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Preface

Linear algebra is everywhere in the world of science and engineering. See [1, 4, 7,
10, 12, 14-19, 21-23, 25]. The present book is meant as a text for a course on linear
algebra at the first-year undergraduate level. It is self-contained. The purpose of
the book is to provide a solid foundation for further study of advanced mathematics.

At the beginning of the book, we introduce linear systems over the real field,
solutions of linear systems by Gauss-Jordan elimination, and basic terminology of
matrix. Especially we study elementary matrices to explain the processes of Gauss-
Jordan elimination in matrix form.

We introduce determinant functions in Chapter 2 in order to study Cramer’s
rule which is an explicit representation for a linear system that has a unique
solution. We discuss fundamental properties of determinants and the way to evaluate
determinants through cofactor expansions.

As a fundamental example of vector spaces, we first introduce the Euclidean
vector spaces in Chapter 3. We study the Cauchy-Schwarz inequality and linear
transformations between two Euclidean vector spaces. The most important proper-
ties of the Euclidean vector spaces will be used to develop the concept of general
vector spaces later.

In Chapter 4, we begin with the definition of general vector spaces over the
real field. We mainly study subspaces, linearly independent sets, and bases for
vector spaces. As important examples, we discuss four fundamental matrix spaces
and study their properties. The dimension theorem for subspaces, the dimension
theorem for matrices, and consistency theorems are also included.

As a superstructure of vector spaces, we introduce an inner product on general
vector spaces in Chapter 5. By using the inner product, we can define notions of
length, distance, angle, and orthogonality in general vector spaces. These notions are
the foundation of subsequent studies on the Gram-Schmidt process for orthogonal
bases and least squares problems. Besides, we also discuss the problem of change of
basis in the last section of this chapter.

Chapter 6 presents one of the most important topics in linear algebra: eigenvalues
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and eigenvectors of square matrices. With these concepts and their related theorems,
we study how to diagonalize a diagonalizable matrix, especially a symmetric matrix.
Finally, the Jordan decomposition theorem is briefly mentioned.

In Chapter 7, we introduce general linear transformations between two general
vector spaces and study their related properties which involve kernel, range, rank,
nullity, inverse, and so on. We also discuss matrices of general linear transformations
and show that a general linear transformation between two general vector spaces can
be regarded as a matrix transformation between two Euclidean vector spaces.

In the last chapter, we develop several important topics in linear algebra,
including quadratic forms, complex inner product spaces, Hermitian matrices and
unitary matrices. A well-known fact in linear algebra is that the matrix product is
not commutative, i.e., in general,

XY ̸= Y X,

where X and Y are square matrices. Böttcher and Wenzel proposed the following
conjecture in 2005:

∥XY − Y X∥F ⩽
√

2 ∥X∥F ∥Y ∥F ,

where ∥ · ∥F is the Frobenius norm. In the last part of the book, we give an
elementary proof of the Böttcher-Wenzel conjecture, where only several classical
theorems studied in the book are used.

In writing the present book, many friends have offered us helps, advice,
comments, and encouragement. First, we would like to express gratitude to the
following people: Professors Raymond H.F. Chan, Hong-Kun Xu, Jin-Yun Yuan,
Fu-Zhen Zhang, Zhao-Liang Xu, Chong Li, Dan-Fu Han, Wen Li, Jian-Long Chen,
Qing-Biao Wu, Man-Chung Yeung, Yi-Min Wei, Che-Man Cheng, Michael K.P.
Ng, Wai-Ki Ching, Fu-Rong Lin, Hai-Wei Sun, Hao-Min Zhou, Zheng-Jian Bai,
Jian-Feng Cai, Vai-Kuong Sin, Gang Wu, Matthew M.H. Lin, Jin-Hua Wang, Wei-
Ping Shen, Seak-Weng Vong, Siu-Long Lei, Kit-Ian Kou, Zhi-Gang Jia, Xiao-Shan
Chen, Xiao-Fei Peng, Rong Huang, Juan Zhang, Ying-Ying Zhang, Hong-Kui Pang,
Qing-Jiang Meng, Ze-Jia Xie, and Teng-Teng Yao. Special thanks go to one of
the greatest mathematicians around the world, Professor Shing-Tung Yau from
Department of Mathematics, Harvard University, for providing us valuable words
at the beginning of Chapter 5. Of course, we are particularly grateful to Mr. Xiang
Zhao for creating the cover painting for the book. Finally, we appreciate the most
important institution in authors’ life: University of Macau, for supplying such a
wonderful intellectual atmosphere for writing the book. The book is dedicated to
the 40th anniversary of University of Macau (1981–2021).
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Chapter 1
Linear Systems and Matrices

“No beginner’s course in mathematics can do without linear algebra.”
— Lars Gårding

“Matrices act. They don’t just sit there.”
— Gilbert Strang

Solving linear systems (a system of linear equations) is the most important problem
of linear algebra and possibly of applied mathematics as well. Usually, information
in a linear system is often arranged into a rectangular array, called a “matrix”. The
matrix is particularly important in developing computer programs to solve linear
systems with huge sizes because computers are suitable to manage numerical data
in arrays. Moreover, matrices are not only a simple tool for solving linear systems
but also mathematical objects in their own right. In fact, matrix theory has a variety
of applications in science, engineering, and mathematics. Therefore, we begin our
study on linear systems and matrices in the first chapter.

1.1 Introduction to Linear Systems and Matrices

Let R denote the set of real numbers. We now introduce linear equations, linear
systems, and matrices.

1.1.1 Linear equations and linear systems

We consider
a1x1 + a2x2 + · · · + anxn = b,

where ai ∈ R (i = 1, 2, . . . , n) are coefficients, xi (i = 1, 2, . . . , n) are variables
(unknowns), n is a positive integer, and b ∈ R is a constant. An equation of this
form is called a linear equation, in which all variables occur to the first power.
When b = 0, the linear equation is called a homogeneous linear equation. A
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sequence of numbers s1, s2, . . . , sn is called a solution of the equation if x1 = s1, x2 =
s2, . . . , xn = sn such that

a1s1 + a2s2 + · · · + ansn = b.

The set of all solutions of the equation is called the solution set of the equation.

In the book, we always use example(s) to make our points clear.

Example We consider the following linear equations:

(a) x + y = 1.

(b) x + y + z = 1.

It is easy to see that the solution set of (a) is a line in xy-plane and the solution set
of (b) is a plane in xyz-space.

We next consider the following m linear equations in n variables:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm,

(1.1)

where aij ∈ R (i = 1, 2, . . . , m; j = 1, 2, . . . , n) are coefficients, xj (j = 1, 2, . . . , n)
are variables, and bi ∈ R (i = 1, 2, . . . , m) are constants. A system of linear equations
in this form is called a linear system. A sequence of numbers s1, s2, . . . , sn is called
a solution of the system if x1 = s1, x2 = s2, . . . , xn = sn is a solution of each equation
in the system. A linear system is said to be consistent if it has at least one solution.
Otherwise, a linear system is said to be inconsistent if it has no solution.

Example Consider the following linear system a11x + a12y = b1

a21x + a22y = b2.

The graphs of these equations are lines called l1 and l2. We have three possible cases
of lines l1 and l2 in xy-plane. See Figure 1.1.

• When l1 and l2 are parallel, there is no solution of the system.

• When l1 and l2 intersect at only one point, there is exactly one solution of
the system.
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• When l1 and l2 coincide, there are infinitely many solutions of the system.

Figure 1.1

1.1.2 Matrices

The term matrix was first introduced by a British mathematician James Sylvester
in the 19th century. Another British mathematician Arthur Cayley developed basic
algebraic operations on matrices in the 1850s. Up to now, matrices have become the
language to know.

Definition A matrix is a rectangular array of numbers. The numbers in the array
are called the entries in the matrix.

Remark The size of a matrix is described in terms of the number of rows and
columns it contains. Usually, a matrix with m rows and n columns is called an
m × n matrix. If A is an m × n matrix, then we denote the entry in row i and
column j of A by the symbol (A)ij = aij . Moreover, a matrix with real entries will
be called a real matrix and the set of all m × n real matrices will be denoted by the
symbol Rm×n. For instance, a matrix A in Rm×n can be written as

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 ,

where aij ∈ R for any i and j. When compactness of notation is desired, the
preceding matrix can be written as

A = [aij ] .

In particular, if A ∈ R1×1, then A = a11 ∈ R.

We now introduce some important matrices with special sizes. A row matrix
is a general 1 × n matrix a given by

a = [a1, a2, . . . , an] ∈ R1×n.
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A column matrix is a general m × 1 matrix b given by

b =


b1
b2...
bm

 ∈ Rm×1.

A square matrix is an n × n matrix A given by

A =


a11 a12 · · · a1n

a21 a22 · · · a2n...
... . . . ...

an1 an2 · · · ann

 ∈ Rn×n. (1.2)

The main diagonal of the square matrix A is the set of entries a11, a22, . . . , ann in
(1.2).

For linear system (1.1), we can write it briefly as the following matrix form
a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm

 ,

which is called the augmented matrix of (1.1).

Remark When we construct an augmented matrix associated with a given linear
system, the unknowns must be written in the same order in each equation and the
constants must be on the right.

1.1.3 Elementary row operations

In order to solve a linear system efficiently, we replace the given system with its
augmented matrix and then solve the same system by operating on the rows of the
augmented matrix. There are three elementary row operations on matrices defined
as follows:

(1) Interchange two rows.

(2) Multiply a row by a nonzero number.

(3) Add a multiple of one row to another row.

By using elementary row operations, we can always reduce the augmented matrix of
a given system to a simpler augmented matrix from which the solution of the system
is evident. See the following example.
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Example Consider the following system
x + y + z = 6

2x + 4y − 3z = 1

3x + 2y − 2z = 1.

The augmented matrix of the system is given by 1 1 1 6
2 4 −3 1
3 2 −2 1

 .

By using elementary row operations, actually one can transform the augmented
matrix of the system to a simpler form, 1 1 1 6

2 4 −3 1
3 2 −2 1

 −→

 1 0 0 1
0 1 0 2
0 0 1 3

 .

Then from the simpler form, we immediately have

x = 1, y = 2, z = 3,

which is obviously the solution of the original system. See next section for details.

1.2 Gauss-Jordan Elimination

In this section, we develop a method called Gauss-Jordan elimination [1] for
solving linear systems. In fact, Gauss-Jordan elimination is the most frequently
used algorithm in scientific computing.

1.2.1 Reduced row-echelon form

In the example of Subsection 1.1.3, we solved the given linear system by reducing
the augmented matrix to  1 0 0 1

0 1 0 2
0 0 1 3


from which the solution of the system was evident. This is an example of a matrix
that is in reduced row-echelon form. We therefore give the following definition.

Definition For any matrix in reduced row-echelon form, it must satisfy the follow-
ing conditions.
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(i) For the rows that consist entirely of zeros, they are grouped together at the
bottom of the matrix. The rows that consist entirely of zeros will be called zero
rows.

(ii) If a row does not consist entirely of zeros, then the first nonzero number in the
row is a 1. We call this a leading 1.

(iii) For two successive rows that both contain leading 1’s, the leading 1 in the higher
row occurs farther to the left than the leading 1 in the lower row.

(iv) Each column that contains a leading 1 has zeros in all its other entries.

Remark A matrix having properties (i), (ii), (iii), but not necessarily (iv), is said
to be in row-echelon form. The following example is in row-echelon form:

1 2 3 4 5
0 1 0 2 3
0 0 0 1 0
0 0 0 0 0

 .

1.2.2 Gauss-Jordan elimination

Gauss-Jordan elimination is a standard technique for solving linear systems. Actually
Gauss-Jordan elimination is a step-by-step elimination procedure which reduces an
augmented matrix of a given linear system to reduced row-echelon form. Then the
solution set of the system can be found by just inspection. We illustrate the idea by
the following example.

Example We solve the following system
− 3x2 +7x5 = 15

2x1 + 6x2 +6x3 +4x4 +2x5 = 28

2x1 +11x2 +6x3 +4x4 −9x5 = 5.

The augmented matrix of the system is given by 0 −3 0 0 7 15
2 6 6 4 2 28
2 11 6 4 −9 5

 .

Now, by using the elementary row operations, we are going to reduce the matrix to
reduced row-echelon form.
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Step 1. Interchange the top row with another row, if necessary, to bring a nonzero
entry to the top of the leftmost column that does not consist entirely of
zeros:

Interchange 1st row and 2nd row−−−−−−−−−−−−−−−−−−−−−−−→

 2 6 6 4 2 28
0 −3 0 0 7 15
2 11 6 4 −9 5

 .

Step 2. If the entry that is now at top of the column found in Step 1 is a ̸= 0,
multiply the first row by 1/a in order to introduce the leading 1:

1/2 × 1st row−−−−−−−−−−−−−−−−−−→

 1 3 3 2 1 14
0 −3 0 0 7 15
2 11 6 4 −9 5

 .

Step 3. Add suitable multiples of the top row to the rows below so that all entries
below the leading 1 become zeros:

3rd row + (−2) × 1st row−−−−−−−−−−−−−−−−−−−→

 1 3 3 2 1 14
0 −3 0 0 7 15
0 5 0 0 −11 −23

 .

Step 4. Now cover the top row in the matrix and begin again with Step 1 applied
to the submatrix remained. Continue in this way until the entire matrix is
in row-echelon form:

(−1/3) × 2nd row−−−−−−−−−−−−−−−−−−→


1 3 3 2 1 14

0 1 0 0 −7
3

−5

0 5 0 0 −11 −23



3rd row + (−5) × 2nd row−−−−−−−−−−−−−−−−−−→


1 3 3 2 1 14

0 1 0 0 −7
3

− 5

0 0 0 0 2
3

2



3/2 × 3rd row−−−−−−−−−−−−−−−−−−→


1 3 3 2 1 14

0 1 0 0 −7
3

− 5

0 0 0 0 1 3

 .

The entire matrix is now in row-echelon form. To find the reduced row-
echelon form we need the following additional step.
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Step 5. Beginning with the last nonzero row and working upward, add suitable
multiples of each row to the rows above to introduce zeros above the leading
1’s:

2nd row + (7/3) × 3rd row−−−−−−−−−−−−−−−−−−−→

 1 3 3 2 1 14
0 1 0 0 0 2
0 0 0 0 1 3


1st row + (−1) × 3rd row−−−−−−−−−−−−−−−−−−→

 1 3 3 2 0 11
0 1 0 0 0 2
0 0 0 0 1 3


1st row + (−3) × 2nd row−−−−−−−−−−−−−−−−−−→

 1 0 3 2 0 5
0 1 0 0 0 2
0 0 0 0 1 3

 .

The last matrix is in reduced row-echelon form.

The corresponding system is
x1 + 3x3 + 2x4 = 5

x2 = 2

x5 = 3.

Since x1, x2, and x5 correspond to leading 1’s in reduced row-echelon form of the
augmented matrix, we call them leading variables. The remaining variables x3 and
x4 are called free variables. Solving the leading variables yields

x1 = −3x3 − 2x4 + 5

x2 = 2

x5 = 3.

Setting x3 = s and x4 = t, we therefore obtain the solution set of the system,
x1 = −3s − 2t + 5

x2 = 2

x5 = 3,

where s and t can take arbitrary values.



1.2 Gauss-Jordan Elimination 9

1.2.3 Homogeneous linear systems

A linear system is called to be homogeneous if the constant terms are all zero.
Consider 

a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = 0.

Obviously, x1 = x2 = · · · = xn = 0 is a solution of the system, which is called the
trivial solution. Any nonzero solutions are called nontrivial solutions. For nontrivial
solutions, we have the following theorem.

Theorem 1.1 A homogeneous linear system has infinitely many solutions if there
are more variables than equations.

Proof Let



a11x1 + a12x2 + · · · + a1mxm + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2mxm + · · · + a2nxn = 0

...
...

...
...

...

am1x1 + am2x2 + · · · + ammxm + · · · + amnxn = 0,

where m < n. By using elementary row operations, one can obtain the reduced row-
echelon form of the augmented matrix of the system. It follows from the reduced
row-echelon form that the corresponding system has the following form



xk1 +
∑

( ) = 0

xk2 +
∑

( ) = 0

. . . ...

xkr +
∑

( ) = 0,

where k1 < k2 < · · · < kr are numbers in the set {1, 2, . . . , m} and
∑

( ) denotes
sums that involve the n − r free variables. We remark that r ⩽ m < n and usually
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k1 = 1. If r = m, then there is no zero row. Finally, we obtain

xk1 = −
∑

( )

xk2 = −
∑

( )

...

xkr
= −

∑
( ),

which implies that the system has infinitely many solutions.

Example We consider the following linear system with 6 variables and 4 equations,



a11x1 + a12x2 + a13x3 + a14x4 + a15x5 + a16x6 = 0

a21x1 + a22x2 + a23x3 + a24x4 + a25x5 + a26x6 = 0

a31x1 + a32x2 + a33x3 + a34x4 + a35x5 + a36x6 = 0

a41x1 + a42x2 + a43x3 + a44x4 + a45x5 + a46x6 = 0.

The augmented matrix A of the system is

A =


a11 a12 a13 a14 a15 a16 0
a21 a22 a23 a24 a25 a26 0
a31 a32 a33 a34 a35 a36 0
a41 a42 a43 a44 a45 a46 0

 ∈ R4×7.

By using elementary row operations, if the reduced row-echelon form of A is obtained
as 

1 b12 0 0 0 b16 0
0 0 1 b24 0 b26 0
0 0 0 0 1 b36 0
0 0 0 0 0 0 0

 ,

then the corresponding system is
x1 + b12x2 + b16x6 = 0

x3 + b24x4 + b26x6 = 0

x5 + b36x6 = 0.
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We therefore have 
x1 = −b12x2 − b16x6

x3 = −b24x4 − b26x6

x5 = −b36x6.

From the proof of Theorem 1.1, it follows that r = 3, k1 = 1, k2 = 3, and k3 = 5.
There are three free variables, say, x2, x4, and x6. Thus, the system has infinitely
many solutions.

1.3 Matrix Operations

Matrices appear in many contexts other than as augmented matrices for linear
systems. In this section, we begin our study on matrix theory by giving some basic
definitions of the subject. We also introduce some operations on matrices and discuss
their fundamental properties.

1.3.1 Operations on matrices

Now, we develop an arithmetic of matrices which contains the sum, difference,
product of matrices, and so on. We have the following definition of operations on
matrices.

Definition

(i) Equal of matrices: Two matrices A = [aij ] and B = [bij ] are said to be equal,
denoted by A = B, if they have the same size and aij = bij for all i, j.

(ii) Sum and difference: Let A = [aij ] and B = [bij ] have the same size. Then
A + B is a matrix with the entries given by (A + B)ij := aij + bij for all i, j,
and A − B is a matrix with the entries given by (A − B)ij := aij − bij for all
i, j.

(iii) Scalar multiplication: Let A = [aij ] and c be any scalar. Then cA is a matrix
with the entries given by (cA)ij := caij for all i, j.

(iv) Linear combination of matrices:
s∑

i=1
ciA(i), where A(i) (1 ⩽ i ⩽ s) are matrices

of the same size and ci (1 ⩽ i ⩽ s) are scalars.

(v) Matrix product: Let A = [aij ] be a general m × r matrix and B = [bij ] be a
general r ×n matrix. Then the product of A and B is an m×n matrix denoted
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by

AB =



a11 a12 · · · a1r

a21 a22 · · · a2r

...
...

...
− − − − − − − − −

¦ ai1 ai2 · · · air ¦
− − − − − − − − −...

...
...

am1 am2 · · · amr





−−
b11 b12 · · · ¦ b1j ¦ · · · b1n

b21 b22 · · · ¦ b2j ¦ · · · b2n

...
... ¦

... ¦
...

br1 br2 · · · ¦ brj ¦ · · · brn
−−


with entries (AB)ij defined by

(AB)ij := ai1b1j + ai2b2j + · · · + airbrj =
r∑

k=1

aikbkj

for all 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ n.

Remark In the definition of matrix product, the number of columns of the first
factor A must be the same as the number of rows of the second factor B in order to
form the product AB. If the condition is not satisfied, then the product is undefined.
Even if A and B are both n × n matrices, we usually have AB ̸= BA.

Example 1 Consider the matrices

A =

[
1 0 3
1 −2 0

]
, B =

 4 1 0 4
0 −3 −1 2
1 2 1 0

 .

Since A is a 2 × 3 matrix and B is a 3 × 4 matrix, the product AB is a 2 × 4 matrix
given by

AB =

[
7 7 3 4
4 7 2 0

]
.

But the product BA is undefined.

Example 2 Let

A =

 1 5 4
2 −3 0
0 4 1

 , B =

 3 1 2
0 −1 −2
1 6 2

 .

The product of matrices A and B is given by

AB =

 1 5 4
2 −3 0
0 4 1


 3 1 2

0 −1 −2
1 6 2

 =

 7 20 0
6 5 10
1 2 −6


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and the product of matrices B and A is given by

BA =

 3 1 2
0 −1 −2
1 6 2


 1 5 4

2 −3 0
0 4 1

 =

 5 20 14
−2 −5 −2
13 −5 6

 .

But AB ̸= BA.

1.3.2 Partition of matrices

A matrix can be partitioned into smaller matrices by inserting horizontal and vertical
rules between selected rows and columns. For instance, below are three possible
partitions of a general 4 × 5 matrix A. The first one is a partition of A into four
submatrices A11, A12, A21, and A22; the second one is a partition of A into its row
matrices r1, r2, r3, and r4; the third one is a partition of A into its column matrices
c1, c2, c3, c4, and c5:

A =


a11 a12 a13 ¦ a14 a15

a21 a22 a23 ¦ a24 a25
− − − − − − − − − − −
a31 a32 a33 ¦ a34 a35

a41 a42 a43 ¦ a44 a45

 =

[
A11 A12

A21 A22

]
;

A =


a11 a12 a13 a14 a15
− − − − − − − − − − −
a21 a22 a23 a24 a25
− − − − − − − − − − −
a31 a32 a33 a34 a35
− − − − − − − − − − −
a41 a42 a43 a44 a45

 =


r1

−−
r2

−−
r3

−−
r4

 ;

A =


a11 ¦ a12 ¦ a13 ¦ a14 ¦ a15

a21 ¦ a22 ¦ a23 ¦ a24 ¦ a25

a31 ¦ a32 ¦ a33 ¦ a34 ¦ a35

a41 ¦ a42 ¦ a43 ¦ a44 ¦ a45

 =
[

c1 ¦ c2 ¦ c3 ¦ c4 ¦ c5

]
.

1.3.3 Matrix product by columns and by rows

Sometimes it may be desirable to find a particular row or column of a matrix product
AB without computing the entire product. The following results are useful for that
purpose. Let A ∈ Rm×r and B ∈ Rr×n. Then

jth column matrix of AB =



r∑
k=1

a1kbkj

...
r∑

k=1

amkbkj


= A[ jth column matrix of B ]
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and

ith row matrix of AB =
[ r∑

k=1

aikbk1, . . . ,

r∑
k=1

aikbkn

]
= [ ith row matrix of A ]B.

Remark Let a1, a2, . . . , am denote the row matrices of A and b1, b2, . . . , bn denote
the column matrices of B. It follows from the formulas above that

AB = A
[

b1 ¦ b2 ¦ · · · ¦ bn

]
=
[

Ab1 ¦ Ab2 ¦ · · · ¦ Abn

]
, (1.3)

which shows that AB can be computed column by column, and

AB =



a1
−−
a2

−−
...

−−
am


B =



a1B
− − −

a2B
− − −

...
− − −
amB


, (1.4)

which shows that AB can also be computed row by row.

1.3.4 Matrix product of partitioned matrices

From the remark in Subsection 1.3.3, we know that the computation of a matrix
product can be completed by some special partitions of matrices. We now introduce
the general case. Let

A =


A11 A12 · · · A1s

A21 A22 · · · A2s

...
...

...
Ar1 Ar2 · · · Ars

 ∈ Rm×l, B =


B11 B12 · · · B1t

B21 B22 · · · B2t

...
...

...
Bs1 Bs2 · · · Bst

 ∈ Rl×n,

where the number of columns of submatrix Aik is equal to the number of rows of
submatrix Bkj for each 1 ⩽ i ⩽ r, 1 ⩽ k ⩽ s, and 1 ⩽ j ⩽ t. Then we construct

C =


C11 C12 · · · C1t

C21 C22 · · · C2t

...
...

...
Cr1 Cr2 · · · Crt

 ∈ Rm×n,

where each submatrix of C is given by

Cij = Ai1B1j + Ai2B2j + · · · + AisBsj =
s∑

k=1

AikBkj
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for 1 ⩽ i ⩽ r and 1 ⩽ j ⩽ t. In fact, the partitioned matrix C is nothing new but
the product of matrices A and B, i.e., C = AB. See the following example.

Example Let A ∈ R3×3 and B ∈ R3×2. Below are the partitions of A and B:

A =

 a11 a12 ¦ a13

a21 a22 ¦ a23
− − − − −−
a31 a32 ¦ a33

 =

[
A11 A12

A21 A22

]
, B =

 b11 ¦ b12

b21 ¦ b22
− − −−
b31 ¦ b32

 =

[
B11 B12

B21 B22

]
.

Then[
A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

=



[
a11 a12

a21 a22

][
b11

b21

]
+

[
a13

a23

] [
b31

] [
a11 a12

a21 a22

][
b12

b22

]
+

[
a13

a23

] [
b32

]
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −[

a31 a32

] [ b11

b21

]
+
[

a33

] [
b31

] [
a31 a32

] [ b12

b22

]
+
[

a33

] [
b32

]



=


[

a11b11 + a12b21

a21b11 + a22b21

]
+

[
a13b31

a23b31

] [
a11b12 + a12b22

a21b12 + a22b22

]
+

[
a13b32

a23b32

]
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −[

a31b11 + a32b21

]
+
[

a33b31

] [
a31b12 + a32b22

]
+
[

a33b32

]


=

 a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32

a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32

a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32

 = AB.

1.3.5 Matrix form of a linear system

In fact, the matrix product has an important application in solving linear systems.
Consider linear system (1.1) of m linear equations in n unknowns. We can replace
the m equations in this system with the single matrix equation

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn

...
...

...
am1x1 + am2x2 + · · · + amnxn

 =


b1

b2

...
bm

 .
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By using the product of matrices, it follows that
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn




x1

x2

...
xn

 =


b1

b2

...
bm

 .

Let

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 , x =


x1

x2

...
xn

 , b =


b1

b2

...
bm

 .

Then the original system has been replaced by the single matrix equation

Ax = b.

Here A is called the coefficient matrix of the system. Thus, the augmented matrix
for the system is obtained by adjoining b to A as the last column, i.e., [ A ¦ b ].

Remark Note that by using matrix operations on the above linear system, it can
also be written as follows:

x1


a11

a21

...
am1

+ x2


a12

a22

...
am2

+ · · · + xn


a1n

a2n

...
amn

 =


b1

b2

...
bm

 ,

i.e.,
x1c1 + x2c2 + · · · + xncn = b, (1.5)

where cj is the jth column matrix of A for 1 ⩽ j ⩽ n.

1.3.6 Transpose and trace of a matrix

Definition The transpose of an m×n matrix A = [aij ], denoted by AT , is defined
to be the n × m matrix with entries given by

(AT )ij = aji.

The trace of an n × n matrix A = [aij ] is given by

tr(A) :=
n∑

i=1
aii.
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For instance,

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 , AT =

 a11 a21 a31

a12 a22 a32

a13 a23 a33

 , tr(A) = a11 + a22 + a33.

Some important properties of the transpose are listed in the following theorem.

Theorem 1.2 Let the sizes of matrices A and B be such that the stated operations
can be performed. Then

(a) (AT )T = A.

(b) (A ± B)T = AT ± BT .

(c) (kA)T = kAT , where k is any scalar.

(d) (AB)T = BT AT .

Proof Parts (a), (b), and (c) are self-evident. We therefore only prove (d). Let

A = [aij ] ∈ Rm×r, B = [bij ] ∈ Rr×n.

Then the products (AB)T and BT AT can both be formed and they have the same
size. It only remains to show that corresponding entries of (AB)T and BT AT are
the same, i.e., for all i, j, (

(AB)T
)

ij
= (BT AT )ij . (1.6)

Applying the definition of transpose of a matrix to the left-hand side of (1.6) and
then using the definition of matrix product, we obtain

(
(AB)T

)
ij

= (AB)ji =
r∑

k=1

ajkbki.

To evaluate the right-hand side of (1.6), let AT = [a′
ij ] and BT = [b′

ij ], then

a′
ij = aji, b′

ij = bji.

Furthermore, we have for all i and j,

(BT AT )ij =
r∑

k=1

b′
ika′

kj =
r∑

k=1

bkiajk =
r∑

k=1

ajkbki =
(
(AB)T

)
ij

.

Thus, (d) holds.

Some important properties of the trace are included in the following theorem.
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Theorem 1.3 Let A = [aij ] and B = [bij ] be n × n matrices. Then

(a) tr(A) = tr(AT ).

(b) tr(AB) = tr(BA).

(c) tr(αA + βB) = αtr(A) + βtr(B), where α and β are any scalars.

(d) tr(AB − BA) = 0.

(e) tr(B) = 0 if BT = −B.

Proof Part(a) is obvious. For (b), because addition is associative and commutative,
we have

tr(AB) =
n∑

i=1
(AB)ii =

n∑
i=1

n∑
k=1

aikbki =
n∑

k=1

n∑
i=1

bkiaik =
n∑

k=1

(BA)kk = tr(BA).

For (c), we have

tr(αA + βB) =
n∑

i=1
(αA + βB)ii =

n∑
i=1

(α · aii + β · bii)

= α

n∑
i=1

aii + β

n∑
i=1

bii = αtr(A) + βtr(B).

For (d), it follows from (c) and (b) that

tr(AB − BA) = tr(AB) − tr(BA) = tr(AB) − tr(AB) = 0.

For (e), by using (a), the given condition BT = −B, and (c), we deduce

tr(B) = tr(BT ) = tr(−B) = −tr(B).

Thus, tr(B) = 0.

1.4 Rules of Matrix Operations and Inverses

In this section, we study some basic properties of the arithmetic operations on
matrices.
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1.4.1 Basic properties of matrix operations

Theorem 1.4 Let A, B, and C be matrices and the sizes of matrices be assumed
such that the indicated operations can be performed. The following rules of matrix
operations are valid.

(a) A + B = B + A. (Commutative law for addition)

(b) A + (B + C) = (A + B) + C. (Associative law for addition)

(c) (AB)C = A(BC). (Associative law for product)

(d) A(B ± C) = AB ± AC. (Left distributive law)

(e) (B ± C)A = BA ± CA. (Right distributive law)

(f) a(B ± C) = aB ± aC.

(g) (a ± b)C = aC ± bC.

(h) a(bC) = (ab)C.

(i) a(BC) = (aB)C = B(aC).

Here a and b are any scalars.

Proof We only prove (c) of the associative law for matrix product. The other parts
here are left as an exercise. Assume that

A = [aij ] ∈ Rs×n, B = [bjk] ∈ Rn×m, C = [ckl] ∈ Rm×r.

We want to show
(AB)C = A(BC).

Let
V = AB = [vik] ∈ Rs×m, W = BC = [wjl] ∈ Rn×r.

Then

vik =
n∑

j=1
aijbjk

for 1 ⩽ i ⩽ s and 1 ⩽ k ⩽ m, and

wjl =
m∑

k=1

bjkckl
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for 1 ⩽ j ⩽ n and 1 ⩽ l ⩽ r. Since (AB)C = V C, the entry in row i and column l

of matrix V C is given as follows:

(V C)il =
m∑

k=1

vikckl =
m∑

k=1

 n∑
j=1

aijbjk

 ckl =
m∑

k=1

n∑
j=1

aijbjkckl (1.7)

for 1 ⩽ i ⩽ s and 1 ⩽ l ⩽ r. Since A(BC) = AW , the entry in row i and column l

of matrix AW is given as follows:

(AW )il =
n∑

j=1
aijwjl =

n∑
j=1

aij

(
m∑

k=1

bjkckl

)
=

n∑
j=1

m∑
k=1

aijbjkckl (1.8)

for 1 ⩽ i ⩽ s and 1 ⩽ l ⩽ r. Because addition is associative and commutative, the
results in (1.7) and (1.8) should be the same. Hence the proof is completed.

1.4.2 Identity matrix and zero matrix

We define the identity matrix and the zero matrix as follows:

In =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 ∈ Rn×n, 0 =


0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 ∈ Rm×n.

Remark Throughout the book, we use the symbol In to denote the n × n identity
matrix. If there is no confusion, we sometimes use I to denote the identity matrix
with an appropriate size. Besides, we also use ei to denote the ith column matrix
of In, i.e.,

ei =
[

0 · · · 0 1 0 · · · 0
]T

.

↑
ith

Theorem 1.5 Let the sizes of the matrices be such that the indicated operations
can be performed. The following rules of matrix operations are valid.

(a) AI = A, IA = A.

(b) A + 0 = 0 + A = A.

(c) A0 = 0, 0A = 0.
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The proof of the theorem is trivial and we therefore omit it.

Example Let

A =

[
1 −1

−1 1

]
, B =

[
1 1
1 1

]
.

Then AB = 0 even if both A and B are nonzero matrices. Thus, if AB = 0 for
A ∈ Rm×n and B ∈ Rn×r, perhaps it does not follow that A = 0 or B = 0.

As the following theorem shows, the identity matrix is useful in studying reduced
row-echelon forms of square matrices. The proof of the theorem is left as an exercise.

Theorem 1.6 Let R be the reduced row-echelon form of a square matrix A. Then
either R has a row of zeros or R = I.

1.4.3 Inverse of a matrix

Definition Let A and B be square matrices of the same size such that

AB = BA = I.

Then B is called an inverse of A, denoted by B = A−1, and A is said to be
invertible. If no such B exists, then A is said to be not invertible.

Example Consider the matrices

A =

[
1 1
2 3

]
, B =

[
3 −1

−2 1

]
.

One can verify that B is an inverse of A since

AB =

[
1 1
2 3

][
3 −1

−2 1

]
=

[
1 0
0 1

]
= I

and

BA =

[
3 −1

−2 1

][
1 1
2 3

]
=

[
1 0
0 1

]
= I.

The next theorem shows that an invertible matrix has exactly one inverse.

Theorem 1.7 Let B and C be both inverses of the matrix A. Then B = C.

Proof Since B and C are both inverses of A, we have

AB = BA = I, AC = CA = I.
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From BA = I, multiplying both sides on the right by C yields

(BA)C = IC = C.

However, we obtain by Theorem 1.4 (c),

(BA)C = B(AC) = BI = B.

Thus, C = B.

For a 2 × 2 invertible matrix, the following theorem gives a formula for
constructing the inverse.

Theorem 1.8 The matrix

A =

[
a b

c d

]
is invertible if ad − bc ̸= 0. The inverse is given by the formula

A−1 = 1
ad − bc

[
d −b

−c a

]
=


d

ad − bc
− b

ad − bc

− c

ad − bc

a

ad − bc

 .

Proof Verify that AA−1 = I2 and A−1A = I2.

The following theorem is concerned with the invertibility of the product of
invertible matrices.

Theorem 1.9 Let A and B be n × n invertible matrices. Then AB is invertible
and

(AB)−1 = B−1A−1.

In general, (
A(1)A(2) · · · A(p)

)−1 = A−1
(p) · · · A−1

(2)A
−1
(1), (1.9)

where A(i) (1 ⩽ i ⩽ p) are n × n invertible matrices and p is any positive integer.

Proof Since A and B are invertible, we obtain by Theorem 1.4 (c),

(AB)(B−1A−1) = A(BB−1)A−1 = AA−1 = I

and
(B−1A−1)(AB) = B−1(A−1A)B = B−1B = I.
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Thus,

(AB)−1 = B−1A−1.

We are now going to prove the general case of (1.9) by using induction. When p = 2,
we have just proved that (1.9) is true. We assume that (1.9) is true for p = k − 1,
i.e., (

A(1)A(2) · · · A(k−1)
)−1 = A−1

(k−1) · · · A−1
(2)A

−1
(1). (1.10)

Considering the case of p = k, it follows from the case of p = 2 and (1.10) that(
A(1)A(2) · · · A(k−1)A(k)

)−1 =
[(

A(1)A(2) · · · A(k−1)
)
A(k)

]−1

= A−1
(k)
(
A(1)A(2) · · · A(k−1)

)−1 = A−1
(k)
(
A−1

(k−1) · · · A−1
(2)A

−1
(1)
)

= A−1
(k)A

−1
(k−1) · · · A−1

(2)A
−1
(1).

Therefore, (1.9) is true for any positive integer p.

The following theorem gives a relationship between the inverse of an invertible
matrix A and the inverse of AT .

Theorem 1.10 If A is invertible, then AT is also invertible and

(AT )−1 = (A−1)T .

Proof We have by using Theorem 1.2 (d),

AT (A−1)T = (A−1A)T = IT = I

and
(A−1)T AT = (AA−1)T = IT = I.

Thus, (AT )−1 = (A−1)T .

1.4.4 Powers of a matrix

Definition If A is square, then we define the powers of A for any integer n ⩾ 0,

A0 := I, An := AA · · · A︸ ︷︷ ︸
n

.

Moreover, if A is invertible, then

A−n := (A−1)n = A−1A−1 · · · A−1︸ ︷︷ ︸
n

.
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If r and s are integers, then it follows from the definition of powers that

ArAs = Ar+s, (Ar)s = Ars.

Theorem 1.11 If A is invertible, then

(a) A−1 is invertible and (A−1)−1 = A.

(b) An is invertible and (An)−1 = (A−1)n for any integer n ⩾ 0.

(c) For any scalar k ̸= 0, the matrix kA is invertible and (kA)−1 = 1
k

A−1.

The proof of the theorem is straightforward and we therefore omit it.

1.5 Elementary Matrices and a Method for Finding A−1

We develop an algorithm for finding the inverse of an invertible matrix in this section.

1.5.1 Elementary matrices and their properties

Definition An n × n elementary matrix can be obtained by performing a single
elementary row operation on In. The following are three types of elementary matrices.

(i) Interchange rows i and j of In:

E(i, j) =



1
. . .

1
0 · · · 1

1
... . . . ...

1
1 · · · 0

1
. . .

1



row i

row j

(ii) Multiply row i of In by c (c ̸= 0):
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E
(
i(c)
)

=



1
. . .

c

1
. . .

1


row i

(iii) Add k times row j to row i of In:

E
(
i, j(k)

)
=



1
. . .

1 · · · k
. . . ...

1
. . .

1



row i

row j

Remark A square matrix is called a permutation matrix if it can be written as
a product of elementary matrices of type (i).

When a matrix A is multiplied on the left by an elementary matrix E, the result is
to perform an elementary row operation on A. More precisely, we have the following
theorem.

Theorem 1.12 Let A be an m × n matrix. If the elementary matrix E results from
performing a certain row operation on Im, then the product EA is the matrix that
results when this same row operation is performed on A.

Proof We only prove the statement concerned with the elementary matrix E(i, j).
One can prove the statements concerned with E

(
i(c)
)

and E
(
i, j(k)

)
easily by using

the same trick. Let r1, r2, . . . , rm denote the row matrices of A and e1, e2, . . . , em

denote the column matrices of Im. It follows that

A =



r1
...
ri

...
rj

...
rm


, E(i, j) =



eT
1
...

eT
j
...

eT
i
...

eT
m


.
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Since eT
k A = rk for 1 ⩽ k ⩽ m, we have by (1.4),

E(i, j)A =



eT
1
...

eT
j
...

eT
i
...

eT
m


A =



eT
1 A
...

eT
j A
...

eT
i A
...

eT
mA


=



r1
...

rj

...
ri

...
rm


.

Hence E(i, j)A is a matrix that results when rows i and j of A are interchanged.

The following theorem is concerned with the invertibility of elementary matrices.
The proof of the theorem is left as an exercise.

Theorem 1.13 For three types of elementary matrices, we have

E(i, j)−1 = E(i, j), E
(
i(c)
)−1 = E

(
i(c−1)

)
, E

(
i, j(k)

)−1 = E
(
i, j(−k)

)
.

Remark It follows from Theorem 1.13 that the inverse of any elementary matrix
is still an elementary matrix.

1.5.2 Main theorem of invertibility

The next theorem establishes some equivalent statements of the invertibility of a
matrix. These results are extremely important and will be used many times later.

Theorem 1.14 Let A be an n × n matrix. Then the following statements are
equivalent, i.e., all true or all false.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row-echelon form of A is In.

(d) A is expressible as a product of elementary matrices.

Proof It is sufficient to prove that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a).

(a) ⇒ (b): Let x0 be any solution of Ax = 0, i.e., Ax0 = 0. Since A is invertible,
multiplying both sides of Ax0 = 0 by A−1, we have A−1Ax0 = A−10, which implies
Inx0 = 0. Thus, x0 = 0. Therefore, Ax = 0 has only the trivial solution.
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(b) ⇒ (c): Let R be the reduced row-echelon form of A. Then by Theorem 1.6,
R = In or R has a zero row. If R has a zero row, then it follows from Theorem
1.1 that Rx = 0 has infinitely many solutions, i.e., nontrivial solutions. Therefore,
Ax = 0 has nontrivial solutions, which contradicts (b). Thus, R = In.

(c) ⇒ (d): If the reduced row-echelon form of A is In, then there exist some
elementary matrices E(1), E(2), . . . , E(k) such that

E(k) · · · E(2)E(1)A = In. (1.11)

By Theorem 1.13, we know that every elementary matrix is invertible and the inverse
of an elementary matrix is still an elementary matrix. It follows from (1.11) and
Theorem 1.9 that

A = E−1
(1)E−1

(2) · · · E−1
(k).

Thus, (d) holds.

(d) ⇒ (a): It is obtained directly from Theorems 1.13 and 1.9.

1.5.3 A method for finding A−1

In the following, we establish a method for constructing the inverse of an n × n

invertible matrix A. Multiplying both sides of (1.11) on the right by A−1 yields

A−1 = E(k) · · · E(2)E(1),

where E(1), E(2), . . . , E(k) are elementary matrices. We next construct an n × 2n

matrix
[

A ¦ I
]
. We have by using (1.3),

E(k) · · · E(2)E(1)

[
A ¦ I

]
=
[

E(k) · · · E(2)E(1)A ¦ E(k) · · · E(2)E(1)I
]

=
[

I ¦ E(k) · · · E(2)E(1)

]
=
[

I ¦ A−1
]

.

Thus, the sequence of elementary row operations that reduces A to I actually
converts I to A−1 simultaneously.

Example Find the inverse of

A =


1 0 2

3 1 6

2 7 3

 .
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Solution The computations are as follows:

[
A ¦ I3

]
=

 1 0 2 ¦ 1 0 0
3 1 6 ¦ 0 1 0
2 7 3 ¦ 0 0 1


2nd row + (−3) × 1st row
3rd row + (−2) × 1st row−−−−−−−−−−−−−−−−−−→

 1 0 2 ¦ 1 0 0
0 1 0 ¦ −3 1 0
0 7 −1 ¦ −2 0 1


3rd row + (−7) × 2nd row−−−−−−−−−−−−−−−−−−→

 1 0 2 ¦ 1 0 0
0 1 0 ¦ −3 1 0
0 0 −1 ¦ 19 −7 1


(−1) × 3rd row−−−−−−−−−−−−−−−−−−→

 1 0 2 ¦ 1 0 0
0 1 0 ¦ −3 1 0
0 0 1 ¦ −19 7 −1


1st row + (−2) × 3rd row−−−−−−−−−−−−−−−−−−→

 1 0 0 ¦ 39 −14 2
0 1 0 ¦ −3 1 0
0 0 1 ¦ −19 7 −1

 =
[

I3 ¦ A−1
]

.

Thus,

A−1 =


39 −14 2

−3 1 0

−19 7 −1

 .

1.6 Further Results on Systems and Invertibility

We develop more results concerned with linear systems and invertibility of matrices
in this section.

1.6.1 A basic theorem

Theorem 1.15 Every linear system has either no solution, exactly one solution, or
infinitely many solutions.

Proof If Ax = b is a system of linear equations, then exactly one of the following
is true:

(a) the system has no solution;

(b) the system has exactly one solution;

(c) the system has more than one solution.
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The proof will be completed if we can show that the system has infinitely many
solutions in case (c). Assume that Ax = b has more than one solution, and let
x0 = x1 − x2, where x1 and x2 are any two distinct solutions. Therefore, x0 is
nonzero. Moreover,

Ax0 = A(x1 − x2) = Ax1 − Ax2 = b − b = 0.

Let k be any scalar. Then

A(x1 + kx0) = Ax1 + A(kx0) = Ax1 + k(Ax0) = b + k0 = b + 0 = b,

i.e., x1 + kx0 is a solution of Ax = b. Since x0 ̸= 0 and there are infinitely many
choices for k, we conclude that Ax = b has infinitely many solutions.

1.6.2 Properties of invertible matrices

From the definition of the inverse of an invertible matrix A, it is necessary to find a
square matrix B such that

AB = I, BA = I.

The next theorem shows that if B satisfies either condition, then the other condition
holds automatically.

Theorem 1.16 Let A be a square matrix.

(a) If B is square and satisfies BA = I, then B = A−1.

(b) If B is square and satisfies AB = I, then B = A−1.

Proof We only prove (a) and the proof of (b) is similar. We consider the system
Ax = 0 and show that this system only has the trivial solution. Let x0 be any
solution of this system, i.e., Ax0 = 0. Multiplying both sides by B yields

BAx0 = B0.

Since BA = I, we deduce

Ix0 = 0, i.e., x0 = 0.

Thus, the system Ax = 0 has only the trivial solution. It follows from Theorem 1.14
that A−1 exists. Multiplying both sides of BA = I on the right by A−1, we obtain

BA · A−1 = I · A−1 =⇒ B = A−1.
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Theorem1.17 Let A and B be square matrices of the same size. If AB is invertible,
then A and B must also be invertible.

Proof Since AB is invertible, there exists (AB)−1 such that

(AB)(AB)−1 = I =⇒ A[B(AB)−1] = I,

and
(AB)−1(AB) = I =⇒ [(AB)−1A]B = I.

By Theorem 1.16, both A and B are invertible.

Example Let A and B be square matrices of the same size. Show that if I − AB

is invertible, then I − BA is also invertible.

Proof By Theorem 1.16, we only need to find a matrix X such that (I −BA)X = I.
Actually,

I = I − BA + BA = I − BA + BIA

= I − BA + B(I − AB)(I − AB)−1A

= I − BA + (B − BAB)(I − AB)−1A

= I − BA + (I − BA)B(I − AB)−1A

= (I − BA)[I + B(I − AB)−1A].

Thus, I − BA is invertible and

(I − BA)−1 = I + B(I − AB)−1A.

The following theorem shows that we can solve a certain linear system by using
the inverse of its coefficient matrix.

Theorem 1.18 Let A be an invertible n × n matrix. Then for each n × 1 matrix
b, the system Ax = b has exactly one solution, namely, x = A−1b.

Proof Since A is invertible, there exists A−1. For each n × 1 matrix b, let x0 be
an arbitrary solution of Ax = b, i.e., Ax0 = b. Multiplying both sides of Ax0 = b
by A−1, we have

A−1Ax0 = A−1b.

Thus, x0 = A−1b is the only solution of Ax = b.

Furthermore, we add two more equivalent statements into Theorem 1.14.

Theorem 1.19 Let A be an n × n matrix. Then the following are equivalent.
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(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row-echelon form of A is In.

(d) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

(f) Ax = b has exactly one solution for every n × 1 matrix b.

Proof Since we know that (a), (b), (c), and (d) are equivalent, it is sufficient to
prove that (a) ⇒ (f) ⇒ (e) ⇒ (a).

(a) ⇒ (f): This was proved in Theorem 1.18.

(f) ⇒ (e): This is self-evident.

(e) ⇒ (a): If the system Ax = b is consistent for every n × 1 matrix b, then in
particular, the systems

Ax = e1, Ax = e2, . . . , Ax = en

are consistent, where ei denotes the ith column matrix of In for 1 ⩽ i ⩽ n. Let
x1, x2, . . . , xn be solutions of the respective systems, and let us form an n×n matrix
C having these solutions as columns:

C =
[

x1 ¦ x2 ¦ · · · ¦ xn

]
.

Then we have by (1.3),

AC =
[

Ax1 ¦ Ax2 ¦ · · · ¦ Axn

]
=
[

e1 ¦ e2 ¦ · · · ¦ en

]
= In.

It follows from Theorem 1.16 (b) that C = A−1. Thus, A is invertible.

1.7 Some Special Matrices

Certain classes of matrices have special structures, which are useful in linear algebra
and also have many applications in practice.
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1.7.1 Diagonal and triangular matrices

The following square matrix is called a diagonal matrix:

D =


d11 0 · · · 0
0 d22 · · · 0
...

... . . . ...
0 0 · · · dnn

 ,

which is usually denoted by

D = diag(d11, d22, . . . , dnn).

If dii ̸= 0 for 1 ⩽ i ⩽ n, then

D−1 =


d−1

11 0 · · · 0
0 d−1

22 · · · 0
...

... . . . ...
0 0 · · · d−1

nn

 = diag(d−1
11 , d−1

22 , . . . , d−1
nn).

The following square matrices are called triangular matrices: a lower triangular
matrix

L =


a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0
...

...
... . . . ...

an1 an2 an3 · · · ann

 (aij = 0, i < j)

and an upper triangular matrix

U =


a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n

...
...

... . . . ...
0 0 0 · · · ann

 (aij = 0, i > j).

Theorem 1.20 We have

(a) The transpose of a lower triangular matrix is upper triangular, and the
transpose of an upper triangular matrix is lower triangular.

(b) The product of lower triangular matrices is lower triangular, and the product
of upper triangular matrices is upper triangular.
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(c) A triangular matrix is invertible if and only if its diagonal entries are all
nonzero.

(d) The inverse of an invertible lower triangular matrix is lower triangular, and
the inverse of an invertible upper triangular matrix is upper triangular.

Proof Part (a) is obvious. We defer the proof of (c) until the next chapter (after
Theorem 2.8). Here we prove (b) and (d) only.

For (b), we will prove the result for lower triangular matrices. The proof for upper
triangular matrices is similar. Let A = [aij ] and B = [bij ] be lower triangular n × n

matrices, and let C = AB = [cij ]. Obviously, aij = bij = 0 for i < j. We can prove
that C is lower triangular by showing that cij = 0 for i < j. If i < j, then the terms
in the expression of cij can be grouped as follows:

cij = ai1b1j + ai2b2j + · · · + ai,j−1bj−1,j︸ ︷︷ ︸
Terms in which the row
number of b is less than
the column number of b

+ aijbjj + ai,j+1bj+1,j + · · · + ainbnj︸ ︷︷ ︸
Terms in which the row
number of a is less than
the column number of a

.

In the first grouping all of the b factors are zero since bij = 0 for i < j, and in the
second grouping all of the a factors are zero since aij = 0 for i < j. Thus, cij = 0
for i < j. It follows that C is a lower triangular matrix.

For (d), we only prove the result for lower triangular matrices again. Let A = [aij ]
be an invertible lower triangular n × n matrix, where aij = 0 for i < j. From (c),
we know that aii ̸= 0 for all i. Suppose that B = [bij ] is the inverse of A. Then

AB = I. (1.12)

We now compare the entries in both sides of (1.12) row by row. Beginning with the
first row, we have for j > 1,

0 = (I)1j = a11b1j + a12b2j + · · · + a1nbnj = a11b1j + 0 · b2j + · · · + 0 · bnj = a11b1j ,

which implies b1j = 0. For the second row, we have for j > 2,

0 = (I)2j =
n∑

t=1
a2tbtj = a21b1j + a22b2j = a22b2j =⇒ b2j = 0.

By induction, we suppose that for the top k − 1 rows, bij = 0 if i < j and i < k < n.
For the kth row, we have for j > k,

0 = (I)kj =
n∑

t=1
aktbtj =

k∑
t=1

aktbtj = akkbkj =⇒ bkj = 0.

In particular, bn−1,n = 0. Therefore, B is also a lower triangular matrix.
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1.7.2 Symmetric matrix

A square matrix A is called symmetric if A = AT . A square matrix A is called
skew-symmetric if A = −AT .

Example Consider the matrices

A =

[
1 3
3 2

]
, B =

 2 0 1
0 5 −2
1 −2 7

 , C =

 0 −1 4
1 0 3

−4 −3 0

 .

Then A and B are symmetric and C is skew-symmetric since

AT =

[
1 3
3 2

]
= A, BT =

 2 0 1
0 5 −2
1 −2 7

 = B, CT =

 0 1 −4
−1 0 −3

4 3 0

 = −C.

Theorem 1.21 Let A and B be symmetric matrices of the same size. Then

(a) AT is symmetric.

(b) A ± B are symmetric.

(c) kA is symmetric, where k is any scalar.

(d) AB is symmetric if and only if AB = BA.

(e) If A is invertible, then A−1 is symmetric.

Proof Parts (a), (b), and (c) are obvious. Here we only prove (d) and (e).

For (d), since A and B are symmetric, it follows from Theorem 1.2 (d) that

AB = (AB)T ⇐⇒ AB = BT AT ⇐⇒ AB = BA.

For (e), if A is invertible and symmetric, then we have by Theorem 1.10,

(A−1)T = (AT )−1 = A−1.

Thus, A−1 is symmetric.

Theorem 1.22 Let A be an arbitrary matrix. Then AAT and AT A are symmetric.
Furthermore, if A is square and invertible, then both AAT and AT A are symmetric
and invertible.
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Proof It directly follows from Theorem 1.2 (d) and (a) that

(AAT )T = (AT )T AT = AAT and (AT A)T = AT (AT )T = AT A.

If A is square and invertible, it follows from Theorem 1.10 that AT is also invertible.
By Theorem 1.9, we find that AAT and AT A are invertible.

Remark Every square matrix can be written as a sum of a symmetric matrix and
a skew-symmetric matrix. This is one of the most famous results in matrix theory.
See Exercise 1.35.

Exercises

Elementary exercises

1.1 Determine which equations are linear in variables x, y, and z. If an equation
is not linear, explain why not.

(a) x − πy + 3
√

5z = 0. (b) x2 + y2 + z2 = 1.

(c) x−1 + 7y + z = sin(π/9). (d) 3 cos x − 4y + z =
√

3.

(e) (cos 3)x − 4y + z =
√

3. (f) x = −7xy + 3z.

(g) xy + z + 1 = 0. (h) x−2 + y + 8z = 5.

1.2 Determine whether each system has a unique solution, infinitely many solutions,
or no solution. Then try to solve each system to confirm your answer.

(a)

{
x + y = 0

2x + y = 3.
(b)


x + 5y = −1

−x + y = −5

2x + 4y = 4.

1.3 Find the augmented and coefficient matrices for each of the following linear
systems.

(a)


2x − 3y + 5 = 0

4x + 2y − 2 = 0

3x + 5z + 3 = 0.

(b)


5x1 + x2 − x4 + 2x5 = 1

3x2 + 2x3 − x4 = 3

5x1 + 3x5 = 2.

1.4 Consider 
x + y + 3z = a

2x − y + 2z = b

x − 2y − z = c.

Show that if this system is consistent, then the constants a, b, and c must satisfy
c = b − a.
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1.5 For which values of a, will the following system have no solution? Exactly one
solution? Infinitely many solutions?

x + 2y − 3z = 5

3x − y + 5z = 1

4x + y + (a2 − 14)z = a + 2.

1.6 Determine whether each matrix is in reduced row-echelon form.

(a)

[
0 1 3 0
0 0 0 1

]
. (b)


1 1 3 5
0 0 1 −1
0 0 0 1
0 0 0 0

 . (c)


1 2 3
1 0 0
0 1 1
0 0 1

 .

1.7 Solve the following systems by Gauss-Jordan elimination.

(a)


2x − y + 2z = 10

x − 2y + z = 8

3x − y + 2z = 11.

(b)
{

5x − 2y + 6z = 0

−2x + y + 3z = 1.

(c)



x1 + 2x2 + 3x3 + 4x4 = −3

x1 + 2x2 − 5x4 = 1

2x1 + 4x2 − 3x3 − 19x4 = 6

3x1 + 6x2 − 3x3 − 24x4 = 7.

(d)



2x1 + 4x2 + 8x4 + 6x5 + 18x6 − 16 = 0

x1 + 2x2 − 2x3 + 3x5 = 0

5x3 + 10x4 + 15x6 − 5 = 0

−2x1 − 4x2 + 5x3 + 2x4 − 6x5 + 3x6 − 1 = 0.

1.8 Let

A =

[
0 1

−1 0

]
, B =

[
1 0
0 1

]
, C =

[
1 1
1 1

]
.

(a) Is M =

[
1 4
2 1

]
a linear combination of A, B, and C?

(b) Is N =

[
1 2
3 4

]
a linear combination of A, B, and C?
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1.9 Let A ∈ R4×5, B ∈ R4×5, C ∈ R5×2, D ∈ R4×2, and E ∈ R5×4. Determine
which of the following matrix operations can be performed. If so, find the size of
each resulting matrix.

(a) E(A + B). (b) AE + BC + D. (c) B(EA).

1.10 Find AB and BA, where

A =
[

1 3 2
]

, B =

 2
−1

1

 .

1.11 Let A, B, and C be square matrices of the same size. Find an example to
show that AB = AC but B ̸= C.

1.12 Compute A = (6E)
(

1
3

D

)
, where

D =

 1 5 2
3 2 4

−1 0 1

 , E =

 −1 1 2
6 1 3
4 1 3

 .

1.13 Let

C =

[
1 4 2
3 1 5

]
, D =

 1 5 2
−1 0 1

3 2 4

 , E =

 6 1 3
−1 1 2

4 1 3

 .

Using as few computations as possible, compute

(a) The second row of DE.

(b) The third column of DE.

(c) The entry in row 2 and column 3 of C(DE).

1.14 In each part, compute the product of A and B by the method of product
of partitioned matrices in Subsection 1.3.4. Then check your results by multiplying
AB directly.

(a) A =

 −1 2 ¦ 1 5
0 −3 ¦ 4 2

− − − − − − −−
1 5 ¦ 6 1

 , B =


2 1 ¦ 4

−3 5 ¦ 2
− − − − −−

7 −1 ¦ 5
0 3 ¦ −3

 .
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(b) A =

 −1 2 1 ¦ 5
− − − − − − −−

0 −3 4 ¦ 2
1 5 6 ¦ 1

 , B =


2 1 ¦ 4

−3 5 ¦ 2
7 −1 ¦ 5

− − − − −−
0 3 ¦ −3

 .

(c) A =


2 −5
1 3
0 5
− − −
1 4

 , B =

[
2 −1 3 −4
0 1 5 7

]
.

1.15 Let A and B be partitioned as follows:

A =
[

a1 ¦ a2 ¦ · · · ¦ an

]
, B =


b1
−−
b2
−−...
−−
bn

 ,

where ai (1 ⩽ i ⩽ n) are column matrices of A and bi (1 ⩽ i ⩽ n) are row matrices
of B. Then AB can be expressed as

AB = a1b1 + a2b2 + · · · + anbn. (1.13)

Based on (1.13), compute AB if

A =

[
1 3 2
0 −1 1

]
, B =

 4 −1
1 2
3 0

 .

1.16 Let A = [aij ] ∈ Rn×n. Find two n×1 matrices x and y such that xT Ay = aij ,
where 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ n.

1.17 Let

A =

 3 −2 7
6 5 4
0 4 9

 , B =

 6 −2 4
0 1 3
7 7 5

 .

Compute
(a) tr(3A − 5BT ). (b) tr(A2). (c) tr(AB).

1.18 Show that tr(AAT ) = 0 if and only if A = 0.

1.19 What is MT for the partitioned matrix

M =

[
A B

C D

]
?
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1.20 Prove Theorem 1.4 except (c).

1.21 Prove Theorem 1.6.

1.22 Use Theorem 1.8 to compute the inverses of the following matrices.

(a) A =

[
3 1
5 2

]
. (b) B =

[
cos θ sin θ

− sin θ cos θ

]
.

1.23 Find

 1 0 1
0 1 0
0 0 1


n

, where n is any positive integer.

1.24 Let A be a square matrix. Show that if A2 = A and A is invertible, then
A = I.

1.25 Let A be a square matrix. Show that if A4 = 0, then

(I − A)−1 = I + A + A2 + A3.

1.26 Let A be a square matrix. Show that if A2 − 3A + 4I = 0, then A + I is
invertible. Find (A + I)−1.

1.27 Let A, B ∈ Rn×n. Show that if A is invertible and AB = 0, then B = 0.

1.28 Show that P T = P −1 for any permutation matrix P .

1.29 Let A be a square matrix and partitioned as

A =

[
A11 A12

A21 A22

]
,

where A11 and A22 are square matrices. Find a permutation matrix P such that
P T AP = B, where

B =

[
A22 A21

A12 A11

]
.

1.30 Prove Theorem 1.13.

1.31 Express each of the following matrices as a product of elementary matrices.

(a)

[
1 0

−3 2

]
. (b)


0 0 0 1
0 1 0 0
0 0 2 0
1 0 0 0

 .
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1.32 Find the inverses of the following matrices.

(a)

 1 2 0
−1 2 3

1 3 1

 . (b)


1 2 3 4
1 3 1 3
0 1 0 2
1 2 2 2

 .

1.33 Find a matrix A such that[
2 5
1 3

]
A =

[
4 −6
3 1

]
.

1.34 Let A, B ∈ Rn×n. Show that tr(AB) = 0 if A is symmetric and B is skew-
symmetric.

1.35 Let A ∈ Rn×n. Show that A can be written as A = H + K, where H is a
symmetric matrix and K is a skew-symmetric matrix.

Challenge exercises

1.36 Determine the value of λ such that the following linear system has only the
trivial solution. 

λx1 + x2 + x3 = 0

x1 + λx2 + x3 = 0

x1 + x2 + x3 = 0.

1.37 Let A, B ∈ Rn×n. If AB = 0, show that for any positive integer k,

tr[(A + B)k] = tr(Ak) + tr(Bk).

1.38 Show that if A, B, C, D ∈ Rn×n such that ABCD = I, then

ABCD = DABC = CDAB = BCDA = I.

1.39 Find the inverses of the following matrices.

(a)


1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
... . . . ...

1 2 3 · · · n

 . (b)



0 1 1 · · · 1 1
1 0 1 · · · 1 1
1 1 0 · · · 1 1
...

...
... . . . ...

...
1 1 1 · · · 0 1
1 1 1 · · · 1 0


.
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1.40 Find the inverse of the 3 × 3 Vandermonde matrix 1 1 1
a b c

a2 b2 c2

 ,

where a, b, and c are distinct scalars from each other.

1.41 Let A, B, C, X, Y, Z ∈ Rn×n. If A−1 and C−1 exist, find

(a)

[
A B

0 C

]−1

. (b)

 I X Y

0 I Z

0 0 I


−1

.

1.42 Let A, B ∈ Rn×n. Show that if A + B is invertible, then

A(A + B)−1B = B(A + B)−1A.

1.43 Let A ∈ Rn×n. Show that if AB = BA for all B ∈ Rn×n, then A = cI, where
c is a scalar.

1.44 Let A be a skew-symmetric matrix. Show that

(a) I − A is invertible.

(b) (I − A)−1(I + A) = (I + A)(I − A)−1.

(c) MT M = I, where M = (I − A)−1(I + A).

(d) I + M is invertible.

1.45 Let A, B ∈ Rn×n. Show that if A3 = 2I and B = A3 − 2A + 3I, then B is
invertible. Find B−1.



Chapter 2

Determinants

“The purpose of computation is insight, not numbers.”
— Richard Hamming

In this chapter, we introduce the determinant of any square matrix, which actually
is a function f defined on Rn×n in the sense that it associates a number f(A) ∈ R
with any A ∈ Rn×n. We then study some fundamental properties of determinant
functions and discuss their applications to linear systems and matrices.

2.1 Determinant Function

We begin with the following definitions before we introduce the determinant function.

2.1.1 Permutation, inversion, and elementary product

Definition A permutation of the set {1, 2, . . . , n}, denoted by (j1, j2, . . . , jn), is
an arrangement of {1, 2, . . . , n} in some order without omissions or repetitions. An
inversion is said to occur in a permutation (j1, j2, . . . , jn) whenever a larger integer
precedes a smaller one.

Remark A permutation is called even if the total number of inversions is an even
integer and is called odd if the total number of inversions is an odd integer. For
instance, the number of inversions in (2, 4, 3, 1) is 4 and therefore it is an even
permutation. The number of inversions in (4, 2, 3, 1) is 5 and therefore it is an odd
permutation.

Definition An elementary product from an n × n matrix A = [aij ] means any
product of n entries from A, no two of which come from the same row or column,
i.e.,

ai1j1ai2j2 · · · ainjn ,

where (i1, i2, . . . , in) and (j1, j2, . . . , jn) are permutations of the set {1, 2, . . . , n}. A
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signed elementary product from A is defined by

(−1)τ(i1,i2,...,in)+τ(j1,j2,...,jn)ai1j1ai2j2 · · · ainjn
, (2.1)

where τ(i1, i2, . . . , in) and τ(j1, j2, . . . , jn) denote the number of inversions in
(i1, i2, . . . , in) and (j1, j2, . . . , jn), respectively.

In fact, an n × n matrix A has n · (n − 1) · · · 2 · 1 = n! elementary products. Note
that if the positions of any two elements in ai1j1ai2j2 · · · ainjn are exchanged, the
sign in front of (2.1) keeps unchanged. For instance, consider the following signed
elementary product

(−1)τ(i1,...,ip,ip+1,...,in)+τ(j1,...,jp,jp+1,...,jn)ai1j1 · · · aipjp
aip+1jp+1 · · · ainjn

. (2.2)

If the positions of aipjp
and aip+1jp+1 are exchanged, then

(−1)τ(i1,...,ip+1,ip,...,in)+τ(j1,...,jp+1,jp,...,jn)ai1j1 · · · aip+1jp+1aipjp
· · · ainjn

= (−1)τ(i1,...,ip,ip+1,...,in)±1+τ(j1,...,jp,jp+1,...,jn)±1ai1j1 · · · aip+1jp+1aipjp
· · · ainjn

= (−1)τ(i1,...,ip,ip+1,...,in)+τ(j1,...,jp,jp+1,...,jn)ai1j1 · · · aip+1jp+1aipjp
· · · ainjn

. (2.3)

Comparing (2.3) with (2.2) shows that they are equal. Thus, we can rearrange
the order of ai1j1ai2j2 . . . ainjn in (2.1) such that the permutation of row indexes is
(1, 2, . . . , n). It follows that (2.1) can be rewritten as

(−1)τ(1,2,...,n)+τ(j′
1,j′

2,...,j′
n)a1j′

1
a2j′

2
· · · anj′

n
= (−1)τ(j′

1,j′
2,...,j′

n)a1j′
1
a2j′

2
· · · anj′

n
.

For simplicity, later we usually use

(−1)τ(j1,j2,...,jn)a1j1a2j2 · · · anjn .

Example We list all signed elementary products from the matrix a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Elementary
Product

Associated
Permutation

Even or Odd
Signed

Elementary
Product

a11a22a33 (1, 2, 3) even a11a22a33

a11a23a32 (1, 3, 2) odd −a11a23a32

a12a21a33 (2, 1, 3) odd −a12a21a33

a12a23a31 (2, 3, 1) even a12a23a31

a13a21a32 (3, 1, 2) even a13a21a32

a13a22a31 (3, 2, 1) odd −a13a22a31
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2.1.2 Definition of determinant function

We are now in a position to define the determinant function.

Definition Let A be a square matrix. The determinant function is defined to be
the sum of all signed elementary products from A. This function (number), denoted
by det(A), is called the determinant of A usually.

More precisely, let A = [aij ] ∈ Rn×n, we have

det(A) :=
∑

(−1)τ(j1,j2,...,jn)a1j1a2j2 · · · anjn
=
∑

±a1j1a2j2 · · · anjn
. (2.4)

Here
∑

indicates that the terms are summed over all permutations (j1, j2, . . . , jn).

Example We obtain

det
[

a11 a12

a21 a22

]
= a11a22 − a12a21

and

det

 a11 a12 a13

a21 a22 a23

a31 a32 a33

= a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a12a21a33 − a13a22a31.

2.2 Evaluation of Determinants

In this section, we show that determinants can be evaluated by using row (or column)
reduction.

2.2.1 Elementary theorems

Theorem 2.1 Let A = [aij ] be an n × n matrix. Then

(a) det(A) = 0 if A has a zero row (or column).

(b) det(A) = det(AT ).

(c) det(A) = a11a22 · · · ann if A is a triangular matrix.

Proof We only need to prove (b). The proofs of (a) and (c) are left as an exercise.
For a general term in det(A), we have by (2.1),

(−1)τ(i1,i2,...,in)+τ(j1,j2,...,jn)ai1j1ai2j2 · · · ainjn .

It can be written as
(−1)τ(j′

1,j′
2,...,j′

n)a1j′
1
a2j′

2
· · · anj′

n
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and also as
(−1)τ(i′

1,i′
2,...,i′

n)ai′
11ai′

22 · · · ai′
nn.

Thus,

det(A) =
∑

(−1)τ(i1,i2,...,in)+τ(j1,j2,...,jn)ai1j1ai2j2 · · · ainjn

=
∑

(−1)τ(j′
1,j′

2,...,j′
n)a1j′

1
a2j′

2
· · · anj′

n

=
∑

(−1)τ(i′
1,i′

2,...,i′
n)ai′

11ai′
22 · · · ai′

nn

=
∑

(−1)τ(i′
1,i′

2,...,i′
n)(AT )1i′

1
(AT )2i′

2
· · · (AT )ni′

n

= det(AT ).

Remark Part (c) in Theorem 2.1 shows that it is easy for us to evaluate the
determinant of a triangular matrix regardless of its size. A method proposed later
for evaluating determinants is to reduce a given matrix to be a triangular matrix.

Since det(A) = det(AT ), nearly every statement about determinants that
contains rows is also true when rows are replaced by columns.

Theorem 2.2 Let A be an n × n matrix.

(a) If B is resulted when a single row (or column) of A is multiplied by any scalar
k, then

det(B) = k · det(A).

(b) If B is resulted when two rows (or columns) of A are interchanged, then

det(B) = −det(A).

(c) If A has two same rows (or columns), then det(A) = 0.

(d) If A has two proportional rows (or columns), then det(A) = 0.

(e) If B is the matrix that results when a multiple of one row (or column) of A is
added to another row (or column), then det(B) = det(A).

Proof The proofs of (a), (c), (d), and (e) are left as an exercise. Here we only prove
(b). For simplicity, we first assume that B is resulted when the first row of A is
interchanged with the second row of A. Then

det(B) =
∑

(−1)τ(i1,i2,...,in)b1i1b2i2b3i3 · · · bnin
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=
∑

(−1)τ(i1,i2,...,in)a2i1a1i2a3i3 · · · anin

=
∑

(−1)τ(i1,i2,...,in)a1i2a2i1a3i3 · · · anin

=
∑

(−1)τ(i2,i1,...,in)±1a1i2a2i1a3i3 · · · anin

= −
∑

(−1)τ(j1,j2,...,jn)a1j1a2j2a3j3 · · · anjn

= −det(A).

Similarly, one can prove that (b) still holds if B is resulted from interchanging any
other two rows of A.

2.2.2 A method for evaluating determinants

Based on Theorems 2.1 and 2.2, the row (or column) reduction actually gives us
a method to evaluate determinants by reducing the given matrix to a triangular
matrix which can be computed easily. Here is an example.

Example Evaluate the determinant of

A =


1 2 0 3
0 0 2 2
0 3 7 6
3 6 0 5

 .

Interchanging row 2 with row 3 and then adding (−3)× row 1 to row 4, we have

det(A) = −det


1 2 0 3
0 3 7 6
0 0 2 2
3 6 0 5

 = −det


1 2 0 3
0 3 7 6
0 0 2 2
0 0 0 −4

 = 24.

2.3 Properties of Determinants

We develop some essential properties of determinants in this section. We will show
that if A and B are square matrices of the same size, then

det(AB) = det(A)det(B).

Specially, a determinant test for the invertibility of a matrix is given.
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2.3.1 Basic properties

Let A and B be n × n matrices and k ∈ R. We consider possible relationships
between det(A), det(B), and

det(kA), det(A + B), det(AB).

Theorem 2.3 Let A = [aij ] be an n × n matrix and k be any scalar. We have

det(kA) = kn · det(A).

Proof By noting that kA = [kaij ], it follows from (2.4) that

det(kA) =
∑

±ka1j1ka2j2 · · · kanjn
= kn

∑
±a1j1a2j2 · · · anjn

= kn · det(A).

Usually, det(A + B) ̸= det(A) + det(B). For instance, if A = B = I2, then

4 = det

([
1 0
0 1

]
+

[
1 0
0 1

])
̸= det

[
1 0
0 1

]
+ det

[
1 0
0 1

]
= 1 + 1 = 2.

However, we have the following theorem.

Theorem 2.4 Let A, B, and C be n×n matrices that differ only in a single row, say
the rth row. Assume that the rth row of C can be obtained by adding corresponding
entries in the rth rows of A and B. Then

det(C) = det(A) + det(B).

The same result holds for columns.

Proof Let A = [aij ], B = [bij ], and C = [cij ]. We assume that{
cij = aij = bij if i ̸= r;

crj = arj + brj if i = r.

It follows from (2.4) that

det(C) =
∑

±c1j1c2j2 · · · crjr · · · cnjn

=
∑

±c1j1c2j2 · · · (arjr + brjr ) · · · cnjn

=
∑

±c1j1c2j2 · · · arjr
· · · cnjn

+
∑

±c1j1c2j2 · · · brjr
· · · cnjn

=
∑

±a1j1a2j2 · · · arjr
· · · anjn

+
∑

±b1j1b2j2 · · · brjr
· · · bnjn

= det(A) + det(B).
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Remark By using Theorem 2.4 and Theorem 2.2 (d), one can prove Theorem 2.2
(e) easily.

2.3.2 Determinant of a matrix product

Let A and B be square matrices of the same size. We are now going to show that

det(AB) = det(A)det(B).

Lemma 2.1 Let k be any scalar. For three types of elementary matrices, we have

(a) det
(
E(i(k))

)
= k.

(b) det
(
E(i, j)

)
= −1.

(c) det
(
E(i, j(k))

)
= 1.

Proof It follows from Theorem 2.1 (c) that (a) and (c) are true.

For (b), we first note that det(I) = 1 by Theorem 2.1 (c) again. It follows from
Theorem 2.2 (b) that

det
(
E(i, j)

)
= −det(I) = −1.

Lemma 2.2 Let B be an n × n matrix and E be an n × n elementary matrix. Then

det(EB) = det(E)det(B).

Proof We consider three types of elementary matrices E
(
i(k)

)
, E(i, j), and

E
(
i, j(k)

)
. If E = E

(
i(k)

)
, then by Theorem 1.12, E

(
i(k)

)
B results from multiplying

the ith row of B by k. It follows from Theorem 2.2 (a) that

det
(
E(i(k))B

)
= k · det(B).

But from Lemma 2.1 (a), we have det
(
E(i(k))

)
= k. Thus,

det
(
E(i(k))B

)
= det

(
E(i(k))

)
det(B).

The proofs of the other two cases are similar to that of E
(
i(k)

)
.

Remark It follows by repeated applications of Lemma 2.2 that if B is an n × n

matrix and E(1), E(2), . . . , E(r) are n × n elementary matrices, then

det
(
E(r) · · · E(2)E(1)B

)
= det

(
E(r)

)
· · · det

(
E(2)

)
det
(
E(1)

)
det(B). (2.5)

The next theorem gives a determinant test for the invertibility of a matrix.
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Theorem 2.5 A square matrix A is invertible if and only if det(A) ̸= 0.

Proof Let E(1), E(2), . . . , E(r) be the elementary matrices that correspond to the
elementary row operations that produce the reduced row-echelon form R of A, i.e.,

R = E(r) · · · E(2)E(1)A.

We deduce by (2.5),

det(R) = det
(
E(r)

)
· · · det

(
E(2)

)
det
(
E(1)

)
det(A). (2.6)

But from Lemma 2.1 the determinants of elementary matrices are all nonzero. It
follows from (2.6) that det(A) ̸= 0 if and only if det(R) ̸= 0.

If A is invertible, then by Theorem 1.19 we have R = I, so det(R) = 1 ̸= 0 and
consequently det(A) ̸= 0. Conversely, if det(A) ̸= 0, then det(R) ̸= 0, so R cannot
have a row of zeros. It follows from Theorem 1.6 that R = I and therefore A is
invertible by Theorem 1.19 again.

Theorem 2.6 Let A and B be square matrices of the same size. Then

det(AB) = det(A)det(B).

Proof Let R be the reduced row-echelon form of A. Then

R = E(r)E(r−1) · · · E(2)E(1)A, (2.7)

where E(1), E(2), . . . , E(r−1), E(r) are the elementary matrices that correspond to the
elementary row operations that produce R from A. It follows from Theorem 1.6 that
R has a zero row or R = I. We have by (2.7),

A = E−1
(1)E−1

(2) · · · E−1
(r−1)E

−1
(r)R,

where E−1
(1) , E−1

(2) , . . . , E−1
(r−1), E−1

(r) are still elementary matrices. Moreover,

AB = E−1
(1)E−1

(2) · · · E−1
(r−1)E

−1
(r)RB,

where either RB has a zero row if R has a zero row or RB = B if R = I.

If R has a zero row, then det(A) = 0 and also det(RB) = 0. Thus, we obtain by
(2.5),

det(AB) = det
(
E−1

(1)E−1
(2) · · · E−1

(r−1)E
−1
(r)RB

)
= det

(
E−1

(1)
)
det
(
E−1

(2)
)

· · · det
(
E−1

(r−1)
)
det
(
E−1

(r)
)
det(RB)

= 0 = det(A)det(B).
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If R = I, then we deduce by (2.5) again,

det(AB) = det
(
E−1

(1)E−1
(2) · · · E−1

(r−1)E
−1
(r)B

)
= det

(
E−1

(1)
)
det
(
E−1

(2)
)

· · · det
(
E−1

(r−1)
)
det
(
E−1

(r)
)
det(B)

= det
(
E−1

(1)E−1
(2) · · · E−1

(r−1)E
−1
(r)
)
det(B) = det(A)det(B).

Remark The proof of Theorem 1.17 can be given easily by using Theorems 2.5
and 2.6.

Theorem 2.7 If A is invertible, then

det(A−1) = 1
det(A)

.

Proof Since A−1A = I, it follows from Theorem 2.6 that

det(A−1)det(A) = det(A−1A) = det(I) = 1.

Thus, the result holds.

2.3.3 Summary

We conclude this section by the following theorem that relates all of the major topics
we have studied so far.

Theorem 2.8 Let A be an n × n matrix. Then the following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row-echelon form of A is In.

(d) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

(f) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) ̸= 0.

Remark We now prove Theorem 1.20 (c). Let A = [aij ] ∈ Rn×n be a triangular
matrix with diagonal entries a11, a22, . . . , ann. From Theorem 2.1 (c) and Theorem
2.8, the matrix A is invertible if and only if

det(A) = a11a22 · · · ann ̸= 0,

which is true if and only if the diagonal entries are all nonzero.
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2.4 Cofactor Expansions and Cramer’s Rule

We introduce a method for evaluating determinants which is useful from a theoretical
viewpoint. As a consequence of the method here, we obtain a formula in terms of
determinants for the solution to a certain linear system with a square coefficient
matrix.

2.4.1 Cofactors

Definition Let A = [aij ] be a square matrix. Then the minor of entry aij, denoted
by Mij, is defined to be the determinant of the submatrix that remains after the ith
row and jth column are deleted from A. The number

Cij := (−1)i+jMij

is called the cofactor of aij.

Example Consider the following matrix

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Then the cofactors C11 and C12 are given as follows:

C11 = (−1)1+1M11 = det

[
a22 a23

a32 a33

]
= a22a33 − a23a32

and

C12 = (−1)1+2M12 = −det

[
a21 a23

a31 a33

]
= a23a31 − a21a33.

2.4.2 Cofactor expansions

Now, we introduce the method of cofactor expansions for evaluating determinants.

Theorem 2.9 The determinant of an n × n matrix A = [aij ] can be evaluated by
multiplying the entries in any row (or column) by their cofactors and adding the
resulting products. More precisely, for each 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ n,

det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin

(cofactor expansion along the ith row)

and

det(A) = a1jC1j + a2jC2j + · · · + anjCnj .

(cofactor expansion along the jth column)
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We omit the proof of Theorem 2.9. For readers who are interested in the proof, we
refer to [19, pp. 72–76] and [10, pp. 236–237].

Example 1 Let

A =

 2 1 0
−1 −3 2

4 3 −1

 .

Evaluate det(A) by cofactor expansion along the first row:

det(A) = 2 · det

[
−3 2

3 −1

]
− 1 · det

[
−1 2

4 −1

]
+ 0 · det

[
−1 −3

4 3

]
= 2 × (−3) − 1 × (−7) + 0 = 1.

This agrees with the result obtained directly by using the definition of determinants.

Example 2 Let

A =


0 2 0 · · · 0
0 0 3 · · · 0
...

...
... . . . ...

0 0 0 · · · n

1 0 0 · · · 0

 ∈ Rn×n,

where n ⩾ 3. One can easily obtain

det(A) = (−1)n+1n!

by using Theorem 2.9 (cofactor expansion along the first column).

Example 3 Let

A =



x y 0 · · · 0 0
0 x y · · · 0 0
0 0 x · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · x y

y 0 0 · · · 0 x


∈ Rn×n,

where n ⩾ 3. It follows from Theorem 2.9 again (cofactor expansion along the first
column) that

det(A) = xn + (−1)n+1yn.
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2.4.3 Adjoint of a matrix

Let A = [aij ] ∈ Rn×n and Cij be the cofactor of aij . We first show that for p ̸= q,

ap1Cq1 + ap2Cq2 + · · · + apnCqn = 0. (2.8)

We now construct a new matrix B = [bij ], in which all the rows of B are the same
as those in A except the qth row which is replaced by the pth row in A (p ̸= q), i.e.,

B =



b11 b12 b13 · · · b1n

...
...

...
...

bp1 bp2 bp3 · · · bpn

...
...

...
...

bq1 bq2 bq3 · · · bqn

...
...

...
...

bn1 bn2 bn3 · · · bnn



row p

row q

=



a11 a12 a13 · · · a1n

...
...

...
...

ap1 ap2 ap3 · · · apn

...
...

...
...

ap1 ap2 ap3 · · · apn

...
...

...
...

an1 an2 an3 · · · ann



row p

row q

Therefore, the pth and qth rows of B are the same. Let C̃ij be the cofactor of bij .
In fact, for this fixed q, we have C̃qj = Cqj for 1 ⩽ j ⩽ n. It follows from Theorem
2.2 (c) and Theorem 2.9 (cofactor expansion along the qth row) that

0 = det(B) = bq1C̃q1 + bq2C̃q2 + · · · + bqnC̃qn = ap1Cq1 + ap2Cq2 + · · · + apnCqn.

Thus, (2.8) holds. We have by Theorem 2.9 again,

ap1Cq1 + ap2Cq2 + · · · + apnCqn = δpqdet(A), (2.9)

where

δpq =

 1 if p = q;

0 if p ̸= q.

Also we have
a1pC1q + a2pC2q + · · · + anpCnq = δpqdet(A).

We are now in the position to develop a formula for the inverse of an invertible
matrix.

Definition Let A = [aij ] be an n × n matrix and Cij be the cofactor of aij. Then
the adjoint of A is defined by

adj(A) :=


C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
...

C1n C2n · · · Cnn

 .
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Theorem 2.10 Let A be an invertible matrix. Then

A−1 = 1
det(A)

adj(A).

Proof Let A = [aij ] be an n × n invertible matrix. First, we show that

A adj(A) = det(A)I.

We have by using (2.9),

A adj(A) =


a11 · · · a1n

a21 · · · a2n

...
...

an1 · · · ann




C11 · · · Cn1

C12 · · · Cn2
...

...
C1n · · · Cnn



=


det(A) 0 · · · 0

0 det(A) · · · 0
...

... . . . ...
0 0 · · · det(A)


= det(A)I. (2.10)

Since A is invertible, det(A) ̸= 0. Therefore, (2.10) can be rewritten as

A

[
1

det(A)
adj(A)

]
= I.

Thus, it follows from Theorem 1.16 (b) that

A−1 = 1
det(A)

adj(A).

2.4.4 Cramer’s rule

Cramer’s rule provides a formula for representing the solution of a certain linear
system.

Theorem 2.11 (Cramer’s Rule) Let Ax = b be a system of n linear equations in
n unknowns such that det(A) ̸= 0. Then the system has a unique solution which is
given by

x1 =
det
(
A(1)

)
det(A)

, x2 =
det
(
A(2)

)
det(A)

, . . . , xn =
det
(
A(n)

)
det(A)

,

where A(j) is the matrix obtained by replacing the jth column of A by the n × 1
matrix

b = [b1, b2, . . . , bn]T .
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Proof Let A = [aij ] be an n × n matrix and Cij be the cofactor of aij . By using
Theorems 2.5, 1.18, and 2.10, we know that the unique solution of Ax = b is given
by

x = A−1b = 1
det(A)

adj(A)b,

i.e.,


x1

x2
...

xn

 = 1
det(A)


C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
...

C1n C2n · · · Cnn




b1

b2
...

bn

 = 1
det(A)



n∑
i=1

Ci1bi

n∑
i=1

Ci2bi

...
n∑

i=1
Cinbi


.

(2.11)
Construct

A(j) =


a11 · · · a1,j−1 b1 a1,j+1 · · · a1n

a21 · · · a2,j−1 b2 a2,j+1 · · · a2n

...
...

...
...

...
an1 · · · an,j−1 bn an,j+1 · · · ann

 , 1 ⩽ j ⩽ n.

We have by using cofactor expansion of det
(
A(j)

)
along the jth column,

det
(
A(j)

)
=

n∑
i=1

Cijbi, 1 ⩽ j ⩽ n. (2.12)

Thus, substituting (2.12) into (2.11) yields

xj =
det
(
A(j)

)
det(A)

, 1 ⩽ j ⩽ n.

Exercises

Elementary exercises

2.1 Find the number of inversions in each of the following permutations.

(a) (3, 2, 4, 1). (b) (2, 4, 1, 3). (c) (4, 1, 3, 5, 2).
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2.2 In the determinant of a matrix A = [aij ] ∈ R6×6, what are the signs of the
terms a23a31a42a56a14a65 and a32a43a14a51a66a25, respectively?

2.3 Prove Theorem 2.1 (a) and (c).

2.4 Prove Theorem 2.2 except (b).

2.5 Let

A =



b b b · · · b b

0 1 1 · · · 1 1
0 0 1 · · · 1 1
...

...
... . . . ...

...
0 0 0 · · · 1 1
0 0 0 · · · 0 1


∈ Rn×n,

where b ̸= 0. Find det(A) and A−1.

2.6 Evaluate the determinants of the following matrices.

(a)



0 0 · · · 0 1
0 0 · · · 2 0
...

... ... ...
...

0 n − 1 · · · 0 0
n 0 · · · 0 0


. (b)



1 3 3 · · · 3
3 2 3 · · · 3
3 3 3 · · · 3
...

...
... . . . ...

3 3 3 · · · n


.

(c)


x1 + 1 x1 · · · x1

x2 x2 + 1 · · · x2

...
... . . . ...

xn xn · · · xn + 1

 . (d)


x y · · · y

y x · · · y

...
... . . . ...

y y · · · x

 .

(e)


x1 − y1 x1 − y2 · · · x1 − yn

x2 − y1 x2 − y2 · · · x2 − yn

...
... . . . ...

xn − y1 xn − y2 · · · xn − yn

 .

2.7 Show that

det


b + c c + a a + b

b1 + c1 c1 + a1 a1 + b1

b2 + c2 c2 + a2 a2 + b2

 = 2 · det


a b c

a1 b1 c1

a2 b2 c2

 .
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2.8 Let u and v be n × 1 matrices and B be an n × n matrix. Show that

det

[
B −Bu

−vT B vT Bu

]
= 0.

2.9 Let A be a matrix defined by A = aT a, where a = [2, 0, −1]. If k is a positive
integer, find

det
(
(2I − A)k

)
,

where I is the 3 × 3 identity matrix.

2.10 Let

A =


a b c

d e f

g h i

 .

If det(A) = −7, find

(a) det(A2). (b) det
(
(2A)−1). (c) det


a g d

b h e

c i f

 .

2.11 Let

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 , C =

 a11 b−1a12 b−2a13

ba21 a22 b−1a23

b2a31 ba32 a33

 ,

where b ̸= 0. Show that det(A) = det(C).

2.12 If A2 = A, find all possible values of det(A).

2.13 Let A be an n×n skew-symmetric matrix. Show that det(AT ) = (−1)n det(A).

2.14 Let

A =

 0 2 0
−1 0 0

0 0 2

 , B =

 0 0 3
0 −2 0
2 0 0

 .

Find det
(
(2A)−1B

)
and det

(
(B−1AT )2).

2.15 Find all values of k so that each of the following matrices is invertible.

(a) A =

 k −k 3
0 k + 1 1
k −8 k − 1

 . (b) B =

 k k 0
k2 4 k2

0 k k

 .
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2.16 Let

A =

 1 −3 4
−2 1 3

7 6 −1

 .

(a) Evaluate the determinant of A by cofactor expansion along the first row.

(b) Evaluate the determinant of A by cofactor expansion along the second column.

(c) Find adj(A).

(d) Find A−1 by using Theorem 2.10.

(e) Find det
(
(3A)−1 + adj(2A)

)
.

2.17 Let A ∈ R4×4. The elements in the first row of A are 1, 2, −3, 4. The cofactors
of the elements of the third row of A are given by 6, x, 9, 5. Find the value of x.

2.18 Suppose that A, B ∈ R3×3 such that adj(A)BA = 10BA − I3. If

A =

 3 0 0
0 4 0
0 0 5

 ,

then find B.

2.19 Let A ∈ Rn×n. Show that if A ̸= 0 and adj(A) = AT , then A is invertible.

2.20 Let A, B ∈ Rn×n.

(a) Show that if A is invertible, then adj(A) is invertible and

[adj(A)]−1 = 1
det(A)

A = adj(A−1).

(b) Show that
det[adj(A)] = [det(A)]n−1.

(c) If det(A) = 2 and det(B) = −3, find

det[2 · adj(A)B−1].
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Challenge exercises

2.21 Using the fact that 2093, 6992, 3496, and 989 are divisible by 23, show that
the determinant of the following matrix is also divisible by 23 without computing
the determinant directly.

A =


2 0 9 3
6 9 9 2
3 4 9 6
0 9 8 9

 .

2.22 Let A ∈ R3×3. Show that

det(λI3 − A) = λ3 − λ2tr(A) + λtr
(
adj(A)

)
− det(A).

2.23 Show that

det


a b c d

−b a −d c

−c d a −b

−d −c b a

 = (a2 + b2 + c2 + d2)2.

2.24 Show that

det



1 1 · · · 1

a1 a2 · · · an

a2
1 a2

2 · · · a2
n

...
...

...

an−2
1 an−2

2 · · · an−2
n

an−1
1 an−1

2 · · · an−1
n


=

∏
1⩽i<j⩽n

(aj − ai),

where a1, a2, . . . , an are distinct scalars from each other.

2.25 Given four matrices A ∈ Rn×n, B ∈ Rn×k, C ∈ Rk×n, and D ∈ Rk×k, define

M =

[
A B

C D

]
.

Show that

(a) If B = 0 and C = 0, then det(M) = det(A) det(D).

(b) If B = 0 or C = 0, then det(M) = det(A) det(D).
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(c) If A is invertible, then det(M) = det(A) det(D − CA−1B).

2.26 Let A, B ∈ Rn×n. Show that if A2 = B2 = I and det(A) + det(B) = 0, then
A + B is not invertible.

2.27 Let A ∈ Rn×n. Show that if AAT = I and det(A) < 0, then det(A + I) = 0.

2.28 Let A = [aij ] ∈ Rn×n be an upper triangular matrix. Show that the cofactor
Cij of aij is zero if i < j.



Chapter 3

Euclidean Vector Spaces

“An interesting feature of these codes is that they make a very intensive use of
subroutines; the addition of two vectors, multiplication of a vector by a scalar, inner
products, etc, are all coded in this way.”

— James Hardy Wilkinson

“ ‘Obvious’ is the most dangerous word in mathematics.”
— Eric Temple Bell

In the mid-seventeenth century, people started to use pairs of numbers to denote
points in a plane and triples of numbers to denote points in a 3-dimensional
space. Later, mathematicians recognized that they can apply a similar idea to high-
dimensional spaces. For instance, an n-tuple of numbers can be used to represent a
point in an n-dimensional space. In this chapter, we begin with the definition of the
n-vector space and follow by the definition of Euclidean n-space. We then introduce
linear transformations from R

n to Rm and study their properties.

3.1 Euclidean n-Space

In this section, we first introduce definitions of the n-vector space and Euclidean
n-space. Then we study some geometric properties of Euclidean n-space.

3.1.1 n-vector space

Let Rn := {(a1, a2, . . . , an) | ai ∈ R}, where an ordered n-tuple (a1, a2, . . . , an) is
called a vector in Rn. Two vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) in
R

n are called equal if

u1 = v1, u2 = v2, . . . , un = vn.

Definition Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be two vectors in Rn.
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(i) The sum u + v is defined by

u + v := (u1 + v1, u2 + v2, . . . , un + vn).

(ii) If k is a scalar, the scalar multiplication ku is defined by

ku := (ku1, ku2, . . . , kun).

The set Rn with the operations of addition and scalar multiplication is called the
n-vector space.

The most important arithmetic properties of vector operations in Rn are listed in
the following theorem. The proof of the theorem is trivial and is left as an exercise.

Theorem 3.1 Let u, v, and w be vectors in Rn. Then

(a) u + v = v + u.

(b) u + (v + w) = (u + v) + w.

(c) u + 0 = 0 + u = u, where 0 = (0, 0, . . . , 0).

(d) u + (−u) = 0, i.e., u − u = 0.

(e) k(lu) = (kl)u.

(f) k(u + v) = ku + kv.

(g) (k + l)u = ku + lu.

(h) 1u = u.

Here k and l are scalars in R.

3.1.2 Euclidean n-space

To develop geometrical notions of distance, norm, and angle in Rn, we begin with
the following definition.

Definition Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be any vectors in Rn.
Then the Euclidean inner product u · v is defined by

u · v := u1v1 + u2v2 + · · · + unvn =
n∑

i=1
uivi. (3.1)

The vector space Rn with the Euclidean inner product is called Euclidean n-space.
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Some arithmetic properties of the Euclidean inner product are listed in the
following theorem.

Theorem 3.2 Let u, v, and w be vectors in Rn and k be any scalar. Then

(a) u · v = v · u.

(b) (u + v) · w = u · w + v · w.

(c) (ku) · v = k(u · v).

(d) v · v ⩾ 0. Further, v · v = 0 if and only if v = 0.

Proof The proofs of (a) and (c) are trivial and we therefore only prove (b) and (d).
Let

u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn).

For (b), it follows directly from the definition of the Euclidean inner product that

(u + v) · w = (u1 + v1)w1 + (u2 + v2)w2 + · · · + (un + vn)wn

= (u1w1 + u2w2 + · · · + unwn) + (v1w1 + v2w2 + · · · + vnwn)
= u · w + v · w.

For (d), we have

v · v = v2
1 + v2

2 + · · · + v2
n =

n∑
i=1

v2
i ⩾ 0.

Furthermore,
n∑

i=1
v2

i = 0 ⇐⇒ vi = 0, 1 ⩽ i ⩽ n.

Thus, v · v = 0 if and only if v = 0.

3.1.3 Norm, distance, angle, and orthogonality

Definition The Euclidean norm (or Euclidean length) of a vector u = (u1,

u2, . . . , un) in Rn is defined by

∥u∥ := (u · u)1/2 =
√

u2
1 + u2

2 + · · · + u2
n.

The distance of u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) is defined by

d(u, v) := ∥u − v∥ =
√

(u1 − v1)2 + (u2 − v2)2 + · · · + (un − vn)2.
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The next theorem provides one of the most important inequalities in matrix
theory: the Cauchy-Schwarz inequality.

Theorem 3.3 (Cauchy-Schwarz Inequality in Rn) Let u and v be vectors in Rn.
Then

|u · v| ⩽ ∥u∥ · ∥v∥. (3.2)

Proof If u = 0 or v = 0, then the theorem is obviously true. Now assume u ̸= 0
and v ̸= 0. Construct a new vector

r = u + tv, t ∈ R.

We have
0 ⩽ r · r = (u + tv) · (u + tv) = u · u + 2u · vt + v · vt2.

Considering the discriminant ∆ of the quadratic function of t, we have

∆ = (2u · v)2 − 4(u · u)(v · v) ⩽ 0,

which implies
(u · v)2 ⩽ (u · u)(v · v).

Thus,
|u · v| ⩽ ∥u∥ · ∥v∥.

Remark In R2, we know that two nonzero vectors u and v form an angle θ, where
0 ⩽ θ ⩽ π. Then we have by the cosine formula,

cos θ = ∥u∥2 + ∥v∥2 − ∥v − u∥2

2∥u∥ · ∥v∥
= u · v

∥u∥ · ∥v∥
.

It follows from the Cauchy-Schwarz inequality (3.2) that the cosine of an angle θ

between two nonzero vectors u and v in Rn can also be defined by

cos θ := u · v
∥u∥ · ∥v∥

. (3.3)

The next two theorems are concerned with the basic properties of norm and
distance in Euclidean n-space.

Theorem 3.4 Let u and v be vectors in Rn and k be any scalar. Then

(a) ∥u∥ ⩾ 0.

(b) ∥u∥ = 0 if and only if u = 0.

(c) ∥ku∥ = |k| · ∥u∥.
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(d) ∥u + v∥ ⩽ ∥u∥ + ∥v∥. (Triangle inequality)

Proof From Theorems 3.2 (c) and (d), one can show that (a), (b), and (c) are true.
Here we only prove (d). Based on (3.2), we have

∥u + v∥2 = (u + v) · (u + v) = u · u + 2u · v + v · v ⩽ u · u + 2|u · v| + v · v

⩽ ∥u∥2 + 2∥u∥∥v∥ + ∥v∥2 =
(
∥u∥ + ∥v∥

)2
.

Thus, (d) holds.

Theorem 3.5 Let u, v, and w be vectors in Rn and k be any scalar. Then

(a) d(u, v) ⩾ 0.

(b) d(u, v) = 0 if and only if u = v.

(c) d(u, v) = d(v, u).

(d) d(u, v) ⩽ d(u, w) + d(w, v). (Triangle inequality)

The proof of Theorem 3.5 is left as an exercise.

We now introduce the concept of orthogonality of vectors.

Definition Two vectors u and v in Rn are called orthogonal if u · v = 0.

Remark Actually, two nonzero vectors u and v are orthogonal if and only if the
angle θ between u and v defined by (3.3) is π/2 .

Theorem 3.6 (Pythagorean Theorem in Rn) Let u and v be orthogonal vectors
in Rn with the Euclidean inner product. Then

∥u + v∥2 = ∥u∥2 + ∥v∥2.

Proof Since u · v = 0, we have

∥u + v∥2 = (u + v) · (u + v) = ∥u∥2 + 2u · v + ∥v∥2 = ∥u∥2 + ∥v∥2.

3.1.4 Some remarks

(1) A vector u = (u1, u2, . . . , un) ∈ Rn can be written in row matrix notation or
column matrix notation if no confusion arises:

u = [u1, u2, . . . , un] or u =


u1

u2
...

un

 .
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Notice that there is no essential difference between an n-vector and a 1 × n

matrix or an n×1 matrix from an algebraic viewpoint. Thus, in the following,
we will use the notations above to denote any vector in Rn freely.

(2) The Euclidean inner product (3.1) of vectors

u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn)

can also be written in a form of the matrix product:

u · v = u1v1 + u2v2 + · · · + unvn = [u1, u2, . . . , un]


v1

v2
...

vn

 .

(3) If the row matrices of an m × r matrix A are r1, r2, . . . , rm and the column
matrices of an r × n matrix B are c1, c2, . . . , cn, then by using the Euclidean
inner product, the matrix product AB can be expressed as

AB =


r1 · c1 r1 · c2 · · · r1 · cn

r2 · c1 r2 · c2 · · · r2 · cn

...
...

...
rm · c1 rm · c2 · · · rm · cn

 .

3.2 Linear Transformations from R
n to Rm

In this section, we study linear transformations from R
n to Rm.

3.2.1 Linear transformations from R
n to Rm

A transformation T from R
n to R

m is a map which maps each point
x = (x1, x2, . . . , xn) in Rn to a unique point T (x) = w = (w1, w2, . . . , wm) in
R

m. A linear transformation T : Rn → R
m is a map which is defined by linear

equations of the form

w1 = a11x1 + a12x2 + · · · + a1nxn

w2 = a21x1 + a22x2 + · · · + a2nxn

...
...

...
...

wm = am1x1 + am2x2 + · · · + amnxn
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or in matrix notation
w1

w2
...

wm

 =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn




x1

x2
...

xn


or more briefly by

w = T (x) = Ax.

The m × n matrix A = [aij ] is called the standard matrix for the linear
transformation T and T is called multiplication by A. We sometimes denote this T

by TA, i.e.,
TA(x) = Ax.

Hence TA is also called a matrix transformation from R
n to Rm.

Remark If 0 is the m × n zero matrix, then for every vector x in Rn, we have

T0(x) = 0x = 0 ∈ Rm.

We call T0 the zero transformation from R
n to Rm. Moreover, for any m × n

matrix A and the zero vector 0 ∈ Rn, we have

TA(0) = A0 = 0 ∈ Rm.

If I is the n × n identity matrix, then for every vector x ∈ Rn,

TI(x) = Ix = x,

so multiplication by I maps every vector in Rn into itself. We call TI the identity
transformation on Rn.

3.2.2 Some important linear transformations

Among the most important linear transformations on R2 and R3 are reflections,
projections, and rotations. We now discuss such linear transformations T one by
one [1]. In the following, let u = (x, y) ∈ R2 or u = (x, y, z) ∈ R3 and we denote
w = T (u) by w = (w1, w2) or w = (w1, w2, w3).

(1) Reflection transformations.
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Transformation Illustration Equations Standard Matrix

Reflection about
the y-axis w1 = −x

w2 = y

[
−1 0

0 1

]

Reflection about
the line y = x

w1 = y

w2 = x

[
0 1
1 0

]

Reflection about
the xy-plane

w1 = x

w2 = y

w3 = −z

 1 0 0
0 1 0
0 0 −1



(2) Projection transformations.

Transformation Illustration Equations Standard Matrix

Orthogonal projection
on the x-axis w1 = x

w2 = 0

[
1 0
0 0

]

Orthogonal projection
on the xy-plane

w1 = x

w2 = y

w3 = 0

 1 0 0
0 1 0
0 0 0



(3) Rotation transformations.
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Transformation Illustration Equations Standard Matrix

Rotation
through
an angle θ

w1 = x cos θ − y sin θ

w2 = x sin θ + y cos θ

[
cos θ − sin θ

sin θ cos θ

]

Counterclockwise
rotation about
the x-axis with
an angle θ

w1 = x

w2 = y cos θ − z sin θ

w3 = y sin θ + z cos θ

 1 0 0
0 cos θ − sin θ

0 sin θ cos θ



Remark In xy-plane, by using the polar coordinates, we have x = r cos α and
y = r sin α. Thus,

w1 = r cos(α + θ) = r cos α cos θ − r sin α sin θ = x cos θ − y sin θ,

w2 = r sin(α + θ) = r cos α sin θ + r sin α cos θ = x sin θ + y cos θ.

(4) Contraction and dilation transformations.

Transformation Illustration Equations Standard Matrix

Contraction with
factor k on R3

(0 ⩽ k ⩽ 1)

w1 = kx

w2 = ky

w3 = kz

 k 0 0
0 k 0
0 0 k



Dilation with factor
k on R3 (k ⩾ 1)

w1 = kx

w2 = ky

w3 = kz

 k 0 0
0 k 0
0 0 k



3.2.3 Compositions of linear transformations

Let TA : Rn → R
k and TB : Rk → R

m be linear transformations. Then for each
x ∈ Rn, one can first compute TA(x) ∈ Rk, and then compute TB

(
TA(x)

)
∈ Rm.

Hence the application of TA followed by TB produces a transformation from R
n to
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R
m. This transformation, denoted by TB ◦ TA, is called the composition of TB

with TA. Actually, we have
(TB ◦ TA)(x) = TB

(
TA(x)

)
= B(Ax) = (BA)x. (3.4)

Thus, TB◦TA is multiplication by BA, which is also a linear transformation. Formula
(3.4) tells us that the standard matrix for TB ◦ TA is BA, i.e.,

TB ◦ TA = TBA. (3.5)

Remark Formula (3.5) reveals an important idea that actually multiplying
matrices is equivalent to composing the corresponding linear transformations in the
right-to-left order of the factors.

Compositions can be defined for three or more linear transformations. For
instance, we consider the linear transformations

TA : Rn → R
k, TB : Rk → R

l, TC : Rl → R
m.

The composition TC ◦ TB ◦ TA : Rn → R
m is given by

(TC ◦ TB ◦ TA)(x) = TC

(
TB(TA(x))

)
= C

(
B(Ax)

)
= (CBA)x.

Thus, the standard matrix for TC ◦ TB ◦ TA is CBA, which is a generalization of
(3.5). This property can be extended to a finite number of linear transformations
without any difficulty.

3.3 Properties of Transformations

In this section, we study the linearity conditions and investigate the relationship
between the invertibility of a matrix and properties of the corresponding matrix
transformation.

3.3.1 Linearity conditions

Theorem 3.7 A transformation T : Rn →R
m is linear if and only if the following

linearity conditions hold for all vectors u and v in Rn and every scalar c.

(a) T (u + v) = T (u) + T (v).

(b) T (cu) = cT (u).

Proof If T is a linear transformation, then it is easy to see that the linearity
conditions hold. Conversely, if the linearity conditions hold, then for any vector
x = [x1, x2, . . . , xn]T ∈ Rn, we can express x by the following linear combination:

x =
n∑

i=1
xiei,
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where ei is the ith column matrix of the n × n identity matrix for 1 ⩽ i ⩽ n. By
using the linearity conditions, we obtain

T (x) = T
( n∑

i=1
xiei

)
=

n∑
i=1

xiT (ei) = Ax,

where the successive column matrices of A are T (e1), T (e2), . . . , T (en), i.e.,

A =
[

T (e1) ¦ T (e2) ¦ · · · ¦ T (en)
]

. (3.6)

Thus, T is a linear transformation and A is the standard matrix for T .

3.3.2 Example

Let l be the line in the xy-plane that passes through the origin and makes an angle
θ with the positive x-axis, where 0 ⩽ θ ⩽ π/2. As illustrated in Figure 3.1 (a), let
T : R2 → R

2 be the linear transformation that maps each vector into its orthogonal
projection on l.

(a) Find the standard matrix A for T .

(b) Find the orthogonal projection of the vector x = [2, 3]T onto the line through
the origin that makes an angle of θ = π/6 with the positive x-axis.

Solution For (a), it follows from (3.6) that

A =
[

T (e1) ¦ T (e2)
]

,

where

e1 =

[
1
0

]
, e2 =

[
0
1

]
.

Figure 3.1
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Referring to Figure 3.1 (b), the length of the vector T (e1) is given by ∥T (e1)∥ = cos θ,
so

T (e1) =

 ∥T (e1)∥ cos θ

∥T (e1)∥ sin θ

 =

 cos2 θ

sin θ cos θ

 .

Referring to Figure 3.1 (c), the length of the vector T (e2) is given by ∥T (e2)∥ = sin θ,
so

T (e2) =

 ∥T (e2)∥ cos θ

∥T (e2)∥ sin θ

 =

 cos θ sin θ

sin2 θ

 .

Thus, the standard matrix A for T is

A =

 cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

 .

For (b), since sin(π/6) = 1/2 and cos(π/6) =
√

3/2, it follows from part (a) that the
standard matrix A for this projection transformation is

A =

 3/4
√

3/4
√

3/4 1/4

 .

Thus, the orthogonal projection of the vector x is

T (x) = T

 2

3

 =

 3/4
√

3/4
√

3/4 1/4

 2

3

 =


6 + 3

√
3

4

2
√

3 + 3
4

 .

3.3.3 One-to-one transformations

Definition A linear transformation T : Rn → R
m is said to be one-to-one if T

maps distinct vectors in Rn into distinct vectors in Rm.

For the relationship between the invertibility of a square matrix and properties
of corresponding linear transformation, we have the following theorem.

Theorem 3.8 Let A be an n × n matrix and TA : Rn → R
n be multiplication by A.

Then the following statements are equivalent.

(a) A is invertible.

(b) The range of TA is Rn, where the range of TA is given by {TA(x) | x ∈ Rn}.

(c) TA is one-to-one.
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Proof We first give three more equivalent statements (a′), (b′), and (c′).

(a) A is invertible. (a′) Ax = 0 =⇒ x = 0.

(b) The range of TA is Rn. (b′) Ax = w is consistent for all w ∈ Rn.

(c) TA is one-to-one. (c′) TA(x) = 0 =⇒ x = 0.

Then by using Theorem 2.8 and the definition of linear transformations, one can
easily see that

(a) ⇔ (a′) ⇔ (b′) ⇔ (b), (a′) ⇔ (c′).

Therefore, in order to complete the proof of the theorem, we only need to prove (c)
⇔ (c′).

(c) ⇒ (c′): If TA is one-to-one, then for any nonzero x ∈ Rn,

TA(x) ̸= TA(0) = 0.

Thus, (c′) holds.

(c′) ⇒ (c): Let x1, x2 ∈ Rn and x1 ̸= x2. We want to show that TA(x1) ̸= TA(x2).
By contradiction, we assume that TA(x1) = TA(x2). Then

TA(x1 − x2) = TA(x1) − TA(x2) = 0.

By the given condition, we have x1 − x2 = 0 and then x1 = x2, which contradicts
the fact that x1 ̸= x2. Thus, (c) holds.

Remark Let TA : Rn → R
n be a one-to-one linear transformation. Then it follows

from Theorem 3.8 that the matrix A is invertible. Thus, TA−1 : Rn → R
n is

itself a linear transformation and it is called the inverse of TA. In fact, the linear
transformations TA and TA−1 cancel the effect of one another. More precisely, for
all x in Rn,

TA

(
TA−1(x)

)
= AA−1x = Ix = x, TA−1

(
TA(x)

)
= A−1Ax = Ix = x,

or equivalently,

TA ◦ TA−1 = TAA−1 = TI , TA−1 ◦ TA = TA−1A = TI .

3.3.4 Summary

Theorem 3.9 Let A be an n × n matrix and TA : Rn → R
n be multiplication by

A. Then the following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.
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(c) The reduced row-echelon form of A is In.

(d) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

(f) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) ̸= 0.

(h) The range of TA is Rn.

(i) TA is one-to-one.

Exercises

Elementary exercises

3.1 Prove Theorem 3.1.

3.2 Let v1 = [1, 0, 1, 0], v2 = [0, 1, 0, 2], v3 = [2, 0, 0, 1], and v4 = [0, −2, −3, 0].
Find k1, k2, k3, and k4 such that

k1v1 + k2v2 + k3v3 + k4v4 = [−4, 1, −5, 5].

3.3 Find the inner product u · v.

(a) u = [4, 2, −7], v = [−1, 2, 5]. (b) u = [−2, 8, 4, −7], v = [5, −1, −3, 2].

3.4 Let u = [4, 1, 2, 3], v = [0, 3, 8, −2], and w = [3, 1, 2, 2]. Evaluate each
expression.

(a) ∥3u − 5v + w∥. (b) 1
∥w∥

w.

3.5 Find u · v if ∥u + v∥ = 1 and ∥u − v∥ = 5.

3.6 Find ∥u + v∥ if ∥u∥ = ∥v∥ = ∥u − v∥ = 2
√

2.

3.7 Let u, v ∈ Rn. Show that

(a) ∥u + v∥2 + ∥u − v∥2 = 2
(
∥u∥2 + ∥v∥2).

(b) ∥u + v∥2 − ∥u − v∥2 = 4u · v.

3.8 If u, v ∈ Rn×1 and A ∈ Rn×n, show that

(uT AT Av)2 ⩽ (uT AT Au)(vT AT Av).
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3.9 Prove Theorem 3.5.

3.10 For which value of k, are u = [2, 1, 3] and v = [1, 7, k] orthogonal?

3.11 Let u, v ∈ Rn. Show that u and v are orthogonal if and only if

∥u + v∥ = ∥u − v∥.

3.12 Let u, v, w ∈ Rn.

(a) If u is orthogonal to v and w, is u orthogonal to v + w?

(b) If u is orthogonal to v + w, is u orthogonal to v and w?

3.13 Let u1, u2, . . . , un ∈ Rn. Show that if u1, u2, . . . , un are pairwise orthogonal,
i.e., ui · uj = 0 for any i ̸= j, then

∥u1 + u2 + · · · + un∥2 = ∥u1∥2 + ∥u2∥2 + · · · + ∥un∥2.

3.14 Show that

(a) T

([
x

y

])
=

[
0
0

]
defines a linear transformation from R

2 to R2.

(b) T

([
x

y

])
=

[
1

−1

]
does not define a linear transformation from R

2 to R2.

3.15 Find the standard matrix for each of the following linear transformations.

(a) T


 x1

x2

x3


 =

[
x1 + x2 + x3

2x2 − 3x3

]
. (b) T




x1

x2

x3

x4


 =


0

x1 + x4

−x3

x2

 .

3.16 For each part, find the standard matrices for T1 and T2, then determine
whether T1 ◦ T2 = T2 ◦ T1.

(a) T1 : R2 → R
2 is the reflection about the x-axis, and T2 : R2 → R

2 is the
reflection about the y-axis.

(b) T1 : R2 → R
2 is the reflection about the x-axis, and T2 : R2 → R

2 is the
orthogonal projection on the y-axis.

(c) T1 : R2 → R
2 is the rotation through an angle θ, and T2 : R2 → R

2 is the
reflection about the y-axis.
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(d) T1 : R3 → R
3 is the orthogonal projection on the xy-plane, and T2 : R3 → R

3

is the orthogonal projection on the yz-plane.

(e) T1 : R3 → R
3 is the counterclockwise rotation about the positive x-axis

through an angle θ1, and T2 : R3 → R
3 is the counterclockwise rotation about

the positive y-axis through an angle θ2.

3.17 Let T : R2 → R
2 be the linear transformation that maps each vector into its

reflection about the line l.

(a) Find the standard matrix for T if l is the line in the xy-plane that passes
through the origin and makes an angle θ with the positive x-axis, where 0 ⩽
θ ⩽ π/2.

(b) Find the reflection of the vector x = [1, 5]T about the line l through the origin
that makes an angle of θ = π/6 with the positive x-axis.

3.18 Let T : R3 → R
3 be the linear transformation that counterclockwise rotates

each vector about the positive y-axis through an angle θ, where 0 ⩽ θ ⩽ π/2.

(a) Find the standard matrix for T .

(b) Find the rotation of the vector x = [−5, 1, 2]T through an angle of θ = π/3.

3.19 Let T1 : Rn → R
m and T2 : Rm → R

s be linear transformations.

(a) If T1 and T2 are one-to-one, is T2 ◦ T1 one-to-one?

(b) If either T1 or T2 is one-to-one, is T2 ◦ T1 one-to-one?

3.20 Determine if each linear transformation T : Rn → R
n (n = 2, 3) defined by

the given equations is one-to-one; if so, find the standard matrix for the inverse
transformation, and find T −1.

(a)

{
w1 = x1 + 2x2

w2 = −x1 + x2.
(b)


w1 = x1 + 2x2 + x3

w2 = −x1 + x2 − x3

w3 = x1 + x2 + 3x3.

Challenge exercises

3.21 Let u, v ∈ Rn. Show that if u · w = v · w holds for all w ∈ Rn, then u = v.

3.22 Let A ∈ Rm×n and B ∈ Rn×m. Show that if (Ax) · y = x · (By) for all
x ∈ Rn and y ∈ Rm, then B = AT .
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3.23 Let x, y, z ∈ Rn. Show that

∥x − y∥2 = 2∥z − x∥2 + 2∥z − y∥2 − 4∥z − (x + y)/2∥2.

3.24 Using the Cauchy-Schwarz inequality, show that

(a) If a1, a2, . . . , an > 0, then

(a1 + a2 + · · · + an)
( 1

a1
+ 1

a2
+ · · · + 1

an

)
⩾ n2.

(b) If a, b, c > 0, then (1
2

a + 1
3

b + 1
6

c
)2

⩽ 1
2

a2 + 1
3

b2 + 1
6

c2.

(c) If a1, a2, . . . , an, w1, w2, . . . , wn > 0 and
n∑

k=1
wk = 1, then

( n∑
k=1

akwk

)2
⩽

n∑
k=1

a2
kwk.

3.25 Let x, y ∈ Rn. Show that the following are equivalent.

(a) x · y ⩽ 0.

(b) ∥x∥ ⩽ ∥x − αy∥ for all α ⩾ 0.

(c) ∥x∥ ⩽ ∥x − αy∥ for all α ∈ [0, 1].

3.26 Let x, y ∈ Rn. Show that the following are equivalent.

(a) x · y = 0.

(b) ∥x∥ ⩽ ∥x − αy∥ for all α ∈ R.

(c) ∥x∥ ⩽ ∥x − αy∥ for all α ∈ [−1, 1].

3.27 Let TA : R3 → R
3 be the matrix transformation such that for all x ∈ R3,

TA(x) · x = Ax · x = 0.

(a) Show that A is not invertible.

(b) Is a similar assertion true for a matrix transformation TA : R2 → R
2?

3.28 Let TA be the matrix transformation from R
m to Rn, where m ⩽ n. Show

that the following are equivalent.
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(a) TA is one-to-one.

(b) There exists a matrix transformation TB from R
n to Rm such that TB ◦ TA =

TI , where TI is the identity transformation on Rm.

(c) For any matrix transformations TC and TD fromRr toRm satisfying TA◦TC =
TA ◦ TD, we have TC = TD.



Chapter 4

General Vector Spaces

“Mathematics is the art of giving the same name to different things.”
— Henri Poincaré

“Mathematics is the tool specially suited for dealing with abstract concepts of any kind and
there is no limit to its power in this field.”

— Paul Dirac

In this chapter, we generalize the concept of vectors inRn further. If a class of objects
with two operations satisfies a set of axioms, then we entitle those objects to be called
“vectors”. Moreover, since the axioms of generalized vectors are based on properties
of vectors in Rn, the generalized vectors have many similar properties. Thus, this
generalization provides a powerful tool to extend geometric properties of vectors in
R

n to many important mathematical problems where geometric intuition may not
be available. Consequently, if we have a problem involving our generalized vectors,
say matrices or functions, we may study the problem based on the corresponding
one in Rn.

4.1 Real Vector Spaces

In this section, we extend the concept of vectors in Rn by extracting the most
fundamental properties from them and turning those properties into axioms for our
generalized vectors.

4.1.1 Vector space axioms

The following definition is extremely useful for many purposes. It consists of two
operations and eight axioms.

Definition Let V be a nonempty set of objects on which two operations are defined,
addition and scalar multiplication. It requires that V is closed under the addition
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and scalar multiplication, i.e., for each pair of objects u and v in V , u + v is in V ;
for each scalar k and each object u in V , ku is in V . Then V is called a vector
space and the objects in V are said to be vectors if the following eight axioms are
satisfied for all u, v, and w in V .

(i) u + v = v + u.

(ii) u + (v + w) = (u + v) + w.

(iii) There is an object 0 in V , called a zero vector for V , such that for all u in V ,
u + 0 = u.

(iv) For each u in V , there is an object −u in V , called a negative of u, such that
u + (−u) = 0.

(v) k(u + v) = ku + kv.

(vi) (k + l)u = ku + lu.

(vii) k(lu) = (kl)u.

(viii) 1u = u.

Here k and l are scalars. If the scalars are in R, then V is called a real vector
space.

Remark In fact, Axiom (i) is not necessary because it can be deduced by the other
axioms. Hence there is no need to list it explicitly. See Appendix A for details.

In the following, all scalars will be real numbers until Section 8.3.

Examples

(a) The set Rn with the operations of addition and scalar multiplication defined
in Subsection 3.1.1 is a typical example of a vector space.

(b) The set Rm×n with the operations of matrix addition and scalar multiplication
is a vector space.

(c) For all functions f = f(x) and g = g(x) defined on (−∞, ∞), we define the
following operations of function addition and scalar multiplication

(f + g)(x) := f(x) + g(x), (kf)(x) := kf(x),

where k is a scalar. Then the set of functions with these two operations is a
vector space, denoted by F (−∞, ∞). Note that the zero vector 0 ∈ F (−∞, ∞)
is the zero function defined by 0 := 0(x) = 0 for all x ∈ (−∞, ∞).
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4.1.2 Some properties

Theorem 4.1 Let V be a vector space, u be a vector in V , and k be any scalar.
Then

(a) 0u = 0.

(b) k0 = 0.

(c) (−1)u = −u.

(d) If ku = 0, then k = 0 or u = 0.

Proof We only prove (a) and leave the proofs of the remaining parts as an exercise.

For (a), we can write by Axiom (vi),

0u + 0u = (0 + 0)u = 0u.

By Axiom (iv), we know that the vector 0u has a negative −0u. Adding this negative
to both sides above obtains

[0u + 0u] + (−0u) = 0u + (−0u).

Then we have by Axiom (ii),

0u + [0u + (−0u)] = 0u + (−0u).

It follows from Axiom (iv) that

0u + 0 = 0.

Thus, by Axiom (iii), it holds
0u = 0.

4.2 Subspaces

We consider a special kind of subset of a vector space V that is itself a vector space
under the operations of addition and scalar multiplication defined on V .



82 Chapter 4 General Vector Spaces

4.2.1 Definition of subspace

Definition A subset W of a vector space V is called a subspace of V if W is itself
a vector space with respect to the addition and scalar multiplication defined on V .

The following theorem states that W ⊆ V is a subspace if and only if W is closed
under the operations of addition and scalar multiplication.

Theorem 4.2 Let W be a nonempty set of vectors in a vector space V . Then W

is a subspace of V if and only if the following conditions hold.

(a) If u and v are in W , then u + v is in W .

(b) If k is any scalar and u is in W , then ku is in W .

Proof Let W be a subspace of V . It follows from the definition of vector space that
conditions (a) and (b) hold.

Conversely, assume conditions (a) and (b) hold. Axioms (i), (ii), (v), (vi), (vii),
(viii) are automatically satisfied by the vectors in W since they are satisfied by all
vectors in V . Therefore, to complete the proof, we need only verify that Axioms (iii)
and (iv) are satisfied by vectors in W . Let u ∈ W . By condition (b), we know that
ku is in W for every scalar k. Setting k = 0, it follows from Theorem 4.1 (a) that
0u = 0 is in W . Setting k = −1, it follows from Theorem 4.1 (c) that (−1)u = −u
is in W . Thus, Axioms (iii) and (iv) hold.

Examples

(a) The following subsets are subspaces of R2 or R3.

In R2: {0}; lines through the origin; R2.

In R3: {0}; lines through the origin; planes through the origin; R3.

For instance, one can easily check that the sum of two vectors on a line l

through the origin of R2 or R3 also lies on l, and a scalar multiple of a vector
on this line l is on l as well. Thus, by Theorem 4.2, the line l through the
origin is a subspace.

(b) Let W be the set of all n × n symmetric matrices. For any two matrices
A, B ∈ W and any scalar k, it follows from Theorem 1.21 (b) and (c) that
A + B and kA are both symmetric matrices. Thus, by Theorem 4.2, W is a
subspace of Rn×n.
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(c) Let F (−∞, ∞) be the vector space of functions discussed in Subsection 4.1.1,
n be a positive integer, and Pn be the subset of F (−∞, ∞) consisting of all
polynomials in the following form

p := p(x) = a0 + a1x + · · · + anxn,

where a0, a1, . . . , an are real numbers. Then Pn consists of all real polynomials
of degree n or less. We now show that Pn is a subspace of F (−∞, ∞). For any
two polynomials p, q ∈ Pn and any scalar k, one can directly check that p + q
and kp are both in Pn. Thus, by Theorem 4.2, Pn is a subspace of F (−∞, ∞).
Moreover, we have the following chain of subspaces:

F (−∞, ∞) ⊃ · · · ⊃ Pn ⊃ Pn−1 ⊃ · · · ⊃ P1 ⊃ P0.

(d) We consider the solution set of a homogeneous linear system Ax = 0, where A

is an m × n matrix. Let u, v be any two solutions and k be any scalar. Then,
Au = 0 and Av = 0. We therefore have

A(u + v) = Au + Av = 0 + 0 = 0, A(ku) = kAu = k0 = 0.

So u + v and ku lie in the solution set. It follows from Theorem 4.2 that
the solution set is a subspace of Rn. Thus, the solution set will be called the
solution space of Ax = 0.

(e) Let W and U be two subspaces of a vector space V . Then W ∩U is a subspace
of V and W + U is also a subspace of V , where

W ∩ U := {v | v ∈ W and v ∈ U}, W + U := {w + u | w ∈ W, u ∈ U}.

(4.1)
See Exercise 4.2.

4.2.2 Linear combinations

Addition and scalar multiplication are frequently used in combination to construct
new vectors.

Definition Let v1, v2, . . . , vr be vectors in a vector space V . A vector w in V is
called a linear combination of v1, v2, . . . , vr if it can be written in the form

w = k1v1 + k2v2 + · · · + krvr,

where k1, k2, . . . , kr are scalars.

Theorem 4.3 Let v1, v2, . . . , vr be vectors in a vector space V . Then
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(a) The set W of all linear combinations of v1, v2, . . . , vr is a subspace of V .

(b) W is the smallest subspace of V that contains v1, v2, . . . , vr in the sense that
every other subspace of V that contains v1, v2, . . . , vr must contain W .

Proof For (a), let u and w be vectors in W . Since W is the set of all linear
combinations of vectors v1, v2, . . . , vr, the vectors u and w can be written as

u = c1v1 + c2v2 + · · · + crvr, w = d1v1 + d2v2 + · · · + drvr.

For any scalar k, we have

u + kw = c1v1 + c2v2 + · · · + crvr + k(d1v1 + d2v2 + · · · + drvr)

= (c1 + kd1)v1 + (c2 + kd2)v2 + · · · + (cr + kdr)vr,

i.e., u + kw is in W . It follows from Theorem 4.2 that W is a subspace of V .

For (b), let U be another subspace of V that contains v1, v2, . . . , vr. It follows from
Theorem 4.2 again that U must contain all linear combinations of v1, v2, . . . , vr.
For any w ∈ W , it can be expressed in the form

w = k1v1 + k2v2 + · · · + krvr.

Then w should be in U . Thus, W ⊆ U .

Definition Let S = {v1, v2, . . . , vr} be a set of vectors in a vector space V and W

be the subspace of V consisting of all linear combinations of the vectors in S. Then
W is called the subspace spanned by v1, v2, . . . , vr and denoted by

W := span{v1, v2, . . . , vr} or W = span(S).

Example 1 The polynomials 1, x, x2, . . . , xn span the vector space Pn since each
polynomial p ∈ Pn can be written as

p = a0 + a1x + · · · + anxn,

which is a linear combination of 1, x, x2, . . . , xn. Thus,

Pn = span{1, x, x2, . . . , xn}.

Example 2 Determine whether v1 = [1, 3, 2], v2 = [1, 0, 2], and v3 = [2, 3, 4] span
the vector space R3.
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Solution We must determine whether an arbitrary vector b = [b1, b2, b3] ∈ R3 can
be written in the form of

b = k1v1 + k2v2 + k3v3.

Expressing this equation in terms of components yields

[b1, b2, b3] = k1[1, 3, 2] + k2[1, 0, 2] + k3[2, 3, 4],

i.e.,
[b1, b2, b3] = [k1 + k2 + 2k3, 3k1 + 3k3, 2k1 + 2k2 + 4k3]

or 
k1 + k2 + 2k3 = b1

3k1 + 3k3 = b2

2k1 + 2k2 + 4k3 = b3.

Thus, the problem reduces to determining whether the system is consistent for all
values of b1, b2, and b3. By Theorem 3.9 (e) and (g), a system with a square
coefficient matrix is consistent for every vector on the right-hand side if and only if
the determinant of the coefficient matrix of the system is not equal to zero. However,

det

 1 1 2
3 0 3
2 2 4

 = 0.

Thus, v1, v2, and v3 can not span R3.

Theorem 4.4 Let S = {v1, v2, . . . , vr} and S′ = {w1, w2, . . . , wk} be two sets of
vectors in a vector space V . Then

span{v1, v2, . . . , vr} = span{w1, w2, . . . , wk}

if and only if each vector in S is a linear combination of those in S′, and conversely
each vector in S′ is a linear combination of those in S.

The proof of Theorem 4.4 is left as an exercise.

4.3 Linear Independence

We knew that a set of vectors S = {v1, v2, . . . , vr} spans a given vector space V if
every vector u ∈ V can be written as a linear combination of the vectors in S, i.e.,

u = k1v1 + k2v2 + · · · + krvr,
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where kj (1 ⩽ j ⩽ r) are scalars. In general, there may be many different ways to
express a vector in V as a linear combination of the vectors in S. In this section,
we study conditions of S under which each vector in V can be expressed as a linear
combination of the vectors in S in a unique way.

4.3.1 Linear independence and linear dependence

Definition Let S = {v1, v2, . . . , vr} be a given nonempty set of vectors. Then the
vector equation

k1v1 + k2v2 + · · · + krvr = 0

has at least one solution obviously

k1 = k2 = · · · = kr = 0.

If this is the only solution, then S is called a linearly independent set (or
v1, v2, . . . , vr are said to be linearly independent). If there exist nonzero solutions,
then S is called a linearly dependent set (or v1, v2, . . . , vr are said to be linearly
dependent).

Examples

(a) Determine whether S = {v1, v2, v3} is linearly independent or not, where

v1 = [2, −2, 1], v2 = [5, 3, −2], v3 = [7, 1, −1].

Solution Since
v1 + v2 − v3 = 0,

S = {v1, v2, v3} is linearly dependent.

(b) Show that the polynomials 1, x, x2, . . . , xn are linearly independent in Pn.

Proof We consider the following equation

c0 + c1x + c2x2 + · · · + cnxn = 0(x), x ∈ (−∞, ∞), (4.2)

where 0(x) is the zero function. Recall from the Fundamental Theorem of Algebra
[11] that any nonzero polynomial of degree n in one variable has at most n distinct
complex roots. However, the polynomial c0 + c1x + c2x2 + · · · + cnxn in (4.2) has
infinitely many roots. Therefore, its coefficients should be all zero, i.e.,

c0 = c1 = c2 = · · · = cn = 0.

Thus, 1, x, x2, . . . , xn are linearly independent in Pn.
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4.3.2 Some theorems

The following theorems are concerned with some basic properties of linear indepen-
dence.

Theorem 4.5 Let S be a set with two or more vectors. Then

(a) S is linearly dependent if and only if at least one of the vectors in S is expressible
as a linear combination of the other vectors in S.

(b) S is linearly independent if and only if no vector in S is expressible as a linear
combination of the other vectors in S.

Proof Let S = {v1, v2, . . . , vr} with r ⩾ 2.

For (a), based on the definition of a linearly dependent set, S is linearly dependent
if and only if

k1v1 + k2v2 + · · · + krvr = 0

has nontrivial solutions, i.e., there exists at least a nonzero kt for some t such that

vt = −k1

kt
v1 − · · · − kt−1

kt
vt−1 − kt+1

kt
vt+1 − · · · − kr

kt
vr.

Thus, (a) holds. Part (b) follows immediately from (a).

Theorem 4.6 A set of a finite number of vectors that contains the zero vector is
linearly dependent.

Proof Let S = {0, v1, v2, . . . , vr} and consider the following equation

k00 + k1v1 + k2v2 + · · · + krvr = 0. (4.3)

Let k0 = 2 and k1 = k2 = · · · = kr = 0. Then

2 · 0 + 0 · v1 + 0 · v2 + · · · + 0 · vr = 0,

i.e., equation (4.3) has a nonzero solution. Thus, S is linearly dependent.

Theorem 4.7 Let S = {v1, v2, . . . , vr} be a set of vectors in Rn. If r > n, then S

is linearly dependent.

Proof First, we assume that the vectors in S = {v1, v2, . . . , vr} are column vectors.
Consider the following equation

k1v1 + k2v2 + · · · + krvr = 0.
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We can rewrite it in the following matrix form

[
v1 ¦ v2 ¦ · · · ¦ vr

]


k1

k2
...

kr

 =


0
0
...
0

 ,

which is a homogeneous system of n linear equations in r unknowns. Since r > n,
it follows from Theorem 1.1 that the system above has infinitely many solutions
(nonzero solutions). Thus, S is linearly dependent.

4.4 Basis and Dimension

How can the vectors in a vector space be generated? There exist some linearly
independent subsets which can span the entire vector space. For instance, R2 =
span{[1, 0], [0, 1]} and P2 = span{1, x, x2}. Concepts of basis and dimension are
proposed from such kinds of subsets.

4.4.1 Basis for vector space

Definition Let V be any vector space and S = {v1, v2, . . . , vn} be a set of vectors
in V . Then S is called a basis for V if the following two conditions hold.

(i) S is linearly independent.

(ii) V = span(S).

Theorem 4.8 Let S = {v1, v2, . . . , vn} be a basis for a vector space V . Then every
vector u in V can be expressed in the form

u = c1v1 + c2v2 + · · · + cnvn

in exactly one way.

Proof We only need to show that there is only one way to express a vector u ∈ V

as a linear combination of the vectors in S. Suppose that u can be written as

u = c1v1 + c2v2 + · · · + cnvn

and also as
u = d1v1 + d2v2 + · · · + dnvn.
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By subtracting the second equation from the first one, we obtain

0 = u − u = (c1v1 + c2v2 + · · · + cnvn) − (d1v1 + d2v2 + · · · + dnvn)

= (c1 − d1)v1 + (c2 − d2)v2 + · · · + (cn − dn)vn. (4.4)

Since S is linearly independent, (4.4) implies

ci − di = 0, i.e., ci = di, 1 ⩽ i ⩽ n.

Thus, the two expressions for u are the same.

4.4.2 Coordinates

Definition Let S = {v1, v2, . . . , vn} be a basis for a vector space V and

v = c1v1 + c2v2 + · · · + cnvn

be the expression for a vector v in terms of the basis S. Then the scalars c1, c2, . . . , cn

are called the coordinates of v relative to the basis S. The vector [c1, c2, . . . , cn] in
R

n is called the coordinate vector of v relative to S and is denoted by

[v]S = [c1, c2, . . . , cn].

Remark Let S = {e1, e2, . . . , en} be a set of vectors in Rn, where

e1 = [1, 0, 0, . . . , 0], e2 = [0, 1, 0, . . . , 0], . . . , en = [0, 0, 0, . . . , 1].

One can show that S is a basis which is called the standard basis for Rn. For every
vector x = [x1, x2, . . . , xn] ∈ Rn, it can be expressible as

x = x1e1 + x2e2 + · · · + xnen.

Then the coordinate vector of x relative to the standard basis S is

[x]S = [x1, x2, . . . , xn].

Thus, x = [x]S , i.e., a vector x and its coordinate vector relative to the standard
basis are the same.

Example Let S = {v1, v2, v3}, where v1 = [1, 1, 2], v2 = [0, 2, 1], and v3 =
[2, 1, 3].

(a) Show that S is a basis for R3.



90 Chapter 4 General Vector Spaces

(b) Find the coordinate vector of v = [−3, 5, −1] relative to S.

(c) Find the vector v in R3 whose coordinate vector relative to S is [v]S =
[−1, 2, 1].

Solution For (a), to show that S spans R3, we must show that any vector b =
[b1, b2, b3] ∈ R3 can be expressed as a linear combination of the vectors in S, i.e.,

b = c1v1 + c2v2 + c3v3.

Expressing this equation in terms of components gives

[b1, b2, b3] = c1[1, 1, 2] + c2[0, 2, 1] + c3[2, 1, 3],

or in matrix form  1 0 2
1 2 1
2 1 3


 c1

c2

c3

 =

 b1

b2

b3

 . (4.5)

Since

det

 1 0 2
1 2 1
2 1 3

 = −1 ̸= 0,

it follows from Theorem 3.9 that (4.5) has a unique solution for every b. Thus, S

spans R3.

To prove that S is linearly independent, we must show that the following equation

c1v1 + c2v2 + c3v3 = 0 (4.6)

has only the zero solution c1 = c2 = c3 = 0. In matrix form, (4.6) can be written as
a homogeneous system  1 0 2

1 2 1
2 1 3


 c1

c2

c3

 =

 0
0
0

 , (4.7)

which is a special case of (4.5) when b = 0. Hence (4.7) has only the trivial (zero)
solution by Theorem 3.9 again. Thus, S is a basis for R3.

For (b), we consider the following equation

v = c1v1 + c2v2 + c3v3,

i.e.,
[−3, 5, −1] = c1[1, 1, 2] + c2[0, 2, 1] + c3[2, 1, 3].
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Equating corresponding components gives 1 0 2
1 2 1
2 1 3


 c1

c2

c3

 =

 −3
5

−1

 .

Solving this system, we obtain [c1, c2, c3] = [1, 3, −2]. Therefore,

[v]S = [1, 3, −2].

For (c), we obtain by using the definition of the coordinate vector [v]S ,

v = (−1)v1 + 2v2 + v3 = [1, 4, 3].

4.4.3 Dimension

Definition A nonzero vector space V is called finite-dimensional if it contains
a set of a finite number of vectors {v1, v2, . . . , vn} that forms a basis. If no such set
exists, V is called infinite-dimensional. In addition, the zero vector space is said
to be finite-dimensional.

Theorem 4.9 Let V be a finite-dimensional vector space and S = {v1, v2, . . . , vn}
be any basis. Then

(a) Every set with more than n vectors is linearly dependent.

(b) No set with fewer than n vectors spans V .

Proof For (a), let S′ = {w1, w2, . . . , wm} be any set of m vectors in V , where
m > n. Since S = {v1, v2, . . . , vn} is a basis, each wj can be expressed as a linear
combination of the vectors in S:

w1 = a11v1 + a21v2 + · · · + an1vn

w2 = a12v1 + a22v2 + · · · + an2vn

...
...

...
...

wm = a1mv1 + a2mv2 + · · · + anmvn.

(4.8)

To show that S′ is linearly dependent, we must find scalars k1, k2, . . . , km, not all
zero, such that

k1w1 + k2w2 + · · · + kmwm = 0. (4.9)

Using (4.8), equation (4.9) can be rewritten as

(k1a11 + k2a12 + · · · + kma1m)v1 + (k1a21 + k2a22 + · · · + kma2m)v2

+ · · · + (k1an1 + k2an2 + · · · + kmanm)vn = 0.
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Since S is linearly independent, we have

a11k1 + a12k2 + · · · + a1mkm = 0

a21k1 + a22k2 + · · · + a2mkm = 0

...
...

...
...

an1k1 + an2k2 + · · · + anmkm = 0.

Since there are more unknowns than equations (m > n), Theorem 1.1 guarantees the
existence of nontrivial (nonzero) solutions, i.e., equation (4.9) has nonzero solutions.
Thus, S′ is linearly dependent.

The proof of (b) is left as an exercise.

We immediately have the following corollary.

Corollary 1 All bases for a finite-dimensional vector space have the same number
of vectors.

Definition The dimension of a finite-dimensional vector space V , denoted by
dim(V ), is defined to be the number of vectors in a basis for V . In addition, the
dimension of zero vector space is defined to be zero.

Corollary 2 If dim(V ) = n, then

(a) Every set with more than n vectors is linearly dependent.

(b) No set with fewer than n vectors spans V .

Example 1 Dimensions of some vector spaces:

dim(Rn) = n, dim(Pn) = n + 1, dim(Rm×n) = mn.

Example 2 Determine a basis for and the dimension of the solution space of the
homogeneous system 

x1 + 3x2 + x3 − x4 = 0

x1 − x2 + 2x3 − 3x4 − x5 = 0

x3 − 2x4 − x5 = 0

−2x1 + x2 − x3 − x5 = 0.
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Solution The solution of the given homogeneous system is

x1 = −s − t

x2 = 0
x3 = s + 2t

x4 = t

x5 = s

=⇒


x1

x2

x3

x4

x5

 = s


−1

0
1
0
1

+ t


−1

0
2
1
0

 ,

which shows that
{

[−1, 0, 1, 0, 1]T , [−1, 0, 2, 1, 0]T
}

is a basis for the solution space.
Thus, the dimension of the solution space is 2.

4.4.4 Some fundamental theorems

The following theorems reveal the subtle relationships among the concepts of
spanning sets, linear independence, basis, and dimension.

Theorem 4.10 (Plus/Minus Theorem) Let S be a nonempty set of a finite number
of vectors in a vector space V .

(a) If S is linearly independent, and if v is in V but is outside of span(S), then
the set S ∪ {v} is still linearly independent.

(b) Let v be in S and it can be expressed as a linear combination of other vectors
in S. If S − {v} denotes the set obtained by removing v from S, then

span(S) = span(S − {v}).

Proof For (a), let S = {w1, w2, . . . , wr}. Then

S ∪ {v} = {v, w1, w2, . . . , wr}.

Consider the following equation

k0v + k1w1 + k2w2 + · · · + krwr = 0. (4.10)

Then we must have k0 = 0. Otherwise v can be expressed as a linear combination
of the vectors in S, i.e., v ∈ span(S), which contradicts the fact that v ̸∈ span(S).
Hence (4.10) simplifies to

k1w1 + k2w2 + · · · + krwr = 0.

Since S is linearly independent, we deduce

k1 = k2 = · · · = kr = 0.
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Thus, (4.10) only has the zero solution, i.e., S ∪ {v} is still linearly independent.

For (b), let S = {v, w1, w2, . . . , wr}. It is obvious that

span(S − {v}) = span{w1, w2, . . . , wr} ⊆ span{v, w1, w2, . . . , wr} = span(S).

For any vector u ∈ span(S), it can be expressed as

u = c0v + c1w1 + c2w2 + · · · + crwr. (4.11)

Since v ∈ S and v can be expressed as a linear combination of other vectors in S,
we have

v =
r∑

j=1
djwj . (4.12)

We can replace v in (4.11) with (4.12) and then

u = c0

( r∑
j=1

djwj

)
+ c1w1 + c2w2 + · · · + crwr =

r∑
j=1

(c0dj + cj)wj .

Therefore,
u ∈ span{w1, w2, . . . , wr} = span(S − {v}).

Thus,
span(S) = span(S − {v}).

Theorem 4.11 Let V be a vector space with dim(V ) = n and S be a set in V with
exactly n vectors. Then S is a basis for V if either V = span(S) or S is linearly
independent.

Proof We first assume that V = span(S) and S has exactly n vectors. To show
that S is a basis, we must prove that S is linearly independent. By contradiction,
we assume that S is linearly dependent. It follows from Theorem 4.5 (a) that at
least one of the vectors in S, say v, can be expressed as a linear combination of the
other vectors in S. Then we have by Theorem 4.10 (b),

span(S − {v}) = span(S) = V.

Since S − {v} contains n − 1 vectors only, it follows from Theorem 4.9 (b) and the
given condition dim(V ) = n that V can not be spanned by S −{v}. A contradiction!
Thus, S should be linearly independent.

We next assume that S is linearly independent. To show that S is a basis, we
must prove that V = span(S). By contradiction, we assume that there is a vector
w ∈ V but w ̸∈ span(S). By Theorem 4.10 (a), S ∪{w} is still linearly independent.
However, S ∪ {w} has n + 1 vectors. It follows from Theorem 4.9 (a) and the given
condition dim(V ) = n that S ∪ {w} should be linearly dependent. A contradiction!
Thus, V = span(S).
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Theorem 4.12 Let S be a set of a finite number of vectors in a finite-dimensional
vector space V .

(a) If S spans V but is not a basis for V , then S can be reduced to a basis for V

by removing appropriate vectors from S.

(b) If S is a linearly independent set that is not already a basis for V , then S can
be enlarged to a basis for V by inserting appropriate vectors into S.

Proof Note that V is a finite-dimensional vector space. Therefore, the following
removing process and inserting process can be completed in finite steps.

For (a), since V = span(S), by removing appropriate vectors from S, it follows from
Theorem 4.10 (b) that S can be reduced to a subset of S which forms a basis for V .

For (b), since S is linearly independent, by inserting appropriate vectors into S, it
follows from Theorem 4.10 (a) that S can be enlarged to a basis for V .

Theorem 4.13 Let W be a subspace of a finite-dimensional vector space V . Then
we have dim(W ) ⩽ dim(V ). Moreover, if dim(W ) = dim(V ), then W = V .

The proof of Theorem 4.13 is left as an exercise.

4.4.5 Dimension theorem for subspaces

Theorem4.14 (Dimension Theorem for Subspaces) Let V1 and V2 be two subspaces
of a vector space V . Then

dim(V1) + dim(V2) = dim(V1 + V2) + dim(V1 ∩ V2).

Proof We assume that

dim(V1) = n1, dim(V2) = n2, dim(V1 ∩ V2) = m.

We can choose a basis {x1, x2, . . . , xm} for V1 ∩V2. By Theorem 4.12 (b), there exist
n1 − m vectors y1, y2, . . . , yn1−m such that the set

{x1, x2, . . . , xm, y1, y2, . . . , yn1−m}

is a basis for V1. Similarly, by Theorem 4.12 (b) again, there exist n2 − m vectors
z1, z2, . . . , zn2−m such that the set

{x1, x2, . . . , xm, z1, z2, . . . , zn2−m}

is a basis for V2. Since

V1 = span{x1, x2, . . . , xm, y1, y2, . . . , yn1−m}
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and
V2 = span{x1, x2, . . . , xm, z1, z2, . . . , zn2−m},

it follows from (4.1) that

V1 + V2 = span{x1, x2, . . . , xm, y1, y2, . . . , yn1−m, z1, z2, . . . , zn2−m}.

Next, we want to show that {x1, x2, . . . , xm, y1, y2, . . . , yn1−m, z1, z2, . . . , zn2−m}
is linearly independent. Consider the following equation

k1x1 +· · ·+kmxm +p1y1 +· · ·+pn1−myn1−m +q1z1 +· · ·+qn2−mzn2−m = 0. (4.13)

Let
v = k1x1 + · · · + kmxm + p1y1 + · · · + pn1−myn1−m ∈ V1. (4.14)

It follows from (4.13) that

v = −q1z1 − · · · − qn2−mzn2−m ∈ V2. (4.15)

Therefore, v ∈ V1 ∩ V2 and v can also be expressed as

v = l1x1 + l2x2 + · · · + lmxm. (4.16)

Combining (4.15) and (4.16), we obtain

l1x1 + l2x2 + · · · + lmxm + q1z1 + · · · + qn2−mzn2−m = 0.

By the fact that {x1, x2, . . . , xm, z1, z2, . . . , zn2−m} is a linearly independent set, we
have

l1 = · · · = lm = q1 = · · · = qn2−m = 0.

Then v = 0. Furthermore, (4.14) becomes

0 = k1x1 + · · · + kmxm + p1y1 + · · · + pn1−myn1−m. (4.17)

Since {x1, x2, . . . , xm, y1, y2, . . . , yn1−m} is a linearly independent set, it follows
from equation (4.17) that

k1 = · · · = km = p1 = · · · = pn1−m = 0.

Therefore, from (4.13) again, we know that

{x1, x2, . . . , xm, y1, y2, . . . , yn1−m, z1, z2, . . . , zn2−m}

is linearly independent and it forms a basis for V1 + V2. Hence

dim(V1 + V2) = n1 + n2 − m = dim(V1) + dim(V2) − dim(V1 ∩ V2).

The result holds.
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4.5 Row Space, Column Space, and Nullspace

In this section, we study three important vector spaces that are associated with
matrices.

4.5.1 Definition of row space, column space, and nullspace

We first introduce the following definition of row vectors and column vectors.

Definition For an m × n matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 ,

the vectors

r1 = [a11, a12, . . . , a1n], r2 = [a21, a22, . . . , a2n], . . . , rm = [am1, am2, . . . , amn]
(4.18)

in Rn are called the row vectors of A, and the vectors

c1 =


a11

a21
...

am1

 , c2 =


a12

a22
...

am2

 , . . . , cn =


a1n

a2n

...
amn

 (4.19)

in Rm are called the column vectors of A.

Definition Let A be an m × n matrix. Then

(i) row space of A := span{r1, r2, . . . , rm},

(ii) column space of A := span{c1, c2, . . . , cn},

(iii) nullspace of A := solution space of Ax = 0,

where r1, r2, . . . , rm are the row vectors given in (4.18), and c1, c2, . . . , cn are the
column vectors given in (4.19).

Theorem 4.15 A system of linear equations Ax = b is consistent if and only if b
is in the column space of A.
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Proof Let

A =
[

c1 ¦ c2 ¦ · · · ¦ cn

]
, x = [x1, x2, . . . , xn]T ,

where c1, c2, . . . , cn are the column vectors of A. Then by using (1.5), the linear
system Ax = b is consistent if and only if

x1c1 + x2c2 + · · · + xncn = b

has solutions, which means that b can be written as a linear combination of
c1, c2, . . . , cn, i.e.,

b ∈ span{c1, c2, . . . , cn}.

4.5.2 Relation between solutions of Ax = 0 and Ax = b

Theorem 4.16 Let x0 be any single solution of a consistent linear system Ax = b,
where b is a nonzero vector. If v1, v2, . . . , vk form a basis for the nullspace of A,
then every solution of Ax = b can be written as the following form

x = x0 + c1v1 + c2v2 + · · · + ckvk. (4.20)

Conversely, for all choices of scalars c1, c2, . . . , ck, the vector x in (4.20) is a solution
of Ax = b.

Proof Let y be any other solution of Ax = b, i.e.,

Ay = b.

We already knew that Ax0 = b. Therefore,

A(y − x0) = Ay − Ax0 = b − b = 0,

which implies that y − x0 is a solution of Ax = 0, i.e., y − x0 is in the nullspace of
A. Since v1, v2, . . . , vk form a basis for the nullspace of A, we have

y − x0 ∈ span{v1, v2, . . . , vk}.

It follows that
y − x0 = c1v1 + c2v2 + · · · + ckvk,

where c1, c2, . . . , ck are scalars. Thus,

y = x0 + c1v1 + c2v2 + · · · + ckvk.

Conversely, for any choices of scalars c1, c2, . . . , ck, we can construct a vector as

z = x0 + c1v1 + c2v2 + · · · + ckvk.
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Multiplying both sides by A yields

Az = Ax0 + c1Av1 + c2Av2 + · · · + ckAvk = b + 0 + · · · + 0 = b.

Therefore, z is a solution of Ax = b.

Remark There is some terminology associated with (4.20). The vector x0 is called
a particular solution of Ax = b. The expression

x0 + c1v1 + c2v2 + · · · + ckvk

is called the general solution of Ax = b, and the expression

c1v1 + c2v2 + · · · + ckvk

is called the general solution of Ax = 0.

Example Solve the linear system

x1 − 2x2 − 3x3 − 3x5 = −4

−x1 + 2x2 + 4x3 + x4 + 4x5 − 2x6 = 2

3x3 + 3x4 + 3x5 + x6 = 1

2x1 − 4x2 + 6x4 + 3x6 = −5

(4.21)

and obtain

x1 = 2r − 3s − 4, x2 = r, x3 = −s − t, x4 = s, x5 = t, x6 = 1.

This result can be written in vector form as

x1

x2

x3

x4

x5

x6


=



2r − 3s − 4
r

−s − t

s

t

1


=



−4
0
0
0
0
1


︸ ︷︷ ︸

x0

+ r



2
1
0
0
0
0


+ s



−3
0

−1
1
0
0


+ t



0
0

−1
0
1
0


︸ ︷︷ ︸

y

, (4.22)

which is the general solution of (4.21). The vector x0 in (4.22) is a particular solution
of (4.21) and the linear combination y in (4.22) is the general solution of

x1 − 2x2 − 3x3 − 3x5 = 0

−x1 + 2x2 + 4x3 + x4 + 4x5 − 2x6 = 0

3x3 + 3x4 + 3x5 + x6 = 0

2x1 − 4x2 + 6x4 + 3x6 = 0.
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Remark In fact, for a consistent linear system Ax = b, the number of free
variables is equal to the number of parameters in the general solution of the system.
Thus, the number of those parameters is equal to the number of vectors in a basis
for the nullspace of A.

4.5.3 Bases for three spaces

It is well-known that any elementary row operation does not change the solution set
of linear system Ax = 0. Thus, we have the following theorem.

Theorem 4.17 Elementary row operations do not change the nullspace of a matrix
A.

Moreover, the following theorem is concerned with the row space of a matrix A.

Theorem 4.18 Elementary row operations do not change the row space of a matrix
A.

Proof Assume that B is a matrix obtained from A by implementing an elementary
row operation on A. Let

row space of A = span{r1, r2, . . . , rn}, row space of B = span{r′
1, r′

2, . . . , r′
n},

where {r1, r2, . . . , rn} is the set of row vectors of A and {r′
1, r′

2, . . . , r′
n} is the set of

row vectors of B. We want to show that

span{r1, r2, . . . , rn} = span{r′
1, r′

2, . . . , r′
n}.

For any r′
i ∈ B, corresponding to three kinds of elementary row operations performed

on A, we consider the following three cases:

r′
i = rj , where rj is the jth row vector of A;

r′
i = cri, where c is a nonzero scalar and ri is the ith row vector of A;

r′
i = ri + krj , where k is a scalar and rp is the pth row vector of A for p = i, j.

We then have for all i,
r′

i ∈ span{r1, r2, . . . , rn}.

Therefore,
span{r1, r2, . . . , rn} ⊇ span{r′

1, r′
2, . . . , r′

n}. (4.23)

Since A can be obtained from B by performing inverse elementary row operations
on B, one can show that similarly

span{r1, r2, . . . , rn} ⊆ span{r′
1, r′

2, . . . , r′
n}. (4.24)
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It follows from (4.23) and (4.24) that

span{r1, r2, . . . , rn} = span{r′
1, r′

2, . . . , r′
n}.

Remark However, elementary row operations can change the column space of a
matrix A. For instance, consider

A =

[
1 4
2 8

]
.

If we add −2 times the first row of A to the second row, we obtain

B =

[
1 4
0 0

]
.

Note that

column space of A = span{[1, 2]T } ̸= span{[1, 0]T } = column space of B.

Although elementary row operations can change the column space of a matrix,
whatever relationships of linear independence or linear dependence that exist among
the column vectors of a matrix prior to a row operation will keep holding for the
corresponding columns of the matrix that results from that row operation. More
precisely, we have the following result.

Theorem 4.19 Let E be any elementary matrix. Then a given set of column vectors
of A is linearly independent if and only if the corresponding column vectors of EA

are linearly independent.

Proof Let E be any elementary matrix and

A =
[

c1 ¦ c2 ¦ · · · ¦ cn

]
,

where c1, c2, . . . , cn are the column vectors of A. Then

EA =
[

Ec1 ¦ Ec2 ¦ · · · ¦ Ecn

]
.

Without loss of generality, we consider the following equations:
r∑

i=1
kici = 0 and

r∑
i=1

kiEci = 0,

where r ⩽ n. In fact,
r∑

i=1
kiEci = 0 ⇐⇒ E

( r∑
i=1

kici

)
= 0 ⇐⇒

r∑
i=1

kici = 0. (4.25)

Thus, the given set of column vectors of A is linearly independent if and only if the
set of corresponding column vectors of EA is linearly independent.
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Remark In fact, (4.25) implies an even deeper result that whatever linear
combinations that exist among the column vector of A keep holding for the
corresponding column vectors of EA.

Theorem 4.20 Let R be a matrix in row-echelon form. Then the row vectors with
the leading 1’s form a basis for the row space of R, and the column vectors with the
leading 1’s of the row vectors form a basis for the column space of R.

The result of Theorem 4.20 is virtually self-evident and the proof of the theorem is
left as an exercise.

Remark Theorem 4.20 makes it possible to find bases for the row and column
spaces of a matrix in row-echelon form by inspection.

4.5.4 A procedure for finding a basis for span(S)

Let S = {v1, v2, . . . , vk} ⊂ R
n. Then by the following procedure, one can find a

basis for span(S) and simultaneously express the vectors in S as a linear combination
of the basis vectors.

(1) Form the matrix A having v1, v2, . . . , vk as its column vectors.

(2) Reduce A to its reduced row-echelon form R, and let w1, w2, . . . , wk be the
column vectors of R.

(3) Identify the columns that contain the leading 1’s in R. The corresponding
column vectors of A are the basis vectors for span(S).

(4) Express each column vector wj of R that does not contain a leading 1 as a
linear combination of preceding column vectors that do contain leading 1’s.

(5) In each linear combination obtained in (4), replace wj with vj for j =
1, 2, . . . , k.

Example Let v1 = [2, −1, 1, 0], v2 = [−4, 2, −2, 0], v3 = [1, 0, −2, 1], v4 =
[0, 7, −2, 3], and v5 = [3, 5, 2, 2].

(a) Find a subset of {v1, v2, v3, v4, v5} that forms a basis for span{v1, v2, v3, v4,

v5}.

(b) Express each vector not in the basis as a linear combination of the basis vectors.
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Solution For (a), we begin by constructing a matrix A that has v1, v2, v3, v4, and
v5 as its column vectors:

A =


2 −4 1 0 3

−1 2 0 7 5
1 −2 −2 −2 2
0 0 1 3 2

 .

↑ ↑ ↑ ↑ ↑
v1 v2 v3 v4 v5

We reduce the matrix A to its reduced row-echelon form R and denote the column
vectors of the resulting matrix by w1, w2, w3, w4, and w5. We yield

R =


1 −2 0 0 2
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 0

 .

↑ ↑ ↑ ↑ ↑
w1 w2 w3 w4 w5

The leading 1’s occur in columns 1, 3, and 4. It follows from Theorem 4.20 that
{w1, w3, w4} forms a basis for the column space of R. Consequently, {v1, v3, v4} is
a basis for the column space of A by Theorem 4.19.

For (b), we have the following linear combinations by inspection of R,

w2 = −2w1, w5 = 2w1 − w3 + w4.

The corresponding relationships in A are

v2 = −2v1, v5 = 2v1 − v3 + v4.

4.6 Rank and Nullity

For a given matrix A, we have the following four fundamental matrix spaces:

(1) row space of A;

(2) column space of A;

(3) nullspace of A;

(4) nullspace of AT .

In this section, we are concerned with relationships between the dimensions of these
four vector spaces. The results obtained here are fundamental and will provide a
deeper insight into the relationship between a linear system and its coefficient matrix.
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4.6.1 Rank and nullity

Theorem 4.21 Let A be any matrix. Then the row space and column space of A

have the same dimension.

Proof Let R be the reduced row-echelon form of A. It follows from Theorems 4.18
and 4.20 that

dim(row space of A) = dim(row space of R) = number of leading 1’s (4.26)

and it follows from Theorems 4.19 and 4.20 that

dim(column space of A) = dim(column space of R) = number of leading 1’s.
(4.27)

Thus, we have by (4.26) and (4.27),

dim(row space of A) = dim(column space of A).

Definition The common dimension of the row space and column space of a matrix
A is called the rank of A and is denoted by rank(A). The dimension of the nullspace
of A is called the nullity of A and is denoted by nullity(A).

Theorem 4.22 Let A be any matrix. Then rank(A) = rank(AT ).

Proof We have

rank(A) = dim(row space of A) = dim(column space of AT ) = rank(AT ).

Theorem 4.23 (Dimension Theorem for Matrices) Let A be a matrix with n

columns. Then
rank(A) + nullity(A) = n.

Proof Since A has n columns, the homogeneous linear system Ax = 0 has n

variables. These variables fall into two categories: the leading variables and the
free variables. Then[

number of leading
variables

]
+

[
number of free

variables

]
= n,

i.e.,
[number of leading 1’s] + [number of free variables] = n.

Thus,
rank(A) + [number of free variables] = n.
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We recall that the number of free variables is equal to the nullity of A. This is so
because the nullity of A is the dimension of the solution space of Ax = 0, which is
the same as the number of parameters in the general solution, which is the same as
the number of free variables. Thus,

rank(A) + nullity(A) = n.

Example Find the rank and nullity of the matrix

A =


2 −8 1 3 −4

−1 4 0 −5 3
−2 8 −2 4 2

0 0 1 −7 2

 .

Solution Consider solving the linear system Ax = 0. The reduced row-echelon
form of A is 

1 −4 0 5 −3
0 0 1 −7 2
0 0 0 0 0
0 0 0 0 0

 .

Since there are two nonzero rows (or equivalently, two leading 1’s), the row space
and column space are both two-dimensional, i.e., rank(A) = 2. The corresponding
system is x1 −4x2 +5x4 −3x5 = 0

x3 −7x4 +2x5 = 0
=⇒

{
x1 = 4x2 − 5x4 + 3x5

x3 = 7x4 − 2x5.

It follows that the general solution of Ax = 0 is

x1 = 4r − 5s + 3t

x2 = r

x3 = 7s − 2t

x4 = s

x5 = t

or equivalently, 
x1

x2

x3

x4

x5

 = r


4
1
0
0
0

+ s


−5

0
7
1
0

+ t


3
0

−2
0
1

 . (4.28)

The three vectors on the right-hand side of (4.28) form a basis for the solution space
of Ax = 0. Therefore, nullity(A) = 3.
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Remark Let A be an m × n matrix and rank(A) = r. Then rank(A) ⩽ min{m, n}
and we have the following table relating the dimensions of the four fundamental
spaces of A.

Fundamental Space Dimension

Row space of A r

Column space of A r

Nullspace of A n − r

Nullspace of AT m − r

4.6.2 Rank for matrix operations

Theorem 4.24 For any n × n matrices A and B, we have

(a) rank(A + B) ⩽ rank(A) + rank(B).

(b) rank(AB) ⩽ min{rank(A), rank(B)}.

(c) rank(PAQ) = rank(A), where P and Q are invertible matrices.

Proof We only prove (b). The proofs of (a) and (c) are left as an exercise. Let

A = [aij ] =
[

a1 ¦ a2 ¦ · · · ¦ an

]
, B = [bij ] =

[
b1 ¦ b2 ¦ · · · ¦ bn

]
,

where ak and bk (1 ⩽ k ⩽ n) are the column vectors of A and B, respectively. Let
c1, c2, . . . , cn denote the column vectors of AB. Then

AB =
[

c1 ¦ c2 ¦ · · · ¦ cn

]
= A

[
b1 ¦ b2 ¦ · · · ¦ bn

]
=
[

Ab1 ¦ Ab2 ¦ · · · ¦ Abn

]
=

[ n∑
j=1

bj1aj
¦¦

n∑
j=1

bj2aj
¦¦ · · · ¦¦

n∑
j=1

bjnaj

]
.

Thus,
span{c1, c2, . . . , cn} ⊆ span{a1, a2, . . . , an}.

We therefore have

rank(AB) = dim
(
span{c1, c2, . . . , cn}

)
⩽ dim

(
span{a1, a2, . . . , an}

)
= rank(A).

(4.29)
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Moreover, it follows by Theorem 4.22 and (4.29) that

rank(AB) = rank
(
(AB)T

)
= rank(BT AT ) ⩽ rank(BT ) = rank(B). (4.30)

Combining (4.29) and (4.30), we obtain

rank(AB) ⩽ min{rank(A), rank(B)}.

Example For any square matrices A and B of the same size, show that

rank(I − AB) ⩽ rank(I − A) + rank(I − B),

where I is the identity matrix.

Proof We have by Theorem 4.24 (a),

rank(I − AB) = rank(I − A + A − AB) ⩽ rank(I − A) + rank(A − AB).

Moreover, it follows from Theorem 4.24 (b) that

rank(A − AB) = rank
(
A(I − B)

)
⩽ min{rank(A), rank(I − B)} ⩽ rank(I − B).

Thus, the proof is completed.

4.6.3 Consistency theorems

The following theorem guarantees a linear system to be consistent.

Theorem 4.25 Let Ax = b be a linear system of m equations in n unknowns. Then
the following are equivalent.

(a) Ax = b is consistent.

(b) b is in the column space of A.

(c) rank(A) = rank([ A ¦ b ]), where [ A ¦ b ] is the augmented matrix.

Proof (a) ⇔ (b): See Theorem 4.15.

(b) ⇔ (c): Let
A =

[
c1 ¦ c2 ¦ · · · ¦ cn

]
,

where c1, c2, . . . , cn are the column vectors of A. We have by Theorem 4.10 (b),

b ∈ span{c1, c2, . . . , cn} ⇐⇒ b =
n∑

i=1
kici

⇐⇒ span{c1, c2, . . . , cn} = span{c1, c2, . . . , cn, b}
⇐⇒ dim(span{c1, c2, . . . , cn}) = dim(span{c1, c2, . . . , cn, b})
⇐⇒ rank(A) = rank([ A ¦ b ]),

where [ A ¦ b ] =
[

c1 ¦ c2 ¦ · · · ¦ cn ¦ b
]
.
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Corollary Let Ax = b be a linear system of m equations in n unknowns. Then
Ax = b has a unique solution if and only if rank(A) = rank([ A ¦ b ]) = n.

The proof is left as an exercise (see Exercise 4.26).

The following theorem guarantees a linear system to be consistent for any possible
choices of b.

Theorem 4.26 Let Ax = b be a linear system of m equations in n unknowns. Then
the following are equivalent.

(a) Ax = b is consistent for every m × 1 matrix b.

(b) The column vectors of A span Rm.

(c) rank(A) = m.

Proof Let
A =

[
c1 ¦ c2 ¦ · · · ¦ cn

]
,

where c1, c2, . . . , cn are the column vectors of A.

(a) ⇒ (b): We want to show that

span{c1, c2, . . . , cn} = Rm.

Since every cj ∈ Rm for j = 1, 2, . . . , n, we have

span{c1, c2, . . . , cn} ⊆ Rm.

On the other hand, it follows from (a) and Theorem 4.15 that for every b ∈ Rm,

b ∈ span{c1, c2, . . . , cn}.

Thus,
span{c1, c2, . . . , cn} = Rm.

(b) ⇒ (c): We have

rank(A) = dim(span{c1, c2, . . . , cn}) = dim(Rm) = m.

(c) ⇒ (a): Since
span{c1, c2, . . . , cn} ⊆ Rm,

and also
dim(span{c1, c2, . . . , cn}) = rank(A) = m = dim(Rm),

we obtain by Theorem 4.13,

span{c1, c2, . . . , cn} = Rm.

It follows from Theorem 4.15 again that Ax = b is consistent for any b ∈ Rm.
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Theorem 4.27 Let A be an m × n matrix. Then the following are equivalent.

(a) Ax = 0 has only the trivial solution.

(b) The column vectors of A are linearly independent.

(c) Ax = b has at most one solution (none or one) for every m × 1 matrix b.

The proof of the theorem is left as an exercise.

4.6.4 Summary

Theorem 4.28 Let A be an n × n matrix and TA : Rn → R
n be multiplication by

A. Then the following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row-echelon form of A is In.

(d) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

(f) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) ̸= 0.

(h) The range of TA is Rn.

(i) TA is one-to-one.

(j) The column vectors of A are linearly independent.

(k) The row vectors of A are linearly independent.

(l) The column vectors of A span Rn.

(m) The row vectors of A span Rn.

(n) The column vectors of A form a basis for Rn.

(o) The row vectors of A form a basis for Rn.

(p) rank(A) = n.

(q) A has nullity 0.
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Exercises

Elementary exercises

4.1 Prove Theorem 4.1 (b), (c), and (d).

4.2 Let W and U be two subspaces of a vector space V . Show that W ∩ U and
W + U are subspaces of V .

4.3 Use Theorem 4.2 to determine which of the following are subspaces.

(a) The set of all polynomials a0 +a1x+a2x2 +a3x3 for which a0 +a1 +a2 +a3 = 0.

(b) The set of all polynomials a0 + a1x + a2x2 + a3x3 for which a0, a1, a2, and a3

are integers.

(c) The set of all polynomials a0 + a1x + a2x2 + a3x3 for which a1 × a3 = 0.

(d) The set of all vectors in R3 with the first coordinate component nonzero.

(e) The set of all diagonal matrices in Rn×n.

(f) The set of all vectors x in Rn such that Ax = b, where A ∈ Rn×n and b ̸= 0.

(g) The set of all differentiable functions f = f(x) in F (−∞, +∞) that satisfy

df(x)
dx

= 0.

4.4 Express the following vectors as linear combinations of u = [2, 1, 4], v =
[1, −1, 3], and w = [3, 2, 5].

(a) [−9, −7, −15]. (b) [1, 0, 3].

4.5 Determine whether the vector v = [0, 5, 6, −3] is contained in the subspace
spanned by u1, u2, u3, and u4, where

u1 = [−1, 3, 2, 0], u2 = [2, 0, 4, −1], u3 = [7, 1, 1, 4], u4 = [6, 3, 1, 2].

4.6 Let A(1), A(2), A(3), and B be matrices in R2×2, where

A(1) =

[
1 2
2 0

]
, A(2) =

[
0 1
1 3

]
, A(3) =

[
2 0
0 3

]
, B =

[
1 5
5 3

]
.

Determine whether B is contained in span{A(1), A(2), A(3)}.
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4.7 Let W be the set of all vectors of each given form, where a, b, and c represent
arbitrary real numbers. Determine whether W is a subspace of R4. If so, find a set
S of vectors that spans W .

(a) [2a + 3b, −1, 2a − 5b, 5a]. (b) [2a − b, 3b − c, 3c − a, 3b].

4.8 In each part, determine whether the given vectors span R3.

(a) v1 = [2, −1, 3], v2 = [4, 1, 2], v3 = [8, −1, 8].

(b) v1 = [1, 2, 6], v2 = [3, 4, 1], v3 = [4, 3, 1], v4 = [3, 3, 1].

4.9 Prove Theorem 4.4.

4.10 Let u, v, and w be linearly independent vectors in Rn. Show that

(a) {u, u + v, u + v + w} is linearly independent.

(b) {u + v, u + w, v + w} is linearly independent.

(c) {u − v, u − w, v − w} is linearly dependent.

4.11 Determine whether each set of vectors is a basis for the given vector space.

(a) u1 = [2, 1, 3], u2 = [1, 1, 0], u3 = [2, 0, 0] for R3.

(b) u1 = [2, −3, 1], u2 = [4, 1, 1], u3 = [0, −7, 1] for R3.

(c) p1 = 2 + x2, p2 = 1 + x, p3 = 3 + 2x + x2 for P2.

(d) A(1) =

[
1 2
2 0

]
, A(2) =

[
0 1
1 3

]
, A(3) =

[
2 0
0 3

]
for R2×2.

4.12 Find the coordinate vector of w relative to the basis S = {u1, u2} for R2.

(a) u1 = [1, 0], u2 = [0, 1], w = [3, −7].

(b) u1 = [1, 1], u2 = [0, 2], w = [a, b].

4.13 Let {u1, u2, . . . , un} be a basis for a vector space V , where n ⩾ 2.

(a) Show that the set {u1, u1 + u2, . . . , u1 + u2 + · · · + un} is also a basis for V .

(b) Is the set {u1 + u2, u2 + u3, . . . , un−1 + un, un + u1} a basis for V ?

4.14 Prove Theorem 4.9 (b).



112 Chapter 4 General Vector Spaces

4.15 Prove Theorem 4.13.

4.16 Prove Theorem 4.20.

4.17 Let S = {v1, v2, v3, v4, v5, v6}, where

v1 = [2, 1, 0, −2], v2 = [4, 2, 0, −4], v3 = [0, −2, 5, 5],

v4 = [8, 0, 10, 2], v5 = [6, 3, 0, −6], v6 = [18, 0, 15, 3].

(a) Find a subset of S that forms a basis for the space spanned by these vectors.

(b) Express each vector not in the basis as a linear combination of these basis
vectors.

4.18 Let A, B, C ∈ Rn×n. Show that

(a) rank(AB) = rank(B) if and only if the systems (AB)x = 0 and Bx = 0 have
the same solutions.

(b) rank(ABC) = rank(BC) if rank(AB) = rank(B).

4.19 Let A ∈ Rm×n and B ∈ Rn×p. If AB = 0, show that

rank(A) + rank(B) ⩽ n.

4.20 Prove Theorem 4.24 (a) and (c).

4.21 Let A ∈ Rn×n. Show that A2 = A if and only if

rank(A) + rank(A − I) = n.

4.22 Let A, B ∈ Rn×n. Show that

max{rank(A), rank(B)} ⩽ rank
([

A ¦ B
])

⩽ rank(A) + rank(B).

4.23 Let A and B be any matrices. Show that

rank(A) + rank(B) = rank

([
A 0
0 B

])
.

4.24 Let A ∈ Rn×n with rank(A) = 1.

(a) Show that A can be expressed as the following form

A =


a1

a2
...

an

 [b1, b2, . . . , bn].
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(b) Show that A2 = kA, where k is a scalar.

4.25 How does the rank of A vary with t?

A =


t 1 1 1
1 t 1 1
1 1 t 1
1 1 1 t

 .

4.26 Let Ax = b be a linear system of m equations in n unknowns. Show that
Ax = b has a unique solution if and only if rank(A) = rank([ A ¦ b ]) = n.

4.27 Prove Theorem 4.27.

Challenge exercises

4.28 Let W1 and W2 be subspaces of a vector space V .

(a) Show that W1 ∩ W2 ⊆ W1 ∪ W2 ⊆ W1 + W2.

(b) When is W1 ∪ W2 a subspace of V ?

(c) Show that if U is a subspace of V containing W1 ∪ W2, then W1 + W2 ⊆ U .

4.29 Let W be the subspace of all n×n symmetric matrices in Rn×n. Find a basis
for and the dimension of W .

4.30 Let u1, u2, . . . , uk be vectors in R
n. Determine whether the following

statements are true or not. If true, prove it. Otherwise, give a counterexample.

(a) If u1, u2, . . . , uk are linearly independent, then ui and uj are linearly indepen-
dent for each pair of i, j, where 1 ⩽ i, j ⩽ k and i ̸= j.

(b) If ui and uj are linearly independent for each pair of i, j, where 1 ⩽ i, j ⩽ k

and i ̸= j, then {u1, u2, . . . , uk} is linearly independent.

4.31 Let Pn be the set that consists of all real polynomials of degree n or less.

(a) Show that {1, 1 + x, 1 + x + x2} is a basis for P2.

(b) Let W = { p(x) | p(−x) = p(x), p(x) ∈ Pn}. Show that W is a subspace of
Pn and find a basis for W .

4.32 Let A ∈ R2×2. Show that if A2 = I but A ̸= ±I, then

rank(A + I) = rank(A − I) = 1.
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4.33 Let A and B be any given matrices. Show that

rank(A) + rank(B) ⩽ rank

([
A C

0 B

])
,

where C is an arbitrary matrix.

4.34 Let A, B ∈ Rn×n. Show that if ABAB = I, then

rank(I + AB) + rank(I − AB) = n.

4.35 Let A ∈ Rn×n. Show that

(a) rank
(
adj(A)

)
= n if rank(A) = n.

(b) rank
(
adj(A)

)
= 1 if rank(A) = n − 1.

(c) rank
(
adj(A)

)
= 0 if rank(A) < n − 1.

4.36 Let A, B ∈ Rn×n. Show that

rank(AB) ⩾ rank(A) + rank(B) − n.

4.37 Let A(1), A(2), . . . , A(k) ∈ Rn×n. Show that if A(1)A(2) · · · A(k) = 0, then

rank
(
A(1)

)
+ rank

(
A(2)

)
+ · · · + rank

(
A(k)

)
⩽ (k − 1)n.



Chapter 5
Inner Product Spaces

“Inner product gives a structure to vector space which allows mathematician to build
geometry out of bare manifold.”

— Shing-Tung Yau

We introduced the Euclidean inner product on Rn in Chapter 3. In this chapter,
we extend the concept of the Euclidean inner product to general vector spaces. We
extract the most important properties of the Euclidean inner product onRn and turn
them into axioms that are applicable in general vector spaces. Then, it is reasonable
to use these generalized inner products to define notions of length, distance, and
angle in general vector spaces.

5.1 Inner Products

In this section we use the most important properties of the Euclidean inner product
as axioms to define the general concept of an inner product. We then explain how an
inner product defines notions of length and distance in general vector spaces other
than Rn.

5.1.1 General inner products

The fundamental properties of the Euclidean inner product on Rn that were listed
in Theorem 3.2 are precisely the axioms in the following definition.

Definition An inner product on a real vector space V is a function that associates
a real number with each pair of vectors u and v in V , denoted by ⟨u, v⟩, in such a
way that the following axioms are satisfied for all vectors u, v, and w in V and all
scalars k.

(i) ⟨u, v⟩ = ⟨v, u⟩. [Symmetry axiom]

(ii) ⟨u + v, w⟩ = ⟨u, w⟩ + ⟨v, w⟩. [Additivity axiom]

(iii) ⟨ku, v⟩ = k⟨u, v⟩. [Homogeneity axiom]
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(iv) ⟨v, v⟩ ⩾ 0; ⟨v, v⟩ = 0 if and only if v = 0. [Positivity axiom]

A real vector space with an inner product is called a real inner product space.

Definition Let V be a real inner product space. Then the norm (or length) of a
vector u in V is defined by

∥u∥ := ⟨u, u⟩1/2.

The distance between two vectors u and v in V is defined by

d(u, v) := ∥u − v∥.

The unit vector is defined to be a vector u with ∥u∥ = 1.

The following theorem lists some properties of inner products.

Theorem 5.1 Let u, v, and w be vectors in a real inner product space V , and k

be any scalar. Then

(a) ⟨0, v⟩ = ⟨v, 0⟩ = 0.

(b) ⟨u, v + w⟩ = ⟨u, v⟩ + ⟨u, w⟩.

(c) ⟨u, kv⟩ = k⟨u, v⟩.

(d) ⟨u − v, w⟩ = ⟨u, w⟩ − ⟨v, w⟩.

(e) ⟨u, v − w⟩ = ⟨u, v⟩ − ⟨u, w⟩.

Proof We only prove (a). The proofs of remaining parts are trivial and we therefore
omit them. We have by Theorem 4.1 (a) and Axiom (iii) [Homogeneity axiom],

⟨0, v⟩ = ⟨0u, v⟩ = 0 · ⟨u, v⟩ = 0.

5.1.2 Examples

(1) Let u = [u1, u2, . . . , un]T and v = [v1, v2, . . . , vn]T be in Rn. Then the formula

⟨u, v⟩ := u · v =
n∑

i=1
uivi = uT v

defines ⟨u, v⟩ to be the Euclidean inner product on Rn.

(2) Let u, v ∈ Rn, and A be an invertible n × n matrix. It can be shown that the
formula

⟨u, v⟩A := ⟨Au, Av⟩ = (Au)T Av = uT AT Av



5.1 Inner Products 117

defines a new inner product on Rn, where ⟨·, ·⟩ is the Euclidean inner product.
When A = I, ⟨u, v⟩A is turned back to the Euclidean inner product. In the
following, we only show that it satisfies Axiom (ii) [Additivity axiom] and
Axiom (iv) [Positivity axiom]. One can verify that it also satisfies Axiom (i)
[Symmetry axiom] and Axiom (iii) [Homogeneity axiom].
For Axiom (ii), we have

⟨u + v, w⟩A = (u + v)T AT Aw = uT AT Aw + vT AT Aw = ⟨u, w⟩A + ⟨v, w⟩A.

For Axiom (iv), we have

⟨u, u⟩A = ⟨Au, Au⟩ = uT AT Au = yT y ⩾ 0,

where y = Au. When ⟨u, u⟩A = 0, it follows that

0 = y = Au.

Since A is invertible, we obtain u = 0.

(3) Let C[a, b] denote the vector space of all continuous functions on [a, b] with
the following operations of function addition and scalar multiplication

(f + g)(x) = f(x) + g(x), (kf)(x) = kf(x),

where f = f(x), g = g(x) ∈ C[a, b] and k is a scalar. Define

⟨f , g⟩ :=
∫ b

a

f(x)g(x)dx.

We show that this formula defines an inner product on C[a, b] by verifying four
axioms one by one for functions f = f(x), g = g(x), and s = s(x) in C[a, b].
For Axiom (i), we have

⟨f , g⟩ =
∫ b

a

f(x)g(x)dx =
∫ b

a

g(x)f(x)dx = ⟨g, f⟩.

For Axiom (ii), we have

⟨f + g, s⟩ =
∫ b

a

[f(x) + g(x)]s(x)dx =
∫ b

a

f(x)s(x)dx +
∫ b

a

g(x)s(x)dx

= ⟨f , s⟩ + ⟨g, s⟩.

For Axiom (iii), we have for all scalar k,

⟨kf , g⟩ =
∫ b

a

kf(x)g(x)dx = k

∫ b

a

f(x)g(x)dx = k⟨f , g⟩.
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Finally, for Axiom (iv), if f = f(x) is any function in C[a, b], then f2(x) ⩾ 0
for all x in [a, b]. Therefore,

⟨f , f⟩ =
∫ b

a

f2(x)dx ⩾ 0.

Further, because f2(x) ⩾ 0 and f = f(x) is continuous on [a, b], it follows that∫ b

a

f2(x)dx = 0 ⇐⇒ f(x) = 0, x ∈ [a, b].

Therefore,
⟨f , f⟩ = 0 ⇐⇒ f = 0.

(4) Let Rn×n denote the vector space of all n × n real matrices. An inner product
on Rn×n is defined by

⟨X, Y ⟩ := tr(XY T ),

where X, Y ∈ Rn×n. We recall that the trace of a matrix A = [aij ] ∈ Rn×n is
given by

tr(A) =
n∑

i=1
aii.

In the following, we only show that it satisfies Axioms (ii) and (iv). One can
verify that it also satisfies Axioms (i) and (iii).
For Axiom (ii), we have by Theorem 1.3 (c),

⟨X + Y, Z⟩ = tr
(
(X + Y )ZT

)
= tr(XZT + Y ZT ) = tr(XZT ) + tr(Y ZT )

= ⟨X, Z⟩ + ⟨Y, Z⟩,

where X, Y, Z ∈ Rn×n.
For Axiom (iv), let X = [xij ] ∈ Rn×n. Then

⟨X, X⟩ = tr(XXT ) =
n∑

i=1

n∑
j=1

x2
ij ⩾ 0.

Thus,
⟨X, X⟩ = 0 ⇐⇒ xij = 0, 1 ⩽ i, j ⩽ n,

i.e., X is the zero matrix.

Remark The Frobenius norm of an n × n matrix A = [aij ] is defined by

∥A∥F := ⟨A, A⟩1/2 = [tr(AAT )]1/2 =
( n∑

i=1

n∑
j=1

a2
ij

)1/2

.
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5.2 Angle and Orthogonality

In this section we define the notion of an angle between two nonzero vectors in
an inner product space. With this concept, we study some basic relations between
vectors in an inner product space.

5.2.1 Angle between two vectors and orthogonality

We first introduce the Cauchy-Schwarz inequality before we define an angle
between two vectors in general inner product spaces. The proof of the theorem is
left as an exercise.

Theorem 5.2 (Cauchy-Schwarz Inequality) Let u and v be two vectors in a real
inner product space V . Then

|⟨u, v⟩| ⩽ ∥u∥ · ∥v∥.

In Rn, by using the notation of the Euclidean inner product, the cosine of an
angle θ between two nonzero vectors u and v is defined by (3.3). We are now going to
define the notion of an angle between two nonzero vectors in a general inner product
space V . For any nonzero vectors u and v in V , by using the Cauchy-Schwarz
inequality, we deduce

−1 ⩽ ⟨u, v⟩
∥u∥ · ∥v∥

⩽ 1. (5.1)

Thus, we can define the cosine of the unique angle θ between two nonzero vectors
u and v in V by (5.1) as follows:

cos θ = ⟨u, v⟩
∥u∥ · ∥v∥

, 0 ⩽ θ ⩽ π. (5.2)

Observe that in Rn with the Euclidean inner product, (5.2) agrees with (3.3).

In Rn, two nonzero vectors u and v are orthogonal if u · v = 0, i.e., the angle θ

between them is π/2. It follows from (5.2) that cos θ = 0 if and only if ⟨u, v⟩ = 0.
This suggests the following definition in a general inner product space.

Definition Two vectors u and v in an inner product space V are called orthogonal
if

⟨u, v⟩ = 0.

Example 1 Let P2 have the inner product

⟨p, q⟩ :=
∫ 1

−1
p(x)q(x)dx
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for p, q ∈ P2. Then the polynomials p = 2x and q = 3x2 are orthogonal, since

⟨p, q⟩ =
∫ 1

−1
p(x)q(x)dx =

∫ 1

−1
6x3dx = 0.

Example 2 Let R2×2 have the inner product ⟨U, V ⟩ = tr(UV T ) for U, V ∈ R2×2.
Then the matrices

U =

[
1 3
2 −1

]
and V =

[
−2 1

0 1

]

are orthogonal, since

⟨U, V ⟩ = 1 × (−2) + 3 × 1 + 2 × 0 + (−1) × 1 = 0.

5.2.2 Properties of length, distance, and orthogonality

The following two theorems list some basic properties of length and distance in
general inner product spaces.

Theorem 5.3 Let u and v be vectors in an inner product space V , and k be any
scalar. Then

(a) ∥u∥ ⩾ 0.

(b) ∥u∥ = 0 if and only if u = 0.

(c) ∥ku∥ = |k| · ∥u∥.

(d) ∥u + v∥ ⩽ ∥u∥ + ∥v∥. (Triangle inequality)

Proof We only prove (d) and the proofs of remaining parts are trivial. We have by
the Cauchy-Schwarz inequality,

∥u + v∥2 = ⟨u + v, u + v⟩ = ⟨u, u⟩ + 2⟨u, v⟩ + ⟨v, v⟩
⩽ ∥u∥2 + 2∥u∥ · ∥v∥ + ∥v∥2 = (∥u∥ + ∥v∥)2.

Thus, (d) holds.

Theorem 5.4 Let u, v, and w be vectors in an inner product space V , and k be
any scalar. Then

(a) d(u, v) = ∥u − v∥ ⩾ 0.

(b) d(u, v) = 0 if and only if u = v.
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(c) d(u, v) = d(v, u).

(d) d(u, v) ⩽ d(u, w) + d(w, v). (Triangle inequality)

The proof of the theorem is left as an exercise.

The following theorem extends the result in Theorem 3.6 fromRn to general inner
product spaces. The proof of the theorem is exactly the same as that of Theorem
3.6 and we therefore omit it.

Theorem 5.5 (Generalized Theorem of Pythagoras) Let u and v be orthogonal
vectors in an inner product space V . Then

∥u + v∥2 = ∥u∥2 + ∥v∥2.

5.2.3 Complement

We extend the orthogonality of two vectors to that of sets of vectors in inner product
spaces.

Definition Let W be a subspace of an inner product space V .

(i) A vector u in V is said to be orthogonal to W if it is orthogonal to every
vector in W .

(ii) The set of all vectors in V that are orthogonal to W is called the orthogonal
complement of W , and denoted by W ⊥.

The following theorem shows three basic properties of orthogonal complements.

Theorem 5.6 If W is a subspace of a finite-dimensional inner product space V ,
then

(a) W ⊥ is a subspace of V .

(b) W ∩ W ⊥ = {0}.

(c) W ⊆ (W ⊥)⊥.

Proof For (a), let u, v ∈ W ⊥ and k ∈ R. Then for all w ∈ W , we have

⟨u, w⟩ = 0, ⟨v, w⟩ = 0.

Therefore,
⟨u + kv, w⟩ = ⟨u, w⟩ + k⟨v, w⟩ = 0.

Thus, u + kv ∈ W ⊥ and it follows from Theorem 4.2 that W ⊥ is a subspace.
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For (b), for any vector u ∈ W ∩ W ⊥, let u = u1 = u2. Then

⟨u, u⟩ = ⟨u1, u2⟩ = 0,

because
u1 ∈ W ∩ W ⊥ ⊆ W, u2 ∈ W ∩ W ⊥ ⊆ W ⊥.

By Axiom (iv) [Positivity axiom], we have u = 0, i.e., W ∩ W ⊥ = {0}.

For (c), for any vector u ∈ W , u is orthogonal to W ⊥. Besides, (W ⊥)⊥ is the set of
all vectors in V that are orthogonal to W ⊥. Then u ∈ (W ⊥)⊥, i.e., W ⊆ (W ⊥)⊥.

5.3 Orthogonal Bases and Gram-Schmidt Process

In many problems involving inner product spaces, we choose an appropriate basis
for the vector space to simplify the solution of a problem. Frequently we consider a
basis in which each pair of vectors is orthogonal. In this section, we reveal how to
find such a basis.

5.3.1 Orthogonal and orthonormal bases

Definition A set of vectors in an inner product space V is called orthogonal if
all pairs of distinct vectors in the set are orthogonal. An orthogonal set in which
each vector has norm 1 is called orthonormal.

If v is a nonzero vector in an inner product space, then by Theorem 5.3 (c), the
vector

1
∥v∥

v

has norm 1, since ∥∥∥∥ 1
∥v∥

v
∥∥∥∥ =

∣∣∣∣ 1
∥v∥

∣∣∣∣ ∥v∥ = 1
∥v∥

∥v∥ = 1.

The process of multiplying a nonzero vector v by 1/∥v∥ to obtain a unit vector is
called normalizing v. An orthogonal set of nonzero vectors can always be converted
to an orthonormal set by normalizing each of its vectors.

Remark A set {v1, v2, . . . , vn} is orthonormal if and only if ⟨vi, vj⟩ = 0, i ̸= j;

⟨vi, vi⟩ = 1, 1 ⩽ i ⩽ n.

Two nonzero orthogonal vectors are linearly independent. The following theorem
generalizes the property to an orthogonal set of nonzero vectors.
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Theorem 5.7 Let S = {v1, v2, . . . , vn} be an orthogonal set of nonzero vectors in
an inner product space V . Then S is linearly independent.

Proof Consider the following equation

k1v1 + k2v2 + · · · + knvn = 0. (5.3)

We want to show that
k1 = k2 = · · · = kn = 0.

Beginning with k1, we have by taking the inner product on both sides of (5.3) with
v1,

⟨k1v1 + k2v2 + · · · + knvn, v1⟩ = ⟨0, v1⟩.

Since S is orthogonal, we obtain

k1⟨v1, v1⟩ + k2 · 0 + · · · + kn · 0 = 0,

i.e.,
k1⟨v1, v1⟩ = 0.

Since v1 ̸= 0, it follows that ⟨v1, v1⟩ ̸= 0 by Axiom (iv) [Positivity axiom]. Then
k1 = 0. Similarly,

kj = 0, 2 ⩽ j ⩽ n.

Thus, S = {v1, v2, . . . , vn} is linearly independent.

Definition In an inner product space, a basis consisting of orthogonal vectors is
called an orthogonal basis, and a basis consisting of orthonormal vectors is called
an orthonormal basis.

Orthonormal bases for inner product spaces are always convenient to solve
problems because they simplify the expression of a vector and some related formulas
as the following two theorems show.

Theorem 5.8 Let S = {v1, v2, . . . , vn} be an orthonormal basis for an inner prod-
uct space V . Then for any u in V ,

u = ⟨u, v1⟩v1 + ⟨u, v2⟩v2 + · · · + ⟨u, vn⟩vn.

Proof Since u ∈ V and S is a basis for V , we have

u = k1v1 + k2v2 + · · · + knvn. (5.4)

Because S is orthonormal, taking the inner product of u and v1, it follows from
(5.4) that

⟨u, v1⟩ = ⟨k1v1 + k2v2 + · · · + knvn, v1⟩
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= k1⟨v1, v1⟩ + k2⟨v2, v1⟩ + · · · + kn⟨vn, v1⟩
= k1 × 1 + k2 × 0 + · · · + kn × 0 = k1.

Similarly,
⟨u, vj⟩ = kj , 2 ⩽ j ⩽ n.

Theorem 5.9 Let S be an orthonormal basis for an n-dimensional inner product
space V . If the coordinate vectors of u and v relative to the basis S are given by

[u]S = [u1, u2, . . . , un] and [v]S = [v1, v2, . . . , vn],

then

(a) ∥u∥ =
√

u2
1 + u2

2 + · · · + u2
n.

(b) d(u, v) =
√

(u1 − v1)2 + (u2 − v2)2 + · · · + (un − vn)2.

(c) ⟨u, v⟩ = u1v1 + u2v2 + · · · + unvn.

Proof We only prove (c) and leave the proofs of the remaining parts as an exercise.
Let S = {w1, w2, . . . , wn}. Then

u =
n∑

i=1
uiwi, v =

n∑
j=1

vjwj .

Since S is orthonormal, we have

⟨u, v⟩ =
〈 n∑

i=1
uiwi,

n∑
j=1

vjwj

〉
=

n∑
i=1

n∑
j=1

uivj⟨wi, wj⟩ = u1v1+u2v2+· · ·+unvn.

Remark Let S = {v1, v2, . . . , vn} be an orthogonal basis for a vector space V .
Then normalizing each of these vectors yields the orthonormal basis

S′ =
{

v1

∥v1∥
,

v2

∥v2∥
, . . . ,

vn

∥vn∥

}
.

For any vector u ∈ V , it follows from Theorem 5.8 that

u =
〈

u,
v1

∥v1∥

〉
v1

∥v1∥
+
〈

u,
v2

∥v2∥

〉
v2

∥v2∥
+ · · · +

〈
u,

vn

∥vn∥

〉
vn

∥vn∥
,

which can be rewritten as

u = ⟨u, v1⟩
∥v1∥2 v1 + ⟨u, v2⟩

∥v2∥2 v2 + · · · + ⟨u, vn⟩
∥vn∥2 vn.
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5.3.2 Projection theorem

Theorem 5.10 (Projection Theorem) Let W be a finite-dimensional subspace of
an inner product space V . Then every vector u in V can be expressed in exactly one
way as

u = w1 + w2,

where w1 is in W and w2 is in W ⊥.

Proof First, we prove the existence of w1 and w2. Let dim(W ) = n and
{v1, v2, . . . , vn} be an orthonormal basis for W . For any u ∈ V , we construct
the following two vectors

w1 =
n∑

i=1
⟨u, vi⟩vi, w2 = u − w1.

Then u = w1 + w2. Obviously, w1 ∈ W . We want to show that w2 ∈ W ⊥, i.e.,

⟨w2, w⟩ = 0 for all w ∈ W . Let w ∈ W and then w =
n∑

j=1
kjvj . Thus,

⟨w2, w⟩ = ⟨u − w1, w⟩ = ⟨u, w⟩ − ⟨w1, w⟩. (5.5)

Since

⟨u, w⟩ =
〈

u,
n∑

j=1
kjvj

〉
=

n∑
j=1

kj⟨u, vj⟩

and

⟨w1, w⟩ =
〈 n∑

i=1
⟨u, vi⟩vi,

n∑
j=1

kjvj

〉
=

n∑
i=1

n∑
j=1

⟨u, vi⟩kj⟨vi, vj⟩

=
n∑

i=1
ki⟨u, vi⟩, ⟨vi, vj⟩ =

{
1, i = j

0, i ̸= j
,

substituting them into (5.5), we have ⟨w2, w⟩ = 0 for any w ∈ W . Hence w2 ∈ W ⊥.

Second, we prove the uniqueness of the expression. Let u = w′
1+w′

2 with w′
1 ∈ W

and w′
2 ∈ W ⊥. Also u = w1 + w2 with w1 ∈ W and w2 ∈ W ⊥. We then have

u − u = 0 = (w′
1 − w1) + (w′

2 − w2).

Hence
w1 − w′

1︸ ︷︷ ︸
W

= w′
2 − w2︸ ︷︷ ︸
W ⊥

.
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Let q = w1 −w′
1 = w′

2 −w2. By Theorem 5.6 (b), we know that q ∈ W ∩W ⊥ = {0}.
Then

w1 − w′
1 = 0 = w′

2 − w2.

Thus,
w1 = w′

1, w2 = w′
2.

Corollary If W is a subspace of an inner product space V with dim(V ) = m, then

dim(W ) + dim(W ⊥) = m. (5.6)

Proof By using Theorem 4.14, Theorem 5.10, and Theorem 5.6 (b), we have

dim(W ) + dim(W ⊥) = dim(W + W ⊥) + dim(W ∩ W ⊥) = dim(V ) + 0 = m.

Remark Let V be an inner product space with dim(V ) = m. Since W ⊥ is a
subspace of V , we have by the corollary above,

dim(W ⊥) + dim
(
(W ⊥)⊥) = m. (5.7)

By (5.6) and (5.7), we obtain

dim(W ) = dim
(
(W ⊥)⊥).

It follows from Theorem 5.6 (c) and Theorem 4.13 that

W = (W ⊥)⊥.

Because W and W ⊥ are orthogonal complements of one another, we say that W

and W ⊥ are orthogonal complements.

In Theorem 5.10, the vector w1 is called the orthogonal projection of u on W

and is denoted by projW u. The vector w2 is called the component of u orthogonal
to W and is denoted by projW ⊥u. Thus,

u = projW u + projW ⊥u or projW ⊥u = u − projW u.

The following theorem gives formulas to compute orthogonal projections onto a
finite-dimensional subspace.

Theorem 5.11 Let W be a finite-dimensional subspace of an inner product space
V .

(a) If {v1, v2, . . . , vr} is an orthonormal basis for W and u is any vector in V ,
then

projW u = ⟨u, v1⟩v1 + ⟨u, v2⟩v2 + · · · + ⟨u, vr⟩vr.
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(b) If {v1, v2, . . . , vr} is an orthogonal basis for W and u is any vector in V , then

projW u = ⟨u, v1⟩
∥v1∥2 v1 + ⟨u, v2⟩

∥v2∥2 v2 + · · · + ⟨u, vr⟩
∥vr∥2 vr. (5.8)

Proof We only prove (a) and the proof of (b) is trivial by using (a). We have by
Theorem 5.10,

u = projW u + projW ⊥u.

Since projW u ∈ W , we have

projW u = k1v1 + k2v2 + · · · + krvr.

Then

u =
r∑

j=1
kjvj + projW ⊥u.

Hence

⟨u, vi⟩=
〈 r∑

j=1
kjvj+projW ⊥u, vi

〉
=

r∑
j=1

kj⟨vj , vi⟩+⟨projW ⊥u, vi⟩ = ki, 1 ⩽ i ⩽ r.

Thus, (a) holds.

We next provide a geometric perspective to depict the relations between the
nullspace and the row space of a matrix.

Theorem 5.12 Let A be an m × n matrix. Then

(a) The nullspace of A and the row space of A are orthogonal complements in Rn

with respect to the Euclidean inner product.

(b) The nullspace of AT and the column space of A are orthogonal complements
in Rm with respect to the Euclidean inner product.

Proof For (a), let r1, r2, . . . , rm be the row vectors of A. First, we want to show
that the orthogonal complement of span{r1, r2, . . . , rm} is the nullspace of A. To do
this we must show that if a vector v is orthogonal to span{r1, r2, . . . , rm}, then v is
in the nullspace of A. Conversely, if a vector u is in the nullspace of A, then u is
orthogonal to span{r1, r2, . . . , rm}.
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Assume first that v is orthogonal to span{r1, r2, . . . , rm}. Then v is orthogonal
to all row vectors r1, r2, . . . , rm, i.e., riv = 0 for 1 ⩽ i ⩽ m. We have

Av =



r1
−−
r2

−−
...

−−
rm


v =



r1v
−−
r2v
−−

...
−−
rmv


=



0
−−
0

−−
...

−−
0


= 0. (5.9)

Thus, v is a solution of Ax = 0, i.e., v is in the nullspace of A.

Conversely, assume that u is in the nullspace of A. Then Au = 0. It follows
from (5.9) that riu = ⟨u, ri⟩ = 0 for 1 ⩽ i ⩽ m. Let w ∈ span{r1, r2, . . . , rm} and
then w =

m∑
i=1

ciri. Taking the inner product of u and w yields

⟨u, w⟩ =
〈

u,

m∑
i=1

ciri

〉
=

m∑
i=1

ci⟨u, ri⟩ = 0.

Then u is orthogonal to the row space of A.

Thus, the orthogonal complement of the row space of A is the nullspace of A.
Since W = (W ⊥)⊥ for a subspace W in a finite-dimensional space, the orthogonal
complement of the nullspace of A is the row space of A.

For (b), by applying the results in (a) to AT , it follows that the nullspace of AT and
the row space of AT are orthogonal complements in Rm. Thus, the nullspace of AT

and the column space of A are orthogonal complements in Rm.

5.3.3 Gram-Schmidt process

In order to produce orthogonal (or orthonormal) bases, we introduce the Gram-
Schmidt process. Let

S = {u1, u2, . . . , un}

be a linearly independent set. The following process converts S to be an orthogonal
set.

Step 1. Let v1 = u1.

Step 2. As illustrated in Figure 5.1, we can obtain a vector v2 that is orthogonal
to v1 by computing the component of u2 orthogonal to the space W1 =
span{v1}. By using (5.8), we have
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v2 = u2 − projW1
u2 = u2 − ⟨u2, v1⟩

∥v1∥2 v1.

Of course, if v2 = 0, then v2 is not a basis vector. However, this cannot
happen, since it would then follow from the preceding formula for v2 that

u2 = ⟨u2, v1⟩
∥v1∥2 v1 = ⟨u2, v1⟩

∥v1∥2 u1

which implies that u2 is a multiple of u1, contradicting the linear
independence of S.

Step 3. To construct a vector v3 that is orthogonal to both v1 and v2, we compute
the component of u3 orthogonal to the space W2 = span{v1, v2}. See
Figure 5.2. From (5.8) again,

v3 = u3 − projW2
u3 = u3 − ⟨u3, v1⟩

∥v1∥2 v1 − ⟨u3, v2⟩
∥v2∥2 v2.

As in Step 2, the linear independence of S ensures that v3 ̸= 0.

Step 4. To determine a vector v4 that is orthogonal to v1, v2, and v3, we compute
the component of u4 orthogonal to the space W3 = span{v1, v2, v3}. It
follows from (5.8) that

v4 = u4 − projW3
u4 = u4 − ⟨u4, v1⟩

∥v1∥2 v1 − ⟨u4, v2⟩
∥v2∥2 v2 − ⟨u4, v3⟩

∥v3∥2 v3

and v4 ̸= 0.

· · · · · ·

Step n. vn = un −
n−1∑
i=1

⟨un, vi⟩
∥vi∥2 vi and vn ̸= 0.

The preceding step-by-step construction for converting an arbitrary linearly indepen-
dent set into an orthogonal set is called the Gram-Schmidt process.

Figure 5.1 Figure 5.2
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Remark We have

span{v1, v2, . . . , vj} = span{u1, u2, . . . , uj}, 1 ⩽ j ⩽ n.

Moreover, vk+1 is orthogonal to span{u1, u2, . . . , uk} for any k. Thus, every nonzero
finite-dimensional inner product space has an orthogonal (or orthonormal) basis.

Example ConsiderR3 with the Euclidean inner product. Apply the Gram-Schmidt
process to transform the basis vectors

u1 = [1, −1, 0], u2 = [−1, 1, 1], u3 = [1, 1, 1]

into an orthogonal basis {v1, v2, v3}, and then normalize the orthogonal basis vectors
to obtain an orthonormal basis {q1, q2, q3}.

Solution By using the Gram-Schmidt process, we have

Step 1. v1 = u1 = [1, −1, 0].

Step 2. v2 = u2 − projW1
u2 = u2 − ⟨u2, v1⟩

∥v1∥2 v1 = [−1, 1, 1] + [1, −1, 0] = [0, 0, 1].

Step 3. v3 = u3 − projW2
u3 = u3 − ⟨u3, v1⟩

∥v1∥2 v1 − ⟨u3, v2⟩
∥v2∥2 v2

= [1, 1, 1] − 0
2

[1, −1, 0] − [0, 0, 1] = [1, 1, 0].

Thus,
v1 = [1, −1, 0], v2 = [0, 0, 1] , v3 = [1, 1, 0]

form an orthogonal basis for R3. The norms of these vectors are

∥v1∥ =
√

2, ∥v2∥ = 1, ∥v3∥ =
√

2.

Therefore, an orthonormal basis for R3 is S = {q1, q2, q3}, where

q1 =
[

1√
2

, − 1√
2

, 0
]

, q2 = [0, 0, 1] , q3 =
[

1√
2

,
1√
2

, 0
]

.

5.3.4 QR-decomposition

Let A be an m × n (m ⩾ n) matrix with linearly independent column vectors. If
Q is the matrix with orthonormal column vectors that results from applying the
Gram-Schmidt process to the column vectors of A, what is the relationship between
A and Q?
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To solve this problem, let

A =
[

u1 ¦ u2 ¦ · · · ¦ un

]
, Q =

[
q1 ¦ q2 ¦ · · · ¦ qn

]
,

where uj and qj (1 ⩽ j ⩽ n) are column vectors of A and Q, respectively. It follows
from Theorem 5.8 that

u1 = ⟨u1, q1⟩q1 + ⟨u1, q2⟩q2 + · · · + ⟨u1, qn⟩qn

u2 = ⟨u2, q1⟩q1 + ⟨u2, q2⟩q2 + · · · + ⟨u2, qn⟩qn

...
...

...
...

un = ⟨un, q1⟩q1 + ⟨un, q2⟩q2 + · · · + ⟨un, qn⟩qn.

It can be written in matrix form[
u1 ¦ u2 ¦ · · · ¦ un

]

=
[

q1 ¦ q2 ¦ · · · ¦ qn

]


⟨u1, q1⟩ ⟨u2, q1⟩ · · · ⟨un, q1⟩
⟨u1, q2⟩ ⟨u2, q2⟩ · · · ⟨un, q2⟩

...
...

...
⟨u1, qn⟩ ⟨u2, qn⟩ · · · ⟨un, qn⟩

 ,

or more briefly as
A = QR, (5.10)

where

R =


⟨u1, q1⟩ ⟨u2, q1⟩ · · · ⟨un, q1⟩
⟨u1, q2⟩ ⟨u2, q2⟩ · · · ⟨un, q2⟩

...
...

...
⟨u1, qn⟩ ⟨u2, qn⟩ · · · ⟨un, qn⟩

 .

It is a property of the Gram-Schmidt process that for j ⩾ 2, the vector qj is
orthogonal to u1, u2, . . . , uj−1. Therefore, all entries below the main diagonal of
R are zero,

R =


⟨u1, q1⟩ ⟨u2, q1⟩ · · · ⟨un, q1⟩

0 ⟨u2, q2⟩ · · · ⟨un, q2⟩
...

... . . . ...
0 0 · · · ⟨un, qn⟩

 .

All the diagonal entries ⟨uj , qj⟩ (1 ⩽ j ⩽ n) of R are nonzero. We prove this
fact as follows:
For ⟨u1, q1⟩, since q1 = u1

∥u1∥
̸= 0, we know that ⟨u1, q1⟩ ̸= 0.
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For ⟨u2, q2⟩, if ⟨u2, q2⟩ = 0, then

u2 = ⟨u2, q1⟩q1 = ⟨u2, u1⟩
∥u1∥2 u1,

i.e., u1 and u2 are linearly dependent, which contradicts the fact that u1 and u2 are
linearly independent.

Moreover, for ⟨uj , qj⟩, if ⟨uj , qj⟩ = 0, then

uj ∈ span{q1, q2, . . . , qj−1}.

But
u1, u2, . . . , uj−1 ∈ span{q1, q2, . . . , qj−1},

which implies
u1, u2, . . . , uj−1, uj ∈ span{q1, q2, . . . , qj−1}.

Thus, u1, u2, . . . , uj−1, uj are linearly dependent by Theorem 4.9 (a). A contradiction
again! Therefore, ⟨uj , qj⟩ ̸= 0 for 1 ⩽ j ⩽ n. Then R is invertible.

Formula (5.10) is a decomposition of A in the form of the product of a matrix
Q with orthonormal column vectors and an invertible upper triangular matrix R.
We call (5.10) the QR-decomposition of A. In summary, we have the following
theorem.

Theorem 5.13 (QR-Decomposition) Let A be an m × n matrix with linearly
independent column vectors. Then A can be decomposed as

A = QR,

where Q is an m × n matrix with orthonormal column vectors and R is an n × n

invertible upper triangular matrix.

Remark Recall from Theorem 4.28 that if A is an n×n matrix, then the invertibility
of A is equivalent to linear independence of the column vectors. Thus, every
invertible matrix has a QR-decomposition.

We conclude this section by adding three more results to the following theorem,
which involves all major topics we have studied so far.

Theorem 5.14 Let A be an n × n matrix and TA : Rn → Rn be multiplication by
A. Then the following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.
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(c) The reduced row-echelon form of A is In.

(d) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

(f) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) ̸= 0.

(h) The range of TA is Rn.

(i) TA is one-to-one.

(j) The column vectors of A are linearly independent.

(k) The row vectors of A are linearly independent.

(l) The column vectors of A span Rn.

(m) The row vectors of A span Rn.

(n) The column vectors of A form a basis for Rn.

(o) The row vectors of A form a basis for Rn.

(p) A has rank n.

(q) A has nullity 0.

(r) The orthogonal complement of the nullspace of A is Rn.

(s) The orthogonal complement of the row space of A is {0}.

(t) A has a QR-decomposition.

5.4 Best Approximation and Least Squares

We show how orthogonal projections can be used to solve certain approximation
problems. The results obtained here have a wide variety of applications in both
mathematics and science.
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5.4.1 Orthogonal projections viewed as approximations

If a point P ∈ R3 and W is a plane through the origin O, then the point Q in W

closest to P is obtained by dropping a perpendicular from P to W . See Figure 5.3.
Therefore, let u =

−−→
OP and then the distance between P and W is given by

min
w∈W

∥u − w∥ = ∥u − projW u∥.

See Figure 5.4. Thus, projW u is the “best approximation” to u by vectors in W .

Figure 5.3 Q is the point in W closest to P

Figure 5.4 ∥u − w∥ is minimized by w = projW u

Theorem 5.15 (Best Approximation Theorem) Let W be a finite-dimensional
subspace of an inner product space V and u be in V . Then projW u is the best
approximation to u from W in the sense that

∥u − projW u∥ < ∥u − w∥

for every vector w in W with w ̸= projW u.

Proof For every vector w in W , we can write by Theorem 5.10 (Projection
Theorem),

u − w = (u − projW u)︸ ︷︷ ︸
W ⊥

+(projW u − w︸ ︷︷ ︸
W

).

Thus, by Theorem 5.5,

∥u − w∥2 = ∥u − projW u∥2 + ∥projW u − w∥2.

If w ̸= projW u, then the second term in this sum is positive, so that
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∥u − w∥2 > ∥u − projW u∥2,

which implies that
∥u − w∥ > ∥u − projW u∥.

5.4.2 Least squares solutions of linear systems

Up to now, we have been mainly concerned with consistent systems of linear
equations. However, inconsistent linear systems also appear in science and engineer-
ing. If Ax = b has no solution, then for any x, ∥Ax − b∥ ̸= 0 with the Euclidean
norm. We therefore study the following least squares problem.

(1) Least squares problem. Given a linear system Ax = b of m equations in n

unknowns, find a vector x ∈ Rn that minimizes ∥Ax − b∥ with respect to the
Euclidean norm on Rm. Such x is called a least squares solution of Ax = b.

Let A = [ c1 ¦ c2 ¦ · · · ¦ cn ], where ci (1 ⩽ i ⩽ n) are the column vectors of
A. Then

W = span{c1, c2, . . . , cn} = {r = Ax | x ∈ Rn}, (5.11)

i.e., Ax ∈ W .

(2) Review of Theorem 5.12 (b). If A is an m × n matrix, then the nullspace of
AT and the column space W of A are orthogonal complements in Rm with
respect to the Euclidean inner product, i.e.,

W ⊥ = nullspace of AT .

(3) Find a solution of the least squares problem. It follows from Theorem 5.15
(Best Approximation Theorem) that the closest vector in W to b is the
orthogonal projection of b on W . Thus, for a vector x ∈ Rn to be a least
squares solution of Ax = b, x must satisfy

Ax = projW b,

and then
b − Ax = b − projW b.

Since b − projW b ∈ W ⊥, it follows from (2) that

b − Ax ∈ W ⊥ = nullspace of AT .

Therefore, a least squares solution of Ax = b must satisfy

AT (b − Ax) = 0,
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i.e.,
AT Ax = AT b.

This is called the normal system associated with Ax = b. Thus, the problem
of finding a least squares solution of Ax = b has been reduced to the problem
of finding an exact solution of the associated normal system. The following
observations are about the normal system:

(a) The normal system has n equations in n unknowns.

(b) The normal system is consistent, since it is satisfied by a least squares
solution of Ax = b.

(c) The normal system may have infinitely many solutions and all of its
solutions are least squares solutions of Ax = b.

5.4.3 Uniqueness of least squares solutions

We establish conditions under which a linear system is guaranteed to have a unique
least squares solution. We need the following theorem.

Theorem 5.16 Let A be an m × n matrix. Then the following are equivalent.

(a) A has linearly independent column vectors.

(b) AT A is invertible.

Proof (a) ⇒ (b): Assume that A has linearly independent column vectors. The
size of matrix AT A is n×n, so we can prove that this matrix is invertible by showing
that the linear system AT Ax = 0 has only the trivial solution. Assuming x is any
solution of this system, then

⟨Ax, Ax⟩ = (Ax)T (Ax) = xT AT Ax = xT 0 = 0,

which implies Ax = 0 by Axiom (iv) [Positivity axiom]. Assuming A has linearly
independent column vectors, so x = 0 by Theorem 4.27.

(b) ⇒ (a): Assume that AT A is invertible. To prove that A has linearly independent
column vectors, it suffices to prove that Ax = 0 has only the trivial solution by
Theorem 4.27. But if x is any solution of Ax = 0, then AT Ax = AT 0 = 0, so x = 0
from the invertibility of AT A.

The following theorem is a direct consequence of Theorem 5.16 and one can prove
it easily.
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Theorem 5.17 (Uniqueness of Least Squares Solutions) Let A be an m×n ma-
trix with linearly independent column vectors. Then for every b in Rm, the linear
system Ax = b has a unique least squares solution given by

x = (AT A)−1AT b.

Example Find the least squares solution of the linear system Ax = b given by
x1 − x2 = 2
x1 = −8
x1 + x2 = 12
x1 + 2x2 = 2

and find the orthogonal projection of b on the column space of A.

Solution Note that

A =


1 −1
1 0
1 1
1 2

 and b =


2

−8
12
2

 .

Since A has linearly independent column vectors, we know in advance that there is
a unique least squares solution. We have

AT A =

[
1 1 1 1

−1 0 1 2

]
1 −1
1 0
1 1
1 2

 =

[
4 2
2 6

]

and

AT b =

[
1 1 1 1

−1 0 1 2

]
2

−8
12
2

 =

[
8

14

]
.

So the normal system AT Ax = AT b is[
4 2
2 6

][
x1

x2

]
=

[
8

14

]
.

Solving this system yields the least squares solution

x1 = 1, x2 = 2.
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Thus, the orthogonal projection of b on the column space of A is

Ax =


1 −1

1 0

1 1

1 2


[

1
2

]
=


−1

1
3
5

 .

5.5 Orthogonal Matrices and Change of Basis

A basis that is suitable for one problem may not be suitable for another. We will
study a process that changes one basis to another basis in a vector space and also
discuss various problems related to the changes of basis.

5.5.1 Orthogonal matrices

We first introduce the following important matrices and then study their fundamental
properties.

Definition A square matrix A is said to be an orthogonal matrix if

A−1 = AT

or equivalently, AT A = AAT = I.

Theorem 5.18 The following are equivalent for an n × n matrix A.

(a) A is orthogonal.

(b) The row (or column) vectors of A form an orthonormal set in Rn with respect
to the Euclidean inner product.

Proof We only consider the case of row vectors and the proof of the case of column
vectors is similar. Let r1, r2, . . . , rn be the row vectors of A. We have by using
AAT = I,

AAT =



r1

−−
r2

−−
...

−−
rn


[ rT

1 ¦ rT
2 ¦ · · · ¦ rT

n ] =


r1rT

1 r1rT
2 · · · r1rT

n

r2rT
1 r2rT

2 · · · r2rT
n

...
...

...
rnrT

1 rnrT
2 · · · rnrT

n





5.5 Orthogonal Matrices and Change of Basis 139

=


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1


if and only if  ⟨ri, ri⟩ = rirT

i = 1, 1 ⩽ i ⩽ n;

⟨ri, rj⟩ = rirT
j = 0, i ̸= j.

Thus, the result holds.

Remark In fact, if an n × n matrix A is orthogonal, then the set of row vectors of
A forms an orthonormal basis for Rn and the set of column vectors of A forms an
orthonormal basis for Rn as well.

The following two theorems are concerned with some properties of orthogonal
matrices.

Theorem 5.19 We have

(a) The inverse of an orthogonal matrix is orthogonal.

(b) A product of orthogonal matrices is orthogonal.

(c) If A is orthogonal, then det(A) = ±1.

Proof For (a), let A be an orthogonal matrix. Then

A−1(A−1)T = A−1(AT )−1 = (AT A)−1 = I−1 = I

and
(A−1)T A−1 = (AT )−1A−1 = (AAT )−1 = I−1 = I.

Therefore, A−1 is also orthogonal.

For (b), let A and B be orthogonal matrices. Then

(AB)T AB = BT AT AB = BT B = I

and
AB(AB)T = ABBT AT = AAT = I.

Thus, AB is also orthogonal.

For (c), we have
1 = det(I) = det(AT A) = det(AT )det(A) = [det(A)]2.

Thus, det(A) = ±1.
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Theorem 5.20 The following are equivalent for a square matrix A.

(a) A is orthogonal.

(b) ∥Ax∥ = ∥x∥ for all x.

(c) Ax · Ay = x · y for all x and y.

Proof We only prove (a) ⇔ (c). The proof of (a) ⇔ (b) is left as an exercise.

(a) ⇒ (c): We have for any x and y,

Ax · Ay = (Ax)T Ay = xT AT Ay = xT y = x · y.

(c) ⇒ (a): Since for any x and y,

xT AT Ay = Ax · Ay = x · y = xT Iy,

we obtain
xT (AT A − I)y = 0. (5.12)

Because (5.12) holds for all vectors x and y, it follows that

AT A − I = 0, i.e., AT A = I.

Therefore, A is orthogonal.

5.5.2 Change of basis

If we change the basis for a vector space V from an old basis B to a new basis B′,
how is the old coordinate vector [v]B of a vector v ∈ V related to the new coordinate
vector [v]B′? More precisely, let B = {u1, u2, . . . , un} be a basis for V . For any
vector v ∈ V , we have

v =
n∑

j=1
kjuj .

Denote the coordinate vector [v]B of v by

[v]B = [k1, k2, . . . , kn] or [v]B =


k1

k2
...

kn

 .

If we change the basis for V from the old basis B to a new basis

B′ = {u′
1, u′

2, . . . , u′
n},
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then the old coordinate vector [v]B of v is related to the new coordinate vector [v]B′

of the same vector v by the equation

[v]B = P [v]B′ , (5.13)

where the columns of the matrix P are the coordinate vectors of the new basis
vectors relative to the old basis, i.e.,

P =
[

[u′
1]B ¦ [u′

2]B ¦ · · · ¦ [u′
n]B

]
.

The matrix P usually is called the transition matrix from B to B′.

Now we want to show that (5.13) is true. Actually,

u′
i = [u1, u2, . . . , un][u′

i]B

for 1 ⩽ i ⩽ n. Thus,

[u′
1, u′

2, . . . , u′
n] = [u1, u2, . . . , un]P.

For any v ∈ V , we have

v =
n∑

j=1
k′

ju′
j = [u′

1, u′
2, . . . , u′

n]


k′

1
k′

2
...

k′
n

 = [u1, u2, . . . , un]P


k′

1
k′

2
...

k′
n

 (5.14)

and

v =
n∑

j=1
kjuj = [u1, u2, . . . , un]


k1

k2
...

kn

 . (5.15)

Combining (5.14) and (5.15) yields

[u1, u2, . . . , un]

P


k′

1
k′

2
...

k′
n

−


k1

k2
...

kn


 = 0.

Since {u1, u2, . . . , un} is linearly independent, we have

P


k′

1
k′

2
...

k′
n

−


k1

k2
...

kn

 = 0, i.e., P [v]B′ − [v]B = 0.
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Hence
[v]B = P [v]B′ .

Example Consider the bases B = {u1, u2} and B′ = {u′
1, u′

2} for R2, where

u1 = [1, 0], u2 = [0, 1]; u′
1 = [1, 2], u′

2 = [3, 1].

(a) Find the transition matrix from B to B′.

(b) Use (5.13) to find [v]B if [v]B′ =

[
3

−2

]
.

Solution For (a), we must find the coordinate vectors of the new basis vectors u′
1

and u′
2 relative to the old basis B. We have by inspection u′

1 = u1 + 2u2

u′
2 = 3u1 + u2

so that

[u′
1]B =

[
1
2

]
and [u′

2]B =

[
3
1

]
.

Then the transition matrix P from B to B′ is given by

P =
[

[u′
1]B ¦ [u′

2]B
]

=

[
1 3
2 1

]
.

For (b), using (5.13) and the transition matrix in (a), we obtain

[v]B = P [v]B′ =

[
1 3
2 1

][
3

−2

]
=

[
−3

4

]
.

In the above example, the transition matrix Q from B′ to B is

Q = −1
5

[
1 −3

−2 1

]
.

If we compute the product of the two transition matrices above, we find that PQ = I,
which implies that Q = P −1. The following theorem shows that this holds for every
case.

Theorem 5.21 Let P be the transition matrix from a basis B to a basis B′. Then
P is invertible and P −1 is the transition matrix from B′ to B.
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Proof Let Q be the transition matrix from B′ to B. Then

[x]B = P [x]B′ , [x]B′ = Q[x]B .

Thus, for any x, we obtain
[x]B = PQ[x]B .

Therefore,
PQ = I, i.e., Q = P −1.

Theorem 5.21 illustrates that a transition matrix is always invertible. The following
theorem shows that the transition matrix from one orthonormal basis to another
orthonormal basis is orthogonal.

Theorem 5.22 Let P be the transition matrix from one orthonormal basis to
another orthonormal basis for an inner product space V . Then P is an orthogonal
matrix.

Proof Let B = {u1, u2, . . . , un} and B′ = {v1, v2, . . . , vn} be the two orthonormal
bases for V , and P = [pij ] be the n × n transition matrix from B to B′. Then

[v1, v2, . . . , vn] = [u1, u2, . . . , un]


p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

...
pn1 pn2 · · · pnn

 .

Because {v1, v2, . . . , vn} is an orthonormal basis, we have

⟨vi, vj⟩ =

 1, i = j;

0, i ̸= j.
(5.16)

On the other hand, by using the orthonormal property of {u1, u2, . . . , un}, we have
for any i and j,

⟨vi, vj⟩ =
〈 n∑

s=1
uspsi,

n∑
r=1

urprj

〉
=

n∑
s=1

n∑
r=1

psiprj⟨us, ur⟩ =
n∑

s=1
psipsj . (5.17)

Combining (5.16) and (5.17), we deduce

p1ip1j + p2ip2j + · · · + pnipnj =

 1, i = j;

0, i ̸= j.

Thus, P T P = I, i.e., P is an orthogonal matrix.
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Exercises

Elementary exercises

5.1 Let u = [u1, u2], v = [v1, v2] ∈ R2. Show that

⟨u, v⟩ = 4u1v1 + 3u2v2

defines an inner product.

5.2 Let p = a0 + a1x + a2x2 and q = b0 + b1x + b2x2 be any two polynomials in
P2.

(a) Show that ⟨p, q⟩ = a0b0 + a1b1 + a2b2 defines an inner product on P2.

(b) Use the inner product in (a) to find d(p, q) if

p = −3 + x + x2, q = 1 + 2x − 4x2.

5.3 Let ⟨u, v⟩ be the Euclidean inner product on Rn. Show that for any A ∈ Rn×n,

⟨u, Av⟩ = ⟨AT u, v⟩.

5.4 Let u and v be vectors in a real inner product space. Show that

(a) Theorem 5.2 holds, i.e., |⟨u, v⟩| ⩽ ∥u∥ · ∥v∥.

(b) The equality holds in the Cauchy-Schwarz inequality if and only if u and v are
linearly dependent.

5.5 Prove Theorem 5.4.

5.6 Consider R3 with the Euclidean inner product. For which values of k, are u
and v orthogonal?

(a) u = [1, 3, −4], v = [−2, k, 6]. (b) u = [k, k, 1], v = [k, 4, 4].

5.7 Let S = span{v1, v2, v3}. Check whether the vector u ∈ S⊥.

(a) v1 = [1, 0, 0, 0], v2 = [0, 3, 0, 0], v3 = [5, 2, 1, 0], and u = [0, 0, 0, 1].

(b) v1 = [1, −2, 3, 1], v2 = [2, 0, 3, 5], v3 = [0, 1, 2, 5], and u = [0, 1, 3, 0].

(c) v1 = [3, 4, 1, 7], v2 = [1, 0, 3, 1], v3 = [−1, 2, −1, 1], and u = [−1, −1, 0, 1].

5.8 Show that if u is orthogonal to each of the vectors v1, v2, . . . , vn, then it is
also orthogonal to span{v1, v2, . . . , vn}.
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5.9 Prove Theorem 5.9 (a) and (b).

5.10 Let {u1, u2, . . . , un} be an orthogonal set in an inner product space V . Show
that

∥u1 + u2 + · · · + un∥2 = ∥u1∥2 + ∥u2∥2 + · · · + ∥un∥2.

5.11 Let S = {v1, v2, . . . , vn} be an orthonormal basis for an inner product space
V . Show that

∥a1v1 + a2v2 + · · · + anvn∥2 = a2
1 + a2

2 + · · · + a2
n,

where a1, a2, . . . , an ∈ R.

5.12 Find the orthogonal projection of v onto the subspace W spanned by vectors
u1 and u2, where v = [1, 2, 3], u1 = [2, −2, 1], and u2 = [−1, 1, 4].

5.13 Let u = [1, 1, 1, 1] and S = span{v1, v2, v3, v4}, where

v1 = [0, −3, 2, 2], v2 = [1, −1, 0, 1], v3 = [3, 0, −2, 1], v4 = [1, 2, −2, −1].

(a) Find a subset of {v1, v2, v3, v4} that forms a basis for the space S.

(b) Express each vector which is not in the basis as a linear combination of the
basis vectors.

(c) Find the orthogonal projection of u onto S and the component of u orthogonal
to S.

5.14 Consider R3 with the Euclidean inner product. Apply the Gram-Schmidt
process to transform the basis vectors

u1 = [1, 0, 0], u2 = [0, 4, 1], u3 = [3, 7, −2]

into an orthonormal basis.

5.15 Consider R4 with the Euclidean inner product. Apply the Gram-Schmidt
process to transform the basis vectors

u1 = [1, 2, 0, −1], u2 = [1, 0, 0, 1], u3 = [0, 2, 1, 0], u4 = [1, −1, 0, 0]

into an orthonormal basis.

5.16 Find an orthogonal basis for R3 that contains a vector v1 = [0, 2, 3].

5.17 Find an orthonormal basis for R4 that contains vectors

v1 = [1, 0, 0, 0], v2 =
[
0,

1
2

,
1
2

,

√
2

2

]
.
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5.18 Find the QR-decomposition of the matrix.

(a)

 2 8 2
1 7 −1

−2 −2 1

 . (b)

 1 2
0 1
1 4

 . (c)


1 −1 4
1 4 −2
1 4 2
1 −1 0

 .

5.19 Let u1 = [1, 2, −1], u2 = [5, −2, 1], and v = [3, 2, 5].

(a) Find the best approximation to v from W = span{u1, u2}.

(b) Find min
w∈W

∥v − w∥.

5.20 Find the least squares solution of each linear system Ax = b, and find the
orthogonal projection of b on the column space of A.

(a) A =

 3 1
−1 1

1 −2

 , b =

 1
−1

1

 . (b) A =


2 0
1 −1
3 1

−1 2

 , b =


5
1

−1
3

 .

5.21 Determine which of the following matrices are orthogonal.

(a) 1
3


1 2 2

2 −2 1

−2 −1 2

 . (b) 1
2

 −1
√

3
√

3 1

 . (c)


3 3 3 3
3 −5 1 1
3 1 1 −5
3 1 −5 1

 .

5.22 Consider the bases B = {u1, u2} and C = {v1, v2} for R2, where

u1 = [1, 0], u2 = [1, 1]; v1 = [1, −1], v2 = [0, 1].

(a) Find the transition matrix P from B to C, and the transition matrix Q from
C to B.

(b) Find the coordinate vector [x]C if x = [3, −4].

(c) Find [x]B according to the coordinate vector [x]C in (b).

5.23 Consider the bases B = {u1, u2, u3} and C = {v1, v2, v3} for R3, where

u1 = [1, 0, −1], u2 = [2, 1, 1], u3 = [1, 1, 1];

v1 = [−1, 1, 0], v2 = [0, 1, 1], v3 = [1, 2, 1].

(a) Find the transition matrix P from B to C, and the transition matrix Q from
C to B.

(b) Find [w]B if [w]C = [1, −3, −5].
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Challenge exercises

5.24 Show that
∥u + v∥2 + ∥u − v∥2 = 2∥u∥2 + 2∥v∥2

holds for any vectors u and v in a real inner product space.

5.25 Let f(x) and g(x) be two functions in C[0, 1]. Show that(∫ 1

0
f(x)g(x)dx

)2

⩽
(∫ 1

0
f2(x)dx

)(∫ 1

0
g2(x)dx

)
and (∫ 1

0
[f(x) + g(x)]2dx

) 1
2

⩽
(∫ 1

0
f2(x)dx

) 1
2

+
(∫ 1

0
g2(x)dx

) 1
2

.

5.26 Find the nullspace S of the augmented matrix of the following system and
then find S⊥.  x1 − 2x2 + 3x3 − 4x4 = 0

x1 + 5x2 + 3x3 + 3x4 = 0.

5.27 Let {u1, u2, . . . , up} be an orthonormal basis for a subspace W of Rn. Show
that for any y ∈ Rn,

projW y = UUT y,

where U is an n × p matrix given by U =
[

u1 ¦ u2 ¦ · · · ¦ up

]
.

5.28 Let S = {v1, v2, . . . , vk} be an orthonormal set in Rn and x ∈ Rn. Show
that

∥x∥2 ⩾ ⟨x, v1⟩2 + ⟨x, v2⟩2 + · · · + ⟨x, vk⟩2.

5.29 Let A be a symmetric matrix. Show that Ax = b has a solution if and only
if b is orthogonal to the nullspace of A.

5.30 Let W be the plane x − y + 2z = 0 in R3, and v = [3, −1, 2].

(a) Find the orthogonal projection of v onto W .

(b) Find the component of v orthogonal to W .

5.31 Let Ax = b be consistent. Show that if A has linearly independent column
vectors, then the least squares solution of Ax = b is the same as the exact solution
of Ax = b.

5.32 Let A be a matrix with linearly independent column vectors and b be a vector
orthogonal to the column space of A. Show that the least squares solution of Ax = b
is x = 0.
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5.33 Show that A is orthogonal if and only if ∥Ax∥ = ∥x∥ for all x.

5.34 Let B and C be bases for R2 and C = {u1, u2}, where u1 = [1, 2], u2 = [2, 3].
Find the basis B if the transition matrix from B to C is

P =

[
1 −1

−1 2

]
.

5.35 Let x ∈ Rn with ∥x∥ = 1. Suppose that x has a partition as

x =


x1

x2
...

xn

 =

 x1

−−
y

 ,

where y ∈ Rn−1, and

Q =

 x1 yT

y I −
(

1
1 − x1

)
yyT

 ,

where I is the (n − 1) × (n − 1) identity matrix. Show that Q is orthogonal.



Chapter 6
Eigenvalues and Eigenvectors

“Eigenvalues are in everything. There is an eigenvalue in the burrito you are going to eat
for lunch today.”

— A linear algebra professor

“Nature hides her secrets because of her essential loftiness, but not by means of ruse.”
— Albert Einstein

In this chapter, we study eigenvalues and eigenvectors of a square matrix A. An
eigenvector x ̸= 0 of A is a special vector which does not change its direction when
it is multiplied by A, i.e., Ax = λx for some value λ. Such a value is then called an
eigenvalue of A. An essential highlight of this chapter is the diagonalization problem.

6.1 Eigenvalues and Eigenvectors

We introduce the concepts of eigenvalue, eigenvector, and eigenspace and then
present methods to compute them through examples.

6.1.1 Introduction to eigenvalues and eigenvectors

Definition Let A be a square matrix. If a nonzero vector x satisfies Ax=λx, where
λ is a scalar, then λ is called an eigenvalue of A and x is called an eigenvector
of A corresponding to λ.

We observe that if A is an n × n matrix and λ is a scalar, then the following are
equivalent.

(1) There exists x ̸= 0 such that Ax = λx.

(2) The system of equations (λI − A)x = 0 has nontrivial solutions.

(3) det(λI − A) = 0.
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The equation det(λI − A) = 0 is called the characteristic equation of A. Any
scalar satisfying the equation det(λI − A) = 0 is an eigenvalue of A. Obviously, if A

is a triangular matrix, then the eigenvalues of A are the entries on the main diagonal
of A. In fact, for an n × n matrix A, det(λI − A) is a polynomial in λ of degree n,
which is called the characteristic polynomial of A.

Example Find the eigenvalues of

A =

 3 2 4
2 0 2
4 2 3

 .

Solution The characteristic polynomial of A is

det(λI − A) = det

 λ − 3 −2 −4
−2 λ −2
−4 −2 λ − 3

 = λ3 − 6λ2 − 15λ − 8.

The eigenvalues of A therefore satisfy

λ3 − 6λ2 − 15λ − 8 = 0 =⇒ (λ − 8)(λ + 1)2 = 0.

Thus, the distinct eigenvalues of A are

λ = 8, λ = −1.

Remark A real matrix may have complex eigenvalues. For instance, let

A =

[
0 −1
1 0

]
.

The characteristic polynomial of A is

det(λI − A) = det

[
λ 1

−1 λ

]
= λ2 + 1.

The eigenvalues of A are the roots of λ2 + 1 = 0 and therefore λ = i and λ = −i,
where i2 = −1. For a review of complex numbers, we refer to Subsection 8.3.1 for
details.

6.1.2 Two theorems concerned with eigenvalues

We list two theorems concerned with some properties of eigenvalues and eigenvectors.
The first theorem indicates a simple way to find the eigenvalues and eigenvectors of
any positive integer powers of a matrix A once the eigenvalues and eigenvectors of
A are found. The second one demonstrates a relationship between eigenvalues and
the invertibility of a matrix.
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Theorem 6.1 Let k be a positive integer, λ be an eigenvalue of a matrix A, and x be
a corresponding eigenvector. Then λk is an eigenvalue of Ak and x is a corresponding
eigenvector.

Proof Since Ax = λx, we have

A2x = A(Ax) = A(λx) = λAx = λ(λx) = λ2x.

By induction, one can prove easily that Akx = λkx for any positive integer k.

Theorem 6.2 A matrix A is invertible if and only if λ = 0 is not an eigenvalue of
A.

Proof In fact, the statement in the theorem is equivalent to that A is not invertible
if and only if λ = 0 is an eigenvalue of A. So we consider its equivalent statement.
If λ = 0 is an eigenvalue of A, then

Ax = 0x = 0

has nonzero solution x, i.e., A is not invertible. Conversely, it is obviously true.

6.1.3 Bases for eigenspaces

We know that the eigenvectors corresponding to λ are the nonzero vectors in the
solution space of (λI − A)x = 0. This solution space is called the eigenspace of A

corresponding to λ. The following example is of finding bases for the eigenspaces of
a matrix A.

Example Find bases for the eigenspaces of

A =

 1 1 3
0 3 0
2 2 0

 .

Solution The characteristic equation of A is

λ3 − 4λ2 − 3λ + 18 = (λ + 2)(λ − 3)2 = 0.

Thus, the distinct eigenvalues of A are λ = −2 and λ = 3. There are two
eigenspaces of A. By definition, we know that x = [x1, x2, x3]T is an eigenvector of
A corresponding to λ if and only if x is a nontrivial solution of

(λI − A)x =

 λ − 1 −1 −3
0 λ − 3 0

−2 −2 λ


 x1

x2

x3

 =

 0
0
0

 . (6.1)
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If λ = −2, then (6.1) becomes −3 −1 −3
0 −5 0

−2 −2 −2


 x1

x2

x3

 =

 0
0
0

 .

Solving this system yields
x1 = −s, x2 = 0, x3 = s.

Thus, the eigenvectors corresponding to λ = −2 are the nonzero vectors of the form

x =

 −s

0
s

 = s

 −1
0
1

 .

Hence [−1, 0, 1]T is a basis for the eigenspace corresponding to λ = −2.

If λ = 3, then (6.1) becomes 2 −1 −3
0 0 0

−2 −2 3


 x1

x2

x3

 =

 0
0
0

 .

Solving this system yields

x1 = 3s, x2 = 0, x3 = 2s.

Thus, the eigenvectors of A corresponding to λ = 3 are the nonzero vectors of the
form

x =

 3s

0
2s

 = s

 3
0
2

 .

Hence [3, 0, 2]T is a basis for the eigenspace corresponding to λ = 3.

6.2 Diagonalization

We are concerned with the problem of finding a basis for Rn that includes all
eigenvectors of a matrix A ∈ Rn×n because such a basis helps us to simplify
numerical computations involving A. In this section, our goal is to show that this
problem is actually equivalent to a diagonalization problem.

6.2.1 Diagonalization problem

Given a square matrix A, does there exist an invertible matrix P such that P −1AP

is a diagonal matrix? Such kind of problem is called the diagonalization problem.
A square matrix A is called diagonalizable if there is an invertible matrix P such
that P −1AP is a diagonal matrix.
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Theorem 6.3 Let A be an n × n matrix. Then the following are equivalent.

(a) A is diagonalizable.

(b) A has n linearly independent eigenvectors.

Proof (a) ⇒ (b): Since A is diagonalizable, there exists an invertible matrix P such
that

P −1AP = D,

where D is a diagonal matrix with diagonal entries λ1, λ2, . . . , λn, i.e.,

D = diag(λ1, λ2, . . . , λn).

Let
P =

[
p1 ¦ p2 ¦ · · · ¦ pn

]
,

where pi (1 ⩽ i ⩽ n) are the column vectors of P . Then from P −1AP = D, we have

AP = PD,

which implies[
Ap1 ¦ Ap2 ¦ · · · ¦ Apn

]
=
[

λ1p1 ¦ λ2p2 ¦ · · · ¦ λnpn

]
.

Therefore, for any i,
Api = λipi,

i.e., p1, p2, . . . , pn are eigenvectors of A corresponding to the eigenvalues λ1, λ2, . . . ,

λn, respectively. Since P is invertible, the column vectors pi (1 ⩽ i ⩽ n) are linearly
independent. Thus, A has n linearly independent eigenvectors. Conversely, one can
show that it is also true.

6.2.2 Procedure for diagonalization

Recall that an n × n matrix A with n linearly independent eigenvectors is
diagonalizable. The following procedure provides a method for diagonalizing A.

(1) Find the eigenvalues λ1, λ2, . . . , λn of A.

(2) If there are n linearly independent eigenvectors of A, say, p1, p2, . . . , pn

corresponding to λ1, λ2, . . . , λn, then we can construct a matrix

P =
[

p1 ¦ p2 ¦ · · · ¦ pn

]
.

(3) The matrix P −1AP = diag(λ1, λ2, . . . , λn).
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Example 1 Find a matrix P that diagonalizes

A =

 1 2 0
0 3 0
2 −4 2

 .

Solution The characteristic equation of A is

det(λI − A) = (λ − 1)(λ − 2)(λ − 3) = 0.

Thus, the eigenvalues of A are λ = 1, λ = 2, and λ = 3. The corresponding
eigenvectors are given as follows:

λ = 1, p1 =

 −1
0
2

 ; λ = 2, p2 =

 0
0
1

 ; λ = 3, p3 =

 −1
−1

2

 .

In fact, p1, p2, and p3 are linearly independent. We can construct an invertible
matrix

P =
[

p1 ¦ p2 ¦ p3

]
=

 −1 0 −1
0 0 −1
2 1 2


such that

P −1AP = diag(1, 2, 3).

Example 2 Let

A =

 1 1 0
−1 3 0

0 −1 1

 .

Is A diagonalizable?

Solution The characteristic equation of A is

det(λI − A) = (λ − 1)(λ − 2)2 = 0.

Thus, the distinct eigenvalues of A are λ = 1 and λ = 2. The corresponding
eigenvectors are given as follows:

λ = 1, p1 =

 0
0
1

 ; λ = 2, p2 =

 −1
−1

1

 .

Since A is a 3 × 3 matrix and there are only two linearly independent eigenvectors
in total, A is not diagonalizable.



6.2 Diagonalization 155

Remark If an n × n matrix A is diagonalizable, then it is much easier for us to
compute the power of A. More precisely, if P −1AP = D, where

D = diag(λ1, λ2, . . . , λn),

we then have
A = PDP −1,

which implies

Ak = (PDP −1)(PDP −1) · · · (PDP −1)︸ ︷︷ ︸
k

= P DD · · · D︸ ︷︷ ︸
k

P −1 = PDkP −1,

where Dk = diag(λk
1 , λk

2 , . . . , λk
n).

6.2.3 Two theorems concerned with diagonalization

From the examples in previous subsection, one may guess that basis vectors from
various eigenspaces of A are linearly independent. The following theorem gives the
proof.

Theorem 6.4 Let v1, v2, . . . , vk be eigenvectors of A corresponding to distinct
eigenvalues λ1, λ2, . . . , λk. Then {v1, v2, . . . , vk} is linearly independent.

Proof By contradiction, we assume that {v1, v2, . . . , vk} is linearly dependent.
Since an eigenvector is nonzero by definition, {v1} is linearly independent. Without
loss of generality, let r be the largest integer such that

{v1, v2, · · · , vr}

is linearly independent. Then we have 1 ⩽ r < k. Moreover, {v1, v2, · · · , vr+1} is
linearly dependent. Thus, there are scalars c1, c2, . . . , cr+1, not all zero, such that

c1v1 + c2v2 + · · · + cr+1vr+1 = 0. (6.2)

Multiplying both sides of (6.2) by A and using

Av1 = λ1v1, Av2 = λ2v2, . . . , Avr+1 = λr+1vr+1,

we deduce
c1λ1v1 + c2λ2v2 + · · · + cr+1λr+1vr+1 = 0. (6.3)

Multiplying both sides of (6.2) by λr+1 and subtracting the resulting equation from
(6.3) yields

c1(λ1 − λr+1)v1 + c2(λ2 − λr+1)v2 + · · · + cr(λr − λr+1)vr = 0.
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Since {v1, v2, . . . , vr} is linearly independent, this equation implies that

c1(λ1 − λr+1) = c2(λ2 − λr+1) = · · · = cr(λr − λr+1) = 0.

Since λ1, λ2, . . . , λr+1 are distinct, we have

c1 = c2 = · · · = cr = 0. (6.4)

Substituting these values into (6.2) yields

cr+1vr+1 = 0.

Note that the eigenvector vr+1 is nonzero and it follows that

cr+1 = 0. (6.5)

Equations (6.4) and (6.5) contradict the fact that c1, c2, . . . , cr+1 are not all zero.
The proof is completed.

As a result of the theorem above, we have the following important theorem.

Theorem 6.5 Let an n × n matrix A have n distinct eigenvalues. Then A is
diagonalizable.

Proof Since A has n distinct eigenvalues, by Theorem 6.4, we know that there are
n linearly independent eigenvectors of A. It follows from Theorem 6.3 that A is
diagonalizable.

6.3 Orthogonal Diagonalization

In this section, we focus on another problem of finding an orthonormal basis that
consists of eigenvectors of a square matrix. Equivalently, we study a diagonalization
employing an orthogonal matrix. Given A ∈ Rn×n, does there exist an orthogonal
matrix P such that

P −1AP = P T AP = diag(λ1, λ2, . . . , λn)?

Such kind of problem is called the orthogonal diagonalization problem. A square
matrix A is called orthogonally diagonalizable if there is an orthogonal matrix
P such that P T AP is a diagonal matrix.

Theorem 6.6 For an n × n matrix A, the following are equivalent.

(a) A is orthogonally diagonalizable.

(b) A has an orthonormal set of n eigenvectors.
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(c) A is symmetric.

Proof (a) ⇒ (b): Since A is orthogonally diagonalizable, there is an orthogonal
matrix P such that P −1AP is diagonal. As shown in the proof of Theorem 6.3, the
n column vectors of P are eigenvectors of A. Since P is orthogonal, by Theorem 5.18
these column vectors are orthonormal. Hence A has n orthonormal eigenvectors.

(b) ⇒ (a): Assume that A has n orthonormal eigenvectors p1, p2, . . . , pn, i.e.,

Apj = λjpj , 1 ⩽ j ⩽ n.

Construct a matrix with p1, p2, . . . , pn as column vectors:

P =
[

p1 ¦ p2 ¦ · · · ¦ pn

]
.

We then have
AP = PD,

where P is orthogonal and D = diag(λ1, λ2, . . . , λn). Thus, P −1AP is a diagonal
matrix, i.e., A is orthogonally diagonalizable.

(a) ⇒ (c): Since A is orthogonally diagonalizable, there exists an orthogonal matrix
P such that

P T AP = D,

where D is a diagonal matrix. It implies

A = PDP T .

It follows that
AT =

(
PDP T

)T = PDT P T = PDP T = A.

Thus, A is symmetric.

(c) ⇒ (a): We prove this by using induction. If A is a 1 × 1 matrix, then (c)
obviously implies (a). Suppose that all (n − 1) × (n − 1) symmetric matrices can be
orthogonally diagonalizable. Now we consider a symmetric matrix A ∈ Rn×n. Let λ

be an eigenvalue of A and v be the corresponding eigenvector. Since v is a nonzero
vector, we construct a unit vector

v′ = v
∥v∥

.

Then v′ is an eigenvector of A with ∥v′∥ = 1. We can always find vectors
y1, y2, . . . , yn−1 together with v′ to form an orthonormal basis for Rn. Construct a
matrix with y1, y2, . . . , yn−1 as column vectors:

Y =
[

y1 ¦ y2 ¦ · · · ¦ yn−1

]
∈ Rn×(n−1).
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We then have

Y T Y =



yT
1

−−
yT

2
−−

...
−−

yT
n−1


[ y1 ¦ y2 ¦ · · · ¦ yn−1 ] =


yT

1 y1 yT
1 y2 · · · yT

1 yn−1

yT
2 y1 yT

2 y2 · · · yT
2 yn−1

...
...

...
yT

n−1y1 yT
n−1y2 · · · yT

n−1yn−1



= In−1

and
v′T Y = [ v′T y1 ¦ v′T y2 ¦ · · · ¦ v′T yn−1 ] = 0T ∈ R1×(n−1). (6.6)

Note that the matrix Y T AY ∈ R(n−1)×(n−1) is symmetric. Then by the inductive
hypothesis there exists an orthogonal matrix P ∈ R(n−1)×(n−1) such that

P T Y T AY P = D (6.7)

is diagonal. Constructing

B = [ v′ ¦ Y P ] ∈ Rn×n,

we therefore have by using (6.6),

BT B =

 v′T

− − −
(Y P )T

 [ v′ ¦ Y P ] =

[
v′T v′ v′T Y P

(v′T Y P )T (Y P )T Y P

]
=

[
1 0T

0 In−1

]
= In.

Thus, B is orthogonal. By (6.6) and (6.7), we obtain

v′T AY P = (AT v′)T Y P = (Av′)T Y P = λv′T Y P = 0T (6.8)

and
(Y P )T AY P = P T Y T AY P = D. (6.9)

Finally, it follows from (6.8) and (6.9) that

BT AB =

[
v′T Av′ v′T AY P

(v′T AY P )T (Y P )T AY P

]
=

[
v′T Av′ 0T

0 D

]
,

i.e., BT AB is diagonal. The proof is completed.

Before we develop a procedure of orthogonal diagonalization, we need the
following important theorem about eigenvalues and eigenvectors of symmetric
matrices. We defer the proof of the theorem until Chapter 8 (see Theorem 8.12).
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Theorem 6.7 Let A be a symmetric matrix. Then

(a) The eigenvalues of A are all real.

(b) Eigenvectors from different eigenspaces are orthogonal.

Therefore, combining the above theorems, we provide the following method for
diagonalizing a symmetric matrix A.

(1) Find a basis for each eigenspace of A.

(2) Apply the Gram-Schmidt process to each of these bases to obtain an orthonor-
mal basis for each eigenspace.

(3) Find the matrix P whose columns are the basis vectors constructed in (2).
Then P T AP is diagonal.

Example Find a matrix P that orthogonally diagonalizes

A =

 0 −1 1
−1 0 −1

1 −1 0

 .

Solution The characteristic equation of A is

det(λI − A) = (λ + 1)2(λ − 2) = 0,

and the distinct eigenvalues are λ = −1 and λ = 2. The following are bases for the
eigenspaces:

λ = −1, x1 =

 1
1
0

 , x2 =

 −1
0
1

 ; λ = 2, x3 =

 1
−1

1

 .

There are three basis vectors in total. Applying the Gram-Schmidt process to each
of these bases, we have the following bases for each eigenspaces:

λ = −1, p1 =


1√
2

1√
2

0

 , p2 =


− 1√

6
1√
6

2√
6

 ; λ = 2, p3 =



1√
3

− 1√
3

1√
3

 .
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Construct an orthogonal matrix

P =
[

p1 ¦ p2 ¦ p3

]
=



1√
2

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

0 2√
6

1√
3

 .

It is easy to verify
P T AP = diag(−1, −1, 2).

6.4 Jordan Decomposition Theorem

The following theorem is fundamental and useful in linear algebra.

Theorem 6.8 (Jordan Decomposition Theorem) Let A be any n × n matrix. Then
there exists an invertible matrix X such that

X−1AX = J :=



J1 0 0 · · · 0

0 J2 0
. . . ...

0 0 J3
. . . 0

... . . . . . . 0
0 0 · · · 0 Jp


,

where Ji is an ni × ni matrix for 1 ⩽ i ⩽ p given by

Ji =



λi 1 0 · · · 0

0 λi 1
. . . ...

0 0 λi
. . . 0

... . . . . . . 1
0 0 · · · 0 λi


with λi (1 ⩽ i ⩽ p) being the eigenvalues of A and n1 + n2 + · · · + np = n. The
matrix J is called the Jordan canonical form of A and Ji (1 ⩽ i ⩽ p) are called
Jordan blocks. The Jordan canonical form of A is unique up to the permutation
of diagonal Jordan blocks.

The proof of the Jordan decomposition theorem is beyond the scope of this text.
We refer the interested readers to [14, pp. 164–171].
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Remark It is well-known that there exist some square matrices which are not
diagonalizable. However, the Jordan decomposition theorem tells us that for every
square matrix A, there exists an invertible matrix X such that X−1AX is a bi-
diagonal matrix.

Example 1 Let

J =



2 1 ¦ ¦
2 ¦ ¦

− − − − − − − − − − −−
¦ 4 ¦

− − − − − − − − − − −−
¦ ¦ 3 1
¦ ¦ 3 1
¦ ¦ 3


be the Jordan canonical form of a 6 × 6 matrix A. Then the Jordan blocks are

J1 =

[
2 1
0 2

]
, J2 = [4], J3 =

 3 1 0
0 3 1
0 0 3

 .

Moreover, from the Jordan canonical form of A, we find that A has three distinct
eigenvalues λ = 2, λ = 4, and λ = 3.

Example 2 Let

A =

 1 −3 −2
−1 1 −1

2 4 5

 .

Is it diagonalizable? Find its Jordan canonical form.

Solution The characteristic equation of A is

det(λI − A) = (λ − 2)2(λ − 3) = 0.

Therefore, the distinct eigenvalues and the corresponding eigenvectors of A are

λ = 2, p1 = [−1, −1, 2]T ; λ = 3, p2 = [−1, 0, 1]T .

Since A is a 3 × 3 matrix and has only two linearly independent eigenvectors, A is
not diagonalizable. However, we can find an invertible matrix

X =

 −1 1 −1
−1 0 0

2 0 1


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such that

X−1AX =

 2 1 ¦ 0
0 2 ¦ 0
− − − − −
0 0 ¦ 3


is a bi-diagonal matrix (the Jordan canonical form of A).

Exercises

Elementary exercises

6.1 Find the eigenvalues and bases for the eigenspaces of the following matrices.

(a)

[
1 4
2 3

]
. (b)

 5 0 1
1 1 0

−7 1 0

 . (c)


1 −2 0 0

−1 0 0 0
0 0 2 1
0 0 0 2

 .

6.2 For a positive integer k ⩾ 2, compute

(a)

[
2 1
1 3

]k

. (b)

[
λ 1
0 λ

]k

. (c)

 0 1 0
0 0 1
0 0 0


k

. (d)

 0 1 0
0 0 1
1 0 0


k

.

6.3 Find the eigenvalues and bases for the eigenspaces of A9, where

A =

 −1 −2 −2
1 2 1

−1 −1 0

 .

6.4 Suppose that

A =

[
0 1
2 1

]
, b =

[
5
1

]
.

(a) Find A10b.

(b) Find A10 and check whether your solution of (a) is true or not.

6.5 Find a matrix A ∈ R3×3 such that

Au1 = u1, Au2 = 2u2, Au3 = 3u3,

where u1 = [1, 2, 2]T , u2 = [2, −2, 1]T , and u3 = [−2, −1, 2]T .
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6.6 Show that if

A =

 0 0 1
a 1 b

1 0 0


has three linearly independent eigenvectors, then a + b = 0.

6.7 Show that if λ is an eigenvalue of an invertible matrix A and x is a corresponding
eigenvector, then 1/λ is an eigenvalue of A−1 and x is a corresponding eigenvector.

6.8 Show that if λ is an eigenvalue of a matrix A, x is a corresponding eigenvector,
and α is a scalar, then λ − α is an eigenvalue of A − αI and x is a corresponding
eigenvector.

6.9 Show that if λ is an eigenvalue of an invertible matrix A and x is a corresponding
eigenvector, then det(A)/λ is an eigenvalue of adj(A) and x is a corresponding
eigenvector.

6.10 Let

A =

 2 1 1
1 3 2
1 2 4

 .

Find the eigenvalues and bases for the eigenspaces of A, A−1, A − 2I, and A + 3I,
where I is the 3 × 3 identity matrix.

6.11 Let A ∈ Rn×n. Show that if λ is an eigenvalue of A, then λ3 + 3λ2 − 2λ + 5
is an eigenvalue of the matrix A3 + 3A2 − 2A + 5I, where I is the n × n identity
matrix.

6.12 Let

A =

 2 0 1
3 1 a

4 0 5

 .

Find the value of a such that A is diagonalizable.

6.13 Let A ∈ Rn×n with Am = 0 for some m > 1. Show that if A is diagonalizable,
then A must be the zero matrix.

6.14 Determine whether A is diagonalizable. If so, find an invertible matrix P that
diagonalizes A, and determine P −1AP .

(a) A=

 −1 4 −2
−3 4 0
−3 1 3

 . (b) A=

 1 2 2
2 1 2
2 2 1

 . (c) A=


2 −1 0 1
0 2 1 −1
0 0 3 2
0 0 0 3

 .
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6.15 Let A be a diagonalizable matrix.

(a) Show that AT is also a diagonalizable matrix.

(b) Show that if A is invertible, then A−1 is diagonalizable.

6.16 Find A2 and A6, where

A =


−1 1 1 −1

1 −1 −1 1
1 −1 −1 1

−1 1 1 −1

 .

6.17 Show that if A is a symmetric matrix, then all eigenvalues of A are nonnegative
if and only if there exists a symmetric matrix B such that A = B2.

6.18 Find a matrix P that orthogonally diagonalizes each of the following matrices.

(a)

[
6 −2

−2 3

]
. (b)

 −2 0 −36
0 −3 0

−36 0 −23

 .

6.19 If b ̸= 0, find a matrix P that orthogonally diagonalizes

A =

[
a b

b a

]
.

6.20 Let A, B ∈ Rn×n be two orthogonally diagonalizable matrices.

(a) Show that A + B is orthogonally diagonalizable.

(b) Show that if AB = BA, then AB is orthogonally diagonalizable.

6.21 Show that if v is any n × 1 matrix and I is the n × n identity matrix, then
I − vvT is orthogonally diagonalizable.

Challenge exercises

6.22 Find det(A) given that A has p(λ) as its characteristic polynomial.

(a) p(λ) = λ3 + 2λ2 − λ + 4. (b) p(λ) = λ4 + 3λ3 + 6.

6.23 Show that the characteristic equation of A ∈ R2×2 can be expressed as

λ2 − tr(A)λ + det(A) = 0.
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6.24 Let A ∈ Rn×n. Show that A and AT have the same eigenvalues and may not
have the same eigenspaces.

6.25 Let

A =

[
0 1
1 1

]
.

Show that for any positive integer k ⩾ 2,

tr(Ak) = tr(Ak−1) + tr(Ak−2).

6.26 Let λ1 and λ2 be two distinct eigenvalues of a matrix A, and let v1 and v2

be eigenvectors of A corresponding to λ1 and λ2, respectively. Show that v1 + v2 is
not an eigenvector of A.

6.27 Let λ1 and λ2 be two distinct eigenvalues of a matrix A, and let u1, u2, . . . , us

and v1, v2, . . . , vt be linearly independent eigenvectors of A corresponding to λ1

and λ2, respectively. Show that the set {u1, u2, . . . , us, v1, v2, . . . , vt} is linearly
independent.

6.28 Let A = uvT , where u = [1, 2, 3]T and v = [4, 5, 6]T . Find An, where n is an
integer and n > 1.

6.29 Show that if A is diagonalizable, then rank(A) is equal to the number of
nonzero eigenvalues of A.

6.30 Let En = [eij ] ∈ Rn×n, where eij = 1 for all i, j. Find the eigenvalues and
corresponding eigenvectors of

A =

[
0 En

En 0

]
.

6.31 Let A ∈ Rm×n and B ∈ Rn×m, where m ⩾ n. Show that

det(λIm − AB) = λm−n · det(λIn − BA).

6.32 Let u, v ∈ Rn be nonzero column vectors orthogonal to each other. Find all
eigenvalues of A = uvT and corresponding eigenvectors.

6.33 Prove the Cayley-Hamilton theorem [14, pp. 109–111]: If A ∈ Rn×n with
characteristic equation

λn + cn−1λn−1 + · · · + c1λ + c0 = 0,

where c0, c1, . . . , cn−1 ∈ R, then

An + cn−1An−1 + · · · + c1A + c0I = 0,

where I is the n × n identity matrix.



Chapter 7
Linear Transformations

“We do not need magic to transform our world.”
— Joanne Rowling

“Mathematics compares the most diverse phenomena and discovers the secret analogies
that unite them.”

— Joseph Fourier

In Chapter 3, we introduced linear transformations from Rn to Rm. In this chapter,
we will study linear transformations between general vector spaces. The results
obtained here many important applications in science and engineering.

7.1 General Linear Transformations

In Section 3.2, we defined and studied linear transformations from Rn to Rm. In this
section, we will define and study the more general concept of a linear transformation
from a general vector space to another.

7.1.1 Introduction to linear transformations

By inspection of Theorem 3.7 about the linearity conditions of linear transformations
from Rn to Rm, we will use these conditions as the starting point to define general
linear transformations.

Definition Let T : V → W be a function from a vector space V to a vector space
W . Then T is called a linear transformation from V to W if for all vectors u
and v in V and all scalars k:

(i) T (u + v) = T (u) + T (v).

(ii) T (ku) = kT (u).
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Examples

(a) Let p = p(x) = c0 + c1x + · · · + cnxn be a polynomial in Pn and define the
function T : Pn → Pn+1 by

T (p) = T
(
p(x)

)
= xp(x) = c0x + c1x2 + · · · + cnxn+1.

For any polynomials p1, p2 ∈ Pn and any scalar k, we have

T (p1 + kp2) = T
(
p1(x) + kp2(x)

)
= x

(
p1(x) + kp2(x)

)
= xp1(x) + kxp2(x) = T (p1) + kT (p2).

Thus, T is a linear transformation.

(b) Let V be an inner product space and v0 ∈ V be any fixed vector. Let T : V →R

be the transformation that maps a vector v into its inner product with v0, i.e.,

T (v) = ⟨v, v0⟩.

From the axioms of an inner product, we have for any u, v ∈ V and any scalar
k,

T (u + kv) = ⟨u + kv, v0⟩ = ⟨u, v0⟩ + k⟨v, v0⟩ = T (u) + kT (v).

Hence T is a linear transformation.

(c) Consider the trace defined on Rn×n. For A = [aij ], B = [bij ] ∈ Rn×n and any
scalar k, we have

tr(A + kB) =
n∑

i=1
(aii + kbii) =

n∑
i=1

aii + k

n∑
i=1

bii = tr(A) + ktr(B).

Thus, tr(·) is a linear transformation.

(d) Let V = C1(−∞, ∞) be the vector space of all functions with continuous first
derivatives on (−∞, ∞) and W = C(−∞, ∞) be the vector space of continuous
functions defined on (−∞, ∞). Let D : V → W be the transformation that
maps a function f = f(x) into its derivative, i.e.,

D(f) = f ′(x) = df(x)
dx

.

It follows from the properties of differentiation that for any f = f(x), g =
g(x) ∈ V and any scalar k,

D(f + kg) =
(
f(x) + kg(x)

)′ = f ′(x) + kg′(x) = D(f) + kD(g).

Thus, D is a linear transformation.
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(e) Let V = C(−∞, ∞) be the vector space of all continuous functions on
(−∞, ∞), W = C1(−∞, ∞) be the vector space of functions with continuous
first derivatives on (−∞, ∞), and J : V → W be the transformation that maps
f = f(x) into its integral, i.e.,

J(f) =
∫ x

0
f(t)dt.

It follows from the properties of integration that for any f = f(x), g = g(x) ∈ V

and any scalar k,

J(f + kg) =
∫ x

0
[f(t) + kg(t)]dt =

∫ x

0
f(t)dt + k

∫ x

0
g(t)dt = J(f) + kJ(g).

Hence J is a linear transformation.

The following theorem lists some basic properties that hold for all linear
transformations.

Theorem 7.1 Let T : V → W be a linear transformation. Then

(a) T (0) = 0.

(b) T (−v) = −T (v) for all v in V .

(c) T (v − w) = T (v) − T (w) for all v and w in V .

(d) T
( n∑

i=1
kivi

)
=

n∑
i=1

kiT (vi) for all vi in V and all ki in R (1 ⩽ i ⩽ n).

Proof For (a), we have

T (0) = T (0u) = 0T (u) = 0.

One can prove the remaining parts easily.

Let T : V → W be a linear transformation and {v1, v2, . . . , vn} be any basis for
V . Then for any vector v ∈ V , T (v), the image of v under T , can be calculated
from T (v1), T (v2), . . . , T (vn), which are the images of the basis vectors. In fact, let

v = c1v1 + c2v2 + · · · + cnvn.

It follows from Theorem 7.1 (d) that

T (v) = c1T (v1) + c2T (v2) + · · · + cnT (vn).
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7.1.2 Compositions

In Subsection 3.2.3, we defined the composition of linear transformations on the
Euclidean vector spaces. We extend that concept to general linear transformations.

Definition Let T1: U →V and T2: V →W be linear transformations. The composi-
tion of T2 with T1, denoted by T2 ◦ T1, is the function defined for any vector u in U

by the formula
(T2 ◦ T1)(u) = T2

(
T1(u)

)
.

The following theorem shows that the composition of two linear transformations
is still a linear transformation.

Theorem 7.2 Let T1 : U → V and T2 : V → W be linear transformations. Then

T2 ◦ T1 : U → W

is also a linear transformation.

Proof Since T1 and T2 are linear transformations, we have for any u, v ∈ U and
k ∈ R,

(T2 ◦ T1)(u + kv) = T2
(
T1(u + kv)

)
= T2

(
T1(u) + kT1(v)

)
= T2

(
T1(u)

)
+ kT2

(
T1(v)

)
= (T2 ◦ T1)(u) + k(T2 ◦ T1)(v).

Thus, T2 ◦ T1 is a linear transformation from U to W .

Example Let T1 : P1 → P2 and T2 : P2 → P2 be the linear transformations given
by the formulas

T1
(
p(x)

)
= xp(x) and T2

(
p(x)

)
= p(3x + 2).

Then the composition T2 ◦ T1 : P1 → P2 is given by the formula

(T2 ◦ T1)
(
p(x)

)
= T2

(
T1(p(x))

)
= T2

(
xp(x)

)
= (3x + 2)p(3x + 2).

In particular, if p(x) = c0 + c1x, then

(T2 ◦ T1)
(
p(x)

)
= (T2 ◦ T1)(c0 + c1x) = (3x + 2)

(
c0 + c1(3x + 2)

)
= c0(3x + 2) + c1(3x + 2)2.

If T : V → V is any linear transformation and if I : V → V is the identity
transformation, then for all vectors v ∈ V ,

(T ◦ I)(v) = T
(
I(v)

)
= T (v), (I ◦ T )(v) = I

(
T (v)

)
= T (v).
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It follows that
T ◦ I = T, I ◦ T = T.

We conclude this section by noting that compositions can be defined for more
than two linear transformations. For example, let V0, V1, V2, and V3 be vector
spaces. If T1 : V0 → V1, T2 : V1 → V2, and T3 : V2 → V3 are linear transformations,
then the composition T3 ◦ T2 ◦ T1, defined by

(T3 ◦ T2 ◦ T1)(v) = T3
(
T2(T1(v))

)
for v ∈ V0, is a linear transformation from V0 to V3. See Figure 7.1.

Figure 7.1

In general, if Tj is a linear transformation from the vector space Vj−1 to another
vector space Vj for 1 ⩽ j ⩽ n, then the composition Tn ◦ Tn−1 ◦ · · · ◦ T2 ◦ T1, defined
by

(Tn ◦ Tn−1 ◦ · · · ◦ T2 ◦ T1)(v) = Tn

(
Tn−1 · · · (T2(T1(v)))

)
for v ∈ V0, is a linear transformation from V0 to Vn.

7.2 Kernel and Range

In this section, we develop some fundamental properties of linear transformations.

7.2.1 Kernel and range

Definition Let T : V → W be a linear transformation. Then the set of vectors in
V that T maps into 0 is called the kernel of T , denoted by ker(T ). The set of all
vectors in W that are images under T of at least one vector in V is called the range
of T , denoted by R(T ).

Note that ker(T ) ⊆ V and R(T ) ⊆ W .
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Examples

(a) If TA : Rn → Rm is defined by TA(x) = Ax, where A is an m × n matrix and
x ∈ Rn, then ker(TA) is the nullspace of A, and R(TA) is the column space of
A.

(b) Let T : R3 → R3 be the orthogonal projection on the xy-plane. The kernel of
T is the set of points that T maps into 0 = [0, 0, 0]. These are the points on the
z-axis (Figure 7.2). Since T maps every point in R3 into xy-plane, the range
of T must be in this plane. However, every point [x0, y0, 0] in the xy-plane is
the image under T of some points. Actually, it is the image of all points on
the vertical line that passes through [x0, y0, 0] (Figure 7.3). Thus, R(T ) is the
entire xy-plane.

Figure 7.2 ker(T ) is the z-axis Figure 7.3 R(T ) is the entire xy-plane

(c) Let V = C1[a, b] be the vector space of functions with continuous first
derivatives on [a, b] and W = C[a, b] be the vector space of continuous functions
on [a, b]. Let D : V → W be the differentiation transformation

D(f) = f ′(x) = df(x)
dx

,

where f = f(x) ∈ V . The kernel of D is the set of functions in V with
derivative zero. From calculus, this is the set of all constant functions on [a, b].
The range of D is given by R(D) = W = C[a, b].

In all the examples above, ker(T ) and R(T ) turned out to be subspaces. This is
actually a consequence of the following result.

Theorem 7.3 Let T : V → W be a linear transformation. Then

(a) The kernel of T is a subspace of V .
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(b) The range of T is a subspace of W .

Proof For (a), let u, v ∈ ker(T ) and k ∈ R. We have

T (u + kv) = T (u) + kT (v) = 0 + k0 = 0.

Thus, u + kv ∈ ker(T ), i.e., ker(T ) is a subspace by Theorem 4.2.

For (b), let u, v ∈ R(T ) and k ∈ R. We know that there are p, q ∈ V such that

T (p) = u, T (q) = v.

It follows that
T (p + kq) = T (p) + kT (q) = u + kv,

where p + kq ∈ V . Thus, u + kv ∈ R(T ), i.e., R(T ) is a subspace by Theorem 4.2
again.

7.2.2 Rank and nullity

Definition Let T : V → W be a linear transformation. Then the dimension of the
range of T is called the rank of T and is denoted by rank(T ); the dimension of the
kernel is called the nullity of T and is denoted by nullity(T ).

Let TA : Rn → Rm be multiplication by A ∈ Rm×n. Then we have the following
relationship between the rank and nullity of the matrix A and the rank and nullity
of the corresponding linear transformation TA.

Theorem 7.4 Let A be an m × n matrix and TA be the matrix transformation from
Rn to Rm. Then

(a) nullity(TA) = nullity(A).

(b) rank(TA) = rank(A).

Proof For (a), we have

nullity(TA) = dim
(
ker(TA)

)
= dim(nullspace of A) = nullity(A).

For (b), we have

rank(TA) = dim
(
R(TA)

)
= dim(column space of A) = rank(A).

7.2.3 Dimension theorem for linear transformations

Theorem 7.5 (Dimension Theorem for Linear Transformations) Let T : V → W

be a linear transformation from an n-dimensional vector space V to a vector space
W . Then

rank(T ) + nullity(T ) = n.
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Proof We only prove the case of 1 ⩽ dim
(

ker(T )
)

< n. The proofs of cases of
dim

(
ker(T )

)
= 0 and dim

(
ker(T )

)
= n are left as an exercise. We must show that

dim
(
R(T )

)
+ dim

(
ker(T )

)
= n.

Assume dim
(

ker(T )
)

= r, and let

{v1, v2, . . . , vr}

be a basis for the kernel. Since {v1, v2, . . . , vr} is linearly independent, Theorem
4.12 (b) states that there are n − r vectors vr+1, . . . , vn such that

{v1, v2, . . . , vr, vr+1, . . . , vn}

is a basis for V . We want to show that the n−r vectors in S = {T (vr+1), . . . , T (vn)}
form a basis for R(T ).

First, we show that S spans R(T ). If w is any vector in R(T ), then w = T (v)
for some vector v in V . Since {v1, v2, . . . , vr, vr+1, . . . , vn} is a basis for V , we have

v = c1v1 + c2v2 + · · · + crvr + cr+1vr+1 + · · · + cnvn.

Since v1, v2, . . . , vr lie in ker(T ), we obtain T (v1) = T (v2) = · · · = T (vr) = 0, so
that

w = T (v) = cr+1T (vr+1) + · · · + cnT (vn).

Thus, R(T ) = span(S).

We next show that S is a linearly independent set. Suppose that

kr+1T (vr+1) + · · · + knT (vn) = 0. (7.1)

Since T is linear, (7.1) can be rewritten as

T (kr+1vr+1 + · · · + knvn) = 0,

which says that kr+1vr+1 +· · ·+knvn ∈ ker(T ). This vector can therefore be written
as a linear combination of the basis vectors {v1, v2, . . . , vr}, say

kr+1vr+1 + · · · + knvn = k1v1 + · · · + krvr.

Thus,
k1v1 + · · · + krvr − kr+1vr+1 − · · · − knvn = 0.

Since {v1, v2, . . . , vr, vr+1, . . . , vn} is linearly independent, all of the k’s are zero.
In particular,

kr+1 = · · · = kn = 0.
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Hence S = {T (vr+1), . . . , T (vn)} is linearly independent. Consequently, S forms a
basis for R(T ). Therefore,

dim
(
R(T )

)
+ dim

(
ker(T )

)
= (n − r) + r = n.

Remark In Theorem 7.5, if T = TA is a matrix transformation from Rn to Rm,
where A is an m × n matrix, then it follows from Theorem 7.4 that

rank(A) + nullity(A) = n.

Thus, Theorem 4.23 actually is a special case of Theorem 7.5.

7.3 Inverse Linear Transformations

In Subsection 3.3.3, we discussed some properties of one-to-one linear transformations
from Rn to Rm. In this section, we extend those ideas to general linear transforma-
tions.

7.3.1 One-to-one and onto linear transformations

Definition A linear transformation T : V →W is said to be one-to-one if T maps
distinct vectors in V into distinct vectors in W , i.e., for any vectors u and v in V ,
if u ̸= v, then T (u) ̸= T (v).

Definition A linear transformation T : V → W is said to be onto if every vector
in W is the image of at least one vector in V , i.e., for every vector w in W , there
is a vector v in V such that T (v) = w.

The following theorem establishes a relationship between a one-to-one linear
transformation and its kernel.

Theorem 7.6 Let T : V → W be a linear transformation. Then the following are
equivalent.

(a) T is one-to-one.

(b) ker(T ) = {0}.

Proof (a) ⇒ (b): Let u ∈ V . By (a), if u ̸= 0, then

T (u) ̸= T (0) = 0,

i.e., u ̸∈ ker(T ). Therefore, ker(T ) = {0}.
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(b) ⇒ (a): If u ̸= v, then u−v ̸= 0. Hence u−v is not in ker(T ) by (b). We obtain

T (u) − T (v) = T (u − v) ̸= 0,

i.e.,
T (u) ̸= T (v).

Thus, T is one-to-one.

Furthermore, if the vector spaces V and W have the same dimension, then the
following theorem shows one more equivalent property. The proof of the theorem is
left as an exercise.

Theorem 7.7 Let V and W be finite-dimensional vector spaces with the same
dimension, and T : V → W be a linear transformation. Then the following are
equivalent.

(a) T is one-to-one.

(b) ker(T ) = {0}.

(c) R(T ) = W , i.e., T is onto.

Example In each part, determine whether the linear transformation is one-to-one,
onto, both, or neither.

(a) T : R2 → R2 rotates each vector through the angle θ.

(b) T : R3 → R3 is the orthogonal projection on the xy-plane.

(c) TA : R4 → R3 is multiplication by the matrix

A =

 1 −1 1 2
3 5 −1 2
5 3 1 6

 .

Solution For (a), note that ker(T ) = {0}, and then T is both one-to-one and onto.

For (b), since ker(T ) is the z-axis which contains nonzero vectors, T is neither one-
to-one nor onto.

For (c), note that rank(A) = 3 and nullity(A) = 1. Since dim
(

ker(TA)
)

=
nullity(A) = 1, i.e., ker(TA) ̸= {0}, it follows from Theorem 7.6 that TA is not
one-to-one. However, since rank(A) = 3, it follows from Theorem 4.26 that the
linear system Ax = b is consistent for every vector b ∈ R3. Thus, R(TA) = R3,
i.e., TA is onto.
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7.3.2 Inverse linear transformations

The inverse transformation of a one-to-one transformation T : V → W , denoted by
T −1, is defined as a new function that maps w = T (v) ∈ R(T ) ⊆ W back into v for
any v ∈ V . See Figure 7.4.

Figure 7.4

We now show that T −1 : R(T ) → V is a linear transformation. Note that from the
definition of T −1,

T −1(T (v)
)

= T −1(w) = v, T
(
T −1(w)

)
= T (v) = w,

i.e.,
T −1 ◦ T = IV , T ◦ T −1 = IR(T ), (7.2)

where IV is the identity transformation on V and IR(T ) is the identity transformation
on R(T ). Thus, for any u, w ∈ R(T ), we deduce by using (7.2),

T −1(u + w) = T −1[(T ◦ T −1)(u) + (T ◦ T −1)(w)] = T −1[T (T −1(u)) + T (T −1(w))]
= T −1[T (T −1(u) + T −1(w))] = (T −1 ◦ T )[T −1(u) + T −1(w)]
= T −1(u) + T −1(w),

and for any scalar k,

T −1(kw) = T −1[k(T ◦ T −1)(w)] = T −1[k(T (T −1(w)))]
= T −1[T (kT −1(w))] = (T −1 ◦ T )[kT −1(w)]
= kT −1(w).

Hence T −1 is a linear transformation.

The following theorem lists an important property of one-to-one linear transform-
ations.

Theorem7.8 Let T1 : U → V and T2 : V → W be one-to-one linear transformations.
Then T2 ◦ T1 is one-to-one.
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Proof Since both T1 and T2 are one-to-one linear transformations, for vectors u
and v in U and u ̸= v, we have

T1(u) ̸= T1(v),

where T1(u) and T1(v) are vectors in V . Moreover,

(T2 ◦ T1)(u) = T2
(
T1(u)

)
̸= T2

(
T1(v)

)
= (T2 ◦ T1)(v),

where (T2 ◦T1)(u) and (T2 ◦T1)(v) are vectors in W . Thus, T2 ◦T1 is one-to-one.

Remark In general, if Tj is a one-to-one linear transformation from the vector
space Vj−1 to another vector space Vj for 1 ⩽ j ⩽ n, then Tn ◦ Tn−1 ◦ · · · ◦ T2 ◦ T1 is
one-to-one.

7.4 Matrices of General Linear Transformations

In this section, we show that if V and W are finite-dimensional vector spaces, then
by using bases for V and W , any linear transformation T : V → W can be regarded
as a matrix transformation.

7.4.1 Matrices of linear transformations

Let T be a linear transformation between two finite-dimensional vector spaces V

and W with dim(V ) = n and dim(W ) = m, respectively. We have the following
relationship. See Figure 7.5.

Figure 7.5

Here [x]B is the coordinate vector of x relative to a basis B for V and [T (x)]B′ is
the coordinate vector of T (x) relative to a basis B′ for W . In the following, we show
that there exists a matrix A such that

A[x]B = [T (x)]B′ . (7.3)

See Figure 7.6.



178 Chapter 7 Linear Transformations

Figure 7.6

We are now going to construct A. Let

B = {u1, u2, . . . , un} ⊂ V, B′ = {v1, v2, . . . , vm} ⊂ W.

Note that

V = span{u1, u2, . . . , un}, W = span{v1, v2, . . . , vm}.

Since B′ = {v1, v2, . . . , vm} is a basis for W and T (uj) ∈ W for 1 ⩽ j ⩽ n, we have

T (uj) =
m∑

i=1
kijvi = [v1, v2, . . . , vm]


k1j

k2j

...
kmj

 .

Therefore,
[T (uj)]B′ = [k1j , k2j , . . . , kmj ]T ∈ Rm. (7.4)

It implies

[T (u1), T (u2), . . . , T (un)] = [v1, v2, . . . , vm]


k11 k12 · · · k1n

k21 k22 · · · k2n

...
...

...
km1 km2 · · · kmn

 . (7.5)

Let

x =
n∑

i=1
xiui = [u1, u2, . . . , un]


x1

x2
...

xn

 ∈ V.

Then
[x]B = [x1, x2, . . . , xn]T ∈ Rn.

It follows from (7.5) that

T (x) = T
( n∑

i=1
xiui

)
=

n∑
i=1

xiT (ui) = [T (u1), T (u2), . . . , T (un)]


x1

x2
...

xn


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= [v1, v2, . . . , vm]


k11 k12 · · · k1n

k21 k22 · · · k2n

...
...

...
km1 km2 · · · kmn




x1

x2
...

xn

 ∈ W. (7.6)

Thus, we have by (7.6) and (7.4),

[T (x)]B′ = [kij ][x]B =
[

[T (u1)]B′ ¦ [T (u2)]B′ ¦ · · · ¦ [T (un)]B′

]
[x]B . (7.7)

Comparing (7.7) with (7.3), we therefore obtain

A =
[

[T (u1)]B′ ¦ [T (u2)]B′ ¦ · · · ¦ [T (un)]B′

]
∈ Rm×n,

where A is called the matrix for T relative to the bases B and B′ and is denoted by
[T ]B′,B usually. Furthermore, (7.5) can be written as

[T (u1), T (u2), . . . , T (un)] = [v1, v2, . . . , vm][T ]B′,B . (7.8)

Remark When V = W , it is usual to take B′ = B when constructing a matrix for
T . In this case the resulting matrix is called the matrix for T relative to the basis
B and is usually denoted by [T ]B rather than [T ]B,B . If B = {u1, u2, . . . , un}, then
in this case we obtain

[T ]B =
[

[T (u1)]B ¦ [T (u2)]B ¦ · · · ¦ [T (un)]B
]

(7.9)

and
[T ]B [x]B = [T (x)]B . (7.10)

Phrased informally, (7.9) and (7.10) state that the matrix for T times the coordinate
vector for x is the coordinate vector for T (x).

Example 1 Let T : P1 → P2 be the linear transformation defined by

T
(
p(x)

)
= xp(x).

Find the matrix for T relative to the bases

B = {u1, u2}, B′ = {v1, v2, v3},

where
u1 = 1, u2 = x; v1 = 1, v2 = x, v3 = x2.
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Solution We have by (7.8),

[T (u1), T (u2)] = [T (1), T (x)] = [x, x2] = [1, x, x2]

 0 0
1 0
0 1


︸ ︷︷ ︸

[T ]B′,B

.

Example 2 Let T : P2 → P2 be the linear transformation defined by

T
(
p(x)

)
= p(2x + 1),

i.e., T (c0 + c1x + c2x2) = c0 + c1(2x + 1) + c2(2x + 1)2.

(a) Find [T ]B relative to the basis B = {1, x, x2}.

(b) Compute T (2 + 3x + 7x2) by using (7.10).

(c) Check the result in (b) by computing T (2 + 3x + 7x2) directly.

Solution For (a), we have from the definition of T ,

T (1) = 1, T (x) = 2x + 1, T (x2) = (2x + 1)2 = 4x2 + 4x + 1.

It follows from (7.8) that

[T (1), T (x), T (x2)] = [1, 2x + 1, 4x2 + 4x + 1] = [1, x, x2]

 1 1 1
0 2 4
0 0 4


︸ ︷︷ ︸

[T ]B

.

For (b), the coordinate vector relative to B of the vector p = 2 + 3x + 7x2 is

[p]B =

 2
3
7

 .

Thus, we have by using (7.10),

[T (p)]B = [T ]B [p]B =

 1 1 1
0 2 4
0 0 4


 2

3
7

 =

 12
34
28

 .

It follows that

T (2 + 3x + 7x2) = [1, x, x2]

 12
34
28

 = 12 + 34x + 28x2.
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For (c), we have by direct computation,

T (2 + 3x + 7x2) = 2 + 3(2x + 1) + 7(2x + 1)2 = 12 + 34x + 28x2,

which agrees with the result in (b).

7.4.2 Matrices of compositions and inverse transformations

The following theorem is a generalization of (3.5) in Subsection 3.2.3. The proof of
the theorem is left as an exercise.

Theorem7.9 Let T1 : V0 →V1 and T2 : V1 →V2 be linear transformations, and let B0,
B1, and B2 be bases for V0, V1, and V2, respectively. Then

[T2 ◦ T1]B2,B0 = [T2]B2,B1 [T1]B1,B0 . (7.11)

Remark In (7.11), observe how the interior subscript B1 (the basis for the
intermediate space V1) seems to “cancel out”, leaving only the bases for the domain
and image space of the composition as subscripts

[T2 ◦ T1]B2,B0 = [T2]B2,B1 [T1]B1,B0 .

↑ ↑
Cancelation

This cancelation of interior subscripts suggests the following extension of (7.11) to
composition of three linear transformations. Let B0, B1, B2, and B3 be bases for
vector spaces V0, V1, V2, and V3, respectively, and Tj be a linear transformation
from Vj−1 to Vj for j = 1, 2, 3. See Figure 7.7.

Figure 7.7

Therefore,
[T3 ◦ T2 ◦ T1]B3,B0 = [T3]B3,B2 [T2]B2,B1 [T1]B1,B0 .

In general, we have

[Tn ◦ Tn−1 ◦ · · · ◦ T2 ◦ T1]Bn,B0 = [Tn]Bn,Bn−1 [Tn−1]Bn−1,Bn−2 · · · [T2]B2,B1 [T1]B1,B0 ,

where Bk is a basis for a vector space Vk for 0 ⩽ k ⩽ n, and Tj is a linear
transformation from Vj−1 to Vj for 1 ⩽ j ⩽ n.
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Theorem 7.10 Let T : V → V be a linear transformation and B be a basis for V .
Then the following are equivalent.

(a) T is one-to-one.

(b) [T ]B is invertible. Moreover, [T ]−1
B = [T −1]B.

Proof Note that T is one-to-one if and only if T −1 exists and T −1 ◦ T = IV , where
IV is the identity transformation on V . Then

T −1 ◦ T = IV ⇐⇒ [T −1]B [T ]B = [T −1 ◦ T ]B = [IV ] = I,

i.e., [T ]B is an invertible matrix and [T ]−1
B = [T −1]B .

7.5 Similarity

The corresponding matrix for a linear transformation T : V → V relies on a basis
we choose for V . Selecting an appropriate basis for V can simplify the matrix for T

to be a diagonal or triangular matrix. We first introduce the following definition.

Definition If A and B are square matrices, we say that B is similar to A if there
is an invertible matrix P such that B = P −1AP .

Theorem 7.11 Let B = {v1, v2, . . . , vn} and B′ = {w1, w2, . . . , wn} be two bases
for a vector space V , and let T be a linear transformation on V . Then [T ]B′ is
similar to [T ]B. More precisely,

[T ]B′ = P −1[T ]BP,

where P is the transition matrix from B to B′.

Proof Let P = [pij ] ∈ Rn×n. Since

[w1, w2, . . . , wn] = [v1, v2, . . . , vn]P,

we have for 1 ⩽ j ⩽ n,

T (wj) = T
( n∑

i=1
pijvi

)
=

n∑
i=1

pijT (vi) = [T (v1), T (v2), . . . , T (vn)]


p1j

p2j

...
pnj

 ,

which implies

[T (w1), T (w2), . . . , T (wn)] = [T (v1), T (v2), . . . , T (vn)]P. (7.12)



7.5 Similarity 183

Since P is invertible by Theorem 5.21, we obtain

[v1, v2, . . . , vn] = [w1, w2, . . . , wn]P −1. (7.13)

Furthermore, we have by (7.8),

[T (v1), T (v2), . . . , T (vn)] = [v1, v2, . . . , vn][T ]B (7.14)

and
[T (w1), T (w2), . . . , T (wn)] = [w1, w2, . . . , wn][T ]B′ . (7.15)

It follows from (7.12), (7.14), and (7.13) that

[T (w1), T (w2), . . . , T (wn)] = [T (v1), T (v2), . . . , T (vn)]P

= [v1, v2, . . . , vn][T ]BP = [w1, w2, . . . , wn]P −1[T ]BP.

Comparing with (7.15), we deduce

[T ]B′ = P −1[T ]BP.

Remark It follows from the Jordan decomposition theorem that every square
matrix A is similar to a bi-diagonal matrix. Moreover, if A is symmetric, then A is
similar to a diagonal matrix.

Similar matrices always share some important properties and we list a few of
them in Table 7.1. The proofs of the results in table are left as an exercise. See
Exercise 7.23.

Table 7.1
Property Description

Determinant A and P −1AP have the same determinant.

Invertibility A is invertible if and only if P −1AP is invertible.

Rank A and P −1AP have the same rank.

Nullity A and P −1AP have the same nullity.

Trace A and P −1AP have the same trace.

Characteristic polynomial A and P −1AP have the same characteristic polynomial.

Eigenvalues A and P −1AP have the same eigenvalues.

Eigenspace dimension If λ is an eigenvalue of A and P −1AP , then the

eigenspace of A corresponding to λ and the eigenspace

of P −1AP corresponding to λ have the same dimension.
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Remark Let M be an n×n invertible matrix. Define a transformation T : Rn×n →
Rn×n by T (A) = M−1AM for all A in Rn×n. It is easy to show that T (A), called
the similarity transformation, is linear.

Exercises

Elementary exercises

7.1 Show that none of the following transformations is linear.

(a) T : R2×2 → R defined by T (A) = det(A).

(b) T : R → R defined by T (x) = 2x.

(c) T : R → R defined by T (x) = x + 1.

7.2 Consider the basis S = {v1, v2, v3} for R3, where

v1 = [1, 1, 1]T , v2 = [1, 1, 0]T , v3 = [1, 0, 0]T .

Let T : R3 → R2 be the linear transformation such that

T (v1) = [1, 0]T , T (v2) = [2, −1]T , T (v3) = [4, 3]T .

(a) Find a formula for T (x) for all x = [x1, x2, x3]T ∈ R3.

(b) Use the formula in (a) to compute T (x) if x = [2, −3, 5]T .

7.3 Suppose that T : R2 → P2 is the linear transformation such that

T

([
1
1

])
= 2 − 3x + x2, T

([
2
3

])
= 1 − x2.

Find T

([
−1

2

])
and T

([
a

b

])
.

7.4 Let V be an n-dimensional vector space and T : V → V be defined by

T (v) = 2v.

Find the kernel, range, rank, and nullity of T .

7.5 Show that Theorem 7.5 holds in the cases of dim
(

ker(T )
)

= 0 and
dim

(
ker(T )

)
= n.
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7.6 In each part, determine whether the linear transformation is one-to-one by
finding the kernel or the nullity.

(a) T

([
x

y

])
=

[
x + y

x − y

]
. (b) T

([
x

y

])
=

[
0

4x − 3y

]
.

(c) T

([
x

y

])
=

 x + y

x

y

 . (d) T


 x

y

z


 =

[
x − z

y

]
.

7.7 Let T1 : U → V and T2 : V → W be linear transformations. Show that if T2 ◦T1

is one-to-one, so is T1.

7.8 Suppose that the linear transformations T1 : P2 → P2 and T2 : P2 → P3 are
given as follows:

T1
(
p(x)

)
= p(x + 1), T2

(
p(x)

)
= xp(x).

Find (T2 ◦ T1)(a0 + a1x + a2x2).

7.9 Let T : P2 → P2 be the linear transformation given by the formula T
(
p(x)

)
=

p(2x + 1).

(a) Find a matrix for T relative to the basis B = {1, x, x2}.

(b) Find the rank and nullity of T .

(c) Use the result in (b) to determine whether T is one-to-one.

7.10 Prove Theorem 7.7.

7.11 Show that the linear transformation T : R2 → P1 defined by

T

([
a

b

])
= a + (a + b)x

is both one-to-one and onto.

7.12 If TA : R2 → R2 is defined by TA(x) = Ax, then determine whether TA has
an inverse.

(a) A =

[
3 6
5 −1

]
. (b) A =

[
−2 4

3 −6

]
.
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7.13 Let T : R2 → R2 be defined by

T

([
x1

x2

])
=

[
x1 + 3x2

3x1 − 4x2

]
,

and let B = {u1, u2} and B′ = {v1, v2} be bases for R2, where

u1 = [0, 2]T , u2 = [2, −1]T ; v1 = [1, 2]T , v2 = [−1, 0]T .

Find the matrix for T relative to the basis B, and find the matrix for T relative to
the bases B and B′.

7.14 Let T : R3 → R2 be the linear transformation defined by

T


 x

y

z


 =

[
x − 2y

x + y − 3z

]
,

and let B = {u1, u2, u3} and B′ = {v1, v2} be bases for R3 and R2, respectively,
where

u1 = [1, 0, 0]T , u2 = [0, 1, 0]T , u3 = [0, 0, 1]T ; v1 = [0, 1]T , v2 = [1, 0]T .

(a) Find the matrix for T relative to the bases B and B′.

(b) Find [T (v)]B′ if [v]B = [1, 3, −2]T .

7.15 Let V be an n-dimensional vector space and I be the identity transformation
on V . What is the matrix for I relative to two distinct bases B and B′ for V ?

7.16 Let T : P1 → P1 be the linear transformation defined by

T
(
p(x)

)
= p(x + 1),

and let B = {p1, p2} and B′ = {q1, q2} be bases for P1, where

p1 = 6 + 3x, p2 = 10 + 2x; q1 = 2, q2 = 3 + 2x.

(a) Find the matrix [T ]B′,B relative to the bases B and B′.

(b) If p = 1 + 3x, then find [T (p)]B′ by using the matrix [T ]B′,B .

7.17 Let

A =

 1 3 −1
2 0 5
6 −2 4


be the matrix for T : P2 → P2 relative to the basis B = {p1, p2, p3}, where

p1 = 3x + 3x2, p2 = −1 + 3x + 2x2, p3 = 3 + 7x + 2x2.
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(a) Find T (p1), T (p2), and T (p3).

(b) Find [T (p1)]B , [T (p2)]B , and [T (p3)]B .

7.18 Let

A =

[
1 3

−2 5

]
be the matrix for T : R2 → R2 relative to the basis B = {v1, v2}, where

v1 = [1, 3]T , v2 = [−1, 4]T .

(a) Find T (v1) and T (v2).

(b) Find [T (v1)]B , [T (v2)]B , and T (u), where u = [1, 1]T .

7.19 Let T : P2 → P2 be the linear transformation defined by T
(
p(x)

)
= p(x + 1).

(a) Find the matrix [T ]B′,B relative to the bases B = {1, x, x2} and B′ = {x, x2, 1}.

(b) If p = 1 + 2x + 3x2, find [T (p)]B′ by using the matrix [T ]B′,B .

7.20 Verify that the linear transformations T1 : R2 → P1 and T2 : P1 → R2 defined
by

T1

([
a

b

])
= a + (a + b)x, T2(c + dx) =

[
c

d − c

]
are inverses of each other.

7.21 Let T1 : U → V and T2 : V → W be one-to-one linear transformations, where
U , V , and W are vector spaces with the same dimension. Show that (T2 ◦ T1)−1 =
T −1

1 ◦ T −1
2 .

7.22 Prove Theorem 7.9.

7.23 Prove all the properties in Table 7.1.

7.24 Suppose that

A =

 1 0 0
3 a 2
5 2 2

 , B =

 −2 0 0
0 b 0
6 3 1

 .

Find the values of a and b if A is similar to B.

7.25 Show that if A and B are similar, then AT and BT are similar.

7.26 Show that if two invertible matrices A and B are similar, then A−1 and B−1

are similar.
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Challenge exercises

7.27 For any linear transformations T1 and T2 from a vector space V into a vector
space W , the operations of addition and scalar multiplication are defined by

(T1 + T2)(x) := T1(x) + T2(x), (kT1)(x) := kT1(x),

where x ∈ V and k is a scalar. Show that the set of all linear transformations from
V to W with these two operations is a vector space.

7.28 Let v1, v2, . . . , vn be vectors in a vector space V and T : V → W be a linear
transformation.

(a) Show that if {T (v1), T (v2), . . . , T (vn)} is linearly independent in W , then
{v1, v2, . . . , vn} is linearly independent in V .

(b) Show that the converse of (a) is false, i.e., it is not necessarily true that if
{v1, v2, . . . , vn} is linearly independent in V , then {T (v1), T (v2), . . . , T (vn)}
is linearly independent in W .

(c) Show that if T is one-to-one, then {v1, v2, . . . , vn} is linearly independent in
V if and only if {T (v1), T (v2), . . . , T (vn)} is linearly independent in W .

7.29 Determine whether each function T : P2 → P2 is a linear transformation.

(a) T (a0 + a1x + a2x2) = a0 + a1(x + 1) + a2(x + 1)2.

(b) T (a0 + a1x + a2x2) = (a0 + 1) + (a1 + 1)(x + 1) + (a2 + 1)(x + 1)2.

7.30 Let T : P2 → P3 be the linear transformation defined by

T
(
p(x)

)
= xp(x).

Find the bases for the kernel and range of T .

7.31 Find the kernel, range, rank, and nullity of the linear transformation T : P3 →
P2 defined by

T
(
p(x)

)
= dp(x)

dx
.

7.32 Let T : R2 → R2 be the linear transformation given by the formula

T (x, y) = (3x + y, −4x + 3y).

Find the bases for the kernel and range of T .
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7.33 Find the kernel and the nullity of the linear transformation T : P1 → R defined
by

T
(
p(x)

)
=
∫ 1

−1
p(x)dx.

7.34 Let V be a finite-dimensional vector space and T : V → V be a linear
transformation. Show that

(a) ker(T ) ∩ R(T ) = {0} if and only if rank(T ) = rank(T ◦ T ).

(b) ker(T ) = R(I − T ) if T = T ◦ T .

7.35 Let V be the vector space of all symmetric 2 × 2 matrices. Define a linear
transformation T : V → P2 by

T

([
a b

b c

])
= (a − b) + (b − c)x + (c − a)x2.

Find the rank and nullity of T .

7.36 Let T1 : P2 → P3 and T2 : P3 → P3 be the linear transformations given by the
formulas

T1
(
p(x)

)
= xp(x), T2

(
p(x)

)
= p(x + 1).

Find the formulas for T −1
1
(
p(x)

)
, T −1

2
(
p(x)

)
, and (T2 ◦ T1)−1(p(x)

)
.

7.37 Let V and W be finite-dimensional vector spaces and dim(W ) < dim(V ).
Show that there is no one-to-one linear transformation T : V → W .

7.38 Let B = {v1, v2, . . . , vn} be a basis for Rn and P = [pij ] ∈ Rn×n be an
invertible matrix. Show that if

ui = p1iv1 + p2iv2 + · · · + pnivn, 1 ⩽ i ⩽ n,

then B′ = {u1, u2, . . . , un} is a basis for Rn and P is the transition matrix from B

to B′.

7.39 Let T : R2×2 → R2×2 be defined by

T

([
a b

c d

])
=

[
2c a + c

b − 2c d

]
.

Find the matrix [T ]B relative to the basis B = {A(1), A(2), A(3), A(4)}, where

A(1) =

[
1 0
0 0

]
, A(2) =

[
0 1
0 0

]
, A(3) =

[
0 0
1 0

]
, A(4) =

[
0 0
0 1

]
.



Chapter 8
Additional Topics

“God used beautiful mathematics in creating the world.”
— Paul Dirac

“The art of doing mathematics consists in finding that special case which contains all the
germs of generality.”

— David Hilbert

In this chapter, we study several important topics in linear algebra. We introduce
quadratic forms, complex inner product spaces, and some special structured
matrices. Finally, we discuss the Böttcher-Wenzel conjecture.

8.1 Quadratic Forms

In this section we study functions in which the terms are squares of variables or
products of two variables. Such functions arise in a variety of applications, including
geometry, vibrations of mechanical systems, statistics, and electrical engineering.

8.1.1 Introduction to quadratic forms

Up to now, we have been interested primarily in linear equations of the following
form

a1x1 + a2x2 + · · · + anxn = b.

The expression on the left-hand side of this equation is a linear form, in which all
variables occur to the first power. Now, we are concerned with quadratic forms,
which are functions of the form

a1x2
1 + a2x2

2 + · · · + anx2
n + (all possible terms of form 2akxixj for i < j).

For instance, a quadratic form in the variables x1 and x2 is

a1x2
1 + a2x2

2 + 2a3x1x2 (8.1)
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and a quadratic form in the variables x1, x2, and x3 is

a1x2
1 + a2x2

2 + a3x2
3 + 2a4x1x2 + 2a5x1x3 + 2a6x2x3. (8.2)

The terms in a quadratic form that involve products of different variables are called
the cross-product terms.

Note that (8.1) can be written in matrix form as

[x1, x2]

[
a1 a3

a3 a2

][
x1

x2

]
(8.3)

and (8.2) can be written as

[x1, x2, x3]

 a1 a4 a5

a4 a2 a6

a5 a6 a3


 x1

x2

x3

 . (8.4)

The products in (8.3) and (8.4) are both of the form xT Ax, where x is the column
vector of variables, and A is a symmetric matrix whose diagonal entries are the
coefficients of the squared terms and whose entries off the main diagonal are half
the coefficients of the cross-product terms. By using the Euclidean inner product,
we can write the quadratic form as

xT Ax = xT (Ax) = ⟨Ax, x⟩ = ⟨x, Ax⟩. (8.5)

There are two important mathematical problems related to quadratic forms.

(1) Find the maximum and minimum values of xT Ax if x = [x1, x2, . . . , xn]T is
constrained so that

∥x∥ = (x2
1 + x2

2 + · · · + x2
n)1/2 = 1.

(2) What conditions must A satisfy for a quadratic form to satisfy xT Ax > 0 for
all x ̸= 0?

We study the problems above in the next two subsections.

8.1.2 Constrained extremum problem

The goal in the subsection is to consider the problem of finding the maximum and
minimum values of xT Ax subject to ∥x∥ = 1. By Theorem 6.7 (a), we know that
all the eigenvalues of a symmetric matrix A are real. Therefore, we can arrange the
eigenvalues of A in a decreasing size order.
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Theorem 8.1 Let A be a symmetric n × n matrix whose eigenvalues in decreasing
size order are λ1 ⩾ λ2 ⩾ · · · ⩾ λn. If x is constrained so that ∥x∥ = 1 with respect
to the Euclidean inner product on Rn, then

(a) λ1 ⩾ xT Ax ⩾ λn.

(b) xT Ax = λ1 if x is an eigenvector of A corresponding to λ1 and xT Ax = λn if
x is an eigenvector of A corresponding to λn .

Proof We only prove (a) and the proof of (b) is left as an exercise. Since A is
symmetric, it follows from Theorem 6.6 that there is an orthonormal basis for Rn

consisting of eigenvectors of A. Suppose that S = {v1, v2, . . . , vn} is such a basis,
where vi is the eigenvector corresponding to the eigenvalue λi. Let ⟨·, ·⟩ be the
Euclidean inner product. It follows from Theorem 5.8 that for any x ∈ Rn,

x = ⟨x, v1⟩v1 + ⟨x, v2⟩v2 + · · · + ⟨x, vn⟩vn.

Thus,

Ax = ⟨x, v1⟩Av1 + ⟨x, v2⟩Av2 + · · · + ⟨x, vn⟩Avn

= ⟨x, v1⟩λ1v1 + ⟨x, v2⟩λ2v2 + · · · + ⟨x, vn⟩λnvn

= λ1⟨x, v1⟩v1 + λ2⟨x, v2⟩v2 + · · · + λn⟨x, vn⟩vn.

The coordinate vectors of x and Ax relative to the basis S are

[x]S = [⟨x, v1⟩, ⟨x, v2⟩, . . . , ⟨x, vn⟩]T

and
[Ax]S = [λ1⟨x, v1⟩, λ2⟨x, v2⟩, . . . , λn⟨x, vn⟩]T .

Thus, from Theorem 5.9 (c) and the fact that ∥x∥ = 1, we obtain

∥x∥2 = ⟨x, x⟩ = ⟨x, v1⟩2 + ⟨x, v2⟩2 + · · · + ⟨x, vn⟩2 = 1

and
⟨x, Ax⟩ = λ1⟨x, v1⟩2 + λ2⟨x, v2⟩2 + · · · + λn⟨x, vn⟩2.

Using (8.5) and these two equations, we can prove that xT Ax ⩽ λ1 as follows:

xT Ax = ⟨x, Ax⟩ = λ1⟨x, v1⟩2 + λ2⟨x, v2⟩2 + · · · + λn⟨x, vn⟩2

⩽ λ1⟨x, v1⟩2 + λ1⟨x, v2⟩2 + · · · + λ1⟨x, vn⟩2

= λ1

(
⟨x, v1⟩2 + ⟨x, v2⟩2 + · · · + ⟨x, vn⟩2

)
= λ1.

Similarly, one can show that xT Ax ⩾ λn.
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8.1.3 Positive definite matrix

Definition A symmetric matrix A and the quadratic form xT Ax are called

(i) positive definite if xT Ax > 0 for all x ̸= 0.

(ii) positive semidefinite if xT Ax ⩾ 0 for all x.

(iii) negative definite if xT Ax < 0 for all x ̸= 0.

(iv) negative semidefinite if xT Ax ⩽ 0 for all x.

Theorem 8.2 A symmetric matrix A is positive definite if and only if all the
eigenvalues of A are positive.

Proof Assume that A is positive definite and λ is an eigenvalue of A. Let x be an
eigenvector of A corresponding to λ, i.e., Ax = λx with x ̸= 0. Then

0 < xT Ax = xT λx = λxT x = λ∥x∥2,

where ∥x∥ is the Euclidean norm of x. Since ∥x∥2 > 0, we have λ > 0.

Conversely, assume that all eigenvalues of A are positive. We must show that
xT Ax > 0 for all x ̸= 0. However, if x ̸= 0, we can normalize x to obtain the vector
y = x/∥x∥ with the property ∥y∥ = 1. It now follows from Theorem 8.1 that

yT Ay ⩾ λn > 0,

where λn is the smallest eigenvalue of A. Thus,

0 < yT Ay =
(

x
∥x∥

)T

A

(
x

∥x∥

)
= 1

∥x∥2 xT Ax,

which implies
xT Ax > 0,

i.e., A is positive definite.

Similarly we have the following corollary for positive semidefinite matrices.

Corollary A symmetric matrix A is positive semidefinite if and only if all the
eigenvalues of A are nonnegative.

Our next objective is to give a criterion that can be used to determine whether
a symmetric matrix is positive definite without finding its eigenvalues. To do this it
is helpful to introduce some terminology. If

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann


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is a square matrix, then the leading principal submatrices of A are the
submatrices formed from the first r rows and r columns of A for 1 ⩽ r ⩽ n. These
submatrices are

A(1) = a11, A(2) =

[
a11 a12

a21 a22

]
, A(3) =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 , . . . ,

and

A(n) = A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

 .

Theorem 8.3 A symmetric matrix A is positive definite if and only if every leading
principal submatrix of A is positive definite.

The proof of Theorem 8.3 is left as an exercise.

A principal submatrix of an n × n matrix A = [aij ] is a square submatrix
obtained by removing certain rows and columns from A. In fact, for any 1 ⩽ k ⩽ n,
a k × k principal submatrix of A is given by

ai1i1 ai1i2 · · · ai1ik

ai2i1 ai2i2 · · · ai2ik

...
...

...
aiki1 aiki2 · · · aikik

 ,

where i1, i2, . . . , ik are integers with 1 ⩽ i1 < i2 < · · · < ik ⩽ n. For instance, a22 a24 a28

a42 a44 a48

a82 a84 a88


is a 3 × 3 principal submatrix of an n × n matrix with n ⩾ 8.

Theorem8.4 A symmetric matrix A is positive definite if and only if every principal
submatrix of A is positive definite.

The proof of Theorem 8.4 is left as an exercise.

8.2 Three Theorems for Symmetric Matrices

We list three important theorems which are concerned with eigenvalues of symmetric
matrices.
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Theorem 8.5 (Courant-Fischer’s Minimax Theorem) If A is an n×n symmetric
matrix whose eigenvalues in decreasing size order are λ1(A) ⩾ λ2(A) ⩾ · · · ⩾ λn(A),
then for 1 ⩽ k ⩽ n,

λk(A) = max
X ⊆Rn

dim(X )=k

min
0̸=x∈X

xT Ax
xT x = max

X ⊆Rn

dim(X )=k

min
x∈X

∥x∥=1

xT Ax

= min
X ⊆Rn

dim(X )=n−k+1

max
0 ̸=x∈X

xT Ax
xT x = min

X ⊆Rn

dim(X )=n−k+1

max
x∈X

∥x∥=1

xT Ax,

where X denotes a subspace of Rn and ∥x∥ is the Euclidean norm of x in Rn. In
particular,

λ1(A) = max
∥x∥=1

xT Ax, λn(A) = min
∥x∥=1

xT Ax.

Proof Let dim(X ) = k. Suppose that u1, u2, . . . , un are the orthonormal eigenvec-
tors of A corresponding to λ1(A), λ2(A), . . . , λn(A), respectively. Let Y = span{uk,

uk+1, . . . , un}. We have

dim(X ) + dim(Y) = n + 1.

Note that by Theorem 4.14,

dim(X ∩ Y) = dim(X ) + dim(Y) − dim(X + Y) ⩾ n + 1 − n = 1.

We have for any x ∈ X ∩ Y with ∥x∥ = 1,

x =
n∑

j=k

ξjuj ,

n∑
j=k

|ξj |2 = 1.

Then
xT Ax =

n∑
j=k

|ξj |2λj(A) ⩽
n∑

j=k

|ξj |2λk(A) = λk(A).

Hence
min
x∈X

∥x∥=1

xT Ax ⩽ min
x∈X ∩Y
∥x∥=1

xT Ax ⩽ λk(A).

On the other hand, if we take

X0 = span{u1, u2, . . . , uk},

then dim(X0) = k and we obtain

min
x∈X0
∥x∥=1

xT Ax = uT
k Auk = uT

k λk(A)uk = λk(A).
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Thus,
λk(A) = max

X ⊆Rn

dim(X )=k

min
x∈X

∥x∥=1

xT Ax.

Applying the above equality on −A, and noting that

−λk(A) = λn−k+1(−A), 1 ⩽ k ⩽ n,

one can deduce

λk(A) = −λn−k+1(−A) = − max
X ⊆Rn

dim(X )=n−k+1

min
x∈X

∥x∥=1

xT (−A)x

= − max
X ⊆Rn

dim(X )=n−k+1

(− max
x∈X

∥x∥=1

xT Ax) = min
X ⊆Rn

dim(X )=n−k+1

max
x∈X

∥x∥=1

xT Ax.

In particular, we have

λ1(A) = max
∥x∥=1

xT Ax, λn(A) = min
∥x∥=1

xT Ax,

which coincide with Theorem 8.1 (b).

Theorem 8.6 (Cauchy’s Interlace Theorem) Let A be an n × n symmetric matrix
whose eigenvalues in decreasing size order are

λ1(A) ⩾ λ2(A) ⩾ · · · ⩾ λn(A).

Let B be any m × m principal submatrix of A whose eigenvalues in decreasing size
order are

µ1(B) ⩾ µ2(B) ⩾ · · · ⩾ µm(B).

Then for 1 ⩽ j ⩽ m,
λj(A) ⩾ µj(B) ⩾ λj+n−m(A).

Proof We can assume that A is given as the following form

A =

[
B C

CT D

]
.

In fact, we can always take a similarity transformation on A by permutation matrices
if necessary. By using Theorem 8.5, there exists a subspace X ⊆ Rm with dim(X ) =
j which satisfies

µj(B) = min
x∈X

∥x∥=1

xT Bx.

For any x ∈ Rm, we construct x̃ =

[
x
0

]
∈ Rn. Let X̃ = {x̃ | x ∈ X } ⊆ Rn. Then

dim(X̃ ) = j. Moreover,
xT Bx = x̃T Ax̃.
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We have by Theorem 8.5 again,

µj(B) = min
x∈X

∥x∥=1

xT Bx = min
x̃∈X̃

∥x̃∥=1

x̃T Ax̃ ⩽ max
Y⊆Rn

dim(Y)=j

min
y∈Y

∥y∥=1

yT Ay = λj(A).

Applying the above result on −A and −B, and noting that

−λi(A) = λn−i+1(−A), 1 ⩽ i ⩽ n (8.6)

and
−µj(B) = µm−j+1(−B), 1 ⩽ j ⩽ m, (8.7)

we have by taking i = j + n − m in (8.6) and then followed by using (8.7),

−λj+n−m(A) = λn−(j+n−m)+1(−A) = λm−j+1(−A) ⩾ µm−j+1(−B) = −µj(B),

i.e.,
λj+n−m(A) ⩽ µj(B).

Theorem 8.7 (Weyl’s Theorem) Let A and B be n × n symmetric matrices whose
eigenvalues in decreasing size order are

λ1(A) ⩾ λ2(A) ⩾ · · · ⩾ λn(A), λ1(B) ⩾ λ2(B) ⩾ · · · ⩾ λn(B),

respectively. Let λ1(A + B), λ2(A + B), . . . , λn(A + B) denote the eigenvalues of
A + B in decreasing size order as

λ1(A + B) ⩾ λ2(A + B) ⩾ · · · ⩾ λn(A + B).

Then for all 1 ⩽ j ⩽ n,

max
r+s=j+n

{λr(A) + λs(B)} ⩽ λj(A + B) ⩽ min
r+s=j+1

{λr(A) + λs(B)}.

Proof We prove the left inequality first. Let r + s = j + n. By Theorem 8.5, there
exist two subspaces X and Y in Rn with dim(X ) = r and dim(Y) = s such that

λr(A) = min
x∈X

∥x∥=1

xT Ax, λs(B) = min
x∈Y

∥x∥=1

xT Bx.

Since

dim(X ∩ Y) = dim(X ) + dim(Y) − dim(X + Y) ⩾ r + s − n = j,

there exists a subspace T0 ⊆ X ∩ Y which satisfies dim(T0) = j. Thus,

λj(A + B) = max
T ⊆Rn

dim(T )=j

min
x∈T

∥x∥=1

xT (A + B)x ⩾ min
x∈T0

∥x∥=1

(xT Ax + xT Bx)
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⩾ min
x∈T0

∥x∥=1

xT Ax + min
x∈T0

∥x∥=1

xT Bx ⩾ min
x∈X

∥x∥=1

xT Ax + min
x∈Y

∥x∥=1

xT Bx

= λr(A) + λs(B).

Applying the above inequality on −A − B, and noting that
λj(−A − B) = −λn−j+1(A + B), 1 ⩽ j ⩽ n;
λr(−A) = −λn−r+1(A), 1 ⩽ r ⩽ n;
λs(−B) = −λn−s+1(B), 1 ⩽ s ⩽ n,

we deduce

−λn−j+1(A + B) = λj(−A − B) ⩾ λr(−A) + λs(−B) = −λn−r+1(A) − λn−s+1(B).
(8.8)

Let j′ = n − j + 1, r′ = n − r + 1, and s′ = n − s + 1. Then (8.8) can be simplified to

λj′(A + B) ⩽ λr′(A) + λs′(B),

where
r′ + s′ = (n − r + 1) + (n − s + 1) = (n − j + 1) + 1 = j′ + 1.

Thus, the right inequality holds.

8.3 Complex Inner Product Spaces

A complete presentation of linear algebra must include complex numbers. We
therefore review some basic knowledge of complex numbers before we study complex
inner product spaces.

8.3.1 Complex numbers

Definition A complex number z is defined by

z := a + bi,

where a and b are real numbers, and i2 = −1. The real numbers a and b are called
the real and imaginary parts of z, respectively.

Let z1 = a + bi and z2 = c + di be two complex numbers. Then z1 and z2 are
said to be equal if and only if their real parts are equal and their imaginary parts
are equal, i.e.,

z1 = z2 ⇐⇒ a = c and b = d.
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Also, z1 and z2 can be added, subtracted, and multiplied in accordance with the
standard rules of algebra but with i2 = −1. For instance,

z1 ± z2 = (a + bi) ± (c + di) = (a ± c) + (b ± d)i

and
z1 · z2 = (a + bi) · (c + di) = (ac − bd) + (ad + bc)i.

Definition For a complex number z = a + bi, the complex conjugate of z, denoted
by the symbol z̄, is defined by

z̄ := a − bi.

The modulus of a complex number z = a + bi, denoted by |z|, is defined by

|z| :=
√

a2 + b2.

The following theorem establishes some essential properties of complex numbers.

Theorem 8.8 Let z, z1, and z2 be any complex numbers. Then

(a) z1 ± z2 = z̄1 ± z̄2.

(b) z1 · z2 = z̄1 · z̄2.

(c) ¯̄z = z.

(d) z · z̄ = |z|2.

Proof We only prove (a) and (d). The proofs of (b) and (c) are left as an exercise.
For (a), let z1 = a1 + b1i and z2 = a2 + b2i. Then

z1 ± z2 = (a1 + b1i) ± (a2 + b2i) = (a1 ± a2) + (b1 ± b2)i

= (a1 ± a2) − (b1 ± b2)i = (a1 − b1i) ± (a2 − b2i)

= z̄1 ± z̄2.

For (d), let z = a + bi. Then

z · z̄ = (a + bi) · (a + bi) = (a + bi) · (a − bi)

= a2 − abi + abi − b2i2 = a2 + b2

= |z|2.
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8.3.2 Complex inner product spaces

In the definition of a general vector space V in Subsection 4.1.1, if the scalars are in

C :=
{

a + bi | a, b ∈ R, i :=
√

−1
}

,

then V is called a complex vector space. The notions of linear combination, linear
independence, spanning sets, basis, dimension, and subspace carry over without
change to complex vector spaces. Moreover, the theorems developed in previous
chapters for real vector spaces continue to hold with real vector spaces changed to
complex vector spaces.

Definition An inner product on a complex vector space V is a function that asso-
ciates a complex number with each pair of vectors u and v in V , denoted by ⟨u, v⟩,
in such a way that the following axioms are satisfied for all vectors u, v, and w in
V and all scalars k in C.

(i) ⟨u, v⟩ = ⟨v, u⟩.

(ii) ⟨u + v, w⟩ = ⟨u, w⟩ + ⟨v, w⟩.

(iii) ⟨ku, v⟩ = k⟨u, v⟩.

(iv) ⟨v, v⟩ ⩾ 0; ⟨v, v⟩ = 0 if and only if v = 0.

A complex vector space with an inner product is called a complex inner product
space.

Remark In a complex inner product space V , the norm of a vector u ∈ V is defined
by

∥u∥ = ⟨u, u⟩1/2.

The Cauchy-Schwarz inequality is also available for complex inner product spaces.
Moreover, the definitions of orthogonal set, orthonormal set, orthogonal basis, and
orthonormal basis carry over to complex inner product spaces without change. The
Gram-Schmidt process can be used to convert an arbitrary basis into an orthogonal
(or orthonormal) basis for a complex inner product space.

Example Let Cn := {(c1, c2, . . . , cn) | ci ∈ C} with the operations of vector
addition and scalar multiplication. For vectors u = (u1, u2, . . . , un) and v =
(v1, v2, . . . , vn) in Cn, the complex Euclidean inner product ⟨u, v⟩ is defined by

⟨u, v⟩ :=
n∑

i=1
uivi,
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which satisfies the four axioms of the inner product. A complex vector space Cn

with this inner product is call the complex Euclidean space. We can define the norm
and distance as follows:

∥u∥ = ⟨u, u⟩1/2 =

√√√√ n∑
i=1

|ui|2, d(u, v) = ∥u − v∥ =

√√√√ n∑
i=1

|ui − vi|2.

Let Cm×n denote the vector space of all m × n complex matrices with the
operations of matrix addition and scalar multiplication. In fact, almost all the
concepts concerned with the matrix operations can be generalized from real matrices
to complex matrices straightforwardly. Let A = [aij ] ∈ Cm×n, i.e., aij ∈ C for any
i and j. Then the matrix defined by

A∗ := ĀT = [āji]

is call the conjugate transpose of A. We have the following theorem concerned
with some basic properties of A∗. The proof of the theorem is trivial and we therefore
omit it.

Theorem 8.9 Let A and B be complex matrices and k be any complex number.
Then

(a) (A∗)∗ = A. (b) (A+B)∗ = A∗+B∗. (c) (kA)∗ = kA∗. (d) (AB)∗ = B∗A∗.

Example An inner product on Cn×n is defined by

⟨X, Y ⟩ := tr(XY ∗),

where X, Y ∈ Cn×n. One can check easily that ⟨X, Y ⟩ satisfies the four axioms of
the inner product. The Frobenius norm for any X = [xij ] ∈ Cn×n is defined as

∥X∥F := ⟨X, X⟩1/2 = [tr(XX∗)]1/2 =
( n∑

i=1

n∑
j=1

|xij |2
)1/2

.

8.4 Hermitian Matrices and Unitary Matrices

We study Hermitian matrices and unitary matrices in this section.

Definition If a square matrix A with complex entries satisfies A = A∗, then A is
called a Hermitian matrix. If a square matrix A with complex entries satisfies
A−1 = A∗, i.e.,

A∗A = AA∗ = I,

then A is called a unitary matrix.
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Theorem8.10 Let A be an n×n complex matrix. Then the following are equivalent.

(a) A is unitary.

(b) The row (or column) vectors of A form an orthonormal set in Cn with respect
to the Euclidean inner product.

The proof of Theorem 8.10 is similar to that of Theorem 5.18 and is left as an
exercise.

We note that our earlier definitions of eigenvalue, eigenvector, eigenspace,
characteristic equation, and characteristic polynomial carry over without change
to complex matrices.

For a square matrix A with complex entries, if there exists a unitary matrix P

such that
P ∗AP = D,

where D is a diagonal matrix, then A is called unitarily diagonalizable.

Theorem 8.11 If A is a Hermitian matrix, then A is unitarily diagonalizable.

The proof of Theorem 8.11 is left as an exercise.

Theorem 8.12 Let A be Hermitian. Then

(a) The eigenvalues of A are all real.

(b) Eigenvectors from different eigenspaces are orthogonal.

Proof For (a), let λ be an eigenvalue of a Hermitian matrix A and v be the
corresponding eigenvector. Then

Av = λv.

Multiplying both sides by v∗ yields

v∗Av = λv∗v,

and then
λ = v∗Av

∥v∥2 .

Therefore,

λ̄ = λ∗ =
(

v∗Av
∥v∥2

)∗

= v∗A∗v
∥v∥2 = v∗Av

∥v∥2 = λ.
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For (b), let v1 and v2 be eigenvectors corresponding to distinct eigenvalues λ1 and
λ2 of A. Then we have by (a),

λ1⟨v1, v2⟩ = ⟨Av1, v2⟩ = v∗
2Av1 = (A∗v2)∗v1 = (Av2)∗v1 = λ̄2v∗

2v1 = λ2⟨v1, v2⟩,

which implies
(λ1 − λ2)⟨v1, v2⟩ = 0.

Since λ1 − λ2 ̸= 0, we have
⟨v1, v2⟩ = 0.

Remark If A is a real symmetric matrix, then A is also Hermitian. Therefore, the
results in Theorem 8.12 hold for all real symmetric matrices. See Theorem 6.7.

Example The matrix

A =

[
4 1 − i

1 + i 5

]
is unitarily diagonalizable because it is Hermitian. Find a matrix P that unitarily
diagonalizes A.

Solution The characteristic equation of A is

det(λI − A) = det

[
λ − 4 −1 + i
−1 − i λ − 5

]
= λ2 − 9λ + 18 = (λ − 3)(λ − 6) = 0

and the eigenvalues are λ = 3 and λ = 6. The corresponding eigenvectors are given
as follows:

λ = 3, v1 =

[
−1 + i

1

]
; λ = 6, v2 =

 1 − i
2
1

 .

Since each eigenspace has only one basis vector, we have ⟨v1, v2⟩ = 0 by Theorem
8.12. Normalizing these basis vectors yields

p1 = v1

∥v1∥
=


−1 + i√

3
1√
3

 , p2 = v2

∥v2∥
=


1 − i√

6
2√
6

 .

Thus, A is unitarily diagonalized by the matrix

P =
[

p1 ¦ p2

]
=


−1 + i√

3
1 − i√

6
1√
3

2√
6

 .
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It is easy to verify

P ∗AP =

[
3 0
0 6

]
.

Theorem 8.13 Let λ1, λ2, . . . , λn be eigenvalues of an n × n Hermitian matrix A.
Then

∥A∥2
F = λ2

1 + λ2
2 + · · · + λ2

n.

Proof It follows from Theorem 8.11 and Theorem 8.12 (a) that there exists a unitary
matrix P such that

P ∗AP = D,

where D = diag(λ1, λ2, . . . , λn) with λk ∈ R (1 ⩽ k ⩽ n). Hence

∥A∥2
F = ∥PDP ∗∥2

F = tr[(PDP ∗)(PDP ∗)∗] = tr(PDD∗P ∗)
= tr(DD∗P ∗P ) = tr(DD∗) = ∥D∥2

F

= λ2
1 + λ2

2 + · · · + λ2
n.

Here we used the property of tr(V W ) = tr(WV ) for all V, W ∈ Cn×n.

Finally, for certain Hermitian matrices, we introduce the following definition.

Definition A Hermitian matrix A is called

(i) positive definite if x∗Ax > 0 for all x ̸= 0.

(ii) positive semidefinite if x∗Ax ⩾ 0 for all x.

(iii) negative definite if x∗Ax < 0 for all x ̸= 0.

(iv) negative semidefinite if x∗Ax ⩽ 0 for all x.

Theorem 8.14 A Hermitian matrix A is positive definite (or semidefinite) if and
only if all the eigenvalues of A are positive (or nonnegative).

The proof of the theorem is similar to that of Theorem 8.2 and is left as an exercise.

Remark The results of Courant-Fischer’s Minimax Theorem, Cauchy’s Interlace
Theorem, and Weyl’s Theorem in Section 8.2 also hold for Hermitian matrices.

8.5 Böttcher-Wenzel Conjecture

In the final section of the book, we study the Böttcher-Wenzel conjecture.
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8.5.1 Introduction

A fundamental fact in matrix theory is that the matrix product is not commutative,
i.e., there are n × n matrices X and Y such that

XY ̸= Y X.

See Example 2 in Subsection 1.3.1. The difference XY − Y X is called the
commutator or Lie product of X and Y . The commutator plays an important role
in diverse areas in mathematics, for instance, Lie algebra and Lie group theory [3] and
matrix computation [12]. Böttcher and Wenzel [5] proposed the following conjecture
in 2005: the upper bound of the Frobenius norm of the commutator of all n × n

matrices X and Y is given by

∥XY − Y X∥F ⩽
√

2 ∥X∥F ∥Y ∥F .

Note that the constant
√

2 is best possible as shown by a simple example

X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
.

The conjecture was first proved for all n × n real matrices in 2008 by Vong and
Jin [24]. Later, the result had been generalized to complex matrices [2, 6, 9]. The
result is important and fundamental. This can be reflected by the fact that the
result is immediately included in the encyclopedic book [4].

8.5.2 Proof of the Böttcher-Wenzel conjecture

As defined in Subsection 8.3.2, the Frobenius norm is given by

∥A∥2
F = ⟨A, A⟩ =

n∑
i=1

n∑
j=1

|aij |2 = tr(AA∗).

In order to prove the Böttcher-Wenzel conjecture, we need the following lemmas.

Lemma 8.1 Let pj ⩾ 0 for 1 ⩽ j ⩽ n with
n∑

j=1
pj = 1 and qj be real numbers for

1 ⩽ j ⩽ n. Then
n∑

j=1
pjq2

j −
( n∑

j=1
pjqj

)2
⩽

n∑
j=1

q2
j

2
.

Proof From direct calculations, we have

n∑
j=1

pjq2
j −

( n∑
j=1

pjqj

)2
=

n∑
j=1

pj

[
qj −

( n∑
k=1

pkqk

)]2
.
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Assuming that q1 ⩾ q2 ⩾ · · · ⩾ qn and denoting d = 1
2

(q1 + qn) −
n∑

j=1
pjqj , we

deduce
n∑

j=1
pjq2

j −
( n∑

j=1
pjqj

)2

⩽
n∑

j=1
pj

[
qj −

( n∑
k=1

pkqk

)]2

+ d2

=
n∑

j=1
pj

[
qj −

( n∑
k=1

pkqk

)]2

− 2d

n∑
j=1

pj

(
qj −

n∑
k=1

pkqk

)
+ d2

=
n∑

j=1
pj

[
qj −

( n∑
k=1

pkqk

)
− d

]2

=
n∑

j=1
pj

(
qj − qn

2
− q1 − qj

2

)2

⩽
n∑

j=1
pj

(
q1 − qn

2

)2

⩽ 1
4

(2q2
1 + 2q2

n) ⩽
n∑

j=1

q2
j

2
.

Lemma 8.2 Let A and B be Hermitian matrices. Then the trace of AB is real.

Proof We have

tr(AB) = tr(AB) = tr(ĀB̄) = tr
(
(ĀB̄)T

)
= tr(B̄T ĀT ) = tr(B∗A∗) = tr(BA)
= tr(AB).

Thus, the trace of AB is real.

Lemma 8.3 (Cartesian Decomposition [8]) Let M be any square matrix with
complex entries. Then M can be decomposed as

M = A + iB,

where A and B are Hermitian matrices and i =
√

−1.

Proof Let
A = M + M∗

2
, B = i · M∗ − M

2
.

Then A and B are Hermitian and M = A + iB.

We now state the Böttcher-Wenzel conjecture as the following theorem. The idea
of the following proof is elementary.
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Theorem 8.15 For any n × n complex matrices X and Y , we have

∥XY − Y X∥2
F ⩽ 2∥X∥2

F ∥Y ∥2
F . (8.9)

Proof If X = 0, then (8.9) holds obviously. Now suppose X ̸= 0 and then ∥X∥F >

0. In the following, we repeatedly use the property of

tr(V W ) = tr(WV )

for all V, W ∈ Cn×n. We deduce

∥XY − Y X∥2
F = tr[(XY − Y X)(XY − Y X)∗]

= tr(XY Y ∗X∗ − XY X∗Y ∗ − Y XY ∗X∗ + Y XX∗Y ∗)
= tr(X∗XY Y ∗ − XY X∗Y ∗ − Y XY ∗X∗ + XX∗Y ∗Y )

and

∥X∗Y + Y X∗∥2
F = tr[(X∗Y + Y X∗)(X∗Y + Y X∗)∗]

= tr(X∗Y Y ∗X + X∗Y XY ∗ + Y X∗Y ∗X + Y X∗XY ∗)
= tr(XX∗Y Y ∗ + Y XY ∗X∗ + XY X∗Y ∗ + X∗XY ∗Y ).

Thus,

∥XY − Y X∥2
F + ∥X∗Y + Y X∗∥2

F

= tr(X∗XY Y ∗ + XX∗Y ∗Y + XX∗Y Y ∗ + X∗XY ∗Y )
= tr[(X∗X + XX∗)(Y ∗Y + Y Y ∗)]. (8.10)

By using the Cauchy-Schwarz inequality, we obtain

|tr[Y (X∗X + XX∗)]| = |tr[(X∗Y + Y X∗)X]| = |⟨X∗Y + Y X∗, X∗⟩|
⩽ ∥X∗∥F ∥X∗Y + Y X∗∥F = ∥X∥F ∥X∗Y + Y X∗∥F .

Consequently,

∥X∗Y + Y X∗∥2
F ⩾ |tr[Y (X∗X + XX∗)]|2/∥X∥2

F . (8.11)

Combining (8.10) and (8.11) then gives

∥XY − Y X∥2
F ⩽ tr[(X∗X + XX∗)(Y ∗Y + Y Y ∗)] − |tr[Y (X∗X + XX∗)]|2/∥X∥2

F .

(8.12)
Let

D = (X∗X + XX∗)/(2∥X∥2
F ).
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We can simplify (8.12) by using D as follows:

∥XY − Y X∥2
F ⩽ 4∥X∥2

F

[
tr[D(Y ∗Y + Y Y ∗)/2] − |tr(DY )|2

]
. (8.13)

Note that D is positive semidefinite with

tr(D) = tr[(X∗X + XX∗)/(2∥X∥2
F )] = tr(XX∗)/∥X∥2

F = ∥X∥2
F /∥X∥2

F = 1.

Now, it remains to show that the right-hand side of (8.13) satisfies the following
inequality:

tr[D(Y ∗Y + Y Y ∗)/2] − |tr(DY )|2 ⩽ ∥Y ∥2
F

2
.

Following Lemma 8.3, we suppose that

Y = A + iB,

where A, B are Hermitian and i =
√

−1. Obviously,

1
2

(Y ∗Y + Y Y ∗) = A2 + B2,

and then

∥Y ∥2
F = tr(Y Y ∗) = tr(A2 + B2) = tr(AA∗) + tr(BB∗) = ∥A∥2

F + ∥B∥2
F . (8.14)

Using Lemma 8.2 that the trace of the product of two Hermitian matrices is a real
number, we therefore have

|tr(DY )|2 = |tr(DA) + itr(DB)|2 = [tr(DA)]2 + [tr(DB)]2.

Hence

tr[D(Y ∗Y + Y Y ∗)/2] − |tr(DY )|2

= tr[D(A2 + B2)] − [tr(DA)]2 − [tr(DB)]2

=
(

tr(DA2) − [tr(DA)]2
)

+
(

tr(DB2) − [tr(DB)]2
)

. (8.15)

It follows from (8.13) and (8.15) that

∥XY − Y X∥2
F ⩽ 4∥X∥2

F

[(
tr(DA2) − [tr(DA)]2

)
+
(

tr(DB2) − [tr(DB)]2
)]

.

(8.16)

Next, we want to show that for any Hermitian matrix H ∈ Cn×n,

tr(DH2) − [tr(DH)]2 ⩽ ∥H∥2
F

2
. (8.17)
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By Theorems 8.11 and 8.12, we have

H = UΛU∗,

where U is unitary and Λ = diag(λ1, λ2, . . . , λn) with real numbers λ1, λ2, . . . , λn.
Let

P = U∗DU = [pij ].

Then P is also a positive semidefinite matrix with

tr(P ) = tr(U∗DU) = tr(D) = 1.

Thus, for every column vector ej of the n × n identity matrix, it follows from the
definition of positive semidefinite matrices that for 1 ⩽ j ⩽ n,

pjj = e∗
j Pej ⩾ 0.

Since pjj ⩾ 0 and
n∑

j=1
pjj = tr(P ) = 1, we have by Lemma 8.1 and Theorem 8.13,

tr(DH2) − [tr(DH)]2 = tr(PΛ2) − [tr(PΛ)]2

=
n∑

j=1
pjjλ2

j −
( n∑

j=1
pjjλj

)2
⩽

n∑
j=1

λ2
j

2
= ∥H∥2

F

2
.

Then (8.17) holds. Applying (8.17) and (8.14) to (8.16), we finally obtain

∥XY − Y X∥2
F ⩽ 4∥X∥2

F

∥A∥2
F + ∥B∥2

F

2
= 2∥X∥2

F ∥Y ∥2
F .

Exercises

Elementary exercises

8.1 Express the following quadratic forms in the matrix notation xT Ax, where A

is a symmetric matrix.

(a) x1x2 + x1x3 + x2x3. (b) 5x2
1 + 5x1x2. (c) 4x2

1 − 9x2
2 − 6x1x2.

8.2 Determine which of the following matrices are positive definite.

(a)

 3 −1 0
−1 2 −1

0 −1 3

 . (b)

 0 1 1
1 0 1
1 1 0

 . (c)

 1 2 1
2 1 1
1 1 3

 .
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8.3 Find the maximum and minimum values of each given quadratic form subject
to the constraint x2

1 + x2
2 = 1. Then determine values of x1 and x2 at which the

maximum and minimum occur.

(a) f(x1, x2) = x2
1 + 4x1x2 + x2

2. (b) f(x1, x2) = 5x2
1 + 4x1x2 + 2x2

2.

8.4 Prove Theorem 8.1 (b).

8.5 Determine which of the following quadratic forms are positive definite.

(a) 90x2
1 + 130x2

2 + 71x2
3 − 12x1x2 + 48x1x3 − 60x2x3.

(b) −5x2
1 − 6x2

2 − 4x2
3 + 4x1x2 + 4x1x3.

8.6 In each part, find all values of k for which the quadratic form is positive definite.

(a) x2
1 + kx2

2 − 4x1x2.

(b) 2x2
1 + (2 + k)x2

2 + kx2
3 + 2x1x2 − 2x1x3 + x2x3.

8.7 Show that if A, B ∈ Rn×n are positive semidefinite and α, β ∈ R are
nonnegative, then αA + βB is positive semidefinite.

8.8 Let xT Ax be a quadratic form and T : Rn → R defined by T (x) = xT Ax.

(a) Show that T (x + y) = T (x) + 2xT Ay + T (y).

(b) Show that T (kx) = k2T (x), where k is a scalar.

8.9 Prove Theorem 8.3.

8.10 Prove Theorem 8.4.

8.11 Prove Theorem 8.8 (b) and (c).

8.12 In each part, find real numbers α and β that satisfy the following equation.

(a) αi + β(1 + i) = 3 + 6i. (b) α(2 + 3i) + β(1 − 4i) = −1 + 4i.

8.13 Let u = [1, 0, −i], v = [1 + i, 1, 1 − 2i], and w = [0, i, 2]. Express the following
vectors as linear combinations of u, v, and w.

(a) [1, 1, 1]. (b) [i, 0, −i]. (c) [2 − i, 1, 1 + i].

8.14 Which of the following sets of vectors in C3 are linearly independent?

(a) u1 = [1 − i, 1, 0], u2 = [2, 1 + i, 0], u3 = [1 + i, i, 0].
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(b) u1 = [1, 0, −i], u2 = [1 + i, 1, 1 − 2i], u3 = [0, i, 2].

(c) u1 = [i, 0, 2 − i], u2 = [0, 1, i], u3 = [−i, −1 − 4i, 3].

8.15 If u = [u1, u2], v = [v1, v2] ∈ C2, determine which of the following functions
f are inner products.

(a) f(u, v) = 3u1v̄1 + 2u2v̄2.

(b) f(u, v) = u1v̄1 + (1 + i)u1v̄2 + (1 − i)u2v̄1 + 3u2v̄2.

8.16 Find ∥x∥ using the Euclidean inner product on C2.

(a) x = [1, i]. (b) x = [1 − i, 1 + i]. (c) x = [−i, 3i].

8.17 Show that the vectors u1 = [i, i, i], u2 = [−2i, i, i], and u3 = [0, −i, i] form an
orthogonal basis for C3 with the Euclidean inner product. By normalizing each of
these vectors, find an orthonormal set.

8.18 Show that if u and v are vectors in a complex inner product space, then

⟨u, v⟩ = 1
4

∥u + v∥2 − 1
4

∥u − v∥2 + i
4

∥u + iv∥2 − i
4

∥u − iv∥2.

8.19 Show that if {w1, w2, . . . , wn} is an orthonormal basis for a complex inner
product space V , then for any vectors u and v in V ,

⟨u, v⟩ = ⟨u, w1⟩⟨v, w1⟩ + ⟨u, w2⟩⟨v, w2⟩ + · · · + ⟨u, wn⟩⟨v, wn⟩.

8.20 Let A ∈ Cn×n. Show that A = 0 if and only if x∗Ax = 0 for any x ∈ Cn.

8.21 Prove Theorem 8.10.

8.22 In each part, find a unitary matrix P that diagonalizes A, and find P ∗AP .

(a) A =

[
2 −i
i 2

]
. (b) A =

[
6 2 + 2i

2 − 2i 4

]
.

8.23 Let A and B be n × n Hermitian matrices.

(a) Show that A + B is a Hermitian matrix.

(b) Show that AB is a Hermitian matrix if and only if AB = BA.

8.24 In each part, verify that the matrix is unitary and find its inverse.

(a) 1
5

 3 4i

−4 3i

 . (b) 1
2

 √
2

√
2

−(1 + i) 1 + i

 .

8.25 Prove Theorem 8.14.
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Challenge exercises

8.26 Show that if A ∈ Rn×n is symmetric and A2 = 0, then A = 0.

8.27 Let

f(x, y, z) = 2x2 + y2 − 4xy − 4yz

x2 + y2 + z2 , x2 + y2 + z2 ̸= 0.

Find the maximum and minimum values of the function f(x, y, z), and determine
values of x, y, and z at which the maximum and minimum occur.

8.28 Let x = [x1, x2]T and y = [y1, y2]T . Find an orthogonal matrix Q such that
the change of variable x = Qy transforms the quadratic form

f(x1, x2) = 2x2
1 − 4x1x2 + 5x2

2

into a new quadratic form in the variables y1 and y2 with no cross-product terms.

8.29 Let A be a symmetric matrix such that

A3 − 4A2 + 5A = 2I,

where I is the identity matrix. Show that A is symmetric positive definite.

8.30 Let A be a symmetric positive definite matrix. Show that there exists a
symmetric positive definite matrix B such that A = B2.

8.31 Let A ∈ Rn×n and
B = λI + AT A,

where λ > 0 and I is the identity matrix. Show that B is symmetric positive definite.

8.32 Let A and B be symmetric positive semidefinite matrices of the same size.
Show that tr(AB) ⩾ 0.

8.33 Let A = [aij ] and B = [bij ] be symmetric positive definite matrices of the
same size. Show that C = [aijbij ] is a symmetric positive definite matrix.

8.34 Let A = [aij ] be an n × n symmetric positive semidefinite matrix. Show that

(a) aii ⩾ 0 for 1 ⩽ i ⩽ n.

(b) If aii = 0, then the ith row and ith column of A consist entirely of 0.

8.35 Prove Theorem 8.11.

8.36 Let B ∈ Cn×n be invertible. Show that A = B∗B is Hermitian positive
definite.
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8.37 Let A be an n × n Hermitian matrix with eigenvalues λ1, λ2, . . . , λn. Show
that

(A − λ1I)(A − λ2I) · · · (A − λnI) = 0,

where I is the identity matrix.

8.38 Let A and B be Hermitian matrices of the same size. Show that if AB is
Hermitian, then every eigenvalue λ of AB can be written as λ = µν, where µ is an
eigenvalue of A and ν is an eigenvalue of B.

8.39 Let A ∈ Cm×n and x ∈ Cn. Show that (A∗A)x = 0 if and only if Ax = 0.

8.40 Let A ∈ Cm×n. Show that tr(A∗A) = 0 if and only if A = 0.



Appendix A
Independence of Axioms

An axiom is independent if it can not be proved by using other axioms. To reach
the conclusion of a reduced set of axioms, independence is desired. In this appendix,
we study the independence of the axioms of vector spaces. For convenience, we copy
the definition in Subsection 4.1.1 to here.

Definition Let V be a nonempty set of objects on which two operations are defined,
addition and scalar multiplication. It requires that V is closed under the addition
and scalar multiplication, i.e., for each pair of objects u and v in V , u + v is in V ;
for each scalar k and each object u in V , ku is in V . Then V is called a vector
space and the objects in V are said to be vectors if the following eight axioms are
satisfied for all u, v, and w in V .

(i) u + v = v + u.

(ii) u + (v + w) = (u + v) + w.

(iii) There is an object 0 in V , called a zero vector for V , such that for all u in V ,
u + 0 = u.

(iv) For each u in V , there is an object −u in V , called a negative of u, such that
u + (−u) = 0.

(v) k(u + v) = ku + kv.

(vi) (k + l)u = ku + lu.

(vii) k(lu) = (kl)u.

(viii) 1u = u.

Here k and l are scalars.

Actually, Axiom (i) is not independent because it can be deduced by the other
axioms [13,20]. We next use other axioms to prove Axiom (i).
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Lemma A.1 We have (−u) + u = 0 for each vector u in V .

Proof For any u ∈ V , we have −u ∈ V by Axiom (iv). Then it follows from Axiom
(iv) again that −(−u) ∈ V . Thus,

(−u) + u = (−u) + u + 0 [Axiom (iii)]
= (−u) + u +

[
(−u) + [−(−u)]

]
[Axiom (iv)]

= (−u) + [u + (−u)] + [−(−u)] [Axiom (ii)]
= (−u) + 0 + [−(−u)] [Axiom (iv)]
= (−u) + [−(−u)] [Axiom (iii)]
= 0. [Axiom (iv)]

Lemma A.2 We have 0 + u = u for each vector u in V .

Proof We have

0 + u = u + (−u) + u [Axiom (iv)]
= u + [(−u) + u] [Axiom (ii)]
= u + 0 [Lemma A.1]
= u. [Axiom (iii)]

Theorem A.1 For all vectors u and v in V , we have

u + v = v + u.

Proof We deduce

u + v = 0 + u + v + 0 [Lemma A.2, Axiom (iii)]
= [(−u) + u] + u + v + [v + (−v)] [Lemma A.1, Axiom (iv)]
= (−u) + (u + u + v + v) + (−v) [Axiom (ii)]
= (−u) + (1u + 1u + 1v + 1v) + (−v) [Axiom (viii)]
= (−u) + (2u + 2v) + (−v) [Axioms (ii), (vi)]
= (−u) + 2(u + v) + (−v) [Axiom (v)]
= (−u) + [(u + v) + (u + v)] + (−v) [Axiom (vi)]
= [(−u) + u] + v + u + [v + (−v)] [Axiom (ii)]
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= 0 + v + u + 0 [Lemma A.1, Axiom (iv)]
= v + u. [Lemma A.2, Axiom (iii)]
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Gram-Schmidt process 129

H

Hermitian matrix, 201
homogeneous, 9
homogeneous linear

, 1
homogeneous linear system , 9

I

identity matrix , 20
identity transformation, 67
infinite-dimensional , 91
inner product , 115, 200
inverse , 73
inverse, 21
inversion , 42

J

Jordan block, 160
Jordan canonical form, 160
Jordan decomposition theorem, 160

K

kernel , 170

L

leading 1, 6
leading principal

, 194
least squares solution, 135
length, 116
Lie product, 205

linear equation, 1
linear system, 2
linear transformation , 66, 166

linearity conditions, 70
linearly dependent, 86
linearly independent, 86

M

main diagonal, 4
matrix, 3
matrix transformation, 67

N

n-vector space, 62
negative definite, 193, 204
negative semidefinite, 193, 204
norm, 116
normal system, 136
nullity, 104, 172
nullspace, 97

O

one-to-one, 72, 174
onto, 174
orthogonal, 65, 119, 121, 122
orthogonal basis, 123
orthogonal complement, 121
orthogonal matrix, 138
orthogonal projection, 126

orthonormal, 122
orthonormal basis, 123

P

particular solution, 99
partition, 13
permutation, 42
permutation matrix, 25
plus/minus theorem, 93
positive definite, 193, 204
positive semidefinite, 193, 204
principal submatrix, 194
projection theorem, 125
Pythagorean theorem

,

, 65

equation

submatrix
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Q

QR-decomposition, 132
quadratic form, 190

R

range, 170
rank, 104, 172
real inner product

real vector space, 80
reduced row-echelon

, 5
row matrix, 3
row space, 97
row vector, 97
row-echelon form, 6

S

signed elementary
, 43

similar, 182
similarity transformatio , 184
skew-symmetric, 34
solution set, 2
solution space, 83
square matrix, 4

standard matrix, 67
submatrix, 13
subspace, 82
symmetric matrix, 34

T

trace, 16
transition matrix, 141
transpose, 16
triangular matrix, 32

U

unit vector, 116

unitary matrix, 201

V

vector, 61, 80, 214
vector space, 80, 214

W

Weyl’s theorem, 197

Z

zero matrix, 20
zero transformation, 67

n

, 116space

form

product
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