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C h a p t e r  1

Introduction to Social 
Touch in Human–Robot 
Interaction

Masahiro Shiomi and Hidenobu Sumioka
Advanced Telecommunications Research 
Institute International, Kyoto, Japan

1.1 SOCIAL TOUCH IN HUMAN–HUMAN INTERACTION
Touch, which is an indispensable element of human–human interaction, 
conveys much more than affection, concern, or care; it is a medium for 
expressing a myriad of intentions and emotions. When analyzed from a 
bottom‑up perspective, the relationship between low‑threshold unmyelin‑
ated peripheral afferent fibers (also known as C‑touch or CT fibers) and 
the characteristics of naturalistic affiliative interpersonal touch becomes 
critical [1]. On the other hand, viewing social touch from a top‑down per‑
spective emphasizes that it is predicated on interaction within interper‑
sonal relationships, particularly reciprocal ones between humans [2].

Beyond the realm of personal interactions, social touch plays an essen‑
tial role in wider developmental and emotional contexts. It is important in 
child development and the enhancement of parent–child relationships [3]. 
In terms of mental health, touch serves as a therapeutic tool that contributes 
to the emotional well‑being of patients with Autism Spectrum Disorder 
(ASD) [4]. Social touch remains an influential factor that shapes interper‑
sonal relationships and contributes to the overall psychological well‑being 
of adults [5]. Even though social touch might not be literally required for 
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survival, it obviously plays a critical role in scores of life aspects, from early 
development stages to maintaining well‑being in adulthood.

Researchers have investigated social touch in human–human interac‑
tion because touch behaviors serve as a channel for non‑verbal commu‑
nication such as gaze and gestures and express wider social signals [2]. 
Moreover, cultural background significantly influences touch behaviors as 
social signals in interaction. Similar to language, different societies adhere 
to different social norms, even in touch interaction [6]. Therefore, under‑
standing such cultural differences is also essential in social touch studies 
in human–human interaction.

1.2 SOCIAL TOUCH IN HUMAN–ROBOT INTERACTION
With their physical bodies, robots can physically interact with humans 
just as we humans do with each other. In fact, human–robot touch inter‑
actions provide various benefits for human beings, such as the advantages 
of social touch among humans [7,8]. These studies showed a new aspect of 
social robots; many past human–robot interaction studies focus on con‑
versational interaction, although such a possibility enables using social 
robots as physically interactive partners for human beings.

What defines a touch as social when human–robot interaction is 
involved? We believe that social touch involves recognizing a relationship 
with a robot, much like relationships with other people. Being hit by a 
ball is merely physical contact. However, if an entity that seems to pos‑
sess human‑like features and intent touches you, it’s perceived as a social 
touch. This idea isn’t limited to positive relationships: even in adversarial 
situations, the same principle applies. Your pet robot is quite welcome to 
touch you; being touched by a disliked robot will undoubtedly intensify 
that negative feeling. A social touch with robots resembles an amplifier in 
relationships.

To understand social touch in human–robot interaction, the design and 
implementation of appropriate hardware (e.g., robots and sensors) and 
software (e.g., a framework of social touch interaction) is crucial. Social 
robots that physically interact with people need abilities that initiate, 
respond to, and modulate social touch interaction based on the interac‑
tion contexts and relationships with interacting people. Designing such 
anthropomorphic robots and their attributions of intentionality is also 
essential for acceptable social touch interaction with people. In addition, 
evaluating the effects of social touch applications by robots is crucial for 
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understanding how their social touch interactions influence people’s deci‑
sion‑making and behaviors and support their daily lives.

In the context of social touch between humans and robots, robots must 
learn the norms of touch. As machine learning evolves, we anticipate 
robots that interact with a smoother, more natural touch, potentially rep‑
licating familiar gestures. However, such a computational approach relies 
on understanding the standard patterns of touch in advance. For this 
purpose, we are establishing computational social touch, a computational 
theory that calculates and reproduces these interactions at the algorithmic 
level to achieve infrastructure for symbiotic interaction between humans 
and robots through social touch. We are currently analyzing human touch 
behaviors and exploring how robots mimic such movements to advance 
the field of computational social touch.

This book presents an in‑depth examination of social touch in the con‑
text of human–robot interaction, investigating the necessary technologies 
and emerging applications in this field. Our objective is to provide a com‑
prehensive overview of this multidisciplinary domain, which converges at 
the intersection of robotics, social sciences, and engineering. This book is 
intended for researchers and students working in the field of human–robot 
interaction.
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2.1 INTRODUCTION
Despite the remarkable advances in the development of social robots that 
are designed to engage with humans in everyday settings, the interac‑
tion modalities between such robots and humans remain constrained, 
particularly in the realm of tactile engagement. While most social robots 
are equipped to communicate through gestures, facial expressions, and 
speech, their design often precludes tactile interactions due to their rigid 
and heavy exterior materials. In contrast, social touch, which is defined as 
physical contact in a social context, serves as a cornerstone of human inter‑
actions and profoundly influences both emotional and physical well‑being 
[1]. Numerous studies have corroborated the therapeutic impact of social 
touch on alleviating mental and physical stress [2,3]. As social robots 
become increasingly more integrated into our daily lives, the importance 
of tactile interactions such as hugs and handshakes as a form of psycho‑
logical support cannot be overstated [4,5].

To enable meaningful tactile interactions between humans and social 
robots, two essential capabilities must be incorporated into the design of 
the latter: the ability to initiate touch with humans in a socially appropriate 
manner as well as the capacity to respond to human touch in a human‑like 
way upon recognition. Various tactile sensing technologies have been 
proposed to fulfill these requirements [6–8], including piezoelectric films 
and magnetic sensors embedded in silicone rubber skin [9,10] and fab‑
ric‑based flexible tactile sensors [11–13]. Although these sensors perform 
adequately when subjected to sufficient force that deforms the skin, they 
struggle to detect subtler forms of touch such as gentle stroking or patting 
that are commonly observed in human‑to‑human interactions. This is pri‑
marily because these softer touches do not significantly deform the skin. 
Moreover, existing technologies largely concentrate on detecting interac‑
tions only after a human touch has occurred.

Research on social touch reveals that the perception of touch in inter‑
personal interactions is not solely determined by the tactile stimulus itself. 
Rather, it is significantly shaped by the cultural background, beliefs, and 
emotional states of the individual being touched [1]. Additionally, how a 
touch is initiated—specifically, the speed at which it approaches—also plays 
a pivotal role in its interpretation. For example, according to the concept of 
“Humanitude [14],” a rapidly approaching touch is generally perceived as 
aggressive, whereas a slower approach is deemed supportive. Indeed, several 
studies have indicated that the dynamics leading up to a touch—pre‑touch 
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interactions—hold valuable insights for human–robot interactions (HRIs) 
[15,16]. This insight implies that for a robot to fully comprehend the nuances 
of social touch, it must be capable of recognizing human touch behaviors 
even before physical contact is made. This recognition cannot solely rely 
on visual cues, since the act of touching often occurs in areas obscured by 
a human or a robot body. Therefore, social robots should employ multiple, 
complementary methods for recognizing pre‑touch interactions.

In this section, we argue that the recognition of social touch in HRIs 
must encompass both pre‑ and post‑touch phases (Figure 2.1). To create 
a social robot that can facilitate these dual aspects of touch, we designed 
a sensor system that can detect both imminent and actual touch events. 
We first developed a proximity and touch sensor for social touch using a 
fabric‑based, conductive sensor and described its characteristics and sev‑
eral applications in social touch contexts.

2.2  DESIGN CONCEPT OF A SENSOR SYSTEM 
FOR DETECTION OF SOCIAL TOUCH

Silvera‑Tawil et al. outlined several essential criteria for touch sensors in 
the context of human–robot touch interactions [8]:

 C1. Spatial resolutions ranging from 10 to 40 mm are generally consid‑
ered adequate.

FIGURE 2.1 Three steps in social touch.
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 C2. Sensors should be durable, reliable, and versatile, capable of captur‑
ing a broad spectrum of data. Parallel sensing of multiple data types 
does not necessarily enhance performance.

 C3. The force exerted in typical human touch interactions can 
vary from as low as 0.3 N (approximately 30 g/cm2) for a gentle 
stroke to over 10 N (around 1,000  g/cm2) for a push or a slap. 
Conventional force sensors struggle to detect subtle touches, 
making the incorporation of dynamic (vibration) or proximity 
sensors advantageous.

 C4. The fabrication of the sensor skin should be straightforward, 
cost‑effective, replicable, scalable, and result in a durable product.

 C5. The sensor skin should be easily adaptable to a variety of three‑dimen‑
sional robotic structures.

 C6. All hardware components should be engineered to withstand 
human‑like environmental conditions, including rapid temperature 
fluctuations, varying humidity levels, sudden force, stress, dust, light, 
and electric fields.

 C7. Real‑time data processing is essential. For social HRI, sampling rates 
between 20 and 60 Hz are deemed sufficient.

In addition to these general criteria, we propose an additional 
requirement:

 C8. Sensors should be capable of detecting not only the touch and 
post‑touch phases, but also the pre‑touch phase. This is crucial 
because the impact of social touch is influenced by both the tactile 
stimulus and the context leading up to the touch.

To meet these criteria, we developed a sensor system for recognizing social 
touch that integrates two distinct functions: identifying a pre‑touch to the 
touch phase and capturing a touch to the post‑touch phase. We employed 
a proximity sensor for the former and a pressure sensor for the latter. Both 
functions were achieved in a fabric‑based, conductive sensor.

2.3 FABRIC‑BASED SENSOR FOR SOCIAL TOUCH
We developed a capacitive sensor based on a conductive fabric as 
our sensor for social touch (Figure  2.2a). The conductive fabric 
(Sanki Consys Co., Ltd.) is made by simultaneously knitting together 
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silver‑coated nylon yarn, polyethylene yarn, and polyester yarn. The 
fabric is knitted with three layers: the silver‑coated yarn is on one 
side (Figure 2.2a), the polyester yarn (Figure 2.2b) is in the middle 
to  connect both sides, and the polyethylene yarn is on the other side 
(Figure 2.2c). This results in a fabric that is conductive on the surface 
and insulative on the reverse.

In conventional fabric‑type sensors [12], conductive and insulative fab‑
rics are made separately and sewn together. In this production method, 
the distance between the conductive and insulating surfaces differs near 
the seam where tension is applied and elsewhere, resulting in variations 
in the sensor’s sensitivity. On the other hand, in the developed fabric, the 
conductive and insulative surfaces are knitted at the same time, so tension 
is applied uniformly and the distance between the two surfaces can be 
kept constant to maintain reliability, meeting C2. Furthermore, the sensor 
is manufactured with a knitting machine, satisfying C4. Since the sen‑
sor is fabric, it is soft, pliable, and extremely robust, meeting criteria C4 
and C5. Furthermore, it can be cut and sewn like a common fabric, which 
means that a wide variety of shapes and size can be produced, meeting cri‑
terion C1. Since all these sensor materials have been used for human cloth, 
we expect this sensor to satisfy criterion C6 in a social robot that coexists 
with humans.

The sensor is connected to a microcontroller (Microchip Technology 
Inc.) through a fabric‑based electric wire covered with non‑conductive fab‑
ric. We measured the sensor’s capacitance using a measurement function 

FIGURE 2.2 Fabric sensor for social touch. Fabric sensor, which is knitted withthree 
layers: the silver‑coated yarn (a), the polyester yarn (b), and the polyethylene yarn (c).
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implemented in the microcontroller. The gathered sensor data are sent to 
a PC either wired by a serial port or wirelessly in real time, satisfying C7. 
The sensor can be freely attached to the robot’s surface using insulating 
cloth tape.

2.4 CHARACTERISTICS OF DEVELOPED SENSOR
We investigated whether the developed sensor had characteristics that sat‑
isfy criteria C3 and C7. First, we examined pressure changes. Figure 2.3 
shows the experimental setup. We used a digital force gauge and pressed 
a 25‑mm‑diameter piece of aluminum ten times against a 5‑cm‑square 
sensor at pressures of 0.3, 1, 5, 10, 15, 20, and 25 N and measured the sen‑
sor values at those times. The results are shown in Figure 2.4. Criterion 
C3 proposed by Silvera‑Tawil et al. requires a sensor to handle forces from 
0.3 N (a gentle touch) to 10 N (a strong touch like pushing or poking). 
Although this sensor has sufficient sensitivity to discriminate between 
a gentle touch of less than 1.0 N and a strong touch of more than 20 N, 
the resolution is not very high. Therefore, while it can discriminate social 

FIGURE 2.3 Experimental setting for examining basic properties of developed 
sensor of pressure.
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FIGURE 2.4 Sensor value changes from pressure.

touches, it is inappropriate for tasks that require fine sensing such as object 
manipulation.

Next, we examined the sensor’s characteristics for proximity changes. 
Figure  2.5 shows the sensor system and an experimental setting we 
developed to examine its pre‑touch phase characteristics. We devel‑
oped a validation system in which a mannequin wore a cloth with nine 
5 × 10 cm sensors attached to its left sleeve and measured the changes in 
sensor values when a person approached it. In the experiment, a male 
experimenter (170 cm, 80 kg) approached from a distance of 100 cm a 

FIGURE  2.5 Developed sensor suit and experimental setting to examine its 
proximity properties.
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mannequin that was wearing our developed sensor suit (Figure  2.5, 
right). He stopped for two minutes at 100, 75, 50, and 25 cm from the 
mannequin and recorded the sensor data at each distance. We com‑
puted the Euclidean norm of nine sensors for each bit of data. Figure 2.6 
shows the Euclidean norms of the sensors at each distance. This result 
indicates that the developed system can distinguish a human from a 
distance of at least 75 cm, although it struggles to detect a human at 
more than 75 cm. This detectable distance corresponds to intimate 
space for embracing, touching, or whispering, as defined in proxemics 
[17]. We also confirmed that the developed sensor system shows sig‑
nificantly different values when the experimenter touched it, suggesting 
that its performance is sufficient to detect pre‑touch and touch interac‑
tions with a human, satisfying criterion C8.

2.5 APPLICATION OF SENSOR FOR SOCIAL CONTEXT
Since the sensor we developed can be attached to clothing, it can be used 
to measure contact not only between people and social robots but also 
between people. As an example of a real‑world application of our developed 

FIGURE  2.6 Sensor value changes in distance between validation system and 
humans.
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sensors, we have developed a system for measuring human‑to‑human con‑
tact during the care of seniors with dementia.

Dementia significantly impacts both seniors and their surrounding 
communities, including family members and caregivers. Behavioral and 
Psychological Symptoms of Dementia (BPSD) such as agitation, delirium, 
and wandering occur in 40%–50% of seniors with dementia and force 
caregivers to pay constant attention to the elderly; such requirements add 
to the burden on caregivers and increase care costs. Reducing BPSD is a 
major social issue in elderly care [18].

In recent years, communication with seniors with dementia is playing 
a more significant role in the occurrence of BPSD, and “Humanitude,” a 
care technique that focuses on such communication, is attracting greater 
attention. This care technique, which is based on comprehensive commu‑
nication using perception, emotion, and language, consists of 150 specific 
strategies based on four skills: seeing, touching, talking, and standing [19]. 
Due to Humanitude’s effectiveness, it is being introduced in nursing care 
settings around the world, and the scientific community is verifying its 
effectiveness, analyzing it using information and communication technol‑
ogy, and developing support robots [20].

Although Humanitude is an effective care technique for seniors with 
dementia, its mastery is difficult. The communication style of seniors with 
dementia is very different from that of healthy adults, and a communication 
style must be acquired that is suitable for seniors with dementia through 
training. For example, in seeing, which is an important preliminary step to 
touching in Humanitude, caregivers are required to establish eye contact 
within 20 cm of a senior’s face. Such an extremely close distance mocks 
generally accepted social norms for establishing eye contact. For standing 
up, which is done with touching, the caregiver and the cared‑for person 
must work together appropriately while keeping their bodies in close con‑
tact to help the latter stand up on their own. However, to master these 
skills, the caregiver requires special training from an expert, a situation 
that has dampened its widespread use. If it were possible to continuously 
measure the proximity and contact state of caregivers during elderly care, 
we might be able to quantitatively evaluate Humanitude skills and con‑
struct a system that supports the effective acquisition of assistance skills 
even without instructors. For these purposes, developing a training sup‑
port system for Humanitude has begun ([21] as an example). We developed 
a mask‑type Humanitude training application to measure the distance 
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between a caregiver and a cared‑for person, as well as a smock‑type sensor 
suit to measure the state of contact during standing assistance and touch‑
ing with our developed sensors.

Figure 2.7 shows an overview of our developed system, which consists 
of (1) a mask‑cover proximity, sensor‑based distance measurement device 
and (2) a Humanitude training application equipped with a distance judg‑
ment function. The in‑facial distance measurement device and the appli‑
cation are connected wirelessly. The latter judges the distance based on the 
sensor information sent from the in‑facial distance measurement device 
and notifies the learner by sound and vibration when the distance is within 
20 cm. This allows the learner to gain an understanding of the sense of the 
face‑to‑face distance, a critical skill in Humanitude. We developed a 10‑cm 
long, 15‑cm wide mask‑cover‑type sensor with black insulation tape on 
its surface. The mask’s contact surface is covered with Velcro, which was 
applied directly to the surface of the mask worn by the user. The sensor 
is connected to a microcontroller that measures the capacitance through 
a shielded cable for noise reduction. The measured sensor values are sent 
wirelessly from M5ATOM Matrix to the Humanitude Training App on a 
smartphone. The device can be implemented as a wearable device because 
it operates on a mobile battery. In this paper, all the components are put 
on a hat. Capacitance is inversely proportional to the distance between two 
persons. Therefore, the lesser the distance between people, the larger the 
capacitance is. When a user wearing the device approaches a person’s face, 
the distance between the mask cover and the person’s face is shortened, 

FIGURE 2.7 Overview of a mask‑type Humanitude training application.
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resulting in a larger capacitance and, consequently, a smaller sensor value 
from the microcontroller. This controller evaluates the distance between 
the mask cover and the person’s face. Figure 2.8 shows an example of the 
change between the sensor value and the actual distance when the wearer 
of the face‑to‑face distance measurement device approaches another per‑
son’s face from 60 cm away. The actual distance was measured using motion 
capture. The sensor value changed significantly as the mask‑cover‑type 
sensor gets closer to the person’s face.

Figure 2.9 shows an overview of our developed smog‑type tactile sen‑
sor suit. We selected an open‑backed type since users can easily put it on 
and remove it off to reduce their burden. The developed suit has 33 chan‑
nels of fabric‑type sensors on the upper body (Figure 2.9b), including a 
mask cover. Each sensor is equipped with a small microcontroller board 
for reading capacitance, and each sensor board is wired with elastic fab‑
ric conductors to send sensor values to a transmitting microcontroller 
(M5ATOM Matrix) by I2C communication. The transmitter microcon‑
troller wirelessly sends all the sensor data to PC by UDP. We prepared suits 
for both a caregiver and a patient to measure their contact states when the 
former is helping the latter to stand up. Figure 2.9c shows an example of a 
sensor response when a human is wearing each of the sensors and assists 
the person to a standing‑up motion. The intensity of the red indicates the 
contact’s strength. The sensor can detect that the caregiver is putting an 
arm around the assisted person’s waist, that their chests are touching, and 

FIGURE 2.8 Example of changes in face‑to‑face distance and sensor values.
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that the caregiver is putting an arm around the assisted person without 
enough contact with the side of the assisted person’s body. By simultane‑
ously measuring the data sent from the two sensor suits, we can confirm 
which body parts of the caregiver and the assisted person are in contact 
with each other during the measurements. We confirmed that the state of 
contact differed between skilled and unskilled caregivers [22]. This mea‑
surement could not be achieved by conventional sensors such as motion 
capture system because of large occlusion.

2.6 CONCLUSIONS AND DISCUSSION
In this section, we pointed out that the effect of social touch is deter‑
mined as a whole process from pre‑touch interaction to post‑touch 
interaction and we proposed a design concept for a sensor system that 
can cover the whole process. First, we developed a sensor that can detect 
pre‑touch and touch interactions using fabric‑based sensor. Following 

FIGURE 2.9 (a) Smock‑type wearable sensor, (b) placement of sensors, and (c) 
example of care motion and corresponding sensor responses.
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the criteria to achieve social touch, we verified the properties of the 
developed sensor and confirmed that it has abilities to cover the whole 
process: discriminating between gentle and strong touches as well as 
capturing a human who is approaching a robot. Although research 
remains immature on social touch in HRI from pre‑ to post‑touch inter‑
actions, our system helps a social robot improve the robustness of per‑
ception at close distance.

Since the developed sensor is wearable, we can apply it not only for 
robots but also for humans. Therefore, we can also use it in investigations 
of human–human touch interaction. We showed two such applications 
for elderly care. This investigation sheds light on the understanding of the 
whole procedure of social touch and sensor specifications such as their 
placement and sizes.

Finally, we point out the individual variability in terms of the elec‑
trostatic capacity of the human body and the change of capacity from 
long‑term use. We expect to reduce these problems by calibration for each 
individual and measuring skin conductance. Future work will implement 
our developed sensor suit in a humanoid robot to investigate the effect of 
its motion on the sensor data. We have already started this work [23]. The 
integration of more sensors is also critical.
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3.1 INTRODUCTION
Soft robots made of materials such as silicone and rubber have attracted 
much attention in recent years. By exploiting their flexibility, soft robot 
technology provides a wide range of applications: surgery [1], infra‑
structure research [2], and food preparation [3]. Soft robotic hands 
can touch people and food with a low possibility of injury or damage 
[4]. Yoshiyuki et al. developed a wrapping hand that can grasp a small 
amount of food, such as chopped leeks and edible seaweed [5]. Navas 
et al. developed soft grippers for gripping fragile fruits or vegetables [6]. 
Mimori et al. developed a robot hand that uses a binding mechanism 
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for grasping [7]. In factories, soft robotic hands have packed cake and 
grabbed fried foods. As described above, a wide variety of soft robotic 
hands have grasped various objects. However, these soft robotic hands 
are assumed to be set at a position from which they can grasp, and no 
method has been established yet that moves a robot’s hand toward the 
object that will be grasped (positioning). Positioning a robot hand is not 
an inherent issue for soft robots; this issue applies to rigid robot hands. 
Some rigid robot hands have sensors, including time‑of‑flight sensors 
or cameras, attached to their fingertips to measure an object without 
touching it. This approach provides a more compact setup than one in 
which the camera is situated outside the robot. Hasegawa et al. attached 
a net‑like proximity sensor to a robot hand’s fingertip to control its pos‑
ture [8]. On the other hand, for soft hand robots, conventional rigid 
sensors inhibit the deformation of their hands. Therefore, a sensor that 
positions a soft robot hand is required to accommodate the robot body’s 
deformation.

In this study, we used a flexible conductive cloth [9] covered with sili‑
cone as a sensor. The cloth does not prevent the deformation of the soft 
robot hand, and its capacitance is influenced by the distance to a con‑
ductive object. Therefore, we believe that we can measure the distance 
between the robot hand and a grasping candidate without touching it. 
To observe the influence of the distance, we developed a plate‑shaped 
sensor in which the cloth is covered by silicone to form a relationship 
between the capacitance of the cloth and the distance to the conductive 
or non‑conductive object. Based on the result, we set two plate‑shaped 
sensors, assuming that two pieces of cloth are embedded in the fingertips 
of the soft robot hand, and we estimated the distance between the object’s 
center position and the middle point of sensors by detecting the moment 
when the highest capacitance is measured. Finally, we developed a soft 
robot hand, embedded cloth in its fingertip, and estimated the grasping 
candidate’s center position. The robot also estimated the position of mate‑
rials such as wood, a steel can, and curing tape and compared their esti‑
mation accuracies.

3.2 BASIC CHARACTERISTICS OF CAPACITIVE CLOTH
We adopted a capacitive cloth (Sanki Consys) (Figure  3.1a) to achieve 
non‑contact information as the distance between the cloth and an 
object. The cloth and its structure are shown in Figure 3.1b. The former 
has a conductive layer and a non‑conductive layer interwoven into an 
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intermediate layer. The conductive surface consists of nylon silver‑plated 
yarn. The non‑conductive surface consists of polyester. The conductive 
and non‑conductive surfaces are connected by polyester. Because the con‑
ductive layer works as a polar plate, the capacitance is determined by the 
distance between the cloth and an object to be grasped.

To observe the change in capacitance caused by conductive objects, a 
plate‑shaped sensor was made as a prototype. A lead wire is attached to 
the conductive cloth using a reinforcing cloth (Figure 3.2a) and shown in 
Figure  3.2b. Assuming that the cloth is embedded in a soft robot hand 
made of silicone, it is covered with silicone (Ecoflex 00‑30). The fabricated 
sensor (Figure  3.2c) is formed by pouring silicone solvent into a mold 
made by a 3D printer. The conductive cloth is 10 × 50 × 1 mm; the sensor is 
20 × 70 × 4 mm. The thickness between the surfaces of the conductive cloth 
and the silicone covering (the sensor’s surface) is 1 mm.

The capacitance was measured using a microcontroller (Arduino). 
Figure 3.3 shows a circuit that measured the capacitance change. The time 
was measured when the voltage of the receiving pin exceeded a particular 
threshold (the charging period). The larger the sensor’s capacitance is, the 
longer it takes for the receiving pin to exceed the threshold. Therefore, the 
charging period determines the sensor’s capacitance.

FIGURE 3.1 (a) Conductive cloth and (b) its configuration made of two layers: 
a conductive layer woven by nylon string coated by silver and a non‑conductive 
layer woven by polyester. Layers are connected by intermediate layer woven by 
polyester. Capacitance is measured by connecting lead wire to conductive layer.
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We recorded the charging period when an object was near the sensor. 
Two types of objects were selected: wood as an insulator and aluminum 
lumps as a conductor. The sizes of both were identical: 30‑mm wide, 
15‑mm long, and 100‑mm high. As shown in Figure 3.4, the object was 
placed above the sensor and approached from 50 mm in 5‑mm incre‑
ments to the shortest distance without contact of 1 mm and with contact 
of 0 mm. For noise reduction, the average values were recorded every ten 
seconds.

Figure  3.5a and b shows the wood and aluminum results. The verti‑
cal axis shows the charging period and its positive correlation with the 
capacitance, and the horizontal one shows the distance between the sensor 
and the object. When wood was the approaching object (Figure 3.5a), the 

FIGURE 3.2 Developed sensor made of conductive cloth covered by silicone: (a) 
connection with lead wire using reinforcement cloth and (b) cloth connected by 
lead wire. (c) Plate‑shaped sensor where cloth is covered by silicone.

FIGURE 3.3 Circuit that measures sensor’s capacitance: Period until pin detects 
high voltage is counted.
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FIGURE  3.4 Experiment setup that measures charging period when object is 
approaching sensor.

FIGURE 3.5 Charging periods of sensor: (a) wood is a non‑conductor and (b) 
aluminum is a conductor approaching sensor.
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charging period only changed slightly when the object it approached to 
the sensor was within 1 mm and made contact with the sensor. In the case 
of aluminum (Figure 3.5b), the charging period greatly changed when the 
distance between the sensor and aluminum was less than 20 mm, although 
a larger change was observed when the object made contact with the sen‑
sor. Utilizing this characteristic, the next section explains the estimation 
of the grasping candidate without touching it using two plate‑shaped sen‑
sors for positioning the soft robot hand.

3.3 ESTIMATION OF POSITION OF TARGET OBJECT
The robot hand in Figure 3.6a can successfully grasp the object when it is 
set in the middle of the fingers, i.e., the center of its hand should coincide 
with the object’s center, assuming that the fingers are symmetrically open. 
In this section, supposing that the robot’s fingertips into which the cloth 
is embedded move over the object without touching it in the next subsec‑
tion, the position of the object’s middle that corresponds to the middle of 
the sensor as shown in Figure  3.6a is estimated using two plate‑shaped 
sensors.

Because the distance changes between the fingertip and the object due 
to the finger’s fluctuation from the softness of the soft finger when the 
hand moves over the object, this section adopts fixed two plate‑shaped 
sensors with a certain distance and the object is moved under the sen‑
sors (Figure 3.6b) to check the accuracy of the estimated distance. The 
distance between the object’s middle and the middle position of the 
two sensors is estimated by measuring the capacitance of each one. As 

FIGURE 3.6 (a) Positioning of robot hand by moving over object and measuring 
the capacitance of sensors embedded in the fingertips. (b) Testbed to check the 
accuracy of position estimation. Plate‑shaped sensors were fixed, and the object 
moved.
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explained in the previous section, the capacitance changes when the 
object is conductive. Therefore, the aluminum lump used in the previ‑
ous section was adopted as object.

For the estimation of the distance, the object was moved under the sen‑
sors (Figure 3.7), and we recorded the times when the capacitance of each 
sensor reached its maximum. Assuming that the robot hand’s moving 
velocity is controllable, the object’s velocity in this section v was given. 
A push switch detected a terminal of the moving object, which recorded 
the following times: when the object moved from its arbitrary position 
(Figure 3.7a); when the capacitance of sensor 1 reached its maximum M1T  

FIGURE 3.7 Procedure that estimates distance between middle position of two 
sensors and object’s middle L.
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(Figure  3.7b); when the capacitance of sensor 2 reached its maximum 
M2T  (Figure 3.7c); and when its right side touched the surface of switch ET  

(Figure 3.7d). From the velocity and the recorded times, distance L from 
the object’s middle to the middle position of the sensors is calculated as

 = − +







2
,E
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where v is the velocity of the object. By moving the object a distance L, the 
middle position of two sensors will coincide with the object’s middle.

Figure 3.8 shows the experimental setup. Since the slider moved up and 
down, the sensors were placed vertically and the object attached to the 
slider moved from top to bottom. We assumed no gravitation effect during 
our estimation. The object stopped when it contacted the switch. The slider 
moved at = 5v  mm/s. To investigate the relationship among distance d , the 
length between the sensor and the object (Figure 3.6b), and the estimation 
accuracy, d  was varied from 1, 5, 10, 15, and 20 mm, and the position esti‑
mation error was recorded at each distance. To smooth out the noise, the 
charging period was the average of the last ten records.

Figure 3.9 shows an example of the change in the charging period when 
a conductor passes between two sensors. The vertical axis shows the charg‑
ing period, while the horizontal axis shows the time. The charging peri‑
ods reach their highest value when sensors 1 and 2 are about 11,000 and 
25,000 ms. The error and the relative error between calculated position L 
and measured value 112.5 mm for each distance d  are shown in Table 3.1. 
For each distance, L was estimated ten times.

FIGURE 3.8 Experimental setup: Sensors are placed vertically, and object moved 
down assuming no gravitational effect on the estimation. It stops when it touches 
the switch.
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The results show that the average and relative errors were 10 mm and 
9.0% when d  was 20 mm. When d  is 15 mm or less, there is no signifi‑
cant difference in the average error. Considering that the width of object 
is 15 mm and the fingers can open much wider than that, the error is 
negligible.

3.4  POSITION ESTIMATION USING TWO 
SOFT ROBOT FINGERS

The previous section showed that the distance between object’s middle and 
the middle position of the sensors can be estimated by moving the object 
over the sensors and recording the highest value of each sensor’s charging 
period. This section explains the development of a soft robot hand that is 
composed of two soft fingers, and we experimentally estimated the object’s 

FIGURE 3.9 Example of charge periods of both sensors while an object moves 
over sensors. The time when the charge period is the highest indicates the mini‑
mum distance between the object and the sensor.

TABLE 3.1 Experimental Results Using Two Plate‑Shaped Sensors

Distance d [mm] 1.0 5.0 10.0 15.0 20.0

Average error [mm] 4.5 4.3 3.3 4.5 10.1
Relative error [%] 4.0 3.9 2.9 4.0 9.0
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position using two conductive cloths embedded in the soft robot’s finger‑
tip. Soft robot fingers were formed by pouring silicone solution into a mold 
made by a 3D printer in the same manner as with the plate‑shaped sensors. 
The developed soft robot fingers are shown in Figure 3.10a. A finger has 
a cavity that stores air. When it is filled with air of a certain pressure, it 
deforms and achieves a C‑shaped curve (Figure 3.10b). The robot has two 
fingers, and conductive cloth is embedded in the fingertips (Figure 3.10c). 
As explained above, the fingers symmetrically open, and the hand’s center 
position matches the sensor’s middle point. Because the distance between 
the sensors changes based on the posture of the fingers and is difficult to 
measure, we didn’t use the distance between the sensors for the estimation 
as in the previous section.

As shown in Figure 3.11, the robot hand moved over the object from left 
to right at a constant speed and stopped after certain period hET . Similar 
to the method mentioned in the previous section, distance hL  between the 
terminal position of the hand to the center of the object is estimated by the 
following equation:

 = − +







2h hE
hM1 hM2L T T T v

where hM1T  is the time when the charging period of sensor 1 (the right sen‑
sor in the figure) reaches its maximum value. hM2T  is the time when the 
charging period of sensor 2 (the left sensor) reaches its maximum value.

The experimental setup is shown in Figure 3.12. The hand was carried 
by a slider driven by a stepping motor. Figure  3.12a shows the hand’s 
initial position, whereas Figure  3.12b shows its terminal position. As 
shown in Figure 3.11, the actual distance from the center of the object 

FIGURE 3.10 Developed robot hand that contains two soft silicone fingers: (a) 
developed soft robot finger and (b) curved form when filled with air. (c) Soft robot 
hand equipped with two soft robot fingers and conductive cloth is embedded in 
the fingertip.



34   ◾   Social Touch in Human–Robot Interaction

to the terminal position is 85 mm, i.e., if hL  is estimated as 85 mm, the 
estimation is correct. The capacitance does not increase if the distance 
between the fingertip and the object is long (Figure 3.5b). On the other 
hand, if the distance is too close, the fingertip touches the object by the 
fluctuation of the soft finger as it moves, even though this is not the time 
when the sensor is closest to the object and the capacitance is too high. 
Therefore, we set the distance to 3 mm so that the fingertip did not touch 
the object since the sensor’s fluctuation and capacitance increase with 
more distance from the object. The charging period was the average of 
the previous five points.

Figure 3.13 shows an example of the change in the charge periods of the 
right and left sensors (sensors 1 and 2) as the robot hand moved. Similar 
to the previous experiment, the period of sensor 1 first reached its maxi‑
mum value and then the period of sensor 2 reached its maximum value. 

FIGURE 3.11 Motion of robot hand to estimate center of grasped object. Note 
that time to stop hand ThE is known.

FIGURE 3.12 (a) Experimental setup and (b) hand movement.
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Unfortunately, due to the fluctuation of the soft robot finger, cyclic fluctua‑
tion was observed. Table 3.2 shows the estimated positions and the rela‑
tive errors of five trials. The maximum error was 2.6 mm compared to a 
measured value of 85 mm, indicating that estimation is possible with small 
error. Position estimation by a soft robot hand without touching is possible 
with small position error estimation, although the capacitance fluctuation 
may be large due to the soft material.

We verified the effectiveness of the proposed method for grasping 
objects other than aluminum. For grasping objects, we selected a piece of 
wood (Figure 3.14, 9‑mm wide, 70‑mm deep, 125‑mm high), a steel can 
(a 52‑mm diameter, 104‑mm high), and curing tape, which is a polyester 
tape coated with polyethylene (49‑mm wide, a 98‑mm diameter). As in 
the previous experiment, the position was estimated five times for each 
object, and the error and relative error were calculated. The location of the 

FIGURE  3.13 Example of charge periods of right and left sensors. Trajectory 
fluctuated due to finger’s softness.

TABLE 3.2 Estimated Distance hL  and Error

Trials 1 2 3 4 5

Error [mm] 0.1 0.4 2.6 0.4 1.8
Relative error [%] 0.1 0.5 3.0 0.5 2.1
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grasping candidate was the same as in the previous experiment: 85 mm 
between the middle point of sensors at the hand’s terminal position and 
the center of the object. The results for wood as an insulating material 
were less accurate than the previous results (Table 3.3). Accurate position 
estimation was difficult because the capacitance change was small when 
the sensor approached the wood, and the maximum value was sometimes 
wrongly detected. On the other hand, the capacitance with steel changed 
largely when the sensor reached the can at its closest distance, and an 
accurate position estimation was possible (Table 3.4). The capacitance also 
changed for the curing tape. Although a relative error of about 10% was 
observed in some trials, position estimation is possible, compared with 

FIGURE 3.14 Objects made of different materials: (a) wood, (b) steel can, and (c) 
curing tape coated with polyethylene.

TABLE 3.3 Estimated Distance hL  and Error for Wood

Trials 1 2 3 4 5

Error [mm] 1.1 3.1 21.3 19.8 4.0
Relative error [%] 1.3 3.7 25.1 23.3 4.7

TABLE 3.4 Estimated Distance hL  and Error for Steel Can

Trials 1 2 3 4 5

Error [mm] 2.0 0.2 0.9 3.5 2.0
Relative error [%] 2.4 0.2 1.1 4.1 2.4
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the result with wood because the error was less than 10 mm (Table 3.5). 
Perhaps the tape’s material, polyethylene, was electrically charged and 
generated capacitance between the sensor and the tape.

3.5 CONCLUSION
We developed a flexible sensor whose capacitance changes in response 
to the approach of a conductive material for which a soft robot hand 
achieves positioning for an object to be grasped. We investigated the sen‑
sor’s characteristics and confirmed that its position can be estimated by 
the plate‑shaped sensor that embedded the conductive cloth. The flexible 
sensor’s characteristics showed no significant change in capacitance when 
the insulating material (wood) was close to the sensor. Capacitance with a 
conductive material (aluminum lumps) changed largely when the distance 
was less than 20 mm. In the position estimation using two plate‑shaped 
sensors, the error was reduced when the distance between the sensor and 
object was less than 20 mm. In experiments where the cloth was embedded 
in a soft robot hand, we confirmed that the error was small and estimation 
was possible without touching the object, although we did observe capaci‑
tance fluctuation due to the soft robot fingers. In position estimation using 
different materials, we experimentally found that estimation was possible 
with a material other than metal: curing tape. Our experiments confirmed 
that a sensor that does not interfere with the deformation of a soft robot 
hand can be fabricated and that position estimation can be performed 
without the support of external sensors such as a camera. However, posi‑
tion estimation is impossible if the object to be estimated is an insula‑
tor, and the distance between the sensor and an object must be less than 
20 mm. Such problems can probably be solved by selecting a material that 
is more sensitive to the conductor.
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TABLE 3.5 Estimated Distance hL  and Error for Curing Tape

Trials 1 2 3 4 5

Error [mm] 1.1 1.7 8.5 7.8 8.7
Relative error [%] 1.3 1.8 10.0 9.1 10.2
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4.1 INTRODUCTION
As robotics technology continues to progress, interest is growing in the 
tactile aspects of human–robot interactions such as object manipulation 
and touching. Many current sensors are rigid and intended to be attached 
to the hard surface of a robot’s body. However, such sensors cannot be used 
on soft‑skin robots such as android robots that closely resemble humans 
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and stuffed robots. In prior research, we introduced a tactile sensory suit 
tailored for these anthropomorphic androids [1, 2].

In many previous robots, each sensor was arranged to avoid shared or 
mutual interference, and sensor responses were often separated from the 
robot’s motions. On the other hand, in our proposed tactile sensor suit, the 
suit itself changes based on the robot’s motion, so that the robot’s motion 
information is reflected in the sensor values. This means that dynamics are 
present among the tactile sensor, the clothing, and the robot’s motion, and the 
clothing becomes a large‑scale sensor network that reflects the robot’s motion.

Research on physical reservoir computing has been burgeoning in the 
current scholarly landscape. This approach regards the dynamic behav‑
ior of soft materials as computational devices like recurrent neural net‑
works, highlighting the potential for diverse physical phenomena to serve 
as computational resources [3, 4]. A subset of these studies has focused 
on leveraging a robot’s body as a computational resource, investigating 
the computational prowess of musculoskeletal systems [5], or generating 
quadruped robot locomotion using a soft spine as a physical reservoir [6]. 
Extending the boundaries, some research has even engaged soft‑bodied 
creatures such as an octopus for information processing [7–10].

These studies hint at the potential for active applications of tactile sen‑
sor suits to monitor inherent body dynamics. Monitored dynamics could 
be directly harnessed for information processing to estimate the state of 
android robots. If the tactile sensors embedded in the suit can predict 
robotic movements, then android robots might maintain their robust 
performance by the self‑assessment of their posture using only tactile 
feedback from removable clothing, even in the event of malfunctioning 
internal sensors, which are harder to replace.

In this section, we extend the concept of physical reservoir comput‑
ing to fabric‑based tactile sensors and propose an innovative fabric‑based 
information processing apparatus that employs clothing and its wearer as 
computational resources. We treat a sensor suit furnished with an array of 
touch sensors as a recurrent neural network and use time series data col‑
lected from the sensors to estimate the robot’s movements or the person 
wearing the suit. By directly engaging a sensor suit laden with many tac‑
tile sensors as an information processing tool, processing can be executed 
proximally to the user or the robot. This feature presents an intriguing 
prospect for edge computing [11] with minimized latency. In this section, 
we validate this concept by exploring the degree to which robot move‑
ments can be estimated utilizing a simple fabric tactile sensor suit.
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4.2  TACTILE SENSOR SUIT FOR EXTRACTING 
A COMPUTATIONAL RESOURCE

Figure 4.1 shows both the conventional and our proposed approaches for 
the sequence learning of robot behavior. In the former, externally added 
machine learning systems with high computational power such as recur‑
rent neural networks mainly take over the nonlinear and temporal prob‑
lem of learning a certain target signal using sensor values. On the other 
hand, in our approach, we fully exploit many tactile sensors together with 
the wearer’s dynamics, which resembles a recurrent network, to solve tasks 
requiring nonlinearity and memory by just adding linear and static read‑
outs. This is useful for tasks that require robots to respond in real time, 
such as social interactions, since it drastically reduces learning time and 
computational cost.

4.3 EXPERIMENTS
We conducted a preliminary experiment that explored the feasibility 
of estimating a robot’s state through fabric‑based information process‑
ing. This experiment estimated a wearer’s periodic movements using a 

(b) Proposed sequence learning with wearable touch sensors

Motor

command

Target signal

(a) Typical sequence learning with recurrent neural networks
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FIGURE 4.1 Typical sequence learning approach (a) and the proposed approach 
(b). The conventional approach represented in (a) not only exploits the sensor net‑
work as a computational resource, but also uses nonlinearity and memory incor‑
porated from external machine learning networks at the readout. Our approach 
utilized the worn touch sensor network by a robot as a computational resource to 
solve nonlinear and temporal information processing for time series data [12].
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sensor suit (Figure  4.2). An android robot, equipped with this sensor 
suit, carried out a variety of motions. Subsequently, these movements 
were predicted, drawing on information gleaned from clothing sensor 
s and posture data x collected from the joint angle sensor embedded 
within the robot.

4.3.1 Experimental Setup
4.3.1.1 Wearable touch sensor suit

 1. In our experimental setup, the tactile sensor suit is equipped with 
nine sensors on its left arm (Figure 4.3). Each sensor is connected 
to a PIC microcontroller (PIC16F1847, Microchip Technology Inc.), 
facilitated through a fabric‑based electrical wire encapsulated within 
non‑conductive fabric. The capacitance of each sensor was measured 
utilizing a function built into the microcontroller.

The data collected from the sensors are relayed to the host PC by 
a USB bus and a serial port at 100‑ms intervals, with the help of a 
capacitance calculation function appended to the microcontroller. 
The interface between the sensor and the human or robot body is 
coated with insulating cloth tape, establishing a non‑zero contact 
distance between the sensor and the wearer.

The wearer’s posture is mirrored in the variations in contact 
states between the sensors and the wearer’s body. For instance, 
when the wearer flexes her elbow, the sensors in proximity to it 
establish close contact with the wearer’s body, thereby increas‑
ing the capacitance of the sensors. Conversely, when the wearer 
extends her elbow, the sensors near it either lose contact with or 
only partially touch her body, lowering the sensor values than 
when the elbow is flexed.

Motor 

command

Posture information

Joint angles
Input

Target signal

Prediction

Output

Wearable touch sensors

Sensor 

value

Readout

module

Robot

FIGURE 4.2 Schematic overview of the conducted experiments.
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4.3.1.2 Information processing in the proposed architecture:

 2. Figure  4.2 illustrates the information processing flow in our pro‑
posed system. The processing is divided into two phases: training 
and testing. In the training phase, an android robot wearing the sen‑
sor suit performs a specific action for approximately 80 seconds. We 
collected time series data of the sensor suit’s sensor values and the 
wearer’s action data. Out of 600 samples extracted from these col‑
lected data, we utilized the first two‑thirds (400 samples) for training 
and the remainder for testing. We designed readout modules that 
predicted the wearer’s movement data, taking the sensor suit’s cur‑
rent step sensor values st as input, and next step’s movement data +x 1t  
as target signals. The task is to learn function f  such that ( )=+x s1 ft t .  
We used the remaining data (200 samples) to test and evaluate 
the performance of the readout modules by calculating the mean 
squared error (MSE) between output ŷ of the readout module and 
actual motion data y. For all the training processes, the input and 
output data were standardized between 0 and 1.

Our study explores the capabilities of a fabric‑based computer: 
Does the sensor time series of the sensor suit hold the dynamics to 
estimate the wearer’s motion trajectories? To address this question, 
we utilized linear regression (LR) as the readout module to mimic the 
motion trajectories in subsequent steps. In other words, we learned 
the weights of the linear model: = + + + ++1 0 1 1, 2 2, 9 9,x w w s w s w st t t t , 
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FIGURE 4.3 Wearable touch sensor suit that consists of nine capacitive touch 
sensors [12].
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where ,si t represents the sensor value of the i‑th sensor (Figure 4.3) at 
time step t and wi denotes its weight. For comparison, we also evalu‑
ated the performance of three recurrent neural networks for learn‑
ing time series data: echo state networks (ESN) [13], long short‑term 
memory networks (LSTM) [14], and gated recurrent unit networks 
(GRU) [15]. An ESN is a recurrent neural network whose learning 
fine‑tunes the linear and static readout weights, producing quicker 
and more stable implementation and training compared to standard 
backpropagation‑through‑time algorithms used in LSTM and GRU 
[16]. In these networks, we varied the number of nodes in the net‑
work (equivalent to the number of sensors): 9, 20, 100, and 500. In 
ESN, we set the leaking rate and the spectral radius to 0.7 and 0.9, 
respectively, and employed pseudo‑inverse matrix calculation for 
training. For LSTM and GRU, the loss function was predicated on 
the MSE between the network’s outputs and target signals. We uti‑
lized the adaptive moment estimation method as an optimization 
scheme with previously recommended parameters [17] and updated 
the weights with training data over many iterations (epochs) to 
train LSTM and GRU. Training was repeated until the model had 
completed 1,000 epochs or the difference between two consecutive 
values of the loss function fell below threshold θ . We set θ = −10 5. 
For ESN, LSTM, and GRU, we abstained from using any regular‑
ization techniques. All the information processing systems were 
constructed in Python 3.7. LR was implemented with the sklearn 
module, ESN with the easyesn module, and LSTM and GRU with 
the pytorch module.

4.3.2 Experiment: Emulation of Robot Motion
4.3.2.1 Experimental setting

 3. In our experiment, we equipped ERICA (a female android robot) with 
a sensor suit to ascertain how efficiently our proposed system esti‑
mated the state of the joint angle sensors during the robot’s motion. 
ERICA possesses a total of 44 degrees of freedom (DOF) in her eyes, 
face, and upper body, all of which are driven by pneumatic actuators 
except for her eye movements. We collected the position information 
for each actuator within a range of 0–255. The experiment focused 
on estimating the sensor values of nine DOFs (Figure 4.4) with the 
sensor data acquired from the sensor suit: the linear displacements of 
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joints 1, 2, and 9 (linear actuators) and the rotational displacements 
of joints 3–8 (rotational actuators) were evaluated as outputs of the 
readout modules.

In the experiment, ERICA repeatedly executed three distinct 
motions: (R1) swinging back and forth with a bent arm, (R2) extend‑
ing her hand outward, and (R3) twisting it. During each motion, 
the control values were adjusted solely for the joints represented in 
Figure 4.4, while the others were held at a constant value. For each 
motion, the robot performed for about 80 seconds, and the data were 
gathered over five iterations.

4.3.2.2 Result

 4. Figure  4.5 presents the average MSE in tests conducted on all the 
motion data, segmented by the number of network nodes. Note that 
since the number of network nodes is not a parameter on the LR, it 
maintains a consistent representation across all graphs. Given our 
training conditions, LR, which relies on a weighted linear sum of 
sensor values from the sensor suit, demonstrates performance on par 
with recurrent network methodologies. This implies that the sensor 
dynamics of the suit incorporate the requisite motion information. 
In comparison, under these conditions, LSTM and GRU, which both 
employ a gradient method to calculate the network’s weights, do not 
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FIGURE 4.4 Degrees of freedom used in ERICA. Third to sixth joints generate 
motions R1, R2, and R3 [12].
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achieve sufficient convergence, leading to a higher MSE. This trend is 
particularly pronounced with the increase in the number of nodes. 
On the other hand, the ESN achieved a lower MSE due to its exclusive 
adjustment of the output layer. However, a higher MSE was observed 
when the number of nodes reached 500.

Figure 4.6 offers an instance of the actual output derived from the 
readout modules for a swinging back and forth action with a bent 
arm (R1), where N = 20. The solid line represents the predicted trajec‑
tory from each readout module, and the dotted lines illustrate the 
actual trajectories. Compared to LR and ESN, LSTM and GRU align 
with the other trajectories, excluding the sixth joint where the con‑
trol signal was delivered.

4.4 CONCLUSION AND DISCUSSION
We proposed a novel approach to physical reservoir computing through 
the implementation of a wearable tactile sensor suit, demonstrating a 
 fabric‑based information processing paradigm that utilizes tactile sen‑
sor networks as computational resources when worn by an android robot. 
Despite the limited number of sensors utilized (nine‑channel tactile sen‑
sors on the left arm), our results demonstrated comparable emulation 
performance between a LR model of sensor states, which lacks memory 
capacity, and an ESN, which is a nonlinear recurrent neural network, for 
the android robot wearing the suit. This implies that fabric‑based tactile 
sensors offer potential as computational tools in motion emulation tasks.

FIGURE  4.5 Mean squared error of different readout modules with different 
network nodes. The red lines show medians. N indicates the number of network 
nodes used in ESN, LSTM, and GRU. Note that the vertical axis is a logarithmic 
axis [12].
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FIGURE 4.6 Performance of four readout modules for motion R1 (swing with 
bent arm) in N = 20: Top figure shows normalized time series data of touch sen‑
sors. Each line shows sensor value of each touch sensor. Other four figures show 
performances of linear regression (LR), echo state network (ESN), long short‑term 
memory network (LSTM), and gated recurrent unit network (GRU) [12].
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In terms of the MSE, ESN and LR were comparable, whereas the LSTM 
and GRU networks demonstrated higher MSEs due to insufficient training 
data and shorter learning times. Given their efficiency, with modifications 
restricted to the output layer’s weights, ESN or LR is likely a better choice 
for real‑time motion emulation.

Past research has argued that ESNs tend to overfit more readily than 
LSTM or GRU networks as the number of nodes increases [18]. This might 
account for the increase in MSE observed in ESN with 500 nodes, sug‑
gesting that the number of nodes must be carefully optimized depending 
on the task at hand. ESNs may also not be suitable for predicting systems 
with hidden states [18]; LSTM or GRU networks might perform better in 
such cases.

In contrast to gradient methods like LSTM and GRU, fabric‑based 
information processing only learns linear readouts without modifying 
the clothing structure. Therefore, readouts can be added as needed, open‑
ing possibilities for new applications that enhance social interaction. For 
instance, a conceivable implementation is a speaking function in response 
to sign language.

Although the present study demonstrated the potential of a fabric‑based 
tactile sensor suit as a computational resource, it does have limitations. 
Since we only performed monotonous and periodic motions, further 
testing is needed with more complex memory‑demanding trajectories. 
Similarly, the utilization of a full‑body suit equipped with a greater num‑
ber of tactile sensors warrants investigation to understand the impact of 
the number of sensors on the learning process.
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5.1 INTRODUCTION
Robotics research is based on the development of useful hardware that has 
sufficient capabilities for human interaction because well‑designed robot 
hardware enables researchers to investigate various topics. Therefore, 
many robotics researchers have especially designed robot platforms that 
match their demands. For example, in the context of supporting seniors, 
researchers developed several cute and acceptable robot devices [1–3]. 
Similar to these contexts, researchers have developed several different 
types of social robots for conversational interactions [4–8].

Researchers who are working on social touch interaction have also 
developed several specially designed robots [9–12] because existing robots 
suffer from several restrictions, including limited joint angles for natural 
touch interaction and limited sensing systems for social touch interaction. 
These studies focused on whole‑body touch interactions such as hugging 
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because human‑like, intimate whole‑body interactions with robots pro‑
vide several positive effects for interacting people.

Appearance plays a significant role in human–human touch interac‑
tions. For instance, a past study showed that women generally respond 
more favorably to being touched than men [13]. Another study focused on 
touch interactions between the same and opposite genders and discovered 
that touching by the opposite gender offers distinct benefits [14]. Note that 
men recipients have reported negative effects from touch interactions of 
the same gender in nursing contexts [15].

Shifting the lens to human–robot interaction within the scope of social 
touch, the main focus has been the effects of the gender of the human par‑
ticipants, given that most robots are gender‑neutral [15,16]. Although these 
studies found positive effects in human–robot touch interaction, the per‑
ceived gender effects of the appearance of robots have been inadequately 
studied. Although some past studies involved androids, they largely 
portrayed feminine characteristics [17–19]. This situation complicates 
attempts to examine the influence of a robot’s perceived gender in social 
touch within human–robot interaction. Several androids with a masculine 
appearance do exist; yet they usually feature a face design borrowed from 
an actual person’s face [20]. This complicates the task of avoiding appear‑
ance effects in experiments, especially when the source face belongs to a 
well‑known person. Researchers also developed gender‑neutral android 
robots based on non‑existent faces [21–23], although they were not spe‑
cially designed for human–robot touch interaction.

Taking these factors into account, we developed from computer‑graphic 
face designs an android platform with a masculine appearance (Figure 5.1) 
and named it SŌTO (SOcial TOuch, “創仁” in Japanese). To facilitate social 
touch interactions with humans, we outfitted SŌTO with fabric‑based, 
capacitance type upper/lower‑body touch sensors. In the remainder of this 
paper, we delve into the specifics of our android platform. Note that this 
chapter is modified based on our previous work [24], edited to be compre‑
hensive and fit with the context of this book.

5.2 SYSTEM OVERVIEW
5.2.1 Hardware

For the android’s development, we embraced the design policy of an 
existing android, ERICA [8], and worked closely with A‑Lab1 on both 
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its mechanical and appearance design. Similar to ERICA, the origins 
of SŌTO’s face are found in computer graphics (CG) rather than actual 
human faces; its face has a symmetrical design [25]. This approach side‑
steps any potential copyright or right of refusal to be photographed issues 
arising from using real human faces. Moreover, using a CG‑based face 
mitigates biases toward appearances. For instance, if we used a Geminoid 
(featuring Prof. Ishiguro’s face [20]) and participants were already aware 
of his media activities, their perception of the android would undoubtedly 
be influenced.

In total, SŌTO has 44 degrees of freedoms (DOFs) on its face, torso, and 
arms. Note that its legs are not yet actuated. We used pneumatic actuators 
for all the joints except the eyes for smooth and silent movements. The 
majority of joint control revolves around facial actuation for expressions 

FIGURE 5.1 Photograph of SŌTO: an android platform for social touch interac‑
tion with people.
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and speech. Each eye has three DOFs, offering synchronous control in 
yaw, pitch, and convergence. The upper and lower eyelids and the inner 
and outer eyebrows have four DOFs. Another set of four DOFs comes 
from mouth control: height, width, and the upper and lower corners of the 
mouth. Last, the tongue and the jaw contribute two DOFs of facial actua‑
tion. By using its arm, this android can touch a person’s face [26].

We developed a fabric‑based touch sensor that senses changes in 
capacitance. Figure 5.2 illustrates the upper‑body touch sensor suit that 
can detect the location of a touch from a human. We also developed a 
lower‑body touch sensor suit, which has a total of 94 channels that collect 
a variety of data about touch interactions.

5.2.2 Software

Concerning SŌTO’s software aspect, we integrated its control system 
toward ERICA’s software system [8] because their hardware settings are 
quite similar. Thus, SŌTO possesses a rudimentary and autonomous con‑
versational ability akin to ERICA’s and maintains autonomous control over 

FIGURE 5.2 Upper‑body touch sensor suit.
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its facial expressions, gaze, and blinking behaviors. We believe that retain‑
ing compatibility with an existing android system provides a platform for 
exploring gender effects in social touch interaction and can capitalize on 
the variance in hardware systems. In addition, the system autonomously 
governs speech‑related behaviors like lip‑syncing, rhythm, and backchan‑
nels. For managing dialog and interaction strategies, we employed existing 
visual tools [27] to facilitate an interaction design process.

Related to our developed touch sensor system, the android can respond 
to a human touch, for instance, by directing its gaze toward the point of 
contact. This sensor, which can roughly detect a distance between its sensors 
and a human body, also enables it to anticipate touching behaviors, e.g., gaz‑
ing toward a hand before it actually touches the robot [28,29]. In addition, 
our past study used its upper‑body sensor for a data collection to investigate 
how people physically interact with others and built a function that recog‑
nizes such physical interactions by touch sensor outputs. In other words, 
the android can also detect various kinds of touch interaction with its touch 
sensor system [30].

5.3 POSSIBLE USE CASES
In this section, we describe possible use cases for SŌTO by considering the 
existing social touch interaction studies. Note that already we used SŌTO 
in the context of social touch interaction [28]. Since such opportunities 
remain limited, we discuss the possibility of using such robots for future 
work.

Simple but effective cases are comparisons with a feminine‑appearance 
android robot (i.e., ERICA) in the context of social touch interaction. We 
previously conducted several experiments to understand the effects of 
social touch interaction [18,19,31,32] and gathered data for modeling touch 
behaviors based on human touch behaviors [33,34]. Therefore, experimen‑
tally using SŌTO with an identical setting as ERICA’s might provide inter‑
esting knowledge for comparisons.

Other future work will examine the touch interactions between androids 
that possess both feminine and masculine appearances and humans. This 
study will explore how an android’s appearance influences the perceived 
feelings surrounding touch interactions with it. We also plan to delve into 
the combined effects of the perceived genders of androids and the gender 
of participants through such comparative experiments. Comparisons with 
robots having machine‑like appearances [4,35–37] will enrich our under‑
standing of appearance effects and illuminate compelling design policies 
for human–robot touch interaction.
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Investigating the relationship between touch interaction and the uncanny 
valley [38] is another future work. Recent studies have focused on its appear‑
ance effects [39–41]. A past study also investigated the uncanny valley effects 
in human perception of forces feedback in a VR environment [42]. However, 
the effects of touch behaviors on the uncanny valley in human–robot inter‑
action have not been adequately investigated. We believe that human‑like 
natural touch motion and touch characteristics are essential for more 
acceptable interactions because people may act tentatively around robots 
that touch unnaturally even though their appearance is quite human‑like.

Although we developed SŌTO as an android platform for social touch 
interaction, of course, it can be employed for conversational interaction 
without any touch interaction. As described above, since SŌTO’s inter‑
active functions resemble ERICA’s, investigating masculine appearance 
effects in conversational interaction is one promising future work that can 
follow the same settings of past studies that focused on human–robot con‑
versational interaction [43,44].

5.4 CONCLUSION
This paper introduces SŌTO, an android platform developed explicitly 
for investigating social touch interaction between humans and robots. It 
outlines the android’s hardware, which includes a sensor suit equipped 
with fabric‑based touch sensors, as well as the details of its software con‑
figurations. We also discuss possible use cases with our specially designed 
robot for social touch interaction by referring to current studies related 
to human–robot interaction. We anticipate that SŌTO will support dis‑
cerning the differences in human–human and human–robot interactions 
within the scope of social touch.
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6.1 INTRODUCTION
The positive physical and mental effects of haptic interaction have been 
widely reported in human psychology literature [1–6]. Based on these 
results, researchers in human–robot interaction have investigated whether 
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haptic interaction with robots provides such effects. Several studies found 
positive results and the advantages of using robots with haptic interac‑
tions. For example, researchers developed a seal robot for elderly care 
and reported its mental therapy effects [7]. Another study reported the 
stress‑buffering effects of haptic devices [8]. Touch interaction with robots 
caused behaviour changes in people, including motivation improvements 
[9,10], prosocial behaviour encouragement [11,12], and self‑disclosure 
encouragement [13,14]. Moreover, touch interaction design is essential 
for expressing robot’s emotions [15–19]. These studies reported the effec‑
tiveness of haptic interaction with social robots and provided knowledge 
about designing their touch behaviours.

Unfortunately, these studies focused less on the pre‑touching situation, 
although they rigorously investigated the effectiveness of interaction after 
actual touching. Therefore, it remains unknown how robots should behave 
before being touched. We believe that pre‑touch interaction design is criti‑
cal for achieving natural touch interaction. In fact, robots need to behave 
appropriately before any kind of interaction, e.g., distancing behaviours, 
to appropriately adjust their positioning before conversational interaction.

Related to conversational interaction, E.T. Hall proposed the ground‑ 
breaking theory of proxemics [20], which has greatly influenced the design 
of robot’s behaviours. Several robotics researchers have used Hall’s theo‑
ries to design robot’s distancing behaviours because adjusting position 
relationships with interacting persons influenced the social acceptance of 
robots [21–26]. We investigated the pre‑touch proxemics concerning natu‑
ral behaviour design in before‑touch situations.

For this purpose, first, we focused on the pre‑touch reaction distance 
around faces in human–human touch interaction. Although we only 
investigated the distance around the face, such data will be useful for 
constructing a foundation for the pre‑touch behaviour design of social 
robots in the context of human–robot touch interaction. To measure the 
pre‑touch reaction distance in human–human touch interaction, we con‑
ducted a data collection with pairs of participants. During the experiment, 
one participant moved his/her hand towards the face of another partici‑
pant, and we measured the pre‑touch reaction distance at which the latter 
participant wanted the approaching hand to stop. Then, we analysed the 
collected data and implemented pre‑touch reactions based on the data col‑
lection results with ERICA (Figure 6.1) [27]. We also investigated the per‑
ceived impressions towards ERICA with/without pre‑touch reaction in an 
experiment with human participants. Note that this chapter is modified 
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based on our previous work [28], edited to be comprehensive and fit with 
the context of this book.

6.2 ANALYSING PRE‑TOUCH REACTION DISTANCE
6.2.1 Data Collection Procedure

For the data collection, we employed similar approaches to past studies 
that measured the personal distance between participants and robots 
[21–26]. In our data collection, we prepared two roles: touchers and evalu‑
ators. After fixing the evaluators’ positions and their face directions, the 
touchers slowly moved their hands towards the faces of the evaluators. 
When the latter felt discomfort, they explicitly vocalized such feelings and 
clicked on a computer mouse, and the touchers immediately stopped their 
hand movements. We then measured the hand’s distance from the face 
and labeled it as their preferred pre‑touch reaction distance. We covered 
various angles around the faces by allowing the touchers to move their 
hands towards the evaluators from any direction. The evaluators sat on 
a chair and looked at a mark to maintain their gaze direction during the 
experiment. The touchers stood around the evaluator at a certain distance. 
We measured the pre‑touch reaction distances from various angles of nine 
standing positions. The number of touches varied between participant 
pairs because each pair repeated the data collection as much as possible 
within the time allotted to them.

FIGURE 6.1 ERICA reacts before being touched.
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6.2.2 Recording Data

We prepared an autonomous tracking system to record the relative posi‑
tions of the touchers’ hands and the evaluators’ faces. Figure  6.2 shows 
distance variables in our data collection. We used two Kinect V2 sensors 
and calibrated their relative positions for accurate data collection. We also 
used Kinect V2’s library to detect the centre positions of the hands of the 
touchers (Phand in Figure 6.2) and the head positions of the evaluators (Pface 
in Figure 6.2). We also measured the timing of the mouse clicks by the 
evaluators to calculate the pre‑touch reaction distance between a toucher’s 
hand and an evaluator’s face (Dmc in Figure 6.2). We measured the size of 
the hands of the touchers before the experiment and added such informa‑
tion to the calculations and also used the average size of Japanese faces 
based on a previous study [29] (Dface in Figure 6.2, 9 cm for women and 
10 cm for men).

6.2.3 Analysis

Forty pairs of participants joined our data collection: ten pairs of female 
touchers and female evaluators, ten pairs of female touchers and male 
evaluators, ten pairs of male touchers and female evaluators, and ten pairs 
of male touchers and male evaluators. The average age of the participants 
was 21.83, and their SD was 1.53. The valid distance data were 11,699, the 

FIGURE 6.2 Distance definitions in our data collection.
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average number of each toucher was 292.5, and the SD was 81.1. Since each 
evaluator’s preferred pre‑touch reaction distance differed and each touch‑
er’s approached at a different speed, the number of data for each pair is also 
different. Therefore, we used the averaged pre‑touch reaction distance for 
our analysis.

The participants’ average pre‑touch reaction distance was 19.97 cm, 
and their SD was 8.48. We analysed the effects of genders of the touchers/
evaluators and the touch angles. First, we analysed the gender effects by 
conducting a two‑factor ANOVA with the pre‑touch reaction distance as a 
dependent variable, the toucher’s gender, and the evaluator’s gender. There 
were no significant differences in the toucher’s gender (F(1, 39) = .012, 
p = .914, η2 = .001), the evaluator’s gender (F(1, 39) = .020, p = .888, η2 = .001), 
or their interaction (F(1, 39) = 3.844, p = .058, η2 = .096). Although past 
studies reported that women preferred shorter personal distances than 
men [30,31], our data collection found no significant effects on the gender 
factor in the context of the pre‑touch reaction distance.

Next, we investigated the angle effects of the pre‑touch reaction dis‑
tance. Because the gender effects are not significant in this data collec‑
tion, we used the averaged pre‑touch reaction distance by integrating both 
genders in this analysis. We investigated the angle effects, by separately 
investigating the left/right side touches and above/below side touches to 
avoid an excessive number of combinations in the statistical analysis. We 
conducted a paired t‑test about the left/right side touches and found no 
significant differences (t(39) = 0.188, p = .851, d = .003).

Next, we conducted a paired t‑test for the above/below side touches 
and identified no significant differences (t(39) = 1.135, p = .263, d = .018). 
Therefore, this data collection showed no significant effects of the angle 
factor in the context of the pre‑touch reaction distance.

Based on the above analysis, we used the average pre‑touch reaction 
distance of all the gathered data without considering the gender/angle dif‑
ferences, i.e., 20 cm as the pre‑touch reaction distance.

6.3 EXPERIMENT
6.3.1 Hypothesis and Predictions

We developed a pre‑touch reaction model based on the observed pre‑touch 
reaction data to identify an appropriate pre‑touch reaction distance. In the 
modelling process, among the more minor effects of the gender and angle 
factors, we decided to use 20 cm as a threshold of reaction timing because 
it is the average pre‑touch reaction distance in the data collection. If we 
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appropriately model the pre‑touch reaction distance, a robot that reacts 
towards touch behaviour at 20 cm around its face will be perceived as more 
human‑like and natural than a robot that reacts after being touched or at 
an intimate distance to a potential touch. Based on these considerations, 
we made the following prediction:

Prediction: If a robot reacts at 20 cm to a touching behaviour, it will be 
perceived as more human‑like and natural than a robot that reacts after 
being touched or at 45 cm.

6.3.2 Robot System

We again used ERICA [27] and a Kinect V2 sensor to detect the posi‑
tions of the participants’ hands. We employed a PCL library [32] to make 
a clustering 3D object and FLANN [33] to measure the distance between 
ERICA’s face and the participants’ hands (Dreaction). Our developed system 
calculated the distance in less than 100 msec on average.

6.3.3 Conditions

We employed a within‑participant design for our experiment that has 
three different conditions. Each participant interacted with ERICA three 
times. The order of the three conditions was counterbalanced to avoid 
order effects. The reaction behaviour is looking at the participants’ faces 
in every condition.

Touch condition: Dreaction is 0 cm. ERICA reacts after the participants 
actually touched its nose. Only in this condition, an operator controlled 
the robot’s reaction behaviour to accurately react to the timing of being 
touched.

Proposed condition: Dreaction is 20 cm. Thus, the robot autonomously 
reacts to being touched by participants when Dreaction is less than 20 cm.

Intimate‑distance condition: Dreaction is 45 cm. Thus, the robot autono‑
mously reacts to being touched by participants when Dreaction is less than 
45 cm.

6.3.4 Participants

This experiment had 30 participants (15 women and 15 men) whose aver‑
age ages were 23.0 and SD 2.58.

6.3.5 Procedure

Before the experiment, the participants were given a brief description of 
its purpose and procedure. This research was approved by our institution’s 
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ethics committee for studies involving human participants. Written, 
informed consent was obtained from each of them.

First, we explained the robot’s pre‑touch reaction behaviour towards a 
touching behaviour. We asked them to move their hand at a slow and con‑
stant speed to avoid speed effects that resemble general touching behav‑
iours. In the experiment, participants moved their hands 18 times (three 
different positions: left‑side, front, and right‑side, three different angles: 
above, front, and below, and two hands: left and right) during the experi‑
ment. We counterbalanced each condition’s order of positions, angles, and 
hands. After each condition, the participants completed questionnaires.

6.3.6 Measurements

We prepared two questionnaire items to investigate the feeling of 
human‑likeness (“I think that the robot’s reaction distance is human‑like”) 
and naturalness (“I think that the robot’s reaction distance is natural”) 
of the robot’s pre‑touch reaction behaviour. The items were assessed on a 
1‑to‑7 response format, where 1 indicates the most negative and 7 indicates 
the most positive.

6.4 RESULTS
Figure 6.3 shows the results of the human‑likeness of the reaction distance. 
We conducted a two‑factor mixed ANOVA for the gender and distance 
factors, and its results showed significant differences in the distance fac‑
tor (F(2, 56) = 25.783, p < 0.001, partial η2 = 0.479), but no significant differ‑
ences in the gender factor (F(1, 28) = 2.240, p = 0.146, partial η2 = 0.074) or 
the interaction effect (F(2, 56) = 0.680, p = 0.511, partial η2 = 0.024). Multiple 
comparisons with the Bonferroni method revealed a significant difference 
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FIGURE 6.3 Questionnaire results of human‑likeness of reaction distance: Only 
significant differences compared to proposed conditions are shown.
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for the distance factors: proposed > intimate (p = 0.040), proposed > touch 
(p < 0.001), and intimate > touch (p < 0.001).

Figure  6.4 shows the questionnaire results about the naturalness of 
the reaction distance. We conducted a two‑factor mixed ANOVA for the 
gender and distance factors, and the results showed significant differ‑
ences in the distance factor (F(2, 56) = 71.493, p < 0.001, partial η2 = 0.719). 
We found a significant trend in the gender factor (F(1, 28) = 3.891, p = 0.058, 
partial η2 = 0.122), but no significant difference in the interaction effect 
(F(2, 56) = 0.579, p = 0.564, partial η2 = 0.020).

Multiple comparisons with the Bonferroni method revealed a signifi‑
cant difference for the distance factors: proposed > intimate (p < 0.001), 
proposed > touch (p < 0.001), and intimate > touch (p < 0.001).

Therefore, the participants perceived more human‑likeness and natu‑
ralness for the reaction distance in the proposed condition than in the 
alternative conditions, supporting our prediction.

6.5 DISCUSSION
The experiment results suggested several implementations. First, the data 
collection results showed that gender effects are not significant in the con‑
text of pre‑touch reaction distance. Past studies related to personal distance 
reported that evaluators’ genders are insignificant when the evaluators 
are approached by participants [34–38]. On the other hand, some studies 
reported that the approacher’s gender causes significant effects in identical 
situations [36–38]. These differences between personal and pre‑touch reac‑
tion distance indicate that people have different perceptions of approach‑
ing and touching persons.
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FIGURE 6.4 Questionnaire results of naturalness of reaction distance: Only sig‑
nificant differences compared to proposed conditions are shown.
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The experiment results show the importance of a robot’s pre‑touch 
reaction behaviour for natural human–robot touch interaction. The par‑
ticipants perceived more human‑likeness and naturalness when the robot 
reacted to their touching behaviours at a modelled distance. We expected 
the robot’s reaction to fit the participants’ assumption because its appear‑
ance is human‑like, a result that indicates that the robot’s appearance is 
one essential factor in determining an appropriate pre‑touch reaction dis‑
tance. For example, in a similar experiment, if we use a robot with a mas‑
culine‑like appearance [39], people may prefer a 20‑cm pre‑touch reaction 
distance because the data collection results did not show any significant 
effects of gender factors. However, if we use robots with a different appear‑
ance, such as mechanical‑robot‑like [40–42], creature‑like [43], baby‑like 
[44] or animal‑like [7], the preferred pre‑touch reaction distance may be 
different. Different appearances and environments (e.g., virtual environ‑
ments) might influence the appropriate reaction time, behaviors, and 
distances [45–49]. Lifestyle changes, e.g., the COVID‑19 pandemic, also 
affect the preferred distance with others [50–52].

6.6 CONCLUSION
Pre‑touch reaction behaviour design is essential for natural human–robot 
touch interaction, particularly for a robot with a human‑like appearance, 
because people will assume human‑like reactions towards it. Therefore, we 
conducted a data collection to investigate the appropriate pre‑touch reaction 
distance by observing human–human touch interactions. Based on observa‑
tions of more than 10,000 touch‑interaction data from 40 pairs of partici‑
pants, we identified the average pre‑touch reaction distance to be about 20 cm.

We implemented a pre‑touch reaction behaviour towards an android 
robot that has a feminine‑like appearance and experimentally evaluated 
the implemented behaviours with 30 participants. We prepared three 
pre‑touch reaction distances: 0 cm, which is literally a being touched dis‑
tance, 20 cm, which is an observed pre‑touch reaction distance from the 
data collection, and 45 cm, which is an intimate distance in conversation 
situations. The experiment results showed the advantages of implement‑
ing a pre‑touch reaction behaviour compared to the alternative conditions.
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7.1 INTRODUCTION
Touch interaction with other people provides various positive effects 
[1–6], and in this context, using social robots as a partner is a promising 
approach to compensate for the lack of human–human touch interaction, 
especially since it provides several positive effects [7–15]. Even though the 
effects of touch interaction with such social robots might fail to fulfill the 
needs of interaction with actual people, perhaps people’s negative situa‑
tions can be mitigated.

As described above, many research works have described the effective‑
ness of touch effects in human–robot interaction (HRI). However, these 
studies mainly focused on after‑touch situations; dealing with pre‑touch 
situations has received less focus. A few past research works concentrated 
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on a robot’s pre‑touch reaction distance [16] and for a virtual agent [17], 
both of which focused on faces. Knowledge about pre‑touch interactions 
remains limited. Based on human science literature, since an upper body 
part (i.e., the shoulders or arms, including the elbows and the hands) is 
mainly used in touch interaction between others [18], pre‑touch inter‑
action must address such touchable upper body parts for natural touch 
interaction.

We regard pre‑touch interaction research as an extension of proxemics 
in touch interaction contexts. People generally maintain a certain distance 
from others, and in conversation interaction contexts, such knowledge 
is called a personal distance [19]. Many developers of social robots have 
exploited insights from proxemics and borrowed them as the foundation 
of their positions when interacting with people [20–33]. Inspired by prox‑
emics, our ultimate goal is to establish its basis in the context of pre‑touch 
interaction as pre‑touch proxemics. Such basic knowledge is important for 
social robots that physically interact with people.

We first gathered people’s pre‑touch reaction data. Each data collection 
trial involved two participants whose touch target parts were a shoulder, an 
elbow, and a hand because previous studies reported that these body parts 
are acceptable for being touched [18]. For obvious issues (including sensitiv‑
ity to touch interaction), we eliminated the lower body from our target body 
parts. Next, we conducted a statistical analysis of the collected data and 
implemented a pre‑touch reaction model in a masculine appearance android 
called SŌTO [29] (Figure 7.1). Thus, this study aims to identify the mini‑
mum comfortable distance in human–human touch interaction around the 
upper body. Note that this chapter is modified based on our previous work 
[30], edited to be comprehensive and fit with the context of this book.

FIGURE 7.1 SŌTO’s pre‑touch reaction towards shoulder approach.
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7.2  PRE‑TOUCH REACTION DISTANCE 
IN HUMAN INTERACTION

7.2.1 Data Collection Procedure

For the data collection, we defined two roles for the participants: a toucher 
who makes physical contact with an evaluator who is touched. Similar to 
past proxemics studies that modeled pre‑touch [16,17] and personal dis‑
tances [23–28], we gathered self‑reported preferred pre‑touch reaction dis‑
tance from the evaluators who sat in chairs. The touchers stood around 
1.0 m in front of the evaluators. We fixed the latter’s positions, including 
their face direction, and asked them to constantly direct their gaze to 
the front. A toucher slowly extended his/her hand toward a body part of 
the evaluator; when the evaluator felt threatened and wanted the hand to 
stop, he/she generated an audible signal by clicking a button. The toucher 
immediately stopped his/her hand when hearing the signal and returned 
to his/her initial position, and the data collection continued with the same 
procedures. We asked the participants to move as naturally as possible 
and use their dominant hands. Each trial’s duration was two minutes for 
each body part: a shoulder, an elbow, and a hand. Each procedure for the 
evaluator’s body parts was repeated for two cases: a front‑right approach 
from the evaluator’s right and a front‑left approach from his/her left. The 
order of the approaching sides (front‑right or front‑left) was counterbal‑
anced between participants. Once the procedure was done, the partici‑
pants changed roles and repeated the data collection.

7.2.2 Recording Data

We used two OptiTrack systems (Acuity Inc.) as a motion capture system 
to automatically track the positions of the body parts of both the touch‑
ers and the evaluators. We placed four markers on the toucher: shoulder, 
elbow, palm of the hand (anterior), and back of the hand (posterior). We 
placed three markers on the evaluator: shoulder, elbow, and hand. We also 
obtained the timing of mouse clicks by the evaluators with which we cal‑
culated the pre‑touch reaction distance between a toucher’s hand and any 
body part of an evaluator.

7.2.3 Analysis

Sixteen pairs of Japanese participants (16 men and 16 women; eight man–
woman pairs, four man–man pairs, and four woman–woman pairs) joined 
our data collection. All of them met for the first time in the experiment, 
i.e., they were strangers. Their average ages and SD were 36.39 and 11.63, 
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respectively. The data collection gathered 6,593 values of distance data. 
On average, the touchers’ hands approached each evaluator’s body part 34 
times within two minutes. The total number of touching data was differ‑
ent between participants because of varied pre‑touch reaction distances, 
approaching speeds, etc. Therefore, we used the averaged pre‑touch reac‑
tion distance for each evaluator (i.e., 32) in the analysis instead of all the 
raw data. Figure  7.2 shows part of the gathered data around each body 
part. Note that these positions were relatively transformed based on the 
3D model body parts for visualization purposes. The obtained average 
pre‑touch reaction distance for all the participants was 23.46 cm and the 
SE was 2.1.

FIGURE  7.2 Toucher’s hand positions when an evaluator clicks a button for 
upper body parts.
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First, we analyzed the collected data from three factors: parts (shoulder, 
elbow, and hand), angle (left and right), and gender combination (same or 
different) (Table 7.1). We used a gender combination factor because a past 
study suggested that pre‑touch reaction distance increases with the opposite 
gender without providing strict evidence [16]. We conducted a three‑factor 
mixed ANOVA and only identified a significant main effect in the part fac‑
tor (F(2, 60) = 13.905, p < 0.001, partial η2 = 0.317). Multiple comparisons with 
the Bonferroni method revealed a significant difference for the distance fac‑
tors: shoulder > hand (p = 0.001) and elbow > hand (p = 0.001). There was no 
significance between the shoulder and the elbow (p = 0.591).

Note that no other factors showed significant effects in all the com‑
binations. Thus, in this data collection, only the body parts significantly 
affected the pre‑touch reaction distance. In other words, the angle and the 
gender combinations between the touchers and the evaluators did not sig‑
nificantly affect the distance.

Next, we analyzed how the approach speed influenced the data collec‑
tion, given that the interaction movement differed from person to person. 
We investigated this effect by investigating the relationship between the 
speed of the toucher’s hand and the minimum comfortable distance and 
obtained a weak positive correlation (r = 0.342, p < 0.001). A faster move‑
ment might cause more nervousness in the evaluator who reacts more 
quickly. In our setup, the defined pre‑touch situation showed a weak posi‑
tive correlation for the obtained minimum comfortable distance.

Finally, we analyzed whether the minimum comfortable distance 
changed during the data collection. Since the participants were involved 
in many touch interactions, we wanted to determine whether their per‑
ception influenced the measured distance. We investigated such an accli‑
mation factor by separating the dataset into two classes: first and second 
halves, and we used the part factor because we found significant differ‑
ences in the above analysis. Thus, we again conducted a two‑factor (part 

TABLE 7.1 Average (SE) of Minimum Comfortable Distance in Centimeters

Gender 
Combination Angle

Different Same Right Left

Shoulder 25.9 (2.6) 23.4 (2.6) 23.6 (1.8) 25.7 (2.0)
Elbow 24.1 (2.5) 23.6 (2.5) 23.0 (1,6) 24.7 (2.1)
Hand 21.3 (2.3) 21.0 (2.3) 20.6 (1.5) 21.7 (1.8)
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and acclimation) ANOVA and identified significant main effects in the 
part factor (F(2, 62) = 14.216, p < 0.001, partial η2 = 0.314) and in the accli‑
mation factor (F(1, 31) = 18.741, p < 0.001, partial η2 = 0.377). We did not find 
any significance in the interaction effect (F(2, 62) = 0.591, p = 0.557, partial 
η2 = 0.019). Multiple comparisons with the Bonferroni method revealed a 
significant difference for the distance factors: shoulder > hand (p < 0.001) 
and elbow > hand (p < 0.001). There was no significance between the shoul‑
der and the elbow (p = 0.653).

Based on analysis of the pre‑touch reaction distance around the upper 
body parts, we confirmed that the minimum comfortable distance around 
the hands is smaller than the same distance around the shoulders and 
elbows. Our results also showed that the gender and angle factors did not 
show a significant effect and exhibited a similar phenomenon with a past 
study on pre‑touch reaction distance around the face [16]. The parts factor 
showed a significant difference between the hand and the shoulder/elbow 
distances. The movement speed showed a weak impact on the minimum 
comfortable distance; however, the acclimation effect showed a significant 
difference.

7.3 ROBOT REACTION EXPERIMENT
7.3.1 Implementation

We used an android robot called SŌTO with a masculine appearance [29] 
and an OptiTrack system that resembles our data collection to capture the 
body parts’ positions in real time. Based on the data collection results, 
SŌTO reacted to the interaction when a hand approached the threshold 
distance by using the markers’ position information.

In the implementation of the pre‑touch reactions for the robot, we pre‑
pared three boundaries for the shoulder, elbow, and the hand and another 
for the face based on a past study [16] to achieve pre‑touch reaction behav‑
iors for typical upper body parts. The boundary thresholds are defined as 
Tface, Tshoulder, Telbow, and Thand, based on the positions of each body part of 
the robot: PRface, PRshoulder, PRelbow, and PRhand. The distances between the 
participant’s hand (Figure 7.3, PPhand) and each body part of the robot were 
calculated by OptiTrack system’s outputs (Dface, Dshoulder, Delbow, and Dhand). 
When this distance was equal to or less than a threshold (e.g., Delbow ≤ Telbow), 
the robot reacted and looked at the person using the marker on the partici‑
pant’s head as a reference. In this implementation, we simply employed the 
average values as the pre‑touch reaction distance threshold for defining 
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the model based on these analyses (shoulder = 24.8 cm, elbow = 24.1 cm, 
and hand = 21.5 cm). Note that the system’s thresholds can be changed by 
considering the angle and the gender of the interacting partners.

7.3.2 Testing

Finally, we tested our developed system. The touchers wore a marker on 
two fingers of their dominant hand and their head and stood around 
1.0 m from the robot’s positions. They slowly moved their hands while 
approaching the robot’s body part. The robot was designed to react by 
looking at the toucher’s face, a step that confirms that it autonomously 
reacted to the pre‑touch behaviors. We tested this result with multiple 
different touchers.

FIGURE 7.3 Reaction to a potential touch to elbow implementing the obtained 
model.
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7.4 DISCUSSION
Based on past knowledge and observations, this study implemented a 
pre‑touch reaction distance threshold for the face, shoulders, elbows, and 
hands. This distance was significantly shorter for the hand than the elbow 
and shoulder distances. However, these distance thresholds are based on 
specific body parts. Discussing how to deal with pre‑touching for other 
socially acceptable body parts might be enlightening. We must consider 
the sensitivity of other body parts because a past study reported that 
touching such areas is generally unacceptable except by a familiar person 
[18]. Investigating the relationship between such sensitivity and pre‑touch 
reaction distance is an interesting future work.

Concerning the gender effect, in human science literature, women 
are more receptive to being touched or engaging in close‑distance inter‑
action than men. They are also more willing to accept a same‑gender 
touch than an opposite‑gender touch [31–33]. Even though our data 
collection analysis did not show significant differences, the gathered 
data may be useful for studying the gender effects of pre‑touch distance 
around body parts.

Cultural differences are another possible factor that might have influ‑
enced the data collection results for pre‑touch reaction distances. In fact, 
touch interaction is quite different due to cultural effects [34,35] and situ‑
ations [36,37]. This study only included Japanese participants in a labora‑
tory setting. Our findings might fuel comparisons of cultural differences 
in the context of pre‑touch interactions.

Participant characteristics such as personality, culture, and age 
affect the pre‑touch reaction distance. In addition, we did not investi‑
gate the pre‑touch reaction distance around the lower body due to dif‑
ficulties observing human–human touch interaction. Although building 
whole‑body pre‑touch reaction distance knowledge is critical, such data 
collection is complicated by several issues, including ethical and privacy 
problems. Even if we used robots or virtual agents as touchers instead of 
human participants, data collection will inevitably be problematic.

Since our model is based on participants who were basically strang‑
ers, our study would undoubtedly change with people who already shared 
some kind of relationship. Investigating such differences in human–
human pre‑touch interaction will be interesting for future evaluations of 
the same effect in HRI.
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Moreover, similar to the pre‑touch reaction distance around a face, a 
robot’s appearances (e.g., a feminine persona [38], mechanical‑robot‑like 
[38–41], and baby‑like [42]) will influence the pre‑touch reaction distance 
around body parts. Another factor is changes in lifestyle, i.e., different dis‑
tance behaviors due to the COVID‑19 pandemic [43–45].

Our studies identified a more complex phenomenon than past studies. 
Our results suggest that robots might require a different strategy before 
touching and in touch interaction situations due to the appearances and 
genders of the people with whom it is interacting.

7.5 CONCLUSION
Before‑touch reaction behavior is a fundamental approach for improving 
communication and providing the android with sufficient tools for per‑
forming efficient interactions. We evaluated a before‑touch situation in 
human–human touch interactions to define a pre‑touch reaction distance 
and implemented it using a masculine appearance android. We modeled this 
distance around a (socially acceptable) touchable upper body part, i.e., shoul‑
ders, elbows, and hands, based on human–human interaction observations 
that considered gender, right or left side approach, and the speed of the touch 
interaction. The pre‑touch reaction distances for the shoulder (24.8 cm) and 
elbow (24.1 cm) were significantly greater than those for the hand (21.5 cm). 
Our analysis showed that speed and acclimation significantly affected the 
distance, although not gender or the side from which the approach came.

Based on the obtained results, we implemented a pre‑touch reaction dis‑
tance model in human–robot pre‑touch interaction. We used an android 
robot with a human‑like masculine appearance whose reaction was 
reflected in the defined reaction distances obtained in our human–human 
interaction analysis. Knowledge about upper body pre‑touch reaction dis‑
tance, based on human–human touch interaction and the differences of its 
effectiveness, will contribute to gathering pre‑touch proxemics informa‑
tion for social robots that physically interact with people.
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8.1 INTRODUCTION
Research on the nature of interactions in virtual reality (VR) environ‑
ments has progressed in recent years thanks to the development of new 
devices that introduce tactile stimuli for a more natural flow of multisen‑
sory information [1] and algorithms that effectively process tactile stimuli 
using the human cognition of the sense of touch [2]. Advances in this field 
are fuelling potential interaction with agents in VR environments using 
real physical stimuli [3–7].
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However, prior research has focused mainly on the touch and 
after‑touch interactions of virtual agents with participants without 
incorporating any of the factors involved in the before‑touch interac‑
tions. One study concluded that if a robot’s reaction distance before 
being touched were to resemble that of humans, this behaviour would 
help convey a more natural and human‑like impression [8]. In a VR 
context, simulating interactions between objects and agents based on 
physical phenomenon has been studied [1], although again the reaction 
distance before being touched was ignored. Although some research has 
focused on human‑agent proxemics, e.g., personal space in VR [9–11] 
and human proxemics preferences with regard to robots [12], none of 
these studies examined pre‑touch situations.

We address this issue by measuring the pre‑touch distance in a VR 
environment, which is defined as the distance at which a person usually 
reacts before being touched. First, we collected data on the distance at 
which participants began to feel uncomfortable when a virtual agent tries 
to touch their face. Then, we analyzed the obtained data and defined the 
characteristics of the optimal pre‑touch distance for VR spaces. Next, we 
tested how the interactions can be improved by implementing pre‑touch 
distance behaviour when a participant tries to touch the agent in a VR 
environment (Figure 8.1). Note that this chapter is modified based on our 
previous work [13], edited to be comprehensive and fit with the context of 
this book.

FIGURE 8.1 Pre‑touch interaction with an agent.
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8.2  MEASUREMENT OF PRE‑TOUCH DISTANCE 
TOWARDS VIRTUAL AGENTS

8.2.1 Data Collection

For the data collection, we measured the distance at which a participant 
began to feel uncomfortable when a virtual agent extended its hand towards 
his/her face. Our method of measuring this distance is based on the stop 
distance paradigm [14–19]. In this method, a virtual agent gradually moves 
its hand closer to the participant’s face, and the distance at which the par‑
ticipant starts to feel uncomfortable is recorded. The pre‑touch distance 
in VR space is calculated as the distance between the end of the agent’s 
right‑hand middle finger and the participant’s viewpoint.

8.2.2 Experimental Setup

We used Unity, which is a game development platform, to deploy a 3D 
model of the agents, their movements, and the virtual environment. We 
also implemented functions for stopping the approach of the agent’s 
hand and measuring the distance between the participant and the agent. 
We used Oculus Rift, an HMD for virtual reality, for the implemen‑
tation. By linking it to Unity, the HMD’s position and orientation are 
reflected in a VR space, and people can feel as if they are synchronously 
in a VR space. We used an Xbox controller as the user interface to stop 
the agent’s hand progress towards the participant’s face. Participants 
could press the button at any time, an action that immediately recorded 
the pre‑touch distance.

We investigated the effect of the avatar’s gender on the participants’ 
pre‑touch behaviour using two animated 3D models (from the Unity Assets 
Store) as agents: a man and a woman. The touching behaviour was defined 
as follows: the participant is sitting, and the agent is standing and extends 
her/his right hand towards the participant’s face from various angles 
(Figure 8.2). Considering the direction of the participant’s face, there are 19 
vertical angles and 13 horizontal ones. We set 247 angles in random order.

The agent’s hand, which always started 70 cm from the participant’s 
face at every angle, was programmed to approach it as quickly as possi‑
ble within five seconds, which is a constant movement speed of 14 cm/s. 
We designed the touching motion for the agent’s palm to be the closest to 
the participant’s face by adjusting the approaching angle of the touching 
motion. The initialization of the touching behaviour and the agents’ hand 
position was set with a button on the participant’s controller.
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8.2.3 Experiment Procedure

Twenty individuals participated in the data collection (ten men and ten 
women, aged 18–24). They wore the HMD and listened to our explana‑
tion of the experiment. When they pressed the controller’s button, an agent 
appeared whose right hand’s position was fixed. After confirming the hand’s 
position, the participants pressed the again button to initiate the agent’s 
touching motion. They stopped the agent’s hand by pressing the same but‑
ton when they began to feel uncomfortable. Then, the system measured the 
distance between the participant’s face and the palm of the agent’s hand. 
After finishing the measurement procedure for all the target angles, par‑
ticipants were given a three‑minute break, and then the agent’s gender was 
changed and the measurements were repeated.

8.2.4 Data Analysis

In the acquired dataset, we measured 4,934 data points for the men (with 
male agents: 2,467 points; with female agents: 2,467 points) and 4,918 
points for the women (with male agents: 2,457 points; with female agents: 
2,461 points). The average pre‑touch distance for all the participants was 
17.93 cm (SE = 1.98 cm). We analyzed the data with a focus on gender, 
angles, and habituation effects.

FIGURE 8.2 Hand’s approach.
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8.2.4.1 Gender and Approach Angle Effects
We conducted a four‑factor ANOVA that considered the participant’s gen‑
der (man/woman, PG), the agent’s gender (man/woman, AG), the vertical 
direction (high/low, HL), and the horizontal direction (left/right, LR).

We found significant differences in the HL factor (p = 0.024), the LR fac‑
tor (p = 0.019), and the interaction effect between the AG and the HL factor 
(p = 0.010). Regarding the horizontal factors, the pre‑touch space was sig‑
nificantly longer from the left side (18.4 cm) than from the right (17.4 cm), 
perhaps because of the perceived agent’s body proportions from the par‑
ticipant’s visual field. Since the agents used their right hands when touch‑
ing from the left side, their bodies were in front of the participant; when 
touching from the right side, their bodies were mostly out of sight, which 
may have influenced the pre‑touch distance.

Multiple comparisons with the Bonferroni method revealed that 
when the agent was man, the pre‑touch distance was significantly lon‑
ger when the agent approached from below than from above: p = 0.010, 
19.3 cm for the lower side and 16.8 cm for the upper side. These results 
indicate that the touch angle, in combination with the agent’s gender, 
influenced the pre‑touch distance.

8.2.4.2 Habituation Effect
We conducted a three‑factor analysis considering the participant’s gender 
(men/women), the agent’s gender (men/women), and data collection duration 
(first ten/final ten pre‑touch interaction). Significant differences were found 
in the interactions of the participant’s gender, the agent’s gender, and the 
time factors (p = 0.043). Multiple comparisons with the Bonferroni method 
revealed that the first ten trials showed a significantly longer distance than 
the final ten trials when the participant was man and the agent was woman: 
p = 0.028, 22.3 cm for the first ten trials and 18 cm for the final ten.

8.2.5 Pre‑touch Distance Trending

For evaluating how to classify the pre‑touch distance based on the aver‑
age distance (17.93 cm), we performed clustering by the k‑means method 
with two clusters: near (less than average) and far (above average). Results 
showed that the average pre‑touch distance obtained for the near group 
was 9.24 and 25.03 cm for the far group, suggesting that the pre‑touch dis‑
tance preferred by humans is not necessarily uniform. Therefore, in the 
second phase of our study, we used the pre‑touch distance mean of each 
group to determine the proper reaction of an agent to a touch behaviour.
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8.3  EVALUATION OF AGENT’S RESPONSE 
TOWARDS TOUCH ATTEMPTS

8.3.1 Experimental Setup and Conditions

For this experiment, we considered the pre‑touch distance (Near/Average/
Far), the agent’s gender factor (man/woman), and the participant’s gender 
factor (man/woman). The following are the details of each condition in the 
pre‑touch distance factor:

• Near condition: The near group average obtained in the data collec‑
tion (9.24 cm).

• Average condition: The average of all the participants in the data col‑
lection (17.93 cm).

• Far condition: The far group average obtained in the data collection 
(25.03 cm).

For the experimental environment, we created a VR environment where 
the participants performed a touch attempt towards the agent. We attached 
a wireless controller to their right hand to reflect their position in the 
physical space in the VR space, and the participants extended their hands 
towards the virtual agent’s face. Both the participants and their avatars 
were standing, while the virtual agent was sitting.

8.3.2 Procedure

Twenty‑eight participants (14 men and 14 women aged 18–24) joined this 
experiment. First, they filled out a consent form. Then, they put on and 
adjusted the HMD while listening to an explanation of the procedure. 
A simplified version of the data collection procedure was performed to 
obtain the pre‑touch distance for each participant. After collecting such 
data, we started the experiment. A man or woman agent sat in the VR 
space. The participant could move his/her right hand towards the agent’s 
face at any time. The agent looked at the participant’s face when his/her 
hand approached within a certain distance from the agent’s face. We mea‑
sured this distance between the participant’s hand and the agent’s face. 
We explained to the participants that this action indicated restlessness or 
discomfort and asked them to stop their approach immediately when the 
agent’s reaction was observed.

Under each condition, the distance at which the agent responded to the 
participant’s hand was determined based on the three conditions defined 
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above. Participants moved their hands towards the agent’s face nine times 
from different angles and observed their responses. After the experiment, 
they filled out a questionnaire about their preferences. This procedure 
was performed for all the pre‑touch distance conditions, and after a short 
break, it was repeated with an agent of a different gender.

8.3.3 Measurement and Results

We examined the following three topics in questionnaires and interviews 
to gauge our participants’ perceptions:

• Participants’ likeability towards the agent: Using the likeability item 
of the Godspeed questionnaire series [20], participants evaluated the 
agents’ friendliness on a 1‑to‑7 scale with 1 being mostly negative.

• Perceived agent’s likeability towards participants: We prepared items 
to estimate the perceived agent’s feelings of likeability, closeness, and 
friendliness towards the participants based on the likeability items 
of Godspeed: like‑dislike, friendly‑unfriendly, kind‑unkind, pleas‑
ant‑unpleasant, and nice‑awful. Each item was estimated with 1‑to‑7 
scale questions with 1 being mostly negative.

• Pre‑touch distance match: After the experiment was completed, we 
interviewed the participants to check which of the reaction distance 
conditions was preferred, ranking them from the most to least liked. 
We compared the interview results with the pre‑touch distance 
group (Near/Far) of the participants obtained during data collection.

8.3.4 Results

Our analysis of the data collection before the experiment placed 14 par‑
ticipants in the near group (seven men and seven women) and 14 partici‑
pants in the far group (seven men and seven women). The classification 
was based on the average values from the data collection before the experi‑
ment for each participant.

8.3.4.1 Likeability towards the Agent
We performed a four‑factor mixed ANOVA (agent pre‑touch distance 
(AD), participant pre‑touch distance group (PD), agent gender (AG), and 
participant gender (PG)) on the participants’ likeability questionnaire 
results (Table 8.1). We found a significant difference in the pre‑touch dis‑
tance factor of the agents. The results obtained with multiple comparisons 
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on the agents’ pre‑touch distance showed a significant trend between the 
near and far conditions (p = 0.083), and that the average condition was sig‑
nificantly higher than the far condition (Average > Far: p = 0.012). There 
was no significant difference between the near and average conditions 
(p = 1.000).

8.3.4.2 Participant’s Perceived Likeability
We also performed a four‑factor mixed ANOVA (agent pre‑touch dis‑
tance (AD), participant pre‑touch distance group (PD), agent gender 
(AG), and participant gender (PG)) on the agents’ likeability question‑
naire results. Similar to the participant’s likeability, we found a sig‑
nificant difference in the agent’s pre‑touch distance factor (p = 0.014). 
The results of multiple comparisons on the agent’s pre‑touch distance 
showed that the near condition had significantly higher values than the 
far condition (Near > Far: p < 0.001), the near condition had significantly 
higher values than the average condition (Near > Average: p = 0.002), and 
the average condition had significantly higher values than the far condi‑
tion (Average > Far: p < 0.001).

8.3.4.3 Participant’s Reaction Distance Preferences
Table 8.1 shows the ratio of the participants’ pre‑touch distance group 
(Near/Far) and the preferred agents’ pre‑touch reaction distance (Near/
Average/Far). A chi‑square test showed a significant difference among 
the conditions (x2(2) = 7.067, p = 0.029). A residual analysis showed that 
the near distance group significantly preferred the near agent’s reaction 
distance over the far one. We also found a significant trend in the far 
distance group, which preferred the far agent’s reaction distance over the 
near one.

TABLE 8.1 Pre‑touch Distance and Preference of Participants  
(*: p < 0.05, +: p < 0.10)

Pre‑touch Distance 
Groups 

(Participants)

Near Far
Near 5* 0*

Pre‑touch distance 
conditions (agent)

Average 7 8

Far 2+ 6+
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8.4 DISCUSSION
8.4.1  Application of Pre‑touch Interaction Findings 

in VR Space into Physical Space

The results of the data collection in the VR space in this study resemble those 
in the physical space, although differences did emerge. If we can approximate 
the pre‑touch distance for the physical space by adding certain coefficients 
to the pre‑touch distance in the VR space, we can probably approximate 
a pre‑touch distance to a body part that would be difficult to measure in 
reality (including from an ethical point of view) by implementing the condi‑
tions in a VR environment. In addition, in VR space, it is easier to set and 
modify the appearance, arm trajectory, speed, and other characteristics of 
an agent that is trying to touch a human than in a physical space. Therefore, 
this research contributed to the development of a pre‑touch distance model 
that takes into account various factors of the human body.

A previous study on pre‑touch interaction in a physical space calcu‑
lated the overall mean of the pre‑touch distance without distinguishing 
between near/far groups [8]. Therefore, when we implemented our analysis 
from a current study using the previous study’s data, the generated clus‑
ters and averages were different for the below and above average groups 
(Figure 8.3).

8.4.2 Distribution of Pre‑touch Distance in Physical and VR Spaces

When we compared the data from both studies, the pre‑touch distance in 
the physical space was slightly longer than that in VR space. For the aver‑
age and far groups, distances in the physical space were longer than those 
in the VR space by about 2 cm. In the near group, the distance difference 
was about 5 cm. On the other hand, we also identified common aspects 
between VR and physical spaces. The preferred pre‑touch distance in 
both lengthened as we got closer to the face area. In other words, the 
greater the distance, the closer was the pre‑touch distance between VR 
and physical spaces.

To investigate the different distribution of pre‑touch distance between 
different spaces, using the same appearance robots/agents will be use‑
ful. In the context of personal distance, a past study used Pepper robot/
agent to investigate the difference in the personal distance between 
physical and VR spaces [12]. Similar to the past study, using virtual 
agents with different appearances of robots (e.g., human‑like appear‑
ances [21,22] and mechanical‑robot‑like appearances [23–25]) would be 
an interesting future work.



Comparison of Pre‑touch Reaction Distance between Physical and VR   ◾   97

8.5 CONCLUSION
In this study, we first collected data on pre‑touch behaviour to investigate 
the potential interaction in a VR space and found that the pre‑touch dis‑
tance changes depending on the agent’s appearance and its touch angle. 
We also found that the pre‑touch distance measured in physical space 
resembled that obtained in VR space. Similarly, the pre‑touch distance in 
both spaces can be classified into two types: near and far.

Next, we experimentally determined the participants’ perception in a 
touch interaction with an agent in the VR space. The results showed that 
an agent that responds at an average pre‑touch distance conveys a more 
familiar and friendlier impression than an agent that reacts at a longer 
pre‑touch distance; the nearer the agent’s pre‑touch distance is, the friend‑
lier it appears. We also clarified that a person with a nearer pre‑touch dis‑
tance prefers an agent with a similar close pre‑touch distance. The same is 
true for a person with a longer pre‑touch distance.

FIGURE 8.3 Clustering pre‑touch distance based on mean.
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9.1 INTRODUCTION
People usually prefer a quick response time (less than one second) when 
they use computers [1,2]. A past study recommended a similar principle as 
the two‑second rule, i.e., computer systems should be designed to respond 
within two seconds to avoid hesitation from users [3]. In fact, recent com‑
puter systems such as web servers are designed to respond to user requests 
as quickly as possible.

However, an overly quick response time is inappropriate in human‑like 
interaction settings such as conversation. For example, in human–human 
conversations, people often make a short pause during their speech, espe‑
cially in turn‑taking situations. In other words, addressing human‑like 
reaction time is critical for achieving natural and smooth interactions for 
social robots when they interact with humans.
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Therefore, robotics researchers have broadly investigated natural reac‑
tion time design in the context of human–robot interaction: listening to 
people’s speech [4], conveying emotions [5,6], reaction behaviors [7,8], and 
conversations [9,10]. Most of these studies generally concluded that an 
appropriate reaction time is less than one second, although such a “hasty” 
response time as practically zero seconds is not better due to different 
impressions from people’s usual reaction times. Such basic knowledge has 
already been applied to social robots that work in real environments to 
provide various conversational services to customers [11–13].

However, although such timing behaviors are essential for natural inter‑
action with people, detailed reaction time design is less focused on touch 
interaction. A few studies investigated the appropriate reaction time when 
robots are touched by people, although just with a human‑like appearance 
robot [7,8]. Moreover, the resolutions of the reaction time comparison are 
relatively large, and neither study separated the reaction speeds or the start 
timings. Both studies also claimed that a one‑second reaction is superior 
to zero seconds in a conversational setting, and the latter reported that 
people preferred non‑zero second reaction times without providing any 
appropriate detailed timing. Therefore, the precise reaction time design 
toward touch considering different types of robots remains unknown. 
Based on these considerations, we investigated individually appropriate 
reaction times when different types of robots are touched and with shorter 
time resolutions. Since many comparisons are needed, we conducted a 
web‑based survey experiment to measure the variety of reaction behaviors 
with different timings and speeds.

One unique point of this study is that we investigated appropriate reac‑
tion times by addressing two different reaction times by separating the 
reaction behaviors into two stages: (1) the time length between being 
touched and the start of a reaction behavior (before‑reaction time) and (2) 
the time lengths of the reaction behavior (after‑reaction time) (Figure 9.1). 
Previous studies did not separate the reaction behaviors toward touch‑
ing, even though this process enables social robots to achieve more natu‑
ral reaction behaviors. For example, if robotics researchers were to design 
a reaction behavior within one second, times of 800‑ms before‑reaction 
and 200‑ms after‑reaction create different feelings compared to times of 
200‑ms before‑reaction and 800‑ms after‑reaction. Note that this chapter 
is modified based on our previous work [14], edited to be comprehensive 
and fit with the context of this book.
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9.2 MATERIALS AND METHODS OF EXPERIMENT
9.2.1 Models of Video Stimulus

To investigate the appropriate reaction time toward touching from vari‑
ous viewpoints, we prepared five models: three different types of robots 
(Sota/Nao/Pepper) and two different human models (man/woman). In all 
the videos, we placed the models on the right side of the videos, and the 
experimenter’s hand touched the left shoulder of the models. The detailed 
behavior design is described in the next subsection. Here, we show a part 
of the video stimulus of each model.

Sota: Sota (VSTONE), which has eight degrees of freedom (DOFs): three 
DOFs for its head, two DOFs for both arms, and one DOF for its 
lower body. It is 28 cm tall.

Nao: Nao (Aldebaran Robotics), which has 25 DOFs: two DOFs for its 
head, six DOFs for both arms, and 11 DOFs for its lower body. 
It is 58 cm tall.

Pepper: Pepper (Softbank Robotics), which has 20 DOFs: two DOFs for its 
head, six DOFs for both arms, and six DOFs for its lower body. 
It is 121 cm tall.

Humans: We recruited both a man and a woman whose heights are 
about 172 and 153 cm.

9.2.2 Basic Settings of Visual Stimulus

For the preparation of these video stimuli, we set the length of each video 
to five seconds without any sound. The widths and heights of each video 
were 1,280 and 720 pixels, respectively, and the fps values of each were 
29.97. Since we compressed the video files to decrease their total size (all 
the videos are less than 1 MB), the participants could watch them after 

FIGURE 9.1 Before‑reaction and after‑reaction time concept.
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completely downloading them. An operator controlled the robot’s reac‑
tion behaviors for accurate reaction timing. We edited the videos to avoid 
acceleration effects of the reaction behaviors.

9.2.3 Before‑Reaction Time

To investigate the effects of the before‑reaction time, we used 200 ms as a 
time‑slice resolution in the video stimulus because past studies reported 
that reaction times to touch stimuli range between 150 and 400  ms 
[15–19]. We used 200 ms as a relatively large resolution because using a 
very short time resolution (e.g., 33 ms) would create too many conditions 
and cause difficulties when applying various kinds of robots, especially 
a cheaper one that has relatively low‑spec servo motors and processing 
capabilities.

The range of searching before‑reaction times is between zero and one 
second in 200‑ms intervals (i.e., 0, 200, 400, 600, 800, and 1,000 ms). We 
investigated the effect of zero seconds because we assume that a robot’s 
sensing systems enable them to estimate the actual contact timing, and 
such prediction‑based reaction behaviors may change people’s impressions.

9.2.4 After‑Reaction Time

We also used 200 ms as the time‑slice resolution in the video stimulus to 
investigate the effects of the after‑reaction times. One different setting is 
to ignore the effects of zero seconds because finishing a reaction behavior 
within zero seconds is obviously impossible. Thus, the ranges of searching 
the after‑reaction times are between 200 ms and one second in 200‑ms 
intervals (i.e., 200, 400, 600, 800, and 1,000 ms).

9.2.5 Procedure

Due to the need for large numbers of comparisons, we conducted a 
web‑based survey with participants recruited by a Japanese survey com‑
pany. They first accessed a web page that displayed explanatory texts of 
the data collection and how to evaluate each video. Those who agreed 
to the terms of our experimental procedure gained access to the sur‑
vey pages. Before the video stimuli, we explained that the experiment 
was investigating natural reaction times in response to different touch 
behaviors.

In the web survey, we prepared 30 videos for each model (six before‑reac‑
tion times and five after‑reaction times). We also prepared two additional 
videos (zero seconds in both before‑ and after‑reaction times) for each 
model to investigate whether the participants carefully watched them and 
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to check the quality of their answers. We prepared such dummy questions 
to screen participants who provided poor answers [20].

Therefore, the participants watched 32 videos for each model and evalu‑
ated the naturalness of the reaction time for each one.

We determined the order of the videos in advance due to the large num‑
ber of video combinations. To avoid biases, we sorted the video orders to 
avoid continuing similar before‑ and after‑reaction times. However, we 
fixed the order of the two videos with zero before‑ and after‑reaction times 
to the 16th and 32nd to check the quality of their answers.

9.2.6 Measurements

We just measured one questionnaire item to investigate the perceived reac‑
tion behavior’s naturalness on a one to ten scale, where one is very unnatu‑
ral and ten is very natural. This answer is also used in the filtering process; 
we only used the data of participants who correctly rated the two videos 
with zero before‑ and after‑reaction times.

9.2.7 Participants

Our survey had 1,212 participants: Sota: 266, Nao: 242, Pepper: 266, man: 
219, woman: 219. Filtering lowered the valid data number to 780: 64.4%, 
Sota: 143, Nao: 137, Pepper: 159, man: 166, woman: 175.

9.3 RESULTS AND DISCUSSION
9.3.1 Best Combinations between Before‑and After‑Reaction Times

Figure 9.2 shows the experiment results. The bold part indicates the high‑
est value in the tables. We analyzed the effects of the before‑reaction times, 
the after‑reaction times, and the model factor toward the perceived natu‑
ralness by a three‑factor ANOVA. The results showed a significant effect 
for all factors. There were significant differences in the before‑reaction 
time (F (5, 3,870) = 231.735, p < 0.001, partial η2 = 0.230), in the after‑reac‑
tion time (F (4, 3,096) = 1,112.153, p < 0.001, partial η2 = 0.590), in the model 
(F (4, 774) = 5.120, p < 0.001, partial η2 = 0.026), in the simple interaction 
effects between the before‑ and after‑reaction times (F (20, 15,480) = 53.198, 
p < 0.001, partial η2 = 0.064), in the simple interaction effects between the 
before‑reaction and the model (F (20, 15,480) = 5.129, p < 0.001, partial 
η2 = 0.026), in the simple interaction effects between the after‑reaction 
and the model (F (16, 15,480) = 74.044, p < 0.001, partial η2 = 0.277), and 
in the two‑way interaction effect (F (80, 15,480) = 3.127, p < 0.001, partial 
η2 = 0.016). Due to such a large number of combinations, we are unable to 
describe the details of the interaction effects.
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As shown in these results, each setting has only one peak, and the best 
combination between the before‑ and after‑reaction times is different. The 
trends of the best combinations seem related to their anticipated body size. 
For example, slow before‑reaction times and fast after‑reaction times are 
preferred for Sota, and fast before‑reaction times and slow after‑reaction 
times are preferred for Pepper. In the human models, slow before‑reaction 
times and fast after‑reaction times are preferred for the woman model, 
whereas fast before‑reaction times and slow after‑reaction times are pre‑
ferred for the man model.

9.3.2 Which Combinations Are Better for Robots?

As shown above, the experiment results found that the best combina‑
tion of parameters is different among the models. Next, we investigated 
whether using the extracted parameters from observing human behaviors 

(b)(a)

(d)

(e)

(c)

FIGURE  9.2 Questionnaire results of perceived naturalness. The vertical axis 
showed the questionnaire results, and the horizontal axis showed after‑reaction 
time. Each line showed the different before‑reaction time.
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is the best approach for deciding the parameters of the robot behaviors. 
We compared the perceived naturalness when the robot uses the best com‑
binations of human and robot models.

Figure  9.3 shows the results of comparisons of perceived naturalness 
with different parameter combinations. In the analysis of Sota’s data, we 
conducted a repeated measure ANOVA, and its results showed a signifi‑
cant difference (F (3, 426) = 7.437, p < 0.001, partial η2 = 0.050). Multiple 
comparisons with the Bonferroni method also showed significant dif‑
ferences: Sota’s timing > man’s timing (p = 0.003) and > Pepper’s timing 
(p = 0.02). We found no significant differences between Sota’s timing and 
that of Nao or the woman (p = 1.000).

In the analysis of Nao’s data, we conducted a repeated measure ANOVA 
and its results showed a significant difference (F (3, 408) = 4.385, p = 0.005, 
partial η2 = 0.031). Multiple comparisons with the Bonferroni method 
showed significant differences: Nao’s and the woman’s timing > Sota’s tim‑
ing (p = 0.002) and the man’s timing (p = 0.037). We found no significant 
differences with Pepper’s timing (p = 1.000).

In the analysis of Pepper’s data, we conducted a repeated measure 
ANOVA, and its results showed a significant difference (F (3, 474) = 27.935, 
p < 0.001, partial η2 = 0.150). Multiple comparisons with the Bonferroni 
method showed significant differences: Pepper’s > Sota’s timing (p < 0.001). 
We found no significant differences in timing between Pepper and the 
man (p = 0.346) or between Nao and the woman (p = 1.000).

Our statistical analysis showed that using the individual best combina‑
tion is optimal for increasing the perceived naturalness, which indicates 
the importance of parameter calibration. On the other hand, since inves‑
tigating the best combinations might require too many tasks, investigat‑
ing better combinations for different kinds of robots is also important. 
The experiment results showed that the best combinations of the Nao/
woman model did not show significant disadvantages in any of the robots. 
Although an absence of evidence is not evidence of absence, using 400‑ms 
before‑reaction times and 600‑ms after‑reaction times would probably 
improve the natural reaction behavior of several robots.

As a reference, we conducted a non‑inferiority analysis for the data of 
both Sota and Pepper to investigate the effectiveness of applying Nao’s/
woman’s best combination for the reaction time. We set the non‑inferior‑
ity margin at 10% in a one‑sided test where α = 0.025. The analysis showed 
that the best combination for Nao and the woman (mean: 7.65, confidence 
interval (CI): 7.28 to 8.29) was non‑inferior to Sota’s best combination 
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(a)

(b)

(c)

FIGURE  9.3 Comparison with other best combination timings for Sota, Nao, 
and Pepper: Naturalness of (a) Sota, (b) Nao, and (c) Pepper. The vertical axis 
showed the questionnaire results.
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(mean: 7.52, CI: 7.15–8.16) within its data (p < 0.001). In addition, Nao’s/
woman’s best combination (mean: 8.15, CI: 7.78–8.61) was non‑inferior 
to Pepper’s best combination (mean: 8.11, CI: 7.74–8.57) within its data 
(p < 0.001). Therefore, using Nao’s/woman’s best combination is not the 
best choice for different robots, although it is a better choice for reaction 
times.

9.3.3 Limitations

This study has several limitations. First, we only used three specific 
robots. Different kinds of robots, such as robot‑like [21–23], crea‑
ture‑like [24], baby‑like [25], animal‑like [26], and androids with quite 
human‑like appearances [27,28], would undoubtedly provide different 
knowledge about reaction times. Moreover, we used relatively simple 
reaction behaviors, i.e., turning around. If the robots used different reac‑
tion behaviors, such as a voice reaction, the appropriate reaction tim‑
ings would also change. Similar to the limitations of the robot model, we 
only used videos of two human models; if we prepared children/seniors 
videos, the survey would provide richer knowledge. From another per‑
spective, appropriate reaction times differ when robots anticipate touch 
behaviors. For example, when we recognize a situation in which we 
might be touched, we usually react before actually allowing ourselves to 
be touched as a pre‑touch reaction [29–31]. Investigating natural reac‑
tion times before being touched is another future work. Although sev‑
eral limitations exist, we believe that our study provides basic knowledge 
related to reaction behavior design.

9.4 CONCLUSIONS
Reaction time design is essential for achieving natural human–robot 
interaction, particularly in social touch contexts. Although various studies 
have investigated appropriate reaction times for designing robots’ behav‑
iors, reaction times during touch interactions have received less focus. 
Therefore, this study used a web survey to investigate the appropriate reac‑
tion times for robots when they are touched. We prepared video stimuli 
with three robot models and two human models, and we focused on reac‑
tion time design by separating it into two phases: a before‑reaction time 
(the length between a touch and the start of a reaction behavior) and an 
after‑reaction time (the lengths of the reaction behavior). We employed 
200‑ms time resolutions to investigate these reaction time effects between 
zero and one second.
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We individually identified the appropriate reaction time for each robot 
in the web survey. The experiment results showed a trend in which the 
body sizes of the models are related to their appropriate reaction times, 
e.g., a slow before‑reaction time and a fast after‑reaction time might be 
better for relatively small robots, whereas a fast before‑reaction time and 
a slow after‑reaction time might be better for relatively large robots or 
human models. We also investigated whether the best combinations of 
each model are applicable for different robots and found that 400‑ms 
before‑reaction times and 600‑ms after‑reaction times are better for sev‑
eral robots.
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10.1 INTRODUCTION
The ability for robots to have a physical presence allows them to inter‑
act with people through touch, similar to how humans interact with 
each other. Such interaction, known as haptic interaction, is a promis‑
ing research area in the field of human–robot interaction, much like the 
field of human–human interaction. Such haptic interactions, which have 
been extensively studied in human science literature, provide both men‑
tal and physical benefits [1–6]. Human science literature has reported 
that haptic interactions positively change people’s behavior and support 
various efforts [7–13]. Previous research has found that physical robots 
can impact interactions with people more strongly or differently than 
computer‑based agents [14–17]. Building on these findings, researchers 
have explored the potential positive effects of haptic interaction with 
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social robots in mental therapy [18], increased motivation [19], and 
changing attitudes through touching [20–22].

For more natural touch interactions, communication cues such as gaze 
behavior are essential during touch. Past studies have thoroughly stud‑
ied the effects of communication cues in non‑haptic interaction, including 
approaching situations [23], encounter situations [24,25], object‑handling 
[26,27], and conversations [28–31]. These studies suggest that gaze behav‑
ior design should be altered based on context to create natural interac‑
tions. For example, Gharbi et al. [26] emphasized that a robot must express 
its intention by looking at an object when it hands the object to somebody. 
Unfortunately, the effects of gaze behavior in haptic interaction have not 
been sufficiently studied.

Similar to gaze behaviors, touch styles are another essential factor for 
natural interaction. Previous research has identified three categories of 
touch styles in haptic interactions with social robots: touching a robot, being 
touched by a robot, and mutual touch (where a person touches a robot’s 
hand and the robot touches the person’s hand) [19,21,22]. These studies 
examined the effects of touch style on people’s impressions of robots, but 
they did not compare all three touch styles together. As a result, it remains 
unclear which touch style is most conducive to natural touch interaction.

Based on these considerations, which gaze behavior and touch style 
combinations are more effective remains unknown. Investigating the 
effects of each combination among gaze behaviors and touch styles will 
contribute to creating design guidelines for human–robot touch interac‑
tion. Therefore, in this study, we experimentally investigated the effects 
of these two communication cues with a social robot (Figure 10.1). Note 
that this chapter is modified based on our previous work [32], edited to be 
comprehensive and fit with the context of this book.

10.2 MATERIALS AND METHODS OF EXPERIMENT
10.2.1 Robot

We used a humanoid robot, Pepper, developed by Softbank Robotics. 
The robot has a sufficient number of DOFs as well as five fingers on each 
hand that provide sufficient capability for human‑like touch behavior. 
Pepper is 121 cm tall. In this study, we conducted an experiment using the 
Wizard‑of‑Oz method to accurately control the timing of its behaviors.

10.2.2 Gaze Behavior

Following previous studies that investigated the effectiveness of gaze 
behaviors in human–robot interaction, we prepared two different gaze 
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cues: face‑only and face‑hand‑face. The former is based on the importance 
of eye contact in human–robot interaction. For example, past studies 
reported how eye contact behaviors contribute to acceptable interaction 
for social robots [23,24,30].

Face‑hand‑face is based on hand‑over situations because they offer 
similar characteristics to a touch situation in the context of the physical 
distance between a robot and people. A past study [26] investigated the 
effects of various gaze behaviors in hand‑over situations and reported that 
their participants preferred a gaze behavior in which the robot looked at 
the object and then at the target person instead of a gaze behavior in which 
only the target person was looked at, i.e., face‑only gaze behavior. Based on 
these considerations, we also prepared a face‑hand‑face gaze behavior in 
which the robot looks at the participant, its hand, and then the participant 
again. The following are the details of each behavior.

FIGURE 10.1 Pepper robot touches a person.
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10.2.2.1 Face‑Only
The robot maintains eye contact with a target person during the touch 
behaviors. For accurate eye contact between the robot and the partici‑
pants, we measured the height of their faces and calculated the angles 
toward their faces from the robot beforehand.

10.2.2.2 Face‑Hand‑Face
The robot changes its face direction due to the touch phases. First, it keeps 
eye contact with a target person and then looks at the human target’s hand. 
Finally, the robot re‑establishes eye contact with the person. The gazing 
behavior durations and their timing were determined a past work [26].

10.2.3 Touch Style

We prepared three different touch styles based on past studies [19–21]: 
touching a robot, being touched by a robot, and mutual touching. The fol‑
lowing are the details of each style.

10.2.3.1 Touch‑to‑Robot
In this style, the robot requests the participants to touch its left hand 
without touching the participants: “please touch my left hand.” Then, it 
raises its left arm to its chest. To create uniform touch feelings among the 
other conditions, we placed a plastic yellow ball as a reference point in its 
left hand.

10.2.3.2 Touched‑by‑Robot
We set a stand with the plastic yellow ball near the participants on which 
they could set their hand. In the beginning, the robot says, “please put 
your hand on the stand” to request the participants to touch the stand. 
Then, the robot raises its right hand to touch the participant’s hand.

We designed the robot’s touching behaviors as a stroking on the partici‑
pants’ hands at 5 cm/s by following a past study that described a comfort‑
able touching speed [33]. We prepared a fixed stroking behavior for the 
robot based on the typical size of the human hand.

10.2.3.3 Mutual Touching
This style combines the touch‑to‑robot and touched‑by‑robot conditions. 
First, the robot asks the participants to touch its left hand, which the robot 
raises to its chest, similar to the touch‑to‑robot condition. After its left 
hand is touched by a participant, the robot reciprocates by raising its right 
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hand to touch the participant’s left hand. To create the same feeling of 
being touched for the participants, we used the same touching motions 
from the touch‑to‑robot and touched‑by‑robot conditions.

10.3 EXPERIMENT
10.3.1 Conditions

As described above, this study investigates two factors: gaze behaviors: two 
conditions; touch styles: three conditions. We employed a within‑partici‑
pant design, i.e., where all the participants experienced six different touch 
interactions (2 × 3) with the robot.

10.3.1.1 Participants
Fourteen women and 14 men participated in our experiment. Their aver‑
age age was 36.4 and their standard deviation (SD) was 9.39.

10.3.1.2 Procedure
First, we explained the purposes and procedures of our experiment. 
This research was approved by our institution’s ethics committee for 
studies involving human participants. Written informed consent was 
obtained from every participant. Only those who provided consent 
joined it.

The participants sat in a chair in front of the robot. The robot greets 
them and chats briefly with them after requesting a touch from the partici‑
pants. Because we prepared six conditions, we also prepared six different 
chat contents to avoid biased impressions. The order of the conditions and 
the chat contents were counterbalanced. After being touched by the robot 
in each condition, the participants filled out questionnaires.

10.3.1.3 Measurements
Our questionnaires had the following two items: the feeling of comfort 
of the touch interaction and the robot’s perceived friendliness. Both were 
evaluated on a 1‑to‑7 point scale, where 1 is the most negative and 7 is the 
most positive.

10.4 RESULTS
Due to the large number of combinations in this study, we only describe 
the statistical analysis results in this subsection. We incorporated gen‑
der factors in the analysis because past studies identified a relationship 
between touch effects and gender [4,34].
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10.4.1 Feelings of Comfort of Touch Interactions

Figures 10.2 and 10.3 show the questionnaire results about their feelings of 
comfort during the touch interactions. We conducted a three‑factor mixed 
ANOVA for each scale on gaze, touch, and gender and identified significant 
main effects in the gaze factor (F (1, 26) = 5.253, p = 0.030, partial η2 = 0.168), 
the touch factor (F (2, 52) = 5.706, p = 0.006, partial η2 = 0.180), and the sim‑
ple interaction effect between touch and gender (F (2, 52) = 4.114, p = 0.022, 
partial η2 = 0.137). Multiple comparisons with the Bonferroni method 
of the simple main effects of touch in men were significant in touch‑to‑
robot > touched‑by‑robot (p = 0.001) and touch‑to‑robot > mutual touching 
(p = 0.006). Multiple comparisons with the Bonferroni method revealed sig‑
nificant differences in the simple main effect of touch in touched‑by‑robot 
(women > men, (p = 0.021)).
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FIGURE 10.2 Feelings of comfort of robot’s touch (men).
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FIGURE 10.3 Feelings of comfort of robot’s touch (women).
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Next, we summarize the effects of each factor based on the above descrip‑
tions. For gaze behavior, participants felt significantly more comfortable 
in the face‑only gaze behavior than in the face‑hand‑face gaze behavior 
(p < 0.05). Concerning touch style and gender effect, the men felt signifi‑
cantly more comfort in the touch‑to‑robot style than in the other touch 
styles (p < 0.05), although women did not show any significant differences.

10.4.2 Perceived Friendliness of Robot

Figures 10.4 and 10.5 show the questionnaire results of perceived friendli‑
ness. We conducted a three‑factor mixed ANOVA for each scale on gaze, 
touch, and gender and identified significant main effects in the touch 
factor (F (2, 52) = 3.599, p = 0.034, partial η2 = 0.122), the gender factor  
(F (1, 26) = 5.484, p = 0.027, partial η2 = 0.174), the simple interaction effect 
between gaze and gender (F (1, 26) = 4.457, p = 0.045, partial η2 = 0.146), and 
the simple interaction effect between touch and gender (F (2, 52) = 3.534, 
p = 0.036, partial η2 = 0.120). Multiple comparisons with the Bonferroni 
method revealed significant differences in the simple main effects of gen‑
der in face‑hand‑face (women > men (p = 0.013)). Multiple comparisons 
with the Bonferroni method revealed significant differences in the simple 
main effects of touch in men (touch‑to‑robot > touched‑by‑robot (p = 0.003). 
Multiple comparisons with the Bonferroni method revealed signifi‑
cant differences in the simple main effects of gender in touched‑by‑robot 
(women > men (p = 0.007)) and mutual touching (women > men (p = 0.034)).

We next summarize the effects of each factor from the above descrip‑
tions. None of the gaze behaviors significantly changed the friendliness 
perceived by the participants; note that women felt significantly higher 
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FIGURE 10.4 Perceived friendliness (men).
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friendliness in the face‑hand‑face gaze behavior than men (p < 0.05). For 
the touch style and the gender effect, men felt significantly higher friendli‑
ness in the touch‑to‑robot style than in the touched‑by‑robot style (p < 0.05), 
but women did not show any significant differences. Women felt signifi‑
cantly higher friendliness in the touched‑by‑robot and mutual touching 
styles than the men (p < 0.05).

10.5 DISCUSSION
10.5.1 Design Implications

The experiment results show the importance of maintaining eye contact 
in touch interaction, similar to conversational interaction [28–31]. On 
the other hand, this result suggests a contradictory phenomenon com‑
pared to handing‑over interactions in which people preferred that the 
robot looked at an object [26]. Since we assume that the purpose of hand‑
ing interactions is to give a specific item to another, sharing attention 
by looking at the object is probably preferred. Based on these consider‑
ations, preferred gaze behaviors seem to vary based on the interaction 
between humans and robots.

The experiment results also identified a relatively complex phenom‑
enon about preferred touch styles, because some past studies reported 
similar results (i.e., people preferred the touch‑to‑robot style more than 
the touched‑by‑robot style) [20,21], and other past studies reported oppo‑
site results (i.e., people preferred the mutual touching style over the 
touched‑by‑robot and touch‑to‑robot styles) [19,35]. These impression 
changes might reflect the perceived impressions toward the robots and the 
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physical feeling of their hands. In past studies, which reported the positive 
effects of the mutual touching style in human–robot touch interaction, the 
robots were equipped with soft and comfortable materials on their bod‑
ies. On the other hand, other studies, which described the negative effects 
of the touched‑by‑robot style, including this chapter, put a non‑soft mate‑
rial on the bodies of their robots. Therefore, investigating the relation‑
ships among the sense of the robot’s hand, touch styles, and the perceived 
impressions is an interesting future work.

10.5.2 Limitations

This study has several limitations since it used a specific robot and a 
restricted context. As described above, investigating touch style effects with 
different robots is critical to gather more general knowledge in human–
robot touch interactions. Related to this topic, using different robots 
with various appearances, including robot‑like [36–38], creature‑like 
[39], baby‑like [40], animal‑like [18], and androids with quite human‑like 
appearances [41,42] will undoubtedly influence the perceived impressions. 
For example, if we use cuter, animal‑like pet robots, participants will most 
likely have more positive experiences to touches from them. On the other 
hand, if we use more realistic human‑like robots, participants might feel 
more negative toward being touched by them, particularly if their relation‑
ships are not close.

Another limitation is our touch behavior itself. In this study, the 
robot only makes a simple contact with the participants. Past studies 
reported that different touch characteristics are useful for conveying 
different emotions [43–46], and whole‑body touch interactions such as 
hugging can effectively improve people’s perceptions [47–50]. Various 
touch styles during such complex touch interactions produce different 
feelings.

10.6 CONCLUSIONS
Gaze behaviors and touch styles are essential communication cues in 
human–robot touch interaction. Understanding the effects of various 
combinations of such communication cues is critical for designing robot’s 
touch behavior that can achieve acceptable and natural touch interaction. 
Therefore, based on related studies, we prepared two gaze behaviors and 
three touch styles and experimentally investigated how such communica‑
tion cues change the perceptions of participants who physically interacted 
with a robot.
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The results showed that participants preferred a robot’s gaze behavior 
that maintains eye contact more than a gaze behavior that combines eye 
contact and looking at the robot’s hand. The participants also preferred a 
touch style that actively touches the robot more than other touch styles, 
including being touched by a robot. Although some results showed phe‑
nomena that contradicted past studies, the knowledge from our study 
contributes to understanding how multi‑modal touch interaction changes 
people’s perceptions.
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11.1 INTRODUCTION
Robots that possess a physical presence can engage in touch‑based interac‑
tion with humans, similar to how humans interact with each other. Haptic 
interaction is an emerging area of study in the field of human–robot inter‑
action, since touch is a key factor in social bonding between humans and 
provides both mental and physical benefits [1–6]. As a result, human–robot 
interaction researchers have extensively examined the effects of human–
robot touch interaction, which also manifests both mental and physical 
benefits [7–11].

To achieve acceptable human–robot touch interaction, communication 
cues play essential roles during touching, e.g., gaze [12–14], voice [15], body 
movements [16–18], and blinking behavior [19]. Because of the multimo‑
dality in human–robot interaction, investigating combinations of com‑
munication cues becomes important to understand their effects in touch 
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interaction. For example, Hirano et al. reported how gaze behaviors and 
touch style during touch interactions influence the perceived impressions 
of robot‑initiated touch [12].

The past studies reported the effectiveness of communication cues and 
provided guidelines for natural touch interaction. However, two commu‑
nication cues related to touching behaviors have not yet received enough 
attention: eye contact height and speech timing. For the former, people who 
are being touched might regard that action as more polite when the touchers 
make eye contact from a similar gaze height, compared to different‑height 
eye contact. When people sit, lie on a bed, or interact with children, such 
situations often occur due to their lower gaze height. Moreover, changing 
the gaze height to make eye contact shows both a polite attitude and implic‑
itly suggests the timing at which conversations can begin. In human sci‑
ence literature, some studies reported the importance and effectiveness of 
eye contact before interaction by adjusting the gaze height [20–22].

In human–robot interaction studies, some studies have also reported 
the effects of a robot’s height in conversational settings. One investigated 
the height of a telepresence robot and reported that a lower height than 
interacting people is less persuasive [23]. Another study investigated the 
acceptable height of a conversational robot and concluded that a conver‑
sational partner’s gaze height under 300 mm is acceptable [24]. Although 
they reported gaze‑height effects in conversational settings, they focused 
less on touch situations where robots change their gaze height before they 
touch somebody. Based on these considerations, this study addresses the 
following research question:

‑ How does gaze height in eye contact in human–robot touch interac‑
tion influence peoples’ perceptions?

Concerning speech timing, human science literature has reported that 
when a person touches another, the toucher usually informs the person 
being touched of her intention before the touching, especially in nursing 
contexts [20–22]. Another study argued that nurses must obtain permis‑
sion to touch before actually making contact, adding that patients want an 
explanation for being touched before contact [25]. These studies suggested 
the effectiveness of before‑touch speech timing. However, a human–robot 
touch interaction study reported that participants preferred after‑touch 
speech timing, i.e., favoring a robot’s explanations after being touched 
[15]. These contradictory results complicate designing when robots speak 
while touching a person. Based on these considerations, this study also 
addresses the following research question:
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‑ How does speech timing in human–robot touch interaction influence 
human perceptions?

Note that this chapter is modified based on our previous work [26], 
edited to be comprehensive and fit with the context of this book.

11.2 RELATED WORK
11.2.1 Gaze Behavior for Social Robot

Due to the importance of gazing behavior design for natural interaction 
with social robots, researchers have investigated the effective gaze func‑
tions in broader situations like multi‑party conversations [27], informa‑
tion‑providing tasks [28], interaction with multiple children [29], and 
storytelling tasks for toddlers [30]. Gaze behavior design is also important 
not only for such conversational situations but also for locomotion situa‑
tions, e.g., approaching people [31,32] and moving around in daily envi‑
ronments [33].

Some studies focused on gaze behavior design in human–robot touch 
interaction. One study investigated the effects of combinations of com‑
munication cues, i.e., gaze targets and touch styles, and described the 
effectiveness of maintaining eye contact while touching [12]. Other studies 
reported the effects of a robot’s face height that influences its gaze behav‑
iors. One past study reported that a shorter telepresence robot compared 
to interacting people is less persuasive in a conversational setting [23]. On 
the other hand, another study reported that a robot with a low face posi‑
tion is preferred as a conversational partner [24].

However, these studies less focused on gaze‑height factors during touch 
interaction. Therefore, it remains unknown how a robot’s gaze height 
influences perceived feelings in touch contexts.

11.2.2 Speech Timing for Social Robot

Similar to gaze behavior design, speech timing is also broadly inves‑
tigated in human–robot interaction contexts due to its importance. 
Because it is strongly related to conversational behaviors, researchers 
investigated appropriate speech timing and related behaviors under con‑
versational tasks, such as route‑guidance [34] and filler design in con‑
versations [35,36]. To achieve cognitively understandable speech, a past 
study investigated appropriate speech rates to decrease cognitive load 
during conversations [37].

Although speech timing for social robots has been thoroughly inves‑
tigated in conversational settings, knowledge is limited in touch settings. 
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A past study of human–robot touch interaction concluded that in a nurs‑
ing setting, participants preferred a robot’s speech after being touched to 
before being touched [15], although another human–human touch inter‑
action study suggested that conversation before touching is more polite 
and acceptable in nursing contexts [25]. Therefore, the appropriate speech 
timing remains unknown for a social robot that actively touches people.

11.3 MATERIALS AND METHODS OF EXPERIMENT
11.3.1 Robot and Sensor

We used a humanoid robot called Pepper, which has 20 degrees of freedom 
(DOF) and is 121 cm tall. It has enough capabilities for a robot‑initiated 
touch of people by changing its gaze height by bending at its waist. We 
installed a touch sensor on its right hand to detect physical contact during 
robot‑initiated touches. We used Shokkaku Cube, which can measure the 
height changes on the top of the cube’s soft materials with 100‑Hz fre‑
quency. The sensor system is connected to a robot’s control system by a 
network and manages the timing at which the robot must stop its motions 
for safety.

11.3.2 Situation

In this study, we followed a similar touching situation of a past study [15] to 
investigate the effects of two communication cues (gaze height and speech 
timing), i.e., participants lying on a bed. Because of the robot’s motion 
capabilities, we adjusted the bed’s height to enable the robot to touch the 
participants. Based on this adjustment, the robot’s gaze height is higher 
than the participants; when it bends down, its gaze height becomes closer 
to the participants’ face height. To provide an identical touching stimuli 
to the participants as much as possible, we prepared the fixed robot’s arm 
trajectory to touch the left shoulders of the participants.

11.3.3 Gaze‑Height Design

We investigated the effects of two different gaze heights during touching: 
crouching down and looking down. The former is where the robot makes 
eye contact with participants after crouching down to change its own face 
height (Figure 11.1). The latter is where the robot makes eye contact with‑
out changing its face height (Figure 11.2). We prepared the crouching‑down 
condition since human science literature has reported the positive effects of 
making eye contact at the same gaze height [20–22]. On the other hand, since 
human–robot touch interaction studies have focused less on gaze height 
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during touch interaction, i.e., a robot touching a person without changing 
its face height, we prepared a looking‑down condition as an alternative.

11.3.4 Speech‑Timing Design

In this study, we investigated the effects of two different speech tim‑
ings: before‑touch and after‑touch. In the former, the robot explains why 
it is touching before the actual touch is made, i.e., the robot conveys its 

FIGURE 11.2 Robot’s touch with looking‑down.

FIGURE 11.1 Robot’s touch with crouching‑down.
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intention beforehand. The latter is the opposite behavior; the robot gives 
a reason for touching after touching, i.e., it conveys its intention after‑
wards. As we explained above, since human science literature suggests 
that patients prefer a spoken explanation before being touched in a nursing 
context [20–22,25], we prepared a before‑touch condition. On the other 
hand, since a human–robot touch interaction study suggested that partici‑
pants preferred a spoken explanation after being touched [15], we prepared 
an after‑touch condition as an alternative.

11.3.5 Procedure

Before starting the experiment, the experimenter described its purpose 
and asked the participants to fill out consent forms. The experiment pro‑
cedure was approved by an ethics committee of our institution. Next, the 
experimenter explained the experiment’s procedures and asked the par‑
ticipants to imagine a medical context before they got on the bed. We 
adjusted its height and the robot’s position for its touching behavior.

We employed a within‑participant design. All the participants joined 
four sessions due to combinations of a gaze‑height factor (crouching 
down and looking down) and a speech‑timing factor (before‑touch and 
after‑touch). We assigned different condition orders to avoid any order 
effects by considering counterbalances. After experiencing each condition, 
the participants filled out questionnaires.

11.3.6 Measurements

We evaluated the effects of gaze height and speech timing in human–robot 
touch interaction in a nursing context with the following three question‑
naire items: comfortableness, likeability, and safety. We employed an 
existing questionnaire item [12] on comfortableness. We also employed 
existing scales for likeability and safety [38].

11.3.7 Participants

In this study, 32 participants joined the experiment: 16 women and 16 men, 
whose ages averaged 22.9, SD: 1.69, ranging between 21 and 27. We confirmed 
that none had any previous experience of touch interaction with Pepper.

11.4 RESULTS AND DISCUSSIONS
11.4.1 Questionnaire Results

We conducted a two‑factor repeated measures ANOVA on the conditions, 
and an analysis of comfortableness (Figure  11.3) showed significant dif‑
ferences in the speech‑timing factor (F (1, 31) = 18.086, p < 0.001, partial 



Gaze and Height Design for Acceptable Touch Behaviors   ◾   135

η2 = 0.368). No significance was found in the gaze‑height factor (F (1, 
31) = 0.155, p = 0.696, partial η2 = 0.005) or in the interaction effect (F (1, 
31) = 1.108, p = 0.301, partial η2 = 0.035).

We conducted a two‑factor repeated measures ANOVA on the con‑
ditions, and an analysis of likeability (Figure 11.4) showed significant 
differences in the speech‑timing factor (F (1, 31) = 26.694, p < 0.001, 
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partial η2 = 0.463). No significance was found in the gaze‑height factor 
(F (1, 31) = 0.191, p = 0.665, partial η2 = 0.006) or in the interaction effect 
(F (1, 31) = 0.702, p = 0.409, partial η2 = 0.022).

We conducted a two‑factor repeated measures ANOVA on the condi‑
tions, and an analysis of safety (Figure 11.5) showed significant differences 
in the speech‑timing factor (F (1, 31) = 14.358, p = 0.001, partial η2 = 0.317). 
No significance was found in the gaze‑height factor (F (1, 31) = 0.015, 
p = 0.904, partial η2 = 0.001) or the interaction effect (F (1, 31) = 0.585, 
p = 0.450, partial η2 = 0.019).

11.4.2 Design Implications of Speech Timing

Our experiment results on speech‑timing effects showed an opposite phe‑
nomenon compared to a past study [15]. Although it described the effective‑
ness of after‑touch timing, our study found an advantage of before‑touch 
timing. Several factors might have caused such contradictory results: 
robot’s characteristics, communication cues, and cultural differences. 
For example, we used a Pepper robot in this study, which has a different 
appearance and touch feeling compared to the robot in the past study. 
Moreover, Pepper can make eye contact with the participants. Keeping eye 
contact, which is an effective communication cue during touch interac‑
tion [12], may signal the robot’s intention (i.e., touching) to the participants 
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before touching. Therefore, before‑touch speech timing seems appropriate 
for keeping eye contact before touching.

11.4.3 Discussion: Design Implications of Gaze Height

Unlike the speech‑timing factor, the gaze‑height factor showed no sig‑
nificant effects during touch interaction, although past studies reported 
the effectiveness of gaze‑height design in conversational settings [20–22]. 
We also expected that several factors might cause such results: robot’s eye 
design, posture, characteristics, communication cues, and cultural differ‑
ences. Concerning eye design, since Pepper’s gazes are designed to make 
eye contact from any angle, participants may not experience unnatural 
feelings even though the robot’s head is at a different level. The participants 
in the past study were prone on a flatbed [15], which might have caused a 
different feeling compared to the past study setting.

11.4.4 Limitations

This study has several limitations since we used a specific robot (Pepper) 
and a specific touch (touching the left shoulders of the participants). 
Conducting similar experiments with different kinds of robots, includ‑
ing different robots [39–41] or androids with quite human‑like appear‑
ances [42,43], would provide more detailed information about the 
effects of communication cues in human–robot touch interaction. 
Investigating the effects of different touch behaviors that are designed 
to convey emotions [44–47] would also provide rich knowledge about 
the combination effects of affective touches and communication cues.

11.5 CONCLUSIONS
Communication cues in human–robot touch interaction have essential 
roles for natural and acceptable robot‑initiated touches. We investi‑
gated two communication cues where a robot touches people in a nurs‑
ing context: gaze height and speech timing. For the former, to improve 
eye contact in touch interaction, we compared the effects of a crouch‑
ing‑down behavior at the same level and looking‑down to a different 
level. In terms of the latter, to unveil which timing is better in touch 
interaction, we compared the before‑touch and after‑touch effects. We 
prepared four touching behaviors for Pepper, conducted an experi‑
ment with 32 participants, and found that they preferred before‑touch 
speech timing over after‑touch speech timing. However, our results did 



138   ◾   Social Touch in Human–Robot Interaction

not show any advantages of crouching‑down behavior for making the 
same‑level eye contact.
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12.1 INTRODUCTION
Emotion expressions are crucial for designing behaviors for social robots 
as their working environments spread throughout society to provide ser‑
vices, including physical/mental health support [1,2], education [3,4], and 
companionship [5,6]. Robotics researchers have begun to focus on touch 
behavior design for such purposes [7–10]. For example, several studies 
investigated how people touch robots when they want to convey emotions 
to them [11–13]. Other studies investigated the relationship between which 
body parts are touched and emotion in human–robot interaction [14,15].

Unfortunately, designing touch interaction for conveying emotions 
from robots to people hasn’t received sufficient focus yet. Although a past 

DOI: 10.1201/9781003384274-16
This chapter has been made available under a CC-BY-NC-ND licence.

https://doi.org/10.1201/9781003384274-16


Designing Touch Characteristics to Express Simple Emotions   ◾   143

study investigated touch behavior design with non‑humanoid robots [16], 
they did not use social robots. Other studies focused on speed character‑
istics during touch interaction to achieve CT‑optimal touches (around 
3–5 cm/s) [17,18], although they focused less on emotional touch interac‑
tion design.

Therefore, it remains unknown what characteristics are essential to 
convey a robot’s emotions by touch interaction. People may change their 
touch characteristics in human–human interaction due to emotions, e.g., 
touch duration, style, and specific parts. In human–robot interaction, 
social robots may need to express emotions to be accepted by interacting 
people, and if so, changing their touch characteristics is also needed.

Based on these considerations, we investigate the influences of touch 
characteristics on the perceived emotions of interacting people. We focused 
on three different touch characteristics (length, type, and body part) with 
two different emotions (happiness and sadness) from two perspectives 
(arousal and valence). We conducted an experiment with a human‑like 
android robot called ERICA [19] (Figure 12.1). Note that this chapter is 
modified based on our previous work [20], edited to be comprehensive and 
fit with the context of this book.

FIGURE 12.1 ERICA’s hand touch behaviors (left: using her palm, right: using 
her fingers).



144   ◾   Social Touch in Human–Robot Interaction

12.2  TARGET EMOTIONS, TOUCH 
CHARACTERISTICS, AND ROBOT

12.2.1 Target Emotions

We focused on two emotions (happiness and sadness) because happy emo‑
tions are typically used in positive emotional expressions and sad emo‑
tions denote negative emotional expressions in human–robot interaction 
[21,22]. These two are bipolar emotions, based on Russell’s circumplex 
model [23]. Investigating the relationships between touch characteristics 
and these two emotions that have opposite arouse/valence aspects (happy: 
high arousal and valence, sad: low arousal and valence) will provide rich 
knowledge about emotional expression design by touch interaction.

12.2.2 Touch Characteristics

Similar to past studies of human–robot touch interaction [24] and consid‑
ering an acceptable touchable part in human–human interaction [25,26], 
we designed a robot to touch a participant’s hand to convey emotion. In 
this section, we describe the characteristics of its hand touch. We avoided 
excessive combinations of characteristics by focusing on those character‑
istics related to arousal/valence impressions and selected three candidates: 
length, type, and body part:

Length: Past studies reported different effects of the length of a touch. 
One concluded that a longer touch is perceived as a negative valence [27], 
although another showed no effect of a touch’s length [24]. Another study 
claimed that a longer touch duration is related to high‑arousal situations 
[13] in touch interaction from people to a pet‑like robot, but another showed 
no such length of touch effects [24]. Therefore, investigating the effects of a 
touch’s length will provide additional knowledge to understand its effects 
on emotional touch design. To decide the touch length for our experiment, 
we conducted a small pilot study in our laboratory and heuristically chose 
0.5‑ and 2‑second contact durations for short and long touches.

Type: Previous studies also reported different effects of the type of 
touch. A couple of studies described the relationships between high 
arousal/valence and pulses in touch (i.e., tapping) [13,27], while another 
reported a smaller effect of touch type for arousal/valence [24]. Similar to 
touch length, investigating its effects will provide additional knowledge. 
We determined the touch type in our experiment by small pilot study and 
heuristically determined a lingering time of 50 ms for short‑pat touches 
and 250 ms for long‑pat touches.
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Part: Although past studies did not investigate the effect of the touch‑
ing part (e.g., a hand or fingers), they did investigate the relationships 
between the intensity of the touch stimuli and arousal. For example, one 
work reported that high intensity showed high arousal [27]. Another study 
concluded that strong force showed high arousal but low valence [24]. In 
this study, we changed the size of the area and the total touch pressure to 
show different intensities, i.e., using a hand and fingers.

12.2.3 Robot

Figure 12.1 shows ERICA [19], which is used in our study. The robot has 
three DOFs in the torso and ten in each of arms. The robot also has the two 
DOFs on each of the wrists and the three on the palms, which enables the 
robot to realize various touch behaviors. The control system can update 
each actuator target position every 50  ms. Note that the silicon‑based 
skins realize human‑like appearance but have different touch feelings than 
human skin; therefore, we put gloves on the hands to avoid uncomfortable 
feelings via touch interaction.

We prepared facial expression motions and Japanese voices to express 
both emotions: “I’m really happy” in happy emotion, and “I’m so sad” in 
sad emotion. The timing of starting facial expressions and voices is played 
when the touch behaviors start. We used HOYA text‑to‑speech software 
(http://voicetext.jp/) as a speech synthesis function.

12.3 EXPERIMENT
12.3.1 Hypotheses and Predictions

Touch characteristics are essential factors in expressing emotions. People 
use different types of touches when they convey their emotions [11–13], 
therefore we thought that a robot also needs to change its touch charac‑
teristics to convey its emotions to people via touch interaction. Although 
past studies showed different effects of each touch characteristic [24], we 
focused on three touch characteristics (length, type, and part) that might 
be important to convey happy and sad emotions, which are typically 
applied emotions in human–robot interaction [21,22,28–30]. In this study, 
we made the following three predictions:

Prediction 1: When the robot expresses a happy emotion, a short touch 
will be perceived as stronger and more natural than a long touch. When 
it expresses a sad emotion, a long touch will be perceived as stronger and 
more natural than a short one.

http://voicetext.jp
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Prediction 2: When the robot expresses a happy emotion, a pat‑type 
touch will be perceived as stronger and more natural than a contact‑type 
touch. When it expresses a sad emotion, the contact‑type touch will be 
perceived as stronger and more natural than the pat‑type touch.

Prediction 3: When the robot expresses a happy emotion, a finger touch 
will be perceived as stronger and more natural than a hand touch. When 
it expresses a sad emotion, a hand touch will be perceived as stronger and 
more natural than a finger touch.

12.3.2 Participants

In this study, 22 native Japanese (11 women and 11 men whose ages ranged 
from 19 to 39 and averaged 29.0) joined the experiment. None had experi‑
enced any touch interaction with our robot.

12.3.3 Conditions

We prepared four factors: emotion (happy and sad), length (short and 
long), type (contact and pat), and part (hand and finger). The experi‑
ment has a within‑participants design. Each participant experienced 
16 trials. The order of the conditions was counterbalanced as much as 
possible.

12.3.4 Procedure

Before the experiment, the participants were given a brief description of 
its purpose and procedure. This research was approved by our institu‑
tion’s ethics committee for studies involving human participants. Written 
informed consent was obtained from each one.

The experimenter explained to the participants how the robot 
expresses emotions, i.e., using touch, a facial expression, and speech. 
We positioned the participants next to the robot and placed markers on 
a table to fix their hand positions to ensure that they experienced the 
identical touch interaction and easily observed the robot’s facial expres‑
sions. After the experiment started, the robot first randomly selected 
one of two emotions (happy or sad) without a touch behavior to show 
its baseline condition. Then, it expressed the selected emotion 16 times 
with different touch behaviors by following the pre‑ordered combina‑
tions. After finishing each trial, the robot asked the participants to com‑
pare its strength and naturalness to the baseline condition. Then, it again 
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showed the baseline condition with the last emotion and repeated the 
same procedure.

12.3.5 Measurements

We measured two impressions of conveyed emotions: strength (degree of 
strength of the perceived emotion through the android’s behaviors) and 
naturalness (degree of naturalness of the touch behavior to express the 
emotion) on a 1–7 point scale, where 1 indicates the most negative com‑
pared to the baseline, 4 indicates the same impression as the baseline, and 
7 indicates the most positive compared to the baseline.

12.4 RESULTS
12.4.1 Statistical Analysis about Strength Impressions

We conducted a four‑factor mixed ANOVA for the strength impres‑
sions and identified the significant main effects in the type factor  
(F (1, 21) = 5.143, p = .034, partial η2 = .374) and in the part factor (F (1, 
21) = 10.337, p = .004, partial η2 = .330). We also identified simple interac‑
tion effects between emotion and length (F (1, 21) = 15,717, p = .001, par‑
tial η2 = .428) and emotion and type (F (1, 21) = 22.066, p = .001, partial 
η2 = .512). We found no significant differences in the other simple main 
and interaction effects.

We conducted multiple comparisons with the Bonferroni method of 
the simple main effects and identified significant differences in both the 
strength and naturalness impressions. We found significant differences in 
happy where short > long (p = .022) and sad where long > short (p = .030). 
We also found significant differences in happy where pat > contact 
(p = .012) and sad where contact > pat (p = .001). Figures 12.2–12.4 showed 
the questionnaire results.
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*

FIGURE 12.2 Average values of strength with touch length.
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12.4.2 Statistical Analysis about Naturalness Impressions

We also conducted a four‑factor mixed ANOVA for the naturalness 
impressions and identified significant main effects in the part factor (F 
(1, 21) = 49.941, p = .001, partial η2 = .704) and the simple interaction effects 
between emotion and length (F (1, 21) = 14.384, p = .001, partial η2 = .407) 
and emotion and type (F (1, 21) = 28.453, p = .001, partial η2 = .575). We 
found no significant differences in other simple main and interaction 
effects. Figures 12.5–12.7 showed the questionnaire results.
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FIGURE 12.3 Average values of strength with touch type.
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FIGURE 12.4 Average values of strength with touch part.
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FIGURE 12.5 Average values of naturalness with touch length.
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We conducted multiple comparisons with the Bonferroni method of 
the simple main effects and identified significant differences in both the 
strength and naturalness impressions. We found significant differences in 
happy where short > long (p = .008) and sad where long > short (p = .006). 
We also found significant differences in happy where pat > contact (p = .030) 
and sad where contact > pat (p = .001).

12.4.3 Summary

Our experiment results showed that the effectiveness of the touch length 
and the touch type did not indicate the effectiveness of the touched part. A 
short touch was appropriate for happy emotions; a long touch was appro‑
priate for sad emotions. Therefore, prediction 1 was supported. A pat was 
an appropriate touch type for happy emotions, and that contact was appro‑
priate for sad emotions. Therefore, prediction 2 was supported. Finger 
touches are stronger and more natural than hand touches, regardless of 
the emotions. Therefore, prediction 3 was not supported.

* : p < .05
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FIGURE 12.6 Average values of naturalness with touch type.
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FIGURE 12.7 Average values of naturalness with touch part.
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12.5 DISCUSSION
Our experiment results identified the effectiveness of two touch charac‑
teristics (length and type) for expressing different emotions (happy and 
sad) for social robots. They show the advantages of finger touches over 
hand touches, results which are not necessarily consistent with past find‑
ings [13]. Possible reasons include the differences of robot appearance, 
touch feelings, and culture. For example, if we were to use robots with 
more robotic appearances, such as Pepper and Robovie, the effects of 
the characteristics would change. We only used a specific android with 
a feminine‑like appearance; if we used an android robot with a mascu‑
line‑like appearance [31,32] or a robot‑like appearance [33–35], the per‑
ceived impressions would undoubtedly change. Investigating the effects 
of robot appearance among different countries is another intriguing 
future possibility.

In this study, we focused on a situation where a robot touches people, 
and our results identified several common characteristics with studies that 
focused on a situation where people touch a robot. One common charac‑
teristic is the touch length. A previous study reported that a relatively long 
touch is related to negative valence perspective [27], a finding confirmed 
by our study. Investigating the similarities and differences between touch‑
ers and receivers is another interesting future direction.

A further application is adapting different touch styles, such as hug‑
ging [36–38]. Because a past study focused on intra‑hug gestures such as 
squeezing and rubbing, their touch characteristics seem related to con‑
veyed emotions even through hugging interaction. Many hug interaction 
studies focused on the effects of behavior changes or mechanisms for nat‑
ural hug interaction between robots and people. Of course, understanding 
touch characteristics within hug behavior will improve natural and affec‑
tive interactions.

12.6 CONCLUSION
Since social robots need to appropriately convey their emotions to people 
for more natural and acceptable interaction, we focused on the effects of 
touch characteristics because touch interaction is essential in emotional 
contexts. We focused on conveying two typical emotions in human–robot 
interaction: happy and sad. We also focused on three different touch char‑
acteristics: length, type, and body part. We implemented different touch 
behaviors based on these emotions and characteristics in an android robot 
ERICA, which has a feminine‑like appearance.
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We experimentally investigated with human participants the relation‑
ships between perceived impressions of emotions expressed by the robot 
and its touch characteristics. Our experiment results showed that short 
and pat‑type touches by fingers effectively convey strong and natural 
happy emotions. A long touch and a contact‑type touch by fingers effec‑
tively conveys sad emotions.
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13.1 INTRODUCTION
In human–human interaction, touch behaviors have essential roles in the 
context of well‑being, mental, and physical benefits [1–7]. Robotics research‑
ers have also focused on touch behaviors for more natural and acceptable 
social robots in daily settings [8,9], as well as on their usefulness for con‑
veying such intentions as emotions and intimacy to people by touch [10,11], 
because such capabilities can contribute to affective interaction with peo‑
ple. Based on these contexts, we want to understand what kinds of touch 
characteristics effectively convey emotions from robots to people.

Past studies investigating touch interaction characteristics focused on 
type, length, and place [10,11] to convey relatively simple emotions (happy/

DOI: 10.1201/9781003384274-17
This chapter has been made available under a CC-BY-NC-ND licence.

https://doi.org/10.1201/9781003384274-17


Modeling Touch Timing and Length to Express Complex Emotions   ◾   155

sad) and show intimacy. Others focused on different characteristics and 
evaluated how touching behaviors changed the emotions conveyed by a 
robot [12–15]. Another study reported that touch interaction from a robot 
toward an object increased perceived kawaii feelings and touch from a 
human presenter [16]. These studies provided rich knowledge to convey 
robots’ emotions to interacting people by touch interaction.

However, even though these studies identified the essential characteris‑
tics of emotional expressions by touch, the appropriate timing for convey‑
ing emotions and touch durations have received less attention. We believe 
that these characteristics are important to more naturally and strongly con‑
vey emotions. For example, negative emotions such as anger and fear elicit 
a relatively rapid reaction [17,18], which is related to proactive and short 
reactions, and therefore, people who are scared or surprised may touch 
others immediately and briefly. In addition, since the continuation time of 
heartwarming emotions is relatively long after their evocation compared 
to negative emotions [19,20], people who are moved may touch others after 
the timing of being moved. In the context of touch timing, a few studies 
investigated such effects, but they mainly focused on a robot’s warmth or 
touching effects [21,22], rather than emotional naturalness and strength.

Therefore, in this study, we develop a model to control the appropriate 
timing to express robots’ emotions by touch behaviors. For this purpose, we 
collected data about people’s touch timing and durations when they express 
heartwarming and horror emotions using an android robot (Figure 13.1). 

FIGURE 13.1 An experimental scene where ERICA and a participant watch a 
video [23].
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Using these gathered data, we developed models that determine the timing 
and length of touch behaviors to express these two emotions by a robot’s 
touch. We implemented the models in an android robot and confirmed that 
they enable the robot to select appropriate timing and durations in touch 
interaction. Note that this chapter is modified based on our previous work 
[23], edited to be comprehensive and fit with the context of this book.

13.2 TARGET EMOTIONS, ROBOT AND TOUCH BEHAVIOR
13.2.1 Target Emotion

Similar to a past study [11], this study focused on two different positive 
and negative emotions. First, we focused on heartwarming as a positive 
emotion because a past study concluded that Japanese people experience 
both happiness and sadness when they are moved [19]. As a counterpart to 
these positive emotions, we focused on horror as a negative emotion that 
combines fear and surprise.

To express such complex emotions by robots, people need to share their 
contexts with robots, such as observing the same visual stimuli. Moreover, 
thrilling emotions are related to the timing of specific situations, i.e., cli‑
max scenes. Based on these considerations, we decided on a situation where 
a robot and participants watched videos together because such situations 
enable the latter to easily imagine appropriate touch characteristics for 
robots that express emotions that appropriately match the visual stimuli.

13.2.2 Robot Setup

Robots need various capabilities to express emotions in interaction with 
people, such as facial expressions, speech synthesis, gestures, and touch 
behaviors. Therefore, we used an android robot, ERICA [24]. It has ten 
degrees of freedom in each arm and can control each actuator with 50‑ms 
frequency, enabling it to express emotions by touch behaviors [10,11]. Even 
though the appearance of the silicone skin on ERICA’s arms resembles 
human skin, its touch feels quite different, and therefore, we put gloves on 
ERICA when it touched the participants.

13.2.3 Touch Behavior Design

As its touch behavior, we employed a grip behavior with which the robot 
expressed its emotions by touching a participant’s hand. This design fol‑
lowed past studies that investigated the touch effects of perceived emo‑
tions using robots [21,22,25] and a remote touch device [26]. These studies 
designed the robot’s hand so that it is always touching a participant’s hand. 
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Using grip behaviors provides simple control of the start/end timing of the 
touch behaviors. Related to this touch design, we also employed a situation 
where participants watched video stimuli with the robot, because in such 
a situation, a robot’s expressed emotions related to the video contents will 
be naturally perceived by the participants. We placed the robot next to the 
participants. We also set markers on a table to fix the participants’ hands 
during the experiment to reproduce similar touch behaviors. In summary, 
we collected data to find the appropriate grip timing and duration to express 
emotions while the robot watched video stimuli with the participants.

13.3 MATERIALS AND METHODS OF EXPERIMENT
13.3.1 Data Collection
13.3.1.1 Overview
In the data collection, we focused on three characteristics of gripping 
behaviors: the climax timing of the video watching, tclimax; the timing to 
start a grip behavior as a reaction (or anticipation) to the video’s climax, 
ttouch; and the grip’s duration, ∆t. Our participants directly determined 
these three parameters to design the robot’s touch behaviors. Based on 
part of this information, we calculated tstart (i.e., tclimax − ttouch), which is the 
difference between the touch and climax times (Figure 13.2).

The participants sequentially watched the video clips with the robot 
as many times as they wanted as they adjusted these characteristics to 
match their own preferences. We prepared three video clips of movie trail‑
ers or advertisements from YouTube1 that reflected heartwarming and 

FIGURE 13.2 Illustration of tclimax, ttouch, ∆t, and tstart [23]: (a) Heartwarming vid‑
eos and (b) horror videos.
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horror emotions. We edited their lengths between 98 and 159 s (M = 118.3 s, 
SD = 26.2 s) for the data collection.

13.3.1.2 Procedure
Before the experiment, we briefly interacted with the participants and 
explained the aims of the data collection: gathering timing data to express 
emotions by touch behaviors with a robot. The ethics committee of our 
institution approved this research.

Before the experiment started, the participants sat on the left of our 
robot, and we calibrated their hand position to decide the tables and mark‑
ers for identical touch behaviors for all of the participants. In front of them, 
we placed a monitor that played the video stimuli and a user interface that 
controlled the robot’s behaviors.

The participants can change the parameters of the robot’s touch behav‑
ior by the user interface, i.e., tclimax, ttouch, and ∆t. The robot records these 
input values by the participants for the data collection. Once the par‑
ticipants satisfied the adjusted parameters to express emotions via touch 
behaviors of the robot, they repeated the procedure for the remaining 
clips. We adopted a counterbalance design to play either the first three 
horror videos or the heartwarming videos and then vice versa.

13.3.1.3 Participants
Forty‑eight participants (24 women and 24 men) joined this study. Their 
ages ranged from 20 to 49. We asked the participants whether they had 
watched the movies used in the experiment beforehand and verified that 
they had never experienced any touch interactions with a robot.

13.3.2 Hypotheses and Predictions

This study investigated the differences between touch characteristics (tim‑
ing and durations) for expressing positive and negative emotions. Past 
studies reported that the continuation time of heartwarming emotion, a 
positive emotion, is longer than negative emotions [19,20]. On the other 
hand, other studies reported that people rapidly respond to negative emo‑
tional stimulus [17,18]. Therefore, we hypothesized that the grip‑behavior 
timing for heartwarming emotions will start later than the grip‑behavior 
timing for horror emotions. In addition, the grip‑behavior duration for 
heartwarming emotions will be longer than for horror emotions. Based on 
these hypotheses, we made the following two predictions:
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Prediction 1: The tstart of the heartwarming emotions will be later than 
the tstart for horror emotions.

Prediction 2: The ∆t for heartwarming emotions will be longer than 
the ∆t for horror emotions.

13.4 RESULTS
We gathered 288 tclimax, ttouch, and ∆t items and calculated the tstart data 
from the data collection. 20 items were excluded due to hardware prob‑
lems. We also used the Z scores of each item to find outliers. After exclud‑
ing two more items, our modeling process contained 262 items.

13.4.1 Analysis of tclimax, ttouch, tstart, and ∆t

Although a few videos have different climax timings, most of the par‑
ticipants share similar tclimax timings. In addition, participants selected 
slightly shifted later ttouch timings for the heartwarming videos and earlier 
for the horror timing compared to tclimax. Even though a part of the par‑
ticipants found different climax timings in the videos, their timing design 
was similar.

Figures 13.3 and 13.4 show the tstart and ∆t histograms for all the heart‑
warming/horror videos. Participants assigned different grip timings due 

FIGURE 13.3 Histogram and fitting results of tstart [23]: (a) Heartwarming videos 
and (b) horror videos.
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to the video types. The start timing’s peak grip behavior for the heart‑
warming videos is relatively later, and the peak for the horror videos is 
relatively earlier.

13.4.2 Statistical Analysis

We conducted a one‑way repeated ANOVA to investigate the differences 
in the start timing and the duration of the touch behaviors between the 
positive/negative emotions. The results for tstart showed a significant dif‑
ference in the video category factor (F (1, 132) = 33.797, p < 0.001, partial 
η2 = 0.204). We also conducted a one‑way repeated measures ANOVA for 
∆t, whose results showed a significant difference in the video category fac‑
tor (F (1, 132) = 7.226, p = 0.008, partial η2 = 0.052). Thus, tstart and ∆t are 
significantly different between the heartwarming and horror videos. Thus, 
predictions 1 and 2 are supported.

As an additional analysis, we investigated whether the grip behaviors 
continued during the climax timing when the grip timing came before the 
climax. The number of cases for heartwarming videos is 20/27, whereas 
the number of cases for horror videos is 56/76. The binominal test showed 
that most touch durations lasted beyond the climax timing (heartwarm‑
ing: p = 0.019, horror: p < 0.001), suggesting that maintaining a grip beyond 
the climax timing is useful for reproducing human‑like touch behavior.

FIGURE 13.4 Histogram and fitting results of ∆t [23].
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13.4.3 Modeling Grip Timing

Based on the gathered data from the data collection, we employed a fit‑
ting approach with probabilistic functions for mathematical modeling of 
the gripping behaviors. We first compared the tstart histograms and the 
probability distribution functions, including normal, beta, triangle, and 
 normal‑inversed Gaussian (NIG). Then, we calculated their R‑squared val‑
ues (R2). We chose NIG with the parameters because it showed a higher R2 
than the other functions.

13.4.4 Modeling Touch Duration

Our experiment results showed that the touch durations are different for 
heartwarming and horror emotions. The participants set relatively longer 
durations for the heartwarming emotions and shorter durations for the 
horror emotions. In the modeling process of these touch durations, we 
investigated which probability distribution functions fit the data distribu‑
tion. Since NIG is also suitable for model fitting, we again employed the 
NIG model to calculate the touch durations.

13.4.5 Implementation

Finally, we used the modeled grip timing and duration to implement appro‑
priate touch behaviors with ERICA. It can decide tstart based on the NIG model 
due to the emotion category (heartwarming or horror) and the pre‑defined 
tclimax of the target video. It can also decide the duration of its own grip tim‑
ing (∆t) based on the NIG model. We confirmed that the robot can autono‑
mously decide its grip timing and durations based on the video information.

13.5 DISCUSSION
This study investigated appropriate touch parameters for conveying com‑
plex emotions to people by gripping behaviors. One possible application 
is investigating such parameters for different touch interactions, such as 
hugging [27–29]. Although these past studies showed the effectiveness of 
hug interaction, they focused less on detailed parameter modeling to con‑
vey emotions by hugging. Moreover, cultural differences may have influ‑
ences toward touch interaction [30,31], as well as touch contexts [32,33] 
and emotional expressions in non‑verbal behaviors [34,35].

This study has several limitations since it used a specific robot (ERICA) 
and a specific touch (gripping). If we conducted data collection with differ‑
ent robots [36–38] or androids with quite human‑like appearances [24,39], 
we would undoubtedly identify different parameters.
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13.6 CONCLUSION
We analyzed the appropriate grip timing and duration for conveying two 
complex emotions (heartwarming and horror) by conducting a data col‑
lection with human participants. From the gathered data, 48 participants 
showed different grip timings and durations based on the emotional cate‑
gory. We used NIG distribution functions to model appropriate grip timing 
and durations for both heartwarming and horror emotions. We  imple‑
mented these models to autonomously convey different emotions through 
grip behavior toward a human‑like appearance robot, and we confirmed 
that our developed system appropriately determined the characteristics of 
grip behaviors depending on the categories of visual stimuli.
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14.1 INTRODUCTION
In the human–robot interaction research field, social bonding between 
robots and people is crucial for smooth interaction in the context of educa‑
tion [1–5], elderly care [6–8], hospitals [9,10], and shopping [11,12]. For this 
purpose, robotics researchers have focused on interaction strategies that 
achieve acceptable social robots by considering behavioral changes during 
interaction [12,13], positioning behaviors [14,15], and their characteristics 
[16–18].

Self‑disclosure plays an essential role in social bonding [19,20]. In human 
science literature, researchers have identified the effectiveness of physical 
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interaction on eliciting self‑disclosures [19,21]. Past studies focused on 
the interaction design of interactive agents to elicit self‑disclosures from 
people, not physical interaction; instead, they focused on conversational 
interaction [19,22,23]. Some studies investigated the effectiveness of 
human–robot touch interaction in the context of behavior changes [24,25] 
and emotional expressions [26–29], although these studies focused less on 
the perspective of social bonding.

If social robots can efficiently use their own physical body for physi‑
cal interaction and elicit self‑disclosures, they will have an advantage 
in building social relationships with interacting people. Based on these 
considerations, we experimentally investigated the relationships between 
physical interactions with robots and people’s self‑disclosures with a robot 
that can hug people (Figure 14.1). Note that this chapter is modified based 
on our previous work [30], edited to be comprehensive and fit with the 
context of this book.

14.2 SYSTEM
14.2.1 Robot Hardware and Software

We used Moffuly‑I, which we previously developed [31]. This robot is 
200‑cm tall and has two 80‑cm arms (one degree of freedom for each 
elbow) for giving a hug. Each arm has a weak digital servo motor to 
move the elbow joints and fabric‑based touch sensors for safety. Its frame 
is covered with polypropylene and a fluffy‑material‑based skin like in 

FIGURE 14.1 Hug interaction with a robot.
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commercial dolls. We controlled the robot with a Wizard‑of‑Oz approach. 
An operator observed the robot and the interacting people by a camera 
and microphone to decide its behaviors.

14.2.2 Conversational Behavior

In this study, we examined the impact of hugging interactions on 
 self‑disclosure promotion using three distinct conversational behaviors: 
the robot’s self‑introduction, soliciting self‑disclosures, and filler responses. 
First, the robot introduces itself, shares a personal detail, and moves its arm: 
“Hello, I’m Moffuly. Although I resemble a bear, my preferred sustenance 
is electricity, not honey.” The robot encourages self‑disclosure by listening 
attentively to the participants. Filler responses bridge gaps in the conversa‑
tion. The specifics of the hugging behaviors will be elaborated below.

In our investigation, an operator selectively and partially teleoperated the 
robot in accordance with Wizard‑of‑Oz methodology [32] to select suitable 
conversational behaviors consisting of relatively straightforward utterances. 
The robot assumed the role of an empathetic listener to inspire  self‑disclosures 
from the participants. Consequently, if participants posed excessive inquiries 
of the robot, it might meekly protest: “Sorry, but that question is too challeng‑
ing for me. I am more interested in learning about you.” This tactic prevents 
the conversations from being centered on the robot. The objective of these 
rule implementations is to mitigate the influence of varying interaction styles 
between the participants and the robot. For teleoperation purposes, we posi‑
tioned two cameras in the experimental space: one equipped with a micro‑
phone near the robot and another overhead. The operator eavesdropped on 
the participants with a microphone. To facilitate analysis, we documented 
video/audio data from the cameras and the microphone.

14.2.3 Hug Behavior

To execute the embracing interactions with the robot, Moffuly initially seeks 
a hug from the participants within our study’s parameters (Section 4.3). To 
begin the interactions that will encompass the hugs, the robot opens its arms 
and asks, “Before starting our dialogue, would you please give me with a 
hug?” Before the participant’s embrace, the robot closes its arms until it senses 
contact between them and the person’s body. Following the next guidelines, 
the robot gently pats the participant’s back by maneuvering both arms at the 
end of its own discourse or that of the participant. If the participant’s speech 
extends beyond 30 seconds, the robot pats at 30‑second intervals.
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14.3 EXPERIMENT
14.3.1 Hypothesis and Predictions

Physical interactions with others generate favorable impressions and 
stimulate increased self‑disclosure in human‑to‑human communication 
[19,21]. Similarly, physical interactions with robots in human–robot inter‑
actions also yield positive impressions [25,33–36]. As a result, we posit 
that individuals embraced by a robot will reveal more about themselves 
than those who are not hugged. Past studies concluded that reciprocal 
touch interactions with a robot evoke stronger emotions and prompt more 
behavioral changes compared to individuals who do not experience such 
reciprocal touches from a robot [25,37]. Consequently, we suggest that 
individuals hugged by a robot will disclose more about themselves than 
those who only hug it.

We hypothesized that people’s inclination to engage with the robot will 
be influenced by physical interaction. We surmised that the robot’s recip‑
rocal hugs are instrumental in forming strong bonds. If this conjecture 
is accurate, those who are hugged by a robot will have more prolonged 
interactions, leading to increased self‑disclosures. Thus, we formulated 
two predictions:

Prediction 1: Reciprocal hugs from a robot will lengthen the partici‑
pant interaction times compared to interactions without a reciprocal hug 
or any physical contact.

Prediction 2: Reciprocal hugs from a robot will prompt greater 
 self‑disclosures from participants than interactions without reciprocal 
hugs or any physical contact.

14.3.2 Participants

Forty‑eight Japanese individuals (24 women and 24 men whose average 
age was 36.19 with a standard deviation (SD) of 9.93 and a range from 20 
to 52) received compensation for their involvement.

14.3.3 Conditions

The study employed a between‑participant design featuring three distinct 
conditions. We assigned 16 participants (eight women and eight men) to 
each condition. An operator controlled the robot, adhering to the same 
rules and maintaining identical conversational content across the three 
conditions:

No‑hug: Participants remained in their initial position (45 cm from the 
robot) and engaged in conversation without any physical interaction.
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Hug‑only: The robot asked for a hug from the participants before initi‑
ating a conversation without reciprocating.

Reciprocated hug: The robot requested a hug from the participants, 
reciprocated, and began talking. The robot occasionally patted them on 
the back during the experiment, following the pre‑defined rules.

14.3.4 Procedures

The experimenter briefly described the experiment’s purpose and proce‑
dure prior to its start. For those in the hug‑only and reciprocated hug con‑
ditions, the experimenter physically demonstrated how to hug the robot 
and also explained its limited conversational capabilities, mentioning that 
it prefers listening to stories and engaging in simple conversations. After 
the experimenter left the room, the experiment began.

Upon starting, the robot greeted the participants and, in the hug‑only 
or reciprocated hug conditions, requested a hug. It introduced itself, asked 
for a self‑disclosure, and invited the participants to share a story. The 
experiment had a minimum duration of ten minutes, starting after the 
robot’s finished its self‑introduction. After ten minutes, participants took a 
short break and decided whether to conclude the experiment or to extend 
it for a maximum of ten more minutes during which time they could stop 
the interaction at any moment.

Before the experiment, the participants were told that the robot was 
autonomous. Following it, a debriefing session clarified our research pur‑
pose. All the participants believed that the robot was autonomous, most 
likely due to its simple utterances and reactions during the interactions.

Our institution’s ethics committee approved this research involv‑
ing human participants, and informed consent was obtained from every 
individual.

14.3.5 Measurements

We assessed two objective factors and one subjective factor. For the former 
type, we examined the participants’ engagement durations and compared 
the proportions of self‑disclosure to non‑self‑disclosure dialogues by divid‑
ing the self‑disclosure‑related dialogues by those without  self‑disclosures. 
We concentrated on these proportions because the participants’ interac‑
tion durations and the conversations’ content lengths varied.

To quantify both types of conversational content, a coder transcribed 
all the conversations from the recorded video/audio data and divided the 
conversation data into 289 segments. We defined a conversation unit as a 
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conversational topic. The coder transcribed and segmented the texts based 
on the changes in the conversational topics. Consequently, when a partici‑
pant discussed topics A, B, C, and then returned to A, the number of seg‑
ments totaled four. Each segment consisted of several sentences.

Subsequently, the coder classified all the segments as either self‑dis‑
closure or non‑self‑disclosure. If the segments contained personal topics 
like hobbies or experiences, they were categorized as self‑disclosure. If 
they only discussed mundane topics like the weather, they were consid‑
ered non‑self‑disclosure. Additionally, the coder coded the self‑disclosure 
content into positive/negative categories to examine whether the robot’s 
physical interaction influenced the self‑disclosure types. Following this 
process, another coder coded 10% of the data. We calculated the coding 
validity based on a prior study [38], and a kappa coefficient [39] of 0.71 
indicated substantial agreement between the coders.

For the subjective metric, we gauged the participants’ perceived positive 
impressions of the robot using a single questionnaire item: “I think this 
robot is good overall.” Participants rated this item on a 1‑to‑7 point scale, 
where 1 represented the most negative response (complete disagreement) 
and 7 was the most positive response (complete agreement).

14.4 RESULTS
14.4.1 Verification of Prediction 1

Figure  14.2 illustrates the interaction durations of the participants. To 
analyze the data, we carried out an ANOVA, which revealed signifi‑
cant differences (F (2, 45) = 18.030, p < 0.001, partial η2 = 0.445). Multiple 
comparisons employing the Bonferroni method revealed significant dif‑
ferences among the conditions: reciprocated hug > hug‑only (p < 0.001) 
and reciprocated hug > no‑hug (p < 0.001). No significant difference was 
observed between hug‑only and no‑hug (p = 1.000). Consequently, the 
robot’s reciprocated hugs significantly increased the interaction length 
more than without them and without any physical interaction. Thus, 
 prediction 1 was supported.

14.4.2 Verification of Prediction 2

Figure  14.3 shows the proportions of self‑disclosure to the non‑self‑ 
disclosure dialogues. To analyze the data, we carried out an ANOVA, 
which revealed significant differences (F (2, 45) = 8.162, p = 0.001, par‑
tial η2 = 0.266). Multiple comparisons employing the Bonferroni method 
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revealed significant differences: reciprocated hug > hug‑only (p = 0.010), 
reciprocated hug > no‑hug (p = 0.001). No significant difference was 
observed between hug‑only and no‑hug (p = 1.000). Consequently, the 
robot’s reciprocated hugs significantly increased the ratio of self‑disclo‑
sures more than without the reciprocated hugs and any physical interac‑
tion. Thus, prediction 2 was supported.

14.4.3 Analysis of Total Self‑Disclosure Amount

Through our evaluation, the reciprocated hugs from the robot effec‑
tively enhanced the interaction duration and the proportions of both the 
self‑disclosure and non‑self‑disclosure dialogues. We also compared the 
quantities of self‑disclosure and non‑self‑disclosure conversations among 
the conditions.

Figure  14.4 shows the number of both the self‑disclosure and  
non‑self‑ disclosure conversations. To analyze the data, we conducted 
a two‑way repeated measure ANOVA with mixed factors: category 
(self‑disclosure and non‑self‑disclosure) and condition (no‑hug, hug‑only, 
and reciprocated hug). Our results showed significant differences in the 
category factor (F (1, 45) = 21.378, p < 0.001, partial η2 = 0.322) and the 
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FIGURE  14.4 The number of both the self‑disclosure and non‑self‑disclosure 
conversations in each condition.
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interaction between the two factors (F (2, 45) = 4.081, p = 0.024, partial 
η2 = 0.154). No significant variation was observed in the condition factor 
(F (2, 45) = 2.297, p = 0.112).

Multiple comparisons with the Bonferroni method showed significant dif‑
ferences in the self‑disclosure category (reciprocated hug > hug‑only, p = 0.039) 
and in the reciprocated hug condition (self‑ disclosure > non‑self‑disclosure, 
p < 0.001). The results showed significant trends in the self‑disclosure category 
(reciprocated hug > no‑hug, p = 0.073) and in the hug‑only condition (self‑disclo‑
sure > non‑self‑disclosure, p = 0.078). These results imply that the robot’s recip‑
rocated hugs significantly increased the amount of self‑disclosures.

14.5 DISCUSSION
14.5.1  What Led the Reciprocated Hugs to Enhance the Interaction 

Duration and the Number of Self‑Disclosures?

Our experimental findings indicate that individuals interacted with the robot 
for a longer period and offered increased self‑disclosures when it provided 
reciprocal hugs. These experiment results prompt the following inquiry: 
Which occurred first, the cause or the effect? It is challenging to determine 
whether they interacted more due to engaging in self‑disclosure or whether 
they disclosed more because they spent more time with the robot.

We posit that both factors contribute, although the influence of the 
reciprocated hugs on self‑disclosure is more pronounced for a couple 
of reasons. First, we examined the ratios of the self‑disclosure to the 
non‑self‑disclosure conversations that had a minimum length of ten min‑
utes. The outcomes did not show significant differences between condi‑
tions, indicating that participants engaged in more self‑disclosure during 
the prolonged interactions. Since the experiment demonstrated that inter‑
action time significantly increased in the reciprocated hug condition, the 
hugs seemed to contribute to longer interaction durations and potentially 
promoted self‑disclosure. Second, basic physical responses (e.g., patting 
during a hug) could be interpreted as supplementary social cues in con‑
versations, fostering greater conversational engagement from participants. 
Naturally, this interactive loop stimulates self‑disclosures and heightens 
the desire to interact. Additionally, previous research highlighted the per‑
suasive effects of active touch interactions [40]. Thus, reciprocated hugs 
might amplify such effects when soliciting self‑disclosures.

Our experimental findings revealed that participants engaged longer in 
the reciprocated hug condition than the other conditions. This result might 
be attributed to the variations in the responses of the participants since 
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the robot did not ask for a hug in the no‑hug condition. Despite that, the 
actions requested by the participants were consistent between the recip‑
rocated hug and hug‑only conditions, as was the robot’s pre‑ experiment 
speech (e.g., “please give me a hug”). Thus, its reciprocal hug might have 
influenced the interaction duration.

14.5.2 Limitations

Our study has some limitations due to the specific robot used in our exper‑
iments, a situation that restricts the generality of our findings. To apply 
our insights to various scenarios, it is crucial to account for factors such as 
the robot’s size and the nature of its touch. Moreover, our implementation 
featured a relatively simple hug interaction; of course, humans exhibit a 
wide range of hug types. Investigating the effects of different hug interac‑
tions is essential to deepening our understanding of the impact of robot 
hugs, as a previous study reported that touch characteristics can alter the 
perceived impressions in human–robot touch interactions [26].

Despite these limitations, the knowledge gained from our research has 
valuable implications for the field of human–robot touch interactions. One 
potential application lies in clinical settings, where reciprocated hug inter‑
actions could foster rapport between robots and patients. A previous study 
found that patients preferred disclosing personal information to computer 
graphics (CG)‑based agents rather than teleoperated ones [41]. Our research 
highlights the effectiveness of physical interaction, an aspect that CG‑based 
agents cannot replicate. Consequently, hug interactions with robots may 
contribute to building relationships with patients through self‑disclosures.

14.6 CONCLUSION
Although prior research demonstrated the benefits of human‑to‑robot 
touch interactions, the impact of robot‑to‑human reciprocal touch 
remains less explored. Our study focused on the effects of a social robot’s 
reciprocated hugs on promoting self‑disclosures and fostering increased 
interaction. We conducted an experiment using a robot capable of hug‑
ging human participants. We found that participants who experienced a 
hug from the robot engaged in longer interactions than those who did not 
receive a hug. Moreover, the reciprocated hug group disclosed significantly 
more personal information than their counterparts in the non‑hug condi‑
tion. This evidence highlights the value of robot‑initiated haptic interac‑
tions in human–robot relationship development.
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Note, however, that the participants’ positive impressions of the robot 
did not significantly differ between conditions, despite the observed behav‑
ioral differences. Factors such as minimum interaction time or the robot’s 
appearance and voice may have contributed to these perceptions, although 
it remains an open question. Future research should explore the effects of 
haptic interactions on perceived impressions using various measurement 
methods, such as hormone levels or brain activity.
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Hug Impressions and 
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15.1 INTRODUCTION
The human–robot interaction field has witnessed rising interest in tactile 
engagement, prompting researchers to focus on the study of touch in social 
robots. Fueled by advancements in technology, robots are increasingly 
engaged in physical interactions with humans, such as handshakes and 
hugs, in various environments, including elementary schools [1,2], muse‑
ums [3,4], and shopping centers [5,6]. Amicable interactions and beneficial 
outcomes have been demonstrated in human–human touch interaction, 
highlighting the importance of touch in fostering positive relationships 
[7–12]. Following these phenomena, robotics researchers have investigated 
human–robot tactile interactions in diverse contexts, including stress 
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buffering [7], motivation improvement [8], mental health support [9], and 
the promotion of prosocial behavior [10].

Literature from the field of human sciences indicates that gender plays 
a role in shaping the perception of touch between individuals [11,12]. 
However, previous studies have primarily centered on robots with 
machine‑like or pet‑like appearances, overlooking the potential impact of 
a robot’s perceived gender on touch interactions. Thus, it remains unclear 
how a robot’s perceived gender might influence the impressions of its 
hug. Investigating the role of gender in robot touch interactions is fraught 
with challenges such as hardware configuration limitations and financial 
constraints.

To circumvent these obstacles, we utilized a huggable robot in conjunc‑
tion with a virtual reality (VR) application, which facilitated the simple 
adjustment of its appearance and voice through audio‑visual stimuli. 
Employing the MetaHug system [13] (Figure  15.1), our research, which 
explored how altering audio‑visual stimuli in a VR application changes 
a robot’s perceived gender, enables us to investigate how such changes 
impact human participants’ perceptions of a robot’s hug.

In addition to these inquiries, our study delves into the potential 
stress‑buffering effects associated with a robot’s hug. Prior research in the 
field of human sciences has identified stress reduction that results from 
actual tactile interaction (including hugs) with actual intimate [14] and 
imagined tactile interactions [15]. Although stress‑buffering effects have 
been observed in human–robot tactile interactions [7], the influence of 
perceived gender has not been explored. Understanding the impact of 
a robot’s perceived gender on stress buffering might inform the design 
of future touch interactions between humans and robots and shape the 

FIGURE 15.1 MetaHug system.
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development of mental support robotic systems. Thus, we investigate how 
the perceived gender of a robot changes the stress‑buffering effects of its 
hugs. Note that this chapter is modified based on our previous work [16], 
edited to be comprehensive and fit with the context of this book.

15.2 SYSTEM
The MetaHug system includes a motion control component that oversees 
a VR application (i.e., virtual agent movements and vocalizations) and a 
robot system (i.e., robot movements).

15.2.1 VR Application

We employed Unity and Oculus Rift to manage the audio‑visual stimuli 
for participants through a VR application. We tracked their head positions 
using two Oculus sensors, which monitored the Oculus Rift’s position. We 
also prepared virtual agents with masculine and feminine appearances 
with voice synthesis functions. We standardized their heights to eliminate 
any size‑related biases. We implemented autonomous eye contact func‑
tions with users based on head position data, and a function to control 
their lip movements that adjusts for synchronization with speech content. 
We also designed hugging animations for both agents.

15.2.2 Robot

We used Moffuly [10], a robot capable of hugging people. It has a single 
degree of freedom (DOF) for each elbow and adequate arm length for hug‑
ging interactions. A touch sensor (ShokacCube, developed by Touchence) 
was integrated into the ends of its arms for identifying contact with indi‑
viduals to ensure their safety; if a certain pressure level is detected, the 
hugging motion stops, and Moffuly slightly opens its arm.

15.2.3 Motion Controller

The motion control component utilizes sensor data from the VR applica‑
tion and the robot system (i.e., head position and pressure information) to 
coordinate the movements, the vocalizations of the virtual agents, and the 
robot’s motions for the synchronized hugs. The motion controller initiates 
hugging movements based on the user’s head position. During an interac‑
tion, the robot gently pats the user’s back. A one‑minute hugging duration 
was designed so that both the virtual agents and the robot simultaneously 
ensure that their hugging movements conclude. Although prior human 
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science studies demonstrated that intimate hugs provide numerous posi‑
tive effects, they did not specify an ideal hug length; therefore, we devel‑
oped a relatively long hugging behavior (i.e., one minute) to convey a sense 
of intimacy.

15.3 EXPERIMENT
15.3.1 Hypothesis and Predictions

As discussed in Section 15.2, the perception of gender plays a significant 
role in touch interactions between individuals [11]. For instance, previous 
research argued that touch from a person of the opposite gender is gener‑
ally well‑received, although touch from a person of the same gender can 
produce mixed reactions, including both acceptance and rejection [11, 12]. 
Thus, if the MetaHug system effectively manipulates the perceived gender 
of virtual agents, users are likely to have a more favorable response to hug‑
ging experiences when interacting with an agent of the gender of romantic 
interest. With this in mind, we propose the following prediction regarding 
hugging impressions:

Prediction 1: Participants will experience increased comfort and a 
higher willingness for another hug when interacting with an agent of the 
gender of romantic interest.

As mentioned in Section 15.2, previous research demonstrated that 
hugging interactions offer stress‑buffering effects, regardless of whether 
the interaction partner is a person actual intimate [14,17], an imagined 
intimate [15], or a robot [7].

However, these studies failed to investigate the potential impact of 
perceived gender, which we believe probably influences stress‑buffering 
effects by hugging interactions, similar to other touch interactions [11,12]. 
Based on this reasoning, we formed a prediction about stress buffering.

Prediction 2: Hugging interactions with an agent of the gender of 
romantic interest will lead to greater reduction in participants’ stress levels.

15.3.2 Participants

Eighteen Japanese individuals participated in our experiment, consisting 
of nine women and nine men who self‑identified their genders. Their aver‑
age age was 36.25, with a standard deviation of 8.74.

15.3.3 Conditions

Our study employed a mixed factorial design, combining within‑ and 
between‑participant designs. We counterbalanced the order of the two 
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within‑participant conditions: same‑gender and opposite‑gender. The 
participant’s gender served as the between‑participant factor.

Same‑gender condition: Participants engaged with an agent of the 
same gender.

Opposite‑gender condition: Participants engaged with an agent of the 
opposite gender.

15.3.4 Procedures

Initially, we provided a brief overview of the experiment’s objectives and 
procedures. After obtaining signed consent, we explained the system and 
demonstrated how to use it for hugging while wearing an HMD. In both 
conditions, the agents verbally requested a hug, and then they hugged 
the participants to facilitate the experience and expressed gratitude for 
their involvement in the experiment. Following the hugging interaction, 
the participants completed a subtraction task as a stress‑inducing activ‑
ity, a method commonly employed in human sciences literature to reliably 
induce stress [18,19]. We prepared three subtraction tasks (2,091 to 0 in 
17‑step sequences, 2,337 to 0 in 19‑step sequences, or 3,567 to 0 in 29‑step 
sequences) and counterbalanced their order. Each task lasted for five min‑
utes. Participants were instructed to calculate as quickly as possible and 
warned that if they made errors, they would need to start over.

15.3.5 Measurements

To measure the participants’ feelings about the hugging interaction, we 
designed a two‑item questionnaire: (1) willingness to receive another hug 
and (2) comfort level during the hug experience, rated on a 1‑to‑7 point 
scale, with 7 representing the most favorable response.

To measure the participants’ stress levels throughout the task, we used 
a technique from a previous study [15] in which participants self‑reported 
their perceived stress while performing the tasks.

This technique was chosen because previous findings suggested that it 
provided a more accurate measure of perceived stress during the tasks, 
as opposed to ratings taken after task completion. Self‑rated stress levels 
also showed a temporal relationship between physiological and psycho‑
logical indicators of stress [20]. Participants reported their stress ratings 
(on a 0‑to‑10 scale, where 0 is no stress and 10 is extremely stressed) at 
 30‑second intervals (prompted by a tone) during each five‑minute task. We 
collected ten stress ratings for each condition, resulting in a Cronbach’s α 
value of 0.97.
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15.4 RESULTS
15.4.1 Verification of Prediction 1

Figure  15.2 shows mean and SE for comfort impressions. We per‑
formed a two‑way mixed ANOVA with two factors: participant‑gender 
(between‑participant factor) and agent‑gender (within‑participant fac‑
tor). The results showed significant differences in the agent‑gender fac‑
tor (F (1, 14) = 12.962, p = 0.002, η2 = 0.448) and in the interaction effect  
(F (1, 14) = 12.962, p = 0.002, η2 = 0.448). They did not show any significant 
differences in the participant‑gender factor (F (1, 14) = 0.899, p = 0.357, 
η2 = 0.053). We conducted a multiple comparison with the Bonferroni 
method, which showed a significant difference for the same‑gender 
agent: women > men (p = 0.043). For the opposite‑gender agent, we found 
no significant difference between the women and men (p = 0.594). The 
results also showed a significant difference for men: opposite‑gender 
agents > same‑gender agents (p < 0.001). For women, we found no signifi‑
cant difference between opposite‑ and same‑gender agents (p = 1.00).

Figure 15.3 shows the mean and SE for willingness for another hug. We 
conducted a two‑way mixed ANOVA with two factors:  participant‑gender 
(between‑participant) and agent‑gender (within‑participant factor). 
The results showed significant differences in the agent‑gender fac‑
tor (F (1, 14) = 5.982, p = 0.026, η2 = 0.272) and in the interaction effect  
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FIGURE 15.2 Questionnaire results about comfortableness of hug interaction.
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(F (1, 14) = 7.965, p = 0.012, η2 = 0.332), but not in the participant‑gender 
factor (F (1, 14) = 0.429, p = 0.522, η2 = 0.026). We conducted a multiple 
comparison with the Bonferroni method, which did not show any sig‑
nificant difference for either the opposite‑gender agent (p = 0.466) or the 
 same‑gender agent (p = 0.111). On the other hand, the results showed a sig‑
nificant difference for men: opposite‑gender agents > same‑gender agents 
(p = 0.002). But for women, we found no significant difference (p = 0.794).

The finding offered partial support for prediction 1. A notable increase in 
positive impressions concerning comfort and desire for an additional hug 
was observed solely among men when interacting with an  opposite‑gender 
agent as opposed to a same‑gender agent.

15.4.2 Verification of Prediction 2

Figure  15.4 shows the mean and SE for perceived stress. We per‑
formed a two‑way mixed ANOVA with two factors: participant‑gender 
(between‑participant factor) and agent‑gender (within‑participant  factor). 
The results showed significant differences in the agent‑gender factor (F 
(1, 16) = 4.768, p = 0.044, η2 = 0.230). We did not find any significant dif‑
ferences in the gender factor (F (1, 16) = 0.459, p = 0.508, η2 = 0.028) or in 
the interaction effect (F (1, 16) = 2.700, p = 0.120, η2 = 0.120). These find‑
ings suggest that for women and men, engaging in a hug interaction with 

1

2

3

4

5

6

7

Same-gender Opposite-gender

Male participants Female participants

FIGURE 15.3 Questionnaire results about willingness for another hug.
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an opposite‑gender agent was more effective in a stress‑buffering context 
than with a same‑gender agent. Consequently, prediction 2 was supported.

15.4.3 Additional Analysis of Task Performances

We investigated the stress‑buffering effects and impressions of hug inter‑
actions by manipulating the perceived gender of the interacting agents. To 
deepen our understanding of the impact of hugs, we explored how per‑
ceived gender during hug interactions influenced the participants’ task 
performance.

We measured their performance scores, as represented by the num‑
ber of accurately completed serial subtractions (Figure  15.5). A two‑way 
mixed ANOVA was conducted with two factors: participant‑gender  
(a between‑participant factor) and agent‑gender (a within‑participant 
 factor). This approach allowed us to gain deeper insights into the relationship 
between perceived gender during hug interactions and the performance of 
the participants. The results did not show any significant differences for any 
of the factors: the agent‑gender factor (F (1, 16) = 0.01, p = 0.980, η2 = 0.001), 
the participant‑gender factor (F (1, 16) = 1.304, p = 0.270, η2 = 0.075), or the 
interaction effect (F (1, 16) = 0.337, p = 0.569, η2 = 0.021). Thus, the perceived 
gender did not significantly affect the task performances.
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FIGURE 15.4 Questionnaire results about perceived stress during tasks (0 means 
no stress).
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15.5 DISCUSSION
15.5.1 Implications

Our findings indicate that both women and men experience stress‑ 
buffering effects during hug interactions with opposite‑gender agents. 
Interestingly, the agent‑gender factor significantly influenced hug impres‑
sions only for men. Although some of our hypotheses were not supported, 
the results suggest that hug interactions with an opposite‑gender agent 
generally provide greater benefits than those with a same‑gender agent.

Another key insight derived from our study is the similarity between 
human–human and human–robot touch interactions in terms of observed 
trends. Previous research has demonstrated that women tend to respond 
more positively to touch interactions than men [11], and touches between 
men can have negative effects [12]. The promising outcomes of our study, 
which involved hug interactions with a robot and a VR application to 
manipulate the perceived gender of the interacting agents, suggest that 
this approach holds significant potential. By allowing for simple modifica‑
tions to the agents’ appearances and voices, this method offers advantages 
over traditional robot designs.

15.5.2 Limitations

Our study has several limitations. First, we used a one‑minute hug, which 
we chose to represent an intimate hug. We should explore the effects of 
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FIGURE 15.5 Task performance.
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different hug lengths or intra‑hug gestures [21–24] to determine the mini‑
mum time needed for a hug to reduce stress. In particular, past studies 
reported what kinds of touch characteristics are important to convey emo‑
tions and intimate feelings [8,25–31]; such knowledge will improve our 
stress‑buffering hug interaction design. We also conducted our experi‑
ments in a lab setting. Our system must be tested in real‑life situations. 
To do this, we need to create a natural setting for hug interactions and 
develop a suitable conversation design, which our study did not address.

Second, our participant pool lacks diversity in terms of age, cultural 
background, or prior experience with robots, limiting the generalizability 
of our findings. Future research should include a more diverse group of 
participants to understand better the effects of perceived gender and hug 
interactions across different populations.

Third, the virtual agents used in the study might not represent the full 
spectrum of possible agent designs, including variations in appearance, 
voice, and behavior. Exploring a broader range of virtual agent character‑
istics in future studies will help determine how different aspects of agent 
design influence the outcomes of hug interactions. Related to this topic, 
using more realistic and human‑like robots [32,33] without virtual agents 
will provide rich knowledge about hug interaction effects.

15.6 CONCLUSION
We examined the influence of virtual agents’ perceived gender on the 
impressions and stress‑buffering effects of hug interactions. We con‑
ducted experiments with participants using the MetaHug system, which 
combines a huggable robot and a VR application to facilitate physical hug 
interactions between people and virtual agents. They engaged in two hug 
interactions with distinct virtual agents, completed stressful tasks, and 
subsequently reported their perceived stress levels and impressions of the 
hugs. Our findings revealed that, regardless of the participants’ gender, 
hug interactions with opposite‑gender agents yielded stress‑buffering 
effects. However, only men experienced an improvement in their hug 
impressions. This study sheds light on the significance of perceived gender 
in hug interactions with virtual agents and its potential implications for 
future applications.
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16.1 INTRODUCTION
The impact of physical touch on individuals’ behaviors and perceptions is a 
significant aspect of human–robot interaction [1,2]. Previous research has 
identified the following positive aspects or results when a robot engages 
in touch: a fostering of motivation [3], increased persuasive power [4], and 
encouraged pro‑social behaviors [5]; a sharing of personal information by 
self‑disclosures [6]; increased pain‑ or stress‑buffering effects [7,8]; and 
conveying various emotions [9–12]. By utilizing tactile interaction, robots 
have the ability to leave positive impressions with interactive people [13] 
and express a variety of emotions through adjustments in touch properties 
[9,14]. These studies provide rich knowledge about the positive effects of 
human–robot touch interaction.

However, the necessity of actual touching remains an open question, 
as recent innovations in virtual reality (VR) applications have introduced 
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interactions with others using pseudo‑haptic stimuli, such as visually touch‑
ing behavior. A recent study concerning VR applications demonstrated the 
effectiveness of such virtual‑touch interaction within VR environments, 
even though it relied solely on visual stimuli [15]. In contrast, research on 
body‑transfer illusion effects, like the rubber hand illusion, has probed the 
influence of visual and tactile stimuli on individuals’ perceptions [16–21]. 
Yet it has paid less attention to the positive outcomes of touch behaviors in 
interactions between robots and people‑based interactions with others.

Based on these considerations, we focused on pseudo‑touch interactions, 
particularly those limited to visual‑only touch, which might produce compa‑
rable modifications in individual behaviors and perceptions. To investigate 
such effects, we experimentally compared the motivational enhancement 
effects between visual‑only touch and a combination of visual‑tactile‑touch 
interactions by integrating a VR application with a physical robot (Figure 16.1). 
Note that this chapter is modified based on our previous work [22], edited to 
be comprehensive and fit with the context of this book.

FIGURE 16.1 Touch interaction with a virtual agent.
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16.2 SYSTEM
Our system consists of four distinct hardware components: a computer, 
a head‑mounted display, a touch controller, and a robot. The computer 
executes a VR environment application to manage both the agent and the 
robot based on an experimental scenario. We utilized an Oculus Rift S 
head‑mounted display for the experiment, and an Oculus Touch controller 
tracked the positions of the left hands of the users.

Our system contains eight distinct software components. First, the sce‑
nario manager loads a pre‑designed experimental procedure containing 
both verbal and non‑verbal actions for the agent and conveys the particu‑
lars of the agent’s actions to the behavior interpreter, which subsequently 
translates them for the agent controller. If a touch‑related command is 
present, it is also forwarded to the robot controller to manage the robot’s 
arm movement. The agent controller collaborates with the VR world man‑
ager to modify the VR landscape’s state. Next, the visual/audio renderer 
displays the updated state. The modules that sense the head and hand 
positions gather the users’ head and hand positions for the behavior inter‑
preter, facilitating the agent’s behavior modification. This position infor‑
mation allows the agent to perform eye contact behaviors and refine its 
touch motion as necessary.

16.2.1 VR Application

Our system, which uses a 3D virtual agent that resembles a bear‑like charac‑
ter, carries out three distinct movement categories: idling, scenario‑based, 
and touch‑based behaviors. Idle actions and eye contact fall under idling 
behaviors in which the agent gently sways its head to engage users in the 
VR space. The scenario‑based behaviors feature clapping and waving. The 
touch‑based behaviors, also specified in the scenario, are adapted to con‑
nect with a user’s left hand by sensing modules. We created pre‑recorded 
speech for the agent with speech synthesis software.

16.2.2 Robot

The experiment employed Sota, a tabletop‑sized robot that possesses eight 
degrees of freedom (DOFs) distributed among its head (three), arms (two 
each), and lower body (one). Sota stands 28 cm tall. Although a humanoid 
robot is not essential for tactile stimulus delivery, we chose Sota due to its 
simple operation. Since the robot’s sole purpose in this experiment is mak‑
ing contact with a user’s left hand, we covered its right hand in plush fabric. 
The robot’s touch movement was synchronized with the corresponding 
action performed by the virtual agent
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16.3 SCENARIO
16.3.1 Practice

At the experiment’s beginning, the experimenter explained this study’s 
procedure to the participants who earlier provided written informed con‑
sent. Next, they used the VR headset (viewpoint is shown in Figure 16.2) 
and listened to detailed procedures from the virtual agent. The partici‑
pants could see the task window, the virtual agent, and their own virtual 
left hands. They engaged in several practice sessions of the task. After 
completing them, the agent explained the next phase, the fixed‑time ses‑
sion, whose details are described in the next subsection. Table 16.1 showed 
utterance contents of the agent in the experiment.

16.3.2 Fixed Time

The fixed‑time session’s duration lasted five minutes. First, the agent asked 
the participants to continue with the task throughout the session while 
informing them of its length. Every 30 seconds, the agent praised the 
participants, incorporating three different motion types. After complet‑
ing the five‑minute session, the agent again explained the next phase, the 
free‑time session, whose details are described in the next subsection.

FIGURE 16.2 Image seen in practice sessions.
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16.3.3 Free Time

Although the free‑time sessions lasted 15  minutes, note that the agent 
refrained from disclosing any particular maximum time, thus the par‑
ticipants were not aware of any time limitations. At the session’s start, the 
agent once again requested them to continue to perform the task without 
explicitly mentioning a time frame. The agent did clarify that they could 
terminate the task at any time. During this session, the agent maintained 
a distance and neither offered praise nor initiated touch, different from the 
fixed‑time session. The free‑time session finished when the participants 
pressed the ESC key or reached the maximum time limit.

16.3.4 Task

We utilized a repetitive and monotonous drag‑and‑drop task that previ‑
ously examined touch effects in human–robot experiments [3]. A circle 
and a square are displayed on the headset’s screen, and users drag the cir‑
cle into the square. After successful completion, the circle vanishes, and a 
new one emerges in its original position. Users repeatedly performed this 
operation, and the mouse cursor’s speed was deliberately set low.

16.4 EXPERIMENT
16.4.1 Hypotheses and Predictions

Prior research has underscored the role of touch interactions with robots 
for boosting motivation [3]. Unfortunately, the effects of visual and tactile 
stimuli in touch interaction remain inadequately investigated since such an 
approach is deemed beyond the scope of research. Whether tactile stimuli 

TABLE 16.1 Scenario Contents

Session Utterance Motion

Practice Hello. My name is Teddy. Nice to meet you. 
Please read the instructions on the screen. Click 
the start button when you are ready to begin.

Waving

Fixed‑time Your practice is over. Next is the five‑minute, 
second session. Good luck.

Clapping

After 30 s You’re off to a good start. You’re getting faster 
than in your practice.

Clapping or Touching

After 60 s One minute has passed. Keep working. Clapping or Touching
After 90 s You’re working on your tasks at a good pace. 

Keep it up.
Clapping or Touching

After 120 s You seem to be getting used to it. You did more 
tasks than most other participants.

Clapping or Touching
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actually enhance motivational effects remains ambiguous. This research gap 
prompts a simple yet essential question: How vital is the presence of tactile 
stimuli for improving motivation by touch interactions? Although earlier 
studies that investigated the effects of visual‑only touch did not focus on 
motivation enhancement, they did reveal changes in people’s perceptions 
[15,23–25]. Another study discovered that imagined touch, for instance, 
without tactile stimuli, had favorable effects on stress buffering [26].

To tackle this question, we designed an experiment that compared the 
outcomes of visual‑only and visual‑tactile touch in a virtual setting. We 
hypothesized that the latter will yield greater benefits than the former 
since previous research indicated that the activation of C‑tactile fibers at a 
suitable speed (5–10 cm/s) evokes pleasant feelings [27].

These sensations provide positive impressions and modify peo‑
ple’s behaviors [3]. Based on these hypotheses, we made the following 
predictions:

Prediction 1: Visual‑tactile touches will encourage the participants to 
do more tasks than the visual‑only touches.

Prediction 2: Visual‑tactile touches will create more positive feelings in 
the participants toward the robot than the visual‑only touches.

16.4.2 Conditions

We employed a between‑participants design to analyze and compare the 
effects of two different touch conditions: visual‑only and visual‑tactile. 
The following are the details of these conditions:

–  Visual‑only‑touch condition: The virtual agent interacts with the 
participants by touching their virtual left hands without any tactile 
feedback.

–  Visual‑tactile‑touch condition: The virtual agent interacts with the 
participants by touching their virtual left hands; the robot also physi‑
cally touches their actual left hands, providing tactile sensations.

We decided not to incorporate a physical touch‑only condition in which 
the robot physically touches the participants’ hands without any virtual 
interaction from the agent due to potential discomfort and an unnatural 
disconnection between the visual and tactile interactions.

In this study, we did not investigate the gender factor because a previous 
analysis found [28] no significant gender differences. It also demonstrated 
that both the no‑touch and visual‑only‑touch conditions yielded similar 
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patterns when compared with the visual‑tactile‑touch condition. Unlike 
the influence of gender, excluding both conditions hinders the possibility 
of examining the effects of visual‑tactile‑touch. Since the main focus of our 
study is investigating the effects of tactile stimuli in a praise context, we 
did not include a no‑touch condition and retained the visual‑only‑touch 
condition as an alternative.

16.4.3 Participants

Our 48 participants were comprised of an equal number of women and 
men whose ages ranged from 21 to 54, with an average of 35.7 (SD = 11.0). 
For each condition, we allocated 12 women and 12 men, i.e., 24 partici‑
pants. Unfortunately, we excluded four participants due to misinterpreta‑
tions of instructions and disruptions in each condition. We obtained valid 
results from 11 women and nine men in the visual‑only‑touch condition 
and from nine women and 11 men in the visual‑tactile condition.

16.4.4 Procedure

As described in Section 16.3.1, at the beginning of the experiment, par‑
ticipants were provided with an overview of its objectives and proce‑
dures. This research was approved by our institution’s ethics committee 
for studies involving human subjects, and written informed consent 
was obtained from every participant. The experimenter asked the par‑
ticipants to put on their headsets. Next, the experimenter positioned the 
robot in the visual‑tactile condition and left the room. Following the sys‑
tem setup, the system showed instructions on the virtual environment 
screen. During the practice session, they performed the task several 
times, repeated it for five minutes in the fixed‑time session, and resumed 
it during the free‑time session until they chose to stop or the 15‑minute 
time limit was reached.

Afterward, the experimenter re‑entered the room, concealed the robot 
from the participants, asked them to remove their headsets, and handed 
out questionnaires. At the experiment’s conclusion, the experimenter 
informed the participants in the visual‑tactile‑touch condition how the 
tactile stimuli were delivered.

16.4.5 Measurements

We measured the task motivation by following a subjective item: the dura‑
tion of the free‑time sessions. We used an objective item to evaluate the 
participants’ impressions of the agent with a likeability scale [29].
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16.5 RESULTS
16.5.1 Verification of Prediction 1

Figure 16.3 shows the duration of the free‑time session. We conducted a 
t‑test whose results showed significant differences between the conditions 
(t(38) = 2.027, p = 0.050). Thus, the participants in the  visual‑tactile‑touch 
condition did significantly more tasks than the participants in the 
visual‑only‑touch condition; prediction 1 was supported.

16.5.2 Verification of Prediction 2

Figure  16.4 shows the perceived likeability of the participants in each 
group. We conducted a t‑test whose results did not show significant differ‑
ences between conditions (t(38) = 0.555, p = 0.582). Thus, the visual‑tactile 
touch did not increase the participants’ positive impressions compared to 
the visual‑only‑touch; prediction 2 was not supported.

16.6 DISCUSSION
The experiment results showed several implications. First, our results 
highlight the significance of tactile stimuli for enhancing motivation 
through touch interaction. They demonstrate that the participants in the 
visual‑tactile‑touch condition engaged in tasks for a longer duration com‑
pared to those in the visual‑only‑touch condition. These findings suggest a 

FIGURE 16.3 Working time in free‑time sessions.
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promising possibility for employing robotic devices to deliver tactile stim‑
uli in VR applications, such as education and rehabilitation.

One benefit of integrating these applications with physical devices is 
the ability to bypass their appearance effects. Appearances influence touch 
effects. For example, a past study developed an application that integrates 
a virtual agent and a physical robot to investigate visual‑audio tactile 
stimuli effects in the context of stress‑buffering effects [8]. Our results also 
provide additional evidence for the effectiveness of integrating visual and 
tactile stimuli in human–robot interaction.

Note that our aim is examining the effectiveness of touch stimuli for 
motivation enhancement, not whether they are the sole factor for improve‑
ment. In the context of applications for social robots or virtual agents 
designed to improve motivation, various interaction modalities are typi‑
cally employed. Using touch stimuli (beyond visual touch) might provide 
a potential modality for interaction based on our experimental results, 
demonstrating the value of tactile sensation for motivation improvement.

Our study also suffers from several limitations. We investigated the 
effects of touch interaction using a specific virtual agent and a tactile stim‑
ulus. Although an avatar appearance is not the primary focus of this study, 
exploring such effects is critical for using different agents [30]. Related to 
this topic, another future work will investigate touch effects toward moti‑
vation improvements using different kinds of robots [31,32]. We also only 
visualized the participants’ hands in the virtual environments; displaying 
the entire body or different appearances might yield different outcomes, 
similar to virtual agents’ appearance.

FIGURE 16.4 Perceived likeability.
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16.7 CONCLUSION
Although touch interaction offers numerous positive effects in both 
human–robot interaction in physical environments and human–agent 
interaction in virtual environments, the impact of touch stimuli has not 
been extensively studied. We experimentally investigated the effects of 
touch stimuli by comparing the visual‑only‑touch and visual‑tactile‑touch 
effectiveness by a virtual agent in a virtual environment concerning 
motivation improvement effects. We developed a system that combines 
a virtual reality application and a physical robot to deliver both stimuli. 
Participants in the visual‑tactile‑touch condition performed more repeti‑
tive tasks than those in the visual‑only‑touch condition. These findings 
emphasize the importance of tactile stimuli in touch interaction for moti‑
vation improvement.
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17.1 INTRODUCTION
Touch interactions with close individuals offer numerous benefits, such 
as decreased heart rates and blood pressure [1, 2], enhanced immune 
 systems [3], stimulation of early development [4], emotional communica‑
tion [5], and positive emotions [6, 7]. Even imagined touch interactions 
provide stress‑buffering effects [8], and similar benefits can be observed in 
touch interactions with social robots [9].

Unfortunately, the COVID‑19 pandemic led to the imposition of physi‑
cal barriers on interaction with others, leading to touch starvation, a grow‑
ing social issue that elevates stress levels because touch is a vital form of 
human communication [10].
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Therefore, our focus shifted to a more straightforward touch interaction: 
intra‑active or self‑touch [11]. Although self‑touch has been extensively stud‑
ied in human science literature [11] (Section 17.2), most research has focused 
on its positive effects and occurrences. Our study promotes self‑touch and 
actively leverages its positive effects through a wearable system.

In this study, we proposed a wearable system that identifies users’ 
self‑touches and provides supportive audio feedback to reinforce their 
mental states and promote additional self‑touches. By employing a 
 fabric‑based touch sensor and incorporating a stressful task in our experi‑
mental design (Figure 17.1), we assessed our developed system to address 
the following questions:

 1. Do self‑touches increase due to supportive voices triggered by self‑ 
touch?

 2. Do increased self‑touch behaviors and supportive voices enhance 
stress‑buffering effects?

Note that this chapter is modified based on our previous work [12], edited 
to be comprehensive and fit with the context of this book.

17.2 RELATED WORKS
Various studies have focused on the impact of self‑touches, including per‑
ceived pain and behavior changes. For example, past research works have 

FIGURE 17.1 Participant self‑touch during a stressful situation.



210   ◾   Social Touch in Human–Robot Interaction

shown that a self‑touch can reduce the intensity of perceived pain  during a 
thermal grill illusion [13] and improve focus and attitude extremity toward 
a specific target, regardless of conscious or unconscious awareness [14]. 
Self‑touch can also influence motor imagery, such as reaction time, signify‑
ing behavior changes in those engaging in it [15].

Researchers have also investigated the circumstances surrounding 
self‑touch behaviors, such as how and when people touch themselves. Past 
studies found associations between self‑touch patterns on the face and 
perceived cognitive and emotional load [16]. Video‑based surveys revealed 
that self‑touches can display engagement [11]. In terms of social percep‑
tion, observers rated colleagues who self‑touched more positively [15], 
and another research indicated that self‑touch behaviors create warm and 
expressive impressions based on which body parts are touched [16].

Furthermore, although the influence of gender and its roles (interview‑
ers or applicants) on self‑touch behaviors has been investigated in stress‑
ful situations like job interviews [17], the relationship between perceived 
stress and self‑touch frequency remains unclear. A past study reported 
an increase in self‑touch behaviors due to stress [18], while another study 
described contrary findings [19]. Another work reported that self‑touch 
is positively correlated with people’s state and anxiety or negatively cor‑
related with agreeableness [20].

Even though previous research identified the positive effects of 
self‑touch, there has been insufficient encouragement of self‑touch behav‑
iors and its benefits. Our work is distinguished by two unique aspects: (1) 
the development of a system that detects users’ self‑touches and provides 
supportive voices and (2) an experimental evaluation of our system’s effec‑
tiveness with human participants.

17.3 EXPERIMENT DESIGN AND SYSTEM OVERVIEW
17.3.1 Experiment Task

In our experiment, we used the Trier Social Stress Test (TSST) [21]. Initially, 
participants rested for five minutes, followed by a five‑minute preparation 
period for a three‑minute, dummy job interview presentation. After the 
presentation, a debriefing session was conducted by the experimenter.

Because this experiment was conducted under COVID‑19 pandemic 
restrictions, we carried out the TSST sessions in our research facilities by 
Zoom. Participants sat alone in a room to simulate an online job interview. 
To provide consistent audio stimuli for the TSST, we used pre‑recorded 
voices and a voice changer to create a masculine‑sounding voice from one 
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of the authors’ recorded voices. The experimenter managed the timing of 
the interviewer’s voice inputs.

17.3.2 Experiment System
17.3.2.1 Touch Sensor
The touch sensor used in this experiment is a fabric‑based device that 
measures the capacitance changes to detect a human’s physical contact, 
i.e., self‑touches. With a measurement frequency of approximately 10 Hz, 
the system identifies touch/no‑touch based on a pre‑determined threshold 
value.

17.3.2.2 Supportive and Interviewer Voice Control System
This system manages two types of voices: supportive and interviewer. 
Speech synthesis software generated the content of two feminine voices, 
which were delivered through earphones in response to the touch sensor 
outputs.

We prepared 13 voices for the before‑interviews, which included such 
advice for preparing and giving a presentation as narrative flow, presen‑
tation speed, and mental support that encouraged relaxation. For the 
 during‑interviews, we prepared five voices that gave simple responses, e.g., 
“uh‑huh,” to avoid interrupting the presentation. For the after‑interviews, 
we prepared ten voices that offered encouragement and presentation feed‑
back. The supportive voice types were autonomously changed due to the 
interview phases. When the participants touched the sensor, the system 
randomly played one of the voices to avoid repetition. We prepared eight 
interviewer voices for the TSST task, including asking the participants 
to continue if they failed to use the entire five minutes allotted for their 
presentation.

During the interview, we used five simple response voices (e.g., uh‑huh) 
to minimize interruptions. For the after‑interview phase, ten voices pro‑
vided encouragement and presentation feedback. The system autonomously 
adjusted to the appropriate supportive voice types based on the interview 
phase and randomly chose voice files to ensure a variety of responses.

17.3.2.3 Operator GUI for TSST Task Management
Our GUI contains several buttons that allow the experimenter to man‑
age the audio stimuli for the TSST task. The experimenter can control the 
interviewer voices and change the supportive voice types throughout dif‑
ferent interview phases.
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17.4 EXPERIMENT
17.4.1 Hypotheses and Predictions

The advantages of self‑touch behaviors have been scrutinized [22] and 
extended to both conscious and unconscious styles of self‑touch [14]. 
Since we believe that self‑touch can be a stress buffer, we investigated its 
effectiveness for stress reduction by designing a system whose support‑
ive voices encourage conscious self‑touch; these voices are activated based 
on a touch sensor. If our system works successful, we believe that it will 
increase self‑touch frequency and subsequently enhance stress‑buffering 
effects. Based on these contexts, we made the following predictions:

 1. Participants using our system will engage in self‑touch behaviors 
more frequently than those who do not use it.

 2. Participants using our system will experience reduced stress levels 
than those who do not use it.

17.4.2 Conditions

Our experiment followed a between‑participants design and randomly 
assigned participants to one of two groups:

–  Proposed condition: In this condition, our system is used by the par‑
ticipants during the experiment. Thus, the system provides support‑
ive voices based on their own self‑touches. Eight men and five women 
participated in this group.

–  Alternative condition: In this condition, during the experiment, the 
participants did not use our system, although they wore a touch sen‑
sor. Thus, the system did not provide supportive voices even though 
self‑touches of the participants were detected. Ten men and seven 
women participated in this group.

The imbalanced number of participants and gender ratios reflect 
the COVID‑19 state of emergency, sometimes leading to last minute 
cancellations.

In our analysis, we considered the gender factor since previous 
research has indicated differences in self‑touch behavior patterns based 
on gender [17]. Several touch interaction studies have also reported gen‑
der effects, even when self‑touch was not the primary focus [23]. We 
incorporated the gender factor into the between‑participants design.



Understanding Self‑Touch Behaviors and Stress Buffering Effects   ◾   213

17.4.3 Environment

We installed a display and a speaker in a room of our laboratory to simu‑
late an online job interview by Zoom. The experimenter in another room 
controlled the timing of the audio stimuli for the interviews. Supportive 
system voices were delivered through earphones. The speaker and ear‑
phone volumes were adjusted to ensure that participants could simultane‑
ously hear both the audio stimuli from Zoom and our system.

17.4.4 Participants

Thirty participants took part in the experiment: 17 women and 13 men. 
Their ages ranged from 21 to 55, with an average of 38.1.

17.4.5 Measurements

We assessed the stress‑buffering effects by measuring the salivary amy‑
lase levels, which typically rise when individuals are experiencing stress. 
We recorded the difference in salivary amylase levels before and after the 
experiment; a lower value signified enhanced stress‑buffering effects.

Moreover, we counted the number of participants’ self‑touch behav‑
iors during the experiment. Given the challenge of determining whether 
a self‑touch is conscious or unconscious, we simply counted the number 
of self‑touch behaviors at the sensor location. To examine the impact of 
the TSST task, we categorized the number of self‑touch behaviors into 
three distinct phases corresponding to the supportive voice settings: 
before‑interview, during‑interview, and after‑interview.

17.4.6 Procedure

The experimenter provided a detailed explanation to the participants, who 
then gave written informed consent to join. Our institute’s ethics com‑
mittee approved the experimental procedure. Before and after the TSST 
task, we measured the salivary amylase levels. At the experiment’s end, the 
experimenter conducted a debriefing session.

17.5 RESULTS
17.5.1 Verification of Prediction 1

Figure 17.2 shows the average and S.E. values of the number of self‑touch 
behaviors. We conducted a three‑factor mixed ANOVA for each scale on 
phase, condition, and gender and identified significant main effects in 
the phase factor (F (2, 52) = 3.606, p = 0.034, partial η2 = 0.122) and in the 
condition factor (F (1, 36) = 5.672, p = 0.025, partial η2 = 0.179). We found 
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significant trends in the simple interaction effect between condition and 
gender (F (1, 26) = 3.066, p = 0.092, partial η2 = 0.105) and a simple inter‑
action effect between phase and condition (F (2, 52) = 2.989, p = 0.059, 
partial η2 = 0.103). No significance was found in the gender factor  
(F (1, 26) = 1.484, p = 0.234, partial η2 = 0.054), in the simple interac‑
tion effect between phase and gender (F (2, 52) = 1.690, p = 0.194, partial 
η2 = 0.061), or in the two‑way interaction effect (F (2, 52) = 1.049, p = 0.357, 
partial η2 = 0.039).

Thus, participants who used our system engaged in self‑touch behaviors 
more frequently than those who did not; prediction 1 was supported.

17.5.2 Verification of Prediction 2

Figure  17.3 shows the average and SE values of the differences in sali‑
vary amylases. We conducted a two‑factor mixed ANOVA for each scale 
on condition and gender and identified significant main effects in the 
interaction effect (F (1, 26) = 4.408, p = 0.046, partial η2 = 0.145). No sig‑
nificance was found in the condition factor (F (1, 26) = 1.191, p = 0.285, par‑
tial η2 = 0.044) or in the gender factor (F (1, 26) = 1.308, p = 0.263, partial 
η2 = 0.048). Multiple comparisons with the Bonferroni method revealed 
significant differences in the simple main effects of the condition in men 
(alternative > proposed (p = 0.045)). Other combinations did not reveal any 
significant differences.
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Thus, men who used our system experienced reduced stress levels com‑
pared to those who did not, whereas women who used our system did not 
experience reduced stress levels compared to those who did not; predic‑
tion 2 was partially supported.

17.6 DISCUSSION
Our results demonstrated that the developed system increased the fre‑
quency of self‑touch behaviors; however, stress‑buffering effects were only 
evident among men in our experiment. One possible explanation is that 
men engaged in more self‑touch behaviors than women, which may have 
influenced their perceived stress. A potential contributing factor to these 
findings could be the gender of the supportive voice, which was generated 
using feminine‑speech synthesis software. To understand the influence of 
voice gender in the context of self‑touch related voices, additional experi‑
ments must be performed.

In this study, we concentrated on the effectiveness of self‑touch behav‑
iors. To our knowledge, no research has directly compared stress‑ buffering 
effects among different touch interactions, e.g., comparisons between 
self‑touch and non‑self‑touches. Previous studies investigated the effects 
of non‑self‑touches with intimate persons [4], imagined individuals [8], 
animals/pets [24], virtual agents [25], and social robots [26]. Therefore, 
another possible future work might compare the effects of stress‑buffering 
effects with these different entities. In comparisons between self‑touches 
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and touches by agents including robots, their appearances are one essential 
factor; for example, using android robots with human‑like appearances 
[27–29], robot‑like appearances robots [30–32], and pet‑like appearance 
robots [33–36] might change the touch effects. Another possible factor is 
the touch characteristics themselves because expressing emotions by touch 
may have influenced the stress‑buffering effects [37–40].

17.7 CONCLUSION
We focused on the effects of encouraging self‑touch behaviors on 
stress‑buffering effects and developed a system that integrates a fabric‑based 
touch sensor with a supportive voice feature to promote self‑touch activi‑
ties. To investigate our developed system’s effectiveness, we conducted an 
experiment in which participants performed a stressful task (TSST) and 
evaluated the stress‑buffering effect of the developed system. Our experi‑
ment results showed that the developed system significantly increased the 
number of self‑touch behaviors under stressful tasks. Unfortunately, the 
stress‑buffering effects were only found in men.

ACKNOWLEDGMENT
This research work was supported in part by JST CREST Grant Number 
JPMJCR18A1, Japan (sensor development), and JST, Moonshot R&D Grant 
Number JPMJMS2011 (experiment and analysis).

REFERENCES

 [1] K. C. Light, K. M. Grewen, and J. A. Amico, “More frequent partner hugs 
and higher oxytocin levels are linked to lower blood pressure and heart 
rate in premenopausal women,” Biological Psychology, vol. 69, no. 1, 
pp. 5–21, 2005.

 [2] K. M. Grewen, B. J. Anderson, S. S. Girdler, and K. C. Light, “Warm partner 
contact is related to lower cardiovascular reactivity,” Behavioral Medicine, 
vol. 29, no. 3, pp. 123–130, 2003.

 [3] S. Cohen, D. Janicki‑Deverts, R. B. Turner, and W. J. Doyle, “Does hug‑
ging provide stress‑buffering social support? A study of susceptibility to 
upper respiratory infection and illness,” Psychological Science, vol. 26, no. 2, 
pp. 135–147, 2015.

 [4] T. Field, “Touch for socioemotional and physical well‑being: A review,” 
Developmental Review, vol. 30, no. 4, pp. 367–383, 2010.

 [5] M. J. Hertenstein, R. Holmes, M. McCullough, and D. Keltner, “The com‑
munication of emotion via touch,” Emotion, vol. 9, no. 4, p. 566, 2009.

 [6] J. K. Burgoon, D. B. Buller, J. L. Hale, and M. A. Turck, “Relational messages 
associated with nonverbal behaviors,” Human Communication Research, 
vol. 10, no. 3, pp. 351–378, 1984.



Understanding Self‑Touch Behaviors and Stress Buffering Effects   ◾   217

 [7] K. Takemura, “The effect of interpersonal sentiments on behavioral inten‑
tion of helping behavior among Japanese students,” The Journal of Social 
Psychology, vol. 133, no. 5, pp. 675–681, 1993.

 [8] B. K. Jakubiak, and B. C. Feeney, “Keep in touch: The effects of imagined 
touch support on stress and exploration,” Journal of Experimental Social 
Psychology, vol. 65, pp. 59–67, 2016.

 [9] M. Shiomi, A. Nakata, M. Kanbara, and N. Hagita, “Robot reciprocation of 
hugs increases both interacting times and self‑disclosures,” International 
Journal of Social Robotics, vol. 13, pp. 353–361, 2021.

 [10] J. Durkin, D. Jackson, and K. Usher, “Touch in times of COVID‑19: Touch 
hunger hurts,” Journal of Clinical Nursing, vol. 30, pp. e4–e5, 2021.

 [11] S. J. Bolanowski, R. T. Verrillo, and F. McGlone, “Passive, active and 
intra‑active (self) touch,” Somatosensory & Motor Research, vol. 16, no. 4, 
pp. 304–311, 1999.

 [12] A. Hayashi, E. Anzai, N. Saiwaki, H. Sumioka, and M. Shiomi, “Does 
encouraging self‑touching behaviors with supportive voices increase stress‑ 
buffering effects?,” In Proceedings of the 2022 ACM/IEEE International 
Conference on Human‑Robot Interaction, Sapporo, Hokkaido, Japan, 
pp. 787–791, 2022.

 [13] M. P. Kammers, F. De Vignemont, and P. Haggard, “Cooling the thermal 
grill illusion through self‑touch,” Current Biology, vol. 20, no. 20, pp. 1819–
1822, 2010.

 [14] A. Kronrod, and J. M. Ackerman, “I’m so touched! Self‑touch increases 
attitude extremity via self‑focused attention,” Acta Psychologica, vol. 195, 
pp. 12–21, 2019.

 [15] M. Conson, E. Mazzarella, and L. Trojano, “Self‑touch affects motor imag‑
ery: A study on posture interference effect,” Experimental Brain Research, 
vol. 215, no. 2, p. 115, 2011.

 [16] S. M. Mueller, S. Martin, and M. Grunwald, “Self‑touch: Contact durations 
and point of touch of spontaneous facial self‑touches differ depending on 
cognitive and emotional load,” PLoS One, vol. 14, no. 3, p. e0213677, 2019.

 [17] S. Goldberg, and R. Rosenthal, “Self‑touching behavior in the job interview: 
Antecedents and consequences,” Journal of Nonverbal Behavior, vol. 10, no. 
1, pp. 65–80, 1986.

 [18] N. D. Butzen, V. Bissonnette, and D. McBrayer, “Effects of modeling and 
topic stimulus on self‑referent touching,” Perceptual and Motor Skills, vol. 
101, no. 2, pp. 413–420, 2005.

 [19] R. Ackerley, E. Hassan, A. Curran, J. Wessberg, H. Olausson, and F. 
McGlone, “An fMRI study on cortical responses during active self‑touch 
and passive touch from others,” Frontiers in Behavioral Neuroscience, vol. 6, 
p. 51, 2012.

 [20] H. T. Pang, F. Canarslan, and M. Chu, “Individual differences in con‑
versational self‑touch frequency correlate with state anxiety,” Journal of 
Nonverbal Behavior, vol. 46, no. 3, pp. 299–319, 2022.

 [21] C. Kirschbaum, K.‑M. Pirke, and D. H. Hellhammer, “The ‘Trier Social 
Stress Test’—A tool for investigating psychobiological stress responses in a 
laboratory setting,” Neuropsychobiology, vol. 28, no. 1–2, pp. 76–81, 1993.



218   ◾   Social Touch in Human–Robot Interaction

 [22] K. Densing, H. Konstantinidis, and M. Seiler, “Effect of stress level on dif‑
ferent forms of self‑touch in pre‑ and postadolescent girls,” Journal of Motor 
Behavior, vol. 50, no. 5, pp. 475–485, 2018.

 [23] J. D. Fisher, M. Rytting, and R. Heslin, “Hands touching hands: Affective 
and evaluative effects of an interpersonal touch,” Sociometry, vol. 39, no. 4, 
pp. 416–421, 1976.

 [24] N. Guéguen, “Touch, awareness of touch, and compliance with a request,” 
Perceptual and Motor Skills, vol. 95, no. 2, pp. 355–360, 2002.

 [25] P. Sykownik, and M. Masuch, “The experience of social touch in multi‑user 
virtual reality,” In 26th ACM Symposium on Virtual Reality Software and 
Technology, Ottawa, Canada, pp. 1–11, 2020.

 [26] M. Shiomi, H. Sumioka, and H. Ishiguro, “Survey of social touch interac‑
tion between humans and robots,” Journal of Robotics and Mechatronics, 
vol. 32, no. 1, pp. 128–135, 2020.

 [27] D. F. Glas, T. Minato, C. T. Ishi, T. Kawahara, and H. Ishiguro, “Erica: The 
erato intelligent conversational android,” In 2016 25th IEEE International 
Symposium on Robot and Human Interactive Communication (RO‑MAN), 
New York, NY, United States, pp. 22–29, 2016.

 [28] D. Sakamoto, and H. Ishiguro, “Geminoid: Remote‑controlled android sys‑
tem for studying human presence,” Kansei Engineering International, vol. 8, 
no. 1, pp. 3–9, 2009.

 [29] M. Shiomi, H. Sumioka, K. Sakai, T. Funayama, and T. Minato, “SŌTO: 
An android platform with a masculine appearance for social touch inter‑
action,” In Companion of the 2020 ACM/IEEE International Conference on 
Human‑Robot Interaction, Cambridge, United Kingdom, pp. 447–449, 2020.

 [30] T. Kanda, H. Ishiguro, T. Ono, M. Imai, and R. Nakatsu, “Development 
and evaluation of an interactive humanoid robot “Robovie”,” In Proceedings 
2002 IEEE International Conference on Robotics and Automation (Cat. 
No.02CH37292), Washington, DC, United States, pp. 1848–1855 vol.2, 2002.

 [31] R. Matsumura, M. Shiomi, K. Nakagawa, K. Shinozawa, and T. Miyashita, 
“A desktop‑sized communication robot: “Robovie‑mr2”,” Journal of Robotics 
and Mechatronics, vol. 28, no. 1, pp. 107–108, 2016.

 [32] R. Matsumura, and M. Shiomi, “An animation character robot that increases 
sales,” Applied Sciences, vol. 12, no. 3, p. 1724, 2022.

 [33] T. Shibata, “An overview of human interactive robots for psychological 
enrichment,” Proceedings of the IEEE, vol. 92, no. 11, pp. 1749–1758, 2004.

 [34] M. Fujita, “AIBO: Toward the era of digital creatures,” The International 
Journal of Robotics Research, vol. 20, no. 10, pp. 781–794, 2001.

 [35] N. Yoshida, S. Yonemura, M. Emoto, K. Kawai, N. Numaguchi, H. Nakazato, 
S. Otsubo, M. Takada, and K. Hayashi, “Production of character anima‑
tion in a home robot: A case study of lovot,” International Journal of Social 
Robotics, vol. 14, no. 1, pp. 39–54, 2022.

 [36] K. Nakagawa, R. Matsumura, and M. Shiomi, “Effect of robot’s play‑biting 
in non‑verbal communication,” Journal of Robotics and Mechatronics, vol. 
32, no. 1, pp. 86–96, 2020.



Understanding Self‑Touch Behaviors and Stress Buffering Effects   ◾   219

 [37] X. Zheng, M. Shiomi, T. Minato, and H. Ishiguro, “What kinds of robot’s 
touch will match expressed emotions?,” IEEE Robotics and Automation 
Letters, vol. 5, pp. 127–134, 2019.

 [38] X. Zheng, M. Shiomi, T. Minato, and H. Ishiguro, “How can robot make 
people feel intimacy through touch?,” Journal of Robotics and Mechatronics, 
vol. 32, no. 1, pp. 51–58, 2019.

 [39] X. Zheng, M. Shiomi, T. Minato, and H. Ishiguro, “Modeling the timing 
and duration of grip behavior to express emotions for a social robot,” IEEE 
Robotics and Automation Letters, vol. 6, no. 1, pp. 159–166, 2020.

 [40] M. Shiomi, X. Zheng, T. Minato, and H. Ishiguro, “Implementation and 
evaluation of a grip behavior model to express emotions for an android 
robot,” Frontiers in Robotics and AI, vol. 8, p. 755150, 2021.



220

C h a p t e r  18

Mediated Hug Modulates 
Impressions of 
Hearsay Information

Junya Nakanishi, Hidenobu Sumioka, 

and Hiroshi Ishiguro
Osaka University, Osaka, Japan

Advanced Telecommunications Research 
Institute International, Kyoto, Japan

18.1 INTRODUCTION
Tele‑operated humanoid robots serve as virtual extensions of individu‑
als in remote communication scenarios. These humanoid robots, remotely 
controlled by an operator, can convey the operator’s voice and non‑verbal 
expressions to a remote person. This simulation of face‑to‑face interactions, 
termed “telepresence” [1, 2], significantly enriches the remote communica‑
tion experience. A distinct advantage of robot‑mediated communication 
over traditional telecommunication methods (such as audio or video) is 
physical interaction. Touching a tele‑operated humanoid robot can create 
the illusion of physical contact with the operator. Recent findings suggest 
that such mediated interpersonal touch can yield similar positive effects to 
those of direct interpersonal touch [3, 4].

Interpersonal touch (e.g., a handshake, a pat on the back, a kiss, or a 
hug) provides significant influence in various interaction scenarios [5]. 
Touching acts such as a psychosomatic stabilizer, a messenger, or an 
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attitude modulator [6] notably contribute to human development and 
social communication [7, 8]. Interpersonal touch also plays a pivotal role 
in shaping impressions during human communication. Research indicates 
that recipients of touching form a more favorable impression of the touch 
provider compared to non‑touch conditions [9–13]. Moreover, this posi‑
tive impression extends beyond the touch provider to encompass informa‑
tion associated with them, such as their organization [9, 13]. Given that 
positive impressions can lead to positive behavior [14–16], the impression 
bias generated by interpersonal touch has garnered considerable interest.

Our study explores the effect of mediated hugs on the impression forma‑
tion of hearsay information, specifically the contents of a partner’s conver‑
sation. To examine this impression bias, we conducted an experiment in 
which participants evaluated by a questionnaire and a recall test the infor‑
mation provided about a third person’s behavior. We compared the effects of 
a mobile speaker with a huggable communication medium called “Hugvie,” 
which produces mediated hugs. Our findings prompt a discussion about a 
model and how mediated hugs influence impression formations (Figure 18.1).

18.2 BACKGROUND
18.2.1 Implementation of Mediated Interpersonal Touch

Advanced telecommunication technologies have facilitated the concept of 
“virtual interpersonal touch” or “mediated social touch” between remote 
individuals [3, 4, 17]. This idea can be implemented in two main ways. One 
approach involves recreating tactile stimulation based on input from a 
remote partner through a wearable device [18–21]. For instance, Cabibihan 
et al. demonstrated that a mediated hand touch on an arm reduced partici‑
pants’ heart rates after they watched a sad video clip [18].

Partner

Talking about

a third person

User

Tele-communication

Impression of the 

third person

He is …

n

FIGURE 18.1 Impression of hearsay information about an absentee third person 
provided by a conversation.
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The second implementation involves human‑like physical embodiments 
such as telecommunication media, and these embodiments serve as avatars 
for the operators [1,22,23]. For example, tele‑operated humanoid robots can 
convey an operator’s touch, physical motion, voice, and attitude, conveying 
to users the impression of directly interacting with an operator [2]. Our 
study focuses on this latter form of mediated interpersonal touch.

18.2.2 Mediated Hug

Various mediated hug devices have been developed [24–31]. For example, 
DiSalvo et al.’s “The Hug” mimics the shape and gesture of a human hug 
to explore intimate communication across distances [32]. Sumioka et al. 
reported on the stress reduction effect of a mediated hug produced by 
Hugvie, a huggable communication medium [33].

Previous studies have described the effect of mediated hugs on impres‑
sions of communication partners such as likeability [34], interest [35], and 
trust [36]. However, unclear domains remain in impression bias caused not 
only by mediated hugs but also by other types of mediated interpersonal 
touch, especially regarding hearsay information. Understanding impres‑
sion bias in hearsay information is becoming increasingly important for 
successful human communication in the field of social psychology [37–39].

18.2.3 Hypothesis

Both direct and mediated interpersonal touch have positively influenced 
the impressions of communication partners [7–11,35–37]. Moreover, direct 
interpersonal touch enhances the impression of information related to a 
communication partner [7,11]. As such, we hypothesize that a mediated hug 
could potentially lead to a more favorable impression of hearsay information.

18.3 EXPERIMENT
We performed a laboratory study that incorporated both subjective and 
objective assessment methods and specifically utilized a survey and a 
recall test to substantiate our hypothesis. The survey gauged both the 
overall and specific perceptions of the transmitted information. The recall 
test assessed the comprehensive impressions of it in terms of memory and 
interpretation. We compared a standard Bluetooth speaker and a hug‑
gable communication device called Hugvie. This study was approved by 
the Ethics Committee of the Advanced Telecommunications Research 
Institute International (Kyoto, Japan).
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18.3.1 Apparatus

Hugvie (Figure  18.2) is designed to provide a hug during communica‑
tion. It is a soft, human‑shaped cushion filled with polystyrene micro‑
beads and enclosed in a mixed‑fiber covering of acrylic and rayon. By 
inserting a hands‑free mobile device or speaker into a pocket in the cush‑
ion’s “head,” users can converse while embracing it. This combination of 
physically embracing the device and hearing a partner’s voice emanating 
from a location near the user’s ear fosters a sense of the partner’s proxim‑
ity and strengthens a mutual bond. We transmitted auditory cues from 
the conversation partner with a portable Bluetooth speaker (MOT‑EQ5, 
MOTOROLA). The same speaker was also employed in the standard 
speaker condition to maintain consistency in audio stimuli properties.

18.3.2 Experimental Design and Procedure

Our study employed a between‑subjects design to compare responses to 
a Bluetooth speaker and Hugvie. Our participants were young Japanese 
individuals (average age = 22.4 years, SD = 3.57, 18 males and 10 females). 
Each condition incorporated nine males and five females. All participants 
were briefed on the study and provided informed consent.

First, the participants in the Hugvie group were shown how to use the 
huggable robot and the speaker group was introduced to the Bluetooth 
speaker. As a trial to familiarize them with listening to the story using 
their assigned device, participants then listened to a 12‑minute excerpt 
from “The Fall of Freddie the Leaf” by Leo Buscaglia by the device. We 
used a pre‑recorded female voice for this phase.

Talking by 

cellphone in 

Hugvie’s pocket

75-cm high, 600 g

FIGURE 18.2 Hugvie: a huggable communication medium.
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Participants were then instructed to listen to an explanation about 
a third male individual they did not know, which was communicated 
to them by their assigned device. A two‑minute audio recording of this 
description was played using the same pre‑recorded female voice. After 
listening, participants evaluated their impressions on the third par‑
son by a questionnaire (details provided below in the “measurements” 
section).

Subsequently, participants engaged in a ten‑minute fake task in which 
they viewed a conversational story by a text chat application on a screen 
and evaluated the experience through a second questionnaire. This fake 
task, as suggested in previous studies [37–39], occupied the participants’ 
temporary memory, allowing us to investigate the impressions preserved 
in their long‑term memory, which exerts much influence over the every‑
day impressions formed of others. Participants then undertook a recall test 
and wrote down what they remembered about the third individual based 
on the explanation they heard.

We used the ambiguous passages created by Echterhoff et  al. for the 
content of the third individual’s information [39]. They consisted of six 
paragraphs, each containing two passages that imply slightly contrasting 
traits. The following are the 12 traits: moral/self‑righteous, cultivated/arti‑
ficial, adventurous/reckless, independent/aloof, persistent/stubborn, and 
thrifty/stingy. For instance, the “thrifty or stingy” trait was depicted with 
the sentence: “To improve his life, he tries to save money. He uses cou‑
pons, buys things on sale, and avoids donating money to charity or lending 
money to friends.” This design allowed us to easily observe any bias in the 
participants’ impressions of the third individual. To reduce bias that might 
arise from the participants’ individual perceptions of names, we altered 
the original “Michael” to a neutral “he.” The passages were translated into 
Japanese for the convenience of the participants.

18.3.3 Measurements and Analysis

We evaluated the participants’ impressions of the third person by a ques‑
tionnaire and a recall test. The collected data were analyzed using either 
a Welch Two Sample t‑test or a Mann‑Whitney U test, depending on the 
data’s normality. The Shapiro‑Wilk normality test determined the appro‑
priate statistical test. In cases where the data were normally distributed 
(p < 0.05), a Welch Two Sample t‑test was applied; for non‑normally dis‑
tributed data, a Mann‑Whitney U test was utilized.
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18.3.4 Questionnaire

To assess the overall impression of the third person, participants rated 
their personal preferences on an 11‑point Likert scale, ranging from −5 
(dislike) to +5 (like). Furthermore, their impressions of the third person’s 
traits were gauged using an 11‑point Likert scale. These traits corresponded 
to six pairs of slightly contrasting traits, mirroring those found in the pas‑
sages: moral versus self‑righteous, cultivated versus artificial, adventurous 
versus reckless, independent versus aloof, persistent versus stubborn, and 
thrifty versus stingy. The average scores for each item were then compared 
between the Hugvie and speaker conditions.

18.3.5 Recall Test

Participants were given three minutes to record their recollections of the 
information about the third person to which they previously listened. 
Positive and negative responses were tallied based on the original meth‑
odology [39]. However, some participants wrote down information that 
was not provided or imagined details based on the given information: “He 
often donates money to charity” or “He is a stubborn person.” To handle 
these responses, two independent coders (one male, one female) who were 
unaware of the study’s purpose categorized the responses into original and 
non‑original information, with the original information corresponding to 
12 original traits and everything else fell under non‑original. The coders 
came to a mutual agreement after discussion.

The non‑original information was then assessed by an additional group 
of fourteen participants using an 11‑point Likert scale, where +5 repre‑
sents positive and −5 represents negative. Using a t‑test, we determined 
the positivity or negativity of each passage by comparing its score to zero 
(p < 0.05). This yielded 12 positive, 11 negative, and 12 neutral responses. 
We then compared the number of positive and negative responses within 
the original and non‑original information.

18.3.6 Correlation

To examine factors linked to personal preference, we also computed a cor‑
relation coefficient using a correlation test between personal preference and 
the other assessed items. If normality was confirmed by the Shapiro‑Wilk 
normality test (p < 0.05), we used a Pearson correlation test. In cases where 
it was not confirmed, we applied a Spearman’s rank correlation test.
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18.4 RESULT
None of the questionnaire results indicated a significant difference between 
the Hugvie and speaker conditions (Figure 18.3): like–dislike of the third 
person (t(24.66) = 1.80, p = 0.084), moral–self‑righteous (t(24.77) = −0.51, 
p = 0.61), cultivated–artificial (t(24.58) = −1.11, p = 0.28), adventurous–
reckless (U = 128.5, p = 0.16), independent–aloof (U = 136.5, p = 0.077), 
persistent–stubborn (U = 107, p = 0.69), and thrifty–stingy (t(25.99) = 0.38, 
p = 0.71). However, like–dislike and the independent–aloof scale showed a 
marginal significance (p < 0.1).

A recall test revealed a significant difference in the negative informa‑
tion recall between the Hugvie and speaker conditions (original: U = 87, 
p = 0.61; non‑original: U = 53, p = 0.024), although there was no significant 
difference found in the positive information recall (original: U = 104.5, 
p = 0.77; non‑original: U = 101.5, p = 0.88). Participants in the Hugvie con‑
dition recalled less non‑original negative information about the target 
person than those in the speaker condition (Figure 18.4). Table 18.1 pres‑
ents correlation coefficients between personal preferences to the third per‑
son (like–dislike scale) and other variables (positive original: S = 3,272.6, 

-5 -4 -3 -2 -1 0 1 2 3 4 5

(-) dislike - like (+)

(-) self-righteous - moral (+)

(-) artificial - cultivated (+)

(-) reckless - adventurous (+)

(-) aloof - independent (+)

(-) stubborn - persistent (+)

(-) stingy - thrifty (+)

Hugvie Speaker

FIGURE 18.3 Average score and standard error in a questionnaire (†p < 0.1).
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TABLE 18.1 Correlation Coefficients between Personal 
Preference and Other Items (†p < 0.1, *p < 0.05, **p < 0.01)

Item Like–Dislike

Positive
Original 0.10
Non‑original 0.37†

Negative
Original −0.14
Non‑original −0.40*

Moral–self‑righteous 0.15
Cultivated–artificial 0.48**
Adventurous–reckless 0.09
Independent–aloof 0.28
Persistent–stubborn 0.17
Thrifty–stingy 0.43*

p = 0.60; positive non‑original: S = 2,298, p = 0.052; negative original: 
S = 4,152.7, p = 0.49; negative non‑original: S = 5,105.8, p = 0.036; moral–
self‑righteous: t(26) = 0.871, p = 0.39; cultivated–artificial: t(26) = 2.7953, 
p = 0.0096; adventurous–reckless: S = 3,317, p = 0.64; independent–aloof: 
S = 2,615.8, p = 0.14; persistent–stubborn: S = 3,026.1, p = 0.38; thrifty–
stingy: S = 2,085.2, p = 0.023).

18.5 DISCUSSION
Our findings lend support to our hypothesis: mediated hugging can induce 
a more favorable impression of hearsay information. This finding is sug‑
gested by both the subjective and objective evaluations indicating that 
Hugvie users formed a more positive impression of the shared information. 
The likeability scale on the questionnaire revealed that participants using 
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FIGURE 18.4 Average score and standard error in a recall test (*p < 0.05).
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Hugvie had a marginally more positive overall impression of the third per‑
son. Furthermore, the recall test indicated that participants in the Hugvie 
condition remembered fewer instances of non‑original negative information 
about the third person. A significant correlation was also found between 
likeability and the recall of non‑original negative information, demonstrat‑
ing consistency between the subjective and objective evaluations.

Identifying the impression aspects that were enhanced sheds light 
on the mechanism behind the impression bias caused by mediated hug‑
ging. Regarding the questionnaire, a marginally significant difference was 
observed in the independent–aloof scale. While participants in both con‑
ditions did not view the third person as independent, those in the speaker 
condition perceived him as more aloof than the participants in the Hugvie 
condition. This could be attributed to the soft tactile stimulation provided 
by Hugvie, aligning with previous findings that such stimulation can 
induce less rigid or strict impressions of personality [40]. However, we did 
not find a significant correlation between likeability and the independent–
aloof scale, suggesting that the latter may not be a key factor in the overall 
impression formation from hearsay information.

With respect to the recall test, we observed a significant difference in 
the recall of the non‑original negative information between the Hugvie 
and speaker conditions. This finding illuminates the positive influence 
that mediated hugging can have on impression formation. In psychology, 
individuals with anxiety or depression are more likely to negatively inter‑
pret ambiguous social events and focus more on negative stimuli [41]. We 
speculate that these negative interpretations that focus on negativity can 
contribute to negative impression formation. Prior research has identified 
the stress‑relieving effects of virtual hugging, such as reductions in stress 
hormones and stress‑related emotions [33–35]. These studies suggest a pos‑
sible mechanism in which mediated hugging reduces participants’ stress, 
thereby lessening negative interpretations or attention to negative stimuli 
during impression formation. The observed reduction in the non‑original 
negative information in our study supports this mechanism. Additionally, 
our model could be extended to other forms of direct and mediated inter‑
personal touch beyond hugging, given the established psychological and 
physiological effects of such touch on stress reduction [18,42–46].

Our study does, however, have its limitations. For instance, we only 
used a female voice as the audio stimulus, meaning our results might vary 
if a male voice were used. The gender of the third person, assumed to be 
male in this study, is another important factor that would undoubtedly 
influence the results and warrants further exploration.
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18.6 CONCLUSION
We investigated the potential moderating effect of mediated touch on 
social judgments. We explored how a mediated hug from a remote individ‑
ual influences the impressions formed from hearsay information about a 
third person provided. Our findings indicate that a mediated hug reduces 
negative inferences in the recall of information about a target person. We 
also found a negative correlation between this reduction in negativity and 
preference for the target person. One possible mechanism behind these 
effects might be stress reduction facilitated by a mediated hug, which 
moderates the formation of negative impressions about a third party. We 
believe that using mediated hugs can temper the dissemination of negative 
information in telecommunication contexts.
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19.1 INTRODUCTION
Communication devices have revolutionized how we connect with oth‑
ers, simplifying making new friends or partners and maintaining rela‑
tionships with friends and family. Unfortunately, numerous researchers 
have emphasized that interaction by communication devices weakens 
human relations compared to face‑to‑face interactions [1–3]. To address 
this issue, we proposed a human‑like robotic avatar that represents a dis‑
tant individual in a communication process. The tangible presence of 
such avatars enables users to feel the existence of remote individuals [4]. 
Prior studies involving a lifelike android, Geminoid, suggest that using 
such robots as telecommunication devices strengthens the felt presence of 
remote individuals compared to standard audio or video conversations [5].  
Interestingly, even human‑like robotic avatars with minimal human 
resemblance show great potential as communication mediums, promot‑
ing positive relationships between humans [6]. However, no research has 
yet investigated how prolonged use of human‑like communication media 
influences the development of intimate relationships between users who 
are meeting for the first time.

In this study, we explore how individuals form relationships with strang‑
ers when they interact by human‑like communication media or traditional 
mobile phones over a period of roughly one month. Our findings indicate 
that a human‑like communication medium facilitates the development of 
strong relationships with unfamiliar individuals. This holds true even when 
the functions of this medium mirror those of a standard mobile phone, 
with the only exception being its soft, human‑like physical appearance.

19.2 ELFOID: A HANDHELD ROBOTIC MEDIUM
Elfoid™ is a unique communication device designed to embody the pres‑
ence of a remote person [7]. Its key characteristic includes its miniatur‑
ized humanoid design, which features a humanoid head, arms, and legs. 
Its skin is constructed from soft sponge‑like material, offering a tactile 
experience that resembles human skin. Elfoid’s prototype was intended 
as a replacement for conventional mobile phones. However, in our study, 
we utilized an Elfoid‑shaped, mobile‑phone cover to offer functionalities 
similar to those of a typical mobile phone; the primary differences are its 
soft body and humanoid appearance (Figure 19.1). Users can communi‑
cate with remote partners by holding the device in a hands‑free manner 
during conversations.
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19.3 CURRENT STUDY
Prior studies demonstrate that Elfoid facilitates a stronger sense of human 
presence compared to devices that possess a mechanical appearance [8, 9]. 
Past research also suggests that people tend to become more intimate dur‑
ing face‑to‑face interactions compared to interactions mediated through 
audio or video [1–3]. Consequently, we hypothesize that Elfoid promotes 
a strong sense of togetherness, thereby allowing people to experience a 
closer connection. More specifically, we explore the long‑term impact of 
human‑like communication media on human relationships and hypothe‑
size that interactions through Elfoid will promote better relationships than 
interactions through a traditional mobile phone. Our research addresses 
the following questions:

• Does interaction mediated by Elfoid enhance the amount of 
self‑disclosure?

• How does the amount of self‑disclosure change over the course of 
long‑term Elfoid use?

We approach the first question by measuring the amount of self‑disclosure 
during telecommunications using Elfoid or a conventional mobile phone. 

FIGURE 19.1 Elfoid: This version is equivalent to a mobile phone cover, which 
we placed over a standard mobile phone (Sony Ericsson Xperia mini) [18].
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For the second, we investigate the temporal changes in the self‑disclosure 
levels of the participants. According to the social penetration theory [10, 11]  
and the early differentiation of relatedness theory [12, 13], different per‑
spectives exist regarding the pace of relationship development. Although 
the former suggests that intimate relationships emerge through a grad‑
ual increase in self‑disclosure, the latter posits that they develop rapidly 
through the initial attraction between strangers, as opposed to a gradual 
progress. Therefore, we anticipate observing either a gradual or rapid 
increase in the level of self‑disclosure in conversations facilitated by Elfoid.

19.4 EXPERIMENT
19.4.1 Participants

Twelve individuals participated in this experiment, including four males 
and eight females, whose average age was 22.5 years. They were split into 
two groups, each comprised of three pairs (two male–female pairs and one 
female–female pair). The first group (the Elfoid group) conducted conversa‑
tions through the Elfoid device from separate rooms at Osaka University. The 
second group (the Phone group) conversed by mobile phones (Figure 19.2). 
Before initiating the experiment, we ensured that the paired partners did 
not know each other. All participants provided written informed consent. 
This study received approval from the Ethics Committee of the Advanced 
Telecommunications Research Institute International (Kyoto, Japan).

19.4.2 Procedure

Each pair engaged in a ten‑minute conversation twice a week, culminating 
in a total of ten conversations (i.e., 100 minutes) over a span of one month. 
The experiment was conducted in two distinct rooms. To prevent the pairs 

FIGURE 19.2 Experimental setting [18].
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from encountering each other during the experiment, we requested that 
they arrive at different times.

In the experiment, participants were given either an Elfoid device or 
a mobile phone that was set to the hands‑free mode and instructed to 
initiate a conversation. All the conversations were recorded. Apart from 
discussing topics related to religion or politics, conversation topics were 
unrestricted. Moreover, we asked the participants to address each other 
by their family names and prohibited them from asking for their partner’s 
first name. This step was intended to discourage them from searching for 
their partners on social media and perhaps establishing contact outside 
of the experiment. After ten minutes, an experimenter entered one of the 
rooms and instructed one of the partners to end the conversation.

Participants completed a social skills inventory (SSI) scale [14] either 
before or after the experiment to measure their social skills.

19.4.3 Assessment of Social Skills

We evaluated the social skills of each participant using SSI, because social 
skills affect the establishment of close relationships with others. SSI has 
seven factors: emotional expressivity, emotional sensitivity, emotional 
control, social expressivity, social sensitivity, social control, and social 
manipulation. Among these factors, social expressivity refers to general 
verbal speaking skills and the ability to engage with others in social inter‑
actions [14] (Table 19.1).

19.4.4 Analysis of Self‑disclosure in Conversation

We measured the evolution of intimate relationships by analyzing the 
amount of self‑disclosure during conversations. Some researchers argue 
that its depth or intimacy increases as relationships become closer [10, 15]. 
Niwa and Maruno examined the conversation topics people engage in when 
they want to share more about themselves and developed a questionnaire 

TABLE 19.1 Self‑reported Copresence Scale (Q7 Was Added for This Study)

Item

Q1 I did not want a deeper relationship with my interaction partner.
Q2 I wanted to maintain a sense of distance between us.
Q3 I was unwilling to share personal information with my interaction partner.
Q4 I wanted to make the conversation more intimate.
Q5 I tried to create a sense of closeness between us.
Q6 I was interested in talking to my interaction partner.
Q7 Do you want to know your conversation partner more?
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for assessing the depth of self‑disclosure [16]. This questionnaire includes 
24 conversation topics, rated on a scale from 1 (I do not want to discuss 
this topic with the target person at all) to 7 (I am greatly interested in dis‑
cussing this topic in detail with the target person). The questionnaire is 
sensitive to different degrees of self‑disclosure, encompassing four levels: 
hobbies (level 1), difficult experiences (level 2), quirks (level 3), and short‑
comings in personality traits and abilities (level 4). Each level comprises 
several topics (Table 19.2).

We utilized these topics to evaluate the self‑disclosure of each partici‑
pant in the conversations. We reviewed what each participant discussed 
in every session using the recorded video, and we determined whether 

TABLE 19.2 Depth of Self‑disclosure and Conversation Topics

Level Item

Level 1 Your favorites (e.g., music, movie, and style of clothing) 
Ways to spend the weekend 
Something fun that happened recently 
Something about which you are enthusiastic recently 
Hobbies 
Events to which you are looking forward 
Something that you want to do 

Level 2 Your experiences where someone helped you get out of a difficult situation
Efforts you made to get out of a difficult situation
Your method of overcoming bitter experiences
Lessons that you learned the hard way

Level 3 Small faults that you have observed in yourself (unpunctuality, etc.)
Some bad habits that you want to get over but cannot
Minor faults that you get depressed thinking about
Your experiences where you thought of yourself as something like a 
worthless being

Your minor faults that others worry about
Your minor faults that you worry about

Level 4 Some aspects of your characters that you hate
Your experiences where you showed someone some aspects of your 
character that you hate

Your abilities that you worry about
Your experiences where you could not achieve a goal due to limitation of 
your ability

Some abilities about which you have a sense of inferiority
Your experiences where you felt disappointed due to the limitation of your 
abilities

Your experiences where you hurt someone
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the discussed topics were included in the list in Table 19.2. If a topic was 
included, it was categorized as a topic for self‑disclosure made by the par‑
ticipant at the level to which the topic belongs. For example, if a participant 
discussed his/her hobbies with his/her partner, we classified it as a level 1 
topic for  self‑disclosure. We often encountered several “sub‑topics” related 
to  self‑disclosure within one topic. We counted each such example as a sepa‑
rate topic for self‑disclosure if they were included on the list. For instance, if 
a participant talked about his/her favorite kind of music and then mentioned 
his/her favorite band, we considered it two separate topics for self‑disclosure 
at level 1. Topics such as daily activities, lessons taken, the weather, or this 
study were not considered for self‑disclosure because they were not on the 
list. We conducted such analysis for each participant across all sessions.

Using this analysis, we computed the number of topics at each level 
for each session to examine how the amount of self‑disclosure varied 
over the month’s term. We also calculated standardized values for the 
 self‑disclosure of each participant for each session to mitigate the effect 
of individual variation. We computed the total amount of self‑disclosure 
from each participant across all the levels and all the sessions, as well as 
the total amount of each level of self‑disclosure.

19.5 RESULT
19.5.1 Social Expressivity in SSI

The average social expressivity scores, as measured by the SSI, were 2.88 
(SD: 0.54) for the Elfoid group and 3.10 (SD: 0.34) for the Phone group. 
According to the Shapiro‑Wilk test, since the data from the Phone group 
did not exhibit a normal distribution, we applied the Mann‑Whitney 
U‑test. The results showed no significant difference between the two 
groups (W(5) = 12, p = .38, ES: r = .49). This suggests that the participants in 
both groups possessed similar levels of social skills.

19.5.2 Amount of Self‑disclosure

Figure 19.3a displays the average total amounts of self‑disclosure for both 
groups. The participants in the Elfoid group exhibited an average of 17.17 
instances (SD: 6.96) of self‑disclosure, while those in the Phone group 
had an average of 7.67 (SD: 2.21). After confirming normality between the 
Elfoid and Phone groups using the Shapiro‑Wilk test, we applied a Welch’s 
t‑test. The results indicated that the participants in the Elfoid group dis‑
played significantly more self‑disclosures than those in the Phone group 
(t(5) = 2.91, p = .027, ES: d = 1.68).
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We also compared the total amounts of self‑disclosure at each level 
between the two groups (Figure 19.3b). On topics related to hobbies (level 1),  
participants in the Elfoid group exhibited 11.12 self‑disclosures (SD: 5.40), 
while those in the Phone group made 4.83 self‑disclosures (SD: 1.67). 
We found a significant difference between these groups (t(5.954) = 2.51, 
p = .046, ES: d = 1.57) using Welch’s t‑test after confirming the normality 
with a Shapiro‑Wilk test. Although participants in the Elfoid group had 
more self‑disclosures than those in the Phone group, we found no sig‑
nificant differences between the Elfoid group and the Phone group at the 
other levels, respectively: level 2: 2.00 (SD: 1.73) and 1.00 (SD: 1.00); level 3: 
3.83 (SD: 2.79) and 1.83 (SD: 0.90); level 4: 0.17 (SD: 0.37) and 0.00 (SD: 0.0).

19.5.3 Temporal Changes of Amount of Self‑disclosure

We also investigated the temporal changes of the amount of self‑disclosure 
made by the participants. Two psychological theories (social penetration 
[10] and early differentiation of relatedness [12]) propose different per‑
spectives regarding the speed of relationship development. Although the 
former concludes that intimate relationships develop through a gradual 
increase of self‑disclosure, the latter argues that they instead progress 
quickly through the initial attraction between strangers. We next veri‑
fied which theory is supported by the temporal change in the amount of 
self‑disclosure.

Figure  19.4a,b shows the averages and standard deviations of the 
self‑disclosure amounts made by each participant in each conversation ses‑
sion in the Elfoid and Phone groups. We found neither a gradual increase 
proposed by the social penetration theory nor a rapid increase proposed 

FIGURE  19.3 Average and standard deviation of the total amount of 
 self‑disclosure [18]. (a) Total amount of self‑disclosure [18]. (b) Total amount of 
self‑disclosure in each level [18].
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by the early differentiation of relatedness theory. Instead, we observed 
a cyclic variation rather than a monotonic or rapid increase in both the 
Elfoid and Phone groups: the amount of self‑disclosure first increased, 
then decreased, and finally increased again.

Therefore, we statistically verified the occurrence of such cyclic varia‑
tions. We selected the session (Smin) that showed the minimum amount 
of self‑disclosure and two sessions that showed the maximum amount 
before and after Smin. Thus, we selected the second, fifth, and eighth ses‑
sions in the Elfoid group and the fourth, seventh, and ninth sessions in 
the Phone group. We applied a repeated analysis of variance (ANOVA) 
to these three sessions in each group. In the Elfoid group, there was 
a significant main effect of sessions (F(2) = 4.54, p = .040, η2

G  = .42).  
A post‑hoc comparison with a modified sequentially rejective Bonferroni 
(MSRB) showed that participants in the Elfoid group expressed more 
 self‑disclosure in the second (t(5) = 3.54, p < .05) and eighth (t(5) = 3.28, 
p < .05) sessions than in the fifth session. On the other hand, in the Phone 
group, only the data between the seventh session and the fourth session 
approached significance (F(2) = 3.25, p = .08, η2

G  = .33). The positions of the 
peaks and troughs corresponded to those in the amount of self‑disclosure 
in level 1 (Figure 19.5).

19.6 DISCUSSION
Our results indicate that a communication medium with a human‑like 
appearance increases the amount of self‑disclosure, which measures inti‑
macy [10, 15], even if it only has a human‑like design and soft body, and all 
its other functions are identical as in standard mobile phones. Our results 

FIGURE  19.4 Changes in the amount of self‑disclosure in Elfoid and Phone 
groups. Values are standardized (M = 0, SD = 1). Error bars represent standard 
deviations. *: p < .05 [18]. (a) Elfoid group and (b) Phone group.
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support the hypothesis that interaction mediated by human‑like commu‑
nication media facilitates more intimate relationships compared to typical 
communication media.

One possible explanation for this difference is that interacting through 
Elfoid mirrors more intimate, face‑to‑face interaction. Proxemics studies 
suggest that interpersonal distance represents human relationships [17]. 
Interestingly, while the Phone group participants placed their phones on 
a desk in the hands‑free mode, five of six Elfoid group participants held it 
throughout the experiment. The sixth participant began holding it during 
the seventh session and continued to do so for the rest of the experiment. 
Two participants frequently touched Elfoid, indicating a misattribution of 
affinity toward it to their conversation partners due to its intimate distance 
(Figure 19.6). Further investigation is required to confirm this finding.

Another explanation might be that the participants in the Elfoid group 
felt a stronger sense of connectedness with their conversation partners. For 
instance, some Elfoid group participants treated their Elfoid as if it were 
human (Figure 19.7). Such behaviors, not observed in the Phone group, 
suggest that its anthropomorphic features invoke a sense of face‑to‑face 
interaction with a conversation partner.

Our findings also revealed that the development of an intimate relation‑
ship is influenced by changes in the amount of self‑disclosure. For example, 
the amount of self‑disclosure declined between certain sessions and then 
rose again, suggesting a cyclical self‑disclosure pattern. This pattern was 
statistically confirmed in the Elfoid group and seemed to exist in the Phone 
group, suggesting that Elfoid accelerates this cyclical self‑disclosure pattern.

FIGURE 19.5 Changes of the amount of self‑disclosure of each level in the Elfoid 
and Phone groups. Values are not standardized. Error bars represent standard 
errors [18]. (a) Elfoid group and (b) Phone group.
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FIGURE 19.6 Touching behavior toward Elfoid. Participants (a) stroked its legs, 
(b) stroked its arms, and (c) held its head [18].

No evidence was found to support the social penetration theory, pos‑
sibly due to the short, one‑month duration of our study. That theory often 
focuses on relationships that develop over the course of several months or 
even an entire year. Our results suggest that self‑disclosure increases with 
the repetition of a cycle over longer periods. Our study demonstrated that 
a human‑like communication medium increased self‑disclosure between 
strangers after they first met, supporting the early differentiation of the 
relatedness theory. Perhaps the Elfoid group pairs developed a more inti‑
mate relationship than the Phone group pairs.

FIGURE  19.7 Gesture toward Elfoid. (a) Pointing gesture toward Elfoid.  
(b) Throwing motion [18].
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Our study does have several limitations. First, its sample size was 
 relatively small. Second, while Elfoid does not have any actuators, its 
movement might induce a stronger feeling of presence. Finally, it’s unclear 
which distinguishing factor of the device (appearance or softness) primar‑
ily contributed to our results. Future research will investigate these fac‑
tors further and perhaps use a human‑like communication device made 
of hard material.

19.7 CONCLUSION
We demonstrated that the long‑term use of a human‑like communication 
medium, known as Elfoid, elicited a greater degree of self‑disclosure in 
conversations between unacquainted individuals compared to a standard 
mobile phone. We hypothesized that interactions through Elfoid would 
promote better relationships compared to interactions occurring by a tra‑
ditional mobile phone. Our results confirmed that such a medium has‑
tened the establishment of intimate relationships. Our research enriches 
the understanding of the impact of human‑like communication media 
on human relationships and provides insights that might address various 
challenges in the field of telecommunications.
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20.1 INTRODUCTION
Dementia is one primary cause of dependency and disability among older 
adults and significantly impacts them and their families, caregivers, and soci‑
ety. Approximately 40%–50% of individuals with dementia suffer from cog‑
nitive, psychological, and behavioral problems, all of which are collectively 
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labeled as the Behavioral and Psychological Symptoms of Dementia (BPSD). 
They include hallucinations, depression, and agitation [1]. Since these symp‑
toms demand more attention from caregivers, their burden is increased as 
well as the care costs. Thus, reducing BPSD represents a significant social 
challenge. Although pharmacological interventions are often used for this 
purpose, non‑pharmacological interventions are preferred to avoid potential 
side effects [2]. Many attempts related to non‑pharmacological interventions 
have been addressed.

Doll therapy, which typically involves providing a human baby doll to 
seniors with dementia [3], is a type of non‑pharmacological intervention 
that utilizes simulated social stimuli. Reports indicate that seniors with 
dementia engage in various caregiving activities with such dolls, including 
holding, talking, feeding, cuddling, and dressing them. This interaction 
not only enhances their engagement with others but also reduces problem‑
atic behaviors [4].

Although traditional doll therapy employs baby dolls without any interac‑
tive features, robotic technology can enhance interactions with older adults. 
For instance, Babyloid [5], which is a practical application of interactive doll 
therapy, has several functions, such as expressing emotions and body move‑
ments and vocalizing infant voices. However, robots with simpler mecha‑
nisms may also positively impact seniors with dementia.

In this study, we apply a minimal human design approach to an inter‑
active baby robot to create a positive interaction for seniors with demen‑
tia by just expressing the minimum elements of human‑like features and 
stimulating the user’s imagination to supplement the missing information. 
Based on a minimal human design approach, we developed HIRO and 
investigated whether it induces longer interaction with dementia seniors 
than a baby robot with a face.

20.2 MINIMAL DESIGN OF HUMAN INFANT
Figure 20.1 shows a prototype of our minimal design of a human infant, 
HIRO (W210 × D165 × H300 mm and 610 g). Its ABS control module, 
which is covered with a polyester fabric, includes a computer, a three‑axis 
accelerometer, and a speaker. The module can be removed from its back. 
Although HIRO is also equipped with a microphone and a touch sensor, 
we did not use them in this study since our purpose was to explore mini‑
mal requirements.
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HIRO’s design resembles a human baby: a distinct head, a torso, and limb 
sections, although no facial features. We did not design them because the 
mismatch between facial expressions and vocal tones can complicate the 
perception of emotion [6]. Furthermore, since we previously observed that 
older adults imagine facial expressions during interactions with Telenoid 
[7], we deliberately excluded any such facial features from HIRO.

To compensate for the lack of visual cues, we amplified HIRO’s 
human‑like qualities through auditory information. We recorded the voice 
of a one‑year‑old toddler and segmented it into 91 distinct voice patterns. 
A male college student, who was unaware of the study’s purpose, classi‑
fied these patterns into four emotional categories: positive (20 patterns), 
weakly positive (25 patterns), weakly negative (17 patterns), and negative 
(29 patterns). We also included three different types of babbling sounds in 
the weakly positive category, such as “pa‑pa.” The remaining sounds com‑
prised various laughing and crying patterns.

The design of the interaction between the seniors and the robots is cru‑
cial. Here, we describe the details of HIRO’s speech generation process. It 
has an internal emotional state that basically changes based on its sensor 
data derived from a three‑axis accelerometer. Its emotional state is more 
often positive during greater interaction with a senior and less positive 
during less interaction. For example, HIRO often laughs when a user lifts 
or rocks it, but it often cries when a user places it on their legs or merely 
talks to it without moving it around.

3
0

0
m

m

210 mm

165 mm

FIGURE  20.1 Minimal design of a human infant for interactive doll therapy, 
HIRO [15].
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20.3 EXPERIMENT
Since no study has introduced a faceless robot into nursing homes, we 
identified three critical research questions (RQs) that must be addressed 
before applying HIRO to practical doll therapy:

RQ1: Will a robot built on the minimal design of a human infant (like 
HIRO) be accepted by seniors with dementia?

RQ2: If HIRO is accepted, will it be received more positively than a baby 
robot that possesses more detailed body representations and 
facial expressions?

RQ3: Does HIRO induce different interaction patterns than a baby robot 
with facial features?

These research questions guided our investigation into HIRO’s potential 
effectiveness and suitability as a therapeutic tool for seniors with demen‑
tia and set the stage for further exploration of the impact and the role of 
minimal design in human–robot interaction within elderly care contexts.

20.3.1 Participants

Our experiment was conducted in an elderly nursing home with 21 
senior participants, 18 of whom were women. The average age of the 
participants was 86.6 years (SD: 5.4). The average level of the required 
long‑term care (care level) for the participants was 3.38, ranging from 
levels 2 to 5, based on Japanese government guidelines. The care level 
determines the extent of attention required by a patient. For example, 
a senior at care level 2 may need partial assistance with daily activities 
such as personal hygiene and bathing, whereas a senior at care level 
5 requires comprehensive care that encompasses every aspect of life. 
This level may also manifest numerous anxiety behaviors and a general 
decline in cognitive comprehension.

From among a group who regularly engaged in events held at the facil‑
ity (including seniors who had difficulty speaking), the nursing home 
staff selected participants whose interactions with the robot would 
be observed. All the participants and their families were thoroughly 
informed about the experiment and provided signed informed consent 
forms. The experiment was conducted with the approval of the ATR 
Ethics Committee and carried out with permission from the partici‑
pants’ primary care physicians.
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20.3.2 Procedure

The participants were randomly divided into two groups: one provided 
with HIRO (no‑face group), consisting of 11 participants (including 
two males), and another given a robot with a more human‑like appear‑
ance (face group), consisting of ten participants (including one male). 
Figure  20.2 illustrates the distinctions between the two robots. All the 
participants were parents who had raised more than one child, except for 
one participant in each group who did not raise any children. The detailed 
demographic information for each group is provided in Table 20.1.

Our study investigated whether the participants would continue to hold 
and positively interact with their baby robot for a five‑minute duration 
after receiving it from a familiar staff member. This five‑minute interval 
was suggested by the nursing staff as a representative minimum interval to 
alleviate their workload.

The experiment was conducted in the participants’ private rooms, 
accommodating individual mobility needs such as sitting in chairs, 
remaining in wheelchairs, or staying in beds. The following is a detailed 
procedure of the experiment. First, a staff member and an experimenter 
entered a participant’s room, introduced the robot, and handed it to the 

(a) (b)

FIGURE 20.2 (a) HIRO in the no‑face group and (b) a baby robot with a face in 
the face group [15].

TABLE 20.1 Demographic Information of Participants. F, M, and O Indicate 
Participant IDs

Group Age (SD) Care Level (SD) Spa Beb

No‑face 86.3 (4.21) 3.36 (0.81) M, O M
Face 86.9 (6.62) 3.4 (0.97) F F
a Participants with speech difficulty.
b Bedridden participants.
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participant. The experimenter set up a video camera and left the room. 
About a minute later, the staff member received a call from the experi‑
menter and explained to the participant that she needed to assist the 
experimenter, asking if the participant could care for the baby robot. To 
prevent undue pressure to comply, half of the participants in each group 
were accompanied by a nursing staff member, who stayed passively in 
the room. During this phase, the experimenter (and a staff member, 
if applicable) monitored the situation from outside. The interaction 
between the senior and the baby robot continued for the five‑minute 
interval or until the participant lost interest (such as dropping the robot 
or falling asleep) or sought assistance from the staff. Then, the experi‑
menter (and staff, if she had left) returned to the room, thanked the par‑
ticipant, retrieved the robot and the video camera, and exited. After the 
experiment, staff members were interviewed about their reactions to the 
interactions, especially noting any changes in their patients’ behavior or 
states. We also collected the robots’ emotional state histories during the 
interaction phase.

20.3.3 Evaluation

We investigated our above three research questions (RQ1, RQ2, and 
RQ3) through a combination of statistical analyses and observations. 
For RQ1, we analyzed whether the participants accepted the robot by 
holding it for the entire five minutes. The acceptance percentage was 
calculated for both groups. A one‑sample proportion test assessed 
whether the percentage was higher than chance level for each group. 
For RQ2, two independent coders identified and encoded caring behav‑
iors (e.g., caressing and hugging) and non‑caring behaviors (e.g., just 
holding). A kappa coefficient of 0.79 indicated substantial agreement. 
We evaluated the duration of the caring behaviors using a Welch’s t‑test 
after confirming normality with the Shapiro‑Wilk test. For RQ3, we 
analyzed the proportion of the emotional states selected by the robots 
and how they affected the interaction times, evaluated the difference 
in their emotional states between the two groups, and examined the 
correlations between the robots’ emotional states and the participants’ 
caring behaviors. Depending on the data’s normality, a Welch’s t‑test 
or a Mann‑Whitney’s U test was used. We investigated with Pearson’s 
correlation the linear relationships between the robots’ emotional states 
and the participants’ behaviors.



A Minimal Design of a Human Infant Presence   ◾   255

20.4 RESULT
The results of the investigation reveal insights into how the participants in 
an elderly nursing home interacted with robots of different appearances 
(with or without a face) over a five‑minute period. Regardless of the group, 
most accepted their robot and continued to hold it for the entire five min‑
utes (60% in the face group and 81.8 in the no‑face group). The no‑face 
group’s acceptance was significantly higher than the chance level (50%) 
(χ² = 4.45, p = .017), although the face group’s acceptance was not (χ² = .4, 
p = .26). No significant difference was found between the groups (χ² = 1.22, 
p = .27, 95% CI = [−0.16, 0.60]).

Most participants demonstrated some form of caring behavior, reflect‑
ing positive attitudes towards the robots. We analyzed the caring behaviors 
by separating them into verbal caring behaviors (talking and singing to the 
robot) and non‑verbal ones. Figure 20.3 shows the total duration of the caring 
behaviors exhibited by each participant. The letters in this figure denote the 
participant IDs. The average duration of the verbal caring behaviors was 70.8 
seconds (SD: 91.1) in the face group and 60.8 seconds (SD: 67.8) in the no‑face 
group, showing no significant difference (t = .23, p = .82, d = .13). Similarly, there 
was no significant difference between the face group (191.0 seconds, SD: 74.6) 
and the no‑face group (157.7 seconds, SD: 87.1) (t = .79, p = .44, d = .41).

(a) (b)

FIGURE 20.3 Total time of caring behaviors presented by each participant dur‑
ing interaction in (a) face group and (b) no‑face group. Letters denote participant 
IDs. * shows participants who refused the robot [15].
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We also examined the robots’ emotional states to further understand 
the participants’ engagement and interaction with them across the two 
groups. Figure 20.4 shows the average ratio of the emotional states of the 
robots over a five‑minute period for each group. An asterisk indicates 
participants who rejected the robot for the entire five minutes. We found 
no distinctive differences between the groups or whether they interacted 
with it for the entire period. The emotional states were analyzed for posi‑
tive, negative, weakly positive, and weakly negative conditions. For the 
negative states, the no‑face group tended to have more negative states 
than the face group, although this was not significant (t (18.7) = −1.80, 
p = .089, d = .79). We found no significant difference between the groups 
for the weakly negative and weakly positive states (weakly negative: 
W = 63, p = .60, r = .17; weakly positive: W = 68, p = .39, r = .28). There was 
also no significant difference between the groups for the positive states 
(t(16.1) = 1.23, p = .24, d = .55).

Finally, we conducted a correlation analysis to investigate any under‑
lying relationships between the robots’ emotional states and the partici‑
pants’ verbal/non‑verbal caring behaviors. Pearson’s correlation examined 
the relationship between the robots’ emotional states and the total time 
of the participants’ verbal/non‑verbal caring behaviors. The analysis was 
performed for all the participants who accepted the robot in both groups, 
given the small sample size within each group. The results are shown 
in Table  20.2. A negative moderate correlation was identified (r = −0.47, 
p = .03) between the robots’ negative states and the participants’ verbal car‑
ing behaviors, showing that participants talked to their robot less often 
when it expressed more negative emotions like crying. We found a posi‑
tive moderate correlation between the robots’ weak positive state and the 

FIGURE 20.4 Average ratio of robot’s emotional states during interaction [15].
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participants’ verbal caring behavior (r = 0.44, p = .046), indicating that 
they talked to their robot more frequently when it expressed weak posi‑
tive emotions. There were no significant correlations for other relation‑
ships. However, a trend approaching significance was noted for a positive 
correlation between verbal behavior and a robot’s positive state (r = 0.40, 
p = .070).

20.5 DISCUSSION
In this section, we adopted a minimalist design approach for creating 
an interactive doll named HIRO to explore the essential characteristics 
required for a robot to be effective in interactive doll therapy. We found 
that elderly participants accepted it and displayed positive attitudes, sup‑
porting RQ1. With RQ2 and RQ3, we did not find any difference between 
the two groups in terms of the absence of facial features and the robot’s 
responses, rejecting both RQ2 and RQ3. Since our experiment lasted only 
five minutes, its impact may not have been significant. We need to test 
longer and multiple interactions.

Another possibility is a cultural dimension. It has been posited that 
Japanese people prioritize auditory cues over visual ones, especially when 
both are presented concurrently [8]. This might suggest that auditory inter‑
actions facilitated by robots are paramount for older Japanese adults with 
dementia. On the other hand, HIRO’s simplistic design might resonate less 
with Europeans, who are perceived to lean more towards visual cues.

The influence of a human infant’s voice on seniors was a salient feature 
in our study, with notable effects on their behavior. For this investiga‑
tion, we utilized a recording of an actual human infant. However, the 
significance of human‑like voice quality for enhancing the interaction 
between a robot and seniors remains an open question. Future research 
must explore whether similar outcomes are attainable with low‑fidelity or 
synthesized speech.

In the realms of animal therapy and robot therapy [9,10], both have 
been accepted as mediators for communication among seniors and others. 

TABLE 20.2 Correlation Coefficients between Caring Behavior and Robot’s 
State *: p < .05, †: p < .10

Caring Robot’s Internal State

Behavior Negative Weakly Neg. Weakly Pos. Positive
Verbal −0.47* −0.28 0.44* 0.40†

Non‑verbal 0.15 0.01 −0.32 0.05
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This phenomenon was also observed in our experiment. During the study, 
when a nursing staff member was present in a participant’s room, the par‑
ticipant frequently talked with her about the robot. However, since our 
experimental design explicitly requested staff members to refrain from 
active interaction with the participants, HIRO’s potential as a commu‑
nication facilitator between staff members and participants was not fully 
realized. As future work, we will verify our robot’s effectiveness in a group 
situation where caregivers or seniors are present.

Although this study offers valuable insights, it is not without its limita‑
tions. Foremost is its relatively small sample size, coupled with an imbal‑
ance in the degree of dementia across the participant groups. Future 
investigations must separately gauge the participants’ dementia levels 
using such objective metrics as the Severe Mini Mental State Examination 
(sMMSE). An objective assessment is also warranted that determines 
whether HIRO genuinely mitigates problem behaviors. Given pronounced 
individual variations, subsequent research should employ a within‑subject 
design for more robust validation.

Another potential confounder is the pronounced gender bias within the 
participant pool, where male participants were notably underrepresented. 
This reflects demographic trend, where nearly two‑thirds of dementia suf‑
ferers are women [11]. The gender imbalance is not unique to our study, as 
evidenced by previous research [12–14]. To ascertain the impact on male 
seniors with dementia, we must extend our study across multiple nursing 
homes and enhance the representation of male participants.

Finally, our assessment of HIRO’s acceptance was predicated on a 
five‑minute interaction with seniors afflicted with dementia. Although 
this duration aligns with other psychological studies and was chosen to 
minimize the workload of the care staff [12,14], it is relatively brief in the 
context of human–robot interaction research. Future inquiries must delve 
into the optimal length of engagement with a robot and the frequency of 
such interactions to ascertain HIRO’s efficacy and its potential to alleviate 
caregivers’ workloads.

20.6 CONCLUSION
We introduced a minimal design to develop a baby‑sized robot called 
HIRO with abstract features for interactive doll therapy. Emotional inter‑
action was achieved with the sounds of an actual baby. Our field study 
showed that seniors with dementia accepted HIRO, although we must 
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expand the sample size and rigorously assess whether it reduces behavioral 
problems. We believe that HIRO will help improve their mental health and 
their quality of life in nursing homes.
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21.1 INTRODUCTION
According to a White Paper on Aging (Cabinet Office, Government of 
Japan), in 2012, Japan had 4.62 million seniors with dementia, an amount 
that is expected to reach 6.75 million by 2025. Dementia affects not only the 
daily lives of the patients themselves but also their families and surround‑
ing communities due to the Behavioral and Psychological Symptoms of 
Dementia (BPSD). This medical condition is characterized by problematic 
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behaviors such as verbal abuse, assault, and wandering as well psychologi‑
cal symptoms such as delusion and decreased motivation. Since caregiv‑
ers must constantly watch over seniors with dementia, they experience 
a heavy burden. Societies also face increased economic responsibilities. 
Thus, BPSD reduction is a major social issue related to dementia [1, 2].

For addressing BPSDs in the early stages, non‑pharmacological inter‑
ventions that do not involve medication are recommended because of con‑
cerns about the side effects of pharmacological approaches [3]. Recently, 
robot therapy has started to use communication robots such as animal‑like 
robots and interactive robots, and its effectiveness is being scientifically 
investigated [4].

As previously described in Section 6.1, we are focusing on a baby‑like 
interactive robot called HIRO inspired by doll therapy [5] to reduce BPSDs 
and the burden on caregivers. Since the dolls used in doll therapy have 
neither moving parts nor speech functions, we added a speech function 
to a baby‑like doll. Although we confirmed that seniors with dementia 
can be actively involved with HIRO for five minutes, it remains unclear 
whether such attitudes are sustained through long‑term use. Nor have we 
investigated the changes in the relationship between a robot and a senior 
with dementia or caregivers when a robot is used for a long period of 
time. Therefore, in this study, we introduce “Kamatte HIRO‑chan” (here‑
inafter called HIRO‑chan), a new robot manufactured with the Vstone 
Corporation based on HIRO (Figure  21.1) to a nursing home for two 
weeks. We confirmed the effects and issues related to relationship build‑
ing and improved the robot based on such issues. Next, we introduced our 
improved system for about one month and concluded that it improved the 
relationship between the robot and seniors with dementia and care work‑
ers. Based on our experiment results, we discuss the effectiveness of our 
introduction of HIRO‑chan from the viewpoints of seniors with dementia, 
the nursing staff, and nursing care facilities.

21.2 BABY‑LIKE INTERACTIVE ROBOT
In this study, we used HIRO‑chan, which is based on HIRO described in 
Section 6.1, a minimally designed robot whose form resembles a human 
infant (Figure 21.1).

HIRO‑chan is a baby‑like soft doll about 30 cm tall. It contains only 
a microcomputer connected to an acceleration sensor and a speaker 
and has no driving mechanism. Its voice was recorded from an actual 
one‑year‑old human infant, a feature that enables seniors with demen‑
tia to intuitively imagine emotional information such as crying and 
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laughing. We also collected more than 100 different voice patterns and 
classified them into five categories (negative, weakly negative, normal, 
weakly positive, and positive) based on the positive or negative emotions 
conveyed by them. One of the five categories is selected in accordance 
with HIRO‑chan’s emotional state, which is determined by its accel‑
eration and the values of its sensors, and a corresponding audio file is 
played. For example, HIRO‑chan frequently laughs when a user physi‑
cally engages with it by lifting or rocking it; it cries otherwise. Its normal 
voice also includes babbling such as “pa‑pa.”

21.3 EXPERIMENT
We introduced HIRO‑chan to a nursing home for about two weeks to inves‑
tigate its long‑term influence on seniors with dementia and caregivers. The 
experiment was conducted in a four‑story nursing home. This study was 
approved by the Ethics Committee of the Advanced Telecommunications 
Research Institute International (ATR).

21.3.1 Preliminary Two‑Week Experiment (Experiment 1)
21.3.1.1 Participants
This experiment involved nine residents (eight women and one man) liv‑
ing on the same floor of a nursing home whose ages ranged from 70 to 
97 and averaged 84.9. The NPI‑NH test results [7], which measure BPSD, 

FIGURE 21.1 Kamatte “Hiro‑chan”: a baby‑like interactive robot [6]. 
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ranged from 4 to 42 points with an average of 15 (the highest possible 
score is 120; higher scores indicate more severe BPSD). The Conversational 
Assessment of Cognitive Functioning through Daily Dialogue (CANDy) 
[8], which tests for dementia through conversation, ranged from 0 to 21, 
with an average of 9.67 (the highest possible score is 30, and a score of 6 or 
higher strongly indicates dementia). Eight staff members also participated 
in this experiment.

21.3.1.2 Experimental Procedure
To reduce the risks of COVID‑19 infection, we prepared and assigned 
a HIRO‑chan to each participant. Before the experiments, we taught 
through a remote meeting system all the facility’s nursing staff how to use 
HIRO‑chan and how to hand it to the participants to minimize differences 
of HIRO‑chan’s handling among the nursing staff. The nursing staff could 
assist any participants who wanted to design their own HIRO‑chan by 
adding facial features to it.

The experiment proceeded as follows. First, a staff member entered 
a participant’s room while cradling HIRO‑chan like a baby: “Oh, look 
a baby. Why don’t you hold it?” The nursing staff observed the partici‑
pants’ reactions and briefly recorded specific details on a form prepared in 
advance. The nursing staff were also asked to record (for each participant) 
any problems they encountered while operating HIRO‑chan, their impres‑
sions of its recommended uses or possible improvements, and any sugges‑
tions for future functions.

21.3.1.3 Result
Hospitalization forced participants B and F to quit the experiment on 
its ninth and sixth days. Including these two, our participants used 
HIRO‑chan for 6–12 days and directly interacted with it one to four 
times a day: an average of 13.6 times during the experiment. Active inter‑
actions with HIRO‑chan such as hugging it, talking with it, and smiling 
at it were identified as manifestations of a positive, accepting attitude. 
Negative attitudes were characterized as when participants rejected 
HIRO‑chan by saying “I don’t want it” or throwing it without engaging 
with it. Neutral attitudes included situations where participants did not 
respond to its voice, left it by the bed, or concentrated on something else 
(e.g., eating). The percentage of each attitude per participant was then 
examined (Figure 21.2).
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Our results indicate that five participants (A, C, D, F, and G) had more 
positive attitudes throughout the experiment, one participant (I) had more 
neutral attitudes, and three participants (B, E, and H) had more negative 
attitudes toward HIRO‑chan. In other words, participants with positive 
or neutral attitudes outnumbered those with negative attitudes. However, 
a comparison of the changes in the participants’ attitudes based on their 
initial and final interactions showed that although all the participants had 
a positive attitude toward HIRO‑chan on the first day, negative attitudes 
increased to about 30% by the end of the two‑week period (Figure 21.3), 
indicating that their attitudes toward HIRO‑chan had deteriorated.

FIGURE  21.2 Percentage of each attitude toward HIRO‑chan per participant: 
Letters on the vertical axis indicate participant IDs, and * indicates the sole male 
participant [6].

FIGURE  21.3 Percentage of each attitude of participants during first and last 
days of interaction with HIRO‑chan [6].
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21.3.1.4 Discussion
Although experiment 1 confirmed that HIRO‑chan can be operated in 
a nursing home over a long period by nursing staff alone, its acceptabil‑
ity by seniors with dementia is not fully guaranteed for long‑term use. 
Initially, HIRO‑chan’s novelty elicits a positive response from seniors 
with dementia. However, after repeated use, the number of partici‑
pants who rejected it increased. The feedback obtained from the inter‑
views with the nursing staff suggests that HIRO‑chan’s crying might 
have sparked this problem. Crying caused the seniors with dementia 
to stop interacting with HIRO‑chan, a development that prevents the 
accelerometer from changing, which in turn causes HIRO‑chan to 
enter a negative emotional state, leading to further crying. We assume 
that this pernicious cycle is responsible for the increased rejections of 
HIRO‑chan by seniors with dementia.

Crying may also have negative effect on other residents (who were actu‑
ally not involved in the experiment on the same floor) and nursing staff. 
In an interview, one staff member commented, “When HIRO‑chan cries, I 
have to talk to the seniors who are sometimes caring for it,” indicating that 
HIRO‑chan’s crying may have ironically increased the burden on nurs‑
ing staff by requiring them to focus on seniors when they are actually not 
interacting with it.

From the above, we found that when HIRO‑chan is introduced into a 
nursing home, the negative emotional expression of “crying” may nega‑
tively impact seniors with dementia who are also using the robot (at differ‑
ent times), as well as other residents and nursing staff. Some seniors were 
able to soothe HIRO‑chan and make it laugh when it cried, suggesting a 
possible approach to control the robot’s crying behavior based on feedback 
from seniors who used it. However, since the presence of HIRO‑chan’s cry‑
ing function greatly complicated the easy and continuous eliciting of posi‑
tive reactions from seniors with dementia, we modified its crying function 
and conducted another long‑term experiment and investigated whether 
the positive attitude of seniors with dementia was maintained and how 
the modified HIRO‑chan positively impacted the other residents and the 
nursing staff.

21.3.2 Long‑term Experiment (Experiment 2)

As explained above, based on the results of Experiment 1, we developed 
HIRO‑chan‑S by modifying its voice. No changes were made to its exte‑
rior. The voices included in the positive, weakly positive, and normal 
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categories were retained, although the negative and weakly negative voices 
were removed. We investigated whether the seniors with dementia contin‑
ued to use HIRO‑chan‑S and whether our improved system addressed the 
issues identified in Experiment 1 based on the nursing staff’s impressions.

21.3.2.1 Participants
Ten seniors (six women and four men) participated who lived on differ‑
ent floors of the same nursing home. Their ages ranged from 78 to 94 and 
averaged 87.9; their NPI‑NH scores ranged from 0 to 13 and averaged 3.6; 
their CANDy scores ranged from 6 to 19 and averaged 11.8. Fourteen staff 
members also joined this experiment.

21.3.2.2 Experimental Procedure
Except for using HIRO‑chan‑S instead of HIRO‑chan, we retained the 
same procedure as in Experiment 1. The staff again filled out question‑
naires about their experiences with HIRO‑chan‑S. However, we omit the 
results here due to space limitations.

21.3.2.3 Results
Almost all the participants used HIRO‑chan‑S every day during the 
experiment. One participant (L) was unable to use it for three days 
due to illness, and two participants (M and S) missed one day due to 
conflicting caregiving schedules. Nine to ten staff members observed 
each participant. Figure 21.4 shows the percentage of each attitude by 
participant.

FIGURE 21.4 Percentage of each attitude per participant toward HIRO‑chan‑S [6].
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Eight participants had mostly positive attitudes throughout the 
experiment, while two had mostly negative attitudes. No participant had 
a generally neutral attitude. Compared with the Experiment 1 results, 
the number of participants with positive attitudes increased, while those 
with negative and neutral attitudes decreased. Their attitudes through‑
out the experiment did not change toward HIRO‑chan‑S, compared with 
Experiment 1. Figure 21.5 shows the percentage of each attitude of all 
the participants during their first and last days with HIRO‑chan‑S. The 
attitude exhibited by the participants on the first day remained exactly 
the same. As in Experiment 1, there was no significant increase in their 
negative attitudes.

We divided the 13 comments from the nursing staff throughout 
Experiment 2 into three main categories: operational accidents (4 com‑
ments), voice volume (2), and additional functions (7). The operational 
accidents included problems that arose during the system’s performance 
for participants K, L, and Q. For participants L and Q, HIRO‑chan‑S ran 
out of batteries once and we had to replace them. Participants K and L 
seemed fascinated by the clicking the volume button, which they pressed 
repeatedly, causing the robot to lose volume control. Therefore, the robot 
was replaced.

Both comments about volume pointed out that its voice was too low. The 
volume of course was fine for the authors and the nursing staff. However, 
some seniors with dementia struggled to hear. Three respondents sug‑
gested singing, and one each selected “sitting stably,” “imitating the lan‑
guage of a senior,” “responding to seniors,” and “talking to seniors from 
three different age levels.”

FIGURE 21.5 Percentage of each attitude of all participants during first day and 
last day with HIRO‑chan‑S [6].
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21.4 DISCUSSION
21.4.1 Effects of Improved System on Seniors with Dementia

Our two‑week introduction experiment (Experiment 1) confirmed that the 
number of subjects who rejected HIRO‑chan increased, a result that identi‑
fied a potential cause of such negative emotions expressed by HIRO‑chan: 
crying. In a one‑month introduction experiment using HIRO‑chan‑S 
(Experiment 2), where we removed its crying function, eight subjects 
continued to use HIRO‑chan‑S almost every day without rejecting it; one 
consistently rejected it, and the attitude of another changed from day to 
day. This suggests that the negative emotional expressions expressed by 
the robot in response to positive acceptance by the human side may have 
exacerbated confusion and anxiety on the human side. In this respect, 
HIRO‑chan‑S is basically in a good mood, and the program was modi‑
fied to increase its cheerfulness when it is soothed, so the subjects calmly 
accepted it.

21.4.2 Passive Effect of Baby Interactive Robot on Other People

During the two‑week introduction experiment, we confirmed that 
Hiro‑chan’s crying negatively impacted not only on the elderly people 
directly using the robot but also on the surrounding seniors and caregiv‑
ers. A care staff member who participated in the experiment commented, 
“When HIRO‑chan cries, I have to talk to the senior who use it and handle 
it together,” which increases the need for care staff to pay more attention 
than usual to the senior. Unfortunately, this result completely undermines 
our objective: reducing the burden on caregivers. In our previous study, 
caregivers commented that they were soothed by listening to Hiro‑chan’s 
laughter [9], but if Hiro‑chan’s emotional expression is not properly con‑
trolled, it will both intensify the psychological burden on seniors who are 
directly involved and perhaps simultaneously increase the burden on the 
caregivers.

21.4.3 Reducing Caregiver Burdens

In this study, when a robot was introduced into a nursing home, not only 
the residents but also the caregivers were affected. Although a recent 
review concluded that such effects are positive, unfortunately, they can 
actually also be a factor that increases the mental stress and workload 
of caregivers [10]. Our previous study in Section 6.1 confirmed that 
seniors with dementia handle baby‑like interactive robots, such as the 
one used in this study, like human babies without any instructions and 
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call a caregiver when necessary. This means that seniors with dementia 
can satisfactorily handle the robot on their own without being taught by 
caregivers, suggesting that they do not need to hover over this robot as 
they do with other robots; they can leave and perform other tasks until 
they are summoned. However, in this study, to confirm any long‑term 
changes in the relationship between seniors with dementia and the robot, 
the caregivers observed their relationships. In the future, we plan to ask 
the caregivers to perform another task and measure the time required 
for it to investigate the change in workload caused by our baby‑like inter‑
active robot.

21.4.4 Effects of Emotional Expression

Since dementia’s core symptom is memory impairment, perhaps the 
participants will forget their involvement soon after a robot interaction.  
In fact, we confirmed that some participants had memory impairment 
from the observation records compiled by the caregivers in which the robot 
was referred to by different names on different days by the same senior. 
This seems inconsistent with the fact that the participants in Experiment 
1 eventually rejected HIRO‑chan, a result that this did not happen with 
HIRO‑chan‑S in Experiment 2. However, recent studies have shown that, 
although the neocortical functions that control knowledge and reason 
decline in seniors with dementia, the functions of the limbic system that 
control emotional memory and cognition are relatively preserved, and 
emotional memories such as pleasantness and unpleasantness are likely to 
remain [11]. This might explain why the impressions of the robot evoked 
by crying and laughing were remembered by the participants, even though 
they forgot their knowledge about it. We infer that HIRO‑chan was avoided 
due to negative emotional memory, while HIRO‑chan‑S remained in use 
thanks to positive emotional memory.

However, negative emotional expressions from the robot did not 
always create a negative impact. In fact, for some seniors, the robot’s cry‑
ing may be associated with positive emotions. For example, as reported 
in our previous study [9], several subjects enjoyed comforting the crying 
robot. In an interview with caregivers from Experiment 2, one acknowl‑
edged that HIRO‑chan‑S was accepted by more people, although based 
on her experience with HIRO‑chan, “some people were better off when 
they were compelled to tend to a crying baby.” Therefore, to introduce 
a crying robot, the characteristics of seniors with dementia must be 
considered.
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21.4.5 Limitations

In this study, since the number of seniors with dementia was small, we 
must increase the number of subjects to confirm the results. Although we 
found no gender difference in the effects in this study, the effects on men 
were not fully investigated due to the small number of male participants 
(14 women and five men for Experiments 1 and 2 combined). We must 
increase the overall number of participants as well as the proportion of 
male participants. We also analyzed the reports of caregiver’s observa‑
tions. However, we still need more detailed observations of the relation‑
ships between seniors with dementia and the robot. A future study might 
incorporate video recording and the analysis of senior reactions.

21.5 CONCLUSION
In this section, we conducted a two‑week introduction experiment of a 
baby interactive robot at a nursing care facility, and based on its find‑
ings, we modified the robot’s program and conducted another long‑term 
one‑month introduction experiment. Our baby interactive robot devel‑
oped using a minimal design approach can be used for a long period of 
time if its emotional expressions are limited to those that give positive 
impressions and if it is operated in a nursing care facility. We also con‑
firmed that, as a passive social medium, our baby interactive robot posi‑
tively influences not only the users but also those around it. In the future, 
we will accelerate improvements by conducting longer‑term introduction 
experiments and addressing the issues identified in them.
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22.1 INTRODUCTION
Recent innovations in communication devices, including mobile devices, 
have fundamentally altered human interaction [1]. In our daily life, mobile 
phones are essential for engaging with others, even strangers, in various 
contexts. However, for individuals with autism spectrum disorders (ASD), 
communication and language present significant challenges. Such indi‑
viduals often struggle to talk to strangers on mobile phones, partly due to 
limited imaginative capabilities and heightened anxiety levels.

Stress and anxiety can hinder self‑control and focus on communica‑
tion partners [2], a problem exacerbated in ASD individuals due to their 
restricted self‑regulation abilities. Research in psychology has found that 
tactile sensations enhance comfort during communication [3–6], and 
the physical presence of a conversation partner substantially influences a 
speaker’s perception of her surroundings [7,8]. Interactions involving touch 
reduce stress, a well‑known effect of interpersonal touch [3]. Consequently, 
interest is growing in simulating the psychological benefits of interper‑
sonal touch through tactile sensations in communication devices.

Hugvie (Figure 22.1), a human‑shaped pillow whose design replicates a 
hugging sensation, was developed to foster positive emotions like comfort 
and trust during phone conversations [9–12]. A connection and presence 
with a remote conversation partner can be enhanced by squeezing such a 
human‑like form as Hugvie and hearing a voice close to the ears. However, 
ASD individuals often exhibit atypical responses to tactile stimuli [13–18], 
creating uncertainty about Hugvie’s effectiveness for them during phone 
conversations with strangers. We believe that Hugvie may significantly 

User during a conversation

Hello

Telecommunication

Hello

Side-pocket as a 

placeholder for the 

communication device

Hugvie: A huggable

communication medium

Conversation

partner

(female)

(A) (B)

T

FIGURE 22.1 (a) Hugvie and (b) individual telecommunicating with a remote 
person while hugging a Hugvie [40].
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alleviate stress in such interactions based on the communicating chal‑
lenges faced by ASD individuals with unfamiliar people over the phone as 
well as the social dysfunction inherent in ASD.

Our primary aim is to investigate whether physical contact through 
hugging Hugvie alleviates stress in ASD individuals during phone conver‑
sations with strangers. Previous research concluded that hugging a Hugvie 
reduces stress in the general population [9], while ASD individuals often 
perceive textures as more pleasant than do controls [19]. Therefore, we 
hypothesize that Hugvie usage will similarly benefit ASD individuals who 
are preparing for phone conversations with unknown persons and uti‑
lized self‑reporting techniques and salivary cortisol level measurements 
to assess how Hugvie affected their self‑confidence and stress indicators.

22.2 MATERIALS AND METHODS
22.2.1 Participants

We recruited young adults diagnosed with ASD from Kanazawa University 
by displaying posters within institutions on campus. The Ethics Committee 
of Kanazawa University approved the study, which was conducted in accor‑
dance with both the institutional/national research committee’s standards 
and the 1964 Declaration of Helsinki. All participants and their parents 
gave written informed consent after receiving a comprehensive explanation 
of the study’s objectives and procedures. The selection criteria for partici‑
pants were as follows: (1) an age range of 15–24; (2) an IQ of 70 or above; and 
(3) validation from seasoned psychiatrists concerning the ability to under‑
stand and accurately complete the informed consent forms, questionnaires, 
and experimental procedures. Even in the case of one individual whose 
IQ was below 70, experienced psychiatrists affirmed the ability to provide 
accurate written consent and comprehend the study’s methodology.

Upon enrollment, all the participants were evaluated by trained psychia‑
trists and diagnosed with ASD, adhering to the criteria in the Diagnostic 
and Statistical Manual of Mental Disorders (DSM‑5) [20] and the standard‑
ized guidelines in the Diagnostic Interview for Social and Communication 
Disorders (DISCO) [21], which assess early development and daily activities. 
This procedure enabled the interviewer to gauge the ASD‑affected individ‑
uals’ functionality in areas beyond social interaction and communication 
[22]. We confirmed with the Mini‑International Neuropsychiatric Interview 
(M.I.N.I.) [23] that no participants had any other psychiatric disorders 
except ASD. We also administered the Autism Spectrum Quotient‑Japanese 
version (AQ‑J), which assesses ASD‑specific behaviors and symptoms [24], 
the Wechsler Adult Intelligence Scale‑Fourth Edition [25], which gauges 
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IQ, the Liebowitz Social Anxiety Scale (LSAS) [26], which quantifies the 
intensity of social anxiety symptoms, the ADHD Rating Scale (ADHD‑RS) 
[27], which evaluates inattentive and hyperactive‑impulsive symptoms, and 
the Adolescent/Adult Sensory Profile (AASP) [28], which assesses sensory 
processing in individuals aged 11 or older.

22.2.2 Procedure

The research was conducted as a crossover study in which participants 
engaged in a phone dialogue with an unfamiliar partner while either 
embracing a Hugvie equipped with a mobile phone (Hugvie session) or 
just utilizing a mobile phone (Phone session). The unknown phone partner 
was a 34‑year‑old female without any specialized training in communicat‑
ing with individuals with ASD. She served as a consistent phone partner 
for conversations across both sessions.

During each session, she posed questions in accordance with a 
 pre‑determined protocol. Although the scripts were subtly altered between 
sessions to foster engagement, they adhered to a consistent foundational 
structure. Importantly, the phone partner remained unaware whether her 
individual participants were interacting with a Hugvie or merely a mobile 
phone, ensuring an unbiased approach to the conversation.

The experimental procedures spanned two consecutive days: Days 1 
and 2. To mitigate sequence effects, we implemented counterbalanced trial 
sessions between the two distinct groups (Figure 22.2). Participants in the 

Recruitment (n=24)

Randomization

Group 1 (n=13) Group 2 (n=11)

Completion (n=13) Completion (n=11)

Calling on the phone using 

a Hugvie (Hug course)

Calling on the phone using only a mobile 

phone (Only a mobile phone course)

Calling on the phone using only a mobile 

phone (Only a mobile phone course)

Calling on the phone using 

a Hugvie (Hug course)

Day 1

Day 2

Allocation

FIGURE 22.2 Experiment flowchart: Participants were first randomly assigned 
to two groups: Group 1 talked on phone using a Hugvie on Day 1 and used only a 
mobile phone on Day 2; Group 2 followed a reverse order of sessions [40].
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first group (Group 1; n = 13) engaged in Hugvie sessions on Day 1 and in 
Phone sessions on Day 2. Conversely, participants in Group 2 (n = 11) fol‑
lowed a reverse session order. Each participant communicated with the 
same partner on both days. The average duration of these phone inter‑
actions was roughly ten minutes. To control for potential hormonal fluc‑
tuations due to diurnal rhythms, we scheduled each participant’s phone 
conversations at identical times on both days and instructed them to 
abstain from eating one hour before them.

Following each session, participants completed questionnaires to gauge 
their self‑confidence under both sessions. Responses were recorded on a 
Likert rating scale, with scores ranging from 0 (no comfort) to 6 (high 
comfort). Additionally, after completing both sessions, participants were 
asked a binary question: “Did you find it more comfortable to converse on 
the mobile phone while embracing Hugvie as opposed to using only the 
mobile phone?”

We assessed their physiological reactions by collecting saliva samples 
on Days 1 and 2 to measure their cortisol levels. Note that a time lag of 
approximately 20 minutes exists between an event’s occurrence and the 
detection of related changes in salivary cortisol levels [29]. During the 
interaction, we collected from each participant the following four salivary 
cortisol samples: S1 (immediately prior to the conversation’s commence‑
ment), S2 (20 minutes after its start), S3 (20 minutes after its end), and S4 
(40 minutes after its end). These S1 measurements served as baseline values 
that reflect resting cortisol levels, and the S2, S3, and S4 measurements, 
respectively, corresponded to the cortisol levels at the beginning, end, and 
a period after the experience (Figure 22.3). Just prior to the conversation, 
each participant was taken to a private room where a research assistant 

-30 min.

Arrival

Rest Rest Rest Rest
Call on 

the phone

0 min. 50 min.10 min. 20 min. 30 min.

S1 S2 S3 S4

FIGURE 22.3 Timeline of events on Days 1 and 2. Both groups of participants 
(Hugvie users and only mobile phone users) were requested to relax for 30 minutes 
before and 40 minutes after talking on the phone. Salivary cortisol measures were 
collected just before the start of the phone conversation as a baseline measurement 
(S1), 20 minutes after the start of the conversation (S2), 20 minutes after the end of 
the conversation (S3), and 40 minutes after the end of the conversation [40].
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collected a saliva sample. Participants were given a relaxation period in 
this room of 30 minutes before and 40 minutes after the phone conversa‑
tions. They were only permitted to leave the room after providing the final 
saliva sample for the S4 measurement.

Saliva samples, ranging from 0.5 to 2.0 mL, were passively collected 
and promptly transferred to sterile, 15‑mL plastic tubes. They were then 
flash‑frozen on dry ice and preserved at −80°C until analysis time. Upon 
thawing at ambient temperature, the samples were centrifuged at 1,500 × g 
for ten minutes at 4°C to eliminate large precipitates. The salivary cortisol 
levels were then quantified in duplicate using a cortisol enzyme immuno‑
assay kit (Salimetrics, State College, PA, USA), and the sample treatments 
(25 μL) were done in accordance with the manufacturer’s guidelines. 
Subsequently, the concentrations were computed using MATLAB 7, based 
on a corresponding standard curve [30].

22.2.3 Data Analysis

Statistical evaluations were conducted using SPSS version 24.0 (IBM, 
Armonk, NY, USA). We assessed the group variations through a t‑test 
in the demographic data, including age, full‑scale IQ, AQ‑J score, LSAS 
score, ADHD‑RS score, and AASP subscale scores. Gender distribution 
differences between groups were examined using a χ2‑test. We compared 
the self‑confidence ratings and salivary cortisol levels to the baseline val‑
ues (S2/S1, S3/S1, and S4/S1), adhering to the recommended statistical 
methodology for crossover trials, as previously described [31].

22.3 RESULTS
22.3.1 Demographic Data

We enrolled 24 ASD individuals in this study. Among them, one partici‑
pant had an IQ below 70, 17 exhibited abnormally high scores on the AQ‑J, 
and all 24 demonstrated social anxiety as indicated by their LSAS scores. 
None registered unusually high ADHD‑RS scores. Within the group, 
six participants scored unusually high in low registration, two displayed 
sensation‑seeking tendencies, five exhibited sensory sensitivity, and six 
showed sensory avoidance (Table 22.1). All the participants successfully 
completed both the experimental procedure and the associated question‑
naires. When asked, “Did you find it more comfortable to converse on 
the mobile phone while embracing Hugvie as opposed to using only the 
mobile phone?” 21 participants (87.5%) expressed a preference for Hugvie. 
The remaining three stated, “I found neither option preferable.”
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22.3.2 Main Result

Figure  22.4 shows the within‑subject summation of the self‑confidence 
ratings from Days 1 and 2 for each group. Statistical analysis revealed no 
significant carryover effects (t(18.2) = −1.02, p = 0.32, r = 0.23). We found 
a significant treatment effect between the groups (t(19.9) = 3.12, p = 0.01, 
r = 0.57), showing an enhancement in self‑confidence among participants 
in the Hugvie session compared to those in the Phone session.

TABLE 22.1 Descriptive Statistics of Participants in Group 1 and Group 2 (n = 24)

Characteristics
Group 1 (n = 13) Group 2 (n = 11) Statistics

Mean (SD) Mean (SD) p
Age 20.3 (3.4) 20.2 (2.4) 0.92
Gender (male, female) 11, 2 10, 1 0.64
Full‑scale IQ 88.4 (14.4) 86.9 (14.4) 0.81
AQ‑J 31.2 (4.3) 34.1 (3.2) 0.08
LSAS 47.4 (8.7) 43.0 (10.0) 0.27
ADHD‑RS 8.2 (3.5) 9.7 (5.4) 0.42
AASP

Low registration 36.4 (7.4) 33.2 (9.3) 0.36
Sensation seeking 37.2 (10.8) 33.0 (5.7) 0.26
Sensory sensitivity 37.7 (9.6) 32.1 (11.5) 0.21
Sensation avoiding 37.5 (10.4) 37.0 (12.4) 0.91

AQ‑J: Autism Spectrum Quotient‑Japanese version.
LSAS: Liebowitz Social Anxiety Scale.
AASP: Adolescent/Adult Sensory Profile.
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FIGURE 22.4 (a) Within‑subject sum of the self‑confidence ratings on Days 1 
and 2; (b) Within‑subject difference in the self‑confidence ratings between Days 
1 and 2 [40].
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Figure  22.5 shows the within‑subject summation of the changes in 
the salivary cortisol levels on Days 1 and 2 for each sampling point (i.e., 
S2, S3, and S4) within each group. There were no carryover effects in 
any of the sampling points (S2/S1: t(21.4) = 1.34, p = 0.19, r = 0.28; S3/S1: 
t(18.4) = 1.17, p = 0.26, r = 0.26; and S4/S1: t(14.9) = 1.74, p = 0.10, r = 0.41). 
We further evaluated the treatment effect for all the sampling points by 
considering the differences in the changes in the salivary cortisol levels 
between Days 1 and 2 for both groups. We found significant differences 
between participants in the Hugvie and Phone sessions across all the sam‑
pling points (S2/S1: t(22.0) = −3.14, p = 0.05, r = 0.56; S3/S1: t(17.1) = −3.04, 
p = 0.01, r = 0.59; and S4/S1: t(16.9) = −3.82, p = 0.01, r = 0.68). Figure 22.6 
shows the within‑subject differences in the changes in salivary cortisol 
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FIGURE 22.5 Within‑subject sums of changes in salivary cortisol levels on Days 
1 and 2 [40].
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FIGURE  22.6 Within‑subject differences in changes in salivary cortisol levels 
between Days 1 and 2: Group 1 participants called a stranger on phone while hugging 
a Hugvie on Day 1, followed by a phone call without it (only using a mobile phone) on 
Day 2. Group 2 participants followed opposite conditions on both days [40].
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levels between Days 1 and 2 for each sampling point within each group. 
Comprehensive details regarding the participants’ confidence ratings 
after the conversations and the changes in the cortisol levels are provided 
in Table 22.2.

22.4 CONCLUSION AND DISCUSSION
In this section, we explored the potential advantages of employing a hug‑
gable pillow called Hugvie during phone conversations with unfamiliar 
individuals among young ASD adults. Our findings revealed that using 
Hugvie significantly mitigated their stress during the phone interac‑
tions, showing reduced cortisol levels in the participants’ saliva across 
all the sampling instances. We also observed a marked enhancement in 
 self‑confidence among those who engaged with Hugvie in contrast to those 
who just relied on a mobile phone. These outcomes suggest that incorpo‑
rating Hugvie into the conversations alleviated stress and enhanced their 
self‑confidence. Consequently, our study underscores the potential ben‑
efits of using Hugvie in interactions with unfamiliar individuals, high‑
lighting the significance of tactile stimulation for young adults with ASD 
in communicative contexts.

TABLE 22.2 Means and Standard Errors of Mean (SEM) of the 
Confidence Rating Scale after the Phone Call and Changes in Cortisol 
Levels in Hugvie Users and Only‑Mobile‑Phone Users in Group 1 and 
Group 2

Group

Day
Day 1 Day 2
Mean (SEM) Mean (SEM)

Self‑confidence
Group 1 4.54 (1.05) 3.77 (1.17)
Group 2 4.27 (0.38) 4.91 (0.37)

Change in cortisol level S2/S1
Group 1 0.87 (0.10) 1.36 (0.18)
Group 2 1.03 (0.14) 0.80 (0.10)

Change in cortisol level S3/S1
Group 1 0.94 (0.09) 1.29 (0.22)
Group 2 1.12 (0.10) 0.75 (0.08)

Change in cortisol level S4/S1
Group 1 0.87 (0.11) 1.43 (0.24)
Group 2 1.00 (0.08) 0.72 (0.06)
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We objectively evaluated the self‑confidence levels of our young adult 
participants by analyzing their salivary cortisol levels. The physiological 
arousal in response to social engagement is markedly elevated in ASD 
individuals compared to the general populace [32–34], and there is an 
approximate 20‑minute time lag between an event’s occurrence and the 
detection of correlated changes in salivary cortisol [29]. Our findings 
revealed significant changes in cortisol responses between those who 
interacted with a Hugvie and those who just used a mobile phone across 
all saliva‑sampling intervals and measurements (S2/S1, S3/S1, and S4/S1). 
These outcomes suggest that embracing Hugvie mitigates stress following 
a phone conversation with an unfamiliar individual.

In touch interactions, the literature distinguishes between active and 
passive touch [35,36]. The latter entails the application of a tactile stimu‑
lus to the skin without a voluntary movement, while active touch involves 
an intentional movement to seek a tactile stimulus, thereby integrat‑
ing tactile and proprioceptive information generated by the movement. 
Individuals tend to exhibit hypersensitivity and an inability to concen‑
trate on the properties of the stimuli when they are touched passively [37]. 
Hugvie, on the other hand, encourages active touch. By enthusiastically 
engaging with it, ASD individuals can attune to its properties and achieve 
comfort. This observation leads us to posit that it is such active engage‑
ment with Hugvie, rather than its passive touch, that contributed to our 
outcomes in this study.

Note that ASD individuals often exhibit pronounced variability in their 
preferences for certain textures, as compared to those with typical devel‑
opment [38]. This observation aligns with the broader understanding that 
ASD individuals tend to have strong inclinations and aversions [39]. In the 
context of our study, we operated under the assumption that the texture 
of Hugvie would align with the preferences of our participants. We posit 
that Hugvie’s potential as a supportive tool might be further enhanced 
and refined by pursuing an ideal texture that resonates with the unique 
sensory needs of ASD individuals.
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23.1 INTRODUCTION
A feeling of cuteness is one essential factor in promoting people’s 
 positive emotions and their behavioral changes [1–5]. In the context of 
human–robot interaction, the importance of the concept of cuteness has 
been broadly investigated [6,7]. In human–robot interaction studies, the 
concept of kawaii (a Japanese word that means “cute” [5,8]) is typically 
addressed in two distinct ways: (1) accentuating the perceived feelings 
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of kawaii through a robot’s appearance and (2) expressing this feeling 
to others by actions. The design and appearance of these commercial 
robots reflect the positive connotations of kawaii, a critical element in 
Japan’s commercial and pop culture landscape [9,10]. While the first 
approach has been widely employed in consumer robotics, including 
Paro, LOVOT, and Robohon, the second approach has been less thor‑
oughly explored.

The baby schema [11,12], a well‑known concept in kawaii or cute con‑
texts, has also been adopted in existing products and social robot design‑
ing in academia [13]. However, its focus is predominantly on appearance 
rather than behavior. In contrast, research remains limited on designing 
behaviors that convey a sense of kawaii. A previous study investigated 
potential locomotion behaviors that express kawaii feelings with a mobile 
robot called a Roomba [14].

Like these previous studies that investigated the design of robot behav‑
iors to convey the feeling of kawaii, we are also interested in the behav‑
ior design of robots for increasing and conveying feelings of kawaii. To 
achieve such behavior, we focus on a possible role for social robots in real 
environments. We believe that social robots, like sales clerks in a shop‑
ping mall, will recommend products in the near future by emphasizing 
the taste of food, the utility of gadgets, the affordability of items, and the 
cuteness of dolls [15–17]. In such a context, to foster natural and smooth 
interactions with people, affective, social robots capable of emotional 
expressions must be designed [18–20]. As an example, a study examined 
the relationship between people’s attributions of different emotions to 
robots and the latter’s anthropomorphism [21]. Expressing kawaii feel‑
ings, along with other affective and emotional behaviors, positively influ‑
enced the perceived anthropomorphism of robots and the impressions 
they made on people [22,23]. This suggests that expressing kawaii feelings 
is an essential function for social robots that interact with humans in 
actual typical environments.

Focusing on the previously proposed social effects concept of a “kawaii 
triangle” [8], we aim to highlight the kawaii feelings toward objects 
through robots. This concept is illustrated when person X sees person Y’s 
smile in response to her kawaii feeling toward an item (e.g., a penguin), 
and she then develops a positive impression of both person Y and the pen‑
guin. Person X’s expression of kawaii feelings can also enhance person 
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Y’s kawaii feelings. With this in mind, we hypothesized that an  observer’s 
kawaii feelings toward both a social robot and a specific item will be 
heightened if the social robot displays a stronger expression of kawaii feel‑
ings toward that specific item.

In this study, we explored the impact of a social robot’s touching and 
exaggerated behaviors on an observer’s perception of kawaii, because a 
touching behavior is a typical approaching behavior caused by a feeling of 
kawaii [8]. Based on the kawaii‑triangle concept, we hypothesized that an 
observer will perceive that a kawaii feeling from a robot toward an object is 
strengthened when the robot touched it (Figure 23.1), i.e., approaching it, 
leading to increased kawaii feelings in the observer for both the object and 
the robot. Moreover, previous studies identified “cute aggression” as a rela‑
tionship between aggressive behaviors and strong kawaii feelings [24,25]. 
Consequently, we also hypothesize that participants will experience stron‑
ger kawaii feelings toward both the robot and the object if a social robot 
exhibits exaggerated touching behavior.

To better understand the impact of social robot behavior on an observ‑
er’s perception of kawaii feelings and strengthen the design of engaging and 

FIGURE 23.1 Robot explains a doll with a touching behavior.
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emotionally expressive robots, we conducted Experiment I with a robot 
named Pepper and a Pepper doll as objects and two explanatory behaviors 
(touch factors: touch and no‑touch) and two action types (motion factors: 
normal and emphasis) to address the following research questions:

Research question 1: Does observing a robot’s touching behavior 
heighten the perceived kawaii feelings of the robot toward the object, and 
does this observation also strengthen the observer’s kawaii feelings for the 
robot and the object?

Research question 2: Does exaggerated explanatory behavior enhance 
the observer’s perception of the robot’s kawaii feelings toward the object 
and elicit a stronger kawaii response from the observer to both the object 
and the robot?

Note that this chapter is modified based on our previous work [26], 
edited to be comprehensive and fit with the context of this book.

23.2 MATERIALS AND METHODS OF EXPERIMENT
We explored the potential impact of observing a robot’s touching behav‑
iors and its demonstration of cute aggression on the observer’s perception 
of the robot’s feelings of kawaii toward an object. We also examined the 
influence of these behaviors on the observer’s own kawaii feelings toward 
the robot and an object. This study received approval from the ATR Review 
Board Ethics Committee (20–501–4).

23.2.1 Robot, Task, and Environment

We chose Pepper for our experiment. Standing 121 cm tall, Pepper has 20 
degrees of freedom (DOFs), including two in its head, six in each arm, and 
six in its lower body. It interacted with a 28‑cm tall doll that resembled 
Pepper itself. We positioned the doll between Pepper and the participant 
and placed it on a 65 cm stand to equalize their heights.

Pepper introduced itself and explained the doll’s four characteristics: cos‑
tume, tactile sensation, shape, and facial design. The robot’s speech for each 
characteristic is as follow: “Unlike me, this Pepper wears a tuxedo. Very 
stylish.” (Costume), “It feels fluffier and cuddlier than me.” (Tactile sensa‑
tion), “Although I don’t really think I’m fat, this doll does resemble me.” 
(Shape), and “I like its big face and round eyes.” (Facial design). Through 
this setup, we assessed how its touching behaviors and its manifestation of 
a cute aggression design impacted the observer’s perception of kawaii.
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23.2.2 Conditions

We adopted a within‑subjects experimental design. Each participant was 
engaged in four trials, encompassing two touch conditions (touch and 
no‑touch) and two motion conditions (normal and emphasis). To miti‑
gate any potential impact of the order effects, we counterbalanced the 
sequences of these experimental conditions.

23.2.2.1 Touch Factor
In the touch condition, we illustrated different aspects of the doll described 
above by developing four specific actions: touching the doll’s body (to convey 
costume details), stroking its head (to express tactile sensation), touching its 
feet (to indicate shape), and squeezing its cheeks (to illustrate facial design).

For the no‑touch condition, we designed four alternate actions, which 
involved the robot spreading its hands around the doll’s body, head, and 
feet without physical contact. We based this design on previous studies that 
highlighted the effectiveness of deictic and iconic gestures in tasks involving 
information provision [27–30]. These hand motions depicted the doll’s shape 
and drew the observer’s attention to the parts being described.

23.2.2.2 Motion Factor
In designing the motion factor, we had two conditions: normal and empha‑
sized. To settle upon an appropriate speed for the normal condition, we 
asked participants in a preliminary study to interact with the doll and freely 
express their feelings of kawaii. Based on their actions, which included 
behaviors like stroking, squeezing, and touching, we adjusted the robot’s 
speed to mimic these human behaviors. We, however, had to make heuris‑
tic adjustments due to the physical differences between humans and robots.

For the emphasized condition, we chose a motion speed three times 
faster than normal speed, based on heuristic adjustments and multiple 
discussions among the authors. Despite previous studies indicating the 
effectiveness of enhancing pitch for information delivery tasks [29,30], we 
concentrated on the robot’s gestures, specifically its touch behavior and 
style, when expressing feelings of kawaii. This decision was guided by our 
focus on investigating the concept of cute aggression rather than the com‑
bined effects of gestures and speech.

23.2.3 Measurement

Our study employed a two‑item questionnaire to measure the feelings of 
kawaii: (1) the degree of kawaii and (2) the degree of wanting to approach. 
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We chose these specific items based on an existing research [5,8] that 
reported a positive correlation between feelings of kawaii and a motivation 
to approach. These items were measured across three targets: the robot’s 
feelings toward the doll, the participant’s feelings toward the doll, and the 
participant’s feelings toward the robot.

In addition to the feelings of kawaii, we also used a questionnaire to 
evaluate the impressions of the robot’s presentation: the quality of the pre‑
sentation and the naturalness of the robot’s motions. All responses were 
gathered using a seven‑point response format, where 1 signified a negative 
response and 7 indicated a positive response. Participants were also given 
an open‑ended response form for additional feedback.

23.2.4 Procedure

After our participants gave written consent, we led them through the 
experiment’s procedure and requested that they envision a scenario in 
which a shopkeeper was recommending a doll. In each session, the robot 
performed a standardized sequence of actions, where only the touch 
behaviors and their motion styles differed between conditions. In each ses‑
sion, the robot initiated the interaction with a greeting, described the doll, 
and concluded the dialogue. After every session, participants filled out a 
questionnaire, providing feedback and impressions.

23.2.5 Participants

We recruited a diverse group of 42 participants for the experiment, with an 
even gender split and ages ranging from 21 to 49 (average age: 37.83 years, 
SD: 7.92).

23.3 RESULT AND DISCUSSION
23.3.1 Questionnaire Results

Figures  23.2–23.5 display the results of a two‑way repeated ANOVA, 
including averages and standard errors (SE) for the perceived feelings of 
kawaii and wanting to approach, the robot’s feeling toward the doll, the 
participant’s feeling toward the robot, and the participant’s feeling toward 
the doll. Given the large number of combinations, this section only dis‑
cusses the parts where significant differences emerged in the analysis.

The analysis results of the perceived robot’s feelings of kawaii and want‑
ing to approach the doll only showed significant differences in the touch 
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factor (Figure 23.2). The analysis results of the perceived participant’s feel‑
ings of kawaii and wanting to approach the robot did not show significant 
differences in any of the factors (Figure 23.3). The analysis results of the 
perceived participant’s feelings of kawaii and wanting to approach the doll 
showed significant differences in all of the factors (Figure 23.4). For the 
kawaii feelings, the simple main effects showed significant differences: 
touch > no‑touch, p < 0.001 in the normal condition, and emphasized > nor‑
mal, p < 0.001 in the no‑touch condition. For wanting to approach, the 
simple main effects showed significant differences: touch > no‑touch, 
p < 0.001 in the normal condition, and emphasized > normal, p < 0.001 in 

***

***:p < 0.001

**

**:p < 0.01

FIGURE 23.2 Perceived robot’s feeling of kawaii and wanting to approach the doll.

FIGURE 23.3 Perceived participant’s feeling of kawaii and wanting to approach 
the robot.
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the no‑touch condition. The analysis results of the participants’ feelings 
about a good description and the naturalness of all the motions showed sig‑
nificant differences in the touch factor (Figure 23.5).

23.3.2 Summary of Questionnaire Analysis

Our questionnaire analysis summary yielded several insights. The robot’s 
touching behavior elicited stronger feelings of kawaii and a higher degree 
of wanting to approach the doll compared to the non‑touching behavior. 
It also enhanced the robot’s impression toward the doll and outperformed 
the normal non‑touching style. Moreover, the touch behavior resulted in a 
more favorable evaluation of the robot’s explanation. However, the robot’s 

*

*:p < 0.05

*

*:p < 0.05, **:p < 0.01

** **

FIGURE  23.5 Impressions of robot’s presentation and naturalness toward 
motions.

***

***:p < 0.001

***

***

***:p < 0.001

***

FIGURE 23.4 Perceived participant’s feeling of kawaii and wanting to approach 
the doll.
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touch behavior did not amplify the participants’ feeling of kawaii or their 
degree of wanting to approach the robot compared to the robot’s no‑touch 
behavior in the normal style. This partially supports research question 1;  
while the touching behavior enhanced the robot’s and the observers’ 
kawaii feelings toward the object, it did not affect the observer’s kawaii 
feelings toward the robot.

Additionally, the emphasis style showed no notable effect on the touch 
behavior. Therefore, the findings did not support research question 2; 
exaggerated explanatory behaviors did not intensify the robot’s kawaii 
feelings toward the object. However, the emphasis style did yield results 
in the no‑touch condition. Compared to the normal style, the robot’s 
no‑touch behavior in the emphasized style increased the kawaii feeling 
and the degree of wanting to approach the doll and the participants’ kawaii 
feelings and motivation to the degree of wanting to approach the doll.

23.3.3 Limitations

Our study is limited in the following ways. It exclusively used a specific 
robot (Pepper), focused on a single emotion (kawaii), and employed heu‑
ristic parameters for designing behaviors. Ironically, these limitations also 
open avenues for future research. Different robots, a variety of emotions, 
and unique parameters can be explored in the future to better understand 
the effects of touch behavior. For example, using quite human‑like appear‑
ance robots [31,32], different characterized robots [33,34], and machine‑like 
robots [35] would enable us to investigate the effects of appearances in the 
context of the perceived feelings of kawaii in information‑providing tasks. 
In addition, the hardware limitations of the robot added another layer of 
complexity as it was challenging to design strong aggressive behaviors 
akin to those observed in humans. Past studies showed that touch char‑
acteristics are essential to express different emotions by touch interaction 
[36–39]; therefore, showing different kinds of touch behaviors would have 
various effects on perceived impressions.

Another possible future work is to investigate the effects of direct touch 
interaction between humans and robots on the perceived feelings of kawaii. 
Past studies reported that active touch interaction from robots to people 
showed several behavior‑change effects and provided positive effects [40–42]. 
Since touch interaction from people to robots also has positive effects on stress 
buffering [43], direct touch interaction may have influenced the perceived feel‑
ings of kawaii. Our work sets the stage for future investigations into kawaii 
behavior designs. Researchers aiming to create kawaii expressions can use our 
insights as a fundamental starting point.
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23.4 CONCLUSION
We investigated the impact of a presenter’s touch behavior on an object and 
the associated motion styles for enhancing the perceived feeling of kawaii 
and the overall impression of a presentation in an information‑providing 
context. Our results revealed that when participants observed a presenter’s 
touch behaviors, their perceived feelings of kawaii and the degree of want‑
ing to approach the object increased compared to when no touch behav‑
iors were present. Additionally, the presenter’s perceived impression of 
the object improved significantly when touch behaviors were employed, 
as opposed to the normal non‑touching style without any notable conse‑
quences for the presenters themselves. These results demonstrate the effec‑
tiveness of incorporating touch behaviors in conveying and amplifying 
the perceived feelings of kawaii for specific objects, a strategy that can be 
applied to robot presenters.
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