello world! in the Console. The print()

function is a vaLuable tool when following along in your program and

for observing what your code produces when it would otherwise not be

visible. In this section, we will begin writing new lines of code that hold

and manipulate data. To get started, open the GIANTS Editor and create a

new script. Once you write a program, you will need to click Save and then

Execute. Output from your program will be seen in the console as shown

in the “Scripting” section of Chapter 2, “Getting Started with the GIANTS

Editor.”

Chapter 3 the Lua programming Language

49

 Numbers
Number variables are easy to set and change. We initialize variables

using the “local” keyword followed by its name and then its value which

determines its type. If you do not use the “local” keyword, then the variable

is declared globally for the entire script which can lead to problems later

on. After writing local, you put the name of your variable. A variable name

cannot start with nonalphabetical characters and cannot contain any

characters that are not alphanumeric except for underscores. For example,

if you wanted to have a variable that simply held the value of 99, your code

would look like this:

local myNumber = 99

There are many different operators we can use to change the variable,

and libraries of special functions, but for this example, we simply want the

value to increment by 1 to reach a total value of 100. To accomplish this,

we can think of setting the variable to itself plus 1 by using the addition

operator (+):

myNumber = myNumber + 1

When we are referencing a variable, we simply use its name, so stating

“myNumber = “, we are saying we want to update the existing variable we

declared earlier. The local keyword is only used when we first initialize the

variable. Depending on the scenario, it may be more practical to simply set

the variable to 100 directly. In this case, you would simply set the variable

to the value, similar to what you did when initializing it (without the local

statement, of course).

Lua supports the arithmetic operators that are standard across most

languages, those being for addition (+), subtraction (-), multiplication (*),

division (/), and modulo (%).

Chapter 3 the Lua programming Language

50

While you are likely familiar with most of these operations, the concept

of modulo may be new to you. A modulo operation simply returns the

remainder when a is divided by b. For example:

7 % 4 = 3

8 % 4 = 0

For more advanced operations, Lua provides a library with the same

functionality as the standard math library in the C language. This library

provides trigonometric functions, value conversions, and specific values

with convenience and accuracy. To utilize this library, we can use the math

keyword.

Here is an example of getting an accurate approximation of pi by using

the math library:

myNumber = math.pi

Moving forward, we will discuss the Boolean data type.

 Booleans
Setting a Boolean is simple as there are only two initialization options:

using the true or false keyword. An initialization statement for a Boolean

value may look something like this:

local myBool = true

To change the value of this variable, you simply need to set the bool

as true or false. For example, we will set myBool equal to false with the

following line of code:

myBool = false

There is a trick for setting a bool to its opposite value in one line,

as opposed to using a conditional. We can do this by making use of the

not operator, which will be covered more once we get to conditional

Chapter 3 the Lua programming Language

51

statements. The not operator serves to simply return the opposite of the

input following it. For example, if we wanted to change the preceding myBool

variable from false back to true, we could simply use the following line of code:

myBool = not myBool

print(myBool)

Output: true

Continuing, we will cover another primitive data type, strings.

 Strings
To declare a string, you should use the same variable initialization style

and write your text inside double quotes. We use double quotes to describe

strings, for example, “My String.” If the string itself contains double quotes,

then we can use a single quote instead:

local myString = "Hello"

If you are using double quoted strings, Lua uses the backslash (\) as an

escape character. This means that any character that would normally be special

is treated as text within a string. For example, if someone in some game dialog is

speaking from the third person, you could create double quote marks, like this:

myString = "He said \"I don't like apples!\""

Conversely, this backslash operator makes some normal text special.

Two characters that are made special by the backslash character are the

letters n and t.

\t: A tab will be added in that place.

\n: A new line is inserted at that point.

The following code shows the usage of both special chars:

myString = "Separated\tby\ttabs"

print(myString)

Chapter 3 the Lua programming Language

52

Output: "Separated by tabs"

myString = "Separated\nby\nlines"

print(myString)

Output:

"Separated

by

lines"

If you have multiple lines in your string, you do not necessarily need

to utilize the \n operator. Lua, unlike some other languages, supports the

use of multiline strings. Aside from being able to simply press your Enter

key to create new lines, you can more conveniently format paragraph-sized

strings in your programs. To initialize a paragraph string, you must capture

your text within double brackets, as shown here:

myString = [[This string

can span

multiple lines.]]

One of the most common ways string variables can be changed is by

concatenating them. By following any string with .. and providing another

string, the latter string will be attached at that position:

myString = "Hello"

myString = myString.. " World!"

print(myString)

Output: "Hello World!"

The ability to concatenate is particularly useful when you’re presenting

different information to a player via a UI element. For example, if you

wanted to announce that some event has come to an end, you can append

the name of that event to a string:

Chapter 3 the Lua programming Language

53

local eventName = "rain"

myString = "Weather event over! The ".. eventName.. "

has ended."

print(myString)

Output: "Weather event over! The rain has ended."

Similar to how numeric data has a library for mathematical operations,

there exists a library of string functions for more complex manipulations, as

well as data management. This library can be accessed by writing the string

keyword. Some functions include the ability to change the case of all letters

within a string, the ability to split strings at certain points, and even to find all

strings within a string that match a certain pattern, which is useful for systems

such as in-game search bars. For example, all the letters in the following string

will be converted into uppercase using one of the string library’s functions:

myString = "iT iS wARm tOdaY."

print(string.upper(myString))

Output: "IT IS WARM TODAY."

Using strings in numeric arithmetic should be avoided when possible,

but there may be situations where this happens. Whenever a string is used

where a number is required, Lua will attempt to automatically convert that

string into a number. For example, if you try to add the string “50” to the

number 100, it will function correctly, as shown here:

print("50" + 100)

Output: 150

However, if the string you are attempting to perform an operation on

contains nonnumeric characters, the string-to-number conversion will

fail. To prevent this, you can check if a string is fully numeric by using the

tonumber() function. If the string that’s been passed to the function cannot

Chapter 3 the Lua programming Language

54

be converted into a number, the value that’s returned will be nil; nil is

a value that represents something nonexistent. If we attempt to add the

string “Hello” to the number 100, an error will occur:

myString = "Hello"

print(tonumber(myString))

Output: nil

local myNumber = 100 + myString

Output: "local myNumber = 100 + myString:3: attempt to perform

arithmetic (add) on number and string"

Next, you will learn about tables, which have a wide variety of

applications.

 Tables
Tables are straightforward but less intuitive to set and manipulate than the

other data types we have covered so far, as you must make use of a library

for some operations. If you are already familiar with other programming

languages, you might compare tables with an array or a list.

To create a new, empty table, you must set your variable to a set of

braces ({}), as shown here:

local myTable = {}

When initializing a new table, you do not need to have it start out

empty; you can include elements within your table when it is first created.

It is important to note that elements in tables require a separating

character; in this case, that character is a comma (,). For example, if a

player was tasked with retrieving items from a grocery list, you could

initialize a table of predetermined foodstuffs this way:

local myTable = {"Tofu", "Milk", "Bacon"}

Chapter 3 the Lua programming Language

55

Once you’ve created your table, you will need to be able to index what

items exist within your list. Without loops, which will be covered later in

this chapter, you can only index items individually. Remember that tables

use one-based numeric indexing, so indexing items is just done with a

number within brackets ([]). All items from the grocery list could be either

assigned to a variable or acquired directly, as seen in the following print

line of code:

local myTable = {"Tofu", "Milk", "Bacon"}

local firstItem = myTable[1]

print(firstItem, myTable[2], myTable[3])

Output: "Tofu Milk Bacon"

To add or remove elements from a table, you can use the table library,

which can be accessed by using the table keyword. This library allows

you to alter the structure of tables by changing how they are sorted, what

their contents are, and where existing table entries are located. In order

to add new elements to a table, you should use the table.insert() function.

The function requires a minimum of two arguments, with the first being

the table being targeted and the second being the value that you wish to

add to the table. If three arguments are provided, the first argument is the

targeted table, the second is the desired table position, and the third is

the value to be added. When using the function with three arguments, it

is important to remember that all the elements following or at the desired

position are shifted to the right. Furthermore, there are no restrictions to

the provided index, meaning the index can be negative or be an element

that hasn’t been reached yet by the length of the table, though you should

avoid this as it internally converts the array-like table to a dictionary. Here

is an example of adding an element to the beginning of a table and an

element without a position specified, which will, by default, go to the end

of the table:

Chapter 3 the Lua programming Language

56

local items = {"Elephant", "Towel", "Turtle"}

table.insert(items, 1, "Rock")

table.insert(items, "Cat")

-> items = {"Rock", "Elephant", "Towel", "Turtle", "Cat"}

To remove an item from the list, you need to know the exact index

of the item within the table. For example, if the list is only supposed to

contain living things, we would want to remove the Rock and Towel items.

We can do this by using the table.remove() function. It is important to note

that removing an element from a table will shift all the elements that follow

it to the left. So, if the rock was removed from the table first, the indices of

all the other items in the table would be one less than they were before.

This can be seen in the following code:

items = {"Rock", "Elephant", "Towel", "Turtle", "Cat"}

table.remove(items, 1)

-> items = {"Elephant", "Towel", "Turtle", "Cat"}

table.remove(items, 2)

-> items = {"Elephant", "Turtle", "Cat"}

To confirm that the correct number of elements is within your table at

any given time, you can preface a table or table variable with the # operator

to return the number of elements within it. Additionally, you can use the

table.getn() function to return the same result, though this is longer to

write. You can prove these techniques return the same result by making

the following comparison:

print(#items == table.getn(items))

Output: true

We’ll cover how to make more comparisons when we learn about

conditional statements. In the following section, you will learn about

dictionaries.

Chapter 3 the Lua programming Language

57

 Dictionaries
As we mentioned previously, dictionaries are tables that use custom,

key-based indexing as opposed to sorted numeric indexes. Conceptually,

you can think of entering values into a dictionary as declaring a variable,

except the local keyword is not applicable here. While elements in a

dictionary can be laid out like a table, it is more common for each entry to

have its own line; the separating character for elements is a comma. If you

had a restaurant’s menu within your experience, you could arrange the

items within a dictionary, with the key being the name of the meal’s course

and the value being the name of the dish:

local menu = {

 appetizer = "House salad",

 entree = "Ham sandwich",

 dessert = "Ice cream",

}

Indexing these declared elements is quite intuitive as you must simply

follow the path to the desired value. In this case, let’s say you wanted to

capture what dish was being served as the entrée on the menu with a new

variable:

local meal = menu.entree

print(meal)

Output: "Ham sandwich"

Setting elements is equally as straightforward; by following the path,

you can set or alter the element based on its data type like any other

variable:

menu.entree = "Turkey sandwich"

Chapter 3 the Lua programming Language

58

One of the advantages of using these keys in Lua is that they are not

restricted to only string indexes. By using brackets ([]), you can use any

data type as an index of your value. This is particularly useful if you want

one data type to have a direct association with another at a given value. For

example, if you wanted to set a list of threshold prices that correlated with

a describing string, you could use a number as an index. Bear in mind that

in order to index non-string keys, you must also use brackets:

local prices = {

 [0] = "Free",

 [5] = "Cheap",

 [20] = "Average",

 [50] = "Expensive",

}

print(prices[0])

Output: "Free"

Something to note is that tables can have another table as a value;

whenever something exists within another entity of the same type, we call

this nesting. You can create structures by nesting tables within each other

and fetching them with the same key-based style. When we discuss classes

and specializations, you’ll see that nesting tables is a somewhat common

practice for organizational and functional purposes. For instance, if you

wanted to maintain sets of information where you can retrieve data with a

key, you can format your dictionary like so:

local configInfo = {

 ["Peach Tree"] = {

 spawnRate = 16,

 health = 50,

 },

 Chicken = {

 eggsPerMinute = 3,

Chapter 3 the Lua programming Language

59

 health = 15,

 },

}

Now that you know how to set and alter these data types once they

have been assigned to variables, you will learn how to check the values of

them to determine what type of behavior should occur as a result.

 Conditional Statements
Conditional statements or conditional expressions are used in code

when you want different behaviors to occur only when some requirement

is met. These are important for determining different information about

data and what your program should do to handle that data accordingly.

The if statement is the core component of conditional expressions.

These statements consist of three elements: the if keyword, the case

that must be met for the contained code to be executed, and the then

keyword, which serves as an identifier for the end of your case. To give you

a direct example of this, the following code shows a conditional where the

condition is simply true, meaning the contained instructions will always be

executed:

if true then

 print("Executed")

end

Output: Executed

Here, you can see that the conditional closes with the end keyword. In

Lua, anything that acts as a single block of code (defines a scope) will have

end designate the conclusion of that block.

Chapter 3 the Lua programming Language

60

Returning to the condition portion of if statements, determining

whether a condition has been met is based on Boolean logic, a system

of evaLuating any type of data. We end up with a true or false value as

the result. To do this, evaLuations are made using a system containing

various logical operators and relational operators. Like many languages,

Lua uses two equal signs (==) to check equality between values; this is a

relational operator. As an example, let’s say you want to print the string

“Play motor sound” only if another string representing the state of an

object is equal to “motorOn”:

if ignitionState == “motorOn” then

 print(“Play motor sound”)

end

For this operator, there exists an opposite: the not equal to expression

(~=). Like the use of its counterpart, this relational operator is used to make

comparisons of an explicit value.

To check finite or infinite ranges of numbers, you can use the relational

operators of greater than (>) and less than (<). These operators have

variations that include the value they are being compared to in the form

of greater than or equal to (>=) and less than or equal to (<=). A practical

application of these operators could be only playing a sound when the

engine of a vehicle is revved:

if motorRPM >= 750 then

 print("Play loud motor sound")

end

The not operator serves to negate whatever value is provided to it.

As we saw previously when we switched the state of a bool variable,

the not operator returned the opposite of what was given to it. In terms

of conditional statements, this can be used in similar situations as the

inequality operator (~=):

Chapter 3 the Lua programming Language

61

if movementDirection ~= -1 then

 print("Moving forward or standing")

end

The logical and operator is used to compare two values and requires

that the values provided to it are both true. In the following example, we

want to ensure that both variables hold Fruit as their value. When this

condition is not met because one is defined as Vegetable, we will not see

any output since a true value is not present on both sides of the operator:

local item1 = "Fruit"

local item2 = "Vegetable"

if item1 == "Fruit" and item2 == "Fruit" then

 print("Both fruit.") --No output as requirements not met.

end

Output:

The logical or operator only requires that at least one of the values

it receives is true. We can see in this instance that the item is defined as

Vegetable. The condition says that the item must be defined as either Fruit

or Vegetable, meaning we will see output since one of the values on either

side of the operator is true:

local item = "Vegetable"

if item == "Fruit" or item == "Vegetable" then

 print("Is produce.") --Prints as one requirement is met.

end

Output: "Is produce."

As we mentioned previously, you can check multiple cases using one

conditional expression, though this does not require the use of multiple

if statements. The else keyword grants additional functionality to these

expressions by executing an alternate case if the first condition was not

Chapter 3 the Lua programming Language

62

passed. Let’s look at an example where lifting a heavy object requires

100 strength, but an object that is not heavy requires only 50 strength.

Notice that our heavy variable, being a bool, will only be true or false, and,

consequently, we do not need to use the equality operator (==):

local heavy = true

local strengthRequired = 0

if heavy then

 strengthRequired = 100

else

 strengthRequired = 50

end

print(strengthRequired)

Output: 100

While this has great uses, it does not allow us to explicitly check

additional cases – it merely gives us an idea of what to do if the previous

condition was not satisfied. The elseif keyword is used when you want to

check additional cases that may occur under different conditions. You

can have as many elseif statements as desired, allowing you to create a

chain of various conditions and cases. When using elseif statements, you

can still utilize an else expression, but it must be at the end of the overall

conditional statement. Let’s look at an example where a machine has been

supplied random produce and we must count fruits, vegetables, as well as

any other item that managed to find its way into the supply:

local numFruits = 0

local numVeggies = 0

local notProduce = 0

local item = "Fruit"

if item == "Fruit" then

 numFruits = numFruits + 1

elseif item == "Vegetable" then

Chapter 3 the Lua programming Language

63

 numVeggies = numVeggies + 1

else

 notProduce = notProduce + 1

end

Lastly, there exist implicit conditional statements, which are

expressions where, through the use of logical operators, you can set

a condition and alternate cases without ever explicitly writing an if

statement. In most languages, this behavior is called a ternary expression.

In the following code, the goal is to assign a string to the isEven variable

based on whether some value assigned to a variable called number is, in

fact, even. While this could be accomplished with an if-else statement, it is

shorter to use this new expression here instead:

local isEven = number % 2 == 0 and "Even" or "Odd"

As you can see, if number is even, that side of the and operator will

be true when assigning “Even” to the variable by using short-circuit

logic, meaning conditional evaLuation stops after one condition is met

or violated. If number is not even, it will go to an alternate case, which is

“Odd”. You may have observed that the or operator acts similarly to the else

keyword in this instance because of the nature of this implicit expression.

Like in mathematics, certain operators take precedence over others;

this means that they are evaLuated first. In Lua, mathematical operators

have the same precedence as they do in the real world, and relational

operators typically take precedence over logical operators. Because of

this, the use of parentheses in your conditions can help make your code

more readable and help ensure it executes as you intend it to. You can see

the full order of operator precedence from the linked page from the Lua

documentation website:

Chapter 3 the Lua programming Language

64

https://www.Lua.org/pil/3.5.html

Conditional statements are a core component in programming and,

as you have seen, have a multitude of applications for even the most basic

programs. In the next section, we will cover loops. Loops often go hand

in hand with conditional statements, since they can feed whole sets of

data into a conditional expression or repeat manipulation as needed to

accomplish a desired behavior.

 Declaring and Using Loops
Loops are vaLuable components when it comes to programming,

especially when working with sets of data. It would, of course, be quite

unrealistic to expect a programmer to index and assign all 1000 elements

of a hypothetical table to variables in order to perform some sort of

operation. To accomplish behaviors like this, loops are key. They function

by jumping back to the beginning of their code block if a condition is still

met, executing until they reach their terminating case.

 for Loops
for loops are a type of loop that are primarily used for iterating over

datasets. In Lua, those datasets are typically related to tables or numbers.

In Lua, there are two types of for loops: numeric for loops and generic
for loops. The primary difference between these is what determines how

they are executed. For numeric for loops, a variable is assigned to a defined

Chapter 3 the Lua programming Language

https://www.lua.org/pil/3.5.html

65

start value, end value, and optionally an increment value; if the increment

is not included, Lua sets the increment to 1. The numeric for loop will

then execute the contained code a specified number of times, treating

the endpoints of the number range inclusively. Additionally, the assigned

variable serves to tell you what the current value of the loop is. Much like

the use of if and then in conditionals, for loops use for and do as their

declaration keywords.

The following example prints numbers going from 0 to 10, incrementing

by 1 with each loop completion. Note that the increment in this case did not

need to be specified but has been shown to aid with your understanding:

for i = 0, 10, 1 do

 print(i)

end

Let’s create a more practical example using a numeric for loop where

we find the sum of all integers ranging from 1 to n. Additionally, we can

test that the for loop works correctly by plugging in the same value for n

into the theorem for this operation seen in Figure 3-1.

I = 1NI=1+2+3+…+N =N(N+1)2

Figure 3-1. Theorem for the sum of the first n natural numbers

In this demonstration, you will notice the use of tostring(), which

functions much like the aforementioned tonumber(). This is used because

while print() will automatically convert other data types into strings, you

cannot append other data types, except for numbers to strings. In this

example, we will find the sum, print it, and then print whether the sum

that was found by the for loop matches the value expected by the theorem:

local n = 17

local theoremValue = (n * (n + 1)) / 2

local sum = 0

Chapter 3 the Lua programming Language

66

for i = 1, n, 1 do

 sum = sum + i

end

print(sum)

print("Function working = ".. tostring(sum == theoremValue))

Output:

153

"Function working = true"

Returning to the for loop types, we have generic for loops. While the

name seems to imply that they are not useful or special, you will likely

utilize them more than numeric for loops – or most other types of loops for

that matter. Generic for loops allow you to traverse all indices and values

returned by an iterator function.

 Iterator Function
In programming languages, an iterator function is designed to allow

programmers to process every element of a data structure while making

those returned values isolated from the data structure itself except when

the element is passed by reference, rather than by value. We’ll cover what

this means in the “Recursion” section of this chapter. For now, keep in

mind that things like tables and instances are passed in directly where

values like numbers or strings are copied. Modifying the former types in

the loop will modify them directly. This isolation of copied types, which

can be seen when defining a variable in a code block, relates to the concept

of scope. This means that something that’s declared in a block cannot

be referenced outside of that block. In the following example, we have a

dictionary called items that contains three strings. By providing this data

structure to the pairs() iterator function, you can nicely display every index

and value being provided by the iterator:

Chapter 3 the Lua programming Language

67

local items = {

 Animal = "Elephant",

 Food = "Egg",

 Plant = "Flower",

}

for index, value in pairs(items) do

 print(index, value)

end

As mentioned previously, the index and value provided by the iterator

are not components of the actual data structure that is passed to pairs().

This means you are free to manipulate these as desired without the risk of

affecting the elements currently being processed. In the following code,

the goal is to double any odd numbers to make them even. While we could

assign the number that results from using modulo to a new variable, it is

alright in this case to simply use the value variable directly. Notice that in

order to actually change the element of the table that value corresponds

to, you must use the index provided by the iterator with the table itself. In

this example, we use the ipairs() iterator function. ipairs() should be used

with tables being used as arrays as it ensures elements are processed in

order, whereas pairs() does not. While you could continue to use pairs(),

elements may be processed in a nonsequential order, for example, the

second element (60) before the first element (37):

local values = {37, 60, 59, 20, 4, 10, 100, 75, 83}

for index, value in ipairs(values) do

 value = value % 2

 if value == 1 then --Odd number

 values[index] = values[index] * 2

 end

end

print(values)

Output: {74, 60, 118, 20, 4, 10, 100, 150, 166}

Chapter 3 the Lua programming Language

68

You will now learn about a different type of loop that will always run, so

long as a condition is met.

 while Loops
while loops are loops that run continuously, as long as some specified

condition is met. Though they can be used for similar purposes as for

loops, it is best to think of them as a repeating conditional statement. In

the following example, the while loop increments a value by 1 only if that

value is less than 10:

local num = 0

while num < 10 do

 num = num + 1

end

print(num)

Output: 10

As long as the condition is not false (false or nil in Lua), the loop will

execute, and if the condition itself is a function, that function will execute

and the loop will also run if the function returns a value. This is also true of

the condition of conditional statements. You should remember to use good

style when doing this, which we will discuss more in the “Demonstrating

Programming Style and Efficiency” section.

Another variation of the while loop is the while true loop. This type of

loop will always execute as the condition is always true. This variation of a

while loop can be useful or simply a preference over the previously shown

way of creating one; however, it can cause a script to crash as the loop

stacks on top of itself infinitely. To avoid this, we can use a break statement

which terminates the loop. The break statement is usually wrapped in

Chapter 3 the Lua programming Language

69

some conditional statement as it would otherwise immediately terminate

the loop after running once. You can see this loop is equivalent to the

previous loop example but makes use of the new syntax:

local num = 0

while true do

 num = num + 1

 if num >= 10 then

 break

 end

end

print(num)

Output: 10

In the next section, you will learn about a similar type of loop that can

be used in slightly different applications.

 repeat Loops
repeat loops execute their contents until a condition is met. While this

may seem much like a while loop, the difference is that while loops run

only if a condition is met, checking the condition before running. Unlike

other loop types, repeat loops always run at least once, checking the

terminating condition only after execution, much like a do-while loop

in other languages. The keywords for repeat loops are repeat and until,

where the code to be executed follows the repeat keyword, closed by until,

and ends with the condition to leave the loop. The following loop shows a

number variable being decremented until its value is equal to 0:

local num = 12

repeat

 num = num - 1

Chapter 3 the Lua programming Language

70

until num == 0

print(num)

Output: 0

With loops now at your disposal, you can process large sets of data and

make systems that require consistent, repetitive behavior. Next, you will

learn about a new way of feeding data to loops, as well as condensing them

if they are frequently used.

 Learning About Functions
In programming, a function is a code block that is able to be called

repeatedly, typically designed to accomplish a single task. Functions are

important for abbreviating common jobs being done and help reduce

the amount of redundancy within your programs. In this section, you will

learn different ways to format functions, as well as when you should be

using them.

 Functions in Programming
We primarily use functions to define code that can be easily referenced

and executed repeatedly. For the sake of terminology, many programming

languages distinguish functions from procedures or subroutines; the

difference here is that a function executes code to compute some data

that is returned, whereas a procedure simply accomplishes a task without

returning a value to where it was called. The following function has

been designed to create a new table and fill it with fruits, vegetables, or

a nonproduce item based on a randomly generated value. See that the

function is locally defined, much like a variable, followed by the function

keyword and the name of the function, and ends with a set of parentheses

(()); this part of a function is called the header. To select a random item,

Chapter 3 the Lua programming Language

71

we need to generate a random index using the random function of the

math library. This function will generate a random integer between

the min and max value that’s provided to it inclusively. This output of

the function can then be used with one of the examples seen in the

“Conditional Statements” section. Notice how we declare a new variable

item but do not assign it a value. This is proper syntax and the variable will

hold a value of nil by default. If you feel comfortable, try making a produce

counter using the conditional statement from the previous section, a loop,

and this function:

local function fillStoreSupply()

 local storeSupply = {}

 for i = 1, 10 do

 local ranVal = math.random(1,3)

 local item

 if ranVal == 1 then

 item = "Fruit"

 elseif ranVal == 2 then

 item = "Vegetable"

 else

 item = "Shoe"

 end

 table.insert(storeSupply, item)

 end

 return storeSupply

end

local supplyTable = fillStoreSupply()

One of the main aspects of using functions is providing information

to them when you call them for a task. To do this, values need to be added

to the call statement of the function and defined in the line where the

function is declared. When a value is being provided to a call, it is referred

to as an argument. However, when referring to this data inside a function,

Chapter 3 the Lua programming Language

72

it is referred to as a parameter. The following function creates a factorial

from the provided number, n. A factorial is the result of multiplying all

whole numbers less than a number, by that number. See how a number

is provided as the argument in the function call. When the function runs,

that value is automatically assigned to n, which can then be manipulated

as needed:

local function factorial(n)

 assert(n == math.floor(n), "n must be a whole number.")

 local factorial = 1 --Empty product should be 1

 while n > 1 do

 factorial = factorial * n

 n = n - 1

 end

 return factorial

end

print(factorial(12))

Output: 479001600

You may have noticed the use of the assert() function. Much like the

use of throw() in the Java programming language, you can use this to

throw an error and terminate a process if some condition is not met. The

second argument is a string that is sent to the output and will look like

any other naturally occurring error message. Do note that while this is

useful for testing, you should not include assert statements in your final

production code.

In the case that you do not know how many arguments are going

to be passed to a function, you can create a variadic function. Variadic

functions are like regular functions, though they possess the ability to take

any number of arguments in a tuple state. The following variadic function

returns the sum of all numbers provided to it. Notice the use of the three

dots (...); these dots represent whatever arguments are passed to the

Chapter 3 the Lua programming Language

73

function and are most often put directly into a table for processing. In the

following code block, you can see a random amount of number arguments

being passed to the sum function. The parameters are added and returned

as a single value:

local function sum(...)

 local args = {...}

 local sum = 0

 for _, number in pairs(args) do

 sum = sum + number

 end

 return sum

end

local num = sum(7, 9, 12, 3, 2, 6, 13)

print(num)

Output: 52

As you may have found out on your own, all the loops we have covered

have the ability to yield; that is to say that when they run, they pause

the current thread, meaning that the loop must finish before any code

following it can be executed. Make certain when writing your loops that

they reach a terminating case; otherwise, the program will crash.

You may also notice that we use the special character “_” in the for

loop definition. It is common practice to use the “_” character for unused

elements. In the sample, the pairs iterator function returns two values in

each loop. But in the loop block, we only use the second one (“number”).

The first return value is unused so we could mark or replace it with “_” and

clearly define we don’t use it in the following code path.

The next section will cover recursion, a useful technique for solving

some types of problems.

Chapter 3 the Lua programming Language

74

 Recursion
One of the invaLuable features of functions is their ability to call

themselves. When properly structured, this can create what you might

think of as a loop in a process called recursion. The difference between

something like a while loop and a recursive process is that a loop jumps

back to its beginning, whereas recursion actually stacks upon itself.

In programming, a stack can be a data structure or, as in the case of

recursion, simply the state of something in your program. Like a stack of

plates or pancakes, the one that was most recently added will be the first

one to be removed.

To demonstrate this stacking, let’s return to the factorial function we

created earlier in the “Functions in Programming” section. Though a

while loop was able to accomplish the goal, you could also achieve the

same result by using recursion. In the following function, notice that the

call and header of the function remain unchanged; the recursive elements

exist in the return statements. For the if statement, the first case simply

returns 1 if n is less than 1, because we cannot create a factorial from any

values less than this; in the case of n being 0, its factorial would also be 1

by convention. The next case is the most important: if n is greater than 1,

then it is multiplied by the value that’s returned by the factorial function,

where n is one less than the current value of n. As you may begin to see,

this causes the function to stack until n has been decreased down to 1. This

is the base case, where no function call is made, and we work back down

the stack:

local function factorial(n)

 assert(n == math.floor(n), "n must be a whole number.")

 if n <= 1 then

 return 1

 else

 return n * factorial(n - 1)

Chapter 3 the Lua programming Language

75

 end

end

print(factorial(6))

Output: 720

To give a better visualization of how this process is being executed,

let’s look at a mapped-out example of the previous call to the factorial

function, using 6 for n. Observe that each call, n, is set to be multiplied by

the returned value of the function and continues to be stacked until a case

without a function call is reached. Then, each function stops and is taken

off the stack, returning the value to the return statement that called it.

Once this process finishes, our original function returns the final value to

wherever it was called from:

factorial(6)

6 * factorial(5)

6 * (5 * factorial(4))

6 * (5 * (4 * factorial(3)))

6 * (5 * (4 * (3 * (factorial(2))))

6 * (5 * (4 * (3 * (2 * factorial(1)))))

6 * (5 * (4 * (3 * (2 * 1))))

6 * (5 * (4 * (3 * 2)))

6 * (5 * (4 * 6))

6 * (5 * 24)

6 * 120

720

Now that you have a firmer grasp of the concept of recursion, let’s

look at another practical example. When working with tables, setting a

variable to an already existing table will not follow normal behavior and

simply copy that value to the new variable; instead, tables use references.

References work to save resources, essentially causing new variables

Chapter 3 the Lua programming Language

76

to act only as pointers to a previously declared table; the pointer can

actually be seen by printing the table. With this behavior, assigning a table

to a variable and changing anything within that table would change it

everywhere it is referenced. You can test this with the following code. Here,

you can see that when a variable’s value is set to a table that has already

been created, the variables contain the same reference:

local function checkEquality(table1, table2)

 print("Variable 1: ".. tostring(table1))

 print("Variable 2: ".. tostring(table2))

 print("First and second variable same table = "..

tostring(table1 == table2))

end

local group = {"Manuel", "Christian", "Zander"}

local groupRef = group

checkEquality(group, groupRef)

Output:

Variable 1: table: 0x0000020215384838

Variable 2: table: 0x0000020215384838

First and second variable same table = true

If a table were cloned every time it was assigned to a variable,

that would make indexing libraries or any other large table structure

extraordinarily expensive. There are scenarios, however, where you

may need to clone a table or dictionary. While for loops may be viable

in some cases, the presence of nested tables, as seen at the end of the

“Dictionaries” section, could potentially require that you use any number

of for loops to accomplish your task. To get around this, we can once again

use recursion. The following example creates a copy of our items table by

creating a new table and adding each element to it by index and value. In

the case that the value to be cloned is a table, the function recurses with

the nested table as the argument. Once it’s done this, the completely new

Chapter 3 the Lua programming Language

77

table is returned to where it was called from, and the checkEquality()

function from the previous example is used to verify that the tables

are unique:

local items = {

 Egg = {fragile = true},

 Water = {wet = true},

}

local function recursiveCopy(targetTable)

 local tableCopy = {}

 for index, value in pairs(targetTable) do

 if type(value) == "table" then

 value = recursiveCopy(value)

 end

 tableCopy[index] = value

 end

 return tableCopy

end

local itemsClone = recursiveCopy(items)

local areEqual = checkEquality(items, itemsClone)

print(areEqual)

Output: false

Like loops, calls to recursive functions can yield, but typically, they

finish in a short enough amount of time to where nothing in your thread is

affected. If, for some reason, your recursive function runs long enough to

cause a noticeable pause for the rest of your program, consider reviewing

the efficiency of your function.

We will next look at how to create classes and what purpose they serve.

Chapter 3 the Lua programming Language

78

 Classes
Classes are a convenient way in programming to organize code into

templates with fields, methods, and events easily defined. For your mods,

you will need to create classes to define the functionality and attributes of

new items you create. The following code shows a sample class without

any functionality:

SampleClass = {}

function SampleClass.new()

 local self = {}

 setmetatable(self, {__index=SampleClass})

 return self

end

That’s all. Quite simply right. We only need a table and a constructor

function. But as stated earlier, this class has no functionality at all.

So in a more practical example, you may want to create a vehicle

for your mod. You will need to define behavior for when it is turned on,

turned off, and how fast it is able to go. Let us say you want to make a new

tractor – you can see how to create a class for the vehicle called Tractor in

the following example:

Tractor = {}

function Tractor.new(name, maxSpeed, maxPower)

 local self = {}

 setmetatable(self, {__index=Tractor})

 self.name = name

 self.maxSpeed = maxSpeed

 self.maxPower = maxPower

 return self

end

Chapter 3 the Lua programming Language

79

function Tractor:turnOn()

 print(string.format("Turned on tractor '%s'",

self:getName()))

end

function Tractor:turnOff()

 print(string.format("Turned off tractor '%s'",

self:getName()))

end

function Tractor:getMaxPower()

 return self.maxPower

end

function Tractor:getMaxSpeed()

 return self.maxSpeed

end

function Tractor:getName()

 return self.name

end

With the class now created, we can create new Tractor objects. In

programming, an object is a single instance of a class. Using objects as

opposed to functions and procedural logic to create programs is called

object-oriented programming (OOP). Languages that use objects and

OOP as the primary means of doing tasks are called object-oriented

languages. While Lua is not an object-oriented language, creating classes

and objects can still be convenient in certain environments as their

creation, properties, and methods are uniform and neatly put together.

To create a new object from the class, we simply call the new constructor

of the class and assign what it returns to a variable. We can then call the

methods of our class and use the returned values as needed as seen in the

example:

Chapter 3 the Lua programming Language

80

local tractor1 = Tractor.new("Fendt Vario 700", 50, 280)

local tractor2 = Tractor.new("New Holland T8", 50, 381)

tractor1:turnOn() -> Turned on tractor 'Fendt Vario 700'

tractor2:turnOn() -> Turned on tractor 'New Holland T8'

print(tractor1:getMaxPower())

print(tractor2:getMaxPower())

Output:

280

381

We will now look at how to write programs with proper style and what

to be aware of to ensure they remain efficient.

 Demonstrating Programming Style
and Efficiency
Writing code with good style not only improves the quality of your work,

but it also prepares you to pursue programming in more professional

environments or when working with other people. We will cover these

universal programming style rules in this section.

 General Programming Style Rules
Readability is an important aspect of maintaining good style. Not only do

others who may read your code need to understand what is happening, but

being able to easily follow your own code will greatly increase your workflow.

Having a clean coding style will also enable you to be more conscious of

other style factors you should be implementing. The two ways you can make

your code the most readable are to use proper indentation and observe

appropriate line length. For line length, most college programming courses

will likely suggest that you limit your lines of code to 80–100 characters.

Chapter 3 the Lua programming Language

81

In the Script Editor of the GIANTS Editor, there are line numbers but

not an indicator for which column you are on for a line. Generally, your

line length should not exceed your viewport size, which means that you

should not require the use of a horizontal scrollbar to see the entirety of

your line. Out of all the readability rules, you should arguably observe

indentation style the most carefully. Make sure what you write follows the

code examples in this chapter until you feel confident with your ability

to follow this rule. Alternatively, you can use the GIANTS Studio which

provides a more dedicated programming environment with more quality-

of- life features. We will cover the IDE in Chapter 4, “The GIANTS Studio.”

Thinking again about working with multiple programmers, comments

are an invaLuable part of letting others, as well as your future self, know

what your code is doing. While readability is also needed to make others

aware of what a script’s purpose is, comments can be used to more

explicitly tell fellow programmers where a code block is being used, what it

requires, or what behavior to expect from it.

Looking back at implicit conditionals, there are situations where it may

make more sense to use logic within a variable declaration than to use an

explicit conditional statement. This decision is ultimately up to you, but

only use it when it’s practical. If you need to create more than two or three

cases, you should likely just use a conditional. Additionally, remember to

consider previously mentioned style points, such as line length.

As mentioned briefly previously, you should ensure that you are not

grouping random data together in tables or dictionaries. For organizational

purposes, you should be using tables for a significant purpose, and the

elements of data within them should be at least loosely associated with

each other. If necessary, there is no harm in creating additional tables to

accommodate different sets of data being used in your code.

A naming convention refers to how you format the names of your

variables, functions, constants, and more when programming. There

are many conventions – the first two you’ll likely encounter being Pascal

case and camel case. Camel case is where the first letter of the variable

Chapter 3 the Lua programming Language

82

is lowercase with the first letter of any other words in the variable being

capitalized, for example, camelCase. Pascal case is where the first letter

of all words in the variable name are capitalized, such as PascalCase.

The convention you use can depend on what you’re defining, but for the

purpose of this book, it is sufficient to say you should stylistically use camel

case when programming in Lua.

Lastly, you should optimize your code when possible. Optimizing a

program generally means writing it so that it accomplishes its goal while

taking up the least amount of computational or memory resources. For

example, if you are using a value in multiple places, consider using one

variable instead of defining another. If you are using repeated lines of code

in your program, consider using a single function – while this will have

little impact on your program, it will help greatly with readability.

 Summary
In this chapter, you learned about programming constructs that exist

in a wide variety of languages, such as variables, data types, loops, and

some data structures, as well as those that are exclusive to Lua. With

this knowledge, you can begin making your own mental connections by

experimenting with the examples from this chapter and making your own

programs.

In the next chapter, you will learn about the GIANTS Studio to help you

find errors and fix your programs. Following that, you will utilize the new

information you have learned about to start making your first mod-

oriented systems, which will lead to you making full mod creations in the

following chapters.

Chapter 3 the Lua programming Language

83

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 3 the Lua programming Language

http://creativecommons.org/licenses/by/4.0/

85© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3_4

CHAPTER 4

The GIANTS Studio
Another essential application in the Farming Simulator modding

environment is the GIANTS Studio. It is an integrated development
environment (IDE) made specifically to assist with programming mods

for Farming Simulator. An IDE is an application that provides additional

resources to programmers for software development. The GIANTS Studio

consists of a script editor and many debugging tools, which we will cover

in this chapter.

 Technical Requirements
You will need to download the GIANTS Studio and optionally additional

software for this chapter. As such, you will need an Internet connection

and web browser available to you. The minimum requirements for the

GIANTS Studio and other applications are as follows:

• Farming Simulator 22

• Windows 10 64-bit

• Intel Core i5-3330 or AMD FX-8320 or better

• Nvidia Geforce GTX 660, AMD Radeon R7 265 graphics

card or better (min. 2 GB VRAM, DX11/DX12 support)

• 8 GB RAM

• 35 GB free hard drive space

• Sound card

https://doi.org/10.1007/979-8-8688-0060-3_4

86

 Installing the GIANTS Studio
Like installing the GIANTS Editor, you will need to navigate to the

Downloads section of the GDN (https://gdn.giants-software.com). You

should have a GDN account at this point, but do remember you will need

one before you can download any software available from the GDN. When

you have navigated to the Downloads page, install the GIANTS Studio

available for your platform (it should again be at the top of the list). You

can see the relevant section of the Downloads page in Figure 4-1.

Figure 4-1. All GIANTS Software applications can be downloaded
through the GDN

Once the executable has been downloaded, run it and proceed

through the steps listed in the setup wizard. When the setup tasks have

been completed, launch the GIANTS Studio application, and you should

be greeted by the same welcome menu as the GIANTS Editor.

The next section will teach you how to navigate the GIANTS Studio.

 Application Menus
In this section, we will explore the various application menus in the

GIANTS Studio and discuss which options you should know about as a

beginning mod creator.

 The File Menu
The contents of the File menu of the GIANTS Studio are almost the same

as that of the GIANTS Editor. However, there are two new options, New
Project and Open Project. The New Project option will prompt you to

Chapter 4 the GIaNtS StudIo

https://gdn.giants-software.com

87

create a new mod project. Your new project will be saved as a .gsp file, and

you will be prompted to configure certain project settings. We will walk you

through this process in the “Debugging Scripts” section of this chapter. The

Open Project option will simply open one of your .gsp files, allowing you to

pick up from where you left off.

In the next section, we will look at the Edit menu.

 The Edit Menu
The Edit menu provides several new functionalities, the first being the

Find tool. While there are many options you can use with this tool, the

most commonly used are the standard Find action (Ctrl+F), Find in
files (Ctrl+Shift+F), and Go to Line (Ctrl+G) tools. The Find action is

straightforward and simply looks for strings in the current script that

match your input. Find in files searches all the current scripts within

your project for strings that match your input; the results will be returned

to you in the Find Results tab. Finally, Go to Line will bring up a new

modal window with a box that asks for you to input a line number. Once

inputted, your line selection will move to the specified number, and the

box will close.

The Replace action will bring up a menu in the IDE in the same

window as the Find tool and will prompt you to provide two strings. The

first string is what you want to find in your script, while the second is what

you want that string to be replaced by. This feature can be applied to more

than one script at a time, but make sure you know what you are replacing

to avoid creating new bugs.

In this menu are also some quick actions for commenting or

uncommenting your Lua code. You can comment or uncomment

highlighted code by pressing Ctrl+K or Ctrl+Shift+K, respectively.

In the next section, we will look at the options in the View menu.

Chapter 4 the GIaNtS StudIo

88

 The View Menu
The View menu contains a list of the menus within the GIANTS Studio. By

selecting an option from this menu, it will display the associated tab. Let us

now look at each of these menus and what information they show.

The Globals and Locals tabs will show you the names and values of

globally and locally defined variables in your script. These are valuable

because when combined with other tools, you can see if a variable is

taking on the value you expect it to at different points in your program’s

execution.

The Watch tab will allow you to specify variables you want to keep

track of. These variables will be tracked even as your program switches

between scopes, giving it a different use case than the Globals or

Locals tabs.

The Script Console functions much like the Console menu of the

GIANTS Editor, allowing you to write and execute Lua code. The main

difference is that the Script Console of the GIANTS Studio only executes

code when in a debugging session and directs output toward the Output

menu, which is covered later in this section.

The Callstack tab allows you to see what series of calls have been

made at a point in your program. For example, if you halt execution while

in a function that was called by another function, then the call to both

functions would be visible in the callstack. This is particularly useful in

tracing the source of an error for more complex programs.

To actually halt the execution of your program, you will need to use

Breakpoints. The Breakpoints tab will allow you to see and manage the

breakpoints in your program. We will discuss this menu and the concept of

breakpoints more in the “Using Breakpoints” section of this chapter.

Through the Memory and Allocations tabs, you can see how much

memory is being used by each part of your program. If you encounter a

memory leak, that is, a fault in your program that causes computer memory

to be used but never freed up, this tool can be used to fix that problem.

Chapter 4 the GIaNtS StudIo

89

The Output tab is where the output from Farming Simulator, your mod

files, and Script Console executions are directed.

The Error List tab will show you the current syntax errors in your

program. If there is an error in your code at runtime, this will be shown via

the Output tab.

When using the Find in Files tool discussed in the “The Edit Menu”

section, results will be directed to the Find Results tab.

Like in the GIANTS Editor, the GIANTS Studio has a Toolbar containing

buttons for quickly doing actions. You can again customize which sets of

actions are visible via the Toolbars option.

The Navigate Forward and Navigate Backward options will move

your cursor to places it has been previously within a script or across files

you have opened in the script editor portion of the IDE. Note that the key

bindings associated with action are Alt+Left and Alt+Right, respectively.

Lastly, Reset Window Layout will reset the layout of all windows and

menus in the GIANTS Studio to their default positions.

The following section will explore the contents of the Debug menu.

 The Debug Menu
The Debug menu contains a list of actions for using various tools offered

by the GIANTS Studio. You will learn how to use all of these actions in the

“Creating and Debugging Scripts” section of this chapter. For now, we will

continue to the next section and discuss the Window menu.

 The Window Menu
The Window menu in the Studio contains only three options: Reopen
Tab, Close Tab, and Close All Tabs. The Reopen Tab option will reopen

the most recently closed editing tab. The Close Tab button will only close

the tab you are currently focused on, while Close All Tabs will close all

editing tabs you have opened.

Chapter 4 the GIaNtS StudIo

90

We will now look at the options in the Help menu.

 The Help Menu
The Help menu of the IDE is identical to that of the editor. You can see the

overview of these options in the “The Help Menu” section of Chapter 2,

“Getting Started with the GIANTS Editor.”

Now that we have covered all of the application menus of the GIANTS

Studio, we will look at other windows and elements you should familiarize

yourself with.

 New Project
Before you create any script files, we will create a new mod project. To do

this, we will navigate to the File menu and select the New Project option.

After choosing a name for your project, a menu like that in Figure 4-2 will

be displayed. If Farming Simulator 22 is installed on your computer, the

GIANTS Studio will take care of setting the correct paths. Make sure that

the option “Auto create mod folder” is activated.

Chapter 4 the GIaNtS StudIo

91

Figure 4-2. You can configure project settings with the Project
Settings option from the file menu

Once you’ve created your project, the Project Browser on the left side

of the application should already display a sample mod layout (Figure 4-3).

Chapter 4 the GIaNtS StudIo

92

Figure 4-3. The generated sample mod

The helloWorld.lua file is already opened in the main script editor

window. But first we should also have a look at the modDesc.xml file which

is the entry point of each mod.

To do so, double-click the modDesc.xml file, and it will open it in the

main script editor window of the IDE. You should see the following code in

the modDesc.xml:

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<modDesc descVersion="72">

 <Author>GIANTS Software</author>

 <version>1.0.0.0</version>

 <multiplayer supported="true" />

 <title>

 <en>Sample Mod - Hello World</en>

Chapter 4 the GIaNtS StudIo

93

 </title>

 <description>

 <en>A sample mod</en>

 </description>

 <iconFilename>icon_helloWorld.png</iconFilename>

 <extraSourceFiles>

 <sourceFile filename="scripts/helloWorld.lua"/>

 </extraSourceFiles>

</modDesc>

Let us break down what each part of the .xml tells the game about

your mod and why they are needed. In the first line, we specify the XML

declaration which describes some information about the .xml file. It is read

by XML editors to get more information about the .xml format. This is not

relevant to the functionality of your mod but is needed for .xml files. Next,

we have the descVersion field which specifies the minimum feature set of

the game needed to run the mod. The descVersion field should always be

set to the current available game patch version; that value can be found in

the newest ModHub Guidelines (see the “ModHub Creation Guidelines”

section of Chapter 11, “Publishing on the ModHub”).

The next field is the author section which records who the mod

author is, which is you! It’s important to include this field so that you are

credited for your mod when it is published to the ModHub. The version

field defines the current version of the mod; this is required so that you

can specify different versions when you update the mod and publish again

to the ModHub. The multiplayer supported field specifies whether your

mod supports multiplayer gameplay. If enabled, the mod will be selectable

when creating a multiplayer game and hidden otherwise.

Next, we specify the title of your mod using the title field. The text in

this field will be used when your mod is displayed in the mod menu and

you support multiple languages by wrapping the text with the locale. In the

preceding example, we say this is English with an <en></en>.

Chapter 4 the GIaNtS StudIo

94

Similarly, the description field will be used to display a description

of your mod under the title in the mod menu and can also be localized

with different wrappers. You can also define an icon for when your mod is

displayed by defining the iconFilename field. The field should contain the

path to the image file relative to the mod folder.

Lastly, we specify what scripts should be loaded by using the

extraSourceFiles field. Here, you should list each .lua file in a sourceFile

wrapper, setting the file name to the path of your script relative to the

mod folder. As you can see, we want to include a script called helloWorld.

lua. Studio already created this file during the setup process of the

sample mod.

 Starting the Game
GIANT Studio successfully set up a sample mod for us. Before doing the

next steps, let’s first test if the mod successfully loads in the game.

To launch the game, navigate to the Toolbar and click the Start button

which is indicated by the icon in Figure 4-4. Alternatively, you can use

the Start without Debugging option from the Debug application menu

for a faster startup time. Farming Simulator should launch automatically

and present you with the main menu. If you launched the game without

debugging, you must press F10 to connect the GIANTS Studio to the game;

you should see the IDE connected in the Output tab.

Chapter 4 the GIaNtS StudIo

95

Fi
gu

re
 4

-4
.

Yo
u

 c
an

 s
ta

rt
 th

e
ga

m
e

by
 c

li
ck

in
g

th
e

de
pi

ct
ed

 ic
on

 in

th
e

To
ol

ba
r

Chapter 4 the GIaNtS StudIo

96

Once on the game’s main menu, go to Options ➤ Display Settings and

select the Windowed Mode. When you debug your program in the next

section, the application will halt processes, preventing you from switching

applications if the application is in fullscreen mode. Next, return to the

main menu and select Career, pick an empty save slot, and then select

any difficulty and any map. Once you have selected a map, click Continue

and you will be able to select the mod(s) you would like to run in your

game as seen in Figure 4-5. If this menu does not appear, make sure you

have placed your Mod Directory folder in the correct location under

the mods folder of the Farming Simulator game directory. Additionally,

you can look in the log.txt file or Output tab and check if your mod is

listed in an Available mod: (Hash: a random md5 hash) (Version: 1.0.0.0)

myMod format.

Figure 4-5. You can choose which of your mods should be active
when debugging via this menu

Chapter 4 the GIaNtS StudIo

97

With your mod selected, click Start. Any output from your program

should be directed to the Output window. As we haven’t changed anything

to the helloWorld.lua yet, you should find a single line “Hello world” in the

Output window.

 Debugging Scripts
The most powerful feature of GIANTS Studio is the debug option. It’s

natural that mistakes happen during development. But often it’s really

hard to find the issue just by looking at the code lines. Debugging is a great

option to do a step-by-step execution of your script code and analyze the

variable values and the execution path.

In the previous chapter, we already introduced the factorial function.

Let’s reuse it to explore the debugging tools offered by the GIANTS Studio.

Replace the content of the helloWorld.lua file with the following

incorrect implementation of the factorial function:

print("Hello World")

local function factorial(n)

 assert(n == math.floor(n), "n must be a whole number.")

 if n <= 1 then

 return 1

 else

 return n * factorial(n - 2)

 end

end

print("Factorial value: ".. factorial(6))

In the next sections, we will begin using the tools of the GIANTS Studio

to debug our broken script.

Chapter 4 the GIaNtS StudIo

98

 Using Breakpoints
Breakpoints are one of the debugging tools provided by the GIANTS

Studio. Breakpoints will pause your program once the line of code they

are associated with is reached. To add a breakpoint, you can simply click

the space to the right of a line number when inside of a script. You should

note that by right-clicking a breakpoint, you have the options to delete it or

simply disable it for the time being. You should add a breakpoint on line

5 as shown in Figure 4-6, so we can see the state of our program when we

reach the base case of our recursive function.

Figure 4-6. You can halt the execution of your program with
breakpoints

The setup is now done, and you can start the game again. Click the

“Start” button in the toolbar which is indicated by the icon in Figure 4-4.

Follow the same steps like in the previous section “Starting the Game.”

Once a breakpoint has been reached, you can continue through the

code line by line by using the Step Into, Step Over, and Step Out options

under the Debug application menu. Step Into will continue through

your code line by line, entering any functions or blocks of code that exist

Chapter 4 the GIaNtS StudIo

99

elsewhere that are referenced. The Step Over action will skip over any

code blocks if the next line would otherwise bring you into one. Finally, the

Step Out action will take you out of a code block immediately if you have

reached one, bringing you to the next line following the container.

We will now learn to use breakpoints with some other menus of the

GIANTS Studio to fix our program.

 Using the Locals Tab and the Callstack
Under the View application menu, you can find the Locals and Callstack

tabs. Both serve to provide additional information about what your code

is executing when debugging. By viewing the Callstack menu, you can

see which processes are currently on the stack; that is, you can see if you

are currently in a function, view the order in which functions are called,

and see which lines those calls are made from. You may find this feature

particularly useful if you are working with a recursive function, as you can

see the order of calls. To aid you as you follow your code, you can also view

the Watch window to see the exact values of the variables and types of

expressions within your script. Look at the advantages of using both tools

to follow a recursive function, similar to the one shown in Figure 4-7.

Chapter 4 the GIaNtS StudIo

100

Figure 4-7. You can view the calls made and value of variables with
the Callstack and Watch menus

We can see that the factorial function was only called four times. We

know that the function should be called as many times as our input – that

is, factorial(6) should call the factorial function six times. What might be

causing the function to reach the terminating or base case early? Upon

closer inspection, we can see that the input to the next function call is

being decreased by 2 instead of 1. With this correction, you should see the

factorial function is called a number of times equal to the input.

Chapter 4 the GIaNtS StudIo

101

 Summary
In this chapter, you learned how to use the GIANTS Remote Studio to

debug your scripts and follow their execution step by step. You should now

feel comfortable creating new mods, testing them via the IDE, and using

the IDE to edit and debug your scripts with the tools it provides.

In the next chapter, you will create your first mod by introducing a

placeable and configurable roadside diner.

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 4 the GIaNtS StudIo

http://creativecommons.org/licenses/by/4.0/

103© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3_5

CHAPTER 5

Making a Diner with
a Rotating Sign
With the knowledge and programming skills you have gained in the

previous chapters, you are ready to create your first complete mod. In this

chapter, we will create a mod that allows players to place a diner with a

rotating sign (see Figure 5-1). This will require that you organize 3D assets

in your mod, creating a placement system, and write the necessary code to

make the sign of the diner spin. Let’s begin!

Figure 5-1. The diner with its rotating sign makes for an attractive
decoration in your town

https://doi.org/10.1007/979-8-8688-0060-3_5

104

 Technical Requirements
In this chapter, you will be working entirely in the GIANTS Editor and

Studio and must meet the requirements mentioned in the “Technical

Requirements” section of Chapter 2, “Getting Started with the GIANTS

Editor.” While releases are infrequent, make sure you are always using the

most recent version of the GIANTS Editor. This will ensure that you are

able to take advantage of any new features. You can find all the code and

assets used in this chapter in the book’s code repository on the GDN at the

following link:

https://gdn.giants-software.com/lp/scriptingBook.php

 Preparing the Mod Folder Structure
Creating a new mod in GIANTS Studio always starts with the creation of a

new project. If you don’t know how to properly set up a new project, check

the “New Project” section of Chapter 4, “The GIANTS Studio,” again to get

familiar with this process. This is essential for all following chapters.

So let’s create a new project called “restaurant.” GIANTS Studio will

create a project setup that will look similar to Figure 5-2. As you can see, it

is just a simple helloWorld project with a modDesc.xml, helloWorld.lua,

and an icon.

Chapter 5 Making a Diner with a rotating Sign

https://gdn.giants-software.com/lp/scriptingBook.php

105

Figure 5-2. The restaurant project

In this sample mod, we want to create a diner with a rotating sign.

Therefore, we need the source files for the restaurant. Once you have

downloaded the sample files from the GDN, you should right-click the

project root to open the mod folder in the explorer (Figure 5-3).

Figure 5-3. Go to the mod directory

Chapter 5 Making a Diner with a rotating Sign

106

You can now unzip the sample files and copy them into the mod folder.

Accept the overwrite of existing files. As an optional step, you could delete

all files in the mod folder first.

To get an updated view in the project browser of GIANTS Studio, you

need to refresh it. Right-click again on the root node and click Refresh

(Figure 5-4).

Figure 5-4. Refresh the project browser

The setup of this mod is now done. Figure 5-5 shows how the Project

Browser should now look like.

Chapter 5 Making a Diner with a rotating Sign

107

Figure 5-5. The mod structure

Let’s now have a look at the actual visual representation of the diner. In

the folder placeable, you should see the diner model contained within an

.i3d file (restaurant.i3d). You are encouraged to look and explore the model

in the GIANTS Editor. Recall you can open a model in the GIANTS Editor

via the Open option of the File application menu or by pressing Ctrl+O. But

you can also open it directly from GIANTS Studio. Just right-click the .i3d

file and check Open with Default. The GIANTS Editor should start with the

restaurant.i3d loaded. Assuming you are in the default viewing mode, the

diner should look as it does in Figure 5-6.

Chapter 5 Making a Diner with a rotating Sign

108

Figure 5-6. The diner model is the centerpiece of this mod

The restaurant mod is now already working. So you could start and

test it in game. But let’s have a look at the files first. Please note that all
following chapters should be set up using the same steps:

 1. Create a project.

 2. Download the sample files for the GDN.

 3. Copy the files into the mod folder.

 4. Refresh the Project Browser.

In the XML file and Lua file creation sections of the chapters, you will

always be asked to create a file or add the content to files. You can ignore

these lines if you use the sample files as a start because they already

contain all these lines of code.

Chapter 5 Making a Diner with a rotating Sign

109

 Creating Mod Scripts
In this section, we will create and explore the scripts needed for the mod.

We will start by looking at the .xml files and then cover the .lua files. We

will create and edit these files in GIANTS Studio. If you need a refresher on

how to make and edit files, refer back to Chapter 4, “The GIANTS Studio.”

 Creating XML Files
Before we create scripts for the in-game systems of your mod, we will again

need to set configurations for our mod via a file called modDesc.xml. Make

sure that this file is in your mod directory and add the following content:

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<modDesc descVersion="72">

 <Author>GIANTS Software</author>

 <version>1.0.0.0</version>

 <multiplayer supported="true" />

 <title>

 <en>Sample Mod - Restaurant</en>

 </title>

 <description>

 <en>A sample mod</en>

 </description>

 <iconFilename>icon_restaurant.png</iconFilename>

 <placeableSpecializations>

 <specialization name="objectRotate" className="Plac

eableObjectRotate"

 filename="scripts/

PlaceableObjectRotate.lua" />

 </placeableSpecializations>

 <placeableTypes>

Chapter 5 Making a Diner with a rotating Sign

110

 <type name="restaurant" parent="simplePlaceable"

 filename="$dataS/scripts/placeables/

Placeable.lua">

 <specialization name="objectRotate" />

 </type>

 </placeableTypes>

 <storeItems>

 <storeItem xmlFilename="placeable/restaurant.xml"/>

 </storeItems>

</modDesc>

While most of the fields in the file have already been discussed in the

“Debugging Scripts” section of Chapter 4, “The GIANTS Studio,” there are

several new ones to discuss.

The first new field we define in the preceding code is a

placeableSpecializations field which includes several subfields. Placeables

use an internal specialization system that behaves like a plug-in system –

that is, each specialization is used for a specific placeable feature. For

example, the placement specialization adds functionality to support

dynamic placement via the construction screen, and the leveling

specialization adds support to level the area around the placeable.

We define a specialization field that includes the filename field which

defines the script our mod will use to handle the placeable object. The Lua

file we reference and will use is named PlaceableObjectRotate.lua, which

we will create later in this section.

Next, we define the placeableTypes field. Placeable types are used

to define a specific feature set for a placeable item. For example, the

restaurant model should use the functionality given by the internal

Placeable.lua file and the additional features of the simplePlaceable type

and objectRotate specialization.

Chapter 5 Making a Diner with a rotating Sign

111

Lastly, we need to make the restaurant a purchasable item from the

in-game store. We do this by defining the storeItems field and referencing

an .xml file for our restaurant, which should be titled restaurant.xml. Your

restaurant.xml file should be in the placeable subdirectory mentioned in

the previous section. That concludes the content for modDesc.xml; we

will now explore the contents of restaurant.xml and the meaning of each

section:

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<placeable type="restaurant" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:noNamespaceSchemaLocation="https://

validation.gdn.giants-software.com/fs22/placeable.xsd">

 <storeData>

 <name>Restaurant</name>

 <functions>

 <function>A deco object</function>

 </functions>

 

 <price>55000</price>

 <lifetime>1000</lifetime>

 <rotation>0</rotation>

 <brand>NONE</brand>

 <species>placeable</species>

 <category>decoration</category>

 <brush>

 <type>placeable</type>

 <category>decoration</category>

 <tab>uncategorized</tab>

 </brush>

 <vertexBufferMemoryUsage>0</

vertexBufferMemoryUsage>

 <indexBufferMemoryUsage>0</indexBufferMemoryUsage>

Chapter 5 Making a Diner with a rotating Sign

112

 <textureMemoryUsage>0</textureMemoryUsage>

<instanceVertexBufferMemoryUsage>0</

instanceVertexBufferMemoryUsage>

 <instanceIndexBufferMemoryUsage>0</

instanceIndexBufferMemoryUsage>

 </storeData>

The file starts with the XML declaration defining the information

about the XML content. The root element is of the placeable type. The

type attribute links the restaurant to the placeable type we defined in the

placeableType section of the modDesc.xml.

The purpose of an XML schema is to define the allowed building

blocks of an XML document. This includes the elements and attributes

that can appear in a document, types of data for elements, the number and

order of child elements, as well as default and fixed values for elements.

The GDN also provides schema for vehicles, which will be covered

in Chapter 6, “Rotating Mower Mod.” You can always find the newest

available XML schema from the GDN:

https://validation.gdn.giants-software.com/fs22/overview.html

The schema for placeables can be found at the following link:

https://validation.gdn.giants-software.com/fs22/placeable.xsd

Next, the file defines configurations for the restaurant model and its

in-game behavior. Next, we define a storeData field which holds the price,

brand, and description of the item which will be displayed in the shop.

Chapter 5 Making a Diner with a rotating Sign

https://validation.gdn.giants-software.com/fs22/overview.html
https://validation.gdn.giants-software.com/fs22/placeable.xsd

113

Like the .xml file for the mod itself, we will also define basic information

such as a name and image in the name and image fields. The function field

holds a description about the item and its function. The price of the item,

as seen in the Construction Mode, is set by the price field of this section.

The lifetime field defines the lifetime of the object until it is fully aged;

maintenance costs are calculated based on this value. The rotation field

defines an initial rotation for our object, which we will set to 0 by default.

The brand field is used if the item is associated with a real-world

brand; we will set it to NONE in our case as the restaurant is fictional. The

category field determines what type of in-game object the asset is treated

as – our restaurant serves no functional purpose, so we categorize it as a

decoration. The brush field is important as it defines the tab and category

that the structure will be displayed in when in the Construction Mode. The

remaining fields are used internally by the GIANTS Engine and will be set

by the ModHub team; you do not need to change these values yourself.

Next, we will look at more of the contents of the restaurant.xml file:

<base>

 <filename>placeable/restaurant.i3d</filename>

</base>

<placement useRandomYRotation="false"

useManualYRotation="true" >

<testAreas>

 <testArea startNode="testArea1Start"

endNode="testArea1End" />

 <testArea startNode="testArea2Start"

endNode="testArea2End" />

</testAreas>

</placement>

<clearAreas>

 <clearArea startNode="clearArea1Start"

widthNode="clearArea1Width"

Chapter 5 Making a Diner with a rotating Sign

114

 heightNode="clearArea1Height"/>

 <clearArea startNode="clearArea2Start"

widthNode="clearArea2Width"

 heightNode="clearArea2Height"/>

</clearAreas>

<leveling requireLeveling="true" maxSmoothDistance="10"

maxSlope="75"

 maxEdgeAngle="30" >

 <levelAreas>

 <levelArea startNode="levelArea1Start"

widthNode="levelArea1Width"

 heightNode="levelArea1Height"

groundType="asphalt"/>

 <levelArea startNode="levelArea2Start"

widthNode="levelArea2Width"

 heightNode="levelArea2Height"

groundType="asphalt"/>

 </levelAreas>

</leveling>

This section of the file is necessary for the placeable specialization to

function. Since this is mostly internal, we will cover each field quickly. The

filename field holds the name of the .i3d file of our diner relative to the

mod folder.

The testAreas field defines test areas that are used to identify possible

placement conflicts. We use two points to create a test box, and in game we

use an overlapBox check to get objects within the box to check conflicts.

That is, if other objects are within the test areas, the object cannot be

placed there.

Chapter 5 Making a Diner with a rotating Sign

115

<tipOcclusionUpdateAreas>

 <tipOcclusionUpdateArea

 startNode="tipOcclusionUpdateArea1Start"

endNode="tipOcclusionUpdateArea1End" />

</tipOcclusionUpdateAreas>

<ai>

 <updateAreas>

 <updateArea

 startNode="tipOcclusionUpdateArea1Start"

endNode="tipOcclusionUpdateArea1End" />

 </updateAreas>

</ai>

<objectRotate>

 <object node="roofLogo" rotAxis="2"

rotDurationSeconds="10" />

</objectRotate>

The clearAreas field defines an area under the model where foliage and

fields will be cleared once the model has been placed.

The levelAreas field also defines an area under the model where terrain

will be leveled to more neatly support the diner.

The tipOcclusionUpdateAreas is used by the engine to determine

whether certain environmental interactions like snow falling should

still occur in locations around the restaurant or whether they have been

blocked.

Similarly, the updateAreas field under the ai field instructs the AI

system to sample the update area to get new information about collisions

it has to avoid in the future.

Lastly, the objectRotate field defines which part of our model should

rotate and information about the behavior of its rotation. Note that this is

where we set the axis the object should rotate around as well as the time

Chapter 5 Making a Diner with a rotating Sign

116

in seconds it takes for the object to make one revolution. Axis values of 1,

2, and 3 correspond to X, Y, and Z axes, respectively. Let us now look at the

remaining content for the restaurant.xml file:

<i3dMappings>

 <i3dMapping id="roofLogo" node="0>0|0|0" />

 <i3dMapping id="blinker02Decal" node="0>0|0|0|1|0" />

 <i3dMapping id="blinker01Decal" node="0>0|0|0|1|1" />

 <i3dMapping id="dinnerDecal" node="0>0|0|0|1|2" />

...

 </i3dMappings>

</placeable>

This section of the file defines i3d mappings for the model. i3d

mappings are automatically created by the Blender or Maya exporter.

Using the i3dMapping field id instead of the node path in the upper part

of the .xml file avoids errors as you do not have to adjust the node paths

manually after changing the hierarchy within the .i3d file. Let us use the

following line as an example:

<object node="roofLogo" rotAxis="2" rotDurationSeconds="10" />

In this line, we use roofLogo instead of the i3d path 0>0|0|0. The script

will later automatically resolve the roofLogo ID to 0>0|0|0 and resolve this

i3d path to a valid entity ID. So, if we would change the hierarchy of the

i3d in Maya and reexport the file, we will not have to change anything

in the object element as the Maya exporter will automatically recreate

the i3dMapping sections with the new i3d paths. If you examine the

restaurant.i3d file in the GIANTS Editor, you will see other reference points

have already been physically created and our program references them

by name.

Chapter 5 Making a Diner with a rotating Sign

117

 Creating Lua Files
With our .xml files created, we will need to create a script to handle the

placement of your diner model in the game environment; we will name

this script PlaceableObjectRotate.lua. If you already have this file from
the GDN, you are still encouraged to follow along as we break down
each part of the program. Let’s first look at what needs to be defined to

declare the specialization:

local modName = g_currentModName

-- @category Specializations

PlaceableObjectRotate = {}

PlaceableObjectRotate.SPEC_TABLE_NAME = "spec_"..

modName..".objectRotate"

function PlaceableObjectRotate.prerequisitesPresent(specia

lizations)

 return true

end

-- @param table placeableType the placeable type

-- @includeCode

function PlaceableObjectRotate.registerEventListeners(plac

eableType)

 SpecializationUtil.registerEventListener(placeableType,

"onLoad", PlaceableObjectRotate)

 SpecializationUtil.registerEventListener(placeableType,

"onUpdate", PlaceableObjectRotate)

end

Chapter 5 Making a Diner with a rotating Sign

118

In this code, we assign the name of the mod to a variable called

modName. Note that this value is determined by the name of your mod

directory and is only available while the .lua file is loaded. As such, we

want to store a copy in a local variable of the script to be able to access

it later.

Next, we set SPEC_TABLE_NAME for our module, which will later

serve as an index for functions related to our mod.

Next, we define the prerequisitesPresent function, which, for our

purposes, will always return true. We include this function to ensure all

specializations our mod depends on have been loaded before we attempt

to use them. Errors will be produced if we try to access variables or

functions from a specialization that has not yet been loaded. For example,

if we want to use any part of the PlaceableLights specialization, we would

add SpecializationUtil.hasSpecialization(PlaceableLights, specializations)

in this function.

The registerEventListeners function will handle the creation of events.

Events are signals that can be triggered or fired and have some associated

function be called with relevant arguments from the event. For this mod,

or more specifically the internal placeable specialization we declared we

would be using in modDesc.xml, we want to create an event called onLoad

and onUpdate, which we will define the functions for later in this section.

-- @includeCode

function PlaceableObjectRotate.registerXMLPaths(schema,

basePath)

 schema:setXMLSpecializationType("ObjectRotate")

 schema:register(XMLValueType.NODE_INDEX,

 basePath .. ".objectRotate.object(?)#node",

 "Node index or i3d mapping name of the object

that should rotate")

 schema:register(XMLValueType.FLOAT,

Chapter 5 Making a Diner with a rotating Sign

119

 basePath .. ".objectRotate.object(?)#rotDurat

ionSeconds",

 "Duration in seconds for one rotation", 1)

 schema:register(XMLValueType.INT,

 basePath .. ".objectRotate.

object(?)#rotAxis",

 "Rotation axis (1-3)", 1)

 schema:setXMLSpecializationType()

end

Next, we define the registerXMLPaths function which allows .xml files

associated with the mod to be read from. This is important as without this

function, we would not be able to read information from .xml files we use

to configure mod behavior. We now have the base of our specialization

created. Let us look at the implementation for the placeable object, which

is handled via the event functions we set listeners for earlier in the section:

function PlaceableObjectRotate:onLoad(savegame)

 local spec = self[PlaceableObjectRotate.SPEC_TABLE_NAME]

 spec.objects = {}

 self.xmlFile:iterate("placeable.objectRotate.object",

function(_, key)

 local node = self.xmlFile:getValue(key ..

"#node", nil, self.components, self.i3dMappings)

 if node ~= nil then

 local rotDurationSeconds =

self.xmlFile:getValue(key ..

 "#rotDurationSeconds", 1)

 local rotAxis = self.xmlFile:getValue(key ..

"#rotAxis", 1)

Chapter 5 Making a Diner with a rotating Sign

120

 if rotAxis < 1 or rotAxis > 3 then

 rotAxis = 1

 Logging.xmlWarning(self.xmlFile,

 "Invalid rotation axis for

objectRotate '%s'! Using default

axis '%d'!",

 key, rotAxis)

 end

 local object = {}

 object.node = node

 -- convert the duration to angle delta per

-- millisecond

 object. anglePerMs = (2*math.pi) /

rotDurationSeconds / 1000

 object.rotAxis = rotAxis

 table.insert(spec.objects, object)

 else

 Logging.xmlWarning(self.xmlFile,

 "Invalid node given for objectRotate

'%s'!", key)

 end

 end)

end

In the preceding code, we first need to define the onLoad() function

which dictates the behavior for when the placeable item loads. Normally,

this is when the diner is placed in the world. This function defines some

additional values for the mod while preparing relevant objects to be

used in game. The spec variable we define indexes a table we refer to as a

namespace. Each specialization has its own namespace under which its

fields and functions are stored. With this defined, the function then uses

information from the restaurant.xml file we created previously to ensure

Chapter 5 Making a Diner with a rotating Sign

121

the model is correctly configured and to define behaviors for when it is

present in the game.

To access .xml files via a script, we use special syntax to access its

elements. Let’s assume we have the following XML content:

<root>

 <element1 value="1" />

 <elements>

 <subElement>test</subElement>

 </subElement>test2</subElement>

 </elements>

<root>

If we want to access the value attribute of element1, we can simply read

it with the following Lua code:

xmlFile:getString("root.element1#value")

The period (.) operator accesses the sub-elements of the current

element, and the pound (#) operator accesses the attribute of the current

element. If you want to select the second sub-element, you would write the

following Lua code:

xmlFile:getString("root.elements.subElement(1)")

Unlike Lua, access to XML elements is zero based, so 1 is the second

element. You may also find the Logging utility class useful. It contains

functions such as the following which can print useful errors, warnings, or

other information to the log file:

warning(text , ...)

xmlWarning(xmlFile, text, ...)

error(text, ...)

xmlError(xmlFile, text, ...)

Chapter 5 Making a Diner with a rotating Sign

122

info(text, ...)

xmlInfo(text, ...)

All of these functions internally use the string.format() function, so

the text that is passed can contain placeholders that will be filled using the

parameters provided in the function’s arguments.

Returning to PlaceableObjectRotate.lua, you can see we set the

anglePerMs field of the object by converting from the time it should take

the sign to make one full rotation into a value used to change the rotation

of our sign each time we update it. The getValue() script function can be

used to access elements from the .xml file because we defined the XML

elements and their types in the registerXMLPaths() function. The script

now can evaluate the given element or attribute and convert its value to

the correct type. Let’s look at the following line of code:

local node = self.xmlFile:getValue(key .. "#node", nil,

 self.components,

 self.i3dMappings)

The script reads the node value (in our sample, roofLogo) and uses

the passed self.i3dMappings to get the i3d path of it. Then, an internal

function uses the i3d path and the self.components table to go through

the i3d hierarchy to find the correct entity and then returns the ID of this

entity. For each xml entry, we create a table with all of the settings for the

object and put it into the self.objects table. This allows us to easily support

multiple rotating objects in our mods.

-- @param float dt delta time since last update

-- @includeCode

function PlaceableObjectRotate:onUpdate(dt)

 local spec = self[PlaceableObjectRotate.SPEC_TABLE_NAME]

 for _, object in ipairs(spec.objects) do

 local rx, ry, rz = getRotation(object.node)

Chapter 5 Making a Diner with a rotating Sign

123

 local deltaAngle = object.anglePerMs * dt

 rx = rx + (object.rotAxis == 1 and deltaAngle or 0)

 ry = ry + (object.rotAxis == 2 and deltaAngle or 0)

 rz = rz + (object.rotAxis == 3 and deltaAngle or 0)

 rx = rx % (2*math.pi)

 ry = ry % (2*math.pi)

 rz = rz % (2*math.pi)

 setRotation(object.node, rx, ry, rz)

 end

 self:raiseActive()

end

For the sign to be updated, we need the onUpdate() function, which

is called repeatedly once the restaurant has been placed and will update

the rotation of the sign. That is, each time the function is called, the sign

will rotate a small amount around the Y axis, meaning the function must

be called quickly and consistently. To do this, the onUpdate() function

is bound to each frame. That means each time a frame of the game is

rendered by the player’s computer, the function is called with how much

time has passed since the last frame was rendered as a parameter called dt,

which is short for delta time. For a game running at 60 frames per second

(FPS), the value of dt would be 1/60 or about 16.667 milliseconds. The last

statement in this function, self:raiseActive(), will ensure that the function is

called in the next frame.

 Testing the Mod
Now that you have organized and written the assets and scripts required

for your mod, you are ready to test it. From the GIANTS Studio, you can

run the game without debugging from the Debug application menu.

After you begin a new game on the map of your choice, you should be

Chapter 5 Making a Diner with a rotating Sign

124

able to see the diner in the Construction Mode. Once placed, the sign on

top of the diner should begin to spin, catching the attention of potential

customers driving by.

 Summary
In this chapter, you learned how to create your first playable mod. With

this mod, players will now be able to place down a diner in their game and

watch as the sign rotates. You should now feel comfortable implementing

specializations yourself as well as making placement systems for any type

of building model.

In the next chapter, you will learn to make a more complicated mod

that involves both 3D models and programming.

Chapter 5 Making a Diner with a rotating Sign

125

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 5 Making a Diner with a rotating Sign

http://creativecommons.org/licenses/by/4.0/

127© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3_6

CHAPTER 6

Rotating Mower Mod
In this chapter, you will build upon your experience with programming,

working with models and .i3d files and making simpler mods to make a

more complex mod. This mod focuses on creating a mower with rotating

blades (see Figure 6-1). Unlike the previous mod example where we made

a static structure with a rotating sign, we will be making a moving vehicle

with rotating elements that also affects foliage and other elements of the

game environment.

Figure 6-1. The rotating mower is an excellent tool for clearing
your fields

https://doi.org/10.1007/979-8-8688-0060-3_6

128

 Technical Requirements
Like the previous chapter, you will be working entirely in the GIANTS

Editor and Studio and must meet the requirements mentioned in the

“Technical Requirements” section of Chapter 2, “Getting Started with the

GIANTS Editor.” Make sure you are always using the most recent version of

the GIANTS Editor. This will ensure that you are able to take advantage of

any new features. You can find all the code and assets used in this chapter

in the book’s code repository on the GDN at the following link:

https://gdn.giants-software.com/lp/scriptingBook.php

 Creating Mod Scripts
This section will explore all of the scripts necessary for this mod. We will

start by looking at the .xml files and then cover the .lua files. Please see

the “Preparing the Mod Folder Structure” section of Chapter 5, “Making

a Diner with a Rotating Sign,” on how to set up a mod project and use the

sample files provided on GDN.

 Creating XML Files
Like in the previous chapters, we will need to create a modDesc.xml file.

You should be familiar with the basic fields for setting a name, description,

and icon for the mod. Let us now look at the contents of modDesc.xml:

Chapter 6 rotating Mower Mod

https://gdn.giants-software.com/lp/scriptingBook.php

129

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<modDesc descVersion="72">

 <Author>GIANTS Software</author>

 <version>1.0.0.0</version>

 <multiplayer supported="true" />

 <title>

 <en>Sample Mod - Rotate Mower</en>

 </title>

 <description>

 <en>A sample mod</en>

 </description>

 <iconFilename>icon_rotateMower.png</iconFilename>

 <materialHolders>

 <materialHolder filename="effects/particles.i3d" />

 </materialHolders>

 <extraSourceFiles>

 <sourceFile filename="scripts/events/

RotorSpeedFactorEvent.lua"/>

 <sourceFile filename="scripts/

FSDensityMapUtilExtension.lua"/>

 </extraSourceFiles>

 <specializations>

 <speci alization name="rotateMower"

className="RotateMower"

 filename="scripts/RotateMower.lua" />

 </specializations>

In this first section of the file, we define basic information about our

mod. The first new field we include is materialHolders which includes one

materialHolder field. Note that you can add more materialHolder fields as

needed when designing your own mods. This field is used to load a specific

material or effect like particles that are then added to a global material or

Chapter 6 rotating Mower Mod

130

effect database and can be accessed via a script. Here, we reference our

particles.i3d file which contains particle effects which will be used with our

mower to create an exhaust effect. The path to our file is once again relative

to the mod directory. Next, we reference some Lua files to be used in our

mod using the extraSourceFiles field. The two scripts we are including are

RotorSpeedFactorEvent.lua and FSDensityMapUtilExtension.lua. Lastly,

we create a new rotateMower specialization that uses our RotateMower.lua

file. We will explore all of these Lua scripts in the following “Creating Lua

Files” section. Let us now cover the remaining content of modDesc.xml:

<vehicleTypes>

 <type name="rotateMower" parent="baseAttachable"

 filename="$dataS/scripts/vehicles/Vehicle.lua">

 <specialization name="turnOnVehicle" />

 <specialization name="groundReference" />

 <specialization name="workArea" />

 <specialization name="workParticles" />

 <specialization name="rotateMower" />

 </type>

</vehicleTypes>

<storeItems>

 <storeItem xmlFilename="vehicle/rotateMower.xml"/>

</storeItems>

<actions>

 <action name="CHANGE_ROTOR_SPEED" axisType="FULL" />

</actions>

<inputBinding>

 <actionBinding action="CHANGE_ROTOR_SPEED">

 <bindin g device="KB_MOUSE_DEFAULT" input="KEY_n"

axisComponent="-" />

 <bindin g device="KB_MOUSE_DEFAULT" input="KEY_m"

axisComponent="+" />

Chapter 6 rotating Mower Mod

131

 </actionBinding>

</inputBinding>

<l10n filenamePrefix="l10n/l10n" />

</modDesc>

In the second half of the file, we define some additional fields you have

not seen previously.

The vehicleTypes field is used to define a specific feature set for a

vehicle. The base class for our new rotateMower specialization is Vehicle.

lua, and the additional features, such as the ability to attach the vehicle,

are all of the baseAttachable type and its specializations.

We also provide functionality to turn the vehicle on or off via the

turnOnVehicle specialization. To manipulate the foliage and other

elements of the ground, we need support for work areas which use the

workArea specialization. We want our mod to only work if it has ground

contact, so we need to add the groundReference specialization. Support for

particles will be added by using the workParticles specialization. Finally,

we link our own rotateMower specialization.

Like before, we make our mod purchasable in game by using the

storeItems field. In this field, we reference the rotateMower configuration

file called rotateMower.xml which will define all of the information about

the physical mower, much like the restaurant.xml file from Chapter 5,

“Making a Diner with Rotating Element.” We will cover the contents of this

file later in this section.

Another new field in this file is actions, which holds a list of action

fields that can be triggered by the player. For our mod, we will define one

input for the player which allows them to control the speed of the mower's

rotor. This action is defined as a FULL axis. The game supports half and

full axes. FULL means that the action can return values between −1 and

1, while a HALF axis only returns values between 0 and 1. Typical use

cases for a HALF axis include simple toggle actions like turning on or off

something. In this case, you only want to get the button press. Use cases

Chapter 6 rotating Mower Mod

132

for a FULL axis include steering or, in our case, the speed control. We want

to decrease and increase the speed using this one action. Both axis types

support digital (e.g., keyboard) and analog bindings (e.g., joystick).

Next, the inputBinding field allows us to define inputs to control our

previously defined actions. In our mod, we will bind the N key to decrease

the rotor speed and the M key to increase the rotor speed. The device="KB_

MOUSE_DEFAULT" field binds this action to available keyboards. KB_

MOUSE_DEFAULT is a wildcard placeholder for all keyboards or mouses.

There is also DEFAULT_GAMEPAD that links to all gamepads. There is also

the option to link to a specific device with its device UUID, but this is not

recommended in practice.

Lastly, we include the l10n field which allows us to provide translations

for our mod so that players who speak different languages can still know

the controls associated with the mower.

With modDesc.xml now defined, let us now cover the contents of

rotateMower.xml and explore how the new fields interact with our mod:

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<vehicle type="rotateMower" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:noNamespaceSchemaLocation="https://

validation.gdn.giants-software.com/fs22/vehicle.xsd">

 <annotation>

 Copyright (C) GIANTS Software GmbH, All Rights

Reserved.

 </annotation>

 <storeData>

 <name>Rotate Mower</name>

 <specs>

 <neededPower>40</neededPower>

 <workingWidth>2.4</workingWidth>

 </specs>

 <functions>

Chapter 6 rotating Mower Mod

133

 <function>$l10n_function_mower</function>

 </functions>

 

 <price>12000</price>

 <lifetime>600</lifetime>

 <rotation>0</rotation>

 <brand>LIZARD</brand>

 <category>mowers</category>

 <shopTranslationOffset>0 0 0</

shopTranslationOffset>

 <shopRotationOffset>0 0 0</shopRotationOffset>

 <vertexBufferMemoryUsage>0</

vertexBufferMemoryUsage>

 <indexBufferMemoryUsage>0</indexBufferMemoryUsage>

 <textureMemoryUsage>0</textureMemoryUsage>

 <instanceVertexBufferMemoryUsage>0</

instanceVertexBufferMemoryUsage>

 <instanceIndexBufferMemoryUsage>0

</instanceIndexBufferMemoryUsage>

 </storeData>

Most of this section follows from the “Creating XML Files” section of

Chapter 5, “Making a Diner with Rotating Element.” Note that the vehicle

schema can be found on the GDN at the following link. The vehicle.xsd

provides all available elements that are allowed in a vehicle.xml file:

https://validation.gdn.giants-software.com/fs22/vehicle.xsd

You should already be familiar with fields like name, function, price,

and several other fields present. We define a new field called specs which

holds a neededPower and workingWidth field. The specs field is used

to display information about an item in the shop. The two fields we’ve

defined with it will be used to determine how much energy the mower

consumes and the width of the area it cuts. You may have noticed that we

Chapter 6 rotating Mower Mod

https://validation.gdn.giants-software.com/fs22/vehicle.xsd

134

set the brand field to LIZARD – LIZARD is a fictitious brand that many

vehicles in Farming Simulator choose to use. Let us now look at more of

the contents of rotateMower.xml:

<base>

 <typeDesc>$l10n_typeDesc_mower</typeDesc>

 <filename>vehicle/rotateMower.i3d</filename>

 <size width="3.2" length="1.5" lengthOffset="0.1" />

 <speedLimit value="20" />

 <components>

 <compo nent centerOfMass="0 0.2 0"

solverIterationCount="10" mass="440" />

 </components>

 <schem aOverlay attacherJointPosition="0 0"

name="IMPLEMENT" />

 <mapHotspot type="TOOL" />

</base>

<powerConsumer ptoRpm="470" neededMinPtoPower="10"

 neededMaxPtoPower="15"/>

<groundReferenceNodes>

 <groun dReferenceNode node="groundRefNode"

threshold="0.2" />

</groundReferenceNodes>

<workAreas>

 <workArea type="rotateMower" functionName="processRotate

MowerArea"

 disableBackwards="false" >

 <area startNode="workAreaStart"

widthNode="workAreaWidth"

 heightNode="workAreaHeight" />

 <groundReferenceNode index="1" />

Chapter 6 rotating Mower Mod

135

 <onlyActiveWhenLowered value="true"/>

 </workArea>

</workAreas >

In this portion of the file, we create a base field which holds basic

information about the mower. Note how we reference the rotateMower.

i3d as the file for the mower model, a speed limit for the mower to move

at, and some information for how the model should be handled, including

its mass, center of mass, and the overall size of the vehicle which is used to

make sure the mower spawns correctly.

Next, we define a powerConsumer field so that the mower consumes

engine power from its tractor. The groundReferenceNodes field defines

reference points to see if the mower is currently touching the ground.

The workAreas field holds workArea fields which define the area that is

affected by the mower when it is active. Note that we use one of the ground

reference nodes previously defined and specify mowing should only

happen when the mower is lowered. Next, we will look at more of the file’s

contents:

<attachable>

 <inputAttacherJoints>

 <input Attach erJoint node="attacherJoint"

jointType="implement"

 topReferenceNode="topReferenceNode"

upperRotationOffset="10"

 lowerRotLimitScale="0 0 0"

lowerTransLimitScale="0 1 0">

 <distanceToGround lower="0.35" upper="1.0" />

 </inputAttacherJoint>

 </inputAttacherJoints>

 <support animationName="moveSupport" />

</attachable>

Chapter 6 rotating Mower Mod

136

In this section, we define an attachment point where the mower utility

will connect to the tractor. To do this, we include an attachable field which

holds an inputAttacherJoints field, a list of inputAttacherJoint fields. The

inputAttacherJoint field includes configurations for how the mower should

attach to the tractor. The node attribute defines the position of the physics

joint that connects the mower and the tractor – we also use the i3d-

mapping for all i3d reference to avoid the more complex and user-

unfriendly i3d paths like 0>0|0|0.

The topReferenceNode defines the position for the top bar of the three-

point hitch. The jointType defines a preset for the physics joint – in our

case, we use implement. By default, the script lowers and lifts the tools

parallel to the ground. We want our mower to be a bit tilted when raised, so

we add upperRotationOffset="10". This causes the script to tilt our tool by

10 degrees when lifted. The lowerRotLimitScale and lowerTransLimitScale

fields scale the joint limits.

Joint limits define the possible free (controlled by gravity and

external impacts) movement of a joint for translation and rotation. The

distanceToGround element defines the offsets of the tool when lifted or

lowered. Lastly, the support element in our case defines an animation that

is played when the mower is detached and played in reverse while the

mower is attached.

<powerTakeOffs>

 <input inputAttacherJointIndices="1"

inputNode="ptoInputNode"

 aboveAttacher="true" />

</powerTakeOffs>

<lights>

 <defaultLights>

 <defau ltLight shaderNode="drum01Knife"

lightTypes="0" intensity="300"/>

Chapter 6 rotating Mower Mod

137

 <defau ltLight shaderNode="drum02Knife"

lightTypes="0" intensity="300"/>

 <defau ltLight shaderNode="drum03Knife"

lightTypes="0" intensity="300"/>

 <defau ltLight shaderNode="drum04Knife"

lightTypes="0" intensity="300"/>

 </defaultLights>

</lights>

The inclusion of the powerTakeOffs field determines whether a PTO

can be attached to the tractor. For clarity, a PTO is a power shaft that

transfers the tractor’s engine power to the tool. Next, we define the blades

of the mower to be shader nodes if the lights on it are turned on by using a

lights field. For each blade, we define a new defaultLight in a defaultLights

field and reference the physical shader elements by name. The lightType

0 defines that the lights should be activated with the default light. There

are other light types such as 1, 2, or 3 – all of them are for special light

scenarios like frontLight, workLight, etc. They also depend on the tractor

the tool is attached to.

<ai>

 <needsLowering value="true" />

 <areaM arkers leftNode="aiMarkerLeft"

rightNode="aiMarkerRight"

 backNode="aiMarkerBack" />

 <colli sionTrigger node="aiCollisionNode" width="2.9"

height="1.2"/>

 <agent Attachment width="2.3" height="1.2" length="1.2"

lengthOffset="0.15"/>

</ai>

<turnOnVehicle turnOffIfNotAllowed="true"

 turnOffText="$l10n_action_turnOffMower"

Chapter 6 rotating Mower Mod

138

 turnOnText="$l10n_action_turnOnMower" />

<foliageBending>

 <bendi ngNode minX="-1.4" maxX="1.4" minZ="-0.373"

maxZ="0.7" yOffset="0.2"/>

</foliageBending>

<weara ble wearDuration="480" workMultiplier="5"

fieldMultiplier="2"/>

<washable dirtDuration="90" washDuration="1" workMultiplier="4"

 fieldMultiplier="2"/>

We also define an ai field, which dictates how AI vehicles and

other agents should interact with our mower. For our mod, we define a

collisionTrigger which is used by the AI tractor that uses our mower to

detect other vehicles and objects in the world and also forces other AI

vehicles to stop if they are near the mower. The AI area markers define

the cut area of the mower used by the AI system to calculate the routes on

the field it has to drive along. The agentAttachment element is used by the

street AI system to calculate the correct route if you send a tractor with

attached mower to a field or back to the farm. Next, the turnOnVehicle

field allows us to display custom text when the mower is turned on or off.

Note how we reference the translation .xml files from earlier in this field.

We will need to define how foliage behaves when our mower interacts

with it. We accomplish this by using the foliageBending field and including

a bendingNode with configurations for how the foliage model should

deform. As we use the mower, it will become dirty and see the effects

of wear and tear. To reflect this, we create wearable fields which set the

appearance of these environmental effects. With these general elements

now included, we will define our custom element for the rotateMower in

the file:

Chapter 6 rotating Mower Mod

139

<rotateMower>

 <animationNodes>

 <anima tionNode node="drum01"

rotSpeed="1000" rotAxis="2"

 turnOnFadeTime="2.5"

turnOffFadeTime="2"

 speedFunc="getRotorSpeedFactor"/>

 <anima tionNode node="drum02"

rotSpeed="-1000" rotAxis="2"

 turnOnFadeTime="2.5" turnOffFadeTime="2"

 speedFunc="getRotorSpeedFactor"/>

 <anima tionNode node="drum03"

rotSpeed="1000" rotAxis="2"

 turnOnFadeTime="2.5"

turnOffFadeTime="2"

 speedFunc="getRotorSpeedFactor"/>

 <anima tionNode node="drum04"

rotSpeed="-1000" rotAxis="2"

 turnOnFadeTime="2.5"

turnOffFadeTime="2"

 speedFunc="getRotorSpeedFactor"/>

 </animationNodes>

 <effects>

 <effec tNode effectClass="ParticleEffect"

effectNode="smokeEmitter"

 particleType="SMOKE"

worldSpace="true" />

 </effects>

Chapter 6 rotating Mower Mod

140

In our rotateMower element, we first define animationNode fields

in an animationNodes container. Note that like other nodes and points

of reference, these are already physically part of the mower model, and

we refer to them by name. Two of the configurations we include in these

elements are turnOnFadeTime and turnOffFadeTime which are used to

let the blades speed up and slow down when the mower is turned on

and off. The rotSpeed defines the rotation speed of the drum, and the

rotAxis with value 2 defines that the object will rotate around its local Y

axis. Next, we add a smoky particle effect for the dirt and exhaust from

the mower by including an effects element with an effectNode field. The

game supports different effect classes. We want to spawn a particle effect,

so we need to set the value of effectClass to ParticleEffect. Also, notice that

the particleType field is set to SMOKE, which directly connects to particle.

i3d which holds our materials. In this material holder, we define a real

particle system with user attributes and set particleType to SMOKE. Thus,

the system can access the material holder and clone the defined particle

system to be used in our rotateMower. Let’s continue through the

components of the rotateMower field:

<sounds>

 <start file= "sounds/rotor_start.wav" innerRadius="5.0"

outerRadius="65.0"

 fadeOut="0.1" linkNode="rotateMower_main_

component1">

 <volume indoor="0.45" outdoor="1.1">

 <modifier type="ROTOR_RPM" value="0.00"

modifiedValue="0.70" />

 <modifier type="ROTOR_RPM" value="1.00"

modifiedValue="1.00" />

 </volume>

 <pitch indoor="1.00" outdoor="1">

Chapter 6 rotating Mower Mod

141

 <modifier type="ROTOR_RPM" value="0.00"

modifiedValue="0.50" />

 <modifier type="ROTOR_RPM" value="1.00"

modifiedValue="1.0" />

 </pitch>

 <lowpassGain indoor="0.50" outdoor="1.00" />

 </start>

 <work file=" sounds/rotor_work_loop.wav" innerRadius="5.0"

outerRadius="65.0"

 fadeOut="0.1" linkNode="rotateMower_main_

component1" >

...

 </work>

 <stop file=" sounds/rotor_stop.wav" innerRadius="5.0"

outerRadius="650.0"

 fadeOut="0.1">

...

 </stop>

</sounds>

</rotateMower>

We use this section of the rotateMower element to define the sounds it

should use and how different mower actions affect these sounds. We start

by creating a sounds element which includes start, work, and stop fields.

Each of these fields references one sound which is used when the mower

starts, is working, and when it stops. Importantly, as rotor revolutions per

minute (RPM) increases, we want to increase the volume and pitch of the

sound, which we achieve by using pitch and volume fields. Note that we

can add filters to these sounds and change their behavior depending on

whether the player’s perspective is inside the cabin of a tractor or outdoors.

This concludes the elements of the rotateMower field. Let us continue

through the remaining contents of rotateMower.xml:

Chapter 6 rotating Mower Mod

142

 <i3dMappin gs>

 <i3dMa pping id="rotateMower_main_component1"

node="0>" />

 <i3dMapping id="rotateMower_vis" node="0>0" />

 <i3dMapping id="attacherJoint" node="0>0|0|0" />

 <i3dMapping id="topReferenceNode" node="0>0|0|1" />

 <i3dMapping id="ptoInputNode" node="0>0|0|2" />

...

 </i3dMappings>

</vehicle>

We conclude our file with an i3dMappings field like we defined for our

diner model in Chapter 5, “Making a Diner with Rotating Element.”

With modDesc.xml and rotateMower.xml complete, we only need to

create some supporting files before we jump into creating our Lua scripts.

Earlier, we referenced two .xml files (l10n_de.xml and l10n_en.xml) in

the l10n section of modDesc.xml that let us display custom text to players

in different languages. We will start with l10n_en.xml which displays the

controls for the mower to the player in English:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<l10n>

 <elements>

 <e k="input_CHANGE_ROTOR_SPEED_1"

v="Decrease Rotor Speed"/>

 <e k="input_CHANGE_ROTOR_SPEED_2"

v="Increase Rotor Speed"/>

 <e k="input_CHANGE_ROTOR_SPEED"

v="Change Rotor Speed (%d%%)"/>

 <e k="action_turnOffMower" v="Turn off mower"/>

 <e k="action_turnOnMower" v="Turn on mower"/>

 </elements>

</l10n>

Chapter 6 rotating Mower Mod

143

In this file, we reference the custom actions we created in modDesc.

xml by name and associate text with each input. We can do the same in

German so that German-speaking players can more easily engage with the

mod. Let us look at the contents of l10n_de.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<l10n>

 <elements>

 <e k="input_CHANGE_ROTOR_SPEED_1"

v="Rotorgeschwindigkeit senken"/>

 <e k="input_CHANGE_ROTOR_SPEED_2"

v="Rotorgeschwindigkeit erhöhen"/>

 <e k="input_CHANGE_ROTOR_SPEED"

 v="Rotorgeschwindigkeit anpassen (%d%%)"/>

 <e k="action_turnOffMower"

v="Mähwerk ausschalten"/>

 <e k="action_turnOnMower" v="Mähwerk anschalten"/>

 </elements>

</l10n>

You can add support for additional languages by creating a new file

with the translations and appropriate suffix. For example, to add support

for French, create a new file called l10n_fr.xml. With these files created,

we have finished making all of the .xml files for our mod! This is a good

point to review everything you have created so far and double-check your

understanding before we jump into creating our Lua files and bringing our

mower to life.

Chapter 6 rotating Mower Mod

144

 Creating Lua Files
We’re now ready to create our Lua files – we will start with

RotorSpeedFactorEvent.lua. The purpose of this script is to replicate

a user’s input to other players over the network if they are playing in

multiplayer mode. Let us now examine the contents of the script:

RotorSpeedFactorEvent = {}

local RotorSpeedFactorEvent_mt =

Class(RotorSpeedFactorEvent, Event)

InitEventClass(RotorSpeedFactorEvent, "RotorSpeedFactorEvent")

function RotorSpeedFactorEvent.emptyNew()

 local self = Event.new(RotorSpeedFactorEvent_mt)

 return self

end

function RotorSpeedFactorEvent.new(vehicle, speedFactor)

 local self = RotorSpeedFactorEvent.emptyNew()

 self.vehicle = vehicle

 self.speedFactor = speedFactor

 return self

end

We start by creating a new table and using the Event base class to

create our new RotorSpeedFactorEvent, a subclass of Event. Next, we

define two constructor functions: RotorSpeedFactorEvent.emptyNew() and

RotorSpeedFactorEvent.new(). The first constructor takes no arguments

and creates an empty event for later use. The second constructor is passed

vehicle and speedFactor arguments which reference the vehicle the event is

for and the current speed of the rotor, respectively. With our constructors

defined, we can begin to implement the main functionality of this event:

function RotorSpeedFactorEvent:writeStream(streamId,

connection)

Chapter 6 rotating Mower Mod

145

 NetworkUtil.writeNodeObject(streamId, self.vehicle)

 RotateMower.streamWriteSpeedFactor(streamId, self.

speedFactor)

End

function RotorSpeedFactorEvent:readStream(streamId, connection)

 self.vehicle = NetworkUtil.readNodeObject(streamId)

 self.speedFactor = RotateMower.streamReadSpeedFactor

(streamId)

 self:run(connection)

end

The writeStream() function writes the event data to the network

stream. That is, it communicates the information about the event to all

players. This function is largely for internal use but note that we send a

signal to the network to update the speedFactor of the mower’s rotors in

this function.

We cannot directly send the object reference of a vehicle over the

network as it could be different on different PCs connected to the game.

Instead, the network creates a mapping of the local vehicle reference and a

unique ID (integer). The writeNodeObject() function of NetworkUtil simply

gets the network id of the passed vehicle object and writes that integer to

the network stream.

Once we have written event information to the stream, we need to

be able to read it – we do this through the readStream() function. A strict

requirement is that the call order is the same for read and write; otherwise,

the network protocol stack will be broken. You can see how the network

stream looks like in Figure 6-2.

Chapter 6 rotating Mower Mod

146

Fi
gu

re
 6

-2
.

T
hi

s
fig

u
re

 v
is

u
al

iz
es

 th
e

n
et

w
or

k
st

re
am

Chapter 6 rotating Mower Mod

147

This function is again mostly for internal purposes, but like the

writeStream() function, we must use the readNodeObject() function

of NetworkUtil to remap the network ID back to a local vehicle object

reference before we update the speedFactor field of the class and call the

run() function to update the vehicle itself. The signal to perform this action

was sent out at an earlier point in time by the writeStream() function.

function RotorSpeedFactorEvent:run(connection)

 if not connection:getIsServer() then

 g_server:broadcastEvent(self, false, connection,

self.vehicle)

 end

 if self.vehicle ~= nil then

 self.vehicle:setRotorSpeedFactor(self.

speedFactor, true)

 end

end

The run() function is where we execute the main physical changes as

a result of the event. In our case, we need to update the vehicle to reflect

the values set for speedFactor in our class. If a player (client) requested the

change in motor speed via our custom action, we need to tell the server

to replicate this action and broadcast the information to all other players

in the game. Note that the network does not allow the client to directly tell

the server or other users which behavior should be occurring for security

purposes.

function RotorSpeedFactorEvent.sendEvent(vehicle, speedFactor,

noEventSend)

 if noEventSend == nil or noEventSend == false then

 if g_server ~= nil then

 g_server:broadcastEvent(RotorSpeedFactorEvent.

new(vehicle, speedFactor),

Chapter 6 rotating Mower Mod

148

 nil, nil, vehicle)

 else

 g_client:getServerConnection():sendEvent(

 RotorSpeedFactorEvent.

new(vehicle, speedFactor))

 end

 end

end

Lastly, we define the static helper function sendEvent() which is used

by both clients and the server to perform replication. For example, the

client can tell the server to replicate their action by sending this event.

Additionally, the server can use this function to perform the client’s

request and replicate the change to other players from the server.

With RotorSpeedFactorEvent.lua completed, we will need to define an

extension to an existing utility so that the mower can affect foliage it’s used

on. The GIANTS Engine uses what’s called a density map to define where

foliage is present. The purpose of this utility is to let our mod modify this

density map based on the physical properties of the mower. Now we will

cover the contents of FSDensityMapUtilExtension.lua:

function FSDensityMapUtil.updateRotateMowerArea(startWorl

dX, startWorldZ, widthWorldX, widthWorldZ, heightWorldX,

heightWorldZ)

 local functionData = FSDensityMapUtil.functionCache.

updateRotateMowerArea

 if functionData == nil then

 local terrainRootNode = g_currentMission.

terrainRootNode

 functionData = {}

 functionData.lastArea = 0

 functionData.lastTotalArea = 0

Chapter 6 rotating Mower Mod

149

 local multiModifier = DensityMapMultiModifier.new()

 local modifier, filter

 for _, desc in pairs(g_fruitTypeManager:getFruitT

ypes()) do

 if desc.terrainDataPlaneId ~= nil then

 if modifier == nil then

 modifier = DensityMapModifier.

new(desc.terrainDataPlaneId,

 desc.startStateChannel,

desc.numStateChannels,

terrainRootNode)

 else

 modifier:resetDensityMapAndChanne

ls(desc.terrainDataPlaneId,

 desc.startStateChannel,

desc.numStateChannels)

 end

 if filter == nil then

 filter = DensityMapFilter.

new(desc.terrainDataPlaneId,

 desc.startStateChannel,

desc.numStateChannels,

terrainRootNode)

 else

 filter:resetDensityMapAndChannels

(desc.terrainDataPlaneId,

 desc.startStateChannel,

desc.numStateChannels)

 end

Chapter 6 rotating Mower Mod

150

 filter:setValueCompareParams(DensityVal

ueCompareType.BETWEEN, 2,

 desc.cutState)

 multiModifier:addExecuteSet(desc.

cutState or 0, modifier, filter)

 end

 end

The program begins by defining a new function,

updateRotateMowerArea(). This function will modify the foliage density

map within a box as defined by the function’s six arguments. We want to

make multiple modifications to the foliage density map so we will need

to create a DensityMapMultiModifier. For each type of foliage we want to

affect, there is a different density map.

To modify these density maps, a new DensityMapModifier object

must be created with the appropriate DensityMap ID and its value range

(startStateChannel and numStateChannels). The terrainRootNode passed

during the modifier’s construction is used to calculate the affected range

of pixels. For example, different density maps could have different sizes –

the system must know the relationship between these sizes, so we use the

terrainRootNode to calculate these. To save on performance, we only want

to create the modifier once and cache (store) it.

We do not want all types of foliage to be affected by the mower, so we

must create a new DensityMapFilter object for each type of mowable item.

Like the density map modifier, we will also want to cache our filter. With

the modifier and filters created, we call the addExecuteSet function of the

DensityMapMultiModifier object we previously defined which will use our

modifier and filter objects to update the foliage to a cut state. This is the

main component of our extension on this utility. Let us now explore the

rest of the script:

Chapter 6 rotating Mower Mod

151

local weedSystem = g_currentMission.weedSystem

if weedSystem ~= nil then

 local weedTerrainDataPlaneId, weedStartChannel,

weedNumChannels = weedSystem:getDensityMapData()

 modifier:resetDensityMapAndChannels(weedTerrain

DataPlaneId, weedStartChannel, weedNumChannels)

 filter:resetDensityMapAndChannels(weedTerrainDataPlaneId,

weedStartChannel, weedNumChannels)

 filter:setValueCompareParams(DensityValueCompareType.

GREATER, 2)

 multiModifier:addExecuteSet(0, modifier, filter)

end

Weeds are kept in their own density map separate from the types of

foliage we handled previously for our mower to affect. Like before, we will

use our modifier and filter objects and update them to focus on the weed

foliage layer. Then, using the density map multimodifier, we will update

weeds under the mower to a cut state.

if g_currentMission.foliageSystem ~= nil then

 local decoFoliages = g_currentMission.foliageSystem:getDe

coFoliages()

 local grassDesc = g_fruitTypeManager:getFruitTypeByIndex(

FruitType.GRASS)

 for index, decoFoliage in pairs(decoFoliages) do

 if decoFoliage.terrainDataPlaneId ~= nil then

 -- reset the data plane and channels

 modifier:resetDensityMapAndChannels

(grassDesc.terrainDataPlaneId,

 grassDesc.startStateChannel,

grassDesc.numStateChannels)

 filter:resetDensityMapAndChannels

(decoFoliage.terrainDataPlaneId,

Chapter 6 rotating Mower Mod

152

 decoFoliage.startStateChannel,

decoFoliage.numStateChannels)

 -- limit to visible deco foliage only

 filter:setValueCompareParams

(DensityValueCompareType.GREATER, 0)

 -- execute the modifier for data pixels that

 -- match the filter

 multiModifier:addExecuteSet

(grassDesc.cutState, modifier, filter)

 end

 end

end

functionData.multiModifier = multiModifier

FSDensityMapUtil.functionCache.updateRotateMowerArea =

functionData

end

Bushes are kept in their own foliage layer separate from the weeds

or crops, and we will need to perform a similar process for them to also

be cut. For all types of these Deco Foliages, we will once again use our

modifier and filter objects to target their respective layers and update them

to a cut state via our density map multimodifier.

 DensityMapHeightUtil.clearArea(startWorldX, startWorldZ,

widthWorldX, widthWorldZ, heightWorldX, heightWorldZ)

 local multiModifier = functionData.multiModifier

 multiModifier:updateParallelogramWorldCoords(startWorldX,

startWorldZ, widthWorldX, widthWorldZ, heightWorldX,

heightWorldZ, DensityCoordType.POINT_POINT_POINT)

 multiModifier:execute(false)

end

Chapter 6 rotating Mower Mod

153

Next, we clear the area by calling the clearArea() function of

DensityMapHeightUtil. This function removes everything that was forced

to the ground in the area, such as straw or wheat. If a player mowed over

some wheat or stones on the ground, the clearArea() function will remove

those items. The updateParallelogramWorldCoords() function will update

the coordinates of the area that should be affected by the execution of the

multiModifier. Lastly, we execute the multiModifier which will run all of

the operations we define in the main if statement of the function.

With the additions made to the density map utility, we are left with

only RotateMower.lua, the main control script for our mower. Let us now

look at the script’s contents:

local modName = g_currentModName

RotateMower = {}

RotateMower.SPEC_TABLE_NAME = "spec_"..modName..".rotateMower"

RotateMower.MIN_SPEED_FACTOR = 0.1

RotateMower.MAX_SPEED_FACTOR = 2

RotateMower.STEP_SIZE = 0.1

RotateMower.NUM_BITS = 5

function RotateMower.streamWriteSpeedFactor(streamId,

rotorSpeedFactor)

 streamWriteUIntN(streamId,

math.floor((rotorSpeedFactor * 10) + 0.5),

 RotateMower.NUM_BITS)

end

function RotateMower.streamReadSpeedFactor(streamId)

 -- read the speed factor from the network stream as

-- an integer

 local speedFactor = streamReadUIntN(streamId,

RotateMower.NUM_BITS)

Chapter 6 rotating Mower Mod

154

 -- convert it back to float

 local rotorSpeedFactor = speedFactor / 10

 return rotorSpeedFactor

end
g_particleSystemManager:addParticleType("smoke")

This first part of our script creates the table for our specialization and

adds five values to it. The first value we added defines our namespace like

we have done in all previous specializations. The next two values define

the min and max speed factors for the range of mower rotor speeds. The

STEP_SIZE value defines the rate of change in the mower's rotor speed

when the player makes an input. Lastly, NUM_BITS is used internally

to represent a range of speed values; in this case, we will not need more

than 5 bits if we treat our number as an unsigned integer. The first

function we implement is streamWriteSpeedFactor() which is used in the

network portion (writeStream()) of our scripts to write the speedFactor

in a simplified way. Normally, the speedFactor is stored as a float. That

means we would need 32 bits to send this data over the network. Using

this function, we simply convert speedFactor into an integer with a range

limited to the minimum and maximum values we have previously defined.

This way, we use only 5 bits to send the value without any floating-

point data. Next, we define streamReadSpeedFactor() which reads from the

stream the value that the mower’s rotor speedFactor should be. We use the

network utility to automatically convert the unsigned integer back into a

Lua number.

Lastly, we register the mower’s particle effect to the type defined by

the attributes in our .i3d material holder with the particle system manager

utility. Let us continue through the contents of the script:

function RotateMower.prerequisitesPresent(specializations)

 return SpecializationUtil.hasSpecialization

(TurnOnVehicle, specializations)

end

Chapter 6 rotating Mower Mod

155

Like in the previous mod, we must ensure that the prerequisite

specializations for the mod have been loaded before we try to use them.

Attempting to use them before they have loaded will result in an error. To

do this, we add the prerequisitesPresent() function which uses the internal

SpecializationUtil to ensure all the specializations used by the mod have

been loaded. In this case, TurnOnVehicle must be loaded.

function RotateMower.registerEventListeners(vehicleType)

 SpecializationUtil.registerEventListener(vehicleType,

"onLoad", RotateMower)

 SpecializationUtil.registerEventListener(vehicleType,

"onDelete", RotateMower)

 SpecializationUtil.registerEventListener(vehicleType,

"onReadStream", RotateMower)

 SpecializationUtil.registerEventListener(vehicleType,

"onWriteStream", RotateMower)

 SpecializationUtil.registerEventListener(vehicleType,

"onUpdateTick", RotateMower)

 SpecializationUtil.registerEventListener(vehicleType,

"onRegisterActionEvents", RotateMower)

 SpecializationUtil.registerEventListener(vehicleType,

"onTurnedOn", RotateMower)

 SpecializationUtil.registerEventListener(vehicleType,

"onTurnedOff", RotateMower)

end

The registerEventListeners() function is a very important function of

our specialization as it registers the events associated with player input to

our functions which update mower attributes that should be triggered by

the base vehicle script. Events for both the custom functions we defined as

well as default events associated with the base Vehicle class specialization

are registered in this function. More specifically, it forces the vehicle

script to call some of the Vehicle base class events, such as onLoad()

Chapter 6 rotating Mower Mod

156

when the vehicle is loaded and onDelete() where the vehicle is removed

from the game. Additionally, onReadStream() and onWriteStream() if

a player joins a multiplayer game. The onUpdateTick() function will be

called with a more or less constant tick rate for 30 FPS (~33 ms), and

onRegisterActionEvents() will be called if the input context changes, such

as it would if the player gets in or out of a tractor. The function will also

register a listener to the onTurnedOn and onTurnedOff events defined by

the TurnOnVehicle specialization, allowing us to be notified if the mower

is turned on or off.

function RotateMower.registerFunctions(vehicleType)

 Specializati onUtil.registerFunction(vehicleType,

"getRotorSpeedFactor",

RotateMower.getRotorSpeedFactor)

 Specializati onUtil.registerFunction(vehicleType,

"setRotorSpeedFactor",

 RotateMower.setRotorSpeedFactor)

 Specializati onUtil.registerFunction(vehicleType,

"getRotorSpeedScale",

 RotateMower.getRotorSpeedScale)

 Specializat i onUtil.registerFunction(vehicleType,

"processRotateMowerArea",

 RotateMower.processRotateMowerArea)

end

The registerFunctions() function associates our custom defined

functions in our specialization with the vehicle type. This is required

because the functions are custom and will not be an included functionality

of the vehicle by default.

Chapter 6 rotating Mower Mod

157

function RotateMower.registerOverwrittenFunctions(vehicleType)

 SpecializationUtil.registerOverwrittenFunction

(vehicleType, "getRawSpeedLimit",

 RotateMower.getRawSpeedLimit)

 SpecializationUtil.registerOverwrittenFunction

(vehicleType, "doCheckSpeedLimit",

 RotateMower.doCheckSpeedLimit)

end

Lastly, the registerOverwrittenFunctions() function will overwrite

the inherited functions from the vehicle specialization with those we

have redefined for our vehicle. With these functions implemented, let us

continue through the contents of the file:

function RotateMower.initSpecialization()

 g_workAreaTypeManager:addWorkAreaType("rotateMower",

false)

 local schema = Vehicle.xmlSchema

 schema:setXMLSpecializationType("RotateMower")

 AnimationManager.registerAnimationNodesXMLPaths(schema,

 "vehicle.rotateMower.animationNodes")

 EffectManager.registerEffectXMLPaths(schema, "vehicle.

rotateMower.effects")

 SoundManager.registerSampleXMLPaths(schema,

 "vehicle.rotateMower.sounds", "start")

 SoundManager.registerSampleXMLPaths(schema,

 "vehicle.rotateMower.sounds", "stop")

 SoundManager.registerSampleXMLPaths(schema,

 "vehicle.rotateMower.sounds", "work")

 schema:setXMLSpecializationType()

Chapter 6 rotating Mower Mod

158

 local schemaSavegame = Vehicle.xmlSchemaSavegame

 schemaSavegame:register(XMLValueType.FLOAT,

 "vehicles.vehicle(?)."..modName..".rotateMower

#rotorSpeedFactor",

 "Current rotor speed factor")

end

initSpecialization() is a function that loads and registers relevant

information from our .xml files with our vehicle and Lua script.

Particularly, it adds the xml-element-paths from the .xml files for the

mower’s sounds, its effects, and animation nodes. We also want the state

of the mower to be loaded in from when the player last played the game.

This is used at the end of the function where we load the saved rotor

speed factor:

function RotateMower:onLoad(savegame)

 local spec = self[RotateMower.SPEC_TABLE_NAME]

 spec.rotorSpeedFactor = 1

 spec.isEffectDirty = false

 if self.isClient then

 spec.animationNodes =

g_animationManager:loadAnimations(self.xmlFile,

 "vehicle.rotateMower.animationNodes",

self.components,

 self, self.i3dMappings)

 spec.effects = g_effectManager:loadEffect

(self.xmlFile,

 "vehicle.rotateMower.effects", self.

components, self, self.i3dMappings)

 for _, effect in ipairs(spec.effects) do

 effect.currentFillType = nil

 end

Chapter 6 rotating Mower Mod

159

 g_effectManager:setFillType(spec.effects, FillType.

UNKNOWN)

 for _, effect in ipairs(spec.effects) do

 effect.defaultSpeed = ParticleUtil.

getParticleSystemSpeed(effect.particleSystem)

 end

 spec.samples = {}

 spec.samples.start =

g_soundManager:loadSampleFromXML(self.xmlFile,

 "vehicle.rotateMower.sounds", "start",

self.baseDirectory,

 self.components, 1, AudioGroup.VEHICLE,

self.i3dMappings, self)

 spec.samples.stop =

g_soundManager:loadSampleFromXML(self.xmlFile,

 "vehicle.rotateMower.sounds", "stop",

self.baseDirectory,

 self.components, 1, AudioGroup.VEHICLE,

self.i3dMappings, self)

 spec.samples.work =

g_soundManager:loadSampleFromXML(self.xmlFile,

 "vehicle.rotateMower.sounds", "work",

self.baseDirectory,

 self.components, 0, AudioGroup.VEHICLE,

self.i3dMappings, self)

 end

if savegame ~= nil then

 local rotKey = savegame.key.."."..modName..".rotateMower#

rotorSpeedFactor"

 local rotorSpeedFactor =

savegame.xmlFile:getValue(rotKey)

Chapter 6 rotating Mower Mod

160

 if rotorSpeedFactor ~= nil then

 self:setRotorSpeedFactor(rotorSpeedFactor, true)

 end

end

if self.addAIGroundTypeRequirements ~= nil then

 self:addAIGroundTypeRequirements

(Mulcher.AI_REQUIRED_GROUND_TYPES)

end

if self.addAIFruitRequirement ~= nil then

 self:clearAIFruitRequirements()

 for _, fruitType in ipairs(g_fruitTypeManager:getFruitT

ypes()) do

 self:addAIFruitRequirement(fruitType.index, 2,

fruitType.cutState-1)

 end

 local weedSystem = g_currentMission.weedSystem

 if weedSystem ~= nil then

 local weedTerrainDataPlaneId, weedStartChannel,

weedNumChannels =

 weedSystem:getDensityMapData()

 local factors = weedSystem:getFactors()

 local minFactor = math.huge

 local maxFactor = 0

 for state, _ in pairs(factors) do

 minFactor = math.min(state, minFactor)

 maxFactor = math.max(state, maxFactor)

 end

 self:addAIFr uitRequirement(nil, minFactor,

maxFactor,

Chapter 6 rotating Mower Mod

161

 weedTerrainDataPlaneId,

weedStartChannel, weedNumChannels)

 end

 end

end

The onLoad() function first references the namespace of our

specialization and defines our rotorSpeedFactor field. This field is what will

actually be modified when the updating functions we implemented earlier

are called. We additionally include isEffectDirty as a field which we use to

determine whether the effect should be updated.

Next, we load the mower’s animations and add its effects. We must

also set the currentFillType field of each effect to nil manually for them to

appear. With the effects loaded, we want to cache the default particle speed

of each effect as a point of reference as we will be changing it as the mower

operates. Following this, we will load the three sounds for the mower and

store them so that they can be easily referenced later.

If the game is being loaded from a save file, we will want to set the

attributes of the mower to those that were saved previously. The savegame.

xmlFile field holds a reference to the savegame instance's vehicle.xml file

and savegame.key in the xml element of the current vehicle. This allows us

to easily read saved data for our mower.

Next, we will want to confine the mower to fields if it is operating

autonomously as part of the field worker functionality. Furthermore, we

want the worker to only move after fruits and weeds rather than all crops

in a field area. Note that we also consider the cut state of the crop so that

we do not revisit field areas which have already been mowed. We will now

look at more of the script’s contents:

Chapter 6 rotating Mower Mod

162

function RotateMower:onDelete()

 local spec = self[RotateMower.SPEC_TABLE_NAME]

 g_animationManager:deleteAnimations(spec.animationNodes)

 g_effectManager:deleteEffects(spec.effects)

 g_soundManager:deleteSamples(spec.samples)

end

The onDelete() function manages the case where the mower is deleted

in the scope of our specialization. In particular, we do not want a memory

leak to occur, so we delete the loaded animations, effects, and sounds.

function RotateMower:saveToXMLFile(xmlFile, key, usedModNames)

 xmlFile:setValue(key .. "#rotorSpeedFactor",

self:getRotorSpeedFactor())

end

The saveToXMLFile() function will save the state of the mower (more

specifically the rotorSpeedFactor) to an .xml file so that it can be loaded in

when the player next joins the game.

function RotateMower:onReadStream(streamId, connection)

 local rotorSpeedFactor = RotateMower.streamReadSpeedFactor

(streamId)

 self:setRotorSpeedFactor(rotorSpeedFactor, true)

end

The onReadStream() function is used to synchronize the current speed

factor with new players who join the game by way of the setRotorSpeedFactor()

function. We will implement the latter function later in this section.

function RotateMower:onWriteStream(streamId, connection)

 local spec = self[RotateMower.SPEC_TABLE_NAME]

 RotateMower.streamWriteSpeedFactor(streamId, spec.

rotorSpeedFactor)

end

Chapter 6 rotating Mower Mod

163

Similarly, the onWriteStream() function is called on the server if a

player joins the game to sync the speed factor. Let us continue through

the file:

function RotateMower:onUpdateTick(dt, isActiveForInput,

 isActiveForInputIgnoreSelection,

isSelected)

 if self.isClient then

 if self:getIsTurnedOn() then

 local spec = self[RotateMower.SPEC_

TABLE_NAME]

 if spec.isEffectDirty then

 local scale = MathUtil.lerp(0.05, 1,

self:getRotorSpeedScale())

 for _, effect in ipairs(spec.

effects) do

 ParticleUtil.

setEmitCountScale(effect.

particleSystem, scale + 2

* scale)

 ParticleUtil.

setParticleSystemSpeed(effect.

particleSystem,

 effect.defaultSpeed

* scale)

 end

 spec.isEffectDirty = false

 end

 local workArea = self:getWorkAreaByIndex(1)

 if workArea ~= nil and workArea.

requiresGroundContact then

Chapter 6 rotating Mower Mod

164

 local hasGroundContact = workArea.

groundReferenceNode ~= nil and

 workArea.groundReferenceNode.isActive

 if hasGroundContact then

 g_effectManager:

startEffects(spec.effects)

 else

 g_effectManager:stopEffects(spec.

effects)

 end

 end

 end

 end

end

The first function of this section of the script is onUpdateTick(). This

function is used to make frequent checks regarding the mower’s state

and changes that should occur as the mower operates. We first check if

the mower is turned on and that the isEffectDirty flag is true – if so, we

update the speed of the particles based on the current rotorSpeedScale and

either enable or disable the particle effects based on whether the mower

attachment is lowered. The value range for rotor speed scale is 0–1, but we

always want to spawn a few particles. So, if the speed scale is 0, we use the

MathUtil.lerp() function to bring the value to a new range (0.05 to 1). We

then use this scale value for particle speed and emit count.

function RotateMower:getRawSpeedLimit(superFunc)

 local speedLimit = superFunc(self)

 if self:getIsTurnedOn() and (self.getIsLowered == nil or

self:getIsLowered()) then

 local scale = MathUtil.lerp(0.05, 1,

self:getRotorSpeedScale())

Chapter 6 rotating Mower Mod

165

 speedLimit = speedLimit * scale

 end

 return speedLimit

end

Next, the getRawSpeedLimit() function gets the current speed limit of

the vehicle. This function is needed as we want the vehicle’s maximum

speed to change based on whether it is currently mowing. That is, if the

mower attachment is not lowered, the maximum speed of the tractor

should be set to its default value.

function RotateMower:doCheckSpeedLimit(superFunc)

 if self:getIsTurnedOn() and (self.getIsLowered == nil or

self:getIsLowered()) then

 return true

 end

 return superFunc(self)

end

Finally, the doCheckSpeedLimit() function returns whether the speed

limit should be checked; if the mower is on and the mower attachment is

lowered, we want to check that the maximum speed has been limited. Let

us continue:

function RotateMower:getRotorSpeedScale()

 local spec = self[RotateMower.SPEC_TABLE_NAME]

 return MathUtil.inverseLerp(RotateMower.MIN_SPEED_FACTOR,

 RotateMower.MAX_SPEED_FACTOR, spec.

rotorSpeedFactor)

end

Chapter 6 rotating Mower Mod

166

function RotateMower:getRotorSpeedFactor()

 local spec = self[RotateMower.SPEC_TABLE_NAME]

 return spec.rotorSpeedFactor

end

function RotateMower:setRotorSpeedFactor(factor, noEventSend)

 local spec = self[RotateMower.SPEC_TABLE_NAME]

 factor = MathUtil.clamp(factor,

RotateMower.MIN_SPEED_FACTOR,

 RotateMower.MAX_SPEED_FACTOR)

 if math.abs(spec.rotorSpeedFactor - factor) > 0.0001 then

 spec.rotorSpeedFactor = factor

 spec.isEffectDirty = true

 RotorSpeedFactorEvent.sendEvent(self, factor,

noEventSend)

 local actionEvent =

spec.actionEvents[InputAction.CHANGE_ROTOR_SPEED]

 if actionEvent ~= nil then

 g_inputBinding:setActionEventText

(actionEvent.actionEventId,

 string.format(g_i18n:getText("input_

CHANGE_ROTOR_SPEED"),

 self:getRotorSpeedFactor()*100 + 0.1))

 end

 end

end

The getRotorSpeedFactor() function similarly returns the value of the

rotorSpeedFactor field. The setRotorSpeedFactor() function is critical as

it ensures the passed factor value is constrained by the minimum and

maximum value constants we defined at the beginning of the script.

Chapter 6 rotating Mower Mod

167

We check if the set value is different to the old value with the math.

abs() function and a subtraction. If so, it sets the new value of the

rotorSpeedFactor field and sends the event that the factor has changed.

Notably, we set the isEffectDirty field to true to force an update from

onUpdateTick().

Lastly, we update the custom text displayed to the user for the input

action. Let us continue through more of the file’s contents:

function RotateMower:processRotateMowerArea(workArea, dt)

 local startWorldX, _, startWorldZ =

getWorldTranslation(workArea.start)

 local widthWorldX, _, widthWorldZ =

getWorldTranslation(workArea.width)

 local heightWorldX, _, heightWorldZ =

getWorldTranslation(workArea.height)

 FSDensityMap Util.updateRotateMowerArea

(startWorldX, startWorldZ,

 widthWorldX, widthWorldZ, heightWorldX,

heightWorldZ)

 return 0, 0

end

The processRotateMowerArea() function is called when we need to

mow an area of land. We are passed the work area which contains the

needed start, width, and height .i3d nodes (transformGroups) for use

with our density map utility. By calling the internal getWorldTranslation()

function, we can translate these into the six values passed to the

updateRotateMowerArea() function of FSDensityMapUtilExtension.lua.

Once this function is called, we do not need to do anything further. The

work area specialization does expect to receive information about the

total area worked, but this is not returned to us by the function, so we can

simply return 0 without issue.

Chapter 6 rotating Mower Mod

168

function RotateMower:onTurnedOn()

 if self.isClient then

 local spec = self[RotateMower.SPEC_TABLE_NAME]

 g_anim ationManager:startAnimations

(spec.animationNodes)

 g_effe ctManager:setFillType(spec.effects,

FillType.UNKNOWN)

 g_effectManager:startEffects(spec.effects)

 g_soundManager:stopSamples(spec.samples)

 g_soundManager:playSample(spec.samples.start)

 g_soundManager:playSample(spec.samples.work, 0,

spec.samples.start)

 end

end

Next, the onTurnedOn() function handles behavior for when the

mower is turned on. By using the animation, effect, and sound managers,

we begin playing the mower’s animations, enable its effects, and start

playing the appropriate sounds. We begin by playing the start sound and

play the idle work sound immediately after. Note that the work sound call

has two additional parameters: a value (0) and another sample (start). This

means that the sound is played 0 ms after start has finished.

function RotateMower:onTurnedOff()

 if self.isClient then

 local spec = self[RotateMower.SPEC_TABLE_NAME]

 g_anim ationManager:stopAnimations

(spec.animationNodes)

 g_effectManager:stopEffects(spec.effects)

 g_soundManager:stopSamples(spec.samples)

 g_soundManager:playSample(spec.samples.stop)

 end

end

Chapter 6 rotating Mower Mod

169

When the mower is turned off, the onTurnedOff event is fired by the

TurnOnVehicle specialization which calls the onTurnedOff() function.

Here, we do the reverse of the previous function and use the managers to

stop the animations, disable the effects, and play the stop sound.

Let us now cover the final section of the script:

function RotateMower:onRegisterActionEvents(isActiveForInput,

 isActiveForInputIgnoreSelection)

 if self.isClient then

 local spec = self[RotateMower.SPEC_TABLE_NAME]

 self:clearActionEventsTable(spec.actionEvents)

 if isActiveForInputIgnoreSelection then

 local _, actionEventId =

self:addActionEvent(spec.actionEvents,

 InputAction.CHANGE_ROTOR_

SPEED, self,

 RotateMower.

actionEventChangeRotorSpeed,

false, true,

 false, true, nil)

 g_inputBinding:setActionEventText

(actionEventId,

 string.format

(g_i18n:getText

("input_CHANGE_ROTOR_SPEED"),

 self:getRotorSpeedFactor()*100 + 0.1))

 g_inputBinding:setActionEventTextPriority

(actionEventId, GS_PRIO_HIGH)

 end

 end

end

Chapter 6 rotating Mower Mod

170

The onRegisterActionEvents() function is called when the player enters

the vehicle or connects or disconnects an attachment to the tractor. The

purpose of the function is to set the current available or enabled input

actions a user can trigger. In our case, we first clear the old registered

action events and check if our input action is possible. For example, if the

tool is not selected by the user, we do not want to register the input action.

If it is selected, we call the addActionEvent() function of the Vehicle base

class. The function takes as arguments our specialization actionEvents

table that holds all registered inputActions for our specialization,

the new input action (InputAction.CHANGE_ROTOR_SPEED), a

callback target object (self), and a callback function RotateMower.

actionEventChangeRotorSpeed.

The next three bool values define if the callback should be called

triggerUp, triggerDown, or triggerAlways. The last bool value defines if the

action should be enabled by default. The last parameter can be ignored for

now, and so we simply pass nil.

Next, we set the text that should be displayed in the input help menu

Head Up Display (HUD) and also set a priority of this input that is used to

sort the registered input actions to display in this part of the HUD.

function RotateMower.actionEventChangeRotorSpeed(self,

actionName, inputValue, callbackState, isAnalog)

 local spec = self[RotateMower.SPEC_TABLE_NAME]

 local step = inputValue * RotateMower.STEP_SIZE

 local newFactor = spec.rotorSpeedFactor + step

 self:setRotorSpeedFactor(newFactor, false)

end

The actionEventChangeRotorSpeed() function is important as it

updates the vehicle in response to player input. The function is passed

the directional value associated with the player's input which is 1, 0, or −1

corresponding to increase, do nothing, and decrease. Depending on the

Chapter 6 rotating Mower Mod

171

bind input device, the inputValue can also be a float in ranging between

−1 and 1. For example, if we bind a joystick axis to the input, we get analog

input values. The function then calls upon setRotorSpeedFactor() to change

the speedFactor field based on the input and by the amount specified by

the STEP_SIZE constant we define at the beginning of the script.

function RotateMower.getDefaultSpeedLimit()

 return 20

end

The last function we will define is getDefaultSpeedLimit() which simply

returns a default value for the speed limit when the mower is attached.

g_soundManager:registerModifierType(

 "ROTOR_RPM",

 RotateMower.getRotorSpeedScale

)

Finally, we register a new sound modifier with the sound manager

so that the pitch or volume can be altered in response to changes in the

RPM of the mower’s rotor. In the XML config file, there is the rotateMower

element. It contains a sound element with start, stop, and work children

elements. There we use a modifier of type ROTOR_RPM to modify the

pitch and volume of the sound. This line in the Lua code creates this

modifier type.

You have now finished writing all of the .xml and .lua files and have

completed your first complex mod! Take a moment to look at the progress

you’ve made from when you started the book to where you are now.

Where you may have had no programming knowledge before, you are now

implementing behaviors and effects for full Farming Simulator mods. In

the next section, we’ll test the completed mod!

Chapter 6 rotating Mower Mod

172

 Testing the Mod
We will follow the testing procedure from the previous chapter. From the

GIANTS Studio, you can run the game without debugging from the Debug

application menu. After you begin a new game on the map of your choice,

you should open the vehicle shop. Go to the Tools tab and select the

Mowers category. You will find the rotate mower and be able to purchase

it. Attach the mower to a tractor of your choice and turn it on and off and

drive over a field or meadow. Don’t forget to test the mod in multiplayer

with your friends. To do this, include the mod files in a .zip file and send

the .zip file to your friends. Note that mods in multiplayer need to be zip

files, not folders!

 Summary
In this chapter, you made your first complex mod which allows players

to attach a mower to tractors and clear foliage from the map. You were

introduced to the concept of density maps when we made extensions onto

an existing utility for the first time. By saving the state of the mower, you

also learned how to create persistence in the player’s world. Importantly,

you also learned how to add multiplayer support to your mod.

In the next chapter, we will be taking a step back and making a simpler

mod. In this new mod, we will explore using AI and vehicles to add more

life to your Farming Simulator world.

Chapter 6 rotating Mower Mod

173

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 6 rotating Mower Mod

http://creativecommons.org/licenses/by/4.0/

175© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3_7

CHAPTER 7

Speed Trap
Trailer Mod
 Speed Trap Trailer Mod
This chapter will explore making a speed trap trailer which will detect and

fine a vehicle exceeding the speed limit (see Figure 7-1). This will require

you to learn methods for detecting vehicles, displaying certain effects with

shaders, and deducting currency from a player’s balance. Let’s get started!

Figure 7-1. Be aware, speeders will be fined!

https://doi.org/10.1007/979-8-8688-0060-3_7

176

 Technical Requirements
Like the previous chapter, you will be working entirely in the GIANTS

Editor and Studio and must meet the requirements mentioned in the

“Technical Requirements” section of Chapter 2, “Getting Started with the

GIANTS Editor.” Make sure you are always using the most recent version of

the GIANTS Editor. This will ensure that you are able to take advantage of

any new features. You can find all the code and assets used in this chapter

in the book’s code repository on the GDN at the following link:

https://gdn.giants-software.com/lp/scriptingBook.php

 Creating Mod Scripts
This section will explore all of the scripts necessary for this mod. We will

start by looking at the .xml files and then cover the .Lua files. Please see

the “Preparing the Mod Folder Structure” section of Chapter 5, “Making

a Diner with a Rotating Sign,” on how to set up a mod project and use the

sample files provided on GDN.

 Creating XML Files
We start by creating the modDesc.xml for the mod. As with the previous

mods, we define a title, description, and icon along with other basic

properties. Let us now look at its contents:

Chapter 7 Speed trap trailer Mod

https://gdn.giants-software.com/lp/scriptingBook.php

177

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<modDesc descVersion="72">

 <Author>GIANTS Software</author>

 <version>1.0.0.0</version>

 <multiplayer supported="true" />

 <title>

 <en>Sample Mod - Speed Trap Trailer</en>

 </title>

 <description>

 <en>A sample mod</en>

 </description>

 <iconFilename>icon_speedTrapTrailer.png</iconFilename>

 <extraSourceFiles>

 <source File

filename="scripts/events/SpeedTrapEvent.Lua"/>

 </extraSourceFiles>

 <specializations>

 <specializat ion name="speedTrap"

className="SpeedTrap"

 filename="scripts/SpeedTrap.Lua" />

 </specializations>

 <vehicleTypes>

 <type name=" speedTrapTrailer"

parent="baseAttachable"

 filename="$dataS/scripts/vehicles/

Vehicle.Lua">

 <specialization name="speedTrap" />

 </type>

 </vehicleTypes>

Chapter 7 Speed trap trailer Mod

178

 <storeItems>

 <store Item

xmlFilename="vehicle/speedTrapTrailer.xml"/>

 </storeItems>

 <l10n filenamePrefix="l10n/l10n" />

</modDesc>

In the extraSourceFiles field, we include SpeedTrapEvent.Lua, and in

the specialization field, we include the speedTrap specialization which will

use the SpeedTrap.Lua file we will cover in the next section. Through the

vehicleTypes field, we add a new speedTrapTrailer vehicle type which uses

our specialization and the functionality from the base Vehicle class.

Next, the storeItems field defines one or more placeables of the mod

with the path of the .xml file for the item. Lastly, we use the l10n field to

reference the folder containing the translation files for the mod.

Now we will define the configuration file for the trailer item itself,

speedTrapTrailer.xml. Let us take a look at the file:

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<vehicle type="speedTrapTrailer" xmlns:xsi="http://www.

w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLoca

tion="https://validation.gdn.giants-software.com/xml/fs22/

vehicle.xsd">

 <annotation>

 Copyright (C) GIANTS Software GmbH, All Rights

Reserved.

 </annotation>

 <storeData>

 <name>Speed Trap Trailer</name>

 <functions>

 <function>$l10n_function_speedTrapTrailer

</function>

 </functions>

Chapter 7 Speed trap trailer Mod

179

 

 <price>3500</price>

 <lifetime>600</lifetime>

 <rotation>0</rotation>

 <brand>LIZARD</brand>

 <category>misc</category>

 <shopTranslationOffset>0 0.05 0

</shopTranslationOffset>

 <shopRotationOffset>0 -1.102 0</shopRotationOffset>

 <vertexBufferMemoryUsage>0

</vertexBufferMemoryUsage>

 <indexBufferMemoryUsage>0</indexBufferMemoryUsage>

 <textureMemoryUsage>0</textureMemoryUsage>

 <instanceVertexBufferMemoryUsage>0

</instanceVertexBufferMemoryUsage>

 <instanceIndexBufferMemoryUsage>0

</instanceIndexBufferMemoryUsage>

</storeData>

We start the file by defining a storeData field which holds the price,

brand, and description of the item which will be displayed in the shop.

This part of the file should be familiar, as we defined this same field and

its elements in the “Creating XML Files” sections of Chapter 5, “Making a

Diner with Rotating Element,” and Chapter 6, “Rotating Mower Mod.” Let

us continue through the file:

<base>

 <typeDesc>$l10n_typeDesc_speedTrapTrailer</typeDesc>

 <filename>vehicle/speedTrapTrailer.i3d</filename>

 <size width="2.2" height="2.5" length="4"

lengthOffset="0.1" />

Chapter 7 Speed trap trailer Mod

180

 <components maxMass="1850">

 <component centerOfMass="0 0.45 0"

 solverIterationCount="10" mass="306" />

 </components>

 <schemaOverlay attacherJointPosition="0 0"

name="IMPLEMENT" />

 <mapHotspot type="TRAILER" />

</base>

The base field defines the base settings for the speed trap tool. In

this field, we reference the path to the .i3d file containing the speed trap

trailer, set a size which is used for determining the required store area

when buying the tool, and make sure it shows on the in-game map as a

trailer via the mapHotspot field. We additionally get the description of the

trailer from the appropriate translation file. We will now continue through

the file:

<wheels>

 <wheelConfigurations>

 <wheelConfiguration name="$l10n_configuration_

valueDefault" price="0"

 brand="MITAS" saveId="MITAS_DEFAULT">

 <wheels>

 <wheel filename="$data/shared/wheels/

tires/mitas/FL02/6_R9.xml"

 isLeft="true"

hasTireTracks="true"

hasParticles="true">

 <physics tipOcclusionArea

GroupId="1" restLoad="0.13"

 repr="wheelLeft"

forcePointRatio="0.15"

initialCompression="10"

Chapter 7 Speed trap trailer Mod

181

 suspTravel="0.05"

spring="21" damper="10"

yOffset="0.015"/>

 <innerRim filename="$data/shared/

wheels/rims/rimsCar.i3d"

 node="3|0" scale="0.28 0.32

0.32" offset="0.01"/>

 </wheel>

 <wheel filename="$data/shared/wheels/

tires/mitas/FL02/6_R9.xml"

 isLeft="false"

hasTireTracks="true"

hasParticles="true">

 <physics tipOcclusionAreaGroupId=

"1" restLoad="0.13"

 repr="wheelRight"

forcePointRatio="0.15"

initialCompression="10"

 suspTravel="0.05"

spring="21" damper="10"

yOffset="0.015"/>

 <innerRim filename="$data/shared/

wheels/rims/rimsCar.i3d"

 node="3|1" scale="0.28 0.32

0.32" offset="0.01"/>

 </wheel>

 </wheels>

 </wheelConfiguration>

 </wheelConfigurations>

 <rimColor material="18">SHARED_SILVER</rimColor>

</wheels>

Chapter 7 Speed trap trailer Mod

182

The wheels field contains information about the wheels of the trailer.

It references the wheel components of the physical model and sets the

relevant physics information. Let us now look at the next portion of the file:

<attachable>

 <inputAttacherJoints>

 <inputAttacherJoint node="attacherJoint"

jointType="trailer" attacherHeight="0.48" />

 </inputAttacherJoints>

 <!-- support animation if trailer is detached -->

 <support animationName="moveSupport" />

 <brake Force force="0.03" maxForce="0.15"

maxForceMass="1850"/>

</attachable>

Like in previous attachable tools, we define the attachment point

for the tool via an attachable field. We also include the moveSupport

animation if the trailer is detached via the support field.

<animations>

 <animation name="moveSupport">

 <part node="supportFeet" startTime="0.35"

endTime="0.70"

 startTrans="0.108 0.250 1"

endTrans="0.108 0.110 1" />

 </animation>

</animations>

This animation is then defined in the animations field where we

associate the supportFeet node of the model with the animation.

Chapter 7 Speed trap trailer Mod

183

<ai>

 <allowTurnBackward value="false"/>

 <turningRadiusLimitation radius="8"/>

 <agent Attachment jointNode="attacherJoint"

rotCenterWheelIndices="1 2"

 width="1.6" height="1.1" length="3.2"

lengthOffset="0.55"/>

</ai>

Following this, the ai field configures behaviors for when the tool is

being operated autonomously.

<foliageBending>

 <bendingNode minX="-0.8" maxX="0.8" minZ="-1.75"

 maxZ="0.85" yOffset="0.3" />

 <bendingNode minX="-0.15" maxX="0.15" minZ="0.85"

 maxZ="1.7" yOffset="0.3" />

</foliageBending>

The foliageBending field creates behavior for how foliage should bend

when run over by the attachment.

<weara ble wearDuration="480" workMultiplier="5"

fieldMultiplier="2"/>

<washable dirtDuration="90" washDuration="1"

 workMultiplier="3" fieldMultiplier="2"/>

The wearable and washable fields are used for calculating repair

costs and visual effects on the tool. More specifically, wearDuration and

dirtDuration define the time it takes until the vehicle is completely dirty or

worn. The workMultiplier and fieldMultiplier fields are factors that speed

up this process. The washDuration field is the time it takes to fully clean

the vehicle. The repair costs are based on the initial price, age, and the

current wear factor. Let us continue through the file:

Chapter 7 Speed trap trailer Mod

184

<speedTrap maxSpeedKmh="30" fine="1000" cooldownDuration="20">

 <rayca st node="raycastNode" maxDistance="35"

detectionRadius="2"

 numDetectionSamples="10"/>

 <flash node="flashNode" duration="0.15" />

 <sounds>

 <trap file=" sounds/speedTrap.wav" innerRadius="5.0"

outerRadius="65.0"

 fadeOut="0.1"

linkNode="speedTrapTrailer_main_

component1">

 <volume indoor="2" outdoor="4.1" />

 <pitch indoor="1.00" outdoor="1" />

 <lowpassGain indoor="0.50" outdoor="1.00" />

 </trap>

 </sounds>

</speedTrap>p>

In this section of the file, we define a custom XML element called

speedTrap. In this element, we declare custom attributes such as

maxSpeedKmh, fine, and cooldownDuration.

The maxSpeedKmh field defines the maximum speed permitted along

the road in kilometers per hour. The fine field is how much a violator

will be fined. The fine will not be paid to any user, simply deducted from

the violator’s farm. The cooldownDuration field determines how much

time there is between a vehicle being able to be fined again. Inside the

speedTrap element, we include a raycast element. A raycast is a construct

used in many game engines in which a ray is a line in space with a start

point but no fixed endpoint. With raycasts, we can get information about

intersections with the ray, making them very useful for hit detection.

We define a maximum length for our raycast by defining maxDistance,

which is set to 35 meters. A ray does not have any width, so we define

Chapter 7 Speed trap trailer Mod

185

detectionRadius to do some tricks internally to widen our hit detection.

We then assign a flash effect to the flashNode on the tool. We also include

sounds for the tool, which are defined via a sounds field like in previous

chapters.

 <i3dMappings>

 <i3dMa pping id="speedTrapTrailer_main_component1"

node="0>" />

 <i3dMapping id="speedTrapTrailer_vis" node="0>0" />

 <i3dMapping id="attacherJoint" node="0>0|0|0" />

 <i3dMapping id="supportFeet" node="0>0|0|1|0" />

 <i3dMapping id="supportCol" node="0>0|0|1|0|0" />

 <i3dMapping id="wheelLeft" node="0>0|1|0" />

 <i3dMapping id="wheelRight" node="0>0|1|1" />

 <i3dMapping id="raycastNode" node="0>0|2|0" />

 <i3dMapping id="flashNode" node="0>0|2|1" />

 </i3dMappings>

</vehicle>

Finally, we define .i3d mappings via an i3dMappings element which

references points on the tool model.

With speedTrapTrailer.xml now complete, we are ready to create the

next file, flashShader.xml. This file contains code written in the High-

Level Shader Language (HLSL) which interacts with the part of the

engine responsible for graphics rendering. You are not expected to fully

understand the code written here, but your knowledge of Lua should be

helpful in being able to follow the general work being done by the code.

Let us now explore the file’s contents:

<?xml version="1.0" encoding="utf-8"?>

<CustomShader version="5">

 <Parameters>

Chapter 7 Speed trap trailer Mod

186

 <Param eter name = "flashFactor"

target = "flashFactor" type = "float"

 defaultValue = "1" minValue = "0.0"

maxValue = "1"/>

 </Parameters>

 <UvUsages/>

 <LodLevel startDistance="0">

 <CodeInjections>

 <CodeInjection position="CONFIG_DEFINES">

 <![CDATA[

 #if defined(ALPHA_BLENDED)

// only for alpha blended materials

 #undef FOG_INSCATTERING

// only apply the fog extinction

 #undef SPECULAR

// also remove specular

 #endif

]]>

 </CodeInjection>

 <CodeInjection position = "OBJECT_

PARAMETERS">

 <![CDATA[

 float flashFactor;

]]>

 </CodeInjection>

This first section starts by specifying the shader parameters that can be

changed and set by the script. We include the parameter flashFactor which

is a float value between 0 and 1 used to determine the light level of the

flash. Following this, we use the CodeInjections field to inject two blocks

of HLSL code into the shader. The first block in this case changes the base

Chapter 7 Speed trap trailer Mod

187

configurations of the shader, while the second block defines our custom

variable. Let us continue:

<CodeInjection position="LIB_FUNCTION_VS">

 <![CDATA[

 float4x3 getBillboardMatrix(float3 centerPosition,

VS_INPUT In,

 ObjectParameters& object)

 {

 float3 pos = mul(object.modelMatrix,

float4(centerPosition, 1)).xyz;

 float3 negDirVector = normalize(pos);

 float3 upVector = float3(invViewMatrix[0][1],

invViewMatrix[1][1],

 invViewMatrix[2][1]);

 float3 sideVector = normalize(cross(negDirVector,

upVector));

 upVector = cross(sideVector, negDirVector);

 float4x3 billboardMatrix = float4x3(pos,

sideVector, upVector, negDirVector);

 return billboardMatrix;

 }

 float3 transformBillboardPoint(float3 centerPosition,

VS_INPUT In, ObjectParameters& object)

 {

 float4x3 billboardMatrix = getBillboardMatrix

(centerPosition,In,object);

 float3 pos = billboardMatrix[0];

 float3 sideVector = billboardMatrix[1];

Chapter 7 Speed trap trailer Mod

188

 float3 upVector = billboardMatrix[2];

 float3 negDirVector = billboardMatrix[3];

 return (pos + sideVector*In.position.x +

upVector*In.position.y);

}

float3 transformBillboardVector(float3 centerPosition,

float3 inputVector, VS_INPUT In, ObjectParameters& object)

{

 float4 x3 billboardMatrix = getBillboardMatrix(

centerPosition,In,object);

 float3 pos = billboardMatrix[0];

 float3 sideVector = billboardMatrix[1];

 float3 upVector = billboardMatrix[2];

 float3 negDirVector = billboardMatrix[3];

 return (sideVector*inputVector.x +

upVector*inputVector.y –

 negDirVector*inputVector.z);

}

]]>

</CodeInjection>

This section of the file injects additional HLSL code. Here, we

define custom functions for the vertex shader which is responsible for

manipulating the vertices of the mesh the material is applied to.

So you can assume that all these lines are applied on each single

vertex. We need these functions to create a billboard. A billboard in

computer games is a simple two-dimensional plane that always faces the

player’s camera. These helper functions are later used to recalculate the

position, normal, and tangent of a vertex to face the player’s camera.

Chapter 7 Speed trap trailer Mod

189

We could alternatively rotate the physical mesh in Lua with the

setRotation() function, but it is much faster creating this effect with

a shader.

We will now cover the next section of the file:

<CodeInjection position="GET_TANGENT_VS">

 <![CDATA[

 {

 return transformBillboardVector(

float3(0.0,0.0,0.0), In.tangent.xyz, In, object);

 }

]]>

</CodeInjection>

<CodeInjection position="GET_NORMAL_VS">

 <![CDATA[

 {

 return transformBillboardVector(

float3(0.0,0.0,0.0), In.normal.xyz, In, object);

 }

]]>

</CodeInjection>

<CodeInjection position="GET_POSITION_VS">

 <![CDATA[

 return transformBillboardPoint(float3(0.0,0.0,0.0),

In, object);

]]>

</CodeInjection>

<CodeInjection position="POST_GET_WORLD_POSE_VS">

 <![CDATA[

 {

 worldPosition = position;

 prevWorldPosition = worldPosition; // no motion blur

Chapter 7 Speed trap trailer Mod

190

 worldTangent = normalize(getTangent(In, object));

 worldBitangent = normalize(getBitangent(In, object));

 worldNormal = normalize(getNormal(In, object));

 }

]]>

</CodeInjection>

This section of the file begins by injecting three lines which change the

tangent, normal, and position in the vertex shader. It then injects code to

customize some data after the vertex world data has been calculated in the

vertex shader. Let us now look at the final section of the file:

<CodeInjection position="LIB_FUNCTION_FS">

 <![CDATA[

 float getDepthFade(FS_INPUT In, FS_GLOBALS globals,

ObjectParameters& object, float fadeDistance)

 {

 float screenDepth = In.vs.screenPosZ / In.vs.

screenPosW;

 float screenDepthLinear = convertDepthToEyeZ(

screenDepth);

 float sceneDepthLinear = getLinearSceneDepth(In,

globals,object);

 return saturate((sceneDepthLinear -

screenDepthLinear)/fadeDistance);

 }

]]>

</CodeInjection>

<CodeInjection position="ALPHA_FS">

 <![CDATA[

 #if defined(ALPHA_BLENDED) || defined(ALPHA_TESTED)

Chapter 7 Speed trap trailer Mod

191

 // increase emissive color, in order to enable

 // bloom post process

 float scaler = 5.0;

 // for low pec profile bloom post process is

 // disabled

 #if GPU_PROFILE < GPU_PROFILE_MEDIUM

 scaler = 1.0;

 #endif

 alpha *= scaler*object.flashFactor;

 #endif

 #if defined(ALPHA_BLENDED)

 // with high gpu profile add soft blending to

 // the contact

 // of the alpha blended mesh

 #if GPU_PROFILE >= GPU_PROFILE_HIGH

 alpha *= getDepthFade(In, globals,

object,0.1);

 #endif

 reflectingLightingScale = alpha;

 #endif

]]>

</CodeInjection>

<CodeInjection position="FINAL_POS_FS">

 <![CDATA[

 #if defined(ALPHA_BLENDED)

 oColor.a = 0.0; // enable additive blending

 #endif

]]>

 </CodeInjection>

</CodeInjections>

</LodLevel>

</CustomShader>>

Chapter 7 Speed trap trailer Mod

192

We conclude the file with additional injections. The first code injection

defines custom functions in the fragment shader (see www.khronos.

org/opengl/wiki/Fragment_Shader for more information). We then

inject code to customize the alpha value in the fragment shader. Finally,

we customize data at the end of the fragment shader with another code

injection and close off the customShader element.

We have now covered the bulk of the .xml content for this mod. We

must now include some simple translation files as we have for previous

chapters so that players who speak different languages can interact

with the mod more easily. Let us start with the contents of the English

translation file, l10n_en.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<l10n>

 <elements>

 <e k=" function_speedTrapTrailer"

v="Speed Trap Trailer"/>

 <e k=" typeDesc_speedTrapTrailer"

v="Speed Trap Trailer"/>

 </elements>

</l10n>

In this file, we only include an element which holds text for the

description and function of the tool in the shop. For both, we simply set

the text to Speed Trap Trailer.

Let us now look at l10n_de.xml which will hold the same translations

but for the German language:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<l10n>

 <elements>

 <e k=" function_speedTrapTrailer"

v="Mobile Radar-Kontrolle"/>

Chapter 7 Speed trap trailer Mod

http://www.khronos.org/opengl/wiki/Fragment_Shader
http://www.khronos.org/opengl/wiki/Fragment_Shader

193

 <e k=" typeDesc_speedTrapTrailer"

v="Radar-Kontrolle"/>

 </elements>

</l10n>

Like in the English file, we have two elements corresponding to the

description and function of the tool for the shop. That concludes all of the

.xml files needed for the mod. In the next section, we will explore the Lua

files required for the mod.

 Creating Lua Files
The first Lua file we will create is SpeedTrapEvent.Lua. Like in previous

chapters, this script will implement some new behavior for the base Event

class. Let us begin:

SpeedTrapEvent = {}

local SpeedTrapEvent_mt = Class(SpeedTrapEvent, Event)

InitEventClass(SpeedTrapEvent, "SpeedTrapEvent")

function SpeedTrapEvent.emptyNew()

 local self = Event.new(SpeedTrapEvent_mt)

 return self

end

function SpeedTrapEvent.new(vehicle)

 local self = SpeedTrapEvent.emptyNew()

 self.vehicle = vehicle

 return self

end

function SpeedTrapEvent:writeStream(streamId, connection)

 NetworkUtil.writeNodeObject(streamId, self.vehicle)

end

Chapter 7 Speed trap trailer Mod

194

function SpeedTrapEvent:readStream(streamId, connection)

 self.vehicle = NetworkUtil.readNodeObject(streamId)

 self:run(connection)

end

function SpeedTrapEvent:run(connection)

 assert(connection:getIsServer(), "SpeedTrapEvent is

server to client only")

 if self.vehicle ~= nil and

self.vehicle:getIsSynchronized() then

 self.vehicle:activateSpeedTrapFlash()

 end

end

After creating a new event from the Event base class, we create two

constructors with one that takes no arguments and one that takes a vehicle.

If a vehicle is passed to the constructor, then that vehicle is assigned to the

vehicle field of the class. We then define the writeStream() function and,

like in previous chapters, it will write updates to the network stream. The

readStream() function similarly reads updates from the network stream

like in previous chapters. In our case, we only have to sync the speed

trap trailer object that should activate its flash. Finally, the run() function

executes the event. In our case, we require that the trap flash is activated

locally only if the trailer is fully synchronized on the client side. If so, then

the activateSpeedTrapFlash() function of the specialization we will define

in SpeedTrap.Lua is called.

The SpeedTrap.Lua script defines our specialization and is the main

Lua component of the mod. Let us start covering its contents:

local modName = g_currentModName

SpeedTrap = {}

SpeedTrap.SPEC_TABLE_NAME = "spec_"..modName..".speedTrap"

Chapter 7 Speed trap trailer Mod

195

function SpeedTrap.prerequisitesPresent(specializations)

 return true

end

function SpeedTrap.registerEventListeners(vehicleType)

 Specia lizationUtil.registerEventListener(vehicleType,

"onLoad", SpeedTrap)

 Specia lizationUtil.registerEventListener(vehicleType,

"onDelete", SpeedTrap)

 Specia lizationUtil.registerEventListener(vehicleType,

"onUpdate", SpeedTrap)

end

function SpeedTrap.registerFunctions(vehicleType)

 Specia lizationUtil.registerFunction(vehicleType,

"activateSpeedTrapFlash",

 SpeedTrap.activateSpeedTrapFlash)

 Specia lizationUtil.registerFunction(vehicleType,

"onSpeedTrapRaycastCallback",

 SpeedTrap.onSpeedTrapRaycastCallback)

end

After defining the namespace for the mod, we include the default

functions like in previous chapters. This mod has no prerequisites, so we

simply return true in the prerequisitesPresent() function. Following this,

we register the onLoad(), onDelete(), and onUpdate() base functions

in the registerEventListeners() function. Lastly, we define two new

functions in registerFunctions() called activateSpeedTrapFlash() and

onSpeedTrapRaycastCallback(). We will define these functions later in this

section.

Let us continue through the script:

function SpeedTrap.initSpecialization()

 local schema = Vehicle.xmlSchema

Chapter 7 Speed trap trailer Mod

196

 schema:setXMLSpecializationType("SpeedTrap")

 schema:register(XMLValueType.NODE_INDEX,

 "vehicle.speedTrap.raycast#node",

"Raycast start node")

 schema:register(XMLValueType.FLOAT,

 "vehicle.speedTrap.raycast#maxDistance",

"Max. raycast distance")

 schema:register(XMLValueType.INT,

 "vehicle.speedTrap.raycast#detectionRadius",

 "Detection sample radius at max raycast distance")

 schema:register(XMLValueType.INT,

 "vehicle.speedTrap.raycast#numDetectionSamples",

 "Number of sample for detection")

 schema:register(XMLValueType.FLOAT,

 "vehicle.speedTrap#maxSpeedKmh",

"Max. speed in km/h")

 schema:register(XMLValueType.FLOAT,

 "vehicle.speedTrap#fine", "The fine for speeding")

 schema:register(XMLValueType.TIME,

 "vehicle.speedTrap#cooldownDuration",

"Cooldown time in seconds")

 schema:register(XMLValueType.NODE_INDEX,

 "vehicle.speedTrap.flash#node", "Flash node")

 schema:register(XMLValueType.TIME,

 "vehicle.speedTrap.flash#duration",

"Flash duration in seconds")

 SoundManager.registerSampleXMLPaths(schema,

 "vehicle.speedTrap.sounds", "trap")

 schema:setXMLSpecializationType()

end

Chapter 7 Speed trap trailer Mod

197

The initSpecialization() function works like those implemented in

previous chapters, registering all of the XML elements and attributes

associated with our mod in the script. Additionally, we register the path to

the sound for the tool. We will now continue:

function SpeedTrap:onLoad(savegame)

 local spec = self[SpeedTrap.SPEC_TABLE_NAME]

 if self.isServer then

 local rayKey = "vehicle.speedTrap.raycast"

 local node = self.xmlFile:getValue(rayKey ..

"#node", nil, self.components, self.i3dMappings)

 if node ~= nil then

 spec.raycastNode = node

 spec.maxRaycastDistance =

 self.xmlFile:getValue(rayKey ..

"#maxDistance", 25)

 spec.d etectionRadius =

self.xmlFile:getValue(rayKey ..

"#detectionRadius", 2)

 spec.numDetectionSamples =

 self.xmlFile:getValue(rayKey ..

"#numDetectionSamples", 10)

 spec.currentDetectionSample = 0

 spec.raycastCollisionMask = 2 ^ 13 -- bit 13

 -- identifies a vehicle

 spec.ignoredVehicles = {}

 spec.cooldownDuration =

 self.xmlFile:getValue("vehicle.

speedTrap#cooldownDuration", 30)

Chapter 7 Speed trap trailer Mod

198

 spec.maxSpeedKmh =

 self.xmlFile:getValue("vehicle.

speedTrap#maxSpeedKmh", 20)

 spec.f ine = self.xmlFile:getValue("vehicle.

speedTrap#fine", 500)

 else

 Logging.xmlWarning(self.xmlFile, "Trigger

node missing for speed trap!")

 end

 end

 spec.flashDuration =

 self.xmlFile:getValue("vehicle.speedTrap.

flash#duration", 0.5)

 spec.flashTimeRemaining = 0

 if self.isClient then

 spec.f lashNode = self.xmlFile:getValue(

"vehicle.speedTrap.flash#node", nil,

 self.components, self.i3dMappings)

 spec.samples = {}

 spec.samples.trap = g_soundManager:loadSample

FromXML(self.xmlFile,

 "vehicle.speedTrap.sounds", "trap",

self.baseDirectory,

 self.components, 1, AudioGroup.VEHICLE,

self.i3dMappings, self)

 end

end

The onLoad() function also works like in previous chapters. For each

field we need to define for the specialization, we get these values from

the relevant XML files. We define the raycastNode, maxRaycastDistance,

detectionRadius, numDetectionSamples, currentDetectionSample, and

Chapter 7 Speed trap trailer Mod

199

raycastCollisionMask fields for use with raycasting. Most of these fields

were previously explained in the “Creating XML Files” section. Two newly

defined fields are raycastCollisionMask and currentDetectionSample. The

currentDetectionSample field keeps track of the sample we are currently

collecting.

Because a raycast has no width, we shoot numDetectionSamples +
1 raycasts in a cone. The target of each raycast is determined using the

currentDetectionSample field. The raycastCollisionMask defines a collision

mask for detecting objects with the raycast. A collision mask is a 32-bit
unsigned integer. Two objects collide or interact if they have at least one

matching bit. This concept is used for raycasts, collisions, and triggers. You

can use the system to include or exclude objects from physical interaction.

A similar system called Object masks is also used for rendering.

Next, we define ignoredVehicles, which holds a list of vehicles that

have already been detected by the speed trap. Next, cooldownDuration

is used to determine how much time must elapse before a vehicle can be

removed from the ignoredVehicles list and be trapped again. As explained

in the previous section, the maxSpeedKmh and fine fields determine the

maximum allowed speed and the fine for speeding. The flashDuration

field sets the duration of the flash on the tool. The flashTimeRemaining

is used internally to track how much time there is remaining for the flash

animation. If the specialization is being run on the client, then we include

the flashNode field as well as a table for samples called samples. In the

samples table, we also load the trap sound under the trap index. Let us

now continue through the script:

function SpeedTrap:onDelete()

 local spec = self[SpeedTrap.SPEC_TABLE_NAME]

 if self.isClient then

 g_soundManager:deleteSamples(spec.samples)

 end

end

Chapter 7 Speed trap trailer Mod

200

In the onDelete() function, we simply delete the recorded samples if we

are on the client:

function SpeedTrap:onUpdate(dt, isActiveForInput,

 isActiveForInputIgnoreSelection, isSelected)

 local spec = self[SpeedTrap.SPEC_TABLE_NAME]

 if self.isServer and

 (self.getAttacherVehicle == nil or

self:getAttacherVehicle() == nil) then

 for vehicle, lastTrappedTime in pairs(spec.

ignoredVehicles) do

 if g_time - lastTrappedTime > spec.

cooldownDuration then

 -- remove vehicle from ignore list again

 spec.ignoredVehicles[vehicle] = nil

 end

 end

 local x, y, z = getWorldTranslation(spec.

raycastNode)

 local tx = 0

 local ty = 0

 local tz = spec.maxRaycastDistance

 if spec.currentDetectionSample > 0 then

 local factor = spec.currentDetectionSample

/ spec.numDetectionSamples

 tx = spec.detectionRadius * math.cos(factor *

2 * math.pi)

 ty = spec.detectionRadius * math.sin(factor *

2 * math.pi)

 end

Chapter 7 Speed trap trailer Mod

201

 tx, ty, tz = localToWorld(spec.raycastNode,

tx, ty, tz)

 local dirX, dirY, dirZ = MathUtil.

vector3Normalize(tx - x, ty - y, tz - z)

 raycas tAll(x, y, z, dirX, dirY, dirZ,

"onSpeedTrapRaycastCallback",

 spec.maxRaycastDistance, self, spec.

raycastCollisionMask, false, true)

 spec.currentDetectionSample = spec.

currentDetectionSample + 1

 if spec.currentDetectionSample > spec.

numDetectionSamples then

 spec.currentDetectionSample = 0

 end

 end

 if self.isClient then

 if spec.flashNode ~= nil and spec.

flashTimeRemaining > 0 then

 spec.flashTimeRemaining = math.max(spec.

flashTimeRemaining - dt, 0)

 local factor = spec.flashTimeRemaining /

spec.flashDuration

 local alpha = math.sin(factor * math.pi)

 setShaderParameter(spec.flashNode,

"flashFactor", alpha, 0, 0, 0, false)

 end

 end

 self:raiseActive()

end

Chapter 7 Speed trap trailer Mod

202

The onUpdate() function is responsible for frequent updates of our

tool as well as raycasting. Client physics are not super accurate as they are

interpolated based on the data received from the server. Therefore, we do

vehicle detection on the server only and then send an event to the clients

to show the flash animation if we detect speeding.

If the specialization is being run on the server and the tool is not

attached to a vehicle, then we start by iterating over the ignoredVehicles

list. If any of the vehicles have been in the list for longer than

cooldownDuration value, then they are removed from the list so that they

may be trapped again.

Next, we get the position of the raycast node and calculate the direction

our raycast should go. We want the raycast to come out of the forward-

facing direction of the raycast node. The direction is a 3D vector that is

a unit vector, meaning its magnitude is 1. This is important as having a

vector with a magnitude not equal to one can cause odd behavior for our

raycast, particularly in the distance we want to cast.

We use sine and cosine functions to calculate the target point of the

vector. If the currentDetectionSample field is greater than 0, the target

point should be on a circle around the raycastNode with the given

detectionRadius. After the vector is normalized, we shoot the raycast at

the specified position, in the specified direction, for the distance set by

maxRaycastDistance.

We then increment currentDetectionSample by 1 and reset it to 0 if it

exceeds the numDetectionSamples value. Continuing through the function,

if the specialization is being run on the client, we need to update the visual

of the flash. We use the flashTimeRemaining field to record how far along

in the animation we are, then using a sine wave, we can create an effect of

the flash smoothly transitioning between off and on. After calculating the

flashFactor for the flash, we set it via the internal setShaderParameter()

function which passes the value to our custom shader.

Chapter 7 Speed trap trailer Mod

203

Lastly, we call raiseActive() to call onUpdate() for the next cycle. Let us

now cover the final section of the script:

function SpeedTrap:activateSpeedTrapFlash()

 local spec = self[SpeedTrap.SPEC_TABLE_NAME]

 g_soundManager:playSample(spec.samples.trap)

 spec.flashTimeRemaining = spec.flashDuration

end

In this section, we define our custom functions

activateSpeedTrapFlash() and onSpeedTrapRaycastCallback(). The

activateSpeedTrapFlash() function is called when a violating vehicle is

detected. It simply plays the trap sound and sets the flashTimeRemaining

field to flashDuration to begin a new flash animation.

function SpeedTrap:onSpeedTrapRaycastCallback(hitActorId, x, y,

z, distance, nx, ny, nz, subShapeIndex, shapeId, isLast)

 local spec = self[SpeedTrap.SPEC_TABLE_NAME]

 local vehicle =

g_currentMission:getNodeObject(hitActorId)

 if vehicle ~= nil and spec.ignoredVehicles[vehicle] ==

nil then

 local isActiveDrivable = vehicle.getIsControlled

~= nil and vehicle:getIsControlled()

 if isActiveDrivable then

 local speedKmh = vehicle:getLastSpeed()

 if speedKmh > spec.maxSpeedKmh then

 local farmId = vehicle:getOwnerFarmId()

 g_currentMission:addMoney(-spec.fine,

farmId, MoneyType.OTHER, true, true)

Chapter 7 Speed trap trailer Mod

204

 spec.ignoredVehicles[vehicle] = g_time

 g_server:broadcastEvent(SpeedTrapEvent.

new(self), true)

 end

 end

 end

 return true

end

The onSpeedTrapRaycastCallback() function is passed the entity ID

of a hit vehicle’s collision shape. If the vehicle exists and is not contained

in the ignoredVehicles list, then we check that the vehicle is driveable

and being actively driven. If so, then we get the speed of the vehicle via

the getLastSpeed() function. If the last speed of the vehicle exceeds the

value of maxSpeedKmh, then we get the farm ID of the driver and remove

the fine amount from their balance. We then add their vehicle to the

ignoredVehicles list and broadcast the event to the network.

This concludes all of the programming for the mod. Take a moment

to review what you have accomplished and the new concepts you have

learned.

 Testing the Mod
With all of the XML and Lua files for the mod created, we are ready to

begin testing. Start by running the game without debugging from the

Debug application menu of the GIANTS Studio. After you begin a new

game on the map of your choice with your mod selected, buy the trailer

and buy a tractor. Attach the trailer to the tractor and drive to a road. Place

the trailer so its camera is facing oncoming traffic and detach it from the

tractor. Next, drive your tractor at full speed toward the trap, and you

should be fined for exceeding the speed limit.

Chapter 7 Speed trap trailer Mod

205

 Summary
In this chapter, you learned how to use raycasting to create a tool that

gauges the speed of passing vehicles and charges a fine accordingly. You

also saw how the mods can change rendering behavior by injecting HLSL

code into the engine.

In the next chapter, you will learn to create a mileage counter to record

how far a vehicle has been driven and sync these values with elements of a

player’s user interface.

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 7 Speed trap trailer Mod

http://creativecommons.org/licenses/by/4.0/

207© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3_8

CHAPTER 8

Mileage Counter
HUD Mod
In this chapter, you will create a mod that displays a mileage counter user

interface (UI) element to players when they are seated in a vehicle (see

Figure 8-1). This will teach you to not only create UI elements and the

networking that is required to update them but also how to add additional

functionality to existing specializations and systems. Let us begin!

Figure 8-1. Track your mileage with a UI element next to the
speedometer

https://doi.org/10.1007/979-8-8688-0060-3_8

208

 Technical Requirements
Like the previous chapter, you will be working entirely in the GIANTS

Editor and Studio and must meet the requirements mentioned in the

“Technical Requirements” section of Chapter 2, “Getting Started with the

GIANTS Editor.” Make sure you are always using the most recent version of

the GIANTS Editor. This will ensure that you are able to take advantage of

any new features. You can find all the code and assets used in this chapter

in the book’s code repository on the GDN at the following link:

https://gdn.giants-software.com/lp/scriptingBook.php

 Creating Mod Scripts
This section will explore all of the scripts necessary for this mod. We will

start by looking at the .xml files and then cover the .lua files. Please see

the “Preparing the Mod Folder Structure” section of Chapter 5, “Making

a Diner with a Rotating Sign,” on how to set up a mod project and use the

sample files provided on GDN.

 Creating XML Files
We start by defining the modDesc.xml file for the mod. We do not introduce

any new fields for the file in this mod, so you should be familiar with each

of them. Let us now look at the contents of the file:

Chapter 8 Mileage Counter huD MoD

https://gdn.giants-software.com/lp/scriptingBook.php

209

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<modDesc descVersion="72">

 <Author>GIANTS Software</author>

 <version>1.0.0.0</version>

 <multiplayer supported="true" />

 <title>

 <en>Sample Mod - Mileage Counter</en>

 </title>

 <description>

 <en>A sample mod</en>

 </description>

 <iconFilename>icon_mileageCounter.png</iconFilename>

 <extraSourceFiles>

 <sourc eFile filename=

"scripts/InjectSpecialization.lua"/>

 <sourceFile filename="scripts/MileageDisplay.lua"/>

 <sourc eFile filename=

"scripts/MileageHUDExtension.lua"/>

 </extraSourceFiles>

 <specializations>

 <speci alization name="mileageCounter"

className="MileageCounter"

 filename="scripts/MileageCounter.lua" />

 </specializations>

</modDesc>

In the extraSourceFiles field, we include InjectSpecialization.lua,

MileageDisplay.lua, and MileageHUDExtension.lua. These three files

are in the scripts subdirectory of the mod directory. In the specialization

field, we include the mileageCounter specialization which will use the

MileageCounter.lua file we will create in the next section.

Chapter 8 Mileage Counter huD MoD

210

 Creating Lua Files
The first Lua file we will create is InjectSpecialization.lua. This script

is used to add the mileage counter to vehicles that use the driveable

specialization. Let us explore the file’s contents:

local modName = g_currentModName

TypeManager.finalizeTypes = Utils.prependedFunction(

 TypeManager.finalizeTypes,

 function(self, ...)

 if self.typeName == "vehicle" then

 for typeName, typeEntry in

pairs(self:getTypes()) do

 for name, _ in pairs(typeEntry.

specializationsByName) do

 if name == "motorized" then

 self:addSpecialization(

typeName,

modName..".mileageCounter")

 break

 end

 end

 end

 end

 end

)

We start by prepending a new function to the finalizeTypes() function

of the TypeManager class. To prepend a function to another function, is to

have the function we are prepending be called first whenever the function

we are prepending to is called. The function we are prepending takes self

as an argument, which refers to an instance of some class. There are two

Chapter 8 Mileage Counter huD MoD

211

typeManagers in the game: one is responsible for placeable types and the

other for vehicle types. We use self.typeName to identify the manager and

ensure we are working with one of the vehicle type – that is, the object

we are interacting with is a vehicle. If so, we will loop over all registered

vehicle types by using the getTypes() method of self. For each vehicle

type, we will check if it uses the motorized specialization. If the vehicle

is motorized, then we will add the mileageCounter specialization to the

vehicle via the addSpecialization() method.

Next, we will create MileageCounter.lua. This file is the core Lua script

of the mod. Let us now cover its contents:

local modName = g_currentModName

MileageCounter = {}

MileageCounter.SPEC_TABLE_NAME = "spec_"..

modName..".mileageCounter"

function MileageCounter.prerequisitesPresent(specializations)

 return true

end

function MileageCounter.registerEventListeners(vehicleType)

 Specia lizationUtil.registerEventListener(vehicleType,

"onLoad", MileageCounter)

 SpecializationUtil.registerEventListener(vehicleType,

 "onReadStream", MileageCounter)

 SpecializationUtil.registerEventListener(vehicleType,

 "onWriteStream", MileageCounter)

 SpecializationUtil.registerEventListener(vehicleType,

 "onReadUpdateStream", MileageCounter)

 SpecializationUtil.registerEventListener(vehicleType,

 "onWriteUpdateStream", MileageCounter)

 SpecializationUtil.registerEventListener(vehicleType,

 "onUpdate", MileageCounter)

end

Chapter 8 Mileage Counter huD MoD

212

function MileageCounter.registerFunctions(vehicleType)

 SpecializationUtil.registerFunction(vehicleType,

 "getDrivenDistance", MileageCounter.

getDrivenDistance)

end

function MileageCounter.initSpecialization()

 local schemaSavegame = Vehicle.xmlSchemaSavegame

 schemaSavegame:register(XMLValueType.FLOAT,

 "vehicles.vehicle(?)."..modName..".mileageCounter

#drivenDistance",

 "Driven distance in meters")

end

Like in previous mods, there are some functions we must define for every

specialization we create. After defining the namespace for the specialization,

we include the prerequisitesPresent() function. This mod does not depend on

any other specializations, so we only need to return true.

Next, we add the registerEventListeners() function which will

create the event listeners associated with the vehicle specialization. In

registerFunctions(), we register a custom getDrivenDistance() function,

which we will define later in this file. Lastly, in the initSpecialization()

function, we register the path to the saved value for the mileage counter.

For more details on required functions of specializations, refer to the

“Creating Lua Files” section of Chapter 6, “Rotating Mower Mod,” where

we cover RotateMower.lua. We will now continue through the file:

function MileageCounter:onLoad(savegame)

 local spec = self[MileageCounter.SPEC_TABLE_NAME]

 spec.drivenDistance = 0

 if savegame ~= nil then

 spec.drivenDistance = savegame.xmlFile:getValue(

 savegame.key .. "."..modName..".mileageCounte

r#drivenDistance", 0)

Chapter 8 Mileage Counter huD MoD

213

 end

 spec.drivenDistanceNetworkThreshold = 10

 spec.drivenDistanceSent = spec.drivenDistance

 spec.dirtyFlag = self:getNextDirtyFlag()

end

function MileageCounter:saveToXMLFile(xmlFile, key,

usedModNames)

 local spec = self[MileageCounter.SPEC_TABLE_NAME]

 xmlFile:setValue(key .. "#drivenDistance",

spec.drivenDistance)

end

In the onLoad() function, we set the value for the drivenDistance field

of the class. If the player is joining a game they have saved previously,

then the drivenDistance field is set to the saved value; otherwise, it is set

to 0. The drivenDistanceNetworkThreshold field specifies the distance the

driven distance must change before a signal to update the distance display

is sent to the client. In the HUD, we display the distance in kilometers

with 100 meters of precision; thus, the threshold needs to be 10 meters

because of rounding in the display. The drivenDistanceSent field records

the value of drivenDistance when the counter was last updated and is used

to determine whether an update should be sent to the client. Lastly, the

dirtyFlag field is used by the network to determine if the specialization is

in need of an update. Next, we create the saveToXML() function, which will

save the value of drivenDistance to the saved .xml file.

function MileageCounter:onReadStream(streamId, connection)

 local spec = self[MileageCounter.SPEC_TABLE_NAME]

 spec.drivenDistance = streamReadInt32(streamId)

end

function MileageCounter:onWriteStream(streamId, connection)

 streamWriteInt32(streamId, spec.drivenDistance)

end

Chapter 8 Mileage Counter huD MoD

214

The onReadStream() function is used to synchronize the value of

drivenDistance with new players that join the game. The onWriteStream()

function is called on the server if a player joins the game to sync the

drivenDistance value.

function MileageCounter:onReadUpdateStream(streamId, timestamp,

connection)

 if connection:getIsServer() then

 if streamReadBool(streamId) then

 local spec = self[MileageCounter.SPEC_

TABLE_NAME]

 spec.drivenDistance = streamReadInt32(streamId)

 end

 end

end

function MileageCounter:onWriteUpdateStream(streamId,

connection, dirtyMask)

 if not connection:getIsServer() then

 local spec = self[MileageCounter.SPEC_TABLE_NAME]

 if streamWriteBool(streamId, bitAND(dirtyMask,

spec.dirtyFlag) ~= 0) then

 streamWriteInt32(streamId,

spec.drivenDistance)

 end

 end

end

The onReadUpdateStream() function is used by the client to

read values written to the stream and update the driveDistance field

accordingly. The onWriteUpdateStream() function is used by the server to

tell the client the new value for the drivenDistance field only if the mileage

counter has changed.

Chapter 8 Mileage Counter huD MoD

215

Let us now continue through the file:

function MileageCounter:onUpdate(dt, isActiveForInput,

 isActiveForInputIgnoreSelection, isSelected)

 local spec = self[MileageCounter.SPEC_TABLE_NAME]

 if self:getIsMotorStarted() then

 if self.isServer then

 if self.lastMovedDistance > 0.001 then

 spec.drivenDistance = spec.

drivenDistance + self.lastMovedDistance

 if math.abs(spec.drivenDistance -

spec.drivenDistanceSent) >

 spec.drivenDistanceNetworkThreshold then

 self:raiseDirtyFlags(spec.

dirtyFlag)

 spec.drivenDistanceSent = spec.

drivenDistance

 end

 end

 end

 end

end

The onUpdate() function will update the state of the mileage

counter. We first check that the vehicle is turned on, and then if

the vehicle has moved more than 0.001 meters, we increase the

drivenDistance field by that distance. If the difference between the

drivenDistance and drivenDistanceSent fields is greater than the

drivenDistanceNetworkThreshold value, then the dirtyFlag is raised to

mark the vehicle for a network update in the next network package. We

also set drivenDistanceSent to drivenDistance so we do not send multiple

updates.

Chapter 8 Mileage Counter huD MoD

216

Note that we have this system in place as sending an update signal

whenever the vehicle moves in the slightest would be a waste of resources

and risk overloading the network.

function MileageCounter:getDrivenDistance()

 -- first get the specialization namespace

 local spec = self[MileageCounter.SPEC_TABLE_NAME]

 return spec.drivenDistance

end

Finally, the getDrivenDistance() function simply returns the value of

the drivenDistance field.

The next script we will create is MileageDisplay.lua. This script is

responsible for creating and managing the actual HUD UI element which

will display the driven distance to the player. Let us now look at the script:

local modDirectory = g_currentModDirectory

MileageDisplay = {}

local MileageDisplay_mt = Class(MileageDisplay,

HUDDisplayElement)

function MileageDisplay.new()

 local backgroundOverlay = MileageDisplay.

createBackground()

 local self = MileageDisplay:superClass().

new(backgroundOverlay,

 nil, MileageDisplay_mt)

 self.vehicle = nil

 self:applyValues(1)

 return self

end

Chapter 8 Mileage Counter huD MoD

217

We begin by creating the constructor for the class, MileageDisplay.

new(). The constructor will create a background element, create a

HUDDisplayElement from the background, and apply a default UI scale

value of 1. We create the background by calling the createBackground()

function, which we will define later in the script.

function MileageDisplay:setVehicle(vehicle)

 if vehicle ~= nil and

vehicle.getDrivenDistance == nil then

 vehicle = nil

 end

 self.vehicle = vehicle

end

Next, the setVehicle() function will set the vehicle field of the class to the

passed vehicle reference.

function MileageDisplay:draw()

 if self.vehicle == nil then

 return

 end

 MileageDisplay:superClass().draw(self)

 local drivenDistance = self.vehicle:getDrivenDistance()

 local distanceInKM = drivenDistance / 1000

 distanceInKM = distanceInKM % 999999.9

 local distance = g_i18n:getDistance(distanceInKM)

 local unit = g_i18n:getMeasuringUnit()

 local textBG = string.format("%08.1f %s", distance, unit)

 local text = string.format("%.1f %s", distance, unit)

 local textColor = MileageDisplay.COLOR.TEXT

 local textColorBG = MileageDisplay.COLOR.TEXT_BACKGROUND

 local textSize = self.textSize

 local posX, posY = self:getPosition()

Chapter 8 Mileage Counter huD MoD

218

 posX = posX + self.textOffsetX

 posY = posY + self.textOffsetY

 setTextBold(false)

 setTextAlignment(RenderText.ALIGN_RIGHT)

 setTex tColor(textColorBG[1], textColorBG[2],

textColorBG[3], textColorBG[4])

 renderText(posX, posY, textSize, textBG)

 setTex tColor(textColor[1], textColor[2], textColor[3],

textColor[4])

 renderText(posX, posY, textSize, text)

 setTextAlignment(RenderText.ALIGN_LEFT)

 setTextColor(1, 1, 1, 1)

end

The draw() method is used to “draw” the mileage display. That is, this

function will render the UI element and set its contents such as text. After

rendering the element via the draw() function of the overlay’s superclass, we

retrieve the drivenDistance value via the getDrivenDistance() function we

defined earlier. The drivenDistance value is in meters, and we want the mileage

counter to display in kilometers, so we must simply divide by 1000. The largest

value we want to display on the mileage counter is 999999.9, so using a modulo

operation, it will flip over back to 0 just like a real-life odometer!

Because not everyone in the world uses the metric system, we will use

the il8n utility to convert the value to the appropriate unit of kilometers or

miles and get the corresponding abbreviations (km or mi).

Next, we format these values in a string before updating the element’s

text. Now we have all of the information to render on the screen.

We first calculate the x and y positions on the screen. We then disable

the bold text rendering mode with setTextBold(false). Our mileage counter

display should be right aligned, so we set the global text rendering

alignment to RenderText.ALIGN_RIGHT. Before rendering, we set the

correct text color for the background text.

Chapter 8 Mileage Counter huD MoD

219

We can now render the background text. The text is used to always

show eight digits. So, if our mileage counter is 100 miles, we render the text

with five leading zeros. After rendering the background, we need to set the

text color for the foreground and render the text.

Finally, we need to reset our changes to the global text rendering

(alignment, color) to make sure that our changes do not affect other text

rendering scripts. Let us continue through the program:

function MileageDisplay:setScale(uiScale)

 MileageDisplay:superClass().setScale(self, uiScale,

uiScale)

 local posX, posY =

MileageDisplay.getBackgroundPosition(uiScale)

 self:setPosition(posX, posY)

 self:applyValues(uiScale)

end

function MileageDisplay:applyValues(uiScale)

 local textOffsetX, textOffsetY =

 getNormalizedScreenValues(unpack(MileageDisplay.

POSITION.TEXT_OFFSET))

 local _, textSize = getNormalizedScreenValues(0,

MileageDisplay.SIZE.TEXT)

 self.textOffsetX = textOffsetX*uiScale

 self.textOffsetY = textOffsetY*uiScale

 self.textSize = textSize*uiScale

end

The setScale() method will scale the mileage counter element as a

whole and adjust its position to fit different screens and devices. This

function then calls applyValues() which will adjust the scale and offset of

the text element within the background.

Chapter 8 Mileage Counter huD MoD

220

function MileageDisplay.getBackgroundPosition(uiScale)

 local width, _ = getNormalizedScreenValues(unpack(Mileage

Display.SIZE.SELF))

 local offsetX, offsetY =

 getNormalizedScreenValues(unpack(MileageDisplay.

POSITION.OFFSET))

 local posX = 1 - width*uiScale + offsetX*uiScale

 local posY = offsetY*uiScale

 return posX, posY

end

Next, we include the getBackgroundPosition() function which will

return the absolute position of the mileage counter element in pixels. Note

that it accounts for the current uiScale value.

function MileageDisplay.createBackground()

 local posX, posY =

MileageDisplay.getBackgroundPosition(1)

 local width, height =

 getNormalizedScreenValues(unpack(MileageDisplay.

SIZE.SELF))

 local filename = Utils.getFilename(

"hud/mileageCounterBackground.png",

 modDirectory)

 local overlay = Overlay.new(filename, posX, posY,

width, height)

 return overlay

end

MileageDisplay.SIZE = {

 SELF = {128, 32},

 TEXT = 17

}

Chapter 8 Mileage Counter huD MoD

221

MileageDisplay.POSITION = {

 OFFSET = {-35, 280},

 TEXT_OFFSET = {115, 10}

}

MileageDisplay.COLOR = {

 TEXT = {1, 1, 1, 1},

 TEXT_BACKGROUND = {0.15, 0.15, 0.15, 1}

}

The last function we define is createBackground() which uses the

background image in the hud subdirectory of our mod and creates a new

overlay instance, which it then returns.

Finally, we set an initial size, position, and color for the text

background and text element.

The last script is MileageHUDExtension.lua. This program will add

our mileage display UI element to the game’s interface. Let us look at its

contents:

HUD.createDisplayComponents =

 Utils.appendedFunction(HUD.createDisplayComponents,

function(self, uiScale)

 self.mileageDisplay = MileageDisplay.new()

 self.mileageDisplay:setScale(uiScale)

 table.insert(self.displayComponents, self.

mileageDisplay)

 end)

HUD.drawControlledEntityHUD =

 Utils.appendedFunction(HUD.drawControlledEntityHUD,

function(self)

 if self.isVisible then

 self.mileageDisplay:draw()

 end

Chapter 8 Mileage Counter huD MoD

222

 end)

HUD.se tControlledVehicle = Utils.appendedFunction(

HUD.setControlledVehicle,

 function(self, vehicle)

 self.mileageDisplay:setVehicle(vehicle)

 end)

In this script, we append three new functions to existing internal

HUD system functions. The first we define is appended to the

createDisplayComponents() function of the HUD. In the new function,

we call the constructor for the mileage display, set its scale to the current

uiScale value, and insert the display into the UI components currently

displayed.

Next, we append a function onto the drawControlledEntityHUD()

function of the HUD. This function is responsible for drawing HUD

elements, and the function we append will call the draw() function we

defined earlier for the mileage counter.

Lastly, we append a new function to the setControlledVehicle()

function of the HUD. As the name implies, this function is used to

associate a vehicle with a HUD element. The function we append will call

the setVehicle() function of the mileage counter we defined earlier, passing

along the vehicle reference.

You have now finished creating all of the scripts for the mod. You

should take some time to do a high-level review of everything we have

implemented in this chapter and what you have learned from it.

 Testing the Mod
We will follow the testing procedure from the previous chapter. From

the GIANTS Studio, you can run the game without debugging from the

Debug application menu. After you begin a new game on the map of your

Chapter 8 Mileage Counter huD MoD

223

choice, you should open the vehicle shop. After spawning any motorized

vehicle, sit in it, and you should see the mileage counter displayed to you.

If everything is working, the mileage reading should increase as you drive

and be displayed in the units of your preference.

 Summary
In this chapter, you created a mileage counter that displays the distance

that has been driven by a motorized vehicle to players. This mod taught

you how to create UI elements and have them use existing systems as well

as injecting additional functionality into existing specializations.

In the next chapter, you will work on another UI-oriented mod where

players will be able to spawn bales of different shapes and types.

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 8 Mileage Counter huD MoD

http://creativecommons.org/licenses/by/4.0/

225© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3_9

CHAPTER 9

Multibale
Spawner Mod
In this chapter, we will be creating a mod that allows players to spawn

bales of shapes and types specified by the player (see Figure 9-1). You will

work to tie GUI elements into your Lua programs to create new objects the

player can interact with on their farm. Let’s jump into it!

Figure 9-1. Spawn bales through a new GUI menu

https://doi.org/10.1007/979-8-8688-0060-3_9

226

 Technical Requirements
Like the previous chapter, you will be working entirely in the GIANTS

Editor and Studio and must meet the requirements mentioned in the

“Technical Requirements” section of Chapter 2, “Getting Started with the

GIANTS Editor.” Make sure you are always using the most recent version of

the GIANTS Editor. This will ensure that you are able to take advantage of

any new features. You can find all the code and assets used in this chapter

in the book’s code repository on the GDN at the following link:

https://gdn.giants-software.com/lp/scriptingBook.php

 Creating Mod Scripts
This section will explore all of the scripts necessary for this mod. We will

start by looking at the .xml files and then cover the .lua files. Please see

the “Preparing the Mod Folder Structure” section of Chapter 5, “Making

a Diner with a Rotating Sign,” on how to set up a mod project and use the

sample files provided on GDN.

 Creating XML Files
The first step of making our mod is creating the modDesc.xml file. Let us

now cover its contents:

Chapter 9 Multibale Spawner Mod

https://gdn.giants-software.com/lp/scriptingBook.php

227

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<modDesc descVersion="72">

 <Author>GIANTS Software</author>

 <version>1.0.0.0</version>

 <multiplayer supported="true" />

 <title>

 <en>Sample Mod - Multi Bale Spawner</en>

 </title>

 <description>

 <en>A sample mod</en>

 </description>

 <iconFilename>icon_multiBaleSpawner.png</iconFilename>

 <extraSourceFiles>

 <sourc eFile

filename="scripts/AdditionalGuiProfiles.lua"/>

 <sourc eFile

filename="scripts/MultiBaleSpawnerUtil.lua"/>

 <sourc eFile

filename="scripts/MultiBaleSpawnerScreen.lua"/>

 <sourc eFile

filename="scripts/events/MultiBaleSpawner

Event.lua"/>

 <sourc eFile

filename="scripts/PlayerExtension.lua"/>

 </extraSourceFiles>

 <actions>

 <actio n name="OPEN_MULTI_BALE_SPAWNER"

axisType="HALF" />

 </actions>

Chapter 9 Multibale Spawner Mod

228

 <inputBinding>

 <actionBinding action="OPEN_MULTI_BALE_SPAWNER">

 <bindi ng device="KB_MOUSE_DEFAULT"

input="KEY_b" />

 </actionBinding>

 </inputBinding>

 <l10n filenamePrefix="l10n/l10n" />

</modDesc>

After defining the basic information about our mod, we include five

source files in the extraSourceFiles field. These scripts will be created in the

following “Creating Lua Files” section.

We also define a new action in the actions field called OPEN_MULTI_

BALE_SPAWNER and mark it as a HALF axis. This action will be used by

the player to open the GUI menu they will use to make selections and

spawn bales. Then, via the inputBinding field, we bind the event to the

B key on the keyboard.

Lastly, we create a reference for translation files in the l10n field.

The next file we need to create is guiProfiles.xml. The purpose of the

file is to define the appearance of the GUI menu. Let us now look at its

contents:

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<GUIProfiles>

 <Profile name="baleSpawnerBox" extends="baseReference"

 with="anchorTopCenter">

 <Value name="imageColor" value="0 0 0 0" />

 <Value name="size" value="1258px 698px"/>

 <Value name="position" value="0px 0px"/>

 <Value name="fitFlowToElements" value="true"/>

 <Value name="flowDirection" value="vertical" />

 </Profile>

Chapter 9 Multibale Spawner Mod

229

 <Profile name="baleIcon" extends="baseIcon">

 <Value name="imageUVs"

value="384px 96px 48px 48px" />

 </Profile>

 <Profile nam e="multiTextOptionBaleSpawner"

extends="multiTextOption">

 <Value name="margin" value="0 12px 0 12px"/>

 <Value name="size" value="1258px 48px"/>

 </Profile>

 <Profile nam e="multiTextOptionLeftBaleSpawner"

extends="multiTextOptionLeft"

 with="anchorMiddleLeft">

 <Value name="position" value="300px 0px" />

 </Profile>

 <Profile name="multiTextOptionRightBaleSpawner"

 extends="multiTextOptionRight"

with="anchorMiddleLeft">

 <Value name="position" value="700px 0" />

 </Profile>

 <Profile name="multiTextOptionTextBaleSpawner"

 extends="multiTextOptionText"

with="anchorMiddleLeft">

 <Value name="position" value="350px 0px" />

 <Value name="size" value="350px 48px"/>

 <Value name="textSize" value="20px"/>

 <Value name="textMaxWidth" value="340px" />

 <Value name="textAlignment" value="center"/>

 </Profile>

Chapter 9 Multibale Spawner Mod

230

 <Profile nam e="multiTextOptionBgBaleSpawner"

extends="multiTextOptionBg"

 with="anchorMiddleLeft">

 <Value name="size" value="352px 48px" />

 <Value name="position" value="348px 0" />

 </Profile>

 <Profile nam e="multiTextOptionTitleBaleSpawner"

extends="textDefault"

 with="anchorMiddleLeft">

 <Value name="textSize" value="20px" />

 <Value name="textMaxWidth" value="400px" />

 <Value name="size" value="0 48px" />

 <Value name="textMaxNumLines" value="2" />

 <Value name="textVerticalAlignment"

value="middle" />

 <Value name="textAutoWidth" value="true" />

 </Profile>

</GUIProfiles>

The file consists of a GUIProfiles element. The profile elements are

used to define some basic settings of the GUI element. Functionally, they

are similar to CSS in web development. The GUI’s xml file defines the
structure, and the profiles define the look and feel of the UI.

Some elements of this GUI make use of predefined profiles used already

in the base game. Some other elements use custom styles – these styles are

defined by this file.

GUIProfiles also support inheritance and traits so we can easily reuse

existing profiles from the base game and only change a few configurations

relating to their style for use with our mod.

You should be made aware that some traits like anchorMiddleLeft or

anchorTopCenter are used in the with attribute. They simply define the

Chapter 9 Multibale Spawner Mod

231

alignment of the objects within the parent space. Most of the other fields

and attributes for the profiles are intuitive.

Let us now cover the contents of multiBaleSpawnerScreen.xml:

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<GUI onOpen="onOpen" onClose="onClose" onCreate="onCreate">

 <GuiEl ement type="dynamicFadedBitmap"

profile="uiFullBlurBG"/>

 <GuiElement type="bitmap" profile="bgVignette"/>

 <GuiElement type="bitmap" profile="bgGlow" />

 <GuiEl ement type="bitmap"

profile="uiElementContainerFullScreen">

 <GuiElement type="bitmap"

profile="uiElementCenter">

 <GuiElement type="bitmap"

profile="headerBoxDocked" >

 <GuiElement type="bitmap"

profile="baleIcon"/>

 <GuiElement

type="text" profile="headerText"

 text="$l10n_multiBaleSpawner_ui_

title"/>

 </GuiElement>

 <GuiElement type="boxLayout"

profile="baleSpawnerBox">

 <GuiElement type="multiTextOption"

 profile="multiTextOptionBale

Spawner" onClick="onClickFillType"

 id="fillTypes" focusInit="onOpen">

 <GuiElement type="button" profile=

"multiTextOptionLeftBaleSpawner" />

Chapter 9 Multibale Spawner Mod

232

 <GuiElement type="button" profile=

"multiTextOptionRightBaleSpawner"/>

 <GuiElement type="text" profile=

"multiTextOptionTextBaleSpawner" />

 <GuiElement type="text" profile=

"multiTextOptionTitleBaleSpawner"

 text="$l10n_multiBaleSpawner_ui_

fillType"/>

 <GuiElement type="bitmap" profile=

"multiTextOptionBgBaleSpawner" />

 </GuiElement>

 <GuiElement type="multiTextOption" profile=

"multiTextOptionBaleSpawner"

 onClick="onClickBaleType"

id="baleTypes">

 <GuiElement type="button" profile=

"multiTextOptionLeftBaleSpawner" />

 <GuiElement type="button" profile=

"multiTextOptionRightBaleSpawner"/>

 <GuiElement type="text" profile=

"multiTextOptionTextBaleSpawner" />

 <GuiElement type="text" profile=

"multiTextOptionTitleBaleSpawner"

 text="$l10n_multiBaleSpawner_ui_

baleType"/>

 <GuiElement type="bitmap" profile=

"multiTextOptionBgBaleSpawner" />

 </GuiElement>

 <GuiElement type="multiTextOption" profile=

"multiTextOptionBaleSpawner"

 id="baleSizes">

Chapter 9 Multibale Spawner Mod

233

 <GuiElement type="button" profile=

"multiTextOptionLeftBaleSpawner" />

 <GuiElement type="button"

 profile="multiTextOptionRight

BaleSpawner"/>

 <GuiElement type="text" profile=

"multiTextOptionTextBaleSpawner" />

 <GuiElement type="text" profile=

"multiTextOptionTitleBaleSpawner"

 text="$l10n_multiBaleSpawner_ui_

baleSize"/>

 <GuiElement type="bitmap" profile=

"multiTextOptionBgBaleSpawner" />

 </GuiElement>

 <GuiElement type="multiTextOption" profile=

"multiTextOptionBaleSpawner"

 id="numBales">

 <GuiElement type="button" profile=

"multiTextOptionLeftBaleSpawner" />

 <GuiElement type="button" profile=

"multiTextOptionRightBaleSpawner"/>

 <GuiElement type="text" profile=

"multiTextOptionTextBaleSpawner" />

 <GuiElement type="text" profile=

"multiTextOptionTitleBaleSpawner"

 text="$l10n_multiBaleSpawner_ui_

numBales"/>

 <GuiElement type="bitmap" profile=

"multiTextOptionBgBaleSpawner" />

 </GuiElement>

 </GuiElement>

Chapter 9 Multibale Spawner Mod

234

 </GuiElement>

</GuiElement>

<GuiElement type="flowLayout" profile="buttonBoxDockedOnScreen">

 <GuiElement type="button" profile="buttonOK"

 text="$l10n_multiBaleSpawner_ui_spawn_button"

onClick="onClickOk" />

 <GuiElement type="button" profile="buttonBack"

text="$l10n_button_back"

 onClick="onClickBack" />

</GuiElement>

</GUI>

This file is for managing multiple GuiElement fields within our mod.

The most common elements include button, slider, text, textInput,

bitmap, multiTextOption, checkedOption, smoothList, listItem,

boxLayout, flowLayout, and scrollingLayout.

Each of these elements can be customized or stylized using XML

syntax or by using profiles. The GUI layout is done in full HD (1920 x

1080px). When the game is loaded, the GUI elements are rescaled and

repositioned to adjust for the player’s game resolution.

We use background elements from the base game to get the class

Farming Simulator 2022 look. Then, we create a container that centers the

GUI and optimizes it for full HD screens with a 16:9 aspect ratio. In the

container, we include a header that holds an icon and text label element.

Next, we include a boxLayout element which automatically adjusts

the positions of its child elements. Inside of this layout, we include

multiTextOption elements. These elements are similar to a dropdown

menu in other UI frameworks but include a left or right toggle. We define

these multiTextOption elements for the baleType, fillType, and numBales

selections. The id attribute is later used in the code to access the element

and set or get its associated values.

Chapter 9 Multibale Spawner Mod

235

Lastly, we include a button at the bottom to close the menu and spawn

the bales with the current selections.

Now we will define translation files for text we want to display to the

user. We will start by defining l10n_en.xml which is the file for English. Let

us look at its contents:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<l10n>

 <elements>

 <e k=" input_OPEN_MULTI_BALE_SPAWNER"

v="Open MultiBaleSpawner"/>

 <e k="multiBaleSpawner_ui_baleType" v="Bale Type"/>

 <e k=" multiBaleSpawner_ui_numBales"

v="Number of Bales"/>

 <e k=" multiBaleSpawner_ui_title"

v="MultiBaleSpawner"/>

 <e k="multiBaleSpawner_ui_spawn_button" v="Spawn"/>

 <e k="multiBaleSpawner_ui_fillType" v="Filltype"/>

 <e k="multiBaleSpawner_ui_baleSize" v="Size"/>

 </elements>

</l10n>

We see that we define seven text elements in the file. The first is for

the custom OPEN_MULTI_BALE_SPAWNER action we defined earlier

and will show Open to the player. Next, when the bale types are shown to

the user, we will want to display Bale Type at the beginning of the list. For

the number of bales to be spawned, we want to display Number of Bales.

Next, for the title of the mod, we include MultiBaleSpawner. For the spawn

button, we want it to read as Spawn. For the fill type, which determines the

type of bale (straw, hay, cotton, etc.), we set the text to Filltype. Lastly, for

bale size we display Size to the user.

Chapter 9 Multibale Spawner Mod

236

To provide a better experience to players who speak other languages,

we will provide translations. In this case, we will provide a translation into

German in l10n_de.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<l10n>

 <elements>

 <e k=" input_OPEN_MULTI_BALE_SPAWNER"

v="MultiBaleSpawner öffnen"/>

 <e k=" multiBaleSpawner_ui_baleType"

v="Ballen Typ"/>

 <e k=" multiBaleSpawner_ui_numBales"

v="Anzahl der Ballen"/>

 <e k=" multiBaleSpawner_ui_title"

v="MultiBaleSpawner"/>

 <e k=" multiBaleSpawner_ui_spawn_button"

v="Erzeugen"/>

 <e k="multiBaleSpawner_ui_fillType" v="Fruchttyp"/>

 <e k="multiBaleSpawner_ui_baleSize" v="Größe"/>

 </elements>

</l10n>

Like previous chapters, we provide the same keys for each element but

a different text value in the language associated with the file.

In the next section, we will create the .lua files needed for the mod.

 Creating Lua Files
The first Lua file we will create is MultiBaleSpawnerUtil.lua. This program

serves as a helper for spawning bales at a given position. Let us look at

the file:

Chapter 9 Multibale Spawner Mod

237

MultiBaleSpawnerUtil = {}

MultiBaleSpawnerUtil.MAX_NUM_BALES = 4

MultiBaleSpawnerUtil.SEND_NUM_BITS = 3

function MultiBaleSpawnerUtil.spawnBales(baleTypeIndex,

fillTypeIndex, numBales, x, y, z, dirX, dirZ, farmId)

 -- bale creation is only allowed on server and afterwards

 -- synched to the client

 if not g_currentMission:getIsServer() then

 Logging.error("This is function is only allowed on

server!")

 return

 end

 local baleInfo = g_baleManager.bales[baleTypeIndex]

 if baleInfo == nil then

 Logging.error("Could not find bale info for

baleTypeIndex '%s'", tostring(baleTypeIndex))

 return

 end

 local baleToBaleOffset = 0.2

 local yOffset = baleInfo.height * 0.5

 local zOffset = baleInfo.length

 if baleInfo.isRoundbale then

 yOffset = baleInfo.diameter * 0.5

 zOffset = baleInfo.width

 end

 local ry = MathUtil.getYRotationFromDirection(dirX, dirZ)

 x = x + dirX * zOffset*0.5

 z = z + dirZ * zOffset*0.5

 for i=1, numBales do

Chapter 9 Multibale Spawner Mod

238

 local baleObject = Bale.new(

g_currentMission:getIsServer(),

 g_currentMission:getIsClient())

 y = math.max(y,

 getTerrainHeightAtWorldPos(g_currentMission.

terrainRootNode, x, y, z) +

 yOffset)

 if bal eObject:loadFromConfigXML(

baleInfo.xmlFilename, x, y, z, 0, ry, 0) then

 baleObject:setFillType(fillTypeIndex, true)

 baleObject:setWrappingState(0)

 baleObject:setOwnerFarmId(farmId, true)

 baleObject:register()

 x = x + dirX * (zOffset + baleToBaleOffset)

 z = z + dirZ * (zOffset + baleToBaleOffset)

 else

 baleObject:delete()

 end

 end

end

We first define two fields, MAX_NUM_BALES and SEND_NUM_

BITS. The MAX_NUM_BALES field determines the maximum number of

bales a player can spawn at a time. The SEND_NUM_BITS is the number of

bits required to represent MAX_NUM_BALES in binary.

You may remember from Chapter 6, “Rotating Mower Mod,” that we

want to send as little data across the network as possible – thus, using the

binary representation of this value saves on bandwidth. The only function

we implement in this program is spawnBales().

This function will spawn a specified number of bales at a given

position. Notably, bale creation is only allowed on the server and is later

synchronized with the client. After ensuring the function is being called

Chapter 9 Multibale Spawner Mod

239

by the server, we get the information about the bale based on the passed

baleTypeIndex. Critically, there must be information associated with the

passed bale index; otherwise, we will produce an error. We define an offset

for how high off the ground and how far away from the player the bale

should spawn.

Next, we spawn the number of bales specified by creating new Bale

objects and configure them based on the player’s selection. The call of the

register() method registers the object as a network object on the server.

The server will then sync the bale to the clients on the next update. If for

some unknown reason an error occurs in configuring the bale, we delete it

and move to the next bale.

The next script we need to add is MultiBaleSpawnerEvent.lua. You

should be familiar with what functions are required by the Event base

class. Try to see if you can recall each of them before you continue. Let us

continue:

MultiBaleSpawnerEvent = {}

local MultiBaleSpawnerEvent_mt =

Class(MultiBaleSpawnerEvent, Event)

InitEventClass(MultiBaleSpawnerEvent, "MultiBaleSpawnerEvent")

function MultiBaleSpawnerEvent.emptyNew()

 local self = Event.new(MultiBaleSpawnerEvent_mt)

 return self

end

function MultiBaleSpawnerEvent.new(baleTypeIndex,

fillTypeIndex, numBales, x, y, z, dirX, dirZ, farmId)

 local self = MultiBaleSpawnerEvent.emptyNew()

 self.baleTypeIndex = baleTypeIndex

 self.fillTypeIndex = fillTypeIndex

 self.numBales = numBales

Chapter 9 Multibale Spawner Mod

240

 self.x = x

 self.y = y

 self.z = z

 self.dirX = dirX

 self.dirZ = dirZ

 self.farmId = farmId

 return self

end

For our new event, we include two instructors: one that takes no

arguments and one that takes a baleTypeIndex, fillTypeIndex, the number

of bales, and information about the spawn position. If the constructor with

arguments is used, then each argument is assigned to a corresponding

field in the event class.

function MultiBaleSpawnerEvent:writeStream(streamId,

connection)

 streamWriteUInt8(streamId, self.baleTypeIndex)

 streamWriteUIntN(streamId, self.fillTypeIndex,

 FillTypeManager.SEND_NUM_BITS)

 streamWriteUIntN(streamId, self.numBales,

 MultiBaleSpawnerUtil.SEND_NUM_BITS)

 streamWriteFloat32(streamId, self.x)

 streamWriteFloat32(streamId, self.y)

 streamWriteFloat32(streamId, self.z)

 streamWriteFloat32(streamId, self.dirX)

 streamWriteFloat32(streamId, self.dirZ)

 streamWriteUIntN(streamId, self.farmId,

 FarmManager.FARM_ID_SEND_NUM_BITS)

end

Chapter 9 Multibale Spawner Mod

241

Next, we include the writeStream() function which writes the event

data to the network stream. Note we use the SEND_NUM_BITS field

defined in the previous program when writing to the network.

function MultiBaleSpawnerEvent:readStream(streamId, connection)

 self.baleTypeIndex = streamReadUInt8(streamId)

 self.fillTypeIndex = streamReadUIntN(streamId,

 FillTypeManager.SEND_NUM_BITS)

 self.numBales = streamReadUIntN(streamId,

 MultiBaleSpawnerUtil.SEND_NUM_BITS)

 self.x = streamReadFloat32(streamId)

 self.y = streamReadFloat32(streamId)

 self.z = streamReadFloat32(streamId)

 self.dirX = streamReadFloat32(streamId)

 self.dirZ = streamReadFloat32(streamId)

 self.farmId = streamReadUIntN(streamId,

 FarmManager.FARM_ID_SEND_NUM_BITS)

 self:run(connection)

end

The readStream() function will read the event data from the network

stream, updating the fields of the class with the data previously written to

the network.

function MultiBaleSpawnerEvent:run(connection)

 assert(not connection:getIsServer(),

 "MultiBaleSpawnerEvent is client to server only")

 MultiBaleSpawnerUtil.spawnBales(self.baleTypeIndex, self.

fillTy peIndex, self.numBales, self.x, self.y, self.z,

self.dirX, self.dirZ, self.farmId)

end

Chapter 9 Multibale Spawner Mod

242

Once the fields are updated, we call the run() function. The run()

function executes the event by calling the spawnBales() function of

MultiBaleSpawnerUtil.lua, passing along the relevant information about

the bales and the spawn position.

With the utility and event scripts created, we are ready to create the

main component program of the mod, MultiBaleSpawnerScreen.lua. Let us

now explore the script:

MultiBaleSpawnerScreen = {}

MultiBaleSpawnerScreen.MOD_DIRECTORY = g_currentModDirectory

MultiBaleSpawnerScreen.CONTROLS = {

 "baleTypes",

 "numBales",

 "fillTypes",

 "baleSizes"

}

local MultiBaleSpawnerScreen_mt = Class(MultiBaleSpawnerScreen,

 ScreenElement)

function MultiBaleSpawnerScreen.register()

 local screen = MultiBaleSpawnerScreen.new()

 if g_gui ~= nil then

 -- load the xml layout and assign it to the

 -- controller

 local filename = Utils.getFilename("gui/

MultiBaleSpawnerScreen.xml",

 MultiBaleSpawnerScreen.MOD_DIRECTORY)

 g_gui: loadGui(filename,

"MultiBaleSpawnerScreen", screen)

 end

 MultiBaleSpawnerScreen.INSTANCE = screen

end

Chapter 9 Multibale Spawner Mod

243

We start by defining a list of GUI elements that should be accessible

via the script in a field named CONTROLS. We then create the register()

function, which registers and loads our custom GUI. In this function, we

create a new instance of the GUI controller and load the appearance from

MultiBaleSpawnerScreen.xml into this object. This page is then assigned to

the INSTANCE field of the class.

function MultiBaleSpawnerScreen.show(callbackFunc,

callbackTarget)

 if MultiBaleSpawnerScreen.INSTANCE ~= nil then

 local screen = MultiBaleSpawnerScreen.INSTANCE

 screen:setCallback(callbackFunc, callbackTarget)

 g_gui:changeScreen(nil, MultiBaleSpawnerScreen)

 end

end

The show() function is a helper function to open the GUI while

in-game.

function MultiBaleSpawnerScreen.new(custom_mt)

 local self = ScreenElement.new(nil, custom_mt or

MultiBaleSpawnerScreen_mt)

 self:registerControls(MultiBaleSpawnerScreen.CONTROLS)

 self.callbackFunc = nil

 self.callbackTarget = nil

 self.numBalesTexts = {}

 for i=1, MultiBaleSpawnerUtil.MAX_NUM_BALES do

 table.insert(self.numBalesTexts, tostring(i))

 end

 return self

end

Chapter 9 Multibale Spawner Mod

244

The new() constructor of the class registers the GUI elements that

should be accessible via the script and then creates the list of options for

the number of bales that can be spawned by the player. Let us continue

through the contents of the file:

function MultiBaleSpawnerScreen.createFromExistingGui(gui,

guiName)

 MultiBaleSpawnerScreen.register()

 local callbackFunc = gui.callbackFunc

 local callbackTarget = gui.callbackTarget

 MultiBaleSpawnerScreen.show(callbackFunc, callbackTarget)

end

function MultiBaleSpawnerScreen:setCallback(callbackFunc,

callbackTarget)

 self.callbackFunc = callbackFunc

 self.callbackTarget = callbackTarget

end

The createFromExistingGui() function creates a GUI from an

existing one. This is used to support in-game GUI hot reloading via the

gsGuiReloadCurrent console command. The setCallback() function sets

the callback data for the screen, assigning the passed callback function and

target to callbackFunc and callbackTarget fields.

function MultiBaleSpawnerScreen:onOpen()

 MultiBaleSpawnerScreen:superClass().onOpen(self)

 self.numBales:setTexts(self.numBalesTexts)

 local fillTypeTexts = {}

 self.textIndexToFillTypeIndex = {}

 self.fillTypeToBales = {}

 for k, baleType in ipairs(g_baleManager.bales) do

 baleType.baleTypeIndex = k

Chapter 9 Multibale Spawner Mod

245

 for _, fillTypeData in ipairs(baleType.

fillTypes) do

 local fillTypeIndex = fillTypeData.

fillTypeIndex

 local added = table.addElement(self.

textIndexToFillTypeIndex, fillTypeIndex)

 if added then

 local fillTypeTitle = g_fillTypeManager

:getFillTypeTitleByIndex(fillTypeIndex)

 table.insert(fillTypeTexts,

fillTypeTitle)

 end

 if self.fillTypeToBales[fillTypeIndex] ==

nil then

 self.fillTypeToBales[fillTypeIndex] = {}

 end

 table.insert(self.fillTypeToBales

[fillTypeIndex], baleType)

 end

 end

 self.fillTypes:setTexts(fillTypeTexts)

 self.b aleTypes:setTexts({

g_i18n:getText("fillType_roundBale"),

 g_i18n:getText("fillType_squareBale")})

 self:updateBaleTypes()

end

The onOpen() function handles the event of the GUI opening. In

this function, we set the text for the options for the number of bales

that can be spawned by the player. The options for the bale type and fill

type depend on the map chosen and the mods being used by the player.

Because these options are not fixed, we need to set them when the page is

Chapter 9 Multibale Spawner Mod

246

opened. Once the list of options for bale and fill types is created, the text

for the corresponding GUI elements is set. We will now continue through

the script:

function MultiBaleSpawnerScreen:updateBaleTypes()

 local hasRoundBale = false

 local hasSquareBale = false

 local index = self.fillTypes:getState()

 local fillTypeIndex =

self.textIndexToFillTypeIndex[index]

 local bales = self.fillTypeToBales[fillTypeIndex]

 for _, bale in ipairs(bales) do

 if bale.isRoundbale then

 hasRoundBale = true

 else

 hasSquareBale = true

 end

 end

 self.baleTypes:setState(hasRoundBale and 1 or 2)

 self.baleTypes:setDisabled(not hasRoundBale or not

hasSquareBale)

 self:updateBaleSizes()

end

The updateBaleTypes() function updates the text for the available bale

types. The function checks if round and square bale types are available for

the current fill type. If so, we select the round bale – we always select the

round bale if it’s available; otherwise, we select the square bale. We disable

the multi-option menu if only one bale type can be selected. At the end of

the function, we call updateBaleSizes().

Chapter 9 Multibale Spawner Mod

247

function MultiBaleSpawnerScreen:updateBaleSizes()

 local index = self.fillTypes:getState()

 local fillTypeIndex =

self.textIndexToFillTypeIndex[index]

 local bales = self.fillTypeToBales[fillTypeIndex]

 local useRoundBale = self.baleTypes:getState() == 1

 local baleSizeTexts = {}

 self.baleSizeIndexToBale = {}

 for _, bale in ipairs(bales) do

 if useRoundBale == bale.isRoundbale then

 local size

 if bale.isRoundbale then

 size = string.format("%dx%d cm",

bale.diameter*100, bale.width*100)

 else

 size = string.format("%dx%dx%d cm",

bale.length*100, bale.width*100,

 bale.height*100)

 end

 table.insert(baleSizeTexts, size)

 table.insert(self.baleSizeIndexToBale, bale)

 end

 end

 self.baleSizes:setTexts(baleSizeTexts)

 self.baleSizes:setDisabled(#baleSizeTexts < 2)

end

The updateBaleSizes() function is used to update the text for the

available bale sizes. The function checks the available bales for the

selected fill type and iterates over them. If a given bale matches the

bale type selection, then its size option is included in the list of bale size

options. Finally, the relevant text GUI elements are updated with the list of

Chapter 9 Multibale Spawner Mod

248

available bale sizes. We again disable the option menu if only one bale size

is available. Let us look at the final section of the script:

function MultiBaleSpawnerScreen:onClickOk()

 g_gui:changeScreen(nil)

 local numBales = tonumber(self.numBales:getState())

 local fillTypeIndex =

self.textIndexToFillTypeIndex[

self.fillTypes:getState()]

 local bale =

self.baleSizeIndexToBale[self.baleSizes:getState()]

 local baleTypeIndex = bale.baleTypeIndex

 if self.callbackFunc ~= nil then

 if self.callbackTarget ~= nil then

 self.c allbackFunc(self.callbackTarget,

baleTypeIndex, fillTypeIndex, numBales)

 else

 self.c allbackFunc(baleTypeIndex,

fillTypeIndex, numBales)

 end

 end

end

function MultiBaleSpawnerScreen:onClickBack()

 g_gui:changeScreen(nil)

end

function MultiBaleSpawnerScreen:onClickBaleType()

 self:updateBaleSizes()

end

function MultiBaleSpawnerScreen:onClickFillType()

 self:updateBaleTypes()

end

MultiBaleSpawnerScreen.register()

Chapter 9 Multibale Spawner Mod

249

The onClickOk() function handles the click event for the interaction

with the GUI. When pressed, the GUI is closed and the player’s

selections are recorded. We then perform the callback function,

passing along the player’s selections so the bales can be spawned. The

onClickBack() function simply closes the GUI. The onClickBaleType()

will call the updateBaleSizes() function to ensure the options displayed

to the player are accurate. The onClickFileType() function will call the

updateBaleTypes() function to similarly make sure the list of available bale

types is accurate. Finally, we call the register() function we implemented

earlier to register the GUI and make it available to the player.

We now only have two shorter scripts to add for the mod. We will start

with PlayerExtension.lua:

Player .registerActionEvents = Utils.appendedFunction(

Player.registerActionEvents,

 function(self)

 g_inpu tBinding:beginActionEventsModification(

Player.INPUT_CONTEXT_NAME)

 local inputAction =

InputAction.OPEN_MULTI_BALE_SPAWNER

 local callbackTarget = self

 local callbackFunc = self.openMultiBaleSpawner

 local triggerUp = false

 local triggerDown = true

 local triggerAlways = false

 local startActive = true

 local _, eventId =

g_inputBinding:registerActionEvent(inputAction,

 callbackTarget, callbackFunc, triggerUp,

triggerDown, triggerAlways,

 startActive)

Chapter 9 Multibale Spawner Mod

250

 g_inputBinding:setActionEventText(eventId,

 g_i18n:getText("input_OPEN_MULTI_BALE_

SPAWNER"))

 g_inpu tBinding:setActionEventTextVisibility(

eventId, true)

 g_inputBinding:endActionEventsModification()

end)

This script is responsible for appending an anonymous function to the

registerActionEvents() function of the player class. Much like prepending

functions to existing library functions, causing our function to run before

the library code, we can add functionality after a library function by

appending it.

The function we are appending registers the new input action to open

the multibale spawner menu. We register this action event for the player

context without switching – this is important when called from within the

UI context. The input action is then registered in the player context.

The first value returned by the registerActionEvent() function is isActive

which tells you whether the action was registered successfully. We do not

need this value, so we will use the underscore (_) as traditionally used to

ignore values in a tuple return. The second value returned by the function

is the eventId. We will use this value later to set the help text and activate

the input in the upper-left help box. Lastly, we reset registration context,

which updates event data in the input system.

function Player:openMultiBaleSpawner(actionName, inputValue,

callbackState, isAnalog, isMouse, deviceCategory)

 local callback = function(baleTypeIndex, fillTypeIndex,

numBales)

 local x, y, z = getWorldTranslation(self.rootNode)

Chapter 9 Multibale Spawner Mod

251

 local dirX, dirZ = -math.sin(self.rotY),

-math.cos(self.rotY)

 x = x + dirX * 4

 z = z + dirZ * 4

 local farmId = self.farmId

 g_clie nt:getServerConnection():sendEvent(

MultiBaleSpawnerEvent.new(

 baleTypeIndex, fillTypeIndex, numBales, x, y,

z, dirX, dirZ, farmId))

 end

 MultiBaleSpawnerScreen.show(callback)

end

The last function we add in this program is openMultiBaleSpawner()

which handles user input of clicking the button and opening the GUI. In

this function, we define a callback function which sends the event to

spawn the bales with the player’s current selections. This callback is

passed to the show() function of MultiBaleSpawnerScreen.lua which binds

the function to the spawn button.

Our final script, AdditionalGuiProfiles.lua, loads an additional GUI

profiles file. This is needed to access our mod-defined profiles in the

multiBaleSpawnerScreen.xml:

if g_gui ~= nil then

 g_gui: loadProfiles(g_currentModDirectory ..

"gui/guiProfiles.xml")

end

With this small program, you have finished creating all of the XML and

Lua files required for the multibale spawner mod. As always, you should

take some time to review what you have learned and accomplished in this

chapter.

Chapter 9 Multibale Spawner Mod

252

 Testing the Mod
With the scripts for your mod now created, you are ready to begin

testing. Start by running the game without debugging from the Debug

application menu of the GIANTS Studio. After you begin a new game on

the map of your choice with your mod selected, press the B key on your

keyboard while controlling your character. This should open the GUI and

allow you to select the bale type, size, and fill type. Once you have made

your selections, the bale should appear in front of you after clicking the

Spawn button.

 Summary
In this chapter, you gained experience working with GUI elements and

giving players the ability to interactively spawn items. Additionally, you

learned how to generally create behavior in the environment with GUI

buttons.

In the next chapter, you will learn how to create a machine that gives

players money based on their own numeric input.

Chapter 9 Multibale Spawner Mod

253

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 9 Multibale Spawner Mod

http://creativecommons.org/licenses/by/4.0/

255© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3_10

CHAPTER 10

Money Cheat Mod
This chapter will explore making a money cheat which will allow players to

give themselves unlimited amounts of in-game money (see Figure 10-1).

This mod may also be useful for testing other mods you make as you will

be able to make any purchases from the shop or upgrades without concern

for money. Furthermore, you will need to learn how to make it so players

can interact with placeable objects in the environment. Let’s start!

Figure 10-1. Running out of money? Fear no more!

https://doi.org/10.1007/979-8-8688-0060-3_10

256

 Technical Requirements
Like the previous chapter, you will be working entirely in the GIANTS

Editor and Studio and must meet the requirements mentioned in the

“Technical Requirements” section of Chapter 2, “Getting Started with the

GIANTS Editor.” Make sure you are always using the most recent version of

the GIANTS Editor. This will ensure that you are able to take advantage of

any new features. You can find all the code and assets used in this chapter

in the book’s code repository on the GDN at the following link:

https://gdn.giants-software.com/lp/scriptingBook.php

 Creating Mod Scripts
This section will explore all of the scripts necessary for this mod. We will

start by looking at the .xml files and then cover the .lua files. Please see

the “Preparing the Mod Folder Structure” section of Chapter 5, “Making

a Diner with a Rotating Sign,” on how to set up a mod project and use the

sample files provided on GDN.

 Creating XML Files
As always, we begin the mod by creating modDesc.xml. Let us explore its

contents:

Chapter 10 Money Cheat Mod

https://gdn.giants-software.com/lp/scriptingBook.php

257

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<modDesc descVersion="72">

 <Author>GIANTS Software</author>
 <version>1.0.0.0</version>
 <multiplayer supported="true" />
 <title>
 <en>Sample Mod - Money Cheat</en>
 </title>
 <description>
 <en>A sample mod</en>
 </description>
 <iconFilename>icon_moneyCheat.png</iconFilename>
 <placeableSpecializations>
 <specialization name="atm" className="PlaceableATM"
 filename="scripts/PlaceableATM.lua" />
 </placeableSpecializations>
 <placeableTypes>
 <type name="atm" parent="simplePlaceable"
 filename="$dataS/scripts/placeables/

Placeable.lua">
 <specialization name="atm" />
 </type>
 </placeableTypes>
 <extraSourceFiles>
 <sourc eFile

filename="scripts/events/ATMEvent.lua"/>
 </extraSourceFiles>
 <storeItems>
 <storeItem xmlFilename="placeable/atm.xml"/>
 </storeItems>
 <l10n filenamePrefix="l10n/l10n" />
</modDesc>

Chapter 10 Money Cheat Mod

258

After defining the basic fields of the mod, we define a specialization in

the placeableSpecializations field called PlaceableATM. In our mod, players

will be able to get the money from a physical ATM, so they will need to buy

the ATM and place it down.

We will define the PlaceableATM specialization in the “Creating

Lua Files” section of this chapter. Following this, we set the ATM to be

placeable by using the placeableTypes field and using the functionality of

the Placeable base class.

Additionally, we add our previous defined specialization to add the

features of the ATM script. In the extraSourceFiles field, we also include

ATMEvent.lua, which will also be defined in the next section. In the

storeItems field, we include a reference to atm.xml, which we will define

later in this section.

Finally, we define the l10n element which is used for referencing

translation files.

Next, we will define the atm.xml file which holds the configurations for

the ATM. We will now look at the contents of the file:

<?xml version="1.0" encoding="utf-8" standalone="no" ?>
<placeable type="atm" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:noNamespaceSchemaLocation="https://
validation.gdn.giants-software.com/fs22/placeable.xsd">
 <storeData>
 <name>ATM</name>
 <functions>
 <function>An ATM to get Money</function>
 </functions>
 
 <price>1500</price>
 <lifetime>1000</lifetime>
 <rotation>0</rotation>
 <brand>NONE</brand>
 <species>placeable</species>

Chapter 10 Money Cheat Mod

259

 <category>decoration</category>
 <brush>
 <type>placeable</type>
 <category>decoration</category>
 <tab>uncategorized</tab>
 </brush>
 <vertexBufferMemoryUsage>0</

vertexBufferMemoryUsage>
 <indexBufferMemoryUsage>0</indexBufferMemoryUsage>
 <textureMemoryUsage>0</textureMemoryUsage>
 <instanceVertexBufferMemoryUsage>0</

instanceVertexBufferMemoryUsage>
 <instanceIndexBufferMemoryUsage>0</

instanceIndexBufferMemoryUsage>

</storeData>

We again start with the XML declaration of the placeable root element.

We define ATM to be of the placeable type, so the system knows the feature

set of the object. In the storeData field, we include the information relevant

to the item being displayed in the store. This includes the price, image,

function, and other basic information about the ATM. You can refer to the

“Creating XML Files” section of Chapter 5, “Making a Diner with a Rotating

Sign,” where we first use this field. Let us continue:

 <base>
 <filename>placeable/atm.i3d</filename>
 </base>
 <pla cement useRandomYRotation="false"

useManualYRotation="true" >
 <testAreas>
 <testArea startNode="testArea1Start"

endNode="testArea1End" />
 </testAreas>

 </placement>

Chapter 10 Money Cheat Mod

260

In the base element, we include the relative path from the mod

directory to the .i3d file containing the ATM. Next, we configure placement

for the ATM via the placement field. In this field, we reference nodes on the

model to determine whether an object obstructs the area the player wants

to put the ATM.

<clearAreas>
 <clear Area startNode="clearArea1Start"

widthNode="clearArea1Width"
 heightNode="clearArea1Height"/>
</clearAreas>

<level ing requireLeveling="true" maxSmoothDistance="10"
maxSlope="75"

 maxEdgeAngle="30" >
 <levelAreas />
</leveling>

<indoorAreas />

In the clearAreas field, we set the area the ATM is placed to be clear of

foliage and other environmental objects.

<ai>
 <updateAreas>
 <updat eArea startNode="testArea1Start"

endNode="testArea1End" />
 </updateAreas>

</ai>

In the ai field, we mark the area as blocked so autonomous equipment

and other AI will avoid the ATM. We will now cover the remaining portion

of the file:

<atm moneyPerAction="15000">
 <trigger node="playerTrigger" />
 <sounds>

Chapter 10 Money Cheat Mod

261

 <actio n file="sounds/cashRegistry.wav"
innerRadius="5.0" outerRadius="15.0"

 fadeOut="0.1" linkNode="playerTrigger">
 <volume indoor="0.45" outdoor="1.1" />
 <pitch indoor="1.0" outdoor="1.0" />
 </action>
 </sounds>
</atm>
<i3dMappings>
 <i3dMapping id="playerTrigger" node="0>0|0" />
 <i3dMapping id="clearArea1Start" node="0>1|0" />
 ...
</i3dMappings>

</placeable>

The file concludes with a custom element for the mod called atm. In

this element, we define the amount of money the player receives when

they interact with the ATM via the moneyPerAction field, which holds

a value of 15000. You can change this value to however much you want

players to receive. The trigger element references a trigger shape in our

i3d file. It is later used to notify a script if a player is close to the ATM. We

also include a satisfying sound when the ATM is used by the player and

they receive their money. Lastly, we include the i3d mappings inside of the

i3dMappings field.

We will now create translation files for text we want to display to the

user about the ATM. For English, we will define a file called l10n_en.xml.

Let us now look at the file:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<l10n>
 <elements>
 <e k="action_atmRequest" v="Draw Money"/>
 </elements>

</l10n>

Chapter 10 Money Cheat Mod

262

In the file, we simply include the text that should be associated with the

ATM interaction. In this case, we want to tell the player that by interacting

with the ATM they will Draw Money.

Let us now look at the contents of the German translation file, l10n_de.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<l10n>
 <elements>
 <e k="action_atmRequest" v="Geld abheben"/>
 </elements>

</l10n>

Like in the file for English, we include the text that describes the action

with the ATM. This concludes all of the .xml files for the mod. In the next

section, we will look at the .lua files we need to create.

 Creating Lua Files
The first file we will create is ATMEvent.lua, which builds on the base Event

class. Let us now cover the file’s contents:

ATMEvent = {}
local ATMEvent_mt = Class(ATMEvent, Event)
InitEventClass(ATMEvent, "ATMEvent")

function ATMEvent.emptyNew()
 local self = Event.new(ATMEvent_mt)
 return self
end

function ATMEvent.new(placeable, farmId)
 local self = ATMEvent.emptyNew()
 self.placeable = placeable
 self.farmId = farmId
 return self

end

Chapter 10 Money Cheat Mod

263

We start by creating two constructors with one that takes no arguments

and one that takes a placeable object and farm ID. If the object and ID are

passed to the constructor, then they are assigned to placeable and farmId

fields within the class.

function ATMEvent:writeStream(streamId, connection)
 NetworkUtil.writeNodeObject(streamId, self.placeable)
 streamWriteUIntN(streamId, self.farmId,
 FarmManager.FARM_ID_SEND_NUM_BITS)
end

function ATMEvent:readStream(streamId, connection)
 self.placeable = NetworkUtil.readNodeObject(streamId)
 self.f armId = streamReadUIntN(streamId, FarmManager.

FARM_ID_SEND_NUM_BITS)
 self:run(connection)

end

Like in other chapters, the readStream() and writeStream() functions

are used to send and process updates to the network stream. In the

readStream() function, we update the placeable and farmId fields with

what has been written to the stream.

function ATMEvent:run(connection)
 assert(not connection:getIsServer(),

"ATMEvent is client to server only")
 if self.placeable ~= nil then
 self.placeable:requestMoney(self.farmId)
 end

end

Lastly, the run() function calls the requestMoney() function of

the placeable object associated with the event. This function will be

implemented in the PlaceableATM specialization, which we will define in

this section.

Chapter 10 Money Cheat Mod

264

With ATMEvent.lua complete, we are ready to define PlaceableATM.

lua, the main component of the mod. Let us now look through its contents:

local modName = g_currentModName
PlaceableATM = {}
PlaceableATM.SPEC_TABLE_NAME = "spec_"..modName..".atm"

function PlaceableATM.registerXMLPaths(schema, basePath)
 schema:setXMLSpecializationType("ATM")
 schema :register(XMLValueType.NODE_INDEX,

basePath .. ".atm.trigger#node",
 "Node index or i3d mapping name of the

trigger shape")
 schema :register(XMLValueType.INT,

basePath .. ".atm#moneyPerAction",
 "The amount of money a player gets", 100000)
 SoundManager.registerSampleXMLPaths(schema,
 basePath .. ".atm.sounds", "action")
 schema:setXMLSpecializationType()
end

function PlaceableATM.prerequisitesPresent(specializations)
 return true

end

We begin the specialization by defining the default functions. After

defining the namespace for the mod, we include the registerXMLPaths()

function which registers elements from the XML files with the placeable

schema. Next, we add the prerequisitesPresent() function. Because we do

not require any prerequisites, we simply return true.

function PlaceableATM.registerEventListeners(placeableType)
 Specia lizationUtil.registerEventListener(placeableType,

"onLoad", PlaceableATM)

Chapter 10 Money Cheat Mod

265

 Specia lizationUtil.registerEventListener(placeableType,
"onDelete", PlaceableATM)

end

function PlaceableATM.registerFunctions(placeableType)
 Specia lizationUtil.registerFunction(placeableType,

"onATMTriggerCallback",
 PlaceableATM.onATMTriggerCallback)
 Specia lizationUtil.registerFunction(placeableType,

"requestMoney",
 PlaceableATM.requestMoney)

end

The registerEventListeners() function registers the onLoad() and

onDelete() functions of the mod. These functions will be implemented

later in the script. Lastly, the registerFunctions() function registers our

custom onATMTriggerCallback() and requestMoney() functions, which will

be added later in the file. Let us continue through the script:

 function PlaceableATM:onLoad(savegame)
 local spec = self[PlaceableATM.SPEC_TABLE_NAME]
 local node = self.xmlFile:getValue("placeable.atm.

trigger#node", nil, self.components, self.i3dMappings)
 if node ~= nil then
 addTrigger(node, "onATMTriggerCallback", self)
 spec.triggerNode = node
 spec.activatable = ATMActivatable.new(self, node)
 spec.moneyPerAction = self.xmlFile:getValue(
 "placeable.atm#moneyPerAction", 100000)
 spec.samples = {}
 spec.s amples.action =

g_soundManager:loadSampleFromXML(self.xmlFile,
 "placeable.atm.sounds", "action", self.

baseDirectory, self.components, 1,
 AudioGroup.VEHICLE, self.i3dMappings, self)

Chapter 10 Money Cheat Mod

266

 else
 Logging.xmlWarning(self.xmlFile, "Missing atm

trigger!")
 end

end

The onLoad() function starts by referencing the node the player

triggers to receive the money. If the node exists, then we add an interaction

trigger that calls the onATMTriggerCallback() function when triggered. A

shape within the i3d can be marked as a trigger shape in the editor.

Triggers are a part of the physics system, so this shape also has to be

a physics shape. Normally, it should have the rigidbody type STATIC or

KINEMATIC. It is also important to set the correct collisionMask of the

shape; otherwise, the script may not fire any trigger callback because the

physics engine does not detect any collisions.

The node is then assigned to the triggerNode field of the class. We also

assign an Activatable object to the activatable field of the class. Activatable

objects are script objects that are handled by the ActivatableObjectsSystem

and used to tell the system that the player is within a given area where

they can activate or trigger a specific action. From atm.xml, we retrieve

the value for how much money the player should get per interaction and

assign it to the moneyPerAction field. Finally, we load the interaction

sound into the samples field of the class.

function PlaceableATM:onDelete()

local spec = self[PlaceableATM.SPEC_TABLE_NAME]
if spec.triggerNode ~= nil then
 removeTrigger(spec.triggerNode)
 local system = g_currentMission.activatableObjectsSystem
 system:removeActivatable(spec.activatable)
 g_soundManager:deleteSamples(spec.samples)
end

end

Chapter 10 Money Cheat Mod

267

The onDelete() function will clean up the class when the ATM is

deleted by checking that the trigger node exists and if so removing the

trigger callback, the activatable object, and the trigger sound.

Let us now explore our custom functions:

function PlaceableATM:onATMTriggerCallback(triggerId, otherId,

onEnter, onLeave, onStay, otherShapeId)
 if onEnter or onLeave then
 if g_currentMission.player ~= nil and
 otherId == g_currentMission.player.

rootNode and
 g_currentMission.player.farmId ~=

FarmManager.SPECTATOR_FARM_ID
 then
 local spec =

self[PlaceableATM.SPEC_TABLE_NAME]
 local activatableSystem =

g_currentMission.activatableObjectsSystem
 if onEnter then
 activa tableSystem:addActivatable(

spec.activatable)
 else
 activa tableSystem:removeActivatable(

spec.activatable)
 end
 end
 end

end

The onATMTriggerCallback() function is passed whether the player

is entering or leaving the trigger area. If the player is leaving or entering

the area, then we check that the player is actually present and display or

remove the trigger accordingly. The second parameter of the callback holds

Chapter 10 Money Cheat Mod

268

the entity ID of the colliding physics shape. We can use it to determine

if the shape is a player or not by simply comparing it with the player

rootNode. Let us continue:

function PlaceableATM:requestMoney(farmId)
 local spec = self[PlaceableATM.SPEC_TABLE_NAME]
 g_soundManager:playSample(spec.samples.action)
 if not self.isServer then
 g_clie nt:getServerConnection():sendEvent(

ATMEvent.new(self, farmId))
 return
 end
 local amount = spec.moneyPerAction
 local moneyType = MoneyType.OTHER
 local addChange = true
 local forceShow = true
 g_currentMission:addMoney(amount, farmId, moneyType,
 addChange, forceShow)

end

The requestMoney() function will play the trigger sound and, if we are

on the client, send a request to the server to dispense money. The handling

and syncing of money are done on the server only, and the balance is not

allowed to be changed on the client. As such, we need to tell the server that

we requested money.

We do so by sending the ATMEvent to the server and leave the function

by calling return afterward. So, if this function is being run on the server,

then it will add the specified amount of money to the player’s balance. The

addMoney() function takes the amount of money that should be added or

subtracted and the ID of the farm that the change should be applied to.

The money type is mostly used for the statistics of the game. The

addChange and forceShow flags tell the system if the money change should

be shown immediately using the in-game notifications in the top- right

Chapter 10 Money Cheat Mod

269

corner of the HUD or if the system should sum all calls up until an explicit

call with forceShow = true occurs. We will now cover the remaining

contents of the file:

ATMActivatable = {}
local ATMActivatable_mt = Class(ATMActivatable)

function ATMActivatable.new(placeable, triggerNode)
 local self = setmetatable({}, ATMActivatable_mt)
 self.placeable = placeable
 self.triggerNode = triggerNode
 self.activateText = g_i18n:getText("action_atmRequest")
 return self
end

function ATMActivatable:getIsActivatable()
 if g_gui.currentGui ~= nil then
 return false
 end
 return g_currentMission.player.farmId ~= FarmManager.

SPECTATOR_FARM_ID
end

function ATMActivatable:getDistance(x, y, z)
 local tx, ty, tz = getWorldTranslation(self.triggerNode)
 return MathUtil.vector3Length(x-tx, y-ty, z-tz)
end

function ATMActivatable:run()
 self.placeable:requestMoney(g_currentMission.

player.farmId)

end

We create ATMActivatable to be a new class. For this class, we include

a constructor that takes a placeable object and trigger node. The placeable

object and trigger node are respectively assigned to the placeable and

triggerNodes fields of the ATMActivatable class. We also set the activateText

Chapter 10 Money Cheat Mod

270

field to the action text defined in the translation file. The getIsActivatable()

function checks whether the player can currently request money.

The getDistance() function returns the distance to the activatable

object and is used to prioritize actions if multiple activatables are in range.

Finally, we define the run() function which will call the requestMoney()

function of the object held in the placeable field. This concludes all of the

programming required for this mod. Like with the other chapters, take a

moment to review what you have accomplished and written and how these

concepts may apply to future mods.

 Testing the Mod
With the scripts for your mod now created, you are ready to begin testing.

First, start a new game and select a map of your choice. Make sure that

you have your mod selected to be used in the game. Once the game

had loaded, open the Construction screen. Go to the miscellaneous

category and place the ATM. If your mod has been created correctly, you

should be prompted to withdraw money in the amount you set in the

configuration file.

 Summary
In this chapter, you learned how to create an ATM that dispenses a

predetermined amount of money to the player. Importantly, you learned

how to use activatable objects to trigger functions when a player interacts

with an object within a certain distance.

In the next chapter, you will learn to make your mods available to other

players and members of the Farming Simulator community by publishing

your creations to the ModHub.

Chapter 10 Money Cheat Mod

271

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 10 Money Cheat Mod

http://creativecommons.org/licenses/by/4.0/

273© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3_11

CHAPTER 11

Publishing on
the ModHub
You have now successfully created six mods and should feel confident

in bringing your own ideas for mod creations to life. In this chapter, we

will explore how to publish your creations to the ModHub for others to

download and play while potentially earning revenue with your mod’s

success.

 Technical Requirements
You will not need any software or additional materials for this chapter

as it will mostly cover information. However, you will need an Internet

connection and web browser available to you to search any topics covered

in further detail or visit any websites mentioned.

 What Is the ModHub?
The ModHub is where you will publish your mods for all players to be

able to use. The ModHub has different categories including maps, many

different types of vehicles, and different buildings or farm technologies for

players to include in their game.

https://doi.org/10.1007/979-8-8688-0060-3_11

274

The best-performing and highest-quality mods can appear in several

algorithmic categories, including Latest and Top Downloaded. These

categories are then featured to players on the front page of the ModHub.

We will be referencing the ModHub website often, which can be found at

the following link:

https://www.farming-simulator.com/mods.php

When users download your mod, they can leave a review on a five-

star scale. Naturally, mods with a higher rating are more likely to be

downloaded by other players and find their way into the sorts shown

earlier. With dedication, your mods can also see wide usage and be shown

at the top of these sorts. To get started, you will need to create an account,

which we will do in the next section.

 Creating an Account
To create your ModHub account, go to the ModHub website and click the

login button highlighted in Figure 11-1.

Chapter 11 publishing on the Modhub

https://www.farming-simulator.com/mods.php

275

Figure 11-1. You can log in to your ModHub account by clicking the
login button on the front page

Note that this account is different from the account you use to access

the GDN. Once on the login page, click the Register new account here

button and follow the instructions presented to you. Make sure you accept

the “Terms of Use” checkbox. Once you enter your basic information, your

login information will be sent to the email you provided. Log in to your

account once you receive this information, and you should arrive on your

personal Mods page. The link to this page can be found here:

https://www.farming-simulator.com/modHubBEMain.php

On this page, you will find several different sections shown by tabs.

Chapter 11 publishing on the Modhub

https://www.farming-simulator.com/modHubBEMain.php

276

The first tab is the Mods page, which shows you a list of all your

submitted mods.

The Rewards tab shows the rewards you have earned for your

submitted mods on a per mod basis. If you reach a certain amount of

rewards, you can enter your bank details to receive the rewards, or you
can decide to donate them to a charity. If donated, GIANTS Software will

match your contribution, doubling the amount.

The Awards section shows the progress on your awards of which there

are four types: the Console (red) award, Bronze, Silver, and Gold. On this

page, you can see if you have already reached the milestone and request

that the reward be granted. Note that this tab will not become visible until

you reach your first milestone.

The Messenger tab is where you can get in touch with the GIANTS

ModHub team. Keep in mind that the team will not answer questions

about modding itself but will assist with questions and issues with the

submission process and other inquiries directly related to the ModHub.

Lastly, the Help section provides you with resources regarding the

ModHub, Farming Simulator, and the GDN.

In the next section, we will cover the content guidelines of

the ModHub.

 ModHub Creation Guidelines
Not all types of content are allowed on the ModHub. In this section, we

will explore what type of content is and is not permitted on the ModHub

as well as the potential consequences of violating these restrictions.

Throughout this section, we will reference the official ModHub guideline

document, which can be found at the following link. The most current

version of the guidelines can always be found in the Data subsection of the

Upload page:

Chapter 11 publishing on the Modhub

277

https://farming-simulator.com/modhub-guidelines

After passing all of the tests of the TestRunner tool (see the next

section), you are ready to submit your mod for manual review. We will

cover the submission process in more detail in the “Uploading Your First

Mod” section of this chapter. Your mod will again be checked against the

TestRunner, and if all tests are passed, your mod will be tested in game. If

all tests are passed, the mod will be ready for release on PC. Mods must

go through additional tests to be made available on the console. After the

in-game test on PC, your mod will be tested on the console. If all tests are

passed, your mod is ready for console release, and you will receive the red

Console award once it is downloaded 250K times. You can see this whole

process outline in the diagram shown in Figure 11-2.

Chapter 11 publishing on the Modhub

https://farming-simulator.com/modhub-guidelines

278

Figure 11-2. Your mod must go through a manual review process to
be approved for the ModHub

Remember to read all of the requirements set by the guidelines

carefully to ensure that your mod is able to be approved quickly.

In the next section, you will learn how to ensure your mod is ready to

be uploaded to ModHub.

Chapter 11 publishing on the Modhub

279

 Using the TestRunner
The TestRunner is a piece of software created by GIANTS Software used

to verify that your mod is in a state that is ready to be uploaded. For

example, it will check for issues such as duplicate files, texture formats,

XML validation, and more. To download the TestRunner, navigate to the

Downloads page of the GDN and search for the Farming Simulator 22 Test

Runner download link. For convenience, you can find the Downloads page

of the GDN at the following link:

https://gdn.giants-software.com/downloads.php

After downloading, unzip the folder and put the TestRunner_public.exe

executable in the directory containing all of your mods. To test a specific

mod, grab the mod directory for a single mod and release it while hovering

over the executable as shown in Figure 11-3. The TestRunner will then be

executed on your selected folder.

Figure 11-3. You can execute the TestRunner on a mod by dragging
the mod folder to the executable

Chapter 11 publishing on the Modhub

https://gdn.giants-software.com/downloads.php

280

Note that your mod folder does not need to be in the same directory as

the TestRunner, but it may be convenient for this interaction. A command-

line window will open displaying the current progress, and if something

went wrong, an error message is displayed giving details on the problem.

All outputs from the TestRunner are saved in the “TestRunner.log”. An XML

and HTML file will be generated in the same directory as the TestRunner.

The files are named after the directory name of the tested mod and contain

the results of the test. The HTML file only contains all the found errors

(per module), and the XML contains all errors and more detailed (meta)

information. The generated HTML report should be automatically opened

in your web browser. Errors are outlined in red, explanations are in italics,

and instructions for correcting the errors are colored green.

For more general information about the TestRunner and

troubleshooting, you can view the announcement thread linked here:

https://forum.giants-software.com/viewtopic.php?t=187502

In the next section, you will upload your first mod to the ModHub.

 Uploading Your First Mod
When you are ready to upload your first mod, navigate to the Mods tab of

the ModHub once you have logged in. Click the Add New button and select

the new Untitled Mod option that appears. At the top of the page, you

can see the status of your submission which will show whether you have

uploaded the required materials to submit your mod for review.

Chapter 11 publishing on the Modhub

https://forum.giants-software.com/viewtopic.php?t=187502

281

If you encounter an issue uploading your mod, you can create a

ticket from this page to get in contact with the GIANTS ModHub team.

The ModHub team can neither answer mod requests nor help you

with modding questions in a private ticket. If you have questions about

modding, please visit the forum and send your questions to other

members of the modding community.

You can see this section of the page in Figure 11-4.

Figure 11-4. You will need to upload files and information about
your mod for it to be submitted

Chapter 11 publishing on the Modhub

282

You are first asked to upload the files for your mod. At this point, you

will be asked to confirm that your mod passes the TestRunner application

and is compliant with the modding rules set out in the “ModHub Creation

Guidelines” section of this chapter. Next, you are asked to include metadata

for your mod including the icon, mod version, and the title and description

in English, German, and French. Most or all of this information can

be automatically extracted if you select the load from modDesc.xml or

prefabDesc.xml option seen in Figure 11-4. Lastly, you must include at least

three screenshots of your mod for the team to review. Once all materials have

been uploaded, you are ready to return to the top of the page and submit your

mod for review. Mods are usually reviewed within a few business days, but it

depends on the amount of mod submissions currently being processed.

Note that you should not upload any of the mods you created in this

book as they are not original and will be denied by the GIANTS ModHub

test team.

 Getting Feedback and Updating Your Mod
Once your mod is accepted, it will be released by the ModHub team and

millions of players will be able to see and download your mod. This also

means there will be a lot of feedback. This feedback may come from the

official forum, Facebook, Discord, or other social platforms. You can find

the link to the English-speaking section of the forum here:

https://forum.giants-software.com/viewforum.php?f=478

Chapter 11 publishing on the Modhub

https://forum.giants-software.com/viewforum.php?f=478

283

Feedback can be helpful when considering how to improve your mod.

Do keep in mind that you may sometimes receive negative feedback, but

you should not be discouraged. If feedback is not constructive, do your

best to ignore it and continue doing what you enjoy as a creator.

By updating your mod, you may see an increase in positive feedback

from the community who are happy to see new content and their

suggestions incorporated into the mod. By creating more content, you will

also become more notable in the community and gain the recognition of

other creators. And of course, with more mods and consistent updates,

your mod will become more popular, resulting in more downloads and

additional rewards. Note that mods that are updated are more visible on

the in-game ModHub and as well as on the ModHub website. In the next

section, we will look in more detail at rewards and awards you can earn as

a mod creator.

 Rewards and Awards
As mentioned in Chapter 1, “Introduction,” there are ways to earn money

by creating mods and making them available for all Farming Simulator

players to use. Once you create a quality mod, it must go through a manual

approval process. This process ensures that the mod does what it claims

to do and that it is free of any prohibited content. This content can vary,

but copyrighted material, such as specific brands or companies, are

generally not permitted to appear in your mod. If your mod is approved to

be published on the ModHub, you may be eligible to receive payouts from

GIANTS Software based on how many times your mod is downloaded.

Remember, quality mods that receive the best reviews are more likely to

appear in certain categories of the ModHub. When your mod is featured,

more users will be able to see it and download, allowing you to earn more

money from your mod.

Chapter 11 publishing on the Modhub

284

Your mod can also earn awards depending on its performance and

content. If your mod is made compatible with consoles, you are eligible

for the red Console award. If your mod is widely downloaded, you can also

earn the Bronze, Silver, and Gold awards (see Figure 11-5).

In the next section, we will review what you have learned in this

chapter and the book as a whole.

 Summary
In this chapter, you learned how to use the ModHub to make your mod

available to thousands of other Farming Simulator players. Additionally,

you learned how you can earn money by making successful mods.

This brings us to the end of this modding guide. At the beginning,

you may have had little to no programming experience but now are able

Figure 11-5. The red ModHub award is given if your mod achieves
250K downloads on the console

Chapter 11 publishing on the Modhub

285

to create and manage complex systems using Lua and XML. You learned

about networks, the client-server relationship, and how to efficiently make

use of the bandwidth and other limited resources available to you. From

your first sample mod to the first mod of your own design you uploaded

to the ModHub, you have taken a great leap in your journey as a mod

developer. I hope you find these learned skills valuable as you continue

creating and approach new technical challenges throughout your life. I

wish you the best on your journey!

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 11 publishing on the Modhub

http://creativecommons.org/licenses/by/4.0/

287© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3_12

CHAPTER 12

Documentation
and Appendix
Throughout the tutorial chapters of the book, we used many internally

defined functions in the systems of the mods. While the purpose and

function of these mods were explained in context, you may find official

use and documentation for each of them useful in your own projects. In

this chapter, you will find the official engine API documentation used

by GIANTS Software engineers. Please note that you can find the latest

version of the documentation on the GDN:

https://gdn.giants-software.com/documentation.php

 Debugging
 print
Prints given arguments to the console.

https://doi.org/10.1007/979-8-8688-0060-3_12
https://gdn.giants-software.com/documentation.php

288

 Arguments

any arg1 – [optional]

any arg2 – [optional]

any arg3 – [optional]

any arg4 – [optional]

any arg5 – [optional]

any arg6 – [optional]

any arg7 – [optional]

any arg8 – [optional]

 printCallstack
Prints the current application callstack.

 Position, Orientation, and Size
 getWorldTranslation
Gets world translation of a transform object.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

 Returns

float x – x position in entityId’s world space.

float y – y position in entityId’s world space.

float z – z position in entityId’s world space.

Chapter 12 DoCumentation anD appenDix

289

 setWorldTranslation
Sets world translation of a transform object.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

float x – x position in entityId’s world space.

float y – y position in entityId’s world space.

float z – z position in entityId’s world space.

 setTranslation
Sets local translation of a transform object.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

float x – x position in entityId’s local space.

float y – y position in entityId’s local space.

float z – z position in entityId’s local space.

 getTranslation
Gets local translation of a transform object.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

Chapter 12 DoCumentation anD appenDix

290

 Returns

float x – x position in entityId’s local space.

float y – y position in entityId’s local space.

float z – z position in entityId’s local space.

 worldToLocal
Converts the world position into entityId’s local space.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

float x – x position in entityId’s world space.

float y – y position in entityId’s world space.

float z – z position in entityId’s world space.

 Returns

float x – x position in entityId’s local space.

float y – y position in entityId’s local space.

float z – z position in entityId’s local space.

 localToWorld
Converts the given position from entityId’s local space to world space.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

float x – x position in entityId’s local space.

float y – y position in entityId’s local space.

float z – z position in entityId’s local space.

Chapter 12 DoCumentation anD appenDix

291

 Returns

float x – x position in entityId’s world space.

float y – y position in entityId’s world space.

float z – z position in entityId’s world space.

 localToLocal
Converts the given position from entityId’s local space to targetEntityId’s

local space.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

integer targetEntityId – ID of the target entity (transformGroup,

shape, etc.).

float x – x position in entityId’s local space.

float y – y position in entityId’s local space.

float z – z position in entityId’s local space.

 Returns

float x – x position in targetEntityId’s local space.

float y – y position in targetEntityId’s local space.

float z – z position in targetEntityId’s local space.

 setRotation
Sets the local rotation of the given transform object.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

Chapter 12 DoCumentation anD appenDix

292

 Returns

float x – x rotation (radians) in entityId’s local space.

float y – y rotation (radians) in entityId’s local space.

float z – z rotation (radians) in entityId’s local space.

 getRotation
Gets the local rotation of the given transform object.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

 Returns

float x – x rotation (radians) in entityId’s local space.

float y – y rotation (radians) in entityId’s local space.

float z – z rotation (radians) in entityId’s local space.

 getWorldRotation
Gets world rotation of a transform object.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

 Returns

float x – x rotation (radians) in entityId’s world space.

float y – y rotation (radians) in entityId’s world space.

float z – z rotation (radians) in entityId’s world space.

Chapter 12 DoCumentation anD appenDix

293

 setWorldRotation
Sets world rotation of a transform object.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

float x – x rotation (radians) in entityId’s world space.

float y – y rotation (radians) in entityId’s world space.

float z – z rotation (radians) in entityId’s world space.

 localRotationToWorld
Converts the rotation in entityId’s local space to world space.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

float x – x rotation (radians) in entityId’s local space.

float y – y rotation (radians) in entityId’s local space.

float z – z rotation (radians) in entityId’s local space.

 Returns

float x – x rotation (radians) in entityId’s world space.

float y – y rotation (radians) in entityId’s world space.

float z – z rotation (radians) in entityId’s world space.

 worldRotationToLocal
Converts the world rotation into entityId’s local space.

Chapter 12 DoCumentation anD appenDix

294

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

float x – x rotation (radians) in entityId’s world space.

float y – y rotation (radians) in entityId’s world space.

float z – z rotation (radians) in entityId’s world space.

 Returns

float x – x rotation (radians) in entityId’s local space.

float y – y rotation (radians) in entityId’s local space.

float z – z rotation (radians) in entityId’s local space.

 worldDirectionToLocal
Converts a world direction vector into entityId’s local space.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

float x – x component of direction vector in world space.

float y – y component of direction vector in world space.

float z – z component of direction vector in world space.

 Returns

float x – x component of direction vector in entityId’s local space.

float y – y component of direction vector in entityId’s local space.

float z – z component of direction vector in entityId’s local space.

 localDirectionToLocal
Converts a direction vector in entityId’s local space to targetEntityId’s

local space.

Chapter 12 DoCumentation anD appenDix

295

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

integer targetEntityId – ID of the target entity (transformGroup,

shape, etc.).

float x – x component of direction vector in entityId’s local space.

float y – y component of direction vector in entityId’s local space.

float z – z component of direction vector in entityId’s local space.

 Returns

float x – x component of direction vector in targetEntityId’s local space.

float y – y component of direction vector in targetEntityId’s local space.

float z – z component of direction vector in targetEntityId’s local space.

 localDirectionToWorld
Converts a local space direction vector into world space.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

float x – x component of direction vector in entityId’s local space.

float y – y component of direction vector in entityId’s local space.

float z – z component of direction vector in entityId’s local space.

 Returns

float x – x component of direction vector in world space.

float y – y component of direction vector in world space.

float z – z component of direction vector in world space.

Chapter 12 DoCumentation anD appenDix

296

 setDirection
Sets the direction of an object; the positive Z axis points toward the given

direction. The Y axis lies in the direction-up-plane.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

float x – x component of direction vector (z axis) in entityId’s local space.

float y – y component of direction vector (z axis) in entityId’s local space.

float z – z component of direction vector (z axis) in entityId’s local space.

float upX – x component of up vector (y axis) in entityId’s local space.

float upY – y component of up vector (y axis) in entityId’s local space.

float upZ – z component of up vector (y axis) in entityId’s local space.

 setScale
Sets scale of a transform object.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

float x – x scale of entityId in local space.

float y – y scale of entityId in local space.

float z – z scale of entityId in local space.

 getScale
Gets the scale of a transform object.

Chapter 12 DoCumentation anD appenDix

297

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

 Returns

float x – x scale of entityId in local space.

float y – y scale of entityId in local space.

float z – z scale of entityId in local space.

 Entities
 clone
Clones a scenegraph object (transformGroup, shape, etc.).

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

boolean groupUnderParent – If the cloned entity should be parented to the

same parent.

boolean callOnCreate – If script callbacks (onCreate) should be called.

boolean addPhysics – If the cloned entity should be added to physics.

 Returns

integer clonedEntityId – ID of the cloned entity (transformGroup,

shape, etc.).

 createTransformGroup
Creates a transform group.

Chapter 12 DoCumentation anD appenDix

298

 Arguments

string transformName – Name of the transform group.

 Returns

integer entityId – ID of the transformGroup entity.

 setName
Sets the name of an entity.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

string transformName – Name of the object.

 getName
Gets the name of an entity.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

 Returns

string objectName – Name of the object.

 setVisibility
Sets transform object visibility.

Chapter 12 DoCumentation anD appenDix

299

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

boolean visibility – Visibility state of the object.

 getVisibility
Gets transform object visibility.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

 Returns

boolean visibility – Visibility state of the object.

 setUserAttribute
Sets user attribute value.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

string attributeName – Name of the attribute.

string typeName – Name of the attribute type (Float, Integer, String).

any value – Value of the attribute.

 getUserAttribute
Gets the user attribute value.

Chapter 12 DoCumentation anD appenDix

300

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

string attributeName – Name of the attribute.

 Returns

any attributeValue – Value of the attribute.

 getHasClassId
Gets if an entity has the given class id.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

integer classId – The class ID. See ClassIds enum.

 Returns

boolean hasClassId – True if the entity has the classId.

 ClassIds Enum
ClassIds.OVERLAY

ClassIds.IMAGE_OVERLAY

ClassIds.VIDEO_OVERLAY

ClassIds.TERRAIN_TRANSFORM_GROUP

ClassIds.FOLIAGE_TRANSFORM_GROUP

ClassIds.TERRAIN_DETAIL_TRANSFORM_GROUP

ClassIds.TERRAIN_LAYER_TRANSFORM_GROUP

ClassIds.SHAPE

ClassIds.LIGHT_SOURCE

Chapter 12 DoCumentation anD appenDix

301

ClassIds.AUDIO_SOURCE

ClassIds.CAMERA

ClassIds.NAVIGATION_MESH

ClassIds.MESH_SPLIT_SHAPE

ClassIds.GEOMETRY

ClassIds.TRANSFORM_GROUP

ClassIds.PARTICLE_SYSTEM

ClassIds.SPLINE

 Entity Relations
 link
Links a transform object to another transform object.

 Arguments

integer parentEntityId – ID of the parent entity (transformGroup,

shape, etc.).

integer childEntityId – ID of the child entity (transformGroup, shape, etc.).

integer index – [optional] Position of the child among children.

 unlink
Unlinks a transform object from the parent.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

Chapter 12 DoCumentation anD appenDix

302

 getParent
Gets the entity id of the parent.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

 Returns

integer parentEntityId – ID of the parent entity (transformGroup,

shape, etc.).

 getChild
Gets the id of the first child that matches the given name.

 Arguments

integer entityId – ID of the child entity (transformGroup, shape, etc.).

string childName – Name of the child.

 Returns

integer childEntityId – ID of the child entity (transformGroup, shape, etc.).

 getChildAt
Gets the entity id at a given child index.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

integer childIndex – Index (zero based) of the child

Chapter 12 DoCumentation anD appenDix

303

 Returns

integer childEntityId – ID of the child entity (transformGroup, shape, etc.).

 getNumOfChildren
Gets the number of children.

 Arguments

integer entityId – ID of the entity (transformGroup, shape, etc.).

 Returns

integer numOfChildren – Number of children.

 getRootNode
Gets the root node of the scenegraph.

 Returns

integer entityId – ID of the entity (transformGroup, shape, etc.).

 Camera
 getCamera
Gets the active camera.

 Returns

integer entityId – ID of the camera entity.

Chapter 12 DoCumentation anD appenDix

304

 setCamera
Sets the active camera.

 Arguments

integer entityId – ID of the camera entity.

 I3D
 loadI3DFile
Loads the I3D file (blocking).

 Arguments

string filename – The I3D file name.

boolean addPhysics – If entities should be added to physics.

boolean callOnCreate – If script callbacks (onCreate) should be called.

boolean verbose – [optional] If the loading info should be displayed in the

log file.

 Returns

integer rootNodeId – ID of the root entity (transformGroup, shape, etc.) of

the loaded file.

integer failedReason – The failed reason. See LoadI3dFailedReason enum.

 loadSharedI3DFile
Loads a shared I3D file (blocking). If the file is already in cache, the system

clones the objects. If another shared stream request is still pending for the

same i3d, the call blocks until this request is finished.

Chapter 12 DoCumentation anD appenDix

305

 Arguments

string filename – The I3D file name.

boolean addPhysics – If the objects should be added to physics.

boolean callOnCreate – If script callbacks (onCreate) should be called.

boolean verbose – [optional] If the loading info should be displayed in the

log file.

 Returns

integer rootNodeId – ID of the root entity (transformGroup, shape, etc.) of

the loaded file.

integer requestId – The ID of the load request (used to cancel or

release files).

integer failedReason – A specific reason why the loading failed.

 LoadI3dFailedReason Enum
LoadI3DFailedReason.NONE

LoadI3DFailedReason.CANCELLED

LoadI3DFailedReason.FILE_NOT_FOUND

LoadI3DFailedReason.UNKNOWN

 streamI3DFile
Streams the I3D file (non-blocking).

Chapter 12 DoCumentation anD appenDix

306

 Arguments

string filename – The I3D file name.

string callbackFunctionName – [optional] Callback function if the loading

is done.

object target – [optional] Target object of the callback function.

object args – [optional] Arguments for callback function.

boolean addPhysics – If the objects should be added to physics.

boolean callOnCreate – If script callbacks (onCreate) should be called.

boolean verbose – [optional] If the loading info should be displayed in the

log file.

 Returns

integer requestId – Request id for streaming, used to cancel the stream

request.

 cancelStreamI3DFile
Cancels streaming the I3D file.

 Arguments

integer requestId – Request id of the streamed load request.

 streamSharedI3DFile
Streams the shared I3D file (non-blocking). Can call the callback in the

same callstack when the file is already loaded.

Chapter 12 DoCumentation anD appenDix

307

 Arguments

string filename – The I3D file name.

string callbackFunctionName – [optional] Callback function if the loading

is done.

object target – [optional] Target object of the callback function.

object args – [optional] Arguments for the callback function.

boolean addPhysics – If the objects should be added to physics.

boolean callOnCreate – If script callbacks (onCreate) should be called.

boolean verbose – [optional] If the loading info should be displayed in the

log file.

 Returns

integer requestId – Request id for streaming, used to cancel the stream

request.

 releaseSharedI3DFile
Reduces the ref count of the given shared i3d. Must be called for every

successfull loadSharedI3DFile and streamSharedI3DFile call to avoid

memory leaks.

 Arguments

integer requestId – Stream I3D request ID.

integer warnIfInvalid – [optional, default=false] Print a warning if the

request ID is invalid.

Chapter 12 DoCumentation anD appenDix

308

 Physics
 getRigidBodyType
Gets the rigid body type of a physics shape entity.

 Arguments

integer entityId – ID of the physics shape entity.

 Returns

integer RIGID_BODY_TYPE – Type of the rigid body (see

RigidBodyType Enum).

 RigidBodyType Enum
RigidBodyType.NONE

RigidBodyType.STATIC

RigidBodyType.DYNAMIC

RigidBodyType.KINEMATIC

 setRigidBodyType
Sets the rigid body type of a physics shape entity.

 Arguments

integer entityId – ID of the physics shape entity.

integer rigidBodyType – Type of the rigid body (see RigidBody Enum).

Chapter 12 DoCumentation anD appenDix

309

 getCenterOfMass
Gets the center of mass of a physics shape entity.

 Arguments

integer entityId – ID of the physics shape entity.

 Returns

float x – x position of the center of mass in entityId’s local space.

float y – y position of the center of mass in entityId’s local space.

float z – z position of the center of mass in entityId’s local space.

 setCenterOfMass
Sets the center of mass of a physics shape entity.

 Arguments

integer entityId – ID of the physics shape entity.

float x – x position of the center of mass in entityId’s local space.

float y – y position of the center of mass in entityId’s local space.

float z – z position of the center of mass in entityId’s local space.

 getMass
Gets the mass of a physics shape entity.

 Arguments

integer entityId – ID of the physics shape entity.

Chapter 12 DoCumentation anD appenDix

310

 Returns

float mass – Mass in tons.

 setMass
Sets the mass of a physics shape entity.

 Arguments

integer entityId – ID of the physics shape entity.

float mass – Mass in tons.

 raycastAll
Raycast objects.

 Arguments

float x – x position in world space.

float y – y position in world space.

float z – z position in world space.

float nx – x component of direction vector in world space.

float ny – y component of direction vector in world space.

float nz – z component of direction vector in world space.

string raycastFunctionCallback – See raycastCallback documentation.

float maxDistance – Max distance of the raycast.

object targetObject – [optional] Target object of the callback function.

integer collisionMask – [optional] The collision mask of the raycast.

boolean generateNormal – [optional, default=false] If a normal should be

generated for each hit.

Chapter 12 DoCumentation anD appenDix

311

boolean async – [optional, default=false] If true, callback will be called in

the next frame and calculations will be done in a background thread. In

Async mode, the return value has no meaning, and if no hit is found, the

callback is called once with 0 ids.

 Returns

integer numShapes – numShapes if async is false.

 raycastClosest
Raycast closest object.

 Arguments

float x – x position in world space.

float y – y position in world space.

float z – z position in world space.

float nx – x component of direction vector in world space.

float ny – y component of direction vector in world space.

float nz – z component of direction vector in world space.

string raycastFunctionCallback – See raycastCallback documentation.

float maxDistance – Max distance of the raycast.

object targetObject – [optional] Target object of the callback function.

integer collisionMask – [optional] The collision mask of the raycast.

boolean generateNormal – [optional, default=false] If a normal should be

generated for each hit.

boolean async – [optional, default=false] If true, callback will be called in

the next frame and calculations will be done in a background thread. In

Async mode, the return value has no meaning, and if no hit is found, the

callback is called once with 0 ids.

Chapter 12 DoCumentation anD appenDix

312

 Returns

integer numShapes – numShapes if async is false.

 raycastCallback
A valid raycastCallback function requires the parameters of the following

header. The function itself can be renamed as the developer desires:

callbackFunctionName(integer actorEntityId, float x, float y, float z,

float distance, float nx, float ny, float nz, integer subShapeIndex, integer

shapeId, boolean isLast)

 overlapBox
Checks for possible overlaps in the defined box.

 Arguments

float x – x position in world space.

float y – y position in world space.

float z – z position in world space.

float rx – x rotation (radians) in world space.

float ry – y rotation (radians) in world space.

float rz – z rotation (radians) in world space.

float ex – x half dimension (meters) in world space.

float ey – y half dimension (meters) in world space.

float ez – z half dimension (meters) in world space.

string overlapFunctionCallback – See overlapFunctionCallback

documentation.

object targetObject – [optional] Target object of the callback function.

integer collisionMask – [optional, default=ALL_BITS]

Chapter 12 DoCumentation anD appenDix

313

boolean includeDynamics – [optional, default=true] If dynamic objects

should be included.

boolean includeStatics – [optional, default=true] If static objects should be

included.

boolean exactTest – [optional, default=false] If an exact test should be done

instead of a simple AABB collision check.

boolean async – [optional, default=false] If true, callback will be called in

the next frame and calculations will be done in a background thread.

 Returns

integer numShapes

 overlapSphere
Overlap sphere objects.

 Arguments

float x – x position in world space.

float y – y position in world space.

float z – z position in world space.

float radius – Sphere radius in meters.

string overlapFunctionCallback – See overlapFunctionCallback

documentation.

object targetObject – [optional] Target object of the callback function.

integer collisionMask – [optional, default=ALL_BITS]

boolean includeDynamics – [optional, default=true] If dynamic objects

should be included.

boolean includeStatics – [optional, default=true] If static objects should be

included.

Chapter 12 DoCumentation anD appenDix

314

boolean exactTest – [optional, default=false] If an exact test should be done

instead of a simple AABB collision check.

boolean async – [optional, default=false] If true, callback will be called in

the next frame and calculations will be done in a background thread.

 Returns

integer numShapes

 overlapCallback
A valid overlapCallback function requires the parameters of the following

header. The function itself can be renamed as the developer desires:

callbackFunctionName(integer entityId, integer subShapeIndex,

boolean isLastAsync (only set if async was true))

 Network
 streamReadBool
Reads a bool value from the network stream.

 Arguments

integer streamId – ID of the network stream entity.

 Returns

boolean value – A bool value.

 streamReadFloat32
Reads a 32-bit float from the network stream.

Chapter 12 DoCumentation anD appenDix

315

 Arguments

integer streamId – ID of the network stream entity.

 Returns

float value – 32-bit float value.

 streamReadInt16
Reads a 16-bit signed integer from the network stream.

 Arguments

integer streamId – ID of the network stream entity.

 Returns

integer value – 16-bit signed integer value.

 streamReadInt32
Reads a 32-bit signed integer from the network stream.

 Arguments

integer streamId – ID of the network stream entity.

 Returns

integer value – 32-bit signed integer value.

Chapter 12 DoCumentation anD appenDix

316

 streamReadInt8
Reads an 8-bit signed integer from the network stream.

 Arguments

integer streamId – ID of the network stream entity.

 Returns

integer value – 8-bit signed integer value.

 streamReadIntN
Reads an N-bit signed integer from the network stream.

 Arguments

integer streamId – ID of the network stream entity.

integer numberofBits – Number of bits used to send the value.

 Returns

integer value – N-bit signed integer value.

 streamReadString
Reads a string from the network stream.

 Arguments

integer streamId – ID of the network stream entity.

Chapter 12 DoCumentation anD appenDix

317

 Returns

string value – A piece of text.

 streamReadUInt16
Reads a 16-bit unsigned integer from the network stream.

 Arguments

integer streamId – ID of the network stream entity.

 Returns

integer value – 16-bit unsigned integer value.

 streamReadUInt8
Reads an 8-bit unsigned integer from the network stream.

 Arguments

integer streamId – ID of the network stream entity.

 Returns

integer value – 8-bit unsigned integer value.

 streamReadUIntN
Reads an N-bit unsigned integer from the network stream.

Chapter 12 DoCumentation anD appenDix

318

 Arguments

integer streamId – ID of the network stream entity.

integer numberOfBits – Number of bits used to send the value.

 Returns

integer value – N-bit unsigned integer value.

 streamWriteBool
Writes a bool value to the network stream.

 Arguments

integer streamId – ID of the network stream entity.

boolean value – A bool value.

 Returns

boolean value – The sent bool value.

 streamWriteFloat32
Writes a 32-bit float to the network stream.

 Arguments

integer streamId – ID of the network stream entity.

float value – 32-bit float value.

 streamWriteInt16
Writes a 16-bit signed integer to the network stream.

Chapter 12 DoCumentation anD appenDix

319

 Arguments

integer streamId – ID of the network stream entity.

integer value – 16-bit signed integer value.

 streamWriteInt32
Writes a 32-bit signed integer to the network stream.

 Arguments

integer streamId – ID of the network stream entity.

integer value – 32-bit signed integer value.

 streamWriteInt8
Writes an 8-bit signed integer to the network stream.

 Arguments

integer streamId – ID of the network stream entity.

integer value – 8-bit signed integer value.

 streamWriteIntN
Writes an N-bit signed integer to the network stream.

 Arguments

integer streamId – ID of the network stream entity.

integer value – N-bit signed integer value.

integer numberOfBits – Number of bits used to send the value.

Chapter 12 DoCumentation anD appenDix

320

 streamWriteString
Writes a string to the network stream.

 Arguments

integer streamId – ID of the network stream entity.

string value – A piece of text.

 streamWriteUInt16
Writes a 16-bit unsigned integer to the network stream.

 Arguments

integer streamId – ID of the network stream entity.

integer value – 16-bit unsigned integer value.

 streamWriteUInt8
Writes an 8-bit unsigned integer to the network stream.

 Arguments

integer streamId – ID of the network stream entity.

integer value – 8-bit unsigned integer value.

 streamWriteUIntN
Writes an N-bit unsigned integer to the network stream.

Chapter 12 DoCumentation anD appenDix

321

 Arguments

integer streamId – ID of the network stream entity.

integer value – N-bit unsigned integer value.

integer numberofBits – Number of bits used to send the value.

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 12 DoCumentation anD appenDix

http://creativecommons.org/licenses/by/4.0/

323

Index

A
actionEventChangeRotorSpeed()

function, 170
activateSpeedTrapFlash() function,

194, 203
addActionEvent() function, 170
addExecuteSet function, 150
addSpecialization() method, 211
agentAttachment element, 138
AI area markers, 138
API documentation, 287
Arrays, 47, 48, 54
assert() function, 72

B
Billboard, 188
Boolean logic, 47, 60
Booleans, 47, 50, 51
Bools, 47
Breakpoints, 98, 99

C
Camera

getCamera, 303
setCamera, 304

checkEquality() function, 77
clearArea() function, 153
Collision mask, 199, 310, 311
collisionTrigger, 138
Conditional expressions, 59, 61, 64
Conditional statements, 59–64
cooldownDuration value, 202
currentDetectionSample fields,

199, 202

D
Data types

arrays, 47
Booleans, 47, 50, 51
dictionaries, 47, 48, 57–59
floating-point errors, 47
number variables, 49, 50
setting and manipulating

variables, 48
strings, 47, 51–53
tables, 47, 48, 54–56

Debugging, 4, 85, 87–89, 94, 96, 97,
110, 287

DEFAULT_GAMEPAD, 132
Density map, 148, 151, 152
Dictionaries, 47, 57–59

© GIANTS Software GmbH 2024
Z. Brumbaugh and M. Leithner, Scripting Farming Simulator with Lua,
https://doi.org/10.1007/979-8-8688-0060-3

https://doi.org/10.1007/979-8-8688-0060-3

324

dirtyFlag field, 213, 215
doCheckSpeedLimit() function, 165
Double-precision floating-point

number, 47
drivenDistance field, 213–216
drivenDistanceNetworkThreshold

field, 213
drivenDistanceNetworkThreshold

value, 215
drivenDistanceSent field, 213

E
effectNode field, 140
elseif keyword, 62
Entities

ClassIds enum, 300
clones, 297
createTransformGroup, 297
getHasClassId, 300
getName, 298
getUserAttribute, 299
getVisibility, 299
setName, 298
setUserAttribute, 299
setVisibility, 298

Entity relations
getChild, 302
getChildAt, 302
getNumOfChildren, 303
getParent, 302
getRootNode, 303
link, 301
unlink, 301

F
FarmCon, 3, 12–14
Farming Simulator, 1, 6, 9, 14,

15, 94
First-person mode, 22, 35
flashFactor parameter, 186
flashTimeRemaining field,

202, 203
Floating-point errors, 47
For loops, 76

generic, 66
numeric, 65

Framed Rotate mode, 22
FSDensityMapUtilExtension.

lua, 130
FULL axis, 131
Functions, programming

languages
argument, 71
“_” character, 73
header, 70
parameter, 72
procedures/subroutines, 70
recursion

base case, 74
checkEquality() function, 77
factorial function, 74, 75
for loops, 76
references, 75, 76
stack, 74

recursive functions, 77
throw(), 72
variadic functions, 72

INDEX

325

G
Generic for loops, 66
getDefaultSpeedLimit()

function, 171
getDrivenDistance() function,

212, 218
getLastSpeed() function, 204
getRawSpeedLimit() function, 165
getRotation, 292
getScale, 296
getTranslation, 289
getValue() script function, 122
getWorldRotation, 292
getWorldTranslation, 288
getWorldTranslation()

function, 167
GIANTS Developer Network (GDN)

community forum
Documentation category, 7
Documentation section, 5
Engine category, 6
Exporter category, 7
Feature Requests category, 7
mod creators, 5
Modding category, 7
Off Topic category, 7

Content Creation section, 4
documentation, 4, 5
Downloads section

Editor category, 8
Exporter category, 8
LUADOC, 9
miscellaneous category, 9

modding category, 8
Other Tools category, 8
Studio category, 8

Farming Simulator, 1
Feedback category, 7
Fundamental Reading section, 4
modding resources, 3
preview, 2
Scripting section, 4
video tutorials, 3
YouTube, 10

GIANTS Editor, 4, 8, 81, 104,
128, 176

application menus
create, 29, 30
edit, 27, 28
file, 26, 27
help, 31, 32
scripts, 31
view, 30, 31
window, 31

Attributes Panel, 32–34
Console, script, 43
Downloads section, 18
Scenegraph Panel

entities, 24
multiple objects,

scene, 23, 24
parent-child

hierarchy, 24, 25
Script Editor, 42, 43
technical requirements, 17, 18
Toolbar, 34
viewport, 19

INDEX

326

GIANTS Studio, 4, 81, 172, 204
application menus

debug, 89
edit, 87
file, 86
help, 90
view, 88, 89
window, 89

create mod scripts
LUA files, 117–123
XML files, 109–116

debugging scripts
breakpoints, 98
factorial function, 97
locals and callstack

tabs, 99, 100
diner model, 108
installation, 86
mod directory, 105
mod structure, 107
mod test, 123
new mod project, 90–97
refresh project

browser, 106
restaurant project,

104, 105
start the game, 94, 97
technical requirements, 85

Grid option, 23
groundReferenceNodes

field, 135
GuiElement fields, 234
GUIProfiles element, 230
GUI’s xml file, 230

H
HALF axis, 131, 228
High-Level Shader Language

(HLSL), 185, 186, 188

I
I3D

cancelStreamI3DFile, 306
LoadI3dFailedReason

Enum, 305
loadI3DFile, 304
loadSharedI3DFile, 304
releaseSharedI3DFile, 307
streamI3DFile, 305
streamSharedI3DFile, 306

i3d mappings, 116
initSpecialization() function,

158, 212
inputAttacherJoints field, 136
inputBinding field, 228
Integrated development

environment (IDE), 85
ipairs() iterator function, 67
isEven variable, 63
Iterator function, 66, 67

J
Joint limits, 136

K
KB_MOUSE_DEFAULT, 130,

132, 228

INDEX

327

L
localDirectionToLocal, 294, 295
localDirectionToWorld, 295
localRotationToWorld, 293
localToLocal, 291
localToWorld, 290
Logical operators, 60, 61
Loops

for, 64–66
iterator function, 66, 67
repeat, 69
while, 68, 69

lowerRotLimitScale field scale, 136
lowerTransLimitScale field

scale, 136
LUA, 9
LUADOC, 9
LUA files creation, Mileage

Counter HUD
InjectSpecialization.lua

finalizeTypes() function, 210
getTypes() method, 211
purpose, 210

MileageCounter.lua
core script, 211
getDrivenDistance()

function, 216
onLoad() function, 213
onReadStream()

function, 214
onReadUpdateStream()

function, 214
onUpdate() function, 215

onWriteStream()
function, 214

onWriteUpdateStream()
function, 214

prerequisitesPresent()
function, 212

registerEventListeners()
function, 212

saveToXML() function, 213
MileageDisplay.lua

background text, 219
createBackground(), 221
createBackground()

function, 217
draw() method, 218
drivenDistance value, 218
getBackgroundPosition()

function, 220
global text rendering, 219
HUDDisplayElement, 217
metric system, 218
MileageDisplay.new()

class, 217
purpose, 216
setScale() method, 219
setTextBold(false), 218
setVehicle() function, 217

MileageHUDExtension.lua
createDisplayComponents()

function, 222
drawControlledEntityHUD()

function, 222
game’s interface, 221

INDEX

328

setControlledVehicle()
function, 222

LUA files creation,
Multibale Spawner

AdditionalGuiProfiles.lua, 251
MultiBaleSpawnerEvent.lua

instructors, 240
readStream() function, 241
register() method, 239
run() function, 242
writeStream() function, 241

MultiBaleSpawnerScreen.lua
component program, 242
createFromExistingGui()

function, 244
GUI elements, 243, 247
INSTANCE field, 243
new() constructor, 244
onClickOk() function, 249
onOpen() function, 245
register() function, 243
show() function, 243
updateBaleSizes()

function, 247
updateBaleTypes()

function, 246
MultiBaleSpawnerUtil.lua

baleTypeIndex, 239
MAX_NUM_BALES field, 238
program purpose, 236
register() method, 239
SEND_NUM_BITS, 238

spawnBales() program, 238
PlayerExtension.lua

openMultiBale
Spawner(), 251

registerActionEvents()
function, 250

LUA files creation, Rotating Mower
actionEventChangeRotor

Speed() function, 170
FSDensityMapUtilExtension.lua

Deco Foliages, 152
DensityMapFilter object, 150
DensityMapHeightUtil, 153
DensityMapMulti

Modifier, 150
DensityMapMultiModifier

object, 150
terrainRootNode, 150
updateRotateMowerArea()

function, 150
getDefaultSpeedLimit()

function, 171
HUD, 170
RotateMower.lua

bool values, 170
control script, 153
currentFillType field, 161
default events, 155
doCheckSpeedLimit()

function, 165
field worker

functionality, 161
getRawSpeedLimit()

function, 165

LUA files creation, Mileage
Counter HUD (cont.)

INDEX

329

getRotorSpeedFactor()
function, 166

.i3d material holder, 154
initSpecialization()

function, 158
math.abs() function, 167
MathUtil.lerp() function, 164
onDelete() function, 162
onLoad() function, 161
onReadStream()

function, 162
onTurnedOn() function, 168
onUpdateTick()

function, 164
onWriteStream()

function, 163
prerequisitesPresent()

function, 155
processRotateMowerArea()

function, 167
registerEventListeners()

function, 155
registerFunctions()

function, 156
registerOverwritten

Functions() function, 157
savegame.xmlFile

field, 161
saveToXMLFile()

function, 162
specialization and

values, 154
streamReadSpeed

Factor(), 154

streamWrite
SpeedFactor(), 154

TurnOnVehicle
specialization, 156, 169

RotorSpeedFactorEvent.lua
purpose, 144
readNodeObject()

function, 147
readStream() function, 145
RotorSpeedFactorEvent.

emptyNew(), 144
RotorSpeedFactorEvent.

new(), 144
run() function, 147
sendEvent() function, 148
vehicle and speedFactor

arguments, 144
writeNodeObject()

function, 145
writeStream() function, 145

sound manager, 171
LUA files creation, Speed

Trap Trailer
base Event class, 193
constructors, 194
custom functions, 203
onSpeedTrapRaycastCallback()

function, 204
raiseActive(), 203
readStream() function, 194
run() function, 194
SpeedTrap.lua

activateSpeedTrapFlash()
function, 194

INDEX

330

currentDetectionSample
field, 202

flashDuration field, 199
flashNode field, 199
flashTimeRemaining

field, 202
ignoredVehicles, 199, 202
initSpecialization()

function, 197
onDelete() function, 200
onLoad() function, 198
onUpdate() function, 202
prerequisitesPresent()

function, 195
raycast, 199
raycast node, 202
registerFunctions()

function, 195
specialization, 194

writeStream() function, 194
LUA programming language

classes, 78, 79
conditional statements, 59–64
data type, 47
function, 70
GIANTS Engine, 45
loops, 64
programming style and

efficiency
GIANTS Studio, 81
naming convention, 81
optimization, 82

readability, 80, 81
tables, 54–56
technical requirements, 46
variables, 46

M
Mathematical operators, 63
Mileage Counter HUD Mod

creating LUA files, 210
creating XML files, 208
extraSourceFiles field, 209
technical requirements, 208
testing, 222
UI elements, 207

Mod contest, 14, 15
Mod creator, 15
ModHub

account creation
awards section, 276
help section, 276
login button, 274, 275
messenger tab, 276
mods page, 275, 276
register new account here

button, 275
rewards tab, 276

awards, 283, 284
best-performing and

highest- quality mods, 10
categories, 10, 11, 273
complex systems, 285
definition, 273
feedback, 282, 283

LUA files creation, Speed Trap
Trailer (cont.)

INDEX

331

financial opportunities, mod
creation, 11, 12

guidelines, 276–278
mods, 274
reference link, 274
rewards, 283
technical requirements, 273
TestRunner, 279
uploading, 280, 282

Money cheat mod
activatable objects, 270
ATM, 270
LUA files

activatable objects, 266
addChange and forceShow

flags, 268
addMoney() function, 268
ATMActivatable, 269
ATMEvent, 268
ATMEvent.lua, 262
custom functions, 267
farmId, 263
getDistance() function, 270
in-game notifications, 268
onATMTriggerCallback()

function, 266, 267
onDelete() function, 267
onLoad() function, 266
PlaceableATM.lua, 264
placeable object/trigger

node, 269
prerequisitesPresent()

function, 264
readStream() function, 263

registerEventListeners()
function, 265

registerFunctions()
function, 265

registerXMLPaths()
function, 264

requestMoney() function,
263, 268

run() function, 270
triggers, 266

scripts, 256
technical requirements, 256
testing, 270
XML files

ai filed, 260
atm element, 261
ATM placement, 260
atm.xml, 258, 259
clearAreas, 260
extraSourceFiles, 258
l10n_de.xml, 262
l10n element, 258
l10n_en.xml, 261
modDesc.xml, 256
PlaceableATM, 258
placeableTypes, 258
rotating sign, 259
storeData, 259
translation files, 261
trigger element, 261

MultiBaleSpawner, 235
Multibale Spawner Mod

creating LUA files, 236
creating XML files, 226

INDEX

332

GUI elements, 225
technical requirements, 226
testing, 252

multiTextOption elements, 234

N
Naming convention, 81
Network

streamReadBool, 314
streamReadFloat32, 314
streamReadInt8, 316
streamReadInt16, 315
streamReadInt32, 315
streamReadIntN, 316
streamReadString, 316
streamReadUInt8, 317
streamReadUInt16, 317
streamReadUIntN, 317
streamWriteBool, 318
streamWriteFloat32, 318
streamWriteInt8, 319
streamWriteInt16, 318
streamWriteInt32, 319
streamWriteIntN, 319
streamWriteString, 320
streamWriteUInt8, 320
streamWriteUInt16, 320
streamWriteUIntN, 320

Number data type, 47
Number variables, 49, 50
NUM_BITS value, 154

numDetectionSamples + 1
raycasts, 199

Numeric for loop, 64, 65

O
Object masks, 199
Object-oriented languages, 79
Object-oriented programming

(OOP), 79
onClickBaleType() function, 249
onClickFileType() function, 249
onClickOk() function, 249
onDelete() function, 162
onLoad() function, 120
onReadStream() function, 162
onRegisterActionEvents() function,

156, 170
onSpeedTrapRaycastCallback()

function, 195, 203
onTurnedOff() function, 169
onUpdate() function, 123
onUpdateTick() function, 156
OPEN_MULTI_BALE_SPAWNER,

228, 235

P, Q
pairs() iterator function, 66
Parent-child hierarchy, 24, 25
Physics shape entity

getCenterOfMass, 309
getMass, 309

Multibale Spawner Mod (cont.)

INDEX

333

getRigidBodyType, 308
overlapBox, 312, 313
overlapCallback, 314
overlapSphere, 313, 314
raycastAll, 310
raycastCallback, 312
raycastClosest, 311
RigidBodyType enum, 308
setCenterOfMass, 309
setMass, 310
setRigidBodyType, 308

PlaceableObjectRotate.lua, 122
prerequisitesPresent function, 118
print() function, 48, 65
processRotateMowerArea()

function, 167
Programming, 9

R
Raycast, 184
raycastCollisionMask fields, 199
raycastNode, 202
Readability, 80, 81
Recursion, 74
registerEventListeners() function,

118, 195
registerFunctions() function, 156
registerOverwrittenFunctions()

function, 157
registerXMLPaths function,

119, 122
Relational operators, 60, 63
Repeat loops, 69

Revolutions per minute (RPM), 141
RotateMower.actionEvent

ChangeRotorSpeed
function, 170

Rotate tool, 38
Rotating Mower Mod

LUA files, 144
technical requirements, 128
testing, 172
XML files, 128

RotorSpeedFactorEvent.lua, 130

S
saveToXMLFile() function, 162
Scope, 66
Script Editor, 42, 43, 81, 85, 92
self:raiseActive() function, 123
SEND_NUM_BITS field, 241
setCallback() function, 244
setDirection, 296
setRotation, 291
setRotorSpeedFactor() function,

166, 171
setScale, 296
setShaderParameter() function, 202
setTranslation, 289
setVehicle() function, 222
setWorldRotation, 293
setWorldTranslation, 289
spawnBales() function, 242
specs field, 133
speedTrap element, 184
speedTrap specialization, 178

INDEX

334

Speed Trap Trailer Mod
LUA files, 193
technical requirements,

176, 204
XML files, 176

Stacks, 74
STEP_SIZE value, 154
streamReadSpeedFactor()

function, 154
streamWriteSpeedFactor()

function, 154
string.format() function, 122
Strings, 47, 51–53

T
table.getn() function, 56
table.insert() function, 55
table.remove() function, 56
Tables, 47
Ternary expression, 63
TestRunner

definition, 279
downloading, 279
erros, 280
execution, 279
HTML file, 280
information/

troubleshooting, 280
mod folder, 280
testing, 279

3D modelers, 5
3D modeling, 4
tonumber() function, 53, 65

Toolbar
actions and tools, 34
File, 35
Mode section

local/world mode, 36
rotation mode, 37
scaling mode, 38
snapping, 36
translation mode, 37

Play, 35, 36
terrain, 39–41

tostring() function, 65
Translate tool, 37
TypeManager class, 210

U
updateBaleSizes() function,

247, 249
updateParallelogram

WorldCoords()
function, 153

updateRotateMowerArea()
function, 167

V
Variable, 46
Variadic functions, 72
Video tutorials, 3
Viewport

Camera, 21
create menu, 19
first-person mode, 22

INDEX

335

framed rotate mode, 22
grid option, 23
movement and camera

manipulation, 20, 21
polycount option, 23
selectable option, 23
show option, 22
wireframe and shaded

modes, 22

W
while loops, 68
workAreas field, 135
worldDirectionToLocal, 294
worldRotationToLocal, 293
worldToLocal, 290
writeStream() function, 147

X
XML files creation,

Multibale Spawner
guiProfiles.xml

anchorMiddleLeft/
anchorTopCenter, 230

inheritance and traits, 230
predefined profiles, 230
profile elements, 230
purpose, 228

l10n_de.xml, 236
l10n_en.xml, 235
modDesc.xml

actions field, 228

multiBaleSpawnerScreen.xml
background elements, 234
boxLayout element, 234
content, 231
GuiElement fields, 234
GUI layout, 234
multiTextOption

elements, 234
XML files creation, Rotating Mower

l10n_de.xml, 143
l10n_en.xml, 142
l10n_fr.xml, 143
modDesc.xml

extraSourceFiles, 130
groundReference

specialization, 131
materialHolders, 129
particles.i3d file, 130
turnOnVehicle

specialization, 131
Vehicle.lua, 131
vehicleTypes field, 131

rotateMower.xml
actions field, 131
ai field, 138
animationNode fields, 140
attachable field, 136
base field, 135
defaultLights field, 137
distanceToGround

element, 136
foliageBending field, 138
i3dMappings field, 142
inputBinding field, 132

INDEX

336

jointType, 136
l10n field, 132
LIZARD, 134
particleType field, 140
powerConsumer field, 135
powerTakeOffs field, 137
real particle system, 140
rotateMower

configuration, 131
rotSpeed, 140
sounds element, 141
specs field, 133
topReferenceNode, 136
turnOnVehicle field, 138
wearable field, 138

XML files creation, Speed
Trap Trailer

flashShader.xml
billboard, 188
code injection, 192
CodeInjections field, 186
HLSL, 185
setRotation() function, 189
shader parameters, 186
vertex shader, 188, 190

l10n_de.xml, 192
l10n_en.xml, 192

modDesc.xml
extraSourceFiles field, 178
storeItems field, 178
vehicleTypes field, 178

speedTrapTrailer.xml
animations field, 182
attachable field, 182
base field, 180
cooldownDuration

field, 184
detectionRadius, 185
foliageBending field, 183
i3dMappings element, 185
mapHotspot field, 180
maxSpeedKmh field, 184
raycast, 184
speedTrap element, 184
storeData field, 179
washDuration field, 183
wearable and washable

fields, 183
wheels field, 182
workMultiplier and

fieldMultiplier fields, 183
XML schema, 112

Y, Z
YouTube, 10

XML files creation, Rotating
Mower (cont.)

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Foreword
	Chapter 1: Introduction, GDN, ModHub, Modding Tutorial Videos, LuaDoc, FarmCon…
	Technical Requirements
	Exploring the GDN
	Modding Resources
	Video Tutorials
	Documentation
	Community Forum
	Downloads
	LuaDoc
	YouTube

	Looking at the ModHub
	Financial Opportunities of Mod Creation

	How to Attend FarmCon
	Participating in the Mod Contest
	Summary

	Chapter 2: Getting Started with the GIANTS Editor
	Technical Requirements
	Installing the GIANTS Editor
	The Viewport
	Movement and Camera Manipulation
	Viewport Options
	Camera
	Framed Rotate
	First-Person Mode
	Shading Modes
	Show and Selectable
	Grid
	Polycount

	The Scenegraph Panel
	Entities and the Parent-Child Hierarchy

	Application Menus
	The File Menu
	The Edit Menu
	The Create Menu
	The View Menu
	The Scripts Menu
	The Window Menu
	The Help Menu

	The Attributes Panel
	The Toolbar
	File Section
	Play Section
	Mode Section
	Local/World Mode
	Snapping
	Translation Mode
	Rotation Mode
	Scaling Mode

	Miscellaneous Section
	Terrain Section

	Scripting
	The Console

	Summary

	Chapter 3: The Lua Programming Language
	Technical Requirements
	Learning About Data Types and Creating Variables
	Data Types
	Setting and Manipulating Variables
	Numbers
	Booleans
	Strings
	Tables
	Dictionaries

	Conditional Statements
	Declaring and Using Loops
	for Loops
	Iterator Function
	while Loops
	repeat Loops

	Learning About Functions
	Functions in Programming
	Recursion

	Classes
	Demonstrating Programming Style and Efficiency
	General Programming Style Rules

	Summary

	Chapter 4: The GIANTS Studio
	Technical Requirements
	Installing the GIANTS Studio
	Application Menus
	The File Menu
	The Edit Menu
	The View Menu
	The Debug Menu
	The Window Menu
	The Help Menu

	New Project
	Starting the Game
	Debugging Scripts
	Using Breakpoints
	Using the Locals Tab and the Callstack

	Summary

	Chapter 5: Making a Diner with a Rotating Sign
	Technical Requirements
	Preparing the Mod Folder Structure
	Creating Mod Scripts
	Creating XML Files
	Creating Lua Files

	Testing the Mod
	Summary

	Chapter 6: Rotating Mower Mod
	Technical Requirements
	Creating Mod Scripts
	Creating XML Files
	Creating Lua Files

	Testing the Mod
	Summary

	Chapter 7: Speed Trap Trailer Mod
	Speed Trap Trailer Mod
	Technical Requirements
	Creating Mod Scripts
	Creating XML Files
	Creating Lua Files

	Testing the Mod
	Summary

	Chapter 8: Mileage Counter HUD Mod
	Technical Requirements
	Creating Mod Scripts
	Creating XML Files
	Creating Lua Files

	Testing the Mod
	Summary

	Chapter 9: Multibale Spawner Mod
	Technical Requirements
	Creating Mod Scripts
	Creating XML Files
	Creating Lua Files

	Testing the Mod
	Summary

	Chapter 10: Money Cheat Mod
	Technical Requirements
	Creating Mod Scripts
	Creating XML Files
	Creating Lua Files

	Testing the Mod
	Summary

	Chapter 11: Publishing on the ModHub
	Technical Requirements
	What Is the ModHub?
	Creating an Account
	ModHub Creation Guidelines
	Using the TestRunner
	Uploading Your First Mod
	Getting Feedback and Updating Your Mod
	Rewards and Awards
	Summary

	Chapter 12: Documentation and Appendix
	Debugging
	print
	Arguments

	printCallstack

	Position, Orientation, and Size
	getWorldTranslation
	Arguments
	Returns

	setWorldTranslation
	Arguments

	setTranslation
	Arguments

	getTranslation
	Arguments
	Returns

	worldToLocal
	Arguments
	Returns

	localToWorld
	Arguments
	Returns

	localToLocal
	Arguments
	Returns

	setRotation
	Arguments
	Returns

	getRotation
	Arguments
	Returns

	getWorldRotation
	Arguments
	Returns

	setWorldRotation
	Arguments

	localRotationToWorld
	Arguments
	Returns

	worldRotationToLocal
	Arguments
	Returns

	worldDirectionToLocal
	Arguments
	Returns

	localDirectionToLocal
	Arguments
	Returns

	localDirectionToWorld
	Arguments
	Returns

	setDirection
	Arguments

	setScale
	Arguments

	getScale
	Arguments
	Returns

	Entities
	clone
	Arguments
	Returns

	createTransformGroup
	Arguments
	Returns

	setName
	Arguments

	getName
	Arguments
	Returns

	setVisibility
	Arguments

	getVisibility
	Arguments
	Returns

	setUserAttribute
	Arguments

	getUserAttribute
	Arguments
	Returns

	getHasClassId
	Arguments
	Returns

	ClassIds Enum

	Entity Relations
	link
	Arguments

	unlink
	Arguments

	getParent
	Arguments
	Returns

	getChild
	Arguments
	Returns

	getChildAt
	Arguments
	Returns

	getNumOfChildren
	Arguments
	Returns

	getRootNode
	Returns

	Camera
	getCamera
	Returns

	setCamera
	Arguments

	I3D
	loadI3DFile
	Arguments
	Returns

	loadSharedI3DFile
	Arguments
	Returns

	LoadI3dFailedReason Enum
	streamI3DFile
	Arguments
	Returns

	cancelStreamI3DFile
	Arguments

	streamSharedI3DFile
	Arguments
	Returns

	releaseSharedI3DFile
	Arguments

	Physics
	getRigidBodyType
	Arguments
	Returns

	RigidBodyType Enum
	setRigidBodyType
	Arguments

	getCenterOfMass
	Arguments
	Returns

	setCenterOfMass
	Arguments

	getMass
	Arguments
	Returns

	setMass
	Arguments

	raycastAll
	Arguments
	Returns

	raycastClosest
	Arguments
	Returns

	raycastCallback
	overlapBox
	Arguments
	Returns

	overlapSphere
	Arguments
	Returns

	overlapCallback

	Network
	streamReadBool
	Arguments
	Returns

	streamReadFloat32
	Arguments
	Returns

	streamReadInt16
	Arguments
	Returns

	streamReadInt32
	Arguments
	Returns

	streamReadInt8
	Arguments
	Returns

	streamReadIntN
	Arguments
	Returns

	streamReadString
	Arguments
	Returns

	streamReadUInt16
	Arguments
	Returns

	streamReadUInt8
	Arguments
	Returns

	streamReadUIntN
	Arguments
	Returns

	streamWriteBool
	Arguments
	Returns

	streamWriteFloat32
	Arguments

	streamWriteInt16
	Arguments

	streamWriteInt32
	Arguments

	streamWriteInt8
	Arguments

	streamWriteIntN
	Arguments

	streamWriteString
	Arguments

	streamWriteUInt16
	Arguments

	streamWriteUInt8
	Arguments

	streamWriteUIntN
	Arguments

	Index

