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Abstract

The increasing use of automated laser welding processes causes high
demands on process monitoring. The aim is to ensure a high joining
quality and to detect faults in the earliest stage possible. By using ma-
chine learning methods, more cost-effective and, in the optimal case,
already installed sensors can be used to monitor the entire process.
This work demonstrates methods that use a camera mounted on the
focussing optics coaxial with the laser beam to perform pre-, in-, and
post-process monitoring of welding processes. The work uses the joining
process of copper wires to produce formed coil windings to illustrate
the methods. Due to the geometry of the joining parts and the material
properties of copper, the application presents challenges in detecting the
component position and in the actual joining process. The pre-process
monitoring includes optimizing component position detection by a deep
convolutional neural network (CNN). In addition, a shape check of
the detected parts contributes to monitoring pre-processing steps and
preventing welding defects. In-process monitoring focuses on the de-
tection of spatter in the camera image, as this serves as an indicator
of an unstable process. Machine learning algorithms perform semantic
segmentation, differentiating between plume, process light, and material
ejections without hardware modification. Finally, different approaches
are shown for post-process quality assessment. Besides extracting infor-
mation about the size and shape of the weld surface from the camera
image, a CNN-based algorithm reconstructs the weld’s height informa-
tion. Considering the height map, rule-based algorithms evaluate the
quality of the welds. This procedure enables conclusions about individ-
ual defective contacts and the possibility of reworking the faulty welds.
All algorithms consider the integrability into industrial processes. These
challenges include a small database, limited industrial manufacturing
inference hardware, and user acceptance.
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Zusammenfassung

Der zunehmende Einsatz automatisierter Laserschweißprozesse stellt
hohe Anforderungen an die Prozessüberwachung. Ziel ist es, eine hohe
Fügequalität und eine frühestmögliche Fehlererkennung zu gewährleis-
ten. Durch die Verwendung von Methoden des maschinellen Lernens
können kostengünstigere und im Optimalfall bereits vorhandene Senso-
ren zur Überwachung des gesamten Prozesses eingesetzt werden.
In dieser Arbeit werden Methoden aufgezeigt, die mit einer an der Fo-
kussieroptik koaxial zum Laserstrahl integrierten Kamera eine Prozess-
überwachung vor, während und nach dem Schweißprozess vornehmen.
Zur Veranschaulichung der Methoden wird der Kontaktierungsprozess
von Kupferdrähten zur Herstellung von Formspulenwicklungen ver-
wendet. Die vorherige Prozessüberwachung umfasst eine durch ein
faltendes neuronales Netz optimierte Bauteillagedetektion. Durch ei-
ne Formprüfung der detektierten Fügekomponenten können zudem
vorverarbeitende Schritte überwacht und die Schweißung fehlerhafter
Bauteile vermieden werden. Die prozessbegleitende Überwachung kon-
zentriert sich auf die Erkennung von Spritzern, da diese als Indikator für
einen instabilen Prozess dienen. Algorithmen des maschinellen Lernens
führen eine semantische Segmentierung durch, die eine klare Unterschei-
dung zwischen Rauch, Prozesslicht und Materialauswurf ermöglicht.
Die Qualitätsbewertung nach dem Prozess beinhaltet die Extraktion
von Informationen über Größe und Form der Anbindungsfläche aus
dem Kamerabild. Zudem wird ein Verfahren vorgeschlagen, welches
anhand eines Kamerabildes mit Methoden des maschinellen Lernens die
Höhendaten berechnet. Anhand der Höhenkarte wird eine regelbasierte
Qualitätsbewertung der Schweißnähte durchgeführt.
Bei allen Algorithmen wird die Integrierbarkeit in industrielle Prozesse
berücksichtigt. Hierzu zählen unter anderem eine geringe Datengrund-
lage, eine begrenzte Inferenzhardware aus der industriellen Fertigung
und die Akzeptanz beim Anwender.
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1 Introduction

Machine learning (ML) is a subfield of artificial intelligence (AI) in which
systems learn from data and recognize patterns and relationships with-
out being explicitly programmed. AI generally includes methods that
can perform tasks that usually require human intelligence. The scientific
discipline of AI traces back to the 1950s when Turing proved that a
computing machine could perform cognitive processes [161]. The term
"artificial intelligence" itself was introduced by John McCarthy at a con-
ference on the campus of Dartmouth College in 1956. In the following
years, several breakthroughs attracted media attention, for example, in
1996 when the world chess champion was defeated by the chess com-
puter "Deep Blue". However, there was a lack of data and computing
power for a long time, which is why there was no general technological
breakthrough. This changed around 2011 when highly efficient pro-
cessors and graphics cards significantly accelerated the calculation of
algorithms. Technological leaps in hardware and software paved the
way for AI to enter everyday life and enabled ordinary consumers to
access the programs. Examples of typical applications include machines
that respond meaningfully to natural language, recognize faces and ob-
jects or make custom-fit suggestions, e. g., about music tracks, videos, or
products.

In the context of Industry 4.0, which describes the digital transfor-
mation of production, ML applications are also becoming the focus of
industrial manufacturing [65]. A large number of studies show the eco-
nomic potential of ML algorithms. In 2018, a study by the McKinsey
Global Institute estimated that the entire field of AI will trigger a global
annual growth spurt in the gross domestic product of 1.2% on average
by 2030. This increase would exceed the growth spurts of the steam
engine and industrial robots [105]. Recent studies by McKinsey [106]
and the industry association Bitkom [12] also show that this trend will
continue.
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1 Introduction

Nevertheless, the proportion of companies using AI in some form is
rising very slowly. In 2021 the share increased from 8% to 9%, based on a
study by Bitkom [12]. According to the German Federal Ministry of Eco-
nomics and Technology, the level of digital readiness is generally weak
in many companies. Besides the fact that most companies are not yet
using any AI applications, many are just starting to think fundamentally
about what digital products or manufacturing methods might look like.
According to a survey by the German Association of Human Resources
Managers, only 40% of the companies surveyed have even adopted a
digital strategy by 2022 [43].

The biggest obstacles to use AI in companies are a lack of human
ressources and the availability of too few data. Financial lack is also a
factor slowing down the use of AI systems. Many companies hesitate to
invest in new technologies and business models because the outcome
is only vaguely defined at the beginning. Developing AI algorithms re-
quires, in most cases, investment in new hardware and data generation.
This hurdle is often still too large. In addition, employees’ lack of accep-
tance and trust in AI are mentioned as obstacles [12, 124]. Thus, there are
still few AI solutions in the industry that can be used immediately and
are ready for the market. However, especially for small and medium-
sized companies, getting started to develop their own AI algorithms is a
major challenge [43].

Due to the great potential offered by AI applications, it must be en-
sured to take advantage of opportunities. Germany is already dropping
behind in AI in an international comparison [12]. In everyday life, the
strength of algorithms is evident in many applications, and it is no
longer possible to imagine life without them. They are taking up more
and more space in almost all areas of life. This change will also have an
impact on industrial manufacturing. Since AI is a key technology, it will
lead to competitive advantages or a downturn. The potential to make
value-added processes more flexible and efficient with the help of AI
applications is enormous [43].

2



1.1 Industrial Use of Machine Learning

1.1 Industrial Use of Machine Learning

A trend is that the average size of artificial neural networks is increasing
massively. Since introducing hidden units around 1960, it has doubled
approximately every 2.4 years [56]. Hidden units are elements of a neural
network that belong to neither the input nor the output layer but are
intermediate layers. These units compute the input from the previous
layer and pass the results to the next layer until the final output layer is
reached. This growth is accelerated by faster computers, better GPUs,
software infrastructures that enable distributed computing, and the
availability of larger data sets. Figure 1.1 shows the evolution using
popular network architectures as examples over the years.

Figure 1.1 Growing size of neural networks over time. 1.[135, 136], 2.[169], 3.[46], 4.[137],
5. [131], 6. [10], 7. [140], 8.[91], 9.[74], 10. [64], 11. [18], 12. [139], 13. [129], 14.[75], 15. [21],
16. [24], 17.[90], 18. [86], 19. [25], 20. [158] (Figure from [56])

Not only has the size of networks increased over the years but so has
the amount of training data. In the age of big data and the increasing
digitization of society, much more training data is available. Even since
2016, the rule of thumb is that a supervised deep learning algorithm
would generally perform acceptably with about five thousand labeled
training data per label and outperform human performance with a
training set of at least ten million data [56].

However, in industrial manufacturing, especially directly at produc-
tion plants, neither powerful hardware for machine learning nor large
labeled data sets are often available. In many cases, collecting and la-
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1 Introduction

beling the data is a significant obstacle that is not overcome for reasons
of time and capacity. In addition, the data sets are often unbalanced.
Initiating a faulty process run with scrap production just to train the
model is rarely economically justified. Also, the uncertainty of whether
and to what extent this effort is worthwhile plays a crucial decision
factor. These are a few reasons deep learning algorithms have been less
successful in this area than in other areas.

1.1.1 Requirements in Industrial Manufacturing

Industrial applications, primarily industrial manufacturing, often place
different requirements on the algorithms compared to, e. g., face or
speech recognition. For many applications, too much generalization
is not necessary and sometimes even a hindrance. In addition, the data
variance is much lower due to defined constraints. If significant devia-
tions occur in the data, this usually indicates a fault in the application.
While the algorithm must report this as an error, it does not need to
be able to process the data holistically. Unlike facial recognition, which
has to work in different environments, light conditions, and recording
angles, the environment within a manufacturing process is usually well
defined. Therefore, there is no need to follow the general trend toward
larger models and more data in the manufacturing environment. Instead,
small, lean network architectures are more effective in some cases.

According to surveys, many users see the problem of ML in industrial
manufacturing not in the models or model architectures but primarily
in the data. Because, in practice, companies would have to deal with
entirely new data for almost every application [124]. This statement also
shows the different requirements for the algorithm. Instead of a large,
generalizing algorithm that covers many use cases, it can be valuable to
train algorithms for smaller, defined tasks. For example, in the case of an
original equipment manufacturer (OEM) supplier, many customers do
not want their data to flow into algorithms also used by other customers.
Especially not if components are visible and thus perhaps features that
distinguish them from the competitors. Therefore, depending on the
use case, focusing on individual algorithms for each customer rather
than using one large model makes sense. Matching this observation, the
research advisory board of the Industry 4.0 platform and the German

4
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Academy of Science and Engineering have also identified the develop-
ment of machine learning algorithms with excellent performance on
small data sets and easy transferability as a research and development
need for the successful implementation of Industry 4.0 in 2022 [65]. This
aspect will be discussed in more detail in Chapter 3 of this work.

Another common requirement is real-time capability on industrial
hardware since the processes are critical in cycle time. Network architec-
tures that are too large require much time on the one hand and computa-
tionally powerful inference hardware on the other. This again presents a
hindrance to the use of ML algorithms. This topic will be discussed in
more detail in Chapter 4.

In the best case, using suitable ML algorithms can save time and more
expensive sensor technology. Often, with simpler hardware and suitable
algorithms, the same, or at least approximately the same, features can be
detected as with complex sensor technology. Because neural networks
capture multilayered data correlations, they can often extract features
from the data that are not directly visible to humans. For example, Chap-
ter 5 shows how a camera and a neural network that computes the height
data can replace a height scanner.

1.1.2 User Acceptance

Besides the lack of specialists and limited availability of data, insufficient
trust in ML systems also plays a decisive role, as mentioned at the
beginning. According to a study by Bitkom, around half of the companies
interviewed are concerned about the poor traceability of the results and
possible application errors of ML algorithms. In addition, significant
risk factors are that errors in programming and learning databases are
challenging to detect [12]. These aspects are relevant in the area of in-
house developments but also for purchased ML solutions. In order to be
able to sell products that contain ML algorithms, customer acceptance
must also be kept in mind.

The uncertainty concerning trust in the decision-making process of
ML-driven systems is partly due to the often inconsistent quality of
the training data [43]. This offset partly arises from the knowledge loss
between application and AI experts. The AI experts know the required
format of the labeled data for training the algorithms and can estimate
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on which data basis the network can learn useful features. However,
they do not know the actual application in detail and, thus, cannot
always correctly assign errors to classes, for example. On the other hand,
the application experts and users of the ML algorithm do not know the
training data in detail and therefore have little confidence in the database
on which the ML algorithm is based. This gap between AI experts and
application experts still leads to great uncertainty. The topic is discussed
in Chapter 3.6, and a possible solution approach is given.

The danger to people and property posed by the algorithm’s deci-
sion must also be considered. The European Commission drafted the
world’s first legal framework for AI in 2021 [40]. These regulations are in-
tended to enable transparency and minimum requirements and prevent
misunderstandings. AI approaches can be divided into different risk
classes. Even well-known applications from everyday life can be classi-
fied like this. For example, an incorrect recognition of voice input for a
music request has minor consequences, while an AI-based control of an
autonomously driving vehicle poses much more significant risks. There-
fore, especially at the beginning of the industrial use of AI algorithms,
selecting applications with minimal risk is recommended. Examples of
this are applications that only contribute to decision support. This means
the data is processed by an algorithm and then evaluated by a human,
who ultimately makes the decision. For algorithms whose results flow
directly into an automated production process, monitoring or control-
ling the output by humans or, e. g., by knowledge-based systems, is
appropriate. This aspect is also discussed in more detail in the following
chapters.

1.2 Laser Welding and its Process Monitoring

The laser market was estimated at USD 16 705.2 million in 2021 and is ex-
pected to continue growing [113]. Besides the communications segment,
material processing using lasers has a significant role in this market.
Although lasers were initially used mainly for cutting applications, a
considerable and growing proportion of lasers are now used for join-
ing materials [112]. The laser beam has already replaced mechanical
manufacturing processes in many areas when welding metallic and non-
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metallic workpieces. Digitization in the context of Industry 4.0 requires
tools that work quickly, directly, and flexibly and thus can be automated.
All this applies to the laser beam. As a result, the increasing trend toward
automation and continuous progress has significantly driven the use of
laser welding technology.

Furthermore, improved productivity and cycle time reduction are
increasingly crucial in today’s industrial manufacturing. For example,
in the automotive industry, where the total length of welded seams can
add up to more than 50 m per car, it is essential to minimize process-
ing time through high welding speeds, and automation [112]. Another
strong trend is the increasing individualization of products. Market-
ing departments always want to offer potential customers a product
tailored to their wishes or surprise them with special editions. At the
same time, production planners groan when they constantly have to
produce new variants and small batch sizes. Laser light brings freedoms
to this area that mechanical processes cannot offer. As a laser welding
process handles new shapes and contours through program changes, it
offers the potential to change over processes at high frequencies. The
laser beam also enables precise work due to the accurate and precise
energy input. Furthermore, only minimal structural changes occur to the
surrounding material due to the small heat-affected zone. This way, even
the finest structures can be implemented with high process reliability
and reproducibility.

Laser welding is used in many fields, ranging from high-precision
micro welding of medical devices to fully automated laser welding in the
automotive industry [112]. However, laser welding is a complex process.
Many parameters influence the quality of the weld. Thus, monitoring the
welding quality and checking for welding defects is necessary. Firstly,
checking the components to be welded before welding is helpful, as
this can avoid expensive follow-up costs in case of doubt. In addition,
the weld seam must be checked after welding to ensure high product
quality. Some weld defects are difficult or impossible to detect in the
solidified weld after welding, which also argues for monitoring during
the process. Especially with the trend towards short cycle times and
complete automation, process monitoring systems for laser material
processing are becoming increasingly important.
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1.3 Contribution and Organisation of the Work

When the first laser was developed in the 1960s, it was described as a tool
looking for an application [160]. In the meantime, it has become clear
how versatile the laser can be and how, among other things, it has found
its perfect place as a flexible tool in a world shaped by digitalization. The
situation is similar today with AI algorithms. Again, there is a powerful
tool whose use in many areas is already apparent but still waiting for
proper implementation and large-scale use in industrial manufacturing,
especially in quality monitoring.

Image processing is already an essential part of automation technol-
ogy. The more progress is made in Industry 4.0, which is accompanied
by automation and modularity, flexibility, and individualization, the
more image processing is needed. However, this technology also reaches
its limits, especially when products are individualized and processes
frequently change over. As explained in the previous chapter, this is
often the case with laser welding. For such applications, image process-
ing solutions are often not adaptive enough. In contrast, deep learning
algorithms offer new possibilities for such problems. Data-driven de-
velopment, which is no longer strictly oriented to defined algorithm
sequences, allows rapid adaptation and greater flexibility.

The work aims to apply deep learning methods in the quality as-
surance of laser welding processes where other algorithms reach their
limits. It uses the example of the joining process of copper wires for the
production of formed coil windings, the so-called hairpin welding. The
focus of the analysis is on the data of a camera sensor, which is mounted
on-axis on the focusing optics. In temporal terms, the work considers
pre-process, in-process, and post-process monitoring. Observing all pro-
cess stages enables the earliest possible fault detection and more stable
overall monitoring. These temporal phases also determine the structure
of the work.

The following section gives a brief overview of each chapter’s content
and scientific work.
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Fundamentals Chapter 2 introduces basic concepts that are fundamen-
tal for the methods of this work. First, the principles of deep learning
and the structure and evaluation metrics of deep learning models are
explained. Second, the basics of laser welding and the process risks are
summarized. Finally, a short introduction to the contacting process of
copper wires to produce shaped coil windings concludes the chapter.
This application is used to illustrate the proposed methods throughout
the work.

Pre-Process Chapter 3 describes an extension of the upstream steps
before the actual laser welding process. These steps include the detection
of the component position using a camera image. In the image, the exact
position and orientation of the component are captured and passed on
to the laser control system so that welding is always performed at the
correct place. Extending the algorithm by pre-processing the camera im-
age with semantic segmentation by a deep convolutional neural network
highlights the pixels belonging to the component. This additional step
makes the algorithm more robust, and it can be adapted more quickly
to changing processes. Accurate detection of the joining parts also en-
ables verification of their shape and size, which prevents the welding
of defective parts and allows monitoring of the pre-processing steps.
This chapter discusses the selection of a suitable model architecture
for semantic segmentation and a single- and multi-stage approach for
joining part recognition depending on the database. Furthermore, the
machine learning process integration into industrial manufacturing and
the automation and support of the model generation will be addressed.
An important aspect is, among other things, a method for optimizing
and accelerating the data labeling process. There is also still a need for
research and development in hybrid solution approaches and the verifi-
cation and validation of the systems [65]. These points are also addressed
in this chapter.

In-Process The fourth chapter deals with in-process monitoring during
laser welding. Due to the laser-material interactions occurring during
welding, energy is emitted in various forms. From the emissions of weld-
ing, process signals can be measured with the help of suitable sensors,
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leading to the detection of welding defects during the process. The focus
of this chapter is on the use of a camera as a sensor for in-process mon-
itoring. The analysis refers to the occurrence of spatter in the process,
which is considered an indicator of process instability. Machine learn-
ing algorithms perform semantic segmentation of the images, which
allows clear differentiation between plumes, process lights, and mate-
rial ejection without hardware modification. It also examines spatter
size and velocity to derive the predictive power of different camera
acquisition frequencies and the associated monitoring of a spattering
tendency. Some results of the camera-based spatter monitoring using
deep learning methods have been published in Applied Science (Hartung
et al. [184]).

Post-Process The post-process inspection presented in Chapter 5 aims
to evaluate the weld quality after solidifying based on a camera im-
age. The extraction of information about the size and shape of the weld
allows a conclusion about the quality. The chapter demonstrates a deep-
learning-based approach to reliably highlight the weld with pixel ac-
curacy in the image. In addition, this chapter presents a reconstruction
algorithm that computes height information based on a single camera
image. The reconstruction uses machine learning methods. In both ap-
proaches, a knowledge and rule-based algorithm follows the machine
learning algorithm to evaluate the quality. The different techniques are
explained in detail in Chapter 5. The results are evaluated and compared.
The 3D reconstruction procedure and comparisons with state-of-the-art
have been published in Sensors (Hartung et al. [185]). Furthermore, the
evaluation of the calculated height data in terms of quality assurance
compared to measured height data and a purely image-based approach
has been presented at the Forum Bildverarbeitung 2022 (Hartung et al.
[181]) and a further comparison was published in tm - Technisches Messen
(Hartung et al. [182]).

Conclusion and Outlook The final Chapter 6 summarises the main
results and findings of the work. Furthermore, possible future research
in this field is proposed.
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The following chapter discusses basic concepts fundamental to the meth-
ods proposed in this work and contributes to a better understanding.
The first part explains machine learning, how it works, and the setup of
the used network architectures. Afterward, the chapter shows the basics
of laser welding and the design of the welding station before it connects
to process instabilities and process monitoring.

2.1 Deep Learning

Deep Learning (DL) is a special information processing method and an
ML subfield. The fundamental difference between ML and traditional
programming is that a program does not have to be created step by
step based on input data and rules. Instead, an algorithm defines the
regulations based on the data itself.

Mitchell [111] describes the ML task as a computer program that learns
from experience E concerning a class of tasks T and a performance
measure P if its performance on the tasks in T , as measured by P ,
improves with experienceE. In other words, ML is the study of computer
algorithms that allow computer programs to improve automatically
through experience. However, there is no strict and single definition
for either task, performance evaluation, or experience. The definition of
each of these values can be very different.

In general, the task T describes what the network should learn. The
ML algorithm is represented by the function y = f(x), where the input
features x are mapped to the desired target value y. In the case of classifi-
cation, the target value is defined by y = {1, ..., c}, where c is the number
of classes. However, the target value can also represent the prediction of
an expected value (regression), a density estimation, or other quantities.
It is essential for the algorithm that the target information is implicitly
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derivable from the input data and that similar data also have similar
results. The input is usually represented as a vector x ∈ Rn, where each
element xi represents a feature. Depending on the database and ML
model, pre-processing of the input data is required and, in some cases,
an additional reduction of the data complexity. The algorithm learns
and optimizes the relationship between the features x and the target
value y to improve the performance score P . The choice of evaluation
metric depends on the task T . For example, the classification uses the
correct classification rate (accuracy) or the error rate for evaluation. With
each performance score P , the model develops further experience E
that contributes to the success of the task. Algorithms can be divided
into supervised and unsupervised ML methods. In supervised methods,
labeling informations are available for each input, and the algorithm
learns the relationship between the target value and the input features.
Unsupervised methods are applied to data without labeling information.
The goal is, for example, to learn the probability distribution from which
the input data set was generated based on the input features (density
estimation, noise reduction) or to summarize the data based on struc-
tures (clustering). In addition, there are intermediate stages between
supervised and unsupervised learning, e. g., so-called semi-supervised
learning, in which some target values contain labeling information while
others do not. Another area of ML methods is reinforcement learning.
These algorithms operate not only on a database but learn the optimal
behavior in an environment based on a defined feedback loop. The al-
gorithm uses the feedback to extend its experience to learn the optimal
way to achieve a given goal.

To form complex structures, DL algorithms combine simple concepts
and functions. The great advantage here is that unstructured data can
also be processed. While the performance of simple ML algorithms de-
pends very much on the representation (i. e., the presentation or prepa-
ration) of the output data, DL algorithms extract the relevant features
within chained functions.

2.1.1 Deep Learning Model

Deep feedforward networks are described by y = f(x; θ). The parame-
ters θ are defined and adjusted to find the best function approximation
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f∗. A linear model cannot always capture the interaction between vari-
ables because the algorithm can only linearly map the input to the output.
Thus, the model must be extended to represent nonlinear functions of
x. The linear functions are therefore applied to transformed input data
ϕ(x), where ϕ is a nonlinear transformation. ϕ can be considered as a set
of features to describe x.

2.1.1.1 Activation Function

Most neural networks use an affine transformation driven by learned
parameters. An invariant nonlinear function, the so-called activation
function, follows this transformation.

The transformation of the output unit is often defined differently
from the hidden layers. Standard functions are sigmoid and softmax
activation. The sigmoid output unit for a network with hidden layer
h = f(x; θ), a bias factor b and the assignment parameter to the output
w is defined by ŷ = ϕsigmoid(w⊤h + b), where

ϕsigmoid(z) = 1
1 + exp(−z) . (2.1)

It uses a linear shift to calculate z = w⊤h + b. The sigmoid function is
often used to determine the parameter for ϕ of a Bernoulli distribution
since its range of values is [0, 1]. This function is used, e. g., in a two-class
problem in which the neural network predicts the probability P (y = 1|x).
Similar to the sigmoid function is the hyperbolic tangent function

ϕtanh(z) = 2ϕsigmoid(2z) − 1. (2.2)

This represents a shifted and stretched version of the sigmoid, cover-
ing the range [−1, 1]. Conversely, the softmax function is suitable as
the output of a classifier for a classification problem with c classes. It
provides a probability distribution over a discrete variable with c pos-
sible values. Thus, the function represents a kind of generalization of
the sigmoid function. In addition to the condition that each element ŷi

must be in the range [0, 1], the sum of the entire vector must add up to 1.
Thus, the approach used in the Bernoulli distribution is applied to the
Multinoulli distribution. First, a linear layer predicts the non-normalized
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log-probabilities with z = W ⊤h + b, where zi = log P̃ (y = i|x). Then z

is exponentiated and normalized to obtain ŷ, giving

ϕsoftmax(z)i = exp(zi)∑
j exp

(
zj

) ). (2.3)

The most commonly used activation function for the hidden layers is
the rectified linear unit (ReLU) [1, 116]

ϕrelu(z) = max{0, z}. (2.4)

Negative values always result in zero for the ReLU, while it results in
a linear mapping for the other values. An extension of the function is
the leaky ReLU [99], which is defined by flrelu(z) = max{α · z, z} with
α ∈ [0, 1]. The function has a slight slope for z < 0 and thus does not drop
these values. However, this feature no longer guarantees a noise-robust
deactivation state. Therefore, Clevert et al. [23] proposes an approach
with negative values to allow mean activations close to 0 but saturates
to a negative value for smaller arguments. The exponential linear unit
(ELU) with α > 0 is

ϕelu(z) =
{
z if z > 0,
α(exp(z) − 1) otherwise.

(2.5)

2.1.1.2 Cost function

Depending on the task T , different cost functions are needed. In super-
vised learning the functions are evaluated using a defined cost function
J(X,Y; θ), which measures the deviation between the target value y and
the result ŷ = f(x; θ, w) of a data set X = {x1, ....,xn} with n samples
and the corresponding target values Y = {y1, ..., yn}. The fitting of the
parameters θ is done to find the best function approximation f∗, with
θ∗ = arg minθ J(X,Y; θ). The cost functions are divided into regression
models and classification models. While the regression models predict
continuous values, the classification models predict an output from a set
of finite categorical values. In the following, only the functions used in
this work will be discussed.
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A commonly used cost function from the category of regression mod-
els is the mean square error, also known as L2 loss. This function cal-
culates the square of the difference between the actual and predicted
values and is defined as

JMSE(X,Y; θ) = 1
n

n∑
i=1

(yi − f(xi; θ))2, (2.6)

for n data samples. Larger deviations are more significant with the help
of squaring.

A typical cost function for classification tasks is the cross entropy

JCE(X,Y; θ) = − 1
n

n∑
i=1

c∑
j=1

yij log
(
ŷij

)
, (2.7)

where

yij =
{

1 if ith element is in class j,
0 otherwise.

.

Assuming that the target vector yi is one-hot coded, the output of
classification tasks is the probability p ∈ [0, 1] for containing the respec-
tive class of the total number of classes c. Thus, cross entropy accounts
for both model uncertainty and incorrect predictions. However, an im-
balance between the classes introduces bias into the process. Since the
result improves enormously when the model predicts the more often
represented class with higher confidence, it adjusts the parameters θ

to this class. This cost function is also used in semantic segmentation,
where Yj and Ŷj are matrices with a class probability value per pixel. In
this case, the problem of unequal class ratios often occurs since, usually,
a background class takes up the largest part of the image. To overcome
this bias caused by unequal class ratios, weighted cross entropy defined
by

JwCE(X,Y; θ) = − 1
n

n∑
i=1

c∑
j=1

αjyij log
(
ŷij

)
(2.8)

can be used. The function is defined analogously to the cross entropy,
with the extension that the class weighting can be adjusted by the weight-

15



2 Fundamentals

ing factor α. The weighting can be defined by the inverse class frequency
or treated as a hyperparameter.

Lin et al. [96] propose a further optimization of the cost function. In
addition to class weighting, they extend the cross entropy with the
modulation factor (1 − ŷ)γ ,withγ ≥ 1, via which a focus is placed on
more complex samples. As a result, the α-balanced focal loss is defined
by

JFL(X,Y; θ) = − 1
n

n∑
i=1

c∑
j=1

(
α(1 − ŷij)γyij log

(
ŷij

))
. (2.9)

If an example is classified correctly, which results in ŷij → 1, it follows
that (1 − ŷij)γ → 0 (down weighting). If an example is classified in-
correctly, ŷij → 0, the value is close to 1, and the result is unaffected.
The parameter γ controls the strength of the weighting. For γ = 0,
JFL = JwCE is valid. Lin et al. [96] recommend slightly reducing α when
increasing γ.

Another cost function, proposed by Milletari et al. [109], which is often
used in semantic segmentation is the Dice loss [73, 179]. The training
uses a probabilistic version of the Dice similarity coefficient (DSC), which
approximates it. The Dice loss is defined as:

LDice(y, ŷ) = −1
c

c∑
j=1

2
∑m

k=1 ykj ŷkj + η∑m
k=1(ykj + ŷj,k) + η

(2.10)

for a one-hot encoded prediction, where m is the number of pixels and c
is the number of classes. η represents a smoothing factor that prevents
the denominator from being zero in the case of yj,k = ŷj,k = 0. This
results in the cost function

JDice(X,Y; θ) = 1
n

n∑
i=1

LDice(yi, ŷi), (2.11)

for n data sampels.
All cost functions are calculated on the training data and validation

data during training and are assumed to have the same effect on the test
data. The purpose of the optimization is θ∗ = arg minθ J(Xtest,Ytest; θ).
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2.1.1.3 Optimization

The gradient descent method generally solves the optimization problem
and finds θ∗. The method traces the negative gradient in the given step
size ϵ (learning rate). Batch gradient descent determines the error for all
examples of the training data set and only then updates the model. The
so-called stochastic gradient descent (SGD) updates the parameters for
each training example individually. Thus, the entire data set does not
need to be present in memory. Since the gradient is an expected value
that can be estimated approximately with a small set of samples, it is
not necessary to use all training data for the calculation. The so-called
mini-batch gradient descent is the preferred method because it combines
the concepts of batch gradient descent and SGD. In this method, only
small subsets (mini-batch) randomly drawn from the training data are
used to calculate the gradient:

θk+1 = θk − ϵ∇θJ(θk). (2.12)

The definition of the hyperparameter ϵ is usually not straightforward
because the different model parameters react differently to the change.
Another reason is that by randomly drawing training samples, the gra-
dient estimator for SGD provides a noise source that does not disappear
even at the minimum. As a result, the learning rate ϵ is usually linearly
reduced until the defined iteration τ is reached:

ϵk = (1 − α)ϵ0 + α · ϵτ , with α = k

τ
, (2.13)

where k indicates the current iteration. After iteration τ is reached, the
learning rate usually remains constant. Based on the problematic defi-
nition of the learning rate, there are other extensions to the algorithm.
The adaptive gradient algorithm (AdaGrad) adjusts the learning rate
for all model parameters individually by scaling proportionally to the
square root of the sum of all previous squared values of the gradient
[35]. This means that it accelerates the updating process for parameters
with weak gradients and slows down the updating of the weights with
large gradients. The root mean square propagation algorithm (RMSProp)
[63] modifies AdaGrad by replacing the gradient accumulation with
an exponentially weighted average of recent results. The history of the
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distant past is thus discarded, allowing for rapid convergence after de-
tecting a convex trough. However, using the moving average introduces
the new hyperparameter ρ, specifying the moving average’s length scale.
The adaptive moment estimation algorithm (ADAM) [83] further op-
timizes the algorithm. It extends the RMSProp algorithm to include a
momentum directly as an estimate of the first-order gradient moment.
Momentum accelerates learning, especially in the presence of solid cur-
vature. In addition, ADAM uses bias corrections for the estimates of
the first and second-order moments to account for their initialization at
the origin. The algorithm updates the exponential moving averages of
the gradient and the squared gradient, requiring two hyperparameters
β1, β2 ∈ [0, 1) that control the exponential decay rates of the respective
moving averages:

θk+1 = θk − ϵk√
v̂k+1 + 1e−8 m̂k+1, (2.14)

where

m̂k+1 = mk+1

1 − βk
1
,

v̂k+1 = vk+1

1 − βk
2
,

mk+1 = β1mk + (1 − β1)∇θJ(θk),
vk+1 = β2vk + (1 − β2)∇θJ(θk)2.

Kingma and Ba [83] propose the values 0.9 and 0.999 for the hyperpa-
rameters β1 and β2, respectively. The moving averages are initialized as
(vectors of) 0, resulting in moment estimates biased toward zero, espe-
cially during the first time steps and especially when the decay rates are
small. Therefore, bias-corrected estimates of the values are used, leading
to m̂k+1 and v̂k+1.

The gradient calculation is performed using the backpropagation [137]
method. In forward propagation, the data x are given to the network,
which computes the output ŷ. In backpropagation, the data from the cost
function flows backward through the network to compute the gradient.
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2.1.1.4 Convolutional Neural Network

Convolutional neural networks (CNNs) are a special form of neural net-
work for processing data with a grid-like topology, such as time series
data (1D grid) or image data (2D grid). In a fully connected neural net-
work (FCNN), each neuron is connected to each neuron in the previous
layer. In contrast, CNN uses the mathematical operation of convolution
instead of general matrix multiplication in at least one layer. For exam-
ple, the discrete convolution from signals s1 and s2, assuming an integer
time index t, can be defined by

s(t) = (s1 ∗ s2)(t) =
∞∑

a=−∞
s1(a)s2(t− a). (2.15)

Transferred to the ML context, the inputs of the convolution are usually
a multidimensional array of data, and a kernel, which is a multidimen-
sional array of parameters. It is usually assumed that the functions are
zero everywhere except for the limited set of points defined in the array.
This assumption allows infinite summation to be implemented as a sum-
mation over a finite number of array elements. The discrete convolution
is then performed over multiple dimensions simultaneously. For a 2D
input image X and a 2D kernel K this results in:

S(i, j) = (X ∗ K)(i, j) =
∑
m

∑
n

X(m,n)K(i−m, j − n), (2.16)

respectively since it is a commutative operation

S(i, j) = (X ∗ K)(i, j) =
∑
m

∑
n

X(i−m, j − n)K(m,n). (2.17)

The kernel is chosen to be smaller than the input in the convolution
operation of a neural network. Thus, iterating over the kernel dimensions
is more efficient since there is less variation in the range of valid values
for m and n.

In matrix multiplication of fully connected layers, a separate parame-
ter is used to describe the interaction between each input and output unit.
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A convolution layer, on the other hand, computes only the input units
in the kernel area for each output unit. Moreover, each kernel element
is used at each input position (parameter sharing). Thus, the output
can be computed in fewer operations, and fewer parameters must be
stored. Since not all units are connected, this is called sparse connectivity.
All units that affect an output unit are called the receptive field of the
output unit. Due to the concatenated operations, the receptive field of
the units in the deeper layers is larger than the receptive field of the units
in the flat layers. To obtain a larger receptive field in a flatter architecture,
architectural features such as dilated convolution, in which the step size
of the kernel is increased, can be used.

An activation layer and a pooling layer follow several convolution
operations. After non-linear activation, the pooling layer aggregates the
results by replacing outputs close to each other with a pooled statistical
value. Max pooling [180] is most commonly used, where the largest
value of the results is retained. Alternatives are the average value or a
weighted mean. Depending on the range of k results to be aggregated,
the size of the outputs reduces by a factor k. The reduced input size
leads to higher efficiency and lower memory requirements. In addition,
pooling helps to ensure that the representation is invariant to more minor
shifts in the input.

2.1.2 Generalization and Regularization

Unlike a classical optimization problem where the parameters are fitted
precisely to the data, the aim in ML is a parameter optimization for
θ∗ = arg minθ J(Xtest,Ytest). This means it pursues the goal of a small
test error on new, previously unseen data, also called a generalization
error. The model has to find the balance between a small training error,
which avoids underfitting the data, and keeping the distance between
the training error and the test error small and thus not overfitting to the
data.

The No-Free-Lunch Theorem (NFL) states that within certain con-
straints in the space of all possible problems, each optimization method
performs on average as well as any other [171]. However, this result
holds only when considering any problem involving all possible data-
generated distributions. Thus, the NFL implies that ML algorithms must
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be trimmed to perform well on a given task. Moreover, by making as-
sumptions about the probability distributions of the actual applications’
data, learning algorithms can be developed that perform well for just
those distributions. To affect the performance of a model on the test data
set, the training and test data must not be arbitrary. Ideally, they are
identically distributed, i. e., from an identical probability distribution.
Then, for a randomly selected model with fixed weights w, the expected
training error would equal the expected test error. Since the weights are
determined in an ML algorithm to reduce the error in the training data
set, the expected test error will always be greater or equal to the expected
value for the training error. To achieve a good result, it is essential that
the training data set can represent the test data set as well as possible.

The capacity of the model determines whether it tends to underfit or
overfit. Models with a large capacity can handle more features of the
input data. To a certain degree, it makes sense to increase the capacity
because the model can better represent the features of the training data.
However, overfitting to the training data can also occur if too many
training data-specific features are stored. As a result, the generaliza-
tion performance of the model deteriorates. Depending on the task’s
complexity, the algorithm’s capacity must be adjusted accordingly. The
amount of training data also has an impact. If fewer data are available,
there is a higher risk that the algorithm stores irrelevant data features of
these few training data. If there is a higher variance in the data set, the
algorithm must already generalize better on the data, and overfitting is
prevented.

Regularization is a fundamental part of ML. It describes any change
to the learning algorithm that aims to reduce the generalization error
but not the training error. Thus, methods of generalization counteract
overfitting. There are many regularization methods, of which the appro-
priate one must be selected depending on the task to be solved and the
available database. There is no general best form of regularization.

As mentioned earlier, the size of the data set plays an essential role
in generalization performance. Artificial data augmentation may be
helpful if only a few training data are available. The easiest way to ex-
tend a data set is to use and modify the existing data. It is crucial to
preserve the mapping from input x to output y. For example, images
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can easily be simulated over many variation factors. Shifting the im-
age’s content a few pixels in any direction can increase generalizability.
Other methods include rotating, scaling, or flipping images. A certain
amount of distortion can also be helpful in some use cases. It is essential
not to use transformations that change the assigned class value. Also,
data expansion is only beneficial if the data is still within the natural
distribution.

It can also be helpful not to optimize the training algorithm over too
many iterations to prevent an algorithm from tending to overfitting. It
is often observed that only the training error steadily decreases after a
certain time while the test error increases. At this point, the algorithm
loses generalization power and learns too specific features of the training
data set. A validation data set with data not used for parameter fitting
during training can be used to store the parameters of the models at
the time of the lowest validation error. If this shows no improvement
over a specified number of iterations, the last saved parameter set is
used. This procedure is referred to as early stopping. It is a weak form
of regularization because the training procedures, objective function, or
admissible parameter space do not need to be adjusted.

A stronger type of regularization is achieved by adding a penalty
term ω to the cost function:

J̃(X,Y; θ) = J(X,Y; θ) + αω(θ), (2.18)

where α ∈ [0,∞) defines the weighting of the penalty term. This con-
strains the capacity of the model. Common penalty terms are the L1 or
the L2 regularization of the network weights. These cause the weights to
approximate the origin and tend to have smaller values.

Other possibilities for regularization represent ensemble methods or
dropout. Bootstrap aggregation (bagging) [16] is an ensemble method
combining multiple models. The models are trained separately and used
together to predict the test data. This procedure works because different
models generally do not make the same errors. While bagging allows
using the same model type, training algorithm, and objective function
multiple times, there are other ensemble methods where the model types
are fundamentally different. It uses k different data sets defined from a
training data set by drag and drop. Dropout [152] attempts to represent
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the functionality of bagging in a less computationally intensive method.
Dropout uses a base network architecture and removes various non-
output units from the architecture. The number of units to be removed
is set as a parameter. The units are then selected randomly during the
execution of each mini-batch. Unit removal can be seen as masking
noise on the hidden units. Unlike bagging, the individual models are
not trained to converge, but usually only a few steps. However, since
the models share common parameters, the subnetworks converge to an
appropriate parameter setting. The advantages of the dropout are the
low computational effort and that it only insignificantly restricts the type
of model or training procedure. The disadvantages are the significantly
larger model size required due to the capacity reduction caused by the
dropout and a larger number of iterations of the training algorithm. In
addition, dropout is usually only effective if many training examples are
available.

2.1.3 Evaluation Metrics

In supervised learning, the result of the model can be compared with
the actual label. Consequently, the deviation between the predicted and
target values for regression models gives the model quality. For a test
data set Xtest = {x1, ...,xn} with n data samples and the associated
labels Ytest = {y1, ..., yn} where ŷi = f(xi; θ) represents the predicted
result of the i-th sample, the mean squared error (MSE) is defined by

MSE = 1
n

n∑
i=1

(ŷi − yi)
2. (2.19)

Another metric that provides the deviation of the calculated value
from the actual result is the mean absolute error (MAE), defined by

MAE = 1
n

n∑
i=1

|ŷi − yi|. (2.20)

Both metrics can be applied to a one-hot encoded multi-class problem or
semantic segmentation, where y and ŷ are vectors or matrices.

Standard classification measures are accuracy, precision, recall, and
the Fβ score. Accuracy Acc is a commonly used classification metric that
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gives the percentage of correctly matched samples. It is suitable for both
binary and multiclass classification problems. The result options are true
positive (TP ), false positive (FP ), true negative (TN ), and false negative
(FN ):

Acc = TP + TN

TP + FP + FN + TN
. (2.21)

The precision p describes the percentage of correctly predicted error-
free samples concerning the total of all positive labeled results:

p = TP

TP + FP
. (2.22)

Finally, the recall r indicates proportionally how many of the predicted
positive samples are correct:

r = TP

TP + FN
. (2.23)

The F1 score considers both recall and precision. If the weighting of
the class under consideration is not equal, the more general Fβ score can
be used, which includes a class weighting β:

Fβ = (1 + β2)
(

p · r
β · p+ r

)
. (2.24)

When evaluating a semantic segmentation, i. e., the pixel-precise clas-
sification, each image pixel’s result must be considered. Therefore, the
Jaccard coefficient, also called Intersection over Union (IoU), represents
a suitable metric and is defined by

JC = 1
n

n∑
i=1

|ŷi ∩ yi|
|ŷi ∪ yi|

. (2.25)

The closer the Jaccard coefficient is to 1, the greater the similarity of the
sets. Its minimum value is 0. Depending on the task and the input data,
it may be helpful to calculate the Jaccard coefficient based on a defined
class only.
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2.1.4 Model Interpretability

Depending on the model type and the activation and the loss functions
used, the result includes an evaluation of the model confidence in ad-
dition to the class assignment. For example, in a regression task with
one-hot encoding, a probability p ∈ [0, 1] indicates how confident a sam-
ple, or in semantic segmentation, a pixel, is assigned to a class. For better
visualization of the results, this work uses a jet colormap representation
of the predictions, whose progression is shown in Figure 2.1. Blue indi-
cates that the pixel does not belong to the class (p = 0), and red indicates
a class assignment with high confidence (p = 1).

Figure 2.1 Jet colormap.

The models must be well-calibrated for the interpretation of the predic-
tion results as model confidence to be valid [107, 164], i. e., the prediction
value should correspond to the prediction probability. Therefore, the
expected calibration error (ECE) is used as a summary statistic for the
calibration [88, 114, 164]. It is defined by

ECE = E[|P (ŷ = y|p̂ = p) − p|], (2.26)

where ŷ is the predicted label, y is the true label, p̂ is the model prob-
ability for its prediction, and P (ŷ = y|p̂ = p) is the data distribution’s
probability for a correct prediction that the model prediction p̂ = p. To
quantify the continuous values, the results can be divided into M bins.
Assuming Dm to be indices of samples with the prediction results are in
the range ( m−1

M , m
M ], the ECE is

ECE =
M∑

m=1

|Dm|
n

|Acc(Dm) − Conf(Dm)|, (2.27)

where n is the total sample number. Acc(Dm) = 1
|Dm|

∑
j∈Dm

1(ŷj = yj)
and Conf(Dm) = 1

|Dm|
∑

j∈Dm
p(ŷj = yj |xj ; θ) are accuracy and confi-

dence averaged over the samples in the bin. The ECE is the summation
of the weighted average of the differences between the average accuracy
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and the confidence over bins. A reliability diagram represents the metric
by plotting the confidence against the accuracy per bin, as shown in the
diagrams in Figure 2.2. If the confidence value matches the accuracy for
each bin, which would result in a diagonal plot, the calibration is perfect.
Using a higher number M of bins better approximates the diagonal line.
The examples in Fiugre 2.2 show poorly calibrated results, where the
light blue bars would correspond to a good calibration. In semantic
segmentation, each pixel is considered a separate sample. The predic-
tion probability can also be used to estimate the model uncertainty for
a well-calibrated model. For example, it can detect out-of-distribution
data, whose results are usually predicted with high uncertainty.

(a) Reliability diagram with M = 20 bins. (b) Reliability diagram with M = 10 bins.

Figure 2.2 Reliability diagrams. The diagonal black line and the light blue bars show the
perfect calibration. The diagonal line is more approximated using a higher number M of
bins. Both examples show poorly calibrated results.

For a well-calibrated model, entropy [146] is the most commonly used
information measure for the detection of out-of-distribution data [100,
145]. Adapted from the segment-level confidence metric of Mehrtash et al.
[107], the following metric is obtained for evaluating the segmentation
quality of a foreground class without the presence of ground truth. This
metric is based on the pixel-level class prediction ŷij , which gives the
pixel-level probability for class j out of a total of c classes. It calculates
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the average pixel-wise entropy values for that class. This gives for a
sample ŷi and a predefined class j:

H(ŷj) = − 1
|ŷj |

m∑
k=1

[p(ŷjk
) log

(
p(ŷjk

)
)

+ (1 − p(ŷjk
)) log

(
1 − p(ŷjk

)
)
],

(2.28)
where m is the number of pixels of the sample. For the calculation, a
binary classification is assumed. This means that the probability that a
sample belongs to class j is p(ŷk = j) and that it belongs to another class
is 1 − p(ŷk = j). One-hot encoding achieves this binarity.

The metric can also be extended over all classes, which is for a given
sample ŷi:

H(ŷ) = − 1
|ŷ|

c∑
j=1

m∑
k=1

p(ŷj,k) log
(
p(ŷj,k)

)
. (2.29)

Both formulas result in the same outcome in a two-class problem with
one foreground and a background class. A limitation to the validity of
the metric is the requirement of good model calibration.

Despite the knowledge about the certainty of model predictions, the
problem remains in the context of model interpretability that modern ML
methods are usually models that humans cannot fully understand [52].
Because the models are based on data, they lack transparency, which
makes it challenging to interpret and explain the procedure. This as-
pect complicates their use in many fields. However, knowledge-based
systems have already been established, especially in the production en-
vironment. These models are based on existing expert knowledge and
a series of equations and logical rules. Therefore, humans can under-
stand the functionality and explain how the model works. Unfortunately,
this traceability of the results is not given to artificial neural networks.
The terms hybrid machine learning or hybrid AI describes the combi-
nation of rule-based knowledge systems (symbolic AI) with machine
learning models (sub-symbolic AI) [102]. This approach combines the
("unconscious") processing of perceptual data with ("conscious") logical
reasoning. There are different methods for combining expert knowledge
with data-based models. For example, knowledge-based systems can
be supplemented by a data-based model as soon as these systems reach
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their limits in the application [52]. In this way, the system can still be
explained for straightforward examples, and the data-based approach,
which is difficult to interpret, is only used when there would be no
solution otherwise. The hybrid model achieves higher accuracy through
this combination than the single solutions. However, a series connec-
tion of knowledge-based and data-based models is also conceivable.
Often, the symbolic AI serves as a data provider for the subsymbolic
AI, which processes the pre-processed data. But a result validation of
the data-based model via a knowledge-based model is also possible
[52]. Thus, the result does not have to be blindly trusted since this is
verified by expert knowledge and rule-based approaches. Verification
is otherwise only possible with cross-validation and sufficient tests to
rule out malfunctions. Therefore, using so-called hybrid AI can increase
interpretability and strengthen confidence in the algorithm.

2.1.5 Network Architectures

Neural networks can be divided into groups depending on the structure
of the network architecture. This includes the overall network structure,
with the definition of the connection layers, the type of connection, the
depth of the network, and the training procedure. Sometimes the differ-
ent network architectures use slightly different approaches to accomplish
the same task, but often they are designed for various problems. The
chapter presents three structures used in this work.

2.1.5.1 Autoencoder

An example of a group of neural network models from unsupervised
learning is autoencoders [8, 15]. The goal of this network structure is to
reconstruct the input x at the output y = x̂ to learn meaningful features
between the layers in a lower dimensional space. The network effec-
tively consists of two parts: the encoder with E(x) = l and the decoder
D(l) = y. Figure 2.3 symbolically shows the layout of an autoencoder.
The network architecture is always symmetric and usually reduces the
features until the middle layer, the latent space l. Autoencoders are often
used for dimension reduction or feature learning. Another typical appli-
cation of the autoencoder is also anomaly detection. If the autoencoder
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is trained only on good data, the reconstruction will not consider devia-
tions from the input image. This results in a significant error between the
original input x and the network output y. Based on this difference, the
anomaly can be detected. An important aspect is that the latent space l

represents all relevant features of the input image. Otherwise, the model
cannot give suitable results.

Figure 2.3 The architecture of an autoencoder. The input x is translated into an internal
representation l and assigned to an output y = x̂. The feature maps can be fully connected
or connected via convolution layers.

2.1.5.2 U-Net

A network architecture structurally similar to the autoencoder is the
U-Net presented by Ronneberger et al. [134]. The U-Net architecture also
has an encoder path to extract features from the input image. The feature
vector is then expanded in the decoder path. However, in this model
architecture, the feature maps generated during the downsampling of the
input image are reused. These so-called skip connections, shown as blue
arrows in Figure 2.4, are located between the encoder and decoder paths
and help to ensure that no critical information is lost. The feature maps
from the encoder path are copied to the decoder path and concatenated
with the corresponding feature maps. The architecture does not use fully
connected layers but only convolution operations. In the original version
of Ronneberger et al. [134], each operation consists of two convolutions,
a max pooling in the encoder and an analog transposed convolution
in the decoder path. This network architecture is used in most cases to
create segmentation maps of images.
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Figure 2.4 The boxes denote the feature maps, while the black arrows between the boxes
represent the operations from Figure 2.5, where the first block does not contain max
pooling. The orange arrow indicates a convolution with kernel 1 × 1 and a following
sigmoid or softmax activation to map the feature vector to the desired number of classes.
The blue arrows represent the skip connections.

Due to the tremendous success of the U-Net architecture, several mod-
ifications and optimizations exist. Often the structure and arrangement
of the convolution operations are adapted. Others add functions in the
skip connections, for example. Wang et al. [166] propose using dilated
convolutional layers with an increased step size in the kernel instead of
the two standard ones. ones. As described in 2.1.1.4, the receptive field
can be increased by dilated convolutions. Each encoding and decoding
operation uses a standard convolution followed by multiple dilated
convolutions concatenated as input to the next operation. This archi-
tecture provides a larger receptive field despite a less partial network
architecture, which helps capture the context of the image.

Oktay et al. [122] propose extending the U-Net architecture using
attention gates. The soft attention modules for CNN proposed by Jetley
et al. [76] enhance the feature maps of relevant image regions while
weakening the influence of unimportant image regions. The output of
the attention gate represents a weighted feature map ĥl

i = hl
i · αl

i, where
hl

i is the feature map of the previous layer l ∈ {1, ..., L} and αl
i ∈ [0, 1]

is the weighting factor. The attention gates are inserted into the skip
connections when integrated into the U-Net architecture. This actively
suppresses the activation of irrelevant features, thereby pushing back the
number of redundant features transmitted. Multidimensional attention
coefficients can also be used for multiple semantic classes. By integrating
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Figure 2.5 Operations in each down- or upsampling step. An activation with ReLU
follows each convolution layer (Conv). The parameter n denotes the number of feature
maps, while k is the kernel size.

the attention gates into the skip connection, the factor α is calculated
considering the feature maps of the skip connection hl and the feature
maps of the next deeper layers of the decoder path g. The additive
attention is formulated as follows,

ql
att = ψ⊤(ϕR(W⊤

h hl
i +W⊤

g gi)),

αl
i = ϕS(ql

att(h
l
i, gi; Θatt)),

(2.30)

where ϕS represents a sigmoid activation and ϕR corresponds to a ReLU
activation function. The set of parameters Θatt contains transforma-
tions computed using channel-wise 1 × 1 × 1 convolutions for the input
tensors. The linear transformations are Wh ∈ RFh×Fint ,Wg ∈ RFg×Fint

and ψ ∈ RFint×1, where Fx corresponds to the number of feature maps
in layer h, g, and the intermediate space int. So the feature maps are
mapped linearly and then summed element by element. Afterward, a
ReLU activation occurs, and the vector transformed using a linear trans-
fomation to the correct dimension. Due to the sigmoid activation at the
end, a multiplication factor in the range [0, 1] is achieved.

2.1.5.3 Generative Adversarial Network

Another common used network architecture is the generative adversarial
network (GAN) [57]. The particular property of this network architecture
is that it consists of two adversarial parts, which optimize each other.
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The generator G is trained to produce images that could come from the
set of training images Xtrain = {x1, ...xn}. This requires the network to
learn the distribution of the generator pg over the data from X. Since the
generator is trained with noise, a prior probability distribution on input
noise variables must be learned in advance pz(z), which is mapped to
the data space with G(z; θg). The discriminator D(x; θd) attempts to dis-
tinguish real images from generated images and returns the probability
of being a real image as output. Figure 2.6 illustrates the structure of a
GAN with its two parts. For example, an autoencoder or a U-Net can be
used as a generator network. The discriminator D is trained to maximize

Figure 2.6 The architecture of a GAN. The generator G produces the sample x =
G(z; θg). The discriminator network D tries to distinguish between the samples x drawn
from the training data and the samples drawn from the generator network. It outputs a
probability value y = D(x; θd) indicating the probability that the sample is an element
from the available training data.

the probability of correctly recognizing both the training sample and the
samples from G. At the same time, D is trained to keep the part of the
correctly recognized samples low. Therefore the value function

min
G

max
D

V (D,G) = Ex˜pdata(x)[logD(x)] + Ez˜pz(z)[log(1 −D(G(z)))]
(2.31)

minimizes the part log(1 − D(G(z)). By this min-max play of the two
networks, realistic-looking images are produced by the generator after
optimization. Mirza and Osindero [110] extended the approach of the
GAN by adding additional information in the generator and the dis-
criminator. The so-called conditional generative adversarial networks
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(CGAN) receive the additional information v, which can be a class label
or other information besides the noise term z. The value function is
adapted as follows

min
G

max
D

V (D,G) =Ex˜pdata(x)[logD(x|v)]

+ Ez˜pz(z)[log(1 −D(G(z|v)))].
(2.32)

To map the images produced by the generator closer to the ground
truth, Isola et al. [72] suggest the regularization by adding L1 or L2
distance measurement to the function. By the weighting factor α, the
ratio of the functions can be determined, and the following formula
results:

L = min
G

max
D

V (D,G) + αLL1|L2
(G). (2.33)

2.2 Laser Welding

The joining process using laser technology is becoming increasingly
prevalent in industry due to the possibility of automation, process time
reduction, and suitability for individualized products.

2.2.1 Laser Technoloy

The word laser used in everyday language is just an acronym and stands
for "Light Amplification by Stimulated Emission of Radiation".

The process of light generation can be explained with the help of
Bohr’s atomic model. According to Bohr, the electrons orbit the atomic
nucleus, which consists of protons and neutrons, on circular paths with
a fixed radius and defined energy levels [14]. Thereby, the inner orbits,
which are closer to the nucleus, have a lower energy level than the
outer orbits. It is necessary to add energy to an electron to move it to a
more distant orbit (absorption, figure 2.7 (left)). The amount of energy
E is proportional to the frequency f of the proton. This dependence is
described by E = h · f , where h = 6.626 · 10−34 J s is Planck’s quantum.
In other words, when the light of frequency fE1E2

is supplied to an
atom, the electron can transition to a higher energy state E2 if Bohr’s
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condition E2 − E1 = h · fťE1E2
is satisfied. In this case, a light quantum

of energy from the proton hfE1E2
is taken from the supplied light. Due

to the additional energy, the electron is in an unstable, so-called excited
state. After a short time, the electron falls back to the lower energy level.
During this transition, the absorbed energy is released in the form of a
photon (spontaneous emission, Figure 2.7 (center)), and light is emitted.
The released energy has the same frequency fE1E2

as the previously
supplied light and is emitted in a spatial direction. In addition to the
process of spontaneous emission, Einstein [38] also postulated induced
or stimulated emission in 1916 (Figure 2.7 (right)). In this case, the return
of an atom from an excited state does not occur spontaneously but by the
external action of a light wave, which also satisfies the Bohr frequency
condition. Due to the induced emission, the released proton is emitted
in the same propagation direction as the incident proton. Both protons
have the same frequency and phase (i. e., are coherent with each other),
which amplifies the incident light wave. This amplification effect is the
basis of laser technology.

Figure 2.7 The energy level change of an electron. Absorption (left), spontaneous emis-
sion (center), stimulated emission (right). Based on Eichler and Eichler [37].

A laser device consists of three components: the laser medium, the
pump, and the resonator. The laser medium can consist of different ag-
gregation states, such as gases like carbon dioxide, solids like crystals
and glasses, or liquid substances. The most crucial step is the excitation
of the active material, called pumping, which leads to light amplification.
Depending on the type and excitation of the laser material, laser devices
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are divided into the following types: optically pumped lasers (excitation
by light), electron beam pumped lasers (excitation by electron or other
particle beams), gas discharge lasers (excitation of gases by electrical
energy input), chemical lasers (excitation by a chemical reaction), and
injection or diode lasers (excitation by the passage of current in a semi-
conductor). In the most simple case, the resonator consists of two mirrors
arranged parallel to each other and enclosing the laser medium. These
mirrors cause the released protons to be reflected and move through
the laser medium, triggering stimulated emissions and releasing new
protons. With the proper spacing between the mirrors, the waves of re-
leased light overlap, and the light waves are optimally amplified. One of
the mirrors is partially transparent, called a decoupling mirror. The light
emitted from there is the so-called laser beam. Maiman [101] developed
the first prototype of a laser device in 1960.

Compared to radiation from conventional light sources, amplified
laser light is characterized by narrow spectral linewidth, high beam
power, and strong focusing. It also exhibits a high degree of local and tem-
poral coherence. The radiation can be generated in the wavelength range
from below 0.01 µm to above 1000 µm, covering the spectral ranges of
soft x-rays, ultraviolet, visible and infrared light, and millimeter waves.

2.2.2 Laser Welding Process

Laser welding uses a laser device as the energy source. Before the laser
beam can be used, the distance between the beam source and the work-
piece must be bridged. The laser beam is guided through a fiber optic ca-
ble. When the beam hits the inside of the fiber optic cables, it is deflected
by total internal reflection. The angle of divergence during decoupling
corresponds to the angle during coupling. The outcoupled laser beam is
then aligned in parallel by a collimator and focused by an optical system.
The schematic setup is shown in Figure 2.8.

At the focal point of the focused laser beam, the energy is so high that
the material starts melting. The subsequent solidification of the melt in
the joining zone joins the components together. The use of filler materials
is usually not necessary.

A portion of the power P of the laser beam is reflected by the material
surface (PR). The difference P − PR penetrates the piece of work. The
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Figure 2.8 The connection from the laser device to the processing field with pro-
grammable focusing optics. (1) laser device, (2) fiber optic cable, (3) optics, (4) laser beam,
(5) scanner mirrors moved by motors (2×), (6) focused laser beam, (7) plan field lens.

material absorbs this energy mostly completely (PA). Depending on the
material properties, a part of the laser beam is transmitted (PT ). The
principle of conservation of energy follows the detailed energy balance
with P = PR + PA + PT . The reflectance R = PR/P and the absorption
rate A = PA/P are essential for applying the laser welding process [69].
The values depend on the wavelength of the laser beam. For example, the
absorption coefficient of different materials and different wavelengths
at room temperature is plotted in Figure 2.9(a). Copper and precious
metals such as gold and silver show a substantial decrease in absorption
in the visible range. At the same time, aluminum has a sparse absorption
rate in the entire wavelength range considered. Moreover, depending on
the material, the absorption rate also depends on temperature, as shown
in Figure 2.9(b). In aluminum, the absorption rate always increases with
temperature, regardless of the wavelength, which changes the material’s
behavior during the melting process. This behavior does not occur with
iron. There, the course depends mainly on the wavelength. Consequently,
when choosing a laser for material processing, the beam wavelength and
the corresponding absorption of the material must be considered.

Furthermore, not the total power released PA can be used as process-
ing power. This value is reduced by the heat dissipation PV , which gives
the amount of heat flowing into the workpiece per unit of time at the
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(a) Absorption ratio of the laser beam
in metals depending on laser wave-
length [117].

(b) Absorption ratio depending on laser
wavelength and temperature for iron
and aluminium [69].

Figure 2.9 Absorption ration of laser in metals at vertical beam incidence depending on
wavelength and material (a) and on temperature (b).

boundary surface of the processed volume. PV thus depends on the
difference between the temperature prevailing at the welding spot and
at the rest of the workpiece, its thermophysical material values, and its
geometry [69]. Laser welding of components made of metallic materials
is distinct into two types of welding: heat conduction welding and deep
penetration welding. Deep penetration welding is more relevant in
manufacturing technology than heat conduction welding because it en-
ables a higher process efficiency and significantly higher welding speeds.
Energy can be applied to the joining zone in a very targeted manner,
keeping heat conduction losses to the surrounding material low. Deep
penetration welding produces vapor capillaries, shown in Figure 2.10.
These capillaries are tubular cavities filled with metal vapor, at the exit
of which a metal flare is formed. The molten metal flows around the
capillary and re-solidifies behind it to form the weld. The laser beam is
reflected several times on the inner walls of the vapor capillary, which
increases the absorption of the laser beam’s introduced energy. As a
result, the melting volume increase. The depth of the melting zone is
usually larger than the width, hence the term deep welding. In heat con-
duction welding, there are no vapor capillary and no multiple reflections.
It is mainly used for valuable objects with low material thickness. The
transition from heat conduction welding to deep penetration welding
occurs abruptly when a threshold value of the beam parameter quotient
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is reached. This quotient is calculated as the incident laser power P
related to the focal spot diameter d. The threshold value assumes higher
values for higher thermal conductivities and decreasing absorption rates
of the material. A higher feed rate also increases the threshold value.

Figure 2.10 Schematic drawings of heat conduction welding (left) and deep penetration
welding (right).

Laser welding offers several advantages compared to other welding
processes. High welding speeds of over 1000 mm/s and small beam
diameters of less than 50 µm are possible. Another advantage over other
processes like arc or oxyacetylene welding is a lower thermal load on the
component and the possibility of producing thin seams. In addition, the
use of movable mirrors that deflect the laser beam, as shown in Figure 2.8,
allows complex geometries to be processed fast and automatically in
high quality [68].

2.2.3 Process Instabilities

The process window represents the parameter range in which a sta-
ble welding process with desired results can be achieved. Outside the
process window, there are losses in process efficiency and quality. Fur-
thermore, instabilities cannot always be robustly remedied due to the
multiple interactions of the phenomena involved. In addition to the
mechanisms primarily inherent in the process, influences such as surface
condition or aspects of seam preparation like the size of the joint gap
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and joint offset play an essential role [22]. Stability in the capillary is a
prerequisite for a calm melt pool and thus good results [84].

Figure 2.11 Weld seam defects (following DIN EN ISO 6520-1). (a) solid inclusions, (b)
mixed joint due to foreign material, (c) cracks and/or cavity, (d) undercut, (e) excess weld
metal, (f) root overlap, (g) incompletely filled groove, (h) lack of fusion and penetration, (i)
missalignment.

Figure 2.11, based on DIN EN ISO 6520-1, schematically shows a few
possible welding errors. If foreign substances are deposited in the weld
metal, this is called a solid inclusion (Fig. 2.11(a)). These foreign sub-
stances can be slag, flux, or oxide residues, but also foreign metals. As a
result, they lead to a reduction in strength behavior by reducing the weld
cross-section. Furthermore, if the foreign material is also melted during
the melting process, it can mix with the material of the workpiece. This
results in weld seams with undesirable material properties (Fig. 2.11(b)).
Cracks rarely occur during laser welding because the heat input into the
material is low, and thus less stress is created. Nevertheless, they can
occur. Far more common are pores, spatter, and holes (Fig. 2.11(c)). They
often occur in combination due to the same or at least similar causes. For
example, a very liquid melt can cause material ejection due to the pres-
sure in the vapor capillary. Contaminated surfaces, residues of coatings,
or different melting temperatures of the materials to be welded can also
lead to an unstable welding process. On the one hand, fires can occur
on the material (Fig. 2.11(d)) or, due to different material properties and
absorption behavior, an unstable capillary can result, causing spatter
and pores. Consequential defects of an unstable capillary can be seam
overheight (Fig. 2.11(e)) or seam leakage (Fig. 2.11(f)). If the critical gap
size of the workpiece is exceeded, the material melting is no longer suffi-
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cient to produce a stable joint. The consequences are, for example, seam
collapses, critical errors, or no joint at all (Fig. 2.11(g),(h)). Furthermore,
no stable joint is created in the case of an offset, where the welded parts
are not in the required identical parallel plane. In this case, there is also
the problem that the material is no longer in the correct focus position of
the laser (Fig. 2.11(i)).

2.2.4 Process Monitoring

A calm and stable weld pool must be ensured to avoid errors. This sta-
bility can be controlled by process parameters such as wavelength, laser
power, speed, focus position, and pre-processing of the workpiece. Fur-
thermore, there is the possibility of using different welding techniques.
For example, moving the laser spot quickly and simultaneously during
forward motion (wobbling) can create stable dynamics in the weld pool.
This welding technique can improve the process and weld quality. An-
other technique is welding with inner and outer fiber cores of different
intensities. The inner fiber core produces the desired weld depth with
high intensity, while the outer fiber ring stabilizes the weld pool with
lower intensity. Especially for materials such as copper or aluminum,
which have a low absorption level at room temperature that increases
massively in the liquid keyhole, it makes sense to use such techniques
[44, 144]. Nevertheless, errors can only be partially avoided. Process
monitoring is essential, especially in manufacturing operations that are
highly automated [36, 126]. Stavridis et al. [155] and Sun and Kannatey-
Asibu Jr. [156] give an overview of different quality assessment methods
in laser welding. Quality monitoring can be divided into pre-process,
in-process, and post-process phases. Table 2.1, partly adapted from the
paper of Stavridis et al. [155], gives an overview of the different phases
and the monitorable quality criteria. In addition, standard technologies
used for the respective process monitoring are listed.

The sensors used for quality monitoring can be mounted on- or off-axis
to the system. With the on-axis setup, the welding process is observed
via the light path of the optics. This setup has the advantage that no
additional external installation is required at the welding station. In
addition, the sensor’s field of view is always in the welding position,
even if the mirrors deflect the laser beam. Sensor outputs are attached
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Table 2.1 Quality citeria used for inspection.

Quality assess-
ment stage

Principal quality criteria Technology

Pre-process Seam tracking, clamping,
gap, part geometry

Camera, ToF, OCT

In-process Weld defects, melt pool
dimensions, weld posi-
tion, spatter

Camera, photodiode
(VIS, UV, IR), OCT,
acustic, x-ray radiog-
raphy

Post-process Weld geometry, visible
defects

Camera, ultrasound,
ToF, OCT

to the optics for this purpose. The signals are routed to the correct
output using the wavelength via semi-transparent mirrors within the
optics. A schematic diagram for two sensors is shown in Figure 2.12. The
monitoring methods considered in this work cover the different stages
of process monitoring. A more detailed overview of each method’s state-
of-the-art is given in the corresponding Chapters 3, 4, and 5.

Figure 2.12 On-axis sensor attachment for laser welding.
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Used setup When setting up the monitoring sensors, the welding
process should be restricted as little as possible. This applies to the mod-
ification of the welding station and the influence on the process times.
Other aspects that must be considered are the additional calibration
effort and costs incurred by the monitoring sensors. As indicated in
Table 2.1, different sensor systems can often be used to achieve the same
purpose. In this work, the focus is on using a camera as a surveillance
sensor. A non-modified standard setup of a welding station is assumed.

Most experiments use a 1.5 Mpixel intensity monochrome camera
with a CMOS sensor. The full image resolution is 1440 × 1080 pixels
[9]. The camera is attached to the optics at the sensor output. For this
reason, the imaging ratio varies depending on the focus distance to the
component. In addition, the magnification can be changed by installing
lenses between the camera and the optics. For pre- and post-observation
with the camera, additional illumination is required. For this purpose,
an LED ring light is attached to the optics so that it does not interfere
with the design of the welding station or the welding process itself. The
light thus shines from above and is reflected by the component. A red
light of wavelength 625 nm is used.

In the post-process inspection in Chapter 5, additional height data
are used. These are acquired using the principle of optical coherence
tomography (OCT). OCT was first introduced in 1991 [67] and uses a
technique known as low-coherence interferometry. The system design
is similar to the measurement system of a Michelson interferometer
[108]. The difference is that OCT uses a light source with a well-defined
and relatively short coherence length [34]. A beam splitter divides the
light wave into two parts. One part is directed onto the workpiece and
reflected there. The other part of the light, transmitted by the beam split-
ter, falls on a mirror in a reference arm and is reflected there (reference
beam). The sample beam and the reference beam meet again and inter-
fere exactly when the difference in the paths traveled by the two beams
is less than the coherence length. The interference signal is recorded with
a detector and then evaluated. By moving the mirror in the reference
arm, interference signals are recorded from different depths of the sam-
ple, as far as reflecting structures are present. Moving the mirror in the
reference arm while simultaneously measuring the interference signal
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thus enables axial scanning of the sample. The path length differences
over the speed of light can also be expressed as time-of-flight differences.
Therefore this OCT method is called time-domain OCT (TD-OCT). In
the spectral-domain OCT (SD-OCT), the simple detector of the TD-OCT
system is replaced by a spectrometer. This modification eliminates the
need to move the reference arm mechanically, increasing axial resolution.
The Fourier transform of the spectrum provides a back reflection profile
as a function of depth. Analysis of the depth information is derived
from the different interference profiles resulting from the different path
lengths of the reference and sample arms. This concept is referred to
as Fourier-domain OCT (FD-OCT). This work uses an FD-OCT with a
sampling rate of 70 000 scans per second, which is connected to the op-
tics coaxially with the laser beam. Using this system, the relative height
values of the component are acquired. The height information is sampled
in increments of 11.7 µm with a measurement range of approximately
12 mm. The lateral resolution varies depending on the distance of the
optics to the component and is thus dependent on the focal length.

The computing hardware is an industrial panel PC with the specifi-
cation shown in Table 2.2. The touchscreen panel PC has a robust case
and is thus ideal for use in industrial environments. They fulfill the IP65
protection class according to DIN EN 60529 (VDE 0470-1) at the front,
which means the case is dust-tight and protected against jets of water
from any angle. The rear side meets IP20, meaning the case is protected
against foreign objects with diameter ≥ 12.5 mm. Cooling is passive, i. e.
without a fan.

Table 2.2 Configuration computing hardware.

Item Specification

Operation system Linux
Memory/ Storange DDR4L 8 GB RAM and 32 GB SSD
Processor Intel Core i5-7300U dual-core 2.6 GHz
Safety class IP65 (rear IP20)
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2.3 Application Hairpin Welding

To illustrate the proposed methods, the process of joining copper wires
to produce formed coil windings, often described as hairpin welding,
is used. This application is well suited because it presents challenges in
the various steps of the welding process.

Hairpin Welding The increasingly important application with high-
quality requirements for laser welding comes from electromobility. Elec-
tromobility will become more and more prevalent in individual trans-
portation in the future. This is why vehicles’ designs and various compo-
nents are constantly refined and optimized. Manufacturing the winding
is a key technology in this context, so innovations are essential for this
area [142]. Furthermore, distributed windings have become common in
the automotive industry for producing high power density drives for
battery electric vehicles [55].

The conventional copper windings in the stator of an electric motor
are replaced by preformed plug-in coils inserted into the stator slots
of the laminated core and connected to each other. The use of open
plug-in coils (Figure 2.14(a)) has become prevalent and is still being
further developed in research [53, 79]. The plug-in coils consist of U-
shaped, enameled copper flat wires. The geometry of a bent wire, shown
in Figure 2.14(a), resembles a typical hairpin, which is why they are
often called hairpins. The process is divided into four steps in a highly
simplified representation, shown in Figure 2.13 following the illustration
in Glässel et al. [55]. The first step is to cut the insulated copper wire
to the desired length. Then the ends of the copper pieces are stripped,
and the wire is bent into a U-shape (1). Next, the preformed hairpins are
inserted into the stator slots of the sheet metal core (2). Here the ends
are bent apart and twisted together in pairs (3). This is followed by the
final step, welding of the copper wires (4), whose quality monitoring is
the focus of the work.

For welding, the ends must be stripped in a previous step. In Fig-
ure 2.14(a), the stripped end is shown in light gray. Figure 2.14(b) shows
the structure of the welded hairpin elements symbolically.
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Figure 2.13 Process of hairpin stator production.

(a) Front view of a
open formcoil.

(b) Structure of welded hairpins. One pin is highlighted in
blue color for better visualization.

Figure 2.14 Geometry of a bent hairpin and the welding arrangement of the wires.

As with conventional stators, the stack of sheets continues to consist
of many electrical sheet layers insulated from each other. The overall
structure of the stator also remains essentially unchanged. Depending
on the motor design, between 160 and 220 pairs of copper bars are
connected in the laminations of a stator [54, 71, 128, 184]. Figure 2.15
shows the construction of a stator in a schematic front view.

The plug-in coil design saves space and increases the efficiency of
an electric motor. In addition, the technology enables a high level of
automation in production [53, 80]. However, since even one defective
contact point leads to machine failure, it is also highly relevant to achieve
the required contact point properties in a reproducible manner and to
check each contact point for a defect [54, 79, 104, 162]. The high number
of contact points is a significant challenge. Due to different evaluation
criteria such as process times, long-term stability, reproducibility, elec-
trical or mechanical connection properties, and automation capability,
laser welding is well suited for the joining process.
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Figure 2.15 Schematic front view of a stator. The illustration shows some weld seams on
the stripped pin ends. In a finished stator, all pin ends are welded.

According to DIN EN 13602, the copper grades Cu-ETP, CU-FRHC,
and Cu-OF with a conductivity of at least 58 m mm2/Ω are used as con-
ductor materials [53]. As mentioned in Chapter 2.2.3, various influencing
factors can lead to errors in the welding process. As also mentioned in
Chapter 2.2.3 and Chapter 2.2.4, copper has challenging properties for
laser welding. Among other things, the rapidly increasing absorption
ratio in the liquid well is a major challenge. Figure 2.16 shows exemplary
welding results of varying quality produced by different sources of de-
fects. Several factors can lead to errors, such as an offset of the wires to
be welded, incorrect laser power, or welding without first stripping the
wire ends.

Figure 2.16 Various results of welding copper wires. (a) no weld, (b) good weld, (c) wires
are not in the focus of the laser, (d) weld with too low power, (e) misaligned wires, (f)
insulated copper rods.
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Different properties and measured variables can be used to evalu-
ate the quality of the weld seam [104, 162]. Influencing factors before,
during, and after welding play an essential role, and there are various
approaches to improve or monitor quality. Some approaches will be
discussed in more detail in the following chapters.
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3.1 Introduction

Laser welding is established in industry to produce permanent joints
between metal structures. The process is used in a wide range of differ-
ent applications and is often automated. By deflecting the laser beam
with adjustable mirrors in the optics, complex geometries can be welded
without requiring manual intervention during the process. In addition,
laser optics are often attached to robots that guide the laser beam along a
defined trajectory. Based on three-dimensional models from a computer-
aided design (CAD) system, the trajectory is programmed using a spe-
cialized computer-aided manufacturing (CAM) system and a computer-
aided process planning (CAPP) system [31]. Finally, mathematical coor-
dinate transformation methods transform the welding positions from
the model space to the working space.

However, the absolute definition of the welding coordinates requires
that the part is always in exactly the same position in the defined work-
ing space. This condition can only be achieved with precisely aligned
and accurate clamping devices. But especially in small batch produc-
tion, which often processes different components, it is expensive and
time-consuming to create exact clamping fixtures that maintain positions
precisely. In addition, the precise clamping of the joining partners leads
to increased setup time. Therefore, to increase the efficiency of this pro-
cess, the degree of automation in determining the welding coordinates
must be further increased [172]. Also, in the hairpin welding application
presented in Chapter 2.3, the position of the copper wire pair is not
always exact due to the pre-processing steps, the fixture that clamps the
copper wires, and the position of the entire stator. Therefore, in a purely
coordinate-based weld, defective parts may result due to misaligned
weld positions.

49



3 Pre-Process Monitoring

To realize the process with a high degree of automation and process
reliability, the component, or more precisely, the welding position, must
be detected automatically. Using a camera sensor and image processing
algorithms, the component’s position can be detected, and the informa-
tion forwarded to the laser control system. The challenges for computer
vision are low contrast, reflections and surface defects such as scratches
or other disturbing elements [29]. Although the images within a produc-
tion line are similar, there are deviations caused by pre-processing steps
or surface texture. In addition, different positions on the part result in
different orientations and various areas around the weld. Moreover, the
light from the illumination is reflected differently, resulting in shaded
areas.

Another important aspect is the pre-processing monitoring of the com-
ponents to avoid errors and dangerous situations during welding. For
example, faulty pre-processing steps can lead to deviating component
geometries, so no proper welded joint can be produced. Using hairpin
welding as an example, errors such as a gap or offset of the copper wires
or a missing wire are possible. If such deviations are detected before
welding, they can be rectified directly. This saves expensive follow-up
costs. Furthermore, steering the laser beam into a pre-defined position
can cause serious damage if the component is missing or misaligned.

This chapter proposes an approach that uses semantic segmentation
to reinforce the features of the part’s geometry. This enables the cal-
culation of the welding position by shifting and rotating the model
coordinates to the position in the workspace. In addition, the presence
of the components, as well as their geometry and size, are monitored.
Thereby no definition of a region of interest (ROI) is necessary. An ML
algorithm processes the entire camera image acquired with the setup
presented in Chapter 2.2.4. The result is a semantic segmentation of
the image that returns the defined classes as one-hot encoded matrices.
Further pre-process monitoring and weld position detection algorithms
can be performed downstream on a false color image representing the
individual detected classes.
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3.2 State-of-the-Art

In order to detect the welding position in a camera image, individual
algorithms must be developed considering the relevant features. De-
pending on the component geometry and material properties, there are
different challenges in detecting the welding position.

Dmitry et al. [31] develop an algorithm to reliably detect the gap be-
tween two sheets with a camera for butt welding. This algorithm will
adjust the weld position to the detected gap. With LED illumination on
two sides, the component is illuminated to create a shadow in the gap.
Segmentation is then performed based on the contrasts of the object ac-
cording to brightness. The extreme values of the pixel distribution of the
whole image concerning the brightness define the threshold values for
the analysis. Finally, they perform morphological closure, a combination
of erosion and dilation, for the segmentation. However, the segmentation
still does not allow precise detection because the image may contain dif-
ferent elements in the threshold selection range. Therefore, the detected
segments are reselected using a set of rules that include, for example, the
parallelism of the segments or a constraint on the width.

Kong et al. [85] and Dinham and Fang [29] focus on recognizing a
weld seam on sheet metal to calculate the seam shape for further welds.
This application faces similar challenges regarding shape recognition on
images with reflections and weak contrasts. Kong et al. [85] develop an
algorithm to detect the initial position of the seam using corner detection.
First, they pre-process the images, including smoothing, sharpening,
and region segmentation. Then, they use the Harris operator to detect
the corners of the geometry by sudden changes in image brightness to
separate the weld from the background. Dinham and Fang [29] use the
Hough transformation to detect the outer boundary of the weld so that
they can remove the background. Then, other algorithms are applied
to the filtered images to detect the weld reliably. These include Sobel
edge detection, matching neighboring pixels to remove small areas, and
smoothing algorithms.

Using a pre-defined ROI makes the recognition task more trivial since
irrelevant objects in the background can be ignored from the beginning.
Dinham et al. [30] and Ryberg et al. [138] use a ROI in the center of the
image. As a result, many interfering signals are already ignored, and the
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relevant features can be found more easily based on the pixel intensities
and their value changes.

Depending on the application, the signals from other sensors can be
used to identify the components better. An example is using a height
scanner with the help of OCT. Baader et al. [6] show how the position
of a component can be determined using the height signal. In addition,
geometric deviations between the two joining components, such as
weld gaps, different heights, or a lateral offset, are detected. This way,
the components’ geometry deviations can be detected in pre-process
monitoring in addition to the welding positions.

3.3 Experimental Setup and Data Basis

Images are recorded with a monochrome camera for the pre-processing
steps of welding position detection and monitoring of the previously
performed process steps. The setup from Chapter 2.2.4 with a camera
mounted on the optics is used for data acquisition. The images are
captured with different cameras. On the one hand, the camera’s sen-
sor technology varies with CCD or CMOS sensors. On the other hand,
cameras with different resolutions and varying imaging scales and mag-
nifications are used. The proposed algorithm works independently of the
exact camera model, and different approaches are proposed for widely
varying image resolutions. To illustrate the proposed algorithm, process
data from hairpin welding with a resolution of 656 × 494 pixels and
720 × 540 pixels are used. The data used for the evaluation and compari-
son of network architectures are not allowed to be shown in this work.
Therefore, similar images are shown as examples. The inference of the
algorithm is computed on the hardware also shown in Chapter 2.2.4.

3.4 Component Detection

The material properties and the geometry determine how well the com-
ponent can be detected within the camera image. The following section
thoroughly examines images of copper wires from a hairpin welding
process. In the first use case shown in Figure 3.1, the stripped wire ends
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to be welded are cut straight in the pre-processing step. The smooth
surface shown in Figure 3.1(a) is clamped in a fixture parallel to the
optics and the illumination for the welding process. Since the plane
copper surface reflects the illumination light directly into the camera,
the image clearly shows the pin areas contrasting with the background
(Figure 3.1(b)). The component surface is identified using a thresholding
method based on pixel intensities. Figure 3.1(c) shows the component
boundaries detected by the detection algorithm with green lines.

(a) Straight cropped
copper wires.

(b) Image of the wires
recorded through the
optics.

(c) Detected pin surface
(within the green lines).

Figure 3.1 Straight cropped pair of hairpins (a) on an image recorded through the optics
(b) and the result of the image processing algorithm (c).

The algorithm uses a user-defined ROI (orange rectangle (1)) and a
pre-defined search direction (horizontal blue arrow) together with a
threshold value to find the border of the pins. Therefore it evaluates
the pixel intensity in the search direction and recognizes the threshold
crossings of the pixel values (light green lines). For more robust detection,
the intensity is not determined by a single pixel value but by an averaged
value over an area (blue-shaded area). The width of the area is defined
by the user. Then, considering further parameters like the number of pin
pairs and the width range of the pins, the algorithm establishes small
ROIs for the individual components (blue rectangles (1) and (2)). Within
these ROIs, the pixel intensity values are evaluated in an orthogonally
oriented direction to the first search direction (vertical green arrows).
According to this, the upper and lower edge of the pins is defined by
a threshold crossing of pixel value changes in the green-shaded areas
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(green lines). Finally, the weld position is calculated based on the defined
component boundaries.

Monitoring of the component’s presence and its geometry is per-
formed considering the detected pin edges. For this purpose, limit val-
ues can be defined for the pin sizes, as well as the lateral and radial
offset. Measured in terms of electrical resistance, lateral and radial mis-
alignment of the pins have a more significant effect on the welded joint
than axial misalignment [170]. While axial misalignment cannot be rec-
ognized in the camera image, lateral and radial misalignment certainly
can.

(a) Squeezed copper wires. (b) Image of the hairpins
recorded through the
optics.

(c) Image processing with
pre-defined ROI and
threshold method.

Figure 3.2 Squeezed pair of hairpins (a) on an image recorded through the optics (b) and
the result of the image processing algorithm (c).

Changing the pre-processing step from straight cutting to crimping the
wire results in a different surface structure, which is no longer aligned
parallel to the optics. Triangular structures are created as shown in Fig-
ure 3.2(a). The method saves time and expensive tools compared to the
straight cut-off. The resulting surface structure does not have a negative
effect on the welding result, but it affects the previous image processing.
Also, wear of the cutting tool can have similar consequences. Blunter
cut edges lead to irregularities in the wire surface, which become visible
in the camera image. Figure 3.2(b) shows that light from some slanted
surfaces is reflected into the camera, while other pin surfaces are shaded.
False edges are now detected by the algorithm just shown, which ap-
proximates thresholds within a defined ROI. At the first approximation
in the orange ROI, a false pin beginning is recognized. In the middle
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of the pin, there is a significant pixel intensity change because the light
is reflected in different directions. This change is detected and defined
as the beginning of the pin due to the largest threshold crossing (light
green line). Also, the second pin edge is wrongly defined. The transition
from the lower pin end to the stator opening is recognized as the edge
of the pin contact surface. The outer pin edges are difficult to detect
using thresholding methods because the images show many shades
and structures. In addition, the structures are different from image to
image, which makes a fixed rule-based approach challenging. Specifying
a smaller ROI or narrower ranges for the pin width only helps to make
the algorithm more stable to a limited extent.

The hairpin surface structure can vary significantly due to the pre-
processing steps. Even sophisticated pre-processing steps would have
to be repeatedly adapted to the degree of tool wear or other influencing
factors. However, image-processing ML algorithms have proven their
generalization power and are robust against more minor variances. With
the help of a CNN, a wide range of image features can be processed and
evaluated without having to define fixed rules.

3.4.1 Model Architecture

In order to find the best solution for the problem, the design of the
solution approach must first be determined. Both the suitability and the
effort for data generation have to be considered.

By comparing the type of algorithms, their advantages and disadvan-
tages become apparent. Classification offers the least labeling effort, as
only one label needs to be assigned per image. Nevertheless, it is unsuit-
able because it is not possible to identify the component position. Object
detection provides the coordinates of the objects. However, the exact
position is relevant for calculating the weld seam coordinates and the
corresponding translation and rotation. To achieve the required accuracy,
keypoint detection can be used. The algorithm detects the component’s
position, size, and orientation by placing three or four points at the edges.
Labeling is relatively fast because only points with a predefined size
need to be placed on the image. However, the plausibility prediction
reaches its limits, and a pre-verification of the component’s geometry
is not possible. Semantic segmentation using pixel-precise labeling
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is associated with a high effort but is best suited for the application.
Pixel-precise labeling can be used to determine the exact position of the
components. Based on this exact definition, the weld seam coordinates
and a plausibility check are calculated. The fact that less training data
is needed is another advantage of semantic segmentation. Due to the
pixel-based loss function, within whose calculation the value of each
pixel is included, each pixel can be considered an individual training
instance [159].

(a) Image of hairpins
recorded through the
optics.

(b) Binary mask of the
background class.

(c) Binary mask of the fore-
ground class.

Figure 3.3 Image with its one-hot encoded mask. The pixels relevant for the respective
class are shown in white, while the other pixels are shown in black.

The semantic segmentation needs pixel-accurate labels for the training
process. These so-called masks have the same resolution as the camera
images and contain a class assignment for each pixel. The masks are de-
fined using one-hot encoding for each class. One-hot encoding converts
a categorical variable into a binary representation, ensuring that each
category is considered equally. Therefore a separate mask is defined for
each class, containing the values "0" for no class assignment and "1" for a
class assignment. The labels must be precise and accurate, as the model
is only as good as the quality of the training data. At a minimum, the
model is trained with one background and one foreground class show-
ing the component. Figure 3.3 shows an example of a camera image and
the corresponding one-hot encoded mask. In a two-class problem, the
background and foreground classes are complimentary.

Architecture Definition The most popular model architecture for se-
mantic segmentation is the U-Net architecture, according to Ronneberger
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et al. [134]. This model architecture requires little training data and is
well-suited for data augmentation. Ronneberger et al. [134] have con-
ducted experiments using only 30 images for training. This aspect is
essential for an industrial manufacturing application where data avail-
ability is often a problem, as explained in Chapter 1.1. Therefore, the
definition of the architecture is based on the original definition of the
U-Net of Ronneberger et al. [134] (vanilla U-Net), and the depth and
number of filters are adopted.

Figure 3.4 Vanilla U-Net. The boxes represent the feature map, with the x- and y-
resolution at the bottom of the box and the number of channels at the top of the box.
The black arrows between the boxes represent the encoder-/ decoder operations shown
next to the architecture, where the first block does not contain max pooling. The parameter
nout indicates the number of feature maps resulting from the operation, k the kernel size,
and r the dilation rate. The orange arrow represents a convolution with kernel 1 × 1 to
map the features vector to the desired number of classes. The blue arrows represent the
skip connections.

Figure 3.4 shows the structure of the architecture. The number inside
the box represents the x- and y-resolution of the feature map, where
256 represents a resolution of 256 × 256 pixels. Five encoder operations
with nout = {64, 128, 256, 512, 1024} and the corresponding decoder op-
erations are used. Each operation contains two standard convolutional
layers with kernel size k = 3 × 3 and zero padding. Between the opera-
tions, a max pooling algorithm with kernel size k = 2×2 is performed to
reduce the dimensionality of the feature maps. A corresponding upsam-
pling takes place in the decoder path. The steps of each block are shown
in Figure 3.4 on the right. An activation with ReLU follows each convolu-
tion layer (Conv). After the last decoder operation in the expansive path,
a 1 × 1 convolution and a softmax activation are performed, which maps
the feature vectors to the number of classes to be learned. The number
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is c = 2 in the presented example. One class is the background, and the
other is the foreground class containing the hairpin structure.

Since model capacity is critical in overfitting and regularization, the
evaluation considers smaller variants of the U-Net architecture. Memory
size and inference time are also strongly dependent on model size. The
input size of 256 × 256 pixels is used for the evaluation. This dimension
is smaller than in the original work, which uses a size of 572 × 572. Also,
the images and the recognition tasks are less complex than in the original
work. In most cases, only one foreground class of a component that is
in the focus of the image is to be detected. Therefore, the architecture
uses fewer filters and a smaller model depth to reduce capacity. Fig-
ure 3.5 shows the number of filtering and pooling operations of the used
variants.

(a) Small vanilla U-Net. (b) U-Net.

Figure 3.5 U-Net modifications with lower model capacity. The structure of the encoder
and decoder operations is analogous to Figure 3.4. Only the depth and the number of
channels c = nout varies.

Dilated convolutions can be used to increase the receptive field [174].
For example, Devalla et al. [26] use extended convolutional layers within
the U-Net architecture to obtain a larger receptive field and capture more
contextual information. They increase the dilation rate in the convolu-
tional layers of the deeper encoder-/ decoder operations. The risk is
that small objects may not be detected due to the increased dilation rate
[61]. Wang et al. [166] present an architecture that modifies the U-Net
architecture by merging convolution layers with different dilation rates.
They modify the encoder and decoder operation by replacing the two
standard convolutions with one standard convolution followed by four
dilated convolutions. The output of each convolution is then concate-
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nated, preserving the information of each convolution. The number of
filters c per convolutional layer is reduced by the factors {2, 4, 8, 16, 16}
while the dilation rate r increases with r = {1, 3, 6, 9, 12}. As a result, the
network has fewer parameters but can capture more receptive image
information. Furthermore, the model can capture objects of different
sizes. Figure 3.6 shows the architecture of the encoder and decoder op-
eration. Each convolution is followed by an activation with ELU, while
the last decoder operation in the expansive path is followed by a 1 × 1
convolution and a softmax activation.

Figure 3.6 SDU-Net architecture with the adapted encoder and decoder operation. nout
represents the number of channels after concatenating the convolutions’ outputs. The
dilation rate r increases while the kernel size k remains unchanged.

Oktay et al. [122] propose extending the U-Net architecture by atten-
tion gates (AGs). Models trained with AGs implicitly learn to suppress
irrelevant regions in an input image while highlighting salient features
useful for a given task. Thus, by integrating AGs within the skip connec-
tion, only relevant features are transferred to the expansive path. Since
increasing the receptive field is also very promising, the SDU-Net archi-
tecture is used and extended by AGs within the skip connection. The
AG calculates a weighting for the copied feature maps of the encoder
path based on the output feature maps of the previous operation in the
upsampling path. First, the resolution and the number of channels of
the feature maps are adjusted. Then both feature maps gl and hl are
summed by element. This process causes aligned weights to become
larger while unaligned weights become relatively smaller. Next, an ac-
tivation with ReLU of the resulting vector and a 1 × 1 convolution is
performed, reducing the dimensions. Finally, the vector passes through
a sigmoid layer that scales the vector in the range [0, 1] and generates the
attention coefficients α, with coefficients closer to one indicating more
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relevant features. Figure 3.7 shows the procedure on the right side. The
rest of the network definition is adopted from the SDU-Net.

Figure 3.7 AttSDU-Net. Extension of the SDU-Net with AGs in the skip connections.
The block next to the model architecture shows the operations within an AG. The other
structure and the definition of the encoder and decoder operations are analogous to the
SDU-Net (Figure 3.6).

The number of parameters for each architecture is specified in Ta-
ble 3.1. The ability of a network to learn specific features increases with
the number of parameters. Usually, more parameters require more train-
ing images and more training iterations. In addition, the model size
influences its memory size and inference time.

Table 3.1 Number of parameters of the network architectures.

Model Architecture Number of Parameters

Vanilla U-Net 31 030 658
Small vanilla U-Net 1 925 058
U-Net 183 922
SDU-Net 162 457
AttSDU-Net 238 844

For training, the model uses the categorical focal loss with α = 0.25
and γ = 2. In addition, it uses an ADAM optimizer with the parame-
ters β1 = 0.9 and β2 = 0.999, which control the length of the moving
averages. The learning rate is reduced during the training after three
epochs without any improvement and starts at ϵ = 0.001. All models
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are trained with data augmentation and early stopping based on the
loss value of the validation data set for better regularization. The image
data and the labeled one-hot encoded masks are modified by rotation,
horizontal and vertical flip, shift, zoom, and shear. The missing pixels at
the edge resulting from the data transformation are supplemented with
a nearest-neighbor algorithm. However, the hyperparameters are low
enough that the generated data corresponds to the realistic population.
The data is scaled to a value range of [0, 1].

Architecture Evaluation The following shows a comparison of the pre-
sented network architectures. The performance is compared by running
training procedures with various training-validation-test splits and com-
paring the results. The basis is a data set X with n = 900 samples. Since
the number of acquired training images is relevant for the model architec-
ture selection, the set of Xtrain is varied from n = {5, 10, 25, 50, 100, 200}.
In contrast, the set of validation images Xval remains stable at n = 500
and the set of test images Xtest at n = 200 for better comparability. Ten
random training, validation, and test data splits were performed for each
size n of the training data set. On each split, five independent networks
were trained from scratch. Detailed curves of the training sessions per
network model, broken down by accuracy, can be found in Appendix A.
The training sessions were performed with batch size BS = 2 and 100
steps per epoch.

Figure 3.8 shows the accuracy history for different numbers of training
samples. The different training-validation-test splits are each summa-
rized in a graph, showing the mean of the training results for 50 training
procedures as a line and the variance as a shaded area. The diagrams
show that the variance of the training procedures is widely spread. This
variance arises because, for single training sessions, the model achieves
an accuracy of only about 80% on both Xtrain and Xval. Considering
the data basis, this result suggests that the entire image is predicted
as background, and the model does not learn relevant class features
for the foreground class. The evaluations of the IoU on the foreground
class of the training data, shown in Figure 3.9, confirm this assumption.
Each diagram shows the results for 50 individual training processes. For
some processes, the IoU does not improve and remains at 0, meaning no
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Figure 3.8 Accuracy of the vanilla U-Net for a different number n of Xtrain. The red lines
show the averaged results of the 50 training sessions on the data set Xtrain and the blue
lines for Xval. The variance is presented within the shaded area. The x-axis represents the
progression of epochs during the training process. Each epoch includes 100 steps with
BS = 2. The evaluation was performed after each trained epoch with 100 steps.

Figure 3.9 IoU of the foreground class of the vanilla U-Net for a different number n of
Xtrain. The histories of a total of 50 different training sessions on ten various training-
validation-test splits are shown in each case.

pixel is correctly assigned to the foreground class. Due to early stopping,
these training progressions are stopped after a few epochs. The diagrams
of the individual training sessions for different training-validation-test
splits are shown in the Appendix A in Figure A.2.

In comparison, Figure 3.10 shows the diagrams of the training history
of the minor U-Net variant (Figure 3.5(b)). The plots show that all 50
models achieve reasonable results in each case, regardless of the split
between training, validation, and testing data or the training session. As
a result, the variance of the outcomes is significantly lower. This finding
suggests that the vanilla U-Net has a too large capacity for the amount
and complexity of the data sets. Figure 3.10 also demonstrates that a
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Figure 3.10 Accuracy of the minor U-Net for a different number n of Xtrain. The red
lines show the averaged results of the 50 training sessions on the data set Xtrain and the
blue lines for Xval. The variance is presented within the shaded area. The x-axis represents
the progression of epochs during the training process. Each epoch includes 100 steps with
BS = 2. The evaluation was performed after each trained epoch with 100 steps.

larger amount n of Xtrain gives a better result for Xval. These models
show better generalization because the larger training data set covers a
more considerable variance of data features.

In semantic segmentation, class imbalance often occurs between the
background and foreground classes. Consequently, the accuracy of the
sample prediction is usually high. This is also visible in comparing the
results in Figure 3.8 and Figure 3.9. While the foreground class IoU stag-
nates at 0 for some models, the accuracy value for these models is still
approximately 80%. This results from the large proportion of the back-
ground class. The class contains many pixels, so minor deviations do not
affect the results significantly. However, most of the class is outside the
region of interest, i. e., outside the image area showing the component.
For this reason, Figure 3.11 considers the IoU of the foreground class,
i. e., the detected component. This class has fewer pixels associated with
it, so a deviation of one pixel is more noticeable. Figure 3.11 shows the
model results on Xtest for different numbers n of Xtrain in the form of
boxplots. Each boxplot represents the results from models of 50 individ-
ual training sessions. The diagram confirms that increasing Xtrain leads
to a significant improvement, especially between n = 5 and n = 10. After
that, the outliers due to the random train-test splits are also relatively
small, which shows that the models generalize well. The difference be-
tween n = 50 and n = 200 is tiny for the far-increased labeling effort.
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This slight difference shows that n = 50 randomly chosen images cover
the relevant features of the existing data set. By comparing the results
considering the different architectures, it becomes clear that the enlarged
receptive field of the SDU-Net architecture provides an added value.
Also, the extension by the AGs still creates a slight improvement, which
is marginal concerning the enlargement of the network architecture by
factor 1.5. The vanilla U-Net variants show that the version with more
feature maps has a slightly better average value but contains more out-
liers. The diagrams do not include the largest architecture of the vanilla
U-Net due to its low performance.

Figure 3.11 Comparison of the IoU of the foreground class for the different model
architectures. Results on Xtest with n = 200 are shown. Training was performed on data
sets Xtrain of different sizes n = {5, 10, 25, 50, 100, 200}. For each number of training
data, there are ten different data splits, on each of which five models are trained from
scratch. The accuracy curve of the models is shown in Appendix A.

The overall evaluation suggests that the SDU-Net is the most suit-
able architecture for the application regarding the number of model
parameters and model results.
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Further evaluations of the SDU-Net architecture with respect to the
loss function were performed on different data sets. A different number
of classes and the proportion of assigned pixels per class were con-
sidered. The categorical focal loss was the most suitable compared to
the dice loss, the cross entropy, and the weighted cross entropy. One
advantage of the focal loss function is that it can handle multiple and
unequally distributed classes without modification. Unlike the weighted
cross entropy, the function is not parameterized separately for each data
set and each recognition task. Moreover, the weighting factor γ gives
more weight to individual divergent samples in the training data, which
usually leads to a better model generalization. Appendix B shows the
analyses and training histories. Also, in terms of model calibration, focal
loss results in a better-calibrated model than dice loss. A good calibration
allows conclusions about the model uncertainty. This aspect is elabo-
rated further in Chapter 3.4.3. Furthermore, a comparison of the loss
functions concerning model calibration is presented in Appendix C.

Based on these results, the SDU-Net architecture and optimization
with ADAM and focal loss are used for feature extraction to identify the
components in the camera image. The following sections explain the
detailed application and the evaluation of the model. Due to the small
model size, both training and inference time are reasonable. An execution
using the ONNX runtime and the integrated GPU from the Intel i5-7300U
CPU from the hardware presented in Chapter 2.2.4 achieves an inference
time of 16 ms. This duration is comparable to other pre-processing image
operations and is within the required time of the production cycle.

3.4.2 Algorithm

This chapter shows the integration of semantic segmentation with the
SDU-Net model architecture to the component position detection proce-
dure. The one-hot encoded model predictions are visualized per layer us-
ing the jet colormap, with high confidence class alignment (f(x; θ) = 1)
in red and no class alignment (f(x; θ) = 0) in blue. Depending on the
camera resolution and the size of the part to be detected, two strategies
are suggested to realize the component position detection. With low
image resolutions of the camera, usually only one weld position, e. g.
one pair of hairpins, is captured per image to achieve sufficient accuracy.
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The entire image is processed to highlight the relevant pixels in this case.
Due to technical progress with improving camera and data transmission
technologies, the trend is increasingly moving toward using higher res-
olution cameras. These cameras enable the captured image area to be
observed with higher accuracy and a smaller pixel pitch. Alternatively,
a minor zoom can be used to view a larger section of the part with the
same resolution as before. This changeover allows capturing multiple
weld positions, i. e., multiple pairs of hairpins in one image. The accuracy
for detecting the individual pins is high enough due to the higher overall
resolution. However, since there is often an uninteresting sub-region
between the welds, an approach is proposed that crops out the relevant
regions of the camera image and processes these regions separately to
highlight the relevant pixels.

The following section first presents the method to detect the parts
on the entire image before the two-stage training follows. Finally, the
chapter shows how the semantic segmentation result is used to detect
the weld position independently of the detecting procedure.

Single-Stage-Training A model based on the SDU-Net architecture is
used to highlight the pixels of the pin surface. Figure 3.12(b) shows the
one-hot prediction for the background class, while Figure 3.12(c) shows
the prediction for the hairpin class.

(a) Camera im-
age.

(b) Background
class.

(c) Foreground
class.

(d) Overlaid im-
age with bi-
nary mask.

(e) Binary
foreground
mask.

Figure 3.12 Model prediction results of a trained SDU-Net architecture on a test image.
(b) shows the jet-colormap representation of the background class and (c) of the foreground
class. (d) and (e) visualize the binary prediction of the foreground class with a threshold
value of 0.5 overlaid in green on the camera image and as a binary image.

The class results are complementary for a two-class problem due to
softmax activation. For the component detection use case, only the one-
hot result of the foreground class is relevant, since it highlights the pixels
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with the relevant features. Therefore, in the following, the representation
of the background class is often omitted, and the result of the foreground
class is called "mask", "foreground mask" or "foreground". For creating
the binary mask, the prediction result of the foreground class is binarized
with a threshold of 0.5. The image shows the pixels associated with the
class in white, while the other pixels are black. The IoUGT to the hand-
labeled ground truth is calculated by the binarized prediction in each
case.

In the example in Figure 3.12 the similarity of the background class is
IoUGT ≈ 0.995, while the foreground class has an IoUGT ≈ 0.939. The
IoUGT of the foreground class is more meaningful for the detection qual-
ity because each pixel deviation is more considered due to the smaller
pixel ratio.

(a) Camera image. (b) Foreground mask. (c) Binary foreground
mask.

Figure 3.13 The result of the same model from Figure 3.12 on another test image.
IoUGT ≈ 0.918 for the foreground class.

Figure 3.13 shows the result of the same model on another test image
from Xtest. The camera images (Figures 3.12(a) and 3.13(a)) show the
variation of the data set at different positions of the stator. Besides the
brightness and the reflections, the orientation of the copper wires varies.
The procedure works for different components and a different number of
components. It is only essential that relevant features are recognizable in
the image. For example, Figure 3.14 shows a result of a model trained to
detect three pairs of copper wires in the image. This example illustrates
that multiple components of a class can be recognized and highlighted.

When using a high-resolution camera, much information is lost by
reducing the image resolution to the input dimension of 256 × 256 in
the used model architecture. Therefore, the input dimension of the CNN
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(a) Image with three pairs
of hairpins.

(b) Foreground mask. (c) Binary foreground
mask. IoUGT ≈ 0.964.

Figure 3.14 Model prediction result of a trained SDU-Net architecture on a test pattern
with three pairs of hairpins. Since all components have similar features, they can be
captured within the same foreground class.

must be increased to counteract the loss of accuracy. As a result, more
features are processed in the network, meaning the architecture must
also become deeper in order to be able to process all features. This would
result in a significant increase in the number of model parameters. Fur-
thermore, the area between the welds is not relevant for evaluation.
Depending on the distance between the recorded welds on the compo-
nent, this area can take up a large part of the image. The relevant regions
showing the weld area have a high similarity. Therefore, their features
can be learned from a model regardless of their positions in the image.
Consequently, it is more efficient to crop the relevant regions from the
image than to downsample the entire camera image to the input dimen-
sion. In a two-step process, ROIs of 256 × 256 pixels around the relevant
weld areas are cropped in the first step. The second step is training a
model to detect the hairpin regions in the cropped areas.

Multi-Stage-Training A definition of ROIs at fixed coordinates would
restrict the flexibility of the ML approach for component position detec-
tion. Furthermore, an additional effort for the end user by the two-step
approach should be avoided. Therefore, the information about the rele-
vant image regions is extracted from the pixel-precise class assignment,
which is needed for the model training. This manually created mask
already contains information about the relevant foreground class re-
gions. Thus, in the first step, the user labels all the component pixels in
the entire camera image to obtain a mask, as shown in Figure 3.15(e).
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Then, based on the pixel-by-pixel class mapping, the algorithm identifies
the relevant image regions using a contour search in the binary mask
according to Suzuki and Abe [157]. Finally, it crops the areas in both
the camera image and the masks depending on the centroids C of the
detected contours. The cutouts, which are shown in Figure 3.15 as an
example, are then used for the training process to detect the component
pixelwise.

(a) Image with three
pairs of hairpins.

(b) Cropped
image (C1).

(c) Cropped
image (C2).

(d) Cropped
image (C3).

(e) Binary Mask with
contour centers.

(f) Cropped
mask (C1).

(g) Cropped
mask (C2).

(h) Cropped
mask (C3).

Figure 3.15 Two-stage training. (a) and (e) show the camera image with 720 × 540 pixels
and the corresponding mask of the foreground class with the contour centers C. (b-d)
show the cropped sections of the camera image around the contour centers and (f-h) the
areas of the corresponding foreground masks with 256 × 256 pixels each. The mask of the
background is cropped analogously.

This approach has several advantages. First, the model is further
regularized by cutting out the relevant image regions. Thus, using a ROI
eliminates irrelevant background features that need not be considered
in further algorithms and cannot affect model performance. Second, this
step increases the size of the data set used for training. In the example
with three pairs of hairpins, three input images are available for training
instead of one.

When predicting unknown images, the algorithm cannot define the
ROI based on the contours of a human-labeled mask. Nevertheless, the
regions must be defined at the correct coordinates to crop the image for
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the model prediction. For this purpose, a separate model is trained on the
entire image and mask with an input dimension of 256×256 pixels. Since
this model is only used to extract the relevant image regions, abbreviated
training can be performed, which is not optimized to obtain the best
result with a minimal loss value. The loss of information due to the low
input resolution is also not disturbing for this use case. For example,
Figure 3.16(c) shows the result of a model trained for 1000 steps. The
figure shows that there is still uncertainty in the boundary areas of the
pin pairs, and the contours are not well defined. However, these results
can be used to find the relevant image areas for the second model since
there are evident detections in the foreground class.

(a) Image with three pairs
of hairpins.

(b) Foreground mask. (c) Binary foreground
mask with contour
centers C.

Figure 3.16 Result of a model trained for ten epochs with 100 steps each and BS = 2.
The relevant image areas are defined based on the centroids of the found contours in the
binary mask (c).

Figure 3.17 shows the cutout areas of the test image at centroids C1,
C2, and C3. In addition, it shows the subsequent prediction of the areas
with a second model trained on the cutouts. Since this model is used to
determine the welding position, it is trained to the optimal result that
minimizes the loss function. Depending on the improvement of the loss
value, the training reduces the learning rate, and uses early stopping to
regularize the process. The result shows an accurate prediction of the
foreground class and well-defined edges. For the subsequent step, in
which the welding positions are determined, the individual areas are
combined using the coordinates that were previously used to cut them
out. The pixels in the image regions that were not predicted by a model
are set to zero. The result highlights the relevant hairpin pixels for the
entire image. Figure 3.17(h) shows the merged image for the example.
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(a) Cropped
image (C1).

(b) Cropped
image (C2).

(c) Cropped
image (C3).

(d) Hairpin image.

(e) Foreground
mask to (a).

(f) Foreground
mask to (b).

(g) Foreground
mask to (c).

(h) Merged foreground
mask from (e,f,g).

Figure 3.17 Foreground class prediction from the cropped image regions with 256 × 256
pixels. IoUGT ≈ 0.9805.

This method is beneficial for higher-resolution images. However, the
inference time increases with the number of components to be detected.
The inference time is quadrupled in the example with a prediction of
three components compared to the one-step approach. Besides the in-
creasing inference time, two models must be trained in parallel. One
model is needed to identify the relevant regions for the cropped images.
The second model then predicts the exact component pixels within the
regions. Depending on the size of the regions, the cropped images do
not need to be scaled down for model input. This prevents a loss of
information.

Comparison Comparing the two-stage training with the result of the
one-stage training on the image with the three hairpins shows an increase
in accuracy. Figure 3.18 shows the human-labeled binary mask of the
foreground class (a), the result of the one-stage training (b), and the result
of the two-stage training (c). By cropping the image regions, the IoU
compared to the ground truth improves to IoUGT ≈ 0.981. Compared
to the one-stage training, this is an improvement by about 0.02. This
improvement is because the entire image in one-stage training is reduced
from 720 × 540 to 256 × 256 pixels, resulting in a loss of information.
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Additionally, the predicted mask is scaled back to the original image
resolution, distorting the results. The direct comparison of the resulting
binary masks of the one- and the two-stage training yields an IoU of
0.966 of the two binarized predictions.

(a) Human-labeled ground
truth.

(b) Binary mask one-stage
prediction.
IoUGT ≈ 0.964

(c) Binary mask two-stage
prediction.
IoUGT ≈ 0.981

Figure 3.18 Comparison of the binarized foreground class result of the one-stage predic-
tion (b) and the two-stage prediction (c).

The two-stage procedure is especially beneficial for images with higher
resolution and more recorded components within one image. For exam-
ple, the zoom factor can be reduced by using a high-resolution camera.
Thus nine or twelve hairpin pairs can be captured in one camera image.
The algorithm can then determine the weld position for each pin pair
with sufficient accuracy. Despite the multiple inference time, this saves
time compared to capturing each welding position separately. In both
cases, the algorithm processes one image per position. However, the time
for illumination and image acquisition is saved. Therefore, the two-step
process can further increase the efficiency of the system by using a single
camera image for multiple position determinations.

In the one- and two-stage procedure the algorithm uses a CNN to cre-
ate a false color representation of the image that highlights the relevant
regions. This representation image is then used for further processing.
The detection of a single foreground class results in a binary image rep-
resenting the component with the value one and the background with
zero. For further classes, e. g., component and fixture, the representa-
tion of these classes must be supplemented by other pixel values in the
image. The generated image is then further processed to calculate the
coordinates of the weld position.
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3.4.3 Result Validation

Semantic segmentation highlights the pixels with features relevant to
the foreground classes and filters out the background and distracting
features from the image. In addition, it harmonizes structures on the
component surface. Thus, the ML algorithm can be considered a pre-
processing image filter that eliminates the interfering image features
and makes post-processing algorithms easier to implement and less
error-prone.

Knowledge-Based Model The downstream component position detec-
tion is performed analogously to the procedure described on page 53
and Figure 3.1(c). It uses the knowledge-based algorithm but executes
it on the false color representation instead of the camera image. In the
example shown in Figure 3.19, this is a binary image. Compared to the
usage on page 53, the algorithm is easy to parameterize. The ROIs (or-
ange areas) can be large, and the hairpin width range (width of the blue
boxes) can be generously restricted since no interfering elements need
to be eliminated. An example of an interfering part on the stator can
be seen at the top left of the camera image, which is no longer present
in the semantic segmentation result. Also, the thresholds for the gray
value change and the ranges within which the gray values are averaged
do not need to be adapted to the data set. These are clearly defined in
the false color representation resulting from the semantic segmentation
algorithm. Alternatively, a simplified algorithm with fewer parameters
can be applied to the false color representation.

The knowledge-based algorithm also measures the component size
and detects a lateral offset or a gap between the copper rods. If the
semantic segmentation algorithm assigns the wrong pixels to the com-
ponent class, the algorithm indicates this as an error because the rule-
based checks fail. In these cases, the part must be inspected manually
before welding. The manual inspection involves checking whether the
hardware or the image processing caused the error. This safeguarding
prevents dangerous situations and faulty welds due to incorrect predic-
tions. It also detects if the situation in the process changes significantly.
Substantial deviations in the image data can, for example, be caused
by a change in the lighting situation or a pre-processing step. In this
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(a) Component position detection on the
binary mask.

(b) Transfered boudaries of the detected
edges to the camera image.

Figure 3.19 Component position detection with threshold-based post-processing on the
false color representation. The orange rectangles represent three manually set ROIs. Within
these, boundary detection is performed in the direction of the blue arrow. The algorithm
detects the change in the grayscale value and defines the blue ROIs based on a shift that
exceeds the threshold. These ROIs have a predefined width range in which a gray value
change is searched for in the direction of the green arrows. The exceeding of a defined
threshold defines the green boundaries. Figure (b) shows the transfer of the detected edges
to the camera image.

case, the model may have to be retrained to make it more robust to this
situation. However, deviating data can also be caused by wear of the
cutting tool or an error in the upstream process chain, which must be
corrected to ensure consistently good product quality. If the algorithm
detects an increasing number of false detections, this is an indication
that something has changed in the process. In this way, the CNN and
the hybrid approach help to monitor the upstream process and to detect
errors at an early stage.

In addition, this combination of ML and rule-based algorithms consid-
ering expert knowledge increases users’ acceptance. While rule-based
algorithms are already widely used in industrial environments, the hur-
dle to trusting ML algorithms is even greater. This behavior is mainly
because the model’s prediction cannot be completely understood, so
wrong predictions cannot be easily verified. Research is still very active
in uncertainty quantification, but incorrect model predictions are not al-
ways detected directly. With the hybrid approach, additional monitoring
is provided by checking the results downstream, and the model does
not have to be blindly trusted.
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Uncertainty Estimation However, deviation situations in the process
can also be detected based on the properties of the model prediction.
Since the model predicts the probability per class, a conclusion can be
made about the model’s certainty and reliability based on these values.
This correlation is only valid for well-calibrated models. A commonly
used information measure is the entropy [146], which is often used
to calculate the model uncertainty [100, 107, 145]. The entropy can be
used as a measure of uncertainty since its value is maximal when the
model assigns the same probability to each considered class. On the
other hand, it is minimal when the model is sure of its decision. Through
this analysis, the system detects out-of-distribution samples and can
generate a warning or abort at the welding station.

Table 3.2 The table shows the ECE and entropy metrics H for the foreground class using
different examples. The corresponding images, as well as the reliability and the class
probability diagram are shown in Figure 3.20, 3.21, and in the Appendix C in Figure C.2.

ECE H(ŷj) Image

Two pins 1.127 0.042 Figure 3.20 upper row
Two pins 1.388 0.047 Figure C.2 (Appendix)
One pin 2.913 0.051 Figure 3.20 lower row
Welded pins - 0.105 Figure 3.21

Following the segment confidence metric H of Mehrtash et al. [107],
the entropy of the foreground class is used to determine the uncer-
tainty of the predictions. The model calibration is derived using the
expected calibration error (ECE), which evaluates the deviation between
the estimated likelihood of a model and its actual likelihood by taking
a weighted average over the absolute difference between accuracy and
confidence. The smaller the ECE, the better the model is calibrated. For
better visualization of the metrics, this chapter uses the class probabil-
ity diagram to illustrate the uncertainty and the reliability diagram to
show confidence versus accuracy. The prediction results are divided into
M = 10 bins for a better overview.

Analogous to Mehrtash et al. [107], the evaluation uses a slightly
smaller region around the segmented element of the foreground classes
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to compute the metrics and the diagrams. The background class, which
takes up a large portion of the image, is usually predicted with high
confidence and smooths the results for the foreground class. Addi-
tionally, the class probability diagram is scaled in the range p(ŷij =
yij |xi,θ) ∈ [0.1, 1] to emphasize the remaining ranges better, regardless
of the amount of background class pixels.

This section illustrates the results based on the class prediction of the
cropped areas of the two-stage approach. The model is trained only
on good examples, i. e., images containing two hairpins with no offset.
Table 3.2 shows the results of the ECE and the uncertainty measure H for
four different examples of Xtest. The first two examples are data samples
that are similar to the training data set Xtrain. They show two correctly
pre-processed copper wire surfaces visible in the image. Figure 3.20(c)
shows that the model is calibrated quite well. Furthermore, both the
heatmap of the foreground class prediction and the class probability
diagram show that the pixel-wise model prediction is confident. These
aspects are also evident in the values of ECE and H, which are lower
than for the third and fourth examples.

In the third example, one hairpin is missing. In this case, the down-
stream rule-based verification of the hybrid AI approach detects an error
since only one pin surface is detected. However, the slightly increased
value of H shows a scatter of the class assignment and, thus, a higher
uncertainty. Such an image was not included in the training data set. A
mask was created to calculate the ECE and reliability diagram that only
highlights the existing pin. Since the existing pin matches the features
of the training data, it is detected with high confidence, as the heatmap
in Figure 3.20(f) shows. Furthermore, only minor uncertainties around
the pin’s border area are visible. The model predicts a background class
for most of the area where the second pin should be located. Thus the
downstream rule-based approach is quite reasonable.

The fourth example consists of an already welded pin pair. No welded
pin pairs were included in the training because the model is supposed
to detect the pin surface still to be welded. Thus, this example represents
an out-of-distribution sample. Since there is no area to cover in this
example, no ECE is calculated. The model could not detect a pin surface,
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(a) Two copper pins. (b) Prediction
heatmap.

(c) Reliability
diagram.

(d) Class probability
diagram [0.1; 1].

(e) One missing cop-
per pin.

(f) Prediction
heatmap.

(g) Reliability
diagram.

(h) Class probability
diagram [0.1; 1].

Figure 3.20 Calibration and out-of-distribution detection. The model is trained on good
examples containing two unwelded copper pins in the image. Figures (b) and (f) show the
predictions of the foreground class of the samples (a) and (e). In addition, the reliability
diagram and the class probability diagram of the foreground class are given. For better
illustration, the class probability diagram is limited to the range [0.1; 1] because of the
many background pixels predicted with high certainty. The bottom line represents an
out-of-distribution sample.

resulting in many uncertain artifacts in the prediction. This is shown in
the class probability diagram and an increasing value of H.

Figures 3.20 and 3.21 show the reliability diagram and the class proba-
bility diagram for the different examples besides the camera image and
the prediction of the foreground class. The representation of the second
example of a good pin pair is shown in Appendix C.

3.5 Protective Device Contamination

Depending on the application, a protective device shields the component
from spatter and other deposits during laser welding. For this purpose,
a so-called welding mask is attached around the welding position. The
protective device has an opening in the center through which the com-
ponent is processed with the laser beam. The device covers the rest of
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(a) Welded pin pair. (b) Prediction
heatmap.

(c) Class probability
diagram [0.1; 1].

Figure 3.21 Figure (b) shows the predictions of the foreground class of the already welded
pin pair from the image in (a). Figure (c) shows the class probability restricted to the range
[0.1; 1].

the components. As a result, spatter and deposits caused by settling
metal vapors are intercepted by this device and do not settle on the
component. This prevents undesirable connections caused by spatters
and other damage to the part.

(a) Protective device in a good con-
dition.

(b) Protective device with deposits.

Figure 3.22 Schematic drawing of a coaxial view of a welding position (2), in which the
remaining component around the welding position is protected by a protective device (1).

The protective device becomes increasingly dirty due to material de-
posits. Especially the deposits, which settle at the edge of the opening,
can lead to problems in the welding process. In spatter-prone processes,
this happens more quickly. Especially areas already narrowed by pre-
vious deposits are susceptible to further deposits. As a result, these
areas often quickly grow into the welding position, making the welding
process impossible. Therefore, the device must be cleaned or replaced
frequently. This is usually done at regular intervals, regardless of how
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badly the mask has been affected. Depending on the position and quan-
tity of the deposits, the time interval until the device must be cleaned
can vary greatly. Figure 3.22 symbolically shows the view of a welding
position covered with a welding mask. In Figure 3.22(a) the welding
mask is shown in a clean condition, while in Figure 3.22(b) the mask
already has deposits on the edge. This results in the uneven structures
shown in the schematic drawing.

Therefore, an approach is proposed that uses the setup from Sec-
tion 2.2.4 with a camera mounted coaxially to the laser beam to monitor
the degree of contamination of the protective device. Due to the on-axis
arrangement of the camera, the component, the welding mask, and pos-
sible deposits are captured. By detecting the welding position using a
CNN, presented in Section 3.4.2, the area (2) from Figure 3.22 can be
detected with pixel accuracy. Extending the presented approach to a
three-class problem also allows the model to detect the welding mask
region (1) accurately. The protective device is mounted closer to the laser
optics than the component. Since the camera is focused on the welding
position, the protective device is too close and not in the camera’s focus.
As a result, it is slightly blurred in the image, which further simplifies the
distinction. An example of a one-hot encoded mask for a semantic seg-
mentation network for the three-class problem is shown in Figure 3.23.
In addition to the background and the welding position class, a third
class is created, representing the protective device.

(a) Background mask. (b) Weld position mask. (c) Protection device mask.

Figure 3.23 One-hot-encoded mask for a semantic segmentation network.

Since the image data is analogous to the data from the component
position detection, the network selection can refer to the results of the
network architecture evaluation from Section 3.4.1. An SDU-Net ar-
chitecture with the input dimension 256 × 256 and filter sizes nout =
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{16, 32, 64, 128} is used. The filter size of the last 1×1 convolutional layer
is increased from two to three to get three output layers. For training,
the model also uses the categorical focal loss with α = 0.25 and γ = 2
as in the previous use case. This loss function can handle unequal class
ratios since it gives a high weight to the wrong results. In addition, the
model uses the ADAM optimizer with β1 = 0.9 and β2 = 0.999. The
learning rate starts at ϵ = 0.001 and is reduced during the training after
three epochs without improvement.

The informations about the welding position and the protective cover
area must be combined to monitor the protective mask’s condition and
determine when it needs to be cleaned. For this purpose, the two one-
step coded binary results of the welding position class and the protective
device class are used. First, their contours are determined by a contour
search, according to Suzuki and Abe [157]. Finally, an algorithm deter-
mines the smallest distance by comparing the distances between the
individual points of the contours. The procedure is shown symbolically
in Figure 3.24. For better illustration, the one-hot encoded result classes
are shown in one image in different colors.

(a) Representation of the one-hot en-
coded masks of the welding po-
sition (green), the protective de-
vice (blue), and the background
(gray) in one image.

(b) Distance determination based on
the contours of the one-hot en-
coded mask. The smallest dis-
tance is marked in red.

Figure 3.24 The distance between the welding position and the protective device is
determined based on the semantic segmentation class results.

If the alignment between the welding position and the protective
device is performed each time before the welding process, the cyclical
cleaning of the protective device is not necessary. Nevertheless, faulty
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and dangerous welds caused by excessive contamination are prevented.
In combination with the component position detection, the adjustment
can be performed without additional computing time. Since the network
architecture of the SDU-Net has been retained, the inference time is
constant. The subsequent contour search and the distance calculation
can be performed parallel to the welding process and trigger the cleaning
process afterward. However, the labeling effort for training the model
is increased since the protective device must also be marked with pixel
accuracy in addition to the welding position.

3.6 Labeling Process

Building a semantic segmentation model involves an increased labeling
effort due to the accurate annotation of each pixel. Process knowledge is
required to annotate the data correctly. Even if the problem of defining
the component position may seem trivial at the beginning, the compo-
nent boundary cannot always be precisely defined by someone unfamil-
iar with the process. Using the example of squeezed hairpins, burrs or
slightly beveled surfaces can occur at the copper pin edge, which cannot
always be detected in the camera image without process knowledge.
The process expert is aware of the previous production steps and can
assign the image data better than, for example, an external creator of
data labels or an AI expert.

Similar to Gorriz et al. [58] describing the problems with medical im-
age interpretation, the time and associated costs of data labeling are also
problematic in industrial manufacturing. In addition, the advantage that
laser welding offers for small quantities of parts should not be negated
by time-consuming and cost-intensive data labeling, which is required
for finding the welding position. Section 3.4.1 shows that for part posi-
tion detection in the welding process, only a small amount of training
data is required due to the similarity of the database. Nevertheless, it
must be ensured that the existing data variance is covered.

Reduction of the Required Training Images Active learning (AL) is
a well-established approach to reducing labeling efforts by iteratively
selecting a subset of informative examples from an extensive collection
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of unlabeled images. Pool-based sampling essentially aims to query only
the data sets from a large pool of unlabeled samples for labeling that
are more likely to result in more accurate models when used in place of
other data. Through the selection process, only highly informative data
are used in training. As a result, the time and financial costs associated
with labeling are reduced [100]. Several metrics can be used to determine
a proper labeling order of the data. In the following, the entropy of the
softmax probability, Monte Carlo Dropout (MCD), and the structure
similarity index (SSI) are examined to determine the labeling order.

As mentioned earlier, entropy is a commonly used information mea-
sure in uncertainty evaluation, which is also often used in the literature
for AL [100, 145]. The data whose posterior probability distribution
yields the highest entropy are estimated to have the most significant
positive impact on the model’s performance. The entropy or uncertainty
measure H considers all classes for estimating the labeling order. Fig-
ure 3.25 shows the uncertainty per pixel based on the test image in
Figure 3.13(a). Summing up the pixel values gives the uncertainty score
per data sample.

(a) Softmax proba-
bility of the fore-
ground class.

(b) Entropy of
the softmax
probability.
H = 0.1166.

(c) Softmax proba-
bility of the fore-
ground class.

(d) Entropy of
the softmax
probability.
H = 0.0025.

Figure 3.25 Figures (a) and (c) show the softmax activation of an uncertain and a certain
model, while (b) and (d) show the pixel-wise entropy of the softmax probability. The
evaluation is done for the test image in Figure 3.13(a).

The softmax function approximates the relative likelihood between
classes, which may not always equate to an overall measure of model
uncertainty [48]. In an example of Kendall et al. [82], the bias of the result
due to the relative representation of the class likelihood is illustrated.
Furthermore, there is a risk that the prediction probability is still high
even if the class assignment is wrong [48]. Therefore, this metric would
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not consider these incorrect predictions. For a two-class problem, as is
common in component recognition, the entropy result is more meaning-
ful and less error-prone than for multi-class problems. Similarly, deeper
and wider models tend to have poorer calibration than small models
[164]. A well-calibrated model is required for the metric to be valid.

Unlike the highly constrained inference time at the plant, more time-
consuming uncertainty estimates can be used in the labeling process.
Another way to determine epistemic uncertainty is, for example, using
ensemble training or MCD [42, 58, 100]. Gal and Ghahramani [48] show
how dropout training in deep neural networks can be represented as
approximate Bayesian inference in deep Gaussian processes. Derived
from this insight, they offer a method for establishing uncertainty in the
model by creating a MCD ensemble [47]. As explained in Section 2.1.2,
ensemble methods are suitable for the regularization of models. Because
different models usually make various errors, they perform better in
an overall prediction. However, considering the errors and focusing
on recurrent errors, it can be seen that the data samples representing
the corresponding features are underrepresented in the training data
set Xtrain. Instead of multiple models, the MCD uses one model with
dropout layers. The results are samples of the posterior distribution
of models by randomly disabling network activations according to a
Bernoulli distribution with a base probability dp per layer during infer-
ence. Since the distribution is not tractable, this must be approximated,
which can be done with variational inference [59].

Kendall et al. [82] propose an optimal value for the dropout proba-
bility of dp = 0.5. Inspired by their findings on probabilistic network
architectures variants, the dropout layers are added to the central layers
of the SDU-Net architecture. The detailed definition of the used SDU-Net
architecture with dropout layers is shown in Appendix D. The procedure
follows that of DeVries and Taylor [27], using dp = 0.5 and T = 20 model
predictions to determine the prediction variance. Figure 3.26 shows a
result of a more uncertain prediction and a more confident one.

The pixel-wise uncertainty must be converted into a numerical score
to estimate the predictive reliability of the sample. Then, the uncertainty
map is summed up to obtain a higher score for the ambiguous segmen-
tations. Since the differences mainly occur at single pixels of the contour
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(a) Prediction
without dropout
layer.

(b) Model’s
variance.

(c) Euclidean
distance to
background
pixels.

(d) Weighted
variance.
U = 4.195

(e) Prediction
without dropout
layer.

(f) Model’s variance. (g) Euclidean
distance to
background
pixels.

(h) Weighted
variance.
U = 2.365

Figure 3.26 Figures (a) and (e) show the softmax activation of an uncertain and a certain
model without using dropout layers in the prediction. (b) and (f) show the pixel-wise
model variance. (c) and (g) show the per-pixel distance to the nearest background pixel,
while (d) and (h) show the weighted variance. The evaluation uses dp = 0.5 and T = 20
model predictions for the test image in Figure 3.13(a).

edge, where they do not significantly affect the result, the evaluation
performs value weighting based on pixel position, similar to Gorriz et al.
[58]. The Euclidean distance to the nearest background pixel is used as
the weighting factor for the variance of each foreground pixel. Uncer-
tainties located at the edge of the contour are, therefore, less significant
than uncertainties within the contour. However, since the variance of the
model prediction is more informative, it should not be possible to weight
it to 0 due to the class assignment of the pixels. Therefore, an average
of the variance and the variance weighted by the Euclidean distance is
used as the weighted value.

The disadvantage of MCD or ensemble training is that it requires
more training effort. Ensemble training requires several models to be
trained in parallel. In contrast, MCD needs only one model. However, as
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described in Section 2.1.2, the model must be larger due to the capacity
reduction caused by the dropout and requires more training iterations
for a good result. In addition, the most significant uncertainties usually
occur at the edge of the object contour, which must be considered in the
evaluation [58].

Regardless of the model uncertainty, the coverage of the total variance
of the data pool by the training set Xtrain can be considered a relevant
factor for selecting the label order. To generalize well on the entire data
set, the model must learn all relevant features in training. Using the
structural similarity index (SSI) [167], the similarity between images
can be determined. The luminance, contrast, and structure of the images
are considered with

l(xi,xj) =
2µxi

µxj
+ c1

µ2
xi
µ2

xj
+ c1

, (3.1)

c(xi,xj) =
2σxi

σxj
+ c2

σ2
xi
σ2

xj
+ c2

, (3.2)

s(xi,xj) =
2σxixj

+ c3

σxi
σxj

+ c3
, (3.3)

where µxi
, µxj

are the mean, σxi
, σxj

the standard deviation and σxixj

is the covariance of two samples xi and xj . The constants c1 and c2 are
defined by c1 = (K1L)2 and c2 = (K2L)2 where L is the dynamic range
of the pixel value and K1 and K2 are defined parameters. A combination
of these comparisons defines the SSI with a weighing α > 0, β > 0, γ > 0
as

SSI = [l(x, y)]α ∗ [c(x, y)]β ∗ [s(x, y)]γ . (3.4)

The weighting is set to α = β = γ = 1, the constant c3 = c2
2 and

K1 = 0.01 and K2 = 0.03, analog the definition from Wang et al. [167].
Comparing the fundamental image similarities and using very dif-

ferent data sets for training can represent more variance in the training
data set. Using this metric, the remaining data in the data pool are each
compared to the training data in training set Xtrain. Figure 3.27 gives an
example. The subfigures (b) and (c) are compared with the image in (a).
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(a) Hairpin image. (b) SSI = 0.679. (c) SSI = 0.346.

Figure 3.27 Comparison of the SSI. The subfigures (b) and (c) are compared with the
image in (a)

The advantage of this method is that the actual model architecture
does not need to be modified, and computing the metric requires little
computational power. However, the disadvantage is that the compu-
tation is independent of the already-created model. Therefore, no con-
clusions can be drawn about the actual model performance. Thus, this
data-centric approach focuses on the database, independent of the actual
model performance.

The following diagram in Figure 3.28 compares the training process
with the different methods. Images are added to the training step by step.
The training starts with the same sample each time and adds another
sample after each epoch until a total number of n = 50 training samples
is reached. Each epoch is trained with 200 steps and batch size BS = 2.
In addition, data augmentation with translation, shear, zoom rotation,
and flipping is applied to the training images to prevent overfitting. The
order of the samples to be added is determined based on the different
metrics. The validation data set remains unchanged and contains n = 500
samples. The graphs show the average and the standard deviation of 20
training processes. The data set from Section 3.4.1 or Appendix A with
50 training images and the splits with index 3 and 7 are used.

The accuracy of Xval varies and increases differently for the different
methods. MCD shows the primary disadvantage of the larger recom-
mended model size since the dropout reduces the model capacity. In
addition, a larger number of training data and training iterations are
usually required. The results in Figure 3.28 show these disadvantages
in a slower increasing accuracy. Due to the dropout layers, the model
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Figure 3.28 Comparison of the effects of the order of labeling the training images. Each
epoch is trained with 200 steps, and after each epoch, a new image is added to the training
data set. The image is selected based on the corresponding metrics. The graphs show the
mean and standard deviations of 20 training sessions.

requires more epochs to produce good results on Xval. Plotting the score
SSImax in Figure 3.28 shows that the model performs worse than the
other methods due to successive labeling of very similar samples. Since
only very identical images are available in training at the beginning, the
model tends to memorize these features and generalize worse to the
variance of the entire data set. For this reason, the model performs lower
on average across all 500 samples from Xval and requires more epochs to
learn the relevant features. This order could theoretically occur in ran-
dom selection. The results of softmax entropy and SSImin both perform
well. In both cases, the variance of Xval is already covered with a small
data pool Xtrain. Moreover, the metrics can be used to find a measure to
determine the added value of labeling new data. If the remaining unla-
beled images in the data pool Xval all have very high similarity to the
patterns in Xtrain and thus have high SSI, their features do not contribute
much to model performance. The same conclusion can be drawn if the
current model can predict all remaining images with low entropy. Also,
in this case, the training data set sufficiently captures the image features.

Label Creation Effort A second aspect of AL is reducing the human
effort required to create a label. For example, this effort can be measured
by the number of clicks during the annotation process [100, 145]. Gorriz
et al. [58] show how a good training data selection can drastically reduce
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labeling effort. Moreover, they suggest the data sample with the highest
prediction uncertainty as the label order. In their cost-effective active
learning approach, they also propose automatically generating labels
for the samples with the highest prediction probability, i. e., those with
an entropy smaller than a defined threshold. These labels are generated
without human intervention. Analogous to the approach of Wang et al.
[165], who propose the automatic labeling for a classification problem,
they use predictions of the actual model as labels for a segmentation
problem. This procedure offers the advantage of no human labeling
effort. Since the samples are usually very similar to the labeled samples,
this can be seen as a form of data augmentation that makes feature
learning in CNN more robust. The approach is based on the curricu-
lum learning principle, in which a model learns by gradually moving
from simple to more complex patterns during training. As a result, the
diversity of the training patterns increases [11].

This approach entails the risk of wrongly annotated pixels and, thus,
the acquisition of wrong mask features. This risk is primarily because
of the transfer from the classification to the semantic segmentation. In
the example of burr formation or flattened hairpin surface mentioned
earlier, an automated labeling process could set the boundary incorrectly
for pseudo-labeled samples. However, the entropy of this entire sample
would still be low. This risk can be reduced by adding a human feedback
process. Nevertheless, early prediction with the current model should
be possible to reduce human labeling effort. In particular, this works
very well and saves a lot of effort for samples similar to the already
labeled samples from Xtrain. The optimal label order of the data plays
an essential role because it influences the quality of the early predic-
tions. However, human feedback is incorporated before the images are
included in the training process. The human annotator can correct the
prediction previously or add it directly to the training data set if the
prediction is already exact. In addition to human intervention in the
automatic generation of labels, algorithmic monitoring of the generated
labels is helpful. For example, artifacts are detected, i. e., locally individ-
ual pixels assigned to a different class than the surrounding pixels. The
algorithm displays a warning before adding a sample to the training
pool. Similarly, the evaluation suggests performing further checks, for
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example, a plausibility check of the shape, size, or number of labeled
surfaces. These checks are helpful for both the labels from early predic-
tions and human-labeled data to ensure a correctly labeled training data
set of good quality.

3.7 Evaluation and Discussion

The evaluation compares the weld positions found by the algorithm di-
rectly on the camera image and on the false color representation resulting
from the CNN, which marks the component-relevant pixels. The CNN
is used as a pre-processing step. After that, the actual threshold-based
algorithm detects the weld position. Thus, only the image pre-processing
needs to be adapted for the algorithm to compare the resulting positions.

Comparison with Knowledge-Based System For the evaluation, im-
ages are taken on the system before the laser welding process. Welding
positions are then determined using the different approaches, compared
with each other, and their deviation is calculated. Both approaches have
slightly different requirements for image properties. For example, the
ML approach requires image data containing structures to assign the
image features to the classes. On the other hand, these structures disturb
the rule-based approach, and overexposed images, which contain fewer
textures, can be processed better. Considering this fact, images with
optimized exposure time and gain are acquired for both algorithms.

In the first approach, without ML, the images are preprocessed with a
Gaussian filter to smooth the image content. Then the filtered image is
processed with a threshold-based algorithm that identifies the pin edges
and derives the corresponding weld position. The second approach uses
ML-based semantic segmentation to create a false color representation
highlighting the relevant pixels. This representation image serves as
input for the threshold-based algorithm to determine the weld position.

The welding position and the component’s rotation are derived based
on the detected edges. Since welding uses defined geometries, compo-
nent rotation is also crucial for a good result. Three examples in Fig-
ure 3.29 show definitions of the welding position. The light blue dot
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Figure 3.29 The pictures show examples of calculated welding positions with different
orientations. The light blue dot and the arrows indicate the coordinates and orientation.

marks the calculated welding position, and the arrows symbolize the ori-
entation. Based on this coordinate system, the translation, and rotation
of the weld geometry can be calculated in the laser control. In addition,
welding geometries or the laser power can be adjusted based on the
detected gap or offset. If the values, such as the size of the joining parts,
gap, offset, or rotation, exceed the predefined limit values, an error is
reported instead of the welding position.

Comparing the algorithms can be automated by matching the welding
positions found using the same input image. Only if the results differ
strongly a manual inspection of the samples must be done to determine
the cause of the deviation. The evaluation has considered different pro-
cesses using a variety of data. Since most processes involve customer
data, not all results can be published.

The following result was obtained in comparing an evaluation of a
test data set Xtest of n = 9510 data samples. Performing the algorithm
directly on the camera image classifies 79 data samples as erroneous.
Hardware-related error classes are a gap or offset of the pins, an incorrect
pin size due to the pre-processing steps, or a missing pin. However, due
to an incorrectly detected edge, the image processing results can also
incorrectly calculate the pin size, as shown in Figure 3.2(c). By using the
false color representation, which is created based on the result of the
CNN, the algorithm only classifies 19 samples as erroneous. The remain-
ing 60 positions, which were previously defectively classified, meet the
quality criteria and can be welded. During the manual inspection of the
samples, this result can be confirmed. The remaining defect cases are
due to an error in the pre-processing steps or an offset or gap between
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the pins due to defective clamping. However, the remaining samples
meet the quality criteria.

Table 3.3 Averaged absolute deviations of the welding positions with and without ML
algorithm.

Average Standard deviation

|∆x| 0.016 mm 0.017 mm
|∆y| 0.017 mm 0.019 mm
|∆αa| 0.510° 0.614°

Figure 3.30 The diagram compares the offset of the detected weld positions on the
camera images and the AI-based false color representations. The axes show the deviation
of the weld position in x and y, while the colors represent the deviation of the angle αa of
the defined coordinate system.

The averaged and standard deviations of the absolute distance of the
detected weld positions in the x-direction, y-direction, and orientation
angle of the 9431 data samples are listed in Table 3.3. The distance
values are also shown in the diagram in Figure 3.30. This evaluation
considers only samples for which both algorithms did not detect any
error. Again, the more significant deviation is due to incorrectly detected
boundaries on the camera image without using semantic segmentation.
Figure 3.31 shows an example. The right side of the second pin is shaded
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in the camera image due to its triangular cut structure. Directly on the
camera image, the algorithm detects the boundary of the pin area in the
center of the pin (Figure 3.31(b)). In contrast, the ML algorithm correctly
highlights the entire pin surface, shown in Figure 3.31(d) in an overlaid
representation. The boundaries are thus placed on the edge of the pin
surface based on the false color representation. In addition, the length is
detected shortened in (b) due to the lighting situation. However, if the
size and the offset derived from the edges found are within the defined
limits in both algorithms, this leads to different definitions of the weld
position and the angle.

(a) Hairpin image
with shadings.

(b) Detected edges
on the camera
image.

(c) Detected edges
on the false color
representation.

(d) Overlaid repre-
sentation of the
ML result.

Figure 3.31 Fiugre (a) shows the camera image of a pin pair where the right side is shaded.
Figure (b) shows the boundaries found directly on the camera image. (d) represents the
semantic segmentation result with the associated class pixels overlaid in green. Based on
this, the edges marked in (c) are detected.

Extension to other Data Sets The great advantage of this approach is
that it works for different image data of various components without
the need to develop complex algorithms manually. The manual effort
is limited to the labeling of training data. As shown in Section 3.4.1, the
amount of 25-50 data samples is sufficient.

The following example in Figure 3.32 shows circular shapes on a
component that are to be detected by an algorithm. The component
surface has strong structures, and the shading within these circles is
partially different. Since the ML algorithm considers multiple features
and contexts, recognizing the relevant surfaces still works. Thus a binary
mask with the relevant geometries can be generated, which is used for
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further processing. Therefore, the subsequent algorithms no longer have
to deal with challenges such as surface structures or interfering elements.

(a) Image example part. (b) Foreground class. (c) Overlaid image.

Figure 3.32 Example of a component on which the circular shape is to be detected.
Figure (c) shows an overlaid representation of the camera image and the binary mask of
the predicted component class (green).

Figure 3.33 shows another example. Two wires are to be detected in
the camera image. Due to the reflective material and the curved shape,
they reflect the light in different directions, resulting in shading with
different gray values. Similar to Figure 3.31, the shaded areas can be
reliably detected.

(a) Image example part. (b) Foreground class. (c) Overlaid image.

Figure 3.33 Example of a component where two wires are to be detected. These wires
have different reflections and, therefore, various grayscale values. Figure (c) shows an
overlaid representation of the camera image and the binary mask of the predicted compo-
nent class (green).

The algorithm achieves similarly good results for problems such as
the bloom effect that can occur in camera images. Due to the often
highly reflective metallic surfaces used in laser welding, cameras with
a CCD sensor often produce local overexposures which affect also the
surrounding pixels. It is not easy to distinguish between component
pixels and pixels illuminated by bloom based on the actual pixel value.
The image is bright in the blooming and the area to be detected. However,
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if the effect is still detectable in the image context, a distinction can be
made using semantic segmentation.

Extending the algorithm with semantic segmentation, images with
complex structures can also be processed. This eliminates the need to
develop complex customer-specific image processing algorithms, which
saves time when setting up the system. In addition, in some cases, more
cost-effective and faster pre-processing steps can be used in the pro-
duction process before welding. For example, the algorithm can handle
different surface textures, and the pre-processing method does not have
to create smooth surfaces reflecting light directly into the optics. This
possibility of replacing pre-processing steps was illustrated in this chap-
ter using the example of the hairpin from electromobility. At the same
time, the approach provides a way to reliably monitor part geometry
and part positions and observe protective device contamination in pre-
process monitoring without needing additional hardware. In particular,
the lateral and radial misalignment of weld components, which has
a negative influence on the welded joint, are monitored by the algo-
rithm. The model generalizes well enough to handle reflections and
minor changes. However, for more significant changes, the algorithm no
longer works reliably. Thus, undesirable process deviations are detected,
and the results of the previous process step are monitored. The hybrid
approach of combining ML and rule-based algorithms increases user
acceptance. Rule-based algorithms, already widely used in the industrial
environment, monitor the result of the ML algorithm and can provide a
warning in the event of significant deviations.

The network architecture is defined as very small with few parameters,
so the network learns good results quickly. Extensions of the algorithm
by adding information about the component geometry are conceivable.
For example, size information from the downstream rule-based algo-
rithm can be incorporated into the loss function during training. This can
further speed up and improve the training process since the algorithm is
constrained to the correct part size and shape. In addition, information
from the CAD system about the part could also be extracted and used
during training. However, when enriching the algorithm with specific
information, care must be taken to ensure the model is not susceptible to
false detections of the correct shape and size. This could lead, in turn, to
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erroneous results that are no longer recognized by the downstream algo-
rithm. Further extensions of the algorithm are conceivable, for example,
concerning process-specific data augmentation. Since the algorithm is
used in laser welding processes, the images often have similar charac-
teristics. For example, previous welds contaminate fixtures with spatter
and dirt. These deposits are often reflected in the camera image. The
algorithm can be made more robust by artificially enhancing the training
data with artifacts such as spatters and other reflective clutter in the
training process.

Implementability in Industrial Manufacturing An essential factor for
realizing the application of ML algorithms in the welding position de-
tection procedure is the fast adaptation to new processes. Therefore,
the focus is on a low set-up effort, as well as a fast and easy algorithm
adaptability. Furthermore, the system and, consequently, the algorithm
should be configurable without knowledge of AI, computer science, or
programming.

This chapter shows that the same model architecture and training
method can realize the processing of data from different production
lines. Thus, the optimized model architecture and two predefined train-
ing procedures achieve a sufficiently automated backend for generating
a ML model. As shown in Section 3.4.1, a small network architecture
based on the SDU-Net structure has prevailed over the other architec-
tures. For training, the categorical focal loss has proven its suitability.
This model structure works for different types of image data and single-
or multi-class approaches and does not need to be customized for in-
dividual problems. The method of single or multi-stage training from
Section 3.4.2 is specified depending on the image resolution and the
number of components to be detected.

However, the process cannot be fully automated. Since semantic seg-
mentation is a supervised process, labeled data is required. With the AL
methods, shown in Section 3.6, the number of images to be labeled can
be reduced. Moreover, early predictions by the current model reduce
the data labeling effort. Since the data within a production line is highly
similar, the prediction of unseen data is often very good, and only a
few pixels need to be adjusted. Otherwise, pixel-precise labeling is very
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time-consuming. Moreover, the annotator’s attention and concentration
decrease if too much time is spent on the labeling process. With the help
of an overlay presentation of the image and the annotation, which shows
different classes in different colors, the labeling process can be supported
and simplified for the user.

The predefined framework, including model architecture and training
procedures, and the support in the labeling process make it possible for
anyone to teach the ML model. This setting removes a significant barrier
to use ML in industrial manufacturing. On the one hand, the labeling
effort is reduced, and on the other hand, it can be carried out directly
by the process expert in the plant without having to rely on external
help. This possibility not only facilitates and speeds up the process
but also increases the acceptance of the ML solution. Furthermore, the
independent training and the insights into the training process through
the early predictions increase the trust in the ML algorithm. Users are
not only confronted with a black box model that is entirely new to them
and to which they tend to be critical according to different surveys [12,
65, 124]. A model can also be adapted quickly and without much effort
if it does not yet recognize specific patterns well.
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4.1 Introduction

The previous chapter shows how robust component position detection
and monitoring of the joining component geometry before the actual
welding process avoids welding defects. Nevertheless, laser welding is
a very complex process with many influencing factors. Therefore, poor
welding results can occur due to process instabilities, regardless of the
pre-processing steps. These instabilities in the process can be attributed
to various causes and appear more frequently depending on the welding
task and material properties.

In hairpin welding, the laser melts copper wires, which are joined
to form a coil winding. As mentioned in Section 2.2.4, copper has chal-
lenging conditions for laser welding due to its material properties. The
absorption rate of infrared laser light at room temperature is low on the
copper surface. For laser light with a wavelength of λ ≈ 1000 nm, the
absorption ratio is about 5%. Therefore, for deep penetration welding,
a high beam parameter quotient must be realized by a high incident
laser power P and a small beam waist diameter [53]. The absorption
ratio of copper materials exhibits substantial variations of up to 10% de-
pending on surface roughness and oxidation [39]. In addition, it changes
depending on the workpiece temperature and increases abruptly during
the phase transition from solid to liquid. For example, in deep pen-
etration welding, this abrupt increase happens during the formation
of a vapor capillary as the process melts the material. In addition, the
material’s thermal conductivity decreases as the workpiece tempera-
ture rises, which can lead to harmful interactions in conjunction with
increased absorption. At a melt temperature of 1600 °C, copper has a
comparatively low viscosity of 2.10 N s/m2. The currents generated in
the melt pool by the continuous melting of the material are thus only
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slightly counteracted. As a result, the movements extend to the entire
melt pool. According to Fabbro et al. [41], the turbulent melt pool at the
back of the keyhole causes weld spatter. Fujinaga et al. [45] also conclude
that an unstable keyhole results in ejections and pores. Despite the chal-
lenging conditions, different approaches can achieve higher stability in
the welding process of copper. The following section mentions a few
possibilities.

For example, the absorption ratio of copper increases in the solid
state at short wavelengths. Figure 4.1 shows the absorption at room
temperature and perpendicular beam incidence on a highly polished
surface for various materials [32]. The graph shows that the degree of
absorption for copper increases sharply at a wavelength of λ ≈ 600 nm.
Therefore, different approaches use blue (λ ≈ 450 nm) or green (λ ≈
515 nm) laser light to weld copper [32, 45]. Due to the higher absorption,
the effects of surface conditions or oxidation fluctuations are smaller. In
addition, low intensity of the laser beam is necessary since more laser
power can be used to generate melt [32].

Figure 4.1 Absorption rates of copper (Cu-ETP), copper alloys (CuFe2P, CuSn6), alu-
minum (Al), and steel (DC04) surfaces at room temperature over the wavelength. The
diagram is adopted from the publication of Helm et al. [62].

The disadvantage of commercially available laser sources in shorter
wavelength is the restricted laser power of P ≈ 1 kW, which limits the
weld penetration depth [13, 33]. To achieve greater weld depth, pulsed
systems [2], or combinations of multiple continuous wave lasers in a
single fiber can be used [33]. Future developments of devices with green
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laser powers up to several kW offer high potential for a wide range of
copper applications. Up to now, however, NIR high-power lasers with
several kW are used for welding copper hairpins due to the high melt-
ing volume and short process times [13]. In addition, many industrial
companies already work with infrared lasers for various welding tasks.
Therefore, despite the above factors, these systems are also used for
various copper welding applications [95].

Another approach to achieve a better and more reproducible result
in the welding process is using two superimposed laser beams. The
so-called 2-in-1 fiber consists of an outer part, which has a ring profile,
and an inner part, which consists of a single-core fiber. Different laser
powers in the core and ring can stabilize the keyhole while welding. This
results in less spatter and pores in the process [13]. In addition, rapid and
uniform oscillation of the laser spot during forward motion (wobbling)
can create stable dynamics in the weld pool [32].

Besides the challenges posed by material properties, external influenc-
ing factors can lead to an unstable welding process and spatter formation.
These include, for example, surface contamination, gaps between the
joining components, misalignment, or an excessively oxidized surface.
Correct adjustment of laser welding parameters such as laser power,
speed, and focus size is critical in copper welding. Further, the process
must not drift due to temperature fluctuations or other reasons. If this
still happens, early detection and readjustment is important. The pres-
ence of spatter on the component can indicate an unstable situation
in the welding process. This correlation allows conclusions about the
quality of individual welds and the event of defects based on spatter
occurrence [53]. Spatter formation is particularly problematic in electron-
ics manufacturing. On the one hand, material loss in the weld seam can
result in unstable connections or lossy connections with increased con-
tact resistance. On the other hand, deposited spatter on the surrounding
components or conductive paths can generate short circuits [32, 53].

As mentioned in Section 2.2.4, monitoring is essential for the welding
process. Since blowouts and spatter indicate an unstable weld pool and
allow conclusions about possible increased contact resistance, unstable
connections, and short-circuit risks, this is used as a primary monitoring
metric. In addition, an important requirement for a monitoring system
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is the fast execution time, which is a prerequisite for using a method in
large-scale production. Welding an entire engine’s contacts takes just
slightly more than a minute, and quality monitoring should not slow
down the process [78, 150].

Some parts of the chapter are based on results from the article "Camera-
Based In-Process Quality Measurement of Hairpin Welding", published
by the author in the journal Applied Science (Hartung et al. [184]).

4.2 State-of-the-Art

Various sensors can be used for in-process monitoring in laser welding.
As mentioned in the introduction, the focus of this chapter is on the
detection of spatter and melt blowouts in the process.

Glässel [53] performs spatter detection based on the mass difference
before and after welding in an experimental setup to optimize the weld-
ing process. However, this procedure is subject to various inaccuracies.
For example, spatters that reattach to the workpiece cannot be detected
based on the mass difference. The use of contamination masks, similar
to those shown in Section 3.5, counteracts this source of error. Glässel
[53] also neglects the influence of evaporation of the material due to its
low mass loss, which results in inaccuracies in the process. Furthermore,
the procedure is not suitable for series production.

Various works show that the acoustic signal can indicate defects in
the welding process. For example, Zeng et al. [175] detect a gap by the
intensity of low frequencies in the acoustic signal. Lee et al. [92] show
that the acoustic emissions correlate with the process parameters, and
the features allow inference of possible welding defects such as cracks.
Schmidt et al. [143] conclude spatter using the acoustic signal. For the
analysis, they use a neural network because they have difficulties in
extracting the relevant information with conventional methods due to
the noise from the robot and the cross-jet. Generally, acoustic monitoring
systems based on airborne sound are often limited by the noisy environ-
ment of a factory floor and process noise [143, 147]. Therefore, acoustic
solutions often require mechanical contact with the workpiece, which
makes them challenging to implement for mass production.
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Therefore, often optical monitoring is used. Photodiode sensors are
commonly used in the industrial context because of their simple design
and low cost. The signals of different wavebands provide information
on various components of the welding process. Diodes in the ultraviolet
(UV) (200-400 nm) and in the visible spectrum (VIS) (400-700 nm) are
used for example, to monitor the plasma of the welding [81, 120, 123],
while photodiodes in the infrared spectrum (IR) (1100-1700 nm) are used
to monitor the emissions from the melt pool. The near infrared range
(NIR) (700-1100 nm) measures the backscattered laser radiation, which
provides information about the surface geometry of the area where the
laser beam interacts with the material [81, 120, 121, 155]. One disad-
vantage of the VIS and IR sensors is that they are also susceptible to
the vapor plume, which can distort the results. The back reflection sig-
nals, in contrast, can be difficult to interpret during deep penetration
welding since complex geometry occurs in the molten pool, which does
not always allow conclusions about the welding result. Therefore, this
parameter is more suitable for heat conduction welding. Another dis-
advantage of the signals is a complex and abstract interpretation of the
results. Imaging evaluations allow a better understanding of the process
[81, 120].

This is one of the reasons why many applications use high-speed
cameras to monitor the process. An additional bandpass filter is often
used to filter the irrelevant information from the image to focus on spe-
cific components [50, 163, 177]. Zhang et al. [177] and Gao et al. [50] use
high-speed cameras with a frame rate of up to 2 kHz for data acquisi-
tion. In addition, they attach a bandpass filter with a transmission band
ranging from 350 nm to 650 nm, respectively 350 nm to 750 nm, in front
of the camera. The camera is positioned laterally to the process. Gao et al.
[50] then propose an approach in which they extract relevant features
of the plume and spatter from the image data using image processing
technologies such as threshold-based binarization and morphological
operations. These extracted features are the inputs to a backpropagation
neural network that predicts the weld quality. Volpp [163] also uses a
high-speed camera mounted laterally to the weld with an acquisition fre-
quency of 6 kHz for data acquisition. In addition, they use illumination
with a pulsed laser of wavelength 808 nm in combination with a notch
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filter on the camera so that it captures only the reflected light from the
illumination laser. A threshold-based binarization algorithm highlights
the spatters in the captured images. In addition, they blacken the lower
part of the image to eliminate the process light. Using the pre-processed
images, they calculate the spatter size and the spatter distribution. They
also compare the frames with the previously acquired frame and track
the spatter based on size and distribution. This object tracking allows
them to measure the total number of spatters.

Nicolosi et al. [118] propose using the Eye-RIS smart camera system
[133] based on a focal plane sensor-processor platform with CMOS
sensor to capture image data for welding process monitoring. The Eye-
RIS system can pre-process images directly on the sensor [118, 119].
Additionally, they use a bandpass filter for image acquisition coaxially
to the laser beam, so the sensor acquires a spectral range of 820 nm to
980 nm. Then they detect the spatters using a morphological filter and
a defined mask that filters out the plume. Also, Lahdenoja et al. [89]
propose using a focal plane processor system for image acquisition. They
use the smart camera prototype system KOVA1 from Kovilta, which
is attached off-axis to the welding process. The sensor continuously
adjusts the integration time per pixel based on the average intensity in
the neighborhood of each pixel through an adaptive image acquisition
process. This process shortens the illumination time for pixels in very
bright regions while lengthening it for low-intensity image parts. As a
result, the area of process light is not as over-illuminated as in typical
images. In addition to adaptive integration, they use optical filtering with
a passband of 700 nm to 950 nm to filter out the light from the welding
laser and the plasma. Then they perform a simple segmentation by edge
detection, obtaining a black-and-white image in which the spatter pixels
are highlighted. Finally, they analyze the spatters’ number, size, and
speed based on the frame rates.

An event-based camera is also suitable for monitoring spatter occur-
rence in the process. This event-based sensor captures pixel-brightness
changes and outputs a stream of events that encode the brightness
changes’ time, location, and sign. This procedure has the advantage of
a high temporal resolution and a high pixel bandwidth [49, 130]. Be-
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cause the recording frequency is not limited by defined frames, far more
spatters can be recorded in the context of events.

The algorithm proposed in this work is intended to work based on
the existing hardware. This has the advantage that the process setup
of the laser system for spatter monitoring does not have to be changed.
Therefore, a camera with CMOS technology mounted coaxially to the
laser beam on the focusing optics is used for the monitoring. In addition,
no upstream bandpass filters or external illumination are adapted. In-
stead of pre-filtering the images, an AI algorithm detects the spatters
and separates them from the process light.

In-process quality monitoring depends on fast response times and
robust response. Depending on the sampling rate, a large amount of data
is recorded during the process. Uploading the data to a cloud system
would require a large amount of network bandwidth and constantly
consume storage and computing resources of the cloud servers [98]. In
addition, a reliable internet connection to the systems is required [115].
This is another hurdle for introducing new, ML-based monitoring sys-
tems in industrial manufacturing and creates integration efforts and
uncertainties in the usage. Computing the algorithms close to the sen-
sors, so-called edge computing, also offers advantages in terms of data
protection and scalability [19, 149]. However, the prerequisite is to use
compact and resource-efficient DL models designed for edge devices.
The hardware used in the production lines usually fulfills protection
classes against contamination, which can lead, for example, to it being
fanless and only having passive cooling. As a result, this hardware often
has less processing power. In order to avoid having to purchase new
hardware for each line, this work uses the existing hardware that also
performs the pre-processing monitoring. Therefore, a comparatively
small and optimized model architecture must be chosen.

4.3 Experimental Setup and Data Basis

For in-process monitoring, recordings of various welding processes are
used. In the configuration used, the camera is attached to the optics
coaxially to the laser beam, as described in Section 2.2.4.
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The first series of experiments includes data from welds of hairpin
dummies. These dummies consist of copper workpieces cut from a
copper sheet with a thickness of 4 mm. The size is derived from a real
pair of hairpins with a 4 × 4 mm welding surface. These dummies are
used to reduce external influencing factors such as faulty pre-processing
steps, gaps, or an offset of the pins to make the results more stable. For
welding, a TruDisk6001 and a PFO33-2 focusing optic are used. The laser
power is varied between 2 kW and 6 kW for different welding results. In
some cases, 2-in-1 fibers with different ring and core powers are used for
low-spatter results. The welding speed is 200 mm/s. Data are acquired
with a high-speed camera (IDT Os8 S3) with a maximum frame rate of
10 kHz. The camera is mounted in different orientations to the weld for
the experiments. On the one hand, the camera is mounted laterally to
the process to obtain a lateral view of the weld and the resulting spatters.
On the other hand, the camera is mounted coaxially to the laser beam on
the focusing optics as described in the setup in Section 2.2.4. The image
resolution is 640 × 480 pixels.

In a second series of experiments, overlap welds of aluminum sheets
with a thickness of 0.5 mm are performed. Two sheets are connected
with a 22 mm long line weld. A TruDisk5000 and a PF033-2 are used
for the welding, performed with a power of 450 W. For data acquisition,
the process uses a VCXG-15M.I, which is attached to the focusing optics
coaxially to the laser beam. The camera uses a framerate of ≈ 0.3 kHz
and an image resolution of 720 × 540 pixels.

4.4 Spatter Detection Algorithm

Different methods can be used to identify spatter occurrence based on
the camera images. A distinction can be made between evaluating each
image of the sequence individually or the entire sequence. Furthermore,
the evaluation methods themselves can also vary.

Figure 4.2(a) to (c) show images of a hairpin welding process which
are recorded coaxially to the laser beam. Thus the images have a view of
the welding area from above. While the process light is in the center of
each image, the spatters are visible around it. The three images are suc-
cessively taken in a sequence with a frame rate of 2 kHz. This sequence
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(a) Sequence image
number 25.

(b) Sequence image
number 26.

(c) Sequence image
number 27.

(d) Maximum value
image.

Figure 4.2 Coaxially recorded series of images ((a) to (c)) and a maximum value image
of the entire series (d). The representation in (d) shows the maximum value of the image
series for each pixel.

shows that the spatters are sometimes captured in several consecutive
images. For example, the spatter moving out of the top of the image is
visible in all three frames. Each frame is taken with an exposure time of
approximately 500 µs. Due to the exposure time in combination with the
velocity of the spatters, they are mainly visible as lines.

In the welding process, the laser beam is deflected over the surface
of the pin using flexible mirrors. Since the camera is mounted coaxially
to the laser beam, the mirrors also position the image capture. Due to
the different positions and the chromatic aberration, the process light is
not always centered in the image for individual exposures. Figure 4.2(d)
shows a summary of the entire image sequence (≈ 250 images). For
each pixel, the maximum value of the image series is taken. This results
in a maximum value representation summarizing the welding process.
The process light overlays the inner image area, but the spatters remain
visible as lines at the edges.

Pixel Intensity The simplest inspection for spatter occurrence is the
analysis of the gray value intensities of the pixels at the edge of the image.
This observation works on the maximum value representation and the
individual images. The approach is simple and requires only a small
amount of computing time. However, it allows only an approximate
estimation of the amount of spatter. If no spatter occurs during a welding
process, the edge areas show only dark pixels in which, at most, a slight
emission of the process lights can be seen. Therefore, the spatter density
can be analyzed based on the number of pixels with intensity values
above a certain threshold.
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(a) Sequence image number 26. (b) Histogram of the intensity val-
ues of the edge areas of (a).

(c) Maximum value image. (d) Histogram of the intensity val-
ues of the edge areas of (c).

Figure 4.3 The red borders distinguish between the edge areas and the process illumina-
tion area. Figures (b) and (d) show the corresponding histograms of the intensity values
for the edge areas.

Figure 4.3 illustrates the procedure. The red border is defined man-
ually based on the average size of the process light in the maximum
value representations of different welding processes. Based on the in-
tensity threshold of 130, a distinction is made between a good process
and a spatter-rich one. The spatter distribution could be estimated by
observing the intensity values in a specific quadrant. However, it is not
possible to make any statements about the spatter’s size and exact posi-
tion or direction. In addition, there is a risk that the plume emitted by
the process light will also produce high-intensity values.

Morphological Filter The use of complexer image processing opera-
tions allows a more precise data analysis. For example, a separation
between process light and spatter can be realized independent of fixed
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regions using morphological filters analogous to Gao et al. [50] or Ni-
colosi et al. [118]. First, the images are binarized above a certain threshold
before the different areas are identified using the opening algorithm. The
operation involves an erosion of the data set x followed by a dilation,
both with the same structural element H :

x ◦H = (x ⊖H) ⊕H. (4.1)

In the first step, the erosion, the opening process eliminates all fore-
ground structures smaller than the defined structural element. Then,
dilation smoothes the remaining structures, restoring them to approxi-
mately their original size. The opening identifies the process light in the
images using the structural element H . Next, the spatters are detected
by subtracting the filtered image from the original image. The remaining
image elements thus define the spatters.

For the images with a resolution of 480 × 640 pixels, the structural
element is defined as a circle with the diameter ø = 45 pixels for the
single images and ø = 90 pixels for the maximum value representations.
The definition of H is based on the average size of the process light and
the spatters estimated in the respective images. Because spatters usually
represent smaller elements, they can be distinguished from the elements
found by the filter. Figure 4.4 illustrates the process steps.

One disadvantage of this approach is that the size of the structure
element H must be defined manually. In addition, the algorithm recog-
nizes large spatters as process light, and therefore they are no longer
included in the evaluation after substracting the process light. Also, the
plume created by the welding process can degrade the result. By not
using a band-pass filter, the image may have more spurious elements
that complicate the use of the morphological filter. Figure 4.6, Figure 4.7,
and Figure 4.8 show more examples of spatter detection using the open-
ing algorithm. In these samples, the difficulties caused by plumes, for
example, become visible.

Semantic Segmentation Higher process reliability can be realized by
using a CNN to distinguish spatter from the process light. Even if the
number of spatters and a rough estimation of their size can be measured
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(a) Binary Image. (b) Resulting image
from the open-
ing.

(c) Binary image
without opening
area.

(d) Overlaid repre-
sentation.

(e) Binary maximum
value image.

(f) Resulting image
from the opening.

(g) Binary image
without opening
area.

(h) Overlaid repre-
sentation.

Figure 4.4 Morphological filter. The upper line shows the process for a sequence image
and the lower line analogously for a maximum value image. First, a binary image (a) is
filtered to identify the process light (b). Then, the spatter is identified by subtraction (c).
Figure (d) shows an overlaid representation of the process light (green) and spatter (red)
areas on the camera image.

by object detection, using a semantic segmentation algorithm is advanta-
geous. For one thing, object detection works reliably only in the single
image of the sequence, whereas semantic segmentation also works on
the maximum value image. In addition, the pixel-accurate detection on
the single images allows a conclusion about the flight direction and the
speed of the spatters. Another advantage is that overfitting is counter-
acted by the pixel-precise loss function, which reduces the amount of
training data needed.

Due to the similar requirements and a similar database as in the
component position recognition, reference can be made to the model
evaluation from Section 3.4.1. Furthermore, the image context captured
by the receptive field is essential in spatter detection. Therefore, using
the SDU-Net architecture is also advantageous in this use case.

Considering the fast calculation time required on the hardware at
the welding station, the network architecture is further reduced. In this
application, the exact position of the spatter in the camera image is
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less crucial than the detection of the component position. In addition,
the images are not very complex, and only little information is lost
through downscaling. Therefore, the input dimension is reduced, so the
model has to process fewer features. The model input is a grayscale
image of the size 128 × 128 pixels. The smaller resolution and lower
complexity of the input images allow to reduce the depth of the network
compared to the model presented in Section 3.4.1. Instead of four encoder
operations, the architecture uses only three with the number of output
filters nout = {16, 32, 64} and the corresponding decoder operations. The
total number of the parameters is 39 145. Appendix E shows the detailed
structure of the architecture.

(a) Grayscale image. (b) Binary mask of
the process light.

(c) Binary mask of
the spatter.

(d) Cropped image.

(e) Grayscale
maxima-value
image.

(f) Binary mask of
the process light.

(g) Binary mask of
the spatter.

(h) Overlaid repre-
sentation.

Figure 4.5 One-hot encoded results of a small SDU-Net with three classes: background,
process light (b) and spatter (c). Also, an overlaid representation of the image with process
light (green) and spatter (red) is shown in (d). In the upper row, the images are shown
for a single frame, and in the lower row, analog for maximum value representation of the
sequence.

The training uses the categorical focal loss with α = 0.25 and γ = 2.
Furthermore, it uses the ADAM optimizer with the parameters β1 =
0.9 and β2 = 0.999 for optimization. For better regularisation and the
possibility of using a smaller training data set, the training uses data
augmentation with rotation, shift, shear, zoom, and flip in different
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degrees of intensity. In addition, it reduces the learning rate, which starts
at ϵ = 0.001, based on the reduction of loss value.

Figure 4.5 shows the one-hot encoded results of the semantic segmen-
tation network. The CNN is trained on a three-class problem, with the
classes background, process light, and spatter. Compared to the network
architecture with the reduced capacity, predictions with slightly deeper
architecture and an input dimension of 256 × 256 are shown in Ap-
pendix F. Due to the reduction of the model capacity, the inference time
per frame is less than 3 ms on the Intel i5-7300U using batch prediction.

Comparison Figure 4.6 compares the methods of morphological open-
ing, SDU-Net, and a U-Net variant (defined in Figure 3.5(b)). The figure
shows the results as an overlaid representation in the image and evalu-
ates them using the IoU compared to the ground truth. For evaluation,
the methods process the maximum value images and the single images
of the process sequences. In addition, images from a camera placed
laterally to the process were analyzed (Figure 4.6(e)). The results show
several advantages of semantic segmentation with a CNN over distin-
guishing process lights from spatters with the morphological filter. First,
the algorithm does not require the specification of a defined size for the
process light. Because of the fixed definition of the size of the structural
element in the morphological filter, it has to be adjusted individually for
the data sets. Furthermore, large spatters, for example, are detected as
process light, as in Figure 4.6(b). A second advantage is that the exhaust
plume can be better distinguished from process light and spatter. The
morphological filtering method requires binarization of the image before
the regions are separated in the opening algorithm. Because the plume
is usually also bright, this separation is no longer possible. This problem
is visible in Figure 4.6(e).

Figure 4.6(c) shows a welded hairpin after the welding process in
the cooling phase. The weld surface is shown in blue in the overlaid
plot for the SDU-Net. Minor blue artifacts can also be seen in the U-
Net result. This example illustrates another superiority of the CNN
over the morphological operation. Regardless of the size of the area
to be detected, additional classes can be added to the analysis. This
division is not possible with the opening algorithm. The example (c)
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Figure 4.6 Comparison of spatter detection results on different input images. The first
column shows the grayscale image, and the second is the hand-labeled ground truth mask.
Then the segmentation results with a small SDU-Net, a U-Net variant, and the opening
algorithm are demonstrated in an overlaid representation with the process light in green,
the spatters in red and the cooling phase in blue. In addition, the average IoU of the
foreground classes is given.

extended the three-class problem for CNN to four classes. In addition to
the background, the process light, and the spatters, the model introduces
another class for the cooling phase. In this phase, the pin is no longer
being processed but has not completely solidified. For example, the
solidification time provides information about the size of the bonding
area. Stavridis et al. [155] shows a correlation between the solidification
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process and the weld quality. With the possibility of adding additional
classes, a quality monitoring system can consider such behavior.

Figure 4.7 shows another comparison of the morphological opening
with the prediction of the SDU-Net. Each line shows an image with an
overlaid representation of the result of the morphologic opening and
the SDU-Net. The images show an overlap weld of two plates, which
are clamped together with a fixture. The illumination of the laser light
during the process causes reflections on the fixture, which can be seen on
the edges of the images. Since there are often interfering elements due to
clamping devices in the production environment, it is essential that the
algorithm can handle this. In binary opening, the areas are detected as
process lights or spatters, depending on the size of the structural element.
In the examples in Figure 4.7(b) and 4.7(e), a circular structure with the
diameter ø = 45 pixels was used as a structural element. The CNN, on
the other hand, can separate the areas and detect spatters located in the
area of reflection.

(a) Grayscale image. (b) Binary opening. (c) SDU-Net.

(d) Grayscale image. (e) Binary opening. (f) SDU-Net.

Figure 4.7 Comparison of spatter detection with the binary opening and the SDU-Net.
The graphics show an overlaid representation on the camera image, in which the detected
spatter is shown in red and the process light in green. In the pictures, bright areas are
visible next to the process light due to reflections of the laser light on the fixture.

Another disturbing factor in the camera images is the plume. Since the
first step is to investigate the possibilities without modifying the welding
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station, we do not use a band-pass filter. This way, other processes access-
ing the camera are not affected. But the smoke plume is more visible in
the camera image without a band-pass filter. The plume appears more or
less strongly, depending on the welding process. Due to the binarization
before the morphological opening, much of the image information is lost.
It is not possible to distinguish the plume based on the pixel value since
it also appears bright in the image because of the reflections of the laser
light. Therefore, the plume is often captured as a spatter or process light.
With CNN, separation works better based on image features. Figure 4.8
compares the SDU-Net result and the morphological opening on images
where plume is visible.

(a) Grayscale image. (b) Binary opening. (c) SDU-Net.

(d) Grayscale image. (e) Binary opening. (f) SDU-Net.

Figure 4.8 Comparison of spatter detection with the binary opening and the SDU-Net.
The graphics show an overlaid representation on the camera image, in which the detected
spatter is shown in red and the process light in green.

Masking the process light by predefined coordinates is also not rec-
ommended for the coaxially recorded data. The lens of the optics is
optimized for laser light. Minor imaging errors occur since the camera
captures the light in other wavelengths. Chromatic aberration results in
the laser light not always being centered in the camera image. Instead, it
moves within a certain range. Figure 4.9 shows successive pictures of
a hairpin welding process. The laser beam is deflected slightly to melt
the entire pin surface. Therefore, in the images, the process light moves
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away from the center of the camera image. Depending on the size of the
working area and the associated deflection of the laser beam, this effect
is more or less noticeable. When masking the process light on predefined
corridors, the systematic deviation of the position in the camera image
must be considered.

(a) Sequence image
number 88.

(b) Sequence image
number 90.

(c) Sequence image
number 93.

(d) Sequence image
number 96.

Figure 4.9 Coaxially recorded series of images. There are small time intervals between
the individual images. They show the effects of chromatic aberration.

The hand-labeled class assignments are often not accurate for every
pixel. Especially in the maximum value representations, where the spat-
ters are shown as lines, the labeling is often inaccurate. This makes
it difficult to evaluate the model quality and the resulting prediction
based on the IoU of the ground truth. Tabernik et al. [159] show, based
on crack detection, that they obtain better and more exact results by
labeling a larger area around the cracks than by annotating them exactly.
This approach is transferable to spatter detection. The results could be
confirmed in experiments but make an accurate semantic segmentation
evaluation more complex. In addition, to monitor the laser welding pro-
cess based on the images, the spatter must be sufficiently recorded in the
database.

These aspects motivated, among other things, the evaluation of spatter
detection on camera images using semantic segmentation with a CNN
directly in the welding process. The results are compared with subse-
quently visible welding defects, intentionally generated defects during
welding, and evaluations based on other sensor data.

Due to the maximum value representation of the frames, much in-
formation, such as the number of pixels per individual spatter or the
temporal resolution, is lost. By evaluating the spatter percentage of the
individual images, the spatter occurrence at different positions of the
weld seam can be determined. In addition, the process light superim-
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poses less spatter, which is especially important at lower frame rates.
Since longer blind times lie between the exposures, the course of the
spatter is not recorded continuously. In the maximum value representa-
tion, the spatters are therefore not always visible as a continuous line to
the edge of the image. As a result, they can be masked by the process
light of another frame, as it is shown in Figure 4.11. Based on the indi-
vidual images, the fraction of the spatters is related to the area where
the spatters can be detected, i. e., the image area not overlaid by the
process light. This gives the spatter ratio Srating, where Aspatter is the
area where spatters are detected and (Aimage −Alight) is the area in which
the spatters could be detected since the process light does not mask it.

Srating =
Aspatter

Aimage −Alight
. (4.2)

This relation helps to evaluate the spatter occurrence and the spatter
size independent of the laser power and the superimposed radiation
intensity [50].

Figure 4.10 Spatter rating of the individual frames for a sequence of a hairpin welding
process. Besides the spatter rating, the graphs show some overlaid image representations
with the class assignment of the spatter (red) and process light (green) classes on the
camera image. The class assignment is based on the prediction of the CNN.

Applying the spatter rating to a process results in a progression over
the entire weld, as shown in Figure 4.10. The diagram shows an increased
spatter occurrence at the beginning of the process. In contrast, the outliers
near the end of the welding indicate smaller and faster spatter. This
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can be concluded from the thin lines in the camera images. A defined
threshold value for the spatter rating can trigger a warning or a welding
stop if this value is exceeded. Depending on the process behavior, the
threshold value must be adjusted manually. The method also makes it
possible to identify the image areas of spatter occurrence. For example,
if the spatter is expected to move in a specific direction due to suction,
the image analysis can verify this and monitor the other image areas.

An analogous representation as for the spatter area can also be made
for the size of the process light area or the cooling class. Thus, in some
cases, burn-ins on the component are characterized by a larger process
light area. Monitoring the size over time can therefore enable conclu-
sions about defects. The duration of the cooling phase can also provide
information about the size and stability of the weld area. By evaluating
the corresponding pixels per image, this can be recorded.

4.5 Image Acquisition Frequency

High-speed cameras are usually more expensive and are not included
in the standard setup of the welding station since the high frequencies
are not required for pre- or post-process monitoring. Therefore, the
following subchapter deals with detecting spatter using lower image
acquisition frequencies.

The simulation of maximum value images at different acquisition
frequencies is used to estimate whether spatter can be detected and how
large the proportion of the detected spatters is. For example, Figure 4.11
shows the maximum value images of one hairpin dummy welding
process per line. Through the deflection of the laser beam and the effect
of the chromatic aberration, the process light is not always centered in
the individual frames. As a result, the process light covers a larger area
in the maximum value image. Another consequence is that slow spatters
are captured in different images with a slight shift, resulting in circular
patterns as in Figure 4.11(e) on the left. The exposure time of the images
is about 500 µs.

The maximum value plots show that the process is continuously fol-
lowed by recording with 2 kHz. This is shown by the fact that the spatters
are represented as continuous lines. In the case of fast spatters, this rep-
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(a) 2 kHz (b) 0.5 kHz (c) 0.3 kHz (d) 0.1 kHz

(e) 2 kHz (f) 0.5 kHz (g) 0.3 kHz (h) 0.1 kHz

Figure 4.11 Maximum value representation of different acquisition frequencies with
coaxial image acquisition. The data show two hairpin dummy welding processes (upper
and lower row). The single frames were recorded with an exposure time of ≈ 500 µs.

resentation results from the long exposure time within which they cross
the image area. In contrast, in the case of slow spatters, they are recorded
in several successive images without a gap. The reduction of the acqui-
sition frequency to 0.5 kHz shows that only a few spatters are captured
in several images. In addition, the plot shows that not all spatters are
recorded anymore. The amount of captured spatters is decreasing by
further reducing the recording frequency. The fraction of detected fast
spatters, represented as a bright line in the 2 kHz representations in Fig-
ure 4.11(a) and 4.11(e), decreases strongly with a lower frame rate and,
thus, a higher blind time. However, the plots also show that individual
spatters are still detected even at 0.1 kHz. Especially larger spatters are
visible at lower frequencies.

With the default setup of a laser welding station from Chapter 2.2.4,
the camera has a frame rate of 0.32 kHz . Due to the lower frame rate,
the exposure time and the associated reduction of the blind time in
the process become increasingly important. Extending the exposure
time captures a larger part of the process and, thus, more spatters in
the images. With this setting, a good balance must be found between
blind time and overexposure due to the process light. The overexposure
caused by the process light depends strongly on the laser power and
the material properties. Figure 4.12 compares maximum value images of
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different weldings of aluminum and copper. When increasing the laser
power, the exposure time should be shortened so that the process light
does not outshine the image.

(a) Al 1 mm, butt
weld, 1.1 kW,
t = 250 µs

(b) Al 1 mm, overlap
weld, 2 kW,
t = 175 µs

(c) Cu 1 mm, over-
lap weld, 4 kW,
t = 50 µs

(d) Cu 2 mm, over-
lap weld, 7.5 kW,
t = 30 µs

Figure 4.12 Maximum value representations from different processes captured with
different exposure times (t). The images are from aluminum (Al) and copper (Cu) welding
processes in butt weld joint and overlap welding with different laser powers.

Spatter Size and Velocity In high acquisition frequencies, single spat-
ters are often captured in multiple images. However, one image of the
respective spatter is sufficient to determine their existence. Thus, among
other things, the speed of the spatter confines whether lower acquisition
frequencies could be used for spatter detection. In addition, the size
of the spatter is decisive for the resulting weld quality. Large spatters
indicate a more significant material loss, usually resulting in an unstable
weld seam.

Volpp [163] obtained an average spatter size of maximum 0.8 mm2

depending on the welding process and laser power in their analysis of
an aluminum alloy. However, most spatters are between 0.0001 mm2 and
0.001 mm2. With increasing laser power, the average size of the spatter
also increases. The averaged spatter velocity is up to 10 m/s at a laser
power of 800 W for a Gaussian beam profile, while it is only up to about
2 m/s at a laser power of 1 kW. In this case, only individual spatters
exhibit a faster velocity of up to 10 m/s. The investigation of spatter
behavior in laser welding of aluminum alloy with different laser sources
by Cai and Xiao [17] yielded an average particle velocity of 0.75 m/s
and an average spatter size of 0.2 mm2 for a CO2 laser. In contrast, the
results for a fiber laser are 3 m/s and 0.13 mm2. Volpp [163] and Cai
and Xiao [17] work with images taken from the side of the process and
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thus determine the vertical velocity of the spatters in their calculation.
A general conclusion of the analyses is that small spatters mostly have
higher velocities than larger ones [17, 70, 163].

Figure 4.13 Values for estimating the spatter velocity based on the spatter size and
length of the spatter tail. This calculation is limited to the horizontal velocity and to the
assumption that the spatters are round.

The size of the spatters can be estimated based on the single-frame
exposures. Also, the approximate horizontal speed of the motion flow
can be calculated under the assumption that a spatter is round. The
width of a spatter, in combination with the length of the spatter tails,
gives the distance a spatter moves during the image acquisition. Since
the exposure time per frame is known, the speed in the image plane can
be calculated.

The scatterplot in Figure 4.14 shows the analysis of the spatter sizes
and the horizontal velocities of various welding processes in cumulative
representation. It shows results from images recorded with an acquisition
frequency of 2 kHz and laser powers from 2 kW up to 6 kW. The velocity
is calculated by

vh = d

t
, (4.3)

where t is the exposure time, and d is the traveled distance, represented
by the length of the spatter tail minus the spatter width. This results in
d = l − w, where l is the length and w is the width of the spatter. Due to
the view of the process from above, only the horizontal speed is consid-
ered in this calculation. However, this is the relevant speed because it
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determines whether or not a spatter is captured in the recordings. In the
example of Figure 4.13, this gives vh = 1.57 mm−0.21 mm

0.498 ms = 2.73 m/s.
The spatters that leave the camera’s recording area are only partially

captured. These are considered with a shortened tail length and distort
the analysis slightly. Therefore, it can be assumed that the velocities
are sometimes higher. In addition, slow spatters will be seen in several
frames and detected more often by the single-frame analysis. The eval-
uation in Figure 4.14 uses object tracking, which compares the noticed
spatters per frame with the spatters of the previous frame. Therefore,
the algorithm evaluates the objects based on position, size, and flight
direction, and only newly appearing spatters are considered. In the eval-
uation, it can be deduced that slow spatters occur more often, with a
speed of less than 2 ms. In addition, the statement that large spatters are
generally slower than small ones is also confirmed.

Figure 4.14 Cumulative scatterplot for size and velocity of spatters based on 136 weld-
ings.

Depending on the imaging ratio, the camera image captures a different
area. For example, observing a setup with a Baumer VCXG-15M.I, a
TRUMPF PFO-33-2 focusing optic with a focal length of 255 mm and
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a magnification of β = 0.4, the camera captures an area of 31.7 × 23.7
mm. If the process is centered, there would be a distance of at least
11.58 mm to detect a spatter, assuming the process light does not mask
it. With a detection frequency of 320 Hz and an exposure time of 250 µs,
spatters can be expected to be detected at a horizontal speed of less
than 4.12 m/s. The calculation considers the blind time between two
exposures of 3.12 ms − 0.25 ms = 2.87 ms. Within this time, the image
area of 11.58 mm must be crossed so that the spatter is not visible in
one frame. This results in 11.58 mm

2.87 ms = 4.12 m/s. The time will be slightly
longer if the spatters do not take the shortest path out of the detection
range. However, faster spatters can cross the area between two exposures
without being visible in one image. Combining this finding with the
results from Figure 4.14 enables the conclusion that 94% of the spatters
would be captured at a frame rate of 320 Hz on at least one image. This
is the fraction of spatters with a velocity of less than 4 m/s. If only the
larger spatters above 0.78 mm2 are considered, this makes 98%.

Comparision of Recording Frequencies To approximate the result
with the frequency of the Baumer VCXG-15M.I, lower acquisition fre-
quencies are simulated based on 2 kHz recordings. This way, the spatter
evaluation can be compared based on different frequencies. Since fre-
quency reduction can only be realized by omitting entire frames, the
resulting comparison frequency is 286 Hz, approximating a realistic max-
imum frequency of the Baumer VCXG-15M.I camera. The comparison of
the spatter rating with a recording frequency of 2 kHz (Figure 4.15 upper
line) and 286 Hz (Figure 4.15 lower line) shows that powerful ejections
are visible even at the low frequency.

While the high-frequency frames capture many spatters several times,
they are contained in only one image at the lower frequency. Also, not all
spatters are captured. Especially in the case of more significant defects,
this is not very important because there are many spatters in these
situations. Such a situation is visible, for example, in Figure 4.15 at the
beginning of the process. An apparent spatter ratio is still visible even if
not all spatters are detected. This is different for small and fast spatters
that occur sporadically in the process. These are often not detected.
However, large spatters, which usually have a greater influence on the
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Figure 4.15 Spatter rating of a hairpin welding. The upper row shows the spatter rating
for a recording frequency of 2 kHz while the lower row simulates a recording frequency of
286 Hz for the same process. The figure shows, for better illustration, some camera images
with a superimposed representation of the semantic segmentation result (spatter in red,
process light in green).

welding result, can be detected. Usually, these ejections move slowly,
making them detectable in at least one image. They are particularly
problematic in electronics manufacturing because the larger material
deposits create connections with increased resistance, and the deposited
ejections can cause short circuits in the component.

Further comparison of the spatter rating for welding processes of
hairpin dummies are shown in Appendix G. The recordings show that
more significant ejections and longer passages with recurring spatters
are recognized, while smaller spatters remain partially undetected.
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4.6 Evaluation and Discussion

This subchapter shows that process monitoring can be realized during
laser welding with the standard setup with a camera mounted coaxially
to the laser beam. It uses a camera with a maximal frame rate of 320 Hz to
assess the stability in the welding process due to the occurrence of spatter.
For this purpose, no external lighting or filters to limit the captured
camera image to the relevant areas are used. By not modifying the
laser welding station setup, the same design as for component position
detection for pre-process monitoring can be used. The CMOS sensor
in the Baumer VCXG-15M.I causes due to its relative response that
preliminary information about the plasma (in the VIS range) is captured
in the image data (Figure 4.16). This range is more comprehensive than,
for example, in the work of Gao et al. [50] or Zhang et al. [177], who
restrict to the lower range of 350 nm to 650 nm and 750 nm, respectively.
Another example is the work of Nicolosi et al. [119] or Lahdenoja et al.
[89], who use the upper range of ≈ 700 nm to ≈ 980 nm.

Figure 4.16 Relative response of the Sony IMX273 sensor of the Baumer VCXG-15M.I
camera [9].

Using a CNN for segmentation, the spatter can be separated from the
process light and the exhaust plume, even if there are more interfering
elements in the image. The comparison of the morphological opening
with the semantic segmentation using CNN shows the advantages. This
approach realizes a more accurate and robust spatter detection.

123



4 In-Process Monitoring

In addition, the chapter shows investigations in terms of the recording
hardware and compares different recording frequencies. It shows that
lower frequencies result in less spatter being recorded in the image
sequences. However, more significant weld defects, in particular, lead
to an increased spatter volume, which can also be detected with lower
recording frequencies. Also, large spatters, which usually have lower
velocities, are captured with a high probability in the image sequences.

Comparison with Diode Signal The evaluation compares the spatter
rating based on image data with the results of different diode signals.
Signals in range < 600 nm (plasma detector), 1064 nm (back reflection
detector) and 1100-1800 nm (temperature detector) are used. Similar
patterns can be detected as an overall result compared to the defined
spatter rating.

The Precitec LWM system [125] is used to record the signals. The sam-
pling rate of the diode signal is about 50 kHz, which is 158 times faster
than the camera frequency. Figure 4.17 shows the results of an overlap
weld of two copper sheets with a thickness of 2 mm. The exposure time
of the captured images is 30 µs.

Figure 4.17 shows a weld with two larger defects. These defects are
visible in a camera image of the weld taken after the process. In addition,
the figure shows the spatter rating defined in this chapter and the three
diode signals related to the welding result. The diagrams show that
especially the more significant ejections are visible in all signals. All
three photodiode signals, as well as the camera-based spatter rating,
increase strongly. Compared to the other signals, the value of the back
reflection (1064 nm) decreases to the normal level later after the defects.
Moreover, the signal shows a sharp increase at the beginning of the weld
when the laser beam is coupled. The figure also shows some captured
camera images with a superimposed representation of the semantic
segmentation result. These images also show strong ejections at the
corresponding locations.

Figure 4.18 shows the result of a weld that was realized using the
wobble technique, resulting in a good weld. It is essential to note in
the comparison the scaling of the spatter rating. This shows that with
a good weld, the metric’s range is no longer in the interval 0-25, but
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Figure 4.17 Comparison of diode signals and camera-based spatter rating of a defective
overlap welding. For better illustration, the figure shows additional camera images with a
superimposed representation of the semantic segmentation result (spatter in red, process
light in green).

only up to a maximum of 0.07. In the image-based spatter rating, these
small spatters can be partially captured. However, as mentioned before,
it is assumed that not all spatters are included due to the blind times
between frames. With a framerate of 320 Hz and an exposure time of
30 µs, this results in a time of about 3.1 ms between the frame captures.
Assuming the minimum image area of 11.58 mm again would mean that
spatters are no longer reliably detected with a horizontal speed greater
than 3.8 m/s. Thus, the metric does not allow a reliable conclusion on the
coverage of all spatters. Therefore, the threshold for detecting a defective
spot should be higher than 0.07, as the detected small spatters do not
allow meaningful conclusions. These small ejections are not perceived at
the signal of the photodiodes because the signal constantly fluctuates
slightly.

Figure 4.19 shows a weld without wobbling and without specially
generated defect cases. However, the subsequently taken camera image
shows that a more irregular weld is produced. In addition, the weld
shows defective areas at the beginning due to increased ejections. The
scaling of the spatter rate covers the range from 0 to 1.3. Comparing the
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Figure 4.18 Comparison of diode signals and camera-based spatter rating of a good
quality overlap welding.

metric with the photodiode signals shows that the smaller peaks of the
spatter rate are not captured in the diode signals. Furthermore, the first
peak in the process is seen only in the back reflection (1064 nm), while
the temperature (1100 nm-1800 nm) and the plasma (< 600 nm) do not
indicate this defect. However, the second more substantial peak in the
spatter rating coincides with a small peak in the plasma signal.

The comparison with Figure 4.17 shows that the larger defects produce
more distinct deflections in all signals. While the spatter rate there mostly
has a value above 5, the intensity value of the plasma and the back
reflection is greater than 6. In the good weld in Figure 4.18, the spatter
rate does not exceed a value of 0.7, and the diode signals remain at a
lower level. The intensity of the plasma (< 600 nm) does not exceed a
value of 6, the intensity of the temperature (1100 nm-1800 nm) and the
back reflection (1064 nm) remain in the whole course even under ≈ 5.

Comparing the temperature and plasma diode signals with the in-
process camera images is consistent with the finding of Kaplan et al. [81]
that the size and intensity of the plume strongly influence these signals.
Increased occurrence of the plume often correlates with the formation of
weld spatter. However, this correlation is not always given. For example,
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Figure 4.19 Comparison of diode signals and camera-based spatter rating of an overlap
welding with smaller defects.

no plume can be seen when looking at the image data in the first red
highlighted area in Figure 4.19. However, the pixels around the spatters
show a plume in the second red highlighted region. In this case, the diode
signals increase. Norman et al. [120] also found a correlation between the
plasma sensor, the temperature sensor, and the image intensity. However,
in contrast to the sensor signals, the image-based approach with CNN-
based semantic segmentation offers the advantage that the algorithm can
detect spatters independently of the smoke plume and the general pixel
intensity in the camera image. Therefore, for example, the threshold
value distinguishing between a good and a bad weld does not have
to be adjusted precisely to the image intensity. However, photodiode
monitoring, as well as camera-based monitoring, can result in spatter not
being detected. Therefore, it also depends on how critical the process is
and whether all spatter has to be recognized. For example, it is sufficient
for some processes to detect larger ejections, while others require every
ejection to be detected. In addition, the thresholds for a good weld must
be set manually with both systems.

Volpp [163] divide the potential spatter into two categories. The first
is eruptive spatter ejections, which occur in a stable process with large
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amplitudes and low frequencies in the keyhole. This results in an erup-
tion of micro-ejections from the escaping vapor. The second category
of spatters is these detachments that arise directly from the wall of the
keyhole. These spatters result from high frequencies at small amplitudes
and have a larger size and low velocity. In contrast to the eruptive spatter
ejections, they indicate an unstable process, which should be detected in
the in-process monitoring.

The evaluations have shown that larger and, thus usually, slower
spatters can be detected in most cases with a sampling rate of 320 Hz.
Additionally, defects leading to a high spatter volume are recognized.
The approach describes a possibility of monitoring the welding process
without additional hardware. Thereby the claim is not to realize a 100%
monitoring of all spatters. Instead, the aim is to detect process drift, faulty
pre-processing steps, material defects, or other significant deviations
from the standard process that indicate an unstable process.
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5.1 Introduction

Chapter 3 and 4 explain monitoring methods that are used before and
during the welding process. The methods aim to ensure a good welding
result and thus relate to the weld quality after the process. However,
since neither pre-process nor in-process monitoring can detect all defects,
downstream monitoring is also essential. As the previous chapter shows,
some defects are visible during and after welding. During the process,
this can be determined using spatters as an indicator. Afterward, the
defects are visible through surface characteristics and the geometry of
the solidified weld. This is shown, for example, in the overlap weld in
Figure 4.17. In this case, the in-process images show spatter, and the
weld defects are also visible in the post-process image. Other defect
cases, however, are only visible after the process. In hairpin welding,
for example, this includes a defect from Figure 2.16 where the pin pair
was welded with too little power. While there are no visible errors in
the process, it results in a connection that is too small and unstable. In
addition, the copper material tends to form pores during laser welding.
This defect is attributed, among other things, to the low surface tension
of molten copper. The pores have a negative effect on the electrical and
mechanical properties similar to a seam connection that is too small [77].
They are often subsequently visible on the seam surface or result in a
raised seam containing a hollow space.

Different sensor data can be used to evaluate the quality of the weld
seam after the welding process [51, 104, 162, 178]. Various works show
that the analysis of 3D data provides higher accuracy than the analysis of
2D camera images [28, 153, 154, 162]. The disadvantages of using 3D data
are higher hardware costs, higher system complexity, and long process
times. As in the previous chapters, this work focuses on influencing the
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setup and welding process as little as possible. Therefore, methods are
presented to evaluate the quality accurately based on a camera image
taken coaxially to the laser beam. Among other approaches, this work
presents a method that calculates the height map from a camera image
instead of capturing it with a 3D sensor. This method allows using
the height data for the quality assessment without the disadvantages
mentioned above.

The chapter is structured as follows: First, it compares the state-of-
the-art quality assessment of hairpins after welding. In addition, it in-
vestigates and compares different methods for 3D reconstruction. Af-
ter presenting the data basis and the experimental setup, the chapter
presents the developed algorithms. These include approaches from ma-
chine learning, which use semantic segmentation and 3D reconstruction
to extract quality relevant features. The final part of the chapter com-
pares the quality assessment methods before summarizing the results
and drawing a conclusion on the findings.

The method for subsequent quality assessment of welds using seman-
tic segmentation has been published in "Camera-based spatter detection
in laser welding with a deep learning approach" (Hartung et al. [183])
and was presented by the author at the conference Forum Bildverarbeitung
2020 in Karlsruhe. Different 3D reconstruction methods are analyzed in
the article "Analysis of AI-based single view 3D reconstruction methods
for an industrial application", which was published by the author in
the journal Sensors (Hartung et al. [185]). The comparison of different
quality assurance methods was presented by the author at the conference
Forum Bildverarbeitung 2022 and is published in the proceedings in the
article "Quality control of laser welds based on the weld surface and the
weld profile" (Hartung et al. [181]). A further comparison was published
by the author in tm - Technisches Messen in the article "Machine learn-
ing based geometry reconstruction for quality control of laser welding
processes" (Hartung et al. [182]).

5.2 State-of-the-Art

There are a variety of systems for quality monitoring and control in laser
welding. The use of machine learning methods is investigated and eval-
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uated by Mayr et al. ([103], [104]), and Weigelt et al. [168]. They conclude
that, unlike the development of many other ML applications, the amount
of data samples in the industrial environment, especially in research,
is limited. They also suggest that it is essential that the computation
time does not extend the production time [168]. This requires the algo-
rithms to be computed quickly. These two requirements both represent
challenges that must be considered during algorithm development.

Mayr et al. [104] use images from three perspectives, front, top, and
back, to evaluate the seam quality of hairpins. The different perspec-
tives allow for obtaining more information about the seam connection.
However, integration into a production line is more complex because
attaching cameras in a side view to the welding station is often difficult.
They use a neural network to obtain the weld quality. The network’s
resulting accuracy ranges from 61% to 92% [104]. Vater et al. [162] ana-
lyze and compare different CNN architectures to perform post-process
quality control of hairpins. Besides 2D grayscale images, they use 3D
scans as input to the CNN. Based on the 3D scans, the classification
accuracy is higher than using the intensity images. This result supports
the assumption that the height values contain relevant information for
quality assessment. Ye et al. [173] and Stadter et al. [153] also use a height
profile to determine weld quality in laser welding. Especially in hairpin
welding, the height difference between the pair of hairpins before and
after welding provides information about the volume of the molten
material. This volume, together with the other measured parameters
of the weld seam surface profile, shows crucial information about the
welding quality of the hairpins [28, 60]. Will et al. [170] also deal with
the evaluation of welds of hairpins in their work. They discuss the cor-
relation between the electrical resistance of the weld and the offset of
the copper pins. Their experiments conclude that the weld joint’s height
profile allows the determination of poor welds.

Due to the cost, higher system complexity, and acquisition time, it
is advantageous to calculate the height profile using a method of 3D
reconstruction instead of measuring it with a height scanner. Different
methods can be used to calculate the height values. For example, Lei
et al. [93] use shape from shading (SFS) to perform a 3D reconstruction
of a weld seam. Based on the curvature features, the weld quality is
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evaluated. Especially for the classification of complex welds with com-
plicated structures and features, the information content of the curvature
feature is limited. Due to this, the method reaches its limits and cannot
be used for more complex tasks. The SFS algorithm reconstructs a shape
based on shading variations, assuming a single-point light source and
Lambertian surface reflectance. Here, the brightness of an image pixel
depends on the direction of the light source and the surface normal. Due
to the height of the hairpin and the dome shape of the weld, a recon-
struction from a single image with SFS is not possible. The incidence of
light can only be realized on one side. The other side is accordingly in
shadow [66]. This means that several images would be necessary for a
complete height calculation. Rodríguez-Gonzálvez et al. [132] calculate a
3D reconstruction from several images taken during the data acquisition
phase with different relative positions between the camera and the weld.
This way, they calculate a 3D model of the weld based on the different
relative positions. Using this model, they perform a quality assessment.

In addition, DL-based methods for 3D reconstruction are showing
promising results in various research areas [20, 97, 141, 148, 151]. While
classical methods deal with shape and image properties such as re-
flection, albedo, or light distributions, DL-based methods use complex
network architectures to learn the correlations between 2D and 3D data.
However, many approaches are challenging to integrate into existing in-
dustrial processes because they require multiple cameras, further sensor
technologies, or new lighting equipment. Processes based on only one
camera are necessary for easy integration in the laser welding station.
Zhang et al. [176] propose reconstructing 3D surfaces of human faces
from corresponding 2D images using a stacked autoencoder (SAE). Low-
dimensional features of the 2D and 3D images are learned separately
using autoencoders and connected by additional neural network layers.
This results in a deep neural network that has a 2D image as input and
3D height information as output. Baby et al. [7] use a similar approach
by implementing a CGAN [110] to reconstruct a depth map from a sin-
gle image. The advantage of the generative adversarial network (GAN)
[57] is that it is trained to produce realistic-looking images. The CGAN
considers additional information besides the noise vector that is given
as input to the network during image generation. This makes it suitable
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for creating height maps based on an intensity image. Also, Arslan and
Seke [5] use a GAN structure to reconstruct 3D informations from 2D
images of faces [4, 5]. They extend the GAN approach using Wasserstein
distance [3] to achieve better predictions.

This work presents and compares different camera-based methods
for post-process quality assessment. One approach considers the seam
surface and geometry to conclude the quality. Another approach applies
DL-based methods for 3D reconstruction to calculate the height maps
based on an image. Afterward, the calculated height information is used
by an algorithm to determine the weld quality.

5.3 Experimental Setup and Data Basis

The quality assessment is performed on a data set X with n = 953
samples of laser-welded pairs of copper pins. Different welding results
are recorded to obtain a representative data set that includes error cases.
The setup presented in Section 2.2.4 is used for data acquisition. Thus,
the sensors are mounted on-axis on a programmable focusing optic, i. e.,
the component is observed via the light path of the optics coaxially to
the laser beam. This has the advantage that no external installation is
required at the welding station, which restricts the welding process as
little as possible.

Height Data An OCT scanner from Lessmüller Lasertechnik is attached
to the first sensor output. The sensor uses FD-OCT to capture the relative
height information of the weld. It performs 1000 line scans analogous to
those shown in Figure 5.1 to capture the entire weld area. The x-direction
of the image represents the position of the scan point of the line scan,
and the y-direction represents the actual height value. While the first
row shows three line scans of a good weld, the bottom row shows the
scans of a misaligned pin pair. These line scans show that the front left
corner of the weld is raised, which can be attributed to different heights
of the pins before welding. The individual line scans are combined to
create an overall height map of the part, as shown in Figure 5.2(a).

The lateral resolution of the height map is 1000 × 1000 pixels, with
a step size of 7.5 µm. The height information is recorded in increments
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Figure 5.1 OCT line scans at different positions (left side, center, right side). The y-axis
shows the height value, while the x-axis represents the scan position. Top row - similar
height values indicate a good seam. Bottom row - the different heights indicate the fault
case (misaligned pin pair).

of 11.7 µm, with the sensor covering a measurement range of approxi-
mately 12 mm. For further processing, the height values from the OCT
scan are converted to a grayscale image, where each pixel of the image
represents a scan point from the height map. The height informations
are scaled to 256 gray values, resulting in increments of 46.8 µm. This
loss of accuracy in the elevation data does not affect any downstream
quality assessment based on the height data. The height difference of
the hairpins is in the millimeter range, and the error cases show more
significant height deviations than 46.8 µm. Such minor deviations are
not relevant, so scaling to 256 values can be performed. Among others,
Vater et al. [162] show that a meaningful quality assessment can be made
with this simplification.

Since OCT is susceptible to artifacts and noise, undesirable interfer-
ence occurs in the 3D images, which is why pre-processing of the data is
necessary. For example, the opening in the stator surrounding the hairpin
is outside the measurement range of the OCT scanner. Some component
areas are still close enough to reflect a signal but are recorded with false
height values based on the detected signal frequency. Other component
areas are too far from the scanner, so the sensor only provides a noise
signal. The hairpin surface is the focus of the parameterization of the
reference arm, which means that the height values are correctly detected
there. The other areas are cut out of the recording in a pre-processing
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(a) Height map (in µm) of a
welded pair of hairpins.

(b) Foreground mask weld
surface.

(c) Height map (a) win-
dowed with the fore-
ground mask (b).

Figure 5.2 The hairpin surface is detected by semantic segmentation in the height map
(a). Subsequently, the height map is multiplied with the foreground mask (b) of the model
prediction, resulting in the pre-processed height map (c).

step. For this purpose, a CNN has prevailed over edge-based algorithms,
such as high-pass filtering. The high-pass filter can be used to detect the
areas with a substantial pixel difference, i.e., the pin edges. Downstream
steps, such as binarization of the high-pass signal and contiguous region
detection, can be used to extract the pin region. This algorithm also
works well in many cases, but sometimes, it removes incorrect areas,
such as unwelded pin areas at the edge of the weld. The use case is
similar to detecting the component positions in a camera image. The
image shows height values instead of intensity values but still contains
interfering elements and often unclear contour boundaries. Analogous
to the procedure in Chapter 3, a semantic segmentation using an SDU-
Net architecture performs detection of the pin surface. The mask of the
foreground class cuts out the height map to the relevant area, as shown
in Figure 5.2. Another pre-processing step eliminates artifacts on the
hairpin surface by outlier detection. The artifacts are caused partly by
lens contamination but can also be caused by measurement errors of
the OCT. An artifact is defined by an outlier of a few pixel values that
deviate from their local environment. It can be physically excluded that
the welding process, such as spatters, causes such artifacts. A distance-
based algorithm detects outliers. It compares the pixel values with the
respective values of the neighboring pixels and replaces them with the
neighborhood average if the deviation is too large.
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Camera At the second sensor output, a camera records the intensity
images of the welded hairpins. For this purpose, a Baumer VCXG-15M.I
industrial camera based on CMOS technology is used, as shown in the
setup in Section 2.2.4. The images have a resolution of 720 × 540 pixels,
with a pixel pitch in x- and y-directions corresponding to 18 µm each.
The very reflective surface of the copper material causes reflections and
shading in the image. These can be reduced, for example, by using a
dome or lateral illumination. With dome lighting, the light is transmitted
into a dome-shaped reflector and diffusely scattered onto the object. The
reflector is mounted at a similar height as the component. As a result,
the component is illuminated evenly and without shadows. This makes
the surface structures and properties of the seam more visible in the im-
age. However, this type of lighting interferes with the welding process
because the lighting surrounds the part. This means the illumination
must be repositioned each time new joining partners are welded. In ad-
dition, the lighting was often contaminated by material deposits during
welding if it was not removed for the welding process. The deposits also
change the illumination situation for the data recorded subsequently.
Furthermore, more contamination also means more frequent cleaning.
The ring light from Section 2.2.4 is attached to the optics and thus has
a certain distance to the component and the welding process. Not only
is it less contaminated, but it also does not interfere with the change of
joining partners since it is not in the processing field. To create a realistic
situation for quality assessment based on the system’s camera data, il-
lumination with an LED ring light is used. The light is attached to the
optics and illuminates the component from above. Figure 5.3 shows an
example of the captured camera images with ring illumination compared
to images of the same component with dome illumination. Appendix H
shows another comparison between a ring light attached to the optic,
dome illumination, and side illumination.

Mapping The different sensor data must match exactly to apply the
3D reconstruction algorithms, which will be presented in Section 5.4.3.
These algorithms require identical image pairs in translation, rotation,
and scaling. Since the sensors are not calibrated to each other during
data acquisition, the data must be adjusted afterward.
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(a) Ring illumination. (b) Dome illumination.

Figure 5.3 Camera image of a welded hairpin pair taken with a ring illuminator attached
to the optics (a) and with dome illumination (b).

As described in the experimental setup, the acquired data have dif-
ferent sizes and scales. The performed mapping uses the image area
corresponding to the OCT scan. Even if a larger area is visible in the
camera image, the height information is only available for the area of
the OCT scan. The corresponding area in the camera images is defined
manually, and the images are cropped to this size.

Since the resolution of the intensity images is lower, this is adopted for
both data sets. Therefore, the resolution of the height scans is reduced
accordingly. This results in a loss of accuracy but is acceptable for the use
case. The component’s smooth surface structure does not show drastic
changes within 7.5 µm. Therefore, scanning at a distance of 18 µm is
sufficient.

The relevant criterion for mapping is the shape of the weld seam.
This can be seen in both the camera image and the height profile. The
weld area is detected on the intensity image and the height map due to
interfering image elements using semantic segmentation. This results in
a one-hot encoded output of the foreground class, which is converted to
a binary mask that highlights the relevant surface. The centroid of the
masks’ area is then computed, and the masks are centered on this point.
Finally, by exploiting the correlation of the polar coordinate images, the
rotational offset of the images is calculated. The exact mapping algorithm
is described in detail in Appendix I. In a productive setup, it is not
necessary to map the data manually since a uniform sensor calibration
is available. This pre-processing step is due to the experimental setup.
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Data Basis Different welding results are recorded to obtain a represen-
tative data set that includes error cases. The causes of the errors and the
formation of different error cases are presented in Section 2.3 and Fig-
ure 2.16. To reflect the situation in the industry with low data availability,
10% of the data are used for algorithm development. The other 90% are
used for testing and evaluation. It results in a data set Xtrain with n = 95
and Xtest with n = 858. The selection of the small data set is motivated
by very little data available, especially from error cases. Developing a
quality assurance algorithm should not result in many faulty materials
(scrap) and a high time requirement for collecting the database.

5.4 Algorithm

Various algorithms for the weld inspection are analyzed to compare the
quality assessment results. The height data acquired by OCT, intensity
images acquired by a monochrome camera, and reconstructed height
data are used to create feature vectors as input for a rule-based quality
evaluation.

5.4.1 Height Profil

The OCT sensor measures the relative height differences within the
weld seam. Good welding of a pin pair results in a round welding bead,
which has its maximum in the center [28, 60, 94]. Therefore, the line scans
should have a structure like in Figure 5.1(a) over the entire weld bead.
Figure 5.1(b) shows the images at the same positions of a weld with mis-
aligned pins for comparison. Analog Lessmueller Lasertechnik GmbH
[94] and Baader et al. [6], the quality assessment algorithm compares
multiple line scans with each other. It considers various criteria.

Analogous to Lessmueller Lasertechnik GmbH [94], the algorithm
considers the difference between the maximum height values of the
individual line scans and the pin center’s height. This comparison detects
the misalignment of the hairpins or misshapen welding beads. Figure 5.4
visualizes the height data and shows the procedure. Figure 5.4(a) shows
a good weld, which results in a curve with its maximum in the center.
The defects in Figure 5.4(b) and (c) are visible in the curve profiles in
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Figure 5.4 Difference of the maximum values of the line scans to the center. The maximum
value of each line scan is determined. Then the difference to the center is calculated and
the resulting values are plotted in a curve. Mathematically this means for each value
f(li) = −(hc − max li), where li is the line scan in x- or y-direction with index i and hc is
the height value in the center. Figure (a) shows a good weld, which results in a curve with
its maximum in the center. Defective welds, such as misaligning pins (b) or pins that are
not in the laser’s focus (c), can be detected in the curve profile.

the x- and y-directions. While the misaligned pins (b) show an elevation
on the left side instead of in the center, the almost non-welded pin pair
(c) does not show any elevation. In addition to the curve profile, the
algorithm evaluates the line scans’ maximum and minimum distance
to the height of the pin center. If the distance to the center is too small,
the weld is not sufficiently stable. If, on the other hand, the minimum
distance is too large, this provides information about pores or cracks in
the weld. The algorithm also considers the width of the weld bead in
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the evaluation, as this allows conclusions concerning a radial or lateral
offset between the pins.

5.4.2 Weld Area and Shape

The evaluation of the weld seam quality based on the camera image
has been investigated in different works. A comparison of the quality
evaluation using height maps and camera images shows that the camera
images often also contain relevant information for the quality evaluation.
The comparison investigates the detection of spatter deposits on the
component. Furthermore, an evaluation of good and bad overlap welds
is performed. Simple algorithms can be determined to detect charac-
teristic defect properties, such as raised spatter deposits or a raised or
collapsed seam surface on the height profile. For example, a threshold
analysis can separate good from poor welding results. Using CNN for a
pixel-wise classification, similarly good results could be obtained on the
camera image. The detailed results of the analysis of the overlap welds
are published in the conference proceedings of the Forum Bildverarbeitung
2020 (Hartung et al. [183]).

As also mentioned in the introduction, it is not always possible to
capture the height profile due to time constraints and the increasing cost
and complexity of the system, including a height scanner. Therefore,
this chapter shows an alternative approach to the one using the height
data by deriving the quality-relevant properties of the weld from the
grayscale image. Similar to the height values, the algorithm can also
infer the width of the weld from the grayscale image. In addition, it can
also detect the size of the weld surface in the 2D intensity images. This
information provides information about the stability of the weld. For the
detection of the seam area, threshold-based methods reach their limits
due to the low-intensity differences and contrasts in the images. Another
challenge comes from the reflective material properties of copper. The
component reflects the light from the lighting above. Because the sur-
face is not smooth, the light is reflected in different directions, and the
camera captures different intensities. Figure 5.5 shows varying welding
results with reflections and overexposed areas. These reflections further
complicate the evaluation. However, CNN-based semantic segmentation
detects the area well, even with a small network architecture. The model
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Figure 5.5 The detection of the surface of the weld and the unwelded pins are shown
in a camera image. In each case, the right image shows the binary mask overlaid on the
image (weld in green, unwelded pin surface in red). Different welding results are shown:
(a) good weld, (b) misaligned pin pair, (c) pin not in the focus of the laser, (d) insulated
copper rods.

is trained to a three-class problem to detect both the welded seam and
the non-welded pin regions beside the background. Since the model
deals with the same type of images as in Chapter 3, the SDU-Net archi-
tecture is used, which has prevailed in the evaluation from Section 3.4.1.
Also, the same training configuration is used. The predicted masks are
shown in an overlay representation in Figure 5.5.

Many defect cases are detected by evaluating the width of the weld
and the size of the two classified areas. As a further evaluation, an al-
gorithm analyses the contour shape of the weld seam. In good welds,
the shape is approximately circular and has no solid corners and edges.
However, if too little material is melted during welding, no round weld
bead is formed, and the contour is slightly angular due to the initial
pin shape. Other defects, such as copper pins that have not had their
insulation stripped, also result in edges in the weld shape. Since the weld
surface is a closed contour, Fourier descriptors can be used to character-
ize it. Analogous to Kuhl and Giardina [87], the algorithm computes the
Fourier descriptors of the contours. Fourier descriptors are derived from
the Fourier series for the cumulative angular function of the cross-section
boundary. Thus, an evaluation of the Fourier series’s harmonics con-
siders the contour’s complexity. In particular, in combination with the
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Figure 5.6 Quality-related features derived from the grayscale images. The correlation of
the features derived from the 2D image with the seam quality based on the height profile
is shown (GW -good weld, DW - defective weld). The gray lines symbolize the limit values
for a GW and the thick black lines enclose the area in which the GW are located.

information about the size of the non-welded pin region, this contains
information about insufficiently welded pin pairs. The relationship be-
tween the defined features and the evaluation result of the seam quality,
based on the height profile, is shown in Figure 5.6.

Limiting the suitable ranges of the defined features makes it possible
to detect insufficient welds. When comparing the pin widths in the
x- and y-direction, for example, it becomes clear that many defective
welds (DW) are outside a defined range. In contrast, good welds (GW)
accumulate in this area. Also, the outliers can be identified as DW based
on the total welded cases or the non-welded pin range. Thus, by setting
a maximum limit for the non-welded pin area at 1 mm2 and a maximum
and minimum limit for the welded area 15 mm2 and 22 mm2 GW can be
distinguished from DW. The contour complexity and the pin area are
contrasted in the third diagram. Based on the correlation between the
two features, a further separation between GW and DW is done. For
example, if a larger portion of the non-welded pin area is visible, but the
contour is still very circular, this indicates that only the outer corners of
the pins are not welded. In this case, the weld can still be classified as
GW. However, if the shape of the weld is more complex, this indicates
that the pin area is visible because one of the pins was not fully welded.
As a result, it is not possible to ensure a stable connection. Therefore, a
high contour complexity combined with a high percentage of visible pin
area can be considered another indicator for a DW.

142



5.4 Algorithm

5.4.3 3D Reconstruction

In the third approach, an AI-based single-view reconstruction method is
used. This approach combines the advantages of the two methods just
presented. First, it calculates the height profile from the captured camera
image. For this purpose, only one camera image must be taken in the
production line. Then the algorithm can replace the time-consuming
OCT scan. Thus, further analysis can still be performed on the more
informative height profile.

There are several approaches for image-based 3D reconstruction. The
greatest challenge is using only a single camera image of the task. ML
algorithms especially perform well in this application. Based on the state-
of-the-art mentioned at the beginning of this chapter, the methodologies
addressed there will be applied to the industrial data set of welded
hairpins, among others.

SAE On the one hand, the approach of Zhang et al. [176] is applied
using a stacked autoencoder (SAE). An SAE differs from a traditional
AE in the way of training. It is characterized by training each layer
separately and then stitching them together. An autoencoder learns to
reconstruct an input image, compressing the input features into a low-
dimensional latent space. Thus, the input also matches the expected
output. Therefore, to use the model for 3D reconstruction, two separate
models are first trained for feature extraction. One model learns the
latent space of the intensity images, and the other learns that of the
height maps. Then the encoder of the model trained on the intensity
images is connected to the latent space and the decoder path of the
second model. A fully connected layer is used for the connection of the
latent spaces. The neurons in the fully connected layer are optimized for
mapping to ensure a good connection. This results in a network with
a 2D intensity image as input and a height map as output. The exact
implementation of the network and the training procedure are explained
in more detail in Appendix J.

GAN As a second method for 3D reconstruction, the CGAN is used
following the approach of Baby et al. [7] and Arslan and Seke [5]. The
generator of the CGAN creates a realistic height map y and receives
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an intensity image x as a constraint in addition to the noise vector z.
This results in the output y, G : {x, z} → y. The construction of various
GAN structures is possible with the choice of a generator network, a
discriminator network, and a loss function. This work analyses four
different structures. Table 5.1 shows the configurations.

The generator always consists of a U-Net modification. While the first
three configurations follow the structure of Isola et al. [72], the fourth im-
plementation follows the SDU-Net architecture defined in Section 3.4.1.
Configuration I uses the PatchGAN analogously to the procedure of
Isola et al. [72] as a discriminator. In contrast, configuration II, III, and
IV use a deep convolutional GAN (DCGAN) [127] in combination with
a conditional version of the loss function from the Wasserstein GAN
(WGAN). The loss functions are regularized using L1 or L2 distance with
the weighting factor a = 100. The training procedure of the networks
uses the standard approach from Goodfellow et al. [57]. Appendix J
shows the exact implementation of the network architectures of the
different configurations and explains the training procedure.

Table 5.1 Configurations of GANs for 3D reconstruction.

Configuration Generator Discriminator Loss function

I U-Net PatchGAN CGAN + L1
II U-Net DCGAN WGAN + L1
III U-Net DCGAN WGAN + L2
IV SDU-Net DCGAN WGAN + L2

U-Net The third model architecture used for the 3D reconstruction task
is based on the U-Net architecture proposed by Ronneberger et al. [134].
The architecture has been introduced for the semantic segmentation task
and has achieved outstanding results on different data sets. As well
this work demonstrates its use for various semantic segmentation tasks
in the previous chapters. The difference between the computation of
height maps and semantic segmentation is that each pixel is assigned a
corresponding height value as a label instead of a class assignment. This
means that the output of the regression model is no longer converted
to the probability of class assignment but to the corresponding height
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value. It is a more demanding task than semantic segmentation because
the number of gray values extends the number of possible values. It
includes up to 256 values depending on the height profile. In contrast,
the number of classes in semantic segmentation is usually more limited
than the number of height values. An advantage is that no manual
labels have to be created since the height maps are available via a sensor
recording.

To take advantage of the superior segmentation performance of the
U-Net while overcoming drawbacks such as small receptive fields, the
stacked variant of the extended convolution U-Net proposed by Wang
et al. [166] is used. This architecture has repeatedly demonstrated its
worth in previous chapters on similar image data. For the 3D reconstruc-
tion of welds, local areas such as spot heights or spatter are essential.
However, larger areas, such as the shape of the weld bead, are also impor-
tant. The different dilated convolutions capture both. The architecture of
the SDU-Net has the same structure as in the semantic segmentation task.
However, the training uses the MSE as loss function and an ADAM opti-
mization with β1 = 0.9 and β2 = 0.999. In addition, data augmentation
with rotation, shift, shear, zoom, and flip is used for regularization. Since
the model is tiny, with only 162 423 parameters, it can also be executed
efficiently on the edge hardware directly on the plant.

Comparison Table 5.2 shows the results of the different models and
corresponding configurations based on the mean absolute error (MAE),
the standard deviation (SD), and the root mean squared error (RMSE).
It also shows the number of parameters per network architecture. The
number of parameters of the GAN configurations refers to the generator
network since this is decisive in the inference, and the discriminator is
only used for the training.

As a further evaluation, Appendix K shows reconstruction results of
different examples. The jet colormap is used to visualize the height maps
and the absolute errors compared to the ground truth.

The results show that the SDU-Net approach outperforms the other
methods. In terms of model size and prediction result, measured by
absolute error, the SDU-Net achieves better values than the GAN and
SAE approaches.
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One explanation why the SAE performs worse than in the example
of Zhang et al. [176] can be traced back to the data used. While they
use syntetic data, the hairpin images have more structures, reflections,
and interfering elements. This complicates the reconstruction task. In
addition, the autoencoder works as a loss compressor. Although it has
many parameters, even the most parameters of the methods used, it
loses much information per layer. In constrast, the U-Net architecture
counteracts this problem with skip connections, among other things.
The examination of the results in Appendix K shows that especially the
edges of the contour are predicted to be very blurred with the SAE.

Table 5.2 Number of parameters and the mean MAE and RMSE of the 3D reconstruction
algorithms. In addition of the MAE, its SD is calculated to indicate the dispersion in the
test samples. The parameters of the GANs refer to the generator network.

Structure Parameters MAE (µm) SD (µm) RMSE (µm)

SAE 197 981 736 237.3 82.5 471.0

GAN I 54 419 713 197.7 85.9 473.9
GAN II 54 419 713 174.5 63.1 339.2
GAN III 54 419 713 142.2 57.2 303.0
GAN IV 162 423 130.0 70.1 341.8

U-Net 2 164 305 74.4 38.6 237.8
SDU-Net 162 423 71.4 26.1 229.4

The U-Net architectures use convolutional layers in addition to the
skip connections, which effectively extracts the image features. Com-
pared to the U-Net the extended SDU-Net is more efficient because it has
a larger receptive field due to the stacked dilated convolutional layers.
Therefore, it can better capture image pixel correlations and show higher
robustness to local variations. This improvement in results is reflected in
the application within the GAN structure and the end-to-end training
of the architecture. Overall, the result is worse in the training process of
the GAN. While the U-Net-based approach optimizes the parameters in
the end-to-end training, the GAN trains two adversarial networks. The
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advantage of this training method is that it produces realistic-looking
images. This can be seen, for example, in the clearly delineated edges.
However, the model is forced to draw clear boundaries between the
edges and the background from the beginning of the training. This can
have a negative effect on the progress during training. The higher devia-
tions at the edges are more significant when evaluated with MAE and
RMSE. In addition, samples from underrepresented defect classes can be
reconstructed worse by the GAN. This could be because the network is
more oriented towards the frequently occurring samples showing good
weld results.

Another reason the networks show larger deviations from the ground
truth at the edges could be the manual mapping algorithm. This does
not ensure that the edges are exactly matched. If slight deviations exist,
this can lead to inaccuracies and inconsistencies in the neural networks.

The number of parameters affects the training time, the neural net-
work’s memory requirements, and the inference time. As discussed in
the previous chapter, running on an edge device directly at the plant
is preferable. This is possible due to the small and optimized model.
Besides the good results, the number of parameters is another aspect
that suggests using the SDU-Net architecture.

Quality Assessment The results from Table 5.2 were generated with
a training-test split of 80 to 20. After reducing the training data Xtrain

to 10%, n = 95 samples, an MAE of 93.5 µm and an SD of 68.7 µm
could still be obtained with the SDU-Net on the test data set Xtest with
n = 858 samples. Because the data set of industrial manufacturing
processes from one line is generally homogeneous, the learned features
can be transferred well. Detailed evaluations of the reduction of the
training data sets and the effects on the SDU-Net results are shown in
Appendix L.

Since small deviations of a few micrometers are, in most cases, not
relevant for quality evaluation, slight deviations in the reconstruction
can be tolerated. More critical is the computation time for the algorithm
and the effort to teach the algorithm. Using the small SDU-Net archi-
tecture, running on standard hardware directly at the plant is possible.
Depending on the accuracy and the associated size of the input dimen-
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sion, the execution time is 16 ms for 256 × 256 pixel resolution or 45 ms
for 432 × 432.

To compare the model with both methods from Section 5.4.1 and 5.4.2,
it is trained on the same training data. The SDU-Net is trained with Xtrain

with n = 95 samples. The model uses an input resolution of 432 × 432.
After calculating the height profile, the algorithm uses the same quality
criteria as for the OCT scans in Section 5.4.1.

5.5 Result Comparison

The quality assessment of the Xtest with n = 858 test samples is per-
formed separately with each method to evaluate the different approaches.
Ground truth is the division into GW and DW based on the features
derived from the entire recorded height map using OCT. This method
is often used as state-of-the-art in a quality check of hairpins [6, 94].
However, the disadvantages are primarily the execution time and the
hardware costs. Therefore, the two methods that perform the quality
assessment based on a camera image are compared with the result of the
entire height profile recorded by OCT.

Section 5.4.2 and 5.4.3 evaluate the quality assessment based on the
shape visible in the camera image (WS) and the AI-based 3D reconstruc-
tion (3D-R) data. When height data is used for quality assessment, only
a few line scans are usually acquired due to time constraints. Therefore,
another analyze uses an approach in which only six OCT scan lines
(three in the x-direction and three in the y-direction) are considered in
the evaluation (6L). One scan is in the center of the weld, and the other
two are on each side. The feature vectors for the quality assessment are
defined based on those of the entire height map. Table 5.3 presents the
results using confusion matrices.

The ML-based 3D reconstruction using the camera images gives the
best results of the three methods compared. 842 of the 858 test samples
are classified in the same way as with the ground truth data, even if
only the camera image was used as input. The discrepancies are due
to borderline cases. As described in the previous section, the model is
trained on n = 95 images and has an average deviation of 93.5 µm from
the ground truth. Due to the rule-based partitioning into GW and DW,
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Table 5.3 Confusion matrices to compare the results of the different methods. The results
of the approaches: Weld shape extracted from the camera image (WS), ML-based 3D
reconstruction (3D-R), and six line scans OCT (6L) are compared with the ground truth
based on the features from the entire recorded height map (OCT).

WS WS
GW DW

OCT 679 20
GW
OCT 25 134
DW

3D-R 3D-R
GW DW

OCT 694 5
GW
OCT 11 148
DW

6L 6L
GW DW

OCT 688 11
GW
OCT 20 139
DW

in case of doubt, the deviation from one pixel value may yield a different
result. One pixel value corresponds to a deviation of 46.8 µm in height
and a difference of 18 µm in width. The borderline cases are welds where
the width or the minimum height of the weld bead was barely reached
with one method and just missed with the other.

When evaluating the results based on the camera images, it is no-
ticeable that more pin pairs with height offset were detected as GW.
This wrong classification can be attributed to the fact that the height
offset is not considered in any of the used image-based classification
features. The offset cannot be identified by the shape, size of the weld
bead or the area of the unwelded pin surface. Therefore, this error case,
unfortunately, often remains undetected. In contrast, samples that are
incorrectly classified as DW can be attributed to tiny weld beads. If less
material was melted during the process, the welds often have a rather
rectangular shape due to the pin shape. In some cases, the height of the
weld is sufficient to create a stable weld, although it still has an edged
shape. Based on the camera image, these samples are classified as DW
because they look very similar to unstable low-power welds. GWs with
a round weld bead are reliably detected as GWs.

The evaluation with a few line scans also shows more deviating results
than the evaluation with 3D reconstruction. In addition to borderline
cases, these methods incorrectly classify pin pairs in which one of the
pins was only partially connected or weld seams with a spatter as GW.
Furthermore, insufficiently welded pin pairs (e. g., Figure 2.16(c, d)) were
missed more often.
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5.6 Evaluation and Discussion

This chapter showed different methods for the quality assessment of
weld seams in hairpin welding. In addition to analyzing the acquired
height profile, methods were presented that determined the quality
based on a grayscale image. For the image-based evaluation, two differ-
ent approaches are shown.

First, the approach in Section 5.4.2 uses features derived from the
image, such as the width and shape of the weld, to perform a quality
assessment. The most significant deficiencies were pin pairs, which have
an axial offset between the pins. This misalignment is not captured in the
image-based features and, thus, is not considered in the quality assess-
ment. With this approach, the misalignment would have to be checked
and corrected before welding, completely avoiding the faulty weld. In
addition, Will et al. [170] show that radial and lateral misalignment have
a more significant effect on weld quality than an axial misalignment
measured by the electrical resistance of the weld joint. The significant
advantage of using the image-based features is that no additional height
scanner is needed. This reduces cost, setup effort, and acquisition time
and allows quality analysis through a software update. The calculation
of the binary mask following the approach shown in Section 5.4.2 only
requires 16 ms on an i5-7300U CPU. It can be integrated into the process
with the subsequent algorithmic evaluation without additional hard-
ware requirements. The only additional effort is labeling the data, which
is necessary to create the model. Thereby, the methods presented in
Section 3.6 can be used to optimize the labeling process.

The second approach, shown in Section 5.4.3, performs an ML-based
3D reconstruction on a single grayscale image and then uses the com-
puted height data for quality assessment. This approach achieves higher
accuracy and correctly matches most test patterns, except for some bor-
derline cases. The presented approach allows reconstruction based on
a single grayscale image. When comparing the different approaches,
the SDU-Net performes better than the GAN, the SAE, and the vanilla
U-Net. The superiority of GANs and U-Nets over SAE is immediately
evident in the results. Compared to training two adversarial networks
in the GAN approach, the U-Net-based approach’s end-to-end training
results in higher accuracy. This could be because the GAN produces
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real-world images with sharp edges, even if it is not confident in the
prediction. In addition, the SDU-Net is more efficient than the vanilla
U-Net due to the stacked dilated convolutions. The calculation effort and
prediction time are critical by running the 3D reconstruction algorithm
for quality monitoring on an edge device directly on the plant. So for
integrating the algorithm into the industrial manufacturing process, a
small and optimized architecture is preferable. Using stacked dilated
convolutions reduces the number of parameters since a less deep net-
work is needed to cover the same receptive field. Depending on the size
of the input dimension, the execution time of the SDU-Net is 45 ms for a
resolution of 432 × 432 pixels. This method of single-image-based 3D re-
construction offers another possibility for quality assessment. In contrast
to the feature-based evaluation of the camera image, a height scanner is
required to train the AI model. However, this does not require manual
data labeling with human effort for model training. After the model is
trained, only one camera image is needed in the production system. In
addition, the time for height scanning and manual pre-processing of
height data for measurement errors can be saved.

Knowledge-Based Model The two-step approach with a downstream
quality analysis based on expert knowledge and defined regularizations
brings several advantages for model development. Using a semantic
segmentation model makes it possible to work with a smaller data set
than, for example, when directly classifying into GW and DW.

The result of a trained regression model on the image data that predicts
the division in GW and DW is shown in Appendix M. This approach
teaches a small CNN architecture on the two-class problem, resulting in a
probability for a class label. The algorithm results in 62 false positive and
14 false negatives samples. These are 76 erroneous predictions out of 858
samples. In the training process, after a short time, only the training error
improves, while the validation error increases. This behavior indicates
overfitting to the training data and poor generalization performance of
the model, despite the use of regularization methods.

The advantage of combining semantic segmentation and rule-based
quality assessment is mainly due to three aspects: First, a pixel-wise
loss function is used in semantic segmentation. This loss considers each
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pixel as an individual training pattern in its evaluation. Therefore, the
effective number of training samples that optimizes the neural network
increases [159].

Secondly, the algorithm does not need to separate GW and DW in
the training process. It can consider all samples as equivalent training
data. In most cases, there are only a few samples of defect cases since the
production line should be set so that primarily good parts are produced.
The failure cases often have to be intentionally provoked. The separation
brings the disadvantage of training on an unbalanced data set, which
can only be compensated for algorithmically to a limited extent.

The third aspect is that training can apply a stronger form of data
augmentation in the semantic segmentation approaches. For example,
the pixel-by-pixel mapping of the prediction mask must work for big and
small zoom factors. In classification, too large a weld geometry means
that the weld is defective, as in the defect case in Figure 2.16(f). Thus, a
too large zoom factor could change the label from GW to DW. Due to
the quality classification based on defined rules, not all error cases must
be present in the training data.

Another advantage of the hybrid AI approach is that in the two-stage
process, errors in the ML algorithm are detected by the downstream
algorithm in many cases. The weld must be manually inspected if the
rule-based algorithm reveals an error. For example, if the semantic seg-
mentation assigns the wrong pixels to the weld surface or the pin surface,
the rule-based algorithm will result in an error. The same applies to the
reconstruction of erroneous height data, which lie outside of the defined
good range. In these cases, errors of the ML are thus also detected.

Extension to other Data Sets Obviously, the methods are also applica-
ble to other components, besides hairpins. For example, both the method
of 3D reconstruction and the method of evaluation using semantic seg-
mentation can be used to check welds of overlap welding. Figure 5.7
shows an example of the results of three overlap welds.

The figure shows in the first column an intensity image taken with a
camera through the beam path of the focusing optics. Then the one-hot
encoded semantic segmentation results with an SDU-Net architecture are
shown. The results show the classes GW, DW, and spatter. A background
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Figure 5.7 Semantic segmentation of overlapping welds: (a) good weld, (b) less power,
(c) gap. The one-hot output layers are shown in the jet colormap and as an overlaid
representation on the camera image (GW in green, DW in blue, spatter in red). In addition,
the 3D measured values, reconstructed values, and the pixel-wise difference are also shown
in a jet colormap representation.

class was also trained, which is not shown for space reasons. Then, in
the fifth column, the figure shows an overlaid representation of the
binarized class results with a threshold of 0.5 on the camera image.
The sixth column shows the elevation profile recorded by OCT. For
this, analogous to the procedure in Section 5.3, several line scans are
performed, which are subsequently assembled into a height map. Due to
the length of the weld seam and the chromatic aberration caused by the
focusing optics, the height data is slightly distorted. These measurement
errors were subsequently corrected but can still be seen slightly at the top
of the false color representation. The seventh column shows a calculated
height map with an SDU-Net based on the intensity image. These images
also show slight distortion at the edge. This means the network learned
this characteristic. The last column shows the difference between the
ground truth of the height map and the calculated height map.
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The examples show a linear weld joining two steel sheets. Figure 5.7(a)
shows the result of a good weld with 6 kW. The second line is a weld
with 4.5 kW, resulting in an insufficient joint. In Figure 5.7(c), a gap
of 500 µm was created between the steel plates. This also creates an
inadequate joint. The seam incidence is readily apparent in the elevation
data plot. In both (b) and (c), the seam does not protrude beyond the
measured height of the sheet. Especially (c) clearly shows that the seam’s
height is below the height of the sheet. The errors can also be detected
by semantic segmentation in the camera image, where the seam pixels
are classified as DW.

All three samples contain spatter that has been deposited on the sheets
and the weld seams after the welding process. These were detected in the
one-hot class of semantic segmentation but can also be detected in the
3D representation using a threshold-based method. This example also
shows that semantic segmentation using CNN can distinguish a good
seam area from a bad one. Due to the pixel-by-pixel class assignment,
only individual defective seam areas are recognized as DW. This allows
the defect to be localized.
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The work addresses the monitoring of laser welding processes. The aim
is to obtain the optimal added value without modifying the welding
station. Extensions of the hardware components result in hardware costs
and often involve complex configurations and setup changes. On-axis
mounting on the focusing optics of the laser welding station does not
affect the welding process significantly, but the alternating effects of the
laser beam and signal redirection must be considered in the signal. The
work uses a grayscale camera mounted coaxially to the laser beam on the
focussing optics. In addition, a ring illuminator in the wavelength range
625 nm and a computing unit with an Intel Core i5-7300U processor are
used. Machine learning methods are used to extract the relevant features
from the image data. This poses challenges regarding computation time
on an edge device, the effort required for data labeling, and user accep-
tance. This work considers these aspects in developing the pre-, in-, and
post-process monitoring.

The pre-processing in Chapter 3 includes calculating the exact weld-
ing position concerning the component position. Since the component is
not exactly placed in many applications, its position is captured in the
camera image, and the translation and rotation of the position are cal-
culated. Due to the component geometry, reflective material properties,
and different surface structures, detection in the grayscale image is often
non-trivial. By extending the approach with ML-based semantic segmen-
tation, the relevant pixels of the component surface are highlighted and
can be easily processed in a downstream step. This highlighting also
makes it possible to check the component geometry and the position of
the joining partners in relation to each other. This way, it is possible to
detect errors in pre-processing steps at an early stage.

The monitoring while welding primarily monitors the occurrence of
spatters, as this serves as an indicator of an unstable process. Due to
acquiring images during the welding process without upstream filters,
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the images contain more interfering elements due to plumes, process
lights, and reflections of fixtures. The algorithms of Chapter 4, therefore,
use semantic segmentation with a CNN, which infers the pixel-by-pixel
class assignment based on various image contexts. This approach also
offers the advantage of extending it to other classes, such as a cooling
phase of the weld. Furthermore, the effect of a reduced acquisition fre-
quency is investigated to estimate the captured spatter fraction without
a high-speed camera.

Different methods are shown and compared in Chapter 5 for the
quality monitoring of the solidified weld seam after the process. The
monitoring by a camera is determined in one approach by the detected
size and geometry of the weld seam. The different surfaces, e. g., good
quality, defective seam surface, and unwelded component surface, are
caught in the image with a pixel-by-pixel classification. Based on the
number of assigned pixels and the contour shape, statements can be
made about the seam quality. Alternatively, an approach for a single
image-based reconstruction of height data is presented. For this purpose,
an ML-based algorithm is trained with an image and assigned height
data, which is subsequently used to calculate the height map based on
an intensity image. Depending on the application, a more accurate defi-
nition of the weld quality is possible using the reconstruction approach
compared to the pixel-wise class assignment.

When used in industrial manufacturing, ML algorithms must meet
specific requirements. One crucial point is the database, which is often
small and contains few error cases. In addition, the labeling should be
done by application experts and costs time and resources, which is a
hurdle for using ML models. To counteract this, ML methods can be
used, which enable optimized training. Methods for the selection of
relevant data, as well as the support in the labeling process by early
model predictions, were shown in Section 3.6.

Another essential topic is edge computing in relation to ML applica-
tions. Among other things, due to data security, transmission delays,
scalability, improved inference time, and low network loads, the com-
putation of algorithms directly at the plant is often preferred. For this
purpose, small network architectures optimized for the respective use
cases are developed. These network architectures are limited to the weld-
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ing station’s defined task and the specific use case. They have a lower
generalization performance but make use of their defined environment.
Further optimization is conceivable, for example, by considering the
component geometry information from the CAD system in the model
training. Research is active in the field of learning with additional knowl-
edge. The information could, for example, be integrated into the loss
function of the network. This information could also be used to moni-
tor the model prediction further. In addition, application-related data
augmentation is also possible and can bring further advantages. For
example, the images in the laser welding process often show similar
structures, such as reflections. As a result, the model can be trained
faster and more robustly, even with little training data, through adapted
data augmentation. However, care must be taken to avoid introducing
unnecessary variance into the training.

The algorithms presented are based on a hybrid approach combin-
ing ML algorithms with a knowledge-based system. For example, in
post-process monitoring, not only a classification into good and poor
is done. The ML model calculates the relevant features, which are then
assigned to the respective class by a knowledge-based system. The net-
work does not need to know the failure class, and the user can define
it with understandable rules. In addition, this has the advantage that
the downstream system also monitors the ML algorithm and generates
an error in case of a wrong prediction. Section 3.4.3 presents additional
methods for quantifying uncertainty in model prediction monitoring.
The field of uncertainty quantification is still very active in research.
Because the results of AI applications often cannot be tracked exactly,
their use is often viewed critically. Therefore, monitoring the results
better and detecting erroneous predictions is essential. Likewise, it is
important to decide when a model is performing well. Often it isn’t
easy to estimate whether the entire relevant data variance is represented
in the model. In Section 3.6, approaches are compared to support this
process. However, further research is also open here, which estimates
the model’s quality.

The methods presented in pre-, in-, and post-process monitoring have
been analyzed independently. However, their combination offers the
potential for holistic monitoring and support of the welding process.
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For example, the post-process evaluations, in combination with the pre-
processing analysis, can provide information on an optimized welding
strategy. Currently, the welding parameters and the welding geome-
try are already modified based on the position of the joining partners.
Combining the information with the welding result allows the following
components to be optimally welded by adjusting the welding param-
eters. The combination of information about spatter occurrence in the
process and the position of the joining partner before the procedure also
allow conclusions that help to parameterize the welding process better.
In addition, the use of reinforcement learning offers great potential and
many possibilities for optimizing the welding process.

As mentioned several times, this work relies on data from a single
camera sensor. In general, the monitoring of the welding process can be
improved and made more robust by extending the sensor technology.
To realize 100% monitoring, using different sensors is an obvious solu-
tion. Evaluating various databases with sensor fusion can provide more
comprehensive information. A variety of algorithms can be used for this
purpose, including ML algorithms.
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A Evaluation Model Architectures

This chapter complements Section 3.4.1, which shows the analysis of
different model architectures for the pre-process monitoring algorithm.
This chapter extends the investigation with the training histories of train-
ing with varying splits of training and validation data. The analysis
is based on a data set X with n = 900 samples of a hairpin welding
process. It compares the training history for training sessions with dif-
ferent training data sizes. The size of the data set Xtrain is varied from
n = {5, 10, 25, 50, 100, 200}, while the size of the set of validation data
Xval remains stable at n = 500 and the size of the test data set Xtest with
n = 200 for better comparability. Ten training, validation, and test data
splits were performed for any size n of the training data set, with five
independent networks, each trained from scratch. Detailed results of the
training sessions per model, broken down by accuracy, can be found in
the following.

The training is performed with BS = 2 and 100 steps per epoch. For
optimization, it uses the categorical focal loss with α = 0.25 and γ = 2. In
addition, it uses an ADAM optimizer with the hyperparameters β1 = 0.9
and β2 = 0.999, which control the length of the moving averages. The
learning rate starts at ϵ = 0.001 and is reduced during training after three
epochs without improvement. Data augmentation and early stopping
based on the validation data set are used for model regularization.

Results on the data set Xtrain are shown in red and Xval in blue. Af-
ter every trained epoch, the evaluation is performed with 100 steps.
Chapter 3.4.1 shows the definition of the model architecture in detail. In
addition, the chapter processes and evaluates the results.
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Figure A.1 Accuracy of all model achitectures. The red lines show the averaged results of
the 50 training sessions on the data set Xtrain and the blue lines for Xval. The variance is
presented within the shaded area. The x-axis represents the progression of epochs during
the training process. Each epoch includes 100 steps with BS = 2. The evaluation was
performed after each trained epoch with 100 steps.
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Figure A.2 Accuracy of the vanilla U-Net. In red are the results on the data set Xtrain

and in blue for Xval. The x-axis represents the progression of epochs during the training
process. Five model were trained on each data split from scratch.
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Figure A.3 Accuracy of the small vanilla U-Net. In red are the results on the data set
Xtrain and in blue for Xval. The x-axis represents the progression of epochs during the
training process. Five model were trained on each data split from scratch.

164



A Evaluation Model Architectures

Figure A.4 Accuracy of the U-Net. In red are the results on the data set Xtrain and in blue
for Xval. The x-axis represents the progression of epochs during the training process. Five
model were trained on each data split from scratch.
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Figure A.5 Accuracy of the SDU-Net. In red are the results on the data set Xtrain and in
blue for Xval. The x-axis represents the progression of epochs during the training process.
Five model were trained on each data split from scratch.
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Figure A.6 Accuracy of the AttSDU-Net. In red are the results on the data set Xtrain

and in blue for Xval. The x-axis represents the progression of epochs during the training
process. Five model were trained on each data split from scratch.

167





B Evaluation Loss Functions

Complementing the definition of the model architecture in Section 3.4.1,
this chapter describes the selection of the optimal loss function for the
model used in the pre-process monitoring. Therefore, it compares dif-
ferent loss functions commonly used for semantic segmentation. The
SDU-Net defined in Chapter 2.1.5 is used as network architecture. The
comparison considers problems with one and several foreground classes,
whereas the data are always one-hot encoded. All training sessions use
an ADAM optimizer with the hyperparameters β1 = 0.9 and β2 = 0.999.
In addition, data augmentation and early stopping based on the valida-
tion data set are applied.

The evaluation considers focal loss, dice loss, and cross entropy. In the
case of focal loss, a parameterization with α = 0.25 and γ = 2 is used.
Only the foreground classes are considered in the calculation for the
dice loss, analogous to the procedure of Zhang et al. [179]. That means
the background class, which often takes the most significant part of the
image, is not included in the calculation. Finally, the weighting of the
weighted cross entropy loss is defined based on the pixel-wise class ratio
of the data set.

Further Analysis of the Data Set from Appendix A The first section
compares the different loss functions on the data set of Chapter 2.1.5
and Appendix A with Xtrain containing n = {50, 200} samples and
Xval containing n = 500 samples. In the case of the weighted cross
entropy loss, the weighting factor is [0.3, 0.7] for the background and
foreground classes, respectively. Figure B.1 shows the training histories
with the SDU-Net architecture using the different loss functions. The
plots show the mean as a line and the variance in the shaded area for
each of the 50 training sessions performed with ten different training-
validation splits. The results show only a few differences in training with
the different loss functions. Regardless of the loss function, the accuracy
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Figure B.1 Accuracy in the training process using different loss functions. The data set of
appendix A with 10 training-validation splits for Xtrain with n = {50, 200} data sampels
is used and 5 trainings of scratch are performed. The comparison shows the mean and
variance of the accuracy of the training sessions over 400 epochs, with 100 steps per epoch
and BS = 2.

of the training data is higher for n = 50 training samples than for n = 200
samples. However, the model accuracy on the n = 500 validation data
is comparable regardless of the number of training images, settling at
acc ≈ 0.995. In addition, the course of the training curves is also similar.
When comparing the 50 training sessions from scratch, the variance is
minimally lower when the dice loss is used instead of the other functions.
The weighting factor has no significant effect on the cross-entropy loss
since it already performs well without weighting. Also, the focusing
factor γ of the focal loss does not provide much improvement compared
to the cross entropy in this case.

Class Number and Pixel Proportions Furthermore, evaluations were
performed on another data set, comparing loss functions with a focus on
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different class numbers and pixel proportions. The number of training
data Xtrain is n = 23, while the validation data set Xval contains n = 9
samples. Figure B.2 shows an example image from the used data set. A
camera image was deliberately used, which shows many detection pos-
sibilities in different sizes. There is no specific use case when performing
the analysis.

Figure B.2 Example image of the data set.

Figure B.3 shows each diagram’s average training history and the
variance for ten training sessions. Each session starts from scratch. The
diagrams show the IoU of the foreground classes to be able to evaluate
the model performance based on the defined classes and not only to get
a holistic image evaluation. In this image evaluation, minor classes are
considered weaker. To make the graphic easier to read, the values of the
background class are not shown. Since the background class contains
most pixels, it usually has a high IoU, while the values of the other
classes have a more significant variance. In the images to the left of the
diagrams, the part to be recognized is marked in the curve’s color. Since
the result of the validation data set is more meaningful, it is shown more
prominently, while the result of the training data is shown only faintly
in the background. The diagrams show the mean of the training sessions
as a line and the variance as a shaded area.

Considering Figure B.3(a), no major differences regarding the loss
function used can be detected. Both foreground classes to be detected
have similar pixel ratios. Thus, the evaluation using IoU is also in a
similar range for both classes. All three loss functions achieve a good
result in all train sessions, which is shown by a low variance in the
diagrams.
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(a) Example with two foreground classes with similar pixel ratios.

(b) Example with two foreground classes with different pixel ratios.

(c) Example with three foreground classes with different pixel ratios.

Figure B.3 The plots show the IoU of the different foreground class layers over the course
of training. The x-axis shows the number of epochs, while the y-axis shows the IoU. The
model is trained with 100 steps per epoch and BS = 2. The validation also performs
100 steps per epoch. The mean and the variance of ten training sessions from scratch are
shown.

Figure B.3(b) shows an example where a larger class (blue) and a small
class (orange) are to be detected. The first thing to notice is that the IoU
of the orange class is always lower than the blue class. This is because
fewer pixels are assigned to the class, so a wrong assignment has a
greater effect on the result. In addition, slight differences can be seen
in the course of the loss functions. Especially the variance increases by
using the dice loss for training. Furthermore, the result after 300 epochs
is worse on average than using the focal loss or the cross entropy.

This behavior becomes even more evident when considering the re-
sults of Figure B.3. In this example, three classes with different-sized
objects are detected. Especially with the small class (orange), the variance
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of the results increases when using the dice loss. This is due to single
models, which give a bad result. In these cases, the small class is com-
pletely assigned to the background. The dice loss calculates the value
for each class separately and offsets the values. Therefore, it is usually
designed for unequal class ratios and does not need to be parameterized.
However, since the dice loss is optimized for a binary answer, there is a
higher risk that the optimal result is not found in the optimization. In
most cases, however, good results can be achieved with all three loss
functions.

Figure B.4 Example with one foreground classes with a small pixel ratio.

Figure B.5 The plots show the IoU of the different foreground class layers over the course
of training. The x-axis shows the number of epochs, while the y-axis shows the IoU. The
model is trained with 100 steps per epoch and a BS = 2. 100 steps per epoch are also
used in the validation. The mean and the variance of ten training sessions from scratch are
shown.

Teaching only a small class shows the same behavior. The relevant
class is marked in the Figure B.4, while Figure B.5 shows the results. Ten
training sessions from scratch were performed in each case, of which the
mean and variance are shown. Even in this case, some models trained
with the dice loss perform worse on the data sets. Even with a small
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class, the loss of dice does not always result in the correct allocation of
pixels and assigns them the background class. This example also shows
a disadvantage of entropy loss, which performs poorly on unequal class
ratios. With entropy loss, the foreground class cannot be detected. This
results in all pixels being assigned to the background. Due to the only
small foreground class, the loss can still be optimized to a small value.
The weighted entropy with the factor 0.1 for the background and 0.9 for
the foreground class achieves similar results as the focal loss.

Conclusion Based on the results, focal loss is the most suitable loss
function for different data sets. The advantage is that it does not have to
be parameterized individually for a data set. In addition, the loss func-
tion can handle multiple classes, unequally distributed classes, and also
individual deviating samples in the training data set. Due to the weight-
ing factor γ, which focuses on uncertain samples, these are considered
more strongly in the optimization.
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C Model Calibration

Model calibration is essential to use the probability values per class in the
result validation of the neural network used in preprocessing monitoring.
Therefore, this Chapter complements Section 3.4.3 by discussing model
calibration and uncertainty estimation in more detail.

A reliability diagram is used to evaluate the model calibration, which
represents the individual bins of the ECE. The x-axis is the probability of
prediction, and the y-axis is the proportion of actual assignment to the
class. In a well-calibrated model, the columns should be on the diagonal.

The evaluation is based on a model trained on a data set of copper
wires to be welded. This data set contained only good examples, i. e.,
two correct copper wires were always clamped in the fixture. Afterward,
the evaluation uses a testing data set, including deliberate error cases.
These are, for example, a missing copper wire or an already welded pair
of pins.

Two models are trained for the detection of the component position.
One model uses the dice loss, and the other the focal loss. Similar to
the procedure from Chapter B, the dice loss is trained considering only
the foreground class. The focal loss is parameterized with α = 0.25
and γ = 2. Analogous to Mehrtash et al. [107], the evaluation calculates
metrics and graphs on the area around the foreground segments. The
background usually has the slightest uncertainty but takes many pixels.
Therefore, the evaluation has limited the metric to an area surrounding
the foreground segments marked in the graphs with a red rectangle.

The metrics shown in Table C.1 and the diagrams in Figure C.1, Fig-
ure C.1, Figure C.3 and Figure C.4 show that the models are better
calibrated for a correct sample than for an unknown sample. This is
shown by a lower ECE and in the reliability diagram because it is more
aligned to the diagonal.

Figure C.1 and Figure C.2 show the results for examples with a correct
initial situation, which are analogous to the training data. Figure C.3
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Table C.1 This table shows the ECE and entropy metrics H for the foreground class
using different examples. The corresponding images, as well as the reliability and the class
probability diagram, are shown in the linked figures.

Loss function Example Image ECE H(ŷj)

Focal Two pins C.1 1.127 0.042 217
Focal Two pins C.2 1.388 0.046 599
Focal One pin C.3 2.913 0.051 257
Focal Welded pins C.4 - 0.105 175

Dice Two pins C.1 1.599 0.000 094
Dice Two pins C.2 1.142 0.000 165
Dice One pin C.3 1.891 0.000 108
Dice Welded pins C.4 - 0.000 402

shows a faulty situation where one pin is missing. The data sample is
labeled for evaluation with just one pin marked. However, such data sam-
ples were not present in training. Figure C.4 shows an already welded
pair of pins. No mask has been assigned to this image because the model
is not trained to detect welds. Therefore, there is no calculated ECE and
no drawing of a confidence matrix for this example.

In contrast to dice loss, focal loss provides better calibrated results.
The dice loss forces a binary result due to its evaluation using the dice
coefficient. Thus, even in the case of an error, it obtains class probabil-
ities with the values 0 and 1. Therefore, when using the dice loss, it is
recommended to use an additional model calibration [107]. The focal
loss, in contrast, is better calibrated. Thus, downstream methods like
ensemble training, Monte-Carlo-Dropout, or temperature scaling are not
mandatory [107, 164].

Also, the results show that using the metric H(ŷj) considering the
foreground class yj , without the presence of data labels, the uncertainty
of the model can be predicted. The value for the welded pin pair is
higher than the other values for both focal and dice loss. In case of a
missing pin, the prediction doesn’t work as well. Because the features
of the remaining pin were included in the training data set, the model
can predict this pin with high accuracy. Figure C.3 shows that the model
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is uncertain at the edge of the area where a second wire should be, but
most of the area is assigned to the background with high accuracy.

(a) Images of two
clamped hairpins.

(b) Prediction
heatmap.

(c) Reliability
diagram.

(d) Class probability
diagram.

(e) Images of two
clamped hairpins.

(f) Prediction
heatmap.

(g) Reliability
diagram.

(h) Class probability
diagram.

Figure C.1 Model prediction of a sample with two clamped pins for the foreground class.
The first row shows the result of a model trained with focal loss, while the model in the
second row was trained with dice loss.
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(a) Images of two
clamped hairpins.

(b) Prediction
heatmap.

(c) Reliability
diagram

(d) Class probability
diagram.

(e) Images of two
clamped hairpins.

(f) Prediction
heatmap.

(g) Reliability
diagram

(h) Class probability
diagram.

Figure C.2 Foreground class results of a sample with two clamped pins. The models are
trained with focal loss (first row), and dice loss (second row).

(a) Image with a miss-
ing pin.

(b) Prediction
heatmap.

(c) Reliability
diagram.

(d) Class probability
diagram [0.1; 1].

(e) Image with a miss-
ing pin.

(f) Prediction
heatmap.

(g) Reliability
diagram.

(h) lass probability di-
agram [0.1; 1].

Figure C.3 Foreground class results of a sample with two clamped pins. The models are
trained with focal loss (first row), and dice loss (second row).
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(a) Image of a welded
pair of pins.

(b) Prediction
heatmap.

(c) Class probability
diagram [0.1; 1].

(d) Image of a welded
pair of pins.

(e) Prediction
heatmap.

(f) Class probability
diagram [0.1; 1].

Figure C.4 Foreground class results of an out-of-distributaion sample. The models are
trained with focal loss (first row), and dice loss (second row).
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D SDU-Net with Dropout

Section 3.6 focuses on reducing effort in the labeling process, which
includes defining a reasonable labeling order of the images. One inves-
tigated method is the so-called Monte-Carole dropout, whose usage
is explained in more detail in Section 3.6. The MCD uses the dropout
layer in training and inference time, which means that the network ar-
chitecture has to be extended by dropout. The resulting architecture is
described in more detail in this chapter.

The chapter defines an SDU-Net architecture with added dropout
layers in the inner layers, following the approach of Kendall et al. [82].
Except for the added dropout layers, the definition of the SDU-Net
remains unchanged from the definition in Section 3.4.1.

The first two operation blocks with filter size nout = {16, 32} remain
unchanged, so there is no loss of information. Next, a dropout layer is
added to each middle operation block. Analogous to the encoder path, a
dropout layer is also added in the first two layers of the decoder path.
The dropout is performed before the connection with the feature map
from the encoder path via the skip connection. Figure D.1 represents this
by a dark gray block in front of feature maps.

The dropout operation is performed after the pooling or upsampling
operation but before the convolutions. The proportion of randomly
selected units to be removed is defined by the parameter pd. This value
can be varied. For the example in Section 3.6, the network architecture
is used in MCD to quantify uncertainty. There the parameter is defined
with pd = 0.5.
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Figure D.1 SDU-Net architecutre with dropout layers. The representation is analogous to
the description in Section 3.4.1.
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Chapter 4 presents various methods for camera-based in-process mon-
itoring. One of the methods, shown in Section 4.4, is a deep learning
approach using a neural network. The network architecture is explained
in more detail in this chapter.

To analyze the images directly in the welding process, an architec-
ture optimized for this application is used. The in-process data is less
complex, and the focus is on fast execution time on an edge device.
Therefore, the acquired images are reduced to the dimensions 128 × 128
before the network processes them. The network architecture is based
on the SDU-Net but with a reduced capacity. The architecture uses three
encoder operations with the number of filters nout = {16, 32, 64} and the
corresponding decoder operations in the upsample path. An activation
with ELU follows each convolutional layer (Conv). The last decoder
operation in the expansive path is followed by a 1 × 1 convolution and a
softmax activation that maps the feature vectors to the number of classes
to be learned. This architecture results in a total number of parameters
of 39 145.

Figure E.1 illustrates the structure of the architecture. Chapter 4 uses
the architecture to detect spatters in a camera image.

183



E In-Process Model Architecture

Figure E.1 Small SDU-Net architecture with the adapted encoder and decoder operation.
The boxes represent the feature map, with the x- and y-resolution at the bottom of the box
and the number of channels at the top of the box. The black arrows between the boxes
represent the encoder-/ decoder operations shown next to the architecture. The parameter
nout represents the number of channels after concatenating the convolutions’ outputs.
While the orange arrow represents a convolution with kernel 1×1 and a softmax activation
to map the feature vector to the desired number of classes, the blue arrows represent the
skip connections.
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F Spatter Detection Model
Comparison

Section 4.4 uses a neural network architecture with extremely few pa-
rameters to achieve fast inference time per frame for in-process spatter
detection. In this chapter, the architecture is compared to a larger model
to show the loss of accuracy.

Figure F.1 compares the one-hot encoded model results with two dif-
ferent SDU-Net models with different capacities. The bottom row shows
the prediction of a larger model with a parameter count of 162 457. The
model uses the input dimension of 256 × 256 pixels. As the input in
the higher resolution has more features, it uses four encoder operations
with nout = {16, 32, 64, 128} and the corresponding decoder operations.
The structure of the model architecture is explained in more detail in
Section 3.4.1 and Figure 3.6. The top row shows the result of an SDU-Net
with lower capacity in comparison. The architecture uses an input dimen-
sion of 128 × 128 and three encoder operations with nout = {16, 32, 64}
and the corresponding decoder operations. This results in a total number
of parameters of 39 145. A detailed description of the architecture defini-
tion is given in Appendix E. The original image resolution is 640 × 480,
which is scaled down to the corresponding input dimensions. Figure F.1
uses a false color representation for the class assignment, where green
represents the process light and red represents the pixels assigned to the
spatter class. After the model predictions, the result of the CNN is scaled
to the original image resolution and then binarized with a threshold of
0.5. The results show that the low model capacity with 39 145 parameters
is sufficient to detect the process light and spatters. Since the images
are not highly complex, fewer parameters are sufficient for the model to
learn the relevant features. Small spatters of a few pixels can be lost by
reducing the image dimensions to 128×128 input pixels. However, since
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100% monitoring is not possible with this method, this loss is acceptable
in return for the faster calculation time.

(a) In-process image. (b) Binary result pro-
cess light.

(c) Binary result
spatter.

(d) Overlaid repre-
sentation.

(e) In-process image. (f) Binary result pro-
cess light.

(g) Binary result
spatter.

(h) Overlaid repre-
sentation.

Figure F.1 The figure compares the predictions of two SDU-Net models with different
capacities. The top row shows the binary one-hot results of the process light class (b)
and the spatter class (c) of a lower capacity model with an input dimension of 128 × 128
(Appendix E). The bottom row shows the corresponding results for a larger capacity model
(Section 3.4.1) with an input resolution of 256 × 256. Figures (d) and (h) show the results in
an overlaid representation of the input image with the spatter class (red) and the process
light (green).
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Further to Section 4.5, which discusses the influence of image acquisition
frequency on spatter analysis, this chapter shows more examples of dif-
ferent welding processes. Figure G.1, G.2 and G.3 compare the captured
spatter volume with an acquisition frequency of 2 kHz and 286 Hz. For
the comparison, the low recording frequency was simulated. Besides
the spatter rating resolved to single frames, the graphs show overlaid
image representations with the predicted one-hot classes spatter (red)
and process light (green) on the camera image. The graphs show that
more significant ejections and extended areas with ejections are also
visible at 286 Hz. However, the information about single, small, and
especially fast spatters will be lost.

Figure G.1 The upper row shows the spatter rating for a recording frequency of 2 kHz
while the lower row simulates a recording frequency of 286 Hz for the same process.
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Figure G.2 The upper row shows the spatter rating for a recording frequency of 2 kHz
while the lower row simulates a recording frequency of 286 Hz for the same process.

Figure G.3 The upper row shows the spatter rating for a recording frequency of 2 kHz
while the lower row simulates a recording frequency of 286 Hz for the same process.
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H Illumination Types

Different lighting allows different features of the component to be cap-
tured with the same sensor. The copper material of the hairpins is highly
reflective. In this work, the standard setup for data acquisition is used to
monitor the laser welding process. This uses a ring light attached to the
focusing optics for illumination, which has little negative effect on the
process. Extending the post-process data acquisition from Chapter 5 in
Section 5.3, alternative illumination scenarios are shown in this chapter.

When lighting from above at a certain distance, the camera captures
the parallel areas overexposed while other regions are shaded. To avoid
overexposed areas, the exposure time must be reduced. Diffuse dome
lighting can be used to enhance surface texture. A dome-shaped reflector
is placed at the height of the component. The light is directed into the
reflector, and from there, it is diffused onto the component from all
directions. The bar lighting in the example in Figure H.1 was mounted
from diagonally above slightly over the top of the weld. The lighting
consists of four bar spotlights that illuminate the part from each side.
However, the directional light causes reflections on the component. But,
because it has been placed closer to the edge, it highlights the elevation
in H.1(g), for example. The offset in Figure H.1(c) can also be imagined
due to the shading of the right pin area.

Figure H.1 also shows the height profile of the pin pairs. This helps
to identify better which structures are visible in the camera image. In
particular, a height offset is difficult to see in the camera image taken
from above.
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(a) Ring illumina-
tion.

(b) Dome illumina-
tion.

(c) Bar illumination. (d) Height profile.

(e) Ring illumina-
tion.

(f) Dome illumina-
tion.

(g) Bar illumination. (h) Height profile.

(i) Ring illumination. (j) Dome illumina-
tion.

(k) Bar illumination. (l) Height profile.

Figure H.1 Comparison of the different databases. The pictures show three different
pairs of copper pins captured with different illuminations. Figure (d), (h) and (l) show the
height profile in comparison. The upper line shows the images of two misaligned pins, the
middle line shows a pin pair on which a spatter has settled, and the lower line shows a
pin pair welded with less laser power. The data per line show the same component but is
not precisely in the same orientation.
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I Intensity Image and Height Data
Mapping

In Section 5.3, prominent image features are used to determine the offset
between the 2D intensity images and the 3D height maps. Since the pin’s
surface is in the image’s foreground, it is used for mapping.

However, the corresponding pixel values in both images do not neces-
sarily match. In addition, both the intensity image and the height map
contain interfering structures and characteristics that make it difficult
to assign the contents. Therefore, binary masks of the pin surface are
created using semantic segmentation. For this purpose, two separate
models are trained. One is trained on the intensity images, and a second
model is trained on the height maps. The model uses an SDU-Net archi-
tecture trained with categorical focal loss and optimized with ADAM.
The structure is analogous to the model defined in Section 3.4.1 in Fig-
ure 3.6. Only the size is adapted to the original image size of 432 × 432
pixels. As a result, the one-hot encoded class map of the foreground
class is used for mapping. The masks represent the background class
by 0 (black), while the pixels associated with the weld seam class are
represented by 1 (white). Since the same seam surface is detected in both
binary representations, the offset and rotation can be calculated using
these binary masks. Subsequently, the calculated values are transferred
to the intensity image and the height map.

The binary images are highly simplified and contain only two values
for pin area and background, so a simplified procedure is used to de-
termine the translation. First, the center of gravity of the pixels which
are assigned to the pin class is determined. This point is moved to the
center of the image, which removes the translation. In addition, this
point represents the rotation center from which the rotation deviation is
calculated. For this purpose, the images are translated into polar coordi-
nates starting from the center point. Based on the distance and the angle
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of the surface to the center point, the offset of the two masks to each
other can be determined. For this purpose, based on the representation
in polar coordinates, the translation of the samples is determined by their
correlation. From the translation of the polar coordinates in y-direction
ty , the rotation angle αa can be concluded as follows

αa =
ty

rows · 360◦, (I.1)

where rows is the image height. In a post-processing step, the translation
is corrected using the correlation of the intensity image’s rotated mask
to the height map’s original mask.
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J Implementation Details 3D
Reconstruction Models

Section 5.4.3 compares different ML methods used for single-view 3D
reconstruction for post-process monitoring. The detailed implementation
of these methods is explained in the following chapter.

J.1 Stacked Autoencoder

Two separately trained autoencoders are combined to adapt the au-
toencoder structure to the task of 3D reconstruction. First, two AEs are
trained on the respective data to realize a low-dimensional feature extrac-
tion in the latent space. Then, the whole network to predict the height
data based on the camera images is created by linking the encoder and
decoder subspaces of the two networks. In addition, a mapping layer
is added between the subspaces, which is post-trained on the mapping
function.

The input and output resolution of the network is 256 × 256 pixels,
where the images are scaled to a value range of [0, 1]. Larger resolutions
are problematic because of the fully connected layers. Due to the many
parameters, the network then reaches the memory limits of the GPU. The
exact layer structure of the SAE is 256×256-1000-100 for the encoder and
100-2000-256×256 for the decoder in fully connected layers. A layer with
5000 neurons is used to map the subspaces, which connects the subspaces
fully connected to each other. The layers were trained separately. While
the inner layers have activation with ReLU, the activation function at
the output of the last layer is a sigmoid function. The sigmoid function
scales the output data in the range [0, 1]. Since this also corresponds to
the training data range, this helps stabilize the learning process.
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The training uses the MSE as the loss function. In addition it uses
an ADAM optimizer with β1 = 0.9 and β2 = 0.999 and a learning
rate of ϵ = 0.0001. The first layer of the encoder and the decoder are
trained for 4000 epochs. In contrast, the deeper layers are trained for 800
epochs since the number of parameters of the network to be optimized
is smaller. The training is performed with 800 steps per epoch and batch
size BS = 1.

J.2 Generative Adversarial Networks

The CGAN architecture is suitable for 3D reconstruction because an
intensity image is given as an input condition for generating a realistic
height map in addition to the noise vector. A GAN always consists of a
generator, a discriminator, and a loss function. However, there are many
configurations to define the components.

In this work, four different configurations are analyzed. Table J.1
shows an overview of the configurations. The input dimension of the
generator and discriminator, as well as the output dimension of the
generator is 256 × 256 pixels. Analogous to the work of Isola et al. [72],
the images are scaled to a value range of [−1, 1].

Table J.1 Configurations of GANs for 3D reconstruction.

Configuration Generator Discriminator Loss function

I U-Net PatchGAN CGAN + L1
II U-Net DCGAN WGAN + L1
III U-Net DCGAN WGAN + L2
IV SDU-Net DCGAN WGAN + L2

The generator of the first three configurations uses the modified U-Net
structure according to Isola et al. [72]. Figure J.1 shows the structure of
the model. The boxes represent the initial dimensions of the successive
convolutions. Each convolution is performed using a kernel with k =
4 × 4 and a step size s = 2. In the encoder, the convolution decreases
the dimension by a factor of 2, while the dimensions in the decoder are
increased. Except for the first convolution layer, batch normalization is
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performed after each convolution. While the encoder uses activation
with leaky ReLU with α = 0.3, the decoder uses the ReLU function.
After the last decoder layer, convolution with k = 4 × 4 and s = 2 is
performed with the number of filters n = 1 to obtain the output image.
In this layer, the model uses the Tanh function for activation. In addition,
the skip connections corresponding to the U-Net are included between
the encoder and decoder layers. So the features are transferred from the
encoder directly to the decoder. These are shown as blue arrows in the
graphic.

Figure J.1 The figure shows the architecture of the generator of the various GAN config-
urations. The boxes represent the output dimensions of the successive convolutions. At
the bottom of the box, the x-y-resolution is shown, while the number of filters is denoted
on top of the box. The blue arrows denote skip connections. The orange arrow represents a
4 × 4 convolution with s = 2, the number of filters n = 1, and a Tanh activation.

The configuration I uses the PatchGAN according to Isola et al. [72]
as a discriminator. The PatchGAN has the characteristic that the input
image is divided into smaller patches, for each of which a prediction
is made in real and fake. In the architecture used, a patch prediction
corresponds to an overlapping range of 70 × 70 patches in the input
image. The Figure J.2 illustrates the layers of the discriminator network.
The first three convolutions have a kernel k = 4 × 4 and s = 2. In
contrast, the last two convolutions are performed with s = 1, meaning
the dimensions are no longer halved. Zero padding is applied before
these convolutions. Batch normalization follows all convolutions except
the first one. Each fold is followed by activation with the leakyReLU
with α = 0.3. The sigmoid activation normalizes the last convolution to
the range [0, 1].
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Figure J.2 The architecture of the discriminator of the PatchGAN. The arrows represent
convolutional layers with corresponding kernel size k and step size s.

The II, III, and IV configurations use a deep generative convolutional
networks (DCGAN) in combination with the Wasserstein distance [127].
The network is similar to the discriminator but without a sigmoid func-
tion in the last layer. This results in a scalar score as output instead of
a probability score. Since the network thus cannot distinguish between
real and fake using a threshold, it is referred to as a critic instead of a
discriminator. The Wasserstein distance for the data distribution p and q
is defined by:

W (p, q) = inf
γ∈π(p,g)

(E(x,y)˜γ [||x− y||], (J.1)

where π(p, g) is the set of all joint distributions γ(x, y) whose marginals
are p and q. As a cost function, the Wasserstein distance has the ad-
vantage over the Jensen-Shannon divergence of producing smoother
gradients. For this reason, the gradient for the generator does not de-
crease as much when the generator is not yet performing well. As a
result, the generator gets more information to improve its performance.
This means that the WGAN learns whether or not the generator is al-
ready giving good results. To calculate the Wasserstein distance, the
1-Lipschitz constraint is used, which is achieved by clipping the weights
with the hyperparameter cW D to limit the maximum weight value. Fig-
ure J.3 shows the architecture structure. It consists of two convolution
operations with k = 5×5 and s = 2. Both convolutions are followed by a
leaky ReLU with α = 0.3 and a dropout layer with a dropout probability
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of dp = 0.3. Finally, the output of the last layer is flattened and mapped
to a one-dimensional output via a fully connected layer.

Figure J.3 The architecture of the critic of the DCGAN. The arrows represent convolu-
tional layers with corresponding kernel size k and step size s. After the second convolu-
tions the output mapped to a one-dimensional output via a fully connected layer.

Configuration IV is analogous to III except that a variant of the SDU-
Net is used as the generator instead of the U-Net architecture from
Figure J.1. Figure J.4 shows the structure of the architecture. The exact
definition of the architecture is specified in Section 3.4.1. Unlike the
generator from III, the model uses a kernel size of k = 3 × 3, a step
size s = 1, and adds pooling or upsampling layers with a kernel size
of k = 2 × 2. Each convolution is followed by activation with ELU. In
contrast to the structure in Section 3.4.1, the last decoder operation in
the expansive path is followed by a 1 × 1 convolution with the number
of filters n = 1 and a Tanh activation, which maps the features to the
output layer. The discriminator and loss function of configuration IV are
similar to the definition in configuration III.

The standard approach from Goodfellow et al. [57] is used to train
the networks. The training uses an ADAM optimizer with a learning
rate ϵ = 0.0001 and momentum parameters β1 = 0.5 and β2 = 0.999. All
networks are trained from scratch. A normal distribution with a mean of
0 and a standard deviation of 0.02 is used to initialize the weights. The
networks are trained twice for 500 000 iterations with batch size BS = 1.
The loss function uses the weighting α = 100 and the L1 or L2 distance
measure, depending on the configuration. The weight clipping factor of
the WGAN is defined with cW D = 0.01.
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Figure J.4 The architecture of the generator of the GAN IV configuration. The boxes
represent the output dimensions of the successive convolutions. While the x-y-resolution
is provided at the bottom of the box, the number of filters is denoted on top of the box. The
blue arrows denote skip connections. The orange arrow represents a 1 × 1 convolution
with the number of filters n = 1 and a Tanh activation.

J.3 U-Net

To adapt the U-Net architecture from semantic segmentation to 3D re-
construction, a height value is learned instead of assigning a class value.
In training, the focal loss is replaced by the MSE as loss function. The
ADAM optimizer is still used with the momentum parameters β1 = 0.9
and β2 = 0.999. The learning rate starts at ϵ = 0.001 and is reduced dur-
ing training. In addition, data augmentation with rotation, translation,
mirroring, zoom, and shear is applied to the training data. The missing
pixels at the edge resulting from the transformation are supplemented
with a nearest-neighbor algorithm.

Two different architectural definitions are used. The first is based on
the U-Net of Ronneberger et al. [134], while the second is based on the
adapted SDU-Net of Wang et al. [166]. The increase of the receptive
field due to the dilated convolutions also shows an advantage in 3D
reconstruction. Both network architectures use a convolution with kernel
size 1 × 1 in the last layer and sigmoid activation to scale the output
to the range [0, 1]. Within the network structures, a ReLU activation is
used.

Figure J.5 and J.6 represent the structure of the respective architec-
ture. In the U-Net architecture from Figure J.5, batch normalization
follows each convolutional layer to stabilize the model. In addition, in
the encoder path, each max-pooling is followed by a dropout with a
rate of dp = 0.1. No dropout is applied in the decoder path. Upsam-
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pling is performed in this model by transposed convolution. In this type
of enlargement, the kernel values used to increase the dimension are
optimized in training.

Figure J.5 The architecture of the U-Net used for 3D reconstruction. The boxes represent
the feature map, with the x- and y-resolution at the bottom of the box and the number of
channels at the top of the box. The black arrows between the boxes represent the encoder-
/ decoder operations shown next to the architecture. The parameter nout indicates the
number of feature maps resulting from the operation, k the kernel size, and r the dilation
rate. The orange arrow represents a convolution with kernel 1 × 1 and a sigmoid activation
to map the features vector to the corresponding height value in the range [0, 1]. The blue
arrows represent the skip connections.

The structure of the SDU-Net in Figure J.6 is based on the network
archticture from Section 3.4.1, which is also used for semantic segmenta-
tion.

Figure J.6 The architecture of the SDU-Net used for 3D reconstruction. nout represents
the number of channels after concatenating the convolutions’ outputs. The dilation rate r
increases while the kernel size k remains unchanged.
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K 3D Reconstruction Visualization

Continuing the analysis of the different ML 3D reconstruction algorithms
presented in Section 5.4.3, this chapter visualizes reconstruction results
for the different methods. Figure K.1 shows the reconstruction results
with the different ML-based methods for various samples. Samples with
different seam defects are selected to illustrate the model performances
better. The examples which show defective welds are generally less rep-
resented in the training data set. The top row of each example shows
the reconstruction results with the respective methods. The bottom row
shows the ground truth meaured by OCT in the first column. Other-
wise, it shows the absolute error of the reconstruction compared to the
measured values per pixel. It must be noted that a different scaling is
used for the false color representation of the absolute error values. This
scaling seres as a better representation of the lower height values. The
corresponding scalings are shown at the bottom of the figure.

The first example shows a good weld. This is the most common case in
the training data, which is why most algorithms give quite a good result
for this example. The second example shows a pin pair that was not in
the laser’s focus and, thus, does not have a sufficiently formed weld bead.
The third example is a pin pair with an offset, visible by the elevation
in the upper left corner. The pin pair in the fourth example has a lateral
offset, while the hairpins in the fifth were welded without stripping.
Finally, the last row shows a weld where too much laser power was used,
making the weld misshapen and too wide. The generated images of the
SAE show very blurred edges, indicating a loss of information in the
model. Of the GAN methods, configuration I shows the largest deviation
compared to the ground truth, while the other methods perform better.
Especially in data that occur very little in training (second bottom row),
there are more significant deviations. The U-Net approaches generally
perform best. Even the SDU-Net, which is only trained on 10% instead
of 80% of the data, shows small deviations.
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Figure K.1 3D reconstruction results of test images: (a) good weld, (b) pin pair not
in the focus of the laser, (c) height offset of the copper rods, (d) lateral offset of the
copper rods, (e) isolated copper rods, (f) too much power. The top row of each example
shows the reconstruction results with the respective methods. The bottom row shows in
the first column the ground truth measured by OCT and then the absolute error of the
reconstruction to the measured values per pixel.
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L 3D Reconstruction with Less
Training Data

Complementing the analysis from Section 5.4.3, the following chapter ex-
amines the impact of the size of the training dataset on the ML approach
using SDU-Net for 3D reconstruction.

Since applications in industrial manufacturing usually require work-
ing with a very small data set, further experiments are conducted with
a reduced size of the training data. Based on the best performance and
the smallest number of model parameters, the SDU-Net configuration is
used for the experiments. Its performance is checked when the number
of training samples is reduced to 60%, 40%, 20%, and 10% of the avail-
able data. The network and training parameters are defined similarly
for the U-Net II configuration. The results were obtained by 20 different
random training-test splits. Table L.1 shows the averaged results.

Table L.1 Mean MAE of the 3D reconstruction algorithm SDU-Net with a reduced number
of training data. Different proportions of the data are used in the training part. In addition
to the MAE, its standard deviation (SD) is calculated to indicate the dispersion in the test
samples. The table shows the averaged values of 20 random train-test splits each.

ntrain ntest ntrain ntest MAE MAE SD SD
(%) (%) (µm) (%) (µm) (%)

80 20 762 191 78.8 1.126 37.2 0.532
60 40 572 381 81.1 1.158 48.1 0.687
40 60 381 572 81.0 1.157 47.1 0.673
20 80 191 762 86.9 1.242 52.2 0.745
10 90 95 858 93.5 1.336 68.7 0.981

The results show that the performance of SDU-Net decreases when
the number of training data is reduced. For example, reducing the size
of the training data set from 80% to 10% of the available data degrades
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the average MAE on the test set by 14.7 µm. However, all results are still
better than the GANs and SAE, whose results are shown in Section 5.4.3
in Table 5.2. With the best GAN method, the evaluation achieves an
average MAE of 142.2 µm on 762 training samples and 237.3 µm with
the SAE.

Furthermore, the variance of the average MAE within each training-
test proportion shown in Figure L.1 suggests that the composition of
the training set has an impact on the model performance. Pins from
different defect classes have different geometries and height profiles. If
only the features of very similar parts are learned, the reconstruction of
divergent geometries may become inaccurate. Therefore, random splits
lead to a worse average result than a representative training data set. An
unbalanced training data set can also explain poor performance with less
training data. Using fewer data makes it more challenging to capture all
of the variances. This increases the average MAE and standard deviation
in tests since unknown geometries cannot be calculated accurately.

Figure L.1 Distribution of the mean MAE and SD of the 3D reconstruction algorithm
for different train-test splits. Validation of the SDU-Net performance under different
proportions of data in the training and testing data set for 20 random splits each.
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M Post-Process Image Classification

Extending the hybrid approaches that combine AI and rule-based algo-
rithms for postprocessing monitoring, the evaluation and discussion in
Section 5.6 compares the methods with a regression model that directly
predicts the division into GW and DW for the image data. The following
chapter explains this approach in more detail.

This approach teaches a small CNN architecture on the two-class
problem, resulting in a probability for a class label. The image-wise cate-
gorization into good and bad data reduces the labeling effort compared
to semantic segmentation, where pixel-accurate labeling is necessary.
As in the other approaches in Chapter 5, a training data set Xtrain with
n = 95 is used. In addition, a weaker form of data augmentation with
rotation, flip, and a slight shift is applied. Augmentations such as zoom
or distortion could change the associated class score since, for example,
very large welds should be classified as DW. The ratio of GW and DW
is unbalanced in the training data set. There are 18 DW and 77 GW.
Class weighting is used to handle the imbalance. Moreover, the train-
ing uses the focal loss focusing on the worse assigned samples by the
parameter γ = 2. In addition, due to the low data availability, different
regularization algorithms are used, such as dropout, spatial dropout,
or L2 regularization. The task can be extended to other classes, such as
specific fault categories like misalignment, gap, or too much laser power.
However, this requires that training data is also available for all defined
classes.

Table M.1 shows the classification compared to the results of the
semantic segmentation from Section 5.4.2 and the 3D reconstruction
from Section 5.4.3 with confusion matrices.

The result of the regression model classification is the worst compared
to the other methods. Early stopping based on the validation data set
achieves a validation accuracy of 91.14% in the best case. This is 76
erroneous predictions out of 858 samples. Among them, there are 62
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Table M.1 Confusion matrices to compare the results of the different methods. The
results of the approaches: Weld shape extracted from the camera image (WS), AI-based 3D
reconstruction (3D-R), and image classification (IC) are compared with ground truth based
on the features from the entire height map (OCT).

WS WS
GW DW

OCT 679 20
GW
OCT 25 134
DW

3D-R 3D-R
GW DW

OCT 694 5
GW
OCT 11 148
DW

IC IC
GW DW

OCT 685 14
GW
OCT 62 97
DW

DW that were classified as GW (false positives). In the training process,
after a short time, only the training error improves, while the validation
error increases. This behavior indicates overfitting to the training data
and poor generalization performance of the model, despite the use of
regularization methods. By using additional training data, the result can
be significantly improved. Vater et al. [162] achieve an accuracy of 99%
in a classification of image data of hairpin welds. They use a training
data set Xtrain with n = 1827 and Xtest with n = 457 and four clearly
defined classes. In the previously shown example, the performance can
also be increased by adjusting the training-test split. Using Xtrain with
n = 500 and Xtest with n = 453 improve the accuracy from 91.14% to
≈ 95%.
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