Karlsruner >cnritten
Zur alluuw

5anad oo

Julius Pfrommer

Distributed Planning for Self-Organizing
Production Systems

ST ihing

Julius Pfrommer

Distributed Planning for Self-Organizing
Production Systems

Karlsruher Schriften zur Anthropomatik
Band 58
Herausgeber: Prof. Dr.-Ing. habil. Jirgen Beyerer

Eine Ubersicht aller bisher in dieser Schriftenreihe
erschienenen Bande finden Sie am Ende des Buchs.

Distributed Planning for
Self-Organizing Production Systems

by
Julius Pfrommer

ST bisnin

Karlsruher Institut fur Technologie
Institut fur Anthropomatik und Robotik

Distributed Planning for Self-Organizing Production Systems

Zur Erlangung des akademischen Grades eines Doktor-Ingenieurs
von der KIT-Fakultat fur Informatik des Karlsruher Instituts far
Technologie (KIT) genehmigte Dissertation

von Julius Pfrommer

Tag der mindlichen Prifung: 22. Juli 2019
Referent: Prof. Dr.-Ing. habil. Jirgen Beyerer
Korreferent: Prof. Dr.-Ing. Michael Weyrich

Impressum
ﬂ(l Scientific
Publishing
Karlsruher Institut fur Technologie (KIT)
KIT Scientific Publishing

StraBe am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

This document — excluding the cover, pictures and graphs — is licensed
v s

under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
v o

Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.orgl/licenses/by-nd/4.0/deed.en

Print on Demand 2024 — Gedruckt auf FSC-zertifiziertem Papier

ISSN 1863-6489
ISBN 978-3-7315-1253-0
DOl 10.5445/KSP/1000152028

Kurzfassung

Fiir automatisierte Produktionsanlagen gibt es einen fundamentalen Tradeoff
zwischen Effizienz und Flexibilitit. In den meisten Fillen sind die Ablédufe nicht
nur durch den physischen Aufbau der Produktionsanlage, sondern auch durch die
spezielle zugeschnittene Programmierung der Anlagensteuerung fest vorgegeben.
Anderungen miissen aufwindig in einer Vielzahl von Systemen nachgezogen
werden. Das macht die Herstellung kleiner Stiickzahlen unrentabel.

In dieser Dissertation wird ein Ansatz entwickelt, um eine automatische An-
passung des Verhaltens von Produktionsanlagen an wechselnde Auftrige und
Rahmenbedingungen zu erreichen. Dabei kommt das Prinzip der Selbstorganisati-
on durch verteilte Planung zum Einsatz. Die aufeinander aufbauenden Ergebnisse
der Dissertation sind wie folgt:

1. Es wird ein Modell von Produktionsanlagen entwickelt, dass nahtlos von
der detaillierten Betrachtung physikalischer Produktionsprozesse bis hin
zu Lieferbeziehungen zwischen Unternehmen skaliert. Im Vergleich zu
existierenden Modellen von Produktionsanlagen werden weniger limitie-
rende Annahmen gestellt. In diesem Sinne ist der Modellierungsansatz ein
Kandidat fiir eine hiufig geforderte “Theorie der Produktion”.

2. Fiir die so modellierten Szenarien wird ein Algorithmus zur Optimierung
der nebenldufigen Abldufe entwickelt. Der Algorithmus verbindet Tech-
niken fiir die kombinatorische und die kontinuierliche Optimierung: Je
nach Detailgrad und Ausgestaltung des modellierten Szenarios kann der
identische Algorithmus kombinatorische Fertigungsfeinplanung (Schedu-
ling) vornehmen, weltweite Lieferbeziehungen unter Einbezug von Un-
sicherheiten und Risiko optimieren und physikalische Prozesse pradiktiv
regeln. Dafiir werden Techniken der Monte-Carlo Baumsuche (die auch
bei Deepminds Alpha Go zum Einsatz kommen) weiterentwickelt. Durch

Kurzfassung

Ausnutzung zusitzlicher Struktur in den Modellen skaliert der Ansatz auch
auf grofle Szenarien.

. Der Planungsalgorithmus wird auf die verteilte Optimierung durch unab-

hingige Agenten iibertragen. Dafiir wird die sogenannte “Nutzen-Propaga-
tion” als Koordinations-Mechanismus entwickelt. Diese ist von der Belief-
Propagation zur Inferenz in Probabilistischen Graphischen Modellen in-
spiriert. Jeder teilnehmende Agent hat einen lokalen Handlungsraum, in
dem er den Systemzustand beobachten und handelnd eingreifen kann. Die
Agenten sind an der Maximierung der Gesamtwohlfahrt iiber alle Agenten
hinweg interessiert. Die dafiir notwendige Kooperation entsteht iiber den
Austausch von Nachrichten zwischen benachbarten Agenten. Die Nachrich-
ten beschreiben den erwarteten Nutzen fiir ein angenommenes Verhalten
im Handlungsraum beider Agenten.

. Es wird eine Beschreibung der wiederverwendbaren Fihigkeiten von Ma-

schinen und Anlagen auf Basis formaler Beschreibungslogiken entwickelt.
Ausgehend von den beschriebenen Fihigkeiten, sowie der vorliegenden
Auftriage mit ihren notwendigen Produktionsschritten, werden ausfiihrba-
re Aktionen abgeleitet. Die ausfiihrbaren Aktionen, mit wohldefinierten
Vorbedingungen und Effekten, kapseln benotigte Parametrierungen, pro-
grammierte Abldufe und die Synchronisation von Maschinen zur Laufzeit.

Die Ergebnisse zusammenfassend werden Grundlagen fiir flexible automa-

tisierte Produktionssysteme geschaffen — in einer Werkshalle, aber auch iiber
Standorte und Organisationen verteilt — welche die ihnen innewohnenden Frei-
heitsgrade durch Planung zur Laufzeit und agentenbasierte Koordination gezielt
einsetzen konnen. Der Bezug zur Praxis wird durch Anwendungsbeispiele herge-
stellt. Die Machbarkeit des Ansatzes wurde mit realen Maschinen im Rahmen des
EU-Projekts SkillPro und in einer Simulationsumgebung mit weiteren Szenarien
demonstriert.

Abstract

There is a fundamental tradeoff between automation and flexibility in production
systems. Large lot sizes can be produced efficiently with automated production
systems. Many machines and equipment, like a 5-axis CNC mill, are in principle
capable of producing many different kinds of parts. Similarly, (intra-) logistics
systems exist for the automated transport and warehousing. Integrating these
flexible components to an overall production system that is equally flexible has
been prevented by the limits of automation technology in dealing with the ensuing
complexity. Most production processes are rigid not only by way of the physical
layout of machines and their integration, but also by the custom programming
of the control logic for the integration of components to a production systems.
Changes are time- and resource-expensive. This makes the production of small
lot sizes of customized products economically challenging.

This thesis develops solutions for the automated adaptation of production
systems based on self-organisation and distributed planning. The main results are
the following:

1. A model of production systems that scales seamlessly from detailed phys-
ical process dynamics up to more abstract descriptions of entire supply
chains. Compared to existing models of production systems, the proposed
approach requires less limiting assumptions and also includes a treatment
of concurrency—many productions on many machines in parallel and their
interaction. In the sense, the proposed model is a candidate for a “theory
of production”.

2. Based on the model, an algorithm for the optimization of concurrent pro-
duction scenarios is proposed. The algorithm combines techniques for
combinatorial and continuous optimization. Depending on the level fidelity
of of the model, the same algorithm can solve combinatorial scheduling
problems, minimize risk in global supply-chains and control physical pro-

iii

Abstract

duction processes. For this, the technique of Monte-Carlo Tree Search is
extended. By exploiting algebraic structure in the models, the approach
can be scaled to large scenarios.

. The algorithm is further extended to decentralized optimization by inde-

pendent agents. For the coordination between agents, the technique of
“utility propagation” is developed. Utility propagation is inspired by belief
propagation, a well-known technique for inference in probabilistic graphical
models. Every agent has a local scope of visibility where can further influ-
ence the actions taking place. For the coordination, it is expected that the
scope of the different agents is overlapping. The agents are further expected
to cooperate, i.e. they are interested to maximize the overall welfare that is
generated. The coordination between agents is based on the exchange of
messages between neighboring agents. The messages describe the expected
generated welfare conditional to the actions that are in the scope of both
the sending and the receiving agent.

. A formal description of reusable skills of production resources (machines

and tools) in production systems is developed. By combining the modeled
skills with a description of the production steps, executable actions are
generated that are described by preconditions and effects. Internally, the
actions encapsulate all required program logic for the automation and
the runtime-synchronization between different machines and tools that
participate in the action.

In summary, the results of this work enable future production systems that are

both efficient and adaptive. For this the components of the production system are
enabled to use the degrees of freedom that are available to them. By the use of

self-organization for the coordination, components of the overall system can react
to changes in the system topology and external conditions. The approach was
tested in application scenarios—in simulation and in physical production systems.
For example as part of the EU-project SkillPro.

Acknowledgments

Let me first thank Prof. Dr.-Ing. habil. Jiirgen Beyerer for his mentorship, guid-
ance and shared passion for agent-based and distributed systems throughout the
development of this thesis. The time at the IES chair and the interactions were
formative and invaluable. Furthermore I want to thank Prof. Dr.-Ing. Michael
Weyrich for the discussions and his role as a reviewer of this dissertation.

Fraunhofer IOSB, and particularly the ILT department led by Thomas Uslénder,
was a great environment to conduct both scientific research leading up this thesis
and to pursue high-impact engineering projects in the automation environment.
The colleagues at IOSB and especially my former group leaders Miriam Schleipen
and Ljiljana Stojanovic taught me the ropes of the craft of applied research. This
was an experience from which I still profit immensely.

Besides the results on distributed planning for production control, a “byproduct”
of this thesis was that it enabled me to contribute to the open62541 open source
implementation of the OPC UA standard for industrial communication. This
background ensures a clear technological path from the theoretical work to the
application scenarios. The open62541 development team proved very inspirational
and productive, so let me thank Florian Palm and Sten Griiner, Prof. Leon Urbas,
Chris Iatrou, Stefan Profanter, and Andreas Ebner.

Another thank you goes to Joseph Warrington and Georg Schildbach for their
guidance during my first steps into research during my time at the Automatic
Control Laboratory at ETH Zurich.

Most importantly, this thesis would not have been possible without the encour-
agement and support of my family. Ce thése n’aurait pas été possible sans tout
ton soutien, Ingrid!

Karlsruhe, July 2019 Julius Pfrommer

Table of Contents

Kurzfassung i
Abstract iii
Acknowledgments L. v
Listof Figures ix
Listof Tables xi
Listof Symbols, xiii
Listof Acronyms xvii
1 Introduction, 1
1.1 Production and Logistics in a Global Economy 1
1.2 The Structure of Automated Production Systems 4
1.3 Approaches for Flexible Production Systems 11
1.4 The Missing Hierarchy of Production Theories 16
1.5 Scientific Contributions and Thesis Organization 18
2 A Model of Concurrent Production Systems 25
2.1 State, Actions and Action Sequences 25
2.2 Parameterized Actions 34
2.3 Uncertainty and Observations 36
24 RewardandPolicies L. 39

vii

Table of Contents

3 Simulation-Based Planning for Concurrent Production Systems

3.1 Tree Search with Backtracking
3.2 Planning for Discrete Action Sequences

3.3 Planning with Uncertainty and Continuous Action Parameters

3.4 Planning with Linear Actions

4 Distributed Planning for Self-Organizing Production Systems . . .
4.1 Background: The Generalized Distributive Law
4.2 A Model of Distributed Concurrent Production Systems
4.3 Distributed Planning for Deterministic Action Sequences
4.4 Distributed Planning under Uncertainty
45 BEvaluation L

5 Modeling of Production Skills
5.1 Background: Skill Models for Production
5.2 Background: Description Logics
5.3 The PPRS Model for Production Skills
5.4 Assisted Generation of Executable Actions

6 Conclusion

Bibliography

viii

43
44
57
66
82

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
23
24

3.1
3.2

3.3
3.4
3.5
3.6

3.7
3.8
3.9
3.10
3.11

The automation hierarchy in discrete manufacturing
Typical automation ontrol hierarchy of a chemical plant..
Example for a PLC program in ladder logic
Classes of manufacturing changeability
Decomposition of the automation hierarchy with distributed services
PROSA reference architecture
The model hierarchy inoptics
Recommended readingorder

IRB 140 robotic manipulator with inverse kinematics control.
Minimal scenario for discrete manufacturing
Sequence tree for Example 2.2.
P&ID Diagram.

Dependence Graph and Hasse Diagram
Sequence tree from Example 2.3 before (left) and after the pruning

of equivalent sequences (right).
Outline of a Monte-Carlo Tree Search.
JSP benchmarks for Monte-Carlo Tree Search
Optimistic Optimization.
Example functions that are locally smooth around the optimized for

asemi-metric £.
Partially Observable Hybrid Tree.
The inverted pendulum problem.
Swingup of an inverted pendulum
Expected reward for different numbers of ordered pencil casings. . .
Convergence speed of the optimization for the order quantity under

uncertainty example. Lo

26
30
32
35

46

47
60
64
68

ix

List of Figures

3.12 Supply chainexample 92
4.1 Factorgraph 95
4.2 Minimal Production Scenario with Agents 99
4.3 Conditioned sequence trees of two agents. 105
4.4 Autonomous driving example without coordination. 126
4.5 Autonomous driving example with coordination. 127
5.1 Outline of the relations between the PCM concepts. 135
5.2 Excerpt from a hierarchy of production processes based on DIN 8580.137
5.3 Architecture of the SkillPro project [Pfr+15] 142

List of Tables

2.1

3.2
3.3

4.1

5.1

Evolution of the system state for a sequence 33

Example JSPproblems. oL 54
Benchmarking of pruning techniques for DFS and Branch & Bound. 56

Reward generated by the actions in the supply-chain example. 117

Syntax and Semantics of the ££ 1 Description Logic. 134

X1

List of Symbols

General Notation

[N
A....Z
A,....Z
a,...,z
A Z
0,1

v;

General Sets
Z

N

No

R

R

Scalar (including tuples) and function mapping to a scalar
Set

Graph represented by a tuple (V, E') with nodes V' and edges

ECV XV
Vector or function mapping to a vector. Column vectors are
constructed as a = (a1, as,...)" .

Matrix. Constructed as A = [a11 a12; as; ass] or from col-
umn vectors as A = [ab].

Zero and one column vectors. The size is clear from the
context or explicitly mentioned.

Basis-vector with zeros and a single one-entry at index ¢

Set of integers

Set of natural numbers (without zero)
Set of natural numbers (including zero)
Set of real numbers

Set of real positive numbers (including zero)

Xiii

List of Symbols

Probability
P, E
N(p,0)
UX)

~

S
I3

o
e

Probability, Expectation

Normal distribution with mean g and standard deviation o
Uniform distribution on the support of set X

Distributed according to

Random variable (scalar)

Random variable (vectorial)

Production System Model

p, P

P
pENlo‘

c,C
s, S
0,2

0,0
X X AX
OxX—-R

Xiv

Product type, Set of product types

Collection of products, represented by a vector with the num-
ber of products for each product type

System component, Set of components
Component state, Set of component states

Time-indexed resource state, Set of time-indexed resource
states

Action, Set of actions
Set of components that participate in the action a
Feasible initial states for the action a

Action parameter, Parameter space of action a, Parameter
space across all actions

Observation, Set of observations

Reward function

List of Symbols

Distributed Production System Model

i1
J € N(i)

aiEAi

Trace Theory

[w]

w~v
albd

WE < Wy

Planning
we A"
€

w,we

W;, W¢e

(2

Agent, Set of agents
Neighbours of agent ¢

Action where agent ¢ participates projected to the scope of
agent ¢

Set of components that participate in action a that are also in
the scope of agent ¢

Feasible initial states for the action a for the components that
are in the scope of agent %

The trace of equivalent action sequences generated by the
action sequence w

Action sequences w and v are equivalent
Actions ¢ and b are independent

Partial order relation between the elements with indices &
and [of the sequence w

Permutation of sequence element indices

Action sequence with elements w”
Empty action sequence

Set of action sequences; Set of possible action sequences
starting at state o.

Set of action sequences for agent 7; Set of possible action
sequences for agent ¢ starting at state o;.

XV

List of Symbols

Wi | i

h;, h;;

T: U —>Ax0O

T:H—-Ax0O

v, q

m;_;

Miscellaneous

Ly
n[k], n[k], N[k]

Y

XVi

Set of possible action sequences for agent ¢ starting at state
o; that project to the sequence v;; for the shared scope of the
agents ¢ and j

History of (parameterized) actions and observations. The
elements are (a”, 0*) or (a¥, 6%, o*) respectively.

Set of possible histories with (parameterized) actions and
observations

History projected to the scope of agent ¢; History projected
to shared scope of the neighboring agents ¢ and j

Set of possible histories with (parameterized) actions and
observations for agent ¢

Policy for observable settings. Maps from the current state
to the next action.

Policy for partially-observable settings. Maps from observed
histories to the next action.

V-value and Q-value for the expected reward under optimal
decision making

Message send from agent 4 to a neighbor j € N (7)

Indicator function (one if v is true, zero otherwise)

Access to a hash-map under the key k. The shown notation is
for a scalar, vector or set value respectively. If no value was
stored for k prior, n returns a (scalar or vectorial) zero or the
empty set.

Element-wise comparison of two column-vectors

List of Acronyms

AMS
B&B
BP
DL
ERP
EWO
FMS
GDL
JSP
LNF
MARL
MCTS
MDP
MES
MILP
MPC
ODE
OEM
00

Automated Manufacturing System
Branch and Bound

Belief Propagation

Description Logics

Enterprise Resource Planning
Enterprise-Wide Optimization
Flexible Manufacturing System
Generalized Distributive Law
Job-Shop Problem

Lexicographical Normal Form

Multi-Agent Reinforcement Learning

Monte-Carlo Tree Search

Markov Decision Process
Manufacturing Execution System
Mixed-Integer Linear Program
Model Predictive Control
Ordinary Differential Equation
Original Equipment Manufacturer

Optimistic Optimization

Xvil

List of Acronyms

OPC UA
POMDP
PGM
PLC

RL

SC
SCADA
TT

XViii

OPC Unified Architecture
Partially-Observable Markov Decision Process
Probabilistic Graphical Models

Programmable Logic Controller
Reinforcement Learning

Situation Calculus

Supervisory Control and Data Akquisition

Trace Theory

1 Introduction

There has been a great deal of talk, much of it well founded,
that the effect of science on economics and on the economy
has not only been very large but that something like a second
industrial revolution is impending. Illustrating this are the
enormous advances in communications — physical and infor-
mational —, advances in automatization and in the domain of
information and control, and finally, atomic energy.

John von Neumann [Neu55]

1.1 Production and Logistics in a Global Economy

After introducing the assembly line for the production of the Model T automobile
in 1908, Henry Ford sought to make his company self-sufficient. For the supply
of raw material, his Ford Motor Company bought 700,000 acres of forest, rubber
plantations, iron and coal mines, and so on. The Ford River Rouge Complex near
Detroit was designed to transform the incoming raw material into fully assembled
cars. The manufacturing operations performed at River Rouge included coal
coking, steel forging, sheet metal stamping, engine casting, lumber milling, tire
making, the production of sheet glass from molten sand, and many more. All
leading up to the final production step: the final car assembly in Ford’s assembly
line [Bri03]. Since Ford’s only product at the time was the Model T, all production
processes were highly specialized to maximize efficiency and reduce costs. This
made the Model T the most affordable car at the time. Ford’s competitor Chevrolet
had a different approach. They used generic manufacturing equipment that could
produce parts for several models at the same time. This also enabled frequent
updates of the car models. Innovations of the 1920s, such as motors with electric
starters that require no hand crank, let the Model T appear increasingly outdated.
In 1927, Ford finally introduced a successor: the Model A. However, since the

1 Introduction

production processes were tailored towards the Model T, the changeover proved
difficult. The River Rouge site came to standstill for a duration of six months until
production could be slowly resumed [Hou85]. In the following years, Ford gave up
the model of the highly integrated manufacturing site. Today, like all automotive
companies, Ford operates a range of production sites that are specialized on a
range of parts (e.g. the internal combustion engine) that is used for several car
models. And also the final assembly lines can switch between car models to adjust
to changing customer demands. All production sites are connected with logistics
networks and rely heavily on external material and component suppliers.

Ford’s change from an integration manufacturing site to a network of intercon-
nected production sites is exemplary for the evolution of many manufacturing
industries. Initially, customized craft production is replaced by mass production,
resulting in large efficiency gains and opening up new markets. When the markets
are divided up, companies diversify their product portfolio to cater for individual
customer groups. This leads to smaller order sizes, reducing the efficiency of
the mass production approach. New methods have been developed to enable
customization without loosing all the efficiency gains of mass production. Among
the most popular ones are Lean Production [Ohn88] (also known as the Toyota
Production System) and the Just in Sequence (JIS) inventory strategy [WS11].
They enable production sites to reduce the minimum order size that is still eco-
nomical to produce. Sometimes lot sizes are reduced to the absolute minimum: a
single customized product.

While automotive brands rely on a network of suppliers, these relationships are
relatively stable. Building up the capacity to produce a specific part in high quan-
tities in the expected quality takes time and investments in automated processes.
This only makes economical sense when years of high demand are expected. For
many retail goods, a similar division of labour happens in a complex supply-chain.
But, these relationships can be established and dissolved literally overnight. Cheap
long-range shipping, the reduction of tariffs and easy communication has enabled
world-wide supply chains. We will take the example of global supply chains in
the apparel industry [Ger99]. The supply-chain for a cotton shirt comprises the
provider of raw cotton, spinning of the yarn, color dyeing of the yarn, weaving of
the textile, cutting and sewing to make the shirt, design printing and stitching of
brand logos. All of these production steps are typically executed by different com-

1.1 Production and Logistics in a Global Economy

panies in different countries. And the supply-chain is dynamically reconfigured
for individual orders based on availability and price. A shirt bought today may
have taken a wholly different way around the world than the same shirt bought a
week earlier in the same store [Chr00]. Many apparel retailers even forego central
warehousing for their stores. Instead, products are delivered directly from the
last link in the supply chain to the store. So the retailers do not bind capital in
stock for the entire season. And they can react within weeks to data showing
good or bad sales of a specific product [CM15]. On the downside, most western
apparel brands do not control their supply-chain and rely on sourcing agents from
overseas.

The biggest sourcing agent is Li&Fung Limited. Operating out of Hong Kong,
Li&Fung self-describes it’s core business as “managing the supply chain for high
volume, time sensitive goods” [FFWO07]. Li&Fung owns no factory, warehouse or
inventory and can still source nearly any retail good. Its database contains factories
throughout Asia with their support for different manufacturing processes, available
capacity and logistics options, as well as the availability and prices of raw material
commodity components. Orchestrating the supply chain is a profitable business.
In 2015, Li&Fung achieved a turnover of $18.8 billion and a healthy $2.2 billion
profit [Lim15]. The leverage the sourcing agent has over the supply chain is seen
increasingly critical by companies who rely on their services. In 2015, Wal-Mart
announced a plan to reduce their reliance specifically on Li&Fung. Relying too
much on a single provider had become a strategic weakness for the world’s biggest
retailer [WS15].

So why are dynamic reconfigurations of the supply-chain possible for the
apparel industry, but not for automotive? In the apparel supply-chain, suppliers
provide generic access to manufacturing processes that can be used for many
different customers with little changeover costs and fast production ramp-up.

 Standardized commodity goods enable a high degree of automation. For
example, the objective of textile plants is to run their power looms with
as little downtime as possible. The automated equipment allows the con-
figuration of different product types. For example, a Jacquard loom can
configure different weaving patterns. The difference between product types
can be entirely handled by the automated production system.

1 Introduction

* On the other end of the spectrum, cutting and sewing of apparel is highly
dependent on human labour. Lot-sizes are generally smaller and the type of
product can change drastically between orders (e.g. switching from jeans to
dress shirts). Handling of pliable textile material is difficult for automated
equipment and requires custom machines and long changeover times. This
makes automated equipment ineconomical as long as cheap human labour
is available in overseas countries.

Globalization and the decentralization of supply chains lead to increased re-
quirements for flexibility in production [Abe+06]. In practice, however, flexibility
in production is a conflicting goal with efficiency. Automated systems provide the
increased efficiency required for mass production. But they require considerable
investment for the initial setup and the changeover between products. In recent
years, many countries with a large industrial base have set up research programmes
to renew industrial production with the increased use of information processing
and communication technology. Among these programmes are “Industrie 4.0”
in Germany [KWH13], “Made in China 2025 [Ken15] in China and “Industrie
du Futur” [FD16] in France. A major part of these efforts is the creation of
new automation technology that improves on the tradeoff between efficiency and
flexibility in production.

1.2 The Structure of Automated Production Systems

The vast majority of control systems for production systems is organized as a
hierarchy. This is true both for discrete manufacturing and continuous production
processes (e.g. chemicals, pharmaceuticals, beverages). Figure 1.1 shows the
automation pyramid, a frame of reference for the hierarchical design of most
automated systems in discrete manufacturing. Figure 1.2 depicts the typical
automation hierarchy from the process industry (e.g. chemicals and pharmaceuti-
cals). Decisions are made hierarchically and data is aggregated more and more
as it is forwarded to the upper levels of the automation hierarchy. Hierarchical
control follows the principle of subsidiarity, where upper levels make high-level
decisions that are gradually refined as they are forwarded down the automation
hierarchy. Subsidiarity is a necessary consequence of the fact that information

1.2 The Structure of Automated Production Systems

- ® ERP Enterprise Level
2l |e
@ 2 MES \ Plant Management Level
]
2 |Io
< o] SCADA Operations Level
sl |E
al |8 PLC Control Level
v 1/O-Signals \ Field Level
Manufacturing Process Process Level

Figure 1.1: The automation hierarchy in discrete manufacturing. The IEC 62264
/ ISA-95 standard does not include the enterprise level. It was added here to
include interfaces to systems outside the shopfloor.

is aggregated when it moves up the automation hierarchy. The models used for
decision making in the upper levels are more and more coarse and abstract away
low-level details. But the low-level details have to be considered eventually. The
lower levels in the automation hierarchy takes decisions from one level above and
“fill the gaps”.

In many systems, the control levels are tightly coupled. Changes to a component
of a production system usually requires changes in many adjacent systems both
vertically and horizontally. The subsystems are interwoven and implicit assump-
tions about adjacent systems are represented only in custom control code. This
makes modifications to automated systems costly and time-intensive. Reducing
this effort is the focus of an entire research community.

The remainder of this section gives an overview on the most important planning
and optimization methods for decision-making on the different levels of the
automation hierarchy. Whilst it is not possible to provide a complete enumeration,
the examples from this chapter will set the frame for the modeling and planning
techniques that are introduced later on.

1 Introduction

Scheduling
(Weeks)

l

Site-wide Optimization
(Day)

J

\ |
¥ |

Local Optimization
(Hour)

Supervisory Control

% L (Minutes)

-

3 /|

£ v |
3 |

L Regulatory Control
(Seconds)

Figure 1.2: Typical automation hierarchy of a chemical plant [SkoO4].

The Control Level

Modern control theory and their implementation on computers can be traced back
to work done at MIT in the 1940s. There, Norbert Wiener first coined the term
“cybernetics” as the conjunction of control and communication [Wie48]. At the
same time, project Whirlwind, conducted at Jay Forrester’s Servomechanisms
Laboratory, developed digital “feedback control” for numerically controlled (NC)
manufacturing processes [Rei91]. Both modern Programmable Logic Controllers
(PLCs) and the application of feedback control methods on digital computers are
descendant from this work in a direct lineage. The fundamental difference between
the two lies in the type of decisions they have to make. Programmable Logic
Controllers (PLC) generally are driven by a state machine with discrete transitions
or events. Feedback (optimal) control is mostly concerned with physical systems
with continuous dynamics.

1.2 The Structure of Automated Production Systems

POWER ON POWER OFF
108 I I 1051 I | I 1052 ()

PB1 PB2

MCR

PUMP
START

1 L 1101 1102
1 1 1

IPB1||
FLOAT

cR1
CR1 LIMIT 1
| L st /2

PUMP1

CcR1

Figure 1.3: Example for a PLC program in ladder logic

Programmable Logic Controllers Programmable Logic Controllers (PLC, see
[Joh87; Wall2]) are directly interfaced with a physical process via sensors and
actuators. In the automation of discrete manufacturing, PLC couple the physical
system with digital control and communication. This coupling requires custom
program code to accomodate for the specific details of the physical system and
its intended functionality. As the control level often deals with safety-critical
functionality, hard bounds on realtime reactiveness have to be guaranteed. The
IEC-61131 languages [Com93] are standard for PLC programming and mandate
a programming style that is idiomatic to industrial controllers. Figure 1.3 shows
an example for one of the IEC-61131 languages, ladder logic, which is directly
descendent from the analog circuits that were originally used for industrial
control before the PLC.

The logic coded into a PLC is mostly reactive. Sensor inputs are read and
translated into actuation commands. This loop is repeated at a fast pace (many
hundred Hertz) for realtime operations. Lengthy planning procedures do not
usually fit into the constraints of the control loop in a PLC. The IEC-61499
standard is intended as a modernization of IEC-61131 [Vyall]. It adds an
event-based control flow to the strictly cyclic operations of previous PLC
generations. But even with IC-61499, PLC-based control is mostly reactive.

1 Introduction

Computationally expensive planning is generally not performed in a safety-
critical control environment.

Automated production systems typically are integrated from components that
come with their own control hardware. The integration requires communication
between individual controllers and custom control software to react to cycli-
cally transmitted status messages and events. On the control level, traditional
fieldbuses are still common today [Zur14]. Fieldbuses are even mandatory
to use if safety-critical functionality relies on digital communication between
controllers or between a PLCs and field devices with sensors and actuators.
The programming of PLCs is often finished on-site as part of the integration of
system components. As many automation systems are custom solutions, code
reuse for PLCs is difficult even if systems are built from standard components.
This leads to a tight coupling that also increases the time required to make
changes in an existing system.

Feedback Control The canonical definition of an optimal control problem is as
follows [Lib11]:
& = f(t,m,u), x(to)=wo (1.1)

The system dynamics is described by an ordinary differential equation (ODE) f.
The system state at time ¢ is z(¢) € R™ and its evolution depends on the control
input u(¢) € R™. The initial condition is given by . A cost functional for
the state evolution assigns costs to the state and control effort between times g
and ¢ 7 and an additional terminal cost on the final state (¢).

.
Clu) = / "Lt (), w(t))dt + K (b, xp) (1.2)
to
The problem of optimal control is to compute ©* = arg min,, C'(u). In this
general framework, computing w* is a variational problem as w is a (vectorial)
function over time [Lue69]. A popular approach is to discretize the time
domain 7" = {to,t1,...,ts} so that u* problem of finding the sequence of u
that minimizes C'. Applying the resulting w blindly until ¢ is called open-loop
control. Repeating the optimization after every time period with updated state

1.2 The Structure of Automated Production Systems

information is called Model Predictive Control (MPC) or Receding Horizon
Control [ML99; Mac02].

Traditionally, feedback control has be implemented as analog electrical circuits.
But these are restricted to relatively simplistic solutions, such as PID controllers
[Ben93]. With the increase in computational power available in control devices,
Model Predictive Control (MPC) has become possible for many application.
Here, the control problem is stated as an optimization problem that is solved
repetitively at a high frequency to incorporate sensor measurements for “feed-
back” control. Optimal control as an optimization problem originates from the
association of dynamical system with control input with

The Operations Level

Supervisory Control and Data Acquisition On the operations level, decisions are
being made with respect to a horizon of minutes or hours. So-called SCADA
systems (Supervisory Control and Data Acquisition) collect data from the
control level, aggregate it and present it to a higher-level decision making
system or a human operator. Some aspects of the lower-level control layer,
such as reactions to safety critical conditions are typically abstracted away.
SCADA systems are often interfaced directly with the PLC that control the
process. So the possible choices of communication technology are reduced to
the capabilities of the PLC. In addition to classical fieldbuses, Ethernet-based
protocols are making inroads into factories. The most popular protocol for
non-realtime communication on the shopfloor today is OPC UA [MLDO09].

Performance and Quality Control The supervision of the process performance
and resulting product quality is performed on the operations level [Jel06].
The performance and quality of production processes is generally varying
over time. The reasons for this are the following: a) an inherent stochasticity
of the process, b) changes to the input material and semi-finished goods, c)
effects from changing ambient conditions, such as temperature and humidity,
d) gradual degradation of the equipment and tools and their maintenance, and
e) the evolution of the dynamic system state. To illustrate e), take the example
of a stamping press. The evolution of the dynamic system state could refer to
an increase in the tool temperature during long uninterrupted production runs,

1 Introduction

or a buildup of residual oil from the metal coating in the stamp tool. It is often
up to a skilled process expert to adjust the process parameters at runtime to
ensure the required performance.

The Plant Management Level

On the plant management level, an entire shopfloor is considered. Typically the
planning horizon is between several hours and several days of operation [She03].

Scheduling Scheduling theory [Pin08] is concerned with the distribution of pro-
duction steps to machines in order to maximize the overall efficiency and to
reduce costs. The field was active since the early 1960s [GT60] and many
important breakthroughs have been made. Scheduling functionality is often
sold under names such as Manufacturing Resource Planning (MRP, [Wig81])
or Advanced Planning and Scheduling (APS). Traditionally, due to the long
runtime of schedule optimization, updates were being computed at night. If the
original plan is disrupted by an unforeseen event, such as a delay or a machine
breakdown, the scheduling procedure is restarted or the original plan is repaired
with appropriate heuristics. Repairing or iterative refinement of plans has a
long history [HLO5]. Modern systems can also perform a full rescheduling
even during a running shift [VHLO03; Dim15].

Material Handling Material handling with uncertain arrival and processing times
is usually modeled using stochastic processes and queuing theory [Gro08;
Fur18]. Based on such a stochastic queuing system model the system behaviour
can be described. One approach is to compute a steady state occupancy of
the queues, for example based on the landmark BCMP theorem [Bas+75].
The discipline of queuing theory is concerned not only with computing steady
state occupancy, but also to apply queuing algorithms / network schedulers for
customer routing such that the network throughput is optimized.

The Enterprise Level

Enterprise Resource Planning Enterprise Resource Planning (ERP) describes a
class of software systems to assist enterprise-wide management [Jac+07]. The

10

1.3 Approaches for Flexible Production Systems

ERP products with the highest market share are SAP ERP (previously SAP/R3)
and the Oracle E-Business Suite [Gar18]. In many aspects, ERP functionality
mirrors tasks performed at the plant management level. But the timeframes
are generally much longer and several production and warehousing sites are
jointly considered. Enterprise-wide optimization (EWO) aims at optimizing the
operations of supply, manufacturing and distribution activities of a company to
reduce overall costs and inventories [Gro05].

Supply-Chain Management Supply-Chain Management (SCM) [Ali05; GFO08]
is concerned with production scenarios that include several layers of suppliers.
SCM is most common in industries where suppliers are not delivering special-
ized parts instead of commodity products. The integration with suppliers is
often very tight. This enables the reduction of buffer storage at the production
site by the use of just-in-time and just-in-sequence delivery. The so-called
bullwhip effect [LPW97] describes how small fluctuations in customer demand
lead to large fluctuations in demands at suppliers that are several tiers removed.
A big motivator for digitalisation and information sharing in the supply-chain is
the reduction of the bullwhip effect by enabling better forecasts for the suppliers.

1.3 Approaches for Flexible Production Systems

This section discusses approaches to render automated production system flex-
ible. The possibility of flexible production is one of the driving motivations
for Industrie 4.0 [Wey+14]. This thesis has a scope on automated production.
Organizational methods that focus on the human element in production, such as
Lean Manufacturing [Ohn88], are therefore not considered in depth. Several au-
thors have developed frameworks to characterize flexibility in production systems
[Bro+84; BS88; GG89; SS90; Ger93; DT98; Wie+07]

The scientific literature uses specific terms to describe flexibility in a production
context. See Figure 1.4 for a common nomenclature by Wiendahl [Wie+07].
Even though specific terms exist, the term flexibility is deliberately used with its
colloquial meaning in this thesis: The models and planning algorithms developed
in this thesis apply to all level in the automation hierarchy. The specific terms
for flexibility from the scientific literature are mostly tied to one level of the

11

1 Introduction

Product Agility
Portfolio
N
= Product Transformability
3z
[~N
g Subproduct Flexibility
=]
S
=W

Workpiece | Reconfigurability

Change-
Feature | over-
ability

Station Cell Segment Site Network

Production Level

Figure 1.4: Classes of manufacturing changeability from [Wie+07].

automation hierarchy. We aim to avoid misunderstandings by the specific terms
outside of their commonly understood definition.

Service-Oriented Production Systems The principle of service-orientation is
used in computer science to develop system architectures where components are
loosely coupled [Mac+06]. A specific service provider can be exchanged as long
as the interfaces for interaction remain identical and the underlying functionality
is still provided. Discovery mechanisms are used to find and select appropriate
service providers. In the context of Industrie 4.0, service-orientation is regarded
as an enabler for future control system architectures that dissolve the classical
automation hierarchy. See Figure 1.5 for a popular depiction. The DIN SPEC
16593-1 standard [DIN18] defines a reference model with basic principles for
service-based architectures in the context of Industrie 4.0. This is the common
basis for technical realisations to the vision from Figure 1.5.

12

1.3 Approaches for Flexible Production Systems

Enterprise resource
planning level

Plant management
level

Process
control level

Control
PLO) level £ X"Ttta

000000

Realtime
critical

Field
level

Automation hierarchy CPS-based Automation

Figure 1.5: Decomposition of the automation hierarchy with distributed services
[Mes13; Monl4].

A range of research projects has translated service-orientation to production
control. The authors from the SOCRADES project [JS05; De +08; Can+11] and
Shen et al. [She+07] develop a service-oriented manufacturing system architecture
where semantic technologies are used to match possible providers of functionality
in a manufacturing system. Loskyll et al. [Los+11; Los+12] expand the concept
of semantic service discovery to the parameterization and orchestration of ser-
vices. For this, they develop a domain-specific ontology for the use in semantic
reasoning tools. Puttonen et al. [PLM13] describe a set of specialized web ser-
vices for composing and invoking semantically enriched automated procedures
in a manufacturing setting. They also present an algorithm to identify the steps
required to reach a predefined goal state. Diirkop et al. [Diir+14] discuss the use
of service-oriented architectures in reconfigurable manufacturing systems (see
Figure 1.4 and the technical challenges that need to be overcome. [SZW17] use
model-based approach for the service development and a modular architecture
to reduce the complexity of service-based production systems. [LV15] combine
service-oriented manufacturing control with a multi-agent architecture. The Smart
Factory Web testbed in the Industrial Internet Consortium (IIC) uses web services
for planning and control in global supply chains [Jun+17].

13

1 Introduction

Agent-Based Production Systems An even more radical departure from the
classical automation hierarchy is investigated with agent-based distributed control
of production systems. Agent-based systems in manufacturing and logistics are
the topic of a dedicated research community that has been active since the 1980s
[DP87; LS92]. The survey papers [MVKO06; LKO08; Lei09; LMV13; LK15] give
an account on the history of agent-based control and an overview on the focus of
current work. Notably, the IEEE-IES Technical Committee on Industrial Agents
(TC-IA! brings together researchers on an international level.

Software frameworks have been developed to assist the development of agent-
based systems. For example the well-known JADE project [BCG07]. The frame-
works for software agents, however, do not provide abstractions specifically for
the production domain and are used for the development of distributed software
systems in general.

The core challenge of agent-based control is the coordination of individual
decision making across agents. The remainder of this paragraph discusses the
most common approaches. A common coordination mechanisms for agent-based
control is negotiation [ZR89]. The Contract Net Protocol (CNP) [Smi80] replaces
the market with a negotiation scheme in order to decompose and distribute tasks
between agents. The CNP has been applied for agent-based manufacturing systems
in a range of research projects and industrial installations [Par87; LL.94; SKB97;
Oue+99]. While the CNP is mostly used for greedy decision making, other authors
have integrated scheduling theory with agent-based control [SWHO06; Agn+14;
Bad11] Other coordination mechanisms are nature-inspired and derived from the
behavior of animals [XLOS].

Holonic production control is a special case of agent-based control. The term
holon, originally coined in [Koe68], refers to systems made up from components
that encapsulates both physical assets and virtual functionality [GLK98; Fis99;
MBO00]. The key idea is that the system components are themselves holons. This
goes beyond the usual system-of-systems approach, as holons are self-similar in
the sense that the structure and functionality of the constituent parts is governed
by the same principles as their parent. Taken to its extreme, this self-similarity
in manufacturing systems has led to the concept of the fractal factory [War93].

thttps://tcia.ieee-ies.org/

14

https://tcia.ieee-ies.org/

1.3 Approaches for Flexible Production Systems

4 N

Product
Order | knowledge Product
Holon Holon

)
Process
7
Resource
Holon

knowledge
Figure 1.6: Building blocks of a holonic manufacturing system according to the
PROSA reference architecture [Van+98].

Process
execution
knowledge

The PROSA project has proposed a architecture reference architecture for holonic
manufacturing systems [Van+98]. See Figure 1.6 for the building blocks defined
by PROSA.

What is currently lacking in the field of agent-based and holonic manufactur-
ing control are widely used benchmark scenarios to quantitatively compare the
proposed coordination mechanisms. Compared to other scientific fields, this has
led to many competing approaches without a clear winner and uncertainty on how
well the different approaches can cope with aspects outside of their original scope.
For example if unforeseen events are introduced in a stochastic environment. For
practitioners, this has led to an overwhelming range of choices. For researchers,
years of effort have so far not amalgamated into a unified theory of agent-based
production control.

Plug and Produce

The idea of Plug & Produce is derived from plug-and-play functionality known
from the USB interface for computer hardware. There, well-known device classes
with standardized functionality remove the need for custom software drivers for
the hardware integration. Arai et al. [Ara+00] first translated plug-an-play to the

15

1 Introduction

production domain and coined the term Plug & Produce. Onori et al. [Ono+12]
use the concept for a self-configuring assembly system at the shop-floor level.

The integration of machines and equipment with Plug & Produce encompasses
the following aspects: First of all, basic connectivity is established for an existing
(industrial) communication infrastructure [Diir+12; Rei+10]. Second, the new
component announces its presence to a central controller or directly to the adjacent
components with a discovery mechanism [Pro+17]. Third, in production, there
exists a wide range of machines and equipment. This heterogeneity cannot be
reduced to a small number of devices classes. A way to enable Plug & Work sce-
narios in the face of device heterogeneity is the use of self-descriptions languages
for the integration [OHN14; Sch+15a]. The fourth and most challenging aspect is
the functional integration. Lepuschitz et al. [Lep+11] show reconfiguration of
manufacturing resources based on distributed IEC 61499 function blocks and a
semantic description of the manufacturing setting and the expected behavior.

Many of the published Plug & Produce implementations use a dedicated inter-
connector module that acts as a facade for manufacturing equipment and provides
a uniform interface and that generates low-level commands for the underlying
device [NWSO07; Dor+17].

One approach for the functional integration in Plug & Produce is the modeling
of the skills of technical equipment. For this, see the review of the state of the art
in Chapter 5.

1.4 The Missing Hierarchy of Production Theories

Scientists and engineers use models on a level of abstraction that is the most
useful for the phenomena under investigation [Gie04]. It often occurs that a more
accurate model is available in principle. But working with an increased level
of accuracy would overburden the analysis with unnecessary complexity. For
example, an electrical engineer laying out the power grid of a city will not use
Maxwell’s Equation for a power-flow study. Many technical fields have arranged
these model approaches (theories) in a hierarchy. This hierarchy has evolved over
time and — in the natural sciences — its development is closely related to the process
of scientific discovery [Kuh62; Car84]. As an example, Figure 1.7 shows how the
model hierarchy established in the field of optics . If some phenomena cannot be

16

1.4 The Missing Hierarchy of Production Theories

5
x X
IS 4 0
S s §§&§5 S
g Iy & I 5 o
F §¢ § & & 5 5
< & IS v § 9
< F
@)
Ray Optics v v Vv
Huygen’s Waves v v v v
Transverse Waves v v v v v v v
Maxwell’s Equations v v v Vv Vv Vv V
Quantum Mechanics v v Vv Vv Vv Vv Vv

Figure 1.7: The model hierarchy in optics. (Reproduced from http://wuww.
argmin.net/2018/01/25/optics.)

explained one can resort to a more detailed (and computationally or analytically
more expensive) model until the first principles from Maxwell’s Equations and
quantum physics are reached [MW59].

Different academic fields have produced “Theories of Production”. For example
economics [Sch34; Dan66; She71], business administration [Sch86; Far88] and
production management [Dyc06]. Around the year 2000, prominent authors have
called for a unified theory of production that provides a common foundation that
integrates existing results [Dyc03; Sch04; WNH10]. Recent years have seen a
range of proposals to fulfill this need [NW10; Sch+11; Sch+15b]. The authors of
[Sch+17] provide a comprehensive review and classification of such production
theories. But the cited work remains mostly conceptual and does not model the
detailed control of automated systems on the lower levels of the control hierarchy.

By contrasting the model hierarchies in other academic fields with the control
hierarchy in automation, one could aim for a high-fidelity model at the bottom
layers that is abstracted more and more as we go up in the control hierarchy. While
that is the case, we want to stress that the underlying modeling principles should
stay the same for all levels of the control hierarchy.

17

http://www.argmin.net/2018/01/25/optics
http://www.argmin.net/2018/01/25/optics

1 Introduction

The work on a theory of production is not only of academic interest and also
relevant to practitioners that have to cope with the increasing complexity of
production systems. Currently, each layer of the control hierarchy works with
dedicated system models that are tailored for the tasks at hand. But the models
are so task-specific that they become mutually incompatible. This is problematic
at vertical as well as horizontal interfaces of the control hierarchy. Assumptions
about the behavior of adjacent components are implicit in the custom rules for the
interaction between subsystems and encoded in custom control program code. The
lack of a common core to translate between subsystems leads to constant manual
effort for system integrators and the loss of flexibility due to the task-specific hard
coupling of components.

1.5 Scientific Contributions and Thesis Organization

The original title at the very beginning of the work leading to this thesis was
“Agent-based production control using the paradigm of self-organisation in the
context of Industrie 4.0”. The path to the final thesis led through scientific fields
that are not directly associated with that original title. For example Probabilistic
Graphical Models, Convex Optimisation, Description Logics, Reinforcement
Learning, and many more. Some of these detours did not pay off as intended. But
many did. While not always visible, the thesis has stayed true to the original topic
and the results and techniques from different fields finally tie to together into one
body of work.

The thesis is organized into six chapters. See Figure 1.8 for an overview and
recommended reading order. The scientific contributions are closely related
to the thesis structure. In general, prior results are summarized in dedicated
“background” sections. Beyond the background sections, all results with an
explicit reference to the literature were developed as part of the thesis development.
It follows a summary of the key developments.

Chapter 2: A Model of Concurrent Production Systems A novel model
representation for production systems is introduced. The goal of the model is
to provide a uniform representation of both discrete and continuous production

18

1.5 Scientific Contributions and Thesis Organization

1. Introduction

l

2. A Model of
Concurrent
Production Systems

i ™,

3. Simulation-Based 5. Modeling of
Planning for Concurrent Production
Production Systems Skills

l

4. Distributed Planning
for Self-Organizing
Production Systems

l

6. Conclusion and Outlook

Figure 1.8: Structure and recommended reading order of the thesis.

processes on all levels of the automation hierarchy. To achieve this, the model
combines the following aspects:

» Seamless scaling from the dynamics of cyber-physical components within
machines and equipment up to the orchestration of global supply chains.

* Integration of discrete manufacturing (where individual work-pieces are
considered) and process manufacturing (for the production of chemicals,
beverages).

* Representation of concurrency, i.e. parallelism and the synchronization of
operations across multiple system components.

* Representation of both deterministic and stochastic scenarios.

The following four chapters aim to show that the model representation not
only presents a common core for higher-level models but is practical to use in
flexible production systems. For this, a tailored planning algorithm is developed,

19

1 Introduction

further scaling of planning is achieved by exploiting additional model structure,
the planning algorithm is extended to distributed planning by independent agents,
and finally models of the skills of machines and equipment are used as high-
level abstraction from which executable low-level representations are derived for
runtime control.

Chapter 3: Simulation-Based Planning for Concurrent Production Systems
The production system model implies a planning problem: maximizing the ex-
pected reward that is generated. Existing planning algorithms from the production
domain do not apply to the model from Chapter 2. They make limiting assump-
tions on the planning problem structure that no longer apply. To solve the planning
problem, an algorithm based on Monte-Carlo Tree Search (MCTS) is developed.

* Combines MCTS for discrete decision making with Optimistic Optimiza-
tion (OO) for decision-making on continuous domains.

* Requires only forward-simulation (rollout) of the planning scenario.

* Additional knowledge about the planning problem can be integrated via
so-called Rollout Policies. A large class of planning problems is identified
where a relaxation of the planning problem can be solved as a Mixed
Integer Linear Program (MILP). The solution to the MILP is then used for
the Rollout Policy.

* The algorithm is shown to solve a wide range of standard benchmark
problems after casting them into the model of Chapter 2. The range of
benchmark problems considered includes combinatorial decision-making in
the Jopshop Scheduling Problem (JSP) and optimal control for the swing-up
of an inverted pendulum.

* A large class of models is identified that can be relaxed to a Mixed-Integer
Linear Program (MILP). This leads to a large improvements for planning
in scenarios where actions are repeated many times in a row.

Chapter 4: Distributed Planning for Self-Organizing Production Systems
The planning complexity depends on the number of individual components that

20

1.5 Scientific Contributions and Thesis Organization

partake in the system. By reducing the planning scope to a subset of the system
components, it is much easier to explore the solution space and converge to good
solutions. We develop an algorithm that combines Monte-Carlo Tree Search
with Message Passing approaches known from Belief Propagation. Thereby, the
system can be compartmentalized into individual agents who are coordinating
their actions. The agent coordination mechanism is shown to improve the plan-
ning solution quality compared to uncoordinated individual planning. The same
implementation of our novel planning algorithm can be used the solve hitherto
separate planning and optimization concerns from all levels of the automation
hierarchy.

* Combines MCTS with Message-Passing algorithms originally developed
for Belief Propagation in Probabilistic Graphical Models.

* The agents need to simulate only a small portion of the overall system.

* The considered benchmark problems include distributed supply chain or-
chestration by independent agents and the distributed maneuver planning
of autonomous vehicles.

Chapter 5: Modeling of Production Skills In order to achieve flexibility
in automation with runtime planning, an accurate system model is required.
It can be quite resource-intensive to keep the physical system and its model
representation synchronized. Especially if new manufacturing operations are
frequently introduced in a flexible production environment. To reduce this effort,
higher-level descriptions are developed from which low-level representations for
runtime control are generated. We introduce a formal model for the technical
skills of components in an automated system based on semantic modeling and
deductive inference based on second-order logic.

The modeled skills are used to generate executable action-representations for
specific operations. The generation of executable actions take in as input the
capabilities of the system components, the topological layout of the system and
a description of the requested operation. The capability model is therefore used
as a high-level descriptive language that can be compiled to executable actions
for the participating system components. The generated action representations
contain all preconditions and effects required for detailed planning.

21

1 Introduction

22

Already published results that were created in preparation for this thesis are:

Julius Pfrommer, Miriam Schleipen, and Jiirgen Beyerer. “Fahigkeiten
adaptiver Produktionsanlagen”. In: atp-edition 55 (11) (2013)

Julius Pfrommer, Miriam Schleipen, and Jiirgen Beyerer. “PPRS: Pro-
duction skills and their relation to product, process, and resource”. In:
Proceedings of the 2013 IEEE 18th Conference on Emerging Technologies
& Factory Automation (ETFA). IEEE. Cagliari, Italy, 2013

Julius Pfrommer, Denis Stogl, Kiril Aleksandrov, Viktor Schubert, and
Bjorn Hein. “Modelling and Orchestration of Service-Based Manufacturing
Systems via Skills”. In: Emerging Technologies & Factory Automation
(ETFA), 2014 IEEE 19th Conference on. Barcelona, Spain, Sept. 2014

Julius Pfrommer, Denis Stogl, Kiril Aleksandrov, Stefan Escaida Navarro,
Bjorn Hein, and Jiirgen Beyerer. “Plug & produce by modelling skills and
service-oriented orchestration of reconfigurable manufacturing systems”.
In: at-Automatisierungstechnik 63.10 (2015), pp. 790-800

Selma Azaiez, Michael Boc, Loic Cudennec, Max Da Silva Simoes, Jens
Haupert, Selma Kchir, Xenia Klinge, Wael Labidi, Karima Nahhal, Julius
Pfrommer, Miriam Schleipen, Christian Schulz, and Thibaud Tortech. “To-
wards Flexibility in Future Industrial Manufacturing: A Global Framework
for Self-organization of Production Cells”. In: Procedia Computer Science
83 (2016), pp. 1268-1273

Julius Pfrommer, Sten Griiner, Thomas Goldschmidt, and Dirk Schulz.
“A common core for information modeling in the Industrial Internet of
Things”. In: at-Automatisierungstechnik 64.9 (2016), pp. 729-741

Sten Griiner, Julius Pfrommer, and Florian Palm. “RESTful Industrial
Communication With OPC UA”. in: IEEE Transactions on Industrial In-
Jormatics 12.5 (2016), pp. 1832-1841

1.5 Scientific Contributions and Thesis Organization

¢ Julius Pfrommer, Miriam Schleipen, Selma Azaiez, Michael Boc, and Xenia
Kling. “Deploying software functionality to manufacturing resources safely
at runtime”. In: Emerging Technologies and Factory Automation (ETFA),
2016 IEEE 21st International Conference on. Berlin, Germany: IEEE,
Sept. 2016, pp. 1-7

¢ Julius Pfrommer. “Graphical Partially Observable Monte-Carlo Planning”.
In: Workshop on Learning, Inference and Control of Multi-Agent Systems,
Conference on Neural Information Processing Systems (NIPS). Dec. 2016

The following publications are our technical reports or publications in adjacent
fields. They contributed to the thesis indirectly by using similar techniques or
by working on implementation technologies in industrial automation (e.g. using
technologies such as OPC UA and AutomationML) that are relevant for bringing
the results of this thesis into practice.

¢ Julius Pfrommer. Towards Graphical Partially Observable Monte-Carlo
Planning. Tech. rep. 2016, pp. 113-125

¢ Julius Pfrommer. Distributed Constraint Optimization over Constrained
Communication Topologies. Tech. rep. 2015, pp. 77-87

e Julius Pfrommer. Information and Control in Cyber-Physical Production
Systems. Tech. rep. 2014, pp. 61-74

* Julius Pfrommer, Clemens Zimmerling, Jinzhao Liu, Luise Kérger, Frank
Henning, and Jiirgen Beyerer. “Optimisation of manufacturing process
parameters using deep neural networks as surrogate models”. In: Proceed-
ings of the 51st CIRP Conference on Manufacturing Systems. Stockholm:
CIRP, 2018

¢ Julius Pfrommer. “Semantic Interoperability at Big-Data Scale with the
open62541 OPC UA Implementation”. In: 2nd International Workshop
on Interoperability and Open-Source Solutions for the Internet of Things
(InterOSS-10T). Stuttgart, Germany, Nov. 2016

23

1 Introduction

24

Julius Pfrommer, Sten Griiner, and Florian Palm. “Hybrid OPC UA and
DDS: Combining architectural styles for the industrial internet”. In: Factory
Communication Systems (WFCS), 2016 IEEE World Conference on. Aveiro,
Portugal: IEEE, May 2016, pp. 1-7

Thomas Uslidnder, Julius Pfrommer, and Miriam Schleipen. “Das Internet
der Dinge in der Automation - Anforderungen und Technologien”. In: 5.
Jahreskolloquium ” Kommunikation in der Automation” (KommA 2014).
Lemgo, 2014

Julius Pfrommer, Miriam Schleipen, Thomas Uslidnder, Ulrich Epple,
Roland Heidel, Leon Urbas, Olaf Sauer, and Jiirgen Beyerer. “Begrif-
flichkeiten um Industrie 4.0 — Ordnung im Sprachwirrwarr”. In: Tagungs-
band zu Entwurf komplexer Automatisierungssysteme (EKA) 2014. Ed. by
Ulrich Jumar and Christian Diedrich. Magdeburg, May 2014

Julius Pfrommer, Joseph Warrington, Georg Schildbach, and Manfred
Morari. “Dynamic vehicle redistribution and online price incentives in
shared mobility systems”. In: IEEE Transactions on Intelligent Transporta-
tion Systems 15.4 (2014), pp. 1567-1578

2 A Model of Concurrent Production
Systems

The value of [Lagrange’s book “Mécanique Analytique” |
consists in the exposition of a general method by which ev-
ery mechanical question may be stated in a single algebraic
equation. The entire history of any mechanical system, as
for example, the solar system, may thus be condensed into a
single sentence.

Robert S. Woodward [Woo95]

The chapter introduces a model for production systems that combines con-
tinuous and discrete system dynamics with concurrency, i.e. parallel operations
and the synchronization of system components. The model is intended as the
basis for a “theory of production systems”. For this, the model needs to able to
represent the system dynamics on all levels of the control hierarchy. Examples
from different levels of the control hierarchy are used for demonstration and to
substantiate this claim. The core postulate of this chapter is the following:

The same set of modeling principles can represent the re-
levant properties of production systems on all levels of the
control hierarchy.

2.1 State, Actions and Action Sequences

Definition 2.1. A system is a set of components ¢ € C.

Examples for components on a manufacturing shopfloor are machines and
logistics equipment, such as forklifts. Depending on the level of abstraction of

25

2 A Model of Concurrent Production Systems

the model, components can also represent parts inside a machine, as well as
entire production plants and warehouses. Assume for now that components do
not contain other components in a hierarchy.

Definition 2.2. Each component c has a state s € S.. The set S, contains all
possible states of the component c.

The global state space S = X.cc.S, is the cartesian product of the possible
states for every component. A global state is a vector s € S with elements s.. The
state space of a subset of the components C C'is Sg = X .eqS.. The projection
IIo(s) = (sc : ¢ € Q) extracts the state of the components () from the global
state. In general, a subscript denoting a set of components indicates projection and
sg = Ig(s). The inverse projection is Hél(sQ) ={ue S :Igu)=sqg }

Example 2.1. Consider the ABB IRB140 robotic manipulator from Fig-
ure 2.1. The green sphere represents the Tool Center Point (TCP). The
TCP has six degrees of freedom (three each for translation and rotation).
But some positions are not reachable due to the physical constraints of the
manipulator. The constraints are encoded in the set of reachable positions
¥ C RS. In addition, the IRB140 can be fitted with different tools. In this
example, the possible tools are T = {gripper, welder,drill, none}.
The overall state space of the manipulator is Sip150 = ¥ x Y.

Figure 2.1: IRB 140 robotic manipulator with inverse kinematics control
(Coppelia V-Rep).

26

2.1 State, Actions and Action Sequences

Many manufacturing operations define trajectories where the manipulator
starts and finishes at fixed locations. As an alternative to modeling a
continuous state space, one can limit the possible positions to a discrete set
of predefined positions. A continuous configuration space for the position
is however better suited to model the physical movement dynamics of the
robot.

Components can change their state over time. The following nomenclature
is taken from [Fuj98]: Physical time refers to time in the physical system that
is represented by the model. Simulation time refers to a time representation,
for example a real value that corresponds to a physical clock by scaling and an
epoch-date for the origin. Wallclock time refers to the time when the simulation is
executed. In distributed systems, it is generally impossible to assign an absolute
order to events [Lam78]. We make the simplifying assumption that clocks are
synchronized to absolute precision. So the physical time of the system compo-
nents is always identical. In the model representation, however, the simulation
time can differ between components. That is, components can evolve their state
independently from one another until synchronization forces their simulation time
to coincide again. If not stated otherwise, time refers to simulation time in the
remainder of the text.

Definition 2.3. The time-indexed state of a component c is
o= (s1t) €, X.=8.xR. 2.1

It indicates the state of the component s at time t. The time t represents the offset
from some epoch-date in seconds.

The time-indexed state of the entire system is o € X for X = X .cc2.. In the
context of a system state o, the time-indexed state of a component c is referred
to as 0. = (s, t.). Again, subscript-based notation for projection refers to the
definitions from the surrounding context: ¥ denotes the joint time-indexed
state-space for a subset of the components @ C C and g = Ilg(o) is the
projection of a global time-indexed state into Y.

27

2 A Model of Concurrent Production Systems

Components change their time-indexed state by executing actions. In the
model, actions skip the time-indexed state ahead to the time after the execution.
Components have no well-defined state during the execution of an action. If the
model is linked to a physical instance of the system, then the relation between
simulation time and physical time is as follows. If the time ¢, of some component
c is earlier or equal to the physical time, then the component has been idle since
t. and is immediately available. If ¢. is later than the physical time, then the
component is occupied with the execution of one or more actions until ¢..

Definition 2.4. Actions are possible state transitions, represented as a tuple
a=(Cy4, 20, €q,da) - (2.2)

The tuple describes the action via its participating components, preconditions
and effects. It consists of

* the participating components C, C C,

* the feasible initial time-indexed states of the participating components
Y C ZCEL = (XCGCEZC)’

* the action effect e, : ¥, — Sc,, where e . is the effect for just the
participating component ¢ € C,, and

o the action duration d, : o4 — Ry.

The set of feasible time-indexed initial states 3, encodes the preconditions
of the action a for the participating components. The shorthand notation for the
state of the participating components is o, = I, (o). The feasible global initial
states for the actiona are X, = {oc € ¥ : 0, € ia}. Every action is an operator
on the time-indexed global state a : ¥, — X.

From the initial global state o it follows that the earliest possible starting time is
tstart (g,) = max.cc, t. for the action a. Let 0/ = a(o) denote the global state
following the execution. The new global time-indexed state is then comprised of
elements

((3&6((3',1)7 R (g) + da(aa)), ifce C,

Oc, else .

(2.3)

28

2.1 State, Actions and Action Sequences

Equation 2.3 defines the operational semantics of all actions. It implies the
Markov assumption: The outcome of an action depends only on the previous
system state. Components that are not participating in an action do not partake in
the preconditions and their state is left unchanged as well.

Equation 2.3 defines how components with different simulation times are
synchronized: The participating component with the highest simulation time
defines the starting time of the action. The other participating components idle
until they join the execution.! The feasible initial states >, can also encode
preconditions for the component timing. Consider a physical system whose
dynamics is described by a differential equation. Such systems typically cannot
idle without any effect on their state. To adequately cover components that
cannot idle in the sense of Equation 2.3, the preconditions of X, can require
identical simulation times for all participating components Vo, € X,,V(c,) €
C, X Oy, t. = to. Alternatively, as e, takes the time-indexed state of all
participating components as input, the state evolution of the individual components
until the starting time of a can be modeled as part of the effect function.

In discrete manufacturing, the major concern is the movement and transforma-
tion of products within the system. Many modeling approaches represent products
as objects with individual lifecycles [Sal+10] or even as independent agents who
negotiate and make independent decisions [KBT17]. To model products as indi-
vidual objects, they could be represented as system components c. But, in this
text, we follow a different approach that enables algorithmic improvements for
planning later on.

Let p € P denote the set of different product types. A product type not only
represents marketable output, but also raw material and semi-finished work-pieces
that occur between production steps. Products are not considered individually. So
products of the same product type are indistinguishable. Instead of representing
each component individually, it suffices to track the number of products of each
product type present at every component. A product is always contained in some
component. Take for example a workpiece mounted inside a machine, a crate of
material sitting on a forklift, or a finished product stored in a high bay warehouse.

This corresponds to the use of the popular Max-Plus algebra to describe the time-evolution of
discrete event systems [Bac+92].

29

2 A Model of Concurrent Production Systems

Definition 2.5. Some components can physically contain products. In that case,
the component state decomposes into the component configuration & € =, and a
vector p for the number of contained products for each product type.

s=(&p) €Se, S C (S x N

For convenience, we denote a vector with just a single product of type p as
the basis-vector v,. The number of products of type p in component c is (p.),,.
A component ¢ with no contained products has p. = 0, where 0 denotes the
null-vector of appropriate dimensionality.

Example 2.2. This example introduces a minimal manufacturing scenario
that will be used throughout this text. The scenario, shown in Figure 2.2,
is comprised of a machine tool (mt) that mills piston rods out of steel bars,
a lattice box (box) and a robotic manipulator that packages the piston rods
for transport (manip).

produce put take package

Figure 2.2: Minimal scenario for discrete manufacturing

Four actions have been defined for the scenario. The actions produce
and package have only one participating components, the machine tool
and the manipulator respectively. The actions put and take require the
participation of two components to model the transition of a product
between them. We do not consider single piston rods, but only orders
of 100 parts with the product type order. Every component can only
hold a single order-product at once. Therefore, once the machine tool has
completed an order, the parts need to be put into the lattice box before the

30

2.1 State, Actions and Action Sequences

next order can be produced. The manipulator then has to take the parts of
the previous order out of the lattice box before the machine tool can put in
the next. Products “appear” and “disappear” when they leave the scope of
the modeled system.

The complete definition of the action put is as follows:

* Cpue = {mt, box}
° 2pu1: = {o-put S EC’PM * Pnt = Vorder; Pbox — O}
® €put (o-put) = ((é-mta O)a (gbom Vorder))

* dpue(Opur) = (55, 5s)

Actions can be chained to form action sequences. The set of actions A is the
alphabet for the free monoid (Kleene Star, [HU79]) A* which contains all words
(sequences) of finite length. The empty sequence is written as . The sequence

elements w” are indexed as w = wiw? ... wlwl.

Definition 2.6. An action sequence w € A* is itself an action resulting from the
composition of the constituent actions.

For a valid initial state o € X, (defined in the next paragraph), the resulting
state after the execution of w is w(o) = (w!*! o --- o w') (&) according to the
dynamics of action execution from Equation (2.3). The multiplication notation
for sequences is preferred to the o-notation for function composition to keep the
notation light, to write the sequence elements in-order, and because we will take
on an algebraic perspective on composition later on. Note that, due to the way
concurrency is represented with the time-indexing of component states, an action
at a later sequence index may actually start at an earlier simulation time than one
of its predecessors in the sequence. But this is possible only if the two actions do
not share participating components.

The subsequence of the first k elements is w* = Hle w'. The subsequence
starting at the kth element is w* = H‘l:,lc w'. The domain of w as an operator is
Sw={oceX:Vke{l,...,|lwl}, w* (o) € E,}. This ensures that the
preconditions of all actions are satisfied when the sequence is executed in order.

31

2 A Model of Concurrent Production Systems

The composition of action operators to a sequence is always possible. But the
resulting sequence might be infeasible with an empty domain ¥,, = &.

The set of all action sequences, from now on denoted as W = A*, implies
a tree-graph. In the context of an initial system state o, infeasible sequences
are removed from the tree. The feasible sequences starting at o are W7 =
{w € A* : o € ¥, }. Obviously, the pruned tree is a subset W2 C W and
is still a tree since for every sequence w € W7 all subsequences of the first
k € {0,...,|w|} elements are also contained w* € W. After the first action a
has been executed, the system states becomes a (o) and the sequence tree becomes
a(W) ={w:aw e W}.

Example 2.3. This extends the scenario from Example 2.2. Assume an
initial system state o where no component contains any products. The
four defined actions with their preconditions and effects yield a sequence
tree W7 of feasible sequences. All feasible sequences up to five actions
are shown in Figure 2.3.

5

!
produce
!
put
/\
produce take
| T
take package produce

put package produce put package

Figure 2.3: Sequence tree for Example 2.2.

Note that the order of the actions in the sequence do not require that the
start times of the actions have the same ordering. Consider the action

32

2.1 State, Actions and Action Sequences

sequence (produce put produce take). The last two actions produce
and take can start at the same time. It is even possible that an action
occurs later in a sequence but starts before a preceding action in terms of
absolute time.

k Machine Tool Box Robot
0 (s=0,t=0) (s=0,t=0) (s=0,t=0)
N
produce
—_—
1 (s=1,t=05) (s=0,t=0) (s=0,t=0)
put
2 (s =0,t=10) (s=1,t=10) (s=0,t=0)
—_—
produce
—_——
3 (s=1,t =15) (s=1,t=10) (s=0,t=0)
take
4 (s=1,t=15) (s=0,t=15) (s=1,t=15)

Table 2.1: Evolution of the system state for the sequence
produce, put, produce, take. The component state s is simpli-
fied and describes only the number of products currently at the
component. All actions are assumed to have a duration of five time units.

33

2 A Model of Concurrent Production Systems

Action sequences can be the result of a planning procedure that are executed
only once for the current situation. But sequences can also be used as reusable
macro-actions. Many manufacturing systems are organized in lines, within which
work-pieces undergo a fixed sequence of actions. In Example 2.3, the sequence
(produce put take package) could be such a macro action. System parts with
little flexibility can thus be modeled with comparatively few macro-actions. These
can be integrated seamlessly with more fine-grained actions where more behav-
ioral flexibility is required.

2.2 Parameterized Actions

The action definition from Section 2.1 has been accompanied by examples from
discrete manufacturing. In the process industry (e.g. chemicals, pharmaceuticals,
food and beverages), many decisions have to be made on a continuous domain.
In principle, the set of actions A could represent continuous decisions with an
uncountably infinite set of actions. But then we could no longer maintain explicit
representations of every action in computer-based simulations. Instead, we allow
actions to be parameterized.

Definition 2.7. The preconditions, effects and durations of a parameterized action
a depend on the choice of action parameter 6 € ©,,.

a’ = (Cm ig? 627 dZ) (2.4)

There are no particular restrictions on possible parameter spaces ©,. Of course,
parameters can also be vectorial or sets, even though we use scalar notation for
parameters in general. Actions a that do not define parameters have ©, = @. In
that case, the parameter can be omitted in the notation. The following list gives
examples for parameters on different scales of measure and sizes of the parameter
space.

Nominal and Ordinal Parameters In the simplest case, parameterized actions

simply group actions that, in some sense, belong together. For example the
action paint with categorical parameters Opaine = {blue, green}. There

34

2.2 Parameterized Actions

can also be a natural order among the parameters on an ordinal scale, such as
{cold,warm, hot}.

Discrete Parameters Discrete parameters (on an interval or ratio scale) can indi-
cate for example the number of repetitions of an action. When 5,000 parts of a
certain product are needed, this can then be achieved by an action sequence
with appropriate parameters in much less than 5,000 sequence entries.

Continuous Parameters Process control (in the sense of control theory [Lib11])
usually makes decisions about continuous control values at every considered
point in time. An example for this is setting a continuous voltage for an electric
motor.

Vectorial Parameters An action can take a vector or some other structured math-
ematical object for its parameter. We continue to write action parameters as a
scalar 8, even though it may be vectorial.

Example 2.4. Take the example of a storage tank in a process control
setting. The tank can be filled with liquid and drained afterward. The fill
level is controlled by a pump and a valve at the bottom of the tank.

o

FROM UNIT 1
01-100-PE-N

ST Tomms |

Figure 2.4: Piping and instrumentation diagram (P&ID) of a storage tank.
(Reproduced with permission from https://commons.wikimedia.
org/wiki/File:Pump_with_tank_pid_en.svg.)

Consider the action drain acting on the tank. Let v € [0, 1] be the control
value for the valve and 7 the duration of the action with 04,45, = (v, 7).

35

https://commons.wikimedia.org/wiki/File:Pump_with_tank_pid_en.svg
https://commons.wikimedia.org/wiki/File:Pump_with_tank_pid_en.svg

2 A Model of Concurrent Production Systems

The valve is closed for v = 0 and fully open for v = 1. In addition,
the liquid flow depends on the pressure at the valve and hence the fill
level described by the state of the tank sy, € Ry. The flow of the
(incompressible) fluid out of the tank can then be described by a differential
equation $tanky = g(Stank, v) according to Bernoulli’s principle [Ber38]
and S¢ank (fo) is known from the initial state oarain. The effect of the
action drain on the tank is

t0+T

€S (T arain) yame = Stan(fo) + / 9(Svane(1), v)dt .
t=to

With the introduction of parametric actions, problems from control theory
can be represented in the model. In Model Predictive Control (MPC) [ML99], a
dynamical system is approximated by discretizing the time domain. The problem
of optimal control is then posed as an explicit optimization problem that selects
control values for every time period. By taking the (continuous) control decisions
as action parameters, optimal control problems can be represented with a single
action that encompasses all system components. Control with mixed discrete-
continuous control values can be represented by either a more complex parameter-
space O or by representing discrete choices with different actions. But only with
several actions can aspects of concurrency be represented, where the system
components are synchronized via joint participation in an action and evolve their
state independently otherwise.

So far, the model presented in this chapter unifies the treatment of discrete
events, concurrency and continuous system dynamics.

2.3 Uncertainty and Observations

Until now, it was implicitly assumed that actions are deterministic. But virtually
no production system actually is. There is always an interaction with a stochastic
environment, from logistics influenced by weather conditions to the human oper-
ator returning late from a break. In addition, even fully automated manufacturing
processes are inherently stochastic. This is illustrated by the fact that very few

36

2.3 Uncertainty and Observations

production processes achieve zero-defects production.? It is desirable to represent
this uncertainty also in the model used for control or planning. With an explicit
representation of the uncertainty in the evolution of the system state, plans of
higher quality can be achieved by optimizing for the expected reward. In general,
uncertainty in the model is represented by belief distributions over the system
state and actions with probabilistic outcomes.

This section uses the notation of [Hem66]: Underlined symbols denote random
variables whose realizations follow some probability distribution. The same
symbol may occur underlined and non-underlined. Here, this can be the distinction
between a random variable and a sampled realization of the random variable.
Another case is the distinction between an action used as an identifier and the
same action used to sample stochastic state transitions.

The system state following an initial state o and an action with uncertainty a is
in effect the realization of a random variable o’ ~ g’ = a(o). The probability
(density) of the possible outcomes o’ € ¥ is P(o’ = o). We allow the appli-
cation of uncertain states with a belief distribution to actions The resulting state
has a belief distribution P(a(e) = 0') = [;, [P(a(v) = 0') P(a = v)] dv. We
do not consider the case where a is not applicable to the realization of the initial
state o.

By Equation 2.3, non-participating components ¢ ¢ C, are not affected by the
action execution. Actions with uncertainty are not exempt from this rule. All state
transitions where a non-participating component changes its timed-indexed state
via execution of an action a must have zero probability.

Vo eX,, Vo' € X, Ve¢ C,:0.# 0. = Pla(o)=0")=0 (2.5)

If the state following the execution of an action with uncertainty is not immedi-
ately and fully knowable, we have to indirectly infer probabilities over the resulting
state via incomplete or noisy observations. This is called the partially observable
setting [KLC98]. With partial observability, the components ¢ € C each generate

2The most common reasons for delays and unforeseen events are, according to [VHLO03], machine
failure, urgent job arrival, job cancellation, due date change, shortage or delay in the arrival of material,
change in job priority, rework or quality problems, over- or underestimation of process time, and
operator absenteeism.

37

2 A Model of Concurrent Production Systems

observations 0. € O.. An action results in observations from the participating
components O, = (X.ccO.). With a slight abuse of notation, the next state
and the observations are both drawn by sampling the action (6”,0,) ~ a(o).
The distribution of observations conditionally depends on the action and the state
transition P(o, | o, a, o).

Obviously, for every action a, the observations o, are conditionally independent
of the state of components that do not participate in a. Otherwise, if an observation
was conditionally dependent on the state of a non-participating component, then
the observation could depend on the outcome of an action that occurs earlier
in the action sequence but actually has a later starting time in simulation. This
cannot be possible. Therefore, given the state of the participating components
o ,, the resulting state of the participating components and the observations are
conditionally independent of the non-participating components.

(04,04 04) Lo, (2.6)

Now we extend the treatment of uncertainty to action sequences. We write
O = U409, for the set of possible action parameters and O = U, 4O, for the
set of possible observations. The action-subscript for parameters and observations
is dropped when the relation is clear from context.

Definition 2.8. A history h is a sequence of episodes h*. Each episode consists
of the selected action and action parameters, as well as the generated observation.

h=a'0'' a26%62 ... a/MglhlylPl
N~ —— ~———

ht h2 hlkl

The set of possible histories H C (A x © x O)* implies a tree-graph. The
histories in H have finite length. Either because the scenario is done when a
specific state is reached or by a cutoff at a maximum history depth. A history
h can be appended with the next action a, parameters 6 and observation o to
form h' = hafo. In the case of a partially observable system, the current system
state can only be inferred with uncertainty. Every history yields a probability
distribution for the belief over the final system state that is conditioned on the

38

2.4 Reward and Policies

observations. Recall that a denotes the already parameterized actions.

o' ~h(og), h(o) =P ((a1 0 glhl e‘hl)(a) ‘ o',..., olhl) 2.7)
The computation of the belief distribution for the resulting state can be performed
with iterative Bayes updates [Jay03] for the intermediary system state between
actions. The state belief distribution following from an uncertain initial state is
h(o). In general, this computation cannot be performed with the available com-
putational resources. The planning algorithms from the later chapters therefore
rely on samples from forward simulations of the system only.

2.4 Reward and Policies

So far, only the dynamics of actions and action sequences were discussed. Now
we begin to express preferences between action sequences.

Definition 2.9. Executing action a with parameters 6 inducing a transition of the
system state from o to o’ generates a reward r(o,a,0,0’). The reward function
is
t: X XAXOxXY—>R. 2.8)
With the reward function, each state defines a planning problem with the goal
to maximize the future (expected) reward. This is known as the decision-theoretic
planning problem [De 70; BDH99]. The following hierarchy of planning problems
is distinguished in the literature [LaVO06]:

1. Deterministic sequential decision making in deterministic systems is simply
known as the planning problem. It results in a fixed sequence of actions.

2. Sequential decision making under uncertainty with full observability is
known as the Markov Decision Problem (MDP, [Put94]).

3. The partially observable stochastic case is known as Partially-Observable
Markov Decision Problem (POMDP) in the literature [SS73; KLC98]. The
decision maker does not have access to a full description of the system
state. He can only indirectly infer a belief distribution over the system state
based on incomplete or noisy observations.

39

2 A Model of Concurrent Production Systems

The application of decision-theoretic planning for the (feedback) control of dy-
namical systems is discussed in [DW91; Ber+95; BGO1]. See [LP12] for an
application of MDP solvers to model manufacturing scenarios under uncertainty.

Algorithms for solving decision-theoretic planning problems belong to two
distinct groups, online planning algorithms and policy constructing algorithms.
Online planning algorithms are executed for the selection of the next action
[Ros+08; SV10] at runtime. Policy constructing algorithms are executed ahead
of time. They compute a fixed policy function that takes the current system state
(or observed history) to the next action [KHLOS].

Definition 2.10. A policy is a mechanism to select the next action during runtime.
In fully observable settings, policies are represented as functions w : ¥ — A that
map from the current system state to the next action. The policy function becomes
w3 — A X O in settings with parameterized actions.

In POMDP, policiesw: H — Aorm: H— A x © map from the observed
history to the next action. Internally, the POMDP policy may decide the next
action and parameters based on a belief distribution over the current system state
conditioned on the observed history P(o € X |h € H).

For simplicity of the exposition, consider fully observable settings without
parameterized actions. For a fixed policy 7 and a discount rate v € [0, 1), the
value of an initial state o° is the expected discounted reward.3

v (6’) =F kat(ak,ak,akH) a* =7(a"), e ~ a*(o¥)| (2.9
k=0

As an alternative to the discount factor, we can limit the number of considered
periods. The optimal value of a state v is the expected reward resulting from
optimal action selection in every step. Based on Bellman’s principle of optimality
[Bel57], the V-value can be written as a recursive formula.

o(o)=max E [t(o,a,0")+yv(c’)] (2.10)

a€A o'~a(o)

3The V-value and Q-value are longstanding terms in the literature. As both are scalar values we
denote them as v and ¢ in the mathematical notation.

40

2.4 Reward and Policies

The corresponding Q-value is the expected reward for selecting action « in state
o and optimal decision making thereafter.

q(o,a) = IE([t(o,a,0") +yv(c’)) (2.11)
Selecting a value according to max,¢ 4 (o, a) is the optimal policy. But com-
puting the optimal policy is generally computationally intractable. The remainder
of this thesis is concerned with ways of rendering optimization and planning
in the framework introduced in this chapter computationally feasible. This is
achieved a) with tailored planning algorithms, b) so-called rollout policies that
exploit known structure in the planning problem and c) the decomposition of the
planning problem into a coupled set of smaller problems that are jointly optimized
by cooperating agents.

41

3 Simulation-Based Planning for
Concurrent Production Systems

Programming, or program planning, may be defined as the
construction of a schedule of actions by means of which an
economy, organisation, or other complex of activities may
move from one defined state to another, or from a defined
state toward some specifically defined objective.

Marshal K. Wood and George B. Dantzig [WD51]

The model from Chapter 2 is generic and can be used to represent many types
of systems. Very little constraints are imposed on the system dynamics that can be
represented. This chapter develops an algorithm for sequential decision making
that does not make additional limiting assumptions. But this richness with respect
to possible system dynamics is a drawback when it comes to planning. Most
planning algorithms impose a much more limited model structure they exploit to
reduce the computational effort. The core postulate of this chapter is the following:

The same algorithm can be used for planning and runtime
control on all levels of the control hierarchy — ranging from
continuous dynamics of a physical system to global supply-
chain operations — and for both continuous and discrete pro-
duction.

This chapter develops a planning algorithm for the full model from Chapter 2
without additional assumptions. In the first two sections, two techniques are used
to reduce the number of action sequences that are visited for planning with action

43

3 Simulation-Based Planning for Concurrent Production Systems

sequences in deterministic scenarios. In Section 3.1 the search tree is explicitly
pruned by removing equivalent action sequences (this will have a precise defini-
tion). Section 3.2 further speeds up planning by implicitly pruning less promising
parts of the search tree via Monte-Carlo Tree Search (MCTS). Section 3.3 extends
planning to the full model with parametric actions and uncertainty with partial
observability. In order to scale to larger scenarios, Section 3.4 develops a custom
rollout policy that uses a relaxation of the planning problem to a Mixed-Integer
Linear Program (MILP).

3.1 Tree Search with Backtracking

The model from Chapter 2 can represent concurrency, i.e. parallelism and the
synchronization of system components. A consequence of the model is that many
action sequences are equivalent with respect to their overall preconditions and
effects.

Example 3.1. Take the scenario from Example 2.2 with the modifi-
cation that the robotic manipulator initially contains a product. The
actions produce and package do not share a participating compo-
nent as Cproquce = {mt} and Cpackage = {manip}. It is easy to see
that the sequence (produce package) is equivalent to the sequence
(package produce) in terms of their preconditions and effects. In that
sense, the two actions are independent from each other.

This notion of action sequence equivalence is made rigorous based on estab-
lished results from Trace Theory (TT) [CF69; Maz77]. The theoretical prereq-
uisites are summarized in the following. Full proofs can be found in [DM97a].
Some elementary definitions from Group Theory [DF04] are assumed as known.

Background: Trace Theory

Previous nomenclature from Chapter 2 applies to TT by taking A as a set of
letters of action-identifiers that are concatenated to words corresponding to action

44

3.1 Tree Search with Backtracking

sequences. Let A be a finite alphabet of letters and A* the set of all finite-
length words over A. The composition of letters forms a free monoid with
generating set A and the empty word, denoted ¢, as the unit element. Some letters
commute and are said to be mutually independent. This is captured in the set
of independence relations Z C A x A. Independence relations are symmetric
(a,b) € Z = (b,a) € Z and irreflexive Va € A, (a,a) ¢ Z. We also write
a 1z bto denote independence between a and b. From Z follows an equivalence
relation between words =~ z: two words w and v from A* are equivalent according
to >~ if v is a permutation of w that can be reached by successive reordering
of adjacent elements that commute according to Z. In algebraic terms, the trace
monoid M(A, Z) is the quotient of A* by the congruence ~ z. Its elements, called
traces, are pairwise disjoint subsets of A*. Each trace contains the words that
are mutually equivalent according to ~. Let [w]z denote the trace generated
from the word w. We can now rephrase equivalency as w and v generating the
same trace w ~z v < [w]z = [v]z. When it is clear from context which
independence relations apply, we simply write [w] for the trace and w ~ v to
denote equivalence.

The independence relations define a partial order between some of the letters
in a word. This partial order is a “must appear before” binary relation <.

wh <w ek <IA-(wF Lwh) (3.1

The transformation between equivalent words w ~ v is described by a permuta-
tion of the element indices 7. The partial order of the word elements is invariant
to this permutation and therefore

Vi, L e {1,..., |w|}, v < w = o7k < 7@ (3.2)

The partial order yields the same dependence graph and Hasse diagram for every
word from the same trace.! The dependence graph G = (V, E) is a directed acyclic
graph with nodes V = {w', ..., w!*!} and edges E = {(w,v) € V2 : w < v}.

!Graphs being equal refers to the existence of an isomorphism between the graphs that takes node
labels into account.

45

3 Simulation-Based Planning for Concurrent Production Systems

Figure 3.1: The Dependence Graph (left) and Hasse Diagram (right) for the
trace [abcaed] according to the trace monoid M(A, Z) over the alphabet A =
{a,b, ¢, d, e} and independencies Z = {(a, ¢), (¢, a), (b,d), (d,b), (d,e), (e, d)}.

The Hasse diagram G’ = (V, E’) is the dependence graph with redundancies
removed £’ = {(w,v) € E : fu, w < u < v}. See Figure 3.1 for an example.

Besides their dependence graph and Hasse diagram, traces are uniquely repre-
sented by a word in a normal form. That is, exactly one word from every trace
is in the normal form. There exist several normal forms with this property. We
consider the Lexicographical Normal Form (LNF): Assume a total ordering of the
letters A and a resulting lexicographical ordering over words. Longer words have
a larger order than smaller words regardless of their elements. For two words w, v
of the same length, w < v if w* < v* for the smallest index k where w* # v*.
A word is in LNF if it has the smallest lexicographical order among all words of
the trace.

Tree-Search with Trace-Based Pruning

With the prerequisites in place, we now take a look back at Chapter 2. Remember
that action sequences are operators on the system state with defined preconditions
(the operator domain) and effects.

Definition 3.1. Two action sequences w and v are equivalent w ~ v if they
have the same domain of initial states ¥,, = X, and yield identical results
Vo € X4y, w(o) = v(o).

The independence of actions is defined based on the possibility to commute
them if they occur in adjacent positions in any action sequence.

Definition 3.2. Two actions a and b are independent a | b if commuting them
yields an equivalent sequence Yw,v € A*, wabv ~ wbav < a L b.

46

3.1 Tree Search with Backtracking

It is generally intractable to show the equivalence of two action sequences
by enumerating the set of valid initial system states and the effect of the action
sequence on those states. For some action pairs however, independence can be
shown without evaluating the preconditions and effects:

Proposition 3.3. Any two actions a, b that do not share a participating component
are independent.
CoNCr=2@=albd (3.3)

Proof. For all action sequences w, v there must be wabv equivalent to wbav.
This follows directly from the operational semantics of actions defined in Equa-
tion 2.3. O

Example 3.2. Figure 3.2 shows which sequences from Example 2.3 are
equivalent and can be pruned. Only the sequences up to a length of five
are shown. The initial lexicographic ordering of the actions for the LNF
is produce < put < take < package.

€ €
! !
produce produce
. !
put put
/\ /\
produce take produce take
I} — ! AN
take package produce take package
P ! N PN 1

put || package || produce || put || package put || package

Figure 3.2: Sequence tree from Example 2.3 before (left) and after the
pruning of equivalent sequences (right).

47

3 Simulation-Based Planning for Concurrent Production Systems

Algorithm 1 Is the action sequence wa in LNF given that w is in LNF?

1: procedure TESTLNF(w, a)

2 for k = |w|,...,1do

3 if C,x N C, # @ then
4 return true

5 else if w* > a then

6 return false

7 return true

Some sequences may additionally be equivalent due to some lucky alignment
of the action effects. Such additional equivalencies are not considered in this
text. Now that the independence of any two actions is easily computed, we use
this information to speed up the search for the best action sequence. Only one
sequence from each trace is considered. The sequences from the same trace are
equivalent also with respect to the reward that they generate. To consider only
one sequence per trace, we evaluate only the action sequences in LNF.

Proposition 3.4. If a word w is not in LNF, no word wu starting with the prefix
w is in LNF.

Proof. If w is not in LNF, then a word v ~ w must exist so that v < w. For all
u € A* there is vu ~ wu and vu < wu. O

From Proposition 3.4, we know that a sequence wa can only be in LNF if w is
in LNF. During a depth-first traversal of the search tree, entire subtrees can thus
be pruned away. If the action sequence w leading to the current position in the
search tree is known to be in LNF, the candidate sequence wa can be tested for
LNF very fast. The test is performed by Algorithm 1. It has a worst-case runtime
that is linear in the sequence length. In practice the algorithm performs much
faster as a breaking condition is usually found within the first few elements of the
sequence.

Proposition 3.5. [fthe action sequence w is in LNF, then for all a € A Algorithm 1
returns true if and only if the sequence wa is also in LNF.

Proof. For a sequence v, denote with Z(v, k) ={l:l<kAVme{l,....k—
1},v* L v™} the indices of the contiguous elements before v* that all commute

48

3.1 Tree Search with Backtracking

with v*. In the following we show that an action-sequence v is in Lexicographical
Normal Form (LNF) if and only if

Vke{l,...,|v|}, Vi € Z(v,k), v' <vF. (3.4)

First, we show that (3.4) must be satisfied for every sequence v in LNF. Assume
v is in LNF and does not hold condition (3.4). Then there exists a combination
of indices I < k where v! > v* and Vm € {l,k — 1}, v™ =~ v*. The decom-
position v = uv'qu¥z can be rearranged as y = uv*v'qz with possibly empty
subsequence u, q and z. This contradicts v being in LNF since v ~ yand y < v.

Second, we show that condition (3.4) is sufficient for v to be in LNF. Assume
v satisfies (3.4) and is not in LNF. Then there must exist an equivalent sequence
y ~ v in LNF. Equivalent sequences are permutations and |y| = |v|. So for
y to have a smaller order, there must be an index [where y and v first differ
yl=l = vt ! must appear in v at an index
greater than [and v can be decomposed as v = uv'qy'z, with possibly empty
subsequences u, g and z, where i commutes with ! and all elements of q. This
contradicts (3.4).

Since Equation 3.4 only refers to the preceding elements in the action sequence
and w is known to be in LNF, it suffices to test (3.4) for the new element. O

and v! < 3'. Due to y ~ v, action v

Proposition 3.6. For any action a and LNF action sequence w, Algorithm 2
returns an action sequence that is in LNF and equivalent to wa.

Proof. When the condition in line 3 of Algorithm 2 is not true, then a commutes
with w* and @ < wF. Therefore, once the condition in line 3 is true, w*a is in
LNF and the LNF-order of the sequence cannot be improved by moving an element
from w"*1 before a. Since w is in LNF, no permutation of the sub-sequence
w” T has reduced LNF-order. Therefore w*aw"**!* is in LNF. O

A trivial approach to search for good sequences is to cast the search space
as a tree structure and to enumerate the solutions at the leaf nodes of the tree.
Every node in the tree represents a (partial) action sequence. Depth-first search
completely enumerates the solutions at the leaf nodes without having to hold the
entire tree in memory. Algorithm 3, called DFS for depth-first search, walks over
the tree in recursive fashion. The algorithm backtracks to a prior partial action

49

3 Simulation-Based Planning for Concurrent Production Systems

Algorithm 3 Depth-First Search

I o™ 4— —o0, WM ¢
2: procedure DFS(w, v, w)
3 if |w| = k™2 then

4 if v > v™?* then

5: ™A

6 wm — w

7 return

8 forac A:weX,do
9 w' + a(w)

10: v v+ r(w,aw)
1 DFS(w', v/, wa)
12: DFS(o,0,¢)

13: return w™*

Algorithm 4 Pruned Depth-First Search

1 o™ ¢— —o0, WM ¢

2: procedure DFS!NF(w v, w)
3 if |w| = k™2 then

4 if v > v™®* then

5: MEX

6 wlnax <_ w

7 return

8 fora € A:w € ¥, ATESTLNF(w, a) do
9 W'+ a(w)

10: v v+ r(w,aw)
11: DFSLNF(w' v/ wa)
12: DESINF(g 0, €)

13: return w™*

50

3.1 Tree Search with Backtracking

Algorithm 5 Branch & Bound

l: ,Umax (_ _OO’ wmax (_ €

2: procedure B&B(w, v, w)

3 if |w| = k™ then

4 if v > v™#* then

5: Y™MEX iy

6 wnlax <_ w

7 return

8 forac A:weX,do
9 w — a(w)

10: v v+ r(w,a,w)
11: if v’ + f(w', wa) > v™** then
12: B&B(w', v, wa)
13: B&B(0o,0,¢)

14: return w™a*

Algorithm 6 Pruned Branch & Bound

1 o™ 4— —o0, WM €

2: procedure B&B™WF(w, v, w)

3 if |w| = £™* then

4 if v > v™** then

5: A

6 wm — w

7 return

8 fora € A:w e ¥, ATESTLNF(w, a) do
9 w' — a(w)

10: v v+ r(w,a,w)

11 if v’ + f(w', wa) > v™** then
12: B&BINF(w' v, wa)

13: B&BMNF(g, 0, €)
14: return w™a*

51

3 Simulation-Based Planning for Concurrent Production Systems

Algorithm 2 For an LNF sequence w, find the LNF equivalent to wa.

1: procedure APPENDLNF(w, a) 1: procedure LNF(w)

2 fork = |w|,...,1do 2: V€

3 if TESTLNF(w*, a) then 3 fork=1,...,|w|do

4: return w* qw** 4 v ¢ APPENDLNF(v, w*)
5 return aw 5 return v

sequence once all solutions starting at the current position in the tree have been
enumerated. The tree of depth £™** contains up to Zﬁz: |A|*¥ nodes and | A|*"™"
leaf nodes. Enumerating all possible combinations is intractable for all but the
most trivial scenarios. Usually the branching factor of the tree is reduced because
not all actions from A are applicable in the intermediary system states. But the
problem of combinatorial explosion of the search space remains. Proposition 3.4
can be used to test at every node whether the entire subtree starting at the node is
not in LNF and can be skipped (pruned). Since every trace contains exactly one
sequence in LNF, it is ensured that traversing the tree without the pruned branches
still visits every trace once. Algorithm 4, called DFSINF, extends DFS with the
pruning of sequences that are not in LNF. Note that only line 10 of Algorithm 4
has changed compared to DFS.

Another technique to speed up tree search is Branch & Bound [Lit+63]. Branch
& Bound is a well-known technique for combinatorial optimization in the presence
of so-called admissible heuristics [Pea84]. A heuristic is called admissible if it
overestimates the performance that can still result from a partial solution. Here,
we express the admissible heuristics as a function §(o, w) with the current system
state o and the current partial action sequence w as arguments. If the admissible
heuristics show that the best performance starting from the current partial solution
is worse than the best solution that was already encountered, then the entire
subtree behind the current partial solution can be pruned. Branch & Bound is
implemented in Algorithm 5. In Algorithm 6, Branch & Bound is combined with
trace-based pruning. Again, only line 10 is changed to prune out sequences that
are not in LNF. The commonality between DFS and Branch & Bound is the use
of backtracking to return to a previous partial solution either when all nodes in
a subtree have been visited or when the solutions that remain in the subtree are
known to be suboptimal.

52

3.1 Tree Search with Backtracking

Evaluation

The effect of the pruning techniques for tree search methods is evaluated based
on the Jobshop Scheduling Problem (JSP) [Pin08]. Scheduling is one of the
most important planning problems on the shopfloor. It is also computationally
challenging. The jobs j € J have to be processed on the machines M. Every
job consists of operations 0 € O; = {1,2,...,|M|}. The operations need to
be processed in-order for every job and are each assigned to a specific machine
m;, € M. The operation duration is d; ,. The goal is to find a schedule that
assigns operations to machines in order to minimize the finishing time of the
last job. See Table 3.1c for a benchmark JSP from the literature. There are
(|J|N)MI possible schedules for a JSP with |J| jobs and |M| machines where
every jobs needs to visit every machine once [JM98]. So a JSP with |J| = 20 and
|M| = 10 has 7.2651 x 1082 possible solutions. Compare this to the mass of
the observable universe currently estimated to the equivalent of 103° hydrogen
atoms. Even though the number of possible solutions is huge, current solution
techniques can compute near-optimal solutions for JSP with hundreds of machines
and jobs. Many benchmark scheduling problems have even been solved with
certified optimaltiy. However, the worst-case analysis of the JSP shows that it is
NP-hard for instances where |J| > 3 and |M| > 3 [GIJS76]. Therefore, unless
P = NP, all algorithms for solving the JSP are either heuristic or require a long
running time for some (synthetic) JSP problems.

We cast the JSP in the model from Chapter 2 in terms of actions with precon-
ditions and effects. Every machine and every job in a JSP is represented as a
component in the system model C' = Chpachines U Cjobs. The operations for each
job are represented as actions where both one machine and one job participate.
The time-indexed state of the machine components is trivial. It only consists of the
time when the machine is available next. The state of the job components is the
number of operations that were already performed for the job. The precondition of
every action is that the associated operation is next in line for the job. The action
effect simply increases the number of finished operations for the job by one. The
duration of each action (operation in the JSP) is deterministic. The cost generated
by an action is the increase in the maximum timestamp of the components. So

53

3 Simulation-Based Planning for Concurrent Production Systems

Job Operations (m, p)

Job Operations (m, p)

1 (0,9),(1,10),(2,5), (3, 10)
1 (0,5),(1,10), (2,5 2 (1,10),(3,5),(2,5),(0,5)
2 (1,10),(0,5),(2,5) 3 (1,5),(0,10),(2,5), 3,5)
3 (2,5),(1,10),(0,5) 4 (3,95),(2,10), (0, 5), (1, 10)
(a) Minimal 3 x 3 JSP. (b) Minimal 4 x 4 JSP.

Job Operations (m, p)

(2,1), (0,3), (1,6), (3,7), (5,3), (4,6)
(1,8), (2,5), (4,10), (5,10), (0,10), (3,4)
(2,5), (3,4), (5,8), (0,9), (1,1), (4,7)
(1,5), (0,5), (2,5), (3,3), (4,8), (5,9)
(2,9), (1,3), (4,5), (5,4), (0,3), (3,1)

6 (1,3),(3.3),(59), (0,1), (4,4), (2,1)
(¢) The 6 x 6 benchmark JSP £t06 from [FT63].

S R S

Table 3.2: Example JSP problems.

the cost of the entire sequence is the makespan of the solution.

N — _ ’
t(o,a,0') = (Igleacxtb) (rgleacxtc) (3.5)

Here, t.. refers to the simulation time of component ¢ in the system state o and ¢,
refers to the simulation time of the component in the system state o”.

Given a partial schedule as an action sequence w, the following trivial heuristic
computes an upper bound for the reward that can be generated following the
execution of w. For every component (representing a job or a machine), the

54

3.1 Tree Search with Backtracking

remaining operations are summed up and added to its current time.

JSP _
B (o,w) = rcneaéi <tc + E da) (3.6)
a€EA:adw,
ceCly

The £t06 benchmark problem from Table 3.1c illustrates the importance of
optimisation. An unoptimized solution can require more than 150 seconds to
complete all jobs. The optimal solution requires just 55s. Finding the optimal
solution for larger problems is not possible without the help of computers. In
addition to the £t06 benchmark, two additional minimal problems are considered.
See Table 3.2 for their exact definition. The minimal examples are too small to
be of any practical value. But they give an indication of how fast the problem
complexity increases. A sequence of 9 unique elements has 9! = 362,880
permutations. The minimal 3 x 3 JSP depicted in Table 3.2 also defines 9 actions.
But the full scenario tree for the JSP has only 1,680 leaf nodes corresponding to
valid schedules. By additionally pruning branches that are not in the LNF only 63
leaf nodes remain. Using the makespan lower bound from Equation 3.6, nodes can
be pruned where the lower bound is equal or worse to the best solution encountered
so far. With the Branch & Bound pruning, only 3 leaf nodes are actually visited.
However, more nodes were visited overall compared to trace-based pruning for
full depth-first search. This indicates that mostly branches close to the leaves were
pruned with Branch & Bound only. By combining trace pruning with Branch &
Bound, only 65 nodes are visited overall. This is a decrease in the search running
time by a factor of more than 50 compared to Branch & Bound search without
pruning.

On the 4 x 4 JSP depicted in Table 3.2 an even smaller fraction of the scenario-
tree is visited by combining trace-based and makespan-based pruning. However,
the number of visited nodes still grows fast with the size of the JSP. On the £t06
6 % 6 JSP, 682,508 nodes are expanded with both bound and trace pruning enabled.
Our implementation is capable of visiting over 1,000,000 nodes per second during
Branch & Bound search (on a Lenovo T480 laptop computer). However, with only
either trace-based pruning or Branch & Bound enabled, we could not solve £t06
in over a day of computation. A 10 x 10 JSP could not be solved within several
days of compute time even with both trace-based and bound-based are activated.

55

3 Simulation-Based Planning for Concurrent Production Systems

DFS B&B DFSLNF B&BLNF
Visited Nodes 3,568 405 348 65
Visited Leaf
Nodes 1,680 3 63 3
Trace-Pruned 0 0 191 a1
Branches
Bound-Pruned 0 376 0 35
Branches

(a) Visited nodes for the minimal 3 x 3 JSP

DFS B&B DFSLNF B&BLNF
Visited Nodes 128,385,941 115,042 105,666 826
Visited Leaf 63 163 000 9 11,143 9
Nodes
Trace-Pruned 0 0 93,074 1131
Branches
Bound-Pruned 0 206,025 0 643
Branches

(b) Visited nodes for the minimal 4 x 4 JSP

DFS B&B DFSLNF B&BLNF
Visited Nodes ? ? ? 682,508
Visited Leaf

? ? 2

Nodes ?)) 43
Trace-Pruned 0 0 9 2,051,681
Branches
Bound-Pruned 0 9 0 750,063
Branches

(c¢) Visited nodes for the £t06 6 x 6 JSP

Table 3.3: Benchmarking of pruning techniques for DFS and Branch & Bound.
Questionmarks indicate that an optimization did not terminate after two weeks of
computation. So the numbers are outstanding.

56

3.2 Planning for Discrete Action Sequences

In summary, trace-based pruning reduces the number of visited action sequences
to a small fraction. For the 4 x 4 JSP, the number of action sequences (visited
leaf nodes) was reduced by a factor of more than 5,600. The improvements are
comparatively increasing with the length of the action sequences.

We have shown that LNF pruning leads to a dramatic reduction of the search
space. The reduction is already on many orders of magnitude for the comparably
small benchmark problems that were considered. However, even with trace-
based pruning, naive tree search does not scale up to scenarios of relevant size.
In practice, genetic algorithms are often used to solve combinatorial problems.
Modern heuristic solvers find good solutions for JSP with thousands of jobs
[Dim15]. But these solvers exploit the specific structure of the JSP. Handling
of complex action preconditions is near-impossible for genetic algorithms. The
genetic crossing and mutation of two partial solutions will almost always lead to
an infeasible action sequence where the preconditions of an action are not met.
Repairing an infeasible plan is usually quite difficult. For example if a single
product is missing to finish an order of many hundred products.

3.2 Planning for Discrete Action Sequences

The algorithms from Section 3.1 use backtracking to return to previous partial
solutions. This requires either that the system state is fully known so that it can
be stored in a computer (to return to previous states) or that action sequences can
be deterministically repeated. For experiments carried out in the physical world,
neither of these assumptions is true. In this section, we further speed up planning
by “implicitly pruning” less promising branches with Monte-Carlo Tree Search
(MCTS). Many recent breakthroughs in Artificial Intelligence were made possible
by MCTS. This includes the AlphaGo system [Sil+17] which is able to play the
game of Go with superhuman performance. In short, MCTS enables planning in
scenarios with many combinatorial variations where backtracking tree search is
not able to cover any significant portion of the search space. In addition, MCTS
uses only forward-simulation without backtracking. This reduces the coupling
between the planning algorithm and the simulator to the point where real-world
simulations could be used to generate samples for the planning algorithm.

57

3 Simulation-Based Planning for Concurrent Production Systems

Background: Monte-Carlo Tree Search

In MCTS [Bro+12; Mun+14], a scenario tree is explored by iterative playouts. A
playout is essentially one run of the scenario with sequential decision making in a
series of steps. Every playout starts at the root of the sequence tree and evolves
by “forward simulation”. In contrast to Branch & Bound, there is no backtracking
to previous states within a playout. Historically, MCTS evolved from research on
the multi-armed bandit problem: The multi-armed bandit problem is an idealized
version of a slot machine. The following short exposition follows [Mun+14] and
adapts the notation to the conventions of this text. Consider a multi-armed bandit
in a casino where they player can choose a different arm during £™* rounds
(this will be extended to sequential decision making later on). The reward of the
different arms a € A is random according to the distribution P, with a support
on [0, 1]. But the player is initially unaware of the reward distribution for every
arm. In each round k, the player chooses a bandit a* € A and collects a reward
r* ~ P,.. The rewards generated at the other arm are not observed. The goal
is to find a strategy that maximizes the expected sum of payouts during the %
rounds. This leads to the so-called Exploration/Exploitation Tradeoff: The player
could select a bandit with high expected reward. But this might get him stuck at
a bandit with suboptimal expected reward. So the player wants to explore other
options without loosing too much in the process. The expected reward of the
different arms a € A is i, = E[P,]. The expected reward of the best arm (there
can be several best arms) is p* = max,e 4 j44. Possible strategies for repeated
play are analyzed with respect to their expected regret. The cumulative regret
after k rounds compares the actual reward r with the expected reward of choosing
the arm with highest expected reward every time.

k
b = ku*™ — Zrl
1=1

The expected cumulative regret is therefore

k
Elbe] = ku™ = Y Elr'] =) Elna(k)](1™ — ha).
=1

a€A

58

3.2 Planning for Discrete Action Sequences

where n, (k) denotes the number of draws from a after the first k& rounds.

An important tool for bounding the expected cumulative regret is the Chernoff-
Hoeftding inequality. Let (yi)i:l,-..,n i.i.d. samples of a probability distribution
with support [0, 1] and mean 1. The empirical mean estimator it = £ 3" | Y,
is a function of the y, and therefore a random variable as well. The Chernoft-
Hoeffding inequality gives probability bounds for the distance between the true

and the estimated mean.
P(i—p>e)<e? and P(i—p<—e)<e 2

The bound is independent of the underlying distribution of the y;. So it can be
applied even when the distribution of the y is not known!

There exists a variety of approaches for selecting the next draw in the multi-
armed bandit setting. Auer et al. [ACF02] proposed the so-called Upper Confi-
dence Bound (UCB) algorithm. Let i, j denote the mean return of arm a sampled
during the first k rounds. UCB always selects the next arm as follows:

F_ R n 3log k
a” = arg max fp j— —
e AT 2np(k — 1)

Selecting the best arm according to the UCB gives an upper bound for the expected
cumulative regret by application of the Chernoff-Hoeffding inequality.

log k w2

E[b*] < 6 +1A|(= +1),

[0%] a;ﬁ pra— 3
B> pa

The expected cumulative regret grows at most logarithmically in k.

The algorithm of Auer et al. [ACF02] selects actions from a flat list of options.
Monte-Carlo Tree Search (MCTS) is a family of algorithms that uses the same
principle of iterative exploration for planning in sequential decision settings. A
popular variation of MCTS, called Upper Confidence on Trees (UCT) [KS06],
uses the UCB decision rule for every action choice during a playout. See Fig-
ure 3.3 for an overview. Algorithm 7 shows UCT (but with some modifications
compared to [KS06] that will be explained in the following). MCTS can be seen

59

3 Simulation-Based Planning for Concurrent Production Systems

Repeated X times

Selectlon] Expansion |——f{ Simulation || Backpropagatlon

L

The selection function is
applied recursively until
a leaf node is reached

One or more nodes One simulated The result of this game is
are created game is played backpropagated in the tree

Figure 3.3: Outline of a Monte-Carlo Tree Search. Reproduced from [Cha+08].

as “simulation-based” planning, as no backtracking is used. Instead, the results
from the last simulation are incorporated into statistics about the expected reward
for the possible next actions at the current position in the scenario tree. The
updated empirical reward statistics is used for decision-making in the following
playouts.

The assumption that the reward in every step is in the range [0, 1] is not required
for UCT to converge to optimal decisions in the limit. On the downside, there is
currently no good characterization of the convergence speed achieved by UCT that
doesn’t make strong assumptions on the underlying scenario. It is only known that
for a large enough number of plays, every branch of the scenario tree is visited.
Since only a small subset of the tree is explored in practice before the algorithm
is terminated, MCTS struggles with scenarios where the reward is “unevenly
distributed”. That is, if a big reward can be found after a long sequence of actions
where small changes to the action sequence lead to much worse results, it is then
not very likely that the reward is encountered at all and MCTS will not assign a
correct value estimation for the choices. A workaround for this is Reward Shaping
[NHR99] where the reward is distributed such that it may be encountered early
on in the action sequences.

UCT may require tuning of the parameter o which regulates the importance
of the upper confidence bias. Setting o corresponds to making a choice for the
Exploration/Exploitation tradeoff between the two extremes “always explore” and

60

3.2 Planning for Discrete Action Sequences

Algorithm 7 The Upper Confidence on Trees (UCT) algorithm [KS06].
1: procedure PLAY(0, w)

1: procedure UCT(c*) 2. if DONE(o) then
2 q[-]1+0 3 return 0
3: n[-]+<0 4: B+ {b € A: nJwb] =0}
4: while enough time do 5: if B # < then
5 PLAY(0Y, €) 6: a <+ mg(o)
6 return arg max g[a] 7 (¢',7) = a(o)
acA 8: r < r + RoLLouT(0”)
9: else
) 10: a < argmax [q wb] +
1: procedure RoLLOUT(0o) bed.oes, [wb]
2 if DONE (o) then Tog nfw] 41
3 return 0 XN\ T nfwd] }
4 a+ mu(0o) 11: (o 1) + a(o)
5 (o/,7) « a(o) 12: r < r+ PLAaY(0’, wa)
6 return r + 13: nlwal < nfwa] + 1
RotLout(e’) 14 gfwa] ¢ glwa] + "L
15: return v

“always exploit”. Note that UCB was developed for action selection in stochastic
scenarios with unknown reward distributions for the different actions. Here we
apply the same principle to tree-search for deterministic scenarios. There is an
informal argument for this. Many rollout policies are stochastic, similar to the
uniform sampling policy described above. So the rollout takes samples from
the reward distribution that is implied by applying the current rollout policy
to the subsequent steps. When nodes are visited several times, the underlying
distribution for the policy changes. So past experience does not necessarily match
the samples taken later on. Nevertheless, the UCB-based selection rule shows
good performance in practice.

Monte-Carlo Tree Search for Discrete Action Sequences

We introduce a modification of UCT called UCTNF. See Algorithm 8 for details.
UCT™™NF is inspired from UCT but deviates in a few key aspects. First, the original
UCT algorithm gradually builds up a tree structure where the nodes correspond

61

3 Simulation-Based Planning for Concurrent Production Systems

to partial action sequences. But only one new node is added with every play.
Once the edge of the current tree is reached, the remaining steps are “rolled out”
and only the sum of rewards for the rollout is considered. UCTINF does not
use rollouts and adds nodes for all selected actions in the sequence. Second,
the original UCT stores a statistics about the average reward that was achieved
after selecting a node (action). Instead, we perform a maximization in every step
of the UPDATE procedure. Therefore, the value estimation of every node is the
maximum reward that can be achieved by following the best known sequence of
actions after selecting the node (action). Third, we do not only update a single
sequence for every play. Instead, when we arrive at a sequence that is not in LNF,
then we permute the sequence to the equivalent LNF sequence. But we store the
original sequence and the LNF sequence and run the UPDATE procedure on both
of them. All three modifications to the original UCT algorithm are interrelated.
This is explained next.

The easiest way to restrict the search to sequences in LNF only is to simply
remove actions leading to non-LNF sequences at the current node in the search
tree. But when choosing one action at a time, this often leads to dead-ends
where no action can be chosen without breaking the LNF constraint. Since we
do not want to backtrack to previous system states during a playout, virtually no
playout would complete. Therefore we use the LNF algorithm to repair the action
sequence as we go along. However, simply permuting the sequence to LNF after
every action selection is not compatible with the UCT approach either: Soon,
some nodes are always selected because they have a very low visit count. But as
the sequence is permuted to LNF, this nodes continue to not have their visit count
n increased. Suppose an example with three actions a < b < ¢ that all commute
and where every action can be chosen only once in every sequence. The sequence
starting with the action ¢ would always become the LNF sequences ac or bc after
the second action choice. So the node for the first action c is nevery updated.
But the UCT algorithm will always choose c first as long as the counter n[c] is
not increased. This is solved by updating all sequences that were encountered in
the current playout, regardless of whether they are in LNF or not. The counter 2
for the node updates within the current playout ensures that no node is updated
twice for one playout. Note that we use the algorithm LNF in a slightly different
fashion. Giving the action sequence w and the reward history 7 as input, both

62

3.2 Planning for Discrete Action Sequences

are permuted to yield an LNF action sequence where the index of actions still
matches the index of the corresponding reward.

Evaluation

We evaluate the algorithms UCT and UCT™NF on the benchmark Jobshop Schedul-
ing Problems (JSP): The £t06 benchmark with 6 jobs on 6 machines from [FT63]
and the abz5 benchmark with 10 jobs on 10 machines from [ABZ88]. However,
we change the classical JSP in one important aspect: Instead of optimizing the
makespan, the time when the last job finishes, we target the sum of the finishing
times (the tardiness if the job is immediately due) for all jobs. The reason for
the change is to ensure that the immediate reward of actions depends on a small
number of participating components C, only. When optimizing the makespan, it
is of course possible to return the negative increase of the maximum simulation
time for all components. But then the actions would have all components C' as
participants. We prefer to have only a small subset of the components participating
in each action, so that the trace-based equivalence of action sequences as defined
in Section 3.1 can be used to prune the sequence tree. The rollout policy 7 is set
to select randomly among the possible choices with a uniform distribution.

As can be seen in Figure 3.4, MCTS makes big improvements to the best-known
solution early on. Depending on the exploration parameter «, the algorithm then
“converges” towards a reward value that is no longer improved upon even with very
long running times. This is not a true convergence however, since we know that all
branches of the search tree are explored eventually with the UCB rule. The more
complex abz5 example shows an interesting phenomenon where higher « lead
to better results. But it takes longer until “convergence” is reached. This insight
makes sense with regards to the UCB action selection. Once all actions at a given
node have been explored several times, the UCB rule will predominantly choose
actions with a known high reward. So the observed convergence is explained by a
shift from exploration to exploitation in the action selections. Pruning sequences
that are not in LNF speeds up the convergence to some final best reward. This
was expected as the pruning effectively reduces the size of the search tree.

63

3 Simulation-Based Planning for Concurrent Production Systems

-250
-300 e — —
T -350
©
H
& -400
—— alpha: 10
—450 alpha: 100
—— alpha: 1000
-500

0 20000 40000 60000
Number of Simulations

(a) Benchmark of UCT with the JSP
example £t06.

—12500
—15000

o

‘gg —-17500

Kl 20000 —— alpha: 10

alpha: 100
—22500 —— alpha: 1000
—}— alpha: 10000

—25000

0 5000 10000 15000
Number of Simulations

(c) Benchmark of UCT with the JSP
example abz5.

-250
-300 MM — i
-t + i
T -350
©
g
< —400
—— alpha: 10
—450 alpha: 100
—— alpha: 1000
-500
0 20000 40000 60000

Number of Simulations

(b) Benchmark of UCTLNF with the JSP
example £t06.

—12500
—15000

o

§ —-17500

K 20000 —— alpha: 10

alpha: 100
—22500 —— alpha: 1000
—}— alpha: 10000

—25000

0 5000 10000 15000
Number of Simulations

(d) Benchmark of UCTLNF with the JSP
example abzb.

Figure 3.4: JSP benchmarks for Monte-Carlo Tree Search. Every benchmark
was run 10 times. The lines give the average empirical reward. The standard error
is indicated by tick marks and the variance is shown in a lighter shade.

64

3.2 Planning for Discrete Action Sequences

Algorithm 8 UCT for Deterministic Actions with Trace-Based Pruning

1:
2
3
4:
5
6

D AN A o

NN e

10:
11:

12:

procedure UCTLNF(g0)

n[-]+0,q[-]<0

while enough time do
Y <+ PLAYLNF(g0)
UPDATENF(Y')

return arg max q[a]
a€A

: procedure UPDATENF(Y)

z[-]+0
for (w,r) € Y do
fork = |w|...,1do
g+ wk
if z[g] > 0 then
break
nlg] < nlg] +1, z[g] < 1
qlg] < r* + max g[LNF(ga)]

nl[ga]>0

: procedure PLAYINF(o)

We, r+ce YO
while —-DONE(o) do
B+ {be€ A:nJwb] =0}
if B # © then

a < (o)
else
a <+ argmax |g[LNF(wb)] + a %}
beA, oY

(0,0) < a(o)
Y + Y U {(wa,rv), LNF(wa, rv)}
(w,r) < LNF(wa, rv)

return Y

65

3 Simulation-Based Planning for Concurrent Production Systems

3.3 Planning with Uncertainty and Continuous
Action Parameters

As defined in Section 2.2, parameterized actions a take parameters from the set
O, . But the algorithms from the previous sections 3.1 and 3.2 can only handle
discrete choices of deterministic actions. If the set of parameters is finite, we
can simply extend the tree-search techniques to search over the joint space of
actions and their parameters. This is however not possible if the action parameters
are uncountable. For example if a parameter is defined on a continuous domain.
Furthermore, while the UCB rule for bandit problems is defined for decision
making in stochastic unknown environments, UCT assumes deterministic actions.
This section deals with the extension of the simulation-based planning approach
to actions a that can be both stochastic and have parameters on a continuous
parameter space.

Background: MCTS under Uncertainty

For MDP, where the outcome depends not only on decision-making, but also on
the response from the stochastic system model, it has been known for some time
that a randomly sampled subset of the scenario tree that covers only a vanishing
fraction of the full scenario is enough to compute near-optimal actions from any
state [KMNO2]. If € is the admissible error for the estimation of the V-value of
the current state (see Section 2.4), then the number of sample playouts grows
exponentially in €. It does however not depend on the size and complexity of the
state representation. With the advent of MCTS, sampling based methods have
also been used for sequential decision-making under uncertainty [KS06].

The POMCP algorithm (Partially Observable Monte-Carlo Planning) extends
MCTS to scenarios with partial observability (POMDP) [SV10]. The authors
[SV10] write with regards to the performance of their invention POMCP:

[On a benchmark problem], POMCP achieved the same performance
with 4 seconds of online computation to the state-of-the-art solver
SARSOP with 1000 seconds of offline computation.

While the current system state o is known to the simulator used to sample state
transitions, the decision-making only relies on the observations resulting from the

66

3.3 Planning with Uncertainty and Continuous Action Parameters

Algorithm 9 Partially Observable Monte-Carlo Planning

1: procedure POMCP(c?) 1: procedure PLAY(o, h)
2 q[-]1<0 2 if DONE (o) then
3: n[-]+0 3 return 0
4: while enough time do 4 B+ {be A:n[hb] =0}
5 o~a 5: if B # o then
6 PLAY (0, €) 6 a+ mg(h)
7 return arg max, . 4 ¢[a 7 (o',0,1) ~a(o)
8 r < r + RoLLouT(o’, hao)
9: else
1. procedure RoLLOUT(a, k) 10: a ¢« arg max [q[hb] n
2: if DONE(o) then beA
3: return 0 log n[h]+1
4: a < ma(h) , n[hd]
s (07, 0) ~ a(o) 11 (a,o,r)wg(a)/
6: v (o, a,0) 12: r < 1+ Pray(o’, hao)
7: returnv + 13 nf[h] < nlh] +1
RoLLouT(o’, hao) 14: nlha| < n[ha] +1
150 g[ha] < q[ha] + 7;[%2]“]
16: return r

actions and the reward statistics that were collected prior. See Algorithm 9 for
details. The search tree now not only consists of nodes representing actions, but
is a bipartite graph of actions and the resulting observations. The rollout policy 7
takes the full history of actions and observations as input. A trivial rollout policy
is to sample uniformly from the previously unexplored actions. This policy is a
popular choice as it does not depend on prior knowledge and assumptions about
the scenario and the state representation.

Background: Optimistic Optimization

Optimization of functions on a continuous domain has a long history. Very effi-
cient solvers exist today for the optimization of convex functions where gradient
information is available [BV04]. Gradient-free global optimization of non-convex
functions remains challenging. Classical solution techniques are the Dividing
Rectangles (DIRECT) algorithm [JPS93] as well as heuristic genetic algorithms

67

3 Simulation-Based Planning for Concurrent Production Systems

A

. (3,3)
(3,1) 4 (3,2) 7N
(1,1 (1,2) (1,3)

(1,1) | (1,2) | (2,2) /l\

(2,1) (22 (23)

0.3 RN

3,1) (3,2) (3,3)

(a) The unit cube split into cells. (b) Tree hierarchy of cells.

Figure 3.5: Example for Optimistic Optimization on the unit cube. The unit cube
is split into cells based on a hierarchical partitioning of the domain. Every cell
has an index (%,) that also represents a node in the partitioning tree: £ is the
height of the tree at that node (the number of splits) and ¢ is the index within the
set of cells of height /. The initial node (0, 1) represents the entire domain, here
depicted as the unit cube. Leaf nodes are marked gray in the partitioning tree.

[SP97]. While the latter provides no lower bounds for performance, the conver-
gence speed of DIRECT depends on an upper bound of the function’s gradient
known as the Lipschitz bound. In recent years, the ideas for optimization in dis-
crete bandit settings and MCTS have been translated to optimization of continuous
functions. The resulting techniques are known as Optimistic Optimization (OO).
See [Mun+14] for a comprehensive account.

Suppose we want to maximize some function f : X — R over the domain X.

x* = argmax f(x) 3.7)
xzeX

If we can make assumptions of convexity, then a range of established methods and
commercial tools can be used to solve the optimization problem [BV04]. OO does
not require an assumption of convexity. The basic idea is to iteratively dissect
X into disjoint cells of decreasing size that cover the entire function domain
(Figure 3.5a). The hierarchy of cells forms a tree structure (Figure 3.5b). An
“optimistic” upper bound is computed for every cell. This upper bound guides the

68

3.3 Planning with Uncertainty and Continuous Action Parameters

continuing selection and splitting of the cells. The breakthrough of recent work
is to not require a Lipschitz bound for f to compute the upper bound. Instead,
the function is assumed to be smooth around the optimizer with respect to a
semi-metric.? This is a much weaker assumption.

Algorithm 10 Deterministic Optimistic Optimization (DOO) for the optimization
of an unknown function f : X — R. This formulation is for the special case
where the search domain is the n-dimensional unit cube X = [0, 1]” and cells
are split into three children.

1: procedure DOO(f)

2: L+ {(0,1)} > Set of leaf nodes
3 x[0,1] + 13

4 while enough time do

5: (h,i) < argmaxq ey, [f(2[d, j]) + 6(d)]

6 SpLiT(A, 7)

7 return arg max, ; ey, f(x[h,)

1: procedure SpLIT(h, %)

2: v+ max{g: x[h+1,j] # @} > Highest node index at depth i + 1
3 d + mod(h,n) +1 > The dimension to split at depth i
4 04+ 1y (%) Lh/n]+1 > New distance along the split dimension
5: L+ L\A{(h,i)} > Remove the cell from the leaves
6 forj e {1,...,3}do > Add new leaf nodes
7 L+ LU{(h+1,v+3)}

8 zlh+ 1,0+ j] < x[h,i]+ (G —2)o

Deterministic Optimistic Optimization The first considered OO algorithm is
Deterministic Optimistic Optimization (DOO). Algorithm 10 shows a simplified
version of DOO. It assumes the domain of f is the n-dimensional unit cube and
cells are split into three children. In every iteration, the cell with the highest upper
bound is selected and split into 3 children. The cells are denoted as (7, 7) where

2A semi-metric has {(z,y) = {(y,) and {(x,y) = 0 = « = y. Different from a regular
norm, the triangle inequality (a consequence of the Cauchy-Schwarz inequality) is not required to
hold.

69

3 Simulation-Based Planning for Concurrent Production Systems

h is the depth of the tree and ¢ is an index for the cells at the same depth.? The
set L contains the leaf nodes of the current search tree (cf. Figure 3.5b). The
midpoint of the visited cells (%, ¢) is stored as x[h, i]. The upper bound of each
cell is computed from an evaluation at the midpoint and the bias 6 (%) that depends
the depth-position of the cell. The choice of § depends on the target function f
and semi-metric £. More detail on that can be found in the next paragraph. Along
which dimension to split is determined from the tree-depth % at which the cell is

on

situated.

Example 3.3. Figure 3.6 shows the graph of two example functions we
seek to maximize on the domain X = [0, 1]. Notably, the Garland function
is not differentiable at some points on the domain and has no Lipschitz
constant. The function is also not differentiable at the optimizer 7 /6. But
there exists a semi-metric for which the Garland function is locally smooth
around the optimizer.

1.0
021
0.8
0.0
061
—0.21 0.4
-0.4 02
~0.61 0.0
-0.2
-0.8
-0.4 1
-1.0 ; ; ; ;
00 02 04 06 08 10 00 02 04 06 08 10

(a) Sine and quadratic: fi1(z) = (b) Garland function: fo(z) = 4z
0.25sin(50z) - sin(10z) — (z — (1—2)(3 + 1(1 —/[sin(60z)]))
0.75)? with a scaled Euclidean met- and the semi-metric {(z,y) =
ric fitted to the optimizer. Bz — y||*/? fitted to the optimizer.

Figure 3.6: Example functions that are locally smooth around the opti-
mized for a semi-metric .

70

3Symbols with a crossing bar as in / are used to denote height-indices in a tree.

3.3 Planning with Uncertainty and Continuous Action Parameters

To show convergence of DOO, the following assumptions are made for f and
its domain [Mun+14].

1. There exists a semi-metric £ : X x X — R, for which f is locally smooth
around the optimizer: Denote the maximum value of f on its domain
with f* = f(x*). The function is locally smooth around the optimizer if
f(x*) — f(x) < l(x,x*) forallz € X.

2. The domain of each cell is X;; C X. The midpoint of the cell is
. The cell diameter 0(h) decreases with increasing depth & and
SUPe x, . £(T, Tn,i) < 6(h). So the value of the midpoint and the cell
diameter give an upper-bound for the best solution the cell can contain
overall.

3. The cells are well-shaped in the sense that there exists a u > 0 such that
for any depth 7 > 0 all cells (%,) of that depth fully contain an ¢-ball with
radius pié(h) centered in xy, ;. So all cells have a positive volume.

For every region (%, %) containing the optimizer «* € X}, ;, we have f(xp;) +
0(h) > f(mn,i) + (i, x*) > f*. Since the leaf nodes always cover the entire
function domain, cells with x5 ; + 6(%) < f* are never expanded as they are
dominated by the leaf node containing the optimizer. So the cells potentially
expanded at depth /i are I, = {(h,4) : f(xns) +I(h) > f*}.

(Stochastic) Simultaneous Optimistic Optimization DOO requires no global
Lipschitz bound of the target function. But it requires knowledge of a semi-metric
¢ that is smooth around the optimizer. The £ is not known in many cases. The
Simultaneous Optimistic Optimization (SOO) algorithm [Mun11] adopts ideas
from the DIRECT algorithm [JPS93] to achieve nearly the same convergence
results as DOO even without knowledge of £. SOO still assumes the existence of a
such a semi-metric ¢. But it suffices to show the existence of any such semi-metric
for the convergence analysis without actually using it in the algorithm. In many
cases, the function f itself can be used to construct a suitable semi-metric! Take
any norm || - || for the function domain X. The semi-metric £(x, y) for points
x, y on X is constructed as follows. With n = || — y|| the distance on the

71

3 Simulation-Based Planning for Concurrent Production Systems

domain norm, the distance on £ is the difference between the optimizer and the
worst point in the n-ball around the optimizer:

)= suwp ("= f(x), Llzy) ="z yl) (3.8)

lo—a*(|<n

We forego full convergence proofs at this point and refer to the original paper
[Munl11]. Stochastic SOO (StoSOO) [VCM13] extends SOO to the optimization
of stochastic functions. Cells are split only after x evaluations. The mean of
the sampled values at the cell midpoint is used for the evaluation. The authors
of [VCM13] provide a convergence bound for the expected regret on the order
of O(log?(1)/+/t) where ¢ is the number of samples taken from the stochastic
function f. The tuning parameter 7 controls how much emphasis the algorithm is
putting on exploration, i.e. the tradeoff between exploration and exploitation.

Algorithm 11 shows a simplified version of StoSoo for the n-dimensional unit
cube where cells are split into three child cells after x evaluations. We will now
explain the major changes compared to DOQO. First, the visited nodes are split
into leaf nodes L and internal nodes IN. The internal nodes have been sampled «
times and are no longer evaluated. Second, since we do know the semi-metric
¢ (and hence the cell diameter §), an upper confidence bias is added to the cell
evaluation for the selection. Third, the algorithm iterates over the depth-level / of
the cells. One cell is selected at every level (if there is an improvement compared
to the previous levels) and the cell is either sampled again or split.

Planning for Parameterized Action Sequences

To integrate StoSOO with MCTS, we introduce so-called hybrid trees. Hybrid
trees contain nodes for actions and parameters. Hybrid trees are bipartite as a
parameter selection must follow an action selection and vice versa. Partially-
observable hybrid trees (POHT) use three types of nodes: actions, parameters
and the resulting observations. See Figure 3.7 for an example. Note that hybrid
trees not only grow at the leaf nodes. The paramter-nodes represent a cell in
the parameter space ©, of the associated action a. As the cells of a continuous
domain can be partitioned indefinitely often, a hybrid tree can grow new branches
at the parameter-nodes during planning.

72

3.3 Planning with Uncertainty and Continuous Action Parameters

Algorithm 11 Stochastic Simultaneous Optimistic Optimization (StoSOO) on

the [0, 1] cube. Cells are split after having been sampled x times.

1: procedure STOSOO(f, %, ¢,n)

2 L+ {(0,1)}, x[0,1] « 14
3: q[0,1] ~ f(x[0,1]), n[0,1] <1
4: while less than ¢« samples taken do
5: qM ¢~ —00
6: for 2 =0,..., min(depth(L), ™) do
. . L2 n
7: 4= argmax,. jyer, qlh, j] + l(;gé[h’/j]’)
8: rglhi] + /B
9: if r > ¢™** then
10: QU
11 if n[fi, 7] < x then
12: SAMPLESTOSOO(f, 1)
13: else
14: SpLITSTOSOO (%, 7)
15: return arg max ;) ,(,i>0 417 il
1: procedure SAMPLESTOSOO(R, ©)
2y~ fzlhi])
3: n[h,i| < n[h,i] + 1
: 1 4 y—alhi]
4 Q[ha Z] — q[ha Z] + n[ﬁ,i]
1: procedure SPLITSTOSOO(A, 7)
2 v+ max{l: x[h+1,l] # &}
3 d < mod(h,n) +1
£ o py(HMmH
s forje{l,...,3}do
6 L+~ LUu{(h+1,v+j)}
7 z[h+ 1,v+j] < x[hi]+ (j — 2)o
8 SAMPLESTOSOO(/ + 1,v + j)
9 L+ L\A{(h,i)}

73

3 Simulation-Based Planning for Concurrent Production Systems

Figure 3.7: Partially Observable Hybrid Tree. The rectangle encompassing
several circular nodes denotes a subtree for the optimisation of an action parameter
with optimistic optimization. The tree is not fully explored for better visual
representation.

For planning in POHT, we want to combine OO with MCTS. The upper con-
fidence bound is used to select discrete actions and OO is used to select and
iteratively refine the choice of action parameters. The StoSOO algorithm samples
from the stochastic target function f several times within the SPLITSTOSOO pro-
cedure. This prevents its unmodified use for simulation-based planning — without
backtracking — in sequential decision-making settings. Instead, we want every call
to the OO subproblem to return exactly one parameter combination 6 to continue
the playout with the following steps in the scenario. The accumulated reward is
then used to update the statistics for the involved branches of the scenario tree.

Previous authors have used OO for sequential decision-making with a continu-
ous action-space [MWLI11; Bus+13; BPM18]. The TRAILBLAZER algorithm of
[GVM16] combines discrete action selection with continuous search. But it uses
backtracking to return to a previous position in the scenario tree. In this thesis, we

74

3.3 Planning with Uncertainty and Continuous Action Parameters

want to avoid storing the system state for backtracking search. So the algorithms
can just as well be performed with playouts in physical experiments only.

We now develop the novel Partially Observable Hybrid Tree Planning (POHTP)
algorithm that combines MCTS — and in particular the approach for partially-
observable planning from to the POMCP algorithm — with Optimistic Optimiza-
tion for parameter selection on continuous domains. See Algorithm 12 for the full
details. In every step for sequential decision making, the algorithm is presented
with the choice of several discrete actions that are each parameterized from a
continuous domain. If there is only one action, POHTP reduces to StoSOO as
a special case. On the other hand, if the actions have no parameters, POHTP
reduces to a variation of POMCP. The difference to the original POMCP is the
update mechanism that maximizes over possible choices to compute the V-value
estimate (instead of taking the empirical reward from the previous plays), full
playouts and a switch between exploitation and exploration within each playout
that is explained in the next paragraph.

In contrast to POMCP, no rollouts are used that aggregate the reward beyond the
previously constructed tree. Instead, the full history of every playout is recorded
and used to update the value estimates for the nodes in a second UPDATE procedure.
Furthermore, the upper confidence bound is not used for decision-making at every
step. Instead, the algorithm initially takes optimal decisions (for the current value
estimates) and switches to an explorative regime at the depth d of the decision
tree. In the StoSOO algorithm, the dimension along which to split the current
cell is determined by the depth in the search tree. The important ingredient of
StoSOO to achieve fast convergence is to select cells from a specific depth in
each iteration. Similar to StoSOO, POHTP for every iteration selects a depth at
which the “exploration” (splitting in StoSOO) begins. The depth d for this switch
of the action-selection regime is iterated together with number of performed
playouts. Every action contributes one level to the depth of the decision tree. The
parameters of the action a contribute according to the depth in the embedded tree
for the parameter selection L[ha] for the action a after an observed history h.
The depth of the parameter-selection tree depth(L[ha]) is the number of times
the smallest cell represented in the tree has been split.

75

3 Simulation-Based Planning for Concurrent Production Systems

Algorithm 12 Partially Observable Hybrid Tree Planning (POHTP)

1: procedure POHTP(c°)

R e A A s

@ N

® DN R

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:

21:

nl-]<+0, q[-]< 0, ¢[-] < O,

L[] < {(0, 1)},
x[-;0,1]« 13, d« 1
while enough time do
(h,r) < PLAY(c?)
UPDATE(h, 1)
d<—d+1
if d > log,(nle]) then
d<+1

return argmax g[af]
(a,0):n[ab]>0

: procedure PARAM(ha, d)

if d > depth(L[ha]) then

return argmax g[haf]
0:3(1,i)€ L[hal,
x[ha;l,i]=0

else if @ < 1 then
G < L[ha]

else
G + Llha;d]

(h,1) < argmax |gq[haf] +

(1,5)€G,
x[ha;l,j]=0

e
0 « x[ha; h,]
if n[had] < kK A h = K™** then

return 0
ulha; h,i] < u[ha; B, + 1
w < ulha; h, i
n < dim(6,)
0 < mod(h,n) + 1
£+ |Llha; A+ 1]+ 1
xlha; h+ 1,8« 6+

(- 2)'45(%) [h/n]+1

Llha] < Llha] U {(h+ 1,&)}
if © = 3 then

Llha] Llha] \ {(h, i)}
return x[ha; h + 1,¢]

log n[hal+1 :|
nlhab)]

1:
2
3:
4:
5.
6
7

10:
11:

AR

~

10:
11:
12:

13:

15:
16:
17:
18:

procedure UpDATE(h)

for k = |h|,...,1do
g:h:k’—l

n[gaf] + nlgab] + 1
elgaf] + T;[Z[Z;]O]

qlgat] < e[gad] +

[gabo]n[gabo]
Zoeo 1 n[gab)]
nlga] < nlga] + 1
%
qlgal Joax qlgag]
n[gad]>0
ng] < n[ga] +1
qlg] max qlgb]
n[gb]>0

: procedure PLAY(o, d)

h<+¢
while —poNE(o’) do
B+ {be A:n[hb] =0}
if d > 1 An[h] > 0 then
a <+ argmax q[hb]
be A,n[hb]>0
d+—d—-1
0 < ParaM(ha, d)
else if B # & then
(a,0) + 75(0)
d+—d—-1
else

a < arg max {q[hb} +
beA

o
d+—d—1
0 < ParaM(ha, d)

d < d — depth(L[ha])

(ala o,r) ~ QQ(G)

h « habor, o +— o’

logn[h]+1 i|
n[hb]

return h

76

3.3 Planning with Uncertainty and Continuous Action Parameters

The POHTP procedure initializes the algorithm and then iterates over a series
of playouts. Importantly, the exploration depth for decision-making d is cut off at
the maximum decision-making depth at log, of the number of playout iterations.

The PLAY procedure simulates steps until the current scenario is “done”. If
a node in the search has not been encountered before, the policy 7 is used to
select action and action-parameters. Otherwise, the action is selected via a UCB
evaluation and the parameter is selected via OO.

The UpPDATE procedure stores the empirical mean reward that is directly gener-
ated by an action-parameter combination as e[haf]. The Q-value associated with
the action-parameter combination additionaly takes the expected following reward
into account. This is again the empirical mean over the observations following the
action-parameter combinations. The Q-value for the action and the observation
maximize over the respective choices.

So the periods in the observed history are h* = (a*§*0*). Updating the
parameterization-nodes is very similar to the updating of action-nodes in POMCP.
The considered statistic simply keeps count of how often the node was visited and
the empirical reward generated in the ensuing subtree. Since action parameters are
now selected as well, the rollout policy 7 (s, A) for choosing an action also returns
a matching parameterization. Choosing a good rollout policy is crucial since
the optimization of parameterized actions leads to a large number of branches
and the search encounters a previously unknown part of the scenario tree in most
iterations.

The PARAM procedure returns exactly one parameter combination for the current
selected action a. Again, if d is higher than the depth of L[ha], then the best leaf
node is returned. Other PARAM is in the explorative regime. If d is smaller than
one, then the upper confidence bound is used to select the best parameter among
all parameters in the tree. If instead d points to a depth-level inside L[ha], then a
node at this depth is selected. Note that a level can become empty when all nodes
in the level have been split. If L[ha] contains the indices of the leaf cells, then
L[ha; d] denotes the first level containing leaf cells above or at depth d.

Llha;d) = {(c,i) € Llha) : ¢ > d,pe € {d,...,c—1},3(e,j) € L[hal}

77

3 Simulation-Based Planning for Concurrent Production Systems

If the thus selected parameter has been sampled less than & times, it will be
returned. Otherwise the selected cell in the parameter space is split. And the
current cell is removed from the list of leaf cells.

The POHTP algorithm can be combined with the pruning of equivalent se-
quences according to Section 3.1. Now the equivalence applies not only to action
sequences, but to histories where every step consists of an action, an action param-
eter and the resulting observation. Entire steps can be commuted if the respective
actions are independent. Note that no problem-specific structure is exploited in
the POHTP algorithm developed in this chapter.

Evaluation

Swingup of an inverted pendulum

Planning for parameterized actions is evaluated for an inverted pendulum displayed
in Figure 3.8. The inverted pendulum is one of the canonical problems in the
literature on optimal control [Lib11]. A pendulum is attached to a cart that is free
to move in the horizontal plane. The goal is to perform a swing-up to bring the
pendulum into an upright position — and keep it there — by the precise application
of an accelerating force to the cart.

The full problem definition is as follows. Assume a single system compo-
nent pend for the pendulum and a single action acc with a parameter ©,.. =
[—2N, 2N] for the force applied to accelerate the cart. The cart and the pendulum
are approximated by point-masses 1. and m,, of 1kg each. The length of the pen-
dulum [is one meter. The angle of the pendulum S gives the difference from the
upright position. The position of the cart z is in meters from the point of origin.
The initial state of the pendulum is 9.4 = (3 = 0.5, B=0,z=0,i=0).
The state evolution of the pendulum is described by two coupled differential
equations for the cart position = and the pendulum angle 5 [FYK92]:

_ —mpgsin(f) + myl sin(8)82 + u

B me + my sin?(3)

(my, 4+ me)gsin(B) — mylsin(B) cos(B)3% — cos(8)u
I[(m. + mysin?(B)

(3.9)

B=

78

3.3 Planning with Uncertainty and Continuous Action Parameters

Q_O

Figure 3.8: The inverted pendulum problem. The goal is to perform a swing-up
of the pendulum to an angle 5 = 0 and to keep the pendulum in the upright
position.

The simulation time is discretized into periods of 0.2s. The effect of the action
acc is the (numerical) solution to the forward simulation of Equation (3.9) for
the control value v given by the action parameter. The reward returned by acc
is a cost term associated with the resulting pendulum state s’ and the energy
expenditure for the control.

Tace(u, 8') = 2||B|| + 2 + u? (3.10)

By || - || we denote the angular distance from the upright position.

The control (acceleration) applied in each period is the result of POHTP with
512 playouts over a horizon of 15 steps with a 0.2s time discretization. Even
though the step length is discretized, the simulation uses the Runge-Kutta method
for precise forward-simulation of the underlying differential equation.

After the 512 playouts, the acceleration parameters with the best Q-value is
selected and applied. The optimization is then repeated for the resulting system
state. This resembles optimal control based on MPC [ML99]. But as we directly
optimize on the model from Section 2, we make less limiting assumptions than
traditional MPC based on convex optimization.

79

3 Simulation-Based Planning for Concurrent Production Systems

w 5[]
0
= 0 N
b=
< —5f R
8 060 T T T T T T T T —
£ 04 .
= 0.2 R
£ 0 ! ! ! \ . . . !

0 0.5 1 1.5 2 2.5 3 3.5 4
s 40F T T T T T T T —
- 20 R
£ 20| i
g —20| N
o —40[! ! ! ! ! ! L

| |
0 0.5 1 1.5 2 2.5 3 3.5 4
Time in seconds

Figure 3.9: Swingup of an inverted pendulum. The initial of the pendulum is

at 160 degrees (0 = %ﬂ'). The upper time series show the penalization for |0].
The lower time series show the penalization of |atan2(sin(6), cos(6))| where

“loopovers”, e.g. angles at a multiple of 27 are not penalized.

As can be seen in Figure 3.9, the POHTP algorithm achieves the swing-up and
balancing of the inverted pendulum. Note that the angle plateaus at multiples of
27 due to the use of the angular distance in the cost function. Adapting the cost
function with a higher penalty for the angle leads to a more speedy swingup. But
at a greater cost for the control energy .

Optimal Order Quantity under Uncertainty

The scenario is concerned with the operations of a pencil factory. A customer
gives the order for 50,000 pencils with his company logo on the casing. The
customer is willing to pay $2 for each pencil. No payment is made if the order is
incomplete or arrives too late. The plastic pencil casings with the logo printing
are bought from a supplier that demands $0.5 for each casing. The production

80

3.3 Planning with Uncertainty and Continuous Action Parameters

costs in our factory are $1. So, in theory, the pencils are sold to the customer with
a margin of $0.5 each. However, some pencils do not make it through quality
control. Every pencil has a 10% chance of being sorted out by an inline quality
control system that verfies every single product. Due to the time constraints, it is
not possible to reorder additional pen casings at the supplier once production has
started. The question now is: how many pencil casings should be ordered at the
supplier initially in order to maximize the expected earnings?

40000

20000

0

—20000

—40000

Average Earnings in $

-60000

—80000

—100000

55000 55200 55400 55600 55800 56000
Number of Ordered Casings

Figure 3.10: Expected reward for different numbers of ordered pencil casings.
The average was computed over 100 simulation runs each. The shaded area
indicates the empirical standard deviation.

In order to compare the results of our tree-search planning, we implemented a
simple “brute-force” solution technique: Monte-Carlo simulations for all possible
solutions in the relevant range. The simulation model is as follows. Assume that
n pencil casings have been delivered by the supplier. Start to produce pencils until
either 50.000 pencils are done or more than n — 50.000 casings were discarded
due to quality problems (otherwise, we would continue losing money during
production without being able to complete the order eventually). Figure 3.10
shows the results of the Monte-Carlo simulation in the range between 55.000
and 56.000 ordered pencil casings. The results show a phase transition between
virtually all samples not completing the order to virtuall all samples completing
the order. In the transition range, only some orders are completed and this number
differs between simulations. Therefore, the standard deviation for the reward is
much bigger in the transition range. According to the Monte-Carlo simulations, the
optimal order quantity is 55.750, resulting in an expected reward of $1,6575. With

81

3 Simulation-Based Planning for Concurrent Production Systems

less ordered pencil cases, there is a high likelihood of the order not completing.
Every additional pencil case incurs higher cost than the additional likelihood of
completing the order justifies.

10000

—10000

Expected Reward in $

—20000

10! 102 10°
Number of Simulations

Figure 3.11: Convergence speed of the optimization for the order quantity under
uncertainty example.

Figure 3.11 shows the empirical reward of the best paramater after a certain
number of plays.

3.4 Planning with Linear Actions

Most manufacturing systems perform repetitive tasks. While lot sizes have gen-
erally become smaller, most products are still produced in bulk. When many
product instances are considered individually, the action sequences can become
very long. This section identifies a large class of actions where reasoning and
planning for action repetition is simplified.

Example 3.4. Consider a stamping press that takes in raw material from
an aluminum coil. The action stamp puts the produced work-pieces of
type p1l into a lattice box adjacent to the press. Every execution of stamp
increases the number of parts in the lattice box by one and reduces the
length of the remaining aluminum coil by 2.5cm. Suppose that 20m of
coil are loaded initially. How often can stamp be repeated and how many
additional parts will be in the lattice box afterward? The answer is of

82

3.4 Planning with Linear Actions

course trivial. But how can this type of reasoning be made accessible to a
planning algorithm that operates on the actions from Definition 2.4?

Linear Actions and Action Repetition

Reasoning about the effects of the action stamp in Example 3.4 is easy and
intuitive. The action has a fixed effect and repeating the action n times multiplies
the effect by n. We can compute the maximum number of repetitions of stamp that
are possible starting from the described initial state. It is implicit to Example 3.4,
that if the action stamp can be repeated n times, any number of repetitions between
zero and n is also possible. We now spell out these implicit assumptions in the
form of conditions that so-called linear actions have to conform to in addition to
Definition 2.4.

Definition 3.7. An action a is linear if the following conditions hold.

1. The effect of the action eg is the generator of a semimodule [Gol99] Ej; that
is closed under composition (Eg, o) and multiplication with non-negative
scalars, so that (ez o eg)(0z) = (2ez)(0;) for all feasible o .

2. Let a™ denote the n-fold application of a. If the action can be repeated n
times (that is a"~ (o) € X3) then any number of repetitions between zero
and n is possible.

oEY NG (o) €Ny = Vhke{0,...,n}, a"(e) €Xs (3.11)

3. The action duration is identical for all feasible initial states.

V(o,0') € Xa x Xg, da(0a) = da(o}) (3.12)

4. A constant reward t; is generated for every action repetition.

Linear actions have advantages over normal actions: First, once the maximum
number of repetitions has been established, the preconditions don’t need to be

83

3 Simulation-Based Planning for Concurrent Production Systems

verified for every repetition. Second, the effect of repeatedly applying the action
can be computed with analytical shortcuts instead of n-fold composition of the
effect function.

The notation for repeated application of an action resembles the notation for
action parameterization. This is intentional. Repetition of linear actions is a
special case in the general framework of parameterized actions. If a parameterized
action is also linear, the notation a?>" indicates that the same parameter 6 € O
is applied for each of the n repetitions.

The following joke from the mathematical folklore [RDO5] sets the frame for
discussing the composition of linear actions and the superposition of the effects.

A biologist, a physicist, and a mathematician sit in a street café watching the
crowd. Across the street they see a man and a woman entering a building. Ten
minutes later they reappear together with a third person.

BIOLOGIST: They have reproduced.
PHYSICIST: The measurement wasn’t accurate.

MATHEMATICIAN: If exactly one person enters the building now, it will be
empty again.

The mathematician treats the operators “person entering the house” and “person
leaving the house” as elements from an algebraic group (entering is the inverse of
leaving). The group is indeed closed under composition. But the operator resulting
from the composition does not apply to all situations. Obviously, there can be
no negative number of people in the house. Translated to our case, components
cannot contain a negative number of products. This universal constraint has
ramifications on the definition of linear action.

Suppose that for the considered linear action a, the participating components
Cj can hold products inside the component. So their state is described by a tuple
s = (&, p) for the configuration £ and the number of contained products for every
product type p (cf. Section 2.1). Definition 3.7 implies a linear effect on the
contained products in the components. This effect can be expressed by a fixed
change vector 8¢ € ZI”'I. So for a state transition 6/ = a(o) and component
¢ € Cj, the state transition is between s. = (£, p) and s, = (¢, p’) and the
product change is p’ = p + 62.

84

3.4 Planning with Linear Actions

Since the number of products in the component cannot be negative, there is a
universal positivity constraint for all linear actions. The feasible states all conform
to the positivity constraint $; C X7

>t ={oc e :VeeCy, .= ((¢,p),t), p+ 8% = 0}. (3.13)

For many linear actions, the condition (3.11) can be shown to hold with a
convexity argument. This is illustrated by the following example.

Example 3.5. This example builds on the previous Example 3.4. Suppose
stamp is a linear action with the participating components Cistanp =
{box, press}. The lattice box has no particular configuration state and
Epox = @. The configuration of the press &press = (Eroo1, Ecoi1) CONSsts
of the press tooling for either product p1 or p2 and the remaining length of
the coil. So the configuration space for the press is Zpress = {p1,p2} X
R, . An additional condition of the press is that at least 50cm of coil need
to remain after the action in order to facilitate replenishing. The condition
of the lattice box is that the maximum load of 300kg shall not be exceeded.
The effect on the products in the lattice box df.o'®
mostly zeros with a single one-entry at the p1 position. There is no
effect on the lattice box configuration. So the effect on the box is
(Nestamp) (T stamp)vox = (&, Pvox + nlp1). Let the vector p describe
the weight of every product. Then the initial states that are feasible for the
lattice box are

= vp; contains

Zstamp:box - {0' S 2 . HT(pbox + Vpl) S 300} .

The action has no effect on the products contained in the press and dpress =

0. (As before, 0 is the null-vector of appropriate size). For simplicity,
we refer to the state after executing stamp as o’ (with analogous notation
for its components). The action has no effect on the tooling of the press
&l 01 = Etoo1 and the remaining coil length is reduced by a fixed amount

i1 = &coir — 2.5. So the n-fold repetition has the following effect

(nestamp) (T stamp)press = ((&roo1s Ecoir — 2.5m),0). Atleast 50cm of coil

85

3 Simulation-Based Planning for Concurrent Production Systems

need to remain in the press and
Hpress(Fstamp) = {U €N gcoil —2.5 Z 50} .

The valid initial states for stamp must lie in the feasible set for both the
press and the lattice box. In addition, no negative number of products must
be contained in a component is given by the positivity constraint E;mp.
In total, the feasible states for beginning the action are

_ +
Estamp - Es‘camp:box N Zstamp:press N Zs‘t:amp .

The following proof sketch shows that (3.11) holds for stamp. Let (o) =
(Pvox, £coi1) @ projection of the set of feasible initial states X = {¢ (o) :
0 € Ygtanp}. The three constraints Sganpiboxs Sstampipress aNd Lovamp
are then expressed as a system of linear inequalities for all x € X.

—pu' 0 pl Onea™ — 300
oxIPl 1| x> 52.5 . (3.14)
"o —o5

Since X is equivalent to {x € (Nlop‘ x R) : condition (3.14) is true}, the
space of projected valid initial states is convex. The effect of stamp on X
is described by a linear operator f(z) = = + (6gee'", 2.5). The operators
stamp and f are related as ¢ o stamp = f o). The n-fold application of
f is a linear equation. Due to the described convexity property of X, for

all n € Ny and initial state representations x € X, there is

stamp stamp
(:c+n box)eX:>Vke{0,...,n}, (m+k pox)eX.
2.5 2.5

Since for every € X there exists at least one 0 € Xstanp such that
x = (o), the linear action stamp satisfies Equation 3.11.

86

3.4 Planning with Linear Actions

MILP Relaxation of the Planning Problem

Linear actions were introduced with the promise to simplify reasoning and plan-
ning of action sequences with many repetitions. Now we relax the planning
problem with linear actions so that it can be solved as a Mixed-Integer Linear
Program (MILP) [BWO05]. The MILP formulation can be solved with off-the-shelf
solvers [Gur16]. In constrast to MCTS, the planning complexity for the relaxed
planning problem is mostly independent of the number of repetitions for each
action. Used as part of a rollout policy, the MILP relaxation allows the scaling to
scenarios with hundreds of individual products that are considered at once. On
the downside, it imposes limits on the model dynamics that can be represented.

Assumption 3.8. In the remainder of this chapter, the following two assumptions
are made.

1. All considered actions are linear.

2. The constraints for the feasible initial states 3, only refer to the number
of contained products and not the component configuration.

3. All actions can be executed “in parallel” even if they have the same com-
ponents participating and their effect superimposes for the final system
state.

In the Example 3.5, suppose a second action take that takes out one finished
piece from the lattice box. In order to take out 500 pieces, we need to run stamp
500 times as well. Now that we assume actions can run “in parallel” on the
same components, how can the preconditions for the feasible initial states be
represented? So far we have worked with feasible initial states 3J,. For linear
actions, this can be transformed to the set of feasible post-states I', C 3.

I'n={ceX:Jwex, g=alw)} (3.15)

For linear actions with a fixed effect vectors 62, the conversion between >, and
I',, can be achieved by a simple translation of the constraints describing the set 3J,.
Instead of tracking the feasible initial states before the execution of the actions,
we only demand that the final system state, when each action has been repeated
the desired number of times, is a feasible post-state for all the actions.

87

3 Simulation-Based Planning for Concurrent Production Systems

Every action and every component are assigned an index from {1,...,|A|}
and {1, ...,|C|} respectively. Let & = (p.).cc denote the concatenated column
vector for the products initially contained in the different components. So =
is a vector with |C||P| elements. In the second statement of Definition 3.7,
it is demanded that a feasible n-fold repetition indicates that any number of
repetitions between zero and n must be feasible. Since the effect on the number of
contained products (and only these are considered here) is linear, the constraints
for the feasible initial states must be the intersection of a convex set with the
set of integers. Otherwise, it would be possible to find a system stat o where
the action a in question can be executed n times but not n — 1 times. As the
constraints encoded in ¥, (and therefore also I';) are convex in that sense, they
can be represented as the intersection of half-spaces via a set of linear inequalities
[BV04] defined by a matrix H* and vector g¢, such that H%x > g°.

In a production scenario, most actions are associated with costs for material,
energy, worker’s wages, and so on. But some actions have positive reward, such
as finishing an order for the customer. After completing the order, we could make
more products. But if the customer won’t pay for them they only incurr costs.
This is represented for the MILP as follows: Denote with the vector 72 the number
of repetitions for each action. The vector v contains the costs incurred for every
repetition of the actions.

Goals are defined by a number of target repetitions n9 € N(IJA‘ for every action.
Each repetition of the action a up to ng yields the additional goal reward tJ. The
total goal reward for the repetitions n — in addition to the reward generated from
each action’s fixed reward ¢, — is

3 [min{na,ng}tg} . (3.16)

acA

The MILP computes (3.16) by the introduction of a slack variable v that counts
the missing repetitions for each action according to the goal definition. The
objective function takes the reward for reaching all goals and subtracts the missing
repetitions according to the slack variable.

The column vector 8, € NICIIPl describes the effect of action a on the products
contained in all components. These effect vectors are assembled to a matrix

88

3.4 Planning with Linear Actions

A € ZICIPIXIAl for the effect across all actions.
0, = (00) e, A =][by,.. .,6‘A|] (3.17)

The post-state after executing all action repetitions 7 is ' = x + An. Optimizing
the repetitions to maximize the reward under the defined constraints then gives
the MILP formulation:

V(x,n?,r%) = max [nTt — vTrg} +nd 9 (3.18)

neN)?!

such that

z+An=2a' (3.19)
H' = g°, Ya € A (3.20)
n+uv>=n? (3.21)
>0, n>=0, v>=0 (3.22)
o eRIN neN veRr (3.23)

Function V approximates the value of the system state 2 (with only the contained
products) for optimal decision making in the MILP relaxation. The goal is to
maximize the reward, including the goal reward. The constant additive term
n9 "9 can be removed for the actual optimization. But it is required to recover
the actual V-value for the relaxed planning problem including the goal reward.
Lagrangian relaxation is used to penalize if an action a is repeated less than
nd times. The slack vector v gives the number of repetitions lacking for every
action. (If the goal is met, the slack variable is zeroed out by the optimizer.) In
practice, the dimensionality of & and A can be reduced by considering only the
products that are actually referred to by the linear actions. The maximum number
of repetitions for each action is n™**. This maximum number of repetitions is
only introduced to model binary values: The vector m contains binary values for
the fixed reward incurred if an action is repeated at least once.

The constraints for the optimization are as follows. The post-state «’ after all
repetitions have been executed is computed in (3.19). The post-conditions for all
actions must hold simultaneous for ' according to (3.20). In (3.21), the slack

89

3 Simulation-Based Planning for Concurrent Production Systems

value v is set to the number of missing repetitions according to the goal definition.
The constraints in (3.22) ensure that the number of products in the final state, the
number of repetitions and the slack repetitions are all non-negative. In (3.23), the
repetitions n are required to be integers. The number of remaining products x’
and the slack v are real values. But they will only take on integer values since the
repetitions are a natural number and the system dynamics in A leads to integer
changes.

For every action selection in the rollout policy, the relaxed planning problem
is solved. Actions that are slated for zero repetitions by the relaxed solution and
actions that are not immediately executable due to their preconditions are ignored.
A sensitivity analysis is performed for the remaining actions: For every action a
modified version of the original MILP is solved where the number of repetitions
for that action is fixed to be one less than in the original solution. The difference
of the new solution in the objective function is a grade for “importance” of that
action. The rollout policy then returns the action with the highest importance and
the number of repetitions chosen for the action via the MILP relaxation.

Algorithm 13 Rollout policy for linear actions. Takes as input the current state
and returns a linear action for the next step and its repetitions.

procedure Tiinear (0, h, N9, r9)

1:

2 x + (pc)ecc D State vector of contained products in all components
3 n* « V(x,n9, r9) > Optimal repetitions in the MILP relaxation
4: B+ {bcA:0 €%, An;>0ATeSTLNF(h,b)}

5: b~U(B) > Uniform sampling among the eligible actions
6 n' < max{m € {1,...,n}}: 0™ (o) € 5}

7 return (b, n’)

The above description of the setting can be translated to a MILP. Since all
actions are linear, no additional relaxations are required besides the assumption
that actions can execute “in parallel”. By using the solution to the linear program
to guide the rollout, the global optimum is found already in the first rollout.

90

3.4 Planning with Linear Actions

Evaluation

Consider a simplified supply chain for the production of mobile phones. See
Figure 3.12 for an overview. The OEM (Original Equipment Manufacturer) owns
the phone brand as well as production sites for soldering, assembly and packaging.
Parts are bought from suppliers. The final phone is assembled from a case, a
battery, a screen and a PCB (printed circuit board) with a chipset soldered on.
If the production capacity of the OEM is insufficient, assembled phones can be
bought from an external contract manufacturer. The cost for soldering, assembly
and packaging are $10 each. Transportation costs are not assumed for the example.
The following prices are demanded by the suppliers.

* PCBI: $5 e Screen: $30
* PCB2: $2 e Case: $10
¢ Chipset: $20 Assembled Phone: $150

* Battery: $30

The supplier PCB1 has limited stock and can deliver at most 1,000 PCB. The
chipset supplier has limited stock of 5,000 remaining chipsets. As a consequence,
the first 1,000 phones cost $122 to make (bill of material and production costs).
PCB for additional phones have to be bought from the alternative supplier PCB2
at a higher price. The phones then cost $125 to make. For more than 5,000
phones, the required chipset is no longer available. But assembled phones can
still be bought from the contract manufacturer. This comes at the increased cost
of $160 for each phone: $150 for the phone and $10 for branding and packaging.
So buying from the contract manufacturer is more expensive than producing the
phones in the OEM’s production facilities. It might however be required to buy
assembled phones in order to complete a large order.

Consider now a scenario where a customer orders 6,000 phones for the price
of $175 each. What are the maximum earnings (revenue minus cost) the OEM
can achieve in each scenario? For this supply-chain example, the optimization
problem was solved exactly by the MILP. Hence the decisions by the rollout policy
immediately led to the globally optimal action and parameter sequence. (This

91

3 Simulation-Based Planning for Concurrent Production Systems

Chipset Battery Screen External
I I
5000 5000 5000 1000
Y N Y v
Soldering — 5000 — Assembly — 5000 -~ Packaging - 6000 >
7% 7
4000 1000 5000
|
PCB1 PCB2 Case

Figure 3.12: Supply chain example. The arrows denote the possible number of
transported products between production sites and suppliers.

is not the case for all planning problems. For example when only a subset of
the actions is linear.) The MILP was solved with the commercial solver Gurobi
[Gurl6]. For details, refer to the literature for optimization of convex functions and
optimization over integers [BV04; BWO05]. The phones are sold for $1,050,000
and were produced at a cost of $762,000. This leaves a profit margin of $288,000.

92

4 Distributed Planning for Self-Organizing
Production Systems

Outside the firm, price movements direct production, which
is co-ordinated through a series of exchange transactions
on the market. Within a firm, these market transactions are
eliminated and in place of the complicated market structure
with exchange transactions is substituted the entrepreneur-
coordinator, who directs production. It is clear that these are
alternative methods of coordinating production. Yet, having
regard to the fact that, if production is regulated by price
movements, production could be carried on without any or-
ganization at all might we ask, why is there any organization?

Ronald H. Coase [Coa37]

The coordination of industrial production is historically performed either by a
central planner or market-mechanisms for coordination. The former is fraught
with the problem of keeping the model for planning up-to-date and the complexity
of planning itself. The latter has the problem of suboptimal solutions arising
from market-based coordination. The core idea of markets is to have selfish
participants maximize their personal gain. Under some technical conditions,
markets are “efficient” for the incorporation of information into prices and the
allocation of goods according to a preference function of the buyers [MF70].
From Game Theory, we know the existence of suboptimal equilibria in situations
with competing agents where no participant has an incentive to change his strategy
even though an equilbrium with higher overall welfare exists [Nas51]. In this
thesis we instead assume cooperating agents that aim to jointly maximize the
overall reward.

93

4 Distributed Planning for Self-Organizing Production Systems

This chapter extends the model from Chapter 2 to include multiple agents that
coordinate their actions in a distributed fashion. Afterwards the POHTP algorithm
from Chapters 3 is adapted for the distributed setting. The result is a distributed
planning algorithm where agents exchange messages for coordination via “utility
propagation”. The postulate for this chapter is the following:

Independent agents can jointly perform planning in a produc-
tion scenario where every agent only has a simulation model
of the system part in his visible scope.

4.1 Background: The Generalized Distributive Law

Judea Pearl introduced Belief Propagation (BP) as a way to efficiently compute
inference tasks on (conditional) probability distributions [Pea88]. The algorithms
that perform BP have become known as “message passing” algorithms since
they are based on the exchange of messages representing conditional distributions
between nodes in a graph [KF09]. In the years following the publication of [Pea88]
the similarities between BP and other preexisting techniques in different scientific
communities have been discovered. The common core of these techniques has
been developed into the Generalized Distributive Law (GDL) family of algorithms
[AMOO0; KFLO1]. The GDL comprises as special cases the Baum-Welch algorithm
for state estimation in Hidden Markov Models [Wel03], the Max-Plus algorithm
for finding the maximum a-posteri event in a probability distribution, Turbo codes
for error correction on noisy communication channels, and many more. We now
summarize message passing for the distributed optimization of a function. Full
proofs are omitted here. They can be found together with more pointers to the
literature in [AMOO; KF09].

The function g : X — R is defined for the domain X. For simplicity, let X
contain only a finite number of members. The domain decomposes into variables
v such that X = X,y X,,. We write x € X for the vector with entries x,, € X,.

94

4.1 Background: The Generalized Distributive Law

fab fod

fa fbc fd

Je

Figure 4.1: Factor graph for a problem decomposition. Factors that share are
variable are neighbors and connected with an edge. The subscript indicates the
variables in the domain of the factor.

The function g decomposes into a sum of factors f € F.

g(x) = flxy)

feF

Every factor depends on a subset of the variables Vy C V and Xy = Xyev, Xy.
In the context of a vector x, the projection of & on the variables in the domain of
f is written as xs. The goal is to find the maximizer * = argmax,c x g(x).
Usually, the optimization for each factor arg max, ¢y, f (x7) is much easier as
it only has to consider a fraction of the full domain X.

Now we constrain the domain for the optimization by fixing some of the vari-
ables. Assume that the variables in the scope of the factor f have been fixed to
some Yy € Xy. The optimization problem with this additional constraints is said
to be conditioned on y:

arg max g(x) 4.1
zEX |yy
Since the domain X ; is finite, we can write a table with the results of Equation 4.1
for each y; € X . This changes the perspective of the optimization. We can ask
which y; € X is best, knowing what the optimal “reaction” will be. Tabular
representations of this kind (for finite domains) are the messages that are exchanged
in the message passing algorithms.

95

4 Distributed Planning for Self-Organizing Production Systems

If the factors form a tree-graph, then the computational effort for solving the
optimization problem can be reduced drastically. Figure 4.1 represents the factors
of an example problems as nodes. The factor name indicates the variables in the
factor domain. So the factor fy4 has the domain Xy, = X, x X4. This tree
structure is a so-called junction tree with respect to the variables of each factor
[Cow+99]. In a junction tree, nodes can be connected (are neighbors) if they share
at least one variable. They don’t have to be connected if they share a variable. But
if they do share a variable, then all nodes on the paths between these two nodes
must also refer to that variable. An example in Figure 4.1 are the nodes f,;, and
fva- They share the variable b. So all nodes on a path between f,;, and f;g must
have b in their domain for the graph to be a junction tree.

On a tree-graph, every edge separates the tree into two otherwise unconnected
halves. Take the edge (fas, fpe) in Figure 4.1. Cutting at the edge splits the set
of factor functions into disjoint sets F' = F,p U Fy. This results in two smaller
optimization problems g.(z) = > ¢cp, (zy) and goc(x) = > icp, (1)
Note that, given a fixed assignment to x, the two subproblems are “conditionally
independent” from one another. That is, for a fixed x;, the overall optimization
problem can be solved by optimizing each subproblem individually and merging
the partial solutions.

By convention, we denote the nodes representing factor functions as i and
J € N(i). The set N (i) contains the neighbors with a direct edge to 4. The subtree
behind the edge (i, j) on the side of ¢ contains the factor functions F;_,; C F.
The factors 7 and j share the variables V;; = V; N'V; with the domain z;; € X;;.
The message sent from ¢ to j then is (a tabular representation of) a function
m;; : X;; — R. It contains the value of the best-possible solution for the
subproblem with the factors F;_,; conditioned on the shared domain.

M (yy) = argmax » f(ay) 4.2)
e€X | vij fep, .

In the junction tree, the messages m;_,; can be computed in such a way that
the computation at every node ¢ only considers the domain X;.The result of
Equation 4.2 can then be computed by only considering the local factor and the

96

4.1 Background: The Generalized Distributive Law

received messages:

m;;(yij) = argmax [fi(ivi)-F > ml%i(fl’il)} (4.3)
i€ Xe vy IEN(\ ()

In a so-called forward-backward pass, the messages are first sent out by the edge-
nodes with only one neighbor. Here, computing the message with Equation 4.2
is straightforward, as it only requires access to the factor function of the node
itself. Other nodes compute and send out a message to their neighbor j as soon
as a message has arrived from all other neighbors (not considering the receiving
neighbor 7). In a tree-graph, the exchanged messages converge after a forward-
backward pass when a message has been sent over every edge in both directions.
Every node 7 then chooses the solution

arg max [fl(wz)%— Z mlﬁi(wil):| 4.4)

i €X; | Yij IEN(3)

from his domain X;. If the solution of Equation 4.4 is unique at every node,
then the nodes agree with respect to the assignment of shared variables and the
joint assignment of values to @ is optimal. Additional communication is required
to break ties. In practice, small random disturbances added to the values of the
exchanged messages prevent ties effectively. Message passing generally works on
loopy graphs as well. The convergence is then not guaranteed. Still, the results
are often surprisingly good. If convergence in a loopy graph is achieved, the
solution quality can be characterized according to the so-called Bethe free energy
[YFWO1].

The algorithm just presented is known under the name “Max-Plus” or “Max-
Sum” according to the operations for joining partial solutions and marginalization.
The general approach also works in any algebraic semiring where the operators
max and + are replaced with their respective counterparts. The underlying prin-
ciple of the message-passing algorithm is traced back to the distributive property
of the two operators of the semiring, hence the name Generalized Distributive
Law. In this text, we are only considering the GDL for finite domains. See the
publication [WJ+08] for the application of the GDL to inference on continuous
probability distribution from the exponential family.

97

4 Distributed Planning for Self-Organizing Production Systems

4.2 A Model of Distributed Concurrent Production
Systems

The established models for multi-agent coordination decompose the planning
problem in such a way that the sets of actions available to each agent are disjoint.
Compare for example with the popular MA-STRIPS [BD0S] and DEC-POMDP
[BZI00] models. We take a different route. The actions available to every agent
and the components that are visible in their scope overlap. This overlap is the
common language that is required for coordination. Informally spoken, the overlap
acts as the “hinge” between the per-agent models.

Definition 4.1. A distributed planning problem is represented by a tuple
(C, A7 0'07 I7 {Ci, Ai, ti}ie[) .

The definitions for the set of components C, the actions A and the initial
system state o¥ are identical to the central planning problem from Chapter 3. The
additional agents ¢ € I each have a limited scope with regards to the part of the
overall system that is visible to them. This is reflected in the visible components
C; C C, and the actions A; C A with parameters from ©;. The joint state of the
components in the scope of ¢ is o; with the state-space X; = X ¢,. Each agenthas a
private reward function v; : 3; X A; X ©; x 3; — R. The components and actions
in the scope of two agents ¢ and j can overlap. The shared components and actions
are C;; = C; N Cj and A;; = A; N A;. Two agents are considered neighbors if
they share a component in their scope. The set J (%) contains the neighbors of the
agent 7. The neighbor relation is of course symmetric j € N (i) < i € N(j).

J(@) ={jeI\{i}):CinC; # 2}

Example 4.1. Consider again the manufacturing scenario from Exam-
ple 2.2. Now, two agents jointly control the system. One agent is respon-
sible for production and the other for packaging. Each agent has only a

98

4.2 A Model of Distributed Concurrent Production Systems

subset of the system components in his local scope. The lattice box in the
middle is in the scope of both agents. See Figure 4.2 for details.

The agents see all actions where a component in their scope par-
ticipates. Therefore, Cproa = {produce,put,take} and Cpack
{put, take, package}. But since the agent prod has no visibility for
the packaging robot, he can only have a partial view on the action take.
The same is true for the pack agent and the action put.

produce put take package

Scope of the agent prod

Scope of the agent pack

Figure 4.2: Minimal production scenario from Example 2.2 with two
agents and their respective scope.

Every agent ¢ is equipped with a simulation model of the components and
actions in his scope. An agent may have actions a in his scope where some of the
components participating in the action are outside of the scope of i so C, C;. It
would be preferable that all actions entirely fit into the scope of every participating
agent. But then we could not correctly model interactions across the boundaries
of an agent scope. Take the situation of Example 4.1. Products are moved from
the machine tool to the packaging robot. For this, the products leave the scope
of the agent prod and enter the scope of the agent pack. The component of the
lattice box is shared by both agents. More formally, box € (Cproa N Cpack). The
agent prod must be able to predict — in his private model of the system dynamics
— when the lattice box will be free again. But he does not see the packaging robot

99

4 Distributed Planning for Self-Organizing Production Systems

who takes out products. If the action representations for the individual agents were
to include all participating components and the agents know all actions that act
on components in their scope, then the agents would have to keep all components
C' in their scope.

To overcome this, each agent has an internal representation of the actions
that only describes the preconditions and effect on components that are in the
agents scope. In Example 4.1, the agent prod has a partial representation of
the action take to work with action sequences where multiple products are
sequentially moved to pack. From the perspective of the agent prod, the products
simply disappear when they are actually moved to the component package. The
remainder of this section spells out the assumptions that are required for the agents’
individual partial system models to be mutually compatible. This is required for
the distributed planning methods introduced in the later sections of this chapter.

Definition 4.2. Based on Definition 2.4, the projection of an action a to the scope
of an agent i is
a5 = (Ca,ia Za,ia €q,is da,i)

* with participating components C,, ; = Coq N C},
* feasible initial states ia,i =1l¢, , (2,), and
* effects and durations e, ; ia,i — SCW. and dg ; ia,i — Ry

Similar to the global action definition, per-agent actions a; are operators on
the domain ¥, ; = {o; € X; : ll¢, ,(0;) € Xqa,i}. The full operator signature is
a; : Za,i — ;.

Assumption 4.3. If a component in the scope of an agent i participates in an
action a, then the projected action a; is in the scope of that agent.

Viel,Vac A Cy; #3 =a; €A;

The participating agents of the action a are those with at least one participating
component in their scope I, = {i € I : C,; # @}. From the definition of %, ;,
the projected action imposes less constraints on the feasible initial states. The in-
verse projection of the feasible set is HE; . (E4,0) ={o € :1¢, (o) € Tas}.

100

4.2 A Model of Distributed Concurrent Production Systems

Since less constraints are imposed on feasible initial states ¥, C Haal . (iaﬂ-).
So there may be global states o where agent ¢ beliefs o; to be feasible for his
projected action a; so that o; € X, ; but which are not feasible for the original
action o ¢ X,. In order to prevent the agents from jointly selecting an action
that is infeasible for the current global system state o (and possible damaging
equipment or endangering human operators) we assume that the action definitions
and the decomposition into agents does not lead to infeasible action selections if
the agents jointly agree on the feasibility.

Assumption 4.4. If the participating agents v € I, agree that action a is feasible
based on their individual projected action a,; with preconditions X, ;, then the
action is also globally feasible.

(N Héi,i(ia,i)) ¥,

i€ly

Assumption 4.4 implies restrictions for the possible preconditions with respect
to timing and synchronization between agents. The feasibility of an action can not
depend on the simulation time of a participating components outside the scope
of a participating agent. Otherwise, it would be possible to construct situations
where all agents jointly, but incorrectly, belief an action to be feasible. Suppose
a situation where molten iron ore is transferred from a component exclusively
in the scope of agent ¢ to a component exclusively in the scope of agent j. The
global action for the transfer rightly imposes constraints on the simulation time to
ensure that the component with the molten ore does not idle for too long. But this
timing constraint cannot be represented in the projected action for either agent,
violating Assumption 4.4. If timing conditions are critical, then all participating
need to be in the scope of the agents.

In addition to assumptions for the feasible initial states, we limit the effect so
that the post-state of the components C,, ; is correctly predicted by a,. That means
for deterministic scenarios that the effect on the components Cy, ; follows from the
initial state of the C, ;. In stochastic scenarios, the distribution for the post-states
of the components C,, ; is conditionally independent from components outside of
Caﬂ'.

101

4 Distributed Planning for Self-Organizing Production Systems

Assumption 4.5. If an action a has a participating agent i, then the effect on the
components C, ; is determined by the initial state of the components C, ; only. If
the action is deterministic, then

Vo,w e Xy, 04 =wa,i = Mg, ,(eqi(0)) =1lc, ,(€qi(w)).

If the action is stochastic, so that the post-state and observations are sampled as
(07, 04) ~ a(o) with s’ the untimed state of the components from o', then

(86,)0a,i|0ai) L dene, -

Note that Assumption 4.5 restricts the effect on the resulting state s, ;, but
not on the resulting simulation time of the components. This allows the time
synchronization of components across the scope of a single agent.

Last, we require that the reward generated by the actions does not depend on
the simulation time of the components. This will become important later on,
when the agents predict their reward based on an internal simulation model that
is restricted to their scope.

Assumption 4.6. For any two system states o and o’ where the untimed com-
ponent states are identical s = s', the reward from any feasible action a is
identical

t(o,a,0,a(0)) =t(o',a,0,a(c’)). 4.5)

If an action a is completely outside the scope of agent ¢, then the projection is
the identity action € — also used to denote an empty action sequence. The identity
action can be simply omitted in an action sequence.

CaﬂCi:®:>ai:5
Action sequences w are projected to the scope of agent ¢ as
k
IL (w) = w; = (W)) ke(1,....jwl} -

Since actions project to the identity ¢ for an agent ¢ that is not participating in
it, the sequence w; may contain less elements than w. We continue to use the

102

4.2 A Model of Distributed Concurrent Production Systems

same index notation k for both global and per-agent action sequences and make
the number of sequence members explicit only when this is needed.

As described in Section 2.1, the set W = A* contains all action sequences of
finite length generated from a set of base actions A. It implies a tree-graph where
every edge denotes an action that is appended to the previous sequence. The
sequence trees W7 with a defined initial state o contains only feasible sequences
starting from the initial state. The sequence tree W; = A} considered by the agent
1 contains all sequences formed from the actions in ¢’s scope. The sequence tree
W contains the sequences from W; that agent ¢ beliefs to be feasible starting
from the initial state o;. The inverse projection of the per-agent sequence tree
IT; 1(I/VZ-”) contains all global sequences that are compatible with (project to) a
sequence from W7 and that are also feasible for some compatible initial state w
with w; = o;.

W) ={weW:IweX, w,=0;, we W, w, e W7} (4.6)

Since the considered system dynamics takes concurrency into account, the
index of an action in the action sequence could no longer coincide with the order
in which the actions are executed according to the simulation time. The state of

component c after executing the first k actions is w* (o). = o¥ = (s¥,t¥).

Proposition 4.7. From the Assumptions 4.3, 4.4 and 4.5 follows that for any
global state o € ¥ and agent i € 1

(Nmtove)) = we < mtavy).
jer

Proof. Consider the subset relation W C 11 1(Wi"). Assume there exists
a sequence v € W?. But an agent ¢ beliefs that the projected sequence is
not feasible for his scope so that v ¢ II; ' (W?). Let k the index in v where
vk e II; ! (W7). Such a k must exist since the empty sequence that is always
feasible. From Equation 4.6 the agent ¢ regards the shortened sequence as feasible
II;(w*) € WF. A consequence of Assumption 4.3 and Assumption 4.5 is that
the agent ¢ correctly predicts the (untimed) system state of the components in his

103

4 Distributed Planning for Self-Organizing Production Systems

scope based on the projected sequence w;F.

k & o; ;
Vo € Sk, 0 =wh (o), w, = w*(0;), ;' =8¢
Here, s and s denote the untimed state of the components in i’s scope in
the respective timed state vectors o’ and w;. Since w € W7 we know that
o’ € ¥, x+1. From the preconditions of projected action from Definition 4.2 it

must be that w; € X,x+1 ;. This contradicts the initial assumption.

We first show that (), TI; ' (W¢)) € W?. Assume an action sequence u
where u ¢ W7 and u € ([el Hj_l(W]‘-’). There exists an index [such that
the subsequence u!
The agents agree that their projection of u**1! is feasible Vi € I, o; € DIAPEE IR
(The identity action € is always feasible.) But ' ¢ X,x+1. This contradicts
Assumption 4.4. The equality relation ((;¢; I 1 (Wg)) = W is then a direct
consequence of the previously established fact that for all agents j € I the set
Hj_1 (W) is a superset of W<

is contained in W but w*! is not. Let o/ = u’* (o).

O

Proposition 4.7 summarizes the first important result for distributed planning
from this section. All feasible global sequences are projected to a feasible sequence
from the standpoint of the individual agents. On the other hand, an individual agent
could assume a sequence w; to be valid that has no feasible global counterpart. If
the agents however jointly agree on a sequence by each considering the projection
to their scope, then the sequence is globally feasible.

4.3 Distributed Planning for Deterministic Action
Sequences

The sequence tree shared between two agents ¢ and j € N (¢) is written as W;;.
It contains all sequences of the joint actions W;; = (A; N A;)*. Note that the
sequences in IW;; may be unfeasible. They are partial sequences and each agent has
to “fill the holes” for the components in his scope. Based on a (partial) sequence
w;; € W, the sequence tree of the individual agent 7 can be conditioned to
contain only sequences that are in accordance with the shared sequence w;;.

104

4.3 Distributed Planning for Deterministic Action Sequences

Definition 4.8. For an action sequence v;; € W;; shared by the agents i and
j € N(i), the conditional tree W |v;; contains only those sequences for agent i
whose projection to W; is compatible with v;; in the following sense.

VViU"Uij - {’U)Z S VViU Wi = Uz’j}

Example 4.2. Consider the two agents from Example 4.1 and an initial
state o where no component contains products.

€

(a) W};od|vpr0d,pa6k (b) Uprod,pack (C) W;ack‘vprod-,pack

Figure 4.3: Conditioned sequence trees of two agents.

Every agent internally considers the sequence tree W74 and W7, ., re-

spectively. By imposing the shared sequence vprod,pack, the agents se-
quence trees are pruned to the conditional sequence trees shown in Fig-
ure 4.3b, Also compare with the sequence tree for the overall scenario
from Figure 2.3.

105

4 Distributed Planning for Self-Organizing Production Systems

For a given initial state o, the global reward generated from a history w is

|w]|

t(o, w) = Zt(w:k’l(a),wk,w:k(a)) .

k=1

The local reward for the agents © € I (who know the initial state of the components
in their scope ;) is

|w]
vi(og, w;) = Zti (w1 (0:), wh, wiF (7)) .
k=1

Now, we can state the planning problem for action sequences as a factorized
optimization problem with factors v; and overlapping factor domains W;.

Proposition 4.9. If the reward generated by the actions a is factorized into per-
agent reward as v(o,a,0') =), vi(0y, a;,0;), then the reward t(w) for a
global action sequence w factorizes to the sum of the per-agent reward functions
v W, - R

t(o,w) = Zti(ai’ w;)

icl

Proof. Take the following sequence of equations. The gist of the proof lies in the
equality between the Equations 4.7 and 4.8.

|w]|
t(o,w) =) t(wh o),w* w(o)) 4.7
k=1
|w]|
=3 w(w (o), wf, wik (o)) (4.8)
k=1 icl
|w]
= Z ti(wik_l(a'i)vwf,wik(ai)) = Zti(lfu’wi)
iel k=1 iel

First, Proposition 4.7 guarantees that for any system state o and feasible sequence
w the projected sequence w; is feasible for the projected system state w;. Sec-
ondly, from Assumption 4.5 follows that knowledge of w; suffices to determine

106

4.3 Distributed Planning for Deterministic Action Sequences

the untimed state of the components C;. Third, the agents reward depends only on
the untimed state of the components in their scope according to Assumption 4.6.
Therefore the reward of the individual agents is determined by just the components
in their scope and the action sequence projected to their scope. O

Definition 4.10. The V-value of the agent i with agent-state o; is the sum of
rewards generated by the best feasible action sequence from the perspective of
the agent.

vi(0i) = w%%(;’ ti(o, w;)

We are not discounting later reward to compute the V-value. Instead it is
implied that the tree 17 either has a maximum height. Either because the scenario
is “done” after a finite number of actions or based on a cutoff height of the
sequence tree.

Definition 4.11. The conditional V-value of an agent i for the action sequence
v;; shared with the neighbor j € N (i) is the best reward the agent can achieve
with a sequence that projects 1o v;;.

max (o, w;) W_cr|,vij oy
Ui,(Ui | 'Uij) —) wiEWF vy) y g
oo else

The local V-value is defined as —oo if the shared sequence v;; is infeasible
for the initial state of the components in the agent’s scope o;. This becomes
important later on when v; is used by the agents to signal preferences for shared
sequences to their neighbors.

Proposition 4.12. In a setting with just two agents i and j, the global V-value
can be decomposed as follows.

b(o) = max t(o,w)= WO [Ui(ﬂi |wij) +v5(0; |w1'j):|

Proof. Let u € W an optimal global action sequence, so the reward generated
by uis t(o,u) = v(o). (There may be several optimal action sequences.) This

107

4 Distributed Planning for Self-Organizing Production Systems

reward decomposes into the private reward of the agents ¢ and j.
t(o,u) = vi(os, w) +v(0;, uy)

Given the shared sequence u;;, agent j can choose any action sequence
from W¢ |u;; without impacting the reward for i. We know that t; (o, u;) =
MaXy, eWe fu;, T (oj,v;). Otherwise, if the agent j could find a better sequence
than u;, u could not be a maximizer for the global sequence. Since u; € W |u;
we know that V77 |u;; is nonempty and therefore with Definition 4.11

t(o,u) = vi(o, w;) +v;(0; | i) -

The same line of reasoning can be followed for the agent i so that t(o,u) =
vi(0i, wij) + v;(0; | wi). =

In the case with two agents, given precomputed conditional V-value functions
v;(o | w;j), (e.g. available as a lookup table), the optimization problem to find
the optimal reward for a given system state o is simplified from a search over W
to a search over just W;;. Now assume a case with three agents ¢, 7, [. The agents
¢ and 7 have shared components and the agents 7 and [have shared components.
But 7 and [/ do not share any components. Conditioned on the action sequence
wj;, the agent [is not only independent from the actions of j but also of the
actions of ¢. This mechanism is used for “utility propagation” between agents that
form a tree-graph. The difference to the original GDL is that the overall domain
W is not a cartesian product of the W;.

Assumption 4.13. The agents and their neighbor relations between the agents
form a tree-graph. The components in the scope of agent i are in the shared scope
with at most one of i’s neighboring agents.

Vi€ N(i), Vee Cij =Vl e N(@i)\ {j}, c¢ Cy

For a given initial system state o, the messages m,_,; : W;; — R exchanged
between neighboring agents are computed as follows:

m;,;(vi;) = max [Ui(aiawi)+ Z my; (wir) (4.9)
wiCWZ vy lEN()\{1}

108

4.3 Distributed Planning for Deterministic Action Sequences

The messages m;_,; : W;; — R describe the best reward that the subgraph
of agents “behind” the edge ¢ — j can achieve for a given shared sequence w;;.
Computing the messages m quickly becomes intractable. The number of possible
shared sequences grows exponentially with the length of the shared sequence.
Furthermore, the optimization performed for each messages m;_,; and shared
sequence w;; requires in itself an optimization of over W |v;; that takes the
messages received by the other neighbours N (7) \ j into account. The conditional
tree W7 |v;; also grows exponentially with the tree depth. (Although pruning
non-conforming sequences can drastically reduce the overall size).

The Max-Plus algorithm from the GDL family is used to efficiently solve
the maximum a-posteriori (MAP) problem of finding the event with highest
probability. It has been used for “utility propagation” for multi-agent decision
making by [KV05]. To overcome the combinatorial explosion of the search space,
we develop a novel combination of Max-Plus with MCTS. See Algorithm 14
for the full algorithm specification. Similar to standard UCT, the Distributed
Upper Confidence on Trees (DUCT) algorithm performs iterative playouts and
generates statistics that guide decision-making in later playouts. Every agent
i € I stores the reward he can make after a sequence w; in a hashmap v;[w;].
As before, the hashmap returns zero when no entry has been set prior. Every
agent is performing independent playouts based on his internal simulator. Actions
are selected according to the UCT rule with the addition that conditional reward
signaled by they neighbors is considered as well. For the updates, the computed V-
value estimate for a sequence w, considers only the reward the agent receives. But
the action a; are selected to maximize the reward for all agents. Afterwards, the
messages to the neighboring agents are computed. Here the action a is implied
by the use of the local V-value v;. Note that the reward signaled by the agent j to
1 is not mirrored back in the messages from ¢ to j. Here, the agents are jointly
exploring the scenario tree. Initially, all messages are set to zero. Therefore, if
rewards are generally negative, then the agents will initially overestimate the value
of sequences where no empirical reward estimate from the neighbors exist.

109

4 Distributed Planning for Self-Organizing Production Systems

Algorithm 14 Distributed Upper Confidence on Trees (DUCT) Algorithm

1: procedure DUCT(c?)

2 mZ_>][]<—O VZEI,jEN(Z)

3 nz[]eO, ’Ul[]%o Viel

4 while enough time do

5: for: € I do

6 (w;, ;) < PLAY; (o))

7 UPDATE,; (w;, 7;)

8 return argmax,. 4 | > icl: i [ai]}
a; €A;

1: procedure PLAY;(0;)

2 W; < E, ;< €

3 while -DONE(c;) do

4 B+ {bl cA;: n[wlbz] = 0}

5: if B # @ then

6 a; < 7TZB(0'7)

7 else

8

log nw;]+1 +

a; < arg max [vi[wibi] +a D]

b,eA;
> myi(Ij(wibs))
JEN(3)

—

9: (04,e;) « ai(o})
10: w; < wia;, i+ (rhri . e)

R

11: return w;, r;

: procedure UPDATE;(w;, 1;)
for k = |w;|,...,1do
u; +— wik
nlu;] < nfu;] +1

aj < argmax |qluiai] + 30 5c vy my—i[ij (wiai)]
a;€A;n[ua;]>0

AN e

6: vi[wi] rF + v;[uaf]

7: for j € N(i) do

8: U < v; ['U/l] =+ ZZEN(L)\{Z} ml_”(Hll(ul))
9: ife > m[H” (’U,Z)] then

10: m[H” (’Uq)] — e

110

4.4 Distributed Planning under Uncertainty

4.4 Distributed Planning under Uncertainty

In stochastic scenarios, following the description from Section 2.3, the current
state is not known with absolute certainty. Instead, the system state can only
be inferred from indirect observations. Recall that histories h are comprised of
episodes h* = (a*0*0"*) with an action, action-parameters and observations.
The set of all possible global histories of finite length is H = (A x © x O)*.
The set of histories H implies a tree-graph with edges between observations and
actions, actions and parameters, and parameters and observations if they can
occur in sequence in a history. From every history, the current system state can be
inferred P(o | h). For this, an belief distribution for the initial state o is updated
with the received observations. We now make the additional distinction between
histories and complete histories. Complete histories are the leafs in the tree-graph
of H. They denote histories after which the scenario is “done”. This can also be
enforced by a maximum history depth. The set of complete histories is H C H.

The algorithm enhances our prior work in [Pfr16a] in several regards. Most
importantly, every agent participating in the decision making has a local simulator
to predict the evolution of the system state based on his restricted local knowl-
edge. An important inspiration came from [AO15]. However, they use Variable
Elimination [KF09] for selecting joint actions instead of message passing. In
addition, they rely on a central simulator for the global system to generate sample
plays. Since MCTS is an online algorithm, they would require a simulator for the
global system also at runtime for the agent coordination.

As the agents ¢ € I have a limited scope, they can only observe a portion of the
full history. In particular, the projection to the agent-scope II;(h) = h; contains
only the episodes with actions a € A;. The observed action parameters are from
the full parameter space of the action § € ©,. The observations received by the
agent ¢ are from components that participate in action a and are in the scope of
the agent 0; € O, = (Xcec, ,Oc)-

Definition 4.14. A history h € H projects to the scope of an agent i € I as
h; =al6lo!al"g"o" .
—_————

h! Bkl
k2

i

111

4 Distributed Planning for Self-Organizing Production Systems

The set of histories for agent i is H; = (A; X ©; X O;)* where ©; = (Ugec4,0,)
and O; = (Ugea,0q.4)-

Similar to the projection of deterministic action sequences from Section 4.3,
the episodes are indexed with k. If an episode of the global sequence refers to an
action outside of agent i’s scope, then the action projects to the identity operator
a ¢ A; = a; = ¢ and the episode does not occur in the agent’s local history. The
global history thus may contain more episodes than are visible to the individual
agent. The difference in the index & will be made explicit only when the meaning
is not clear from context.

Agents have a local decision-making policy ;. Since the components in the
agents scope are overlapping, neighboring agents need to coordinate to select the
next action in their shared scope. Disagreement would lead to incompatible action
selections for the components in the shared scope. This needs to be avoided.
So the local decision-making policy of an agent ¢ is no longer a deterministic
result from the local history h; alone. It also depends on the coordination with
neighboring agents — and hence on the observations the agents j € N (i) have
made that are not necessarily in the scope of . This lack of information from the
limited viewpoint of agent ¢ is expressed by taking the policy as a random variable
as well. The next action and action parameters are sampled as (a;, 0;) ~ 7, (h;).

The value for optimal decision making in each node (from the viewpoint of
agent 1), the V-value and the Q-value, can be computed recursively with Bellman’s
Equation [Put94]. Note that the decision-making step is split into action-selection
and parameter-selection. To simplify the notation, we refer to both the V-value
and the Q-value of an agent history as g.

Definition 4.15. The Q-value of selfish agent i assumes optimal decision making
by i. The other agents I \ {i} coordinate with i by agreeing to i’s decisions for
the components in the shared scope.

h 0, h, S ﬁl 41
9i(hi) = max q;(h;a;), else (4.10)
a;€EA;
(P — (PO 4.11
qi(hsas) pmax qi(h;a0;) 4.11)

112

4.4 Distributed Planning under Uncertainty

0i,0;,€%;,
0,€0,,;

A distinction by cases is made whether the last episode contains only an action,
an action with action parameters, or an action with parameters and the resulting
observations. When action, parameter and observation are appended to a history,
as in h; = h;a;0,0;, then h) matches with Equation 4.10 that is defined for
histories with complete episodes. Equations 4.11 and 4.12 take histories with an
incomplete last episode as input. The case distinction in Equation 4.10 is required
so that the recursive formulation terminates at the leaf nodes of H;.

A shared history h;; € H;; = (A;; X ©;; x O;;)* between an agent ¢ and
his neighbor j € N(¢) contains only the episodes with a shared action a € A,;.
The agents ¢ and j both observe the complete action parameters for the shared
actions. The observations in the shared history contain only the observations from
components in the shared scope O;; = (Uaca,; (Xccc.nc;; Oc)). The V-value
and Q-value are now conditioned on a shared history for the future episodes.
Observations that are not compatible with the shared history are marginalized out
in the probabilistic expectation. Incompatible action and parameter choices are
disallowed in the maximization steps.

Definition 4.16. A conditional Q-value for a selfish agent i assumes optimal
decision making under the constraint that future episodes (after the initial history
h;) project to the partial history g;; shared with the neighbor j € N (i).

0, hl S Fq

%i(hi| gij) = ma (hia; | gij), else
aiE(Ai\AiJ}'()U{a},_]}ql(' l|g”)’

4.13)

qi(hiaib}; | gij), a; = a;;

SIS P

qi(hia; |gz’j) =

E [ti(Ui,ai,ai,Ug)Jr a; = a;;
Zﬁgioeiif qi(hiaibsu; | g7;) | hiaib;],
qi(hiaib; | gij) = § wis=oi (4.15)
E [ti(oi,a:,0;,07) + else
TS ailhiaibi0:| gij) | hiaiti),

113

4 Distributed Planning for Self-Organizing Production Systems

The action, action parameters and observations of the first episode of the partial
history g;; are referred to as a}j, Qilj and o}j respectively. As episodes are added
to per-agent history h;, the remaining shared history for future episodes is getting
shorter. Once no shared history for the conditioning remains with g;; = ¢, the
Q-value and V-value fall back to the formulations from Equations 4.10 to 4.12.
The action choice is constrained to agree with the remaining partial history g;;.
Actions without participating components from Cj; can be freely chosen as they
are not constrained by the partial history. The case distinction in Equation 4.14
requires that the matching parameters from the partial history g;; are taken if
the action is from the partial history. Finally, Equation 4.15 also makes a case
distinction for actions from the constraining partial history g;;. Equation 4.15
then recurses by adding the expected reward from future episodes constrained on
the remaining partial history. If the current action is from the shared history, then
the remaining shared history g;? has the current episode removed.

The agents in Definition 4.16 are self-interested. In order to have collaborative
agents jointly optimize the global reward (across all agents), each individual
agents has to assess the impact of his choices on the expected future reward for
himself as well as for the other agents. Analogous to the previous section on
distributed planning for deterministic action sequences, the agents are assumed
to form a tree-graph with their neighborhood relations. (Cf. the discussion of
Assumption 4.13.) To coordinate, the agents exchange messages m;_,; : H;; — R
with their neighbors j € N (). The value of the message m;_,;(g;;) evaluated for
a given shared history g;; describes the expected Q-value (the reward for optimal
play in the remaining episodes) for the agents behind the edge 7+ — j conditional
to the given shared partial history. See the later Definition 4.18 for the messages.
The per-agent history is projected to the shared scope with h;; = II;;(h;). The
expected immediate reward in the subtree behind the edge I — ¢

Ej—>z’(hi7 aieioi) = mj—m’(hij) - mjai(Hij(hiaioioi))

refers to the reward the agents in the sub-tree expect to make when they “fill the
gaps” between the partial histories h;; and II;; (h;a;60,0;).

Definition 4.17. The global Q-value for an unselfish agent i conditioned on the
future partial shared history g;; assumes optimal decision making by the agent

114

4.4 Distributed Planning under Uncertainty

1 with respect to the expected global reward and a fixed policy followed by the
other agents.

—00, hic€ H;, g;j #¢
a; (hi|gi;) = ¥ hi€ His gi3 =2 (4.16)
argmax q;(h;a;|gij), else

a;€(Ai\Ai;)U{aj;}

q; (hiait;; | 9i5), a; = ay;

mgx q; (hia;0;|gi;), else @17

q; (hia; | gij) =
E ti(o-iaa/heiaaq/;)—"
LolED:, v
o”ulgOeau Z [tl%i(hia alezuz)] + = al‘
wiy=ol, 1EN() i = Ay
q; (hiaibiu; | g7;) ‘ hiai@} ,
E {ti(ai,aiﬁi,#)—l-

W AN _
a’lq)izloa,: Z [tl—>i (h'77 azaloz)] +
lEN(7)

q; (hiai0; | gi;) =

else

q; (hiaif;0; | gi;)

hiaiez},
(4.18)

Again, Equation 4.16 can return negative infinity in the case where the scenario
is “done” but the constraint to fulfill the partial history g;; has not been fulfilled.
The use of messages m;_,;(h;;) relies on Assumption 4.13. So at most two
agents share a component in their scope. Otherwise for a given future shared
history g;;, the expected reward for the agents in the sub-tree behind the edge
I — 4 could also be conditional to a portion of the shared history g;; that also
applies to [, i.e. IT;;(g;;). The messages m would then be conditioned to this
as my_,;(IL;;(h;) | 1L (gs5)). Assumption 4.13 removes this source of further
complexity.

Now a word on the difference between the global Q-value q; estimated by
the agents i and the messages m;_,; between neighboring agents ¢ and j. In
accordance with the principles of the GDL described in Section 4.1, it has to be
avoided that the agents “mirror back” expected reward that was signaled to them
by a neighbor j. Only the expected reward from the other neighbors N (7) \ {j} is

115

4 Distributed Planning for Self-Organizing Production Systems

forwarded in the messages. In essence the message contains the expected reward
generated in the subtree (according to the agent’s neighbor relation) behind the
edge ¢ — 7 under the assumption of globally optimal decision making by the
agents according to their respective Q-value estimation.

Definition 4.18. The messages exchanged over the edge i — j between neigh-
boring agents are computed for optimal decisions based on q.

—0Q, h7, € Fia gij 7é €
Gi—j(hi|gij) = {0, h;€ H;, gij=¢ (4.19)
Gi—j(hiaj | gij), else

where af = arg max q; (hia; | gij5),
a;i€(Ai\Ai;)U{aj;}
di—sj(hiaif}; | gij), ai = aj
Gis(hias | o) = =4 ; 19i) J (4.20)
qiaj(hiaiei |gij)= else
where 07 = argmax q; (h;a;0; | gij),
0;€0.,;
E |:ti<o'i7ai79ivo-g) +
0i,0,€%;, _
€044, > [usilhiabiu)] + 1
uij=o}; IEN()\{j} v
Gimsj(hiaibiu; | g7) ’ hiaigi]’
Cli—>j(hiai9i |Qij) = - , !
E [ti(di,aueuffi)‘*‘
i OLES, =
UOiZOa,i > [tl—”’(hi’ aﬂioi)] T else
leN(@\{sj}
qi—j(hiaib;0; | gij) ’ hiaiez}a
“.21)
Finally the message from i to the neighbor j is
mi;(gij) = i (€ i) - (4.22)

116

4.4 Distributed Planning under Uncertainty

Decision-making by the agent ¢ depends on optimal decision-making by his
neighbors, as communicated in the messages m;_,; and vice versa. Astute readers
will have noticed a circular dependency between Definition 4.17 and Defini-
tion 4.18. Taken together the values are well-defined. Suppose that H is only
one level deep. Then the messages m can be computed with a forward-backward
pass similar to the standard Max-Plus algorithm. Now let H allow two actions
in a row. With the same argument, the messages that evaluate the second action
choice can be generated. Once these messages are known, the agents can compute
the Q-value for the possible first actions.

Example 4.3. Suppose that an Original Equipment Manufacturer (OEM)
owns two production sites. One in Germany and the other in China.
A customer buys a lot of 1000 items to be made to order. The Ger-
man site can produce the items for $40 a piece. The Chinese site can
fulfill the order for $35 a piece. But due to uncertainties for the long
transport, there is a 10% chance that the products will not reach the
OEM headquarters in time for packaging and delivery. For this, the
scenario defines three components C' = {oem,de, cn}. Every compo-
nent also represents an agent C' = I. There are six actions defined:
A = {pass_de7 prod_de,prod_cn,pass_cn,pass_oem, deliver}.
The “pass” action terminates the scenario for the respective agent. The
participants of the action Cpags ae = {de}, Cproa qe = {oem,de},
C'pass_cn = {Cn}’ Cprod_cn = {oem, Cn}7 Cdeliver = Cpass_oem = {Oem}-
The shared actions are Agen.ge = {prod_de} and Aoen,cn = {prod_cn}.
The action prod_cn returns an observation that is either o or og indicating
either failure or success. None of the actions take a parameter.

Action /Reward (in k$) tproa de Uprod_cn Cprod_oem

prod_de —40 — 0
prod_cn - —35 0
deliver — — 59

Table 4.1: Reward generated by the actions in the supply-chain example.

117

4 Distributed Planning for Self-Organizing Production Systems

The possible histories are (prod_de,deliver), (prod_cno¢) and
(prod_cnog,deliver), as well as the sub-histories with only the first
action. The empty action parameters and observations are omitted for
readability. From the perspective of global optimisation, the deterministic
reward for going with the German production site is (—40 + 55) = 15.
The expected reward with the production in China is 0.9(—35 + 55) +
0.1(—35) = 14.5.

We now show some selected examples for the Q-value and the messages
between the agents from Definition 4.17 and 4.18. Once the production
sites have either produced or passed on the production, the scenario is
“done” for them and no further rewards are generated. As de and cn have
only one neighbor, no received messages are “mirrored back” in (ge—soen

and qcn—oen-

qde—mem(prOd_de | :) = 07 qde—)oem(paSS_de ‘ :) =0

Jen—oen(prod_cn|-) =0, (en—oen(pass_cn|-) =0

Given a either the production-production or the pass-action as a condi-
tional, the optimisation of the actions is trivial for de and cn as there is
only one action that can be selected in accordance with the conditional.
The Equations 4.19 through 4.21 return the following.

Mge—oen(Prod_de |+) = dae—soen(€ | prod_de) = —40
Me—soen(Pass_de |-) = de—oen(€ | pass_de) =
Men—oen(Prod_cn |) = qen—oen(€ | prod_cn) = —35
Men—oen(P2SS_CR |+) = qen—oen(€ | pass_cn) =

118

4.4 Distributed Planning under Uncertainty

With these messages transferred, the agent oem can continue with the
computation of gJ,.
qaen(prod_cn) = P(o0) {toem(prod_cn) +
Tde—soen (&, Prod_cnog) +
Ten—soen (&, prod_cnos) + q5., (prod_cn os)} +
P(os) {toem(prod_cn) +
Tde—oen (&, prod_cnos) +
Ten—soen (&, prod_cnos) + qb., (prod_cn Of):|
=0.9-[040— 35+ toen(deliver)] +
0.1-[0+0—-35+0]=14,5

The message from oem to its neighbors do not contain the reward that was
signaled from the neighbor itself.

Moen—de(prod_de) = 55, Moen—ae(pass_de) = 14.5,

Moen—cn(prod_cn) =49.5, Meen—ae(pass_cn) =15

With that, the agents can jointly maximize the expected global reward
even though they have only a limited scope to the system state and possible
actions.

The messages m;_,; assign a value to every node of the shared history tree
H;;. Computing the messages m;_,; is computationally challenging. Instead of

computing the message values directly, they are approximated via Monte-Carlo
sampling. See Algorithm 15 for the full specification of the The Distributed
Partially-Observable Hybrid Tree Planning (DPOHTP) algorithm.

Similar to the DUCT algorithm, the agents I are exchanging messages as they

jointly explore the solution space. Every agent can use his private model for the
components in his scope. So DPOHTP does not rely on a central simulator. The

119

4 Distributed Planning for Self-Organizing Production Systems

agents optimize for the global reward with their action choices. But they keep
the reward for the different agents separated for the statistics on expected reward.
The PLAY; procedure generates playout histories by sampling from the stochastic
simulator and using the current reward statistics, exchanged messages and policy
7 for decision making. The PARAMS; procedure is used to select parameters for
the current action. It uses Optimistic Optimization similarly to StoSOO. But every
call to PARAMS; returns exactly one parameter vector. So several actions with a
parameter each can be selected in one playout. The UPDATE; procedure takes the
last playout of the agent ¢ and updates his internal reward statistics as well as the
messages sent to the neighbors. Every parameter node stores the empirical direct
reward that was generated by the action-parameter combination in a hashmap
e;. The Q-value of the parameter additionally considers the expected reward for
optimal decision-making later on. Optimal decision-making here refers to the
maximization of the global reward, taking the reward signaled by the neighboring
agents via messages into account. Note that the messages are updated with an
averaging procedure in lines 14—18 instead of maximizing over the actions and
parameters. This is due to the fact that several histories h; project to the same
h;;. A maximization under the premise that only the current h; is considered in
the message would distort the message which represents an expectation over the
future reward.

120

4.4 Distributed Planning under Uncertainty

Algorithm 15 The Distributed Partially-Observable Hybrid Tree Planning (DPO-
HTP) algorithm

1
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

16:

11:
12:
13:

14:
15:
16:

17:

: procedure DPOHTP(c°)

mij[-] < 0Viel, je N(i)
nisj[-] < 0VieI,je N()
m[] <—0, ql[] —0 Viel
e[-]<0 Viel
L[]« {(0,1)} Viel
d<+1
while enough time do
fori c I do
U'iNE?
(hi, ’I’i) < PLAYZ‘ (0’?)
UPDATE; (h;, T;)
d<—d+1
if d > log,(n;[e] then
d<+1
return argmax {Ziel qi[T1;(af)]

a€A, 0€B,,
Vi€la, n;lab]>0

: procedure PLAY; (0, d)

hi <— €
T, < €
while not DONE(o;) do
if B # o then
(ai,Gi) — Wi(hi, Bl)
d+<—d—1
else

lognslhil+1 |

a;¢ arg max {qi[hibi] +a milhabs]

D ien mj%i[Hij(hibi)]]

d+—d—-1
Gi — PARAMi(hiai, d)
d <+ d — depth(L;[h;a;]

(Giv 0i, vi) ~ in (Gl)

h; < h;a;0;0;

T < (’I‘i,Uz’)

return h;, r;

121

4 Distributed Planning for Self-Organizing Production Systems

1: procedure PARAM;(h;a;, d)
2: ifd > depth(L[hzaL]) then
3: return argmax g[h;a;0)

0:3(u,v)€L;lh;a;],
@i[hia;;u,v]=0

4 else if @ < 1 then

5: G +— Lz[hzal]

6: else

7. G+ Li[hiai; d}

8: (u,v) + argmax [qi [hia;0] + « % +
. e

i[hiaq;se, ZjeN(i) qui(Hil(hiaie))}

9: 0« x;[h;a:;u,v]

10: if n; [hzalﬁ] < kAl =1""" then

11: return 0

12: ulha;l,i] « ulha; 1,1 + 1

13: < ulha;l,]

14: n < dim(0,)

15: 0 < mod(l,n) +1

16: &<+ |Lha;l+1]| +1

17: zlha;l+1,¢] <—9+(/L—2)1/5(%
18: Llha] < Llha] U {(l + 1,¢)}

19: if o = 3 then

20: Llha] < L{ha] \ {(1,7)}

21: return z[ha;l + 1,¢]

)u/nJ+1

122

4.4 Distributed Planning under Uncertainty

1: procedure UPDATE;(h;, 7;)
2 for k = |h;|,...,1do
3 (ai,ei,oi) <—hlbC
4: gi < h;kil
5: T [gl] “— n; [gz] +1
6 ni[gia;] < nifgia;] + 1
7 ni[giai0;] + n;[g:a:6;] + 1
k—eilgia:0;
8 ei[giaib;] < e;[gia:b;] + %
nlg;a;0;0;
9 Qi[giaigi} — ei[giaiei} + Zoieoi [Qi[giaigioi]m]
10: 07 + argmaxg,co,, [qi [giaigi] + Z]EN(Z.) i (ILs; (giai¢i))]
n[giai*¢i]>0
11 ¢i[giai] <+ g¢i[giai0;]
12: aj < argmaxp,ca, [qi[gibi} + 2 iene) mjei(Hij(gibi))}
n[g;b;]>0
13: ¢i[gi] + qi[gia]]
14 for j € N(i) : a; € A;; do
15: gi; < 1i;(gi)
16: Ni—sj [g”azez} S Ny [g”azﬁz} +1
17: NisjlGijai] <= nisjlgijad +1
18: q < qilgijail;) + ZleN<i)\{j} my—i(ILi(giaibs))
"—misjlgijaifs
19: Myi— 5 [gijaiai] — Mi—j [gijaiei] + tzm_d[;im
20: q" + qilgija;) + ZlGN(i)\{j} my—i (Il (giaq))
21: Mi—j [gijai] = My [Qijai} + = _:[;?jja[f’]“ai]

123

4 Distributed Planning for Self-Organizing Production Systems

4.5 Evaluation

A preliminary version of DPOHTP was evaluated in [Pfr16a]. The main difference
is that this version allows each agent to run simulations in a private simulator. So
the agents are completely decoupled besides their message exchange. Existing
benchmark examples from the Dec-POMDP literature assume a central simulator.

The scenario from autonomous driving was chosen since it enables a good
visual understanding of the effect of agent coordination. Autonomous driving can
be considered as one of the activites on the lower levels of the control hierarchy
for supply-chain logistics. Furthermore, it shows the ability of the approach to
adjust to changing system topologies with agent entering and leaving at runtime.
Note that the example does not claim to be a physically accurate simulation for
autonomous driving. It is a highly stylized benchmark example and not intended
for practical use. Still, the model is based on results from the relevant literature that
uses MCTS for planning of car maneuvers [LKK16]. If required, the simulation
model can be readily replaced with something more accurate without changing the
(implementation of) the GMCTS algorithm used for planning and coordination.

Two versions of the driving scenario are shown in Figures 4.4 and 4.5. Both
start from the same initial situation. Three cars (blue, green and red) are driving
close to each other at the same speed. They head toward the grey car that blocks
the left lane after an accident. The cars have only a limited radius of visibility
(assume some fog or heavy rain blocking the view). The cars seeing each other
are marked with blue and green lines respectively.

The timeline of the scenario is discretized to 100 millisecond periods. In
every period the cars may choose between five actions: nothing, accelerate,
break, moveLeft and moveRight. The cars receives a reward at every iteration.
A negative reward of —1 is assigned for every action besides nothing. This gives
an incentive not to over-react. An additional negative reward of —50 is assigned
to every car that crosses onto the shoulder of the road. Cars touching each other
receive a reward of —1000 each. Each car has an internal simulator to predict
future situations given joint actions for all cars in their visibility scope. Cars
outside the visibility scope are not considered in the simulator. The simulator is
the basis for MCTS-based planning.

124

4.5 Evaluation

In the first figure, the red car “sees” the accident at a very late point when the
green car has already nearly passed. Until then, the red car stays in his line and
keeps the original speed. Then, to prevent a crash that can now be predicted by the
red car, the red car moves behind the blue car. The second figure was produced
by identical parameters than the first figure. The only change is the exchange
of messages between agents. So they use our DPOMCP algorithm instead of
plain MCTS. It can be seen that the red car reacts much sooner to the accident,
even before the grey car moves into his scope of visibility. The reason for this
change of behavior is as follows: In the second line of Figure 4.5, the green car
already sees the accident. Therefore the potential crash of the red and grey cars
are predicted by the green car. When the green cars exchanges a message with
preferences with the red car, then the danger of the crash is marginalized into the
expected reward starting from possible shared action sequences. Thus, the red
car learns about the potential strong negative consequences for staying in its line.
The red cars therefore moves to the right lane and inserts even before the blue car.
The change of exchanging messages leads to a very different — and more safe —
outcome compared to the scenario without coordination.

The advantage of our work compared to previous results [FB10] is that it does
not require that cars explicitly define coordination groups. Second, the complexity
of the coordination algorithm grows exponentially only in the number of neighbors
at every agent. Since every agent has a limited scope (and just a few neighbors),
scaling to very large systems is easily possible. Third, when agents enter and
leave the system at runtime, this has only a very local impact as just the direct
neighbours need to coordinate.

125

4 Distributed Planning for Self-Organizing Production Systems

Figure 4.4: Autonomous driving example without coordination. The blue lines
indicate neighbor relations.

126

4.5 Evaluation

4 [= 3
B JE—
o == ==

== = ==
- = =

Figure 4.5: Autonomous driving example with coordination. The green lines
indicate neighbor relations that are also communication relations.

127

5 Modeling of Production Skills

The tape was a small loop that fed continuously between
magnetic pickups. On it were recorded the movements of a
master machinist turning out a shaft. [...] Rudy Hertz, an old
timer, who had been about ready to retire. And here, now, this
little loop [...] was Rudy as Rudy had been to his machine
that afternoon. Rudy, the turner-on of power, the setter of
speeds, the controller of the cutting tool. This was the essence
of Rudy as far as his machine was concerned.

Kurt Vonnegut — Player Piano [Von52]

The model of production systems developed in Chapter 2 demands that every
possible behavior of the manufacturing resources is captured in the form of actions
with well-defined preconditions and effects. This lays a heavy burden on plant
operators to manage the set of available actions. Especially when changes are
made to the plant topology and the targeted product lineup. While the actions are
conceptually uniform, the complexity of a flexible manufacturing plant manifests
itself in the large number of actions required to model the relevant aspects. For
tens of considered final products with tens of manufacturing steps each, as well as
tooling and transportation, plant operators need to model (and keep up-to-date)
thousands of actions.

In addition to just defining the actions, their execution requires custom control
code or the parameterization of reusable functionality for the product at hand.
This custom effort to foresee, implement and deploy actions that are possibly
needed at runtime is then a bottleneck for system integrators and operators who
want to introduce changes at a later time. To reduce this burden, we introduce
higher-level abstractions for the skills of the system components. Together with a
similar description of the production requirements, the low-level actions are then
generated automatically or with tool assistance.

129

5 Modeling of Production Skills

Executable actions for planning and runtime control in a
production systems can be generated from higher-level de-
scriptions of the production system and the requirements.

Note: Our work on skill modeling [PSB13a; Pfr+14c; PSB13b; Pfr+15] was
published starting in 2013. The more recent literature already references and
incorporates these results. This chapter provides a synthesis of our published
work together with a novel representation of the concepts in Description Logics.
Our own publications are not referenced in the summary of the state-of-the-art.

5.1 Background: Skill Models for Production

Sussman was one of the first to define a “theory of skill” that was not focused on
the skilled human but on the computer [Sus73]. He writes:

[...] askill is a set of answer procedures, each indexed by a descrip-
tion of the problem types for which it is appropriate, along with a set
of pitfalls to avoid when it is necessary to construct a new answer
procedure. A skill is acquired by the construction of such a store of
“runnable” knowledge — canned answers to problems — by “compil-
ing” it from knowledge of the problem domain supplied in a more
“intelligible” form — a form designed more for communication than
for use as answers to problems.

This early work already talks about representations for the skill and the problem
description, as well as the “compilation” of their combination into an executable
form. Since then, work on technical skill definitions has continued mainly in
the robotics domain. Many authors have worked on methods for learning of
particular robot skills [GFB94; MK97; FRD98]. But we are rather interested in
skill definitions that applies across different application domains.

In the last 10 years, interest in using skill definitions specifically for the pro-
duction domain has considerably gained in importance. Some authors from the

130

5.1 Background: Skill Models for Production

production community differentiate between the terms skill and capability. In this
text, we will use the terms interchangeably.

The authors from the STARAS project [Mal+07] use ontologies to store skills
and their relations for production. This information is then used for automatic
reconfiguration of production systems. Naumann et al. [NWS07] use an ontology
to model robot skills and use state-charts for sequences within manufacturing
processes. Jarvenpid et al. [Jar+11] define an ontology for skills in manufacturing
and use it to map resources to manufacturing steps. Kluge [Klul1] uses skill
models for assembly planning. Huckaby and Christensen [HC12] provide a
taxonomy for assembly tasks and related skill primitives. Constraints specify
whether they are executable in a certain situation. Bjorkelund et al. [Bjo+12] first
make use of the PPR (Product, Process, and Resource) concepts in the context
of skills. They relate skills to all three views of PPR and represent skills as
finite state machines. Keddis et al. [KKZ14] define a description vocabulary for
skills of production resources and an accompanying algorithm for production
planning and scheduling. Legat et al. [LSV14] use a description of the resource
skills to guide engineers in the implementation of field control code. Backhaus
et al. [BUR14] present a classification of manufacturing skills to enable task-
oriented programming. This concept is expanded in [BR15] and used to generate
executable tasks for a welding robot. Malakuti et al. discuss challenges of skill-
based production control for practitioners and possible solutions [Mal+18]. The
authors of [Jar+18] use semantic inference to determine the capabilities of resource
combinations. For example of a robotic manipulator combined with a gripper.

Many interesting approaches to describe the skills of production resources
via ontologies and high-level description schemas have been proposed in the
literature. All authors report the successful application in the demonstration
scenarios for which their description schemas were developed. We argue that
modelling semantic knowledge about production systems facilitates the integration
of resources in a Plug & Produce fashion. But it is not enough. First, as ontologies
for describing manufacturing skills become more detailed, the less general they
are. This leads to the difficult situation where

« general skill description schemas require additional information to cover
implementation-specific edge-cases and constraints, and

131

5 Modeling of Production Skills

* detailed skill description schemas are applicable to only a narrow sub-
set of resources and will have difficulties in getting the required support
across vendors and integration tooling suppliers. A possible scenario is
the emergence of a standardized core skill description schema from which
domain-specific and sometimes overlapping schemas will branch off.

Second, semantic reasoners were developed to infer further information from an
existing knowledge-base. But they are not equipped for reasoning about numerical
optimization problems, such as the resource- and time-efficient production of
many products on concurrent resources. Therefore, we see the role of semantic
skill descriptions primarily for integration and configuration tasks. To make the
flexibility of generic resource skills available on the level of large-scale systems,
they need to be propagated to dedicated planning and runtime control systems
that may use different representations. This also offers the possibility to integrate
overlapping and domain-specific skill description schemas if they can be interfaced
to a unified abstraction used for planning and runtime control.

5.2 Background: Description Logics

Description Logics (DL) [Baa03] are a family of formal knowledge representation
languages developed to represent hierarchical and relational structures and to
enable reasoning over these structures. DL are the formal basis of semantic models
with ontologies. DL models are defined in terms of constants, concepts and roles.
The semantics of a DL is defined in terms of first-order logic. Hence, no DL is
more powerful than first-order logic. Let the domain A a fixed countably infinite
set. The interpretation T is a function - that assigns

* to every constant ¢ an element of A so that ¢Z € A,
* to every concept C' members of A as CT C A,
* to every role R binary relations between members of A as R C A x A.

The interpretation has to be consistent with respect to assurances that are defined
for the model.

132

5.2 Background: Description Logics

Table 5.1 gives an overview on the syntax of the ££ DL [KKS14] with the
addition of concrete domains to express and reason about numerical attributes
[BH91]. More expressive DL than £L exist. It was selected for the exposition due
to its relative simplicity and the existence of performant solvers. By convention, we
write the elements of DL models as follows: Constants are written in typewriter
font, Concepts in a sans-serif font with a leading uppercase and hasRole definitions
in a sans-serif font with a leading lowercase.

Example 5.1. Begin with the constants alice and bob. Both of them
are humans and therefore, Human(Alice) and Human(Bob). Every hu-
man is either male or female. Therefore Female © Human, Male C
Human and Female M Male T T. Suppose Alice is the daugh-
ter of Bob. The role childOf describes the parent-child relation. We
assert this relation between our two humans as childOf(Alice, Bob).
Daughters are the female children of a human. This can be stated as
daugherOf C childOf with the domain dom(daughterOf) C Human and
range ran(daughterOf) C Human M Female. From this we can infer that
in effect daughterOf(Alice, Bob).

Attributes from concrete domains are also assigned via role re-
lations. Alice is 11 years old. So she has the attributes
hasAge(Alice, 11) and hasName(Alice, “Alice”). Queries over con-
crete domains are stated in the form of predicates. The concept
Human M 3hasAge.(<, 12) M JhasName.(=, “Alice”) contains all hu-
mans named Alice and less than 12 years old.

133

5 Modeling of Production Skills

DL Syntax Set-Theoretic Semantics

Concepts
Universal Concept (Top) T AT
Empty Concept (Bottom) 1 (%]
Concept Assertion C(a) at e C*
Conjunction cnbD ctnD*
Inclusion cCD ct c p?
Restriction JR.C {x|3y: (z,y) € RE Ay e CT}
Roles
Role Assertion R(a,b) (a*, %) € RT
Domain Restriction dom(R) C C RTC T x AT
Range Restriction ran(R) C C RTc AT xCT
Inclusion RCS RT C 5T

T,y) € REA ,2) € RE
Composition RioRC S (z,9) TA)Z 2

= (z,2) €S

Data Types
Restriction IF.r {z|FweD: (z,v) € FT Ar(v)}

Table 5.1: Syntax and Semantics of the Sﬁi Description Logic.

5.3 The PPRS Model for Production Skills

We begin with an informal characterization of the PPRS model. In production,
processes are used to create products. Processes stand for a type of operation,
such as welding. The processes are performed by the resources of a production
system, such as machines and technical equipment in general. Skills describe
what a component is capable of in general. Transformations describe a specific
production step that changes the attributes of a workpiece, consumes ingoing
workpieces and material to create some output, and so on. Transformations
are associated with one or more processes. Actions are realizations of a skill.

134

5.3 The PPRS Model for Production Skills

Product Process Resource

Transformation Skill

Action

Figure 5.1: Outline of the relations between the PCM concepts.

For example to perform a specific transformation of a workpiece. Figure 5.1
gives a high-level overview on the six concepts and their relations. More precise
definitions are now given, together with the representation the language of DL.

Example 5.2. The example used for the remainder of this chapter comes
from the production of automotive battery systems. The example is heavily
simplified to serve as an educational example. From a high-level perspec-
tive, battery systems are comprised of battery cells that are welded to a
conductive busbar. See [Das+18] for a detailed account of the different
joining techniques in battery production.

Definition 5.1 (Product). A product is a type of marketable good, raw material
or intermediate workpiece between production steps. Products describe discrete
(countable) entities. Bulk material and fluids must be “packaged” to be considered
a discrete product. Whenever product types and product instances need to be
differentiated, product instances are denoted as workpieces to make the distinction
clear.

In DL, products are represented as constants. The properties of the product
type are defined via attributes from concrete domains. The definition corresponds
to the product definition from Chapter 2. Workpieces (product instances) of the
same product type are interchangeable.

135

5 Modeling of Production Skills

Example 5.3. The products defined for the battery production example
are cell, busbar and battery.

Product(cell)
Product(busbar)
Product(battery)

Definition 5.2 (Process). Processes denote a type of production operation. Every
process defines a set of process attributes that are used to characterize instances
derived from the process. Processes form a hierarchy where attributes are inher-
ited from parent processes.

The term process is overloaded and understood differently in the fields of
computer science, statistics, workflow management, production, and many more.
The definition used here corresponds to the use of the term manufacturing process
in DIN 8580 [DIN8580]. In DL, processes are represented as concepts. Processes
form a hierarchy of concepts derived from the topmost concept Process.

Example 5.4. The processes defined for the battery production example
are welding and the more specialized laser-welding. The processes are
described by the power used for welding and, for the laser-welding process,
the wavelength of the laser.

LaserWelding C Welding C Process
dom(hasPower) C Welding
ran(hasPower) = P(R,)
dom(hasWavelength) C LaserWelding
ran(hasWavelLength) = P(R.)

The use of the powerset P(IR;) as the concrete domain of the hasPower role
allows instances of a welding process to refer to ranges of possible temperatures
instead of a single scalar. Note that the concrete domains for process attributes may
become quite complex, e.g. to describe the possible tool positions and rotations
for a 5-axis CNC mill. Implementation may restrict concrete domains for example

136

5.3 The PPRS Model for Production Skills

Separation (DIN 8580 — 3)

l

Cutting with geometrically Severing (DIN 8580 - 3.1)
defined cutting edges
(DIN 8580 — 3.2)

l

Drilling (DIN 8580 - 3.2.2) Turning (DIN 8580 - 3.2.1)
* Position / mm? (R x R)
* Diameter / mm (RY)

* Depth / mm (R™)

l

Cooled Drilling Countersink Drilling
* Coolant Type ({water,0il}) » Chamfer Angle / mm (R*)
e Max. Temperature / °C (R) Outer Diameter / mm (RT)

Figure 5.2: Excerpt from a hierarchy of production processes based on DIN
8580 [DIN8580]. The process attributes are from the indicated concrete domains.
Arrows denote an inheritance relation, which is expressed in DL via concept
inclusion, such as CountersinkDrilling C Drilling.

to one-dimensional ranges, where the representation and verification of predicates
on a computer is trivial.

Figure 5.2 shows a more complete example process hierarchy, specializing
processes for drilling from DIN 8580. Processes usually originate from the
production and logistics domain. But they can also be auxiliary to the core
production operations. For example processes for machine maintenance.

Definition 5.3 (Resource). Resources denote machines and technical assets in
general. Resources are components in the nomenclature of Chapter 2.

Renaming the components from Chapter 2 to resources may seem unnecessary.

This is done in this chapter only to assure the possibility of comparison with
existing production skill models from the literature.

137

5 Modeling of Production Skills

In DL, resources are represented as constants. The set of all resources is denoted
with the concept Resource. In addition, derived concepts can be used to group
resources. For example 5AxisManipulator C Manipulator C Resource. This is
useful to query for specific resources. But this grouping of resource has no further
purpose in this text.

Example 5.5. In the battery production example, we consider only one
resource: The (imginary) LaserWelder200.

Resource(LaserWelder200)

Definition 5.4 (Transformation). Transformations are production operations that
transition one or several input products into one or several output products by
the application of production processes.

In DL, transformations are represented as constants that are instances of the
Transformation concept. Two new roles, hasInput and hasOutput, both with the
range Transformation and the range Product, are used to model which ingoing
products are transformed to which output. The input/output relations between
transformations can be used to draw a graph of a bill of processes. Note however,
that transformations must act on a product. Auxiliary processes, such as machine
tooling and transportation steps, are not considered.

In addition, transformations are also instances of one or more process concepts.

Transformation C Process

With that, the transformations can assign values to the respective process at-
tributes. The attributes of a transformation describe requirements that need to be
fulfilled by implementations of the transformation. As described earlier, process
attributes can have powersets for their domain in order to describe subsets, such
as ranges. For example, a transformation for welding two workpieces together
could indicate the range of supported temperatures in reference to the temperature
attribute specified for the welding process.

138

5.3 The PPRS Model for Production Skills

Example 5.6. To produce a battery, cells are welded together with a
busbar. The welding process requires a power to be applied from the range
between 2kW and 3kW.

Transformation(JoinBatteryCells)
haslnput(JoinBatteryCells, cell)
haslnput(JoinBatteryCells, busbar)
hasOutput(JoinBatteryCells, battery)

Welding(JoinBatteryCells)
hasPower(JoinBatteryCells, [2.000, 3.000])

Definition 5.5 (Skill). Skills describe that a resource can execute a process under
constraints defined in terms of the process attributes.

In DL, skills are represented as constants. Similar to transformations, skills are
also instances of processes.

Skill T Process

Therefore, skills refer to the same attributes used to defined the transformation
requirements. But it in the case of skills, the attributes describe the possibility to
realize a process for given attributes.

Example 5.7. The LaserWelder has the skill to weld with a power
between 2.5kW and 5kW. The CO2 laser used has a fixed wavelength
of 10.6um.

Skill(LW200LaserWeld)
hasSkill(LaserWelder200, LW200LaserWeld)

LaserWelding(LW200LaserWeld)
hasPower(LW200LaserWeld, [2.500, 5.000])
hasWavelength(LW200LaserWeld, 10.6)

139

5 Modeling of Production Skills

Now we can formulate a query to find all skills that match with the Join-
BatteryCells transformation in terms of supported processes and process
attributes. This leads us to the resources that possess said skills. The N
operator is used to find attributes where the overlap with the indicated
range is nonempty.

SkillMatch C Welding M 3hasPower(N, [2.000, 3.000])
ResourceMatch T FhasSkill.SkillMatch

The skill representations cannot capture all details of a production system.
Therefore, we can only test whether a resource can perform a transformation
in general. For some domains, the attributes might be sufficient to guarantee
feasibility of the match. In other domains, additional checks need to be performed
either by detailed descriptions of the machine and product geometry or by manual
intervention.

However, once a skill has been specialized for a transformation or auxiliary
operation, implemented, tested and deployed to the production system, e.g. in the
form of PLC control code, then we know the exact conditions under which the
concrete operation can be applied.

Definition 5.6 (Action). An action is an executable process instance with well-
defined preconditions and effects. Actions are defined for one or several par-
ticipating resources. The DL concept Action contains instance elements that
correspond to the formal action definition from Chapter 2.

Actions are assumed to encapsulate all the required information to execute on
the resource. For example in the form of IEC-61131 PLC code, configuration
parameters, and so on. As a consequence, actions can be triggered simply by
reference to their identifier, provided that all the preconditions are fulfilled.

Example 5.8. The action LW200BatteryWeld is an implementa-
tion of the JoinBatteryCells transformation. It makes use of the
LW200LaserWeld skill.

140

5.4 Assisted Generation of Executable Actions

Action(LW200BatteryWeld)
implements(LW200BatteryWeld, JoinBatteryCells)
uses(LW200BatteryWeld, LW200LaserWeld)

5.4 Assisted Generation of Executable Actions

In a Plug & Produce scenario, at some point the generic skills of machines and
equipment need to be specialzied into executable actions with known preconditions
and effects. This splits into two steps:

1. Selection of the actions that are required for runtime planning and control.
2. Implementation and deployment of the actions.

The assistend generation of actions was considered as part of the arhitecture of
the SkillPro project. See Figure 5.3 for an overview.

The machines and equipment are assigned to a Skill Execution Engine (SEE).
The SEE provide smart wrappers to the physical resources, which range from
conveyor belts with little configurability to complex machine tools and even human
workers. Facing towards the underlying resources, the SEE implement domain-
specific connectivity, e.g. based on a fieldbus protocol or OPC UA. In case of the
human worker, this is accomplished with a tablet-based graphical-user-interface.
Also, the SEE may contain domain-specific knowledge on how to derive actions
from high-level skill-based descriptions

The Manufacturing Execution System (MES) is responsible for orchestrating
the available resources in order to achive short- to mid-term manufacturing goals.
For this, the MES implements two main features working in lockstep: computing
a fine-grained execution plan that accomplishes the manufacturing goals, and the
orchestration of the manufacturing resources at runtime.

The Asset Management System AMS constitutes the central knowledge base of
a manufacturing facility and provides this information to the adjacent components.
It contains semantic descriptions of the available resources and their skills, as well
as a detailed plant model including topological (e.g. how resources are arranged in

141

5 Modeling of Production Skills

AMS -
A A
v v
MES MES
A A A A A A
v v v v v v
SEE SEE SEE SEE SEE SEE
[», { (\\ =5 :r = », pu
2 | 0B

Figure 5.3: Architecture of the SkillPro project [Pfr+15]

work cells) and topographical (e.g. layout and position of the resources) relations.
The AMS also holds product models, including drawings, bills of material and
bills of processes. The AMS furthermore manages customer orders on a long-term
horizon and ensures that the required resources with the right skills are available.
Lastly, it interfaces the SkillPro framework with enterprise level ERP (Enterprise
Resource Planning) and PDM (Product Data Management) systems.

Assume that a list of product transformations (bill of processes) are initially
provided or it could be inferred from the product description itself [TMP92].
The task of determining the right operations to produce a specific product was
originally investigated as Computer-Aided Process Planning (CAPP) [EIM93;
Kir95]. CAPP deals with finding “a way through the production system”. So
CAPP is different from production planning and scheduling, where the production
of many products on a given plant layout is considered.

The generation of executable actions from high-level skill-based descriptions
requires the communication of AMS and SEE framework components. The SEE
may internally implement actions with a variety of technologies. Possible ways
for implementing actions are:

* Customization of predefined procedures by parametrization, where the de-
fined parameters are either resource- or production-domain specific [ON15].

142

5.4 Assisted Generation of Executable Actions

Note that a description of the entire product in an appropriate format may
constitute a parameter in this context. More examples of reasoning on
the execution of a high-level task model can be found for example in the
RoboEarth project [TB09; Wai+11].

* Automatic code synthesis from a high-level description [VWKO5], which
can also be either resource-specific or based on a domain specific language
[DM97b; MOWO01; Mit+05].

¢ Manually programmed procedures, for example IEC-61131 function blocks.

The architecture from Figure 5.3 was implemented in the SkillPro project. At
runtime, every SEE is represented by an OPC UA server that provides a uniform
interface. Clients can connect to the OPC UA server and discover the current state
of the component, as well as the available actions. So from the perspective of a
higher-level control system, the SEE are all uniform. Even if they represent very
different types of production equipment. If coordination between components
for an action is required (for example the time-synchronization beginning of
a procedure), they can also use OPC UA or rely some other communication
technology in the background. The latter is rather disapproved of, since this adds
technically rigid solution where tool-support for quick adaptations in the sense of
Plug & Work do not have as much tool-support.

143

6 Conclusion

Automated production systems face a tradeoff between efficiency and flexibility.
This thesis aims to improve the flexibility of automated production systems by
the use of a unified model representation on all levels of the control hierarchy.
Recall the postulate from the outset of Chapter 2:

The same set of modeling principles can represent the relevant prop-
erties of production systems on all levels of the control hierarchy.

The thesis developed modeling principles that are able to represent both con-
tinuous and discrete production on all levels of the control hierarchy, including
concurrency, i.e. parallel operations and the synchronization of system compo-
nents, as well as uncertainty in stochastic scenarios. To our knowledge, no prior
approach was able to encompass all of these properties. In order to make use of
such a model for planning and runtime control appropriate decisions need to be
derived. Chapter 3 started with the following postulate:

The same algorithm can be used for planning and runtime control on
all levels of the control hierarchy — ranging from continuous dynamics
of a physical system to global supply-chain operations — and for both
continuous and discrete production.

Accordingly, an algorithm for optimal sequential decision making was developed
based on forward-simulation of the model from Chapter 2. Now that a model
for all levels of the control hierarchy and a matching planning algorithm exist,
the remaining challenge is to speed up planning for production operations at an
industrial scale. A range of measures were developed in this thesis to speed up
planning.

 Pruning action sequences that are equivalent in a precise sense (Section 3.1).

145

6 Conclusion

* The use of Monte-Carlo Tree Search and Optimistic Optimisation to re-
place trivial tree search and Branch & Bound methods (Section 3.2 and
Section 3.3).

* The relaxation of an important special case of the planning problem to a
Mixed-Integer Linear Program (Section 3.4).

A way to speed up planning that is orthogonal to the techniques just mentioned
is to decompose the planning problem into smaller subproblems to be solved
by independent agents. For this, the algorithm from Chapter 3 is extended for
multi-agent coordination. The chapter sets out to achieve the following target
result:

Independent agents can jointly perform planning in a production
scenario where every agent only has a simulation model of the system
part in his visible scope.

The core idea of the developed planning algorithm is to use “utility propagation”
for the agent coordination similar to “belief propagation” in probabilistic graphical
models. The decomposition into independent agent not only reduces the planning
complexity. Companies in a supply-chain can jointly optimize their actions without
a central entity that has access to all private information.

But in order to optimise production with planning algorithms, the model rep-
resentations of the production system need to be accurate. Furthermore, if the
resulting plans shall be used for automated control, then the action abstractions
used in the model need to available as automated procedures on the actual ma-
chines and equipment. Keeping the model and the physical production system
synchronized can become quite resource-intensive when the production is flex-
ible and changes over time. It is therefore preferable to automate much of the
configuration work as well. The beginning of Chapter 5 postulates the following.

Executable actions for planning and runtime control in a produc-
tion systems can be generated from higher-level descriptions of the
production system and the requirements.

We put forward a framework to describe the skills of production equipment based
on Description Logic (i.e. semantic modeling). The framework also encompasses

146

6 Conclusion

the description of product transformations and the manufacturing processes in-
volved. These descriptions are then used to match production steps with machines
and equipment capable of performaing than. Then, executable actions are gener-
ated and deployed for use by the runtime control systems. This is relevant for to
achieve flexible production. Instead of manually programming a PLC, higher-level
abstractions can be used to generate and parameterized the required control code.

The thesis has answered all four postulates in the affirmative. Example from
different production scenarios and from all levels of the control hierarchy have
been used to substantiate the claim. But surely this work can only be a stepping
stone towards future automated production systems that are both efficient and
flexible. To realize this goal, a large research programme is necessary that goes
beyond the scope of a single thesis. We now enumerate open research questions
and some of the key results that need to be obtained future for the work from
different domains to coalesce into a coherent whole.

Derive existing models for production and logistics from a common core
The production and logistics domain has developed numerous approaches for
modeling operations with varying degree of detail. This text has proposed a high-
fidelity model as the common basis for all such models used in production and
logistics. To support that claim, examples from several production domains and
on several levels of the automation hierarchy have been used for the exposition.

But a more comprehensive treatment is required next to mere examples. It
is an open research question which limiting assumptions need to be made on
top of the high-fidelity model to recover more coarse-grained models that are
already in productive use today. Such an investigation is the basis for an automated
treatment of interfaces where subsystems that are controlled by different modeling
approaches connect.

Using Machine Learning to Guide Exploration Monte-Carlo Tree Search
(MCTS) as a planning algorithm is essentially blind once it reaches a point in the
scenario tree that was never visited before. Machine Learning methods can be
used to enable MCTS to “learn to see”. The Q-value of the system state (or a belief
distribution for the system state) can be approximated from similar experiences in
the past that were (reached with a different sequence of actions). In that sense,

147

6 Conclusion

the model structure is not explicitly represented a-priori but learned from the
interaction with the scenario over a series of plays. This has becomes known
as Approximate Dynamic Programming [Ber+05; Pow07]. The combination
of MCTS with neural networks as function approximators has famously been
used in the Deepmind AlphaGo system [Sil+16]. The expectation is that a further
reduction of the sample complexity for simulation-based planning with concurrent
production system model can be achieved.

There is currently an active community working on Multi-Agent Reinforcement
Learning (MARL) [BBDO08]. Recent advances in deep learning are now being
integrated with MARL. Recent work also lets the agents learn how to communicate
instead of predefining the information flow [Foe+16]. “Utility propagation” as
used in Chapter 4 could be combined with recent MARL techniques. For example
by sending neural networks for Q-value estimation as messages instead of an
explicit Q-value representations on a search-tree.

Explicit representation of product attributes The model from Chapter 2
assumes that products are interchangeable. Instead of representing them indi-
vidually, only a count of products of the same type at the possible locations is
considered. But there are of course differences between products of the same
product type. This becomes apparent for example when quality issues come
up. Quality (for which different the definition depends on the case at hand) is
then conditionally dependent on the attributes of incoming raw material and
semi-finished products, process settings and the state of the physical process. A
complete “theory of production” should therefore encompass product attributes
as well.

Open systems with agents entering and leaving at runtime The decentralized
planning approach proposed in Chapter 4 allows for agents to enter and leave
the system at runtime. Such changes do not have to be communicated within the
entire system and only neighboring agents have to be informed. A remaining
question is to see how fast the overall system can adjust to the changes.

Domain-specific action generation The generation of executable actions from
skill definitions requires domain-specific tool support. In some domains, com-

148

6 Conclusion

mercial products are already available that can transform higher-level descrip-
tions to executable definitions. Notably in the robotics domain where clear cat-
egories of equipment exist (cf. https://www.artiminds.com and https:
//www.keba.com). Another example is the standardized “G-code” for numer-
ically controlled machine tools [ISO82]. G-code can be exported by virtually
CAD/CAM tools that target product design. The control synthesis solutions for
the individual application domains then have to be integrated. For example to
assist the integration of systems that combine robotics for loading and unloading
into a machine tool that transforms the work piece and visual inspection for quality
control. To us, high-level descriptions based on skill-definitions are the most
promising inroad for control synthesis in domains with more variety in the types
of machines and equipment as well as a larger range of products to consider.

149

https://www.artiminds.com
https://www.keba.com
https://www.keba.com

Bibliography

[Abe+06]

[ABZ88]

[ACFO02]

[Agn+14]
[AliO5]

[AMOO0]

[AO15]

[Ara+00]

[Aza+16]

[Baa03]

E Abele et al. “Globalization and decentralization of manufactur-
ing”. In: Reconfigurable Manufacturing Systems and Transformable
Factories. Springer, 2006, pp. 3—13.

Joseph Adams, Egon Balas, and Daniel Zawack. “The shifting bot-
tleneck procedure for job shop scheduling”. In: Management science
34.3 (1988), pp. 391-401.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time
analysis of the multiarmed bandit problem”. In: Machine learning
47.2-3 (2002), pp. 235-256.

Alessandro Agnetis et al. Multiagent scheduling. Springer, 2014.

Knut Alicke. Planung und Betrieb von Logistiknetzwerken. Springer,
2005.

Srinivas M Aji and Robert] McEliece. “The generalized distributive
law”. In: IEEE Transactions on Information Theory 46.2 (2000),
pp. 325-343.

Christopher Amato and Frans A Oliehoek. “Scalable Planning and
Learning for Multiagent POMDPs”. In: Twenty-Ninth AAAI Con-
ference on Artificial Intelligence. 2015, pp. 1995-2002.

T Arai et al. “Agile assembly system by ’plug and produce’”. In:
CIRP Annals-Manufacturing Technology 49.1 (2000), pp. 1-4.

Selma Azaiez et al. “Towards Flexibility in Future Industrial Manu-
facturing: A Global Framework for Self-organization of Production
Cells”. In: Procedia Computer Science 83 (2016), pp. 1268—1273.

Franz Baader. The description logic handbook: Theory, implemen-
tation and applications. Cambridge university press, 2003.

151

Bibliography

[Bac+92]

[Badll1]

[Bas+75]

[BBDO8]

[BCGO7]

[BDOS]

[BDH99]

[Bel57]

[Ben93]

[Ber+05]

[Ber+95]

[Ber38]
[BGO1]

152

Frangois Baccelli et al. “Synchronization and linearity: an algebra
for discrete event systems”. In: (1992).

Iman Badr. “Agent-based dynamic scheduling for flexible manufac-
turing systems”. PhD thesis. University of Stuttgart, 2011.

Forest Baskett et al. “Open, closed, and mixed networks of queues
with different classes of customers”. In: Journal of the ACM (JACM)
22.2 (1975), pp. 248-260.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. “A com-
prehensive survey of multiagent reinforcement learning”. In: IEEE
Transactions on Systems, Man, And Cybernetics-Part C: Applica-
tions and Reviews, 38 (2), 2008 (2008).

Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood.
Developing multi-agent systems with JADE. Vol. 7. John Wiley &
Sons, 2007.

Ronen I Brafman and Carmel Domshlak. “From One to Many:
Planning for Loosely Coupled Multi-Agent Systems.” In: ICAPS.
2008, pp. 28-35.

Craig Boutilier, Thomas Dean, and Steve Hanks. “Decision-theoretic
planning: Structural assumptions and computational leverage”. In:
Journal of Artificial Intelligence Research 11.1 (1999), p. 94.

Richard Ernest Bellman. “Dynamic Programming”. In: (1957).

Stuart Bennett. “Development of the PID controller”. In: /IEEE
control systems 13.6 (1993), pp. 58-62.

Dimitri P Bertsekas et al. Dynamic programming and optimal con-
trol. Vol. 1. 3. Athena scientific Belmont, MA, 2005.

Dimitri P Bertsekas et al. Dynamic programming and optimal con-
trol. Vol. 1. 2. Athena scientific Belmont, MA, 1995.

Daniel Bernoulli. Hydrodynamica. Dulsecker, 1738.

Blai Bonet and Héctor Geftner. “Planning and control in artificial
intelligence: A unifying perspective”. In: Applied Intelligence 14.3
(2001), pp. 237-252.

Bibliography

[BHO1]

[Bjo+12]

[BPM18]

[BR15]

[Bri03]

[Bro+12]

[Bro+84]

[BS88]

[BUR14]

[Bus+13]

Franz Baader and Philipp Hanschke. “A Scheme for Integrating
Concrete Domains into Concept Languages”. In: Proceedings of
the 12th International Joint Conference on Artificial Intelligence.
IJCAI’91. Morgan Kaufmann Publishers Inc., 1991, pp. 452-457.

Anders Bjorkelund et al. “Knowledge for Intelligent Industrial
Robots.” In: AAAI Spring Symposium: Designing Intelligent Robots.
2012.

Lucian Busoniu, El6d Péll, and Rémi Munos. “Continuous-action
planning for discounted infinite-horizon nonlinear optimal control
with Lipschitz values”. In: Automatica 92 (2018), pp. 100-108.

J Backhaus and G Reinhart. “Adaptive and Device Independent
Planning Module for Task-Oriented Programming of Assembly
Systems”. In: Procedia CIRP 33 (2015), pp. 545-550.

Douglas Brinkley. Wheels for the world: Henry Ford, his company,
and a century of progress, 1903-2003. Viking Press, 2003.

Cameron B Browne et al. “A survey of monte carlo tree search
methods”. In: IEEE Transactions on Computational Intelligence
and Al in Games 4.1 (2012), pp. 1-43.

Jim Browne et al. “Classification of flexible manufacturing sys-
tems”. In: The FMS magazine 2.2 (1984), pp. 114-117.

MIRYAM BARAD and Daniel Sipper. “Flexibility in manufactur-
ing systems: definitions and Petri net modelling”. In: International
Journal of Production Research 26.2 (1988), pp. 237-248.

Julian Backhaus, Marco Ulrich, and Gunther Reinhart. “Classifi-
cation, Modelling and Mapping of Skills in Automated Production
Systems”. In: Enabling Manufacturing Competitiveness and Eco-
nomic Sustainability. Springer, 2014, pp. 85-89.

Lucian Busoniu et al. “Optimistic planning for continuous-action de-
terministic systems”. In: Adaptive Dynamic Programming And Re-
inforcement Learning (ADPRL), 2013 IEEE Symposium on. IEEE.
2013, pp. 69-76.

153

Bibliography

[BVO4]

[BWO5]

[BZI00]

[Can+11]

[Car84]

[CF69]

[Cha+08]

[Chr00]

[CM15]

[Coa37]

[Com93]

[Cow+99]

154

Stephen Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

Dimitris Bertsimas and Robert Weismantel. Optimization over inte-
gers. Dynamic Ideas, Belmont, 2005.

Daniel S Bernstein, Shlomo Zilberstein, and Neil Immerman. “The
complexity of decentralized control of Markov decision processes”.
In: Proceedings of the Sixteenth conference on Uncertainty in arti-
ficial intelligence. Morgan Kaufmann Publishers Inc. 2000, pp. 32—
37.

Gongalo Candido et al. “Service-oriented infrastructure to support
the deployment of evolvable production systems”. In: Industrial
Informatics, IEEE Transactions on 7.4 (2011), pp. 759-767.

Nancy Cartwright. How the laws of physics lie. Oxford University
Press, 1984.

Pierre Cartier and Dominique Foata. Problemes combinatoires de
commutation et réarrangements. Vol. 85. Lecture Notes in Mathe-
matics. Springer, 1969.

Guillaume Chaslot et al. “Monte-Carlo Tree Search: A New Frame-
work for Game AL” In: Proceedings of the Fourth Artificial Intelli-
gence and Interactive Digital Entertainment Conference. 2008.

Martin Christopher. “The agile supply chain: competing in volatile
markets”. In: Industrial marketing management 29.1 (2000), pp. 37—
44,

Felipe Caro and Victor Martinez-de-Albéniz. ‘“Fast fashion: business
model overview and research opportunities”. In: Retail Supply Chain
Management. Springer, 2015, pp. 237-264.

Ronald H Coase. “The nature of the firm”. In: Economica 4.16
(1937), pp. 386-405.

International Electrotechnical Commission. /IEC 61131-3: Pro-
grammable Controllers. Tech. rep. 1993.

Robert G Cowell et al. “Probabilistic Networks and Expert Systems”.
In: (1999).

Bibliography

[Dan66]

[Das+18]

[De +08]

[De 70]

[DF04]

[Dim15]

[DIN18]

[DINS580]

[DM97a]

[DM97b]

[Dor+17]

[DP87]

Sven Dang. Industrial production models: A theoretical study.
Springer, 1966.
Abhishek Das et al. “Joining technologies for automotive battery

systems manufacturing”. In: World Electric Vehicle Journal 9.2
(2018), p. 22.

Luciana Moreira Sa De Souza et al. “Socrades: A web service based
shop floor integration infrastructure”. In: The internet of things.
Springer, 2008, pp. 50-67.

Morris H De Groot. Optimal statistical decisions. McGraw-Hill,
1970.

David S Dummit and Richard M Foote. Abstract Algebra. John
Wiley and Sons, 2004.

Todor Dimitrov. “Permanente Optimierung dynamischer Probleme
der Fertigungssteuerung unter Einbeziechung von Benutzerinterak-
tionen”. PhD thesis. Karlsruhe Institute of Technology, 2015.

DIN. DIN SPEC 16593-1: RM-SA - Reference Model for Industrie
4.0 Service Architectures - Part 1: Basic Concepts of an Interaction-
based Architecture. Tech. rep. 2018.

DIN8580: Manufacturing processes - Terms and definitions, divi-
sion. Standard. Deutsches Institut fiir Normung, 2003.

Volker Diekert and Yves Métivier. ‘“Partial commutation and traces”.
In: Handbook of formal languages 3 (1997), pp. 457-533.

Donald Dragomatz and Stephen Mann. “A classified bibliography
of literature on NC milling path generation”. In: Computer-Aided
Design 29.3 (1997), pp. 239-247.

Kirill Dorofeev et al. “Device adapter concept towards enabling
plug&produce production environments”. In: Emerging Technolo-
gies and Factory Automation (ETFA), 2017 22nd IEEE International
Conference on. IEEE. 2017, pp. 1-8.

Neil A Duffie and Rex S Piper. “Non-hierarchical control of a flexible
manufacturing cell”. In: Robotics and computer-integrated manu-
facturing 3.2 (1987), pp. 175-179.

155

Bibliography

[DT98]

[Diir+12]

[Diir+14]

[DWI1]

[Dyc03]

[Dyc06]

[EIM93]

[Far88]
[FB10]

[FD16]

[FFWO07]

[Fis99]

156

Alberto De Toni and Stefano Tonchia. “Manufacturing flexibility: a
literature review”. In: International journal of production research
36.6 (1998), pp. 1587-1617.

Lars Diirkop et al. “Towards autoconfiguration of industrial au-
tomation systems: A case study using Profinet IO”. In: Emerging
Technologies & Factory Automation (ETFA), 2012 IEEE 17th Con-
ference on. IEEE. 2012, pp. 1-8.

Lars Diirkop et al. “A field level architecture for reconfigurable
real-time automation systems”. In: Factory Communication Systems
(WFCS), 2014 10th IEEE Workshop on. IEEE. 2014, pp. 1-10.

Thomas L Dean and Michael P Wellman. Planning and control.
Morgan Kaufmann Publishers Inc., 1991.

Harald Dyckhoff. “Neukonzeption der Produktionstheorie”. In:
Zeitschrift fiir Betriebswirtschaft 73.7 (2003), pp. 705-732.

Harald Dyckhoff. Produktionstheorie: Grundziige industrieller Pro-
duktionswirtschaft. Springer-Verlag, 2006.

Hoda A ElMaraghy. “Evolution and future perspectives of CAPP”.
In: CIRP Annals-Manufacturing Technology 42.2 (1993), pp. 739—
751.

Rolf Fire. Fundamentals of production theory. Springer, 1988.

Christian Frese and Jiirgen Beyerer. “Planning cooperative motions
of cognitive automobiles using tree search algorithms”. In: Annual
Conference on Artificial Intelligence. Springer. 2010, pp. 91-98.

Pascal Faure and Philippe Darmayan. “Le plan francais «Industrie
du futur»”. In: Annales des Mines-Réalités industrielles. 4. FFE.
2016, pp. 57-60.

Victor Fung, William Fung, and Yoram Jerry Wind. Competing in
a flat world: building enterprises for a borderless world. Wharton
School Publishing, 2007.

Klaus Fisher. “Agent-based design of holonic manufacturing sys-
tems”. In: Robotics and autonomous Systems 27.1-2 (1999), pp. 3—
13.

Bibliography

[Foe+16]

[FRD98]

[FT63]

[Fujos]

[Fur18]

[FYK92]

[Garl8]

[Ger93]

[Ger99]

[GFO8]

[GFB94]

Jakob Foerster et al. “Learning to communicate with deep multi-
agent reinforcement learning”. In: Advances in Neural Information
Processing Systems. 2016, pp. 2137-2145.

Holger Friedrich, Oliver Rogalla, and Riidiger Dillmann. “Inte-
grating skills into multi-agent systems”. In: Journal of Intelligent
Manufacturing 9.2 (1998), pp. 119-127.

H. Fisher and G.L. Thompson. “Probabilistic learning combinations
of local job-shop scheduling rules”. In: Industrial Scheduling. Ed.
by J.F. Muth and G.L. Thompson. Prentice Hall, 1963, pp. 225-251.

Richard M Fujimoto. “Time management in the high level architec-
ture”. In: Simulation 71.6 (1998), pp. 388—400.

Kai Furmans. Material Handling and Production Systems Modelling-
Based on Queuing Models. Springer, 2018.

Katsuhisa Furuta, M Yamakita, and S Kobayashi. “Swing-up control
of inverted pendulum using pseudo-state feedback”. In: Proceedings
of the Institution of Mechanical Engineers, Part I: Journal of Systems
and Control Engineering 206.4 (1992), pp. 263-269.

Gartner. Market Share Analysis: ERP Software, Worldwide, 2017.
Tech. rep. 2018. URL: https : / / www . gartner . com / doc /
3879510/market-share-analysis-erp-software.

Donald Gerwin. “Manufacturing flexibility: a strategic perspective”.
In: Management science 39.4 (1993), pp. 395-410.

Gary Gerefli. “International trade and industrial upgrading in the
apparel commodity chain”. In: Journal of international economics

48.1 (1999), pp. 37-70.

Harald GleiBner and J Christian Femerling. IT in der Logistik.
Springer, 2008.

Vijaykumar Gullapalli, Judy A Franklin, and Hamid Benbrahim.
“Acquiring robot skills via reinforcement learning”. In: IEEE Con-
trol Systems 14.1 (1994), pp. 13-24.

157

https://www.gartner.com/doc/3879510/market-share-analysis-erp-software
https://www.gartner.com/doc/3879510/market-share-analysis-erp-software

Bibliography

[GG89]

[Gie04]

[GIS76]

[GLKI8]

[Gol99]

[GPP16]

[Gro05]

[Gro08]

[GT60]

[Gurl6]

[GVM16]

158

Yash P Gupta and Sameer Goyal. “Flexibility of manufacturing
systems: concepts and measurements”. In: European journal of
operational research 43.2 (1989), pp. 119-135.

Ronald N Giere. “How models are used to represent reality”. In:
Philosophy of science 71.5 (2004), pp. 742-752.

Michael R Garey, David S Johnson, and Ravi Sethi. “The complexity
of flowshop and jobshop scheduling”. In: Mathematics of operations
research 1.2 (1976), pp. 117-129.

Ling Gou, Peter B Luh, and Yuji Kyoya. “Holonic manufacturing
scheduling: architecture, cooperation mechanism, and implementa-
tion”. In: Computers in Industry 37.3 (1998), pp. 213-231.

Jonathan S Golan. Semirings and their applications. Kluwer Aca-
demic Publishers, 1999.

Sten Griiner, Julius Pfrommer, and Florian Palm. “RESTful Indus-
trial Communication With OPC UA”. In: IEEE Transactions on
Industrial Informatics 12.5 (2016), pp. 1832-1841.

Ignacio Grossmann. “Enterprise-wide optimization: A new frontier
in process systems engineering”’. In: AIChE Journal 51.7 (2005),
pp. 1846-1857.

Donald Gross. Fundamentals of queueing theory. John Wiley &
Sons, 2008.

Bernard Giffler and Gerald Luther Thompson. “Algorithms for
solving production-scheduling problems”. In: Operations research
8.4 (1960), pp. 487-503.

Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual.
2016. URL: http://www.gurobi.com.

Jean-Bastien Grill, Michal Valko, and Rémi Munos. “Blazing the
trails before beating the path: Sample-efficient Monte-Carlo plan-
ning”. In: Advances in Neural Information Processing Systems.
2016, pp. 4680—4688.

http://www.gurobi.com

Bibliography

[HC12]

[Hem66]

[HLO5]

[Hou85]

[HU79]

[ISO82]

[Jac+07]

[Jar+11]

[Jar+18]

[Jay03]

Jacob Huckaby and Henrik I Christensen. “A taxonomic frame-
work for task modeling and knowledge transfer in manufacturing
robotics”. In: Workshops at 26th AAAI Conference on Artificial
Intelligence. 2012.

J Hemelrijk. “Underlining random variables”. In: Statistica Neer-
landica 20.1 (1966), pp. 1-7.

Willy Herroelen and Roel Leus. ‘“Project scheduling under uncer-
tainty: Survey and research potentials”. In: European journal of
operational research 165.2 (2005), pp. 289-306.

David Hounshell. From the American system to mass production,
1800-1932: The development of manufacturing technology in the
United States. 4. JHU Press, 1985.

John E Hopcroft and Jeffrey D Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

ISO. ISO 6983-1: Automation systems and integration — Numerical
control of machines — Program format and definitions of address
words — Part 1: Data format for positioning, line motion and con-
touring control systems. 1982.

F Robert Jacobs et al. “Enterprise resource planning (ERP)—A
brief history”. In: Journal of Operations Management 25.2 (2007),
pp. 357-363.

E Jarvenpaa et al. “Presenting capabilities of resources and re-
source combinations to support production system adaptation”. In:
Assembly and Manufacturing (ISAM), 2011 IEEE International
Symposium on. IEEE. 2011, pp. 1-6.

Eeva Jarvenpad et al. “Utilizing SPIN rules to infer the parameters
for combined capabilities of aggregated manufacturing resources”.
In: IFAC-PapersOnLine 51.11 (2018), pp. 84—89.

Edwin T Jaynes. Probability theory: The logic of science. Cambridge
university press, 2003.

159

Bibliography

[JelO6]

[JMO8]

[Joh87]

[JPS93]

[JSO5]

[Jun+17]

[KBT17]

[Kenl5]

[KF09]

[KFLO1]

160

Mohieddine Jelali. “An overview of control performance assessment
technology and industrial applications”. In: Control engineering
practice 14.5 (2006), pp. 441-466.

Anant Singh Jain and Sheik Meeran. A state-of-the-art review of
Jjob-shop scheduling techniques. Tech. rep. Department of Applied
Physics, Electronic and Mechanical Engineering, University of
Dundee, Dundee, Scotland, 1998.

David G Johnson. Programmable controllers for factory automation.
Marcel Dekker, Inc., 1987.

Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. “Lips-
chitzian optimization without the Lipschitz constant”. In: Journal
of Optimization Theory and Applications 79.1 (1993), pp. 157-181.

Francois Jammes and Harm Smit. “Service-oriented paradigms in
industrial automation”. In: Industrial Informatics, IEEE Transac-
tions on 1.1 (2005), pp. 62-70.

Jieun Jung et al. “Design of smart factory web services based on the
industrial internet of things”. In: Proceedings of the 50th Hawaii
International Conference on System Sciences. 2017.

Ilya Kovalenko, Kira Barton, and Dawn Tilbury. “Design and imple-
mentation of an intelligent product agent architecture in manufac-
turing systems”. In: Emerging Technologies & Factory Automation
(ETFA). IEEE, 2017, pp. 1-8.

Scott Kennedy. “Made in China 2025”. In: Center for Strategic and
International Studies (2015).

Daphne Koller and Nir Friedman. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

Frank R Kschischang, Brendan J Frey, and H-A Loeliger. “Factor
graphs and the sum-product algorithm”. In: Information Theory,
IEEE Transactions on 47.2 (2001), pp. 498-519.

Bibliography

[KHLO8]

[Kir95]

[KKS14]

[KKZ14]

[KLC98]

[Klull]

[KMNO2]

[Koe68]
[KS06]

[Kuh62]

Hanna Kurniawati, David Hsu, and Wee Sun Lee. “SARSOP: Ef-
ficient Point-Based POMDP Planning by Approximating Opti-
mally Reachable Belief Spaces.” In: Robotics: Science and systems.
Vol. 2008. 2008.

Dimitris Kiritsis. “A review of knowledge-based expert systems
for process planning. Methods and problems”. In: The Interna-
tional Journal of Advanced Manufacturing Technology 10.4 (1995),
pp. 240-262.

Yevgeny Kazakov, Markus Krotzsch, and FrantiSek Simancik. “The
incredible ELK”. In: Journal of automated reasoning 53.1 (2014),
pp. 1-61.

Nadine Keddis, Gerd Kainz, and Alois Zoitl. “Capability-based
planning and scheduling for adaptable manufacturing systems”. In:
Emerging Technology and Factory Automation (ETFA), 2014 IEEE.
IEEE. 2014, pp. 1-8.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cas-
sandra. “Planning and acting in partially observable stochastic do-
mains”. In: Artificial intelligence 101.1 (1998), pp. 99-134.

Stefan Kluge. “Methodik zur fihigkeitsbasierten Planung modularer
Montagesysteme”. PhD thesis. Universitit Stuttgart, 2011.

Michael Kearns, Yishay Mansour, and Andrew Y Ng. “A sparse
sampling algorithm for near-optimal planning in large Markov de-
cision processes”. In: Machine learning 49.2-3 (2002), pp. 193—
208.

Arthur Koestler. The ghost in the machine. Macmillan, 1968.

Levente Kocsis and Csaba Szepesvari. “Bandit based monte-carlo
planning”. In: European conference on machine learning. Springer.
2006, pp. 282-293.

Thomas S Kuhn. The structure of scientific revolutions. University
of Chicago Press, 1962.

161

Bibliography

[KVO05]

[KWH13]

[Lam78]

[LaVO06]

[Lei09]

[Lep+11]

[Lib11]

[Lim15]

[Lit+63]

[LKO8]

162

Jelle R Kok and Nikos Vlassis. “Using the max-plus algorithm
for multiagent decision making in coordination graphs”. In: Robot
Soccer World Cup. Springer. 2005, pp. 1-12.

H Kagermann, W Wabhlster, and J Helbig. “Umsetzungsempfehlun-
gen fiir das Zukunftsprojekt Industrie 4.0-Abschlussbericht des
Arbeitskreises Industrie 4.0”. In: Forschungsunion im Stifterver-
band fiir die Deutsche Wissenschaft. Berlin (2013).

Leslie Lamport. “Time, clocks, and the ordering of events in a
distributed system”. In: Communications of the ACM 21.7 (1978),
pp. 558-565.

Steven M LaValle. Planning algorithms. Cambridge university
press, 2006.

Paulo Leitdo. “Agent-based distributed manufacturing control: A
state-of-the-art survey”. In: Engineering Applications of Artificial
Intelligence 22.7 (2009), pp. 979-991.

Wilfried Lepuschitz et al. “Toward self-reconfiguration of manu-
facturing systems using automation agents”. In: Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on 41.1 (2011), pp. 52-69.

Daniel Liberzon. Calculus of variations and optimal control theory:
a concise introduction. Princeton University Press, 2011.

Li&Fung Limited. Li&Fung Annual Report 2015. 2015. URL:
https://www.lifung.com/investors/financial-reports-
presentations/2015/.

John DC Little et al. “An algorithm for the traveling salesman prob-
lem”. In: Operations research 11.6 (1963), pp. 972-9809.

J-H Lee and C-O Kim. “Multi-agent systems applications in man-
ufacturing systems and supply chain management: a review pa-
per”. In: International Journal of Production Research 46.1 (2008),
pp. 233-265.

https://www.lifung.com/investors/financial-reports-presentations/2015/
https://www.lifung.com/investors/financial-reports-presentations/2015/

Bibliography

[LK15]

[LKK16]

[LLY94]

[LMV13]

[Los+11]

[Los+12]

[LP12]

[LPWIT]

[LS92]

Paulo Leitdo and Stamatis Karnouskos. Industrial Agents: Emerging
Applications of Software Agents in Industry. Morgan Kaufmann,
2015.

David Lenz, Tobias Kessler, and Alois Knoll. “Tactical cooperative
planning for autonomous highway driving using Monte-Carlo Tree
Search”. In: Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE.
2016, pp. 447-453.

Tim C Lueth and Thomas Laengle. “Task description, decom-
position, and allocation in a distributed autonomous multi-agent
robot system”. In: Intelligent Robots and Systems’ 94.’Advanced
Robotic Systems and the Real World’, IROS’94. Proceedings of
the IEEE/RSJ/GI International Conference on. Vol. 3. IEEE. 1994,
pp. 1516-1523.

Paulo Leitao, Vladimir Matik, and Pavel Vrba. “Past, present, and
future of industrial agent applications”. In: IEEE Transactions on
Industrial Informatics 9.4 (2013), pp. 2360-2372.

Matthias Loskyll et al. “Semantic service discovery and orchestra-
tion for manufacturing processes”. In: Emerging Technologies &
Factory Automation (ETFA). IEEE. 2011, pp. 1-8.

Matthias Loskyll et al. “Context-based orchestration for control of
resource-efficient manufacturing processes”. In: Future Internet 4.3
(2012), pp. 737-761.

Gisela Lanza and Steven Peters. “Integrated capacity planning over
highly volatile horizons”. In: CIRP Annals-Manufacturing Technol-
ogy 61.1 (2012), pp. 395-398.

Hau L Lee, Venkata Padmanabhan, and Seungjin Whang. “Infor-
mation distortion in a supply chain: The bullwhip effect”. In: Man-
agement science 43.4 (1997), pp. 546-558.

Grace Yuh-jiun Lin and James J Solberg. “Integrated shop floor
control using autonomous agents”. In: /IE transactions 24.3 (1992),
pp- 57-71.

163

Bibliography

[LSV14]

[Lue69]

[LV15]

[Mac+06]

[Mac02]

[Mal+07]

[Mal+18]

[Maz77]

[MBO00]

[Mes13]

164

Christoph Legat, Daniel Schiitz, and Birgit Vogel-Heuser. “Au-
tomatic generation of field control strategies for supporting (re-)
engineering of manufacturing systems”. In: Journal of Intelligent
Manufacturing 25.5 (2014), pp. 1101-1111.

David G Luenberger. Optimization by vector space methods. John
Wiley & Sons, 1969.

Christoph Legat and Birgit Vogel-Heuser. “An Orchestration En-
gine for Services-Oriented Field Level Automation Software”. In:
Service Orientation in Holonic and Multi-agent Manufacturing.
Ed. by Theodor Borangiu, André Thomas, and Damien Trentesaux.
Vol. 594. Springer International Publishing, 2015, pp. 71-80.

C Matthew MacKenzie et al. OASIS Reference model for service
oriented architecture 1.0. Tech. rep. 2006.

Jan Marian Maciejowski. Predictive control: with constraints. Pear-
son education, 2002.

J. Malec et al. “Knowledge-Based Reconfiguration of Automation
Systems”. In: Automation Science and Engineering, 2007. CASE
2007. IEEE International Conference on. 2007, pp. 170-175.

Somayeh Malakuti et al. “Challenges in Skill-based Engineering of
Industrial Automation Systems”. In: 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation
(ETFA). Vol. 1. IEEE. 2018, pp. 67-74.

Antoni Mazurkiewicz. “Concurrent program schemes and their
interpretations”. In: DAIMI Report Series 6.78 (1977).

Duncan C McFarlane and Stefan Bussmann. “Developments in
holonic production planning and control”. In: Production Planning
& Control 11.6 (2000), pp. 522-536.

VDI/VDE - Gesellschaft fiir Mess und Automatisierungstechnik
(GMA). Cyber-Physical Systems: Chancen und Nutzen aus Sicht
der Automation. Tech. rep. 2013.

Bibliography

[MF70]

[Mit+05]

[MK97]

[ML99]

[MLDO09]

[Mon14]

[MOWO01]

[Mun+14]

[Munl1]

[MVKO06]

Burton G Malkiel and Eugene F Fama. “Efficient capital markets:
A review of theory and empirical work”. In: The journal of Finance
25.2 (1970), pp. 383-417.

S Mitsi et al. “Oft-line programming of an industrial robot for man-
ufacturing”. In: The International Journal of Advanced Manufac-
turing Technology 26.3 (2005), pp. 262-267.

J Daniel Morrow and Pradeep K Khosla. “Manipulation task prim-
itives for composing robot skills”. In: Robotics and Automation,
1997. Proceedings., 1997 IEEE International Conference on. Vol. 4.
IEEE. 1997, pp. 3354-3359.

Manfred Morari and Jay H Lee. “Model predictive control: past,
present and future”. In: Computers & Chemical Engineering 23.4
(1999), pp. 667-682.

Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm.
OPC Unified Architecture. Springer, 2009.

Laszl6 Monostori. “Cyber-physical production systems: Roots, ex-
pectations and R&D challenges”. In: Procedia Cirp 17 (2014),
pp. 9-13.

Swee M Mok, Kenlip Ong, and Chi-haur Wu. “Automatic generation
of assembly instructions using STEP”. In: Robotics and Automation,
2001. Proceedings 2001 ICRA. IEEE International Conference on.
Vol. 1. IEEE. 2001, pp. 313-318.

Rémi Munos et al. “From Bandits to Monte-Carlo Tree Search: The
Optimistic Principle Applied to Optimization and Planning”. In:
Foundations and Trends in Machine Learning 7.1 (2014), pp. 1-129.

Rémi Munos. “Optimistic optimization of a deterministic function
without the knowledge of its smoothness”. In: Advances in neural
information processing systems. 2011, pp. 783-791.

Laszl6 Monostori, J6zsef Vancza, and Soundar RT Kumara. “Agent-
based systems for manufacturing”. In: CIRP Annals-Manufacturing
Technology 55.2 (2006), pp. 697-720.

165

Bibliography

[MW59]

[MWLI11]

[Nas51]

[Neu55]

[NHR99]

[NW10]

[NWSO07]

[OHN14]

[Ohn88]

[ON15]

166

Born Max and Emil Wolf. Principles of optics. Pergamon Press,
1959.

Christopher R Mansley, Ari Weinstein, and Michael L Littman.
“Sample-Based Planning for Continuous Action Markov Decision
Processes.” In: ICAPS. 2011.

John Nash. “Non-cooperative games”. In: Annals of mathematics
(1951), pp. 286-295.

John von Neumann. The impact of recent developments in science
on the economy and on economics. Speech to the National Plan-
ning Association, Washington D.C., reprinted in Collected Works
(Pergamon Press, 1963). 1955.

Andrew Y Ng, Daishi Harada, and Stuart Russell. “Policy invariance
under reward transformations: Theory and application to reward
shaping”. In: ICML. Vol. 99. 1999, pp. 278-287.

Peter Nyhuis and Hans-Peter Wiendahl. “Ansatz zu einer Theorie
der Produktionstechnik™. In: ZWF Zeitschrift fiir wirtschaftlichen
Fabrikbetrieb 105.1-2 (2010), pp. 15-20.

Martin Naumann, Kai Wegener, and Rolf Dieter Schraft. “Control
architecture for robot cells to enable Plug’n’Produce”. In: Robotics
and Automation, 2007 IEEE International Conference on. IEEE.
2007, pp. 287-292.

Jens Otto, Steffen Henning, and Oliver Niggemann. “Why cyber-
physical production systems need a descriptive engineering ap-
proach - a case study in plug & produce”. In: Procedia Technology
15 (2014), pp. 295-302.

Taiichi Ohno. Toyota production system: beyond large-scale pro-
duction. CRC Press, 1988.

Jens Otto and Oliver Niggemann. “Automatic Parameterization
of Automation Software for Plug-and-Produce”. In: The AAAI-15
Workshop on Algorithm Configuration (AlgoConf 2015), Austin,
Texas (2015).

Bibliography

[Ono+12]

[Oue+99]

[Par87]

[PeaB4]

[Pea88]

[Pfr+14a]

[Pfr+14b]

[Pfr+14c]

[Pfr+15]

[Pfr+16a]

Mauro Onori et al. “The IDEAS project: plug & produce at shop-
floor level”. In: Assembly automation 32.2 (2012), pp. 124—-134.

Djamila Ouelhadj et al. “A multi-contract net protocol for dynamic
scheduling in flexible manufacturing systems (FMS)”. In: Robotics
and Automation, 1999. Proceedings. 1999 IEEE International Con-
ference on. Vol. 2. IEEE. 1999, pp. 1114-1119.

H Van Dyke Parunak. “Manufacturing experience with the contract
net”. In: Distributed Artificial Intelligence, Volume I. Elsevier, 1987,
pp- 285-310.

Judea Pearl. “Heuristics: intelligent search strategies for computer
problem solving”. In: (1984).

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers Inc.,
1988.

Julius Pfrommer et al. “Begrifflichkeiten um Industrie 4.0 — Ord-
nung im Sprachwirrwarr”. In: Tagungsband zu Entwurf komplexer
Automatisierungssysteme (EKA) 2014. Ed. by Ulrich Jumar and
Christian Diedrich. Magdeburg, May 2014.

Julius Pfrommer et al. “Dynamic vehicle redistribution and online
price incentives in shared mobility systems”. In: IEEE Transactions
on Intelligent Transportation Systems 15.4 (2014), pp. 1567-1578.

Julius Pfrommer et al. “Modelling and Orchestration of Service-
Based Manufacturing Systems via Skills”. In: Emerging Technolo-
gies & Factory Automation (ETFA), 2014 IEEE 19th Conference
on. Barcelona, Spain, Sept. 2014.

Julius Pfrommer et al. “Plug & produce by modelling skills and
service-oriented orchestration of reconfigurable manufacturing sys-
tems”. In: at-Automatisierungstechnik 63.10 (2015), pp. 790-800.

Julius Pfrommer et al. “A common core for information modeling
in the Industrial Internet of Things”. In: at-Automatisierungstechnik
64.9 (2016), pp. 729-741.

167

Bibliography

[Pfr+16b]

[Pfr+18]

[Pfr14]

[Pfr15]

[Pfr16a]

[Pfri6b]

[Pfr16¢]

[PGP16]

[Pin08]

[PLM13]

168

Julius Pfrommer et al. “Deploying software functionality to manu-
facturing resources safely at runtime”. In: Emerging Technologies
and Factory Automation (ETFA), 2016 IEEE 21st International
Conference on. Berlin, Germany: IEEE, Sept. 2016, pp. 1-7.

Julius Pfrommer et al. “Optimisation of manufacturing process
parameters using deep neural networks as surrogate models”. In:
Proceedings of the 51st CIRP Conference on Manufacturing Sys-
tems. Stockholm: CIRP, 2018.

Julius Pfrommer. Information and Control in Cyber-Physical Pro-
duction Systems. Tech. rep. 2014, pp. 61-74.

Julius Pfrommer. Distributed Constraint Optimization over Con-
strained Communication Topologies. Tech. rep. 2015, pp. 77-87.

Julius Pfrommer. “Graphical Partially Observable Monte-Carlo
Planning”. In: Workshop on Learning, Inference and Control of
Multi-Agent Systems, Conference on Neural Information Processing
Systems (NIPS). Dec. 2016.

Julius Pfrommer. “Semantic Interoperability at Big-Data Scale with
the open62541 OPC UA Implementation™. In: 2nd International
Workshop on Interoperability and Open-Source Solutions for the
Internet of Things (InterOSS-10T). Stuttgart, Germany, Nov. 2016.

Julius Pfrommer. Towards Graphical Partially Observable Monte-
Carlo Planning. Tech. rep. 2016, pp. 113-125.

Julius Pfrommer, Sten Griiner, and Florian Palm. “Hybrid OPC UA
and DDS: Combining architectural styles for the industrial internet”.
In: Factory Communication Systems (WFCS), 2016 IEEE World
Conference on. Aveiro, Portugal: IEEE, May 2016, pp. 1-7.

Michael L Pinedo. “Scheduling: Theory, Algorithms, and Systems”.
In: (2008).

Jani Puttonen, Andrei Lobov, and Jose L Martinez Lastra. “Seman-
tics-based composition of factory automation processes encapsu-
lated by web services”. In: Industrial Informatics, IEEE Transac-
tions on 9.4 (2013), pp. 2349-2359.

Bibliography

[Pow07]

[Pro+17]

[PSB13a]

[PSB13b]

[Put94]

[RDO5]

[Rei+10]

[Rei91]

[Ros+08]

[Sal+10]

[Sch+11]

Warren B Powell. Approximate Dynamic Programming: Solving the
curses of dimensionality. Vol. 703. John Wiley & Sons, 2007.

Stefan Profanter et al. “OPC UA for plug & produce: Automatic
device discovery using LDS-ME”. In: Proceedings of the IEEE
International Conference on Emerging Technologies And Factory
Automation (ETFA). IEEE. 2017.

Julius Pfrommer, Miriam Schleipen, and Jiirgen Beyerer. “Fihigkei-
ten adaptiver Produktionsanlagen”. In: atp-edition 55 (11) (2013).

Julius Pfrommer, Miriam Schleipen, and Jiirgen Beyerer. “PPRS:
Production skills and their relation to product, process, and re-
source”. In: Proceedings of the 2013 IEEE [8th Conference on
Emerging Technologies & Factory Automation (ETFA). IEEE.
Cagliari, Italy, 2013.

Martin L Puterman. Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming. John Wiley & Sons, Inc., 1994.

Paul Renteln and Alan Dundes. “Foolproof: A sampling of mathe-
matical folk humor™. In: Notices of the AMS 52.1 (2005), pp. 24—
34.

G Reinhart et al. “Automatic configuration (plug & produce) of
industrial ethernet networks”. In: Industry Applications (INDUS-
CON), 2010 9th IEEE/IAS International Conference on. IEEE. 2010,
pp. 1-6.

J Francis Reintjes. Numerical control: making a new technology.
Oxford University Press, Inc., 1991.

Stéphane Ross et al. “Online planning algorithms for POMDPs”. In:
Journal of Artificial Intelligence Research 32 (2008), pp. 663-704.

Yves Sallez et al. “The lifecycle of active and intelligent products:
The augmentation concept”. In: International Journal of Computer
Integrated Manufacturing 23.10 (2010), pp. 905-924.

Giinther Schuh et al. “Developing a production engineering based
theory of production”. In: Concurrent Enterprising (ICE), 2011
17th International Conference on. IEEE. 2011, pp. 1-9.

169

Bibliography

[Sch+15a]

[Sch+15b]

[Sch+17]

[Sch04]

[Sch34]
[Sch86]

[She+07]

[She03]

[She71]

[Sil+16]

[Sil+17]

[SKB97]

170

Miriam Schleipen et al. “Requirements and concept for plug-and-
work™. In: at-Automatisierungstechnik 63.10 (2015), pp. 801-820.

Giinther Schuh et al. “Hypotheses for a Theory of Production in the
Context of Industrie 4.0”. In: Advances in Production Technology.
Springer, 2015, pp. 11-23.

Giinther Schuh et al. “Towards a technology-oriented theory of
production”. In: Integrative Production Technology. Springer, 2017,
pp. 1047-1079.

Christoph Schneewei3. “On the empirical validity of production
theory”. In: Central European Journal of Operations Research 12.2
(2004), p. 107.

Erich Schneider. Theorie der Produktion. J. Springer, 1934.

Christoph Schneeweil. Einfiihrung in die Produktionswirtschafft.
Springer, 1986.

Weiming Shen et al. “An agent-based service-oriented integra-
tion architecture for collaborative intelligent manufacturing”. In:
Robotics and Computer-Integrated Manufacturing 23.3 (2007),
pp. 315-325.

Khalid Sheikh. Manufacturing resource planning (MRP II): with
introduction to ERP, SCM and CRM. McGraw-Hill New York, NY,
2003.

Ronald William Shepherd. Theory of cost and production functions.
Princeton University Press, 1971.

David Silver et al. “Mastering the game of Go with deep neural
networks and tree search”. In: nature 529.7587 (2016), p. 484.

David Silver et al. “Mastering the game of Go without human knowl-
edge”. In: Nature 550.7676 (2017), p. 354.

Ashraf Saad, Kazuhiko Kawamura, and Gautam Biswas. “Perfor-
mance evaluation of contract net-based heterarchical scheduling for
flexible manufacturing systems”. In: Intelligent Automation & Soft
Computing 3.3 (1997), pp. 229-247.

Bibliography

[Sko04]

[Smi80]

[SP97]

[SS73]

[SS90]

[Sus73]

[SV10]

[SWHO6]

[SZW17]

[TBO9]

Sigurd Skogestad. “Control structure design for complete chemi-
cal plants”. In: Computers & Chemical Engineering 28.1 (2004),
pp. 219-234.

Reid G Smith. “The contract net protocol: High-level communica-
tion and control in a distributed problem solver”. In: IEEE Transac-
tions on computers 12 (1980), pp. 1104-1113.

Rainer Storn and Kenneth Price. “Differential evolution—a sim-
ple and efficient heuristic for global optimization over continuous
spaces”. In: Journal of global optimization 11.4 (1997), pp. 341—
359.

Richard D Smallwood and Edward J Sondik. “The optimal control
of partially observable Markov processes over a finite horizon”. In:
Operations research 21.5 (1973), pp. 1071-1088.

Andrea Krasa Sethi and Suresh Pal Sethi. “Flexibility in manufac-
turing: a survey”. In: International journal of flexible manufacturing
systems 2.4 (1990), pp. 289-328.

Gerald J Sussman. “A computational model of skill acquisition”.
PhD thesis. 1973.

David Silver and Joel Veness. “Monte-Carlo planning in large
POMDPs”. In: Advances in neural information processing systems.
2010, pp. 2164-2172.

Weiming Shen, Lihui Wang, and Qi Hao. “Agent-based distributed
manufacturing process planning and scheduling: a state-of-the-art
survey”. In: Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on 36.4 (2006), pp. 563-577.

Jan-Philipp Schmidt, Andreas Zeller, and Michael Weyrich. “Mod-
ellgetriebene Entwicklung serviceorientierter Anlagensteuerun-
gen”. In: at-Automatisierungstechnik 65.1 (2017), pp. 26-36.

Moritz Tenorth and Michael Beetz. “KnowRob: knowledge pro-
cessing for autonomous personal robots”. In: Intelligent Robots and
Systems, 2009. IROS 2009. IEEE/RSJ International Conference on.
IEEE. 2009, pp. 4261-4266.

171

Bibliography

[TMP92]

[UPS14]

[Van+98]

[VCM13]

[VHLO3]

[Von52]
[VWKO5]

[Vyall]

[Wai+11]

[Wall2]

[War93]

172

HK Tonshoff, E Menzel, and HS Park. “A knowledge-based system
for automated assembly planning”. In: CIRP Annals-Manufacturing
Technology 41.1 (1992), pp. 19-24.

Thomas Usldnder, Julius Pfrommer, and Miriam Schleipen. “Das
Internet der Dinge in der Automation - Anforderungen und Tech-
nologien”. In: 5. Jahreskolloquium ~”Kommunikation in der Au-
tomation” (KommA 2014). Lemgo, 2014.

Hendrik Van Brussel et al. “Reference architecture for holonic man-
ufacturing systems: PROSA”. In: Computers in industry 37.3 (1998),
pp- 255-274.

Michal Valko, Alexandra Carpentier, and Rémi Munos. “Stochastic
simultaneous optimistic optimization”. In: Proceedings of the 30th
International Conference on Machine Learning (ICML-13). 2013,
pp- 19-27.

Guilherme E Vieira, Jeffrey W Herrmann, and Edward Lin. “Resche-
duling manufacturing systems: a framework of strategies, policies,
and methods”. In: Journal of scheduling 6.1 (2003), pp. 39-62.

Kurt Vonnegut. Player Piano. Charles Scribner’s Sons, 1952.

Birgit Vogel-Heuser, Daniel Witsch, and Uwe Katzke. “Automatic
code generation from a UML model to IEC 61131-3 and system
configuration tools”. In: Control and Automation, 2005. ICCA’05.
International Conference on. Vol. 2. IEEE. 2005, pp. 1034-1039.

Valeriy Vyatkin. “IEC 61499 as enabler of distributed and intelli-
gent automation: State-of-the-art review”. In: IEEE transactions on
Industrial Informatics 7.4 (2011), pp. 768-781.

M. Waibel et al. “RoboEarth”. In: IEEE Robotics Automation Mag-
azine 18.2 (2011), pp. 69-82.

Mark John Walker. “The programmable logic controller: its prehis-
tory, emergence and application”. PhD thesis. The Open University,
2012.

Hans-Jiirgen Warnecke. The Fractal Company—A Revolution in
Corporate Culture. Springer, 1993.

Bibliography

[WD51]

[Wel03]

[Wey+14]

[Wie+07]

[Wie48]

[Wig81]

[WJ+08]

[WNH10]

[Wo0095]

[WS11]

Marshal K. Wood and George B. Dantzig. “The programming of
interdependent activities: general discussion”. In: Activity analysis
of production and allocation. Ed. by Tjalling C. Koopmans. John
Wiley & Sons, Inc., 1951.

Lloyd R Welch. “Hidden Markov models and the Baum-Welch
algorithm”. In: IEEE Information Theory Society Newsletter 53.4
(2003), pp. 10-13.

Michael Weyrich et al. “Flexibilisierung von Automatisierungssyste-
men - Systematisierung der Flexibilitdtsanforderungen von Industrie
4.0”. In: wt Werkstattstechnik online 104.3 (2014), pp. 106—-111.

H-P Wiendahl et al. “Changeable manufacturing-classification, de-
sign and operation”. In: CIRP Annals—Manufacturing Technology
56.2 (2007), pp. 783-809.

Norbert Wiener. “Cybernetics; or control and communication in the
animal and the machine”. In: (1948).

Oliver W Wight. MRP II: Unlocking America’s productivity poten-
tial. Omneo, 1981.

Martin J] Wainwright, Michael I Jordan, et al. “Graphical models,
exponential families, and variational inference”. In: Foundations
and Trends® in Machine Learning 1.1-2 (2008), pp. 1-305.

H-P Wiendahl, P Nyhuis, and W Hartmann. “Should CIRP develop
a Production Theory? Motivation, Development Path, Framework”.
In: 43rd CIRP International Conference on Manufactoring Systems.
CIRP. 2010.

Robert Simpson Woodward. “An Historical Survey of the Science
of Mechanics”. In: Science 1.6 (1895), pp. 141-157.

Stephan M Wagner and Victor Silveira-Camargos. “Decision model
for the application of just-in-sequence”. In: International Journal
of Production Research 49.19 (2011), pp. 5713-5736.

173

Bibliography

[WS15]

[XLO8]

[YEFWO1]

[ZR89]

[Zur14]

174

Stephanie Wong and Paula Sailes. “Wal-Mart Takes Back Some
Goods Sourcing From Li & Fung”. In: (2015). URL: https://
www . bloomberg . com/news/articles/2015-05-22/wal-
mart-takes-back-some-goods-sourcing-business-from-
li-fung.

Wei Xiang and Heow Pueh Lee. “Ant colony intelligence in multi-
agent dynamic manufacturing scheduling”. In: Engineering Appli-
cations of Artificial Intelligence 21.1 (2008), pp. 73-85.

Jonathan S Yedidia, William T Freeman, and Yair Weiss. “Bethe
free energy, Kikuchi approximations, and belief propagation algo-
rithms”. In: Advances in neural information processing systems 13

(2001).

Gilad Zlotkin and Jeffrey S Rosenschein. “Negotiation and task
sharing among autonomous agents in cooperative domains”. In:
Proceedings of the 11th International Joint Conference on Artifi-
cial Intelligence (IJCAI). Morgan Kaufmann Publishers Inc. 1989,
pp. 912-917.

Richard Zurawski. Industrial communication technology handbook.
CRC Press, 2014.

https://www.bloomberg.com/news/articles/2015-05-22/wal-mart-takes-back-some-goods-sourcing-business-from-li-fung
https://www.bloomberg.com/news/articles/2015-05-22/wal-mart-takes-back-some-goods-sourcing-business-from-li-fung
https://www.bloomberg.com/news/articles/2015-05-22/wal-mart-takes-back-some-goods-sourcing-business-from-li-fung
https://www.bloomberg.com/news/articles/2015-05-22/wal-mart-takes-back-some-goods-sourcing-business-from-li-fung

Karlsruher Schriftenreihe zur Anthropomatik
(ISSN 1863-6489)

Band 1

Band 2

Band 3

Band 4

Band 5

Band 6

Band 7

Band 8

Jurgen Geisler
Leistung des Menschen am Bildschirmarbeitsplatz.
ISBN 3-86644-070-7

Elisabeth Peinsipp-Byma

Leistungserhéhung durch Assistenz in interaktiven Systemen
zur Szenenanalyse. 2007

ISBN 978-3-86644-149-1

Jurgen Geisler, Jirgen Beyerer (Hrsg.)
Mensch-Maschine-Systeme.
ISBN 978-3-86644-457-7

Jurgen Beyerer, Marco Huber (Hrsg.)

Proceedings of the 2009 Joint Workshop of
Fraunhofer 0SB and Institute for Anthropomatics,
Vision and Fusion Laboratory.

ISBN 978-3-86644-469-0

Thomas Uslander
Service-oriented design of environmental information systems.
ISBN 978-3-86644-499-7

Giulio Milighetti

Multisensorielle diskret-kontinuierliche Uberwachung und
Regelung humanoider Roboter.

ISBN 978-3-86644-568-0

Jurgen Beyerer, Marco Huber (Hrsg.)

Proceedings of the 2010 Joint Workshop of
Fraunhofer 0SB and Institute for Anthropomatics,
Vision and Fusion Laboratory.

ISBN 978-3-86644-609-0

Eduardo Monari

Dynamische Sensorselektion zur auftragsorientierten
Objektverfolgung in Kameranetzwerken.

ISBN 978-3-86644-729-5

Die Bande sind unter www.ksp.kit.edu als PDF frei verfuigbar oder als Druckausgabe bestellbar.

Band 9 Thomas Bader
Multimodale Interaktion in Multi-Display-Umgebungen.
ISBN 3-86644-760-8

Band 10 Christian Frese
Planung kooperativer Fahrmandéver fiir kognitive
Automobile.
ISBN 978-3-86644-798-1

Band 11 Jurgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2011 Joint Workshop of
Fraunhofer I0SB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-86644-855-1

Band 12 Miriam Schleipen
Adaptivitat und Interoperabilitdt von Manufacturing
Execution Systemen (MES).
ISBN 978-3-86644-955-8

Band 13 Jurgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2012 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-86644-988-6

Band 14 Hauke-Hendrik Vagts
Privatheit und Datenschutz in der intelligenten Uberwachung:
Ein datenschutzgewahrendes System, entworfen nach dem
.Privacy by Design” Prinzip.
ISBN 978-3-7315-0041-4

Band 15 Christian Kihnert
Data-driven Methods for Fault Localization in Process
Technology. 2013
ISBN 978-3-7315-0098-8

Band 16 Alexander Bauer
Probabilistische Szenenmodelle fiir die Luftbildauswertung.
ISBN 978-3-7315-0167-1

Band 17 Jurgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2013 Joint Workshop of
Fraunhofer I0SB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-7315-0212-8

Die Bande sind unter www.ksp.kit.edu als PDF frei verfigbar oder als Druckausgabe bestellbar.

Band 18

Band 19

Band 20

Band 21

Band 22

Band 23

Band 24

Band 25

Band 26

Michael Teutsch

Moving Object Detection and Segmentation for Remote
Aerial Video Surveillance.

ISBN 978-3-7315-0320-0

Marco Huber

Nonlinear Gaussian Filtering:

Theory, Algorithms, and Applications.
ISBN 978-3-7315-0338-5

Jurgen Beyerer, Alexey Pak (Hrsg.)

Proceedings of the 2014 Joint Workshop of
Fraunhofer I0SB and Institute for Anthropomatics,
Vision and Fusion Laboratory.

ISBN 978-3-7315-0401-6

Todor Dimitrov

Permanente Optimierung dynamischer Probleme
der Fertigungssteuerung unter Einbeziehung von
Benutzerinteraktionen.

ISBN 978-3-7315-0426-9

Benjamin Kuhn
Interessengetriebene audiovisuelle Szenenexploration.
ISBN 978-3-7315-0457-3

Yvonne Fischer

Wissensbasierte probabilistische Modellierung fiir die Situa-
tionsanalyse am Beispiel der maritimen Uberwachung.

ISBN 978-3-7315-0460-3

Jurgen Beyerer, Alexey Pak (Hrsg.)

Proceedings of the 2015 Joint Workshop of
Fraunhofer 0SB and Institute for Anthropomatics,
Vision and Fusion Laboratory.

ISBN 978-3-7315-0519-8

Pascal Birnstill

Privacy-Respecting Smart Video Surveillance
Based on Usage Control Enforcement.

ISBN 978-3-7315-0538-9

Philipp Woock

Umgebungskartenschdtzung aus Sidescan-Sonar-
daten fiir ein autonomes Unterwasserfahrzeug.
ISBN 978-3-7315-0541-9

Die Bande sind unter www.ksp.kit.edu als PDF frei verfuigbar oder als Druckausgabe bestellbar.

Band 27 Janko Petereit
Adaptive State x Time Lattices: A Contribution to Mobile Robot
Motion Planning in Unstructured Dynamic Environments.
ISBN 978-3-7315-0580-8

Band 28 Erik Ludwig Krempel
Steigerung der Akzeptanz von intelligenter
Videoiiberwachung in 6ffentlichen Raumen.
ISBN 978-3-7315-0598-3

Band 29 Jurgen MoBgraber
Ein Rahmenwerk fiir die Architektur von
Frithwarnsystemen. 2017
ISBN 978-3-7315-0638-6

Band 30 Andrey Belkin
World Modeling for Intelligent Autonomous Systems.
ISBN 978-3-7315-0641-6

Band 31 Chettapong Janya-Anurak
Framework for Analysis and Identification of Nonlinear
Distributed Parameter Systems using Bayesian Uncertainty
Quantification based on Generalized Polynomial Chaos.
ISBN 978-3-7315-0642-3

Band 32 David Munch
Begriffliche Situationsanalyse aus Videodaten bei
unvollstéandiger und fehlerhafter Information.
ISBN 978-3-7315-0644-7

Band 33 Jargen Beyerer, Alexey Pak (Eds.)
Proceedings of the 2016 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-7315-0678-2

Band 34 Jurgen Beyerer, Alexey Pak and Miro Taphanel (Eds.)
Proceedings of the 2017 Joint Workshop of
Fraunhofer I0SB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-7315-0779-6

Band 35 Michael Grinberg
Feature-Based Probabilistic Data Association for
Video-Based Multi-Object Tracking.
ISBN 978-3-7315-0781-9

Die Bande sind unter www.ksp.kit.edu als PDF frei verfigbar oder als Druckausgabe bestellbar.

Band 36 Christian Herrmann
Video-to-Video Face Recognition for
Low-Quality Surveillance Data.
ISBN 978-3-7315-0799-4

Band 37 Chengchao Qu
Facial Texture Super-Resolution
by Fitting 3D Face Models.
ISBN 978-3-7315-0828-1

Band 38 Miriam Ruf
Geometrie und Topologie von Trajektorienoptimierung
fiir vollautomatisches Fahren.
ISBN 978-3-7315-0832-8

Band 39 Angelika Zube
Bewegungsregelung mobiler Manipulatoren fiir die
Mensch-Roboter-Interaktion mittels kartesischer
modellpradiktiver Regelung.
ISBN 978-3-7315-0855-7

Band 40 Jurgen Beyerer and Miro Taphanel (Eds.)
Proceedings of the 2018 Joint Workshop of
Fraunhofer 0SB and Institute for Anthropomatics,
Vision and Fusion Laboratory.
ISBN 978-3-7315-0936-3

Band 41 Marco Thomas Gewohn
Ein methodischer Beitrag zur hybriden Regelung
der Produktionsqualitat in der Fahrzeugmontage.
ISBN 978-3-7315-0893-9

Band 42 Tianyi Guan
Predictive energy-efficient motion trajectory
optimization of electric vehicles.
ISBN 978-3-7315-0978-3

Band 43 Jurgen Metzler
Robuste Detektion, Verfolgung und Wiedererkennung von
Personen in Videodaten mit niedriger Auflosung.
ISBN 978-3-7315-0968-4

Band 44 Sebastian Bullinger
Image-Based 3D Reconstruction of Dynamic Objects Using
Instance-Aware Multibody Structure from Motion.
ISBN 978-3-7315-1012-3

Die Bande sind unter www.ksp.kit.edu als PDF frei verfuigbar oder als Druckausgabe bestellbar.

Band 45

Band 46

Band 47

Band 48

Band 49

Band 50

Band 51

Band 52

Band 53

Jurgen Beyerer, Tim Zander (Eds.)

Proceedings of the 2019 Joint Workshop of
Fraunhofer 0SB and Institute for Anthropomatics,
Vision and Fusion Laboratory.

ISBN 978-3-7315-1028-4

Stefan Becker
Dynamic Switching State Systems for Visual Tracking.
ISBN 978-3-7315-1038-3

Jennifer Sander

Ansatze zur lokalen Bayes’schen Fusion von
Informationsbeitragen heterogener Quellen.
ISBN 978-3-7315-1062-8

Philipp Christoph Sebastian Bier

Umsetzung des datenschutzrechtlichen Auskunftsanspruchs
auf Grundlage von Usage-Control und Data-Provenance-
Technologien.

ISBN 978-3-7315-1082-6

Thomas Emter

Integrierte Multi-Sensor-Fusion fiir die simultane
Lokalisierung und Kartenerstellung fiir mobile
Robotersysteme.

ISBN 978-3-7315-1074-1

Patrick Dunau
Tracking von Menschen und menschlichen Zustanden.
ISBN 978-3-7315-1086-4

Jurgen Beyerer, Tim Zander (Eds.)

Proceedings of the 2020 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory.

ISBN 978-3-7315-1091-8

Lars Wilko Sommer
Deep Learning based Vehicle Detection in Aerial Imagery.
ISBN 978-3-7315-1113-7

Jan Hendrik Hammer

Interaktionstechniken fiir mobile Augmented-Reality-
Anwendungen basierend auf Blick- und Handbewegungen.
ISBN 978-3-7315-1169-4

Die Bande sind unter www.ksp.kit.edu als PDF frei verfigbar oder als Druckausgabe bestellbar.

Band 54

Band 55

Band 56

Band 57

Band 58

Jurgen Beyerer, Tim Zander (Eds.)

Proceedings of the 2021 Joint Workshop of
Fraunhofer 0SB and Institute for Anthropomatics,
Vision and Fusion Laboratory.

ISBN 978-3-7315-1171-7

Ronny Hug
Probabilistic Parametric Curves for Sequence Modeling.
ISBN 978-3-7315-1198-4

Florian Patzer

Automatisierte, minimalinvasive Sicherheitsanalyse und
Vorfallreaktion fiir industrielle Systeme.

ISBN 978-3-7315-1207-3

Achim Christian Kuwertz

Adaptive Umweltmodellierung fiir kognitive Systeme in
offener Welt durch dynamische Konzepte und quantitative
Modellbewertung.

ISBN 978-3-7315-1219-6

Julius Pfrommer
Distributed Planning for Self-Organizing Production Systems.
ISBN 978-3-7315-1253-0

Die Bande sind unter www.ksp.kit.edu als PDF frei verfuigbar oder als Druckausgabe bestellbar.

Lehrstuhl fur Interaktive Echtzeitsysteme
Karlsruher Institut fir Technologie

Fraunhofer-Institut fur Optronik, Systemtechnik
und Bildauswertung IOSB Karlsruhe

The field of production automation faces a fundamental tradeoff bet-
ween efficiency and flexibility. Most production systems are rigid in their
behavior not only due to the layout of machines and their physical inte-
gration, but also by the custom programming of the control logic. This
work develops the formal basis to enable adaptive production systems
based on self-organisation and distributed planning. The main results —
building upon each other — are the following:

1. A formal model for concurrent production systems that scales from
physical processes up to supply chain considerations.

2. An algorithm for planning and optimization for operations in highly
concurrent production systrems.

3. A distributed version of the above algorithm based on the notion of
message passing for , utility propagation”.

4. A description of generic and reusable capabilities of physical produc-
tion resources (machines and tools) from which executable operations
are derived.

ISSN 1863-6489 ““H‘ NHH

ISBN 978-3-7315-1253-0

Gedruckt auf FSC-zertifiziertem Papier

	Kurzfassung
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	Production and Logistics in a Global Economy
	The Structure of Automated Production Systems
	Approaches for Flexible Production Systems
	The Missing Hierarchy of Production Theories
	Scientific Contributions and Thesis Organization

	A Model of Concurrent Production Systems
	State, Actions and Action Sequences
	Parameterized Actions
	Uncertainty and Observations
	Reward and Policies

	Simulation-Based Planning for Concurrent Production Systems
	Tree Search with Backtracking
	Planning for Discrete Action Sequences
	Planning with Uncertainty and Continuous Action Parameters
	Planning with Linear Actions

	Distributed Planning for Self-Organizing Production Systems
	Background: The Generalized Distributive Law
	A Model of Distributed Concurrent Production Systems
	Distributed Planning for Deterministic Action Sequences
	Distributed Planning under Uncertainty
	Evaluation

	Modeling of Production Skills
	Background: Skill Models for Production
	Background: Description Logics
	The PPRS Model for Production Skills
	Assisted Generation of Executable Actions

	Conclusion
	Bibliography

