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Preface to the Fifth Edition

In the Preface to the first edition of this book, published over forty years ago in 1982, we
wrote that our aim was to help the reader to acquire a ‘reasonable understanding of gauge
theories that are being tested by contemporary experiments in high-energy physics’; and
we stressed that our approach was intended to be both practical and accessible.

That first edition ran to just 341 pages. Subsequent editions saw successive enlarge-
ments, motivated both by experimental advances and by an ongoing need to provide an
accessible basis for their theoretical understanding. Thus, shortly after the appearance of
the first edition, a series of major discoveries at the CERN p̄p collider confirmed the exis-
tence of the W and Z bosons, with properties predicted by the Glashow-Salam-Weinberg
electroweak gauge theory; and also provided further support for quantum chromodynamics,
or QCD. The second edition (1989) included an extended discussion of these developments.
It also contained a significant new theoretical component — an elementary introduction to
quantum field theory (qft). This was motivated partly by the undeniable fact that qft lies
at the heart of the twentieth-century answer to all those ancient questions concerning the
nature of matter and force, and is the language of the Standard Model; and partly with
an eye on the increasing precision of experiments, which require the inclusion of radiative
corrections for their theoretical interpretation.

Indeed, experiments at LEP and other laboratories were soon precise enough to test the
Standard Model beyond the first order in perturbation theory (‘tree level’), being sensitive
to higher-order effects (‘loops’). In response, we decided it was appropriate to include the
basics of ‘one-loop physics’. Together with the existing material on relativistic quantum
mechanics, and on the Abelian gauge theory QED, this comprised volume 1 (2003) of our
two-volume third edition. The non-Abelian gauge theories of the Standard Model, QCD
and the electroweak theory, formed the core of volume 2 (2004). The progress of research
on QCD, both theoretical and experimental, required new chapters on lattice quantum field
theory, and on the renormalization group. The discussion of the central topic of spontaneous
symmetry breaking was extended, in particular so as to include chiral symmetry breaking.
In these theory additions, our aim was to give a self-contained introduction, with enough
content to provide readers with access to more advanced treatments.

New experimental results dictated the principal new additions in volume 2 of the fourth
edition (2012) — namely, in the areas of CP violation and neutrino oscillations. We were
able to conclude volume 2 with an introductory discussion of the historic 2012 discovery of a
boson which seemed very likely to be the Higgs boson of the Standard Model. In volume 1 of
the fourth edition, we added (perhaps belatedly) a new chapter on Lorentz transformations
and discrete symmetries. We also introduced Weyl and Majorana fermions.

Now, more than a decade after the fourth edition, the Standard Model has been subjected
to ever more precise experimental tests, which it has so far withstood successfully. While no
major new discoveries have been reported, the wealth of new data strongly suggested the
need for a new edition. We thank our editor, Rebecca Hodges-Davies, and the reviewers for
enthusiastically supporting our proposal. The most substantial updates naturally appear
in volume 2, as will be detailed in the Preface to that volume. Volume 1, meanwhile, sees

xiii
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little change, apart from minor improvements in the text, and some experimental updates,
including the latest (2023) news about the muon g − 2 situation.
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1

The Particles and Forces of the Standard Model

1.1 Introduction: the Standard Model

The traditional goal of particle physics has been to identify what appear to be structureless
units of matter and to understand the nature of the forces acting between them; all other
entities are then to be successively constructed as composites of these elementary building
blocks. The enterprise has a two-fold aspect: matter on the one hand, forces on the other. The
expectation is that the smallest units of matter should interact in the simplest way, or that
there is a deep connection between the basic units of matter and the basic forces. The joint
matter/force nature of the enquiry is perfectly illustrated by Thomson’s discovery of the
electron and Maxwell’s theory of the electromagnetic field, which together mark the birth of
modern particle physics. The electron was recognized both as the ‘particle of electricity’—or
as we might now say, as an elementary source of the electromagnetic field, with its motion
constituting an electromagnetic current—and also as an important constituent of matter.
In retrospect, the story of particle physics over the subsequent one hundred years or so has
consisted of the discovery and study of two new (non-electromagnetic) forces—the weak
and the strong forces—and in the search for ‘electron-figures’ to serve both as constituents
of the new layers of matter which were uncovered (first nuclei and then hadrons) and also
as sources of the new force fields. In the last quarter of the twentieth century, this effort
culminated in decisive progress: the identification of a collection of matter units which are
indeed analogous to the electron, and the highly convincing experimental verification of
theories of the associated strong and weak force fields, which incorporate and generalize in
a beautiful way the original electron/electromagnetic field relationship. These theories are
collectively called ‘the Standard Model’ (or SM for short), to which this book is intended
as an elementary introduction.

In brief, the picture is as follows. The matter units are fermions, with spin-12 (in units of
�). They are of two types, leptons and quarks. Both are structureless at the smallest distances
currently probed by the highest-energy accelerators. The leptons are generalizations of the
electron, the term denoting particles which, if charged, interact both electromagnetically and
weakly, and if neutral, only weakly. By contrast, the quarks—which are the constituents
of hadrons, and thence of nuclei—interact via all three interactions, strong, electromag-
netic and weak. The weak and electromagnetic interactions of both quarks and leptons
are described in a (partially) unified way by the electroweak theory of Glashow, Salam,
and Weinberg (GSW), which is a generalization of quantum electrodynamics or QED; the
strong interactions of quarks are described by quantum chromodynamics or QCD, which is
also analogous to QED. The similarity with QED lies in the fact that all three interactions
are types of gauge theories, though realized in different ways. In the first volume of this
book, we will get as far as QED; QCD and the electroweak theory are treated in volume 2.

The reader will have noticed that the most venerable force of all—gravity—is absent
from our story. In practical terms this is quite reasonable, since its effect is many orders
of magnitude smaller than even the weak force, at least until the interparticle separation
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4 The Particles and Forces of the Standard Model

reaches distances far smaller than those we shall be discussing. Conceptually also, gravity
still seems to be somewhat distinct from the other forces which, as we have already indi-
cated, are encouragingly similar. There are no particular fermionic sources carrying ‘gravity
charges’: it seems that all matter gravitates. This of course was a motivation for Einstein’s
geometrical approach to gravity. Despite the lingering promise of string theory (Green et
al. 1987, Polchinski 1998, Zwiebach 2004), it is fair to say that the vision of the unification
of all the forces, which possessed Einstein, is still some way from realization. Gravitational
interactions are not part of the SM.

This book is not intended as a completely self-contained textbook on particle physics,
which would survey the broad range of observed phenomena and outline the main steps by
which the picture described here has come to be accepted. For this we must refer the reader
to other sources (e.g. Perkins 2000, Bettini 2008, Thomson 2013). We proceed with a brief
review of the matter (fermionic) content of the SM.

1.2 The fermions of the Standard Model

1.2.1 Leptons

Forty years after Thomson’s discovery of the electron, the first member of another generation
of leptons (as it turned out)—the muon—was found independently by Street and Stevenson
(1937) and by Anderson and Neddermeyer (1937). Following the convention for the electron,
the μ− is the particle and the μ+ the anti-particle. At first, the muon was identified with
the particle postulated by Yukawa only two years earlier (1935) as the field quantum of the
‘strong nuclear force field’, the exchange of which between two nucleons would account for
their interaction (see section 1.3.2). In particular, its mass (105.7 MeV) was nicely within the
range predicted by Yukawa. However, experiments by Conversi et al. (1947) established that
the muon could not be Yukawa’s quantum since it did not interact strongly; it was therefore
a lepton. The μ− seemed to behave in exactly the same way as the electron, interacting only
electromagnetically and weakly, with interaction strengths identical to those of an electron.

In 1975 Perl et al. (1975) discovered yet another ‘replicant’ electron, the τ− with a
mass of 1.78 GeV. Once again, the weak and electromagnetic interactions of the τ− (τ+)
appeared to be identical to those of the e− (e+).

The SM assumes that the three different charged leptons have identical electroweak
gauge interactions. Measurements of a wide range of decays have shown that the results are
consistent with this assumption of lepton universality. However, there have been indications
more recently that this assumption may not be exact. One concerns the decays of b quarks,
where the LHCb detector at CERN reported a difference, at the level of 3.1 σ, between
certain branching ratios to muon pairs and to electron pairs (Aaij et al. 2022). Another
possible universality violation involves the anomalous magnetic moment of the muon, for
which a measurement at FNAL (B. Abi et al. 2021) finds a discrepancy at the level of 4.2
σ with the prediction of the SM. We shall discuss the second of these (the muon g − 2
anomaly) further in section 11.7.

In contrast, the Yukawa interactions between the Higgs boson and the fermions (see
section 1.4.1) are not governed by gauge symmetry and are proportional to the fermion
masses, which of course are different (indeed strikingly so). This part of the SM therefore
violates lepton universality.

At this stage one might well wonder whether we are faced with a ‘lepton spectroscopy’,
of which the e−, μ− and τ− are but the first three states. Yet this seems not to be the
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correct interpretation. First, no other such states have (so far) been seen. Second, all these
leptons have the same spin ( 12 ), which is certainly quite unlike any conventional excitation
spectrum. And third, no γ-transitions are observed to occur between the states, though this
would normally be expected. For example, the branching fraction for the process

μ− → e− + γ (not observed) (1.1)

is currently quoted as less than 4.2 × 10−13 at the 90% confidence level (Workman et al.
2022). Similarly, there are (much less stringent) limits on τ− → μ− + γ and τ− → e− + γ.

If the e− and μ− states in (1.1) were, in fact, the ground and first excited states of some
composite system, the decay process (1.1) would be expected to occur as an electromagnetic
transition, with a relatively high probability because of the large energy release. Yet the
experimental upper limit on the rate is very tiny. In the absence of any mechanism to explain
this, one systematizes the situation, empirically, by postulating the existence of a selection
rule forbidding the decay (1.1). In taking this step, it is important to realize that ‘absolute
forbidden-ness’ can never be established experimentally: all that can be done is to place a
(very small) upper limit on the branching fraction to the ‘forbidden’ channel, as here. The
possibility will always remain open that future, more sensitive, experiments will reveal that
some processes, assumed to be forbidden, are in fact simply extremely rare.

Of course, such a proposed selection rule would have no physical content if it only applied
to the one process (1.1), but it turns out to be generally true, applying not only to the
electromagnetic interaction of the charged leptons, but to their weak interactions also. The
upshot is that we can consistently account for observations (and non-observations) involving
e’s, μ’s and τ ’s by assigning to each a new additive quantum number (called ‘lepton flavour’)
which is assumed to be conserved. Thus we have electron flavour Le such that Le(e

−) = 1
and Le(e

+) = −1; muon flavour Lμ such that Lμ(μ
−) = 1 and Lμ(μ

+) = −1; and tau
flavour Lτ such that Lτ (τ

−) = 1 and Lτ (τ
+) = −1. Each is postulated to be conserved in

all leptonic processes. So (1.1) is then forbidden: the left-hand side has Le = 0 and Lμ = 1,
while the right-hand side has Le = 1 and Lμ = 0.

The electromagnetic interactions of the mu and the tau leptons are the same as for the
electron. In weak interactions, each charged lepton (e, μ, τ) is accompanied by its ‘own’ neu-
tral partner, a neutrino. The one emitted with the e− in β-decay was originally introduced
by Pauli in 1930, as a ‘desperate remedy’ to save the conservation laws of four-momentum
and angular momentum. In the SM, the three neutrinos are assigned lepton flavour quan-
tum numbers in such a way as to conserve each lepton flavour separately. Thus we assign
Le = −1, Lμ = 0, and Lτ = 0 to the neutrino emitted in neutron β-decay

n → p + e− + ν̄e, (1.2)

since Le = 0 in the initial state and Le(e
−) = +1; so the neutrino in (1.2) is an anti-neutrino

‘of electron type’ (or ‘of electron flavour’). The physical reality of the anti-neutrinos emitted
in nuclear β-decay was established by Reines and collaborators in 1956 (Cowan et al. 1956),
by observing that the anti-neutrinos from a nuclear reactor produced positrons via the
inverse β-process

ν̄e + p → n + e+. (1.3)

The neutrino partnering the μ− appears in the decay of the π−:

π− → μ− + ν̄μ (1.4)

where the ν̄μ is an anti-neutrino of muon type (Lμ(ν̄μ) = −1, Le(ν̄μ) = 0 = Lτ (ν̄μ)). How
do we know that ν̄μ and ν̄e are not the same? An important experiment by Danby et al.
(1962) provided evidence that they are not. They found that the neutrinos accompanying
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muons from π-decay always produced muons on interacting with matter, never electrons.
Thus, for example, the lepton flavour conserving reaction

ν̄μ + p → μ+ + n (1.5)

was observed, but the lepton flavour violating reaction

ν̄μ + p → e+ + n (not observed) (1.6)

was not. As with (1.1), ‘non-observation’ of course means, in practice, an upper limit on
the cross section. Both types of neutrino occur in the β-decay of the muon itself:

μ− → νμ + e− + ν̄e, (1.7)

in which Lμ = 1 is initially carried by the μ− and finally by the νμ, and the Le’s of the e−

and ν̄e cancel each other out.
In the same way, the ντ is associated with the τ−, and we have arrived at three genera-

tions of charged and neutral lepton doublets :

(νe, e
−) (νμ, μ

−) and (ντ , τ
−) (1.8)

together with their anti-particles.
We should at this point note that another type of weak interaction is known, in which—

for example—the ν̄μ in (1.5) scatters elastically from the proton, instead of changing into a
μ+:

ν̄μ + p → ν̄μ + p. (1.9)

This is an example of what is called a ‘neutral current’ process, (1.5) being a ‘charged
current’ one. In terms of the Yukawa-like exchange mechanism for particle interactions, to
be described in the next section, (1.5) proceeds via the exchange of charged quanta (W±),
while in (1.9) a neutral quantum (Z0) is exchanged.

As well as their flavour, one other property of neutrinos is of great interest, namely their
mass. As originally postulated by Pauli, the neutrino emitted in β-decay had to have very
small mass because the maximum energy carried off by the e− in (1.2) was closely equal
to the difference in rest energies of the neutron and proton. It was subsequently widely
assumed (perhaps largely for simplicity) that all neutrinos were strictly massless, and it is
fair to say that the original SM made this assumption. Yet there is, in fact, no convincing
reason for this (as there is for the masslessness of the photon—see chapter 6), and there
is now clear evidence that neutrinos do indeed have very small, but non-zero, masses. It
turns out that the question of neutrino masslessness is directly connected to another one:
whether neutrino flavour is, in fact, conserved. If neutrinos are massless, as in the original
SM, neutrinos of different flavour cannot ‘mix’, in the sense of quantum-mechanical states;
but mixing can occur if neutrinos have mass. The phenomenon of neutrino flavour mixing
(or “neutrino oscillations”) is now well established, and will be discussed in chapter 21
in volume 2. In this book we shall simply regard non-zero neutrino masses as part of the
(updated) Standard Model. The SM leptons are listed in Table 1.1, along with some relevant
properties. The mass values are taken from Workman et al. 2022.

We now turn to the other fermions in the SM.

1.2.2 Quarks

Quarks are the constituents of hadrons in which they are bound by the strong QCD forces.
Hadrons with spins 1

2 ,
3
2 ,

5
2 , . . . (i.e. fermions) are baryons, those with spins 0, 1, 2, . . . (i.e.
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TABLE 1.1
Properties of SM leptons

Generation Particle Mass (MeV) Q/e Le Lμ Lτ

1 νe < 1.1× 10−6 0 1 0 0
e− 0.511 −1 1 0 0

2 νμ < 0.19 0 0 1 0
μ− 105.658 −1 0 1 0

3 ντ < 18.2 0 0 0 1
τ− 1777 −1 0 0 1

bosons) are mesons. Examples of baryons are nucleons (the neutron n and the proton p), and
hyperons such as Λ0 and the Σ and Ξ states. Evidence for the composite nature of hadrons
accumulated during the 1960s and 1970s. Elastic scattering of electrons from protons by
Hofstadter and co-workers (Hofstadter 1963) showed that the proton was not pointlike, but
had an approximately exponential distribution of charge with a root mean square radius of
about 0.8 fm. Much careful experimentation in the field of baryon and meson spectroscopy
revealed sequences of excited states, strongly reminiscent of those well-known in atomic and
nuclear physics.

The conclusion would now seem irresistible that such spectra should be interpreted as
the energy levels of systems of bound constituents. A specific proposal along these lines was
made in 1964 by Gell-Mann (1964) and Zweig (1964). Though based on somewhat different
(and much more fragmentary) evidence, their suggestion has turned out to be essentially
correct. They proposed that baryons contain three spin- 12 constituents called quarks (by
Gell-Mann), while mesons are quark-antiquark systems. One immediate consequence is that
quarks have fractional electromagnetic charge. For example, the proton has two quarks of
charge + 2

3 , called ‘up’ (u) quarks, and one quark of charge − 1
3 , the ‘down’ (d) quark. The

neutron has the combination ddu, while the π+ has one u and one anti-d (d̄ ) and so on.
Quite simple quantum-mechanical bound state quark models, based on these ideas, were

remarkably successful in accounting for the observed hadronic spectra. Nevertheless, many
physicists, in the 1960s and early 1970s, continued to regard quarks more as useful devices
for systematizing a mass of complicated data than as genuine items of physical reality. One
reason for this scepticism must now be confronted, for it constitutes a major new twist in
the story of the structure of matter.

Gell-Mann ended his 1964 paper with the remark: ‘A search for stable quarks of
charge− 1

3 or + 2
3 and/or stable di-quarks of charge − 2

3 or + 1
3 or + 4

3 at the highest energy
accelerators would help to reassure us of the non-existence of real quarks’. Indeed, with one
possible exception (La Rue et al. 1977, 1981), this ‘reassurance’ has been handsomely pro-
vided! Unlike the constituents of atoms and nuclei, quarks have not been observed as stable
isolated particles. When hadrons of the highest energies currently available are smashed
into each other, what is observed downstream is only lots more hadrons, not fractionally
charged quarks. The explanation for this novel behaviour of quarks is now believed to lie in
the nature of the interquark force (QCD). We shall briefly discuss this force in section 1.3.6,
and treat it in detail in volume 2. The consensus at present is that QCD does imply the
confinement of quarks—that is, they do not exist as isolated single particles1, only as groups
confined to hadronic volumes.

When Gell-Mann and Zweig made their proposal, three types of quark were enough
to account for the observed hadrons: in addition to the u and d quarks, the ‘strange’

1With the (fleeting) exception of the t quark, as we shall see in a moment.
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quark s was needed to describe the known strange particles such as the hyperon Λ0 (uds),
and the strange mesons like K0(ds̄). In 1964, Bjorken and Glashow (1964) discussed the
possible existence of a fourth quark on the basis of quark–lepton symmetry, but a strong
theoretical argument for the existence of the c-quark, within the framework of gauge theories
of electroweak interactions, was given by Glashow, Iliopoulos and Maiani (1970), as we shall
discuss in volume 2. They estimated that the c-quark mass should lie in the range 3–4 GeV.
Subsequently, Gaillard and Lee (1974) performed a full (one-loop) calculation in the then
newly-developed renormalizable electroweak theory, and predicted mc ≈ 1.5 GeV. The
prediction was spectacularly confirmed in November of the same year with the discovery
(Aubert et al. 1974, Augustin et al. 1974) of the J/ψ system, which was soon identified as a cc̄
composite (and dubbed “charmonium”), with a mass in the vicinity of 3 GeV. Subsequently,
mesons such as D0(cū) and D+(cd̄) carrying the c quark were identified (Goldhaber et al.
1976, Peruzzi et al. 1976), consolidating this identification.

The second generation of quarks was completed in 1974, with the two quark doublets
(u, d) and (c, s) in parallel with the lepton doublets (νe, e

−) and (νμ, μ
−). But even before

the discovery of the c quark, the possibility that a completely new third-generation quark
doublet might exist was raised in a remarkable paper by Kobayashi and Maskawa (1973).
Their analysis focused on the problem of incorporating the known violation ofCP symmetry
(the product2 of particle-antiparticle conjugation C and parity P) into the quark sector of
the renormalizable electroweak theory. CP-violation in the decays of neutral K-mesons had
been discovered by Christenson et al. (1964), and Kobayashi and Maskawa pointed out
that it was very difficult to construct a plausible model of CP-violation in weak transitions
of quarks with only two generations. They suggested, however, that CP-violation could
be naturally accommodated by extending the theory to three generations of quarks. Their
description of CP-violation thus entailed the very bold prediction of two entirely new and
undiscovered quarks, the (t, b) doublet, where t has charge 2

3 and b has charge − 1
3 .

In 1975, with the discovery of the τ− mentioned earlier, there was already evidence
for a third generation of leptons. The discovery of the b quark in 1977 resulted from the
observation of massive mesonic states generally known as Υ (‘upsilon’) (Herb et al. 1977,
Innes et al. 1977), which were identified as bb̄ composites. Subsequently, b-carrying mesons
were found. Finally, firm evidence for the expected t quark was obtained by the CDF and D0
collaborations at Fermilab in 1995 (Abe et al. 1995, Abachi et al. 1995). The full complement
of three generations of quark doublets is then

(u, d) (c, s) and (t, b) (1.10)

together with their antiparticles, in parallel with the three generations of lepton doublets
(1.8).

One particular feature of the t quark requires comment. Its mass is so large that, although
it decays weakly, the energy release is so great that its lifetime (τ ∼ 4×10−25 s) is some two
orders of magnitude shorter than typical strong interaction timescales; this means that it
decays before any t-carrying hadrons can be formed. Another way of seeing this is to consider
the distance a t quark can travel when produced, which will be of order cτ ∼ 10−16 m, at
which distances the QCD interactions will be relatively weak (see section 1.3.6). So when a
t quark is produced (in a p-p̄ collision, for example), it decays as a free (unbound) particle.
Its mass can be determined from a kinematic analysis of the decay products, but there are
subtle issues relating to the definition of the top quark mass when interpreting the results
of high precision data, as we shall discuss in section 22.7.3.

We must now discuss the quantum numbers carried by quarks. First of all, each quark
listed in (1.10) comes in three varieties, distinguished by a quantum number called ‘colour’.

2We shall discuss these symmetries in chapter 4.
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It is precisely this quantum number that underlies the dynamics of QCD (see section 1.3.6).
Colour, in fact, is a kind of generalized charge, for the strong QCD interactions. We shall
denote the three colours of a quark by ‘red’, ‘blue’ and ‘green’. Thus we have the triplet
(ur, ub, ug), and similarly for all the other quarks.

Secondly, quarks carry flavour quantum numbers, like the leptons. In the quark case,
they are as follows. The two quarks, which are familiar in ordinary matter, ‘u’ and ‘d’, are
an isospin doublet (see chapter 12 in volume 2) with T3=+1/2 for ‘u’ and T3 = −1/2 for
‘d’. The flavour of ‘s’ is strangeness, with the value S = −1. The flavour of ‘c’ is charm,
with value C = +1, that of ‘b’ is beauty with value B̃ = −1 (we use B̃ to distinguish it
from baryon number B), and the flavour of ‘t’ is T = +1. The convention is that the sign
of the flavour number is the same as that of the charge.

The strong and electromagnetic interactions of quarks are independent of quark flavour,
and depend only on the electromagnetic charge and the strong charge, respectively. This
means, in particular, that flavour cannot change in a strong interaction among hadrons—
that is, flavour is conserved in such interactions. For example, from a zero strangeness initial
state, the strong interaction can only produce pairs of strange particles, with cancelling
strangeness. This is the phenomenon of ‘associated production’, known since the early days
of strange particle physics in the 1950s. Similar rules hold for the other flavours: for example,
the t quark, once produced, cannot decay to a lighter quark via a strong interaction, since
this would violate T -conservation.

In weak interactions, by contrast, quark flavour is generally not conserved. For example,
in the semi-leptonic decay

Λ0(uds) → p(uud) + e− + ν̄e, (1.11)

an s quark changes into a u quark. The rather complicated flavour structure of weak in-
teractions, which remains an active field of study, will be reviewed when we come to the
GSW theory in volume 2. However, one very important, though technical, point must be
made about the weak interactions of quarks and leptons. It is natural to wonder whether a
new generation of quarks might appear, unaccompanied by the corresponding leptons—or
vice versa. Within the framework of the SM interactions, the answer is no. It turns out
that subtle quantum field theory effects called ‘anomalies’, to be discussed in chapter 18
of volume 2, would spoil the renormalizability of the weak interactions (see section 1.4.1),
unless there are equal numbers of quark and lepton generations. .

We end this section with some comments about the quark masses; the values listed
in Table 1.2 are those given in Workman et al. (2022). As we have already noted, the

TABLE 1.2
Properties of SM quarks.

Generation Particle Mass Q/e S C B̃ T

1 ur ub ug 2.16+0.49
−0.26 MeV 2/3 0 0 0 0

dr db dg 4.67+0.48
−0.17 MeV −1/3 0 0 0 0

2 cr cb cg 1.27 ±0.02 GeV 2/3 0 1 0 0

sr sb sg 93.4 +8.6
−3.4 MeV −1/3 −1 0 0 0

3 tr tb tg 172.69 ±0.30 GeV 2/3 0 0 0 1

br bb bg 4.18+0.03
−0.02GeV −1/3 0 0 −1 0
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t quark is the only one whose mass can be directly measured, because it decays as an
essentially free particle deep inside the hadronic volume. All the others are (it would appear)
permanently confined inside hadrons. It is therefore not immediately obvious how to define—
and measure—their masses. In a more familiar bound state problem, such as a nucleus,
the masses of the constituents are those we measure when they are free of the nuclear
binding forces—i.e. when they are far apart. For the QCD force, the situation is very
different. There it turns out that the force is very weak at short distances, a property called
asymptotic freedom—see section 1.3.6; this important property will be treated in section
15.3 of volume 2. We may think of the force as very roughly analogous to that of a spring
joining two constituents. To separate them, energy must be supplied to the system. So when
the constituents are no longer close, the energy of the system is greater than the sum of
the short distance (free) quark masses. In potential models (see section 1.3.6), the effect
is least pronounced for the “heavy” quarks (mq greater than about 1 GeV). For example,
the ground state of the Υ(bb̄) lies at about 9.46 GeV, which is about 1.5 GeV above the
value of 2mb as given in Table 1.2. For ψ(cc̄) the ground state is at about 3 GeV, somewhat
greater than 2mc. For the three lightest quarks, and especially for the u and d quarks, the
position is quite different: for example, the proton (uud) with a mass of 938 MeV is far more
massive than 2mu +md. Here the “spring” is responsible for about 300 MeV per quark.

While this picture is qualitatively useful, it is clearly model-dependent, as would be
even a more sophisticated quark model. To do the job properly, we have to go to the
actual QCD Lagrangian, and use it to calculate the hadron masses with the Lagrangian
masses as input. This can be done through a lattice simulation of the field theory, as will
be described in chapter 16 of volume 2. Independently, another handle on the Lagrangian
masses is provided by the fact that the QCD Lagrangian has an extra symmetry (“chiral
symmetry”) which is exact when the quark masses are zero. This is, in fact, an excellent
approximation for the u and d quarks, and a fair one for the s quark. The symmetry is,
however, dynamically (“spontaneously”) broken by QCD, in such a way as to generate
(in the case mu = md = 0) the nucleon mass entirely dynamically, along with a massless
pion. The small Lagrangian masses can then be treated perturbatively in a procedure called
“chiral perturbation theory”. These essential features of QCD will be treated in chapter 18
of volume 2. For the moment, we accept the values in Table 1.2, given in Workman et al.
(2022), which contains a review of quark masses.

1.3 Particle Interactions in the Standard Model

1.3.1 Classical and quantum fields

In the world of the classical physicist, matter and force were clearly separated. The nature of
matter was intuitive, based on everyday macroscopic experience; force, however, was more
problematical. Contact forces between bodies were easy to understand, but forces which
seemed capable of acting at a distance caused difficulties.

That gravity should be innate, inherent and essential to matter, so that one body
can act upon another at a distance, through a vacuum, without the mediation of
anything else, by and through which action and force may be conveyed from one
to the other, is to me so great an absurdity, that I believe no man who has in
philosophical matters a competent faculty of thinking can ever fall into it. (Letter
from Newton to Bentley)
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Newton could find no satisfactory mechanism or physical model, for the transmission of
the gravitational force between two distant bodies; but his dynamical equations provided
a powerful predictive framework, given the (unexplained) gravitational force law; and this
eventually satisfied most people.

The nineteen century saw the precise formulation of the more intricate force laws of
electromagnetism. Here too the distaste for action-at-a-distance theories led to numerous
mechanical or fluid mechanical models of the way electromagnetic forces (and light) are
transmitted. Maxwell made brilliant use of such models as he struggled to give physical
and mathematical substance to Faraday’s empirical ideas about lines of force. Maxwell’s
equations were indeed widely regarded as describing the mechanical motion of the ether—
an amazing medium, composed of vortices, gear wheels, idler wheels and so on. But in his
1864 paper, the third and final one of the series on lines of force and the electromagnetic
field, Maxwell himself appeared ready to throw away the mechanical scaffolding and let the
finished structure of the field equations stand on its own. Later these field equations were
derived from a Lagrangian (see chapter 7), and many physicists came to agree with Poincaré
that this ‘generalized mechanics’ was more satisfactory than a multitude of different ether
models; after all, the same mathematical equations can describe, when suitably interpreted,
systems of masses, springs and dampers, or of inductors, capacitors and resistors. With this
step, the concepts of mechanics were enlarged to include a new fundamental entity, the
electromagnetic field.

The action-at-a-distance dilemma was solved, since the electromagnetic field permeates
all of space surrounding charged or magnetic bodies, responds locally to them, and itself
acts on other distant bodies, propagating the action to them at the speed of light: for
Maxwell’s theory, besides unifying electricity and magnetism, also predicted the existence
of electromagnetic waves which should travel with the speed of light, as was confirmed by
Hertz in 1888. Indeed, light was a form of electromagnetic wave.

Maxwell published his equations for the dynamics of the electromagnetic field (Maxwell
1864) some forty years before Einstein’s 1905 paper introducing special relativity. But
Maxwell’s equations are fully consistent with relativity as they stand (see chapter 2), and
thus constitute the first relativistic (classical) field theory. The Maxwell Lagrangian lives
on, as part of QED.

It seems almost to be implied by the local field concept, and the desire to avoid action
at a distance, that the fundamental carriers of electricity should themselves be point-like,
so that the field does not, for example, have to interact with different parts of an electron
simultaneously. Thus the point-like nature of elementary matter units seems intuitively to
be tied to the local nature of the force field via which they interact.

Very soon after the successes of classical field physics, however, another world began
to make its appearance—the quantum one. First the photoelectric effect and then—much
later—the Compton effect showed unmistakeably that electromagnetic waves somehow also
had a particle-like aspect, the photon. At about the same time, the intuitive understanding
of the nature of matter began to fail as well: supposedly particle-like things, like electrons,
displayed wave-like properties (interference and diffraction). Thus the conceptual distinction
between matter and forces, or between particle and field, was no longer so clear. On the one
hand, electromagnetic forces, treated in terms of fields, now had a particle aspect; and on
the other hand, particles now had a wave-like or field aspect. ‘Electrons’, writes Feynman
(1965a) at the beginning of volume 3 of his Lectures on Physics, ‘behave just like light’.

How can we build a theory of electrons and photons which does justice to all the ‘point-
like’, ‘local’, ‘wave/particle’ ideas just discussed? Consider the apparently quite simple pro-
cess of spontaneous decay of an excited atomic state in which a photon is emitted:

A∗ → A+ γ. (1.12)
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Ordinary non-relativistic quantum mechanics cannot provide a first-principles account of
this process, because the degrees of freedom it normally discusses are those of the matter
units alone—that is, in this example, the electronic degrees of freedom. However, it is clear
that something has changed radically in the field degrees of freedom. On the left-hand side,
the matter is in an excited state and the electromagnetic field is somehow not manifest; on
the right, the matter has made a transition to a lower-energy state and the energy difference
has gone into creating a quantum of electromagnetic radiation. What is needed here is a
quantum theory of the electromagnetic field — a quantum field theory.

Quantum field theory — or qft for short — is the fundamental formal and conceptual
framework of the SM. An important purpose of this book is to make this core twentieth
century formalism more generally accessible. In chapter 5 we give a step-by-step introduc-
tion to qft. We shall see that a free classical field — which has infinitely many degrees of
freedom — can be thought of as mathematically analogous to a vibrating solid (which
has merely a very large number). The way this works mathematically is that the Fourier
components of the field act like independent harmonic oscillators, just like the vibrational
‘normal modes’ of the solid. When quantum mechanics is applied to this system, the energy
eigenstates of each oscillator are quantized in the familiar way, as (nr + 1/2)�ωr for each
oscillator of frequency ωr: we say that such states contain ‘nr quanta of frequency ωr’. The
state of the entire field is characterized by how many quanta of each frequency are present.
These ‘excitation quanta’ are the particle aspect of the field. In the ground state there are
no excitations present — no field quanta — and so that is the vacuum state of the field.

In the case of the electromagnetic field, these quanta are of course photons (for the
solid, they are phonons). In the process (1.12), the electromagnetic field was originally in
its ground (no photon) state, and was raised finally to an excited state by the transfer of
energy from the electronic degrees of freedom. The final excited field state is defined by the
presence of one quantum (photon) of the appropriate energy.

We obviously cannot stop here (‘Electrons behave just like light’). All the particles of
the SM must be described as excitation quanta of the corresponding quantum fields. But of
course Feynman was somewhat overstating the case. The quanta of the electromagnetic field
are bosons, and there is no limit on the number of them that can occupy a single quantum
state. By contrast, the quanta of the electron field, for example, must be fermions, obeying
the exclusion principle. In chapter 7, we shall see what modifications to the quantization
procedure this requires. We must also introduce interactions between the excitation quanta,
or equivalently between the quantum fields. This we do in chapter 6 for bosonic fields, and
in chapter 7 for the Dirac and Maxwell fields thereby arriving at QED, our first quantum
gauge field theory of the SM.

One reason the Lagrangian formulation of classical field (or particle) physics is so power-
ful is that symmetries can be efficiently incorporated, and their connection with conservation
laws easily exhibited. The same is even more true in qft. For example, only in qft can the
symmetry corresponding to electric charge conservation be simply understood. Indeed, all
the quantum gauge field theories of the SM are deeply related to symmetries, as will become
clear in the subsequent development.

In some cases, however, the symmetry—though manifest in the Lagrangian—is not vis-
ible in the usual empirical ways (conservation laws, particle multiplets and so on). Instead,
it is ‘spontaneously (or dynamically) broken’. This phenomenon plays a crucial role in both
QCD and the GSW theory. An aid to understanding it physically is provided by the analogy
between the vacuum state of an interacting qft and the ground state of an interacting quan-
tum many-body system—an insight due to Nambu (1960). We give an extended discussion
of spontaneously broken symmetry in Part 7 of volume 2. We shall see how the neutral
bosonic (Bogoliubov) superfluid and the charged fermionic (BCS) superconductor offer in-
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structive working models of dynamical symmetry breaking, relevant to chiral symmetry
breaking in QCD, and to the generation of gauge boson masses in the GSW theory.

The road ahead is a long one, and we begin our journey at a more descriptive and pictorial
level, making essential use of Yukawa’s remarkable insight into the quantum nature of force.
In due course, in chapter 6, we shall begin to see how qft supplies the precise mathematical
formulae associated with such pictures.

1.3.2 The Yukawa theory of force as virtual quantum exchange

Yukawa’s revolutionary paper (Yukawa 1935) proposed a theory of the strong interaction
between a proton and a neutron, and also considered its possible extension to neutron
β-decay. He built his theory by analogy with electromagnetism, postulating a new field of
force with an associated new field quantum, analogous to the photon. In doing so, he showed
with particular clarity how, in quantum field theory, particles interact by exchanging virtual
quanta, which mediate the force.

Before proceeding, we should emphasize that we are not presenting Yukawa’s ideas
as a viable candidate theory of strong and weak interactions. Crucially, Yukawa assumed
that the nucleons and his quantum (later identified with the pion) were point-like, but in
fact both nucleons and pions are quark composites with spatial extension. The true ‘strong’
interaction relates to the quarks, as we shall see in section 1.3.6. There are also other details
of his theory which were (we now know) mistaken, as we shall discuss. Yet his approach
was profound, and—as happens often in physics—even though the initial application was
ultimately superseded, the ideas have broad and lasting validity.

Yukawa began by considering what kind of static potential might describe the n–p
interaction. It was known that this interaction decreased rapidly for interparticle separation
r ≥ 2 fm. Hence, the potential could not be of coulombic type ∝ 1/r. Instead, Yukawa
postulated an n–p potential energy of the form

U(r) =
−g2N
4π

e−r/a

r
(1.13)

where ‘gN’ is a constant analogous to the electric charge e, r = |r| and ‘a’ is a range
parameter (∼ 2 fm). This static potential satisfies the equation(

∇2 − 1

a2

)
U(r) = g2Nδ(r) (1.14)

(see appendix G) showing that it may be interpreted as the mutual potential energy of one
point-like test nucleon of ‘strong charge’ gN due to the presence of another point-like nucleon
of equal charge gN at the origin, a distance r away. Equation (1.14) should be thought of
as a finite range analogue of Poisson’s equation in electrostatics (equation (G.3))

∇2V (r) = −ρ(r)/ε0 (1.15)

the delta function in (1.14) (see appendix E) expressing the fact that the ‘strong charge
density’ acting as the source of the field is all concentrated into a single point, at the origin.

Yukawa now sought to generalize (1.14) to the non-static case, so as to obtain a field
equation for U(r, t). For r �= 0, he proposed the free-space equation (we shall keep factors
of c and � explicit for the moment)(

∇2 − ∂2

c2∂t2
− 1

a2

)
U(r, t) = 0 (1.16)
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which is certainly relativistically invariant (see appendix D). Thus far, U is still a classical
field. Now Yukawa took the decisive step of treating U quantum mechanically, by looking
for a (de Broglie-type) propagating wave solution of (1.16), namely

U ∝ exp(ip · r/�− iEt/�). (1.17)

Inserting (1.17) into (1.16) one finds

E2

c2�2
=

p2

�2
+

1

a2
(1.18)

or, taking the positive square root,

E =

[
c2p2 +

c2�2

a2

]1/2
.

Comparing this with the standard E–p relation for a massive particle in special relativity
(appendix D) , the fundamental conclusion is reached that the quantum of the finite-range
force field U has a mass mU given by

m2
Uc

4 =
c2�2

a2
or mU =

�

ac
. (1.19)

This means that the range parameter in (1.13) is related to the mass of the quantum mU

by

a =
�

mUc
. (1.20)

Inserting a ≈ 2 fm gives mU ≈ 100 MeV, Yukawa’s famous prediction for the mass of the
nuclear force quantum.

Next, Yukawa envisaged that the U-quantum would be emitted in the transition n → p,
via a process analogous to (1.12):

n → p + U− (1.21)

where charge conservation determines the U− charge. Yet there is an obvious difference
between (1.21) and (1.12): (1.21) violates energy conservation since mn < mp + mU if
mU ≈ 100 MeV, so it cannot occur as a real emission process. However, Yukawa noted that
if (1.21) were combined with the inverse process

p + U− → n (1.22)

then an n–p interaction could take place by the mechanism shown in figure 1.1(a); namely,
by the emission and subsequent absorption—that is, by the exchange—of a U− quantum.
He also included the corresponding U+ exchange, where U+ is the anti-particle of the U−,
as shown in figure 1.1(b).

An energy-violating transition such as (1.21) is known as a ‘virtual’ transition in
quantum mechanics. Such transitions are routinely present in quantum-mechanical time-
dependent perturbation theory and can be understood in terms of an ‘energy–time uncer-
tainty relation’

ΔEΔt ≥ �/2. (1.23)

The relation (1.23) may be interpreted as follows (we abridge the careful discussion in
section 44 of Landau and Lifshitz (1977)). Imagine an ‘energy-measuring device’ set up to
measure the energy of a quantum system. To do this, the device must interact with the
quantum system for a certain length of time Δt. If the energy of a sequence of identically-
prepared quantum systems is measured, only in the limit Δt → ∞ will the same energy
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FIGURE 1.1
Yukawa’s single-U exchange mechanism for the n–p interaction. (a) U− exchange. (b) U+

exchange.

be obtained each time. For finite Δt, the measured energies will necessarily fluctuate by an
amount ΔE as given by (1.23); in particular, the shorter the time over which the energy
measurement takes place, the larger the fluctuations in the measured energy.

Wick (1938) applied (1.23) to Yukawa’s theory, and thereby shed new light on the
relation (1.20). Suppose a device is set up capable of checking to see whether energy is, in
fact, conserved while the U± crosses over in figure 1.1. The crossing time t must be at least
r/c, where r is the distance apart of the nucleons. However, the device must be capable of
operating on a time scale smaller than t (otherwise it will not be in a position to detect
the U±), but it need not be very much less than this. Thus the energy uncertainty in the
reading by the device will be3

ΔE ∼ �c

r
. (1.24)

As r decreases, the uncertainty ΔE in the measured energy increases. If we require ΔE =
mUc

2, then

r ∼ �

mUc
(1.25)

just as in (1.20). The ‘r’ in (1.25) is the extent of the separation allowed between the n and
the p, such that—in the time available—the U± can ‘borrow’ the necessary energy to come
into existence and cross from one to the other. In this sense, r is the effective range of the
associated force as in (1.20).

Despite the similarity to virtual intermediate states in ordinary quantum mechanics, the
Yukawa–Wick process is nevertheless truly revolutionary because it postulated an energy
fluctuation ΔE great enough to create an as yet unseen new particle, a new state of matter.

We proceed to explore further aspects of Yukawa’s force mechanism. The reader should
note that throughout the remainder of this book we shall generally (unless otherwise stated)
use units such that � = c = 1: see Appendix B.

1.3.3 The one-quantum exchange amplitude

Consider a particle, carrying ‘strong charge’ gN, being scattered by an infinitely massive
(static) point-like U-source also of ‘charge’ gN as pictured in figure 1.2. From the previous
section, we know that the potential energy in the Schrödinger equation for the scattered
particle is precisely the U(r) from (1.13). Treating this to its lowest order in U(r) (‘Born

3In this kind of argument, the ‘∼’ sign should be understood as meaning that numerical factors of order
1 (such as 2 or π) are not important. The coincidence between (1.25) and (1.20) should not be taken too
literally. Nevertheless, the physics of (1.25) is qualitatively correct.
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k k′

gN

gN

FIGURE 1.2
Scattering by a static point-like U-source.

Approximation’—see appendix H), the scattering amplitude is proportional to the Fourier
transform of U(r):

f(q) =

∫
eiq·rU(r) d3r (1.26)

where q is the momentum (or wavevector, since � = 1) transfer q = k − k′. The transform
is evaluated in appendix G equation (G.24), or in problem 1.1, with the result

f(q) = − g2N
q2 +m2

U

. (1.27)

This implies that the amplitude (in this static case) for the one-U exchange amplitude is
proportional to −1/(q2 +m2

U), where q is the momentum carried by the U-quantum.
In this scattering by an infinitely massive source of potential, the energy of the scattered

particle cannot change. In a real scattering process such as that in figure 1.1, both energy
and momentum can be transferred by the U-quantum—that is, q is replaced by the four-
momentum q = (q0, q), where q0 = k0 − k′0. Then, as indicated in appendix G, the factor
−1/(q2+m2

U ) is replaced by 1/(q2−m2
U) and the amplitude for figure 1.1 is, in this model,

g2N
q2 −m2

U

. (1.28)

It will be the main burden of chapters 5 and 6 to demonstrate just how this formula is arrived
at, using the formalism of quantum field theory. In particular, we shall see in detail how
the propagator (q2−m2

U)
−1 arises. For the present, we can already note (from appendix G)

that such propagators are, in fact, momentum–space Green functions.
In chapter 6 we shall also discuss other aspects of the physical meaning of the propagator,

and we shall see how diagrams which we have begun to draw in a merely descriptive way
become true ‘Feynman diagrams’, each diagram representing by a precise mathematical
correspondence a specific expression for a quantum amplitude, as calculated in perturbation
theory. The expansion parameter of this perturbation theory is the dimensionless number
g2N/4π appearing in the potential U(r) (cf (1.13)). In terms of Feynman diagrams, we shall
learn in chapter 6 that one power of gN is to be associated with each ‘vertex’ at which a
U-quantum is emitted or absorbed. Thus successive terms in the perturbation expansion
correspond to exchanges of more and more quanta. Quantities such as gN are called ‘coupling
strengths’, or ‘coupling constants’.
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FIGURE 1.3
One photon exchange mechanism between charged leptons.

It is not too early to emphasize one very important point to the reader: true Feynman
diagrams are representations of momentum–space amplitudes. They are not representations
of space–time processes: all space–time points are integrated over in arriving at the formula
represented by a Feynman diagram. In particular, the two ‘intuitive’ diagrams of figure 1.1,
which carry an implied ‘time-ordering’ (with time increasing to the right), are both included
in a single Feynman diagram with propagator (1.28), as we shall see in detail (for an
analogous case) in section 7.1.

We now indicate how these general ideas of Yukawa apply to the actual interactions of
quarks and leptons.

1.3.4 Electromagnetic interactions

From the foregoing viewpoint, electromagnetic interactions are essentially a special case
of Yukawa’s picture, in which g2N is replaced by the appropriate electromagnetic charges,
and mU → mγ = 0 so that a → ∞ and the potential (1.13) returns to the Coulomb one,
−e2/4πr. A typical one-photon exchange scattering process is shown in figure 1.3, for which
the generic amplitude (1.28) becomes

e2/q2. (1.29)

Note that we have drawn the photon line ‘vertically’, consistent with the fact that both time-
orderings of the type shown in figure 1.1 are included in (1.29). In the case of electromagnetic
interactions, the coupling strength is e and the expansion parameter of perturbation theory
is e2/4π ≡ α ∼ 1/137 (see appendix C).

We can immediately use (1.29) to understand the famous ∼ sin−4 θ/2 angular variation
of Rutherford scattering. Treating the target muon as infinitely heavy (so as to simplify the
kinematics), the electron scatters elastically so that q0 = 0 and q2 = −(k−k′)2 where k and
k′ are the incident and final electron momenta. So q2 = −2k2(1 − cos θ) = −4k2 sin2 θ/2

where we have used the elastic scattering condition k2 = k′2. By inserting this into (1.29)
and remembering that the cross section is proportional to the square of the amplitude
(appendix H), we obtain the distribution sin−4 θ/2. Thus, such a distribution is a clear
signature that the scattering is proceeding via the exchange of a massless quantum.

Unfortunately, the detailed implementation of these ideas to the electromagnetic inter-
actions of quarks and leptons is complicated, because the electromagnetic potentials are
the components of a 4-vector (see chapter 2), rather than a scalar as in (1.29), and the
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FIGURE 1.4
Yukawa’s U-exchange mechanism for neutron β-decay.

quarks and leptons all have spin- 12 , necessitating the use of the Dirac equation (chapter 3).
Nevertheless, (1.29) remains the essential ‘core’ of electromagnetic amplitudes.

As far as the electromagnetic field is concerned, its 4-vector nature is actually a fun-
damental feature, having to do with a symmetry called gauge invariance, or (better) local
phase invariance. As we shall see in chapters 2 and 7, the form of the electromagnetic inter-
action is very strongly constrained by this symmetry. In fact, turning the argument around,
one can (almost) understand the necessity of electromagnetic interactions as being due to
the requirement of gauge invariance. Most significantly, we shall see in section 7.3.1 how
the masslessness of the photon is also related to gauge invariance.

In chapter 8 a number of elementary electromagnetic processes will be fully analysed,
and in chapter 11 we shall discuss higher-order corrections in QED.

1.3.5 Weak interactions

In a bold extension of his ‘strong force’ idea, Yukawa extended his theory to describe
neutron β-decay as well, via the hypothesized process shown in figure 1.4 (here and in
figure 1.5 we revert to the more intuitive ‘time-ordered’ picture—the reader may supply the
diagrams corresponding to the other time-ordering). As indicated on the diagram, Yukawa
assigned the strong charge gN at the n–p end and a different ‘weak’ charge g′ at the lepton
end. Thus the same quantum mediated both strong and weak transitions, and he had an
embryonic ‘unified theory’ of strong and weak processes! If we take U− to be the π−,
Yukawa’s mechanism predicts the existence of the weak decay π− → e− + ν̄e.

This decay does indeed occur, though at a much smaller rate than the main mode which
is π− → μ− + ν̄μ. But, apart from the now familiar problem with the compositeness of the
nucleons and pions—this kind of unification is not chosen by Nature. Not unreasonably in
1935, Yukawa was assuming that the range ∼ m−1

U of the strong force in n–p scattering
(figure 1.1) was the same as that of the weak force in neutron β-decay (figure 1.4); after
all, the latter (and more especially positron emission) was viewed as a nuclear process. But
this is now known not to be the case: in fact, the range of the weak force is much smaller
than nuclear dimensions—or, equivalently (see (1.19)), the masses of the mediating quanta
are much greater than that of the pion.

β-decay is now understood as occurring at the quark level via the W−-exchange pro-
cess shown in figure 1.5(a). Similarly, positron emission proceeds via figure 1.5(b). Other
‘charged current’ processes all involve W±-exchange, generalized appropriately to include
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FIGURE 1.5
(a) β-decay and (b) e+ emission at the quark level, mediated by W±.

FIGURE 1.6
Z0-exchange process.

flavour mixing effects (see volume 2). ‘Neutral current’ processes involve exchange of the
Z0-quantum; an example is given in figure 1.6. The quanta W±,Z0 therefore mediate these
weak interactions as does the photon for the electromagnetic one. Like the photon, the W
and Z fields are the quanta of 4-vector fields4and have spin 1, but unlike the photon, the
masses of the W and Z are far from zero—in fact, MW ≈ 80 GeV and MZ ≈ 91 GeV. So
the range of the force is ∼ M−1

W ∼ 2.5×10−18 m, much less than typical nuclear dimensions
(∼ few ×10−15 m). This, indeed, is one way of understanding why the weak interactions
appear to be so weak; this range is so tiny that only a small part of the hadronic volume is
affected.

Thus Nature has not chosen to unify the strong and weak forces via a common mediating
quantum. Instead, it has turned out that the weak and strong forces (see section 1.3.6) are
both gauge theories, generalizations of electromagnetism, as will be discussed in volume 2.
This raises the possibility that it may be possible to ‘unify’ all three forces.

Some initial idea of how this works in the ‘electroweak’ case may be gained by consid-
ering the amplitude for figure 1.5(a) in the low −q2 limit. In a simplified version, which is

4This is dictated by the phenomenology of weak interactions—see chapter 20 in volume 2.



20 The Particles and Forces of the Standard Model

FIGURE 1.7
Point-like four-fermion interaction.

analogous to (1.29) and ignores the spin of the W and the leptons, the amplitude is

g2/(q2 −M2
W) (1.30)

where g is a ‘weak charge’ associated with W-emission and absorption. In actual β-decay,
the square of the 4-momentum transfer q2 is tiny compared to M2

W, so that (1.30) becomes
independent of q2 and takes the constant value −g2/M2

W. This corresponds, in configu-
ration space, to a point-like interaction (the Fourier transform of a delta function is a
constant). Just such a point-like interaction, shown in figure 1.7, had been postulated by
Fermi (1934a, b) in the first theory of β-decay: it is a ‘four-fermion’ interaction with strength
GF. The value of GF can be determined from measured β-decay rates. The dimensions of
GF turn out to be energy × volume, so that GF/(�c)

3 has dimension (energy−2). In our
units � = c = 1, the numerical value of GF is

GF ∼ (300 GeV)−2. (1.31)

If we identify this constant with g2/M2
W we obtain

g2 ∼ M2
W/(300 GeV)2 ∼ 0.064 (1.32)

a value quite similar to that of the electromagnetic charge e2 as determined from e2 =
4πα ∼ 0.09. Though this is qualitatively correct, we shall see in volume 2 that the actual
relation, in the electroweak theory, between the weak and electromagnetic coupling strengths
is somewhat more complicated than the simple equality ‘g = e’. (Note that a corresponding
connection with Fermi’s theory was also made by Yukawa!)

We can now understand the ‘weakness’ of the weak interactions from another viewpoint.
For q2 � M2

W, the ratio of the electromagnetic amplitude (1.29) to the weak amplitude
(1.30) is of order q2/M2

W, given that e ∼ g. Thus despite having an intrinsic strength
similar to that of electromagnetism, weak interactions will appear very weak at low energies
such that q2 � M2

W. At energies approaching MW, however, weak interactions will grow in
importance relative to electromagnetic ones and, when q2 � M2

W, weak and electromagnetic
interactions will contribute roughly equally.

‘Similar’ coupling strengths are still not ‘unified’, however. True unification only occurs
after a more subtle effect has been included, which goes beyond the one-quantum exchange
mechanism. This is the variation or ‘running’ of the coupling strengths as a function of
energy (or distance), caused by higher-order processes in perturbation theory. This will be
discussed more fully in chapter 11 for QED, and in volume 2 for the other gauge couplings.
It turns out that the possibility of unification depends crucially on an important difference
between the weak interaction quanta W± (to take the present example) and the photons
of QED, which has not been apparent in the simple β-decay processes considered so far.
The W’s are themselves ‘weakly charged’, acting as both carriers and sources of the weak
force field, and they therefore interact directly amongst themselves even in the absence
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of other matter. By contrast, photons are electromagnetically neutral and have no direct
self-interactions. In theories where the gauge quanta self-interact, the coupling strength
decreases as the energy increases, while for QED it increases. It is this differing ‘evolution’
that tends to bring the strengths together, ultimately.

Even granted similar coupling strengths and the fact that both are 4-vector fields, the
idea of any electroweak unification appears to founder immediately on the markedly different
ranges of the two forces or, equivalently, of the masses of the mediating quanta (mγ =
0, MW ∼ 80 GeV!). This difficulty becomes even more pointed when we recall that, as
previously mentioned, the masslessness of the photon is related to gauge invariance in
electrodynamics: how then can there be any similar kind of gauge symmetry for weak
interactions, given the distinctly non-zero masses of the mediating quanta? Nevertheless, in
one of the great triumphs of twentieth century theoretical physics, it is possible to see the
two theories as essentially similar gauge theories, the gauge symmetry being ‘spontaneously
broken’ in the case of weak interactions. This is a central feature of the GSW electroweak
theory. An indication of how gauge quanta might acquire mass will be given in section 11.4
but a fuller explanation, with application to the electroweak theory, is reserved for volume 2.
We will have a few more words to say about it in section 1.4.1.

1.3.6 Strong interactions

We turn to the contemporary version of Yukawa’s theory of strong interactions, now viewed
as occurring between quarks rather than nucleons. Evidence that the strong interquark
force is in some way similar to QED comes from nucleon-nucleon (or nucleon-antinucleon)
collisions. Regarding the nucleons as composites of point-like quarks, we would expect to
see prominent events at large scattering angles corresponding to ‘hard’ q–q collisions (re-
call Rutherford’s discovery of the nucleus). Now the result of such a hard collision would
normally be to scatter the quarks to wide angles, ‘breaking up’ the nucleons in the pro-
cess. However, quarks (except for the t quark) are not observed as free particles. Instead,
what appears to happen is that, as the two quarks separate from each other, their mutual
potential energy increases—so much so that, at a certain stage in the evolution of the scat-
tering process, the energy stored in the potential converts into a new qq̄ pair. This process
continues, with in general many pairs being produced as the original and subsequent pairs
pull apart. By a mechanism which is still not quantitatively understood in detail, the pro-
duced quarks and anti-quarks (and the original quarks in the nucleons) bind themselves
into hadrons within an interaction volume of order 1 fm3, so that no free quarks are finally
observed, consistent with ‘confinement’. Very strikingly, these hadrons emerge in quite well-
collimated ‘jets’, suggesting rather vividly their ancestry in the original separating qq pair.
Suppose, then, that we plot the angular distribution of such two jet events ’; it should tell
us about the dynamics of the original interaction at the quark level.

Figure 1.8 shows such an angular distribution from proton–antiproton scattering, so that
the fundamental interaction in this case is the elastic scattering process q̄q → q̄q. Here θ is
the scattering angle in the q̄q centre of mass system (CMS). Amazingly, the θ-distribution
follows almost exactly the ‘Rutherford’ form sin−4 θ/2.

We saw how, in the Coulomb case, this distribution could be understood as arising from
the propagator factor 1/q2, which itself comes from the 1/r potential associated with the
massless quantum involved, namely the photon. In the present case, the same 1/q2 factor
is responsible. Here, in the q̄q centre of mass system, k and −k are the momenta of the
initial q̄ and q, while k′ and −k′ are the corresponding final momenta. Once again, for
elastic scattering there is no energy transfer, and q2 = −q2 = −(k − k′)2 = −4k2 sin2 θ/2
as before, leading to the sin−4 θ/2 form on squaring 1/q2. Once again, such a distribution
is a clear signal that a massless quantum is being exchanged — in this case, the gluon.
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FIGURE 1.8
Angular distribution of two-jet events in pp̄ collisions (Arnison et al. 1985) as a function
of cos θ, where θ is the CMS scattering angle. The broken curve is the prediction of QCD,
obtained in the lowest order of perturbation theory (one-gluon exchange); it is virtually in-
distinguishable from the Rutherford (one-photon exchange) shape sin−4 θ/2. The full curve
includes higher order QCD corrections.

It might then seem to follow that, as in the case of QED, the QCD interaction has
infinite range. But this cannot be right; the strong forces do not extend beyond the size of
a typical hadron, which is roughly 1 fm. Indeed, the QCD force is mediated by the massless
spin-1 gluon, and QCD is also a gauge theory; but the form of the QCD interaction, though
somewhat analogous to QED, is more complicated, and the long range behaviour of the
force is very different.

As we have seen, each quark comes in three colours, and the QCD force is sensitive to
this colour label: the gluons effectively ‘carry colour’ back and forth between the quarks, as
shown in the one-gluon exchange process of figure 1.9. Because the gluons carry colour, they
can interact with themselves, like the W’s and Z’s of the GSW theory. As in that case, these
gluonic self-interactions cause the QCD interaction strength to decrease at short distances
(or high energies), ultimately tending to zero, the property known as asymptotic freedom.
So in ‘hard’ collisions occurring at short inter-particle distances, the one-gluon exchange
mechanism gives a good first approximation to the data. But the force grows much stronger
as the quarks separate from each other, and perturbation theory is no longer a reliable
guide. In fact, it seems that a new, non-perturbative, effect occurs—namely confinement.
Once again, a gauge theory, with formal similarity to QED, has very different physical
consequences.

A phenomenological qq (or qq̄) potential which is often used in quark models has the
form

V = −a

r
+ br (1.33)

where the first term, which dominates at small r, arises from a single-gluon exchange so that
a ∼ g2s , where the strong (QCD) charge is gs. The second term models confinement at larger
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FIGURE 1.9
Strong scattering via gluon exchange. At the top vertex, the ‘flow’ of colour is b (quark)
→ r (quark) + r̄b (gluon) and at the lower vertex the flow is r̄b (gluon) + r (quark) → b
(quark).

values of r. Such a potential provides quite a good understanding of the gross structure of
the cc̄ and bb̄ systems (see problem 1.5). A typical value for b is 0.85 GeV fm−1 (which
corresponds to a constant force of about 14 tonnes!). Thus at r ∼ 2 fm, there is enough
energy stored to produce a pair of the lighter quarks. This ‘linear’ part of the potential
cannot be obtained by considering the exchange of one, or even a finite number of, gluons:
in other words, not within an approach based on perturbation theory.

It is interesting to note that the linear part of the potential may be regarded as the so-
lution of the one-dimensional form of ∇2V = 0, namely d2V/dr2 = 0; this is in contrast to
the Coulombic 1/r part, which is a solution (except at r = 0) to the full three-dimensional
Laplace equation. This suggests that the colour field lines connecting two colour charges
spread out into all of space when the charges are close to each other, but are somehow
‘squeezed’ into an elongated one-dimensional ‘string’ as the distance between the charges be-
comes greater than about 1 fm. In the second volume, we shall see that numerical simulations
of QCD, in which the space–time continuum is represented as a discrete lattice of points,
indicate that such a linear potential does arise when QCD is treated non-perturbatively. It
remains a challenge for theory to demonstrate that confinement follows from QCD.

It is believed that gluons too are confined by QCD, so that—like quarks—they are not
seen as isolated free particles. But they too ‘hadronize’ after being produced in a primitive
short-distance collision process, as happens in the case of q’s and q̄’s. Such ‘gluon jets’
provide indirect evidence for the existence and properties of gluons, as we shall see in
volume 2.

This is an appropriate moment at which to emphasize what appears to be a crucial
distinction between the three ‘charges’ (electromagnetic, weak and strong) on the one hand,
and the various flavour quantum numbers on the other. The former have a dynamical
significance, whereas the latter do not. In the case of electric charge, for example, this means
simply that a particle carrying this property responds in a definite way to the presence of
an electromagnetic field and itself creates such a field. No such force fields are known for
any of the flavour numbers, which are (at present) purely empirical classification devices,
without dynamical significance.



24 The Particles and Forces of the Standard Model

TABLE 1.3
Properties of SM gauge bosons.

Particle Polarization states Mass Width/Lifetime

γ (photon) 2 0 (theoretical) stable
g (gluon) 2 0 (theoretical) stable

W± 3 80.377± 0.012GeV ΓW = 2.085 ± 0.042 GeV
Z0 3 91.1876 ± 0.0021 GeV ΓZ = 2.4952 ± 0.0023 GeV

1.3.7 The gauge bosons of the Standard Model

We can now gather together the mediators of the SM forces. They are all gauge bosons,
meaning that they are the quanta of various 4-vector gauge fields. For example, the photon
is the quantum of the electromagnetic (Maxwell) 4-vector potential Aμ(x) (see chapter
2 and section 7.3), which is the simplest gauge field. The gluon is the quantum of the
QCD potential Aμ

a(x), where the colour index a runs from 1 to 8. The reason there are
8 of them may be guessed from figure 1.9: each gluon can be thought of as carrying one
colour-anticolour combination, such as r̄b, b̄g, and so on; the symmetric combination r̄r
+b̄b +ḡg is totally colourless and is discarded. In the GSW electroweak theory, there are
four gauge fields, Wμ

i (x) where i runs from 1 to 3, and Bμ(x) which is analogous to Aμ(x).
One linear combination of Wμ

3 (x) and Bμ(x) is associated with the photon field Aμ(x); the
orthogonal combination is associated with the Zμ(x) field whose quantum is the Z0. The
charged carriers W± are associated with the Wμ

1 (x) and Wμ
2 (x) components of the Wμ

i (x)
field.

We shall assume that the mass of the photon and of the gluon is exactly zero. This can
never be established experimentally, of course: the current experimental limit on the photon
mass is that it is less than 1×10−18 (Workman et al. (2022)). All gauge fields have spin 1 (in
units of �). Ordinarily, a spin-1 particle would be expected to have three polarization states,
according to quantum mechanics. However, it is a general result that in the massless case
the quanta have only two polarization states, both transverse to the direction of motion;
the longitudinally polarized state is absent (this property, familiar for the corresponding
classical fields which are purely transverse, will be discussed in section 7.3.1). By contrast,
all three polarization states are present for the massive gauge bosons.

The photon and the gluon are stable particles. The W± and Z0 particles decay with
total widths of the order of 2 GeV (lifetimes ∼ 0.3× 10−24 s). Although this is significantly
shorter than typical strong interaction decay lifetimes, these are of course weak decays, the
rate being enhanced by the large energy release.

Table 1.3 lists the properties of the SM gauge bosons; the masses and widths are taken
from Workman et al. (2022). It should be noted that in April 2022, too late to be included
in the world average value for MW given in Table 1.3, the CDF collaboration published
(Aaltonen et al. 2022) a new result for the W mass based on their full Run 2 data set with
much reduced uncertainty: MW = 80.4335 ± 0.0094 GeV, which disagrees significantly with
the value in Table 1.3. More recently, however, the ATLAS Collaboration (ATLAS 2023)
reported the preliminary result MW = 80.360 ± 0.016 GeV, which agrees with the value in
Table 1.3. The discrepancy remains to be resolved.
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1.4 Renormalization and the Higgs sector of the Standard Model

1.4.1 Renormalization

So far we have been discussing processes in which only one particle is exchanged. These
will generally be the terms of lowest order in a perturbative expansion in powers of the
coupling strength. But we must clearly go beyond lowest order, and include the effects
of multi-particle exchanges. We shall explain how to do this in chapter 10, for a simple
scalar field theory. Such multi-particle exchange amplitudes are given by integrals over the
momenta of the exchanged particles, constrained only by four-momentum conservation (no
integral arises in the case of the exchange of a single particle, because its four-momentum
is fixed in terms of the momenta of the scattering particles, as in section 1.2.3). It turns out
that the integrals nearly always diverge as the momenta of the exchanged particles tend to
infinity. Nevertheless, as we shall explain in chapter 10, this theory can be reformulated,
by a process called renormalization, in such a way that all multi-particle (higher-order)
processes become finite and calculable—a quite remarkable fact, and one that is of course
an absolutely crucial requirement in the case of the Standard Model interactions, where the
relevant data are precise enough to test the accuracy of the theory well beyond lowest order,
particularly in the case of QED (see chapter 11). The price to be paid for this taming of
the divergences is just that the basic parameters of the theory, such as masses and coupling
constants, have to be treated as parameters to be determined by comparison to the data,
and cannot themselves be calculated.

But some theories cannot be reformulated in this way—they are non-renorm-alizable.
A simple test for whether a theory is renormalizable or not will be discussed in section
11.8: if the coupling constant has dimensions of a mass to an inverse power, the theory is
non-renormalizable. An example of such a theory is the original four-Fermi theory of weak
interactions, where the coupling constant GF has the dimensions of an inverse square mass
(or energy) as we saw in (1.31). We will look at this theory again in section 11.8, but the
essential point for our purpose now is that the dimensionful coupling constant introduces
an energy scale into the problem, namely GF

−1/2 ∼ 300 GeV. It seems reasonable to infer
that a more relevant measure of the interaction strength will be given by the dimensionless

number EG
1/2
F , where E is a characteristic physical energy scale of any weak process under

consideration—for example, the energy in the centre of momentum frame in a two-particle
scattering process, at least at energies much greater than the particle masses. Then, for
energies very much less than GF

−1/2 the effective strength will be very weak, and the
lowest order term in perturbation theory will work fine; this is how the Fermi theory was
used, for many years. But as the energy increases, what happens is that more and more
parameters have to be taken from experiment in order to control the divergences. As the

energy approaches G
−1/2
F , the theory becomes totally non-predictive and breaks down. Thus

renormalizability is regarded as highly desirable in a theory.
One might hope to come up with a renormalizable theory of weak interactions by replac-

ing the four-fermion interaction by a Yukawa-like mechanism, with exchange of a quantum
of mass M and dimensionless coupling y, say. Then just as in (1.32) we would identify
GF ∼ y2/M2 at low energies. However, as we have seen, phenomenology implies that the
massive exchanged quantum must have spin 1. Unfortunately, this type of straightforward
massive spin-1 theory is not renormalizable either, as we shall discuss in chapter 22. The
trouble can be traced directly to the existence of the longitudinal polarization state which,
as noted previously, is present for a massive spin-1 particle. If the exchanged spin-1 quantum
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were massless, as in QED, it would lack that third polarization state, and the theory would
be renormalizable. But weak interaction facts dictate both non-zero mass and spin-1.

In the case of QED, there is a symmetry principle behind both the zero mass of the
photon and the absence of the longitudinal polarization state: this symmetry is gauge in-
variance as we shall explain in section 7.3.1. It turns out that this symmetry is vital in
rendering QED renormalizable. It is natural then to ask whether in the case of QED, a
situation ever arises where the photon acquires mass, while retaining fully gauge-invariant
interactions—and hence renormalizability (we would hope). If so, we would then have an
analogue of what is needed for a renormalizable theory of weak interactions. The answer
is that this can indeed happen, but it requires some extra dynamics to do it. Nature has
actually provided us with a working model of what we want, in the phenomenon of super-
conductivity. There, the Meissner effect can be interpreted as implying that the photons
propagating in a thin surface layer of the material have non-zero mass (see section 19.2). The
dynamics behind this is subtle, and required many years of theoretical efforts before it was
finally understood by Bardeen, Cooper and Schrieffer (1957). In simple terms, the mecha-
nism is a two-step process. First, lattice interactions cause electrons to bind into pairs; then
these pairs undergo Bose-Einstein condensation. This “condensate” is the Bardeen-Cooper-
Schrieffer (BCS) superconducting ground state. The essential point is that although the
electromagnetic interactions are fully gauge invariant, the ground state is not. When a
symmetry is broken by the ground state, it is said to be ‘spontaneously’ broken. We shall
provide an introduction to the BCS ground state in chapter 17 of volume 2.

The BCS theory is an example of spontaneous symmetry breaking occurring dynamically
(through the particular lattice interactions). Many of the physically important phenomena
can, however, be very satisfactorily described in terms of an effective theory, which treats
only the electrodynamics of the condensate. Such a description was proposed by Ginzburg
and Landau (1950), well before the BCS paper, in fact.

How can this be applied in particle physics? Recall the idea, mentioned in section 1.3.1,
that the analogue of the many-body ground state is the qft vacuum (Nambu 1961). In
the SM, the weak interactions are indeed described by a gauge-invariant theory, and the
assumption is made that the vacuum breaks the gauge symmetry. The simplest way this
idea can be implemented is along the lines of the Ginzburg-Landau theory, as suggested
by Weinberg (1967) and by Salam (1968), and their proposal is embodied in the Glashow-
Weinberg-Salam electroweak theory, which is part of the SM. It requires the introduction
of four new spin-0 fields, which are called Higgs fields (Higgs 1964, Englert and Brout 1964,
Guralnik et al. 1964), and which we may think of as playing the role of the BCS conden-
sate (but not for electromagnetism, of course). The combined theory of quarks, leptons,
electroweak gauge fields, and Higgs fields is gauge invariant, but one of the Higgs fields
is supposed to have a non-zero average value in the physical vacuum, which breaks the
gauge symmetry. The other three Higgs fields effectively become the longitudinal parts of
the massive spin-1 W± and Z0 fields, while the quantized excitations of the fourth Higgs
field away from its vacuum value appear physically as neutral spin-0 particles, called Higgs
bosons (Higgs 1964).

Apart from giving mass to the W± and Z0, the Higgs fields have more work to do. The
electroweak gauge symmetry is exact only if all the fermion masses are zero; this is because it
is a chiral symmetry (similar to, but not the same as, the chiral symmetry of QCDmentioned
in section 1.2.2). Once again, this chiral gauge symmetry is essential to the renormalizability
of the theory: if the fermion masses are incorporated in the usual way as parameters in the
Lagrangian, the latter is no longer gauge invariant and the theory is non-renormalizable.
In the SM, this problem is solved by having no fermion masses in the Lagrangian, and by
postulating gauge-invariant Yukawa interactions between the fermions and the Higgs fields,
which are arranged in such a way that, when the Higgs field gets a vacuum expectation
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value, the interaction terms yield just the fermion masses. So again, the symmetry breaking
is economically blamed on the same property of the vacuum. When the Higgs field oscillates
away from its vacuum value, the result will be residual Yukawa interactions between the
fermions and the Higgs boson, which will have the defining characteristic that each fermion
will interact with the Higgs boson with a strength proportional to its (i.e. the fermion’s)
mass. As noted earlier, this feature of the Higgs sector violates lepton universality.

We have emphasized the role that the Higgs fields play in the renormalizability of
the GSW theory. The all-important proof of that renormalizability was given by ’t Hooft
(1971b), and he also proved the renormalizability of QCD (1971a); see also ’t Hooft and
Veltman (1972).

The SM Higgs sector is the simplest one that will do the job; more complicated versions
are possible. Perhaps the Higgs field is a composite formed in some new heavy fermion-
antifermion dynamics, reminiscent of BCS pairing. In any case, the SM Higgs sector is
there to be explored experimentally. In the following section, we shall discuss briefly what is
presently known about the SM Higgs boson, postponing a fuller discussion until we present
the GSW theory in chapter 22.

Before ending this section, we must note that modern renormalization theory is con-
cerned with more than perturbative calculability. The renormalization group and related
ideas provide powerful tools for ‘improving’ perturbation theory, by systematically resum-
ming terms which (in the particle physics case) dominate at short distances. Prominent
among the results of this analysis (see chapters 15 and 16) are the concepts of energy-
dependent (“running”) masses and coupling strengths, and the calculation of QCD correc-
tions to parton-model predictions.

1.4.2 The Higgs boson of the Standard Model

According to the SM, just one neutral spin-0 Higgs boson is expected; its mass mH is not
predicted by the theory. The experimental discovery of the SM Higgs boson was a major
goal of several generations of accelerators: the LEP e+e− collider at Cern, the Tevatron
pp̄ collider at Fermilab, and now the LHC pp collider at Cern. Bounds on the Higgs mass
could be obtained directly, through searching for its production and subsequent decay;
non-observation led to a lower bound for mH. There were also indirect constraints, coming
from fits to precision measurements of electroweak observables. The latter are sensitive to
higher-order corrections which involve the Higgs boson as a virtual particle; these depend
logarithmically on the unknown parameter mH and gave upper bounds on mH, assuming,
of course, that the SM was correct. A lower bound mH > 114.4 GeV was set at LEP (LEP
2003) by combining data on direct searches. Combining this with a global fit to precision
electroweak data, an upper bound mH < 186 GeV was obtained (Nakamura et al. 2010).

By early 2012, the combined results of the CDF and D0 experiments at the Tevatron,
and the ATLAS and CMS experiments at the LHC, excluded an mH value in the interval
(approximately) 130 GeV to 600 GeV, at 95 % C.L. Finally, in July 2012 the ATLAS (Aad
et al. 2012) and CMS (Chatrchyan et al. 2012) collaborations announced the discovery, with
a significance of 5 σ, of a neutral boson resonance state with a mass in the range 125–126
GeV, its production and decay rates being broadly compatible with the predictions for the
SM Higgs boson.

In the decade following this landmark discovery, data collected during Run 1 (7 and 8
TeV) and Run 2 (13 TeV) at the LHC have established that in all production and decay
modes measured so far, the results are found to be consistent, within the experimental and
theoretical uncertainties,with the predictions of the SM. We shall discuss this in more detail
in volume 2. For the moment, we highlight some of the most important results.
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The mass of the Higgs boson has been measured at the 0.1% level via the decays H → γγ
and H → 4 leptons (Sirunyan et al. 2021b, Aaboud et al. 2018c). The value now listed in
the Particle Data Group tables is mH = 125.25 ± 0.17 GeV (Workman et al. 2022). The
SM prediction for the total width of the Higgs boson is about 4 MeV, which is three
orders of magnitude smaller than the experimental mass resolution. An indirect method
gave the result ΓH = 3.2+2.8

−2.2 MeV (Sirunyan et al. 2019). The Yukawa couplings of the
Higgs boson to fermions are of fundamental importance because they are directly related
to the SM mechanism for giving masses to the fermions via the spontaneous breaking of
the electroweak gauge symmetry. They can be measured from the decays of the Higgs
boson to fermion-antifermion pairs. As mentioned earlier, these couplings are proportional
to the fermion masses, and so the fermions of the third generation, which have the largest
masses, will be the most easily measured. Clear evidence has been obtained for the Higgs
boson decaying to a pair of b quarks (Aaboud et al. 2018b, Sirunyan et al. 2018b), and
to a pair of τ leptons (Aaboud et al. 2019, Sirunyan et al. 2018c), with couplings in good
agreement with the SM values. The production of a Higgs boson in association with a pair
of t quarks (Aaboud et al. 2018a, Sirunyan et al. 2018a, 2020) enables a measurement of
the coupling to the t quark, again in good agreement with the SM. The current precision
on the measurements of these third generation couplings is of the order of 10–20 %. There
is now evidence for the SM coupling to a second-generation fermion, the muon, via the H
→ muon pair channel (Sirunyan et al. 2021a).

It is also necessary to establish the spin (J), parity (P), and charge conjugation (C)
quantum numbers of the Higgs boson. The observation of the decays H → γγ (Sirunyan et
al. 2021b, Aaboud et al. 2018c) restricts the spin to 0 or 2 (Landau 1948, Yang 1950). ATLAS
(Aad et al. 2015) and CMS (Khachatryan et al. 2015) reported strong evidence for spin-0
and even parity. Since the photon has C = −1, and C is a multiplicative quantum number,
C must be +1 for the Higgs boson. The evidence therefore supports the SM assignment JPC

= 0++ for the Higgs boson.
The excellent performance of the LHC and of the ATLAS and CMS detectors, together

with corresponding theoretical efforts, have confirmed the compatibility of the resonance
state at 125.25 GeV with the Higgs boson of the SM. There is as yet no evidence that this
state is a composite object, or that its couplings deviate from the SM values. It remains to
be seen whether future data of greater precision will alter these conclusions.

1.5 Summary

The SM provides a relatively simple picture of quarks and leptons and their non-
gravitational interactions. The quark colour triplets are the basic source particles of the
gluon fields in QCD, and they bind together to make hadrons. The weak interactions involve
quark and lepton doublets—for instance the quark doublet (u, d) and the lepton doublet
(νe, e

−) of the first generation. These are sources for the W± and Z0 fields. Charged fermions
(quarks and leptons) are sources for the photon field. All the mediating force quanta have
spin-1. The weak and strong force fields are generalizations of electromagnetism; all three
are examples of gauge theories, but realized in subtly different ways.

In the following chapters our aim will be to lead the reader through the mathematical
formalism involved in giving precise quantitative form to what we have so far described only
qualitatively and to provide physical interpretation where appropriate. In the remainder of
part 1 of the present volume, we first show how Schrödinger’s quantum mechanics and
Maxwell’s electromagnetic theory may be combined as a gauge theory—in fact the simplest
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example of such a theory. We then introduce relativistic quantum mechanics for spin-0
and spin- 12 particles, and include electromagnetism via the gauge principle. In part 2, we
develop the formalism of quantum field theory, beginning with scalar fields and moving on
to QED. This is then applied to many simple (‘tree level’) QED processes in part 3. In the
final part 4, we present an introduction to renormalization at the one-loop level, including
renormalization of QED. The more complicated gauge theories of QCD and the electroweak
theory are reserved for volume 2.

Problems

1.1 Evaluate the integral in (1.26) directly. [Hint: Use spherical polar coordinates with the
polar axis along the direction of q, so that d3r = r2dr sin θ dθ dφ, and exp(iq · r) =
exp(i|q|r cos θ). Make the change of variable x = cos θ, and do the φ integral (trivial) and
the x integral. Finally do the r integral.]

1.2 Using the concept of strangeness conservation in strong interactions, explain why the
threshold energy (for π− incident on stationary protons) for

π− + p → K0 + anything

is less than for
π− + p → K̄0 + anything

assuming both processes proceed through the strong interaction.

1.3 Note: the invariant square p2 of a 4-momentum p = (E,p) is defined as p2 = E2 − p2.
We remind the reader that � = c = 1 (see Appendix B).

(i) An electron of 4-momentum k scatters from a stationary proton of mass M via
a one-photon exchange process, producing a final hadronic state of 4-momentum
p′, the final electron 4-momentum being k′. Show that

p′2 = q2 + 2M(E − E′) +M2

where q2 = (k − k′)2, and E and E′ are the initial and final electron energies,
respectively, in this frame (i.e. the one in which the target proton is at rest). Show
that if the electrons are highly relativistic then q2 = −4EE′ sin2 θ/2, where θ is
the scattering angle in this frame. Deduce that for elastic scattering E′ and θ are
related by

E′ = E

/(
1 +

2E

M
sin2 θ/2

)
.

(ii) Electrons of energy 4.879 GeV scatter elastically from protons, with θ = 10◦.
What is the observed value of E′?

(iii) In the scattering of these electrons, at 10◦, it is found that there is a peak of
events at E′ = 4.2 GeV. What is the invariant mass of the produced hadronic
state (in MeV)?

(iv) Calculate the value of E′ at which the ‘quasi-elastic peak’ will be observed, when
electrons of energy 400 MeV scatter at an angle θ = 45◦ from a He nucleus, as-
suming that the struck nucleon is at rest inside the nucleus. Estimate the broad-
ening of this final peak caused by the fact that the struck nucleon has, in fact, a
momentum distribution by virtue of being localized within the nuclear size.
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1.4

(i) In a simple non-relativistic model of a hydrogen-like atom, the energy levels are
given by

En =
−α2Z2μ

2n2

where Z is the nuclear charge and μ is the reduced mass of the electron and
nucleus. Calculate the splitting in eV between the n = 1 and n = 2 states in
positronium, which is an e+e− bound state, assuming this model holds.

(ii) In this model, the e+e− potential is the simple Coulomb one

− e2

4πε0r
= −α

r
.

Suppose that the potential between a heavy quark Q and an anti-quark Q̄ was

−αs

r

where αs is a ‘strong fine structure constant’. Calculate values of αs (different in
(a) and (b)) corresponding to the information (the quark masses are phenomeno-
logical “quark model” masses):

(a) the splitting between the n = 2 and n = 1 states in charmonium (cc̄) is
588 MeV, and mc = 1870 MeV;

(b) the splitting between the n = 2 and n = 1 states in the upsilon series (bb̄) is
563 MeV and mb = 5280 MeV.

(iii) In positronium, the n = 1 3S1 and n = 1 1S0 states are split by the hyperfine
interaction, which has the form 7

48α
4meσ1 ·σ2 where me is the electron mass and

σ1 and σ2 are the spin matrices for the e− and e+, respectively. Calculate the
expectation value of σ1 · σ2 in the 3S1 and 1S0 states, and hence evaluate the
splitting between these levels (calculated in lowest order perturbation theory) in
eV. [Hint : the total spin S is given by S = 1

2 (σ1 + σ2). So S2 = 1
4 (σ

2
1 + σ2

2 +

2σ1 · σ2). Hence the eigenvalues of σ1 · σ2 are directly related the those of S2.]

(iv) Suppose an analogous ‘strong’ hyperfine interaction existed in the cc̄ system, and
was responsible for the splitting between the n = 1 3S1 and n = 1 1S0 states, which
is 116 MeV experimentally (i.e. replace α by αs and me by mc = 1870 MeV).
Calculate the corresponding value of αs.

1.5 The potential between a heavy quark Q and an anti-quark Q̄ is found empirically to be
well represented by

V (r) = −αs

r
+ br

where αs ≈ 0.5 and b ≈ 0.18 GeV2. Indicate the origin of the first term in V (r), and the
significance of the second.

An estimate of the ground-state energy of the bound QQ̄ system may be made as follows.
For a given r, the total energy is

E(r) = 2m− αs

r
+ br +

p2

m

where m is the mass of the Q (or Q̄) and p is its momentum (assumed non-relativistic).
Explain why p may be roughly approximated by 1/r, and sketch the resulting E(r) as a
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function of r. Hence show that, in this approximation, the radius of the ground state, r0, is
given by the solution of

2

mr30
=

αs

r20
+ b.

Taking m = 1.5 GeV as appropriate to the cc̄ system, verify that for this system

(1/r0) ≈ 0.67 GeV

and calculate the energy of the cc̄ ground state in GeV, according to this model.
An excited cc̄ state at 3.686 GeV has a total width of 278 keV, and one at 3.77 GeV

has a total width of 24 MeV. Comment on the values of these widths.

1.6 The Hamiltonian for a two-state system using the normalized base states |1〉, |2〉 has
the form ( 〈1|H|1〉 〈1|H|2〉

〈2|H|1〉 〈2|H|2〉
)

=

( −a cos 2θ a sin 2θ
a sin 2θ a cos 2θ

)
where a is real and positive. Find the energy eigenvalues E+ and E−, and express the
corresponding normalized eigenstates |+〉 and |−〉 in terms of |1〉 and |2〉.

At time t = 0 the system is in state |1〉. Show that the probability that it will be found
to be in state |2〉 at a later time t is

sin2 2θ sin2(at).

Discuss how a formalism of this kind can be used in the context of neutrino oscillations.
How might the existence of neutrino oscillations explain the solar neutrino problem? (This
will be discussed in chapter 21 of volume 2.)

1.7 In an interesting speculation, it has been suggested (Arkani-Hamad et al. 1998, 1999,
Antoniadis et al. 1998) that the weakness of gravity as observed in our (apparently) three-
dimensional world could be due to the fact that gravity actually extends into additional
‘compactified’ dimensions (that is, dimensions which have the geometry of a circle, rather
than of an infinite line). For the particles and forces of the Standard Model, however, such
leakage into extra dimensions has to be confined to currently probed distances, which are
of order M−1

W .

(i) Consider Newtonian gravity in (3+d) spatial dimensions. Explain why you would
expect that the gravitational potential will have the form

VN,3+d(r) = −m1m2GN,3+d

rd+1
. (1.34)

[Think about how the ‘1/r2’ fall-off of the force is related to the surface area of a
sphere in the case d = 0. Note that the formula works for d = −2! What happens
in the case d = −1?]

(ii) Show that GN,3+d has dimensions (mass)−(2+d). This allows us to introduce
the ‘true’ Planck scale—i.e. the one for the underlying theory in 3 + d spatial
dimensions—as GN,3+d = (MP,3+d)

−(2+d).

(iii) Now suppose that the form (1.34) only holds when the distance r between the
masses is much smaller R, the size of the compactified dimensions. If the masses
are placed at distances r � R, their gravitational flux cannot continue to pen-
etrate into the extra dimensions, and the potential (1.34) should reduce to the
familiar three-dimensional one, so we must have

VN,3+d(r � R) = −m1m2GN,3+d

Rd

1

r
. (1.35)
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Show that this implies that

M2
P = M2

P,3+d(RMP,3+d)
d. (1.36)

(iv) Suppose that d = 2 and R ∼ 1 mm. What wouldMP,3+d be, in TeV? Suggest ways
in which this theory might be tested experimentally. Taking MP,3+d ∼ 1 TeV,
explore other possibilities for d and R.
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Electromagnetism as a Gauge Theory

2.1 Introduction

The previous chapter introduced the basic ideas of the Standard Model (SM) of parti-
cle physics, in which quarks and leptons interact via the exchange of gauge field quanta.
We must now look more closely into what is the main concern of this book—namely, the
particular nature of these gauge theories.

One of the relevant forces—electromagnetism—has been well understood in its classical
guise for many years. Over a century ago, Faraday, Maxwell, and others developed the theory
of electromagnetic interactions culminating in Maxwell’s paper of 1864 (Maxwell 1864).
Today Maxwell’s theory still stands—unlike Newton’s ‘classical mechanics’ which was shown
by Einstein to require modifications at relativistic speeds, approaching the speed of light.
Moreover, Maxwell’s electromagnetism, when suitably married with quantum mechanics,
gives us quantum electrodynamics or QED. We shall see in chapter 10 that this theory is in
truly remarkable agreement with experiment. As we have already indicated, the theories of
the weak and strong forces included in the SM are generalizations of QED, and promise to be
as successful as that theory. The simplest of the three, QED, is therefore our paradigmatic
theory.

From today’s perspective, the crucial thing about electromagnetism is that it is a theory
in which the dynamics (i.e. the behaviour of the forces) is intimately related to a symmetry
principle. In the everyday world, a symmetry operation is something that can be done to an
object that leaves the object looking the same after the operation as before. By extension,
we may consider mathematical operations—or ‘transformations’—applied to the objects in
our theory such that the physical laws look the same after the operations as they did before.
Such transformations are usually called invariances of the laws. Familiar examples are, for
instance, the translation and rotation invariance of all fundamental laws: Newton’s laws of
motion remain valid whether or not we translate or rotate a system of interacting particles.
But of course—precisely because they do apply to all laws, classical or quantum—these two
invariances have no special connection with any particular force law. Instead, they constrain
the form of the allowed laws to a considerable extent, but by no means uniquely determine
them. Nevertheless, this line of argument leads one to speculate whether it might in fact be
possible to impose further types of symmetry constraints so that the forms of the force laws
are essentially determined. This would then be one possible answer to the question: why
are the force laws the way they are? (Ultimately of course this only replaces one question
by another!)

In this chapter, we shall discuss electromagnetism from this point of view. This is not
the historical route to the theory, but it is the one which generalizes to the other two
interactions. This is why we believe it important to present the central ideas of this approach
in the familiar context of electromagnetism at this early stage.

A distinction that is vital to the understanding of all these interactions is that between
a global invariance and a local invariance. In a global invariance, the same transformation
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is carried out at all space–time points: it has an ‘everywhere simultaneously’ character. In
a local invariance, different transformations are carried out at different individual space–
time points. In general, as we shall see, a theory that is globally invariant will not be
invariant under locally varying transformations. However, by introducing new force fields
that interact with the original particles in the theory in a specific way, and which also
transform in a particular way under the local transformations, a sort of local invariance can
be restored. We will see all these things more clearly when we go into more detail, but the
important conceptual point to be grasped is this: one may view these special force fields
and their interactions as existing in order to permit certain local invariances to be true. The
particular local invariance relevant to electromagnetism is the well-known gauge invariance
of Maxwell’s equations: in the quantum form of the theory this property is directly related
to an invariance under local phase transformations of the quantum fields. A generalized form
of this phase invariance also underlies the theories of the weak and strong interactions. For
this reason, they are all known as ‘gauge theories’.

A full understanding of gauge invariance in electrodynamics can only be reached via the
formalism of quantum field theory, which is not easy to master—and the theory of quantum
gauge fields is particularly tricky, as we shall see in chapter 7. Nevertheless, many of the
crucial ideas can be perfectly adequately discussed within the more familiar framework of
ordinary quantum mechanics, rather than quantum field theory, treating electromagnetism
as a purely classical field. This is the programme followed in the rest of part 1 of this volume.
In the present chapter, we shall discuss these ideas in the context of non-relativistic quantum
mechanics. In the following two chapters, we shall explore the generalization to relativistic
quantum mechanics, for particles of spin-0 (via the Klein–Gordon equation) and spin- 12 (via
the Dirac equation). While containing substantial physics in their own right, these chapters
constitute essential groundwork for the quantum field treatment in parts 2–4.

2.2 The Maxwell equations: current conservation

Question: Would you distinguish local conservation laws from global conservation laws.
Feynman: If a cat were to disappear in Pasadena and at the same time appear in Erice,
that would be an example of global conservation of cats. This is not the way cats are
conserved. Cats or charge or baryons are conserved in a much more continuous way. If
any of these quantities begin to disappear in a region, then they begin to appear in a
neighbouring region. Consequently, we can identify the flow of charge out of a region with
the disappearance of charge inside the region. This identification of the divergence of a
flux with the time rate of change of a charge density is called a local conservation law. A
local conservation law implies that the total charge is conserved globally, but the reverse
does not hold. However, relativistically it is clear that non-local global conservation laws
cannot exist, since to a moving observer the cat will appear in Erice before it disappears
in Pasadena.

[From the question-and-answer session following a lecture by R.P.Feynman at the 1964
International School of Physics “Ettore Majorana” (Feynman 1965b)].

We begin by considering the basic laws of classical electromagnetism, the Maxwell equa-
tions. We use a system of units (Heaviside–Lorentz) which is convenient in particle physics
(see appendix C). Before Maxwell’s work, these laws were

∇ ·E = ρem (Gauss’ law) (2.1)
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∇×E = −∂B

∂t
(Faraday–Lenz laws) (2.2)

∇ ·B = 0 (no magnetic charges) (2.3)

and, for steady currents,

∇×B = jem (Ampère’s law). (2.4)

Here ρem is the charge density and jem is the current density; these densities act as ‘sources’
for the E and B fields. Maxwell noticed that taking the divergence of this last equation
leads to conflict with the continuity equation for electric charge

∂ρem
∂t

+∇ · jem = 0. (2.5)

Since
∇ · (∇×B) = 0 (2.6)

from (2.4) there follows the result
∇ · jem = 0. (2.7)

This can only be true in situations where the charge density is constant in time. For the
general case, Maxwell modified Ampère’s law to read

∇×B = jem +
∂E

∂t
(2.8)

which is now consistent with (2.5). Equations (2.1)–(2.3), together with (2.8), constitute
Maxwell’s equations in free space (apart from the sources).

It is worth spending a moment on the vitally important continuity equation (2.5)—note
the Feynman quotation at the start of this section. Let us integrate this equation over any
arbitrary volume Ω, and write the result as

∂

∂t

∫
Ω

ρemdV = −
∫
Ω

∇ · jemdV. (2.9)

Equation (2.9) states that the rate of decrease of charge in any arbitrary volume Ω is
due precisely and only to the flux of current out of its surface; that is, no net charge can
be created or destroyed in Ω. Since Ω can be made as small as we please, this means
that electric charge must be locally conserved : a process in which charge is created at one
point and destroyed at a distant one is not allowed, despite the fact that it conserves
the charge overall or ‘globally’. The ultimate reason for this is that the global form of
charge conservation would necessitate the instantaneous propagation of signals (such as
‘now, create a positron over there’), and this conflicts with special relativity—a theory
which, historically, flowered from the soil of electrodynamics. The extra term introduced by
Maxwell—the ‘electric displacement current’—owes its place in the dynamical equations to
a local conservation requirement.

We remark at this point that we have just introduced another local/global distinction,
similar to that discussed earlier in connection with invariances. In this case the distinction
applies to a conservation law, but since invariances are related to conservation laws in both
classical and quantum mechanics, we should perhaps not be too surprised by this. However,
as with invariances, conservation laws—such as charge conservation in electromagnetism—
play a central role in gauge theories in that they are closely related to the dynamics. The
point is simply illustrated by asking how we could measure the charge of a newly created
subatomic particle X. There are two conceptually different ways:
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(i) We could arrange for X to be created in a reaction such as

A + B → C+D+X

where the charges of A, B, C, and D are already known. In this case we can use
charge conservation to determine the charge of X.

(ii) We could see how particle X responded to known electromagnetic fields. This uses
dynamics to determine the charge of X.

Either way gives the same answer: It is the conserved charge which determines the
particle’s response to the field. By contrast, there are several other conservation laws that
seem to hold in particle physics, such as lepton number and baryon number, that apparently
have no dynamical counterpart (cf the remarks at the end of section 1.3.6). To determine
the baryon number of a newly produced particle, we have to use B conservation and tot
up the total baryon number on either side of the reaction. As far as we know there is no
baryonic force field.

Thus gauge theories are characterized by a close interrelation between three conceptual
elements: symmetries, conservation laws, and dynamics. In fact, it is now widely believed
that the only exact quantum number conservation laws are those which have an associated
gauge theory force field—see comment (i) in section 2.6. Thus one might suspect that
baryon number is not absolutely conserved—as is indeed the case in proposed unified gauge
theories of the strong, weak, and electromagnetic interactions. In this discussion we have
briefly touched on the connection between two pairs of these three elements: symmetries ↔
dynamics; and conservation laws ↔ dynamics. The precise way in which the remaining link
is made—between the symmetry of electromagnetic gauge invariance and the conservation
law of charge—is more technical. We will discuss this connection with the help of simple
ideas from quantum field theory in chapter 7, section 7.4. For the present, we continue with
our study of the Maxwell equations and, in particular, of the gauge invariance they exhibit.

2.3 The Maxwell equations: Lorentz covariance and gauge
invariance

In classical electromagnetism, and especially in quantum mechanics, it is convenient to
introduce the vector potential Aμ(x) in place of the fields E and B. We write:

B = ∇×A (2.10)

E = −∇V − ∂A
∂t (2.11)

which defines the 3-vector potential A and the scalar potential V . With these definitions,
equations (2.2) and (2.3) are then automatically satisfied.

The origin of gauge invariance in classical electromagnetism lies in the fact that the
potentials A and V are not unique for given physical fields E and B. The transformations
that A and V may undergo while preserving E and B (and hence the Maxwell equations)
unchanged are called gauge transformations, and the associated invariance of the Maxwell
equations is called gauge invariance.

What are these transformations? Clearly A can be changed by

A → A′ = A+∇χ (2.12)
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where χ is an arbitrary function, with no change in B since ∇ × ∇f = 0, for any scalar
function f . To preserve E, V must then change simultaneously by

V → V ′ = V − ∂χ

∂t
. (2.13)

These transformations can be combined into a single compact equation by introducing the
4-vector potential1:

Aμ = (V,A) (2.14)

and noting (from problem 2.1) that the differential operators (∂/∂t,−∇) form the compo-
nents of a 4-vector operator ∂μ. A gauge transformation is then specified by

Aμ → A′μ = Aμ − ∂μχ. (2.15)

The Maxwell equations can also be written in a manifestly Lorentz covariant form (see
appendix D) using the 4-current jμem given by

jμem = (ρem, jem) (2.16)

in terms of which the continuity equation takes the form (problem 2.1):

∂μj
μ
em = 0. (2.17)

The Maxwell equations (2.1) and (2.8) then become (problem 2.2):

∂μF
μν = jνem (2.18)

where we have defined the field strength tensor:

Fμν ≡ ∂μAν − ∂νAμ. (2.19)

Under the gauge transformation

Aμ → A′μ = Aμ − ∂μχ (2.20)

Fμν remains unchanged:
Fμν → F ′μν = Fμν (2.21)

so Fμν is gauge invariant and so, therefore, are the Maxwell equations in the form (2.18).
The ‘Lorentz-covariant and gauge-invariant field equations’ satisfied by Aμ then follow from
equations (2.18) and (2.19):

�Aν − ∂ν(∂μA
μ) = jνem. (2.22)

Since gauge transformations turn out to be of central importance in the quantum theory
of electromagnetism, it would be nice to have some insight into why Maxwell’s equations
are gauge invariant. The all-important ‘fourth’ equation (2.8) was inferred by Maxwell from
local charge conservation, as expressed by the continuity equation

∂μj
μ
em = 0. (2.23)

The field equation
∂μF

μν = jνem (2.24)

1See appendix D for relativistic notation and for an explanation of the very important concept of co-
variance, which we are about to invoke in the context of Lorentz transformations, and will use again in the
next section in the context of gauge transformations; we shall also use it in other contexts in later chapters.
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then of course automatically embodies (2.23). The mathematical reason it does so is that
Fμν is a four-dimensional kind of ‘curl’

Fμν ≡ ∂μAν − ∂νAμ (2.25)

which (as we have seen in (2.21)) is unchanged by a gauge transformation

Aμ → A′μ = Aμ − ∂μχ. (2.26)

Hence there is the suggestion that the gauge invariance is related in some way to
charge conservation. However, the connection is not so simple. Wigner (1949) has given
a simple argument to show that the principle that no physical quantity can depend on
the absolute value of the electrostatic potential, when combined with energy conservation,
implies the conservation of charge. Wigner’s argument relates charge (and energy) conser-
vation to an invariance under transformation of the electrostatic potential by a constant;
charge conservation alone does not seem to require the more general space–time-dependent
transformation of gauge invariance.

Changing the value of the electrostatic potential by a constant amount is an example of
what we have called a global transformation (since the change in the potential is the same
everywhere). Invariance under this global transformation is related to a conservation law,
that of charge. But this global invariance is not sufficient to generate the full Maxwellian
dynamics. However, as remarked by ’t Hooft (1980), one can regard equations (2.12) and
(2.13) as expressing the fact that the local change in the electrostatic potential V (the
∂χ/∂t term in (2.13)) can be compensated—in the sense of leaving the Maxwell equations
unchanged—by a corresponding local change in the magnetic vector potential A. Thus by
including magnetic effects, the global invariance under a change of V by a constant can be
extended to a local invariance (which is a much more restrictive condition to satisfy). Hence
there is a beginning of a suggestion that one might almost ‘derive’ the complete Maxwell
equations, which unify electricity and magnetism, from the requirement that the theory
be expressed in terms of potentials in such a way as to be invariant under local (gauge)
transformations on those potentials. Certainly special relativity must play a role too and
this also links electricity and magnetism, via the magnetic effects of charges as seen by an
observer moving relative to them. If a 4-vector potential Aμ is postulated, and it is then
demanded that the theory involve it only in a way which is insensitive to local changes of
the form (2.15), one is led naturally to the idea that the physical fields enter only via the
quantity Fμν , which is invariant under (2.15). From this, one might conjecture the field
equation on grounds of Lorentz covariance.

It goes without saying that this is certainly not a ‘proof’ or ‘derivation’ of the Maxwell
equations. Nevertheless, the idea that dynamics (in this case, the complete interconnection
of electric and magnetic effects) may be intimately related to a local invariance requirement
(in this case, electromagnetic gauge invariance) turns out to be a fruitful one. As indicated
in section 2.1, it is generally the case that, when a certain global invariance is generalized to
a local one, the existence of a new ‘compensating’ field is entailed, interacting in a specified
way. The first example of dynamical theory ‘derived’ from a local invariance requirement
seems to be the theory of Yang and Mills (1954) (see also Shaw 1955). Their work was ex-
tended by Utiyama (1956), who developed a general formalism for such compensating fields.
As we have said, these types of dynamical theories, based on local invariance principles, are
called gauge theories.

It is a remarkable fact that the interactions in the SM of particle physics are of precisely
this type. We have briefly discussed the Maxwell equations in this light, and we will continue
with (quantum) electrodynamics in the following two sections. The two other fundamen-
tal interactions—the strong interaction between quarks and the weak interaction between
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quarks and leptons—also seem to be described by gauge theories (of essentially the Yang–
Mills type), as we shall see in detail in the second volume of this book. A fourth example,
but one which we shall not pursue in this book, is that of general relativity (the theory
of gravitational interactions). Utiyama (1956) showed that this theory could be arrived at
by generalizing the global (space–time independent) coordinate transformations of special
relativity to local ones; as with electromagnetism, the more restrictive local invariance re-
quirements entailed the existence of a new field—the gravitational one—with an (almost)
prescribed form of interaction. Unfortunately, despite this ‘gauge’ property, no consistent
quantum field theory of general relativity is known.

In order to proceed further, we must now discuss how such (gauge) ideas are incorporated
into quantum mechanics.

2.4 Gauge invariance (and covariance) in quantum mechanics

The Lorentz force law for a non-relativistic particle of charge q moving with velocity v
under the influence of both electric and magnetic fields is

F = qE + qv ×B. (2.27)

It may be derived, via Hamilton’s equations, from the classical Hamiltonian2

H =
1

2m
(p− qA)2 + qV. (2.28)

The Schrödinger equation for such a particle in an electromagnetic field is(
1

2m
(−i∇− qA)2 + qV

)
ψ(x, t) = i

∂ψ(x, t)

∂t
(2.29)

which is obtained from the classical Hamiltonian by the usual prescription, p → −i∇, for
Schrödinger’s wave mechanics (� = 1). Note the appearance of the operator combinations

D ≡ ∇− iqA

D0 ≡ ∂/∂t+ iqV
(2.30)

in place of ∇ and ∂/∂t, in going from the free-particle Schrödinger equation to the electro-
magnetic field case.

The solution ψ(x, t) of the Schrödinger equation (2.29) describes completely the state
of the particle moving under the influence of the potentials V , A. However, these potentials
are not unique, as we have already seen: they can be changed by a gauge transformation

A → A′ = A+∇χ (2.31)

V → V ′ = V − ∂χ/∂t (2.32)

and the Maxwell equations for the fields E and B will remain the same. This immediately
raises a serious question: if we carry out such a change of potentials in equation (2.29),
will the solution of the resulting equation describe the same physics as the solution of
equation (2.29)? If it does, we shall be able to assume the validity of Maxwell’s theory for

2We set � = c = 1 throughout (see appendix B).
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the quantum world; if not, some modification will be necessary, since the gauge symmetry
possessed by the Maxwell equations will be violated in the quantum theory.

The answer to the question just posed is evidently negative, since it is clear that the same
‘ψ’ cannot possibly satisfy both (2.29) and the analogous equation with (V,A) replaced by
(V ′,A′). Unlike Maxwell’s equations, the Schrödinger equation is not gauge invariant. But
we must remember that the wavefunction ψ is not a directly observable quantity, as the
electromagnetic fields E and B are. Perhaps ψ does not need to remain unchanged (invari-
ant) when the potentials are changed by a gauge transformation. In fact, in order to have
any chance of ‘describing the same physics’ in terms of the gauge-transformed potentials,
we will have to allow ψ to change as well. This is a crucial point: for quantum mechanics to
be consistent with Maxwell’s equations, it is necessary for the gauge transformations (2.31)
and (2.32) of the Maxwell potentials to be accompanied also by a transformation of the
quantum-mechanical wavefunction, ψ → ψ′, where ψ′ satisfies the equation(

1

2m
(−i∇− qA′)2 + qV ′

)
ψ′(x, t) = i

∂ψ′(x, t)
∂t

. (2.33)

Note that the form of (2.33) is exactly the same as the form of (2.29)—it is this that
will effectively ensure that both ‘describe the same physics’. Readers of appendix D will
expect to be told that—if we can find such a ψ′—we may then assert that (2.29) is gauge
covariant, meaning that it maintains the same form under a gauge transformation. (The
transformations relevant to this use of ‘covariance’ are gauge transformations.)

Since we know the relations (2.31) and (2.32) between A, V and A′, V ′, we can actually
find what ψ′(x, t) must be in order that equation (2.33) be consistent with (2.29). We shall
state the answer and then verify it; then we shall discuss the physical interpretation. The
required ψ′(x, t) is

ψ′(x, t) = exp[iqχ(x, t)]ψ(x, t) (2.34)

where χ is the same space–time-dependent function as appears in equations (2.31) and
(2.32). To verify this we consider

(−i∇− qA′)ψ′ = [−i∇− qA− q(∇χ)][exp(iqχ)ψ]

= q(∇χ) exp(iqχ)ψ + exp(iqχ) · (−i∇ψ)

+ exp(iqχ) · (−qAψ)− q(∇χ) exp(iqχ)ψ. (2.35)

The first and the last terms cancel leaving the result:

(−i∇− qA′)ψ′ = exp(iqχ) · (−i∇− qA)ψ (2.36)

which may be written using equation (2.30) as:

(−iD′ψ′) = exp(iqχ) · (−iDψ). (2.37)

Thus, although the space–time-dependent phase factor feels the action of the gradient op-
erator ∇, it ‘passes through’ the combined operator D′ and converts it into D. In fact, by
comparing the equations (2.34) and (2.37), we see that D′ψ′ bears to Dψ exactly the same
relation as ψ′ bears to ψ. In just the same way, we find (cf equation (2.30))

(iD0′ψ′) = exp(iqχ) · (iD0ψ) (2.38)

where we have used equation (2.32) for V ′. Once again, D0′ψ′ is simply related to D0ψ.
Repeating the operation which led to equation (2.37), we find

1

2m
(−iD′)2ψ′ = exp(iqχ) · 1

2m
(−iD)2ψ

= exp(iqχ) · iD0ψ (using equation (2.29))

= iD0′ψ′ (using equation (2.30)). (2.39)
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Equation (2.39) is just (2.33) written in theD notation of equation (2.30), so we have verified
that (2.34) is the correct relationship between ψ′ and ψ to ensure consistency between
equations (2.29) and (2.33). Precisely this consistency is summarized by the statement that
(2.29) is gauge covariant.

Do ψ and ψ′ describe the same physics, in fact? The answer is yes, but it is not quite
trivial. It is certainly obvious that the probability densities |ψ|2 and |ψ′|2 are equal, since in
fact ψ and ψ′ in equation (2.34) are related by a phase transformation. However, we can be
interested in other observables involving the derivative operators ∇ or ∂/∂t—for example,
the current, which is essentially ψ∗(∇ψ)− (∇ψ)∗ψ. It is easy to check that this current is
not invariant under (2.34), because the phase χ(x, t) is x-dependent. But equations (2.37)
and (2.38) show us what we must do to construct gauge-invariant currents: namely, we
must replace ∇ by D (and in general also ∂/∂t by D0) since then:

ψ∗′(D′ψ′) = ψ∗ exp(−iqχ) · exp(iqχ) · (Dψ) = ψ∗Dψ (2.40)

for example. Thus the identity of the physics described by ψ and ψ′ is indeed ensured.
Note, incidentally, that the equality between the first and last terms in (2.40) is indeed a
statement of (gauge) invariance.

We summarize these important considerations by the statement that the gauge invari-
ance of Maxwell equations re-emerges as a covariance in quantum mechanics provided we
make the combined transformation

A → A′ = A+∇χ

V → V ′ = V − ∂χ/∂t

ψ → ψ′ = exp(iqχ)ψ

(2.41)

on the potential and on the wavefunction.
The Schrödinger equation is non-relativistic, but the Maxwell equations are of course

fully relativistic. One might therefore suspect that the prescriptions discovered here are
actually true relativistically as well, and this is indeed the case. We shall introduce the
spin-0 and spin- 12 relativistic equations in chapter 3. For the present, we note that (2.30)
can be written in manifestly Lorentz covariant form as

Dμ ≡ ∂μ + iqAμ (2.42)

in terms of which (2.37) and (2.38) become

−iD′μψ′ = exp(iqχ) · (−iDμψ). (2.43)

It follows that any equation involving the operator ∂μ can be made gauge invariant under
the combined transformation

Aμ → A′μ = Aμ − ∂μχ

ψ → ψ′ = exp(iqχ)ψ

if ∂μ is replaced by Dμ. In fact, we seem to have a very simple prescription for obtain-
ing the wave equation for a particle in the presence of an electromagnetic field from the
corresponding free particle wave equation: make the replacement

∂μ → Dμ ≡ ∂μ + iqAμ. (2.44)
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In the following section, this will be seen to be the basis of the so-called gauge principle
whereby, in accordance with the idea advanced in the previous sections, the form of the
interaction is determined by the insistence on (local) gauge invariance.

One final remark: this new kind of derivative

Dμ ≡ ∂μ + iqAμ (2.45)

turns out to be of fundamental importance—it will be the operator which generalizes from
the (Abelian) phase symmetry of QED (see comment (iii) of section 2.6) to the (non-
Abelian) phase symmetry of our weak and strong interaction theories. It is called the gauge
covariant derivative, the term being usually shortened to ‘covariant derivative’ in the present
context. The geometrical significance of this term will be explained in volume 2.

2.5 The argument reversed: the gauge principle

In the preceding section, we took it as known that the Schrödinger equation, for example,
for a charged particle in an electromagnetic field, has the form[

1

2m
(−i∇− qA)2 + qV

]
ψ = i∂ψ/∂t. (2.46)

We then checked its gauge invariance under the combined transformation

A → A′ = A+∇χ

V → V ′ = V − ∂χ/∂t (2.47)

ψ → ψ′ = exp(iqχ)ψ.

We now want to reverse the argument. We shall start by demanding that our theory is
invariant under the space–time-dependent phase transformation

ψ(x, t) → ψ′(x, t) = exp[iqχ(x, t)]ψ(x, t). (2.48)

We shall demonstrate that such a phase invariance is not possible for a free theory, but
rather requires an interacting theory involving a (4-vector) field whose interactions with
the charged particle are precisely determined, and which undergoes the transformation

A → A′ = A+∇χ (2.49)

V → V ′ = V − ∂χ/∂t (2.50)

when ψ → ψ′. The demand of this type of phase invariance will have then dictated the form
of the interaction—this is the basis of the gauge principle.

Before proceeding we note that the resulting equation—which will of course turn out
to be (2.29)—will not strictly speaking be invariant under (2.48), but rather covariant
(in the gauge sense), as we saw in the preceding section. Nevertheless, we shall in this
section sometimes continue (slightly loosely) to speak of ‘local phase invariance’. When we
come to implement these ideas in quantum field theory in chapter 7 (section 7.4), using
the Lagrangian formalism, we shall see that the relevant Lagrangians are indeed invariant
under (2.48).
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We therefore focus attention on the phase of the wavefunction. The absolute phase
of a wavefunction in quantum mechanics cannot be measured; only relative phases are
measurable, via some sort of interference experiment. A simple example is provided by the
diffraction of particles by a two-slit system. Downstream from the slits, the wavefunction is
a coherent superposition of two components, one originating from each slit: Symbolically,

ψ = ψ1 + ψ2. (2.51)

The probability distribution |ψ|2 will then involve, in addition to the separate intensities
|ψ1|2 and |ψ2|2, the interference term

2 Re(ψ∗1ψ2) = 2|ψ1||ψ2| cos δ (2.52)

where δ (= δ1 − δ2) is the phase difference between components ψ1 and ψ2. The familiar
pattern of alternating intensity maxima and minima is then attributed to variation in the
phase difference δ. Where the components are in phase, the interference is constructive and
|ψ|2 has a maximum; where they are out of phase, it is destructive and |ψ|2 has a minimum.
It is clear that if the individual phases δ1 and δ2 are each shifted by the same amount, there
will be no observable consequences since only the phase difference δ enters.

The situation in which the wavefunction can be changed in a certain way without leading
to any observable effects is precisely what is entailed by a symmetry or invariance principle
in quantum mechanics. In the case under discussion, the invariance is that of a constant
overall change in phase. In performing calculations, it is necessary to make some definite
choice of phase, that is, to adopt a ‘phase convention’. The invariance principle guarantees
that any such choice, or convention, is equivalent to any other.

Invariance under a constant change in phase is an example of a global invariance accord-
ing to the terminology introduced in the previous section. We make this point quite explicit
by writing out the transformation as

ψ → ψ′ = eiαψ

α = constant
global phase transformation. (2.53)

That α in (2.53) is a constant, the same for all space–time points, expresses the fact that
once a phase convention (choice of α) has been made at one space–time point, the same
must be adopted at all other points. Thus in the two-slit experiment we are not free to make
a local change of phase: for example, as discussed by ’t Hooft (1980), inserting a half-wave
plate behind just one of the slits will certainly have observable consequences.

There is a sense in which this may seem an unnatural state of affairs. Once a phase
convention has been adopted at one space–time point, the same convention must be adopted
at all other ones: the half-wave plate must extend instantaneously across all of space, or
not at all. Following this line of thought, one might then be led to ‘explore the possibility’
of requiring invariance under local phase transformations: that is, independent choices of
phase convention at each space–time point. By itself, the foregoing is not a compelling
motivation for such step. However, as we pointed out in section 2.3, such a move from a
global to a local invariance is apparently of crucial significance in classical electromagnetism
and general relativity, and seems now to provide the key to an understanding of the other
interactions in the SM. Let us see, then, where the demand of ‘local phase invariance’

ψ(x, t) → ψ′(x, t) = exp[iα(x, t)]ψ(x, t) local phase transformation (2.54)

leads us.
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There is immediately a problem: this is not an invariance of the free-particle Schrödinger
equation or of any free-particle relativistic wave equation! For example, if the original wave-
function ψ(x, t) satisfied the free-particle Schrödinger equation

1

2m
(−i∇2)ψ(x, t) = i∂ψ(x, t)/∂t (2.55)

then the wavefunction ψ′, given by the local phase transformation, will not, since both
∇ and ∂/∂t now act on α(x, t) in the phase factor. Thus local phase invariance is not an
invariance of the free-particle wave equation. If we wish to satisfy the demands of local phase
invariance, we are obliged to modify the free-particle Schrödinger equation into something
for which there is a local phase invariance—or rather, more accurately, a corresponding
covariance. But this modified equation will no longer describe a free particle. In other
words, the freedom to alter the phase of a charged particle’s wavefunction locally is only
possible if some kind of force field is introduced in which the particle moves. In more physical
terms, the covariance will now be manifested in the inability to distinguish observationally
between the effect of making a local change in phase convention and the effect of some new
field in which the particle moves.

What kind of field will this be? In fact, we know immediately what the answer is, since
the local phase transformation

ψ → ψ′ = exp[iα(x, t)]ψ (2.56)

with α = qχ is just the phase transformation associated with electromagnetic gauge invari-
ance! Thus we must modify the Schrödinger equation

1

2m
(−i∇)2ψ = i∂/∂t (2.57)

to
1

2m
(−i∇− qA)2ψ = (i∂/∂t− qV )ψ (2.58)

and satisfy the local phase invariance

ψ → ψ′ = exp[iα(x, t)]ψ (2.59)

by demanding that A and V transform by

A → A′ = A+ q−1∇α

V → V ′ = V − q−1∂α/∂t
(2.60)

when ψ → ψ′. The modified wave equation is of course precisely the Schrödinger equation
describing the interaction of the charged particle with the electromagnetic field described
by A and V .

In a Lorentz covariant treatment, A and V will be regarded as parts of a 4-vector
Aμ, just as −∇ and ∂/∂t are parts of ∂μ (see problem 2.1). Thus the presence of the
vector field Aμ, interacting in a ‘universal’ prescribed way with any particle of charge q,
is dictated by local phase invariance. A vector field such as Aμ, introduced to guarantee
local phase invariance, is called a ‘gauge field’. The principle that the interaction should be
so dictated by the phase (or gauge) invariance is called the gauge principle; it allows us to
write down the wave equation for the interaction directly from the free particle equation via
the replacement (2.44)3. As before, the method clearly generalizes to the four-dimensional
case.

3Actually the electromagnetic interaction is uniquely specified by this procedure only for particles of
spin-0 or 1

2
. The spin-1 case will be discussed in volume 2.
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2.6 Comments on the gauge principle in electromagnetism

Comment (i)

A properly sceptical reader may have detected an important sleight of hand in the previous
discussion. Where exactly did the electromagnetic charge appear from? The trouble with
our argument as so far presented is that we could have defined fields A and V so that they
coupled equally to all particles—instead we smuggled in a factor q.

Actually, we can do a bit better than this. We can use the fact that the electromagnetic
charge is absolutely conserved to claim that there can be no quantum mechanical interfer-
ence between states of different charge q. Hence different phase changes are allowed within
each ‘sector’ of definite q:

ψ′ = exp(iqχ)ψ (2.61)

let us say. When this becomes a local transformation, χ → χ(x, t), we shall need to cancel
a term q∇χ, which will imply the presence of a ‘−qA’ term, as required. Note that such
an argument is only possible for an absolutely conserved quantum number q—otherwise
we cannot split up the states of the system into non-communicating sectors specified by
different values of q. Reversing this line of reasoning, a conservation law such as baryon
number conservation, with no related gauge field, would therefore now be suspected of not
being absolutely conserved.

We still have not tied down why q is the electromagnetic charge and not some other
absolutely conserved quantum number. A proper discussion of the reasons for identifying
Aμ with the electromagnetic potential and q with the particle’s charge will be given in
chapter 6 with the help of quantum field theory.

Comment (ii)

Accepting these identifications, we note that the form of the interaction contains but one
parameter, the electromagnetic charge q of the particle in question. It is the same whatever
the type of particle with charge q, whether it be lepton, hadron, nucleus, ion, atom, etc.
Precisely this type of ‘universality’ is present in the weak couplings of quarks and leptons, as
we shall see in volume 2. This strongly suggests that some form of gauge principle must be
at work in generating weak interactions as well. The associated symmetry or conservation
law is, however, of a very subtle kind. Incidentally, although all particles of a given charge
q interact electromagnetically in a universal way, there is nothing at all in the preceding ar-
gument to indicate why, in nature, the charges of observed particles are all integer multiples
of one basic charge.

Comment (iii)

Returning to comment (i), we may wish that we did not have to introduce the absolute
conservation of charge as a separate axiom. As remarked earlier, at the end of section 2.2,
we should like to relate that conservation law to the symmetry involved, namely invariance
under (2.54). It is worth looking at the nature of this symmetry in a little more detail. It is
not a symmetry which—as in the case of translation and rotation invariances for instance—
involves changes in the space–time coordinates x and t. Instead, it operates on the real and
imaginary parts of the wavefunction. Let us write

ψ = ψR + iψI. (2.62)

Then
ψ′ = eiαψ = ψ′R + iψ′I (2.63)



46 Electromagnetism as a Gauge Theory

can be written as
ψ′R = (cosα)ψR − (sinα)ψI

ψ′I = (sinα)ψR + cosα)ψI

(2.64)

from which we can see that it is indeed a kind of ‘rotation’, but in the ψR–ψI plane,
whose ‘coordinates’ are the real and imaginary parts of the wavefunction. We call this plane
an internal space and the associated symmetry an internal symmetry. Thus our phase
invariance can be looked upon as a kind of internal space rotational invariance.

We can imagine doing two successive such transformations

ψ → ψ′ → ψ′′ (2.65)

where
ψ′′ = eiβψ′ (2.66)

and so
ψ′′ = ei(α+β)ψ = eiδψ (2.67)

with δ = α+β. This is a transformation of the same form as the original one. The set of all
such transformations forms what mathematicians call a group, in this case U(1), meaning
the group of all unitary one-dimensional matrices. A unitary matrix U is one such that

UU† = U†U = 1 (2.68)

where 1 is the identity matrix and † denotes the Hermitian conjugate. A one-dimensional
matrix is of course a single number—in this case a complex number. Condition (2.68) limits
this to being a simple phase: the set of phase factors of the form eiα, where α is any real
number, form the elements of a U(1) group. These are just the factors that enter into our
gauge (or phase) transformations for wavefunctions. Thus we say that the electromagnetic
gauge group is U(1). We must remember, however, that it is a local U(1), meaning (cf
(2.54)) that the phase parameters α, β, . . . depend on the space–time point x.

The transformations of the U(1) group have the simple property that it does not matter
in what order they are performed. Referring to (2.65)–(2.67), we would have got the same
final answer if we had done the β ‘rotation’ first and then the α one, instead of the other
way around. This is because, of course,

exp(iα) · exp(iβ) = exp[i(α+ β)] = exp(iβ) · exp(iα). (2.69)

This property remains true even in the ‘local’ case when α and β depend on x. Mathemati-
cians call U(1) an Abelian group: different transformations commute. We shall see later (in
volume 2) that the ‘internal’ symmetry spaces relevant to the strong and weak gauge invari-
ances are not so simple. The ‘rotations’ in these cases are more like full three-dimensional
rotations of real space, rather than the two-dimensional rotation of (2.64). We know that, in
general, such real-space rotations do not commute, and the same will be true of the strong
and weak rotations. Their gauge groups are called non-Abelian.

Once again, we shall have to wait until chapter 7 before understanding how the symmetry
represented by (2.63) is really related to the conservation law of charge.

Comment (iv)

The attentive reader may have picked up one further loose end. The vector potential A is
related to the magnetic field B by

B = ∇×A. (2.70)
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Thus if A has the special form
A = ∇f (2.71)

B will vanish. The question we must answer, therefore, is: how do we know that the A
field introduced by our gauge principle is not of the form (2.71), leading to a trivial theory
(B = 0)? The answer to this question will lead us on a very worthwhile detour.

The Schrödinger equation with ∇f as the vector potential is

1

2m
(−i∇− q∇f)2ψ = Eψ. (2.72)

We can write the formal solution to this equation as

ψ = exp

(
iq

∫ x

−∞
∇f · dl

)
· ψ(f = 0) (2.73)

which may be checked by using the fact that

∂

∂a

∫ a

f(t) dt = f(a). (2.74)

The notation ψ(f = 0) means just the free-particle solution with f = 0; the line integral is
taken along an arbitrary path ending in the point x. But we have

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz ≡ ∇f · dl. (2.75)

Hence the integral can be done trivially and the solution becomes

ψ = exp[iq(f(x)− f(−∞))] · ψ(f = 0). (2.76)

We say that the phase factor introduced by the (in reality, field-free) vector potential A =
∇f is integrable: the effect of this particularA is merely to multiply the free-particle solution
by an x-dependent phase (apart from a trivial constant phase). Since this A should give
no real electromagnetic effect, we must hope that such a change in the wavefunction is also
somehow harmless. Indeed Dirac showed (Dirac 1981, pp 92–3) that such a phase factor
corresponds merely to a redefinition of the momentum operator p̂. The essential point is
that (in one dimension, say) p̂ is defined ultimately by the commutator (� = 1)

[x̂, p̂] = i. (2.77)

Certainly the familiar choice

p̂ = −i
∂

∂x
(2.78)

satisfies this commutation relation. But we can also add any function of x to p̂, and this
modified p̂ will be still satisfactory since x commutes with any function of x. More detailed
considerations by Dirac showed that this arbitrary function must actually have the form
∂F/∂x, where F is arbitrary. Thus

p̂′ = −i
∂

∂x
+

∂F

∂x
(2.79)

is an acceptable momentum operator. Consider then the quantum mechanics defined by
the wavefunction ψ(f = 0) and the momentum operator p̂ = −i∂/∂x. Under the unitary
transformation (cf (2.76))

ψ(f = 0) → eiqf(x)ψ(f = 0) (2.80)
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FIGURE 2.1
Two paths C1 and C2 (in two dimensions for simplicity) from −∞ to the point x.

p̂ will be transformed to
p̂ → eiqf(x)p̂e−iqf(x). (2.81)

But the right-hand side of this equation is just p̂−q∂f/∂x (problem 2.3), which is an equally
acceptable momentum operator, identifying qf with the F of Dirac. Thus the case A = ∇f
is indeed equivalent to the field-free case.

What of the physically interesting case in which A is not of the form ∇f? The equation
is now

1

2m
(−i∇− qA)2ψ = Eψ (2.82)

to which the solution is

ψ = exp

(
iq

∫ x

−∞
A · dl

)
· ψ(A = 0). (2.83)

The line integral can now not be done so trivially: one says that the A-field has produced
a non-integrable phase factor. There is more to this terminology than the mere question of
whether the integral is easy to do. The crucial point is that the integral now depends on the
path followed in reaching the point x, whereas the integrable phase factor in (2.73) depends
only on the end-points of the integral, not on the path joining them.

Consider two paths C1 and C2 (figure 2.1) from −∞ to the point x. The difference in the
two line integrals is the integral over a closed curve C, which can be evaluated by Stokes’
theorem:∫ x

C1
A · dl−

∫ x

C2
A · dl =

∮
C
A · dl =

∫ ∫
S

∇×A · dS =

∫ ∫
S

B · dS (2.84)

where S is any surface spanning the curve C. In this form we see that if A = ∇f , then
indeed the line integrals over C1 and C2 are equal since ∇×∇f = 0, but if B = ∇×A is
not zero, the difference between the integrals is determined by the enclosed flux of B.

This analysis turns out to imply the existence of a remarkable phenomenon—the
Aharonov–Bohm effect, named after its discoverers (Aharonov and Bohm 1959). Suppose
we go back to our two-slit experiment of section 2.5, only this time we imagine that a long
thin solenoid is inserted between the slits, so that the components ψ1 and ψ2 of the split
beam pass one on each side of the solenoid (figure 2.2). After passing round the solenoid,
the beams are recombined, and the resulting interference pattern is observed downstream.
At any point x of the pattern, the phase of the ψ1 and ψ2 components will be modified—
relative to the B = 0 case—by factors of the form (2.83). These factors depend on the
respective paths, which are different for the two components ψ1 and ψ2. The phase differ-
ence between these components, which determines the interference pattern, will therefore
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FIGURE 2.2
The Aharonov–Bohm effect.

involve the B-dependent factor (2.84). Thus, even though the field B is essentially totally
contained within the solenoid, and the beams themselves have passed through B = 0 re-
gions only, there is nevertheless an observable effect on the pattern provided B �= 0! This
effect—a shift in the pattern as B varies—was first confirmed experimentally by Cham-
bers (1960), soon after its prediction by Aharonov and Bohm. It was anticipated in work
by Ehrenburg and Siday (1949); further references and discussion are contained in Berry
(1984).

Comment (v)

In conclusion, we must emphasize that there is ultimately no compelling logic for the vital
leap to a local phase invariance from a global one. The latter is, by itself, both necessary
and sufficient in quantum field theory to guarantee local charge conservation. Nevertheless,
the gauge principle—deriving interactions from the requirement of local phase invariance—
provides a satisfying conceptual unification of the interactions present in the SM. In vol-
ume 2 of this book we shall consider generalizations of the electromagnetic gauge principle.
It will be important always to bear in mind that any attempt to base theories of non-
electromagnetic interactions on some kind of gauge principle can only make sense if there is
an exact symmetry involved. The reason for this will only become clear when we consider
the renormalizability of QED in chapter 11.

Problems

2.1

(a) A Lorentz transformation in the x1 direction is given by

t′ = γ(t− vx1)

x1′ = γ(−vt+ x1)

x2′ = x2, x3′ = x3

where γ = (1− v2)−1/2 and c = 1. Write down the inverse of this transformation
(i.e. express (t, x1) in terms of (t′, x1′)), and use the ‘chain rule’ of partial dif-
ferentiation to show that, under the Lorentz transformation, the two quantities
(∂/∂t,−∂/∂x1) transform in the same way as (t, x1).
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[The general result is that the four-component quantity (∂/∂t,−∂/∂x1,
−∂/∂x2,−∂/∂x3) ≡ (∂/∂t,−∇) transforms in the same way as (t, x1, x2, x3).
Four-component quantities transforming this way are said to be ‘contravariant
4-vectors’, and are written with an upper 4-vector index; thus (∂/∂t,−∇) ≡
∂μ. Upper indices can be lowered by using the metric tensor gμν , see
appendix D, which reverses the sign of the spatial components. Thus
∂μ = (∂/∂t, ∂/∂x1, ∂/∂x2, ∂/∂x3). Similarly the four quantities (∂/∂t,∇) =
(∂/∂t, ∂/∂x1, ∂/∂x2, ∂/∂x3) transform as (t,−x1,−x2,−x3) and are a ‘covariant
4-vector’, denoted by ∂μ.]

(b) Check that equation (2.5) can be written as (2.17).

2.2 How many independent components does the field strength Fμν have? Express each
component in terms of electric and magnetic field components. Hence verify that equa-
tion (2.18) correctly reproduces both equations (2.1) and (2.8).

2.3 Verify the result

eiqf(x)p̂e−iqf(x) = p̂− q
∂f

∂x
.
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Relativistic Quantum Mechanics

It is clear that the non-relativistic Schrödinger equation is quite inadequate to analyse the
results of experiments at energies far higher than the rest mass energies of the particles
involved. Besides, the quarks and leptons have spin- 12 , a degree of freedom absent from the
Schrödinger wavefunction. We therefore need two generalizations—from non-relativistic to
relativistic for spin-0 particles, and from spin-0 to spin- 12 . The first step is to the Klein–
Gordon equation (section 3.1), the second to the Dirac equation (section 3.2). Then after
some further work on solutions of the Dirac equation (sections 3.3–3.4), we shall consider
(section 3.5) some simple consequences of including the electromagnetic interaction via the
gauge principle replacement (2.44).

3.1 The Klein–Gordon equation

The non-relativistic Schrödinger equation may be put into correspondence with the non-
relativistic energy–momentum relation

E = p2/2m (3.1)

by means of the operator replacements1

E → i∂/∂t (3.2)

p → −i∇ (3.3)

these differential operators being understood to act on the Schrödinger wavefunction.
For a relativistic wave equation we must start with the correct relativistic energy–

momentum relation. Energy and momentum appear as the ‘time’ and ‘space’ components
of the momentum 4-vector

pμ = (E,p) (3.4)

which satisfy the mass-shell condition

p2 = pμp
μ = E2 − p2 = m2. (3.5)

Since energy and momentum are merely different components of a 4-vector, an attempt to
base a relativistic theory on the relation

E = +(p2 +m2)1/2 (3.6)

is unattractive, as well as having obvious difficulties in interpretation for the square root
operator. Schrödinger, before settling for the less ambitious non-relativistic Schrödinger

1Recall � = c = 1 throughout (see appendix B).
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equation, and later Klein and Gordon, attempted to build relativistic quantum mechanics
(RQM) from the squared relation

E2 = p2 +m2. (3.7)

Using the operator replacements for E and p we are led to

−∂2φ/∂t2 = (−∇2 +m2)φ (3.8)

which is the Klein–Gordon equation (KG equation). We consider the case of a one-
component scalar wavefunction φ(x, t); one expects this to be appropriate for the description
of spin-0 bosons.

3.1.1 Solutions in coordinate space

In terms of the D’Alembertian operator

� ≡ ∂μ∂
μ =

∂2

∂t2
−∇2 (3.9)

the KG equation reads:
(�+m2)φ(x, t) = 0. (3.10)

Let us look for a plane-wave solution of the form

φ(x, t) = Ne−iEt+ip·x = Ne−ip·x (3.11)

where we have written the exponent in suggestive 4-vector scalar product notation

p · x = pμx
μ = Et− p · x (3.12)

and N is a normalization factor which need not be decided upon here (see section 8.1.1). In
order that this wavefunction be a solution of the KG equation, we find by direct substitution
that E must be related to p by the condition

E2 = p2 +m2. (3.13)

This looks harmless enough, but it actually implies that for a given 3-momentum p there
are in fact two possible solutions for the energy, namely

E = ±(p2 +m2)1/2. (3.14)

As Schrödinger and others quickly found, it is not possible to ignore the negative solutions
without obtaining inconsistencies. What then do these negative-energy solutions mean?

3.1.2 Probability current for the KG equation

In exactly the same way as for the non-relativistic Schrödinger equation, it is possible to
derive a conservation law for a ‘probability current’ of the KG equation. We have

∂2φ

∂t2
−∇2φ+m2φ = 0 (3.15)

and by multiplying this equation by φ∗, and subtracting φ times the complex conjugate of
equation (3.15), one obtains, after some manipulation (see problem 3.1), the result

∂ρ

∂t
+∇ · j = 0 (3.16)
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where

ρ = i

[
φ∗

∂φ

∂t
−
(
∂φ∗

∂t

)
φ

]
(3.17)

and
j = i−1[φ∗∇φ− (∇φ∗)φ] (3.18)

(the derivatives (∂μφ
∗) act only within the bracket). In explicit 4-vector notation, this

conservation condition reads (cf problem 2.1 and equation (D.4) in appendix D)

∂μj
μ = 0 (3.19)

with
jμ ≡ (ρ, j) = i[φ∗∂μφ− (∂μφ∗)φ]. (3.20)

Since φ of (3.11) is Lorentz invariant and ∂μ is a contravariant 4-vector, equation (3.20)
shows explicitly that jμ is a contravariant 4-vector, as anticipated in the notation.

The spatial current j is identical in form to the Schrödinger current, but for the KG
case the ‘probability density’ now contains time derivatives since the KG equation is second
order in ∂/∂t. This means that ρ is not constrained to be positive definite—so how can
ρ represent a probability density? We can see this problem explicitly for the plane-wave
solutions

φ = Ne−iEt+ip·x (3.21)

which give (problem 3.1)
ρ = 2|N |2E (3.22)

and E can be positive or negative: that is, the sign of ρ is the sign of energy.
Historically, this problem of negative probabilities coupled with that of negative energies

led to the abandonment of the KG equation. For the moment we will follow history, and turn
to the Dirac equation. We shall see in section 3.4, however, how the negative-energy solutions
of the KG equation do after all have a role to play, following Feynman’s interpretation, in
processes involving anti-particles. Later, in chapters 5–7, we shall see how this interpretation
arises naturally within the formalism of quantum field theory.

3.2 The Dirac equation

In the case of the KG equation, it is clear why the problem arose:

(a) In constructing a wave equation in close correspondence with the squared energy–
momentum relation

E2 = p2 +m2

we immediately allowed negative-energy solutions.

(b) The KG equation has a ∂2/∂t2 term: this leads to a continuity equation with a
‘probability density’ containing ∂/∂t, and hence to negative probabilities.

Dirac approached these problems in his characteristically direct way. In order to obtain
a positive-definite probability density ρ ≥ 0, he required an equation linear in ∂/∂t. Then,
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for relativistic covariance (see later), the equation must also be linear in ∇. He postulated
the equation (Dirac 1928)

i
∂ψ(x, t)

∂t
=

[
−i

(
α1

∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3

)
+ βm

]
ψ(x, t)

= (−iα ·∇+ βm)ψ(x, t). (3.23)

What are the α’s and β? To find the conditions on the α’s and β, consider what we require
of a relativistic wave equation:

(a) the correct relativistic relation between E and p, namely

E = +(p2 +m2)1/2

(b) the equation should be covariant under Lorentz transformations.

We shall postpone discussion of (b) until the following chapter. To solve requirement (a),
Dirac in fact demanded that his wavefunction ψ satisfy, in addition, a KG-type condition

−∂2ψ/∂t2 = (−∇2 +m2)ψ. (3.24)

We note with hindsight that we have once more opened the door to negative-energy so-
lutions. Dirac’s remarkable achievement was to turn this apparent defect into one of the
triumphs of theoretical physics!

We can now derive conditions on α and β. We have

i∂ψ/∂t = (−iα ·∇+ βm)ψ (3.25)

and so, squaring the operator on both sides,(
i
∂

∂t

)2
ψ = (−iα ·∇+ βm)(−iα ·∇+ βm)ψ

= −
3∑

i=1

α2
i

∂2ψ

(∂xi)2
−

3∑
i,j=1
i>j

(αiαj + αjαi)
∂2ψ

∂xi∂xj

−im

3∑
i=1

(αiβ + βαi)
∂ψ

∂xi
+ β2m2ψ. (3.26)

But by our assumption that ψ also satisfies the KG condition, we must have

(
i
∂

∂t

)2
ψ = −

3∑
i=1

∂2ψ

(∂xi)2
+m2ψ. (3.27)

It is thus evident that the α’s and β cannot be ordinary, classical, commuting quantities.
Instead they must satisfy the following anti-commutation relations in order to eliminate the
unwanted terms on the right-hand side of equation (3.26):

αiβ + βαi = 0 i = 1, 2, 3 (3.28)

αiαj + αjαi = 0 i, j = 1, 2, 3; i �= j. (3.29)

In addition we require
α2
i = β2 = 1. (3.30)
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Dirac proposed that the α’s and β should be interpreted as matrices, acting on a wave-
function which had several components arranged as a column vector. Anticipating somewhat
the results of the next section, we would expect that, since each such component obeys the
same wave equation, the physical states which they represent would have the same energy.
This would mean that the different components represent some degeneracy, associated with
a new degree of freedom.

The degree of freedom is, of course, spin—an entirely quantum mechanical angular mo-
mentum, analogous to (but not equivalent to) orbital angular momentum. Consider, for
example, the wavefunctions for the 2p state in the simple non-relativistic theory of the
hydrogen atom. There are three of them, all degenerate with energy given by the n = 2
Bohr energy. The three corresponding states all have orbital angular momentum quan-
tum number l equal to 1; they differ in their values of the ‘magnetic’ quantum number
m (i.e. the eigenvalue of the z-component of the orbital angular momentum operator L̂z).
Specifically, these three wavefunctions have the form (omitting normalization constants)
(r sin θeiφ, r sin θe−iφ, r cos θ)e−r/2rB , where rB is the Bohr radius. Remembering the expres-
sions for the Cartesian coordinates x, y, and z in terms of the spherical polar coordinates r,
θ, and φ, we see that by a suitable linear combination (always allowed for degenerate states)
we can write these wavefunctions as (x, y, z)f(r), where again a normalization factor has
been omitted. In this form it is plain that the multiplicity of the p-state wavefunctions can
be interpreted in simple geometrical terms: they are effectively the components of a vector
(multiplication by the scalar function f(r) does not affect this).

The several components of the Dirac wavefunction together make up a similar, but
quite distinct, object called a spinor. We shall have more to say about this in chapter 4.
For the moment we continue with the problem of finding the matrices αi and β to satisfy
(3.28)–(3.30) .

As problem 3.2 shows, the smallest possible dimension of the matrices for which the
Dirac conditions can be satisfied is 4× 4. One conventional choice of the α’s and β is

αi =

(
0 σi

σi 0

)
β =

(
1 0
0 −1

)
(3.31)

where we have written these 4× 4 matrices in 2× 2 ‘block diagonal’ form, the σi’s are the
2× 2 Pauli matrices, 1 is the 2× 2 unit matrix, and 0 is the 2× 2 null matrix. The Pauli
matrices (see appendix A) are defined by

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (3.32)

Readers unfamiliar with the labour-saving ‘block’ form of (3.31) should verify, both by using
the corresponding explicit 4× 4 matrices, such as

α1 =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠ (3.33)

and so on, and by the block diagonal form, that this choice does indeed satisfy the required
conditions. These are

{αi, β} = 0 (3.34)

{αi, αj} = 2δij1 (3.35)

β2 = 1 (3.36)
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where {A,B} is the anti-commutator of two matrices, AB +BA, and 1 is here the 4 × 4
unit matrix.

At this point we can already begin to see that the extra multiplicity is very likely to have
something to do with an angular momentum-like degree of freedom. In fact, if we define the
spin matrices S by S = 1

2σ (� = 1), we find from (3.32) that

[Sx, Sy] = iSz (3.37)

(with obvious cyclic permutations), which are precisely the commutation relations satisfied

by the components Ĵx, Ĵy and Ĵz of the angular momentum operator Ĵ in quantum mechan-
ics (see appendix A). Furthermore, the eigenvalues of Sz are ± 1

2 , and of S2 are s(s+1) with
s = 1

2 . So these matrices undoubtedly represent quantum mechanical angular momentum
operators, appropriate to a state with angular momentum quantum number j = 1

2 . This is
precisely what ‘spin’ is. We will discuss this in more detail in section 3.3.

It is important to note that the choice (3.31) of α and β is not unique. In fact, all matrices
related to these by any unitary 4× 4 matrix U (which thus preserves the anti-commutation
relations) are allowed:

α′i = UαiU
−1 (3.38)

β′ = UβU−1. (3.39)

Another commonly used representation is provided by the matrices

α =

(
σ 0
0 −σ

)
β =

(
0 1
1 0

)
. (3.40)

The reader may check (problem 3.2) that these matrices also satisfy (3.34) – (3.36).
Unless otherwise stated, we shall use the standard representation (3.31). This is generally

convenient for ‘low energy’ applications—that is, when the momentum |p| is significantly
smaller than the mass m. In that case, βm will be the largest term in the Dirac Hamiltonian
(see (3.23)), and it is sensible to have it in diagonal form. The choice (3.40), by contrast, is
more natural when the mass is small compared with the energy or momentum.

3.2.1 Free-particle solutions

Since the Dirac Hamiltonian now involves 4× 4 matrices, it is clear that we must interpret
the Dirac wavefunction ψ as a four-component column vector—the so-called Dirac spinor.
Let us look at the explicit form of the free-particle solutions. As in the KG case, we look
for solutions in which the space–time behaviour is of plane-wave form and put

ψ = ωe−ip·x (3.41)

where ω is a four-component spinor independent of x, and e−ip·x, with pμ = (E,p), is the
plane-wave solution corresponding to 4-momentum pμ. We substitute this into the Dirac
equation

i∂ψ/∂t = (−iα ·∇+ βm)ψ (3.42)

using the explicit α and β matrices. In order to use the 2× 2 block form, it is conventional
(and convenient) to split the spinor ω into two two-component spinors φ and χ:

ω =

(
φ
χ

)
. (3.43)
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We obtain the matrix equation (see problem 3.3)

E

(
φ
χ

)
=

(
m1 σ · p
σ · p −m1

)(
φ
χ

)
(3.44)

representing two coupled equations for φ and χ:

(E −m)φ = σ · pχ (3.45)

and
(E +m)χ = σ · pφ. (3.46)

Solving for χ from (3.46), the general four-component spinor may be written (without
worrying about normalization for the moment)

ω =

⎛
⎝ φ

σ · p
E +m

φ

⎞
⎠ . (3.47)

What is the relation between E and p for this to be a solution of the Dirac equation? If we
substitute χ from (3.46) into (3.45) and remember that (problem 3.4)

(σ · p)2 = p21 (3.48)

we find that
(E −m)(E +m)φ = p2φ (3.49)

for any φ. Hence we arrive at the same result as for the KG equation in that for a given
value of p, two values of E are allowed:

E = ±(p2 +m2)1/2 (3.50)

i.e. positive and negative solutions are still admitted.
The Dirac equation does not therefore solve this problem. What about the probability

current?

3.2.2 Probability current for the Dirac equation

Consider the following quantity which we denote (suggestively) by ρ:

ρ = ψ†(x)ψ(x). (3.51)

Here ψ† is the Hermitian conjugate row vector of the column vector ψ. In terms of compo-
nents

ρ = (ψ∗1 , ψ
∗
2 , ψ

∗
3 , ψ

∗
4)
⎛
⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎠

(3.52)

so

ρ =
4∑

a=1

|ψa|2 > 0 (3.53)

and we see that ρ is a scalar density which is explicitly positive-definite. This is one property
we require of a probability density. In addition, we require a conservation law, coming from
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the Dirac equation, and a corresponding probability current density. In fact (see problem 3.5)
we can demonstrate, using the Dirac equation,

i∂ψ/∂t = (−iα ·∇+ βm)ψ (3.54)

and its Hermitian conjugate

−i∂ψ† = ψ†(+iα · ←−∇ + βm) (3.55)

that there is a conservation law of the required form

∂ρ/∂t+∇ · j = 0. (3.56)

The notation ψ†←−∇ requires some comment; it is shorthand for three row matrices

ψ†←−∇x ≡ ∂ψ†/∂x etc

(recall that ψ† is a row matrix).
In equation (3.56), with ρ being given by (3.51), the probability current density j is

j(x) = ψ†(x)αψ(x) (3.57)

representing a 3-vector with components

(ψ†α1ψ,ψ
†α2ψ, ψ

†α3ψ). (3.58)

We therefore have a positive-definite ρ and an associated j satisfying the required conser-
vation law (3.56), which, as usual, we can write in invariant form as ∂μj

μ = 0, where

jμ = (ρ, j). (3.59)

Thus jμ is an acceptable probability current, unlike the current for the KG equation—as
we might have anticipated.

The form of equation (3.56) implies that jμ of (3.59) is a contravariant 4-vector (cf
equation (D.4)), as we verified explicitly in the KG case. The corresponding verification
is more difficult in the Dirac case, since the Dirac spinor ψ transforms non-trivially under
Lorentz transformations, unlike the KG wavefunction φ. We shall come back to this problem
in chapter 4.

We now turn to further discussion of the spin degree of freedom, postponing considera-
tion of the negative-energy solutions until section 3.4.

3.3 Spin

Four-momentum is not the only physical property of a particle obeying the Dirac equation.
We must now interpret the column vector (Dirac spinor) part, ω, of the solution (3.41). The
particular properties of the σ-matrices, appearing in the α-matrices, have already led us to
think in terms of spin. A further indication that this is correct comes when we consider the
explicit form of ω given in (3.47). In this equation, the two-component spinor φ is completely
arbitrary. It may be chosen in just two linearly independent ways, for example

φ↑ =
(
1
0

)
φ↓ =

(
0
1

)
(3.60)
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which (as the notation of course indicates) are in fact eigenvectors of Sz = 1
2σz with eigen-

values ± 1
2 (‘up’ and ‘down’ along the z-axis). Remember that, in quantum mechanics, linear

combinations of wavefunctions can be formed using complex numbers as superposition co-
efficients, in general; so the most general φ can always be written as

φ =

(
a
b

)
= aφ↑ + bφ↓ (3.61)

where a and b are complex numbers. Hence, there are precisely two linearly independent
solutions, for a given 4-momentum, just as we would expect for a quantum system with
j = 1

2 (the multiplicity is 2j + 1, in general).
In the rest frame of the particle (p = 0) this interpretation is straightforward. In this

case choosing (3.60) for the two independent φ’s, the solutions (3.61) for E = m reduce to

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ e−imt and

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ e−imt.

(a) (b)

(3.62)

Since we have degeneracy between these two solutions (both have E = m), there must
be some operator which commutes with the energy operator, and whose eigenvalues would
distinguish the solutions (3.62). In this case the energy operator is just βm (from (3.54)
setting −i∇ to zero, since p = 0) and the required operator commuting with β is

Σz =

(
σz 0
0 σz

)
(3.63)

which has eigenvalues 1 (twice) and −1 (twice). Our rest-frame spinors appearing in (3.62)
are indeed eigenstates of Σz, with eigenvalues ±1 as can be easily verified.

Generalizing (3.63), we introduce the three matrices Σ where

Σ =

(
σ 0
0 σ

)
. (3.64)

Then the operators 1
2Σ are such that

[ 12Σx,
1
2Σy] = i 12Σz (3.65)

and ( 12Σ)2 = 3
4I where I is now the unit 4 × 4 matrix. These are just the properties

expected of quantum-mechanical angular momentum operators (see appendix A) belonging
to magnitude j = 1

2 (we already know that the eigenvalues of 1
2Σz are ± 1

2 ). So we can
interpret 1

2Σ as spin- 12 operators appropriate to our rest-frame solutions; and—at least in
the rest frame—we may say that the Dirac equation describes a particle of spin- 12 .

It seems reasonable to suppose that the magnitude of a spin of a particle could not be
changed by doing a Lorentz transformation, as would be required in order to discuss the
spin in a general frame with p �= 0. But 1

2Σ is then no longer a suitable spin operator,
since it fails to commute with the energy operator, which is now (α · p+ βm) from (3.54),
for a plane-wave solution with momentum p. Yet there are still just two independent states
for a given 4-momentum as our explicit solution (3.47) shows: φ can still be chosen in only
two linearly independent ways. Hence there must be some operator which does commute
with α · p+ βm, and whose eigenvalues can be used to distinguish the two states. Actually
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this condition is not enough to specify such an operator uniquely, and several choices are
common. One of the most useful is the helicity operator h(p) defined by

h(p) =

⎛
⎜⎝

σ · p
|p| 0

0
σ · p
|p|

⎞
⎟⎠ (3.66)

which (see problem 3.6) does commute with α·p+βm . We can therefore choose our general
p �= 0 states to be eigenstates of h(p). These will be called ‘helicity states’; physically they
are eigenstates of Σ resolved along the direction of p.

By using (3.48), it is easy to see that the eigenvalues of h(p) are +1 (twice) and −1
(twice). Our general four-component spinor (3.47) is therefore an eigenstate of h(p) if⎛

⎜⎝
σ · p
|p| 0

0
σ · p
|p|

⎞
⎟⎠
⎛
⎝ φ

σ · p
E +m

φ

⎞
⎠ = ±

⎛
⎝ φ

σ · p
E +m

φ

⎞
⎠ . (3.67)

Taking the + sign first, this will hold if

σ · p
|p| φ+ = φ+ (3.68)

where the + subscript has been added to indicate that this φ is a solution of (3.68). Such
a φ+ is called a two-component helicity spinor. The explicit form of φ+ can be found by
solving (3.68)—see problem 3.7. Similarly, the four-component spinor will be an eigenstate
of h(p) belonging to the eigenvalue −1 if it contains φ− where

σ · p
|p| φ− = −φ−. (3.69)

Again, these two choices φ+ and φ− are linearly independent.

3.4 The negative-energy solutions

In this section we shall first look more closely at the form of both the positive- and negative-
energy solutions of the Dirac equation, and we shall then concentrate on the physical inter-
pretation of the negative-energy solutions of both the Dirac and the KG equations.

It will be convenient, from now on, to reserve the symbol ‘E’ for the positive square root
in (3.50): E = +(p2 +m2). The general 4-momentum in the plane-wave solution (3.41) will
be denoted by pμ = (p0,p) where p0 may be either positive or negative. With this notation
equation (3.44) becomes

p0
(
φ
χ

)
=

(
m1 σ · p
σ · p −m1

)(
φ
χ

)
. (3.70)

in our original representation for α and β.

3.4.1 Positive-energy spinors

Positive-energy spinors are such that

p0 = +(p2 +m2)1/2 ≡ E > 0. (3.71)
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We eliminate χ and obtain positive-energy spinors in the form

ω1,2 = N

⎛
⎝ φ1,2

σ · p
E +m

φ1,2

⎞
⎠ , (3.72)

with φ1†φ1 = φ2†φ2 = 1. We shall now choose N so that for these positive-energy solutions
ω†ω = 2E. In this case the spinors will be denoted by u(p, s), where (problem 3.8)

u(p, s) = (E +m)1/2

⎛
⎝ φs

σ · p
E +m

φs

⎞
⎠ s = 1, 2 (3.73)

and s labels the spin degree of freedom in some suitable way (e.g. the helicity eigenvalues).
The complete plane-wave solution ψ for such a positive 4-momentum state is then

ψ = u(p, s)e−ip+·x (3.74)

with pμ+ = (E,p).

3.4.2 Negative-energy spinors

Now we look for spinors appropriate to the solution

p0 = −(p2 +m2)1/2 ≡ −E < 0 (3.75)

(E is always defined to be positive). Consider first what are appropriate solutions at rest.
We have now

p0 = −m p = 0 (3.76)

and

−m

(
φ
χ

)
=

(
m1 0
0 −m1

)(
φ
χ

)
(3.77)

leading to
φ = 0. (3.78)

Thus the two independent negative-energy solutions at rest are just

ω(p0 = −m, s) =

(
0
χs

)
. (3.79)

The solution for finite momentum +p, i.e. for 4-momentum (−E,p), is then

ω(p0 = −E,p, s) =

⎛
⎝ −σ · p

E +m
χs

χs

⎞
⎠ (3.80)

with χs†χs = 1. However, it is clearly much more in keeping with relativity if, in addition to
changing the sign of E, we also change the sign of p and consider solutions corresponding
to negative 4-momentum (−E,−p) = −pμ+. We therefore define

ω(p0 = −E,−p, s) ≡ ω3,4 = N

⎛
⎝ σ · p

E +m
χ1,2

χ1,2

⎞
⎠ . (3.81)



62 Relativistic Quantum Mechanics

FIGURE 3.1
Energy levels for Dirac particle.

Adopting the same N as in (3.73) implies the same normalization (ω†ω = 2E) for (3.81) as
in (3.73); in this case the spinors are called v(p, s) where (problem 3.8)

v(p, s) = (E +m)1/2

⎛
⎝ σ · p

E +m
χs

χs

⎞
⎠ s = 1, 2. (3.82)

(There is a small subtlety in the choice of χ1 and χ2 which we will come to shortly.) The
solution ψ for such negative 4-momentum states is then

ψ = v(p, s)e−i(−p+)·x = v(p, s)eip+·x. (3.83)

3.4.3 Dirac’s interpretation of the negative-energy solutions of the
Dirac equation

The physical interpretation of the positive-energy solution (3.74) is straightforward, in terms
of the ρ and j given in section 3.2.2. They describe spin- 12 particles with 4-momentum (E,p)
and spin appropriate to the choice of φs; ρ and the energy p0 are both positive.

Unfortunately ρ is also positive for the negative-energy solutions (3.83), so we cannot
eliminate them on that account. This means that for a free Dirac particle (e.g. an electron)
the available positive- and negative-energy levels are as shown in figure 3.1. This, in turn,
implies that a particle with initially positive energy can ‘cascade down’ through the negative-
energy levels, without limit; in this case no stable positive-energy state would exist!

In order to prevent positive-energy electrons making transitions to the lower, negative-
energy states, Dirac postulated that the normal ‘empty’, or ‘vacuum’, state—that with
no positive-energy electrons present—is such that all the negative-energy states are filled
with electrons. The Pauli exclusion principle then forbids any positive-energy electrons from
falling into these lower energy levels. The ‘vacuum’ now has infinite negative charge and
energy, but since all observations represent finite fluctuations in energy and charge with
respect to this vacuum, this leads to an acceptable theory. For example, if one negative-
energy electron is absent from the Dirac sea, we have a ‘hole’ relative to the normal vacuum:

energy of ‘hole’ = −(Eneg) → positive energy

charge of ‘hole’ = −(qe) → positive charge.
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Thus the absence of a negative-energy electron is equivalent to the presence of a positive-
energy positively charged version of the electron, that is a positron. In the same way, the
absence of a ‘spin-up’ negative-energy electron is equivalent to the presence of a ‘spin-down’
positive-energy positron. This last point is the reason for the subtlety in the choice of χs

mentioned after (3.82) and we choose

χ1 =

(
0
1

)
χ2 =

(
1
0

)
, (3.84)

the opposite way round from the choice for the positive-energy spinors (3.73).
Dirac’s brilliant re-interpretation of (unfilled) negative-energy solutions in terms of anti-

particles is one of the triumphs of theoretical physics2. Carl Anderson received the Nobel
Prize for his discovery of the positron in 1932 (Anderson 1932).

In this way it proved possible to obtain sensible results from the Dirac equation and its
negative-energy solutions. It is clear, however, that the theory is no longer really a ‘single-
particle’ theory, since we can excite electrons from the infinite ‘sea’ of filled negative-energy
states that constitute the normal ‘empty state’. For example, if we excite one negative-energy
electron to a positive-energy state, we have in the final state a positive-energy electron plus a
positive-energy positron ‘hole’ in the vacuum. This corresponds physically to the process of
e+e− pair creation. Thus this way of dealing with the negative-energy problem for fermions
leads us directly to the need for a quantum field theory. The appropriate formalism will be
presented later, in section 7.2.

3.4.4 Feynman’s interpretation of the negative-energy solutions of the
KG and Dirac equations

It is clear that despite its brilliant success for spin- 12 particles, Dirac’s interpretation cannot
be applied to spin-0 particles, since bosons are not subject to the exclusion principle. Besides,
spin-0 particles also have their corresponding anti-particles (e.g. π+ and π−), and so do spin-
1 particles (W+ and W−, for instance). A consistent picture for both bosons and fermions
does emerge from quantum field theory, as we shall see in chapters 5–7, which is perhaps one
of the strongest reasons for mastering it. Nevertheless, it is useful to have an alternative,
non-field-theoretic, interpretation of the negative-energy solutions which works for both
bosons and fermions. Such an interpretation is due to Feynman. In essence, the idea is that
the negative 4-momentum solutions will be used to describe anti-particles, for both bosons
and fermions.

We begin with bosons—for example pions, which for the present purposes we take to be
simple spin-0 particles whose wavefunctions obey the KG equation. We decide by convention
that the π+ is the ‘particle’. We will then have

positive 4-momentum π+ solutions: Ne−ip·x (3.85)

negative 4-momentum π+ solutions: Neip·x. (3.86)

where pμ = [(m2 + p2)1/2,p]. The electromagnetic current for a free physical (positive-
energy) π+ is given by the probability current for a positive-energy solution multiplied by
the charge Q(= +e):

jμem(π
+) = (+e)× (probability current for positive energy π+) (3.87)

= (+e)2|N |2[(m2 + p2)1/2,p] (3.88)

2At that time, this was not universally recognized. For example, Pauli (1933) wrote: ‘Dirac has tried to
identify holes with anti-electrons. . . we do not believe that this explanation can be seriously considered.’
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FIGURE 3.2
Coulomb scattering of a π− by a static charge Ze illustrating the Feynman interpretation
of negative 4-momentum states.

using (3.20) and (3.85) (see problem 3.1). What about the current for the π−? For free
physical π− particles of positive energy (m2 + p2)1/2 and momentum p, we expect

jμem(π
−) = (−e)2|N |2[(m2 + p2)1/2,p] (3.89)

by simply changing the sign of the charge in (3.88). But it is evident that (3.89) may be
written as

jμem(π
−) = (+e)2|N |2[−(m2 + p2)1/2,−p] (3.90)

which is just jμem(π
+) with negative 4-momentum. This suggests some equivalence between

anti-particle solutions with positive 4-momentum and particle solutions with negative 4-
momentum.

Can we push this equivalence further? Consider what happens when a system A absorbs
a π+ with positive 4-momentum p; its charge increases by +e and its 4-momentum increases
by p. Now suppose that A emits a physical π− with 4-momentum k, where the energy k0

is positive. Then the charge of A will increase by +e, and its 4-momentum will decrease
by k. Now this increase in the charge of A could equally well be caused by the absorption
of a π+—and indeed we can make the effect (as far as A is concerned) of the π− emission
process fully equivalent to a π+ absorption process if we say that the equivalent absorbed
π+ has negative 4-momentum, −k; in particular the equivalent absorbed π+ has negative
energy −k0. In this way, we view the emission of a physical ‘anti-particle’ π− with positive
4-momentum k as equivalent to the absorption of a ‘particle’ π+ with (unphysical) negative
4-momentum −k. Similar reasoning will apply to the absorption of a π− of positive 4-
momentum, which is equivalent to the emission of a π+ of negative 4-momentum. Thus we
are led to the following hypothesis (due to Feynman):

The emission (absorption) of an anti-particle of 4-momentum pμ is physically equivalent
to the absorption (emission) of a particle of 4-momentum −pμ.

In other words the unphysical negative 4-momentum solutions of the ‘particle’ equation
do have a role to play: they can be used to describe physical processes involving positive
4-momentum anti-particles, if we reverse the role of ‘entry’ and ‘exit’ states.

The idea is illustrated in figure 3.2, for the case of Coulomb scattering of a π− particle
by a static charge Ze, which will be discussed later in section 8.1.3. By convention we are
taking π− to be the anti-particle. In the physical process of figure 3.2(a) the incoming
physical anti-particle π− has 4-momentum pi, and the final π− has 4-momentum pf ; both
Ei and Ef are, of course, positive. Figure 3.2(b) shows how the amplitude for the process
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can be calculated using π+ solutions with negative 4-momentum. The initial state π− of
4-momentum pi becomes a final state π+ with 4-momentum −pi, and similarly the final
state π− of 4-momentum pf becomes an initial state π+ of 4-momentum −pf . Note that in
this and similar figures, the sense of the arrows always indicates the ‘flow’ of 4-momentum,
positive 4-momentum corresponding to forward flow.

It is clear that the basic physical idea here is not limited to bosons. But there is a
difference between the KG and Dirac cases in that the Dirac equation was explicitly designed
to yield a probability density (and probability current density) which was independent of
the sign of the energy:

ρ = ψ†ψ j = ψ†αψ. (3.91)

Thus for any solutions of the form
ψ = ωφ(x, t) (3.92)

we have
ρ = ω†ω|φ(x, t)|2 (3.93)

and
j = ω†αω|φ(x, t)|2 (3.94)

and ρ ≥ 0 always. We nevertheless want to set up a correspondence so that positive-
energy solutions describe electrons (taken to be the ‘particle’, by convention, in this case)
and negative-energy solutions describe positrons, if we reverse the sense of incoming and
outgoing waves. For the KG case this was straightforward, since the probability current was
proportional to the 4-momentum:

jμ(KG) ∼ pμ. (3.95)

We were therefore able to set up the correspondence for the electromagnetic current of π+

and π−:

π+ : jμem ∼ epμ positive energy π+ (3.96)

π− : jμem ∼ (−e)pμ positive energy π− (3.97)

≡ (+e)(−pμ) negative energy π+. (3.98)

This simple connection does not hold for the Dirac case since ρ ≥ 0 for both signs of
the energy. It is still possible to set up the correspondence, but now an extra minus sign
must be inserted ‘by hand’ whenever we have a negative-energy fermion in the final state.
We shall make use of this rule in section 8.2.4. We therefore state the Feynman hypothesis
for fermions:

The invariant amplitude for the emission (absorption) of an anti-fermion of 4-
momentum pμ and spin projection sz in the rest frame is equal to the amplitude (minus
the amplitude) for the absorption (emission) of a fermion of 4-momentum −pμ and spin
projection −sz in the rest frame.

As we shall see in chapters 5–7, the Feynman interpretation of the negative-energy
solutions is naturally embodied in the field theory formalism.

3.5 Inclusion of electromagnetic interactions via the gauge
principle: the Dirac prediction of g = 2 for the electron

Having set up the relativistic spin-0 and spin- 12 free-particle wave equations, we are now in
a position to use the machinery developed in chapter 2, in order to include electromagnetic
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interactions. All we have to do is make the replacement

∂μ → Dμ ≡ ∂μ + iqAμ (3.99)

for a particle of charge q. For the spin-0 KG equation (3.10) we obtain, after some rear-
rangement (problem 3.9),

(�+m2)φ = −iq(∂μA
μ +Aμ∂μ)φ+ q2A2φ (3.100)

= −V̂KGφ. (3.101)

Note that the potential V̂KG contains the differential operator ∂μ; the sign of V̂KG is a

convention chosen so as to maintain the same relative sign between ∇2 and V̂ as in the
Schrödinger equation—for example that in (A.5).

For the Dirac equation, the replacement (3.99) leads to

i
∂ψ

∂t
= [α · (−i∇− qA) + βm+ qA0]ψ (3.102)

where Aμ = (A0,A). The potential due to Aμ is therefore V̂D = qA01− qα ·A, which is a
4× 4 matrix acting on the Dirac spinor.

The non-relativistic limit of (3.102) is of great importance, both physically and histor-
ically. It was, of course, first obtained by Dirac; and it provided, in 1928, a sensational
explanation of why the g-factor of the electron had the value g = 2, which was then the
empirical value, without any theoretical basis.

By way of background, recall from appendix A that the Schrödinger equation for a non-
relativistic spinless particle of charge q in a magnetic field B described by a vector potential
A such that B = ∇×A is

− 1

2m
∇2ψ − q

2m
B · L̂ψ +

q2

2m
A2ψ = i

∂ψ

∂t
. (3.103)

Taking B along the z-axis, the B · L̂ term will cause the usual splitting (into states of
different magnetic quantum number) of the (2l+1)-fold degeneracy associated with a state
of definite l. In particular, though, there should be no splitting of the hydrogen ground
state which has l = 0. But experimentally splitting into two levels is observed, indicating a
two-fold degeneracy and thus (see earlier) a j = 1

2 -like degree of freedom.
Uhlenbeck and Goudsmit (1925) suggested that the doubling of the hydrogen ground

state could be explained if the electron were given an additional quantum number corre-
sponding to an angular-momentum-like observable, having magnitude j = 1

2 . The operators
S = 1

2σ which we have already met serve to represent such a spin angular momentum.
If the contribution to the energy operator of the particle due to its spin S enters into the
effective Schrödinger equation in exactly the same way as that due to its orbital angular
momentum, then we would expect an additional term on the left-hand side of (3.103) of the
form

− q

2m
B · S. (3.104)

The corresponding wavefunction must now have two (spinor) components, acted on by the
2× 2 matrices in S.

The energy difference between the two levels with eigenvalues Sz = ± 1
2 would then be

qB/2m in magnitude. Experimentally the splitting was found to be just twice this value.
Thus empirically the term (3.104) was modified to

−g
q

2m
B · S (3.105)
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where g is the ‘gyromagnetic ratio’ of the particle, with g ≈ 2. Let us now see how Dirac
deduced the term (3.105), with the precise value g = 2, from his equation.

To achieve a non-relativistic limit, we expect that we have somehow to reduce the four-
component Dirac equation to one involving just two components, since the desired term
(3.105) is only a 2 × 2 matrix. Looking at the explicit form (3.72) for the free-particle
positive-energy solutions, we see that the lower two components are of order v (i.e. v/c with
c = 1) times the upper two. This suggests that, to get a non-relativistic limit, we should
regard the lower two components of ψ as being small (at least in the specific representation
we are using for α and β). However, since (3.102) includes the Aμ-field, this will have to
be demonstrated (see (3.112)). Also, if we write the total energy operator as m + Ĥ1, we
expect Ĥ1 to be the non-relativistic energy operator.

We let

ψ =

(
Ψ
Φ

)
(3.106)

where Ψ and Φ are not free-particle solutions, and they carry the space–time dependence
as well as the spinor character (each has two components). We set

Ĥ1 = α · (−i∇− qA) + βm+ qA0 −m (3.107)

where a 4× 4 unit matrix multiplying the last two terms is understood. Then

Ĥ1

(
Ψ
Φ

)
=

(
0 σ · (−i∇− qA)

σ · (−i∇− qA) 0

)(
Ψ
Φ

)

−2m

(
0
Φ

)
+ qA0

(
Ψ
Φ

)
. (3.108)

Multiplying out (3.108), we obtain

Ĥ1Ψ = σ · (−i∇− qA)Φ + qA0Ψ (3.109)

Ĥ1Φ = σ · (−i∇− qA)Ψ + qA0Φ− 2mΦ. (3.110)

From (3.110), we obtain

(Ĥ1 − qA0 + 2m)Φ = σ · (−i∇− qA)ψ. (3.111)

So, if Ĥ1 (or rather any matrix element of it) is � m and if A0 is positive or, if negative,
much less in magnitude than m/e, we can deduce

Φ ∼ (velocity)×Ψ (3.112)

as in the free case, provided that the magnetic energy ∼ σ ·A is not of order m. Further, if
Ĥ1 � m and the conditions on the fields are met, we can drop Ĥ1 and qA0 on the left-hand
side of (3.111), as a first approximation, so that

Φ ≈ σ · (−i∇− qA)

2m
Ψ. (3.113)

Hence, in (3.109),

Ĥ1Ψ ≈ 1

2m
{σ · (−i∇− qA)}2Ψ+ qA0Ψ. (3.114)

The right-hand side of (3.114) should therefore be the non-relativistic energy operator for
a spin- 12 particle of charge q and mass m in a field Aμ.
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Consider then the case A0 = 0 which is sufficient for the discussion of g. We need to
evaluate

{σ · (−i∇− qA)}2Ψ. (3.115)

This requires care, because although it is true that (for example) (σ · p)2 = p2 if p =
(px, py, pz) are ordinary numbers which commute with each other, the components of ‘−i∇−
qA’ do not commute due to the presence of the differential operator ∇, and the fact that
A depends on r. In problem 3.10 it is shown that

{σ · (−i∇− qA)}2Ψ = (−i∇− qA)2Ψ− qσ ·BΨ. (3.116)

The first term on the right-hand side of (3.116) when inserted into (3.114), gives precisely
the spin-0 non-relativistic Hamiltonian appearing on the left-hand side of (3.103) (see ap-
pendix A), while the second term in (3.116) yields exactly (3.105) with g = 2, recalling that
S = 1

2σ. Thus the non-relativistic reduction of the Dirac equation leads to the prediction
g = 2 for a spin-12 particle.

In actual fact, the measured g-factor of the electron (and muon) is slightly greater than
this value: gexp = 2(1+a). The ‘anomaly’ a, which is of order 10−3 in size, is measured with
quite extraordinary precision (see section 11.7) for both the e− and e+. This small correction
can also be computed with equally extraordinary accuracy, using the full theory of QED,
as we shall briefly explain in chapter 11. The agreement between theory and experiment is
phenomenal and is one example of such agreement exhibited by our ‘paradigm theory’.

It may be worth noting that spin- 12 hadrons, such as the proton, have g-factors very
different from the Dirac prediction. This is because they are, as we know, composite objects
and are thus (in this respect) more like atoms in nuclei than ‘elementary particles’.

Problems

3.1

(a) In natural units � = c = 1 and with 2m = 1, the Schrödinger equation may be
written as

−∇2ψ + V ψ − i∂ψ/∂t = 0.

Multiply this equation from the left by ψ∗ and multiply the complex conjugate
of this equation by ψ (assume V is real). Subtract the two equations and show
that your answer may be written in the form of a continuity equation

∂ρ/∂t+∇ · j = 0

where ρ = ψ∗ψ and j = i−1[ψ∗(∇ψ)− (∇ψ∗)ψ].

(b) Perform the same operations for the Klein–Gordon equation and derive the corre-
sponding ‘probability’ density current. Show also that for a free-particle solution

φ = Ne−ip·x

with pμ = (E,p), the probability current jμ = (ρ, j) is proportional to pμ.

3.2

(a) Prove the following properties of the matrices αi and β:
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(i) αi and β (i = 1, 2, 3) are all Hermitian [hint : what is the Hamiltonian?].

(ii) Trαi = Trβ = 0 where ‘Tr’ means the trace, i.e. the sum of the diagonal
elements [hint : use Tr(AB) = Tr(BA) for any matrices A and B—and
prove this too!].

(iii) The eigenvalues of αi and β are ±1 [hint : square αi and β].

(iv) The dimensionality of αi and β is even [hint : the trace of a matrix is equal
to the sum of its eigenvalues].

(b) Verify explicitly that the matrices α and β of (3.31), and of (3.40), satisfy the
Dirac conditions (3.34)—(3.36).

3.3 For free-particle solutions of the Dirac equation

ψ = ωe−ip·x

the four-component spinor ω may be written in terms of the two-component spinors

ω =

(
φ
χ

)
.

From the Dirac equation for ψ

i∂ψ/∂t = (−iα ·∇+ βm)ψ

using the explicit forms for the Dirac matrices

α =

(
0 σ
σ 0

)
β =

(
1 0
0 −1

)

show that φ and χ satisfy the coupled equations

(E −m)φ = σ · pχ
(E +m)χ = σ · pφ

where pμ = (E,p).

3.4

(a) Using the explicit forms for the 2 × 2 Pauli matrices, verify the commutation
(square brackets) and anti-commutation (braces) relation [note the summation

convention for repeated indices: εijkσk ≡∑3
k=1 εijkσk]:

[σi, σj ] = 2iεijkσk {σi, σj} = 2δij1

where εijk is the usual antisymmetric tensor

εijk =

{
+1 for an even permutation of 1, 2, 3
−1 for an odd permutation of 1, 2, 3
0 if two or more indices are the same,

δij is the usual Kronecker delta, and 1 is the 2× 2 matrix. Hence show that

σiσj = δij1+ iεijkσk.
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(b) Use this last identity to prove the result

(σ · a)(σ · b) = a · b1+ iσ · a× b.

Using the explicit 2× 2 form for

σ · p =

(
pz px − ipy

px + ipy −pz

)

show that
(σ · p)2 = p21.

3.5 Verify the conservation equation (3.56).

3.6 Check that h(p) as given by (3.66) does commute with α·p+βm, the momentum–space
free Dirac Hamiltonian.

3.7 Let φ be an arbitrary two-component spinor and û be a unit vector.

(i) Show that 1
2 (1+σ · û)φ is an eigenstate of σ · û with eigenvalue +1. The operator

1
2 (1 + σ · û) is called a projector operator for the σ · û = +1 eigenstate since
when acting on any φ this is what it ‘projects out’. Write down a similar operator
which projects out the σ · û = −1 eigenstate.

(ii) Construct two two-component spinors φ+ and φ− which are eigenstates of σ · û
belonging to eigenvalues ±1, and normalized to φ†rφs = δrs for (r, s) = (+,−),
for the case û = (sin θ cosφ, sin θ sinφ, cos θ) [hint : take the arbitrary φ =

(
1
0

)
].

3.8 Positive-energy spinors u(p, s) are defined by

u(p, s) = (E +m)1/2

⎛
⎝ φs

σ · p
E +m

φs

⎞
⎠ s = 1, 2

with φs†φs = 1. Verify that these satisfy u†u = 2E.
In a similar way, negative-energy spinors v(p, s) are defined by

v(p, s) = (E +m)1/2

⎛
⎝ σ · p

E +m
χs

χs

⎞
⎠ s = 1, 2

with χs†χs = 1. Verify that v†v = 2E.

3.9 Using the KG equation together with the replacement ∂μ → ∂μ + iqAμ, find the form
of the potential V̂KG in the corresponding equation

(�+m2)φ = −V̂KGφ

in terms of Aμ.

3.10 Evaluate
{σ · (−i∇− qA)}2ψ

by following the subsequent steps (or doing it your own way):
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(i) Multiply the operator by itself to get

{(σ · −i∇)2 + iq(σ ·∇)(σ ·A) + iq(σ ·A)(σ ·∇) + q2(σ ·A)2}ψ.

The first and last terms are, respectively, −∇2 and q2A2 where the 2 × 2 unit
matrix 1 is understood. The second and third terms are iq(σ · ∇)(σ · Aψ) and
iq(σ ·A)(σ ·∇ψ). These may be simplified using the identity of problem 4.4(b),
but we must be careful to treat ∇ correctly as a differential operator.

(ii) Show that (σ ·∇)(σ ·A)ψ = ∇ · (Aψ) + iσ · {∇× (Aψ)}. Now use ∇× (Aψ) =
(∇×A)ψ −A×∇ψ to simplify the last term.

(iii) Similarly, show that (σ ·A)(σ ·∇)ψ = A ·∇ψ + iσ · (A×∇ψ).

(iv) Hence verify (3.116).
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Lorentz Transformations and Discrete Symmetries

In this chapter we shall review various covariances (see appendix D) of the KG and Dirac
equations, concentrating mainly on the latter. First, we consider Lorentz transformations
(rotations and velocity transformations) and show how the scalar KG wavefunction and the
4-component Dirac spinor must transform so that the respective equations are covariant
under these transformations. Then we perform a similar task for the discrete transforma-
tions of parity, charge conjugation and time reversal. The results enable us to construct
‘bilinear covariants’ having well-defined behaviour (scalar, pseudoscalar, vector, etc.) under
these transformations. This is essential for later work, for two reasons: first, we shall be able
to do dynamical calculations in a way that is manifestly covariant under Lorentz transfor-
mations; and secondly we shall be ready to study physical problems in which the discrete
transformations are, or are not, actual symmetries of the real world, a topic to which we
shall return in the second volume.

4.1 Lorentz transformations

4.1.1 The KG equation

In order to ensure that the laws of physics are the same in all inertial frames, we require our
relativistic wave equations to be covariant under Lorentz transformations—that is, they
must have the same form in the two different frames (see appendix D). In the case of the
KG equation

(�+m2)φ(x) = −iq[∂μA
μ(x) +Aμ(x)∂μ]φ(x) + q2A2(x)φ(x) (4.1)

for a particle of charge q in the field Aμ, this requirement is taken care of, almost au-
tomatically, by the notation. Consider a Lorentz transformation such that x → x′. Aμ

will transform by the usual 4-vector transformation law (i.e. like xμ), which we write as
Aμ(x) → A′μ(x′). Similarly we write the transform of φ as φ(x) → φ′(x′). Then in the
primed coordinate frame physics must be described by the equation

(�′ +m2)φ′(x′) = −iq[∂′μA
′μ(x′) +A′μ(x′)∂′μ]φ

′(x′) + q2A′2(x′)φ′(x′). (4.2)

Now the 4-dimensional dot products appearing in (4.2) are all invariant under the Lorentz
transformation, so that (4.2) can be written as

(�+m2)φ′(x′) = −iq[∂μA
μ(x) +Aμ(x)∂μ]φ

′(x′) + q2A2(x)φ′(x′), (4.3)

and we see that the wavefunction in the primed frame may be identified (up to a phase)
with that in the unprimed frame:

φ′(x′) = φ(x). (4.4)
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Equation (4.4) is the condition for the KG equation to be covariant under Lorentz transfor-
mations. Since x′ is a known function of x, given by the angles and velocities parametrizing
the transformation, equation (4.4) enables one to construct the correct function φ′ which
the primed observers must use, in order to be consistent with the unprimed observers.

By way of illustration, consider a rotation of the coordinate system by an angle α in
a positive sense about the x-axis; then the position vector referred to the new system is
x′ = (x′, y′, z′) where ⎛

⎝x′

y′

z′

⎞
⎠ =

⎛
⎝ 1 0 0

0 cosα sinα
0 − sinα cosα

⎞
⎠
⎛
⎝x

y
z

⎞
⎠ , (4.5)

which we shall write as
x′ = Rx(α)x. (4.6)

Correspondingly, equation (4.4) is, in this case,

φ′(Rx(α)x) = φ(x), (4.7)

which can also be written as
φ′(x) = φ(R−1

x (α)x). (4.8)

It is convenient to begin with an ‘infinitesimal rotation’, where the angle α in (4.5) is
replaced by εx such that cos εx ≈ 1 and sin εx ≈ εx. Then it is easy to verify that (4.5)
becomes

x′ = Rx(εx)x = x− ε× x (4.9)

where ε = (εx, 0, 0). For a general infinitesimal rotation, we simply replace this ε by a
general one, (εx, εy, εz). For such a rotation, condition (4.8) becomes

φ′(x) = φ(x+ ε× x). (4.10)

Expanding the right hand side to first order in ε we obtain

φ′(x) = φ(x) + (ε× x) ·∇φ = φ(x) + ε · (x×∇)φ

= (1 + iε · L̂)φ(x) (4.11)

where L̂ is the vector angular momentum operator x×−i∇.
The rule for finite rotations may be obtained from the infinitesimal form by using the

result
eA = lim

n→∞(1 +A/n)n (4.12)

generalized to differential operators (the exponential of a matrix being understood as the
infinite series expA = 1 + A + 1

2A
2 + . . . ). Let ε = α/n, where α = (αx, αy, αz) are

three real finite parameters; we may think of the direction of α as representing the axis
of the rotation, and the magnitude of α as representing the angle of rotation. Then applying
the transformation (4.11) n times, and letting n tend to infinity, we obtain for the finite
rotation

φ′(x) = eiα·
ˆLφ(x) ≡ ÛR(α)φ(x). (4.13)

Note that ÛR(α) is a unitary operator, since Û†R is the inverse rotation.
Equation (4.13) is, of course, the familiar rule for rotations of scalar wavefunctions,

exhibiting the intimate connection between rotations and angular momentum in quantum
mechanics. We recall that if a Hamiltonian is invariant under rotations, then the operators
L̂ commute with the Hamiltonian and angular momentum is conserved.

A similar calculation may be done for velocity transformations (‘boosts’), leading to

corresponding operators K̂—see problem 4.1.
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4.1.2 The Dirac equation

The case of the Dirac equation is more complicated, because (unlike the KG φ) the wave-
function has more than one component, corresponding to the fact that it describes a spin-1/2
particle. There is, however, a direct connection between the angular momentum associated
with a wavefunction, and the way that the wavefunction transforms under rotations of the
coordinate system. To take a simple case, the 2p wavefunctions mentioned in section 3.2
correspond to l = 1 on the one hand and, on the other, to the components of a vector—
indeed the most basic vector of all, the position vector x = (x, y, z) itself. If we rotate the
coordinate system in the way represented by (4.5), the components in the primed system
transform into simple linear combinations of the components in the original system.

Very much the same thing happens in the case of spinor wavefunctions, except that
they transform in a way different from—though closely related to—that of vectors. In the
present section we shall discuss how this works for three-dimensional rotations of the spatial
coordinate system, and explain how it generalizes to boosts (i.e. Lorentz velocity transfor-
mations), which include transformations of the time coordinate as well. It will be convenient
to use the alternative representation (3.40) for the Dirac matrices. In this representation,
the components φ, χ of the free-particle 4-spinor ω of (3.43) satisfy

Eφ = σ · pφ+mχ (4.14)

Eχ = −σ · pχ+mφ (4.15)

rather than (3.45) and (3.46).
As before, we start with the infinitesimal rotation (4.9). Since p is a vector, it transforms

in the same way as x, so that under an infinitesimal rotation p becomes p′ where

p′ = p− ε× p. (4.16)

The question for us now is — how do the spinors φ and χ transform under this same rotation
of the coordinate system?

The essential point is that in the new coordinate system the defining equations (4.14)
and (4.15) should take exactly the same form, namely

Eφ′ = σ · p′φ′ +mχ′ (4.17)

Eχ′ = −σ · p′χ′ +mφ′ (4.18)

where φ′ and χ′ are the spinors in the new coordinate system, and we have used the fact
that both E and m do not change under rotations. Our task is to find φ′ and χ′ in terms
of φ and χ.

Since both φ and χ are 2-component spinors, we might guess from (4.11) that the answer
is

φ′ = (1 + iσ · ε/2)φ, χ′ = (1 + iσ · ε/2)χ, (4.19)

since the σ/2 are the spin-1/2 matrices, taking the place of L̂. To check that this is, in fact,
the correct transformation law, we proceed as follows.1 First, multiply (4.14) from the left
by the matrix (1 + iσ · ε/2); then, since E and m commute with all matrices, the result is

Eφ′ = (1 + iσ · ε/2)σ · pφ+mχ′ (4.20)

= (1 + iσ · ε/2)σ · p(1− iσ · ε/2)φ′ +mχ′ (4.21)

1We shall derive (4.19), and the corresponding rule for velocity transformations, equation (4.42), in
appendix M of volume 2 using group theory.
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where we have used
(1 + iσ · ε/2)−1 ≈ (1− iσ · ε/2) (4.22)

to first order in ε. Keeping only first order terms in ε, the first term on the right-hand side
of (4.21) is

(σ · p+
1

2
iσ · ε σ · p− 1

2
iσ · p σ · ε)φ′. (4.23)

This can be simplified using the result from problem 3.4(b):

σ · a σ · b = a · b+ iσ · a× b, (4.24)

provided all the components of a and b commute. Applying (4.24), (4.23) becomes

[σ · p+
i

2
(ε · p+ iσ · ε× p)− i

2
(ε · p+ iσ · p× ε)]φ′ (4.25)

= (σ · p− σ · ε× p)φ′ = σ · p′φ′. (4.26)

Hence (4.21) is just
Eφ′ = σ · p′φ′ +mχ′ (4.27)

as required in (4.17). We can similarly check the correctness of the transformation law (4.19)
for χ.

The transformation rule for a finite rotation may be obtained from the infinitesimal
form by using the result (4.12) applied to matrices. Then, for a finite rotation we obtain
the result

φ′ = exp(iσ ·α/2) φ, χ′ = exp(iσ ·α/2) χ. (4.28)

We note that the behaviour of φ and χ under rotations is the same; equation (4.28) is the
way all 2-component spinors transform under rotations.

By way of an illustration, consider the case of the finite rotation (4.5). Here α = (α, 0, 0),
and the transformation matrix is

exp(iσxα/2) = 1 + iσxα/2 +
1

2
(iσxα/2)

2 + . . . . (4.29)

Multiplying out the terms in (4.29) and remembering that σ2
x = 1, we see that the trans-

formation matrix is

cosα/2 + iσx sinα/2 =

(
cosα/2 i sinα/2
i sinα/2 cosα/2

)
. (4.30)

This means that the components φ1, φ2 of the spinor φ transform according to the rule

φ′1 = cosα/2 φ1 + i sinα/2 φ2 (4.31)

φ′2 = i sinα/2 φ1 + cosα/2 φ2, (4.32)

for this particular rotation. The transformed components are linear combinations of the
original components, but it is the half-angle α/2 that enters, not α.

Let us denote the finite transformation matrix by U , so that

U = exp(iσ ·α/2) and U † = exp(−iσ ·α/2). (4.33)

It follows that
UU † = U †U = 1, (4.34)
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since the rotation parametrized by −α clearly undoes the rotation parametrized by α. So
U is a 2 × 2 unitary matrix. It follows that the normalization of φ and χ is preserved
under rotations: φ′†φ′ = φ†φ, and χ′†χ′ = χ†χ. The free-particle Dirac probability density
ρ = ψ†ψ = φ†φ+ χ†χ is therefore also (as we expect) invariant under rotations.

More interestingly, we can examine the way the free-particle current density

j = ψ†αψ = φ†σφ− χ†σχ (4.35)

transforms under rotations. Of course, it should behave as a 3-vector, and this is checked
in problem 4.2(a).

We now turn to the behaviour of the spinors φ and χ under boosts, which mix x and t,
or equivalently p and E. For example, consider a Lorentz velocity transformation (boost)
from a frame S to a frame S′ which is moving with speed u with respect to S along the
common x-axis. Then the energy E and momentum px of a particle in S are transformed
to E′ and p′x in S′ where (cf (D.1))

E′ = coshϑ E − sinhϑ px (4.36)

p′x = coshϑ px − sinhϑ E, (4.37)

where coshϑ = (1 − u2)−1/2 ≡ γ(u), and sinhϑ = γ(u)u. As before, we start with an in-
finitesimal transformation, where ϑ is replaced by ηx such that cosh ηx ≈ 1 and sinh ηx ≈ ηx.
Then (4.36) and (4.37) become E′ = E−ηxpx, p

′
x = px−ηxE. For the general infinitesimal

boost parametrized by η = (ηx, ηy, ηz), the transformation law for (E,p) is

E′ = E − η · p (4.38)

p′ = p− ηE. (4.39)

Once again, we have to determine φ′ and χ′ such that the transformed versions of (4.14)
and (4.15) are

(E′ − σ · p′)φ′ = mχ′ (4.40)

(E′ + σ · p′)χ′ = mφ′. (4.41)

Note that this time E does transform, according to (4.38).
The required φ′ and χ′ are

φ′ = (1− σ · η/2)φ, χ′ = (1 + σ · η/2)χ. (4.42)

The spinors φ and χ behaved the same under rotations, but they transform differently under
boosts. There are two kinds of 2-component spinors, φ-type and χ-type, in the representation
(3.40), which are distinguished by their behaviour under boosts. The group theory behind
this will be explained in appendix M of volume 2. For the moment, we simply note that
these 2-component spinors, each with well-defined Lorentz transformation properties, are
called Weyl spinors (Weyl 1929).

To verify the rule (4.42), take equation (4.14) in the form (4.40) and multiply from the
left by the matrix (1 + σ · η/2), to obtain

(1 + σ · η/2)(E − σ · p)φ = mχ′, (4.43)

or equivalently
(1 + σ · η/2)(E − σ · p)(1 + σ · η/2)φ′ = mχ′, (4.44)

where we have used (1−σ · η/2)−1 ≈ (1 +σ · η/2). For (4.44) to be consistent with (4.40)
we require

(1 + σ · η/2)(E − σ · p)(1 + σ · η/2) = E′ − σ · p′. (4.45)
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Keeping only first-order terms in η, the left-hand side of (4.45) is

E − σ · p+ Eσ · η − 1

2
(σ · p σ · η + σ · η σ · p) (4.46)

= E − η · p− σ · (p− ηE) (4.47)

= E′ − σ · p′ (4.48)

as required for the right-hand side of (4.45).
For a finite boost φ and χ transform by the ‘exponentiation’ of (4.42), namely

φ′ = exp(−σ · ϑ/2) φ, χ′ = exp(σ · ϑ/2) χ (4.49)

where the three real parameters ϑ = (ϑx, ϑy, ϑz) specify the direction and magnitude of the
boost. In contrast to (4.28), the transformations (4.49) are not unitary. If we denote the
matrix exp(−σ ·ϑ/2) by B, we have B = B† rather than B−1 = B†. So B does not leave
φ†φ and χ†χ invariant. Actually this is no surprise. We already know from section 4.1.2
that the density φ†φ + χ†χ ought to transform as the fourth component ρ of the 4-vector
jμ = (ρ, j). Let us check this for our infinitesimal boost:

ρ′ = φ′†φ′ + χ′†χ′

= φ†(1− σ · η/2)(1− σ · η/2)φ+ χ†(1 + σ · η/2)(1 + σ · η/2) χ
= φ†φ+ χ†χ− φ†σφ · η + χ†σχ · η
= ρ− η · j (4.50)

as required by (4.38). Similarly, it may be verified (problem 4.2(b)) that j transforms as
the 3-vector part of the 4-vector jμ, under this infinitesimal boost.

On the other hand, the products φ†χ and χ†φ are clearly invariant under the transfor-
mation (4.49), since the exponential factors cancel. This means that the quantity ω†βω is
a Lorentz invariant (note the form of β in (3.40)).

At this point it is beginning to be clear that a more ‘covariant-looking’ notation would
be very desirable. In the case of the KG probability current, the 4-vector index μ was
clearly visible in the expression on the right-hand side of (3.20), but there is nothing similar
in the Dirac case so far. In problem 4.3 the four ‘γ matrices’ are introduced, defined by
γμ = (γ0,γ) with γ0 = β and γ = βα, together with the quantity ψ̄ ≡ ψ†γ0, in terms of
which the Dirac ρ of (3.51) and j of (3.57) can be written as ψ̄(x)γ0ψ(x) and ψ̄(x),γψ(x),
respectively. The complete Dirac 4-current is then

jμ = ψ̄(x)γμψ(x). (4.51)

For free particle solutions, we (and problem 4.2) have established that jμ of (4.51) indeed
transforms as a 4-vector under infinitesimal rotations and boosts. We have also just seen
that the quantity ψ̄ψ is an invariant.

We end this section by illustrating the use of the finite boost transformations (4.49).
Consider two frames S and S′, such that in S a particle is at rest with E = m,p = 0, and
with spin up along the z-axis; in S′, the particle has energy E′, momentum p′ = (0, 0, p′),
and spin up along the z-axis. If we apply a boost such that S′ has velocity (0, 0,−v′) relative
to S, where v′ = p′/E′, then E and p become

E′ = coshϑ′E = mγ(v′) (4.52)

p′ = sinhϑ′E = mv′γ(v′) (4.53)
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as required. Now consider the forms of the 4-spinors in S and S′. In S, from (4.14) and
(4.15) we have simply φ = χ, and if we normalize such that ūu = 2m we may take

uS =
√
m

(
φ+

φ+

)
, φ+ =

(
1
0

)
. (4.54)

In S′ the spinor is

uS′ = N

(
φ+(

E′−σzp
′

m

)
φ+

)
= N

(
φ+(

E′−p′

m

)
φ+

)
(4.55)

where the normalization N is determined (since ūu is invariant) from the condition ūS′uS′ =
2m to be N = (E′ + p′)1/2, giving

uS′ =

(
(E′ + p′)1/2 φ+

(E′ − p′)1/2 φ+

)
. (4.56)

But we can also calculate uS′ by applying the transformation (4.49) with tanhϑ′ = −v′ to
uS . Then the upper two components become

φ′ =
√
m eσzϑ

′/2φ+ =
√
m eϑ

′/2φ+, (4.57)

while the lower two components become

χ′ =
√
m e−ϑ′/2φ+. (4.58)

Now we can write

eϑ
′/2 = (eϑ

′
)1/2 = (coshϑ′ + sinhϑ′)1/2 =

(
E′ + p′

m

)1/2

(4.59)

and

e−ϑ′/2 =

(
E′ − p′

m

)1/2

; (4.60)

and so we recover (4.56).

4.2 Discrete transformations: P, C, and T

The transformations we considered in section 4.1 are known as ‘continuous’, because the
parameters involved (angles, speeds) vary continuously. This is essentially the reason we
were able to build up finite transformations from infinitesimal ones, which differ only slightly
from the identity transformation; finite transformations could be reached continuously from
the identity. But there is another class of transformations, called ‘discrete’, which cannot be
reached continuously from the identity. Examples of discrete transformations are parity (or
space inversion), charge conjugation, and time reversal, and their combinations. Although
these discrete transformations are important primarily in weak interactions, which we shall
not cover until the second volume, it is useful to discuss the behaviour of Dirac wavefunctions
under discrete transformations at this stage. Among other things, more light will be cast
on antiparticles.
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4.2.1 Parity

The parity (or space inversion) transformation P is defined by

P : x → x′ = −x, t → t; (4.61)

that is, P inverts the spatial coordinates. It follows that P also inverts momenta (p → −p)
but does not change angular momenta (x × p → x × p) or spin (σ → σ). We already see
that there are two kinds of 3-vectors: polar 3-vectors which change sign under P and axial
vectors which do not. For example, the electric field E and the vector potential A are polar
vectors, while the magnetic field B is an axial vector. There are also scalar quantities (such
as x · p) which do not change sign under P, and pseudoscalar quantities (such as σ · p)
which do.

Consider first the KG equation (4.1). Since A is a polar vector, it changes sign under
parity, as does ∇, while both ∂/∂t and A0 remain the same. The scalar products ∂μA

μ

and Aμ∂μ are therefore invariant under parity, as are � and A2. Hence we may identify
φP(x

′) = φ(x), or equivalently

φP(x) = φ(−x) ≡ P̂0φ(x), (4.62)

where P̂0 is the coordinate inversion operator. Note that we are calling the transformed
wavefunction φP rather than yet another φ′ since we need to keep track of what transfor-
mation we are considering. If we take φ(x) to be a positive-energy free particle solution with
energy E and momentum p, φP will describe a positive energy particle with momentum
−p, as we expect.

Now let us study the covariance of the free particle Dirac equation

i
∂ψ(x, t)

∂t
= −iα ·∇ψ(x, t) + βmψ(x, t) (4.63)

under P. Equation (4.63) will be covariant under (4.61) if we can find a wavefunction
ψP(x

′, t) for observers using the transformed coordinate system such that their Dirac equa-
tion has exactly the same form in their system as (4.63):

i
∂ψP

∂t
(x′, t) = −iα ·∇′ψP(x

′, t) + βmψP(x
′, t). (4.64)

Now we know that ∇′ = −∇, since x′ = −x. Hence (4.64) becomes

i
∂ψP

∂t
(x′, t) = iα ·∇ψP(x

′, t) + βmψP(x
′, t). (4.65)

Multiplying this equation from the left by β and using βα = −αβ, we find

i∂

∂t
[βψP(x

′, t)] = −iα ·∇[βψP(x
′, t)] + βm[βψP(x

′, t)] (4.66)

Comparing (4.66) and (4.63), it follows that we may consistently translate between ψ and
ψP using the relation

ψ(x, t) = βψP(−x, t), (4.67)

or equivalently
ψP(x, t) = βψ(−x, t) ≡ βP̂0ψ(x, t). (4.68)

Equation (4.68) is the required relation between the wavefunctions in the two systems; it
may be compared to (4.4) and (4.62).
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In principle we could include an arbitrary phase factor ηP on the right hand of (4.68)
and (4.62); such a phase leaves the normalization of φ and ψ, and all bilinears of the form
ψ̄ (gamma matrix) ψ unaltered. The possibility of such a phase factor did not arise in the
case of Lorentz transformations, since for infinitesimal ones the transformed ψ′ and the orig-
inal ψ differ only infinitesimally (not by a finite phase factor). But the parity transformation
cannot be built up out of infinitesimal steps—the coordinate system is either reflected or it
is not. We will choose ηP = 1.

As an example of (4.68), consider the free particle solutions in the standard form (3.41),
(3.72):

ψ(x, t) = N

(
φ

σ·p
E+mφ

)
exp(−iEt+ ip · x). (4.69)

Then

ψP(x, t) = βψ(−x, t) = N

(
φ

−σ·p
E+m φ

)
exp(−iEt− ip · x) (4.70)

which can be conveniently summarized by the simple statement that the three-momentum
p as seen in the parity transformed system is minus that in the original one, as expected.
Note that σ does not change sign.

It is also interesting to look at the behaviour of the spinors φ and χ in the representation
(3.40), where they satisfy the equations (4.14) and (4.15). Under parity p → −p, so we can
immediately see that φP = χ and χP = φ. Thus the 2-component spinors φ and χ are (in
this representation) interchanged under parity. We may also consider the massless limit of
equations (4.14) and (4.15). Since E = |p| for a massless particle, we see that the massless
Weyl spinor φ0 has helicity +1 (referring to (3.68)), while the massless Weyl spinor χ0 has
helicity −1. For a massless particle, helicity is a Lorentz invariant quantity, since we cannot
reverse the direction of motion of a particle moving with the speed of light. In the original
form of the Standard Model (SM), it was assumed that neutrinos were massless, with only
one helicity, and could therefore be described by massless Weyl spinors. We now know that
neutrinos are not massless, but their very small masses make detection of the ‘other’ helicity
very difficult, as will be discussed in section 20.2.2 of volume 2.

The analysis leading to (4.68) may be extended to the case of the Dirac equation (3.102)
for a particle of charge q in the field Aμ. As already noted, A is a polar vector, transforming
under like x or ∇; the scalar potential A0 is invariant under parity. The combination
(−i∇ − qA) therefore changes sign under parity, and the manipulations following (4.65)
proceed as before.

We may introduce a corresponding parity operator P̂, which is unitary and acts on
wavefunctions so as to change ψ into ψP; then

P̂ψ(x, t) = βψ(−x, t) = βP̂0ψ(x, t), (4.71)

so that
P̂ = βP̂0. (4.72)

Applying P̂ twice, we find
P̂2ψ(x, t) = ψ(x, t) (4.73)

which implies that the eigenvalues of P̂ are ±1.
For example, the positive energy rest-frame spinors ((3.73) with p = 0)) are eigenstates

of P̂ with eigenvalue +1, and the negative energy rest-frame spinors are eigenstates of P̂
with eigenvalue −1. Such rest-frame eigenvalues of P̂ are called intrinsic parities. The corre-
spondence between negative energy solutions and antiparticles, discussed in the preceding
section, then suggests that a fermion and its antiparticle have opposite intrinsic parity
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(note that the parity eigenvalue is multiplicative). We shall be able to derive this result
after quantization of the Dirac field in chapter 7.

As usual in quantum mechanics, we may consider the action of P̂ on operators as well
as wavefunctions. In particular, the parity transform of a Dirac Hamiltonian Ĥ(x) will be

P̂Ĥ(x)P̂† = βP̂0Ĥ(x)P̂†0β. (4.74)

If the Hamiltonian is invariant under parity, the right-hand side of (4.74) will equal Ĥ and

the operator P̂ will commute with Ĥ; the eigenvalue of P̂ will then be conserved. The
reader may easily check that the Hamiltonian for the charged particle in a field Aμ is parity
invariant, using P̂0AP̂†0 = −A.

With the rule (4.68) in hand, we can examine how various bilinear covariants, such as
ψ̄ψ or ψ̄γμψ, transform under parity. For example,

ψ̄P(x
′, t)ψP(x

′, t) = ψ†(x, t)βββψ(x, t) = ψ̄(x, t)ψ(x, t), (4.75)

showing that ψ̄ψ is a scalar. Similarly, for a 4-vector

vμ(x, t) = (v0(x, t),v(x, t)) = ψ̄(x, t)γμψ(x, t), (4.76)

the reader may check in problem 4.4(a) that v0 is a scalar and v is a polar vector.
More interesting possibilities emerge when we introduce a new γ-matrix, γ5, defined by

γ5 = iγ0γ1γ2γ3. (4.77)

This matrix has the defining property that it anticommutes with the γμ matrices:

{γ5, γμ} = 0. (4.78)

Consider now the quantity p(x, t) ≡ ψ̄(x, t)γ5ψ(x, t). We find

ψ̄P(x
′, t)γ5ψP(x

′, t) = ψ†(x, t)βγ5βψ(x, t) = −ψ̄(x, t)ψ(x, t), (4.79)

so that p(x, t) is a pseudoscalar. Similarly, the reader may verify in problem 4.4(b) that
the quantity aμ(x, t) ≡ ψ̄(x, t)γμγ5ψ(x, t) transforms under (infinitesimal) rotations and
boosts as a 4-vector, but that under parity a0(x, t) is a pseudoscalar and a(x, t) is an axial
vector.

Matrix elements formed from vμ and aμ would have to be Lorentz invariant, of the form
vμv

μ, aμa
μ, or vμa

μ. For the first of these, we find (shortening the notation)

vPμv
μ
P = v0v0 − (−v) · (−v) = vμv

μ, (4.80)

and similarly aPμa
μ
P = aμa

μ. Thus both of these matrix elements are scalars, taking the
same form in both systems. However, this is not true of vμa

μ:

vPμa
μ
P = v0(−a0)− (−v) · (a) = −vμa

μ, (4.81)

showing that this quantity is a pseudoscalar, changing sign when we change systems. By
itself, such a sign change would be irrelevant, since observables will depend on the modulus
squared of the matrix element. If, however, the matrix element for a process has the form
(vμ−aμ)(v

μ−aμ), for example, where both scalar and pseudoscalar parts are present, then
the physics in one coordinate system and in the parity-transformed system will not be the
same. One says “parity is violated” and only one of the systems can represent the real world;
parity is conserved if physics in the two coordinate systems is the same.
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Lee and Yang (1956) were the first to point out that, while there was strong evidence for
parity conservation in strong and electromagnetic interactions, its status in weak interac-
tions was at that time untested. They proposed that a clear signal of parity violation could
be found in weak decays from initially polarized states (i.e. < s > �= 0): if the distribution
of final state particles depends on odd powers of the cosine of the angle between the initial
spin direction and the final momentum, then parity is violated (note that < s > ·p is a
pseudoscalar). The first experiment to demonstrate parity violation was performed by Wu
et al. (1957), using the β-decay of polarized 60Co. Lee and Yang (1956) also remarked that
parity violation in the decay

π+ → μ+ + νμ (4.82)

implies that the spin of the muon will be polarized along the direction of its momentum,
and furthermore that the angular distribution of positrons in the subsequent decay

μ+ → e+ + ν̄μ + νe (4.83)

would (as in the 60Co experiment) serve as an analyser. This suggestion was quickly con-
firmed by Garwin et al. (1957) and by Friedman and Telegdi (1957); in the rest frame of the
pion, the μ+ spin is aligned opposite to its momentum, a situation that would be reversed
in the parity transformed frame.

The end result of many years of research was to establish that the currents responsible
for weak interactions of quarks and leptons have precisely the ‘vμ − aμ’ structure, leading
to the observed parity violation (see volume 2).

4.2.2 Charge conjugation

Dirac’s hole theory led him to the remarkable prediction of the positron, and suggested a new
kind of symmetry: to each charged spin-1/2 particle there must correspond an antiparticle
with the opposite charge and the same mass. Feynman’s interpretation of the negative
energy solutions of the KG and Dirac equations assumes that this symmetry holds for
both bosons and fermions. We now explore the idea of particle-antiparticle symmetry more
formally.

We begin with the KG equation for a spin-0 particle of mass m and charge q in an
electromagnetic field Aμ, namely equation (4.1). Inspection of this equation shows at once
that the wave function φC of a particle with the same mass and charge −q is related to the
original wavefunction φ by

φC = ηCφ
∗ (4.84)

where ηC is an arbitrary phase factor which we shall take to be unity. Equation (4.84)
tells us how to connect the solutions of the particle (charge q) and antiparticle (charge −q)
equations. When applied to free-particle solutions of the KG equation, the transformation
(4.84) relates positive and negative 4-momentum solutions, as expected in the Feynman
interpretation of the latter.

We may extend the transformation (4.84) to a symmetry operation for the KG equa-
tion (4.1) if we introduce an operation which changes the sign of Aμ. Then the combined
operation ‘take the complex conjugate of φ and change Aμ to −Aμ’ is a formal symmetry
of (4.84), in the sense that the wavefunction φ∗ in the field −Aμ satisfies exactly the same
equation as does the wavefunction φ in the field Aμ. Of course, we have just seen that φ∗ is
the antiparticle wavefunction, so it is no surprise that the dynamics of the antiparticle in a
field −Aμ is the same as that of the particle in a field Aμ. Still, this is symmetry of the KG
equation, which we will call charge conjugation, denoted by C:

C : φ → φC = φ∗, Aμ → Aμ
C = −Aμ. (4.85)
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We can ask: how does the electromagnetic current behave under this transformation? The
expression for the KG current is found by multiplying the free-particle probability current
by the charge q, and by replacing ∂μ by the gauge-invariant operator Dμ = ∂μ+iqAμ. This
leads to

jμKG em(φ,A
μ) = iq{φ∗(∂μ + iqAμ)φ− [(∂μ + iqAμ)φ]∗φ}

= iq[φ∗∂μφ− (∂μφ∗)φ]− 2q2Aμφ∗φ. (4.86)

The current for φC, A
μ
C is then

jμKG em(φC, A
μ
C) = iq[φ∗C∂

μφC − (∂μφ∗C)φC]− 2q2Aμ
Cφ

∗
CφC

= iq[φ ∂μφ∗ − (∂μφ)φ∗] + 2q2Aμφ φ∗

= −jμKG em(φ,A
μ). (4.87)

As we would hope, the KG current changes sign under C.
Now consider the Dirac equation for a particle of mass m and charge q in a field Aμ,

which we write in the form

∂ψ

∂t
= (−α ·∇+ iqα ·A− iβm− iqA0)ψ. (4.88)

We want to relate solutions of this equation to the solution ψC of the same equation with
q replaced by −q. As in the KG case, we begin by writing down the complex conjugate
equation,

∂ψ∗

∂t
= (−α1∂

1 + α2∂
2 − α3∂

3

−iqα1∂
1 + iqα2∂

2 − iqα3∂
3 + iβm+ iqA0)ψ∗ (4.89)

where we have used the fact that α1, α3, and β are real and α2 is pure imaginary, which is
the case in both the standard representation of the Dirac matrices, and the representation
(3.40). Now imagine multiplying (4.89) from the left by a matrix c, with the properties that
it commutes with α1 and α3, but anticommutes with α2 and β. Then (4.89) will become

c
∂ψ∗

∂t
= (−α ·∇− iqα ·A− iβm+ iqA0) cψ∗ (4.90)

which is just (4.88) with q replaced by −q. So we may identify the charge-conjugate Dirac
wavefunction as

ψC = ηC cψ∗ (4.91)

where ηC is the usual arbitrary phase factor. The required c is

c = βα2 = γ2 (4.92)

as the reader may easily verify. It is customary to choose ηC = i, and so finally the connection
between ψC and ψ is

ψC(x) = C0ψ
∗(x), where C0 = iγ2. (4.93)

Let us look at the effect of the transformation (4.93) on free-particle solutions of the
Dirac equation. Referring to (3.73) we find that a positive energy spinor is transformed to

uC(p, s) = (E +m)1/2 iγ2

(
φs∗

σ∗·p
E+m φs∗

)

= (E +m)1/2
( σ·p

E+m (−iσ2φ
s∗)

−iσ2φ
s∗

)
, (4.94)
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where we have used σ∗2 = −σ2, σ2σ1 = −σ1σ3, and σ2σ3 = −σ3σ2. The 4-spinor (4.94) is a
negative energy solution v(p, s) as in (3.82), identifying −iσ2φ

s∗ with χs. Accordingly we
have shown that

uC(p, s) = v(p, s). (4.95)

Similarly, as the reader may check,

vC(p, s) = iγ2v∗(p, s) = u(p, s). (4.96)

So from a positive energy free-particle spinor associated with 4-momentum p and spin s the
transformation (4.93) produces a negative energy free-particle spinor associated with the
same 4-momentum and spin, and vice versa: that is, u and v are charge-conjugate spinors.

At this point we may wonder if it is possible to construct a self-conjugate 4-spinor. Such a
spinor would be appropriate for a fermionic particle which is the same as its antiparticle—
that is, for a Majorana fermion, so named after Ettore Majorana who first raised this
possibility (Majorana 1937). To pursue this idea, it is convenient to use the representation
(3.40) for the Dirac matrices again, in order to keep track of the Lorentz transformation
property of the Majorana spinor. Consider the 4-spinor

ωM =

(
φ

iσ2φ
∗

)
. (4.97)

Then

ωMC = iγ2ω∗M =

(
0 −iσ2

iσ2 0

)(
φ∗

iσ2φ

)
=

(
φ

iσ2φ
∗

)
= ωM, (4.98)

so that indeed ωM is self-conjugate. The Lorentz transformation property of ωM is consistent,
since we may easily show (problem 4.4(c)) that the 2-spinor σ2φ

∗ transforms as a χ-type
spinor. The reader can construct a similar self-conjugate 4-spinor using χ rather than φ.

A self-conjugate fermion has to carry no distinguishing quantum number, such as elec-
tromagnetic charge. The only known neutral fermions are the neutrinos, and until quite
recently it was assumed that they are Dirac fermions, with distinct antiparticles (the rel-
evant distinguishing quantum number being lepton number). However, as we shall see in
volume 2, owing to their very small mass, it is hard to discriminate between the two possi-
bilities (Majorana and Dirac) for neutrinos, and a definitive answer will have to await the
result of a crucial experiment, the search for neutrinoless double beta decay, which is only
possible for Majorana neutrinos.

Returning to more conventional matters, we extend (as in the KG case) the transforma-
tion (4.93) to a formal symmetry of the Dirac equation by including the sign change of Aμ,
so that C for the Dirac equation is

C : ψ → ψC = iγ2ψ∗, Aμ → −Aμ. (4.99)

We now examine how the electromagnetic current behaves under C in the Dirac case. The
Dirac charge density is the probability density ψ†ψ multiplied by the charge q, and the
electromagnetic 3-current is the probability current ψ†αψ multiplied by q:

jμD em = (qψ†ψ, qψ†αψ) = qψ̄γμψ. (4.100)

Consider the charge density; under the transformation (4.93) this becomes

qψ†CψC = qψTγ2†γ2ψ∗ = qψTα2ββα2ψ
∗ = qψTψ∗. (4.101)
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In terms of the four components of ψ, the product ψTψ∗ is ψ1ψ
∗
1 +ψ2ψ

∗
2 +ψ3ψ

∗
3 +ψ4ψ

∗
4 .

These components are ordinary functions which commute with each other, so ψTψ∗ =
ψ∗Tψ = ψ†ψ; hence

qψ†CψC = qψ†ψ (4.102)

and the charge density does not change sign under C. Similarly, one finds that the electro-
magnetic 3-current does not change sign either.

These results can be interpreted in the hole theory picture: the current due to a physical
positive energy antiparticle of charge q and momentum p is regarded as the same as that
of a missing negative energy particle of charge −q and momentum p. Our charge conjuga-
tion operation explicitly constructs the positive energy antiparticle wavefunction from the
negative energy particle one.

Yet this is not really what we want a true charge conjugation operator to do — which
is, rather, to change a positive energy particle into a positive energy antiparticle. The same
inadequacy was true in the KG case also. There is no way of representing such an operation
in a single particle wavefunction formalism. The appropriate formalism is quantum field
theory, in which ψ(x) becomes a quantum field operator (as do bosonic fields), and there is

a unitary quantum field operator Ĉ with the required property. We shall see in chapter 7
that fermionic operators anticommute with each other, and that this is just what is needed
to ensure that the current changes sign under Ĉ. Bosonic fields, on the other hand, obey
commutation rather than anticommutation relations, and this safeguards the change in sign
of the bosonic current.

We have approached charge conjugation following the historical route, which is to say
via the electromagnetic interaction. But we can ask whether (true) C is a good symmetry
of other interactions, for example the weak interaction. Consider applying C to the reaction
(4.82), so that it becomes

π− → μ− + ν̄μ. (4.103)

If C was a good symmetry, the (parity-violating) longitudinal polarization of the μ− in
(4.103) should be the same as that of the μ+ in (4.82). But in fact it is the opposite, the μ−

spin being aligned along the direction of its momentum. So C, like P, is violated in weak
interactions. It is a good symmetry in electromagnetic and strong interactions.

4.2.3 CP

It has probably occurred to the reader that, although C and P are each violated in the
decays (4.82) and (4.103), the combined transformation CP might be a good symmetry:
particles are changed to antiparticles, the sense of longitudinal polarization is reversed,
and the corresponding decays occur. Indeed, the rates for these two decays are the same,
and CP is conserved. For a while, after 1956, it was hoped that CP would prove to be
always conserved, so as to avoid a ‘lopsided’ distinction between right and left, and between
matter and antimatter. But before long Christenson et al. (1964) reported evidence for CP
violation in the decays of neutral K-mesons, a result soon confirmed by other experiments.

As we mentioned in section 1.2.2, it was the difficulty of incorporating CP violation into
the 2-generation electroweak theory that led Kobayashi and Maskawa (1973) to propose a
third generation of quarks, which allowed a CP violating parameter to be included quite
naturally. CP violation in K-decays is a small effect (of order one part in 103), but in
1980 Carter and Sanda (1980) showed that considerably larger effects, up to 20%, could be
expected in rare decays of neutral B mesons, according to the framework of Kobayashi and
Maskawa (KM). Some 20 years later, the “B factories” at the asymmetric e−e+ colliders
PEPII and KEKB began producing B mesons by the many millions, and intensive study of
CP violation in the B0(db̄) − B̄0(d̄b) systems followed at the BaBar and Belle detectors.
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Remarkably, all observations to date are consistent with the original KM parametrization.
We shall return to this topic when we discuss weak interactions in volume 2, specifically in
chapter 21. Meanwhile we refer to Bettini (2008), chapter 8, for an introductory overview.

It is worth pausing here to note the significance of CP violation. First of all, it implies
that there is an absolute distinction between matter and antimatter and, as a consequence,
between left and right: these are not merely a matter of convention. For example, the rate
for the process

B0 → K+π− (4.104)

is some 20% greater (Nakamura et al. 2010) than the rate for the CP-conjugate process

B̄0 → K−π+. (4.105)

(Note that the B̄0 state is conventionally defined as the CP transform of the B0 state).
So the pion distinguished by being emitted in the higher-yielding reaction (4.104) defines
“negatively charged”, and the polarization of the muon in its decay (4.103) defines what is
a right-handed screw sense.

Secondly, CP (and C) violation is one of the three conditions2 established by Sakharov
(1967) that would enable a universe containing initially equal amounts of matter and anti-
matter, when created in the Big Bang, to evolve into the matter-dominated universe we see
today—rather than simply having the required imbalance as an initial condition. Within
the SM, all presently known CP violating effects are attributable to the KM mechanism.
But calculations show (Huet and Sather 1995) that the matter-antimatter asymmetry gen-
erated from this source is very many orders of magnitude too small. The observed baryon
asymmetry is therefore unexplained, so far. However, it is also possible that CP violation
may eventually be detected in the neutrino sector, as we shall discuss further in volume 2.
The (rather esoteric) mechanism whereby this might lead to the observed baryon asymme-
try is called “leptogenesis” (Fukugida and Yanagida 1986, Frampton et al. 2002, Pascoli et
al. 2007a, 2007b). But establishing the viability of this solution to the problem is likely to
be a long and slow process.

Thirdly,CP violation is directly connected to the violation of another discrete symmetry,
namely time reversal T, because very general principles of quantum field theory imply that
the product CPT (in any order) is conserved—the CPT theorem. This theorem states
(Lüders 1954, 1957, Pauli 1957) that CPT must be an exact symmetry for any Lorentz
invariant quantum field theory constructed out of local fields, with a Hermitian Hamiltonian,
and quantized according to the usual spin-statistics rule (integer spin particles are bosons,
half-odd integer spin particles are fermions). Thus any violation of CP implies a violation
of T if CPT is to be conserved.

We shall return to CPT presently, but first let us deal with T.

4.2.4 Time reversal

The time reversal transformation T is defined by

T : x → x′ = x, t → t′ = −t; (4.106)

that is, T reverses the direction of time. It follows that T reverses momenta (p → −p) and
angular momenta (x × p → −x × p). Let us also note how the electromagnetic potentials
transform under T: A0 does not change, being generated by static charges, while A changes
sign, since it is produced by currents; that is,

A0
T(t

′) = A0(t) AT(t
′) = −A(t). (4.107)

2The other two are (a) the existence of baryon number violating transitions and (b) a time when the C,
CP, and baryon number violating transitions proceeded out of thermal equilibrium.
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It follows that the electric field E does not change sign under T, but the magnetic field
B does. It is easily checked that these prescriptions ensure that the Maxwell equations are
covariant under T.

Consider first the behaviour of the KG equation for a particle of charge q in the field
Aμ:

(�+m2)φ(t) = −iq[∂μA
μ(t) +Aμ(t)∂μ]φ(t) + q2A2(t)φ(t). (4.108)

The equation in the time-reversed system is

(�+m2)φT(t
′) = −iq[∂′μA

μ
T(t

′) +Aμ
T(t

′)∂′μ]φ(t
′) + q2A2

TφT(t
′). (4.109)

Using (4.107) we obtain

∂′μA
μ
T(t

′) = −∂μA
μ(t), Aμ(t′)∂′μ = −Aμ(t)∂μ, A2

T(t
′) = A2(t). (4.110)

It follows that we can identify
φT(t

′) = φ∗(t) (4.111)

up to an arbitrary phase factor, here chosen to be unity. If φ is a positive-energy free
particle solution, φ∗ represents a particle of positive energy in the time-reversed system,
with momentum −p as expected.

Now consider the behaviour under T of the Dirac equation for a particle of charge q in
a field Aμ,

i
∂ψ(t)

∂t
= {α · [−i∇− qA(t)] + βm+ qA0(t)}ψ(t) (4.112)

where we have suppressed the spatial coordinate arguments. In the time-reversed system,
the corresponding equation is

i
∂ψT(t

′)
∂t′

= {α · [−i∇− qAT(t
′)] + βm+ qA0

T(t
′)}ψT(t

′). (4.113)

To relate ψT to ψ we start by taking the complex conjugate of (4.112) so as to obtain

−i
∂ψ∗(t)
∂t

= {α∗ · [i∇− qA(t)] + β∗m+ qA0(t)}ψ∗(t) (4.114)

which we may rewrite as

i
∂ψ∗(t)
∂t′

= {α∗ · [i∇+ qAT(t
′)] + β∗m+ qA0

T(t
′)}ψ∗(t). (4.115)

Now suppose a unitary matrix UT exists such that

UTα
∗U †T = −α, UTβ

∗U†T = β; (4.116)

then it is clear that the Dirac equation will be covariant under T with the identification

ψT(t
′) = UTψ

∗(t). (4.117)

In either of the two representations of the Dirac matrices which we have been using, α1, α3,
and β are real, while α2 is pure imaginary; it follows that UT must commute with α2 and
β, and anticommute with α1 and α2. A suitable UT is

UT = iα1α3 (4.118)

where the phase is a conventional choice.
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Let us check what is the effect of the transformation (4.117) on a positive-energy plane
wave solution (3.74). In the representation (3.31) UT is given by

UT =

(
σ2 0
0 σ2

)
(4.119)

and so

ψT(x, t
′) = (E +m)1/2

(
σ2 0
0 σ2

)(
φ∗

σ∗·p
E+mφ∗

)
exp(iEt− ip · x)

= (E +m)1/2

(
σ2φ

∗
σ·p′

E+mσ2φ
∗

)
exp(−iEt′ + ip′ · x), (4.120)

which is a positive-energy solution with the expected momentum p′ = −p, and with the
transformed spinor wavefunction σ2φ

∗. If we take φ to be a helicity eigenstate

σ · p
|p| φλ = λφλ (4.121)

where λ = ±1, then it follows that

σ · p′
|p′| σ2φ

∗
λ = λσ2φ

∗
λ, (4.122)

and the helicity is unchanged.
As in the case of parity, we may introduce an operator T̂ which changes φ to φT for the

KG equation, and ψ to ψT for the Dirac equation. Then

T̂(KG) = KT̂0 (4.123)

and
T̂(Dirac) = UTKT̂0 (4.124)

where K is the complex conjugation operator, and T̂0 is the time coordinate reversal op-
erator. The appearance of K is a general feature of time-reversal in quantum mechanics
(Wigner 1964), and has important consequences.3 Because the transformations involve com-
plex conjugation, the scalar product of two wavefunctions < ψ2|ψ1 > is not equal to the
corresponding quantity < ψ2T|ψ1T >, as it would be in the case of parity, for example, or
for any other transformation represented by a unitary operator. Instead, we have

< ψ2|ψ1 >=< ψ2T|ψ1T >∗ . (4.125)

Note, however, that the probability | < ψ2|ψ1 > |2 is still preserved.
If we consider the matrix element of any operator Ô, then since Ôψ1 is itself a wave-

function, we must have

< ψ2|Ô|ψ1 >=< ψ2|Ôψ1 >=< ψ2T|T̂Ôψ1 >∗=< ψ2T|T̂ÔT̂−1|ψ1T >∗ (4.126)

where T̂ÔT̂−1 is the operator in the time-reversed system. In particular, if we take Ô to

3Complex conjugation also appeared in our discussion of C in section 4.2.2, but as indicated there
the true operator Ĉ of quantum field is unitary. Even in quantum field theory, however, the time-reversal
operator involves complex conjugation, as we shall see in section 7.5.3.
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be a Hermitian interaction potential V̂ , which is time-reversal invariant, then time-reversal
invariance implies the relation

< ψ2|V̂ |ψ1 >=< ψ2T|V̂ |ψ1T >∗=< ψ1T|V̂ |ψ2PT > . (4.127)

Now < ψ2|V̂ |ψ1 > is the amplitude for the state represented by ψ1 to make a transition to
the state represented by ψ2 to first order in the potential V̂ (see section M.3 of appendix M).
Equation (4.127) therefore relates this amplitude to one for the inverse transition, involving
time-reversed states. The relation in fact holds for the complete (all orders) transition
operator T̂ (see for example Lee 1981, section 13.5), and enables one to relate rates and
cross sections for reactions and their inverses.

For strong interactions, these relations are straightforward to test, and confirm that
strong interactions are T-invariant. So are electromagnetic interactions. In weak interac-
tions, where the violation of CP and the conservation of CPT implies that T is violated,
it is generally very difficult if not impossible to set up the conditions for an inverse reaction
to occur (consider the inverse of neutron decay, n → pe−ν̄e, for example). However, one
such test is possible in neutral K-decays (Kabir 1970). We can check whether the rate for a
particle tagged at its production as a K0 to decay in a way that identifies it as a K̄0 is equal
to the rate for a particle tagged as K̄0 at its production to decay in a way that identifies
it as a K0. The experiment (Angelopoulos et al. 1998) showed a T-violating difference in
these rates. The parameters determining these reactions had actually been well determined
by other measurements; still, this was an independent and direct demonstration of T vio-
lation. Evidence for T violation in B-meson transitions has been reported by Alvarez and
Szynkman (2008), developing a test suggested by Banuls and Bernabeu (1999, 2000).

We can also examine the behaviour of various bilinears under T. For example, the reader
may easily check the results

ψ̄T(x
′)ψT(x

′) = ψ̄(x)ψ(x), ψ̄T(x
′)γ5ψT(x

′) = −ψ̄(x)γ5ψ(x). (4.128)

Time reversal symmetry will be violated if the theory contains both even and odd amplitudes
under T. An interesting example is provided by the amplitude

−ideψ̄(x)σ
μνγ5ψ(x)Fμν , (4.129)

where

σμν =
i

2
(γμγν − γνγμ) (4.130)

and where Fμν is an external electric field with non-vanishing components F0i = Ei. In the
representation (3.31),

σ0iγ5 = i

(
σi 0
0 σi

)
≡ iΣi, (4.131)

and (4.129) reduces to
deψ̄(x)Σψ(x) ·E. (4.132)

Problem 4.5 shows that the quantity (4.132) is odd under T, and it is easy to check that it
is also odd under P. A non-zero value of such a term would correspond to an electric dipole
moment for a spin-1/2 particle (compare the analogous quantity dmψ̄(x)Σψ(x) ·B for the
magnetic dipole moment, which is even under P and T). Experiment places very strong
limits on possible electric dipole moments (Workman et al. 2022) for the neutron, proton,
and electron:

dn < 0.18× 10−25 e cm. (4.133)

dp < 0.021× 10−23 e cm. (4.134)

de < 0.11× 10−28 e cm. (4.135)



90 Lorentz Transformations and Discrete Symmetries

Although these numbers seem tiny, calculations of the dn in the SM produce a result some
6 or 7 orders of magnitude smaller than (4.133). However, these experimental limits impose
strong constraints on theories which go beyond the SM, and which may typically contain
the possibility of larger T and CP violating effects.

4.2.5 CPT

We denote the product CPT by θ and the corresponding operator by θ̂. As already men-
tioned, for any conventional quantum field theory, and certainly for the SM, the transfor-
mation θ is an invariance of the theory. One immediate consequence of this invariance is
the equality of particle and antiparticle masses. This is easily demonstrated. Let |X, sz >
be the state of a particle X at rest with z-component of spin equal to sz. The mass of X is
given by the expectation value

MX =< X, sz|Ĥ|X, sz >, (4.136)

where Ĥ is the total Hamiltonian. Clearly MX is real, and independent of sz. Now the
operator θ̂ involves T̂, and therefore we must be careful to use (4.126) rather than the
usual rule for unitary operators. So from (4.126) we have

MX =< X, sz|Ĥ|X, sz >∗=< X, sz|θ̂−1
θ̂Ĥθ̂

−1
θ̂|X, sz >. (4.137)

If the Hamiltonian is CPT invariant, then θ̂Ĥθ̂
−1

= Ĥ. Also, we know the action of P̂, Ĉ,
and T̂ on the states, from the previous results. Equation (4.137) then becomes

MX =< X̄,−sz|Ĥ|X̄,−sz >= MX̄, (4.138)

stating the equality of particle and antiparticle masses. The most sensitive test of (4.138) is
provided by the K0 − K̄0 system, where the currently quoted limit for the mass difference
is (Workman et al. 2022)

|M0
K −M0

K̄
|

Maverage
< 6× 10−19 at 90% C.L. (4.139)

θ-invariance also implies that the charges of a charged particle and its antiparticle are
equal in magnitude but opposite in sign, as are their magnetic moments; and in the case of
unstable particles it implies that their lifetimes are equal, to first order in the interaction
responsible for the decay (Lee 1981). All current data support these equalities (Workman
et al. 2022).

Problems

4.1 Consider an infinitesimal boost along the x-axis,

t′ = t− ηx (4.140)

x′ = x− ηt. (4.141)

Show that the KG wavefunction transforms according to

φ′(x, t) = (1 + iηK̂x)φ, (4.142)
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where
K̂x = −i x ∂/∂t− i t ∂/∂x. (4.143)

Defining similar operators K̂y, K̂z for boosts in the y and z directions, show that

[K̂x, K̂y] = −iL̂z. (4.144)

4.2 In this problem, use the representation (3.40) for the Dirac matrices, as in section 4.1.2.

(a) Using the rule (4.19) for the transformation of the spinor φ under an infinitesimal
rotation of the coordinate system, verify that φ†σφ transforms as a 3-vector.
[Hint: you need to show that φ′†σφ′ = φ†σφ − ε × φ†σφ; use the results of
problem 3.4(a).] Show also that the free-particle Dirac probability current density
is a 3-vector.

(b) Using the rule (4.42) for the transformation of φ and χ under an infinitesimal
boost, verify that j = φ†σφ − χ†σχ transforms as the 3-vector part of the 4-
vector (ρ, j). [Hint: you need to show that j′ = j − ηρ.]

4.3

(a) Defining the four ‘γ matrices’

γμ = (γ0,γ)

where γ0 = β and γ = βα, show that the Dirac equation can be written in the
form (iγμ∂μ −m)ψ = 0. Find the anti-commutation relations of the γ matrices.
Show that the positive energy spinors u(p, s) satisfy (/p−m)u(p, s) = 0, and that
the negative energy spinors v(p, s) satisfy (/p + m)v(p, s) = 0, where /p = γμpμ
(pronounced ‘p-slash’).

(b) Define the conjugate spinor
ψ̄(x) = ψ†(x)γ0

and use the previous result to find the equation satisfied by ψ̄ in γ matrix notation.

(c) The Dirac probability current may be written as

jμ = ψ̄(x)γμψ(x).

Show that it satisfies the conservation law

∂μj
μ = 0.

4.4

(a) Verify that, under P, ψ̄(x, t)γ0ψ(x, t) is a scalar, and that ψ̄(x, t)γψ(x, t) is a
polar vector.

(b) Verify that aμ(x, t) = ψ̄(x, t)γμγ5ψ(x, t) transforms under infinitesimal rotations
and boosts as a 4-vector; and that under P a0(x) is a pseudoscalar, and a(x, t)
is an axial vector.

(c) Show that σ2φ
∗ transforms under rotations and boosts as a χ-type spinor, and

that σ2χ
∗ transforms as a φ-type spinor.

4.5 Verify that ψ̄(x, t)Σψ(x, t) ·E of (4.132) is odd under T.
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4.6 The Galilean transformation (non-relativistic boost) is defined by

x′ = x− vt, t′ = t.

Show that the free-particle time-dependent Schrödinger equation is covariant under this
transformation if the wavefunction transforms according to the rule ψ′(x′, t′) = exp[if(x, t)]
ψ(x, t), where f(x, t) satisfies the condition

−∂f

∂t
− v ·∇f + iv ·∇ =

1

2m
(∇f)2 − i

2m
∇2f − i

m
∇f ·∇.

Find constants a and b such that the function f = at+ b · x satisfies this condition. Show
that the resulting transformation rule is consistent with the way you expect a plane wave
solution to transform.
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It was a wonderful world my father told me about.
You might wonder what he got out of it all. I went to MIT. I went to Princeton. I went

home and he said, ‘Now you’ve got a science education. I have always wanted to know
something that I have never understood; and so, my son, I want you to explain it to me.’ I
said yes.

He said, ‘I understand that they say that light is emitted from an atom when it goes
from one state to another, from an excited state to a state of lower energy.’

I said ‘That’s right.’
‘And light is a kind of particle, a photon I think they call it.’
‘Yes.’
‘So if the photon comes out of the atom when it goes from the excited to the lower state,

the photon must have been in the atom in the excited state.’
I said, ‘Well, no.’
He said, ‘Well, how do you look at it so you can think of a particle photon coming out

without it having been in there in the excited state?’
I thought a few minutes, and I said, ‘I’m sorry; I don’t know. I can’t explain it to you.’
He was very disappointed after all these years and years trying to teach me something,

that it came out with such poor results.

R P Feynman, The Physics Teacher, vol 7, No 6, September 1969

All the fifty years of conscious brooding have brought me no closer to the answer to
the question, ‘What are light quanta?’ Of course today every rascal thinks he knows the
answer, but he is deluding himself.

A Einstein (1951)

Quoted in ‘Einstein’s research on the nature of light’

E Wolf (1979), Optic News, vol 5, No 1, page 39.

I never satisfy myself until I can make a mechanical model of a thing. If I can make a
mechanical model I can understand it. As long as I cannot make a mechanical model all the
way through I cannot understand; and that is why I cannot get the electromagnetic theory.

[Sir William Thomson, Lord Kelvin, 1884 Notes of Lectures on Molecular Dynamics and
the Wave Theory of Light delivered at the Johns Hopkins University, Baltimore, steno-
graphic report by A S Hathaway (Baltimore: Johns Hopkins University) Lecture XX,
pp 270–1.]
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Quantum Field Theory I: The Free Scalar Field

In this chapter we shall give an elementary introduction to quantum field theory, which is
the established ‘language’ of the Standard Model (SM) of particle physics. Even so long after
Maxwell’s theory of the (classical) electromagnetic field, the concept of a ‘disembodied’ field
is not an easy one; and we are going to have to add the complications of quantum mechanics
to it. In such a situation, it is helpful to have some physical model in mind. For most of
us, as for Lord Kelvin, this still means a mechanical model. Thus in the following two
sections we begin by considering a mechanical model for a quantum field. At the end, we
shall—like Maxwell—throw away the ‘mechanism’ and have simply quantum field theory.
Section 5.1 describes this programme qualitatively; section 5.2 presents a more complete
formalism, for the simple case of a field whose quanta are massless, and move in only one
spatial dimension. The appropriate generalizations for massive quanta in three dimensions
are given in section 5.3.

5.1 The quantum field: (i) descriptive

Mechanical systems are usefully characterized by the number of degrees of freedom they
possess: thus a one-dimensional pendulum has one degree of freedom, two coupled one-
dimensional pendulums have two degrees of freedom—which may be taken to be their
angular displacements, for example. A scalar field φ(x, t) corresponds to a system with an
infinite number of degrees of freedom, since at each continuously varying point x an in-
dependent ‘displacement’ φ(x, t), which also varies with time, has to be determined. Thus
quantum field theory involves two major mathematical steps: the description of continu-
ous systems (fields) which have infinitely many degrees of freedom, and the application of
quantum theory to such systems. These two aspects are clearly separable. It is certainly
easier to begin by considering systems with a discrete—but possibly very large—number of
degrees of freedom, for example a solid. We shall treat such systems first classically and then
quantum mechanically. Then, returning to the classical case, we shall allow the number of
degrees of freedom to become infinite, so that the system corresponds to a classical field.
Finally, we shall apply quantum mechanics directly to fields.

We begin by considering a rather small solid—one that has only two atoms free to
move. The atoms, each of mass m, are connected by a string, and each is connected to
a fixed support by a similar string (figure 5.1(a)); all the strings are under tension F .
We consider small transverse vibrations of the atoms (figure 5.1(b)), and we call qr(t)
(r = 1, 2) the transverse displacements. We are interested in the total energy E of the
system. According to classical mechanics, this is equal to the sum of the kinetic energies
1
2mq̇2r of each atom, together with a potential energy V which can be calculated as follows.
Referring to figure 5.1(b), when atom 1 is displaced by q1, it experiences a restoring force

F1 = F sinα− F sinβ (5.1)
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FIGURE 5.1
A vibrating system with two degrees of freedom: (a) two mass points at rest, with the
strings under tension; (b) a small transverse displacement.

assuming a constant tension F along the string. For small displacements q1 and q2 (i.e.
q1,2 � l) we have

sinα = q1/(l
2 + q21)

1/2 ≈ q1/l

sinβ = (q2 − q1)/[l
2 + (q2 − q1)

2]1/2 ≈ (q2 − q1)/l
(5.2)

where terms of order (q1,2/l)
3 and higher have been neglected. Thus the restoring force on

particle 1 is, in this approximation,

F1 = k(2q1 − q2) (5.3)

with k = F/l. Similarly, the restoring force on particle 2 is

F2 = k(2q2 − q1) (5.4)

and the equations of motion are

mq̈1 = −k(2q1 − q2) (5.5)

mq̈2 = −k(2q2 − q1). (5.6)

The potential energy is then determined (up to an irrelevant constant) by the requirement
that (5.5) and (5.6) are of the form

mq̈1 = −∂V/∂q1 (5.7)

mq̈2 = −∂V/∂q2. (5.8)

Thus we deduce that
V = k(q21 + q22 − q1q2). (5.9)

Equations (5.5) and (5.6) form a pair of linear, coupled differential equations. Each of the
italicized words is important. By ‘linear’, is meant that only the first power of q1 and q2 and
their time derivatives appear in the equations of motion; terms such as q21 , q1q2, q̇

2
1 , q

3
1 , and

so on would render the equations of motion ‘nonlinear’. This linear/nonlinear distinction is
a crucial one in dynamics. Most importantly, the solutions of linear differential equations
may be added together with constant coefficients (‘linearly superposed’) to make new valid
solutions of the equations. In contrast, solutions of nonlinear differential equations—besides
being very hard to find!—cannot be linearly superposed to get new solutions. In addition,
nonlinear dynamical equations may typically lead to chaotic motion.
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The notion of linearity/nonlinearity carries over also into the equations of motion for
fields. In this context, an equation for a field φ(x, t) is said to be linear if φ and its space—or
time—derivatives appear only to the first power. As we shall see, this is true for Maxwell’s
equations for the electromagnetic field and it is, of course, the mathematical reason behind
all the physics of such things as interference and diffraction, which may be understood
precisely in terms of superposition of solutions of these equations. Likewise the equations
of quantum mechanics (e.g. Schrödinger’s equation) are all linear in this sense, consistent
with the principle of superposition in quantum mechanics.

It is clear, then, that in looking at simple mechanical models as a guide to the field
systems in which we will ultimately be interested, we should consider ones in which the
equations of motion are linear. In the present case, this is true, but only because we have
made the approximation that q1 and q2 are small (compared to l). Referring to equa-
tion (5.2), we can immediately see that if we had kept the full expression for sinα and
sinβ, the resulting equations of motion would have been highly nonlinear. A similar ‘small
displacement’ approximation has to be made in determining the familiar wave equation,
describing waves on continuous strings, for example (see (5.29) later). Most significantly,
however, quantum mechanics is believed to be a linear theory without any approximation.

The appearance of only linear terms in q1 and q2 in the equations of motion implies,
via (5.7) and (5.8), that the potential energy can only involve quadratic powers of the q’s,
i.e. q21 , q22 , and q1q2, as in (5.9). Once again, had we used the general expression for the
potential energy in a stretched string as ‘tension×extension’ we would have obtained an
expression containing all powers of the q’s via such terms as {[l2 + q21 ]

1/2 − l}.
We turn now to the coupled aspect of (5.5) and (5.6). By this we mean that the right-

hand side of the q1 equation depends on q2 as well as q1, and similarly for the q2 equation.
This ‘mathematical’ coupling has its origin in the term −kq1q2 in V , which corresponds
to the ‘physical’ coupling of the string BC connecting the two atoms. If this coupling were
absent, equations (5.5) and (5.6) would describe two independent (uncoupled) harmonic
oscillators, each of frequency (2k/m)1/2. When we consider the addition of more and more
particles (see later) we certainly do not want them to vibrate independently, otherwise we
would not be able to get wave-like displacements propagating through the system. So we
need to retain at least this minimal kind of ‘quadratic’ coupling.

With the coupling, the solutions of (5.5) and (5.6) are not quite so obvious. However, a
simple step makes the equations much easier. Suppose we add the two equations so as to
obtain

m(q̈1 + q̈2) = −k(q1 + q2) (5.10)

and subtract them to obtain

m(q̈1 − q̈2) = −3k(q1 − q2). (5.11)

A remarkable thing has happened. The two combinations q1 + q2 and q1 − q2 of the orig-
inal coordinates satisfy uncoupled equations—which are of course very easy to solve. The
combination q1 + q2 oscillates with frequency ω1 = (k/m)1/2, while q1 − q2 oscillates with
frequency ω2 = (3k/m)1/2.

Let us introduce

Q1 = (q1 + q2)/
√
2 Q2 = (q1 − q2)/

√
2 (5.12)

(the
√
2’s are for later convenience). Then the solutions of (5.10) and (5.11) are:

Q1(t) = A cosω1t+B sinω1t (5.13)

Q2(t) = C cosω2t+D sinω2t. (5.14)
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FIGURE 5.2
Motion in the two normal modes: (a) frequency ω1; (b) frequency ω2.

Suppose that the initial conditions are such that

q1(0) = q2(0) = a q̇1(0) = q̇2(0) = 0 (5.15)

i.e. the atoms are released from rest, at equal transverse displacements a. In terms of the
Qr’s, the conditions (5.15) are

Q2(0) = Q̇2(0) = 0

Q1(0) =
√
2a Q̇1(0) = 0.

(5.16)

Thus from (5.13) and (5.14) we find that the complete solution, for these initial conditions,
is

Q1(t) =
√
2a cosω1t (5.17)

Q2(t) = 0. (5.18)

We see from (5.18) that the motion is such that q1 = q2 throughout, and from (5.17) that the
system vibrates with a single definite frequency ω1. A form of motion in which the system
as a whole moves with a definite frequency is called a normal mode or simply a ‘mode’ for
short. Figure 5.2(a) shows two ‘snapshot’ configurations of our two-atom system when it is
oscillating in the mode characterized by q1 = q2. In this mode, only Q1(t) changes; Q2(t) is
always zero. Another mode also exists in which q1 = −q2 at all times: here Q1(t) is zero and
Q2(t) oscillates with frequency ω2. Figure 5.2(b) shows two snapshots of the atoms when
they are vibrating in this second mode. The coordinate combinations Q1, Q2, in terms of
which this ‘single frequency motion’ occurs, are called ‘normal mode coordinates’ or normal
coordinates for short.

In general, the initial conditions will not be such that the motion is a pure mode; both
Q1(t) and Q2(t) will be non-zero. From (5.12) we have

q1(t) = [Q1(t) +Q2(t)]/
√
2 (5.19)

and
q2(t) = [Q1(t)−Q2(t)]/

√
2 (5.20)

so that q1 and q2 are expressed as a sum of two terms oscillating with frequencies ω1 and
ω2. We say the system is in ‘a superposition of modes’. Nevertheless, the mode idea is still
very important as regards the total energy of the system, as we shall now see. The kinetic
energy can be written in terms of the mode coordinates Qr as

T = 1
2mQ̇2

1 +
1
2mQ̇2

2 (5.21)
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while the potential energy V of (5.9) becomes

V = 1
2mω2

1Q
2
1 +

1
2mω2

2Q
2
2 ≡ V (Q1, Q2). (5.22)

The total energy is therefore

E = [ 12mQ̇2
1 +

1
2mQ̇2

2] + [ 12mω2
1Q

2
1 +

1
2mω2

2Q
2
2]. (5.23)

This equation shows that, when written in terms of the normal coordinates, the total energy
contains no couplings terms of the form Q1Q2; indeed, the energy has the remarkable form
of a simple sum of two independent uncoupled oscillators, one with characteristic frequency
ω1, the other with frequency ω2. The energy (5.23) has exactly the form appropriate to a
system of two non-interacting ‘things’, each executing simple harmonic motion: the ‘things’
are actually the two modes. Modes do not interact, whereas the original atoms do! Of course,
this decoupling in the expression for the total energy is reflected in the decoupling of the
equations of motion for the Q variables:

mQ̈r = −∂V (Q1, Q2)

∂Qr
r = 1, 2. (5.24)

It is most important to realize that the modes are non-interacting by virtue of the fact
that we ignored higher than quadratic terms in V (q1, q2). Although the simple change of
variables (q1, q2) → (Q1, Q2) of (5.12) does remove the q1q2 coupling, this would not be
the case if, say, cubic terms in V were to be considered. Such higher order ‘anharmonic’
corrections would produce couplings between the modes—indeed, this will be the basis of
the quantum field theory description of particle interactions (see the following chapter)!

The system under discussion had just two degrees of freedom. We began by describing
it in terms of the obvious degree of freedom, the physical displacements of the two atoms q1
and q2. But we have learned that it is very illuminating to describe it in terms of the normal
coordinate combinations Q1 and Q2. The normal coordinates are really the relevant degrees
of freedom. Of course, for just two particles, the choice between the qr’s and the Qr’s may
seem rather academic; but the important point—and the reason for going through these
simple manipulations in detail—is that the basic idea of the normal mode, and of normal
coordinates, generalizes immediately to the much less trivial N -atom problem (and also to
the field problem). For N atoms there are (for one-dimensional displacements) N degrees
of freedom, and if we take them to be the actual atomic displacements, the total energy will
be

E =

N∑
r=1

1
2mq̇2r + V (q1, . . . , qr) (5.25)

which includes all the couplings between atoms. We assume, as before, that the qr’s are
small enough so that only quadratic terms need to be kept in V (a constant is as usual
irrelevant, and the linear terms vanish if the qr’s are the displacements from equilibrium).
In this case, the equations of motion will be linear. By a linear transformation of the form
(generalizing (5.12))

Qr =

N∑
s=1

arsqs (5.26)

it is possible to write E as a sum of N separate terms, just as in (5.23):

E =

N∑
r=1

[ 12mQ̇2
r +

1
2mω2

rQ
2
r]. (5.27)
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The Qr’s are the normal coordinates and the ωr’s are the normal frequencies, and there
are N of them. If only one of the Qr’s is non-zero, the N atoms are moving in a single
mode. The fact that the total energy in (5.27) is a sum of N single-mode energies allows
us to say that our N -atom solid behaves as if it consisted of N separate and free harmonic
oscillators—which, however, are not to be identified with the coordinates of the original
atoms. Once again, and now much more crucially, it is the mode coordinates that are the
relevant degrees of freedom rather than those of the original particles.

The second stage in our programme is to treat such systems quantum mechanically, as
we should certainly have to for a real solid. It is still true that—if the potential energy
is a quadratic function of the displacements—the transformation (5.26) allows us to write
the total energy as a sum of N mode energies, each of which has the form of a harmonic
oscillator. Now, however, these oscillators obey the laws of quantum mechanics, so that each
mode oscillator exists only in certain definite states, whose energy eigenvalues are quantized.
For each mode of frequency ωr, the allowed energy values are

εr = (nr +
1
2 )�ωr (5.28)

where nr is a positive integer or zero. This is in sharp contrast to the classical case, of
course, in which arbitrary values are allowed for the oscillator energies. The total energy
eigenvalue then has the form

E =
N∑
r=1

(nr +
1
2 )�ωr. (5.29)

The frequencies ωr are determined by the interatomic forces and are common to both
the classical and quantum descriptions; in quantum theory, though, the states of definite
energy of the vibrating N-body system are characterized by the values of a set of integers
(n1, n2, . . . , nN ), which determine the energies of each mode oscillator.

For each mode oscillator, �ωr measures the quantum of vibrational energy; the energy
of an allowed mode state is determined uniquely by the number nr of such quanta of energy
in the state. We now make a profound reinterpretation of this result (first given, almost en
passant by Born, Heisenberg and Jordan (Born et al. 1926) in one of the earliest papers on
quantum mechanics). We forget about the original N degrees of freedom q1, q2, . . . , qN and
the original N ‘atoms’, which indeed are only remembered in (5.29) via the fact that there
are N different mode frequencies ωr. Instead we concentrate on the quanta and treat them
as ‘things’ which really determine the behaviour of our quantum system. We say that ‘in a
state with energy (nr +

1
2 )�ωr there are nr quanta present’. For the state characterized by

(n1, n2,. . ., nN ) there are n1 quanta of mode 1 (frequency ω1), n2 of mode 2, . . . and nN of
mode N . Note particularly that although the number of modes N is fixed, the values of the
nr’s are unrestricted, except insofar as the total energy is fixed. Thus we are moving from
a ‘fixed number’ picture (N degrees of freedom) to a ‘variable number’ picture (the nr’s
restricted only by the total energy constraint (5.29)). In the case of a real solid, these quanta
of vibrational energy are called phonons. We summarize the point we have reached by the
important statement that a phonon is an elementary quantum of vibrational excitation.

Now we take one step backward in order, afterwards, to take two steps forward. We
return to the classical mechanical model withN harmonically interacting degrees of freedom.
It is possible to imagine increasing the number N to infinity, and decreasing the interatomic
spacing a to zero, in such a way that the product Na stays finite, say Na = �. We then have
a classical continuous system—for example a string of length �. (We stay in one dimension
for simplicity.) The transverse vibrations of this string are now described by a field φ(x, t),
where at each point x of the string φ(x, t) measures the displacement from equilibrium, at
the time t, of a small element of string around the point x. Thus we have passed from a
system described by a discrete number of degrees of freedom, qr(t) or Qr(t), to one described
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FIGURE 5.3
String motion in two normal modes: (a) r = 1 in equation (5.31); (b) r = 2.

by a continuous degree of freedom, the displacement field φ(x, t). The discrete suffix r has
become the continuous argument x—and to prepare for later abstraction, we have denoted
the displacement by φ(x, t) rather than, say, q(x, t).

In the continuous problem the analogue of the small-displacement assumption, which
limited the potential energy in the discrete case to quadratic powers, implies that φ(x, t)
obeys the wave equation

1

c2
∂2φ(x, t)

∂t2
=

∂2φ(x, t)

∂x2
(5.30)

where c is the wave propagation velocity. Note that (5.30) is linear, but only by virtue
of having made the small-displacement assumption. Again, we consider first the classical
treatment of this system. Our aim is to find, for this continuous field problem, the analogue
of the normal coordinates—or in physical terms, the modes of vibration—which were so
helpful in the discrete case. Fortunately, the string’s modes are very familiar. By imposing
suitable boundary conditions at each end of the string, we determine the allowed wavelengths
of waves travelling along the string. Suppose, for simplicity, that the string is stretched
between x = 0 and x = �. This constrains φ(x, t) to vanish at these end points. A suitable
form for φ(x, t) which does this is

φr(x, t) = Ar(t) sin
(rπx

�

)
(5.31)

where r = 1, 2, 3, . . ., which expresses the fact that an exact number of half-wavelengths
must fit onto the interval (0, �). Inserting (5.31) into (5.30), we find

Är = −ω2
rAr (5.32)

where
ω2
r = r2π2c2/�2. (5.33)

Thus the amplitude Ar(t) of the particular waveform (5.31) executes simple harmonic mo-
tion with frequency ωr. Each motion of the string which has a definite wavelength also has
a definite frequency; it is therefore precisely a mode. Figure 5.3(a) shows two snapshots of
the string when it is oscillating in the mode for which r = 1, and figure 5.3(b) shows the
same for the mode r = 2; these may be compared with figures 5.2(a) and (b). Just as in
the discrete case, the general motion of the string is a superposition of modes

φ(x, t) =

∞∑
r=1

Ar(t) sin
(rπx

�

)
; (5.34)

in short, a Fourier series!
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We must now examine the total energy of the vibrating string, which we expect to
be greatly simplified by the use of the mode concept. The total energy is the continuous
analogue of the discrete summation in (5.25), namely the integral

E =

∫ 


0

[
1

2
ρ

(
∂φ

∂t

)2
+

1

2
ρc2

(
∂φ

∂x

)2]
dx (5.35)

where the first term is the kinetic energy and the second is the potential energy (ρ is the
mass per unit length of the string, assumed constant). As noted earlier, the potential energy
term arises from an approximation which limits it to the quadratic power. To relate this to
the earlier discrete case, note that the derivative may be regarded as [φ(x+ δx)− φ(x)]/δx
as δx → 0, so that the square of the derivative involves the ‘nearest neighbour coupling’
φ(x+ δx)φ(x), analogous to the q1q2 term in (5.9).

Inserting (5.34) into (5.35), and using the orthonormality of the sine functions on the
interval (0, �), one obtains (problem 5.1) the crucial result

E = (�/2)

∞∑
r=1

[ 12ρȦ
2
r +

1
2ρω

2
rA

2
r]. (5.36)

Indeed, just as in the discrete case, the total energy of the string can be written as a
sum of individual mode energies. We note that the Fourier amplitude Ar acts as a normal
coordinate. Comparing (5.36) with (5.27), we see that the string behaves exactly like a
system of independent uncoupled oscillators, the only difference being that now there are
an infinite number of them, corresponding to the infinite number of degrees of freedom in
the continuous field φ(x, t). The normal coordinates Ar(t) are, for many purposes, a much
more relevant set of degrees of freedom than the original displacements φ(x, t).

The final step is to apply quantum mechanics to this classical field system. Once again,
the total energy is equivalent to that of a sum of (infinitely many) mode oscillators, each
of which has to be quantized. The total energy eigenvalue has the form (5.29), except that
now the sum extends to infinity:

E =
∞∑
r=1

(nr +
1
2 )�ωr. (5.37)

The excited states of the quantized field φ(x, t) are characterized by saying how many
phonons of each frequency are present; the ground state has no phonons at all. We remark
that as � → ∞, the mode sum in (5.36) or (5.37) will be replaced by an integral over a
continuous frequency variable.

We have now completed, in outline, the programme introduced earlier, ending up with
the quantization of a ‘mechanical’ system. All of the foregoing, it must be clearly em-
phasized, is absolutely basic to modern solid state physics. The essential idea—quantizing
independent modes—can be applied to an enormous variety of ‘oscillations’. In all cases the
crucial concept is the elementary excitation—the mode quantum. Thus we have plasmons
(quanta of plasma oscillations), magnons (magnetic oscillations), . . . , as well as phonons
(vibrational oscillations). All this is securely anchored in the physics of many-body systems.

Now we come to the use of these ideas as an analogy, to help us understand the (pre-
sumably non-mechanical) quantum fields with which we shall actually be concerned in this
book—for example the electromagnetic field. Consider a region of space containing electro-
magnetic fields. These fields obey (a three-dimensional version of) the wave equation (5.30),
with c now standing for the speed of light. By imposing suitable boundary conditions, the
total electromagnetic energy in any region of space can be written as a sum of mode ener-
gies. Each mode has the form of an oscillator, whose amplitude is (see (5.31)) the Fourier
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component of the wave, for a given wavelength. These oscillators are all quantized. Their
quanta are called photons. Thus, a photon is an elementary quantum of excitation of the
electromagnetic field.

So far, the only kind of ‘particle’ we have in our relativistic quantum field theoretic world
is the photon. What about the electron, say? Well, recalling Feynman again, ‘There is one
lucky break, however—electrons behave just like light’. In other words, we shall also regard
an electron as an elementary quantum of excitation of an ‘electron field’. What is ‘waving’
to supply the vibrations for this electron field? We do not answer this question just as we did
not for the photon. We postulate a relativistic quantum field for the electron which obeys
some suitable wave equation—in this case, for non-interacting electrons, the Dirac equation.
The field is expanded as a sum of Fourier components, as with the electromagnetic field.
Each component behaves as an independent oscillator degree of freedom (and there are, of
course, an infinite number of them); the quanta of these oscillators are electrons.

Actually this, though correctly expressing the basic idea, omits one crucial factor, which
makes it almost fraudulently oversimplified. There is of course one very big difference be-
tween photons and electrons. The former are bosons and the latter are fermions ; photons
have spin angular momentum of one (in unit of �), electrons of one-half. It is very difficult,
if not downright impossible, to construct any mechanical model at all which has fermionic
excitations. Phonons have spin-1, in fact, corresponding to the three states of polarization
of the corresponding vibrational waves. But ‘phonons’ carrying spin- 12 are hard to come by.
No matter, you may say, Maxwell has weaned us away from jelly, so we shall be grown up
and boldly postulate the electron field as a basic thing.

Certainly, this is what we do. But we also know that fermionic particles, like electrons,
have to obey an exclusion principle: no two identical fermions can have the same quantum
numbers. In chapter 7, we shall learn how the idea sketched here must be modified for fields
whose quanta are fermions.

5.2 The quantum field: (ii) Lagrange–Hamilton formulation

5.2.1 The action principle: Lagrangian particle mechanics

We must now make the foregoing qualitative picture more mathematically precise. It is clear
that we would like a formalism capable of treating, within a single overall framework, the
mechanics of both fields and particles, in both classical and quantum aspects. Remarkably
enough, such a framework does exist (and was developed long before quantum field theory):
Hamilton’s principle of least action, with the action defined in terms of a Lagrangian. We
strongly recommend the reader with no prior acquaintance with this profound approach to
physical laws to read chapter 19 of volume 2 of Feynman’s Lectures on Physics (Feynman
1964).

The least action approach differs radically from the more familiar one which can be
conveniently be called ‘Newtonian’. Consider the simplest case, that of classical particle
mechanics. In the Newtonian approach, equations of motion are postulated which involve
forces as the essential physical input; from these, the trajectories of the particle can be
calculated. In the least action approach, equations of motion are not postulated as basic,
and the primacy of forces yields to that of potentials. The path by which a particle actually
travels is determined by the postulate (or principle) that it has to follow that particular
path, out of infinitely many possible ones, for which a certain quantity—the action—is
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FIGURE 5.4
Possible space–time trajectories from ‘Here’ (q(t1)) to ‘There’ (q(t2)).

minimized. The action S is defined by

S =

∫ t2

t1

L(q(t), q̇(t)) dt (5.38)

where q(t) is the position of the particle as a function of time, q̇(t) is its velocity and the
all-important function L is the Lagrangian. Given L as an explicit function of the variables
q(t) and q̇(t), we can imagine evaluating S for all sorts of possible q(t)’s starting at time
t1 and ending at time t2. We can draw these different possible trajectories on a q versus t
diagram as in figure 5.4. For each path we evaluate S; the actual path is the one for which
S is smallest, by hypothesis.

But what is L? In simple cases (as we shall verify later) L is just T − V , the difference
of kinetic and potential energies. Thus for a single particle in a potential V

L = 1
2mẋ2 − V (x). (5.39)

Knowing V (x), we can try and put the ‘action principle’ into action. However, how can we
set about finding which trajectory minimizes S? It is quite interesting to play with some
simple specific examples and actually calculate S for several ‘fictitious’ trajectories—i.e.
ones that we know from the Newtonian approach are not followed by the particle—and try
and get a feeling for what the actual trajectory that minimizes S might be like (of course
it is the Newtonian one—see problem 5.2). But clearly this is not a practical answer to the
general problem of finding the q(t) that minimizes S. Actually, we can solve this problem
by calculus.

Our problem is something like the familiar one of finding the point t0 at which a certain
function f(t) has a stationary value. In the present case, however, the function S is not a
simple function of t—rather it is a function of the entire set of points q(t). It is a function of
the function q(t), or a functional of q(t). We want to know what particular ‘qc(t)’ minimizes
S.

By analogy with the single-variable case, we consider a small variation δq(t) in the path
from q(t1) to q(t2). At the minimum, the change δS corresponding to the change δq must
vanish. This change in the action is given by

δS =

∫ t2

t1

(
∂L

∂q(t)
δq(t) +

∂L

∂q̇(t)
δq̇(t)

)
dt. (5.40)



106 Quantum Field Theory I: The Free Scalar Field

Using δq̇(t) = d(δq(t))/dt and integrating the second term by parts yields

δS =

∫ t2

t1

δq(t)

[
∂L

∂q(t)
− d

dt

∂L

∂q̇(t)

]
dt+

[
∂L

∂q̇(t)
δq(t)

]t2
t1

. (5.41)

Since we are considering variations of path in which all trajectories start at t1 and end at
t2, δq(t1) = δq(t2) = 0. So the condition that S be stationary is

δS =

∫ t2

t1

δq(t)

[
∂L

∂q(t)
− d

dt

∂L

∂q̇(t)

]
dt = 0. (5.42)

Since this must be true for arbitrary δq(t), we must have

∂L

∂q(t)
− d

dt

∂L

∂q̇(t)
= 0. (5.43)

This is the celebrated Euler–Lagrange equation of motion. Its solution gives the ‘qc(t)’ which
the particle actually follows.

We can see how this works for the simple case (5.39) where q is the coordinate x. We
have immediately

∂L/∂ẋ = mẋ = p (5.44)

and
∂L/∂x = −∂V/∂x = F (5.45)

where p and F are, respectively, the momentum and the force of the Newtonian approach.
The Euler–Lagrange equation then reads

F = dp/dt (5.46)

precisely the Newtonian equation of motion. For the special case of a harmonic oscillator
(obviously fundamental for the quantum field idea, as section 5.1 should have made clear),
we have

L = 1
2mẋ2 − 1

2mω2x2 (5.47)

which can be immediately generalized to N independent oscillators (see section 5.1) via

L =

N∑
r=1

( 12mQ̇2
r − 1

2mω2
rQ

2
r). (5.48)

For many dynamical systems, the Lagrangian has the form ‘T − V ’ indicated in (5.47)
and (5.48).

Our next step will be to replace classical particle mechanics by quantum particle mechan-
ics. The standard way to do this is via the Hamiltonian formulation of classical mechanics,
which we will now briefly review for the simple system with Lagrangian (5.39). In Hamil-
tonian dynamics, the variables used are not the Lagrangian ones of position x and velocity
ẋ, but rather the position x and the canonical momentum p, where p is defined by

p =
∂L

∂ẋ
. (5.49)

The place of the Lagrangian is taken by the Hamiltonian H(x, p) which is defined by

H(x, p) = pẋ− L. (5.50)
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Using (5.39) for L we find p = mẋ, and placing this result in (5.50) we obtain

H(x, p) =
p2

2m
+ V (x) (5.51)

which in this case is just the total energy, expressed in terms of x and p. Instead of the
Euler-Lagrange equation we have the Hamiltonian equations of motion, which are

∂H

∂p
= ẋ (5.52)

and
∂H

∂x
= −ṗ. (5.53)

For the case (5.51) these equations yield

p/m = ẋ (5.54)

and
ṗ = −∂V/∂x. (5.55)

Equation (5.54) is just the familiar relation of p to ẋ, and (5.55) is the Newtonian equation
of motion. In the same way, the reader may check that the Hamiltonian for the assembly of
oscillators described by the Lagrangian (5.48) is

H =

N∑
r=1

(
P 2
r

2m
+

1

2
mω2

rQ
2
r) (5.56)

where Pr = mQ̇r.
With this in hand, we turn to quantum particle mechanics.

5.2.2 Quantum particle mechanics à la Heisenberg–Lagrange–Hamilton

It seems likely that a particularly direct correspondence between the quantum and the clas-
sical cases will be obtained if we use the Heisenberg formulation (or ‘picture’) of quantum
mechanics (see appendix I). In the Schrödinger picture, the dynamical variables such as po-
sition x are independent of time, and the time dependence is carried by the wavefunction.
Thus we seem to have nothing like the q(t)’s. However, one can always do a unitary trans-
formation to the Heisenberg picture, in which the wavefunction is fixed and the dynamical
variables change with time. This is what we want in order to parallel the classical quantities
q(t). But of course there is one fundamental difference between quantum mechanics and
classical mechanics: in the former, the dynamical variables are operators which in general
do not commute. In particular, the fundamental commutator states that (� = 1)

[q̂(t), p̂(t)] = i (5.57)

where ˆ indicates the operator character of the quantity. Here p̂ is defined by the general-
ization of (5.44):

p̂ = ∂L̂/∂ ˙̂q. (5.58)

In this formulation of quantum mechanics we do not have the Schrödinger-type equation of
motion. Instead we have the Heisenberg equation of motion

˙̂
A = −i[Â, Ĥ] (5.59)
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where the Hamiltonian operator Ĥ is defined in terms of the Lagrangian operator L̂ by (cf
(5.50))

Ĥ = p̂ ˙̂q − L̂ (5.60)

and Â is any dynamical observable. For example, in the oscillator case

L̂ = 1
2m

˙̂q
2 − 1

2mω2q̂2 (5.61)

p̂ = m ˙̂q (5.62)

and

Ĥ =
1

2m
p̂2 +

1

2
mω2q̂2 (5.63)

which is the total energy operator. Note that p̂, obtained from the Lagrangian using (5.58),
had better be consistent with the Heisenberg equation of motion for the operator Â = p̂.
The Heisenberg equation of motion for Â = p̂ leads to

˙̂p = −mω2q̂ (5.64)

which is an operator form of Newton’s law for the harmonic oscillator. Using the expression
for p̂ (5.62), we find

¨̂q = −ω2q̂. (5.65)

Now, although this looks like the familiar classical equation of motion for the position of
the oscillator—and recovering it from the Lagrangian formalism is encouraging—we must
be very careful to appreciate that this is an equation stating how an operator evolves with
time. Where the quantum particle will actually be found is an entirely different matter. By
sandwiching (5.65) between wavefunctions, we can at once see that the average position
of the particle will follow the classical trajectory (remember that wavefunctions are inde-
pendent of time in the Heisenberg formulation). But fluctuations about this trajectory will
certainly occur: a quantum particle does not follow a ray-like classical trajectory. Come to
think of it, neither does a photon!

In the original formulations of quantum theory, such fluctuations were generally taken
to imply that the very notion of a ‘path’ was no longer a useful one. However, just as the
differential equations satisfied by operators in the Heisenberg picture are quantum gener-
alizations of Newtonian mechanics, so there is an analogous quantum generalization of the
‘path-contribution to the action’ approach to classical mechanics. The idea was first hinted
at by Dirac (1933, 1981, section 32), but it was Feynman who worked it out completely. The
book by Feynman and Hibbs (1965) presents a characteristically fascinating discussion—
here we only wish to indicate the central idea. We ask: how does a particle get from the
point q(t1) at time t1 to the point q(t2) at t2? Referring back to figure 5.4, in the classical
case we imagined (infinitely) many possible paths qi(t), of which, however, only one was the
actual path followed, namely the one we called qc(t) which minimized the action integral
(5.38) as a functional of q(t). In the quantum case, however, we previously noted that a
particle will no longer follow any definite path because of quantum fluctuations. But rather
than, as a consequence, throwing away the whole idea of a path, Feynman’s insight was to
appreciate that the ‘opposite’ viewpoint is also possible: since unique paths are forbidden in
quantum theory, we should in principle include all possible paths! In other words, we take
all the trajectories on figure 5.4 as physically possible (together with all the other infinitely
many ways of accomplishing the trip).

However, surely not all paths are equally likely : after all, we must presumably recover
the classical trajectory as � → 0, in some sense. Thus we must find an appropriate weighting
for the paths. Feynman’s recipe is beautifully simple. Weight each path by the factor

eiS/� (5.66)
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where S is the action for that particular path. At first sight this is a rather strange proposal,
since all paths—even the classical one—are weighted by a quantity which is of unit mod-
ulus. But, of course, contributions of the form (5.66) from all the paths have to be added
coherently—just as we superposed the amplitudes in the ‘two-slit’ discussion in section 2.5.
What distinguishes the classical path qc(t) is that it makes S stationary under small changes
of path; thus in its vicinity paths have a strong tendency to add up constructively, while
far from it the phase factors will tend to produce cancellations. The amount a quantum
particle can ‘stray’ from the classical path depends on the magnitude of the corresponding
action relative to �, the quantum of action: the scale of coherence is set by �.

In summary, then, the quantum mechanical amplitude to go from q(t1) to q(t2) is pro-
portional to ∑

all paths q(t)

exp

(
i

�

∫ t2

t1

L(q(t), q̇(t)) dt

)
. (5.67)

There is an evident generalization to quantum field theory. We shall not, however, make
use of the ‘path integral’ approach to quantum field theory in this volume. Its use was, in
fact, decisive in obtaining the Feynman rules for non-Abelian gauge theories; and it is the
only approach suitable for numerical studies of quantum field theories (how can operators
be simulated numerically?). Nevertheless, for a first introduction to quantum field theory,
there is still much to be said for the traditional approach based on ‘quantizing the modes’,
and this is the path we shall follow in the rest of this volume. Not the least of its advantages
is that it contains the intuitively powerful ‘calculus’ of creation and annihilation operators,
as we now describe. We shall return to the path integral formalism in chapter 16 of volume
2.

5.2.3 Interlude: the quantum oscillator

As we saw in section 5.1, we need to know the energy spectrum and associated states of a
quantum harmonic oscillator. This is a standard problem, but there is one particular way
of solving it—the ‘operator’ approach due to Dirac (1981, chapter 6)—that is so crucial to
all subsequent development that we include a discussion here in the body of the text.

For the oscillator Hamiltonian

Ĥ =
1

2m
p̂2 +

1

2
mω2q̂2 (5.68)

if p̂ and q̂ were not operators, we could attempt to factorize the Hamiltonian in the form
‘(q+ ip)(q− ip)’ (apart from the factors of 2m and ω). In the quantum case, in which p̂ and
q̂ do not commute, it still turns out to be very helpful to introduce such combinations. If
we define the operator

â =
1√
2

(√
mωq̂ +

i√
mω

p̂

)
(5.69)

and its Hermitian conjugate

â† =
1√
2

(√
mωq̂ − i√

mω
p̂

)
(5.70)

the Hamiltonian may be written as (see problem 5.4)

Ĥ = 1
2 (â

†â+ ââ†)ω = (â†â+ 1
2 )ω. (5.71)

The second form for Ĥ may be obtained from the first using the commutation relation
between â and â†

[â, â†] = 1 (5.72)



110 Quantum Field Theory I: The Free Scalar Field

derived using the fundamental commutator between p̂ and q̂. Using this basic commutator
(5.72) and our expression for Ĥ, (5.71), one can prove the relations (see problem 5.4)

[Ĥ, â] = −ωâ

[Ĥ, â†] = ωâ†.
(5.73)

Consider now a state |n〉 which is an eigenstate of Ĥ with energy En:

Ĥ|n〉 = En|n〉. (5.74)

Using this definition and the commutators (5.73), we can calculate the energy of the states
(â†|n〉) and (â|n〉). We find

Ĥ(â†|n〉) = (En + ω)(â†|n〉) (5.75)

Ĥ(â|n〉) = (En − ω)(â|n〉). (5.76)

Thus the operators â† and â respectively raise and lower the energy of |n〉 by one unit of
ω (� = 1). Now since Ĥ ∼ p̂2 + q̂2 with p̂ and q̂ Hermitian, we can prove that 〈ψ|Ĥ|ψ〉 is
positive-definite for any state |ψ〉. Thus the operator â cannot lower the energy indefinitely:
there must exist a lowest state |0〉 such that

â|0〉 = 0. (5.77)

This defines the lowest-energy state of the system; its energy is

Ĥ|0〉 = 1
2ω|0〉 (5.78)

the ‘zero-point energy’ of the quantum oscillator. The first excited state is

|1〉 = â†|0〉 (5.79)

with energy (1 + 1
2 )ω. The nth state has energy (n + 1

2 )ω and is proportional to (â†)n|0〉.
To obtain a normalization

〈n|n〉 = 1 (5.80)

the correct normalization factor can be shown to be (problem 5.4)

|n〉 = 1√
n!
(â†)n|0〉. (5.81)

Returning to the eigenvalue equation for Ĥ, we have arrived at the result

Ĥ|n〉 = (â†â+ 1
2 )ω|n〉 = (n+ 1

2 )ω|n〉 (5.82)

so that the state |n〉 defined by (5.81) is an eigenstate of the number operator n̂ = â†â, with
integer eigenvalue n:

n̂|n〉 = n|n〉. (5.83)

It is straightforward to generalize all the foregoing to a system whose Lagrangian is a
sum of N independent oscillators as in (5.48) (but we use q̂r here instead of Q̂r because the
oscillators are already non-interacting):

L̂ =
N∑
r=1

( 12m
˙̂q
2

r − 1
2mω2

r q̂
2
r). (5.84)
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The required generalization of the basic commutation relations (5.57) is

[q̂r, p̂s] = iδrs

[q̂r, q̂s] = [p̂r, p̂s] = 0
(5.85)

since the different oscillators labelled by the index r or s are all independent. The Hamil-
tonian is (cf (5.27))

Ĥ =

N∑
r=1

[(1/2m)p̂2r +
1
2mω2

r q̂
2
r ] (5.86)

=
N∑
r=1

(â†râr +
1
2 )ωr (5.87)

with âr and â†r defined via the analogues of (5.69) and (5.70). Since the eigenvalues of each
number operator n̂r = â†râr are nr, by the previous results, the eigenvalues of Ĥ indeed
have the form (5.29),

E =
N∑
r=1

(nr +
1
2 )ωr. (5.88)

The corresponding eigenstates are products |n1〉|n2〉 · · · |nN 〉 ofN individual oscillator eigen-
states, where |nr〉 contains nr quanta of excitation, of frequency ωr; the product state is
usually abbreviated to |n1, n2, . . . , nN 〉. In the ground state of the system, each individual
oscillator is unexcited: this state is |0, 0, . . . , 0〉, which is abbreviated to |0〉, where it is
understood that

âr|0〉 = 0 for all r. (5.89)

The operators â†r create oscillator quanta; the operators âr destroy oscillator quanta.

5.2.4 Lagrange–Hamilton classical field mechanics

We now consider how to use the Lagrange–Hamilton approach for a field, starting again
with the classical case and limiting ourselves to one dimension to start with.

As explained in the previous section, we shall have in mind the N → ∞ limit of the N
degrees of freedom case

{qr(t); r = 1, 2, . . . , N} −→
N→∞

φ(x, t) (5.90)

where x is now a continuous variable labelling the displacement of the ‘string’ (to picture a
concrete system, see figure 5.5). At each point x we have an independent degree of freedom
φ(x, t)—thus the field system has a ‘continuous infinity’ of degrees of freedom. We now
formulate everything in terms of a Lagrangian density L:

S =

∫
dt L (5.91)

where (in one dimension)

L =

∫
dxL. (5.92)

Equation (5.90) suggests that φ has dimension of [length], and since in the discrete case
L = T −V , L has dimension [energy/length]. (In general L has dimension [energy/volume].)
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FIGURE 5.5
The passage from a large number of discrete degrees of freedom (mass points) to a continuous
degree of freedom (field).

A new feature arises because φ is now a continuous function of x, so that L can depend
on ∂φ/∂x as well as on φ and φ̇ = ∂φ/∂t: L = L(φ, ∂φ/∂x, φ̇).

As before, we postulate the same fundamental principle

δS = 0 (5.93)

meaning that the dynamics of the field φ is governed by minimizing S. This time the total
variation is given by

δS =

∫
dt

∫ [
∂L
∂φ

δφ+
∂L

∂(∂φ/∂x)
δ

(
∂φ

∂x

)
+

∂L
∂φ̇

δφ̇

]
dx. (5.94)

Integrating the δφ̇ by parts in t, and the δ(∂φ/∂x) by parts in x, and discarding the resulting
‘surface’ terms, we obtain

δS =

∫
dt

∫
dx δφ

[
∂L
∂φ

− ∂

∂x

(
∂L

∂(∂φ/∂x)

)
− ∂

∂t

(
∂L
∂φ̇

)]
. (5.95)

Since δφ is an arbitrary function, the requirement δS = 0 yelds the Euler–Lagrange field
equation

∂L
∂φ

− ∂

∂x

(
∂L

∂(∂φ/∂x)

)
− ∂

∂t

(
∂L
∂φ̇

)
= 0. (5.96)

The generalization to three dimensions is

∂L
∂φ

−∇ ·
(

∂L
∂(∇φ)

)
− ∂

∂t

(
∂L
∂φ̇

)
= 0. (5.97)

As an example, consider

Lρ =
1

2
ρ

(
∂φ

∂t

)2
− 1

2
ρc2

(
∂φ

∂x

)2
(5.98)

where the factor ρ (mass density) and c (a velocity) have been introduced to get the dimen-
sion of L right. Inserting this into the Euler–Lagrangian field equation (5.96), we obtain

∂2φ

∂x2
− 1

c2
∂2φ

∂t2
= 0 (5.99)

which is precisely the wave equation (5.30) for the one-dimensional string, now obtained
via the Euler–Lagrange field equations. Note that the Lagrange density L has the expected
form (cf (5.48)) of ‘kinetic energy density minus potential energy density’.

For the final step—the passage to quantum mechanics for a field system—we shall be
interested in the Hamiltonian (total energy) of the system, just as we were for the discrete
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case. Though we shall not actually use the Hamiltonian in the classical field case, we shall
introduce it here, generalizing it to the quantum theory in the following section. We recall
that Hamiltonian mechanics is formulated in terms of coordinate variables (‘q’) and mo-
mentum variables (‘p’), rather than the q and q̇ of Lagrangian mechanics. In the continuum
(field) case, the Hamiltonian H is written as the integral of a density H (we remain in one
dimension)

H =

∫
dxH (5.100)

while the coordinates qr(t) become the ‘coordinate field’ φ(x, t). The question is what is the
corresponding ‘momentum field’?

The answer to this is provided by a continuum version of the generalized momentum
derived from the Lagrangian approach (cf equation (5.44))

p = ∂L/∂q̇. (5.101)

We define a ‘momentum field’ π(x, t)—technically called the ‘momentum canonically con-
jugate to φ’—by

π(x, t) = ∂L/∂φ̇(x, t) (5.102)

where L is now the Lagrangian density. Note that π has dimensions of a momentum density.
In the classical particle mechanics case, we define the Hamiltonian by

H(p, q) = pq̇ − L. (5.103)

Here we define a Hamiltonian density H by

H(φ, π) = π(x, t)φ̇(x, t)− L. (5.104)

Let us see how all this works for the one-dimensional string with L given by

Lρ =
1

2
ρ

(
∂φ

∂t

)2
− 1

2
ρc2

(
∂φ

∂x

)2
. (5.105)

We have
π(x, t) = ρ∂φ/∂t (5.106)

and

Hρ =
1

ρ
π2 − 1

2

[
1

ρ
π2 − ρc2

(
∂φ

∂x

)2]

=
1

2

[
1

ρ
π2 + ρc2

(
∂φ

∂x

)2]
(5.107)

so that

Hρ =

∫ 


0

[
1

2ρ
π2(x, t) +

1

2
ρc2

(
∂φ(x, t)

∂x

)2]
dx. (5.108)

This has exactly the form we expect (see (5.34)), thus verifying the plausibility of the above
prescription.

Inserting the mode expansion (5.34) into (5.92) and (5.105) we obtain the result (just
as in (5.36) and problem 5.1)

Lρ =

∫ 


0

dx Lρ =
�

2

∞∑
r=1

[
1

2
ρȦ2

r −
1

2
ρω2

rA
2
r], (5.109)
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confirming that the system is equivalent to an infinite number of oscillators. The momentum
canonically conjugate to Ar is

pr =
∂Lρ

∂Ȧr

=
�

2
ρȦr (5.110)

and the Hamiltonian is

Hρ =

∞∑
r=1

p2r
�ρ

+
�

4
ρω2

rA
2
r. (5.111)

We may cast (5.111) into nicer form by the change of variables

Pr =
√
2/� pr, Qr =

√
�/2 Ar, (5.112)

in terms of which

Hρ =

∞∑
r=1

P 2
r

2ρ
+

1

2
ρω2

rQ
2
r (5.113)

just as in (5.56), with N → ∞.

5.2.5 Heisenberg–Lagrange–Hamilton quantum field mechanics

Finally, we are ready to quantize classical field formalism, and arrive at a quantum field
mechanics—at least for the scalar field φ(x, t). If we were dealing with the case in which
φ(x, t) represented the displacement of a one-dimensional stretched string, quantization
would be straightforward. We would take the classical Hamiltonian (5.113) and promote the
mode coordinates Qr and their conjugate momenta Pr to operators satisfying commutation
relations of the form (5.85). The rest of the analysis would be exactly as in equations (5.86)
to (5.89), except that the number of modes N is infinite. But in the case of the general
scalar field, we do not want to impose the boundary conditions φ(0, t) = φ(�, t) = 0, which
led to the mode expansion (5.34). It is then not so clear how to proceed.

Fortunately, the Lagrange-Hamilton field formalism does indicate the way forward, which
is one good reason for developing it in the first place. (Another is that it is very well suited
to the analysis of symmetries, a crucial aspect of gauge theories—see chapter 7.) In the
previous section we introduced the ‘coordinate-like’ field φ(x, t) and (via the Lagrangian)
the ‘momentum-like’ field π(x, t). To pass to the quantized version of the field theory, we
mimic the procedure followed in the discrete case and promote both the quantities φ and π
to operators φ̂ and π̂, in the Heisenberg picture. As usual, the distinctive feature of quantum
theory is the non-commutativity of certain basic quantities in the theory—for example, the
fundamental commutator (� = 1)

[q̂r(t), p̂s(t)] = iδrs (5.114)

of the discrete case. Thus we expect that the operators φ̂ and π̂ will obey some commutation
relation which is a continuum generalization of (5.114). The commutator will be of the form

[φ̂(x, t), π̂(y, t)], since—recalling figure 5.5—the discrete index r or s becomes the continuous
variable x or y; we also note that (5.114) is between operators at equal times. The continuum
generalization of the δrs symbol is the Dirac δ function, δ(x− y), with the properties∫∞

−∞ δ(x) dx = 1 (5.115)∫∞
−∞ δ(x− y)f(x) dx = f(y) (5.116)

for all reasonable functions f (see appendix E). Thus the fundamental commutator of quan-
tum field theory is taken to be

[φ̂(x, t), π̂(y, t)] = iδ(x− y) (5.117)
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in the one-dimensional case, with obvious generalization to the three-dimensional case via
the symbol δ3(x− y). Remembering that we have set � = 1, it is straightforward to check

that the dimensions are consistent on both sides. Variables φ̂ and π̂ obeying such a com-
mutation relation are said to be ‘conjugate’ to each other.

What about the commutator of two φ̂’s or two π̂’s? In the discrete case, two different
q̂’s (in the Heisenberg picture) will commute at equal times, [q̂r(t), q̂s(t)] = 0, and so will
two different p̂’s. We therefore expect to supplement (5.117) with

[φ̂(x, t), φ̂(y, t)] = [π̂(x, t), π̂(y, t)] = 0. (5.118)

Let us now proceed to explore the effect of these fundamental commutator assumptions,
for the case of the Lagrangian density which yielded the wave equation via the Euler–
Lagrange equations, namely

L̂ρ =
1

2
ρ

(
∂φ̂

∂t

)2

− 1

2
ρc2

(
∂φ̂

∂x

)2

. (5.119)

If we remove ρ and set c = 1, we obtain

L̂ =
1

2

(
∂φ̂

∂t

)2

− 1

2

(
∂φ̂

∂x

)2

(5.120)

for which the Euler–Lagrangian equation yields the field equation

∂2φ̂

∂t2
− ∂2φ̂

∂x2
= 0. (5.121)

We can think of (5.121) as a highly simplified (spin-0, one-dimensional) version of the wave
equation satisfied by the electromagnetic potentials. We may guess, then, that the associated
quanta are massless, as we shall soon confirm.

The Lagrangian density (5.120) is our prototype quantum field Lagrangian (one often
slips into leaving out the word ‘density’). Applying the quantized version of (5.95) we then
have

π̂(x, t) =
∂L̂

∂
˙̂
φ(x, t)

=
˙̂
φ(x, t) (5.122)

and the Hamiltonian density is

Ĥ = π̂
˙̂
φ− L̂ =

1

2
π̂2 +

1

2

(
∂φ̂

∂x

)2

. (5.123)

The total Hamiltonian is

Ĥ =

∫
Ĥ dx =

∫
1

2

⎡
⎣π̂2 +

(
∂φ̂

∂x

)2
⎤
⎦ dx. (5.124)

It is not immediately clear how to find the eigenvalues and eigenstates of the operator
Ĥ. However, it is exactly at this point that all our preliminary work on normal modes
comes into its own. If we can write the Hamiltonian as some kind of sum over independent
oscillators—i.e. modes—we shall know how to proceed. For the classical string with fixed
end points which was considered in section 5.1, the mode expansion was simply a Fourier
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expansion. In the present case, we want to allow the field to extend throughout all of space,
without the periodicity imposed by fixed-end boundary conditions. In that case, the Fourier
series is replaced by a Fourier integral, and standing waves are replaced by travelling waves.
For the classical field obeying the wave equation (5.30), there are plane-wave solutions

φ(x, t) ∝ eikx−iωt (5.125)

where (c = 1)
ω = k (5.126)

which is just the dispersion relation of light in vacuo. The general field may be Fourier
expanded in terms of these solutions:

φ(x, t) =

∫ ∞

−∞

dk

2π
√
2ω

[a(k)eikx−iωt + a∗(k)e−ikx+iωt] (5.127)

where we have required φ to be real. (The rather fussy factors (2π
√
2ω)−1 are purely conven-

tional, and determine the normalization of the expansion coefficients a, a∗ and â, â† later;
in turn, the latter enter into the definition, and normalization, of the states—see (5.143)).
Similarly, the ‘momentum field’ π = φ̇ is expanded as

π =

∫ ∞

−∞

dk

2π
√
2ω

(−iω)[a(k)eikx−iωt − a∗(k)e−ikx+iωt]. (5.128)

We quantize these mode expressions by promoting φ → φ̂, π → π̂ and assuming the com-
mutator (5.117). Thus we write

φ̂ =

∫ ∞

−∞

dk

2π
√
2ω

[â(k)eikx−iωt + â†(k)e−ikx+iωt] (5.129)

and similarly for π̂. The commutator (5.117) now determines the commutators of the mode
operators â and â†:

[â(k), â†(k′)] = 2πδ(k − k′)

[â(k), â(k′)] = [â†(k), â†(k′)] = 0
(5.130)

as shown in problem 5.6. These are the desired continuum analogues of the discrete oscillator
commutation relations

[âr, â
†
s] = δrs

[âr, âs] = [â†r, â
†
s] = 0.

(5.131)

The precise factor in front of the δ-function in (5.130) depends on the normalization choice

made in the expansion of φ̂, (5.129). Problem 5.6 also shows that the commutation relations
(5.130) lead to (5.118) as expected.

The form of the â, â† commutation relations (5.130) already suggests that the â(k)
and â†(k) operators are precisely the single-quantum destruction and creation operators
for the continuum problem. To verify this interpretation and find the eigenvalues of Ĥ, we
now insert the expansion for φ̂ and π̂ into Ĥ of (5.124). One finds the remarkable result
(problem 5.7)

Ĥ =

∫ ∞

−∞

dk

2π

{
1

2
[â†(k)â(k) + â(k)â†(k)]ω

}
. (5.132)

Comparing this with the single-oscillator result

Ĥ = 1
2 (â

†â+ ââ†)ω (5.133)



(ii) Lagrange–Hamilton Formulation 117

shows that, as anticipated in section 5.1, each classical mode of the field can be quantized,
and behaves like a separate oscillator coordinate, with its own frequency ω = k. The operator
â†(k) creates, and â(k) destroys, a quantum of the k mode. The factor (2π)−1 in Ĥ arises
from our normalization choice.

We note that in the field operator φ̂ of (5.129), those terms which destroy quanta go with
the factor e−iωt, while those which create quanta go with e+iωt. This choice is deliberate and
is consistent with the ‘absorption’ and ‘emission’ factors e±iωt of ordinary time-dependent
perturbation theory in quantum mechanics (cf equation (A.33) of appendix A).

What is the mass of these quanta? We know that their frequency ω is related to their
wavenumber k by (5.126), which—restoring �’s and c’s—can be regarded as equivalent to
�ω = �ck, or E = cp, where we use the Einstein and de Broglie relations. This is precisely
the E–p relation appropriate to a massless particle, as expected.

What is the energy spectrum? We expect the ground state to be determined by the
continuum analogue of

âr|0〉 = 0 for all r; (5.134)

namely
â(k)|0〉 = 0 for all k. (5.135)

However, there is a problem with this. If we allow the Hamiltonian of (5.132) to act on |0〉
the result is not (as we would expect) zero, because of the â(k)â†(k) term (the other term
does give zero by (5.135)). In the single oscillator case, we rewrote ââ† in terms of â†â by
using the commutation relation (5.72), and this led to the ‘zero-point energy’, 1

2ω, of the

oscillator ground state. Adopting the same strategy here, we write Ĥ of (5.132) as

Ĥ =

∫
dk

2π
â†(k)â(k)ω +

∫
dk

2π

1

2
[â(k), â†(k)]ω. (5.136)

Now consider Ĥ|0〉. We see from the definition of the vacuum (5.135) that the first term
will give zero as expected—but the second term is infinite, since the commutation relation
(5.130) produces the infinite quantity ‘δ(0)’ as k → k′; moreover, the k integral diverges.

This term is obviously the continuum analogue of the zero-point energy 1
2ω—but because

there are infinitely many oscillators, it is infinite. The conventional ploy is to argue that
only energy differences, relative to a conveniently defined ground state, really matter—so
that we may discard the infinite constant in (5.136). Then the ground state |0〉 has energy
zero, by definition, and the eigenvalues of Ĥ are of the form∫

dk

2π
n(k)ω (5.137)

where n(k) is the number of quanta (counted by the number operator â†(k)â(k)) of energy
ω = k. For each definite k, and hence ω, the spectrum is like that of the simple harmonic
oscillator. The process of going from (5.132) to (5.136) without the second term is called
‘normally ordering’ the â and â† operators: in a ‘normally ordered’ expression, all â†’s are to
the left of all â’s, with the result that the vacuum value of such expressions is by definition
zero.

It has to be admitted that the argument that only energy differences matter is false
as far as gravity is concerned, which couples to all sources of energy. It would ultimately
be desirable to have theories in which the vacuum energy came out finite from the start
(as actually happens in ‘supersymmetric’ field theories—see for example Weinberg (1995),
p 325); see also comment (3).

We proceed on to the excited states. Any desired state in which excitation quanta are
present can be formed by the appropriate application of â†(k) operators to the ground
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state |0〉. For example, a two-quantum state containing one quantum of momentum k1 and
another of momentum k2 may be written (cf (5.81))

|k1, k2〉 ∝ â†(k1)â†(k2)|0〉. (5.138)

A general state will contain an arbitrary number of quanta.
Once again, and this time more formally, we have completed the programme outlined in

section 5.1, ending up with the ‘quantization’ of a classical field φ(x, t), as exemplified in the
basic expression (5.129), together with the interpretation of the operators â(k) and â†(k)
as destruction and creation operators for mode quanta. We have, at least implicitly, still
retained up to this point the ‘mechanical model’ of some material object oscillating—some
kind of infinitely extended ‘jelly’. We now throw away the mechanical props and embrace
the unadorned quantum field theory! We do not ask what is waving, we simply postulate
a field—such as φ—and quantize it. Its quanta of excitation are what we call particles—for
example, photons in the electromagnetic case.

We end this long section with some further remarks about the formalism, and the phys-
ical interpretation of our quantum field φ̂.

Comment (1)

The alert reader, who has studied appendix I, may be worried about the following (possible)

consistency problem. The fields φ̂ and π̂ are Heisenberg picture operators and obey the
equations of motion

˙̂
φ(x, t) = −i[φ̂(x, t), Ĥ] (5.139)
˙̂π(x, t) = −i[π̂(x, t), Ĥ] (5.140)

where Ĥ is given by (5.132). It is a good exercise to check (problem 5.8(a)) that (5.139)

yields just the expected relation
˙̂
φ(x, t) = π̂(x, t) (cf (5.122)). Thus (5.140) becomes

¨̂
φ(x, t) = −i[π̂(x, t), Ĥ]. (5.141)

However, we have assumed in our work here that φ̂ obeyed the wave equation (cf.(5.121))

¨̂
φ =

∂2

∂x2
φ̂(x, t) (5.142)

as a consequence of the quantized version of the Euler–Lagrange equation (5.96). Thus the
right-hand sides of (5.141) and (5.142) need to be the same, for consistency—and they
are, see problem 5.8(b). Thus—at least in this case—the Heisenberg operator equations of
motion are consistent with the Euler–Lagrange equations.

Comment (2)

Following on from this, we may note that this formalism encompasses both the wave and
the particle aspects of matter and radiation. The former is evident from the plane-wave
expansion functions in the expansion of φ̂, (5.129), which in turn originate from the fact

that φ̂ obeys the wave equation (5.121). The latter follows from the discrete nature of the
energy spectrum and the associated operators â, â† which refer to individual quanta i.e.
particles.

Comment (3)

Next, we may ask: what is the meaning of the ground state |0〉 for a quantum field? It is
undoubtedly the state with n(k) = 0 for all k, i.e. the state with no quanta in it—and hence
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no particles in it, on our new interpretation. It is therefore the vacuum! As we shall see later,
this understanding of the vacuum as the ground state of a field system is fundamental to
much of modern particle physics—for example, to quark confinement and to the generation
of mass for the weak vector bosons. Note that although we discarded the overall (infinite)
constant in Ĥ, differences in zero-point energies can be detected; for example, in the Casimir
effect (Casimir 1948, Kitchener and Prosser 1957, Sparnaay 1958, Lamoreaux 1997, 1998).
These and other aspects of the quantum field theory vacuum are discussed in Aitchison
(1985).

Comment (4)

Consider the two-particle state (5.138): |k1, k2〉 ∝ â†(k1)â†(k2)|0〉. Since the â† operators
commute, (5.130), this state is symmetric under the interchange k1 ↔ k2. This is an in-
evitable feature of the formalism as so far developed—there is no possible way of distin-
guishing one quantum of energy from another, and we expect the two-quantum state to be
indifferent to the order in which the quanta are put in it. However, this has an important
implication for the particle interpretation: since the state is symmetric under interchange
of the particle labels k1 and k2, it must describe identical bosons. How the formalism is
modified in order to describe the antisymmetric states required for two fermionic quanta
will be discussed in section 7.2.

Comment (5)

Finally, the reader may well wonder how to connect the quantum field theory formalism
to ordinary ‘wavefunction’ quantum mechanics. The ability to see this connection will be
important in subsequent chapters and it is indeed quite simple. Suppose we form a state
containing one quantum of the φ̂ field, with momentum k′:

|k′〉 = Nâ†(k′)|0〉 (5.143)

where N is a normalization constant. Now consider the amplitude 〈0|φ̂(x, t)|k′〉. We expand
this out as

〈0|φ̂(x, t)|k′〉 = 〈0|
∫

dk

2π
√
2ω

[â(k)eikx−iωt + â†(k)e−ikx+iωt]Nâ†(k′)|0〉. (5.144)

The ‘â†â†’ term will give zero since 〈0|â† = 0. For the other term, we use the commutation
relation (5.130) to write it as

〈0|
∫

Ndk

2π
√
2ω

[â†(k′)â(k) + 2πδ(k − k′)]eikx−iωt|0〉 = N
eik

′x−iω′t
√
2ω′

(5.145)

using the vacuum condition once again, and integrating over the δ function using the prop-
erty (5.116) which sets k = k′ and hence ω = ω′. The vacuum is normalized to unity,
〈0|0〉 = 1. The normalization constant N can be adjusted according to the desired conven-
tion for the normalization of the states and wavefunctions. The result is just the plane-wave
wavefunction for a particle in the state |k′〉! Thus we discover that the vacuum to one-particle
matrix elements of the field operators are just the familiar wavefunctions of single-particle
quantum mechanics. In this connection we can explain some common terminology. The path
to quantum field theory that we have followed is sometimes called ‘second quantization’—
ordinary single-particle quantum mechanics being the first-quantized version of the
theory.
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5.3 Generalizations: four dimensions, relativity, and mass

In the previous section we have shown how quantum mechanics may be married to field
theory, but we have considered only one spatial dimension, for simplicity. Now we must
generalize to three and incorporate the demands of relativity. This is very easy to do in
the Lagrangian approach, for the scalar field φ(x, t). ‘Scalar’ means that the field has only
one independent component at each point (x, t)—unlike the electromagnetic field, for in-
stance, for which the analogous quantity has four components, making up a 4-vector field
Aμ(x, t) = (A0(x, t),A(x, t)) (see chapter 7). In the quantum case, a one-component field
(or wavefunction) is appropriate for spin-0 particles.

As we saw in (5.97), the three-dimensional Euler–Lagrange equations are

∂L
∂φ

−∇ · ∂L
∂(∇φ)

− ∂

∂t

(
∂L
∂φ̇

)
= 0 (5.146)

which may immediately be rewritten in relativistically invariant form

∂L
∂φ

− ∂μ

(
∂L

∂(∂μφ)

)
= 0 (5.147)

where ∂μ = ∂/∂xμ. Similarly, the action

S =

∫
dt

∫
d3xL =

∫
d4xL (5.148)

will be relativistically invariant if L is, since the volume element d4x is invariant. Thus, to
construct a relativistic field theory, we have to construct an invariant density L and use the
already given covariant Euler–Lagrange equation. Thus our previous string Lagrangian

Lρ =
1

2
ρ

(
∂φ

∂t

)2
− 1

2
ρc2

(
∂φ

∂x

)2
(5.149)

with ρ = c = 1 generalizes to
L = 1

2∂μφ∂
μφ (5.150)

and produces the invariant wave equation

∂μ∂
μφ =

(
∂2

∂t2
−∇2

)
φ = 0. (5.151)

All of this goes through just the same when the fields are quantized.
This invariant Lagrangian describes a field whose quanta are massless. To find the La-

grangian for the case of massive quanta, we need to find the Lagrangian that gives us the
Klein–Gordon equation (see section 3.1)

(�+m2)φ(x, t) = 0 (5.152)

via the Euler–Lagrangian equations.
The answer is a simple generalization of (5.150):

LKG = 1
2∂μφ∂

μφ− 1
2m

2φ2. (5.153)
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The plane-wave solutions of the field equation—now the KG equation—have frequencies
(or energies) given by

ω2 = k2 +m2 (5.154)

which is the correct energy–momentum relation for a massive particle.
How do we quantize this field theory? The four-dimensional analogue of the Fourier

expansion of the field φ takes the form

φ̂(x) =

∫ ∞

−∞

d3k

(2π)3
√
2ω

[â(k)e−ik·x + â†(k)eik·x] (5.155)

with a similar expansion for the ‘conjugate momentum’ π̂ =
˙̂
φ:

π̂(x) =

∫ ∞

−∞

d3k

(2π)3
√
2ω

(−iω)[â(k)e−ik·x − â†(k)eik·x]. (5.156)

Here k · x is the four-dimensional dot product k · x = ωt − k · x, and ω = +(k2 +m2)1/2.
The Hamiltonian is found to be

ĤKG =

∫
d3xĤKG =

∫ ∞

−∞
d3x 1

2 [π̂
2 +∇φ̂ ·∇φ̂+m2φ̂2] (5.157)

and this can be expressed in terms of the â’s and the â†’s using the expansion for φ̂ and π̂
and the commutator

[â(k), â†(k′)] = (2π)3δ3(k − k′) (5.158)

with all others vanishing. The result is, as expected,

ĤKG =
1

2

∫
d3k

(2π)3
[â†(k)â(k) + â(k)â†(k)]ω (5.159)

and, normally ordering as usual, we arrive at

ĤKG =

∫
d3k

(2π)3
â†(k)â(k)ω. (5.160)

This supports the physical interpretation of the mode operators â† and â as creation and
destruction operators for quanta of the field φ̂ as before, except that now the energy–
momentum relation for these particles is the relativistic one, for particles of mass m.

Since φ̂ is real (φ̂ = φ̂†) and has no spin degrees of freedom, it is called a real scalar
field. Only field quanta of one type enter—those created by â† and destroyed by â. Thus
φ̂ would correspond physically to a case where there was a unique particle state of a given
mass m—for example the π0 field. Actually, of course, we would not want to describe the
π0 in any fundamental sense in terms of such a field, since we know it is not a point-like
object (‘φ’ is defined only at the single space–time point (x, t)). The question of whether
true ‘elementary’ scalar fields exist in nature is an interesting one. In the SM, as we shall
eventually see in volume 2, the Higgs field is a scalar field (though it contains several
components with different charge). It remains to be seen if this field—and the associated
quantum, the Higgs boson—is elementary or composite.

We have learned how to describe free relativistic spinless particles of finite mass as the
quanta of a relativistic quantum field. We now need to understand interactions in quantum
field theory.
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Problems

5.1 Verify equation (5.36).

5.2 Consider one-dimensional motion under gravity so that V (x) = −mgx in (5.39). Eval-
uate S of (5.38) for t1 = 0, t2 = t0, for three possible trajectories:

(a) x(t) = at,

(b) x(t) = 1
2gt

2 (the Newtonian result) and

(c) x(t) = bt3

where the constants a and b are to be chosen so that all the trajectories end at the same
point x(t0).

5.3

(a) Use (5.57) and (5.63) to verify that

p̂ = m ˙̂q

is consistent with the Heisenberg equation of motion for Â = q̂.

(b) By similar methods verify that

˙̂p = −mω2q̂.

5.4

(a) Rewrite the Hamiltonian Ĥ of (5.63) in terms of the operators â and â†.

(b) Evaluate the commutator between â and â† and use this result together with your
expression for Ĥ from part (a) to verify equation (5.73).

(c) Verify that for |n〉 given by equation (5.81) the normalization condition

〈n|n〉 = 1

is satisfied.

(d) Verify (5.83) directly using the commutation relation (5.72).

5.5 Treating ψ and ψ∗ as independent classical fields, show that the Lagrangian density

L = iψ∗ψ̇ − (1/2m)∇ψ∗ ·∇ψ

gives the Schrödinger equation for ψ and ψ∗ correctly.

5.6

(a) Verify that the commutation relations for â(k) and â†(k) (equations (5.130)) are
consistent with the equal time commutation relation between φ̂ and π̂ (equa-
tion (5.117)), and with (5.118).

(b) Consider the unequal time commutator D(x1, x2) ≡ [φ̂(x1, t1), φ̂(x2, t2)], where

φ̂ is a massive KG field in three dimensions. Show that

D(x1, x2) =

∫
d3k

(2π)32E
[e−ik·(x1−x2) − eik·(x1−x2)] (5.161)
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where k · (x1 − x2) = E(t1 − t2)−k · (x1 −x2), and E = (k2 +m2)1/2. Note that
D is not an operator, and that it depends only on the difference of coordinates
x1 − x2, consistent with translation invariance. Show that D(x1, x2) vanishes for
t1 = t2. Explain why the right-hand side of (5.161) is Lorentz invariant (see the
exercise in appendix E), and use this fact to show that D(x1, x2) vanishes for all
space-like separations (x1 − x2)

2 < 0. Discuss the significance of this result—or
see the discussion in section 6.3.2!

5.7 Insert the plane-wave expansions for the operators φ̂ and π̂ into the equation for Ĥ,
(5.124), and verify equation (5.132). [Hint : note that ω is defined to be always positive, so
that (5.126) should strictly be written ω = |k|.]
5.8

(a) Use (5.117) and (5.124) to verify that π̂(x, t) =
˙̂
φ(x, t) is consistent with the

Heisenberg equation of motion for φ̂(x, t). [Hint : write the integral in (5.124) as
over y, not x!]

(b) Similarly, verify the consistency of (5.141) and (5.121).
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Quantum Field Theory II: Interacting Scalar Fields

6.1 Interactions in quantum field theory: qualitative introduction

In the previous chapter we considered only free—i.e. non-interacting—quantum fields. The
fact that they are non-interacting is evident in a number of ways. The mode expansions
(5.129) and (5.155), are written in terms of the (free) plane-wave solutions of the associated
wave equations. Also the Hamiltonians turned out to be just the sum of individual oscillator
Hamiltonians for each mode frequency, as in (5.132) or (5.159). The energies of the quanta
add up—they are non-interacting quanta. Finally, since the Hamiltonians are just sums of
number operators

n̂(k) = â†(k)â(k) (6.1)

it is obvious that each such operator commutes with the Hamiltonian and is therefore
a constant of the motion. Thus two waves, each with one excitation quantum, travelling
towards each other will pass smoothly through each other and emerge unscathed on the
other side—they will not interact at all.

How can we get the mode quanta to interact? If we return to our discussion of classical
mechanical systems in section 5.1, we see that the crucial step in arriving at the ‘sum over
oscillators’ form for the energy was the assumption that the potential energy was quadratic
in the small displacements qr. We expect that ‘modes will interact’ when we go beyond this
harmonic approximation. The same is true in the continuous (wave or field) case. In the
derivation of the appropriate wave equation you will find that somewhere an approximation
like tanφ ≈ φ or sinφ ≈ φ is made. This linearizes the equation, and solutions to linear
equations can be linearly superposed to make new solutions. If we retain higher powers of
φ, such as φ3, the resulting nonlinear equation has solutions that cannot be obtained by
superposing two independent solutions. Thus two waves travelling towards each other will
not just pass smoothly through each other: various forms of interaction and distortion of
the original waveforms will occur.

What happens when we quantize such anharmonic systems? To gain some idea of the
new features that emerge, consider just one ‘anharmonic oscillator’ with Hamiltonian

Ĥ = (1/2m)p̂2 + 1
2mω2q̂2 + λq̂3. (6.2)

In terms of the â and â† combinations this becomes

Ĥ =
1

2
(â†â+ ââ†)ω +

λ

(2mω)3/2
(â+ â†)3 (6.3)

≡ Ĥ0 + λĤ ′ (6.4)

where Ĥ0 is our previous free oscillator Hamiltonian. The algebraic tricks we used to find
the spectrum of Ĥ0 do not work for this new Ĥ because of the addition of the Ĥ ′ interaction
term. In particular, although Ĥ0 commutes with the number operator â†â, Ĥ ′ does not.
Therefore, whatever the eigenstates of Ĥ are, they will not in general have a definite number
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of ‘Ĥ0 quanta’. In fact, we cannot find an exact algebraic solution to this new eigenvalue
problem, and we must resort to perturbation theory or to numerical methods.

The perturbative solution to this problem treats λĤ ′ as a perturbation and expands the
true eigenstates of Ĥ in terms of the eigenstates of Ĥ0:

|r̄〉 =
∑
n

crn|n〉. (6.5)

From this expansion we see that, as expected, the true eigenstates |r̄〉 will ‘contain different
numbers of Ĥ0 quanta’: |crn|2 is the probability of finding n ‘Ĥ0 quanta’ in the state
|r̄〉. Perturbation theory now proceeds by expanding the coefficients crn and exact energy
eigenvalues Ēr as power series in the strength λ of the perturbation. For example, the exact
energy eigenvalue has the expansion

Ēr = E(0)
r + λE(1)

r + λ2E(2)
r + · · · (6.6)

where
Ĥ0|r〉 = E(0)

r |r〉 (6.7)

and

E(1)
r = 〈r|Ĥ ′|r〉 (6.8)

E(2)
r =

∑
s 	=r

〈r|Ĥ ′|s〉〈s|Ĥ ′|r〉
E

(0)
r − E

(0)
s

. (6.9)

To evaluate the second-order shift in energy, we therefore need to consider matrix elements
of the form

〈s|(â+ â†)3|r〉. (6.10)

Keeping careful track of the order of the â and â† operators, we can evaluate these matrix
elements and find, in this case, that there are non-zero matrix elements for states 〈s| =
〈r + 3|, 〈r + 1|, 〈r − 1| and 〈r − 3|.

What about the quantum mechanics of two coupled nonlinear oscillators? In the same
way, the general state is assumed to be a superposition

|r̄〉 =
∑
n1,n2

cr,n1n2
|n1〉|n2〉 (6.11)

of states of arbitrary numbers of quanta of the unperturbed oscillator Hamiltonians Ĥ0(1)

and Ĥ0(2). States of the unperturbed system contain definite numbers n1 and n2, say, of the
‘1’ and ‘2’ quanta. Perturbation calculations of the interacting system will involve matrix
elements connecting such |n1〉|n2〉 states to states |n′1〉|n′2〉 with different numbers of these
quanta.

All this can be summarized by the remark that the typical feature of quantized inter-
acting modes is that we need to consider processes in which the numbers of the different
mode quanta are not constants of the motion. This is, of course, exactly what happens when
we have collisions between high-energy particles. When far apart the particles, definite in
number, are indeed free and are just the mode quanta of some quantized fields. But, when
they interact, we must expect to see changes in the numbers of quanta, and can envisage
processes in which the number of quanta which emerge finally as free particles is different
from the number that originally collided. From the quantum mechanical examples which we
have discussed, we expect that these interactions will be produced by terms like φ̂3 or φ̂4,
since the free—‘harmonic’—case has φ̂2, analogous to q̂2 in the quantum mechanics example.
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Such terms arise in the solid state phonon application precisely from anharmonic corrections
involving the atomic displacements. These terms lead to non-trivial phonon–phonon scat-
tering, the treatment of which forms the basis of the quantum theory of thermal resistivity
of insulators. In the quantum field theory case, when we have generalized the formalism
to fermions and photons, the nonlinear interaction terms will produce e+e− scattering, qq̄
annihilation, and so on. As in the quantum mechanical case, the basic calculational method
will be perturbation theory.

As remarked earlier, the trouble with all these ‘real-life’ cases is that they involve sig-
nificant complications due to spin; the corresponding fields then have several components,
with attendant complexity in the solutions of the associated free-particle wave equations
(Maxwell, Dirac). So in this chapter we shall seek to explain the essence of the perturbative
approach to quantum field dynamics—which we take to be essentially the Feynman graph
version of Yukawa’s exchange mechanism—in the context of simple models involving only
scalar fields; Maxwell (vector) and Dirac (spinor) fields will be introduced in the following
chapter. The route we follow to the ‘Feynman rules’ is the one first given (with remarkable
clarity) by Dyson (1949a), which rapidly became the standard formulation.

Before proceeding it may be worth emphasizing that in introducing a ‘non-harmonic’
term such as φ̂3 and thus departing from linearity in that sense, we are in no way affecting
the basic linearity of state vector superposition in quantum mechanics (cf (6.11)), which
continues to hold.

6.2 Perturbation theory for interacting fields: the Dyson expansion
of the S-matrix

On the third day of the journey a remarkable thing happened; going into a sort of
semi-stupor as one does after 48 hours of bus-riding, I began to think very hard about
physics, and particularly about the rival radiation theories of Schwinger and Feynman.
Gradually my thoughts grew more coherent, and before I knew where I was, I had solved
the problem that had been in the back of my mind all this year, which was to prove the
equivalence of the two theories.

[From a letter from F. J. Dyson to his parents, 18 September 1948, as quoted in Schweber
(1994), p 505.]

For definiteness, let us consider the Lagrangian

L̂ = 1
2∂μφ̂∂

μφ̂− 1
2m

2φ̂2 − λφ̂3 ≡ L̂KG − λφ̂3 (6.12)

with λ > 0. Equation (6.12) is like ‘L̂ = T̂ − V̂ ’ where V̂ = 1
2 (∇φ̂)2 + 1

2m
2φ̂2 + λφ̂3 is the

‘potential’. Though simple, this Lagrangian is unfortunately not physically sensible. The
classical particle analogue potential would have the form V (q) = 1

2ωq
2 + λq3. If we sketch

V (q) as a function of q we see that, for small λ, it retains the shape of an oscillator well
near q = 0, but for q sufficiently large and negative it will ‘turn over’, tending ultimately
to −∞ as q → −∞. Classically we expect to be able to set up a successful perturbation
theory for oscillations about the equilibrium position q = 0, provided that the amplitude
of the oscillations is not so large as to carry the particle over the ‘lip’ of the potential; in
the latter case, the particle will escape to q = −∞, invalidating a perturbative approach.
In the quantum mechanical case the same potential V (q) is more problematical, since the
particle can tunnel through the barrier separating it from the region where V → −∞. This
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means that the ground state will not be stable. An analogous disease affects the quantum
field case—the supposed vacuum state will be unstable, and indeed the energy will not be
positive-definite.

Nevertheless, as the reader may already have surmised, and we shall confirm later in this
chapter, the ‘φ-cubed’ interaction is precisely of the form relevant to Yukawa’s exchange
mechanism. As we have seen in the previous section, such an interaction will typically give
rise to matrix elements between one-quantum and two-quantum states, for example, exactly
like the basic Yukawa emission and absorption process. In fact, all that is necessary to make
the φ̂3-type interaction physical is to let it describe, not the ‘self-coupling’ of a single field,
but the ‘interactive coupling’ of at least two different fields. For example, we may have
two scalar fields with quanta ‘A’ and ‘B’, and an interaction between them of the form
λφ̂2

Aφ̂B. This will allow processes such as A ↔ A + B. Or we may have three such fields,

and an interaction λφ̂Aφ̂Bφ̂C, allowing A ↔ B + C and similar transitions. In these cases
the problems with the φ̂3 self-interaction do not arise. (Incidentally those problems can

be eliminated by the addition of a suitable higher-power term, for instance gφ̂4.) In later
sections we shall be considering the ‘ABC’ model specifically, but for the present it will be
simpler to continue with the single field φ̂ and the self-interaction λφ̂3, as described by the
Lagrangian (6.12). The associated Hamiltonian is

Ĥ = ĤKG + Ĥ ′ (6.13)

where (as is usual in perturbation theory) we have separated the Hamiltonian into a part
we can handle exactly, which is the free Klein–Gordon Hamiltonian

ĤKG =

∫
d3x ĤKG = 1

2

∫
d3x [π̂2 + (∇φ̂)2 +m2φ̂2] (6.14)

and the part we shall treat perturbatively

Ĥ ′ =
∫

d3x Ĥ′ = λ

∫
d3x φ̂3. (6.15)

6.2.1 The interaction picture

We begin with a crucial formal step. In our introduction to quantum field theory in the
previous chapter, we worked in the Heisenberg picture (HP). There, however, we only dealt
with free (non-interacting) fields. The time dependence of the operators as given by the mode
expansion (5.155) is that generated by the free KG Hamiltonian (6.14) via the Heisenberg
equations of motion (see problem 5.8). But as soon as we include the interaction term Ĥ ′,
we cannot make progress in the HP, since we do not then know the time dependence of the
operators—which is generated by the full Hamiltonian Ĥ = ĤKG + Ĥ ′.

Instead, we might consider using the Schrödinger picture (SP) in which the states change
with time according to

Ĥ|ψ(t)〉 = i
d

dt
|ψ(t)〉 (6.16)

and the operators are time-independent (see appendix I). Note that although (6.16) is a
‘Schrödinger picture’ equation, there is nothing non-relativistic about it: on the contrary,
Ĥ is the relevant relativistic Hamiltonian. In this approach, the field operators appearing
in the density Ĥ are all evaluated at a fixed time, say t = 0 by convention, which is the
time at which the Schrödinger and Heisenberg pictures coincide. At this fixed time, mode
expansions of the form (5.155) with t = 0 are certainly possible, since the basis functions
form a complete set.
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One problem with this formulation, however, is that it is not going to be manifestly
‘Lorentz invariant’ (or covariant), because a particular time (t = 0) has been singled out.
In the end, physical quantities should come out correct, but it is much more convenient to
have everything looking nice and consistent with relativity as we go along. This is one of
the reasons for choosing to work in yet a third ‘picture’, an ingenious kind of half-way-house
between the other two, called the ‘interaction picture’ (IP). We shall see other good reasons
shortly.

In the HP, all the time dependence is carried by the operators and none by the state,
while in the SP it is exactly the other way around. In the IP, both states and operators
are time-dependent but in a way that is well adapted to perturbation theory, especially in
quantum field theory. The operators have a time dependence generated by the free Hamil-
tonian Ĥ0, say, and so a ‘free-particle’ mode expansion like (5.155) survives intact (here
Ĥ0 = ĤKG). The states have a time dependence generated by the interaction Ĥ ′. Thus as
Ĥ ′ → 0 we return to the free-particle HP.

The way this works formally is as follows. In terms of the time-independent SP operator
Â (cf appendix I), we define the corresponding IP operator ÂI(t) by

ÂI(t) = eiĤ0tÂe−iĤ0t. (6.17)

This is just like the definition of the HP operator Â(t) in appendix I, except that Ĥ0 appears
instead of the full Ĥ. It follows that the time dependence of ÂI(t) is given by (I.8) with
Ĥ → Ĥ0:

dÂI(t)

dt
= −i[ÂI(t), Ĥ0]. (6.18)

Equation (6.18) can also, of course, be derived by carefully differentiating (6.17). Thus—
as mentioned already—the time dependence of ÂI(t) is generated by the free part of the
Hamiltonian, by construction.

As applied to our model theory (6.12), then, our field φ̂ will now be specified as being

in the IP, φ̂I(x, t). What about the field canonically conjugate to φ̂I(t), in the case when
the interaction is included? In the HP, as long as the interaction does not contain time
derivatives, as is the case here, the field canonically conjugate to the interacting field remains
the same as the free-field case:

π̂(x, t) =
∂L̂

∂
˙̂
φ(x, t)

=
∂L̂KG

∂
˙̂
φ(x, t)

=
˙̂
φ(x, t) (6.19)

so that we continue to adopt the equal-time commutation relation

[φ̂(x, t), π̂(y, t)] = iδ3(x− y) (6.20)

for the Heisenberg fields. But the IP fields are related to the HP fields by a unitary trans-
formation Û , as we can see by combining (6.17) with (I.7):

ÂI(t) = eiĤ0te−iĤtÂ(t)eiĤte−iĤ0t

= Û Â(t)Û−1 (6.21)

where Û = eiĤ0te−iĤt, and it is easy to check that Û Û † = Û†Û = Î. So taking equa-
tion (6.20) and pre-multiplying by Û and post-multiplying by Û−1 on both sides, we obtain

[φ̂I(x, t), π̂I(y, t)] = iδ3(x− y) (6.22)
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showing that, in the interacting case, the IP fields φ̂I and π̂I obey the free field commutation
relation. Thus in the IP case the interacting fields obey the same equations of motion and the
same commutation relations as the free-field operators. It follows that the mode expansion
(5.155), and the commutation relations (5.158) for the mode creation and annihilation
operators, can be taken straight over for the IP operators.

We now turn to the states in the IP. To preserve consistency between the matrix elements
in the Schrödinger and interaction pictures (cf the step from (I.6) to (I.7)) we define the
corresponding IP state vector by

|ψ(t)〉I = eiĤ0t|ψ(t)〉 (6.23)

in terms of the SP state |ψ(t)〉. We now use (6.23) to find the equation of motion of |ψ(t)〉I.
We have

i
d

dt
|ψ(t)〉I = eiĤ0t

{
−Ĥ0|ψ(t)〉+ i

d

dt
|ψ(t)〉

}

= eiĤ0t{−Ĥ0|ψ(t)〉+ (Ĥ0 + Ĥ ′)|ψ(t)〉}
= eiĤ0tĤ ′|ψ(t)〉
= eiĤ0tĤ ′e−iĤ0t|ψ(t)〉I (6.24)

or

i
d

dt
|ψ(t)〉I = Ĥ ′

I(t)|ψ(t)〉I (6.25)

where
Ĥ ′

I = eiĤ0tĤ ′e−iĤ0t (6.26)

is the interaction Hamiltonian in the interaction picture. The italicised words are important:
they mean that all operators in Ĥ ′

I have the (known) free-field time dependence, which would

not be the case for Ĥ ′ in the HP. Thus, as mentioned earlier, the states in the IP have a
time dependence generated by the interaction Hamiltonian, and this derivation has shown
us that it is, in fact, the interaction Hamiltonian in the IP which is the appropriate generator
of time change in this picture.

Equation (6.25) is a slightly simplified form of the Tomonaga–Schwinger equation, which
formed the starting point of the approach to QED followed by Schwinger (Schwinger 1948b,
1949a, b) and independently by Tomonaga and his group (Tomonaga 1946, Koba, Tati and
Tomonaga 1947a, b, Kanesawa and Tomonaga 1948a, b, Koba and Tomonaga 1948, Koba
and Takeda 1948, 1949).

6.2.2 The S-matrix and the Dyson expansion

We now start the job of applying the IP formalism to scattering and decay processes in
quantum field theory, treated in perturbation theory; for this, following Dyson (1949a, b),
the crucial quantity is the scattering matrix, or S-matrix for short, which we now introduce.
A scattering process may plausibly be described in the following terms. At a time t → −∞,
long before any interaction has occurred, we expect the effect of Ĥ ′

I to be negligible so that,

from (6.25), |ψ(−∞)〉I will be a constant state vector |i〉, which is in fact an eigenstate of Ĥ0.
Thus |i〉 will contain a certain number of non-interacting particles with definite momenta,
and |ψ(−∞)〉I = |i〉. As time evolves, the particles approach each other and may scatter,
leading in the distant future (at t → ∞) to another constant state |ψ(∞)〉I containing non-
interacting particles. Note that |ψ(∞)〉I will in general contain many different components,
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each with (in principle) different numbers and types of particles; these different components
in |ψ(∞)〉I will be denoted by |f〉. The Ŝ-operator is now defined via

|ψ(∞)〉I = Ŝ|ψ(−∞)〉I = Ŝ|i〉. (6.27)

A particular S-matrix element is then the amplitude for finding a particular final state |f〉
in |ψ(∞)〉I:

〈f|ψ(∞)〉I = 〈f|Ŝ|i〉 ≡ Sfi. (6.28)

Thus we may write

|ψ(∞)〉I =
∑
f

|f〉〈f|ψ(∞)〉I =
∑
f

Sfi|f〉. (6.29)

It is clear that it is these S-matrix elements Sfi that we need to calculate, and the associated
probabilities |Sfi|2.

Before proceeding we note an important property of Ŝ. Assuming that |ψ(∞)〉I and |i〉
are both normalized, we have

1 = I〈ψ(∞)|ψ(∞)〉I = 〈i|Ŝ†Ŝ|i〉 = 〈i|i〉 (6.30)

implying that Ŝ is unitary : Ŝ†Ŝ = Î. Taking matrix elements of this gives us the result∑
k

S∗kfSki = δfi. (6.31)

Putting i = f in (6.31) yields
∑

k |Ski|2 = 1, which confirms that the expansion coefficients
in (6.29) must obey the usual condition that the sum of all the partial probabilities must add
up to 1. Note, however, that in the present case the states involved may contain different
numbers of particles.

We set up a perturbation-theory approach to calculating Ŝ as follows. Integrating (6.25)
subject to the condition at t → −∞ yields

|ψ(t)〉I = |i〉 − i

∫ t

−∞
Ĥ ′

I(t
′)|ψ(t′)〉I dt′. (6.32)

This is an integral equation in which the unknown |ψ(t)〉I is buried under the integral on the
right-hand side, rather similar to the one we encounter in non-relativistic scattering theory
(equation (H.12) of appendix H). As in that case, we solve it iteratively. If Ĥ ′

I is neglected
altogether, then the solution is

|ψ(t)〉(0)I = |i〉. (6.33)

To get the first order in Ĥ ′
I correction to this, insert (6.33) in place of |ψ(t′)〉I on the

right-hand side of (6.32) to obtain

|ψ(t)〉(1)I = |i〉+
∫ t

−∞
(−iĤ ′

I(t1))dt1|i〉 (6.34)

recalling that |i〉 is a constant state vector. Putting this back into (6.32) yields |ψ(t)〉 correct
to second order in Ĥ ′

I:

|ψ(t)〉(2)I =

{
1 +

∫ t

−∞
(−iĤ ′

I(t1)) dt1

+

∫ t

−∞
dt1

∫ t1

−∞
dt2 (−iĤ ′

I(t1))(−iĤ ′
I(t2))

}
|i〉 (6.35)
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which is as far as we intend to go. Letting t → ∞ then gives us our perturbative series for
the Ŝ-operator :

Ŝ = 1 +

∫ ∞

−∞
(−iĤ ′

I(t1)) dt1 +

∫ ∞

−∞
dt1

∫ t1

−∞
dt2 (−iĤ ′

I(t1))(−iĤ ′
I(t2)) + · · · (6.36)

the dots indicating the higher-order terms, which are in fact summarized by the full formula

Ŝ =

∞∑
n=0

(−i)n
∫ ∞

−∞
dt1

∫ t1

−∞
dt2 · · ·

∫ tn−1

−∞
dtn Ĥ

′
I(t1)Ĥ

′
I(t2) . . . Ĥ

′
I(tn). (6.37)

We could immediately start getting to work with (6.37), but there is one more useful
technical adjustment to make. Remembering that

Ĥ ′
I(t) =

∫
Ĥ′I(x, t) d3x (6.38)

we can write the second term of (6.36) as∫ ∫
t1>t2

d4x1 d
4x2 (−iĤ′I(x1))(−iĤ′I(x2)) (6.39)

which looks much more symmetrical in x− t. However, there is still an awkward asymmetry
between the x-integrals and the t-integrals because of the t1 > t2 condition. The t-integrals
can be converted to run from −∞ to ∞ without constraint, like the x ones, by a clever
trick. Note that the ordering of the operators Ĥ′I is significant (since they will contain non-
commuting bits), and that it is actually given by the order of their time arguments, ‘earlier’
operators appearing to the right of ‘later’ ones. This feature must be preserved, obviously,
when we let the t-integrals run over the full infinite domain. We can arrange for this by
introducing the time-ordering symbol T , which is defined by

T (Ĥ′I(x1)Ĥ′I(x2)) = Ĥ′I(x1)Ĥ′I(x2) for t1 > t2

= Ĥ′I(x2)Ĥ′I(x1) for t1 < t2 (6.40)

and similarly for more products, and for arbitrary operators. Then (see problem 6.1) (6.39)
can be written as

1
2

∫ ∫
d4x1 d

4x2 T [(−iĤ′I(x1))(−iĤ′I(x2))] (6.41)

where the integrals are now unrestricted. Applying a similar analysis to the general term
gives us the Dyson expansion of the Ŝ operator :

Ŝ =

∞∑
n=0

(−i)n

n!

∫
. . .

∫
d4x1 d

4x2 . . . d
4xn T{Ĥ′I(x1)Ĥ′I(x2) · · · Ĥ′I(xn)}. (6.42)

This fundamental formula provides the bridge leading from the Tomonaga–Schwinger
equation (6.25) to the Feynman amplitudes (Feynman 1949a, b), as we shall see in detail
in section 6.3.2 for the ‘ABC’ case.

6.3 Applications to the ‘ABC’ theory

As previously explained, the simple self-interacting φ̂3 theory is not respectable. Following
Griffiths (2008) we shall instead apply the foregoing covariant perturbation theory to a
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hypothetical world consisting of three distinct types of scalar particles A, B, and C, with
masses mA, mB, and mC, respectively. Each is described by a real scalar field which, if free,
would obey the appropriate KG equation; the interaction term is gφ̂Aφ̂Bφ̂C. We shall from
now on omit the IP subscript ‘I’, since all operators are taken to be in the IP. Thus the
Hamiltonian is

Ĥ = Ĥ0 + Ĥ ′ (6.43)

where

Ĥ0 = 1
2

∑
i=A,B,C

∫
[π̂i

2 + (∇φ̂i)
2 +m2

i φ̂
2
i ] d

3x (6.44)

and

Ĥ ′ = g

∫
d3x φ̂Aφ̂Bφ̂C ≡

∫
d3x Ĥ′. (6.45)

Each field φ̂i, (i = A,B,C) has a mode expansion of the form (5.143), and associated

creation and annihilation operators â†i and âi which obey the commutation relations

[âi(k), â
†
j(k

′)] = (2π)3δ3(k − k′)δij i, j = A,B,C. (6.46)

The new feature in (6.46) is that operators associated with distinct particles commute. In

a similar way, we also have [âi, âj ] = [â†i , â
†
j ] = 0.

6.3.1 The decay C → A + B

As our first application of (6.42), we shall calculate the decay rate (or resonance width) for
the decay C → A+B, to lowest order in g. Admittedly this is not yet a realistic, physical,
example; even so, the basic steps in the calculation are common to more complicated physical
examples, such as W− → e− + ν̄e.

We suppose that the initial state |i〉 consists of one C particle with 4-momentum pC,
and that the final state in which we are interested is that with one A and one B particle
present, with 4-momenta pA and pB respectively. We want to calculate the matrix element

Sfi = 〈pA, pB|Ŝ|pC〉 (6.47)

to lowest order in g. (Note that the ‘1’ term in (6.36) cannot contribute here because the
initial and final states are plainly orthogonal.) This means that we need to evaluate the
amplitude

A(1)
fi = −ig〈pA, pB|

∫
d4x φ̂A(x)φ̂B(x)φ̂C(x)|pC〉. (6.48)

To proceed we need to decide on the normalization of our states |pi〉. We will define (for
i = A,B,C)

|pi〉 =
√

2Eiâ
†
i (pi)|0〉 (6.49)

where Ei =
√
m2

i + p2
i , so that (using (6.46))

〈p′i|pi〉 = 2Ei(2π)
3δ3(p′i − pi). (6.50)

The quantity Eiδ
3(p′i − pi) is Lorentz invariant. Note that the completeness relation for

such states reads ∫
d3pi

(2π)3
1

2Ei
|pi〉〈pi| = 1 (6.51)
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where the ‘1’ on the right-hand side means the identity in the subspace of such one-particle
states, and zero for all other states. The normalization choice (6.49) corresponds (see com-
ment (5) in section 5.2.5) to a wavefunction normalization of 2Ei particles per unit volume.

Consider now just the φ̂C(x)|pC〉 piece of (6.48). This is∫
d3k

(2π)3
1√
2Ek

[âC(k)e
−ik·x + â†C(k)e

ik·x]
√
2ECâ

†
C(pC)|0〉 (6.52)

where k = (Ek,k) and Ek =
√
k2 +m2

C. The term with two â†C’s will give zero when

bracketed with a final state containing no C particles. In the other term, we use (6.46)
together with âC(k)|0〉 = 0 to reduce (6.52) to∫

d3k

(2π)3
1√
2Ek

(2π)3δ3(pC − k)
√

2ECe
−ik·x|0〉 = e−ipC·x|0〉 (6.53)

where pC = (
√

p2
C +m2

C,pC). In exactly the same way we find that, when bracketed with
an initial state containing no A’s or B’s,

〈pA, pB|φ̂A(x)φ̂B(x) = 〈0|eipA·xeipB·x. (6.54)

Hence the amplitude (6.48) becomes just

A(1)
fi = −ig

∫
d4xei(pA+pB−pC)·x = −ig(2π)4δ4(pA + pB − pC). (6.55)

Unsurprisingly, but reassuringly, we have discovered that the amplitude vanishes unless the
4-momentum is conserved via the δ-function condition: pC = pA + pB.

It is clear that such a transition will not occur unless mC > mA+mB (in the rest frame
of the C, we need mC =

√
m2

A + p2 +
√

m2
B + p2), so let us assume this to be the case. We

would now like to calculate the rate for the decay C → A + B. To do this, we shall adopt
a plausible generalization of the ordinary procedure followed in quantum mechanical time-
dependent perturbation theory (the reader may wish to consult section H.3 of appendix H
at this point, to see a non-relativistic analogue). The first problem is that the transition

probability |A(1)
fi |2 apparently involves the square of the four-dimensional δ-function. This

is bad news since (to take a simple case, and using (E.53)) δ(x− a)δ(x− a) = δ(x− a)δ(0)
and δ(0) is infinite. In our case we have a four-fold infinity. This trouble has arisen because
we have been using plane-wave solutions of our wave equation, and these notoriously lead
to such problems. A proper procedure would set the whole thing up using wave packets,
as is done, for instance, in Peskin and Schroeder (1995), section 4.5. An easier remedy is
to adopt ‘box normalization’, in which we imagine that space has the finite volume V , and
the interaction is turned on only for a time T . Then ‘(2π)4δ4(0)’ is effectively ‘V T ’ (see
Weinberg (1995, section 3.4)). Dividing this factor out, the transition rate per unit volume
is then

Ṗfi = |A(1)
fi |2/V T = (2π)4δ4(pA + pB − pC)|Mfi|2 (6.56)

where (cf (6.55))

A(1)
fi = (2π)4δ4(pA + pB − pC)iMfi (6.57)

so that the invariant amplitude iMfi is just −ig, in this case.
Equation (6.56) is the probability per unit time for a transition to one specific final

state |f〉. But in the present case (and in all similar ones with at least two particles in the
final state), the A + B final states form a continuum, and to get the total rate Γ we need
to integrate Ṗfi over all the continuum of final states, consistent with energy–momentum
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conservation. The corresponding differential decay rate dΓ is defined by dΓ = ṖfidNf where
dNf is the number of final states, per particle, lying in a momentum space volume d3pAd

3pB
about pA and pB. For the normalization (6.49), this number is

dNf =
d3pA

(2π)32EA

d3pB

(2π)32EB
. (6.58)

Finally, to get a normalization-independent quantity we must divide by the number of
decaying particles per unit volume, which is 2EC. Thus our final formula for the decay rate
is

Γ =

∫
dΓ =

1

2EC
(2π)4

∫
δ4(pA + pB − pC)|Mfi|2 d3pA

(2π)32EA

d3pB

(2π)32EB
. (6.59)

Note that the ‘d3p/2E’ factors are Lorentz invariant (see the exercise in appendix E) and
so are all the other terms in (6.59) except EC, which contributes the correct Lorentz-
transformation character for a rate (i.e. rate ∝ 1/γ).

We now calculate the total rate Γ in the rest frame of the decaying C particle. In this
case, the 3-momentum part of the δ4 gives pA +pB = 0, so pA = p = −pB, and the energy
part becomes δ(E −mC) where

E =
√
m2

A + p2 +
√
m2

B + p2 = EA + EB. (6.60)

So the total rate is

Γ =
1

2mC

g2

(2π)2

∫
d3p

4EAEB
δ(E −mC). (6.61)

Differentiating (6.60) we find

dE =

( |p|
EA

+
|p|
EB

)
d|p| = |p|E

EAEB
d|p|. (6.62)

Thus we may write

d3p = 4π|p|2 d|p| = 4π|p|EAEB

E
dE (6.63)

and use the energy δ-function in (6.61) to do the dE integral yielding finally

Γ =
g2

8π

|p|
m2

C

. (6.64)

The quantity |p| is actually determined from (6.60) now with E = mC; after some algebra,
we find (problem 5.2)

|p| = [m4
A +m4

B +m4
C − 2m2

Am
2
B − 2m2

Bm
2
C − 2m2

Cm
2
A]

1/2/2mC. (6.65)

Equation (6.64) is the result of an ‘almost real life’ calculation and a number of com-
ments are in order. First, consider the question of dimensions. In our units � = c = 1, Γ as
an inverse time should have the dimensions of a mass (see appendix B), which can also be
understood if we think of Γ as the width of an unstable resonance state. This requires ‘g’
to have the dimensions of a mass, i.e. g ∼ M in these units. Going back to our Hamiltonian
(6.44) and (6.45), which must also have dimensions of a mass, we see from (6.44) that the

scalar fields φ̂i ∼ M (using d3x ∼ M−3), and hence from (6.45) g ∼ M as required. It turns
out that the dimensionality of the coupling constants (such as g) is of great significance in
quantum field theory. In QED, the analogous quantity is the charge e, and this is dimen-
sionless in our units (α = e2/4π = 1/137, see appendix C). However, we saw in (1.31) that
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Fermi’s ‘four-fermion’ coupling constant G had dimensions ∼ M−2, while Yukawa’s ‘gN’
and ‘g′’ (see figure 1.4) were both dimensionless. In fact, as we shall explain in section 11.8,
the dimensionality of a theory’s coupling constant is an important guide as to whether the
infinities generally present in the theory can be controlled by renormalization (see chapter
10) or not: in particular, theories in which the coupling constant has negative mass dimen-
sions, such as the ‘four-fermion’ theory, are not renormalizable. Theories with dimensionless
coupling constants, such as QED, are generally renormalizable, though not invariably so.
Theories whose coupling constants have positive mass dimension, as in the ABC model,
are ‘super-renormalizable’, meaning (roughly) that they have fewer basic divergences than
ordinary renormalizable theories (see section 11.8).

In the present case, let us say that the mass of the decaying particle mC, ‘sets the scale’
for g, so that we write g = g̃mC and then

Γ =
g̃2

8π
|p| (6.66)

where g̃ is dimensionless. Equation (6.66) shows us nicely that Γ is simply proportional to
the energy release in the decay, as determined by |p| (one often says that Γ is determined
‘by the available phase space’). If mC is exactly equal to mA+mB, then |p| vanishes and so
does Γ. At the opposite extreme, if mA and mB are negligible compared to mC , we would
have

Γ =
g̃2

16π
mC. (6.67)

Equation (6.67) shows that, even if g̃2/16π is small (∼ 1/137 say) Γ can still be surprisingly
large if mC is itself large, as in W− → e− + ν̄e for example.

6.3.2 A + B → A + B scattering: the amplitudes

We now consider the two-particle → two-particle process

A + B → A+ B (6.68)

in which the initial 4-momenta are pA, pB and the final 4-momenta are p′A, p
′
B so that

pA + pB = p′A + p′B. Our main task is to calculate the matrix element 〈p′A, p′B|Ŝ|pA, pB〉 to
lowest non-trivial order in g. The result will be the derivation of our first ‘Feynman rules’
for amplitudes in perturbative quantum field theory.

The first term in the Ŝ-operator expansion (6.42) is ‘1’, which does not involve g at all.
Nevertheless, it is a useful exercise to evaluate and understand this contribution (which in
the present case does not vanish), namely

〈0|âA(p′A)âB(p′B)â†A(pA)â†B(pB)|0〉(16EAEBE
′
AE

′
B)

1/2. (6.69)

We shall have to evaluate many such vacuum expectation values (vev) of products of â†’s
and â’s. The general strategy is to commute the â†’s to the left, and the â’s to the right,
and then make use of the facts

〈0|â†i = âi|0〉 = 0 (6.70)

for any i = A,B,C. Thus, remembering that all ‘A’ operators commute with all ‘B’ ones,
the vev in (6.69) is equal to

〈0|âA(p′A)â†A(pA){(2π)3δ3(pB − p′B) + â†B(pB)âB(p
′
B)}|0〉

= 〈0|{(2π)3δ3(pA − p′A) + â†A(pA)âA(p
′
A)}(2π)3δ3(pB − p′B)|0〉

= (2π)3δ3(pA − p′A)(2π)
3δ3(pB − p′B). (6.71)
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FIGURE 6.1
The order g0 term in the perturbative expansion: the two particles do not interact.

The δ-functions enforce EA = E′A and EB = E′B so that (6.69) becomes

2EA(2π)
3δ3(pA − p′A)2EB(2π)

3δ3(pB − p′B) (6.72)

a result which just expresses the normalization of the states, and the fact that, with no
‘g’ entering, the particles have not interacted at all, but have continued on their sepa-
rate ways, quite unperturbed (pA = p′A, pB = p′B). This contribution can be represented
diagrammatically as figure 6.1.

Next, consider the term of order g, which we used in C → A + B. This is

−ig

∫
d4x 〈p′A, p′B|φ̂A(x)φ̂B(x)φ̂C(x)|pA, pB〉. (6.73)

We have to remember, now, that all the φ̂i operators are in the interaction picture and
are therefore represented by standard mode expansions involving the free creation and
annihilation operators â†i and âi, i.e. the same ones used in defining the initial and final
state vectors. It is then obvious that (6.73) must vanish, since no C-particle exists in either

the initial or final state, and 〈0|φ̂C|0〉 = 0.
So we move on to the term of order g2, which will provide the real meat of this chapter.

This term is

(−ig)2

2

∫ ∫
d4x1 d

4x2 〈0|âA(p′A)âB(p′B)

×T{φ̂A(x1)φ̂B(x1)φ̂C(x1)φ̂A(x2)φ̂B(x2)φ̂C(x2)}
×â†A(pA)â

†
B(pB)|0〉(16EAEBE

′
AE

′
B)

1/2. (6.74)

The vev here involves the product of ten operators, so it will pay us to pause and think
how such things may be efficiently evaluated.

Consider the case of just four operators

〈0|ÂB̂ĈD̂|0〉 (6.75)

where each of Â, B̂, Ĉ, D̂ is an âi, an â†i or a linear combination of these. Let Â have the

generic form Â = â+ â†. Then (using 〈0|a† = a|0〉 = 0)

〈0|ÂB̂ĈD̂|0〉 = 〈0|âB̂ĈD̂|0〉
= 〈0|[â, B̂ĈD̂]|0〉. (6.76)

Now it is an algebraic identity that

[â, B̂ĈD̂] = [â, B̂]ĈD̂ + B̂[â, Ĉ]D̂ + B̂Ĉ[â, D̂]. (6.77)
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FIGURE 6.2
C-quantum propagating (a) for t1 > t2 (from x2 to x1) and (b) t1 < t2 (from x1 to x2).

Hence
〈0|ÂB̂ĈD̂|0〉 = [â, B̂]〈0|ĈD̂|0〉+ [â, Ĉ]〈0|B̂D̂|0〉+ [â, D̂]〈0|B̂Ĉ|0〉, (6.78)

remembering that all the commutators—if non-vanishing—are just ordinary numbers (see
(6.46)). We can rewrite (6.78) in more suggestive form by noting that

[â, B̂] = 〈0|[â, B̂]|0〉 = 〈0|âB̂|0〉 = 〈0|ÂB̂|0〉. (6.79)

Thus the vev of a product of four operators is just the sum of the products of all the possible
pairwise ‘contractions’ (the name given to the vev of the product of two fields):

〈0|ÂB̂ĈD̂|0〉 = 〈0|ÂB̂|0〉〈0|ĈD̂|0〉+ 〈0|ÂĈ|0〉〈0|B̂D̂|0〉+ 〈0|ÂD̂|0〉〈0|B̂Ĉ|0〉. (6.80)

This result generalizes to the vev of the product of any number of operators; there is
also a similar result for the vev of time-ordered products of operators, which is known as
Wick’s theorem (Wick 1950), and is indispensable for a general discussion of quantum field
perturbation theory.

Consider then the application of (6.80), as generalized to ten operators, to the vev in

(6.74). The only kind of non-vanishing contractions are of the form 〈0|âiâ†i |0〉. Thus the
contractions of A-, B-, and C-type operators can be considered separately. As far as the
C-operators are concerned, then, we can immediately conclude that the only surviving
contraction is

〈0|T (φ̂C(x1)φ̂C(x2))|0〉. (6.81)

This quantity is, in fact, of fundamental importance: it is called the Feynman propagator
(in coordinate space) for the spin-0 C-particle. We shall derive the mathematical formula
for it in due course, but for the moment let us understand its physical significance. Each of
the φ̂C’s in (6.81) can create or destroy C-quanta, but for the vev to be non-zero anything
created in the ‘initial’ state must be destroyed in the ‘final’ one. Which of the times t1 and
t2 is initial or final is determined by the T -ordering symbol: for t1 > t2, a C-quantum is
created at x2 and destroyed at x1, while for t1 < t2 a C-quantum is created at x1 and
destroyed at x2. Thus the amplitude (6.81) may be represented pictorially as in figure 6.2,
where time increases to the right, and the vertical axis is a one-dimensional version of three-
dimensional space. It seems reasonable, indeed, to call this object the ‘propagator’, since it
clearly has to do with a quantum propagating between two space–time points.

We might now worry that this explicit time-ordering seems to introduce a Lorentz non-
invariant element into the calculation, ultimately threatening the Lorentz invariance of the
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Ŝ-operator (6.42). The reason that this is, in fact, not the case exposes an important prop-
erty of quantum field theory. If the two points x1 and x2 are separated by a time-like interval
(i.e. (x1 − x2)

2 > 0), then the time-ordering is Lorentz invariant; this is because no proper
Lorentz transformation can alter the time-ordering of time-like separated events (here, the
events are the creation/annihilation of particles/anti-particles at x1 and x2). By ‘proper’ is
meant a transformation that does not reverse the sense of time; the behaviour of the theory
under time-reversal is a different question altogether, discussed earlier in section 4.2.4. The
fact that time-ordering is invariant for time-like separated events is what guarantees that we
cannot influence our past, only our future. But what if the events are space-like separated,
(x1 − x2)

2 < 0? We know that the scalar fields φ̂i(x1) and φ̂i(x2) commute for equal times:
remarkably, one can show (problem 5.6(b)) that they also commute for (x1 − x2)

2 < 0;
so in this sector of x1 − x2 space the time-ordering symbol is irrelevant. Thus, contrary to
appearances, the T -product vev is Lorentz invariant. For the same reason, the Ŝ operator
of (6.42) is also Lorentz invariant: see, for example, Weinberg (1995, section 3.5).

The property
[φ̂i(x1), φ̂i(x2)] = 0 for (x1 − x2)

2 < 0 (6.82)

has an important physical interpretation. In quantum mechanics, if operators representing
physical observables commute with each other, then measurements of either observable can
be performed without interfering with each other; the observables are said to be ‘compatible’.
This is just what we would want for measurements done at two points which are space-
like separated—no signal with speed less than or equal to light can connect them, and so
we would expect them to be non-interfering. Condition (6.82) is often called a ‘causality’
condition.

More mathematically, the amplitude (6.81) is in fact a Green function for the KG oper-
ator (�+m2

C)! (see appendix G, and problem 6.3). That is to say,

(�x1 +m2
C)〈0|T (φ̂C(x1)φ̂C(x2))|0〉 = −iδ4(x1 − x2). (6.83)

Actually, problem 6.3 shows that (6.83) is true even when the 〈0| and |0〉 are removed,

i.e. the operator quantity T (φ̂C(x1)φ̂C(x2)) is itself a KG Green function. The work of
appendices G and H indicates the central importance of such Green functions in scattering
theory, so we need not be surprised to find such a thing appearing here.

Now let us figure out what are all the surviving terms in the vev in (6.74). As far as
contractions involving âA(p

′
A) are concerned, we have only three non-zero possibilities:

〈0|âA(p′A)â†A(pA)|0〉 〈0|âA(p′A)φ̂A(x1)|0〉 〈0|âA(p′A)φ̂A(x2)|0〉. (6.84)

There are similar possibilities for â†A(pA), âB(p
′
B), and â†B(pB). The upshot is that we have

only the following pairings to consider:

〈0|âA(p′A)â†A(pA)|0〉〈0|âB(p′B)â†B(pB)|0〉
×〈0|T (φ̂A(x1)φ̂A(x2))|0〉〈0|T (φ̂B(x1)φ̂B(x2))|0〉〈0|T (φ̂C(x1)φ̂C(x2))|0〉;

(6.85)

〈0|âA(p′A)â†A(pA)|0〉〈0|âB(p′B)φ̂B(x1)|0〉
×〈0|φ̂B(x2)â

†
B(pB)|0〉〈0|T (φ̂C(x1)φ̂C(x2))|0〉〈0|T (φ̂A(x1)φ̂A(x2))|0〉

+x1 ↔ x2; (6.86)

〈0|âB(p′B)â†B(pB)|0〉〈0|âA(p′A)φ̂A(x1)|0〉
×〈0|φ̂A(x2)â

†
A(pA)|0〉〈0|T (φ̂C(x1)φ̂C(x2))|0〉〈0|T (φ̂B(x1)φ̂B(x2))|0〉

+x1 ↔ x2; (6.87)
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〈0|âA(p′A)φ̂A(x1)|0〉〈0|φ̂A(x2)â
†
A(pA)|0〉〈0|âB(p′B)φ̂B(x1)|0〉

×〈0|φ̂B(x2)â
†
B(pB)|0〉〈0|T (φ̂C(x1)φ̂C(x2))|0〉

+x1 ↔ x2; (6.88)

〈0|âA(p′A)φ̂A(x1)|0〉〈0|φ̂A(x2)â
†
A(pA)|0〉〈0|âB(p′B)φ̂B(x2)|0〉

×〈0|φ̂B(x1)â
†
B(pB)|0〉〈0|T (φ̂C(x1)φ̂C(x2))|0〉

+x1 ↔ x2. (6.89)

We already know that quantities like 〈0|â(p′A)â†A(pA)|0〉 yield something proportional to
δ3(pA − p′A) and correspond to the initial A-particle going ‘straight through’. The other

factors in (6.86) – (6.89) which are new are quantities like 〈0|âA(p′A)φ̂A(x1)|0〉, which has
the value (problem 6.4)

〈0|âA(p′A)φ̂A(x1)|0〉 = 1√
2E′A

eip
′
A·x1 (6.90)

which is proportional (depending on the adopted normalization) to the wavefunction for an
outgoing A-particle with 4-momentum p′A.

We are now in a position to give a diagrammatic interpretation of all of (6.85)–(6.89). In
these diagrams, we shall not (as we did in figure 6.2) draw two separately time-ordered pieces
for each propagator. We shall not indicate the time-ordering at all and we shall understand
that both time-orderings are always included in each propagator line. Term (6.85) then has
the structure shown in figure 6.3(a); term (6.86) that shown in figure 6.3(b); term (6.87)
that in figure 6.3(c); term (6.88) that in figure 6.3(d); and term (6.89) that in figure 6.3(e).
We recognize in figure 6.3(e) the long-awaited Yukawa exchange process, which we shall
shortly analyse in full—but the formalism has yielded much else besides! We shall come
back to figures 6.3(a), (b), and (c) in section 6.3.5; for the moment we note that these
processes do not represent true interactions between the particles, since at least one goes
through unscattered in each case. So we shall concentrate on figures 6.3(d) and (e), and
derive the Feynman rules for them.

First, consider figure 6.3(e), corresponding to the contraction (6.89). When this is in-
serted into (6.74), the two terms in which x1 and x2 are interchanged give identical results
(interchanging x1 and x2 in the integral), so the contribution we are discussing is

(−ig)2
∫ ∫

d4x1d
4x2e

i(p′
A−pB)·x1ei(p

′
B−pA)·x2〈0|T (φ̂C(x1)φ̂C(x2))|0〉. (6.91)

We must now turn our attention, as promised, to the propagator of (6.81),

〈0|T (φ̂C(x1)φ̂C(x2))|0〉. Inserting the mode expansion (6.52) for each of φ̂C(x1) and φ̂C(x2),
and using the commutation relations (6.46) and the vacuum conditions (6.70) we find (prob-
lem 6.5)

〈0|T (φ̂C(x1)φ̂C(x2))|0〉 =

∫
d3k

(2π)32ωk
[θ(t1 − t2)e

−iωk(t1−t2)+ik·(x1−x2)

+θ(t2 − t1)e
−iωk(t2−t1)+ik·(x2−x1)] (6.92)

where ωk = (k2+m2
C)

1/2. This expression is very ‘uncovariant looking’, due to the presence
of the θ-functions with time arguments. But the earlier discussion, after (6.81), has assured
us that the left-hand side of (6.92) must be Lorentz invariant, and—by a clever trick—it is
possible to recast the right-hand side in manifestly invariant form. We introduce an integral
representation of the θ-function via

θ(t) = i

∫ ∞

−∞

dz

2π

e−izt

z + iε
(6.93)
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FIGURE 6.3
Graphical representation of (6.85)–(6.89): (a) (6.85); (b) (6.86); (c) (6.87); (d) (6.88); (e)
(6.89).

where ε is an infinitesimally small positive quantity (see appendix F). Multiplying (6.93)
by e−iωkt and changing z to z − ωk in the integral we have

θ(t)e−iωkt = i

∫ ∞

−∞

dz

2π

e−izt

z − (ωk − iε)
. (6.94)

Putting (6.94) into (6.92) then yields

〈0|T (φ̂C(x1)φ̂C(x2))|0〉 = i

∫
d3kdz

(2π)42ωk

{
e−iz(t1−t2)+ik·(x1−x2)

z − (ωk − iε)

+
eiz(t1−t2)−ik·(x1−x2)

z − (ωk − iε)

}
. (6.95)

The exponentials and the volume element demand a more symmetrical notation. Let us
write k0 = z so that (k0 = z,k) form the components of a 4-vector k1. Note very carefully,
however, that k0 is not (k2 +m2

C)
1/2! The variable k0 is unrestricted, whereas it is ωk that

equals (k2 +m2
C)

1/2. With this change of notation, (6.95) becomes

〈0|T (φ̂C(x1)φ̂C(x2))|0〉 =
∫

d4k

(2π)4
i

2ωk

{
e−ik·(x1−x2)

k0 − (ωk − iε)
+

eik·(x1−x2)

k0 − (ωk − iε)

}
. (6.96)

Changing k → −k (k0 → −k0, k → −k) in the second term in (6.96), we finally have

〈0|T (φ̂C(x1)φ̂C(x2))|0〉
=

∫
d4k

(2π)4
e−ik·(x1−x2)

i

2ωk

{
1

k0 − (ωk − iε)
− 1

k0 + ωk − iε

}

=

∫
d4k

(2π)4
e−ik·(x1−x2)

i

k20 − (ωk − iε)2
, (6.97)

1We know that the left-hand side of (6.95) is Lorentz invariant, and that (t1 − t2,x1 − x2) form the
components of a 4-vector. The quantities (k0 = z,k) must also form the components of a 4-vector, in order
for the exponentials in (6.95) to be invariant.
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FIGURE 6.4
Momentum–space Feynman diagram corresponding to the O(g2) amplitude of (6.100).

or

〈0|T (φ̂C(x1)φ̂C(x2))|0〉 =
∫

d4k

(2π)4
e−ik·(x1−x2)

i

k20 − k2 −m2
C + iε

(6.98)

where in the last step we have used ω2
k = k2 + m2

C and written ‘iε’ for ‘2iε’ since what
matters is just the sign of the small imaginary part (note that ωk is defined as the positive
square root). In this final form, the Lorentz invariance of the scalar propagator is indeed
manifest.

We shall have more to say about this propagator (Green function) in section 6.3.3. For
the moment we simply note two points: first, it is the Fourier transform of i/k2 −m2

C + iε,
as stated in appendix G, where k2 = k20 − k2; and second, it is a function of the coordinate
difference x1 −x2, as it has to be since we do not expect physics to depend on the choice of
origin. This second point gives us a clue as to how best to perform the x1 − x2 integral in
(6.91). Let us introduce the new variables x = x1−x2, X = (x1+x2)/2. Then (problem 6.6)
(6.91) reduces to

(−ig)2(2π)4δ4(pA + pB − p′A − p′B)
∫

d4x eiq·x
∫

d4k

(2π)4
e−ik·x i

k2 −m2
C + iε

(6.99)

= (−ig)2(2π)4δ4(pA + pB − p′A − p′B)
i

q2 −m2
C + iε

(6.100)

where q = pA − p′B = p′A − pB is the 4-momentum transfer carried by the exchanged C-
quantum in figure 6.4, and we have used the four-dimensional version of (E.26). We associate
this single expression, which includes the two coordinate space processes of figure 6.2, with
the single momentum–space Feynman diagram of figure 6.4. The arrows refer merely to the
flow of 4-momentum, which is conserved at each ‘vertex’ (i.e. meeting of three lines). Thus
although the arrow on the exchanged C-line is drawn as indicated, this has nothing to do
with any presumed order of emission/absorption of the exchanged quantum. It cannot do
so, after all, since in this diagram the states all have definite 4-momentum and hence are
totally delocalized in space–time; equivalently, we recall from (6.91) that the amplitude in
fact involves integrals over all space–time.
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FIGURE 6.5
Momentum–space Feynman diagram corresponding to the O(g2) amplitude of (6.101).

A similar analysis (problem 6.7) shows that the contribution of the contractions (6.88)
to the S-matrix element (6.74) is

(−ig)2(2π)4δ4(pA + pB − p′A − p′B)
i

(pA + pB)2 −m2
C + iε

(6.101)

which is represented by the momentum–space Feynman diagram of figure 6.5.
At this point we may start to write down the Feynman rules for the ABC theory,

which enable us to associate a precise mathematical expression for an amplitude with a
Feynman diagram such as figure 6.4 or figure 6.5. It is clear that we will always have a
factor (2π)4δ4(pA + pB − p′A − p′B) for all ‘connected’ diagrams, following from the flow of
the conserved 4-momentum through the diagrams. It is conventional to extract this factor,
and to define the invariant amplitude Mfi via

Sfi = δfi + i(2π)4δ4(pf − pi)Mfi (6.102)

in general (cf (6.57)). The rules reconstruct the invariant amplitude iMfi corresponding to
a given diagram, and for the present case they are:

(i) At each vertex, a factor −ig.

(ii) For each internal line, a factor

i

q2i −m2
i + iε

(6.103)

where i = A,B, or C and qi is the 4-momentum carried by that line. The factor
(6.103) is the Feynman propagator in momentum space, for the scalar particle ‘i’.

Of course, it is no big deal to give a set of rules which will just reconstruct (6.100) and
(6.101). The real power of the ‘rules’ is that they work for all diagrams we can draw by
joining together vertices and propagators (except that we have not yet explained what to do
if more than one particle appears ‘internally’ between two vertices, as in figures 6.3(a)–(c):
see section 6.3.5).

6.3.3 A + B → A + B scattering: the Yukawa exchange mechanism, s
and u channel processes

Referring back to section 1.3.3, equation (1.28), we see that the amplitude for the exchange
process of figure 6.4 indeed has the form suggested there, namely ∼ g2/(q2 − m2

C) if C is
exchanged. We have seen how, in the static limit, this may be interpreted as a Yukawa inter-
action of range �/mCc between the particles A and B, treated in the Born approximation.
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Expression (6.100), then, provides us with the correct relativistic formula for this Yukawa
mechanism.

There is more to be said about this fundamental amplitude (6.100), which is essentially
the C propagator in momentum space. While it is always true that p2i = m2

i for a free
particle of 4-momentum pi and rest mass mi, it is not the case that q

2 = m2
C in (6.100). We

emphasized after (6.95) that the variable k0 introduced there was not equal to (k2+m2
C)

1/2,
and the result of the step (6.99) → (6.100) was to replace k0 by q0 and k by q, so that
q0 �= (q2 +m2

C)
1/2, i.e. q2 = q20 − q2 �= m2

C. So the exchanged quantum in figure 6.4 does
not satisfy the ‘mass-shell condition’ p2i = m2

i ; it is said to be ‘off-mass shell’ or ‘virtual’
(see also problem 6.8). It is quite a different entity from a free quantum. Indeed, as we saw
in more elementary physical terms in section 1.3.2, it has a fleeting existence, as sanctioned
by the uncertainty relation.

This ’shell’ terminology requires a word of explanation. We may regard the condition
q20 − q2 = m2

C as defining a surface in four-dimensional momentum space. Since this is hard
to visualize, let us suppose that we have just two spatial dimensions, so that the condition
becomes q20 − q2x − q2y = m2

C. This is a hyperboloid in (q0, qx, qy) space. If we take q0 to be
the vertical axis, the surface will extend above the point q0 = mC for a physical particle of
positive energy. It is this bowl-like surface which is the ‘shell’.

We add one more comment about (6.103). In the language of complex variable theory
introduced in Appendix F, the propagator has a singularity (it goes to infinity) at the point
q2i = m2

i − iε, which is a simple pole. As ε → 0, this means that it has a pole at the on-shell
point q2i = m2

i . We may, indeed, define the (squared) mass of a particle as the position of
the pole in the corresponding propagator.

It is convenient, at this point, to introduce some kinematic variables which will appear
often in following chapters. These are the ‘Mandelstam variables’ (Mandelstam 1958, 1959)

s = (pA + pB)
2 t = (pA − p′A)

2 u = (pA − p′B)
2. (6.104)

They are clearly relativistically invariant. In terms of these variables the amplitude (6.100)
is essentially ∼ 1/(u−m2

C+iε), and the amplitude (6.101) is ∼ 1/(s−m2
C + iε). The first is

said to be a ‘u-channel process’, the second an ‘s-channel process’. Amplitudes of the form
(t−m2)−1 or (u−m2)−1 are basically one-quantum exchange (i.e. ‘force’) processes, while
those of the form (s−m2

C)
−1 have a rather different interpretation, as we now discuss.

Let us first ask: can s = (pA + pB)
2 ever equal m2

C in (6.101)? Since s is invariant, we
can evaluate it in any frame we like, for example the centre-of-momentum (CM) frame in
which

(pA + pB)
2 = (EA + EB)

2 (6.105)

with EA = (m2
A + p2)1/2, EB = (m2

B + p2)1/2. It is then clear that if mC < mA +mB the
condition (pA + pB)

2 = m2
C can never be satisfied, and the internal quantum in figure 6.5 is

always virtual (note that pA+pB is the 4-momentum of the C-quantum). Depending on the
details of the theory with which we are dealing, such an s-channel process can have different
interpretations. In QED, for example, in the process e+ + e− → e+ + e− we could have a
virtual γ s-channel process as shown in figure 6.6. This would be called an ‘annihilation
process’ for obvious reasons. In the process γ + e− → γ + e−, however, we could have
figure 6.7 which would be interpreted as an absorption and re-emission process (i.e. of a
photon).

However, if mC > mA + mB, then we can indeed satisfy (pA + pB)
2 = m2

C, and so
(remembering that ε is infinitesimal) we seem to have an infinite result when s (the square
of the CM energy) hits the value m2

C. In fact, this is not the case. If mC > mA + mB,
the C-particle is unstable against decay to A+B, as we saw in section 6.3.1. The s-channel
process must then be interpreted as the formation of a resonance, i.e. of the transitory
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FIGURE 6.6
O(e2) contribution to e+e− → e+e− via annihilation to (and re-emission from) a virtual γ
state.

and decaying state consisting of the single C-particle. Such a process would be described
non-relativistically by a Breit–Wigner amplitude of the form

M ∝ 1/(E − ER + iΓ/2) (6.106)

which produces a peak in |M|2 centred at E = ER and full width Γ at half-height; Γ is, in
fact, precisely the width calculated in section 6.3.1. The relativistic generalization of (6.106)
is

M ∝ 1

s−M2 + iMΓ
(6.107)

where M is the mass of the unstable particle. Thus in the present case the prescription for
avoiding the infinity in our amplitude is to replace the infinitesimal ‘iε’ in (6.101) by the
finite quantity imCΓ, with Γ as calculated in section 6.3.1. We shall see examples of such
s-channel resonances in section 9.5.

6.3.4 A + B → A + B scattering: the differential cross section

We complete this exercise in the ‘ABC’ theory by showing how to calculate the cross sec-
tion for A+B→ A+B scattering in terms of the invariant amplitude Mfi of (6.102). The
discussion will closely parallel the calculation of the decay rate Γ in section 6.3.1.

As in (6.56), the transition rate per unit volume, in this case, is

Ṗfi = (2π)4δ4(pA + pB − p′A − p′B)|Mfi|2. (6.108)

FIGURE 6.7
O(e2) contribution to γe− → γe− via absorption to (and re-emission from) a virtual e−

state.
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In order to obtain a quantity which may be compared from experiment to experiment,
we must remove the dependence of the transition rate on the incident flux of particles and
on the number of target particles per unit volume. Now the flux of beam particles (‘A’
ones, let us say) incident on a stationary target is just the number of particles per unit area
reaching the target in unit time which, with our normalization of ‘2E particles per unit
volume’, is just

|v|2EA (6.109)

where v is the velocity of the incident A in the rest frame of the target B. The number of
target particles per unit volume is 2EB (= 2mB for B at rest, of course).

We must also include the ‘density of final states’ factors, as in (6.59). Putting all this
together, the total cross section σ is given in terms of the differential cross section dσ by

σ =

∫
dσ =

1

2EB2EA|v| (2π)
4

∫
δ4(pA + pB − p′A − p′B)

×|Mfi|2 d3p′A
(2π)32E′A

d3p′B
(2π)32E′B

≡ 1

4EAEB|v|
∫

|Mfi|2dLips(s; p′A, p′B), (6.110)

where we have introduced the Lorentz invariant phase space dLips(s; p′A, p
′
B) defined by

dLips(s; p′A, p
′
B) =

1

(4π)2
δ4(pA + pB − p′A − p′B)

d3p′A
E′A

d3p′B
E′B

. (6.111)

We can write the flux factor for collinear collisions in invariant form using the relation
(easily verified in a particular frame (problem 6.9))

EAEB|v| = [(pA · pB)2 −m2
Am

2
B]

1/2. (6.112)

Everything in (6.110) is now written in invariant form.
It is a useful exercise to evaluate

∫
dσ in a given frame, and the simplest one is the

centre-of-momentum (CM) frame defined by

pA + pB = p′A + p′B = 0. (6.113)

However, before specializing to this frame, it is convenient to simplify our expression for
dLips. Using the 3-momentum part of the δ-function in (6.110), we can eliminate the integral
over d3p′B: ∫

d3p′B
E′B

δ4(pA + pB − p′A − p′B) =
1

E′B
δ(EA + EB − E′A − E′B), (6.114)

remembering also that now p′B has to be replaced by pA+pB−p′A in Mfi. On the right-hand
side of (6.114), p′B and E′B are no longer independent variables but are determined by the
conditions

p′B = pA + pB − p′A E′B = (m2
B + p′2B )

1/2. (6.115)

Next, convert d3p′A to angular variables

d3p′A = p′2A d|p′A| dΩ. (6.116)

The energy E′A is given by

E′A = (m2
A + p′2A)

1/2 (6.117)
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so that
E′A dE′A = |p′A| d|p′A|. (6.118)

With all these changes we arrive at the result (valid in any frame)

dLips(s; p′A, p
′
B) =

1

(4π)2
|p′A|dE′A

E′B
dΩ δ(EA + EB − E′A − E′B). (6.119)

We now specialize to the CM frame for which pA = p = −pB, p
′
A = p′ = −p′B, and

E′A = (m2
A + p′2)1/2 E′B = (m2

B + p′2)1/2 (6.120)

so that
E′A dE′A = |p′| d|p′| = E′B dE′B. (6.121)

Introduce the variable W ′ = E′A +E′B (note that W ′ is only constrained to equal the total
energy W = EA + EB after the integral over the energy-conserving δ-function has been
performed). Then (as in (6.62))

dW ′ = dE′A + dE′B =
W ′|p′| d|p′|

E′AE
′
B

=
W ′

E′B
dE′A (6.122)

where we have used (6.121) in each of the last two steps. Thus the factor

|p′A|
dE′A
E′B

δ(EA + EB − E′A − E′B) (6.123)

becomes

|p′|dW
′

W ′ δ(W −W ′) (6.124)

which reduces to
|p|/W

after integrating over W ′, since the energy-conservation relation forces |p′| = |p|. We arrive
at the important result

dLips(s; p′A, p
′
B) =

1

(4π)2
|p|
W

dΩ (6.125)

for the two-body phase space in the CM frame.
The last piece in the puzzle is the evaluation of the flux factor (6.112) in the CM frame.

In the CM we have

pA · pB = (EA,p) · (EB,−p) (6.126)

= EAEB + p2 (6.127)

and a straightforward calculation shows that

(pA · pB)2 −m2
Am

2
B = p2W 2.

Hence we finally have

σ =

∫
dσ =

1

4|p|W
1

(4π)2
|p|
W

∫
|Mfi|2 dΩ (6.128)

and the CM differential cross section is

dσ

dΩ

∣∣∣∣
CM

=
1

(8πW )2
|Mfi|2. (6.129)
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FIGURE 6.8
O(g4) contribution to the process A + B → A+ B, in which a virtual transition
C → A+ B → C occurs in the C propagator.

6.3.5 A + B → A + B scattering: loose ends

We must now return to the amplitudes represented by figures 6.3(a)–(c), which we set
aside earlier. Consider first figure 6.3(b). Here the A-particle has continued through without
interacting, while the B-particle has made a virtual transition to the ‘A + C’ state, and then
this state has reverted to the original B-state. So this is in the nature of a correction to the
‘no-scattering’ piece shown in figure 6.1, and does not contribute to Mfi. However, such a
virtual transition B → A + C → B does represent a modification of the properties of the
original single B state, due to its interactions with other fields as specified in H ′

I. We can
easily imagine how, at order g4, an amplitude will occur in which such a virtual process
is inserted into the C propagator in figure 6.4 so as to arrive at figure 6.8, from which it
is plausible that such emission and reabsorption processes by the same particle effectively
modify the propagator for this particle. This, in turn, suggests that part, at least, of their
effect will be to modify the mass of the affected particle, so as to change it from the original
value specified in the Lagrangian. We may think of this physically as being associated, in
some way, with a particle’s carrying with it a ‘cloud’ of virtual particles, with which it
is continually interacting; this will affect its mass, much as the mass of an electron in a
solid becomes an ‘effective’ mass due to the various interactions experienced by the electron
inside the solid.

We shall postpone the evaluation of amplitudes such as those represented by fig-
ures 6.3(b) and (c) to chapter 10. However, we note here just one feature: 4-momentum
conservation applied at each vertex in figure 6.3(b) does not determine the individual 4-
momenta of the intermediate A and C particles, only the sum of their 4-momenta, which
is equal to pB (and this is equal to p′B also, so indeed no scattering has occurred). It is
plausible that, if an internal 4-momentum in a diagram is undetermined in terms of the
external (fixed) 4-momenta of the physical process, then that undetermined 4-momentum
should be integrated over. This is the case, as can be verified straightforwardly by evaluating
the amplitude (6.86), for example, as we evaluated (6.89); a similar calculation will be gone
through in detail in chapter 10, section 10.1.1. The corresponding Feynman rule is
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FIGURE 6.9
O(g4) disconnected diagrams in A + B → A+ B.

(iii) For each internal 4-momentum k which is not fixed by 4-momentum conservation,
carry out the integration

∫
d4k/(2π)4. One such integration with respect to an

internal 4-momentum occurs for each closed loop.

If we apply this new rule to figure 6.3(b), we find that we need to evaluate the integral∫
d4k

(2π)4
i

(k2 −m2
A)

i

((pB − k)2 −m2
C)

(6.130)

which, by simple counting of powers of k in numerator and denominator, is logarithmically
divergent. Thus we learn that, almost before we have started quantum field theory in earnest,
we seem to have run into a serious problem, which is going to affect all higher-order processes
containing loops. The procedure whereby these infinities are tamed is called renormalization,
and we shall return to it in chapter 10.

Finally, what about figure 6.3(a)? In this case nothing at all has occurred to either of the
scattering particles, and instead a virtual trio of A + B + C has appeared from the vacuum,
and then disappeared back again. Such processes are called, obviously enough, vacuum
diagrams. This particular one is in fact only (another) correction to figure 6.1, and it makes
no contribution to Mfi. But as with figure 6.8, at O(g4) we can imagine such a vacuum
process appearing ‘alongside’ figure 6.4 or figure 6.5, as in figures 6.9(a) and (b). These are
called ‘disconnected diagrams’ and—since in them A and B have certainly interacted—they
will contribute to Mfi (note that they are in this respect quite different from the ‘straight
through’ diagrams of figures 6.3(b) and (c)). However, it turns out, rather remarkably, that
their effect is exactly compensated by another effect we have glossed over—namely the
fact that the vacuum |0〉 we have used in our S-matrix elements is plainly the unperturbed
vacuum (or ground state), whereas surely the introduction of interactions will perturb it.
A careful analysis of this (Peskin and Schroeder 1995, section 7.2) shows that Mfi is to be
calculated from only the connected Feynman diagrams.

In this chapter we have seen how the Feynman rules for scattering and decay amplitudes
in a simple scalar theory are derived, and also how cross sections and decay rates are
calculated. A Yukawa (u-channel) exchange process has been found, in its covariant form,
and the analogous s-channel process, together with a hint of the complications which arise
when loops are considered, at higher order in g. Unfortunately, however, none of this applies
directly to any real physical process, since we do not know of any physical ‘scalar ABC’
interaction. Rather, the interactions in the Standard Model are all gauge interactions similar
to electrodynamics (with the exception of the Higgs sector, which has both cubic and quartic
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scalar interactions). The mediating quanta of these gauge interactions have spin-1, not zero;
furthermore, the matter fields (again apart from the Higgs field) have spin- 12 . It is time to
begin discussing the complications of spin and the particular form of dynamics associated
with the ‘gauge principle’.

Problems

6.1 Show that, for a quantum field f̂(t) (suppressing the space coordinates),∫ ∞

−∞
dt1

∫ t1

−∞
dt2 f̂(t1)f̂(t2) =

1
2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 T (f̂(t1)f̂(t2))

where

T (f̂(t1)f̂(t2)) = f̂(t1)f̂(t2) for t1 > t2

= f̂(t2)f̂(t1) for t2 > t1.

6.2 Verify equation (6.65).

6.3 Let φ̂(x, t) be a real scalar KG field in one space dimension, satisfying

(�x +m2)φ̂(x, t) ≡
(

∂2

∂t2
− ∂2

∂x2 +m2

)
φ̂(x, t) = 0.

(i) Explain why

T (φ̂(x1, t1)φ̂(x2, t2)) = θ(t1 − t2)φ̂(x1, t1)φ̂(x2, t2)

+θ(t2 − t1)φ̂(x2, t2)φ̂(x1, t1)

(see equation (E.49) for a definition of the θ-function).

(ii) Using equation (E.48), show that

d

dx
θ(x− a) = δ(x− a).

(iii) Using the result of (ii) with appropriate changes of variable, and equation (5.118),
show that

∂

∂t1
{T (φ̂(x1, t1)φ̂(x2, t2))}

= θ(t1 − t2)
˙̂
φ(x1, t1)φ̂(x2, t2) + θ(t2 − t1)φ̂(x2, t2)

˙̂
φ(x1, t1).

(iv) Using (5.117) and (5.122) show that

∂2

∂t1
2 {T (φ̂(x1, t1)φ̂(x2, t2))} = −iδ(x1 − x2)δ(t1 − t2) + T (

¨̂
φ(x1, t1)φ̂(x2, t2))

and hence show that(
∂2

∂t1
2 − ∂2

∂x1
2 +m2

)
T (φ̂(x1, t1)φ̂(x2, t2)) = −iδ(x1 − x2)δ(t1 − t2).
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This shows that T (φ̂(x1, t1)φ̂(x2, t2)) is a Green function (see appendix G, equa-
tion (G.25)—the i is included here conventionally) for the KG operator

∂2

∂t1
2 − ∂2

∂x1
2 +m2.

The four-dimensional generalization is immediate.

6.4 Verify (6.90).

6.5 Verify (6.92).

6.6 Verify (6.99) and (6.100).

6.7 Show that the contribution of the contractions (6.88) to the S-matrix element (6.74) is
given by (6.101).

6.8 Consider the case of equal masses mA = mB = mC. Evaluate u of (6.104) in the CM
frame (compare section 1.3.6), and show that u ≤ 0, so that u can never equal m2

C in
(6.100). (This result is generally true for such single particle ‘exchange’ processes.)

6.9 Verify (6.112).
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Quantum Field Theory III: Complex Scalar Fields,
Dirac and Maxwell Fields; Introduction of
Electromagnetic Interactions

In the previous two chapters we have introduced the formalism of relativistic quantum
field theory for the case of free real scalar fields obeying the Klein–Gordon (KG) equation
of section 3.1, extended it to describe interactions between such quantum fields and shown
how the Feynman rules for a simple Yukawa-like theory are derived. It is now time to return
to the unfortunately rather more complicated real world of quarks and leptons interacting
via gauge fields—in particular electromagnetism. For this, several generalizations of the
formalism of chapter 5 are necessary.

First, a glance back at chapter 2 will remind the reader that the electromagnetic inter-
action has everything to do with the phase of wavefunctions, and hence presumably of their
quantum field generalizations. Fields which are real must be electromagnetically neutral.
Indeed, as noted very briefly in section 5.3, the quanta of a real scalar field are their own
anti-particles; for a given mass, there is only one type of particle being created or destroyed.
However, physical particles and anti-particles have identical masses (e.g. e− and e+), and
it is actually a deep result of quantum field theory that this is so (see section 4.2.5 and
the end of section 7.1). In this case for a given mass m, there will have to be two distinct
field degrees of freedom, one of which corresponds somehow to the ‘particle’ and the other
to the ‘anti-particle’. This suggests that we will need a complex field if we want to distin-
guish particle from anti-particle, even in the absence of electromagnetism (for example, the
(K0, K̄0) pair). Such a distinction will have to be made in terms of some conserved quantum
number (or numbers), having opposite values for ‘particle’ and ‘anti-particle’. This con-
served quantum number must be associated with some symmetry. Now, referring again to
chapter 2, we recall that electromagnetism is associated with invariance under local U(1)
phase transformations. Even in the absence of electromagnetism, however, a theory with
complex fields can exhibit a global U(1) phase invariance. As we shall show in section 7.1,
such a symmetry indeed leads to the existence of a conserved quantum number, in terms of
which we can distinguish the particle and anti-particle parts of a complex scalar field.

In section 7.2 we generalize the complex scalar field to the complex spinor (Dirac)
field, suitable for charged spin-12 particles. Again we find an analogous conserved quantum
number, associated with a global U(1) phase invariance of the Lagrangian, which serves to
distinguish particle from anti-particle. Central to the satisfactory physical interpretation of
the Dirac field will be the requirement that it must be quantized with anti-commutation
relations—the famous ‘spin-statistics’ connection.

The electromagnetic field must then be quantized, and section 7.3.2 describes the con-
siderable difficulties this poses. With all this in place, we can easily introduce (section 7.4)
electromagnetic interactions via the ‘gauge principle’ of chapter 2. The resulting Lagrangians
and Feynman rules will be applied to simple processes in the following chapter. In the final
section of this chapter, we return to the discrete symmetries of chapter 4, and extend them
from the single particle theory to quantum field theory.
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7.1 The complex scalar field: global U(1) phase invariance,
particles and anti-particles

Consider a Lagrangian for two free fields φ̂1 and φ̂2 having the same mass M :

L̂ = 1
2∂μφ̂1∂

μφ̂1 − 1
2M

2φ̂2
1 +

1
2∂μφ̂2∂

μφ̂2 − 1
2M

2φ̂2
2. (7.1)

We shall see how this is appropriate to a ‘particle–anti-particle’ situation.
In general ‘particle’ and ‘anti-particle’ are distinguished by having opposite values of one

or more conserved additive quantum numbers. Since these quantum numbers are conserved,
the operators corresponding to them commute with the Hamiltonian and are constant in
time (in the Heisenberg formulation—see equation (5.59)); such operators are called sym-
metry operators and will be increasingly important in later chapters. For the present we
consider the simplest case in which ‘particle’ and ‘anti-particle’ are distinguished by having
opposite eigenvalues of just one symmetry operator. This situation is already realized in the
simple Lagrangian of (7.1). The symmetry involved is just this: L̂ of (7.1) is left unchanged

(is invariant) if φ̂1 and φ̂2 are replaced by φ̂′1 and φ̂′2, where (cf (2.64))

φ̂′1 = (cosα)φ̂1 − (sinα)φ̂2

φ̂′2 = (sinα)φ̂1 + (cosα)φ̂2

(7.2)

where α is a real parameter. This is like a rotation of coordinates about the z-axis of
ordinary space, but of course it mixes field degrees of freedom, not spatial coordinates. The
symmetry transformation of (7.2) is sometimes called an ‘O(2) transformation’, referring to
the two-dimensional rotation group O(2). We can easily check the invariance of L̂, i.e.

L̂(φ̂′1, φ̂′2) = L̂(φ̂1, φ̂2); (7.3)

see problem 7.1.
Now let us see what is the conservation law associated with this symmetry. It is sim-

pler (and sufficient) to consider an infinitesimal rotation characterized by the infinitesimal
parameter ε, for which cos ε ≈ 1 and sin ε ≈ ε so that (7.2) becomes

φ̂′1 = φ̂1 − εφ̂2

φ̂′2 = φ̂2 + εφ̂1

(7.4)

and we can define changes δφ̂i by

δφ̂1 ≡ φ̂′1 − φ̂1 = −εφ̂2

δφ̂2 ≡ φ̂′2 − φ̂2 = +εφ̂1.
(7.5)

Under this transformation L̂ is invariant and so δL̂ = 0. But L̂ is an explicit function of φ̂1,
φ̂2, ∂μφ̂1, and ∂μφ̂2. Thus we can write

0 = δL̂ =
∂L̂

∂(∂μφ̂1)
δ(∂μφ̂1) +

∂L̂
∂(∂μφ̂2)

δ(∂μφ̂2) +
∂L̂
∂φ̂1

δφ̂1 +
∂L̂
∂φ̂2

δφ̂2. (7.6)

This is a bit like the manipulations leading up to the derivation of the Euler–Lagrange
equations in section 5.2.4, but now the changes δφ̂i (i ≡ 1, 2) have nothing to do with
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space–time trajectories—they mix up the two fields. However, we can use the equations of
motion for φ̂1 and φ̂2 to rewrite δL̂ as

0 =
∂L̂

∂(∂μφ̂1)
δ(∂μφ̂1) +

∂L̂
∂(∂μφ̂2)

δ(∂μφ̂2)

+

[
∂μ

(
∂L̂

∂(∂μφ̂1)

)]
δφ̂1 +

[
∂μ

(
∂L̂

∂(∂μφ̂2)

)]
δφ̂2. (7.7)

Since δ(∂μφ̂i) = ∂μ(δφ̂i), the right-hand side of (7.7) is just a total divergence, and (7.7)
becomes

0 = ∂μ

[
∂L̂

∂(∂μφ̂1)
δφ̂1 +

∂L̂
∂(∂μφ̂2)

δφ̂2

]
. (7.8)

These formal steps are actually perfectly general, and will apply whenever a certain La-
grangian depending on two fields φ̂1 and φ̂2 is invariant under φ̂i → φ̂i+ δφ̂i. In the present
case, with δφ̂i given by (7.5), we have

0 = ∂μ

[
− ∂L̂
∂(∂μφ̂1)

εφ̂2 +
∂L̂

∂(∂μφ̂2)
εφ̂1

]

= ε∂μ[(∂
μφ̂2)φ̂1 − (∂μφ̂1)φ̂2] (7.9)

where the free-field Lagrangian (7.1) has been used in the second step. Since ε is arbitrary,
we have proved that the 4-vector operator

N̂μ
φ = φ̂1∂

μφ̂2 − φ̂2∂
μφ̂1 (7.10)

is conserved:
∂μN̂

μ
φ = 0. (7.11)

Such conserved 4-vector operators are called symmetry currents, often denoted generically
by Ĵμ. There is a general theorem (due to Noether (1918) in the classical field case) to the
effect that if a Lagrangian is invariant under a continuous transformation, then there will
be an associated symmetry current. We shall consider Noether’s theorem again in volume
2.

What does all this have to do with symmetry operators? Written out in full, (7.11) is

∂N̂0
φ/∂t+∇ · N̂φ = 0. (7.12)

Integrating this equation over all space, we obtain

d

dt

∫
V→∞

N̂0
φ d3x+

∫
S→∞

N̂φ · dS = 0 (7.13)

where we have used the divergence theorem in the second term. Normally the fields may be
assumed to die off sufficiently fast at infinity that the surface integral vanishes (by using
wave packets, for example), and we can therefore deduce that the quantity N̂φ is constant
in time, where

N̂φ =

∫
N̂0

φ d3x (7.14)

that is, the volume integral of the μ = 0 component of a symmetry current is a symmetry
operator.
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In order to see how N̂φ serves to distinguish ‘particle’ from ‘anti-particle’ in the simple

example we are considering, it turns out to be convenient to regard φ̂1 and φ̂2 as components
of a single complex field

φ̂ = 1√
2
(φ̂1 − iφ̂2)

φ̂† = 1√
2
(φ̂1 + iφ̂2).

(7.15)

The plane-wave expansions of the form (5.155) for φ̂1 and φ̂2 imply that φ̂ has the expansion

φ̂ =

∫
d3k

(2π)3
√
2ω

[â(k)e−ik·x + b̂†(k)eik·x] (7.16)

where
â(k) = 1√

2
(â1 − iâ2)

b̂†(k) = 1√
2
(â†1 − iâ†2)

(7.17)

and ω = (M2 + k2)1/2. The operators â, â†, b̂, b̂† obey the commutation relations

[â(k), â†(k′)] = (2π)3δ3(k − k′)

[b̂(k), b̂†(k′)] = (2π)3δ3(k − k′)
(7.18)

with all others vanishing; this follows from the commutation relations

[âi(k), â
†
j(k

′)] = δij(2π)
3δ(k − k′) etc (7.19)

for the âi operators. Note that two distinct mode operators, â and b̂, are appearing in the
expansion (7.16) of the complex field.

In terms of this complex φ̂ the Lagrangian of (7.1) becomes

L̂ = ∂μφ̂
†∂μφ̂−M2φ̂†φ̂ (7.20)

and the Hamiltonian is (dropping the zero-point energy, i.e. normally ordering)

Ĥ =

∫
d3k

(2π)3
[â†(k)â(k) + b̂†(k)b̂(k)]ω. (7.21)

The O(2) transformation (7.2) becomes a simple phase change

φ̂′ = e−iαφ̂ (7.22)

which (see comment (iii) of section 2.6) is called a global U(1) phase transformation; plainly
the Lagrangian (7.20) is invariant under (7.22). The associated symmetry current N̂μ

φ be-
comes

N̂μ
φ = i(φ̂†∂μφ̂− φ̂∂μφ̂†) (7.23)

and the symmetry operator N̂φ is (see problem 7.2)

N̂φ =

∫
d3k

(2π)3
[â†(k)â(k)− b̂†(k)b̂(k)]. (7.24)

Note that N̂φ has been normally ordered in anticipation of our later vacuum definition

(7.30), so that N̂φ|0〉 = 0.
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We now observe that the Hamiltonian (7.21) involves the sum of the number operators
for ‘a’ quanta and ‘b’ quanta, whereas N̂φ involves the difference of these number operators.

Put differently, N̂φ counts +1 for each particle of type ‘a’ and −1 for each of type ‘b’. This

strongly suggests the interpretation that the b’s are the anti-particles of the a’s: N̂φ is the
conserved symmetry operator whose eigenvalues serve to distinguish them. For a general
state, the eigenvalue of N̂φ is the number of a’s minus the number of anti-a’s and it is a
constant of the motion, as is the total energy, which is the sum of the a energies and anti-a
energies.

We have here the simplest form of the particle–anti-particle distinction: only one additive
conserved quantity is involved. A more complicated example would be the (K+,K−) pair,
which have opposite values of strangeness and of electric charge. Of course, in our simple
Lagrangian (7.20) the electromagnetic interaction is absent, and so no electric charge can

be defined (we shall remedy this later); the complex field φ̂ would be suitable (in respect of
strangeness) for describing the (K0, K̄0) pair.

The symmetry operator N̂φ has a number of further important properties. First of all,

we have shown that dN̂φ/dt = 0 from the general (Noether) argument, but we ought also
to check that

[N̂φ, Ĥ] = 0 (7.25)

as is required for consistency, and expected for a symmetry operator. This is indeed true
(see problem 7.2(a)). We can also show

[N̂φ, φ̂] = −φ̂

[N̂φ, φ̂
†] = φ̂†

(7.26)

and, by expansion of the exponential (problem 7.2(b)), that

Û(α)φ̂Û−1(α) = e−iαφ̂ = φ̂′ (7.27)

with
Û(α) = eiαN̂φ . (7.28)

This shows that the unitary operator Û(α) effects finite U(1) rotations.
Consider now a state |Nφ〉 which is an eigenstate of N̂φ with eigenvalue Nφ. What is the

eigenvalue of N̂φ for the state φ̂|Nφ〉? It is easy to show, using (7.26), that

N̂φφ̂|Nφ〉 = (Nφ − 1)φ̂|Nφ〉 (7.29)

so the application of φ̂ to a state lowers its N̂φ eigenvalue by 1. This is consistent with

our interpretation that the φ̂ field destroys particles ‘a’ via the â piece in (7.16). (This ‘φ̂

destroys particles’ convention is the reason for choosing φ̂ = (φ̂1 − iφ̂2)/
√
2 in (7.15), which

in turn led to the minus sign in the relation (7.26) and to the earlier eigenvalue Nφ−1.) That

φ̂ lowers the N̂φ eigenvalue by 1 is also consistent with the interpretation that the same field

φ̂ creates an anti-particle via the b̂† piece in (7.16). In the same way, by considering φ̂†|Nφ〉,
one easily verifies that φ̂† increases Nφ by 1, by creating a particle via â† or destroying an

anti-particle via b̂. The vacuum state (no particles and no anti-particles present) is defined
by

â(k)|0〉 = b̂(k)|0〉 = 0 for all k. (7.30)

As anticipated, therefore, the complex field φ̂ contains two distinct kinds of mode operator,
one having to do with particles (with positive Nφ), the other with anti-particles (negative
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x x

t t

x1
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t2 t1 t1 t2
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x1

φ φ̄

(a) (b)

FIGURE 7.1
(a) For t1 > t2, a φ particle (Nφ = 1) propagates from x2 to x1; (b) for t2 > t1 an anti-φ
particle (Nφ = −1) propagates from x1 to x2.

Nφ). Which we choose to call ‘particle’ and which ‘anti-particle’ is of course purely a matter
of convention: after all, the negatively charged electron is always regarded as the ‘particle’,
while in the case of the pions we call the positively charged π+ the particle.

Feynman rules for theories involving complex scalar fields may be derived by a straight-
forward extension of the procedure explained in chapter 6. It is, however, worth pausing
over the propagator. The only non-vanishing vev of the time-ordered product of two φ̂ fields
is 〈0|T (φ̂(x1)φ̂

†(x2))|0〉 (the vev’s of T (φ̂φ̂) and T (φ̂†φ̂†) vanish with the vacuum defined
as in (7.30)). In section 6.3.2 we gave a pictorial interpretation of the propagator for a real
scalar field; let us now consider the analogous pictures for the complex field. For t1 > t2 the
time-ordered product is φ̂(x1)φ̂

†(x2); using the expansion (7.16) and the vacuum conditions
(7.30), the only surviving term in the vev is that in which an ‘â†’ creates a particle (Nφ = 1)

at (x2, t2) and an ‘â’ destroys it at (x1, t1); the ‘b̂’ operators in φ̂(x2)
† give zero when acting

on |0〉, as do the ‘b̂†’ operators in φ̂†(x1) when acting on 〈0|. Thus for t1 > t2 we have the
pictorial interpretation of figure 7.1(a). For t2 > t1, however, the time-ordered product is

φ̂†(x2)φ̂(x1). Here the surviving vev comes from the ‘b̂†’ in φ̂(x1) creating an anti-particle

(Nφ = −1) at x1, which is then annihilated by the ‘b̂’ in φ̂†(x2). This t2 > t1 process
is shown in figure 7.1(b). The inclusion of both processes shown in figure 7.1 makes sense
physically, following considerations similar to those put forward ‘intuitively’ in section 3.5.4:
the process of figure 7.1(a) creates (say) a positive unit of Nφ at x2 and loses a positive
unit at x1, while another way of effecting the same ‘Nφ transfer’ is to create an anti-particle
of unit negative Nφ at x1, and propagate it to x2 where it is destroyed, as in figure 7.1(b).

It is important to be absolutely clear that the Feynman propagator 〈0|T (φ̂(x1)φ̂
†(x2))|0〉

includes both the processes in figures 7.1(a) and (b).
In practice, as we found in section 6.3.2, we want the momentum–space version of

the propagator, i.e. its Fourier transform. As we also noted there (cf also appendix G),
the propagator is a Green function for the KG operator (� + m2) with mass parameter
m; in momentum–space this is just the inverse, (−k2 + m2)−1. In the present case, since

both φ̂ and φ̂† obey the same KG equation, with mass parameter M , we expect that the
momentum–space version of 〈0|T (φ̂(x1)φ̂

†(x2))|0〉 is also
i

k2 −M2 + iε
. (7.31)
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FIGURE 7.2
Equivalent Feynman graphs for single W-exchange in νe + e− → νe + e−.

This can be verified by inserting the expansion (7.16) into the vev of the T -product, and
following the steps used in section 6.3.2 for the scalar case.

In this (momentum–space) version, it is the ‘iε’ which keeps track of the ‘particles going
from 2 to 1 if t1 > t2’ and ‘anti-particles going from 1 to 2 if t2 > t1’ (recall its appearance in
the representation (6.93) of the all-important θ-function). As in the scalar case, momentum–
space propagators in Feynman diagrams carry no implied order of emission/absorption
process; both the processes in figure 7.1 are always included in all propagators. Arrows
showing ‘momentum flow’ now also show the flow of all conserved quantum numbers. Thus
the process shown in figure 7.2(a) can equally well be represented as in figure 7.2(b).

There is one more bit of physics to be gleaned from 〈0|T (φ̂(x1)φ̂
†(x2))|0〉. As in the real

scalar field case, the vanishing of the commutator at space-like separations

[φ̂(x1), φ̂
†(x2)] = 0 for (x1 − x2)

2 < 0 (7.32)

guarantees the Lorentz invariance of the propagator for the complex scalar field and of the
S-matrix. But in this (complex) case, there is a further twist to the story. Evaluation of

[φ̂(x1), φ̂
†(x2)] reveals (problem 7.3) that, in the region (x1−x2)

2 < 0, the commutator is the
difference of two functions (not field operators), one of which arises from the propagation of
a particle from x2 to x1, the other of which comes from the propagation of an anti-particle
from x1 to x2 (just as in figure 7.1). Both processes must exist for this difference to be
zero, and furthermore for cancellations between them to occur in the space-like region the
masses of the particle and anti-particle must be identical. In quantum field theory, therefore,
‘causality’ (in the sense of condition (7.32)—cf (6.82)) requires that every particle has to
have a corresponding anti-particle with the same mass and opposite quantum numbers. As
we saw in chapter 4, these requirements are guaranteed by the CPT theorm, which is a
consequence of very general principles of quantum field theory.
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7.2 The Dirac field and the spin-statistics connection

I remember that when someone had tried to teach me about creation and annihilation
operators, that this operator creates an electron, I said ‘how do you create an electron?
It disagrees with the conservation of charge’, and in that way I blocked my mind from
learning a very practical scheme of calculation.

[From the lecture delivered by Richard Feynman in Stockholm, Sweden, on 11 December
1965, when he received the Nobel Prize in physics, which he shared with Sin-itiro Tomonaga
and Julian Schwinger. (Feynman 1966).]

We now turn to the problem of setting up a quantum field which, in its wave aspects, sat-
isfies the Dirac equation (cf comment (5) in section 5.2.5), and in its ‘particle’ aspects creates
or annihilates fermions and anti-fermions. Following the ‘Heisenberg–Lagrange–Hamilton’
approach of section 5.2.5, we begin by writing down the Lagrangian which, via the corre-
sponding Euler–Lagrange equation, produces the Dirac equation as the ‘field equation’. The
answer (see problem 7.4) is

LD = iψ†ψ̇ + iψ†α ·∇ψ −mψ†βψ. (7.33)

The relativistic invariance of this is more evident in γ-matrix notation (problem 4.3):

LD = ψ̄(iγμ∂μ −m)ψ. (7.34)

We can now attempt to ‘quantize’ the field ψ by making a mode expansion in terms of
plane-wave solutions of the Dirac equation, in a fashion similar to that for the complex
scalar field in (7.16). We obtain (see problem 3.8 for the definition of the spinors u and v,
and the attendant normalization choice)

ψ̂ =

∫
d3k

(2π)3
√
2ω

∑
s=1,2

[ĉs(k)u(k, s)e
−ik·x + d̂†s(k)v(k, s)e

ik·x], (7.35)

where ω = (m2 + k2)1/2. We wish to interpret ĉ†s(k) as the creation operator for a Dirac

particle of spin s and momentum k. By analogy with (7.16), we expect that d̂†s(k) creates
the corresponding anti-particle. Presumably we must define the vacuum by (cf (7.30))

ĉs(k)|0〉 = d̂s(k)|0〉 = 0 for all k and s = 1, 2. (7.36)

A two-fermion state is then

|k1, s1; k2, s2〉 ∝ ĉ†s1(k1)ĉ
†
s2(k2)|0〉. (7.37)

But it is here that there must be a difference from the boson case. We require a state
containing two identical fermions to be antisymmetric under the exchange of state labels
k1 ↔ k2, s1 ↔ s2, and thus to be forbidden if the two sets of quantum numbers are the same,
in accordance with the Pauli exclusion principle, responsible for so many well-established
features of the structure of matter.

The solution to this dilemma is simple but radical: for fermions, commutation relations
are replaced by anti-commutation relations! The anti-commutator of two operators Â and
B̂ is written:

{Â, B̂} ≡ ÂB̂ + B̂Â. (7.38)
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If two different ĉ’s anti-commute, then

ĉ†s1(k1)ĉ
†
s2(k2) + ĉ†s2(k2)ĉ

†
s1(k1) = 0 (7.39)

so that we have the desired antisymmetry

|k1, s1; k2, s2〉 = −|k2, s2; k1, s1〉. (7.40)

In general we postulate

{ĉs1(k1), ĉ†s2(k2)} = (2π)3δ3(k1 − k2)δs1s2

{ĉs1(k1), ĉs2(k2)} = {ĉ†s1(k1), ĉ†s2(k2)} = 0
(7.41)

and similarly for the d̂’s and d̂†’s. The factor in front of the δ-function depends on the
convention for normalizing Dirac wavefunctions.

We must at once emphasize that in taking this ‘replace commutators by anti-
commutators’ step we now depart decisively from the intuitive, quasi-mechanical, picture
of a quantum field given in chapter 5, namely as a system of quantized harmonic oscilla-
tors. Of course, the field expansion (7.35) is a linear superposition of ‘modes’ (plane-wave
solutions), as for the complex scalar field in (7.16) for example; but the ‘mode operators’

ĉs and d̂†s are fermionic (obeying anti-commutation relations) not bosonic (obeying com-
mutation relations). As mentioned at the end of section 5.1, it does not seem possible to
provide any mechanical model of a system (in three dimensions) whose normal vibrations
are fermionic. Correspondingly, there is no concept of a ‘classical electron field’, analogous
to the classical electromagnetic field (which doubtless explains why we tend to think of
fermions as basically ‘more particle-like’). However, we can certainly recover a quantum
mechanical wavefunction from (7.35) by considering, as in comment (5) of section 5.4, the

vacuum-to-one-particle matrix element 〈0|ψ̂(x, t)|k1, s1〉.
In the bosonic case, we arrived at the commutation relations (5.130) for the mode op-

erators by postulating the ‘fundamental commutator of quantum field theory’, equation
(5.117), which was an extension to fields of the canonical commutation relations of quan-
tum (particle) mechanics. For fermions, we have simply introduced the anti-commutation
relations (7.41) ‘by hand’, so as to satisfy the Pauli principle. We may ask: What then be-
comes of the analogous ‘fundamental commutator’ in the fermionic case? A plausible guess
is that, as with the mode operators, the ‘fundamental commutator’ is to be replaced by a
‘fundamental anti-commutator’, between the fermionic field ψ̂ and its ‘canonically conjugate
momentum field’ π̂D, of the form:

{ψ̂(x, t), π̂D(y, t)} = iδ(x− y). (7.42)

As far as π̂D is concerned, we may suppose that its definition is formally analogous to
(5.122), which would yield

π̂D =
∂L̂D

∂
˙̂
ψ

= iψ̂†. (7.43)

We must also not forget that both ψ̂ and π̂D are four-component objects, carrying spinor
indices. Thus we are led to expect the result

{ψ̂α(x, t), ψ̂
†
β(y, t)} = δ(x− y)δαβ , (7.44)

where α and β are spinor indices. It is a good exercise to check, using (7.41), that this is
indeed the case (problem 7.5). We also find

{ψ̂(x, t), ψ̂(y, t)} = {ψ̂†(x, t), ψ̂†(y, t)} = 0. (7.45)
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In this (anti-commutator) sense, then, we have a ‘canonical’ formalism for fermions.
The Dirac Hamiltonian density is then (cf (5.123))

ĤD = π̂D
˙̂
ψ − L̂D = ψ̂†α · −i∇ψ̂ +mψ̂†βψ̂ (7.46)

using (7.43) and (7.33), and the Hamiltonian is

ĤD =

∫
[ψ̂†α · −i∇ψ̂ +mψ̂†βψ̂] d3x. (7.47)

One may well wonder why things have to be this way—‘bosons commute, fermions anti-
commute’. To gain further insight, we turn again to a consideration of symmetries and the
question of particle and anti-particle—this time for the Dirac field, rather than the Dirac
wavefunction discussed in chapter 4.

The Dirac field ψ̂ is a complex field, as is reflected in the two distinct mode operators in
the expansion (7.35); as in the complex scalar field case, there is only one mass parameter
and we expect the quanta to be interpretable as particle and anti-particle. The symme-
try operator which distinguishes them is found by analogy with the complex scalar field
case. We note that L̂D (the quantized version of (7.34)) is invariant under the global U(1)
transformation

ψ̂ → ψ̂′ = e−iαψ̂ (7.48)

which is
ψ̂ → ψ̂′ = ψ̂ − iεψ̂ (7.49)

in infinitesimal form. The corresponding (Noether) symmetry current can be calculated as

N̂μ
ψ =

¯̂
ψγμψ̂ (7.50)

and the associated symmetry operator is

N̂ψ =

∫
ψ̂†ψ̂ d3x. (7.51)

N̂ψ is clearly a number operator for the fermion case. As for the complex scalar field, invari-
ance under a global U(1) phase transformation is associated with a number conservation
law.

Inserting the plane-wave expansion (7.35), we obtain, after some effort (problem 7.6),

N̂ψ =

∫
d3k

(2π)3

∑
s=1,2

[ĉ†s(k)ĉs(k) + d̂s(k)d̂
†
s(k)]. (7.52)

Similarly, the Dirac Hamiltonian may be shown to have the form (problem 7.6)

ĤD =

∫
d3k

(2π)3

∑
s=1,2

[ĉ†s(k)ĉs(k)− d̂s(k)d̂
†
s(k)]ω. (7.53)

It is important to state that in obtaining (7.52) and (7.53), we have not assumed either

commutation or anti-commutation relations for the mode operators ĉ, ĉ†, d̂, and d̂†, only
properties of the Dirac spinors; in particular, neither (7.52) nor (7.53) has been normally
ordered. Suppose now that we assume commutation relations, so as to rewrite the last terms
in (7.52) and (7.53) in normally ordered form as d̂†s(k)d̂s(k). We see that ĤD will then
contain the difference of two number operators for ‘c’ and ‘d’ particles, and is therefore not
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positive-definite as we require for a sensible theory. Moreover, we suspect that, as in the φ̂
case, the ‘d’s’ ought to be the anti-particles of the ‘c’s’, carrying opposite N̂ψ value: but N̂ψ

is then (with the previous assumption about commutation relations) just proportional to
the sum of ‘c’ and ‘d’ number operators, counting +1 for each type, which does not fit this
interpretation. However, if anti-commutation relations are assumed, both these problems
disappear: dropping the usual infinite terms, we obtain the normally ordered forms

N̂ψ =

∫
d3k

(2π)3

∑
s=1,2

[ĉ†s(k)ĉs(k)− d̂†s(k)d̂s(k)] (7.54)

ĤD =

∫
d3k

(2π)3

∑
s=1,2

[ĉ†s(k)ĉs(k) + d̂†s(k)d̂s(k)]ω (7.55)

which are satisfactory, and allow us to interpret the ‘d’ quanta as the anti-particles of the
‘c’ quanta. Similar difficulties would have occurred in the complex scalar field case if we had
assumed anti-commutation relations for the boson operators, and the ‘causality’ discussion
at the end of the preceding section would not have worked either (instead of a difference of
terms we would have had a sum). It is in this way that quantum field theory enforces the
connection between spin and statistics.

Our discussion here is only a part of a more general approach leading to the same
conclusion, first given by Pauli (1940); see also Streater et al. (1964).

As in the complex scalar case, the other crucial ingredient we need is the Dirac propa-

gator 〈0|T (ψ̂(x1)
¯̂
ψ(x2))|0〉. We shall see in section 7.4 why it is

¯̂
ψ here rather than ψ̂†—the

reason is essentially to do with Lorentz covariance (see section 4.1.2). Because the ψ̂ fields
are anti-commuting, the T -symbol now has to be understood as

T (ψ̂(x1)
¯̂
ψ(x2)) = ψ̂(x1)

¯̂
ψ(x2) for t1 > t2 (7.56)

= − ¯̂
ψ(x2)ψ̂(x1) for t2 > t1. (7.57)

Once again, this propagator is proportional to a Green function, this time for the Dirac
equation, of course. Using γ-matrix notation (problem 4.3) the Dirac equation is (cf (7.34))

(iγμ∂μ −m)ψ̂ = 0. (7.58)

The momentum–space version of the propagator is proportional to the inverse of the oper-
ator in (7.58), when written in k-space, namely to (k/−m)−1 where

k/ = γμkμ (7.59)

is an important shorthand notation (pronounced ‘k-slash’). In fact, the Feynman propagator
for Dirac fields is

i

k/−m+ iε
. (7.60)

As in (7.31), the iε takes care of the particle/anti-particle, emission/absorption business.
Formula (7.60) is the fermion analogue of ‘rule (ii)’ in (6.103).

The reader should note carefully one very important difference between (7.60) and (7.31),
which is that (7.60) is a 4×4 matrix. What we are really saying (cf (6.98)) is that the Fourier

transform of 〈0|T (ψ̂α(x1)
¯̂
ψβ(x2))|0〉, where α and β run over the four components of the

Dirac field, is equal to the (α, β) matrix element of the matrix i(k/−m+ iε)−1:

∫
d4(x1 − x2) e

ik·(x1−x2)〈0|T (ψ̂α(x1)
¯̂
ψβ(x2))|0〉 = i(k/−m+ iε)−1

αβ . (7.61)
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The form (7.61) can be made to look more like (7.31) by making use of the result (prob-
lem 7.7)

(k/−m)(k/+m) = (k2 −m2) (7.62)

(where the 4×4 unit matrix is understood on the right-hand side) so as to write (7.61) as

i(k/+m)

k2 −m2 + iε
. (7.63)

As in the scalar case, (7.61) can be directly verified by inserting the field expansion (7.35)
into the left-hand side, and following steps analogous to those in equations (6.92)–(6.98). In
following this through one will meet the expressions

∑
s u(k, s)ū(k, s) and

∑
s v(k, s)v̄(k, s),

which are also 4× 4 matrices. Problem 7.8 shows that these quantities are given by∑
s

uα(k, s)ūβ(k, s) = (k/+m)αβ
∑
s

vα(k, s)v̄β(k, s) = (k/−m)αβ . (7.64)

With these results, and remembering the minus sign in (7.57), one can check (7.63) (prob-
lem 7.9).

One might now worry that the adoption of anti-commutation relations for Dirac fields
might spoil ‘causality’, in the sense of the discussion after (7.32). One finds, indeed, that

the fields ψ̂ and
¯̂
ψ anti-commute at space-like separation, but this is enough to preserve

causality for physical observables, which will involve an even number of fermionic fields.
We now turn to the problem of quantizing the Maxwell (electromagnetic) field.

7.3 The Maxwell field Aμ(x)

7.3.1 The classical field case

Following the now familiar procedure, our first task is to find the classical field Lagrangian
which, via the corresponding Euler–Lagrangian equations, yields the Maxwell equation for
the electromagnetic potential Aν , namely (cf (2.22))

�Aν − ∂ν(∂μA
μ) = jνem. (7.65)

The answer is (see problem 7.10)

Lem = −1

4
Fμν Fμν − jνemAν (7.66)

where Fμν = ∂μAν − ∂νAμ. So the pure A-field part is the Maxwell Lagrangian

LA = −1

4
Fμν Fμν . (7.67)

Before proceeding to try to quantize (7.67), we need to understand some important aspects
of the free classical field Aν(x).

When jem is set equal to zero, Aν satisfies the equation

∂μF
μν = �Aν − ∂ν(∂μAμ) = 0. (7.68)

As we have seen in section 2.3, these equations are left unchanged if we perform the gauge
transformation

Aμ → A′μ = Aμ − ∂μχ. (7.69)
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We can use this freedom to choose the Aμ with which we work to satisfy the condition

∂μA
μ = 0. (7.70)

This is called the Lorentz condition1. The process of choosing a particular condition on Aμ

so as to define it (ultimately) uniquely is called ‘choosing a gauge’; actually the condition
(7.70) does not yet define Aμ uniquely, as we shall see shortly. The Lorentz condition
is a very convenient one, since it decouples the different components of Aμ in Maxwell’s
equations (7.68)—in a covariant way, moreover, leaving the very simple equation

�Aμ = 0. (7.71)

This has plane-wave solutions of the form

Aμ = Nεμe−ik·x (7.72)

with k2 = 0 (i.e. k20 = k2), where N is a normalization factor and εμ is a polarization vector
for the wave. The gauge condition (7.70) now reduces to a condition on εμ:

k · ε = 0. (7.73)

However, we have not yet exhausted all the gauge freedom. We are still free to make another
shift in the potential

Aμ → Aμ − ∂μχ̃ (7.74)

provided χ̃ satisfies the massless KG equation

�χ̃ = 0. (7.75)

This condition on χ̃ ensures that, even after the further shift, the resulting potential still
satisfies ∂μA

μ = 0. For our plane-wave solutions, this residual gauge freedom corresponds
to changing εμ by a multiple of kμ:

εμ → εμ + βkμ ≡ ε′μ (7.76)

which still satisfies ε′μ ·k = 0 since k2 = 0 for these free-field solutions. The condition k2 = 0
is, of course, the statement that a free photon is massless.

This freedom has important consequences. Consider a solution with

kμ = (k0,k) (k0)2 = k2 (7.77)

and polarization vector
εμ = (ε0, ε) (7.78)

satisfying the Lorentz condition
k · ε = 0. (7.79)

Gauge invariance now implies that we can add multiples of kμ to εμ and still have a satis-
factory polarization vector.

It is therefore clear that we can arrange for the time component of εμ to vanish so that
the Lorentz condition reduces to the 3-vector condition

k · ε = 0. (7.80)

1This is the common, but incorrect, name. The condition was first introduced by Ludwig Lorenz (Lorenz
1867), and only later given by H. A. Lorentz (Lorentz 1892).
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This means that there are only two independent polarization vectors, both transverse to k,
i.e. to the propagation direction. For a wave travelling in the z-direction (kμ = (k0, 0, 0, k0)),
these may be chosen to be

ε(1) = (1, 0, 0) (7.81)

ε(2) = (0, 1, 0). (7.82)

Such a choice corresponds to linear polarization of the associated E and B fields—which
can be easily calculated from (2.10) and (2.11), given

Aμ
(i) = N(0, ε(i))e

−ik·x i = 1, 2. (7.83)

A commonly used alternative choice is

ε(λ = +1) = − 1√
2
(1, i, 0) (7.84)

ε(λ = −1) =
1√
2
(1,−i, 0) (7.85)

(linear combinations of (7.81) and (7.82)), which correspond to circularly polarized radia-
tion. The phase convention in (7.84) and (7.85) is the standard one in quantum mechanics
for states of definite spin projection (‘helicity’) λ = ±1 along the direction of motion (the
z-axis here). We may easily check that

ε∗(λ) · ε(λ′) = δλλ′ (7.86)

or, in terms of the corresponding 4-vectors εμ = (0, ε),

ε∗(λ) · ε(λ′) = −δλλ′ . (7.87)

We have therefore arrived at the result, familiar in classical electromagnetic theory, that
the free electromagnetic fields are purely transverse. Though they are described in this
formalism by a vector potential with apparently four independent components (V,A), the
condition (7.70) reduces this number by one, and the further gauge freedom exploited in
(7.74)–(7.76) reduces it by one more.

A crucial point to note is that the reduction to only two independent field components
(polarization states) can be traced back to the fact that the free photon is massless: see the
remark after (7.76). By contrast, for massive spin-1 bosons, such as the W± and Z0, all three
expected polarization states are indeed present. However, weak interactions are described
by a gauge theory, and the W± and Z0 particles are gauge-field quanta, analogous to the
photon. How gauge invariance can be reconciled with the existence of massive gauge quanta
with three polarization states will be explained in volume 2.

We may therefore write the plane-wave mode expansion for the classical Aμ(x) field in
the form

Aμ(x) =

∫
d3k

(2π)3
√
2ω

∑
λ

[εμ(k, λ)α(k, λ)e−ik·x + εμ∗(k, λ)α∗(k, λ)eik·x] (7.88)

where the sum is over the two possible polarization states λ, for given k, as described by
the suitable polarization vector εμ(k, λ) and ω = |k|.

It would seem that all we have to do now, in order to ‘quantize’ (7.88), is to promote α
and α∗ to operators α̂ and α̂†, as usual. However, things are actually not nearly so simple.



The Maxwell field Aμ(x) 165

7.3.2 Quantizing Aμ(x)

Readers familiar with Lagrangian mechanics may already suspect that quantizing Aν is
not going to be straightforward. The problem is that, clearly, Aν(x) has four (Lorentz)
components—but, equally clearly in view of the previous section, they are not all indepen-
dent field components or field degrees of freedom. In fact, there are only two independent
degrees of freedom, both transverse. Thus there are constraints on the four fields, for in-
stance the gauge condition (7.70). Constrained systems are often awkward to handle in
classical mechanics (see for example Goldstein 1980) or classical field theory; and they
present major problems when it comes to canonical quantization. It is actually at just this
point that the ‘path-integral’ approach to quantization, alluded to briefly at the end of sec-
tion 5.2.2, comes into its own. This is basically because it does not involve non-commuting
(or anti-commuting) operators and it is therefore to that extent closer to the classical case.
This means that the relatively straightforward procedures available for constrained classical
mechanics systems can—when suitably generalized!—be efficiently brought to bear on the
quantum problem. For an introduction to these ideas, we refer to Swanson (1992).

However, we do not wish at this stage to take what would be a very long detour, in
setting up the path-integral quantization of QED. We shall continue along the ‘canonical’
route. To see the kind of problems we encounter, let us try and repeat for the Aν field the
‘canonical’ procedure we introduced in section 5.2.5. This was based, crucially, on obtaining
from the Lagrangian the momentum π conjugate to φ, and then imposing the commutation
relation (5.117) on the corresponding operators π̂ and φ̂. But inspection of our Maxwell
Lagrangian (7.67) quickly reveals that

∂LA

∂Ȧ0
= 0 (7.89)

and hence there is no canonical momentum π0 conjugate to A0. We appear to be stymied
before we can even start.

There is another problem as well. Following the procedure explained in chapter 6, we
expect that the Feynman propagator for the Âμ field, namely 〈0|T (Âμ(x1)Â

ν(x2))|0〉, will
surely appear, describing the propagation of a photon between x1 and x2. In the case of
real scalar fields, problem 6.3 showed that the analogous quantity was actually a Green
function for the KG differential operator, (�+m2). It turned out, in that case, that what
we really wanted was the Fourier transform of the Green function, which was essentially
(apart from the tricky ‘iε prescription’ and a trivial −i factor) the inverse of the momentum–
space operator corresponding to (�+m2), namely (−k2 +m2)−1 (see equation (6.98) and
appendix G, and also (7.58)–(7.60) for the Dirac case). Suppose, then, that we try to follow
this route to obtaining the propagator for the Âν field. For this it is sufficient to consider
the classical equations (7.68) with jem = 0, written in k space (problem 7.11(a)):

(−k2gνμ + kνkμ)Ãμ(k) ≡ MνμÃμ(k) = 0 (7.90)

where Ãμ(k) is the Fourier transform of Aμ(x). We therefore require the inverse

(−k2gνμ + kνkμ)−1 ≡ (M−1)νμ. (7.91)

Unfortunately it is easy to show that this inverse does not exist. From Lorentz covariance,
it has to transform as a second-rank tensor, and the only ones available are gμν and kμkν .
So the general form of (M−1)νμ must be

(M−1)νμ = A(k2)gνμ +B(k2)kνkμ. (7.92)
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Now the inverse is defined by
(M−1)νμMμσ = gνσ. (7.93)

Putting (7.92) and (7.90) into (7.93) yields (problem 7.11(b))

−k2A(k2)gνσ +A(k2)kνkσ = gνσ (7.94)

which cannot be satisfied. So we are thwarted again.
Nothing daunted, the attentive reader may have an answer ready for the propagator

problem. Suppose that, instead of (7.68), we start from the much simpler equation

�Aν = 0 (7.95)

which results from imposing the Lorentz condition (7.70). Then, in momentum–space, (7.95)
becomes

−k2Ãν = 0. (7.96)

The ‘−k2’ on the left-hand side certainly has an inverse, implying that the Feynman prop-
agator for the photon is (proportional to) gμν/k

2. This form is indeed plausible, as it is
very much what we would expect by taking the massless limit of the spin-0 propagator and
tacking on gμν to account for the Lorentz indices in 〈0|T (Âμ(x1)Âν(x2))|0〉 (but then why
no term in kμkν?—see the final two paragraphs of this section!).

Perhaps this approach helps with the ‘no canonical momentum π0’ problem too. Let us
ask: What Lagrangian leads to the field equation (7.95)? The answer is (problem 7.12)

LL = −1

4
FμνF

μν − 1
2 (∂μA

μ)2. (7.97)

This form does seem to offer better prospects for quantization, since at least all our πμ’s
are non-zero; in particular

π0 =
∂L
∂Ȧ0

= −∂μA
μ. (7.98)

The other π’s are unchanged by the addition of the extra term in (7.97) and are given by

πi = −Ȧi + ∂iA0. (7.99)

Interestingly, these are precisely the electric fields Ei (see (2.10)). Let us see, then, if all
our problems are solved with LL.

Now that we have at least got four non-zero πμ’s, we can write down a plausible set of
commutation relations between the corresponding operator quantities π̂μ and Âν :

[Âμ(x, t), π̂ν(y, t)] = igμνδ
3(x− y). (7.100)

Again, the gμν is there to give the same Lorentz transformation character on both sides of
the equation. But we must now remember that, in the classical case, our development rested
on imposing the condition ∂μA

μ = 0 (7.70). Can we, in the quantum version we are trying

to construct, simply impose ∂μÂ
μ = 0? We certainly cannot do so in L̂L, or we are back to

L̂A again (besides, constraints cannot be ‘substituted back’ into Lagrangians, in general).
Furthermore, if we set μ = ν = 0 in (7.100), then the right-hand side is non-zero while the
left-hand side is zero if ∂μÂ

μ = 0 = π̂0. So it is inconsistent simply to set ∂μÂ
μ = 0.

We will return to the treatment of ‘∂μÂ
μ = 0’ eventually. First, let us press on with

(7.97) and see if we can get as far as a (quantized) mode expansion, of the form (7.88), for
Âμ(x).
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To set this up, we need to massage the commutator (7.100) into a form as close as
possible to the canonical ‘[φ, φ̇] = iδ’ form. Assuming the other commutation relations (cf
(5.118))

[Âμ(x, t), Âν(y, t)] = [π̂μ(x, t), π̂ν(y, t)] = 0 (7.101)

we see that the spatial derivatives of the Â’s commute with the Â’s, and with each other,
at equal times. This implies that we can rewrite the (quantum) π̂’s as

π̂μ = − ˙̂
Aμ + pieces that commute. (7.102)

Hence (7.100) can be rewritten as

[Âμ(x, t),
˙̂
Aν(y, t)] = −igμνδ

3(x− y) (7.103)

and (7.101) remains the same. Now (7.103) is indeed very much the same as ‘[φ, φ̇] = iδ’ for
the spatial component Âi—but the sign is wrong in the μ = ν = 0 case. We are not out of
the maze yet.

Nevertheless, proceeding onwards on the basis of (7.103), we write the quantum mode
expansion as (cf (7.88))

Âμ(x) =

3∑
λ=0

∫
d3k

(2π)3
√
2ω

[εμ(k, λ)α̂λ(k)e
−ik·x + ε∗μ(k, λ)α̂†λ(k)e

ik·x] (7.104)

where the sum is over four independent polarization states λ = 0, 1, 2, 3, since all four fields
are still in play. Before continuing, we need to say more about these ε’s (previously, we
only had two of them, now we have four and they are 4-vectors). We take k to be along
the z-direction as in our discussion of the ε’s in section 7.3.1, and choose two transverse
polarization vectors as (cf (7.81), (7.82))

εμ(k, λ = 1) = (0, 1, 0, 0)

εμ(k, λ = 2) = (0, 0, 1, 0)
‘transverse polarizations’. (7.105)

The other two ε’s are

εμ(k, λ = 0) = (1, 0, 0, 0) ‘time-like polarization’ (7.106)

and
εμ(k, λ = 3) = (0, 0, 0, 1) ‘longitudinal polarization’. (7.107)

Making (7.104) consistent with (7.103) then requires

[α̂λ(k), α̂
†
λ′(k

′)] = −gλλ′(2π)3δ3(k − k′). (7.108)

This is where the wrong sign in (7.103) has come back to haunt us: we have the wrong sign
in (7.108) for the case λ = λ′ = 0 (time-like modes).

What is the consequence of this? It seems natural to assume that the vacuum is defined
by

α̂λ(k)|0〉 = 0 for all λ = 0, 1, 2, 3. (7.109)

But suppose we use (7.108) and (7.109) to calculate the normalization overlap of a ‘one
time-like photon’ state; this is

〈k′, λ = 0|k, λ = 0〉 = 〈0|α̂0(k)α̂
†
0(k

′)|0〉
= −(2π)3δ3(k − k′) (7.110)
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and the state effectively has a negative norm (the k = k′ infinity is the standard plane-wave
artefact). Such states would threaten fundamental properties such as the conservation of
total probability if they contributed, uncancelled, in physical processes.

At this point we would do well to recall the condition ‘∂μÂ
μ = 0’, which still needs to be

taken into account, somehow, and it does indeed save us. Gupta (1950) and Bleuler (1950)
proposed that, rather than trying (unsuccessfully) to impose it as an operator condition,
one should replace it by the weaker condition

∂μÂ
μ(+)(x)|Ψ〉 = 0 (7.111)

where the (+) signifies the positive frequency part of Â, i.e. the part involving annihilation
operators, and |Ψ〉 is any physical state (including |0〉). From (7.111) and its Hermitian
conjugate

〈Ψ|∂μÂμ(−)(x) = 0 (7.112)

we can deduce that the Lorentz condition (7.70) does hold for all expectation values:

〈Ψ|∂μÂμ|Ψ〉 = 〈Ψ|∂μÂμ(+) + ∂μÂ
μ(−)|Ψ〉 = 0, (7.113)

and so the classical limit of this quantization procedure will recover the classical Maxwell
theory in Lorentz gauge.

Using (7.104), (7.106), and (7.107) with kμ = (|k|, 0, 0, |k|), condition (7.111) becomes

[α̂0(k)− α̂3(k)]|Ψ〉 = 0. (7.114)

To see the effect of this condition, consider the expression for the Hamiltonian of this theory.
In normally ordered form, it turns out to be

Ĥ =

∫
d3k

(2π)3
(α̂†1α̂1 + α̂†2α̂2 + α̂†3α̂3 − α̂†0α̂0)ω (7.115)

so the contribution from the time-like modes looks dangerously negative. However, for any
physical state |Ψ〉, we have

〈Ψ|(α̂†3α̂3 − α̂†0α̂0)|Ψ〉 = 〈Ψ|(α̂†3α̂3 − α̂†3α̂0)|Ψ〉
= 〈Ψ|α̂†3(α̂3 − α̂0)|Ψ〉
= 0, (7.116)

so that only the transverse modes survive.
We hope that by now the reader will have at least begun to develop a healthy respect for

quantum gauge fields—and the non-Abelian versions in volume 2 are even worse! The fact
is that the canonical approach has a difficult time coping with these constrained systems.
Indeed, the complete Feynman rules in the non-Abelian case were found by an alternative
quantization procedure (‘path integral’ quantization). This, however, is outside the scope of
the present volume. The important points for our purposes are as follows. It is possible to
carry out a consistent quantization in the Gupta–Bleuler formalism, which is the quantum
version of the Maxwell theory constrained by the Lorentz condition. The propagator for the
photon in this theory is

−igμν/k2 + iε (7.117)

which is the expected massless limit of the KG propagator as far as the spatial components
are concerned (the time-like component has that negative sign).
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As in all the other cases we have dealt with so far, the Feynman propagator 〈0|T (Âμ(x1)
Âν(x2))|0〉 can be evaluated using the expansion (7.104) and the commutation relations
(7.108). One finds that it is indeed equal to the Fourier transform of −igμν/k2 + iε just
as asserted in (7.117). For this result, we need the ‘pseudo completeness relation’ (problem
7.13)

−εμ(k, λ = 0)εν(k, λ = 0) + εμ(k, λ = 1)εν(k, λ = 1)

+εμ(k, λ = 2)εν(k, λ = 2) + εμ(k, λ = 3)εν(k, λ = 3) = −gμν .

(7.118)

We call this a pseudo completeness relation because of the minus sign appearing in the first
term: its origin in the evaluation of this vev is precisely the ‘wrong sign commutator’ for
the α̂0 mode, (7.108).

Thus the gauge choice (7.70) can be made to work in quantum field theory via the
condition (7.111). But other choices are possible too. In particular, a useful generalization
of the Lagrangian (7.97) is

Lξ = −1

4
FμνF

μν − 1

2ξ
(∂μA

μ)2 (7.119)

where ξ is a constant, the ‘gauge parameter’. Lξ leads to the equation of motion (prob-
lem 7.14) (

�gμν − ∂μ∂ν +
1

ξ
∂μ∂ν

)
Aν = 0. (7.120)

In momentum–space this becomes (problem 7.14)(
−k2gμν + kμkν − 1

ξ
kμkν

)
Ãν = 0. (7.121)

The inverse of the matrix acting on Ãν exists, and gives us the more general photon prop-
agator (or Green function)

i[−gμν + (1− ξ)kμkν/k2]

k2 + iε
(7.122)

as shown in problem 7.14. The previous case is recovered as ξ → 1. Confusingly, the choice
ξ = 1 is often called the ‘Feynman gauge’, though in classical terms it corresponds to the
Lorentz gauge choice. For some purposes the ‘Landau gauge’ ξ = 0 (which is well defined in
(7.122)) is convenient. In any event, it is important to be clear that the photon propagator
depends on the choice of gauge. Formula (7.122) is the photon analogue of ‘rule (ii)’ in
(6.103).

This may seem to imply that when we use the photon propagator (7.122) in Feynman
amplitudes we will not get a definite answer, but rather one that depends on the arbi-
trary parameter ξ. This is a serious worry. But the propagator is not by itself a physical
quantity—it is only one part of a physical amplitude. In the following chapter we shall
derive the amplitudes for some simple processes in scalar and spinor electrodynamics, and
one can verify that they are gauge invariant—either in the sense (for external photons) of
being invariant under the replacement (7.76), or (in the case of internal photons) of being
independent of ξ. It can be shown (Weinberg 1995, section 10.5) that at a given order in
perturbation theory the sum of all diagrams contributing to the S-matrix is gauge invariant.
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7.4 Introduction of electromagnetic interactions

After all these preliminaries, the job of introducing the first of our gauge field interactions,
namely electromagnetism, into our non-interacting theory of complex scalar fields, and of
Dirac fields, is very easy. From our discussion in chapter 2, we have a strong indication of
how to introduce electromagnetic interactions into our theories. The ‘gauge principle’ in
quantum mechanics consisted in elevating a global (space–time-independent) U(1) phase
invariance into a local (space–time-dependent) U(1) invariance—the compensating fields
being then identified with the electromagnetic ones. In quantum field theory, exactly the
same principle exists and leads to the form of the electromagnetic interactions. Indeed,
in the field theory formalism we have a true local U(1) phase (gauge) invariance of the
Lagrangian (rather than a gauge covariance of a wave equation) and we shall be able to
exhibit explicitly the symmetry current, and symmetry operator, associated with the U(1)
invariance—and identify them precisely with the electromagnetic current and charge.

We have seen that for both the complex scalar and the Dirac fields the free Lagrangian
is invariant under U(1) transformations (see (7.22) and (7.48)) which, we once again em-
phasize, are global. Let us therefore promote these global invariances into local ones in the
way learned in chapter 2—namely by invoking the ‘gauge principle’ replacement

∂μ → D̂μ = ∂μ + iqÂμ (7.123)

for a particle of charge q, this time written in terms of the quantum field Âμ. In the case of
the Dirac Lagrangian

L̂D =
¯̂
ψ(iγμ∂μ −m)ψ̂ (7.124)

we expect to be able to ‘promote’ it to one which is invariant under the local U(1) phase
transformation2

ψ̂(x, t) → ψ̂′(x, t) = e−iqχ̂(x,t)ψ̂(x, t) (7.125)

provided we make the replacement (7.123) and demand that the (quantized) 4-vector po-
tential transforms as (cf (2.15) with the sign change for χ̂)

Âμ → Â′μ = Âμ + ∂μχ̂. (7.126)

Thus the locally U(1)-invariant Dirac Lagrangian is expected to be

L̂D local =
¯̂
ψ(iγμD̂μ −m)ψ̂. (7.127)

The invariance of (7.127) under (7.125) is easy to check, using the crucial property (2.43),
which clearly carries over to the quantum field case:

D̂′μψ̂
′ = e−iqχ̂(D̂μψ̂). (7.128)

Equation (7.128) implies at once that

(iγμD̂′μ −m)ψ̂′ = e−iqχ̂(iγμD̂μ −m)ψ̂, (7.129)

while taking the conjugate of (7.125) yields

¯̂
ψ
′
=

¯̂
ψeiqχ̂. (7.130)

2Note that the classical field χ(x, t) of (2.34) has become a quantum field χ̂(x, t) in (7.125); the sign
change of χ̂ compared with χ is conventional in qft.
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Thus we have

¯̂
ψ
′
(iγμD̂′μ −m)ψ̂′ =

¯̂
ψeiqχ̂e−iqχ̂(iγμD̂μ −m)ψ̂ (7.131)

=
¯̂
ψ(iγμD̂μ −m)ψ̂ (7.132)

and the invariance is proved.
The Lagrangian has therefore gained an interaction term

L̂D → L̂D local = L̂D + L̂int (7.133)

where

L̂int = −q
¯̂
ψγμψ̂Âμ. (7.134)

Since the addition of Lint has not changed the canonical momenta, the Hamiltonian then
becomes Ĥ = ĤD + Ĥ′D, where

Ĥ′D = −L̂int = q
¯̂
ψγμψ̂Âμ = qψ̂†ψ̂Â0 − qψ̂†αψ̂ · Â (7.135)

which is the field theory analogue of the potential in (3.102). It has the expected form

‘ρA0−j·A’ if we identify the electromagnetic charge density operator with qψ̂†ψ̂ (the charge
times the number density operator) and the electromagnetic current density operator with

qψ̂†αψ̂. The electromagnetic 4-vector current operator ĵμem is thus identified as

ĵμem = q
¯̂
ψγμψ̂, (7.136)

which is gauge invariant and a Lorentz 4-vector. The Lagrangian (7.134) is manifestly
Lorentz invariant.

We now note that ĵμem is just q times the symmetry current N̂μ
ψ of section 7.2 (see equa-

tion (7.50)). Conservation of ĵμem would follow from global U(1) invariance alone (i.e. χ̂ a
constant in equation (7.125)); but many Lagrangians, including interactions, could be con-
structed obeying this global U(1) invariance. The force of the local U(1) invariance require-
ment is that it has specified a unique form of the interaction (i.e. L̂int of equation (7.134)).
Indeed, this is just −ĵμemÂμ, so that in this type of theory the current ĵμem is not only a

symmetry current, but also determines the precise way in which the vector potential Âμ

couples to the matter field ψ̂. Adding the Lagrangian for the Âμ field then completes the
theory of a charged fermion field interacting with the Maxwell field. In a general gauge, the
Âμ field Lagrangian is the operator form of (7.119), L̂ξ.

The interaction term Ĥ ′
D = q

¯̂
ψγμψ̂Âμ is a ‘three-fields-at-a-point’ kind of interaction

just like our 3-scalar interaction gφ̂Aφ̂Bφ̂C in chapter 6. We know, by now, exactly what all
the operators in Ĥ ′

D are capable of: some of the possible emission and absorption processes
are shown in figure 7.3. Unlike the ‘ABC’ model with mC > mA + mB however, none of
these elementary ‘vertex’ processes can occur as a real physical process, because all are
forbidden by the requirement of overall 4-momentum conservation. However, they will of
course contribute as virtual transitions when ‘paired up’ to form Feynman diagrams, such
as those in figure 7.4 (compare figures 6.4 and 6.5).

It is worth remarking on the fact that the ‘coupling constant’ q is dimensionless, in our
units. Of course, we know this from its identification with the electromagnetic charge in this
case (see appendix C). But it is instructive to check it as follows. A Lagrangian density has
mass dimension M4, since the action is dimensionless (with � = 1). Referring then to (7.33)

we see that the (mass) dimension of the ψ̂ field is M3/2, while (7.67) shows that that of Âμ

is M . It follows that
¯̂
ψγμψ̂Âμ has mass dimension M4, and hence q must be dimensionless.
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FIGURE 7.3
Possible basic vertices associated with the interaction density e

¯̂
ψγμψ̂Âμ; these cannot occur

as physical processes due to energy–momentum constraints.

The application of the Dyson formalism of chapter 6 to fermions interacting via Ĥ ′
D leads

directly to the Feynman rules for associating precise mathematical formulae with diagrams
such as those in figure 7.4, as usual. This will be presented in the following chapter: see
comment (3) in section 8.3.1 and appendix L. We may simply note here that a ‘ψ̂’ appears

along with a ‘
¯̂
ψ’ in Ĥ ′

D, so that the process of ‘contraction’ (cf chapter 6) will lead to the

form 〈0|T (ψ̂(x1)
¯̂
ψ(x2))|0〉 of the Dirac propagator, as stated in section 7.2.

In the same way, the global U(1) invariance (7.22) of the complex scalar field may be
generalized to a local U(1) invariance incorporating electromagnetism. We have

L̂KG → L̂KG + L̂int (7.137)

where
L̂KG = ∂μφ̂

†∂μφ̂−m2φ̂†φ̂ (7.138)

and (under ∂μ → D̂μ)

L̂int = −iq(φ̂†∂μφ̂− (∂μφ̂†)φ̂)Âμ + q2ÂμÂμφ̂
†φ̂ (7.139)

FIGURE 7.4
Lowest-order contributions to γe− → γe−.
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which is the field theory analogue of the interaction in (3.100). The electromagnetic current
is

ĵμem = −∂L̂int/∂Âμ (7.140)

as before, which from (7.139) is

ĵμem = iq(φ̂†∂μφ̂− (∂μφ̂†)φ̂)− 2q2Âμφ̂†φ̂. (7.141)

We note that for the boson case the electromagnetic current is not just q times the (number)
current N̂φ appropriate to the global phase invariance. This has its origin in the fact that the
boson current involves a derivative, and so the gauge invariant boson current must develop
a term involving Âμ itself, as is evident in (7.141), and as we also saw in the wavefunction
case (cf equation (2.40)). The full scalar QED Lagrangian is completed by the inclusion of
L̂ξ as before.

The application of the formalism of chapter 6 is not completely straightforward in this
scalar case. The problem is that L̂int of (7.139) involves derivatives of the fields and, in
particular, their time derivatives. Hence the canonical momenta will be changed from their
non-interacting forms. This, in turn, implies that the additional (interaction) term in the
Hamiltonian is not just −L̂int, as in the Dirac case, but is given by (problem 7.15)

Ĥ′S = −L̂int − q2(Â0)2φ̂†φ̂. (7.142)

The problem here is that the Hamiltonian and −L̂int differ by a term which is non-covariant
(only Â0 appears).This seems to threaten the whole approach of chapter 6. Fortunately,
another subtlety rescues the situation. There is a second source of non-covariance arising
from the time-ordering of terms involving time derivatives, which will occur when (7.142)
is used in the Dyson series (6.42). In particular, one can show (problem 7.16) that

〈0|T (∂1μφ̂(x1)∂2ν φ̂
†(x2))|0〉

= ∂1μ∂2ν〈0|T (φ̂(x1)φ̂
†(x2))|0〉 − igμ0gν0δ

4(x1 − x2) (7.143)

which also exhibits a non-covariant piece. A careful analysis (Itzykson and Zuber 1980,
section 6.1.4) shows that the two covariant effects exactly compensate, so that in the Dyson
series we may use Ĥ′S = −L̂int after all. The Feynman rules for charged scalar electrody-
namics are given in appendix L.

7.5 P, C, and T in Quantum field theory

We end this chapter by completing the discussion of the discrete symmetries which we began
in section 4.2, extending it from the single particle (wavefunction) theory to quantum fields.
We begin with the parity transformation.

7.5.1 Parity

The algebraic manipulations of section 4.2.1 apply equally well to the equations of motion for
the quantum field, and we can take over the results by replacing a transformed wavefunction

such as ψP(x, t) by the corresponding transformed field ψ̂P(x, t) = P̂ ˆψ(x, t)P̂−1 where P̂
is a unitary quantum field operator (which we shall not need to calculate explicitly). Thus
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we have

φ̂P(x, t) = φ̂(−x, t) (7.144)

ψ̂P(x, t) = βψ̂(−x, t), (7.145)

for the KG and Dirac fields, and

ÂP(x, t) = −Â(−x, t), Â0
P(x, t) = Â0(−x, t) (7.146)

for the electromagnetic fields. In (7.144) – (7.146) a simple choice of phase factor has been
made.

There is however one new feature in the quantum field case, which is that the commuta-
tion or anticommutation relations must be left unchanged by the transformation, if it is to
be an invariance of the theory. Evidently for P the only non-trivial case is the Dirac field,
and it is easy to check that the anticommutation relations (7.44) and (7.45) are invariant
under (7.145).

Let us see the effect of P on the free particle expansion (7.35). Equation (7.145) becomes

ψ̂P(x, t) =∫
d3k

(2π)3
√
2ω

∑
s=1,2

[P̂ĉs(k)P̂
−1u(k, s)e−iωt+ik·x + P̂d̂†s(k)P̂

−1v(k, s)eiωt−ik·x]

=

∫
d3k

(2π)3
√
2ω

∑
s=1,2

[ĉs(k)βu(k, s)e
−iωt−ik·x + d̂†s(k)βv(k, s)e

iωt+ik·x]. (7.147)

Changing k to −k in the second integral and using the spinor properties

βu((ω,−k), s) = u(k, s), βv((ω,−k), s) = −v(k, s) (7.148)

in the right-hand side of (7.147), we obtain the conditions

P̂ĉs(k)P̂
−1 = ĉ(ω,−k), P̂d̂†s(k)P̂

−1 = −d̂†s(ω,−k) (7.149)

with similar ones for ĉ†s and d̂s. Since ĉ†s creates a fermion from the vacuum and d̂†s creates
its antiparticle, it follows that a fermion and its antiparticle have opposite intrinsic parities.
Similarly, equation (7.146) shows, when applied to the expansion (7.104), that a physical
(transverse) photon has negative intrinsic parity.

Turning now to the electromagnetic interaction, it is clear that ĵμem(x) = q
¯̂
ψ(x)γμψ̂(x)

has exactly the same transformation properties under P as ψ̄γμψ(x) had—namely ĵ0em(x)

is a scalar and ĵem(x) is a polar vector. Since this is also the way Âμ transforms, according
to (7.146), it follows that the interaction −ĵμemÂμ is parity invariant, as we expect for QED.
The scalar interaction (7.139) is also parity invariant.

7.5.2 Charge conjugation

The discussion of C proceeds similarly, the transformation being represented by a unitary
quantum field operator Ĉ such that

Ĉ φ̂ Ĉ−1 = φ̂† (7.150)

Ĉ ψ̂ Ĉ−1 = iγ2ψ̂†T (7.151)

Ĉ Âμ Ĉ−1 = −Âμ (7.152)
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in the three cases of interest. Note that in terms of the decomposition (7.15) of the complex

field φ̂ into the two real fields φ̂1 and φ̂2, (7.150) reads

Ĉ(φ̂1 − iφ̂2)Ĉ
−1 = φ̂1 + iφ̂2. (7.153)

The reader may check (problem 7.17(a)) that the Dirac field anticommutation relations are
invariant under (7.151).

Applying (7.150) to the free field expansion (7.16), we easily find

Ĉâ(k)Ĉ−1 = b̂(k), Ĉb̂†(k)Ĉ−1 = â†(k), (7.154)

so that particle and antiparticle operators are interchanged. The conditions (7.154) are of
course consistent with (7.153). It follows that the normally ordered Ĥ of (7.21) is even under
C, while the normally ordered number density (7.24) is odd—the ordering being with Bose
commutation relations. Carrying out the same steps for the Dirac field, and using the spinor
relations (4.95) and (4.96), we obtain

Ĉĉs(k)Ĉ
−1 = d̂s(k), Ĉd̂†s(k)Ĉ

−1 = ĉ†s(k); (7.155)

particle and antiparticle operators are again interchanged. We particularly note that the
Dirac Hamiltonian (7.55) is even under C, while the Dirac number operator (7.54) is odd,
in both cases after normal ordering with anticommutation relations (Fermi statistics). The

reader may check (problem 7.17(b)) that the electromagnetic current density q
¯̂
ψ(x)γμψ̂(x)

is odd under C, when normally ordered, and so the interaction −ĵμemÂμ is C-invariant. The
same is true for the KG case, after normal ordering using Bose statistics.

In section 4.2.2 we introduced self-conjugate (Majorana) spinors. In extending that dis-
cussion to quantum field theory, it is again convenient to use the alternative representation
(3.40) for the Dirac matrices, since we can then read off the Lorentz transformation prop-
erties from the results of section 4.1.2. Consider the 4-component Majorana field

ψ̂M(x) =

( −iσ2χ̂
†T(x)

χ̂(x)

)
. (7.156)

It is easy to check from (4.19) and (4.42) that the quantity σ2χ
∗(x) transforms like a φ-

type spinor, and so the construction (7.156) is consistent with Lorentz covariance. The
C-conjugate field is

ψ̂MC(x) = iγ2ψ̂†TM (x) =

(
0 −iσ2

iσ2 0

)( −iσ2χ̂(x)
χ̂†T(x)

)
= ψ̂M(x), (7.157)

showing that it is self-conjugate. It is clear that the Majorana field has only two independent
degrees of freedom—those in χ̂(x)—in contrast to the Dirac field which has four (we could
of course have equally well constructed a Majorana field using a φ-type spinor field instead
of a χ-type one). The latter corresponds physically to fermion and antifermion, spin up and
down, but the Majorana fermion is the same as its antiparticle. The free field expansion
corresponding to (7.35) for a Majorana field is

ψ̂M(x) =

∫
d3k

(2π)3
√
2ω

∑
λ=1,2

[ĉλ(k)u(k, λ)e
−ik·x + ĉ†λ(k)v(k, λ)e

ik·x]. (7.158)

The Lagrangian for a free Majorana field may be taken to be
¯̂
ψM(i∂/−m)ψ̂M, which the

reader can rewrite in terms of χ̂. For example, the mass term is

−m
¯̂
ψMψ̂M = −mχ̂Tiσ2χ̂+Hermitian conjugate. (7.159)

We note that this expression will vanish unless the components χ̂1 andχ̂2 anticommute with
each other.
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7.5.3 Time reversal

In section 4.2.4 we found that the time reversal transformation for the single particle theories
was not represented by a unitary operator, but rather by the product of a unitary operator
and the complex conjugation operator. We can see that the same must be true in quantum
field theory by considering the equation of motion (6.18) for a scalar field (for simplicity),
in the interaction picture:

∂φ̂(x, t)

∂t
= i[Ĥ0, φ̂(x, t)]. (7.160)

Suppose the field φ̂T in the time reversed frame were related to φ̂ by a unitary quantum
field operator ÛT so that (suppressing the spatial argument) ÛTφ̂(t)Û

†
T = φ̂T(t

′). Then
applying ÛT . . . Û†T to equation (7.160) we would obtain

∂φ̂T(t
′)

∂t
= i[ÛTĤ0Û

†
T, φ̂T(t

′)] (7.161)

or equivalently

∂φ̂T(t
′)

∂t′
= −i[ÛTĤ0Û

†
T, φ̂T(t

′)]. (7.162)

To restore (7.162) to the form (7.160)—i.e. for covariance to hold—would require that ÛT

transforms Ĥ0 to−Ĥ0. But this is unacceptable on physical grounds, because the eigenvalues
of Ĥ0 must be positive relative to the vacuum, both before and after the transformation.
We must therefore write the transformation as

T̂ = ÛTK (7.163)

where, as in section 4.2.4, K takes the complex conjugate of ordinary numbers and functions
(i.e. it replaces i by −i). The operator ÛT depends on the field involved, but we shall not
need to exhibit it explicitly.

We must now decide how the fields transform under T̂. We can be guided by our work in
section 4.2.4 in the single particle theory, remembering that a wavefunction is the vacuum
to one particle matrix element of the corresponding quantum field operator (see Comment
(5) in section 5.2.5), and also that matrix elements of operators and their time-reversed
transforms are related by (4.126). In the case of the KG field, for example, let us take in

(4.126) < ψ2 | =< 0|, Ô = φ̂(x), and |ψ1 >= |a; p > for the state of one ‘a’ particle with
4-momentum p. Then (4.126) gives

φ(x) =< 0|φ̂(x)|a;E,p >=< 0T|T̂φ̂(x)T̂−1|a;E,−p >∗, (7.164)

where φ(x) is the free particle solution exp(−iEt+ ip · x)/(2E)1/2. Now in section 4.2.4 we
found the result φT(x, t) = φ∗(x,−t), for the time-reversed solution. This will be consistent
with (7.164) if we take, in the quantum field case,

T̂φ̂(x, t)T̂−1 = φ̂(x,−t), (7.165)

assuming that the vacuum is invariant. Applying (7.165) to the free field expansion (4.5)
gives

T̂φ̂(x, t)T̂−1 =∫
d3k

(2π)3
√
2ω

[ÛTâ(k)Û
†
Te

iωt−ik·x + ÛTb̂
†(k)Û†Te

−iωt+ik·x] (7.166)

= φ̂(x,−t) =

∫
d3k

(2π)3
√
2ω

[â(k)eiωt+ik·x + b̂†(k)e−iωt−ik·x]. (7.167)
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Note that the plane wave functions have been complex conjugated in (7.166), because T̂
contains K. Changing k to −k in the integral in (7.167), we obtain the conditions

ÛTâ(ω,k)Û
†
T = â(ω,−k), ÛTb̂

†(ω,k)Û†T = b̂†(ω,−k). (7.168)

The transformation preserves particle and antiparticle, and reverses the 3-momentum in
the creation and annihilation operators.

For the Dirac theory, we take, similarly,

T̂ψ̂(x, t)T̂−1 = iα1α3ψ̂(x,−t) (7.169)

as suggested by (4.118). The reader may check that the anticommutation relations are left
invariant by (7.169). Applying (7.169) to the free field expansion (7.35), and taking the
spinors to be helicity eigenstates as in section 4.2.5, we obtain the conditions

ÛTĉλ(ω,k)Û
†
T = ĉλ(ω,−k), ÛTd̂

†
λ(ω,k)Û

†
T = d̂†λ(ω,−k). (7.170)

Once again, the 3-momentum has been reversed in the creation and annihilation operators.

Let us check the behaviour of the current density ĵμem(x) = q
¯̂
ψ(x)γμψ̂(x) under the

transformation (7.169). Recalling that in the standard representation iα1α3 = Σ2, we find

T̂ĵ0em(x, t)T̂
−1 = ĵ0em(x,−t)

T̂ĵem(x, t)T̂
−1 = qψ̂†(x,−t)Σ2α

∗Σ2ψ̂(x,−t) = −ĵem(x,−t). (7.171)

This is exactly how Aμ(x), and hence Âμ(x), transforms, and hence the electromagnetic
interaction −ĵμemÂμ is T-invariant. The same is true in the KG case.

We may now proceed to look at some simple processes in scalar and spinor electrody-
namics, in the following two chapters.

Problems

7.1 Verify that the Lagrangian L̂ of (7.1) is invariant (i.e. L̂(φ̂1, φ̂2) = L̂(φ̂′1, φ̂′2)) under the
transformation (7.2) of the fields (φ̂1, φ̂2) → (φ̂′1, φ̂

′
2).

7.2

(a) Verify that, for N̂μ
φ given by (7.23), the corresponding N̂φ of (7.14) reduces to

the form (7.24); and that, with Ĥ given by (7.21),

[N̂φ, Ĥ] = 0.

(b) Verify equation (7.27).

7.3 Show that
[φ̂(x1), φ̂

†(x2)] = 0 for (x1 − x2)
2 < 0

[Hint : insert expression (7.16) for the φ̂’s and use the commutation relations (7.18) to express
the commutator as the difference of two integrals; in the second integral, x1 − x2 can be
transformed to −(x1 − x2) by a Lorentz transformation—the time-ordering of space-like
separated events is frame-dependent!].
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7.4 Verify that varying ψ† in the action principle with Lagrangian (7.34) gives the Dirac
equation.

7.5 Verify (7.44).

7.6 Verify equations (7.52) and (7.53).

7.7 Verify (7.62).

7.8 Verify the expression given in (7.64) for
∑
s

u(k, s)ū(k, s). [Hint : first, note that u is

a four-component Dirac spinor arranged as a column, while ū is another four-component
spinor but this time arranged as a row because of the transpose in the † symbol. So ‘uū’
has the form ⎛

⎜⎝
u1

u2

u3

u4

⎞
⎟⎠

( ū1 ū2 ū3 ū4 )

=

⎛
⎝u1ū1 u1ū2 · · ·

u2ū1 u2ū2 · · ·
...

...

⎞
⎠

and is therefore a 4×4 matrix. Use the expression (3.73) for the u’s, and take

φ1 =

(
1
0

)
φ2 =

(
0
1

)
.

Verify that

φ1φ1† + φ2φ2† =
(
1 0
0 1

)
. ]

Similarly, verify the expression for
∑
s

v(k, s)v̄(k, s).

7.9 Verify the result quoted in (7.63) for the Feynman propagator for the Dirac field.

7.10 Verify that if L = − 1
4FμνF

μν−jμemAμ, where Fμν = ∂μAν−∂νAμ, the Euler–Lagrange
equations for Aμ yield the Maxwell form

�Aμ − ∂μ(∂νA
ν) = jμem.

[Hint : it is helpful to use antisymmetry of Fμν to rewrite the ‘F · F ’ term as − 1
2Fμν∂

μAν .]

7.11

(a) Show that the Fourier transform of the free-field equation for Aμ (i.e. the one in
the previous question with jμem set to zero) is given by (7.90).

(b) Verify (7.94).

7.12 Show that the equation of motion for Aμ, following from the Lagrangian LL of (7.97)
is

�Aμ = 0.

7.13 Verify equation (7.118).

7.14 Verify equations (7.120), (7.121), and (7.122).

7.15 Verify the form (7.142) of the interaction Hamiltonian, H′S , in charged spin-0 electro-
dynamics.

7.16 Verify equation (7.143).
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7.17

(a) Check that the anticommutation relations (7.44) and (7.45) are left invariant
under (7.151).

(b) Check that the Dirac electromagnetic current density
¯̂
ψ(x)γμψ̂(x) is odd under

C when normally ordered. (Hint: the normally ordered current can be written as
1

2
[
¯̂
ψ(x), γμψ̂(x)].)
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8

Elementary Processes in Scalar and Spinor
Electrodynamics

8.1 Coulomb scattering of charged spin-0 particles

We begin our study of electromagnetic interactions by considering the simplest case, that of
the scattering of a (hypothetical) positively charged spin-0 particle ‘s+’ by a fixed Coulomb
potential, treated as a classical field. This will lead us to the relativistic generalization of
the Rutherford formula for the cross section. We shall use this example as an exercise to
gain familiarity with the quantum field-theoretic approach of chapter 6, since it can also
be done straightforwardly using the ‘wavefunction’ approach familiar from non-relativistic
quantum mechanics, when supplemented by the work of chapter 3. We shall also look at
‘s−’ Coulomb scattering, to test the anti-particle prescriptions of chapter 3. Incidentally,
we call these scalar particles s± to emphasize that they are not to be identified with, for
instance, the physical pions π±, since the latter are composite (qq̄) systems, and hence their
interactions are more complicated than those of our hypothetical ‘point-like’ s± (as we shall
see in section 8.4). No point-like charged scalar particles have been discovered, as yet.

8.1.1 Coulomb scattering of s+ (wavefunction approach)

Consider the scattering of a spin-0 particle of charge e and mass M , the ‘s+’, in an elec-
tromagnetic field described by the classical potential Aμ. The process we are considering
is

s+(p) → s+(p′) (8.1)

as shown in figure 8.1, where p and p′ are the initial and final 4-momenta, respectively. The
appropriate potential for use in the KG equation has been given in section 3.5:

V̂KG = ie(∂μA
μ +Aμ∂μ)− e2A2. (8.2)

As we shall see in more detail as we go along, the parameter characterizing each order
of perturbation theory based on this potential is found to be e2/4π. In natural units (see
appendices B and C) this has the value

α = e2/4π ≈ 1

137
(8.3)

for the elementary charge e. α is called the fine structure constant. The smallness of α is
the reason why a perturbation approach has been very successful for QED.

To lowest order in α we can neglect the e2A2 term and the perturbing potential is then

V̂ = ie(∂μA
μ +Aμ∂μ). (8.4)
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FIGURE 8.1
Coulomb scattering of s+.

For a scattering process we shall assume1 the same formula for the transition amplitude as
in non-relativistic quantum mechanics (NRQM) time-dependent perturbation theory (see
appendix A, equations (A.23) and (A.24)):

As+ = −i

∫
d4xφ′∗V̂ φ (8.5)

where φ and φ′ are the initial and final state free-particle solutions, respectively. The latter
are (recall equation (3.11))

φ = Ne−ip·x (8.6)

φ′ = N ′e−ip′·x (8.7)

and we shall fix the normalization factors later. Inserting the expression for V̂ into (8.5),
and doing some integration by parts (problem 8.1), we obtain

As+ = −i

∫
d4x {ie[φ′∗(∂μφ)− (∂μφ

′∗)φ]}Aμ. (8.8)

The expression inside the braces is very reminiscent of the probability current expression
(3.20). Indeed we can write (8.8) as

As+ = −i

∫
d4x jμem,s+(x)Aμ(x) (8.9)

where
jμem,s+(x) = ie(φ′∗∂μφ− (∂μφ′∗)φ) (8.10)

can be regarded as an electromagnetic ‘transition current’, analogous to the simple prob-
ability current for a single state. In the following section we shall see the exact meaning
of this idea, using quantum field theory. Meanwhile, we insert the plane-wave free-particle
solutions (8.6) and (8.7) for φ and φ′ into (8.10) to obtain

jμem,s+(x) = NN ′e(p+ p′)μe−i(p−p′)·x (8.11)

so that (8.9) becomes

As+ = −iNN ′
∫

d4x e(p+ p′)μe−i(p−p′)·xAμ(x). (8.12)

In the case of Coulomb scattering from a static point charge Ze (e > 0), the vector
potential Aμ is given by

A0 =
Ze

4π|x| A = 0. (8.13)

1Justification may be found in chapter 9 of Bjorken and Drell (1964).
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Inserting (8.13) into (8.12) we obtain

As+ = −iNN ′Ze2(E + E′)
∫

e−i(E−E′)t dt

∫
ei(p−p

′)·x

4π|x| d3x. (8.14)

The initial and final 4-momenta are

p = (E,p) p′ = (E′,p′)

with E =
√
M2 + p2, E′ =

√
M2 + p′2. The first (time) integral in (8.14) gives an energy-

conserving δ-function 2πδ(E−E′) (see appendix E), as is expected for a static (non-recoiling)
scattering centre. The second (spatial) integral is the Fourier transform of 1/4π|x|, which
can be obtained from (1.13), (1.26), and (1.27) by setting mU = 0; the result is 1/q2 where
q = p− p′. Hence

As+ = −iNN ′2πδ(E − E′)
Ze2

q2
2E (8.15)

≡ −i(2π)δ(E − E′)Vs+ (cf equation (A.25)) (8.16)

where in (8.15) we have used E = E′ in the matrix element. This is in the standard form
met in time-dependent perturbation theory (cf equations (A.25) and (A.26)).

The transition probability per unit time is then (appendix H, equation (H.18))

Ṗs+ = 2π|Vs+ |2ρ(E′) (8.17)

where ρ(E′) is the density of final states per energy interval dE′. This will depend on the
normalization adopted for φ, φ′ via the factors N,N ′. We choose these to be unity, which
means that we are adopting the ‘covariant’ normalization of 2E particles per unit volume.
Then (cf equation (H.22))

ρ(E′) dE′ =
|p′|2
(2π)3

d|p′|
2E′

dΩ. (8.18)

Using E′ = (M2 + p′2)1/2 one easily finds

ρ(E′) =
|p′| dΩ
16π3

. (8.19)

Note that this differs from equation (H.22) since here we are using relativistic kinematics.
To obtain the cross section, we need to divide Ṗs+ by the incident flux, which is 2|p| in

our normalization. Hence
dσ = (4Z2e4E2/16π2q4) dΩ. (8.20)

Finally, since q2 = (p− p′)2 = 4|p|2 sin2 θ/2 (cf section 1.3.4) where θ is the angle between
p and p′, we obtain

dσ

dΩ
= (Zα)2

E2

4|p|4
1

sin4 θ/2
. (8.21)

This is the Rutherford formula with relativistic kinematics, showing the characteristic
sin−4 θ/2 angular dependence (cf figure 1.8). This deservedly famous formula will serve
as a ‘reference point’ for all the subsequent calculations in this chapter, as we proceed to
add in various complications, such as spin, recoil, and structure. The non-relativistic form
may be retrieved by replacing E by M .
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8.1.2 Coulomb scattering of s+ (field-theoretic approach)

We follow steps closely similar to those in section 6.3.1, making use of the result quoted in
section 7.4, that the appropriate interaction Hamiltonian for use in the Dyson series (6.42)
is Ĥ′s = −L̂int where L̂int is given by (7.139), with q = e. As in the step from (8.2) to (8.4)
we discard the e2 term to first order and use

Ĥ′s(x) = ie(φ̂†(x)∂μφ̂(x)− (∂μφ̂†(x))φ̂(x))Aμ(x). (8.22)

Equation (8.22) can be written as ĵμem,sAμ where

ĵμem,s = ie(φ̂†∂μφ̂− (∂μφ̂†)φ̂). (8.23)

Note that the field Aμ is not quantized; it is being treated as an ‘external’ classical potential.

The expansion for the field φ̂ is given in (7.16). As in (6.48), the lowest-order amplitude is

As+ = −i〈s+, p′|
∫

d4x Ĥ ′
s(x)|s+, p〉 (8.24)

where (cf (6.49))

|s+, p〉 =
√
2Eâ†(p)|0〉. (8.25)

We are, of course, anticipating in our notation that (8.24) will indeed be the same as (8.12).
The required amplitude is then

As+ = −i

∫
d4x 〈s+, p′|ĵμem,s(x)|s+, p〉Aμ(x). (8.26)

Using the expansion (7.16), the definition (8.25) and the vacuum conditions (7.30), and
following the method of section 6.3.1, it is a good exercise to check that the value of the
matrix element in (8.26) is (problem 8.2)

〈s+, p′|ĵμem,s(x)|s+, p〉 = e(p+ p′)μe−i(p−p′)·x. (8.27)

This is exactly the same as the expression we obtained in (8.11) for the wave mechanical
transition current in this case, using the normalization N = N ′ = 1, which is consistent with
the field-theoretic normalization in (8.25). Thus our wave mechanical transition current is
indeed the matrix element of the field-theoretical electromagnetic current operator :

jμem,s+(x) = 〈s+, p′|ĵμem,s(x)|s+, p〉. (8.28)

Combining all these results, we have therefore connected the ‘wavefunction’ amplitude and
the ‘field-theory’ amplitude via

As+ = −i

∫
d4x jμem,s+(x)Aμ(x)

= −i

∫
d4x 〈s+, p′|ĵμem,s(x)|s+, p〉Aμ(x). (8.29)

We note that because of the static nature of the potential, and the non-covariant choice of
Aμ (only A0 �= 0), our answer in either case cannot be expected to yield a Lorentz invariant
amplitude.
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FIGURE 8.2
Coulomb scattering of s−: (a) the physical process with anti-particles of positive 4-
momentum and (b) the related unphysical process with particles of negative 4-momentum
using the Feynman prescription.

8.1.3 Coulomb scattering of s−
The physical process is (figure 8.2(a))

s−(p) → s−(p′) (8.30)

where, of course, E and E′ are both positive (E = (M2 + p2)1/2 and similarly for E′).
Since the charge on the anti-particle s− is −e, the amplitude for this process can, in fact,
be immediately obtained from (8.12) by merely changing the sign of e. Because of the way
e and the 4-momenta p and p′ enter (8.12), however, this in turn is the same as letting
p → −p′ and p′ → −p; this changes the sign of the ‘e(p + p′)μ’ part as required, and
leaves the exponential unchanged. Hence we see in action here (admittedly in a very simple
example) the Feynman interpretation of the negative 4-momentum solutions, described in
section 3.4.4: the amplitude for s−(p) → s−(p′) is the same as the amplitude for s+(−p′) →
s+(−p). The latter process is shown in figure 8.2(b).

The same conclusion can be derived from the field-theory formalism. In this case we
need to evaluate the matrix element

〈s−, p′|ĵμem,s(x)|s−, p〉, (8.31)

where the same ĵem,s of equation (8.23) enters: φ̂ of (7.16) contains the anti-particle operator
too! It is again a good exercise to check, using

|s−, p〉 =
√
2E b̂†(p)|0〉 (8.32)

and remembering to normally order the operators in ĵμem,s, that (8.31) is given by the
expected result, namely, (8.27) with e → −e (problem 8.3).

Since the matrix elements only differ by a sign, the cross sections for s+ and s− Coulomb
scattering will be the same to this (lowest) order in α.

8.2 Coulomb scattering of charged spin-1
2
particles

8.2.1 Coulomb scattering of e− (wavefunction approach)

We shall call the particle an electron, of charge −e(e > 0) and mass m; note that by
convention it is the negatively charged fermion that is the ‘particle’, but the positively
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FIGURE 8.3
Coulomb scattering of e−.

charged boson. The process we are considering is (figure 8.3)

e−(k, s) → e−(k′, s′) (8.33)

where k′ and s′ are the 4-momentum and spin of the incident e−, respectively, and similarly
for k′, s′, with k = (E,k) and E = (m2 + k2)1/2 and similarly for k′.

The appropriate potential to use in the Dirac equation has been given in section 3.5:

V̂D = −eA01+ eα ·A = −e

(
A0 σ ·A

σ ·A A0

)
(8.34)

for a particle of charge −e. This potential is a 4× 4 matrix and to obtain an amplitude in
the form of a single complex number, we must use ψ† instead of ψ∗ in the matrix element.
The first-order amplitude (figure 8.3) is therefore

Ae− = −i

∫
d4xψ†(k′, s′)V̂Dψ(k, s) (8.35)

where s and s′ label the spin components. The spin labels are necessary since the spin con-
figuration may be changed by the interaction. In (8.35), ψ and ψ′ are free-particle positive-
energy solutions of the Dirac equation, as in (3.74), with u given by equation (3.73) and
normalized to u†u = 2E, E = (m2 + k2)1/2.

The Lorentz properties of (8.35) become much clearer if we use the γ-matrix notation
of problem 4.3. For convenience we re-state the definitions here:

γ0 = β (γ0)2 = 1 (8.36)

γi = βαi (γi)2 = −1 i = 1, 2, 3. (8.37)

The Dirac equation may then be written (problem 4.3) as

(i/∂ −m)ψ = 0 (8.38)

where the ‘slash’ notation introduced in (7.59) has been used (i/∂ = iγμ∂μ). Defining ψ̄ =
ψ†γ0, (8.35) becomes

Ae− = −i

∫
d4x (−eψ̄′(x)γμψ(x))Aμ(x) (8.39)

≡ −i

∫
d4x jμem,e−(x)Aμ(x) (8.40)

where we have defined an electromagnetic transition current for a negatively charged
fermion:

jμem,e−(x) = −eψ̄′(x)γμψ(x), (8.41)
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exactly analogous to the one for a positively charged boson introduced in section 8.1.1. We
know from section 4.1.2 that ψ̄′γμψ is a 4-vector, showing that Ae− of (8.40) is Lorentz
invariant.

Inserting free-particle solutions for ψ and ψ′† in (8.41), we obtain

jμem,e−(x) = −eū(k′, s′)γμu(k, s)e−i(k−k′)·x (8.42)

so that (8.39) becomes

Ae− = −i

∫
d4x (−eū′γμue−i(k−k′)·x)Aμ(x) (8.43)

where u = u(k, s) and similarly for u′. Note that the u’s do not depend on x. For the case
of the Coulomb potential in equation (8.13), Ae− becomes

Ae− = i2πδ(E − E′)
Ze2

q2
u′†u (8.44)

just as in (8.15), where q = k − k′ and we have used ū′γ0 = u′†. Comparing (8.44) with
(8.15), we see that (using the covariant normalization N = N ′ = 1) the amplitude in the

spinor case is obtained from that for the scalar case by the replacement ‘2E → u′†u’ and
the sign of the amplitude is reversed as expected for e− rather than s+ scattering.

We now have to understand how to define the cross section for particles with spin and
then how to calculate it. Clearly the cross section is proportional to |Ae− |2, which involves
|u†(k′, s′)u(k, s)|2 here. Usually the incident beam is unpolarized, which means that it is a
random mixture of both spin states s (‘up’ or ‘down’). It is important to note that this
is an incoherent average, in the sense that we average the cross section rather than the
amplitude. Furthermore, most experiments usually measure only the direction and energy
of the scattered electron and are not sensitive to the spin state s′. Thus what we wish to
calculate, in this case, is the unpolarized cross section defined by

dσ̄ ≡ 1
2 (dσ↑↑ + dσ↑↓ + dσ↓↑ + dσ↓↓)

= 1
2

∑
s′,s

dσs′s (8.45)

where dσs′,s ∝ |u†(k′, s′)u(k, s)|2. In (8.45), we are averaging over the two possible initial
spin polarizations and summing over the final spin states arising from each initial spin state.

It is possible to calculate the quantity

S = 1
2

∑
s′,s

|u′†u|2 (8.46)

by brute force, using (3.73) and taking the two-component spinors to be, say,

φ1 =

(
1
0

)
φ2 =

(
0
1

)
. (8.47)

One finds (problem 8.4)
S = (2E)2(1− v2 sin2 θ/2) (8.48)

where v = |k|/E is the particle’s speed and θ is the scattering angle. If we now recall that

(a) the matrix element (8.44) can be obtained from (8.15) by the replacement ‘2E → u′†u’
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and (b) the normalization of our spinor states is the same (‘ρ = 2E’) as in the scalar case,
so that the flux and density of states factors are unchanged, we may infer from (8.21) that

dσ̄

dΩ
= (Zα)2

E2

4|k|4
(1− v2 sin2 θ/2)

sin4 θ/2
. (8.49)

This is the Mott cross section (Mott 1929). Comparing this with the basic Rutherford for-
mula (8.21), we see that the factor (1−v2 sin2 θ/2) (which comes from the spin summation)
represents the effect of replacing spin-0 scattering particles by spin- 12 ones.

Indeed, this factor has an important physical interpretation. Consider the extreme rel-
ativistic limit (v → 1,m → 0), when the factor becomes cos2 θ/2, which vanishes in the
backward direction θ = π. This may be understood as follows. In the m → 0 limit, it is
appropriate to use the representation (3.40) of the Dirac matrices and, in this case equations
(4.14) and (4.15) show that the Dirac spinor takes the form

u =

(
uR

uL

)
(8.50)

where uR and uL have positive and negative helicity, respectively. The spinor part of the
matrix element (8.44) then becomes u′R

†
uR + u′L

†
uL, from which it is clear that helicity is

conserved : the helicity of the u′ spinors equals that of the u spinors; in particular, there
are no helicity mixing terms of the form u′R

†
uL or u′L

†
uR. Consider then an initial state

electron with positive helicity, and take the z-axis to be along the incident momentum.
The z-component of angular momentum is then + 1

2 . Suppose the electron is scattered
through an angle of π. Since helicity is conserved, the scattered electron’s helicity will
still be positive, but since the direction of its momentum has been reversed, its angular
momentum along the original axis will be − 1

2 . Hence this configuration is forbidden by
angular momentum conservation—and similarly for an incoming negative helicity state.
The spin labels s′, s in (8.46) can be taken to be helicity labels and so it follows that the
quantity S must vanish for θ = π in the m → 0 limit. The ‘R’ and ‘L’ states are mixed by
a mass term in the Dirac equation (see (4.14) and (4.15)) and hence we expect backward
scattering to be increasingly allowed as m/E increases (recall that v = (1 −m2/E2)1/2 so
that 1− v2 sin2 θ/2 = cos2 θ/2 + (m2/E2) sin2 θ/2).

8.2.2 Coulomb scattering of e−(field-theoretic approach)

Once again, the interaction Hamiltonian has been given in section 7.4, namely

Ĥ ′
D = −e

¯̂
ψγμψ̂Aμ ≡ ĵμem,eAμ (8.51)

where the current operator ĵμem,e is just −e
¯̂
ψγμψ̂ in this case. The lowest-order amplitude

is then

Ae− = −i〈e−, k′, s′|
∫

d4x Ĥ ′
D(x)|e−, k, s〉 (8.52)

= −i

∫
d4x 〈e−, k′, s′|ĵμem,e(x)|e−, k, s〉Aμ(x). (8.53)

With our normalization, and referring to the fermionic expansion (7.35), the states are
defined by

|e−, k, s〉 =
√
2Eĉ†s(k)|0〉 (8.54)
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and similarly for the final state. We then find (problem 8.5) that the current matrix element
in (8.53) takes the form

〈e−, k′, s′|ĵμem,e(x)|e−, k, s〉 = −eū′γμue−i(k−k′)·x = jμem,e−(x) (8.55)

exactly as in (8.42). Thus once again, the ‘wavefunction’ and ‘field-theoretic’ approaches
have been shown to be equivalent, in a simple case.

8.2.3 Trace techniques for spin summations

The calculation of cross sections involving fermions rapidly becomes laborious following the
‘brute force’ method of section 8.2.1, in which the explicit forms for u and u′† were used.
Fortunately we can avoid this by using a powerful labour-saving device due to Feynman, in
which the γ’s come into their own.

We need to calculate the quantity S given in (8.46). This will turn out to be just the
first in a series of such objects. With later needs in mind, we shall here calculate a more
general quantity than (8.46), namely the lepton tensor

Lμν(k′, k) = 1
2

∑
s′,s

ū(k′, s′)γμu(k, s)[ū(k′, s′)γνu(k, s)]∗ (8.56)

=
1

2e2

∑
s′,s

〈e−, k′, s′|ĵμem,e(0)|e−, k, s〉〈e−, k′, s′|ĵνem,e(0)|e−, k, s〉∗. (8.57)

Clearly this will be relevant to the more general case in which Aμ contains non-zero spatial
components, for example. For our present application, we shall need only L00.

We first note that Lμν is correctly called a tensor (a contravariant second-rank one,
in fact—see appendix D) because the two ‘ūγμu, ūγνu’ factors are each 4-vectors, as we
have seen. (We might worry a little over the complex conjugation of the second factor, but
this will disappear after the next step.) Consider therefore the factor [ū(k′, s′)γνu(k, s)]∗.
For each value of the index ν, this is just a number (the corresponding component of the
4-vector), and so it can make no difference if we take its transpose, in a matrix sense (the
transpose of a 1× 1 matrix is certainly equal to itself!). In that case the complex conjugate
becomes the Hermitian conjugate, which is:

[ū(k′, s′)γνu(k, s)]† = u†(k, s)γν†γ0†u(k′, s′) (8.58)

= ū(k, s)γνu(k′, s′) (8.59)

since (problem 8.6)
γ0γν†γ0 = γν (8.60)

and γ0 = γ0†. Thus Lμν may be written in the more streamlined form

Lμν = 1
2

∑
s′,s

ū(k′, s′)γμu(k, s)ū(k, s)γνu(k′, s′) (8.61)

which is, moreover, evidently the (tensor) product of two 4-vectors. However, there is more
to this than saving a few symbols. We have seen the expression∑

s

u(k, s)ū(k, s) (8.62)
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before! (See (7.64) and problem 7.8.) Thus we can replace the sum (8.62) over spin states
‘s’ by the corresponding matrix (/k +m):

Lμν = 1
2

∑
s′

ūα(k
′, s′)(γμ)αβ(/k +m)βγ(γ

ν)γδuδ(k
′, s′) (8.63)

where we have made the matrix indices explicit, and summation on all repeated matrix
indices is understood. In particular, note that every matrix index is repeated, so that each
one is in fact summed over; there are no ‘spare’ indices. Now, since we can reorder matrix
elements as we wish, we can bring the uδ to the front of the expression, and use the same
trick to perform the second spin sum:∑

s′
uδ(k

′, s′)ūα(k
′, s′) = (/k

′
+m)δα. (8.64)

Thus Lμν takes the form of a matrix product, summed over the diagonal elements:

Lμν = 1
2 (/k

′
+m)δα(γ

μ)αβ(/k +m)βγ(γ
ν)γδ (8.65)

= 1
2

∑
δ

[(/k
′
+m)γμ(/k +m)γν ]δδ (8.66)

where we have explicitly reinstated the sum over δ. The right-hand side of (8.66) is the
trace (i.e. the sum of the diagonal elements) of the matrix formed by the product of the
four indicated matrices:

Lμν = 1
2Tr[(/k

′
+m)γμ(/k +m)γν ]. (8.67)

Such matrix traces have some useful properties which we now list. Denote the trace of
a matrix A by

TrA =
∑
i

Aii. (8.68)

Consider now the trace of a matrix product,

Tr(AB) =
∑
i,j

AijBji (8.69)

where we have written the summations in explicitly. We can (as before) freely exchange the
order of the matrix elements Aij and Bji, to rewrite (8.69) as

Tr(AB) =
∑
i,j

BjiAij . (8.70)

But the right-hand side is precisely Tr(BA); hence we have shown that

Tr(AB) = Tr(BA). (8.71)

Similarly it is easy to show that

Tr(ABC) = Tr(CAB). (8.72)

We may now return to (8.67). The advantage of the trace form is that we can invoke
some powerful results about traces of products of γ-matrices. Here we shall just list the trace
‘theorems’ that we shall use to evaluate Lμν : more complete statements of trace theorems
and γ-matrix algebra, together with proofs of these theorems, are given in appendix J .
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We need the following results:

(a) Tr1 = 4 (8.73)

(b) Tr (odd number of γ’s) = 0 (8.74)

(c) Tr(/a/b) = 4(a · b) (8.75)

(d) Tr(/a/b/c/d) = 4[(a · b)(c · d) + (a · d)(b · c)− (a · c)(b · d)]. (8.76)

Then

Tr[(/k
′
+m)γμ(/k +m)γν ] = Tr(/k

′
γμ/kγν) +mTr(γμ/kγν)

+mTr(/k
′
γμγν) +m2Tr(γμγν) (8.77)

The terms linear in m are zero by theorem (b), and using (c) in the form

Tr(γμγν)a
μbν = 4gμνa

μbν = 4a · b (8.78)

and (d) in a similar form, we obtain (problem 8.7)

Lμν = 1
2Tr[(/k

′
+m)γμ(/k +m)γν ] = 2[k′μkν + k′νkμ − (k′ · k)gμν ] + 2m2gμν . (8.79)

In the present case we simply want L00, which is found to be (problem 7.9)

L00 = 4E2(1− v2 sin2 θ/2) (8.80)

where v = |k|/E, just as in (8.48).

8.2.4 Coulomb scattering of e+

The physical process is
e+(k, s) → e+(k′, s′) (8.81)

where, as usual, we emphasize that E and E′ are both positive. In the wavefunction ap-
proach, we saw in section 3.4.4. that, because ρ ≥ 0 always for a Dirac particle, we had to
introduce a minus sign ‘by hand’, according to the rule stated at the end of section 3.4.4.
This rule gives us, in the present case,

amplitude (e+(k, s) → e+(k′, s′))
= −amplitude (e−(−k′,−s′) → e−(−k,−s)). (8.82)

Referring to (8.43), therefore, the required amplitude for the process (8.81) is

Ae+ = −i

∫
d4x (ev̄(k, s)γμv(k′, s′)e−i(k−k′)·x)Aμ(x) (8.83)

since the ‘v’ solutions have been set up precisely to correspond to the ‘−k,−s’ situation.
In evaluating the cross section from (8.83), the only difference from the e− case is the
appearance of the spinors ‘v’ rather than ‘u’; the lepton tensor in this case is

Lμν = 1
2Tr[(/k −m)γμ(/k

′ −m)γν ] (8.84)

using the result (7.64) for
∑

s v(k, s)v̄(k, s). Expression (8.84) differs from (8.67) by the sign
of m and by k ↔ k′, but the result (8.79) for the trace is insensitive to these changes. Thus
the positron Coulomb scattering cross section is equal to the electron one to lowest order
in α.
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In the field-theoretic approach, the same interaction Hamiltonian Ĥ ′
D which we used for

e− scattering will again automatically yield the e+ matrix element (recall the discussion at
the end of section 8.1.3). In place of (8.53), the amplitude we wish to calculate is

Ae+ = −i

∫
d4x 〈e+, k′, s′|ĵμem,e(x)|e+, k, s〉Aμ(x)

= −i

∫
d4x 〈e+, k′, s′| − e

¯̂
ψ(x)γμψ̂(x)|e+, k, s〉Aμ(x) (8.85)

where, referring to the fermionic expansion (7.35),

|e+, k, s〉 =
√
2Ed†s(k)|0〉, (8.86)

and similarly for the final state. In evaluating the matrix element in (8.85) we must again
remember to normally order the fields, according to the discussion in section 7.2. Bearing
this in mind, and inserting the expansion (7.35), one finds (problem 8.9)

〈e+, k′, s′|ĵμem,e(x)|e+, k, s〉 = +ev̄(k, s)γμv(k′, s′)e−i(k−k′)·x (8.87)

≡ jμem,e+(x) (8.88)

just as required in (8.83). Note especially that the correct sign has emerged naturally without
having to be put in ‘by hand’, as was necessary in the wavefunction approach when applied
to an anti-fermion.

We are now ready to look at some more realistic (and covariant) processes.

8.3 e−s+ scattering

8.3.1 The amplitude for e−s+ → e−s+

We consider the two-body scattering process

e−(k, s) + s+(p) → e−(k′, s′) + s+(p′) (8.89)

where the 4-momenta and spins are as indicated in figure 8.4. How will the e− and s+ inter-
act? In this case, there is no ‘external’ classical electromagnetic potential in the problem.
Instead, each of e− and s+, as charged particles, acts as source for the electromagnetic field,
with which they in turn interact. We can picture the process as one in which each particle
scatters off the ‘virtual’ field produced by the other (we shall make this more precise in
comment (2) after equation (8.102)). The formalism of quantum field theory is perfectly
adapted to account for such effects, as we shall see. It is very significant that no new inter-
action is needed to describe the process (8.89) beyond what we already have: the complete
Lagrangian is now simply the free-field Lagrangians for the spin- 12 e−, the spin-0 s+ and the
Maxwell field, together with the sum of the lowest order scalar electromagnetic interaction
Hamiltonian of (8.22), and the Dirac interaction Hamiltonian of (7.135) with q = −e. The
full interaction Hamiltonian is then

Ĥ ′(x) = [ie(φ̂†(x)∂μφ̂(x)− ∂μφ̂†(x)φ̂(x))− e
¯̂
ψ(x)γμψ̂(x)]Âμ(x) (8.90)

≡ (ĵμem,s(x) + ĵμem,e(x))Âμ(x) (8.91)
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FIGURE 8.4
e−s+ scattering amplitude.

where the ‘total current’ in (8.91) is just the indicated sum of the φ̂ (scalar) and ψ̂ (spinor)
currents. This Ĥ ′ must now be used in the Dyson expansion (6.42), in a perturbative
calculation of the e−s+ → e−s+ amplitude.

Note now that, in contrast to our Coulomb scattering ‘warm-ups’, the electromagnetic
field is quantized in (8.90). We first observe that, since there are no free photons in either
the initial or final states in our process e−s+ → e−s+, the first-order matrix element of
Ĥ ′ must vanish (as did the corresponding first-order amplitude in AB → AB scattering, in
section 6.3.2). The first non-vanishing scattering processes arise at second order (cf (6.74)):

Ae−s+ =
(−i)2

2

∫ ∫
d4x1 d

4x2 〈0|ĉs′(k′)â(p′)T{Ĥ ′(x1)Ĥ
′(x2)}â†(p)ĉ†s(k)|0〉

×(16EkEk′EpEp′)1/2. (8.92)

Just as for AB → AB and the Ĉ field in the ‘ABC’ model (cf (6.81)), as far as the Âμ

operators in (8.92) are concerned the only surviving contraction is

〈0|T (Âμ(x1)Âν(x2))|0〉 (8.93)

which is the Feynman propagator for the photon, in coordinate space. As regards the rest
of the matrix element (8.92), since the â’s and ĉ’s commute the ‘s+’ and ‘e−’ parts are quite
independent, and (8.92) reduces to

(−i)2

2

∫ ∫
d4x1 d

4x2 {〈s+, p′|ĵμem,s(x1)|s+, p〉〈0|T (Âμ(x1)Âν(x2)|0〉

×〈e−, k′, s′|ĵνem,e(x2)|e−, k, s〉+ (x1 ↔ x2)}. (8.94)

But we know the explicit form of the current matrix elements in (8.94), from (8.27) and
(8.55). Inserting these expressions into (8.94) and noting that the term with x1 ↔ x2 is
identical to the first term, one finds (cf (6.102) and problem 8.10)

Ae−s+ = i(2π)4δ4(p+ k − p′ − k′)Me−s+ (8.95)

where (using the general form (7.122) of the photon propagator)

iMe−s+ = (−i)2(e(p+ p′)μ)
(
i[−gμν + (1− ξ)qμqν/q

2]

q2

)
×(−eū(k′, s′)γνu(k, s)) (8.96)

≡ (−i)2jμs+(p, p
′)
(
i[−gμν + (1− ξ)qμqν/q

2]

q2

)
jνe−(k, k

′) (8.97)
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and q = (k − k′) = (p′ − p). We have introduced here the ‘momentum–space’ currents

jμs+(p, p
′) = e(p+ p′)μ (8.98)

and
jμe−(k, k

′) = −eū(k′, s′)γμu(k, s) (8.99)

shortening the notation by dropping the ‘em’ suffix, which is understood.
Before proceeding to calculate the cross section, some comments on (8.97) are in order:

Comment (1)

The jμs+(p, p
′) and jνe−(k, k

′) in (8.98) and (8.99) are the momentum–space versions of the
x-dependent current matrix elements in (8.27) and (8.55); they are, in fact, simply those ma-
trix elements evaluated at x = 0. The x-dependent matrix elements (8.27) and (8.55) both
satisfy the current conservation equations ∂μj

μ(x) = 0 as is easy to check (problem 8.11).
Correspondingly, it follows from (8.98) and (8.99) that we have

qμj
μ
s+(p, p

′) = qμj
μ
e−(k, k

′) = 0 (8.100)

where q = p′ − p = k − k′, and we have used the mass-shell conditions p2 = p′2 = M2,
/ku = mu, /k

′
u′ = mu′; the relations (8.100) are the momentum–space versions of current

conservation. The ξ-dependent part of the photon propagator, which is proportional to
qμqν , therefore vanishes in the matrix element (8.97). This shows that the amplitude is in-
dependent of the gauge parameter ξ—in other words, it is gauge invariant and proportional
simply to

jμs+
gμν
q2

jνe− . (8.101)

Comment (2)

The amplitude (8.97) has the appealing form of two currents ‘hooked together’ by the photon
propagator. In the form (8.101), it has a simple ‘semi-classical’ interpretation. Suppose we
regard the process e−s+ → e−s+ as the scattering of the e−, say, in the field produced by
the s+ (we can see from (8.101) that the answer is going to be symmetrical with respect to
whichever of e− and s+ is singled out in this way). Then the amplitude will be, as in (8.43),

Ae−s+ = −i

∫
d4x jνe−(k, k

′)e−i(k−k′)·xAν(x) (8.102)

where now the classical field Aν(x) is not an ‘external’ Coulomb field but the field caused
by the motion of the s+. It seems very plausible that this Aν(x) should be given by the
solution of the Maxwell equations (2.22), with the jνem(x) on the right-hand side given by
the transition current (8.11) (with N = N ′ = 1) appropriate to the motion s+(p) → s+(p′):

�Aν − ∂ν(∂μAμ) = jνs+(x) (8.103)

where
jνs+(x) = e(p+ p′)νe−i(p−p′)·x (8.104)

Equation (8.103) will be much easier to solve if we can decouple the components of Aν by
using the Lorentz condition ∂μAμ = 0. We are aware of the problems with this condition
in the field-theory case (cf section 7.3.2) but we are here treating Aν classically. Although
Aν is not a free field in (8.103), it is easy to see that we may consistently take ∂μAμ = 0
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FIGURE 8.5
Feynman diagram for e−s+ scattering in the one-photon exchange approximation.

provided that the current is conserved, ∂νj
ν
s+(x) = 0, which we know to be the case. Thus

we have to solve
�Aν(x) = e(p+ p′)νe−i(p−p′)·x. (8.105)

Noting that
�e−i(p−p′)·x = −(p− p′)2e−i(p−p′)·x (8.106)

we obtain, by inspection,

Aν(x) = − 1

q2
e(p+ p′)νe−i(p−p′)·x (8.107)

where q = p′ − p. Inserting this expression into the amplitude (8.102) we find

Ae−s+ = i(2π)4δ4(p+ k − p′ − k′)Me−s+ (8.108)

where

iMe−s+ = jμs+(p, p
′)
igμν
q2

jνe−(k, k
′) (8.109)

exactly as in (8.97) for ξ = 1 (the gauge appropriate to ‘∂μA
μ = 0’).

Comment (3)

From the work of chapter 6, it is clear that we can give a Feynman graph interpretation of
the amplitude (8.109) as shown in figure 8.5, and set out the corresponding Feynman rules :

(i) At a vertex where a photon is emitted or absorbed by an s+ particle, the factor
is −ie(p + p′)μ where p and p′ are the incident and outgoing 4-momenta of the
s+, respectively; the vertex for s− has the opposite sign.

(ii) At a vertex where a photon is emitted or absorbed by an e−, the factor is ieγμ(e >
0); for an e+ it is −ieγμ. (This and the previous rule arise from associating one
‘(−i)’ factor in (8.94) or (8.97) with each current.)

(iii) For each initial state fermion line a factor u(k, s) and for each final state fermion
line a factor ū(k′, s′); for each initial state anti-fermion a factor v̄(k, s) and for
each final state anti-fermion line a factor v(k′, s′) (these rules reconstruct the e+

Coulomb amplitudes of section 8.2.4).
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(iv) For an internal photon of 4-momentum q, there is a factor −igμν/q
2 in the gauge

ξ = 1.

(v) Multiplying these factors together gives the quantity iM; multiplying the result
by an overall 4-momentum-conserving δ-function factor (2π)4δ(p′+ k′+ · · · − p−
k − · · ·) gives the quantity A.

Comment (4)

We know that our amplitude is proportional to

jμs+
gμν
q2

jνe− . (8.110)

Choosing the coordinate system such that q = (q0, 0, 0, |q|), the current conservation equa-
tions q · js+ = q · je− = 0 read:

j3 = q0j0/|q| (8.111)

for both currents. Expression (8.101) can then be written as

(j1s+j
1
e− + j2s+j

2
e−)/q

2 + (j3s+j
3
e− − j0s+j

0
e−)/q

2

= (j1s+j
1
e− + j2s+j

2
e−)/q

2 + j0s+j
0
e−/q

2 (8.112)

using (8.111). The first term may be interpreted as being due to the exchange of a trans-
versely polarized photon (only the 1, 2 components enter, perpendicular to q). For real
photons q2 → 0, so that this term will completely dominate the second. The latter, how-
ever, must obviously be included when q2 �= 0, as of course is the case for this virtual γ
(cf section 6.3.3). We note that the second term depends on the 3-momentum squared,
q2, rather than the 4-momentum squared q2, and that it involves the charge densities j0s+
and j0e− . Referring back to section 7.1, we can interpret it as the instantaneous Coulomb
interaction between these charge densities, since∫

d4x eiq·xδ(t)/r =

∫
d3x eiq·x/r = 4π/q2. (8.113)

Thus, in summary, the single covariant amplitude (8.109) includes contributions from the
exchange of transversely polarized photons and from the familiar Coulomb potential. This
is the true relativistic extension of the static Coulomb results of (8.15) and (8.44).

8.3.2 The cross section for e−s+ → e−s+

The invariant amplitude Me−s+(s, s
′) for our process is given by (8.109) as

Me−s+(s, s
′) = eū(k′, s′)γμu(k, s)(−gμν/q

2)e(p+ p′)ν (8.114)

where we have now included the spin dependence of the amplitude Me−s+ in the notation.
The steps to the cross sections are now exactly as for the spin-0 case (section 6.3.4), as
modified by the spin summing and averaging already met in sections 8.2.1 and 8.2.3, par-
ticularly the latter. The cross section for the scattering of an electron in spin state s to one
in spin state s′ is (cf (6.110))

dσss′ =
1

4Eω|v| |Me−s+(s, s
′)|2(2π)4δ4(k′ + p′ − k − p)

× 1

(2π)6
d3k′

2ω′
d3p′

2E′
(8.115)
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where we have defined

kμ = (ω,k) k′μ = (ω′,k′)
pμ = (E,p) p′μ = (E′,p′). (8.116)

For the unpolarized cross section we are required, as in (8.46), to evaluate the quantity

1

2

∑
s,s′

|Me−s+(s, s
′)|2 =

(
e2

q2

)2
1

2

∑
s,s′

ū(k′, s′)γμu(k, s)ū(k, s)γνu(k′, s′)

×(p+ p′)μ(p+ p′)ν (8.117)

≡
(
e2

q2

)2
Lμν(k, k′)Tμν(p, p

′) (8.118)

where the boson tensor Tμν is just (p + p′)μ(p + p′)ν and the lepton tensor Lμν has been
evaluated in (8.79). Using q2 = (k − k′)2 = 2m2 − 2k · k′, the expression (8.79) can be
rewritten as

Lμν(k, k′) = 2[k′μkν + k′νkμ + (q2/2)gμν ]. (8.119)

We then find (problem 8.12)

LμνTμν = 8[2(p · k)(p · k′) + (q2/2)M2] (8.120)

since k′ · p′ = k · p and k · p′ = k′ · p from 4-momentum conservation, and p2 = p′2 = M2

(we are using m for the e− mass and M for the s+ mass).
We can now give the differential cross section in the CM frame by taking over the formula

(6.129) with

|M|2 → 1
2

∑
s,s′

|Me−s+(s, s
′)|2

so as to obtain (
dσ̄

dΩ

)
CM

=
2α2

W 2(q2)2
[2(p · k)(p · k′) + (q2/2)M2] (8.121)

where α = e2/4π and W 2 = (k + p)2.
A somewhat more physically meaningful formula is found if we ask for the cross section

in the ‘laboratory’ frame which we define by the condition pμ = (M,0). The evaluation of
the phase space integral requires some care and this is detailed in appendix K. The result
is

dσ̄

dΩ
=

α2

4k2 sin4(θ/2)
cos2(θ/2)

k′

k
. (8.122)

In this formula we have neglected the electron mass in the kinematics so that

k ≡ |k| = ω (8.123)

k′ ≡ |k′| = ω′ (8.124)

and
q2 = −4kk′ sin2(θ/2) (8.125)

where θ is the electron scattering angle in this frame, as shown in figure 8.6, and

(k/k′) = 1 + (2k/M) sin2(θ/2) (8.126)
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FIGURE 8.6
Two-body scattering in the ‘laboratory’ frame.

from equation (K.20). Note that there is a slight abuse of notation here; in the context of
results for such laboratory frame calculations, ‘k’ and ‘k′’ are not 4-vectors, but rather the
moduli of 3-vectors, as defined in equations (8.123) and (8.124).

We shall denote the cross section (8.122) by(
dσ

dΩ

)
ns

‘no-structure’ cross section. (8.127)

It describes essentially the ‘kinematics’ of a relativistic electron scattering from a pointlike
spin-0 target which recoils. Comparing the result (8.122) with equation (8.49), and remem-
bering that here Z = 1 and we are taking v → 1 for the electron, we see that the effect of
recoil is contained in the factor (k′/k), in this limit. We recover the ‘no-recoil’ result (8.49)
in the limit M → ∞, as expected. In particular, referring to (8.125), we understand Ruther-
ford’s ‘sin−4 θ/2’ factor in terms of the exchange of a massless quantum via the propagator
factor (1/q2)2.

This ‘no-structure’ cross section also occurs in the cross section for the scattering of
electrons by protons or muons: the appellation ‘no-structure’ will be made clearer in the
discussion of form factors which follows. As in the case of e+ Coulomb scattering, the cross
sections for e−s+ and for e+s+ scattering are identical at this (lowest) order of perturbation
theory.

8.4 Scattering from a non-point-like object: the pion form factor
in e−π+ → e−π+

As remarked earlier, we have been careful not to call the ‘s+’ particle a π+, because the
latter is a composite system which cannot be expected to have point-like interactions with
the electromagnetic field, as has been assumed for the s+; rather, in the case of the π+ it
is the quark constituents which interact locally with the electromagnetic field. The quarks
also, of course, interact strongly with each other via the interactions of QCD, and since these
are strong they cannot (in this case) be treated perturbatively. Indeed, a full understanding
of the electromagnetically-probed ‘structure’ of hadrons has not yet been achieved. Instead,
we must describe the e− scattering from physical π+’s in terms of a phenomenological
quantity—the pion form-factor—which encapsulates in a relativistically invariant manner
the ‘non-point-like’ aspect of the hadronic state π+.

The physical process is

e−(k, s) + π+(p) → e−(k′, s′) + π+(p′) (8.128)

which we represent, in general, by figure 8.7. To lowest order in α, the amplitude is repre-
sented diagrammatically by a generalization of figure 8.5, shown in figure 8.8, in which the
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FIGURE 8.7
e−π+ scattering amplitude.

point-like ssγ vertex is replaced by the ππγ ‘blob’, which signifies all the unknown strong
interaction corrections.

8.4.1 e− scattering from a charge distribution

It is helpful to begin the discussion by returning to e− Coulomb scattering again, but this
time let us consider the case in which the potential A0(x) corresponds, not to a point charge,
but to a spread-out charge density ρ(x). Then A0(x) satisfies Poisson’s equation

∇2A0(x) = −Zeρ(x). (8.129)

Note that if A0(x) = Ze/4π|x| as in (8.13) then ρ(x) = δ(x) (see appendix G) and we
recover the point-like source. The calculation of the Coulomb matrix element will proceed
as before, except that now we require, at equation (8.43), the Fourier transform

Ã0(q) =

∫
eiq·xA0(x)d3x (8.130)

where q = k − k′. To evaluate (8.130), note first that from the definition of A0(x), we can
write ∫

e−iq·x∇2A0(x) d3x = −Ze

∫
e−iq·xρ(x) d3x

≡ −ZeF (q) (8.131)

FIGURE 8.8
One-photon exchange amplitude in e−π+ scattering, including hadronic corrections at the
ππγ vertex.
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where the (static) form factor F (q) has been introduced, the Fourier transform of ρ(x),
satisfying

F (0) =

∫
ρ(x) d3x = 1. (8.132)

Condition (8.132) simply means that the total charge is Ze. The left-hand side of (8.131)
can be transformed by two (three-dimensional) partial integrations to give∫

(∇2e−iq·x)A0(x) d3x = −q2

∫
e−iq·xA0(x) d3x. (8.133)

Using this result in (8.131), we find

Ã0(q) =
F (q)

q2
Ze. (8.134)

Thus referring to equation (8.44) for example, the net result of the non-point-like charge
distribution is to multiply the ‘point-like’ amplitude Ze2/q2 by the form factor F (q) which
in this simple static case has the interpretation of the Fourier transform of the charge distri-
bution. So, for this (infinitely heavy π+ case), the ‘blob’ in figure 8.8 would be represented
by F (q).

To gain some idea of what F (q2) might look like, consider a simple exponential shape
for ρ(x) :

ρ(x) =
1

(8πa3)
e−|x|/a (8.135)

which has been normalized according to (8.132). Then F (q2) is (problem 8.13)

F (q2) =
1

(q2a2 + 1)2
. (8.136)

We see that F (q2) decreases smoothly away from unity at q2 = 0. The characteristic scale
of the fall-off in |q| is ∼ a−1 from (8.136), which, as expected from Fourier transform
theory, is the reciprocal of the spatial fall-off, which is approximately a from (8.135); the
root mean square radius of the distribution (8.135) is actually

√
12a (problem 8.13). Since

q2 = 4k2 sin2 θ/2, a larger q2 means a larger θ: hence, in scattering from an extended charge
distribution, the cross section at larger angles will drop below the point-like value. This is,
of course, how Rutherford deduced that the nucleus had a spatial extension.

We now seek a Lorentz-invariant generalization of this static form factor. In the ab-
sence of a fundamental understanding of the π+ structure coming from QCD, we shall
rely on Lorentz invariance and electromagnetic current conservation (one aspect of gauge
invariance) to restrict the general form of the ππγ vertex shown in figure 8.8. The use of
invariance arguments to place restrictions on the form of amplitudes is an extremely general
and important tool, in the absence of a complete theory.

8.4.2 Lorentz invariance

First, consider Lorentz invariance. We seek to generalize the point-like ssγ vertex (cf (8.98)
and comment (1) after (8.99))

jμs+(p, p
′) = 〈s+, p′|ĵμem,s(0)|s+, p〉 = e(p+ p′)μ (8.137)

to jμπ+(p, p
′), which will include strong interaction effects. Whatever these effects are, they

cannot destroy the 4-vector character of the current. To construct the general form of
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jμπ+(p, p
′) therefore, we must first enumerate the independent momentum 4-vectors we have

at our disposal to parametrize the 4-vector nature of the current. These are just

p p′ and q (8.138)

subject to the condition
p′ = p+ q. (8.139)

There are two independent combinations; these we can choose to be the linear combinations

(p′ + p)μ (8.140)

and
(p′ − p)μ = qμ. (8.141)

Both of these 4-vectors can, in general, parametrize the 4-vector nature of the electromag-
netic current of a real pion. Moreover, they can be multiplied by an unknown scalar function
of the available Lorentz scalar products for this process. Since

p2 = p′2 = M2 (8.142)

and
q2 = 2M2 − 2p · p′ (8.143)

there is only one independent scalar in the problem, which we may take to be q2, the 4-
momentum transfer to the vertex. Thus, from Lorentz invariance, we are led to write the
electromagnetic vertex of a pion in the form

jμπ+(p, p
′) = 〈π+, p′|ĵμem,π(0)|π+, p〉 = e[F (q2)(p′ + p)μ +G(q2)qμ]. (8.144)

The functions F and G are called ‘form factors’.
This is as far as Lorentz invariance can take us. To identify the pion form factor, we

must consider our second symmetry principle, gauge invariance—in the form of current
conservation.

8.4.3 Current conservation

The Maxwell equations (7.65) reduce, in the Lorentz gauge

∂μA
μ = 0 (8.145)

to the simple form
�Aμ = jμ (8.146)

and the gauge condition is consistent with the familiar current conservation condition

∂μj
μ = 0. (8.147)

As we have seen in (8.100), the current conservation condition is equivalent to the condition

qμ〈π+(p′)|ĵμem,π(0)|π+(p)〉 = 0 (8.148)

on the pion electromagnetic vertex.
In the case of the point-like s+ this is clearly satisfied since

q · (p′ + p) = 0 (8.149)
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with the aid of (8.142). In the general case we obtain the condition

qμ[F (q2)(p′ + p)μ +G(q2)qμ] = 0. (8.150)

The first term vanishes as before, but q2 �= 0 in general, and we therefore conclude that
current conservation implies that

G(q2) = 0. (8.151)

In other words, all the virtual strong interaction effects at the π+π+γ vertex are described
by one scalar function of the virtual photon’s squared 4-momentum:

e(p′ + p)μ

‘point pion’
→ eF (q2)(p′ + p)μ.

‘real pion’
(8.152)

F (q2) is the electromagnetic form factor of the pion, which generalizes the static form factor
F (q2) of section 8.4.1. The pion electromagnetic vertex is then

jμπ+(p, p
′) = eF (q2)(p+ p′)μ. (8.153)

The electric charge is defined to be the coupling at zero momentum transfer, so the form
factor is normalized by the condition (cf (8.132))

F (0) = 1. (8.154)

To lowest order in α, the invariant amplitude for e−π+ → e−π+ is therefore given by
replacing jμs+(p, p

′) in (8.97) or (8.109) by jμπ+(p, p
′):

iMe−π+ = −ie(p+ p′)μF ((p′ − p)2)

( −igμν
(p′ − p)2

)
[+ieū(k′, s′)γνu(k, s)]. (8.155)

It is clear that the effect of the pion structure is simply to multiply the ‘no-structure’ cross
section (8.122) by the square of the form factor, F (q2 = (p′ − p)2).

For e−π+ → e−π+ in the CM frame we may take p = (E,p) and p′ = (E,p′) with
|p| = |p′| and E = (m2

π + p2)1/2. Then

q2 = (p′ − p)2 = −4p2 sin2 θ/2 (8.156)

as in section 8.1, where θ is now the CM scattering angle between p and p′. Hence F (q2)
can be probed for negative (space-like) values of q2, in the process e−π+ → e−π+. As in the
static case, we expect the form factor to fall off as −q2 increases since, roughly speaking, it
represents the amplitude for the target to remain intact when probed by the electromagnetic
current. As −q2 increases, the amplitudes of inelastic processes which involve the creation
of extra particles become greater, and the elastic amplitude is correspondingly reduced. We
shall consider inelastic scattering in the following chapter.

Interestingly, F (q2) may also be measured at positive (time-like) q2, in the related re-
action e+e− → π+π− as we now discuss.

8.5 The form factor in the time-like region: e+e− → π+π− and
crossing symmetry

The physical process is

e+(k1, s1) + e−(k, s) → π+(p′) + π−(p1) (8.157)
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FIGURE 8.9
e+e− → π+π− scattering amplitude.

FIGURE 8.10
The amplitude of figure 8.9, with positive 4-momentum anti-particles replaced by negative
4-momentum particles.

FIGURE 8.11
The amplitude of figure 8.10 redrawn so as to obtain a reaction in which the initial state
has only ‘ingoing’ lines and the final state has only ‘outgoing’ lines.

as shown in figure 8.9. We can use this as an instructive exercise in the Feynman interpre-
tation of section 3.4.4. From that section, we know that the invariant amplitude for (8.157)
is equal to minus the amplitude for a process in which the ingoing anti-particle e+ with
(k1, s1) becomes an outgoing particle e− with (−k1,−s1), and the outgoing anti-particle
π− with p1 becomes an ingoing particle π+ with −p1. In this way the ‘physical’ (positive
4-momentum) anti-particle states (e+ and π−) are replaced by appropriate ‘unphysical’
(negative 4-momentum) particle states (e− and π+). These changes transform figure 8.9 to
figure 8.10.

If we now look at figure 8.10 ‘from the top downwards’ (instead of from left to right—
remember that Feynman diagrams are not in coordinate space!), we see a process of e−π+

scattering, namely

e−(k, s) + π+(−p1) → e−(−k1,−s1) + π+(p′). (8.158)

But (8.158) is something we have already calculated! (Though we shall have to substitute
a negative-energy spinor v for a positive energy one u.) In fact, let us redraw figure 8.10 as
figure 8.11 to make it look more like figure 8.7. Then, to lowest order in α, the amplitude for
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FIGURE 8.12
One-photon exchange amplitude for the process of figure 8.11.

figure 8.11 is shown in figure 8.12 (compare figure 8.8). To obtain the corresponding mathe-
matical expression for the amplitude iMe+e−→π+π− , we simply need to modify (8.155): (a)
by inserting a minus sign; (b) by replacing p by −p1 and k′ by −k1 as in figure 8.12; and
(c) by replacing ū(k′, s′) by v̄(k1, s1). This yields the invariant amplitude for figure 8.12 as

iMe+e−→π+π− = −ie(−p1 + p′)μF ((p1 + p′)2)
( −igμν
(p1 + p′)2

)
×[−iev̄(k1, s1)γ

νu(k, s)] (8.159)

which is represented by the Feynman diagram of figure 8.13 for the original process of
(8.157) and figure 8.9.

In the language introduced in section 6.3.3, figure 8.13 is an ‘s-channel process’ (s =
(k + k1)

2 = (p1 + p′)2) for e+e− → π+π−, whereas figure 8.8 is a ‘t-channel process’
(t = (k−k′)2 = (p′− p)2) for e−π+ → e−π+. However, we have seen that the amplitude for
the e+e− → π+π− process can be obtained from the e−π+ → e−π+ amplitude by making
the replacement k′ → −k1, p → −p1 (together with the sign, and ū → v̄). Under these
replacements of the 4-momenta, the variable t = (k− k′)2 = (p− p′)2 of figure 8.8 becomes
the variable s = (k + k1)

2 = (p1 + p′)2 of figure 8.13. In particular, as is evident in the
formula (8.159), the same form factor F is a function of the invariant s = (p1 + p′)2 in
process (8.157), and of t = (p−p′)2 in process (8.128). The interesting thing is that whereas

FIGURE 8.13
One-photon exchange amplitude for the process of figure 8.9.
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(as we have seen) ‘t’ is negative in process (8.128), ‘s’ for process (8.157) is the square of the
total CM energy, which is ≥ 4M2 where M is the pion mass (2M is the threshold energy for
the reaction to proceed in the CM system). Thus the form factor can be probed at negative
values of its argument in the process e−π+ → e−π+, and at positive values ≥ 4M2 in the
process e+e− → π+π−. In the next chapter (section 9.5) we shall see how, in the latter
process, meson resonances dominate F (s).

The procedure whereby an ingoing/outgoing anti-particle is switched to an outgo-
ing/ingoing particle is called ‘crossing’ (the state is being ‘crossed’ from one side of the
reaction to the other). By an extension of this language, e+e− → π+π− is called the crossed
process relative to e−π+ → e−π+ (or vice versa). The fact that the amplitude for a given
process and its ‘crossed’ analogue are directly related via the Feynman interpretation (or by
quantum field theory!) is called ‘crossing symmetry’. In the example studied here, what is
an s-channel process for one reaction becomes a t-channel process for the crossed reaction.
Essentially, little more is involved than looking in the one case from left to right and, in the
other, from top to bottom!

8.6 Electron Compton scattering

8.6.1 The lowest-order amplitudes

We proceed to explore some other elementary electromagnetic processes. So far we have
not considered a reaction with external photons, so let us now discuss electron Compton
scattering

γ(k, λ) + e−(p, s) → γ(k′, λ′) + e−(p′, s′) (8.160)

where the λ’s stand for the polarizations of the photons. Since only the γ’s and e−’s are
involved, the interaction Hamiltonian is simply Ĥ ′

D, and it is clear that this must act at
least twice in the reaction (8.160). By following the method of section 6.3.2 one can formally
derive what we are here going to assume is by now obvious, which is that to order e2 (i.e. α
in the amplitude) there are two contributing Feynman graphs, as shown in figures 8.14(a)
and (b). The first is an s-channel process, the second a u-channel process. We already know
the factors for the vertices and for the external electron lines; we need to know the factors
for the internal electron lines (propagators) and the external photon lines. The fermion
propagator was given in section 7.2 and is i/(/q−m+ iε) for a line carrying 4-momentum q.
As regards the ‘external-γ’ factor, this will arise from contractions of the form (cf (6.90))√

2Ek′〈0|α(k′, λ′)Âμ(x1)|0〉 = εμ∗(k′, λ′)eik
′·x1 (8.161)

where the evaluation of the vev has used the mode expansion (7.104) and the commutation
relations (7.108), as usual; note, however, that only transverse polarization states (λ, λ′ = 1
and 2) enter in the external (physical) photon lines in figures 8.14(a) and (b).

Thus we add two more rules to the (i)–(v) of section 8.3.1:

(vi) For an incoming photon of 4-momentum k and polarization λ, there is a factor
εμ(k, λ); for an outgoing one, εμ∗(k′, λ′).

(vii) For an internal spin- 12 particle carrying 4-momentum q, there is a factor i/(/q −
m+ iε) = i(/q +m)/(q2 −m2 + iε).
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FIGURE 8.14
O(e2) contributions to electron Compton scattering.

The invariant amplitude Mγe− corresponding to figures 8.14(a) and (b) is therefore

Mγe− = −e2ε∗ν(k
′, λ′)εμ(k, λ)ū(p′, s′)γν

(/p+ /k +m)

(p+ k)2 −m2
γμu(p, s)

−e2ε∗ν(k
′, λ′)εμ(k, λ)ū(p′, s′)γμ

(/p− /k
′
+m)

(p− k′)2 −m2
γνu(p, s).

(8.162)

To get the spinor factors in expression such as these, the rule is to start at the ingoing
fermion line (‘u(p, s)’) and follow the line through until the end, inserting vertices and
propagators in the right order, until you reach the outgoing state (‘ū’). Note that here
s = (p+ k)2 and u = (p− k′)2.

8.6.2 Gauge invariance

We learned in section 7.3.1 that the gauge symmetry (Aμ → Aμ−∂μχ) of electromagnetism,
as applied to real free photons, implied that any photon polarization vector εμ(k, λ) could
be replaced by

ε′μ(kλ) = εμ(k, λ) + βkμ (8.163)

where β is an arbitrary constant. Such a transformation amounted to a change of gauge,
always remaining within the Lorentz gauge for which ε · k = ε′ · k = 0. Thus our amplitude
(8.162) must be unchanged if we make either or both the replacements ε → ε + βk and
ε∗ → ε∗+βk′ indicated in (8.163). This means that if in (8.162) we replace either or both of
εμ(k, λ) and ε∗ν(k

′, λ′) by kμ and k′ν , respectively, the result has to be zero. This can indeed
be verified (problem 8.14).

A similar result is generally true and very important. Consider a process, shown in
figure 8.15, involving a photon of momentum kμ, whose polarization state is described by
the vector εμ. The amplitude Aγ for this process must be linear in the photon polarization
vector and thus we may write

Aγ = εμTμ (8.164)

where Tμ depends on the particular process under consideration. With the Lorentz choice
for εμ we have

k · ε = 0. (8.165)

But gauge invariance implies that if we replace εμ in (8.164) by kμ we must get zero:

kμTμ = 0. (8.166)

This important condition on Tμ is known as a Ward identity (Ward 1950).
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FIGURE 8.15
General one-photon process.

8.6.3 The Compton cross section

The calculation of the cross section is of considerable interest, since it is required when
considering lowest-order QCD corrections to the parton model for deep inelastic scattering
of leptons from nucleons (see the following chapter and volume 2). We must average |Mγe− |2
over initial electron spins and photon polarizations and sum over final ones. Consider first

the s-channel process of figure 8.14(a), with amplitude M(s)
γe− . For this contribution we

must evaluate

e4

4(s−m2)2
·
∑

λ,λ′,s,s′
ε′∗νεμε

∗
ρε
′
σū
′γν(/p+ /k +m)γμuūγρ(/p+ /k +m)γσu′ (8.167)

where we have shortened the notation in an obvious way and introduced the invariant
Mandelstam variable (section 6.3.3) s = (p + k)2. We know how to write the spin sums in
a convenient form, as a trace. We need to find a similar trick for the polarization sum.

Consider the general ‘one-photon’ process shown in figure 8.15, with amplitude Aγ =
εμ(k, λ)Tμ, where εμ(k, 1) = (0, 1, 0, 0) and εμ(k, 2) = (0, 0, 1, 0), and kμ = (k, 0, 0, k). Then
the required polarization sum would be∑

λ=1,2

εμ(k, λ)Tμε
ν∗(k, λ)T ∗ν = |T1|2 + |T2|2. (8.168)

However, we also know that kμTμ = 0 from the Ward identity (8.166). This tells us that

kT0 − kT3 = 0 (8.169)

and hence T0 = T3. It follows that we may write (8.168) as∑
λ=1,2

εμ(k, λ)εν∗(k, λ)TμT
∗
ν = |T1|2 + |T2|2 + |T3|2 − |T0|2 (8.170)

= −gμνTμT
∗
ν . (8.171)

Thus we may replace the non-covariant expression ‘
∑

λ=1,2 ε
μ(k, λ)εν∗(k, λ)’ by the covariant

one ‘−gμν ’. The reader may here recall equation (7.118), where the ‘pseudo-completeness’
relation involving all four ε’s was given, a similarly covariant expression. This relation
corresponds exactly to the right-hand side of (8.170), which (in these terms) shows that the
λ = 0 state enters with negative norm.

Using this result, the term (8.167) becomes

e4

4(s−m2)2

∑
s,s′

ū′γν(/p+ /k +m)γμuūγμ(/p+ /k +m)γνu
′

=
e4

4(s−m2)2
Tr[γν(/p

′ +m)γν(/p+ /k +m)γμ(/p+m)γμ(/p+ /k +m)]

(8.172)
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where, in the second step, we have moved the γν to the front of the trace, using (8.71).
Expression (8.172) involves the trace of eight γ matrices, which is beyond the power of the
machinery given so far. However, it simplifies greatly if we neglect the electron mass—that
is, if we are interested in the high-energy limit, as we shall be in parton model applications.
In that case, (8.172) becomes

e4

4s2
Tr[γν/p

′γν(/p+ /k)γμ
/pγμ(/p+ /k)] (8.173)

which we can simplify using the result (J.3) to

e4

s2
Tr[/p

′(/p+ /k)/p(/p+ /k)] (8.174)

=
e4

s2
Tr[/p

′/k/p/k] using /p
2 = p2 = 0 (8.175)

=
4e4

s2
· 2(p′ · k)(p · k) using (8.76) and k2 = 0 (8.176)

= −2e4u/s (8.177)

where u = (p − k′)2. Problem 8.15 finishes the calculation, with the result that the spin-
averaged squared amplitude is

1

4

∑
s,s′,λ,λ′

|Mγe− |2 = −2e4
(u
s
+

s

u

)
. (8.178)

The cross section in the CMS is then (cf (6.129))

dσ

d(cos θ)
=

2π2e4

64π2s

(−u

s
− s

u

)
=

πα2

s

(−u

s
− s

u

)
. (8.179)

For parton model calculations, what is actually required is the analogous quantity cal-
culated for the case in which the initial photon is virtual (see section 9.2). However, the
discussion of section 7.3.2 shows that we may still use the polarization sum (8.170). A dif-
ference will arise in passing from (8.175) to (8.176) where we must remember that k2 �= 0.
Since k2 will be space-like, we put k2 = −Q2 and find (problem 8.16) that the spin-averaged
squared amplitude for the virtual Compton process

γ∗(k2 = −Q2) + e− → γ + e− (8.180)

is given by

−2e4
(
u

s
+

s

u
− 2Q2t

su

)
. (8.181)

8.7 Electron muon elastic scattering

Our final group of electrodynamic processes are ones in which two fermions interact elec-
tromagnetically. In this section we discuss the scattering of two point-like fermions (i.e.
leptons); in the following one we look at the change (analogous to those for the π+ as
compared to the s+) necessitated when one fermion is a hadron, for example the proton.
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FIGURE 8.16
e−μ− scattering amplitude.

We shall consider e−μ− elastic scattering: our notation is indicated in figure 8.16. In
the lowest order of perturbation theory—the one-photon exchange approximation—we can
draw the relevant Feynman graph for this process. This is shown in figure 8.17. All the
elements for the graph have been met before and so we can immediately write down the
invariant amplitude which now depends on four spin labels:

Me−μ−(r, s; r′, s′) = eū(k′, s′)γμu(k, s)(gμν/q2)eū(p′, r′)γνu(p, r). (8.182)

Although experiments with polarized leptons are not uncommon, we shall only be con-
cerned with the unpolarized cross section

dσ̄ ∼ 1
4

∑
r,r′;s,s′

|Me−μ−(r, s; r′, s′)|2. (8.183)

We perform the same manipulations as in our e−s+ example and the cross section reduces
to a factorized form involving two traces:

1

4

∑
r,r′;s,s′

|Me−μ−(r, s; r′, s′)|2 =

(
e2

q2

)2{
1

2
Tr[(/k

′
+m)γμ(/k +m)γν ]

}

×{ 1
2Tr[(/p

′ +M)γμ(/p+M)γν ]} (8.184)

= (e2/q2)2LμνM
μν (8.185)

where Lμν is the ‘electron tensor’ calculated before (see (8.119)):

Lμν = 2[k′μkν + k′νkμ + (q2/2)gμν ] (8.186)

FIGURE 8.17
One-photon exchange amplitude in e−μ− scattering.
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but now Mμν is the appropriate tensor for the muon coupling, with the same structure as
Lμν :

Mμν = 2[p′μpν + p′νpμ + (q2/2)gμν ]. (8.187)

To evaluate the cross section we must perform the ‘contraction’ LμνM
μν . A useful trick

to simplify this calculation is to use current conservation for the electron tensor Lμν . For
the electron transition current, the electromagnetic current conservation condition is (cf
equation (8.100))

qμ[ū(k′, s′)γμu(k, s)] = 0 (8.188)

i.e. independent of the particular spin projections s and s′. Since Lμν is the product of two
such currents, summed and averaged over polarizations, current conservation implies the
conditions

qμLμν = qνLμν = 0 (8.189)

which can be explicitly checked using our result for Lμν . The usefulness of this result is
that in the contraction LμνM

μν we can replace p′ in Mμν by (p+ q) and then drop all the
terms involving q’s, i.e.

LμνM
μν = LμνM

μν
eff (8.190)

where
Mμν

eff = 2[2pμpν + (q2/2)gμν ]. (8.191)

The calculation of the cross section is now straightforward. In the ‘laboratory’ system,
defined (unrealistically) by the target muon at rest

pμ = (M, 0, 0, 0) (8.192)

with M now the muon mass, the result is (problem 8.17(a))

dσ

dΩ
=

(
dσ

dΩ

)
ns

(
1− q2 tan2(θ/2)

2M2

)
. (8.193)

Note the following points:

Comment (a)

The ‘no-structure’ cross section (8.122) for e−s+ scattering now appears modified by an
additional term proportional to tan2(θ/2). This is due to the spin- 12 nature of the muon
which gives rise to scattering from both the charge and the magnetic moment of the muon.

Comment (b)

In the kinematics the electron mass has been neglected, which is usually a good approx-
imation at high energies. We should add a word of explanation for the ‘laboratory’ cross
sections we have calculated, with the target muon unrealistically at rest. The form of the
cross section, (dσ/dΩ)ns, and of the cross section for the scattering of two Dirac point
particles, will be of great value in our discussion of the quark parton model in the next
chapter.

Comment (c)

The crossed version of this process, namely e+e− → μ+μ−, is a very important monitoring
reaction for electron–positron colliding beam machines. It is also basic to a discussion of the
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p p

e− e−

p′, s′p, s

k, r k′, r′

FIGURE 8.18
One-photon exchange amplitude in e−p scattering, including hadronic corrections at the
ppγ vertex.

predictions of the quark parton model for e+e− → hadrons, which will be discussed in section
9.5. An instructive calculation similar to this one leads to the result (see problem 8.18)

dσ

dΩ
=

α2

4q2
(1 + cos2 θ) (8.194)

where all variables are defined in the e+e− CM frame, q2 is now the square of the CM
energy, and the electron and muon masses have been neglected. The total cross section, in
the one-photon exchange approximation, is then

σ = 4πα2/3q2 = 86.8 nb/q2(GeV2), (8.195)

where we have made use of equation (B.18) of appendix B.
The energy dependence of this cross section (∝ 1/q2) is important, and can be un-

derstood by a simple dimensional argument. A cross section has dimensions of a squared
length, or in natural units (appendix B) inverse squared mass or energy. Here both colliding
particles are taken to be pointlike, with no form factors involving a length parameter, and
the mediating quantum is massless. At energies much larger than the lepton masses, the
only available dimensional quantity is the CM energy. It follows that the cross section must
be inversely proportional to the square of the CM energy, in this ‘pointlike, high energy’
limit. By the same token, deviations from this behaviour would be evidence for non-pointlike
leptonic structure.

8.8 Electron–proton elastic scattering and nucleon form factors

In the one-photon exchange approximation, the Feynman diagram for elastic electron–
proton scattering may be drawn as in figure 8.18, where the ‘blob’ at the ppγ vertex signifies
the expected modification of the point coupling due to strong interactions. The structure
of the proton vertex can be analysed using symmetry principles in the same way as for the
pion vertex. The presence of Dirac spinors and γ-matrices makes this a somewhat involved
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procedure and problem 8.19 is an example of the type of complication that arises. Full de-
tails of such an analysis can be found in Bernstein (1968), for example. Here, however, we
shall proceed in a different way, in order to generalize more easily to inelastic scattering in
the following chapter. We focus directly on the ‘proton tensor’ Bμν , which is the product of
two proton current matrix elements, summed and averaged over polarizations, as is required
in the calculation of the unpolarized cross section (cf (8.57)):

Bμν =
1

2e2

∑
s,s′

〈p; p′, s′|ĵμem,p(0)|p; p, s〉(〈p; p′, s′|ĵνem,p(0)|p; p, s〉)∗. (8.196)

We remarked in comment (a) after equation (8.193) that for e− scattering from a point-
like charged fermion an additional term in the cross section was present, corresponding to
scattering from the target’s magnetic moment. Since a real proton is not a point particle,
the virtual strong interaction effects will modify both the charge and the magnetic moment
distribution. Hence we may expect that two form factors will be needed to describe the
deviation from point-like behaviour. This is in fact the case, as we now show using symmetry
arguments similar to those of section 8.4.

8.8.1 Lorentz invariance

Bμν must retain its tensor character: this must be made up using the available 4-vectors
and tensors at our disposal. For the spin-averaged case we have only

p, q, and gμν (8.197)

since p′ = p + q. The antisymmetric tensor εμναβ (see appendix J) must actually be ruled

out using parity invariance: the tensor Bμν is not a pseudo tensor since ĵμem,p is a vector.
It is helpful to remember that εμναβ is the generalization of εijk in three dimensions, and
that the vector product of two 3-vectors—a pseudo vector—may be written

(a× b)i = εijkajbk. (8.198)

8.8.2 Current conservation

For a real proton, current conservation gives the condition (cf (8.148))

qμ〈p; p′, s′|ĵμem,p(0)|p; p, s〉 = 0 (8.199)

which translates to the conditions (cf (8.189))

qμB
μν = qνB

μν = 0 (8.200)

on the tensor Bμν .
There are only two possible tensors we can make that satisfy both these requirements.

One involves p and is constructed to be orthogonal to q. We introduce a vector

p̃μ = pμ + αqμ (8.201)

and require
q · p̃ = 0. (8.202)

Hence we find
p̃μ = pμ − (p · q/q2)qμ (8.203)
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and thus the tensor

p̃μp̃ν = [pμ − (p · q/q2)qμ][pν − (p · q/q2)qν ] (8.204)

satisfies all our requirements. The second tensor must involve gμν and may be chosen to be

−gμν + qμqν/q2 (8.205)

which again satisfies our conditions. Thus from invariance arguments alone, the tensor Bμν

for the proton vertex may be parametrized by these two tensors, each multiplied by an
unknown function of q2. If we define

Bμν = 4A(q2)[pμ − (p · q/q2)qμ][pν − (p · q/q2)qν ]
+2M2B(q2)(−gμν + qμqν/q2) (8.206)

the cross section in the laboratory frame is (problem 8.19)

dσ

dΩ
=

(
dσ

dΩ

)
ns

[A+B tan2(θ/2)]. (8.207)

Formula (8.207) implies that a plot of (dσ/dΩ)/(dσ/dΩ)ns versus tan
2 θ/2, at fixed q2, will

be a straight line with slope B and intercept A.
The functions A and B may be related to the ‘charge’ and ‘magnetic’ form factors of

the proton. The Dirac ‘charge’ and Pauli ‘anomalous magnetic moment’ form factors, F1

and F2, respectively, are defined by

〈p; p′, s′|ĵμem,p(0)|p; p, s〉

= (+e)ū(p′, s′)
[
γμF1(q

2) +
iκF2(q

2)

2M
σμνqν

]
u(p, s) (8.208)

with the normalization

F1(0) = 1 (8.209)

F2(0) = 1 (8.210)

and the magnetic moment of the proton is not one (nuclear) magneton, as for an electron
or muon (neglecting higher-order corrections), but rather μp = 1 + κ with κ = 1.79. Prob-
lem 8.20 shows that the ūγμu piece in (8.208) can be rewritten in terms of ū(p+ p′)μu/2M
and ūiσμνqνu/2M . The first of these is analogous to the interaction of a charged spin-0
particle. As regards the second, we note that σμν is just

σμν = 1
2 i[γ

μ, γν ] (8.211)

which reduces to the Pauli spin matrices for the space-like components

σij =

(
σk 0
0 σk

)
(8.212)

with our representation of γ-matrices (σij is a 4× 4 matrix, σk is 2× 2, and i, j and k are
in cyclic order). The second term in this ‘Gordon decomposition’ of ūγμu thus corresponds
to an interaction via the spin magnetic moment—with, in fact, g = 2. Thus the addition of
the κ term in (8.208) corresponds to an ‘anomalous’ magnetic moment piece. In terms of
F1 and F2 one can show that

A = F2
1 + τκ2F2

2 (8.213)

B = 2τ(F1 + κF2)
2 (8.214)
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where
τ = −q2/4M2. (8.215)

The point-like cross section (8.193) is recovered from (8.207) by setting F1 = 1 and κ = 0
in (8.213) and (8.214).

The functions F1 and F2 are, in turn, usually expressed in terms of the electric and
magnetic form factors GE and GM, defined by GE = F1 − τκF2, GM = F1 + κF2. We then
find A = (G2

E + τG2
M)/(1 + τ) and B = 2τG2

M. The cross section formula (8.207), written
in terms of GE and GM, is known as the ‘Rosenbluth’ cross section.

Experimental data indicate that the q2-dependences of GE and GM for the proton, and
of GM for the neutron, are all quite well represented by the function F (q2) of (8.136) with
q2 replaced by −q2 and with a ∼ 0.84 GeV−1, at least for values of −q2 up to a few GeV2

(see, for example, Perkins 1987, section 6.5).
Before we leave elastic scattering it is helpful to look in some more detail at the kine-

matics. It will be sufficient to consider the ‘point-like’ case, which we shall call e−μ+, for
definiteness. Energy and momentum conservation at the μ+ vertex gives the condition

p+ q = p′ (8.216)

with the mass-shell conditions (M is the μ+ mass)

p2 = p′2 = M2. (8.217)

Hence for elastic scattering we have the relation

2p · q = −q2. (8.218)

It is conventional to relate these invariants to the corresponding laboratory frame (pμ =
(M,0)) expressions. Neglecting the electron mass so that2

k ≡ |k| = ω (8.219)

k′ ≡ |k′| = ω′ (8.220)

we have
q2 = −2kk′(1− cos θ) = −4kk′ sin2(θ/2) (8.221)

and
p · q = M(k − k′) = Mν (8.222)

where ν is the energy transfer q0 in this frame. To avoid unnecessary minus signs, it is
convenient to define

Q2 = −q2 = 4kk′ sin2(θ/2) (8.223)

and the elastic scattering relation between p · q and q2 reads

ν = Q2/2M (8.224)

or
k′

k
=

1

1 + (2k/M) sin2(θ/2)
. (8.225)

Remembering, therefore, that for elastic scattering k′ and θ are not independent variables,
we can perform a change of variables (see appendix K) in the laboratory frame

dΩ = 2π d(cos θ) = (π/k′2) dQ2 (8.226)

2As after equation (8.126), note again that in the present context ‘k’ and ‘k′’ are not 4-vectors but the
moduli of 3-vectors.
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FIGURE 8.19
Physical regions for e− p scattering in the Q2, ν variables: A, kinematically forbidden
region; B, line of elastic scattering (Q2 = 2Mν); C, lines of resonance electroproduction; D,
photoproduction; E, deep inelastic region (Q2 and ν large).

and write the differential cross section for e−μ+ scattering as

dσ

dQ2
=

πα2

4k2 sin4(θ/2)

1

kk′
[cos2(θ/2) + 2τ sin2(θ/2)]. (8.227)

For elastic scattering ν is not independent of Q2 but we may formally write this as a double-
differential cross section by inserting the δ-function to ensure this condition is satisfied:

d2σ

dQ2dν
=

πα2

4k2 sin4(θ/2)

1

kk′

[
cos2(θ/2) +

(
Q2

2M2

)
sin2(θ/2)

]
δ

(
ν − Q2

2M

)
. (8.228)

This is the cross section for the scattering of an electron from a point-like fermion target of
charge e and mass M .

It is illuminating to plot out the physically allowed regions of Q2 and ν (figure 8.19).
Elastic e−p scattering corresponds to the line Q2 = 2Mν. Resonance production e−p →
e−N∗ with p′2 = M ′2 corresponds to lines parallel to the elastic line, shifted to the right by
M ′2 −M2 since

2Mν = Q2 +M ′2 −M2. (8.229)

Experiments with real photons, Q2 = 0, correspond to exploring along the ν-axis. In the
next chapter we switch our attention to so-called deep inelastic electron scattering—the
region of large Q2 and large ν.

Problems

8.1 Consider a matrix element of the form

M =

∫
d3x

∫
dt e+ipf ·x∂μAμe−ipi·x.
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Assuming the integration is over all space–time and that

A0 → 0 as t → ±∞

and
|A| → 0 as |x| → ∞

use integration by parts to show

(a)

∫
dt e+ipf ·x∂0A0e−ipi·x = (−ipf0)

∫
dt e+ipf ·xA0e−ipi·x

(b)

∫
d3x e+ipf ·x∇ ·Ae−ipi·x = +ipf ·

(∫
d3x e+ipf ·xAe−ipi·x

)
.

Hence show that ∫
d3x

∫
dt e+ipf ·x(∂μAμ +Aμ∂μ)e

−ipi·x

= −i(pf + pi)μ

∫
d3x

∫
dt e+ipf ·xAμe−ipi·x.

8.2 Verify equation (8.27).

8.3 Evaluate (8.31) and interpret the result physically (i.e. compare it with (8.27)).

8.4

(a) Using the u-spinors normalized as in (3.73), the φ1,2 of (8.47), and the result for
σ ·Aσ ·B from problem 3.4(b), show that

u†(k′, s′ = 1)u(k, s = 1) = (E +m)

{
1 +

k′ · k
(E +m)2

+
iφ1†σ · k′ × kφ1

(E +m)2

}
.

(b) For any vector A = (A1, A2, A3), show that φ1†σ · Aφ1 = A3. Find similar
expressions for φ1†σ ·Aφ2, φ2†σ ·Aφ1, φ2†σ ·Aφ2.

(c) Show that the S of (8.46) is equal to

S = (E +m)2

{[
1 +

k′ · k
(E +m)2

]2
+

(k′ × k)2

(E +m)4

}
.

(d) Using cos θ = k · k′/(|k||k′|), |k| = |k′| and v = |k|/E, show that

S = (2E)2(1− v2 sin2 θ/2).

8.5 Verify equation (8.55).

8.6 Check that γ0γμ†γ0 = γμ.

8.7 Verify equation (8.79) for the lepton tensor Lμν .

8.8 Evaluate L00 as in equation (8.80).

8.9 Verify equation (8.87).

8.10 Verify equation (8.96) for the e−s+ → e−s+ amplitude to O(e2).
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8.11 Check that both the scalar and the spinor current matrix elements (8.27) and (8.55),
satisfy ∂μj

μ(x) = 0.

8.12 Verify equation (8.120).

8.13 Verify equation (8.136) for the Fourier transform of ρ(x) given by (8.135). Show that
the mean square radius of the distribution (8.135) is 12a2.

8.14 Check the gauge invariance of Mγe− given by (8.162), by showing that if εμ is replaced
by kμ, or ε

∗
ν by k′ν , the result is zero.

8.15

(a) The spin-averaged squared amplitude for lowest-order electron Compton scatter-
ing contains the interference term∑

λ,λ′,s,s′
M(s)

γe−M
(u)∗
γe−

where (s) and (u) refer to the s- and u-channel processes of figures 8.14(a) and
(b) respectively. Obtain an expression analogous to (8.172) for this term, and
prove that it is, in fact, zero. [Hint : work in the massless limit, and use relations
(J.4) and (J.5).]

(b) Explain why the term ∑
λ,λ′,s,s′

M(u)
γe−M

(u)∗
γe−

is given by (8.177) with s and u interchanged.

8.16 Recalculate the interference term of problem 8.16(a) for the case k2 = −Q2 (but with

k′2 = p2 = p′2 = 0), and hence verify (8.181).

8.17

(a) Derive an expression for the spin-averaged differential cross section for lowest-
order e−μ− scattering in the laboratory frame, defined by pμ = (M,0) where M
is now the muon mass, and show that it may be written in the form

dσ

dΩ
=

(
dσ

dΩ

)
ns

[1− (q2/2M2) tan2(θ/2)]

where the ‘no-structure’ cross section is that of e−s+ scattering (appendix K) and
the electron mass has been neglected.

(b) Neglecting all masses, evaluate the spin-averaged expression (8.184) in terms of
s, t and u and use the result

dσ

dt
=

1

16πs2
1

4

∑
r,r′;s,s′

|Me−μ−(r, s; r′, s′)|2

to show that the e−μ− cross section may be written in the form

dσ

dt
=

4πα2

t2
1

2

(
1 +

u2

s2

)
.

Show also that by introducing the variable y, defined in terms of laboratory
variables by y = (k − k′)/k, this reduces to the result

dσ

dy
=

4πα2

t2
s
1

2
[1 + (1− y)2].
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FIGURE 8.20
(a) Total cross sections for e+e− → μ+μ− and e+e− → τ+τ−; (b) differential cross section
for e+e− → μ+μ−. (From D H Perkins 2000 Introduction to High Energy Physics 4th edn,
courtesy Cambridge University Press.)

8.18 Consider the process e+e− → μ+μ− in the CM frame.

(a) Draw the lowest-order Feynman diagram and write down the corresponding am-
plitude.

(b) Show that the spin-averaged squared matrix element has the form

|M|2 =
(4πα)2

q4
L(e)μνL(μ)

μν

where q2 is the square of the total CM energy, and L(e) depends on the e− and
e+ momenta and L(μ) on those of the μ+, μ−.

(c) Evaluate the traces and the tensor contraction (neglecting lepton masses): (i)
directly, using the trace theorems and (ii) by using crossing symmetry and the
results of section 8.7 for e−μ− scattering. Hence show that

|M|2 = (4πα)2(1 + cos2 θ)

where θ is the CM scattering angle, and that the CM differential cross section is

dσ

dΩ
=

α2

4q2
(1 + cos2 θ).

(d) Hence show that the total cross section is (see equation (B.18) of appendix B)

σ = 4πα2/3q2 = 86.8 nb/q2(GeV2).

Figure 8.20 shows data (a) for σ in e+e− → μ+μ− and e+e− → τ+τ− and (b)
for the angular distribution in e+e− → μ+μ−. Note that s = q2. The data in
(a) agree well with the prediction of part (d). The broken curve in figure 8.20(b)
shows the pure QED prediction of part (c) for dσ

dΩ .

It is clear that, while the distribution has the general 1+cos2 θ form as predicted,
there is a small but definite forward–backward asymmetry. This arises because,
in addition to the γ-exchange amplitude there is also a Z0-exchange amplitude
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(see section 22.3 of volume 2) which we have neglected. Such asymmetries are an
important test of the electroweak theory. They are too small to be visible in the
total cross sections in (a).

8.19 Verify equation (8.207). [Hint: as in equation (8.191) the terms in qμ and qν in Bμν

may be neglected because of the conditions (8.189).]

8.20 Starting from the expression

ū(p′)i
σμν

2M
qνu(p)

where q = p′ − p and σμν = 1
2 i[γ

μ, γν ], use the Dirac equation and properties of γ-matrices
to prove the ‘Gordon decomposition’ of the current

ū(p′)γμu(p) = ū(p′)
(
(p+ p′)μ

2M
+ i

σμνqν
2M

)
u(p).



9

Deep Inelastic Electron–Nucleon Scattering and the
Parton Model

We have obtained the rules for doing calculations of simple processes in quantum electrody-
namics for particles of spin-0 and spin-12 , and many explicit examples have been considered.
In this chapter we build on these results to give an (admittedly brief) introduction to a topic
of central importance in particle physics, the structure of hadrons as revealed by deep in-
elastic scattering experiments (the equally important neutrino scattering experiments will
be discussed in volume 2). We do this partly because the necessary calculations involve
straightforward, illustrative and eminently practical applications of the rules already ob-
tained, but, more particularly, because it is from a comparison of these calculations with
experiment that compelling evidence was obtained for the existence of the point-like con-
stituents of hadrons—quarks and gluons—the interactions of which are described by QCD.

9.1 Inelastic electron–proton scattering: kinematics and structure
functions

At large momentum transfers there is very little elastic scattering: inelastic scattering, in
which there is more than just the electron and proton in the final state, is much more
probable. The simplest inelastic cross section to measure is the so-called inclusive cross
section, for which only the final electron is observed. This is therefore a sum over the
cross sections for all the possible hadronic final states: no attempt is made to select any
particular state from the hadronic debris created at the proton vertex. This process may be
represented by the diagram of figure 9.1, assuming that the one-photon exchange amplitude
dominates. The ‘blob’ at the proton vertex indicates our ignorance of the detailed structure:
X indicates a sum over all possible hadronic final states. However, the assumption of one-
photon exchange, which is known experimentally to be a very good approximation, means
that, as in our previous examples (cf (8.118) and (8.185)), the cross section must factorize
into a leptonic tensor contracted with a tensor describing the hadron vertex:

dσ ∼ LμνW
μν(q, p). (9.1)

The lepton vertex is well described by QED and takes the same form as before:

Lμν = 2[k′μkν + k′νkμ + (q2/2)gμν ]. (9.2)

For the hadron tensor, however, we expect strong interactions to play an important role
and we must deduce its general structure by our powerful invariance arguments. We will
only consider unpolarized scattering and therefore perform an average over the initial proton
spins. The sum over final states, X, includes all possible quantum numbers for each hadronic
state with total momentum p′. For an inclusive cross section, the final phase space involves
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FIGURE 9.1
Inelastic electron–proton scattering, in one-photon exchange approximation.

only the scattered electron. Moreover, since we are not restricting the scattering process
by picking out any specific state of X, the energy k′ and the scattering angle θ of the final
electron are now independent variables. In Wμν(q, p) the sum over X includes the phase
space for each hadronic state restricted by the usual 4-momentum-conserving δ-function
to ensure that each state in X has momentum p′. Including some conventional factors, we
define Wμν(q, p) by (see problem 9.1)

e2Wμν(q, p) =
1

4πM

1

2

∑
s

∑
X

〈p; p, s|ĵμem,p(0)|X; p′〉〈X; p′|ĵνem,p(0)|p; p, s〉

×(2π)4δ4(p+ q − p′). (9.3)

How do we parametrize the tensor structure of Wμν? As usual, Lorentz invariance and
current conservation come to our aid. There is one important difference compared with the
elastic form factor case of section 8.8. For inclusive inelastic scattering there are now two
independent scalar variables. The relation

p′ = p+ q (9.4)

leads to
p′2 = M2 + 2p · q + q2 (9.5)

where M is the proton mass. In this case, the invariant mass of the hadronic final state is
a variable

p′2 ≡ W 2 (9.6)

and is related to the other two scalar variables

p · q = Mν (9.7)

and (cf (8.223))
q2 = −Q2 (9.8)

by the condition (cf (8.229))
2Mν = Q2 +W 2 −M2. (9.9)

Our invariance arguments lead us to the same tensor structure as for elastic electron–
proton scattering, but now the functions A(q2), B(q2) are replaced by ‘structure functions’
which are functions of two variables, usually taken to be ν and Q2. The conventional defi-
nition of the proton structure functions W1 and W2 is

Wμν(q, p) = (−gμν + qμqν/q2)W1(Q
2, ν)

+[pμ − (p · q/q2)qμ][pν − (p · q/q2)qν ]M−2W2(Q
2, ν).

(9.10)
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Inserting the usual flux factor together with the final electron phase space leads to the
following expression for the inclusive differential cross section for inelastic electron–proton
scattering (see problem 9.1):

dσ =

(
4πα

q2

)2
1

4[(k · p)2 −m2M2]1/2
4πMLμνW

μν d3k′

2ω′(2π)3
. (9.11)

In terms of ‘laboratory’ variables, neglecting electron mass effects, this yields (problem
9.2(a))

d2σ

dΩdk′
=

α2

4k2 sin4(θ/2)
[W2 cos

2(θ/2) + 2W1 sin
2(θ/2)]. (9.12)

Remembering now that cos θ and k′ are independent variables for inelastic scattering, we
can change variables from cos θ and k′ to Q2 and ν, assuming azimuthal symmetry for the
unpolarized cross section. We have

Q2 = 2kk′(1− cos θ) (9.13)

ν = k − k′ (9.14)

so that (problem 9.2(b))

d(cos θ) dk′ =
1

2kk′
dQ2 dν (9.15)

and

d2σ

dQ2dν
=

πα2

4k2 sin4(θ/2)

1

kk′
[W2 cos

2(θ/2) + 2W1 sin
2(θ/2)]. (9.16)

Yet another choice of variables is sometimes used instead of these, namely the dimensionless
variables

x = Q2/2Mν (9.17)

whose significance we shall see in the next section, and

y = ν/k (9.18)

which is the fractional energy transfer in the ‘laboratory’ frame. Note that relation (8.224)
shows that x = 1 for elastic scattering. The Jacobian for the transformation from Q2 and
ν to x and y is (see problem 9.2(b))

dQ2 dν = 2Mk2y dx dy. (9.19)

We emphasize that the foregoing—in particular (9.3), (9.12), and (9.16)—is all completely
general, given the initial one-photon approximation. The physics is all contained in the ν
and Q2 dependence of the two structure functions W1 and W2.

A priori, one might expect W1 and W2 to be complicated functions of ν and Q2, reflect-
ing the complexity of the inelastic scattering process. However, in 1969 Bjorken predicted
that in the ‘deep inelastic region’—large ν and Q2, but Q2/ν finite—there should be a
very simple behaviour. He predicted that the structure functions should scale, i.e. become
functions not of Q2 and ν independently but only of their ratio Q2/ν. It was the verification
of approximate ‘Bjorken scaling’ that led to the development of the modern parton model.
We therefore specialize our discussion of inelastic scattering to the deep inelastic region.
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FIGURE 9.2
Bjorken scaling: the structure function νW2 (a) plotted against x for different Q2 values
(Attwood 1980, courtesy SLAC) and (b) plotted against Q2 for the single x value, x = 0.25
(Friedman and Kendall 1972).

9.2 Bjorken scaling and the parton model

From considerations based on the quark model current algebra of Gell-Mann (1962), Bjorken
(1969) was led to propose the following ‘scaling hypothesis’: in the limit

Q2 → ∞
ν → ∞

}
with x = Q2/2Mν fixed (9.20)

the structure functions scale as

MW1(Q
2, ν) → F1(x) (9.21)

νW2(Q
2, ν) → F2(x). (9.22)

We must emphasize that the physical content of Bjorken’s hypothesis is that the functions
F1(x) and F2(x) are finite1.

Early experimental support for these predictions (figure 9.2) led initially to an exami-
nation of the theoretical basis of Bjorken’s arguments and to the formulation of the simple
intuitive picture provided by the parton model. Closer scrutiny of figure 9.2(a) will encour-
age the (correct) suspicion that, in fact, there is a small but significant spread in the data
for any given x value. In volume 2 we shall give an introduction to the way in which QCD
corrections to the parton model lead to predictions for logarithmic (in Q2) violations of sim-
ple scaling behaviour, which are in excellent agreement with experiment. These violations
are particularly large at small values of x; for x greater than about 0.1, the structure func-
tions are substantially independent of Q2, for a given x. The scaling predicted by Bjorken
is certainly the most immediate gross feature of the data, and an understanding of it is of
fundamental importance.

How can the scaling be understood? Feynman, when asked to explain Bjorken’s ar-
guments, gave an intuitive explanation in terms of elastic scattering from free point-like

1It is always possible to write W (Q2, ν) = f(x,Q2), say, where f(x,Q2) will tend to some function F (x)
as Q2 → ∞ with x fixed. F (x) may, however, be zero, finite or infinite. The physics lies in the hypothesis
that, in this limit, a finite part remains.
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p, p

e−, k

q

e−, k′
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FIGURE 9.3
Photon–parton interaction.

constituents of the nucleon, which he dubbed ‘partons’ (Feynman 1969). The essence of the
argument lies in the kinematics of elastic scattering of electrons by free point-like charged
partons. We will therefore be able to use the results of the previous chapters to derive the
parton model results. At high Q2 and ν it is intuitively reasonable (and in fact the basis
for the light-cone and short-distance operator approach (Wilson 1969) to scaling) that the
virtual photon is probing very short distances and time scales within the proton. In this
situation, Feynman supposed that the photon interacts with small (point-like) constituents
within the proton, which carry only a certain fraction f of the proton’s energy and momen-
tum (figure 9.3). Over the short time scales involved in the transfer of a large amount of
energy ν, and at the short distances probed at large Q2, the struck constituents can per-
haps be treated as effectively free and independent. (This is in sharp contrast to the case of
elastic scattering, where the constituents are acting coherently.) We then have the idealized
elastic scattering process shown in figure 9.4. It is the kinematics of the elastic scattering
condition for the partons that leads directly to a relation between Q2 and ν and hence to
the observed scaling behaviour. The original discussion of the parton model took place in
the infinite-momentum frame of the proton. While this has the merit that it eliminates the
need for explicit statements about parton masses and so on, it also obscures the simple
kinematic origin of the scaling. For this reason, at the expense of some theoretical niceties,
we prefer to perform a direct calculation of electron–parton scattering in close analogy with
our previous examples.

We first show that the fraction f is none other than Bjorken’s variable x. For a parton
of type i we write

pμi ≈ fpμ (9.23)

e−, k e−, k′

q

fp

FIGURE 9.4
Elastic electron–parton scattering.



Bjorken scaling and the parton model 227

FIGURE 9.5
Structure function for quasi-elastic ed scattering, plotted against x (Attwood 1980, courtesy
SLAC).

and, roughly speaking2, we can imagine that the partons have mass

mi ≈ fM. (9.24)

Then, exactly as in (8.216) and (8.217), energy and momentum conservation at the parton
vertex, together with the assumption that the struck parton remains on-shell (as indicated
by the fact that in figure 9.4 the partons are free), imply that

(q + fp)2 = m2
i (9.25)

which, using (9.8), (8.222), and (9.24), gives

f = Q2/2Mν ≡ x. (9.26)

Thus the fact that the nucleon structure functions do seem to depend (to a good approx-
imation) only on the variable x is interpreted physically as showing that the scattering is
dominated by the ‘quasi-free’ electron–parton process shown in figure 9.4. In section 11.5.3
we shall see how the ‘asymptotic freedom’ property of QCD suggests a dynamical under-
standing of this picture, as will be discussed further in chapter 15 of volume 2. We shall also
see in section 15.6 how QCD corrections to the free parton model give observable violations
of Bjorken scaling, providing tests of QCD.

What sort of values for x do we expect? Consider an analogous situation—electron
scattering from deuterium. Here the target (the deuteron) is undoubtedly composite, and
its ‘partons’ are, to a first approximation, just the two nucleons. Since mN � 1

2mD, we
expect to see the value x � 1

2 (cf (9.24)) favoured; x = 1 here would correspond to elastic
scattering from the deuteron. A peak at x ≈ 1

2 is indeed observed (figure 9.5) in quasi-
elastic e−d scattering (the broadening of the peak is due to the fact that the constituent
nucleons have some motion within the deuteron.) By ‘quasi-elastic’ here we mean that the

2Explicit statements about parton transverse momenta and masses, such as those made in equa-
tions (9.23) and (9.24), are unnecessary in a rigorous treatment, where such quantities can be shown to give
rise to non-leading scaling behaviour (Sachrajda 1983).
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incident electron scatters off ‘quasi-free’ nucleons, an approximation we expect to be good for
incident energies significantly greater than the binding energy of the n and p in the deuteron
(∼2 MeV). What about the nucleon itself, then? A simple three-quark model would, on this
analogy, lead us to expect a peak at x � 1

3 , but the data already shown (figure 9.2(a))
do not look much like that. Perhaps there is something else present too—which we shall
uncover as our story proceeds.

Certainly, it seems sensible to suppose that a nucleon contains at least some quarks
(and also anti-quarks) of the type introduced in the simple composite models of the nucleon
(section 1.2.2). If quarks are supposed to have spin-12 , then the scattering of an electron
from a quark or anti-quark—generically a charged parton—of type i, charge ei (in units of
e) is just given by the eμ scattering cross section (8.228), with obvious modifications:

d2σi

dQ2dν
=

πα2

4k2 sin4(θ/2)

1

kk′

(
e2i cos

2(θ/2) + e2i
Q2

4m2
i

2 sin2(θ/2)

)
×δ(ν −Q2/2mi). (9.27)

This is to be compared with the general inclusive inelastic cross section formula written in
terms of W1 and W2:

d2σ

dQ2dν
=

πα2

4k2 sin4(θ/2)

1

kk′
[W2 cos

2(θ/2) +W12 sin
2(θ/2)]. (9.28)

Thus the contribution to W1 and W2 from one parton of type i is immediately seen to be

W i
1 = e2i

Q2

4M2x2
δ(ν −Q2/2Mx) (9.29)

W i
2 = e2i δ(ν −Q2/2Mx) (9.30)

where we have set mi = xM . At large ν and Q2 it is assumed that the contributions from
different partons add incoherently in cross section. Thus, to obtain the total contribution
from all quark partons, we must sum over the contributions from all types of partons, i, and
integrate over all values of x, the momentum fraction carried by the parton. The integral
over x must be weighted by the probability fi(x) for the parton of type i to have a fraction x
of momentum. These probability distributions—or parton distribution functions (PDFs)—
are not predicted by the model and are, in this parton picture, fundamental parameters of
the proton. The structure function W2 becomes

W2(ν,Q
2) =

∑
i

∫ 1

0

dx fi(x)e
2
i δ(ν −Q2/2Mx). (9.31)

Using the result for the Dirac δ-function (see appendix E, equation (E.34))

δ(g(x)) =
δ(x− x0)

|dg/dx|x=x0

(9.32)

where x0 is defined by g(x0) = 0, we can rewrite

δ(ν −Q2/2Mx) = (x/ν)δ(x−Q2/2Mν) (9.33)

under the x integral. Hence we obtain

νW2(ν,Q
2) =

∑
i

e2ixfi(x) ≡ F2(x) (9.34)
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which is the desired scaling behaviour. Similar manipulations lead to

MW1(ν,Q
2) = F1(x) (9.35)

where
2xF1(x) = F2(x). (9.36)

This relation between F1 and F2 is called the Callan–Gross relation (see Callan and
Gross 1969). It is a direct consequence of our assumption of spin- 12 partons. The physical
origin of this relation is best discussed in terms of virtual photon total cross sections for
transverse (λ = ±1) virtual photons and for a longitudinal/scalar (λ = 0) virtual photon
contribution. The longitudinal/scalar photon is present because q2 �= 0 for a virtual photon
(see comment (4) in section 8.3.1). However, in the discussion of polarization vectors a slight
difference occurs for space-like q2. In a frame in which

qμ = (q0, 0, 0, q3) (9.37)

the transverse polarization vectors are as before

εμ(λ = ±1) = ∓2−1/2(0, 1,±i, 0) (9.38)

with normalization (see equation (7.87))

ε∗ · ε = −1. (9.39)

To construct the longitudinal/scalar polarization vector, we must satisfy

q · ε = 0 (9.40)

and so are led to the result

εμ(λ = 0) = (1/
√
Q2)(q3, 0, 0, q0) (9.41)

with
ε2(λ = 0) = +1. (9.42)

The precise definition of a virtual photon cross section is obviously just a convention. It is
usually taken to be

σλ(γp → X) = (4π2α/K)ε∗μ(λ)εν(λ)W
μν (9.43)

by analogy with the total cross section for real photons of polarization λ incident on an
unpolarized proton target. Note the presence of the factor Wμν defined in (9.3). The factor
K is the flux factor; for real photons, producing a final state of mass W , this is just the
photon energy in the rest frame of the target nucleon:

K = (W 2 −M2)/2M. (9.44)

In the so-called Hand convention, this same factor is used for virtual photons which produce
a final state of mass W . With these definitions we find (see problem 9.3) that the transverse
(λ = ±1) photon cross section

σT =

(
4π2α

K

)
1

2

∑
λ=±1

ε∗μ(λ)εν(λ)W
μν (9.45)

is given by
σT = (4π2α/K)W1 (9.46)
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and the longitudinal/scalar cross section

σS = (4π2α/K)ε∗μ(λ = 0)εν(λ = 0)Wμν (9.47)

by
σS = (4π2α/K)[(1 + ν2/Q2)W2 −W1]. (9.48)

In fact these expressions give an intuitive explanation of the positivity properties of W1 and
W2, namely

W1 ≥ 0 (9.49)

(1 + ν2/Q2)W2 −W1 ≥ 0. (9.50)

The combination in the λ = 0 cross section is sometimes denoted by WL:

WL = (1 + ν2/Q2)W2 −W1. (9.51)

The scaling limit of these expressions can be taken using

νW2 → F2 (9.52)

MW1 → F1 (9.53)

and x = Q2/2Mν finite, as Q2 and ν grow large. We find

σT → 4π2α

MK
F1(x) (9.54)

and
σS → (4π2α/MK)(1/2x)(F2 − 2xF1) (9.55)

where we have neglected a term of order MF2/ν in the last expression. Thus the Callan–
Gross relation corresponds to the result

σS/σT → 0 (9.56)

in terms of photon cross sections.
A parton calculation using point-like spin-0 partons shows the opposite result, namely

σT/σS → 0. (9.57)

Both these results may be understood by considering the helicities of partons and photons in
the so-called parton Breit or ‘brick-wall’ frame. The particular frame is the one in which the
photon and parton are collinear and the 3-momentum of the parton is exactly reversed by the
collision (see figure 9.6). In this frame, the photon transfers no energy, only 3-momentum.

FIGURE 9.6
Photon–parton interaction in the Breit frame.
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FIGURE 9.7
Angular momentum balance for absorption of photon by helicity-conserving spin-12 parton.

The vanishing of transverse photon cross sections for scalar partons is now obvious. The
transverse photons bring in ±1 units of the z-component of angular momentum: spin-0
partons cannot absorb this. Thus only the scalar λ = 0 cross section is non-zero. For spin-
1
2 partons the argument is slightly more complicated in that it depends on the helicity
properties of the γμ coupling of the parton to the photon. As is shown in problem 9.4,
for massless spin- 12 particles the γμ coupling conserves helicity—i.e. the projection of spin
along the direction of motion of the particle. Thus in the Breit frame, and neglecting parton
masses, conservation of helicity necessitates a change in the z-component of the parton’s
angular momentum by ±1 unit, thereby requiring the absorption of a transverse photon
(figure 9.7). The Lorentz transformation from the parton Breit frame to the ‘laboratory’
frame does not affect the ratio of transverse to longitudinal photons, if we neglect the
parton transverse momenta. These arguments therefore make clear the origin of the Callan–
Gross relation. Experimentally, the Callan–Gross relation is reasonably well satisfied in that
R = σS/σT is small for most, if not all, of the deep inelastic regime (figure 9.8). This leads
us to suppose that the electrically charged partons coupling to photons have spin- 12 .

9.3 Partons as quarks and gluons

We now proceed a stage further, with the idea that the charged partons are quarks (and
anti-quarks). If we assume that the photon only couples to these objects, we can make more
specific scaling predictions. The quantum numbers of the quarks have been given in Table
1.2. For a proton we have the result (cf (9.34))

F ep
2 (x) = x{ 4

9 [u(x) + ū(x)] + 1
9 [d(x) + d̄(x) + s(x) + s̄(x)] + · · ·} (9.58)

where u(x) is the probability distribution for u quarks in the proton, ū(x) for u anti-quarks
and so on in an obvious notation, and the dots indicate further possible flavours. So far, we
do not seem to have gained much, replacing one unknown function by six or more unknown
functions. The full power of the quark parton model lies in the fact that the same distribution
functions appear, in different combinations, for neutron targets, and in the analogous scaling
functions for deep inelastic scattering with neutrino and antineutrino beams (see volume 2).
For electron scattering from neutron targets we can use I-spin invariance (see for example
Close 1979, or Leader and Predazzi 1996) to relate the distribution of u and d quarks in a
neutron to the distributions in a proton, and similarly for the antiquarks. The results are

up(x) = dn(x) ≡ u(x) dp(x) = un(x) ≡ d(x) (9.59)
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FIGURE 9.8
The ratio 2xF1/F2: ◦, 1.5 < Q2 < 4 GeV2; •, 0.5 < Q2 < 11 GeV2; ×, 12 < Q2 < 16 GeV2.
(Figure from D H Perkins Introduction to High Energy Physics 3rd edn, copyright 1987;
reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ.)

d̄p(x) = ūn(x) ≡ d̄(x) ūp(x) = d̄n(x) ≡ ū(x) (9.60)

sp(x) = sn(x) ≡ s(x) s̄p(x) = s̄n(x) ≡ s̄(x). (9.61)

Hence the scaling function for en scattering may be written

F en
2 (x) = x{ 4

9 [d(x) + d̄(x)] + 1
9 [u(x) + ū(x) + s(x) + s̄(x)] + · · ·}. (9.62)

The quark distributions inside the proton and neutron must satisfy some constraints.
Since both proton and neutron have strangeness zero, we have a sum rule (treating only u,
d and s flavours from now on) ∫ 1

0

dx [s(x)− s̄(x)] = 0. (9.63)

Similarly, from the proton and neutron charges we obtain two other sum rules:∫ 1

0

dx { 2
3 [u(x)− ū(x)]− 1

3 [d(x)− d̄(x)]} = 1 (9.64)

∫ 1

0

dx { 2
3 [d(x)− d̄(x)]− 1

3 [u(x)− ū(x)]} = 0. (9.65)

These are equivalent to the sum rules

2 =

∫ 1

0

dx [u(x)− ū(x)] (9.66)

1 =

∫ 1

0

dx [d(x)− d̄(x)] (9.67)
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which are, of course, just the excess of u and d quarks over anti-quarks inside the proton.
Testing these sum rules requires neutrino data to separate the various structure functions,
as we shall explain in volume 2, chapter 20.

One can gain some further insight if one is prepared to make a model. For example,
one can introduce the idea of ‘valence’ quarks (those of the elementary constituent quark
model) and ‘sea’ quarks (qq̄ pairs created virtually). Then, in a proton, the u and d quark
distributions would be parametrized by the sum of valence and sea contributions

u = uV + qS (9.68)

d = dV + qS (9.69)

while the anti-quark and strange quark distributions are taken to be pure sea

ū = d̄ = s = s̄ = qS (9.70)

where we have assumed that the ‘sea’ is flavour-independent. Such a model replaces the
six unknown functions now in play by three, and is consequently more predictive. The
strangeness sum rule (9.63) is now satisfied automatically, while (9.66) and (9.67) are sat-
isfied by the valence distributions alone:∫ 1

0

dxuV(x) = 2 (9.71)

∫ 1

0

dx dV(x) = 1. (9.72)

One more important sum rule emerges from the picture of xfi(x) as the fractional
momentum carried by quark i. This is the momentum sum rule∫ 1

0

dxx[u(x) + ū(x) + d(x) + d̄(x) + s(x) + s̄(x)] = 1− ε (9.73)

where ε is interpreted as the fraction of the proton momentum that is not carried by quarks
and antiquarks. The integral in (9.73) is directly related to ν and ν̄ cross sections, and its
evaluation implies ε � 1

2 (the CHARM (1981) result was 1− ε = 0.44± 0.02). This suggests
that about half the total momentum is carried by uncharged objects. These remaining
partons are identified with the gluons of QCD. They have their own PDF, g(x).

An enormous effort, both experimental and theoretical, has gone into determining the
parton distribution functions. The subject is regularly reviewed by the Particle Data Group
(currently Workman et al. 2022). Figure 9.9 shows the result of one analysis. In this much
more sophisticated approach, which includes higher order QCD corrections, it is necessary
to specify a particular value of Q2 (here denoted by Q2 = μ2) at which the distributions
are defined, as explained in chapter 15 of volume 2. The distributions at this value are
quantities to be determined from experiment. The distributions at other values of Q2 are
then predicted by perturbative QCD.

The main features of the PDFs shown in figure 9.9 are: the valence quark distributions
are peaked at around x = 0.2, and go to zero for x → 0 and x → 1; the sea quarks, on
the other hand, have a high probability of carrying very low momentum fractions, as do
the gluons—in fact, the gluons dominate for x below about 0.1. This is then the picture of
‘what nucleons are made of’, as revealed by some 40 years of research.
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FIGURE 9.9
Distributions of x times the unpolarized parton distribution functions f(x) (where
f = uV, dV, ū, d̄, s, c, b, g) and their associated uncertainties using the MSHT20NNLO
parametrization (Bailey et al. 2021) at a scale μ2 = 10 GeV2 and μ2 = 10, 000 GeV2.
[Figure reproduced from the review of Structure Functions by E C Aschenauer, R S Thorne
and R Yoshida, section 18 in the Review of Particle Physics, R L Workman et al. (Particle
Data Group) Prog. Theor. Exp. Phys. 2022 083C01 (2022)]

9.4 The Drell–Yan process

Much of the importance of the parton model lies outside its original domain of deep inelastic
scattering. In deep inelastic scattering it is possible to provide a more formal basis for the
parton model in terms of light-cone and short-distance operator expansions (see chapter 18
of Peskin and Schroeder 1995). The advantage of the parton formulation lies in the fact that
it suggests other processes for which a parton description may be relevant but for which
formal operator arguments are not possible. One such example is the Drell–Yan process
(Drell and Yan 1970)

p + p → μ+μ− +X (9.74)

in which a μ+μ− pair is produced in proton–proton collisions along with unobserved hadrons
X, as shown in figure 9.10. The assumption of the parton model is that in the limit

s → ∞ with τ = q2/s finite (9.75)

the dominant process is that shown in figure 9.11: a quark and anti-quark from different
hadrons are assumed to annihilate to a virtual photon which then decays to a μ+μ− pair
(compare figures 9.3 and 9.4), the remaining quarks and anti-quarks subsequently emerging
as hadrons.

Let us work in the CM system and neglect all masses. In this case we have

pμ1 = (P, 0, 0, P ) pμ2 = (P, 0, 0,−P ) (9.76)

and
s = 4P 2. (9.77)
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FIGURE 9.10
Drell–Yan process.

Neglecting quark masses and transverse momenta, we have quark momenta

pμq1 = x1(P, 0, 0, P ) (9.78)

pμq2 = x2(P, 0, 0,−P ) (9.79)

and the photon momentum
q = pq1 + pq2 (9.80)

has non-zero components

q0 = (x1 + x2)P (9.81)

q3 = (x1 − x2)P. (9.82)

Thus we find
q2 = 4x1x2P

2 (9.83)

and hence
τ = q2/s = x1x2. (9.84)

The cross section for the basic process

qq̄ → μ+μ− (9.85)

is calculated using the result of problem 8.18. Since the QED process

e+e− → μ+μ− (9.86)

FIGURE 9.11
Parton model amplitude for the Drell–Yan process.
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has the cross section (neglecting all masses)

σ(e+e− → μ+μ−) = 4πα2/3q2 (9.87)

we expect the result for a quark of type a with charge ea (in units of e) to be

σ(qaq̄a → μ+μ−) = (4πα2/3q2)e2a. (9.88)

To obtain the parton model prediction for proton–proton collisions, one merely multiplies
this cross section by the probabilities for finding a quark of type a with momentum fraction
x1, and an anti-quark of the same type with fraction x2, namely

qa(x1) dx1 q̄a(x2) dx2. (9.89)

There is, of course, another contribution for which the anti-quark has fraction x1 and the
quark x2:

q̄a(x1) dx1 qa(x2) dx2. (9.90)

Thus the Drell–Yan prediction is

d2σ(pp → μ+μ− +X)

=
4πα2

9q2

∑
a

e2a[qa(x1)q̄a(x2) + q̄a(x1)qa(x2)] dx1 dx2

(9.91)

where we have included a factor 1
3 to account for the colour of the quarks: in order to

make a colour singlet photon, one needs to match the colours of quark and anti-quark.
Equation (9.91) is the master formula. Its importance lies in the fact that the same quark
distribution functions are measured in deep inelastic lepton scattering so one can make
absolute predictions.3 For example, if the photon in figure 9.11 is replaced by a W(Z), one
can predict W(Z) production cross sections, as we shall see in volume 2.

We would expect some ‘scaling’ property to hold for this cross section, following from
the point-like constituent cross section (9.88). One way to exhibit this is to use the variables
q2 and xF = x1 − x2 as discussed in problem 9.6. There it is shown that the dimensionless
quantity

q4
d2σ

dq2 dxF
(9.92)

should be a function of xF and the ratio τ = q2/s. The data bear out this prediction
well—see figure 9.12.

Furthermore, the assumption that the lepton pair is produced via quark–anti-quark
annihilation to a virtual photon can be checked by observing the angular distribution of
either lepton in the dilepton rest frame, relative to the incident proton beam direction. This
distribution is expected to be the same as in e+e− → μ+μ−, namely (cf (8.194))

dσ/dΩ ∝ (1 + cos2 θ) (9.93)

as is indeed observed (figure 9.13). Note that figure 9.13 provides evidence that the quarks
have spin- 12 : if they are assumed to have spin-0, the angular distribution would be (see
problem 9.7) proportional to (1− cos2 θ), and this is clearly ruled out.

3QCD corrections make the connection more complicated, but still perturbatively computable.
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FIGURE 9.12
The dimensionless cross section M3d2σ/dMdxF (M =

√
q2) at xF = 0 for pN scattering,

plotted against
√
τ = M/

√
s (Scott 1985): •, √s = 62 GeV; �, 44; �, 27.4; ©, 23.8.

FIGURE 9.13
Angular distribution of muons, measured in the μ+μ− rest frame, relative to the incident
beam direction, in the Drell–Yan process. (Figure from D H Perkins Introduction to High
Energy Physics 3rd edn, copyright 1987; reprinted by permission of Pearson Education,
Inc., Upper Saddle River, NJ.)
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FIGURE 9.14
e+e− annihilation to hadrons in one-photon approximation.

9.5 e+e− annihilation into hadrons

The last electromagnetic process we wish to consider is electron–positron annihilation into
hadrons (figure 9.14):

e+e− → X. (9.94)

As usual, the dominance of the one-photon intermediate state is assumed. Figure 9.14 is
clearly a generalization of figure 8.9, the latter describing the particular case in which the
final hadronic state is π+π−. As a preliminary to discussing (9.94), let us therefore revisit
e+e− → π+π− first.

The O(e2) amplitude is given in equation (8.159). We shall simplify the calculation by
neglecting both the electron and the pion masses. The spinor part of the amplitude is then
−2v̄(k1) /p1u(k), and the ‘L ·T ’ product is 16(k ·p1)(k1 ·p1). Borrowing the general CM cross
section formula (6.129) from chapter 6 as in (8.121), and including the pion form factor, we
obtain for the unpolarized CM differential cross section(

dσ̄

dΩ

)
CM

=
F 2(q2)α2

4q2
(1− cos2 θ) (9.95)

and the total unpolarized cross section is

σ̄ = F 2(q2)
2πα2

3q2
. (9.96)

The cross section σ̄ contains a 1/q2 factor, just like that for e+e− → μ+μ− as in (9.87), but
this ‘pointlike’ behaviour is modified by the square of the formfactor, evaluated at time-like
q2. When the measured σ̄ is plotted against q2 for q2 ≤ 1 (GeV)2, a pronounced resonance is
seen at q2 ≈ m2

ρ, superimposed on the smooth 1/q2 background, where mρ is the mass of the

rho resonance (JP = 1−qq̄ state). The interpretation of this is shown in figure 9.15. F (q2)
should therefore be parametrized as a resonance, as in (6.107)—or a more sophisticated
version to take account of the fact that the π’s are emitted in an � = 1 state. Just as F 2(q2)
modified the point-like cross section in the space-like region for e−π+ → e−π+, so here it
modifies the point-like (∼ 1/q2) behaviour in the time-like region.

Returning now to the process (9.94), the cross section for it is shown as a function of
CM energy (q2)1/2 in figure 9.16. The general point-like fall-off as 1/q2 is seen, with peaks
due to a succession of boson resonances superimposed (ρ, J/ψ,Υ, Z0, . . .). The 1/q2 fall-off
is suggestive of a (point-like) parton picture and indeed the process (9.94) is similar to the
Drell–Yan one:

pp → μ+μ− +X. (9.97)
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FIGURE 9.15
ρ-dominance of the pion electromagnetic form factor in the time-like (q2 > 0) region.

It is natural to imagine that at large q2 the basic subprocess is quark–anti-quark pair
creation (figure 9.17). The total cross section for qq̄ pair production is then (cf (9.88))

σ(e+e− → qaq̄a) = (4πα2/3q2)e2a. (9.98)

In the vicinity of mesonic resonances such as the ρ, we can infer that the dominant compo-
nent in the final state is that in which the qq̄ pair is strongly bound into a mesonic state,

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

1 10 10
2

[m
b]

J /
(2S)

Z

10
-1

1

10

10 2

10 3

1 10 10
2

R

J / (2S)
Z

s [GeV]

FIGURE 9.16
The cross section σ for the annihilation process e+e− → hadrons, and the ratio R (see equa-
tion (9.100), as a function of cm energy. [Figure reproduced courtesy Michael Barnett, for
the Particle Data Group, from the Review of Particle Physics, K Nakamura et al. (Particle
Data Group) Journal of Physics G 37 (2010) 075021 IOP Publishing Limited.]
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FIGURE 9.17
Parton model subprocess in e+e− → hadrons.

which then decays into hadrons. Away from resonances, and increasingly at larger values of
q2, the produced qq̄ pair seek to separate from the interaction region. As they draw apart,
however, the interaction between them increases (recall section 1.3.6), producing more qq̄
pairs, together with radiated gluons. In this process, the coloured quarks and gluons even-
tually must form colourless hadrons, since we know that no coloured particles have been
observed (‘confinement of colour’). If one assumes that the presumed colour confinement
mechanism does not affect the prediction (9.98), then we arrive at the result

σ(e+e− → hadrons) = (4πα2/3q2)
∑
a

e2a (9.99)

at large q2, where ‘a’ includes all flavours produced at that energy.
This model is best tested by taking out the dominant 1/q2 behaviour and plotting the

ratio

R =
σ(e+e− → hadrons)

σ(e+e− → μ+μ−)
=
∑
a

e2a. (9.100)

For the light quarks u, d and s occurring in three colours, we therefore predict

R = 3[( 23 )
2 + (− 1

3 )
2 + (− 1

3 )
2] = 2. (9.101)

Above the c threshold but below the b threshold we expect R = 10
3 , and above the b

threshold R = 11
3 . These expectations are in reasonable accord with experiment, especially

at energies well beyond the resonance region and the b threshold, as figure 9.16 shows. In
this figure the dotted curve is the prediction of the quark-parton model, equation (9.99).
The solid curve includes perturbative QCD corrections, which we will return to in chapter
15 of volume 2.

The success of this prediction leads one to consider more detailed consequences of the
picture. For example, the angular distribution of massless spin- 12 quarks is expected to be
(cf (8.194) again)

dσ/dΩ = (α2/4q2)e2a(1 + cos2 θ) (9.102)

just as for the μ+μ− process. However, in this case there is an important difference: the
quarks are not observed! Nevertheless a remarkable ‘memory’ of (9.102) is retained by the
observed final-state hadrons. Experimentally one observes events in which hadrons emerge
from the interaction region in two relatively well-collimated cones or ‘jets’—see figure 9.18.
The distribution of events as a function of the (inferred) angle of the jet axis is shown in
figure 9.19 and is in good agreement with (9.102). The interpretation is that the primary
process is e+e− → qq̄, the quark and the anti-quark then turning into hadrons as they
separate and experience the very strong colour forces, but without losing the memory of
the original quark angular distribution.
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FIGURE 9.18
Two-jet event in e+e− annihilation from the TASSO detector at the e+e− storage ring
PETRA.

FIGURE 9.19
Angular distribution of jets in two-jet events, measured in the two-jet rest frame, relative to
the incident beam direction, in the process e+e− → two jets (Althoff et al. 1984). The full
curve is the (1 + cos2 θ) distribution. Since it is not possible to say which jet corresponded
to the quark and which to the anti-quark, only half the angular distribution can be plotted.
The asymmetry visible in figure 8.20(b) is therefore not apparent.

Problems

9.1 The various normalization factors in equations (9.3) and (9.11) may be checked in the
following way. The cross section for inclusive electron–proton scattering may be written
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(equation (9.11)):

dσ =

(
4πα

q2

)2
1

4[(k · p)2 −m2M2]1/2
4πMLμνW

μν d3k′

2ω′(2π)3
(9.103)

in the usual one-photon exchange approximation, and the tensor Wμν is related to hadronic
matrix elements of the electromagnetic current operator by equation (9.3):

e2Wμν(q, p) =
1

4πM

1

2

∑
s

∑
X

〈p; p, s|ĵμem(0)|X; p′〉

×〈X; p′|ĵνem(0)|p; p, s〉(2π)4δ4(p+ q − p′)

where the sum X is over all possible hadronic final states. If we consider the special case of
elastic scattering, the sum over X is only over the final proton’s degrees of freedom:

e2Wμν
el =

1

4πM

1

2

∑
s

∑
s′

〈p; p, s|ĵμem(0)|p; p′, s′〉〈p; p′, s′|ĵνem(0)|p; p, s〉

×(2π)4δ4(p+ q − p′)
1

(2π)3
d3p′

2E′
.

Now use equation (8.208) with F1 = 1 and κ = 0 (i.e. the electromagnetic current matrix
element for a ‘point’ proton) to show that the resulting cross section is identical to that for
elastic eμ scattering.

9.2

(a) Perform the contraction LμνW
μν for inclusive inelastic electron–proton scattering

(remember qμLμν = qνLμν = 0). Hence verify that the inclusive differential cross
section in terms of ‘laboratory’ variables, and neglecting the electron mass, has
the form

d2σ

dΩdk′
=

α2

4k2 sin4(θ/2)
[W2 cos

2(θ/2) +W12 sin
2(θ/2)].

(b) By calculating the Jacobian

J =

∣∣∣∣ ∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

∣∣∣∣
for a change of variables (x, y) → (u, v)

du dv = |J |dx dy
find expressions for d2σ/dQ2 dν and d2σ/dx dy, where Q2 and ν have their usual
significance, and x is the scaling variable Q2/2Mν and y = ν/k.

9.3 Consider the description of inelastic electron–proton scattering in terms of virtual pho-
ton cross sections:

(a) In the ‘laboratory’ frame with

pμ = (M, 0, 0, 0) and qμ = (q0, 0, 0, q3)

evaluate the transverse spin sum

1
2

∑
λ=±1

εμ(λ)ε
∗
ν(λ)W

μν .
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Hence show that the ‘Hand’ cross section for transverse virtual photons is

σT = (4π2α/K)W1.

(b) Using the definition

εμS = (1/
√

Q2)(q3, 0, 0, q0)

and rewriting this in terms of the ‘laboratory’ 4-vectors pμ and qμ, evaluate the
longitudinal/scalar virtual photon cross section. Hence show that

W2 =
K

4π2α

Q2

Q2 + ν2
(σS + σT).

9.4 In this problem, we consider the representation of the 4 × 4 Dirac matrices in which
(see (3.40))

α =

(
σ 0
0 −σ

)
β =

(
0 1
1 0

)
.

Define also the 4 × 4 matrix γ5 =

(
1 0
0 −1

)
and the Dirac four-component spinor

u =

(
φ
χ

)
. Then the two-component spinors φ, χ satisfy

σ · pφ = Eφ−mχ

σ · pχ = −Eχ+mφ.

(a) Show that for a massless Dirac particle, φ and χ become helicity eigenstates (see
section 3.3) with positive and negative helicity respectively.

(b) Defining

PR =
1 + γ5

2
PL =

1− γ5
2

show that P 2
R = P 2

L = 1, PRPL = 0 = PLPR, and that PR + PL = 1. Show also
that

PR

(
φ
χ

)
=

(
φ
0

)
PL

(
φ
χ

)
=

(
0
χ

)
and hence that PR and PL are projection operators for massless Dirac particles,
onto states of definite helicity. Discuss what happens when m �= 0.

(c) The general massless spinor u can be written

u = (PL + PR)u ≡ uL + uR

where uL, uR have the indicated helicities. Show that

ūγμu = ūLγ
μuL + ūRγ

μuR

where ūL = u†Lγ
0, ūR = u†Rγ

0; and deduce that in electromagnetic interactions
of massless fermions helicity is conserved.

(d) In weak interactions an axial vector current ūγμγ5u also enters. Is helicity still
conserved?

(e) Show that the ‘Dirac’ mass term m
¯̂
ψψ̂ may be written as m(

¯̂
ψLψ̂R +

¯̂
ψRψ̂L).
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9.5 In the HERA colliding beam machine, positrons of total energy 27.5 GeV collide head
on with protons of total energy 820 GeV. Neglecting both the positron and the proton rest
masses, calculate the centre-of-mass energy in such a collision process.

Some theories have predicted the existence of ‘leptoquarks’, which could be produced at
HERA as a resonance state formed from the incident positron and the struck quark. How
would a distribution of such events look, if plotted versus the variable x?

9.6

(a) By the expedient of inserting a δ-function, the differential cross section for Drell–

Yan production of a lepton pair of mass
√
q2 may be written as

dσ

dq2
=

∫
dx1 dx2

d2σ

dx1 dx2
δ(q2 − sx1x2).

Show that this is equivalent to the form

dσ

dq2
=

4πα2

9q4

∫
dx1 dx2 x1x2δ(x1x2 − τ)

×
∑
a

e2a[qa(x1)q̄a(x2) + q̄a(x1)qa(x2)]

which, since q2 = sτ , exhibits a scaling law of the form

s2dσ/dq2 = F (τ).

(b) Introduce the Feynman scaling variable

xF = x1 − x2

with
q2 = sx1x2

and show that
dq2 dxF = (x1 + x2)sdx1 dx2.

Hence show that the Drell–Yan formula can be rewritten as

d2σ

dq2 dxF
=

4πα2

9q4
τ

(x2
F + 4τ)1/2

∑
a

e2a[qa(x1)q̄a(x2) + q̄a(x1)qa(x2)].

9.7 Verify that if the quarks participating in the Drell–Yan subprocess qq̄ → γ → μμ̄
had spin-0, the CM angular distribution of the final μ+μ−pair would be proportional to
(1− cos2 θ).
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10

Loops and Renormalization I: The ABC Theory

We have seen how Feynman diagrams represent terms in a perturbation theory expansion
of physical amplitudes, namely the Dyson expansion of section 6.2. Terms of a given order
all involve the same power of a ‘coupling constant’, which is the multiplicative constant
appearing in the interaction Hamiltonian—for example, ‘g’ in the ABC theory, or the charge
‘e’ in electrodynamics. In practice, it often turns out that the relevant parameter is actually
the square of the coupling constant, and factors of 4π have a habit of appearing on a regular
basis; so, for QED, the perturbation series is conveniently ordered according to powers of
the fine structure constant α = e2/4π ≈ 1/137.

Equivalently, this is an expansion in terms of the number of vertices appearing in the
diagrams, since one power of the coupling constant is associated with each vertex. For a
given physical process, the lowest-order diagrams (the ones with the fewest vertices) are
those in which each vertex is connected to every other vertex by just one internal line;
these are called tree diagrams. The Yukawa (u-channel) exchange process of figure 6.4,
and the s-channel process of figure 6.5, are both examples of tree diagrams, and indeed
all of our calculations so far have not gone further than this lowest-order (‘tree’) level.
Admittedly, since α is after all pretty small, tree diagrams in QED are likely to give us a
good approximation to compare with experiment. Nevertheless, a long history of beautiful
and ingenious experiments has resulted in observables in QED being determined to an
accuracy far better than the O(1%) represented by the leading (tree) terms. More generally,
precision experiments at LEP, the LHC, and other laboratories have an accuracy sensitive
to higher-order corrections in the Standard Model (SM). Hence, some understanding of the
physics beyond the tree approximation is now essential for phenomenology.

All higher-order processes beyond the tree approximation involve loops, a concept easier
to recognize visually than to define in words. In section 6.3.5 we have already seen (figure 6.8)
one example of an O(g4) correction to theO(g2) C-exchange tree diagram of figure 6.4, which
contains one loop. The crucial point is that whereas a tree diagram can be cut into two
separate pieces by severing just one internal line, to cut a loop diagram into two separate
pieces requires the severing of at least two internal lines.

In these last two chapters, we aim to provide an introduction to higher-order processes,
confining ourselves to ‘one-loop’ order. In the present chapter we shall concentrate mainly on
the particular loop appearing in figure 6.8. This will lead us into the physics of renormaliza-
tion for the ABC theory, which—as a Yukawa-like theory—is a good theoretical laboratory
for studying ‘one-loop physics’, without the complications of spinor and gauge fields. In the
following chapter, we shall discuss one-loop diagrams in QED, emphasizing some important
physical consequences, such as corrections to Coulomb’s law, anomalous magnetic moments
and the running coupling constant.

DOI: 10.1201/9781003410720-10 247

https://doi.org/10.1201/9781003410720-10


248 Loops and Renormalization I: The ABC Theory

FIGURE 10.1
O(g4) contribution to the process A + B → A + B, involving the modification of the C
propagator by the insertion of a loop.

10.1 The propagator correction in ABC theory

10.1.1 The O(g2) self-energy Π
[2]
C (q2)

We consider figure 6.8, reproduced here again as figure 10.1. In section 6.3.5, we gave the
extra rule (‘(iii)’) needed to write down the invariant amplitude for this process. We first
show how this rule arises in the special case of figure 10.1.

Clearly, figure 10.1 is a fourth-order process, so it must emerge from the term

(−ig)4

4!

∫ ∫ ∫ ∫
d4x1 d

4x2 d
4x3 d

4x4 〈0|âA(p′A)âB(p′B)

×T{φ̂A(x1)φ̂B(x1)φ̂C(x1) . . . φ̂A(x4)φ̂B(x4)φ̂C(x4)}
×â†A(pA)â

†
B(pB)|0〉(16EAEBE

′
AE

′
B)

1/2 (10.1)

of the Dyson expansion. Since it is basically a u-channel exchange process (u = (pA−p′B)
2 =

(p′A−pB)
2), the vev’s involving the external creation and annihilation operators must appear

as they do in equation (6.89) (‘ingoing A, outgoing B′ at one point x2; ingoing B, outgoing
A′ at another point x1’) rather than as in equation (6.88) (‘ingoing A and B at x2; outgoing
A′ and B′ at x1’). In (10.1), however, we unfortunately have four space–time points to
choose from, rather than merely the two in (6.74). Figuring out exactly which choices are
in fact equivalent and which are not is best left to private struggle, especially since we are
not seriously interested in the numerical value of our fourth-order corrections in this case.
Let us simply consider one choice, analogous to (6.89). This yields the amplitude (cf (6.91))

(−ig)4
∫ ∫ ∫ ∫

d4x1 d
4x2 d

4x3 d
4x4 e

i(p′
A−pB)·x1ei(p

′
B−pA)·x2

×〈0|T{φ̂C(x1)φ̂C(x2)φ̂A(x3)φ̂B(x3)φ̂C(x3)φ̂A(x4)φ̂B(x4)φ̂C(x4)}|0〉
(10.2)
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A B′
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C

FIGURE 10.2
The space–time structure of the integrand in (10.3).

and we have discarded the numerical factor 1/4!. Once again, there are many terms in the
expansion of the vev of the eight operators in (10.2). But, with an eye on the structure of
the Feynman amplitude at which we are aiming (figure 10.1), let us consider again just a
single contribution

(−ig)4
∫ ∫ ∫ ∫

d4x1 d
4x2 d

4x3 d
4x4 e

i(p′
A−pB)·x1ei(p

′
B−pA)·x2

×〈0|T (φ̂C(x1)φ̂C(x3))|0〉〈0|T (φ̂C(x2)φ̂C(x4))|0〉
×〈0|T (φ̂A(x3)φ̂A(x4))|0〉〈0|T (φ̂B(x3)φ̂B(x4))|0〉 (10.3)

which contains four propagators connected as in figure 10.2.
As we saw in section 6.3.2, each of these propagators is a function only of the difference of

the two space–time points involved. Introducing relative coordinates x = x1−x3, y = x2−x4,
z = x3 −x4, and the CM coordinate X = 1

4 (x1 +x2 +x3 +x4), we find (problem 10.1) that
(10.3) becomes

(−ig)4
∫ ∫ ∫ ∫

d4X d4x d4y d4z ei(p
′
A+p′

B−pA−pB)·Xei(p
′
A−pB)·(3x−y+2z)/4

×ei(p
′
B−pA)·(−x+3y−2z)/4DC(x)DC(y)DA(z)DB(z) (10.4)

where Di is the position–space propagator for type-i particles (i = A,B,C), defined as
in (6.98). The integral over X gives the expected overall 4-momentum conservation factor,
(2π)4δ4(p′A+p′B−pA−pB). Setting q = pA−p′B = p′A−pB (where 4-momentum conservation
has been used), (10.4) becomes

(−ig)4(2π)4δ4(p′A + p′B − pA − pB)

∫ ∫ ∫
d4x d4y d4z eiq·xDC(x)

×e−iq·yDC(y)e
iq·zDA(z)DB(z). (10.5)

The integrals over x and y separate out completely, each being just the Fourier transform
of a C propagator—that is, the momentum–space propagator D̃C(q). Since the latter is a
function of q2 only, we end up with two factors of i/(q2 − m2

C + iε), corresponding to the
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two C propagators in the momentum–space Feynman diagram of figure 10.1. Note that
the Mandelstam u-variable is defined by u = (pA − p′B)

2 and is thus equal to q2; we shall,
however, continue to use q2 rather than u in what follows.

The remaining factor represents the loop. Including (−ig)2 for the two vertices in the
loop, it is given by

(−ig)2
∫

d4z eiq·zDA(z)DB(z) (10.6)

which is the main result of our calculation so far. Since we want to end up finally with
a momentum–space amplitude, let us introduce the A and B propagators in momentum
space, and write (10.6) as (cf (6.99))

(−ig)2
∫

d4z eiq·z
∫

d4k1
(2π)4

e−ik1·z i

k21 −m2
A + iε

∫
d4k2
(2π)4

e−ik2·z i

k22 −m2
B + iε

= (−ig)2
∫ ∫

d4k1
(2π)4

d4k2
(2π)4

i

k21 −m2
A + iε

i

k22 −m2
B + iε

×(2π)4δ4(k1 + k2 − q)

= (−ig)2
∫

d4k

(2π)4
i

k2 −m2
A + iε

i

(q − k)2 −m2
B + iε

(10.7)

≡ −iΠ
[2]
C (q2), (10.8)

where we have defined the function −iΠ
[2]
C (q2) as the loop (or ‘bubble’) amplitude appearing

in figure 10.1. It is a function of q2 as follows from Lorentz invariance. The [2] refers to the
two powers of g, as will be explained shortly, after (10.15).

Careful consideration of the equivalences among the various contractions shows that the
amplitude corresponding to figure 10.1 is, in fact, just the simple expression

(−ig)2(2π)4δ4(p′A + p′B − pA − pB)
i

q2 −m2
C + iε

(−iΠ
[2]
C (q2))

i

q2 −m2
C + iε

(10.9)

where Π
[2]
C (q2) is given in (10.8). We see that whereas the ‘single-particle’ pieces, involving

one C-exchange, do not involve any integral in momentum–space, the loop (which involves
both A and B particles) does involve a momentum integral. This can be simply understood
in terms of 4-momentum conservation, which holds at every vertex of a Feynman graph.
At the top (or bottom) vertex of figure 10.1, the 4-momentum q of the C-particle is fully
determined by that of the incoming and outgoing particles (q = pA − p′B = p′A − pB). This
same 4-momentum q flows in (and out) of the loop in figure 10.1, but nothing determines
how it is to be shared between the A- and B-particles; all that can be said is that if the
4-momentum of A is k (as in (10.7)) then that of B is q − k, so that their sum is q. The
‘free’ variable k then has to be integrated over, and this is the physical origin of rule (iii)
of section 6.3.5.

We have devoted some time to the steps leading to expression (10.7), not only in order
to follow the emergence of rule (iii) mathematically, but so as to lend some plausibility
to a very important statement: the Feynman rules for associating factors with vertices
and propagators, which we learned for tree graphs in chapters 6 and 8, also work, with
the addition of rule (iii), for all more complicated graphs as well! Having seen most of
just one fairly short calculation of a higher-order amplitude, the reader may perhaps now
begin to appreciate just how powerful is the precise correspondence between ‘diagrams and
amplitudes’, given by the Feynman rules.

Having arrived at the expression for our first one-loop graph, we must at once draw
the reader’s attention to the bad news: the integral in (10.7) is divergent at large values
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of k. We shall postpone a more detailed mathematical analysis until section 10.3.1, but
the divergence can be plausibly inferred just from a simple counting of powers; there are
four powers of k in the numerator and four in the denominator, and the likelihood is

that the integral diverges as
∫ Λ

0
k3dk/k4 ∼ ln Λ, as Λ → ∞. This is plainly a disaster: a

quantity which was supposed to be a small correction in perturbation theory is actually
infinite! Such divergences, occurring as loop momenta go to infinity, are called ‘ultraviolet
divergences’, and they are ubiquitous in quantum field theory. Only after a long struggle
with these infinities was it understood how to obtain physically sensible results from such
perturbation expansions. Depending on the type of field theory involved, the infinities can
often be ‘tamed’ through a procedure known as renormalization, to which we shall provide
an introduction in this and the following chapter.

The physical ideas behind renormalization are, however, just as relevant in cases—such
as condensed matter physics—where the analogous higher-order (loop) corrections are not
infinite, though possibly large. In quantum mechanics, infinite momentum corresponds to
zero distance, and our fields are certainly ‘point-like’. But in condensed matter physics there
is generally a natural non-zero smallest distance—the lattice size, or an atomic diameter, for
example. In quantum field theory, such a ‘shortest distance’ would correspond to a ‘highest
momentum’, meaning that the magnitudes of loop momenta would run from zero up to some
finite limit Λ, say, rather than infinity. Such a Λ is called a (momentum) ‘cut-off’. With
such a cut-off in place, our loop integrals are of course finite—but it would seem that we
have then maltreated our field theory in some way. However, we might well ask whether we
seriously believe that any of our quantum field theories is literally valid for arbitrarily high
energies (or arbitrarily small distances). The answer is surely no. We are virtually certain
that ‘new physics’ will come into play at some stage, which is not contained in—say—the
QED, or even the SM, Lagrangian. At what scale this new physics will enter (the Planck
energy? 10 TeV?) we do not know, but surely the current models will break down at some
point. We should not be too alarmed, therefore, by formal divergences as Λ → ∞. Rather,
it may be sensible to regard a cut-off Λ as standing for some ‘new physics’ scale, accepting
some such manoeuvre as physically realistic as well as mathematically prudent.

At the same time, however, we would not want our physical predictions, made using
quantum field theories, to depend sensitively on Λ—i.e. on the unknown short-distance
physics, in this interpretation. Indeed, theories exist (for example, those in the SM and the
ABC theory) which can be reformulated in such a way that all dependence on Λ disappears,
as Λ → ∞; these are, precisely, renormalizable quantum field theories. Roughly speaking,
a renormalizable quantum field theory is one such that, when formulae are expressed in
terms of certain ‘physical’ parameters taken from experiment, rather than in terms of the
original parameters appearing in the Lagrangian, calculated quantities will be finite and
independent of Λ as Λ → ∞.

Solid state physics provides a close analogy. There, the usefulness of a description of, say,
electrons in a metal in terms of their ‘effective charge’ and ‘effective mass’, rather than their
free-space values, is well established. In this analogy, the free-space quantities correspond
to our Lagrangian values, while the effective parameters correspond to our ‘physical’ ones.
In both cases, the interactions are causing changes to the parameters.

It is clear that we need to understand more precisely just what our ‘physical parameters’
might be and how they might be defined. This is what we aim to do in the remainder of the
present section, and in the next one, before returning in section 10.3 to the mathematical
details associated with evaluating (10.7), and indicating how renormalization works for the
self-energy. Having thus prepared the ground, we shall introduce a more powerful approach
in section 10.4, and offer a few preliminary remarks about ‘renormalizability’ in section 10.5,
returning to that topic at the end of the following chapter. Although usually not explicitly
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FIGURE 10.3
O(g6) term in A + B → A+ B, involving the insertion of two loops in the C propagator.

indicated, loop corrections considered in this and the following section will be understood
to be defined with a cut-off Λ, so that they are finite.

To begin the discussion of the physical significance of our O(g4) correction, (10.9), it
is convenient to consider both the O(g2) term (6.100) and the O(g4) correction together,
obtaining

(−ig)2(2π)4δ4(p′A + p′B − pA − pB)

×
{

i

q2 −m2
C

+
i

q2 −m2
C

(−iΠ
[2]
C (q2))

i

q2 −m2
C

}
(10.10)

where the iε in the C propagators does not need to be retained. Both the form of (10.10) and
inspection of figure 10.1 suggest that the O(g4) term we have calculated can be regarded
as an O(g2) correction to the propagator for the C-particle. Indeed, we can easily imagine
adding in the O(g6) term shown in figure 10.3, and in fact the whole infinite series of such
‘bubbles’ connected by simple C propagators. The infinite geometric series for the corrected
propagator shown in figure 10.4 has the form

i

q2 −m2
C

+
i

q2 −m2
C

(−iΠ
[2]
C (q2))

i

q2 −m2
C

FIGURE 10.4
Series of one-loop (or ‘bubble’) insertions in the C propagator.
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FIGURE 10.5
O(g4) contribution to ΠC(q

2).

+
i

q2 −m2
C

(−iΠ
[2]
C (q2))

i

q2 −m2
C

(−iΠ
[2]
C (q2))

i

q2 −m2
C

+ · · ·
(10.11)

=
i

q2 −m2
C

(1 + r + r2 + · · ·) (10.12)

where
r = Π

[2]
C (q2)/(q2 −m2

C). (10.13)

The geometric series in (10.12) may be summed, at least formally1, to give (1−r)−1 so that
(10.12) becomes

i

q2 −m2
C

1

1−Π
[2]
C (q2)/(q2 −m2

C)
=

i

q2 −m2
C −Π

[2]
C (q2)

. (10.14)

In this form it is particularly clear that we are dealing with corrections to the simple C

propagator i/(q2 −m2
C). Π

[2]
C is called the O(g2) self-energy.

Before proceeding with the analysis of (10.14), we note that it is a special case of the
more general expression

D̃
′
C(q

2) =
i

q2 −m2
C −ΠC(q2)

(10.15)

where D̃
′
C(q

2) is the complete (including all corrections) C propagator, and ΠC(q
2) is the

sum of all ‘insertions’ in the C line, excluding those which can be cut into two separate bits by
severing a single line: ΠC(q

2) is the one-particle irreducible self-energy and we must exclude
all one-particle bits from it as they are already included in the geometric series summation

(cf (10.11)). The amplitude Π
[2]
C which we have calculated is simply the lowest-order (O(g2))

contribution to ΠC(q
2); an O(g4) contribution to ΠC(q

2) is shown in figure 10.5.

10.1.2 Mass shift

We return to the expression (10.14) which includes the effect of all the iterated O(g2)

bubbles in the C propagator, where Π
[2]
C (q2) is given by

−iΠ
[2]
C (q2) = (−ig)2

∫
d4k

(2π)4
i

k2 −m2
A + iε

i

(q − k)2 −m2
B + iε

. (10.16)

1Properly speaking this is valid only for |r| < 1, yet we know that Π
[2]
C (q2) actually diverges! As we

shall see, however, renormalization will be carried out after making such quantities finite by ‘regularization’
(section 10.3.2), and then working systematically at a given order in g (section 10.4).
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Postponing the evaluation of (10.16) (and in particular the treatment of its divergence)
until section 10.3, we proceed to discuss the further implications of (10.14).

First, suppose Π
[2]
C were simply a constant, δm2

C say. In the absence of this correction,
we know (cf section 6.3.3) that the vanishing of the denominator of the C propagator
would correspond to the ‘mass-shell condition’ q2 = m2

C appropriate to a free particle of
momentum q and energy q0 = (q2 + m2

C)
1/2, where mC is the mass of a C particle. It

seems very plausible, therefore, to interpret the constant δm2
C as a shift in the (mass)2 of

the C particle, the denominator of (10.14) now vanishing at q0 = (q2 + m2
C + δm2

C)
1/2, if

Π
[2]
C � δm2

C. The idea that the mass of a particle can be changed from its ‘free space’ value
by the presence of interactions with its ‘environment’ is a familiar one in condensed matter
physics, as noted above. In the case of electrons in a metal, for example, it is not surprising
that the presence of the lattice ions, and the attendant band structure, affect the response
of conduction electrons to external fields, so that their apparent inertia changes. In the
present case, the ‘environment’ is, in fact, the vacuum. The process described by the bubble

Π
[2]
C (q2) is one in which a C particle dissociates virtually into an A–B pair, which then

recombine into the C particle, no other ‘external’ source being present. As in earlier uses
of the word, by ‘virtual’ here is meant a process in which the participating particles leave

their mass-shells. Thus, in particular, in the expression (10.16) for Π
[2]
C , it will in general be

the case that k2 �= m2
A, and (q − k)2 �= m2

B.
In the case of the electron in a metal, both the ‘free’ and the ‘effective’ masses are

measurable quantities. But we cannot get outside the vacuum! This strongly suggests that
what we must mean by ‘the physical (mass)2’ of a particle in our ABC theory is not the ‘free’
(Lagrangian) value m2

i , which is unmeasurable, but the effective (mass)2 which includes all
vacuum interactions. This ‘physical (mass)2’ may be defined to be that value of q2 for which

q2 −m2
i −Πi(q

2) = 0 (10.17)

where Πi(q
2) is the complete one-particle irreducible self-energy for particle type ‘i’. If we

call the physical mass mph,i, then, we will have q2 −m2
i −Πi(q

2) = 0 when q2 = m2
ph,i.

What we are dealing with in (10.14) is just the lowest-order contribution to ΠC(q
2),

namely Π
[2]
C (q2), so that in our case m2

ph,C is determined by the condition

q2 −m2
C −Π

[2]
C (q2) = 0 when q2 = m2

ph,C, (10.18)

which (to this order) is

m2
ph,C = m2

C +Π
[2]
C (m2

ph,C). (10.19)

Once we have calculated Π
[2]
C (see section 10.3), equation (10.19) could be regarded as

an equation to determine m2
ph,C in terms of the parameter m2

C, which appeared in the
original ABC Lagrangian. This might, indeed, be the way such an equation would be viewed
in condensed matter physics, where we should know the values of the parameters in the
Lagrangian. But in the field-theory case m2

C is unobservable, so that such an equation has
no predictive value. Instead, we may regard it as an equation determining (up to O(g2)) m2

C

in terms of m2
ph,C, thus enabling us to eliminate—to this order in g—all occurrences of the

unobservable parameter m2
C from our amplitudes in favour of the physical parameter m2

ph,C.

Note that Π
[2]
C contains two powers of g, so that in the spirit of systematic perturbation

theory, the mass shift represented by (10.19) is a second-order correction.

The crucial point here is that Π
[2]
C depends on the cut-off Λ, whereas the physical mass

m2
ph,C clearly does not. But there is nothing to stop us supposing that the unknown and

unobservable Lagrangian parameter m2
C depends on Λ in just such a way as to cancel
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the Λ-dependence of Π
[2]
C , leaving m2

ph,C independent of Λ. This is the beginning of the
‘renormalization procedure’ in quantum field theory.

10.1.3 Field strength renormalization

We now need to consider the more realistic case in which Π
[2]
C (q2) is not a constant. Let us

expand it about the point q2 = m2
ph,C, writing

Π
[2]
C (q2) ≈ Π

[2]
C (m2

ph,C) + (q2 −m2
ph,C)

dΠ
[2]
C

dq2

∣∣∣∣
q2=m2

ph,C

+ · · · . (10.20)

The corrected propagator (10.14) then becomes

i

q2 −m2
C −Π

[2]
C (m2

ph,C)− (q2 −m2
ph,C)

dΠ
[2]
C

dq2

∣∣∣∣
q2=m2

ph,C

+ · · ·
(10.21)

=
i

(q2 −m2
ph,C)

[
1− dΠ

[2]
C

dq2

∣∣∣∣
q2=m2

ph,C

]
+O(q2 −m2

ph,C)
2

. (10.22)

The expression (10.22) has indeed the expected form for a ‘physical C’ propagator, having
the simple behaviour ∼1/(q2 −m2

ph,C) for q
2 ≈ m2

ph,C. However, the normalization of this

(corrected) propagator is different from that of the ‘free’ one, i/(q2 −m2
C), because of the

extra factor [
1− dΠ

[2]
C

dq2

∣∣∣∣
q2=m2

ph,C

]−1

.

To the order at which we are working (O(g2)), it is consistent to replace this expression by

1 +
dΠ

[2]
C

dq2

∣∣∣∣
q2=m2

ph,C

.

Let us see how this factor may be understood.
Our O(g2) corrected propagator is an approximation to the exact propagator which

we may write as 〈Ω|T (φ̂C(x1)φ̂C(x2))|Ω〉, in coordinate space, where |Ω〉 is the exact vac-

uum. The free propagator, however, is 〈0|T (φ̂C(x1)φ̂C(x2))|0〉 as calculated in section 6.3.2.

Consider one term in the latter, θ(t1 − t2)〈0|φ̂C(x1)φ̂C(x2)|0〉, and insert a complete set of
free-particle states ‘1 =

∑
n |n〉〈n|’ between the two free fields, obtaining

θ(t1 − t2)
∑
n

〈0|φ̂C(x1)|n〉〈n|φ̂C(x2)|0〉. (10.23)

The only free particle state |n〉 having a non-zero matrix element of the free field φ̂C to the

vacuum is the 1−C state, for which 〈0|φ̂C(x)|C, k〉 = e−ik·x as we learned in chapters 5 and
6. Thus (10.23) becomes (cf equation (6.92))

θ(t1 − t2)

∫
d3k

(2π)32ωk
e−iωk(t1−t2)+ik·(x1−x2) (10.24)
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which is exactly the first term of equation (6.92). Consider now carrying out a similar
manipulation for the corresponding term of the interacting propagator, obtaining

θ(t1 − t2)
∑
n

〈Ω|φ̂C(x1)|n〉 〈n|φ̂C(x2)|Ω〉 (10.25)

where the states |n〉 are now the exact eigenstates of the full Hamiltonian. The crucial
difference between (10.23) and (10.25) is that in (10.25), multi-particle states can appear in
the states |n〉. For example, the state |A,B〉 consisting of an A particle and a B particle will
enter, because the interaction couples this state to the 1-C states created and destroyed in

φ̂C. Indeed, just such an A+B state is present in Π
[2]
C ! This means that, whereas in the free

case the ‘content’ of the state 〈0|φ̂C(x) was fully exhausted by the 1 − C state |C, k〉 (in
the sense that all overlaps with other states |n〉 were zero), this is not so in the interacting

case. The ‘content’ of 〈Ω|φ̂C(x) is not fully exhausted by the state |C, k〉: rather, it has
overlaps with many other states. Now the sum total of all these overlaps (in the sense of
‘
∑

n |n〉 〈n|’) must be unity. Thus it seems clear that the ‘strength’ of the single matrix

element 〈Ω|φ̂C(x)|C, k〉 in the interacting case cannot be the same as the free case (where
the single state exhausted the completeness sum). However, we expect it to be true that

〈Ω|φ̂C(x)|C, k〉 is still basically the wavefunction for the C-particle. Hence we shall write

〈Ω|φ̂C(x)|C, k〉 =
√

ZCe
−ik·x (10.26)

where
√
ZC is a constant to take account of the change in normalization—the renormaliza-

tion, in fact—required by the altered ‘strength’ of the matrix element.
If (10.26) is accepted, we can now imagine repeating the steps leading from equa-

tion (6.92) to equation (6.98) but this time for 〈Ω|T (φ̂C(x1)φ̂C(x2))|Ω〉, retaining explicitly
only the single-particle state |C, k〉 in (10.25), and using the physical (mass)2, m2

ph,C. We
should then arrive at a propagator in the interacting case which has the form

〈Ω|T (φ̂C(x1)φ̂C(x2))|Ω〉 =

∫
d4k

(2π)4
e−ik·(x1−x2)

{
iZC

k2 −m2
ph,C + iε

+multiparticle contributions

}
. (10.27)

The single-particle contribution in (10.27)—after undoing the Fourier transform—has ex-
actly the same form as the one we found in (10.22), if we identify the field strength renor-
malization constant ZC with the proportionality factor in (10.22), to this order:

ZC ≈ Z
[2]
C = 1 +

dΠ
[2]
C

dq2

∣∣∣∣
q2=m2

ph,C

. (10.28)

This is how the change in normalization in (10.22) is to be interpreted.
It may be helpful to sketch briefly an analogy between this ‘renormalization’ and a

very similar one in ordinary quantum mechanical perturbation theory. Suppose we have a
Hamiltonian H = H0 + V and that the |n〉 are a complete set of orthonormal states such

that H0|n〉 = E
(0)
n |n〉. The exact eigenstates |n〉 satisfy

(H0 + V )|n〉 = En|n〉. (10.29)

To obtain |n〉 and En in perturbation theory, we write

|n〉 =
√

Nn|n〉+
∑
i 	=n

ci,n|i〉 (10.30)
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FIGURE 10.6
O(g4) contributions to A+B → A+B, involving corrections to the ABC vertices in figure 6.4.

where, if |n〉 is also normalized, we have

1 = Nn +
∑
i	=n

|ci,n|2. (10.31)

Nn cannot be unity, since non-zero amounts of the states |i〉 (i �= n) have been ‘mixed in’ by
the perturbation—just as the A+B state was introduced into the summation ‘

∑
n |n〉 〈n|’,

in addition to the 1−C state. Inserting (10.30) into (10.29) and taking the bracket with 〈j|
yields

cj,n = − 〈j|V |n〉
E

(0)
j − En

(10.32)

which is still an exact expression. The lowest non-trivial approximation to cj,n is to take

|n〉 ≈ √
Nn|n〉 and En ≈ E

(0)
n in (10.32), giving

cj,n ≈ −
√

Nn
〈j|V |n〉

E
(0)
j − E

(0)
n

≡ −
√

Nn
Vjn

E
(0)
j − E

(0)
n

. (10.33)

Equation (10.31) then gives Nn as

Nn ≈ 1

/(
1 +

∑
j

|Vjn|2/(E(0)
j − E(0)

n )2
)

≈ 1−
∑
j

|Vjn|2/(E(0)
j − E(0)

n )2 (10.34)

to second order in Vjn. The reader may ponder on the analogy between (10.34) and (10.28).

10.2 The vertex correction

At the same order (g4) of perturbation theory, we should also include, for consistency, the
processes shown in figures 10.6(a) and (b). Figure 10.6(a), for example, has the general
form

−ig
i

q2 −m2
C

(−igG[2](pA, p
′
B)) (10.35)

where −igG[2] is the ‘triangle’ loop, given by an expression similar to (10.16) but with a
factor (−ig)3 and three propagators. The ‘vertex correction’ G[2] depends on just two of
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its external 4-momenta because the third is determined by 4-momentum conservation, as
usual. Thus, the addition of figure 10.6(a) and the O(g2) C-exchange tree diagram gives

−ig
i

q2 −m2
C

{−ig + (−igG[2](pA, p
′
B))} (10.36)

from which it seems plausible that G[2] will contribute—among other effects—to a change
in g. This change will be of order g2, since we may write the {. . .} bracket in (10.36) as

−ig{1 +G[2](pA, p
′
B)} (10.37)

where G[2] is dimensionless and contains a g2 factor—hence the superscript [2].
Once again, the effect of interactions with the environment (i.e. vacuum fluctuations)

has been to alter the value of a Lagrangian parameter away from the ‘free’ value. In the case
of g, the change is analogous to that in which an electron in a metal acquires an ‘effective
charge’. How we define the ‘physical g’ is less clear than in the case of the physical mass and
we shall not pursue this point here, since we shall discuss it again in the more interesting
case of the charge ‘e’ in QED, in the following chapter. At all events, some suitable definition
of ‘gph’ can be given, so that it can be related to g after the relevant amplitudes have been
computed.

Let us briefly recapitulate progress. We are studying higher-order (one-loop) corrections
to tree graph amplitudes in the ABC model, which has the Lagrangian density:

L̂ =
∑
i

{ 1
2∂μφ̂i∂

μφ̂i − 1
2m

2
i φ̂

2
i } − gφ̂Aφ̂Bφ̂C. (10.38)

We have found that the loops considered so far, namely those in figures 10.1 and 10.5, have
the following qualitative effects:

(a) the position of the single-particle mass-shell condition becomes shifted away from
the ‘Lagrangian’ value m2

i to a ‘physical’ value m2
ph,i given by the vanishing of

an expression such as (10.17);

(b) the vacuum-to-one-particle matrix elements of the fields φ̂i have to be ‘renormal-
ized’ by a factor

√
Zi, given by (10.28) to O(g2) for i = C, and these factors have

to be included in S-matrix elements;

(c) the propagators contain some contribution from two-particle states (e.g. ‘A + B’,
for the C propagator);

(d) the Lagrangian coupling g is shifted by the interactions to a ‘physical’ value gph.

Responsible for these effects were two ‘elementary’ loops, that for −iΠ[2] shown in fig-
ure 10.7(a) and that for −igG[2] shown in figure 10.7(b). It is noteworthy that the effects
(a), (b), and (d) all relate to changes (renormalizations, shifts) in the fields and parameters
of the original Lagrangian. We say, collectively, that the ‘fields, masses and coupling have
been renormalized’—i.e. generically altered from their ‘free’ values, by the virtual inter-
actions represented generically by figures 10.7(a) and (b). However, whereas in condensed
matter physics one might well have the ambition to calculate such effects from first prin-
ciples, in the field-theory case that makes no sense. Rather, by rewriting all calculated
expressions (at a given order of perturbation theory) in terms of ‘renormalized’ quantities,
we aim to eliminate the ‘unknown physics scale’, Λ, from the theory. Let us now see how
this works in more mathematical detail.
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FIGURE 10.7
Elementary one-loop amplitudes: (a) self-energy; (b) vertex correction.

10.3 Dealing with the bad news: a simple example

10.3.1 Evaluating Π
[2]
C (q2)

We turn our attention to the actual evaluation of a one-loop amplitude, beginning with the

simplest, which is −iΠ
[2]
C (q2):

−iΠ
[2]
C (q2) = (−ig)2

∫
d4k

(2π)4
i

k2 −m2
A + iε

i

(q − k)2 −m2
B + iε

; (10.39)

in particular, we want to know the precise mathematical form of the divergence which
arises when the momentum integral in (10.39) is not cut off at an upper limit Λ. This will
necessitate the introduction of a few modest tricks from a large armoury (mostly due to
Feynman) for dealing with such integrals.

The first move in evaluating (10.39) is to ‘combine the denominators’ using the identity
(problem 10.2)

1

AB
=

∫ 1

0

dx

[(1− x)A+ xB]2
(10.40)

(similar ‘Feynman identities’ exist for combining three or more denominator factors). Ap-
plying (10.40) to (10.39) we obtain

−iΠ
[2]
C (q2) = g2

∫ 1

0

dx

∫
d4k

(2π)4

× 1

[(1− x)(k2 −m2
A + iε) + x((q − k)2 −m2

B + iε)]2
(10.41)

Collecting up terms inside the [. . .] bracket and changing the integration variable to k′ =
k − xq leads to (problem 10.3)

−iΠ
[2]
C (q2) = g2

∫ 1

0

dx

∫
d4k′

(2π)4
1

(k′2 −Δ+ iε)2
(10.42)

where
Δ = −x(1− x)q2 + xm2

B + (1− x)m2
A. (10.43)

The d4k′ integral means dk′0 d3k′, and k′2 = (k′0)2 − k′2.
We now perform the k′0 integration in (10.42) for which we will need the contour inte-

gration techniques explained in appendix F. The integral we want to calculate is∫ ∞

−∞

dk′0

[(k′0)2 −A]2
=

∂

∂A

∫ ∞

−∞

dk′0

[(k′0)2 −A]
≡ ∂

∂A
I(A) (10.44)
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FIGURE 10.8
Location of the poles of (10.42) in the complex k′0-plane.

where A = k′2 +Δ− iε. We rewrite I(A) as

I(A) = lim
R→∞

∫
CR

dz

[z2 −A]
(10.45)

where the contour CR is the real axis from −R to R. Next, we identify the points where
the integrand [z2 − A]−1 ceases to be analytic. In this case they are simple poles (see
Appendix F) at z = ±√

A = ±(k′2 + Δ − iε)1/2. Figure 10.8 shows the location of these
points in the complex z(k′0)-plane. Note that the ‘iε’ determines in which half-plane each
point lies (compare the similar role of the ‘iε’ in (z + iε)−1, in the proof in appendix F of
the representation (6.93) for the θ-function). We must now ‘close the contour’ in order to
be able to use Cauchy’s integral formula of (F.19). We may do this by means of a large
semicircle in either the upper (C+) or lower (C−) half-plane (again compare the discussion
in appendix F). The contribution from either such semicircle vanishes as R → ∞, since on
either we have z = Reiθ, and∫

C+ or C−

dz

z2 −A
=

∫
Reiθi dθ

R2e2iθ −A
→ 0 as R → ∞. (10.46)

For definiteness, let us choose to close the contour in the upper half-plane. Then we are
evaluating

I(A) = lim
R→∞

∮
C=CR+C+

dz

(z −√
A)(z +

√
A)

(10.47)

around the closed contour C shown in figure 10.9, which encloses the single non-analytic
point at z = −√

A. Applying Cauchy’s integral formula (F.19) with a = −√
A and f(z) =

(z −√
A)−1, we find

I(A) = 2πi
1

−2
√
A

(10.48)

and thus ∫ ∞

−∞

dk′0

[(k′0)2 −A]2
=

πi

2A3/2
. (10.49)

The reader may like to try taking the other choice (C−) of closing contour, and check that
the answer is the same. Reinstating the remaining integrals in (10.42) we have finally (as
ε → 0)

−iΠ
[2]
C (q2) =

i

8π2
g2
∫ 1

0

dx

∫ ∞

0

u2 du

(u2 +Δ)3/2
(10.50)
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FIGURE 10.9
The closed contour C used in the integral (10.47).

where u = |k′| and the integration over the angles of k′ has yielded a factor of 4π. We
see that the u-integral behaves as

∫
du/u for large u, which is logarithmically divergent, as

expected from the start.

10.3.2 Regularization and renormalization

Faced with results which are infinite, one can either try to go back to the very beginnings
of the theory and see if a totally new start can avoid the infinities or one can see if they
can somehow be ‘lived with’. The first approach may yet, ultimately, turn out to be correct:
perhaps a future theory will be altogether free of divergences (such theories do in fact exist,
but none as yet successfully describes the pattern of particles and forces we actually seem to
have in Nature). For the moment, it is the second approach which has been pursued—indeed
with great success as we shall see in the next chapter and in volume 2.

Accepting the general framework of quantum field theory, then, the first thing we must
obviously do is to modify the theory in some way so that integrals such as (10.50) do not
actually diverge, so that we can at least discuss finite rather than infinite quantities. This
step is called ‘regularization’ of the theory. There are many ways to do this but for our
present purposes a simple one will do well enough, which is to cut off the u-integration in
(10.50) at some finite value Λ (remember u is |k′|, so Λ here will have dimensions of energy,
or mass); such a step was given some physical motivation in section 10.1.1. Then we can
evaluate the integral straightforwardly and move on to the next stage.

With the upper limit in (10.50) replaced by Λ, we can evaluate the u-integral, obtaining
(problem 10.4)

Π
[2]
C (q2,Λ2) =

−g2

8π2

∫ 1

0

dx

{
ln

(
Λ + (Λ2 +Δ)1/2

Δ1/2

)
− Λ

(Λ2 +Δ)1/2

}
(10.51)

where from (10.43)
Δ = −x(1− x)q2 + xm2

B + (1− x)m2
A. (10.52)

Note that Δ > 0 for q2 < 0.

Inspection of (10.51) shows that as Λ → ∞, Π
[2]
C (q2,Λ2) contains a divergent part

proportional to lnΛ. It is useful to isolate this divergent part, as follows. For large Λ, we
can expand the terms in (10.51) in powers of Δ/Λ2, writing

Λ + (Λ2 +Δ)1/2 = 2Λ(1 +
Δ

4Λ2
+ . . .) (10.53)
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and
Λ

(Λ2 +Δ)1/2
= 1− Δ

2Λ2
+ . . . (10.54)

It follows that

Π
[2]
C (q2,Λ2) =

−g2

8π2

∫ 1

0

dx

{
ln Λ + (ln 2− 1)− 1

2
lnΔ

}
(10.55)

where terms that go to zero as Λ → ∞ have been omitted.
Relation (10.19) then becomes

m2
C(Λ

2) = m2
ph,C −Π

[2]
C (q2 = m2

ph,C,Λ
2) (10.56)

and there will be similar relations for the A and B masses. As noted previously, after

(10.19), the shift represented by (10.56) is an O(g2) perturbative correction (because Π
[2]
C

contains a factor g2), so that—again in the spirit of systematic perturbation theory—it
will be adequate to this order in g2 to replace the Lagrangian masses m2

A, m
2
B, and m2

C

inside the expressions for Π
[2]
A , Π

[2]
B , and Π

[2]
C by their physical counterparts. In this way the

relations (10.56) and the two similar ones give us the prescription for rewriting the m2
i in

terms of the m2
ph,i and Λ2. Of course, when this is done in the propagators, the result is

just to produce the desired form ∼(q2 −m2
ph,i)

−1, to this order.
So, for the propagator at this one-loop order, the effect of such mass shifts is essentially

trivial: the large Λ behaviour is simply absorbed into m2
i . What about ZC? This was defined

via (10.28) in terms of the quantity

dΠ
[2]
C

dq2

∣∣∣∣
q2=m2

ph,C

. (10.57)

However, equation (10.55) shows that the divergent part of Π
[2]
C is independent of q2, or

equivalently that the quantity (10.57) is finite. It follows that ZC is finite in this theory.
In other theories, quantities analogous to (10.55) might contain a q2-dependent divergence,
which would be formally absorbed in the rescaling represented by ZC.

We may also analyse the vertex correction G[2] of figure 10.6, and conclude that it too is
finite, because there are now three propagators giving six powers of k in the denominator,
with still only a four-dimensional d4k integration. Once again, the analogous vertex correc-
tion in QED is divergent, as we shall see in chapter 11; there too this divergence can be
absorbed into a redefinition of the physical charge. The ABC theory is, in fact, a ‘super-
renormalizable’ one, meaning (loosely) that it has fewer divergences than might be expected.
We shall come back to the classification of theories (renormalizable, non-renormalizable, and
super-renormalizable) at the end of the following chapter.

While it is not our purpose to present a full discussion of one-loop renormalization in
the ABC theory (because it is not of any direct physical interest) we will use it to introduce
one more important idea before turning, in the next chapter, to one-loop QED.

10.4 Bare and renormalized perturbation theory

10.4.1 Reorganizing perturbation theory

We have seen that, of the one-loop effects listed at the end of section 10.2, the mass shifts
given by equations such as (10.14) do involve formal divergences as Λ → ∞, but the vertex
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correction and field strength renormalization are finite in the ABC theory. We shall find
that in QED the corresponding quantities are all divergent, so that the perturbative re-
placement of all Lagrangian parameters by their ‘physical’ counterparts, together with field
strength renormalizations, is mandatory in QED in order to get rid of lnΛ terms. However,
this process—of evaluating the connections between the two sets of parameters, and then
inserting them into all the calculated amplitudes—is likely to be very cumbersome. In this
section, we shall introduce an alternative formulation, which has both calculational and
conceptual advantages.

By way of motivation, consider the QED analogue of the divergent part of equation
(10.7), which contributes a correction to the bare electron mass of the form αm ln(Λ/m)
where m is the electron mass. At Λ = 100 GeV the magnitude of this is about 0.04 MeV
(if we take m to have the physical value), which is a shift of some 10%. The application of
perturbation theory would seem more plausible if this kind of correction were to be included
from the start, so that the ‘free’ part of the Hamiltonian (or Lagrangian) involved the
physical fields and parameters, rather than the (unobserved) ones appearing in the original
theory. Then the main effects, in some sense, would already be included by the use of these
(empirical) physical quantities, and corrections would be ‘more plausibly’ small. This is
indeed the main reason for the usefulness of such ‘effective’ parameters in the analogous
case of condensed matter physics. Actually, of course, in quantum field theory the corrections
will be just as infinite (if we send Λ to infinity) in this approach also, since whichever way
we set the calculation up, we shall get loops, which are divergent. All the same, this kind
of ‘reorganization’ does offer a more systematic approach to renormalization.

To illustrate the idea, consider again our ABC Lagrangian

L̂ = L̂0,A + L̂0,B + L̂0,C + L̂int (10.58)

where
L̂0,C = 1

2∂μφ̂C∂
μφ̂C − 1

2m
2
Cφ̂

2
C (10.59)

and similarly for L̂0,A, L̂0,B; and where

L̂int = −gφ̂Aφ̂Bφ̂C. (10.60)

There are two obvious moves to make: (i) introduce the rescaled (renormalized) fields
by

φ̂ph,i(x) = Z
−1/2
i φ̂i(x) (10.61)

in order to get rid of the
√
Zi factors in the S-matrix elements and (ii) introduce the physical

masses m2
ph,i. Consider first the non-interacting parts of L̂, namely

L̂0 = L̂0,A + L̂0,B + L̂0,C. (10.62)

Singling out the C-parameters for definiteness, L̂0 can then be written as

L̂0 = 1
2ZC∂μφ̂ph,C∂

μφ̂ph,C − 1
2m

2
CZCφ̂

2
ph,C + · · ·

= 1
2∂μφ̂ph,C∂

μφ̂ph,C − 1
2m

2
ph,Cφ̂

2
ph,C

+ 1
2 (ZC − 1)∂μφ̂ph,C∂

μφ̂ph,C − 1
2 (m

2
CZC −m2

ph,C)φ̂
2
ph,C + · · · (10.63)

≡ L̂0ph,C + { 1
2δZC∂μφ̂ph,C∂

μφ̂ph,C − 1
2 (δZCm

2
ph,C + δm2

CZC)φ̂
2
ph,C}+ · · ·

(10.64)
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FIGURE 10.10
Counter term corresponding to the terms in braces in (10.64).

where L̂0ph,C is the standard free-C Lagrangian in terms of the physical field and mass, which
leads to a Feynman propagator i/(k2−m2

ph,C+iε) in the usual way; also, δZC = ZC−1 and

δm2
C = m2

C − m2
ph,C. In (10.64) the dots signify similar rearrangements of L̂0,A and L̂0,B.

Note that ZC and m2
C are understood to depend on Λ, as usual, although this has not been

indicated explicitly.
We now regard ‘L̂0ph,A + L̂0ph,B + L̂0ph,C’ as the ‘unperturbed’ part of L̂, and all the

remainder of (10.64) as perturbations additional to the original L̂int (much of theoretical
physics consists of exploiting the identity ‘a + b = (a + c) + (b − c)’). The effect of this

rearrangement is to introduce new perturbations, namely 1
2δZC∂μφ̂ph,C∂

μφ̂ph,C and the

φ̂2
ph,C term in (10.64), together with similar terms for the A and B fields. Such additional

perturbations are called counter terms and they must be included in our new perturbation
theory based on the L̂0ph,i pieces. As usual, this is conveniently implemented in terms of
associated Feynman diagrams. Since both of these counter terms involve just the square
of the field, it should be clear that they only have non-zero matrix elements between one-
particle states, so that the associated diagram has the form shown in figure 10.10, which
includes both these C-contributions. Problem 10.5 shows that the Feynman rule for figure
10.10 is that it contributes i[δZCk

2 − (δZCm
2
ph,C + δm2

CZC)] to the 1 C → 1 C amplitude.

The original interaction term L̂int may also be rewritten in terms of the physical fields
and a physical (renormalized) coupling constant gph:

−gφ̂Aφ̂Bφ̂C = −g(ZAZBZC)
1/2φ̂ph,Aφ̂ph,Bφ̂ph,C

= −gphφ̂ph,Aφ̂ph,Bφ̂ph,C − (ZV − 1)gphφ̂ph,Aφ̂ph,Bφ̂ph,C

(10.65)

where
ZVgph = g(ZAZBZC)

1/2. (10.66)

The interpretation of (10.66) is clearly that ‘gph’ is the coupling constant describing the

interactions among the φ̂ph,i fields, while the ‘(ZV − 1)’ term is another counter term,
having the structure shown in figure 10.11.

In summary, we have reorganized L̂ so as to base perturbation theory on a part de-
scribing the free renormalized fields (rather than the fields in the original Lagrangian); in
this formulation we find that, in addition to the (renormalized) ABC-interaction term, fur-
ther terms have appeared which are interpreted as additional perturbations, called counter
terms. These counter terms are determined, at each order in this (renormalized) pertur-
bation theory, by what are basically self-consistency conditions—such as, for example, the
requirement that the propagators really do reduce to the physical ones at the ‘mass-shell’
points. We shall now illustrate this procedure for the C propagator.
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FIGURE 10.11
Counter term corresponding to the ‘(ZV − 1)’ term in (10.66).

10.4.2 The O(g2
ph) renormalized self-energy revisited: how counter

terms are determined by renormalization conditions

Let us return to the calculation of the C propagator, following the same procedure as in
section 10.1, but this time ‘perturbing’ away from L̂0ph,i and including the contribution
from the counter term of figure 10.10, in addition to the O(g2ph) self energy. The expression
(10.14) will now be replaced by

i

q2 −m2
ph,C + q2δZC − δZCm2

ph,C − δm2
CZC −Π

[2]
ph,C(q

2,Λ2)
(10.67)

where

−iΠ
[2]
ph,C(q

2,Λ2) = (−igph)
2

∫
d4k

(2π)4
i

k2 −m2
ph,A + iε

· i

(q − k)2 −m2
ph,B + iε

(10.68)

and where we have indicated the cut-off dependence on the left-hand side, leaving it under-
stood on the right. Comparing (10.68) with (10.39) we see that they are exactly the same,

except that Π
[2]
ph,C involves the ‘physical’ coupling constant gph and the physical masses, as

expected in this renormalized perturbation theory. In particular, Π
[2]
ph,C will be divergent in

exactly the same way as Π
[2]
C , as the cut-off Λ goes to infinity.

The essence of this ‘reorganized’ perturbation theory is that we now determine δZC

and δm2
C from the condition that as q2 → m2

ph,C, the propagator (10.67) reduces to

i/(q2−m2
ph,C), i.e. it correctly represents the physical C propagator at the mass-shell point,

with standard normalization. Expanding Π
[2]
ph,C(q

2) about q2 = m2
ph,C then, we reach the

approximate form of (10.67), valid for q2 ≈ m2
ph,C:

i

(q2 −m2
ph,C)ZC−δm2

CZC−Π
[2]
ph,C(m

2
ph,C,Λ

2)−(q2 −m2
ph,C)

dΠ
[2]
ph,C

dq2

∣∣∣∣
q2=m2

ph,C

. (10.69)

Requiring that this has the form i/(q2 −m2
ph,C) gives

condition (a) δm2
C = −Z−1

C Π
[2]
ph,C(m

2
ph,C,Λ

2)

condition (b) ZC = 1 +
dΠ

[2]
ph,C

dq2

∣∣∣∣
q2=m2

ph,C

. (10.70)
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Looking first at condition (b), we see that our renormalization constant ZC has, in this
approach, been determined up to O(g2ph) by an equation that is, in fact, very similar to
(10.28), but it is expressed in terms of physical parameters. As regards (a), since ZC =
1 + O(g2ph), it is sufficient to replace it by 1 on the right-hand side of (a), so that, to this

order, δm2
C ≈ −Π

[2]
ph,C(m

2
ph,C,Λ

2). Once again, this is similar to (10.56), but written in
terms of the physical quantities from the outset. We indicate that these evaluations of ZC

and δm2
C are correct to second order by adding a superscript, as in Z

[2]
C .

Of course, we have not avoided the infinities (in the limit Λ → ∞) in this approach! It

is still true that the loop integral in Π
[2]
ph,C diverges logarithmically and so the mass shift

(δm
[2]
C )2 is infinite as Λ → ∞. Nevertheless, this is a conceptually cleaner way to do the

business. It is called ‘renormalized perturbation theory’, as opposed to our first approach
which is called ‘bare perturbation theory’. What we there called the ‘Lagrangian fields and
parameters’ are usually called the ‘bare’ ones; the ‘renormalized’ quantities are ‘clothed’ by
the interactions.

We may now return to our propagator (10.67), and insert the results (10.70) to obtain the
final important expression for the C propagator containing the one-loop O(g2ph) renormalized
self-energy:

i

q2 −m2
ph,C −Π

[2]

ph,C(q
2)

(10.71)

where

Π
[2]

ph,C(q
2) = Π

[2]
ph,C(q

2,Λ2)−Π
[2]
ph,C(m

2
ph,C,Λ

2)− (q2 −m2
ph,C)

dΠ
[2]
ph,C

dq2

∣∣∣∣
q2=m2

ph,C

. (10.72)

We remind the reader that Π
[2]
ph,C(q

2,Λ2) has exactly the same form as Π
[2]
C (q2,Λ2) except

that g2 and m2
i are replaced by g2ph and m2

ph,i. From (10.55) it then follows that, as Λ → ∞,

Π
[2]
ph,C(q

2,Λ2) = − g2ph
8π2

ln Λ− g2ph
8π2

(ln 2− 1) +
g2ph
16π2

∫ 1

0

dx lnΔ(x, q2), (10.73)

and hence

Π
[2]
ph,C(q

2,Λ2)−Π
[2]
ph,C(m

2
ph,C,Λ

2) =
g2ph
16π2

∫ 1

0

dx ln

{
Δ(x, q2)

Δ(x,m2
ph,C)

}
(10.74)

which is finite as Λ → ∞. It is also clear from (10.73) that dΠ
[2]
ph,C/dq

2 is finite as Λ → ∞.

Thus the quantity Π
[2]

ph,C(q
2) is finite as Λ → ∞, and is understood to be evaluated in

that limit; the subtraction in (10.74) has removed the infinity. The additional subtraction
in (10.72) would in fact have removed a logarithmic divergence in ZC, had there been one.

Note that the form of (10.72) guarantees that the leading behaviour of Π
[2]

ph,C(q
2) near

q2 = m2
ph,C is (q2 −m2

ph,C)
2, so that the behaviour of (10.71) near the mass-shell point is

indeed i/(q2 −m2
ph,C) as desired.

A succinct way of summarizing our final renormalized result (10.71), with the defini-
tion (10.72), is to say that the C propagator may be defined by (10.71) where the O(g2ph)

renormalized self-energy Π
[2]

ph,C satisfies the renormalization conditions

Π
[2]

ph,C(q
2 = m2

ph,C) = 0
d

dq2
Π

[2]

ph,C(q
2)

∣∣∣∣
q2=m2

ph,C

= 0. (10.75)
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FIGURE 10.12
O(g4) contribution to A + B → A + B, involving a propagator correction inserted in an
external line.

Relations analogous to (10.75) clearly hold for the A and B self-energies also. In this def-
inition, the explicit introduction and cancellation of large-Λ terms has disappeared from
sight, and all that remains is the importation of one constant from experiment, m2

ph,C, and
a (hidden) rescaling of the fields. It is useful to bear this viewpoint in mind when considering
more general theories, including ones that are ‘non-renormalizable’ (see section 11.8 of the
following chapter).

There is a lot of good physics in the expression (10.71), which we shall elucidate in
the realistic case of QED in the next chapter. For the moment, we just whet the reader’s
appetite by pointing out that (10.71) must amount to the prediction of a finite, calculable
correction to the Yukawa 1 − C exchange potential, which after all is given by the Fourier
transform of the (static form of) the propagator, as we learned long ago. In the case of QED,
this will amount to a calculable correction to Coulomb’s law, due to radiative corrections,
as we shall discuss in section 11.5.1.

There is an important technical implication we may draw from (10.75). Consider the
Feynman diagram of figure 10.12 in which a propagator correction has been inserted in
an external line. This diagram is of order g4ph, and should presumably be included along
with the others at this order. However, the conditions (10.75)—in this case written for

Π
[2]

ph,A—imply that it vanishes. Omitting irrelevant factors, the amplitude for figure 10.12 is

Π
[2]

ph,A(pA)
1

p2A −m2
ph,A

1

q2 −m2
ph,C

(10.76)

and we need to take the limit p2A → m2
ph,A since the external A particle is on-shell. Ex-

panding Π
[2]

ph,A about the point p2A = m2
ph,A and using conditions (10.75) for C → A we see

that (10.76) vanishes. Thus with this definition, propagator corrections do not need to be
applied to external lines.

10.5 Renormalizability

We have seen how divergences present in self-energy loops like figure 10.7(a) can be elimi-
nated by supposing that the ‘bare’ masses in the original Lagrangian depend on the cut-off
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FIGURE 10.13
(a) O(g4) one-loop contribution to A+B → A+B; (b) counter term that would be required
if (a) were divergent.

in just such a way as to cancel the divergences, leaving a finite value for the physical masses.
The latter are, however, parameters to be taken from experiment: they are not calculable.
Alternatively, we may rephrase perturbation theory in terms of renormalized quantities
from the outset, in which case the loop divergence is cancelled by appropriate counter
terms; but again the physical masses have to be taken from experiment. We pointed out
that, in the ABC theory, neither the field strength renormalizations Zi nor the vertex dia-
grams of figure 10.5 were divergent, but we shall see in the next chapter that the analogous
quantities in QED are divergent. These divergences too can be absorbed into redefinitions
of the ‘physical’ fields and a ‘physical’ coupling constant (the latter again to be taken from
experiment). Or, again, such divergences can be cancelled by appropriate counter terms in
the renormalized perturbation theory approach.

In general, a theory will have various divergences at the one-loop level, and new diver-
gences will enter as we go up in order of perturbation theory (or number of loops). Typically,
therefore, quantum field theories betray sensitivity to unknown short-distance physics by
the presence of formal divergences in loops, as a cut-off Λ → ∞. In a renormalizable theory,
this sensitivity can be systematically removed by accepting that a finite number of param-
eters are incalculable, and must be taken from experiment. These are the suitably defined
‘physical’ values of the masses and coupling constants appearing in the Lagrangian. Once
these parameters are given, all other quantities are finite and calculable, to any desired
order in perturbation theory—assuming, of course, that terms in successive orders diminish
sensibly in size.

Alternatively, we may say that a renormalizable theory is one in which a finite number
of counter terms can be so chosen as to cancel all divergences order by order in renormalized
perturbation theory. Note, now, that the only available counter terms are the ones which
arise in the process of ‘reorganizing’ the original theory in terms of renormalized quantities
plus extra bits (the counter terms). All the counter terms must correspond to masses,
interactions, etc which are present in the original (or ‘bare’) Lagrangian—which is, in fact,
the theory we are trying to make sense of! We are not allowed to add in any old kind of
counter term—if we did, we would be redefining the theory.

We can illustrate this point by considering, for example, a one-loop (O(g4)) contri-
bution to AB → AB scattering, as shown in figure 10.13(a). If this graph is divergent,
we will need a counter term with the structure shown in figure 10.13(b) to cancel the
divergence—but there is no such ‘contact’ AB → AB interaction in the original theory (it

would have the form λφ̂2
A(x)φ̂

2
B(x)). In fact, the graph is convergent, as indicated by the

usual power-counting (four powers of k in the numerator, eight in the denominator from
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the four propagators). And indeed, the ABC theory is renormalizable—or rather, as noted
earlier, ‘super-renormalizable’.

We shall have something more to say about renormalizability and non-renormalizability
(is it fatal?), at the end of the following chapter. The first and main business, however, will
be to apply what we have learned here to QED.

Problems

10.1 Carry out the indicated change of variables so as to obtain (10.4) from (10.3).

10.2 Verify the Feynman identity (10.40).

10.3 Obtain (10.42) from (10.41).

10.4 Obtain (10.51) from (10.50), having replaced the upper limit of the u-integral by Λ.

10.5 Obtain the Feynman rule quoted in the text for the sum of the counter terms appearing
in (10.64).
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Loops and Renormalization II: QED

The present electrodynamics is certainly incomplete, but is no longer certainly incorrect.

F J Dyson (1949b)

We now turn to the analysis of loop corrections in QED. As we might expect, a theory with
fermionic and gauge fields proves to be a tougher opponent than one with only spinless
particles, even though we restrict ourselves to one-loop diagrams only.

At the outset we must make one important disclaimer. In QED many loop diagrams
diverge not only as the loop momentum goes to infinity (‘ultraviolet divergence’) but also
as it goes to zero (‘infrared divergence’). This phenomenon can only arise when there are
massless particles in the theory—for otherwise the propagator factors ≈(k2 − M2)−1 will
always prevent any infinity at low k. Of course, in a gauge theory we do have just such
massless quanta. Our main purpose here is to demonstrate how the ultraviolet divergences
can be tamed and we must refer the reader to Weinberg (1995, chapter 13), or to Peskin
and Schroeder (1995, section 6.5), for instruction in dealing with the infrared problem.
The remedy lies, essentially, in a careful consideration of the contribution, to physical cross
sections, of amplitudes involving the real emission of very low frequency photons, along
with infrared divergent virtual photon processes. It is a ‘technical’ problem, having to do
with massless particles (of which there are not that many), whereas ultraviolet divergences
are generic.

11.1 Counter terms

We shall consider the simplest case of a single fermion1 of bare mass m0 and bare charge e0
(e0 > 0) interacting with the Maxwell field, for which the bare (i.e. actual!) Lagrangian is

L̂ =
¯̂
ψ0(i/∂ −m0)ψ̂0 − e0

¯̂
ψ0γ

μψ̂0Â0μ − 1

4
F̂0μν F̂

μν
0 − 1

2ξ0
(∂ · Â0)

2 (11.1)

according to chapter 7. We shall adopt the ‘renormalized perturbation theory’ approach
and begin by introducing field strength renormalizations via

ψ̂ = Z
−1/2
2 ψ̂0 (11.2)

Âμ = Z
−1/2
3 Âμ

0 (11.3)

where the ‘physical’ fields and parameters will now simply have no ‘0’ subscript. This will
lead to a rewriting of the free and gauge-fixing part of (11.1):

¯̂
ψ0(i/∂ −m0)ψ̂0 − 1

4
F̂0μν F̂

μν
0 − 1

2ξ0
(∂ · Â0)

2

1Recall that the SM has three charged leptons (e, μ, and τ) with identical QED interactions.
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FIGURE 11.1
Counter terms in QED: (a) fermion mass and wavefunction; (b) photon wavefunction; (c)
vertex part.

=
¯̂
ψ(i/∂ −m)ψ̂ − 1

4
F̂μν F̂

μν − 1

2ξ
(∂ · Â)2

+[(Z2 − 1)
¯̂
ψi/∂ψ̂ − δm

¯̂
ψψ̂]− 1

4 (Z3 − 1)F̂μν F̂
μν (11.4)

where ξ = ξ0/Z3 and δm = m0Z2 − m (compare (10.64)). We see the emergence of the

expected ‘
¯̂
ψ . . . ψ̂’ and ‘F̂ · F̂ ’ counter terms in (11.4), affecting both the fermion and the

gauge-field propagators. Next, we write the interaction in terms of a physical e, and the
physical fields, together with a compensating third counter term:

−e0
¯̂
ψ0γ

μψ̂0Â0μ = −e
¯̂
ψγμψ̂Âμ − (Z1 − 1)e

¯̂
ψγμψ̂Âμ (11.5)

where, with the aid of (11.2) and (11.3),

Z1e = e0Z2Z
1/2
3 . (11.6)

The three counter terms are represented diagrammatically as shown in figures 11.1(a), (b),
and (c), for which the Feynman rules are, respectively,

(a): i[/k(Z2 − 1)− δm]

(b): − i(gμνk2 − kμkν)(Z3 − 1) (11.7)

(c): − ieγμ(Z1 − 1).

These counter terms will compensate for the ultraviolet divergences of the three elementary
loop diagrams of figure 11.2, and in fact they are sufficient to eliminate all such divergences
in all QED loops.

Before proceeding further we remark that we already have a first indication that renor-
malizing a gauge theory presents some new features. Consider the two counter terms in-
volving Z2 − 1 and Z1 − 1; their sum gives

¯̂
ψ[i(Z2 − 1)/∂ − e(Z1 − 1) /̂A]ψ̂ (11.8)

which is not of the ‘gauge principle’ form ‘i/∂−e /̂A’ ! Unless, of course, Z1 = Z2. This relation
between the two quite different renormalization constants is, in fact, true to all orders in
perturbation theory, as a consequence of a Ward identity (Ward 1950), which is itself a
consequence of gauge invariance. We shall discuss the Ward identity and Z1 = Z2 at the
one loop level in section 11.6.
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FIGURE 11.2
Elementary one-loop divergent diagrams in QED.

11.2 The O(e2) fermion self-energy

In analogy with −iΠ
[2]
C , the amplitude corresponding to figure 11.2(a) is the fermion self-

energy −iΣ[2] where

−iΣ[2](p) = (−ie)2
∫

γν −igμν
k2

i

/p− /k −m
γμ d4k

(2π)4
(11.9)

and we have now chosen the gauge ξ = 1. As expected, the d4k integral in (11.9) diverges

for large k—this time more seriously than the integral in Π
[2]
C , because there are only three

powers of k in the denominator of (11.9) as opposed to four in (10.7). Once again, we need
to choose some form of regularization to make (11.9) ultraviolet finite. We shall not be
specific (as yet) about what choice we are making, since whatever it may be the outcome

will be qualitatively similar to the Π
[2]
C case.

There is, however, one interesting new feature in this (fermion) case. As previously indi-
cated, power-counting in the integral of (11.9) might lead us to expect that—if we adopt a
simple cut-off—the leading ultraviolet divergence of Σ[2] would be proportional to Λ rather
than lnΛ. This is because we have that one extra power of k in the numerator and Σ[2]

has dimensions of mass. However, this is not so. The leading p-independent divergence is,
in fact, proportional to m ln(Λ/m). The reason for this is important and it has interesting
generalizations. Suppose that m in (11.4) were set equal to zero. Then, as we saw in prob-

lem 9.4, the two helicity components ψ̂L and ψ̂R of the fermion field will not be coupled by

the QED interaction. It follows that no terms of the form
¯̂
ψLψ̂R or

¯̂
ψRψ̂L can be generated,

and hence no perturbatively-induced mass term, if m = 0. The perturbative mass shift must
be proportional to m and therefore, on dimensional grounds, only logarithmically divergent.

There is also a p-dependent divergence of the self-energy, of which warning was given in
section 10.3.2. As in the scalar case, this will be associated with the field strength renormal-
ization factor Z2. It is proportional to /p ln(Λ/m) (Z2 is the coefficient of /∂ in (11.8), which
leads to /p in momentum space). The upshot is that the fermion propagator, including the
one-loop renormalized self-energy, is given by

i

/p−m− Σ̄[2](p)
(11.10)
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where (cf (10.74))

Σ̄[2](p) = Σ[2](p)− Σ[2](/p = m)− (/p−m)
dΣ[2]

d/p

∣∣∣∣
/p=m

. (11.11)

Whatever form of regularization is used, the twice-subtracted Σ̄[2] will be finite and inde-
pendent of the regulator when it is removed. In terms of the ‘compensating’ quantities Z2

and m0 −m, we find (problem 11.1, cf (10.70))

Z2 = 1 +
dΣ[2]

d/p

∣∣∣∣
/p=m

m0 −m = −Z−1
2 Σ[2](/p = m). (11.12)

Note that, as in the case of Π̄
[2]
C , the definition (11.11) of Σ̄[2] implies that propagator

corrections vanish for external (on-shell) fermions. The quantities Z2 and m0 determined
by (11.12) now carry a superscript ‘[2]’ to indicate that they are correct at O(e2).

We must now remind the reader that, although we have indeed eliminated the ultraviolet
divergences in Σ̄[2] by the subtractions of (11.11), there remains an untreated infrared
divergence in dΣ[2]/d/p. To show how this is dealt with would take us beyond our intended
scope, as explained at the start of the chapter. Suffice it to say that by the introduction
of a ‘regulating’ photon mass μ2, and consideration of relevant real photon processes along
with virtual ones, these infrared problems can be controlled (Weinberg 1995, Peskin and
Schroeder 1995).

11.3 The O(e2) photon self-energy

The amplitude corresponding to figure 11.2(b) is iΠ
[2]
μν(q) where

iΠ[2]
μν(q) = (−1)(−ie)2Tr

∫
d4k

(2π)4
i

/q + /k −m
γμ

i

/k −m
γν (11.13)

= −e2
∫

d4k

(2π)4
Tr[(/q + /k +m)γμ(/k +m)γν ]

[(q + k)2 −m2][k2 −m2]
. (11.14)

Once again, this photon self-energy is analogous to the scalar particle self-energy of chap-
ter 10. There are two new features to be commented on in (11.14). The first is the overall
‘−1’ factor, which occurs whenever there is a closed fermion loop. The keen reader may like
to pursue this via problem 11.2. The second feature is the appearance of the trace symbol
‘Tr’: this is plausible as the amplitude is basically a 1γ → 1γ one with no spinor indices,
but again the reader can follow that through in problem 11.3.

We now want to go some way into the calculation of Π
[2]
μν because it will, in the end,

contain important physics—for example , corrections to Coulomb’s law. The first step is
to evaluate the numerator trace factor using the theorems of section 8.2.3. We find (prob-
lem 11.4)

Tr[(/q + /k +m)γμ(/k +m)γν ] = 4{(qμ + kμ)kν + (qν + kν)kμ

−gμν((q · k) + k2 −m2)}. (11.15)

We then use the Feynman identity (10.40) to combine the denominators, yielding

1

[(q + k)2 −m2][k2 −m2]
=

∫ 1

0

dx
1

[k′2 −Δγ + iε]2
(11.16)
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where k′ = k + xq, Δγ = −x(1 − x)q2 + m2 (note that Δγ is precisely the same as Δ of
(10.43) with mA = mB = m) and we have reinstated the implied ‘iε’. Making the shift to
the variable k′ in the numerator factor (11.15) produces a revised numerator which is

4{2k′μk′ν − gμν(k
′2 −Δγ)− 2x(1− x)(qμqν − gμνq

2) + terms linear in k′} (11.17)

where the terms linear in k′ will vanish by symmetry when integrated over k′ in (11.14).
Our result so far is therefore

iΠ[2]
μν(q

2) = −4e2
∫ 1

0

dx

{∫
d4k′

(2π)4

[
2k′μk

′
ν

(k′2 −Δγ + iε)2
− gμν

(k′2 −Δγ + iε)

]}

+8e2(qμqν − gμνq
2)

∫ 1

0

dx

∫
d4k′

(2π)4
x(1− x)

(k′2 −Δγ + iε)2
. (11.18)

Consider now the ultraviolet divergences of (11.18), adopting a simple cut-off as a regu-
larization. The terms in the first line are both apparently quadratically divergent, while the
integral in the second line is logarithmically divergent. What counter terms do we have to
cancel these divergences? The answer is that the ‘(Z3 − 1)’ counter term of figure 11.1(b) is
of exactly the right form to cancel the logarithmic divergence in the second line of (11.18),
but we have no counter term proportional to the gμν term in the first line. Note, incidentally,
that we can argue from Lorentz covariance (see appendix D) that∫

d4k′

(2π)4
k′μk

′
ν

(k′2 −Δγ + iε)2
= f(Δγ)gμν (11.19)

so that taking the dot product of both sides with gμν , we deduce that∫
d4k′

(2π)4
2k′μk

′
ν

(k′2 −Δγ + iε)2
=

1

2

∫
d4k′

(2π)4
k′2gμν

(k′2 −Δγ + iε)2
. (11.20)

It follows that both the terms in the first line of (11.18) produce a divergence of the form
∼Λ2gμν , and they do not cancel, at least in our simple cut-off regularization.

A term proportional to gμν is, in fact, a photon mass term. If the Lagrangian included

a mass term for the photon it would have the form 1
2m

2
γ0
gμνÂ

μ
0 Â

ν
0 , which after introducing

the rescaled Âμ will generate a counter term proportional to gμνÂ
μÂν , and an associated

Feynman amplitude proportional to gμν . But such a term m2
γ0

violates gauge invariance!
(It is plainly not invariant under (7.69).) Evidently the simple momentum cut-off that we
have adopted as a regularization procedure does not respect gauge invariance. We saw in
section 8.6.2 that gauge invariance implied the condition

qμTμ = 0 (11.21)

where q is the 4-momentum of a photon entering a one-photon amplitude Tμ. Our discussion
of (11.21) was limited in section 8.6.2 to the case of a real external photon, whereas the

photon lines in iΠ
[2]
μν are internal and virtual; nevertheless it is still true that gauge invariance

implies (Peskin and Schroeder 1995, section 7.4)

qμΠ[2]
μν = qνΠ[2]

μν = 0. (11.22)

Condition (11.22) is guaranteed by the tensor structure (qμqν − gμνq
2) of the second line

in (11.18), provided the divergence is regularized. As previously implied, a simple cut-off
Λ suffices for this term, since it does not alter the tensor structure, and the Λ-dependence
can be compensated by the ‘Z3 − 1’ counter term which has the same tensor structure (cf



The O(e2) renormalized photon self-energy 275

figure 11.2(b)). But what about the first line of (11.18)? Various gauge-invariant regular-
izations have been used, the effect of all of which is to cause the first line of (11.18) to
vanish. The most widely used, since the 1970s, is the dimensional regularization technique
introduced by ’t Hooft and Veltman (1972), which involves the ‘continuation’ of the num-
ber of space–time dimensions from four to d (< 4). As d is reduced, the integrals tend to
diverge less, and the divergences can be isolated via the terms which diverge as d → 4.
Using gauge-invariant dimensional regularization, the two terms in the first line of (11.18)
are found to cancel each other exactly, leaving just the manifestly gauge invariant second
line (see appendix O of volume 2).

We proceed to the next step, renormalizing the gauge-invariant part of iΠ
[2]
μν(q2).

11.4 The O(e2) renormalized photon self-energy

The surviving (gauge-invariant) term of Π
[2]
μν is

iΠ[2]
μν(q

2) = 8e2(qμqν − q2gμν)

∫ 1

0

dx

∫
d4k′

(2π)4
x(1− x)

(k′2 −Δγ + iε)2
(11.23)

≡ i(q2gμν − qμqν)Π
[2]
γ (q2). (11.24)

The d4k′ integral in (11.23) is exactly the same as the one in (10.42), with Δ replaced by
Δγ . It contains a logarithmic divergence, which we regulate as before by a simple cut-off

Λ, so that we are dealing with the gauge-invariant quantity Π
[2]
γ (q2,Λ2). The calculation

leading to (10.55) then tells us that, as Λ → ∞,

Π[2]
γ (q2,Λ2) = − e2

π2

∫ 1

0

dxx(1− x)

{
ln Λ + (ln 2− 1)− 1

2
lnΔγ

}
. (11.25)

The analogue of (10.11) is then (in the gauge ξ = 1)

−igμν
q2

+
−igμρ
q2

· i(q2gρσ − qρqσ)Π[2]
γ (q2,Λ2) · −igσν

q2

+
−igμρ
q2

· i(q2gρσ − qρqσ)Π[2]
γ (q2,Λ2) · −igστ

q2

·i(q2gτη − qτqη) ·Π[2]
γ (q2,Λ2) · −igην

q2
+ · · ·

=
−igμν
q2

+
−igμρ
q2

P ρ
νΠ

[2]
γ (q2,Λ2) +

−igμρ
q2

P ρ
τ P

τ
ν (Π

[2]
γ (q2,Λ2)2 + · · ·

(11.26)

where

P ρ
ν = gρν − qρqν

q2

and
gρν = δρν
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p p′

q = p− p′

�

�− �+

�′

FIGURE 11.3
One-loop corrected photon propagator connected to a charged lepton vertex.

(i.e. the 4× 4 unit matrix). It is easy to check (problem 10.5) that P ρ
τ P

τ
ν = P ρ

ν . Hence the
series (11.26) becomes

−igμν
q2

+
−igμρ
q2

P ρ
ν [Π

[2]
γ (q2,Λ2) + (Π[2]

γ (q2,Λ2))2 + · · ·]

=
−igμν
q2

+
−igμρ
q2

P ρ
ν [1 + Π[2]

γ (q2,Λ2) + (Π[2]
γ (q2,Λ2))2 + · · ·] + igμρ

q2
P ρ
ν

=
−i(gμν − qμqν/q

2)

q2(1−Π
[2]
γ (q2,Λ2))

− i

q2

(
qμqν
q2

)
(11.27)

after summing the geometric series, exactly as in (10.11)–(10.14).
But we have forgotten the counter term of figure 11.1(b), which contributes an amplitude

−i(gμνq2 − qμqν)(Z3 − 1). This has the effect of replacing Π
[2]
γ in (11.27) by Π

[2]
γ − (Z3 − 1)

and we arrive at the form

−i(gμν − qμqν/q
2)

q2(Z3 −Π
[2]
γ (q2,Λ2))

− i

q2
qμqν
q2

. (11.28)

Now in any S-matrix element, at least one end of this corrected propagator will connect
to an external charged particle line via a vertex of the form jμa (p, p

′) (cf (8.98) and (8.99)
for example), as in figure 11.3. But, as we have seen in (8.100), current conservation implies

qμj
μ
a (p, p

′) = 0. (11.29)

Hence the parts of (11.28) with qμqν factors will not contribute to physical scattering am-
plitudes, and our O(e2) corrected photon propagator effectively takes the simple form

−igμν

q2(Z3 −Π
[2]
γ (q2,Λ2))

. (11.30)

We must now determine Z3 from the condition (just as for the C propagator) that (11.30)
has the form −igμν/q

2 as q2 → 0 (the mass-shell condition). This gives

Z
[2]
3 = 1 + Π[2]

γ (0,Λ2) (11.31)
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FIGURE 11.4
The contribution of a massless particle to the photon self-energy.

the superscript on Z3 indicating as usual that it is an O(e2) calculation as evidenced by the

e2 factor in (11.18). We note from equation (11.25) that Π
[2]
γ (0,Λ2) contains a lnΛ part, so

that this time the field renormalization constant Z3 diverges when the cut-off is removed.
Inserting (11.31) into (11.30) we obtain the final important expression for the γ-

propagator including the one-loop renormalized self-energy (cf (10.71)):

−igμν

q2(1− Π̄
[2]
γ (q2))

(11.32)

where
Π̄[2]

γ (q2) = Π[2]
γ (q2,Λ2)−Π[2]

γ (0,Λ2). (11.33)

Equation (11.25) then leads to the result

Π̄[2]
γ (q2) = −2α

π

∫ 1

0

dxx(1− x) ln

[
m2

m2 − q2x(1− x)

]
, (11.34)

which was first given by Schwinger (1949a). This ‘once-subtracted’ Π̄
[2]
γ is finite as Λ → ∞,

and tends to zero as q2 → 0.
The generalization of (11.32) to all orders will be given by

−igμν
q2(1− Π̄γ(q2))

(11.35)

where Π̄γ(q
2) is the all-orders analogue of Π̄

[2]
γ in (11.32), and is similarly related to the 1-γ

irreducible photon self-energy Π̄μν via the analogue of (11.24):

iΠ̄μν(q
2) = i(q2gμν − qμqν)Π̄γ(q

2). (11.36)

Because Π̄μν , and hence Π̄γ , has no 1–γ intermediate states, it is expected to have no
contribution of the form A2/q2. If such a contribution were present, (11.35) shows that it
would result in a photon propagator having the form

−igμν
q2 −A2

(11.37)

which is, of course, that of amassive particle. Thus, provided no such contribution is present,
the photon mass will remain zero through all radiative corrections. It is important to note,
though, that gauge invariance is fully satisfied by the general form (11.36) relating Π̄μν to
Π̄γ ; it does not prevent the occurrence of such an ‘A2/q2’ piece in Π̄γ . Remarkably, therefore,
it seems possible, after all, to have a massive photon while respecting gauge invariance!
This loophole in the argument ‘gauge invariance implies mγ = 0’ was first pointed out by
Schwinger (1962).

Such a 1/q2 contribution in Π̄γ must, of course, correspond to a massless single particle
intermediate state, via a diagram of the form shown in figure 11.4. Thus if the theory
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contains a massless particle, not the photon (since 1–γ states are omitted from Π̄μν) but
coupling to it, the photon can acquire mass. This is one way of understanding the ‘Higgs
mechanism’ for generating a mass for a gauge-field quantum while still respecting the gauge
symmetry (Englert and Brout (1964), Higgs (1964), Guralnik et al. (1964)). The massless
particle involved is called a ‘Goldstone boson’. As we shall see in volume 2, just such a
photon mass is generated in a superconductor, and a similar mechanism is invoked in the
SM to give masses to the W± and Z0 gauge bosons, which mediate the weak interactions.

11.5 The physics of Π̄[2]
γ (q2)

We now consider some immediate physical consequences of the formulae (11.32) and (11.34).

11.5.1 Modified Coulomb’s law

In section 1.3.3 we saw how, in the static limit, a propagator of the form −g2N(q
2 +m2

U)
−1

could be interpreted (via a Fourier transform) in terms of a Yukawa potential

−g2N
4π

e−r/a

r

where a = m−1
U (in units � = c = 1). As mU → 0 we arrive at the Coulomb potential,

associated with the propagator ∼1/q2 in the static (q0 = 0) limit. It follows that the
corrected propagator (11.32) must represent a correction to the 1/r Coulomb potential.

To see what it is, we expand the denominator of (11.32) so as to write (11.32) as

−igμν
q2

(1 + Π̄[2]
γ (q2)) (11.38)

which is in fact the perturbative O(α) correction to the propagator (we shall return to
(11.32) in a moment). At low energies, and in the static limit, q2 = −q2 will be small
compared to the fermion (mass)2 in (11.34), and we may expand the logarithm in powers
of q2/m2, with the result that the static propagator becomes (problem 11.6)

igμν
q2

(
1 +

α

15π
q2/m2

)
(11.39)

=
igμν
q2

+ igμν
α

15π

1

m2
. (11.40)

The Fourier transform of the first term in (11.40) is proportional to the familiar coulombic
1/r potential (see appendix G, for example), while the Fourier transform of the constant
(q2-independent) second term is a δ-function:∫

eiq·r
d3q

(2π)3
= δ3(r). (11.41)

When (11.40) is used in any scattering process between two charged particles, each charged
particle vertex will carry a charge e (or −e) and so the total effective potential will be (in
the attractive case)

−
{
α

r
+

4α2

15m2
e

δ3(r)

}
. (11.42)
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The second term in (11.42) may be treated as a perturbation in hydrogenic atoms, taking
m now to be the electron mass me. Application of first-order perturbation theory yields an
energy shift

ΔE(1)
n = − 4α2

15m2
e

∫
ψ∗n(r)δ

3(r)ψn(r) d
3r

= − 4α2

15m2
e

|ψn(0)|2. (11.43)

Only s-state wavefunctions are non-vanishing at the origin, where they take the value (in
hydrogen)

ψn(0) =
1√
π

(αme

n

)3/2
(11.44)

where n is the principal quantum number. Hence for this case

ΔE(1)
n = −4α5me

15πn3
. (11.45)

For example, in the 2s state the energy shift is −1.122×10−7 eV. Although we did not discuss
the Coulomb spectrum predicted by the Dirac equation in chapter 3, it turns out that the
22S 1

2
and 22P 1

2
levels are degenerate if no radiative corrections (such as the previous one)

are applied. In fact, the levels are found experimentally to be split apart by the famous
‘Lamb shift’, which amounts to ΔE/2π� = 1058 MHz in frequency units. The shift we
have calculated, for the 2s level, is −27.13 MHz in these units, so it is a small—but still
perfectly measurable—contribution to the entire shift. This particular contribution was first
calculated by Uehling (1935).

While small in hydrogen and ordinary atoms, the ‘Uehling effect’ dominates the radiative
corrections in muonic atoms, where the ‘m’ in (11.44) becomes the muon mass mμ. This
means that the result (11.45) becomes

− 4α5

15πn3

(
mμ

me

)2
mμ.

Since the unperturbed energy levels are (in this case) proportional to mμ, this represents a
relative enhancement of ∼(mμ/me)

2 ∼ (210)2. This calculation cannot be trusted in detail,
however, as the muonic atom radius is itself ∼1/210 times smaller than the electron radius
in hydrogen, so that the approximation |q| ∼ 1/r � me, which led to (11.42), is no longer
accurate enough. Nevertheless the order of magnitude is correct.

11.5.2 Radiatively induced charge form factor

This leads us to consider (11.38) more generally, without making the low q2 expansion. In
chapter 8 we learned how the static Coulomb potential became modified by a form factor
F (q2) if the scattering centre was not point-like, and we also saw how the idea could be
extended to covariant form factors for spin-0 and spin- 12 particles. Referring to the case of
e−μ− scattering for definiteness (section 8.7), we may consider the effect of inserting (11.38)
into (8.182). The result is

e2ūk′γμuk

{
gμν

q2
(1 + Π̄[2]

γ (q2))

}
ūp′γνup. (11.46)

Referring now to the discussion of form factors for charged spin- 12 particles in section 8.8,
we can share the correction (11.46) equally between the e− and the μ− vertices and write

eūk′γμuk → eūk′γμuk(1 + Π̄[2]
γ (q2))1/2 ≈ eūk′γμuk(1 +

1
2 Π̄

[2]
γ (q2)) (11.47)
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FIGURE 11.5
Screening of charge in a dipolar medium (from Aitchison 1985).

for the electron, and similarly for the muon. From (8.208) this means that our ‘radiative
correction’ has generated some effective extension of the charge, as given by a charge form

factor F1(q
2) = 1+ 1

2 Π̄
[2]
γ (q2). Note that the condition F1(0) = 1 is satisfied since Π̄

[2]
γ (0) = 0.

In the static case, or for scattering of equal mass particles in the CM system, we have
q2 = −q2 and we may consider the Fourier transform of the function F1(−q2), to obtain
the charge distribution. The integral is discussed in Weinberg (1995, section 10.2) and in
Peskin and Schroeder (1995, section 7.5). The latter authors show that the approximate
radial distribution of charge is ∼e−2mr/(mr)3/2, indicating that it has a range ∼ 1

2m . This is
precisely the mass of the fermion–anti-fermion intermediate state in the loop which yields

Π̄
[2]
γ , so this result represents a plausible qualitative extension of Yukawa’s relationship

(1.20) to the case of two-particle exchange. In any case, the range represented by Π̄
[2]
γ is of

order of the fermion Compton wavelength 1/m, which is an important insight; this is why
we need to do better than the point-like approximation (11.42) in the case of muonic atoms.

11.5.3 The running coupling constant

There is yet another way of interpreting (11.38). Referring to (11.46), we may regard

e2(q2) = e2[1 + Π̄[2]
γ (q2)] (11.48)

as a ‘q2-dependent effective charge’. In fact, it is usually written as a ‘q2-dependent fine
structure constant’

α(q2) = α[1 + Π̄[2]
γ (q2)]. (11.49)

The concept of a q2-dependent charge may be startling but the related one of a spatially
dependent charge is, in fact, familiar from the theory of dielectrics. Consider a test charge
q in a polarizable dielectric medium, such as water. If we introduce another test charge
−q into the medium, the electric field between the two test charges will line up the water
molecules (which have a permanent electric dipole moment) as shown in figure 11.5. There
will be an induced dipole moment P per unit volume, and the effect of P on the resultant
field is (from elementary electrostatics) the same as that produced by a volume charge equal
to − divP . If, as is usual, P is taken to be proportional to E, so that P = χε0E, Gauss’
law will be modified from

divE = ρfree/ε0 (11.50)

to
divE = (ρfree − divP )/ε0 = ρfree/ε0 − div(χE) (11.51)
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FIGURE 11.6
Effective (screened) charge versus separation between charges (from Aitchison 1985).

where ρfree refers to the test charges introduced into the dielectric. If χ is slowly varying as
compared to E, it may be taken as approximately constant in (11.51), which may then be
written as

divE = ρfree/ε (11.52)

where ε = (1 + χ)ε0 is the dielectric constant of the medium, ε0 being that of the vacuum.
Thus the field is effectively reduced by the factor (1 + χ)−1 = ε0/ε.

This is all familiar ground. Note, however, that this treatment is essentially macroscopic,
the molecules being replaced by a continuous distribution of charge density − div P . When
the distance between the two test charges is as small as, roughly, the molecular diameter,
this reduction—or screening effect—must cease and the field between them has the full
unscreened value. In general, the electrostatic potential between two test charges q1 and q2
in a dielectric can be represented phenomenologically by

V (r) = q1q2/4πε(r)r (11.53)

where ε(r) is assumed to vary slowly from the value ε for r � d to the value ε0 for r � d,
where d is the diameter of the polarized molecules. The situation may be described in terms
of an effective charge

q′ = q/[ε(r)]1/2 (11.54)

for each of the test charges. Thus we have an effective charge which depends on the inter-
particle separation, as shown in figure 11.6.

Now consider the application of this idea to QED, replacing the polarizable medium
by the vacuum. The important idea is that, in the vicinity of a test charge in vacuo,
charged pairs can be created. Pairs of particles of mass m can exist for a time of the order
of Δt ∼ �/mc2. They can spread apart a distance of order cΔt in this time, i.e. a distance of
approximately �/mc, which is the Compton wavelength /λc. This distance gives a measure of
the ‘molecular diameter’ we are talking about, since it is the polarized virtual pairs which
now provide a vacuum screening effect around the original charged particle. The largest
‘diameter’ will be associated with the smallest mass m, in this case the electron mass. Not
coincidentally, this estimate of the range of the ‘spreading’ of the charge ‘cloud’ is just what
we found in section 11.5.2: namely, the fermion Compton wavelength. The longest-range
part of the cloud will be that associated with the lightest charged fermion, the electron.

In this analogy the bare vacuum (no virtual pairs) corresponds to the ‘vacuum’ used in
the previous macroscopic analysis and the physical vacuum (virtual pairs) to the polarizable
dielectric. We cannot, of course, get outside the physical vacuum, so that we are really always
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dealing with effective charges that depend on r. What, then, do we mean by the familiar
symbol e? This is simply the effective charge as r → ∞ or q2 → 0; or, in practice, the charge
relevant for distances much larger than the particles’ Compton wavelength. This is how our
q2 → 0 definition is to be understood.

Let us consider, then, how α(q2) varies when q2 moves to large space-like values, such
that −q2 is much greater than m2 (i.e. to distances well within the ‘cloud’). For |q2| � m2

we find (problem 11.7) from (11.34) that

Π̄[2]
γ (q2) =

α

3π

[
ln

( |q2|
m2

)
− 5

3
+O(m2/|q2|)

]
(11.55)

so that our q2-dependent fine structure constant, to leading order in α is

α(q2) ≈ α

[
1 +

α

3π
ln

( |q2|
Am2

)]
(11.56)

for large values of |q2|/m2, where A = exp 5/3.
Equation (11.56) shows that the effective strength α(q2) tends to increase at large |q2|

(short distances). This is, after all, physically reasonable. The reduction in the effective
charge caused by the dielectric constant associated with the polarization of the vacuum
disappears (the charge increases) as we pass inside some typical dipole length. In the present
case, that length ism−1 (in our standard units � = c = 1), the fermion Compton wavelength,
a typical distance over which the fluctuating pairs extend.

The foregoing is the reason why this whole phenomenon is called vacuum polarization,

and why the original diagram which gave Π
[2]
γ is called a vacuum polarization diagram.

Equation (11.56) is the lowest-order correction to α, in a form valid for |q2| � m2. It
turns out that, in this limit, the dominant vacuum polarization contributions (for a theory
with one charged fermion) can be isolated in each order of perturbation theory and summed
explicitly. The result of summing these ‘leading logarithms’ is

α(Q2) =
α

[1− (α/3π) ln(Q2/Am2)]
for Q2 � m2 (11.57)

where we now introduce Q2 = −q2, a positive quantity when q is a momentum transfer. The
justification for (11.57)—which of course amounts to the very plausible return to (11.32)
instead of (11.38)—is subtle, and depends upon ideas grouped under the heading of the
‘renormalization group’. This is beyond the scope of the present volume, but will be taken
up again in volume 2.

Equation (11.57) presents some interesting features. First, note that for typical large
Q2 ∼ (50 GeV)2, say, the change in the effective α predicted by (11.57) is quite measurable.
Let us write

α(Q2) =
α

1−Δα(Q2)
(11.58)

in general, where Δα(Q2) includes the contributions from all charged fermions with mass
m such that m2 � Q2. The contribution from the charged leptons is then straightforward,
being given by

Δαleptons =
α

3π

∑
l

ln(Q2/Am2
l ) (11.59)

where ml is the lepton mass. Including the e, μ, and τ one finds (problem 11.8)

Δαleptons(Q
2 = (50 GeV)2) ≈ 0.03. (11.60)
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However, the corresponding quark loop contributions are subject to strong interaction cor-
rections, and are not straightforward to calculate. We shall not pursue this in detail here,
noting just that the total contribution from the five quarks u, d, s, c, and b has a value very
similar to (11.60) for the leptons (see, for example, Altarelli et al. 1989). Including both the
leptonic and hadronic contributions then yields the estimate

α(Q2 = (50 GeV)2) ≈ 1
137 × 1

0.94 ≈ 1
129 . (11.61)

The predicted increase of α(Q2) at large Q2 has been tested by measuring the differential
cross section for Bhabha scattering,

e−e+ → e−e+. (11.62)

We are interested in the contribution from one-photon exchange in the t-channel, which
will contain the factor α(Q2). To favour this contribution, the CM energy should be well
beyond the Z0 peak in the s-channel (cf figure 9.16). This was the case at the highest LEP
energy,

√
s = 198 GeV, which also allowed large Q2 values to be probed. The L3 experiment

covered the region 1800 GeV2 < Q2 < 21600 GeV2 (Achard et al. 2005). These results, and
earlier data from L3 (Acciari et al. 2000) and OPAL (Abbiendi et al. 2000), clearly show
the expected rise in α(Q2) as Q2 increases, and are in good quantitative agreement with
the theoretical prediction of QED (Burkhardt and Pietrzyk (2001)).

The notion of a q2-dependent coupling constant is, in fact, quite general—for example,
we could just as well interpret (10.71) in terms of a q2-dependent g2ph(q

2). Such ‘varying con-
stants’ are called running coupling constants. Until 1973 it was generally believed that they
would all behave in essentially the same way as (11.57)—namely, a logarithmic rise as Q2

increases. Many people (in particular Landau 1955) noted that if equation (11.57) is taken
at face value for arbitrarily large Q2, then α(Q2) itself will diverge at Q2 = Am2 exp(3π/α).
Taking m to be the mass of an electron, this is of course an absurdly high energy. Besides,
as such energies are reached, approximations made in arriving at (11.57) will break down;
all we can really say is that perturbation theory will fail as we approach such energies.

While this may be an academic point in QED, it turns out that there is one part of the
SM where it appears to be highly relevant. This is the ‘Higgs sector’ involving a complex
scalar field, as will be discussed in volume 2.

The significance of the 1973 date is that it was in that year that one of the most
important discoveries in ‘post-QED’ quantum field theory was made, by Politzer (1973)
and by Gross and Wilczek (1973). They performed a similar one-loop calculation in the
more complicated case of QCD, which is a ‘non-Abelian gauge theory’ (as is the theory of
the weak interactions in the electroweak theory). They found that the QCD analogue of
(11.57) was

αs(Q
2) =

αs(μ
2)

[1 + αs

12π (33− 2f) ln(Q2/μ2)]
(11.63)

where f is the number of fermion–anti-fermion loops considered, and μ is a reference mass
scale. The crucial difference from (11.57) is the large positive contribution ‘+33’, which
is related to the contributions from the gluonic self-interactions (non-existent among pho-
tons). The quantity αs(Q

2) now tends to decrease at large Q2 (provided f ≤ 16), tending
ultimately to zero. This property is called ‘asymptotic freedom’ and is highly relevant to
understanding the success of the parton model of chapter 9, in which the quarks and gluons
are taken to be essentially free at large values of Q2. This can be qualitatively understood
in terms of αs(Q

2) → 0 for high momentum transfers (‘deep scattering’). The non-Abelian
parts of the SM will be considered in volume 2, where we shall return again to αs(Q

2).
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FIGURE 11.7
Vacuum polarization insertion in the virtual one-photon annihilation amplitude in e+e− →
μ+μ−.

11.5.4 Π̄[2]
γ in the s-channel

We have still not exhausted the riches of Π̄
[2]
γ (q2). Hitherto we have concentrated on regard-

ing our corrected propagator as appearing in a t-channel exchange process, where q2 < 0.
But of course it could also perfectly well enter an s-channel process such as e+e− → μ+μ−

(see problem 8.18), as in figure 11.7. In this case, the 4-momentum carried by the photon
is q = pe+ + pe− = pμ+ + pμ− , so that q2 is precisely the usual invariant variable ‘s’ (cf
section 6.3.3), which in turn is the square of the CM energy and is therefore positive. In
fact, the process of figure 11.7 occurs physically only for q2 = s > 4m2

μ, where mμ is the
muon mass.

Consider, therefore, our formula (11.34) for q2 > 0, that is, in the time-like rather than
the space-like (q2 < 0) region, and with m now equal to me, since the loop fermion is the
electron. The crucial new point is that the argument [m2

e − q2x(1 − x)] of the logarithm

can now become negative, so that Π̄
[2]
γ must develop an imaginary part. The smallest q2 for

which this can happen will correspond to the largest possible value of the product x(1−x),

for 0 < x < 1. This value is 1
4 , and so Π̄

[2]
γ becomes imaginary for q2 > 4m2

e , which is the
threshold for real creation of an e+e− pair.

This is the first time that we have encountered an imaginary part in a Feynman ampli-
tude which, for figure 11.7 and omitting all the spinor factors, is once again

1

q2(1− Π̄
[2]
γ (q2))

(11.64)

but now q2 > 4m2
μ, which is greater than 4m2

e so that Π̄
[2]
γ (q2) in (11.64) has an imaginary

part. There is a good physical reason for this, which has to do with unitarity. This was
introduced in section 6.2.2 in terms of the relation SS† = I for the S-matrix. The invariant
amplitude M is related to S by Sfi = 1 + i(2π)4δ4(pi − pf)Mfi (cf (6.102)). Inserting this
into SS† = I leads to an equation of the form (for help see Peskin and Schroeder (1995,
section 7.3))

2ImMfi =
∑
k

M∗
kfMki(2π)

4δ

(
pi −

∑
qk

)
(11.65)

where ‘
∑

k’ stands for the phase space integral involving momenta q1, q2, . . . over the states
allowed by energy–momentum conservation. This implies that as the energy crosses each
threshold for production of a newly allowed state, there will be a new contribution to the
imaginary part of M. This is exactly what we are seeing here, at the e+e− threshold.

It is interesting, incidentally, that (11.65) can be used to derive the relativistic general-
ization of the optical theorem given in appendix H (note that the right-hand side of (11.65)
is clearly related to the total cross section for i → k, if i = f).



The O(e2) vertex correction, and Z1 = Z2 285

�− �−
k

p
p′

p− k p′ − k

q = p− p′

FIGURE 11.8
One-loop vertex correction for a charged lepton �−.

As regards the real part of Π̄
[2]
γ (q2) in the time-like region, it will be given by (11.57)

with Q2 replaced by q2, or s, for large values of q2. Again, measurements have verified the
predicted variation of α(q2) in the time-like region (Miyabayashi et al. 1995, Ackerstaff et
al. 1998, Abbiendi et al. 1999, 2000).

There is one more ‘elementary’ loop that we must analyse—the vertex correction shown
in figure 11.8, which we now discuss. We will see how the important relation Z1 = Z2

emerges, and introduce some of the physics contained in the renormalized vertex.

11.6 The O(e2) vertex correction, and Z1 = Z2

The amplitude corresponding to figure 11.8 is

−ieū(p′)Γ[2]
μ (p, p′)u(p) = ū(p′)

∫
(−ieγν)

−igλν
k2

i

/p
′ − /k −m

×(−ieγμ)
i

/p− /k −m
(−ieγλ)

d4k

(2π)4
u(p) (11.66)

where γμ = gμσγ
σ, m is the lepton mass, and Γ

[2]
μ represents the correction to the standard

vertex and again ξ = 1. We find

Γ[2]
μ (p, p′) = −ie2

∫
1

k2
γλ 1

/p
′ − /k −m

γμ
1

/p− /k −m
γλ

d4k

(2π)4
. (11.67)

The integral is logarithmically divergent at large k, by power counting, and the divergence
will be cancelled by the Z1 counter term of figure 11.1(c). It turns out to be infrared
divergent also, as was dΣ[2]/d/p. As in the latter case, we leave the infrared problem aside,
concentrating on the removal of ultraviolet divergences.

Z1 is determined by the requirement that the total amplitude at q = p − p′ = 0, for
on-shell fermions, is just −ieū(p)γμu(p), this being our definition of ‘e’. Hence we have (at
O(e2))

−ieū(p)Γ[2]
μ (p, p)u(p)− ieū(p)γμ(Z

[2]
1 − 1)u(p) = 0 (11.68)
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and so
Γ[2]
μ (p, p) + γμ(Z

[2]
1 − 1) = 0. (11.69)

The renormalized vertex correction Γ̄
[2]
μ may then be defined as

Γ̄[2]
μ (p, p′) = Γ[2]

μ (p, p′) + (Z
[2]
1 − 1)γμ = Γ[2]

μ (p, p′)− Γ[2]
μ (p, p) (11.70)

and in this ‘once-subtracted’ form it is finite, and equal to zero at q = 0.

We shall consider some physical consequences of Γ̄
[2]
μ in a moment, but first we show that

(at O(e2)) Z
[2]
1 = Z

[2]
2 , and explain the significance of this important relation. It is, after

all, at first sight a rather surprising equality between two apparently unrelated quantities,
one associated with the fermion self-energy, the other with the vertex part. From (11.9) we
have, for the fermion self-energy,

Σ[2](p) = −ie2
∫

1

k2
γλ 1

/p− /k −m
γλ

d4k

(2π)4
. (11.71)

One can discern some kind of similarity between (11.71) and (11.67), which can be elucidated
with the help of a little algebra.

Consider differentiating the identity (/p−m)(/p−m)−1 = 1 with respect to pμ:

0 =
∂

∂pμ
[(/p−m)(/p−m)−1]

=

[
∂

∂pμ
(/p−m)

]
(/p−m)−1 + (/p−m)

∂

∂pμ
(/p−m)−1

= γμ(/p−m)−1 + (/p−m)
∂

∂pμ
(/p−m)−1. (11.72)

It follows that
∂

∂pμ
(/p−m)−1 = −(/p−m)−1γμ(/p−m)−1 (11.73)

from which the Ward identity (Ward 1950) follows immediately:

−∂Σ[2]

∂pμ
= Γ[2]

μ (p, p′ = p). (11.74)

Derived here to one-loop order, the identity is, in fact, true to all orders, provided that

a gauge-invariant regularization is adopted. Note that the identity deals with Γ
[2]
μ at zero

momentum transfer (q = p − p′ = 0), which is the value at which e is defined. Note also

that consistently with (11.74), each of ∂Σ[2]/∂/p and Γ
[2]
μ are both infrared and ultraviolet

divergent, though we shall only be concerned with the latter.

The quantities Σ[2] and Γ
[2]
μ are both O(e2), and contain ultraviolet divergences which

are cancelled by the O(e2) counter terms. From (11.11) and (11.12) we have

Σ[2] = Σ̄[2] − Z
[2]
2 (m0 −m) + (/p−m)(Z

[2]
2 − 1) (11.75)

where Σ̄[2] is finite, and from (11.70) we have

Γ[2]
μ (p, p′) = Γ̄[2]

μ (p, p′)− (Z
[2]
1 − 1)γμ (11.76)

where Γ̄
[2]
μ is finite. Inserting (11.75) and (11.76) into (11.74) and equating the infinite parts

gives

Z
[2]
1 = Z

[2]
2 . (11.77)
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This relation is true to all orders (Z1 = Z2), provided a gauge-invariant regularization is
used. It is a very significant relation, as already indicated after (11.8). It shows, first, that
the gauge principle survives renormalization provided the regularization is gauge invariant.
More physically, it tells us that the bare and renormalized charges are related simply by (cf
(11.6))

e = e0Z
1/2
3 . (11.78)

In other words, the interaction-dependent rescaling of the bare charge is due solely to
vacuum polarization effects in the photon propagator, which are the same for all charged
particles interacting with the photon. By contrast, both Z1 and Z2 do depend on the specific
type of the interacting charged particle, since these quantities involve the particle masses.
The ratio of bare to renormalized charge is independent of particle type. Hence if a set
of bare charges are all equal (or ‘universal’), the renormalized ones will be too. But we
saw in section 2.6 how just such a notion of universality was present in theories constructed
according to the (electromagnetic) gauge principle. We now see how the universality survives
renormalization. In volume 2 we shall find that a similar universality holds, empirically, in
the case of the weak interaction, giving a strong indication that this force too should be
described by a renormalizable gauge theory.

11.7 The lepton anomalous magnetic moments and tests of QED

Returning now to Γ
[2]
μ , just as in section 11.5.2 we regarded the vacuum polarization cor-

rection 1 + 1
2 Π̄

[2]
γ as a contribution to the fermion’s charge form factor F1(q

2), so we may
expect that the vertex correction will also contribute to the form factor. Indeed, let us recall
the general form of the electromagnetic vertex for a spin- 12 particle (cf (8.208)):

−ieū(p′, s′)
[
F1(q

2)γμ + iκ
F2(q

2)

2m
σμνq

ν

]
u(p, s) (11.79)

where κ is the ‘anomalous’ part of the magnetic moment, i.e. the magnetic moment is
(e�/2m)(1 + κ), the ‘1’ being the Dirac value calculated in section 3.5. In (11.79), F1 and

F2 are each normalized to 1 at q2 = 0. Our vertex Γ
[2]
μ contributes to both the charge and

the magnetic moment form factors; let us call the contributions F [2]
1 and κF [2]

2 . Now the Z1

counter term multiplies γμ, and therefore clearly cancels a divergence in F [2]
1 . Is there also,

we may ask, a divergence in κF [2]
2 ?

Actually, κF [2]
2 is convergent and this is highly significant to the physics of renormaliza-

tion. Had it been divergent, we would either have had to abandon the theory or introduce a
new counter term to cancel the divergence. This counter term would have the general form

K

m
¯̂
ψσμνψ̂F̂

μν ; (11.80)

it is, indeed, an ‘anomalous magnetic moment’ interaction. But no such term exists in the
original QED Lagrangian (11.1)! Its appearance does not seem to follow from the gauge
principle argument, even though it is, in fact, gauge invariant. Part of the meaning of
the renormalizability of QED (or any theory) is that all infinities can be cancelled by
counter terms of the same form as the terms appearing in the original Lagrangian. This
means, in other words, that all infinities can be cancelled by assuming an appropriate cut-off
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FIGURE 11.9
Contribution (which is finite) to γγ → γγ.

dependence for the fields and parameters in the bare Lagrangian. The interaction (11.80) is
certainly gauge invariant—but it is non-renormalizable—as we shall discuss further later.
The message is that, in a renormalizable theory, amplitudes which do not have counterparts
in the interactions present in the bare Lagrangian must be finite. Figure 11.9 shows another
example of an amplitude which turns out to be finite and there is no ‘Â4’ type of interaction
in QED (cf figure 10.13 (a) and the attendant comment in section 10.5).

The calculation of the renormalized F̄1(q
2) and of κF2(q

2) is quite laborious, not least

because three denominators are involved in the Γ
[2]
μ integral (11.67). The dedicated reader

can follow the story in section 6.3 of Peskin and Schroeder (1995). The most important
result is the value obtained for κ, the QED-induced anomalous magnetic moment of the
lepton, first calculated by Schwinger (1948a). He obtained

κ =
α

2π
≈ 0.001 1614 (11.81)

which means a g-factor corrected from the g = 2 Dirac value to

g = 2 +
α

π
(11.82)

or, equivalently,

[(g − 2)/2]Schwinger =
α

2π
≈ 0.0011614. (11.83)

Note that since κ is a dimensionless quantity, it cannot depend on the mass m of the internal
lepton in (11.66). As we will see, contributions from two-loop (and higher) diagrams can
involve different leptons in internal lines, and can depend on lepton mass ratios.

The prediction (11.83) may be compared with the experimental values which are, for
the electron (Workman et al. 2022)

ae,expt ≡ [(ge − 2)/2]expt = 115 965 218 0.76 (0.28)× 10−12 (11.84)

and for the muon (Workman et al. 2022)

aμ,expt ≡ [(gμ − 2)/2]expt = 116 592 061 (41) × 10−11, (11.85)

Of course, in Schwinger’s day the experimental accuracy was far different, but there was a
real discrepancy (Kusch and Foley 1947) with the Dirac value (a = 0). Schwinger’s one-loop
calculation provided a fundamental early confirmation of QED, and was the start of a long
confrontation between theory and experiment which still continues. An extensive review is
provided by Jegerlehner and Nyffeler (2009), dealing mainly with aμ.
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FIGURE 11.10
Two two-loop graphs contributing to ae. (a) A two-photon exchange graph. (b) A muon
loop inserted in the photon propagator of figure 11.8.

The extraordinarily precise values in (11.84) and (11.85) represent the results of ever
more sophisticated and imaginative experimentation. In considering the confrontation of
these numbers with the SM, we might expect ae,expt to present the more severe challenge
to theory, since it is determined to an accuracy some 2250 times better than that of aμ,expt.
Yet the latter is capable of probing the SM more sensitively. To explain why, we need to go
beyond the one-loop graph of figure 11.8, and consider the contributions of two-loop graphs
to ae, two of which are shown in figure 11.10. The contribution from figure 11.10(a), in
which the lepton flavour does not change, is independent of the lepton mass (here me), so
it gives the same result for ae and aμ. This contribution is of order (α/π) times the lowest
order contribution (11.83). But the graph of figure 11.10(b), in which the lepton in the
internal bubble has a different flavour from the external lepton, does depend on the lepton
mass ratio, in this case me/mμ. The internal muon is in fact some 200 times more massive
than the external electron, and an important decoupling theorem due to Appelquist and
Carazzone (1975) tells us that such a contribution, due to a heavy internal particle, will
be suppressed by a factor of order the square of the (light/heavy) mass ratio—in this case,
(me/mμ)

2 ∼ 10−5—relative to the contributions of graphs like those in figure 11.10(a). (A
similar graph with an internal τ bubble will be suppressed by (me/mτ )

2.) The important
general conclusion is that contributions to ae and aμ from loop graphs with a heavy internal
particle X, of mass mX � me,mμ, will be suppressed by a factor of (me/mX)

2 for ae, and
of (mμ/mX)

2 for aμ. This implies that the contribution from ‘beyond the SM physics’
(represented by a mass scale mX) to aμ would be enhanced by a factor (mμ/me)

2 ∼ 43, 000
relative to its contribution to ae. This outweighs by a factor of 19 the greater experimental
accuracy of ae,expt.

Turning now to the SM calculation of ae, we may distinguish three contributions:

ae,theory = ae,theory(QED) + ae,theory(weak) + ae,theory(hadronic). (11.86)

Hitherto we have considered only the first contribution. Representative diagrams contribut-
ing to the second and third contributions are shown in figures 11.11(a) and 11.11(b). As
regards figure 11.11(a), we may make a rough estimate of its contribution as follows. In
the electroweak theory of GSW, the coupling strength of the leptons to Z0 is of the same
order of magnitude as the charge e, so we expect a factor (α/π) as in (11.83). But the
graph has a heavy internal particle Z0, leading to a suppression factor of (me/mZ)

2, and
a resulting amplitude of order (α/π)(me/mZ)

2 ∼ 0.03 × 10−12. Calculations confirm this
estimate, which is well below the experimental error in ae,expt. The hadronic polarization
graph of figure 11.11(b) (and similar higher order ones) is harder to calculate, and the value
1.693× 10−12 is given by Aoyama et al. (2019). This is just on the edge of significance, and
is not the limiting factor in comparing theory with experiment at present.
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FIGURE 11.11
‘Beyond QED’ contributions to a
,theory (� = e, μ) due to (a) weak and (b) strong interaction
corrections.

The conclusion is therefore that ae,theory is essentially given by the pure QED contri-
bution. This has now been calculated up to tenth order in e (i.e. (α/π)5) (Aoyama et al.
2019)2. To compare with experiment, a very accurate value of the fine structure constant
is required. Different ways of measuring α give slightly different results. A measurement
using the recoil frequency of cesium-135 atoms in a matter-wave interferometer (Parker et
al. 2018) gave the result

α−1(Cs) = 137.035999046(27). (11.87)

With this value of α, the prediction for ae,theory is (Aoyama et al. 2019)

ae,theory = 1159652181.606(229)(11)(12)× 10−12 (11.88)

where the first, second, and third uncertainties are due to the fine structure constant,
numerical evaluation of the tenth order QED terms, and the hadronic contribution. The
theory is therefore in excellent agreement with experiment to an extraordinary level of
accuracy. The QED part of the SM is indeed the paradigm quantum field theory.

Moving on to aμ,theory, we shall summarize the present situation, as reviewed by Höcker
and Marciano (2022), where the reader will find full references to the original work. The
pure QED part aμ,theory(QED) has been evaluated to five loop order. Using the value of
α−1 from (11.87) leads to

aμ,theory(QED) = 116584718.93(0.10)× 10−11 (11.89)

where the small error results mainly from uncertainties in the estimate of the six loop
contribution, and in the value of α. One loop contributions to aμ,theory(weak) are suppressed
by at least a factor of (α/π)(mμ/mW)2 ≈ 4 × 10−9, relative to the leading term (11.83).
Two loop contributions have been evaluated, and three loop contributions are negligible.
The quoted result for weak SM contribution is

aμ,theory(weak) = 153.6(1.0)× 10−11. (11.90)

The limiting factor in comparing theory with experiment is the uncertainty in calculating
aμ,theory(hadronic).The lowest order (LO) contributions to this, shown in figure 11.11(b),

2Of course, as emphasized in this reference, behind this latest number lie the efforts of many scientists
over a period of some seventy years.
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will have four powers of e, and so will be of order α2. A representative value for these
contributions is (Aoyama et al. 2020)

aμ,theory(hadronic,LO) = 6931(40)× 10−11. (11.91)

Higher order hadronic terms are quoted (Höcker and Marciano 2022) as

aμ,theory(hadronic, higher order) = 6(18)× 10−11. (11.92)

Adding together (11.90), (11.90), (11.91), and (11.92) gives the SM prediction

aμ,theory = 116591810(1)(40)(18)× 10−11 (11.93)

where the errors are due to the weak, lowest order hadronic, and higher order hadronic
contributions respectively. It is worth stressing that all of the SM (electromagnetic, weak
and strong theories) is needed for the result (11.93); it is also interesting that the theoretical
error is essentially the same as the experimental one, at this stage.

The difference between experiment and theory is

aμ,expt − aμ,theory = 252(41)(43)× 10−11 (11.94)

where the errors (closely similar) are from experiment (41) and theory (43) (with all theory
errors combined in quadrature). Equation(11.94) represents an interesting but not conclusive
discrepancy of 4.2σ. This discrepancy has persisted for some years now. The experimental
value given in (11.85) is that of the 2021 FNAL measurement (Abi et al. 2021), which
increased the previous discrepancy of 3.7σ. More recently, the same group has reported
(Aguillard et al. 2023) further improvements in the precision of their result, which is now
given as

aμ,expt = 116592055(24)× 10−11, (11.95)

which brings the discrepancy with (11.93) to 5σ.
However, much depends on the theoretical calculation of the hadronic LO contribution.

The value (11.91) is derived (Davier et al. 2020; Keshavarzi, Nomura and Teubner 2020;
Colangelo, Hoferichter and Stoffer 2019; Hoferichter, Hoid and Kubis 2019) from dispersion
integrals combined with measurements of the cross-section for electron-positron annihilation
into hadrons (the quantity R of section 9.5). An entirely independent approach, using ab
initio simulations of lattice gauge theory (see chapter 16) has reported the value (Borsanyi
et al. 2021)

alatticeμ,theory(hadronic,LO) = 7075(56)× 10−11. (11.96)

This larger value substantially reduces the discrepancy with aμ,expt. The final conclusion
appears to require the resolution of the theoretical discrepancy between (11.91) and (11.96).

No doubt this epic confrontation between theory and experiment will continue to be
pursued. It is a classic example of the way in which a very high-precision measurement in a
thoroughly ‘low-energy’ area of physics (a magnetic moment) can have profound impact on
the ‘high-energy’ frontier—a circumstance upon which we may be increasingly dependent.

One conclusion we can certainly draw is that renormalizable quantum field theories are
the most predictive theories we have. We end this volume with some general reflections on
renormalizable and non-renormalizable theories.

11.8 Which theories are renormalizable—and does it matter?

In the course of our travels thus far, we have met theories which exhibit three different types
of ultraviolet behaviour. In the ABC theory at one-loop order, we found that both the field
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strength renormalizations and the vertex correction were finite; only the mass shifts diverged
as Λ → ∞. The theory was called ‘super-renormalizable’. In QED, we needed divergent
renormalization constants Zi as well as an infinite mass shift—but (although we did not
attempt to explain why) these counter terms were enough to cure divergences systematically
to all orders and the theory was renormalizable. Finally, we asserted that the anomalous
coupling (11.80) was non-renormalizable. In the final section of this volume, we shall try to
shed more light on these distinctions and their significance.

Is there some way of telling which of these ultraviolet behaviours a given Lagrangian is
going to exhibit, without going through the calculations? The answer is yes (nearly), and
the test is surprisingly simple. It has to do with the dimensionality of a theory’s coupling
constant. We have seen (section 6.3.1) that the dimensionality of ‘g’ in the ABC theory is
M1 (using mass as the remaining dimension when � = c = 1), that of e in QED is M0

(section 7.4) and that of the coefficient of the anomalous coupling
¯̂
ψσμνψ̂F̂

μν in (11.80)
is M−1. These couplings have positive, zero, and negative mass dimension, respectively. It
is no accident that the three theories, with different dimensions for their couplings, have
different ultraviolet behaviour and hence different renormalizability.

That coupling constant dimensionality and ultraviolet behaviour are related can be
understood by simple dimensional considerations. Compare, for example, the vertex correc-
tions in the ABC theory (figure 10.6) and in QED (figure 11.8). These amplitudes behave
essentially as

G[2] ∼ g2ph

∫
d4k

k2k2k2
(11.97)

and

Γ[2] ∼ e2
∫

d4k

k2/k/k
(11.98)

respectively, for large k. Both are dimensionless, but in (11.97) the positive (mass)2 dimen-
sion of g2ph is compensated by one additional factor of k2 in the denominator of the integral,
as compared with (11.98), with the result that (11.97) is ultraviolet convergent but (11.98)
is not. The analysis can be extended to higher-order diagrams: for the ABC theory, the more
powers of gph which are involved, the more denominator factors are necessary, and hence
the better the convergence is. Indeed, in this kind of ‘super-renormalizable’ theory, only a
finite number of diagrams are ultraviolet divergent, to all orders in perturbation theory.

It is clear that some kind of opposite situation must obtain when the coupling constant
dimensionality is negative; for then, as the order of the perturbation theory increases, the
negative powers of M in the coupling constant factors must be compensated by positive
powers of k in the numerators of loop integrals. Hence the divergence will tend to get worse
at each successive order. A famous example of such a theory is Fermi’s original theory of
β-decay (Fermi 1934a, b), referred to in section 1.3.5, in which the interaction density has
the ‘four-fermion’ form

GF
¯̂
ψp(x)ψ̂n(x)

¯̂
ψe(x)ψ̂νe

(x) (11.99)

where GF is the ‘Fermi constant’. To find the dimensionality of GF, we first establish that

of the fermion field by considering a mass term m
¯̂
ψψ̂, for example. The integral of this over

d3x gives one term in the Hamiltonian, which has dimension M . We deduce that [ψ̂] = 3
2 ,

since [d3x] = −3. Hence [
¯̂
ψψ̂

¯̂
ψψ̂] = 6, and so [GF] = −2. The coupling constant GF in

(11.99) therefore has a negative mass dimension, just like the coefficient K/m in (11.80).
Indeed, the four-fermion theory is also non-renormalizable.

Must such a theory be rejected? Let us briefly sketch the consequences of an interaction
of the form (11.99), but slightly simpler, namely

GF
¯̂
ψn(x)ψ̂n(x)

¯̂
ψνe

(x)ψ̂νe
(x) (11.100)
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FIGURE 11.12
Lowest order contribution to νe+n → νe+n in the model defined by the interaction (11.100).

FIGURE 11.13
Second-order (one-loop) contribution to νe + n → νe + n.

where, for the present purposes, the neutron is regarded as point-like. Consider, for example,
the scattering process νe + n → νe + n. To lowest order in GF, this is given by the tree
diagram—or ‘contact term’—of figure 11.12, which contributes a constant −iGF to the
invariant amplitude for the process, disregarding the spinor factors for the moment. A one-
loop O(G2

F) correction is shown in figure 11.13. Inspection of figure 11.13 shows that this

is an s-channel process (recall section 6.3.3): let us call the amplitude −iGFG
[2]
l (s), where

one GF factor has been extracted, so that the correction can be compared with the tree

amplitude and G
[2]
l (s) is dimensionless. Then G

[2]
l (s) is given by

G
[2]
l (s) = −iGF

∫
d4k

(2π)4
i

/k −mνe

i

(pνe
+ pn − /k)−mn

. (11.101)

As expected, the negative mass dimension of GF leaves fewer k-factors in the denominator of
the loop integral. Indeed, manipulations exactly like those we used in the case of Σ[2] shows

that G
[2]
l (s) has a quadratic divergence, and that dG

[2]
l /ds has a logarithmic divergence. The

extra denominators associated with second and higher derivatives of G
[2]
l (s) are sufficient

to make these integrals finite.
The standard procedure would now be to cancel these divergences with counter terms.

There will certainly be one counter term arising naturally from writing the bare version of
(11.100) as (cf (11.5)):

G0F
¯̂
ψ0nψ̂0n

¯̂
ψ0νe

ψ̂0νe = GF
¯̂
ψnψ̂n

¯̂
ψνe

ψ̂νe + (Z4 − 1)GF
¯̂
ψnψ̂n

¯̂
ψνe

ψ̂νe (11.102)
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where Z4GF = G0FZ2,nZ2,νe
and the Z2’s are the field strength renormalization constants

for the n and νe fields. Including the tree graph of figure 11.12, the amplitude of figure 11.13,
and the counter term, the total amplitude to O(G2

F) is given by

iM = −iGF − iGFG
[2]
l (s)− iGF(Z4 − 1). (11.103)

As in our earlier examples, Z4 will be determined from a renormalization condition. In this
case, we might demand, for example, that the amplitude M reduces to GF at the threshold
value s = s0, where s0 = (mn +mνe

)2. Then to O(G2
F) we find

Z
[2]
4 = 1−G

[2]
l (s0) (11.104)

and our amplitude (11.103) is, in fact,

−iGF − iGF[G
[2]
l (s)−G

[2]
l (s0)]. (11.105)

In (11.105), we see the familiar outcome of such renormalization—the appearance of
subtractions of the divergent amplitude (cf (10.74), (11.11), (11.33), and (11.70)). In fact,

because dG
[2]
l /ds is also divergent, we need a second subtraction—and correspondingly, a

new counter term, not present in the original Lagrangian, of the form

Gd
¯̂
ψn /∂ψ̂n

¯̂
ψνe

/∂ψ̂νe

for example; there will also be others, but we are concerned only with the general idea.
The occurrence of such a new counter term is characteristic of a non-renormalizable theory,
but at this stage of the proceedings the only penalty we pay is the need to import another

constant from experiment, namely the value D of dG
[2]
l /ds at some fixed s, say s = s0;

D will be related to the renormalized value of Gd. We will then write our renormalized
amplitude, up to 0(G2

F), as

−iGF[1 +D(s− s0) + Ḡ
[2]
l (s)] (11.106)

where Ḡ
[2]
l (s) is finite, and vanishes along with its first derivative at s = s0; that is, Ḡ

[2]
l (s)

contributes calculable terms of order (s− s0)
2 if expanded about s = s0.

The moral of the story so far, then, is that we can perform a one-loop renormalization of
this theory, at the cost of taking additional parameters from experiments and introducing
new terms in the Lagrangian. What about the next order? Figure 11.14 shows a two-loop

diagram in our theory, which is of order G3
F. Writing the amplitude as −iGFG

[3]
l (s), the

ultraviolet behaviour of G
[3]
l (s) is given by

(−iGF)
2

∫
d4k1d

4k2
k4

(11.107)

where k is a linear function of k1 and k2. This has a leading ultraviolet divergence ∼ Λ4,

even worse than that of G
[2]
l . As suggested earlier, it is indeed the case that, the higher

we go in perturbation theory in this model, the worse the divergences become. We can, of

course, eliminate this divergence in G
[3]
l by performing a further subtraction, requiring the

provision of more parameters from experiment. By now the pattern should be becoming
clear: new counter terms will have to be introduced at each order of perturbation theory,
and ultimately we shall need an infinite number of them, and hence an infinite number of
parameters determined from experiment—and we shall have zero predictive capacity.
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FIGURE 11.14
A two-loop contribution to νe + n → νe + n in the model defined by (11.100).

Does this imply that the theory is useless? We have learned that Ḡ
[2]
l (s) produces a

calculable term of order G2
F(s − s0)

2 when expanded about s = s0; and that Ḡ
[3]
l will

produce a calculable term of order G3
F(s− s0)

3, and so on. Now, from the discussion after
(11.99), GF itself is a dimensionless number divided by the square of some mass. As we
saw in section 1.3.5 (and will return to in more detail in volume 2), in the case of the
physical weak interaction this mass in GF is the W-mass, and GF ∼ α/M2

W. Hence our loop
corrections have the form α2(s − s0)

2/M4
W, α3(s − s0)

3/M6
W . . . . We now see that for low

enough energy close to threshold, where (s−s0) � M2
W, it will be a good approximation to

stop at the one-loop level. As we go up in energy, we will need to include higher-order loops,
and correspondingly more parameters will have to be drawn from experiment. But only when

we begin to approach an energy
√
s ∼ MW/

√
α ∼ G

−1/2
F ∼ 300 GeV will this theory be

terminally sick. This was pointed out by Heisenberg (1939). For this argument to work, it
is important that the ultraviolet divergences at a given order in perturbation theory (i.e. a
given number of loops) should have been removed by renormalization, otherwise factors of
Λ2 will enter—in place of the (s− s0) factors, for example.

We have seen that a non-renormalizable theory can be useful at energies well below the
‘natural’ scale specified by its coupling constant. Let us look at this in a slightly different
way, by considering the two four-fermion interaction terms introduced at one loop,

GF
¯̂
ψnψ̂n

¯̂
ψνe

ψ̂νe and Gd
¯̂
ψn /∂ψ̂n

¯̂
ψνe

/∂ψ̂νe
. (11.108)

We know that GF ∼ M−2
W , and similarly Gd ∼ M−4

W (from dimensional counting, or from
the association of the Gd term with the O(G2

F) counter term). From dimensional analysis, or
by referring to (11.106) and remembering that D is of order GF for consistency, we see that
the second term in (11.108), when evaluated at tree level, is of order (s− s0)/M

2
W times the

first. It follows that higher derivative interactions, and in general terms with successively
larger negative mass dimension, are increasingly suppressed at low energies.

Where, then, do renormalizable theories fit into this? Those with couplings having pos-
itive mass dimension (‘super-renormalizable’) have, as we have seen, a limited number of
infinities and can be quickly renormalized. The ‘merely renormalizable’ theories have dimen-
sionless coupling constants, such as e (or α). In this case, since there are no mass factors (for
good or ill) to be associated with powers of α, as we go up in order of perturbation theory it
would seem plausible that the divergences get essentially no worse, and can be cured by the
counter terms which compensated those simplest divergences which we examined in earlier
sections—though for QED the proof is difficult, and took many years to perfect.

Given any renormalizable theory, such as QED, it is always possible to suppose that
the ‘true’ theory contains additional non-renormalizable terms, provided their mass scale is
very much larger than the energy scale at which the theory has been tested. For example, a
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term of the form (11.80) with ‘K/m’ replaced by some very large inverse mass M−1 would
be possible, and would contribute an amount of order 4e/M to a lepton magnetic moment.
The present level of agreement between theory and experiment in the case of the electron’s
moment implies that M ≥ 4× 109 GeV.

From this perspective, then, it may be less of a mystery why renormalizable theories are
generally the relevant ones at presently posed energies. Returning to the line of thought
introduced in section 10.1.1, we may imagine that a ‘true’ theory exists at some high en-
ergy scale Λ, which can be written in terms of all possible fields and their couplings, as
allowed by certain symmetry principles. Our particular renormalizable subset of these the-
ories then emerges as a low-energy effective theory, due to the strong suppression of the
non-renormalizable terms. Of course, for this point of view to hold, we must assume that
the latter interactions do not have ‘unnaturally large’ couplings, when expressed in terms
of Λ.

This interpretation, if correct, deals rather neatly with what was, for many physicists,
an awkward aspect of renormalizable theories. On the one hand, it was certainly an achieve-
ment to have rendered all perturbative calculations finite as the cut-off went to infinity; but
on the other, it was surely unreasonable to expect any such theory, established by confronta-
tion with experiments in currently accessible energy regimes, really to describe physics at
arbitrarily high energies. On the ‘low-energy effective field theory’ interpretation, we can en-
joy the calculational advantages of renormalizable field theories, while acknowledging—with
no contradiction—the likelihood that at some scale ‘new physics’ will enter.

Just this point of view is now widely accepted as regards the SM itself. In the final
section of the second volume of this book, we shall introduce the Standard Model Effective
Field theory (SMEFT), in which the Lagrangian of the Standard Model is supplemented by
the addition of a set of operators of dimension 6, representing the sub-TeV scale effects of
interactions occurring at a higher energy. This offers a general framework for parametrizing
possible deviations from the SM predictions, which may be revealed by precision experiments
at the LHC, and thus give clues to new physics which lies beyond the Standard Model.

Having thus argued that renormalizable theories emerge ‘naturally’ as low-energy theo-
ries, we now seem to be faced with another puzzle: why were weak interactions successfully
describable, for many years, in terms of the non-renormalizable four-fermion theory? The
answer is that non-renormalizable theories may be physically detectable at low energies if
they contribute to processes that would otherwise be forbidden. For example, the fact that
(as far as we know) neutrinos have neither electromagnetic nor strong interactions, but
only weak interactions, allowed the four-fermion theory to be detected—but amplitudes
were suppressed by powers of s/M2

W (relative to comparable electromagnetic ones) and this
was, indeed, why it was called ‘weak’ !

In the case of the weak interaction, the reader may perhaps wonder why—if it was
understood that the four-fermion theory could after all be handled up to energies of order
10 GeV—so much effort went in to creating a renormalizable theory of weak interactions, as
it undoubtedly did. Part of the answer is that the utility of non-renormalizable interactions
was a rather late realization (see, for example, Weinberg 1979). But surely the prospect
of having a theory with the predictive power of QED was a determining factor. At all
events, the preceding argument for the ‘naturalness’ of renormalizable theories as low-energy
effective theories provides strong expectation that such a description of weak interactions
should exist.

We shall discuss the construction of the currently accepted renormalizable theory of
electroweak interactions in volume 2. We can already anticipate that the first step will be
to replace the ‘negative-mass-dimensioned’ constant GF by a dimensionless one. The most
obvious way to do this is to envisage a Yukawa-type theory of weak interactions mediated by
a massive quantum (as, of course, Yukawa himself did—see section 1.3.5). The four-fermion
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FIGURE 11.15
One-Z (Yukawa-type) exchange process in νe + n → νe + n.

process of figure 11.12 would then be replaced by that of figure 11.15, with amplitude
(omitting spinors) ∼ g2Z/(q

2 − m2
Z) where gZ is dimensionless. For small q2 � m2

Z, this
reduces to the contact four-fermion form of figure 11.12, with an effective GF ∼ g2Z/m

2
Z ,

showing the origin of the negative mass dimensions of GF. It is clear that even if the new
theory were to be renormalizable, many low-energy processes would be well described by
an effective non-renormalizable four-fermion theory, as was indeed the case historically.

Unfortunately, we shall see in volume 2 that the application of this simple idea to the
charge-changing weak interactions does not, after all, lead to a renormalizable theory. This
teaches us an important lesson; a dimensionless coupling does not necessarily guarantee
renormalizability.

To arrive at a renormalizable theory of the weak interactions it seems to be necessary
to describe them in terms of a gauge theory (recall the ‘universality’ hints mentioned in
section 11.6). Yet the mediating gauge field quanta have mass, which appears to contradict
gauge invariance. The remarkable story of how gauge field quanta can acquire mass while
preserving gauge invariance is reserved for volume 2.

A number of other non-renormalizable interactions are worth mentioning. Perhaps the
most famous of all is gravity, characterized by Newton’s constant GN, which has the value
(1.2 × 1019 GeV)−2. The detection of gravity at energies so far below 1019 GeV is due,
of course, to the fact that the gravitational fields of all the particles in a macroscopic
piece of matter add up coherently. At the level of the individual particles, its effect is still
entirely negligible. Another example may be provided by baryon and/or lepton violating
interactions, mediated by highly suppressed non-renormalizable terms.3 Such things are
frequently found when the low-energy limit is taken of theories defined (for example) at
energies of order 1016 GeV or higher.

The stage is now set for the discussion, in volume 2, of the renormalizable non-Abelian
gauge field theories which describe the weak and strong sectors of the SM.

3The most general renormalizable Lagrangian with the field content, and the gauge symmetries, of the
Standard Model automatically conserves baryon and lepton number (Weinberg 1996, pp 316-7).
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Problems

11.1 Establish the values of the counter terms given in (11.12).

11.2 Convince yourself of the rule ‘each closed fermion loop carries an additional factor
−1’.

11.3 Explain why the trace is taken in (11.14).

11.4 Verify (11.15).

11.5 Verify the quoted relation P ρ
τ P

τ
ν = P ρ

ν where P ρ
ν = gρν − qρqν/q

2 (cf (11.26)).

11.6 Verify (11.39 ) for q2 � m2.

11.7 Verify (11.55 ) for −q2 � m2.

11.8 Check the estimate (11.60).

11.9 Find the dimensionality of ‘E’ in an interaction of the form E(F̂μν F̂
μν)2. Express this

interaction in terms of the Ê and B̂ fields. Is such a term finite or infinite in QED? How
might it be measured?
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A

Non-Relativistic Quantum Mechanics

This appendix is intended as a very terse ‘revision’ summary of those aspects of non-
relativistic quantum mechanics that are particularly relevant for this book. A fuller account
may be found in Mandl (1992), for example.

Natural units � = c = 1 (see appendix B).
Fundamental postulate of quantum mechanics:

[p̂i, x̂j ] = −iδij . (A.1)

Coordinate representation:

p̂ = −i∇ (A.2)

Ĥψ(x, t) = i∂ψ(x,t)
∂t . (A.3)

Schrödinger equation for a spinless particle:

Ĥ =
p̂2

2m
+ V̂ (A.4)

and so (
− 1

2m
∇2 + V̂ (x, t)

)
ψ(x, t) = i

∂ψ(x, t)

∂t
. (A.5)

Probability density and current (see problem 3.1 (a)):

ρ = ψ∗ψ = |ψ|2 ≥ 0 (A.6)

j = 1
2mi [ψ

∗(∇ψ)− (∇ψ∗)ψ] (A.7)

with
∂ρ

∂t
+∇ · j = 0. (A.8)

Free-particle solutions:

φ(x, t) = u(x)e−iEt (A.9)

Ĥ0u = Eu (A.10)

where
Ĥ0 = Ĥ(V̂ = 0). (A.11)

Box normalization: ∫
V

u∗(x)u(x) d3x = 1. (A.12)

Angular momentum: Three Hermitian operators (Ĵx, Ĵy, Ĵz) satisfying

[Ĵx, Ĵy] = i�Ĵz
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and corresponding relations obtained by rotating the x–y–z subscripts. [Ĵ
2
, Ĵz] = 0 implies

complete sets of states exist with definite values of Ĵ
2
and Ĵz. Eigenvalues of Ĵ

2
are (with

� = 1) j(j+1) where j = 0, 1
2 , 1, . . . ; eigenvalues of Ĵz are m where −j ≤ m ≤ j, for given j.

For orbital angular momentum, Ĵ → L̂ = r× p̂ and eigenfunctions are spherical harmonics

Y
m(θ, φ), for which eigenvalues of L̂
2
and L̂z are l(l + 1) and m where −l ≤ m ≤ l. For

spin- 12 angular momentum, Ĵ → 1
2σ where the Pauli matrices σ = (σx, σy, σz) are

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (A.13)

Eigenvectors of sz are

(
1
0

)
(eigenvalue + 1

2 ), and

(
0
1

)
(eigenvalue − 1

2 ).

Interaction with electromagnetic field : Particle of charge q in electromagnetic vector
potential A

p̂ → p̂− qA . (A.14)

Thus
1

2m
(p̂− qA)2ψ = i

∂ψ

∂t
(A.15)

and so

− 1

2m
∇2ψ + i

q

m
A ·∇ψ +

q2

2m
A2ψ = i

∂ψ

∂t
. (A.16)

Note: (a) chosen gauge ∇ ·A = 0; (b) q2 term is usually neglected.
Example: Magnetic field along z-axis, possible A consistent with ∇ · A = 0 is A =

1
2B(−y, x, 0) such that ∇×A = (0, 0, B). Inserting this into the second term on left-hand
side of (A.16) gives

iqB

2m

(
−y

∂

∂x
+ x

∂

∂y

)
ψ = − qB

2m
L̂zψ (A.17)

which generalizes to the standard orbital magnetic moment interaction −μ̂ ·Bψ where

μ̂ =
qB

2m
L̂. (A.18)

Time-dependent perturbation theory :

Ĥ = Ĥ0 + V̂ (A.19)

Ĥψ = i∂ψ∂t . (A.20)

Unperturbed problem:
Ĥ0un = Enun. (A.21)

Completeness:

ψ(x, t) =
∑
n

an(t)un(x)e
−iEnt. (A.22)

First-order perturbation theory :

afi = −i

∫ ∫
d3x dt u∗f (x)e

+iEf tV̂ (x, t)ui(x)e
−iEit (A.23)

which has the form

afi = −i

∫
(volume element)(final state)∗(perturbing potential)(initial state) (A.24)



Non-Relativistic Quantum Mechanics 303

Important examples:

(i) V̂ independent of t:
afi = −iVfi2πδ(Ef − Ei) (A.25)

where

Vfi =

∫
d3xu∗f (x)V̂ (x)ui(x). (A.26)

(ii) Oscillating time-dependent potential:

(a) if V̂ ∼ e−iωt, time integral of afi is∫
dt e+iEf te−iωte−iEit = 2πδ(Ef − Ei − ω) (A.27)

i.e. the system has absorbed energy from potential;

(b) if V̂ ∼ e+iωt, time integral of afi is∫
dt e+iEf te+iωte−iEit = 2πδ(Ef + ω − Ei) (A.28)

i.e. the potential has absorbed energy from system.

Absorption and emission of photons: For electromagnetic radiation, far from its sources,
the vector potential satisfies the wave equation

∇2A− ∂2A

∂t2
= 0. (A.29)

Solution:
A(x, t) = A0 exp(−iωt+ ik · x) +A∗0 exp(+iωt− ik · x). (A.30)

With gauge condition ∇ ·A = 0 we have

k ·A0 = 0 (A.31)

and there are two independent polarization vectors for photons.
Treat the interaction in first-order perturbation theory:

V̂ (x, t) = (iq/m)A(x, t) ·∇. (A.32)

Thus

A0 exp(−iωt+ ik · x) ≡ absorption of photon of energy ω

A∗0 exp(+iωt+ ik · x) ≡ emission of photon of energy ω. (A.33)



B

Natural Units

In particle physics, a widely adopted convention is to work in a system of units, called
natural units, in which

� = c = 1. (B.1)

This avoids having to keep track of untidy factors of � and c throughout a calculation;
only at the end is it necessary to convert back to more usual units. Let us spell out the
implications of this choice of c and �.

(i) c = 1. In conventional MKS units c has the value

c = 3× 108 m s−1. (B.2)

By choosing units such that
c = 1 (B.3)

since a velocity has the dimensions

[c] = [L][T]−1 (B.4)

we are implying that our unit of length is numerically equal to our unit of time. In this
sense, length and time are equivalent dimensions:

[L] = [T]. (B.5)

Similarly, from the energy–momentum relation of special relativity

E2 = p2c2 +m2c4 (B.6)

we see that the choice of c = 1 also implies that energy, mass and momentum all have
equivalent dimensions. In fact, it is customary to refer to momenta in units of ‘MeV/c’ or
‘GeV/c’; these all become ‘MeV’ or ‘GeV’ when c = 1.

(ii) � = 1. The numerical value of Planck’s constant is

� = 6.6× 10−22 MeV s (B.7)

and � has dimensions of energy multiplied by time so that

[�] = [M][L]2[T]−1. (B.8)

Setting � = 1 therefore relates our units of [M], [L], and [T]. Since [L] and [T] are equivalent
by our choice of c = 1, we can choose [M] as the single independent dimension for our
natural units:

[M] = [L]−1 = [T]−1. (B.9)

An example: the pion Compton wavelength How do we convert from natural units to
more conventional units? Consider the pion Compton wavelength

λπ = �/Mπc (B.10)

DOI: 10.1201/9781003410720-B 304

https://doi.org/10.1201/9781003410720-B


Natural Units 305

evaluated in both natural and conventional units. In natural units

λπ = 1/Mπ (B.11)

where Mπ � 140 MeV/c2. In conventional units, using Mπ, � (B.7), and c (B.2), we have
the familiar result

λπ = 1.41 fm (B.12)

where the ‘fermi’ or femtometre, fm, is defined as

1 fm = 10−15 m.

We therefore have the correspondence

λπ = 1/Mπ = 1.41 fm. (B.13)

Practical cross section calculations : An easy-to-remember relation may be derived from
the result

�c � 200 MeV fm (B.14)

obtained directly from (B.2) and (B.7). Hence, in natural units, we have the relation

1 fm � 1

200 MeV
= 5 (GeV)−1. (B.15)

Cross sections are calculated without �’s and c’s and all masses, energies and momenta typ-
ically in MeV or GeV. To convert the result to an area, we merely remember the dimensions
of a cross section:

[σ] = [L]2 = [M]−2. (B.16)

If masses, momenta and energies have been specified in GeV, from (B.15) we derive the
useful result (from the more precise relation �c = 197.328 MeV fm)

(
1

1 GeV

)2
= 1 (GeV)−2 = 0.389 39 mb (B.17)

where a millibarn, mb, is defined to be

1 mb = 10−31 m2.

Note that a ‘typical’ hadronic cross section corresponds to an area of about λ2
π where

λ2
π = 1/M2

π = 20 mb.

Electromagnetic cross sections are an order of magnitude smaller: specifically for lowest
order e+e → μ+μ−

σ ≈ 86.8

s
nb (B.18)

where s is in (GeV)2 (see problem 8.18(d) in chapter 8).



C

Maxwell’s Equations: Choice of Units

In high-energy physics, it is not the convention to use the rationalized MKS system of units
when treating Maxwell’s equations. Since the discussion is always limited to field equations
in vacuo, it is usually felt desirable to adopt a system of units in which these equations take
their simplest possible form—in particular, one such that the constants ε0 and μ0, employed
in the MKS system, do not appear. These two constants enter, of course, via the force laws
of Coulomb and Ampère, respectively. These laws relate a mechanical quantity (force) to
electrical ones (charge and current). The introduction of ε0 in Coulomb’s law

F =
q1q2r

4πε0r3
(C.1)

enables one to choose arbitrarily one of the electrical units and assign to it a dimension
independent of those entering into mechanics (mass, length and time). If, for example, we
use the coulomb as the basic electrical quantity (as in the MKS system), ε0 has dimension
(coulomb)2 [T]2/[M][L]3. Thus the common practical units (volt, ampère, coulomb, etc)
can be employed in applications to both fields and circuits. However, for our purposes
this advantage is irrelevant, since we are only concerned with the field equations, not with
practical circuits. In our case, we prefer to define the electrical units in terms of mechanical
ones in such a way as to reduce the field equations to their simplest form. The field equation
corresponding to (C.1) is

∇ ·E = ρ/ε0 (Gauss’ law: MKS) (C.2)

and this may obviously be simplified if we choose the unit of charge such that ε0 becomes
unity. Such a system, in which CGS units are used for the mechanical quantities, is a variant
of the electrostatic part of the ‘Gaussian CGS’ system. The original Gaussian system set
ε0 → 1/4π, thereby simplifying the force law (C.1), but introducing a compensating 4π into
the field equation (C.2). The field equation is, in fact, primary, and the 4π is a geometrical
factor appropriate only to the specific case of three dimensions, so that it should not appear
in a field equation of general validity. The system in which ε0 in (C.2) may be replaced by
unity is called the ‘rationalized Gaussian CGS’ or ‘Heaviside–Lorentz’ system:

∇ ·E = ρ (Gauss’ law; Heaviside–Lorentz). (C.3)

Generally, systems in which the 4π factors appear in the force equations rather than the
field equations are called ‘rationalized’.

Of course, (C.3) is only the first of the Maxwell equations in Heaviside–Lorentz units.
In the Gaussian system, μ0 in Ampère’s force law

F =
μ0

4π

∫ ∫
j1 × (j2 × r12)

r312
d3r1 d

3r2 (C.4)

was set equal to 4π, thereby defining a unit of current (the electromagnetic unit or Biot
(Bi emu)). The unit of charge (the electrostatic unit or Franklin (Fr esu)) has already been
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defined by the (Gaussian) choice ε0 = 1/4π and currents via μ0 → 4π, and c appears
explicitly in the equations. In the rationalized (Heaviside–Lorentz) form of this system,
ε0 → 1 and μ0 → 1, and the remaining Maxwell equations are

∇×E = − 1
c
∂B
∂t (C.5)

∇ ·B = 0 (C.6)

∇×B = j + 1
c
∂E
∂t . (C.7)

A further discussion of units in electromagnetic theory is given in Panofsky and Phillips
(1962, appendix I).

Finally, throughout this book we have used a particular choice of units for mass, length,
and time such that � = c = 1 (see appendix B). In that case, the Maxwell equations we use
are as in (C.3), (C.5)–(C.7), but with c replaced by unity.

As an example of the relation between MKS and the system employed in this book (and
universally in high-energy physics), we remark that the fine structure constant is written as

α =
e2

4πε0�c
in MKS units (C.8)

or as

α =
e2

4π
in Heaviside–Lorentz units with � = c = 1. (C.9)

Clearly the value of α(� 1/137) is the same in both cases, but the numerical values of ‘e’
in (C.8) and in (C.9) are, of course, different.

The choice of rationalized MKS units for Maxwell’s equations is a part of the SI system
of units. In this system of units, the numerical values of μ0 and ε0 are

μ0 = 4π × 10−7 (kg m C−2 = H m−1)

and, since μ0ε0 = 1/c2,

ε0 =
107

4πc2
=

1

36π × 109
(C2 s2 kg−1 m−3 = F m−1).



D

Special Relativity: Invariance and Covariance

The co-ordinate 4-vector xμ is defined by

xμ = (x0, x1, x2, x3)

where x0 = t (with c = 1) and (x1, x2, x3) = x. Under a Lorentz transformation along the
x1-axis with velocity v, xμ transforms to

x0′ = γ(x0 − vx1)

x1′ = γ(−vx0 + x1)

x2′ = x2

x3′ = x3 (D.1)

where γ = (1− v2)−1/2.
A general ‘contravariant 4-vector’ is defined to be any set of four quantities Aμ =

(A0, A1, A2, A3) ≡ (A0,A) which transform under Lorentz transformations exactly as the
corresponding components of the coordinate 4-vector xμ. Note that the definition is phrased
in terms of the transformation property (under Lorentz transformations) of the object being
defined. An important example is the energy–momentum 4-vector pμ = (E,p), where for a
particle of rest mass m, E = (p2+m2)1/2. Another example is the 4-gradient ∂μ = (∂0,−∇)
(see problem 2.1) where

∂0 =
∂

∂t
∇ =

(
∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
. (D.2)

Lorentz transformations leave the expression A0 2 −A2 invariant for a general 4-vector Aμ.
For example, E2 − p2 = m2 is invariant, implying that the rest mass m is invariant un-
der Lorentz transformations. Another example is the four-dimensional invariant differential
operator analogous to ∇2, namely

� = ∂0 2 −∇2

which is precisely the operator appearing in the massless wave equation

�φ = ∂0 2φ−∇2φ = 0.

The expression A0 2 − A2 may be regarded as the scalar product of Aμ with a related
‘covariant vector’ Aμ = (A0,−A). Then

A0 2 −A2 =
∑
μ

AμAμ

where, in practice, the summation sign on repeated ‘upstairs’ and ‘downstairs’ indices is
always omitted. We shall often shorten the expression ‘AμAμ’ even further, to ‘A2’; thus
p2 = E2 − p2 = m2. The ‘downstairs’ version of ∂μ is ∂μ = (∂0,∇). Then ∂μ∂

μ = ∂2 = �.
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‘Lowering’ and ‘raising’ indices is effected by the metric tensor gμν or gμν , where g00 =
g00 = 1, g11 = g22 = g33 = g11 = g22 = g33 = −1, all other components vanishing. Thus if
Aμ = gμνA

ν then A0 = A0, A1 = −A1, etc.
In the same way, the scalar product A ·B of two 4-vectors is

A ·B = AμBμ = A0B0 −A ·B (D.3)

and this is also invariant under Lorentz transformations. For example, the invariant four-
dimensional divergence of a 4-vector jμ = (ρ, j) is

∂μjμ = ∂0ρ− (−∇) · j = ∂0ρ+∇ · j = ∂μj
μ (D.4)

since the spatial part of ∂μ is −∇.
Because the Lorentz transformation is linear, it immediately follows that the sum (or

difference) of two 4-vectors is also a 4-vector. In a reaction of the type ‘1 + 2 → 3 + 4 +
· · ·N ’ we express the conservation of both energy and momentum as one ‘4-momentum
conservation equation’:

pμ1 + pμ2 = pμ3 + pμ4 + · · · pμN . (D.5)

In practice, the 4-vector index on all the p’s is conventionally omitted in conservation
equations such as (D.5), but it is nevertheless important to remember, in that case, that
it is actually four equations, one for the energy components and a further three for the
momentum components. Further, it follows that quantities such as (p1+p2)

2, (p1−p3)
2 are

invariant under Lorentz transformations.
We may also consider products of the form AμBν , where A and B are 4-vectors. As

μ and ν each run over their four possible values (0, 1, 2, 3), 16 different ‘components’ are
generated (A0B0, A0B1, . . . , A3B3). Under a Lorentz transformation, the components of A
and B will transform into definite linear combinations of themselves, as in the particular
case of (D.1). It follows that the 16 components of AμBν will also transform into well-defined
linear combinations of themselves (try it for A0B1 and (D.1)). Thus we have constructed
a new object whose 16 components transform by a well-defined linear transformation law
under a Lorentz transformation, as did the components of a 4-vector. This new quantity,
defined by its transformation law, is called a tensor—or more precisely a ‘contravariant
second-rank tensor’, the ‘contravariant’ referring to the fact that both indices are upstairs,
the ‘second rank’ meaning that it has two indices. An important example of such a tensor
is provided by ∂μAν(x)− ∂νAμ(x), which is the electromagnetic field strength tensor Fμν ,
introduced in chapter 2. More generally we can consider tensors Bμν which are not literally
formed by ‘multiplying’ two vectors together, but which transform in just the same way;
and we can introduce third- and higher-rank tensors similarly, which can also be ‘mixed’,
with some upstairs and some downstairs indices.

We now state a very useful and important fact. Suppose we ‘dot’ a downstairs 4-vector
Aμ into a contravariant second-rank tensor Bμν , via the operation AμB

μν , where as always
a sum on the repeated index μ is understood. Then this quantity transforms as a 4-vector,
via its ‘loose’ index ν. This is obvious if Bμν is actually a product such as Bμν = CμDν ,
since then we have AμB

μν = (A · C)Dν , and (A · C) is an invariant, which leaves the 4-
vector Dμ as the only ‘transforming’ object left. But even if Bμν is not such a product, it
transforms under Lorentz transformations in exactly the same way as if it were, and this
leads to the same result. An example is provided by the quantity ∂μF

μν which enters on
the left-hand side of the Maxwell equations in the form (2.18).

This example brings us conveniently to the remaining concept we need to introduce
here, which is the important one of covariance. Referring to (2.18), we note that it has the
form of an equality between two quantities (∂μF

μν on the left, jνem on the right) each of
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which transforms in the same way under Lorentz transformations—namely as a contravari-
ant 4-vector. One says that (2.18) is ‘Lorentz covariant’, the word ‘covariant’ here meaning
precisely that both sides transform in the same way (i.e. consistently) under Lorentz trans-
formations. Confusingly enough, this use of the word ‘covariant’ is evidently quite different
from the one encountered previously in an expression such as ‘a covariant 4-vector’, where
it just meant a 4-vector with a downstairs index. This new meaning of ‘covariant’ is actually
much better captured by an alternative name for the same thing, which is ‘form invariant’,
as we will shortly see.

Why is this idea so important? Consider the (special) relativity principle, which states
that the laws of physics should be the same in all inertial frames. The way in which this
physical requirement is implemented mathematically is precisely via the notion of covariance
under Lorentz transformations. For, consider how a law will typically be expressed. Relative
to one inertial frame, we set up a coordinate system and describe the phenomena in question
in terms of suitable coordinates, and such other quantities (forces, fields, etc) as may be
necessary. We write the relevant law mathematically as equations relating these quantities,
all referred to our chosen frame and coordinate system. What the relativity principle requires
is that these relationships—these equations—must have the same form when the quantities
in them are referred to a different inertial frame. Note that we must say ‘have the same
form’, rather than ‘be identical to’, since we know very well that coordinates, at least, are
not identical in two different inertial frames (cf (D.1)). This is why the term ‘form invariant’
is a more helpful one than ‘covariant’ in this context, but the latter is more commonly used.

A more elementary example may be helpful. Consider Newton’s law in the simple form
F = mr̈. This equation is ‘covariant under rotations’, meaning that it preserves the same
form under a rotation of the coordinate system—and this in turn means that the physics
it expresses is independent of the orientation of our coordinate axes. The ‘same form’ in
this case is of course just F ′ = mr̈′. We emphasize again that the components of F ′ are
not the same as those of F , nor are the components of r̈′ the same as those of r̈; but the
relationship between F ′ and r̈′ is exactly the same as the relationship between F and r̈,
and that is what is required.

It is important to understand why this deceptively simple result (‘F ′ = mr̈′’) has been
obtained. The reason is that we have assumed (or asserted) that ‘force’ is in fact to be
represented mathematically as a 3-vector quantity. Once we have said that, the rest follows.
More formally, the transformation law of the components of r is r′i = Rijrj (sum on j

understood), where the matrix of transformation coefficients R is ‘orthogonal’ (RRT =

RTR = I), which ensures that the length (squared) of r is invariant , r2 = r′2. To say
that ‘force is a 3-vector’ then implies that the components of F transform by the same set
of coefficients Rij : F

′
i = RijFj . Thus starting from the law Fj = mr̈j which relates the

components in one frame, by multiplying both sides of the equation by Rij and summing
over j we arrive at F ′i = mr̈′i, which states precisely that the components in the primed
frame bear the same relationship to each other as the components in the unprimed frame
did. This is the property of covariance under rotations, and it ensures that the physics
embodied in the law is the same for all systems which differ from one another only by a
rotation.

In just the same way, if we can write equations of physics as equalities between quantities
which transform in the same way (i.e. ‘are covariant’) under Lorentz transformations, we
will guarantee that these laws obey the relativity principle. This is indeed the case in the
Lorentz covariant formulation of Maxwell’s equations, given in (2.18), which we now repeat
here: ∂μF

μν = jνem. To check covariance, we follow essentially the same steps as in the
case of Newton’s equations, except that the transformations being considered are Lorentz
transformations. Inserting the expression (2.19) for Fμν , the equation can be written as
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(∂μ∂
μ)Aν−∂ν(∂μA

μ) = jνem. The bracketed quantities are actually invariants, as mentioned
earlier. This means that ∂μ∂

μ is equal to ∂μ
′∂′μ , and similarly ∂μA

μ = ∂μ
′A′μ, so that we

can write the equation as (∂′μ∂
′μ)Aν − ∂ν(∂′μA

′μ) = jνem. It is now clear that if we apply
a Lorentz transformation to both sides, Aν and ∂ν will become A′ν and ∂′ν , respectively,
while jνem will become j′νem, since all these quantities are 4-vectors, transforming the same
way (as the 3-vectors did in the Newton case). Thus we obtain just the same form of
equation, written in terms of the ‘primed frame’ quantities, and this is the essence of (Lorentz
transformation) covariance.

Actually, the detailed ‘check’ that we have just performed is really unnecessary. All
that is required for covariance is that (once again!) both sides of equations transform the
same way. That this is true of (2.18) can be seen ‘by inspection’, once we understand
the significance (for instance) of the fact that the μ indices are ‘dotted’ so as to form an
invariant. This example should convince the reader of the power of the 4-vector notation
for this purpose: compare the ‘by inspection’ covariance of (2.18) with the job of verifying
Lorentz covariance starting from the original Maxwell equations (2.1), (2.2), (2.3), and (2.8)!
The latter involves establishing the rather complicated transformation law for the fields E
and B (which, of course, form parts of the tensor Fμν). One can indeed show in this way
that the Maxwell equations are covariant under Lorentz transformations, but they are not
manifestly (i.e. without doing any work) so, whereas in the form (2.18) they are.



E

Dirac δ-Function

Consider approximating an integral by a sum over strips Δx wide as shown in figure E.1:∫ x2

x1

f(x) dx �
∑
i

f(xi)Δx. (E.1)

Consider the function δ(x− xj) shown in figure E.2,

δ(x− xj) =
{
1/Δx in the jth interval
0 all others

(E.2)

Clearly this function has the properties∑
i

f(xi)δ(xi − xj)Δx = f(xj) (E.3)

and ∑
i

δ(xi − xj)Δx = 1. (E.4)

In the limit as we pass to an integral form, we might expect (applying (E.1) to the left-hand
sides) that these equations to reduce to∫ x2

x1

f(x)δ(x− xj) dx = f(xj) (E.5)

and ∫ x2

x1

δ(x− xj) dx = 1 (E.6)

provided that x1 < xj < x2. Clearly such ‘δ-functions’ can easily be generalized to more
dimensions, e.g. three dimensions:

dV = dx dy dz ≡ d3r δ(r − rj) ≡ δ(x− xj)δ(y − yj)δ(z − zj). (E.7)

Informally, therefore, we can think of the δ-function as a function that is zero everywhere
except where its argument vanishes—at which point it is infinite in such a way that its
integral has unit area, and equations (E.5) and (E.6) hold. Do such amazing functions exist?
In fact, the informal idea just given does not define a respectable mathematical function.
More properly the use of the ‘δ-function’ can be justified by introducing the notion of
‘distributions’ or ‘generalized functions’. Roughly speaking, this means we can think of the
‘δ-function’ as the limit of a sequence of functions, whose properties converge to those given
here. The following useful expressions all approximate the δ-function in this sense:

δ(x) =

{
lim
ε→0

1

ε
for −ε/2 ≤ x ≤ ε/2

0 for |x| > ε/2
(E.8)

δ(x) = lim
ε→0

1

π

ε

x2 + ε2
(E.9)

δ(x) = lim
N→∞

1

π

sin(Nx)

x
. (E.10)

DOI: 10.1201/9781003410720-E 312

https://doi.org/10.1201/9781003410720-E


Dirac δ-function 313

FIGURE E.1
Approximate evaluation of integral.

FIGURE E.2
The function δ(x− xj).

The first of these is essentially the same as (E.2), and the second is a ‘smoother’ version
of the first. The third is sketched in figure E.3; as N tends to infinity, the peak becomes
infinitely high and narrow, but it still preserves unit area.

Usually, under integral signs, δ-functions can be manipulated with no danger of obtain-
ing a mathematically incorrect result. However, care must be taken when products of two
such generalized functions are encountered.
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FIGURE E.3
The function (E.10) for finite N .

Resumé of Fourier series and Fourier transforms

Fourier’s theorem asserts that any suitably well-behaved periodic function with period L
can be expanded as follows:

f(x) =

∞∑
n=−∞

ane
i2nπx/L. (E.11)

Using the orthonormality relation

1

L

∫ L/2

−L/2

e−2πimx/Le2πinx/L dx = δmn (E.12)

with the Krönecker δ-symbol defined by

δmn =

{
1 if m = n
0 if m �= n

(E.13)

the coefficients in the expansion may be determined:

am =
1

L

∫ L/2

−L/2

f(x)e−2πimx/L dx. (E.14)

Consider the limit of these expressions as L → ∞. We may write

f(x) =

∞∑
n=−∞

FnΔn (E.15)

with
Fn = ane

2πinx/L (E.16)
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and the interval Δn = 1. Defining
2πn/L = k (E.17)

and
Lan = g(k) (E.18)

we can take the limit L → ∞ to obtain

f(x) =

∫ ∞

−∞
Fn dn

=

∫ ∞

−∞

g(k)eikx

L

Ldk

2π
. (E.19)

Thus

f(x) =
1

2π

∫ ∞

−∞
g(k)eikx dk (E.20)

and similarly from (E.14)

g(k) =

∫ ∞

−∞
f(x)e−ikx dx. (E.21)

These are the Fourier transform relations, and they lead us to an important representation
of the Dirac δ-function.

Substitute g(k) from (E.21) into (E.20) to obtain

f(x) =
1

2π

∫ ∞

−∞
dk eikx

∫ ∞

−∞
dx′ e−ikx′

f(x′). (E.22)

Reordering the integrals, we arrive at the result

f(x) =

∫ ∞

−∞
dx′f(x′)

(
1

2π

∫ ∞

−∞
eik(x−x′) dk

)
(E.23)

valid for any function f(x). Thus the expression

1

2π

∫ ∞

−∞
eik(x−x′) dk (E.24)

has the remarkable property of vanishing everywhere except at x = x′, and its integral with
respect to x′ over any interval including x is unity (set f = 1 in (E.23)). In other words,
(E.24) provides us with a new representation of the Dirac δ-function:

δ(x) =
1

2π

∫ ∞

−∞
eikx dk. (E.25)

Equation (E.25) is very important. It is the representation of the δ-function which is
most commonly used, and it occurs throughout this book. Note that if we replace the upper
and lower limits of integration in (E.25) by N and −N , and consider the limit N → ∞, we
obtain exactly (E.10).

The integral in (E.25) represents the superposition, with identical uniform weight (2π)−1,
of plane waves of all wavenumbers. Physically it may be thought of (cf (E.20)) as the
Fourier transform of unity. Equation (E.25) asserts that the contributions from all these
waves cancel completely, unless the phase parameter x is zero—in which case the integral
manifestly diverges and ‘δ(0) is infinity’ as expected. The fact that the Fourier transform
of a constant is a δ-function is an extreme case of the bandwidth theorem from Fourier
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transform theory, which states that if the (suitably defined) ‘spread’ in a function g(k) is
Δk, and that of its transform f(x) is Δx, then ΔxΔk ≥ 1

2 . In the present case Δk is tending
to infinity and Δx to zero.

One very common use of (E.25) refers to the normalization of plane-wave states. If we
rewrite it in the form

δ(k′ − k) =

∫ ∞

−∞

e−ik′x

(2π)1/2
eikx

(2π)1/2
dx (E.26)

we can interpret it to mean that the wavefunctions eikx/(2π)1/2 and eik
′x/(2π)1/2 are or-

thogonal on the real axis −∞ ≤ x ≤ ∞ for k �= k′ (since the left-hand side is zero), while
for k = k′ their overlap is infinite, in such a way that the integral of this overlap is unity.
This is the continuum analogue of orthonormality for wavefunctions labelled by a discrete
index, as in (E.12). We say that the plane waves in (E.26) are ‘normalized to a δ-function’.
There is, however, a problem with this as plane waves are not square integrable and thus
do not strictly belong to a Hilbert space. Mathematical physicists concerned with such
matters have managed to deal with this by introducing ‘rigged’ Hilbert spaces in which
such a normalization is legitimate. Although we often, in the text, appear to be using ‘box
normalization’ (i.e. restricting space to a finite volume V ), in practice when we evaluate
integrals over plane waves, the limits will be extended to infinity, and results like (E.26)
will be used repeatedly.

Important three- and four-dimensional generalizations of (E.25) are:∫
eik·x d3k = (2π)3δ3(x) (E.27)

and ∫
eik·x d4k = (2π)4δ4(x) (E.28)

where k · x = k0x0 − k · x (see appendix D), δ4(x) = δ(x0)δ3(x), and δ3(x) =
δ(x1)δ(x2)δ(x3).

Properties of the δ-function

The basic properties of the δ-function are exemplified by the equations (see (E.5) and (E.6))∫ ∞

−∞
δ(x− a) dx = 1, δ(x− a) = 0 for x �= a, (E.29)

where a is any real number; and∫ ∞

−∞
f(x) δ(x− a) dx = f(a), (E.30)

where f(x) is any continuous function of x. Other useful properties follow:
(i)

δ(ax) =
1

|a|δ(x). (E.31)

Proof

For a > 0, ∫ ∞

−∞
δ(ax) dx =

∫ ∞

−∞
δ(y)

dy

a
=

1

a
; (E.32)
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for a < 0, ∫ ∞

−∞
δ(ax) dx =

∫ −∞

∞
δ(y)

dy

a
=

∫ ∞

−∞
δ(y)

dy

|a| =
1

|a| . (E.33)

(ii)
δ(x) = δ(−x) i.e. an even function. (E.34)

Proof

f(0) =

∫
δ(x)f(x) dx. (E.35)

If f(x) is an odd function, f(0) = 0. Thus δ(x) must be an even function.

(iii)

δ(f(x)) =
∑
i

1

|df/dx|x=ai

δ(x− ai) (E.36)

where ai are the roots of f(x) = 0.

Proof

The δ-function is only non-zero when its argument vanishes. Thus we are concerned with
the roots of f(x) = 0. In the vicinity of a root

f(ai) = 0 (E.37)

we can make a Taylor expansion

f(x) = (x− ai)

(
df

dx

)
x=ai

+ · · · . (E.38)

Thus the δ-function has non-zero contributions from each of the roots ai of the form

δ(f(x)) =
∑
i

δ

[
(x− ai)

(
df

dx

)
x=ai

]
. (E.39)

Hence (using property (i)) we have

δ(f(x)) =
∑
i

1

|df/dx|x=ai

δ(x− ai). (E.40)

Consider the example
δ(x2 − a2). (E.41)

Thus
f(x) = x2 − a2 = (x− a)(x+ a) (E.42)

with two roots x = ±a (a > 0), and df/dx = 2x. Hence

δ(x2 − a2) =
1

2a
[δ(x− a) + δ(x+ a)]. (E.43)

(iv)
xδ(x) = 0. (E.44)

This is to be understood as always occurring under an integral. It is obvious from the
definition or from property (ii).
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(v) ∫ ∞

−∞
f(x)δ′(x) dx = −f ′(0) (E.45)

where

δ′(x) =
d

dx
δ(x). (E.46)

Proof

∫ ∞

−∞
f(x)δ′(x) dx = −

∫ ∞

−∞
f ′(x)δ(x) dx+ [f(x)δ(x)]∞−∞

= −f ′(0) (E.47)

since the second term vanishes.
(vi) ∫ x

−∞
δ(x′ − a) dx′ = θ(x− a) (E.48)

where

θ(x) =
{
0 for x < 0
1 for x > 0

(E.49)

is the so-called θ-function.

Proof

For x > a, ∫ x

−∞
δ(x′ − a) dx′ = 1; (E.50)

for x < a, ∫ x

−∞
δ(x′ − a) dx′ = 0. (E.51)

By a simple extension it is easy to prove the result∫ x2

x1

δ(x− a) dx = θ(x2 − a)− θ(x1 − a). (E.52)

(vii)
δ(x− y) δ(x− z) = δ(x− y) δ(y − z). (E.53)

Proof

Take any continuous function of z, f(z). Then∫ ∞

−∞
f(z) dz{δ(x− y) δ(x− z)} = f(x) δ(x− y) (E.54)

= f(y) δ(x− y) =

∫ ∞

−∞
f(z)dz{δ(x− y) δ(y − z)}. (E.55)

Thus the two sides of (vii) are equivalent as factors in an integrand with z as the integration
variable.
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Exercise

Use property (iii) plus the definition of the θ-function to perform the p0 integration and
prove the useful phase space formula∫

d4p δ(p2 −m2)θ(p0) =

∫
d3p/2E (E.56)

where
p2 = (p0)2 − p2 (E.57)

and
E = +(p2 +m2)1 2. (E.58)

The relation (E.51) shows that the expression d3p/2E is Lorentz invariant: on the left-hand
side, d4p and δ(p2 −m2) are invariant, while θ(p0) depends only on the sign of p0, which
cannot be changed by a ‘proper’ Lorentz transformation—that is, one that does not reverse
the sense of time.



F

Contour Integration

We begin by recalling some relevant results from the calculus of real functions of two real
variables x and y, which we shall phrase in ‘physical’ terms. Consider a particle moving in
the xy-plane subject to a force F = (P (x, y), Q(x, y)) whose x- and y-components P and
Q vary throughout the plane. Suppose the particle moves, under the action of the force,
around a closed path C in the xy-plane. Then the total work done by the force on the
particle, WC , will be given by the integral

WC =

∮
C
F · dr =

∮
C
P dx+Q dy (F.1)

where the
∮
sign means that the integration path is closed. Using Stokes’ theorem, we can

rewrite (F.1) as a surface integral

WC =

∫ ∫
S
curlF · dS (F.2)

where S is any surface bounded by C (as a butterfly net is bounded by the rim). Taking S
to be the area in the xy-plane enclosed by C, we have dS = dx dy k and

WC =

∫ ∫
S

(
∂Q

∂x
− ∂P

∂y

)
dx dy. (F.3)

A mathematically special, but physically common, case is that in which F is a ‘conservative
force’, derivable from a potential function V (x, y) (in this two-dimensional example) such
that

P (x, y) = −∂V

∂x
and Q(x, y) = −∂V

∂y
(F.4)

the minus signs being the usual convention. In that case, it is clear that

∂P

∂y
=

∂Q

∂x
(F.5)

and hence WC in (F.3) is zero. The condition (F.5) is, in fact, both necessary and sufficient
for WC = 0.

There can, however, be surprises. Consider, for example, the potential

V (x, y) = − tan−1 y/x. (F.6)

In this case, the components of the associated force are

P = −∂V

∂x
=

−y

x2 + y2
and Q = −∂V

∂y
=

x

x2 + y2
. (F.7)
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Let us calculate the work done by this force in the case that C is the circle of unit radius
centred on the origin, traversed in the anticlockwise sense. We may parametrize a point on
this circle by (x = cos θ, y = sin θ), so that (F.1) becomes

WC =

∮
C
− sin θ(− sin θ dθ) + cos θ(cos θ dθ) =

∮
C
dθ = 2π (F.8)

a result which is plainly different from zero. The reason is that although this force is (minus)
the gradient of a potential, the latter is not single-valued, in the sense that it does not return
to its original value after a circuit round the origin. Indeed, the V of (F.6) is just −θ, which
changes by −2π on such a circuit, exactly as calculated in (F.8) allowing for the minus signs
in (F.4). Alternatively, we may suspect that the trouble has to do with the ‘blow up’ of the
integrand of (F.7) at the point x = y = 0, which is also true.

Much of the foregoing has direct parallels within the theory of functions of a complex
variable z = x+iy, to which we now give a brief and informal introduction, limiting ourselves
to the minimum required in the text1. The crucial property, to which all the results we need
are related, is analyticity. A function f(z) is analytic in a region R of the complex plane if
it has a unique derivative at every point of R. The derivative at a point z is defined by the
natural generalization of the real variable definition:

df

dz
= lim

Δz→0

{
f(z +Δz)− f(z)

Δz

}
. (F.9)

The crucial new feature in the complex case, however, is that ‘Δz’ is actually an (infinites-
imal) vector, in the xy (Argand) plane. Thus we may immediately ask: along which of
the infinitely many possible directions of Δz are we supposed to approach the point z in
(F.9)? The answer is: along any! This is the force of the word ‘unique’ in the definition of
analyticity, and it is a very powerful requirement.

Let f(z) be an analytic function of z in some region R, and let u and v be the real
and imaginary parts of f : f = u+ iv, where u and v are each functions of x and y. Let us
evaluate df/dz at the point z = x+ iy in two different ways, which must be equivalent.

(a) By considering Δz = Δx (i.e. Δy = 0). In this case

df

dz
= lim

Δx→0

{
u(x+Δx, y)− u(x, y) + iv(x+Δx, y)− iv(x, y)

Δx

}

=
∂u

∂x
+ i

∂v

∂x
(F.10)

from the definition of a partial derivative.
(b) By considering Δz = iΔy (i.e. Δx = 0). In this case

df

dz
= lim

Δy→0

{
u(x, y +Δy)− u(x, y) + iv(x, y +Δy)− iv(x, y)

iΔy

}

=
∂v

∂y
− i

∂u

∂y
. (F.11)

Equating (F.10) and (F.11) we obtain the Cauchy–Reimann (CR) relations

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x
(F.12)

which are the necessary and sufficient conditions for f to be analytic.

1For a fuller introduction, see for example Boas (1983, chapter 14).
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Consider now an integral of the form

I =

∮
C
f(z) dz (F.13)

where again the symbol
∮

means that the integration path (or contour) in the complex
plane in closed. Inserting f = u+ iv and z = x+ iy, we may write (F.13) as

I =

∮
(u dx− v dy) + i

∮
(v dx+ u dy). (F.14)

Thus the single complex integral (F.13) is equivalent to the two real-plane integrals (F.14);
one is the real part of I, the other is the imaginary part, and each is of the form (F.1). In
the first, we have P = u,Q = −v. Hence the condition (F.5) for the integral to vanish is
∂u/∂y = −∂v/∂x, which is precisely the second CR relation! Similarly, in the second integral
in (F.14) we have P = v and Q = u so that condition (F.5) becomes ∂v/∂y = ∂u/∂x, which
is the first CR relation. It follows that if f(z) is analytic inside and on C, then∮

C
f(z) dz = 0, (F.15)

a result known as Cauchy’s theorem, the foundation of complex integral calculus.
Now let us consider a simple case in which (as in (F.7)) the result of integrating a

complex function around a closed curve is not zero—namely the integral∮
C

dz

z
(F.16)

where C is the circle of radius ρ enclosing the origin. On this circle, z = ρeiθ where ρ is fixed
and 0 ≤ θ ≤ 2π, so ∮

C

dz

z
=

∮
C

ρieiθdθ

ρeiθ
= i

∮
dθ = 2πi. (F.17)

Cauchy’s theorem does not apply in this case because the function being integrated (z−1)
is not analytic at z = 0. Writing dz/z in terms of x and y we have

dz

z
=

dx+ i dy

x+ iy
=

(x− iy)

x2 + y2
(dx+ i dy)

=

(
x dx+ y dy

x2 + y2

)
+ i

(−y dx+ x dy

x2 + y2

)
. (F.18)

The reader will recognize the imaginary part of (F.18) as involving precisely the functions
(F.7) studied earlier, and may like to find the real potential function appropriate to the real
part of (F.18).

We note that the result (F.17) is independent of the circle’s radius ρ. This means that
we can shrink or expand the circle how we like, without affecting the answer. The reader
may like to show that the circle can, in fact, be distorted into a simple closed loop of any
shape, enclosing z = 0, and the answer will still be 2πi. In general, a contour may be freely
distorted in any region in which the integrand is analytic.

Before continuing, we note some important terminology. The function z−1 is not analytic
at z = 0 because its derivative (−1/z2) is not defined at z = 0. A point at which a function
f(z) is not analytic is called a singularity of f(z). There are several possible types of
singularity, but for our purposes we are only interested in the simple pole, which is defined



Contour Integration 323

as follows. If the limit as z → z0 of (z − z0)f(z) is non-zero, then f(z) has a simple pole at
z = z0. In the present case, the function z−1 has a simple pole at z = 0.

We are now in a position to prove the main integration formula we need, which is
Cauchy’s integral formula: let f(z) be analytic inside and on a simple closed curve C which
encloses the point z = a; then

∮
C

f(z)

z − a
dz = 2πif(a) (F.19)

where it is understood that C is traversed in an anticlockwise sense around z = a. The
proof follows. The integrand in (F.19) is analytic inside and on C, except at z = a; we may
therefore distort the contour C by shrinking it into a very small circle of fixed radius ρ
around the point z = a. On this circle, z is given by z = a+ ρeiθ, and∮

C

f(z)

z − a
dz =

∫ 2π

0

f(a+ ρeiθ)ρieiθ

ρeiθ
dθ =

∫ 2π

0

f(a+ ρeiθ)i dθ. (F.20)

Now, since f is analytic at z = a, it has a unique derivative there, and is consequently
continuous at z = a. We may then take the limit ρ → 0 in (F.20), obtaining limρ→0 f(a +
ρeiθ) = f(a), and hence

∮
C

f(z)

z − a
dz = f(a)

∫ 2π

0

i dθ = 2πif(a) (F.21)

as stated.
We now use these results to establish the representation of the θ-function (see (E.47))

quoted in section 6.3.2. Consider the function F (t) of the real variable t defined by

F (t) =
i

2π

∮
C=C1+C2

e−izt

z + iε
dz (F.22)

where ε is an infinitesimally small positive number (i.e. it will tend to zero through positive
values). Note that the integrand in (F.22) has a simple pole at z = −iε. The closed contour
C is made up of C1 which is the real axis from −R to R (we shall let R → ∞ at the end),
and of C2 which is a large semicircle of radius R with diameter the real axis, in either
the upper or lower half-plane, the choice being determined by the sign of t, as we shall
now explain (see figure F.1). Suppose first that t < 0, and let z on C2 be parametrized as
z = Reiθ = R cos θ + iR sin θ. Then

e−izt = eiz|t| = e−R sin θ|t|eiR cos θ|t| (F.23)

from which it follows that the contribution to (F.22) from C2 will vanish exponentially as
R → ∞ provided that θ > 0, i.e. we choose C2 to be in the upper half-plane (figure F.1(a)).
In that case the integrand of (F.22) is analytic inside and on C (the only non-analytic point
is outside C at z = −iε) and so

F (t) = 0 for t < 0. (F.24)

However, suppose t > 0. Then

e−izt = eR sin θte−iR cos θt (F.25)
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FIGURE F.1
Contours for F (t): (a) t < 0; (b) t > 0.

and in this case we must choose the ‘contour-closing’ C2 to be in the lower half-plane (θ < 0)
or else (F.25) will diverge exponentially as R → ∞. With this choice the C2 contribution
will again go to zero as R → ∞. However, this time the whole closed contour C does enclose
the point z = −iε (see figure F.1(b)), and we may apply Cauchy’s integral formula to get,
for t > 0,

F (t) = −2πi
i

2π
e−εt, (F.26)

the minus sign at the front arising from the fact (see figure F.1(b)) that C is now being
traversed in a clockwise sense around z = −iε (this just inverts the limits in (F.21)). Thus
as ε → 0,

F (t) → 1 for t > 0. (F.27)

Summarizing these manoeuvres, for t < 0 we chose C2 in (F.22) in the upper half-plane
(figure F.1(a)), and its contribution vanished as R → ∞. In this case we have, as R → ∞,

F (t) → i

2π

∫ ∞

−∞

e−izt

z + iε
dz = 0 for t < 0. (F.28)

For t > 0 we chose C2 in the lower half-plane (figure F.1(b)), when again its contribution
vanished as R → ∞. However, in this case F does not vanish, but instead we have, as
R → ∞,

F (t) → i

2π

∫ ∞

−∞

e−izt

z + iε
dz = 1 for t > 0. (F.29)

Equations (F.28) and (F.29) show that we may indeed write

θ(t) = lim
ε→0

i

2π

∫ ∞

−∞

e−izt

z + iε
dz (F.30)

as claimed in section 6.3, equation (6.93).
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Green Functions

Let us start with a simple but important example. We seek the solution G0(r) of the
equation

∇2G0(r) = δ(r). (G.1)

There is a ‘physical’ way to look at this equation which will give us the answer straightaway.
Recall that Gauss’ law in electrostatics (appendix C) is

∇ ·E = ρ/ε0 (G.2)

and that E is expressed in terms of the electrostatic potential V as E = −∇V . Then (G.2)
becomes

∇2V = −ρ/ε0 (G.3)

which is known as Poisson’s equation. Comparing (G.3) and (G.1), we see that (−G0(r)/ε0)
can be regarded as the ‘potential’ due to a source ρ which is concentrated entirely at the
origin, and whose total ‘charge’ is unity, since (see appendix E)∫

δ(r) d3r = 1. (G.4)

In other words, (−G0/ε0) is effectively the potential due to a unit point charge at the origin.
But we know exactly what this potential is from Coulomb’s law, namely

−G0(r)

ε0
=

1

4πε0r
(G.5)

whence

G0(r) = − 1

4πr
. (G.6)

We may also check this result mathematically as follows. Using (G.6), equation (G.1) is
equivalent to

∇2 1

r
= −4πδ(r). (G.7)

Let us consider the integral of both sides of this equation over a spherical volume of arbitrary
radius R surrounding the origin. The integral of the left-hand side becomes, using Gauss’
divergence theorem,∫

V

(
∇2 1

r

)
d3r =

∫
V

∇ ·
(
∇1

r

)
d3r =

∫
S bounding V

∇
(
1

r

)
· n̂ dS. (G.8)

Now

∇
(
1

r

)
= − 1

r2
r̂ = − 1

R2
r̂

on the surface S, while n̂ = r̂ and dS = R2 dΩ with dΩ the element of solid angle on the
sphere. So ∫

V

∇2

(
1

r

)
d3r = −

∫
S

dΩ = −4π (G.9)
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which using (G.4) is precisely the integral of the right-hand side of (G.7), as required.
Consider now the solutions of

(∇2 + k2)Gk(r) = δ(r). (G.10)

We are interested in rotationally invariant solutions, for which Gk is a function of r = |r|
alone. For r �= 0, equation (G.10) is easy to solve. Setting Gk(r) = f(r)/r, and using

∇2 =
1

r2
∂

∂r
r2

∂

∂r
+ parts depending on

∂

∂θ
and

∂

∂φ

we find that f(r) satisfies
d2f

dr2
+ k2f = 0

the general solution to which is (k = |k|)
f(r) = Aeikr +Be−ikr,

leading to

Gk(r) = A
eikr

r
+B

e−ikr

r
(G.11)

for r �= 0. In the application to scattering problems (appendix H) we shall want Gk to
contain purely outgoing waves, so we will pick the ‘A’-type solution in (G.11).

Consider therefore the expression

(∇2 + k2)

(
Aeikr

r

)
(G.12)

where r is now allowed to take the value zero. Making use of the vector operator result

∇2(fg) = (∇2f)g + 2∇f ·∇g + f(∇2g)

with ‘f ’ = eikr and ‘g’ = 1/r, together with

∇2eikr =
2ikeikr

r
− k2eikr ∇eikr =

ikreikr

r
∇1

r
= − r

r3

we find

(∇2 + k2)

(
Aeikr

r

)
= Aeikr∇2

(
1

r

)
= −4πAeikrδ(r)

= −4πAδ(r) (G.13)

where we have replaced r by zero in the exponent of the last term of the last line in
(G.13), since the δ-function ensures that only this point need be considered for this term.
By choosing the constant A = −1/4π, we find that the (outgoing wave) solution of (G.10)
is

G
(+)
k (r) = − eikr

4πr
. (G.14)

We are also interested in spherically symmetric solutions of (restoring c and � explicitly
for the moment) (

∇2 − m2c2

�2

)
φ(r) = δ(r) (G.15)



Green Functions 327

which is the equation analogous to (G.1) for a static classical scalar potential of a field whose
quanta have mass m. The solutions to (G.15) are easily found from the previous work by
letting k → imc/�. Retaining now the solution which goes to zero as r → ∞, we find

φ(r) = − 1

4π

e−r/a

r
(G.16)

where a = �/mc, the Compton wavelength of the quantum, with mass m. The potential
(G.16) is (up to numerical constants) the famous Yukawa potential, in which the quantity
‘a’ is called the range: as r gets greater than a, φ(r) becomes exponentially small. Thus,
just as the Coulomb potential is the solution of Poisson’s equation (G.3) corresponding
to a point source at the origin, so the Yukawa potential is the solution of the analogous
equation (G.15), also with a point source at the origin. Note that as a → ∞, φ(r) → G0(r).

Functions such as Gk, G0 and φ, which generically satisfy equations of the form

ΩrG(r) = δ(r) (G.17)

where Ωr is some linear differential operator, are said to be Green functions of the operator
Ωr. From the examples already treated, it is clear that G(r) in (G.17) has the general
interpretation of a ‘potential’ due to a point source at the origin, when Ωr is the appropriate
operator for the field theory in question.

Green functions play an important role in the solution of differential equations of the
type

Ωrψ(r) = s(r) (G.18)

where s(r) is a known ‘source function’ (e.g. the charge density in (G.3)). The solution of
(G.18) may be written as

ψ(r) = u(r) +

∫
G(r − r′)s(r′) d3r′ (G.19)

where u(r) is a solution of Ωru(r) = 0. Thus once we know G, we have the solution via
(G.19).

Equation (G.19) has a simple physical interpretation. We know that G(r) is the solution
of (G.18) with s(r) replaced by δ(r). But by writing

s(r) =

∫
δ(r − r′)s(r′) d3r′ (G.20)

we can formally regard s(r) as being made up of a superposition of point sources, dis-
tributed at points r′ with a weighting function s(r′). Then, since the operator Ωr is (by
assumption) linear, the solution for such a superposition of point sources must be just the
same superposition of the point source solutions, namely the integral on the right hand side
of (G.19). This integral term is, in fact, the ‘particular integral’ of the differential equation
(G.18), while the u(r) is the ‘complementary function’.

Equation (G.19) can also be checked analytically. First note that it is generally the case
that the operator Ωr is translationally invariant, so that

Ωr = Ωr−r′ ; (G.21)

the right-hand side of (G.21) amounts to shifting the origin to the point r′. Applying Ωr to
both sides of (G.19), we find

Ωrψ(r) = Ωru(r) +

∫
ΩrG(r − r′)s(r′) d3r′

= 0 +

∫
Ωr−r′G(r − r′)s(r′) d3r′ =

∫
δ(r − r′)s(r′) d3r′

= s(r)

as required in (G.18).
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Finally, consider the Fourier transform of equation (G.10), defined as∫
e−iq·r(∇2 + k2)Gk(r) d

3r =

∫
e−iq·rδ(r) d3r.

The right-hand side is unity, by equation (G.4). On the left-hand side we may use the result∫
u(r)∇2v(r) d3r =

∫
(∇2u(r))v(r) d3r

(proved by integrating by parts, assuming u and v go to zero sufficiently fast at the bound-
aries of the integral) to obtain∫

e−iq·r(∇2 + k2)Gk(r) d
3r =

∫
{(∇2e−iq·r) + k2e−iq·r}Gk(r) d

3r

=

∫
(−q2 + k2)e−iq·rGk(r) d

3r

= (−q2 + k2)G̃k(q)

where G̃k(q) is the Fourier transform of Gk(r). Since this expression has to equal unity, we
have

G̃k(q) =
1

k2 − q2
. (G.22)

There is, however, a problem with (G.22) as it stands, which is that it is undefined when
the variable q2 takes the value equal to the parameter k2 in the original equation. Indeed,
various definitions are possible, corresponding to the type of solution in r-space for Gk(r)
(i.e. ingoing, outgoing or standing wave). It turns out (see the exercise at the end of this

appendix) that the specification which is equivalent to the solution G
(+)
k (r) in (G.14) is to

add an infinitesimally small imaginary part in the denominator of (G.22):

G̃
(+)
k (q) =

1

k2 − q2 + iε
. (G.23)

In exactly the same way, the Fourier transform of φ(r) satisfying (G.15) is

φ̃(q) =
−1

q2 +m2
, (G.24)

where we have reverted to units such that � = c = 1.
The relativistic generalization of this result is straightforward. Consider the equation

(�+m2)G(x) = −δ(x) (G.25)

where x is the coordinate 4-vector and δ(x) is the four-dimensional δ-function, δ(x0)δ(x);
the sign in (G.25) has been chosen to be consistent with (G.15) in the static case. Taking the
four-dimensional Fourier transform, and making suitable assumptions about the vanishing
of G at the boundary of space–time, we obtain

(−q2 +m2)G̃(q) = −1 (G.26)

where

G̃(q) =

∫
eiq·xG(x) d4x
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and so

G̃(q) =
1

q2 −m2
. (G.27)

As we shall see in detail in chapter 6, the Feynman prescription for selecting the physically
desired solution amounts to adding an ‘iε’ term in the denominator of (G.27):

G̃(+)(q) =
1

q2 −m2 + iε
. (G.28)

Exercise

Verify the ‘iε’ specification in (G.23), using the methods of appendix F. [Hints: You need
to show that the Fourier transform of (G.23), defined by

Ĝ
(+)
k (r) =

1

(2π)3

∫
eiq·rG̃(+)

k (q) d3q, (G.29)

is equal to G
(+)
k (r) of (G.14). Do the integration over the polar angles of q, taking the

direction of r as the polar axis. This gives

Ĝ
(+)
k (r) =

−1

8π2

∫ ∞

−∞

(
eiqr − e−iqr

ir

)
q dq

q2 − k2 − iε
(G.30)

where q = |q|, r = |r|, and we have used the fact that the integrand is an even function
of q to extend the lower limit to −∞, with an overall factor of 1/2. Now convert q to the
complex variable z. Locate the poles of (z2 − k2 − iε)−1 (compare the similar calculation in
section 10.3.1, and in appendix F). Apply Cauchy’s integral formula (F.17), closing the eizr

part in the upper half z-plane, and the e−izr part in the lower half z-plane.



H

Elements of Non-Relativistic Scattering Theory

H.1 Time-independent formulation and differential cross section

We consider the scattering of a particle of mass m by a fixed spherically symmetric potential
V (r); we shall retain � explicitly in what follows. The potential is assumed to go to zero
rapidly as r → ∞, as for the Yukawa potential (G.16); it will turn out that the important
Coulomb case can be treated as the a → ∞ limit of (G.16). We shall treat the problem here
as a stationary state one, in which the Schrödinger wavefunction ψ(r, t) has the form

ψ(r, t) = φ(r)e−iEt� (H.1)

where E is the particle’s energy, and where φ(r) satisfies the equation[−�
2

2m
∇2 + V (r)

]
φ(r) = Eφ(r). (H.2)

We shall take V to be spherically symmetric, so that V (r) = V (r) where r = |r|. In this
approach to scattering, we suppose the potential to be ‘bathed’ in a steady flux of incident
particles, all of energy E. The wavefunction for the incident beam, far from the region near
the origin where V is appreciably non-zero, is then just a plane wave of the form φinc = eikz,
where the z-axis has been chosen along the propagation direction, and where E = �

2k2/2m
with k = (0, 0, k). This plane wave is normalized to one particle per unit volume, and yields
a steady-state flux of

jinc =
�

2mi
[φ∗inc∇φinc − φinc∇φ∗inc]

= �k/m = p/m (H.3)

where the momentum is p = �k. As expected, the incident flux is given by the velocity v
per unit volume.

Though we have represented the incident beam as a plane wave, it will, in practice, be
collimated. We could, of course, superpose such plane waves, with different k’s, to make a
wave-packet of any desired localization. But the dimensions of practical beams are so much
greater than the de Broglie wavelength λ = h/p of our particles, that our plane wave will
be a very good approximation to a realistic packet.

The form of the complete solution to (H.2), even in the region where V is essentially
zero, is not simply the incident plane wave, however. The presence of the potential gives
rise also to a scattered wave, whose form as r → ∞ is

φsc = f(θ, φ)
eikr

r
. (H.4)

We shall actually derive this later, but its physical interpretation is simply that it is an
outgoing (∼eikr rather than e−ikr) ‘spherical wave’, with a factor f(θ, φ) called the scattering
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amplitude that allows for the fact that even though V (r) is spherically symmetric, the
solution, in general, will not be (recall the bound-state solutions of the Coulomb potential
in the hydrogen atom). Calculating the radial component of the flux corresponding to (H.4)
yields

jr,sc =
�

2mi

[
φ∗sc

∂

∂r
φsc − φsc

∂

∂r
φ∗sc

]

=
�k

m
|f(θ, φ)|2/r2. (H.5)

The flux in the two non-radial directions will contain an extra power of r in the
denominator—recall that

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

and so (H.5) represents the correct asymptotic form of the scattered flux.
The cross section is now easily found. The differential cross section, dσ, for scattering

into the element of solid angle dΩ is defined by

dσ = jr,sc dS/|jinc| (H.6)

where dS = r2 dΩ, so that from (H.3) and (H.5)

dσ

dΩ
= |f(θ, φ)|2. (H.7)

The total cross section is then just

σ =

∫
|f(θ, φ)|2 dΩ. (H.8)

It is important to realize that the complete asymptotic form of the solution to (H.2) is
the superposition of φinc and φsc:

φ(r)
r→∞→ eikz + f(θ, φ)

eikr

r
. (H.9)

Note that in the ‘forward direction’ (i.e. within a region close to the z-axis, as determined
by the collimation), the incident and scattered waves will interfere. Careful analysis reveals
a depletion of the incident beam in the forward direction (the ‘shadow’ of the scattering
centre), which corresponds exactly to the total flux scattered into all angles (Gottfried 1966,
section 12.3). This is expressed in the optical theorem:

Im f(0) =
k

4π
σ. (H.10)

H.2 Expression for the scattering amplitude: Born approximation

We begin by rewriting (H.2) as

(∇2 + k2)φ(r) =
2m

�2
V (r)φ(r). (H.11)
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This equation is of exactly the form discussed in appendix G, e.g. equation (G.18) with
Ωr = ∇2 + k2. Further, we know that the Green function for this Ωr, corresponding to the
desired outgoing wave solution, is given by (G.14). Using then (G.19) and (G.14), we can
immediately write the ‘formal solution’ of (H.11) as

φ(r) = eik·r +
2m

�2

∫
− 1

4π

eik|r−r
′|

|r − r′| V (r′)φ(r′) d3r′ (H.12)

where we have chosen ‘u(r)’ in (G.19) to be the incident plane wave φinc, and have used
k · r = kz. We say ‘formal’ because of course the unknown φ(r′) still appears on the right-
hand side of (H.12).

It may therefore seem that we have made no progress—but in fact (H.12) leads to a very
useful expression for f(θ, φ), which is the quantity we need to calculate. This can be found
by considering the asymptotic (r → ∞) limit of the integral term in (H.12). We have

|r − r′| = (r2 + r′2 − 2r · r′)1/2

∼ r − r · r′/r +O

(
1

r

)
terms. (H.13)

Thus in the exponent we may write

eik|r−r
′| ≈ eik(r−r·r

′/r) = eikre−ik′·r′

where k′ = kr̂ is the outgoing wavevector, pointing along the direction of the outgoing
scattered wave which enters dS. In the denominator factor we may simply say |r− r′|−1 ≈
r−1 since the next term in (H.13) will produce a correction of order r−2. Putting this
together, we have

φ(r)
r→∞→ eikz − m

2π�2
eikr

r

∫
e−ik′·r′

V (r′)φ(r′) d3r′ (H.14)

from which follows the formula for f(θ, φ):

f(θ, φ) = − m

2π�2

∫
e−ik′·r′

V (r′)φ(r′) d3r′. (H.15)

No approximations have been made thus far, in deriving (H.15)—but, of course, it still
involves the unknown φ(r′) inside the integral. However, it is in a form which is very conve-
nient for setting up a systematic approximation scheme—a kind of perturbation theory—in
powers of V . If the potential is relatively ‘weak’, its effect will be such as to produce only a

slight distortion of the incident wave, and so φ(r) ≈ eik·r+‘small correction’. This suggests
that it may be a good approximation to replace φ(r′) in (H.15) by the undistorted incident

wave eik·r
′
, giving the approximate scattering amplitude

fBA(θ, φ) = − m

2π�2

∫
eiq·r

′
V (r′) d3r′ (H.16)

where the wave vector transfer q is given by

q = k − k′. (H.17)

This is called the ‘Born approximation to the scattering amplitude’. The criteria for the
validity of the Born approximation are discussed in many standard quantum mechanics
texts.
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The approximation can be improved by returning to (H.12) for φ(r), and replacing

φ(r′) inside the integral by eik·r
′
just as we did in (H.16); this will give us a formula for

the first-order (in V ) correction to φ(r). We can now insert this expression for φ(r′) (i.e.

φ(r′) = eik·r
′
+O(V ) correction) into (H.15), which will give us fBA again as the first term,

but also another term, of order V 2 (since V appears in the integral in (H.15)). By iterating
the process indefinitely, the Born series can be set up, to all orders in V .

H.3 Time-dependent approach

In this approach we consider the potential V (r) as causing transitions between states de-
scribing the incident and scattered particles. From standard time-dependent perturbation
theory in quantum mechanics, the transition probability per unit time for going from state
|i〉 to state |f〉, to first order in V , is given by

Ṗfi =
2π

�
|〈f|V |i〉|2ρ(Ef)|Ef=Ei (H.18)

where ρ(Ef)dEf is the number of final states in the energy range dEf around the energy-
conserving point Ei = Ef . Equation (H.18) is often known as the ‘Golden Rule’. In the
present case, if we adopt the same normalization as in the previous section, the initial and

final states are represented by the wavefunction eik·r and e−ik′·r, so that

〈f|V |i〉 =
∫

eiq·rV (r) d3r ≡ Ṽ (q). (H.19)

Also, the number of such states in a volume element d3p′ of momentum space (p′ = �k′) is
d3p′/(2π�)3.

In spherical polar coordinates, with dΩ standing for the element of solid angle around
the direction (θ, /φ) of p′, we have

d3p′ = p′2 d|p′| dΩ = m|p′| dE′ dΩ (H.20)

where we have used E′ = p′2/2m. It follows that

ρ(E′) dE′ =
d3p′

(2π�)3
=

m

(2π�)3
|p′| dΩdE′ (H.21)

and so
ρ(E′) =

m

(2π�)3
|p′| dΩ. (H.22)

Inserting (H.19) and (H.22) into (H.18) we obtain, for this case,

Ṗfi =
2π

�
|Ṽ (q)|2 m

(2π�)3
|p| dΩ. (H.23)

To get the cross section, we need to divide this expression by the incident flux, which is
|p|/m as in (H.3). Thus the differential cross section for scattering into the element of solid
angle dΩ in the direction (θ, φ) is

dσ =
( m

2π�2

)2
|Ṽ (q)|2 dΩ. (H.24)
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Comparing (H.24) with (H.7) and (H.16), we see that this application of the Golden Rule
(first-order time-dependent perturbation theory) is exactly equivalent to the Born approx-
imation in the time-independent approach. It is, however, the time-dependent approach
which is much closer to the corresponding quantum field theory formulation we introduce
in chapter 6.



I

The Schrödinger and Heisenberg Pictures

The standard introductory formalism of quantum mechanics is that of Schrödinger, in which
the dynamical variables (such as x and p̂ = −i∇) are independent of time, while the
wavefunction ψ changes with time according to the general equation

Ĥψ(x, t) = i
∂ψ(x, t)

∂t
(I.1)

where Ĥ is the Hamiltonian. Matrix elements of operators Â depending on x, p̂ . . . then
have the form

〈φ|Â|ψ〉 =
∫

φ∗(x, t)Âψ(x, t) d3x (I.2)

and will, in general, depend on time via the time dependences of φ and ψ. Although used
almost universally in introductory courses on quantum mechanics, this formulation is not
the only possible one, nor is it always the most convenient.

We may, for example, wish to bring out similarities (and differences) between the general
dynamical frameworks of quantum and classical mechanics. The formulation here does not
seem to be well adapted to this purpose, since in the classical case the dynamical variables
depend on time (x(t),p(t) . . .) and obey equations of motion, while the quantum variables
Â are time-independent and the ‘equation of motion’ (I.1) is for the wavefunction ψ, which
has no classical counterpart. In quantum mechanics, however, it is always possible to make
unitary transformations of the state vector or wavefunctions. We can make use of this
possibility to obtain an alternative formulation of quantum mechanics, which is in some
ways closer to the spirit of classical mechanics, as follows.

Equation (I.1) can be formally solved to give

ψ(x, t) = e−iĤtψ(x, 0) (I.3)

where the exponential (of an operator!) can be defined by the corresponding power series,
for example:

e−iĤt = 1− iĤt+
1

2!
(−iĤt)2 + · · · . (I.4)

It is simple to check that (I.3) as defined by (I.4) does satisfy (I.1) and that the operator
Û = exp(−iĤt) is unitary:

U† = [exp(−iĤt)]† = exp(iĤ†t) = exp(iĤt) = U−1 (I.5)

where the Hermitian property Ĥ† = Ĥ has been used. Thus (I.3) can be viewed as a unitary
transformation from the time-dependent wavefunction ψ(x, t) to the time-independent one
ψ(x, 0). Correspondingly the matrix element (I.2) is then

〈φ|Â|ψ〉 =
∫

φ∗(x, 0)eiĤtÂe−iĤtψ(x, 0) d3x (I.6)
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which can be regarded as the matrix element of the time-dependent operator

Â(t) = eiĤtÂe−iĤt (I.7)

between time-independent wavefunctions φ∗(x, 0), ψ(x, 0).
Since (I.6) is perfectly general, it is clear that we can calculate amplitudes in quantum

mechanics in either of the two ways outlined: (a) by using time-dependent ψ’s and time-
independent Â’s, which is called the ‘Schrödinger picture’ or (b) by using time-independent
ψ’s and time-dependent Â’s, which is called the ‘Heisenberg picture’. The wavefunctions
and operators in the two pictures are related by (I.3) and (I.7). We note that the pictures
coincide at the (conventionally chosen) time t = 0.

Since Â(t) is now time-dependent, we can ask for its equation of motion. Differentiating
(I.7) carefully, we find (if Â does not depend explicitly on t) that

dÂ(t)

dt
= −i[Â(t), Ĥ] (I.8)

which is called the Heisenberg equation of motion for Â(t). On the right-hand side of (I.8), Ĥ
is the Schrödinger operator; however, if Ĥ is substituted for Â in (I.7), one finds Ĥ(t) = Ĥ,
so Ĥ can equally well be interpreted as the Heisenberg operator. For simple Hamiltonians
Ĥ, (I.8) leads to operator equations quite analogous to classical equations of motion, which
can sometimes be solved explicitly (see section 5.2.2 of chapter 5).

The foregoing ideas apply equally well to the operators and state vectors of quantum
field theory.



J

Dirac Algebra and Trace Identities

J.1 Dirac algebra

J.1.1 γ matrices

The fundamental anti-commutator

{γμ, γν} = 2gμν (J.1)

may be used to prove the following results.

γμγ
μ = 4 (J.2)

γμ/aγ
μ = −2/a (J.3)

γμ/a/bγ
μ = 4a · b (J.4)

γμ/a/b/cγ
μ = −2/c/b/a (J.5)

/a/b = −/b/a+ 2a · b. (J.6)

As an example, we prove this last result:

/a/b = aμbνγ
μγν

= aμbν(−γνγμ + 2gμν)

= −/b/a+ 2a · b.

J.1.2 γ5 identities

Define
γ5 = iγ0γ1γ2γ3. (J.7)

In the usual representation with

γ0 =

(
1 0
0 −1

)
and γ =

(
0 σ
−σ 0

)
(J.8)

γ5 is the matrix

γ5 =

(
0 1
1 0

)
. (J.9)

Either from the definition or using this explicit form, it is easy to prove that

γ2
5 = 1 (J.10)

and
{γ5, γμ} = 0 (J.11)
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i.e. γ5 anti-commutes with the other γ-matrices. Defining the totally antisymmetric tensor

εμνρσ =

{
+1 for an even permutation of 0, 1, 2, 3
−1 for an odd permutation of 0, 1, 2, 3
0 if two or more indices are the same

(J.12)

we may write

γ5 =
i

4!
εμνρσγ

μγνγργσ. (J.13)

With this form it is possible to prove

γ5γσ =
i

3!
εμνρσγ

μγνγρ (J.14)

and the identity
γμγνγρ = gμνγρ − gμργν + gνργμ + iγ5ε

μνρσγσ. (J.15)

J.1.3 Hermitian conjugate of spinor matrix elements

[ū(p′, s′)Γu(p, s)]† = ū(p, s)Γ̄u(p′, s′) (J.16)

where Γ is any collection of γ matrices and

Γ̄ ≡ γ0Γ†γ0. (J.17)

For example
γμ = γμ (J.18)

and
γμγ5 = γμγ5. (J.19)

J.1.4 Spin sums and projection operators

Positive-energy projection operator:

[Λ+(p)]αβ ≡
∑
s

uα(p, s)ūβ(p, s) = (/p+m)αβ . (J.20)

Negative-energy projection operator:

[Λ−(p)]αβ ≡ −
∑
s

vα(p, s)v̄β(p, s) = (−/p+m)αβ . (J.21)

Note that these forms are specific to the normalizations

ūu = 2m v̄v = −2m (J.22)

for the spinors.

J.2 Trace theorems

Tr1 = 4 (theorem 1) (J.23)

Trγ5 = 0 (theorem 2) (J.24)

Tr(odd number of γ’s) = 0 (theorem 3) (J.25)
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Proof

Consider
T ≡ Tr(/a1/a2 . . . /an) (J.26)

where n is odd. Now insert 1 = (γ5)
2 into T , so that

T = Tr(/a1/a2 . . . /anγ5γ5). (J.27)

Move the first γ5 to the front of T by repeatedly using the result

/aγ5 = −γ5/a. (J.28)

We therefore pick up n minus signs:

T = Tr(/a1 . . . /an) = (−1)nTr(γ5/a1 . . . /anγ5)

= (−1)nTr(/a1 . . . /anγ5γ5) (cyclic property of trace)

= −Tr(/a1 . . . /an) for n odd. (J.29)

Thus, for n odd, T must vanish.

Tr(/a/b) = 4a · b (theorem 4). (J.30)

Proof

Tr(/a/b) = 1
2Tr(/a/b + /b/a)

= 1
2aμbνTr(1.2g

μν)

= 4a · b.
Tr(/a/b/c/d) = 4[(a · b)(c · d) + (a · d)(b · c)− (a · c)(b · d)]. (theorem 5)

(J.31)

Proof

Tr(/a/b/c/d) = 2(a · b)Tr(/c/d)− Tr(/b/a/c/d) (J.32)

using the result of (J.6). We continue taking /a through the trace in this manner and use
(J.30) to obtain

Tr(/a/b/c/d) = 2(a · b)4(c · d)− 2(a · c)Tr(/b/d) + Tr(/b/c/a/d)

= 8(a · b)(c · d)− 8(a · c)(b · d) + 8(b · c)(a · d)− Tr(/b/c/d/a) (J.33)

and, since we can bring /a to the front of the trace, we have proved the theorem.

Tr[γ5/a] = 0. (theorem 6) (J.34)

This is a special case of theorem 3 since γ5 contains four γ matrices.

Tr[γ5/a/b] = 0. (theorem 7) (J.35)

This is not so obvious; it may be proved by writing out all the possible products of γ
matrices that arise.

Tr[γ5/a/b/c] = 0. (theorem 8) (J.36)

Again this is a special case of theorem 3.

Tr[γ5/a/b/c/d] = 4iεαβγδa
αbβcγdδ. (theorem 9) (J.37)
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This theorem follows by looking at components. The ε tensor just gives the correct sign of
the permutation.

The ε tensor is the four-dimensional generalization of the three-dimensional antisym-
metric tensor εijk. In the three-dimensional case, we have the well-known results

(b× c)i = εijkbjck (J.38)

and
a · (b× c) = εijkaibjck (J.39)

for the triple scalar product.



K

Example of a Cross Section Calculation

In this appendix we outline in more detail the calculation of the e−s+ elastic scattering
cross section in section 8.3.2. The standard factors for the unpolarized cross section lead to
the expression

dσ̄ =
1

4Eω|v|
1

2

∑
ss′

|Me−s+(s, s
′)|2dLips(s; k′, p′) (K.1)

=
1

4[(k.p)2 −m2M2]1/2
1

2

∑
ss′

|Me−s+(s, s
′)|2dLips(s; k′, p′) (K.2)

using the result of problem 6.9, and the definition of Lorentz-invariant phase space:

dLips(s; k′, p′) ≡ (2π)4δ4(k′ + p′ − k − p)
d3p′

(2π)32E′
d3k′

(2π)32ω′
. (K.3)

Instead of evaluating the matrix element and phase space integral in the CM frame, or writ-
ing the result in invariant form, we shall perform the calculation entirely in the ‘laboratory’
frame, defined as the frame in which the target (i.e. the s-particle) is at rest:

pμ = (M,0) (K.4)

where M is the s-particle mass. Let us look in some detail at the ‘laboratory’ frame kine-
matics for elastic scattering (figure K.1). Conservation of energy and momentum in the
form

p′2 = (p+ q)2 (K.5)

allows us to eliminate p′ to obtain the elastic scattering condition

2p · q + q2 = 0 (K.6)

or
2p · q = Q2 (K.7)

if we introduce the positive quantity

Q2 = −q2 (K.8)

for a scattering process.
In all the applications with which we are concerned, it will be a good approximation to

neglect electron mass effects for high-energy electrons. We therefore set

k2 = k′2 � 0 (K.9)

so that
s+ t+ u � 2M2 (K.10)
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FIGURE K.1
Laboratory frame kinematics.

where

s = (k + p)2 = (k′ + p′)2 (K.11)

t = (k − k′)2 = (p′ − p)2 = q2 (K.12)

u = (k − p′)2 = (k′ − p)2 (K.13)

are the usual Mandelstam variables. For the electron 4-vectors

kμ = (ω,k) (K.14)

k′μ = (ω′,k′) (K.15)

we can neglect the difference between the magnitude of the 3-momentum and the energy,

ω � |k| ≡ k (K.16)

ω′ � |k′| ≡ k′ (K.17)

and in this approximation
q2 = −2kk′(1− cos θ) (K.18)

or

q2 = −4kk′ sin2(θ/2). (K.19)

The elastic scattering condition (K.7) gives the following relation between k, k′, and θ:

(k/k′) = 1 + (2k/M) sin2(θ/2). (K.20)

It is important to realize that this relation is only true for elastic scattering: for inclusive
inelastic electron scattering k, k′, and θ are independent variables.

The first element of the cross section, the flux factor, is easy to evaluate:

4[(k · p)2 −m2M2]
1
2 � 4Mk (K.21)

in the approximation of neglecting the electron mass m. We now consider the calculation
of the spin-averaged matrix element and the phase space integral in turn.

K.1 The spin-averaged squared matrix element

The Feynman rules for es scattering enable us to write the spin sum in the form

1

2

∑
s,s′

|Me−s+(s, s
′)|2 =

(
4πα

q2

)2
LμνT

μν (K.22)
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where Lμν is the lepton tensor, Tμν the s-particle tensor, and the one-photon exchange
approximation has been assumed. From problem 8.12 we find the result

LμνT
μν = 8[2(k · p)(k′ · p) + (q2/2)M2]. (K.23)

In the ‘laboratory’ frame, neglecting the electron mass, this becomes

LμνT
μν = 16M2kk′ cos2(θ/2). (K.24)

K.2 Evaluation of two-body Lorentz-invariant phase space in
‘laboratory’ variables

We must evaluate

dLips(s; k′, p′) ≡ 1

(4π)2
δ4(k′ + p′ − k − p)

d3p′

E′
d3k′

ω′
(K.25)

in terms of ‘laboratory’ variables. This is in fact rather tricky and requires some care. There
are several ways it can be done:

(a) Use CM variables, put the cross section into invariant form, and then translate
to the ‘laboratory’ frame. This involves relating dq2 to d(cos θ) which we shall do
as an exercise at the end of this appendix.

(b) Alternatively, we can work directly in terms of ‘laboratory’ variables and write

d3p′/2E′ = d4p′ δ(p′2 −M2)θ(p′0). (K.26)

The four-dimensional δ-function then removes the integration over d4p′ leaving
us only with an integration over the single δ-function δ(p′2 −M2), in which p′ is
understood to be replaced by k + p − k′. For details of this last integration, see
Bjorken and Drell (1964, p 114).

(c) We shall evaluate the phase space integral in a more direct manner. We begin
by performing the integral over d3p′ using the three-dimensional δ-function from
δ4(k′ + p′ − k − p). In the ‘laboratory’ frame p = 0, so we have∫

d3p′ δ3(k′ + p′ − k)f(p′,k′,k) = f(p′,k′,k)|p′=k−k′ . (K.27)

In the particular function f(p′,k′,k) that we require, p′ only appears via E′, since

E′2 = p′2 +M2 (K.28)

and
p′2 = k2 + k′2 − 2kk′ cos θ (K.29)

(setting the electron mass m to zero). We now change d3k′ to angular variables:

d3k′/ω′ � k′dk′dΩ (K.30)
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leading to

dLips(s; k′, p′) =
1

(4π)2
dΩdk′

k′

E′
δ(E′ + k′ − k −M). (K.31)

Since E′ is a function of k′ and θ for a given k (cf (K.28) and (K.29)), the δ-function relates
k′ and θ as required for elastic scattering (cf (K.20)), but until the δ function integration
is performed they must be regarded as independent variables. We have the integral

1

(4π)2

∫
dΩdk′

k′

E′
δ(f(k′, cos θ)) (K.32)

where
f(k′, cos θ) = [(k2 + k′2 − 2kk′ cos θ) +M2]

1
2 + k′ − k −M (K.33)

remaining to be evaluated. In order to obtain a differential cross section, we wish to integrate
over k′; for this k′ integration we must regard cos θ in f(k′, cos θ) as a constant, and use the
result (E.36):

δ(f(x)) =
1

|f ′(x)|x=x0

δ(x− x0) (K.34)

where f(x0) = 0. The required derivative is

df

dk′

∣∣∣∣
constant cos θ

=
1

E′
(E′ + k′ − k cos θ) (K.35)

and the δ-function requires that k′ is determined from k and θ by the elastic scattering
condition

k′ =
k

1 + (2k/M) sin2(θ/2)
≡ k′(cos θ). (K.36)

The integral (K.32) becomes

1

(4π)2

∫
dΩdk′

k′

E′
1

|df/dk′|k′=k′(cos θ)
δ[k′ − k′(cos θ)] (K.37)

and, after some juggling, df/dk′ evaluated at k′ = k′(cos θ) may be written as

df

dk′

∣∣∣∣
k′=k′(cos θ)

=
Mk

E′k′
. (K.38)

Thus we obtain finally the result

dLips(s; k′, p′) =
1

(4π)2
k′2

Mk
dΩ (K.39)

for two-body elastic scattering in terms of ‘laboratory’ variables, neglecting lepton masses.
Putting all these elements together yields the advertised result(

dσ

dΩ

)
ns

≡ dσ̄

dΩ
=

α2

4k2 sin4(θ/2)

k′

k
cos2(θ/2). (K.40)

As a final twist to this calculation, let us consider the change of variables from dΩ to dq2

in this elastic scattering example. In the unpolarized case

dΩ = 2πd(cos θ) (K.41)
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and
q2 = −2kk′(1− cos θ) (K.42)

where

k′ =
k

1 + (2k/M) sin2(θ/2)
. (K.43)

Thus, since k′ and cos θ are not independent variables, we have

dq2 = 2kk′ d(cos θ) + (1− cos θ)(−2k)
dk′

d(cos θ)
d(cos θ). (K.44)

From (K.20) we find

dk′

d(cos θ)
=

k′2

M
(K.45)

and, after some routine juggling, arrive at the result

dq2 = 2k′2 d(cos θ). (K.46)

If we introduce the variable ν defined, for elastic scattering, by

2p · q ≡ 2Mν = −q2 (K.47)

we have immediately

dν =
k′2

M
d(cos θ). (K.48)

Similarly, if we introduce the variable y defined by

y = ν/k (K.49)

we find

dy =
k′2

2πkM
dΩ (K.50)

for elastic scattering.



L

Feynman Rules for Tree Graphs in QED

2 → 2 cross section formula

dσ =
1

4[(p1 · p2)2 −m2
1m

2
2]

1/2
|M|2dLips(s; p3, p4)

1 → 2 decay formula

dΓ =
1

2m1
|M|2dLips(m2

1; p2, p3).

Note that for two identical particles in the final state an extra factor of 1
2 must be included

in these formulae.
The amplitude iM is the invariant matrix element for the process under considera-

tion, and is given by the Feynman rules of the relevant theory. For particles with non-zero
spin, unpolarized cross sections are formed by averaging over initial spin components and
summing over final.

L.1 External particles

Spin- 12

For each fermion or anti-fermion line entering the graph include the spinor

u(p, s) or v(p, s) (L.1)

and for spin- 12 particles leaving the graph the spinor

ū(p′, s′) or v̄(p′, s′). (L.2)

Photons

For each photon line entering the graph include a polarization vector

εμ(k, λ) (L.3)

and for photons leaving the graph the vector

ε∗μ(k
′, λ′). (L.4)
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L.2 Propagators

Spin-0

=
i

p2 −m2 + iε
. (L.5)

Spin- 12

=
i

/p−m
= i

/p+m

p2 −m2 + iε
. (L.6)

Photon

=
i

k2

(
−gμν + (1− ξ)

kμkν

k2 + iε

)
(L.7)

for a general ξ. Calculations are usually performed in the Lorentz or Feynman gauge with
ξ = 1 and photon propagator equal to

i
(−gμν)

k2 + iε
. (L.8)

L.3 Vertices

Spin-0

−ie(p+ p′)μ (for charge +e)

2ie2gμν

Spin- 12

−ieγμ (for charge +e)
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ABC theory, 127, 131–148, 292
decay C → A + B, 132–135
Lagrangian, 258, 263
propagator corrections in, 248–257
renormalization of, 247–269
scattering A+B→ A+B, 135–148
differential cross section, 144–146

vertex correction, 257–259
Abelian U(1) group, 46
Action, 104, 108, 120, 122

Hamilton’s principle of least, 104–106,
109, 111–112

Action at a distance, 10
Aharonov-Bohm effect, 48–49
Ampère’s law, 35, 206
Amplitude

invariant, 133, 142
transition current form
Dirac case, 188
KG case, 185, 189

Analytic function, 321
Analyticity, 321
Angular momentum, 301–302
Anharmonic oscillator, 124–126
Anharmonic terms, 100, 124–126
Annihilation

e+e− into hadrons, 238–241
e+e− → μ+μ−, 212–213, 220–221, 240
e+e− → π+π−, 204–207

Annihilation process, 143
Anomalies, in qft, 9
Anticommutation relations, 158–162
Antiparticles, in qft, 152–157
Antiparticles, prediction and discovery,

62–63
Associated production, 9
Asymptotic freedom, 10, 22, 227, 283
Axial vector, 29, 81–82, 243

Bardeen-Cooper-Schrieffer (BCS) theory, 26
Baryon number 9

conservation, 36, 45
non-conservation, 36, 45, 297

Baryon spectroscopy, 7
Beta decay, 5, 18

in Fermi theory, 20
double, and Majorana neutrinos, 84

Bhabha scattering, 283
Bilinear covariants, behaviour of,

under P, 81, 91
under T, 90–91

Bjorken
limit, 225
scaling, 225–229
x variable, 225–229

Born approximation, 15–16, 142, 331–333
Bose symmetry, 119
Bottom quark, 8–10
Breit (‘brick wall’) frame, 230
Breit-Wigner amplitude, 144

Callan-Gross relation, 229–231
Casimir effect, 119
Cats, conservation of, 34

Cauchy’s integral formula, 323, 329
Cauchy’s theorem, 322
Causality, 138, 157, 162
CGS units, rationalized Gaussian, 306–307
Charge conjugation, 174–175

invariance, in electromagnetic
interactions, 175

operator Ĉ, 85, 174–175
transformation C, 82
and Dirac equation, 83–85
and KG equation, 82–83

violation, in weak interactions, 85
Charge, electric

conservation
global, 35, 38, 171
local, 35, 38, 171

effective, 251, 258
screening, 280–281
by the vacuum, 281–283

Charged current process, 18
Charm, 8–9

357

Cauchy-Reimann relations, 321
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Charmonium, 8
Charm quark, 8
Chiral symmetry, 10

spontaneously broken, 10, 25–27
Cloud of virtual particles, 147
Colour, 8–9, 22–23

and R, 240
in Drell-Yan process, 236

Compactified space dimensions, 31–32
Compensating field, 38, 170
Completeness relation, for states, 132
Compton effect, 11
Compton scattering of e−, 207–210
Condensate, 26
Confinement, 7, 21–23, 119, 240
Conjugate variables, 115
Conservative force, 320
Constraints, 165
Contact force, 10
Continuity equation

for electric charge density, 35, 37
in covariant form, 37

Contour integration, 259–261, 320–324
Contravariant 4-vector, 50, 53, 58, 308
Coulomb interaction, instantaneous, 198
Coulomb scattering

of s+, 183–187
of s−, 187
of e−, 187–193
of e+, 193–194

Coulomb’s law, 17, 267, 306, 325
QED modifications to, 278–279

Counter terms 264, 268
determined by renormalization

conditions, 265–266
in ABC theory, 263–265
in Fermi theory, 293–294
in QED, 271, 274, 287

Coupling constant, 171, 247
dimension, 25, 134, 292
dimensionless, 171
running, 20, 27, 280–283

Covariance,
of Dirac equation under Lorentz

transformation, 74–78
of KG equation under Lorentz

transformation, 72–73
in special relativity, 308–311

Covariant derivative, 42
Covariant 4-vector, 308
CP, 85–86

violation, 8, 85–86
and Sakharov conditions, 86
and T violation, 86
in K and B decays, 85–86

CPT, 86, 90
operator θ̂, 90
tests of CPT invariance, 90
theorem, 86, 90
and equality of particle and
antiparticle masses, 90, 137

transformation θ, 90
Crossing symmetry, 204–207
Cross section, differential

for Compton scattering, 209–210, 219
for elastic e−p scattering, 213–216
for e−s+ → e−s+, 198-200, 341–345
for e+e− → hadrons, 238–241
for e+e− → μ+μ−, 212, 220–221
for e+e− → π+π−, 238
for e+e− → qq̄, 239
for e−μ− → e−μ−, 210–213, 219, 242
for inelastic e−p scattering, 217, 222–

231
for virtual photons, 229-231
Hand convention, 229, 243
longitudinal/scalar, 230-231
transverse, 230-231

inclusive, 222, 228, 242
in laboratory frame, 199, 212, 224,

242–243, 341–345
in natural units, 305
in non-relativistic scattering theory, 331
Mott, 190
no structure, 200, 212, 341–345
Rosenbluth, 216
two-body spinless, 144–146
unpolarized, 189–190, 199

Current
axial vector, 81–82, 243
conservation, 53, 58, 91, 153, 160, 171,

196, 212, 276
and form factors, 203–204, 214–215
and gauge invariance, 38, 170–171
and hadron tensor, 223
used in evaluating contraction of
tensors, 212

-current form of matrix element,
196–197

momentum space, 196
operator, electromagnetic 4-vector
Dirac, 171



Index 359

Klein-Gordon, 173, 186
probability, see Probability current
symmetry, see Symmetry current
transition, electromagnetic, 184,

186–188
Cut-off, in renormalization, 251–252, 254,

261–262, 268, 272, 274, 296

D’Alembertian operator, 52
Decay rate, 134, 346
Decoupling theorem, 289
Deep inelastic region, 217
Deep inelastic scattering, 217, 222–234

scaling violations in, 225
Density of final states, 134, 145
Dielectric constant, 280, 306
Dielectric, polarizable, 280–281
Dipole moment, induced, 280–281
Dirac

algebra, 54, 337
charge form factor, 215, 280
delta function, 312–319
properties of, 316–318

equation, 53–58
and C, 83–85
and P, 79–82
and spin, 55–56, 58–61
and T, 87–90
4-current, 77
for e− interacting with potential, 66
free-particle solutions, 56–57, 69
in slash notation, 91, 138
Lorentz covariance of, 74–78
negative-energy solutions, 60–63
positive-energy solutions, 60–61
probability current density, 58, 65,
76–77, 91

probability density, 57, 65, 77
field, quantization of, 158–162
Hamiltonian, 54, 56, 160–161
interpretation of negative-energy

solutions, 62–63
Lagrangian, 158
matrices, 55–56, 68–69, 91, 243
propagator, 161
sea, 62
spinor, 55–57, 60–62, 74–88
conjugate, 77, 91
Lorentz transformation of, 74–78
normalization, 70

Discrete symmetry transformations, 78–91

Displacement current, 35
Divergence, 25, 148, 250–251

infrared, 273
of self energy
in ABC theory, 250–251, 259–261
of photon, in QED, 274–275

ultraviolet, 251, 291–292, 295
Drell-Yan process, 234–236, 238, 244

scaling in, 236–237, 244
Dyson expansion, 129–131, 173, 195, 247–248

Effective low-energy theory, 296
Effective theory, 26
Electric dipole moments

and T, 89–90
Electromagnetic field, see

Field, electromagnetic
Electromagnetic interactions, see

Interactions
electromagnetic

Electromagnetic scattering, see
Scattering
electromagnetic

Electromagnetic transition current, see
Current
tansition, electromagnetic

Electron Compton scattering, 207–210
Electron, magnetic moment of, 65–68,

287–291
Electroweak theory, 3
Energy-time uncertainty relation, 14–18
Ether, 11
Euler-Lagrange equations, 106, 112, 115,

118, 120, 152, 178
Exclusion principle, 12, 62–63, 104, 158

Faraday, and lines of force, 11
Faraday-Lenz law, 35
Fermi

constant, 20, 292, 296–297
dimensionality of, 20, 25, 292, 297
related to W mass, 20, 295

Fermionic fields, 158–162
and spin-statistics connection, 158–161

Feynman
diagram
description of, 16
connected, 148
disconnected, 148
for counter terms, 264–265, 268,
271
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gauge, 169
identity, 259, 273
iε prescription, 139–142, 157, 161–162,

329
interpretation of negative-energy

solutions, 63–65, 187, 205
path-integral formulation of quantum

mechanics, 108–109
propagator, 137
for complex scalar field, 156–157
for Dirac field, 161–162
for photon, 165–169
for real scalar field, 137, 142

scaling variable, 236, 244
Feynman rules

for ABC theory, 142, 148
for loops, 148, 250
for QED, 197–198, 207, 346–347

Field, electromagnetic, 11
quantization of, 165–169

Field strength renormalization, 255–257,
270, 273, 276–277

constant, 256
Field theory, classical

Lagrange-Hamilton approach, 111–114
Field theory, quantum, see

Quantum field theory
Fine structure constant, 183, 247

q2-dependent, 280–283
Flavour

lepton, 5–6
quark, 9

Flux factor, 145, 224, 330–331, 333
for virtual photon, 229

Form factor, electromagnetic, 202
of nucleon, 215–216
and invariance arguments, 214–215
Dirac charge, 215
electric, 216
magnetic, 216
Pauli anomalous magnetic moment,
215

q2-dependence, 216
radiatively induced, 279–280

of pion, 200–207
and invariance arguments, 202–204
in the time-like region, 204–207,
238–239

static, 202
Form invariance, see Covariance
Fourier series, 314–316

4-momentum conservation, 133, 192
4-vector, 308–311
Four-vector potential, electromagnetic,

37–38, 162–169

Galilean transformation, 92
γ matrices, 77, 91, 188, 337–338

anticommutation relations, 337
trace theorems, 338–340

γ5 matrix, 81, 337–338
g factor, 66–67

prediction of g = 2 from Dirac equation,
66–68

QED corrections to, 68, 287–291
Gauge

bosons, of SM, 24
choice of, 163
and photon propagator, 169

covariance, in quantum mechanics,
39–42

covariant derivative, 42
field, 44
invariance, 18, 34–42, 163, 196
and charge conservation, 38, 170–171
of QED, 169, 196
and masslessness of photon, 18, 21,
277–278

and Maxwell equations, 36–39
and photon polarization states,
163–164

and Schrödinger current, 41
and Ward identity, 208–209
as dynamical principle, 42–49
in classical electromagnetism,
36–39

in Compton scattering, 208, 219
in quantum mechanics, 39–42

parameter, 169
physical results independent of, 169

principle, 42–49, 170
theories, 19–21, 29, 33–39
transformation, 26–38
and quantum mechanics, 39–42

Gauss’s divergence theorem, 325
Gauss’s law, 34, 306, 325
General relativity, 39
Generations, 4, 8

and anomalies, 9
Ginzburg-Landau theory, 26
Glashow-Iliopoulos-Maiani (GIM)

mechanism, 8



Index 361

Glashow-Salam-Weinberg (GSW) theory, 3,
12, 21–22, 24, 26

renormalizability of, 25–27
Gluon, 21–24, 233
Gluons, and momentum sum rule, 233
Golden Rule, 334
Goldstone quantum, 278
Gordon decomposition of current, 215, 221
Gravity, 4
Green function, 138, 149–150, 325–329
Group, 46

U(1), 46
Gupta-Bleuler formalism, 168

Hadron, 6
Hamiltonian, 106–117, 122, 124, 154, 160,

168, 194
classical, 106
density, 113, 115, 160
Dirac, 160, 171
for charged particle in electromagnetic

field, 39
Klein-Gordon, 121
Maxwell, 168
operator, 108
string, 114

Hamilton’s equations, 107
Hand cross section for virtual photons, 229,

243
Harmonic approximation, 97–98, 100, 124
Heaviside-Lorentz units, 306–307
Heisenberg

equation of motion, 108, 118, 122–123,
127, 236

picture (formulation) of quantum
mechanics, 103–108, 127–128, 336

Helicity, 60
conservation, 190, 243

HERA, 244
Higgs

boson, 26–28
mass, 28
spin, 28

coupling constant, 283
field, 26–27, 122
and renormalizability of GSW theory,
26–27

mechanism, 278
sector, 283

Hofstadter experiments, 7
Hole theory, 62–63

Inelastic scattering, see
Scattering
e−-proton inelastic

Interaction picture, 127–129
Interactions

electromagnetic, 17–18
introduction via the gauge principle,
170–173

of spin-0 particles, 183–187
of spin- 12 particles, 187–194

in quantum field theory
qualitative description of, 124–126

Interference terms, in quantum mechanics,
43

Interquark potential, 22
Invariant amplitude, 133, 142, 195, 198, 206,

208, 211, 284
Invariance

and dynamical theories, 33–34
global, 33–34, 38, 49
local, 33–34, 38, 49
phase, 42–44
Lorentz, 308–311

Jets, 21–23, 240
J/ψ 8, 10; see also Charmonium

K flux factor, 229
Klein-Gordon equation, 51–53

and C, 82–83
and P, 79
and T, 87
derivation, 51–52
free-particle solutions, 52
normalization of, 185

first-order perturbation theory for, 183
negative-energy solutions, 52, 63–65
negative probabilities, 53
potential, 66, 70, 183
probability current density, 52–53, 65,

68
probability density, 52–53, 65, 68

Klein-Gordon field, 120–121, 152–157

Lagrangian, 104–107
ABC, 258, 263
classical field mechanics, 111–112
density, 111
Dirac, 158
Klein-Gordon, 120
Maxwell, 162, 166, 178



362 Index

particle mechanics, 104–106
quantum field dynamics, 114–119
QED, 270
Schrödinger, 122
string, 113, 120

Lamb shift, 279
Uehling contribution, 279

Landau gauge, 169
Least action, Hamilton’s principle of, 104–

106
Lenz’s law, 35
Lepton, 4–6

flavour, 5–6
universality, 4, 27

Lepton quantum numbers, 5–6
Lepton tensor, see

Tensor
lepton,

Leptoquark, 244
Linear superposition, 97–98, 126
Loop diagrams, 147–148, 247–248

and divergences, 148, 250–251
and renormalization, 148, 247–297
in ABC theory, 247–269
in QED, 270–297

and unitarity, 284
closed fermion, 273

Loop momenta, 147
Lorentz

condition, 163, 166, 168, 196
covariance, 37
force law, 39
gauge, 169, 203, 208
invariance, 308–311
and form factors, 202–203, 214
and inelastic hadron tensor, 223

-invariant phase space (Lips), 145, 341,
343

in CM frame, 146
in ‘laboratory’ frame, 343–344

transformations, 308
and Dirac equation, 74–78
and KG equation, 72–73, 90

μ decay, 6
Magnetic moment

anomalous, 287–291
and renormalizability, 288

of electron, 65–68, 288–290
of muon, 290–291
orbital, 302

Majorana
fermion, 84
field, 175
mass term, 175
spinor, 84

Mandelstam
s variable, 143, 209, 342
t variable, 143, 342
u variable, 143, 250, 342

Mass
effective, 254
physical, 254, 258, 265
running, 27
shift, 253–254

Mass-shell condition, 143, 264–265
Massless spin- 12 particle, wave equation for,

243
Massless vector field, wave equation for, 163
Maxwell field, 162–169
Maxwell’s equations, 11, 33, 34–38

and Lagrangian field theory, 162–164
and units, 306–307
gauge invariance of, 34, 36–38
Lorentz covariance of, 36–38, 308–311

Meissner effect, 26
Meson spectroscopy, 7
Metric tensor, 309
MKS units, 304, 306–307
Mode, 99–104

frequency, 95–103
normal, 99–103
coordinates, 99–100, 102
expansion, 102, 113, 116, 121, 124, 127,

158, 166–167
interacting, 124
oscillator, 100–101, 103
quanta, 101
superposition, 99
operators, 116
time-like, 167–168

Momentum, generalized
canonically conjugate, 113, 165

Momentum sum rule, 233
Mott cross section, 190
Muon, 4
Muonic atoms, 279

Natural units, 304–305
Negative-energy solutions

Dirac’s interpretation, 62–63
Feynman’s interpretation, 63–65
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Neutral current process, 19
Neutrino,

e-type and μ-type, 5
mass, 6
mixing, 6
oscillations, 6, 31

Newton’s constant (of gravity), 31, 297
Noether’s theorem, 153, 160
Non-Abelian gauge theories, 46

and asymptotic freedom, 283
Non-relativistic quantum mechanics, revi-

sion, 301–303
Non-renormalizable

term, 295, 297
theory, 25, 281–292, 296

Normalization
box, 133, 301
covariant, 185, 188
of states, 132, 185, 189

Normal ordering, 117, 154, 160–161, 187,
194

O(2) transformation, 152, 154
Off-mass-shell, 143
One-photon exchange approximation, 222
One-quantum exchange process, 13–17
Operator product expansion, 234
Optical theorem, 284, 331
Oscillator, quantum, 109–111

Pair creation, 63, 281
Parity

invariance, in electromagnetic interac-
tions, 81, 174

operator P̂, 80
and KG equation, 79
and Dirac equation, 79–80
eigenvalues, 80
in qft, 173–124

transformation, P, 79
and Dirac equation, 79–80
and KG equation, 79

intrinsic, 81
opposite, for particle and antiparticle,
80, 174

violation, in weak interactions, 82

Parton, 225–233
and Breit (brick-wall) frame, 230
and quarks and gluons, 231–233
distribution function, 228, 231–233

model, 225–226
and Drell-Yan process, 234-237

sea, 233
valence, 233

Path integral formalism, 108-109, 165, 168
Pauli

exclusion principle, 104
matrices, 55, 69

Perturbation theory
in interaction picture, 127-131
in non-relativistic quantum mechanics

(NRQM), 125, 256–257
time-dependent, 182, 302–303
in quantum field theory
bare, 247–262, 267
renormalized, 262–269

Phase
factor, non-integrable, 48
invariance, 18
global, 43
local, 33–34, 43–44

space, two-particle, 134
evaluated in CM frame, 145–146
evaluated in ‘laboratory’ frame,
343–345

Lorentz invariant, 134, 145, 343–344
transformation, space-time dependent,

42
Phonon, 12, 101, 126
Photon

absorption and emission of, 303
as excitation quantum of

electromagnetic field, 104
external, 207
masslessness of, 18, 21, 24, 26
and polarization states, 24, 163–164

propagator, 168–169
and gauge choice, 169

virtual, 198, 229, 242
Pion

Compton wavelength, 304
form factor, 203–204
weak decay, 18

Planck
scale, 31

Point-like interaction, 15, 20
Poisson’s equation, 13, 201, 325, 327
Polarization

circular, 164
hadronic vacuum, 289–291
linear, 164
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of charge in dielectric, 280–281
of vacuum, 281–282
states
for massive spin-1 bosons, 24, 26, 164
for photons, 24, 163–164
longitudinal, 167–168
pseudo-completeness relation,
169, 209

time-like (scalar), 167–168
transverse, 165, 207

sum, for photons, 209
vectors, for photons, 163–169

Pole
in propagator. 143
in complex plane, 260
simple, 322–323

Positron, prediction and discovery of, 63
Positronium, 30
Probability current

for Dirac equation, 58, 65, 76–77
4-vector character, 53, 58, 77
for KG equation, 53, 64, 68
for Schrödinger equation, 68, 301

Probability distribution functions
for partons, 228
for quarks, 231–234

Projection operators, 243, 338
Propagator, 16

complete, in ABC theory, 253
in external line, 267

for complex scalar field, 156–157
for Dirac field, 161
for photon, 165–169
in arbitrary gauge, 169

for scalar field, 137–142
renormalized, in ABC theory, 267

Pseudoscalar (under P), 81
Psi meson (ψ/J particle), 9; see also

Charmonium

Quantum electrodynamics (QED), 3, 11, 18,
20–22, 25–26, 29, 33, 173, 247, 258,
262, 270–297

introduction, 170–173
renormalizability of, 26, 49, 287–288,

295
scalar, 172–178
spinor, 170–172
tests of, 287–291

Quanta, 101, 111, 117–118

Quantum chromodynamics (QCD) 3, 7–10,
13, 22–23, 283

and asymptotic freedom, 10, 22, 283
lattice, 23
renormalizability of, 27

Quantum field theory
antiparticles in, 151–157, 160–161
complex scalar field, 152–157
Dirac field, 158–162
fundamental commutator, 114, 159
interacting scalar fields, 124–150
internal symmetries in, 152–155, 160–

161
Klein-Gordon field, 120–121, 152–157
Lagrange-Hamilton formulation, 114–

119
Maxwell field, 165–169
perturbation theory for, 126–131
qualitative description, 11–13, 96–104,

124–126
real scalar field, 114–121

Quark, 3, 6–10
as hadronic constituent, 6–10
charges, 7
charm, 8
colour, 8–9
flavour, 9
masses, 9–10
model potential, 22, 30
parton model, 231–234, 240
sum rules, 232–233

probability distribution functions,
231–234

quantum numbers, 8–9
sea, 233
valence, 233

Quarks, confinement of, see Confinement

ρ-dominance of pion form factor, 238–240
R (e+e− annihilation ratio), 239–240
Regularization, 253, 261, 273

cut-off method, 261–262
dimensional, 275

Relativity
general, 39
special, 308–311

Renormalizability, 25–27, 267–269
and gauge invariance, 26, 49, 297
as criterion for physical theory, 291–297
criteria for, 135, 291–297



Index 365

Renormalization, 25–27, 135, 262–267,
270–278

and Higgs sector of SM, 25–27
conditions, 265–267
constant, 256, 264
field strength, 255–257
group, 27, 282
mass, 253–254
of QED, 270–278

Resonance width, 144
Rosenbluth cross section, 216
Running coupling constant, see

Coupling constant
running

Rutherford
scattering, 17, 21, 185, 200
from charge distribution, 201–202

σ (Pauli) matrices, 55, 58, 69, 302
Sakharov conditions, 86
s-channel, 143, 206–207, 247
Scalar field, 96
Scalar potential, 36
Scalar (under P), 81
Scaling, see also Bjorken scaling

in Drell-Yan process, 234–237, 244
and operator product expansions, 226
variables, 225–227
violations, 225

Scattering
amplitude, 330–332
as exchange process, 13–17, 142
Compton, of electron, 207–210
Coulomb
of charged spin- 12 particles, 187–194
of charged spinless particles, 183–187

e−d, 227
e−, from charge distribution, 201–202
e−μ−, 210–213
lowest order, in ‘laboratory frame’,
212

e−π+, elastic, 200–204
e−-parton, 226
e−-proton
Bjorken scaling in, 225–229
elastic, 7, 212–216
inelastic, 222–242
kinematics, 216–217
structure functions, 223–230

e−s+, 194–200
e+e− → μ+μ−, 212–213, 220–221, 235

e+e− → π+π−, 204–207
qq̄ → μμ̄, 235
quasi-elastic, 227
Rutherford, see Rutherford scattering
theory,
non-relativistic, 330–334
time-dependent, 333–334
time-independent, 330–333

Schrödinger equation for spinless particles,
39–41, 47–48, 51, 301

and Galilean transformation, 92
free-particle solutions, 301
interaction with electromagnetic field,

39–49, 302
probability current density, 68, 301
probability density, 68, 301

Schrödinger picture (formulation), 107, 127–
129, 335–336

Sea, of negative-energy states, 62–63
Second quantization, 119
Self-energy

fermion, in QED, 272–273
in ABC theory, 248–253, 259–261
renormalized, 206

one-particle irreducible, 253
photon, in QED, 273–278
imaginary part of, 284–285
renormalized, 275–285

Singularity, 143, 322
Slash notation, 91, 161, 188
S-matrix, 169, 258, 263, 276, 284

Lorentz invariance of, 157
unitarity of, 130

Ŝ-operator, 131
Dyson expansion of, 131
Lorentz invariance of, 138

Special relativity, 308–311
Spin matrices, 302
Spin-statistics connection, 158–162
Spin sums and projection operators, 338
Spinor 55

and rotations, 74–77
and velocity transformations (boosts),

77–78
conjugate, 91
four-component, 57
negative-energy, 61–68, 91
positive-energy, 60–61, 91
rest-frame, 59
self-conjugate (Majorana), 84, 175
two-component, 56, 58
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Spontaneously broken symmetry, 10, 12, 26
Standard Model, 3–4, 6, 33, 38, 49, 96, 121,

148, 247, 251, 283, 289–291
Stokes’ theorem, 320
Strangeness, 9

conservation, 9, 29
Strange quark, 9
String theory, 4
Strong interactions, 21–23
Structure function, 222–223, 225–228

and positivity properties, 230
of proton, electromagnetic, 222–223
scaling of, 225–231

Subtraction, 266, 294
Sum rules, see Quark parton model
Summation convention, 308
Supersymmetry, 117
Super-renormalizable theory, 135, 262, 269,

292
Symmetry

current, 153, 160, 171
internal, 46
operator, 152–154, 160

t-channel, 206, 283
Tau lepton, 4–6

and neutrino, 6
Tensor, 309

antisymmetric
4-D, 214, 338
3-D, 214, 340

boson, 199
electromagnetic field strength, 37–38,

50, 309
hadron, in inelastic e−p scattering,

222–224
lepton, 191, 199, 211, 222
metric, 309
proton, 214

Theta function, 139–140, 323–324
Time-ordering symbol, 131, 149

and fermions, 161
and Feynman graphs, 138–139. 156
and Lorentz invariance, 137–138

Time-reversal, 86–90
in qft, 176–177
invariance, in electromagnetic

interactions, 177
operator T̂, 88, 176–177
and Dirac equation, 88
and KG equation, 88

not unitary, 88, 176
transformation T, 86
and Dirac equation, 87–90
and KG equation, 87

violation, in weak interactions, 89
Tomonaga-Schwinger equation, 129
Top quark, 8
Trace techniques, for spin summations,

191–193
Trace theorems, 192–193, 338–340
Transformation

gauge, in electromagnetic theory,
36–44

and dynamics, 28, 171
global, 33–34, 38, 43
local, 33–34, 38, 43, 45
Lorentz, see Lorentz transformations
O(2), 152

Tree diagrams, 247

u-channel, 143, 207, 247–248
u-variable, 143, 250
U(1)

group, 46
phase invariance, 46
global, 151–155, 160, 170–172
local, 46, 151, 170–172

Uehling effect, 279
Unification, 18–21
Unitarity, 130, 284
Units

Gaussian CGS, 306–307
rationalized, 306–307
natural, 304–305

Universality, 4, 27, 45, 287, 297
and renormalization, 287
lepton, 4, 27
of electromagnetic interaction, 44
of gauge field interaction, 44, 287

Upsilon meson, 8, 10

Vacuum, 12, 127, 148, 155, 158, 167, 254,
281

and Dirac sea, 62
and field system ground state, 118–119
and many-body ground state, 12, 26
and symmetry-breaking, 26–27
polarization, 281–282, 287
quantum fluctuations in, 254, 258

Vacuum expectation values, 135–137
Vector potential, 36
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Vertex
ABC theory, 141
correction
in ABC theory, 258–259
in QED, 285–287

pion electromagnetic, 203–204
proton electromagnetic, 213–216

Vibrating string, 101–103
energy of, 103
modes of, 102

Virtual Compton process, 210, 219
Virtual photon, 143–144, 229–231, 242–243
Virtual quantum, 143
Virtual transitions, 147, 254

W boson, 6, 18–22, 24–28, 63, 157
polarization states, 24, 164

Ward identity, 208–209, 271, 286

Wavefunction
and quantum field, 119
phase of, 43–44, 151

Wavelength, Compton, of electron, 281
Wave-particle duality, 11, 118
Weak interaction, 18–21

range, 18–19
Wick’s theorem, 137

Yang-Mills theory, 38–39
Yukawa interaction, 13–15, 25–26, 127, 142,

296
Yukawa potential, 13, 227, 330
Yukawa-Wick argument, 15

Z1 = Z2 in QED, 271, 286–287
Z0 boson, 6, 19, 22, 24, 26, 28, 220, 283

polarization states, 24, 164
Zero-point energy, 110, 117
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