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Abstract

Dualitity results are a central tool of bidimensionality theory and structure theory.
They generally state that every graph has one of two properties, making it either
algorithmically approachable or structurally rich. Due to the flexibility in the choice of
the two properties, duality theorems occur in most areas of research in graph theory. We
present a number of duality results in both graphs and digraphs, focusing on two kinds
of properties: width measures and the exclusion of certain minors or subgraphs.

We introduce new width measures based on directed separations for directed graphs.
In this context, we define directed versions of tangles, which are obstructions to our
width measures being small. We consider the properties of these new concepts and
prove some parallels to DAG-width. The duality theorem we prove is a very general
one, it holds for all width measures that satisfy certain criteria.

Another directed width measure we introduce is cyclewidth. Cyclewidth is a branch
decomposition for digraphs that uses families of disjoint directed cycles. We prove
its parametric equivalence to directed treewidth and make use of its close relation to
matching width measures in order to characterise the digraphs of small cyclewidth.

A current central goal in digraph structure theory is to describe the structure of digraphs
excluding a fixed digraph as a butterfly minor. Much progress has been made over the
past years, transferring comparable undirected results step by step into the directed
setting. A recent step is a directed flat wall theorem. However, there are problems that
arise when trying to push further towards a structure theorem based on that theorem.
We suggest an alternative directed flat wall theorem and give some background and
intuition as to why we think it provides a better base for a fully fledged structure
theorem.

On undirected graphs we change the scope of our results a little. Here, we consider
smaller, more specific graph classes and exclude induced subgraphs rather than minors.
Two different generalisation of simplicial vertices are considered: moplexes and
avoidable vertices. We identify the position of graphs with at most two moplexes in
the hierarchy of hereditary graph classes and also prove that such graphs always admit
a Hamiltonian path. The concept of avoidable vertices can be further generalised to
avoidable paths. We prove that every graph with an induced path on k vertices contains
such an avoidable path on k vertices.
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Perfect graphs are a graph class on which solving some hard problems becomes
tractable. We characterise the graphs with perfect linegraph squares by describing a
family of forbidden induced subgraphs. Every graph inherits some properties from its
linegraph and the square of its linegraph. In particular, some algorithmic problems
can be reduced to solving a different problem on the (square of the) linegraph. The
graphs with perfect linegraph squares thus form a class on which some problems that
are hard in general, like Strong Edge Colouring, become feasible.
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Kurzfassung

Dualitäten sind ein zentrales Werkzeug in der Bidimensionality-Theorie und Struktur-
theorie. Dualitäten beschreiben in der Regel, dass eine Klasse von Graphen eine von
zwei Eigenschaften besitzt: Man kann algorithmische Probleme auf dieser Klasse effi-
zient lösen, oder die Klasse zeigt bestimmte Struktur. Aufgrund der Flexibilität in der
Wahl dieser beiden Parameter, kommen Dualitäten in fast allen Bereichen der Graphen-
theorie vor. Wir präsentieren im Rahmen dieser Dissertation verschiedene Dualitäten
in sowohl Graphen als auch gerichteten Graphen, und konzentrieren uns dabei auf zwei
Arten von Eigenschaften: Weiteparameter und das Ausschließen bestimmter Minoren
oder Teilgraphen.

Wir führen neue Weiteparameter für gerichtete Graphen ein, welche gerichtete Separa-
tionen benutzen. In diesem Kontext definieren wir auch eine gerichtete Version von
Tangles, deren Vorkommen in einem Graph impliziert, dass die Weite des Graphen
bezüglich der neuen Parameter nicht klein sein kann. Wir untersuchen die Eigenschaf-
ten dieser neuen Konzepte und ihre Verwandschaft zum bekannten Weiteparameter
DAG-Weite. Dann beweisen wir eine Dualität, und zwar nicht bloß direkt für die
eingeführten Konzepte, sondern basierend auf allgemeinen Eigenschaften, die diese
haben sollen. Das führt zu einem sehr allgemeinen Dualitätsergebnis, das potentiell
auch für andere Definitionen als unsere genutzt werden kann.

Ein weiterer gerichteter Weiteparameter, den wir einführen, ist die Cyclewidth. Cycle-
width zerlegt den Graphen mit Hilfe einer Branch-Zerlegung für gerichtete Graphen
und nutzt Familien von Kreisen, um für diese Zerlegungen eine Weite zu bestimmen.
Wir zeigen, dass Cyclewidth parametrisch äquivalent zum bekannten Parameter der
gerichteten Baumweite ist. Außerdem nutzen wir die enge Verwandschaft zwischen
Cyclewidth und Weiteparametern, die auf Matchings im Graphen basieren, um die
Klasse von gerichteten Graphen mit kleiner Cyclewidth zu charakterisieren.

Ein großer Teil der Forschung im Rahmen der gerichteten Strukturtheorie konzentriert
sich zur Zeit auf das Finden einer Beschreibung der Struktur von gerichteten Graphen,
die einen bestimmten Graphen als Butterflyminor verbieten. Über die vergangenen
Jahre hinweg gab es einigen Fortschritt darin die bestehenden Ergebnisse auf unge-
richteten Graphen Schritt für Schritt auch für gerichtete Graphen zu beweisen. Zuletzt
wurde in diesem Kontext ein gerichtetes Flat-Wall-Theorem bewiesen. Allerdings stößt
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man auf einige Komplikationen, wenn man basierend auf diesem Flat-Wall-Theorem
versucht ein Strukturtheorem zu beweisen. Wir schlagen hier ein alternatives Flat-
Wall-Theorem für gerichtete Graphen vor und begründen wieso sich dieses besser als
Grundlage für ein Strukturtheorem eignet.

Bei der Betrachtung von Dualitäten für ungerichteten Graphen betrachten wir dann
eher spezifische Graphklassen und nutzen verbotene induzierte Teilgraphen statt Mi-
noren. Wir betrachten zwei verschiedene Verallgemeinerungen für das Konzept von
simplizialen Knoten in chordalen Graphen auf allgemeine Graphen: Moplexe und
vermeidbare Knoten. Wir reihen die Klasse der Graphen mit höchstens zwei Moplexen
in die Hierarchie der bekannten hereditären Graphklassen ein und beweisen außerdem,
dass jeder solche Graph einen Hamilton-Pfad besitzt. Das Konzept von vermeidbaren
Knoten kann weiter verallgemeinert werden zu vermeidbaren Pfaden. Wir zeigen, dass
jeder Graph, der einen induzierten Pfad auf k Knoten enthält, auch einen vermeidbaren
Pfad auf k Knoten enthält.

Perfekte Graphen sind eine bekannte Graphklasse, auf der manche schweren Probleme
in polynomieller Zeit lösbar sind. Wir characterisierene die Graphen mit perfekten Qua-
dratgraphen ihres Kantengraphen durch verbotene induzierte Teilgraphen. Jeder Graph
erbt gewisse Eigenschaften von seinem Kantengraphen oder dessen Quadratgraphen.
Insbesondere können manche algorithmische Probleme auf das Lösen verwandter
Probleme auf dem (Quadratgraphen des) Kantengraphen reduziert werden. Damit sind
die Graphen mit perfektem Quadratgraphen ihres Kantengraphens eine Klasse, auf
der das Problem Strong Edge Colouring in Polynomialzeit lösbar ist.
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1 Introduction

Dualities are omnipresent tools in graph structure theory. Put very simply, a duality
theorem is of the form “Every graph has property A or it has property B.” There are
many different kinds of dualities depending on the tools at hand. This is because there
is a lot of freedom in how to formalise the properties A and B and also whether or not
to restrict the class of graphs considered. Often the property A describes the graph to
have a structure that allows us to solve certain problems more efficiently, so it says
“this graph is somehow nice”. The property B on the other side often describes a
concrete structural object the graph contains that witnesses its complexity, so it says
“this graph is quite complicated”. The field concerned with finding and using dualities
produces strong results that can be used in the algorithmic context as well as in the
structural context. In particular, the algorithmic field of bidimensionality theory makes
frequent use of dualities.

Many duality results make use of width parameters or tree-like decompositions of
graphs. The most famous width parameter is probably treewidth, introduced in its
current form by Robertson and Seymour [RS84]. Bounding the treewidth of a graph
allows to use techniques like dynamic programming and therefore helps solving many
problems that are hard in general [Bod96, Bod97, Bod05, DF13]. Robertson and
Seymour also prove a number of dualities that are used frequently in research involving
structures and algorithms for graphs. A famous example is the grid theorem [RS86],
which states that every undirected graph has small treewidth or contains a large grid
as a minor. Here the property helping to solve problems efficiently is having low
treewidth, which essentially means that the graph is structurally similar to a tree. The
structure preventing this is the grid graph.

Theorems describing the structure of graph classes excluding a certain graph as a
minor are called excluded minor theorems and there are enough results like this that
this area of duality results is often called excluded minor theory. The best known
excluded minor result is Kuratowski’s theorem stating that a graph is planar if and only
if it does not contain a complete graph on 5 vertices or a complete bipartite graph with
3 vertices on each side as a minor. This is a duality in the sense described above as we
either get a nice graph property, i.e. being planar, which allows for many problems to
be solved efficiently, or we find one of two minors that witness the non-planarity of
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1 Introduction

the graph. Robertson and Seymour proved that every minor-closed graph class has a
characterisation by forbidden minors [RS04b], which is equivalent to the graph minor
relation forming a well-quasi-ordering. This is a very impactful result with numerous
applications, see for example the survey by Kawarabayashi and Mohar [KM07] for an
overview. One of the most imminent and known applications is the first polynomial
time algorithm for the k-Disjoint Paths problem [RS04b].

Containing another graph as a minor is only one possibility of “containing a compli-
cated structure”, there are many other options, like subgraphs, induced subgraphs, or
topological minors, just to name a few. Characterisation of graph classes by forbidden
(induced) subgraphs for example is a very popular and active field. For example,
forests are the class of graphs excluding cycles as subgraphs and bipartite graphs are
characterised by forbidding odd cycles as subgraphs. For induced subgraphs a popular
example is the class of chordal graphs, which are by definition the graphs with no
induced cycles of length four or more. There are many problems that are related to
such characterisations such as the Erdős-Hajnal-conjecture [EH89, Chu14] stating
that the graphs of every graph class that has a characterisation by forbidden induced
subgraphs either contain large cliques or large independent sets. Also the research
area around χ-boundedness, which is a generalisation of perfect graphs, often makes
use of characterisations through forbidden induced subgraphs, see [SR19] for a survey,
in particular cycles and their complements (see, e.g. [SS16, RS84, CSSS20]). The
Gyárfás-Sumner-conjecture, a very central question of this field, states that the class
of graphs forbidding a tree as induced subgraphs is χ-bounded.

As width parameters often play a central role for dualities, they also play a very
central role in this thesis. We mention and introduce a number of width parameters for
undirected, directed and bipartite graphs. Having so many different width measures at
hand, it is important to have a way to compare them. To this end, we call two width
measures parametrically equivalent, if they are bound in a function of each other.

With duality results having such a large impact on graph theory, there was also soon a
keen interest in generalisations to directed graphs. A directed analogue of treewidth was
introduced by Reed [Ree99] and Johnson, Robertson, Seymour and Thomas [JRST01].
They conjectured that for this directed width measure and an adequate choice of a grid
structure and a directed minor relation a similar duality as between treewidth and grids
would hold. It took about 15 years to obtain this directed grid theorem [KK15] and
the functions relating the directed treewidth and the size of the obtained grid structure
is much faster growing than in the undirected case.

This thesis presents duality results from different areas of graph theory, digraph
structure theory and even matching theory. There are several directed width measures
that we use or even introduce. On undirected graphs, we consider dualities involving
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1.1 Ganglions

induced subgraphs and forbidden induced subgraphs. We provide a short overview over
the results here before giving global definitions and a short background overview.

The results presented in this thesis origin from several research projects conducted with
different groups of co-authors. All results obtained by the groups mentioned here were
obtained through cooperative research. When stated within the corresponding chapters
themselves these results are not further attributed. Although it is always difficult in
retrospect to determine who came up with which idea in a research meeting, this thesis
only contains results to which the author of this thesis made major contributions. Any
results not obtained in the scope of any of these projects is attributed to the original
authors at the point where the results are mentioned, stated or used.

1.1 Ganglions

In undirected graphs there is the concept of tangles, which yield an obstruction to
small treewidth. This gives a way to decompose graphs into dense, structurally rich
areas. Though there is much understanding on how such decompositions can be found
and deployed in undirected graphs, the picture is more complicated for directed graphs.
Erde introduces directed blockages [Erd20], which are an obstruction to directed
pathwidth. Moreover, Giannopoulou, Kawarabayashi, Kreutzer and Kwon introduce a
directed definition for tangles [GKK+20], which yield an obstruction to small directed
treewidth.

We are interested in directed width measures in between directed pathwidth and
directed treewidth. One example for such a width measure is DAG-width. There are
digraph classes of constant directed treewidth and unbounded DAG-width as well
as digraph classes of constant DAG-width and unbounded directed pathwidth. In
Chapter 3 we find a generalisation of tangles to directed graphs, called ganglions,
using DAGs as the base of decompositions via separations. We try to make use of
the similarity to DAG-width in order to obtain a duality between the existence of a
decomposition of small width and the existence of a ganglion of high order, while
maintaining a strong correspondence to strategies in the cops and robber reachability
game.

To this end we define two width measures and consider their properties and behaviour.
While the first allows for a duality theorem, it is too weak to provide monotone
strategies, the second is strong enough to ensure monotonicity but we pay for it by not
being able to prove the duality any more.

The work presented in Chapter 3 is joint work with Roman Rabinovich and Sebastian
Wiederrecht and based on unpublished work.

3



1 Introduction

1.2 Cyclewidth

In Chapter 4 we introduce a new directed width measure, the cyclewidth. We prove
that it is parametrically equivalent to directed treewidth and at the same time closely
related to width measures for undirected graphs with perfect matchings. Currently, the
main application for cyclewidth is a grid theorem for bipartite graphs [HRW19].

Cyclewidth is closed under taking butterfly minors, a property that directed treewidth
only has when choosing a very specific and restrictive alternative definition. We use
its relation to matching theory in order to characterise the digraphs of cyclewidth one.
This characterisation is a rather unusual one as it is by allowed strongly 2-connected
butterfly minors. Therefore, it also yields a rather unusual duality property, which
is that a digraph either has large cyclewidth or only allows for specific strongly 2-
connected butterfly minors.

The work presented in Chapter 4 is joint work with Archontia Giannopoulou, Roman
Rabinovich and Sebastian Wiederrecht and based on [HRW19,GHW19]. The results
come from two different projects which are both mainly concerned with matching
theory. The first [HRW19] introducing cyclewidth and providing the matching grid
theorem, the second [GHW19] giving the characterisation of bipartite graphs of small
perfect matching width. Here we extract the directed consequences and statements of
both.

1.3 Towards a directed structure theorem

In Chapter 5 we deal with the duality between non-planar butterfly minors and embed-
ding oriented decompositions of digraphs.

The graph minor project contains the most influential results in recent undirected
graph theory research. Naturally, the desire to achieve insight in the structure of
directed graphs excluding a fixed minor is strong. There has been progress over
recent years by achieving a directed grid theorem [KK15] and a directed flat wall
theorem [GKKK20].

We discuss the two different versions of the existing directed flat wall theorem and
their drawbacks. Then, we present an alternative directed flat wall theorem, excluding
a different digraph as a butterfly minor. This new theorem lies “in between” the two
existing ones and as such does have neither of these drawbacks. Motivated by early
results by Robertson and Seymour on single crossing minor free graphs and Wagner’s
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1.4 Moplexes

theorem for graphs excluding K5, we also present a flat wall theorem excluding the
unique strongly 2-connected orientation of K5.

These results given in Chapter 5 consist of preliminary thoughts in direction of a
structure theorem for directed graphs, and indicate where the main difficulties lie in
finding one. They are also meant to lay a foundation of definitions and concepts.

The work presented in Chapter 5 is joint work with Maximilian Gorski, Ken-ichi
Kawarabayashi, Stephan Kreutzer and Sebastian Wiederrecht and based on unpub-
lished work. Results presented here were found within different subgroups and dif-
ferent meetings. The flat wall proof is based on an original one by Giannopoulou et
al. [GKKK20] and adapted by Giannopoulou and Wiederrecht [GW21] and then again
adapted by the author of this thesis to our setting. The remaining proofs in this section
are written and developed by the author of this thesis based on discussion among the
co-authors.

1.4 Moplexes

A moplex is a maximal clique module in a graph. Moplexes yield a generalisation of
Dirac’s classical theorem that every chordal graph contains a simplicial vertex [Dir61]
from chordal graphs to general graphs. In Section 6.1 we investigate k-moplex graphs,
which are defined as graphs containing at most k moplexes. In particular we study
the smallest nontrivial case k = 2, which forms a counterpart to the class of interval
graphs. As the main structural result in that section, we show that the class of connected
2-moplex graphs is sandwiched between the classes of proper interval graphs and
cocomparability graphs; moreover, both inclusions are tight for hereditary classes.

This leads to the natural question of whether having at most two moplexes guarantees a
sufficiently strong structure to efficiently solve problems that are known to be intractable
on cocomparability graphs, but not on proper interval graphs. We provide reductions
that answer this question negatively for two prominent problems fitting this profile,
namely Graph Isomorphism and Max-Cut. On the other hand, we prove that every
connected 2-moplex graph contains a Hamiltonian path, generalising the same property
of connected proper interval graphs. Furthermore, for graphs with a higher number of
moplexes, we lift the previously known result that graphs without asteroidal triples
have at most two moplexes to the more general setting of larger asteroidal sets.

The work presented in Section 6.1 is joint work with Clément Dallard, Robert Ganian,
Matjaž Krnc and Martin Milanič and based on [DGH+21]. The results of this section
have been developed in many online meetings involving all authors and during a
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1 Introduction

number of research visits of the author of the thesis in Koper working with Clément
Dallard, Matjaž Krnc and Martin Milanič in person.

1.5 Avoidable paths

An avoidable vertex is a different generalisation of Dirac’s classical theorem that
every chordal graph contains a simplicial vertex. Ohtsuki, Cheung and Fujisawa
[OCF76] show that every graph contains at least two avoidable vertices. Beisegel et
al. [BCG+19] generalise this result to edges, showing that every graph that contains at
least one edge also contains an avoidable edge. They conjecture this to be true for any
length of paths. In Section 6.2 we present a proof for this conjectured duality, showing
that every graph either does not contain an induced path on k vertices or contains an
avoidable path on k vertices.

The work presented in Section 6.2 is joint work with Marthe Bonamy, Oscar Defrain
and Jocelyn Thiebaut and based on [BDHT20]. This result was achieved during a
one-week-workshop in Pessac in 2019. Everything about it was done in very close
teamwork within this week, from the first ideas to the write-up.

1.6 Linegraph squares

A strong edge colouring is a proper colouring of the edges of a graph such that no
two edges that are incident to a common edge receive the same colour. The square of
a graph G is obtained from G by adding edges between vertices of distance exactly
2. Therefore the strong edge colouring problem can be transformed to the problem
of finding a proper vertex colouring of the squared linegraph. This shows that the
linegraph square can be useful for proving structural properties of the graph itself and
it is of interest to characterise the graphs with a squared linegraph in a specific class
of graphs.

Proper vertex colouring is not the only problem that becomes solvable in polyno-
mial time in the class of perfect graphs, so do Clique and Independent Set [PW10]
for example. Section 6.3 obtains a characterisation of graphs with perfect linegraph
squares by forbidden induced subgraphs. In addition we are able to observe that this
class, among some other graph classes with specific linegraph squares, is χ-bounded.
The concept of χ-boundedness is a generalisation of perfect graphs.

The work presented in Section 6.3 is joint work with Sebastian Wiederrecht and based
on [HW18]. The proofs and extensive case distinctions were done on joint effort within
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1.6 Linegraph squares

many hours spent in front of a white board. The credit for most of the write-up goes
to Sebastian Wiederrecht and it was only slightly adapted for presentation here.
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2 Background and preliminaries

Many definitions are specific to certain results or concepts discussed in the single
chapters. Therefore they are placed within the relevant chapter. Here we put in place
the definitions and concepts used throughout the whole thesis and take a short look
into the background of the results presented throughout this thesis.

For a set X we denote the set of all subsets of X that have size exactly k by
(︁

X
k

)︁
. Similarly, we denote the set of all subsets of X that have size at most k by

(︁
X
≤k

)︁
.
(︁

X
k

)︁
Two sets X and Y are called comparable if X ⊆ Y or Y ⊆ X. For two sets X
and Y we write X ⊎ Y for the disjoint union of X and Y. Additionally, we define X ⊎ Y

[k] := {1, . . . , k} for all k ∈ N. For two sets X and Y and a function α : X → Y, we [k]
often use the shortcut α(X ′) := {α(x) | x ∈ X ′} for a subset X ′ ⊆ X.

The natural numbers include 0 and are denoted N , and N+ := N \ {0}. N

N+
All graphs and digraphs in this thesis are finite and simple. We assume familiarity
with basic concepts in graph theory as used, e.g. by West or Diestel [Wes96,Die17]
and for directed graphs in [BG02]. This thesis contains duality results on undirected,
directed and bipartite graphs. Directed graphs can be considered a generalisation of
undirected graphs in a natural way. In fact, directed graphs can be further generalised
by bipartite graphs, which is less straightforward and explained in Chapter 4. This
generalisation provides a lot of insight in the structure of behaviour of directed graphs.
In order to make it easier to see what type of graph is used, we consequently use G
to refer to undirected graphs, B to refer to bipartite graphs and D to refer to refer to
directed graphs.

2.1 Undirected graphs

A graph G has a vertex set V (G) and an edge set E(G) ⊆
(︁

V (G)
2
)︁
, note that this

implies the graph to be simple, we write G = (V (G), E(G)) . We sometimes write
G := (V, E) to fix V = V (G) and E = E(G) if the context does not allow for
confusion with other graphs. The union of two graphs G1 and G2 is defined by
G1 ∪G2 := (V (G1) ∪ V (G2), E(G1) ∪ E(G2)) . G1 ∪ G2

9



2 Background and preliminaries

Let G be a graph. Let e = {u, v} ∈ E(G) be an edge of G, then e is incident to u and
v. We call u and v the endpoints of e and say u is adjacent to v, and we sometimes
write uv instead of {u, v}. If {u, v} /∈ E(G), then u and v are non-adjacent. For
a vertex v ∈ V (G) we define its neighbourhood NG(v) := {u | {u, v} ∈ E(G)}.NG(v)
The set NG[v] := {v} ∪NG(v) is the closed neighbourhood of v. We generalise thatNG[v]
definition to sets S ⊆ V (G) by NG[S] :=

⋃︁
s∈S NG[s] and NG(S) := NG[S] \ S.

We define the complement of G as G :=
(︂

V (G),
(︁

V (G)
2
)︁
\ E(G)

)︂
. For a set S ⊆G

V (G), define by S := V (G) \ S the complement set of S. The edge-cut of a setS

S ⊆ V (G) is defined as ∂G(S) := {{u, v} ∈ E(G) | u ∈ S, v ∈ V (G) \ S}, we call∂G(S)
S and S the shores of this edge cut. A cut-edge of ∂G(S) is an edge uv ∈ E(G) with
u ∈ S and v ∈ S. The size if the edge-cut ∂G(S) is the number of cut-edges it has.
In general we say a set of edges E′ ⊆ E(G) is an edge-cut in G if there exists a set
S ⊆ V (G) such that ∂G(S) = E′. Two edge-cuts ∂(S) and ∂(S′) are called laminar
if S and S′ are comparable or S and S′ are comparable.

Every subset V ′ ⊆ V (G) together with a subset E′ ⊆
(︁

V ′

2
)︁
∩E constitutes a subgraph

G′ of G, also notated as G′ ⊆ G with vertex set V (G′) = V ′ and edge set E(G′) =G′ ⊆ G

E′. For X ⊆ V (G) we define G[X] = (X, {e ∈ E(G) | e ⊆ X}) to be the subgraphG[X]
of G induced by X. Any subgraph of G induced by a subset of V (G) is an induced
subgraph of G. A graph H is said to be contained in G if H is isomorphic to an induced
subgraph of G. If H is not contained in G, we say G is H-free, respectively for graphs
H1, . . . , Ht that are not contained in G we say that G is {H1, . . . , Ht}-free.

Let G be a graph and e = {u, v} ∈ E(G) one of its edges. We say that the
graph G′ with vertex set V (G′) = (V (G) \ {u, v}) ∪ {xuv} and edge set E(G′) =(︂

E(G) ∩
(︁V (G′)

2

)︁)︂
∪ {{xuv, y} | {u, y} ∈ E(G) or {v, y} ∈ E(G)} is obtained

from G by contracting the edge e into the vertex xuv. If the name of the new vertex is
not relevant, we also write G′ = G/ (e→ xuv) , or only G′ = G/e. A graph H thatG/ (e → xuv)

G/e is obtained from G by deleting vertices and contracting edges is called a minor of G,
written H ≼ G.H ≼ G

A path P of length k in G is a sequence of distinct vertices v1, . . . , vk+1 such that
{vi, vi+1} ∈ E(G) for 1 ≤ i ≤ k. The vertices v1 and vk+1 are the end-vertices
of P and we call P a v1-vk+1-path. In favour of readability as well as consistency
with related literature, we use the notation Pk for the path on k vertices. Note that
this is a path of length k + 1. For two vertices x, y ∈ V (G) we define the distance
distG(x, y) between x and y to be the length of a shortest path in G with endpoints x
and y. A cycle C in G of length k is a path of length k − 1 and an edge between its
two end-vertices. For k ≥ 3, we denote by Ck the cycle of length k. We often identify
a path P or a cycle C with the subgraph G[P ] or G[C] it induces.

10



2.1 Undirected graphs

By adding edges between vertices of distance at most k, we obtain the k-th distance
power Gk, or simply k-th power of G. Formally Gk is defined by V (Gk) := V and Gk

E(Gk) := {xy | dist(x, y) ≤ k}. The linegraph of a graph G is the graph LG(G) LG(G)
defined by

V (LG(G)) := E(G) and
E(LG(G)) := {e1e2 | e1 ∩ e2 ̸= ∅, e1, e2 ∈ E(G)}.

A set X ⊆ V (G) is an independent set in G if {x, y} /∈ E(G) for all x, y ∈ X.
The graph G is called complete if all its vertices in it are pairwise adjacent. The
complete graph on n vertices is denoted by Kn. Consistent with this, we denote Kn

by 3K1 the edgeless graph with three vertices. We call G bipartite if its vertex set
can be partitioned into two independent sets A and B and complete bipartite if G
contains all possible edges between A and B. If G is complete bipartite, then we
denote G by Ka,b, where a := |A| and b := |B|. The independence number of G is Ka,b

the maximum size of an independent set in G. A clique in G is a subgraph induced by
a set of pairwise adjacent vertices. A (connected) component of a graph is a maximal
connected subgraph. We sometimes identify components of a graph with their vertex
sets. Given two vertex sets A and B in G, we say that A dominates B if every vertex
in B has a neighbour in A or is an element of A.

A vertex cover of a graph G is a set of vertices S ⊆ V (G) such that for every edge
e ∈ E(G) we have e∩S ̸= ∅. The size of the minimum vertex cover is called the vertex
cover number of G, denoted τ(G). A matching in G is a set of edges M ⊆ E(G) such τ(G)
that no two edges in M intersect. The maximum size of a matching in G is called the
maximum matching number of G, denoted ν(G). ν(G)

A cut-vertex in a graph is a vertex whose deletion increases the number of connected
components. A graph without any cut-vertices is called 2-connected and the maximal
2-connected subgraphs of a graph are called blocks For a graph G and S ⊆ V (G),
let G− S be the subgraph of G induced by V \ S; if S = {v} then we use G− v as
shorthand for G− {v}. For two vertices u, v ∈ V (G), a set S ⊆ V (G) \ {u, v} is a
u,v-separator if u and v belong to different components of G− S, and it is a minimal
u,v-separator if additionally no proper subset of S is a u,v-separator. A u,v-separator
S is minimal if and only if the two components of G−S containing u and v are S-full,
that is, these components dominate S. A minimal separator is a minimal u,v-separator
for two non-adjacent vertices u and v.

A star is a complete bipartite graph K1,k for k ∈ N, and the claw is the star on
4 vertices. A graph is a tree if for every two vertices u, v in it there is exactly one
u-v-path. A tree is rooted if it has a distinguished vertex called the root.

11



2 Background and preliminaries

A (proper) vertex colouring of a graph assigns a colour to every vertex of the graph
such that no two adjacent vertices receive the same colour. Similarly, an edge colouring
assigns colours to the edges of a graph, such that two edges incident to a common
vertex receive different colours. By ω(G) we denote the size of a maximum cliqueω(G)
in a graph G, the clique number of G and by χ(G) the minimum number of coloursχ(G)
required for a vertex colouring of G, the chromatic number of G. A graph G is perfect
if ω(H) = χ(H) holds for all induced subgraphs H ⊆ G.

2.1.1 Graph classes and their properties

A graph G is cobipartite if its complement is bipartite. Furthermore, G is said to be
a cochain graph if there are two disjoint cliques X and Y with V (G) = X ∪ Y and
X = {x1, . . . , xk} such that N[xi] ⊆ N[xj ] for all 1 ≤ i < j ≤ k. A graph G is an
interval graph if it has an interval representation, that is, if its vertices can be put in a
one-to-one correspondence with a family of closed intervals on the real line such that
two distinct vertices are adjacent if and only if the corresponding intervals intersect.
If G has an interval representation in which no interval contains another interval, then
G is said to be a proper interval graph. A vertex set A in a graph G is an asteroidal
set if for every a ∈ A, the vertices in A \ {a} are contained in a single connected
component of G−N(a) [Wal78]. The asteroidal number of G is the maximum size
of an asteroidal set in G (see, e.g. [LMW98,KKM01,Alc14]). Of particular interest
are the graphs of asteroidal number at most 2, these are also called AT-free graphs, as
they do not contain any asteroidal set of size 3, which are called asteroidal triples. A
prominent subclass of AT-free graphs is the class of cocomparability graphs, which
are graphs whose complements allow for a transitive orientation of their edges. For
further background on graph classes, we refer to [BLS99].

Chordal graphs and simplicial vertices

A graph is chordal if it does not contain any induced cycle of length greater than
three. The class of chordal graphs is a subclass of perfect graphs on which many
problems that are usually hard to solve are solvable in polynomial time, e.g. maximal
clique [EHPS05] and graph colouring [Gol80]. Chordal graphs are therefore well
studied and in particular of interest in the context of algorithmic applications.

The chordality of a graph G is defined as the minimum k ∈ N such that E(G) =
E1 ∩ . . . ∩ Ek and (V (G), Ei) is a chordal graph for every i ∈ [k].

One of the main reasons for chordal graphs having such algorithmically useful be-
haviour is the existence of simplicial vertices in them. A vertex is simplicial if its
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2.1 Undirected graphs

Figure 2.1: The left graph is not chordal as it contains an induced cycle of length four.
The right graph is chordal and the two marked vertices are its simplicial
vertices.

neighbourhood forms a clique, see, for example, Figure 2.1. In 1961, Dirac proved the
following result for chordal graphs.

Theorem 2.1.1 (Dirac [Dir61]). Every non-complete chordal graph contains at least
two non-adjacent simplicial vertices.

This leads to the characterisation of chordal graphs by the existence of a perfect
elimination ordering [Dir61,Ros70]. A perfect elimination ordering is an ordering of
the vertices of the graph such that every vertex is simplicial in the graph induced by this
vertex and all the vertices to its left in the ordering. Such an ordering can be computed
in linear time using algorithms like lexicographic breath first search [RTL76], which
are considered in more detail in Subsection 6.1.4.

v0

v1

v2

v3

v4

G

G′

Figure 2.2: The graph G′ := G[{v0, v1, v3, v4}] is the subgraph induced by the first
four vertices of the perfect elimination ordering (v4, v0, v3, v1, v2) . The
vertex v1 is the last vertex of G′ with respect to the ordering and thus is
simplicial in G′.

13



2 Background and preliminaries

Two adjacent simplicial vertices have exactly the same closed neighbourhood, which
is a clique. Thus, they behave similarly and for many applications the existence of two
independent simplicial vertices is more useful.

A vertex set M is a module of a graph G if each vertex v ∈ V (G) \M is either
adjacent to every vertex in M or not adjacent to any vertex in M. A clique module is
a module that induces a clique. A simplicial module is an inclusion-maximal clique
module containing a simplicial vertex. Note that all vertices in a simplicial module
are simplicial. Dirac’s theorem is equivalent to the statement that every non-complete
chordal graph contains at least two simplicial modules [Cao16,Shi88].

Theorem 2.1.2 (Cao [Cao16], Shibata [Shi88]). Every non-complete chordal graph
contains at least two simplicial modules.

Another characterisation of chordal graphs is based on subtree intersections. A graph
G is chordal if and only if there is a tree T such that G is the intersection graph of the
subtrees of T [Gav74,Bun74]. This leads to a definition introduced by Lin, McKee and
West [LMW98]. The leafage leaf(G) of a chordal graph G is the minimum number of
leafs in a tree T such that G is representable as an intersection graph of subtrees of T.
The leafage divides the class of chordal graphs naturally into subclasses of bounded
leafage. For example interval graphs are the chordal graphs of leafage at most two.

Similarly one can now consider subclasses of chordal graphs of bounded number of
simplicial modules. As the number of simplicial modules yields an upper bound on
the leafage of a graph [LMW98], we obtain that every chordal graph with at most two
simplicial modules is an interval graph.

2.1.2 Treewidth

Many problems that are hard in general are comparably easy to solve on trees and
forests. The width measure treewidth describes the similarity of a given graph to a
forest, which gives rise to many algorithmic applications using dynamic programming
approaches. Therefore, treewidth is a popular parameter in the field of parametrised
complexity. In its current form treewidth was introduced by Robertson and Seymour in
1984 [RS84]. But the concept was known long before this. Originally it was introduced
by Bertelè and Brioschi in 1972 [BB72].

Definition 2.1.3 (Treewidth). Let G be a graph. A tree decomposition of G is a tuple
(T, β) , where T is a tree and β : V (T )→ 2V (G) a function mapping every vertex of
T to a set of vertices in G such that the following properties hold.
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2.1 Undirected graphs

(Tw1) Every vertex of G is contained in β(t), which is called the bag of t, for
some t ∈ V (T ).

(Tw2) For every edge uv ∈ E(G) there exists a t ∈ V (T ) such that u, v ∈ β(t).

(Tw3) For every pair of vertices ti, tj ∈ V (T ) and every t ∈ V (T ) lying on the
unique path from ti to tj in T holds β(ti) ∩ β(tj) ⊆ β(t).

The width of a tree decomposition (T, β) is given by max{|β(t)| | t ∈ T} − 1. The
treewidth of G, denoted tw(G), is then defined as the minimum width of any tree tw(G)
decomposition of G.

The graphs of treewidth one are exactly the trees and forests while the graphs of
treewidth two are exactly the series-parallel graphs [Bod98]. More general, the graphs
of treewidth at most k are the partial k-trees, which have an inductive definition.

Classes of small treewidth also have characterisations by forbidden minors. For
treewidth one it is K3, for treewidth two it is K4 [Bod88]. This does not continue as
nicely, for treewidth three it is already four forbidden minors [APC90,ST90].

2.1.3 Obstructions to small treewidth

Definition 2.1.4 (Bramble). A bramble in a graph G is a collectionB := (B1, . . . , Bk)
of connected subgraphs of G such that for every pair Bi and Bj of these subgraphs
Bi ∩Bj ̸= ∅ or there is an edge e ∈ E(G) with one endpoint in Bi and the other in
Bj . The order of B is the size of a minimum hitting set of all subgraphs.

Definition 2.1.5 (Haven). A haven of order k in a graph G is a function η :
(︁

V (G)
<k

)︁
→

C, where C is the collection of all connected subgraphs of G, such that η(X) is a
connected component of G −X for all X ∈

(︁
V (G)

<k

)︁
. Additionally, if X ⊆ Y , then

η(Y ) ⊆ η(X) for every two sets X, Y ∈
(︁

V (G)
<k

)︁
.

Theorem 2.1.6 (Seymour and Thomas [ST93]). A graph G contains a bramble of
order k if and only if it has treewidth at least k − 1 if and only if G contains a haven
of order k.

A grid of order k or k× k grid is the graph G with the vertex set V (G) = {vi,j | 1 ≤
i, j ≤ k} and the edge set E(G) = {{vi,jvi′,j}, {vi,jvi,j′} | j′ = j + 1, i′ = i + 1},
see Figure 2.3 for an illustration.
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2 Background and preliminaries

Figure 2.3: The 6× 6 grid.

Theorem 2.1.7 (Robertson and Seymour [RS86]). There is a function f : N → N

such that every graph of treewidth at least f(k) contains a k × k-grid as a minor.

Originally, Robertson and Seymour proved an exponential bound for the function
f. This was improved, first to be polynomial [CC16] and then again several times
optimising the polynomial [Chu15,CT21] and the current bound is O(k9polylogk),
for planar graphs it is even linear: every planar graph of treewidth at least 6k contains
a grid of order k as a minor [RST94]. There is also a significantly simplified version
of the grid theorem proof due to Diestel, Jensen, Gorbunov and Thomassen [DJGT99]
that should not remain unmentioned in this context.

Another obstruction to small treewidth that was introduced by Robertson and Seymour
is called tangle and uses the concept of separations. Let G be a graph. Two sets
X, Y ⊆ V (G) are a separation, written {X, Y } if there is no edge between X \ Y
and Y \X. Let Sk be the family of separations of order less than k. An orientation of
Sk contains (X, Y ) or (Y, X) for every {X, Y } ∈ Sk.

Definition 2.1.8 (Tangle). Let G be a graph. A tangle of order k is an orientation O
of Sk such that for every three separations (X1, Y1), (X2, Y2), (X3, Y3) ∈ O we have
X1 ∪X2 ∪X3 ̸= V (G). ⊣

Robertson and Seymour proved the following duality between tangles and treewidth.

Theorem 2.1.9. Let G be a graph, and k ∈ N. Then, there is a tangle of order k in G
if and only if tw(G) ≥ k.

16



2.1 Undirected graphs

The cops and robber game

Another possibility to characterise treewidth is in terms of graph searching games.
These games typically involve two parties the robber and some cops that are positioned
in the graph, on vertices or edges or sets of such and the cops try to catch the robber
while the robber tries to escape the cops.

The graph searching game that characterises treewidth is given by the following
definition.

Definition 2.1.10 (Cops and robber game). Given a graph G, the k-cops and robber
game on G is played between two players, the cop and the robber player. Positions
of the game are pairs (C, R) where C ∈

(︁
V (G)

≤k

)︁
is the position of the cops and R is a

connected component of G− C, the component in which the robber is hiding. The
component R can be empty, that is, we consider ∅ to be a connected component of
every graph for this purpose. The game is played as follows:

1. The cop player starts by choosing a location C0 ∈
(︁

V (G)
≤k

)︁
of the cops, and the

robber player chooses a connected component R0 of G− C0.

2. From position (Ci, Ri) the cop player chooses Ci+1 ∈
(︁

V (G)
≤k

)︁
, and the robber

player chooses a component Ri+1 of G−Ci+1 such that (V (Ri) ∩ V (Ri+1))\
(Ci ∩ Ci+1) ̸= ∅.

3. The cop player wins the game if, after a finite number of turns, the robber player
selects ∅ as the new component, otherwise the robber player wins.

A play π is a maximal sequence π := ((C0, R0) , (C1, R1) , . . .) of positions given by
the rules above. A (k-cop) strategy for the cop player is a function f :

(︁
V (G)

≤k

)︁
× G →(︁

V (G)
≤k

)︁
where G denotes the set of all connected subgraphs of G. A play π is consistent

with a strategy f if f((Ci, Ri)) = Ci+1 for all i. The strategy f is called winning for
the cop player if every play consistent with f is won by the cop player.

A play is robber monotone if Ri+1 ⊆ Ri for all i. A strategy f is robber monotone if
every play consistent with f is robber monotone.

A play is called cop monotone if for all i, j with i < j and for every vertex v ∈ Ci∩Cj

we have v ∈ Ch for all i ≤ h ≤ j. A strategy f is cop monotone if every play consistent
with f is cop monotone.

A strategy f is monotone if it is both robber and cop monotone.
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2 Background and preliminaries

The (robber monotone, cop monotone) cop number of a graph G is the smallest number
k such that there exists a (robber monotone, cop monotone) winning strategy for the
k-cops and robber game.

For this game there are no monotonicity costs, that is, if k cops have a winning strategy,
then they also have a monotone winning strategy.

Theorem 2.1.11 (Seymour and Thomas [ST93]). A graph has treewidth at most k if
and only if k + 1 cops can capture the robber.

2.2 Directed graphs

A directed graph, or digraph, D has a vertex set V (D) and an edge set E(D) ⊆V (D)
E(D) (V (D)× V (D)) \ {(v, v) | v ∈ V (D)}. We sometimes write D := (V, E) to

fix V = V (D) and E = E(D) if the context does not allow for confusion with
other graphs. The union of two digraphs D1 and D2 is defined by D1 ∪ D2 :=D1 ∪ D2

(V (D1) ∪ V (D2), E(D1) ∪ E(D2)) .

Let D be a digraph. Let e = (u, v) ∈ E(D) be an edge of D, then we call u
the tail of e and v the head of e, we say e is incident to u and v, written e ∼ ue ∼ u

and e ∼ v. For a vertex v ∈ V (D) we define its out-neighbourhood Nout
D (v) :=N out

D (v)
{u | (v, u) ∈ E(D)} and its in-neighbourhood N in

D(v) := {u | (u, v) ∈ E(D)}.N in
D(v)

The set Nout
D [v] := {v} ∪Nout

D (v) is the closed out-neighbourhood of v and the set
N out

D [v]
N in

D[v] := {v} ∪ N in
D(v) is the closed in-neighbourhood of v. We generalise these

N in
D[v] definitions to sets S ⊆ V (D) by Nout

D [S] :=
⋃︁

s∈S Nout
D [s], Nout

D (S) := Nout
D [S] \S,

N in
D[S] :=

⋃︁
s∈S N in

D[s] and N in
D(S) := N in

D[S] \ S. If Nout
D (v) = ∅ for a vertex

v ∈ V (D), then it is called a sink of D, and it is called a source if N in
D(v) = ∅. If the

digraph D is apparent from the context, we omit the index.

Let v be a vertex in D, by ∂out
D (v) we denote the set of out-edges of v, that is ∂out

D (v) :=∂out
D (v)

{(v, u) ∈ E(D)}. The out-degree of v is defined by degout
D (v) := |∂out

D (v)|. Similarly,degout
D (v)

by ∂ in
D(v) we denote the set of in-edges of v, that is ∂ in

D(v) := {(u, v) ∈ E(D)}
∂ in

D(v) and define the in-degree of v by degin
D(v) := |∂ in

D(v)|. We also define ∂D(v) :=
degin

D(v)
∂D(v)

∂out
D (v) ∪ ∂ in

D(v). Again, we omit the index, if the context clearly provides the digraph
D.

A (directed) path P of length k in a directed graph D is a sequence of distinct vertices
v1, . . . , vk+1 such that (vi, vi+1) ∈ E(D) for all 1 ≤ i ≤ k. The vertex v1 is
called the start-vertex of P, denoted start(P ), while the vertex vk+1 is the end-vertexstart(P )
of P, denoted end(P ). We call P a start(P )-end(P )-path. We often identify Pend(P )

18



2.2 Directed graphs

with the subgraph ({v1, . . . , vk+1}, {(vi, vi+1) | 1 ≤ i ≤ k}) . Let X ⊆ V (D) be
a set of vertices in D. A directed path P is disjoint from X if V (P ) ∩ X = ∅.
It is internally disjoint from X if V (P ) ∩ X ⊆ {start(P ), end(P )}. An X-path
is a directed path P of length at least one that is internally disjoint from X and
start(P ), end(P ) ∈ X. For a subgraph D′ ⊆ D we also write D′-path instead of
V (D′)-path. Two paths P and P ′ are disjoint if V (P ) ∩ V (P ′) = ∅ and they are
internally disjoint if their only intersections are start- and end-vertices, that is, V (P )∩
V (P ′) ⊆ {start(P ), start(P ′), end(P ), end(P ′)}. A (directed) cycle of length k is a
directed path of length k − 1 such that (end(P ), start(P )) ∈ E(D). A collection L
of pairwise disjoint paths is called a linkage. We say L is an A-B-linkage if every
L ∈ L is an a-b-path for some a ∈ A and b ∈ B. We call a collection L of paths a
half-integral linkage if every vertex of the graph occurs in at most two paths of L.

A digraph D that is obtained from an undirected graph G by adding exactly one
direction of every edge, that is, V (D) = V (G) and for all {u, v} ∈ E(G) we have
either (u, v) ∈ E(D) or (v, u) ∈ E(D), is called an orientation of G. A digraph D
is a (directed) tree or out-branching rooted at a vertex r if it is the orientation of an
undirected tree T rooted at r such that degin

D(v) = 1 for every v ∈ V (D) \ {r}.

The underlying undirected graph of a digraph D is the undirected graph G(D) with G(D)
the vertex set V (G(D)) := V (D) and the edge set E(G(D)) := {{u, v} | (u, v) ∈
E(D) or (v, u) ∈ E(D)}. The digraph D is strongly connected if for every two
vertices x, y ∈ V (D) there is an x-y-path and a y-x-path in D. The digraph D is
weakly connected if G(D) is connected. A strongly connected component or strong
component of D is a maximal strongly connected subgraph of D.

In directed graphs there are several ways to define containment relations that generalise
minors in undirected graphs. The most prominent one in structure theory is the one
of butterfly minors. The idea behind the definition is that the contraction of an edge
should not create new paths, that is, if there is no path between two vertices before the
contraction, then there is no such path after the contraction either. To this end, we call
an edge e butterfly contractible if e is the only out-edge of its tail u or the only in-edge
of its head v. For a butterfly contractible edge e = (u, v) in D we define the digraph
obtained by contracting it into the vertex xuv, which we call the contraction vertex, as
follows.

D/e→ xuv :=
(︂

V (D) \ {u, v} ∪ {xuv},

E(D) \ {(x, y) ∈ E(D) | {x, y} ∩ {u, v} ̸= ∅}
∪ {(x, xuv) | (x, u) ∈ E(D) or (x, v) ∈ E(D)}

∪ {(xuv, x) | (u, x) ∈ E(D) or (v, x) ∈ E(D)}
)︂
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2 Background and preliminaries

If we do not require a specific name for the contraction vertex, then we also write
D/e. A digraph D′ is a butterfly minor of D if it can be obtained from a subgraph ofD/e

D by butterfly contractions.

We can make an edge butterfly contractible by deleting some edges. We say a graph
D′ is obtained by out-contracting an edge e if it is obtained by first deleting all other
out-edges of its tail and then butterfly contracting it. Similarly, we can in-contract an
edge e by first deleting all other in-edges of its head and then butterfly contracting e.

An alternative way to describe this concept is via minor models. An in-branching is
the reverse graph (obtained by reversing the direction of all edges) of an out-branching,
and an in-out-branching is obtained by identifying the root of an in-branching and the
root of an out-branching. A butterfly (minor) model of a digraph D′ in a digraph D is
a function µ mapping every vertex of D′ to a subgraph of D and every edge of D′ to
an edge of D such that

1. µ(v) is an in-out-branching for every v ∈ V (D′),

2. µ(v) is disjoint from µ(u) for distinct u, v ∈ V (D′),

3. µ(e) ∈ E(D) for all e ∈ E(D′),

4. µ(e) ̸= µ(e′) for distinct e, e′ ∈ E(D′), and

5. if e = (u, v) ∈ E(D′), then start(µ(e)) lies in the out-branching of µ(u) and
end(µ(e)) lies in the in-branching of µ(v).

2.2.1 Directed separations

Let D be a directed graph and A, B ⊆ V (D). The tuple (A, B) is a directed separation
if A ∪ B = V (D) and there are no edges with tail in A \ B and head in B \ A or
no edges with tail in B \ A and head in A \ B. In case there are no edges with tail
in A \ B and head in B \ A, we write (A, B)�indicating that edges are allowed to
go from B \ A to A \ B. Similarly, we write (A, B)� if no edge in D has its tail(A, B)�
in B \ A and its head in B \ A. We call (A, B)� or (A, B)�the direction of (A, B) ,
see Figure 2.4 for an illustration. It is possible that for a directed separation (A, B)
there are no edges at all between A \ B and B \ A, in that case we call (A, B) a
weak separation. Note that this naming is due to A \B and B \A not being weakly
connected in D− (A ∩B) , though in fact this notion is more restrictive, so in a sense
stronger than directed separations.

The set S := A ∩ B is called the separator of the separation, and we sometimes
write (A, S, B) to emphasise the separator. The order of a directed separation (A, B) ,
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2.2 Directed graphs

A B

S

Figure 2.4: Depicted is the separation (A, B)�. The green solid arrow symbolises the
direction of the allowed edges from B \A to A \B, and the red dashed
arrow symbolises the forbidden edges from A \B to B \A. The separator
S = A ∩B is marked in black.

denoted by | (A, B) |, is the size of S. The set of all directed separations of order
less than k in D is denoted by S⃗k, here for weak separations (A, B) we consider two S⃗k

distinct copies (A, B)� and (A, B)�, both of which are elements in S⃗k. This way we
obtain that every directed separation in S⃗k has a uniquely defined direction. We also
define the set of all separations S⃗ :=

⋃︁
k∈N S⃗k. S⃗

Let D be a digraph. A directed separation (A, B) is trivial, if A\B = ∅, or B\A = ∅.
We call a set S ⊆ V (G) a separator, if there is a non-trivial directed separation
(A, S, B) in D.

If D is strongly connected and D−S is not strongly connected, then the set S is called
a strong separator. Let S be a strong separator in D and C1, . . . , Cℓ the strongly con-
nected components of D− S. We call an ordering σ = (C1, . . . , Cℓ) a topological or-
dering of the strong components of D−S, if for all (u, v) ∈ E(D) we have u ∈ V (Ci)
and v ∈ V (Cj) implies that i ≤ j. Note that every topological ordering can be associ-
ated with a number of directed separations as follows. For every j ∈ {1, . . . , ℓ− 1},
there is the non-trivial directed separation

(︂
S ∪

⋃︁j
i=1 V (Ci), S ∪

⋃︁ℓ
i=j+1 V (Ci)

)︂
.

This implies that every strong separator also is a separator.
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2 Background and preliminaries

2.2.2 Directed treewidth

As a directed analogue to treewidth Reed [Ree99] and Johnson, Robertson, Seymour
and Thomas [JRST01] introduced the concept of directed treewidth and conjectured
that a directed version of the grid theorem holds for this directed width measure and a
directed version of a grid.

Let D be a digraph. A set Z guards a set X if there is no walk in D − Z that starts
and ends in X and visits vertices from D −X. For two sets X, Y ⊆ V (D) we say
that Y strongly guards X if u ∈ X implies v ∈ X ∪ Y for all edges (u, v) ∈ E(D).
A vertex y is reachable from a vertex x in D, written as x ≼D y, if there exists ax ≼D y

directed path from x to y. We say that y is reachable from a set of vertices X in D if
there is a vertex x ∈ X such that y is reachable from x. If neither y is reachable from
x, nor x is reachable from y, we say that x and y are incomparable. The set of vertices
reachable from X in D is denoted by BelowD(X). Similarly the set of vertices v such
that X ⊆ BelowD(v) is denoted by AboveD(X).

For an arborescence, or directed tree, T, the removal of an edge e = (t1, t2) splits TTl(e)
into two sub-arborescence: Tl(e) containing t2 and Tr(e) containing t1 as well as theTr(e)
root of T. We also write Td for the sub-arborescence rooted at the vertex d.Td

Definition 2.2.1 (Directed treewidth). A directed tree decomposition of a digraph D
is a triple (T, β, γ) where T is a directed tree, β : V (T )→ 2V (D) maps every vertex
t of T to a set β(t) ⊆ V (D) called the bag at t and γ : E(T )→ 2V (D) maps every
edge e of T to a set γ(e) ⊆ V (D) called the guard at e such that the following hold

1. {β(t) | t ∈ V (T )} is a partition of V (D) (with possibly empty classes), and

2. for all e ∈ E(T ) the guard γ(e) guards β(Tl(e)).

For every vertex t ∈ V (T ) we define Γ(t) := β(t) ∪
⋃︁

e∼t γ(e). The width of a
directed tree decomposition is defined by max{|Γ(t)| | t ∈ V (T )}. The directed
treewidth of D, denoted dtw(D), is defined as the smallest k ∈ N such that D has a
directed tree decomposition of width k.

A cylindrical grid D⟳
k of order k consists of k concentric directed cycles and 2k

paths connecting the cycles in alternating directions, see Figure 2.5 for an example,
as follows. The k directed disjoint cycles C1, . . . , Ck have length 2k each. The cycle
Ci has the vertex set {vi

1, . . . , vi
2k} with the natural cyclic ordering. The paths are of

two different kinds, we have the in-paths P i
1, . . . , P i

k and the out-paths P o
1 , . . . , P o

k as
follows.
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2.2 Directed graphs

P i
j = vk

2j , vk−1
2j , . . . , v2

2j , v1
2j for all j ∈ {1, . . . , k}

P o
j = v1

j , v2
j , . . . , vk−1

j , vk
j for all j ∈ {1, . . . , k}.

The paths P i
i and P o

i together build the i-th row of W, which we also denote Ri.

Figure 2.5: A cylindrical grid of order 6 with in-paths and out-paths.

After being open for over 15 years this conjecture was finally confirmed to be true by
Kawarabayashi and Kreutzer [KK15].

Theorem 2.2.2 (Kawarabayashi and Kreutzer [KK15]). There is a function fgrid :
N → N such that every digraph D either satisfies dtw(D) ≤ k, or contains the
cylindrical grid of order fgrid(k) as a butterfly minor.

While the function they provide is exponential, there is a polynomial bound for planar
directed graphs [HKK19]. Additionally, Campos, Lopes, Maia, and Sau [CLMS22]
adapted the result into an FPT algorithm.
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2 Background and preliminaries

2.2.3 Obstructions to small directed treewidth

There are a number of other obstructions and corresponding duality theorems that can
be transferred from treewidth to directed treewidth.

Definition 2.2.3 ((Directed) bramble). A (directed) bramble in a digraph D is a
collection B := (B1, . . . , Bk) of strongly connected subgraphs of D such that for
every pair Bi and Bj of these subgraphs Bi∩Bj ̸= ∅ or there are edges e1, e2 ∈ E(D)
with head(e1), tail(e2) ∈ V (Bi) and tail(e1), head(e2) ∈ V (Bj). The order of B is
the size of a minimum hitting set of all subgraphs.

Definition 2.2.4 ((Directed) haven). A (directed) haven of order k in a digraph D
is a function η :

(︁
V (D)

<k

)︁
→ C, where C is the collection of all strongly connected

subgraphs of D, such that η(X) is a strongly connected component of D − X for
all X ∈

(︁
V (D)

<k

)︁
. Additionally, if X ⊆ Y , then η(Y ) ⊆ η(X) for every two sets

X, Y ∈
(︁

V (D)
<k

)︁
.

Both of these concepts have been shown to be dual to the directed treewidth.

Theorem 2.2.5 ( [KO11,Ree99,JRST01]). Let D be a digraph. The directed treewidth
of D, the maximum order of a bramble in D and the highest order of a haven in D all
lie within a constant factor of each other. More precisely:

• If D has directed treewidth less than k, then D contains no haven of order k +1.

• If D contains no haven of order k, then D has directed treewidth at most 3k−2.

• If D contains a bramble of order k, then it contains a haven of order k + 1.

• If D contains a haven of order k + 1, then D contains a bramble of order k/2.

See also [KO14] for details.

The directed cops and robber game

For directed graphs there exists a corresponding definition for a version of the cops
and robber games, introduced by Johnson et al. [JRST01], which is closely related to
directed treewidth.
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2.2 Directed graphs

Definition 2.2.6 (Directed cops and robber game). The directed k-cops and robber
game on a digraph D is played between two players, the cop and the robber player.
Positions of the game are pairs (X, R) where X ∈

(︁
V (D)

≤k

)︁
is the position of the cops

and R is a strongly connected component of D −X, in which the robber is hiding.
The component R can be empty, that is, we consider ∅ to be a strongly connected
component of every digraph for this purpose. The game is played as follows:

1. The cop player starts by choosing a location X0 ∈
(︁

V (D)
≤k

)︁
of the cops, and the

robber player chooses a strongly connected component R0 of D −X0.

2. From position (Xi, Ri) the cop player chooses Xi+1 ∈
(︁

V (D)
≤k

)︁
, and the robber

player chooses a component Ri+1 of D−Xi+1 such that V (Ri)∪ V (Ri+1) ⊆
V (R) for some strongly connected component R of D − (Xi ∩Xi+1) .

3. The cop player wins the game if, after a finite number of turns, the robber player
selects ∅ as the new component, otherwise the robber player wins.

A play π is a maximal sequence π := ((X0, R0) , (X1, R1) , . . .) of positions given by
the rules above. A (k-cop) strategy for the cop player is a function f :

(︁
V (D)

≤k

)︁
×D →(︁

V (D)
≤k

)︁
where D denotes the set of all strongly connected subgraphs of D. A play π is

consistent with a strategy f if f((Xi, Ri)) = Xi+1 for all i. The strategy f is called
winning for the cop player if every play consistent with f is won by the cop player.

We say that a vertex v ∈ V (D) is reachable from the position (X, R) if there is a di-
rected path from a vertex of R to v in D−X. We denote the set of all vertices reachable
from (X, R) by Below(X, R). A play is robber monotone if Below(Xi+1, Ri+1) ⊆
Below(Xi, Ri) for all i. A strategy f is robber monotone if every play consistent

with f is robber monotone. A play is called cop monotone if for all i, j with i < j and
for every vertex v ∈ Xi ∩Xj we have v ∈ Xh for all i ≤ h ≤ j. A strategy f is cop
monotone if every play consistent with f is cop monotone. A strategy f is monotone
if it is both robber and cop monotone.

The (robber monotone, cop monotone) cop number of a digraph D is the smallest
number k such that there exists a (robber monotone, cop monotone) winning strategy
for the directed k-cops and robber game. ⊣

The duality between these games and directed treewidth is not as tight as for the
undirected version.

Theorem 2.2.7 (Johnson et al. [JRST01]). Let D be a digraph and k ∈ N. If dtw(D) ≤
k, then k + 1 cops have a winning strategy in the directed cops and robber game, and
if k cops have a winning strategy, then dtw(D) ≤ 3k − 2.
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2 Background and preliminaries

2.3 Bipartite graphs and perfect matchings

Let G be a graph. A perfect matching in G is a matching M in G such that for every
vertex v ∈ V (G) there is an edge e ∈M with v ∈ e. We say that M covers the vertex
v (with the edge e). ByM(G) we denote the set of all perfect matchings in G. If GM(G)
is connected and every edge of G is contained in some perfect matching of G we say
that G is matching covered.

Let M ∈M(G). A cycle C in G is M -alternating if every second edge of it belongs
to M, it additionally is M -M ′-alternating if E(C)\M ⊆M ′ for some M ′ ∈M(G),
see Figure 2.6 for an example. If C is an M -alternating cycle, then we say the matching
M ′′ := (M \ E(C)) ∪ (E(C) \M) is obtained by switching M along C.

Figure 2.6: A bipartite graph with two perfect matchings M and M ′ building three
M -M ′-alternating cycles.

In the context of perfect matchings we cannot use the same definition for minors as in
undirected graphs. This is because contracting an edge changes the parity of the vertex
set and thus a graph with a perfect matching does not have any perfect matchings after
a contraction. Thus, matching theory works with its own version of contractions and
minors. A bicontraction is the operation of contracting both edges incident to a vertex
of degree two at the same time.

For minors we need a little bit more. Let G be a graph with a perfect matching M. A set
X ⊆ V (G) is conformal if G−X has a perfect matching, it is said to be M -conformal
if M contains a perfect matching of G −X. Similarly, we call a subgraph H ⊆ G
conformal if V (H) is, and we call it M -conformal if M contains perfect matchings
of G− V (H) and of H. A matching minor of G is a graph H that can be obtained by
a series of bicontractions from a conformal subgraph of G.

The significance of matching minors, especially for the study of matching theoretic
properties of bipartite graphs, was first observed by Little [Lit75]. But he does not
call it a “matching minor” yet, the name is only introduced later by Norine and
Thomas [Nor05,NT07].
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2.3 Bipartite graphs and perfect matchings

Bipartite graphs play a central role in matching theory. As mentioned above, a graph
B is bipartite if its vertex set can be partitioned into two independent sets V0 and V1, V0

V1which we call the colour classes of B. We write B = (V0, V1, E) to fix V0⊎V1 = V (B)
and E = E(B) if the context does not allow for confusion with other graphs. In
figures we depict the vertices of V0 as white and the vertices of V1 as black.
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3 Ganglions

A tangle in an undirected graph is an orientation of all separations of small order.
Tangles are a tool introduced by Robertson and Seymour [RS91] as part of their graph
minor series. A tangle yields an obstruction to a graph having small treewidth, that
is, a graph has high treewidth if and only if it admits a tangle of large order. We can
imagine this as the tangle pointing us in direction of the large gridminor the graph
contains. Additionally, treewidth and tangles admit a game-theoretic characterisation
by cops and robber games.

For many years now, researchers have been trying to find directed concepts with com-
parable properties. There are many possibilities to translate the undirected definitions
to directed graphs and it is far from obvious which is the correct choice. In structure
theory, (undirected) treewidth is often generalised to directed treewidth, which shares
many properties with treewidth. Giannopoulou et. al introduced a generalisation of
tangles to directed graphs by defining directed tangles [GKK+20]. They obtain a
canonical directed tree decomposition, which generalises a result by Robertson and
Seymour, distinguishing any two tangles in a given digraph.

Bienstock et. al [BRST91] introduce a variant of tangles, called blockages, that corre-
sponds to pathwidth instead of treewidth. This was transferred to directed graphs by
Erde [Erd20].

This chapter is about lifting the result due to Erde from directed pathwidth to more
general digraph measures. We provide a definition of tangle-like structures in digraphs
that yield a duality to a digraph width measure that uses directed separations. We call
the structure we introduce a ganglion, which is closely related to the concept of tangles
in undirected graphs. We introduce two width measures: the ν-DAG-width and the
µ-DAG-width. Both of them use a DAG as their main structure and map its edges to
directed separations in the digraph.

While there is a correspondence between directed treewidth and strategies in the
directed cops and robber game, the canonical strategies provided by the decompo-
sitions are not necessarily monotone. This is different for DAG-width and the cops
and robber reachability game; here a DAG-decomposition yields a monotone cop
strategy analogously to undirected tree decompositions. We obtain the desired duality
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3 Ganglions

between ν-DAG-width and ganglions, but unfortunately the tie to the cops and robber
reachability game we consider is weaker than for DAG-width, as the obtained strategies
are not necessarily monotone. In an attempt to fix this, we introduce µ-DAG-width,
demanding an additional property for the decomposition DAGs, which then yields
monotone strategies but is too strong to still yield the duality with ganglions. Yet,
the non-monotonicity that occurs in the strategies obtained for ν-DAG-width is quite
restricted, so the gap in which a width measures with both properties can lie is rather
small. The end of this chapter contains a discussion of the insights we obtain from the
presented results.

3.1 Duality of DAG-width and the cops and robber
reachability game

As mentioned before, the cops and robber game is originally a game-theoretic equiva-
lent to treewidth on undirected graphs. It yields a useful tool for designing algorithms
exploiting bounded treewidth as well as for finding obstructions to the treewidth of a
class of graphs being bounded.

Obdržálek and Berwanger et. al. [Obd06,BDHK06,BDH+12] introduced a directed
width measure, the DAG-width, which corresponds to a directed variant of the cops
and robber game, the cops and robber reachability game.

3.1.1 DAG-Width

The width measure DAG-width [Obd06, BDHK06, BDH+12] is a natural way to
transfer the undirected definitions for treewidth to directed graphs measuring the
distance to an acyclic graph rather than to a directed tree as directed treewidth does.
DAG-width lies between the two width measures directed treewidth and directed
pathwidth. It uses a decomposition that assigns bags to the nodes of a DAG. One
crucial reason to consider DAG-width is that it yields a polynomial time algorithm for
solving parity games [BDH+12] on classes of bounded width. The width measures for
separations that we introduce have many properties in common with DAG-width.

For any DAG T let sourcesT denote the set of sources in T and sinksT denote the setsourcesT

sinksT of sinks in T.

Definition 3.1.1 (DAG-width). Let D be a digraph. A DAG-decomposition of D is
a pair (T, β) where T is a DAG and β : V (T )→ 2V (D) is a function mapping every
node of T to a set of vertices, called a bag, such that
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(Dag1)
⋃︁

t∈V (T ) β(t) = V (D),

(Dag2) for all nodes t1, t2, t3 ∈ V (T ) with t1 ≼T t2 and t2 ≼T t3 we have
β(t1) ∩ β(t3) ⊆ β(t2), and

(Dag3) for all edges (t, t′) ∈ E(T ), β(t)∩ β(t′) strongly guards β(BelowT (t′)) \
β(t), where β(X) =

⋃︁
x∈X β(x) for all X ⊆ V (T ).

The width of (T, β) is defined as max{|β(t)| | t ∈ V (T )}. The DAG-width of D,
denoted by DAGw(D), is defined as the minimum width of any DAG-decomposition
of D. ⊣

As we are in search of an obstruction using directed separations, we are particularly
interested in how DAG-width interacts with the directed separations of a digraph.
The following lemma shows that there is a natural way to obtain directed separations
from a DAG-decomposition. This behaves similarly to the intersection of two bags in
an undirected tree decomposition and makes DAG-decompositions interesting in the
context of decompositions using directed separations.

Lemma 3.1.2. Let (T, β) be a DAG-decomposition of a digraph D. For every edge
(t, t′) ∈ E(T ), the following are directed separations in D:

((V (D) \ β(BelowT (t′))) ∪ (β(t) ∩ β(t′)) , β(BelowT (t′)))� .

Proof. Since β(t)∩β(t′) strongly guards β(BelowT (t′))\β(t), there is no edge from
β(BelowT (t′)) \ β(t) to V (D) \ β(BelowT (t′)). Therefore, every path starting in
β(BelowT (t′)) and ending in (V (D) \ β(BelowT (t′))) ∪ β(t) contains a vertex of
β(t)∩ β(t′) and so the claim follows with β(t)∩ β(t′) = β(t)∩ β(BelowT (t′)).

This shows that every edge in a DAG-decomposition naturally corresponds to a directed
separation of order at most the width of the decomposition. However, the number of
incoming and outgoing edges of a node in the decomposition DAG T can be unbounded.
In order to relate DAG-width to our later definition of ganglions, we must restrict the
number of such edges.

We can restrict the number of outgoing edges at each node of T by using a special
type of DAG-decomposition. A DAG-decomposition (T, β) of a directed graph D is
called nice, due to [BDH+12], if the following requirements are met:

(Nice1) T has a unique source,

(Nice2) every t ∈ V (T ) has at most two out-neighbours,
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(Nice3) if t1 and t2 are distinct out-neighbours of t ∈ V (T ), then β(t) = β(t1) =
β(t2), and

(Nice4) if t1 is the unique out-neighbour of t, then
⃓⃓
|β(t)| − |β(t1)|

⃓⃓
≤ 1.

Theorem 3.1.3 (Berwanger et al. [BDH+12]). Let D be a digraph. If D has a DAG-
decomposition of width k, then it has a nice DAG-decomposition of width k.

Note that the number of incoming edges at the nodes of T remains unbounded.

To the best of our knowledge there is no tangle-like concept so far that relates to
DAG-width in a similar fashion as undirected tangles relate to treewidth.

3.1.2 The cops and robber reachability game

There are several natural adaptions of cops and robber games to directed graphs.
Depending on the definition, the strategies describe different properties of the digraph
they are played on. The following variant, in which the robber moves along directed
paths was introduced by Berwanger et al. [BDHK06] and corresponds to DAG-width.

Definition 3.1.4. Given a digraph D, the directed k-cops and robber reachability
game on D, refer to it as the cops and robber reachability game, is played between two
players, the cop and the robber player. Positions of the game are pairs (X, R) where
X ∈

(︁
V (D)

≤k

)︁
is the position of the cops and R is a strongly connected component of

D−X, the component in which the robber is hiding. The component R can be empty,
that is, we consider ∅ to be a strongly connected component of every digraph for this
purpose. The game is played as follows:

1. The cop player starts by choosing a location X0 ∈
(︁

V (D)
≤k

)︁
of the cops, and the

robber player chooses a strongly connected component R0 of D −X0.

2. From position (Xi, Ri) the cop player chooses Xi+1 ∈
(︁

V (D)
≤k

)︁
, and the robber

player chooses a component Ri+1 of D − Xi+1 such that there is a directed
path from a vertex of Ri to a vertex of Ri+1 in D − (Xi ∩Xi+1) .

3. The cop player wins the game if, after a finite number of turns, the robber player
selects ∅ as the new component, otherwise the robber player wins.

A play π is a maximal sequence π := ((X0, R0) , (X1, R1) , . . .) of positions given by
the rules above. A (k-cop) strategy for the cop player is a function f :

(︁
V (D)

≤k

)︁
×D →(︁

V (D)
≤k

)︁
where D denotes the set of all strongly connected subgraphs of D. A play π is
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consistent with a strategy f if f((Xi, Ri)) = Xi+1 for all i. The strategy f is called
winning for the cop player if every play consistent with f is won by the cop player.

We say that a vertex v ∈ V (D) is reachable from the position (X, R) if there is a di-
rected path from a vertex of R to v in D−X. We denote the set of all vertices reachable
from (X, R) by Below(X, R). A play is robber monotone if Below(Xi+1, Ri+1) ⊆
Below(Xi, Ri) for all i. A strategy f is robber monotone if every play consistent with
f is robber monotone.

A play is called cop monotone if for all i, j with i < j and for every vertex v ∈ Xi∩Xj

we have v ∈ Xh for all i ≤ h ≤ j. A strategy f is cop monotone if every play consistent
with f is cop monotone.

A strategy f is monotone if it is both robber and cop monotone.

The (robber monotone, cop monotone) cop number of a digraph D is the smallest
number k such that there exists a (robber monotone, cop monotone) winning strategy
for the k-cops and robber reachability game. ⊣

A particularly elegant property of DAG-width is that its decompositions directly
correspond to winning strategies for the cop player in the cops and robber reachability
game. This is not the case for directed treewidth and the directed cops and robber
game, where the best known upper bounds one the necessary number of cops and the
directed treewidth use functions of each other as seen in Theorem 2.2.7.

Theorem 3.1.5 (Berwanger et al. [BDH+12]). For any digraph D there is a DAG-
decomposition of width at most k if and only if the cop player has a monotone winning
strategy in the k-cops and robber reachability game.

It is a standing open problem whether the costs for monotonicity of this game is
bounded, that is, whether there is a function bounding how many extra cops are needed
for monotone strategies. While this is still unknown, there is a conjecture for such a
bound to even be linear.

Conjecture 3.1.6 (Berwanger et. al [BDH+12]). There exists a linear function f such
that if k cops have a winning strategy for the cops and robber reachability game, then
f(k) cops have a monotone winning strategy in the cops and robber reachability game.
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3.2 Systems of directed separations

In order to define decomposition that make use of directed separations, we need to
know more about how directed separations relate to each other. Similar to separations
in undirected graphs there are concepts of crossing and laminar separations. However,
as we can have edges from one part of the separation to the other, working with these
concepts becomes more complicated in directed graphs.

3.2.1 Uncrossing of directed separations

An important notion to describe the relation between separations is the property of
being laminar. It describes that two separations are aligned with each other; they agree
in the direction of the crossing edges as well as fulfil certain subset properties.

We introduce a partial order on the separations S⃗ as follows. Let (A, B) , (J, K) ∈ S⃗ ,
then we say (A, B) ≤ (J, K) if and only if(A,B)≤

(J,K)

1. (A, B)� , (J, K)� , A ⊆ J and K ⊆ B, or

2. (A, B)�, (J, K)� , B ⊆ J and K ⊆ A, or

3. (A, B)� , (J, K)�, A ⊆ K and J ⊆ B, or

4. (A, B)�, (J, K)�, B ⊆ K and J ⊆ A.

Two directed separations (A, B) and (J, K) cross if neither (A, B) ≤ (J, K) , nor
(J, K) ≤ (A, B) , that is, the separations are incomparable with respect to the partial
order ≤ . Otherwise, they are laminar (see Figure 3.1 for an illustration).

For two crossing directed separations (A, B) and (J, K) there is a directed separation
of order not greater than the order of the initial two separations that is laminar to both
of them. These yield local suprema and infima with respect to the partial order ≤,
thus, we use the conventional notation (∨,∧). For (A, B) , (J, K) ∈ S⃗k we define the
∧ operator as follows:

(A, B)� ∧ (J, K)� := (A ∩ J, B ∪K)� ,

(A, B)� ∧ (J, K)�:= (A ∩K, B ∪ J)� ,

(A, B)�∧ (J, K)� := (B ∩ J, A ∪K)� , and

(A, B)�∧ (J, K)�:= (B ∩K, A ∪ J)� .
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A B C D
E F

Figure 3.1: The figure shows three directed separations (A, B)� , (C, D)� and (E, F )�.
As A ⊆ C and D ⊆ B, the first two are laminar: (A, B)� ≤ (C, D)� . On
the other hand, (E, F ) crosses both (A, B) and (C, D) .

The ∨ operator we define in the corresponding fashion:

(A, B)� ∨ (J, K)� := (A ∪ J, B ∩K)� ,

(A, B)� ∨ (J, K)�:= (A ∪K, B ∩ J)� ,

(A, B)�∨ (J, K)� := (B ∪ J, A ∩K)� , and

(A, B)�∨ (J, K)�:= (B ∪K, A ∩ J)� .

The results obtained by using the operators ∧ and ∨ are called the uncrossings of the
two original directed separations. See Figure 3.2 for an illustration of the four cases.
The uncrossings of two given directed separations are again directed separations.

Lemma 3.2.1 (Erde [Erd20]). Let D be a digraph and (A, B) , (J, K) two directed sep-
arations in D. Then, (A, B)∧(J, K) and (A, B)∨(J, K) are also directed separations
in D.

Moreover, uncrossing two directed separations of order at most k yields at least one
directed separation that again is of order at most k. This fact is well-known, however
we provide a proof for one of the four cases for the sake of completeness.

Lemma 3.2.2. Let D be a digraph and (A, B) , (J, K) two directed separations in
D, then

|(A, B)|+ |(J, K)| = |(A, B) ∧ (J, K)|+ |(A, B) ∨ (J, K)| . (3.1)
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A B

C

D

A ∩ C

B ∪D

∧
A ∪ C

B ∩D

∨

A B

C

D

A ∩D B ∪ C
∧

A ∪D B ∩ C

∨

A B

C

D

A ∪D

B ∩ C

∧

A ∩D

B ∪ C

∨

A B

C

D

A ∩ C B ∪D

∧
A ∪ C B ∩D

∨

Figure 3.2: The four possible uncrossings of the directed separations (A, B) and
(C, D) , the separators for the ∧-uncrossing is depicted in orange, and
the separator for the ∨-uncrossing is depicted in blue.

Proof. For each of the four possibilities for the directions of (A, B) and (J, K) we
consider one case. Let us investigate the case where (A, B) = (A, B)�and (J, K) =
(J, K)�. The proofs for the other three cases work similarly. Then,

(A, B)�∧ (J, K)�= (A ∪ J, B ∩K)�and

(A, B)�∨ (J, K)�= (A ∩ J, B ∪K)�.
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3.2 Systems of directed separations

Now, | (A, B) | = |A ∩B| and | (J, K) | = |J ∩K|. Moreover,⃓⃓⃓
(A, B)�∧ (J, K)�⃓⃓⃓= |(A ∪ J) ∩B ∩K| and⃓⃓⃓
(A, B)�∨ (J, K)�⃓⃓⃓= |A ∩ J ∩ (B ∪K)| .

So a vertex v lies in the separator of both uncrossings if and only if it lies in A ∩
B ∩ J ∩ K. Hence, we count a vertex twice on the left side of (3.1) if and only if
it is counted twice on the right side of (3.1). Finally, observe that every vertex of
A ∩B \ (J ∩K) is contained in exactly one of the separators and the same holds for
every vertex of J ∩K \ (A ∩B) . Thus, the equality (3.1) follows.

Let us make some observations that describe how uncrossings affect the relation
between separations. The following lemma investigates what happens if two laminar
separations are uncrossed with the same separation.

Lemma 3.2.3. Let D be a digraph and (J, K)� , (A, B)� , (X, Y )� ∈ S⃗ . Then, (A, B)� ≤
(J, K)� implies (A, B)�∧ (X, Y )� ≤ (J, K)�∧ (X, Y )� and (A, B)�∨ (X, Y )� ≤ (J, K)�∨
(X, Y )� .

Proof. Both claims follow immediately from the fact that A ⊆ J and K ⊆ B.

The next lemma yields the distributivity of the two operations ∨ and ∧ for uncrossings
of separations.

Lemma 3.2.4. Let D be a digraph and (J1, K1)� , (J2, K2)� ∈ S⃗ two crossing separa-
tions. Then, for all (X, Y )� ∈ S⃗ that cross both (J1, K1)� and (J2, K2)� we have

•
(︂

(J1, K1)� ∧ (J2, K2)�)︂ ∨ (X, Y )� =(︂
(J1, K1)� ∨ (X, Y )�)︂ ∧ (︂(J2, K2)� ∨ (X, Y )�)︂ ,

•
(︂

(J1, K1)� ∨ (J2, K2)�)︂ ∧ (X, Y )� =(︂
(J1, K1)� ∧ (X, Y )�)︂ ∨ (︂(J2, K2)� ∧ (X, Y )�)︂ ,

•
(︂

(J1, K1)� ∨ (J2, K2)�)︂ ∨ (X, Y )� =(︂
(J1, K1)� ∨ (X, Y )�)︂ ∨ (︂(J2, K2)� ∨ (X, Y )�)︂ , and
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•
(︂

(J1, K1)� ∧ (J2, K2)�)︂ ∧ (X, Y )� =(︂
(J1, K1)� ∧ (X, Y )�)︂ ∧ (︂(J2, K2)� ∧ (X, Y )�)︂ .

Proof. We only prove the first statement, the others can be proven in a similar way.(︂
(J1, K1)� ∧ (J2, K2)�)︂ ∨ (X, Y )�

= (J1 ∩ J2, K1 ∪K2)� ∨ (X, Y )�
= ((J1 ∩ J2) ∪X, (K1 ∪K2) ∩ Y )�
= ((J1 ∪X) ∩ (J2 ∪X) , (K1 ∩ Y ) ∪ (K2 ∩ Y ))�
= (J1 ∪X, K1 ∩ Y )� ∧ (J2 ∪X, K2 ∩ Y )�
=
(︂

(J1, K1)� ∨ (X, Y )�)︂ ∧ (︂(J2, K2)� ∨ (X, Y )�)︂

3.2.2 Orientations of directed separations

As defined before, we denote directed separations as ordered tuples (A, B) . Note
that so far the order of A and B in the tuple does not make a difference to us. In
particular, it is independent of the direction of the considered separation. Similarly as
on undirected graphs, we introduce a meaning to the order of A and B now, by using
it to denote the orientation of a separation in S⃗k. This does not have to coincide with
the direction. So, (A, B) means that the separation is oriented from A to B, but its
direction could be (A, B)�.
The concepts presented here closely follow the ideas from [DO21,Die18] together with
the work of Erde [Erd20], who made first steps in adapting the notion of separation
systems to the setting of directed graphs. We adapt some of the original definitions to
our notation, which might seem more technical on occasion, but has its advantages
when embedding the results stated into the greater context of directed graphs and
orientations of directed separations.

(Partial) orientations Let D be a digraph. A partial orientation of S⃗k is a set
O ⊆ S⃗k such that for every (A, B) ∈ S⃗k, O contains at most one of (A, B) and
(B, A) .

We say that O is an orientation of S⃗k if additionally |O| = |S⃗k|
2 , i.e. for every

(A, B) ∈ S⃗k,O contains exactly one of (A, B) and (B, A) . An orientationO extends
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a partial orientation P if P ⊆ O. If O is a partial orientation of S⃗k and (A, B) ∈ O,
we say that B is the big side of (A, B) and A is the small side. Thus, an oriented
directed separation always points away from the small side and towards the big side.
Using this terminology, an orientation of S⃗k assigns to every directed separation of
order less than k a unique big side towards which the separation points. If O is a
partial orientation of S⃗k and ℓ ≤ k, then we denote by O|ℓ the restriction of O to S⃗ℓ. O|ℓ
Formally, O|ℓ := O ∩ S⃗ℓ.

We say that a partial orientationO is consistent if it satisfies the following conditions:

1. if (A, B)� ∈ O and (J, K) ≤ (A, B) for some (J, K) ∈ S⃗k, then

• (J, K) = (J, K)� implies (J, K) ∈ O, and

• (J, K) = (J, K)�implies (K, J) ∈ O, and

2. if (B, A)�∈ O and (A, B) ≤ (J, K) for some (J, K) ∈ S⃗k, then

• (J, K) = (J, K)� implies (K, J) ∈ O, and

• (J, K) = (J, K)�implies (J, K) ∈ O.

A BJ K

/∈ O ∈ O

A B J K

/∈ O∈ O

Figure 3.3: If the orientationO is fixed for (A, B) and consistent, thenO cannot orient
(J, K) in the indicated way.

Generally, S⃗k admits multiple orientations. As for tangles in undirected graphs,
we want the orientation to point towards the part of the graph containing the more
complicated structure. So, the big side of an orientation shall contain most of the
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structure of the graph. Thus, deciding on an orientation is straightforward for trivial
separations: The separation should be oriented away from the side that is completely
contained in the separator. This can be generalised to separations that are not trivial,
but in which one of the sides contains only few vertices, where “few” simply means
under a given threshold. These should also be oriented away from the side containing
only few vertices. For ω ≥ k we define the initial ω-orientation of S⃗k, denoted by Iω

k

as follows.Iω
k

Iω
k :=

{︂
(A, B)� ∈ S⃗k

⃓⃓⃓
|A| < ω

}︂
∪
{︂

(B, A)�∈ S⃗k

⃓⃓⃓
|B| < ω

}︂
.

Using ω-orientations one can define an ω-diblockage as follows (also see Erde [Erd20]).
An ω-diblockage in a digraph D for fixed k is an orientation O of S⃗k such that

1. O extends Iω
k ,

2. O is consistent, and

3. if (A, B)� ∈ O and (A, B)� ≤ (K, J)�∈ O then |B ∩ J | ≥ ω.

Intuitively, the definition expresses for any two laminar separations where the orienta-
tion of the smaller one respects its direction and the orientation of the larger one does
not that the two big sides meet in a large number of vertices. The notion of diblockages
corresponds to the digraph width measure directed pathwidth in the following way.

Theorem 3.2.5 (Erde [Erd20]). A digraph has directed pathwidth at least ω − 1 if
and only if it has an ω-diblockage of S⃗k.

As mentioned before, this result by Erde [Erd20] is the generalisation of the correspon-
dence between blockages and pathwidth in undirected graphs. We refer the reader to
his paper for the definition of directed pathwidth. We seek to further generalise this to
cover weaker directed width measures than directed pathwidth.

3.2.3 Introducing S⃗ -DAGs

We now introduce the structure that provides the general backbone to our decomposi-
tions.

Definition 3.2.6 (consistency). Let D be a digraph and S⃗ ′ ⊆ S⃗ a set of directed
separations in D. An S⃗ ′-DAG for D is a tuple (T, σ) , where T is a DAG of maximum
out-degree at most two and σ : E(T )→ S⃗ ′ is a function such that all for t1, t2, t3 ∈
V (T ) with (t1, t2) , (t2, t3) ∈ E(T ) we have σ((t1, t2)) ≤ σ((t2, t3)). We call this
property the consistency of S⃗ ′-DAGs. ⊣
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Given an S⃗ -DAG (T, σ) for a digraph D and a node d ∈ V (T ), we define two DAGs
which are subgraphs of T as follows. By T ↑(d) we denote T − (AboveT (d) \ {d}) , T ↑(d)
and by T ↓(d) we denote T−(BelowT (d) \ {d}) . If T ′ ⊆ T, then we relax our notation T ↓(d)
a little and write (T ′, σ) for

(︁
T ′, σ|E(T ′)

)︁
.

Let (T, σ) be an S⃗ ′-DAG for D and t ∈ V (T ). We can find a canonical directed
separation ⊤(T,σ)(t) for every node of T by using the directed separations given by σ. ⊤(T,σ)(t)
If t ∈ sourcesT , we set ⊤(T,σ)(t) = (∅, V (D))� . For non-source nodes t ∈ V (T ), we
define

⊤(T,σ)(t) :=
(︂
⊤(T,σ)

A (t) ,⊤(T,σ)
B (t)

)︂�
:=

⋁︂
d∈N in

T
(t)

σ((d, t)) .
⊤(T,σ)

A (t)

⊤(T,σ)
B (t)

If the S⃗ -DAG is provided by the context, we also write ⊤(t), and (⊤A(t),⊤B(t))� .

We also write (σC(e), σD(e))� := σ(e) for the separation mapped to e ∈ E(T ) by the (σC(e), σD(e))�
function σ.

Lemma 3.2.7. Let D be a digraph and (T, σ) be an S⃗ -DAG for D. Also, let d ∈ V (T )
be a node of T with an in-neighbour t1 and an out-neighbour t2. Then, σ((t1, d)) ≤
⊤(d) ≤ σ((d, t2)).

Proof. The first inequality follows immediately from the definition of ⊤(d). We have
(σC((t1, d)), σD((t1, d)))� ≤ (σC((d, t2)), σD((d, t2)))� for all (t1, d) ∈ E(T ) due to
the consistency of S⃗ -DAGs. Thus,

⊤A(d) =
⋃︂

(t1,d)∈E(T )

σC((t1, d)) ⊆ σC((d, t2)) and

σD((d, t2)) ⊆
⋂︂

(t1,d)∈E(T )

σD((t1, d)) = ⊤B(d) ,

and therefore we obtain

⊤(d) = (⊤A(d) ,⊤B(d))�
≤ (σC((d, t2)) , σD((d, t2))) = (σC((d, t2)) , σD((d, t2)))� .

Let D be a digraph and (T, σ) an S⃗ -DAG for D. With ⊤(T,σ)(t) we have derived a
canonical directed separation for every node of T from the directed separations given by
σ. Let d ∈ V (T ) be a node with out-neighbours t1 and t2, then⊤(T,σ)(t) ≤ ⊤(T,σ)(ti)
for i ∈ {1, 2}, but ⊤(T,σ)(t1) and ⊤(T,σ)(t2) are not necessarily laminar.
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With the operators ∧ and ∨ we are given two possible ways to uncross the ⊤(ti). One
way is given by ⊥(T,σ)(t), defined as⊥(T,σ)(t)

⊥(T,σ)(t) :=
⋀︂

d∈Nout
T

(t)

⊤(T,σ)(d) =

⎛⎝ ⋂︂
d∈Nout

T
(t)

⋃︂
ℓ∈N in

T
(d)

σC((ℓ, d)) ,
⋃︂

d∈Nout
T

(t)

⋂︂
ℓ∈N in

T
(d)

σD((ℓ, d))

⎞⎠
for all non-sink nodes t in T. We choose this way of uncrossing as the obtained
separation lies nearer to ⊤(t). If t is a sink, we set ⊥(T,σ)(t) := (V (D), ∅) . Again,
we write ⊥(t) and (⊥A(t),⊥B(t))� if the S⃗ -DAG is clear from the context.

Lemma 3.2.8. Let D be a digraph and (T, σ) be an S⃗ -DAG for D. Moreover, let
(d, t) ∈ E(T ). Then, (⊤A(d),⊤B(d))� ≤ (⊥A(d),⊥B(d))� ≤ (⊤A(t),⊤B(t))� .

Proof. The second inequality holds by definition, therefore we only need to validate
the first one.

Consider a node d ∈ V (T ). By definition, we have ⊤A(d) =
⋃︁

d′∈N in
T

(d) σC((d′, d)).
As Lemma 3.2.7 implies that for all d′ ∈ N in

T (d) and for all t ∈ Nout(d) holds
σC((d′, d)) ⊆ σC((d, t)), we obtain

⋃︁
d′∈N in

T
(d) σC((d′, d)) ⊆

⋂︁
t∈Nout

T
(d) σC((d, t)).

Using that
⋂︁

t∈Nout
T

(d) σC((d, t)) ⊆
⋂︁

t∈Nout
T

(d)
⋃︁

t′∈N in
T

(t) σC((t′, t)) = ⊥A(d), we
obtain ⊤A(d) ⊆ ⊥A(d).

We know ⊥B(d) =
⋃︁

t∈Nout
T

(d)
⋂︁

t′∈N in
T

(t) σD((t′, t)) ⊆
⋃︁

t∈Nout
T

(d) σD((d, t)). As
Lemma 3.2.7 implies that σD((d, t)) ⊆ σD((d′d)) for all d′ ∈ N in

T (d) and for all t ∈
Nout

T (d), we obtain that
⋃︁

t∈Nout
T

(d) σD((d, t)) ⊆
⋂︁

d′∈N in
T

(d) σD((d′, d)) = ⊤B(d).
Thus, ⊥B(d) ⊆ ⊤B(d).

Together ⊤A(d) ⊆ ⊥A(d) and ⊥B(d) ⊆ ⊤B(d) imply ⊤(d) ≤ ⊥(d).

We associate two special separations with each S⃗ -DAG (T, σ) , namely the initial
separation Initial(T, σ) and the terminal separation Terminal(T, σ).

Initial(T, σ) :=
⋀︂

r∈sourcesT

(︂
⊥(T,σ)

A (r) ,⊥(T,σ)
B (r)

)︂�
, and

Terminal(T, σ) :=
⋁︂

s∈sinksT

(︂
⊤(T,σ)

A (s) ,⊤(T,σ)
B (s)

)︂�
.
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3.2 Systems of directed separations

These separations yield an overall maximum and an overall minimum for all separations
in the S⃗k-DAG, which we utilise later in order to combine S⃗k-DAGs.

For two laminar directed separations (A, B)� and (X, Y ) , the directed separation of
smallest order that lies between (A, B)� and (X, Y ) with respect to the partial order ≤
has useful and interesting properties. For (A, B)� ≤ (X, Y )� we define a way to obtain
the order of such a separation by

λ
(︂

(A, B)� , (X, Y )�)︂ := min
{︂
|(J, K)|

⃓⃓⃓
(A, B)� ≤ (J, K)� ≤ (X, Y )�}︂.

We say that (X, Y )� is down-linked to (A, B)� if (A, B)� ≤ (X, Y )� and additionally
| (X, Y ) | = λ((A, B) , (X, Y )). Analogously, we say that (X, Y )� is up-linked to
(A, B)� if (X, Y )� ≤ (A, B)� and | (X, Y ) | = λ((X, Y ) , (A, B)).

The following lemma shows that uncrossing a separation (J, K)� that is comparable to
a given separation (A, B)� and larger with respect to ≤ with a separation (X, Y )� that
is down-linked to (A, B)� cannot result in a separation of higher order.

Lemma 3.2.9. Let D be a digraph and (A, B)� , (J, K)� ∈ S⃗ with (A, B)� ≤ (J, K)� .

Then, for every (X, Y )� ∈ S⃗ that is down-linked to (A, B)� we have⃓⃓⃓
(J, K)� ∨ (X, Y )� ⃓⃓⃓ ≤ ⃓⃓⃓(J, K)� ⃓⃓⃓ .

Proof. As (X, Y )� is down-linked to (A, B)� , we know that (A, B)� ≤ (X, Y )� . To-
gether with (A, B)� ≤ (J, K)� , this implies that

(A, B)� ≤ (J, K)� ∧ (X, Y )� ≤ (X, Y )� .

Due to | (X, Y ) | = λ((A, B) , (X, Y )), we obtain⃓⃓⃓
(J, K)� ∧ (X, Y )� ⃓⃓⃓ ≥ ⃓⃓⃓(X, Y )� ⃓⃓⃓ .

Then, using Lemma 3.2.2, we conclude⃓⃓⃓
(J, K)� ∨ (X, Y )� ⃓⃓⃓ ≤ ⃓⃓⃓(J, K)� ⃓⃓⃓ .

A symmetric bound can also be obtained for the up-linked case.
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3 Ganglions

Lemma 3.2.10. Let D be a digraph and (J, K)� , (A, B)� ∈ S⃗ with (J, K)� ≤ (A, B)� .

Then, for every (X, Y )� ∈ S⃗ that is up-linked to (A, B)� , we have⃓⃓⃓
(J, K)� ∧ (X, Y )� ⃓⃓⃓ ≤ ⃓⃓⃓(J, K)� ⃓⃓⃓ .

Proof. As (X, Y )� is up-linked to (A, B)� , we have (X, Y )� ≤ (A, B)� . Thus, (J, K)� ≤
(A, B)� implies

(X, Y )� ≤ (J, K)� ∨ (X, Y )� ≤ (A, B)� .

We also have | (X, Y ) | = λ((X, Y ) , (A, B)), so⃓⃓⃓
(X, Y )� ⃓⃓⃓ ≤ ⃓⃓⃓(J, K)� ∨ (X, Y )� ⃓⃓⃓

Then, using Lemma 3.2.2, we conclude⃓⃓⃓
(J, K)� ∧ (X, Y )� ⃓⃓⃓ ≤ ⃓⃓⃓(J, K)� ⃓⃓⃓ .

We can manipulate a S⃗ -DAG (T, σ) by uncrossing all separations lying on edges above
or below a certain node in T with a given separation, which then becomes the initial or
terminal separation of the new S⃗ -DAG. In order to formalise the concept of uncrossing
these separations, we introduce the following two definitions.

Definition 3.2.11 (down-shift). Let (T, σ) be an S⃗ -DAG for a digraph D, d ∈ V (T ),
and (X, Y )� ∈ S⃗ with Initial(T ↑(d), σ) ≤ (X, Y )� . The down-shift of (T, σ) onto
(X, Y )� at d is the S⃗ -DAG

(︁
T ↑(d), σ↑(d)

)︁
where for all (t, t′) ∈ E(T ↑(d)) we define

σ↑(d)((t, t′)) := σ((t, t′)) ∨ (X, Y )� = (σC((t, t′)) ∪X, σD((t, t′)) ∩ Y )� . ⊣

Note that after this down-shift (X, Y )� , is the initial separation.

Observation 3.2.12. Let (T, σ) be an S⃗ -DAG for a digraph D, d ∈ V (T ), and
(X, Y )� ∈ S⃗ such that Initial(T ↑(d), σ) ≤ (X, Y )� . If

(︁
T ↑(d), σ↑(d)

)︁
is a down-shift

of (T, σ) onto (X, Y )� at d, then (X, Y )� is its initial separation, that is,

Initial
(︁
T ↑(d) , σ↑(d)

)︁
= (X, Y )� .

Similarly, we define the up-shift, which changes the terminal separation.
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3.2 Systems of directed separations

Definition 3.2.13 (up-shift). Let (T, σ) be an S⃗ -DAG for a digraph D, d ∈ V (T ),
and (X, Y )� ∈ S⃗ such that (X, Y )� ≤ Terminal(T ↓(d), σ). Then, the up-shift of (T, σ)
onto (X, Y )� at d is the S⃗ -DAG

(︁
T ↓(d), σ↓(d)

)︁
where for all (t, t′) ∈ E(T ↓(d)) we

define

σ↓(d)((t, t′)) := σ((t, t′)) ∧ (X, Y )� = (σC((t, t′)) ∩X, σD((t, t′)) ∪ Y )� . ⊣

Observation 3.2.14. Let (T, σ) be an S⃗ -DAG for a digraph D, d ∈ V (T ), and
(X, Y )� ∈ S⃗ a separation such that (X, Y )� ≤ Terminal(T ↓(d), σ). If

(︁
T ↓(d), σ↓(d)

)︁
is an up-shift of (T, σ) onto the separation (X, Y )� at d, then (X, Y )� is the terminal
separation of the up-shift, that is,

Terminal
(︁
T ↓(d) , σ↓(d)

)︁
= (X, Y )� .

Given a directed separation (X, Y )� and a node d ∈ V (T ), we say that (X, Y ) is down-
linked to d if it is down-linked to Initial(T ↑(d), σ). Similarly, (X, Y ) is up-linked to d
if it is up-linked to the separation Terminal(T ↓(d), σ). Sometimes, we do not wish
to specify whether we are dealing with an up-shift or down-shift, and we refer to a
shift1 of an S⃗ -DAG instead. In a similar way, we call a separation (X, Y )� linked to d

if it is up-linked or down-linked to d. A down-shift of (T, σ) is (X, Y )�-d-admissible
if (X, Y )� is down-linked to d. An up-shift of (T, σ) is (X, Y )�-d-admissible if (X, Y )�
is up-linked to d.

Shifts are defined such that they preserve certain properties of the S⃗ -DAG that was
shifted. A rather straightforward observation to make is the following.

Lemma 3.2.15. Let (T, σ) be an S⃗ -DAG of digraph D. Let (T ′, σ′) be the S⃗ -DAG
obtained by a down-shift of (T, σ) onto (X1, Y1)� at a node d ∈ V (T ) and let (T ′′, σ′′)
be the S⃗ -DAG obtained by an up-shift of (T, σ) onto (X2, Y2)� at a node d ∈ V (T ).
Then

1. ⊥(T ′,σ′)(t) = ⊥(T,σ)(t) ∨ (X1, Y1)� for all t ∈ V (T ′),

2. ⊤(T ′,σ′)(t) = ⊤(T,σ)(t) ∨ (X1, Y1)� for all t ∈ V (T ′),

3. ⊥(T ′′,σ′′)(t) = ⊥(T,σ)(t) ∧ (X2, Y2)� for all t ∈ V (T ′′), and

4. ⊤(T ′′,σ′′)(t) = ⊤(T,σ)(t) ∧ (X2, Y2)� for all t ∈ V (T ′′).

1Note that up- and down-shifts are named the other way round by Erde [Erd20], but as we consider DAGs
to have their sources at the top and their sinks at the bottom this naming would be very unintuitive here.
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3 Ganglions

Proof. If t ∈ sinksT ′ , then the first statement holds. So we may assume that t ∈
V (T ′) \ sinksT ′ . Then,

⊥(T ′,σ′)(t)

=

⎛⎝ ⋂︂
d∈Nout

T
(t)

⋃︂
ℓ∈N in

T
(d)

σ′
C((ℓ, d)) ,

⋃︂
d∈Nout

T
(t)

⋂︂
ℓ∈N in

T
(d)

σ′
D((ℓ, d))

⎞⎠
=

⎛⎝ ⋂︂
d∈Nout

T (t)

⋃︂
ℓ∈N in

T (d)

(σC((ℓ, d)) ∪ X1) ,
⋃︂

d∈Nout
T (t)

⋂︂
ℓ∈N in

T (d)

(σD((ℓ, d)) ∩ Y1)

⎞⎠
=

⎛⎝ ⋂︂
d∈Nout

T (t)

⋃︂
ℓ∈N in

T (d)

σC((ℓ, d)) ∪ X1,

⎛⎝ ⋃︂
d∈Nout

T (t)

⋂︂
ℓ∈N in

T (d)

σD((ℓ, d))

⎞⎠ ∩ Y1

⎞⎠
= ⊥(T,σ)(t) ∨ (X1, Y1)� .

The remaining three statements can be proven similarly.

3.3 A general duality theorem

In order to use S⃗ -DAGs to define width measures, we need an analogue to a bag-
function that is obtained from the separations in the S⃗ -DAG, and possibly restrictions
on which S⃗ -DAGs even qualify as base of a decomposition. In this section, we
determine the definitions that yield a width measure. Then, we prove a quite general
duality theorem, in Theorem 3.3.13, between a type of ganglion and a type of width
measure based on the same set of properties, provided that the width measure also
fulfils certain robustness criteria.

To this end we define a prop-S⃗ -DAG (or only prop-DAG) to be an S⃗ -DAG satisfying
some additional properties specified by prop. If these properties also yield a bound k
on the order of the separations involved, we call these prop-k-DAGs. In the remainder
of this section, we consider prop to be a specific set of properties.

During this section we collect the definitions needed for a width measure. For our
purposes we need prop to provide the following requirements for any given prop-DAG
(T, σ) :

(P1) a canonical bag function β
(T,σ)
prop : V (T )→ 2V (D),β

(T,σ)
prop

(P2) an evaluation function evalprop : 2V (D) → N for the bags.evalprop
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3.3 A general duality theorem

This list is still incomplete and we complete it throughout this section.

The simplest evaluation function is just taking the bag size, which we also do throughout
this chapter, but we leave the possibility to choose something more elaborate as well.
The prop-width of a prop-k-DAG (T, σ) is the maximum evalprop(β(T,σ)

prop (d)) for any
d ∈ V (T ). Further, the prop-DAG-width of a digraph D is the minimum prop-width
of any prop-k-DAG of D.

We want the evaluation of a bag to have the following quite reasonable properties. It
should not grow when adding another incoming edge to its node as this only moves
the top and the bottom separation “closer” to each other. Similarly, if we uncross all
separations on the in-edges with a separation that is already “pushed towards” the
terminal separation of the DAG above the node as far as possible, then the bag size
also should not change.

Formally, let (T, σ) be an S⃗k-DAG of width at most ω and let v ∈ V (T ) be a node in
a prop-k-DAG with (J1, K1)� and (J2, K2)� being the two separations on the out-edges
of v.

(P3) If we add an edge to T with head v, then evalprop(βprop(v)) < ω.

(P4) If we replace all separations on the in-edges of v by their uncrossing with
a separation (X, Y )� ∈ S⃗k that is up-linked to a separation (J ′

2, K ′
2)� with

(J2, K2)� ≤ (J ′
2, K ′

2)� , then evalprop(βprop(v)) < ω.

Above we describe shifts on S⃗ -DAGs. We would like prop-DAGs to remain prop-
DAGs and also to retain additional features throughout a shifting process. This is
formalised by the following definition.

Definition 3.3.1. We say that prop-DAG-width is shifting closed if for every digraph
D, every prop-DAG (T, σ) for D, every d ∈ V (T ), and every directed separation
(X, Y )� , every (X, Y )�-d-admissible shift (T ′, σ′) of (T, σ) satisfies the following
requirements.

(S1) (T ′, σ′) is a prop-DAG,

(S2) if (T, σ) is a prop-k-DAG, then so is (T ′, σ′) , and

(S3) evalprop(β(T ′,σ′)
prop (d)) ≤ evalprop(β(T,σ)

prop (d)) for all d ∈ V (T ′). ⊣

This is a rather strong demand on the prop-DAG-width and it turns out that a slightly
weaker notion suffices to prove the general duality theorem. We do not need to consider
all prop-DAGs, but we can restrict the shifts we need to perform to specific ones. A
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3 Ganglions

DAG is called closed if it has exactly one source and exactly one sink. Similarly, we
call a prop-DAG (T, σ) closed if T is closed. This definition allows us to introduce a
slightly weaker version of being shifting closed.

Definition 3.3.2. We say that prop-DAG-width is weakly shifting closed if for every
digraph D, every closed prop-DAG (T, σ) for D, every d ∈ sourcesT ∪ sinksT , and
every directed separation (X, Y )� , every (X, Y )�-d-admissible shift (T ′, σ′) of (T, σ)
meets the following requirements.

(W1) (T ′, σ′) is a prop-DAG,

(W2) if (T, σ) is a prop-k-DAG, then so is (T ′, σ′) , and

(W3) evalprop(β(T ′,σ′)
prop (d)) ≤ evalprop(β(T,σ)

prop (d)) for all d ∈ V (T ′). ⊣

Note that every shifting closed prop-DAG-width is also weakly shifting closed, but the
reverse is not true in general. Being weakly shifting closed is a property that is only
defined for closed prop-DAGs. So, we need a way of obtaining closed prop-DAGs
from general ones. For a given DAG it is rather straightforward to find a closed DAG
containing it as a subgraph. We explain how this is done and then also generalise the
procedure to prop-DAGs.

Let T be a DAG. A DAG T ′ is a closure of T if T ′ is a closed DAG and T ⊆ T ′.
Similarly, a closure of (T, σ) is a closed prop-DAG (T ′, σ′) such that T ⊆ T ′ and
σ′|T = σ. The closure of a closed DAG is the DAG itself. For any other DAG, a closure
can be easily obtained as follows. Let T be a DAG that is not closed. The up-closing
of T at r1, r2 ∈ sourcesT is obtained by adding a new node r+ together with the two
edges (r+, r1) and (r+, r2) to the DAG T. Clearly, the resulting digraph is again a
DAG. Similarly, the down-closing of T at the sinks s1, s2 ∈ sinksT is obtained by
adding a new node s− together with the edges (s1, s−) and (s2, s−) to T. Repeatedly
applying these two operations yields a closure of T.

In order to define define a similar operation for prop-DAGs, every prop-DAG-width
must provide for a fixed pair of sources or sinks a new directed separation to which the
newly added edges from the up- or down-closing operation of the DAG can be mapped.
So, we enlarge the list of requirements the width measure has to provide. If (T, σ) is a
prop-DAG with two sources r1, r2 ∈ sourcesT and two sinks s1, s2 ∈ sinksT , and T ′

is the up-closing of T at r1 and r2 and T ′′ is the down-closing of T at s1 and s2, then
prop has to provide

(P5) a prop-up-closing of (T, σ) at r1 and r2 which is a prop-DAG (T ′, σ′) where
σ = σ′|T , and
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3.3 A general duality theorem

(P6) a prop-down-closing of (T, σ) at s1 and s2 which is a prop-DAG (T ′′, σ′′)
where σ = σ′′|T .

Let (T, σ) be a prop-DAG. A prop-up-closure of (T, σ) is a prop-DAG (T ′, σ′) that
has a unique source and T ⊆ T ′ as well as σ = σ′|T . Similarly, a prop-down-closure
of (T, σ) is a prop-DAG (T ′, σ′) that has a unique sink and T ⊆ T ′ as well as
σ = σ′|T . Note that a prop-DAG (T ′, σ′) is a closure of (T, σ) if and only if it is both
a prop-up-closure and a prop-down-closure of (T, σ) . Similarly as for DAGs, we can
now obtain a closure of a prop-DAG by repeatedly applying prop-up-closings and
prop-down-closings.

This finishes the list of requirements prop has to provide in order for prop-DAG-
width to be eligible for the general duality theorem and directly leads us to additional
robustness criteria these definitions have to fulfil in order to prove the main theorem
of this chapter, the general duality theorem.

Definition 3.3.3. The width measure prop-DAG-width is called closed if it meets the
following requirements:

(C1) For every digraph D and every prop-DAG (T, σ) there exists a closure of
(T, σ) of the same prop-width,

(C2) for every digraph D and every closed prop-DAG (T, σ) of prop-width less
than k there exists a closed prop-k-DAG (T ′, σ′) of the same prop-width,

(C3) for every digraph D, every closed prop-k-DAG (T, σ) with unique source
r, and every (X, Y )� ∈ S⃗k with (X, Y )� ≤ Initial(T, σ), the S⃗k-DAG (T ′, σ′)
obtained from (T, σ) by introducing a new node r+ together with the edge
(r+, r) and by extending σ to σ′ by setting σ′((r+, r)) = (X, Y )� , is a prop-k-
DAG,

(C4) prop-DAG-width is weakly shifting closed. ⊣

We also want some connection between the evaluation of the bags and the order of the
separations used in the decomposition. In order to describe this demand formally we
obtain a function βprop : S⃗ × S⃗ × S⃗ → 2V (D), which allows us to use the evaluation βprop

function in order to evaluate triples of separations as well. This we do by constructing
a special prop-DAG (T ′, σ′) and using the canonical bag function of prop as follows.
We define T = ({t1, t2, t3, t4}, {e1 = (t1, t2) , e2 = (t2, t3) , e3 = (t2, t4)}) , which
allows us to define βprop(S1, S2, S3) := β

(T,σ={ei ↦→Si|i∈{1,2,3}})
prop (t2) for S1, S2, S3 ∈

S⃗ . If S1 = S2 = S3, then we simply write βprop(S1) instead of βprop(S1, S2, S3) in
favour of readability.
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For separations of small order, we also want the resulting bag to be small in order to
obtain the wanted relation between the bags given by the canonical bag function and
the order of the separations of the decomposition.

Definition 3.3.4. The width measure prop-DAG-width is called contained if

(Cnt) evalprop(βprop((X, Y )�)) < k for all (X, Y )� ∈ S⃗k. ⊣

If the measure prop-DAG-width is closed and contained, we say that prop-DAG-width
is complete. By now, we have collected a number of properties and robustness criteria
for the width measure. We now also call prop complete if it fulfils (P1) to (P6) and
gives rise to a complete width measure prop-DAG-width.

We now define the objects that yield obstructions to small prop-DAG-width.

Definition 3.3.5. Let D be a digraph and k, ω ∈ N with ω ≥ k. We say that an
orientation O of S⃗k is an ω-big prop-ganglion of order k if O meets the following
requirements.

(O1) O extends Iω
k ,

(O2) O is consistent, and

(O3) for every triple of directed separations (A, B)� , (K1, J1)�, (K2, J2)�∈ O with
(A, B)� ≤ (K1, J1)�and (A, B)� ≤ (K2, J2)�we have

evalprop

(︂
βprop

(︂
(A, B)� , (K1, J1)�, (K2, J2)�)︂)︂ ≥ ω. ⊣

The overall goal is to obtain a duality theorem between prop-DAG-width and ω-
big prop-ganglions. The next lemma shows that containing an ω-big prop-ganglion
prevents the existence of a prop-DAG of small width and thus proves that ω-big
prop-ganglions are indeed an obstruction.

Lemma 3.3.6. LetD be a ω-big prop-ganglion of order k. Then, for every closed prop-
k-DAG (T, σ) of D, there exists a node d ∈ V (T ) such that evalprop(β(T,σ)

prop (d)) ≥ ω.

Proof. Let (T, σ) be a closed prop-k-DAG for D with the unique source r and the
unique sink s. We know that ⊥(r),⊤(s) ∈ S⃗k. If for some v ∈ {r, s} we have
evalprop(β(T,σ)

ν (v)) ≥ ω, then we are done. So assume evalprop(β(T,σ)
ν (v)) < ω for

every v ∈ {r, s}. Due to D extending Ik
ω, that is, (O1), this implies

(⊥A(r) ,⊥B(r))� , (⊤B(s) ,⊤A(s))�∈ D.
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Thus, because D is consistent, that is, (O2), there exists a node d ∈ V (T ) such that
(⊤A(d),⊤B(d))� ∈ D and (⊤B(t),⊤A(t))�∈ D for all t ∈ N in

T (t). Due to (O3), this
implies evalprop(β(T,σ)

prop (d)) ≥ ω.

In order to obtain the duality we introduce the following definition which intuitively
describes prop-DAGs for which the bags of the internal nodes are of small size, while
the initial and the terminal separation both are either oriented “inwards” with respect
to the given prop-DAG, or they are “trivial”.

Definition 3.3.7. Let D be a digraph andP a partial orientation of S⃗k. A prop-k-DAG
(T, σ) is (prop, ω,P)-admissible if it meets the following requirements.

(A.1) For all d ∈ V (T ) \ (sourcesT ∪ sinksT ) we have evalprop(β(T,σ)
prop (d)) < ω,

(A.2) Initial(T, σ) = (A, B)� ∈ P ∪ Iω
k ,

(A.3) Terminal(T, σ) = (Z, Y )�∈ P ∪ Iω
k ,

(A.4) |sourcesT | = 1, and

(A.5) for the source r and every sink s we have

σ((r, d)) = σ((r, d′)) for all d, d′ ∈ Nout
T (r) and

σ((d, s)) = σ((d′, s)) for all d, d′ ∈ N in
T (s) .

As the separations mapped to the in-edges of every sink are the same, we abuse notation
and write σ(s) for the separation mapped to all in-edges of s for all sinks s of T. Note
that if (T, σ) is closed with a single sink s, then Terminal(T, σ) = σ(s). ⊣

We say that a separation (A, B)� is oriented upwards by an orientation P if (B, A)�∈
P.

Definition 3.3.8 (flipping). Let P be a consistent orientation of S⃗k of a digraph D

and let (A, B)� ∈ S⃗k.

If (A, B) is oriented upwards by P, that is (B, A)�∈ P , then we say the orientation
P ′ is obtained from P by flipping (B, A)�if we replace (B′, A′)�with (A′, B′)� for all
(B′, A′)�∈ P with (B′, A′)�≤ (B, A)�and refer to P ′ as a flip of P. ⊣

Lemma 3.3.9. Let D be a digraph and P a consistent orientation of S⃗k. Then, ev-
ery orientation P ′ obtained from P by flipping a separation (X, Y ) /∈ Iω

k is again
consistent.
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Proof. Suppose towards a contradiction that P ′ is not consistent. This means there are
two separations (A, B)� , (J, K)� such that (A, B)� ≤ (J, K)� and (B, A)�, (J, K)� ∈ P ′.
As P is consistent, at least one of these two separations is oriented differently in P.

Note that indeed exactly (K, J)�is affected by the flip, as all separations affected by a
flip are oriented upwards byP. Then we know that (K, J)�≤ (X, Y )�. This implies that
(B, A)�≤ (X, Y )�, thus (B, A)�should have been affected as well, a contradiction.

Lemma 3.3.10. Let prop be complete, D be a digraph and P an orientation of S⃗k.
For every closed (prop, ω,P)-admissible prop-k-DAG (T, σ) with source r and every
separation (X, Y )� ∈ P such that σ(r) ≤ (X, Y )� , the down-shift

(︁
T ↑, σ↑)︁ of (T, σ)

onto (X, Y )� at r is again a closed (prop, ω,P)-admissible prop-k-DAG.

Proof. First, as r is the source of T, we have T ↑ = T and thus the new DAG is again
closed and we also obtain (A.4).

Second, since prop-DAG-width is shifting closed, the DAG
(︁
T ↑, σ↑)︁ is again a prop-

k-DAG and has prop-DAG-width at most ω, which yields (A.1).

Next, by definition of down-shifts and due to Observation 3.2.12, we obtain that
Initial(T ↑, σ↑) = (X, Y )� ∈ P ⊆ P ∪ Iω

k , thus (A.2) holds.

For the terminal separation we obtain Terminal(T ↑, σ↑) = Terminal(T, σ)∨ (X, Y )� .

Thus Terminal(T, σ) ≤ Terminal(T ↑, σ↑). As Terminal(T, σ) = (Z, Y )�∈ P and P
is consistent, we can derive Terminal(T ↑, σ↑) = (Z ′, Y ′)�∈ P , and thus (A.3).

Finally, (A, B) = (A′, B′) implies (A, B) ∨ (X, Y )� = (A′, B′) ∨ (X, Y )� for all
separations (A, B) , (A′, B′) . Thus, (A.5) for

(︁
T ↑, σ↑)︁ follows directly from (A.5)

for (T, σ) .

Lemma 3.3.11. Let prop be complete, (T, σ) be a prop-k-DAG of prop-width less
than ω, d ∈ V (T ), (X, Y )� up-linked to d and

(︁
T ↓(d), σ↓(d)

)︁
the up-shift onto (X, Y )�

at d. Define (T ′, σ′) by T ′ := T and σ′ := σ↓(d)∪ σ|T −T ↓(d). Then, (T ′, σ′) , which
we call the extended up-shift of (T, σ) onto (X, Y )� at d, is again a prop-k-DAG of
prop-width less than ω.

Proof. There are two points we have to check. First, that (T ′, σ′) is indeed again a
prop-k-DAG and second, that the bags evaluate to less than ω with respect to evalprop.
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For all nodes for which all adjacent edges lie in T ↓(d) this is due to (T, σ) being
a prop-k-DAG of prop-width less than ω. For the nodes with all adjacent edges in
T − T ↓(d) this follows from prop-DAG-width being shifting closed.

Note that the only possible remaining case is that one of the out-edges (v, v1) lies in
T − T ↓(d) while all other adjacent edges lie in T ↓(d).

As σ↓(d)(e) ≤ σ(e) for all in-edges e of v and σ(e) ≤ σ((v, v1)), we obtain
σ↓(d)(e) ≤ σ((v, v1)) for all in-edges. Thus, the obtained DAG is indeed again
a prop-k-DAG.

By (P4) the bag of v evaluates to less than ω as well.

In favour of readability we extract the induction base of the proof for the duality
theorem as a separate lemma which works with an orientation of all elements of S⃗k.

Lemma 3.3.12. Let prop be complete, D be a digraph that does not contain an ω-big
prop-ganglion of order k, and P a consistent orientation of S⃗k. Then, there exists a
closed (prop, ω,P)-admissible prop-k-DAG.

Proof. For every consistent orientation O of S⃗k we define

b(O) :=
⃓⃓⃓
{(A, B)� ∈ S⃗k | (B, A)�∈ O}⃓⃓⃓ .

We prove the statement by induction on b(P).

For a given prop-k-DAG (T, σ) and a separation (A, B)� ∈ S⃗k with Initial ≤ (A, B)�
let

AttT,σ

(︂
(A, B)�)︂ :=

{︂
d ∈ V (T ) | (A, B)� ≤ ⊥(T,σ)(d) ,

and there is no d′ ∈ V (T ) with (A, B)� ≤ ⊥(T,σ)(d′) < ⊥(T,σ)(d)
}︂

.

Let P be a consistent orientation of S⃗k. As P is not an ω-big prop-ganglion, by (O3),
there are three directed separations (A, B)� , (K1, J1)�, (K2, J2)�∈ P with (A, B)� ≤
(Ki, Ji)�for i ∈ {1, 2} and evalprop(βprop((A, B)� , (K1, J1)�, (K2, J2)�)) < ω. Choose
such a triple with maximal (A, B)� .

We define a prop-k-DAG (T0, σ0) as follows. Let T be the DAG with four nodes
t0, t1, t2, t3 and edges {(t0, t1) , (t1, t2) , (t1, t3)}. We define

σ0((t0, t1)) := (A, B)� , σ0((t1, t2)) := (J1, K1)� , and σ0((t1, t3)) := (J2, K2)� .
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Note that (T0, σ0) is (prop, ω,P)-admissible. Also, define P0 := P.

For the following construction we are now given an orientation Pn with a given
(prop, ω,Pn)-admissible prop-k-DAG (Tn, σn) with the following properties:

(IH.a) Initial(Tn, σn) ≤ Initial(T, σ),

(IH.b) σn(ℓ) is oriented upwards by P for all leaves ℓ of Tn, and

(IH.c) for every closed (prop, ω,Pn)-admissible prop-k-DAG (T c, σc) such that
Initial(T, σ) ≤ Initial(T c, σc) the set AttTn,σn

(Initial(T c, σc)) is not empty
and for every d ∈ AttTn,σn(Initial(T c, σc)) there is a closed (prop, ω,Pn)-
admissible prop-k-DAG

(︁
T ′c, σ′c)︁ with Initial(T c, σc) ≤ Initial(T ′c, σ′c) =

⊥(Tn,σn)(d), Terminal(T c, σc) ≤ Terminal(T ′c, σ′c) and T ′c ⊆ Tn.

Claim 1. (T0, σ0) and P0 fulfils (IH.a) to (IH.c).

Proof. The properties (IH.a) and (IH.b) hold by definition and (IH.c) holds as (A, B)�
in σ is chosen maximally.

We now construct a new orientation Pn+1 with a new (prop, ω,Pn+1)-admissible
prop-k-DAG again having these properties, or find a closed (prop, ω,P)-admissible
prop-k-DAG on the way.

STEP 1: TWINS As long as possible, choose two sinks ti, tj with σ(ti) = σ(tj).
We add a new node tij and edges (ti, tij) and (tj , tij) which are mapped to the
separation σ(ti).

Claim 2. If (Tn, σn) is now closed, then (Tn, σn) is a closed (prop, ω,P)-admissible
prop-k-DAG.

Proof. By (IH.a), Initial(Tn, σn) ≤ Initial(T0, σ0) holds and thus, the orientation
of Initial(Tn, σn) in P agrees with the direction of its edges, that is, it is oriented
downwards. As all leaf-separations are oriented upwards before adding extra leaves
and because P is consistent, the new leaf is oriented upwards as well. So (Tn, σn) is
a closed (prop, ω,P)-admissible prop-k-DAG.
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STEP 2: TRIVIAL LEAVES We claim that if we can find a leaf ṫ with σ(ṫ) ∈ Iω
k ,

then we can also find a closed (prop, ω,P)-admissible prop-k-DAG.

Claim 3. If (Tn, σn) contains a leaf ṫ with σ(ṫ) ∈ Iω
k , then there exists a is a closed

(prop, ω,P)-admissible prop-k-DAG.

Proof. We construct such a closed (prop, ω,P)-admissible prop-k-DAG from (Tn, σn)
as follows. Let T ′

n := T ↓
n(ṫ) and let σ′

n be obtained from σn by reducing to T ′
n. Now,

we observe that (T ′
n, σ′

n) is not a prop-k-DAG as T ′
n possibly contains nodes X that

had an out-neighbour in V (Tn)\V (T ′
n). For every node x ∈ X we add the edge

(︁
x, ṫ
)︁

to which we assign the separation⊥((Tn,σn))(x), obtaining a closed S⃗ -DAG (T ′′
n , σ′′

n) .
It remains to show that (T ′′

n , σ′′
n) is a (prop, ω,P)-admissible prop-k-DAG. Note that

β
(T ′′

n ,σ′′
n)

prop (d) = β
(Tn,σn)
prop (d) for all d ∈ V (T ′′

n ) and thus, evalprop(β(T ′′
n ,σ′′

n)
prop (d)) < ω

for all d ∈ V (T ′′
n ). Also the initial separation of (T ′′

n , σ′′
n) remains the same as that of

(Tn, σn) . The terminal separation of (T ′′
n , σ′′

n) is σ′′(ṫ) ∨
⋁︁

⊥((Tn,σn))(x) and as such
again trivial.

So from now on we can assume that (Tn, σn) does not contain any trivial leaves.

STEP 3: FLIPPING Obtain P ′
n+1 from Pn by flipping the separations of all leaves.

By Lemma 3.3.9, P ′
n+1 is again a consistent orientation .

STEP 4: CATERPILLAR Note that b(P ′
n+1) < b(P) and thus we can apply the

induction hypotheses.

By induction hypothesis there is at least one closed
(︁
prop, ω,P ′

n+1
)︁
-admissible prop-

k-DAG. Let Tn+1 be the set of all closed
(︁
prop, ω,P ′

n+1
)︁
-admissible prop-k-DAGs.

For every separation σ∗ that is the initial separation of some prop-k-DAG in Tn+1, let
Tn+1(σ∗) be the subset of Tn+1 with σ∗ as initial separation.

Claim 4. σ∗ ≤ σn(ℓ) for some ℓ ∈ sinksTn
.

Proof. Suppose Tn+1 contains a (prop, ω,Pn)-admissible (T c, σc) . By (IH.c), we
know that for every d ∈ AttTn,σn

(σ∗) there is a closed (prop, ω,Pn)-admissible
prop-k-DAG

(︁
T ′c, σ′c)︁ such that Initial(T c, σc) ≤ Initial(T ′c, σ′c) = ⊥(Tn,σn)(d),

Terminal(T c, σc) ≤ Terminal(T ′c, σ′c) and T ′c ⊆ Tn. This contradicts that P ′
n+1

was obtained from Pn by flipping all leaves, thus all elements (T c, σc) in Tn+1 are(︁
prop, ω,P ′

n+1
)︁
-admissible but not (prop, ω,Pn)-admissible. This implies that there
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3 Ganglions

is a separation in (T c, σc) which is comparable to a leaf of Tn and thus σ∗ ≤ σn(ℓ)
for some ℓ ∈ sinksTn

.

For every d ∈ AttTn,σn
(σ∗), let σ′ be of minimal order with σ∗ ≤ σ′ ≤ ⊥(Tn,σn)(d).

This choice ensures that σ′ is down-linked to σ∗ and up-linked to d. Next, perform
a down-shift on all elements of Tn+1(σ∗) onto σ′ at their root, obtaining the set of
DAGs Tσ′ . By Lemma 3.3.10, the elements of Tσ′ are again closed

(︁
prop, ω,P ′

n+1
)︁
-

admissible prop-k-DAGs.

We construct a new DAG by first splitting d into three nodes d′, d1 and d2 with edges
(d′, d1) and (d′, d2) both with separation ⊥(Tn,σn)(d). All in-edges into d are now
in-edges to d′. All out-edges from d are now out-edges from d1.

Now, d2 is a new leaf and σ′ is up-linked to d2. Next, we perform an extended up-shift
of (Tn, σn) onto σ′ at d2. By Lemma 3.3.11, this yields again a

(︁
prop, ω,P ′

n+1
)︁
-

admissible prop-k-DAG.

d

d′
d1

d2 = v1
v2

v3
v4

. . . vy−1

Figure 3.4: The caterpillar construction. The separation on all orange edges is the new
separation σ′. The DAGs from Tσ′ are shown in green. The part of the
DAG marked in blue is shifted up, while the part marked in red is shifted
down.

Now let y := |Tσ′ |. We build a path on y − 1 nodes v1, . . . , vy−1, then we decide on
a mapping between the nodes of the paths and the elements in Tσ′ , mapping the last
node vy−1 to two elements and all remaining nodes to exactly one element. We add
edges from each path-node to the root of the corresponding element in Tσ′ , two edges
for the node vy−1. To these new edges we map the separation σ′.
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Finally, we identify the node d2 with the root v1 of this new DAG. See Figure 3.4 for
an illustration of this construction.

Additionally, we add σ′ to a set of separations S and continue until we handled all
σ∗ that are root-separation for some closed

(︁
prop, ω,P ′

n+1
)︁
-admissible prop-k-DAG.

This in the end gives us the prop-k-DAG (Tn+1, σn+1) .

Finally, we obtain Pn+1 from Pn by flipping all separations in S downwards.

Claim 5. (Tn+1, σn+1) is a (prop, ω,Pn+1)-admissible prop-k-DAG.

Proof. We start with checking (A.1). For all nodes d ∈ V (Tn+1) ∩ V (Tn) the bag
only changes due to shifts. As prop-DAG-width is shifting closed, we know (S3)
holds. Additionally, by induction, we have evalprop(β(Tn,σn)

prop (d)) < ω. This implies
evalprop(β(Tn+1,σn+1)

prop (d)) < ω.

As the elements of Tσ′ are prop-k-DAGs, for all d ∈ V (T c) for some (T c, σc) ∈ Tσ′

with σ′ ∈ S we also obtain that evalprop(β(Tn+1,σn+1)
prop (d)) < ω.

So we need to consider the nodes in {d′, d1, d2, v1, . . . , vy−1} ∪ {r ∈ sourcesT c |
(T c, σc) ∈ Tσ′ , σ′ ∈ S} during one of the construction steps. Let d ∈ V (Tn) be
the node that is replaced during the considered step. For these nodes we obtain
|β(Tn+1,σn+1)

prop (d)| < ω by (Cnt). Therefore (A.1) holds.

By (IH.a) we have that Initial(Tn+1, σn+1) ≤ Initial(Tn, σn) and thus (A.2) holds.
The property (A.3) holds because (A, B)�∈ Pn+1 implies (A, B)�∈ P0 for all
separations (A, B) ∈ S⃗k. By construction (Tn+1, σn+1) has only one source, thus
(A.4) holds. And finally, (A.5) holds for all old sinks and the source by induction and
for the new sinks because the added DAGs are

(︁
prop, ω,P ′

n+1
)︁
-admissible.

Now we prove that the new DAG (Tn+1, σn+1) fulfils the induction criteria.

Claim 6. (Tn+1, σn+1) fulfils (IH.a) to (IH.c).

Proof. (IH.a): Initial(Tn+1, σn+1) ≤ Initial(Tn, σn), as the only shifts are performed
on the sub-DAG containing the root of Tn are up-shifts. By induction hypothesis
Initial(Tn, σn) ≤ Initial(T, σ), which implies Initial(Tn+1, σn+1) ≤ Initial(T, σ).

(IH.b): By Claim 5, (Tn+1, σn+1) is (prop, ω,Pn+1)-admissible. Thus, all separa-
tions at leaves of Tn+1 are oriented upwards by Pn+1. As we only ever flip separations
downwards, this implies that all separations at leaves of Tn+1 are oriented upwards by
P as well.
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(IH.c): By Claim 4, for every closed (prop, ω,Pn)-admissible prop-k-DAG (T c, σc)
with Initial(T, σ) ≤ Initial(T c, σc) the set AttTn,σn

(Initial(T c, σc)) is not empty.
Thus the caterpillar construction added a down-shift of (T c, σc) with Initial(T, σ) ≤
Initial(T c, σc) as a sub-DAG. Therefore, for every d ∈ AttTn,σn(Initial(T c, σc)) there
is a closed (prop, ω,Pn)-admissible prop-k-DAG

(︁
T ′c, σ′c)︁ with Initial(T c, σc) ≤

Initial(T ′c, σ′c) = ⊥(Tn,σn)(d), Terminal(T c, σc) ≤ Terminal(T ′c, σ′c) and T ′c ⊆
Tn.

As b(Pn) decreases with every walkthrough, this iteration ends in a closed (prop, ω,P)-
admissible prop-k-DAG eventually.

For usage in the next proof we define the following notation.

S⃗O,k := S⃗k \
{︂

(A, B)� , (B, A)�⃓⃓⃓ {(A, B)� , (B, A)�} ∩ O ̸= ∅}︂
It denotes the family of directed separations of order less than k not oriented by a
partial orientation O of S⃗k.

Now, we have assembled all the definitions needed to finally prove the duality theorem
between prop-DAG-width and ω-big prop-ganglions.

Theorem 3.3.13. Let prop be complete, ω ≥ k, and let D be a digraph with at least k
vertices. Then, exactly one of the following holds:

(i) D admits a prop-k-DAG of prop-width less than ω, or

(ii) there is an ω-big prop-ganglion of order k in D.

Proof. We prove the slightly different statement that for every consistent partial orien-
tation P of S⃗k exactly one of the following holds:

(i’) there exists a closed (prop, ω,P)-admissible prop-k-DAG (T, σ) with source r
and sink s such that

σ((r, d)) = σ((r, d′)) for all d, d′ ∈ Nout
T (r) and

σ((d, s)) = σ((d′, s)) for all d, d′ ∈ N in
T (s) ,

(3.2)

or

(ii) there is an ω-big prop-ganglion of order k in D.
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Note, that (i’) directly implies (i) as it holds in particular for P = ∅.

Note that every closed (prop, ω, Iω
k )-admissible prop-k-DAG is of prop-width less

than ω. Moreover, as the existence of an ω-big prop-ganglion implies that every closed
prop-k-DAG (T, σ) of D contains some d ∈ V (T ) with evalprop(β(T,σ)

prop (d)) ≥ ω (see
Lemma 3.3.6) both statements (i) and (ii) cannot be true at the same time. Thus it
remains to prove that if D does not contain an ω-big prop-ganglion of order k, then
for every consistent partial orientation P of S⃗k there exists a closed (prop, ω,P)-
admissible prop-k-DAG.

First, suppose that Iω
k ̸⊆ P and P ∪ Iω

k is not a consistent partial orientation of S⃗k.

Then, no consistent orientation O of S⃗k with P ⊆ O can be an ω-big prop-ganglion,
since each ω-big prop-ganglion must contain Iω

k . We thus have to show that there exists
a (prop, ω,P)-admissible prop-k-DAG fulfilling (3.2). Without loss of generality there
is a directed separation (B, A)�∈ P with evalprop(A) < k ≤ ω, because the two cases
are symmetric. In this case, let T be the directed path consisting of exactly the two
nodes t1 and t2 with the edge (t1, t2) , and define σ((t1, t2)) := (A, B)� . Then, (T, σ)
is a closed (prop, ω,P)-admissible prop-k-DAG that fulfils (3.2), thus we obtain (i’).
Hence, from now on we may assume that Iω

k ⊆ P .

Now, we prove the claim by induction over |S⃗P,k|, that is, the number of non-oriented
separations with respect to P. The induction base, that is, S⃗P,k = ∅, is covered by
Lemma 3.3.12.

Now, assume |S⃗P,k| > 0, thus there exists some separation (E, F )� ∈ S⃗P,k that
is not oriented by P. As there is no ω-big prop-ganglion of order k that extends
P, we can choose a maximal directed separation (A, B)� ∈ S⃗P,k with (E, F )� ≤
(A, B)� . Additionally, we choose two (not necessarily distinct) minimal directed sep-
arations (Ji, Ki)� ∈ S⃗P,k for i ∈ {1, 2} such that (J1, K1)� , (J2, K2)� ≤ (E, F )�
and (J1 ∩ J2, K1 ∪K2)� ∈ S⃗k. We claim that P0 := P ∪ {(B, A)�} and Pi :=
P ∪ {(Ji, Ki)�} for i ∈ {1, 2} are all consistent partial orientations of S⃗k. Indeed, by
the maximality of (A, B)� , every directed separation (U, V )� with (A, B)� < (U, V )�
has to be oriented by P. So, because P is consistent and (A, B)� is not oriented by P,

we have (V, U)�∈ P . Similar arguments can be made for (Ji, Ki)� , and thus, Pi is a
consistent partial orientation of S⃗k for i ∈ {1, 2}. Now, for every i ∈ {0, 1, 2} holds
|S⃗Pi,k| < |S⃗P,k|, and thus, we can apply the induction hypothesis to Pi.

Every ω-big prop-ganglion of order k extending one of the Pi also extends P and
thus we may assume that no such ω-big prop-ganglion exists. Hence, by induction
hypothesis, for every i ∈ {0, 1, 2} there exists a (prop, ω,Pi)-admissible and prop-
closed prop-k-DAG (Ti, σi) which fulfils (3.2). If (Ti, σi) is (prop, ω,P)-admissible
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for an i ∈ {0, 1, 2}, then we obtain (i). Thus, we may assume that (Ti, σi) is not
(prop, ω,P)-admissible for all i ∈ {0, 1, 2}. Hence, (A, B)� = Terminal(T0, σ0) and
(Ji, Ki)� = Initial(Ti, σi) for i ∈ {1, 2}.

Next, we combine (T1, σ1) and (T2, σ2) into a single closed prop-k-DAG (T ′, σ′) .
To this end, we consider two different cases.

If (J1, K1)� = (J2, K2)� , then we may assume (T1, σ1) = (T2, σ2) and can choose
(T ′, σ′) := (T1, σ1) . Moreover, we choose P ′ := P1 = P2 and the separation
(J ′, K ′)� := Initial(T ′, σ′) ∈ P ′.

If (J1, K1)� ̸= (J2, K2)� , then let ri be the unique source of Ti and let (T ′′, σ′′) be
the prop-up-closing of the union of (T1, σ1) and (T2, σ2) at r1 and r2. The obtained
(T ′′, σ′′) is a prop-k-DAG, as prop-DAG-width is complete and thus closed. Then,
let (T ′, σ′) be a prop-down-closure of (T ′′, σ′′) , which exists by the completeness of
prop-DAG-width and is again a prop-k-DAG. As (Ji, Ki)� are distinct and minimal,
they are incomparable and so P ′ := P1 ∪ P2 is a consistent partial orientation of S⃗k.

In particular, we have (J ′, K ′)� := Initial(T ′, σ′) ∈ P ′.

In both cases (T ′, σ′) is a closed (prop, ω,P ′)-admissible prop-k-DAG.

By our construction so far, we now have two closed prop-k-DAGs: (T0, σ0) with
the terminal prop-separation (A, B)� , and (T ′, σ′) with the initial prop-separation
(J ′, K ′)� . Additionally, both still fulfil (3.2). What is left to do is to combine these
two prop-k-DAGs into a closed (prop, ω,P)-admissible prop-k-DAG (T, σ) fulfilling
(3.2).

As (Ji, Ki)� ≤ (A, B)� for both i ∈ {1, 2}, we know that (J ′, K ′)� ≤ (A, B)� . We
choose a directed separation (X, Y )� such that

(J ′, K ′)� ≤ (X, Y )� ≤ (A, B)� and |(X, Y )| = λ
(︂

(J ′, K ′)� , (A, B)�)︂ .

Then, (X, Y )� is down-linked to (J ′, K ′)� and up-linked to (A, B)� .

Let s be the unique sink of (T0, σ0) and r the unique source of (T ′, σ′) . Then, let(︁
T ↓, σ↓)︁ be the up-shift of (T0, σ0) onto (X, Y )� at s, which is (X, Y )�-s-admissible.

Furthermore, let
(︁
T ↑, σ↑)︁ be the down-shift of (T ′, σ′) onto (X, Y )� at r, which is

(X, Y )�-r-admissible.

Since prop-DAG-width is complete and therefore weakly shifting closed, we obtain
that

(︁
T ↓, σ↓)︁ is a closed (prop, ω,P0)-admissible prop-k-DAG, and that

(︁
T ↑, σ↑)︁
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is a closed (prop, ω,P ′)-admissible prop-k-DAG. Moreover, by observations 3.2.12
and 3.2.14, we have

Terminal
(︁
T ↓, σ↓)︁ = (X, Y )� = Initial

(︁
T ↑, σ↑)︁ .

Let s↓ be the unique sink of
(︁
T ↓, σ↓)︁ and r↑ the unique source of

(︁
T ↑, σ↑)︁ . We create

a new S⃗ -DAG (T, σ) by identifying s↓ and r↑ into the node t↕ and by defining for
every e ∈ V (T )

σ(e) :=
{︄

σ↓(e), e ∈ E(T ↓)
σ↑(e), e ∈ E(T ↑).

Claim 1. (T, σ) is a closed (prop, ω,P)-admissible prop-k-DAG fulfilling (3.2).

Proof. By construction, we know that (T, σ) is a closed prop-k-DAG. So what we
need to show is that it also is (prop, ω,P)-admissible.

For every d ∈ V (T ) \ {t↕}, we have β
(T,σ)
prop (d) = β

(T ↓,σ↓)
prop (d) if d ∈ V (T ↓),

and β
(T,σ)
prop (d) = β

(T ↑,σ↑)
prop (d) if d ∈ V (T ↑). Thus, for all d ∈ V (T ) \ {t↕}, we

have evalprop(β(T,σ)
prop (d)) < ω, because

(︁
T ↓, σ↓)︁ is a closed (prop, ω,P0)-admissible

prop-k-DAG and
(︁
T ↑, σ↑)︁ is a closed (prop, ω,P ′)-admissible prop-k-DAG. For t↕,

because prop-DAG-width is complete and therefore closed, (Cnt) and (3.2) imply

evalprop

(︂
β(T,σ)

prop

(︂
t↕
)︂)︂

= evalprop

(︂
βprop

(︂
(X, Y )�)︂)︂ < k ≤ ω.

Thus, we obtain (A.1).

Let (U, V )� := Initial(T ↓, σ↓). By Lemma 3.2.4, Initial(T, σ) = (U ∩X, V ∪ Y )� ≤
(U, V )� . As (U, V )� ∈ P , we can use the consistency of P to obtain Initial(T, σ) ∈ P
and thus (A.2). Also (3.2) directly implies (A.5) and (A.4) holds by construction.

Similar arguments show that Terminal(T, σ) ∈ P and thus (A.3).

Thus, we obtain (i’), which finishes the proof.
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3.4 The ν-property

We now introduce a width measure that allows us to apply the general duality theorem
Theorem 3.3.13 we prove above: the ν-DAG-width. The width measure ν-DAG-
width uses S⃗ -DAGs and provides all the definitions required in Section 3.3, see
Subsection 3.4.1. In Subsection 3.4.2, we introduce the corresponding concept of
a ganglion. The duality between these two concepts, that is, the applicability of
Theorem 3.3.13, is established in Subsection 3.4.3. In Subsection 3.4.5, we consider
the relation of ν-DAG-width to the cops and robber reachability game.

3.4.1 The ν-DAG-width

We start out with the definition of ν-DAG-width. In Section 3.3 we describe a set
of tools which suffices to obtain the duality in Theorem 3.3.13. We make sure that
ν-DAG-width does provide all of them.

From Lemma 3.2.8 we can derive the following corollary providing us with an addi-
tional separation we can associate with a node of a S⃗ -DAG.

Corollary 3.4.1. Let D be a digraph and (T, σ) be an S⃗ -DAG for D. For every node
t ∈ V (T ) holds (⊥A(t),⊤B(t))� ∈ S⃗ .

Proof. Let t ∈ V (T ). If t is a sink, then ⊥B(t) = V (D) and the statement holds. If
t is not a sink, then, by Lemma 3.2.8, we have ⊥B(t) ⊆ ⊤B(t). As, ⊥(t) ∈ S⃗ , this
implies the statement.

We use the separator of this new separation in order to define tangible instantiations of
the requirements (P1) and (P2) in Section 3.3 to obtain the ν-property. For the bag
function β

(T,σ)
ν , based on (⊥A(t),⊤B(t)) , we define β

(T,σ)
ν : V (T )→ 2V (D) asβ

(T,σ)
ν

β(T,σ)
ν (t) := ⊥A(t) ∩ ⊤B(t) .

For the evaluation function evalν we use the size of the bag and simply write it as | · |.evalν
As defined in Section 3.3, this allows us to obtain the ν-width of an S⃗ -DAG (T, σ)
with maxt∈V (T ) |β

(T,σ)
ν (t)|, and the ν-DAG-width of a digraph D, denoted by ν(D),

being the minimum ν-width of an S⃗ -DAG for D.

We observe that for every S⃗ -DAG (T, σ) the separators of the canonical ⊤- and
⊥-separation of a node are contained in the bag of that node given by β

(T,σ)
ν .
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3.4 The ν-property

Observation 3.4.2. Let D be a digraph and (T, σ) be an S⃗ -DAG for D. Then, for every
node t ∈ V (T ) holds ⊤A(t) ∩ ⊤B(t) ⊆ β

(T,σ)
ν (t) and ⊥A(t) ∩ ⊥B(t) ⊆ β

(T,σ)
ν (t).

We do not restrict the S⃗ -DAGs when considering the ν-DAG-width, thus every S⃗k-
DAG is a ν-DAG. We say that an S⃗ -DAG (T, σ) is a ν-k-DAG if we have

• (⊤A(d),⊤B(d))� , (⊥A(d),⊥B(d))� ∈ S⃗k for all d ∈ V (T ) and

• Initial(T, σ), Terminal(T, σ) ∈ S⃗k.

For every two nodes in the decomposition tree of a tree decompositions, all bags of
nodes on the unique path between them contain the intersection of the bags of the two
nodes, see (Tw3). We can prove a similar property for the bag function βν .

Lemma 3.4.3. Let D be a digraph, (T, σ) be an S⃗ -DAG for D, and t1, t2, t3 ∈ V (T )
such that t1 ≼T t2 and t2 ≼T t3. Then, β

(T,σ)
ν (t1) ∩ β

(T,σ)
ν (t3) ⊆ β

(T,σ)
ν (t2).

Proof. Let (t′
1, t2) , (t2, t′

3) ∈ E(T ) such that t1 ≼T t′
1 and t′

3 ≼T t3. Now, let
x ∈ β

(T,σ)
ν (t1) ∩ β

(T,σ)
ν (t3), then x ∈ ⊤B(t3) ∩ ⊥A(t1). With Lemma 3.2.8 we

have ⊤B(t3) ⊆ ⊤B(t2) and ⊥A(t1) ⊆ ⊥A(t2) and so x ∈ ⊤A(t2) ∩ ⊥A(t2) =
βν(t2).

We also establish the two requirements (P3) and (P4) for ν-DAG-width.

Lemma 3.4.4. Let (T, σ) be an S⃗k-DAG of width at most ω. Let v ∈ V (T ) be a node
in an S⃗k-DAG and (J1, K1)� and (J2, K2)� the two separations on the out-edges of v.
If we add an in-edge of v, then |βν(v)| < ω.

Proof. Let (J, K)� be the label of the new in-edge. Then, the bag for v becomes

⊥((T,σ))(v) ∩ J ∩ ⊥((T,σ))(v) ⊆ ⊥((T,σ))(v) ∩ ⊥((T,σ))(v)

which is smaller than ω by assumption.

Lemma 3.4.5. Let (T, σ) be an S⃗k-DAG of ν-width at most ω. Let v ∈ V (T ) be
a node in an S⃗k-DAG and (J1, K1)� and (J2, K2)� the two separations on the out-
edges of v. If we replace all separations on the in-edges of v and (J2, K2)� by their
uncrossing with a separation (X, Y )� ∈ S⃗k that is up-linked to a separation (J ′

2, K ′
2)�

with (J2, K2)� ≤ (J ′
2, K ′

2)� , then |βν(v)| < ω.
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Figure 3.5: In the upper part of the figure we see the old bag and the set N that we add
to it. In the lower part we see the new bag and the set O, marked in red,
that is deleted.

Proof. We consider the set N of vertices that lie in the new but not in the old bag:

N := (X ∩ Y ) ∩
(︂
⊤((T,σ))

A (v) \ ⊤((T,σ))
B (v)

)︂
.

Note that N ⊆ X ∩ Y and let Z := (X ∩ Y ) \N. Additionally, we consider the set
O of vertices that are in the old bag, but do not lie in the new one:

O :=
(︂
⊤((T,σ))

B (v) ∩ J1 ∩ J2

)︂
∩ (Y \X) .

See Figure 3.5 for an illustration.

Suppose |N | > |O|. Then, O ∪ Z is a directed separator of size less than k and in
particular |O ∪ Z| < |X ∩ Y |. This implies that | (X, Y )� ∨ (J2, K2)� | < | (X, Y )� |.
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3.4 The ν-property

But as (X, Y )� ≤ | (X, Y )� ∨ (J2, K2)� | ≤ (J ′
2, K ′

2)� , this contradicts (X, Y )� being
downlinked to (J ′

2, K ′
2)� .

3.4.2 ν-ganglions

We adapt the definition of ω-diblockages to our setting by involving three separations,
obtaining ω-big ν-ganglions. The term “big” emphasises that we use the big sides
of the separations. We explicitly state the definition for an ω-big ν-ganglion, which
is obtained from the abstract one given in Definition 3.3.5 by replacing β

(T,σ)
prop and

evalprop with β
(T,σ)
ν and evalν .

Definition 3.4.6. Let D be a digraph and k, ω ∈ N with ω ≥ k. An ω-big ν-ganglion
of order k of D is an orientation D of S⃗k such that

(O1-ν) D extends Iω
k ,

(O2-ν) D is consistent, and

(O3-ν) if (A, B)� , (K1, J1)�, (K2, J2)�∈ D with (A, B)� ≤ (Ki, Ji)�for both i ∈
{1, 2}, then

evalν(B ∩ J1 ∩ J2) = |B ∩ J1 ∩ J2| ≥ ω.

If D is a k-big ν-ganglion of order k, we drop the redundant k at the beginning and
call D a big ν-ganglion of order k. ⊣

The key property of a tangle in an undirected graph is that the union of three small
sides never covers the whole graph. The definition of directed tangles introduced by
Giannopoulou et. al [GKK+20] as an orientation of directed separations makes use
of the small sides as well. In a similar fashion, we also introduce a small version
of ν-ganglions in order to make this structure more comparable to existing ones. In
contrast to directed tangles, we only demand for certain sets of separations that their
small sides do not span the whole graph.

Definition 3.4.7. Let D be a digraph and k ∈ N. A small ν-ganglion of order k of D

is an orientation D of S⃗k such that if (A, B)� ∈ D and (K1, J1)�, (K2, J2)�∈ D with
(A, B)� ≤ (Ki, Ji)�for both i ∈ {1, 2} then

A ∪K1 ∪K2 ̸= V (D) . ⊣

Lemma 3.4.8. Let D be a digraph and k ∈ N. If D is a small ν-ganglion of order k
in D, then it is consistent and extends Ik

ω.
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Proof. SupposeD is not consistent. Then, there are two separations (A, B) , (K, J) ∈
S⃗k with (A, B)� , (K, J)�∈ D and (J, K)� ≤ (A, B)� . This means that J ⊆ A and
B ⊆ K, implying A ∪ K = V (D), but A and K are the two small sides of our
separations, a contradiction.

Now suppose D does not extend Ik
ω. Then, one of the following two cases holds.

The first case is that there is a separation (A, B)� ∈ Iω
k with (B, A)�∈ D. Being an

orientation of S⃗k, D also has to orient (A, B ∪A)� . Suppose that (A, B ∪A)� ∈ D,

then we have (A, B ∪A)� ≤ (A, B)� as well as (B, A)�∈ D, which contradicts that
D is a ν-ganglion, as A ∪B = V (D). So, we have (B ∪A, A)�∈ D, which directly
contradicts the definition of a small ν-ganglion. The second case is that there is a
separation (A, B)�∈ Iω

k with (B, A)� ∈ D. Because D is consistent, this implies
(B ∪A, A)� ∈ D, which again contradicts the definition of a small ν-ganglion.

The two notions of small and big ν-ganglions are closely related. The existence of a
small ν-ganglion of high order implies the existence of a big ν-ganglion of comparable
order and vice versa.

Lemma 3.4.9. Let D be a digraph and D a small ν-ganglion of order k in D. Then,
D|⌊k/2⌋ is a big ν-ganglion of order

⌊︁
k
2
⌋︁

in D.

Proof. Towards a contradiction, supposeD|⌊k/2⌋ is not a big ν-ganglion of order
⌊︁

k
2
⌋︁

.

So one of the following three cases holds: D|⌊k/2⌋ does not extend I⌊
k
2 ⌋

ω , or it is not
consistent, or there exist directed separations (A, B)� , (K1, J1)�, (K2, J2)�∈ D of order
less than

⌊︁
k
2
⌋︁

with (A, B)� ≤ (Ki, Ji)�for i ∈ {1, 2} such that |B ∩ J1 ∩ J2| <
⌊︁

k
2
⌋︁

.

Since D|⌊k/2⌋ is a small ν-ganglion, by Lemma 3.4.8, the first two cases cannot apply
and thus we only have to consider the third case.

Consider the uncrossing (K1, J1)�∧ (K2, J2)�= (K1 ∪K2, J1 ∩ J2)�. We know that
(A, B)� ≤ (K1, J1)�∧ (K2, J2)�and therefore A ⊆ J1 ∩ J2 and K1 ∪K2 ⊆ B. Thus,
(K1 ∪K2) ∩ (J1 ∩ J2) ⊆ B ∩ J1 ∩ J2 and so (K1, J1)�∧ (K2, J2)�∈ S⃗⌊k/2⌋.

From (K1, J1)�∧ (K2, J2)�we obtain the following directed separation by adding
further vertices to the separator. Define

(K, J)�:= (K1 ∪K2 ∪ (B ∩ J1 ∩ J2) , (B ∩ J1 ∩ J2) ∪ (J1 ∩ J2))�.
The separator of (K, J)�is exactly the set (B ∩ J1 ∩ J2) , thus (K, J)�∈ S⃗⌊k/2⌋. Note
that (A, B)� ≤ (K, J)�holds as well as (J, K)� ≤ (Ki, Ji)�for both i ∈ {1, 2}.
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As D is an orientation of S⃗k, we have (K, J)�∈ D or (J, K)� ∈ D. Suppose (K, J)�∈
D, then A∪K = V (D), because K = K1∪K2∪(B ∩ J1 ∩ J2) = (K1 ∪K2 ∪B)∩
V (D) = K1∪K2∪B ⊇ B. Thus, two small sides are spanning, which contradictsD
being a small ν-ganglion. So we may assume (J, K)� ∈ D. With J∪K1∪K2 = V (D)
we have three spanning small sides, which again is a contradiction to D being a small
ν-ganglion.

Therefore, D|⌊k/2⌋ is a big ν-ganglion.

Lemma 3.4.10. Let D be a digraph and D a big ν-ganglion of order k in D. Then,
D|⌊ k

3 ⌋ is a small ν-ganglion of order ⌊k/3⌋ in D.

Proof. Let D be a big ν-ganglion of order k in D. Suppose towards a contradiction
that D|⌊k/3⌋ is not a small ν-ganglion of order

⌊︁
k
3
⌋︁

in D. Then, there exist three
directed separations (A, B)� , (K1, J1)�, (K2, J2)�∈ D|⌊k/3⌋ with (A, B)� ≤ (Ki, Ji)�
for i ∈ {1, 2} and |A ∪K1 ∪K2| = V (D).

The intersection of the three big sides has to therefore lie within |A ∪K1 ∪K2| and
thus, completely lies in the three separators.

B ∩ J1 ∩ J2 ⊆ (A ∩B) ∪ (J1 ∩K1) ∪ (J1 ∩K2) .

This implies |B ∩ J1 ∩ J2| < 3 · k
3 = k, because all three separators have size less

than
⌊︁

k
3
⌋︁

. Thus, we obtain a contradiction to D being a big ν-ganglion and therefore
D|⌊k/3⌋ is a small ν-ganglion.

3.4.3 Duality for ν-DAG-width

Our main goal in this section is to apply Theorem 3.3.13 in order to obtain the following
duality theorem for ν-DAG-width.

Theorem 3.4.11. Let D be a digraph and ω, k ∈ N with ω ≥ k. Then, exactly one of
the following holds:

(i) D has a ν-k-DAG of ν-width less than ω, or

(ii) there is an ω-big ν-ganglion of order k in D.
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By Definition 3.4.6 and Lemma 3.3.6, we know that ω-big ν-ganglions indeed imple-
ment Definition 3.3.5, so we have the desired ganglion definition we need in order to
apply Theorem 3.3.13. We already have established that (P1) to (P4) are fulfilled. So
in this subsection we prove (P5) and (P6) and that ν-DAG-width is complete, allowing
us to apply Theorem 3.3.13, which then implies Theorem 3.4.11. The first step is to
show that ν-DAG-width is shifting closed.

Lemma 3.4.12. The digraph width measure ν-DAG-width is shifting closed.

Proof. We prove the three requirements individually.

Because every S⃗ -DAG is a ν-DAG, by Lemma 3.2.3 every (X, Y )�-d-admissible shift
of an S⃗ -DAG is again an S⃗ -DAG, so (S1) holds.

Let (T ′, σ′) be a down-shift of a given ν-k-DAG (T, σ) onto the separation (X, Y )� at
a node d ∈ V (T ) to which (X, Y )� is down-linked. By Lemma 3.2.8, we know(︃

⊥(T ′,σ′)
A (t) ,⊥(T ′,σ′)

B (t)
)︃�
≤
(︃
⊤(T ′,σ′)

A (t′) ,⊤(T ′,σ′)
B (t′)

)︃�
for all (t, t′) ∈ E(T ′) and thus lemmata 3.2.4 and 3.2.9 yield (S2) for down-shifts. In
case that (T ′, σ′) is an up-shift of a given ν-k-DAG (T, σ) onto the separation (X, Y )�
at a node d ∈ V (T ) to which (X, Y )� is up-linked, we can again use Lemma 3.2.8

to obtain that
(︃
⊥(T ′,σ′)

A (t),⊥(T ′,σ′)
B (t)

)︃�
≤
(︃
⊤(T ′,σ′)

A (t′),⊤(T ′,σ′)
B (t′)

)︃�
for all

(t, t′) ∈ E(T ′). Then, (S2) for up-shifts follows from lemmata 3.2.4 and 3.2.10.

Let
(︁
T ↑(d), σ↑(d)

)︁
be the down-shift of some ν-k-DAG (T, σ) onto the separation

(X, Y )� at a node d ∈ V (T ) to which (X, Y )� is down-linked. Let t ∈ V (T ↑(d)). By
Lemma 3.2.15, we know⃓⃓⃓⃓

β
(T ↑(d),σ↑(d))
ν (t)

⃓⃓⃓⃓
=
⃓⃓⃓⃓(︃
⊥(T ↑(d),σ↑(d))

A (t) ,⊤(T ↑(d),σ↑(d))
B (t)

)︃⃓⃓⃓⃓
=
⃓⃓⃓(︂
⊥(T,σ)

A (t) ∪X
)︂
∩
(︂
⊤(T,σ)

B (t) ∩ Y
)︂⃓⃓⃓

=
⃓⃓⃓(︂
⊥(T,σ)

A (t) ,⊤(T,σ)
B (t)

)︂
∨ (X, Y )� ⃓⃓⃓ .

Because (X, Y )� is down-linked to Initial(T ↑(d), σ) and

Initial
(︁
T ↑(d) , σ

)︁
≤
(︂
⊥(T,σ)

A (t) ,⊤(T,σ)
B (t)

)︂�
,
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Lemma 3.2.9 implies⃓⃓⃓⃓(︂
⊥(T,σ)

A (t) ,⊤(T,σ)
B (t)

)︂�
∨ (X, Y )�

⃓⃓⃓⃓
≤
⃓⃓⃓⃓(︂
⊥(T,σ)

A (t) ,⊤(T,σ)
B (t)

)︂� ⃓⃓⃓⃓
.

Therefore, we obtain ⃓⃓⃓⃓
β

(T ↑(d),σ↑(d))
ν (t)

⃓⃓⃓⃓
≤
⃓⃓⃓
β(T,σ)

ν (t)
⃓⃓⃓
,

and thus (S3) holds for down-shifts.

Finally, with similar arguments, we show that (S3) holds for up-shifts as well. Let(︁
T ↓(d), σ↓(d)

)︁
be the up-shift of some ν-k-DAG (T, σ) onto the separation (X, Y )�

at a node d ∈ V (T ) to which it is up-linked. Let t ∈ V (T ↓(d)). We know that⃓⃓⃓⃓
β

(T ↓(d),σ↓(d))
ν (t)

⃓⃓⃓⃓
=
⃓⃓⃓⃓(︂
⊥(T,σ)

A (t) ,⊤(T,σ)
B (t)

)︂�
∧ (X, Y )�

⃓⃓⃓⃓
.

Due to (X, Y )� being up-linked to Terminal(T ↓(d), σ) and(︂
⊥(T,σ)

A (t) ,⊤(T,σ)
B (t)

)︂�
≤ Terminal

(︁
T ↓(d) , σ

)︁
,

Lemma 3.2.10 implies⃓⃓⃓⃓(︂
⊥(T,σ)

A (t) ,⊤(T,σ)
B (t)

)︂�
∧ (X, Y )�

⃓⃓⃓⃓
≤
(︂
⊥(T,σ)

A (t) ,⊤(T,σ)
B (t)

)︂�
.

Thus, we obtain ⃓⃓⃓⃓
β

(T ′,σ′)
ν (t)

⃓⃓⃓⃓
≤
⃓⃓⃓
β(T,σ)

ν (t)
⃓⃓⃓
,

and therefore (S3) holds for up-shifts.

Next, we instantiate ν-up-closings and ν-down-closings, providing the two missing
requirements (P5) and (P6) for ν-DAG-width. Let (T, σ) be a ν-DAG with two sources
r1, r2 ∈ sourcesT and two sinks s1, s2 ∈ sinksT , and let T ′ be the up-closing of T at
r1 and r2 and let T ′′ be the down-closing of T at s1 and s2. The ν-up-closing (T ′, σ′)
of (T, σ) at r1 and r2 is defined by the extension σ′ of σ,

σ′(︁(︁r+, ri

)︁)︁
:=
(︂
⊥(T,σ)

A (r1) ,⊥(T,σ)
B (r1)

)︂�
∧
(︂
⊥(T,σ)

A (r2) ,⊥(T,σ)
B (r2)

)︂�
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which maps the new edges (r+, ri) to separations. The ν-down-closing (T ′′, σ′′) of
(T, σ) at s1 and s2 is defined by σ′′ extending σ to the new edges via

σ′′(︁(︁si, s−)︁)︁ :=
(︂
⊤(T,σ)

A (s1) ,⊤(T,σ)
B (s1)

)︂�
∨
(︂
⊤(T,σ)

A (s2) ,⊤(T,σ)
B (s2)

)︂�
.

That these definitions indeed satisfy (P5) and (P6) follows from the fact that the
uncrossings of two directed separations are again directed separations and because
every S⃗ -DAG is a ν-DAG.

We can additionally prove that the ν-width of a ν-up-closing or a ν-down-closing is
not larger than the ν-width of the original ν-DAG.

Lemma 3.4.13. Let D be a digraph and (T, σ) be a ν-DAG for D. If (T ′, σ′) is
obtained from (T, σ) by a ν-up-closing or a ν-down-closing and (T, σ) has ν-width
ω, then (T ′, σ′) has ν-width at most ω.

Proof. We only consider the case of ν-up-closings, because the case of ν-down-
closings follows along the same lines.

Let r1, r2 ∈ sourcesT be the pair of distinct sources such that (T ′, σ′) is the ν-up-
closing at r1 and r2. Assume that (T, σ) has ν-width ω. We claim that (T ′, σ′) has
ν-width at most ω.

For all nodes t of V (T ) \ {r1, r2}, we have β
(T ′,σ′)
ν (t) = β

(T,σ)
ν (t), so the size of the

bag at node t does not increase.

For ri with i ∈ {1, 2}, we obtain

⊤(T ′,σ′)(ri) =
(︂
⊥(T,σ)

A (r1) ∩ ⊥(T,σ)
A (r2) ,⊥(T,σ)

B (r1) ∪ ⊥(T,σ)
B (r2)

)︂�
,

and thus

β
(T ′,σ′)
ν (ri) =

(︂(︂
⊥(T,σ)

B (r1) ∪ ⊥(T,σ)
B (r2)

)︂
∩ ⊥(T,σ)

A (ri)
)︂

⊆ ⊥(T,σ)
A (ri) .

Therefore, the bag size of ri does not increase for i ∈ {1, 2}.

Now consider r+. As r+ is a source, its bag is given by⊥(T ′,σ′)
A (r+) = ⊥(T,σ)

A (r1)∩
⊥(T,σ)

A (r2), so βT ′,σ′

ν (r′) is at most of size max{|β(T,σ)
ν (r1)|, |β(T,σ)

ν (r2)|}.

Thus, the ν-width of (T ′, σ′) is at most ω.
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Corollary 3.4.14. Any ν-up-closure, ν-down-closure or ν-closure of a ν-DAG of
ν-width ω has ν-width at most ω.

Finally, it remains to show that ν-DAG-width is complete in order to have Theo-
rem 3.3.13 apply to ν-DAG-width. We need one further lemma to do so, which
states that if the ν-width of an S⃗ -DAG is at most k, then we can also manipulate the
separations so that they are from S⃗k.

Lemma 3.4.15. Let D be a digraph and (T, σ) be an S⃗ -DAG for D. If (T, σ) is of
ν-width less than k, then for all t ∈ V (T ) holds

(i) ⊥(T,σ)(t) ∈ S⃗k, and

(ii) ⊥(T,σ)(t) ∈ S⃗k.

Additionally, there exists an S⃗k-DAG (T, σ′) of the same width such that for all
t ∈ V (T ) holds

(iii) ⊤(T,σ)(t) = ⊤(T,σ′)(t), and

(iv) ⊥(T,σ)(t) = ⊥(T,σ′)(t) for all t ∈ V (T ).

Proof. The size of the bag β
(T,σ)
ν (t) equals |⊥(T,σ)

A (t) ∩ ⊤(T,σ)
B (t)| and we know

that ⊥(T,σ)
B (t) ⊆ ⊤(T,σ)

B (t) due to ⊤(T,σ)(t) ≤ ⊥(T,σ)(t). Therefore, (T, σ) having

ν-width less than k implies |
(︂
⊥(T,σ)

A (t),⊥(T,σ)
B (t)

)︂�
| ≤ |β(T,σ)

ν (t)| < k for all
t ∈ V (T ) and thus (i) follows.

By Observation 3.4.2, we have⊤(T,σ)
A (t)∩⊤(T,σ)

B (t) ⊆ β
(T,σ)
ν (t) and thus⊤(T,σ)(t) ∈

S⃗k for all t ∈ V (T ) as well, implying (ii).

Let us define σ′ for every (d, t) ∈ E(T ) as σ′((d, t)) := ⊤(T,σ)(t). By Lemma 3.2.7
and the discussion above, (T, σ′) is an S⃗k-DAG.

By definition,

⊤(T,σ′)
A (t) =

⋃︂
(d,t)∈E(T )

σ′
C((d, t))

=
⋃︂

(d,t)∈E(T )

⊤(T,σ)
A (t) = ⊤(T,σ)

A (t)
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and ⊤(T,σ′)
B (t) =

⋂︂
(d,t)∈E(T )

σ′
D((d, t))

=
⋂︂

(d,t)∈E(T )

⊤(T,σ)
B (t) = ⊤(T,σ)

B (t) .

Thus, ⊤(T,σ)(t) =
(︃
⊤(T,σ′)

A (t),⊤(T,σ′)
B (t)

)︃�
for all t ∈ V (T ), and so (iii) holds.

As the ⊥-separations are derived from the ⊤-separations, this implies

(︂
⊥(T,σ)

A (t) ,⊥(T,σ)
B (t)

)︂�
=
(︃
⊥(T,σ′)

A (t) ,⊥(T,σ′)
B (t)

)︃�
for all t ∈ V (T ), i.e. (iv).

With this, β
(T,σ)
ν (t) = β

(T,σ′)
ν (t) follows for all t ∈ V (T ), and thus, (T, σ′) is of the

same ν-width as (T, σ) .

Corollary 3.4.16. Let D be a digraph. Then, there exists an S⃗ -DAG of width less
than k for D if and only if there exists an S⃗k-DAG of width less than k for D.

We are now equipped with all necessary prerequisites to show that ν-DAG-width is
complete.

Lemma 3.4.17. The digraph width measure ν-DAG-width is complete.

Proof. We need to show that ν-DAG-width is closed and contained. By Lemma 3.4.12,
ν-DAG-width is shifting closed and therefore in particular weakly shifting closed, so
(C4) holds. Moreover, Corollary 3.4.14 guarantees ν-closures of the same width for
all ν-k-DAGs, and Lemma 3.4.15 allows us to transform these closures into ν-k-DAGs
of the same width, implying (C1) to (C3). Additionally, we have |βν((X, Y )�)| =
|X ∩ Y | < k for all (X, Y )� ∈ S⃗k, which yields (Cnt).

3.4.4 Ganglions yield robber strategies

Next we show that ganglions yield a strategy for the robber in the cops and robber
reachability game. We start with a lemma about separations with the same separator
and what the edge-directions for these can look like.
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3.4 The ν-property

Lemma 3.4.18. Let D be a digraph, k ∈ N, X ⊆ V (D) with |X| < k, D a small ν-
ganglion of order k, and L = {C1, . . . , Cℓ}, P = {K1, . . . , Kp}where the Ci and Kj

are strongly connected components of D′ := D −X. Let HL :=
⋃︁ℓ

i=1 BelowD′(Ci)
and HP :=

⋃︁p
j=1 BelowD′(Kj). If

(B1, A1)�:= (HL ∪X, V (D) \HL)�∈ D, and

(B2, A2)�:= (HP ∪X, V (D) \HP )�∈ D, then

(Y, X)�:= (HL ∪HP ∪X, V (D) \ (HL ∪HP ))�∈ D.

Proof. With (X, Y )� being a directed separation of order less than k, in fact (X, Y )� =
(A1, B1)�∧ (A2, B2)� , it must be oriented byD. If (Y, X)�∈ D we are done, so we may
assume (X, Y )� ∈ D. Since, (X, Y )� ≤ (Ai, Bi)� for both i, and with X ∪B1 ∪B2 =
V (D) we now have three small sides covering all of V (D) which is a contradiction to
D being a small ganglion of order k.

Lemma 3.4.19. Let D be a digraph and D a small ganglion of order k + 1, then the
robber player has a winning strategy in the (not necessarily monotone) k-cops and
robber reachability game.

Proof. Consider a game position for the robber turn in which the cops move from
position X1 to position X2, and R is the robber component when X2 was announced.
Now, the robber may move within BelowD−Y (R), where Y := X1 ∩X2. We show
that there is always a strongly connected component R′ of D −X2 such that R′ ⊆
BelowD−Y (R) and (V (D) \ BelowD−X2(R′), BelowD−X2(R′) ∪X2)� ∈ D. If this
is the case, the robber can escape to a non-empty component and thus the game
continues, meaning the robber player wins eventually.

For the first round let X0 be the initial cop position, then the directed separation
representing this state is (X0, V (D))� ∈ Ik+1

k+1 . By Lemma 3.4.8, D extends Ik+1
k+1 and

thus (X0, V (D))� ∈ D. Hence, every strongly connected component R of D −X0 is
contained in the big side of (X0, V (D))� . Suppose for all such R we have

(BelowD−X0(R) ∪X0, V (D) \ BelowD−X0(R))�∈ D.

Then, Lemma 3.4.18 implies that (V (D), X0)�∈ D which contradicts D extending
Ik+1

k+1 . Hence, there is at least one strongly connected component R0 of D −X0 such
that

(V (D) \ BelowD−X0(R0) , BelowD−X0(R0) ∪X0)� ∈ D,
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3 Ganglions

which we choose as the first robber position.

Let us now assume we are further along in the game. Let Xi ⊆ V (D) be the current
cop position and Xi+1 ⊆ V (D) be the announced new cop position. Moreover, let
Ri be the current robber component with

(V (D) \ BelowD−Xi
(Ri) , BelowD−Xi

(Ri) ∪Xi)� ∈ D. (3.3)

Let R be the set of strong components of D −Xi+1 that intersect BelowD−Y (Ri),
where Y := Xi ∩Xi+1. Suppose towards a contradiction that for all R ∈ R we have(︁

BelowD−Xi+1(R) ∪Xi+1, V (D) \ BelowD−Xi+1(R)
)︁�∈ D.

So for every strongly connected component R ∈ R, there is a directed separation
whose small side consists of BelowD−Xi+1(R) ∪ Xi+1. Hence, by Lemma 3.4.18,
there is a directed separation with separator Xi+1 whose small side with respect to D
is exactly the set

Xi+1 ∪
⋃︂

R∈R
BelowD−Xi+1(R) . (3.4)

Observe that due to BelowD−Xi
(Ri) ⊆ BelowD−Y (Ri), the following holds:

(V (D) \ BelowD−Y (Ri) , Xi ∪ BelowD−Y (Ri))�
≤ (V (D) \ BelowD−Xi

(Ri) , Xi ∪ BelowD−Xi
(Ri))� .

By (3.3) and the consistency of D, see Lemma 3.4.8, we obtain that

(V (D) \ BelowD−Y (Ri) , Xi ∪ BelowD−Y (Ri))� ∈ D. (3.5)

Next suppose that (Y ∪ BelowD−Y (Ri), V (D) \ BelowD−Y (Ri))�∈ D. Then, due
to (3.5), we obtain two small sides spanning the whole graph, a contradiction to
Definition 3.4.7. Thus, we obtain that

(V (D) \ BelowD−Y (Ri) , Y ∪ BelowD−Y (Ri))� ∈ D. (3.6)

Moreover, we have(︄
Xi+1 ∪

⋃︂
R∈R

BelowD−Xi+1(R) , V (D) \
⋃︂

R∈R
BelowD−Xi+1(R)

)︄�

≤ (Xi+1 ∪ BelowD−Y (Ri) , V (D) \ BelowD−Y (Ri))�
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which, due to D being consistent (see Lemma 3.4.8) and (3.4) implies

(Xi+1 ∪ BelowD−Y (Ri) , V (D) \ BelowD−Y (Ri))�∈ D. (3.7)

Finally we obtain a contradiction to D being a small ν-ganglion, as we have

(V (D) \ BelowD−Y (Ri) , BelowD−Y (Ri) ∪ Y )�
≤ (Xi+1 ∪ BelowD−Y (Ri) , V (D) \ BelowD−Y (Ri))�

and (3.6) as well as (3.7).

Therefore, there exists some R ∈ R such that BelowD−Xi+1(R) ∪ Xi+1 is the big
side with respect to D. So we can choose Ri+1 := R ensuring again that(︁

V (D) \ BelowD−Xi+1(Ri+1) , BelowD−Xi+1(R) ∪Xi+1
)︁� ∈ D.

3.4.5 A non-monotone cop strategy

Here, we prove that a bound on the ν-DAG-width of a digraph yields a bound on the
number of cops needed to win the cops and robber reachability game. Unfortunately, as
described later on, the obtained strategies are not monotone. We need a few statements
to show that every ν-DAG-decomposition yields a strategy for the cop player.

Lemma 3.4.20. Let D be a digraph, (T, σ) be an S⃗ -DAG for D, and x ∈ V (D). If
there is some t ∈ V (T ) with x ∈ ⊤B(t), then there is t′ ∈ V (T ) with t ≼T t′ such
that x ∈ β

(T,σ)
ν (t′).

Proof. Let P = t0, . . . , tℓ be a longest directed path in T such that x ∈ ⊤B(ti) for
all 0 ≤ i ≤ ℓ and t0 = t. If tℓ is a sink, then x ∈ β

(T,σ)
ν (tℓ) by definition, so suppose

tℓ has at least one out-neighbour. Since x /∈ ⊤B(d) for every d ∈ Nout
T (tℓ) by choice

of ℓ, we have x ∈
⋂︁

(tℓ,d)∈E(T )⊤A(d) = ⊥A(tℓ) and thus x ∈ ⊤B(tℓ) ∩ ⊥A(tℓ) =
β

(T,σ)
ν (tℓ).

Because ⊤B(r) = V (D) for all sources r of T, we obtain the following corollaries.

Corollary 3.4.21. Let D be a digraph, (T, σ) be an S⃗ -DAG for D. For every x ∈ V (D)
there is a t ∈ V (T ) with x ∈ β

(T,σ)
ν (t).
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Corollary 3.4.22. Let D be a digraph, (T, σ) be an S⃗ -DAG for D, and t ∈ V (T ).
Then, β

(T,σ)
ν (BelowT (t)) = ⊤B(t).

Proof. From Lemma 3.4.20 we directly obtain ⊤B(t) ⊆ β
(T,σ)
ν (BelowT (t)). Hence,

we prove β
(T,σ)
ν (BelowT (t)) ⊆ ⊤B(t). If t is a source, then this holds due to⊤B(r) =

V (D). If t is not a source, then β
(T,σ)
ν (t′) = ⊤B(t′) ∩ ⊥A(t′) ⊆ ⊤B(t′) for all t′ ∈

BelowT (t). By Lemma 3.2.8, we know that ⊤B(t′) ⊆ ⊤B(t) for all t′ ∈ BelowT (t).
Thus, β

(T,σ)
ν (BelowT (t)) ⊆ ⊤B(t).

Now we can prove that bounded ν-DAG-width provides a strategies for the cop
player.

Theorem 3.4.23. Let D be a digraph and (T, σ) an S⃗k-DAG of width ω ≥ k. Then,
the cop player has a (not necessarily monotone) winning strategy for the 3ω-cops and
robber reachability game.

Proof. For every t ∈ V (T ) we define

α(t) := β(T,σ)
ν (t) ∪

⋃︂
d∈Nout

T
(d)

β(T,σ)
ν (d) .

Since every node of T has at most two out-neighbours and |β(T,σ)
ν (t)| ≤ ω for all t,

we have |α(t)| ≤ 3ω for all t ∈ V (T ).

As initial cop position we choose α(r) for some source r of T. The robber must choose
a position within ⊤B(r), because ⊤B(r) = V (D).

We now describe a strategy for the following situation: The cops are placed on all
vertices of α(t) for some t ∈ V (T ) and the robber component Rt is contained in
⊤B(t).

In case t is a sink we know that α(t) = β
(T,σ)
ν (t) = ⊤B(t) and the robber is captured.

So, if we can force the situation above after each move of the cop player, then the cops
eventually capture the robber, because T is finite.

Thus, we may assume that t is not a sink node. Let t1 and t2 be the out-neighbours of t.
The robber chooses a strongly connected component Rt in D−α(t). By Lemma 3.4.20
and Corollary 3.4.22, the robber must choose a position in ⊤B(t1) or ⊤B(t2). Let
Rt be the strongly connected component of the robber in D − α(t). Without loss
of generality, assume that Rt ⊆ ⊤B(t1). We choose α(t1) as the next cop position.
Moving the cops from α(t) to α(t′) may remove cops from α(t). Still, the robber
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cannot leave ⊤B(t1), because β
(T,σ)
ν (t1) ⊆ α(t) ∩ α(t1) and, by Corollary 3.4.1,

(⊥A(t1),⊤B(t1))� is a directed separation. Thus, the new robber component Rt1 is
contained in ⊤B(t1).

This procedure can be iterated until the cop player reaches a sink. Moreover, we never
use more than 3ω cops and thus the proof is complete.

3.5 Monotonicity

Unfortunately, the strategies obtained from ν-DAG-decompositions described in Sub-
section 3.1.2 are not monotone. In order solve Conjecture 3.1.6 in the positive, we
would need a width measure having the duality as well as yielding monotone strategies
as the ganglions give a lower bound on the number of cops linear in the number of
cops sufficient for a monotone strategy. In this section, we introduce a restriction on
S⃗ -DAGs that provides a width measure that yields a monotone strategy for the cops
in the cops and robber reachability game. We also prove that this width measure is
parametrically equivalent to DAG-width. We finish by a discussion why we cannot
apply our general duality result for this width measure.

In the preceding subsection we established that on a digraph of ν-DAG-width at most
k the cop player has a winning strategy using at most 3k cops. For DAG-width (in
contrast) this is an equality instead of a factor of 3. This is due to the fact that DAG-
decompositions demand the intersection of two consecutive bags to strongly guard the
vertices in the bags of the subtree defined by the smaller of the two nodes in the decom-
position. This is not the case for S⃗ -DAGs in general. If (T, σ) is an S⃗ -DAG for a di-
graph D and (d, t) ∈ E(T ), then the tuple

(︂
(V (D) \ ⊤B(t)) ∪ β

(T,σ)
ν (d),⊤B(t)

)︂
is

not necessarily a directed separation. To be more precise, if t′ is the other out-neighbour
of d in T, the sets (⊤B(t′) \ ⊤A(t′)) ∩ (⊤A(t) ∩ ⊤B(t)) and (⊤B(t) \ ⊤A(t)) ∩
(⊤A(t′) ∩ ⊤B(t′)) can be non-empty. Hence, as there can be edges from ⊤A(t) ∩
⊤B(t) to ⊤B(t′) \ (⊤A(t′) ∪ ⊤B(t)) , there can be edges in both directions between(︁
(V (D) \ ⊤B(t))∪β

(T,σ)
ν (d)

)︁
\⊤B(t) and⊤B(t)\

(︁
(V (D) \ ⊤B(t))∪β

(T,σ)
ν (d)

)︁
.

See the areas marked in orange in Figure 3.6.

Definition 3.5.1. Let D be a digraph and S⃗ ′ ⊆ S⃗ . An S⃗ ′-DAG (T, σ) is called a
µ-S⃗ -DAG, or µ-DAG, if for all d ∈ V (T ) we have

⋃︂
(d,t)∈E(T )

⎛⎝⊤A(t) ∩
⋂︂

(d,t′)∈E(T )

⊤B(t′)

⎞⎠ ⊆ ⊥A(d) ,
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which we call the µ-property, see Figure 3.6 for an illustration. The µ-DAG-width of
D, denoted µ(D), is defined as the minimum ν-width over all µ-S⃗ -DAGs for D. ⊣µ(D)

d t1

t2

⊤A(t1) ⊤B(t1)

⊤A(t2)

⊤B(t2)

Figure 3.6: The orange areas are ensured to be empty.

Even though we restrict the S⃗ -DAGs by imposing a new property on them, the def-
initions for the requirements (P1) to (P6) stay the same as for ν-DAG-width. The
two lemmata 3.4.4 and 3.4.5 still hold for ν-DAG-width. That is, βµ = βν and
evalµ = evalν = | · |. Also, the µ-up-closing is defined to be the ν-up-closing at the
corresponding sources and the µ-down-closing is defined to be the ν-down-closing at
the corresponding sinks.

These definitions ensure that µ-S⃗ -DAGs contain strong guards as the following lemma
shows.

Lemma 3.5.2. Let D be a digraph, (T, σ) be a µ-S⃗ -DAG for D and (d, t) ∈ E(T ).
Then, ⊤A(t)∩⊤B(t) ⊆ β

(T,σ)
µ (d) and β

(T,σ)
µ (d)∩ β

(T,σ)
µ (t) strongly guards ⊤B(t).

Proof. Suppose there is a vertex x ∈ (⊤A(t) ∩ ⊤B(t)) \ β
(T,σ)
µ (d). Then, by def-

inition, x ∈ (⊤A(t) ∩ ⊤B(t)) \ β
(T,σ)
ν (d). We have (⊤A(d),⊤B(d)) ≤ ⊤(t) by
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Lemma 3.2.8, and therefore ⊤B(t) ⊆ ⊤B(d). Thus, x cannot lie in ⊥A(d), as
this would also mean that x lies in β

(T,σ)
ν (d), a contradiction. Hence, we may as-

sume x ∈ ⊥B(d) =
⋃︁

(d,t′)∈E(T )⊤B(t′). If t is the only out-neighbour of d, then
⊥A(d) =

⋂︁
(d,t′)⊤A(t′) = ⊤A(t) and therefore x ∈ β

(T,σ)
ν (d), a contradiction. Thus,

we consider the case in which there exists an out-neighbour t′ of d that is distinct from
t with x /∈ ⊤B(t′). Therefore, x ∈ ⊤A(t)∩⊤B(t)∩⊤B(t′). Due to x /∈ ⊥A(d), this
implies ⊤A(t) ∩ ⊤B(t) ∩ ⊤B(t′) ̸⊆ ⊥A(d), contradicting (T, σ) being a µ-S⃗ -DAG.
Hence, the first part of the statement holds.

Then, the second part of the statement follows, because, by Observation 3.4.2, we know
that ⊤A(t) ∩ ⊤B(t) ⊆ β

(T,σ)
ν (t) = β

(T,σ)
µ (t) and, by the above, ⊤A(t) ∩ ⊤B(t) ⊆

β
(T,σ)
µ (d). Therefore, the fact that ⊤A(t)∩⊤B(t) strongly guards ⊤B(t) implies that

β
(T,σ)
µ (d) ∩ β

(T,σ)
µ (t) strongly guards ⊤B(t).

The µ-property allows us to translate µ-S⃗ -DAGs into DAG-decompositions.

Lemma 3.5.3. Let D be a digraph and (T, σ) a µ-S⃗ -DAG for D. Then,
(︂

T, β
(T,σ)
ν

)︂
is a DAG-decomposition of D.

Proof. Since T is a DAG and β
(T,σ)
ν a mapping of V (T ) to sets of vertices of

D, it remains to check the three properties (Dag1) to (Dag3) required for a DAG-
decomposition.

By Corollary 3.4.21, the union of all β
(T,σ)
ν (t) equals V (D), so (Dag1) holds. Let

t1, t2, t3 ∈ V (T ) such that t1 ≼T t2 and t2 ≼T t3. By Lemma 3.4.3, we know
β

(T,σ)
ν (t1) ∩ β

(T,σ)
ν (t3) ⊆ β

(T,σ)
ν (t2), thus (Dag2) holds. In order to see that (Dag3)

holds as well, let (d, t) ∈ E(T ). By Lemma 3.5.2, the set β
(T,σ)
ν (d) ∩ β

(T,σ)
ν (t)

strongly guards ⊤B(t) which equals β
(T,σ)
ν (BelowT (t)) by Corollary 3.4.22.

The previous lemma shows that µ-DAG-width yields an upper bound on DAG-width.
Next, we show the other direction, that is, how to obtain a µ-DAG from a nice DAG-
decomposition in order to obtain the following theorem.

Theorem 3.5.4. For all digraphs D holds DAGw(D) ≤ µ(D) ≤ 3DAGw(D).

We have already seen in Lemma 3.1.2 that a DAG-decomposition naturally provides
a way to obtain separations that can be assigned to the edges of the DAG it uses.
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3 Ganglions

Let D be a digraph and (T, β) a nice DAG-decomposition of D. Then, we define
σβ : E(T )→ S⃗ by

σβ((d, t)) := ((V (D) \ β(BelowT (t))) ∪ (β(d) ∩ β(t)) , β(BelowT (t)))� .

The following lemma shows that we can obtain an S⃗ -DAG from a nice DAG-decom-
position. The obtained S⃗ -DAG has several additional properties.

Lemma 3.5.5. Let D be a digraph and (T, β) a nice DAG-decomposition of D. Then,

(i) (T, σβ) is an S⃗ -DAG.

Additionally, the following properties hold for every d, t ∈ V (T ) and x ∈ V (D).

(ii) If x ∈ ⊤B(d), but not in ⊥B(d), then x ∈ β(d) ∩ ⊥A(d).

(iii) If x ∈ β(d), d ≼T t and x ∈ ⊤B(t), then x ∈ β(t).

(iv) If x ∈ β(d) ∩ ⊥B(d), then x ∈ ⊥A(d).

(v) If x ∈ (⊥A(d) ∩ ⊥B(d)) \ β(d), then x ∈
⋃︁

(d,t′)∈E(T ) β(t′). In particular,
⊤A(t′) ∩ ⊤B(t′) ⊆ β

T,σβ
ν (d) for all t′ ∈ Nout

T (d).

Proof. We prove the properties one by one.

Since (T, β) is a nice DAG-decomposition, T has maximum out-degree at most two.
Hence, it suffices to show that σβ satisfies the S⃗ -DAG consistency. By Lemma 3.1.2,
σβ(e) is indeed a directed separation for all e ∈ E(T ). Moreover, for all (t1, t2) ,
(t2, t3) ∈ E(T ), we have

β(BelowT (t3)) ⊆ β(BelowT (t2)) . (3.8)

Due to (T, β) being a DAG-decomposition, we know β(t1)∩β(t3) ⊆ β(t2), and thus,
x ∈ β(BelowT (t3)) ∩ β(t1) implies x ∈ β(t3), because T is a DAG and therefore
t1 /∈ BelowT (t3). Thus, β(t1) \ β(t3) ⊆ V (D) \ β(BelowT (t3)). Therefore, we
obtain

(V (D) \ β(BelowT (t2))) ∪ (β(t1) ∩ β(t2))
⊆ (V (D) \ β(BelowT (t3))) ∪ (β(t1) ∩ β(t2) ∩ β(t3)) ∪

((β(t1) ∩ β(t2)) \ β(t3))
⊆ (V (D) \ β(BelowT (t3))) ∪ (β(t2) ∩ β(t3)) ∪ (β(t1) \ β(t3))
⊆ (V (D) \ β(BelowT (t3))) ∪ (β(t2) ∩ β(t3)) .

(3.9)
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3.5 Monotonicity

Together, containments (3.8) and (3.9) imply that σβ((t1, t2)) ≤ σβ((t2, t3)). Thus,
all properties of an S⃗ -DAG hold and therefore (i) does.

Next, let d ∈ V (T ) and choose x ∈ ⊤B(d) \ ⊥B(d). By definition of σβ , we have
⊤B(d) = β(BelowT (d)) and ⊥B(d) =

⋃︁
(d,t)∈E(T ) β(BelowT (t)). Hence, x ∈

β(d). Moreover, due to (⊥A(d),⊥B(d))� being a directed separation, x /∈ ⊥B(d)
implies x ∈ ⊥A(d). Thus, (ii) holds.

Let d, t ∈ V (T ) be such that d ≼T t. Then, choose x ∈ β(d)∩⊤B(t). We can choose
a maximal directed path P starting in t such that x ∈ ⊤B(t′′) for all t′′ ∈ V (P ).
Let t′ be the end-node of P. By the maximality of P, we obtain x /∈ ⊤B(t∗) for all
t∗ ∈ Nout

T (t′), thus x /∈ ⊥B(t′) and therefore, by (ii), x ∈ β(t′). Since t lies on a
directed path between d and t′ and x ∈ β(d) ∩ β(t′), (iii) follows from (T, β) being a
DAG-decomposition.

Let d ∈ V (T ) and choose x ∈ β(d) ∩⊥B(d). Suppose x /∈ ⊥A(d). Then, there is an
out-neighbour t of d such that x ∈ ⊤B(t) \ ⊤A(t). By (iii), this implies x ∈ β(t) and
thus x ∈ β(d)∩ β(t). From the definitions of σβ and ⊤A(t) we obtain β(d)∩ β(t) ⊆
⊤A(t), contradicting x /∈ ⊥A(d). Therefore, x ∈ ⊥A(d) and thus (iv) holds.

Finally, let d ∈ V (T ) and x ∈ (⊥A(d) ∩ ⊥B(d)) \ β(d). As x ∈ ⊥A(d) ∩ ⊥B(d),
there is an out-neighbour t of d such that x ∈ ⊤A(t) ∩ ⊤B(t). We have

⊤A(t) ∩ ⊤B(t)

=

⎛⎝ ⋃︂
(t′,t)∈E(T )

(V (D) \ β(BelowT (t))) ∪ (β(t′) ∩ β(t))

⎞⎠ ∩ β(BelowT (t))

=
⋃︂

(t′,t)∈E(T )

(β(t′) ∩ β(t)) ⊆ β(t) .

So, x ∈ β(t) ⊆
⋃︁

(d,t′)∈E(T ) β(t′). For every d with exactly one out-neighbour t, by
(Nice4) we have ||β(d)| − |β(t)|| ≤ 1. If β(t) ⊆ β(d), then the above immediately
implies⊤A(t)∩⊤B(t) ⊆ β(d)∩β(t) and thus⊤A(t)∩⊤B(t) ⊆ β

(T,σβ)
ν (d). Hence,

there exists an x ∈ β(t)\β(d). For this vertex holds x ∈ ⊤B(t)\⊤A(t) and therefore,
we still obtain ⊤A(t) ∩ ⊤B(t) ⊆ β(d) ∩ β(t). For every d with two out-neighbours t
and t′, we have β(t) = β(d) = β(t′), by (Nice3), and thus the above again implies
⊤A(t) ∩ ⊤B(t) ⊆ β(d) ∩ β(t). In every case ⊤A(t) ∩ ⊤B(t) ⊆ β

T,σβ
ν (d) and thus

(v) holds.

These properties in fact suffice to ensure the µ-property.
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3 Ganglions

Corollary 3.5.6. Let D be a digraph and (T, β) a nice DAG-decomposition of D.
Then, (T, σβ) has the µ-property.

Proof. Let d ∈ V (T ) and t ∈ Nout
T (d). Let x ∈ ⊤A(t) ∩

⋂︁
(d,t′)∈E(T )⊤B(t′).

As ⊤A(t) ∩
⋂︁

(d,t′)∈E(T )⊤B(t′) ⊆ ⊤A(t) ∩ ⊤B(t) and, by (v) of Lemma 3.5.5,
⊤A(t) ∩⊤B(t) ⊆ β

(T,σ)
ν (d) = ⊥A(d) ∩⊤B(d), this implies x ∈ ⊥A(d). Therefore,

(T, σβ) has the µ-property.

The S⃗k-DAG obtained by Lemma 3.4.15 from some S⃗ -DAG (T, σ) of ν-width less
than k has the µ-property if and only if (T, σ) has the µ-property. Thus, we obtain the
following corollary.

Corollary 3.5.7. Let D be a digraph and (T, σ) a µ-S⃗ -DAG of ν-width less than k.

Then, there exists a µ-S⃗k-DAG of the same width.

Combining the above results yields the reverse of Lemma 3.5.3.

Corollary 3.5.8. Let D be a digraph and (T, β) be a nice DAG-decomposition of
width k for D. Then, (T, σβ) is a µ-S⃗ -DAG of ν-width at most 3k.

Hence, we have established that µ-DAG-width is parametrically equivalent to DAG-
width.

Theorem 3.5.4. For all digraphs D holds DAGw(D) ≤ µ(D) ≤ 3DAGw(D).

Thus, due to Theorem 3.1.5, every µ-DAG-decomposition yields a monotone strategy
for the cop player.

In order to be able to apply Theorem 3.3.13 to µ-DAG-width, we would need to show
that it is complete. We can instantiate ω-big µ-ganglions in the same way as ω-big
ν-ganglions, and so we would only need to show that µ-DAG-width is closed. As
every closed µ-k-DAG is a closed S⃗k-DAG, by Lemma 3.4.17, the existence of an
ω-big ν-ganglion implies that every closed µ-k-DAG has a bag of size at least ω.
We can prove that every µ-DAG has a closure as well as that µ-DAG-width is closed
under down-shifts. But unfortunately, µ-DAG-width does not seem to be closed under
up-shifts.

Lemma 3.5.9. The µ-DAG-width measure is closed under down-shifts.
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3.5 Monotonicity

Proof. Let (T ′, σ′) be a down-shift of (T, σ) onto (X, Y )� at node d ∈ V (T ). As the
bag function as well as the evaluation function are the same for µ-DAG-width as for
ν-DAG-width, (S3) follows from Lemma 3.4.12.

Using Lemma 3.2.15 and that (T, σ) has the µ-property, we obtain that for all t ∈ V (T ′)
holds

⋃︂
(t,ti)∈E(T ′)

⎛⎝⊤(T ′,σ′)
A (ti) ∩

⋂︂
(t,tj)∈E(T ′)

⊤(T ′,σ′)
B (tj)

⎞⎠ =

⋃︂
(t,ti)∈E(T ′)

⎛⎝(︂⊤(T,σ)
A (ti) ∪X

)︂
∩

⋂︂
(t,tj)∈E(T ′)

(︂
⊤(T,σ)

B (tj) ∩ Y
)︂⎞⎠ ⊆

⋃︂
(t,ti)∈E(T ′)

⎛⎝⎛⎝⊤(T,σ)
A (ti) ∩

⋂︂
(t,tj)∈E(T ′)

⊤(T,σ)
B (tj)

⎞⎠ ∪X

⎞⎠ ⊆
⊥(T,σ)

A (d) ∪X = ⊥(T ′,σ′)
A (t) .

(3.10)

Thus (S1) holds. If (T, σ) is a µ-k-DAG, then due to Lemma 3.4.12, (T ′, σ′) is a
ν-k-DAG and together with (3.10), this implies (S2).

Lemma 3.5.10. If (T, σ) is a µ-DAG, then so is any ν-up-closing (T ′, σ′) and any
ν-down-closing (T ′′, σ′′) of (T, σ) .

Proof. First, we show the statement for ν-up-closings. Let (T ′, σ′) be an up-closing
at r1 and r2. Then, we have to show that the µ-property holds at the new source r+.

As ⊤(T ′,σ′)(r1) = σ′((r+, r1)) = σ′((r+, r2)) = ⊤(T ′,σ′)(r2), we obtain that

⋃︂
(r+,ri)∈E(T ′)

⎛⎝⊤(T ′,σ′)
A (ri) ∩

⋂︂
(r+,rj)∈E(T ′)

⊤(T ′,σ′)
B (rj)

⎞⎠ =

⊤(T ′,σ′)
A (r1) ∩ ⊤(T ′,σ′)

B (r1) ⊆

⊤(T ′,σ′)
A (r1) =

⊤(T ′,σ′)
A (r1) ∩ ⊤(T ′,σ′)

A (r2) =

⊥(T ′,σ′)
A

(︁
r+)︁ .
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3 Ganglions

Let (T ′′, σ′′) be a ν-down-closing at s1 and s2. The µ-property has to be proven for
s1 and s2 only, because it trivially holds for the new sink s+, for which we have
⊥(T ′′,σ′′)

A (s+) = V (D). Since |Nout
T ′′ (si)| = 1, the µ-property also holds there.

Together, Corollary 3.4.14 and Lemma 3.5.10 imply the following.

Corollary 3.5.11. Let D be a digraph and (T, σ) a ν-DAG for D. Every (T ′, σ′) where
T ′ has a unique source, and (T ′, σ′) is obtained from (T, σ) by ν-up-closings, is a
ν-up-closure of (T, σ) that additionally is a µ-DAG. Moreover, every (T ′′, σ′′) , where
T ′′ has a unique sink and (T ′′, σ′′) is obtained from (T, σ) by ν-down-closings, is a
ν-down-closure of (T, σ) that additionally is a µ-DAG. Also, if (T, σ) is of µ-width
ω, then so are (T ′, σ′) and (T ′′, σ′′) .

⊤A(t1) ⊤B(t1)

⊤A(t2)

⊤B(t2)

X

Y

Figure 3.7: By uncrossing with (X, Y ) the parts in the separators that the µ-property
ensures to be empty (marked in blue) are replaced by parts of the separator
X ∩ Y, which we do not know to be empty (marked in red).

The missing piece for µ-DAG-width to admit µ-ganglions as obstructions is the closure
under up-shifts. This would imply that Conjecture 3.1.6 holds. Unfortunately, we do
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not believe that this is true, because the uncrossings made during the up-shift affect the
part of the separator used for the µ-property, see Figure 3.7 for an illustration. Thus,
we cannot apply Theorem 3.3.13 to µ-ganglions and µ-DAG-width.

3.6 Conclusion and open questions

We set out to find a directed generalisation of tangles with a similar relation to a width
measure as tangles have to undirected treewidth. Additionally, we would have liked
the decompositions of the width measure to provide monotone cop strategies in the
cops and robber reachability game, similar to how tree-decompositions do for the
undirected cops and robber game.

Overall, we introduced two width measures, the ν-DAG-width and the µ-DAG-width.
For ν-DAG-width we proved the duality to the defined ω-big ν-ganglions. However,
we noticed that ν-DAG-width is too weak, because the cop-strategies it provides are
not necessarily monotone. On the other hand, µ-DAG-width does provide monotone
strategies. However, it is too strong, because we are no longer able to obtain the
duality to ω-big µ-ganglions. Yet, the introduced width measures are not too far away
from fulfilling the desired properties. The non-monotonicity in the strategies derived
from the ν-DAGs is local. This can be seen by taking a closer look at the strategy
found in the proof of Theorem 3.4.23. Considering a game played according to such a
strategy, in the step corresponding to a vertex in the ν-DAG, the cops occupy the three
corresponding separations. The robber then chooses one of the two subtrees and the
cops remove the part of the separator for the other subtree. So the strategy places the
cops in one turn, and in their next turn immediately removes them again. This is the
only non-monotonic behaviour of the strategy.

However, it is not surprising that finding the desired width measure is not easy, as we
discussed the close relation of these concepts to the long-standing open conjecture,
Conjecture 3.1.6, by Berwanger et. al [BDH+12]. It states that the monotonicity
cost for the cops and robber reachability game is linear and proving the closure of
µ-DAG-width under up-shifts would imply the conjecture to be true.
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4 Digraphs of cyclewidth one

In this chapter we introduce another directed width measure, the cyclewidth, which is
parametrically equivalent to directed treewidth. The two major advantages cyclewidth
has over directed treewidth are that it is closed under taking butterfly minors (which
directed treewidth is not in its standard definition) and its close relation to matching
theory, which is also explained within this chapter.

Cyclewidth was introduced in order to prove a matching grid theorem for bipartite
graphs [HRW19]. Its rather elegant properties make it worthy of study in its own
rights.

The classes having small undirected treewidth are rather well understood. Graphs
of treewidth one are forest and graphs of treewidth at most two are series-parallel
graphs. There are also characterisations by forbidden minors for these classes. For
most directed width measures this kind of understanding is not yet established. Only
recently Wiederrecht [Wie20] achieved a characterisation of the digraphs with directed
treewidth one. For cyclewidth we can give the following characterisation of graphs
with cyclewidth one by allowed strongly 2-connected butterfly minors. This is the
main result of this chapter.

Theorem 4.0.1. Let D be a digraph. Then, D has cyclewidth exactly one if and only
if every strongly 2-connected butterfly minor of D is isomorphic to the digon or the
bi-directed K3.

The proof of this theorem makes use of the interrelatedness between strongly con-
nected digraphs and matching covered bipartite graph, which we explain closer in
Section 4.2.

Branch decompositions were introduced by Robertson and Seymour with the definition
of branchwidth which is parametrically equivalent to treewidth on undirected graphs
[RS91]. These decompositions were also used to obtain further graph parameters,
a popular one being the maximum matching width [Vat12], which is parametrically
equivalent to treewidth as well and can be used to relate treewidth to other parameters
and also yields algorithmic improvements [JST18].
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Cyclewidth is a directed width measure based on a branch decomposition, that is, the
vertices of a given digraph are mapped one-to-one to the leaves of a cubic tree and a
function to measure the width at an edge in the tree is provided. In order to achieve a
connection to cops and robber games (which corresponds to directed treewidth), the
width at an edge should be at least the size of a hitting set for all cycles crossing the
edge cut induced by this edge.

At first glance, our definition might seem unintuitive, as we count several edges for a
single cycle. However, we cannot use the size of a maximum cycle packing instead.
This is due to a result by Kawarabayashi et al. [KKKK13] showing that directed cycles
through a specific set do not have the Erdős-Pósa-property, thus the maximum cycle
packing does not yield a bound on the smallest hitting set for all cycles. So, we need
something else to identify an upper bound on a hitting set of all cycles.

We introduce a few definitions for working with the decomposition trees. For every tree
T, we define the leaves of T by L(T ) := {v ∈ V (T ) | |NT (v)| = 1}. A tree T is cubicL(T )
if all inner vertices, that is, vertices in V (T ) \ L(T ), have degree exactly 3. It is called
subcubic if the degree of these vertices is at most 3. If T is a subcubic tree, we can obtain
a cubic tree T ′ from it by iteratively contracting one of the incident edges of a degree-2-
vertex. We say T ′ is obtained from T by trimming. Also, by identifying the contraction
vertex of an edge incident to a leaf with the original leaf, we can assume L(T ) = L(T ′).
Let T be an undirected tree and X a set. Then, for every function α : L(T )→ X and
every subtree T ′ of T, we define α(T ′) := {α(t) | t ∈ L(T ) ∩ V (T ′)}. Removing an
edge e = {t1, t2} ∈ E(T ) from the tree T splits T into two subtrees: T1 containing
the vertex t1 and T2 containing the vertex t2. We define T ⋉ e := (T1, T2) . If we areT ⋉ e

also given a bijection α : L(T )→ V (G) for some graph or digraph G, we additionally
define the edge cut ∂(t1t2) in G that contains all edges with one endpoint in α(T1)∂(t1t2)
and the other in α(T2), i.e. ∂(t1t2) := ∂(α(T1)). While working with cyclewidth we
use this for digraphs, later on when defining matching width we make use of this for
undirected graphs.

Intuitively, a cycle decomposition assigns every vertex of a given digraph to a leaf in a
cubic tree. This way every edge in the tree induces an edge cut in the digraph. We
define the porosity of such an edge cut by the maximum number of edges a family of
disjoint cycles can have in it. Formally, let D be a digraph and X ⊆ V (D). We define
the cycle porosity of the cut ∂D(X) as follows.

cp(∂(X)) cp(∂(X)) := max
C family of pairwise

disjoint directed cycles
in D

⃓⃓⃓⃓
⃓∂(X) ∩

⋃︂
C∈C

E(C)

⃓⃓⃓⃓
⃓ .

This then naturally yields the width measure cyclewidth.

88



4.1 Relation to directed treewidth

Definition 4.0.2 (Cyclewidth). Let D be a digraph. A cycle decomposition of D is
a tuple (T, φ) , where T is a cubic tree (i.e. all inner vertices have degree three) and
φ : L(T )→ V (D) is a bijection. The width of a cycle decomposition (T, φ) is given
by

max
e∈E(T )

cp(∂(e))
2

and the cyclewidth of D is defined as

cyw(D)cyw(D) := min
(T,φ) cycle decomposition

of D

max
t1t2∈E(T )

cp(∂(t1t2))/2. ⊣

This chapter now first considers the relations between cyclewidth and directed treewidth
in more detail. Then, we look at the similarities between cyclewidth and width measures
in graphs with perfect matchings, identifying one width measure in particular, the
M -perfect matching width, that is parametrically equivalent to cyclewidth. We then
explain how a result characterising the graphs with perfect matchings that have small
M -perfect matching width can be translated back into the directed setting and yield
the characterisation in Theorem 4.0.1. Then, we finish by providing the proof for
the characterisation of the graphs with perfect matchings that have small M -perfect
matching width.

4.1 Relation to directed treewidth

In this section we describe how cyclewidth relates to directed treewidth.

First, we prove that it is closed under taking butterfly minors. This is a useful property
and not the case for directed treewidth (that is, in its standard definition; there is a
parametrically equivalent alternative definition that is closed under taking butterfly
minors).

Theorem 4.1.1. Let D and D′ be digraphs with D′ ≼b D. Then, cyw(D′) ≤ cyw(D).

Proof. We split the proof into two parts. First, we show that cyclewidth is closed
under taking subgraphs. Second, we show that it is closed under butterfly contractions.

Towards the first point, let D′ ⊆ D and (T, φ) be a cycle decomposition of D. We
obtain a cycle decomposition (T ′, φ′) of D′ as follows. To this end, we first obtain the
subtree T ′′ of T by deleting all leaves t with φ(t) ∈ V (D) \ V (D′). The tree T ′ is
then obtained by trimming T ′′. Note that L(T ′) ⊆ L(T ), so we simply define φ′ to be
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the restriction of φ to L(T ′). Now, every family of pairwise disjoint cycles in D′ is a
family of pairwise disjoint cycles in D. Additionally, for every partition (X ′, Y )′ of
D′ induced by an edge in T ′ there exists an edge in T that induces a partition (X, Y )
in D with X ′ ⊆ X and Y ′ ⊆ Y. Thus, the width of (T ′, φ′) is at most the width of
(T, φ) .

To prove that cyclewidth is closed under butterfly contractions, let D′ := D/e→ xe for
a butterfly contractible edge e = (u, v) ∈ E(D) and (T, φ) be a cycle decomposition
of D. Since e is butterfly contractible, ∂out

D (u) = {e} or ∂ in
D(v) = {e}.

Consider the case that ∂out
D (u) = {e}. This implies that every cycle containing u

contains v as well. We build a cycle decomposition (T ′, φ′) from (T, φ) as follows.
The tree T ′ is obtained by deleting the leaf ℓ of T with φ(ℓ) = u and then trimming.
We set φ′(φ−1(v)) := xu,v and φ′(t) = φ(t) for all t ∈ L(T ′) with t ̸= φ−1(v).

Every cut ∂D′(X ′) induced by an edge in T ′ corresponds to a cut ∂D(X) induced
by an edge of T. For those cuts with u, v ∈ X, that is, X ′ = (X \ u, v) ∪ {xe}, or
u, v ∈ X, that is, X ′ = X, we have cp(∂D′(X ′)) = cp(∂D(X)).

So consider a cut ∂(X) induced by some edge f with v ∈ X and u ∈ X, then
X ′ = (X \ {v}) ∪ {xe} and V (D′) \X ′ = V (D) \ (X ∪ {u}) . Let C′ be a family
of disjoint directed cycles witnessing the cycle porosity of ∂D′(X ′). If no cycle in
C′ contains xe, then it is a family of disjoint directed cycles in D as well, implying
cp(∂D′(X ′)) ≤ cp(∂D(X)). So assume there is a cycle C ′ in C′ that contains xe.
We can obtain the cycle C in D from it by replacing xe with u and v, or only v. Due
to xe ∈ X ′ and v ∈ X, we obtain that C has as many edges in ∂D(X) as C ′ has in
∂D′(X ′). Thus, again cp(∂D′(X ′)) ≤ cp(∂D(X)).

Next, we observe that the cyclewidth does not change if we reverse all directions of the
edges in the graph. This holds because the cuts stay the same and the cycles are still
cycles with reversed direction and crossing the same cuts. Therefore the decomposition
stays exactly the same with the same porosities for all cuts. Using this the case that
∂ in

D(v) = {e} follows directly from the case ∂out
D (u) = {e}.

Therefore, cyw(D′) ≤ cyw(D) holds for every butterfly minor D′ of D.

Cyclewidth and directed treewidth are parametrically equivalent. To show this, we
first consider how to obtain a cycle decomposition from a directed tree decomposition.
There are two major differences between the trees underlying these two decompositions.
One is that cyclewidth demands a cubic tree and the other is that directed tree decom-
positions have bags at potentially every vertex of the tree, but cycle decompositions
map the vertices of the digraph to the leaves only. So we start by manipulating directed
tree decompositions to look more like cycle decompositions.
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4.1 Relation to directed treewidth

Definition 4.1.2 (Leaf Directed Tree Decomposition). A directed tree decomposition
(T, β, γ) of a digraph D is called a leaf directed tree decomposition if β(t) = ∅ for all
t ∈ V (T ) \ L(T ). ⊣

Lemma 4.1.3. Let D be a digraph and k ∈ N. If D has a directed tree decomposi-
tion (T, β, γ) of width k, then one can construct a leaf directed tree decomposition
(T ′, β′, γ′) of the same width from (T, β, γ) in linear time.

Proof. We construct a leaf directed tree decomposition (T ′, β′, γ′) of D as follows.
Let N ⊆ V (T ) be the set of vertices in T with non-empty bags. For every n ∈ N
we introduce a new vertex n′ and define T ′ by V (T ′) := V (T ) ∪ {n′ | n ∈ N} and
E(T ′) := E(T ) ∪ {(n, n′) | n ∈ N}. For the bags we define

β′(t) :=

⎧⎪⎨⎪⎩
β(t) = ∅, if t ∈ V (T ) \N

β(n), if t = n′ for some n ∈ N

∅, otherwise, that is, if t ∈ N.

And for the guards we define

γ′(e) :=
{︄

γ(e), if e ∈ E(T )
β(n), if e = (n, n′) for n ∈ N.

By construction, the bags of all non-leaf vertices are empty. Note that for all edges
e ∈ E(T )∩E(T ′), we have β′(T ′

l (e)) = β(Tl(e)) as well as γ′(e) = γ(e), thus γ′(e)
guards β′(T ′

l (e)). For all edges e = (n, n′) for some n ∈ N, we have β′(T ′
l (e)) =

β(n) = γ′(e), thus γ′(e) guards β′(T ′
l (e)). So (T ′, β′, γ′) is indeed a leaf directed

tree decomposition.

Now consider the width of (T ′, β′, γ′) . For all t ∈ V (T ) ⊆ V (T ′), we have Γ′(t) =
Γ(t) ≤ k. For all t ∈ V (T ′) \ V (T ), we have t = n′ for some n ∈ N, thus
Γ′(t) = γ′((n, n′)) ∪ β′(t) = β(n) ≤ k. Thus, (T ′, β′, γ′) has width at most k.

Observation 4.1.4. The construction used in the proof of Lemma 4.1.3 only changes
the degree for inner vertices with non-empty bags. Additionally, in these cases the
degree is increased by exactly one.

We bring the directed tree decomposition in a form with slightly stronger properties
next. A directed tree decomposition (T, β, γ) of a digraph D is called strong if for all
t ∈ V (T ) with children t1, . . . tℓ, the bag β(Tti

) is a strongly connected component
of D − Γ(t).
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4 Digraphs of cyclewidth one

Lemma 4.1.5 (Bang-Jensen and Gutin [BG18]). Let D be a digraph and k ∈ N. If D
has a directed tree decomposition of width k, then one can construct a strong directed
tree decomposition of D of width at most 3k + 2 in linear time.

We need this stronger version of a directed tree decomposition, because we consider
the subtrees with roots in the out-neighbourhood of a vertex in the decomposition in a
topological ordering.

Observation 4.1.6. Let D be a digraph, (T, β, γ) a strong directed tree decomposi-
tion, and t ∈ V (T ) with children t1, . . . tℓ. Then, as β(Tti) is a strongly connected
component of D− Γ(t) for all i ∈ {1, . . . , ℓ}, there is a topological ordering on these
components. This yields an ordering on t1, . . . tℓ, and without loss of generality we
can assume them to already be given in that order. That is, if i < j, then every path
from β(Ttj

) to β(Tti
) intersects Γ(t).

This now allows us to approach the difference in degree between directed tree decom-
positions and cycle decompositions.

Lemma 4.1.7. Let D be a digraph and k ∈ N. If D has a strong directed tree
decomposition (T, β, γ) of width k, then it also has a subcubic directed leaf tree
decomposition (T ′, β′, γ′) of width k which can be computed from (T, β, γ) in linear
time. Additionally, all bags of (T ′, β′, γ′) have size at most one.

Proof. We split the proof into three steps. The first step yields a subcubic directed
tree decomposition (T ′′, β′′, γ′′) , which the second step turns into a subcubic directed
leaf tree decomposition (T ′′′, β′′′, γ′′′) using Lemma 4.1.3. The third step then takes
care of all bags having size at most one.

Step 1: cubification. We traverse the tree T top-down. Thus, whenever reaching a
vertex, we can assume that the subtree rooted at it is yet unchanged. Let t ∈ V (T ) be
the next encountered vertex. If t has out-degree at most two, then we leave t as it is in
this step. So, assume t has out-degree d > 2. Let c1, . . . , cd be the children of t. As
the subtrees Tc1 , . . . , Tcd

and their guards are yet untouched by our construction and
(T, β, γ) is a strong directed tree decomposition, we can assume that the children are
given in a topological order of their subtrees, as seen in Observation 4.1.6. Removing
all outgoing edges of t splits T into several subtrees: Tr containing the root and t
as a leaf, and Tci

for every child of t. Next, define t0 := t and add new vertices
t1, . . . , td−1 as follows. We add the edges (ti, ti+1) , for all 0 ≤ i < d− 1, with guard
γ′((ti, ti+1)) = Γ(t). Finally, we re-attach the subtrees by adding the edges (ti, ci)
for all 1 ≤ i < d − 1, and the edge (td−1, cd) . The in-edge to ci obtains the guard
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4.1 Relation to directed treewidth

γ((t, ci)). All new vertices have empty bags and out-degree two. The vertex t, whose
bag remains unchanged, has in- and out-degree of one, which we make use of next.

For all the subtrees Tci
with 1 ≤ i ≤ d, every walk starting and ending in β(Tci

)
intersects γ((t, ci)) and thus the guard on the incoming edge to ci. However, we also
introduce new subtrees which contain only a subset of the child-subtrees of t. Suppose
there was a subtree Tti

with in-edge e and a walk W starting and ending in β(Tti
),

containing vertices outside of β(Tti) and not intersecting γ(e). If W contains a vertex
of T − Tt, then we directly obtain a contradiction to (T, β, γ) being a proper directed
tree decomposition. Thus, W contains a vertex from β(Ttj

) for some j < i. But, then
W contains a subwalk W ′ from β(Ttj

) to β(Tti
) which intersects γ′(e) = Γ(t), a

contradiction to the topological ordering.

We can continue this construction within the subtrees of the children of t and in
subtrees not containing t. As we traverse the tree top-down, we can in each step use
the properties of the strong directed tree decomposition of the subtrees of the children
although we break this property during our construction. So, at this point we have
obtained a subcubic directed tree decomposition (T ′′, β′′, γ′′) of D of width k.

Step 2: leaf decomposition. By Lemma 4.1.3 we can turn (T ′′, β′′, γ′′) into a leaf
directed tree decomposition (T ′′′, β′′′, γ′′′) of width k. Due to Observation 4.1.4 this
only increases the degree of inner vertices with non-empty bags. Recall that we
established these to have in- and out-degree of one, thus the result is a subcubic leaf
directed tree decomposition of width k.

Step 3: leaves. Next, we achieve that the leaves have bags of size one. We use a
similar approach to before: replacing the current leaves by paths. Let t ∈ L(T ′′′) with
bag β′′′(t) = {v1, . . . , vℓ}. For each of these vertices vi we remove them from the bag
of t, i.e. β′(t) := ∅, and create a new vertex ci with β′(ci) := {vi}. We also introduce
new vertices t1, . . . , tℓ−1 with empty bags. Now, we add edges (t, t1) and (ti, ti+1) for
1 ≤ i < ℓ− 1. For each such edge e we set γ′(e) := Γ(t). Then, we attach the vertices
with non-empty bags as leaves of T ′ by adding the edges (ti, ci) for 1 ≤ i < ℓ − 1
and the edge (tℓ−1, cℓ) . Let ei be the in-edge to ci, then we define γ′(ei) := β′(ci).
By the same arguments as in the first step, the obtained decomposition still has all the
properties of a leaf directed tree decomposition.

So, after all three steps we obtain a leaf directed decomposition (T ′, β′, γ′) of width
k, in which all leaves have a bag of size one.

These manipulations allow us to prove an upper bound on the cyclewidth in terms of
directed treewidth.
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4 Digraphs of cyclewidth one

Theorem 4.1.8. For every digraph D holds

cyw(D) ≤ 2 (3dtw(D) + 2) .

Proof. Let k := dtw(D). Then, there is a directed tree decomposition of width k of D.
By Lemma 4.1.5, there is a strong directed tree decomposition of D of width at most
3k +2. Using Lemma 4.1.7, we can obtain a subcubic leaf directed tree decomposition
(T, β, γ) of D of width 3k + 2 from this in which every leaf has a bag of size one.

We use the underlying undirected graph of T and the function β, that is, (G(T ), β) ,
to obtain a cycle decomposition. By construction, we already know that β yields a
bijection between L(G(T )) and V (D).

First, we consider the cycle porosity of the cuts induced by the edges in G(T ). Let
e ∈ E(G(T )), and let X1 and X2 be the two shores of ∂(e), where X1 corresponds
to the subtree not containing the root of T. Consider a maximal family of pairwise
disjoint cycles C and let Y1 ⊆ V (C) ∩ X1 be the set of vertices of the cycles in C
incident to an edge of ∂(e) ∩ E(C). LetW be the set of nontrivial walks starting in
some v ∈ Y1 and going along the cycle in C that contains v through vertices of X2
until reaching a vertex w in X1 again. That is,W is the collection of all directed walks
Wv,w from a vertex v ∈ Y1 to a vertex w ∈ Y1 such that

1. Wv,w is a subwalk of some cycle in C, and

2. ∅ ̸= V (Wv,w) \ {v, w} ⊆ X2.

Note that the walks inW are not necessarily vertex disjoint as the paths may share
common endpoints in Y1. If two walks fromW intersect, then there is a cycle in C that
contains both walks, thus they intersect in at most two vertices. Also, every walk in
W contains exactly two edges from ∂(e) ∩ E(C). As γ(e) guards X1, it must contain
a vertex of every walk inW. By our observations above, every vertex of γ(e) can hit
at most two walks inW. Thus, cp(∂(e)) = 2|W| ≤ 4|γ(e)|.

What is left to be taken care of is that (G(T ), β) is not necessarily cubic, but might
still contain vertices of degree two. Note that those vertices are adjacent to two edges
inducing the same cut. We obtain T ′ from G(T ) by contracting one of these edges for
each such vertex. As L(T ′) = L(G(T )), β is still well-defined and (T ′, β) is a cycle
decomposition. Every cut has cycle porosity at most 4(3k + 2), thus the width of this
decomposition is 2(3k + 2).

There is also a lower bound on the cyclewidth in terms of directed treewidth. A
straightforward way to obtain such a bound it is to show that the cylindrical grid has
high cyclewidth. We call an edge set E ⊆ E(D) in a digraph D a balanced cut if no
strongly connected component of D − E contains more than 2

3 |V (D)| vertices.
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4.1 Relation to directed treewidth

Lemma 4.1.9. The cylindrical grid of order k has cyclewidth at least k/3.

Proof. Let D⟳
k be the cylindrical grid of order k and let (T, φ) be an optimal cycle

decomposition of D⟳
k .

First we show that T contains an edge inducing a balanced cut in D⟳
k . To this end,

direct every edge e of T such that it points in direction of the subtree T ′ ∈ T − e such
that |φ(T ′)| > |φ(T ′)|. If there is an edge that cannot be oriented this way, that is,
both sides contain exactly half the vertices, we found the balanced cut. Otherwise,
every edge can be directed and no two edges with a common vertex can point away
from each other. Additionally, all leaf edges point away from the leaf. So there has
to be a unique inner vertex v with only ingoing edges. Let e1, e2 and e3 be the edges
incident to v, and Ti the subtree of T − ei not containing v. Any two of these subtrees
contain together at least half of the leaves of T. If there is a subtree with less than one
third of the leaves of T, then the other two edges induce balanced cuts. Otherwise, all
three subtrees contain exactly one third of the leaves of T and all three edges induce
balanced cuts in D⟳

k .

Thus, we can choose e ∈ E(T ) such that ∂(e) is a balanced cut in D⟳
k . We consider

two cases: either each shore of ∂(e) contains one of the concentric cycles of D⟳
k or

one of its shores does not contain any of the concentric cycles of the grid completely.

In the case where each shore of ∂(e) contains one of the concentric cycles of
D⟳

k , we construct a cycle C that contains 2k edges of ∂(e). Let Cx and Cy be two
concentric cycles of D⟳

k completely contained in different shores of ∂(e) and assume
without loss of generality that x < y. Let Xi be the shore containing Cx and Xo be
the shore containing Cy.

We construct C by starting on a vertex of Cy where it intersects an in-path P i of D⟳
k .

Then, we walk along P i until meeting Cx and walk along Cx for one edge. There
we meet an out-path P o and walk along it until we intersect Cy again. Now, we walk
along Cy for one edge where it meets the next in-path. We repeat this until closing
C. This way we use all in- and out-paths of D⟳

k . Thus, there are 2k subpaths of C
crossing ∂(e) at least once. Therefore C contains at least 2k edges of ∂(e) as desired.
This implies that cp(∂(e)) ≥ 2k > 2

3 k, and therefore, (T, φ) has width more than k/3.

In the case that there is a shore of ∂(e) that does not contain any concentric cycle
of D⟳

k , the other shore of ∂(e) contains at most two third of the concentric cycles of
D⟳

k , as ∂(e) is balanced. Therefore, the remaining at least k
3 cycles of D⟳

k cross ∂(e).
Each of them meets ∂(e) in at least two edges and thus they build a family of disjoint
cycles witnessing that cp(∂(e)) ≥ 2

3 k, so (T, φ) has width at least k/3.

So, we obtain cyw(D⟳
k ) ≥ k

3 .
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4 Digraphs of cyclewidth one

Together with Theorem 4.1.1 this implies the following corollary.

Corollary 4.1.10. If a digraph D has the cylindrical grid of order k as a butterfly
minor, then its cyclewidth is at least k/3.

And thus we obtain the following.

Theorem 4.1.11. A class D of digraphs is a class of bounded directed treewidth if
and only if it is a class of bounded cyclewidth.

Proof. Let D be a class of digraphs. Suppose D has unbounded directed treewidth,
then for each n ∈ N there is a digraph D′

n ∈ D such that dtw(D′) ≥ n. By The-
orem 2.2.2, we can conclude that for every n ∈ N there is a digraph Dn ∈ D that
contains the cylindrical grid of order n as a butterfly minor. Therefore, cyw(Dn) ≥ n

3
by Lemma 4.1.9 and Theorem 4.1.1. Thus, D has also unbounded cyclewidth. Vice
versa, assume D is of bounded directed treewidth. Then, it also is of bounded cy-
clewidth due to Theorem 4.1.8.

Giannopoulou, Kreutzer and Wiederrecht obtained a polynomial bound using tech-
niques from matching theory.

Theorem 4.1.12 (Giannopoulou, Kreutzer and Wiederrecht [GKW21]). There is a
polynomial function f : N→ N such that dtw(D) ≤ f(cyw(D)) for all digraphs D.

We conjecture that the relation between cyclewidth and directed treewidth is linear
with an even tighter lower bound.

Conjecture 4.1.13. 1 For all digraphs D holds cyw(D)± 1 ≤ dtw(D) ≤ c · cyw(D)
for come constant c.

The relation between cyclewidth and directed treewidth established by Theorems 4.1.11
and 4.1.12 allows us to immediately defer a grid theorem for cyclewidth.

Corollary 4.1.14. There is a function f : N→ N such that every digraph D either
satisfies cyw(D) ≤ f(k), or contains the cylindrical grid of order k as a butterfly
minor.

1There is a, so far unpublished, proof for this by Nathan Bowler, Ann-Kathrin Elm, Florian Gut, Raphael
Jacobs, Marcel Koloschin, and Florian Reich.
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4.2 Digraphs and matchings

4.2 Digraphs and matchings

Before we compare cyclewidth to width measures on graphs with perfect matchings,
we explain how digraphs relate to graphs with perfect matchings at all.

There is a close connection between strongly connected digraphs and bipartite graphs
with perfect matchings. Every bipartite graph with a perfect matching corresponds to
a class of digraphs. This is because we can obtain a digraph for every perfect matching
in the bipartite graph, by contracting the matching edges and directing every remaining
edge from the vertex it has in the colour class V1 to the vertex it has in the colour class
V0. The following definition describes this formally.

Definition 4.2.1. Let B be a bipartite graph and let M ∈M(B) be a perfect matching
of B. The M -direction D(G, M) of G is defined by D(G, M)

V (D(G, M)) := M and
E(D(G, M)) := {(e, f) | e ̸= f,

uv ∈ E(G) for u ∈ e ∩ V1 and v ∈ f ∩ E(V0)}. ⊣

v2u2

v3

v4 v5

v6

u1v1
u3

u4 u5

u6

x1

x2

x3

x4 x5

x6

Figure 4.1: On the left we see a bipartite graph with a fixed matching M and on the
right the corresponding M -direction.

The direction of the edges is obtained by directing from the vertices in V1, which we
depict in figures as black vertices, to the vertices in V0, which we depict as white
vertices. See Figure 4.1 for an illustration of this definition.

The M -directions of a bipartite matching covered graph B inherit some properties of
B.
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4 Digraphs of cyclewidth one

Theorem 4.2.2 (McCuaig [McC00]). Let B and H be bipartite matching covered
graphs. Then, H is a matching minor of B if and only if there exist a perfect matchings
M in B and a perfect matching M ′ in H such that D(H, M ′) is a butterfly minor of
D(D, M).

4.2.1 Perfect matching width

While graphs with perfect matchings are also undirected graphs, and therefore, we
can use all tools and measures for undirected graphs to work with them, there exist
width measures that are specifically designed for the matching setting and describe
the matchings structure of the graph.

The perfect matching width is a width measure using perfect matchings in a graph. It
was originally introduced by Norin [Nor05] in the context of Pfaffian orientations. It
makes use of the matching porosity of edge cuts in the graph, which is similar to the
cycle porosity we use for cyclewidth. Let G be a graph and X ⊆ V (G). We define
the matching porosity of ∂(X) as

mp(∂(X)) mp(∂(X)) := max
M∈M(G)

|M ∩ ∂(X)| .

Definition 4.2.3 (Perfect Matching Width). Let G be graph. A perfect matching
decomposition of G is a tuple (T, δ) where T is a cubic tree and δ : L(T ) → V (G)
a bijection. The width of (T, δ) is given by maxe∈E(T ) mp(∂(e)) and the perfect
matching width of G is then defined as

pmw(G) pmw(G) := min
(T,δ) perfect matching

decomposition of G

max
e∈E(T )

mp(∂(e)) . ⊣

When considering the M -directions of a graph G with M ∈ M(G), every cycle
decomposition (T, φ) of D(G, M) can be interpreted as a decomposition of G where
φ is a bijection between L(T ) and the edges in M. Then, every edge in T induces a bi-
partition of V (G) into M -conformal sets. The next definition captures this observation
in terms of specific perfect matching decompositions.

Definition 4.2.4 (M -Perfect Matching Width). Let G be a graph with a perfect
matching M ∈ M(G). A perfect matching decomposition (T, δ) of G is an M -
perfect matching decomposition of G if for every inner edge e with (T1, T2) = T ⋉ e
we have δ(L(T1)) and δ(L(T2)) are M -conformal. Define S as the set of all M -perfect
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4.2 Digraphs and matchings

matching decompositions (T, δ) of G. The M -perfect matching width, pmwM , is
defined as

pmwM (G) := min
(T,δ)∈S

max
e∈E(T )

mp(∂(e)) . ⊣

The relation of these two width measures for graphs with perfect matchings is described
by the following theorem, which we prove later within this chapter.

Theorem 4.2.5. Let G be a graph with a perfect matching M. Then

pmw(G) ≤ pmwM (G) ≤ 2pmw(G) .

The M -alternating cycles of a bipartite graph B with perfect matching M correspond
to the directed cycles of D(B, M). Every M -alternating cycle becomes a directed
cycle in D(B, M), as the matching edges are contracted into vertices and the edges
directed from V1 to V0, an example for this is given in the upper part of Figure 4.2. This
yields the following relation between M -perfect matching width and cyclewidth.

Lemma 4.2.6. Let B be a bipartite and matching covered graph and M ∈ M(B).
Then, pmwM (B) = 2cyw(D(B, M)).

Proof. We prove the statement by proving both inequalities. For readability define
D := D(B, M). We refer the reader to Figure 4.2 for an illustration of the following
arguments by an example.

We first prove that pmwM (G) ≥ 2cyw(D). To this end assume pmwM (G) = k for
some k ∈ N. Then, there is a perfect matching decomposition (T, δ) of width k
such that all shores of the cuts induced by inner edges of T are M -conformal. In
particular, the leaves of T mapped by δ to two vertices matched by M share a neighbour.
We construct a cycle decomposition (T ′, φ) of D as follows. We start by defining
T ′ := T − L(T ). Note that V (T ′) ⊆ V (T ). Recall that matching edges become
vertices in D. For xy ∈M let txy be the common neighbour of φ−1(x) and φ−1(y).
We define φ(txy) := xy.

Suppose towards a contradiction that the obtained decomposition (T ′, φ) has an edge
e ∈ T ′ that induces a cut ∂D(X) of cycle porosity more than 2k and let C be a
family of directed cycles in D witnessing this. The cycles from C correspond to
M -alternating cycles C′ in G that also have more than 2k edges in the cut ∂B(X ′)
induced by e ∈ T. Since X ′ is M -conformal, none of the cut edges is from M, that
is, M ∩ (E(C′) ∩ ∂B(X ′)) = ∅. Let M ′ be the matching we obtain by switching M
along all the cycles in C′, that is, M ′ := (M \ E(C′)) ∪ (E(C′) \M) . Now, M ′ has
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Figure 4.2: We reuse the example from Figure 4.1. The upper part of the figure shows
how the alternating cycle v6u6u1u2u3v3v2v1 in B corresponds to the
directed cycle x6x2x3x1 inD(B, M). The lower part of the figures shows
these two cycles transferred to the corresponding decomposition. We
consider the cut induced by the edge crossed by the red line and we can
see that every orange edge in the alternating cycle in B remains a directed
edge in the cut in D(B, M).

at least 2k + 1 edges in ∂B(e) contradicting that (T, δ) has width k. Therefore (T ′, φ)
is a cycle decomposition of D of width at most k.

Next, we prove that pmwM (G) ≤ 2cyw(D). Let cyw(D) = k for some k ∈ N.
Then, there is a cycle decomposition (T, φ) of D of width k. We construct a perfect
matching decomposition (T ′, δ) of B as follows. Every leaf t in T is mapped to a vertex
corresponding to an edge in M, that is, φ(t) = txy with xy ∈M. We construct T ′ from
T by introducing two new vertices tx and ty, making them adjacent to txy, and defining
δ(tx) := x and δ(ty) := y. Formally, V (T ′) := V (T ) ∪ {tx, ty | txy ∈ L(T )} and
E(T ′) := E(T ) ∪ {txytx, txyty | txy ∈ L(T )}. All pairs of vertices that are matched
by M have a common neighbour in T ′, so the shores of the cuts induced by inner
edges of T ′ are M -conformal. Therefore, (T ′, δ) is indeed a M -perfect matching
decomposition.
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4.3 Matching decompositions

Suppose towards a contradiction that there is an edge e ∈ E(T ′) and a matching M ′

such that |M ′ ∩ ∂B(e)| > 2k. We consider the subgraph of B only containing edges
from M and M ′. As such, it only consists of disjoint cycles and independent edges.
Because none of the edges in M lie in ∂B(e), all edges of M ′ ∩ ∂B(e) lie on M -M ′-
alternating cycles. Therefore, there is a family of M -conformal cycles with more than
2k edges in ∂B(e). This corresponds to a family of directed cycles in D having more
than 2k edges in the cut induced by e in D. This yields a contradiction to (T, φ) having
width k. Therefore (T ′, δ) is a perfect matching decomposition of G of width k.

Corollary 4.2.7. Let B be a bipartite graph and M a perfect matching of B. Then

pmw(B)/2 ≤ cyw(D(B, M)) ≤ pmw(B) .

4.3 Matching decompositions

Having established these connections between the matching width measures and
cyclewidth we move our focus towards matching theory. In fact, in order to prove
Theorem 4.0.1, we can instead prove the following theorem. It characterises bipartite
matching covered graphs of low M -perfect matching width by braces, which is a
concept similar to blocks in undirected graphs and formally defined later on.

Theorem 4.3.1. Let B be a bipartite matching covered graph, then the following
statements are equivalent.

(1) pmwM (B) = 2 for an M ∈M(B),

(2) pmwM (B) = 2 for all M ∈M(B), and

(3) Every brace of B is either isomorphic to C4 or to K3,3.

Both graphs C4 and K3,3 have only one single digraph as an M -direction. All match-
ings in C4 are symmetric and yield the bidirected K2, also called digon, as an M -
direction, see Figure 4.3. For the K3,3 the unique directed graph obtained for every
matching is the bidirected K3, see Figure 4.4. Therefore, Theorem 4.3.1 implies our
main theorem.

Theorem 4.0.1. Let D be a digraph. Then, D has cyclewidth exactly one if and only
if every strongly 2-connected butterfly minor of D is isomorphic to the digon or the
bi-directed K3.
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a b

c d

Figure 4.3: The C4 with the matching M on the left and D(C4, M).

ba c

d e f

Figure 4.4: The K3,3 with a matching M on the left and D(K3,3, M).

In the remainder of this chapter we now purely consider the matching setting in order
to prove Theorem 4.3.1. First, we need to learn a bit more about perfect matching
decompositions and their structure.

We start by looking at the structure of the trees that are the base of the decompositions.
What properties can they have? How do these relate to properties of the decomposed
graph? Second, we consider the concept of tight cut contractions and show that the
M -perfect matching width cannot grow under this operation. Finally, we also consider
a generalisation of tight cuts and use it to learn about how the vertices of the two
colour classes of a bipartite graph can be distributed in a decomposition.

4.3.1 Cubic trees and spines

We establish some observations on the cubic trees that appear as the base structure of
perfect matching decompositions.

For a cubic tree T we define the spine of T by spine(T ) := T − L(T ). The edges
in E(T ) \ E(spine(T )) are called trivial. We say an edge e ∈ E(spine(T )) is even,
if the two trees of T ⋉ e each contain an even number of leaves of T, and it is odd
otherwise.
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4.3 Matching decompositions

We observe that the trees occurring in perfect matching decompositions have an even
number of leaves. This is because graphs with perfect matchings have an even number
of vertices. This implies that in such a tree T a nontrivial edge e is odd if and only if
it the two trees of T ⋉ e each contain an odd number of leaves of T. We make a few
observations on cubic trees with an even number of leaves.

Lemma 4.3.2. Let T be a cubic tree with |L(T )| = ℓ even. Then, the following
statements are true.

(C1) |V (T )| = 2ℓ− 2,

(C2) spine(T ) has an even number of vertices,

(C3) spine(T ) has an even number of vertices of degree 2, and

(C4) e ∈ E(spine(T )) is an odd edge of T if and only if the two trees of T ⋉ e
each contain an even number of vertices.

Proof. We use induction on the size of T. Split T by removing an inner edge e to
obtain (T1, T2) = T ⋉ e. As T has an even number of leaves either both T1 and T2
have an even number of leaves or both have an odd number of leaves.

In case both Ti have an odd number of leaves, for i ∈ {1, 2}, we obtain T ′
i from Ti by

adding an extra leaf adjacent to the endpoint of e being contained in Ti. This makes
T ′

i again a cubic tree with an even number ℓi of leaves. By induction T ′
i has 2ℓi − 2

vertices. Then, T has |V (T ′
1)| − 1 + |V (T ′

1)| − 1 = 2ℓ1 − 2 − 1 + 2ℓ2 − 2 − 1 =
2 (ℓ1 + ℓ2 − 2)− 2 = 2ℓ− 2 vertices. Thus, (C1) holds.

In case both Ti have an even number of leaves, for i ∈ {1, 2}, we obtain T ′
i from Ti

by trimming, that is, contracting one of the two edges in Ti adjacent to the endpoint of
e being contained in Ti. This makes T ′

i again a cubic tree with an even number ℓi of
leaves. By induction T ′

i has 2ℓi−2 vertices. Then, T has |V (T ′
1)|+1+ |V (T ′

1)|+1 =
2ℓ1 − 2 + 1 + 2ℓ2 − 2 + 1 = 2 (ℓ1 + ℓ2)− 2 = 2ℓ− 2 vertices. Thus, (C1) holds in
this case as well.

(C2) follows directly from (C1) and the number of leaves being even.

Every degree-2-vertex in spine(T ) is adjacent to exactly one leaf of T. All other vertices
are either adjacent to exactly two leaves or to no leaf at all. Thus, the other vertices
are adjacent to an even number of leaves. So the total number of leaves not sharing a
neighbour with another leaf is even as well. Thus, the number of degree-2-vertices is
even, yielding (C3).

Let e be an odd edge of T and (T1, T2) := T ⋉ e. For i ∈ {1, 2}, obtain T ′
i from Ti

by adding an extra leaf adjacent to the endpoint of e being contained in Ti. This makes
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T ′
i again a cubic tree with an even number of leaves. By (C2), this implies that it has

an even number of vertices. Thus Ti, having one less vertex, has an odd number of
vertices. This implies (C4).

If T is a cubic tree, then spine(T ) is a subcubic tree. There is a close correspondence
between the occurrences of odd edges in T and vertices of degree 2 in its spine.

Lemma 4.3.3. Let T be a cubic tree with an even number of leaves and v ∈ V (T ).
Then, the following statements hold.

(E1) If degspine(T )(v) = 1, then v is not incident to an odd edge of T.

(E2) If degspine(T )(v) = 2, then v is incident to exactly one odd edge of T.

(E3) If degspine(T )(v) = 3, then v is either incident to exactly two odd edges of T
or with none.

Proof. First, consider some v ∈ V (T ) \ L(T ) with degspine(T )(v) = 1. Then, as T is
cubic, v is adjacent to two leaves of T. Let e be the unique nontrivial edge v is incident
to. Then, one of the trees in T ⋉e has exactly two leaves, and the other has |V (G)|−2
leaves, which implies that e is not odd. So, v is incident to two trivial edges and one
even edge, which implies (E1).

Second, consider a vertex v ∈ V (T )\L(T ) with degspine(T )(v) = 2. So, there are two
edges e1, e2 ∈ E(spine(T )) that are incident to v. Thus, the third edge e3 incident
to v is trivial. So, the partitions of the leaves induced by e1 and e2 differ by exactly
one, and therefore, e1 is even if and only if e2 is odd. This implies that v is adjacent to
exactly one trivial, exactly one even and exactly one odd edge, which implies (E2).

Finally, consider a vertex v ∈ V (T ) \L(T ) with degspine(T )(v) = 3. So, no neighbour
of v is a leaf. Let e1, e2, e3 be the three edges incident to v. Removing v and e1, e2, e3
splits the remaining tree into three subtrees which contain all leaves of T. As there is
an even number of leaves, two of these trees contain an odd number of them and one
an even number. Therefore, v is incident to two odd edges and one even edge, again
implying (E3).

Corollary 4.3.4. Let T be a cubic tree with an even number of leaves. Then, spine(T )
is cubic if and only if T has no odd edges.

Additionally, the odd edges of a cubic tree T induce a subforest of spine(T ), the leaves
of which are exactly the degree-2-vertices of spine(T ). This subforest is in fact a
collection of paths, because no vertex of spine(T ) can be incident to three odd edges,
see Figure 4.5 for an example.
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Figure 4.5: An example for a cubic tree T with its spine and its odd edges.

Corollary 4.3.5. Let T be a cubic tree with an even number of leaves and EO ⊆ E(T )
the set of odd edges of T. Then, T [EO] is a collection of pairwise disjoint paths.
Moreover, the set of endpoints of these paths is exactly the set of degree-2-vertices in
spine(T ).

The following lemma shows that the odd edges of the tree underlying a perfect matching
decomposition influence the width of the decomposition.

Lemma 4.3.6. Let G be a graph with a perfect matching and X ⊆ V (G). Then,
mp(∂(X)) is odd if and only if |X| is odd.

Proof. Let M ∈M(G) be a perfect matching of G that maximises ∂(X) and define
k := |M ∩ ∂(X)|. Then, the graph G[X] − V (∂(X) ∩M) has a perfect matching,
and therefore an even number of vertices. Let n := |V (G[X]− V (∂(X) ∩M))|. So
in total |X| = n + k.

This implies that |X| ≡ k (mod 2). And thus, mp(∂(X)) = k is odd if and only if
|X| is odd.

Lemma 4.3.6 implies that the tree of every perfect matching decomposition (T, δ) of
odd width contains an odd edge. Additionally, from the proof of Lemma 4.3.6, we
obtain the following statement, which informally says that changing the position of a
single vertex within a decomposition barely changes its width.

Corollary 4.3.7. Let G be a graph with a perfect matching, X ⊆ V (G) and x ∈
V (G) \X. Then

mp(∂(X))− 1 ≤ mp(∂(X ∪ {x})) ≤ mp(∂(X)) + 1.

As parity is of high importance in the study of perfect matchings, it can be useful to
know and manipulate the occurrence of odd edges in the tree of a perfect matching
decomposition. Moreover, these insights now allow us to prove the relation between
M -perfect matching width and perfect matching width claimed previously.
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Theorem 4.2.5. Let G be a graph with a perfect matching M. Then

pmw(G) ≤ pmwM (G) ≤ 2pmw(G) .

Proof. Let G be a graph with a perfect matching M. The inequality pmw(G) ≤
pmwM (G) holds by definition.

So we have to prove that pmwM (G) ≤ 2pmw(G). Let (T, δ) be an optimal perfect
matching decomposition of G. We choose a set X that contains exactly one endpoint
of every edge in M. For every x ∈ X let M(x) be the vertex x is matched to by M,
that is, {x, M(x)} ∈M. We consider the subset X ′ ⊆ X that contains all vertices x
such that δ−1(x) and δ−1(M(x)) do not have a common neighbour in T.

Next, we build an M -perfect matching decomposition (T ′, δ′) of G. First, we define
T ′′ by

V (T ′′) := V (T ) \ {δ−1(M(x)) | x ∈ X ′} ∪ {tx, t′
x | x ∈ X ′}, and

E(T ′′) := {e ∈ E(T ) | e ⊆ V (T ′)} ∪
{δ−1(x) tx, δ−1(x) t′

x | x ∈ X ′},

where tx, t′
x are newly introduced vertices. Then, we obtain T ′ from T ′′ by trimming,

thus L(T ′) = L(T ′′). For δ′ we define δ′(tx) := x and δ′(t′
x) := M(x) for all x ∈ X ′,

this covers all leaves in L(T ′) \ V (T ). For all leaves t ∈ L(T ′) ∩ L(T ) we define
δ′(t) = δ(t).

Due to the trimming, T ′ is cubic and by definition every vertex of G is mapped to a leaf
of T ′ by δ′. The construction ensures that for all edges e = {u, v} ∈M the vertices
δ′−1(u) and δ′−1(v) have a common neighbour in T ′, thus (T ′, δ′) is an M -perfect
matching decomposition.

Next, we consider the width of (T ′, δ′) . The only new inner edges we construct in T ′

induce cuts with one shore being of size two and the two vertices in it being matched by
M. Thus the matching porosity of these cuts is 2 and the shores are both M -conformal.
Now consider one of the remaining inner edges e′ of T ′, it corresponds to an inner edge
e in T which induces an edge cut ∂(Xe). The matching M has at most pmw(G) many
edges in this cut, so we changed the position of at most pmw(G) vertices with respect
to this cut. Therefore, by Corollary 4.3.7, the cut ∂(Xe′) induced by e′ is at most
2pmw(G). Therefore the width of the obtained M -perfect matching decomposition is
at most 2pmw(G).

This yields the wanted inequality pmwM (G) ≤ 2pmw(G).
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4.3.2 Tight cut contractions

Edge cuts in graphs with perfect matchings are central to working with perfect matching
decompositions. Here we consider specifically the cuts that contain exactly one edge
from each perfect matching in the graph. We observe that these have specific and
useful properties and yield a specific kind of matching minor.

Let ∂G(X) be an edge cut in a graph G that has a perfect matching. The edge cut is
called tight if mp(∂G(X)) = 1, we also say that X induces a tight cut in this case. It
is called trivial if |X| = 1 or |X| = 1. Note that if mp(∂G(X)) = 1, then |X| is odd,
and thus, in particular, |∂G(X) ∩M | = 1 for all M ∈M(G).

Definition 4.3.8 (Tight cut contractions). If Z is the shore of a tight cut, we call the
operation of identifying Z into a single vertex vZ and deleting all resulting loops and
parallel edges a tight cut contraction, we write G/ (Z → vZ) and call the obtained
graph GZ . Note that G having a perfect matching implies that GZ has a perfect GZ

matching as well. If M is a perfect matching of G, then let e be the unique edge
in ∂G(Z) ∩ M with endpoints uZ ∈ Z and uZ ∈ Z. The matching M |GZ

:= M |GZ

(M ∩ E(GZ)) ∪ {uZvZ} is a perfect matching of GZ . ⊣

The matching covered graphs that do not contain any tight cuts yield the building blocks
of matching covered graphs. They are the matching analogue of blocks (maximal
2-connected components) in general graph theory. A matching covered graph without
nontrivial tight cuts is called a brace if it is bipartite and a brick otherwise. By
repeatedly choosing tight cuts and performing tight cut contractions in a graph one
obtains a list of bricks and braces. This is called a tight cut decomposition procedure
and any possible choice of a laminar family of tight cuts used for it is called a tight
cut decomposition of the graph. A well-known theorem by Lovász states that the list
of bricks and braces obtained by a tight cut decomposition procedure is always the
same, independent of the choice of the laminar family of tight cuts made. So, every
matching covered graph G has a uniquely defined list of bricks and braces, which we
also call the bricks and braces of G.

Theorem 4.3.9 (Lovász [Lov87]). Any two tight cut decomposition procedures of a
matching covered graph G yield the same list of bricks and braces.

Lucchesi et al. [LdM15] proved that tight cut contractions and therefore braces are
special cases of matching minors.
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Lemma 4.3.10 (Lucchesi et al. [LdM15]). Let B be a bipartite matching covered
graph and ∂(Z) a nontrivial tight cut in B. Then, the tight cut contractions of Z and
Z are matching minors of B.

Corollary 4.3.11 (Lucchesi et al. [LdM15]). If H is a brace of a bipartite matching
covered graph B, then H is a matching minor of B.

We show that the M -perfect matching width of a tight cut contraction cannot be larger
than the M -perfect matching width of the original graph. The main issue is where in
the reduced decomposition the leaf is added that is mapped to the contraction vertex
without increasing the width of the decomposition. The advantage of working with
M -perfect matching decompositions is that, because the two shores are M -conformal,
the cuts given by edges are even. The following lemma shows that this allows us
to determine a position for the leaf mapped to the contraction vertex obtaining a
decomposition of width at most the width of the original decomposition.

Lemma 4.3.12. Let G be a graph with a perfect matching and ∂(Z) a nontrivial
tight cut of G as well as GZ the tight cut contraction obtained by contracting Z into
the vertex vZ . For every X ⊆ V (G) of even size where |X ∩ Z| is odd we have
mp(∂GZ

((X \ Z) ∪ {vZ})) ≤ mp(∂G(X)).

Proof. Let X ⊆ V (G) be a set of even size with |X ∩ Z|. Suppose towards a con-
tradiction mp(∂GZ

((X \ Z) ∪ {vZ})) > mp(∂G(X)). Consider a perfect match-
ing M ∈ M(GZ) that witnesses the matching porosity of ∂GZ

((X \ Z) ∪ {vZ})
and let e ∈ M be the edge covering vZ . Let M+ be a perfect matching in G with
M+|GZ

= M. All edges of M \ {e} that lie in ∂GZ
((X \ Z) ∪ {vZ}) also lie in

∂G(X) ∩M+. Thus, we obtain mp(∂GZ
((X \ Z) ∪ {vZ})) = mp(∂G(X)) + 1.

By Lemma 4.3.6, ∂G(X) has even matching porosity. Therefore, the porosity of
∂GZ

((X \ Z)∪{vZ}) is odd. But due to |X ∩Z| being odd, | (X ∩ Z)∪{vZ}|must
be even, which yields a contradiction to Lemma 4.3.6.

The following concept formalises how Lemma 4.3.12 provides a position for the leaf
mapped to the contraction vertex of a tight cut contraction.

Definition 4.3.13 (Z-orientations). Let G be a graph with a perfect matching and
∂(Z) a nontrivial tight cut of G. For every perfect matching decomposition (T, δ)
of G we define the Z-orientation # »

TZ of T as the following orientation of the edges#  »
TZ

of T. For every edge t1t2 ∈ E(spine(T )), we define (t1, t2) ∈ E( # »

TZ) if and only
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if |δ(Tt2) ∩ Z| is odd. For every edge ℓt ∈ E(T ), where ℓ is a leaf of T, we define
(ℓ, t) ∈ E( # »

TZ).

Note that |Z| is odd for every tight cut ∂(Z). Thus, the Z-orientation of the edge t1t2
is well defined, see Figure 4.6 for an example. A vertex t ∈ V ( # »

TZ) with at least two
outgoing edges in # »

TZ is called an inconsistency. ⊣
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Figure 4.6: A matching covered graph G with a nontrivial tight cut ∂(Z), a perfect
matching M ∈M(G), and an M -perfect matching decomposition (T, δ)
of width four. The arrows in T are the edges forming the Z-orientation of
T, note that it is free of inconsistencies and has a unique sink s.

The idea behind this definition is that, with a Z-orientation that does not have any
inconsistencies, the orientation of the edges guides you to the position where the
contraction vertex can be placed. For general perfect matching decompositions this is
not necessarily the case, but we show that it works for M -perfect matching decompo-
sitions.

Lemma 4.3.14. Let G be a graph with a perfect matching, ∂(Z) a nontrivial tight cut
in G, M ∈M(G), and (T, δ) an M -perfect matching decomposition of G. Then, # »

TZ

is free of inconsistencies and has a unique sink that is adjacent to two leaves.

Proof. As ∂(Z) is tight, the perfect matching M has a unique edge xy in ∂(Z).
Without loss of generality assume that x ∈ Z. For every edge e in T the subtree of
T ⋉ e containing an odd number of leaves mapped to vertices of Z contains the leaf
mapped to x. Thus all inner edges of T are oriented towards the leaf mapped to x.

So consider the three edges e1, e2 and e3 incident to some vertex v ∈ V (T ) \ L(T ).
For exactly one of them the subtree of T ⋉ ei that does not contain v contains the
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leaf mapped to x. Thus, exactly one of them is oriented away from v unless this
edge is itself trivial and incident to the leaf mapped to x. Therefore, # »

TZ is free of
inconsistencies and the unique vertex of spine(T ) that is adjacent to the leaf mapped
to x is the only sink and adjacent to two leaves x and y.

Finally, we obtain that for every tight cut contraction there is an M -perfect matching
decomposition that does not have larger width than the optimal M -perfect matching
decomposition of the original graph.

Theorem 4.3.15. Let G be a graph with a perfect matching, ∂(Z) a nontrivial tight cut
in G, M ∈M(G), and (T, δ) an M -perfect matching decomposition of G of width k.
Moreover, let GZ be the matching covered graph obtained by the tight cut contraction
of Z into the vertex vZ . Then, there is an M |GZ

-perfect matching decomposition of
GZ of width at most k.

Proof. Let # »

TZ be the Z-orientation of T. By Lemma 4.3.14, # »

TZ has a unique sink s,
which is adjacent to two leaves ℓx and ℓy. These leaves are mapped to two vertices x
and y, δ(ℓx) = x and δ(ℓy) = y, where xy is the unique edge in M ∩ ∂(Z). Assume
without loss of generality that x ∈ Z and y ∈ Z.

We define an M |GZ
-perfect matching decomposition (T ′, δ′) as follows. First we

obtain a subtree T ′′ of T by deleting all leaves ℓ with δ(ℓ) ∈ Z \ {x}. Then, we obtain
T ′ from T ′′ by first removing leaves that are not leaves of T as long a possible and
then trimming. Note that every bipartition of L(T ′) induced by an inner edge in T ′ is
also induced by an edge in T. To obtain δ′ we define

δ′(t) :=
{︄

vZ , if δ(t) = x, and
δ(t), otherwise

for t ∈ L(T ′). The perfect matching M |GZ
of GZ contains all edges of M with both

endpoints in Z and the edge {y, vZ}, so, by construction, (T ′, δ′) is an M |GZ
-perfect

matching decomposition of GZ .

Next, consider the width of (T ′, δ′) . Let t1t2 ∈ E(T ′) be an inner edge and X ′
1

the shore of ∂GZ
(t1t2) containing vZ . Then, there is an edge e ∈ E(T ) such that

X1 is a shore of ∂G(e) and (X1 \ Z) ∪ {vZ} = X ′
1. As vZ ∈ X ′

1, by construction,
we have x ∈ X1. Additionally, we know that |X1| is even, because (T, δ) is an M -
perfect matching decomposition. So |X1 ∩ Z| is odd. By Lemma 4.3.12, we obtain
mp(∂GZ

(X ′
1)) = mp(∂GZ

((X1 \ Z) ∪ {vZ})) ≤ mp(∂G(X1)) ≤ k.

Thus, (T ′, δ′) is an M |GZ
-perfect matching decomposition of GZ of width at most

k.
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As bicontractions are a special case of tight cut contractions, we obtain the following
corollary. We need this in order to prove Theorem 4.3.1 later on.

Corollary 4.3.16. Let G be a graph with a perfect matching M and H a brick, brace
or a matching minor obtained by a series of bicontractions from an M -conformal
subgraph of G. Then, pmwM |H

(H) ≤ pmwM (G).

4.3.3 Imbalances of sets

In bipartite graphs a set does not have to contain as many vertices of one colour class
as of the other. In the context of matchings the difference and what neighbours these
vertices have inside of the set and outside are interesting as they influence how a
matching interacts with the set. Thus, we introduce the following definition.

Definition 4.3.17. Let B be a bipartite graph, and X ⊆ V (G). If |X∩V1| = |X∩V0|
we say that X is balanced, otherwise it is unbalanced.

If X is unbalanced, then there are i, j ∈ {1, 2}, and k ∈ N such that |X ∩ Vi| =
|X ∩ Vj |+ k. In this case we call Maj(X) := X ∩ Vi the majority of X, and we call
Min(X) := X ∩ Vj the minority of X. We say that k is the imbalance of X.

In general we define

imbalance(X) :=
{︄

0, if X is balanced, or
k, if the imbalance of X is k.

We can make the following observation on the relation between the parity of X and
its imbalance.

Observation 4.3.18. Let B be a bipartite graph, and X ⊆ V (G). Then,

|X| ≡ imbalance(X) (mod 2).

We aim to prove that the vertices of the minority in a cut induced by the edge of a
width-2-matching decomposition of a brace cannot have neighbours on the other side
of the cut.

Lemma 4.3.19. Let B be a brace with pmw(B) = 2 and (T, δ) be an optimal
perfect matching decomposition of B. If X is a shore of ∂B(e) for an edge e ∈
E(spine(spine(T ))), then no vertex of the minority of X has a neighbour in X.
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There is an equivalent way of looking at braces via the extendability of matchings.
Let G be a graph with a perfect matching and F ⊆ E(G) a matching. We say that F
is extendable if there exists M ∈M(G) such that F ⊆M. For any positive integer
k ∈ N, G is k-extendable if it is connected, has at least 2k + 2 vertices, and every
matching of size k in G is extendable. The following statement by Lovász and Plummer
shows that all braces except C4 are 2-extendable.

Theorem 4.3.20 (Lovász and Plummer [LP09]). A bipartite graph B is a brace if and
only if it is either isomorphic to C4, or it is 2-extendable.

We consider the imbalance of sets in the context of k-extendable graphs, which we do
in the following subsection and then apply it to braces in Subsection 4.3.5.

4.3.4 Imbalance and spines in k-extendable bipartite graphs

We consider the case of k-extendable bipartite graphs in this subsection. Later on we
only make use of the case k = 2 in order to prove Lemma 4.3.19. Plummer proves
that Theorem 4.3.20 generalises to k-extendable graphs.

Theorem 4.3.21 (Plummer [Plu86]). Let B be a bipartite graph and k ∈ N a positive
integer. The following statements are equivalent.

1. B is k-extendable.

2. |V1| = |V0|, and for all non-empty S ⊆ V1 with |S| ≤ |V1| − k we have
|NB(S)| ≥ |S|+ k.

3. For all sets S1 ⊆ V1 and S2 ⊆ V0 with |S1| = |S2| ≤ k the graph B−S1−S2
has a perfect matching.

He also proved the two following properties of k-extendable graphs.

Theorem 4.3.22 (Plummer [Plu80]). Let k ∈ N be a positive integer. Then, every
k-extendable graph is also (k − 1)-extendable.

Theorem 4.3.23 (Plummer [Plu80]). Let k ∈ N be a positive integer. Then, every
k-extendable graph is (k + 1)-connected.
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4.3 Matching decompositions

Especially the latter is useful when working with the matching porosity of cuts. In
order to see why, we make use of the following well known theorem proving that the
vertex cover number and the size of a maximum matching coincide in bipartite graphs.
This property was discovered by Kőnig [Kő31] and Egerváry [Ege31] independently
in 1931 (see for example [LP09]).

Theorem 4.3.24 (Kőnig’s Theorem). If B is a bipartite graph, then τ(B) = ν(B).

Using this and Plummer’s result we can establish that in bipartite k-extendable graphs
no cut of small porosity can have two large shores. To this end we define for every
graph G and cut ∂G(X) in G the graph G[∂G(X)] as the subgraph of G induced by G[∂G(X)]
all the edges in ∂G(X).

Lemma 4.3.25. Let k ∈ N and B be a bipartite k-extendable graph and X ⊆ V (B),
then one of the following holds for every k′ ≤ k:

1. ν(B[∂B(X)]) > k′,

2. |X| ≤ k′, or

3. |X| ≤ k′.

Proof. We assume ν(B[∂B(X)]) ≤ k′. As B is bipartite, the graph B[∂B(X)] is
as well. By Theorem 4.3.24, we thus obtain τ(B[∂B(X)]) = ν(B[∂B(X)]) ≤ k′.
So there is a set of vertices S of size at most k′ hitting all edges crossing ∂B(X).
This means S is a separator of size at most k′ in B separating X \ S from X \ S.
By Theorem 4.3.23, B is k + 1-connected, therefore X ⊆ S and thus |X| ≤ k′, or
X ⊆ S and thus |X| ≤ k′.

We establish a connection between the matching porosity of a cut and its imbalance in
k-extendable bipartite graphs.

Lemma 4.3.26. Let k ∈ N be a positive integer, B be a k-extendable and bipartite
graph, and X ⊆ V (G) such that mp(∂B(X)) = k and k + 2 ≤ |X| ≤ |V (B)| −
(k + 2) . Then, imbalance(X) = k.

Proof. We start by observing that every perfect matching of B has at most |Min(X)|
many edges matching two vertices of X. Thus, the matching porosity of ∂B(X)
yields an upper bound on the imbalance of X, that is, k = mp(∂B(X)) ≥ |X| −
2|Min(X)| = imbalance(X). By Lemma 4.3.6 and Observation 4.3.18, we know that
k ≡ |X| ≡ imbalance(X) (mod 2).
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4 Digraphs of cyclewidth one

Suppose towards a contradiction that k′ := imbalance(X) ≤ k − 2. Additionally, we
may assume without loss of generality that Maj(X) ⊆ V0. We split B[∂B(X)] into
the following two subgraphs.

B1 := B[Min(X) ∪ (V0 \Maj(X))] , and
B2 := B[(V1 \Min(X)) ∪Maj(X)] .

We have B1 ∪B2 = B[∂B(X)] .

Suppose ν(B1) ≥ k−k′

2 + 1, then there is a matching F of size k−k′

2 + 1 in B1. As
|F | = k−k′

2 + 1 ≤ k and B is k-extendable, there is a perfect matching MF of B

with F ⊆MF . Due to mp(∂B(X)) = k, at most k−
(︂

k−k′

2 + 1
)︂

= k+k′

2 − 1 edges
of MF ∩ ∂B(X) have an endpoint in Maj(X). Thus we obtain

|Maj(X) \ V (MF ∩ ∂B(X))| ≥ |Maj(X)| −
(︃

k + k′

2 − 1
)︃

= |Maj(X)| − k

2 −
k′

2 + 1

= |Min(X)|+ k′ − k

2 −
k′

2 + 1

> |Min(X)| − k − k′

2 − 1

≥ |Min(X) \ V (MF ∩ ∂B(X))| .

Therefore, imbalance(X \ V (MF ∩ ∂B(X))) ≥ 1, contradicting MF being a perfect
matching. Thus, ν(B1) ≤ k−k′

2 . With similar arguments ν(B2) ≥ k+k′

2 + 1 yields a
contradiction. Thus, ν(B2) ≤ k+k′

2 . It follows that

ν(B[∂B(X)]) = ν(B1) + ν(B2) ≤ k − k′

2 + k + k′

2 = k.

Together with k + 2 ≤ |X| ≤ |V (B)| − (k + 2) , this contradicts Lemma 4.3.25.
Thus, we obtain that imbalance(X) = k.

Next, we show that decompositions with the special structure of the spine of the spine
of the decomposition tree being a path have the following property. The edges of this
path having matching porosity exactly k induce shores that have imbalance k and the
neighbourhood of the minority of these shores is completely contained in the shore.
So the shores have a kind of closure property when it comes to the minority: no vertex
of the minority has neighbours outside the shore.
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4.3 Matching decompositions

Theorem 4.3.27. Let k ≥ 2 be an integer and B be a k-extendable bipartite graph
with a perfect matching decomposition (T, δ) of width k such that spine(spine(T ))
is a path. Then, for all e ∈ spine(spine(T )) with mp(∂B(e)) = k, every shore X of
∂B(e) satisfies

1. imbalance(X) = k, and

2. NB(Min(X)) ⊆ X.

Proof. We first consider how the colour classes can be distributed in the shores of two
cuts X and Y corresponding to two adjacent edges in the path spine(spine(T )) such
that X ⊆ Y. We claim that X and Y differ by exactly one vertex from each colour
class.

Claim 1. If |V (B)| ≥ 2k + 4 and e1, e2 two adjacent edges of spine(spine(T )) such
that the cut ∂B(e1) has a shore X1 and the cut ∂B(e2) has a shore X2 with X1 ⊆ X2
and mp(∂B(X1)) = mp(∂B(X2)) = k. Then, we have |X1 ∩ Vi| + 1 = |X2 ∩ Vi|
for both i ∈ {0, 1}. See Figure 4.7 for an illustration.

. . . . . .
e1 e2

X1

X2

Figure 4.7: There are exactly two vertices in X2 \X1 and they come from different
colour classes of B.

Proof. Lemma 4.3.6 and spine(spine(T )) being a path together imply |X2|−|X1| = 2.
Suppose towards a contradiction that both vertices in X2 \ X1 are from the same
colour class, without loss of generality say V1, that is, |X1∩V1|+ 2 = |X2∩V1|. Due
to mp(∂B(X2)) = k we know |X1| ≥ k + 2 and |X2| ≥ k + 2. So, by Lemma 4.3.26,
we have imbalance(X1) = mp(∂B(X1)) = k, or |X1| = k for X1 and we have
imbalance(X2) = mp(∂B(X2)) = k, or |X2| = k.

115



4 Digraphs of cyclewidth one

If |X1| = k and |X2| = k, then |V (B)| = |X1| + 2 + |X2| = 2k + 2, which
contradicts |V (B)| ≥ 2k+4. So we have imbalance(X1) = k or imbalance(X2) = k.
Suppose only one of them holds, so without loss of generality consider the case that
imbalance(X1) ≤ k − 2 and imbalance(X2) = k. This implies that Maj(X1) ⊆ V1
and Maj(X2) ⊆ V1. We split B[∂B(X2)] into the two subgraphs

B1 := B
[︁
Maj(X2) ∪Maj

(︁
X2
)︁]︁

and
B2 := B

[︁
Min(X2) ∪Min

(︁
X2
)︁]︁

.

We have B1 ∪B2 = B[∂B(X2)] , and B1 and B2 are disjoint. Due to |X1| = k and
imbalance(X1) ≤ k−2, we know |Min(X2)| = |Min(X1)| = 2 and thus, ν(B2) ≤ 2.

Suppose ν(B1) ≥ k, that is, there is a matching F of size k in B1. By Theorem 4.3.22,
B has a perfect matching MF containing F. The set X1 \ V (F ) contains two vertices
of V0 and no vertex of V1. So MF maps both these vertices to vertices in X2. Thus,
|MF ∩ ∂B(X2)| = |X2| = k + 2, which contradicts mp(∂B(X2)) = k. Therefore,
we have ν(B1) ≤ k − 1.

Similarly, suppose there is a matching F of size two in B2. Then, by Theorem 4.3.22,
B has a perfect matching MF containing F. The set X2 \ V (F ) contains k vertices
of V1 and no vertex of V0. So MF maps all these k vertices to vertices in X2. Thus,
|MF ∩ ∂B(X2)| = |X2| = k + 2, which contradicts mp(∂B(X2)) = k. Therefore,
we have ν(B2) ≤ 1.

So we obtain ν(B[∂B(X2)]) = ν(B1)+ν(B2) ≤ k, which together with |X2| ≥ k+2
and |X2| ≥ k + 2 contradicts Lemma 4.3.25.

Thus, we know that imbalance(X1) = imbalance(X2) = k. But this contradicts
that the two vertices in X2 \ X1 come from the same colour class. So, we obtain
|X1 ∩ Vi|+ 1 = |X2 ∩ Vi| for both i ∈ {0, 1}.

We define P := spine(spine(T )) with the two endpoints p◁ and p▷. We order the edges
(e1, . . . , eℓ) of P by occurrence along P when traversing it from p◁ to p▷. Next, we
show that P contains two edges that induce a cut with one shore building a star with
k + 1 leaves.

Claim 2. The tree T contains edges e◁ and e▷ such that for ⋄ ∈ {◁, ▷} the cut ∂B(e⋄)
has a shore X⋄ of size k + 2 satisfying the following conditions.

(i) e◁ = e▷ if and only if |V (B)| = 2k + 4,

(ii) X◁ ∩X▷ = ∅,

(iii) if Maj(X◁) ⊆ Vi, then Min(X▷) ⊆ V|1−i| for i ∈ {0, 1}, and
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4.3 Matching decompositions

(iv) B[X⋄] is a star such that its central vertex has no neighbour in X⋄ for both
⋄ ∈ {◁, ▷}.

Proof. Choose j minimal with mp(∂B(ej)) = k. Let T◁ be the subtree in T ⋉ ej that
contains p◁ and X ′

◁ := δ(T◁).

Consider the size of X ′
◁. Due to Lemma 4.3.6, we can defer |X ′

◁| ̸= k + 1. Sup-
pose towards a contradiction that |X ′

◁| ≥ k + 2. By Lemma 4.3.26, this implies
imbalance(X ′

◁) = k. Consider the shore X ′′
◁ of ∂B(ej−1) with X ′′

◁ ⊆ X ′
◁. By mini-

mality of j, we know that mp(∂B(ej−1)) ≤ k−1, and thus, imbalance(X ′′
◁ ) ≤ k−1.

By |X ′
◁| − |X ′′

◁ | ≤ 2, we know that |X ′′
◁ | ≥ k, and by mp(∂B(X ′

◁)) = k, we obtain
|X ′′

◁ | ≥ k as well. By Lemma 4.3.25, this implies that ∂B(X ′′
◁ ) contains a matching

F of size k. As B is k-extendable there is a perfect matching MF of B containing F.
This yields a contradiction to mp(∂B(X ′′

◁ )) ≤ k − 1. Thus, |X ′
◁| = k.

We define e◁ := ej+1 and additionally X◁ to be the shore of ∂B(e◁) containing X ′
◁.

By Lemma 4.3.6, we obtain |X◁| = k + 2 as desired. Moreover, mp(∂B(X◁)) =
k = imbalance(X ′

◁) = imbalance(X◁). Thus, by Claim 1, | (X◁ \X ′
◁) ∩ V1| =

| (X◁ \X ′
◁) ∩ V0| = 1. We know that X◁ ⊆ Vi for some i ∈ {0, 1}, because

imbalance(X◁) = |X◁|, so let us assume that i = 1 without loss of generality.
Together with mp(∂B(X◁)) = k, this implies that the only vertex w of V0 in X◁

has no neighbours in X◁. As B is (k + 1)-connected, by Theorem 4.3.23, NB(w) =
X◁ \ {w}. Hence, B[X◁] forms the desired star.

Now, choose j′ maximal with mp(∂B(ej′)) = k. Let T▷ be the subtree in T ⋉ ej′ that
contains p▷ and X ′

▷ := δ(T▷). Also, we define e▷ := ej′−1 and X▷ to be the shore of
∂B(e▷) disjoint from X◁. This ensures that X◁∩X▷ = ∅. By symmetric arguments to
the above we obtain |X ′

▷| = k and |X▷| = k + 2. Additionally, mp(∂B(X▷)) = k =
imbalance(X ′

▷) = imbalance(X▷) and X◁ ⊆ Vi for some i ∈ {0, 1}. Due to Claim 1,
the decomposition gains a vertex from each colour class with every edge of matching
porosity k. By Lemma 4.3.25, the edges along P lying between e◁ and e▷ all have
matching porosity k. Thus, X▷ ⊆ V0, as |V0| = |V1|. So, B[X▷] forms the desired
star with the centre vertex b being from V1.

Finally, X◁ ∩X▷ = ∅ implies that e◁ = e▷ if and only if X◁ ∪X▷ = V (B), that is,
|V (B)| = 2k + 4, because |X◁| = |X▷| = k + 2.

Using the edges found in Claim 2 and the subpath P ′ of P starting with e◁ and ending
with e▷ we now conclude the proof.

If |V (B)| = 2k + 4, then, by Claim 2, e◁ = e▷ and these are the only edges inducing
cuts of matching porosity k, thus the statement holds.
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4 Digraphs of cyclewidth one

So, assume that |V (B)| ≥ 2k+6 and e◁ ̸= e▷. We prove the statement for the shores of
any edge ei lying between e◁ and e▷ assuming that the shores of the adjacent edge ei−1
fulfil the statement, that is, assuming imbalance(Xei−1) = k and NB(Min(Xei−1)) ⊆
Xei−1 . Let us assume without loss of generality that Min(Xei) ⊆ V1. By Claim 1, we
know that imbalance(Xei) = imbalance(Xei−1) = k and there is a unique vertex a

in
(︁
Xei
\Xei−1

)︁
∩ V1. Suppose a has a neighbour b in Xei

. Then, there is a perfect
matching M of B containing ab and M∩∂B(Xei

) contains at least k+2 edges, because
Claim 1 implies Min(Xei−1) ⊆ V1, a contradiction. Thus, NB(Min(Xei

)) ⊆ Xei

and we are done.

4.3.5 Application to braces of perfect matching width 2

We now apply Theorem 4.3.27 to the braces of perfect matching width two. In order
to do so we need to first show that the decompositions of such braces indeed have the
property that the spine of the spine is always a path. We start by considering the spine
and proving that it is cubic. This holds for bricks as well as for braces.

Lemma 4.3.28. Let G be a brick or brace of perfect matching width two and (T, δ)
be an optimal perfect matching decomposition. Then, spine(T ) is cubic.

Proof. By Corollary 4.3.4, spine(T ) is cubic if and only if T does not have any odd
edges. Suppose there is an odd edge e = t1t2 ∈ E(T ) and (T1, T2) := T ⋉ e. Then,
both shores X1 := δ(T1) and X2 := δ(T2) contain an odd number of vertices. So, by
Lemma 4.3.6, the matching porosity of X1 is odd as well, that is, mp(∂G(X1)) is odd.
Due to (T, δ) having width 2, this implies mp(∂G(X1)) = 1. But e is an edge of the
spine, so |X1| ≥ 3 as well as |X2| ≥ 3. This makes ∂G(X1) a nontrivial tight-cut in
G, contradicting G being a brick or brace.

Using this we can prove that the spine of the spine of the decomposition tree of every
brace is always a path, which allows us to apply Theorem 4.3.27.

Lemma 4.3.29. Let B be a brace of perfect matching width two and (T, δ) a perfect
matching decomposition of minimum width for B. Then, spine(spine(T )) is a path.

Proof. Suppose towards a contradiction spine(spine(T )) contains a vertex t with
three neighbours t1, t2 and t3. By Lemma 4.3.28, we know spine(T ) is cubic. As
t1, t2, t3 ∈ V (spine(spine(T ))) and the spine of T is cubic, we obtain that the degree
of ti is again exactly 3 in spine(T ) for all i ∈ {1, 2, 3}. This implies that every ti

again has two neighbours other than t in spine(T ), which are not leaves, because
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ti ∈ V (spine(spine(T ))). These neighbours of ti again, due to spine(T ) being cubic,
have two neighbours other than ti. So, if we consider Ti to be the tree of T ⋉ tti that
contains ti and Xi := δ(T ), then |Xi| ≥ 4. By Corollary 4.3.4, the tree T does not
contain odd edges. So additionally, we obtain mp(∂B(Xi)) = 2. Thus, Lemma 4.3.26
implies imbalance(Xi) = 2.

So every Xi has a majority in one of the colour classes. If this was always the same
colour class, then we would obtain that the whole brace B has an imbalance of 6,
a contradiction. Thus, exactly two of them have their majority in the same colour
class, let us assume without loss of generality that Maj(X1), Maj(X2) ⊆ V1 and
Maj(X3) ⊆ V0. But then, we still obtain |V1| = |V0|+ 2, so the whole brace has an
imbalance of 2, which still yields a contradiction.

Thus, no such vertex can exist and spine(spine(T )) is a path.

Figure 4.8: The linear structure of a perfect matching decomposition of width 2 with a
claw on each side and two vertices from different colour classes added with
each step. The black vertices in the figure represent the leaves mapped
to a vertex from V1 and the white vertices represent the leaves mapped to
vertices from V0.

Finally, Theorem 4.3.27 and Lemma 4.3.29 together imply our desired result and that
every width-2-perfect matching decomposition of a brace looks as depicted in the
example in Figure 4.8.

Lemma 4.3.19. Let B be a brace with pmw(B) = 2 and (T, δ) be an optimal
perfect matching decomposition of B. If X is a shore of ∂B(e) for an edge e ∈
E(spine(spine(T ))), then no vertex of the minority of X has a neighbour in X.
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4.4 Graphs of M -perfect matching width 2

Now, we have gathered everything we need to prove the following characterisation of
braces with M -perfect matching width two. From the braces we can then obtain a
characterisation for all bipartite graphs with a perfect matching of M -perfect matching
width two, which, as observed in Section 4.3, implies Theorem 4.0.1.

Theorem 4.4.1. Let B be a brace, then the following statements are equivalent.

(1) pmwM (B) = 2 for an M ∈M(B),

(2) pmwM (B) = 2 for all M ∈M(B), and

(3) B is isomorphic to C4 or K3,3.

Proof. Clearly, (2) implies (1). So, we start by proving that (1) implies (3). To this end,
assume (1) holds, that is, there is a perfect matching M in B such that pmwM (B) = 2.
By Theorem 4.2.5 and because B is a brace, pmw(B) = 2. So, there is an M -perfect
matching decomposition (T, δ) of width two of B which is an optimal perfect matching
decomposition as well.

Suppose towards a contradiction that |V (B)| ≥ 8. By Claim 2, there is an edge
e ∈ E(spine(spine(T ))) with ∂B(e) having a shore X of size four such that B[X]
is a claw. Using Lemma 4.3.19, we obtain that imbalance(X) = 2 and therefore
X is not M -conformal. This contradicts the definition of an M -perfect matching
decomposition as e is an inner edge of T.

Thus, |V (B)| ≤ 6. On six vertices there are exactly two braces: C4 and K3,3, which
yields (3).

Finally we prove that (3) implies (2). So, assume (3) holds. We consider C4 and K3,3
as separate cases.

a b

c d

t
t1

a

t2

b

t′ t′
1

c

t′
2

d

Figure 4.9: The C4 with the matching M on the left and its M -perfect matching
decomposition (T, δ) of width 2 on the right.
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We start with the case that B ∼= C4. Let M be a perfect matching in C4. Note that
the two possible matchings in C4 are symmetric, thus we can assume without loss
of generality that V (C4) = {a, b, c, d} and M = {ab, cd}. We construct an M -
perfect matching decomposition (T, δ) for C4. The tree T is defined by V (T ) :=
{t, t′, t1, t2, t′

1, t′
2} and E(T ) := {tt′, tt1, tt2, t′t′

1, t′t′
2}. For δ we define δ(t1) := a,

δ(t2) := b, δ(t′
1) := c and δ(t′

2) := d, also see Figure 4.9 for an illustration. Note that
(T, δ) is indeed an M -perfect matching decomposition of C4. Also its width is two as
the matching porosity of every cut induced by an edge of T is either one or two.

ba c

d e f

t

t1

t1
1

a

t2
1

d

t2

t1
2

b

t2
2

e

t3
t1
3

c

t2
3

f

Figure 4.10: The K3,3 with the matching M on the left and its M -perfect matching
decomposition (T, δ) of width 2 on the right.

Next, we consider the case that B ∼= K3,3. We again start by choosing a perfect
matching M in K3,3 and, noticing that all matchings in K3,3 are symmetric, we can
assume without loss of generality that V1 = {a, b, c}, V0 = {d, e, f}, and M =
{ad, be, cf}. We construct an M -perfect matching decomposition (T, δ) for K3,3 as
follows. The cubic tree T is given by

V (T ) := {t} ∪ {ti, t1
i , t2

i | 1 ≤ i ≤ 3}, and
E(T ) := {tti | 1 ≤ i ≤ 3} ∪ {tit

1
i , tit

2
i | 1 ≤ i ≤ 3}.

Then, we map the vertices of K3,3 to the leaves of T by defining δ(t1
1) := a, δ(t2

1) := d,
δ(t1

2) := b, δ(t2
2) := e, δ(t1

3) := c, and δ(t2
3) := f. See Figure 4.10 for an illustration.

Note that (T, δ) is indeed an M -perfect matching decomposition of K3,3. Also its
width is two as the matching porosity of every cut induced by an edge of T is either
one or two.

So, (2) holds, which finishes the proof.
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We now obtain the general characterisation of bipartite graphs with a perfect matching
of M -perfect matching width two.

Theorem 4.3.1. Let B be a bipartite matching covered graph, then the following
statements are equivalent.

(1) pmwM (B) = 2 for an M ∈M(B),

(2) pmwM (B) = 2 for all M ∈M(B), and

(3) Every brace of B is either isomorphic to C4 or to K3,3.

Proof. By Theorem 4.3.9, all maximal families of pairwise laminar nontrivial tight
cuts in B have the same size. Let C be a maximal family of pairwise laminar tight cuts
in B. We prove the statement by induction over |C|. In case that |C| = 0, B is a brace
and thus, the statement follows from Theorem 4.4.1.

So assume that |C| ≥ 1. Thus, there is a nontrivial tight cut ∂B(Z) in C. Let BZ :=
B/ (Z → vZ) , and BZ

:= B/
(︁
Z → vZ

)︁
be the two tight cut contractions.

Clearly, (2) implies (1).

We prove that (1) implies (3). Assume (1) holds, that is, pmwM (B) = 2 for some M ∈
M(B). By Corollary 4.3.16, we obtain pmwM |BZ

(BZ) = 2 = pmwM |B
Z

(BZ).
Using the induction hypothesis we obtain that all braces of BZ and BZ are isomorphic
to C4 or K3,3. As every brace of B is a brace of BZ or BZ , this implies (3).

Next, we prove that (3) implies (2). Assume (3) holds, that is, all braces of B are
isomorphic to C4 or K3,3. Choose an M ∈ M(B) arbitrarily. Let mZ ∈ M |BZ

be
the matching edge covering vZ in BZ and let uZ be its other endpoint. Similarly, let
mZ ∈M |B

Z
the matching edge covering vZ in BZ and let uZ be its other endpoint,

that is, M =
(︂(︂

M |BZ
∪M ′|B

Z

)︂
\ {mZ , mZ}

)︂
∪ {uZuZ}.

By induction hypothesis, pmwM |BZ
(BZ) = 2 = pmwM |B

Z

(BZ). Thus, there is
an M |BZ

-perfect matching decomposition (TZ , δZ) of BZ and an M |B
Z

-perfect
matching decomposition

(︁
TZ , δZ

)︁
of BZ , both of width two. Let tZ be the vertex of

TZ , that is, the common neighbour of the two leaves δ−1
Z (vZ) and δ−1

Z (uZ). Similarly,
let tZ be the vertex of TZ that is, a common neighbour of δ−1

Z
(vZ) and δ−1

Z
(uZ).

Now, we construct an M -perfect matching decomposition of B. We first obtain a tree
T ′

Z from TZ by removing the two leaves δ−1
Z (vZ) and δ−1

Z (uZ). And from TZ we
obtain T ′

Z
by removing δ−1

Z
(vZ) and δ−1

Z
(uZ). Then, from TZ and T ′

Z
we obtain a tree

T ′ by identifying tZ and tZ into a single vertex t and adding a new vertex t′ as well as
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4.5 Conclusion

the edge tt′. From T ′ we obtain T ′′ by adding two new leaves t1 and t2 attached by
the edges t′t1 and t′t2. The obtained tree T is cubic and has as many leaves as B has
vertices. Finally, we define

δ(d) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δZ(d), if d ∈ L(TZ) \ {δ−1

Z (vZ)},
δZ(d), if d ∈ L(TZ) \ {δ−1

Z
(vZ)},

uZ , if d = t1, and
uZ , if d = t2.

This way we obtain an M -perfect matching decomposition (T, δ) of B.

Let e be an inner edge of T. Then, either e = tt′, or e is also an inner edge of TZ or
TZ . If e = tt′, then one of the shores of ∂B(e) is {uZ , uZ} and thus mp(∂B(e)) = 1.

If e is an inner edge of TX for X ∈ {Z, Z}, then mp(∂BX
(e)) = 1 and thus, due to

∂B(Z) being a tight cut, we also obtain mp(∂B(e)) = 1. Therefore, (T, δ) is of width
2, which implies pmwM (B) = 2 yielding (2). Which finishes the proof.

4.5 Conclusion

So in the end we proved the characterisation of bipartite matching covered graphs with
M -perfect matching width two.

Theorem 4.3.1. Let B be a bipartite matching covered graph, then the following
statements are equivalent.

(1) pmwM (B) = 2 for an M ∈M(B),

(2) pmwM (B) = 2 for all M ∈M(B), and

(3) Every brace of B is either isomorphic to C4 or to K3,3.

As we discussed earlier every matching in C4 yields the digon as M -direction and every
matching in K3,3 yields the bidirected K3 as M -direction. Therefore, Theorem 4.3.1
implies our main theorem.

Theorem 4.0.1. Let D be a digraph. Then, D has cyclewidth exactly one if and only
if every strongly 2-connected butterfly minor of D is isomorphic to the digon or the
bi-directed K3.

A natural next step is to ask for characterisations of classes of graphs of cyclewidth
two or three. One could also look for other more traditional characterisations of the
graphs of cyclewidth one, for example by forbidden butterfly minors, or subgraphs.
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5 Towards a directed structure
theorem

The graph minor structure theorem is a cornerstone in the graph minor series by
Robertson and Seymour. It is concerned with the question of what the structure of
graphs excluding a fixed minor looks like. If one excludes a planar graph, one obtains
a class of graphs of bounded treewidth [RS86]. But the class of grids shows that
the treewidth is not bounded when excluding a non-planar graph. So, what is the
structure of graphs excluding non-planar graphs? For K5, this is answered by Wagner’s
theorem [Wag37], which states that every four-connected graph is planar if and only if
it excludes K5 as a minor. This can equivalently be stated as: every graph excluding
K5 can be obtained from the moebius ladder on eight vertices, also called the Wagner
graph, and planar graphs by an operation called small clique sums. See Figure 5.1 for
an illustration of the Wagner graph.

Figure 5.1: The Wagner graph.

The graph minor structure theorem [RS99] states that every graph that excludes a non-
planar graph H as a minor can be decomposed by a tree decomposition with additional
requirements. The bags of this tree decomposition do not have to have bounded
width, but the adhesion, that is, the intersection between two bags, has bounded size.
Additionally, the bags induce subgraphs that can be further decomposed into several
4-connected graphs. These 4-connected graphs, after deleting a small set of apex
vertices, admit a drawing into a surface in which H does not have a drawing without
crossings, such that there are only few areas, the vortices, that contain crossings.

125



5 Towards a directed structure theorem

The structure described by the graph minor structure theorem is parametrically neces-
sary and sufficient. Not only does every graph that excludes a non-planar graph as a
minor have the described structure, additionally graphs of the described structure do
not contain a large clique as a minor.

In directed structure theory, there is an analogue to the grid theorem establishing that
the cylindrical grid is an obstruction to directed treewidth [KK15]. But the property
that a digraph is planar if and only if it is a minor of the cylindrical grid does not hold.
The cylindrical grid does play a role similar to the grid in undirected graphs and thus,
the cylindrical wall a similar one to the wall. However, every planar undirected graph
is contained as a minor in an undirected wall. This is not true for digraphs. The class
of cylindrical walls does not contain all planar digraphs, not even all strongly planar
digraphs, as butterfly minors. In general, highly non-planar digraphs can be of directed
treewidth one, as is witnessed by the class of DAGs. So, neither does excluding a
planar digraph imply small directed treewidth, nor does even small directed treewidth
imply planarity.

Directed structure theory evolved further in the past few years, introducing directed
tangles [GKK+20] and also a directed flat wall theorem [GKKK20]. However, building
a directed structure theorem based on this flat wall theorem leads to difficulties as
its properties differ from the undirected flat wall theorem. The main obstacle to
transferring the results leading to the undirected structure theorem into the directed
setting is the fact that there is no two-path theorem. A digraph can be highly connected
and still not allow for two disjoint paths between two given pairs of vertices [Tho91].
In the undirected case, the two-path theorem yields that certain parts of a graph allow
for a drawing without crosses into a closed disk, which makes up a crucial step in the
undirected structure theorem.

Within this chapter we present an alternative directed flat wall theorem and provide
some intuition why we think it yields a better base for a structure theorem. We
also present a rather simple proof for a flat wall theorem for digraphs excluding a
specific orientation of K5. This yields valuable insight into the non-planar behaviour
of digraphs.

5.1 The directed wall

Let us take a closer look at the existing directed flat wall theorem [GKKK20]. In order
to do so, we have to introduce how a wall in the directed setting is defined alongside
some additional related definitions.
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5.1 The directed wall

An elementary cylindrical wall of order k is a graph, which is the union of k directed
disjoint cycles C1, . . . , Ck of length 4k each and 2k disjoint paths. The cycle Ci

has the vertex set {vi
1, . . . , vi

4k} with the natural cyclic ordering. The paths are of
two different kinds, we have the in-paths P i

1, . . . , P i
k and the out-paths P o

1 , . . . , P o
k as

follows, also see Figure 5.2 for an illustration.

P i
j = vk

4j−1, vk
4j , vk−1

4j−1, vk−1
4j , . . . , v1

4j−1, v1
4j for all j ∈ [k]

P o
j = v1

4(j−1)+1, v1
4(j−1)+2, v2

4(j−1)+1, v2
4(j−1)+2, . . . , vk

4(j−1)+1, vk
4(j−1)+2

for all j ∈ [k].

P o
1

P i
1

P o
2

P i
2

P o
3

P i
3

P o
4

P i
4

C4C3C2C1

Figure 5.2: The cylindrical wall of order four. The perimeters are depicted using thick
edges.

The paths P i
i and P o

i together make up the i-th row of W, which we also denote
Ri. We consider rows modulo the wall size, that is, for ℓ > k we consider P i

ℓ :=
P i

(ℓ−1) mod k+1, P o
ℓ := P o

(ℓ−1) mod k+1 as well as Rℓ := R(ℓ−1) mod k+1. The perime-
ter of W, denoted per(W ), contains all vertices of C1 and Ck. The vertices of C1
we also refer to as the inner perimeter, perin(W ), and we call the vertices of Ck the
outer perimeter, perout(W ). The graph that is obtained from W by removing the
perimeter (and the edges incident to its vertices) is called the interior of the wall, we
write int(W ). A subwall W [i, j] of W for 1 ≤ i < j ≤ k is the graph obtained by
the union of the cycles Ci, . . . , Cj and the subpaths P i

x[Ci, Cj ] and P o
x [Ci, Cj ] for

all 1 ≤ x ≤ k. We sometimes use Q1, . . . , Qk to refer to the subpaths of C1, . . . , Ck

starting on P o
1 and ending on P i

k.
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5 Towards a directed structure theorem

A (cylindrical) wall is a subdivision of an elementary cylindrical wall. The branch
vertices of a wall are the vertices that have out- or in-degree two. Let W be a cylindrical
wall of order k. We say that W grasps a butterfly minor model µ of Kt if for every
v ∈ V (Kt) there exists a pair iv, jv ∈ [k] such that V (Qiv ) ∩ V (P i

jv
) ⊆ V (µ(v)) or

V (Qiv ) ∩ V (P o
jv

) ⊆ V (µ(v)), that is, the model of every vertex contains a branch
vertex of W.

Definition 5.1.1 (Strip). A strip between column i and j of a wall W, for 1 ≤
i < j ≤ k, is the subgraph of W containing all rows Ri, . . . , Rj and the subpaths
Q1[Ri, Rj ] , . . . , Qk[Ri, Rj ] . The height of such a strip is j − i + 1. ⊣

W 1

W 2

W 3

Figure 5.3: The wall divided into three strips W 1, W 2 and W 3.

The boundaries of the faces of a wall, except for the two faces containing C1 and Ck,
are called bricks.

Definition 5.1.2 (Slice). Let k ∈ N be a positive integer and W be a cylindrical wall
of order k. A slice W ′ of W is a cylindrical wall containing the vertical paths Qi, . . . ,
Qi+ℓ for all i ∈ [k] and some ℓ ∈ [k− i], and the horizontal paths P 1

1 [Qi, . . . , Qi+ℓ] ,
. . . , P 2

k [Qi, . . . , Qi+ℓ] . We say that W ′ is the slice of W between Qi and Qi+ℓ and
that W ′ is of width ℓ + 1. ⊣

128



5.1 The directed wall

W1 W2 W3

Figure 5.4: The wall divided into three slices W1, W2 and W3.

We define a distance measure with respect to a cylindrical wall based on how many
paths lie between two given vertices.

Definition 5.1.3 (W -Distance). Let k ∈ N be a positive integer and W be a cylindrical
wall of order k. Given two vertices u, v ∈ V (W ), we say that they have W -distance
at least i if there exist i distinct vertical or i distinct horizontal paths whose removal
separates u and v in W. ⊣

Most of these definitions can naturally be used for cylindrical grids as well and we
do so at times. Cylindrical grids and walls are closely related. From a wall one can
obtain a cylindrical grid of the same order by butterfly contraction. From a cylindrical
grid one can obtain a wall by deleting subpaths of the in- and out-paths alternatingly,
thereby loosing a factor two in the order. Therefore, we can obtain the following
theorem using the function fwall : N→ N obtained from the function fgrid provided fwall

by Theorem 2.2.2:
fwall(k) := 2fgrid(k) .

Theorem 5.1.4 (Kawarabayashi and Kreutzer, 2015 [KK15]). There is a function
fwall : N → N such that every digraph D either satisfies dtw(D) ≤ k, or contains
the cylindrical wall of order fwall(k) as a butterfly minor.
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5 Towards a directed structure theorem

The flat wall theorem for directed graphs by Giannopoulou et al. [GKKK20] ensures
the existence of a wall with a bounded number of cross-rows when excluding a large
clique as a minor. We prove a statement for digraphs excluding a cross-row grid instead,
which allows us to get rid of all forward crosses in the wall by deleting a small apex
set. We use the following definitions that were introduced by Giannopoulou et al.

Definition 5.1.5 (Triadic Partitions). Let k ∈ N be a positive integer and W be a
cylindrical wall of order 3k. The triadic partition of W is the tuple

W =
(︁
W, k, W1, W2, W3, W 1, W 2, W 3)︁

such that for each i ∈ [3], Wi denotes the slice of W between Qk(i−1)+1, see Figure 5.4
and Qik, and W i denotes the strip of W between the rows k (i− 1) + 1 and ik, see
Figure 5.3. ⊣

We often consider paths starting and ending in a brick. In order to be able to construct
paths to and from their start- and end-vertices, we need parts of the wall around the
brick, thus there is the concept of tiles centred at a brick.

Definition 5.1.6 (Tiles). For i, j ∈ [k] and d ≥ 1, the tile Ti,j,d of W is defined as
the subgraph of W obtained by the union⋃︂

i≤ℓ≤i+2d+1
Qℓ[Rj , Rj+2d+1] ∪

⋃︂
j≤ℓ≤j+2d+1

Rℓ[Qi, Qi+2d+1] .

We say i is the column index of Ti,j,d, and j is the row index of Ti,j,d. Also, d is the
width of Ti,j,d. See Figure 5.5 for an illustration.

The perimeter of Ti,j,d is given by

Ti,j,d ∩
(︁
Qi ∪Qi+2d+1 ∪ P o

j ∪ P i
j+2d+1

)︁
.

We call Qi the left path of the perimeter, Qi+2d+1 its right path, P o
j the upper path of

the perimeter, and finally P i
j+2d+1 its lower path.

The corners of a tile are the vertices a, b, c, d ∈ V (Ti,j,d) where

• a, the upper left corner, is the common starting point of Ti,j,d ∩Qi and Ti,j,d ∩
P o

j ,

• b, the upper right corner, is the end of Ti,j,d ∩ P o
j and the starting point of

Ti,j,d ∩Qi+2d+1,
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5.1 The directed wall

• c, the lower left corner, is the common end of Ti,j,d ∩Qi and Ti,j,d ∩P i
j+2d+1,

and

• d, the lower right corner, is the end of Ti,j,d ∩Qi+2d+1 and the starting point
of Ti,j,d ∩ P i

j+2d+1.

The centre of Ti,j,d is the boundary of the unique brick CTi,j,d
of W whose boundary

consists of vertices from Qi+d+1, Qi+d+2, P i
j+d+1, and P o

j+d+2. All vertices of Ti,j,d

which are not in the centre and not on the perimeter of Ti,j,d are called internal. ⊣

Figure 5.5: A tile of of width two in a wall of order eight. The centre brick is filled in
blue and the perimeter is drawn in red.

Please note that by this definition, only bricks lying between P i
i and P o

i+1 for some
i ∈ [k] can be the centre of a tile. However, if we take the mirror image of the unique
embedding of the wall along Q1, we obtain a new embedding, switching in- and
out-paths. We call these two possible embeddings the two parametrisations of a wall,
we write π(W ) = o, if the cycles encounter the out-path of a row before the in-path π(W )
and π(W ) = i otherwise. This means that we can define for every brick F of W a tile
TF such that F is the centre of TF .

Giannopoulou et al. use the following concept of flatness.
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5 Towards a directed structure theorem

Definition 5.1.7 (weakly flat). Let D be a digraph, W a wall in D, a : N → N a
function and t ∈ N. The wall W is a(t)-weakly flat with directed treewidth bounded
by d if there is a subset A ⊆ V (D) with |A| ≤ a(t) such that W is a wall in D −A
and the following hold:

(i) There is an undirected separation (X, Y ) in D such that A∪per(W ) = X∩Y
and int(W ) is contained in X \ Y, as well as every vertex in X \ Y reaches a
vertex in int(W ) or is reachable from it.

(ii) For every path Q in D−A that has both endpoints in int(W ) but is internally
disjoint from int(W ) there is a brick B in W such that the boundary of B
contains both endpoints of Q. Moreover, for every brick B of W let VB be
the set of vertices of D − A that appear as internal vertices of a path Q with
both endpoints on B but internally disjoint from B. The strongly connected
components of D[C] , which are called the extensions of B, have directed
treewidth at most d.

(iii) If T is a tile of width five of W and c1 is its upper left corner, c2 its upper
right corner, d1 its lower left corner and d2 its lower right corner, then there are
no two paths Q1 and Q2 in (D −A)− (W − T) such that Q1 is a c1-d2-path
and Q2 is a c2-d1-path.

For a function G : N→ N, the wall W is g(t)-nearly-a(t)-weakly flat with directed
treewidth bounded by d if it satisfies (i) and (ii) and there are at most g(t) rows whose
tiles do not satisfy (iii), we also refer to such a row as cross-row. ⊣

Giannopoulou et al. obtain two different flat wall theorems for directed graphs. The
first excludes a transitive tournament in order to get rid of cross-rows entirely. The
second only excludes the clique, thus cross-rows may still exist.

Theorem 5.1.8 (Directed weakly flat wall theorem). There exist functions d : N×N→
N and a : N → N such that for every directed graph D and all k, t ∈ N one of the
following is true:

(i) dtw(D) < d(k, t),

(ii) D contains a tournament of order t as a butterfly minor

(iii) there is a directed cylindrical wall W of order k in D that is a(t)-weakly flat
with directed treewidth bounded by d(k, t).

Theorem 5.1.9 (Directed nearly-weakly flat wall theorem). There exist functions
d : N ×N → N, a : N → N and g : N → N such that for every directed graph D
and all k, t ∈ N one of the following is true:
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5.2 The cross-row grid

(i) dtw(D) < d(k, t),

(ii) D contains Kt as a butterfly minor

(iii) there is a directed cylindrical wall W of order k in D that is g(t)-nearly-a(t)-
weakly flat with directed treewidth bounded by d(k, t).

Both of these theorems have their drawbacks. Theorem 5.1.9 only finds a wall that still
contains cross-rows. So, it still contains highly non-planar behaviour. Theorem 5.1.8
ensures a wall that does not contain any cross-rows, but the excluded structure of a
transitive tournament is in itself not strongly connected. So, the transitive tournament
is of directed treewidth one. This means that any structure theorem using the transitive
tournament as the excluded butterfly minor does not provide sufficiency, that is, every
graph having the described structure also excludes the transitive tournament as a
butterfly minor.

5.2 The cross-row grid

Here, we consider a structure lying in between the transitive tournament and the clique:
the cross-row grid. It lies in between the two other structures in the sense that every
transitive tournament is a butterfly minor of a cross-row grid and every cross-row grid
is a butterfly minor of a clique.

Let D be cylindrical grid of order k with cycles C1, . . . , Ck and in-paths P i
1, . . . , P i

k

and out-paths P o
1 , . . . , P o

k . Let a1, . . . , ak be the vertices of P o
1 and b1, . . . , bk be

the vertices of P i
1 in order of occurrence along the path. A cross-row grid of order

k, written D⤭
k , is obtained from D by adding the edges {(aj , bk−j) | 1 ≤ j ≤

k − 1} ∪ {
(︁
aj , bk−(j−2)

)︁
| 2 ≤ j ≤ k}. See Figure 5.6 for an example.

We start by proving that every transitive tournament is contained in a large enough
cross-row grid as a butterfly minor. In order to construct such a transitive tournament
minor we introduce the following tool. Let D be a digraph with 2t designated vertices
(i1, . . . , it, o1, . . . , ot) . If for every s ∈ [t−1] there exist t disjoint paths P1, . . . , Pt in
D such that Ps is an is-os+1-path, Ps+1 is an is+1-os-path and for all s′ /∈ {s, s + 1}
the path Ps′ is an is′ -os′ -path, then D is called a (i1, . . . , it)-(o1, . . . , ot)-switch.

We define the function
fswitch(t)fswitch(t) := 1

2
(︁
t2 − t

)︁
− 2,

which gives for every number t the number of switches necessary to a build transitive
tournament minor on t vertices.
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a1
b4

a2

b3

a3

b2

a4

b1

Figure 5.6: A cross-row grid of order four.

Lemma 5.2.1. Let D be a digraph that contains fswitch(t) disjoint subgraphs D1, . . . ,
Df(t) such that Dj is an (ij

1, . . . , ij
t )-(oj

1, . . . , oj
t )-switch. For every 1 ≤ j < fswitch(t)

let Lj = (P j
1 , . . . , P j

t ) be an (oj
1, . . . , oj

t )-(ij+1
1 , . . . , ij+1

t )-linkage with P j
s is an oj

s-
ij+1
s -path and let L0 =

(︁
P 0

1 , . . . , P 0
t

)︁
be a linkage ending in the vertices

(︁
i1
1, . . . , i1

t

)︁
and Lfswitch(t)+1 = (P fswitch(t)+1

1 , . . . , P
fswitch(t)+1
t ) be a linkage starting in the vertices

(ifswitch(t)
1 , . . . , i

fswitch(t)
t ) such that L0, . . . , Lfswitch(t) are internally disjoint from the

switches. Also, let Ri := {Ra,a+1
i | 1 ≤ a < t} for all 1 ≤ i ≤ fswitch(t) such that

Ra,a+1
i starts on the a-th path and ends on the a + 1-th path of Li and is disjoint to

the switches and internally disjoint to the linkages L0, . . . ,Lfswitch(t). Additionally, we
require that the linkages L1, . . . ,Lfswitch(t) are pairwise disjoint. Then, D contains a
K⃗t as a butterfly minor.

Proof. We build butterfly contractible models for every vertex of K⃗t. Let v1, . . . , vt

be the vertices of K⃗t such that all edges are of the form (vi, vj) with i < j. The
model of vk consists of a path Mk, k − 1 edges e

in(k)
1 , . . . , e

in(k)
k−1 and t − k edges

e
out(k)
k+1 , . . . , e

out(k)
t such that the vertices head(ein(k)

1 ), . . . , head(ein(k)
k−1 ), tail(eout(k)

k+1 ),
. . . , tail(eout(k)

t ) occur on Mk in that order, see Figure 5.7 for an illustration.

We construct M1, . . . , Mt inductively. We also define a function fk helping us to keep
track of the path we construct. The path M1

k is defined as P 0
k , which ends in the vertex

i1
fk(1), and we define fk(1) := k for all 1 ≤ k ≤ t.
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Mi

e
in(i)
1 e

in(i)
2 . . . e

in(i)
i−1

e
out(i)
i+1 e

out(i)
i+2 . . . e

out(i)
t

Figure 5.7: The butterfly minor model for a vertex of the transitive tournament.

Now assume we have constructed a path M j
k ending in ij

fk(j) for all 1 ≤ k ≤ t. Let

x :=
{︄

j mod (t− 1) , if j mod (t− 1) < 0
t− 1 , if j mod (t− 1) = 0.

We use Dj to switch the paths arriving at ij
x and ij

x+1. So let Qj be the (ij
1, . . . , ij

t )-
(oj

1, . . . , oj
t )-linkage within Dj that contains an ij

y-oj
y-path for every y /∈ {x, x + 1}

and an ij
x-oj

x+1-path as well we an ij
x+1-oj

x-path. Obtain M j+1
k from M j

k by appending
the path Q from Qj starting in end(M j

k) and then the path P j
k′ ∈ Lj+1 starting in

end(Q). Define fk(j + 1) := k′.

Finally, we define Mk := M
fswitch(t)
k . As M1, . . . , Mt each contain exactly one path

from each linkage L1, . . . ,Lt,Q1, . . . ,Qt they yield a
(︁
i1
1, . . . , i1

t

)︁
-(ofswitch(t)

1 , . . . ,

o
fswitch(t)
t )-linkage.

switches

1

2

3

4

2

1

3

4

2

3

1

4

2

3

4

1

3

2

4

1

3

4

2

1

v1

v2v3

v4

K⃗4

Figure 5.8: An example how the construction looks for finding a K⃗4 butterfly minor
in the given graph, the model for the vertex v2 is highlighted in orange.

We divide the linkages L0, . . . ,Lfswitch(t)+1 into t−1 consecutive blocks B1, . . . ,Bt−1

such that Bi contains t− i linkages. Let Bi =
(︁
Li1 , . . . ,Lit−i

)︁
andRij

:= {Ra,a+1
ij

|
1 ≤ a < t}. We consider the path Rfi(ij),fi(ij), which starts in Mi and ends in Mi+j

due to our construction earlier. We add its first edge as eout
i+j to the model of vi and its

last edge as ein
i to the model of vi+j . The remaining path is the model of (i, i + j) .
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5 Towards a directed structure theorem

As we collect all the in-edges for the model of vk within the blocks B1, . . . ,Bk−1 and
only collect the out-edges in block Bk, all in-edges are met by Mk before the out-edges,
making the model of vi butterfly contractible. See Figure 5.8 for an illustration of the
construction.

Now, we can prove that for every transitive tournament there is a sufficiently large
cross-row grid containing it as a butterfly minor.

Lemma 5.2.2. The cross-row grid of order fswitch(t) · t + 2 contains K⃗t as a butterfly
minor.

Proof. We define k := fswitch(t) · t + 2. Let a1, . . . , ak be the vertices of P o
1 and

b1, . . . , bk be the vertices of P i
1 in order of appearance along the paths. We define

fswitch(t) many subgraphs D1, . . . , Dfswitch(t), where Di is the subgraph of D contain-
ing the vertices ak−(i−1)t, . . . , ak−it+1, b(i−1)t, . . . , bit and all edges between them.
Note that Di is a

(︁
ak−(i−1)t, . . . , ak−it+1

)︁
-
(︁
b(i−1)t, . . . , bit

)︁
-switch.

We choose L0 to be the subpaths of Ck, . . . , Ck−t+1 starting in P i
k and ending in

the vertices ak, . . . , ak−t+1. For Li with 1 ≤ i ≤ fswitch(t) we construct paths
from (b(i−1)t, . . . , bit) along (C(i−1)t, . . . , Cit) until meeting (P i

k−1−(i−1)t, . . . ,

P i
k−it), then following the paths (P i

k−1−(i−1)t, . . . , P i
k−it) until meeting the cycles

(Ck−(i)t, . . . , Ck−(i+1)t+1) which the paths of Li then follow until finally reaching
(ak−(i)t, . . . , ak−(i+1)t+1). Next, we define the linkage Lfswitch(t)+1 as the subpaths of
(C(fswitch(t)−1)t, . . . , Cfswitch(t)t) starting in (b(fswitch(t)−1)t, . . . , bfswitch(t)t) and ending
on P i

2.

Finally we construct families Ri for all 1 ≤ i ≤ fswitch(t) + 1. For 1 < i ≤
fswitch(t) + 1 we obtain the subpaths between the paths in Li from P i

2. And for
i = 1 we obtain them from P i

k.

Then, we have everything we need to apply Lemma 5.2.1 and thus, obtain the desired
K⃗t as a butterfly minor.

Clearly, for every cross-row grid there is bidirected clique containing it as a minor.

Lemma 5.2.3. The bidirected clique K2·t2 contains the cross-row grid D⤭
t as a

butterfly minor.

Proof. This directly follows from the cross-row grid of order t having 2t2 vertices.
We fix a bijection φ : V (K2·t2) → V (D⤭

t ) and then delete from K2·t2 every edge
(u, v) with (φ(u), φ(v)) /∈ E(D⤭

t ). This yields the desired butterfly minor.
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5.2 The cross-row grid

Basically, a cross-row grid consists of many slices in a wall that each contain a local
cross. We formalise this concept by the following definition.

Definition 5.2.4. A cross in a slice of a wall W between Qi and Qi+ℓ are two paths J1
and J2 with start(J1), end(J2) ∈ V (Qi) and start(J2), end(J1) ∈ V (Qi+ℓ) and for
the rows Ra containing start(J1), Ra′ containing end(J1), Rb containing start(J2)
and Rb′ containing end(J2) we have max{a, a′} −min{b, b′} > 1. We call a slice
with a cross in it a cross slice. ⊣

In order to construct the cross-row grid as a minor in a given digraph it suffices to
show that there is a wall in the graph that contains enough cross slices and still has
some rows that remain untouched by the crosses.

Lemma 5.2.5. Let D be a digraph, W a cylindrical wall in D and i ∈ N. If W
contains t disjoint slices which each contain a cross, and there are t rows in W such
that all t crosses lie in a strip not containing these t rows, then W contains D⤭

t as a
butterfly minor.

Proof. Let Si, . . . , St be t slices such that Si is the slice between Qji
and Qji+ℓi

and
contains a cross J i

1 and J i
2. Let WR be the strip containing all crosses but not the

rows R′
1, . . . , R′

t and let Ra and Rb such that WR is the strip between Ra and Rb. We
construct a new row containing t crosses by valid butterfly minor operations within
the subwall between P o

a and P i
b as follows. First, we delete all in- and out-paths within

WR except for P o
a and P i

b. Next, for every slice Si we can contract the following paths
into single vertices:

1. the subpath of Qji
starting on P o

a and ending in start(J i
1), we refer to this

contraction vertex as start(J i
1)′,

2. the subpath of Qji
starting in end(J i

2) and ending on P i
b, we refer to this con-

traction vertex as end(J i
2)′,

3. the subpath of Qji+ℓi starting on P o
a and ending in start(J i

2), we refer to this
contraction vertex as start(J i

2)′, and

4. the subpath of Qji+ℓi starting in end(J i
1) and ending on P i

b, we refer to this
contraction vertex as end(J i

1)′.

This leaves us with one row consisting of out-path P o
a and in-path P i

b containing t
crosses. In order to make this a proper cross-row grid, we delete all vertical paths but
Qj1 , . . . , Qjt

and Qjt+ℓt
. Now, for every i ∈ [t], we can contract the subpath of P o

a

that starts in start(J i
2)′ and ends in start(J i+1

1 )′ into a single vertex. Similarly, for
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5 Towards a directed structure theorem

every i ∈ [t], we can contract the subpath of P i
b that starts in end(J i+1

2 )′ and ends in
end(J i

1)′ into a single vertex.

This newly constructed row together with the rows R′
1, . . . , R′

t and the vertical paths
Qj1 , . . . , Qjt

and Qjt+ℓt
now yields the claimed D⤭

t butterfly minor.

5.3 Drawings and weak renditions

Now that we have seen how the cross-row grid relates to the traditional excluded
minors, we give some context for surfaces and embeddings. Formally, a surface is a
compact 2-dimensional manifold with or without a boundary. However, the only two
surfaces we explicitly use in this chapter are the sphere S2 and the torus.

Definition 5.3.1. A drawing (with crossings) of a digraph D on a surface Σ is a tuple
Γ = (U, V, E, φ) such that

• φ : V ∪E → V (D) ∪ V (E) is a bijection such that φ|E is a bijection between
E and E(D) and φ|V is a bijection between V and V (D)

• V ⊆ U ⊆ Σ and V ∪
⋃︁

e∈E e = U

• for every e ∈ E, e = he((0, 1)), where he : [0, 1]→ U is a homeomorphism
onto its image with he(0), he(1) ∈ V

• V is disjoint from every e ∈ E

• (u, v) ∈ E(D) if and only if φ(he(0)) = u and φ(he(1)) = v

• if e, e′ ∈ E are distinct, then e ∩ e′ is finite.

If e, e′ ∈ E with e ∩ e′ ̸= ∅ and e ̸= e′, then we say e and e′ cross. A drawing is
cross-free if there are no two elements in E that cross. ⊣

We say a drawing Γ1 = (U1, V1, E1, φ1) of a digraph D is consistent with a drawing
Γ2 = (U2, V2, E2, φ2) of a subgraph D′ ⊆ D if U2 ⊆ U1, V2 ⊆ V1, E2 ⊆ E1 and
φ1(v) = φ2(v) for all v ∈ V (D′).

We often consider drawings of parts of some digraph into a closed disk, in that case
we are interested in which vertices are drawn into the boundary in order to describe
interaction with the remaining graph. To this end we introduce the following definition,
which basically generalises the concept of societies by Kawarabayashi, Thomas and
Wollan [KTW20].
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5.3 Drawings and weak renditions

Definition 5.3.2 (Society). Let Ω be a cyclic order of the elements of some set and
let V (Ω) denote this set. A society is a pair (D, Ω) , where D is a digraph, and Ω is a (D, Ω)
cyclic order with V (Ω) ⊆ V (D).

A cylindrical society is a tuple (D, Ω1, Ω2) , where D is a digraph and Ω1, Ω2 are (D, Ω1, Ω2)
cyclic orders with V (Ωi) ⊆ V (D) for both i ∈ [2] and V (Ω1) ∩ V (Ω2) = ∅.

A subset X ⊆ V (Ω) is called a segment if there are no vertices x1, x2 ∈ X and
y1, y2 ∈ V (Ω) such that x1, y1, x2, y2 occur in Ω in that order. The ordering Ω
naturally induces a linear ordering on its segments. We write aΩb for the unique aΩb

segment of Ω that has a as its first vertex and b as its last vertex. ⊣

The following definition helps us to describe the structure inside a society, especially
non-planar structure.

Definition 5.3.3 (Transactions). Let (D, Ω) be a society. A path P is an Ω-path
if V (P ) ∩ V (Ω) = {start(P ), end(P )}, that is, P is a V (Ω)-path. A linkage P
in D is called a transaction in (D, Ω) if every P ∈ P is an Ω-path and there are
two disjoint segments X and Y of Ω such that {start(P ) | P ∈ P} ⊆ X and
{end(P ) | P ∈ P} ⊆ Y. The depth of (D, Ω) is defined as the maximum order of a
transaction in (D, Ω) .

The two endpoints start(P ) and end(P ) of an Ω-path P split Ω into two segments.
If another Ω-path P ′ has its start-vertex in the one and its end-vertex in the other
segment, then P and P ′ build a cross in (D, Ω) . A transaction is called planar if no
two paths in it build a cross. ⊣

For societies in undirected graphs having no cross and being 4-connected suffices
to ensure a planar embedding of the graph into a disk. This is not sufficient in
digraphs. Still, we would like to reduce the non-planarity of the graphs to smaller,
more controllable regions. The next definition allows us to fix a part of a given graph
that allows for a drawing without crossings in the sphere.

Definition 5.3.4 (Skeleton). Let D be a digraph, r ∈ N and W be a wall of order r in
D. A skeleton of D is a tuple S = (Γ, W, L) with

1. L is a family of linkages in D,

2. Γ is a planar drawing of the graph DS := W ∪
⋃︁

L∈L L,
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5 Towards a directed structure theorem

3. if L = ∅, then the two faces bound by the wall perimeters are called the big
faces of S, otherwise there exists a linkage L ∈ L such that

S ′ =
(︁
Γ|W ∪(L\{L}), W, (L \ {L})

)︁
is a skeleton and L is a planar transaction on a big face f of S ′. In the ladder
case, the big faces of S are the big faces of S ′ without f but adding all faces
bound by f and one of the two outer paths of L.

We call the skeleton S centred at the wall W . We call DS the rigid subgraph of S.DS

The order of S is half the minimum order of an element in L ∪ {W}. ⊣

Intuitively, in order to describe that non-planar behaviour of the digraph around the
rigid subgraph of a skeleton is restricted, we want to say that closed curves in the rigid
part have a separating property. We cannot demand them to yield proper separations,
so we describe a slightly weaker notion where we cut out the curve together with some
part of the rigid graph around it.

A noose of a digraph D within a fixed drawing Γ into a surface Σ is a closed curve
that bounds a disk and only intersects Γ in vertices of D.

Definition 5.3.5. Let S := (Γ, W, L) be a skeleton of a digraph D in the sphere.
Let Γ+ be a drawing of D in Σ that is consistent with Γ and C a noose of DS
within Γ+. Then, the graph DS − C consists of at most two weakly 2-connected
components H ′

1 and H ′
2. For i ∈ [2], let Hi be the weakly 2-connected component not

containing C obtained by removing the face of H ′
i that is no face in Γ from DS . We

define H+
i to be the subgraph of D induced by V (Hi) ∪

⋃︁
f face in Γ+|Hi

and in Γ+{v |H+
i

the vertex v is drawn into f by Γ+}. ⊣

Using this we can define our demands on a drawing of the digraph around a wall in
the sphere.

Definition 5.3.6 (Σ-decomposition). Let S := (Γ, W, L) be a skeleton of a digraph D
in the surface Σ and A ⊆ V (D) a set of vertices in D such that V (DS) ⊆ V (D) \A.
Let Γ+ be a drawing of the strongly connected component of D −A containing DS
in Σ that is consistent with Γ. The tuple ρ = (Γ+,S) is a Σ-decomposition of D in Σ
with apex set A, if For all undirected cycles C in DS there is no directed path from
H+

1 to H+
2 as well as no directed path from H+

2 to H+
1 .

Let N(ρ), the set of nodes of ρ, be the set of all vertices in DS . If Γ = (U, V, E, φ) ,
we refer to φ−1 by φρ.
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5.4 Flat wall theorem

Let Σ and Σ′ be two surfaces, where Σ′ has strictly higher genus. Let ρ = (Γ+,S) be
a Σ-decomposition and ρ′ = (Γ′+,S ′) be a Σ′-decomposition such that DS = DS′ .
If Γ′+ is consistent with Γ+, then we say ρ′ is centred at ρ. ⊣

There are certain crosses we cannot forbid by excluding a cross-row grid, so we need a
notion of flatness that accommodates these crosses. In order to achieve this, we define
renditions into a disk that internally are nearly planar except for small exceptions which
cover the mentioned crosses.

Definition 5.3.7 (Weak rendition). Let (D, Ω) be a society and ∆ be a closed disk,
possibly with an open hole. A weak rendition of (D, Ω) into ∆ is a S2-decomposition
ρ = (Γ+,S = (Γ, W, ∅)) such that

1. V (Γ+) ⊆ ∆,

2. one of the cyclic orderings of bd(∆) maps to the image of φρ(N(ρ)∩bd(∆)) =
V (Ω).

Now, let ∆′ be obtained from a closed disk ∆′′ by removing an open disk disjoint
from the boundary of ∆′′ and let (D, Ω1, Ω2) be a cylindrical society. Let B1 and
B2 be the two closed curves in ∆′ whose union equals bd(∆′). Observe that for each
i ∈ [1, 2] the curve Bi bounds a closed disk ∆′

i with an open hole that contains ∆′. A
weak rendition in ∆′ is a S2-decomposition (Γ+,S = (Γ, W, ∅, ∅)) such that for both
i ∈ [2], δ is a cylindrical rendition of (D, Ωi) in the disk ∆′

i. We say that (D, Ω1, Ω2)
has a weak rendition in the disk if there exists ∆′ as above such that (D, Ω1, Ω2) has a
weak rendition in ∆′. ⊣

These tools enable us to describe drawings of digraphs that are consistent with the
unique embedding of some wall they contain and additionally does have restricted
non-planar behaviour with respect to this wall.

5.4 Flat wall theorem

Having introduced weak renditions we can define our notion of flatness, which is
slightly different from the notion of Definition 5.1.7. In particular, it uses two directed
separations instead of one undirected separation and it uses our concept of weak
renditions, that is, removing a noose in the wall separates the two remaining parts of
the wall.
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5 Towards a directed structure theorem

Definition 5.4.1 (Bridge). Let H be a subgraph of a digraph D. A weakly connected
component C in D −H is called an H-bridge if

1. there is a non-empty set O ⊆ V (C) such that for every o ∈ O there is a vertex
h ∈ H with (o, h) ∈ E(D), h is called an out-attachment,

2. there is a non-empty set I ⊆ V (C) such that for every i ∈ I there is a vertex
h ∈ H with (h, i) ∈ E(D), h is called an in-attachment, and

3. for every vertex x ∈ V (C) there is a directed path P in C such that start(P ) ∈ I,
end(P ) ∈ O and x ∈ V (P ). ⊣

Definition 5.4.2 (Flat wall). Let D be a digraph, A ⊆ V (D) be a set of vertices and
W ⊆ D − A be a wall of order k + 4. We define W − ⊆ W to be the wall of order
k such that W − is disjoint from Q1, Q2, Qk+3 and Qk+4. Moreover, we define the
border of W as border(W ) := W−W −. Let D′ be the strongly connected componentborder(W )
of D containing W. The compass of W, written compass(W ) is the union of thecompass(W )

border of W and all W −-bridges in D′ − border(W ). We say that W is a flat wall
under A if

(F1) V (W ) ∩A = ∅,

(F2) there are two directed separations (Y1, X1)� and (X2, Y2)� in D′ such that
X1 and X2 both contain W and Y1 ∩X1 = A ∪ border(W ) = X2 ∩ Y2 and
additionally in D′ − (A ∪ border(W )) every vertex in X1 is reachable from
W − and every vertex in X2 reaches W −,

(F3) the cylindrical society (compass(W ), Ω1, Ω2) with the sets V (Ω1) = V (Q1)
and V (Ω2) = V (Qk+4) has a weak rendition ρ = (Γ+,S = (Γ, W, ∅)) in the
disk,

(F4) D′ has a torus decomposition centred at ρ.

In case A = ∅, we say that W is flat. ⊣

The main theorem of this chapter is a directed flat wall theorem that excludes the
cross-row grid as a butterfly minor.

Theorem 5.4.3 (Directed flat wall theorem). There exist functions ρW : N×N→ N

and αW : N → N such that for all integers r, t ≥ 1 and all digraphs D that do
not contain D⤭

t for every ρW (r, t)-wall W in D there exist a set A ⊆ V (D) with
|A| ≤ αW (t) and an r-wall W ′ ⊆W −A which is flat under A.
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5.4 Flat wall theorem

We refer to the functions ρW and αW from Theorem 5.4.3 as such globally. Please note
that this yields a in some respect stronger statement than Theorems 5.1.8 and 5.1.9, be-
cause it refers to every wall in the digraph. While Theorems 5.1.8 and 5.1.9 provide the
existence of their respective flat wall in the given digraph D, our result Theorem 5.4.3
provides the flat wall inside every wall that is large enough. This way one can start
out with any large enough wall in a given digraph and can be sure that it contains a
flat wall, which is a desirable property especially for algorithmic usage. Additionally
Theorem 5.4.3 obtains a wall that does allow for any cross-rows by excluding a strongly
connected digraphs as a butterfly minor, thus combining the features of Theorems 5.1.8
and 5.1.9. We mostly follow the arguments and techniques from [GKKK20]. Some re-
finements are due to Gianopoulou and Wiederrecht [GW21]. In some places the proofs
need adjustments propagating through non-trivial steps of the arguments, therefore,
we present the whole proof containing parts from both [GKKK20,GW21].

Definition 5.4.4 (Tiling). A tiling is a family of pairwise disjoint tiles, and a tiling is
said to cover a subwall W ′ of W if every branch vertex of W ′ occurs in one of the
tiles of the tiling. For every function fw : N → N and all ξ, ξ′ ∈ [fw(t) + 1] we
define the tiling TW,k,fw(t),ξ,ξ′ with tiles of width fw(t). In order to do so, we define
two function, the column function

cξ,fw
(p) := (k + 1− ξ) + (p− 1) (2 · fw(t) + 1) ,

and the row function

rξ′,fw (q) := (1 + ξ′) + (q − 1) (2 · fw(t) + 1) .

For both the column and the row function we omit fw, ξ and ξ′ from the indices if
they are clearly provided by the context. Then, define

TW,k,fw(t),ξ,ξ′ :=
{︂

Tc(p),r(q),fw(t) |1 ≤ p ≤
⌈︃

k + ξ − 1
2 · fw(t) + 1 + 1

⌉︃
,

1 ≤ q ≤
⌈︃

3k − (1 + ξ′)
2 · fw(t) + 1 + 1

⌉︃}︂
.

See Figure 5.9 for an illustration. ⊣

Note that every tiling TW,k,fw(t),ξ,ξ′ covers W2. Moreover, every brick of W2 that lies
between the two paths of Ri for some i ∈ [3k] is the centre of some tile T′ of some
tiling T ′ ∈ TW,k,fw(t),ξ,ξ′ . Hence, if we switch the parametrisation of W, we are able
to find in total 2 (fw(t) + 1)2 many tilings that cover W2, and every brick of W2 is
the centre of some tile in one of these tilings. This number of tilings becomes relevant
in the proof of Theorem 5.4.3.
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5 Towards a directed structure theorem

Figure 5.9: A tiling of a wall together with a four-colouring of it. We also see that the
yellow tile in the middle is surrounded by eight tiles of different colours.

A colouring of T is a partition of T into four classes, namely C1, C2, C3, and C4 as
follows. For every i ∈

[︂⌈︂
k+ξ−1

2fw(t)+1

⌉︂
+ 1
]︂

and every j ∈
[︂⌈︂

3k−ξ′−1
2fw(t)+1

⌉︂
+ 1
]︂

we assign
to Tc(i),r(j),fw(t) the colour (i mod 2) + 2 (j mod 2) + 1. This means that to tiles
where c(i) and r(j) are even we assign the colour one, to tiles where r(j) is even but
c(i) is odd we assign the colour three, and so on, see Figure 5.9 for an example. Hence,
every column and every row is two-chromatic, and between each pair of tiles from
the same colour that share a row or a column, there is a tile of a different colour that
separates those tiles in their respective row or column. Additionally, the eight tiles
surrounding a tile T are all of a different colour than T itself.

We use tilings in several different ways, and sometimes it is necessary to “zoom out”
of our current wall, i.e. to abstract over some of the horizontal paths and vertical cycles
in order to obtain a more streamlined version of our wall.

Definition 5.4.5 (Walls from a Tiling). Let k, d ∈ N be positive integers, W a cylin-
drical wall of order 3k with the triadic partitionW = (W, k, W1, W2, W3, W 1, W 2,

W 3), and T a tiling of width d that covers W2. Moreover, let ˜︂W be some slice of W2
and let IQ be the largest set of integers such that for every i ∈ IQ the vertical cycle Qi
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5.4 Flat wall theorem

contains vertices of a tile from T which intersects ˜︂W. Let ˜︂W (T ) be the union of the ˜︂W (T )
cycles Qi with i ∈ IQ, and the paths P i

j [{Qh | h ∈ IQ}] and P o
j [{Qh | h ∈ IQ}] for

every j ∈ [3k]. We call ˜︂W (T ) the extension of ˜︂W that covers T .

Now, let {C1, . . . , C4} be a four-colouring of T and i ∈ [4] be a fixed colour. Then,
let JQ ⊆ [3k] be the largest set of integers such that for all j ∈ JQ the vertical cycle
Qj of ˜︂W (T ) does not contain a vertex of some tile from Ci. Similarly, let JP ⊆ [3k]
be the largest set of integers such that for every j ∈ JP , none of the two paths from
Rj contains a vertex of a tile from Ci.

By ˜︂W [T , i] we denote the subgraph of W induced by the union of the cycles Q′
i with ˜︂W [T , i]

i′ ∈ JQ, and the paths P i
j [{Qh | h ∈ JQ}] and P o

j [{Qh | h ∈ JQ}] for every j ∈ JP .

We say that ˜︂W [T , i] is the i-th T -slice of ˜︂W. ⊣

Note that the width of˜︂W (T ) is at most by 2d greater than the width of˜︂W. In˜︂W [T , i] ,
we essentially cut away the tiles of Ci. This operation gives us a slice W ′ of some
cylindrical wall for which the perimeter of every tile in Ci is the perimeter of some
brick. Next, we find a tiling of W ′ such that every tile of Ci that belongs to ˜︂W is
captured by the centre of some tile in the new tiling.

Definition 5.4.6 (Tier II Tiling). Let t, k, k′ ∈ N be positive integers with k ≥ k′

and f : N → N be some function. Let W be a cylindrical wall of order 3k with its
triadic partitionW =

(︁
W, k, W1, W2, W3, W 1, W 2, W 3)︁ , and T = TW,k,f,ξ,ξ′ for

some ξ, ξ′ ∈ [f(t) + 1], as well as {C1, . . . , C4} be a four-colouring of T and i ∈ [4]
be a fixed colour. Moreover, let ˜︂W be a slice of W2 of width k′ such that no tile of Ci

contains a vertex of per(W ) and ˜︁T be the collection of all tiles from T that contain a
vertex of ˜︂W.

The tier II tiling of width f(t) for the slice ˜︂W [T , i] , denoted by (T , i, f)II

[︂˜︂W]︂
, is (T , i, f(t))II

defined as the unique tiling of ˜︂W [T , i] such that every T ∈ Ci ∩ ˜︁T is in the interior of
the centre of some tile of (T , i, f(t))II

[︂˜︂W]︂
. ⊣

Since every tile in T consists of 2f(t) + 2 path pairs, the tiling (T , i, f(t))II

[︂˜︂W]︂
is

well defined and does in fact cover all of ˜︂W [T , i] .

Now, we fix some terminology for paths in the graph that cause non-planar behaviour
with respect to the wall. Let k, w ∈ N be positive integers, W be a wall of order k
and W ′ be a slice of W. We call a C1-Ck- or Ck-C1-path P a jump over all of W if
it is internally disjoint from W. A perimeter jump over a wall W is a path that starts
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5 Towards a directed structure theorem

or ends at a tile of W -distance at least 2 to per(W ) and is otherwise disjoint of W. A
V (W ′)-path P is called a jump over W ′ if E(P )∩E(W ′) = ∅. We say that a directed
V (W ′)-path P is a w-long jump over W ′ if for all ξ, ξ′ ∈ [w + 1] the start-vertex and
the end-vertex of P belong to distinct tiles Ts and Tt of the tiling TW,k,w,ξ,ξ′ .

5.4.1 Selected results from [GKKK20]

In this subsection we state some results from [GKKK20] which provide the corner
stones for our proof of Theorem 5.4.3.

Theorem 5.4.7 (Giannopoulou et al. [GKKK20]). Let D be a digraph and X ⊆ V (D).
For all positive k ∈ N, there are k pairwise vertex disjoint X-paths in D, or there
exists a set S ⊆ V (D) of size at most 2k such that every X-path in D contains a
vertex of S.

Furthermore, there is a polynomial time algorithm which, given a digraph D and a set
X ⊆ V (D), outputs k pairwise disjoint X-paths, or a set S ⊆ V (D) of size at most
2k as above.

Theorem 5.4.8 (Giannopoulou et al. [GKKK20]). Let k ∈ N be a positive integer, D
be a digraph, and X, Y ⊆ V (D). If P is a half-integral X-Y -linkage of order 2k in
D, then there exists an X-Y -linkage J of order k such that V (J ) ⊆ V (P).

The following is a combination of Lemmas 4.3 to 4.8 from [GKKK20] and a proof
can be found in the proof of Lemma 4.9 in [GKKK20]. The only difference between
Lemma 4.9 from [GKKK20] and the statement below is that we extract the last subcase
of Case 1 in its proof as a potential outcome. In fact the statement contains two lemmata
that are merely two analogue cases of the same situation. We mark the changes one
needs to perform to obtain the second statement in blue and in parentheses.

Lemma 5.4.9 (Giannopoulou et al. [GKKK20]). There exist functions fw : N→ N,
fP : N→ N, and fW : N→ N such that for every t ∈ N the following holds. Let

• D be a digraph,

• W be a cylindrical wall of order 3k with k ≥ fW (t) in D,

• W =
(︁
W, k, W1, W2, W3, W 1, W 2, W 3)︁ be the triadic partition of W, and

• T = TW,k,fw(t),ξ,ξ′ for some ξ, ξ′ ∈ [fw(t) + 1].

146



5.4 Flat wall theorem

If there exists a subfamily T ′ of T and a family J of pairwise disjoint directed paths
in D with the following properties:

1. Every member of J is a V (W )-path,

2. |T ′| = |J | = fP (t),

3. for every Tc(p),r(q),fw(t) ̸= Tc(p′),r(q′),fw(t) ∈ T ′ we have max{|p− p′|, |q −
q′|} ≥ 2,

4. there exists a bijection leave : T ′ → J such that the start-vertex of the path
leave(T) belongs to the centre of T for every T ∈ T ′, (there exists a bijection
arrive : T ′ → J such that the end-vertex of the path arrive(T) belongs to the
centre of T for every T ∈ T ′,)

5. for all T ∈ T ′, where V (T ′) =
⋃︁

T′∈T ′ V (T′) the intersection V (leave(T)) ∩
V (T ′) contains exactly the end-vertex of leave(T) (V (arrive(T))∩ V (T ′) con-
tains exactly the start-vertex of arrive(T)), and finally

6. the end-vertices (start-vertices) of the paths in J are of mutual W -distance at
least four.

Then, at least one of the following is true.

(i) D has a Kt-butterfly minor grasped by W,

(ii) there exists a family of tiles T ′′ ⊆ T ′ all contained in a single strip S ⊆W of
height equal to the height of the tiles in T such that

• we can number T ′′ = {T1, . . . , Th} such that S − Ti has one component
containing exactly the tiles T1, . . . , Ti−1 for each i ∈ [h],

• |T ′′| ≥ fP (t) 1
4 ,

• for every i ∈ [h− 1] the tiles Ti and Ti+1 are separated in W by a slice
of width equal to the width of the tiles in T , and

• there is a family J ′ ⊆ J with |J ′| = |T ′′| such that for each T ∈ T ′′ we
have leave(T) ∈ J ′ (arrive(T) ∈ J ′), and

• for each i ∈ [h] the end-vertex of leave(Ti) (start-vertex of arrive(Ti))
lies in the component of S −Ti that contains no tiles of T ′′ if i = 1, or in
the slice of S separating Ti−1 and Ti otherwise.

(iii) there exists a family of tiles T ′′ ⊆ T ′ all contained in a single strip S ⊆ W
of height equal to the height of the tiles in T such that T ′′ and S meet the
properties of outcome (ii) after switching the parametrisation of W.
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5 Towards a directed structure theorem

We fix the functions fw, fP , and fW from Lemma 5.4.9 and, by using the bounds pro-
vided by the original proofs [GKKK20], we obtain the following rough estimates:

(i) fw(t) = 29t10,

(ii) fP (t) = 27t8, and

(iii) fW (t) = 232+t30
.

Lemma 5.4.9 is already powerful enough to guarantee a large cross-row grid as a
butterfly minor in case we find many long jumps over a sufficiently large wall. This
is due to the following proof sketch, which we formalise over the remainder of the
section. In case Lemma 5.4.9 yields the existence of a K2·t2 butterfly minor, this minor
contains a cross-row grid of order t as a butterfly minor, by Lemma 5.2.3. Otherwise,
Lemma 5.4.9 produces many pairwise disjoint slices of the wall W, mutually far apart
from each other, and each of them having a neighbouring slice together with a fairly
long jump into this neighbouring slice. Such a slice and its neighbour together yield a
slice of twice the width that contains a cross. By Lemma 5.2.5, this yields a cross-row
grid as a butterfly minor.

5.4.2 Removing long jumps

In order to provide some formal basis to the proof sketch from before, we prove two
auxiliary results, each providing ways to find cross-row grid minors from long jumps
over our wall.

Definition 5.4.10 (Auxiliary Digraph Type I). Let t, k, k′, w ∈ N be positive integers
such that k ≥ k′ ≥ 2fW (t) + 4fP (t) · (2w + 1) , w ≥ 2fw(t), and ξ, ξ′ ∈ [w + 1].
Let D be a digraph containing a cylindrical wall W of order 3k with its triadic
partition W =

(︁
W, k, W1, W2, W3, W 1, W 2, W 3)︁ , and a tiling T = TW,k,w,ξ,ξ′ .

Let {C1, . . . , C4} be a four-colouring of T , i ∈ [4] and W ′ ⊆ W be a slice of width
k′ of W2. At last, let us denote by T ′ the family of tiles from T that share a vertex
with W ′ and let C′

i := T ′ ∩ Ci. Then, DI
i(W ′) is the digraph obtained from D byDI

i(W ′)
performing the following construction steps for every T ∈ C′

i:

1. add new vertices xin
T and xout

T ,

2. for every vertex u in the centre of T introduce the edges
(︁
u, xin

T
)︁

and (xout
T , u) ,

and then

3. delete all internal vertices of T.
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5.4 Flat wall theorem

Additionally, we define the sets

Xout
I :=

{︁
xout

T
⃓⃓
T ∈ C′

i

}︁
, and

X in
I :=

{︁
xin

T
⃓⃓
T ∈ C′

i

}︁
. ⊣

We establish that every outcome of Lemma 5.4.9 yields a sufficiently large cross-row
grid.

Lemma 5.4.11. Every outcome of Lemma 5.4.9 yields D⤭√
t/2

as a butterfly minor.

Proof. If the outcome is (i), then, by Lemma 5.2.3, we can find a butterfly model of
D⤭√

t/2
within the Kt butterfly minor model.

Hence, we may assume the outcome is (ii) or (iii). Since these two cases are symmetric
it suffices to only consider outcome (ii). In that case, we find a family T ′′ ⊆ T ′ of
size h ≥ fP (t) 1

4 ≥ 1
3 t contained in a single strip S ⊆W which is of the same height

as the tiles in T ′′. We can number the tiles T ′′ = {T1, . . . , Th} such that S − Ti

has one component containing exactly the tiles T1, . . . , Ti−1 for each i ∈ [h]. For
each i ∈ [h] let Si ⊆ W be the slice of width equal to the width of the tiles in T ′′

whose intersection with S is exactly the tile Ti. Additionally, for each i ∈ [h] there
is a slice Hi of W containing Si and both the start- and the end-vertex of the jump
Ji := leave(Ti) such that Hi and Hj are disjoint if i ̸= j. By Lemma 5.4.15, Ji yields
a cross slice H ′

i in Hi such that the cross lies within the strip S. As there are more than
t rows that do not lie in S and we have more than

√︁
t/2 such slices, by Lemma 5.2.5

we obtain a D⤭√
t/2

as a butterfly minor.

Let L and P be directed paths. We say that P is a long jump of L if P is a w-long
jump over W and P ⊆ L. Additionally, we say that P is a jump of L if P is a directed
W -path.

The following lemma deals with long jumps between one colour class and the remaining
three colour classes of a tiling colouring.

Lemma 5.4.12. Let t, k, k′, w ∈ N be positive integers with k ≥ k′ ≥ 2fW (2 ·
t2) + 216fP (2 · t2) + 2 + 2w, w ≥ 2fw(2 · t2) + 27fP (2 · t2), and ξ, ξ′ ∈ [w + 1].
Let D be a digraph containing a cylindrical wall W of order 3k with its triadic
partition W =

(︁
W, k, W1, W2, W3, W 1, W 2, W 3)︁ , and a tiling T = TW,k,w,ξ,ξ′ .

Let {C1, . . . , C4} be a four-colouring of T , i ∈ [4] and W ′ ⊆ W be a slice of width
k′ of W2.
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5 Towards a directed structure theorem

Now let T ′ be the family of all tiles of T that are completely contained in W ′ and let˜︂W be the smallest slice of W that contains all tiles from T ′.

Consider the auxiliary digraph DI
i(˜︂W ) with Xout

I and X in
I . Additionally, we construct

the set YI as follows. Let Q and Q′ be the two cycles of per(W ). For every j ∈
[︁ 3k

4
]︁

,
YI contains exactly one arbitrarily chosen vertex of Q ∩ P o

4j , Q ∩ P i
4j+2, Q′ ∩ P o

4j ,

and Q′ ∩ P i
4j+2 each.

If there exists a family L of pairwise disjoint directed paths with |L| = 27fP (2 · t2)
such that either

• L is a family of directed Xout
I -YI-paths, or

• L is a family of directed YI-X in
I -paths,

then D contains D⤭
t as a butterfly minor.

Proof. In the statement we insert 2 · t2 as the arguments for all functions. This means,
due to Lemma 5.4.11, any application of Lemma 5.4.9 yields a D⤭

t as a butterfly
minor. Thus, we construct a cylindrical wall W ′′′ ⊆W of sufficient size, together with
a family of fP (2 · t2) directed W ′′′-paths that meet the requirements of Lemma 5.4.9.

Without loss of generality, let us assume L is a family of directed Xout
I -YI-paths. The

other case, YI-Xout
I -paths, follows by similar arguments.

Short overview of the proof: Towards our goal, we first show that we can use L to
construct a half-integral Xout

I -YI-linkage L1 such that

1. |L1| = 27fP (2 · t2),

2. there exists a family F ⊆ T ′ with |F| ≤ 27fP (2 · t2), and

3. for every L ∈ L1, every end-vertex u of a jump of L with u ∈ V (˜︂W ) belongs
to a tile from C′

i ∪ F .

Second, we use Theorem 5.4.8 to obtain a family L2 of pairwise disjoint directed
Xout

I -YI-paths of size 26fP (2 · t2) from L1. Third, we remove the cycles and paths of˜︂W that meet tiles from F and obtain a new slice W ′′′ of some cylindrical wall. For
this slice, we construct a tiling and a tier II tiling as well as a half-integral linkage
L3 of size 24fP (2 · t2) from L2. The linkage L3 connects the centres of some tiles
in the tier II tiling to vertices of ˜︂W ′ such that their end-vertices and start-vertices are
mutually far enough apart and every path in L3 is internally disjoint from the new wall
W ′′′. Another application of Theorem 5.4.8 then yields the family L4 of long jumps
necessary for an application of Lemma 5.4.9.
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5.4 Flat wall theorem

The construction of L1 and F . We do construct L1 and F iteratively starting with
L′ := L, L1 := ∅, and F := ∅. As long as L′ is non-empty, perform the following
actions.

Select some path L ∈ L′. In case L is internally disjoint from ˜︂W, add L to L1 and
remove it from L′. Otherwise, let vL be the first vertex of L that belongs to ˜︂W, but
not to a tile from C′

i.

(i) If vL does not belong to any tile from F , let T ∈ T \ Ci be the tile that contains
vL and add T to F . Let R be a shortest directed path from vL to YI in W such
that R avoids all vertices of W that are contained in two different paths of L1
and that is internally disjoint from LvL. Now add LvLR to L1 and remove L
from L′. Note that such a path R must exist because the paths in L are pairwise
disjoint, T was not used for such a re-routing before, and w and k′ are chosen
sufficiently large in proportion to 27fP (2 · t2). Also note that the path R is
exactly the subpath that might cause L1 to be half-integral. However, because
the paths in L′ are pairwise disjoint, we can be sure that R never meets a vertex
contained in two distinct paths of L1.

(ii) If vL belongs to a tile from F , follow along vLL until we encounter a vertex
uL for which one of the following is true:

a) uL belongs to a tile T from T \ (Ci ∪ F) , or

b) every internal vertex of uLL belongs to W − ˜︂W or to some tile from
Ci ∪ F .

If (ii)a, add T to F and then repeat the instructions from (i) but replace vL with
uL. Otherwise, (ii)b holds and we remove L from L′ and add it to L1.

During this construction, for every L ∈ L, we added at most one tile to F and thus
|F| ≤ |L|. Note that, by construction, L1 is indeed a half-integral linkage from
Xout

I to YI. Moreover, we may assume that every L meets each tile in F in at most
27fP (2 · t2) + 1 horizontal path pairs and vertical cycles, because otherwise we can
replace it by a shorter path through W itself.

Obtaining L2. We apply Theorem 5.4.8 to obtain a family L2 of pairwise disjoint
directed Xout

I -YI-paths with V (L2) ⊆ V (L1) and |L2| = 26fP (2 · t2).

Constructing L3. Let us consider W ′′ := ˜︂W [T , i] together with the tiling T ′′ :=
(T , i, w)II

[︂˜︂W]︂
and a four-colouring {˜︁C1, . . . , ˜︁C4}. Note that the width of˜︂W is at most

2w smaller than the width of W ′. Thus, by choice of k′, we obtain that W ′′ is a slice
of width k′′ ≥ fW (2 · t2) + 27fP (2 · t2) (2w + 1) + 1 of some cylindrical wall of
order 3k′′ that is completely contained in W. For each L ∈ L2 let T1

L ∈ Ci such that
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5 Towards a directed structure theorem

start(L) belongs to T1
L. Let K1

L ∈ T ′′ be the tile whose centre is the perimeter of T1
L.

Choose any vertex start(L)′ of degree three in W ′′ that is not contained in any path
of L2, and let RL be a directed path from start(L)′ to start(L) within T1

L. Let L3 be
the, possibly again half-integral, family of directed paths resulting from concatenating
the new paths and the corresponding original path from L2.

Finding L4 and W ′′′. There exists j ∈ [4] such that at least 24fP (2 · t2) of the
paths from L3 start at the centre of a tile from ˜︁Cj . Let L′

3 ⊆ L3 be a family of exactly
24fP (2 ·t2) such paths. Next, let us consider the familyF . Let W ′′′ be the subgraph of
W ′′ induced by all vertical cycles and horizontal path pairs in W ′′ that do not contain
a vertex of some tile in F that belongs to a path in L′

3. Since |F| ≤ 27fP (2 · t2) and
each tile in F meets a path in L′

3 in at most 27fP (2 · t2) + 1 such cycles and pairs
of horizontal paths, it follows that W ′′′ is a slice of width k′′′ ≥ fW (2 · t2) + 2 of
some cylindrical wall W ∗ ⊆W of order 3k′′′. Moreover, W ∗ can be partitioned into
three slices of width k′′′ as in its triadic partition, such that W ′′′ is the slice in the
middle. Let us rename the paths and cycles of W ∗ such that Q∗

1, . . . , Q∗
3k′′′ are the

vertical paths of W ∗, P ∗i
1 , . . . , P ∗i

3k′′′ its in-paths and P ∗o
1 , . . . , P ∗o

3k′′′ its out-paths. We
construct the set Y ∗ as follows: For every j ∈

[︂
3k′′′

4

]︂
, Y ∗ contains exactly one vertex

of Q∗
1 ∩ P ∗1

4j , Q∗
1 ∩ P ∗2

4j+2, Q∗
3k′′′ ∩ P ∗1

4j , and Q∗
3k′′′ ∩ P ∗2

4j+2 each.

Similarly to L1, we now construct L′′
3 iteratively from L′

3. We start with L′′
3 being

empty. Let L ∈ L′
3 be any path and tL be the first vertex after start(L) that L shares

with either W ′′′ or W ∗ −W ′′′. If tL ∈ V (W ′′′), add LtL to L′′
3 . Otherwise, let bL

be the last vertex of L in W ∗ −W ′′′. Then, we can find a path RL in W from bL to
a vertex t∗

L of Y ∗ such that t∗
L is of W ∗-distance at least four to every endpoint of

every path already in L′′
3 , RL is internally disjoint from L, and RL does not contain a

vertex that is contained in two distinct paths from L′′
3 . Add LRL to L′′

3 . Finally, L′′
3 is

a half-integral linkage from the set S∗ := start(L′
3) to Y ∗ of size 24fP (2 · t2), and

thus by Theorem 5.4.8 we can find a family L4 of pairwise disjoint directed paths
from S∗ to Y ∗ with V (L4) ⊆ V (L′′

3) that is of size 23fP (2 · t2). It follows that all
paths in L4 are internally disjoint from W ′′′.

Let us consider the tiles of ˜︁Ci whose centres contain a vertex of S∗. Since W ′′′ might
be a proper subgraph of W ′′, T ′′ is not necessarily a tiling of W ′′′. Each tile T ∈ T ′′,
however, contains a tile T′ of width fw(2 · t2) with the same centre. Since T is
surrounded by at most 8 tiles from F in W ′, we may find, among the 23fP (2 · t2)
many such tiles, a family J of fP (2 · t2) tiles that are pairwise disjoint. Thus, because
they all are constructed from the family ˜︁Ci, they meet the distance requirements of the
tiles in Lemma 5.4.9. Hence, we can apply Lemma 5.4.9 and by Lemma 5.4.11 we
obtain the desired butterfly minor D⤭

t .
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5.4 Flat wall theorem

The above lemma allows us to argue that enough long jumps that all start, respectively
end, in the centre of tiles from a single colour class but end, respectively start, in
tiles from the remaining three classes yield a cross-row grid as a butterfly minor. By
utilising a second auxiliary digraph we can make use of Theorem 5.4.7 to also prove
this for long jumps between tiles of the same colour.

Definition 5.4.13 (Auxiliary Digraph Type II). Let t, k, k′, w ∈ N be positive in-
tegers such that k ≥ k′ ≥ 2fW (t), w ≥ 2fw(t), and ξ, ξ′ ∈ [w + 1] . Let D
be a digraph containing a cylindrical wall W of order 3k with its triadic parti-
tion W =

(︁
W, k, W1, W2, W3, W 1, W 2, W 3)︁ , and a tiling T = TW,k,w,ξ,ξ′ . Let

{C1, . . . , C4} be a four-colouring of T , i ∈ [4] and W ′ ⊆W be a slice of width k′ of
W2 such that no tile of Ci contains a vertex of the perimeter of W ′. Then, DII

i (W ′) is DII
i (W ′)

the digraph obtained from D by performing the following construction steps.

For every T ∈ Ci, such that T contains a vertex of W ′, we do the following:

1. add a new vertex xT, and

2. for every vertex v that belongs to the interior or the centre of T, introduce the
edges (xT, v) and (v, xT) .

Once this is done, delete all vertices of W ′ that do not belong to tiles of Ci that are
contained in W ′. Let Xi

II be the collection of all newly introduced vertices xT. ⊣

Lemma 5.4.14. Let t, k, k′, w ∈ N be positive integers, and ξ, ξ′ ∈ [w + 1] where
w ≥ 2fw(2 · t2). Let D be a digraph containing a cylindrical wall W of order 3k
with vertical paths Q1, . . . , Q3k, in-paths P i

1, . . . , P i
3k and out-paths P o

1 , . . . , P o
3k,

where k ≥ k′ ≥ 4fW (2 · t2)2. Also, letW = (W0, k, W1, W2, W3, W 1, W 2, W 3)
be its triadic partition, W ∗ ⊆W2 be a slice of width k′, T = TW,k,w,ξ,ξ′ be a tiling,
{C1, . . . , C4} a four-colouring and i ∈ [4] a fixed colour.

Then, D contains D⤭
t as a butterfly minor, or there exists a set Z2

i,ξ,ξ′ ⊆ T with
|Z2

i,ξ,ξ′ | ≤ 8fP (2 · t2) and a set Z2
i,ξ,ξ′ ⊆ V (D −W ) with |Z2

i,ξ,ξ′ | ≤ 8fP (2 · t2)
such that every directed V (W0)-path in D−Z2

i,ξ,ξ′ whose start- and end-vertex belong
to different tiles of Ci contains a vertex of some tile in Z2

i,ξ,ξ′ .

Proof. Let W ′ be the largest slice of W ∗ such that no tile of Ci contains a vertex
of per(W ). Let us consider the auxiliary digraph DII

i (W ′) with the set Xi
II of newly

added vertices. By applying Theorem 5.4.7 to the set Xi
II in DII

i (W ′), we either find a
set Z of size at most 8fP (2 · t2) that hits all directed Xi

II-paths, or there exists a family
J ′ of 4fP (2 · t2) pairwise disjoint directed Xi

II-paths in DII
i (W ′).
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5 Towards a directed structure theorem

In case we obtain the latter, by construction of DII
i (W ′), no path inJ ′ contains a vertex

of W2. Back in the digraph D, let us consider the tier II tiling T ′′ := (T , i, w)II[W ′]
of width w of W ′′ := W ′[T , i] . Note that the width of W ′ is at most 2w smaller than
the width of W ∗. Thus, by choice of k, W ′′ contains a cylindrical wall W ′′′ of order
fW (2 · t2) such that the perimeter of every tile T ∈ Ci for which xT is an endpoint
of some path in J ′ bounds a cell of W ′′′. Let T ′′′ be a tiling of W ′′′ such that the
perimeter of every T ∈ Ci for which xT is a start- or end-vertex of a path in J ′ is
the centre of some tile in T ′′. We now consider a four-colouring {C′

1, . . . , C′
4} of T ′′′.

Then, there exists j ∈ [4] and a family J ′′ of size fP (2 · t2) such that the start-vertex
of every path in J ′′ belongs to a tile of Ci whose perimeter is the centre of a tile in C′

j .
For every J ′′ ∈ J ′′ do the following: Let T1, T2 ∈ Ci be the two tiles such that J ′′ is
a directed xT1 -xT2 -path. Then, find a directed W ′′′-path J that starts on the perimeter
of T1 and ends on the perimeter of T2. Add the path J to a family J . Hence, J is a
family of pairwise disjoint directed W ′′′-paths whose start- and end-vertices all lie on
the centres of distinct tiles of T ′′ and that all start at the centres of tiles from C′

j . Thus,
we can apply Lemma 5.4.9 and by Lemma 5.4.11 we find D⤭

t as a butterfly minor.

Therefore, we may assume that we find a set Z of size at most 8fP (2 · t2) that hits
all directed Xi

II-paths. Let Z2
i,ξ,ξ′ := Z ∩ V (D), and Z2

i,ξ,ξ′ := {T ∈ T | xT ∈ Z}.
Since |Z| ≤ 2fP (2 · t2), the demanded bounds on the sizes of the two sets are met.
Moreover, because Z meets every directed Xi

II-path in DII
i (W ′), every directed path

with start- and end-vertex in distinct tiles of Ci which is otherwise disjoint from W
contains a vertex from Z2

i,ξ,ξ′ or meets a tile from Z2
i,ξ,ξ′ .

5.4.3 Proof of Theorem 5.4.3

As we have seen in Lemma 5.2.5, finding sufficiently many cross slices in a wall yields
a cross-row grid as a minor. Thus, we introduce the following lemmata, which describe
ways to find cross slices in a wall.

Lemma 5.4.15. Let W be a wall and T a tiling of W and d ∈ N+. Let P be a path
with start-vertex in the centre of a tile Ti,j,d ∈ T and end-vertex in the centre of a tile
Ti′,j′,d ∈ T with |i− i′| ≥ d + 1, then the slice between Qmin{i,i′} and Qmax{i,i′}+d

contains a cross which lies in the strip between Rmin{j,j′}−1 and Rmax{j,j′}+d+1.

Proof. Without loss of generality we fix the parametrisation of W such that the centres
of the tiles have an out-path as upper and an in-path as lower perimeter. The proof for
the other case can be obtained by swapping in- and out-paths in the proof. Furthermore,
we assume without loss of generality that i > i′, the other case work analogously.
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5.4 Flat wall theorem

Let ℓ := max{j, j′}+ d and u := min{j, j′}, that is, the strip between row Rℓ and
Ru contains all vertices of Ti,j,d and Ti′,j′,d. Now we build a path P ′ extending P by
starting in the upper right corner of Ti,j,d, then within Ti,j,d reach start(P ), follow P
to Ti′,j′,d and then, within Ti′,j′,d, reach the lower left corner of Ti′,j′,d.

As |i− i′| ≥ d + 1, there is a vertical cycle Q separating the two tiles.

Next, we build a path P ′′ by starting in the intersection of Qi′ and P o
ℓ−1, following

along P o
ℓ−1 until meeting Q, then following along Q until meeting P o

u+1 and finally
following P o

u+1 until meeting Qi+d.

The two paths P ′ and P ′′ yield the desired cross.

Lemma 5.4.16. Let W be a wall and T a tiling of W. If there is a perimeter jump P
over W, then W contains a cross slice.

Proof. We consider the case where P ends on the perimeter of W (the case where
P starts on the perimeter works similarly). Let T ∈ T be the tile in which P starts.
There are two vertical paths, Qi and Qi+1, separating T from per(W ). Without loss
of generality, assume that the column index of T is larger than i + 1 and end(P ) lies
on Q1. We consider the slice between Qi+1 and the left path Qℓ of the perimeter of
T. Let P i

j be the lower path of the perimeter of T. Then, P o
j+1 contains a path P1 from

Qi+1 to Qℓ that is disjoint from P. Next, we extend P to a path P2 by starting with
the shortest path within T from Qℓ to start(P ), then we add P, from end(P ) follow
along Q1 until meeting P o

j+2, and then follow P o
j+2 until reaching Qi+1. Together, P1

and P2, yield a cross over the slice between Qi+1 and Qℓ.

Cross slices are the obstruction to flatness that we use in our proofs in order to construct
the cross-row grid. Thus, we prove next that walls without cross slices do not allow
for certain non-planar behaviour.

Lemma 5.4.17. Let W be a wall of order k ≥ 5 in a digraph D that is free of cross
slices. Then, there is no directed path that is internally disjoint from W whose start-
and end-vertex are separated by two vertical paths of W.

Proof. Suppose such a path P exists and let Qi and Qi+1 be the vertical paths of the
wall separating the start- and the end-vertex of P. By possibly extending P we can
assume that P starts and ends in branch vertices of W. Additionally, assume without
loss of generality that P starts on a vertical path Qr with r ≥ i + 1.

Let Qℓ be the vertical path containing end(Q) and Ru be the row containing end(Q).
Moreover, let Rb be the row containing start(Q). We show that the slice between Qℓ
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5 Towards a directed structure theorem

and Qr contains a cross. To this end we construct a path P ′ starting in the intersection
of P o

u−1, from there following P o
u−1 until reaching Qi (this subpath might be empty as

i = ℓ is possible), then we follow Qi until reaching P o
b+1, then we follow along P o

b+1
until reaching Qr (again this part might be empty as possibly r = i + 1). Together, P
and P ′ yield a cross in the slice between Qℓ and Qr, a contradiction.

Lemma 5.4.18. Let W be a wall of order k ≥ 5 in a digraph D that is free of cross
slices. Then, there is no directed path that is internally disjoint from W whose start-
and end-vertex are separated by a row of W and at least one of the endpoints does not
lie on per(W ).

Proof. Suppose there is such a path P and let Rj be the row separating its start- and
end-vertex. Let Qi be the vertical path of W containing start(P ). By Lemma 5.4.17,
we obtain that end(P ) lies on Ci+1, Ci or Ci+1.

Consider end(P ) lying on Ci−1, then P together with the subpath of P o
j yield a cross

in the slice between Ci−1 and Ci, a contradiction.

Similarly, in case that end(P ) lies on Ci+1 we obtain a cross in the slice between Ci

and Ci+1 built by P and the subpath of P i
j starting on Ci+1 and ending on Ci, which

again yields a contradiction.

Next, consider the case that end(P ) lies on Ci as well. By assumption, we have
1 < i < k. Let Rm be the row containing start(P ) and Rm′ be the row containing
end(P ), so we have |m−m′| ≥ 2. We show that there is a cross in the slice between
Ci−1 and Ci+1. First, we construct a path P1 from Ci−1 to Ci+1. We start in the
intersection of Ci−1 and P o

m and follow P o
m until reaching Ci, we follow Ci until

reaching start(P ) (this subpath is empty if start(P ) lies on P o
m), then we append P,

next, from end(P ) we follow Ci again until reaching P o
m′+1, we then follow P o

m′+1
until reaching Ci+1. Second, we choose P2 to be the subpath of P i

m+1 that starts in
Ci+1 and ends in Ci−1. Together P1 and P2 yield a cross over the slice between Ci−1
and Ci+1, a contradiction.

Lemma 5.4.19. Let D be a digraph and W a wall in D. If W does not contain any
cross slices, then W is flat.

Proof. In favour of readability we use D to refer to the strongly connected component
of the digraph D containing W. Let k + 4 be the order of W and let W − ⊆W be the
subwall of order k contained in W − border(W ).

Let X ′
1 be the minimal set of vertices containing every vertex that is reachable from

W − in D − border(W ) and let Y1 := V (D) \ X ′
1. Then, (Y1, X1)� where X1 :=
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X ′
1 ∪ V (border(W )) is one of the required separations for (F2). Let X ′

2 be the
minimal set of vertices containing every vertex that reaches W − in D − border(W )
and let Y2 := V (D) \ X ′

2 Then, (X2, Y2)� with X2 := X ′
2 ∪ V (border(W )) is the

other separation required for (F2).

Consider the cylindrical society (compass(W ), Ω1, Ω2) with sets V (Ω1) = V (Q1)
and V (Ω2) = V (Qk+4). Let ∆′ be obtained from a closed disk ∆′′ by removing an
open disk disjoint from the boundary of ∆′′. Fix an embedding Γ of W with V (Ω1)
being exactly the vertices in bd(∆′′) and V (Ω2) being exactly the vertices in bd(∆′),
both consistent with the appearance of the vertices along the vertical cycles in W. Now,
S := (Γ, W, ∅) is a skeleton. We obtain Γ+ from Γ by embedding a bridge of a brick
with in- and out-attachments in more than one perimeter into such a brick. Otherwise,
embed bridges into any brick they have an attachment in.

Claim 1. The tuple ρ := (Γ+,S) is a S2-decomposition.

Proof. Suppose there is an undirected cycle C in DS such that there is a directed path
P between H+

1 and H+
2 . By definition of H+

1 and H+
2 , start(P ) can be reached from

a vertex of H+
1 or H+

2 and end(P ) can reach a vertex of H+
1 or H+

2 . Thus, we can
assume that start(P ) and end(P ) are vertices of W. If there are at least two vertical
paths separating start(P ) and end(P ), then by Lemma 5.4.17, we obtain a cross slice,
a contradiction. So both start(P ) and end(P ) lie in the slice between Qi and Qi+2
for some i. By possibly prolonging P at both ends, we can also assume that both
start(P ) and end(P ) lie in a row of W and still in the slice between Qi and Qi+2. By
definition of H+

1 and H+
2 there is a whole row Rj separating start(P ) and end(P ).

By Lemma 5.4.18, this implies that there is a cross slice in W, a contradiction.

Claim 1 ensures (F3).

Claim 2. The strongly connected component D′ has a torus decomposition centred at
ρ.

Proof. Suppose there is an undirected cycle C in DS such that there is a directed path
P between H+

1 and H+
2 . Assume without loss of generality that H+

2 contains D −
compass(W ). By, Claim 1, there are no jumps between H+

1 and H+
2 ∩ compass(W ),

so P is a path between H+
1 and D − compass(W ). As D is strongly connected it can

be extended into a perimeter jump over W and thus, by Lemma 5.4.16, W contains a
cross slice, a contradiction.

Claim 2 ensures (F4), so in the end we obtain that W is flat.
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5 Towards a directed structure theorem

We need the following local version of Menger’s Theorem in order to complete the
proof of Theorem 5.4.3.

Theorem 5.4.20 (Menger’s Theorem [Men27]). Let D be a digraph and X, Y ⊆ V (D)
be two sets of vertices, then the maximum number of pairwise disjoint directed X-
Y -paths in D equals the minimum size of a set S ⊆ V (G) such that every directed
X-Y -path in D contains a vertex of S.

Now we want state the proof of our main theorem. Simply put, we consider two cases:
either there are enough long jumps to build a cross-row grid or we can find a large
slice in the wall that does not contain any long jumps. Then, we divide this slice into
smaller parts. Either we find short jumps in enough such parts to build a cross-row
grid again, or we find a part free of any jumps which then yields the flat wall.

Based on this idea the proof is split into two phases. A vertex of a wall W is said to be
marked if it belongs to a separator obtained from Theorem 5.4.20 and Lemma 5.4.12,
or through Lemma 5.4.14. A tile is marked if it contains a marked vertex or is replaced
by a marked vertex in the construction of an auxiliary graph (type I or II). That is, we
“mark” every vertex or tile involved in a long jump. A slice of W is said to be clear if
it does not contain vertices that are marked. This happens in two steps, one for jumps
between tiles of different colour and one for jumps between tiles of the same colour.
In each of the two steps we introduce families of marked tiles and vertices. In the end
we can bound the number of columns containing marked tiles. This gives us a clear
slice of W, which we then use in phase two of the proof. In this second phase we split
the clear slice into smaller parts, identify among those a part which does not contain
any jumps or crossings, and prove that this part is flat.

Theorem 5.4.3 (Directed flat wall theorem). There exist functions ρW : N×N→ N

and αW : N → N such that for all integers r, t ≥ 1 and all digraphs D that do
not contain D⤭

t for every ρW (r, t)-wall W in D there exist a set A ⊆ V (D) with
|A| ≤ αW (t) and an r-wall W ′ ⊆W −A which is flat under A.

Proof. Let r, t ∈ N be positive integers, D be a digraph and W be a cylindrical wall
of order ρW (t, r), where ρW (t, r) will be determined throughout the proof. So, we
introduce constants d1 and d2, for which we make more and more assumptions in the
form of lower bounds. Let us assume

ρW (t, r) ≥ 3d1.

Then, W is a cylindrical wall of order 3d1 with vertical paths Q1, . . . , Q3k, in-paths
P i

1, . . . , P i
3k and out-paths P o

1 , . . . , P o
3k and the triadic partitionW = (W, d1,˜︂W1,
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˜︂W2, ˜︂W3, ˜︂W 1, ˜︂W 2, ˜︂W 3). Throughout the proof let us fix ˜︂W2

w := 2fw

(︁
2 · t2)︁+ 27fP

(︁
2 · t2)︁ .

Phase I Phase I is divided into 211+8fP (2·t2)fP (2 · t2) rounds, each of which is
divided into two steps, Step I and Step II. Let i ∈ [211+8fP (2·t2)fP (2 · t2)]. After
round i is complete we require the following sets and graphs as its output which then
can be used in round i + 1.

• FI,i ⊆ V (D) such that

|FI,i| ≤ i
(︂

211 (w + 1)2
fP

(︁
2 · t2)︁+ 25 (w + 1)2

fP

(︁
2 · t2)︁)︂ ,

which are the vertices marked in round i

• Di := D − FI,i,

• FI,i ⊆
⋃︁

ξ,ξ′∈[w+1]T˜︁W2,d1,w,ξ,ξ′
of size at most

i
(︂

211 (w + 1)2
fP

(︁
2 · t2)︁+ 25 (w + 1)2

fP

(︁
2 · t2)︁)︂ ,

which are the tiles marked in round i, and

• a slice Wi of Wi−1 of width(︂(︂
212 (w + 1)3

fP

(︁
2 · t2)︁+ 1

)︂
·

(︂
26 (w + 1)3

fP

(︁
2 · t2)︁+ 1

)︂)︂211+8fP (2·t2)fP (2·t2)−i

· d2

that is clear with respect to FI,i and FI,i, such that every long jump over Wi in
Di contains a vertex of some tile in FI,j \ FI,j−1 for every j ∈ [i].

For i = 0 we define D0 := D, W0 := ˜︂W2 as a slice of itself, and FI,i := ∅ as well
as FI,i := ∅. In this context, whenever we ask for a clear slice of the current slice
Wi or W ′

i we ask for a slice W ′ such that there do not exist ξ, ξ′ ∈ [w + 1] whose
corresponding tiling of ˜︂W2 has a tile T that is marked or contains a vertex of any
separator set found so far, which satisfies V (T) ∩ V (W ′) ̸= ∅.
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5 Towards a directed structure theorem

To be able to find a slice of width d2 after the last round we therefore must fix

d1 ≥
(︂(︂

212 (w + 1)3
fP

(︁
2 · t2)︁+ 1

)︂
·

(︂
26 (w + 1)3

fP

(︁
2 · t2)︁+ 1

)︂)︂211+8fP (2·t2)fP (2·t2)
· d2,

and we further assume d2 ≥ 216fW (2 · t2)2 to make sure we can apply Lemma 5.4.12
and Lemma 5.4.14 in every round. Note that this is not yet the final lower bound on
d2, just an intermediate assumption.

Next we describe the steps we perform in every round. Let i ∈ [211+8fP (2·t2)fP (2·t2)]
and suppose we are given sets FI,i−1, FI,i−1 and graphs Di−1, Wi−1 as input that
satisfy the required invariants.

Step I: Let kI
i be defined as follows.

kI
i :=

(︂(︂
212 (w + 1)3

fP

(︁
2 · t2)︁+ 1

)︂
·

(︂
26 (w + 1)3

fP

(︁
2 · t2)︁+ 1

)︂)︂211+8fP (2·t2)fP (2·t2)−(i−1)
· d2

For each of the two possible parametrisations of W, and for every possible choice
of ξ, ξ′ ∈ [w + 1], we consider the tiling T := TWi−1,kI

i
,w,ξ,ξ′ together with its four-

colouring {C1, . . . , C4}. For each j ∈ [4], we consider the smallest slice W ′ of W
that contains all vertices which belong to some tile of T . Consider DI

j(W ′) to be the
auxiliary digraph of type I obtained from Di−1 with the sets

Xout
I :=

{︁
xout

T

⃓⃓
T ∈ Cj

}︁
, and

X in
I :=

{︁
xin

T

⃓⃓
T ∈ Cj

}︁
.

Additionally, we construct the set YI as follows: Let Q and Q′ be the two cycles of
per(W ). For every j ∈

[︁ 3d1
4
]︁

, YI contains exactly one vertex of Q∩P o
4j , Q∩P i

4j+2,

Q′ ∩ P o
4j , and Q′ ∩ P i

4j+2 each. Then, remove all vertices of YI that do not belong to
Di−1. Note that, by choice of d1 and the bound on FI,i−1, this does not significantly
decrease the size of YI.

Then, if there is a family of 27fP (2 · t2) pairwise disjoint directed Xout
I -YI-paths in

DI
j(W ′), Lemma 5.4.12 implies the existence of a D⤭

t butterfly minor, a contradiction.
So, we may assume that there does not exist such a family and thus, by Theorem 5.4.20,
we find a set Z1 ⊆ V (DI

j(W ′)) of size at most 27fP (2 · t2) that meets all these
paths. With a similar argument, we either find a D⤭

t butterfly minor, which would
yield a contradiction, or a set Z2 ⊆ V (D1

j (W ′)) of size at most 27fP (2 · t2) that
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meets all directed YI-X in
I -paths in DI

j(W ′). Let π ∈ [2] indicate which of the two
parametrisations of W we are currently considering. We define the following two sets:

Zπ,ξ,ξ′,j := (Z1 ∪ Z2) ∩ V (D) , and
Zπ,ξ,ξ′,j :=

{︁
T ∈ T

⃓⃓ (︁
V (T) ∪ {xout

T , xin
T}
)︁
∩ (Z1 ∪ Z2) ̸= ∅

}︁
.

Note that max{|Zπ,ξ,ξ′,j |, |Zπ,ξ,ξ′,j |} ≤ 28fP (2 · t2).

As we do not find a D⤭
t butterfly minor at any point, the sets Zπ,ξ,ξ′,j and Zπ,ξ,ξ′,j

are well defined for every possible choice of π ∈ [2], ξ, ξ′ ∈ [w + 1], and j ∈ [4].
Using these we define the following two sets of marked vertices and tiles:

F ′
I,i :=

⋃︂
π∈[2]

⋃︂
ξ,ξ′∈[w+1]

⋃︂
j∈[4]

Zπ,ξ,ξ′,j , and

F ′
I,i :=

⋃︂
π∈[2]

⋃︂
ξ,ξ′∈[w+1]

⋃︂
j∈[4]

Zπ,ξ,ξ′,j .

Consequently, we have

max{
⃓⃓
F ′

I,i
⃓⃓
,
⃓⃓
F ′

I,i
⃓⃓
} ≤ 211 (w + 1)2

fP

(︁
2 · t2)︁ .

Removing all vertices in F ′
I,i and tiles in F ′

I,i yields a clear slice W ′
i ⊆Wi−1 of width

(︂
212 (w + 1)3

fP

(︁
2 · t2)︁+ 1

)︂211+8fP (2·t2)fP (2·t2)−i

·

(︂
26 (w + 1)3

fP

(︁
2 · t2)︁+ 1

)︂211+8fP (2·t2)fP (2·t2)−i+1
· d2

which does not contain a marked vertex. Note that we loose the additional factor
of 2 (w + 1) because we remove whole tiles of width w from Wi−1. Let D′

i :=
Di−1 − F ′

I,i. So now we have a preliminary version for all the structures we need to
start the next round. This concludes Step I of round i.

Claim 1. Every long jump J over W ′
i in D′

i whose endpoints belong to tiles of different
colour contains a vertex of a tile fromFI,j \FI,j−1 for every j ∈ [i−1], and it contains
a vertex of a tile from F ′

I,i.

Proof. Suppose J is also a long jump over Wi−1 in Di−1, then, as J still exists in D′
i,

the tile in whose centre J starts, or the tile in whose centre J ends for some choices of
π ∈ [2], ξ, ξ′ ∈ [w + 1], and j ∈ [4], are marked and therefore do not belong to W ′

i .
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Hence, J contains some vertex of Wi−1 as an internal vertex. Let Ts be the tile of
W ′

i in whose centre J starts, and let T be the first tile from the same tiling of Wi−1,
that J meets after Ts. Let J ′ be the shortest subpath of J with endpoints in Ts and
T. Then, J ′ is a long jump over Wi−1 in Di−1. Therefore, by our assumptions on the
input of round i of Phase I, the first part of our claim is satisfied. Moreover, if T has a
different colour than Ts, then T is marked. So assume T has the same colour as Ts.
Nonetheless, because Ts and the tile Tt that contains the endpoint of J in the current
tiling have different colours, J contains a directed subpath J ′′ which is a long jump
over Wi−1 and attaches to tiles of different colour. Hence our claim follows.

With this we are ready for Step II of round i.

Step II: For this step let

kII
i :=

(︂
212 (w + 1)3

fP

(︁
2 · t2)︁+ 1

)︂211+8fP (2·t2)fP (2·t2)−i

·

(︂
26 (w + 1)3

fP

(︁
2 · t2)︁+ 1

)︂211+8fP (2·t2)fP (2·t2)−i+1
· d2.

We are mainly concerned with the digraph D′
i. In Step II it suffices to fix one parametri-

sation of W because the construction of the type II auxiliary digraph leaves the com-
plete interior of tiles that are in the same colour class intact instead of only their centres.
For every pair of ξ, ξ′ ∈ [w + 1] we consider the tiling T := TW ′

i
,kII

i
,w,ξ,ξ′ together

with a four-colouring {C1, . . . , C4}. Then, for every j ∈ [4] we apply Lemma 5.4.14,
which, as it cannot yield a D⤭

t , produces two sets

Z2
ξ,ξ′,j ⊆ V (D′

i) of size at most 23fP

(︁
2 · t2)︁ , and

Z2
ξ,ξ′,j ⊆ T of size at most 23fP

(︁
2 · t2)︁ ,

such that every directed V (W ′
i )-path whose endpoints belong to different tiles of Cj ,

contains a vertex of some tile in Z2
ξ,ξ′,j . This allows us to form the two following sets

of marked vertices and tiles:

F ′′
I,i :=

⋃︂
ξ,ξ′∈[w+1]

⋃︂
j∈[4]

Z2
ξ,ξ′,j , and

F ′′
I,i :=

⋃︂
ξ,ξ′∈[w+1]

⋃︂
j∈[4]

Z2
ξ,ξ′,j .

As a result we obtain max{|F ′′
I,i|, |F ′′

I,i|} ≤ 25 (w + 1)2
fP (2 · t2), and we are able to

produce the two sets FI,i of marked vertices and FI,i of marked tiles, which are passed
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on to the next round.

FI,i := F ′
I,i ∪ F ′′

I,i ∪ FI,i−1, and
FI,i := F ′

I,i ∪ F ′′
I,i ∪ FI,i−1.

The bounds on FI,i and FI,i follow from the bounds on F ′
I,i and F ′′

I,i, F ′
I,i and F ′′

I,i, and
the assumptions on the input of round i respectively.

The pigeon hole principle allows us to find a clear slice Wi ⊆W ′
i of width(︂(︂

212 (w + 1)3
fP

(︁
2 · t2)︁+ 1

)︂
·

(︂
26 (w + 1)3

fP

(︁
2 · t2)︁+ 1

)︂)︂211+8fP (2·t2)fP (2·t2)−i

· d2,

which does not contain a marked vertex, that is, no vertex from FI,i or FI,i. Similar to
Step I, we loose the additional factor of 2 (w + 1) because we remove whole tiles of
width w from W ′

i . Finally, let Di := D′
i − F ′′

I,i, which concludes Step II of round i.

Claim 2. Every long jump over Wi in Di contains a vertex of some tile inFI,j \FI,j−1
for every j ∈ [i].

Proof. Let J be a long jump over Wi in Di, and let T be a tiling of ˜︂W2 defined by
w and some ξ, ξ′ ∈ [w + 1] such that J starts at the centre of some tile Ts ∈ T .
Suppose all tiles of T that contain vertices of J belong to the same colour. Then, J
must have existed during the corresponding part of Step II of round i and thus either
Ts or Tt ∈ T , which is the tile that contains the endpoint of J, must have been marked,
a contradiction. Therefore J must contain at least one tile of a colour different than the
one of Ts. Moreover, we may assume Ts and Tt to be of the same colour as otherwise
we would be done by Claim 1. Next, suppose J is also a long jump over Wi−1, then
again J would have been considered during Step II as a long jump connecting two
tiles of the same colour and thus Ts or Tt would have been marked, a contradiction.
Therefore, J contains a vertex of some tile from Wi−1. Let J ′ be a shortest subpath
from Ts to some tile T of Wi−1, then J ′ is a long jump over Wi−1 and thus J contains
a vertex of some tile of FI,j \ FI,j−1 for every j ∈ [i− 1] by our assumptions on the
input of round i. If T has a different colour than Ts, then T would have been marked
in Step I of round i, and if T shares the colour of Ts, then it must have been marked in
Step II of round i. Either way our claim follows.

From Claim 2 it follows that we satisfy all requirements for the output of round i and
thus, round i is complete. We continue until we finish round 211+8fP (2·t2)fP (2 · t2)
and obtain the following four objects as its output:
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• a slice WI := W211+8fP (2·t2)fP (2·t2) of width d2,

• a set AI := FI,211+8fP (2·t2)fP (2·t2) with

|AI| ≤ (2 · t2)28260+210(2·t2)8
,

• a digraph DI := D211+8fP (2·t2)fP (2·t2) = D −AI, and

• a sequence FI,1 ⊆ FI,2 ⊆ · · · ⊆ FI,211+8fP (2·t2)fP (2·t2) such that for every

i ∈ [211+8fP (2·t2)fP (2 · t2)] every long jump over WI in the graph DI contains
a vertex of some tile in FI,i \ FI,i−1.

This brings us to the final claim of Phase I.

Claim 3. If there is a long jump over WI in DI, then there exists a D⤭
t as a butterfly

minor in D.

Proof. Let J be a long jump over WI in DI. We fix a parametrisation of W, ξ, ξ′ ∈
[w + 1], and c ∈ [4] such that there exists a tile Ts ∈ T := TW0,d1,w,ξ,ξ′ of colour c
whose centre contains the start-vertex of J. Let Tt ∈ T be the tile that contains the
end-vertex of J. As J is a long jump, note that Ts ̸= Tt. We claim that every internal
vertex of J that belongs to W belongs to some tile fromFI,211+8fP (2·t2)fP (2·t2). This is
because otherwise we could find a directed path from the centre of Ts to the perimeter
of ˜︂W2, contradicting the construction in Step I of Phase I, or we would have a directed
path between two tiles of the same colour, where both of them are unmarked. This
second outcome contradicts the construction in Step II of Phase I.

Constructing L0. Now, we create a family L0 of 29+8fP (2·t2) · fP (2 · t2) pairwise
disjoint subpaths of J with the following properties:

1. for every L ∈ L0, let TL,1 be the tile of T containing start(L) and TL,2
be the tiles of T containing end(L), then there exist distinct iL,1, iL,2 ∈
[211+8fP (2·t2)fP (2 · t2)] such that start(L) is a vertex of a tile from FI,iL,1 \
FI,iL,1−1, and end(L) is a vertex of some tile in FI,iL,2 \ FI,iL,2−1, and

2. if L, L′ ∈ L0 are distinct, then {iL,1, iL,2} ∩ {iL′,1, iL′,2} = ∅.

We do so iteratively. We start by initialisingL0 = ∅ and I0 := [211+8fP (2·t2)fP (2·t2)]
and for every subset I ′ ⊆ I0, we define the family FI′ :=

⋃︁
i∈I′ FI,i \ FI,i−1. Next,

we add new paths to L0 while taking smaller and smaller subsets of I0. Also, define
tL0 := start(J).
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5.4 Flat wall theorem

Let q ∈ [29+8fP (2·t2)fP (2 · t2)] and assume that the paths L1, . . . , Lq−1 together
with the tiles, indices and the set Iq−1 have already been constructed. Follow along J,
starting from tLq−1 , until the next time we encounter the last vertex sLq of some tile
fromFIq−1 before J leaves said tile again. Let TLq,1 ∈ T be the tile that contains sLq

,
and let iLq,1 ∈ Iq−1 be the integer such that sLq

belongs to a tile ofFI,iLq,q
\FI,iLq,q−1.

Then, let Lq be the shortest subpath of J that starts in sLq
and ends in a vertex tLq

which belongs to a tile from FI,iLq,2 \FI,iLq,2−1, where iLq,2 ∈ Iq−1 \ {iL−q,1}. We
choose TLq,2 ∈ T to be the tile that contains tLq and set Iq := Iq−1 \ {iLq,1, iLq,2}.
Note that tLq J still contains a vertex from some tile in FI,j \ FI,j−1 for every j ∈ Iq.
Add Lq to L0.

With every iteration we remove exactly two members from I0 and, due to |I0| =
211+8fP (2·t2)fP (2 ·t2), this means that by the time we reach some q for which Iq = ∅,
we have indeed constructed 210+8fP (2·t2)fP (2 · t2) paths as required.

Obtaining L5. There exist c′ ∈ [4] and a linkage L1 ⊆ L0 of size 28+8fP (2·t2)fP (2 ·
t2) such that each path L ∈ L1 has at least its start- or end-vertex in Cc′ . Thus, we can
find a linkage L2 ⊆ L1 of size 27+8fP (2·t2)fP (2 · t2) such that every path in L2 starts
in a tile of Cc′ , or every path in L2 ends in a tile of Cc′ . Without loss of generality, we
may assume that every path in L2 starts in a tile of Cc′ , because the other case follows
with similar arguments.

Let ˜︂W ′ be the smallest slice of W such that ˜︂W ′ contains all tiles from Cc′ , but no
tile from Cc′ meets the perimeter of ˜︂W ′. Then, let ˜︁T := (T , c′, w)II

[︂˜︂W ′
]︂

be the tier

II tiling of ˜︂W := ˜︂W ′[T , c′, w] . Since the paths in L2 are pairwise disjoint, we can
extend each L ∈ L2 such that it starts on the centre of the tile of ˜︁T which encloses
its endpoint in W, while making sure that the resulting family of paths is still at least
half-integral. Similarly, wherever necessary, we may extend the paths through W such
that each of them also ends in a tile of ˜︁T . Indeed, we can even guarantee that the start-
and end-vertices of the resulting paths are mutually at ˜︂W -distance at least four. Let
L3 be the resulting half-integral linkage.

Next, consider the four-colouring { ˜︁C1, . . . , ˜︁C4} of ˜︁T . There exists ˜︁c ∈ [4] and a family
L4 ⊆ L3 of size 25+8fP (2·t2)fP (2 · t2) such that every path in L4 starts at the centre
of some tile from C˜︁c. It follows from the construction of L0 that no two paths in L4
start in the same tile.

By a similar argument, there exists a family L5 ⊆ L4 of size 24+8fP (2·t2)fP (2 · t2)
such that either none, or all paths in L5 end in tiles of ˜︁C˜︁c.
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5 Towards a directed structure theorem

Obtaining D⤭
t . If none of the paths in L5 end in tiles of ˜︁C˜︁c, we can extend every

path in L5 towards the perimeter of ˜︂W such that the resulting family L6 of paths
remains at worst half-integral, and the start- and end-vertices of the resulting paths are
mutually at ˜︂W -distance at least four. By Theorem 5.4.8, we obtain a family L7 of size
23+8fP (2·t2)fP (2 · t2) such that V (L7) ⊆ V (L6), and the paths in L7 are pairwise
vertex disjoint. Hence, Lemma 5.4.12 yields the existence of a D⤭

t butterfly minor
and our claim follows.

If all of the paths in L5 end in tiles of ˜︁C˜︁c, we consider two subcases. Let X be the
family of all tiles of ˜︁T \ ˜︁C˜︁c that contain an internal vertex of some path in L5 but no
start- or end-vertex of any path in L5.

Recall the following two definitions:

1. If L and P are directed paths, we say that P is a long jump of L if P is a w-long
jump over W and P ⊆ L.

2. P is a jump of L, if P is a directed V (W )-path.

If |X | ≥ 28fP (2 · t2), then we can use the technique from the first part of the proof of
Lemma 5.4.12 to construct a half-integral family L6 such that

1. |L6| = 24+8fP (2·t2)fP (2 · t2), and

2. for every L ∈ L6, every endpoint u of a jump of L with u ∈ V (˜︂W ) belongs to
a tile from ˜︁C˜︁c ∪ X .

Then, we apply Theorem 5.4.8 to obtain a linkage L7 of size 23+8fP (2·t2)fP (2 · t2)
with V (L7) ⊆ V (L6) such that the paths in L7 link the same two sets of vertices as
the paths in L6 do. Finally, Lemma 5.4.12 yields the existence of a D⤭

t as a butterfly
minor.

If |X | < 28fP (2 · t2), then we find a subwall ˜︂W ′ of ˜︂W of order d1 − 28fP (2 ·
t2) (2w + 1) that does not contain a vertex of any tile in X . We do this by removing,
for every tile T ∈ X , all edges and vertices of the horizontal and vertical paths of
T that are not used by other cycles or paths. For each tile we remove during this
procedure, we remove a row and a column of tiles and thereby reduce the number
of distinct tiles which contain start-vertices of paths in L5 by a factor of at most 1

2 .
However, because |X | < 28fP (2 · t2), we can still find, after potentially expanding the
start and end sections of the paths in L5 in order to reach the slightly shifted perimeters
of their tiles, a half-integral family L6 of size 24fP (2 · t2) of paths that start and end
in tiles of ˜︁C˜︁c and that are otherwise disjoint from ˜︂W ′. By applying Theorem 5.4.8 we
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5.4 Flat wall theorem

can transform this family into a linkage L7 of size 23fP (2 · t2) and thus an application
of Lemma 5.4.14 yields a D⤭

t as a butterfly minor.

Concluding Phase I, Claim 3 either yields D⤭
t as a butterfly minor and therefore

finishes the proof, or WI is in fact clean, meaning that WI has no long jump in DI.
Consequently we may bound the function αW from the statement of Theorem 5.4.3 as
follows:

αW (t) ≤
(︁
2 · t2)︁28 · 261+210(2·t2)8

.

Phase II With WI we have found a wall of still sufficient size but without any long
jumps. Therefore, me may now find t slices of WI, mutually still far enough apart
from each other within WI, and can ask if among them there is one that is flat. If so,
then we have found the desired flat wall within W. If not, each of the t slices contains
a cross and an application of Lemma 5.2.5 yields the desired D⤭

t butterfly minor. The
only technical part that remains is to provide sufficient definitions for these slices and
their mutual distance.

To meet the requirements from Phase I and have enough space left in WI, let us make
the following assumption:

d2 ≥ t
(︂

r + 4 + 232+(3t)30
)︂

.

We partition WI further into smaller slices. First we partition WI into t slices Si

of width r + 4 + 232+(3t)30
. Each Si is then partitioned into a slice Hi of width

r + 4 + 231+(3t)30 that contains the left perimeter cycle of the slice Si, and a slice
Gi of width 2 containing the right perimeter cycle of Si. For every i ∈ [t] we may
now further partition Hi. Let Ni,L ⊆ Hi be the slice of width 230+t30 containing the
left cycle of per(W ), let Ni,R be the slice of width 230+t30 containing the right cycle
of per(W ), and let N ′

i := Hi −NL,i −NR,i be the remaining slice of width r + 4.
Finally, let Ni be the slice obtained from N ′

i by removing the two leftmost and the
two rightmost vertical cycles. Then, Ni is a slice of width r.

For every i ∈ [t] we show that if there exists a directed path Pi with one endpoint in
Ni, the other endpoint in WI −N ′

i , and which is internally disjoint from WI, then Hi

contains a cross slice such that the cross lies in a strip of size at most 230+t30 + 2. In
this case, there is a vertical path Q in one of the two components of N ′

i −Ni which
separates the start- and the end-vertex of Pi in WI. As there are no long jumps over
WI in DI, we further know that there exists Y ∈ {L, R} such that the endpoint of Pi

not in Ni lies in NY,i within a strip of height at most 230+t30 + 2. By Lemma 5.4.15,
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5 Towards a directed structure theorem

this yields a cross slice within Hi. Let J ⊆ [t] contain every i ∈ [t] for that such a Pi

exists.

Suppose J = [t], then we can use Lemma 5.2.5 and obtain a D⤭
t butterfly minor, a

contradiction. The row condition is met as the strips are all of height at most 230+t30 +2
leaving a strip of height at least t.

So, there is at least one i ∈ [t] for which such a path does not exist, let J ′ := [t] \ J.
Suppose for every i ∈ J ′ the strong component of DI − per(W ) that contains Ni has
a cross slice. Since there is no long jump over WI, these components are pairwise
disjoint and also disjoint from the cross slices found in the Sj , j ∈ J, and thus we can
again apply Lemma 5.2.5 to obtain a D⤭

t butterfly minor, a contradiction.

Thus, there must exist some i ∈ J ′ for which N ′
i has no cross slice. In particular

this means that the component of DI − per(W ) containing the remaining vertices of
Ni − per(W ) must be free of cross slices. Hence, by Lemma 5.4.19, Ni is a flat wall
of order r in DI = D −A which completes the proof.

Let us combine all assumptions on the d1 and d2 to obtain the following bound on
ρW (t, r):

ρW (t, r) ≤
(︁
2140t72)︁210t8+212 (︂

r + 4 + 232+(3t)30
)︂

.

Note that this proof is close to the original ones [GKKK20,GW21] and thus, we often
obtain clique minors, when with a probably better function, we could obtain a cross-
row grid instead. Therefore, it might be possible to obtain overall better functions by
choosing a procedure more specific to the structure of D⤭

t .

5.5 A flat wall theorem excluding K�
5

Before proving the graph structure theorem, Robertson and Seymour proved a similar
statement for single-crossing minor-free graphs [RS93]. To this end, Robertson and
Seymour already use similar techniques as later for the proof of the general graph
structure theorem.

The first result in this direction was the proof of Wagner’s theorem [Wag37] about
graphs excluding an undirected clique on five vertices. This yields a class of graphs that
can be obtained from planar graphs and the Wagner graph by an operation called small
clique sums. Inspired by this, we consider the structure of digraphs which exclude
the unique strongly 2-connected orientation of the K5. We give this orientation in
Figure 5.10 and refer to it as K�

5 throughout the remainder of the chapter. ExcludingK�
5
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5

the K�
5 as a butterfly minor yields a slightly stronger flat wall theorem with a much

simpler proof.

Figure 5.10: The strongly 2-connected orientation K�
5 of K5.

As the following observation shows, excluding K�
5 directly excludes D⤭ := D⤭

2 D⤭

and D⊗ , which is obtained from a wall of order 2 by adding a cross over one of the D⊗

perimeters, see Figure 5.11 for an illustration of both digraphs.

Observation 5.5.1. We have K�
5 ≼b D⤭ and K�

5 ≼b D⊗.

Figure 5.11: On the left the digraph D⤭ on the right the digraph D⊗. Both contain
K�

5 as a butterfly minor.

Surprisingly, even for such a small case like K�
5 , there remain certain kinds of jumps

in a wall that cause the digraph containing it to be non-planar, but which do not produce
a K�

5 butterfly minor. So, excluding the K�
5 always leaves the possibility of their

existence. These are short backwards jumps with respect to the direction of the wall,
see Figure 5.12 for an example. The start- and end-vertex of these jumps are not
separated by any cycle of the wall and by at most one in- or out-path.
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5 Towards a directed structure theorem

Figure 5.12: Backwards jumps in the wall that do not produce a K�
5 butterfly minor.

Still, most occurrences of non-planarity under the infrastructure offered by a cylindrical
wall create butterfly minor models of K�

5 . So, for digraphs excluding K�
5 we can

prove that already for small walls there are only restricted jumps and we can even
prove that there are no jumps from one side to the other side of the wall.

A wall W is separating if there is no jump over all of W , that is, there is no path
with start-vertex on the one perimeter of W, end-vertex on the other and otherwise
internally disjoint from W.

Lemma 5.5.2. Let W be a wall of order k ≥ 5 in a digraph D excluding D⤭. Then,
W is separating.

Proof. Suppose there is a path Q starting in a vertex x on perin(W ) and ending in a
vertex y on perout(W ) and being internally disjoint from W. The case that the path goes
in the other direction works analogously. Let P i(x) be the next in-path encountered
when following C1 backwards from x and let P i(y) be the next in-path encountered
when following Ck forward from y.

As there are at least five in-paths we have (I) another in-path starting along Ck after
P i(y) and before P i(x), or (II) three other in-paths starting along Ck after P i(x) and
before P i(y).

We obtain a subgraph D′ ⊆ D as follows, see Figure 5.13 for an illustration of this
construction. We completely include the two cycles C1 and C4. Then, we define the
path Qa by starting with Q and then continuing along the subpath of C5 starting in
end(Q) = y and ending in start(P i(y)) (this second part might be empty). We also
add the subpath Qa,a′ of P i(y) starting on C5 and ending in a vertex a′ on C4. In case
(I), let b be the intersection vertex of P i(x) and C4 and Qb′ be the subpath of P i(y)
starting in C2 and ending on C1. In case (II), let b be the intersection vertex between
the in-path one index smaller than P i(y) and C4, moreover, let Qb′ be the subpath
of the in-path one index larger than P i(x) that starts on C2 and ends on C1. We then
define the path Qb,b′ by starting at b, following the in-path b lies on until meeting C2
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and then following C2 until start(Qb′). From a′ we add a path Qa′,b′ that starts by
following P i(y) until meeting C3 and then following along C3 (this might be just a
single vertex) until meeting the in-path Qb,b′ is a subpath of, which we then follow
until start(Qb,b′). We add the path Qa,b which starts in end(Qa) and walks along C5
until meeting the in-path b lies on, which it follows until reaching b. Now, note that,
after the in-path containing Qb′ and before the in-path containing b, the cycles meet
another in-path P i

j and before that the out-path P o
j−1. So finally, we add the paths

Qc,c′ and Qd,d′ to D′, where Qc,c′ is the subpath of P o
j−1 starting on C1 and ending

on C4 and Qd,d′ is the subpath of P i
j starting on C4 and ending on C1.

b

a

a′

b′

a b′

a′b

Figure 5.13: How to construct D⤭ as a butterfly minor in the wall of order five with a
jump from the inner to the outer perimeter.

Note that Qa and Qb′ are contractible into a single vertex in D′ as end(Qa) has no
further in-edges and start(Qb′) has no further out-edges. Contracting the remaining
paths we added into single edges, we obtain D⤭, a contradiction.

Theorem 5.5.3. Let D be a digraph excluding D⤭ and D⊗ as butterfly minors, then
every wall of order k ≥ 5 in D is flat and separating.

Proof. Let W be a wall of order k ≥ 5 in D. By Lemma 5.5.2, W is separating.
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5 Towards a directed structure theorem

We claim that every cross slice contains D⤭ as a butterfly minor and thus K�
5 .

To see this, let J1 and J2 build a cross in the slice between Qi and Qi+ℓ. Let Ra

be the row containing start(J1), Ra′ be the row containing end(J1), Rb be the
row containing start(J2) and Rb′ be the row containing end(J2). Then, we have
min{a, a′} − max{b, b′} > 1. Thus, there is a row Rj such that b, b′ ≤ j ≤ a, a′

separating the start-vertices of J1 and J2 from their end-vertices. We take the subgraph
D′ of D containing Qi,Qi+ℓ,J1,J2, the subpath of P o

j lying between Qi and Qi+ℓ,

the subpath of P i
j lying between Qi and Qi+ℓ, the subpath of P o

min{a,a′} lying between
Qi and Qi+ℓ, and the subpath of P i

max{b,b′} lying between Qi and Qi+ℓ. By butterfly
contractions we can obtain D⤭ and finally K�

5 , a contradiction.

Therefore, W does not contain cross slices and thus is flat by Lemma 5.4.19.

Finally, we exclude another type of jumps. Let W be a wall of order k in a digraph D.
Then, a directed path that is internally disjoint from W in D with start-vertex in a row
Rj , with 1 ≤ j < k, and end-vertex in the row Rj+1, such that both endpoints lie in
W − per(W ) and are separated by an in- or out-path of W, is called a short forward
jump with respect to W. We can even exclude the existence of short forward jumps
when excluding K�

5 as a butterfly minor.

Lemma 5.5.4. Let W be a wall of order k ≥ 5 in a digraph D excluding D⤭ and
D⊗. Then, there is no short forward jumps with respect to W.

Proof. Suppose such a path Q exists and let start(Q) lie on the cycle Ci and in the
row Rj , thus end(Q) lies in the row Rj+1. By Lemma 5.4.17, we additionally know
that end(Q) lies on Ci−1, Ci or Ci+1.

If start(Q) lies on P i
j and end(Q) lies on P o

j+1, then there is a face containing both
endpoints of Q, contradicting it being separated by an in- or out-path. If start(Q) lies
on P o

j and end(Q) lies on P i
j+1, then we can switch the parametrisation of the wall

such that there lies a whole row between the start- and end-vertex of Q. This allows us
to use Lemma 5.4.18, which yields the existence of D⤭ as a butterfly minor in D, a
contradiction.

Thus, we can assume that both endpoints lie in the in-path of their respective row or
both endpoints lie on the out-path of their respective row. Assume without loss of
generality that both lie on the out-path. We continue with a case distinction on where
the end-vertex of Q lies.

In case end(Q) lies on Ci−1 or Ci, for 2 < i < k, we construct two paths Pa and
Pb as follows. The path Pa starts in the intersection of Ci+1 and P i

j−1, from there it
follows P i

j−1 until meeting Ci, which it follows until meeting start(Q), then it follows
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Q until its end, which lies on P o
j+1, then it follows P o

j+1 until meeting Ci+1 again. The
path Pb starts on the intersection of Ci+1 and P i

j , from there it follows P i
j until Ci−2,

which it follows until reaching P o
j+2, which it follows until it reaches Ci+1 again.

The cycles Ci and Ci+1 together with the paths Pa and Pb yield D⊗ as a butterfly
minor, a contradiction. See Figure 5.14 for an example with end(Q) on Ci−1.

Q

Figure 5.14: How D⊗ is obtained as a butterfly minor in case end(Q) lies on Ci−1.

In case end(Q) lies on Ci+1, we prove that the graph contains D⤭ as a butterfly minor.
To this end we identify a butterfly model µ for the vertices and edges in D⤭ named as
in Figure 5.15. For the vertex a we define µa := start(Q) to µ(D⤭) and for the edge
(a, a′) we define µa,a′ := Q. Next, we choose the subpath µa,b of P o

j that starts in µa

and ends on Ci+1. We define µb to be the subpath of Ci+1 starting in end(µa,b) and
ending on P i

j . Choose µb,b′ to be the subpath of P i
j starting in end(µb) and ending on

Ci. Next, we define µb′ to be the subpath of Ci that starts in end(µb,b′) and ends on
P i

j+1. Additionally, we choose µa′ to be the subpath of Ci+1 starting in end(µa,a′)
and ending on P i

j+1. We choose µa′,b′ to be the subpath of P i
j+1 starting in end(µa′)

and ending in end(µb′). Now choose µc,c′ to be the subpath of P o
j+2 starting on Ci

and ending on Ci+1 and finally, choose µd,d′ to be the subpath of P i
j+2 starting on

Ci+1 and ending on Ci.

The subgraph D′ of D containing Ci, Ci+1 and all the above defined paths: µa, µa′ ,
µb, µb′ , µa,a′ , µb,b′ , µa,b, µa′,b′ , µc,c′ , and µd,d′ , now yields the desired model µ of
D⤭ as illustrated in Figure 5.15.
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5 Towards a directed structure theorem

Thus, we obtain that in a digraph excluding K�
5 not only every wall of order at least

five is flat and separating, Theorem 5.5.3, but it additionally excludes short forward
jumps.

a b′

a′b

c

c′

d

d′
Q

Figure 5.15: The digraph D⤭ on the left and its model in case end(Q) lies on Ci+1
on the right.

5.6 Where to go from here?

This chapter only considers some first steps in direction of the much larger problem of
giving a good description of the structure of digraphs excluding a fixed butterfly minor.
But it also lays some foundations one can build on when proceeding to a structure
theorem.

The definition for skeletons stated here already has the potential to be extended to
contain more than just the wall in its rigid subgraph. Skeletons give the possibility
to also add planar transactions to the rigid subgraph, thus fixing a planar drawing for
larger parts of the digraph. In undirected graphs, such a transaction splits an existing
face into two parts that we can consider separately and which are each again surrounded
by a family of cycles, which is called a nest, see the left side of Figure 5.16 for an
illustration. This is not the case with the faces defined by the perimeters of the directed
wall. Here a transaction splits a face into two parts that are of different structure, as
we can see on the right side of Figure 5.16, where only one side builds cycles again.
The boundary of the other resulting face, marked in the figure in orange, is bound by
undirected cycles that split into two directed paths. Adding further transactions within
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such faces further complicates the boundaries of the faces. Another complication is
caused if the transaction has further intersections with the already fixed planar structure.
In that case one obtains several new faces instead of only two, which can be separated
by much or only very little of the collected structure so far. Thus, a directed concept of
nests has to grasp a lot more structure than the undirected notion does. Once identified,
the definition of flatness needs to be extended to cover the structures that can appear
as rigid subgraphs in skeletons. This step seems to be rather straightforward with our
definition of flatness, as the condition on the separating property of nooses can be
used for more general rigid graphs as well. For the traditional definition of flatness
one has to consider the “direction” of the rigid graph, which might be more tricky to
obtain when the rigid graphs more complicated than a wall.

Figure 5.16: On the left we depict an undirected cycle family with a planar transaction.
Note that the transaction builds new cycle families, marked in blue and
violet, around both new faces. On the right we depict a directed cycle
family with a planar transaction. While the family of undirected cycles
marked in blue still yields a family of directed cycles, the undirected
cycle family marked in orange does not yield a family of directed cycles
around the new face.

The central idea of such an approach would be to add transactions to the skeleton as
often as possible and then consider the parts that remain drawn into the faces of the
rigid graph. Here, big and small faces have to be considered and the structure obtained
from the rigid subgraph has to be used to restrict the number of faces containing
extensive non-planar behaviour. This leads to a natural analogue of vortices and nests
around them as they are used by Kawarabayashi, Thomas and Wollan [KTW20].

Dealing with vortices, areas of non-planarity, turns out to be more difficult in digraphs.
This is mainly due to the lack of a 2-paths-theorem, that is, not containing a cross
over a society does not necessarily imply that there exists a planar embedding. It is
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surprising that even when excluding K�
5 there can still be non-planar behaviour as

seen in figures 5.12 and 5.17a. The question that arises is how we can get rid of all
non-planar behaviour.

(a) A cross over a society that does not yield a
K�

5 .
(b) The weak K�

5 . The wiggly red edges visu-
alise paths.

Figure 5.17: Crosses and K�
5 .

Giannopoulou and Wiederrecht [GW21] consider excluding not only a single digraph
as a butterfly minor, but a whole family related to it, called the corresponding antichain.
This corresponds to forbidding the bipartite graph obtained by splitting the vertices of
the digraph (as seen in Chapter 4) as a matching minor. They prove a directed flat wall
theorem for excluding this possibly infinitely large class of digraphs. Unfortunately,
these digraphs may not only be infinitely many but they are also structurally hard to
grasp and describe from a digraph theoretic point of view.

Another option to handle the problematic crosses which are demonstrated in fig-
ures 5.12 and 5.17a would be to exclude something we call a weak K�

5 , which, as
illustrated in Figure 5.17b uses a butterfly minor of an orientation of K4 as its base and
then models the remaining four edges as four disjoint paths that are allowed specific
intersections with the butterfly model of the K4 orientation.

Yet another way of dealing with problematic non-planar behaviour would be to slightly
adjust the minor relation we consider. However, butterfly minors have the advantage
of being related to matching minors, as seen in Theorem 4.2.2, which yields a number
of valuable structural insights that could prove useful in proving a directed structure
theorem.
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In contrast to the other chapters, this one is mostly concerned with undirected graphs
and induced subgraphs. Induced subgraphs are a stronger way of describing that one
graph is contained in another than general subgraphs or minors. In graph structure
theory they are often used to describe classes of graphs. There are two ways to do so,
one is by demanding the containment of certain induced subgraphs, e.g. a graph is
distance hereditary if and only if every path in it is induced. The other is by forbidding
certain induced subgraphs. The most famous example for that is probably the strong
perfect graph theorem by Chudnovsky, Robertson, Seymour and Thomas, who proved
the following statement after it was open for about 40 years.

Theorem 6.0.1 (Strong Perfect Graph Theorem [CRST06]). A graph is perfect if and
only if it contains neither Ck nor Ck as induced subgraph for odd k ≥ 5.

Many interesting problems in graph theory involve induced subgraphs. An example
is a more restrictive version of disjoint path, the induced disjoint paths problem,
which asks to find k mutually induced paths between k given pairs of vertices, that
is, any two paths are not allowed to have common vertices or adjacent vertices. This
problem was introduced by Kawarabayashi and Kobayashi [KK08] in 2008 and is
NP-hard even for k = 2 on general graphs. If we consider the class of AT-free graphs,
see the next paragraph for a formal definition, then the problem becomes solvable in
polynomial time [GPv12]. Köhler [Kö99] proved that the class of AT-free graphs is
characterisable by a family of forbidden induced subgraphs.

6.1 Graphs with at most two moplexes

A moplex is a natural graph structure that arises when lifting Dirac’s theorem, Theo-
rem 2.1.1, from chordal graphs to general graphs. The notion is known to be closely
related to lexicographic searches in graphs as well as to asteroidal triples, and has
been applied in several algorithms related to graph classes such as interval graphs,
claw-free, and diamond-free graphs. However, though every non-complete graph has
at least two moplexes, little is known about structural properties of graphs with a
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bounded number of moplexes. The study of these graphs is, in part, motivated by the
parallelism between moplexes in general graphs and simplicial modules in chordal
graphs: unlike in the moplex setting, properties of chordal graphs with a bounded
number of simplicial modules are well understood. For instance, chordal graphs having
at most two simplicial modules are interval graphs.

Definition 6.1.1 (Moplex and simplicial moplex). A moplex in a graph G is an
inclusion-maximal clique module X ⊆ V (G) such that NG(X) is either empty or a
minimal separator in G. A moplex X is simplicial if NG(X) is a clique and a vertex
is moplicial if it belongs to a moplex. ⊣

We use the definition from Meister [Mei05], which differs from the one by Berry and
Bordat [BB98] by considering the vertex set of any complete graph to be a moplex (see
also [BP11,XLL13]). This difference is purely technical and allows for less special
cases in the proofs. An illustration of the notions of moplexes and avoidable vertices
that are not moplicial is provided in Figure 6.1.

Figure 6.1: A graph with exactly two moplexes (circled in orange) containing an
avoidable vertex (the diamond marked in green) that is neither moplicial
nor simplicial.

Dirac proved, Theorem 2.1.1, that every non-complete chordal graph contains at least
two simplicial vertices. This result was generalised by Berry and Bordat to moplexes
as follows.

Theorem 6.1.2 (Berry and Bordat [BB01a, Mei05]). Every non-complete graphs
contain at least two moplexes.

Moplexes have a strong algorithmic connection to lexicographic searches which we
analyse more carefully in Subsection 6.1.4. Moreover, there are various algorithms
that make use of moplexes, e.g. for computing a minimal completion to an interval
graph [RST08], for computing minimal triangulations of claw-free graphs [BW12],
and for recognising diamond-free graphs without induced cycles of length at least
five [BBGM15].
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6.1 Graphs with at most two moplexes

Despite these fundamental connections and useful applications, we know little about
the connection between structural properties of graphs and their moplexes. This section
approaches this problem by investigating the effect of using moplexes as a complexity
measure on the class of general graphs. Do graphs with a bounded number of moplexes
have useful structural or algorithmic properties? And if chordal graphs with at most
two simplicial modules form a natural subclass of the fundamental class of interval
graphs, what can we say about graphs with at most two moplexes?

For a positive integer k, a k-moplex graph is a graph that contains at most k moplexes.
Moreover, the moplex number of a graph is the number of moplexes it contains. The
first result in this section provides a link between the moplex number and the asteroidal
number (see Subsection 2.1.1) of a graph [KKM01,COS97], generalising an earlier
result of Berry and Bordat for graphs with at most two moplexes [BB01a].

Theorem 6.1.3. The asteroidal number of a graph is a lower bound on its moplex
number.

Theorem 6.1.3 immediately implies that the graphs with a bounded number of mo-
plexes inherit the nice algorithmic properties of graphs with bounded asteroidal
number. This includes polynomial-time algorithms for various algorithmic prob-
lems [FKM04,BKKM99,KM12,KMT08], existence of a spanning tree approximating
vertex distances up to a constant additive term [KKM01], a constant factor approx-
imation algorithm for treewidth [BKMT01], and an upper bound on the treewidth
in terms of the maximum degree [BT97]. We remark that though computing the
asteroidal number of a graph is NP-hard [KKM97], the moplex number of a graph is
polynomial-time computable [BB01a].

A graph class is hereditary if it is closed under vertex deletion. The class of 1-moplex
graphs is hereditary, but not of particular interest, as it is precisely the class of complete
graphs. Unfortunately, as one can verify using the family of paths, the class of k-
moplex graphs is not hereditary for any k ≥ 2. The graph in Figure 6.1 shows that even
the connected components of a graph obtained by deleting a vertex from a k-moplex
graph do not need to be k-moplex graphs. This makes understanding the structure of
k-moplex graphs significantly more challenging.

Even the structure of 2-moplex graphs is not yet fully understood. Berry and Bor-
dat [BB01a] showed that 2-moplex graphs are AT-free and that all connected induced
subgraphs of a graph G are 2-moplex if and only if G is a proper interval graph. This
already gives some clue to how this class of graphs relates to the known hereditary
graph classes. We strengthen the former result and complement the latter by proving
further results relating the class of 2-moplex graphs to the hierarchy of hereditary
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graph classes. More precisely, any graph class G can be naturally mapped to the
following two hereditary graph classes, one contained in G and one containing G:

(i) the class of graphs all of whose induced subgraphs belong to G, or, equivalently,
the largest hereditary graph class contained in G, and

(ii) the class of all induced subgraphs of graphs in G, or, equivalently, the smallest
hereditary graph class containing G.

Furthermore, if the graph class G is not closed under disjoint union (as is the case for
the class of 2-moplex graphs), it is also natural to consider the class Gc of all graphs
G such that every connected component of G belongs to G and the corresponding two
hereditary graph classes, one contained in Gc and one containing Gc:

(iii) the class of graphs all of whose induced subgraphs belong to Gc, and

(iv) the class of all induced subgraphs of graphs in Gc.

As previously mentioned, when G is the class of 2-moplex graphs, a result of Berry
and Bordat shows that the corresponding class from (iii) is the class of proper interval
graphs. We determine the remaining three hereditary classes related to 2-moplex
graphs. We show that the corresponding class from (i) is the class of cochain graphs
by proving the following theorem.

Theorem 6.1.4. Every induced subgraph of a graph G is a 2-moplex graph if and only
if G is a cochain graph.

Additionally, we establish that the classes from (ii) and (iv) both coincide with the
class of cocomparability graphs. To this end we prove the following theorem.

Theorem 6.1.5. The smallest hereditary graph class containing the class of 2-moplex
graphs is the class of cocomparability graphs.

After establishing that all 2-moplex graphs are cocomparability graphs and the class
contains the proper interval graphs, it is natural to ask for the complexity of problems
that are intractable for general cocomparability graphs but yet unknown or polynomial
time solvable for the class of proper interval graphs. Along this line we develop
reductions showing that two prominent examples of such problems, namely Max-Cut
and Graph Isomorphism, both remain as hard on 2-moplex graphs as they are on
cocomparability graphs. For proper interval graphs, the complexity of Max-Cut is
still open, and Graph Isomorphism is solvable in linear time [LB79].

Theorem 6.1.6. Max-Cut is NP-complete on cobipartite 2-moplex graphs.
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6.1 Graphs with at most two moplexes

Theorem 6.1.7. Graph Isomorphism is GI-complete on cobipartite 2-moplex graphs.

Theorems 6.1.6 and 6.1.7 provide some indication that the class of 2-moplex graphs is a
significant generalisation of the class of connected proper interval graphs. Nevertheless,
as the final result on moplexes we show that 2-moplex graphs share the well-known
structural property of proper interval graphs that connectedness is a sufficient condition
for the existence of a Hamiltonian path [Ber83].

Theorem 6.1.8. Every connected 2-moplex graph has a Hamiltonian path.

The proof of this theorem is an interplay between properties of the class of cocompa-
rability graphs, the Lexicographic Depth First Search algorithm, and the concept of
avoidable vertices (also known as OCF-vertices) [BCG+19,BDHT20,OCF76].

6.1.1 Bounding the moplex number

In this subsection we establish a few structural properties for general k-moplex graphs
for a fixed k ∈ N. We begin by recalling a result on minimal separators and mo-
plexes.

Theorem 6.1.9 (Berry and Bordat [BB01a]). For every minimal separator S in a
graph G, each component of G− S contains a moplex in G.

This result strengthens an earlier result by the same authors, which used the additional
assumption that the graph G is chordal.

Theorem 6.1.10 (Berry and Bordat [BB98]). Let S be a minimal separator in a chordal
graph H. Then, each connected component of H − S contains at least one moplex in
H.

As Theorem 6.1.9 is stated in [BB01a] without a proof, we give a short proof here
for the sake of completeness. In order to do so, we make use of two more results
from the literature. We call a chordal graph G′ a minimal triangulation of a graph
G if V (G) = V (G′), E(G) ⊆ E(G′), and for all F ⊊ E(G′) \ E(G), the graph
(V (G), E(G) \ F ) is not chordal.

Lemma 6.1.11 (Berry and Bordat [BB98]). Let H be a minimal triangulation of a
graph G and U be a moplex of H. Then, U is a moplex of G.
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The following theorem is an immediate consequence of [PS97, Theorem 4.6].

Theorem 6.1.12. Let S be a minimal separator in a graph G. Then, there exists a
minimal triangulation H of G such that the vertex sets of the connected components
of H − S are the same as the vertex sets of the connected components of G− S.

Using these results the proof of Theorem 6.1.9 is easily obtained.

Proof of Theorem 6.1.9. Let S be a minimal separator in a graph G. Using Theo-
rem 6.1.12, we obtain that there exists a minimal triangulation H of G such that for
each connected component Ci in G − S there is a connected component C ′

i in H
with V (Ci) = V (C ′

i). This implies that S is a minimal separator in H. Then, using
Theorem 6.1.10, we know there is a moplex of H in each connected component of
H − S and by Lemma 6.1.11 each of these moplexes is a moplex in G as well.

Using Theorem 6.1.9, we obtain some preliminary results on graphs with at most two
moplexes which become useful in Subsection 6.1.5.

Lemma 6.1.13. Let G be a non-complete 2-moplex graph and denote by U and W
its two moplexes. Then, the following two properties hold:

(Prop1) U and W are disjoint simplicial moplexes, and

(Prop2) for every minimal separator S in G, the graph G− S contains exactly two
connected components, one of which contains U and the other one W.

Proof. First, we show that (Prop1) holds. The fact that U and W are disjoint follows
directly from the definition of a moplex, and in particular because every moplex is a
maximal set of vertices with the same closed neighbourhood. Suppose without loss
of generality that U is not a simplicial moplex, that is, there exist two non-adjacent
vertices a, b ∈ N(U). Let S be a minimal a,b-separator. Then, S contains U, as every
vertex in U is adjacent to both a and b. However, following Theorem 6.1.9, the graph
G− S contains at least two moplexes in G, say M1 and M2. But then M1, M2, and
U are three distinct moplexes in G, a contradiction to G being a 2-moplex graph.

Second, we show (Prop2). Let S be a minimal separator in G. If there exists a connected
component of G− S that does not contain U or W, then Theorem 6.1.9 implies that
G contains at least three moplexes, a contradiction. Thus, G− S must contain exactly
two connected components, one of which contains U and the other one W.
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6.1 Graphs with at most two moplexes

While there is a lot of work on how to utilise moplexes algorithmically [BB01b,ST09],
little is known about the structural properties of graphs with few moplexes.

As we have seen in Subsection 2.1.1, chordal graphs with a bounded number of
simplicial modules have been studied. Thus the natural question arises what the
structure of graphs with bounded moplex number might look like.

For k = 1, the answer is not that interesting, as 1-moplex graphs are simply the class
of all complete graphs. For k = 2 it becomes more complicated to answer the question.
By Theorem 6.1.9, there is only one way for a 2-moplex graph to not be connected,
which is that it is the disjoint union of two cliques. Therefore, we mainly concentrate
on the class of connected 2-moplex graphs.

First, we make some observations for general k.

The concept of asteroidal sets can be generalised to moplexes. An asteroidal set of
moplexes [BB01a] in a graph G is a set {X1, . . . , Xk} of pairwise disjoint moplexes in
G such that for each i ∈ {1, . . . , k}, all moplexes Xj , j ̸= i, lie in the same connected
component of the graph G−N(Xi).

Berry and Bordat [BB01a] proved that a graph has an asteroidal triple of vertices if
and only if it has an asteroidal triple of moplexes. This corresponds to the case k = 3
of the following more general statement.

Theorem 6.1.14. A graph has an asteroidal set of vertices of size k if and only if it
has an asteroidal set of moplexes of size k.

Proof. Let G be a graph and let k be a positive integer. If G has an asteroidal set of
moplexes of size k, then G has an asteroidal set of vertices of size k.

Let A = {a1, . . . , ak} be an asteroidal set of size k in G such that A contains as many
moplicial vertices as possible. First, note that because A is an independent set and
every moplex is a clique, no two vertices in A belong to the same moplex. Thus, to
complete the proof it suffices to show that every vertex ai ∈ A is moplicial. Indeed,
denoting by Mi the moplex of G containing ai, for all i ∈ {1, . . . , k}, we would obtain
that {M1, . . . , Mk} is an asteroidal set of moplexes of size k.

Suppose that some ai ∈ A is not part of a moplex. Let C be the component of G−N[ai]
containing A \ {ai} and let D be the component of G−N[V (C)] containing ai. Let
S = N(V (C)) and observe that S ⊆ N(ai). This implies that both C and D are
S-full components of G − S, and thus that S is a minimal ai,aj-separator for any
aj ∈ A \ {ai}. Hence, we can use Theorem 6.1.9 and obtain that D contains a moplex
MD in G.
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Let x be a vertex in MD and A′ = (A \ {ai}) ∪ {x}. We show next that A′ is an
asteroidal set in G. Fix two vertices v, w ∈ A′ \ {x}. Note that NG[x] ⊆ D ∪ S, and
because both v and w belong to C, there exists a v-w-path that does not contain any
vertex from NG[x]. Furthermore, observe that there exists a path P between ai and x
in D, which does not contain any vertex in N [w]. Also, because A is an asteroidal set,
there exists a path P ′ between ai and v which does not contain any vertex in N [w].
Hence, the subgraph P ∪P ′ contains a walk between x and v in G−N [w]. Therefore,
A′ is an asteroidal set in G of size k. However, the number of vertices in A′ that belong
to a moplex is strictly larger than the number of vertices in A that belong to a moplex,
contradicting the choice of A. This shows that every vertex in A is moplicial.

That the moplex number of a graph is at least its asteroidal number is an immediate
consequence of Theorem 6.1.14.

Theorem 6.1.3. The asteroidal number of a graph is a lower bound on its moplex
number.

On the other hand, the gap between the moplex and asteroidal number can be arbitrarily
large. This is easily seen if we, for example, consider the class of stars. An asteroidal
set of a star has size 2, as we can only contain two of the leaves. Removing the closed
neighbourhood of the leaf disconnects the graph into components of size 1, thus no
other two vertices lie in the same component. But the moplex number of stars is equal
to the number of leaves it has, as every leaf is its own moplex.

Theorem 6.1.3 implies that the asteroidal number is computable in polynomial time in
every class of graphs with bounded moplex number as one can verify in polynomial
time whether a given set of vertices is an asteroidal set. Combining this with the
results by Fomin, Kratsch and Müller [FKM04], Theorem 6.1.3 also implies that
Dominating Set and Total Dominating Set can be solved in polynomial time in
classes of graphs of bounded moplex number. The same holds for Independent Set,
Independent Dominating Set, and Efficient Dominating Set, along with their
weighted variants [BKKM99], for k-Colouring (for any fixed k [KM12]) and for
Weighted Feedback Vertex Set [KMT08]. Furthermore, for graphs of bounded
moplex number, bounded degree implies bounded treewidth, as a consequence of the
fact that graphs with asteroidal number at most k have chordality at most 2k + 1 and
of a result by Bodlaender and Thilikos [BT97].

For later use, we explicitly state the previously mentioned result of Berry and Bordat
on 2-moplex graphs, which is now an immediate consequence of Theorem 6.1.3.

Corollary 6.1.15 (Berry and Bordat [BB01a]). Every 2-moplex graph is AT-free.
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6.1 Graphs with at most two moplexes

6.1.2 Avoidable vertices in moplexes

Another way to generalise simplicial vertices to general graphs is the concept of
avoidable vertices. Avoidable vertices go back to the work of Ohtsuki, Cheung, and
Fujisawa [OCF76], who proved that every graph has an avoidable vertex, that is,
avoidable vertices also yield a generalisation of Theorem 2.1.1. Later, these vertices
were called OCF-vertices [BBHP04,Heg06,BBH+06,YHF14,BBBS10], and very
recently the notion has reappeared under the name of avoidable vertices [BCG+19,
BDHT20].

Definition 6.1.16 (Avoidable vertices). Let v be a vertex in a graph G. An extension
of v in G is an induced P3 in G having v as midpoint. Such an extension is failing
if it is not contained in an induced cycle. A vertex v is avoidable in G if none of its
extensions is failing. ⊣

Note that every simplicial vertex is avoidable, and a vertex in a chordal graph is
avoidable if and only if it is simplicial.

Theorem 6.1.17 (Ohtsuki, Cheung, and Fujisawa [OCF76]). Every graph contains an
avoidable vertex.

For simplicial vertices in chordal graphs we know there are always at least two. Simi-
larly, one can infer from Theorem 6.1.17 the following statement.

Corollary 6.1.18 (Ohtsuki, Cheung, and Fujisawa [OCF76]). Every graph on at least
two vertices contains at least two avoidable vertices.

Equivalently, every non-complete graph contains at least two avoidable modules, that
is, maximal clique modules containing an avoidable vertex.

The two concepts of moplexes and avoidable vertices are closely related. Note that
if X is a moplex in a graph G, then the graph G−NG[X] contains an NG(X)-full
component. Using such a component, it can be shown that every extension of a vertex
v ∈ X is contained in an induced cycle in G. This leads to the following observation
(as noted already in [BBB+05], and perhaps earlier).

Observation 6.1.19 (Berry et. al. [BBB+05]). Every moplicial vertex in a graph is
avoidable.

We use this observation frequently throughout the proofs of this section without explicit
reference. It also makes the following an immediate corollary of Theorem 6.1.3.
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Corollary 6.1.20. The asteroidal number of a graph G is a lower bound on the number
of avoidable vertices in G.

The converse however is not true, as Figure 6.2 shows not every avoidable vertex is
moplicial. We call vertices that are avoidable but not moplicial purely avoidable.

Figure 6.2: The bull graph has exactly two moplexes (circled in orange) but three
avoidable vertices (the diamonds marked in green).

Since the class of k-moplex graphs is not hereditary for any k ≥ 2, it is a natural
question whether for all k, every k-moplex graph contains a vertex whose removal
results in a k-moplex graph. Unfortunately, this is not the case. It is not difficult to
show that for every k ≥ 2 there exists a k-moplex graph Gk such that deleting any
vertex results in a graph that is not a k-moplex graph. See Figure 6.3 for examples
of such graphs for k ∈ {2, 3, 4}; the construction can be easily generalised to larger
values of k.

G2

G3 G4

Figure 6.3: Examples of graphs in which deleting any vertex increases the moplex
number.
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6.1 Graphs with at most two moplexes

Nevertheless, we show that there are still certain vertices that, if existent, can be
removed without leaving the class of k-moplex graphs. To this end, we first prove the
following stronger statement.

Theorem 6.1.21. Let G be a graph, v ∈ V (G) a purely avoidable vertex of G, and
M ⊆ V (G). Then, M is a moplex in G if and only if it is a moplex in G− v.

Proof. Observe that if there is a vertex v′ ∈ V (G) \ {v} such that NG[v′] = NG[v],
then there is a natural correspondence between the clique modules of G and those
of G− v, which preserves, in both directions, the property of being a moplex. Thus,
from now on, we assume that for any vertex v′ ̸= v in G, we have NG[v′] ̸= NG[v].

Let M be a moplex in G. Suppose that M is not a moplex in G − v, and let S =
NG(M). By assumption, v is not moplicial in G, and thus v /∈M. As M is a clique
and a module in G−v, the reason for M no being a moplex in G−v is that there is no
S-full component of G− (S ∪ {v}) other than M itself. Because such a component
exists in G− S, call it H, we infer that v belongs to this component and that there is a
vertex x ∈ S such that v is the only neighbour of x in H, that is, NG(x)∩V (H) = {v}.
Let H ′ be the connected component of G−NG[v] containing M. We claim that H ′

is NG(v)-full. We know that NG[v] ⊆ S ∪ V (H). Since M lies in H ′, every vertex
in NG(v) ∩ S has a neighbour in H ′. Consider now a vertex w ∈ NG(v) \ S. Then,
w ∈ V (H) and, because v is the only vertex in H that is adjacent to x, we infer that
w is not adjacent to x. Thus, we obtain an extension wvx and, because v is avoidable
in G, there is a w-x-path P in G− (NG[v] \ {w, x}). Let y be the first vertex of P
not in H. Then, y belongs to S and consequently to H ′. Furthermore, because v is
the only neighbour of x in H, we have y ̸= x. Hence, the path P ′ obtained from P by
removing x and w lies in H ′, and so w has a neighbour in H ′. We obtain that every
neighbour of v has a neighbour in H ′, and thus that H ′ is NG(v)-full. It follows that
{v} is a moplex in G, a contradiction to v being purely avoidable. Thus, M remains a
moplex in G− v.

For the backward direction let M be a moplex in Gv. Suppose towards a contradiction
that M is not a moplex in G. Let S be the neighbourhood of M in G− v. Since S is a
minimal separator in G−v, there exists an S-full component H in (G−v)−NG[M ].
Assume first that v has no neighbours in M. Then, NG(M) = S, and hence the
component of G− S containing the vertices of H contains no vertices of M and is
S-full. This implies that M is a moplex in G, a contradiction. Hence, there exists a
vertex u ∈ NG(v) ∩M.

We claim that M ⊆ NG(v). Towards a contradiction, suppose there exists a vertex
u′ ∈M \NG(v). Let H ′ be the component of G−NG[v] containing u′. We show that
H ′ is NG(v)-full in G. Since u′ ∈M, all the vertices in (M ∪ S) \ {u′} are adjacent
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to u′. Thus, as u′ is in H ′, every vertex in NG(v)∩(M ∪S) has a neighbour in H ′. So,
let z ∈ NG(v) \ (M ∪ S). Note that u ∈M and z ̸∈ S ∪ {v} = NG(M), and hence
the vertices u and z are non-adjacent in G, which implies that uvz is an extension of
v. Since v is avoidable, there is a u-z-path in G− (NG[v] \ {u, z}). Any such path
intersects S \NG(v), and thus all its internal vertices are in the same component of
G−NG[v] as u′, namely H ′. In particular, this is the case for the neighbour of z on
the path. This shows that every vertex in NG(v) \ (M ∪ S) has a neighbour in H ′.
We conclude that H ′ is NG(v)-full in G, as claimed. Thus, {v} is a moplex in G, a
contradiction.

From the previous observation that M ⊆ NG(v), we readily get that v does not
have any neighbours in H. Indeed, if v has a neighbour in H, then M would be a
clique module in G with neighbourhood S ∪ {v} and H would be an (S ∪ {v})-full
component, and hence M would be a moplex in G, a contradiction.

We show next that NG(v) \ (M ∪ S) is non-empty. Suppose that NG(v) ⊆M ∪ S.
Recall that NG[v] ̸= NG[u]. Thus, because NG[u] = M ∪ S ∪ {v}, there exists a
vertex x ∈ NG[u] \ NG[v]. Then, x ∈ M ∪ S; however, as M ⊆ NG(v), we must
have x ∈ S. Following the fact that S = NG(V (H)) and M ⊆ NG(x), we obtain that
(S ∪M) \ {x} ⊆ NG(V (H) ∪ {x}), and hence NG(v) ⊆ NG(V (H) ∪ {x}). As
previously shown, v has no neighbours in H. Hence, the vertices in V (H) ∪ {x} all
belong to the same connected component of G−NG(v). However, this implies that
NG(v) is a minimal separator in G, and thus {v} is a moplex in G, a contradiction.
Thus, NG(v) \ (M ∪ S) is non-empty.

Let z ∈ NG(v)\(M∪S). Then, u and z are non-adjacent in G and uvz is an extension
of v. Since v is avoidable, there exists an induced u-z-path in G having all internal
vertices in G −NG[v]. In particular, this path must contain a vertex in S \NG(v),
and thus S \ NG(v) ̸= ∅. Following the fact that NG(v) ∩ V (H) = ∅, there exists
a component H ′ of G − NG[v] that contains all vertices of H. We show that H ′ is
an NG(v)-full component in G. As every vertex of S has a neighbour in H, we infer
that every vertex in S \NG(v) belongs to H ′, and every vertex in NG(v) ∩ S has a
neighbour in H ′. Furthermore, because ∅ ̸= S \ NG(v) ⊆ V (H ′), every vertex of
NG(v) ∩M = M has a neighbour in H ′. Finally, as v is avoidable, for every vertex
y ∈ NG(v) \ (M ∪ S) there is a u-y-path in G − (NG[v] \ {u, y}). Any such path
intersects S \ NG(v), and thus all its internal vertices are contained in H ′. Hence,
{v} is a moplex in G, a contradiction.

We can now establish the announced claim, which is later applied in Subsection 6.1.7.

Corollary 6.1.22. For every positive integer k, the class of k-moplex graphs is closed
under deletion of an avoidable vertex that is not moplicial.
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6.1 Graphs with at most two moplexes

Proof. Let G be a k-moplex graph, and let v ∈ V (G) be an avoidable vertex that is
not moplicial. By Theorem 6.1.21, every moplex in G − v is a moplex in G. Thus,
because G has at most k moplexes, so does G− v.

6.1.3 Connections with proper interval graphs and cochain graphs

Berry and Bordat characterised graphs in which every connected induced subgraph
has at most two moplexes by the well-known class of proper interval graphs. We
complement this result by characterising the graphs in which every induced subgraph
has most two moplexes by the class of cochain graphs, that is, proving Theorem 6.1.4.

Theorem 6.1.23 (Berry and Bordat [BB01a]). Let G be a graph. Then, each connected
induced subgraph of G has at most two moplexes if and only if G is a proper interval
graph.

Since Theorem 6.1.23 was stated in [BB01a] without a detailed proof, we summarise
here the main ideas leading to this result. Roberts proved that proper interval graphs
are exactly the claw-free interval graphs [Rob69] (see also [Gar07, BW99]). This
result, together with the characterisation of interval graphs due to Lekkerkerker and
Boland stating that interval graphs are exactly the AT-free chordal graphs [LB62],
implies the following.

Corollary 6.1.24. A graph G is a proper interval graph if and only if G is a claw-free
AT-free chordal graph.

Corollary 6.1.24 implies the forward implication in the equivalence given by The-
orem 6.1.23. The backward implication states that every connected proper interval
graph has at most two moplexes, which can also be derived using known results from
the literature:

• a result of Roberts [Rob69] stating that every connected proper interval graph
in which no two distinct vertices have the same closed neighbourhoods has at
most two extreme vertices, where an extreme vertex is a simplicial vertex s such
that every pair of neighbours of s have a common neighbour outside N[s], and

• the fact that for every minimal separator S in a chordal graph G, every S-full
component of G− S has a vertex dominating S (see, e.g. [KM98]).

For completeness, we also offer a short proof of Theorem 6.1.23.
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6 Induced subgraphs

Proof of Theorem 6.1.23. Suppose first that each connected induced subgraph of G
has at most two moplexes. Note that for every k ≥ 4, the cycle Ck is a connected
graph in which every vertex forms a moplex. Furthermore, the claw is a connected
graph in which every vertex of degree one forms a moplex. Thus, G must be claw-free
and chordal. By Corollary 6.1.15 this implies that G is a claw-free AT-free chordal
graph. Using Corollary 6.1.24 we conclude that G is a proper interval graph.

For the converse direction, let G be a proper interval graph and let H be a connected
induced subgraph of G. Then, H is a connected proper interval graph. We need to
show that H has at most two moplexes. Since both the connectedness and the moplex
number are preserved upon deleting a vertex from a pair of vertices with the same
closed neighbourhoods, we may assume that no two vertices in H have the same
closed neighbourhood. Under this assumption, every moplex in H has size one. To
complete the proof, fix a proper interval model of H and let I1, . . . , In be the ordering
of the intervals according to their left endpoints. For j ∈ {1, . . . , n}, let vj be the
vertex represented by Ij . It now suffices to show that for all j ∈ {2, . . . , n− 1}, the
set {vj} is not a moplex in H. Suppose towards a contradiction that {vj} is a moplex.
Then, the graph H −N [vj ] contains an N(vj)-full component C. Since C contains
no vertex from the closed neighbourhood of vj , no interval representing a vertex in C
intersects Ij . Furthermore, because C is a connected graph, we may assume that all
its vertices are represented by intervals whose left endpoints are strictly larger than
the right endpoint of Ij . The connectedness of H and the ordering of the intervals
imply that Ij−1 intersects Ij , that is, vj−1 is adjacent to vj . However, because all
intervals representing vertices in C are disjoint from Ij and lie entirely to the right of
Ij , the fact that Ij−1 ends before Ij ends implies that no vertex in C can be adjacent
to vj−1 ∈ N(vj). This contradicts the assumption that C is an N(vj)-full component
of H −N [vj ].

As mentioned before, there are four nested hereditary graph classes naturally associated
with the graph class M of 2-moplex graphs:

class M −: the largest hereditary graph class contained in M , that is, the class of
graphs all of whose induced subgraphs are 2-moplex graphs,

class M +: the smallest hereditary graph class containing M , that is, the class of all
induced subgraphs of 2-moplex graphs,

class M −
c : the largest hereditary graph class contained in Mc, that is, the class of

graphs all of whose induced subgraphs only have 2-moplex graphs as connected
components, and

class M +
c : the smallest hereditary graph class containing Mc, that is, the class of

all induced subgraphs of graphs in Mc.
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6.1 Graphs with at most two moplexes

The following inclusion relations follow directly from the definitions:

M − ⊆ M ⊆ M + , M −
c ⊆ Mc ⊆ M +

c ,

M − ⊆ M −
c , M ⊆ Mc, and M + ⊆ M +

c .

Theorem 6.1.23 implies that M −
c is the class of proper interval graphs. We determine

the remaining three hereditary classes, M −, M +
c , and M +. Theorem 6.1.4 shows

that M − is the class of cochain graphs, while the results in Subsection 6.1.5 show
that M +

c and M + both coincide with the class of cocomparability graphs, yielding

M −⏞⏟⏟⏞
cochain

⊂
2-moplex⏟⏞⏞⏟

M ⊂ M +⏞⏟⏟⏞
cocomparability

and M −
c⏞⏟⏟⏞

proper interval

⊂
each component is 2-moplex⏟⏞⏞⏟

Mc ⊂ M +
c⏞⏟⏟⏞

cocomparability

. (6.1)

Let us also comment on the remaining three inclusions M − ⊆ M −
c , M ⊆ Mc,

and M + ⊆ M +
c . Since 3K1 is a proper interval graph but not a 2-moplex graph,

the inclusions M − ⊆ M −
c and M ⊆ Mc are both proper. On the other hand, the

inclusion M + ⊆M +
c holds with equality.

Theorem 6.1.4. Every induced subgraph of a graph G is a 2-moplex graph if and only
if G is a cochain graph.

Proof. Suppose first that each induced subgraph of G has at most two moplexes. Since
for every k ≥ 4 the cycle Ck is a connected graph in which every vertex forms a
moplex, G is a chordal graph. Furthermore, because the graph 3K1 has three moplexes,
G has independence number at most two. As G is a chordal graph, it is also perfect,
and hence the vertex set of G can be covered with two disjoint cliques X and Y
(see [Lov72]), that is, G is cobipartite. Furthermore, for any two vertices x1, x2 in X
we must have N(x1)∩Y ⊆ N(x2)∩Y or N(x2)∩Y ⊆ N(x1)∩Y, since otherwise
G would contain an induced 4-cycle. Using the fact that X is a clique, we infer that
N [x1] ⊆ N [x2] or N [x2] ⊆ N [x1]; since this holds for any two vertices in X, we
conclude that G is a cochain graph.

For the converse direction it suffices to show that every cochain graph has at most two
moplexes, because the class of cochain graphs is hereditary, that is, every induced
subgraph of a cochain graph is again a cochain graph. Let G be a cochain graph.
If G is disconnected, then G is isomorphic to the disjoint union of two complete
graphs, and hence has moplex number two. So we may assume that G is connected.
By definition of cochain graphs, G is a chordal graph. Furthermore, because G is a
cobipartite graph, G is also claw-free and AT-free. Thus, G is a proper interval graph
by Corollary 6.1.24. Finally, by Theorem 6.1.23, G has at most two moplexes.
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6 Induced subgraphs

6.1.4 Lexicographic searches and vertex orderings

Vertex orderings are a central tool when working with graph classes.

A (vertex) ordering of a graph G is a total order on its vertex set. Given an ordering σ
of a graph G and two distinct vertices x and y, we write x <σ y if x precedes y in σ. If
x <σ y and there is no vertex z ∈ V (G) \ {x, y} such that x <σ z and z <σ y, then
we say y is the direct successor of x. A bump of σ is a pair of vertices x and y such
that y is the direct succesor of x in σ but xy /∈ E(G). Three vertices x <σ y <σ z of
G with xy /∈ E(G), yz /∈ E(G), and xz ∈ E(G) are said to form an umbrella in σ.
An ordering is umbrella-free if no three vertices form an umbrella in it. As shown by
Kratsch and Stewart [KS93], the existence of an umbrella-free ordering characterises
cocomparability graphs.

Theorem 6.1.25 (Kratsch and Stewart [KS93]). A graph G is a cocomparability graph
if and only if it has an umbrella-free ordering.

Especially on graph classes that are characterisable via vertex orderings, these can be
very helpful to prove further structural properties.

Theorem 6.1.26 (Deogun and Steiner [DS94]). It can be decided in polynomial time
whether a cocomparability graph has a Hamiltonian path.

A concept very closely related to vertex orderings are graph search algorithms as every
graph search algorithm yields a vertex ordering of the input graph. A DFS ordering
of a connected graph G is any ordering of V (G) obtained by a depth first search. We
are particularly interested in one particular graph search algorithm, the lexicographic
depth first search (LDFS). Informally speaking, LDFS can be seen as a special version
of Depth First Search (DFS) with a tie-breaking rule favouring vertices with recently
visited neighbours. These are determined using labels that are assigned to the vertices
during runtime and the lexicographic relation between them.

When introduced in 2008 by Corneil and Krueger [CK08] the LDFS algorithm did
not have any application. It was simply introduced as the natural analogue to LBFS,
which is used for recognising chordal graphs. Only after that its strong relation to
Hamiltonian properties was discovered [CDH13a]. Both LDFS and LBFS are mostly
studied on graphs closely related to chordal graphs.

Of much greater interest to us is the characterisation of LDFS via a constraint on the
ordering it produces (see [CK08, Theorem 2.7]). Thus we use this characterisation as
definition of an LDFS.
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6.1 Graphs with at most two moplexes

Algorithm 1 Lexicographic Depth First Search.
Input: graph G = (V, E) , start vertex s ∈ V (G)
Out: an ordering σ of V

1: U ← V
2: for all v ∈ V (G) do
3: label(v)← ϵ

4: label(s)← (0)
5: for all 1 ≤ i ≤ n do
6: choose vertex v from U with lexicographic largest label
7: σ(i)← v
8: U ← U \ {v}
9: for all u ∈ U do

10: if uv ∈ E then
11: label(u)← i · label(v) ▷ considering i to be a letter

Definition 6.1.27 (Corneil and Krueger [CK08, Theorem 2.7]). An ordering σ of
G is an LDFS ordering if the following holds: if a <σ b <σ c and ac ∈ E(G) and
ab /∈ E(G), then there exists a vertex d such that a <σ d <σ b and db ∈ E and
dc /∈ E. See Figure 6.4a for an illustration. ⊣

a b cd

(a) LDFS orderings

a b cd

(b) LDFS umbrella-free ordering

Figure 6.4: If an ordering is both LDFS and umbrella free, then the umbrella-freeness
implies the existence of the orange edges, thus implying Lemma 6.1.29.

Note that every LDFS ordering is a DFS ordering. We recall some well-known
properties of all DFS orderings. Essentially, considering the vertices ordered from left
to right, if the graph is connected, every vertex except the first has a neighbour to its
left and the left endpoint of every bump does not have any neighbours to its right.

Observation 6.1.28. Let G be a connected graph and let σ = (v1, v2, . . . , vn) be
a DFS ordering of G. Then, for every i ∈ {2, . . . , n} there exists j < i such that
vivj ∈ E(G). Also, if vivi+1 is a bump of σ for some i ∈ {1, 2, . . . , n − 1}, then
i ≥ 2 and vivj /∈ E(G) for every j > i. See Figure 6.5 for an illustration.
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vi

· · ·
vi+1

· · ·

Figure 6.5: The left vertex of a bump has no neighbours to the right.

A result of Köhler and Mouatadid [KM14] states that every cocomparability graph
admits an umbrella-free LDFS ordering. In Proposition 6.1.35 we prove that all 2-
moplex graphs are cocomparability graphs. Thus we consider the properties of these
orderings that are both LDFS and umbrella-free.

Lemma 6.1.29 (Corneil et al. [CDH13b]). Let σ be an umbrella-free LDFS ordering
of a cocomparability graph G and let a, b, c be vertices such that a <σ b <σ c, and
ac ∈ E(G), and ab /∈ E(G). Then, there exists a vertex d such that a <σ d <σ b,
and {a, b, c, d} induces a C4 in G. (See Figure 6.4b for an illustration.)

Next, we look at the local structure around bumps in an umbrella-free LDFS order-
ing.

Lemma 6.1.30. Let G be a connected cocomparability graph, let σ = (v1, . . . , vn)
be an umbrella-free LDFS ordering of G, and let vivi+1 be a bump in σ. Then, vi is
avoidable in G.

Proof. Let vj and vk be two non-adjacent neighbours of vi. By Observation 6.1.28,
we know that vj <σ vi and vk <σ vi. We may assume without loss of generality that
vj <σ vk <σ vi. By Lemma 6.1.29, there exists a vertex vℓ such that {vi, vj , vk, vℓ}
induces a C4 in G. Thus vi is avoidable.

In applications for graph searches we often find that an algorithm is applied more than
once such that the latter applications use the results of the former ones as input. For
example this leads to a simple recognition algorithm for unit interval graphs [Cor04a].
This technique is often called a multisweep and was introduced by Simon to recognise
interval graphs [Sim91].

One specific tie breaking strategy due to Simon [Sim91], sometimes referred to as a “+
sweep”, breaks ties in a DFS (or any other vertex ordering) procedure by prioritising
the greatest eligible element with respect to some already given ordering. This can be
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6.1 Graphs with at most two moplexes

combined with multisweep techniques in a very natural way by using an earlier sweep
as the input ordering.

Definition 6.1.31. Let σ be an arbitrary ordering of a graph G. Then, (L)DFS+(σ) is
the (L)DFS ordering of G obtained by starting an (L)DFS in the last vertex of σ and
breaking ties by choosing the largest vertex with respect to <σ, that is, if in line 6 of
Algorithm 1 there is more than one eligible vertex, then take the largest with respect
to <σ . In particular, (L)DFS+(σ) always starts with the last vertex of σ. We provide
an example in Figure 6.6.

Note that (L)DFS+(σ) is the (L)DFS ordering of G which is lexicographically maximal
with respect to <σ (where the first vertex has highest significance) among all (L)DFS
orderings of G. ⊣

a
b

c

d

e
f

σ = (d, b, a, e, f, c)

DFS+(σ) = (c, e, f, b, a, d)

LDFS+(σ′) = (c, e, b, d, a, f)

Figure 6.6: A graph and a given ordering σ together with the ordering DFS+(σ) and
LDFS+(σ′).
The first vertex of DFS+(σ) is c, as it is the last of σ. Next, there is the
choice between b and e. Since b <σ e, we choose e. The largest neighbour
of e is f, so that one is chosen next. As f does not have further neighbours
we backtrack to e and choose the next largest neighbour b. Finally, because
d <σ a, we visit a and then d.

We make use of the following three key results on LDFS vertex orderings in the class
of cocomparability graphs.

(LDFS1) As mentioned before, Köhler and Mouatadid [KM14] showed that every
cocomparability graph admits an LDFS ordering that is umbrella-free.

(LDFS2) Corneil, Dalton and Habib [CDH13b] showed that if σ is an umbrella-
free ordering of a graph, then so is LDFS+(σ).

(LDFS3) Xu, Li and Liang [XLL13] showed that every LDFS ordering ends in a
moplicial vertex.

These three results imply the following corollary.
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Corollary 6.1.32. Every cocomparability graph G has an umbrella-free LDFS order-
ing σ such that both its first and last vertex are moplicial.

Proof. We first apply the approach of [KM14] to obtain an umbrella-free LDFS
ordering σ′ of G and then we compute σ = LDFS+(σ′). By [CDH13b], σ is an
umbrella-free LDFS ordering of G. Since σ starts with the last vertex of σ′, it follows
from [XLL13] that both first and last vertices of σ are moplicial.

This implies that we can find the two moplexes of a 2-moplex graph in linear time.
There is a lot of research on the connection between moplexes and lexicographic
searches, see for example [BB01b,Cor04b,XLL13,Tro16].

6.1.5 2-moplex graphs are cocomparabilty

In this subsection, we show that the smallest hereditary graph class containing the
class of 2-moplex graphs is the class of cocomparability graphs. In order to prove that
every 2-moplex graph G is a cocomparability graph, we identify a property common
to all minimal x,y-separators, for any two non-adjacent vertices x and y of G. We then
exploit this property to orient the edges of the complement of G in a transitive way.

Let G be a non-complete 2-moplex graph with the two moplexes U, W ⊆ V (G). For
two non-adjacent vertices x and y we denote by SG(x, y) (or simply S(x, y) if the
graph is clear from the context) the set of all minimal x,y-separators in G. Given
M ∈ {U, W} and S ∈ S(x, y), we say that M prefers x to y with respect to S if M
and x lie in the same connected component of G− S. By (Prop2) of Lemma 6.1.13,
either M prefers x to y with respect to S or M prefers y to x with respect to S. As the
following key lemma shows, which of these two cases occurs is actually independent
of the choice of S.

Lemma 6.1.33. Let U and W be the two moplexes of a non-complete 2-moplex graph
G. Then, for each M ∈ {U, W} and for every two non-adjacent vertices x and y
exactly one of the following conditions holds:

• M prefers x to y with respect to all S ∈ S(x, y), or

• M prefers y to x with respect to all S ∈ S(x, y).

Proof. Without loss of generality, assume that M = U. Suppose towards a contradic-
tion that there exist two minimal x,y-separators S and S′ such that U and x lie in the
same component of G− S, and U and y lie in the same component of G− S′. Then,
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6.1 Graphs with at most two moplexes

due to Lemma 6.1.13, W and y lie in the same component of G− S, and W and x lie
in the same component of G− S′. We have x /∈ U, because x and U lie in different
components of G− S′. In a similar way we conclude that neither x nor y can belong
to U ∪W. Now fix any u ∈ U and w ∈W. Observe that {x, u, w} is an independent
set in G. We conclude the proof by deriving a contradiction with Corollary 6.1.15. To
this end, it is enough to show that {x, u, w} is an asteroidal triple in G.

The removal of NG[u] does not affect the component of G−S′ containing both x and
w. Similarly, the removal of NG[w] does not affect the component of G−S containing
both x and u. Finally, consider the graph G−NG[x] and first observe that it contains
a u-y-path, because the removal of NG[x] does not affect the component of G− S′

containing y and u. Similarly, G−NG[x] contains a y-w-path, because the removal of
NG[x] does not affect the component of G− S containing y and w. Thus, the vertices
u and w are in the same component of G−NG[x] and {x, u, w} is an asteroidal triple,
as claimed.

It follows for every non-complete 2-moplex graph G with the moplexes U and W : if
for some minimal x,y-separator the vertex x belongs to the component containing the
moplex U and y belongs to the component containing the moplex W, then this is the
case for every minimal x,y-separator. Let M ∈ {U, W}. If M prefers x to y with
respect to all S ∈ S(x, y), we say that M prefers x to y. Using this we define a binary
relation RM over V (G) as follows:

xRM y if and only if M prefers x to y.

By Lemma 6.1.33 the two relations RU and RW are well-defined. Furthermore, RU

RWeither U prefers x to y or U prefers y to x (in which case W prefers x to y). We thus
have xRU y if and only if yRW x, that is, RW = R−1

U . Note also that by definition,
xRU y or xRW y implies that x and y are distinct and non-adjacent.

Lemma 6.1.34. Let U and W be the two moplexes of a non-complete 2-moplex graph
G. Then, the relations RU and RW are transitive.

Proof. Let x, y, z be vertices such that U prefers x to y as well as y to z, that is,
xRU y and yRU z. Furthermore, let u ∈ U and w ∈ W and observe that {u, w, y}
is an independent set. We first show that if xz ∈ E(G), then {u, w, y} must be an
asteroidal triple.

Notice that yRU z implies that the removal of NG[w] preserves a u-y-path. Similarly,
xRU y implies that yRW x, and thus the removal of NG[u] preserves a y-w-path. The
graph G − NG[y] contains a u, x-path, because xRU y, and, similarly, G − NG[y]
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contains a z, w-path, because zRW y. Suppose xz ∈ E(G), then it connects both paths
to a u-w-path in G−NG[y], yielding that {u, w, y} is an asteroidal triple. However,
according to Corollary 6.1.15, 2-moplex graphs are AT-free, a contradiction. Thus,
{x, y, z} is an independent set.

To prove the transitivity of RU , we need to show that xRU z. Note first that vertices
x and z are distinct, because otherwise conditions xRU y and yRU x would hold
simultaneously. Suppose towards a contradiction that U does not prefer x to z. Then,
because x and z are non-adjacent, U prefers z to x. Furthermore, because {x, y, z} is
an independent set, there exists a minimal x,z-separator S such that y ̸∈ S. Recall that
U and W lie in the same component of G− S as z and x, respectively. Now notice
that because S separates y from either x or z, it follows that some S′ ⊆ S is either a
minimal x,y-separator, or a minimal y,z-separator.

Suppose first that S′ is a minimal x,y-separator. As zRU x and S′ ⊆ S, the vertex
x remains in the same component together with W in G− S′, and thus xRW y. But
then xRU y violates the fact that RW = R−1

U , a contradiction. The case when S′ is
a minimal y,z-separator is similar. This concludes the proof that xRU y and yRU z
indeed imply xRU z. Therefore, the relation RU is transitive. By symmetry, so is
RW .

We remark that RU is a strict partial order on the vertices of G. Furthermore, because
RU is an orientation of the edges of the complement of G, Lemma 6.1.34 implies the
main result of this section.

Proposition 6.1.35. Every 2-moplex graph is a cocomparability graph.

Proof. Let G be a 2-moplex graph. If G is a complete graph, then G is cocomparability.
Otherwise, G has exactly two moplexes U and W. Consider the orientation of the edges
of the complement of G obtained by orienting each edge {x, y} ∈ E(G) from x to y if
and only if xRU y. By Lemma 6.1.33, this orientation is well-defined. Furthermore, by
Lemma 6.1.34, it is a transitive orientation. Thus, G is a cocomparability graph.

Proposition 6.1.35 is a strengthening of Corollary 6.1.15 with algorithmic conse-
quences for the class of 2-moplex graphs. First, Weighted Independent Set is
solvable in linear time in the class of cocomparability graphs [KM16], and thus
also in the class of 2-moplex graphs. In the more general class of AT-free graphs,
this problem is only known to be solvable in time O(|V (G)|3) [Kö99]. Further-
more, Proposition 6.1.35 implies that the class of 2-moplex graphs is a subclass
of the class of perfect graphs, and thus Clique (and its weighted generalisation),
Clique Cover, and Colouring are all solvable in polynomial time in the class of
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6.1 Graphs with at most two moplexes

2-moplex graphs [GLS88]. Note that this conclusion cannot be derived from Corol-
lary 6.1.15: because Independent Set and Colouring are NP-hard in the class of
C3-free graphs (see [Ale03,KKTW01]), Clique and Clique Cover are NP-hard in
the class of 3K1-free graphs (and thus in the more general class of AT-free graphs),
whereas the complexity of Colouring is still open in the class of AT-free graphs
(see [BKKM99,KM12]).

We show next that the result of Proposition 6.1.35 is best possible in the sense that
one cannot find a smaller hereditary graph class containing all 2-moplex graphs.

Proposition 6.1.36. Every cocomparability graph is an induced subgraph of some
connected 2-moplex graph.

Proof. Let G be a cocomparability graph. By Theorem 6.1.25, G has an umbrella-free
ordering σ. We write σ = (v1, . . . , vn) where i < j if and only if vi <σ vj . Consider
the graph G′ obtained from G as follows (see Figure 6.7 for an illustration of the
construction):

u

w

A BG

Figure 6.7: The graph G′ constructed from the graph G whose vertices are arranged
according to a cocomparability ordering.

• add a set A = {a1, . . . , an} of vertices and a vertex u such that A ∪ {u} is a
clique;

• add a set B = {b1, . . . , bn} of vertices and a vertex w such that B ∪ {w} is a
clique;

• for all i, j ∈ {1, . . . , n} such that i ≤ j, add an edge from ai to vj and an edge
from vi to bj .
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The constructed graph G′ contains G as an induced subgraph and G′ is connected.
Because NG′(u) = A and NG′(w) = B are cliques, U = {u} and W = {w}
are moplexes in G′. To complete the proof, it suffices to show that these are the
only moplexes of G′. Since no two distinct vertices of G′ have the same closed
neighbourhood, every moplex in G′ consists of a single vertex.

We show that for all v ∈ V (G′) \ {u, w}, the set {v} is not a moplex in G′. By
symmetry, we may assume that v ∈ {ai, vi | 1 ≤ i ≤ n}. First, consider the case
that v = ai. Since u is a neighbour of ai not adjacent to any vertex in G′ −NG′ [ai],
no component of G′ −NG′ [ai] can dominate NG′(ai). Thus, {ai} is not a moplex.
Next, assume that v = vi. To show that {vi} is not a moplex, we need to verify that
no component of G′ −NG′ [vi] dominates NG′(vi). Consider the vertex sets

X = {u} ∪ {aj | i < j ≤ n} ∪ ({vj | i < j ≤ n} \NG′(vi)) and
Y = ({vj | 1 ≤ j < i} \NG′(vi)) ∪ {bj | 1 ≤ j < i} ∪ {w} ,

and let C and D denote the subgraphs of G′−NG′ [vi] induced by X and Y, respectively.
By construction, C and D are connected. Note that G′ contains no edges from a vertex
in A ∪ {u} to a vertex in B ∪ {w} and also no edge from a vertex in {vj | 1 ≤ j <
i} \ NG′(vi) to a vertex in {vj | i < j ≤ n} \ NG′(vi), because (v1, . . . , vn) is an
umbrella-free ordering of G. It follows that the graph G′ −NG′ [vi] has exactly two
components, namely C and D. By construction, C contains no vertex adjacent to bi

and D contains no vertex adjacent to ai. Since ai and bi are adjacent to vi, we infer
that {vi} is not a moplex. Therefore, G′ is connected 2-moplex, as claimed.

Let us explain how the above results establish that both M + and M +
c coincide with

the class of cocomparability graphs, as stated in (6.1).

Corollary 6.1.37. M + = M +
c = C, where C is the class of cocomparability graphs.

Proof. Since M + ⊆M +
c , it suffices to show that C ⊆M + and M +

c ⊆ C.

The inclusion C ⊆ M + is an immediate consequence of Proposition 6.1.36. For
the inclusion M +

c ⊆ C, consider an arbitrary graph G in M +
c . Then, there exists a

graph G′ such that every connected component of G′ is a 2-moplex graph and G is an
induced subgraph of G′. By Proposition 6.1.35, every connected component of G′ is
a cocomparability graph. Theorem 6.1.25 implies that the class of cocomparability
graphs is closed under disjoint union. It follows that G′ is a cocomparability graph,
and, since the class of cocomparability graphs is hereditary, so is G. We conclude that
M +

c ⊆ C, as desired.
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6.1 Graphs with at most two moplexes

In particular, we obtain the following result as announced above.

Theorem 6.1.5. The smallest hereditary graph class containing the class of 2-moplex
graphs is the class of cocomparability graphs.

This is very intuitive as it immediately implies our observation from earlier that chordal
graphs with two simplicial modules are interval graphs, as interval graphs are the
intersection of chordal graphs and cocomparability graphs.

6.1.6 Hardness results

As seen in Subsection 6.1.5, the class of 2-moplex graphs is a proper subclass of
the class of cocomparability graphs. In this subsection we show that two classical
problems, namely Max-Cut and Graph Isomorphism, remain as hard on the class of
2-moplex graphs as they are on cocomparability graphs.

Hardness of Max-Cut on 2-moplex graphs

The Max-Cut problem is defined as follows.

Max-Cut
Input: An undirected graph G and k ∈ N.

Question: Does G contain an edge-cut of size at least k?

Recall that we have established that the class of connected 2-moplex graphs is sand-
wiched between the classes of connected proper interval and cocomparability graphs.

It is known that Max-Cut is NP-complete on cobipartite graphs [BJ00], and thus on
cocomparability graphs. Interestingly, the complexity of Max-Cut is still open on
proper interval graphs [BDFG+04,KMN20,ABMR21,dFdMdSOS21].

We show that the problem remains NP-complete on cobipartite graphs with only two
moplexes. The hardness reduction is based on the following construction (see also
Figure 6.8).

Construction 6.1.38. Let G = (A ∪B, E) be a cobipartite graph such that A and B
are disjoint cliques. We define the graph G′ obtained from G as follows:
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6 Induced subgraphs

• add a set A′ containing |A| vertices and a vertex u such that {u} ∪A ∪A′ is a
clique;

• add a set B′ containing |B| vertices and a vertex w such that {w} ∪B ∪B′ is a
clique;

• fix a vertex a∗ ∈ A′ and connect it to every vertex in B ∪B′;

• fix a vertex b∗ ∈ B′ and connect it to every vertex in A ∪A′.

Lemma 6.1.39. Let G = (A ∪B, E) be a cobipartite graph such that A and B are
disjoint cliques and G′ be the graph obtained from G by Construction 6.1.38. Then,
G′ is a cobipartite graph with exactly two moplexes.

Proof. First, notice that the sets A ∪ A′ ∪ {u} and B ∪ B′ ∪ {w} are cliques and
that hey form a partition of the vertex set of G′. This implies that G′ is cobipartite.
Furthermore, by construction {u} and {w} are simplicial moplexes. Next, fix a vertex
a ∈ A ∪ A′. We observe that NG′ [u] ̸= NG′ [a], because a is adjacent to b∗ but u is
not. Additionally, as u is a neighbour of a and NG′ [u] ⊆ NG′ [a], no component of
G′ −NG′ [a] dominates NG′(a). Hence, a does not belong to any moplex. A similar
argument can be used to show that every vertex b ∈ B ∪ B′ does not belong to any
moplex. Thus, G contains exactly two moplexes.

Theorem 6.1.6. Max-Cut is NP-complete on cobipartite 2-moplex graphs.

Proof. As one can verify in polynomial time whether a given edge set is a maximum
cut of the graph, the problem is in NP. To prove NP-hardness, we reduce from Max-
Cut on cobipartite graphs, which is known to be NP-hard [BJ00]. Let G = (A∪B, E)
be a cobipartite graph with disjoint cliques A and B. Then, let G′ be the graph obtained
from G using Construction 6.1.38. Note that G′ can be obtained in polynomial time.
By Lemma 6.1.39, we have that G′ is a cobipartite graph with exactly two moplexes.
We complete the proof by showing that there exists an edge-cut of size at least k in G
if and only if there exists an edge-cut of size at least (|A|+ 1)2 + (|B|+ 1)2 + k in
G′.

First, assume we have an edge-cut ∂G(Z) in G of size at least k ≥ 1. Without loss of
generality, we assume that |A∩Z| ≥ 1 and |B∩Z| ≥ 1. Indeed, if, say, A∩Z = ∅, then
Z ⊆ B and A ⊆ Z, in which case we can achieve the desired inequalities by swapping
the roles of Z and Z. We define a set Z ′ ⊆ V (G′) as follows. The first step is to choose
a subset A′

1 ⊆ A′ \ {a∗} such that | (Z ∩A) ∪ {a∗} ∪ A′
1| = |A| + 1 and a subset

B′
2 ⊆ B′ \ {b∗} such that |

(︁
Z ∩B

)︁
∪ {b∗} ∪B′

2| = |B|+ 1. Then, we define Z ′ :=
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6.1 Graphs with at most two moplexes

G is cobipartite

A B

G′ is a cobipartite 2-moplex graph

u

A

w

B

A′

a∗

B′

b∗

Figure 6.8: An example of Construction 6.1.38 used to prove Theorem 6.1.6 with the
vertices a∗ and b∗ marked in green. The ellipses represent cliques.

Z∪{a∗, w}∪A′
1∪(B′ \B′

2) , which implies Z ′ = Z∪{b∗, u}∪B′
2∪(A′ \A′

1) . This
gives us that | (A ∪A′)∩Z ′| = |A|+1 (and consequently | (A ∪A′)∩Z ′| = |A|−1)
as well as | (B ∪B′)∩Z ′| = |B| − 1 (and consequently | (B ∪B′)∩Z ′| = |B|+ 1).

Now, we reason about the size of the edge-cut ∂G′(Z ′). Consider the set of cut-edges
with both endpoints in A∪A′ ∪{u, b∗}. It contains 2 (|A|+ 1) edges between A∪A′

and {u, b∗} and, because A∪A′ is a clique, (|A|+ 1) (|A| − 1) edges within A∪A′.
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6 Induced subgraphs

Thus, there are exactly 2 (|A|+ 1) + (|A|+ 1) (|A| − 1) = (|A|+ 1)2 cut-edges
whose endpoints both lie in A ∪ A′ ∪ {u, b∗}. Similarly, there are (|B|+ 1)2 cut-
edges whose endpoints both lie in B ∪B′ ∪ {w, a∗}. Hence, adding the (at least k)
cut-edges between A and B, we obtain that ∂G′(Z ′) is an edge-cut of size at least
(|A|+ 1)2 + (|B|+ 1)2 + k in G′.

Second, assume that we have an edge-cut ∂G′(Z ′) in G′ of size at least (|A|+ 1)2 +
(|B|+ 1)2 + k. Consider the cut ∂G(Z) in G defined by Z := Z ′ ∩ (A ∪B) which
implies Z = Z ′ ∩ (A ∪B) . There are three possible cases:

(Case1) u, b∗ ∈ Z ′;

(Case2) u ∈ Z ′ and b∗ ∈ Z ′, or u ∈ Z ′ and b∗ ∈ Z ′;

(Case3) u, b∗ ∈ Z ′.

Consider the subgraph H ′
A of G′ induced by A∪A′∪{u, b∗} and let p = | (A ∪A′)∩

Z ′| − |A|. Note that | (A ∪A′) ∩ Z ′| = |A| + p and | (A ∪A′) ∩ Z| = |A| − p.
In (Case1), the number of cut-edges in H ′

A is exactly (|A|+ p + 2) (|A| − p) =
(|A|+ 1)2 − (p + 1)2

. In (Case2), the number of cut-edges lying in H ′
A is exactly

(|A|+ p) (|A| − p) + (|A|+ p) + (|A| − p) = (|A|+ 1)2 −
(︁
p2 + 1

)︁
. And finally,

in (Case3), the number of cut-edges lying in H ′
A is exactly (|A|+ p) (|A| − p + 2) =

(|A|+ 1)2 − (p− 1)2
. Thus, at most (|A|+ 1)2 cut-edges can lie in H ′

A. Similar
arguments show that the number of cut-edges lying in the subgraph induced by the
vertices in B ∪B′ ∪ {a∗, w} is bounded by (|B|+ 1)2

. By assumption, the size of
∂G′(Z ′) is at least (|A|+ 1)2 + (|B|+ 1)2 + k, which implies that the remaining k
cut-edges must lie between the sets A and B, and thus ∂G(Z) is a cut of size at least
k in G.

Hardness of Graph Isomorphism on 2-moplex graphs

The Graph Isomorphism problem is defined as follows.

Graph Isomorphism
Input: Two graphs G1 and G2.

Question: Are G1 and G2 isomorphic to each other?

The Graph Isomorphism problem is solvable in linear time in the class of interval
graphs [LB79]. Since the problem is GI-complete on bipartite graphs [UTN05], it is
also GI-complete on cobipartite graphs, and thus on cocomparability graphs. Using a
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6.1 Graphs with at most two moplexes

reduction from the Graph Isomorphism problem in the class of bipartite graphs, we
show that the problem remains hard on cobipartite graphs with at most two moplexes.

Theorem 6.1.7. Graph Isomorphism is GI-complete on cobipartite 2-moplex graphs.

Proof. We reduce from the GI-complete isomorphism problem on connected bipartite
graphs [UTN05]; note that the authors claim the GI-completeness only for bipartite
graphs but the construction ensures that the obtained graph is connected.

G is bipartite

Ai Bi

G′ is a cobipartite 2-moplex graph

ui

A′
i

wi

B′
i

Figure 6.9: An example for the construction used to prove Theorem 6.1.7. The ellipses
represent independent sets in G and cliques in G′.

Let G1, G2 be connected bipartite graphs with colour classes A1 and B1, A2 and B2
respectively. We construct two graphs G′

1 and G′
2 as follows. The vertex set of G′

i

for i ∈ {1, 2} consists of the vertex set of Gi together with two extra vertices ui and
wi. Each of the sets Ai ∪ {ui} and Bi ∪ {wi} forms a clique in G′

i, for i ∈ {1, 2}.
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6 Induced subgraphs

Furthermore, we add an edge to G′
i between x ∈ Ai and y ∈ Bi if and only if x and y

are adjacent in Gi. See Figure 6.9 for an illustration of this construction.

The obtained graphs are cobipartite. We prove that they are also 2-moplex graphs. In
each of the obtained graphs the two new vertices ui and wi form simplicial moplexes
(of size one). So what remains to show is that there are no additional moplexes in the
constructed graphs. Let a ∈ Ai and suppose it belongs to a moplex M in G′

i. Since
Gi is connected, a has a neighbour in Bi, which implies NG′

i
[a] ̸= NG′

i
[ui], thus we

know that ui /∈M. Also, NG′
i
(M) is a minimal x, y-separator for two non-adjacent

vertices x, y ∈ V (G′
i). Since a ∈ Ai ∩M, we have Ai ∪ {ui} ⊆ NG′

i
[M ], thus

{x, y} ⊆ Bi ∪ {wi}. However, Bi ∪ {wi} is a clique in G′
i, contradicting the fact that

x and y are non-adjacent in G′
i. By similar arguments no vertex of Bi is moplicial.

To complete the proof, we show that there is an isomorphism f : G1 → G2 if and
only if there is an isomorphism f ′ : G′

1 → G′
2. Assume there is an isomorphism

f : G1 → G2. Since G1 and G2 are connected, we must have either f(A1) = A2
(and then f(B1) = B2) or f(A1) = B2 (and then f(B1) = A2). We extend f to an
isomorphism f ′ : G′

1 → G′
2 by setting

(f ′(u1) , f ′(w1)) =
{︄

(u2, w2) , if f(A1) = A2;
(w2, u2) , if f(A1) = B2.

Now, assume there is an isomorphism f ′ : G′
1 → G′

2. First note that ui and wi are the
only simplicial vertices in G′

1, and thus we have either f ′(u1) = u2 and f ′(w1) = w2,
or f ′(u1) = w2 and f ′(w1) = u2. This immediately implies that their neighbourhoods
are also mapped to each other: f ′(A1) = A2 and f ′(B1) = B2, or f ′(A1) = B2
and f ′(B1) = A2. Since f ′ is an isomorphism, for every x, y ∈ A1 ∪ B1, we have
{x, y} ∈ E(G′

1) if and only if {f ′(x), f ′(y)} ∈ E(G′
2). Additionally using that Ai

and Bi are cliques in G′
i and independent sets in Gi, we infer that f := f ′|V (G1) is an

isomorphism between G1 and G2.

We note that the proofs of Theorems 6.1.6 and 6.1.7 also imply stronger statements,
namely that Max-Cut is NP-complete and Graph Isomorphism is GI-complete even
for cobipartite graphs with at most 2 avoidable vertices (recall Observation 6.1.19).

6.1.7 Hamiltonian properties of 2-moplex graphs

A graph is traceable if it contains a Hamiltonian path. It is well-known that every
connected proper interval graph is traceable [Ber83]. In this subsection, we generalise
this result by proving Theorem 6.1.8, i.e. that every connected 2-moplex graph is
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6.1 Graphs with at most two moplexes

traceable. The presented approach relies on the fact that every 2-moplex graph is a
cocomparability graph (as proved in Proposition 6.1.35).

Using the results developed so far, we can establish traceability of the following special
case of 2-moplex graphs.

Proposition 6.1.40. Every connected graph containing at most two avoidable modules
has a Hamiltonian path.

Proof. Let G′ be a connected graph containing at most two avoidable modules. We
can remove all but one vertex from every avoidable module in G′ to obtain a graph G
with exactly two avoidable vertices. There is a Hamiltonian path in G′ if and only if
there is a Hamiltonian path in G.

Applying Observation 6.1.19 and Proposition 6.1.35, we infer that G is a cocompara-
bility graph. By Corollary 6.1.32, the graph G has an umbrella-free LDFS ordering
σ = (v1, . . . , vn) such that the vertices v1 and vn are moplicial. We claim that
(v1, . . . , vn) is a Hamiltonian path in G. Suppose that vivi+1 is a bump in σ. Then,
by Lemma 6.1.30, i ≥ 2 and the vertex vi is avoidable in G. Since v1 and vn are
moplicial vertices, they are also avoidable, and thus G contains three distinct avoidable
vertices, a contradiction.

An important ingredient in extending the statement of Proposition 6.1.40 to the whole
family of 2-moplex graphs is the following theorem.

Theorem 6.1.41 (Corneil et al. [CDH13b]). Let G be a cocomparability graph with
an umbrella-free LDFS vertex ordering σ. If G admits a Hamiltonian path, then one
such path corresponds to DFS+(σ).

We proceed with the proof of traceability for general 2-moplex graphs.

Theorem 6.1.8. Every connected 2-moplex graph has a Hamiltonian path.

Proof. Aiming towards a contradiction, fix a connected 2-moplex graph G of mini-
mum order that does not admit a Hamiltonian path. By Corollary 6.1.32 and Proposi-
tion 6.1.35, the graph G has an umbrella-free LDFS ordering σ = (v1, . . . , vn) such
that v1 and vn are moplicial. For i ∈ {1, . . . , n}, we denote by σi the ordering of σi

G− vi obtained from σ by removing vi. Note that n ≥ 2 because otherwise G would
have a Hamiltonian path.
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6 Induced subgraphs

The minimality of G implies that no two distinct vertices of G have the same closed
neighbourhood. In particular, every moplex in G is of size one. Hence, because G
is a 2-moplex graph, v1 and vn are the only two moplicial vertices of G. Because
NG[v1] ̸= NG[vn], these two vertices belong to distinct moplexes.

Note that, as G does not admit a Hamiltonian path, there is at least one bump in σ.
As we show next, no two bumps are consecutive in the ordering and deleting the left
endpoint of a bump retains the desirable properties of the ordering σ.

Claim 1. Suppose that vivi+1 is a bump in σ. Then, σi is an umbrella-free LDFS
ordering of G− vi, and still starts and ends in moplicial vertices. Furthermore, we
have that vi−1vi ∈ E(G).

Proof. By Observation 6.1.28, we have i ≥ 2. Every subsequence of an umbrella-free
vertex ordering remains umbrella-free. To prove that σi remains an LDFS ordering
observe that, by Observation 6.1.28, there is no neighbour v ∈ NG(vi) such that vi <σ

v, so all triplets satisfying Definition 6.1.27 remain unaffected. As vn ̸= vi ̸= v1,
the vertex vi is not moplicial. By Lemma 6.1.30, vi is avoidable in G, and thus, by
Theorem 6.1.21, v1 and vn are moplicial in G− vi.

We prove that vi−1vi ∈ E(G) by contradiction, so suppose vi−1vi /∈ E(G). Now,
observe that NG(vi) ⊆ NG(vi−1). Indeed, Suppose there exists a vertex vj <σ vi

with vjvi ∈ E(G) and vjvi−1 /∈ E(G), then the vertices vj , vi−1, and vi form an
umbrella, a contradiction. So, NG(vi) ⊆ NG(vi−1) holds. Then, NG(vi) is a minimal
vi−1,vi-separator in G, and thus {vi} is a moplex. Recall that i ≥ 2, and thus vertices
v1, vi, and vn belong to three distinct moplexes, a contradiction.

Let ≺ be the predecessor relation given by DFS+(σ), i.e. for all u, v ∈ V (G) we≺
have u ≺ v if and only if u is the immediate predecessor of v in DFS+(σ). The next
claim looks at how the left vertex of a bump behaves under this relation.

Claim 2. Let vivi+1 be a bump in σ, and let x, y ∈ V (G) such that x ≺ vi ≺ y and
xvi, yvi ∈ E(G). Then, xy ̸∈ E(G).

Proof. Note that, by Observation 6.1.28, the vertices x and y appear before vi in the
ordering σ. Suppose that xy ∈ E(G) (see Figure 6.10 for an illustration). By Claim 1
we have that σi is an umbrella-free LDFS ordering of G−vi. Following Lemma 6.1.30,
the vertex vi is avoidable. Hence vi is not a cut-vertex, that is, G− vi is connected.
Furthermore, because vi is not moplicial, Corollary 6.1.22 implies that G − vi is a
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6.1 Graphs with at most two moplexes

· · · · · ·· · ·
≺

y x
vi−1

vi vi+1

Figure 6.10: The vertices are drawn in order of σ. Edges are solid and non-edges are
dashed. The purple, directed edges stand for the≺-relation; they are solid
as we know them to be edges. Claim 2 proves that xy is not an edge, thus
it is depicted in red.

2-moplex graph. Now, observe that by the minimality of G, the graph G− vi contains
a Hamiltonian path, and thus by Theorem 6.1.41,

DFS+(σi) = (vn, . . . , x, y, . . .)

corresponds to a Hamiltonian path of G − vi which extends to a Hamiltonian path
(vn, . . . , x, vi, y, . . .) in G, contradicting the choice of G.

Now fix k to be the maximal integer in {2, . . . , n−1} such that vkvk+1 is a bump of σ,
and let G′ = G−vk. Applying Claim 1 yields that σk = (v1, v2, . . . , vk−1, vk+1, . . . ,
vn) is an umbrella-free LDFS ordering of G′ starting and ending in moplicial vertices.

The graph G′ is connected, because vk is an avoidable vertex in G, and thus not a
cut-vertex. Furthermore, because vk is not moplicial, Corollary 6.1.22 implies that
G′ is a 2-moplex graph. Thus, the minimality of G and Theorem 6.1.41 imply that
DFS+(σk) yields a Hamiltonian path of G− vk.

We consider what this implies about the structure of DFS+(σ). At this point, we know
that DFS+(σ) and DFS+(σk) share the prefix (vn, . . . , vk+1), and thus vn ≺ . . . ≺
vk+1. Since vkvk+1 is a bump, Observation 6.1.28 implies that vk+1 has at least one
neighbour in {v1, . . . , vk−1}, and hence vk+1 must be adjacent in G to its successor
in DFS+(σ). We show that this successor is indeed vk−1.

Claim 3. We have vk+1 ≺ vk−1.

Proof. Let j be the largest integer such that j ≤ k, and vjvk+1 ∈ E(G). The choice
of j implies that vk+1 ≺ vj and j ̸= k.

Suppose towards a contradiction that j ̸= k − 1, that is vk+1vk−1 /∈ E(G) (see
Figure 6.11 for an illustration). This implies that vj is adjacent to both vk−1 and vk, as
otherwise there is an umbrella in σ containing the vertices vj and vk+1. By Claim 1,
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· · · · · · · · ·
≺

vj

vk

vk−1 vk+1

Figure 6.11: The vertices are drawn in order of σ. Edges are solid and non-edges are
dashed. The purple directed edges stand for the ≺-relation; they are solid
as we know them to be edges. Claim 3 proves that DFS+(σ) visits vk−1
after vk+1, as a different vertex vj would yield a contradiction to Claim 2.

we know vkvk−1 is not a bump, i.e. vkvk−1 ∈ E(G), which implies vk+1 ≺ vj ≺
vk ≺ vk−1. As vjvk−1 ∈ E(G) this contradicts Claim 2.

From vkvk−1 ∈ E(G) and the definition of DFS+ it follows that vk is visited immedi-
ately after vk−1, i.e. vk−1 ≺ vk. So by now we have established vn ≺ . . . ≺ vk+1 ≺
vk−1 ≺ vk. This corresponds to a path of length n− k + 1 in G, so in the following
we assume k > 2. We next prove that left of vk−1 follows another bump.

Claim 4. We have that vk−2vk−1 is a bump in σ.

Proof. Suppose vk−2vk−1 is an edge (see Figure 6.12 for an illustration). Then,
vk−2vk /∈ E(G), as otherwise vk+1 ≺ vk−1 ≺ vk ≺ vk−2, which contradicts Claim 2
(with i = k). However, if vk−2vk /∈ E(G), then observe that NG(vk) ⊆ NG(vk−2),
as otherwise vk−2 and vk would form an umbrella in σ with any x ∈ NG(vk) \
NG(vk−2), because, by Observation 6.1.28 (with i = k) and the fact that x ̸= vk−1,
we have x <σ vk−2. The inclusion NG(vk) ⊆ NG(vk−2) implies that {vk} is a
moplex. However, because v1 and vn belong to distinct moplexes in G other than
{vk}, this contradicts that G is a 2-moplex graph.

Since vk−2vk−1 is a bump in σ, we can use Observation 6.1.28 and Claim 1 to obtain
k ≥ 4 and vk−2vk−3 ∈ E(G), respectively. Now, we consider which vertex DFS+(σ)
visits after vk. As vk is not moplicial, it has degree at least two. Fix vj to be its
neighbour such that the value of j < k − 1 is maximised, i.e. vk ≺ vj . We show that
no value of j is realisable.

As vk−2vk−1 /∈ E(G) is a bump in σ, vk−2vk /∈ E(G) (see Observation 6.1.28).
Thus, we have j ̸= k − 2.
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· · ·· · · · · ·

≺

vk−2 vkvk−1 vk+1x

umbrella

Figure 6.12: The vertices are drawn in order of σ. Edges are solid and non-edges are
dashed. The purple, directed edges stand for the ≺-relation; they are
solid as we know them to be edges. Claim 4 shows that vk−2vk−1 is a
non-edge as otherwise G contains another moplex.

Suppose next that j = k − 3, or equivalently vk−3vk ∈ E(G). Then, vk−1vk−3 ∈
E(G), as otherwise the vertices vk−3 <σ vk−1 <σ vk violate Definition 6.1.27. Since
vk−1 ≺ vk ≺ vk−3, Claim 2 implies vk−1vk−3 /∈ E(G), a contradiction.

Finally, suppose that j < k − 3 and observe that vk−2vj and vk−3vj are edges, as
otherwise the corresponding two vertices would form an umbrella in σ with vk. In
particular, we have

vk+1 ≺ vk−1 ≺ vk ≺ vj ≺ vk−2 ≺ vk−3 .

By Claim 2 (with i = k − 2) we get vjvk−3 /∈ E(G), a contradiction. This concludes
the proof of Theorem 6.1.8.

Due to [KM14], computing a minimum path cover can be done in linear time for
cocomparability graphs. This result, along with Theorem 6.1.8 and Proposition 6.1.35,
implies the following.

Corollary 6.1.42. Given a connected 2-moplex graph G, a Hamiltonian path in G
can be computed in linear time.

Layering

The presented proof for the existence of a Hamiltonian path in every 2-moplex graph is
essentially an inductive argument using Proposition 6.1.40 as its induction basis. There
is an alternative way to prove this base staement, that is, every graph with at most two
avoidable modules is traceable. Although it more complicated than the straightforward
proof provided above, it reveals additional information about the structure of 2-moplex
graphs.
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6 Induced subgraphs

Before we proceed to the result itself, we establish a technical lemma that we use in
the proof.

Lemma 6.1.43. Let G be a graph with exactly two avoidable modules U and W. Then,
for every non-avoidable vertex x ∈ V (G) and every failing extension x1xx2 there
exists an induced U -W -path containing {x1, x, x2}.

Proof. First, note that NG[x] \ {x1, x2} is an x1,x2-separator. As every component
of G −NG[x] contains an avoidable vertex of G [BDHT20], the graph G′ := G −
(NG[x] \ {x1, x2}) contains exactly two connected components, one containing U and
the other containing W. Assume without loss of generality that x1 is in the connected
component containing U and x2 is in the connected component containing W. Fix
an induced path Q1 between some u ∈ U and x1, and an induced path Q2 between
x2 and some w ∈W. We claim that P = Q1 − x−Q2 is an induced path in G. As
observed earlier, Q1 ∪ Q2 is disconnected in G. Hence, the only obstruction to P
being an induced path in G is the edge x1x2, which does not exist because x1xx2 is
an extension of x. Thus, P is an induced path in G.

Proposition 6.1.40. Every connected graph containing at most two avoidable modules
has a Hamiltonian path.

Proof. Let G be a connected graph with at most two avoidable modules. Because the
statement is trivial if G is a complete graph, we assume that G is not complete. Thus,
G has exactly two avoidable modules. It suffices to consider the case in which the
two avoidable modules are of size 1, because they are cliques and a Hamiltonian path
containing one of their vertices can easily be extended to contain all their vertices. So
let G be a connected graph with exactly two avoidable vertices u and w which are not
adjacent.

Since every vertex in a moplex is avoidable, U = {u} and W = {w} are the only
two moplexes of G. Furthermore, as G is a 2-moplex graph, Proposition 6.1.35 and
its proof provide a transitive orientation RU of the complement of G. This yields a
partial order ≤ on the vertices of G in which without loss of generality u is a minimal
and w is a maximal element.

We define a partition of the partial order into pairwise disjoint and non-empty layers
L1, . . . , Lk of pairwise incomparable elements with respect to ≤ so that every vertex
of G lies in the lowest possible layer, that is, if x ∈ Li then for all j ∈ {1, . . . , i− 1}
there exists an x′ ∈ Lj with x′ ≤ x. Any two vertices that are not connected by an
edge in G are comparable with respect to ≤, thus the layers are cliques in G.
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6.1 Graphs with at most two moplexes

By Lemma 6.1.13, vertex u is simplicial in G. Therefore, the first layer L1 consists
precisely of vertex u and its neighbourhood. Next, we show that vertex w lies in the
last layer Lk. Suppose otherwise, let x ∈ Lk and w ∈ Lj with j < k. If xw /∈ E(G),
then U prefers x to w, that is, xRU w, which contradicts the layer construction. So, x
is connected to w by an edge. The layer Lj is a clique and because N(w) is a clique
as well x is also connected to every other vertex in Lj . Thus, there is no x′ ∈ Lj with
x′ ≤ x, a contradiction to the layer definition.

We call an edge of G an Li-jump if it has one endpoint, called the lower endpoint, in a
layer Lj with j < i, and the other endpoint, called the upper endpoint, in a layer Lj′

with j′ > i.

Claim 1. For all x ∈ Li, 1 ≤ i ≤ k there is no failing extension axb of x with
a ∈ Lj , b ∈ Lj′ and j, j′ < i.

Proof. If i = 1 this is obvious, so suppose i > 1. Suppose there is a vertex x ∈ Li

with a failing extension axb such that a ∈ Lj and b ∈ Lj′ with j, j′ < i. Since axb is
failing, we have ab /∈ E(G), and thus j ̸= j′. Let us assume without loss of generality
that j′ < j. By the definition of the layers, there is a vertex x′ ∈ Lj with x′ ≤ x and
therefore xx′ /∈ E(G). We have x′b ∈ E(G), because otherwise b ≤ x′ and x′ ≤ x
but x and b are incomparable, contradicting the transitivity. Because Lj is a clique,
ax′ ∈ E(G) which closes the failing extension axb, a contradiction.

Observe that if x ∈ Li has a neighbour x′ ∈ Lj with j > i, then it has a neighbour in
Li+1 due to the definitions of the layers and the transitivity of ≤ .

Claim 2. For all 1 ≤ i ≤ k a vertex b ∈
⋃︁

j<i Lj can never be the lower endpoint of an
Li-jump and part of a failing extension axb of a vertex x ∈ Li with NG(x) ⊆

⋃︁
j≤i Lj .

Proof. Suppose there is a vertex b ∈
⋃︁

j≤i Lj and a vertex x ∈ Li with NG(x) ⊆⋃︁
j<i Lj such that b is part of a failing extension axb of x and b is also the lower

endpoint of an Li-jump e = bc. By definition of Li-jumps c ∈
⋃︁

j>i Lj and by
Claim 1, we have a ∈ Li. By the assumptions on x, we have that xc ̸∈ E(G). In case
ac ∈ E(G) we obtain a cycle closing the extension axb, a contradiction. And in case
ac /∈ E(G) the non-edges ba and ac together with the edge e contradict the transitivity
of ≤ . See Figure 6.13 for an illustration.

Claim 3. For all Li such that 1 ≤ i < k, there exists an x ∈ Li such that there is
some Lj with j > i, x′ ∈ Lj and xx′ ∈ E(G).
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x a

b

c

Li
e

?

Figure 6.13: An illustration for the proof of Claim 2. The layer Li with a jump e.
Between a and c (marked in orange) we can neither have an edge nor a
non-edge, yielding the contradiction.

Proof. Assume N(Li) ⊆
⋃︁

j≤i Lj for some i ∈ {1, . . . , k − 1}. That is, vertices
of Li only have neighbours in the same and lower layers. Since G is connected, it
contains an Li-w-path and thus, because w ∈ Lk and k > i, there is at least one
Li-jump.

Consider some x ∈ Li and a failing extension axb of x. By Claim 1, the fact that Li

is a clique in G, and the assumption on the neighbourhood of Li, we may assume that
a ∈ Li and b /∈ Li. By Lemma 6.1.43 there is an induced u-w-path P containing
either axb or bxa as a subpath. Since Li has no neighbours in higher layers, P has
to contain an Li-jump e = cd with lower vertex d. We know xd ∈ E(G), because
otherwise the non-edges dx and xc together with edge e contradict the transitivity
of ≤ . But neither a nor b, by Claim 2, can be an endpoint of e. Thus x has three
neighbours on P contradicting P to be induced.

Note that for 1 < i < k we have that |Li| > 1, because otherwise Claim 3 and the
earlier observation would imply that the unique vertex in Li has a neighbour in Li+1
that is adjacent to all vertices in Li, contradicting the layer definition.

For 1 ≤ i < k let U(Li) be the set of neighbours of Li in the next layer, that is,
U(Li) = N(Li) ∩ Li+1. Clearly, if |U(Li)| ≥ 2 for all 1 ≤ i < k there is a
Hamiltonian path in G visiting the layers in increasing order. Also |U(Li−1)| = 1 still
allows for such a path, if U(Li) has a neighbour in Li \ U(Li−1) (the Hamiltonian
path reaches Li in a different vertex).

Thus, we suppose there is a layer Li such that x ∈ Li is the only element in U(Li−1)
and x′ is one of its neighbours in Li+1, |Li| > 1, and N(U(Li)) ∩ Li = {x}. This
implies that no vertex in Li \ {x} has any neighbours in

⋃︁
j>i Lj .
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6.1 Graphs with at most two moplexes

Since |Li| > 1, there exists y ∈ Li \ {x}. Let ayb be a failing extension of y. As y
does not have neighbours in higher layers and by Claim 1 no failing extension of y
can have both vertices in lower layers, we infer that a or b lies in Li. Without loss of
generality let a ∈ Li and b lies in a layer Lj with j < i. By Lemma 6.1.43 there is
an induced u-w-path P containing either ayb or bya as a subpath. If a ̸= x then P
cannot contain x, because x is adjacent to y, thus P contains an Li-jump e = cd with
lower vertex d. By Claim 2, d ̸= b, and thus dy /∈ E(G), because P is induced. But
then the non-edges dy and yc together with edge dc contradict the transitivity of ≤ .
Thus we can assume that a = x. Additionally, because {x} = U(Li−1)), b /∈ Li−1
with xb /∈ E(G).

Let x′′ ∈ Li−1 ∩ NG(x). Since y does not have any neighbours in Li−1, we have
yx′′ /∈ E(G). If x′′b /∈ E(G), then the non-edges bx′′ and x′′y together with edge
by contradict the transitivity of ≤ . Thus, x′′b ∈ E(G) closing the extension xyb, a
contradiction to it being failing.

Algorithm 2 Hamiltonian path.
Input: a graph G = (V, E) with at most two avoidable modules U and W, layers
L1, . . . , Lk

Out: a Hamiltonian path P in G

1: if k = 1 then
2: return a random Hamiltonian path on the clique L1

3: choose w ∈W
4: P = (w)
5: i = k
6: while i ̸= 1 do
7: let x ∈ U(Li−1) \ V (P )
8: let Q be a path from x to the first vertex of P visiting every vertex in the clique

Li

9: P = Q · P
10: if Li−1 \ U(Li−2) ̸= ∅ then
11: choose y ∈ Li−1 \ U(Li−2)
12: else
13: choose y ∈ N(x) ∩ Li−1

14: i = i− 1
15: choose u ∈ U
16: let Q be a path from u to the first vertex of P visiting every vertex in the clique L1
17: P = Q · P
18: return P
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6 Induced subgraphs

The proof of Theorem 6.1.8 not only shows that there always is a Hamiltonian path
from one avoidable module U to the other W but also that this path is layer-monotone
with respect to the layers given by the transitive ordering of the non-edges in G.
Algorithm 2 provides the Hamiltonian path given that the input graph has at most two
avoidable modules.

6.1.8 Outlook on moplexes

Graphs with a bounded number of moplexes form interesting graph classes, because
moplexes provide a tool that has the potential to lift the beneficial structural properties
of simplicial modules in chordal graphs to the setting of all graphs, see, e.g. [BBBS10,
BB01a, BB01b]. We introduce the moplex number of a graph, focusing our study
on properties of graphs with moplex number 2, the smallest nontrivial class in the
moplex-number hierarchy. Some of the questions we answered for the case k = 2
can also be asked for k > 2. For instance, how do the classes of k-moplex graphs
relate with the hierarchy of hereditary graph classes? Also, what is the complexity of
Clique, Clique Cover, and Colouring for k-moplex graphs?

In Theorem 6.1.21, we identify a graph operation, the removal of an avoidable non-
moplicial vertex, which preserves the moplexes. One can easily determine other such
operations (e.g. removing a universal vertex or a true twin). It would be interesting
to characterise the class of k-moplex graphs by identifying a set of operations and a
base class that can be used to generate every member of the class. Even for k = 2 the
existence of such a characterisation is still open.

In Theorem 6.1.8 we show that every connected 2-moplex graph is traceable. We
conjecture the following strengthening of Theorem 6.1.8.

Conjecture 6.1.44. Every 2-connected 2-moplex graph has a Hamiltonian cycle.

Even for the stronger property of pancyclicity there is no known counterexample.

6.2 Avoidable paths

In [BCG+19], the authors consider a generalisation of the concept of avoidable vertices
to edges. An edge uv in a graph G is an avoidable edge if every induced path on four
vertices with middle edge uv is contained in an induced cycle in G. They generalised
Theorem 6.1.17 to that notion.
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6.2 Avoidable paths

Theorem 6.2.1 (Beisegel et al. [BCG+19]). Every graph that has an edge has an
avoidable edge.

This notion naturally generalises to paths. We again define extensions as we did for
avoidable vertices. Given an induced path P in a graph G, an extension of P is an
induced path xPy in G for some vertices x, y. The extension xPy is failing if there is
no induced cycle of G containing xPy.

Definition 6.2.2 (Avoidable path). A path P in a graph G is an avoidable path if it is
induced and has no failing extension. Given a subgraph G′ of G, we say that P is an
avoidable path of G in G′ if it is avoidable in G and V (P ) ⊆ V (G′). ⊣

This section presents a result proving that every graph containing an induced Pk also
contains an avoidable induced Pk. This was conjectured by Beisegel et al. and estab-
lished for k ∈ {1, 2} (Ohtsuki et al. 1976 [OCF76], and Beisegel et al. 2019 [BCG+19])
motivated by the following result of Chvátal et al. [CRS02], which generalises Dirac’s
theorem, Theorem 2.1.1.

Theorem 6.2.3 (Chvátal et al. [CRS02]). For every positive integer k, every C≥k+3-
free graph either is Pk-free or contains an avoidable path on k vertices.

Originally, Theorem 6.2.3 states the existence of a simplicial path in the class of
C≥k+3-free graphs. A simplicial path is an induced path with no extension, we also
say it is avoidable by vacuity. Note that these two definitions coincide on the considered
graph class, as no cycle on at most k + 2 vertices can contain the extension of an
induced path on k vertices.

In this section we mainly prove the following result.

Theorem 6.2.4. For every positive integer k, every graph either is Pk-free or contains
an avoidable Pk.

6.2.1 A stronger induction hypothesis

We prove Theorem 6.2.4 using a stronger induction hypothesis, in the exact same
flavour as [CRS02], see Theorem 6.2.9 in Subsection 6.2.1. To this end we first define
two useful properties.

Definition 6.2.5 (Basic property HB). Given a positive integer k and a graph G, the
property HB(G, k) holds if either G is Pk-free or there is an avoidable Pk in G. ⊣
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6 Induced subgraphs

Definition 6.2.6 (Refined property HR). Given a positive integer k, a graph G and
a vertex u ∈ V (G), the property HR(G, k, u) holds if either G−N[u] is Pk-free or
there is an avoidable Pk of G in G−N[u].

Given a positive integer k and a graph G, the property HR(G, k) holds if HR(G, k, u)
holds for every u ∈ V (G). ⊣

Note that property HR(G, k) does not directly imply property HB(G, k). We also
emphasise the fact that an avoidable path of a subgraph is not necessarily an avoidable
path of the whole graph.

The next lemma states a form of heredity in HR.

Lemma 6.2.7. Let k be a positive integer, G a graph and u1u2 an edge of G and G′ =
G/ (u1u2 → u) . If G′−N[u] contains a Pk, then HR(G′, k, u) implies HR(G, k, u1).

Proof. Suppose towards a contradiction that G′ − N[u] contains a Pk, and that
HR(G′, k, u) holds but HR(G, k, u1) does not. Since G′ − N[u] is not Pk-free,
there is an avoidable Pk of G′ in G′ − N[u]. Call it Q. The path Q is contained in
G′ −N[u] = G −N[{u1, u2}], so in particular in G −N[u1]. Since HR(G, k, u1)
does not hold, Q is not an avoidable Pk of G. Thus, there is a failing extension xQy
of Q in G. Note that x, y, u1, and u2 are all pairwise distinct.

Hence, xQy is an extension of Q in G′, and, because Q is avoidable in G′, there is an
induced cycle C in G′ containing the path xQy. If u ̸∈ V (C), then the cycle C is also
an induced cycle in G containing xQy, a contradiction. Therefore, u ∈ V (C). By
replacing u with either u1, u2 or the edge u1u2 as appropriate, we obtain an induced
cycle in G containing xQy, a contradiction.

This can be strengthened to a connected subset of vertices in a graph instead of a single
edge.

Lemma 6.2.8. Let G be a graph, X a subset of its vertices such that G[X] is connected
and G′ = G/ (X → x) . Assume that G−N[X] contains a Pk. Then HR(G′, k, x)
implies that there is an avoidable Pk of G in G−N[X].

Proof. Suppose HR(G′, k, x) holds but there is no avoidable Pk of G in G−NG[X].
Since G′ −NG′ [x] is not Pk-free, there is an avoidable Pk of G′ in G′ −NG′ [x], call
it Q, that is not an avoidable Pk of G. Thus, there is a failing extension aQb of Q in
G. Note that a, b, and x are all pairwise distinct.
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6.2 Avoidable paths

Hence, aQb is an extension of Q in G′, and, because Q is avoidable in G′, there is
an induced cycle C in G′ containing the path aQb. If x ̸∈ V (C), then the cycle C is
also an induced cycle in G containing aQb, a contradiction. Therefore, x ∈ V (C).
Now let a′, b′ be the two neighbours of x on C. By replacing a′xb′ in C by a shortest
a′-b′-path within X (which exists because G[X] is connected) we obtain an induced
cycle C ′ in G containing aQb, a contradiction.

We are now ready to prove the main technical result of this section.

Theorem 6.2.9. For every k ∈ N+ and every graph G, both properties HB(G, k) and
HR(G, k) hold.

Proof. Suppose the statement is false and consider a counterexample G which is
minimal with respect to the number of vertices.

Lemma 6.2.10. The property HR(G, k) holds for every k.

Proof. We proceed by contradiction. Suppose that HR(G, k, u) does not hold for
some k and some vertex u ∈ V (G), that is, there exists a Pk in G−N[u], and every
Pk in G−N[u] has a failing extension in G. We prove the following.

Claim 1. Every Pk in G−N[u] dominates N(u).

Proof. Assume towards a contradiction that there is a Pk in G−N[u], call it Q, which
is not adjacent to some vertex v ∈ N(u). Then G − N[{u, v}] contains a Pk. Let
G′ be the graph obtained from G by merging u and v into a vertex u′. Since G′ has
fewer vertices than G, property HR(G′, k, u′) holds by minimality of G. Then, by
Lemma 6.2.7, also HR(G, k, u) holds, a contradiction.

Let G′ := G − N[u]. Then G′ contains a Pk. As G′ has fewer vertices than G, the
property HB(G′, k) holds. Let Q be an avoidable Pk of G′. By assumption, Q is not
an avoidable Pk of G. So there is a failing extension xQy of Q in G. Since Q has
no failing extension in G′, we can assume without loss of generality that y ∈ N(u).
It follows that x ̸∈ N(u): otherwise the cycle xQyu contradicts the fact that xQy
is failing. By definition of an extension, xQy is an induced path. Let z be the only
neighbour of y in Q, and let us now consider the path xQ − z (which is the path
obtained from Q by first removing z from one end and then adding x to the other
end). It is a Pk, and it does not intersect N[u]. However, no vertex in it is adjacent to
y which lies in N(u), contradicting Claim 1. ⌟
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Lemma 6.2.11. The property HB(G, k) holds for every k.

Proof. Assume towards a contradiction that for some k, property HB(G, k) does not
hold. By Lemma 6.2.10, the property HR(G, k, u) holds for every vertex u ∈ V (G).
In other words, the graph G contains a Pk but no avoidable Pk, and for every vertex
u ∈ V (G), either G−N[u] is Pk-free or there is an avoidable Pk of G in G−N[u].

We derive the following claim.

Claim 1. Every Pk in G dominates V (G).

Proof. Suppose there is a Pk, call it Q, that does not dominate some vertex u of G.
Since HR(G, k) holds, either G−N[u] is Pk-free or there is an avoidable Pk of G in
G−N[u]. The first case contradicts the existence of Q, and the second contradicts
the fact that HB(G, k) does not hold.

Since HB(G, k) does not hold, G contains a Pk, call it Q, that is not avoidable. So
it has a failing extension xQy. Let z be the only neighbour of y in Q, and consider
the path xQ− z. It is an induced Pk and none of its vertices are adjacent to y. This
contradicts Claim 1. ⌟

Finally, lemmata 6.2.10 and 6.2.11 together contradict G being a counterexample.

Theorem 6.2.4 directly follows from Theorem 6.2.9. We point out that the proof of
Theorem 6.2.4 is self-sufficient, thus it implies Theorems 6.2.1, 6.2.3 and 6.1.17.

6.2.2 Consequences

Note that Dirac’s theorem, Theorem 2.1.1, implies the existence of two simplicial
vertices and the results of Beisegel et al. [BCG+19] as well as Ohtsuki, Cheung and
Fujisawa [OCF76] also state the existence of two avoidable vertices or edges. By using
ingredients of Theorem 6.2.9 (namely Lemma 6.2.7), we also obtain a way to build
more than one avoidable Pk. The following corollary follows from Lemma 6.2.8 and
Theorem 6.2.9.

Corollary 6.2.12. Let k ∈ N+, G be a graph and X ⊆ V (G) such that G[X] is
connected, then either G − N[X] is Pk-free or there is an avoidable Pk of G in
G−N[X].
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We call two paths Q1 and Q2 adjacent if there is an edge between a vertex of Q1 and
a vertex of Q2. This allows us to also infer the following statement.

Corollary 6.2.13. Let k ∈ N+ and G be a graph. Either G does not contain two
non-adjacent Pk, or it contains two non-adjacent avoidable Pk.

Proof. Let Q1 and Q2 be two non-adjacent Pk. By Corollary 6.2.12, either G−N[Q1]
is Pk-free or there is an avoidable Pk of G in G−N[Q1]. The first outcome is ruled out
by the existence of Q2. Let Q′

2 be an avoidable Pk of G in G−N[Q1]. We repeat the
argument with Q′

2 instead of Q1, and obtain an avoidable Pk of G in G−N[Q′
2], call

it Q′
1. The two paths Q′

1 and Q′
2 are two non-adjacent avoidable Pk, as desired.

This raises the question whether every graph G either does not contain two disjoint
Pk, or contains two disjoint avoidable Pk.

We know the answer to be positive in case k ∈ {1, 2}, due to [BCG+19, Theorems
3.3 and 6.4]. The following counterexample shows that the answer is negative for all
k ≥ 3. Let G be a graph which consists of a cycle on 2k − 1 vertices with an added
vertex adjacent to two consecutive vertices on the cycle (see Figure 6.14 for the case
k = 3). The graph G contains two disjoint Pk, and it has 2k vertices, so the vertex
sets of any two disjoint Pk are in fact complementary in the graph. Suppose that the
graph contains two disjoint avoidable Pk, and note that each intersects the triangle
(otherwise the complement would not be a path). Since there are three vertices in
the triangle, there is an avoidable Pk containing a single vertex in the triangle. This
Pk has a failing extension containing one of the non-cycle edges from the triangle, a
contradiction.

Figure 6.14: A graph that contains two disjoint P3 (in blue and in green) but no two
disjoint avoidable P3 (there is a unique partition into two disjoint P3, up
to symmetry). In red, a failing extension of the blue path.
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6.2.3 An algorithm for Theorem 6.2.9

Here, we consider the algorithmic point of view on finding avoidable paths in graphs.
Note that there is a straightforward naive algorithm checking for every subset of size
k if it corresponds to an avoidable path.

Our proof of Theorem 6.2.9 is constructive and yields an elementary algorithm that
has comparable complexity to the very naive one, but we believe that it provides an
outline of the proof, which might be helpful to the reader.

By going through the proof and extracting the key ingredients, we obtain a straightfor-
ward algorithm verifying both properties HR(G, k) and HB(G, k) (see Algorithm 3).
The algorithm has the complexityO(nk+2) which, though naive, is has the right order
of magnitude under the ETH.

Algorithm 3 Avoidable path.
Input: graph G = (V, E) , integer k ∈ N

Out: an avoidable Pk in G or null if there is none
1: procedure FindAvoidablePathRefined(G, k, u)
2: for all v ∈ N(u) do
3: if InducedPath(G−N[{u, v}], k) ̸= null then
4: G′ ← G with u and v merged into u′

5: return FindAvoidablePathRefined(G′, k, u′)
6: return FindAvoidablePath(G−N[u], k)

7: procedure FindAvoidablePath(G, k)
8: for all u ∈ V (G) do
9: if InducedPath(G−N[u], k) ̸= null then

10: return FindAvoidablePathRefined(G, k, u)
11: return InducedPath(G, k)

It suffices to consider connected graphs here, because if the graph is not connected,
then its components can be computed in linear time and the algorithm can be run
on the components separately. The algorithm uses the subprocedure InducedPath
that, given a graph G and a positive integer k, decides whether G contains a Pk. If
G contains a Pk, the procedure returns a Pk, otherwise it returns null. The naive
algorithm for that (testing all subsets of size k) has complexity O(nk). However, this
is nearly optimal. Indeed, the problem of finding a Pk in a given graph is W [1]-hard1

when parametrised by k (see [CFK+15, Ex. 13.16, p. 460]). In fact, the reduction

1see, e.g. [CFK+15] for definitions around complexity
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there has a linear blow-up, so it follows that there is no f(k) · no(k) algorithm under
ETH.

Fix a positive integer k, then for n ∈ N+ we define Bk(n) (resp. Rk(n)) to be the
worst case complexity of FindAvoidablePath (resp. FindAvoidablePathRefined)
on an n-vertex graph with parameter k. We have Bk(n) ≤ n · nk + max(Rk(n), nk),
and Rk(n) ≤ n · nk + max{Rk(n− 1), Bk(n− 1)} (here the recursive instances are
smaller by one when merging two vertices and smaller by at least 2, when removing
the closed neighbourhood because in a connected graph every vertex has at least one
neighbour). We obtain Rk(n) ∈ O(nk+2) and Bk(n) ∈ O(nk+2 + nk+1). While
this may well be improved, the known limitations for finding an induced path on k
vertices also apply for an induced avoidable path on k vertices (by Theorem 6.2.4, if
the first exists, then so does the second). Therefore, this naive algorithm has the same
order of magnitude as an optimal solution.

6.2.4 Conclusion

Based on the techniques used in the proof presented above, Gurvich, Krnc, Milanič
and Vyalyi [GKMV21] recently strengthened the statement further by showing that
one can “shift” any given Pk onto an avoidable one. A shift of a path here, means to
iteratively delete an edge at one side and add the incident edge of an extension on the
other side.

Theorem 6.2.14 ( [GKMV21]). Every induced path in a graph can be shifted to an
avoidable one.

They also consider other structures such as walks, trails, paths that are not induced, and
isometric paths. For walks and paths they obtain the same result for fitting definitions
of extensions and shifting, however for isometric paths and trails even the statement
that an avoidable such structure exists fails.

It is natural to wonder whether we can find avoidable structures that are further removed
from paths. However, for these structures, already the definition of an extension is a
challenge. What, for example, would the extension of a clique or a claw look like?
Quite likely we would loose the relation to simplicial structures in chordal graphs at
this point. What happens when allowing for a family of graphs instead of fixing a
single graph? This motivates us to formulate the following question. Does there exist
a familyH of connected graphs, not containing any path (or path-like structure), such
that any graph is eitherH-free or contains an avoidable element ofH?
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6 Induced subgraphs

Another question arising from the discussions in Subsection 6.2.2 is: When does a
graph admit three (or more) disjoint (resp. pairwise non-adjacent) avoidable paths?
Note that although Corollary 6.2.12 states sufficient conditions for there to be more
than two avoidable Pk, we do not believe that the corresponding sufficient conditions
for the case of three or more paths are necessary. However, for this question even the
answer for chordal graphs is unclear.

6.3 Perfect linegraph squares

The colouring of graphs is a well known and highly active area of research that has many
applications. The concept of colourings for both vertices and edges can be generalised
by adding a distance constraint. A strong vertex colouring is a proper vertex colouring
such that vertices within distance at most 2 of each other receive different colours and
a strong edge colouring is a proper edge colouring where additionally every two edges
sharing end-vertices with the same edge are coloured differently. In other words, the
colour classes of a strong edge colouring form an induced matching.

The strong edge colouring problem and the related maximum induced matching
problem have received a lot of attention from the network community as this problem
appears in the context of interference-free channel assignments (see [RL93], [Ram97],
[NKGB00], [JN01], and [AM17]).

It is known that strong vertex colouring [LR92], strong edge colouring [Mah02]
and maximum induced matching [Cam89, SV82] are all NP-complete. This is
especially surprising for maximum induced matching, as maximum matching is
long known to be in P. Moreover, maximum induced matching stays NP-hard even
on bipartite graphs [Cam89] and on planar graphs of maximum degree four [KS94].

While many problems become solvable in more reasonable running time if parametrised,
strong vertex colouring remains W [1]-hard, even when it is parametrised by
treewidth [FGK11].

Finding a strong vertex colouring of G is equivalent to finding a vertex colouring
of G2. That is, if we are able to ensure G2 to be in a class of graphs where vertex
colouring is known to be in P, we can use this for the construction of new algorithms
for strong vertex colouring.

A classical example of graphs on which many NP-complete problems, such as vertex
colouring, become easy to solve are chordal graphs. While squares of chordal graphs
are not necessarily chordal again, Duchet proved the following result.
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6.3 Perfect linegraph squares

Theorem 6.3.1 (Duchet [Duc84]). If Gk is chordal, then so is Gk+2.

An edge colouring of a graph corresponds to a vertex colouring of its linegraph. In the
same fashion a strong edge colouring corresponds to a vertex colouring of the squared
linegraph. So, in order to find graphs on which the strong edge colouring problem
becomes accessible we are interested in LG(G)2 belonging to a class of graphs that
we can colour in polynomial time. Again chordal graphs provide a nice example.

Theorem 6.3.2 (Cameron [Cam89]). If G is a chordal graph, then LG(G)2 is chordal.

In this section we investigate the structure of graphs whose squared linegraphs have
certain properties with respect to the vertex colouring problem. Namely, we find graph
families G and S such that for any graph G that is G-free, the squared linegraph of G
is S-free. In particular, this yields a characterisation of graphs with perfect linegraph
squares. Therefore, we obtain a class of graphs on which the strong edge colouring
problem can be solved in polynomial time. We extend the results from [SW18] by
using similar techniques which are also used in [CST03].

We introduce a few more definitions. For k ≥ 5 the complement of a cycle Ck, namely
Ck, is called an antihole. If we are given a set S of vertices and a vertex x ∈ S, we
refer to x as an S-vertex. Similarly, if S is a set of edges and e ∈ S, then we refer to e
as S-edge.

The Strong Perfect Graph Theorem by Chudnovsky et al. allows the description of
perfect graphs in terms of forbidden induced subgraphs.

Theorem 6.0.1 (Strong Perfect Graph Theorem [CRST06]). A graph is perfect if and
only if it contains neither Ck nor Ck as induced subgraph for odd k ≥ 5.

We are aiming to forbid induced cycles and antiholes on an odd number that is at
least five of vertices in the squared linegraph. A possible generalisation of perfect
graphs is the concept of χ-boundedness. A class of graphs C is χ-bounded if there
is a function f : N → N such all G ∈ C satisfy χ(G) ≤ f(ω(G)). A famous result
by Gyárfás [Gya87] states that the class of Pt-free graphs is χ-bounded for every
t ≥ 1.

A first step towards this was already taken by Scheidweiler and Wiederrecht, who
introduced the structure of flowers, the graphs generating induced cycles in graph
squares.
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6 Induced subgraphs

Definition 6.3.3 (Flower). A flower of order n is a graph Fn = (U ∪W, E) withFn

U = {u0, . . . , un−1} and W = {w0, . . . , wq−1},
⌊︁

n
2
⌋︁
≤ q ≤ n, satisfying the

following conditions considering the indices for W -vertices modulo q:

(F1) There is a cycle C containing all vertices of W in the order w0, . . . , wq−1.

(F2) The elements of the set U = {u0, . . . , un−1} are sorted such that the vertices
in V (C)∩U appear along C in that order. Moreover, we have u0wq−1, u1w0 ∈
E and uiuj /∈ E for all j ̸= i± 1 (mod n).

(F3) For all 0 ≤ i < q, we have if wiwi+1 ∈ E(C), then there exists exactly
one u ∈ U \ V (C) such that NFn

(u) = {wi, wi+1}. Such a vertex u is called
pending.

(F4) If wiwi+1 /∈ E(C), then there either is exactly one u ∈ U ∩ V (C) adjacent
to wi and wi+1, or there are exactly two vertices u, t ∈ U ∩ V (C), such that
wiutwi+1 is a subpath of C.

(F5) The pending vertices are pairwise non-adjacent and all vertices u ∈ U that
are not pending are contained in C.

If Fn is contained in a graph G and there exists an additional vertex v with vui, vuj ∈
E(G) for some j ̸= i ± 1 (mod n), then Fn is called a withered flower or just
withered. ⊣

The correspondence between a flower and the induced cycle in the graph square
provided by the following theorem is used in the proof of Theorem 6.3.13.

Theorem 6.3.4 (Scheidweiler, Wiederrecht [SW18]). Let G be a graph, then G2

contains an induced cycle on k ≥ 4 vertices if and only if it contains an unwithered
flower of order k.

Inspired by this, we start our discussion on induced graphs in G2 by investigating
graphs with Pt-free squares.

6.3.1 Induced paths in G2

This subsection provides some insight into the structure of the subgraphs that are
responsible for the existence of induced paths in the square of a graph G. Our main
method is quite technical and uses a lot of case distinctions. The proof of Lemma 6.3.6,
which characterises the structures that give rise to induced paths in G2, is presented in
order to illustrate this on a comparatively easy structure.
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Figure 6.15: Some examples of flowers of order four with different values for q. The
marked vertices induce a cycle of length four in the squared graphs.

Definition 6.3.5 (Spire). A spire of order n is a graph Sn = (U ∪W, E) with U = Sn

{u0, . . . , un−1} and W = {w0, . . . , wq−1} such that the following conditions hold
considering the indices for W -vertices modulo q and for U -vertices modulo n:

(S1) Sn contains a path P with W ⊆ V (P ) and U ⊆ V (P ). Moreover, the graph
G[U ] only contains edges that lie on P.

(S2) The path P has the endpoints u0 and un−1, and all U - and W -vertices are
ordered by their appearance along P.

(S3) No three U -vertices form a subpath of length 2 on P.

(S4) No two W -vertices are consecutive on P.

(S5) For all 0 ≤ i < n, we either have uiui+1 ∈ E(Sn), or uiwjui+1 is an
induced subpath of P for some j.

(S6) Every wj ∈W is adjacent to exactly two U -vertices and those are consecutive
on P.

If Sn is contained in some graph G and there exists an additional vertex v with
vui, vuj ∈ E(G) for some j ̸= i ± 1, then Sn is called a withered spire or just
withered.

We refer to U as the base of Sn and if wjuiwj+1 ⊆ P and wjwj+1 ∈ E(Sn), ui is
called pending. ⊣

We prove that unwithered spires indeed ensure the existence of induced paths in the
square of a graph and that we can always find one if the square contains an induced
path, see Figure 6.16 for some examples.
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u0 u1 w0 u2 w1 u3 u4 w2 u5
S6

u0 w0 u1 w1 u2 w2 u3
S4

u0 w0 u1 u2 w1 u3 u4
S5

Figure 6.16: Some examples for spires of order four, five and six. The marked vertices
induce paths in the respective graph squares.

Lemma 6.3.6. Let G be a graph and t ≥ 1. There is a set of vertices U ⊆ V (G) such
that G2[U ] ∼= Pt if and only if G contains an unwithered spire of order t with base U.

Proof. Let U = {u0, . . . , ut−1} ⊆ V (G) such that G2[U ] ∼= Pt. Assume that the
vertices of U are ordered by their appearance along Pt. If distG(ui, ui+1) = 2 for
some 0 ≤ i < t−1, then there is a vertex w ∈ V (G) with ui, ui+1 ∈ N(w). Suppose
there is some j ∈ {0, . . . , t−1}\{i, i+1}with uj ∈ N(w). Then, distG(ui, uj) ≤ 2
and distG(ui+1, uj) ≤ 2 contradicting that Pt is an induced path. Hence, we can
collect a set W of such vertices by choosing exactly one such w for every pair of
vertices ui, ui+1 of distance 2 in G. This set W immediately satisfies (S6). In addition,
we now have a path P on the vertices of U and W in which two consecutive vertices
ui and ui+1 are not adjacent if and only if there is some w ∈W adjacent to both of
them. Thus, (S2) to (S4) hold as well.

As we have seen, all W -vertices connect U -vertices of distance exactly 2 in G. So,
if e ∈ E(G[U ]) \ E(P ), then e joins two U -vertices that do not have a common
neighbour in W and are not consecutive on P. This contradicts Pn being induced, thus
such edges do not exists and, as P is a path on the vertices of U and W, (S1) holds.
(S5) holds by construction and therefore we are done.

For the reverse direction let St = (U ∪W, E) be an unwithered spire in G and P
the corresponding path. By (S5), we have uiui+1 ∈ E(G2) for all 0 ≤ i < t − 1.
So, G2[U ] contains a path of length t − 1 on the vertices of U. Suppose towards a
contradiction that this path is not induced. Hence, there are two U -vertices ui and
uj with j ̸= i ± 1 and distG(ui, uj) ≤ 2. By (S1) and (S2), ui and uj cannot be
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6.3 Perfect linegraph squares

adjacent and because St is not withered, there is no v ∈ V (G)\V (St) adjacent to both.
Therefore, there is some x ∈ V (St) with ui, uj ∈ N(x). By (S1) and (S3), x /∈ U and
thus x ∈W. But by (S6), ui and uj now have to be consecutive, a contradiction.

Consider the class St of graphs G such that G2 excludes Pt as induced subgraph.
There has to be an additional vertex in the graph that does not lie within the spire, in
order for the spire to be withered. So, our result does not allow us to conclude the
χ-boundedness of St. However, consider the class S2

t of graphs G for which some
graph H exists with H2 = G and all St in H are withered. By Gyárfás’ Theorem, the
class S2

t is χ-bounded for every t ≥ 1.

6.3.2 Induced odd antiholes and perfect squares

We are looking for a way to characterise graphs with perfect graph squares. A first step
is Theorem 6.3.4, as it characterises graphs that exclude induced cycles in their square.
Here we give a similar way of excluding induced odd antiholes in the graph square.

As antiholes are more complex than paths, we need some more insight regarding
their structure. In order to give a compact description of the graphs generating odd
antiholes in their squares, we show that a lot of the required structure can be captured
by generating cliques of a specific size. The following is a folklore result, but we
provide the proof for sake of completeness.

Lemma 6.3.7. Let t = 2k + 1 for k ≥ 2. Then, Ct has t maximum cliques of size
k and for each vertex v ∈ V (Ct) there are exactly two cliques K, K ′ amongst them,
such that V (K) ∩ V (K ′) = {v}.

Proof. Let V (Ct) = {u0, . . . , ut−1} and Ct = (u0, . . . , ut−1) that is we consider
the vertices ordered by appearance along Ct, and we consider the indices module t.
Let 0 ≤ i < t, then Ct − ui is a path of even length, so in particular a bipartite graph
with colour classes A containing ui−1 and B containing ui+1.

Both A and B induce cliques of size k =
⌊︁

t
2
⌋︁

in Ct because they are independent sets
in Ct − ui. In addition those cliques are maximum cliques in Ct − ui and neither of
them contains ui. They are both also maximum cliques in Ct, because Ct does not
contain edges between neighbours on Ct, neither uiui+1 nor uiui−1 is an edge in Ct.
For every i ∈ {1, . . . , t} let Ki be the clique created by the vertices of the colour Ki

class in Ct − ui containing ui+1. Note that K1, . . . , Kt are t distinct cliques.

Next, we show that for every 0 ≤ j < t − 1 there are two of these cliques that
are disjoint except for containing uj . We have seen that the Kj−1 contains uj and
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ui

ui+1

ui+2

ui−1

Figure 6.17: The path C9 − ui together with a 2-colouring of its vertices and a clique
on one of its colour classes.

k − 1 = 1
2 |NCt

(uj)| of its neighbours. We claim that the Kj+2 also contains uj

together with exactly the other half of NCt
(uj). In order to see this consider the

2-colouring of Ct − uj+2. By construction, none of the two colour classes contains
uj+2. In addition, the colour class containing uj+1, which is one of the two endpoints
of the path Ct − uj+2, cannot contain uj . The path Ct − uj+2 is of odd length and
thus uj+3 is coloured differently from uj+1, which means that it has the same colour
as uj and therefore uj is contained in Kj+2. So, Kj−1 and Kj+2 both contain uj . At
last consider Kj−1, which contains both uj and uj+2, so in particular not uj+3. In
both cases vertices are collected into the cliques in steps of two along Ct and thus the
two cliques are vertex disjoint except for uj .

As an immediate consequence we can describe the neighbourhood of every vertex
v ∈ V (Ct) as two disjoint cliques that can be completed to a maximum clique of
our antihole by adding v. For every antihole Ct, we keep referring to the cliques
constructed in the proof of Lemma 6.3.7 by K1(Ct), . . . , Kt(Ct).Ki(Ct)

Corollary 6.3.8. Let t = 2k +1 for k ≥ 2 and v1, . . . , vt the vertices of V (Ct) sorted
by appearance along Ct. Then, for every 0 ≤ i < t we can cover N[vi] with exactly
two cliques of size k such that vi is the only vertex appearing in both cliques. These
are exactly Ki−1(Ct) and Ki+2(Ct).

For the construction of antiholes, we again introduce sets U and W, but this time the
construction focusses on a family of sets {U0, . . . , Ut−1} where t = 2k + 1 as in
Lemma 6.3.7. Each of these sets Ui is going to represent exactly the clique Ki(Ct).

Definition 6.3.9 (Thornbush). A thornbush of order n = 2k + 1, k ≥ 2, is a graph
Tn = (U ∪W, E) with U = {u0, . . . , un−1} such that the following conditions holdTn

230



6.3 Perfect linegraph squares

considering the indices of U -vertices modulo n:

(T1) The vertices of U are given in a fixed order which we describe by a cycle
CU = (U, {uiui+1 | 0 ≤ i < n}) .

(T2) There exists a family {U0, . . . , Un−1} ⊆
(︁

U
k

)︁
such that Ui is the colour class

of the bipartite graph CU − ui containing ui+1.

(T3) For all u ∈ U and all v, v′ ∈ N[u] ∩ U there is some j such that v, v′ ∈ Uj .

(T4) There are sets W0, . . . , Wn−1, which are possibly empty and not necessarily
disjoint, with

⋃︁n−1
i=0 Wi = W and for all w ∈Wi there are u, v ∈ Ui such that

uw, vw ∈ E and distTn−w(u, v) > 2.

(T5) For all w ∈ W and u, v ∈ U with u, v ∈ N(w) there is some j such that
u, v ∈ Uj and w ∈Wj .

(T6) For all u, u′ ∈ Ui with uu′ /∈ E there is a w ∈Wi with uw, u′w ∈ E.

We call U the base of Tn. Let Tn be contained in some graph G. If ui is not adjacent
to any other uj and W ∩N(ui) forms a clique in G, ui is called pending. If G contains
a vertex v with ui, ui+1 ∈ N(v) for some i, we call Tn a withered thornbush or just
withered. ⊣

Lemma 6.3.10. Let G be a graph and n = 2k + 1 ≥ 5, then there is a set of vertices
U ⊂ V (G) such that G2[U ] ∼= Cn if and only if G contains an unwithered thornbush
Tn with base U.

Proof. Assume there is an unwithered thornbush Tn with base U = {u0, . . . , un−1}
in G, and let the ui be ordered according to the cyclic ordering provided by (T1).
Furthermore, let {U0, . . . , Un−1} be the family provided by (T2).

By (T6), we obtain distG(u′, u) ≤ 2 for all u, u′ ∈ Ui and all i. Hence, the Ui form
cliques of size k in G2. Additionally, by the construction of the Ui in (T2), uj ∈ Ui

implies uj−1, uj+1 /∈ Ui for all i and j. Hence, due to (T3), distG(uj , uj−1) ≥ 2 and
distG(uj , uj+1) ≥ 2. Also, for every i /∈ {j − 1, j + 1} there is some h such that
ui, uj ∈ Uh which follows from (T2) and the proof of Lemma 6.3.7.

Suppose there is some w and some i such that w ∈ N(ui) ∩ N(ui+1). If w ∈
V (G)\V (Tn), then Tn is withered in G contradicting our assumption, so w ∈ U∪W.
If w ∈ U, by (T3), there is some h such that ui, ui+1 ∈ Uh, which yields a contradiction
to the construction of Uh, that is (T2). If w ∈ W, then w belongs to some Wj and,
due to (T5), ui, ui+1 ∈ Uj , which again yields a contradiction. Therefore, no such w
exists and N(ui) ∩N(ui+1) = ∅ for all i.
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Hence, for all i and all j ̸= i± 1 we have uiuj /∈ E(G2) and therefore G2[U ] ∼= Cn.

Next, let G2 contain a Cn with U := V (Cn). We order the vertices of U = {u0, . . . ,
un−1} by occurrence along the cycle Cn. This gives us the required ordering for (T1).

By Corollary 6.3.8, we can cover all vertices in U by a cyclic arrangement of exactly
n cliques of size k, let U0, . . . , Un−1 be those cliques. By construction, these cliques
fulfil exactly the requirements of (T2).

Since the vertices of every Ui form a clique in G2 we obtain distG(u, v) ≤ 2 for all
u, v ∈ Ui for every i. Hence, for every such pair with uv /∈ E(G) the set N(u)∩N(v)
is not empty. Now choose W to be a set containing exactly one vertex from N(u)∩N(v)
for every pair of vertices u, v ∈ Ui with uv /∈ E(G) for some i. Consider a vertex
w ∈W and the set Uw := N(w) ∩ U. Note that, by construction, Uw forms a clique
in G2. For each pair of vertices u′, v′ ∈ Uw we add w to all Wi with u′, v′ ∈ Wi.
Hence, (T4) and (T6) are satisfied.

If there is some w ∈Wi and u ∈ N(w) with u ∈ U \ Ui, then, by construction, there
is some Uj with u, v ∈ Uj and v ∈ N(w). So, (T5) is satisfied as well.

At last, let u ∈ U be a vertex with neighbours v, v′ ∈ U. By Corollary 6.3.8, all
neighbourhoods of the vertices of Cn are covered by the Uj , hence there is some h
with v, v′ ∈ Uh and therefore (T3) holds.

So, thornbushes have the claimed property to be sufficient and necessary for antiholes
in the square of the graph.

6.3.3 Linegraphs

The problem of structures like spires and thornbushes that are responsible for the
existence of prescribed induced subgraphs in G2 is that an additional vertex in the
graph G is required to render them withered.

Flotow [Flo97] gives the following construction to show that there is no finite family
of forbidden induced subgraphs describing a class C′ such that G2 ∈ C if and only if
G ∈ C′ if we put no bound on the clique number. Suppose there was a finite family
F characterising C in this way. We construct the graph G by taking a copy of every
graph in F together with one additional vertex v adjacent to everything else. Thus,
G2 is complete, that is, G2 ∈ C, contradicting the F-free graphs to be exactly those
with squares in C.

This construction exploits the problem of additional vertices responsible for the ex-
istence of paths of length 2. This problem does not occur if we consider linegraphs.
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6.3 Perfect linegraph squares

In order for a vertex to be responsible for a structure being withered in LG(G), an
edge in G has to contain endpoints of two other edges that are not supposed to be
connected in LG(G)2. For unwithered spires and induced paths this is illustrated in
Figure 6.18. Hence, the edge is part of the subgraph induced by the vertex set of the
edges producing the structure in LG(G).

u0 u1 u2

u3 u4

u5
G

LG(G) u0

w0

u1

w1

u2
w2

w3
w4

u5

u3 u4
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w0 w1
w2

w3

w4

u0
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u1

w1

u2
w2 w3

w4
u5

u3 u4

Figure 6.18: A graph G containing an unwithered spire in its linegraph together with
the induced P6 in LG(G)2.

When considering induced cycles in the squared linegraph of some graph G, then we
are interested in structures in G that yield unwithered flowers in LG(G). That is, we
need a structure having the same connection to cycles as spires have to paths.

Definition 6.3.11 (Sprout [SW18]). A sprout of order n is defined as a graph STn = STn

(V, U ∪W ∪ E) with |U | = n and |W | = q, U, W and E having a pairwise empty
intersection and

⌈︁
n
2
⌉︁
≤ q ≤ n satisfying the following conditions where we consider

the indices of U -vertices modulo n and indices of W -vertices modulo q:

(ST1) There is a cycle C with E(C) ⊇W containing the edges of W in the order
w0, . . . , wq+1.

(ST2) The elements of U = {u0, . . . , un−1} are sorted by appearance along C with
u0 ∩ wq−1 ̸= ∅ and u1 ∩ w0 ̸= ∅. In addition, ui ∩ uj = ∅ for all j ̸= i ± 1
(mod n).

(ST3) If wi∩wi+1 ̸= ∅, then there is exactly one u ∈ U with (wi ∩ wi+1)∩u ̸= ∅.
These edges are called pending.
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(ST4) If wi ∩ wi+1 = ∅, then there either is one u ∈ U connecting wi and wi+1 in
C, or there are exactly two edges t, t′ ∈ U, such that the graph induced by t and
t′ is a path starting on wi, ending on wi+1 and being part of C.

(ST5) The pending U -edges are pairwise non-adjacent and every U -edge that is not
pending is an edge in E(C).

If a sprout STn = (V, U ∪W ∪ E) contains an edge e ∈ E connecting two non-
consecutive u-edges, we say STn is infertile, otherwise STn is called fertile. ⊣

Lemma 6.3.12 (Scheidweiler, Wiederrecht [SW18]). Let G be a graph and n ∈ N.
Then, LG(G) contains an unwithered flower of order n if and only if G contains a
fertile sprout of order n.

Theorem 6.3.13 (Scheidweiler, Wiederrecht [SW18]). Let G be a graph and n ∈ N.
Then, LG(G)2 contains a cycle of length n if and only if G contains a fertile sprout of
order n.

By extensive case analysis it is possible to make use of the phenomenon described
above in order to characterise the graphs with a certain pre-described structure, such
as chordal graphs, more succinctly. This is illustrated by the following theorem.

Theorem 6.3.14 (Scheidweiler, Wiederrecht [SW18]). Let G be a graph. Then,
LG(G)2 is chordal if and only if G does not contain a Cn with n ≥ 6, or one of the
graphs in Figure 6.19.

Figure 6.19: The 5 types of forbidden induced subgraphs (the grey edges may or may
not exist) from Theorem 6.3.14.

6.3.4 Induced paths in linegraph squares

In order to forbid Pt in LG(G)2 we translate spires into the world of linegraphs. We
call the structure a spire corresponds to in its linegraph a plantlet.
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Similar to sprouts, the definition is very technical but for t = 4 we are able to make
use of it in order find a small family of four types of graphs to forbid in G.

Theorem 6.3.15. Let G be a graph. Then, LG(G)2 is P4-free if and only if G does
not contain a graph of type A), B), C), or D).

We come back to the identification of these graphs after defining plantlets and proving
their correspondence to spires.

Definition 6.3.16 (Plantlet). A plantlet of order n, PLn = (V, U ∪W ∪R) , is a PLn

graph with U = {u0, . . . , un−1}, W = {w0, . . . , wq−1} and U, W and R pairwise
disjoint such that the following conditions hold considering the indices of U -vertices
modulo n and the indices of W -vertices module q:

(P1) V =
⋃︁

u∈U u.

(P2) If u ∈ U is pending, then none of its endpoints belongs to another U -edge.

(P3) There is a path P with E(P ) ⊆ U ∪W and W ⊆ E(P ) such that for every
ui ∈ U \ E(P ) there is a unique vertex {v} = ui ∩ V (P ). U -edges with a
vertex that is not on P are called pending. Every pending U -edge is adjacent to
two W -edges. Both, U - and W -edges, are ordered by their appearance along P.

(P4) No U -edge contains vertices of two other U -edges.

(P5) Either ui ∩ui+1 ̸= ∅, or there exists a unique wj ∈W such that ui ∩wj ̸= ∅
and ui+1 ∩ wj ̸= ∅.

If there is an edge e ∈ R and i, j ∈ {0, . . . , n−1}with |i−j| ≥ 2 such that e∩ui ̸= ∅
and e ∩ uj ̸= ∅, then PLn is called infertile, otherwise it is called fertile. ⊣

We show that fertile plantlets correspond to unwithered spires in the linegraph, see
Figure 6.18 again for an illustration.

Lemma 6.3.17. A graph G contains a fertile plantlet PLn = (V, U ∪W ∪R) if
and only if LG(G) contains an unwithered spire Sn = (U ∪W, E) for some E ⊆
E(LG(G)).

Proof. Let PLn = (V, U ∪W ∪R) be a fertile plantlet of G. By (P3) there is a path P
in PLn consisting only of U - and W -edges. Clearly, u0 is the first edge of P. Suppose
un−1 is not the last edge of P, then the last edge is wq−1 and un−1 is pending at the
vertex in which wq−2 and wq−1 meet. But then the edge wq−1 has an endpoint in P
that is not in any U -edge, which contradicts (P1). Hence, un−1 is in fact the last edge
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6 Induced subgraphs

of P. Now, consider LG(G). Let P ′′ be the path in LG(G) starting on u0, ending on
un−1 and visiting all W -vertices and all non-pending U -vertices as they are visited as
edges along P. Let u be a pending U -vertex, i.e. a pending U -edge in G. By definition

u

wj+1wj

u

Figure 6.20: A pending U -edge in G as a pending U -vertex in LG(G).

of pending U -edges, u shares a vertex with two consecutive W -edges wj and wj+1
on P. Let v be the vertex contained in u, wj and wj+1. By construction, the path
P ′′ contains both wj and wj+1 and because v is contained in all three edges, u, wj

and wj+1 form a clique in LG(G). Moreover, wj and wj+1 are adjacent on P ′′. Now,
obtain a path P ′ from P ′′ by replacing the edge wjwj+1 by the edges wju and uwj+1.
The constructed path P ′ contains all U - and W -vertices and no other vertices. Also, no
two W -vertices are adjacent on P ′ and, by (P4), no three consecutive U -vertices form
a subpath of P ′. Furthermore, if two U -edges in G share a vertex, they are adjacent, as
vertices, on P ′. So (S1) to (S4) are satisfied. The property (P5) implies (S5) and (S6)
and thus the subgraph of LG(G) induced by U ∪W is a spire of order n. Suppose
it is withered. Then, there is a vertex x in LG(G) adjacent to two non-consecutive
U -vertices, that is, there is an edge x in G containing vertices of two non-consecutive
U -edges. Thus, our PLn is infertile. This contradicts our assumption and thus LG(G)
contains an unwithered spire of order n.

Now, assume there is an unwithered spire Sn = (U ∪W, E) in LG(G). By (S2),
Sn contains a path P ′ with endpoints u0 and un−1 containing, by (S1), all U - and
W -vertices in their respective order. Due to (S3), no three consecutive U -vertices
form a subpath of length 2 of P ′. Also, by (S4), no two W -vertices are adjacent on
P ′. Furthermore, all edges of LG(G)[U ] are on P ′.

Hence, in G we can construct a path P containing u0, un−1 and all W -edges as follows.
Let P0 = u0 be the path with exactly one edge. If u0 ∩ u1 ̸= ∅, then obtain P1 from
P0 by appending u1, otherwise append w0 instead (now the end-vertex of P1 is the
vertex contained in u1 and w0). Now, assume that for some j ≥ 1 the path Pj is
already constructed to be starting with the edge u0 and ending in a vertex of uj . In
order to construct Pj+1 we have to consider three cases (illustrated in Figure 6.21).

(Case1) If the last two edges of Pj are uj−1 and uj , then the next edge should be
wh for some h, followed by either wh+1 or uj+1.
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uj−1 uj

uj

uj

w w/u

(u)

wh−1 w/u w/u

(u)

wh−1 wh w/u

(u)

w/u

(u)

(Case1)

(Case2)

(Case3)

Figure 6.21: The three cases in the construction of the path Pj .

(Case2) If the last two edges of Pj are wh−1 for some h and uj , then the next edge
may either be wh, or uj+1, followed by either wh, if the first was uj+1, or wh+1
or uj+1, if the first was wh.

(Case3) If the last edge of Pj is wh−1 for some h. Then, by our construction, uj was
not added to P because wh shares a vertex with wh−1 and thus uj is pending.
So the next edge is definitely wh followed by either wh+1, or uj+1.

Considering Pj ending on a vertex of uj , we either have uj being an edge of Pj leading
to (Case1) and (Case2), or this is the only vertex of uj on Pj and thus uj is a pending
edge and we have (Case3).

First, consider (Case1), that is, both uj−1 and uj are edges of Pj and consecutive.
Then, uj−1 and uj are also neighbours on P ′ and so there exists some wh that is next
on P ′ and thus shares a vertex with uj in G. By (S6), wh is not adjacent to uj−1 and
thus wh ∩ uj−1 = ∅. The vertex of wh that is not shared with uj is contained in uj+1.
If it is also contained in wh+1, then uj+1 is pending and we obtain Pj+1 from Pj by
appending wh only. Otherwise, we obtain Pj+1 from Pj by appending first wh and
then uj+1.

Next, consider (Case2) and the last two edges of Pj are wh−1 and uj . If uj and uj+1
share a vertex we obtain Pj+1 from Pj by appending uj+1. Otherwise, the endpoint of
Pj belongs to wh. Again we distinguish the cases from before, either uj+1 is pending
and we obtain Pj+1 from Pj by appending wh only, or it is not pending and we obtain
Pj+1 from Pj by appending first wh and then uj+1.
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6 Induced subgraphs

At last, consider (Case3), so uj is not an edge of Pj . Then, uj was not added to Pj

during the construction, meaning that it is pending. So, we know that there is some wh

sharing a vertex with both uj and the last edge of Pj , namely wh−1. Again we consider
the two possible cases: Either uj+1 is pending, then we obtain Pj+1 from Pj by adding
wh, or, otherwise, we obtain Pj+1 from Pj by adding first wh and then uj+1. This
construction we iterate until obtaining Pn−1 and then we define P := Pn−1.

At no point in this construction we add a vertex to P that does not belong to U and
the only vertices not belonging to V (P ) but contained in some edge of U ∪W are the
endpoints of the pending U edges, so (P1) is satisfied. Also, we satisfy (P2) and (P3)
for the same reasons. If (P4) was not satisfied we would have an edge joining two
non-consecutive U -vertices in LG(G) contradicting Sn to be unwithered. Finally, (P5)
follows again from the construction of P and (S6).

Note that any edge rendering the resulting plantlet of order n in G infertile would result
in a vertex in LG(G) responsible for Sn being withered. Since this is not possible, the
constructed plantlet of order n in G is fertile.

To reach a characterisation of a graph class excluding an induced path of fixed length
in LG(G) in terms of a succinct list of forbidden induced subgraphs, one usually needs
a large case distinction. Excluding the P4 results in a class of perfect graphs [Sei74].
Furthermore, excluding any single induced subgraph not contained in the P4 results
in a class of graphs for which no linear χ-bounding function can exist [RS04a]. So,
considering the class of graphs whose squared linegraphs exclude P4 seems natural
in the context of investigating perfect linegraph squares in general. We also obtain
the following general observations on graph classes whose linegraph squares exclude
induced paths of a certain length.

Lemma 6.3.18. Let n ≥ 2 and G be a graph such that LG(G)2 is Pn-free. Then, G is
P⌈3n/2⌉-free.

Proof. Assume G contains the path P := P⌈3n/2⌉ as induced subgraph.

First, consider the case that n = 2k for some k. Then, 3
2 n = 3k. So P has length

3k − 1. Let e1, e2 be the first two edges of P and add them to a set U, the remaining
path P ′ has length 3k − 3. Now, divide P ′ into paths of length 3 and add the leading
edge to a set W, while adding the two other edges to U as well. There are k − 1 such
paths, so in total |U | = 2 + 2k − 2 = 2k = n. Hence, P is a plantlet of order n.

Second, consider the case that n = 2k + 1 for some k. Then,
⌈︁ 3

2 n
⌉︁

= 3k + 2, so P is
of length 3k + 1. Again, we add the first two edges to a set U, but now we also add the
last edge to U and the second to last one to W. What remains is again a path of length
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6.3 Perfect linegraph squares

3k − 3 for which we use the same decomposition as in the first case. We end up with
|U | = 2 + 2k + 1− 2 = 2k + 1, so in this case P is a plantlet of order n as well.

Since P is an induced subgraph of G, this plantlet is fertile and thus, by lemmata 6.3.6
and 6.3.17, LG(G)2 contains Pn.

There are two main characteristics by which we can distinguish different plantlets of
the same order: The length of the path P of (P3), and the number and position of
pending edges along P. By Lemma 6.3.18, we have a lower bound of

⌈︁ 3
2 n
⌉︁
− 1 on the

length of P in a plantlet of order n that does not have any pending U -edges. Next, we
show that 2n− 1 is an upper bound. As long as there are no pending U -edges, these
bounds are strict. By allowing pending edges we obtain a lower bound of n + 2. To
do so, we need two additional lemmata.

Lemma 6.3.19. Let n ∈ N. Then, for every i ∈ {
⌈︁ 3

2 n
⌉︁

, . . . , 2n} there is a fertile
plantlet of order n that does not have any pending U -edges, such that its path P,
provided by (P3), is isomorphic to Pi.

Proof. We prove this by induction on i. Lemma 6.3.18 yields the basis for the induction.

So, for the induction step, assume that the claim holds for i ∈ {
⌈︁ 3

2 n
⌉︁

, . . . , 2n− 1}.
By induction hypothesis, there is a plantlet PLn of order n whose base path P is
isomorphic to Pi and that does not have any pending edges. If PLn has any edges
besides U - and W -edges, we can simply delete them and obtain a smaller plantlet of
them same order, hence we can assume P = PLn.

Since PLn does not have any pending U -edges, all U edges are part of P and thus there
are exactly i− 1−n ≤ n− 2 many W -edges in PLn. So, P contains two consecutive
U -edges, call them u and u′. Let v′′ be the vertex shared by u and u′. We replace the
vertex v′′ by the two vertices v and v′ such that v ∈ u and v′ ∈ u′ and add the edge
vv′. The result is a path P ′ ∼= Pi+1. If we add vv′ to W, P ′ satisfies all properties of
a fertile plantlet of order n, which concludes the proof.

Lemma 6.3.20. Let n ∈ N. Then, there is a fertile plantlet PLn of order n such that
its (P3)-path is isomorphic to Pi and it has exactly 2n− i pending U -edges if and only
if i ∈ {n + 2, . . . , 2n}.

Proof. Assume PLn is a fertile plantlet of order n such that its (P3)-path P is isomor-
phic to Pi and it has exactly 2n− i pending U -edges for some i. Since there cannot
be a negative number of pending edges, i ≤ 2n holds. Assume that i < n + 2. Then,
there are at least n−1 pending U -edges on P which has length at most n. But because

239
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the first and last edge of the path are U -edges, there cannot be any pending edges
incident to the first two and last two vertices of the path. So, P only has n− 2 vertices
that can be incident to a pending edge. But due to (P2) there can be at most one edge
pending on any one of these, therefore there are not enough vertices for the pending
edges.

The other direction we again prove by induction on i. We prove a slightly stronger
statement, namely that there even is a plantlet PLn that has next to the properties
described in the theorem no additional edges besides U - and W -edges.

For i = n + 2 consider P := Pn+2. We add the first and the last edge of P to a set U.
The remaining n− 1 edges are added to a set W. By deleting the endpoints of P, we
obtain a path P ′ consisting entirely of W -edges. This path has exactly n− 2 internal
vertices, let them be numbered v1, . . . , vn−2 as they appear along P ′. For each of
these vertices vj , j ∈ {1, . . . , n − 2}, we introduce a vertex xj and the edge vjxj

which is added to U. The resulting graph fulfils all requirements of a fertile plantlet
of order n. Note that it also only contains edges that are either in U or in W, which
proves the induction basis.

So, for the induction step, assume that the statement holds for i ∈ {n+2, . . . , 2n−1}.
We construct a plantlet of order n with a (P3)-path of length i− 1. Let P the (P3)-path
of length i− 1 of the plantlet provided by the induction hypothesis. Also, let uu′ be
the first pending edge along P with u being a vertex on P and u′ the one not on P.
The vertex u is incident to exactly two W edges on P, namely w and w′. Let x be the
other endpoint of w and y the other endpoint of w′. Then, delete the edge uy and add
the edge u′y. If we take the path P ′ that results from P in this construction by adding
the edges uu′ and u′y together with the remaining pending edges, the result is the
desired plantlet.

Corollary 6.3.21. Let n ∈ N, then there is no plantlet of order n such that its (P3)-path
P is isomorphic to Pi for some i ∈ N \ {n + 2, . . . , 2n}.

Let us return to P4 and the identification of the four types of graphs needed for
Theorem 6.3.15. In the case of P4, the (P3)-paths of a plantlet has between six and
eight vertices. We categorise these plantlets into seven different types as depicted in
Figure 6.22.

We claim that, up to isomorphism, these are all possible plantlets of order four. To
prove this, we partition them into three families based on the length of their (P3)-path.
By Corollary 6.3.21, there are no other plantlets of order four, so this case distinction
suffices.
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a) b) c)

d)

e) f) g)

Figure 6.22: The seven types of plantlets of order four. The edges marked in green are
the U -edges, the thicker orange edges belong to W and the grey edges
are those that may exist in R, because they do not stop the graph from
being a fertile plantlet.

When describing the (P3)-path P of a plantlet with P ∼= Pi for some i we, from
now on, assume V (P ) = {v0, v2, . . . , vi−1} to be the vertex set of P ordered by
appearance along (P3). We refer to the end v0 of P as the left end and then consider
the ordering to go from left to right.

Lemma 6.3.22. Let H be a fertile plantlet of order four. If its (P3)-path P is isomorphic
to P6, then H is of type d), f), or e) as seen in Figure 6.22.

Proof. First, consider the case that H does not have any pending edges. By the
definition of plantlets, v0v1 and v4v5 are U -edges and, furthermore, v0v1 is the first,
and v4v5 is the last one with respect to their ordering. This leaves three more edges,
two of which are U -edges and the last one is a W -edge. Let P ′ = (P − v0)− v5 and
suppose the two remaining U -edges appear consecutively on P ′, then either v1, or v4 is
a vertex of their subpath of length 2 of P ′. Say this is true for v1, then {v0, v1, v2, v3}
form a subpath of length 3 on P, contradicting (P4). Therefore, the middle edge v2v3
is the only W -edge in P. Because H is fertile, the only additional edges allowed
are v0v2 and v3v5, indeed every other possible edge would connect vertices of two
non-consecutive U -edges. Hence, in this case H is of type d).

Second, consider the case that there is exactly one pending edge uvi with endpoint
u ∈ V (H) \ V (P ). By (P2), the vertex vi has to be contained in two consecutive
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W -edges in P. Hence, i ∈ {3, 4} and the three remaining U -edges provide three edges
in P that are not in W. Without loss of generality, say that v0v1, v1v2 and v4v5 are
U -edges. Then, i = 4 and, for because H is fertile, u can only be adjacent to v2, v4
and v5. In addition the edges v0v2 and v3v5 may exist as well. All other edges would
connect two non-consecutive U -edges contradicting that H is fertile. Therefore H is
of type f).

At last, consider the case that there are two pending edges with endpoints u, u′ ∈
V (H) \ V (P ). By the observations made in the previous case, the two pending edges
are incident to v2 and v3, so let uv2 and u′v3 be the pending U -edges. Then, v0v1
and v4v5 are the two remaining U -edges. Further case distinction reveals that the
only additional edges that may exist without rendering H infertile are those allowed
in a type e) plantlet. This concludes the proof, because there cannot be more than 2
pending edges in total.

Lemma 6.3.23. Let H be a fertile plantlet of order four. If its (P3)-path P is isomorphic
to P7, then H is of type b), c) or g) as seen in Figure 6.22.

Proof. This proof is, in its structure and the kind of case distinctions, analogous to the
proof of Lemma 6.3.22. We consider cases of no, one or two pending edges, determine
their possible positions – if there are any – consider all possible distributions of the
remaining U -edges in P, using the knowledge that v0v1 and v5v6 have to be U -edges,
and consider possible additional edges.

There are two types of fertile plantlets without any pending edge. In total we have six
edges, so four U - and 2 W -edges and the 2 W -edges cannot share a vertex on P. Thus,
there is one pair of consecutive U -edges sharing a vertex and this pair either appears at
one of the ends, or in the middle of P. In this case we have a plantlet of type b) or c).

There is only one type with exactly one pending edge, which is due to the two W -edges
sharing a vertex that are necessary for the edge to be pending. The remaining U -edges
on P cannot share vertices and thus these plantlets are of type g).

Finally, we prove that H cannot have two pending edges. Suppose there are two
pending edges, then no inner edge of P can be a U -edge, because there only are four
in total. Also, for every vertex of P contained in two W -edges we need a pending
U -edge. Thus, in order to have a plantlet of order four with 2 pending edges, the path
from (P3) can have at most 5 edges, which contradicts the fact that the path in H has
length six.

Lemma 6.3.24. Let H be a fertile plantlet of order four and P its (P3)-path such that
P ∼= P8, then H is of type a) as seen in Figure 6.22.
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Proof. Let P ∼= P8, then H has at least three W -edges.

Suppose there are at least four W -edges on P. Since the end edges of P belong to U,
the only possible positions for the W -edges are the five inner edges of P. With four out
of five edges, we would obtain a P4 subpath of P consisting only of edges from W. By
(P5), this guarantees the existence of at least two pending U -edges. If all the five inner
edges of P belong to W, we have six U -edges in total, which yields a contradiction to
H being of order four. So, there are three U -edges that are part of P and additionally
two U -edges pending making a total of 5, again contradicting the order of H.

Therefore, H has exactly three W -edges and its path P is of the form as seen in type
a). Further case distinction reveals that the allowed additional edges are exactly those
depicted in Figure 6.22, because any other edge would connect two non-consecutive
U -edges. Thus, H is of type a).

Still, it is clear that some of these fertile plantlets of order four are subgraphs of
plantlets of the other types, so this family is not minimal with respect to excluding
all fertile plantlets of order four. The next step is to reduce the number of forbidden
subgraphs to the desired four types A), B), C) and D). Figure 6.23 depicts this smaller
family of forbidden subgraphs for excluding plantlets of order four.

A) B)

C) D)

Figure 6.23: The four minimal types of plantlets of order four. Unmarked black edges
must necessarily exist, all other colours/patterns are chosen as in Fig-
ure 6.22.

Type A) plantlets correspond exactly to the type d) plantlets of Figure 6.22. The type
B) plantlets are a specific version of type b) plantlets where the v2v4-edge has to exist
in order to distinguish them from plantlets of type A). Type C) is obtained from type
a) by requiring the additional edge v2v5 and allowing all possible combinations of all
other allowed edges except for the existence of v2v4 and v3v5 at the same time. The
type D) is obtained by requiring v2v4 and v3v5 to exist at the same time, distinguishing
them from plantlets of type B).
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Lemma 6.3.25. Let H be a fertile plantlet of order four, then it contains a plantlet of
type A), B), C), or D).

Proof. Let H be a type-A)-free fertile plantlet of order four, then in particular H does
not contain P6.

The proof is structured as follows: we discuss the plantlets of order four in order of
the length of their (P3)-path. In all cases we only consider those additional edges that
have both endpoints on the (P3)-path P.

We start with the plantlets with (P3)-paths of length 5. So we have to consider the
plantlets of types d), f), and e). Since none of these plantlets can contain a type B),
C) or D) subgraph, we show the existence of a plantlet of type A). Type d) already is
exactly type A). So, suppose H is of type f). In this case let u be the unique endpoint
of the single pending edge that is not on P and consider H−u = H[V (P )] . The only
two additional edges allowed are v0v2 and v3v5, thus H contains a type A) subgraph
in any case. Thus, we can assume H to be of type e) with u and u′ being the endpoints
of the two pending edges that are not on P. Again we consider H−u−u′ = H[V (P )]
and again the only additional edges allowed are v0v2 and v3v5, so in this case H
contains a type A) plantlet as well.

Next, consider the case where P is of length six and thus H is of type b), c), or g).
We show that either an A)-, or a B)-type induced subgraph exists. Suppose H is of
type b). If it contains the edge v2v4, we have a type B) subgraph, so we can assume
that this edge does not exist. Consider H ′ := H[{v0, v1, . . . , v5}] , disregarding the
edges v3v6 and v4v6. In H ′ the only edges we can have in addition to the necessary
ones are v0v2 and v3v5 and thus H ′ contains a type A) subgraph. Suppose H is of
type c). If the edge v2v4 does not exist, we obtain a subclass of graphs of type b) with
a type A) subgraph. If v2v4 is an edge of H we obtain exactly the graphs of type B)
not containing the edge v3v6. Suppose H to be of type g) and let u be its vertex not
on P, then H − u is a plantlet of type b). Thus, by the case above, H contains a type
A) or a type B) plantlet.

Finally, let H be of type a). If the edge v2v5 exists, H is of type C), or, if also v2v4
and v3v5 exist, we have a plantlet of type D). So, suppose v2v5 does not exist. If we
have both v2v4 and v3v5, we have a subgraph of type D) again, so assume one of
them, without loss of generality v3v5, to be definitely excluded. If also v2v4 does
not exist, we consider H[{v1, v2, . . . , v6}] , which is exactly a plantlet of type A). If
v2v4 ∈ E(H), then consider H − v7 is a type B) graph.

To summarise, we obtain the following theorem for graphs without an induced P4 in
their squared linegraph.
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Theorem 6.3.15. Let G be a graph. Then, LG(G)2 is P4-free if and only if G does
not contain a graph of type A), B), C), or D).

Proof. As the graphs of type A), B), C) and D) are themselves fertile plantlets,
Lemma 6.3.25 implies that G contains a graph of type A), B), C), or D), if and
only if it contains a fertile plantlet of order four.

Thus, we know that G does not contain a graph of type A), B), C), or D) if and only if
G does not contain any fertile plantlet of order four. By Lemma 6.3.17, this is the case
if and only if LG(G) does not contain an unwithered spire of order four. And finally,
by Lemma 6.3.6, this is equivalent to LG(G)2 not containing any induced P4.

6.3.5 Induced odd antiholes and perfect linegraph squares

In order to describe the class of graphs with perfect linegraph squares, we need to find
a structure similar to sprouts. The edges that will become the vertices of an induced
antihole in LG(G)2 are ordered in a cyclic fashion and we use a cycle to represent this
ordering. When deleting a vertex from this cycle we obtain a path, hence a bipartite
graph. Whenever we talk about the colour classes of a path obtained this way, we refer
to the two classes of the unique 2-colouring of this path.

Definition 6.3.26 (Meristem). A meristem of order n = 2k + 1, k ≥ 2, is a graph
Mn = (V, U ∪W ∪R) with U = {u0, . . . , un−1} such that the following conditions Mn

are satisfied:

(M1) V =
⋃︁

u∈U u.

(M2) The edges of U are given in a fixed order which we describe by a cycle
CU = (U, {uiui+1 | 0 ≤ i < n}) .

(M3) There exists a family {U0, . . . , Un−1} ⊆
(︁

U
k

)︁
such that the edges in Ui are

identified with the vertices of CU − ui from the same colour class as ui+1.

(M4) For all u ∈ U and v, v′ ∈ U with v ∩ u ̸= ∅ and v′ ∩ u ̸= ∅ there is some
j ∈ {1, . . . , n} with v, v′ ∈ Uj .

(M5) There are sets W0, . . . , Wn−1, possibly empty and not necessarily disjoint,
with

⋃︁n−1
i=0 Wi = W. Additionally, for all w = xy ∈ Wi there are u, v ∈ Ui

such that x ∈ u, y ∈ v, u∩v = ∅ and e ⊈ u∪v for all e ∈ (U ∪W )\{u, v, w}.

(M6) For all w ∈W and u, v ∈ U with u ∩ w ̸= ∅ and v ∩ w ̸= ∅ there is some j
such that u, v ∈ Uj and w ∈Wj .
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6 Induced subgraphs

(M7) For all u, u′ ∈ Ui with u ∩ u′ = ∅ there is a w ∈ Wi with u ∩ w ̸= ∅ and
u′ ∩ w ̸= ∅.

We call U the base of Mn. If ui ∩ u = ∅ for all u ∈ U \ {ui}, ui is called pending. If
there is an edge e ∈ R with e ∩ ui ̸= ∅ and e ∩ ui+1 ̸= ∅ for some i ∈ {1, . . . , n},
Mn is called infertile. ⊣

In order to show that fertile meristems are sufficient and necessary for the existence of
antiholes in the square of the linegraph, we need two things. First, we need a family of
graphs whose squares contain antiholes, this we have already done in Subsection 6.3.2.
Such a graph is called a thornbush of order n, where n is the size of the induced
antihole it generates when being squared. Second, we need that a fertile meristem of
order n in G corresponds to an unwithered thornbush in LG(G), which we proof in
the following lemma.

Proof. Let Mn = (V, U ∪W ∪R) be a fertile meristem in G. (T1) and (T2) follow
directly from the corresponding (M2) and (M3). Let u, v, v′ ∈ U. If v ∩ u ̸= ∅ and
v′ ∩ u ̸= ∅, then v, v′ ∈ NLG(G)(u) and by (M4) there is some j with v, v′ ∈ Uj ,
hence (T3) holds. (M5) gives us the existence of sets W1, . . . , Wn, possibly empty
and not necessarily disjoint, with

⋃︁n
i=1 Wi = W. This immediately translates into

the required sets of (T4). For all w = xy ∈ Wi there are u, v ∈ Ui such that x ∈ u,
y ∈ v and u ∩ v = ∅. Hence, u and v are not adjacent in LG(G), but have distance 2
connected via the vertex w. Since e ⊈ u ∪ v for all (U ∪W ) \ {u, v, w}, there is no
other vertex in LG(G) adjacent to both u and v and thus (T4) holds. Now, let w ∈W
and u, v ∈ NLG(G)(w). Then, u ∩ w ̸= ∅ and v ∩ w ̸= ∅ and thus (M6) implies the
existence of some j such that u, v ∈ Uj and w ∈ Wj , therefore (T5) holds. At last,
let u, u′ ∈ Ui with uu′ /∈ E(LG(G)), then u ∩ u′ = ∅ and therefore (M7) provides
some w ∈ Wi intersecting both u and u′. Hence, u, u′ ∈ NLG(G)(w) and so (T6) is
satisfied.

Thus, we obtain a thornbush Tn = (U ∪W, E) in LG(G). Suppose this thornbush is
withered, then there is a vertex v ∈ V (LG(G)) = E(G) with ui, ui+1 ∈ NLG(G)(v).
So, v intersects both ui and ui+1 in G contradicting that Mn is fertile.

For the reverse direction let Tn = (U ∩W, E) be an unwithered thornbush in LG(G).
As before, we use the sets U, W, U0, . . . , Un−1 and the cyclic ordering of the elements
in U provided by (T1) and (T2) in order to satisfy the corresponding (M2) and (M3).
Let u ∈ U. If there are any v, v′ ∈ U both intersecting u as edges in G, then they
are adjacent in the linegraph and therefore, due to (T3), there exists some j such that
v, v′ ∈ Uj . Hence, (M4) is satisfied. (T4) implies the existence of sets W0, . . . , Wn−1
with

⋃︁n−1
i=0 Wi = W and for every w ∈Wi there are two U -vertices u and v adjacent

to w with distTn−w(u, v) > 2, hence u and v are not adjacent and thus u ∩ v = ∅ in
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6.3 Perfect linegraph squares

G. So w = xy for vertices x, y ∈ V (G) and x ∈ u as well as y ∈ v. Moreover, there
is no other path of length 2 in Tn ⊆ LG(G), so no edge e ∈ (E ∪W ) \ {u, v, w} is
contained in u∪ v and thus (M5) is satisfied. As before (M6) and (M7) follow directly
from (T5) and (T6). Now, we prove (M1). We claim that w ∈

⋃︁
U for all w ∈W. By

(M7), for every pair u, u′ ∈ Ui with u∩u′ = ∅ there is a w ∈Wi ⊆W that intersects
both u and u′. By (M5) and (M6), the reverse is also true, so if there is a w ∈ Wi,
then there are two U -edges intersecting w in different endpoints. Therefore, for every
w ∈W there are u, v ∈ U such that w ⊆ u ∪ v and thus our claim holds.

So let V :=
⋃︁

U, then Mn = (V, U ∪W ∪R) is a meristem, where R := E(G[V ]) \
(U ∪W ) .

Suppose Mn is infertile, then there is an edge e ∈ R intersecting ui and ui+1 for some
i ∈ {0, . . . , n− 1}. In the linegraph e is adjacent to both ui and ui+1 and so Tn is
withered, which contradicts our assumption.

Theorem 6.3.27. A graph G contains a fertile meristem of order n if and only if
LG(G)2 contains an antihole of size n.

Proof. This follows from lemmata 6.3.10 and 6.3.28.

Lemma 6.3.28. A graph G contains a fertile meristem Mn = (V, U ∪W ∪R) if
and only if LG(G) contains an unwithered thornbush Tn = (U ∪W, E) for some
E ⊆ E(LG(G)).

Theorem 6.3.27 allows us to state a first, straightforward characterisation of graphs
with perfect linegraph squares by combining it with Theorem 6.3.13.

Corollary 6.3.29. Let G be a graph, then LG(G)2 is perfect if and only if G does not
contain a fertile sprout or fertile meristem of order n = 2k + 1 for any k ≥ 2.

We now further refine this result by taking a closer look at the structure of sprouts
and meristems. We make use of the following three lemmata by Scheidweiler and
Wiederrecht.

Lemma 6.3.30 (Scheidweiler, Wiederrecht [SW18]). Let G be a graph and k ≥ 2 an
integer. If C is an induced cycle in Gk, then Gr cannot contain two consecutive edges
of C for all r ≤

⌊︁
k
2
⌋︁

.
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6 Induced subgraphs

Lemma 6.3.31 (Scheidweiler, Wiederrecht [SW18]). A graph G contains a cycle
of length at least four as a, not necessarily induced, subgraph if and only if LG(G)
contains an induced cycle of the same length.

Lemma 6.3.32 (Scheidweiler, Wiederrecht [SW18]). Let k ≥ 4 be an integer. If a
graph G does not contain induced cycles of length ℓ ≥ k, then LG(G)2 contains no
induced cycles of length ℓ ≥ k.

First, we show that cycles are fertile sprouts.

Lemma 6.3.33. For all n ≥ 4 the cycle Cj with n +
⌈︁

n
2
⌉︁
≤ j ≤ 2n is a fertile sprout

of order n.

Proof. By Lemma 6.3.30 there are at most
⌊︁

n
2
⌋︁

pairs of adjacent U -edges in a fertile
sprout of size n.

First, consider j = n +
⌈︁

n
2
⌉︁

. If there are exactly
⌊︁

n
2
⌋︁

pairs of adjacent U -edges, then
there are

⌈︁
n
2
⌉︁
−
⌊︁

n
2
⌋︁
∈ {0, 1} remaining U -edges. These cannot be adjacent to any

other U -edge. Hence, we need exactly
⌈︁

n
2
⌉︁

many W -edges to complete the sprout.
By alternating between U -edge pairs, W -edges and possibly one single U -edge (not
adjacent to other U -edges) we obtain a cycle of length n +

⌈︁
n
2
⌉︁

. The sprout definition
allows some additional chords, but no such edge is necessary, so the Cj is a fertile
sprout of order n.

Second, we note that each of the
⌊︁

n
2
⌋︁

pairs of U -edges may be split by an additional W -
edge, hence with k ≤

⌊︁
n
2
⌋︁

such splits we can produce a cycle of length n+
⌈︁

n
2
⌉︁

+k ≤
2n which again is a fertile sprout of order n.

Corollary 6.3.34. A graph G with an induced cycle of length ℓ ≥ 8 contains a fertile
sprout of odd order.

Proof. By Lemma 6.3.33, cycles of length 8, 9 or 10 contain a fertile sprout of order
5. So consider ℓ ≥ 11. We observe that for n ≥ 7 we have n +

⌈︁
n
2
⌉︁
≤ 2 (n− 2) + 1

and 7 +
⌈︁ 7

2
⌉︁

= 11. By this observation and Lemma 6.3.33, if ℓ is odd, then the cycle
is a fertile sprout of order ℓ−1

2 + 2. If ℓ is even, then the cycle is a fertile sprout of
order ℓ

2 .

As the squared linegraph of C7 yields an antihole of size 7 (see Figure 6.24), the
following lemma reduces the length of allowed induced cycles even further.
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6.3 Perfect linegraph squares

Lemma 6.3.35. If a graph G contains a C7, LG(G)2 contains an antihole of size 7.

Proof. If G contains a C7 Lemma 6.3.31 yields the existence of an induced cycle C of
the same length in LG(G). For each pair of non-adjacent vertices u, w ∈ V (LG(G))
of C that do not have a common neighbour on C, distLG(G)(u, w) ≥ 3 holds, because
a path of length 2 between two such vertices would correspond to a chord in the C7,
which does not exist. In LG(G)2 each vertex of C is adjacent to its four nearest vertices
on C and not adjacent to the two opposite vertices of C. By reordering the vertices
C2 is an antihole.

v1

v2

v3

v4v5

v6

v7

LG(G)

v1

v2

v3

v4v5

v6

v7

LG(G)2

Figure 6.24: The cycle C in the linegraph and its squared linegraph, which is isomor-
phic to an antihole.

Lemma 6.3.32 implies that a graph G without induced cycles of length at least seven
does not contain a fertile sprout of order at least seven, hence LG(G)2 only contains
holes of size at most five. In order to forbid the holes of size five, we exclude all fertile
sprouts of order five in G. Since we can exclude the existence of induced cycles of
length at least seven, it suffices to consider sprouts of order five with a longest induced
cycle, or base cycle, of length five and six. Figure 6.25 depicts the three possible types
of sprouts of order five with a base cycle of length five. We proceed by discussing the
case of a base cycle of length six.

A5
B5

C5

Figure 6.25: The sprouts of order five with a base cycle of length five. Colours are
chosen as in figures 6.22 and 6.23.
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6 Induced subgraphs

Lemma 6.3.36. Let ST5 = (V, U ∪W ∪R) be a fertile sprout of order five with a
base cycle C of length six and E(C) ∩ R = ∅. Then, ST5 has either three or four
pending edges, which are incident to consecutive vertices of C.

Proof. Because ST5 is a fertile sprout of order five, the number of pending edges is
at most five. Assume that ST5 has five pending edges. Then, the cycle consists of
exactly one U -edge and five W -edges. Since pending U -edges can only be incident
to vertices on C that are not contained in any other U -edge, the number of pending
edges in ST5 is at most four contradicting the assumption.

Suppose ST5 has no pending edge, then C contains five U -edges. But, due to
Lemma 6.3.30, there are at least

⌈︁ 5
2
⌉︁

= 3 many W -edges, which must be contained in
C as well, because C is the base cycle of ST5. This contradicts the fact that |C| = 6.
For the same reason, ST5 does not have exactly one pending edge. There remain four
U -edges and at least three W -edges on C, which contradicts |C| = 6 again.

Next, suppose there are exactly two pending edges. There are at least three W -edges
necessary for the pending edges and because three U -edges may not form a path on C
we need at least one additional W -edge, thus C must now consist of three U -edges
and at least four W -edges, again exceeding the length of C.

So there only are two possibilities: Either ST5 has three or four pending U -edges.
These are incident to consecutive vertices of C. Suppose they were not, then the base
cycle must contain at least six W -edges and an additional U -edge and if there are just
three pending edges not being adjacent to consecutive vertices of C, five W -edges and
two additional U -edges are required.

Notice that every fertile sprout of type B6 contains a type A6-sprout. Hence the fertile
ST5 not containing a type A6-sprout but still having a base cycle of length six are the
types C6, D6 and E6 from Figure 6.26.

Corollary 6.3.37. Let ST5 = (V, U ∪W ∪R) be a fertile sprout of order five with a
longest induced cycle C of length six, then ST5 contains a fertile sprout ST′

5 of type
A6, C6, D6, or E6 (see Figure 6.26).

Finally, we observe that sprouts of type C6 are also of type B6, and sprouts of type
D6 or E6 certainly contain type A6 sprouts. The complement of a C5 is again a C5,
hence the family of meristems of order five is exactly the family of sprouts of order
five. With these last observations we can further reduce the number of obstructions to
perfect linegraph squares.
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6.3 Perfect linegraph squares

A6 B6

C6

D6 E6

Figure 6.26: The sprouts of order five with a base cycle of length six. Colours are
chosen as in figures 6.22 and 6.23.

Theorem 6.3.38. Let G be a graph. Then, LG(G)2 is perfect if and only if G does not
contain a cycle of length ℓ ≥ 7, a fertile sprout of type A5, B5, or C5 (see Figure 6.25),
a fertile sprout of type A6 (see Figure 6.26), or a fertile meristem of order n = 2k + 1
with k ≥ 3.

This implies the following succinct sufficiency condition for perfect linegraph squares.

Corollary 6.3.39. Let G be a graph. If G does not contain a cycle of length ℓ ≥ 4,
then LG(G)2 is perfect.

6.3.6 Concluding χ-boundedness

Theorem 6.3.38 states that the class of graphs with perfect linegraph squares excludes
induced cycles of length ℓ ≥ 7. Similarly, if we exclude induced cycles of a certain
length in the squared linegraph of a graph G the graph G itself also excludes cycles
of some length, this is provided by Lemma 6.3.33. Formally, let Cn is the class of
graphs G such that LG(G)2 does not contain an induced cycle of length ℓ ≥ n. Then,
the graphs in Cn exclude cycles of length ℓ ≥ n +

⌈︁
n
2
⌉︁

.

A similar statement holds for graph classes that exclude an induced paths of a certain
length in their squared linegraphs, see Lemma 6.3.18. With Gyárfás’ Theorem on
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6 Induced subgraphs

classes excluding induced paths and the following theorem by Chudnovsky et al. we
are able to deduce the χ-boundedness of graph classes with certain excluded induced
subgraphs in their linegraph squares.

Theorem 6.3.40 (Chudnovsky et al. 2016 [CSS17]). If Cn is a class excluding induced
cycles of length ℓ ≥ n, Cn is χ-bounded.

Theorem 6.3.41. The following classes are χ-bounded:

(i) the class Cchordal of graphs G with LG(G)2 chordal,

(ii) the class Cperfect of graphs G with LG(G)2 perfect,

(iii) the classes CPt of graphs G with LG(G)2 being Pt-free, for t ≥ 1, and

(iv) the class Cn of graphs G with LG(G)2 excluding induced cycles of length ℓ ≥ n.

The families of forbidden induced subgraphs for all four of these classes contain many
more graphs than just cycles and paths of a certain length. In fact, we forbid plantlets,
sprouts or meristems in all of them, which have a far more complicated structure.

Therefore, it might be possible to derive much better χ-bounding functions for some
of those classes than those provided by Theorem 6.3.40 and Gyárfás’ Theorem. This
seems particularly likely for classes like CP4 , which can be described by a finite family
of forbidden induced subgraphs as we saw in Theorem 6.3.15.
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7 Conclusion

As the different chapters of this thesis are mostly independent, they each contain a
conclusion. Still we want to give a short overview on the results and some natural
follow-up questions of this thesis.

We introduced a new form of directed tangles, the ganglions. The duality theorem of
Chapter 3 proves a very general duality between ganglions directed width measures
using S⃗k-DAGs having certain properties. The width measure ν-DAG-width fulfils
all of these, and therefore has the described duality to ganglions. However, its decom-
positions do not yield monotone strategies in the cops and robber reachability game.
The other width measure we introduce, µ-DAG-width, yields monotone strategies but
does not fulfil all the properties required for the duality to ganglions. The question
remains of whether there is a width measure that has both decompositions that yield
monotone strategies and a duality to a ganglion.

In Chapter 4 we defined cyclewidth, another digraph width measure, and proved that
it is parametrically equivalent to directed treewidth, as well as that it has a close
connection to width measures from matching theory. By using this connection we
characterised digraphs of small cyclewidth.

We gave the proof for a new directed flat wall theorem and some intuition on how
this theorem can be used as the base for a directed structure theorem. The next steps
towards such a structure theorem are to formalise these ideas and to identify the exact
statement for such a structure theorem. However, we also saw that there is still certain
non-planar behaviour we could not bound with these tools. As suggested in Section 5.6,
there are a number of options one could consider utilising in order to bound such
behaviour as well.

We proved that the class of graphs with at most two moplexes lies between the class
of proper interval graphs and the class of cocomparability graphs. Additionally, we
proved that Max Cut and Graph Isomorphism, both problems that are hard on co-
comparability graphs and tractable or unknown on proper interval graphs, remain hard
for the class of graphs with at most two moplexes. However, every graph with at most
two moplexes admits a Hamiltonian path, which is not the case for cocomparability
graphs in general. Here, there remain the specific question of whether 2-connected
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graphs with at most two moplexes admit a Hamiltonian cycle, and the very general
question about which properties can be determined for graphs with higher moplex
number.

Beisegel et al. [BCG+19] generalised the concept of avoidable vertices to edges and
proved that every graph that contains edges contains an avoidable edge. They also
conjectured that this holds for paths of any length. We proved this conjecture, that is,
that every graph with an induced Pk contains an avoidable Pk. We also discussed a few
further recent results that consider objects other than paths. However, these objects
are still very similar to paths, a natural question is whether we can also find a concept
of avoidability for very different structural objects? Another possible direction to
consider would be a strengthening of the avoidability definition. For example finding
a path for which all extensions close in the same connected component after removing
the path and its neighbourhood.

The results in Section 6.3 provide a characterisation via forbidden induced subgraphs
of graphs that have a perfect linegraph square. This has not only algorithmic con-
sequences, as for example for Strong Edge Colouring, but also yields some χ-
boundedness results. Here, it is natural to ask which other graph classes can be
characterised this way. We think that such a characterisation can always be found
when the desired class of linegraph squares can be characterised by forbidden induced
subgraphs. However, our way of proving such a characterisation by extensive case
distinctions does not seem very feasible to repeat for every such class. So the question
is whether there is a more general proof characterising a graphs class that excludes
certain induced subgraphs in the linegraph square.
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antihole, 225
asteroidal number, 12, 179
asteroidal set, 12
asteroidal set of moplexes, 183
asteroidal triple, 12
AT-free, 12
avoidable edge, 216
avoidable modules, 185
avoidable path, 217
avoidable vertex, 185

balanced, 111
balanced cut, 94
bicontraction, 26
big side, 39
bipartite, 11, 27
blockages, 29
blocks, 11
border, 142
brace, 107
bramble, 15

order, 15
branch vertices, 128
brick, 107
bricks, 128
bricks and braces of G, 107
bump, 192
butterfly (minor) model, 20
butterfly contractible, 19

canonical bag function, 46
chordal, 12
chordality, 12
chromatic number, 12
claw, 11
clear, 158
clique, 11
clique module, 14
clique number, 12
closed, 49
closed in-neighbourhood, 18
closed neighbourhood, 10
closed out-neighbourhood, 18
cobipartite, 12
cochain graph, 12
cocomparability graphs, 12
colour classes, 27
column function, 143
comparable sets, 9
compass, 142
complement, 10
complement set, 10
complete, 11, 50
complete bipartite, 11
(connected) component, 11
conformal, 26
consistency, 40
contained, 10, 50
contracting, 10
contraction vertex, 19
cop, 17, 25, 32
cover, 143
covers, 26
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cross, 34, 137–139
cross slice, 137
cross-free, 138
cross-row grid, 133
cubic, 88
cut-edge, 10
cut-vertex, 11
cycle, 10
cycle decomposition, 89

width, 89
cycle porosity, 88
cyclewidth, 89
cylindrical grid, 22
cylindrical society, 139
(cylindrical) wall, 128

DAG
closed, 48
closure, 48

DAG-decomposition, 30
nice, 31

DAG-width, 31
depth, 139
digraph, 18
directed k-cops and robber game, 25
directed k-cops and robber reachability

game, 32
cops and robber reachability game,

32
(directed) bramble, 24

order, 24
(directed) cycle, 19
directed graph, 18
(directed) haven, 24

order, 24
(directed) path, 18

disjoint, 19
end-vertex, 18
internally disjoint, 19
length, 18
start-vertex, 18

directed separation, 20
order, 20
separator, 20
trivial, 21

directed tangles, 29
(directed) tree, 19
directed tree decomposition, 22

bag, 22
guard, 22
strong, 91
width, 22

direction, 20
disjoint, 19
distance, 10
down-linked, 43
down-linked to d, 45
down-shift, 44
drawing (with crossings), 138

consistent, 138

edge colouring, 12
edge-cut, 10

size, 10
elementary cylindrical wall, 127

interior, 127
endpoints (undirected edge), 10
evaluation function, 46
extendable, 112
k-extendable, 112
extension, 185, 217

failing, 185
extension of ˜︂W that covers T , 145
extensions, 132

failing, 217
fertile

fertile plantlet, 235
fertile sprout, 234

flat, 142
flat wall under A, 142
flower, 226
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pending, 226

ω-big prop-ganglion, 50
ω-big ν-ganglion, 65
grasps, 128
k × k grid, 15
grid of order k, 15
guards, 22

half-integral linkage, 19
haven, 15

order, 15
H-bridge, 142
head, 18
hereditary, 179
H-free, 10

imbalance, 111
in-attachment, 142
in-branching, 20
in-contract, 20
in-degree, 18
in-edges, 18
in-neighbourhood, 18
in-out-branching, 20
in-paths, 127
incident, 10, 18
incomparable, 22
inconsistency, 109
independence number, 11
induced matching, 224
induced subgraph, 10
infertile

infertile plantlet, 235
infertile sprout, 234

initial ω-orientation, 40
initial separation, 42
inner perimeter, 127
inner vertices, 88
internally disjoint, 19
interval graph, 12

jump of L, 149
jump over W ′, 146
jump over all of W , 170

k-cops and robber game, 17
k-moplex graph, 179
k-th distance power, 11

laminar, 10, 34
LDFS ordering, 193
leaf directed tree decomposition, 91
leafage, 14
leaves, 88
linegraph, 11
linkage, 19
linked to d, 45
long jump of L, 149

majority, 111
M -alternating, 26
matching, 11
matching covered, 26
matching minor, 26
matching porosity, 98
maximum matching number, 11
M -conformal, 26
M -direction, 97
meristem, 245

base, 246
infertile, 246
pending, 246

minimal separator, 11
minor, 10
minority, 111
M -M ′-alternating, 26
module, 14
moplex, 178
moplex number, 179
moplicial, 178
M -perfect matching decomposition, 98
M -perfect matching width, 99
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µ-DAG-width, 78
µ-property, 78
µ-S⃗ -DAG, 77

g(t)-nearly-a(t)-weakly flat, 132
neighbourhood, 10
nodes, 140
noose, 140
ν-DAG, 63
ν-DAG-width, 62
ν-down-closing, 70
ν-k-DAG, 63
ν-up-closing, 69
ν-width, 62

of a DAG-decomposition
bag, 30

of a tiling, 144
orientation, 19, 38
out-attachment, 142
out-branching, 19
out-contracting, 20
out-degree, 18
out-edges, 18
out-neighbourhood, 18
out-paths, 127
outer perimeter, 127

parametrisations, 131
partial orientation, 38

consistent, 39
extends, 38

path, 10
end-vertices, 10
length, 10

perfect, 12
perfect matching, 26
perfect matching decomposition, 98

width, 98
perfect matching width, 98
perimeter, 127

perimeter jump, 145
planar, 139
plantlet, 235

pending, 235
play, 17, 25, 32

cop monotone, 17, 25, 33
robber monotone, 17, 25, 33

M prefers x to y, 197
prop-DAG, 46

closed, 48
closure, 48

prop-DAG-width, 47
prop-down-closing, 49
prop-down-closure, 49
prop-k-DAGs, 46
prop-up-closing, 48
prop-up-closure, 49
prop-width, 47
proper interval graph, 12
prop-S⃗ -DAG, 46
purely avoidable, 186

reachable, 22, 25, 33
reverse graph, 20
rigid subgraph, 140
robber, 17, 25, 32
rooted, 11
row, 127
row function, 143

S⃗ -DAG, 40
S-edge, 225
separating, 170
separator, 21
u,v-separator, 11
S-full component, 11
shift, 45
shifting closed, 47
shores, 10
Σ-decomposition, 140

centred at, 141
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simplicial, 12, 178
simplicial module, 14
sink, 18
skeleton

centred at the wall W , 140
order, 140

slice, 128
i-th T -slice, 145
width, 128

small ν-ganglion, 65
small side, 39
society, 139
source, 18
spine, 102
spire, 227

base, 227
pending, 227

sprout, 233
pending, 233

star, 11
strategy, 17, 25, 32

consistent, 17, 25, 33
cop monotone, 17, 25, 33
monotone, 17, 25, 33
robber monotone, 17, 25, 33
winning, 17, 25, 33

strip, 128
height, 128

strong component, 19
strong edge colouring, 224
strong separator, 21
strong vertex colouring, 224
strongly connected, 19
strongly connected component, 19
strongly guards, 22
subcubic, 88
subgraph, 10

conformal, 26
subwall, 127
surface, 138
S-vertex, 225

(i1, . . . , it)-(o1, . . . , ot)-switch, 133
switching M along C, 26

tail, 18
tangle, 16
terminal separation, 42
thornbush, 230

base, 231
pending, 231

tier II tiling, 145
tight, 107
tight cut contraction, 107
tight cut decomposition, 107
tight cut decomposition procedure, 107
tile, 130

centre, 131
column index, 130
corners, 130
left path, 130
lower path, 130
perimeter, 130
right path, 130
row index, 130
upper path, 130
width, 130

tiling, 143
topological ordering, 21
transaction, 139
tree, 11

root, 11
tree decomposition, 14

bag, 15
width, 15

treewidth, 15
triadic partition, 130
trimming, 88
trivial, 102, 107
2-connected, 11

umbrella, 192
umbrella-free, 192
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uncrossings, 35
underlying undirected graph, 19
up-linked, 43
up-linked to d, 45
up-shift, 45
upwards, 51

(proper) vertex colouring, 12
vertex cover, 11
vertex cover number, 11
vertex of a wall

marked, 158

w-long jump over W ′, 146
wall, 128
W -distance, 129
weak rendition in ∆′, 141
weak separation, 20
weakly connected, 19
a(t)-weakly flat, 132
weakly shifting closed, 48
withered

withered flower, 226
withered spire, 227
withered thornbush, 231

X-path, 19

Z-orientation, 108
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