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Preface to Computation Human Models and 
Brain Modeling: EMBC 2018

Numerical modeling has become an essential enabling technology in a variety of 
engineering fields, including mechanics, chemistry, fluid dynamics, electromagnet-
ics, and acoustics. Modeling accelerates the product development cycle, giving sci-
entists and engineers the opportunity to explore design iterations and scenarios in 
virtual space, and allowing optimization over a host of external conditions that 
would be time and cost prohibitive to experimentally characterize and quantify. 
Furthermore, simulations permit the examination of resulting field values, such as 
internal current distributions or energy absorption in tissues that would typically not 
be available to an experimentalist due to safety or ethics concerns.

However, regardless of the physics under consideration or the method utilized, 
every practitioner in the field of numerical modeling knows one fundamental rule: 
the simulation is only as good as the underlying model being employed. This is a 
more articulate or eloquent way of saying “garbage in equals garbage out,” but 
regardless of how it is phrased, the message is the same. If there are fundamental 
flaws or inaccuracies in the model that mask or modify the physics under examina-
tion, even if the simulation itself runs flawlessly, results might be erroneous and 
predictions based on that simulation will not accurately embody the intended 
aspects of the physical world. It is with this motivation in mind that developers of 
phantoms characterizing the human body and its corresponding physiological pro-
cesses have continuously advanced the state of the art and pursued ever more accu-
rate representations of human anatomy at a variety of geometric scales.

Advancements in human phantoms are a product of many converging disciplines, 
ranging from the basic sciences of chemistry, biology, and physics to more applied 
areas such as electrical and computer engineering, material science, medical data 
acquisition and segmentation, surface and volumetric mesh manipulation, and 
large-scale data processing. The memory and computational processing limitations 
encountered in previous model generations, where human bodies were represented 
with basic, homogeneous geometric primitives or highly de-featured faceted mod-
els, no longer apply to modern simulation platforms. The rapid advance in comput-
ing hardware permits a new generation of ever more detailed models with 
substantially enhanced levels of anatomical accuracy. Similarly, the incorporation 
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of sophisticated material properties to support coupled multi-physics simulations is 
also now possible. Furthermore, advances in our understanding of the anatomy and 
physiology of the human body continue to provide ever-growing insights into the 
tissue properties and their detailed organization at the macro- and microscopic lev-
els, thus enabling models that increasingly capture the most relevant properties.

As human models have improved, the scope of applications examined via simu-
lation has also grown, providing researchers and engineers with powerful tools to 
explore new and exciting hypotheses regarding human physiology, pathophysiol-
ogy, and biomedical engineering. The application of electromagnetic fields in bio-
medical engineering has produced promising diagnostic and therapeutic 
methodologies and protocols that may now be competently and thoroughly studied 
to generate detailed analyses on estimated efficacy and patient safety. Topics of 
recent interest to the research and medical communities are broadly distributed 
across the electromagnetic frequency spectrum and include: cancer ablation via 
radio frequency (RF) heating; safety and efficacy assessments of patients with and 
without implanted medical devices during procedures such as magnetic resonance 
imaging (MRI); new and varied coil designs for optimal MRI protocols; treatment 
of brain disorders, such as depression, via noninvasive brain stimulation techniques 
like transcranial magnetic stimulation (TMS) and transcranial direct current stimu-
lation (tDCS); optimal design, configuration, and placement of single or multiple 
coils or electrodes for focused and deep internal electromagnetic field generation; 
pain management therapies that rely on noninvasive nerve stimulation rather than 
potentially addictive pharmaceuticals; and many others. While seemingly disparate, 
these applications are united in their need for high-quality computational human 
phantoms and optimized simulation methods that enable fast and accurate approxi-
mations of the underlying physics that govern responses of the body to externally 
applied electromagnetic stimuli. This is the motivation that drives the research con-
tained in this work and has provided inspiration to the researchers and engineers 
laboring in this field.

This work is a collection of selected papers presented during the third Annual 
Invited Session on Computational Human Models. The session was conducted from 
July 17 to 21, 2018, in Honolulu, HI, as part of the 40th Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 
which provided a collaborative platform showcasing academic and commercial 
research representing the current state of the art in computational human models 
and applications for which they are employed. The various session tracks brought 
together subject matter experts in diverse fields representing academia, government 
institutions, and industry partners. A clear outcome of this effort was a comprehen-
sive, multidisciplinary review of each area, and the promotion of a rich dialogue on 
promising future paths in human phantom development, numerical methods, and 
simulation applications. The chapters presented here provide an overview of the 
invited session and highlight a myriad of potential avenues of development and 
exploration during future EMBS conferences.

The first section presents chapters devoted to models specifically tailored for 
noninvasive stimulation. A collection of techniques that employ the physics of elec-

Preface to Computation Human Models and Brain Modeling: EMBC 2018



vii

tromagnetism to stimulate specific regions of human anatomy are reviewed. The 
research is aimed at treating various pathologies, including neurological disorders 
treated with noninvasive brain stimulation and chronic pain treated via peripheral 
nerve stimulation. Several brain stimulation modalities are presented along with 
custom models that have been generated to best represent the anatomic features 
most affected by these treatments.

The second section is devoted to tumor-treating fields (TTFields), which is a new 
and promising treatment for glioblastoma that was recently approved by the US 
Food and Drug Administration. The simulations employed in these chapters include 
human models that inform practitioners on the impact of electrode placements on 
the surface of the body, leading to optimization of electrode configurations and 
knowledge-based estimates of the resulting field strengths within the body. This 
enables practitioners of TTFields protocols to optimally align the direction of the 
fields produced by the electrodes, examine field penetration, and conduct studies 
investigating the effects of numerous parameters (including field frequency and 
intensity) on estimated tumor and glioblastoma treatment.

Section three is a collection of investigations into how computational human 
models may be used to evaluate safety concerns for a variety of applications. These 
investigations include patient-specific models generated from medical imaging data 
to customize treatments as well as modified models adapted to integrate implanted 
medical devices for assessing safety during MRI.  The section also includes an 
examination of bioelectricity at the cellular level and a study on techniques related 
to microwave ablation. Industrial radiography accidents and models employed to 
examine brain hemorrhage characteristics are also considered.

The final section details efforts related to customized human models tailored to 
specific applications. These include incorporating a dynamic breathing sequence 
into a normally static model to simulate human respiration, integration of highly 
resolved and detailed ear canal structures for simulation of wearable devices, con-
version of voxel-based models to polygon surface models, and a new technique for 
measuring material conductivity.

While the exciting work presented here is indeed impressive, there is much yet 
to accomplish to enhance current modeling and simulation capabilities. Several ses-
sions at the upcoming 41st Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society to be held in Berlin, Germany, on July 23–27, 
2019, will be devoted to model generation and related applications. These sessions 
will offer both extensions to the results given in 2018 and new research that will 
expand the field of computational human phantom generation.

Berenson-Allen Center for Noninvasive  
Brain Stimulation and Division for Cognitive  
Neurology, Beth Israel Deaconess Medical Center,  
and Harvard Medical School, Boston, MA, USA�

Alvaro Pascual-Leone

Institut Guttman de Neurorehabilitación,  
Universitat Autónoma de Barcelona, Barcelona, Spain
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Chapter 1
SimNIBS 2.1: A Comprehensive Pipeline 
for Individualized Electric Field Modelling 
for Transcranial Brain Stimulation

Guilherme B. Saturnino, Oula Puonti, Jesper D. Nielsen, Daria Antonenko, 
Kristoffer H. Madsen, and Axel Thielscher

1.1  �Introduction

Non-invasive brain stimulation (NIBS) aims at modulating brain activity by  
inducing electric fields in the brain [1]. The electric fields are generated either by a 
magnetic coil, in the case of transcranial magnetic stimulation (TMS), or by a cur-
rent source and electrodes placed directly on the scalp, in the case of transcranial 
electric stimulation (TES). In both cases, the induced electric fields in the brain have 
a complex and often counter-intuitive spatial distribution, which is dependent on the 
individual anatomy of a target subject. In recent years, there has been a growing 
interest in moving away from a one-size-fits-all stimulation approach in NIBS to 
more individually informed protocols [2]. The driving force behind this shift is the 
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widely reported variation of NIBS effects within and between individuals [3], which 
could be explained in part by the interplay of the individual anatomy and the electric 
field propagation [4]. Although software tools have become available that generate 
realistic anatomical models of the head based on magnetic resonance imaging 
(MRI) scans and use those models to numerically estimate the electric field induced 
in the brain, they are still not predominantly used in NIBS studies. This is likely due 
to the lack of robustness and usability of the previous generation of tools, in turn 
hampering the individualized application of NIBS in both mapping the human brain 
function and as a rehabilitation tool in various neuropathologies [5, 6].

The aim of SimNIBS is to facilitate the use of individualized stimulation model-
ling by providing easy-to-use software tools for creating head models, setting up 
electric field simulations, and visualizing and post-processing the results both at 
individual and group levels. SimNIBS was first released in 2013 [7], had a major 
update in 2015, with the release of version 2 [2], and more recently another major 
update with the release of version 2.1, described in the current work. SimNIBS 2.1 
is a free software, distributed under a GPL 3 license, and runs on all major operating 
systems (Windows, Linux and MacOS). In this tutorial, we will concentrate on 
what SimNIBS 2.1 can be used for and how the analyses are performed in practice 
with step-by-step examples. The chapter is structured as follows: First, we give a 
general overview of the simulation pipeline and of its building blocks. Next, we 
provide a step-by-step example of how to run a simulation in a single subject, and 
then we demonstrate a set of MATLAB tools developed for easy processing of mul-
tiple subjects. Finally, we conclude with an analysis of the accuracy of automated 
electrode positioning approaches. More information, as well as detailed tutorials 
and documentation can be found from the website www.simnibs.org.

1.2  �Overview of the SimNIBS Workflow

Figure 1.1 shows an overview of the SimNIBS workflow for an individualized elec-
tric field simulation. The workflow starts with the subject’s anatomical MRI images, 
and optionally diffusion-weighted MRI images. These images are segmented into 
major head tissues (white and grey matter, cerebrospinal fluid, skull and scalp). From 
the segmentations, a volume conductor model is created, and used for performing the 
electric field simulations. The simulations can be set up in a graphical user interface 
(GUI) or by scripting. Finally, the results can be mapped into standard spaces, such 
as the Montreal Neurological Institute (MNI) space or FreeSurfer’s FsAverage.

1.2.1  �Structural Magnetic Resonance Imaging Scans

The minimum requirement for running an individualized SimNIBS simulation is a 
T1-weighted structural scan of a subject’s head anatomy. Although SimNIBS will 
run on almost all types of T1-weighted scans, we have found that setting the readout 

G. B. Saturnino et al.
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bandwidth low to ensure a good signal-to-noise ratio in the brain region and using a 
fat suppression method, such as selective water excitation, to minimize the signal 
from spongy bone, typically ensure a high quality of the resulting head models. See 
Fig. 1.2 for an example of good quality scans we found to work well with SimNIBS 
and [8] for the details of the sequences.

Including a T2-weighted scan is optional, but highly recommended as it facili-
tates accurate segmentation of the border between skull and cerebrospinal fluid 
(CSF). Both skull and CSF appear dark in T1-weighted scans, whereas in 
T2-weighted scans the CSF lights up, thus guiding the separation between the tis-
sues. Skull has a low electric conductivity, while CSF is highly conducting, meaning 
that any segmentation errors in these two compartments can have a large effect on 
the resulting electric field distribution inside the head, especially when TES is 
applied [8]. If you are interested in modelling the neck region in detail, we recom-
mend using neck coils if these are available at the imaging site.

Fig. 1.1  Overview of the SimNIBS workflow

1  SimNIBS 2.1: A Comprehensive Pipeline for Individualized Electric Field…
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Optionally, SimNIBS also supports modelling of anisotropic conductivities for 
grey (GM) and white matter (WM), which requires a diffusion-weighted MRI scan 
(dMRI). Only single shell data (i.e. with a single b-value in addition to some b = 0 
images) with a single phase encoding direction for the echo planar imaging (EPI) 
readout is supported.

1.2.2  �Volume Conductor Modelling

The first step in the pipeline is the generation of a volume conductor model of the 
head, which is needed for simulating the induced electric fields. In order to create 
this finite element (FEM) mesh, we need to assign each voxel in the MRI scan(s) to 
a specific tissue class, i.e. to segment the scan into the different head tissues. 
Currently, SimNIBS offers two options for segmentation: mri2mesh [7] and head-
reco [8].

mri2mesh combines FSL [9] (version 5.0.5 or newer) and FreeSurfer [10] (ver-
sion 5.3.0 or newer) to segment the head tissues. FSL is used to segment the extra-
cerebral tissues, while FreeSurfer is used to segment the brain and to generate 
accurate surface reconstructions of the grey matter sheet. Note that mri2mesh is 
restricted only to the head and does not create models of the neck region.

headreco uses the SPM12 [11] toolbox for segmenting the MRI scan, and is now 
the recommended option in SimNIBS. It has been shown to be more accurate in 
segmenting the extra-cerebral structures, especially the skull, compared to 
mri2mesh [8], while also providing accurate segmentations of the brain tissues. 
The computational anatomy toolbox (CAT12, recommended) [12] provided with 

Fig. 1.2  Example of high-quality T1- and T2-weighted scans likely to work well with 
SimNIBS. Note that in the T1-weighted scan, the skull appears dark due to the fat suppression

G. B. Saturnino et al.
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SPM can be used to create surface reconstructions of the grey matter sheet which 
are on par with the accuracy of those generated by FreeSurfer [12]. In addition, 
headreco has an extended field of view, also modelling the neck region. For ease of 
use, both SPM12 and CAT12 are distributed together with SimNIBS.

Once the segmentation by either method has finished successfully, the tissue 
maps are cleaned by applying simple morphological operations, and used to create 
surface reconstructions. As a final step, the FEM mesh is generated by filling in 
tetrahedrons between the tissue surfaces using Gmsh [13].

Neither mri2mesh nor headreco have off-the-shelf support for pathologies such 
as tumours or lesions. These can however be included into the head models by 
manually editing the segmentation masks generated by the methods. When using 
mri2mesh, please consult the FreeSurfer website (https://surfer.nmr.mgh.harvard.
edu/fswiki/FsTutorial/WhiteMatterEdits_freeview) on how to handle scans with 
pathologies. Manual edits using headreco should be done on the output segmenta-
tion masks in the mask_prep folder located within the m2m_{subID} folder. Once 
corrections have been made, the surface meshing step (“headreco surfacemesh 
subID”) and volume meshing step (“headreco volumemesh subID”) should be 
re-run to generate the edited head model. Note that when creating head models from 
scans with pathologies, the CAT12 toolbox should not be used.

dwi2cond (optional) uses FSL (version 5.0.5 or newer) to prepare diffusion ten-
sors for GM and WM from dMRI data. The tensors are used by SimNIBS to esti-
mate anisotropic conductivities in WM and GM during the FEM calculations.

1.2.3  �Simulation Setup

Simulations can be set up using the graphical user interface (GUI), which provides 
an interactive view of the head model. This allows users to easily select parameters 
such as coil positions, electrode positions and shapes, as well as more advanced set-
tings such as tissue conductivities and post-processing options.

It might also be of interest to do simulations of one or a few different setups 
across a group of subjects. With this in mind, version 2.1.1 introduced a new inter-
face for setting up simulations using MATLAB or Python scripts.

The GUI as well as the scripts will be described in more detail in Sect. 1.3, as 
well as on the website www.simnibs.org.

1.2.4  �Finite Element Method Calculations

Transcranial direct current stimulation (tDCS) simulations begin by adding elec-
trodes to the head model. In this step, nodes in the skin surface are shifted to 
form the shape of the electrode, while keeping good quality elements. Afterwards, 
the body of the electrodes is constructed by filling in tetrahedra. As this step does 

1  SimNIBS 2.1: A Comprehensive Pipeline for Individualized Electric Field…
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not require re-meshing the entire head, it can be done much more efficiently 
compared to other methods that require re-meshing, especially when only a few 
electrodes are used.

TMS simulations start by calculating the change in the magnetic vector potential 
A, that is the d dt

A  field in the elements of the volume conductor mesh for the 
appropriate coil model, position and current. There are currently two types of coil 
models:

.ccd files: Created from geometric models of the coil and represented as a set of 
magnetic dipoles from which we can calculate the d dt

A  field using a simple 
formula [14].

.nii files: Created either from geometric models of the coils or direct measurement 
of the magnetic field [15]. Here, the d dt

A  field is defined over a large volume, 
and the calculation of the d dt

A  at the mesh elements is done via interpolation. 
This allows for faster simulation setup at little to no cost in simulation 
accuracy.

Both simulation problems are solved using the FEM with linear basis functions. 
This consists of constructing and solving a linear system of the type Mu = b, where 
M is a large (in SimNIBS typically ~106 × 106) but sparse matrix, called the “stiff-
ness matrix”, u are the electric potentials at the nodes and the right-hand side b 
contains information about boundary conditions (such as potentials in electrode sur-
faces in tDCS simulations), and source terms (such as the d dt

A  field in TMS simu-
lations). SimNIBS solves the linear system using an iterative preconditioned 
conjugate gradient method [16]. SimNIBS 2.1 uses GetDP [17] to form the linear 
system, which in turn calls PETSc [18] to solve it.

TDCS simulations can also be easily extended to simulations of transcranial 
alternating current stimulation (tACS). In the frequency ranges used in tACS, a 
quasi-static approximation holds [19]. In the quasi-static approximation, the rela-
tionship between input currents I(t) and the electric field at the positions x, E(x) is 
linear:

	
E t I tx x,( ) = ( ) ( )α

	

where α(x) is a proportionality constant, meaning that it does not vary during the 
oscillation. This constant can be obtained simply by running a simulation where we 
set the input current to unity. I(t) is the input current. For example, a sinusoidal cur-
rent input can be written as

	
I t I t

fo( ) = +( )sin 2π φ
	

where f is the stimulator frequency, ϕ the stimulator phase and Io the stimulator 
amplitude, which corresponds to half of the peak-to-peak current. Usually, we 
would visualize the electric field at the maximum or minimum of I(t), which 
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corresponds to ±Io. In case several stimulators are used at different frequencies of 
phases, we have several pairs (αi(x)Ii(t)), one for each stimulator, and the total elec-
tric field at a given time point is given by the sum of their individual contributions

	
E t I t

i

n

i ix x,( ) = ( ) ( )
=
∑

1

α
	

1.2.5  �Mapping Fields

The result of the FEM calculation is the electric field at each tetrahedral element of 
the subject’s head mesh. However, visualization is often easier using cortical sur-
faces or NifTI volumes. Therefore, SimNIBS 2.1 can transform fields from the 
native mesh format to these formats via interpolation. Our interpolation algorithm is 
based on the superconvergent patch recovery method [20], which ensures interpo-
lated electric field values that are consistent with tissue boundaries.

When performing simulations on multiple subjects, we often want to be able to 
directly compare the electric field across subjects to, for example, correlate the elec-
tric field with behavioural or physiological data on the stimulation effects [21]. For 
this purpose, SimNIBS can also transform simulation results to the MNI template, 
using linear and non-linear co-registrations, as well as to the FreeSurfer’s FsAverage 
surface.

1.3  �Practical Examples and Use Cases

1.3.1  �Hello SimNIBS: How to Process a Single Subject

Here we describe how to run a TMS and a tDCS simulation on a single example 
subject. The example subject “Ernie” can be downloaded from the SimNIBS web-
site, and the steps below can be reproduced step by step to get familiar with 
SimNIBS.

�Generating the Volume Conductor Model

Open a terminal and go to the directory “ernie” to access the example data set. Copy 
the content of the “org”-subfolder to another location in order to not overwrite the 
files of the original example dataset. Next, go to the folder where you copied the 
data, and call headreco to generate the volume conductor model:

1  SimNIBS 2.1: A Comprehensive Pipeline for Individualized Electric Field…
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headreco all --cat ernie ernie_T1.nii.gz ernie_T2.nii.gz

In the command, the first argument, “all”, tells headreco to run all reconstruction 
steps including: segmentation, clean-up of tissue maps, surface meshing, and vol-
ume meshing. The second argument, “--cat” is a flag for using the CAT12 toolbox 
for accurate reconstruction of the cortical surface. The third argument, “ernie”, is a 
subject identifier (subID), which is used to name generated folders, e.g. m2m_ernie, 
and output files, e.g. ernie.msh. The two final arguments are the paths to the T1- and 
T2-weighted structural scans.

A few extra input options are useful to know:

-d no-conform Adding this option will prevent headreco from modifying, i.e. trans-
forming and resampling, the original MRI scan. This might be desirable when a 
one-to-one correspondence between the head model coordinates and the neural 
navigation system coordinates is required.

-v < density > This option allows you to set the resolution, or vertex density (nodes 
per mm2), of the FEM mesh surfaces. By default, SimNIBS uses 0.5 nodes/mm2 
as the <density > value.

In general, we recommend using the --cat option; however, the execution time 
will be longer compared to omitting the option. In addition, if you want to process 
scans with pathologies, you should not use CAT12, as the cortical reconstruction is 
not designed to work with pathologies.

After headreco has finished, please check the quality of the head model by 
calling:

headreco check ernie

If needed, open a new terminal for this operation and go into the folder in which 
you started headreco the first time. For our example case, the subject identifier is 
“ernie”, but please replace this one with whichever subID was used in the first call 
to headreco. Note that we recommend that you have installed freeview (provided 
by FreeSurfer, available on Linux and Mac OS X platforms) to visualize the results. 
The check function displays two windows for inspecting the output. The first win-
dow shows the T1-weighted scan with the segmentation and structure borders over-
laid (Fig. 1.3, left). We recommend de-selecting the segmentation (ernie_final_contr.
nii) in freeview, and checking that the segmentation borders follow the intensity 
gradients of different tissues (Fig. 1.3, middle). Fig. 1.4 shows the second freeview 
window, which displays the T1-weighted scan co-registered to the MNI template. 
We recommend checking if the T1-weighted scan overlaps well with the MNI tem-
plate by de-selecting the T1-weighted scan (T1fs_nu_nonlin_MNI.nii) in freeview 
(Fig. 1.4, right). Figure 1.5 shows an example of a segmentation error where the 
skull is erroneously labelled as skin. This can be seen in the front of the head, where 
the skin label protrudes into the skull. This example emphasizes the need for fat-
suppressed data when only a T1-weighted scan is used. In the scan shown in Fig. 1.5, 
spongy bone is bright with intensities comparable to those of scalp, causing the 
segmentation method to mis-classify it as extra-cerebral soft tissue. Small segmen-
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tation errors like this can be corrected by manually re-labelling the segmentation 
masks in the “mask_prep” folder located in the m2m_{subID} folder, and re-running 
the surface and volume meshing steps. If you are not familiar with using freeview, 
please refer to the tutorial on the SimNIBS website (http://www.simnibs.org/_media/
docu2.1.1/tutorial_2.1.pdf). If you do not have access to freeview, the visualizations 
will be displayed using SPM. However, these are very primitive and are not recom-
mended for checking the output from headreco.

Fig. 1.3  Data displayed after calling the check option. Left: T1-weighted scan with the segmenta-
tion and structure borders overlaid. Middle: structure borders overlaid on the T1-weighted scan 
after de-selecting the segmentation in freeview. Right: zoom-in of the cortex. Note that the seg-
mentation borders nicely follow the intensity borders between the tissues

Fig. 1.4  Data displayed after calling the check option. Left: T1-weighted scan co-registered to the 
MNI template. Right: MNI template shown after de-selecting the T1-weighted scan in freeview. 
Note that the scans seem to be well registered

1  SimNIBS 2.1: A Comprehensive Pipeline for Individualized Electric Field…

http://www.simnibs.org/_media/docu2.1.1/tutorial_2.1.pdf
http://www.simnibs.org/_media/docu2.1.1/tutorial_2.1.pdf


12

Finally, you should inspect the volume conductor mesh for any obvious errors. 
This can be done by calling:

gmsh ernie.msh

in the subject folder. This call opens a gmsh window displaying the generated 
head model; please see the tutorial on the website if you are not familiar with 
gmsh (http://www.simnibs.org/_media/docu2.1.1/tutorial_2.1.pdf).

The folder structure and most important files are shown in Table 1.1.

•	 eeg_positions/ Folder containing the 10-10 electrode positions for the subject 
both as a “.csv”, used for acquiring electrode positions, and a “.geo” file, used for 
visualization of the positions in Gmsh. If you have custom electrode positions, 
they should be added here as a .csv file.

•	 mask_prep/  Folder containing the cleaned tissue maps along with the white mat-
ter and pial surface files if CAT12 was used. In case there are errors in the seg-
mentation, the masks can be manually corrected and a new head model can 
subsequently be generated. Note that the CAT12 WM and GM surfaces can cur-
rently not be modified.

•	 headreco_log.html, a log-file with output from the headreco run. If something 
goes wrong, the log-file helps with troubleshooting, and should be sent as an 
attachment when contacting the SimNIBS support email list (support@simnibs.
org).

•	 ernie.msh, the FEM head model used for the simulations.
•	 ernie_T1fs_conform.nii.gz, the input scan in the conform space defined by the –d 

option. This scan has the same millimetre space as the head model, and can be 
used to annotate landmarks which can then be directly transformed onto the head 
model.

Fig. 1.5  Example of a segmentation error after headreco processing. The spongy bone is errone-
ously labelled as skin. This example emphasizes the need for fat-suppression when using only a 
T1-weighted scan

G. B. Saturnino et al.
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�Setting Up a Simulation

Once the head model is ready, we can set up tDCS and TMS simulations interac-
tively using the GUI. The GUI can be started on the command line by calling:

simnibs_gui

In the GUI, the user can:

•	 Visualize and interact with head models.
•	 Define electrode and coil positions by clicking in the model or selecting a posi-

tion from the EEG 10-10 system.
•	 Visually define electrode shapes and sizes.
•	 Select from the available coil models.
•	 Change tissue conductivity parameters and set up simulations with anisotropic 

conductivity distributions.
•	 Run simulations.

In the GUI, there are two types of tabs, one for tDCS simulations, and another for 
TMS simulations, shown respectively in the top and bottom of Fig. 1.6. The tDCS 
tabs define a single tDCS field simulation with an arbitrary number of electrodes. 
On the other hand, TMS tabs can define several TMS field simulations using the 
same coil. For this example, we will set up a tDCS simulation with a 5 × 5 cm anode 
placed over C3 and a 7 × 5 cm cathode placed over AF4, and a TMS simulation with 
the coil placed over the motor cortex, pointing posteriorly. Details on how to use the 
graphical interface can be found on the website (http://www.simnibs.org/_media/
docu2.1.1/tutorial_2.1.pdf).

After the simulation setup, click on the Run button to start the simulations. 
Running both simulations takes 10–15 minutes, depending on the computer, and 
uses around 6 GB of memory. As a note, before starting the simulations, you can set 
additional options (in the menu Edit➔Simulation Options) to let SimNIBS write out 
the results as surface data or NifTI volume data. This is not further covered in this 
basic example, but the output files created in these cases are described in the next 
example. The results of the simulation will be written in the output folder specified 
in the GUI, in this case “simnibs_simulation/”. The folder has the files shown below 
in Table 1.2.

Table 1.1  The folder 
structure after headreco has 
finished. In this table, only 
the most important folders 
and files are listed
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Fig. 1.6  Set-up of a tDCS 
(top) and a TMS (bottom) 
simulation in the graphical 
user interface

Table 1.2  The output folder of a simple tDCS and TMS simulation

G. B. Saturnino et al.
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•	 “ernie_TDCS_1_scalar.msh” is the output from the tDCS simulation, in Gmsh 
“.msh” format. The first part of the file name, “ernie”, is the subID. The second 
part, “TDCS”, informs us that this is a tDCS simulation. The third part, “1”, 
denotes that this was the first simulation we have defined in the GUI, and finally, 
“scalar” tells us have used scalar (as opposed to anisotropic) conductivities for 
the simulations.

•	 “ernie_TMS_2-0001_Magstim_70mm_Fig8_nii_scalar.msh” is the output of the 
second simulation, also in gmsh “.msh” format. As is the case for the tDCS out-
put, the first part of the file name is the subID, and the second is the number of 
the simulation in the simulation list. We next see the number of the TMS posi-
tion, as it might happen that several TMS positions are defined in a single TMS 
list. Following this, “Magstim_40mm_Fig8_nii” gives us the name of the coil 
used for the simulation, and “scalar” the type of conductivity.

•	 “ernie_TMS_2-0001_Magstim_70mm_Fig8_nii_coil_pos.geo” is a Gmsh “.geo” 
file which shows the coil position for the corresponding simulation.

•	 “simnibs_simulation_20180920-13041.log” is a text file with a detailed log of 
the simulation steps. This file can be used for troubleshooting. Here, the second 
part of the file is date and time information of when the simulation started.

•	 “simnibs_simulation_20180920-13041.mat” is a MATLAB data file with the 
simulation setups. This file can be loaded into the GUI or MATLAB at a later time 
to check the simulation parameters, or to change them and re-run the simulation.

�Visualizing Fields

The electric field E is a vector field meaning that the electric field has both a norm 
(i.e. vector length or magnitude) and a direction in space, as shown in Fig. 1.7. As 
visualizations of the entire vector are challenging and often unclear, in SimNIBS we 

Fig. 1.7  Decomposition of a vector E in relation to a surface. The norm corresponds to the length 
of the vector. At each point, the surface defines a normal vector n̂ , and this vector is perpendicular 
to the tangent plane to the surface at that point. Given the normal vector, we can decompose the 
vector E into normal and tangent components. The normal component is the part of E in the same 
line as the normal vector, and the tangent component is perpendicular to it. The normal component 
also has a sign, indicating if the field is entering or leaving the surface. In SimNIBS, a positive 
normal indicates that the field is entering the surface, and a negative normal indicate the field is 
leaving the surface
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usually visualize the norm (or strength) of the electric field instead. The norm of the 
electric field corresponds to the size of the electric field vector, and therefore is 
always positive and does not contain any information about the direction of the 
electric field.

One way we can quickly visualize the simulation results is to use the mesh_
show_results MATLAB function. This function comes as a part of SimNIBS ver-
sion 2.1.2, and provides visualizations of the output fields using MATLAB plotting 
tools, as well as some summary values for the field strength and focality. For exam-
ple, when running the function on the output tDCS mesh, we obtain the plot shown 
in Fig. 1.8a, and the values below in Table 1.3.

The first lines in Table 1.3 show that the displayed data is the field “norm E”, that 
is the norm or strength of the electric field, calculated in the region number 2, which 
corresponds to the GM volume. Afterwards, we have information on the peak elec-
tric fields. We see that the value of 0.161 V/m corresponds to the 95th percentile of 
the norm of the electric field, the value of 0.201 V/m to the 99th percentile and 
0.249 to the 99.9th percentile. We also have information about the focality of the 

Fig. 1.8  Visualization of (a) tDCS and (b) TMS electric field norms in MATLAB

Table 1.3  Output of 
mesh_show_results for the 
tDCS simulation
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electric field. Here, focality is measured as the GM volume with an electric field 
greater or equal to 50% or 75% of the peak value. To avoid the effect of outliers, the 
peak value is defined as the 99.9th percentile.

Running the same function on the TMS result file, we obtain the plot shown in 
Fig. 1.8b, as well as the peak fields and focality measures shown below in Table 1.4.

We can see that the peak fields for TMS are much higher than for tDCS, even 
though we simulated with a current of 106 A/s, very low for TMS. In the focality 
measures, we see that the TMS electric fields are much more focal than the tDCS 
electric fields, with around five times less GM volume exceeding 75% of the peak 
value than tDCS.

Additionally, the “.msh” files can be opened with the Gmsh viewer, producing 
3D visualizations as shown in Fig. 1.9. Gmsh has a vast range of functionalities, 
such as clipping planes, but can be harder to use than mesh_show_results.

Table 1.4  Output of 
mesh_show_results for the 
TMS simulation

Fig. 1.9  Visualization in Gmsh of (a) electric field vectors around central gyrus for the tDCS 
simulation and (b) TMS electric field depth profile in the hotspot
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1.3.2  �Advanced Usage: Group Analysis

Now, we want to simulate one tDCS montage, with a 5 × 5 cm electrode over C3 
and a 5  ×  7  cm electrode over AF4  in five subjects, called “sub01”, “sub09”, 
“sub10”, “sub12”, “sub15” and visualize the results in a common space, namely the 
FsAverage surface. The subjects and example scripts can be downloaded from: 
https://osf.io/ah5eu/

�Head Meshing

For each subject, follow the steps in section “Generating the Volume Conductor 
Model”.

�Write a Python or MATLAB Script

We can set up the simulation of each subject using the GUI, as described in the first 
example. However, when working with multiple subjects, it can be advantageous to 
script the simulations for efficiency. SimNIBS provides both MATLAB and Python 
interfaces to set up simulations. Script 1.1 shows how to set up and run a simulation 
with a 5 × 5cm anode placed over C3 and a 7 × 5cm cathode placed over AF4 for all 
subjects. The output of Script 1.1 for sub01 is shown in Table 1.5.

To define the rectangular electrodes, we need two coordinates. The “centre” 
defines where the electrode will be centred, and “pos_ydir” how the electrode will 
be rotated. More precisely, the electrode’s “y” axis is defined as a unit vector start-
ing at “centre” and pointing towards “pos_ydir”. Fig. 1.10 shows one of the cath-
odes (return electrode) defined using the script above, with the coordinate system 
and EEG positions overlaid. We can see that the electrode is centred in AF4, and its 
Y axis points towards F6. “pos_ydir” does not need to be set when the electrodes 
are round.

When the map_to_fsavg option is set to true, SimNIBS computes the electric 
fields in a surface located in the middle of the GM layer. This cortical surface, along 
with the norm, normal and tangent components of the electric field at the cortical 
surface and the angle between the electric field and the cortical surface can found in 
the subject_overlays folder, for both the left hemisphere (lh) and for the right hemi-
sphere (rh) as shown in Table 1.5. Afterwards, these quantities are transformed into 
the FsAverage space. The transformed quantities can be found in the fsavg_overlays 
folder, as shown in Table 1.5. Additionally, we have the electric field and its norm in 
MNI space in the mni_volumes folder.

G. B. Saturnino et al.
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Table 1.5  Output files and folders of Script 1 for sub01. The “.angle”, “.norm”,.. files are 
FreeSurfer overlay files and the “.central” files are FreeSurfer surface files

Fig. 1.10  50 × 70 mm 
electrode defined with a 
“centre” in AF4 and a 
“pos_ydir” in F6
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path_to_headmodels = "/path/to/head/models/";
subjects = ["sub01", "sub09", "sub10", "sub12", "sub15"];
results_folder = "bipolar/fsavg_overlays";

normals = {};
for i = 1:length(subjects)

sub = subjects(i);
% Load normal field data
normal_surf = sprintf('lh.%s_TDCS_1_scalar.fsavg.E.normal', sub);
m = mesh_load_fsresults(char(...

fullfile(path_to_headmodels, sub, results_folder, normal_surf)));
% Add to cell
normals{i} = m.node_data{1}.data;

end
% Calculate average and standard deviation of the normal at each node
normals = cell2mat(normals);
avg_normal = mean(normals, 2);
std_normal = std(normals, 0, 2);
% Place the fields in the mesh structure
m.node_data{1}.data = avg_normal;
m.node_data{1}.name = 'E.normal.avg';
m.node_data{2}.data = std_normal;
m.node_data{2}.name = 'E.normal.std';
% Plot the fields
mesh_show_surface(m, 'field_idx', 'E.normal.avg')
mesh_show_surface(m, 'field_idx', 'E.normal.std')

 

Script 1.1 Script for running a tDCS simulations with an anode over C3 and a cathode over AF4 in 
five subjects and transforming the results to FSAverage and MNI spaces.

path_to_headmodels = "/path/to/head/models/" ;
subjects = [ "sub01", "sub09", "sub10", "sub12", "sub15"];
results_folder = "bipolar/fsavg_overlays" ;

normals = {};
for i = 1:length(subjects)

sub = subjects(i);
% Load normal field data
normal_surf = sprintf( 'lh.%s_TDCS_1_scalar.fsavg.E.normal' , sub);
m = mesh_load_fsresults(char( ...

fullfile(path_to_headmodels, sub, results_folder, normal_surf)));
% Add to cell
normals{i} = m.node_data{1}.data;

end
% Calculate average and standard deviation of the normal at each node
normals = cell2mat(normals);
avg_normal = mean(normals, 2);
std_normal = std(normals, 0, 2);
% Place the fields in the mesh structure
m.node_data{1}.data = avg_normal;
m.node_data{1}.name = 'E.normal.avg' ;
m.node_data{2}.data = std_normal;
m.node_data{2}.name = 'E.normal.std' ;
% Plot the fields
mesh_show_surface(m, 'field_idx', 'E.normal.avg' )
mesh_show_surface(m, 'field_idx', 'E.normal.std' )

 

Script 1.2 Analysis of simulation results in FSAverage space.
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�Visualizing Results

We can also make use of the MATLAB library within SimNIBS to analyze the 
results from the simulations. Here, we are interested in the average and standard 
deviation of the normal component of the electric field in the cortex. The normal 
component, as shown in Fig. 1.7, is the part of the electric field which is either enter-
ing or leaving the cortex.

Script 1.2 loads the normal field component data for each subject and calculates 
the mean and the standard deviation across subjects at each position of the FsAverage 
template. The fields are then visualized using MATLAB visualization tools. The 
results are shown in Fig. 1.11. We can, for example, see strong current in-flow in the 
central gyrus, and large variations in the normal component in frontal regions.

1.4  �The Accuracy of Automatic EEG Positioning

Here, we compare EEG 10-10 positions obtained either from:

	A.	 Transforming EEG 10-10 electrode positions defined in MNI space to the sub-
ject space using a non-linear transform, and then projecting the positions to the 
scalp. This is done for both mri2mesh and headreco head models.

	B.	 Manually locating the fiducials: left pre-auricular point (LPA), right pre-
auricular point (RPA), nasion (Nz) and inion (Iz) on MRI images, and after-
wards calculating the EEG positions using the definitions in [22].

Calculations using method A require no user input and are automatically per-
formed in both mri2mesh and headreco head modelling pipelines, while calcula-
tions using method B require the user to manually select the fiducial positions.

Fig. 1.11  (a) Mean and (b) Standard deviation of the normal field component across 5 subjects. 
The fields were caused by tDCS with an anode over C3 and a cathode over AF4. Positive values in 
(a) denote inflowing currents, and negative values outflowing currents
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To compare the methods A and B to position the electrodes, we calculated the 
EEG 10-10 positions using both ways for MR data of 17 subjects. The data was 
acquired as part of a larger study. The subjects gave written informed consent before 
the scan, and the study was approved by the local ethics committee of the University 
of Greifswald (Germany). The 17 datasets were acquired on a 3-Tesla Siemens 
Verio scanner (Siemens Healthcare, Erlangen, Germany) using a 32-channel head 
coil (T1: 1 × 1 × 1 mm3, TR 2300 ms, TE 900 ms, flip angle 9°, with selective water 
excitation for fat suppression; T2: 1 × 1 × 1 mm3, TR 12770 ms, TE 86 ms, flip angle 
111°). For method B, the fiducials were manually located for each subject by a 
trained investigator on the T1- and T2-weighted images. The later had no knowl-
edge of the automatically determined positions. The fiducials Nz, Iz, LPA and RPA 
were set in freeview, following the procedure described in [22] and additionally 
verified using the SimNIBS GUI. The subject-specific coordinates of the fiducials 
were extracted, and these manually set positions were then compared with those 
calculated by the automatic algorithm in each individual.

Table 1.6 shows the maximal distance across all subjects between the fiducials 
obtained using method A and manually selected fiducials (B). We see that Nz is the 
most consistent fiducial, where we have the least deviation, whereas Iz is where we 
have the highest deviation. Also, the maximal difference in position across the two 
methods is ~1 cm, indicating that method A works well to approximate the positions 
of the fiducials.

Furthermore, in Fig. 1.12, we compare the two methods for all electrode posi-
tions in the EEG 10-10 system. The deviation in positioning each electrode was 
calculated as the mean of the distance between the positions obtained with either 
headreco or mri2mesh to the manually located fiducial positions, across all 17 sub-
jects and for each electrode.

The errors for all electrodes are below 1 cm, indicating that the two algorithms 
for placing EEG electrodes are in agreement. We can also see that the errors in the 
EEG positions obtained from headreco are on average lower than the ones obtained 
from mri2mesh. It also seems that the anterior electrodes have less errors than the 
posterior electrodes. Interestingly, the location of the errors is different across the 
two pipelines, with mri2mesh being more inaccurate in superior regions and head-
reco more inaccurate in posterior regions. This might be caused by differences in 
the way FSL (mri2mesh) and SPM (headreco) calculate non-linear MNI transfor-

Table 1.6  Maximum and mean distance between the fiducial positions selected by hand and 
obtained from the MNI transformations across 17 subjects, for the two head modelling pipelines

Fiducial

mri2mesh headreco

Max distance 
(mm)

Mean distance ± 
standard deviation (mm)

Max 
distance 
(mm)

Mean distance ± standard 
deviation (mm)

LPA 6.4 3.2 ± 1.5 8.7 5.4 ± 2.0
RPA 8.9 3.0 ±  1.6 10.6 5.9 ± 1.7
Nz 3.9 2.1 ±  1.0 6.0 3.9 ± 1.6
Iz 14.3 4.0 ± 3.5 13.2 5.2 ± 3.3
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mations is different. The average error across all positions was 5.6 mm for mri2mesh 
head models and 4.9 mm for headreco head models indicating good accuracy.

1.5  �Conclusion

We presented SimNIBS 2.1 (www.simnibs.org), a software for individualized mod-
elling of electric fields caused by non-invasive brain stimulation. SimNIBS is free 
software and avaliable for all major platforms. SimNIBS does not require the instal-
lation of any additional software in order to run simulations on the example dataset. 
To construct head models, SimNIBS relies either on MATLAB, SPM12 and CAT12 
(headreco) or on FSL and FreeSurfer (mri2mesh).

We also presented two examples of workflows in SimNIBS. In the first example, 
we started by using headreco to construct a head model. Following this, we used the 
GUI to set up a tDCS and a TMS simulation in an interactive way, and finally visual-
ized the results. In the second example, we constructed several head models and 
used a MATLAB script to run simulations for each subject. We then calculated the 
mean and the stardard deviation of the electric field norm across all subjects, using 
the FreeSurfer’s FsAverage brain template. Finally, we show results validating our 
automatic procedure to obtain electrode positions for the EEG 10-10 system.

Fig. 1.12  Positioning error for electrodes in the EEG 10-10 system. The error is calculated by 
comparing the positions calculated based on manually selected fiducials to positions calculated 
based on non-linear MNI transformations
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SimNIBS is still being actively developed, and we expect further updates to be 
implemented in the future.
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Chapter 2
Finite Element Modelling Framework 
for Electroconvulsive Therapy and Other 
Transcranial Stimulations

Azam Ahmad Bakir, Siwei Bai, Nigel H. Lovell, Donel Martin, Colleen Loo, 
and Socrates Dokos

2.1  �Introduction

Electroconvulsive therapy (ECT) has been used to ameliorate major depressive dis-
order for patients who are resistant to drug therapy. The treatment involves applying 
a train of alternating pulses across two electrodes placed on the scalp. ECT is an 
effective treatment [1], but also carries a risk of cognitive side effects, such as dis-
orientation and memory loss [2]. Treatment efficacy has been noted to rely on mul-
tiple factors, such as electrode placement and stimulus dose [3]. In addition, there is 
currently also great interest in other brain stimulation techniques for therapeutic 
neuromodulation or neurostimulation, including transcranial direct current 
stimulation.

Due to electrical conductivity variation across different tissues, the current path-
ways induced by electrical stimulation are not straightforward to identify. The pres-
ence of highly resistive skull and air-filled paranasal sinuses impedes the passage of 
electrical currents, forcing the majority of currents to travel through the less resistive 
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regions [4]. Furthermore, the white matter exhibits a strongly anisotropic conductiv-
ity due to its myelinated structure, thus determining the prefential current pathway 
within the brain [5, 6]. As such, the electrical current distribution in the brain result-
ing from brain stimulation is complex and cannot be readily imaged, and is imprac-
tical to be measured empirically. Alternatively, the electrical current and electric 
field (E field) in the brain can be simulated via computational modelling. The finite 
element (FE) method is one of the most popular numerical approaches for solving 
models expressed as partial differential and integral equations.

The main goal of computational modelling for ECT and other brain stimulation 
techniques is to determine the region(s) modulated by the electrical stimulus. It is 
believed that non-invasive brain stimulation shifts the tissue’s membrane potential, 
subsequently affecting neuronal firing [7]. The use of computational modelling to 
examine differences in regional E fields as the ECT stimulation approach is altered 
allows for a better understanding of the relationship between brain stimulation and 
clinical effects with current forms of ECT, as well as offering the potential for futher 
improvements in ECT stimulation techniques. In this chapter, we will discuss 
approaches and steps necessary to implement computational modelling of the 
human head to determine the voltage and E field distribution during the application 
of ECT and other transcranial electric stimulation techniques.

2.2  �Methods

Figure 2.1 describes the steps needed to undertake a computational study of electri-
cal brain stimulation. Similar steps have been performed as part of previous finite 
element studies [3, 5, 8, 9], with minimal variation to suit the need for each study.

Fig. 2.1  Flowchart describing the workflow needed to implement a finite element model of the 
head, mainly involving segmenting the head structures (top row) and extracting white matter 
anisotropy (bottom row)
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2.2.1  �Image Pre-processing

In order to simulate the properties of different head structures, these structures need 
to be individually reconstructed from the acquired images. The process of partition-
ing the image into different domains or “masks” is known as image segmentation.

In order to increase the accuracy and reduce the effort of image segmentation, 
certain pre-processing procedures are performed prior to segmentation. These may 
include resampling (to reduce the resolution), cropping (to restrict the image set to 
the region of interest, i.e. ROI), artefact correction (such as motion, metal and bias 
field artefacts), edge and contrast enhancement and image registration. These opera-
tions can be performed using a selection of open-source image-processing software, 
such as ImageJ (https://imagej.nih.gov/ij/), 3D Slicer (https://www.slicer.org/) and 
ITK-SNAP (http://www.itksnap.org/). Among these, bias field correction and image 
registration are highly common pre-processing steps in the segmentation of MR 
head scans.

�Bias Field Correction

Bias field noises are caused by low intensity and smooth signals that distort the MRI 
images, and are present especially in older MR devices [10]. This type of noise 
causes regional differences in signal intensity in the images, leading to non-uniform 
intensities in the same head structure, as shown in Fig. 2.2. If left uncorrected, seg-
mentation quality may be affected. Bias field correction can be performed prior to 
segmentation using open-source tools designed specifically for head segmentation, 
as listed in Table 2.1.

Fig. 2.2  The effect of bias field correction (a) before and (b) after a correction performed in 3D 
Slicer. The patient’s face was hidden for privacy
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�Image Registration

It is not uncommon to obtain multimodal MRI scans, such as T1-weighted scans 
together with T2-weighted, proton density (PD)-weighted or diffusion-weighted 
scans, to provide complementary information regarding tissue structures in the 
brain. As these scans may be acquired in different coordinate systems, it is essential 
to perform image registration to transform these into the same coordinate system 
prior to segmentation. A common registration method is affine transformation, 
which is a linear transformation aligning two sets of images together through trans-
lation, scaling, shear mapping and rotation [11]. When a linear registration method 
is not able to provide a satisfactory outcome, such as when registering scans from 
different subjects, a non-linear transformation method should be applied. These 
transformations are performed, automatically or manually guided, through identifi-
cation of anatomical landmarks, such as the corners of the ventricles, which are 
easily distinguishable from the images. Image registration is typically available in 
image-processing software packages.

�Image Segmentation

The structural domains are separated through their identifiable landmarks and/or 
edges. T1-weighted MRI is typically used as it provides a good contrast between 
whole head structures, especially between grey and white matter. Skull extrac-
tion can be challenging, especially at the ethmoid sinus region, but this can be 
rectified by combining the T1-scan data with CT, T2-weighted or PD-weighted 
MRI scans [12].

Several open-source software packages designed for brain segmentation have 
been developed by different research groups. These can automatically extract major 
head structures, such as grey and white matter, skull and cerebrospinal fluid (CSF), 
from MRI images. Several of these can also further partition the grey matter into 
various cortices based on pre-defined atlases. A list of automatic brain segmentation 
software packages is provided in Table 2.1.

Table 2.1  List of open-source software packages for brain segmentation

Software package Developer

BrainSuite (http://brainsuite.org/) University of California, Los Angeles and 
University of Southern California

FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) Oxford University
SPM (https://www.fil.ion.ucl.ac.uk/spm/) University College London
FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) Harvard University
SimNIBSa (http://simnibs.de/) Copenhagen University Hospital Hvidovre 

and multiple institutions

Further details on each software tool are available from the listed websites
aSimNIBS combines other software such as FreeSurfer and SPM to build a pipeline for brain 
stimulation modelling
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It is good practice to perform additional checks following automatic segmenta-
tion to ensure there are no segmentation errors. This is usually performed in image 
processing software that allows manual segmentation, e.g. open-source 3D Slicer 
and ITK-SNAP, as well as commercially available tools such as Materialise Mimics 
Innovation Suite (https://www.materialise.com/), Amira (https://www.fei.com/soft-
ware/amira-for-life-sciences/) and Simpleware (https://www.synopsys.com/simple-
ware). Other processing, such as smoothing, can also be performed to improve 
segmentation quality. Several software packages provide training datasets and 
online tutorials to assist learning.

�Manual Segmentation

Thresholding is a critical step in manual segmentation. A thresholding filter can be 
applied to select particular brain regions. For example, grey and white matter can be 
easily discerned from T1-weighted MRI images since they exhibit different image 
intensities. As such, they can be readily segmented into individual masks. In addi-
tion to grey and white matter, the CSF space can also be easily recognised from its 
high intensity in T2-weighted images. This facilitates masking of CSF in between 
the pial surface (outer grey matter surface) and the dura surface (inner skull surface) 
as well as the interior brain ventricular system.

Segmentation can also be performed with other image processing techniques 
such as “seeding and growing”, Boolean operations and mask growing/shrinking. 
These options are available as standard features of most image segmentation soft-
ware packages [13]. “Seeding and growing” begins by manually placing seed points 
in a particular region. The seed points are then expanded to adjacent pixels based on 
certain region membership criteria, such as pixel intensity and connectivity, until all 
the connected pixels cover the structure of interest. This prevents the inclusion of 
other regions of similar pixel intensities into the same mask: for example, segment-
ing the brain by thresholding alone, ignoring connectivity, may inadvertently 
include the bone marrow of the skull.

Boolean operation techniques work directly on segmented masks, creating a 
union, intersection or difference between two masks. These can be used to obtain 
regional domains encapsulated between two domains. For example, the CSF is 
encapsulated between the dura and pia structures. Rather than directly segmenting 
the CSF, it can instead be obtained by performing Boolean subtraction of the encap-
sulating domains enclosing the brain and skull. This ensures continuity of the sur-
faces between domains in addition to segmentation efficiency. Boolean operations 
can also be used to detect boundary intersections between masks resulting from 
segmenting errors, as detailed in Section “Challenges and Tips in Segmentation”.

Mask growing/shrinking is another technique that operates directly on segmented 
masks. It is similar to performing a mask scaling. Depending on the algorithm, this 
may be performed in 2D or 3D, or using a uniform or non-uniform approach based 
on pixel intensity. The combination of these two operations may be used to remove 
islands, close holes, or interpolate between every two or three image slices.
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�Surface Smoothing

Following manual or automatic segmentation, output masks are often rough and 
contain sharp edges. Small islands, i.e. disconnected shells, may also be formed 
during segmentation and should be removed. These issues can be addressed using a 
smoothing process as shown in Fig. 2.3.

Surface smoothing can be performed on the masks within the image processing 
software, using either Gaussian, median or Laplace smoothing. It can also be per-
formed after the masks have been exported as surface triangulated objects, usually 
in .stl (stereolithography) format. Operating platforms that can perform smoothing 
include Blender (https://www.blender.org/), Geomagic Wrap (https://
www.3dsystems.com/software/geomagic-wrap) and Materialise 3-matic (https://
www.materialise.com/). The smoothing strength must be tuned so that the accuracy 
of the structure is not compromised. Any sharp edges in the form of spikes need to 
be removed, since this may prevent efficient meshing in later stages of the model-
ling effort. Furthermore, such a structure is unlikely to be correct, particularly if 
located between the brain gyri.

Fig. 2.3  (a) Thresholding of white matter, where the mask was initially generated automatically 
by FSL and imported into 3D Slicer for further processing. (b) The initial surface output from (a). 
(c) Gaussian smoothing applied to (b), with zoomed in view in the yellow box region in (b). (d) 
The final smoothed structure with segmentation errors in the form of small shells removed and 
remaining holes patched
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�Cortical Structure Labelling

Different brain regions are responsible for different physical and mental functions. 
For this reason, it is often of interest to observe the effect of ECT or other transcra-
nial electric stimulation techniques on specific brain substructures. Nonetheless, 
extracting these structures can be challenging since it requires knowledge of ana-
tomical landmarks, which are not readily discernible. In addition, manual segmen-
tation can risk losing consistency among multiple subjects, especially if the 
segmentation is performed by different people.

Some brain segmentation software provide automatic labelling of brain regions, 
as shown in Fig. 2.4. This labelling is based on established brain atlases where each 
region has been meticulously mapped. Examples of brain atlases are BrainSuite’s 
BCI-DNI_brain [14] and USCBrain [15], which are available in the BrainSuite 
software.

The first step in brain region labelling involves registering the subject’s skull-
stripped brain images to the atlas. This utilises linear and nonlinear warping to align 
the subject’s brain with the atlas. Subsequently, the regions are automatically 
labelled based on anatomical landmarks [14, 16].

�Challenges and Tips in Segmentation

Several challenges can be encountered during the segmentation process. In this sec-
tion, several tips and precautions are presented.

Fig. 2.4  Brain labelling tool in BrainSuite. (a) Masks overlaid on T1-weighted images where dif-
ferent colours signify distinct brain regions. (b) 3D surfaces generated from the masks. Smoothed 
individual cortical regions can then be produced by intersecting these labelled masks with the 
smoothed grey matter mask created previously
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Unwanted intersections between surfaces can present difficulties during the vol-
umetric meshing stage. As these intersecting surfaces are usually small, as shown in 
Fig. 2.5, very fine mesh elements will be created around these surfaces. The inter-
sections could also lead to errors during simulation since these structures are merely 
segmentation artefacts. For example, if the inner skull surface protrudes into the 
outer skull, this will create a hole in the skull domain, connecting the CSF directly 
to the scalp. Since the skull is highly resistive, a preferential current pathway is 
unintentionally created, producing a simulation error.

To prevent such intersections, segmentation can be performed from the outer-
most surface first, gradually moving towards the inner surface. Inner surface seg-
mentation can then be performed using the outer surface boundary as a guide. Small 
intersections can also be highlighted using Boolean operators and subsequently cor-
rected manually. It should be noted that intersections can exist even for automated 
segmentation tools such as those of FSL and BrainSuite. As such, the segmentation 
output must always be visually inspected.

Other challenges can also arise when segmenting the skull in T1-weighted 
images, since both compact/cortical bone and CSF appear dark. This may be 
resolved by directly obtaining the skull mask from CT scans. However, it is often 
difficult to acquire CT scans due to concerns over unnecessary radiation exposure. 
The skull is thus extracted by defining the outer skull surface using T1- or 
PD-weighted images, and the inner skull surface using T2- or PD-weighted images. 
The spongy bone of the skull is often identifiable as a bright region between the two 
thin dark regions (compact bone) outside the brain. Segmenting the air-filled 
paranasal sinuses within the skull may also be difficult as they appear dark. They are 
often recognised as frontal bone regions where spongy bone is missing.

It is not uncommon to generate a mutually exclusive mask for each domain. This 
may however create surface continuity problems, especially after surface smooth-

Fig. 2.5  Intersections 
between grey and white 
matter due to segmentation 
error. This can be 
overcome if segmentation 
of the grey matter is 
performed first, followed 
by white matter 
segmentation

A. Ahmad Bakir et al.



35

ing, during which both inner and outer surfaces of each mask are exclusively modi-
fied. A better practice would be creating inclusive masks, i.e. an outer domain mask 
within which all other domains of interest are contained. For instance, instead of 
creating a grey matter-only mask, a brain mask that also contains CSF in the ven-
tricles as well as white matter can be generated. Separation can be accomplished 
using Boolean operations after all necessary modifications are performed. In some 
FE meshing tools, separation is not only unnecessary but may also cause contact 
surface problems between domains.

2.2.2  �White Matter Anisotropy

White matter consists of myelinated neuronal tracts, which contribute to its highly 
anisotropic behaviour. This microanatomical characteristic influences the electrical 
conductivity such that it is more conductive along the tract than in the transverse 
direction [6]. Consequently, this affects the spread of the ECT electric field. 
Simulation studies by Lee et al. [5] and Bai et al. [6] show that disregarding this 
anisotropy can result in errors in deeper brain structures such as the corpus collosum 
and hippocampus. As such, the anisotropy helps direct current towards deeper brain 
regions, where significant effects have been noted following ECT [17].

The linear relationship between electrical conductivity and water diffusion ten-
sor has been experimentally validated [18, 19], suggesting that the conductivity 
tensor shares the same eigenvectors as the diffusion tensor. The water diffusion ten-
sor can be extracted using the diffusion tensor model for diffusion-weighted MRI 
(DW-MRI) [20], which can be performed in FSL using the probabilistic tracking 
algorithm from the FDT diffusion toolbox [21–23].

Two separate files containing b-values and b-matrices for all gradient directions 
are required as input for the diffusion tensor calculation. The former summarises the 
sensitivity to diffusion for each gradient direction, whereas the latter reflects the 
attenuation effect in x, y and z for each gradient direction [20]. In addition, the input 
also requires a 3D NIfTI image file of the brain region of interest (ROI), and a 4D 
NIfTI image file combining all gradient direction scans. Eigenvectors and fractional 
anisotropy (FA) are then calculated.

FA determines the anisotropic characteristics of a tensor. In brief, an FA value of 
0 indicates complete isotropy whilst a value of 1 indicates complete anisotropy. The 
FA value is determined from the eigenvalues (λ1, λ2,   λ3) of the diffusion tensor as 
follows [24]:
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where l̂  is the average of the three eigenvalues. Regions with a low FA value (typi-
cally FA < 0.45), which suggests a low local anisotropy, are removed from the ten-
sor analysis [25] (Fig. 2.6).

The conductivity tensor of white matter, σ, is calculated from:

	
ss = ( )S diag Ss s sl t t, , T ,

	
(2.2)

where S is the orthogonal matrix of unit eigenvectors obtained from the white mat-
ter diffusion tensor, and σl and σt are the conductivities in the longitudinal and trans-
verse fibre directions, respectively, which may be calculated using various methods 
[26, 27]. Following the diffusion tensor calculation, conductivity tensors of data 
points in the DW-MRI scans can then be linked to their individual coordinates. Only 
conductivity data with a strong anisotropy signal (FA ≥ 0.45) should be exported. 
Afterwards, the conductivity at the undefined region can be linearly interpolated 
using the neighbouring strong anisotropy signals.

2.2.3  �FE Meshing

After segmentation, the masks are exported as triangulated surface objects, usually 
in the form of an .stl file. The masks need to be polyhedralised (tetrahedralised in 
most scenarios), before they are ready to be used in FE analysis. Polyhedralisation 
(or FE meshing) is the process of generating polyhedral mesh elements to approxi-
mate a geometric domain, and these elements are the basis of the FE method. FE 
meshing is performed in dedicated meshing software, such as the open-source 
SALOME (https://www.salome-platform.org/), Materialise 3-matics, Simpleware, 
as well as ICEM CFD and Fluent which are both from ANSYS, Inc. (https://www.
ansys.com/). The volumetric mesh will then be imported into FE simulation soft-
ware such as COMSOL Multiphysics (https://www.comsol.com/) or ANSYS 
Workbench.

A tight contact between masks is essential to ensure continuity between meshed 
domains. It is thus often advisable in many of these meshing software packages to 
not import perfectly mutually exclusive masks. One practice is to generate inclusive 
masks, as detailed in Section “Challenges and Tips in Segmentation”. Another is to 
generate an open intersecting surface in one mask; for example, an open intersect-
ing surface at the end of the spinal cord extending beyond the closed surface of the 
skull. Afterwards, an intersecting curve must be formed at the intersection so that 
both surfaces can be meshed, followed by the remaining volumes.

In addition, the shape of these triangulated surface objects may be approximated 
with non-uniform rational basis spline (NURBS) surfaces, whose shapes are deter-
mined from a series of control points. The NURBS-approximated objects, exported 
in IGES format, can be imported as geometry into FE software and readily meshed 
into a cluster of polyhedral mesh elements. This provides flexibility in modifying 
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the model geometry directly within the FE analysis platform. The NURBS-
conversion process is available in 3-matics, Geomagic, Blender etc.; however, 
tedious manual operations are inevitable if the object has a complex structure.

Whilst meshing is mostly performed automatically by such software, care should 
still be taken in setting up the meshing method, including maximum and minimum 
element size, element growth factor, mesh smoothing parameters and if necessary, 
mesh coarsening paremeters. It is also recommended to check mesh quality to iden-
tify poor quality elements, duplicate elements or uncovered faces. These errors may 
need to be repaired manually.

2.2.4  �Physics and Property Settings

Bioelectromagnetism is the study of electric, magnetic and electromagnetic phe-
nomena arising from living cells, tissues or organisms. In the field of bioelectro-
magnetism, biological tissues are generally considered as “volume conductors”, in 
which the inductive component of the impedance is neglected, and resistances, 
capacitances and voltage sources are distributed throughout a three-dimensional 
(3D) region [28].

In the low-frequency band, where the frequency of internal bioelectric events lies, 
capacitive and electromagnetic propagation can be neglected [29, 30], thus treating 
bioelectric currents and voltages in living tissues as stationary [31]. This is known as 
the quasi-static approximation. A recent modelling study by Bossetti et  al. [32] 

Fig. 2.6  (a) Original diffusion tensor images with colour denoting the principal direction (largest 
eigenvalues) of the diffusion tensor (red indicates left-right, green indicates anterior-posterior, and 
blue is inferior-superior). (b) Fractional anisotropy with lighter colour indicating higher anisot-
ropy. These images were generated using 3D Slicer software
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investigated the difference in neural activation between solving the quasi-static field 
approximation and solving the full inhomogeneous Helmholtz equation using 
square-pulse current stimuli. They found that for commonly used stimulus parame-
ters, the exact solution for the potential (including capacitive tissue effects) can be 
well approximated by the quasi-static case. Given the relatively low values of permit-
tivity and magnetic permeability in living tissues, the quasi-static approximation can 
therefore be employed in computational head models of transcranial stimulation.

The electrical potential φ resulting from ECT can be obtained by solving the 
Laplace equation:

	
Ñ× - Ñ( ) =ss j 0,

	
(2.3)

where φ is the electric potential and σ is the electrical conductivity tensor. In order 
to solve Eq. 2.3, boundary conditions have to be defined at all domain boundaries/
surfaces. Based on the “quasi-uniform” assumption, the degree of activation in a 
target region is proportional to the local electric field magnitude 



E  [33]. The elec-
tric field 



E  is determined from Maxwell’s equations under quasi-static conditions 
using

	


E = -Ñj. 	 (2.4)

Simulation results can be analysed by comparing the average electric field mag-
nitude E  in several ROIs of the brain, which is determined using:

	

E
E dV

dV
= òòò
òòò



,

	
(2.5)

where 


E  is the local electric field magnitude at every spatial point in the ROI, and 
the denominator is simply the volume of the ROI.

�Tissue Conductivity

It is typical to assume homogeneity and isotropy in most head tissues, except for 
white matter. Tissue conductivities for each domain, presented in Table 2.2, were 
determined from previous experimental studies, as described in Bai et al. [25].

�Electrode Placement

Conventional ECT electrode placements including bifrontal (BF), bitemporal (BT) 
and right unilateral (RUL) placements have been substantially investigated using 
computational modelling [3, 5, 26]. Several variations of electrode placement have 
also been investigated with estimates of electric field strengths in key brain regions, 
with an aim to improve existing ECT protocols [34, 35].
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There are several ways to define the location of an electrode on the scalp:

	1.	 Creating a geometric object representing the physical ECT electrode on the 
scalp, e.g. a short cylinder with a diameter of 5  cm and a conductivity of 
9.8 × 105 S/m [5]. A normal inward current density J|electrode can be defined at the 
top boundary of one electrode,

	
J

I

A
= ,

	
(2.6)

where I is the stimulus current, e.g. 800 mA for ECT, and A is the top boundary 
electrode area. A ground condition (φ = 0) can be defined at the top boundary of 
the other electrode. Current continuity or other conditions representing the skin-
electrode interface can be defined at the scalp surface of both electrodes.

	2.	 An isolated geometric boundary (e.g. a circular boundary of diameter 5  cm) 
defined on the scalp surface. The boundary condition for the ECT electrodes can 
thus be defined, with other conditions representing the skin-electrode interface 
over this isolated boundary.

	3.	 A mathematically defined boundary created by intersecting the scalp surface 
with a geometry defined by analytic functions (e.g. an analytically defined sphere 
with a diameter of 5 cm for creating ECT electrodes) [25, 36]. An evenly distrib-
uted normal current density J is then applied over the analytically defined geom-
etry. A normal inward current boundary condition is defined over the entire scalp 
such that everywhere, except at the ECG electrodes, the normal current density 
is zero. The other electrode is defined to have a normal outward current density, 
−J|electrode.

Table 2.2  List of tissue 
conductivities employed by 
Bai et al. [3, 25]

Head tissue
Conductivity 
(S/m)

Scalp 0.41
Eyes 0.41
Sinus 0a

CSF 1.79
Grey matter 0.31
White matter – fibre 0.65
White 
matter – transverse

0.065

Skull – compact 0.006
Skull – spongy 0.028

aNote that setting the conductivity to zero 
in any tissue region may present a numer-
ical issue in the simulations. The com-
mon practice is to either set this domain 
as inactive in the simulations or to assign 
an extremely low value such as 1e-8 S/m
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�Other Boundary Conditions

The neck region on the lower boundary of the head can be defined using a ground 
[25] or distributed impedance boundary condition [3]. The latter sets the neck as 
being connected to a resistive compartment, which in turn is connected to ground. 
This permits some flow of current through the neck boundary, albeit negligible in 
magnitude (0.001% of delivered ECT current). The boundary condition of this dis-
tributed impedance is defined as follows: 

	



n J
ds

× = -( )neck
neck

ref

s
j j ,

	
(2.7)

where 


n J× neck  is the normal outward current density at the neck boundary, σneck is 
the conductivity assigned to the boundary, ds is the thickness of the boundary and 
φref is the reference voltage, which is set to zero for ground.

The rest of the scalp is set as an insulated boundary (i.e. zero normal component 
of current density). If the sinuses are inactive in the simulation, their boundaries 
should be set to insulated as well. All other internal boundaries must be set as con-
tinuous current density interfaces to ensure electric continuity between domains.

�Numerical Solver Settings

Under quasi-static assumptions, the stimulus amplitude and the resulting voltage, 
electric field and current density are all in a linear relationship. Therefore, it is suf-
ficient to employ a steady-state solver. A detailed head model usually involves com-
puting over a large number of mesh elements (>5 million). In COMSOL, there are 
two classes of linear solvers for computation: direct solvers, such as PARDISO, 
which are time-efficient but require large computational memory, and iterative solv-
ers, such as conjugate gradient, which approach the solution gradually, and thus are 
memory-efficient but may require substantial computational time. An iterative solver 
is a better choice for standard desktop workstations with 24 to 64 Gb RAM. The 
absolute tolerance of the error in previous works was set to 10−5 [36] or even at 10−8 
[5, 9]. In general, a lower absolute tolerance yields a more accurate result, provided 
it is greater than the numerical precision of the computer processor.

2.3  �Simulation Results

2.3.1  �Electric Feld for Three ECT Electrode Configurations

The MRI scan of a patient (39-year-old male) with bipolar disorder was acquired at 
Neuroscience Research Australia following an ECT session. The patient provided 
an informed consent for study participation, which also received ethics approval by 
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the University of New South Wales. A T1-weighted 3 T head scan was obtained 
along with diffusion tensor imaging in 32 directions. The head scan was truncated 
at the chin, and the voxel size was 1 mm in all directions. The head was segmented 
into multiple domains corresponding to the tissues listed in Table 2.2. White matter 
anisotropy was obtained by the methods described in Sect. 2.2.2.

Three common ECT electrode configurations were simulated: bifrontal (BF), 
bitemporal (BT) and right unilateral (RUL) as depicted in Fig. 2.7. An electrical 
ECT stimulus was applied using an isolated circular boundary defined to be 5 cm 
diameter. This boundary was supplied with a current density J at the anode and -J at 
the cathode. The stimulus current was set at 800 mA in all electrode configurations. 
The lower neck boundary was set to a distributed impedance as in Eq. (2.7), with ds 
set to 5 cm from the ground reference, whilst σneck was set to the scalp conductivity.

The analysis was performed on regions of the brain associated with emotional 
responses, directing attention, memory, verbal and learning skills, among others 
[37], namely the cingulate gyri, parahippocampal gyri, subcallosal gyri, amygdala, 
inferior frontal gyri, hippocampus and middle frontal gyri. These ROIs were 
extracted automatically using BrainSuite’s labelling tool and BCI-DNI atlas. This 
approach allows specific comparison in the particular brain region rather than quali-
tative observation in the whole brain.

Average 


E was calculated for each ROI using Eq. (2.5) and the results for each 
electrode configuration were compared. The results in Fig. 2.8 indicate that the right 
middle frontal gyrus displayed the largest average E-field for all three electrode 
configurations. RUL produced a maximum E-field in all right sides of the analysed 
locations as well as the left cingulate gyrus. Otherwise, the maximum average E

� ��
 

of the other left-brain regions was achieved via the BT configuration.

Fig. 2.7  Simulated electric potential on the scalp surface under three ECT electrode configura-
tions. The sites of maximum and minimum electric potential are the electrode placement sites. The 
face of the patient is hidden for privacy. Results are shown for a single ECT pulse
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The resulting electric field magnitude, 


E , is displayed in Fig. 2.9. The electric 
field in the BF and BT configurations showed a more symmetric electric field pro-
file, whilst RUL displayed a larger 



E  over the right brain hemisphere relative to 
the left. The BF configuration resulted in higher 



E  at the frontal lobe regions of 
the brain only. On the other hand, the 



E distribution in the BT configuration 
encompassed both the frontal and temporal lobe regions.

The BT configuration has been noted to be the most efficacious among the three 
electrode placements using the least amount of stimulus dose; however, it is also 
associated with a larger rate of cognitive side effects [38]. These effects are possibly 
due to the larger brain area affected by the electrical field as shown in Figs. 2.8 and 
2.9. The RUL configuration is known to result in less verbal impairment [39], pos-
sibly due to the lesser impact on the speech area at the left inferior frontal region. 
Nonetheless, the RUL configuration typically requires a suprathreshold stimulus 
(exceeding seizure threshold) to be effective [39]. The BF configuration, on the 
other hand, is also known to result in less cognitive impairment than BT, but none-
theless using lesser stimulus dosage than RUL [40]. As such, electrode placement 
sites and stimulus dosage can affect the outcome of ECT, which can be investigated 
further using the modelling framework described in this chapter.

Modelling results such as those shown here can provide additional understanding 
of clinical ECT findings in a given patient. The electric field, voltage and current 
data obtained from the simulation can be used to infer ECT impact on the brain. 

Fig. 2.8  Average electric field magnitude in specific ROIs: (a) cingulate gyri (CG), (b) amygdala 
(AD), (c) hippocampus (HC), (d) parahippocampal gyri (PG), (e) inferior frontal gyri (IFG), (f) 
middle frontal gyri (MFG) and (g) subcallosal gyri (SG). The position of these ROIs within the 
brain is described in (h)
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Nevertheless, these results are preliminary and should be treated with caution since 
results may differ from subject to subject. However, such results can be used to asso-
ciate brain regions affected by ECT with patient responses following the treatment, 
providing for the future development of safer and more effective ECT protocols.

2.4  �Discussion

2.4.1  �Model Extensions

The modelling framework described in this chapter only addresses the computa-
tion of average electric field within different brain regions. Other possibilities for 
data analysis include: focality analysis by masking regions with electric field mag-
nitude below a specified threshold [41], reconstruction of binarised subtraction 
maps for direct comparison of stimulus effects among different electrode place-
ments [3], and analysis of heating during brain stimulation by incorporating a bio-
heat equation [42].

Moreover, the framework described here only simulates the head as a passive 
volume conductor under electrical stimulus, disregarding the complex excitable tis-
sue properties of brain neurons. Nevertheless, the underlying brain activity is still 

Fig. 2.9  Distribution of electric field magnitude in V/m on the grey matter surface. The maximum 
electric field is capped to 200 V/m for image clarity. The labels on the first row indicate the image 
orientation as follows: A anterior, P posterior, R right and L left
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poorly understood. The neuronal tissue itself acts as an internal source of current, 
which may disrupt the externally applied stimulus. A review by Ye and Steiger sum-
marizes the evidence for such phenomena from various experimental and simula-
tion studies [43]. Brain neurons are also interconnected to more distal regions due 
to the existence of neural tracts, which connect different regions of the brain. Thus, 
excitation of one region will propagate along the axon [37].

Several modelling studies have addressed the issue of brain activation. A recent 
study by Riel et al. [44] performed a preliminary activation analysis along the white 
matter fibre tracts using a volume conductor model. The fibre tracts were extracted 
from a DW-MRI image using constrained spherical deconvolution, and electrical 
potentials were subsequently interpolated along the fibre tracts for calculating the 
activation function [44]. Bai et al. [36] presented a finite element (FE) whole-head 
model incorporating Hodgkin-Huxley-based continuum excitable neural descrip-
tions in the brain, which was able to simulate the dynamic changes of brain activa-
tion directly elicited by ECT, allowing investigation of parameters such as pulse 
duration [36]. Nevertheless, the computation was rather lengthy. In addition, the 
intracellular potential in the model was assumed to be resistively tied to a remote 
fixed potential, whose physiological meaning was difficult to interpret. This con-
straint did not allow for the spread of excitation through neural networks in the brain.

McIntyre et al. have, over the years, introduced a representation of white matter 
(WM) fibres in the vicinity of the subthalamic nucleus (STN), combined with a 
volume conductor model of deep brain stimulation (DBS) [45, 46]. After the electric 
potential induced by a DBS device was calculated by the FE solver, the time-
dependent transmembrane potential was solved in NEURON software using a 
Hodgkin-Huxley-type model based on the interpolated potential distribution along 
the length of each axon. The model was able to predict activation in STN neurons 
and internal capsule fibres, and the degree of activation matched well with animal 
experimental data [45].

�Subject-Specific Tissue Conductivity

The electrical conductivities of head tissues in most modelling studies are based on 
in vitro measurements. It is anticipated that some variation exists due to experimen-
tal conditions and sample preparation, let alone any inter-subject differences. 
However, it would be highly invasive to perform in vivo measurements of electrical 
conductivity, especially within brain structures.

Recent work by Fernández-Corazza et al. used electrical impedance tomography 
(EIT) to noninvasively obtain the conductivity of head tissues [4]. They injected 
small amounts of electrical current through multiple electrode pair configurations. 
A Laplace equation, as in Eq. (2.3), was then solved for every electrode pair. 
Afterwards, an inverse problem was solved to optimise the electrical conductivity 
using Newton’s optimisation method to fit the Laplace equations to EIT experimen-
tal data. It was observed that the accuracy of this method also depends on the accu-
racy of the skull segmentation. Their study showed that an over-smoothed and 
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compact skull geometry, with closed foramen, can overestimate the conductivity by 
almost 30% relative to a more accurate skull segmentation.

2.5  �Conclusion

Computational head models and FE simulation provide additional insights into 
understanding regions of the brain affected by ECT and other transcranial stimulation 
techniques by using metrics such as the electric field distribution, which are difficult 
to obtain by direct experimental measurement. Furthermore, these head models can 
serve as a tool for testing novel ECT protocols prior to animal and clinical studies.
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Chapter 3
Estimates of Peak Electric Fields Induced 
by Transcranial Magnetic Stimulation 
in Pregnant Women as Patients 
or Operators Using an FEM Full-Body 
Model

Janakinadh Yanamadala, Raunak Borwankar, Sergey Makarov, 
and Alvaro Pascual-Leone

3.1  �Introduction

Recent studies confirm the efficacy of transcranial magnetic stimulation (TMS) as a 
noninvasive treatment of medication-resistant depression [1, 2]. Four different 
devices, the Neuronetics Neurostar Stimulator, Brainsway H-Coil system, Magstim 
Magnetic Stimulator, and MagVenture Stimulator, have been cleared by the 
U.S. Food and Drug Administration (FDA) for the treatment of medication-resistant 
depression [3, 4].

Even though TMS coil holders, and even robots, have been developed that might 
make the application of TMS more spatially precise and efficient, to date, TMS is 
often applied by an operator who manually positions and retains the TMS coil over 
the subject’s head. A potential safety concern is thus generated when the operator is 
a woman and is pregnant. There are no studies to date that assess the safety of TMS 
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for a fetus. In the case of a pregnant woman as a TMS operator, we must consider 
two possibilities:

•	 Standard operation with the TMS coil held at distances of approximately 1–2 ft 
from the belly

•	 Accidental TMS coil discharge when the coil is in direct contact with the belly 
or in its immediate vicinity

In addition to the scenario of a pregnant woman as a TMS operator, the possibil-
ity of a pregnant woman as a TMS patient is also important to consider. TMS can 
cause a generalized tonic seizure, which can pose a significant risk for the integrity 
of a pregnancy. Therefore, in most instances, pregnancy will be an exclusion crite-
rion for TMS. However, a considerable percentage of women experience symptoms 
of depression during pregnancy and develop clinical depression requiring medical 
intervention. TMS has been proposed as a method to treat maternal depression 
while avoiding fetal exposure to drugs [5, 6]. So while the risk-benefit profile is 
argued to be better for TMS than for medications, one must consider that TMS may 
cause fetal exposure to high induced currents.

In estimating acceptable levels of induced currents, we refer to guidelines from 
the International Commission on Non-Ionizing Radiation Protection (ICNIRP) [7, 
8]. The 2010 ICNIRP basic restrictions for occupational exposure to time-varying 
electric and magnetic fields for frequencies in the band 1 Hz–100 kHz [8] recom-
mend that the exposure should be limited to electric fields in the head and body of 
less than 800 mV/m in order to avoid peripheral and central myelinated nerve stimu-
lation. ICNIRP also recommends that the restrictions on electric or magnetic fields 
including transient or very short-term peak fields (which are encountered during 
TMS) be regarded as instantaneous values which should not be time averaged.

We assume that the estimate of 0.8 V/m maximum peak field should also apply 
to the fetal brain, body, and trunk.

3.2  �Methods and Materials

3.2.1  �Existing Computational Models of a Pregnant Woman

Induction currents in the entire human body (or bodies) of a pregnant subject caused 
by a TMS coil can be established in every particular case via numerical electromag-
netic modeling. One of the primary investigated concerns has been a significant 
electric current density, which may develop in the highly conducting amniotic fluid 
surrounding the fetus and subject to an external time-varying magnetic field [9, 10]. 
Table 3.1 lists computational models of a pregnant woman and/or a fetus currently 
available for electromagnetic and radiological simulations.

These models (except for Refs. [10, 11], which are highlighted in the table) are 
based on insertion of a fetus into an existing nonpregnant female model. Meanwhile, 
the models developed from scans of pregnant females include the abdominal region 
only [10, 11].
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All models in Table  3.1 are voxel models, except for Ref. [11] which used 
B-splines or NURBS, while some parts of the body are adapted from the Visible 
Human Project [12, 13]. Figure 3.1 shows a NURBS model from Ref. [11], while 
Fig. 3.2 shows the voxel model family from Ref. [14].

Model name A/H/W Da TYPE RES, mmc FV D References
IT’IS Found.,
Switzerland

PREGNANT
WOMANa

3, 7, 9
months fetus

N V 0.5 x 0.5 x 1.0 h
0.9 x 0.9 x 2b

Y N [15, 16]

Natl. Inst.
of Inform.
and Comm.
Technol.,
Japan

PREGNANT
WOMAN
(based on
non-pregnant
model [21])

22/160/53
12, 20, 23,
26, 29, 32
and 33
weeks fetus

N V 2 x 2 x 2 Y N [14, 16, 18]

Imperial
College, UK

PREGNANT
WOMANb

28 weeks
fetus

N V 1 x 1 x 5 N N [11]

Health
Protection
Agency, UK

PREGNANT
WOMANc

23/163/60
8, 13, 26, 38
weeks fetus

N V 2 x 2 x 2 N N [9]

Graz
University of
Technology,
Austria

SILVY 89 kg
30 weeks
fetus

N V 2 x 2 x 7 N N [10]

Helmholtz
Zentrum
Munchen,
Germany
CST AG,
Germany

KATJA 43/163/62
24 weeks
fetus

N V 1.8 x 1.8 x 4.8 N N [19]

Rensselaer
Poly.
Institute,
NY, USA

PREGNANT
WOMANd

30 weeks
fetus

N V 6 x 6 x 7 N N [10]

Rensselaer
Poly.
Institute,
NY, USA

RPI P-3,
P-6, P-9e

First,
second,
third
trimesters
fetus

N NURBS,
V

6 x 6 x 7 for
fetus

N N [11]

Table 3.1  Computational pregnant-woman models (after ~2004)

Notes: A/H/W – age(years)/height (cm)/weight (kg); Da – original image dataset made available 
for independent evaluation of true model accuracy (Y/N); TYPE (V  – voxel; NURBS  – CAD 
model); RES – lowest image resolution (before or after post-processing) of the model declared by 
the provider (h = head, b = body); FV – free version for research available (Y/N); D – deformable/
posable (Y/N)
aBased on ELLA [15, 16, 20]
bAbdominal region only
cBased on NAOMI [20]
dAbdominal region only (body from above liver to below pubic symphysis)
eAnatomical data for the pregnant female and the fetus are gathered from several origins
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3.2.2  �Construction of FEM (CAD) Full-Body Pregnant 
Woman Model and Model Topology

The voxel models listed in Table 3.1 are perfectly fine for radiation dosimetry stud-
ies [10, 11, 18] and for high-frequency and RF simulation studies of specific absorp-
tion rates [14–16, 18] based on the finite-difference time-domain (FDTD) approach. 
However, they are not suitable for the finite element method (FEM), which is gener-
ally employed by the TMS community [23–33]. This method more accurately 

Fig. 3.1  NURBS model of a pregnant woman [11]

Fig. 3.2  Voxel model of a pregnant woman [16]
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captures complicated coil geometry(s) and curved boundaries between tissues. The 
NURBS surfaces [11] also have limited value for an FEM solver, which internally 
operates with geometry primitives: triangular facets and tetrahedra. A conversion 
from NURBS surfaces to triangular surfaces may require (very) significant addi-
tional meshing time.

To enable FEM analysis, a full-body CAD model of a pregnant female in the 
form of triangular surface meshes has been developed. As an initial dataset, we have 
chosen the detailed voxel model of a pregnant female by Nagaoka [14, 17, 18]; see 
second row of Table  3.1. We received the voxel model after signing a licensing 
agreement with the National Institute of Information and Communications 
Technology, Japan. This model is based on a 22-year-old pregnant Japanese female 
(26th week or second trimester) [17]. The original pregnant female voxel model was 
developed from MRI data collected on a nonpregnant Japanese woman who was 
160 cm tall and weighed 53 kg. Further, abdominal MR images of a 26-week preg-
nant woman were segmented and inserted into this full-body model.

We converted this voxel model into an FEM CAD model using isosurface extrac-
tion in ITK-SNAP [35] and MATLAB. Mesh decimation, healing, and smoothing 
were performed using custom MATLAB scripts and ANSYS SpaceClaim. Standard 
mesh intersection approaches [36–41] typically result in a large number of triangles 
close to intersection chains and loops. Furthermore, they leave coincident faces, 
which might create compatibility problems. Resulting object intersections (which 
are usually “shallow” intersections) were resolved by locally moving intersecting 
surfaces in their respective normal directions with a step size of 0.2 mm or so until 
the intersection was no longer present [42, 43].

A well-known problem with FEM models is object matching in a contact region. 
Usually, the contact region is not explicitly defined in an imported CAD model and 
has to be discovered separately by testing for face-to-face overlaps and matching 
CAD faces/edges [44]. This circumstance may lead to problems for certain CAD 
kernels such as ACIS. To prevent CAD import errors, a thin gap was introduced 
between all tissue objects and was filled with “average body properties” of an outer 
enclosing shell. In some sense, this gap represents membranes separating different 
tissues. If the gap is reasonably small, it provides a close approximation to reality 
for different physical processes.

In order to construct the fetus model representing a pregnant female during the 
first and third trimester, we used the base data for the second trimester and the defor-
mation approach described in Refs. [14, 18].

Figure 3.3 shows three variations of the CAD model constructed for the present 
study. The corresponding tissue mesh inventory is summarized in Supplement I. To 
our knowledge, this is the only detailed FEM-compatible model of a pregnant 
female currently available. The current model contains approximately 100 individ-
ual parts. Its distinct feature is a continuous CSF shell around the gray matter for 
both the mother and the fetus. Creation and testing required about 12 man months 
and continues as a work in progress. Figure 3.4 illustrates the corresponding fetal 
volume (second trimester) on a larger scale.
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3 months 6 months 9 months

Fig. 3.3  CAD models of a pregnant woman during the first, second, and third trimesters

Uterus

Placenta

Amniotic 
fluidFetus

Fetal
brain

Spinal 
cord

CSF

Fig. 3.4  Detailed view of the fetus for the second trimester model – posterior view with pelvic 
bones and other nearby tissues removed
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Other biomechanical CAD models of pregnant women having different degrees 
of approximation have also been constructed [45–48]. However, these models do not 
include detailed geometry of the fetus suitable for EM simulation [47–50]. Figure 3.4 
demonstrates the corresponding fetal volume (second trimester) on a larger scale.

3.2.3  �Tissue Properties

Most tissues were assigned material properties (conductivity and dielectric constant) 
following the Gabriel & Gabriel database [49], which is further replicated in the 
IT’IS database [50]. Fetal properties follow Refs. [11, 51] and are outlined in 
Table 3.2. The conductivity and permittivity of fetal brain are comparable to that of 
the fetus and also behave similarly. Hence, the fetal brain is assigned scaled fetus 
material properties; the scaling factor is obtained from the available dataset. The 
material property values assigned to all tissues are also provided in the supplement.

3.3  �Study Design

3.3.1  �TMS Coil

Similar to Ref. [26], the base coil is a figure-eight straight coil with a loop radius of 
35 mm. However, instead of a stranded conductor, a solid conductor (copper) with 
a diameter of 8 mm was used.

3.3.2  �Pulse Form and Duration

TMS pulse forms vary widely in shape and duration [52–55]. Table 3.3 summarizes 
the data for four common FDA-approved TMS machines.

Table 3.2  Material properties used in mother/fetus models [11, 51]

Tissue σ (S/m)/εr

Amniotic fluid Cerebrospinal fluid
Fetus Mean of muscle, uterus, and blood
Fetal brain σ
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In order to take the majority of cases into consideration, we have chosen a simple 
biphasic harmonic coil pulse current:

	
I t I t

dI

dt
I t( ) = ( ) = ( )0 02

2
2sin / , cos / ,π τ

π
τ

π τ
	

(3.1)

	
0 0≤ ≤ ( ) =t I tτ , otherwise

	

The derivative of the coil current, I, is proportional to the induced electric field/
induced electric current in the body. In order to include the majority of cases from 
Table  3.3, the total pulse duration or length τ was evaluated for two limiting 
values:

	 τ τ= =1 0 1ms ms, . 	 (3.2)

Please note that the equivalent frequency of the biphasic harmonic pulse given by 
(3.1) is

	 f = 1 /τ 	 (3.3)

Other more elaborate pulse forms have also been studied [62].

3.3.3  �Coil Current

For every pulse duration and coil position, the coil current amplitude I0 in (3.1) has 
been found from the condition of one standard motor threshold (SMT) unit [61, 62]. 
One SMT means that the electric field at a point 2 cm from the surface of the head 
beneath the coil center reaches the motor threshold value of approximately 130 V/m 
[61, 62]. Motor threshold, a measure of the TMS intensity necessary to evoke a 
peripheral motor response, is variable across individuals but is also remarkably con-
stant in a given individual [63]. For example, the peak coil current for a 0.1-ms-long 
pulse was found to be approximately 9000 A·turns magnetomotive force (mmf) at 1 
SMT unit.

Table 3.3  Pulse widths and SMT values for different TMS setups

#, Pulse form TMS system Pulse duration (ms) Std. motor threshold (SMT) References

1. Biphasic Brainsway 0.370 0.60–1.4 [56]
2. Monophasic Magstim 2002 1.000 NA [57]
3. Biphasic MagVenture 0.290 0–1.7 [58]
4. Biphasic Neuronetics 0.185 0.22–1.6 [58, 59]
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3.3.4  �Coil Positions

Two coil positions for a pregnant patient have been considered (see Fig. 3.5). In the 
first case (Fig. 3.5a), the straight coil is located 10 mm above the top of the head. In 
the second case (Fig.  3.5b), the straight coil is translated and then tilted by 60 
degrees. The first case might represent a standard TMS coil placement for studies 
aimed at evaluating central motor conduction, though a circular TMS coil would be 
generally used in such instances. The second case aims to approximate the position 
of the TMS for the treatment of depression.

A coil positioning map for the pregnant operator is shown in Fig. 3.6 for the 
second trimester. The closest distance from the coil center to the body is 115 mm. 
We consider three representative polarizations of the major current dipole of the coil:

	A.	 In the coronal plane (z-polarization in Fig. 3.6, Config. A, labeled as A1-A6)
	B.	 In the sagittal plane (y-polarization in Fig. 3.6, Config. B, labeled as B1-B6)
	C.	 In the transverse plane (x-polarization in Fig. 3.6, Config. C, labeled as C1-C4)

For every polarization type, four to six representative coil locations have been 
tested in the sagittal plane as shown in Fig. 3.6. The operator could achieve any of 
these positions by moving their right arm along with the coil holder. This results in 
a total of 16 test cases. For each test case, the eddy current density and the corre-
sponding electric field everywhere in the body were computed. Each test case is 
conducted for the first, second, and third trimesters. For the first trimester, the clos-
est distance from the coil center to the body is 45 mm (B) or 80 mm (C), 115 mm 
(B) and (C) for the second, and for the third – 40 mm (B) and 80 mm (C). The 
remaining topology is the same.

3.3.5  �Accidental Coil Discharge

Two extreme cases have also been considered, which are not shown in Fig. 3.6. 
These are when the coil is moved in the xy-plane until it is as close to the body as 
possible. These cases will be labeled as B7, B8 and C5, C6, respectively.

a) b)

Fig. 3.5  Two coil positions used for the pregnant patient study
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3.3.6  �Frequency-Domain Computations

All simulations were performed in the frequency domain using ANSYS Maxwell 
3D FEM software (v. 16). ANSYS Maxwell 3D is a commercial FEM software 
package with adaptive mesh refinement and has been extensively used for eddy cur-
rent computations, similar to the earlier studies [24–26]. The software takes into 
account both conduction and displacement currents (as well as free and polarization 

Configuration C

z

y
x

z

y
x

z

y
x

Configuration B

Configuration A

150 mm

115 mm 100 mm 100 mm

#1

#2

#3

#4

#5

#6

150 mm

115 mm 100 mm 100 mm

#1

#2

#3

#4

#5

#6

150 mm

115 mm 200 mm

Intermediate coil position 
not used

#1

#2

#3

#4

Fig. 3.6  Coil positioning map for a pregnant operator (second trimester) study. Some tissues are 
hidden for clarity
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charges), and solves the full-wave Maxwell equation for the magnetic field, H, in 
the frequency domain

	
∇×

+
× = −

1

σ ωε
ωµ

j
jH H

	
(3.4)

where σ is the local medium conductivity, and ε and μ are the local permittivity and 
permeability, respectively. The major difference from the full-wave case is that the 
phase is assumed to be constant over the volume of interest. Although Maxwell 3D 
also has a transient FEM solver, this solver does not take into account the displace-
ment currents and was therefore not used.

All simulations made use of the automated adaptive meshing technology avail-
able in Maxwell to iteratively refine the mesh. Five adaptive meshing passes were 
performed during the calculation, with the final meshes approaching about 2 M tet-
rahedra. Details of the adaptive mesh refinement procedure have been discussed 
previously [60].

3.3.7  �Time-Domain Computations

Frequency-domain results (coil excitation with a sinusoidal waveform) for fields 
and currents have been collected for multiple frequencies (a logarithmic frequency 
sweep) over the band from 300 Hz to 3 MHz in order to generate the required pulse 
forms via the fast Fourier transform (FFT) and inverse FFT (IFFT) as described in 
Ref. [60]. The corresponding method has been described in the same reference; it is 
time-consuming but accurate. The time-domain solution is required for any pulse 
form including the harmonic pulses given by (3.1) since they are distorted quite dif-
ferently from the harmonic wave of the same frequency. This solution is also impor-
tant for other (nonharmonic) pulse forms [60].

3.3.8  �Finding Maximum Peak Current Density/Electric Field 
Strength in Individual Tissues

A uniform 5 × 5 × 5 mm grid of observation points was introduced within a rectan-
gular box, which covers the abdominal area only. This resulted in approximately 
150,000 observation points within the body, where the induced current and the elec-
tric field are evaluated. For every such point, the pulse form has been restored via 
IFFT. Then, interpolation of peak pulse values onto a finer 2 × 2 × 2 mm grid was 
performed, followed by averaging over each small tissue volume as recommended 
in Ref. [8]. Finally, the absolute maximum peak current/field has been evaluated for 
every all tissues.
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3.4  �Results: Pregnant Patient

3.4.1  �Qualitative Behavior of Induced Currents in the Body 
of a Pregnant Patient at Different Frequencies (Pulse 
Durations)

Figure 3.7 shows eddy current amplitude distribution in a coronal plane of a preg-
nant patient for three representative frequencies: 3 kHz, 30 kHz, and 300 kHz. The 
coil current amplitude is 10,000 A (10,000 A·turns mmf). Note that the color scale 
has been multiplied by the factor of 10 for every subsequent figure.

We observe that the peak current in the fetal area does not exceed 0.1 mA/m2, 
1  mA/m2, and 40  mA/m2. Comparing Fig.  3.7a, b, the induced current initially 
appears to behave as a linear function of frequency. However, the behavior becomes 
nonlinear after 30 kHz or so as seen in Fig. 3.7c.

We also observe that the bulk of the induced current at any frequency is primarily 
excited in the amniotic fluid, but not in the fetus. This is to be expected due the very 
high conductivity of the amniotic fluid.

3 kHz CW 30 kHz CW 300 kHz CW

a) b) c)5.0e+1
2.9e+1
1.7e+1
1.0e+1
5.9e+0
3.5e+0
2.1e+0
1.2e+0
7.1e-1
4.2e-1
2.4e-1
1.4e-1
8.4e-2
4.9e-2
2.9e-2
1.0e-2

J [mA/m ]
2

5.0e+2
2.9e+2
1.7e+2
1.0e+2
5.9e+1
3.5e+1
2.1e+1
1.2e+1
7.1e+0
4.2e+0
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Fig. 3.7  Eddy current amplitude distribution in a coronal plane for three representative frequen-
cies: 3 kHz, 30 kHz, and 300 kHz (second trimester model). The coil current amplitude is 10,000 A 
(10,000 A·turns mmf). Note that the color scale was increased by a factor of 10 and 100 for the 
middle and right-hand figures, respectively
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3.4.2  �Quantitative Results for Maximum Peak Electric Field 
at One SMT Unit

In the subsequent study, the excitation is always given by a biphasic pulse from Eqs. 
(3.1)–(3.3) and the TMS intensity is always equal to one SMT unit. Figure 3.8 pres-
ents the results for the maximum peak electric field (maximum magnitude of the 
electric field vector, E(t)) for the two coil configurations in Fig. 3.5, respectively, 
and for every involved tissue. The first, second, and third trimester models were 
used in this study.

3.4.3  �Comparison with the Recommended Safe Value 
of Electric Field

According to the safety requirements discussed in the Introduction, the peak electric 
field throughout the fetal volume (including fetus, placenta, uterus, and amniotic 
fluid) shall not exceed 800 mV/m. This condition is certainly met for all cases given 
in Fig. 3.8, even using a reduction factor of 10. One obvious reason is that the mag-
netic field from the coil decays very rapidly far from the head, being approximately 
proportional to the inverse third power of the distance [64].

3.4.4  �Observations from the Quantitative Solution

The following observations follow from the analysis of the results given in Fig. 3.8:

•	 Values of the peak electric field obtained using the condition of one STM unit 
weakly depend on the pulse duration. This is in contrast to the results shown in 
Fig. 3.7, where the dependence on frequency is paramount. The reason is the 
normalization condition of one SMT unit, which means, for example, that the 
amplitude of the coil current is significantly increased for the 1.0 ms pulse.

•	 The largest fields are observed in the placenta/uterus.
•	 The smallest fields are observed in the fetal brain.
•	 Peak values for two different coil orientations are quite similar.
•	 The third trimester is characterized by somewhat larger values of the maximum 

peak electrical field as compared to the first and second trimesters.

These observations suggest that the results given in Fig. 3.8 are rather general 
and should be valid for a wide variety of coil orientations and pulse durations.
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3.4.5  �Comparison with Upper Analytical Estimate for Electric 
Fields/Eddy Currents

Using a simplified upper analytical estimate for eddy current/induced electric field 
in the human body [60], the local electric field anywhere within the body is expressed 
directly through a time-varying lumped coil current, I0f(t), in the following form
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Fig. 3.8  Maximum peak electric field values at two different pulse durations, two different coil 
positions, and three different stages of pregnancy computed separately for each fetal tissue

J. Yanamadala et al.



63

	

E
A

A r
l

r r
= −

∂
∂

( ) = ( )
− ( )′∫

inc
inc ,

t
t

I f t d

lC
,

µ
π

0 0

4 

	

(3.5)

This estimate does not depend on the specific human model under study. We first 
apply eq. (3.5) to the coil setup from Fig.  3.5a, assuming an observation point 
located beneath the coil center and at a distance of 62 mm from the coil (represent-
ing the distance from the coil center to the top of the uterus for the present model). 
The resulting upper electric field estimate is obtained as 90 mV/m at any pulse dura-
tion (when normalized to one SMT unit). Neither of the maximum peak values in 
Fig. 3.8 for the coil from Fig. 3.5a exceeds this value. For the coil from Fig. 3.5b, 
the same or a more elaborate estimate (with spatial averaging to undo a loci effect) 
[60] can be applied. Again, neither of the maximum peak values in Fig. 3.8 for the 
coil from Fig. 3.5b exceeds the value of 90 mV/m. Hence, the upper analytical esti-
mate given by (3.5) is justified for all considered cases.

3.4.6  �Using the Analytical Estimate for Predicting Maximum 
Fields for Different Patients

To provide results which may be expected for different patients, we apply the upper 
analytical estimate of Eq. (3.5) to different distances from the coil center to the top 
(or a closest point in the general case) of the uterus. The corresponding data rounded 
to within ±3 mV/m is summarized in Table 3.4. Although the present results are 
given for one specific coil type, similar estimates may be expected for other coil 
geometries according to the study performed in Ref. [60].

Table 3.4  Estimates for the maximum peak field in the fetal volume at one SMT unit

Nearest distance from coil center 
to uterus

Rounded estimate for the maximum peak electric field in the 
entire fetal area

50 cm <170 mV/m
60 cm <100 mV/m
70 cm <60 mV/m
80 cm <40 mV/m
90 cm <30 mV/m
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3.5  �Results: Pregnant Operator and Accidental Coil 
Discharge

3.5.1  �Quantitative Results for Maximum Peak Electric Field 
at One SMT Unit

All coil configurations shown in Fig. 3.6 have been studied for three stages of preg-
nancy and for different pulse durations. Figure  3.9 presents typical data for the 
second trimester and for the biphasic pulse of 0.1 ms duration. The following obser-
vations can be made from these and other relevant computations:

–– For coil positions in close proximity to the belly (A-1, A-2, C-1), the peak elec-
tric field in the fetal volume may exceed the safe limit of 800 mV.

–– When the distance from the coil center to the nearest point of the uterus is less 
than 60 cm, the maximum peak values in excess of 100 mV/m may be observed 
(this number is adopted from Table 3.4).

–– When the distance from the coil center to the nearest point of the uterus is greater 
than 60 cm, the upper estimate from Table 3.4 can be applied.

Coil polarization B in Fig. 3.6 creates the smallest values of the peak electric 
field. This result is to be expected since the equivalent dipole of the figure-eight coil 
is essentially perpendicular to the abdominal surface.

3.5.2  �Accidental Coil Discharge

In the two extreme cases (polarization B and C in Fig. 3.6), the coil is placed as 
close to the body as possible by moving it in the xy-plane. The corresponding cases 
for polarization B and C in Fig. 3.6 have been labeled as B7, B8 and C5, C6, respec-
tively. The corresponding maximum peak field values for the entire fetal volume are 
shown in Fig.  3.10. For these cases, the suggested limit of 800  mV/m may be 
exceeded by a factor of ten or higher. Similar results were obtained for polarization 
A for similar extreme coil placements.

3.6  �Conclusion

At present, safe limits of fetal exposure to TMS electric and magnetic fields are an 
open subject. This study aimed to perform both numerical and analytical analyses 
of this important issue.

As a limit of the maximum peak electric field observed in the fetal volume, we 
have chosen the value of 800 mV/m, which allows us to avoid peripheral and central 
myelinated nerve stimulation [8].
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Fig. 3.9  Maximum peak 
electric field values for the 
second trimester for all coil 
configurations/positions 
depicted in Fig. 3.6
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Our numerical and analytical estimates for biphasic TMS pulses of different 
durations provide similar safety estimates. They reveal that:

	1.	 For the TMS intensity of one SMT unit and when the closest distance between 
the center of the coil and the uterus is greater than or equal to 60 cm (2 ft.), the 
maximum peak electric field in the fetal volume (including fetus, placenta, 
uterus, amniotic fluid) is expected to be less than or equal to 100 mV/m. This 
value is significantly lower than the recommended safe limit of 800 mV/m.

	2.	 The estimate given above was shown for any stage of pregnancy, for two realistic 
pulse durations, and for pregnant woman either as a patient or an operator.

	3.	 This estimate appears to scale linearly with TMS intensity. For example, at the 
TMS intensity of 1.5 SMT unit, the peak field in the fetal volume is less than or 
equal to 100 × 1.5 = 150 mV/m when the closest distance between the coil center 
and the uterus is still 60 cm or greater.

	4.	 This estimate is scaled approximately proportional to the inverse third power of 
the distance. For example, at the TMS intensity of one SMT unit, the peak field 
in the fetal volume is less than 100 × (6/5)3 ~ 170 mV/m when the closest dis-
tance between the coil center and the uterus is 50 cm or greater.

	5.	 The following approximate equation for the maximum peak electric field E in 
the fetal volume is suggested
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Fig. 3.10  Maximum peak electric field values for all trimesters and for all coil positions listed in 
Fig. 3.6
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where d is the closest distance between the coil center and the uterus in cm and I 
is the TMS intensity in SMT units. We expect (3.6) to hold at the distances d 
gretater than 30 cm.

	6.	 FDA-cleared TMS devices employ a TMS coil holder. A pregnant operator can 
(and should) maintain a larger  – and thus safer  – distance when using a coil 
holder during TMS treatment. However, the possibility of accidental TMS coil 
discharge close to the belly has to be considered. In this case, the suggested limit 
of 800 mV/m may be exceeded by a factor of ten or greater.

	7.	 Given the unknown biological consequences of a large number of pulses in a 
typical treatment sequence, the decision of whether to use TMS for treatment of 
depression (the only currently approved indication) should be based on a risk-
benefit analysis. In considering the risk-benefit balance, it is important to con-
template the fetal risks posed by pharmacologic treatments for depression in 
pregnant patients [65, 66]. For more experimental and less evidence-supported 
indications, a prudent course of action would be to avoid the use of TMS in preg-
nant women. In any case, appropriate informed consent is critical.

The content of this chapter is solely the responsibility of the authors and does not 
necessarily represent the official views of Harvard Catalyst, Harvard University, and 
its affiliated academic health care centers, the National Institutes of Health, or the 
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Table 3.5  List of triangular surface meshes – version 1.1

Hard tissues Soft tissues Individual tissues
Mesh 
# Tissue name

Number of 
triangles Mesh quality

Min. Edge 
length, mm Tissue type

1 JVM amniotic fluid 1286 0.007942 1.850163 Cerebrospinal 
fluid

2 JVM bile 122 0.272007 2 Bile
3 JVM bladder 420 0.054992 0.273501 Bladder
4 JVM breast fat left 836 0.068894 0.614704 Fat
5 JVM breast fat right 782 0.037711 0.632222 Fat
6 JVM cerebellum 366 0.052604 1.568904 Cerebellum
7 JVM clavicle left 944 0.061578 1.087026 Bone
8 JVM clavicle right 828 0.024572 0.594466 Bone
9 JVM cornea left 76 0.787694 2.000000 Cornea
10 JVM cornea right 76 0.787694 2.000000 Cornea
11 JVM CSF 6514 0.054137 0.446563 Cerebrospinal 

fluid
12 JVM duodenum 1030 0.004117 0.44492 Duodenum
13 JVM esophagus 756 0.014063 0.429978 Esophagus
14 JVM femur left 2914 0.123556 0.912948 Bone
15 JVM femur right 3216 0.133124 0.408209 Bone
16 JVM fetal brain 854 0.172681 1.861426 Fetal brain
17 JVM fetus 5000 0.007519 1.107346 Fetus
18 JVM fetus CSF 1282 0.039712 0.293805 Cerebrospinal 

fluid
19 JVM gallbladder 686 0.088411 2 Gallbladder
20 JVM gray matter 5454 0.004558 0.167652 Gray matter
21 JVM heart 1000 0.032791 1.660989 Heart muscle
22 JVM Humerus ulna 

left
3368 0.007025 0.393429 Bone

23 JVM Humerus ulna 
right

3558 0.018193 0.093016 Bone

24 JVM jaw 424 0.007359 0.359137 Bone
25 JVM kidney left 568 0.024197 1.163018 Kidney
26 JVM kidney right 636 0.082014 0.314779 Kidney
27 JVM large intestine 3914 0.002854 0.03227 Large intestine
28 JVM large intestine 

content
5886 1.23E-08 3.05E-05 Large intestine

29 JVM lens left 18 0.787694 2.00000 Lens
30 JVM lens right 18 0.787694 2.00000 Lens
31 JVM liver 2512 0.001358 0.786026 Liver
32 JVM lungs left 1138 0.001854 0.47502 Lung

�Japanese Virtual Model (JVM) Finite-Element Model Version 
1.1 (6 months)
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Hard tissues Soft tissues Individual tissues
Mesh 
# Tissue name

Number of 
triangles Mesh quality

Min. Edge 
length, mm Tissue type

33 JVM lungs right 1146 0.038088 2.120805 Lung
34 JVM ovary left 798 0.207408 0.942092 Ovary
35 JVM ovary right 230 0.170639 0.640317 Ovary
36 JVM pancreas 600 0.015017 0.522665 Pancreas
37 JVM Patella left 304 0.379008 1.276178 Bone
38 JVM Patella right 424 0.005271 1.340134 Bone
39 JVM pelvic 10012 1.6E-05 0.02115 Bone
40 JVM placenta 902 0.008601 2.09859 Placenta
41 JVM rib left 1 194 0.037071 1.501538 Bone
42 JVM rib left 2 246 0.019692 0.874205 Bone
43 JVM rib left 3 298 0.033745 1.198342 Bone
44 JVM rib left 4 376 0.017842 0.792734 Bone
45 JVM rib left 5 552 0.008819 0.223525 Bone
46 JVM rib left 6 482 0.058624 0.928572 Bone
47 JVM rib left 7 516 0.044063 1.117289 Bone
48 JVM rib left 8 498 0.019398 0.611004 Bone
49 JVM rib left 9 438 0.032979 0.525822 Bone
50 JVM rib left 10 594 0.013294 0.127242 Bone
51 JVM rib left 11 282 0.01784 1.493664 Bone
52 JVM rib left 12 158 0.020202 1.013902 Bone
53 JVM rib right 1 194 0.121647 0.908528 Bone
54 JVM rib right 2 252 0.019442 0.85563 Bone
55 JVM rib right 3 298 0.034585 0.900052 Bone
56 JVM rib right 4 374 0.017841 0.917949 Bone
57 JVM rib right 5 624 0.010604 0.159166 Bone
58 JVM rib right 6 474 0.109128 0.928528 Bone
59 JVM rib right 7 516 0.026893 1.025215 Bone
60 JVM rib right 8 502 0.007985 0.541626 Bone
61 JVM rib right 9 564 0.015767 0.125747 Bone
62 JVM rib right 10 596 0.013823 0.193589 Bone
63 JVM rib right 11 282 0.012179 1.474308 Bone
64 JVM rib right 12 156 0.017841 0.320081 Bone
65 JVM salivary gland 

left
1208 0.036962 2.000000 Salivary gland

66 JVM salivary gland 
right

1006 0.088411 0.48356 Salivary gland

67 JVM scapula left 1618 0.006059 0.77685 Bone
68 JVM scapula right 1594 0.051858 0.330764 Bone
69 JVM sclera left 556 0.642238 2.000000 Eye (Vitrous 

humor)
70 JVM sclera right 556 0.642238 2.000000 Eye (Vitrous 

humor)

(continued)
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Hard tissues Soft tissues Individual tissues
Mesh 
# Tissue name

Number of 
triangles Mesh quality

Min. Edge 
length, mm Tissue type

71 JVM skin 8042 0.005529 4.349768 Skin
72 JVM skull 8196 0.005778 0.024727 Bone
73 JVM small intestine 4574 0.000462857 0.121570 Small intestine
74 JVM spine 4694 0.025728 0.503403 Bone
75 JVM stomach 1996 0.00633 0.528757 Stomach
76 JVM stomach 

contents 1
1388 0.088411 2.000000 Stomach

77 JVM stomach 
contents 2

968 0.076652 2.000000 Stomach

78 JVM thalamus 574 0.103805 2.000000 Thalamus
79 JVM thyroid 806 0.026187 1.999985 Thyroid
80 JVM tibia fibia left 2686 0.15568 0.965745 Bone
81 JVM tibia fibia 

right
3332 0.019527 0.407727 Bone

82 JVM tongue 260 0.092234 2.353283 Tongue
83 JVM trachea 870 0.123615 0.597242 Trachea
84 JVM urine 308 0.018274 0.531584 Urine
85 JVM uterus 596 0.300344 8.490075 Uterus
86 JVM white matter 9088 0.000959 0.148079 White matter
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Chapter 4
Electric Field Modeling for Transcranial 
Magnetic Stimulation 
and Electroconvulsive Therapy

Zhi-De Deng, Conor Liston, Faith M. Gunning, Marc J. Dubin, 
Egill Axfjörð Fridgeirsson, Joseph Lilien, Guido van Wingen,  
and Jeroen van Waarde

4.1  �Introduction

Major depressive disorder (MDD) is a highly prevalent condition with a lifetime 
prevalence of nearly 20% [1]. MDD is currently the second leading cause of dis-
ability worldwide, and the World Health Organization (WHO) has predicted that, by 
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2020, it will be the leading cause of disability. In the Diagnostic and Statistical 
Manual of Mental Disorders, MDD is also the diagnosis that is most strongly asso-
ciated with suicide attempts, a phenomenon whose rates have sharply increased 
over the past two decades in the USA [2]. Present first-line treatment options for 
MDD include antidepressant medications and cognitive-based therapies. However, 
a large proportion of patients remain unresponsive to these treatment options [3]. 
This underscores the urgent need for more personalized approaches to treatments as 
well as alternative antidepressant therapies, such as noninvasive brain stimulation.

Several noninvasive brain stimulation techniques are now available for the treat-
ment of MDD. Electroconvulsive therapy (ECT) is a highly effective treatment for 
patients with severe and medication-resistant depression. ECT delivers a series of 
electrical pulse trains to the brain via scalp electrodes that induce a generalized 
tonic–clonic seizure in anesthetized patients. For the treatment of MDD in adults, 
ECT has a sustained response rate of approximately 80% and a remission rate of 
75% [4]. Despite this superior clinical efficacy, little is known about the interindi-
vidual variability in the electric field (E-field) strength and distribution induced by 
ECT. In this work, we aimed to quantify E-field variability in a depressed patient 
population and to explore correlates with antidepressant treatment outcome.

Another FDA-cleared treatment for depression is repetitive transcranial mag-
netic stimulation (rTMS). In depressed patients receiving rTMS, interindividual 
variability in the induced E-field strength and distribution has not been well charac-
terized. It is not known, for example, what aspect of the E-field is related to improve-
ments in depression symptoms. Such information would be useful for patient 
selection and/or guide treatment target and dosing.

Conventional magnetic neurostimulation systems use a current-carrying coil to 
generate a time-varying magnetic field pulse, which in turn produces a spatially 
varying electric field – via electromagnetic induction – in the central or peripheral 
nervous system. An alternative approach to generating the time-varying magnetic 
field is by means of moving permanent magnets. Several systems have been pro-
posed [5–7], involving rotation of high-strength neodymium magnets. One of these 
systems, termed synchronized transcranial magnetic stimulation (sTMS), was 
explored as a treatment of depression [8].

The sTMS device is comprised of a configuration of three cylindrical neodym-
ium magnets mounted over the midline frontal polar region, the superior frontal 
gyrus, and the parietal cortex. The speed of rotation for the magnets was set to the 
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patient’s individualized peak alpha frequency of neural oscillations, as obtained by 
pretreatment electroencephalo-graphy recorded from the prefrontal and occipital 
regions while the patient remained in an eyes-closed, resting state [9]. The hypoth-
esized mechanism of action is that entrainment of alpha oscillations, via exogenous 
subthreshold sinusoidal stimulation produced by sTMS, could reset neural oscilla-
tors, enhance cortical plasticity, normalize cerebral blood flow, and altogether ame-
liorate depressive symptoms [10]. In a multi-center, double-blind, sham-controlled 
trial of sTMS treatment of MDD, there was no difference in efficacy between active 
and sham in the intent-to-treat sample [8]. No direct electrophysiological evidence 
of the hypothesized mechanism of sTMS was reported, nor was the stimulation 
intensity and distribution well characterized. In this work, we evaluate the electric 
field characteristics of sTMS using the finite element method.

4.2  �Modeling Methods

4.2.1  �ECT Modeling

This study included 67 patients who received ECT at Rijnstate Hospital in Arnhem, 
the Netherlands [11]. ECT was administered using a Thymatron System IV (pulse 
amplitude = 900 mA; Somatics LLC, Lake Bluff, IL, USA), with bilateral and/or 
right unilateral electrode placements (see Fig. 4.1). Depression severity was assessed 
using the Montgomery–Åsberg Depression Rating Scale (MADRS). T1-weighted 

Fig. 4.1  E-field induced in 26 patients receiving right unilateral (RUL) ECT only, 14 patients 
receiving bilateral (BL) ECT only, and 27 patients who started with RUL ECT and switched to BL 
ECT

4  Electric Field Modeling for Transcranial Magnetic Stimulation…



78

MRI (1.1 mm isotropic voxel) was acquired at baseline. We examined the relation-
ship between E-field strength and post-treatment MADRS score using a general 
linear model, controlling for age, sex, baseline MADRS score, and the number of 
ECT sessions.

4.2.2  �rTMS Modeling

The Institutional Review Board of Weill Cornell Medical College approved this 
rTMS study. Twenty-six treatment-resistant depressed patients (age 21–68) partici-
pated in the study. Patients received daily 10 Hz rTMS over the left dorsolateral 
prefrontal cortex (DLPFC) using the NeuroStar system 5 days per week for 5 weeks 
[12]. Treatment response was assessed using the 24-item Hamilton Rating Scale for 
Depression (HAMD-24) at baseline and after the course of rTMS.  T1-weighted 
MRIs were acquired within 7 days prior to starting rTMS and within 3 days of com-
pleting the treatment. Diffusion tensor images were acquired using a single-shot 
spin echo imaging sequence. Motor threshold was determined by visualization of 
movement technique at baseline. Anatomically realistic finite element head models 
were constructed from individual MRIs using SimNIBS 2.0.1 [13]. The rTMS coil 
was centered on the F3 site according to the International 10–20 system [14], ori-
ented 45 degrees toward midline. We evaluated the E-field strength at the DLPFC 
gray matter (middle frontal gyrus (MFG), inferior frontal sulcus (IFS), and superior 
frontal sulcus (SFS)).

4.2.3  �sTMS Modeling

Patient MRI data was not available to model sTMS. The finite element model was 
implemented in COMSOL Multiphysics (COMSOL, Burlington, MA) using its 
version of the IEEE Specific Anthropomorphic Mannequin (SAM) phantom as a 
basis for the geometry (Fig. 4.2). The head model (stator) has uniform, isotropic 
electrical conductivity of 0.33 S m−1 and a relative permeability of 1. Three cylindri-
cal magnets (rotors) were positioned along the midline: magnet #1 was located over 
the frontal pole just above the eyebrows, magnet #2 was 7.1 cm from Magnet #1, 
approximately overlying the superior frontal gyrus, and magnet #3 was 9.2 cm from 
magnet #2, approximately overlying the parietal cortex. Each magnet was 2.54 cm 
in diameter and height, diametrically magnetized, with a residual flux density of 
0.64 T. The axes of rotations were perpendicular to the sagittal plane and the rota-
tion velocity was set to 10  Hz, corresponding to approximately peak alpha fre-
quency. The resulting adaptive mesh consisted of 56,825 tetrahedral elements.

Under the vector potential formulation, Ampère’s law was first applied to all 
domains:
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and a magnetic flux conservation equation for the scalar magnetic potential was 
applied to current-free parts of both the rotor and stator:

	
−∇ ⋅ ∇ −( ) =µ Vm rB 0.

	

Continuity in the scalar magnetic potential was enforced at the interface between 
the rotor and stator. A stationary solution was first obtained using a direct solver 
(MUMPS), and then the time-dependent problem (in 10 degrees rotation steps) was 
solved. This assumes that the transient effects of initiating the rotating magnets have 
decayed, and the final solution reflects steady-state behavior.

4.3  �Results

4.3.1  �Electric Field Induced by ECT

Figure 4.1 shows the E-field distribution induced by bilateral and unilateral ECT in 
the study patients. For right unilateral ECT, the maximum E-field strength induced 
in the brain is 513.0 ± 113.2 V m−1. For bilateral ECT, the largest cluster of white 
matter voxels where the E-field strength is significantly correlated with the post-
treatment MADRS score includes parts of the right inferior fronto-occipital 

Fig. 4.2  Dimensions and 
placement of the three 
cylindrical magnets in the 
sTMS system
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fasciculus, inferior longitudinal fasciculus, uncinate fasciculus, anterior thalamic 
radiation, and the corticospinal tract, where there is high E-field strength.

4.3.2  �Electric Field Induced by rTMS

Figure 4.3 shows the TMS-induced E-field distribution in a representative patient. 
At the treatment intensity, the mean maximum induced E-field strengths at the 
MFG, IFG, and SFG are 92.2 V m−1, 56.5 V m−1, and 79.6 V m−1, respectively. 
Stimulator intensity was positively correlated with E-field strength at the MFG 

 

Fig. 4.3  rTMS-induced E-field. (a) Head model and E-field distribution in a representative patient. 
The green dot on the head model indicates location of the TMS target. (b) Correlation between 
stimulation intensity (in standardized motor threshold (SMT) units) and maximum E-field strength 
at MFG. (c) Distribution of E-field strengths at the MFG, IFS, and SFS, for the 26 patients
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(r = 0.77, p < 0.001). However, E-field strengths at the MFG, IFG, and SFG were 
not correlated with changes in HAMD-24.

4.3.3  �Electric Field Induced by sTMS

Figure 4.4 shows the electric field distribution of the full sTMS configuration in the 
SAM head model. The stimulation is broadly distributed over midline frontal polar, 
medial frontal, and parietal regions. The peak-induced electric field strength at the 
surface of the head is approximately 0.06 V m−1. At a depth of 1.5 cm from the head 
surface, corresponding to the depth of the cortex, the electric field strength attenu-
ates to approximately 0.02 V m−1.

Fig. 4.4  One full revolution (period = T) of the full sTMS configuration in steady-state

4  Electric Field Modeling for Transcranial Magnetic Stimulation…
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4.4  �Discussion

There is marked variability in the distribution of E-field induced by ECT across 
individuals, with approximately 22% variation in the maximum E-field strength 
attributed to anatomical differences. Stimulation of anterior–posterior oriented white 
matter tracts on the right hemisphere, such as the inferior fronto-occipital fasciculus 
and inferior longitudinal fasciculus, appears to be related to clinical outcome.

There is also marked variability in the induced E-field strength at the DLPFC in 
patients receiving rTMS. Region of interest analysis of the E-field distribution in 
combination with clinical outcome could inform targeting and dosing strategies.

Jin and Phillips estimated the intensity of sTMS stimulation to be approximately 
0.1% that of standard TMS [9]. However, this estimate was based on comparison of 
maximum surface fields and does not account for boundary conditions of the head. 
Our simulation with a head model suggests that the peak electric field strength at the 
level of the cortex is approximately 0.02 V m−1. This field strength is an order of 
magnitude lower compared to those induced by transcranial current stimulation (tCS) 
[15] and low-field magnetic stimulation (LFMS) [16, 17]. The sTMS field strength is 
comparable to that of low-intensity repetitive magnetic stimulation (LI-rMS) in an 
in vitro model, which has been shown to alter cellular activation and gene expression 
in an organotypic hindbrain explant and in a stimulation frequency-specific manner 
[18]. Thus, the low field strength of sTMS could be biologically active.

Helekar and Voss proposed a device comprised of an assembly of high-speed 
rotating cylindrical magnets [7]. These N52 grade magnets are smaller (3/8 inch in 
height and 1/4 inch in diameter) and have stronger surface field (Br = 1.48 T) com-
pared to the sTMS magnets. The magnets are axially magnetized, but the axis of 
rotation is perpendicular to the axis of the cylinder. The motor provides a no-load 
speed of 24,000 rpm (400 Hz). Since the induced electric field strength is propor-
tional to the angular frequency of rotation, higher rotational speed can increase the 
electric field strength. Helekar and Voss estimated the intensity of their high-speed 
rotating magnet device to be approximately 6% that of TMS, based on voltage mea-
surements made with an inductor search coil [19, 20]. However, measurements 
made in air and without the conductivity boundaries of the head would likely over-
estimate the electric field strength. Furthermore, smaller magnets have faster field 
attenuation with distance compared to larger magnets.

Watterson proposed and tested a similar high-speed rotating magnet device for 
stimulation of muscle nerves [6]. In a series of in vitro experiments on the cane toad 
sciatic nerve and attached gastrocnemius muscle, Watterson and Nicholson observed 
that nerve activation was achievable with a rotational frequency of 230 Hz [21]. The 
activation of peripheral nerves is thought to be more sensitive to the gradient of the 
electric field. To maximize the field gradient, Watterson’s device employs a “bipole” 
configuration, comprising two diametrically magnetized cylindrical magnets next to 
one another with opposite magnetization directions [21].

In this work, we simulated the sTMS system at a fixed rotational frequency of 
10 Hz. The frequency of peak alpha oscillation across individuals can vary between 
8 and 13 Hz. As mentioned above, the induced electric field strength is proportional 

Z.-D. Deng et al.



83

to the frequency of rotation of the magnets. Therefore, individualizing the rotational 
frequency could introduce variability in the induced electric field strength across 
individuals. Higher field strength can be achieved by increasing the rotational speed. 
However, neuronal activation becomes inefficient at very high frequencies. Finally, 
the interaction between field strength and excitation frequency could be nonlinear. 
For example, it has been demonstrated that when 140 Hz transcranial alternating 
current stimulation is applied to the motor cortex, low current amplitude of 0.4 mA 
results in reduction of motor evoked potential (MEP) amplitudes, intermediate 
amplitudes of 0.6 and 0.8 mA showed no effect on MEP, and high amplitude of 
1 mA results in enhancement of MEP amplitudes [22].

4.5  �Conclusion

We evaluated the electric field characteristics of ECT, rTMS, and the sTMS system 
of rotating magnets using the finite element method. We found substantial variabil-
ity in E-field strength across patients receiving ECT and rTMS, possibly contribut-
ing to variability in clinical outcome. For the experimental sTMS treatment, we 
found that the maximum induced electric field strength at the level of the cortex is 
approximately 0.02 V m−1, which is an order of magnitude lower compared to those 
delivered by transcranial current stimulation and low-field magnetic stimulation. 
Future work will include simulation of sTMS in anatomically-accurate head models 
derived from individual brain scans and treatment parameters. Direct electrophysi-
ological data should also be collected to validate the proposed mechanism of action.
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Chapter 5
Design and Analysis of a Whole-Body 
Noncontact Electromagnetic Subthreshold 
Stimulation Device with Field Modulation 
Targeting Nonspecific Neuropathic Pain

Sergey Makarov, Gene Bogdanov, Gregory Noetscher, William Appleyard, 
Reinhold Ludwig, Juho Joutsa, and Zhi-De Deng

5.1  �Introduction

Pain is distinguished by duration as acute (less than 6 weeks), subacute (6–12 weeks), 
and chronic (12 weeks or more) pain. Approximately 100 million US adults suffer 
from common chronic pain conditions, more than the number affected by heart dis-
ease, diabetes, and cancer combined [1]. The economic cost of chronic pain in adults, 
including health care expenses and lost productivity, is $560–630 billion annually 
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[1]. Seven in ten Americans feel that pain research and management should be one 
of the medical community’s top few priorities (16%) or a high priority (55%) [2].

One form of chronic pain is nociceptive pain, which is the normal response to 
injury of tissues such as muscles, visceral organs, joints, or bones. Another form is 
neuropathic pain, which involves dysfunction of (i) the peripheral nervous system 
(PNS) or (ii) the central nervous system (CNS). The latter case is amplification and 
generation of pain within the CNS itself due to distorted sensory processing, mal-
functioning of pain-inhibitory mechanisms, and enhancing pain-facilitatory mecha-
nisms [3–6]. An example is psychogenic pain, which does not usually have a 
physical origin [7, 8]. Highly prevalent symptoms in chronic pain are depression 
and anxiety [7–11], which are reported by more than 50% of patients with chronic 
pain [9]. Pain and depression may create a vicious cycle in which pain worsens 
depression and vice versa [10].

Low back pain, either acute or chronic, dominates other pain types [7] and affects 
about 80–84% of the population at least once at some point in life [12–14]. In the 
US Armed Services alone, low back pain was the primary diagnosis for more than 
seven million ambulatory care visits between 2000 and 2009 [15]. Current estimates 
are that approximately 25% of people with acute low back pain experience recurrent 
episodes, while 7–10% progress to a chronic state [15] and can experience signifi-
cant physical, psychological, and social sequelae that affect their long-term func-
tioning and quality of life [16]. According to [11], 70% of subjects with chronic low 
back pain report fatigue and 18% report depression. According to [17], 59% of the 
patients with chronic low back pain report poor sleep.

Chronic low back pain accounts for 22% of all chronic pain cases and for 35% of 
most persistent pain sites [7]. The classification of low back pain is complicated by 
the varying presentation and complex nature of pain [14]. The most common diffuse 
neuropathic pain without radiating beyond the buttocks is classified as nonspecific 
low back pain [14], which makes up 60% of individuals suffering from chronic low 
back pain [18].

The initial treatment for acute nonspecific low back pain is conservative, includ-
ing nonopioid analgesics (acetaminophen, aspirin), nonsteroidal anti-inflammatory 
drugs (ibuprofen, ketoprofen), physiotherapy, dynamic strengthening exercises, 
thermotherapy, and, if necessary, a short course of muscle relaxants [13, 14]. 
Further, conservative methods include traction treatment, manual therapy, and 
transcutaneous electrical nerve stimulation (TENS) [14]. A commonly prescribed 
treatment for chronic pain is opioids (codeine, oxycodone, hydrocodone, and mor-
phine) [13, 19]. The use of opioids is controversial due to severe addiction and 
misuse [13, 15, 16, 20, 21]. It is argued that chronic use of opioids is detrimental to 
people with back pain because they can aggravate depression, leading to a worsen-
ing of the pain [13]. Whenever possible, opioid medications in chronic noncancer 
pain should be avoided [20].

TENS is a common drug-free alternative treatment technique that stimulates 
selected sensory nerves and muscles via electrodes placed on the skin over the pain-
ful area [22–28]. The electrodes inject electric currents and, most importantly, elec-
tric fields into body. The theory is that the local electric field stimulation can modify 
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both cause and perception of chronic pain. A number of systematic reviews of the 
effect of TENS on various painful conditions, such as labor pain, rheumatoid arthri-
tis, phantom limb pain, and chronic lower back pain, are available [22, 24–28]. 
However, these reviews indicate that most controlled randomized clinical trials 
failed to show significant effects of the existing small-scale TENS systems with a 
strongly localized electric field distribution.

This design-based study is driven by the limitations of TENS. We introduce a 
conceptually different electromagnetic stimulation device. Instead of local high-
intensity and suprathreshold TENS, we suggest to stimulate the PNS and muscular 
system of the entire lower body in a noncontact, patient-friendly way. At the same 
time, we suggest to use low or subthreshold power levels. In other words, we pro-
pose mild yet more broad electromagnetic treatment, potentially beneficial for non-
specific chronic pain. The proposed device [29, 30] would primarily affect peripheral 
nerves, the spinal cord, muscles, joints, and bone. Simultaneously, it could influence 
the somatosensory cortex via many affected pathways, in line with the modern con-
cept of central control of pain [8]. Based on the numbers cited above [7, 14, 18], we 
can estimate that some 14% of all chronic pain cases might be subject to the pro-
posed alternative treatment.

The text is organized as follows. Section 5.2 describes a theoretical device model, 
specifies the field distribution within the resonator, and describes hardware design, 
test, and functionality, including semiautomatic operation/tuning and representative 
continuous run times. Section 5.3 provides computational results for the electric 
field distribution within the body obtained via two independent numerical methods. 
Section 5.4 discusses possible device modifications, as well as potential application 
scenarios. Section 5.5 concludes the chapter.

5.2  �Materials and Methods

5.2.1  �Suprathreshold Versus Subthreshold Stimulation

The vast majority of transcutaneous electrical nerve stimulation (TENS) devices 
[14, 22–28] today are suprathreshold. They excite local currents/electric fields that 
are strong enough to produce an action potential in peripheral axons assembled in 
bundles of sensory nerve fibers. A case in point is a small pulsed-current InTENSity™ 
Twin Stim® III device [31] similar to that shown in Fig. 5.1a [32], intended for 
home use. It creates a prominent zapping sensation when the electrodes are con-
nected to the lower back. The majority of PEMF (pulsed electromagnetic field) 
devices operate in a similar fashion.

Alternatively, a continuous current injection with a more powerful stationary 
device may be employed by chiropractors as shown in Fig. 5.1b [33]. When con-
nected to the lower back, it creates a rather strong burning sensation. The electric 
field may also be injected via a noncontact induction coil [34, 35] as in Fig. 5.1c. 
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Although a broader coverage with many electrodes is now possible, local supra-
threshold effects still dominate.

With respect to treatment-persistent depression, only three nonpharmacological 
therapies have been approved by the FDA to date; all of them are electromagnetic 
and suprathreshold: transcranial magnetic stimulation [36], vagus nerve stimulation 
[37], and electroconvulsive therapy [38].

Subthreshold refers to a low-power electromagnetic stimulation that is too small 
to elicit action potentials. However, it still alters the axonal membrane potential 
[39]. This effect accumulates and maximizes toward axon terminals, i.e., synapses 
[39]. It is synaptic efficacy (or natural neurotransmission efficacy) that is altered 
and enhanced by the subthreshold stimulation [39]. In a chain of neurons, this 
stimulation could cause an incremental relay effect, which may further enhance 
neuronal network activity [39]. The theory of subthreshold stimulation [39–42] has 
been developed in application to transcranial current stimulation [39–47]. Low-
field magnetic stimulation of depression is an active area of research [48–54]. The 
subthreshold technique is also a modern research direction in spinal cord stimula-
tion [55–59], as it eliminates noxious and off-target paresthesia, while being effi-
cient, as well as in vagus [60], occipital [61], proximal [62], and parasympathetic 
[63] nerve stimulation, and in neuromuscular stimulation [64]. Electrocutaneous 
subthreshold stimulation has been found to improve sleep and reduce reactive anx-
iety/depression [65].

5.2.2  �Concept of the Magnetic Stimulator. Two-Dimensional 
Analytical Solution for Solenoidal E-Field

Figure 5.2 shows the anticipated device concept. An external, uniform, rotating (or 
circularly-polarized) magnetic flux density B with amplitude B0 is created in the 
transverse plane around a tissue volume, depicted in Fig. 5.2a. By Faraday’s law of 
induction, this field excites an axial, rotating solenoidal electric field E in free space 
or in a tissue volume, which is expressed in terms of the magnetic vector potential A,

Fig. 5.1  (a) Portable pulsed-current TENS (or PEMF) device from National Health Service 
(NHS) England website [32]. (b) Stationary continuous-current TENS device with sponge elec-
trodes for low back pain treatment in Hannover, Germany [33]. (c) Induction coil-based peripheral 
neuropathic pain stimulation for low back pain treatment [34, 35]
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E A= −∂ ∂t 	

(5.1)

as shown in Fig. 5.2b; we set B =  ∇  × A. Thus, when a biological body is placed 
into this volume, a significant noninvasively excited electric field in the axial direc-
tion will appear parallel to the major peripheral nerves, spinal cord, long bones, 
major arteries, veins, and other structures. This is in contrast to a solenoidal coil 
wound around the body creating electric fields and currents in the less desirable 
transverse plane.

The rotational character of the field also assures that not only one body cross 
section (e.g., coronal or sagittal) will be subject to the electric field excitation, but 
the entire body volume.

In the ideal, two-dimensional case and for any conducting target with a strict 
cylindrical symmetry placed into the device, either homogeneous or not, the corre-
sponding two-dimensional problem, shown in Fig. 5.2a, b, will have an exact ana-
lytical solution in the quasi-static (or eddy current) approximation. The electric field 
within the target is given by [66].

	
E E E B r tx y z= = = −( )0 0 0, , cosω ω φ

	
(5.2)

	 J E= σ 	 (5.3)

where r is the radial distance from the coil axis in cylindrical coordinates, ω is the 
angular frequency, ϕ is an arbitrary phase, J is induced current density, and σ is the 
(local) medium conductivity which is either constant or obeys cylindrical symme-
try. Although Eqs. (5.2) and (5.3) might be used to roughly estimate the electric field 
in the body based on a cylindrically symmetric assumption, its actual value will 
deviate as shown below.

Fig. 5.2  Concept of non-invasive electric field excitation via the induction mechanism. A rotating 
magnetic field shown in (a) excites the rotating electric field within the conductor (b) and within 
the body (c), respectively
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5.2.3  �Three-Dimensional Coil Resonator Design. Solenoidal 
E-Field

The external rotating magnetic flux density B is created using a volumetric resona-
tor in the form of a low-pass birdcage coil. Resonators of this type (called “birdcage 
coils”) are routinely used as MRI radio frequency (RF) coils [67, 68], but for a 
completely different purpose, namely atomic spin excitation and RF signal acquisi-
tion. The resonant frequency in this application is very high, typically 64 MHz (for 
1.5 T magnets) or higher. For our purpose, we decided to reconstruct that design for 
a much lower frequency band of 100 kHz or less. In particular, the band of 10 kHz 
has recently demonstrated great promise for spinal cord stimulation for back and 
leg chronic pain management [55–59, 69–77] with and without previous back sur-
geries [70, 72], and is utilized by TENS [78]. In addition to superior pain relief, the 
10 kHz band may provide long-term improvements in quality of life and functional-
ity for subjects with chronic low back and leg pain [77]. On the other hand, a wider 
band of 4–30 kHz has been used for polyneuropathy (a general degeneration of 
peripheral nerves that spreads toward the center of the body) electrostimulation 
treatment [79–82].

We chose the birdcage coil because it can produce a very homogeneous B-field 
in the transverse plane, and because it can produce a circularly polarized B-field. 
These features relax the requirements for accurate patient positioning relative to the 
coil. The patient has significant freedom of movement transversely within the coil, 
including freedom of rotation (thanks to circular polarization). This should enhance 
patient comfort and permit long treatment sessions.

The resonator concept will allow for an arbitrary “tonic” modulation [30] of the 
carrier frequency, which was found to beneficially address the variable nature of 
chronic pain across different patients [76]. This modulation can be either open- or 
closed-loop (e.g., a single-channel EEG signal fed back to the modulator).

When the resonant frequency becomes low as in the present case, the standard 
RF birdcage coil will possess very low inductance L. Tuning such a coil toward 
resonance at low frequencies would require large capacitance C. This, however, 
means a low Q-factor (quality factor Q L C R= / /  is the “gain” of the series reso-
nator) and higher costs, as well as higher fabrication complexity [83, 84], and will 
restrict the use of the conventional birdcage coil to frequencies above at least a few 
megahertz. Different methods to overcome this difficulty have been suggested [83–
88], but they are all limited to small-size coils.

Our design described in the subsequent patent application [29] utilizes a unique 
large-scale low-pass birdcage coil topology with an intentionally very large number 
(144) of long rungs (boosting inductance) and bridging capacitors seen in Figs. 5.6 
and 5.7. After this point, the improvement in adding more rungs is small. Several 
other reasons for the number of rungs include:

•	 To distribute the required capacitors uniformly around the coil circumference
•	 To improve the mechanical stiffness of this self-supporting coil structure
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•	 To reduce rung tube diameter, simplifying assembly
•	 To facilitate direct drive of the coil at a single rung (for each mode). The equiva-

lent parallel resistance at resonance was significantly above 50 ohms for the 144 
rung configuration, permitting the use of capacitive-only matching networks. 
Later in the development process, we decided not to use direct drive, but the 
option remains

However, we are not claiming that the particular number of rungs we used is 
optimal. All the coil geometrical parameters (number of rungs, rung and end ring 
tube diameters, coil length and diameter) are subject to optimization during design 
and construction of the next prototype. We may even consider switching to a funda-
mentally different coil winding design, such a saddle coil. That said, any optimiza-
tion is not expected to dramatically improve the coil’s B-field. Improvements up to 
20% may be possible (slightly more if the coil is made smaller).

Along with this, we employ carefully designed inductive power coupling. The 
inductive coupling blocks DC and acts as a balun (balanced-unbalanced trans-
former). This is useful in terms of both circuit design (we avoid having to install a 
transformer) and safety concerns (no direct path from the AC to the coil). It also 
allows adjusting the load resistance at resonance. Inductive coupling perturbs the 
current distribution in the coil significantly less than directly driving an individual 
rung. As a result, the resonator possesses a superior quality factor of approximately 
300 [30]. Therefore, we may achieve any desired electric field levels of up to 
50–100 V/m within the lower body due to the resonance effect and still use standard 
power electronics equipment.

A computational model of a particular resonator constructed in this study is 
shown in Fig.  5.3a with the electric current distribution to scale. The coil has a 
diameter of 0.94  m and a length of 1.10  m; the coil resonates at 100  kHz or at 
145 kHz depending on the values of the bridging capacitors. The coil consists of two 
rings (top and bottom) joined via multiple straight rungs, each bridged with a 
lumped capacitor at its center. The capacitors control the coil’s resonant frequency. 
The resonating coil is fed via two lumped ports in quadrature, or using inductive 
coupling with two loops in quadrature as explained below.

From the modeling point of view, the resonant electric current in both rings at 
any fixed time instant behaves like a full period of a sine function of polar angle φ. 
This ring current distribution is shown in Fig. 5.3a. As time progresses, the ring 
current distribution shown in Fig.  5.3a rotates with angular frequency ω. As a 
result, the time-domain ring current i(t, φ) in the top and bottom rings can be 
expressed in the form

	
i t I t,ϕ ω ϕ π ϕ π( ) = ± − +( ) ∈0 2 0 2cos / , ,

	
(5.4)

where I0 is the current amplitude determined by the excitation power and by the 
quality factor (or the “gain”) of the resonator.

The AC current in each rung shown in Fig. 5.3a does not change along its length. 
Simultaneously, at any fixed time instant, it also varies from rung to rung as a har-
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monic function of the polar angle φ with the full period corresponding to the ring 
circumference. This rung current distribution is shown in Fig. 5.3a. As time pro-
gresses, the rung current distribution shown in Fig. 5.3a also rotates with angular 
frequency ω. Each individual time-domain rung current density j(t, φ) can be 
expressed in the form

	
j t
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(5.5)

where N is the total number of rungs. This form obeys the current conservation law, 
or Kirchhoff’s Current Law (KCL), at every ring-rung junction.

The useful current, which creates a nearly constant horizontal rotating magnetic 
field Br with amplitude B0 and axial rotating electric field Ez according to Eq. (5.2), 
is the rung current density j(t, φ). Contributions of each rung add up in a construc-
tive manner. The ring current, on the other hand, does not contribute to the axial (or 
vertical) electric field, Ez. However, it may create a strong transverse electric field 
very close to the rings.

It should be pointed out that Eqs. (5.4) and (5.5) describe the rotating current 
behavior, which is a combination of two elementary resonant modes. Each elemen-
tary mode does not rotate and appears as depicted in Fig.  5.3a. However, when 
excited in quadrature (with a 90 degree phase shift and a 90 degree excitation offset 
along the coil circumference), both modes combine to create the current distribution 
given by Eqs. (5.4) and (5.5) and the associated rotating electric field. The rotation 
phenomenon enables us to treat the entire body and not merely a singular compo-
nent or region.

5.2.4  �Solenoidal Electric Field Distribution with and without 
a Simple Conducting Object

Figure 5.3b–d shows the resulting electric field distribution in the coil (coronal 
plane) when the current amplitude I0 = 1 ampere in either ring given by Eq. (5.4). 
The results are given for one resonant mode, as shown in Fig. 5.3a. Due to linearity, 
this result can simply be scaled for other excitation levels. Accurate field computa-
tions have been performed with the fast multipole method described in [89]. The 
magnitude of the axial component Ez in V/m for an empty coil is shown in Fig. 5.3b. 
The electric field is indeed zero at the coil’s center.

When a conducting object representing a load is inserted into the coil, the field 
distribution changes. Figure 5.3c shows the distribution when a conducting cylinder 
with a diameter of 0.4 m and a length of 1 m is inserted into the coil along its axis. 
The particular conductivity value σ does not matter since only the conductivity con-
trast, (σ − σair)/(σ + σair), is present in the solution [66]. This value is always unity 
since σair = 0.
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An interesting and useful effect is observed in Fig. 5.3c: we see a “pulling” of the 
electric field into the cylinder close to the coil center. This is due to surface charges 
that appear at and near the cylinder tips. As a result, the electric field close to the 
cylinder surface at the center plane of the coil increases by nearly 36%.

Fig. 5.3  Current distribution in the coil resonator and the associated solenoidal electric field cre-
ated by the coil when the ring current amplitude is 1 A for one resonant mode. (a) Electric current 
distribution in the coil along with the current color bar to scale; (b) Magnitude of the vertical 
electric field Ez in V/m for an empty coil in the coronal plane; (c) Magnitude of the vertical electric 
field Ez in V/m for the coil with a coaxial conducting cylinder 0.4 × 1 m inside; (d) Magnitude of 
the vertical electric field Ez in V/m for the coil with a conducting cylinder 0.4 × 1 m shifted in the 
transverse plane inside
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Another remarkable observation (this effect is common in MRI RF coils) follows 
from Fig. 5.3d where the conducting cylinder has been shifted from the coil axis to 
the right by 0.2 m. While the electric field outside the conducting cylinder clearly 
changes, the field within the cylinder remains nearly the same, as observed in 
Fig. 5.3c. This may be explained as a result of the electric field being induced by the 
magnetic field, similar to eddy currents. Since the magnetic field is relatively homo-
geneous in the transverse plane of the coil, the induced electric fields in a load 
should not strongly depend on the transverse position of the load within the coil.

These rudimentary simulations allow us to establish two basic facts relevant for 
the analysis of realistic electric field distributions in a human body within the coil. 
First, we expect that the average transcutaneous electric field will be slightly higher 
than predicted by the air-filled coil model in dorsal, abdominal, and lumbar body 
regions. Second, we expect that the field within the body will not change signifi-
cantly when the body is moved within the coil in the transverse plane; this circum-
stance seems to be useful from a practical point of view.

5.2.5  �Contribution of Unpaired Electric Charges

Generally, the total electric field within the coil is expressed in terms of two auxil-
iary potentials. Instead of Eq. (5.1), one has

	 E A= −∂ ∂ −∇/ t ϕ 	 (5.6)

where φ is the scalar electric potential and A is the magnetic vector potential. In the 
quasistatic approximation to Maxwell’s equations, the time derivative in the Lorentz 

gauge 1
0

2c
t∂ ∂ +∇ ⋅ =ϕ / A  is neglected (which gives us the Coulomb gauge, 

∇ · A = 0), while it is still kept in Eq. (5.6). As a result, the − ∇ φ term in Eq. (5.6)
 

becomes a conservative electric field contribution due to charge density alone, while 
the −∂A/∂t term is a true solenoidal electric field contribution due to current density 
alone.

In accordance with the (quasi)electrostatic theory [90], the conservative electric 
field is blocked by charges induced on a surface of a conducting object and does not 
penetrate into the object. Therefore, its contribution is ignored in the present study, 
similar to the theoretical models of transcranial magnetic stimulation or TMS. Note 
that this charge contribution may be quite large in the present problem, close to the 
bridging capacitors.

We have also performed full-wave ANSYS ED simulations of this coil and found 
that the capacitor voltage drop E-field does not significantly affect the E-field within 
the patient. The externally applied conservative E-field is expelled from the patient 
by the high conductivity of tissues. Only the E-field induced from the B-field is 
important.
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5.2.6  �Power Amplifier/Driver

In order to create the rotating magnetic and electric fields, as seen in Figs. 5.2a, b, 
two resonant modes are excited in the coil resonator. These modes display the same 
current distribution as shown in Fig. 5.3a, but rotated by 90 degrees about the coil 
axis with respect to each other as well as having an additional temporal phase shift 
of 90 degrees.

To accomplish this, a custom designed class-D, high-efficiency, single-frequency 
power amplifier (PA), whose circuit schematic is presented in Fig. 5.4a, was con-
structed and prototyped, as shown in Fig. 5.4b, c. The upper block in Fig. 5.4a is a 
class-S modulator, which is followed by two class-D output stages in quadrature, 
exciting the two resonant modes. The PA has two outputs, one for each resonant 
mode, and generates a harmonic power RF signal at a fixed carrier frequency at each 
output. At present, this frequency is typically around 100 kHz. At the same time, the 
same PA may be tuned to operate at any carrier frequency from 30 kHz to 300 kHz 
in the LF band. The PA operation, including variable power levels, an optional vari-
able modulation or tonic frequency, and a semiautomatic patient-specific RF fre-
quency tuning procedure, which is automated via a microcomputer board, can be 
seen in Figs. 5.4c and 5.5d.

The PA output stage is powered by a 3  kW Sorensen DCS 150–20 Variable 
Regulated DC (direct current) power supply seen at the bottom of Fig. 5.4c. When 
connected to a standard three-phase 208 VAC outlet, the max RF output power is 
about 2.9  kW, based on 3  kW  DC power. Alternatively, when connected into a 
single-phase 240 VAC outlet, the max RF power reduces to about 2.3 kW based on 
2.4 kW DC power.

Arbitrary modulation (pulse or CW) of the carrier signal with a maximum modu-
lation frequency component of 1 kHz is available via the modulator. The modula-
tion bandwidth is limited mainly by the coil envelope time constant of about 1 ms. 
Typical modulation is sinusoidal in the 0.5–100  Hz range, generated by the PA 
firmware.

The PA also monitors its output power and load impedance. It uses this informa-
tion to automatically adjust the carrier frequency in a narrow band such that the 
output power remains on target. The amplifier cost, including the DC power supply, 
is under $10,000. The prototype 100 kHz PA was assembled in a rackmount case 
shown in Figs. 5.4b, c.

The reason for designing a custom, fixed-frequency PA is the lack of an afford-
able and appropriate commercial model. Industrial low-frequency RF power sup-
plies, e.g., Comdel’s CLB3000, are costly and require a matched 50 Ω load. Because 
our load impedance varies widely with frequency, keeping the load matched is a 
challenge. It would require load impedance monitoring and fine frequency control 
(potentially difficult with a commercial unit), and/or a software-controlled match-
ing network (costly). Additionally, generating two outputs in quadrature would 
require either a 90° hybrid (another costly component), or phase-locking two com-
mercial PAs at a 90° phase difference, which can be difficult. Finally, the majority 
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of commercial PAs require water cooling, whereas our PA relies on air cooling. One 
disadvantage of our custom design is its unknown reliability, a factor that will be 
proven over time.

5.2.7  �Coupling and Matching the Power Amplifier 
to the Resonating Coil

The amplifier is coupled to the resonating coil inductively via two proximate loops. 
One such loop is shown in Fig. 5.5c. Apart from certain technical advantages of the 
inductive coupling, this methodology assures that there is no direct current path 
from the AC power outlet to the coil. This design enhances overall device safety at 
any power level, including high-power operation.

The matching network for a single coil port is shown in Fig. 5.5a. Two ports with 
identical matching networks are located 90° apart around the coil structure, as 
shown in Fig. 5.5b. The port matching network consists of a series capacitance C1, 
series inductance L1, and the fixed inductance L2 of the inductive loop seen in 
Fig. 5.5c.

Fig. 5.4  (a) High-level circuit schematic of the two-channel power amplifier. (b) Rackmount air-
cooled assembly of the electronic hardware. (c) Amplifier display controlling output power and 
modulation frequency (if used)
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The matching network is tuned such that the load looks mostly resistive over a 
small frequency band around the coil’s resonance. For example, the load reactance 
stays quite low from 99.85 kHz to 100.15 kHz, while the resistance varies from 
1.3 Ω to 6 Ω. Because the coil resonance shifts as the coil heats up, the operating 
frequency must be actively adjusted to compensate for this change, or the output 
power will vary.

We used two Cornell Dubilier Electronics 940C20S47K-F per rung (C = 0.094 μF 
per rung). These are 0.047 μF, 2 kV DC, 500 V AC-rated polypropylene film capaci-
tors. They have a typical ESR of 12 mΩ at 100 kHz (Q = 2800), and a max RMS 
current rating of 5.2 A at 70 °C. We exceed this current rating by about 50% at full 
power. However, we have measured capacitor temperatures using an IR camera. 
They are below 70 °C, well within the operating range.

Another important safety feature of the matching network is its benign power 
envelope step response. The matching network avoids large spikes in PA output cur-
rent while energy is building up in the resonating coil.

Finally, the matching network presents a sufficiently inductive impedance to 
higher harmonics of the PA output voltage. This protects the output stage, and 
ensures that voltage transitions occur when the output current is low, thereby 
improving efficiency. The efficiency of the PA with the expected load is estimated 
to be greater than 90% over a wide output power range.

Fig. 5.5  (a) Matching and tuning network of the power amplifier. (b) Assembly of two coupling-
loop feed around the coil circumference with 144 rungs. (c) Noncontact inductive coupling of the 
power amplifier to the coil resonator at one port. (d) Smith chart/reflection coefficient display of 
the power amplifier controller used for semiautomatic tuning at any desired time instant
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5.2.8  �Tuning Procedure

The primary adjustable components are the series capacitance C1 in Fig. 5.5a and 
the coil rung capacitors at the numbered locations in Fig. 5.5b. First, the coil needs 
to be manually tuned by installing smaller capacitors in parallel with the primary 
coil capacitors at strategic locations. Coil adjustments include mode decoupling, 
tuning of each mode to the same frequency, and impedance matching for each mode 
(at the coupling loop). Since capacitance is normally only added, the coil only tunes 
down in frequency.

The semiautomatic tuning procedure implies adjusting PA frequency in a very 
narrow frequency range. It ensures that the reflection coefficient of both modes 
stays below −25  dB when matched to the maximum-power coil impedance of 
Z0 = 2.5 Ω and that both resonances are within a 20 Hz band. The tuning procedure 
is controlled and guided by the Smith chart/reflection coefficient display of the PA 
controller seen in Fig.  5.5d. It includes a number of well-defined steps, and is 
applied to the coil at its designated operating location in an effort to account for the 
presence of large nearby metal objects. The tuning procedure is simple to perform.

5.2.9  �Coil Assembly, Device Setup, and Operation

A resonator coil prototype made of thin-walled, light copper tubing was constructed; 
it is shown in Figs. 5.6a, b and 5.7. Tubing thickness was kept at ¾ mm or greater to 
avoid excessive eddy current losses in the copper. The capacitor size in Fig. 5.6a is 
relatively large since those components must operate at significant currents levels, 
up to 18 A RMS per rung for a maximum power of 3 kW, and at large voltages, up 
to 300  V RMS across the capacitor. The total coil weight without the frame is 
approximately 120 lbs. (54 kg).

This durable coil prototype was then framed, augmented with a horizontal bed, 
and placed horizontally to enable a subject to rest in the coil, as shown in Fig. 5.6a, 
which simultaneously shows the complete device setup. The entire coil frame is 
portable. The distance between the PA, which is connected to the inductive coupling 
loops of the coil via two isolated cables, can vary from 1 to 3 m, although larger 
distances may be possible. As mentioned above, there is no direct ohmic current 
path from the AC power outlet to the coil, which is an important safety feature.

An operator sets the power level, the modulation frequency, and performs RF 
tuning at the beginning of the resonator operation and for a particular coil load. At 
the maximum power level, the ring conductors of the coil heat up to approximately 
70–75 °C at continuous operation, as illustrated in Fig. 5.8. Continuous coil opera-
tion at the maximum input power of 3 kW was tested multiple times with an unin-
terrupted operation time of up to 2  h and with a cumulative operating time in 
excess of 100 h.
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Fig. 5.6  (a) Complete framed resonator coil unit with the PA. (b) Smith chart/reflection coeffi-
cient display of the power amplifier controller to be used for semiautomatic tuning for an individ-
ual subject/patient. (c) Amplifier display controlling output power and modulation frequency for 
harmonic modulation

Fig. 5.7  Active area of the subthreshold resonator device
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5.2.10  �Quality Factor of the Resonator and the Magnetic Field 
Strength

The achievable field strength in the coil is determined by three factors: the strength 
of the PA, the quality factor Q or the “gain” of the resonator, and the coil volume. 
When the quality factor is high, large field values within the coil can be achieved at 
a modest input power.

When measured across one of its rung capacitors, the birdcage coil behaves like 
a parallel resonator in a narrow frequency range around the resonant mode. Using a 
setup with a signal generator and oscilloscope, the resonator’s quality factor has 
been estimated in the form:
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where f0 is the resonance frequency and voltage V0 is the open-circuited generator 
voltage. Derivation of Eq. (5.7) is given in Appendix A. Voltage V1 is measured at 
resonance (where it is maximized). fL and fU are the lower and upper frequencies, 
respectively, where voltage V1 drops by 3  dB from its peak at resonance. This 
method is accurate in the high Q limit. The experimental data for 100  kHz and 
145 kHz are given in Table 5.1. Table 5.1 reports a Q-factor value of about 300 and 

Fig. 5.8  Infrared map of the coil and PA(rear) temperature distribution after 30 min of operation 
at maximum power obtained with FLIR A325sc IR camera
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a minimum difference between loaded (with a human body) and unloaded coil, 
which is to be expected at this low frequency. These values agree with the theoretical/
simulation predictions to within 10%. With decreasing frequency, the Q-factor will 
decrease approximately proportional to the square root of the resonant frequency.

The established quality factor values are superior to the values reported in the 
literature for known low-frequency resonator coils (used for low-field MRI) in 
Table 5.2. Note that all listed competitors have a much smaller coil size/volume and 
typically a lower quality factor.

It is important to point out again that the quality factor in Table 5.1 is weakly 
affected by body loading, in contrast to conventional high-frequency MRI RF coils. 
This observation, also mentioned in Ref. [84] and other sources, is a limitation of 
the present electromagnetic stimulator. The RF power losses are mostly in the coil 
itself, and not in the human body.

B-field measurements have been performed via a calibrated single-axis coil 
probe located at the coil axis. The B-field magnitude was 1.01 mT at the coil center 
and at full power (3 kW DC) at 100 kHz. The measured and theoretical results differ 
by no more than 10%. At the full input power level of 3 kW, the amplitude of the 
resonant ring current I0 at 100 kHz in two coil rings reaches 603 A, while the ampli-
tude of the rung current reaches 26 A.

Table 5.1  Measured Q-factors for the coil resonator at 100 kHz and 145 kHz, respectively

Coil f0, kHz fL, kHz fU, kHz Q

Unloaded 145.30 144.567 145.875 295.8
Loaded 145.28 144.566 145.879 292.2
Unloaded 101.42 101.008 101.827 277.3
Loaded 101.43 101.009 101.835 275.0

The load is a 200 lb. subject

Table 5.2  Characteristics of existing low-frequency RF coils given for comparison with the 
present resonator prototype

Ref.# Type of the coil
Frequency, 
kHz Q (unloaded)

[83] Wound birdcage coil (84 mm long and has a diameter of 
73 mm)

386 180

[84] Wound birdcage coils and a solenoid. The diameter and 
the length of the coils are 70 mm

238/425 100–280

[85] 27 tTurn saddle coil made of Litz wire with 8 cm 
diameter

373 105

[86] 4-Coil Whiting-Lee configuration, 33 cm long 83.6 100
[87] Solenoidal coils; 6–46 cm in length and 4–52 cm in 

diameter
210/275 60–30, 

reduced Q
[88] Cylindrical saddle-shaped loops (5 saddle pairs of 10 

turns each), coil diameter is 26 mm
87 NA
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5.3  �Device Safety Estimates

5.3.1  �Peripheral Nervous System (PNS) Stimulation Threshold

The present low-frequency subthreshold electrostimulation device must not exceed 
the PNS simulation threshold to operate safely and without unpleasant sensation. 
Guidelines from the International Commission on Non-Ionizing Radiation 
Protection (Table 5.2 of [91]) require the occupational exposure to an electric field 
to be limited to a value of approximately 27 V/m RMS at 100 kHz and by a value of 
39 V/m RMS at 145 kHz (the so-called basic restrictions [91]). These restrictions 
are mainly due to limits on peripheral nerve stimulation [91] and should therefore 
be respected. Other relevant results on the PNS stimulation thresholds at lower fre-
quencies are presented in Refs. [92–94].

5.3.2  �Specific Absorption Rate (SAR)

Safety estimates also rely upon the levels of the specific absorption rate (SAR) 
within the body. The SAR is the energy absorption rate that causes body tempera-
ture to rise due to an imposed electromagnetic field. The maximum value of SAR1g 
in the body must be below 10 W/kg required by the FDA-accepted safety standard 
[95, 96]. The global-body SAR must be below the 2 W/kg limit [95, 96].

5.3.3  �Method of Analysis

SAR and electric field measurements cannot be performed easily for human sub-
jects in  vivo. SAR and device performance estimates are typically derived and 
accepted today from computational electromagnetics (CEM) simulations performed 
with detailed virtual humans [97]. In this study, we use the multi-tissue CEM phan-
tom VHP-Female v. 5.0 (female/60 year/162 cm/88 kg, obese) [97–103] derived 
from the cryosection dataset archived within the Visible Human Project® of the US 
National Library of Medicine [104]. The phantom includes about 250 individual 
tissues and is augmented with material property values from the IT’IS database 
[105]. The average-body conductivity is assigned as 0.25 S/m, which reflects a mix-
ture of muscle and fat.

The primary CEM software used in this study is the accurate commercial FEM 
solver ANSYS® Electromagnetic Suite 18.2.0 with rigorous adaptive mesh refine-
ment. In addition, and for verification/validation purposes, we employ an in-house 
boundary element fast multipole method (BEM-FMM) described in Ref. [89]. In 
the latter case, a higher near-surface resolution can be achieved and the original 
surface phantom model can be refined and smoothed from approximately 0.5 M 
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triangles to 3.5 M triangles. In this particular study, the human model is placed in 
the coil at the shoulder landmark, as shown in Fig. 5.9, so that the top of the shoul-
der coincides with the ring plane. Other configurations have also been considered.

Results obtained with both software packages differ by no more than 2% in the 
unloaded coil (field at the coil center) and by no more than 25–50% in the coil 
loaded with the multi-tissue human body. The latter deviation may be explained by 
somewhat different surface meshes.

Below we report simulations at two power levels: 1.5 kW input power and 3 kW 
input power. The first power level is the half power level of the amplifier driver; the 
second power level corresponds to full power. At full power level, the amplitude of 
the resonant ring current I0 in Eqs. (5.4 and 5.5) reaches 603 A, while the amplitude 
of the rung current reaches 26 A.

5.3.4  �Electric Field Levels

Figure 5.10 shows the simulated RMS levels of the electric field in the body at 
100 kHz and at the input power level of 1.5 kW obtained via the BEM-FMM simu-
lations. We observe that, at half power level of the amplifier driver, the fields every-
where in the body do not generally exceed 30 V/m RMS and are thus within the 

Fig. 5.9  Multi-tissue 
CEM phantom VHP-
Female v. 5.0 within the 
resonant coil (ANSYS 
18.2.0)
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Fig. 5.10  Complex RMS magnitude of the electric field (V/m) at 1500 W input power
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Fig. 5.10  (continued)
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Table 5.3  Computed electric field levels (V/m RMS) in every individual tissue at 1.5 kW input 
power (ANSYS® Electromagnetic Suite 18.2.0)

Mesh Tissue
Avg. E field 
(V/m RMS) Mesh Tissue

Avg. E field 
(V/m RMS)

1 Air Internal Maxillary 
Sinus Left

7.7 39 Cuneiform Medial 
right

0.6

2 Air Internal Maxillary 
Sinus Right

6.9 40 discC02C03 10.3

3 Arteries 10.5 41 discC03C04 11.6
4 Bladder 28.0 42 discC04C05 14.3
5 C01 14.5 43 discC05C06 16.9
6 C02 13.6 44 discC06C07 19.0
7 C03 14.8 45 discC07T01 20.6
8 C04 18.5 46 discL01L02 13.9
9 C05 21.7 47 discL02L03 11.5
10 C06 26.1 48 discL03L04 8.4
11 C07 29.6 49 discL04L05 4.7
12 Calcaneous left 0.6 50 discL05L06 7.1
13 Calcaneous right 1.1 51 discL06S00 13.8
14 Cartilage1 Left 18.5 52 discT01T02 20.2
15 Cartilage1 Right 19.9 53 discT02T03 17.6
16 Cartilage2 Left 19.7 54 discT03T04 17.9
17 Cartilage2 Right 20.3 55 discT04T05 17.4
18 Cartilage3 Left 21.2 56 discT05T06 15.8
19 Cartilage3 Right 20.9 57 discT06T07 15.2
20 Cartilage4 Left 22.5 58 discT07T08 14.4
21 Cartilage4 Right 21.8 59 discT08T09 13.6
22 Cartilage5 Left 24.3 60 discT09T10 13.2
23 Cartilage5 Right 22.6 61 discT10T11 12.5
24 Cartilage6 Left 36.3 62 discT11T12 13.2
25 Cartilage6 Right 35.9 63 discT12L01 13.4
26 Cerebellum 1.4 64 Eye Left 5.0
27 Clavicle left 55.6 65 Eye Right 5.3
28 Clavicle right 34.9 66 Feet1Phalange left 0.5
29 Coccyx 42.6 67 Feet1Phalange right 0.4
30 CSF OuterShell 3.5 68 Feet2Phalange left 0.4
31 CSF Ventricles 0.4 69 Feet2Phalange right 0.4
32 Cuboid Left 0.9 70 Feet3Phalange left 0.3
33 Cuboid Right 0.6 71 Feet3Phalange right 0.4
34 Cuneiform Intermediate 

left
1.3 72 Feet4Phalange left 0.4

35 Cuneiform Intermediate 
right

0.5 73 Feet4Phalange right 0.6

36 Cuneiform Lateral left 1.1 74 Feet5Phalange left 0.4
37 Cuneiform Lateral right 0.4 75 Feet5Phalange right 0.7
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Mesh Tissue
Avg. E field 
(V/m RMS) Mesh Tissue

Avg. E field 
(V/m RMS)

38 Cuneiform Medial left 1.3 76 Femur Bone Marrow 
Left

7.1

77 Femur Bone Marrow 
Right

8.6 117 Humerus right 23.1

78 Femur left 69.3 118 Intestine 20.6
79 Femur right 83.7 119 Jaw lower 10.0
80 Fibula left 5.9 120 Kidney left 29.3
81 Fibula right 5.4 121 Kidney right 27.2
82 Gray Matter Spinal Cord 1.5 122 L01 27.9
83 Hands1 1Phalange left 10.2 123 L02 25.3
84 Hands1 1Phalange right 9.5 124 L03 22.1
85 Hands1 2Phalange left 9.5 125 L04 19.0
86 Hands1 2Phalange right 12.1 126 L05 14.4
87 Hands1 3Phalange left 12.2 127 L06 17.9
88 Hands1 3Phalange right 13.4 128 Liver 29.8
89 Hands2 1Phalange left 7.6 129 Lungs 19.4
90 Hands2 1Phalange right 7.1 130 Median Nerve left 11.6
91 Hands2 2Phalange left 8.1 131 Median Nerve right 13.0
92 Hands2 2Phalange right 8.5 132 Muscle Bicep left 11.9
93 Hands2 3Phalange left 7.1 133 Muscle Bicep right 12.9
94 Hands2 3Phalange right 9.5 134 Muscle Calf left 5.0
95 Hands3 1Phalange left 6.4 135 Muscle Calf right 5.2
96 Hands3 1Phalange right 6.2 136 Muscle Deltoid left 18.7
97 Hands3 2Phalange left 8.1 137 Muscle Deltoid right 19.3
98 Hands3 2Phalange right 8.6 138 Muscle Erector spinae 

left
26.8

99 Hands3 3Phalange left 9.3 139 Muscle Erector spinae 
right

26.9

100 Hands3 3Phalange right 11.0 140 Muscle Forearm 
Extensors left

6.9

101 Hands4 1Phalange left 7.2 141 Muscle Forearm 
Extensors right

8.6

102 Hands4 1Phalange right 6.9 142 Muscle Forearm 
Flexors left

6.9

103 Hands4 2Phalange left 10.4 143 Muscle Forearm 
Flexors right

7.2

104 Hands4 2Phalange right 10.0 144 Muscle Gluteus left 27.9
105 Hands4 3Phalange left 11.1 145 Muscle Gluteus right 27.2
106 Hands4 3Phalange right 10.7 146 Muscle Hamstring left 18.9
107 Hands5 1Phalange left 9.0 147 Muscle Hamstring 

right
19.1

108 Hands5 1Phalange right 10.3 148 Muscle Latissimus 
Dorsi left

36.6

(continued)
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Table 5.3  (continued)

Mesh Tissue
Avg. E field 
(V/m RMS) Mesh Tissue

Avg. E field 
(V/m RMS)

109 Hands5 2Phalange left 11.0 149 Muscle Latissimus 
Dorsi right

38.5

110 Hands5 2Phalange right 12.6 150 Muscle Neck 
Combined left

13.6

111 Hands5 3Phalange left 10.3 151 Muscle Neck 
Combined right

13.4

112 Hands5 3Phalange right 12.1 152 Muscle Obliques left 39.5
113 Heart Muscle 14.2 153 Muscle Obliques right 40.1
114 Hip left 60.0 154 Muscle Pectoralis 

major left
21.7

115 Hip right 61.4 155 Muscle Pectoralis 
major right

20.9

116 Humerus left 20.7 156 Muscle Pectoralis 
minor left

19.2

157 Muscle Pectoralis minor 
right

18.6 194 Ribs left8 47.3

158 Muscle Pelvic 
Combined left

25.7 195 Ribs left9 46.1

159 Muscle Pelvic 
Combined right

25.0 196 Ribs left10 48.5

160 Muscle Psoas left 13.9 197 Ribs left11 51.7
161 Muscle Psoas right 13.9 198 Ribs left12 39.0
162 Muscle Quadriceps left 20.2 199 Ribs right1 29.6
163 Muscle Quadriceps right 19.9 200 Ribs right2 26.2
164 Muscle Rectus 

Abdominis left bottom
32.3 201 Ribs right3 25.2

165 Muscle Rectus 
Abdominis left middle

34.9 202 Ribs right4 26.1

166 Muscle Rectus 
Abdominis left top

39.1 203 Ribs right5 27.2

167 Muscle Rectus 
Abdominis right bottom

32.5 204 Ribs right6 29.9

168 Muscle Rectus 
Abdominis right middle

35.4 205 Ribs right7 35.6

169 Muscle Rectus 
Abdominis right top

38.1 206 Ribs right8 43.2

170 Muscle Sartorius left 18.6 207 Ribs right9 53.9
171 Muscle Sartorius right 17.5 208 Ribs right10 58.9
172 Muscle Tibialis Anterior 

left
6.2 209 Ribs right11 56.9

173 Muscle Tibialis Anterior 
right

5.8 210 Ribs right12 40.9

174 Muscle Trapezius left 23.6 211 Sacrum 45.7
175 Muscle Trapezius right 24.0 212 Scapula left 38.2
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ICNIRP guidelines. As expected, higher field levels are observed closer to the sur-
face; the field gradually decreases toward the center of the body.

Quantitative estimates of the average electric field for every particular tissue 
obtained via ANSYS Electromagnetic Suite 18.2.0 are given in Table. 5.3. Note the 
lower electric fields in the intracranial volume. Additionally, we observe higher 
electric fields in the individual body muscles. It is also interesting to observe that the 
fields in bone may be quite high, in particular in the femur and pelvic bones.

However, the computed local electric fields may considerably exceed the values 
reported in Table 5.3, in particular by 1.5–6 times. These peak values are less accu-
rate. One potential source of the numerical error is insufficient resolution of lengthy 
and time-consuming full-body computations very close to the interfaces where 
higher fields are usually observed.

Mesh Tissue
Avg. E field 
(V/m RMS) Mesh Tissue

Avg. E field 
(V/m RMS)

176 Muscle Tricep left 12.0 213 Scapula right 38.8
177 Muscle Tricep right 14.0 214 Skin Shell 27.8
178 Navicular left 1.8 215 Skull 22.8
179 Navicular right 0.7 216 Sphenoid 8.9
180 Patella left 24.3 217 Spleen 33.9
181 Patella right 22.6 218 Sternum 25.2
182 Peripheral Nerve left 17.1 219 Stomach 22.6
183 Peripheral Nerve Right 14.1 220 T01 28.4
184 Pubic Symphysis 32.1 221 T02 27.2
185 Radial Nerve left 14.6 222 T03 27.2
186 Radial Nerve right 12.4 223 T04 26.9
187 Ribs left1 26.4 224 T05 25.7
188 Ribs left2 30.1 225 T06 25.5
189 Ribs left3 26.4 226 T07 26.2
190 Ribs left4 26.7 227 T08 26.4
191 Ribs left5 28.3 228 T09 26.9
192 Ribs left6 31.5 229 T10 26.1
193 Ribs left7 37.3 230 T11 26.4
231 T12 27.5 240 Trabecular upper right 0.9
232 Talus left 1.3 241 Trachea Sinus 12.4
233 Talus right 0.6 242 Ulna Radius left 8.1
234 Tibia left 8.3 243 Ulna Radius right 7.8
235 Tibia right 7.9 244 Uterus 17.3
236 Tongue 5.2 245 Veins lower 12.5
237 Trabecular lower left 0.5 246 Veins upper 12.4
238 Trabecular lower right 0.8 247 White Matter 1.0
239 Trabecular upper left 0.7
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5.3.5  �SAR Levels

The body-averaged or whole-body (global-body) SARbody is given by averaging the 
local SAR over the entire body volume. In terms of the complex field phasor E(r), 
one has
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Here, σ(r) is the local tissue conductivity and ρ(r) is the local mass density. At full 
power of 3 kW and positioned at the shoulder landmark, the global-body SAR com-
puted via ANSYS Electromagnetic Suite 18.2.0 is 0.25 W/kg. Thus, the total power 
dissipation in the body does not exceed 30 W, i.e., 1% of the total power. The same 
percentage ratio is valid at half input power.

The second critical estimate is SAR1g, which is given by averaging over a con-
tiguous volume with the weight of 1 g,
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The maximum value of SAR1g in the body computed via ANSYS Electromagnetic 
Suite 18.2.0 at the full power of 3  kW and located at the shoulder landmark is 
4.55 W/kg.

Although this last value might appear to be relatively high, it is still within the 
corresponding SAR limits in MRI machines [95, 96]. In particular, the major appli-
cable MRI safety standard, issued by the International Electrotechnical Commission 
(IEC) and also accepted by the U.S. Food and Drug Administration, in the normal 
mode (mode of operation that causes no physiological stress to patients) limits 
global-body SAR to 2 W/kg, global-head SAR to 3.2 W/kg, local head and torso 
SAR to 10 W/kg, and local extremity SAR to 20 W/kg [96]. The global SAR limits 
are intended to ensure a body core temperature of 39 °C or less [95, 96].

5.4  �Discussion

5.4.1  �Efficacy of Stimulation

The present study establishes safety and potential feasibility of the resonant neuro-
stimulation device. However, its efficacy for treatment of chronic back pain remains 
largely unknown. Only clinical trials, which would ideally thoroughly investigate 
both short-term and cumulative effects of the suggested lower-body electromag-
netic treatment, could probably answer this question. Our aim is to provide a doctor 
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with the possibility to vary power, resonant frequency, tonic frequency, and electro-
magnetic pulse envelope to enable the best possible outcome during the anticipated 
clinical trial.

5.4.2  �Integrated Effect of Stimulation

The present subthreshold stimulation device will not only affect the PNS of the 
lower back but also muscles, bones, tendons, and cartilage. Evidence suggests that 
subthreshold pulsed electromagnetic fields may stimulate osteogenesis in vitro and 
in vivo [106, 107], improve bone quality in osteoporotic and nonosteoporotic cell-
based studies [108, 109], human studies [110–114], animal studies [115–121], and 
augment bone fracture healing [107, 122–124]. Further evidence suggests that 
TENS therapy stimulates a change in the biochemical and physiological muscle 
conditions that may lead to muscle relaxation [125, 126]. Some evidence also sug-
gests that the kHz stimulation of the lower body will increase the vascular endothe-
lial growth factor receptor on circulating hematopoietic stem cells [81], whose local 
niche (the bone marrow of the pelvis, femur, and sternum [127]) might be well 
affected by the present stimulation device.

Another extremely interesting effect of the kHz peripheral nerve stimulation 
observed previously in [65, 80] and implicitly in the present device is a potential for 
sleep improvement. It is not clear how to describe and account these integrated 
effects of the stimulation. We will attempt to carefully document and report prior 
relevant literature findings and the corresponding stimulation conditions for nerve/
muscle/bone/marrow, and link them to the present stimulation conditions.

5.4.3  �Operation as an EMAT

The present electrostimulation device may also operate as an electromagnetic 
acoustic transducer (EMAT) when a DC current is injected into the tissue via sur-
face electrodes at a specified location. The Lorentz force will excite an ultrasonic 
field whose frequency is the resonant frequency.

5.4.4  �Variation of Resonant Frequency

While fine tuning with a low-loss ferromagnetic load is straightforward, it is quite 
challenging, however, to vary the resonant frequency of a power resonator, which is 
usually cast in stone, allowing only a narrow tuning range. In order to do this, we 
have studied three different methods: a bank of electronically controlled switched 
power capacitors, a bank of fixed capacitors with low-resistance power relay 

5  Design and Analysis of a Whole-Body Noncontact Electromagnetic Subthreshold…



112

switches, and a mechanically replaceable bolted joints-based fixed-capacitor bank. 
Such banks need be constructed for each of the 144 rungs of the coil in Fig. 5.6 or 
Fig. 5.7 in order to vary the resonant or carrier frequency over the band of, say, 
10–100 kHz.

Although the first two approaches are fast and elegant, they are unfeasible. The 
key is the equivalent series resistance (ESR) of switched capacitors and power relay 
switches. Existing series switches increase ESR by about 10 times or even more. 
This dramatically lowers the resonator quality factor Q, resulting in about three 
times lower field values for a given input power. The switched capacitor solution has 
other serious drawbacks. Each switched capacitor block is much larger than a fixed 
capacitor, which will result in issues related to physically accommodating all com-
ponents. On the other hand, for a relay with an exceptionally small contact resis-
tance of 5 mΩ, Q will change by a factor of 0.6 at 100 kHz and 0.3 at 10 kHz. As 
the relays cycle, their contact resistance may go up significantly, especially if we do 
not follow the guidelines for minimum switched current (to create an arc that cleans 
the contacts). Thus, Q could continue dropping with cycling. Therefore, we plan to 
implement low-ESR mechanically replaceable bolted-joints based fixed-capacitor 
banks. The frequency-switching operation will take approximately 3 h.

5.5  �Conclusion

In this technical study, we described a whole-body noncontact subthreshold electro-
magnetic stimulation device based on the concept of a familiar MRI RF resonating 
coil, but at a much lower resonant frequency (100–150 kHz and potentially down to 
10 kHz), with a field modulation option (0.5–100 Hz), and with an input power level 
of up to 3 kW. Its unique features include a relatively high electric field level within 
the subject’s biological tissue due to the resonant effect but at low power dissipa-
tion, or SAR level, in the body itself.

We emphasize that in the low-frequency limit and at moderate field levels, SAR 
rather weakly correlates with the deposited electric field. One reason for this is that 
SAR is proportional to the field squared, and is thus quite small at moderate and low 
field levels. A second reason is that the tissue conductivity itself is lower (at 100 kHz, 
it is twice as low as at 100 MHz for muscle and five times lower for fat [105]).

Due to the large resonator volume and its noncontact nature, the subject may be 
conveniently located anywhere within the resonating coil over a prolonged period of 
time at moderate and safe electric field levels. The electric field effect does not 
depend on a particular body position within the resonator. The field penetration is 
deep everywhere in the body, including the extremities; muscles, bones, and periph-
eral tissues are mostly affected. Over a shorter period of time, the electric field lev-
els could be increased to relatively large values with an amplitude of about 1 V/cm.

We envision treatment of chronic pain, and particularly neuropathic pain, as the 
primary potential clinical application for the device. The device enables whole-
body coverage, which could be useful in the treatment of widespread pain condi-
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tions, such as painful polyneuropathy or fibromyalgia. In addition, a deeper tissue 
penetration can be achieved without side-effects caused by high current density in 
the skin associated with the traditional contact electrodes of TENS.  It should be 
noted that these potential clinical applications are speculative and warrant empirical 
testing in the future.

Considerable attention has been paid to device safety including both the AC 
power safety and human exposure to electromagnetic fields. In the former case, we 
have used inductive coupling, which assures that there is no direct current path from 
the AC power outlet to the coil. This design enhances overall device safety at any 
power level, including high-power operation. As with more traditional MRI devices, 
no large metal objects should be located in the immediate vicinity of the coil.

Human exposure to the electromagnetic field within the coil has been evaluated 
by performing extensive modeling with two independent numerical methods and 
with an anatomically realistic multi-tissue human phantom. We have shown that the 
SAR levels within the body correspond to the safety standards of the International 
Electrotechnical Commission when the input power level of the amplifier driver 
does not exceed 3 kW. We have also shown that the electric field levels generally 
comply with the safety standards of the International Commission on Non-Ionizing 
Radiation Protection when the input power level of the amplifier driver does not 
exceed 1.5 kW.
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�Appendix A: Derivation of Eq. (5.7) and Coil Q

The corresponding measurement circuit is given in Fig. 5.11.
The derivation of Eq. (5.7) is as follows. The coil, when measured at a rung 

capacitor, looks like a parallel resonator (assuming the two degenerate modes are 
decoupled). In a narrow band around the high-Q resonance, the parallel resonator 
impedance can be approximated as:

R1

R0
50 Ω

V1V0
+

−

+

−

ResonatorFig. 5.11  Measurement 
circuit to evaluate coil Q

5  Design and Analysis of a Whole-Body Noncontact Electromagnetic Subthreshold…



114

	

Z
R

j Q
f

f

res =
+

1

0

1 2
∆

	

(5.A1)

where f0 is the resonance frequency and Δf is the deviation from it. Then,
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Taking the absolute value and simplifying, one has
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At resonance,
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At the V1 3 dB frequencies,
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Solving for Q yields
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From V1/V0 at resonance, we can express
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where V1 is measured at resonance, and 2Δf3dB = fU − fL, with fU and fL being the 
upper and lower 3 dB frequencies for V1.

Regarding the envelope time constant

	
τ

ω
=

2Q

	
(5.A9)

we mention that for Q = 300 and f = 100 kHz, τ = 0.955 ms. This can be rounded to 
1 ms if high precision is not needed. We do not measure Q through this time con-
stant. It is only mentioned as a limiter of modulation bandwidth.

The quality factor is difficult to predict accurately. Estimated Q from ANSYS 
HFSS-circuit co-simulation typically comes out about 10–30% higher than in the 
real circuit. How much higher depends on the level of refinement of the FEM model. 
The important parameter is the actual achieved Q. ANSYS can still be used for 
rough coil Q optimization, as long as the level of refinement is kept about the same.
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Chapter 6
Simulating the Effect of 200 kHz AC 
Electric Fields on Tumour Cell Structures 
to Uncover the Mechanism of a Cancer 
Therapy

Kristen W. Carlson, Jack A. Tuszynski, Socrates Dokos, Nirmal Paudel, 
and Ze’ev Bomzon

6.1  �Introduction

Tumor-treating fields (TTFields) are 100–500 kHz electric fields with intensities of 
about 1–4 V/cm, which are known to exert an anti-mitotic effect on cancer cells. 
TTFields have been observed to kill virtually all tumour cells in vitro and in some 
animal preparations [1, 2]. They have minor side effects, are increasingly prescribed 
for brain cancer and are in development or clinical trials for a number of other 
aggressive malignant cell types in humans [3, 4]. It was initially believed that 
TTFields act on highly polar sub-cellular structures, such as tubulin dimers, septin, 
actin etc., thereby disrupting spindle formation [1]. However, calculations show that 
TTFields-interaction energy is several orders of magnitude too low to directly dis-
rupt the functionality of these structures, while disruption of other structures such as 
microtubules (MTs) and motor proteins is possible [6]. We are analyzing various 
hypotheses for TTFields’ mechanism of action toward optimizing its clinical effi-
cacy using numerical analysis, such as finite element modeling (FEM).
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6.2  �Overview of the Models

6.2.1  �Why Computer Modelling?

Cell studies, such as Kirson et al. [1, 2], Gela et al. [7] and Giladi et al. [8], measure 
empirical outcomes. Unlike modeling, cell studies generally do not reveal low-level 
intra-cellular mechanisms although they may engender mechanism hypotheses that 
can be tested by modeling and further cell studies. But cell studies are also expen-
sive and generally take many months, whereas computer simulations are relatively 
cheap and can provide results in much shorter time frames. Models can also be 
parameterized to analyze many scenarios with batch parameter sweeps (e.g. Wenger 
et al. [9]).

6.2.2  �Axiomatizing the Underlying Systems Level

Computer models can be constructed at any biological systems level. Fundamental 
results at the underlying systems level are taken as assumptions or ‘axioms’ at the 
level being modelled [10]. For example, molecular dynamics (MD) simulations are 
currently conducted on a smaller microcosmic scale than FEM and for nanosecond 
simulated durations. Our FEM simulations can incorporate the output of 
MD. Figure 6.1 shows a map of electric potential on the surface of a microtubule 
(MT) predicted by an MD simulation, and Fig. 6.2 shows the map as imported into 
COMSOL FEM (Burlington, MA) using an interpolation function. The MT poten-
tial map is taken as axiomatic at the higher systems level of the cell and used in turn 
by FEM to predict responses of polarized intracellular structures to the MT 
surface.

6.3  �Clues to the Mechanisms Are Constraints on the Models

Over the past 15 years, researchers have produced valuable empirical results about 
TTFields including those summarized in Table 6.1 [1, 2, 8, 9, 12, 13].

While each cell study result constitutes an important constraint on the model, the 
question remains: which observed effects are causative versus downstream or 
epiphenomenal?

Cells follow multiple pathways when exposed to TTFields, including apoptosis 
during interphase, mitotic arrest and death and normal progression into the next cell 
cycle, possibly indicating multiple mechanisms of action [8]. It also appears 
TTFields have an effect on the immune system, which may be involved in TTFields’ 
mechanism [14].
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Fig. 6.1  Top: A 2D map of electric potential on a microtubule (MT) surface created in a molecular 
dynamics simulation of the MT’s underlying tubulin dimers and then used as input to a finite ele-
ment analysis of the interaction of the MT surface potential with charged C-termini tails and the 
counter-ion layer they attract [11]. (VMD (National Institutes of Health, Bethesda MD USA) cour-
tesy Josh Timmons, Wong lab, Harvard Medical School). Bottom: The same map imported into a 
COMSOL finite element model, where the z-axis represents potential in volts and x and y are 
surface coordinates on the MT
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Fig. 6.2  Analysis of resonance peaks of MTs using electro-mechanical FEM. Top: Displacement 
of the MT along its length. Bottom: Maximum peak kinetic energy plotted against frequency 
showing a 6 GHz peak
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6.4  �Candidates for TTFields Mechanisms

We have collected a prioritized list of hypothesized TTFields mechanisms of action 
to model and test. These include:

	4.1.	 TTFields disrupt the ‘walk’ of the motor protein kinesin, which carries cargo 
throughout the cell.

	4.2.	 TTFields disrupt the metastable state transitions of MTs’ Carboxyl-termini 
(C-termini), which signal protein cargo transport ‘on’ and ‘off’, i.e. enabling or 
disabling protein transport along the MT.

Both 4.1 and 4.2 are examples of the general hypothesis that energy imparted by 
TTFields to sub-cellular structures, in these cases, the counter-ion layer surrounding 
the C-termini, exceeds a disruption metric, such as the energy contributed by ATP 
to release the kinesin foot (4.1) and one or two multiples of cellular free energy (4.2) 
[6]. These possibilities are further explored below.

	4.3.	 The electric field or current density edge effects disrupt MT length dynamics.
	4.4.	 TTFields cause torsion or rotation of septin fibers around their longitudinal 

axis, which interferes with septin assembly.
	4.5.	 Structural deformation of MTs disrupt signaling.
	4.6.	 DEP forces accelerate organelles to furrow, causing cell blebbing.

Table 6.1  Key empirical 
aspects of TTFields

~100% efficacy in vitro and some 
in vivo preparations
1–4 V/cm electric field strength 
minimum therapeutic floor
Frequency-sensitive: 100–
300 kHz = ~3–10 μs period
Strongest effects with field aligned or 
orthogonal to cell axis
Does not affect non-tumour cells
Longer exposure = greater efficacy, e.g. 
after 1st interphase
Strongest effects when applied in early 
mitosis (prophase)
Increased free vs. polymerized tubulin
Aberrant spindle formation
Cell blebbing
Aneuploidy
Chromosome mis-segregation
Multiple nucleation
Decreased septin concentration at cell 
midline
Immune system effects
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6.5  �Disruption Metrics Derived from Signal-to-Noise Ratio

Cellular processes constitute signaling that evolved to exceed several background 
noise levels. Processes that use the least energy are the ‘low-hanging fruit’ of pos-
sible TTFields mechanisms, since the least amount of externally imposed energy 
may disrupt them. Thus, two important disruption metrics are low multiples of these 
parameters (‘low’ since higher multiples pose higher energy barriers):

	5.1.	 Cellular background thermal energy, given by kT  =  4.2 x 10−21 
Joule-nanometer

	5.2.	 Cellular free energy, given by −54–101 × 10−19 Joule-nanometer = ~25 kT

where k is Boltzmann’s constant, 1.38 × 10−23 m2 kg s−2 T−1 and T is the absolute 
temperature in Kelvin [15]. Note that the second metric requires more disruption 
energy than the first.

	5.3.	 There are conditions under which energy could accumulate or be amplified, 
exceeding the cellular disruption metrics. Examples include: (1) the amplifica-
tion of electric field strength at the cellular furrow during late mitosis [9], 
which we have ruled out for the moment since its timing conflicts with Kirson 
et al. finding that TTFields’ strongest effect occurs during early mitosis (i.e. 
prophase) [2], (2) hypotheses that incorporate a resonance effect generated by 
the unique efficacious frequency range of TTFields, 100–300 kHz [16] (Sect. 
6.1), (3) a hypothesis that regions of higher conductivity would shunt higher 
currents through the cell (Section “Electromechanical Model”) and (4) that 
edge effects produced when the field is orthogonal to the MT result in current 
density being amplified at the ends of the MT, which we have found using 
FEM.

6.6  �Models and Results

6.6.1  �MT Resonance

The hypothesis that the ~200 kHz frequency of TTFields may produce a resonance 
in MTs is in accordance with the empirical finding that TTFields’ second-strongest 
effect occurs when the field is applied orthogonally to the cell axis, to which many 
MTs are aligned during mitosis. To test this hypothesis, we performed numerical 
simulations evaluating the magnitude of the electric current along MTs exposed to 
TTFields at 200 kHz.
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�Electromechanical Model

An electromechanical model coupling constitutive relations in structural mechanics 
and electromagnetics was developed in COMSOL. Structural parameters such as 
several measures of elasticity were calibrated according to Tuszynski et al. [17], and 
sinusoidal electric fields of 1  V/cm were applied transversely to model MTs 
20–960 nm in length and at frequencies ranging from kHz to THz. Both free and 
one end fixed boundary conditions were examined at both ends of the MT ‘beam’. 
Two disruption metrics were examined: (1) maximum deformation and (2) maxi-
mum kinetic energy (KE) along the MT.

The net result of these studies was that, without including a viscosity factor for 
the ambient medium in which the MT was embedded (e.g. cytosol, admittedly the 
apparent viscosity on a nanometer scale is unclear), we found significant (in terms 
of KE) resonance peaks in the GHz but not kHz range (Fig. 6.2), supporting others’ 
studies [18]. Furthermore, we found that incorporating virtually any viscosity factor 
damped the resonant peaks to a level below the potential for significant disruptive 
KE.

6.6.2  �MT Conductivity

Santelices et al. recently found that MT conductivity considerably exceeds that of 
the ambient cytosol by as much as two orders of magnitude [19]. This result sug-
gested that MTs could act as electrical cables shunting relatively high currents 
through the cell. A theoretical basis for assigning conductivities to the various com-
ponents of a MT is, however, still unknown.

�MT as a Multi-Layered Cable

Accordingly, we modeled the MT as a layered cylinder with an inner lumen radius 
of 15  nm, helix and component protofilament thicknesses of 4.5  nm, C-termini 
thickness of 3.5 nm, counter-ions of 2 nm thickness and a 3-nm-thick outer Bjerrum 
(insulative) layer. The counter-ion layer conductivity was significantly higher than 
that of cytosol [5, 6, 19].

Not surprisingly, the highest current was found to flow through the counter-ion 
layer surrounding the C-termini. The current density in this layer may exceed the 
level required to disrupt intra-cellular processes, such as the motor protein kinesin 
‘walk’ along the MT, MT’s C-termini state transitions, or MT polymerization. 
Current density is highest when the field is aligned with the MT, which is in accor-
dance with in vitro experiments showing that the TTFields’ effect is strongest when 
aligned with the cell axis, and that overall MT alignment with the cell axis increases 
during mitosis [1].
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6.6.3  �C-Termini State Disruption

If C-termini state transitions were disrupted by TTFields, critical motor protein 
transport along MTs, and perhaps other critical functions, would be crippled, likely 
delaying the silencing of a mitotic cell cycle checkpoint that allows cancer cell divi-
sion to proceed [8].

The energy required for C-termini state transitions was computed in a series of 
MD simulations by Priel et al. [5], where the ‘up’ or ‘on’ state was lowest energy, 
and at which background thermal energy of ~25 meV would buffet the C-termini 
within a 40° cone at physiological temperatures (e.g. 300 K) (Fig. 6.3a, b), while 

Fig. 6.3  Calibration of C-terminus state transitions according to Priel et al. [5]. Top: Background 
thermal energy displaces the C-terminus minimally. Bottom: Applied boundary loads of 4 pN and 
8 pN displace the C-terminus up to 40°
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50 meV would push it beyond 40° (Fig. 6.3c), and 160 meV was required to push a 
C-termini over a saddle point into its ‘off’ state along the MT surface with energy 
of 100 meV. We translated these deformations into forces acting on the C-terminus 
surface to calibrate the model according to the Priel results (Fig. 6.3).

�Model Calibration

The Young’s modulus of the MT was initally set to 2 GPa [15] and adjusted until the 
following constraints were met, assuming a C-terminus length of 3.5 nm [5]:

–– kT (25 meV) calibration: a force of 4 pN acting through ~1 nm should induce 
thermal energy like motions of the C-terminus tip.

–– 50 meV calibration: a force of 8 pN should displace the C-terminus tip by ~40° 
(2.4 nm).

–– 120 meV calibration: a force of 16 pN should displace the C-terminus tip by 
~80° (4.9 nm).

6.6.4  �Kinesin Walk Diffusion Hypothesis

Recent studies hypothesize a highly sensitive phase in the motor protein, kinesin, 
walk along MTs [20]. The back ‘foot’ of kinesin is released from its MT bond by 
ATP (10−19 Joules). The kinesin molecule’s neck then lurches forward over a 10 ms 
period, skipping over where the forward foot is attached to the MT, and placing the 
new forward foot two tubulin dimers ahead of its previous position (~16 nm total). 
The final phase of the walk takes place when thermal buffeting randomly positions 
the forward foot near enough to the dimer for electrostatic forces to bind it. We plan 
to use modelling to further examine this diffusion phase, wherein a stall force 
10−19 N ≤ F ≤ 10−16 N from TTFields would prevent diffusion and disrupt the kine-
sin walk.

Note that the duration of the diffusion phase is estimated at 4 μs [20] and there-
fore corresponds to a frequency of 250 kHz, which may indicate a connection to the 
TTFields’ maximum efficacy frequency of 200 kHz.
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6.7  �Conclusion

Numerical modeling is a necessary complement to cell studies since it can examine 
underlying mechanisms of action relatively quickly and inexpensively. We are sys-
tematically using models to analyze hypothesized mechanisms responsible for 
TTFields efficacy in killing tumour cells. Such an understanding will facilitate mov-
ing TTFields’ clinical efficacy toward the 100% ideal achieved in vitro.
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Chapter 7
Investigating the Connection Between 
Tumor-Treating Fields Distribution 
in the Brain and Glioblastoma Patient 
Outcomes. A Simulation-Based Study 
Utilizing a Novel Model Creation 
Technique

Noa Urman, Shay Levy, Avital Frenkel, Doron Manzur, 
Hadas Sara Hershkovich, Ariel Naveh, Ofir Yesharim, Cornelia Wenger, 
Gitit Lavy-Shahaf, Eilon Kirson, and Ze’ev Bomzon

7.1  �Introduction

Tumor-treating fields (TTFields) are alternating electric fields in the intermediate 
frequency range (~100–500 kHz) known to exert an anti-mitotic effect on cancer 
cells [1–3]. The Optune™ device (Novocure, Ltd, Haifa, Israel) utilizes TTFields to 
treat glioblastoma multiforme (GBM). A pivotal clinical trial, EF-14, showed a sig-
nificant benefit in overall survival in newly diagnosed GBM patients who received 
TTFields in addition to standard chemoradiation compared to patients who only 
received standard chemoradiation [4] (Fig. 7.1). The results of this trial led to the 
approval of the Optune™ device for the treatment of newly diagnosed GBM patients 
in multiple regions, including the USA, Canada, Europe, and Japan [5].

The Optune™ device (see Fig.  7.1) is designed to deliver TTFields at a fre-
quency of 200 kHz to the brain. 200 kHz coincides with the frequency at which the 
cytotoxic effect of TTFields on glioma cells is maximal [2]. Optune™ is a portable 
device comprising a battery-operated field generator, which is connected to trans-
ducer arrays through which TTFields are delivered (Fig. 7.1). Because TTFields 
affect cells dividing in parallel to the generated field more than other directions [1], 
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Optune™ delivers TTFields in two orthogonal directions via two pairs of transducer 
arrays. The arrays are placed to deliver two electric fields in roughly orthogonal 
directions (see Fig. 7.1 (top left) and Fig. 7.4 (top row)). The device switches the 
field between the two sets of arrays once every second. The transducer arrays com-
prise nine circular disks each 1 cm in diameter. They are made from a ceramic with 
a relative dielectric constant >10,000. The disks make contact with the skin through 
a thin layer of conductive medical gel (~1 mm thickness). The disks are connected 
to one another using a flexible electric circuit (see bottom left in Fig. 7.1) and are 
geometrically arranged as shown in Fig. 7.4 (bottom row). The effect of TTFields is 
time dependent: the more time cells are exposed to the field, the stronger the effect. 
Therefore, to maximize the effect of treatment, patients are advised to maintain 
active therapy for at least 18 hr/day on average [6].

Preclinical results [1–3] have shown that the effect of TTFields is intensity 
dependent, and that the higher the intensity of the field, the stronger the cytotoxic 
effect of TTFields. The threshold intensity for observing the effect of TTFields is 
about 1  V/cm amplitude. Several simulation-based studies have shown that it is 
possible to maximize field intensity in the tumor by carefully selecting the position 
of the arrays on the scalp [7, 8]. Indeed, the NovoTAL™ system is a software-based 
system that utilizes morphometric measurements of head size, tumor size, and 
position (which are determined from a patient MRI) in order to optimize the position 
of the arrays on the head [9].

The dose-dependent nature of TTFields has been established in preclinical stud-
ies [1–3]. However, in order to fully understand the effect of dose and develop effec-
tive treatment planning strategies, it is important to establish the connection between 

Fig. 7.1  Components of the Optune™ device (bottom left) and model wearing the device (top 
left), as well as Kaplan-Meier curves showing overall survival for the treatment (blue line) and 
control (red line) groups of the EF-14 trial. The Optune™ device comprises a battery-operated 
field generator connected to four transducer arrays that are placed on the patient’s head. A backpack 
and carry-bag for the field generator as well as a battery charger and power supply are also shown 
in the photographs
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TTFields distribution in the brain and patient outcome in a rigorous manner. Studies 
addressing this connection require estimating TTFields distribution within a large 
cohort of patients treated with TTFields over the course of their disease. Since phys-
ical measurement of the field distribution is highly invasive, and therefore challeng-
ing, numerical simulations utilizing realistic computational models of actual patients 
are the only practical means for performing such studies.

In order to perform such a study, two challenges need to be addressed:

	1.	 The availability of a dataset encompassing a large number of patients treated 
with TTFields. The dataset needs to include imaging data from which realistic 
head models of patients, including the tumor(s), can be obtained, and records of 
patient outcome including progression and survival.

	2.	 Development of a method for creating realistic computational patients in a robust 
and rapid manner.

The EF-14 clinical trial dataset includes detailed clinical data on over 400 
patients treated with TTFields. Therefore, this dataset is well suited for this study. 
However, estimating TTFields distribution within these patients requires algorithms 
that enable construction of realistic head models of patients from MRI scans in a 
rapid and robust manner. Various pipelines have been adapted for the purpose of 
simulating the delivery of TTFields to realistic head models. Wenger et  al. [8] 
utilized a pipeline that relied on FSL FLIRT [9], SimNibs [10], and Brainsuite [11] 
in order to create a realistic head model of a healthy individual into which artificial 
tumors of various shapes were inserted. Korsheoj et al. [12, 13] presented a different 
pipeline, utilizing SimNibs to create realistic head models of cancer patients. A 
different approach was presented by Timmons et al. [14], who utilized SPM8 [15] 
and ScanIP [16] to create realistic patient models. All of these approaches require a 
significant amount of human intervention and are therefore time-consuming and not 
suitable for a study requiring the creation of a large number of head models. An 
alternative approach could be to estimate the tissue conductivity from imaging data. 
Indeed, diffusion tensor imaging (DTI) [17] or alternatively water content-based 
electric property tomography (wEPT) [see Chap. 20 on wEPT in this book] could 
potentially be used to create realistic head models. However, both these sequences 
require specifically-adapted image series not available for all patients in the EF-14 
study.

To overcome these challenges, we developed a novel method for creating realis-
tic head models of patients utilizing a model of a healthy individual which serves as 
a deformable template. In this chapter, we present a detailed description of our 
method and demonstrate its utility by investigating the connection between TTFields 
field distribution and patient outcome in 119 patients treated with TTFields as part 
of the EF-14 trial.
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7.2  �Methods

7.2.1  �MRI Data Used for the Study

MRI datasets analyzed in this study were obtained from the patient records of the 
EF-14 trial participants. This trial was a multi-center, open-label, randomized 
clinical phase 3 trial, which recruited 695 patients at 83 sites. Patients were 
randomized at the end of radiotherapy at a ratio of 2:1 to receive standard 
maintenance temozolomide chemotherapy with or without the addition of TTFields. 
To create patient models, T1-postcontrast MRIs at baseline (postsurgery and 
postradiation therapy) of 119 patients from the treatment arm of the trial were 
selected. Only patients who received TTFields therapy for over 2  months were 
selected. In general, for all patients, the baseline data contained T1-postcontrast 
data acquired from at least two of the possible three orientations (axial, sagittal, and 
coronal).

7.2.2  �Image Preprocessing

Patient data was retrieved from the trial records in DICOM format. The DICOM 
data was imported and converted to NIfTI file format. The header of the NIfTI files 
was manipulated so that the origin of the file matched the origin of the template 
tissue probability maps (which are described in Sect. 7.2.6). This step ensures that 
the MRI images can be registered into the deformable template space. The NIfTI 
data was padded to add margins to the 3D image and resliced to a uniform grid of 
1 × 1 × 1 mm.

7.2.3  �MRI Full Head Completion

In order to create a head model from MRI data, it is important that the field of view 
of the MRI image show the entire head. However, in the clinic, where the focus is to 
image the tumor, the field of view of the full image set does not always show the 
entire head. Therefore, in cases where a single T1-contrast image showing the entire 
head was not available, we combined T1-contrast images acquired at different 
orientations in order to complete the field of view. In many cases, the image set 
acquired at one orientation had higher quality than the images acquired at other 
orientations. Therefore, the image with the highest quality was used as an anchor, 
and the other images were rigidly registered to it, followed by a histogram matching 
of the additional images to the anchor image. In order to create a new image, all 
voxels in which the original image contained MRI data were assigned the same 
value as the original image in the corresponding voxel. In the area of missing data 
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of the anchor image (outside the borders of the original MRI series), the value of the 
voxels were set as the average of all nonzero values of the additional images. 
Figure 7.2 shows an example of an image set to which this algorithm was applied 
along with an output image in which the whole head is visible.

7.2.4  �High-Resolution Reconstruction

The original T1-contrast MRI data is often of lower resolution, which affects the 
tumor segmentation quality and the accuracy of the head model. A super-resolution 
algorithm that combines several T1-contrast images of the patient acquired at dif-
ferent orientations into a single high-resolution image was implemented. Based on 
[18], the best-quality image was set as the anchor image, followed by affine registra-
tion of the additional images to it. All images were resliced to a uniform grid using 
trilinear interpolation and a gray-scale intensity normalization was performed. The 
value of the voxel in the reconstructed image was a weighted average of the values 
of the corresponding voxels in the images used for reconstruction. When averaging, 
a higher weight was given to voxels from slices that were present in an original 
image versus voxels originating from slices obtained through interpolation.

Axial                              Coronal               Sagittal reconstruction            model

Fig. 7.2  Example of an image set for which the MRI head completion algorithm was applied. For 
this patient, T1-postcontrast image datasets were captured at axial, coronal, and sagittal orientations 
existed (first three columns). However, the fields of view in all three image sets did not cover the 
entire head. An image depicting the full head was created by combining these image datasets using 
the field of view completion algorithm (column 4). Column 5 shows an overlay of the final patient 
model on the image of the complete head
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7.2.5  �Background Noise Reduction

A thresholding method was used to remove background noise and aliasing, both of 
which were found to deteriorate the quality of the head model created using 
deformable templates. In particular, when background noise was present, the 
contour of the skull obtained during model creation was often inaccurate and 
included part of the background. The background noise reduction was performed 
using a semi-automatic method in which the user selected a single value representing 
the background noise and the software applied this value as a threshold to 
automatically detect the contour of the scalp in the MRI image and set the intensity 
of the background to zero.

7.2.6  �Patient Model Creation

Figure 7.3 is a schematic describing the pipeline used to create head models of glio-
blastoma patients using a deformable template. A prerequisite for this technique is 
to create a realistic head model of a healthy individual. In order to create a patient 
model from MRI images, the user first segments the tumor using manual or semiau-
tomatic procedures. The region of the tumor is masked, and a nonrigid registration 
algorithm is used to register the MRIs to the template space, yielding a transforma-
tion from the patient space to the template space. The inverse transformation is then 
calculated and applied to the deformable template to yield an approximation of the 
patient head in absence of the tumor. Finally, the tumor is transplanted into the 
deformed template model to yield the final patient model.

To reduce the schematic to practice, first a deformable template needs to be 
created:

The deformable template is represented using tissue probability maps (TPMs), 
which are a set of six 3D matrices that assign to each voxel a probability of belonging 
to a predefined tissue (white matter, gray matter, CSF, skull, scalp, and air). For the 
creation of the deformable template, the MRI of a healthy male based in MNI space 
[19] was segmented as TPMs. The procedure was performed using an algorithm that 
simultaneously registers and segments the base MRI using an existing set of TPMs 
(built in a standard space) and applied using the MATLAB toolbox SPM8 [15] and 
its extension MARS [20]. Manual corrections were made to the deformable template 
TPMs by manipulating the combination of probabilities in a specific voxel. Manual 
corrections included mainly adjustments to the regions of skull and scalp, so that a 
better match between the deformable template and patient MRI data was obtained 
in these the regions. A final step in creating deformable template TPMs from these 
probability maps is to apply a smoothing filter to the individual maps. Smoothing is 
important to allow adjustments to an MRI of any individual. The smoothing was 
performed using a Gaussian filter with a smoothing kernel of 4 × 4 × 4 mm FWHM 
(full width half maximum). It is noteworthy that the TPMs generated using this 
procedure is sharper than the original atlas TPMs of SPM/MARS.  This method 
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ensures that the segmented model has very high resemblance to the patient’s MRI 
data. Deformable template TPMs creation is performed once for the entire database.

T1-postcontrast MRIs were used to create the patient models. Pre-processing 
operations were performed when image quality or image resolution were insufficient, 
as described in Sects. 7.2.2, 7.2.3, 7.2.4, and 7.2.5. Following preprocessing, tumors 
and abnormal tissue were segmented in a semiautomatic manner using ITK-SNAP 
[21]. The following tumor and abnormal tissue types were segmented: enhancing 
tumor, necrotic core, enhancing nontumor (coincides with scarring), resection 
cavity, and skull defects. Furthermore, the following abnormal tissue regions were 
contoured/segmented: hematoma, ischemia, atrophy, and non-GBM tumor. 
Abnormal tissue regions were masked in the patient MRI, and the masked images 
were registered into MNI space using MARS/SPM and the TPMs created from the 

Patient MRI

Non rigid deformation

Deformed
model

Place tumor
in model

Realistic head model
(in template space)

Place TA
on model

Non-rigid registration

Healthy, Prepared in advance

Segment tumor Mask tumor

Fig. 7.3  Schematic showing the process used to create patient-specific models from a deformable 
template. A prerequisite is the creation of a realistic head model of a healthy individual, which 
serves as the template. To create a patient model, first, the tumor is manually segmented using 
ITK-SNAP. The segmented region is masked, and the masked MRI registered into the template 
space using a nonrigid registration algorithm. The registration yields a transformation from patient 
space to template space as well as an inverse transformation, which is applied to deform the 
template into the patient space. This yields a model which resembles the patient brain in the 
absence of a tumor. Finally, the tumor is implanted into the deformed head model to yield the final 
patient model
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deformable template. This registration process yielded a nonrigid transformation 
from the patient space into the template space as well as the inverse transformation 
from template space to the patient space. The inverse transformation was applied to 
the probability map for each tissue type independently. A model approximating the 
patient in the absence of a tumor was then created by assigning to each voxel the 
tissue type for which the probability value within the voxel was highest. Finally, the 
manually segmented abnormal tissues were inserted to yield the final patient model.

7.2.7  �Placement of Transducer Arrays on the Model

Optune™ transducer arrays comprise a set of nine ceramic disks, which make con-
tact with the skin through a thin layer of medical gel. The disks are arranged in a 
well-defined geometry as shown in Fig. 7.4. Treatment planning to determine the 
optimal layout of the transducer arrays on the patient’s scalp is performed prior to 
beginning TTFields therapy. Treatment planning for patients that received TTFields 
as part of the EF-14 trial was performed. The treatment plan (optimal layout) for 
each patient was recorded in the patient’s clinical record. When simulating delivery 
of TTFields to a specific patient, arrays were placed on the model in a manner that 
matched the treatment plan saved in the patient record.

It is important to note that the optimal array layout for a patient was selected 
from a library of predefined layouts, an example of which can be seen in Fig. 7.4. 
The position of each array in each layout can be demarcated relative to well-defined 
anatomical landmarks. In addition, the arrays are constructed from nine discrete 
disks, set out in a well-defined and rigid geometry. These two observations led to the 
following procedure for placing the virtual arrays on the patient models.

�Automatic Identification of Landmarks and Determination of the Array 
Positions

In order to determine the location and orientation of the disk array on the head, it 
is important to identify landmarks, as well as rotate the head model to a well-
defined orientation relative to which the orientation of the array is known. An 
iterative algorithm detecting the orientation of the head and the landmarks was 
therefore used. The anatomical landmarks that were automatically identified were 
the centers of the eyes, brainstem, frontal sinuses, and the box bounding the head. 
Detection of landmarks was performed on the segmented model. The first step was 
to find the two CSF circles of the eyes in 2D axial slices. For each eye, the slice in 
which the area of the circle was maximal was found and its center identified. 
These two points correspond to the centers of the eyes. Using the center of the 
eyes, an initial correction of the head orientation was performed. The next step 
was to detect the brainstem (segmented as a round region of white matter in the 
base of the brain), and to perform full rotation of the model to a predetermined 

N. Urman et al.



147

orientation. Once the orientation was completed, the frontal sinuses (segmented as 
air), and bounding box were found. These landmarks were then used to define the 
positions of the central disks of each array on the scalp as planned for each patient 
by the NovoTAL™ system.

�Positioning of Anchor Points to Assist with Array Placement

After finding the position of each central disk of an array on the scalp, four anchor 
points at predetermined distances from the central disk were located on the scalp to 
assist with placement of the remaining disks. The anchor points were positioned to 
form a cross-like pattern with the central disk of the array at the center. One axis of 
the cross was vertically oriented, and the second axis of the cross was horizontally 
oriented. Each anchor point was found using the following iterative algorithm:

	(a)	 Calculate the tangent surface to the scalp at the current point using singular 
value decomposition (SVD).

	(b)	 Project the vector pointing in the direction of the anchor point onto the tangent 
surface.

	(c)	 Calculate a point at a predefined (small) distance from the current point along 
the direction defined by the vector calculated in step (b).

Fig. 7.4  Example showing an array layout as stored in the patient record (top row), along with a 
patient model onto which arrays matching this layout have been placed (bottom row). Each array 
layout comprises four transducer arrays, shown as patches of blue, red, yellow, and white in the top 
row. The arrays are arranged into pairs and electric fields generated between each pair. One pair of 
arrays delivers an electric field with an anterior-posterior orientation (red and blue arrays in top 
row), and one pair delivers a field oriented left-right on the patient (white and yellow arrays in top 
row) Each transducer array comprises nine ceramic disks arranged in a rectangular orientation 
Each red disk on the model in the bottom row represents a ceramic disk. The bottom row shows a 
model onto which a pair of transducer arrays has been placed. One array was placed on the left 
aspect of the model, and the other on the right aspect
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	(d)	 Define a new point on the scalp, as the point on the scalp closest to point calcu-
lated in step (c).

	(e)	 If the geodesic distance between the new point and the center point is close 
enough to the desired distance between center of the central disk and the anchor 
point, then set the current point as the anchor point, else perform another step 
towards the anchor point by repeating steps a–e.

�Finding the Center of All Disks in an Array

The geometry of the transducer array suggests that the geodesic distances between 
the centers of the disks are constrained and remain constant when the array is placed 
on the scalp. Consequently, in order to find the center of a specific disk in the array, 
geodesic circles with appropriate radii were drawn around the central disk and the 
anchor points. The approximate intersection of these circles (defined as the point at 
which the sum of distances from the circles is minimum) corresponds to the center 
of that specific disk.

�Creating Cylinders Representing the Ceramic Disks and the Medical Gel

When placing the arrays on the head, the ceramic disks are tangent to the scalp. The 
following process was used to ensure that the virtual disks are tangent to the scalp 
in the patient model. First, the normal direction to the body closest to the disk was 
calculated. The calculation was performed by finding all points on the phantom skin 
that were within a distance of one disk radius from the designated point. The 
coordinates of these points were arranged into the columns of a matrix and SVD 
performed on the matrix. The normal to the surface is the eigenvector that 
corresponds to the smallest eigenvalue. To ensure good contact between the disk 
and the body, the thickness of the gel needs to be in contact with all points under the 
disk. This was determined by fitting a cylinder to all points on the skin under the 
disk. Calculation of the positions, orientations, and gel thicknesses associated with 
the disks was performed in MATLAB 2013b (Mathworks, USA) and the Sim4Life 
(ZMT-Zurich, Switzerland) Python API was used to generate the transducer arrays 
in the model.

7.2.8  �Simulations

Following creation of the patient models, transducer arrays were placed on the mod-
els to match the transducer array layouts assigned to the patients as recorded in their 
medical records. In addition, patient’s average compliance (defined as the fraction 
of time a patient was on active treatment) and the average electrical current deliv-
ered to each patient were calculated from log files of the TTFields generators stored 
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in the patient records. The Sim4Life (ZMT Zurich, Switzerland) quasi-electrostatic 
solver was used to simulate the delivery of TTFields at 200 kHz. Electrical proper-
ties were assigned to the various tissue types and materials in the model according 
to average values reported in the literature [7, 17]. Boundary conditions were set so 
that the total current delivered to the patient was equal to the average current deliv-
ered to the patient during the first 6 months of treatment. It is important to note that 
a separate simulation was performed for each of the two pairs of arrays placed on 
the patient.

7.2.9  �Analysis

For this study, a total of n = 119 cases (of 466 patients in the trial treatment arm) 
were simulated. All patients analyzed in this study were on active treatment for 
more than 2 months. For each patient, field intensity distributions in a tumor bed 
comprising the gross tumor volume (GTV) and a proximal boundary zone (PBZ) 
extending 1 cm from the GTV were derived. To account for compliance, field values 
for each patient were multiplied by their average compliance over the first 6 months 
of treatment.

To test the hypothesis that patient outcome correlates with field intensities, two 
quantities were derived:

	1.	 E95, which is the value such that 95% of the combined volume of the GTV and 
PBZ, received field intensities (multiplied by compliance) above a specified 
value.

	2.	 Eaverage, which is the average intensity (multiplied by compliance and average 
current) in the combined volume of the GTV and PBZ.

Patients were divided into two groups based on threshold values of both E95 and 
Eaverage, and the overall survival (OS) and progression-free survival (PFS) of the 
groups were compared. The threshold values of these parameters were chosen to 
yield the most statistically significant difference in OS between the groups.

7.3  �Results

Demographics of all groups were similar to the demographics of the entire EF-14 
trial population and similar to each other (Table 7.1). When dividing the 119 patients 
into two groups based on E95, the median OS and PFS were superior when 
E95 > 1.3 V/cm: OS (E95 > 1.3 V/cm: 33.0 months vs. E95 < 1.3 V/cm:21.9 months, 
p = 0.009, HR = 0.46) and PFS (E9 > 1.3 V/cm 11.9 months vs E95 < 1.3 V/cm 
7.5  months, p  =  0.06, HR  =  0.49). Similar results were seen when dividing the 
patients into two groups based on a threshold of Eaverage > 1.0 V/cm: OS (Eaverage > 1.0 V/
cm: 26.1 months vs. Eaverage < 1.0 V/cm: 21.6 months, p = 0.025, HR = 0.50) and PFS 
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(Eaverage  >  1.0  V/cm: 9.9  months vs. Eaverage  <  1.0  V/cm: 6.1  months, p  =  0.026, 
HR = 0.54). Progression-free at 6 months and 24-months survival rate were superior 
when E95 > 1.3 V/cm (E95 > 1.3 V/cm: 76% vs. E95 < 1.3 V/cm: 56%, p = 0.031), 
and (E95 > 1.3 V/cm: 66% vs. E95 < 1.3 V/cm: 42%, p = 0.0156), respectively. 
Within the E95 > 1.3 V/cm group, a higher percentage of patients showed clinical 

Table 7.1  Demographics of patients split into groups according to a threshold of E95 = 1.3 V/cm

Characteristics
E95 > 1.3 E95 ≤ 1.3

p-value

All 
simulation 
patients

Other 
TTFields 
patients

p-value(N = 33) (N = 86) (N = 119) (N = 347)

Age (Years)

Mean (SD) 57.9 
(10.50)

52.3 
(11.27)

0.0156 53.9 (11.30) 55.0 (11.52) 0.354

Sex, No. (%)

Male 23 
(69.7%)

60 
(69.8%)

0.994 83 (69.7%) 233 (67.1%) 0.6

Female 10 
(30.3%)

26 
(30.2%)

36 (30.3%) 114 (32.9%)

Region, No. (%)

United States 16 
(48.5%)

37 
(43.0%)

0.592 53 (44.5%) 168 (48.4%) 0.465

Rest of world 17 
(51.5%)

49 
(57.0%)

66 (55.5%) 179 (51.6%)

Extent of Resection, 
No. (%)

Biopsy 6 (18.2%) 8 (9.3%) 0.212 14 (11.8%) 46 (13.3%) 0.912
Partial resection 8 (24.2%) 33 

(38.4%)
41 (34.5%) 116 (33.4%)

Gross Total resection 19 
(57.6%)

45 
(52.3%)

64 (53.8%) 185 (53.3%)

MGMT Tissue 
available and tested, 
No. (%)

28 
(84.8%)

75 
(87.2%)

103 (86.6%) 283 (81.6%)

Methylated 10 
(35.7%)

30 
(40.0%)

0.919 40 (38.8%) 97 (34.3%) 0.709

Unmethylated 15 
(53.6%)

38 
(50.7%)

53 (51.5%) 156 (55.1%)

Invalid 3 (10.7%) 7 (9.3%) 10 (9.7%) 30 (10.6%)
Karnofsky 
Performance Score

Mean (SD) 88 (10) 89 (9) 0.6084 89 (9) 87 (11) 0.137
Median (range) 90 

(70–100)
90 

(70–100)
90 (70–100) 90 (60–100)

Table also shows demographics of all 119 patients, as well as demographics for all n = 347 patients 
treated with TTFields, but not included in this study. Demographics of all groups are similar. It is 
worth noting that the median age in the group for which E95 > 1.3 V/cm is significantly higher than 
in the group for which E95 < 1.3 V/cm
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benefit (stable disease/partial response, 97% vs. 83% p  =  0.039). OS in the 
E95 < 1.3 V/cm group was superior to OS in the EF-14-control-arm (16.0 months, 
p  =  0.009), indicating that patients benefited from treatment even when field 
intensities were lower. The Kaplan-Meier curves for OS are shown in Fig. 7.5.

7.4  �Discussion and Conclusion

In this work, we summarize a simulation-based study suggesting a strong connec-
tion between TTFields dose at the tumor bed and patient outcome. A robust and 
rapid semiautomatic procedure for creating realistic patient models was developed 
in order to perform this study. This method enabled the efficient creation of patient-
specific models and simulation of TTFields delivery to over 100 patients. Simulating 
delivery of TTFields to such a large cohort is necessary in order to gain a sample 
size large enough to establish statistically significant connections between dose/

Fig. 7.5  (i) Examples of patient models and calculated field distributions within each patient head. 
Each row shows a different patient. The figure shows axial slices from patient MRI (1st column), 
an overlay of the patient model on the slice (2nd column) and the final patient model in the same 
slice (3rd column), 3D representation of the patient model with virtual arrays (4th column) and 
field intensity distributions generated by the pair of arrays on the left and right aspects of the head 
(5th column) and on the anterior and posterior of the head (6th column). (ii) Kaplan-Meier curves 
for overall survival when splitting patients according to threshold values of Eaverage (left) and E95 
(right)
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field intensity and patient outcome. To our knowledge, this is the first study in which 
delivery of low-frequency electromagnetic energy to patients has been performed 
on such a large cohort. In the future, our modeling process could be adapted to 
investigate potential connections between electromagnetic field distributions and 
patient outcomes for other electrotherapeutics. A study utilizing this method to ana-
lyze the connection between TTFields dose distribution and patient outcome in 340 
patients that participated in the e EF-14 trial was  recently published [22].

The head model creation procedure used in this study utilizes a healthy head 
model, which serves as a deformable template from which the patient models are 
created. Consequently, the anatomy of the resulting head models bear a large degree 
of resemblance to the template and may not accurately capture fine anatomical 
features such as the exact shape of the gyri and sulci of the patient’s brain. The 
frequency of TTFields and the method of delivery (large transducer arrays) dictate 
that TTFields distribution is broad and coarse in geometry and distributes over the 
entire brain. Consequently, fine details in the anatomy are unlikely to affect the 
overall shape of the field distribution in the brain, and are therefore expected to have 
minimal effect on the analysis and conclusions presented in this study. This is in 
contrast to applications such as transcranial direct current stimulation (TDCS) [23], 
or deep brain stimulation [24], where it is important to accurately deliver the electric 
field to specific and often finely shaped anatomical structures.

The analysis performed in this study suggests a statistically significant connec-
tion between TTFields intensity at the tumor bed (multiplied by compliance) and 
patient outcome. This suggests that treatment planning in which array placement on 
the scalp is optimized in order to maximize TTFields intensity at the tumor bed 
could be important for improving patient outcome. Indeed, the NovoTAL system 
utilizes simple geometrical rules to optimize array placement. In the future, the 
algorithms presented in this chapter could form the basis for treatment planning 
software that uses realistic simulations of TTFields distribution in the body for 
treatment planning. TTFields treatment planning may even be extended beyond a 
calculation of positioning the arrays on the head. For example, planning may 
encompass surgical procedures, such as cranial remodeling, which have been shown 
to increase TTFields distribution at the tumor by over 50% in some cases [12].

In this study, we assumed homogeneous tissue properties for all tissue types 
based on average values reported in the literature, with the conductivity values 
assigned to the various compartments of the tumor. The assumption of homogeneity 
is reasonable when considering healthy tissue [see chapter on wEPT in this book]. 
However, glioblastoma tumors are structurally heterogeneous. Therefore, their 
electric properties are likely heterogeneous as well. However, very little literature 
investigating the electric properties of tumors exists. Such heterogeneity will affect 
TTFields distribution in the tumor bed. Future studies investigating the electric 
properties of tumors are planned so that tumor heterogeneity can be accounted for 
in simulations and treatment planning. Techniques such as wEPT [25] or MR-based 
electrical impedance tomography (MREIT) [26] provide spatial maps of the electric 
properties in tissue that could be extremely useful in this regard. However, their 
applicability to mapping electric properties in the 100 kHz-1 MHz frequency range 
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should first be established. It is important to note that in the context of this study, the 
effect of heterogeneity in the tumor bed on TTFields dose, and its connection to 
outcome is effectively accounted for in the analysis through the averaging performed 
on field intensity in the tumor bed and the large number of patients in the study.

To conclude, this chapter presents novel methods for creating realistic head mod-
els suitable for the simulation of TTFields. The approach has enabled a ground-
breaking study in which simulation and clinical data have been combined to 
establish a connection between TTFields dose at the tumor and patient outcome. 
Future studies based on our approach will lead to a better understanding of TTFields 
therapy, ultimately leading to improved patient outcomes.
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Chapter 8
Insights from Computer Modeling: 
Analysis of Physical Characteristics 
of Glioblastoma in Patients Treated 
with Tumor-Treating Fields

Edwin Lok, Pyay San, and Eric T. Wong

8.1  �Introduction

Tumor-treating fields (TTFields) are intermediate frequency electric fields at 
200 kHz (kHz or 103 Hz) that have anti-tumor activity. In a pivotal phase III clinical 
trial for newly diagnosed glioblastoma patients, the addition of TTFields to mainte-
nance temozolomide, which was administered after initial radiotherapy and concur-
rent daily temozolomide, was found to improve both progression-free survival and 
overall survival when compared to those who only received maintenance temozolo-
mide [1, 2]. This positive trial result led the US FDA to approve the use of TTFields 
for these patients and the incorporation of this therapy into the National 
Comprehensive Cancer Network (NCCN) guidelines for malignant gliomas [3].

8.2  �TTFields Is Another Treatment Modality 
from the Electromagnetic Spectrum

Energies from different parts of the electromagnetic spectrum are utilized to treat 
various types of malignancies. For glioblastoma, ionizing radiation from external 
beam radiotherapy is the mainstay of treatment at initial diagnosis. The frequency is 
in the ectahertz (EHz or 1018 Hz) range and the high energy results in direct DNA 
damage, such as double-strand DNA breaks; indirect effects are also a result, includ-
ing the generation of oxygen radicals causing secondary tissue damage [4]. Major 
advances of the past decades consist of improving the conformality of the beam, as 
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in intensity-modulated radiation therapy and stereotactic radiosurgery, resulting in 
less radiation scatter to the surrounding tissue adjacent to the tumor [5, 6].

Laser interstitial thermal therapy (LITT) is another treatment for brain tumors 
that utilizes a specific part of the electromagnetic spectrum at the microwave fre-
quency or 100 MHz range. A probe is stereotactically inserted into the tumor target 
under MRI guidance, and the laser at the tip of the probe emits microwave energy 
to heat the tumor tissue while the temperature is being monitored [7]. The primary 
application is for the treatment of brain metastasis and radiation necrosis, but surgi-
cally inaccessible glioblastomas can also be treated.

TTFields therapy operates at a frequency of 200 kHz for glioblastoma, which is 
based on preclinical data on mitotic interference of glioma cells in tissue culture [8]. 
This frequency is below radio frequency for the transmission of AM signals. There 
are a number of biological effects that can be exploited to treat malignancies. These 
include disruption of tubulin and septin, both of which are intracellular macromol-
ecules possessing large dipole moments and are necessary for the orderly progres-
sion of mitosis in dividing cells [8, 9]. Tubulin monomers coalesce to form 
microtubules and the mitotic spindle during metaphase and anaphase. These higher 
order structures are needed to align the 23 pairs of chromosomes in the mitotic plate 
and to guide the subsequent migration of the corresponding sister chromatids to the 
respective centrioles. Septin heterotrimers are needed for cytokinesis, or the con-
traction of the plasma membrane along the equatorial plane of the dividing cell, that 
eventually produces two daughter cells. Notable phenomena of violent membrane 
blebbing and asymmetric chromosome segregation have been observed under the 
influence of TTFields, resulting in aneupoloidy, mitotic arrest, and/or cellular stress 
that may trigger an immunogenic response [8–10].

8.3  �Quantifying Electric Field Delivery in the Brain

The amount of electric field delivered to the tumor target can be quantified. However, 
the brain has a complex geometry consisting of multiple layers of folded tissues 
(such as dura, gray matter, white matter, and subcortical nuclei) and asymmetric 
spaces (ventricles and the subarachnoid space on the cerebral convexity). In addi-
tion, the glioblastoma is situated within the white matter with extension to the adja-
cent gray matter and displacement of the subarachnoid or ventricular space. This 
tumor is usually seen as an enhancing lesion on MRI, and its gross tumor volume 
(GTV) can be contoured and delineated by appropriate software. When solving for 
the electric field distribution at the GTV, the solutions to the differential equations 
are not straightforward and only representative numerical approximations can be 
computed using techniques such as finite element analysis. The accuracy of the 
solution depends on several factors: the smoothness of interface between structures 
and the resolution of the finite elements that form the approximate solid geometry 
of the tissue. There is always a trade-off between accuracy of the model and the 
computational requirements needed to generate a solution. In general, a larger 
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number of elements that are used to represent a more accurate geometry will require 
more time and increased computational capability to generate a solution.

The workflow to generate a prediction for the numerical value of the electric field 
at the GTV requires a number of steps [11]. It begins with the conversion of the 
Digital Imaging and Communications in Medicine (DICOM) dataset from MRI into 
Neuroimaging Informatics Technology Initiative (NIfTI) image format using the 
conversion function from Statistical Parametric Mapping 8 (SPM8) and then co-
registering to a template in Montreal Neurological Institute space. The default 
workflow generates ten binarized masks, including white matter, gray matter, cere-
bellum/brainstem, cerebrospinal fluid, orbits, skull, scalp, gel, electrodes, and air; it 
has been customized for the finite element analysis of TTFields. The binary masks 
are then imported into a 3D image processing software such as ScanIP (Synopsis, 
Mountain View, CA) for post-processing of generated errors. The boundary condi-
tions are then specified and the presence of island cavities and artifacts are manually 
corrected to ensure no overlapping or missing boundaries are present. The Dice 
coefficient can then be used to measure the degree of overlap before and after man-
ual processing. The optimized masks are then imported into a simulation software 
such as COMSOL Multiphysics (Stockholm, Sweden). The output of this process 
consists of visual maps of the distributed electric fields and the specific absorption 
rate (SAR) within the brain and the GTV.

The electric field-volume histogram (EVH) and specific absorption rate-volume 
histogram (SARVH) are indispensable for the comparison of the electric fields and 
the SAR at the GTV between different models [12] (Fig. 8.1). The histograms are 
also applicable to other intracranial structures for monitoring side effects at regions 
adjacent to the GTV.  Both EVH and SARVH also facilitate the comparison of 
TTFields in individual patients over time or between patients who are receiving the 
same treatment. A number of standardized parameters can be used, including EAUC, 
VE150, E95%, E50%, and E20% for electric field quantification, as well as SARAUC, 
VSAR7.5, SAR95%, SAR50%, and SAR20% for specific absorption rate representation. 
In our prior modeling work, the scalp is the site having the highest overall electric 
field intensity and SAR because the transducer arrays are adjacent to the scalp. 
However, within the brain, the distribution is highly variable, with the frontal horns 
of the lateral ventricles and the genu of the corpus callosum having a higher electric 
field intensity and SAR due to their geometries and juxtaposition to cerebrospinal 
fluid [12, 13].

A number of factors can alter the intracranial distribution of TTFields. First, the 
thickness of the cerebrospinal fluid layer located in the subarachnoid space on the 
surface of the brain can change the penetration of TTFields into the GTV, which is 
located deeper within the white matter of the brain. In one of our models, a contrac-
tion of the cerebrospinal fluid layer by 1.0 mm increased the EAUC by 15–20%, while 
an expansion by 0.5 mm can reduce the EAUC by about 10% [12]. Second, changes 
in the conductivity of GTV affect the distribution of TTFields inside the brain, but 
variations in permittivity do not. In particular, the presence of a tumor-associated 
necrotic core, which contains fluid and probably has a higher conductivity, may 
attenuate the penetration of TTFields into the tumor, likely by diverting the electric 
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Fig. 8.1  (a) EVH for various tissue structures and GTV. Simulation results for (b) electric field 
and (c) SAR distributions on an axial plane within the brain, showing higher intensity near the 
GTV and the corpus callosum
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fields away from the active regions of the tumor. Therefore, these anatomic  
variations may alter the response of patients to TTFields treatments.

8.4  �Clinical Outcome from TTFields Treatment

The efficacy of TTFields in the glioblastoma population has been tested in random-
ized phase III clinical trials [1, 2, 14]. The EF-11 trial was conducted in the recur-
rent glioblastoma population and patients were randomized in a 1:1 fashion to either 
TTFields monotherapy or best physician’s choice chemotherapy [14]. Both 
progression-free survival and overall survival were comparable in the two cohorts, 
suggesting that TTFields is an equivalent therapy, but without the toxicities associ-
ated with the chemotherapies used in the recurrent setting. There is a unique side 
effect of scalp irritation caused by placement of the transducer arrays onto the 
patient’s head and the energy deposition on the scalp, but this can be readily treated 
with corticosteroid ointment with minimal sequela.

The post hoc analyses of EF-11 yielded a number of important findings. First, the 
Patient Registry Dataset (PRiDe) contains treatment and health information data 
from patients who underwent TTFields therapy in real-world, clinical practice set-
tings in the USA from 2011 to 2013 after the initial United States FDA approval. 
PRiDe revealed that patients lived longer when their TTFields usage compliance 
averages 75% or greater per day [15]. Furthermore, dexamethasone is an anti-
inflammatory drug commonly used in the glioblastoma population to counteract 
cerebral edema caused by the tumor. A separate post hoc analysis showed that 
patients who used a higher dose of ≥4.1 mg/day had a shortened survival compared 
to those who used <4.1 mg/day [16]. Therefore, TTFields therapy in this population 
requires maximizing treatment compliance while minimizing dexamethasone usage 
in order to facilitate its anti-glioblastoma effect.

The EF-14 trial is another randomized phase III trial of newly diagnosed glio-
blastoma patients [2]. All eligible patients received initial radiation and daily temo-
zolomide and were then randomized prior to entry into the post-radiotherapy 
adjuvant phase of temozolomide treatment. Patients were randomized to receive 
TTFields plus temozolomide or temozolomide alone, and the TTFields cohort had 
longer progression-free survival and overall survival compared to the control. Mild 
to moderate scalp toxicity underneath the transducer arrays was seen in 52% of 
patients who received TTFields and temozolomide compared to none in the control 
cohort. Systemic toxicities and health-related quality-of-life measures were compa-
rable between the two groups [2, 17].
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8.5  �Conclusion

TTFields therapy has established anti-cancer efficacy and the utilization of this 
treatment for glioblastoma has resulted in prolongation of patient survival. However, 
the distribution of TTFields within the brain is still shrouded in mystery. Finite ele-
ment analysis provides a means for the numerical approximation of the distribution 
of TTFields within the brain and particularly within the GTV. Furthermore, EVH 
and SARVH permit the quantification of changes in electric fields and specific 
absorption rate over time, as well as the comparison of these parameters between 
individuals. Ultimately, the goal is to develop personalized TTFields treatment for 
each glioblastoma patient.
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Chapter 9
Advanced Multiparametric Imaging 
for Response Assessment to Tumor-
Treating Fields in Patients 
with Glioblastoma

Suyash Mohan, Sumei Wang, and Sanjeev Chawla

9.1  �Introduction

Glioblastoma (GBM) is the most malignant tumor in the brain, representing 30% of 
all central nervous system tumors (CNST) and 70% of primary malignant 
CNST. GBM is the cause of 225,000 deaths per year throughout the world. It has an 
incidence of 5 per 100,000 persons, affects 1.5 times more men than women, and is 
diagnosed at an average age of 64 [1]. The current standard of care treatment for 
patients with GBM includes maximal safe resection followed by radiotherapy and 
chemotherapy using temozolomide (TMZ). However, the prognosis of GBM is mis-
erable with a median overall survival (OS) of only 12–18 months following diagno-
sis [2]. Because of continuing progress in the quest for an effective treatment, the 
therapeutic armamentarium for patients with GBM has grown significantly over the 
past decade. However, newly tested adjuvant strategies such as the addition of beva-
cizumab [3], modified TMZ dosing [4], or use of other targeted therapies [5, 6] have 
failed to significantly improve OS. These limitations necessitate the investigation of 
novel therapies to treat patients with GBMs.

9.2  �Tumor-Treating Fields: Scientific Basis

Recently, the US Food and Drug Administration (FDA) approved the use of alter-
nating electric fields, also known as tumor-treating fields (TTFields), as a novel 
modality for the treatment of patients with newly diagnosed and recurrent GBM. It 
consists of a portable, noninvasive, and in-home use battery-operated medical 
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device involving four insulated transducer arrays composed of biocompatible 
ceramic discs (9 discs per array) that are applied to the shaved scalp of a patient. The 
position and size of the transducer arrays can be adjusted depending upon patient 
head size, tumor dimensions, and location. TTFields deliver oscillating electric 
energy at low intensity (1–3 V/cm) and at an intermediate frequency (200–300 kHz) 
as a loco-regional intervention. TTFields produce antimitotic effects by physically 
interacting with highly charged macromolecules and organelles in rapidly dividing 
cancer cells to disrupt their proper alignment during the metaphase and/or anaphase 
stages of mitotic cell division, mainly sparing the effect of oscillating electric fields 
on normal quiescent cells [7, 8]. In one study [9], treating U-118 glioma cells with 
TTFields in combination with standard chemotherapeutic drugs (Paclitaxel, 
Doxorubicin, Cyclophosphamide) resulted in the destruction of most living cells 
after 70 hours of treatment, while the drugs or TTFields alone only slowed down 
cancer cell proliferation, suggesting that TTFields should be combined with another 
treatment modalities to reach optimal effectiveness. In another study [10], rats bear-
ing intracranial GBM were treated with TTFields for 6  days, leading to smaller 
tumors compared with untreated rats. Interestingly, this study underlined the neces-
sity of applying TTFields in several directions to yield antitumor efficacy. There 
also appears to be a time-dependent treatment effect, with optimal efficacy being 
observed when wearing the treatment mask at least 18 hours per day (75%) [11].

9.3  �Tumor-Treating Fields: Clinical Application in GBM 
Patients

TTFields have been widely used in the treatment of a variety of cancers, for exam-
ple: glioma, melanoma, and adenocarcinoma, with favorable safety profiles and 
without significant adverse effects in patients [8, 12]. Previously, promising find-
ings of large-scale multinational clinical trials have also been reported in patients 
with GBM. In particular, in a phase III clinical study [11] involving 466 patients, the 
addition of TTFields to standard therapy was shown to increase median OS from 
15.6 to 20.5 months (hazard ratio = 0.64, p = 0.0042). The 2-year survival rate was 
approximately 50% greater with TTFields plus TMZ versus TMZ alone: 43% ver-
sus 29%. Additionally, improved quality of life with better cognitive and emotional 
functions was observed in TTFields treated cohorts of patients [11]. Moreover, the 
treatment had limited adverse events, mainly restricted to mild or moderate skin 
irritations beneath the transducer arrays from wearing the device. Therefore, these 
results were exciting for both physicians and patients alike.
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9.4  �Tumor-Treating Fields: Advanced Neuroimaging 
Techniques

We at the University of Pennsylvania are investigating the utility of advanced neu-
roimaging techniques in monitoring treatment-related temporal characteristics and 
assessing response to this unique treatment modality. Anatomic magnetic resonance 
imaging (MRI) of the brain provides excellent soft tissue contrast and is routinely 
used for the noninvasive characterization of brain tumors. However, conventional 
imaging utilizing “Response Assessment in Neuro-Oncology” (RANO) criteria is 
usually not reliable for assessment of the treatment response in patients with GBM 
due to the lack of specificity [13]. Consequently, there is an urgent need to develop 
increasingly accurate quantitative imaging biomarkers for early evaluation of treat-
ment response. These biomarkers are the premise of personalized treatment, 
enabling change or discontinuation of therapy to prevent ineffective treatment or 
unfavorable events. Moreover, identification of treatment failure may help reduce 
adverse economic consequences. This is highly relevant because the cost of TTFields 
therapy is considerably high at $21,000 per month [14]. Advanced MR imaging 
techniques such as diffusion-tensor imaging (DTI) [15], dynamic susceptibility 
contrast (DSC)-perfusion weighted imaging (PWI) [16, 17], and proton MR spec-
troscopy (1H MRS) [18, 19] have shown great potential in evaluating treatment 
response to different therapeutic regimens in GBM patients. DTI is an MR imaging 
technique used to noninvasively investigate the cyto-architectural integrity of brain 
structures by measuring the anisotropy of microscopic water diffusivity. Along with 
more commonly used DTI parameters such as mean diffusivity (MD) and fractional 
anisotropy (FA), geometrical DTI indices such as the coefficients of linear anisot-
ropy (CL) and planar anisotropy (CP) can be helpful in characterizing tissue orga-
nization and orientation of white matter tracts in the brain. Relative cerebral blood 
volume (rCBV) derived from PWI reflects tumor angiogenesis and vascularity. 1H 
MRS is a method that measures metabolic markers of neoplastic activity [20]. 
Spectra from brain tumors have increased choline (Cho), which correlates with 
membrane biosynthesis by proliferating cells, and reduced N-acetylasparate (NAA), 
which indicates loss of neuronal integrity due to tumor cell infiltration [21]. 3D-Echo 
planar spectroscopic imaging (EPSI) allows acquisition of volumetric metabolite 
maps with high spatial resolution, minimizing partial-volume averaging effects [22, 
23]. Thus, 3D-EPSI may be helpful in providing metabolite information from the 
entire volume of a neoplasm. The potential of 3D-EPSI has been reported in char-
acterizing glioma grades [24], mapping glycine distribution in gliomas [25], plan-
ning radiation therapy for GBM patients [26], identifying residual tumors following 
radiation therapy [27], evaluating response to epigenetic modifying agents in recur-
rent GBM [28], in assessing the effect of whole brain radiation therapy on normal 
brain parenchyma in patients with metastases [29] and in distinguishing true pro-
gression (TP) from pseudoprogression (PsP) in GBM patients [30].
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9.5  �Tumor-Treating Fields: Initial Experience

We have recently reported our initial experience of assessing short-term (up to 
2 months) response to TTFields in a newly diagnosed patient with left thalamic 
GBM using physiological and metabolic MR imaging techniques [31]. In addition 
to conventional imaging, the patient also underwent DTI, PWI, and 3D-EPSI on a 
3 T MRI scanner prior to initiation of TTFields (baseline) and at 1- and 2-month 
follow-ups. The values of various advanced imaging parameters such as MD, FA, 
rCBV, and choline/creatine (Cho/Cr) were measured from the contrast-enhancing 
region of the neoplasm at each time point using a previously described method [32]. 
Tumor size decreased from 32.5 × 27.7 mm (baseline) to 25.8 × 24.9 mm (2nd fol-
low up), as seen on the postcontrast T1-weighted images (Fig. 9.1). Tumor volume 
also steadily declined at the 1st (~12%) and 2nd (~34%) follow-up periods relative 
to the baseline. Representative images and parametric maps from baseline and fol-
low-up time-points are presented in Fig. 9.2. Percent changes in volume, MD, FA, 
rCBVmax, and Cho/Cr from baseline to post-TTFields at 1- and 2-month follow-up 
periods are shown in Fig. 9.3. We also found a moderate increase in MD (~11%) 
along with decreases in FA (~23%) from enhancing regions of neoplasms. Previous 
studies [33, 34] have reported increased MD and reduced FA from the tumor in 
patients with gliomas treated with chemoradiation therapy. However, the interpreta-
tion of changes in MD following radiation therapy and adjuvant chemotherapy is 
complex because of co-localization of treatment-induced gliosis, necrosis, and 
edema [35]. In an earlier study from our group, Wang et al. [36] reported higher MD 
and significantly lower FA in post-treatment GBM patients with PsP compared with 
those with TP, suggesting that elevated MD and reduced FA are associated with 
favorable treatment response. Our DTI results are in agreement with these studies 
and imply that DTI can assess therapeutic response to TTFields. We believe that 
cellular growth inhibition and associated cell death at 2  months might have 
accounted for the large increase in MD observed in our patient. It has been widely 
reported that organized microstructures secondary to closely packed proliferating 
tumor cells in gliomas results in high FA [34, 37]. A 23% reduction in FA in the 
current case may be due to reduced cell density and incoherent orientation of neo-
plastic cells.

We also observed a moderate decline in rCBVmax (6.21%) at 2 months relative 
to baseline. Rich capillary networks secondary to angiogenesis are a common fea-
ture of GBMs, responsible for high rCBV [38]. Several studies [16, 17, 39] have 
reported reduced rCBV in gliomas following radiotherapy and anti-angiogenetic 
therapy. Fibrinoid necrosis, endothelial injury, and occlusion of blood vessels have 
been proposed as potential reasons for decreased rCBV levels in treated GBMs [40]. 
In agreement with these studies, reduced rCBV were also noted in the present case, 
suggesting reduced vascularity and tissue perfusion within the tumor bed. A previ-
ous study reported substantial decrease in the levels of CD34 (an immunohisto-
chemical marker of micro-vessel density) and downregulation of vascular endothelial 
growth factors (VEGF) in murine melanomas exposed to intermediate frequency 
alternating electric field compared to the control group [41]. While it is not clear 
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how a combination of TTFields and TMZ chemotherapy modulates tumor vascula-
ture of gliomas, it may be speculated that inhibited angiogenesis might have caused 
decreased perfusion in our case.

Several prior 1H MRS studies [18, 19, 39] have reported decreased levels of Cho 
as a surrogate marker of positive treatment response in patients with brain tumors. 
In accordance with these previous studies, we also observed decreased levels of 
Cho/Cr at the 2-month period following treatment (Fig. 9.4). It is well documented 
that Cho content correlates with cell density and with indices of cellular 
proliferation [42]. We believe that reduction in Cho in our case was most likely a 
direct consequence of the combined antiproliferative effect of TTFields and TMZ 
on cellular metabolism of gliomas.
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Fig. 9.1  A 51-year-old patient with newly diagnosed GBM treated with TTFields plus TMZ. Axial 
FLAIR images at three time points demonstrate a heterogeneous mass centered in the left thalamus 
with surrounding signal abnormality. This mass appears hypointense on the corresponding T1-weighted 
images and demonstrates heterogeneous peripheral enhancement with central necrotic core on the 
corresponding postcontrast T1-weighted images. (Reprinted with permission from Ref. [31])

9  Advanced Multiparametric Imaging for Response Assessment to Tumor-Treating…



168

Fig. 9.2  Axial co-registered contrast-enhanced T1-weighted image and corresponding MD, FA, 
and CBV maps are shown at baseline and at a 2-month follow-up period. (Reprinted with permis-
sion from Ref. [31])

Fig. 9.3  Percentage change in parameters from baseline to 1- and 2-month follow-up periods. 
Trends towards decreased tumor volume, rCBVmax, Cho/Cr, and FA along with an increased MD 
were observed at follow-up relative to baseline indicating tumor growth arrest. (Reprinted with 
permission from Ref. [31])
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Taken together, our initial observations [31] indicate that a multiparametric 
approach utilizing the unique strengths of advanced imaging techniques as per-
formed in the present case may provide a comprehensive assessment of treatment 
response. Our work is in progress and we are currently recruiting and evaluating 
patients with newly diagnosed, as well as recurrent GBM treated with TTFields in 
an ongoing clinical trial.

9.6  �Conclusion

The identification of novel image-based biomarkers may be helpful in determining 
early and true therapeutic response to TTFields in patients with GBM. However, it 
is difficult to compare the results of individual studies because of methodological 
differences and varying clinical endpoints. Analytical methods of advanced MR 
imaging techniques can vary, including subjective/qualitative evaluation of para-
metric maps, user-defined region of interest values (using mean, median, maximum, 
or minimum), histogram analysis, and voxel-wise analysis (i.e., PRMs and fDMs). 
It should be noted that there is a need to establish universal quantitative imaging 
biomarker thresholds to evaluate treatment response to TTFields in GBMs. We 
believe that adequately powered, randomized, placebo-controlled, multicenter stud-
ies using optimal acquisition parameters of advanced MR imaging techniques, 
along with standardized postprocessing methods, are warranted to comprehensively 
determine the potential efficacy of TTFields in patients with GBM. This approach 
will enhance the decision-making process in the use of this novel treatment 
modality.

Fig. 9.4  Red volumes in Cho/Cr maps correspond to voxels that exceed a threshold value of 0.55 
at baseline and at 2-month follow-up period. The total number of voxels that exceed the threshold 
value of 0.55 were 50 at baseline and 34 at 2nd follow-up, suggesting reduced levels of Cho/Cr 
relative to baseline. (Reprinted with permission from Ref. [31])
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Chapter 10
Estimation of TTFields Intensity 
and Anisotropy with Singular Value 
Decomposition: A New and Comprehensive 
Method for Dosimetry of TTFields

Anders Rosendal Korshoej

10.1  �Introduction

Tumor-treating fields (TTFields) are a new and effective treatment against glioblas-
toma (GBM) [1–3]. The treatment uses alternating fields (200 kHz for GBM) to 
inhibit cancer cell division and tumor growth. TTFields are induced by two electri-
cal sources, each connected to its own pair of 3×3 transducer arrays, which are 
placed on the patient’s body surface in the vicinity of the tumor [4]. Recently, finite 
element (FE) methods have been used to calculate the distribution of TTFields in 
realistic human head models in efforts to estimate the treatment dose of TTFields 
[5–8]. This has provided important information about how the TTFields distribution 
is affected by human head morphology [9], tumor position [10, 11], tissue dielectric 
properties [9, 10, 12, 13], and transducer array layout [11, 14]. In addition, FE meth-
ods have been used to provide preclinical proof of concept for a new implementa-
tion of TTFields in which individual computational modeling is used to plan a 
surgical skull remodeling procedure that enhances the efficacy of TTFields by creat-
ing small holes in the skull at selected positions, facilitating current flow into the 
tumor [15, 16]. However, state-of-the-art approaches only use the intensity of 
TTFields as a surrogate “dose” estimate. This is motivated by in vitro studies show-
ing that increasing TTFields intensity decreases tumor growth rate [17]. However, it 
is also known that the antitumor effects of TTFields depend on the treatment expo-
sure time as well as the direction of the induced fields relative to the direction of cell 
division. Specifically, longer exposure time kills more cancer cells [18], and cells 
dividing along the direction of the active field are damaged to a greater extent than 
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cells dividing perpendicularly to the field [17, 19]. This observation is supported by 
the fact that two sequential fields induced by layouts placed in orthogonal directions 
on the scalp enhance the efficacy of the treatment in vivo by approximately 20% 
compared to a single field [20]. This illustrates the notion that multidirectional 
TTFields are able inhibit a larger fraction of cells in a volume because the effect is 
distributed more uniformly across cells dividing in random directions [20]. By a 
similar notion, TTFields are currently applied using two array pairs, which are acti-
vated in an even 50% duty cycle of 2-second duration (Optune®, Novocure, Ltd.). 
The arrays are positioned so that the field intensity in the tumor is maximized, while 
the arrays are maintained in approximately orthogonal orientations [4]. However, 
because of the complex conductivity distribution of the head and individual differ-
ences in anatomy and tumor morphology, the induced fields are not necessarily 
orthogonal throughout the exposed volume. This problem has not been addressed in 
TTFields modeling until now, which may give a biased or incomplete foundation 
for determining the actual efficacy of TTFields. This chapter presents a new method, 
which potentially resolves this limitation by quantifying both the average field 
intensity and the amount of unwanted spatial correlation between the induced fields. 
The chapter is based on results published by Korshoej et al. [21], and further elabo-
rates on the underlying modeling methods. The new dosimetry approach is based on 
FE computations and principal component analysis (PCA). I will describe how sig-
nificant field anisotropy can occur in GBM patients and how this potentially affects 
layout planning and clinical implementation. Finally, I will briefly discuss how 
unwanted field anisotropy can potentially be reduced using activation cycle 
optimization.

10.2  �Preparation of Computational Models and Calculation 
of the Electrical Field

In the following sections, I will describe the methods used to perform FE calcula-
tions of the TTFields distribution in a realistic, patient-based head model. I will 
focus mainly on the basic physics of TTFields, as well as the general concept of FE 
computation.

10.2.1  �Laplace’s Equation: The Electro-quasistatic 
Approximation of Maxwell’s Equations

The physical effects of TTFields are governed by Maxwell’s equations of electrody-
namics [22]. To describe the interaction of TTFields with a volume conductor, e.g., 
the human head or another body region, the goal is to approximate a solution to 
Maxwell’s equations under a particular set of boundary conditions. These typically 
represent constraints applied to the functional values at particular regions of the 
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model. For TTFields, we may assume the electrodynamic behavior to be quasista-
tionary, which simplifies the problem [23, 24]. Quasistationary systems satisfy par-
ticular conditions regarding the frequency of the current/field, the dielectric 
properties of the system materials, and the size of the system. Specifically, quasi-
stationarity requires that the magnetic permeabilities and inductive effects are neg-
ligible. Furthermore, we require the ratio εω σ/  to be low, i.e., εω σ/  1 , where 
ε is the real-valued permittivity of the system, ω the angular frequency of the field, 
and σ the real-valued conductivity, which implies that capacitive effects are also 
negligible. Therefore, the induced currents are mainly Ohmic. Magnetization cur-
rents and displacement currents do not contribute notably and so local changes in 
the field are propagated throughout the physical system without time delay and 
produce synchronous field variations in the system. TTFields satisfies these electro-
quasistatic assumptions when applied to the head. This is because of the dielectric 
properties of biological tissues, the low/intermediate frequency (200  kHz) of 
TTFields, and the small dimension of the physical system, i.e., head (0.2  m). 
Furthermore, this implies that the electric potential φ can be approximated with 
Laplace’s equation ∇ ∙ (σ ∇ φ) = 0, where σ is the real Ohmic conductivity [5, 22–
25]. The requirement of εω σ/  1  is supported by Wenger et al. [12], who reported 
a low sensitivity of the TTFields towards permittivity variations. Similar results 
were obtained by Lok et al. [26], which further supports that the electro-quasistatic 
assumption is valid within the range of parameters relevant for TTFields. In the fol-
lowing sections, I will describe the basics of FE approximation to Laplace’s 
equation.

10.2.2  �The Finite Element Framework for TTFields

In the data presented here, we used finite element methods to solve Laplace’s equa-
tion of the electrostatic potential, as defined in the previous section. We used 
Dirichlet boundary conditions given by the geometrical boundaries of the head sur-
face and the desired choice of electrostatic potential at the electrode interface. The 
finite elements had tetrahedral geometry adapted in shape and size to approximate 
the individual volumes and surfaces of the patient’s head. In addition to providing a 
close anatomical approximation, the mesh was dense enough to allow for detailed 
variations in dielectric properties. Using first-order finite elements, we formulated 
the electric potential at any point in the model as a linear function of the electric 
potentials at the nodes of the tetrahedron containing the point. These linear “basis” 
functions were then used to build a system of linear equations, which was solved 
using a conjugate gradient solver (GetDP, http://getdp.info/) with the residual toler-
ance set to <1E-9. Potentials were fixed at the top of the individual electrodes in an 
array. All electrodes belonging to one array were thereby set to a potential of 1 V 
and the electrodes of the corresponding array to −1 V. We then calculated the elec-
tric field as the numerical gradient of the electric potential. The current density vec-
tors were calculated with Ohm’s law and we then rescaled the potentials, fields, and 
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current densities to obtain a total current of 1.8 A through each array pair. This was 
computed as the numerical integral of current density components normal to the 
arrays over the entire transducer array area. This approach was chosen over 
Neumann boundary conditions because it enabled us to model the actual situation in 
which all of the nine transducers in an array were connected to the same current 
source and therefore had the same electric potential.

10.2.3  �Creation of Personalized Head Models

A number of different approaches have been used to create computational head 
models for TTFields [7]. We created a patient-specific head model based on T1- and 
T2-weighted MRI sequences from a male patient with GBM in the left parietal 
region. The images were processed using SimNIBS (simnibs.org) to produce a 3D 
volume head mesh consisting of five tissue types, namely skin, skull, cerebrospinal 
fluid (CSF), gray matter (GM), and white matter (WM). A detailed description of 
the SimNIBS workflow is given in Windhoff et al. [27]. In summary, segmentation 
is based on the initial extraction of tissue boundary surfaces, which are then pro-
cessed and tessellated to produce a tetrahedral volume mesh with variable resolu-
tion. Surface meshes from WM, GM, cerebellum, and the brain stem are extracted 
from the T1 MRI data using Freesurfer algorithms (http://surfer.nmr.mgh.harvard.
edu/) [28], while skin, skull, and CSF boundaries are extracted from both T1 and T2 
MRI data using the FSL toolbox (https://fsl.fmrib.ox.ac.uk/fsl) [29]. The surface 
meshes are then postprocessed in MeshFix [30] to repair self-intersections, remove 
duplicate triangles, and enhance triangle uniformity and regularity. Surfaces are 
then decoupled to ensure that all tissues are nonoverlapping. The tumor region was 
outlined manually from a gadolinium-enhanced T1 MRI sequence, following the 
initial automated segmentation, shown in Fig. 10.1. The resulting binary volume 
mask was subsequently smoothed and transformed into a triangulated surface mesh 
using custom scripts based on MeshFix, FSL, and Freesurfer. The tumor surface 
mesh was then merged with the GM and WM surfaces so that the entire tumor was 
included in the GM volume. This procedure was conducted using Meshfix by join-
ing the inner part of the tumor surface and the outer part of the white matter surface 
and equivalently joining the outer part of the tumor surface with the outer part of the 
GM surface. The surfaces were then re-optimized. Following surface optimization, 
individual tissue volumes were tessellated using Gmsh [31] (http://gmsh.info) to 
produce a tetrahedral finite element mesh with five tissue volumes (Fig. 10.1). The 
quality of the resulting mesh was optimized [32] and the anatomical accuracy of the 
final segmentation was evaluated by visually inspecting the overlay of the mesh on 
the structural MRI images. The cerebellum was included as WM volume and the 
ventricles in the CSF volume. The tumor volume was finally defined by selecting 
the tetrahedra in the GM volume, which also lay within the binary mask created by 
manual outlining of the tumor. A peritumoral border zone was defined by automatic 
selection of all GM and WM tetrahedra within 1 cm of the outermost tumor border. 
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The final mesh consisted of seven tissue volumes and provided an accurate morpho-
logical representation based on 4,014,379 tetrahedra with a mean volume of 
0.80 mm3.

10.2.4  �Placement of Transducer Arrays

To place the arrays in the model, we defined appropriate centers and orientations of 
each array using the SimNIBS graphical user interface and the specific head model. 
The orientation was given as a unit vector along the short axis of the array. The 
central transducer of the array was placed at the defined array center. We then con-
structed a longitudinal orthonormal vector as the cross product of the directional 
vector and the unit vector normal to the skin surface at the defined center. Two 
points were then defined at 45 mm and −45 mm from the center of the transducer 
along the line of the longitudinal vector, respectively. Each point was projected onto 
the closest triangle of the skin surface, which was then defined as the center of the 
middle transducer of the corresponding column in the array. In this way, all three 
transducers of the longitudinal center row were placed. A similar approach was 
adopted to place the transducers of the first and third row in the array. However, in 
this case, the originally defined directional vector of the short axis was used to 
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Fig. 10.1  Top row, gadolinium-enhanced T1 MRI from a GBM patient. Bottom row, the resulting 
volume segmentation based on the MRI data shown above and the SimNIBS software. The model 
is composed of skin, skull, CSF, GM, WM, tumor (yellow), and peritumoral volumes (magenta)
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define points at 22 mm and −22 mm distances from the centers of each transducer 
in the middle row. Using this approach, it was possible to place all transducers auto-
matically and without significant undesirable overlap. Four different, clinically rel-
evant layouts were tested. The procedure was implemented in a custom MATLAB 
script (Mathworks, Inc.). Figure 10.2 shows an example array layout.

10.2.5  �Assignment of Tissue Conductivity

For the skin, skull, and CSF volumes, uniform and isotropic scalar conductivity 
values were assigned to all nodes belonging to the corresponding tissue volume in 
the mesh. Values were taken from the literature and based on in vitro and in vivo 
measurements at comparable frequencies (skin 0.25 S/m; bone 0.010 S/m; and CSF 
1.654 S/m [33–39]). Electrodes were modeled with a 0.5 mm layer of conductive 
gel (1.0 S/m conductivity) between the electrode and the scalp. For GM, WM, and 
tumor tissues, we used an individualized anisotropic conductivity estimation tech-
nique, direct conductivity mapping, based on diffusion MRI (dMRI) data [40, 41]. 
The technique is based on the cross-property relation between general classes of 
transport tensors, e.g., diffusion and conductivity tensors, and the underlying micro-
structure of the transport medium. The general principle is that different “transport 
processes” will share the same eigenvectors of the corresponding transport tensors 
when taking place in the same medium. This allows for a simplified representation 
of the transport process through calculation of the eigenvalues specific for the given 
process. In the case of conductivity and diffusion, these eigenvalues are approxi-
mately linearly related so that the anisotropic conductivity tensor, required for accu-
rate approximation of a solution to Laplace’s equation, can be directly inferred from 

Fig. 10.2  Surface 
representation of the head 
model after placement of 
transducer arrays. The 
layout shown here 
corresponds to the layout 
proposed by the 
NovoTAL® algorithm used 
for clinical treatment. 
(Courtesy of Novocure, 
Ltd.)
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diffusion MRI data using the same diffusion tensor eigenvectors and linearly scaled 
eigenvalues. Specifically, conductivity eigenvalues were calculated by fitting a lin-
ear relation with no intercept to the mean of diffusion eigenvalues, thereby ensuring 
that the distribution of the geometrical mean of conductivities (scaled eigenvalues) 
was centered at the in vivo mean estimates for the corresponding tissue in a least 
squares sense [41, 42]. The linear relationship was given by σv = s ∙ dv, where σv is 
the conductivity along a given eigenvector v, dv are the diffusion eigenvalues in the 
same direction, and s is a linear scale factor given by 

s d d d d= + +( ) ( )WM WM
iso

GM GM
iso

WM GMσ σ /
2 2

. In the latter expression, σWM
iso  and σGM

iso  

are the uniform isotropic conductivity values (in vivo mean) of WM and GM, 

respectively, and d d d d N
NWM GM/ /= ⋅ ⋅∑ 1 2 3

3  represent the “average” value over 
N

 
voxels in the corresponding tissues (GM and WM separately) of the geometric 

mean
 
of the diffusion eigenvalues [42].

The scale factor was fitted using diffusion data within the GM and WM tissues 
of the healthy right hemisphere, and the scale factor was then applied to the entire 
diffusion tensor to extrapolate the conductivity estimates for the GM, WM, and 
tumor region in both the left and right hemispheres. The calculated voxel conduc-
tivities were assigned to mesh nodes of the corresponding tissue using nearest-
neighbor interpolation [42]. The direct mapping procedure was implemented using 
the dwi2cond algorithm in SimNIBS. The resulting conductivity tensor is shown in 
Fig. 10.3 along with a topographical map of the fractional anisotropy.

10.3  �Dosimetry of TTFields

10.3.1  �The Problem

As described previously, Optune® therapy (TTFields) is performed by sequential 
activation of two electrode array pairs. This means that the field distribution through-
out an activation cycle is composed of two consecutive fields, which are active for 

S/m
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0.7

Conductivity FA

Fig. 10.3  Coronal views of the mean conductivity and FA of the conductivity tensor obtained 
using direct conductivity mapping. Significant conductivity variations occur in the tumor and peri-
tumoral regions. WM tissue is highly anisotropic and FA values also vary within the region of the 
tumor. (Adapted from Wenger et al. [26])
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an equal amount of time (1 s). In the present context, the objective is to quantify the 
average effect of TTFields based on all sequential fields in the duty cycle. Previously, 
studies have presented the field distributions induced by each active pair, as origi-
nally described by Miranda et al. [5]. This approach is demonstrated in Fig. 10.4.

Although illustrative for many purposes, this approach does not account for 
spatial field correlation. This unwanted correlation causes the average antitumor 
effect to vary between cells depending on their direction of cell division, as previ-
ously explained. Figure 10.4 illustrates schematically how the induced sequential 
field vectors of each electrode pair are not orthogonal but rather have a variable 
extent of spatial correlation. In addition, fields may be orthogonal, but have differ-
ent magnitude and so the average efficacy will still be biased and have variable 
antitumor activity towards cells dividing in different directions. In the following 
sections, I will describe a method for estimating the strength of the uncorrelated 
field components in any small tissue region and over one entire activation cycle of 
TTFields. The method provides individual measures of [1] the mean field intensity 
experienced by a cell dividing in any random direction in a local volume and [2] 
of the directional preference of efficacy caused by spatial field correlation. The 
calculations are based on the field distributions obtained using the FE methods 
described above.

10.3.2  �The Basic Framework

First, we will consider TTFields at a specified point in the head model. We can 
assume that the fields are constant within a small volume surrounding the point. 
Although Optune® therapy is currently applied using two array pairs, TTFields can 

L/R A/P

0 350V/m 0 350V/m

Fig. 10.4  Topographical field distribution for the left-right (L/R, left panel) and anterior-posterior 
(A/P, right panel) array pairs. The middle panel shows an enlarged schematic view of the two 
sequential field vectors in a small subvolume of the tumor. The illustration shows that the two fields 
are not entirely orthogonal and that they do not have equal magnitude
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potentially be applied using any number n ϵ ℕ of pairs. We will denote the field vec-
tor generated by the ith array pair as Ei (i = 1, 2, …, n) and define ε to be the field 
matrix with transposed sequential field vectors Ei in each row, i.e.,
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We will now define the relative activation time αi of Ei as
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where ti ≥ 0 is the absolute “on-time” of Ei during an activation cycle. We see that 

α α1 2

1

2
= =  for Optune®, corresponding to a 50% duty cycle. If we denote A ϵ ℝn × n 

as the diagonal activation time matrix with entries aii i= α  for all i, then the 
matrix

	 P A= ×ε  n 3

	 (10.3)

defines an “activation-time-weighted” field matrix. We now want to quantify the 
activation-time-weighted field intensities and evaluate whether they are distributed 
isotropically over the three directions in space. This can be estimated using princi-
pal component analysis of P to represent this matrix by up to three orthonormal 
basis vectors (principal components) collected in a matrix W ϵ ℝ3 × 3, and these will 
be uncorrelated over the dataset:

	 T PW= × n 3. 	 (10.4)

The matrix T is equivalent to P after a change of basis has been performed. 
Estimating W is equivalent to fitting an ellipsoid to the data, and the axes of the 
ellipsoid are defined by the principal components (see Fig. 10.5).

There are a number of ways to estimate the principal components. Here we use 
the singular value decomposition (SVD)

	 P U W= ×ΣΣ T n  3. 	 (10.5)

The matrix W contains the orthonormal right singular basis vectors and the 
matrix Σ ϵ ℝn × 3 contains the singular values σk, k ≤ 3, which correspond to the 
lengths of the semiaxes of the fitted ellipsoid. This gives us the opportunity to esti-
mate the average intensity of TTFields and the local field correlation for arbitrary 
configurations with n array pairs.
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10.3.3  �Estimation of the TTFields Intensity

In light of the above derivations, we can express the average field intensity using 
singular value notation. First, we will define the average field intensity Eavr as the 
Frobenius norm of P:
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We see that Eavr is the square root of the activation-time-weighted contributions 
of energy from each sequential field in the activation cycle. This definition is conve-
nient because it is linked with both the decorrelated principal components and the 
actual applied fields, i.e., it can be calculated from both parameters and it has a 
direct physical interpretation. We note that σk is the magnitude of the average field 
vector in the direction of the corresponding principal component. Since rank(P) = 2 
for the current Optune™ device, this configuration can induce a maximum of two 
nonzero principal components because it uses only two field directions. So, at least 
one singular value of P will be zero. This implies that the cells dividing in the direc-
tion of any zero eigenvector will likely experience little or no inhibiting effect of 
TTFields. Also, cells dividing at a positive angle to the plane of the induced fields 
will experience reduced average effects proportional to the projection of the field 
onto the subspace of nonzero principal components. Based on this notion, it would 
be necessary to alternate between at least three linearly independent field vectors 
throughout the activation cycle and thereby use at least three sets of electrode pairs 
in order to avoid this problem and induce inhibitory effects on all cells in the vol-
ume. It is also notable that the maximum average field intensity will be equal to the 
largest singular value and the minimum average field intensity equal to the minimum 
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Fig. 10.5  Geometrical 
interpretation of the 
singular value 
decomposition. E1 and E2 
are the two sequential field 
vectors, and the 
corresponding duty cycle is 
shown on the left. The 
parameters σmin and σmax are 
the minimum and 
maximum nonzero 
principal components 
corresponding to the 
semiaxes of best ellipsoid 
fit to the field data
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singular value. The directions in which these extreme values occur are given by the 
corresponding right-singular vectors. This further prompts the consideration that 
optimization of the activation cycle and the current settings may be employed to 
induce a more effective field distribution created as a linear combination of the 
sequential fields. This topic is briefly described below in this chapter.

Also, it is important to note that experimental data shows that there is a nonlinear 
dependence between the antitumor effects of TTFields and the Euclidean magni-
tude of the field. Specifically, low effects occur when the field is below a threshold 
[17]. Compared to a linear weighting of individual field strengths, the above defini-
tion of average field intensity accounts for circumstance to some extent by assigning 
higher weight to stronger fields. However, alternative definitions can also be used 
and additional studies are needed to determine which norm best represents the effi-
cacy of TTFields. Recently, the local minimum field intensity (LMiFI, V/cm) and 
the local minimum power density (LMiPD) were proposed as appropriate dose esti-
mates. The LMiFI is the lower of the two sequential field intensities delivered at a 
given point in the model. The LMiPD is the lower of the two power densities deliv-
ered at a given point in the model (mW/cm3), where the power density is calculated 
as P = ( )1 2 2/ σ E . The authors found that both estimates correlated with clinical 
outcome [43, 44], such that patients who had a high LMiFI and LMiPD during the 
course of treatment (when accounting for the average device on-time, compliance) 
lived longer. Although promising, this approach is also based on field intensity esti-
mates alone, and does not account for activation cycle variations or spatial field 
correlations, so it should be explored in similar studies as to whether these param-
eters represent independent predictors of treatment efficacy.

10.3.4  �Estimating the Spatial Correlation of TTFields Using 
the Fractional Anisotropy (FA) Measure

Having characterized the average field intensity, the next objective is to define a 
measure of field correlation, which generalizes to multiple field directions. To do 
this, we will adopt the FA estimate, which has been used extensively in diffusion 
tensor imaging [45]:
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FA is calculated from the singular values, and it estimates the fractional devia-
tion of P from the condition in which all principal components have equal magni-
tude, i.e., the time-averaged field over an activation cycle is the same in all directions 
and therefore the same for all cells in the small volume of interest. For implementa-
tions of TTFields with less than three singular values, such as the current Optune® 
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technology, the missing values are assigned a value of zero. FA can generally take 
values between zero and one, where higher values represent a higher degree of 
unwanted spatial field correlation and lower values the opposite. Since two pairs of 
arrays can induce a maximum of two linearly independent fields, and therefore a 
maximum of two nonzero principal components, the lowest value of FA which can 

be achieved with Optune® is 
1

2
0 71⊕ . . Lower values of FA would require that at 

least three field components (i.e., three array pairs) be used, as described above.
It must be noted that other generalized measures on spatial correlation may also 

be used, e.g., relative anisotropy, volume ratio, etc. [45]. Furthermore, simpler mea-
sures such as the scalar product, cross product, or angle between field vectors can be 
used, but these measures are only well defined for configurations with exactly two 
field directions.

10.3.5  �Step-by-Step Framework for Calculation of FA and Eavr

In this section, I will briefly recapitulate the framework for estimation of FA and 
Eavr.

Step 1: Calculate the field distribution for each array layout. This is done using the 
methods described in Sect. 10.2, although alternative approaches may also be 
used [7]. Here, we calculated the field distributions for two different scenarios, 
namely before and after resection of the tumor in a realistic GBM head model. 
Resection was modeled by assigning isotropic CSF conductivity to the tumor 
volume, which is equivalent to a realistic resection cavity.

Step 2: Build the field matrix for each element in the model. Each matrix is com-
posed of the calculated field vectors for the element, and the collection of matri-
ces defines a tensor field equivalent for the computational model.

Step 3: Define the diagonal activation time matrix describing the relative activation 
times given by the TTFields activation cycle. In the case of Optune®, this will be 
a 2×2 matrix with the diagonal entries given by 0.5.

Step 4: Calculate the activation-time-weighted field matrix P as the product of the 
field matrix and activation-time matrix for each element in the model.

Step 5: Calculate the singular value decomposition of P for all elements in the 
model. This yields tensor fields for the left-singular matrices, the singular value 
matrices, and the right-singular matrices.

Step 6: For all elements, calculate FA and Eavr, as given by Eqs. (10.6) and (10.7), to 
obtain scalar fields of these estimates in all compartments of interest in the 
model.

Step 7: Postprocess the estimates of FA and Eavr, e.g., to visualize the data, obtain 
average estimates, distribution functions, or other outputs of interest.
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10.4  �Results from Example Calculations

In this section, I will present the results obtained using the proposed approach and 
the patient-based GBM head model prepared as described in Sect. 10.2.

10.4.1  �Topographical Distributions of FA and Eavr

Figure 10.6 (middle panels) shows the distribution of the maximum and minimum 
singular values given in a particular sequence of field distributions (shown in 
Fig. 10.6, left panels).

The field distribution in each finite element is anisotropic with a notable differ-
ence between the two principle components throughout the brain. This notion is 
further illustrated in the right-most lower panel of Fig. 10.6, which shows the topo-
graphical map of FA. Although FA was reasonably low in the tumor region, it was 
considerable in the peritumoral border zone. We see that the use of two field direc-
tions was not entirely able to distribute the inhibiting fields equally among the dif-
ferent directions is the plane of the two fields, as was in fact intended.

Following resection, the observed field anisotropy was significantly more pro-
nounced (Fig. 10.7). The two array pairs induced high field intensities in different 
areas of the brain and resection border (Fig. 10.7, left). This caused significant dif-
ferences between the principal components (i.e., σmax  ≫  σmin, Fig.  10.7 middle 
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Fig. 10.6  The left panels 
show the field intensity 
distributions induced by 
the L/R and A/P array 
pairs. The tumor is 
outlined by the solid line. 
The middle panels show 
the corresponding 
distribution of minimum 
(bottom) and maximum 
(top) singular values. The 
right panels show the 
efficacy parameters Eavr 
(top) and FA (bottom). 
(Adapted from Korshoej 
et al. [21])
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panels) and pronounced FA (Fig.  10.7, right bottom panel) in these regions. 
Specifically, FA was high in the region surrounding the resection cavity, though Eavr 
was also high in this region (Fig. 10.7, right top panel).

Figure 10.8 illustrates the extent of anisotropy as a scatterplot of paired singular 
values from elements in the peritumoral region around the resection cavity. The 
maximum achievable extent of isotropy using two array pairs would imply that both 
nonzero singular values were the same. However, as evident from Fig. 10.8, a large 
number of elements show considerable deviation from this condition.

The field redistribution observed following resection was caused by increased 
shunting of current through the CSF-filled resection cavity, which further caused 
high field strengths in the regions where the resection border was perpendicular to 
current and the applied field [6, 10]. In this case, the use of two field directions argu-
ably served the purpose of distributing the field across the whole region, rather than 
inducing inhibiting fields in multiple directions. With this in mind, it is worth 
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Fig. 10.7  The left panels 
show the field intensity 
distributions induced by 
the L/R and A/P array pairs 
after tumor resection. The 
resection cavity is 
indicated. The middle 
panels show the 
corresponding distribution 
of minimum (bottom) and 
maximum (top) singular 
values. The right panels 
show the efficacy 
parameters Eavr (top) and 
FA (bottom). (Adapted 
from Korshoej et al. [21])

Fig. 10.8  Scatterplot of the corresponding minimum (ordinate) and maximum (abscissa) non-
zero singular values (V/m) in the peritumoral region. The identity line (solid black) represents field 
isotropy. (Figure adapted from Korshoej et al. [21])
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considering if highly anisotropic cases would be treated more efficiently with 
TTFields configurations designed to induce a high average field intensity and satis-
factory pathology coverage, albeit at high anisotropy. Such implementations may be 
exemplified by “single-field” configurations. Alternatively, configurations may 
potentially be optimized to maintain an acceptable coverage and field intensity, 
albeit at a lower extent of anisotropy. The latter topic is highly interesting from a 
duty cycle optimization perspective, as discussed below.

10.4.2  �Variations in FA and Eavr for Different Array Layouts

To examine a clinically relevant aspect of TTFields dosimetry, we investigated the 
field decomposition of four different layouts (Fig. 10.9).

Without tumor resection, Eavr indicated the following order of layout perfor-
mance: Layout 4 > 3 > 2 > 1 (Fig. 10.10a, c). The FA estimate, however, indicated 
a reverse order (Fig. 10.10b, d), which raises questions about the true efficacy of the 
layouts. The median FA in the tumor and the peritumoral regions were 0.715 and 

Layout 1 Layout 2 Layout 3 Layout 4

Fig. 10.9  Surface plot of four different array layouts tested. Gray and blue represent one pair and 
orange and white another. (Adapted from Korshoej et al. [21])
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0.73, respectively. Resection caused a significant increase in FA for all layouts 
(median FA >0.82, Fig.  10.10f). Contrarily, resection reduced the median field 
intensity Eavr from ~120–150 V/m to ~100–110 V/m (Fig. 10.10c, e), and the distri-
butions of FA and Eavr were close to identical for all layouts (Fig. 10.10e, f). This 
indicates that the positioning of arrays may be less important in some resected 
cases.

10.4.3  �Optimization of the TTFields Activation Cycle 
to Reduce Unwanted Field Anisotropy

Given the possibility of quantifying FA, it is natural to consider whether TTFields 
therapy can be optimized to reduce this unwanted parameter. For instance, it might 
be desirable to plan the treatment array layout to maximize field intensity in the 

Fig. 10.10  Cumulative 
probability density 
functions of the mean 
intensity Eavr (left column) 
and FA (right column). The 
graphs show the 
percentage of elements in 
the selected volume that 
are equal to or higher than 
the corresponding value on 
the abscissa. Panels a and 
b represent values from the 
tumor volume before 
resection, panels c and d 
represent values from the 
peritumoral border zone 
before resection, and 
panels e and f represent the 
peritumoral region after 
resection
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tumor, while simultaneously reducing FA. However, this may not always be possi-
ble, as some high-field configurations also produce high FA and vice versa. Recently, 
we proposed an approach in which FA can be reduced for an arbitrary layout with-
out compromising the field intensity. The principle is based on individualizing the 
activation cycle of TTFields for each patient and each given array layout, rather than 
using a standard even 50% cycle. Specifically, the activation cycle is altered such 
that both pairs are activated simultaneously with a balanced intensity, so that the 
two fields are combined linearly to produce two resulting sequential fields, which 
are minimally anisotropic on average (in the volume of interest). Throughout the 
volume of interest, the field will thus be relatively orthogonal and have approxi-
mately equal magnitude. The factors determining the balance can be considered as 
linear gain factors to be applied to the standard current settings of each source in the 
system. In an alternative embodiment, the derived scale factors are used to modify 
the on-time of the given source. Although promising, the proposed activation cycle 
procedure is not currently supported by the Optune® device. Furthermore, it is 
important to note that reduced FA comes at the expense of increased total current 
density if the average field intensity is maintained. If FA is reduced at unchanged 
total current settings, then the mean field intensity will be reduced. So in all cases, 
there will be a trade-off, which highlights the importance of clarifying which effi-
cacy parameters are more significant. For further details, the reader is kindly referred 
to Korshoej et al. [46].

10.5  �Summary

In this chapter, I have described an extended framework to estimate the antitumor 
“dose” of TTFields. The approach is based on principal component decomposition 
of average field vectors induced over an activation cycle, and it quantifies both the 
mean intensity (Eavr) and unwanted spatial correlation (FA) of TTFields. These mea-
sures have a physical interpretation and generalize to an arbitrary number of array 
pairs. Furthermore, they account for all factors known to affect TTFields efficacy 
and provide a more comprehensive method for dose estimation than the current art. 
Computations show that significant unwanted FA occurs in the entire brain and 
tumor, which potentially affects the treatment effect as well as the approach to treat-
ment planning. Without resection of the tumor, we found that Eavr and FA varied 
significantly for different layouts. Layouts that induced a high mean intensity also 
caused considerable unwanted anisotropy of the average field components. This 
effect may influence the overall efficacy, and therefore it should be incorporated in 
future dose estimation methods to improve accuracy. As a general observation, FA 
could only be reduced at the expense of reduced Eavr. Future experiments are neces-
sary to determine the optimal balance between Eavr and FA, and the two measures 
may potentially be combined into a single measure of clinical efficacy. When char-
acterizing the effect of tumor resection on the TTFields dose, we found that resec-
tion changes the topographical distribution of Eavr and FA. Furthermore, it almost 
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nullified the differences in field distribution that we observed before resection for 
different array layouts. This suggests that accurate positioning may be less impor-
tant after tumor resection. Resection also increased FA significantly, particularly at 
the resection border. This implies that multiple fields may not always be able to 
distribute the effect of TTFields sufficiently to target cells dividing in different 
directions, which is otherwise the intended purpose of using sequential and orthog-
onal fields. Instead, multiple fields may serve the main purpose of ensuring that all 
tumor-infiltrated regions are exposed to high mean field values. This suggests that it 
may be better to plan the array layout in such a way that good pathology coverage 
is obtained, even if the macroscopic orientation of the layout is not orthogonal. It is 
clear that the use of only one electrode pair that induces the highest average field 
intensity in the tumor will maximize Eavr across the activation cycle. Such configu-
rations could be used if good field coverage of the tumor can be obtained, as it 
would be expected for smaller lesions or resections. Finally, the singular value 
decomposition approach allows for a direct linear optimization of the activation 
cycle for each patient and each layout, with the objective of reducing FA while 
maintaining high field intensities in the tumor.
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Chapter 11
The Bioelectric Circuitry of the Cell

Jack A. Tuszynski

11.1  �Introduction

The study of electrical field effects on cells dates back to 1892 when Wilhelm Roux 
observed pronounced stratification of the cytoplasm of animal eggs when exposed 
to electric fields. Over the many decades since, a number of electric field effects 
have been implicated in the functioning of living cells, in particular in the cytoskel-
etal or cytoplasmic self-organization processes. For example, electrotherapies and 
wound healing have been hypothesized to involve ionic current flows. At the cell 
level, cytochrome oxidase enzyme has been linked to electric current action [1] and 
cell division coherent polarization waves have been proposed as playing a major 
role in chromosome alignment and subsequent segregation [2]. In addition, endog-
enous electric currents have been detected in animal cells. In the phase between 
fertilization and the first cleavage, a steady current enters the animal pole and leaves 
the vegetal pole. In the silkmoth oocyte-nurse complex, the oocyte cytoplasm is 
slightly more positive (by 10 mV) than the nurse cell cytoplasm, which allows for 
the passing of a small electric current on the order of 5 × 10−8 A [3]. A steady cur-
rent enters the prospective cleavage furrow in both frog and sea urchin eggs during 
the initial period prior to cleavage formation, but after initiation, this current reverses 
its direction and leaves the furrow region [3].

Various plant and animal cells have been observed [3] to undergo significant 
changes when subjected to steady-state weak electric fields, including changes in 
their regeneration growth rates. A substantial reduction in the mitotic index was 
found in pea roots exposed to 60-Hz electric fields at a 430 V/m intensity and after 
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4 hours of exposure [4]. The effect of 50-Hz electric fields of a 50 kV/m intensity 
on the mitotic index of cultured human embryo fibroblastoid cells was also found 
[5]. More recently, AC electric fields in the frequency range between 100 and 
300 kHz and an intensity of only 1–2.5 V/cm have been shown to arrest cancer cells 
in mitosis [6], which is an astonishing effect in view of the weak intensity of the 
field. This discovery has led to an FDA approved treatment for the deadly brain 
cancer form, glioblastoma multiforme (GBM) [7]. It has been speculated that these 
field effects act on microtubules (MTs) as a primary mechanism of action [8]. 
However, what aspects of MT behavior in the presence of electric fields are involved 
is still not clear (depolymerization, rotation, electric conduction, etc.). This latter 
development provides strong motivation to elucidate the response of MTs in cyto-
plasm or buffer solution to externally applied AC electric fields. Beyond this, the 
overriding question still remains: if living cells are sensitive to electric fields and 
even exhibit electric current effects, then which structures within the cell perform 
the functions of bioelectric circuit elements?

The idea that the building blocks of living cells, especially proteins, may exhibit 
electric conduction properties should be credited to Albert Szent-Györgyi who 
viewed them as semiconducting devices [9, 10]. However, they were considered in 
their monomeric form, which results in a large energy gap between valence and 
conduction bands, making electronic conductivity of single proteins very challeng-
ing. Moreover, protein conductivity is also largely dependent on their hydration 
state [11]. What was missing in these early studies of biological conductivity was 
the role of ionic species, which are abundant in living cells, and an examination of 
polymeric forms of proteins and DNA, which makes a major difference to both 
electronic and ionic conduction. Significant experimental challenges of measuring 
electric fields and currents at a subcellular level persist today and studies of cellu-
lar components in isolation provide a proxy for intracellular measurements. 
Specific interest in the electrical properties of microtubules, actin filaments, DNA, 
and, of course, ion channels, has produced a number of interesting results that 
merit close examination, especially in terms of frequency dependence for AC con-
ductivity analysis. Since most living cells are composed of 70% water molecules 
by weight, the role of water in the transmission of electrical pulses [12] is undoubt-
edly crucial in these processes. In general, electric charge carriers involved in pro-
tein and DNA conduction can be electrons and protons, as well as ions of various 
types surrounding proteins in the cytoplasm. Actin filaments (AFs) and microtu-
bules have been implicated in numerous forms of electrical processes involving 
mainly positive counterions due to their net negative charge localized largely on 
their surfaces [13, 14].

The presence of several types of ionic species (especially K+ at 140 mM, Na+ at 
10 mM, Cl− at 10 mM, Mg2+ at 0.5 mM, and Ca2+ at 0.1 μM typical concentrations) 
as well as positively charged protons at a typical pH of 7 provides the cell with 
intrinsic ionic conductivity properties, which can be affected by the transmembrane 
potential and the action of ion channels. These ions can either diffuse freely in the 
cytoplasm or be directed to move along the electric field lines that can follow well-
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defined polymeric pathways in the cell. While cell membranes support strong 
electric fields on the order of 107 V/m, due to Debye screening, these fields decay 
exponentially away from the membrane. Dielectric studies of biological cells and 
their constituent macromolecules in solution have been conducted for almost a cen-
tury [15, 16] and have revealed a wealth of information about transmembrane 
potentials, macromolecular charges, their dipole moments, and polarizabilities [17].

For example, Lima et al. [18] recently measured the electric impedance Z’(f) of 
NaCl and KCl solutions. They observed a large plateau between 10 Hz and 400 kHz, 
increasing in the low frequency range and decreasing at high frequencies. The value 
of the plateau decreased with increasing salt concentration, yielding the maximum 
value of resistance R ~ 105 Ω at very low frequencies (~10 mHz) that was indepen-
dent of salt concentration. The imaginary part of impedance, Z”(f), showed anionic 
relaxation with a precipitous drop in the 100 kHz range. This is important in the 
context of ionic solutions present in the living cells and their concentration depen-
dence of conductivity as a function of frequency.

The cytoplasm has a high concentration of proteins with actin (2–8 mg/mL) and 
tubulin (4 mg/mL) being the most abundant cytoplasmic proteins. Both actin and 
tubulin exist in either polymerized (actin filaments and microtubules, respectively) 
and unpolymerized states. It is the polymerized state of these proteins that exhibits 
interesting conducting properties. These properties are due to the fact that AFs and 
MTs have a very high density of uncompensated electric charges (on the order of 
100,000 per micron of polymer length). In an ionic solution, most of these charges 
are compensated by counterions, but this leads to a large dielectric moment and 
nonlinear electro-osmotic response [19–22]. As discussed below, AFs and MTs are 
nonlinear electric conduction transmission lines. These cytoskeletal protein net-
works propagate signals in the form of ionic solitons [23–25] and traveling confor-
mation transformations [26–28]. Experiments with polarized bundles of AFs and 
MTs demonstrated propagation of solitary waves with a constant velocity and with-
out attenuation or distortion in the absence of synaptic transmission [25].

While DNA has been shown to also act as a nanowire [29–31], no transformation 
of signals was observed in experiments with DNA as opposed to MTs, which 
showed signal amplification [13]. In terms of using these structures as bioelectric 
wires, there are not only conductive but also mechanical differences, which can lead 
to different electromechanical arrangements into micro-scale circuits. In contrast to 
MTs and AFs, which are the most rigid structures in a cell, DNA is mechanically 
flexible and undergoes coiling transformations including its packaging into chromo-
somes [32, 33]. Therefore, DNA circuits can be packed and unpacked depending on 
the ionic environment while MT circuits can be polymerized and depolymerized 
using magnesium and calcium signals, for example. MTs can be stabilized by 
microtubule-associated protein (MAP) interconnections, while AFs have the ability 
to branch out using ARP2/3 constructs. Consequently, each of these bioelectric ele-
ments has different abilities to form complex and dynamic circuits.
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11.2  �Ion Channel Conduction Effects

Each cell has numerous ion channels embedded in its membrane, with specialized 
roles in terms of their selectivity and the rate of ion flows. Since ions are charged, 
these ion flows can be viewed as electric conduction events. A single ion takes 
approximately 5 ps to traverse an ion channel, whose length is on the order of 5 nm, 
resulting in an average speed of 1000 m/s. In specific ion channels, such as the 
bacterial KcsA channel, one K+ ion crosses the channel per 10–20 ns under physi-
ological conductance conditions of roughly 80–100 pS [34]. This allows for a maxi-
mum conduction rate of about 108  ions/s. Estimating the distances between the 
center of the channel pore and the membrane surface to scale as 5 × 10−9 m (5 nm), 
and assuming the most simple watery-hole and continuum electro-diffusion model 
of channels, this would provide an average speed of 5 × 10−1 m/s per ion (0.5 m/s). 
All these numbers for KcsA channels are consistent with our generic estimates 
except for the speed, which is lowered by the inclusion of the refractory period. In 
fact, while it is known that the ion flow rate per channel is on the order of 105 ions/
ms, giving a clock time of approximately 10 ns per ion, one must conclude that a 
5 ps active event of traversing a channel is separated by a 2000 times longer refrac-
tory interval of 10 ns during which there is no electrical signal propagation taking 
place. Since the value of a typical transmembrane potential is on the order of 
100 mV and a flow of singly charged ions like sodium or potassium leads to an 
electrical current on the order of 10 pA, the Ohmic resistance of an ion channel can 
be approximated as 10 GΩ. Note that for a given cell, its ion channels can be viewed 
as resistors in parallel with each other. Liu et al. [35] reported activation of a Na+ 
ion channel’s pumping mode with an oscillating electric field of 200 V/m, at a fre-
quency of approximately 1 MHz. Channel types and number per cell (densities) 
strongly vary among different cellular phenotypes. For example, in mammalian 
medial entorhinal cortex cells (MECs), an average of 5x105 fast-conductance Na + 
and delayed-rectifier K+ channels per neuron have been estimated to exist [36]. In 
unmyelinated squid axons, counts can reach up to 108 channels per cell. Therefore, 
these numbers would proportionately reduce the overall electrical resistance of a 
cell compared to a single ion channel value. In more detailed studies, it has been 
demonstrated that ion transitions occur through a sequence of stable multi-ion con-
figurations through the filter region of the channels, which allows rapid and ion-
selective conduction [37]. The corresponding kinetic energy together with the 
electrostatic potential energy equals 2 × 10−20 J, which is very similar to an estimate 
of the ATP energy, hence justifying an active transport requirement as opposed to a 
thermally activated process.

Finally, in connection with biological relevance of ion channels and ionic cur-
rents flowing through them, Levin [38] has extensively investigated ionic signals in 
regard to such phenomena as morphogenesis and cancer. Ionic currents in cells 
associated with injury have been shown to be both necessary and sufficient for 
regeneration [39]. Patterning structural information during embryogenesis and 
regenerative repair has been shown to be influenced by bioelectric ionic signals 
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[40]. Moreover, ionic electrical signals, and endogenous voltage gradients affected 
by ionic flows, have been associated with key cellular processes such as prolifera-
tion, cell cycle progression, apoptosis, migration and orientation, and differentiation 
and de-differentiation [41]. Therefore, it can safely be stated that ion channels and 
ionic currents are at the center of cellular activities. The question remains whether 
there is additional electrical activity downstream from ion channels, namely in the 
cytoplasm. As discussed in the following sections, the complex and well-organized 
structure of the cytoskeleton lends itself to such interactions, especially since the 
filaments of the cytoskeleton are now known to be electrically conductive. We next 
discuss the particular case of actin filaments followed by microtubules.

11.3  �Actin Filament Conductivity

Actin filaments, also referred to as F-actin or microfilaments, are approximately 
7 nm in diameter and form a helical structure with a pitch of approximately 37 nm. 
They are highly electrostatically charged [20, 42]. Within an AF, actin monomers 
arrange themselves head-to-head to form actin dimers, resulting in an alternating 
distribution of electric dipole moments along the filament [43]. We assume, there-
fore, that there is a helical distribution of ions winding around the filament at 
approximately one Bjerrum length. Experimental studies demonstrated that they 
conduct ionic currents via the surrounding counterion cloud-like layer [20]. The 
ionic charge distribution along an AF has been modeled as an electrical circuit with 
the following elementary components representing the functional role of each actin 
monomer: (a) a nonlinear (saturable) capacitor associated with the spatial charge 
distribution between the ions located in the outer and inner regions of the polymer, 
(b) an inductance due to helical nature of the ionic current flow, and (c) a resistor 
due to the viscosity of the medium opposing the ionic flows. This representation 
provided the basis for a physical model of F-actin as a conducting polyelectrolyte, 
where ion flows are expected to occur at a radial distance from the surface of the 
filament approximately equal to the Bjerrum length and follow a solenoidal geom-
etry due to the actin’s double stranded helical structure. Using Kirchhoff’s equa-
tions and taking the continuum limit for a long transmission line results in nonlinear 
inhomogeneous partial differential equations for the propagating nonlinear waves of 
ions along and around the AF. These ionic waves, in the form of elliptic Jacobi func-
tions and solitary waves of the kink-type, have been described as the solutions of the 
above nonlinear partial differential equations [23].

The objective of this model was to explain the experimental results of Lader et al. 
[44], who applied an input voltage pulse with amplitude of approximately 200 mV 
and duration of 800 ms to an AF, and measured electrical signals at the opposite end 
of the AF. The obtained results showed that AFs support ionic waves in the form of 
axial nonlinear currents that maintain their amplitude and hence are not dissipative. 
These data supported an earlier experiment [20] in which the observed wave pat-
terns in electrically stimulated single AFs were remarkably similar to those found in 
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the recorded solitary waveforms for electrically stimulated nonlinear transmission 
lines [45]. In view of the fact that the AFs are highly nonlinear complex biophysical 
structures acting under the influence of thermal fluctuations and supporting the 
counterionic cloud hypothesis [46], the observation of soliton-like ionic waves is 
consistent with the idea of AFs functioning as biological transmission lines. Based 
on the continuum transmission line model, ionic currents along AFs have been esti-
mated to have a velocity of propagation between 1 and 100 m/s [23]. This model has 
been later updated to include more realistic estimates of model parameters [47, 48]. 
Interestingly, but not surprisingly, actin filaments can be manipulated by external 
electric fields [49], which opens the door to electric field manipulations of actin 
cytoskeleton geometry, resulting in a dynamically flexible electric circuitry within 
the cell. For a filament with n monomers, the following numbers have been obtained 
for the electric circuit parameters of each monomer, labeled i, as a fundamental unit 
of the circuit: an effective resistance (longitudinal and radial, respectively), capaci-
tance, and inductance, where R1,i = 6.11 × 106 Ω, and R2,i = 0.9 × 106 Ω, Ci = 10−4 pF, 
and Li = 2 pH. Hence, for a 1 μm length of an actin filament, we find the following 
corresponding values characterizing it as a conducting bioelectric wire: 
Reff = 1.2 × 109 Ω, Leff = 340 × 10−12 H, Ceff = 0.02 × 10−12 F.

We can also easily find for a single actin monomer and an AF what characteristic 
time scales apply to their electrical circuit properties. For a single monomer, the 
time scale for LC oscillations is very fast, namely τ0 = (LC)1/2 = 6 × 10−14 s. The 
decay time for longitudinal ionic waves is also very fast, τ1 = R1C = 6 × 10−10 s, 
while the corresponding time for radial waves is τ2 = R2C = 0.9 × 10−10 s. As an 
example of a typical AF, we consider a 1 μm polymer and find the following char-
acteristic time scales in a similar manner to the calculations above: τ0 = 10−11  s, 
which is still very short but τ1 = R1C = 2.4 × 10−5 s for longitudinal electric signal 
propagation is in the range for interactions with AC electric fields in the 100 kHz 
range.

If actin filaments support ionic conduction, even lossless transmission of electric 
signals in the cell, it is also natural to expect unusual behavior of microtubules under 
electric stimulation. This can be inferred from the known structural and electrostatic 
properties of MTs, which are highly electrostatically charged, even more so than 
AFs, larger than AFs and they exhibit a cylindrical geometry with a helical pattern 
of protofilaments wrapping around the cylinder surface.

11.4  �Microtubule Conductivity

MTs are a major part of the cell’s cytoskeleton. The building block of a MT is a 
tubulin dimer that contains approximately 900 amino acid residues comprising 
some 14,000 atoms with an overall mass of 110 kDa (1 Da = 1.7 × 10−27 kg). Each 
tubulin dimer in an MT has an approximate length of 8 nm, along the MT cylinder 
axis, a width of 6.5  nm and a thickness along the radial direction of an MT of 
4.6 nm. The outer diameter of an MT is 25 nm, while the inner core of the cylinder, 
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i.e., its lumen, is approximately 15 nm in diameter. A microtubule is a highly asym-
metric electrolyte since each tubulin monomer has a charge of −47 elementary 
charges (e = 1.6 × 10−19 C) and is surrounded by a cloud of neutralizing cations. 
Based on the physical properties of tubulin, MTs have been theorized to possess 
intrinsic electronic conductivity as well as ionic conductivity along their length. 
Their electronic conductivity is envisaged to occur through the macromolecule 
itself, with mobile (conduction band) electrons hopping through the periodic struc-
ture of acceptor sites along the MT [50]. Due to the large electric charges on tubulin, 
MTs have a highly electronegatively charged outer surface as well as highly flexible 
C-terminal tails (TTs) whose net charge amounts to 40% of the tubulin’s overall 
charge. This exposed negative charge distribution is predicted to attract a cloud of 
counterions from the surrounding cytoplasmic environment of the cell. It has been 
experimentally demonstrated, and later theoretically elucidated, how ionic waves 
are amplified along MTs [50, 51]. Many diverse experiments were performed to 
date in order to measure the various conductivities of MTs, with a range of results 
largely dependent on the experimental method applied. Curiously, Sahu et al. report 
that intrinsic conductivities along MTs are not length dependent [52], which would 
indicate at least some of the resistance of this complex system is non-Ohmic, but 
this conclusion still requires independent confirmation.

MTs have also been implicated in intracellular signaling, communication and 
even information processing, which would likely be facilitated by the fact that tubu-
lin has a large dipole moment and a large negative charge. Consequently, MTs could 
be viewed as complex bioelectronic devices with a potential for carrying signal 
transmission via several independent channels (C-termini states, ionic waves, elec-
tronic transitions, conformational changes, etc.). It has also been hypothesized that 
MTs are involved in information processing, via ionic conductivity effects in neu-
rons, as well as an organism-wide matrix of connected biological wires [28].

Ionic conductivity experiments largely show that MTs are able to increase their 
ionic conductivity compared to a buffer solution free of tubulin. Minoura and Muto 
found the conductivity to be increased 15-fold relative to that of the surrounding 
solution, although the ionic concentration used, at ~1 mM, is much lower than phys-
iological ionic concentrations of just over 0.1  M [53]. Priel et  al. demonstrated 
microtubules’ ability to amplify ionic charge conductivity, with current transmis-
sion increasing by 69% along MTs [13]. The buffer was close to that of the intracel-
lular ionic concentration, using 135  mM KCl. Ionic current amplification along 
MTs is explained by the highly negative surface charge density along the outside of 
the microtubules that creates a counterionic cloud, which allows for amplification of 
axially transferred signals [13]. From Priel et al.’s conductance data, we approxi-
mate the conductivity of their result to be 367 S/m. Next, we quantitatively assess 
the effect of AC electric fields on MTs in these ionic conductivity experiments, 
which are expected to be sensitive to the electric field frequencies in the 100 kHz to 
1 MHz range.

Measuring intrinsic conductivity of individual MTs has been a major challenge 
since this requires conducting measurements in solution, which only records the 
increased ionic conductivity. Fritzsche et al. [54] made electrical contacts to single 
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microtubules following dry-etching of a substrate containing gold microelectrodes. 
Their results indicate intrinsic resistance of a 12 μm-long microtubule to be in the 
range of 500 MΩ, giving a value of resistivity of approximately 40 MΩ/μm in their 
dry state. The same group [55] later attempted to measure dry protein conductivity, 
but their setup is far removed from MTs native environment and so any results from 
these experiments may not be indicative of the intrinsic conductivity of MTs in their 
biological environment. The major concern is that most of the conductivity contri-
bution measured may come from the microelectrodes and not the protein polymer. 
Nonetheless, MTs adsorbed onto a glass substrate yielded an intrinsic conductivity 
of less than 3 S/m, which is very high. The same group performed measurements on 
microtubules [55] covered with a 30 nm layer of gold. The resistance of these metal-
lized MTs was estimated to be below 50 Ω, i.e., it unfortunately originated entirely 
due to the metallic coating.

Another attempt to measure MT conductivity involved putting MTs in an ultra-
pure water solution and bridging gold electrodes that were making contacts with the 
MTs present [56]. As the setup used only two probes, and the conductivity was 
estimated from the difference in conductance of buffer solution, MT + buffer, and 
pure water, using an estimated 50 MT contacts between electrodes, the calculation 
in effect theorizes ionic conductivity indirectly. More recently, Sahu et al. [52] per-
formed four-probe measurements of DC and AC conductivities (instead of intrinsic 
conductivity) in an attempt to resolve the problem of measuring ionic conductivity 
along the periphery of MTs. The DC intrinsic conductivities of MTs, from a 200 nm 
gap, were found to range between 10−1 and 102 S/m. Surprisingly, they found that 
MTs at specific AC frequencies (in several frequency ranges) become approxi-
mately 1000 times more conductive, exhibiting MT conductivities in the range of 
103–105 S/m [52]. These effects were referred to as causing ballistic conductivity 
along MTs. They further claimed that it is in fact the water channel inside the MT 
lumen that is responsible for the high conductivity of the MT at specific AC fre-
quencies [52].

Minoura and Muto [53] estimated the conductivity and dielectric constant of 
MTs using an electro-orientation method applying AC electric fields with frequen-
cies below 10 kHz. The normally resultant convection effect was avoided by apply-
ing electric fields with a frequency between 10 kHz and 5 MHz and a sufficient field 
strength (above 500 V/cm) to successfully orient MTs in solution. For example, 
MTs aligned within several seconds in a 90 kV/m field at 1 MHz [53]. Based on 
these experiments, MT ionic conductivity was estimated to be 150 mS/m, which is 
approximately 15 times greater than that of the buffer solution.

Another attempt to measure the conductivity of MTs used radio frequency reflec-
tance spectroscopy [57]. These investigators concluded that the conductivity of 
MTs was similar to that of lead or stainless steel, which would be on the order of 
106 S/m. This number is unrealistically high and cannot be verified by other inde-
pendent studies. Furthermore, the authors [57] reported measurements of RF reflec-
tance spectroscopy of samples containing the buffer solution, free tubulin in buffer, 
microtubules in buffer, and finally, microtubules with MAPs in buffer. The concen-

J. A. Tuszynski



203

tration of tubulin was 5 mg/mL and the concentration of MAP 2 and tau proteins 
was 0.3  mg/mL.  The average DC resistance reported by these authors was: (a) 
0.999  kΩ (buffer), (b) 0.424  kΩ (tubulin), (c) 0.883  kΩ (microtubules), and (d) 
0.836 kΩ (MTs + MAPs). It is virtually impossible to translate these results into an 
estimate of the resistivity of microtubules without making assumptions about their 
geometrical arrangement and connectivity as resistor networks. However, assuming 
that all tubulin has been polymerized in case (c) and formed a uniform distribution 
of MTs with a combination of parallel and series networks, one can find the resis-
tance of a 10 μm long MT, forming a basic electrical element in such a circuit, to 
have approximately an 8 MΩ value. This compares reasonably well to an early theo-
retical estimate of MT conductivity, which used the Hubbard model with electron 
hopping between tubulin monomers [58]. This model predicted the resistance of a 
1 μm microtubule to be in the range of 200 kΩ, hence a 10 μm microtubule would 
be expected to have an intrinsic resistance of 2 ΜΩ, which is the same order of 
magnitude as the result reported by Goddard and Whittier [57].

Very recently, Santelices et al. [59] reported the results of precise measurements 
of the small-signal AC conductance of electrolytic solutions containing MTs and 
tubulin dimers, with a number of different concentrations, using a microelectrode 
system. They found that MTs at a 212 nM tubulin concentration in a 20-fold diluted 
BRB80 electrolyte increased the overall solution conductance by 23% at 100 kHz. 
This effect was shown to be directly proportional to the concentration of MTs in 
solution. The frequency response of the measured electrolytes containing MTs was 
found to exhibit a concentration-independent peak in the conductance spectrum 
with a maximum at around 110 kHz that decreased linearly with MT concentration. 
Conversely, tubulin dimers at a concentration of 42 nM were seen to decrease the 
overall solution conductance by 5% at 100  kHz under similar conditions. When 
interpreted in terms of the numbers of MTs polymerized in the sample, and assum-
ing their action as a parallel resistor network with a lower resistance than the sur-
rounding solution, we can estimate the conductance of individual MTs as 20 S/m 
compared to 10 mS/m measured for the buffer itself. This indicates that indeed MTs 
have electric conductivities which are three orders of magnitude higher than those 
of the solution. Additional measurements were made of the system’s capacitance 
and it translated into a value of C = 600 pF per average 10 μm MT, which is very 
similar to the earlier theoretical estimates presented in this chapter.

Finally, it is interesting to address the issue of the power dissipated due to a cur-
rent flowing along a microtubule. Taking a 10 μm long MT as an example, we esti-
mate the average power drain as

	
P V R R Xc= ( ) +( )é
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where Xc = 1/ωC is the capacitive resistance. Substituting the relevant numbers as 
per the discussion above, we obtain the dissipated power to be in the 10−11 W range, 
which is comparable to the power generated by a cell in metabolic processes. To 
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elaborate on this conclusion, consider that an average metabolic energy production 
in the human body is 100 W and there are approximately 3 × 1013 cells in the body. 
Therefore, the power generation per cell is found to be Pcell = 3 × 10−12 W. Neurons 
are the most energy demanding cells, since the brain consumes 25 W of power, we 
can estimate the power generation per glial or neuronal cell to be 
Pglia = 10−10 W. Consequently, additional heat generated by the processes related to 
MT conduction caused by externally applied electric field in the range of the peak 
frequency of 100  kHz may be disruptive to living cells, which could provide a 
mechanistic explanation of the action of TTFields.

The multiple mechanisms of MT conductance provide ample possibility to 
explain the varied published reports on MT conductivity. Ionic conductivity along 
the outer rim of the MT, intrinsic conductivity through the MT itself, and possible 
proton jump conduction and conductivity through the inner MT lumen has been 
theorized. The experimental challenge is to simulate in vivo conditions, and the pos-
sible significance of structured water, ionic, pH, and temperature conditions, over 
different time scales and at different frequencies. It is possible that the ionic currents 
generated by externally applied AC fields in the TTField mechanism may over-
whelm the intrinsically generated ionic currents in cells undergoing mitosis where 
electric current densities, j, were measured to be in the range 0.002 < j < 0.6 A/m2 
[60]. Since j = σE, where E = 100 V/m for TTFields, and σ had a large range of 
values reported between 0.1 and 100 A/m2, even taking the lower limit of 0.1 would 
result in ionic currents along MTs that could overwhelm the intrinsic ion flows in a 
dividing cell. It is entirely possible that these externally stimulated currents cause a 
major disruption of the process of mitosis.

11.5  �Conclusions

An important aspect of the impact of external electric fields on a cell is that their 
penetration into the cell significantly depends on the cell’s shape. Theoretical calcu-
lations on the electric field strength in a spherical cell indicate that, assuming the 
conductivities of the extracellular and intracellular fluids of the cell are the same, 
due to the small conductivity of the membrane versus these fluids, the electric field 
strength inside a typical cell is approximately five orders of magnitude lower than 
that outside the cell [61]. Recently, a COMSOL-based computational model has 
been developed [62] to better understand the application of TTFields to isolated 
cells during mitosis. The distribution of the scalar electric potential V for frequen-
cies ranging between 60 Hz and 10 GHz was computed, taking into account the 
variation in cell shape during mitosis, from perfectly spherical through three stages 
of cytokinesis. The model demonstrated that the intracellular electric field intensity 
distribution is nonuniform, peaking at the cleavage plane. It also clearly showed that 
this effect strongly depends on the applied frequency, with the highest rate of field 
penetration into the cell occurring for frequencies between 100 and 500 kHz depend-
ing on the stage of cytokinesis.
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In the presence of either endogenous or externally applied fields (e.g., TTFields), 
the cytoskeleton and, especially, both actin filaments and microtubules become 
bioelectric wires conducting ionic currents throughout the cell. It is also possible 
that proton gradients due to uneven pH distributions within cells, e.g., cancer cells, 
may also contribute to electrical conduction processes in living cells. This chapter 
discussed how these processes are critically related to the presence of large net 
electrostatic charges on tubulin and actin, which are largely but not completely 
screened by counterions. Both of these proteins are abundant in all eukaryotic cells 
and form long, rigid polymeric filaments. Actin filaments have been shown to pro-
vide conduits for lossless ionic transport, while microtubules have been shown to 
amplify ionic current flows and be orders of magnitude more conductive than the 
cytoplasmic medium in which they are bathed. The longer the microtubule, the 
more pronounced the ionic conduction effect under AC electric field influence. 
Additionally, it is possible that ionic currents can flow not only along the MT axis 
but also in the direction perpendicular (i.e., radial with respect to the MT axis) to 
the MT surfaces (this is also true for actin filaments). With proper initial conditions 
in place, solenoidal flows of ions and protons can also be induced, leading to the 
generation of the system’s inductance. The resultant complex functional depen-
dence of impedance on frequency is also strongly dependent upon the length of 
each filament and solution pH.

Moreover, in MTs some of the charges are localized on the highly flexible 
C-termini, leading to the propensity for oscillating charge configurations. In addi-
tion, the presence of large dipole moments on tubulin and MTs can lead to a variety 
of frequency- and amplitude-dependent responses of these structures to both endog-
enous and external electric (and electromagnetic) fields. Finally, there can be 
induced dipole moment contributions to the response of these structures to electric 
and electromagnetic stimulation, making the problem very complex and simultane-
ously offering a rich spectrum of possibilities for the cell to utilize in terms of com-
munication within its confines and with other cells. Disentangling the relative 
importance of the various effects under different conditions is nontrivial and requires 
careful computational and experimental investigations under controlled conditions.

To summarize, depending on the orientation of the electric fields to the microtu-
bule (or AF) axis, there could in general be three types of ionic waves generated: (a) 
Longitudinal waves propagating along the protein polymer’s surface, the polymer 
acts like a conduction electrical cable with its inherent resistance R but also capaci-
tance C. (b) Helical waves propagating around and along each protein polymer, for 
MTs there could be three or five such waves propagating simultaneously corre-
sponding to the 3-start or 5-start geometry of a microtubule. (The effective resis-
tance of such cables would be the individual resistance divided by the number of 
cables in parallel. Each cable has its own capacitance and inductance.) (c) Radial 
waves propagating perpendicularly to the protein polymer surface. If an electric 
field is oriented at an angle to the polymer axis, it is expected that all these wave 
types may be generated simultaneously.

It is also important to note that elongation of dividing cells facilitates penetration 
of these fields into cells while spherical cells would largely shield the fields and 
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prevent them from entering into their interiors. Once AC fields generate oscillating 
ionic flows, these can in turn not only cause electrical currents for the purpose of 
signaling or communication but also lead to detrimental effects such as: (a) interfer-
ence with ion flows in the cleavage area of dividing cells, (b) interference with 
motor protein motion and MAP-MT interactions, (c) perturbations of ion channel 
dynamics, and (d) changes in the net charge of the cytoplasm. In addition to the 
above possible subcellular effects of TTFields, there may also arise measurable 
heating effects in the cytoplasm of the exposed cells due to Ohmic resistance arising 
from ionic and protonic flows.

Identification of the strength, cause, and function of intracellular electric fields 
has only recently been experimentally accessible, although speculations in this area 
have existed for a long time. These insights may assist in devising and optimizing 
ways and means of affecting cells, especially cancer cells, by the application of 
external electric or electromagnetic fields. With the advent of nanoprobe technol-
ogy, which has shown promise in measuring these fields, it is very timely to explore 
the various physical properties of the cytoplasmic environment including the cyto-
skeleton and the ionic contents of the cytoplasm.

The research outlined in this chapter promises to contribute to our general under-
standing of the electroconductive properties of the cytoplasm in living cells and 
especially the role of microtubules and actin filaments in creating dynamic and 
structural order in healthy functioning cells. This dynamic order may also involve 
electrical signal communication within and between cells. Once we are able to 
properly map the bioelectric circuitry of cell interiors, it should also be possible to 
identify biophysical differences between normal and cancer cells, which could also 
lead to the identification of what causes increased metastatic behavior of some can-
cer cells. Such an understanding may lead to better therapies and to the discovery of 
specific targets in order to halt metastatic transformation.
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Chapter 12
Brain Haemorrhage Detection Through 
SVM Classification of Electrical 
Impedance Tomography Measurements

Barry McDermott, Eoghan Dunne, Martin O’Halloran, Emily Porter, 
and Adam Santorelli

12.1  �Introduction

An important medical problem is the accurate and timely detection and diagnosis of 
the presence of a brain haemorrhage in a patient. Brain haemorrhages can be present 
in pathologies such as stroke and traumatic brain injury. Stroke (also known as a 
cerebral vascular accident (CVA)) features a disruption in the flow of blood to an 
area of the brain and a subsequent sudden loss of neurological function [1]. Stroke 
is the main cause of adult disability in the United States, the fourth largest killer, and 
costs the country in the region of $70 billion annually in direct and indirect costs 
[2]. The aetiology of an incidence of CVA will either be related to a blockage of a 
blood vessel (ischaemic stroke) or the rupture of a blood vessel and subsequent 
bleed (haemorrhagic stroke). Crucially, as the treatment is radically different 
depending on the stroke type, it is vital to differentiate the cause as ischaemic or 
haemorrhagic [3]. For example, the use of the drug tissue plasminogen activator 
(tPA) is indicated for ischaemic patients but may be lethal to haemorrhagic patients 
[3]. Further, the patient outcomes following a CVA are directly linked to the length 
of interval between stroke onset and the start of treatment, with a worse prognosis 
associated with a delay. This underlines the need for both accurate and rapid detec-
tion of the presence, and equally the absence, of brain haemorrhage in stroke 
patients. Currently, definitive diagnosis is dependent on imaging modalities such as 
computed tomography (CT) and magnetic resonance imaging (MRI), which often 
suffer from accessibility issues for patients [4]. A device based on electrical imped-
ance tomography (EIT), and augmented with machine learning (ML), may result in 
expedited initial diagnosis for CVA patients.

Traumatic brain injury (TBI) is any of a range of injuries that results from an 
external force impacting the head with a consequent disruption in brain function. 
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TBI results in an annual cost of $61 billion in the United States [5]. Initial triage of 
TBI usually involves subjective assessment of severity with use of metrics such as 
the Glasgow Coma Scale [6]. Imaging (usually CT) is indicated for more severe TBI 
cases including incidents featuring haemorrhage [6, 7]. Better initial triage, includ-
ing improved early detection of brain haemorrhage, potentially with the use of a 
modality like EIT coupled with ML, would improve the efficiency of the patient 
pathway through more objective selection of patients for gold standard imaging like 
CT. This need is illustrated by the estimation that a 10% reduction in the use of CT 
for minor TBI patients could save $10 million annually in the United States [8].

It is emphasised that in both of these motivating clinical examples, the imaging 
of a bleed is unnecessary; it is the definitive ruling in or out of the presence of the 
bleed that is essential to the progress of the patient in the work-up.

The use of machine learning applied to medical diagnostics and other medical 
areas has been the scene of significant and important growth recently [9]. The fact 
that computers can process large amounts of data at high speed, combined with the 
rapidly increasing ability of machines to learn and improve performance over time, 
makes the technique amply suited to analysis and interpretation of biological data. A 
popular biomedical application for ML and the closely related and complimentary 
area of data mining (DM) has been interpretation of diagnostic imaging which 
includes data from such modalities as CT, MRI, and ultrasound [10–12]. However, 
ML and DM are now being used in a range of other areas such as genetic analysis, 
monitoring of physiology, and the evaluation of disability [13]. In this work, we 
examine the potential for EIT to be used to assess anatomy and physiology of the 
body, coupled with the ML technique of support vector machine (SVM) classification 
to be used in medical diagnostics, denoted as EIT-SVM.

Fundamental to this research is the use of computational (numerical) models. 
Computational models allow controlled development of a technology or algorithm 
with the ability to experiment and test parameters resulting in progression and a 
better final product before translation to patients.

In the next section, the basis behind EIT, including the nature of EIT measure-
ment frames, which are the input to the classifiers, is described. Description of the 
SVM classifier and the computational modelling techniques used are also presented 
in Sect. 12.2. Section 12.3 then summarises the application of a linear SVM classi-
fier to raw and minimally pre-processed EIT measurement frames, investigating the 
performance of the classifier in detecting bleeds in different scenarios, including 
variations in simulated noise, bleed size, bleed location, electrode positioning, and 
anatomy of the model. Section 12.4 presents methods to improve the performance 
and efficiency of the classifier, including changing the kernel function, selective 
pre-processing of the frames (including the use of sub-frames), dimensionality 
reduction and selection of specific features (using Laplacian scores and principal 
component analysis (PCA)), and finally using an ensemble classifier. Section 12.5 
ends the chapter with a discussion and conclusion.

The content of this chapter builds on the research presented in [14], which was 
expanded upon in [15]. This previously published material from [14, 15] forms the 
core of Sect. 12.3, before new content in Sect. 12.4 is presented, which aims to 
improve the classifier performance.
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12.2  �Technologies

This section introduces the core technologies used in this study; EIT and SVM clas-
sifiers. In the final part of the section, the computational modelling techniques and 
tools centred on a two-layer computational model of the head with variants, designed 
to emulate various test scenarios, is described.

12.2.1  �Electrical Impedance Tomography

Electrical impedance tomography is an imaging modality and the basis of an ever-
increasing and vibrant area of active research with a number of applications in the 
biomedical sphere [16]. EIT is based on the feature of biological tissue of electrical 
conductivity, as a result of the ion containing extracellular fluid (ECF) and intracel-
lular fluid (ICF). The ECF bathes and surrounds cells, while the ICF refers to the 
fluid within cells. The cell membrane that surrounds the individual cells represents 
the border between the two compartments [17]. The conductivity is characteristic to 
each particular tissue. For example, blood is a good conductor, owing to the high ion 
content of the tissue, whereas bone is a poor conductor [16]. The conductivity is 
quantified in Sm−1 and is the inverse of the resistivity. Closely related is the concept 
of electrical impedance, which is the extension of the idea of resistance to alternat-
ing current (AC) circuits with a real (resistance) and complex (reactance) part. A 
biological tissue can be modelled as a three-part electrical circuit as shown in 
Fig. 12.1, where Re is the resistance of the ECF, Ri the resistance of the ICF, and the 
cell membrane is modelled as a capacitor with capacitance Cm [18]. At low AC fre-
quencies, the capacitive reactance of the cell membrane is high with the result of the 
overall impedance of the system being effectively Re. At higher AC frequencies, 
current can pass through the cell as the capacitive reactance drops and, consequently, 
the overall impedance of the system drops. This concept is illustrated in Fig. 12.2 
[18]. As conductivity is inversely related to impedance, it follows that the electrical 
conductivity of a tissue will increase with increase in AC frequency. The exact 
nature of the conductivity profile is a characteristic of the tissue in question.

EIT makes use of the difference in conductivity profiles of tissues. This differ-
ence in conductivity profiles is often used to generate an image of the region of 

Fig. 12.1  An electrical model of biological tissue with current having two paths of flow. One path 
is the ECF with resistance Re, while the other is through the cell which has a capacitor like mem-
brane with capacitance Cm and the ICF with resistance Ri. (Adapted from [18])
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interest (ROI). EIT characteristically involves an array of electrodes positioned on 
the boundary of the ROI. A popular electrode configuration is that of a ring of elec-
trodes, typically with 8–64 electrodes surrounding the region [18]. Electrical cur-
rent is then injected through a pair of electrodes (“stimulation”) and the resultant 
voltages measured at all other electrode pairs. The injection pair is then changed, 
and voltage measurements are taken between the new measuring pairs. The overall 
pattern of stimulation and measurement constitutes an EIT “protocol”, with each 
individual measurement referred to as a “channel”. The complete set of chan-
nels comprises the EIT measurement “frame”. EIT systems typically operate in the 
1 kHz–2 MHz frequency range, with injected currents of the order of μA to low mA 
[16]. Importantly, international safety standards limit the current to 100 μA rms for 
currents up to 1 kHz with the limit rising to an absolute limit of 10 mA when operat-
ing above 100  kHz [16, 19]. The electrode configuration and number, protocol, 
current amplitude, and frequency are application dependent. In Fig. 12.3, a sample 
EIT measurement channel, with a “skip 2” protocol and the electrodes arranged in 
a 16-electrode ring surrounding a circular body, is illustrated. In this protocol, each 
electrode is paired to the electrode three positions away from it (i.e., with 2 in-
between electrodes skipped over). The ROI illustrated in Fig. 12.3 is of homogenous 
tissue with one region of differing conductivity present (illustrated as a red circle). 
The presence of this tissue affects the voltage at the different measurement elec-
trodes. For example, at 50 kHz, a bleed is more electrically conductive than the 
surrounding brain parenchyma [15]. Hence, for a given channel with a constant 
injection current, the measured voltage will be smaller in magnitude if a bleed is 
present than if there is only healthy brain tissue present. This trend follows from 
Ohm’s law, described in Eq. (12.1) where V is the voltage, I is the current; and σ is 
the electrical conductivity,

Fig. 12.2  Current 
movement through tissues 
at low and high 
frequencies. At low 
frequencies, the capacitor 
effect of the cell membrane 
impedes current flow 
through the interior of the 
cell. At high frequencies, 
the capacitor effect 
becomes negligible and 
current can flow through 
the ICF. (Adapted from 
[18])
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	 V Is = 	 (12.1)

If a bleed is larger, the measured voltages will be smaller. Further, channels 
nearer to the bleed are affected more by the presence of the bleed than those further 
away, as EIT is more sensitive to changes where current density is higher [19]. 
Hence, information regarding the presence, nature, and location of the various tis-
sues in the ROI are theoretically encoded in the final measurement frame.

For a 16-electrode ring, a given injecting pair results in 16 measurement pairs. 
However, it is common practice not to take measurements from either of the inject-
ing electrodes hence 13 measurements are taken [19]. Over the course of a complete 
protocol, there will be 16 injecting pairs and so a complete frame will be made up 
of a total of 208 channels. The number of channels in the frame is summarised in 
Eq. (12.2):

	
N N NM E E= -( )3 	

(12.2)

where NM is the number of measurements when using NE electrodes.
The relationship between the conductivity profile of the ROI and the values in 

EIT measurement frames is given by the EIT forward and inverse problems. The 
EIT “forward problem” refers to the prediction of the measured values given the 
complete conductivity profile of the body [19]. In the computational model used in 
this study (described in Sect. 12.2.3), the finite element method (FEM) was used to 
solve the forward problem for the geometry of interest, which is that of the human 
head. An important calculated parameter is the sensitivity matrix (the Jacobian, J). 
The Jacobian gives the sensitivity of each measurement to a conductivity change 
within the ROI [19]. The “inverse problem” of EIT involves calculating the conduc-
tivity profile of the interior of the body of interest given a set of measurements. This 

Fig. 12.3  An EIT 
measurement channel from 
a “skip 2” protocol 
involving a 16-electrode 
ring around a circular 
ROI. Current is injected 
between electrodes #1 and 
#4 (orange arc) with 
voltage measured between 
electrodes #3 and #6 (beige 
arc). A tissue with different 
conductivity to the bulk 
tissue is illustrated by the 
red circle
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is an ill-posed inverse problem (the number of “voxels” to be assigned conductivity 
values is typically larger than the number of measurements) with the need for regu-
larisation techniques in order to obtain the most reasonable solution [19]. The result 
is a conductivity map of the interior of the ROI.

EIT is a non-invasive modality with a high temporal resolution [19]. However, it 
has drawbacks, including poor spatial resolution, low sensitivity to conductivity 
changes at a depth from the boundary, and high sensitivity to electrode modelling 
errors [19, 20]. Attempts to overcome these challenges and reconstruct useful 
images have seen different EIT modalities established, many of which rely on dif-
ference imaging in order to minimise errors. The most successful EIT modality to 
date is that of time difference EIT (tdEIT), which reconstructs an image based on 
differencing frames of a “before” and “after” measurement. This modality has been 
applied to the monitoring of physiological functions in regions such as the thorax 
where there is a large contrast between inspiration (air in the lungs) and expiration 
(air emptied from the lungs) [19]. Static scenes are more challenging, without a 
satisfactory modality for imaging established to date. In a complex region such as 
the head, where the high impedance of the skull severely dampens the stimulating 
current, the imaging of static pathologies such as an established bleed has been 
proven to be difficult [18, 21].

In this work we examine the viability of using EIT measurement frames in a 
more direct manner, without the mathematically difficult and challenging image-
reconstruction step. In scenarios that do not require an immediate image, such as 
stroke classification or TBI triage, it may be sufficient to definitively rule in or out a 
bleed. The information relating to the presence or absence of such a perturbation in 
the body of interest is encoded in the EIT measurement frame. The basis for this is 
the a priori knowledge that there is a notable difference in conductivity between 
blood and normal brain parenchyma [22]. ML offers techniques that can potentially 
learn from raw or processed EIT frames and classify the frame as positive or nega-
tive for a bleed. In the next section we examine such a ML technique: SVM 
classifiers.

12.2.2  �Support Vector Machine (SVM) Classifiers

A definition of ML proposed by Mitchell is that of a “computer program that 
improves its performance at some task through experience” [23]. Different types of 
“tasks” exist when referring to ML. One of the major task types is classification. In 
a classification task, each observation is assigned to one of a number of designated 
classes or labels. Each observation consists of several features (traits) that define it. 
These features are used as the inputs to the ML algorithm. The algorithm will then 
use this information to create a trained model that can be used to predict the class 
that future observations belong to. In the context of the work presented here, the 
input features are the EIT measurement frames (processed or un-processed) obtained 
from numerical simulations of the head in which a bleed is or is not present. The two 
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classes defined in this scenario are “bleed” or “normal”, denoted as +1 and −1, 
respectively. The task of the classifier is to use the measurement frames, with the 
channel measurement values (or equivalent if processed) as features, to correctly 
predict whether future observations belong to the “bleed” or “normal” class.

SVMs are a group of popular ML algorithms commonly employed for binary 
classification. They have been used in previous biomedical applications, including 
the use of microwave signals to classify whether a breast scan is considered healthy 
or tumourous [24–26], and electrical impedance spectroscopy signals for classifica-
tion of breast [27–29] and prostate [30] as diseased or normal. The use of EIT mea-
surements in ML algorithms is a relatively new area of research. Some work has 
been done in the area of bladder volume estimation [31, 32] and the focus of this 
chapter, brain haemorrhage detection, has been explored by our group [14, 15, 33].

As is typical in the use of SVMs and related classifiers, the basis of the algorithm 
is the creation of a model using a training set. This training set consists of observa-
tions with the true class known (supervised learning) or unknown (unsupervised 
learning). The performance of the trained classifier can be assessed by analysis of 
the results of classifying a test set of previously unseen observations. The trained 
and tested classifier can then be used to classify new observations; assuming the 
training and testing process was properly implemented, the classifier will perform 
in-line with expectations even on new observations.

The core of the SVM model is the creation of a hyperplane that best separates 
observations from the two classes. A representation of a two-dimensional (2-D) 
hyperplane (a line) separating the observations classified as +1 or −1 is shown in 
Fig. 12.4. In the training phase, a mathematical model of the hyperplane and margin 
is developed with the training observations having n-dimensions (n number of fea-
tures). The hyperplane is used to decide whether future observations belong to 
either the +1 or −1 class. When the data is not perfectly separable (there exists no 
margin that guarantees no observations between it and the hyperplane), “soft” mar-
gins can be used to ignore those outliers [34]. An important parameter when using 
SVM classifiers is the kernel, which defines the function used to generate the hyper-
plane. A linear kernel is the simplest type of kernel, which offers potential advan-
tages including speed, low computational overhead, and an ease of implementation 
[35]. Other kernel functions, including the non-linear Gaussian Radial Basis 
Function (RBF), can be used to define the hyperplane [24, 27]. Additional informa-
tion about the mathematical formulations governing the various SVM algorithms 
can be found in [34, 36].

The performance of a classifier can be reported by a number of different metrics. 
A key result is the confusion matrix, which compares the expected and predicted 
classes. An example of a confusion matrix, for a binary classifier, is shown in 
Fig. 12.5. As shown, a true positive (TP) refers to observations where the expected 
and predicted classes are +1, and a true negative (TN) where the expected and 
predicted classes are −1. A false positive (FP) is where the expected class is −1 but 
is predicted as +1, with a false negative (FN) the opposite.

Two key metrics of performance derived from the confusion matrix are the sen-
sitivity and specificity. Sensitivity (TP Rate) is the proportion of observations clas-
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sified as +1 out of the total that are truly +1. Specificity (TN Rate) is the proportion 
of observations classified as −1 out of the total that are truly −1. Accuracy is the 
proportion of correctly classified cases out of the total number of cases. These met-
rics are defined in Eqs. (12.3)–(12.5),

	
Sensitivity

TP

TP FN
=

+ 	
(12.3)

	
Specificity

TN

TN FP
=

+ 	
(12.4)

	
Accuracy

TP TN

TP TN FP FN
=

+
+ + + 	

(12.5)

Fig. 12.4  Visualisation of a SVM classifier. The trained SVM classifier model calculates the opti-
mal hyperplane that separates the two classes (shown here as black circles for the +1 class and grey 
circles for the −1). The margin of the hyperplane is as wide as possible (for a “hard” margin), with 
the borders of the margins defined by the cases called “support vectors” represented here as circles 
with a visible outer shell. The hyperplane in this case is 2D (a line)

Fig. 12.5  The confusion 
matrix for a binary 
classifier with classes ±1. 
The expected (true) class 
and predicted class 
assigned to cases are 
compared
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The above Eqs. (12.3)–(12.5) imply the values of sensitivity, specificity, and 
accuracy range between 0 and 1, with 1 indicating perfect performance for that 
metric (this range is equivalent to 0–100%).

The receiver operating characteristic (ROC) curve is a plot of sensitivity versus 
(1 – specificity) [35]. It is a useful tool to illustrate the trade-off between sensitivity 
and specificity. If a classifier is 100% sensitive and 100% specific, as is ideal, then 
the ROC curve is said to have an Area Under the Curve (AUC) of 1. In the proposed 
application of brain haemorrhage detection applied to stroke and TBI, this is the 
ideal performance of a trained classifier. However, in cases where the performance 
is imperfect, this is reflected in a ROC curve where the AUC is <1. In such cases, it 
is possible to adjust the operating point of the classifier with a trade-off between 
sensitivity and specificity. For brain haemorrhage detection, it could be proposed 
that sensitivity is more important than specificity. A reduced specificity indicates an 
increased level of FPs which is not ideal but the alternative of reduced sensitivity 
with a consequent increased level of FNs would result in patients with bleeds being 
classified as normal and potentially receiving a dose of lethal tPA in the case of 
stroke or not receiving timely CT scan in the case of TBI. Hence, for brain haemor-
rhage detection, the optimal point of operation of the classifier is the point on the 
ROC curve where sensitivity is 1 while minimising (1 – Specificity). An example of 
three ROC curves is shown in Fig. 12.6.

Fig. 12.6  Receiver operating characteristic (ROC) curves are a plot of sensitivity versus (1 – spec-
ificity) and show the trade-off possible between sensitivity and specificity. An ideal ROC curve has 
an area under the curve (AUC) of 1 with an example of this shown as the blue trace. Here, an 
operating point where both sensitivity and specificity are both 100% is at (0,1). The red and yellow 
traces show imperfect ROC curves where AUC <1. In this case it is possible to maximise sensitiv-
ity by moving to the operating point shown with the penalty of reduced specificity. At any given 
point, the red curve gives a better sensitivity/specificity trade-off compared to the yellow curve. 
The yellow curve only offers a sensitivity of 1 where specificity is 0, which would result all obser-
vations being classified as +1
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12.2.3  �Computational Modelling Techniques

The core computational model used in this work was a FEM model of the human 
head and brain. The head is an anatomically complex and intricate structure [37], 
but for the purposes of EIT, simplifications can be made by focusing on those tis-
sues that have a significant effect on the conduction of electrical current. Typically, 
EIT simulations use a four-layer model, which includes the brain as the innermost 
layer, the electrically conductive cerebrospinal fluid (CSF) layer immediately exter-
nal to it, the highly resistive skull, and the moderately resistive scalp [18]. Naturally, 
more complex models exist and may be relevant depending on the research ques-
tion. For example, physical phantom models which model the differing resistivity 
across the skull are reported in the literature [38, 39].

In this work the head was designed as a two-layer structure. The layers were 
anatomically accurate representations of the brain and an aggregate outer layer 
comprised of the tissues external to the brain (the scalp, skull, and CSF layers), 
derived from anatomically realistic stereolithography (STL) files of the head [40] 
and brain [41]. As described in [15], this simplified model facilitated the develop-
ment of an equivalent physical phantom, allowing comparison between the compu-
tational results and the phantom results. Further, it was computationally “light” and 
allowed rapid development of variant test models.

The STL files were meshed into a FEM model using the software packages 
EIDORS [42], which itself uses Netgen [43] and Gmsh [44] for meshing. EIDORS 
is an open source set of tools designed to aid the development of EIT (and the 
related area of diffuse optical tomography), and is written for use with MATLAB 
[45] and Octave [46]. Using EIDORS, a 16-electrode ring was placed on the exterior 
surface of the FEM model at the approximate level of the inion-nasion line sym-
metrically across the sagittal plane. The electrode ring defined a transverse plane, 
and a refinement of the mesh at the contact points [47] was carried out. This consti-
tuted the “base numerical model”. Modifications were made to expand this model to 
create a total of 243 models of the “normal” (bleed free) head. These 243 models 
were created by varying the head and brain anatomy (±5% in size in each Cartesian 
axis), and modifying the electrode position (±2 mm in the positioning of the ring in 
terms of height). More complete details on these 243 models can be found in [33].

Bleeds were modelled as spheres within the brain layer using the computer-aided 
design package Autodesk Fusion 360 [48]. The two primary bleed sizes used were 
30 ml and 60 ml, with some experiments using bleeds of smaller volume (down to 
5 ml). In stroke patients, a 30 ml bleed is a threshold size associated with worse 
outcomes, with 60 ml a threshold for significant mortality [49, 50]. These bleeds 
were placed in each of the 243 normal models at each of the 4 cardinal points of 
north (‘N’, front), south (‘S’, back), east (‘E’, right), and west (‘W’, left) in the 
plane of the ring, at the exterior of the brain. This resulted in 1944 “bleed” head 
models, each model with one bleed of a given size and location. The electrical con-
ductivity, fundamental to EIT, can be assigned to each FEM model element depend-
ing on which tissue is being modelled. The realistic conductivity values of 0.1 Sm−1, 
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0.3 Sm−1, and 0.7 Sm−1 were used for the aggregate outer layer, the brain layer, and 
the bleeds, respectively [15]. EIDORS allows defining of the EIT protocol (“skip 2” 
for this work) and the subsequent generation of measurement frames from a FEM 
model. This suite of 243 normal and 1944 bleed heads allowed the emulation of a 
wide variety of test situations, with these experiments and results described in later 
sections. In Fig. 12.7 the base numerical model is shown along with the positioning 
of the 30 ml and 60 ml bleeds within the model.

12.3  �SVM Applied to Raw EIT Measurement Frames 
with Analysis of the Effect of Individual Variables 
on SVM Performance

Initial experiments focussed on the effect of individual variables such as measure-
ment noise, bleed size and location, electrode position, and anatomy. These vari-
ables constitute important parameters. Understanding the effect they have on EIT 
measurement frames, and consequent performance of the SVM classifier, can help 

Fig. 12.7  Computational (numerical) model of the head. Left: The base numerical model is an 
anatomically accurate two-layer model of the brain and aggregated tissues external to the brain. 
The 16-electrode ring is shown with electrode contact areas in green and white numbering of some 
electrodes for orientation. Right: Removal of the brain layer to illustrate the size and positioning 
of the bleeds. The positioning of the electrodes #1–16 are shown as a ring of white numbers. 
Bleeds of volume 30 ml and 60 ml are positioned in the north, south, east, and west locations as 
shown. A given model will contain either no bleed or only one bleed. The bleeds are positioned 
immediately at the exterior of the brain layer in the plane of the ring. The different colouring of the 
layers represents the different electrical conductivities; 0.1  Sm−1 for the aggregate outer layer 
(white), 0.3 Sm−1 for the brain (yellow), and 0.7 Sm−1 for bleed (burgundy). (Adapted from [15])
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inform future research experiment decisions. The results and conclusions from 
these experiments are briefly summarised herein; for more detail, refer to [15].

In each experiment, measurement frames generated from a subset of FEM mod-
els were used to train and test a linear SVM with no (raw) or minimal processing of 
the frames performed prior to use of the classifier. Minimal processing constituted 
sorting the values in the measurement frames in order of numerical value. This 
simple pre-processing step was found to aid performance in certain scenarios (see 
Sect. 12.3.2). In all cases, the training and test sets comprise an equal number of 
measurement frames from normal models and models with bleeds present. In this 
section, a linear SVM classifier was implemented for all experiments. The classifier 
was trained with 80% of the data set and then tested with the remaining, unseen, 
20%. The classifier is optimised by generating a ROC curve in training. The gener-
alised accuracy in training is used to choose a point on the ROC curve that maxi-
mises sensitivity. The final classifier is re-trained at this operating point and the 
performance of the trained classifier on the test set data is used to obtain the perfor-
mance metrics presented in this section.

12.3.1  �The Effect of Noise

The amount of noise in a measurement frame can be controlled by adjusting the 
signal-to-noise ratio (SNR) using tools supplied by EIDORS. The SNR is defined in 
Eq. (12.6), where the noise is a numerical value in dB,

	 SNR (Signal/Noise)= 20 10Log 	 (12.6)

In order to add noise to a measurement frame, EIDORS generates a vector (of 
same size as the measurement frame) of normally distributed random numbers with 
the values in this vector then scaled by multiplication of the ratio of the Euclidean 
norms of the measurement frame and noise vector, before further scaling by divi-
sion by the desired SNR value. This final scaled vector of noise values is added to 
the measurement frame, resulting in a “noisy” frame.

EIT applications such as thoracic imaging may be successful with a system 
offering a SNR of 30–40 dB, whereas more demanding neural applications, that 
may involve smaller changes and issues such as the skull dampening, may require 
systems capable of 80 dB and higher [51]. In order to study the effect of noise on 
performance, the base numerical model was used to generate normal frames, with 
the 30 ml and 60 ml bleeds placed in the north location to generate bleed frames. 
Noise was added to the measurement frames so that a SNR of 80 dB, 60 dB, 40 dB, 
and 20 dB was obtained. These measurement frames at the four SNR levels were 
used as the input features for a linear SVM classifier. Separate experiments were 
performed with the raw and sorted frames. The results for the sensitivity and speci-
ficity are shown in Fig. 12.8. The results show that the classifier performs well at a 
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SNR of 80 dB and 60 dB (sensitivity and specificity at or near 1), with a falloff in 
performance at 40 dB and poor performance at 20 dB.

12.3.2  �Effect of Bleed Location

The base numerical model was used to generate normal frames, with 30 ml and 
60 ml bleeds placed at the north location in the training set. The test set was created 
from frames generated by placing 30 ml and 60 ml bleeds at the three other cardinal 
points. Hence, the test set had novel bleed locations in comparison to the training 
set. The results for sensitivity and specificity for the raw and sorted frames are 
reported in Fig. 12.9, with the experiment performed at SNR levels of 80 dB, 60 dB, 
40 dB, and 20 dB. The classifier is seen to fail at bleed detection (sensitivity of 0) at 
80 dB and 60 dB when using raw measurement frames. This indicates an inability 
to cope with bleeds in locations different to that of the training set. The specificity 
is near 1 at 80 dB and 60 dB as expected as it is a measure of the ability to detect 
normal cases, which are the same in the training and test sets. The sensitivity then 
paradoxically increases at lower SNR levels, but an explanation may be the intro-
duction of general inability to differentiate normal from bleed at lower SNR levels 
as evidenced by the drop in specificity. The simple pre-processing step of sorting the 
frames by channel value helps increase the sensitivity from 0 to 0.33 and 0 to 0.47 

Fig. 12.8  Effect of noise on classifier performance. Measurement frames from normal and bleed 
cases have SNR levels of 80 dB, 60 dB, 40 dB, and 20 dB. The frames are unaltered (raw) or sorted 
by numerical values. The results of the classifier in terms of sensitivity (Sens.) and specificity 
(Spec.) for each scenario are reported above
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at 80 dB and 60 dB, respectively. The sorting results in channels located near the 
bleed location (with smaller measured voltages as explained in Sect. 12.2.1) to clus-
ter in the same area of the frame regardless of location. In the absence of the bleed, 
this area of “clustered” channels will have higher values characteristic of the no 
bleed case.

However, effectively these results suggest that accurate detection of bleeds in 
unseen locations is challenging. As described in [15], it is possible to improve per-
formance by working at an adjusted point on the ROC curve which improves sensi-
tivity at cost to specificity.

12.3.3  �Effect of Bleed Size

As described in Sect. 12.2.1, the larger the size of the bleed, the greater the voltage 
measurements will deviate from normal values. To investigate this effect, measure-
ments from the base numerical model without a bleed and then with bleeds of 60 ml, 
30 ml, 20 ml, 10 ml, and 5 ml at each of the four locations were generated at 60 dB 
SNR. The 60 ml bleed subset was used to train the classifier, which was then tested 
with each of the smaller volumes in turn at 60 dB SNR. These results are shown in 

Fig. 12.9  Effect of bleed location on classifier performance. The classifier performs poorly at 
detecting bleeds, as judged by the sensitivity, in novel locations to that used in the training set at 
80 dB and 60 dB with a paradoxical improvement seen at 20 dB SNR. The implementation of a 
simple pre-processing step, sorting the frames, improves sensitivity from 0 at 80 dB and 60 dB to 
values of 0.33 and 0.47 respectively. Specificity is not affected as severely, but this is expected as 
the normal cases are the same in both the training and test sets
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Fig. 12.10, which indicates a general inability to detect bleeds smaller than those 
trained with. The best value for sensitivity observed was 0.63 when using raw 
frames to detect the 30 ml bleed. Again, the TN rate (specificity) is not affected as 
the normal cases are the same in both the training and test sets.

Repeating the experiment using the 5 ml bleed in the training set and testing with 
each of the larger bleeds gives the results shown in Fig. 12.11, which shows gener-
ally good performance (sensitivity and specificity near 1) for detection of each of 
the larger bleed sizes. As discussed in Sect. 12.2.1, the size of voltage measurements 
is related to bleed size, with larger bleeds affecting measurements more than smaller 
ones. Hence, training with a small bleed “sensitises” the classifier to the bleed type, 
with larger bleeds resulting in even more pronounced changes in voltages and hence 
easier classification as bleeds.

12.3.4  �Effect of Electrode Positioning

Recent literature suggests that EIT is sensitive to errors in electrode positioning 
[52]. In this experiment, the base numerical model is used to generate measurement 
frames with and without all permutations of the 30 ml and 60 ml bleed at all four 
positions. The test set then comprises of measurement frames from equivalent 

Fig. 12.10  Effect of bleed size on classifier performance. A 60 ml bleed size is used in the training 
set with the test set comprised of bleeds of smaller volume. All experiments are performed at 60 dB 
SNR. The SVM classifier is unable to detect smaller bleeds than those trained with; however, the 
30 ml bleed is detected with a sensitivity of 0.63 when using the raw measurement frames
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models that differ only in the position of the electrode ring, with the ring displaced 
±2 mm with respect to the original, parallel to the plane of the original. This was to 
replicate operator error in placing a ring on a patient’s head. This analysis was per-
formed at a SNR of 60  dB.  This small error in electrode positioning causes a 
decrease in the sensitivity by 0.05 and 0.03, for the raw and sorted measurement 
frames, respectively. There is no impact on the specificity from this small electrode 
displacement.

12.3.5  �Effect of Normal Variation in Between-Patient Anatomy

The ability of the classifier to classify normal from bleed in unseen anatomies is 
assessed in this experiment. The training set is made up of measurement frames 
calculated from the base numerical model with and without the 30 ml and 60 ml 
bleed at all four locations. The test set is comprised of measurement frames from 80 
other anatomies that differ in the size of both the aggregate outer layer and brain 
layer by ±5% in the three Cartesian axes but have the electrode ring in the same 
position (as described in Sect. 12.2.3). These anatomies are used to generate mea-
surement frames with and without the equivalent bleeds present. Noise is added to 
all measurement frames, leading to a 60 dB SNR. The results indicate that the clas-
sifier struggles with unseen anatomy; the sensitivity and specificity were below 0.60 

Fig. 12.11  Effect of Bleed Size on Classifier Performance. A 5 ml bleed size is used in the training 
set with the test set comprised of bleeds of larger volume. All measurement frames have a SNR of 
60 dB. The SVM classifier performs well (Sensitivity and Specificity near 1) for all test volumes
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for both raw and sorted measurement frames, a decrease in over 0.40 from the clas-
sifier performance with known anatomies. Further analysis showed that an excess of 
brain tissue or lack of outer tissue in a test model compared to the training model 
was often misclassified as a bleed. Conversely, lack of brain tissue or excess outer 
tissue compared to the training model was often misclassified as normal.

12.4  �SVM Applied to EIT Processed Measurement Frames

Section 12.3 examined the use of a linear SVM classifier to classify FEM models of 
the head and brain as having a bleed or no bleed. The emphasis was on the effect of 
individual variables such as noise, bleed location and size, electrode positioning, 
and head anatomy on classifier performance. The section constituted an initial 
exploratory study with minimal attempt to intelligently select features for input to 
the classifier or indeed in selection of the best type of SVM classifier. In this section, 
research into these areas is reported, starting with the effect of a change of kernel on 
performance. Then, the effect of pre-processing and selecting input features is 
examined.

In all the experiments in this section, all 243 normal models and 1944 bleed 
models are used to generate measurement frames. As described in Sect. 12.2.3 (and 
elaborated on in [15]), the starting STL files of the head and brain are each distorted 
by ±5% in each Cartesian axis as well as in all three axes simultaneously, giving 
nine distinct head and nine distinct brain anatomies. FEM models of all combina-
tions of these brain anatomies as well as the electrode ring in one of three heights 
resulted in 243 normal models. Bleed models were based on every combination of 
these normal head models combined with one of either the 30 ml or 60 ml bleed in 
one of the four locations, leading to a total of 1944 bleed models. An equal number 
of frames from the normal head set and bleed head set were used to generate 155,520 
measurement frames.

A consistent method is applied in this section to optimise the performance of the 
SVM classifiers. First, the data is separated into five separate folds, each with a 
unique training data set and testing data set that is made up of 80% and 20% of the 
original data set, respectively. The training data set is used to optimise the SVM 
classifier hyper-parameters, namely the box constraint and kernel scaling factor. A 
Bayesian optimisation procedure is implemented to identify the hyper-parameters 
that lead to the greatest generalised accuracy across fivefold cross-validation. Once 
identified, a final trained SVM classifier is created with these optimised 
hyper-parameters. The excluded testing data set is then used to obtain performance 
metrics for the final classifier. This procedure is then repeated for all five of the 
unique training-testing data pairs, and final classifier performance is presented as 
the mean and standard deviation (STD) across these five iterations. This nested test-
ing methodology, which has been used previously in the literature [26, 53], provides 
a more generalised and robust indication of classifier performance.
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12.4.1  �Radial Basis Function Kernel Compared to Linear 
Kernel

The RBF kernel can be used for SVMs when the relationship between the features 
and labels is non-linear, has less hyperparameters than a polynomial kernel, and has 
less numerical difficulties [54]. The RBF can be conceptualised as a flexible mem-
brane that fits through sample points while minimising the curvature. Hence, the 
hyperplane is a “gently varying surface” and is suitable for scenarios where the data 
points (measurement values) do not change dramatically within a short distance in 
the n-dimensional hyperspace.

The first investigation of this section involves comparing the use of the linear and 
RBF kernels with a SVM classifier trained and optimised across all four SNR levels 
(80 dB, 60 dB, 40 dB, and 20 dB). In Fig. 12.12, the classifier performance, in terms 
of the sensitivity, specificity, and accuracy, for both the linear-SVM (top) and the 
RBF-SVM (bottom), is shown. Each dot on the plot denotes the mean classifier 
performance across the fivefold testing, with error bars representing the standard 
deviation range. While perfect classifier performance (1.00 ± 0.00 in all metrics) is 
achieved by both kernel types at 80 dB, it is observed from this figure that use of the 
RBF kernel can improve the classifier performance, notably at the 60 dB and 40 dB 
SNR levels; there is an increase in the mean accuracy between approximately 0.03 
(3%) and 0.09 (9%), respectively, at these SNR levels when using the RBF kernel. 
When the SNR decreases to 20 dB, the performance of both classifiers approaches 
that of guesswork, with the mean accuracy only slightly above 50%, indicating that 
the changes in impedance due to the presence of the bleed are embedded within the 
noise. This finding suggests that hardware should guarantee an SNR well above 
20 dB. From Fig. 12.12, we can in fact infer that the SNR for a hardware system 
should be on the order of 60 dB to expect accurate detection of brain bleeds. The 
improvement with the use of the RBF kernel over the linear kernel provided the 
motivation for the use of this kernel in all the following sections of Sect. 12.4.

12.4.2  �Frame Pre-processing

In the previous sections, the classifier input features were the unprocessed EIT mea-
surement frames, with the injection channels removed. This section will explore the 
use of various pre-processing techniques, ranging from manually chosen feature-
extraction methods, such as taking the mean of sub-frames, to using electrode pair 
proximity to decide input features, to variance-based methods such as Laplacian 
scores and PCA. These feature extraction methods are carried out on data at all four 
SNR levels (80 dB, 60 dB, 40 dB, and 20 dB), with the RBF-SVM classifier opti-
mised as described in Sect. 12.4.1. As before, classifier performance is presented as 
the results across fivefold testing.
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�Sub-frame Means 

A sub-frame is defined as the set of measurement channels associated with a given 
injection pair. A measurement frame from a 16-electrode array using a skip 2 pat-
tern will have 16 such sub-frames, each with 13 channels (three channels are 
removed as they use either of the injecting electrodes). The 13 voltage measure-
ments in each of the 16 sub-frames are averaged, with the resulting 16 mean-values 
used as the input features to the classifier. This reduces the dimensionality of the 
input from 208 features to 16 features. The pre-processing work-flow is shown in 
Fig. 12.13 below.

The performance of the RBF-SVM classifier using the sub-frame means as 
inputs is reported in Fig. 12.14 at each SNR level as the mean ± standard deviation 
of the sensitivity, specificity, and accuracy after fivefold cross validation and 
Bayesian optimisation. As seen, the performance at 80 dB is excellent, being near 
1 ± 0 for all metrics, with a fall off at lower SNRs with, for example, sensitivity at 

Fig. 12.12  Comparison of 
classifier performance 
using the linear-SVM (top) 
and RBF-SVM (bottom). 
Each dot on the plot 
denotes the mean classifier 
performance across the 
fivefold testing, with the 
error bars representing the 
standard deviation range at 
the respective SNR level. 
There is a significant 
improvement in 
performance when using 
the RBF kernel, notably at 
the 60 dB and 40 dB SNR 
levels
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approximately 0.71 ± 0.02 at 60 dB and all metrics at approximately 0.5 at 40 dB 
and 20 dB. It is noteworthy however that near identical performance is achieved at 
80 dB relative to that of using full measurement frames (with a difference of <0.01 
(1%) in all metrics), despite the significant drop in the number of features. Such a 
reduction in dimensionality, with nearly no effect on performance, would result in a 
less computationally expensive algorithm.

�Near and Far Sub-frame Channels 

In this section we explore using selected channels of each measurement sub-frame 
based on the physical locations of the recording electrodes relative to the injection 
pairs. Specifically, we analyse classifier performance when using “near” sub-frame 
channels and “far” sub-frame channels. The “near” sub-frame channels are defined 
as the seven channels nearer in physical location to the injecting pair of a given sub-
frame. The “far” sub-frame channels are defined as the six channels further in loca-
tion from the injecting pair. The complete set of near channels from each sub-frame 
are amalgamated and used as the input to the classifier with the same process per-
formed to the far channels. This process reduces the input feature size to 112 

Fig. 12.13  Generating the mean of each sub-frame. Each sub-frame is made up of the 16 channels 
associated with a given injection pair. Removal of channels involving either of the injection pair 
electrodes gives 16 sub-frames each with 13 channels. The mean of the voltage measurements 
from each set of 13 channels in a given sub-frame is used, leaving 16 values, the sub-frame means, 
which are used as inputs to the classifier

B. McDermott et al.



231

features for the near sub-frame channels and to 96 features when using the far sub-
frame channels, as compared to 208 for a full measurement frame. It is anticipated 
that the near sub-frame channels are more informative due to their proximity to the 
injecting pairs. The near and far sub-frame channels, for one sub-frame (that of the 
1–4 injection pair), are shown in Fig. 12.15. The injecting electrode pair is denoted 
by the red arrow, with the near sub-frame channels shown in orange, and the far 
sub-frame channels shown in green.

The performance of the RBF-SVM classifier using the near and far sub-frame 
channels are again reported at each SNR level as the mean ± standard deviation of 
the sensitivity, specificity, and accuracy. These results are given in Fig. 12.16. Both 
the near and far sub-frame channels offer perfect performance (sensitivity, specific-
ity, and accuracy of 1.00 ± 0.00) at 80 dB SNR, with a slight drop in performance at 
60 dB SNR (but all values are ≥0.99 ± 0.01) before further drops at the 40 dB and 
20 dB SNR levels. The near sub-frame channels result in better performance than 
the far sub-frame channels. Performance at all SNR levels for the near sub-frame 
channels in particular is equivalent to that of using complete frames despite an 
almost 50% reduction in dimensionality.

�Laplacian Scores 

A type of feature selection method is filter-based methods. Filter methods work by 
analysing the data before classification, giving a ranking to each feature. Then, the 
number of ranked features that optimises performance can be chosen by the user. In 

Fig. 12.14  Performance of the RBF-SVM using sub-frame means as input features. Each dot on 
the plot denotes the mean classifier performance across the fivefold testing, with the error bars 
representing the standard deviation range at the respective noise level. The performance at 80 dB 
SNR is near the ideal of 1 ± 0 for all metrics, comparable to the performance achieved when using 
the complete frames. However, performance falls off quickly at lower SNRs, with all metrics 
below 0.85 at 60 dB and at approximately 0.5 at 40 dB and 20 dB
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Fig. 12.15  Near and far 
sub-frame channels. Here 
the injection pair of 1–4 is 
shown (red). The 7 nearest 
channels are shown in 
orange, with the 6 far 
channels shown in green. 
Channels involving the 
measurement pair are not 
considered. These near 
sub-frames and far 
sub-frames channels are 
then used as inputs to the 
classifier

Fig. 12.16  Comparison of 
RBF-SVM classifier 
performance with using the 
near (top) and far (bottom) 
sub-frame channels as 
input features. Both the 
near and far sub-frame 
channels results in perfect 
(1.00 ± 0.00) performance 
at 80 dB SNR and near 
perfect (≥0.99 ± 0.01) at 
60 dB SNR. At lower SNR 
levels of 40 dB and 20 dB, 
the near sub-frames 
outperform the far 
sub-frames. Of note, the 
near sub-frames result in 
equivalent performance to 
using full measurement 
frames at all SNR points
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the context of this work, features correspond to the measurement channels. Filter 
methods can be implemented as either supervised or unsupervised methods. 
Supervised filter methods require both the observations (inputs) and classes (labels) 
in order to rank the features. In order to avoid any bias or data contamination, it is 
important to carefully choose a subset of the entire data set for the feature selection 
process when using supervised filter methods. Alternatively, unsupervised filter 
methods can use the entire dataset in order to rank the features, without biasing the 
classification result. An unsupervised feature selection algorithm, the Laplacian 
Score algorithm [55, 56], was used in this work to rank the features on the measure-
ment sets (datasets). Specifically, the Laplacian Score algorithm works on the 
assumption that if two data points are close, then the data points most likely share a 
label [55]. Further detail on the algorithm can be found in [55]. The distance metric 
used in this work to define the weight matrix of the algorithm was the Euclidian 
distance. The advantage of using the filter-based feature selection is that after deter-
mination of the optimal number of ranked features, the original data can be used as 
input for the classification, with only the additional computational cost of removal 
of unnecessary features.

After first standardising the data, the Laplacian score is applied to each data set 
corresponding to each of the four SNR levels (80 dB, 60 dB, 40 dB, and 20 dB) to 
obtain a ranking of the 208 features at each SNR level. The optimal number of 
ranked features is then chosen through finding the number of features that lead to 
greatest generalised accuracy in the cross-validation training of the SVM classifier. 
In Fig. 12.17, the generalised accuracy is presented, at each of the four SNR levels, 
as the number of Laplacian score ranked features is increased. Based on Fig. 12.17, 
we can determine the optimal number of features, i.e. the best combination between 
the number of features and the best generalised accuracy; these optimal points are 
tabulated in Table 12.1.

The performance of the classifier at each SNR level is assessed with the pre-
determined number of ranked features as given in Table 12.1. The results are shown 

Fig. 12.17  The 
performance of the 
RBF-SVM classifier using 
a different number of 
ranked features, measured 
by the generalised 
accuracy. The ranked 
features were determined 
using the Laplacian score. 
The optimal point at a 
given SNR the one offering 
the highest accuracy with 
the lowest number of 
features
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in Fig. 12.18. The accuracy, sensitivity, and specificity are perfect (1.00 ± 0.00) at 
80 dB SNR, and all are better than 0.97 ± 0.01 at 60 dB SNR. Thus, classification 
performance is preserved while significantly reducing the input feature size from 
208 to 25 and 75 features for the 80 dB and 60 dB SNR levels, respectively. Even at 
40 dB SNR, classifier performance was essentially unchanged (compared to using 
full measurement frames) while reducing the input data set to only 100 features. As 
with all previous analyses, as the SNR level decreased to 20 dB, classifier perfor-
mance approaches that of a random guess (metric scores of 0.5).

While unsupervised filter-based feature selection does allow preservation of the 
captured data to be used as inputs to the classifier in a reduced form, transforming 
the data with variance techniques such as PCA may enhance the results. The PCA 
approach is considered next.

�Principal Component Analysis 

A commonly implemented feature extraction method is PCA [24, 25]. PCA is used 
to reduce the dimensionality of data by generating new variables that represent the 
original data. These new variables, referred to as the principal components, are cre-
ated from a linear combination of the original variables, with each successive com-
ponent defining an orthogonal axis to the previous components. Thus, the entire set 
of principal components form an orthogonal basis for the space defined by the origi-
nal data set. The data set can then be projected onto this new orthogonal basis in 
such a way that the variance in each axis is maximised, allowing data to be, poten-
tially, better discriminated [57], and only a select few principal components can be 
used to accurately represent the data. Thus, PCA is used to both extract specific 
features and reduce the dimensionality of the data.

The projection of the original data on specific principal components can be 
referred to as the “scores”. For every observation, it is these scores that will be used 
as input features to the RBF-SVM classifier. As PCA is a variance based feature 
extraction algorithm, it is important to prevent any data contamination; when per-
forming PCA, it is necessary that there is no knowledge of the test data set. In this 
work, PCA is performed on only the training data, with the transformative coeffi-
cients stored and then applied to the test-set data to obtain the projection onto the 
principal components. Thus, we can ensure that there is no knowledge of the test-set 
data when performing PCA.

Similar to the previous section, a search for the optimal number of principal 
components is completed prior to assessing the classifier performance. The opti-

Table 12.1  The optimum 
number of ranked features at 
each SNR level (Maximal 
accuracy with fewest number 
of features)

SNR point
Number of 
ranked features

Generalised 
accuracy (%)

80 dB 25 100
60 dB 75 100
40 dB 100 75.96
20 dB 208 52.55
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mal number of principal components is found by finding the best generalised 
accuracy, for each of the four SNR levels, across the cross-validation training. In 
Fig. 12.19, a comparison of the generalised accuracy and the number of principal 
components, for each of the four SNR levels, is shown. From this graph it 
becomes clear that for each SNR level, there is a range of principal components 
when performance is maximised prior to a decrease of performance as more prin-
cipal components are added. This is explained by the fact that each successive 
principal component explains less and less variance of the original data. Therefore, 
those final components are simply expressing the noise in the data set, with no 
meaningful information contained. The optimal number of components chosen 
for the 80 dB, 60 dB, 40 dB, and 20 dB SNR levels is 10, 10, 11, and 31 principal 
components, respectively.

The classifier performance is then assessed by projecting the test data set onto 
the principal components using the stored projection coefficients found in training. 
In Fig. 12.20, the performance of the classifier is compared at all four of the SNR 
levels. The use of PCA leads to a marked improvement in comparison to using the 
entire raw data set (complete measurement frames), while also significantly reduc-
ing the input data set to at most 31 features. Most notably, at 40 dB SNR, there is an 
increase of almost 10% in the mean accuracy compared to using the complete mea-
surement frames, while decreasing the input feature size from 208 features to only 
11 features. Also, significantly at 60 dB SNR perfect performance is achieved using 
only 10 components. However, as in all previous analyses, the classifier is no better 
than random guesswork at 20 dB SNR.

Fig. 12.18  Performance of the RBF-SVM Classifier at each SNR level using features based on 
Laplacian scores. The number of ranked features offering maximal accuracy is pre-determined 
with this feature set (selection of channels) used to train and set the classifier. Perfect performance 
is achieved at 80 dB SNR with 1.00 ± 0.00 in all metrics, with the use of only 25 features, with 
accuracy >0.97 at 60 dB SNR using 75 features
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12.4.3  �Ensemble Classifier

An ensemble classifier aims to make use of multiple classifiers to make an informed 
decision. Additionally, these classifiers allow for better control of the sensitivity and 
specificity of the classifier performance [58]. In this work, an ensemble classifier 
was created by assigning a classifier to each of the 16 sub-frames for a given com-
plete measurement frame. A voting scheme from each of the 16 classifiers was then 
used for the final classification decision. The design and implementation of this 
ensemble classifier is shown in Fig. 12.21.

Fig. 12.19  A comparison 
of the generalised accuracy 
at the four SNR levels as 
the number of principal 
components is increased. 
The optimal number of 
principal components at 
each SNR level is that 
number giving the highest 
generalised accuracy 
which is 10, 10, 11, and 31 
principal components for 
80 dB, 60 dB, 40 dB, and 
20 dB SNR levels, 
respectively

Fig. 12.20  Comparison of the performance at each of the four SNR levels for the classifier after 
performing PCA. Perfect performance (1.00 ± 0.00 in all metrics) is given at the 80 dB and 60 dB 
SNR levels despite using only 10 components at each point. A near 0.1 (10%) improvement in 
accuracy is seen at the 40 dB SNR level compared to the full measurement frames, but performance 
is approximately 0.5 in all metrics at 20 dB SNR, essentially representing a random classifier
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For each observation, each of the 16 classifiers separately classified the case as 
±1 (bleed or normal). Next, the sensitivity, specificity, and accuracy of the ensemble 
classifier at different threshold points were calculated. A threshold was the mini-
mum number of separate classifiers needed to classify a case as a bleed for it to be 
classified as such; if the number was below this threshold, then the case was classi-
fied as not bleed. The threshold was adjusted from 1 to 16 in steps of 1. This control 
on the sensitivity and specificity allowed for the generation of a ROC curve. In 
Fig. 12.22, a comparison of the ROC curve, at each of the four SNR levels, for the 
ensemble classifier is shown.

For a low threshold (for example 1), the general trend is that the FP (1  – 
Specificity) rate will be high as the ensemble classifier is very sensitive to bleeds. 
This translates as a high sensitivity at a cost to specificity if the system is not robust. 
At a high threshold (for example 16), sensitivity is lost but specificity is maximised 
as the FN is high, with more classifiers needing to agree on labelling a case as a 
bleed before it is classified as a bleed. The accuracy will lie in between these two 
values of specificity and sensitivity at all threshold points. The trade-off in sensitiv-
ity and specificity is best illustrated at the lower SNR levels of 40 dB and 20 dB. For 
the higher SNR values of 80 dB and 60 dB, there is a threshold (or set of thresholds) 

Fig. 12.21  Example of the design and implementation of the ensemble classifier. The measure-
ment frame for a given case can be divided into sub-frames with the channels from each sub-frame 
used as the input for a separate classifier. The complete set of frames are segregated in this way 
with 16 classifiers trained and tested. Each classifier separately labels a case as ±1 with the aggre-
gate result calculated according to a threshold which can be adjusted
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in the intermediate area where sensitivity, specificity, and accuracy all are 1 ± 0. For 
both the 80 dB and 60 dB SNR levels, this area is centred at a threshold of 10. The 
ROC curve allows the user to select the operating point offering optimal performance, 
which for the proposed application of bleed detection is maximal sensitivity as justi-
fied in Sect. 12.2.2. As shown in Fig. 12.22, the 80 dB and 60 dB SNR levels result 
in an operating point offering the perfect combination of sensitivity and specificity 
both equal to 1. At 40 dB SNR, for example, a maximal sensitivity of just over 0.9 
is achieved with a reduction in specificity to 0.2, with a worse performance given at 
20 dB SNR, which has the performance of a random classifier.

12.5  �Discussion and Conclusions

This chapter illustrates the important role that computational modelling tools have 
in exploring both the feasibility and the challenges in developing technologies that 
tackle important medical problems such as brain bleed detection. Brain haemor-
rhages are a medical emergency that require a prompt and accurate diagnosis prior 

Fig. 12.22  ROC curves for the ensemble classifier at each SNR level. The points on each curve 
correspond to each discrete threshold value, between 1 and 16 (from right to left), with the corre-
sponding line interpolated between the points. The curves illustrate the trade-offs between sensitiv-
ity and specificity possible at each SNR level by changing the operating points. Both the 80 dB and 
60 dB plots offer an operating point of perfect performance (0,1). Performance is reduced at 40 dB 
and is worst at 20 dB SNR as expected. The 20 dB line is approximately that of a random classifier, 
being a diagonal line passing through the points (0,0) and [1]
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to any appropriate treatment being administered. An ideal technological solution 
would be portable, non-invasive, cost effective, and crucially feature a sensitivity to 
the presence of a bleed (with ideally simultaneous high specificity) in the brain. 
Such a technology may be found in EIT coupled with modern machine learning 
algorithms. This work examined the feasibility of EIT coupled with ML to develop 
a bleed/ normal classifier based on EIT measurement frames. The approach removes 
the image reconstruction steps that are challenging to EIT. Further, it is EIT applied 
to a static scene where the most successful EIT modality, time difference EIT, can-
not be applied. The chapter builds on the material presented in earlier works, includ-
ing [14] and particularly [15] where, to our knowledge, such an approach with a 
static scene was investigated for the first time.

The effect of individual variables on performance such as the effect of noise in 
measurement frames, bleed location, bleed size, electrode positioning, and varia-
tions in anatomy was initially summarised in Sect. 12.3. The conclusions drawn 
from this section are: good performance (sensitivity, specificity, and accuracy at or 
near 1) is achievable particularly at 80 dB SNR; the technique is sensitive to new 
bleed locations not seen in the training data (although the simple pre-processing 
step of sorting the measurement values can improve this); the technique robustly 
detects bleeds larger than those trained on, but struggles with those smaller; the 
technique is robust to small changes in electrode positioning; and the technique 
struggles with unseen anatomies, in this case modelled as deviations in the mor-
phology of the head and brain FEM models.

The simple replacement of the linear kernel with a Gaussian RBF kernel resulted 
in improved performance. Although both resulted in perfect sensitivity, specificity, 
and accuracy of 1 ± 0 at 80 dB SNR, the benefit of the RBF kernel is seen at 60 dB 
and 40  dB SNR levels with an increase in the mean accuracy between approxi-
mately 3% and 9%, respectively. This significant improvement in classifier perfor-
mance highlights the need to explore options related to classifier choice and also the 
input feature selection process.

The final part of this work examined methods that moved the nature of the clas-
sifier input away from raw or minimally processed measurement frames with a view 
to increasing computational efficiency through intelligent feature selection that 
reduced dimensionality. Approaches used included processing of the measurement 
frames to create sub-frame means, near and far sub-frame channels, using Laplacian 
scores and PCA to extract specific features, and examining an ensemble classifier 
with thresholding to control the sensitivity to bleeds. A summary of the perfor-
mance of these different classifiers, at the 60 dB and 40 dB SNR levels, where per-
formance was mostly impacted, is shown in Tables 12.2 and 12.3, respectively. For 
all classifiers, the 80 dB SNR level yielded perfect classification results, whereas at 
20 dB SNR all classifiers performed at essentially a guess level.

Each of the methods described in Sect. 12.4 significantly reduced the dimension-
ality of the input data to the classifier. The sub-frame means approach reduced the 
input data size to only 16 features, however suffered from poor performance when 
the SNR levels dropped below 80  dB, with a decrease in the mean accuracy of 
almost 25% in comparison to using all 208 features even at 60 dB SNR.
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The near and far sub-frame channels gave an approximate 50% reduction in 
dimensionality. Using the near sub-frame channels preserved the classifier perfor-
mance when in comparison to the full data set, whereas the far channels led to a 
reduction in the mean accuracy of almost 15% at 40 dB SNR. These results imply, 
as was hypothesised, that the near sub-frame channels are more important for clas-
sifier performance.

Using the Laplacian scores to rank and choose features led to similar classifier 
performance using all 208 features at all SNR levels. However, at 80, 60, and 40 dB, 
the input features were reduced to only 25, 75, and 100 features respectively.

The use of PCA to extract and select features, in combination with the RBF-
SVM classifier, lead to the best overall results, with mean accuracy values of 100% 

Table 12.2  Summary of different classifier performance at 60 dB SNR (all metrics reported as the 
mean ± standard deviation of the sensitivity (Sens.), specificity (Spec.), and accuracy (Acc.) with 
a perfect score being 1.00 ± 0.00)

Sens. Spec. Acc.

Classifier type Lin. 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01
RBF 0.99 ± 0.00 0.97 ± 0.00 0.98 + 0.00
Mean 0.71 ± 0.02 0.82 ± 0.03 0.76 ± 0.01
Near 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Far 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
Laplac. 0.99 ± 0.01 0.97 ± 0.01 0.98 ± 0.00
PCA 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Ensemb. 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

All classifiers used RBF kernel except when labelled ‘Linear’. Linear (Lin.): Linear kernel with 
full measurement frames as the classifier input; RBF: RBF kernel with full measurement frames as 
the classifier input; Mean: Sub-frame means as classifier input; Near: Near sub-frame channels as 
input; Far: Far sub-frame channels as classifier input; Laplacian (Laplac.): Optimal number of 
ranked features as determined by Laplacian filtering used as classifier input; PCA: Optimal num-
ber of principal components used as classifier input; Ensemble (Ensemb.): Results correspond to 
the threshold offering maximal sensitivity

Table 12.3  Summary of different classifier performance at 40 dB SNR (all metrics reported as the 
mean ± standard deviation of the sensitivity (Sens.), specificity (Spec.), and accuracy (Acc with a 
perfect score being 1.00 ± 0.00)

Sens. Spec. Acc.

Classifier type Lin. 0.71 ± 0.02 0.70 ± 0.02 0.70 ± 0.01
RBF 0.82 ± 0.02 0.76 ± 0.02 0.79 ± 0.00
Mean 0.56 ± 0.04 0.54 ± 0.04 0.55 ± 0.03
Near 0.75 ± 0.02 0.81 ± 0.02 0.78 ± 0.03
Far 0.66 ± 0.01 0.65 ± 0.02 0.65 ± 0.01
Laplac. 0.85 ± 0.02 0.75 ± 0.03 0.80 ± 0.01
PCA 0.93 ± 0.00 0.83 ± 0.01 0.88 ± 0.00
Ensemb. 0.61 ± 0.04 0.77 ± 0.05 0.69 + 0.01

All classifiers used RBF kernel except Linear. Abbreviations of the classifier type are consistent 
with Table 12.3
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and 88.26% at the 60 dB and 40 dB SNR levels. This marks a 1.25% and 8.91% 
improvement over using all 208 features, while only needing the first 10 and 11 
components, at 60 dB and 40 dB SNR, respectively.

The ensemble classifier approach offered a trade-off between sensitivity and 
specificity depending on the threshold used. At 80 dB and 60 dB, a wide region 
centred around a threshold of 10 offered perfect sensitivity, specificity, and accu-
racy. However, this method fails to match the performance of using all the input 
features at 40 dB.

This work has demonstrated promise in the approach of using EIT measurement 
frames coupled with ML for bleed detection. Careful consideration and experimen-
tation in regard to measurement frame processing, choice of ML algorithm, and 
parameters can significantly improve performance. These areas alone merit further 
study as well as the testing with a more realistic multi-layered computational model 
and physical phantom. Encouragingly, EIT hardware with SNR levels at or near 
80 dB exist, which adds to the hope that computational results can be translated into 
real world models [59]. EIT is already a valuable imaging tool in time changing 
scenes but has the potential to be a valuable modality in cases with static patholo-
gies such as brain bleeds with innovative methods such as those presented in this set 
of studies. We encourage researchers to further build on and develop these ideas and 
paradigms in order to make a measurable impact in tackling important medical 
problems and improving patient outcomes.
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Chapter 13
Patient-Specific RF Safety Assessment 
in MRI: Progress in Creating Surface-
Based Human Head and Shoulder Models

Mikhail Kozlov, Benjamin Kalloch, Marc Horner, Pierre-Louis Bazin, 
Nikolaus Weiskopf, and Harald E. Möller

13.1  �Introduction

The interaction of radio frequency (RF) electromagnetic (EM) fields with the human 
body during magnetic resonance imaging (MRI) is complex and subject specific. 
The specific absorption rate (SAR) used as the safety limit in MRI is also subject 
specific, especially at RF above 100 MHz [1]. Safety limits based on the SAR in 
MRI are typically derived from three-dimensional (3D) numerical EM simulations 
of MRI RF transmit coils loaded with human body models [2–7].

An increasing number of MRI investigations that study the human brain employ 
multimodal setups, where additional devices are used to record complementary 
information or manipulate brain states [8–10], examples include 
electroencephalography (EEG), transcranial magnetic stimulation (TMS), and 
transcranial direct current stimulation (tDCS). This requires a dedicated setup of 
wires and electrodes that are in contact with human skin. For example, a tDCS setup 
includes two external wires and electrodes. The wires enter the MRI RF transmitter 
coil’s effective exposure volume and operate as an antenna, the performance of 
which depends on the relative positioning of the wires and the human body, patient 
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landmark position, and the quality of the electrical contact between the electrode 
and skin. Assessing the RF safety of a device that is in electrical contact with the 
skin during an MRI examination requires the evaluation of RF-induced heating of 
human tissue located near the contact area.

An increasing number of MRI examinations are being performed on patients 
with an active implantable medical device (AIMD), for example, a cardiac pace-
maker or deep brain stimulator, or a passive implant, such as an orthopedic hip 
implant [11–13]. One of the major safety concerns for ensuring safe examinations 
of such patients is the evaluation of in vivo RF-induced heating of tissue near the 
lead electrode, which can result in tissue damage.

Due to the complexity of assessing MRI RF-induced heating in vivo, 3D EM and 
transient thermal co-simulation is used to assess RF-induced heating of implanted 
devices and devices that bring electrodes into contact with human skin [14, 15].

When modeling RF-induced heating during MRI, a computational EM solver is 
used to compute the absorption of EM energy in different types of human tissue. 
The volume and surface losses from 3D EM simulations act as thermal sources in 
tissue heating calculations. Volume losses in human tissue substantially depend on 
tissue geometries and electrical properties. For example, (i) in a patient undergoing 
an MRI at a head landmark position, the cerebrospinal fluid (CSF) space must be a 
continuous medium in the numerical domain to excite a significant current; (ii) 
electrical properties of the skin and underlying tissues, especially fat, differ 
significantly and volume losses depend on tissue geometries, (iii) the correct skin 
thickness is very important when assessing MRI RF safety for devices where 
electrodes are in contact with human skin.

Different numerical approaches can be applied to perform 3D EM and transient 
thermal co-simulation for simple geometrical objects, for example, a phantom as 
defined in ASTM F2182a-11 [16]. However, reliable simulations of realistic human 
models require a correct match between solver capabilities and geometrical 
properties of the human models under investigation.

To accurately represent individual tissue structures in a patient-specific human 
model, they must first be segmented from imaging data. Most imaging data are 
voxel-based data obtained, for example, from MRI scans, high-resolution 
cryosection image datasets, or histological sections. Therefore, most available 
numerical human models are voxel-based geometries [17].

Voxel-based human models are commonly simulated using time-domain solvers, 
in most cases these are finite-difference time-domain (FDTD) or finite integration 
technique (FIT) solvers, and use hexahedral meshes. The hexahedral mesh results in 
a staircased discretization of the surfaces of curved structures.

The size of the hexahedral mesh elements must be substantially smaller than the 
thickness of the coil’s conductive elements, the thickness of relevant thin human 
tissue (e.g., CSF and skin), the wire diameters, and electrode thickness of EEG or 
tDCS setups to maintain the precision of the geometric model. Structures that are 
thinner than the employed resolution are undersampled in the mesh and, therefore, 
appear as being separated, noncontinuous segments within a space. In this case, 
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correct electrical and thermal contact between anatomically connected tissue parts 
or between an electrode and human tissue are not ensured.

In most common implementations of time-domain solvers, the size of the hexa-
hedral mesh elements must be uniform for a given mesh line. Thus, using small-
sized hexahedral mesh elements for some objects results in meshing practically the 
entire numerical domain with small mesh elements. Because the simulation time of 
a time-domain solver is proportional to the number of mesh elements and is inversely 
proportional to the smallest-sized mesh elements, correct meshing of realistic MRI 
RF coils with a high-resolution human model and electrodes results in a significant 
increase in computation time.

Different subgridding approaches are used to overcome this limitation of time-
domain solvers. However, these are not very effective for MRI-related simulations 
due to the geometrical complexity of RF coils for MRI and different types of human 
tissue, the bent shape of electrodes, and the bent trajectories of the wires.

The aforementioned simulation drawbacks of voxel-based human models can be 
avoided with anatomically correct surface-based models and solvers based on 
unstructured meshes. A flexible discretization of human structures can be achieved 
with tetrahedra, pyramids, and extruded triangles (prisms) as mesh elements. In this 
way, the complex shape of curved human tissue structures, electrodes, and wires can 
be maintained. Electrical contact within and between tissues, as well as between an 
electrode and human tissue, can also be preserved.

For solvers based on unstructured grids, it is beneficial to have only one bound-
ary between adjacent structures. When these boundaries are triangulated, the result-
ing surfaces are free from intersections or intermediate gaps, and the number of 
triangles in the entire model is reduced.

Unfortunately, 3D EM frequency-domain solver development has advanced 
beyond geometry import, pre-processing, and mesh generation capabilities. For 
most up-to-date solvers based on unstructured meshes, a surface-based model must 
only include objects that are geometrically error free (no self-intersections, over-
connections, etc.), and the number of faces in the model must be limited to 
approximately 500,000 to be meshed by commercially available packages in an 
acceptable time interval.

Although the surface-based Virtual Family v2.x models [18] were developed pri-
marily for 3D EM simulations, these models and high-resolution voxel-based 
human models (less than ~2 mm voxel size) do not meet the aforementioned error-
free geometry requirements. Thus, their use with most up-to-date solvers based on 
unstructured meshes is practically impossible.

Two workhorses for 3D EM investigations are the Virtual Family v1.x models 
[19] and the Virtual Population 3.0 models [18]. Developed as surface-based 
anatomical models, they are used in 3D EM simulations as discretized voxel-based 
geometries. The Virtual Population 3.0 models are integrated within the multiphysics 
simulation platform Sim4Life, which includes only a time-domain EM solver, or 
the SEMCAD time-domain EM solver. The Virtual Population 3.0 models cannot 
be exported to any third-party software. The Virtual Family v1.x models are also 
compatible with Sim4Life or SEMCAD time-domain EM solvers or can be exported 

13  Patient-Specific RF Safety Assessment in MRI: Progress in Creating…



248

to other solvers only in voxel format, which is not suitable for import into solvers 
based on unstructured meshes.

Some of the surface-based human body models presented in 3D EM simulation 
reports, for example, the Chinese reference man [20], have been used only with 
FDTD solvers. The reasons for this are unknown.

Recent literature includes reports of the development of surface-based models 
for a variety of applications, for example, emission imaging (namely the 4-D XCAT 
Phantoms) [21], biomechanics, and injury biomechanics [22]. These application-
specific models require an efficient conversion into a format that is compatible with 
a geometric modeling kernel of a 3D EM solver based on unstructured meshes or its 
geometrical pre-processor, as well as handling the geometrical complexity of the 
models at the appropriate level if a geometrical pre-processor cannot be used. The 
complexity of the direct conversion of an application-specific surface-based 
geometry to 3D EM suitable surface-based geometry could be a reason why a model 
should be voxelized as the first step, and new surface meshes should be generated as 
the second step, as was the case for 4-D XCAT Phantoms [23].

Converting voxel-based data to high-quality surface-based objects and correctly 
matching contact regions presents a significant challenge. It is even more difficult to 
meet all the requirements for importing a human model composed of numerous 
tissue structures into an EM solver in the form of surface-based geometries.

Only a few surface-based full-body human models, for example the NEVA 
Electromagnetics (Yarmouth Port, Cape Cod, MA, USA) female VHP model [24], 
developed based on the Visual Human Project® data set [25], and the Aarkid (East 
Lothian, Scotland) male model [26], have been used successfully with 3D EM 
solvers based on unstructured meshes. Available models provide different levels of 
detail of different human tissue types. For example, CSF is rarely included, and 
there are sometimes multiple levels of model fidelity.

The electrical properties of some types of human tissue are quite similar. Thus, a 
human model that only includes a subset of human tissue could be sufficient for 
application-specific MRI EM simulations. For MRI birdcage coil simulations, fat, 
muscle, bone, and air spaces are especially important to consider [26]. For high-
field MRI head coil simulations, a human model should additionally include CSF, 
white matter (WM), and grey matter (GM) [27].

Generating a correct full-body surface-based model requires great effort through-
out each stage. This is why head and torso models such as that developed by the 
team from NeuroSpin-CEA [28] have become effective solutions for investigating 
head RF exposure.

We previously introduced a semi-automatic processing pipeline to generate indi-
vidualized surface-based models of the human head and upper torso from the MR 
images of individual subjects [29]. A key feature of this workflow is that the result-
ing models have a single surface between adjacent structures. The comprehensive 
workflow covers image acquisition, atlas-based segmentation of relevant structures, 
generation of segmentation masks, and surface mesh generation of the single, exter-
nal boundary of each structure of interest. Two head and torso models were gener-
ated and used for 3D EM simulations using this pipeline [30].
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The  voxel models derived from the Visual Human Project Visible Man and 
Visible Woman data sets have formed the basis for a large number of MRI RF safety 
assessments [27]. See [31] for an example of the HUGO anatomical model. For 
interlab studies in general, it is beneficial to use voxel- and surface-based models 
derived from the same dataset. Therefore, we have selected the Visible Man data set 
as source data for this investigation.

In our case, the generated human models were intended for simulations of head 
coils in high-field MRI and 3T MRI whole body coils with patients at the head 
landmark position. For these purposes, a human model can be truncated at the torso 
without introducing substantial uncertainty.

In this investigation, the pre-segmented AustinMan dataset [32] was used to 
facilitate fast generation of the surface-based head and torso model of the Visual 
Human Project, Visible Man.

MRI coil development and the MRI RF safety assessment of a given RF coil 
require multi-port simulations, and results for only a single frequency in which the 
MRI scanner is running. The latter eliminates one of the major drawbacks of most 
frequency-domain solvers—the requirement to simulate a set of frequencies over 
the bands of interest. The size of the smallest mesh elements do not substantially 
influence the simulation time of most frequency-domain solvers. Thus, a frequency-
domain solver is a good candidate for reliable RF safety assessment in MRI.

ANSYS HFSS (ANSYS, Inc., Canonsburg, PA, USA) was chosen for our 3D 
EM simulations because of its robustness in handling complex MRI coil geometries 
and fast multi-port simulations. Therefore, a substantial part of our work was to 
investigate optimization approaches that ensure successful 3D EM simulations 
when using surface-based geometry. It is important to note that the geometry kernel 
and associated functionality vary from solver to solver. Thus, some additional 
geometrical pre-processing may be required if our head and torso models are used 
with other 3D EM solvers.

The ANSYS Non-Linear Thermal (NLT) platform will be used for our future 
investigations into temperature rise for multimodal setups. Thus, the requirements 
of the ANSYS NLT platform were taken into account during development of the 3D 
EM model.

13.2  �Methods

13.2.1  �Surface Mesh Generation

Here, we present a dedicated subset of our previously established workflow, namely 
the post-processing of segmentation images to so-called segmentation masks 
followed by surface mesh generation. We applied this sub-part of the pipeline to the 
segmented AustinMan dataset [30].
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We utilized the Medical Image Processing, Analysis and Visualization (MIPAV) 
toolset [33] (v.7.3) in conjunction with the Java Image Science Toolkit (JIST) [34] 
(v.2.0-2013) to automate the segmentation mask generation of the subsequently 
described procedures. The final surface meshing was realized in ParaView (v.5.0.1, 
Kitware Inc., New York, USA).

The AustinMan dataset was provided as a set of individual, segmented slices in 
the MATLAB MAT-file format. We did not select all available slices for further 
processing. Slices below the bottom of the lungs were discarded to generate a model 
of the head and upper torso. The in-slice resolution was three times higher than the 
resolution between slices, yielding a voxel size of 0.33 × 0.33 × 1.0 mm3. Using 
MATLAB, we converted the slices to a single volume image in the NIfTI file format, 
which can be imported into JIST. The structures as represented in the segmented 
image are unsuitable for surface meshing for several reasons. First, the anisotropic 
voxel size of the volume leads to an unbalanced level of detail in the three spatial 
directions. For this reason, the volume must be resampled to an isotropic voxel size. 
Second, due to their nested arrangement, most structures of the human body exhibit 
an outer and an inner boundary. However, the inner boundary may resemble the 
shape of the outer boundary of an adjacent internal structure. If triangulated, these 
adjacent boundaries are prone to mutual intersections and small gaps, which must 
be avoided. Third, the number and type of segmented structures exceed the typical 
level of detail required for EM simulations and can therefore be reduced. The 
segmented image is post-processed to segmentation masks to account for these 
requirements.

Using MIPAV, we resampled the image to an isotropic voxel size of 1 mm by 
reducing the in-slice resolution. We then split the image at a slice located at the chin 
of the enclosing exterior structure of the head to account for different requirements 
concerning the type of represented structures and different topological constraints 
of nested structures in the head and torso. The labels of these two images were 
integrated into a reduced set of labels comprising only the structures we aimed to 
consider for our EM simulations, namely enclosing exterior structure, bone, 
cerebrospinal fluid, the ventricles, cerebral GM and WM, the eyes, fat tissue only of 
the torso, muscle, and air. With the exception of the vascular system, all remaining 
structures, for example, the intestines, that could not be clearly assigned to one of 
these target structures were combined with the class of the muscle. The voxels 
representing the blood vessels had to be handled differently since the vascular 
system runs through many structures of the body. Assigning them to a class of 
musculature would introduce considerable and unreasonable segmentation errors, 
for example, muscle tissue inside the skull, the bones, or cerebrospinal fluid. 
Therefore, we cleared the labels of voxels representing the vascular system, that is, 
we assigned them the background value of 0. This procedure created holes in sev-
eral structures at locations which were formerly attributed to the large draining 
veins of the brain. These holes were subsequently closed while the segmentation 
masks were being created. Finally, each structure was transferred to a separate 
image file and binarized.
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Following these preparations, the segmentation masks for the head and body 
structures were generated separately. The images comprising the binarized, 
segmented structures were processed sequentially in a fixed order distinct for the 
body and the head. Separating the workflow for the head and torso was necessary 
since different topological constraints apply in each region. For example, air is 
entirely surrounded by bone in the sinuses of the skull, whereas the air in the lungs 
is outside any boney structure in the body.

The procedure started with the image representing the innermost structure, for 
example, the ventricles in the head, to the image representing the outermost 
structure, namely the enclosing exterior structure. Each image was processed 
identically: A morphological closing operation followed by a filling operation 
ensured a continuous outer boundary and eliminated the inner boundary as well as 
the holes created by the removal of the blood vessels. As a consequence, voxels that 
had originally been identified as blood vessels now represented the structure these 
vessels perfused. Small groups of detached voxels (namely less than 100 connected 
voxels) were identified as connected components and removed to obtain one large 
object per structure. A morphologically dilated version of the adjacent internal 
structure was added to the current structure. This way, we ensured a minimum 
thickness of two voxels for each structure surrounding another structure and avoided 
intersecting structures. An adapted approach was necessary in two cases: 1) Certain 
adjacent structures which were not nested still shared a common boundary (e.g., the 
thorax and the air in the lungs). In these cases the dilated mask image of one structure 
was subtracted from the mask image of the other, which created a spacing of at least 
two voxels between both structures. 2) The GM segmentation of AustinMan features 
very narrow sulci, down to the size of only one voxel, creating small detached 
islands of sulcal CSF in the GM.  To avoid creating a discontinuous surface 
representation of the CSF structure, we applied a 2D filling operation to the GM 
mask for every slice independently, thereby eliminating such narrow sulci. The 
entire process resulted in individual segmentation masks for each tissue class of the 
head and torso separately, each with only a single external boundary.

The segmentation masks were then imported into ParaView. ParaView provides 
the so-called Contour Filter to compute a triangulated, polygonal representation of 
isosurfaces (namely surfaces of identical values in a 3D volume). The Contour 
Filter implements the “synchronized templates” algorithm [35], an improved 
version of the Marching Cubes algorithm [36]. As a result, we obtained high-
resolution surfaces with a high number of triangles, which closely resembled the 
outer boundary of the segmentation masks, and the typical voxel grid-like structure 
of naїve surface reconstructions of structures from voxel-based 3D images was 
mitigated. These surfaces were then exported to individual files using the 
stereolithography (STL) format for subsequent processing.

The triangle size of the surface meshes had a side length of approximately 1 mm. 
This was defined by the resolution of the segmentation masks that ensured: (i) 
correct geometrical representation of inter-cranial tissues, and (ii) generated surface 
meshes to be geometrically error-free (no self-intersections, over-connection, etc.). 
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The total number of faces was approximately 10 million, thus the human model that 
was generated with ParaView was unsuitable for simulation with ANSYS HFSS.

Depending on the resolution and the number of structures that are to be included 
in the model, the automated processing of the workflow took about 45 minutes to 
1 hour. An additional 30 minutes of manual preparation was required by a trained 
and experienced person, for example, to combine some classes of tissue and for 
splitting the segmentation at the head.

13.2.2  �Head and Torso Model Mesh Optimization for 3D EM 
Simulation in ANSYS HFSS

A human model in ANSYS HFSS must be represented as a set of solid bodies. 
ANSYS SpaceClaim (ANSYS, Inc., Canonsburg, PA, USA) was used as the 
geometry preprocessor for: (a) importing STL files, (b) verifying (and, if necessary, 
correction) that all surface meshes were error free (watertight, no disconnected 
regions, no self-intersections, no over-connections, etc.), (c) combining the head 
and torso sections of the exterior structure, (d) optimizing the number of mesh 
elements for each individual object, (e) converting surface meshes into solid bodies, 
and (f) exporting each object of the model in ACIS binary format, which is the 
native file format of the ANSYS HFSS geometric modeling kernel.

Steps “a” to “c” were implemented using the built-in functionality of the 
ANSYS SpaceClaim Faceted Data Toolkit. The Faceted Data Toolkit’s mesh repair 
functionality was sufficient for correcting a small number of mesh errors, but it was 
not suitable for handling the large number of mesh errors that appeared for most 
objects of our model if surface meshes contained triangles with a side length of 
more than 1 mm in ParaView. The main reasons for this were: (i) some compartments 
of the human model object were too thin (less than 3 mm) and it reduced the degree 
of freedom for correct mesh modification because of the low number of triangles 
and (ii) ParaView mesh errors were cascaded (disconnected regions, self-
intersections, over-connections, etc.) in these areas.

Two approaches to reduce the number of mesh elements were applied in 
SpaceClaim: (i) All neighboring triangular faces located on the same geometrical 
plane were combined into a single face, and (ii) the number of faces were reduced 
by generating a triangular faceted wrapper around each model object.

An approach based on generating nonuniform rational B-spline (NURBS) sur-
faces was not implemented because the ANSYS HFSS geometry kernel operates 
internally with geometric primitives, for example, different types of facets and 
tetrahedra. Our tests based on ANSYS HFSS provided strong evidence that the 
meshing time for surface-based models based on NURBS is significantly longer 
than the time required for models generated using the previously mentioned 
approaches.
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We also did not apply the ANSYS SpaceClaim Reduce tool to reduce the number 
of facets in a faceted body, because (i) for objects with a small number of facets, it 
provided a small reduction of the facet if spatial deviation was set to zero, (ii) mesh 
errors often resulted from complex geometric objects with a large number of facets.

�Combining All Neighboring Triangular Faces

The “synchronized templates” algorithm generated high-resolution surface meshes 
that preserved all details of the underlying segmentation masks. Equally sized 
triangles were used for surface triangulations in the algorithm. This resulted in a 
redundant number of triangles, especially for large flat areas, because the 3D ACIS 
geometric modeling kernel (Dassault Systèmes, Vélizy-Villacoublay, France) does 
not require explicit triangulation to represent a flat area.

ANSYS SpaceClaim can combine all neighboring triangular faces located in the 
same geometrical plane into one face. The face reduction factor of this approach 
depends on the size of a given planar surface. For large planar surfaces, for example, 
those that are repeatedly represented on the enclosing-exterior-structure object, the 
reduction factor was very high (more than 100) (Fig.  13.1). For relatively small 
areas commonly observed in bent objects, for example, WM (Fig.  13.2), it was 
small (on the order of 10). This approach resulted in zero deviation of derived 
surface meshes from the original geometry.

Although the same 3D ACIS geometry modeling kernel is employed in both 
ANSYS SpaceClaim and ANSYS HFSS, different behavior was observed for the 
geometry validation check in ANSYS HFSS and ANSYS SpaceClaim if the face-
combining approach was applied. The ANSYS HFSS geometry check reported 
errors for the objects that were error-free surface meshes in ANSYS SpaceClaim. 
One reason for this HFSS error is that the ANSYS SpaceClaim face combining 
procedure produces coincident edges that do not mark the boundaries of new faces. 
All ends that defined the combined faces are coincident edges. Therefore, the 
number of coincident edges is quite large, more than 10,000, for most model objects.

Our comprehensive ANSYS SpaceClaim tests of different human model geom-
etries provided strong evidence that the ANSYS SpaceClaim Split Edges tool can 
detect and successfully merge coincident edges only if the number of coincident 
edges is relatively small, that is, less than approximately 1000.

Exporting human model objects prepared using ANSYS SpaceClaim to ACIS 
binary files was fast and problem free.

�Faceted Wrapper

Using a second approach, generating a faceted wrapper around each model object 
decreased the number of faces. The reduction factors that specified the ratio of 
number of faces in the original object to the faceted wrapper object varied from 

13  Patient-Specific RF Safety Assessment in MRI: Progress in Creating…



254

Fig. 13.1  The enclosing exterior structure object of AustinMan (a) after mesh generation with 
ParaView and (b) after combining faces. Head section of the skin object of AustinMan (c) after 
mesh generation and (d) after combining faces. Close-up view of the enclosing exterior structure 
object of AustinMan (e) after mesh generation and (f) after combining faces
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approximately 5 to 40, depending on tissue importance for 3D EM simulations and 
geometrical complexity (Table 13.1).

The largest ratio was applied for the enclosing exterior structure (Fig. 13.3). This 
resulted in a deviation of up to 3 mm in the ear area. The smallest ratio was applied 
for WM, which resulted in a deviation of less than 0.2 mm between the original 
mesh and the wrapper (Fig. 13.4).

Generating a faceted wrapper around each model object did not result in geom-
etry errors when the model was imported into ANSYS HFSS. Thus, the ANSYS 
HFSS healing procedure was not required for these model objects.

Fig. 13.2  WM object of AustinMan (a) after mesh generation, (b) after combining faces, and (c) 
shows a close-up view of WM object after combining faces
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�Comparison of Different Tissues

The shapes of the CSF, skull, and ribcage after geometric preprocessing for both 
approaches are shown in Figs. 13.5, 13.6, and 13.7.

Similar human model mesh optimization for 3D EM simulation in ANSYS 
HFSS was applied to prepare human Models 1 and 2 (Fig.  13.8) from surface 
meshes developed in our previous study [30]. One problem with most MRI scanners 
is that the maximum field of view is only 50 cm wide, and the patient on the patient 
table can only be moved in the axial direction, thus the subjects’ arms and shoulders 

Table 13.1  Summary of geometrical properties of AustinMan object

Model object
ParaView, 
faces

Combined faces 
approach, faces

Space-SpaceClaim 
wrap size, mm

Faceted wrapper 
approach, faces

Enclosing 
exterior structure

1,656,526 67,871 5 57,004

Head muscle 450,380 20,372 5 13,033
Skull 463,320 29,322 3 40,369
CSF 257,716 14,650 4 12,503
GM 236,868 15,202 4 11,527
WM 498,984 43,382 2 96,586
Air head top part 99,774 8128 2.5 10,728
Air head mouth 
part

17,744 1079 2.5 2198

Vent 17,384 1285 3 1772
Thorax fat 1,349,632 46,823 5 34,172
Thorax muscle 1,415,676 72,889 5 39,063
Lung 709,100 41,697 4 31,996
Thorax bone 1,039,264 77,366 3 90,764

Fig. 13.3  The enclosing exterior structure object of AustinMan after generating a faceted wrapper. 
(a) Entire object. (b) Head section
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Fig. 13.4  WM object of AustinMan after generating a faceted wrapper. (a) Entire object. (b) 
Close-up view of WM object

Fig. 13.5  CSF object of AustinMan (a) after combining faces and (b) after generating a faceted 
wrapper
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Fig. 13.6  Skull object of AustinMan (a) after combining faces and (b) after generating a faceted 
wrapper

Fig. 13.7  Rib cage object of AustinMan (a) after combining faces and (b) after generating a fac-
eted wrapper
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can be truncated in the image data if a default imaging protocol is applied. This 
problem is most noticeable in Model 2.

13.2.3  �A Test of Entire Body Mesh Optimization for 3D EM 
Simulation in ANSYS HFSS

To investigate the performance and limitations of our workflow for entire body 
model generation, the enclosing exterior structure object of the AustinMan model 
was generated using a segmentation mask resolution of 2 mm (Fig. 13.9a), while the 
extents and resolution of all other structures remained the same as in the head and 
torso model. The enclosing exterior structure object of the entire body resulted in 
1,530,456 facets. The number of faces was reduced to 618,737 facets using a face-
combining operation (Fig. 13.9b). The reduction ratio for a surface mesh where the 
side of a triangle was 2 mm was substantially smaller than for a surface mesh in 
which the side of a triangle was 1 mm. Use of a faceted wrapper for the enclosing 
exterior structure object of the entire AustinMan model with the same settings as the 
faceted wrapper for the enclosing exterior structure object of the AustinMan model’s 
head and torso resulted in significant spatial modification of areas between the 
model’s body and arms (Fig. 13.9c).

Fig. 13.8  The enclosing exterior structure object of human models after generating a faceted 
wrapper. (a) Model 1. (b) Model 2
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13.2.4  �Finalizing the HFSS Model

Importing ACIS binary files exported from ANSYS SpaceClaim was fast and prob-
lem free in ANSYS HFSS. After import, each object underwent the ANSYS HFSS 
geometry validation check. A healing procedure was automatically applied if the 
ANSYS HFSS geometry check reported errors. This was a time-consuming process 
and took up to 10 hours to eliminate geometric errors per model object for compli-
cated geometries if the face-combining approach was applied. ANSYS HFSS was 
not able to generate an error-free object after several days of healing the enclosing 
exterior structure of AustinMan.

Fig. 13.9  (a) The enclosing exterior structure of the entire AustinMan model after mesh genera-
tion with ParaView. (b) The enclosing exterior structure of the entire AustinMan model after com-
bining faces. (c) The enclosing exterior structure of entire AustinMan after generating a faceted 
wrapper
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An imported and healed (if necessary) model in ANSYS HFSS consisted of (i) 
the enclosing exterior structure, (ii) objects located above the chin slice created in 
the surface mesh generation step, primary head objects, and (iii) objects located 
below the chin slice, as well as primary torso objects.

The faceted wrapper slightly modified the geometries of model objects. However, 
an ANSYS HFSS simulation of a human model can consist of objects with both 
geometrical preprocessing approaches, because (i) deviation of any faceted wrapper 
from the original geometry is less than a quarter of the thickness of the given object, 
(ii) only one boundary between adjacent structures exists in areas outside the chin 
slice, and (iii) the intersection of adjacent structures in the chin slice area can be 
eliminated according to requirements.

To prevent intersections of objects in the area of the chin slice, all objects except 
the enclosing exterior structure underwent a boolean “split” operation in ANSYS 
HFSS. If the split operation resulted in two objects, only the primary object located 
above (for head objects) or below (for torso objects) the chin slice split plane was 
kept in the numerical domain.

13.2.5  �Human Model Electrical Properties

Electrical properties of tissues were adopted from the IT’IS database [37]. Electrical 
property maps for electrical conductivity and relative electrical constant at 
297.2 MHz provide a reasonable representation of human structures (Figs. 13.10, 
13.11, and 13.12).

13.2.6  �7T MRI Application-Specific Case Study

We performed 3D EM simulations of dual-row 7T head transmit array coil loaded 
with either  the AustinMan model or Model 1  in ANSYS HFSS to evaluate the 
impact of human models on the spatially averaged 10-gram specific absorption rate 
(SAR10g), which is used as the RF power deposition safety limit in 7T head MRI 
transmission and safety efficiencies. The coil consisted of 16 identical rectangular 
loops (100 × 102.25 mm2) arranged in two rows of eight elements each (Fig. 13.13) 
[38]. A gap of 10 mm was applied between elements that were in the same row as 
well as between the two rows. The lower row elements were rotated by 22.5° with 
respect to the upper row. All adjacent elements were inductively decoupled.

The 3D EM model of the array included: (a) all array construction details for the 
resonant elements, (b) the load, namely, the surface-based human model, (c) the 
array environment, including the MRI scanner’s gradient shield and magnet bore, 
all simulated with precise dimensions and material electrical properties, and (d) 
inductive decoupling of all adjacent elements. However, neither RF cable traps nor 
coax cable interconnection wiring were included in the model.
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Fig. 13.10  Map of electrical properties for AustinMan model. (a) conductivity profiles (b) relative 
electrical constant profiles
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Fig. 13.11  Map of electrical properties for Model 1. (a) conductivity profiles (b) relative electrical 
constant profiles

Fig. 13.12  Map of electrical properties for Model 2. (a) conductivity profiles (b) relative electrical 
constant profiles
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Twelve distributed capacitors were inserted in each radiative element to provide 
feed, tune, shunt, and distributed capacitor functionality. One PIN diode with a 
resistance of 0.18 Ω was placed in series with one of the distributed capacitors. This 
diode was used for decoupling transmit-only radiative elements during MRI signal 
reception.

The decoupling networks were defined by inductors, with inductance Lind and 
coupling factor Kind, placed in series with the distributed capacitors. The Q factor of 
all capacitors was set to 324, and the Q factor of all inductors was set equal to 400.

The coil was tuned, matched, and decoupled for the single tissue phantom with 
an external shape like a human model [38]. The optimization of the transmitter coil 
was based on the minimization of an error function (EF), which was a measure of 
the difference between the actual and desired coil conditions. Commonly used 
criteria for multi-channel RF transmitters, at the desired frequency, are: (a) the 
element reflection coefficient Sxx must be set and equal to a required value (i.e., Sxx_t) 
for each coil element, and (b) the element coupling between adjacent elements Sxy 
must be equal to a required value (i.e., Sxy_t) for each decoupled element pair. Hence

	
EF

Elem all dec
= å - + å × -S S S Sxx xx t xy xy t_

_
_.

2 2
0 5

	

where Elem is the number of loops of the coil (namely 16) and all_dec is the number 
of decoupled element pairs (namely 32).

Both rows were excited in circular polarization (CP) mode with phase difference 
φrow of 22.5° between rows. RF circuit and 3D EM co-simulation as detailed in [39] 
was used for calculations.

SAR10g was calculated using an in-house procedure, which is consistent with the 
IEEE/IEC 62704-1 standard and validated by means of an IEEE TC 34 interlab 
comparison study [40].

Fig. 13.13  7T dual row coil geometry and loads: (a) AustinMan model, (b) human Model 1
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13.2.7  �3T MRI Application-Specific Case Study

The 3D EM model of the whole-body coil utilized a 123.2 MHz 16-rung high-pass 
birdcage of an equivalent design to those widely used in clinical 3T scanners (inner 
diameter 615 mm, total length 480 mm). The model head was positioned at the 
isocenter of the coil (Fig. 13.14a). The coil was shielded by a metal enclosure that 
mimicked a 1220 mm-long scanner bore. To mimic the scanner room, the coil was 
centered in an air box with the dimensions of 3  ×  2.25  ×  5  m3, surrounded by 
perfectly matched layer boundaries on all sides. The coil was tuned, matched, and 
decoupled using an elliptical phantom (length 700  mm, major radius 175  mm, 
minor radius 95 mm) positioned in the isocenter of the coil. The phantom material 
properties were: electrical conductivity σ  =  0.52  S/m and relative permittivity 

Fig. 13.14  3T birdcage coil geometry and loads: (a) AustinMan model, (b) an elliptical phantom, 
(c) NEVA Electromagnetics VHP high-resolution entire human model
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εr  =  53.4 (Fig.  13.14b). The optimization procedure, RF circuit and 3D EM 
co-simulation for the 3T birdcage coil were similar to the 7T transmit coil simula-
tions described in the previous section.

The amplitude of the two RF sources used to excite the coil was the same for 
both feeds, with a 90° phase shift between the feeds as in quadrature excitation. All 
results were calculated for a transmission power of 2 W.

The NEVA Electromagnetics VHP high-resolution whole human model [24] was 
used to check our assumption that the head and torso model is sufficient for 3T 
investigations of the head landmark position (Fig. 13.14c). The electrical properties 
of different types of human tissue were adopted from the IT’IS database [37].

13.2.8  �RF Safety of Transcranial Direct Current Stimulation 
Equipment During MRI Case Studies

The impedance of electrical contact between an electrode and the skin should be 
low, e.g. during tDCS or EEG procedures. A conductive gel is used to minimize 
this impedance, which must be included in the numerical domain because it modifies 
the RF field in the proximity of the electrode. Placement of a gel patch between the 
electrode and the skin surface (Fig. 13.15a) resulted in small faces on the edges of 
the patch (Fig. 13.15b). Such small faces could complicate the generation of high 
quality numerical meshes, for example, in the ANSYS Non-Linear Thermal (NLT) 
platform.

Therefore, the triangular faces of the skin object in areas around the electrode 
were merged into a single NURBS face (Fig. 13.16a). Designed using the native 
geometrical capability of the ACIS kernel in ANSYS HFSS, the electrode and gel 
patch were located at the required positions in close proximity to the skin 

Fig. 13.15  (a) Skin object of AustinMan with an electrode and gel patch. (b) Surface of the gel 
patch
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(Fig. 13.16b). After boolean subtraction of the gel object by the skin object, a correct 
single face contact between the gel object and skin object was obtained (Fig. 13.16c).

The tDCS setup consisted of two electrodes, two leads, and a metal connection 
box located 410 mm away from the coil enclosure. A composite-material quadratic 
tDCS electrode was simulated as a conductive medium with εr = 3 and σ = 4 S/m. 
The serial resistors integrated in the leads were located 100  mm away from the 
electrodes. Three resistor values were simulated: 1 mΩ, 5 kΩ, and 1 GΩ to simulate 
conditions of a short (potential manufacturing fault), normal operation, and an open 
connection (resistor failure after long-term operation), respectively. The tDCS lead 
included several straight segments and one helical segment. The lead copper wire 
was 1.2 mm in diameter with an insulation of 2.2 mm diameter. The helix pitch was 
12.5 mm. Two tDCS lead trajectories were simulated: first on the axis of the scanner 
bore (recommended in the device manual) and then shifted towards the edge of the 
patient table.

Fig. 13.16  (a) The enclosing exterior structure of AustinMan with an electrode and gel patch. (b) 
The enclosing exterior structure of AustinMan with an electrode and gel patch. (c) Surface of the 
gel patch
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13.3  �Numerical Simulation Results

13.3.1  �7T MRI Coil Simulation Results

The coil appeared to be correctly tuned for a given load with Sxx (the element reflec-
tion coefficient) values of less than −30 dB and Sxy (the element coupling between 
adjacent elements) values of less than −16 dB (Fig. 13.17).

CSF acted as a weak RF screen (Figs. 13.18 and 13.19), resulting in: (i) a decrease 
of B1+ at the skull/CSF boundary at the top part of the scalp, (ii) a substantial drop 
of the magnetic transmit field, B1+, in GM and WM, and (iii) a significant 
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Fig. 13.17  Circuit level results: (a) Sxx for the top row, (b) Sxx for bottom row, (c) Sxy for the top 
row, (d) Sxy for the bottom row, (e) Sxy between the inductively decoupled adjacent elements 
between rows, (f) Sxy between the nearest non-adjacent elements between rows
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Fig. 13.18  B1+ maps for 
AustinMan model for the 
coil excited in CP mode
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Fig. 13.19  B1+ maps for 
Model 1 for the coil 
excited in CP mode
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Fig. 13.20  Volume loss 
density maps for 
AustinMan for the coil 
excited in CP mode
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Fig. 13.21  SAR10g maps 
for Model 1 for the coil 
excited in CP mode
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redistribution of volume loss density. Concomitantly, power deposition increased in 
the CSF space (Fig. 13.20). Visible variation of B1+ and volume loss density was 
observed for the investigated models.

Changing the human model resulted in some variation of B1+ and SAR10g pro-
files (Figs. 13.21 and 13.22). Additionally, the transmission efficiency and the safety 
excitation efficiency were higher for Model 1.

13.3.2  �3T MRI Coil Simulation Results

Circuit-level optimization resulted in an appropriately tuned birdcage coil with an 
elliptical phantom present in the bore (Fig. 13.23a). Unsurprisingly, the S parameters 
were visibly affected when the coil was loaded with human models at the head 
landmark position, which resulted in asymmetrical coil loading (Fig. 13.23b). No 
substantial difference in S parameters were observed for the head and torso of the 
AustinMan model or the NEVA Electromagnetics VHP entire human model.

Fig. 13.22  SAR10g maps 
for AustinMan model for 
the coil excited in CP 
mode
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For both human models, 3D EM results were consistent with common observa-
tions in the literature, for example [41]: B1+ was rather homogeneously distributed 
across the head, and the maximum deposition of power occurred in the neck region 
(Figs. 13.24 and 13.25). As for the 7T coil simulation, if CSF was represented in the 
numerical domain as a non-separated, continuous segment within a space, it acted 
as a weak RF screen resulting in: (i) a decrease of B1+ at the skull/CSF boundary at 
the top part of the scalp and (ii) a significant volume loss density in CSF.

Truncation of the AustinMan model at the torso did not significantly affect the 
birdcage coil circuit level results or field distributions. Only a very weak scattered 
field was observed in the area located in close proximity to the torso cut plane.

Fig. 13.23  S parameters of the birdcage coil loaded with (a) an oval phantom, and (b) a human 
model at the head landmark position
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Fig. 13.24  AustinMan 
model in 3T birdcage coil. 
(a) B1+ map and (b) 
volume loss density map
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Fig. 13.25  The NEVA 
Electromagnetics VHP 
entire human model in 3T 
birdcage coil. (a) B1+ map 
and (b) volume loss 
density map
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13.3.3  �Transcranial Direct-Current Stimulation Results

After adding the tDCS setup with the lead directed along the magnet axis, substan-
tial power deposition was observed in close proximity to the tDCS electrode edges 
for all values of the serial resistor. Unsurprisingly, the B1+ disturbance in close 
proximity to the electrode location was highest for R = 1 mΩ. For a normal tDCS 
setup operation with R = 5 kΩ, shifting the tDCS lead from the scanner axis toward 
the edge of the patient table resulted in a small variation of power deposition in the 
proximity of the electrode edges. Assuming a (pulsed) peak value of 30 kW of the 
total transmission power (which can be generated by the scanner’s power amplifier) 
yielded voltages across the serial resistor up to 850 V for normal tDCS operation 
(R = 5kΩ) and up to 1.4 kV for an open connection (R = 1 GΩ). For a whole-body 
SAR level of 4 W/kg, average voltages across the serial resistor were 130 V and 
225 V for R = 5 kΩ and R = 1 GΩ, respectively. The obtained range of voltages 
underscores how sufficient electrical strength (e.g., order of 1 kV) is required for the 
tDCS serial resistor. Due to the similarity of the power deposition in the proximity 
of the electrode edges for all investigated conditions, we conclude that the tDCS 
electrodes and the straight segments of the leads between them and the serial resistor 
predominantly determine the power deposition in human subjects.

13.4  �Discussion

Our investigation explored the impact of patient-specific human models on MRI 
safety assessment from different perspectives. Future work should address how 
many different human models, head positions, and non-ideal tuning conditions need 
to be investigated and how many different excitation conditions need to be validated 
in order to demonstrate MRI RF transmit coil robustness, as well as MRI multimodal 
setup and implant RF safety.

Our mesh optimization procedure for the 3D EM simulation workflow is specifi-
cally tailored toward performing simulations with ANSYS HFSS and ANSYS 
NLT. Use of other simulation tools could require some modification of geometry 
preparation steps, for example, the generation of NURBS surfaces instead of faceted 
objects.

In our previous work, we have introduced a semi-automated processing pipeline 
to generate individualized surface-based models from MRI data of individual 
subjects. While this pipeline offers a high level of automation, especially concerning 
the segmentation of the MRI data and segmentation mask generation, so far it is 
limited to model a few relevant structures (i.e., the enclosing exterior structure, 
bone, air, GM, WM, and CSF). Limitations mainly arise from difficulties in 
segmenting certain inter-subject variable tissue types in MR images.

MRI data provides good contrast for different types of soft tissue, but additional 
effort is required to segment skin and bone, especially when this should be achieved 
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in an algorithm-driven manner, without supervision of an expert. Fully unsupervised 
segmentation of highly variable structures, for example, muscle and fat tissue, from 
MRI data across subjects is challenging to achieve using our atlas-based approaches 
and is therefore still subject to further research. However, if corresponding 
segmentation images were available, our segmentation mask generation workflow 
could be extended to include these additional structures, as detailed in this work.

To prevent geometrical model errors in most simulation tools and to accelerate 
geometrical export and preprocessing, our segmentation mask generation process 
enforces the topological constraint that adjacent structures should not share a 
common boundary. The segmented structures were modified according to topological 
constraints for the human anatomy: (i) to being either strictly nested or (ii) not in 
contact with boundaries of neighboring structures. As a result, for example, the 
ventricles of the brain are entirely surrounded by WM, which again is fully 
surrounded by GM even at the brain stem, and there is a space between the rib cage 
and the lung object.

The more structures that are represented in the model, the more difficult it 
becomes to maintain this topological constraint. For example, the vascular system 
runs through a major subset of all the other structures, which made it impossible to 
fully nest it inside another single structure. Furthermore, introducing a space 
between its boundary and the boundaries of all the other structures would create 
holes in those structures.

Additionally, some tissue segments were too small to be represented, which, for 
example, was the case for the pieces of CSF in some narrow sulci in the brain. We 
therefore opted for an approach that eliminates the CSF in these sulci to ensure a 
continuous boundary for the subarachnoid CSF, resulting in trade-off of a less 
accurate representation of sulcal CSF.

As a consequence of both aforementioned problems, we did not include fat tissue 
in the head region. More specifically, fat tissue in the head is present in several types 
of tissue, for example, skin and muscle tissue. As a result, the fat exhibits common 
boundaries with several other structures, such as the skull, cartilage tissue, tendon 
tissue, and the eyes, which made it impossible to entirely nest it inside one structure. 
Additionally, the fat tissue was not segmented in a continuous way, larger gaps 
existed that could not be closed with morphological closing operations and some 
segments of fat tissue were as thin as only one voxel. A possible solution to address 
these obstacles might be to divide the class of fat tissue into subclasses for which 
compliance to the topological constraints can be achieved more easily. We are 
working on defining a set of rules on how to reasonably combine the mentioned 
classes of tissue in an informed anatomical way, and how to handle the discontinuous 
fat tissue and thereby ensure compliance with the necessary topological constraints.

In this work, we have elaborated on the necessary workflow using the AustinMan 
model. However, we expect our workflow to also work for other segmented data 
sets, such as NAOMI [42] and NORMAN [43] and voxel model databases of the 
average Japanese male and female [44]. If segmentation images are already available 
for a person from a previous investigation, our segmentation mask generation 
workflow can be applied to generate a surface-based head and torso model for this 
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individual. Depending on the quality and continuity of the segmented structures, 
adaptations will only be necessary with regard to the integration of the available 
tissue classes into the desired set of structures, the order of structures for which the 
segmentation mask generation will be executed, from the innermost to the outermost 
structure, and the position of where to split the head section of the segmentation 
image from the torso section. These adjustments can be achieved in a time frame of 
approximately 1 day.

In addition, for these new models it is important to investigate whether certain 
structures need dedicated treatment, for example, as was observed in the narrow 
sulci of the GM, the vascular system, or the fat tissue in the head of the AustinMan 
model. Resolving these special cases may require adaptations as simple as adjusting 
the parameters for morphological operations (i.e., closing or filling), which was the 
case for the narrow sulci in the GM. Alternatively, they may require a dedicated 
sub-workflow to be developed, which was the case for the vascular system, and 
which would be the case for handling fat tissue in the head of the AustinMan. In the 
latter case, the necessary time frame of adapting the proposed workflow may easily 
increase to several days.

An extension of the presented workflow to create whole-body models will be the 
next step. We expect similar difficulties with body fat, as we discovered for the head 
and limbs, especially in the abdominal region where the intestines are located.

The time required for geometry modification, import, preprocessing, and mesh 
generation was ten times longer than the solver time of approximately 2 hours on an 
up-to-date Dell workstation. This is not compatible with real-time patient-specific 
safety assessment. However, it is reasonable for investigating more realistic 
distributions of human body shapes and sizes to explore the variation of SAR values 
between subjects, as well as SAR dependences on intracranial geometric variation 
(e.g., variation of CSF spaces with age).

Further development of ANSYS SpaceClaim and ANSYS HFSS capabilities: (i) 
to reduce the amount of facets in surface meshes without creating geometrical 
problems in ANSYS HFSS, and (ii) fast geometry import, preprocessing, and mesh 
generation for geometries with a large number of facets in ANSYS HFSS, could 
substantially decrease the time needed for 3D EM simulation of high-resolution 
human models.
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Chapter 14
Calculation of MRI RF-Induced Voltages 
for Implanted Medical Devices Using 
Computational Human Models

James E. Brown, Rui Qiang, Paul J. Stadnik, Larry J. Stotts, 
and Jeffrey A. Von Arx

14.1  �Introduction

Magnetic resonance imaging (MRI), notwithstanding its status as the preferred 
imaging modality for soft tissue imaging and non-ionizing radiation, is generally 
contraindicated for patients with active implantable medical devices (AIMDs). 
However, it has been estimated that within 12 months of device implantation, 17% 
of pacemaker patients will need an MRI [1]. In order to assess the safety of 
devices, AIMD manufacturers work together with MR manufacturers, regulatory 
scientists, and academia to develop an international technical specification [2] 
which identifies the potential hazards for these patients in an MR environment. 
This test specification covers AIMDs such as deep brain stimulators, pacemakers, 
cochlear implants, etc.

These hazards are separated by the specific electromagnetic field component 
which causes that hazard. Then, the MR conditional safety of a device can be 
assessed in a laboratory by generating the worst case of each field component, each 
of which is unlikely to be observed in a clinical setting. Computational human mod-
els (CHMs) are used for three main hazards: radiofrequency (RF)-induced heating, 
RF-induced malfunction, and RF-induced rectification. RF-induced energy incident 
on the device can be rectified by non-linear electronics, which then can represent a 
safety issue if unintended tissue stimulation were to occur. RF-induced malfunction 
is a related hazard but represents the ability of the device to operate within its 
acceptable tolerances and free from damage during the MRI. RF-induced heating 
usually refers to heating of the tissue surrounding the lead tip, a phenomenon which 
has been shown to be linked with resonant behavior.

There are numerous advantages of using CHMs in concert with in vitro testing 
for this process, rather than more extensive clinical trials [4]. As the evaluation of 
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MR conditional safety of AIMDs contains the interaction of three subsystems, the 
benefits of modeling techniques are here described in relation to these three subsys-
tems: the patient, the MR system, and the AIMD.

Patient variability can be assessed using the Virtual Family [5], which includes 
15 high-resolution CHPs. These models consist of males and females of all ages in 
various body weights and heights and are optimized for electromagnetic simula-
tions. Numerical modeling provides a rapid and low cost way to extract quantities 
such as deposited power or temperature rise in vivo.

When a human body is present in the MRI bore, the uniform EM fields, espe-
cially the electric field, will be greatly disturbed. These accumulated field distor-
tions produce multiple local specific absorption rate (SAR)/thermal hotspots inside 
the human bodies, while these local hotspots further contribute to the RF-induced 
voltages for AIMDs. However, since each human body is unique, the body/coil 
interaction of each CHM will be different. The simulated electric field map in 
Fig. 14.1 from a CHM inside the MRI bore illustrates this effect. As seen in the 
figure, the hazard area positions and strengths in each human body could be signifi-
cantly different. To account for this effect, a library of multiple CHMs, which spans 
the population in terms of BMI, shall be selected in a safety assessment. Moreover, 
any tissue parameter variation of the human models can be easily addressed by the 
computational model.

In a clinical study, only a limited number of measurements can be performed and 
the size of any collected statistical extreme cases would be very limited. However, 
in numerical modeling, millions of simulations of any combination of patients and 
leads, device orientations, etc. can be easily achieved. A device-based risk analysis 
can then be completed utilizing such a large database.

There are various MRI coil manufacturers in the market and each manufacturer 
builds its own MR system, i.e., each of their coils has different geometries. To cal-
culate the statistical extreme cases, multiple body positions inside the bore have to 
be investigated. This variability can be assessed through modeling in a manner 
beyond what is practical in a clinical setting.

In a 3T system, the RF field homogeneity is usually much worse than a 1.5T 
system. To improve the field homogeneity and picture signal-to-noise ratio (SNR), 
a technique called shimming has drawn extensive attention in the industry and has 
been implemented in commercial coils. Since the induced field distribution will be 
altered significantly after shimming is used, this technique has to be incorporated 
into the safety assessment. However, each manufacturer has its own shimming tech-
nique which is invisible to the public. Computational modeling has been shown as 
a very convenient way to rapidly evaluate any kind of shimming technique [7].

Through the use of CHMs, the impact of variability in device orientation, includ-
ing lead pathway, can be thoroughly assessed. The use of CHMs in this process 
enables many more data points to be evaluated than would be practical in a clinical 
setting. For instance, it would be impossible (and likely unethical) to vary the lead 
pathway and study the resulting variability in heating near the lead tip in a single 
patient. Expanding a clinical study to account for all potential device variabilities 
would be undesirable.

J. E. Brown et al.
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In addition, comparative statements may easily be made between AIMDs that 
have been modeled within the same set of CHMs. In a clinical sense it would be 
impossible to gauge two devices under the exact same set of circumstances.

Finally, the use of computational techniques enables MR conditional safety to be 
evaluated for device prototypes. This is in contrast to clinical or experimental tech-
niques, where the wait for a particular AIMD to be manufactured represents a delay 
in the timeline to evaluate the safety of a particular product. Thus, the use of CHMs 
in the assessment of MR conditional safety of AIMDs speeds up the development 
cycle and allows for new products to be developed specifically to meet MR condi-
tional safety guidelines. Overall, this improves and accelerates the patient’s access 
to both the benefits of MRI and to new therapies (provided by new AIMDs).

Fig. 14.1  Electric field 
distribution for obese male 
model at 64 MHz
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14.2  �Evaluation of RF-Induced Malfunction Using 
Computational Human Models

This work focuses on the RF-induced energy incident on the RF antenna port, which 
may interfere with device operation. Manufacturers must perform a safety assess-
ment of this hazard to determine the ability of the device to perform within its 
acceptable tolerances during and after the MRI. This assessment is performed via 
bench top testing, where the test conditions are conservatively computed through 
the use of CHMs. The voltage is induced at the antenna port simultaneously with 
any voltage which is developed at the lead port.

At the lead ports, AIMD manufacturers follow the well-known transfer function 
method [8, 9] to conservatively estimate these induced voltages according to the 
equation

	
V A S E d

L

DUT = ( ) ⋅ ( )∫ 0 τ τ τtan .
	

(14.1)

A typical orientation of the implant for a dual-chamber pacemaker, with implant-
able pulse generator (IPG) location as well as atrial and ventricular pathways is 
shown in Fig. 14.2. A library of CHMs spanning the population in terms of height 
and BMI in different body positions, MR coils, and landmark positions is used to 
study the distribution of expected electromagnetic fields along the lead pathway. 
These fields (specifically, the component of the electric field tangent to the lead 
pathway) are then used to predict the response at the entry points to the cardiac 
implantable electronic device (CIED) by using a transfer function as a lead model.

Lead models are developed experimentally [10], in one or more tissue simulating 
media (TSM). The homogenous TSM should be chosen to accurately compute the 
RF-induced voltage once the transfer function is applied in the human body (via 
CHM).

Fig. 14.2  Example 
orientation of dual-
chamber pacemaker in the 
human body
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The geometric accuracy of the CHM along the lead trajectory, including the con-
tinuity of organs through which the leads are placed, is paramount to the accuracy 
of the model. Variations in critical parameters such as surrounding anatomy and 
tissue properties must be included in the set of simulations used to generate the 
worst-case predicted RF-induced energy.

After deriving a probability distribution of the RF-induced energy at the AIMD 
(which can be expressed in terms of voltage, current, or power), the device is 
injected via bench-top test. The value from the distribution is chosen using a risk-
based analysis and scaled by appropriate uncertainties to provide a conservative 
analysis of the device performance during MRI. The device is monitored to ensure 
it operates within its acceptable range during the injection and a post-test further 
examines the AIMD to ensure no damage has occurred to any of the device’s 
subsystems.

The developing standard for leaded CIEDs establishes a test method for perform-
ing the RF-induced malfunction assessment of the antenna port [3]. Though this 
standard has been developed for these devices, it is extensible to devices of similar 
construction, such as spinal cord stimulators and deep brain stimulators. The stan-
dard method [3] consists of modeling the AIMD in two phantoms, high permittivity 
medium (HPM) and low permittivity medium (LPM), and exposing it to a uniform 
E-field oriented along each of the three axes, for a total of six models to derive a 
coupling coefficient (i.e., a scalar which gives the RF-induced voltage due to a 
1 V/m incident field in the given direction). Separately, the expected peak E-field at 
the device location is derived by simulating a set of CHMs within a series of RF 
birdcage coils. Finally, the test condition for bench top RF injection testing is 
derived by multiplying this coupling coefficient with the predicted in vivo E-field 
according to the equation

	
V E A A A B C C Cx y z x y zant scanner scanner= + + + + +2 2 2 2 2 2 .

	
(14.2)

This method involves separately simulating the CHM without the device present, 
simulating the device in a phantom and combining the results. A flowchart illustrat-
ing the process is shown in Fig. 14.3.

14.3  �Approach

This work explores the accuracy of the method compared to a more rigorous model 
containing both the implanted device geometry and the birdcage coil. That method 
is more computationally intensive than performing the simulations separately, and 
is thus less desirable, as all of a large number of CHM-birdcage coil models would 
need to be resolved for every device. The method is explored for a pacemaker-type 
device but could be applied to other AIMDs of similar construction.
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14.3.1  �Computational Human Model

A full device safety assessment would likely include a variety of human body mod-
els in a number of scan positions (e.g., supine, prone, etc.) and landmark locations 
(e.g., eyes, hips, or other anatomical region at isocenter) with respect to the MR coil 
geometry. The methods in this work are demonstrated by using one CHM in one 
scan position in one 3T coil and are extensible to a full range of conditions for a 
device safety assessment.

The CHM used in this study is the Visible Human Project (VHP)-Female v.3.0 
[11]. The subject is 162 cm in height, with BMI of about 33.5. For electromagnetic 
simulation, this model has been shown to be computationally efficient and plat-
form independent. In order to prevent CAD import errors, techniques such as using 
fully enclosed objects to avoid Boolean subtractions were used in the development 
of the model.

The CHM is shown in Fig. 14.4. The IPG is placed in the left pectoral region. 
Pacemaker implantation is usually in the area between fat and pectoral muscle on 
either the left or right side. The incident electric field would necessarily be very dif-

Safety Assessment
Ensure no irregular pacing waveforms occur, and that rectified voltage (if any) 

does not cause unintended cardiac stimulation.  Perform post-test to determine 
device fully operates within specification.

Model Incident RF Fields 
Model RF field distribution in 
multiple human body model 

variants, RF coils and positions.

Calculate and Analyze Induced Voltage at Antenna Ports
Calculate induced voltage in each human body model variant.  

Generate Antenna Coupling 
Coefficients

Compute antenna coupling coefficients by 
simulating exposure to a uniform E- and/or 

B-field

Determine Target Voltage for Device Injection
Determine target voltage for the system based on a hazard-based risk analysis.  

Expose the AIMD to the Target Voltages
Expose the AIMD to the target voltages.  Monitor device operation and rectified 

voltage (if any).

Fig. 14.3  Flow chart illustrating workflow for the assessment of protection from harm to the 
patient caused by RF-induced malfunction and rectification

J. E. Brown et al.



289

ferent within these two tissues, due to the high contrast in permittivity. The device 
placement intersects these materials and a Boolean subtraction is performed with 
the device as the tool object. Objects in this example which require these subtrac-
tions include the pectoralis major and rib cartilage. This is due to the inability to 
actually deviate the anatomy around the implant and potentially represents a source 
of error between these computational techniques and the in vivo condition.

14.3.2  �Device Model

The antenna used in this study is a loop antenna (classified as a B-field coupled 
antenna in [3]) in an epoxy header over a metallic enclosure. As this work does not 
consider optimization of the antenna, the model was constructed after the antenna 
used in [12]. The dimensions of the antenna are chosen for operation in the 2.4 GHz 
industrial, scientific, and medical (ISM) radio band, which is a higher frequency 
than the RF field of the MR system. The device is shown in Fig. 14.5. The can 
(device base) is a hollow (air-filled) PEC box. The header is modeled as epoxy and 
the feedthrough is ceramic. The antenna terminals are left open-circuited and the 
voltage drop is calculated between the two terminals inside the can.

Fig. 14.4  The VHP-
Female v. 3.0 model used 
in this study
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14.3.3  �MRI Birdcage Coil Model

Two sets of simulations were performed using ANSYS Electronics Desktop. The 3T 
birdcage coil model was implemented using electromagnetic and circuit co-
simulation [13], while the phantom models require only electromagnetic simula-
tion. After solving the 3T birdcage coil model, the incident field was linked to a 
model including the CHM within the bore. Two simulations were then performed – 
one with and one without the device present. When the device was not present, some 
2D and 3D regions were included to ease the computation of the incident field at the 
implant location. These included the rectangular solids shown in Fig. 14.5, for the 
can and header volume, as well as 2D sheets centered in these respective volumes.

14.3.4  �Uniform Field Excitation

As the antenna in this study is a B-field coupled antenna, the test procedure outlined 
in [3] requires the exposure of the device to a uniform incident B-field. In order to 
expose the device to this B-field, a set of dual plane wave simulations were per-
formed using ANSYS HFSS. By configuring each plane wave to have the same 
magnitude, a standing wave is generated in the modeled space which leads to can-
cellation of the E-field and uniform B-field in a particular direction. In this way, the 
RF-induced voltage at the antenna terminals may be extracted and normalized to a 
1 μT incident field.

The phantom is a cube, 100 cm wide on each edge. The cube is assigned to be 
alternately the LPM (εr = 11.5, σ = 0.045) and the HPM (εr = 78, σ = 0.47) material 
properties as described in [3]. The model is extended by an enclosing vacuum object 
which is 300 cm on each side. The radiation boundary is assigned to the vacuum 
object. The phantom, with an example of one B-field orientation and the device 
model placement, is shown in Fig. 14.6.

Fig. 14.5  The device 
model used for this work, 
which is meant to represent 
a pacemaker geometry and 
includes a loop antenna
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14.4  �Results

The results of the method in [3] and the more complete model are compared with 
each other. The field distribution of the CHM without the device present is then 
combined with these coefficients to give the predicted induced voltage at the antenna 
terminal. In order to quantify the field distribution at the CHM location, a number 
of methods are used. These are to take either the peak or the average fields values in 
a plane coinciding with the central axis of the device, the entire device volume, and 
the header volume. The non-model 2D and 3D objects described in the previous 
section are used to calculate volume and area averages for the relevant objects.

These six field distribution quantities are then combined with the results from 
either of the two phantoms, where the six coupling coefficients using Eq. 14.2 then 
give a voltage to be compared with the more rigorous and computationally expen-
sive method of modeling the device in the CHM. These 12 results are compared to 
the calculated value in Fig. 14.7. In the figure, the term “device” means “can and 
header.”

The results show that a number of these methods give a very conservative result. 
In fact, care should be taken to not overestimate the induced voltage, as this would 
lead to overly conservative test conditions.

Fig. 14.6  The phantom model used for this study. The magnetic field is shown oriented in the 
y-direction at the device location. The device is not shown to scale with the phantom dimensions
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A risk analysis for a device safety assessment following a process outlined in 
Fig. 14.1 would require many more simulations and a larger database of incident 
field distributions from the birdcage coil.

All investigated methods were conservative in estimating the induced voltage 
calculated via the more computationally expensive method for the case investigated. 
The method outlined in [3] and presented by Eq. (14.1) assumes worst-case align-
ment of the incident field vector and the antenna coupling coefficient, and thus is 
assumed to always be conservative. Additionally, the method requires taking the 
worst-case result from two phantoms, which further ensures the results to be conser-
vative to the in vivo case.

14.5  �Future Work

In the future, this work will be extended to 1.5T MR systems. While this work con-
sidered only a loop (B-field coupled) antenna, E-field coupled antennas, as well as 
more complex structures (e.g., helices), may be investigated. Additionally, the 
results presented here are for a single CHM, and a wider anatomical variety span-
ning the range of the patient population should be considered. Further, the impact of 
variability of the real situation such as the patient’s position within the bore, varia-
tions in coil design, etc., can be considered as well. Finally, shimming techniques 
[7], which are used in 3T MR systems to improve field homogeneity, can be inves-
tigated. For this work, only one excitation vector for the coil ports was used.
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There are many challenges related to the combination of modeling an MR coil, 
CHM, and device geometry in a single simulation. While some studies of these 
techniques exist [14, 15], the authors identified challenges related to computational 
resources for these efforts. These challenges arise from the fine details of the device 
model being solved in the large simulation volume of the CHP, MR coil, and sur-
rounding space.

In the future, this work should be extended to realistic AIMD IPG geometries, as 
well as including leads. Lead geometries are sometimes coiled tightly (this is espe-
cially true for CIEDs) and include multiple conductors within a small volume. In 
addition, the impact of multiple leads on the induced voltages should be studied. 
Device operation can be incorporated through linking the electromagnetic simula-
tion to a circuit model. The bulk of the literature in this area focuses on the analysis 
of RF-induced heating near leads for homogenous computational phantoms using 
computational techniques such as the method of moments [16] and the finite ele-
ment method [17, 18]. Many of these techniques are extensible to calculating 
RF-induced energy at the proximal end of the lead as well. To date, in-depth device 
modeling has not been extensively performed in CHMs because of the challenges 
related to lead geometries. Future work could enable the evaluation of heat-reducing 
lead designs in realistic anatomies, instead of inhomogeneous phantoms, as is done 
in the literature today [19]. The further development of CHMs to provide optimal 
conditions for device modeling is an enabling technology.

Finally, the impact of any observed rectified voltage can be considered by incor-
porating a physiological model at the electrode interface to determine the probabil-
ity of unintended stimulation, if any. Increased model development may further 
improve this area, as simulation could be used to speed the development of the 
physiological model. In particular, a Medical Device Development Tool could 
include co-simulation of electromagnetic and physiological phenomena [6]. 
Additionally, evaluation of, for example, unintended cardiac stimulation due to 
RF-induced rectified voltage, could be investigated via co-simulation rather than 
through developing probability models based on extensive lead testing.
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Chapter 15
Dose Coefficients for Use in Rapid Dose 
Estimation in Industrial Radiography 
Accidents

Haegin Han, Yeon Soo Yeom, Chansoo Choi, Hanjin Lee, Bangho Shin, 
Xujia Zhang, Rui Qiu, Nina Petoussi-Henss, and Chan Hyeong Kim

15.1  �Introduction

Accidents by industrial radiography sources, which usually involve powerful 
gamma-emitting sources, could result in very high radiation doses to workers, lead-
ing to serious injuries or even death [1]. Even members of the public could be acci-
dentally irradiated by such sources when the sources are not properly controlled or 
regulated. Moreover, industrial radiography accidents are one of the most frequently 
reported accidents among all reported cases in nuclear-related industries [2]. 
According to Lima et al. [3], a total of 80 industrial radiography accidents involving 
120 workers and 110 members of the public, including 12 deaths, were recorded 
globally between 1896 and 2014.

Radiation accidents could lead to high radiation doses, which could induce acute 
radiation syndrome (ARS); these are primarily classified into hematopoietic 
(0.2–2 Gy), gastrointestinal (6–10 Gy), and cerebrovascular (>10 Gy) syndromes 
[4]. For the effective management of patients (i.e., exposed individuals) with ARS, 
initial medical triage should be performed accurately and rapidly, whereby those 
patients who could develop symptoms should be separately identified from those 
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who do not require medical intervention [5]. Therapies for ARS, such as dose  
mitigators, should be promptly administered during the latent period in which the 
exposed person still feels well, i.e., before symptoms occur [6]. For this purpose, it 
is essential not only to carefully document clinical signs and symptoms but also to 
accurately and quickly estimate radiation doses to exposed individuals [7].

Individual radiation doses can be estimated using various dosimetric techniques 
based on biological, physical, and computational approaches. However, all the 
existing dosimetry techniques have limitations and none of them can be used as a 
stand-alone tool in a satisfactory manner for most radiation accident scenarios [8]. 
For instance, biological or physical dosimetry techniques generally require more 
than several days for sample collection and analysis, and these time-consuming 
processes make it difficult to perform timely medical triage. These techniques are 
therefore impractical, especially for use in a large-scale accident involving many 
individuals [5, 6, 9, 10]. Moreover, these techniques are generally limited to esti-
mating the whole-body dose, without information on organ/tissue doses or dose 
distributions [8]. It should be noted that information about the whole-body absorbed 
dose is insufficient, particularly for partial-body or localized exposures. Organ/tis-
sue absorbed doses and/or absorbed dose distributions can be estimated from com-
putational dosimetry approaches (e.g., Monte Carlo simulations with computational 
human phantoms) if reliable information on the accident scenario is available, 
including accurate source geometry and duration of exposure [11], which are often 
unclear in accident situations [8, 12]. No single technique fully meets the criteria of 
an ideal dosimetry technique for use in accident situations; therefore, an integrated 
approach using multiple dosimetry techniques is considered the best strategy [8, 13, 
14]. Absorbed doses calculated with computational human phantoms could be used 
as one of the dose estimators, particularly as an “initial, rapid estimator.”

In the present study, a comprehensive set of organ/tissue absorbed dose coeffi-
cients (DCs) for industrial radiography sources was obtained by Monte Carlo simu-
lations with the adult male and female mesh-type reference computational phantoms 
(MRCPs) recently developed by Task Group 103 of the International Commission 
on Radiological Protection (ICRP) [15]. In addition, adult male and female non-
reference computational phantoms that represent the 10th and 90th percentiles of 
the Caucasian population were also used. These phantoms were constructed by 
deformation and modification of the MRCPs [16]. Note that for dose estimation of 
individuals in accident situations, consideration of the reference person would be 
insufficient, particularly when the body size of the individual involved in the acci-
dent is significantly different from that of the reference person. In this case, the dose 
estimation could be better approximated by using DCs calculated with a non-
reference computational phantom whose body size is close to that of the actual 
individual.

The phantoms were implemented into the Geant4 Monte Carlo code [17] to cal-
culate DCs by simulating the most commonly used industrial radiography sources, 
i.e., 192Ir and 60Co, for various source locations. The behavior of the calculated DCs 
was investigated, primarily by comparing the DCs among the different body size 
phantoms to study the influence of body size on the DCs.
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15.2  �Material and Methods

15.2.1  �Mesh-Type Computational Phantoms

Figure 15.1 shows the adult male and female MRCPs and 10th and 90th percentile 
phantoms used in the DC calculations. The adult MRCPs were constructed by 
converting the adult voxel-type reference computational phantoms of ICRP 

Fig. 15.1  10th percentile 
(left), mesh-type reference 
computational phantoms 
(MRCPs) (middle), and 
90th percentile (right) 
phantoms for an adult male 
(upper figure) and adult 
female (lower figure)
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Publication 110 [18] into a high-quality mesh format. This results in an improved 
representation of various organs/tissues and their ability to accurately estimate 
doses for very small organs/tissues such as the eye lens, the skin, and respiratory 
and alimentary tracts [15]. Note that recent developments enabled the direct use of 
mesh phantoms in Monte Carlo dose calculations, i.e., without going through a 
“voxelization” process, which is required for most existing surface phantoms (also 
called hybrid phantoms) [19, 20].

The MRCPs represent the adult reference male and female, as established in 
ICRP Publication 89 [21] with respect to the reference standing height, body mass 
(male: 1.76 m and 73 kg; female: 1.63 m and 60 kg) and individual organ and tissue 
masses. The 10th and 90th percentile phantoms were constructed by Lee et al. [16], 
by selectively deforming and modifying the MRCPs. The 10th percentile phantoms, 
which represent small statures, have the 10th percentile standing height and 10th 
percentile body mass (male: 1.67 m and 56 kg; female: 1.55 m and 44 kg), with 
organ masses ~25% lighter than those of MRCPs. The 90th percentile phantoms, 
which represent large statures, have the 90th percentile standing height and the 90th 
percentile body mass (male: 1.86 m and 108 kg; female: 1.72 m and 94 kg), and 
organ masses ~25% heavier than those of MRCPs.

15.2.2  �Calculation of Organ Absorbed Dose Coefficients 
for Industrial Radiography Sources

The most commonly used industrial radiography sources of the 192Ir and 60Co radio-
isotopes were simulated as point sources placed near the phantoms. 192Ir emits 
gamma rays up to 0.820 MeV with mean energy of 0.377 MeV, whereas 60Co emits 
1.33 and 1.17 MeV gamma rays. The point sources were assumed to be located at 
three different distances (0.005, 0.1, and 0.3 m) in four directions (anterior, poste-
rior, right lateral, and left lateral) and at five locations along the height of the phan-
tom (ground, middle thigh and lower, middle, and upper torso). In addition, for the 
lower torso level, three longer distances (1, 1.5, and 3 m) were considered for the 
four directions. The source distances used in the calculations are the distances from 
the phantom surface to the sources, except for the anterior and posterior directions 
at the ground and middle thigh levels, for which the source distances were measured 
from the center of an imaginary segment tangent to the surfaces of feet or left and 
right legs at the given level.

The doses of organs/tissues were calculated as organ/tissue-averaged absorbed 
dose per radioactive decay (Gy s−1 Bq−1), by using the Geant4 Monte Carlo code 
[17]. For the simulations, we used a range cut of 5 μm for secondary electrons and 
photons, and the Livermore physics model (G4EmLivermorePhysics), which is pro-
vided by Geant4 for the transportation of electrons and photons with the energies 
ranging from 250 eV to 1 GeV. The statistical errors of the calculated values were 
less than 5% for all cases. The red bone marrow (RBM) DCs were calculated by 
using the fluence-to-absorbed dose response functions provided in Annex D of 
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ICRP Publication 116 [22] in order to consider the microscopic structure of bone 
geometry for different skeletal regions.

Note that the DCs in the present study (assuming point sources) were calculated 
without considering the exact source geometry. In order to allow users to consider 
the self-shielding effect of the sources, source self-shielding factors were addition-
ally calculated by investigating the ratio of DCs for the spherical volume sources 
enclosed by capsule material to those for the bare point sources. For this purpose, 
combinations of four different thicknesses of radioactive material (1, 2, 3, and 
4 mm) and two different thicknesses of capsule wall (1 and 2 mm) were considered, 
which cover the geometries of most radiography sources. The composition of the 
capsule material was assumed to correspond to that of 316 L stainless steel.

15.3  �Results and Discussion

DCs for organ absorbed dose of the reference and 10th and 90th percentile phan-
toms were produced for two industrial radiography sources (192Ir and 60Co) placed at 
72 different locations around the phantoms. The analysis of the calculated DCs for 
industrial radiography sources showed that the DCs generally tend to decrease with 
an increase in the source distance, while the opposite tendency was also observed 
for some cases. Figure 15.2, for example, shows the DCs for the lungs of the adult 
male MRCP for 60Co. It can be seen that the DCs at the source levels of the upper, 
middle, and lower torso decrease with the increase of the source distance, whereas 
the opposite behavior is observed at the other source levels (i.e., the middle thigh 
and ground). This opposite trend is due to the different factors influencing the DCs 
of the lungs. For the first group of source levels (i.e., the upper, lower, and middle 
torso), the lung DCs are mainly influenced by the change of distance between the 
lungs and source (i.e., the inverse-square-law attenuation), rather than that of the 
shielding effect of the intervening tissue (i.e., the exponential-law attenuation). On 
the other hand, for the second group of source levels (i.e., the middle thigh and 
ground), which are much further away from the level of the lungs compared to the 
first group, the lung DCs are mainly influenced by the change of the shielding effect 
of the intervening tissue, which significantly decreases with the increase of the 
source distance. Similar trends were also observed for the DCs of the brain, which 
tend to increase with increasing source distance for the height levels of ground, 
middle thigh, and lower torso.

Our analysis also showed that the DC difference due to different body sizes tends 
to be larger when the source is closer to the body. When the source distance is 
shorter than 1 m, in general, the DCs of the 90th percentile phantoms were signifi-
cantly smaller than those of the MRCPs; the maximum difference was a factor of ~8 
for the female brain for the 192Ir source located at 0.3 m from the phantom surface 
in the right-lateral direction at the ground level. The DCs of the 10th percentile 
phantoms were significantly larger than those of the MRCPs; the maximum 
difference was 2.3 times for the female brain for the 192Ir source located at 0.1 m 

15  Dose Coefficients for Use in Rapid Dose Estimation in Industrial Radiography…



300

10-2 10-1 100
10-19

10-18

10-17

10-16

10-2 10-1 100
10-18

10-17

10-16

10-15

10-2 10-1 100
10-18

10-17

10-16

10-15

10-14

10-2 10-1 100
10-16

10-15

10-14

10-2 10-1 100
10-16

10-15

10-14

source height at ground

source height at middle thigh

source height at lower torso

O
rg

an
 a

bs
or

be
d 

do
se

 p
er

 d
is

in
te

gr
at

io
n 

(G
y 

s-1
 B

q-1
)

source height at middle torso

source height at upper torso

Distance (m)

 anterior
posterior
 right lateral
 left lateral

Fig. 15.2  Lungs absorbed 
dose coefficients for the 
adult male mesh-type 
reference computational 
phantom as a function of 
distance from the phantom 
surface, for a point source 
of 60Co placed in four 
different directions 
(anterior, posterior, right 
lateral, and left lateral) and 
at five different heights 
(ground, middle thigh and 
lower, middle, and upper 
torso)

H. Han et al.



301

from the phantom surface in the left-lateral direction at the ground level. It should 
be noted that, for both cases, maximum differences were not found at the shortest 
source distance (0.005 m), because in these cases the source particles could directly 
reach the head only for the smaller phantoms, while this was not the case for the 
other phantoms.
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On the other hand, for the longer source distances, the DC differences due to 
the different body sizes were small, i.e., less than 20–30% for both genders and all 
organs/tissues, source directions, and isotopes considered in the present study. 
Figure 15.3 shows the DCs of the large intestine of the adult male MRCP for 192Ir 
sources in the four directions at the lower torso level as a function of the source 
distance, along with those of the 10th and 90th percentile phantoms. It can be seen 
that the DC differences among the different body size phantoms decrease with an 
increase in the source distance. This trend indicates that the DCs among the dif-
ferent body sizes are influenced mainly by the change of the distance from the 
target organs/tissues to the source, rather than that of the shielding effect of the 
intervening tissue.

Finally, the DCs of MRCPs were generally found to be closer to the DCs of 10th 
percentile phantom than those of 90th percentile phantom. This is mainly because 
the MRCPs do not exactly correspond to the 50th percentile in body weight; the 
adult male and female MRCPs correspond to ~30th and ~40th percentile in body 
weight, respectively, which are closer to 10th percentile than 90th percentile. It can 
also be seen that the body size effect tends to be less significant for sources in the 
posterior direction as opposed to those in the other directions (anterior and left and 
right laterals). This can be explained by the fact that the change of the residual soft 
tissue (i.e., adipose tissue) among the different body size phantoms in the back is 
smaller than that in the other sides, especially in the abdominal region [23–25].

Table 15.1 shows the source self-shielding factors of 192Ir and 60Co, by which the 
DCs could be multiplied according to the different thicknesses of the radioactive 
material (1, 2, 3, and 4 mm) and capsule wall (1 and 2 mm). It can be seen that while 
the self-shielding effects of 60Co sources are less than 10% in all cases, the self-
shielding effects of 192Ir sources are up to 56.4%, which is due to the extremely high 
density of iridium (22.5  g  cm−3). This implies that source self-shielding factors 
should be considered, especially for 192Ir sources.

15.4  �Conclusion

In the present study, a comprehensive data set of organ absorbed dose coefficients 
(DC) for industrial radiography sources of two radioisotopes (192Ir and 60Co), 
placed in 72 different source locations were obtained by performing Monte Carlo 
simulations with the mesh-type reference computational phantoms (MRCPs) and 

Table 15.1  Source self-shielding factors for 192Ir and 60Co

Capsule-wall thickness

Radioactive material thickness
1 mm 2 mm 3 mm 4 mm
192Ir 60Co 192Ir 60Co 192Ir 60Co 192Ir 60Co

1 mm 0.840 0.972 0.717 0.965 0.627 0.958 0.556 0.949
2 mm 0.803 0.953 0.694 0.947 0.606 0.938 0.536 0.929
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10th and 90th percentile phantoms. In addition, the characteristics of the DC data 
were investigated, thereby finding that the body size indeed significantly influences 
the DCs, especially when the sources are closer than 1 m to the human body, which 
is often the case for accidents involving industrial radiography sources. The DC 
data are expected to be used as an initial tool for the rapid dose estimation of indi-
viduals accidentally exposed to industrial radiography sources. A full set of the 
DCs will appear in a forthcoming ICRP Publication prepared by the ICRP Task 
Group 103 of Committee 2.
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Chapter 16
Effect of Non-parallel Applicator Insertion 
on 2.45 GHz Microwave Ablation Zone 
Size and Shape

Austin W. White, Dwight D. Day, and Punit Prakash

16.1  �Introduction

Microwave ablation (MWA) is an established modality for minimally invasive 
treatment of tumors in the liver and other organs. During MWA, a microwave 
antenna (also referred to as an ablation applicator) is inserted into the target tissue 
and radiates microwave power, which is absorbed by the surrounding tissue and 
leads to heating. Compared to other energy modalities for thermal ablation, MWA 
offers the advantage of rapid heating of large tissue volumes via the simultaneous 
use of multiple applicators [1]. The electromagnetic power absorbed within tissue 
during multiple applicator MWA is a function of the system operating frequency, 
tissue biophysical properties, applied power levels, radiation pattern of each appli-
cator, and the relative spacing between the applicators. Preclinical experiments in 
ex vivo tissue are often used to characterize the size and shape of ablation patterns 
for specific devices, and these data may be used to assist in treatment planning [2]. 
Experimental studies to characterize multiple applicator ablation patterns typically 
employ the applicators inserted into the tissue sample in a parallel manner [1]. In 
clinical practice however, parallel applicator insertion may not be feasible due to 
anatomical constraints. As illustrated in [3], the spacing between applicator tips 
may be up to twice as much as the applicator spacing at the insertion point on the 
skin surface.

Studies investigating the impact of non-parallel applicator insertion during inter-
stitial hyperthermia with microwave antenna arrays determined that skewed appli-
cator placement shifted the location of the region of maximum power absorption 
[4]. However, prior simulation studies to assess ablation zones created by MWA 
with non-parallel applicator configurations were limited due to the use of models 
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which did not incorporate temperature-dependent tissue dielectric properties [3]. 
Recent studies have highlighted the importance of incorporating temperature-
dependent tissue dielectric properties in computational models of MWA [5].

This chapter summarizes the use of multi-physics computational models and 
experiments in ex vivo tissue to compare the size and shape of ablation zones with 
parallel and non-parallel applicators.

16.2  �Materials and Methods

We implemented finite element method (FEM) computational models of microwave 
tissue heating to comparatively assess ablation profiles achieved with a pair of 
2.45 GHz interstitial dipole antennas spaced 10–20 mm apart. The antennas were 
inserted in parallel and non-parallel configurations. Experimental studies were con-
ducted ex vivo using liver tissue for a subset of these configurations. Computational 
modeling results were compared against the experimental observations of ablation 
zone profiles.

16.2.1  �MWA Applicator Configurations

We investigated nine different MWA applicator insertion configurations, including 
three cases with parallel applicator insertion and six cases with non-parallel applica-
tor insertion. We considered inter-applicator spacings of 10–20 mm to capture the 
range of applicator spacing commonly encountered in clinical applications. As 
illustrated in Fig. 16.1, the parallel cases had antennas inserted into the liver with 
the center of the microwave applicators at separation distances denoted Dins. The 
non-parallel cases had the tip of each applicator moved toward the centerline by 
2.5 mm, 5 mm, or 7.5 mm each, resulting in tip spacings (Dtip) of 15 mm, 10 mm, or 
5 mm, respectively.

Fig. 16.1  Illustration of 
non-parallel MWA 
applicator insertion
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In Fig. 16.1, Dins is the nominal distance between the antennas and Dtip is the 
distance between the tips of the antennas. For the parallel cases, Dins is equal to Dtip. 
For the non-parallel cases, Dtip was changed in multiples of 5 mm (each antenna 
moved 2.5 mm). The tip of each antenna was moved inward by half the total tip 
displacement, so that the setup was always symmetric with respect to the centerline. 
Lins is the distance between the antenna tip and the upper surface of the liver tissue. 
Lins corresponds to the length of the antenna inside the liver for a parallel case. The 
depth of the antenna tip from the top of the liver remained constant in all experi-
ments. Therefore, the total length of the antenna in the liver slightly increases for a 
non-parallel case in order to maintain the same tip depth from the surface of the 
liver. LL was chosen to act as a reference to define the insertion distance.

For this study, the MWA applicators were uncooled, interstitial, dipole antennas 
operating at 2.45 GHz. The antennas were created using UT-85 coaxial cable with 
the distal tip of the cable modified as described by Curto et al. [6]. Each antenna was 
energized with 15 W applied power (at the antenna input). We chose this power to 
be within the clinically relevant range, while yielding ablation zone sizes not 
impacted by the limited size of the tissue samples used in our experiments.

As illustrated in Fig. 16.1, ablation zone extents were assessed primarily in the 
XZ-plane.

16.2.2  �Computational Model of Microwave Ablation

Three-dimensional multi-physics computational models of microwave tissue heat-
ing were implemented using the FEM solver within COMSOL Multiphysics 
(v5.2a). Models were employed to compute the electric fields radiated into tissue 
and the subsequent heat transfer due to absorbed microwave power. The Helmholtz 
electromagnetic wave equation, Eq. 16.1, was used to calculate the electric field at 
all mesh points.

	

∇× ∇×( ) − −








 =−µ

ω σ
ωr r

1
2

0
2

0

0E E
c

i
ε


	

(16.1)

Here μr is the relative permeability, εr is the relative permittivity and σ is the 
electrical conductivity of the material, c0 is the speed of light in free space, ω is 
angular frequency, and E [V/m] is the electric field vector. From the electric field, 
we can calculate how much power is absorbed within the tissue using Eq. 16.2, 
which serves as the heat source for the transient heat equation, Eq. 16.3.

	
Qe =

1

2

2σ E
	

(16.2)

16  Effect of Non-parallel Applicator Insertion on 2.45 GHz Microwave Ablation Zone…



308

	
ρc

T

t
k T Q

∂
∂

= ∇ ⋅ ∇ + e

	
(16.3)

where T is temperature [K], ρ is tissue density [kg/m3], and C is the specific heat 
capacity of tissue [J/(kg K)].

We did not include blood perfusion in our simulations as our ex vivo experimen-
tation would also lack blood perfusion and the primary goal of this work was to 
compare simulation results with experimental measurements. The electrical proper-
ties of liver tissue at 2.45 GHz were dynamically adjusted as a function of the liver 
temperature as described in [7]. The nominal value of tissue relative permittivity 
was εr = 57.9 and effective conductivity σ = 1.09 S/m [8].

The applicators were inserted into a cuboidal volume of liver tissue (length and 
width of 60  mm and a height of 80  mm). A non-uniform tetrahedral mesh was 
employed in the simulations. In our case, the finest resolution was within the antenna 
and coarsest resolution was used at distances further away from the applicator. The 
conducting elements in the antennas were approximated as perfect electric conduc-
tors. Electrical scattering and thermally insulating boundary conditions were 
imposed on the exterior surfaces of the liver and the insulating catheter.

16.2.3  �Experimental Assessment of Dual Applicator 
Microwave Ablation Zones

�Instrumentation and Procedure

Two insulated dipole antennas were fabricated according to the dimensions given in 
the paper by Curto et al. [6]. The antennas had an active dipole length of 10.9 mm 
and a gap of 1 mm and were tuned to operate at 2.45 GHz. These antennas did not 
have any active cooling. Antennas were fabricated using Micro-Coax UT-85, with a 
thin heat shrink tubing (3M, FP-301 26-28 AWG) acting as an insulating sheath. An 
SMA connector (Huber+Suhner) was attached to the end of the coax to form the 
connector. Antenna reflection coefficient measurements using a Vector Network 
Analyzer (VNA) verified that the antennas were properly matched (S11 of at least 
−10 dB at the operating frequency) to the feeding transmission line.

For the experimental setup, a Flash Forge Creator Pro 3D printer was used to 
create a base from polylactic acid (PLA). The base was designed to hold the anten-
nas and liver tissue during experimental testing. The internal measurements of the 
base were 60 mm × 60 mm × 85 mm. The template blocks held the antennas in the 
same configurations as the simulations. The following antenna configurations were 
investigated experimentally: 20 mm parallel, 20 mm to 15 mm (converging), 15 mm 
parallel, and 15 mm to 10 mm (converging).

Ex vivo ablations were conducted in fresh bovine liver. Liver samples were pro-
cured from a local meat-processing plant and cut to fit into the base. The liver sam-
ples were placed in plastic bags and then warmed in a water bath (Polyscience 7306) 
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until they reached a temperature of ~30 °C. Five experiments were performed for 
each configuration. For each experiment, one liver piece was removed from the water 
bath and placed into the base and the template block was then snapped into place. The 
antennas were inserted through the template block to a depth of 6 cm into the liver.

We applied a 30 W forward power signal at 2.45 GHz (SAIREM microwave 
generator) and used an equal power splitter (Pasternack PE-T1000) to divide the 
power into two separate, phase-matched signals fed to each antenna. We then used 
two power meters (Bird Technologies 7022-1-02020 and Bird Technologies 5012D) 
to track the power level delivered to each antenna. We adjusted the total average 
forward power to remain close to 30 W during each experimental ablation.

The liver was sectioned in half after the ablation, revealing the ablation zone in 
the XZ plane. This was done by removing the template block along with the red 
connector piece and slicing the liver with a knife down the slot in the base as shown 
in Fig. 16.2. Both halves of the liver were then placed on a flatbed scanner (Epson 
V550 Photo Color Scanner) which was used to acquire a color (RGB) image of the 
ablation zone at 400 dpi. The scanner was used to prevent skew from photos that 
might appear in pictures taken with a hand-held camera. The scanner has the added 
benefit of keeping the lighting and resolution constant for all pictures, which is 
desirable for automated processing of acquired images.

�Image-Based Analysis of Experimental Ablation Zones

The resulting pictures were processed using the basic image processing techniques 
available in Python 3.6 to measure the size and compare the shape of the resulting 
ablation zones. A basic thresholding operation in both the RGB color space as well 
as the Hematoxylin-Eosin-DAB (HED) color space (HED used often in detecting 
blood composition) was the primary method used to detect the ablated area of the 

Fig. 16.2  3D printed base 
with template block in 
place to hold the antennas
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liver tissue. We used skimage to convert the RGB image into the HED color space. 
Then scipy was used to perform a small Gaussian blur (σ =  .19) on the resulting 
non-binary image to remove noise, and then converted back to a binary image. A 
series of morphological operators (erosion and then dilation using a disk of size 3 
pixels) further reduced noise and smoothed the edges of the ablation region. After 
the morphological operators, the scipy function – binary fill holes – was used to fill 
in the holes in the middle of the ablated region. Skimage region properties were used 
to single out the ablation region, which corresponded to the largest region in the 
image after noise removal. An edge detection operation was used on the largest area 
to determine the size of the ablation zone. Further details of the image analysis pro-
cedure are provided in [9].

Once the shape of the ablation region was segmented in all ablations for a given 
scenario, they were overlaid for aggregate analysis. Each segmented ablation zone 
was centered and aligned to the same orientation as part of the overlay process. 
Region properties of the ablation zone were used to find the center of mass for each 
ablation area. We also applied a rotation on an image-by-image basis depending on 
the placement of the liver sample on the scanner bed. The angle of rotation was 
determined qualitatively for each of the ablation areas. After aligning the ablation 
shapes, we added the binary score (0 or 1) for each pixel from multiple repetitions 
of each ablation scenario together to find the composite ablation image. Since we 
performed n = 5 experiments for each experimental scenario, this composite image 
contained only integers with values that ranged between zero and five. The value of 
five occurred in regions where the tissue was ablated in each of the five experi-
ments; likewise, the areas that had a value of one are locations where the tissue was 
ablated in only one of the five experiments. The darkest mass in the center corre-
sponded to an ablation area in all experiments. From this, we found the maximum 
and minimum ablation shape for each scenario, as well as the 75% contour (i.e., the 
region that we would expect to see ablated in 75% of ablations). To find the maxi-
mum, we converted the image to a binary image format where only the highest 
number (five) would be a one, all else would be zero. A canny edge detection algo-
rithm was then used to find the maximum shape.

We compared the shape of the ablation zone extents from experiments using the 
Dice Similarity Coefficient (DSC) metric. This metric is commonly used in image pro-
cessing applications to compare shape similarity. The DSC is calculated using Eq. 16.4,

	

DSC =
∩

+

2 A B

A B
	

(16.4)

For the experiments, A and B are binary images that have been detected 
through image processing. Specifically, the areas inside some contours (typi-
cally the 75% contour). For the simulations, we use the XZ plane that bisects 
the liver and antennas and considered only points on that plane that are at or 
above 55 °C as an estimate of the simulated ablation zone. We also employed a 
volumetric approach that compared the entire volume of the ablation region 
that is above 55 °C to the 3D simulation results.
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16.3  �Results and Discussion

Figure 16.3 illustrates experimental results for the ablation zone segmentation, 
alignment, aggregation, and averaging process. Table  16.1 lists Dice Similarity 
Coefficients between microwave ablation zones for antennas spaced 10–20  mm 
apart in parallel and non-parallel configurations.

Although both experiments and simulations predicted similar trends, experimen-
tally measured DSCs were ~15% lower. This discrepancy is possibly due to the 
jagged edges of experimental ablation zones, which confound image similarity 
metrics.

Figure 16.4 illustrates simulated and experimental ablation zones for 15  mm 
parallel and non-parallel (2.5  mm displacement of antenna tips) configurations. 
Both simulations and experiments indicated small changes in ablation zone shape. 
For the 20 mm parallel vs. non-parallel configurations illustrated in Fig. 16.5, the 
difference between ablation zone shapes is slightly more pronounced, as evidenced 
by the smaller DSC and observed ablation zone shapes. The presented method 
therefore provides a means for comparing ablation zone shapes for various configu-
rations, in contrast to the widely used approach of comparing parameterized mea-
surements of ablation zone geometries. This approach is especially helpful for 
analysis of shapes that are not close approximations of spheres/ellipses.

a) b) c) d)

Fig. 16.3  Image processing at various stages- from left to right: (a) scanned image of ablation 
zone in ex vivo liver, (b) segmented ablation region, (c) overlay of segmented regions, and (d) the 
resulting 75% contour

Table 16.1  Dice Similarity Coefficients between microwave ablation zones

Antenna spacing at insertion Antenna tip spacing DSC simulated DSC experimental

10 5 0.95
15 10 0.93 0.81 ± 0.003
15 5 0.89
20 15 0.85 0.73 + 0.06
20 10 0.78
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16.4  �Conclusion

The use of microwave ablation for treating tumors in the liver and other organs is 
growing. Clinicians who deploy multiple antennas for treating hepatocellular carci-
noma (HCC) may not always be able to insert the antennas parallel to each other, and 
it is not yet known what impact this has on the ablation outcome. This research was 
an investigation to assess the potential change in ablation volume for non-parallel 
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Fig. 16.4  (a) Illustration of simulated ablation zones for 15 mm parallel vs. non-parallel configu-
rations; (b) 75% ablation overlay from experiments
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Fig. 16.5  (a) Illustration of simulated ablation zones for 20 mm parallel vs. non-parallel configu-
rations; (b) 75% ablation overlay from experiments
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insertion. These results may serve as a guide to practitioners to determine the poten-
tial impact of non-parallel antenna insertion when conducting clinical procedures.

We found that non-parallel insertion could have a measurable change on the 
ablation size and volume for our setup. There was up to a 30% variability for some 
of the more severe cases of non-parallel insertions studied. We also found that the 
rate of change for ablation size does vary considerably and did not vary linearly 
with the distance of the tip displacement from the original parallel position.

The model we used for simulating ablation was relatively accurate at predicting 
the shape of the ablation zone for our experiment and was also capable of showing 
how the ablation shape would change given a small tip offset distance. The amount 
of similarity between the parallel and non-parallel insertions did vary when compar-
ing the simulation and the experimentation, possibly due to unaccounted tissue 
shrinkage in the simulations.
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Chapter 17
A Robust Algorithm for Voxel-to-Polygon 
Mesh Phantom Conversion

Justin L. Brown, Takuya Furuta, and Wesley E. Bolch

17.1  �Introduction

Since their early development in the late 1950s, general-purpose Monte Carlo (MC) 
radiation transport codes have utilized primitive geometric structures to define 
material interfaces in their transport geometry, e.g., planes, spheres, ellipsoids, and 
truncated cones. These structures were used from the 1960s to mid-1980s to geo-
metrically represent the human body in both its outer body contour and internal 
organ structure. Their geometric simplicity was ideal for the limited computer tech-
nology at the time, and addressed the need for computational efficiency in particle 
tracking. These “stylized” phantoms, while at the time fit for purpose, did not pro-
vide an anatomically realistic representation of the human body, particularly in 
regard to organ shape and inter-organ tissue separation.

Beginning in the late 1980s, the need for improved anatomical accuracy, along 
with concurrent advances in computational memory and processor speed, led to the 
subsequent development and use of voxel-based human computational phantoms. 
Those phantoms were defined by a collection of rectangular parallelepipeds (voxels) 
of equal or non-equal size defining each tissue material. Voxel phantoms originate 
from the segmentation of CT or MR image data sets. Consequently, all tissue ele-
ments within a voxel phantom are generally of uniform size and shape (x,y,z dimen-
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sions). The transition from stylized to voxel phantoms necessitated an increase in 
computational steps during radiation transport, as boundary crossing checks shifted 
from those associated with entering or leaving an organ or body region to those 
associated with entering or leaving each voxel defining that organ or body region.

Beginning in the early 2000s, a third generation of human computational phan-
tom – mesh phantoms – was advanced, in which body regions and internal organ 
structures were once again represented, not by a collection of voxels, but by surfaces 
defined by 3D control points (non-uniform rational B-splines or NURBS) or arrays 
of polygons. These mesh-type phantoms allowed for the scalability and deformabil-
ity provided by stylized phantoms, yet they retained the anatomical realism of voxel 
phantoms. In the coupling of mesh phantoms to radiation transport codes, however, 
a final step of voxelization had to be performed as the particle tracking algorithms 
employed at that time did not recognize NURBS or polygon mesh surfaces. Mesh 
phantom voxelization thus entailed filling these surfaces with an array of voxels of 
user-defined dimensions. A second advantage of mesh phantom voxelization was a 
resolution of potential surface overlaps and intersections introduced during phantom 
construction, rescaling, and/or deformation. The voxelization processes, by defini-
tion, eliminated these tissue incongruencies. Within the past few years, however, 
significant advances have been made in particle tracking algorithms so as to now 
enable the direct use of meshed geometries during MC radiation transport simula-
tion. These developments were initially introduced into the MCNP code in 2009 [1], 
into the GEANT4 code in 2013 [2], and into the PHITS code in 2015 [3, 4]. Thus, 
there are a tremendous number of existing voxel-based computational phantoms that 
would now benefit from a conversion to mesh-type format.

This chapter reviews a computational algorithm developed to convert voxel phan-
toms to polygon mesh phantoms suitable for MC transport and importable into mod-
ern CAD software. The method eliminates geometric redundancies, allowing for a 
minimal and optimized geometric representation of the meshed structures. This fea-
ture is beneficial for computational human phantoms as voxel size is typically gov-
erned by the smallest anatomical structure to be represented, while a mesh phantom 
is not limited in this respect. The resulting algorithm allows users to continue to use 
the significant number of existing voxel phantoms that have been developed over the 
past 20 years without the need for labor-intensive manual modification. Additionally, 
the algorithm can be used with segmented image data to form mesh geometries free 
of intersections and incongruences so as to be used in simulation or CAD software.

17.2  �Materials and Methods

17.2.1  �Voxel to Mesh Conversion Procedure

The voxel-to-mesh conversion procedure is divided into six main steps: (1) data 
preparation, (2) gridded surface generation, (3) surface simplification, (4) line sim-
plification, (5) polygon detection, and (6) polygon correction. The details of each 
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step are briefly described in this section, which also includes a discussion of the 
benchmarking procedures used to evaluate the conversion process.

�Data Preparation

First, the phantom voxels are read into a three-dimensional array of specified size 
<nx, ny, nz>. Next, two additional four-dimensional arrays are created of dimensions 
<nx, ny, 3, 12 > and < nx, ny, 3, 8 > which represent sliding windows of temporary 
data used to ensure the uniqueness of every facet, vertex, and line that is generated 
in the newly created mesh phantom. The guarantee of element uniqueness is impor-
tant to minimizing subsequent memory requirements during the handling of arbi-
trarily large arrays. It is important to note that the z-axis is chosen to be 3 units wide 
as this is typically the dimension along the phantom’s cranial-caudal (and longest) 
direction this is chosen to minimize memory requirements. The array is 3 units wide 
as only adjacent z-slices of voxels can possibly contain information relevant to the 
current voxel. Several other arrays are also generated:

•	 The vertex array – an array of 3D points
•	 The line array – an array containing two integers representing two connected 

vertices within the vertex array
•	 The facet array – an array containing arbitrary numbers of integers representing 

connected lines within the line array
•	 The facet tag array – an array containing the ordered materials which separate 

the facets.

�Gridded Surface Generation

The voxel data is parsed after the data is initialized. Each voxel is checked to deter-
mine if neighboring voxels are of a different material from the current voxel. If the 
neighboring voxels are of the same material, nothing is generated. If a neighboring 
voxel is found to be of a different material, the next step is to determine the facets 
to be produced. At this step, a facet is simply a rectangle between two voxels of dif-
ferent materials. As shown in Fig. 17.1, there is a possibility of 6 facets, 8 vertices, 
and 12 lines that could be produced for each voxel. Facets, vertices, and lines are 
produced depending on which adjacent voxels are of different materials. Given 
which neighbors are different materials, the required lines and vertices are deter-
mined. Once the required lines and vertices are determined, the sliding window of 
vertices and lines is checked to determine if this information already exists. If the 
data has already been generated, it is added to the current voxel position within the 
sliding window. If the data are not present, the data are generated and stored appro-
priately. The position of the vertices in 3D space is given by the required facets. At 
this point, a facet is composed of only four lines forming a rectangle. This process 
is repeated throughout the phantom array as the window is shifted along the longest 
axis through which it iterates. At this step, a surface mesh phantom has been 

17  A Robust Algorithm for Voxel-to-Polygon Mesh Phantom Conversion



320

generated whose boundaries only differ between different materials (e.g., organs 
and tissue material of a given elemental composition and mass density). These 
boundaries are represented by a gridded surface which is further simplified and 
optimized as shown in Fig. 17.2.

�Surface Simplification

The surface simplification process can begin once all necessary facets, vertices, and 
lines have been generated. Surfaces are first grouped by three values: (1) separated 
material, (2) whether or not x, y, or z is constant, and (3) the value of this constant. 
This grouping results in sets of surfaces which all separate the same material and are 
co-planar to one another (see Fig. 17.3). The purpose of this grouping is twofold. 
First, the grouping reduces the required computation time for the surface simplifica-
tion step as comparisons only need to be made between grouped facets rather than 
across the entire list. Second, this grouping allows the surface simplification step to 
be performed in parallel.

The facets are then merged after grouping facets of the same material. A Boolean 
union operation is performed for every facet within each group. To determine if co-
planar facets can be merged, the facets are checked to see if they share a common 

Fig. 17.1  Example of a 
single voxel and its 
potential 6 facets (blue), 8 
vertices (black), and 12 
lines (red)

Fig. 17.2  A two-
dimensional example of a 
voxelized surface after it 
has been converted to a 
gridded mesh. One 
material is depicted in blue 
and the other in orange
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line. If the two facets indeed share one line, then they may be combined. The 
Boolean union process involves three sub-steps:

	 (i)	 The common line is determined and removed from both facet 1 and facet 2.
	(ii)	 The remaining lines of facet 2 are added to facet 1.
	(iii)	 Facet 2 is marked for removal.

This process is repeated until no more facets can be incorporated within each facet 
group. The facets marked for removal are then removed from the array. After this 
process is completed, unused lines and vertices are removed and facets and lines are 
updated to reflect new vertex and line positions within their respective arrays. At 
this point in the conversion process, the phantom surface mesh has been reduced to 
a minimal number of polygons, as shown in Fig. 17.4.

�Line Simplification

After a minimum number of polygon surface representations have been generated, 
these polygons contain more lines than are necessary to enclose the required volume 
(e.g., organ or body region). Prior to simplifying the lines, they are grouped in a 
similar manner to the facets. First, lines are scanned iteratively to determine for 
every vertex how many lines use that vertex. Next, lines are subdivided into co-
linear groups. This subdivision allows for the line simplification process to be per-
formed in parallel and thus minimizes the required processing time needed since 
fewer comparisons need to be made.

Fig. 17.3  Illustration of 
the facet grouping 
procedure depicting 
separation of facets into 
coplanar groups of the 
same separated material

Fig. 17.4  Illustration of 
the surface simplification 
process for the blue surface 
group in Fig. 17.3. The 
black area on the left 
image depicts space no 
longer occupied by 
polygons
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To simplify lines, each group of co-linear lines is scanned iteratively. Line pairs 
are flagged if both lines share a common vertex. If the lines share a vertex, a Boolean 
union operation can be performed if the vertex in common is only used by two lines 
globally within the phantom. If this is the case, the two lines and the vertex are not 
necessary to properly represent a given surface, and thus they can be removed with-
out inducing a mesh overlap. The Boolean union process is performed for these two 
lines in a manner similar to that used for the facets:

	 (i)	 The common vertex shared by only line 1 and line 2 is determined.
	(ii)	 The shared vertex in line 1 is replaced by the unshared vertex in line 2.
	(iii)	 Line 2 is marked for removal.

This process is repeated until no additional lines can be incorporated within each 
group of lines. The lines marked for removal and all unused vertices are then 
removed. The line and facet arrays are then updated to reflect the new position of the 
vertices and lines in their respective arrays. At this stage, the mesh phantom is rep-
resented by the minimum possible number of surfaces and these surfaces are repre-
sented by the minimum possible number of lines as demonstrated in Fig. 17.5.

�Polygon Detection

After these two simplification processes, the facets are now composed of an unor-
dered set of lines and polygons. By construction, the lines contained within each facet 
must form at least one closed loop (i.e., a polygon). Within each facet, polygons are 
formed by simply end matching lines until all lines are used. If multiple polygons are 
formed by construction within one facet, one of these polygons must be interior to the 
other, thus forming a hole within the outer polygon. This is easily determined by a 
bounding box as demonstrated in Fig. 17.6. This process is repeated for each facet.

�Polygon Correction and Hole Detection

Even though the technique described herein is computationally efficient, using an 
end-matching method to construct polygons can possibly create self-intersections 
within each polygon. These may occur because vertex repetition is not checked as 
each line is added to the polygon as it would result in a significant decrease in 

Fig. 17.5  Illustration of 
the line simplification 
process for the simplified 
surface group in Fig. 17.4
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computational efficiency. Instead, after polygons have been created, they are 
checked to see if any vertices other than the start/end vertex have been used multiple 
times. An “ear-clipping” method is employed in this situation. To ear-clip a poly-
gon, one creates a new polygon from the lines between the vertex that is used mul-
tiple times. These lines are then removed from the larger polygon and a new polygon 
is added to the facet as demonstrated in Fig. 17.7. At this point, the mesh is now an 
intersection-free and redundancy-free (all vertices, lines, and facets are unique) 
mesh that is represented by the least number of surfaces. If the surface-mesh phan-
tom is to be converted to a tetrahedral-mesh phantom, as required by the PHITS 
radiation transport code, the open-source conversion code TETGEN [5] may be 
utilized. The mesh can also be triangularized and exported in a file format accept-
able to most modern CAD software codes.

17.2.2  �Conversion Process Benchmarking

In testing the performance of the voxel-to-mesh conversion algorithm, two bench-
marking tasks were performed. First, it was important to test that the algorithm is 
robust and can handle arbitrary datasets correctly. Thus, a series of random square 
binary voxel arrays were generated and then meshed to contain between 103 and 108 
elements. One example is shown in Fig.  17.8. Second, it was important that the 
conversion algorithm performed efficiently in a practical setting. Thus, mesh con-
versions were applied to the UF/NCI reference adult male phantom [6] at voxel 
resolutions ranging from 1  cm3 to 1  mm3 as shown in Fig.  17.9. Finally, it was 

Fig. 17.6  Illustration of 
the polygon detection 
process for the simplified 
set of lines in Fig. 17.5

Fig. 17.7  Illustration of 
the polygon correction and 
hole detection process for 
the simplified set of lines 
in Fig. 17.6. Each color 
represents a polygon 
formed in the facet, with 
the black color illustrating 
the presence of a hole in 
the facet
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important to assess how this conversion algorithm scales across multiple proces-
sors. Thus, the previous two benchmarking studies were performed using 1, 2, 4, 8, 
and 16 cores, respectively. All benchmarking tasks were run on the UF HiPerGator 
cluster using Intel E5-2698 v3 (2.3 GHz) processors. The code was compiled using 
Intel’s C++ compiler with the –qopenmp and –O3 compiler flags.

17.3  �Results

For the random array meshing benchmarks on a single core, the time to mesh for the 
highest resolution dataset (250 × 250 × 250) was 2.5 × 104 seconds, while the conver-
sion time for the highest resolution head phantom was approximately 350 seconds. 

Fig. 17.8  Example of a 
106 random binary voxel 
array (left) and its 
converted meshed format 
(right)

Fig. 17.9  Example of a voxel phantom (resolution of 1 mm3) (top) converted into a mesh format 
(bottom)
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Looking at the time breakdown for each step in the meshing algorithm, the majority 
of the compute time is devoted to the surface simplification step (see Sect. 2.1.3), 
which is expected as this step iteratively compares facets to one another causing this 
portion of the algorithm to have an order of n2 performance (see Fig. 17.10). For the 
voxel-to-mesh phantom conversion, a more linear performance is seen, but this is 

Fig. 17.10  Random array meshing time (units: 104 s) results per step (units: 107 steps) (top) and 
per multiprocessor scaling (bottom)
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Fig. 17.11  Voxel phantom meshing time (units: s) results per step (units: 109 steps) (top) and per 
multiprocessor scaling (bottom)

likely due to the less randomized nature of the problem (see Fig.  17.11). Across 
multiple processors, both benchmarks saw performance gains although, as expected, 
they are not linear. The voxel-to-mesh phantom conversion speedup for 16 cores was 
approximately a factor of 4.1, whereas for 8 cores it was only a factor of 3.7. The 
diminishing returns are likely due to the implementation of OpenMP scheduling. 
The process can be better optimized in future development of this algorithm.
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17.4  �Conclusions

The presented methodology provides a fast and efficient method to convert voxel 
data to a polygon mesh format, containing no degenerate facets and no self-
intersections, thus making it useful for input to Monte Carlo sampling codes and 
CAD programs. The algorithm can convert any segmented set of voxelized data to 
an optimized meshed surface suitable for a variety of applications such as Monte 
Carlo radiation transport or finite element simulations of the interactions between 
electromagnetic fields and the human body, e.g., during MRI.
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Chapter 18
FEM Human Body Model with Embedded 
Respiratory Cycles for Antenna and E&M 
Simulations

Anh Le Tran, Gregory Noetscher, Sara Louie, Alexander Prokop, 
Ara Nazarian, and Sergey Makarov

18.1  �Background

Human respiration is the exchange of air between the lungs and the ambient  
atmosphere. Below, we briefly summarize some major facts pertinent to our study.

Mechanics. Respiratory mechanics represent a complex multi-object deformation 
process. It predominantly involves the non-rigid motion of the (i) diaphragm; (ii) tho-
racic cage including ribs, cartilage, and sternum; (iii) lungs; (iv) heart; (v) liver; (vi) 
kidneys; and (vii) intestine. For inhalation, the diaphragm contracts and pushes the 
contents of the abdomen in the inferior direction as shown in Figs. 18.1 [1] and 18.2 
[2]. Simultaneously, the external intercostal muscles expand the rib cage and slightly 
raise it. For exhalation, the diaphragm and the external intercostal muscles relax.
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Diaphragm motion. Respiration is chiefly driven by the diaphragm with primary 
motion in the superior-inferior direction; total travel is estimated as 10–30 mm dur-
ing quiet breathing [1]. Other studies report 20 ± 7.0 mm average [2]. A simplified 
1D diaphragm motion, x(t), is non-harmonic, and the exhalation portion dominates 
the inhalation. Given the exhalation at origin, one has

	
x t A t( ) = − cos4 ω

	
(18.1)

where A is the corresponding amplitude [3, 4]. Furthermore, the respiratory motion 
often exhibits hysteresis in space, with an amplitude on the order of 2–4 mm [1].

Adjacent tissues. Closely adjacent structures (i.e., liver, etc.) show comparable 
motion amplitudes. Furthermore, the following motion amplitudes have been 
observed (cf. a review in Ref. [1]):

•	 Motion with an average amplitude of 12 mm in the lung for targets not attached 
to rigid structures

•	 1–25  mm superior-inferior motion of the kidneys, 13  mm superior-inferior 
motion of the spleen, 2–8 mm motion of the heart (the heart motion is mostly a 
simple rigid-body translation [5, 6]), and 1–7 mm motion of the trachea

•	 13 mm superior-inferior motion of the spleen

Fig. 18.1  (a) Maximum exhalation position, (b) maximum inhalation position, after [1]

Fig. 18.2  Respiratory motion captured via MRI retrospective gating and averaging over multiple 
cycles, after [2]. The green contour indicates lung volume at maximum exhalation

A. Le Tran et al.
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Thoracic cage kinematics. During respiration, the ribs rotate about an axis 
through their costal necks to affect the anteroposterior and transverse diameters of 
the thoracic cavity as shown in Fig. 18.3 [5, 7].

CAD B-Spline modeling. Modeling of the breathing cycle to date has been 
mostly performed via deformable NURBS surfaces (B-splines) for the lungs and 
surrounding tissues. The changes the phantoms undergo are then typically splined 
over time to create time continuous 4D respiratory models [5, 8, 9], which indeed 
utilize free-form deformations.

Challenges of FEM CAD Modeling. Commercial FEM codes do not operate with 
B-spline surfaces but rather with triangulated surfaces and tetrahedral/hexahedral vol-
umes. This is in particular valid for most frequency-domain electromagnetics solvers 
such as ANSYS EM Suite/Maxell 3D and CST Microwave Studio. Therefore, a free-
form breathing sequence has to be ultimately converted to a (large) discrete series of 
separate (full-body) triangulated CAD models, even if the original data were in the 
form of parametric B-splines. Generally, a conversion from NURBS surfaces to FEM 
triangular surfaces requires very significant additional meshing times.

The size of one detailed FEM full-body model is quite large (about 200–1000 
Mbytes in ANSYS) and a computation with 20–30 such models would be a signifi-
cant challenge from several points of view. For example, a user will need to create, 
run, and then post-process a number of large distinct project files, each of which must 
replicate his/her own excitation setup (e.g., a coil, an antenna, or a radar) and employ 
a new human model. Furthermore, manual repositioning is necessary for any and all 
on-body and in-body devices at every step, which would potentially create errors.

18.2  �Methods

Built-in affine transformations. A commercial CEM package typically includes a set 
of nine affine transformations:

Three translations (in the x, y, z directions)
Three rotations (about the x, y, z axes)
Three directional scaling transformations (along the x, y, z axes)

applicable to any object (including a triangular tissue mesh) or to a group of objects 
and in the form of a parametric sweep. These transformations can be performed in 

INTERCOSTAL
MUSCLES

external
internal

RIBS

AXIS OF ROTATION

Head
Tubercle

SPINE

Fig. 18.3  Motion of the 
ribs during respiration, 
after [5, 7]. The ribs rotate 
about an axis through their 
costal neck
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either global or local coordinate systems. The user can initialize a discrete generic 
global variable, xn, n = 0,…,N, define object geometry parameters as certain unique 
functions of xn, and then move, rotate, or deform every object of a multi-object 
structure independently within the framework of the same project file.

Our approach. We apply built-in parameterized affine transformations to con-
struct breathing cycles (quiet, deep, shallow) using only one base full-body human 
model [10] source not found and using only one project file. Along with the base 
static human CAD model, this project file includes a parametric sweep or sweeps 
modeling deformations of involved tissues. Such an approach is not exact, but it 
may have sufficient accuracy when the parametric sweep is carefully designed. It 
will allow us to employ any temporal resolution, which is impossible with discrete 
models. To construct an anatomically relevant breathing cycle, we will try to follow 
the anatomical data collected from Refs. [1–9] as close as possible.

Challenges. To design an FEM-compatible and anatomically justified multi-
tissue affine parametric sweep, a very extensive preprocessing of the static human 
CAD model is necessary, which is a significant undertaking.

18.2.1  �Selecting a Sweeping Variable

The natural sweeping variable xn is proportional to the diaphragm motion. Since the 
breathing cycle is periodic, only one period T must be considered. According to Eq. 
(18.1), physical time, t, is expressed through a sweep variable by

	

t T a
x

N
t Tn= −






















≤ ≤

1

2

1
0 24

π
cos /when

	

(18.2)

This result can be programmed in MATLAB as
E = 11; t_=0:E; T = 1; t = T∗(pi/2-acos((t_/E).^0.25))/pi; plot(t_, t, ‘-∗’); grid on.
Table 18.1 gives the corresponding numerical time values. Sweeping variable xn 

runs from zero to N = 11 in 12 uniform steps. Its zero value corresponds to maxi-
mum exhalation; its maximum value of 11 corresponds to maximum inhalation. 
Higher N values can be considered for a better accuracy.

18.2.2  �Static CAD Model

As a base human model at maximum exhalation, we will choose the VHP-Female 
v.3.1 CAD model (http://www.nevaem.com/) shown in Fig. 18.4. The source data 
for this model was provided by the National Library of Medicine’s Visible Human 
Project in the form of full color cryosection images. These images were hand seg-
mented and registered in a global coordinate frame. The model has 26 individual 
tissues, 270 individual tissue parts, major blood vessels and peripheral nerves, and 
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a superior resolution in the spinal cord/cranium. All tissue structures are manifold 
shells and no shell intersects with any neighboring shell. The sweep for the respira-
tory motion will be implemented for both BASE and SMOOTH sub-models. Only 
the results for the BASE sub-model will be reported here.

The subject is a ~60-year-old white female with a height h of 162 cm measured 
from top of the scalp to the average center of both heels. The body mass M, com-
puted using standard tissue densities [11] and assigning the average body shell, 
which includes internal tissues, the density of muscle, is ~88 kg. The computed 
BMI is ~33.5 (moderately obese). The subject has a heart pathology.

18.2.3  �Respiratory Cycle and CAD Tissues Affected 
by Respiration Motion

The overall change in lung volume is set at 0.32 L, which is close to a normal-to-
shallow breathing sequence for this subject. Default temporal resolution includes 12 
discrete uniform steps from 0 to 11  in steps of 1 from maximum exhalation to 

Table 18.1  Time values in 
terms of period, T, 
corresponding to the 
sweeping variable xn, n = 0, 
…, N for N = 11

xn t/T

0 0.0000
1 0.1850
2 0.2265
3 0.2571
4 0.2830
5 0.3066
6 0.3292
7 0.3515
8 0.3747
9 0.4000
10 0.4308
11 0.5000
10 0.5692
9 0.6000
8 0.6253
7 0.6484
6 0.6708
5 0.6934
4 0.7170
3 0.7429
2 0.7735
1 0.8150
0 1.0000
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maximum inhalation. The default full cycle includes 23 discrete steps. Breathing 
cycles with finer resolution may be trivially constructed.

We choose the following major set of tissue parts (35 in total) to be affected by 
the respiratory motion:

•	 Lungs
•	 Ribcage with 24 ribs (every rib is moved independently)
•	 Thoracic cage cartilage
•	 Sternum
•	 Pectoralis muscles (major/minor)
•	 Abdominal muscles
•	 Erector spinae muscles
•	 Heart (muscle)
•	 Liver
•	 Stomach
•	 Outer shell – average body
•	 Outer shell – skin

These objects are transformed so that there are no intersections between any of 
them at any time moment, with the minimum deformation factors. These transfor-
mations are to be performed in global or local coordinate systems.

Fig. 18.4  Static VHP-
Female v.3.1 CAD model 
at maximum exhalation 
(http://www.nevaem.com/)
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18.2.4  �Required Accuracy: Total Body Mass

Since the respiratory motion modeled with multiple deformed CAD objects is an 
approximation, a requirement should be made with regard to the total mass error. 
We will require that the maximum relative body mass variation shall not exceed 
0.1% during the entire respiratory cycle.

18.2.5  �Algorithm

Below, we briefly review suggested kinematics and dynamics for the individual tis-
sues. All quantitative approximations and the final formulas are thoroughly described 
in Appendix A.

Lung dynamics  This is the first deformation step described in detail in Appendix 
A. In a local coordinate system associated with the top of the lung, the lung is 
deformed in all three directions and is moved in one direction in order to guarantee 
the expected diaphragm movement of 20  mm and simultaneously the volume 
change of 0.32 L, while maintaining anatomically sound overall deformations.

Thoracic cage kinematics  This is the second deformation step. Since the rotation 
axes in Fig. 18.3 are very loosely defined for the actual anatomical data, we have 
rotated each rib pair about a fixed axis passing through the heads of two ribs (the 
end parts closest to the spine). We have also rotated slightly the rib pairs about the 
vertical axis. Thus, every rib pair is subject to rotation about two axes. All permis-
sible variations of rotation angles have been tested, for every rib pair, in order to 
satisfy two criteria: (i) avoid intersections with the lung and (ii) stay as close to the 
lung as possible.

Sternum/cartilage dynamics  This is the next deformation step. The sternum is 
subject to a translation motion, without rotation. Fixed control points on its surface 
are introduced. Those control points, along with the rib tips, form lines, along which 
the corresponding cartilage parts will further be deformed (moved and expanded).

Muscles dynamics  In this case, we apply rotations, movements, and slight defor-
mations. The goal is to minimize overall movement while avoiding intersections 
with the thoracic cage.

Heart kinematics  The heart is moved in two respective directions without rotations 
and deformations. The cardiac cycle is not considered.

Liver/stomach kinematics  Liver and stomach are moved in two respective direc-
tions and are slightly deformed; see Appendix A.
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Outer full-body shells  This is the only case where we cannot apply affine transfor-
mations. However, we may apply Boolean operations with the tissue CAD objects. 
A number of deformed chests objects are created internally, and then they are united 
with the otherwise static full-body shells. This operation requires greater care since 
we have two very closely spaced (1 mm) body shells.

18.2.6  �Polynomial Interpolation

After a discrete set of affine transformations has been established, this set was con-
verted to polynomials applicable to any temporal resolution and reported in 
Appendix A. The polynomial approximations have been independently tested with 
a fine grid. As an example, Table 18.2 reports affine polynomial approximations for 
several muscles. Note that the dynamic variable t in Table 18.1 is not the actual time, 
but is proportional to the diaphragm motion x(t) in Eq. (18.1).

18.3  �Results

The corresponding full-body VHP-Female model with the embedded respiratory 
motion in the form of a parametric sweep described in Appendix A has been inde-
pendently realized in

•	 ANSYS Electronics Desktop software package
•	 CST Studio Suite software package
•	 MATLAB

The maximum body mass variation during the entire respiratory cycle is 80 g, 
which is less than 0.1% of the total body mass. The parametric sweep may be 
adjusted/modified at any time in response to further anatomical evaluations and 
customer needs.

18.3.1  �RF Test at 300 MHz

The problem geometry is shown in Fig. 18.5. An incident plane wave at 300 MHz 
has a horizontal polarization. The simulations have been performed in ANSYS 
HFSS with three adaptive mesh refinement passes and with the final meshes 
approaching 1 M tetrahedra.

Near field  Figure 18.5 shows the near-field results at three observation points given 
a 1 V/m incident wave. The scattered field is plotted. In the illuminated zone, the 
co-pol near field data may vary by about 3% due to the respiratory motion. In the 
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shadow zone, the corresponding variation is negligibly small. Cross-polarization 
components may exhibit considerably larger relative near-field variations.

RCS  Figure 18.6 shows the monostatic radar cross section (RCS) of the heteroge-
neous breathing VHP-Female model during the respiratory cycle. The RCS varia-
tions are about 1%. More data may be acquired from the website www.nevaem.
com.
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Fig. 18.5  Scattered field in the Fresnel region at 300 MHz
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Fig. 18.6  Monostatic RCS during the respiratory cycle
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�Appendix A: Realization of the Respiratory Cycle 
for the VHP-Female CAD Model

�Lung Deformation Sequence

New global coordinate system: Lung_CS. The origin is located at (0, max (Py), max 
(Pz)) with P being the point cloud of the lungs. The origin coordinates are given by

	 X Y Z= = = −0 122 8347 131 3727, . , . 	 (18.A1)

Scaling in Lung_CS over N (N = 11) iterations total: Resulting Parametric Sweep 
in ANSYS

•	 10% size increase in the z-direction: lung_scalez = 1 0 1+( )( . / )N
t

•	 1% size increase in the x-direction: lung_scalex = 1 0 01+( )( . / )N
t

•	 1% size increase in the y-direction: lung_scaley = 1 0 01+( )( . / )N
t

Variable t (sweeping variable, not time!) is running from 0 to N. This will result 
in the overall volume change from 2.22 L to 2.54 L, i.e., 0.32 L. Other sequences 
may be constructed in a similar fashion.

Translation in Lung _ CS over N (N = 11) iterations total: Resulting parametric 
sweep in ANSYS

•	 3 mm overall in the y-direction: lung_movey = − ∗ ∗ −3
10 3

N
t  (m)

Rotation: None

�Ribs Deformation Sequence

New global coordinate system: None
Scaling: None
Translation: None
Rotation: Every rib is rotated individually for a particular lung deformation so 

that there are no intersections between ribs and lungs given the minimum separation 
distance. Two rotation angles are used:

•	 Rotation about a rib axis, which is created by connecting two control points of 
two adjacent ribs closest to the vertebral column

•	 Rotation about the z-axis, in a new local CS, which is obtained by translation of 
the origin of the global CS to the rib control point(s) (individually for every rib)

Control points: Closest points to the vertebral column
Definition of rotation angles:

A. Le Tran et al.
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θ – Rotation angle about the rib axis, which results in an upward motion of the rib 
pair

φ – Rotation angle about the local z-axis, which results in an outward motion of the 
rib pair

See Tables 18.A1, 18.A2, and 18.A3

�Sternum Deformation Sequence

New global coordinate system: Sternum _ CS. The origin is located at ((3∗(min 
(Px) + max (Px)/5), max (Py), (3∗max (Pz)/5)) with P being the point cloud of the 
sternum. The origin coordinates are given by

	 X Y Z= = − = −20 78 28 86 290 3. , . , . 	

Scaling: None
Translation: None
Rotation in Sternum  _  CS: one degree about the new global y-axis over 

N (N = 11) iterations total.
Resulting parametric sweep in ANSYS

	 sternum rot_ . .= ∗0 09091 t 	

�Cartilage Deformation Sequence (Implemented in MATLAB)

New global coordinate system: None
Scaling: Two movement vectors are determined for every cartilage component at 

each iteration which will decide its scaling factor as follows:

	 NewMovement Vector mn =


	

	 Old Movement Vector m =


0 	

	
Scaling Factor

m
m

n =
0 	

	
Scaling Vector m

m
n

n

 = −
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Translation: A translation vector determines the movement of the cartilage for 
every iteration, given by:

	 Translation Vector m mn = −
 

0 	

Rotation: The rotation axis and the rotation degree are given by:

	
Rotation Vector m m m mn n = ( ) ×( )⋅−cos /1

0 0

   

	

	 Rotation Axis m mn = ×
 

0 	

See Tables 18.A4 and 18.A5

�Muscle Deformation Sequence (Pectoralis Major, Pectoralis 
Minor, Abdominal Muscles, and Erector Spinae)

New local coordinate systems: A local coordinate system is defined for each muscle 
using a simple translation. The origins are located at (min(Px), max (Py), max (Pz)) 
with P being the point cloud of each left muscle and (max(Px), max (Py), max (Pz)) 
of each right muscle. Abdominal muscles are only transformed with respect to the 
global coordinate system: the origin at (0, 0, 0)

Scaling in local CSs: See the following tables for individual muscles
Translation in local CSs: See the following tables for individual muscles
Rotation in local CSs: See the following tables for individual muscles
See Tables 18.A6, 18.A7, 18.A8, 18.A9, 18.A10, 18.A11, 18.A12, 18.A13, and 

18.A14

�Heart Deformation Sequence

New local coordinate systems: According to literature, the pumping motion of the 
heart is independent of breathing. As a result, the heart object will only be trans-
formed to avoid intersection with lungs in breathing sequence, with respect to the 
origin of the global coordinate system (0, 0, 0). See Tables 18.A15 and 18.A16

18  FEM Human Body Model with Embedded Respiratory Cycles for Antenna…
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Table 18.A6  Origin coordinates for the local coordinate systems

Muscle Local X (mm) Local Y (mm) Local Z (mm) 0.008753

Pectoralis minor left 89.03 27.64 −201.93 0.006023
Pectoralis minor right −56.28 29.22 −189.24 0.010781
Pectoralis major left 18.83 76.19 −192.42 0.012677
Pectoralis major right 14.82 −31.92 −197.71 0.017648
Erector spinae left 0 146.73 −450.22 0.009035
Erector spinae right 0 146.79 −453.65 0.011113

Table 18.A7  Deformation factors for pectoralis minor left muscle. All angles are recorded in 
degrees

Configuration 
number

Rotation about Z axis 
(Ѳ)

Movement in Y 
direction

Scaling in Y 
direction

1 ±0.9545 −2.7273 −0.0027
2 ±1.2727 −3.6364 −0.0036
3 ±1.9091 −5.4545 −0.0055
4 ±2.2273 −6.3636 −0.0064
5 ±2.8636 −8.1818 −0.0082
6 ±3.1818 −9.0909 −0.0091
7 ±3.8182 −10.9091 −0.0109
8 ±4.1364 −11.8182 −0.0118
9 ±4.4545 −12.7273 −0.0127
10 ±5.0909 −14.5455 −0.0145
11 ±5.4091 −15.4545 −0.0155

Table 18.A8  Deformation factors for pectoralis minor right muscle. All angles are recorded in 
degrees

Configuration 
number

Rotation about Z axis 
(Ѳ)

Movement in Y 
direction

Scaling in Y 
direction

1 ± 1.2727 −3.6364 −0.0036
2 ± 1.5909 −4.5455 −0.0045
3 ±1.9091 −5.4545 −0.0055
4 ±2.2273 −6.3636 −0.0064
5 ± 2.5455 −7.2727 −0.0073
6 ±3.1818 −9.0909 −0.0091
7 ±3.8182 −10.9091 −0.0109
8 ± 4.4545 −12.7273 −0.0127
9 ± 5.0909 −14.5455 −0.0145
10 ± 5.4091 −15.4545 −0.0155
11 ± 6.0455 −17.2727 −0.0173
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Table 18.A9  Deformation factors for pectoralis major left muscle. All angles are recorded in 
degrees

Configuration 
number

Movement in Z 
direction

Movement in Y 
direction

Scaling in Y 
direction

1 1.3636 −2.7273 −0.0027
2 1.8182 −3.6364 −0.0036
3 2.2727 −4.5455 −0.0045
4 2.7273 −5.4545 −0.0055
5 3.6364 −7.2727 −0.0073
6 4.0909 −8.1818 −0.0082
7 5.0000 −10.0000 −0.0100
8 5.4545 −10.9091 −0.0109
9 5.9091 −11.8182 −0.0118
10 6.3636 −12.7273 −0.0127
11 7.2727 −14.5455 −0.0145

Table 18.A10  Deformation factors for pectoralis major right muscle. All angles are recorded in 
degrees

Configuration 
number

Movement in Z 
direction

Movement in Y 
direction

Scaling in Y 
direction

1 1.3636 −2.7273 −0.0027
2 1.8182 −3.6364 −0.0036
3 2.2727 −4.5455 −0.0045
4 2.7273 −5.4545 −0.0055
5 3.1818 −6.3636 −0.0064
6 3.6364 −7.2727 −0.0073
7 4.0909 −8.1818 −0.0082
8 5.0000 −10.0000 −0.0100
9 5.4545 −10.9091 −0.0109
10 5.9091 −11.8182 −0.0118
11 6.8182 −13.6364 −0.0136

Table 18.A11  Deformation factors for erector spinea left muscles. All angles are recorded in 
degrees

Configuration number Scaling in Y direction Scaling in X direction Movement in Y direction

1 −0.1600 −0.0800 0.2000
2 −0.2000 −0.1000 0.2500
3 −0.2400 −0.1200 0.3000
4 −0.2800 −0.1400 0.3500
5 −0.3200 −0.1600 0.4000
6 −0.3600 −0.1800 0.4500
7 −0.4000 −0.2000 0.5000
8 −0.4400 −0.2200 0.5500
9 −0.4800 −0.2400 0.6000
10 −0.5200 −0.2600 0.6500
11 −0.5600 −0.2800 0.7000
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�Liver Deformation Sequence

New local coordinate systems: The liver object is deformed to avoid intersection 
with lungs in breathing sequence, with respect to the origin of a local coordinate 
system: (0, max (Py), max (Pz)). See Tables 18.A17, 18.A18, and 18.A19

Table 18.A12  Deformation factors for erector spinea right muscles. All angles are recorded in 
degrees

Configuration number Scaling in Y direction Scaling in X direction Movement in Y direction

1 −0.0200 −0.0200 0.0500
2 −0.0400 −0.0400 0.1000
3 −0.0600 −0.0600 0.1500
4 −0.0800 −0.0800 0.2000
5 −0.1000 −0.1000 0.2500
6 −0.1200 −0.1200 0.3000
7 −0.1400 −0.1400 0.3500
8 −0.1600 −0.1600 0.4000
9 −0.1800 −0.1800 0.4500
10 −0.2000 −0.2000 0.5000
11 −0.2200 −0.2200 0.5500

Table 18.A13  Deformation 
factors for abdominal 
muscles in the global 
coordinate system. All angles 
are recorded in degrees

Configuration number
Movement in Z 
direction

Movement in Y 
direction

1 −0.0909 −0.0909
2 −0.1818 −0.1818
3 −0.2727 −0.2727
4 −0.3636 −0.3636
5 −0.4545 −0.4545
6 −0.5455 −0.5454
7 −0.6364 −0.6363
8 −0.7273 −0.7272
9 −0.8182 −0.8181
10 −0.9091 −0.9090
11 −1.0000 −1.0000
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Table 18.A15  Deformation 
factors for the heart Configuration number

Movement in Z 
direction

Movement in Y 
direction

1 −0.15 −0.05
2 −0.3 −0.1
3 −0.45 −0.15
4 −1.5 −0.5
5 −2.85 −0.95
6 −4.35 −1.45
7 −5.7 −1.9
8 −7.2 −2.4
9 −8.7 −2.9
10 −10.05 −3.35
11 −11.55 −3.85

Table 18.A16  Heart deformations: polynomials of deformation

Heart Polynomials of deformation factors (angles recorded in degrees)

Move z −6.672e − 06 ∗ t6 + 0.0008203 ∗ t5 − 0.02038 ∗ t4 + 0.2019 ∗ t3 − 0.917 ∗ t2 + 
 0.7346 ∗ t − 0.03539

Move y 2.451e − 06 ∗ t6 − 8.201e − 05 ∗ t5 + 0.0009 ∗ t4 − 0.0015 ∗ t3 − 0.04611 ∗ t2 + 
 0.03447 ∗ t − 0.0046

Table 18.A17  Local coordinate system: liver

Local X (mm) Local Y (mm) Local Z (mm)

Liver 0 120.136 −373.331

Table 18.A18  Deformation factors for the liver

Configuration number Movement in Z direction Movement in Y direction Scale in Z direction

1 −0.18 −0.04 −0.001
2 −0.36 −0.8 −0.002
3 −1.44 −0.32 −0.008
4 −2.52 −0.56 −0.014
5 −3.6 −0.8 −0.020
6 −5.04 −1.12 −0.028
7 −6.48 −1.44 −0.036
8 −7.92 −1.76 −0.044
9 −9.36 −2.08 −0.052
10 −10.8 −2.4 −0.060
11 −12.24 −2.72 −0.068
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�Skin Shell Deformation

First, the skin shell deformation starts with a generation of N chest objects for each 
step via non-rigid transformations. This process was accomplished in MATLAB. A 
deformed chest region is defined as

	
141 3 1 173 4. : .mm , mm< ( ) <P

	

	
P : , mm2 64( ) < 	

	
− < ( ) < −330 6 3 150 6. : .mm , mmP

	

All nodes in the chest region of the skin shell are selected and transformed in the 
y-direction using the following equation:

	
P Pbase

N
P P: : sin : min :, , , ,2 2

10
3 3( ) = ( ) − ∗ ∗ ( ) − ( )( )( )t

	

We chose nodes in the chest region so that P(:, 3) −  min (P(:, 3)) goes from 180 to 
0. Therefore, nodes that are closer to the upper and lower boundaries of the region 
will move less than the nodes that are closer to the center. With maximum inhala-
tion, the center node of the chest region will move by 10 mm in the Y direction. 
Thus, only coordinates of nodes belonging to the chest area are changed. Also, the 
connectivity matrix, t, of the entire skin shell still remains the same. As a result, 11 
skin shell objects with different chest regions will be generated.

Second, these new skin shells are subtracted from the original skin shell in HFSS, 
which results in N smaller deformed chest objects. These chest objects are spaced 
evenly (400 mm in Y direction) in front of the original shell and then united. A mov-
ing box is carefully designed so that it covers only one chest object at any time 
instant t. Then, the intersection is performed. The process is illustrated in Fig. 18.A1.

Box original position is given by: −300mm, (200 − t ∗ 400) ∗ 10−3, − 350mm.
An intersection operation is performed with the box and the chest array object, 

which results in one chest object for a particular time t. Finally, the chest object is 
moved and a unite operation is performed with the original skin shell (shown in 
Fig. 18.A2).

Table 18.A19  Liver deformations: polynomials of deformation

Heart Polynomials of deformation factors (angles recorded in degrees)

Move Z −6.672e − 06 ∗ t6 + 0.0008203 ∗ t5 − 0.02038 ∗ t4 + 0.2019 ∗ t3 − 0.917 ∗ t2 + 
 0.7346 ∗ t − 0.03539

Move Y 2.451e − 06 ∗ t6 − 8.2e − 05 ∗ t5 + 0.0009106 ∗ t4 − 0.001488 ∗ t3 − 0.0461 ∗ t2 + 
 0.0344 ∗ t − 0.004638

Scale Z 6.1e − 8 ∗ t6 − 2.05e − 6 ∗ t5 + 2.7e − 5 ∗ t4 − 3.7e − 5 ∗ t3 − 0.00115 ∗ t2 + 
 0.00086 ∗ t + 0.99989

A. Le Tran et al.



355

Fig. 18.A1  A box is carefully designed so that each iteration covers only one chest object at a time

Fig. 18.A2  (a) (left). Skin Shell with t = 0. (b) (right). Skin shell with t = 11

18  FEM Human Body Model with Embedded Respiratory Cycles for Antenna…
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Chapter 19
Radio Frequency Propagation Close 
to the Human Ear and Accurate Ear Canal 
Models

Louis Chen, Gerry Eaton, Sergey Makarov, and Gregory Noetscher

19.1  �Introduction

When contemplating on- or near-body wireless networks, many factors contribute 
to creation of an optimal communications link. Transmission signal interface with 
the human body in the near-field can contribute to significant antenna mismatch and 
disruption of the transfer of power between the transmitter and receiver(s). For this 
reason, realistic and anatomically correct human body models are required when 
conducting simulations aimed at optimizing a transceiver antenna and characterizing 
the corresponding link budget. This chapter provides detail on the construction of a 
CAD-based computational human phantom with highly detail outer ear and ear 
canal structures and compares the simulated power transmission coefficient to 
models that do not possess this level of anatomic detail.
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19.2  �Model Construction

19.2.1  �Base Model

Numerous full-body computational phantoms are in use today [1], each with a cor-
responding resolution and level of anatomical precision; each user must decide 
which model is most appropriate for the simulation methodology and end 
application. A non-homogenous, multi-structure model, known as the NELLY 
model, was the basis for the modifications described below. The NELLY model is 
CST’s implementation of the Visible Human Project Female (VHP-Female) model 
shown in Fig. 19.1 [2]. This model was constructed by hand segmenting cryosection 
images provided as part of the National Library of Medicine’s multi-modal Visible 
Human Project (VHP) executed in the 1990s and utilized by thousands of users 
worldwide for a number of eclectic purposes since its completion. The VHP-Female 
model is composed of approximately 270 individual components, all manifold 
surfaces that have been registered via a co-registration process. This model was 
specifically created to enable cross-platform compatibility from an open source data 
set. While triangular surface meshes fitting the finite element method are the primary 
means of construction, these meshes may be voxelized to also allow for time domain 
based methods of simulation.

While this model is perfectly acceptable for a number of simulation problems, 
including calculation of specific absorption rate (SAR) [3, 4] and antenna 
development [5, 6], its anatomical accuracy was lacking for specific applications 
involving transmission in or around the ear; this can be seen in Fig. 19.2 where fine 
features around the ear have been removed. The original model was optimized for 
fast runtimes on applications that required this level of detail. For this reason, the 
source material was revisited and further segmented to augment the existing model 
with accurate ear and ear canal features.

19.2.2  �Accurate Ear Canal Segmentation

Since the VHP cryosection data was used in the creation of the initial model, this 
data was examined again using the same workflow that enabled creation of the 
VHP-Female model. This consisted of reviewing 450 full color images, each with a 
pixel resolution of 0.33 mm × 0.33 mm. Each image was a representation of an axial 
slice of the original patient, depicting all internal organs and structures. Identification 
of the ear canal was particularly easy in this format and can be seen clearly in 
Fig. 19.3, which shows a number of axial slices progressing along the vertical (z) 
axis.

The VHP model (and consequently, the NELLY model) is akin to the layers of an 
onion; the outermost skin layer completely surrounds a layer of fat, which completely 
surrounds a layer of muscle (or “average body”) tissue. Contained within this 
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muscle layer are all subsequent internal organs and tissues. In order to create a 
realistic ear and ear canal, the three outermost layers (skin, fat, and average body) 
required modification to enable integration with the refined features. As shown in 
Fig. 19.3, the thicknesses between the various layers (skin to fat and fat to muscle) 
were not homogeneous. This makes sense from an intuitive perspective given that 
different areas of the body have different material content. Given this fact, the 
thickness of the skin was tapered from 1 mm around the subject’s scalp to 0.3 mm 
within the outer ear. Likewise, the thickness of the fat layer was tapered from 2 mm 
to 0.3 mm.

Fig. 19.1  The Visible Human Female model, used as the basis for the NELLY model implemented 
in CST
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Fig. 19.3  Top row: Segmented cryosection images at z = 7 mm (left) and z = 8 mm (right). Bottom 
row: Segmented cryosection images at z = 9 mm (left) and z = 10 mm (right). Layers of the skin, 
fat and average body container are show in yellow, blue and orange, respectively, with refined outer 
ear and ear canal structures

Fig. 19.2  The original 
skin shell of the NELLY 
model, defeatured and 
optimized for fast 
simulations
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19.2.3  �Levels of Segmentation

During the segmentation process, the left and right ears were segmented using sev-
eral levels of refinement. The first segmentation level was highly refined and allowed 
for the construction of a highly accurate model with over 10 k triangles per ear, 
shown in Fig. 19.4. Each ear canal was approximately 30 mm long, stretching into 
the head and enabling the modeling of this air-filled cavity to assess its impact on 
antennas placed in or near to the ear.

Following this time-consuming operation, the highly accurate models were deci-
mated via Quadric Edge Decimation to produce left and right components with 

Fig. 19.4  Top row: Highly refined right outer ear (left) and ear canal (right). Bottom row: Highly 
refined right outer ear (left) and ear canal (right). Not the very high triangle count within the ear 
canal and stretching approximately 30 mm into the head
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several hundred triangles each. This decimation was accomplished to enable very 
fast simulation times when a highly refined model was not necessary. These reduced 
models are shown in Fig. 19.5.

19.2.4  �Integration of Ear and Ear Canal

After segmentation and mesh construction of the outer ear and ear canal were com-
pleted, these components were stitched together with the skin, fat, and average body 
shells using the mesh manipulation tool meshmixer. This freeware enables advanced 
mesh processing and allows for straightforward combination of multiple mesh 
structures. This operation was validated by overlaying the resulting meshes on top 
of the cryosection images, as shown in Fig. 19.3. In this way, any user of this prod-
uct can independently verify that the required accuracy is present in the model.

19.2.5  �Simulation Setup

The augmented model was read into CST Microwave Studio as a series of stereo-
lithographic model files and complemented with the standard set of human body 
material properties inherent in the software. A simple simulation designed to estab-
lish a wireless link between two antennas located on the body was set up:

Fig. 19.5  Decimated mesh of the right ear. The number of triangles is drastically reduced from the 
examples shown in Fig. 19.4
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•	 Antenna 1 was constructed as a Planar Inverted F Antenna (PIFA). This antenna 
was located in the right ear and enclosed in a plastic container. This antenna was 
mirrored in the left ear to obtain transmission coefficient information.

•	 Antenna 2 was also a PIFA, modeled after a popular cellular phone antenna 
design. This antenna was placed at the left hip to simulate carrying a phone at 
this body location.

Table 19.1 below describes the CST simulation settings used for this work.

19.3  �Results

As outlined in Table 19.1, both the GPU memory usage and the total simulation 
time were larger when using the augmented model. This was to be expected since a 
higher global mesh density of six cells per wavelength near the model was used on 
the augmented model versus four cells per wavelength on the original NELLY. This 
step was taken due to hardware resource limitations.

The results of the simulations with both models are presented in Table 19.2. It is 
clear that antenna reflection coefficient is relatively independent of model 
construction due to similar loading. However, the transmission between the left and 
right ear is significantly different when incorporating true ear geometry into the 
model. The transmission from the ear to the pocket is also considerably different 
with the newly augmented model very closely matching what was experimentally 
measured.

19.4  �Discussion

Based on the results shown in Table 19.2, it is clear that including the true anatomic 
structure into the model will substantially improve the accuracy of the simulation. 
While this model does require more time and memory to properly simulate, the 
results are much closer to experiment than those obtained with the previous model.

Table 19.1  Simulation 
parameters used for the 
models under discussion

Voxel Nelly Bose-Neva VHP

Mesh cells 896,691,180 566,555,542
Solver TLM TLM
GPU 4 4
Mesh cell reduction 94.3% 90.4%
GPU memory usage 6.7 GB 11.3 GB
Total simulation time 39 h 3 min 22 s 49 h 13 min 17 s
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One additional source of difference is likely the fact that the surfaces of the Voxel 
NELLY model are not smooth. Due to its voxel nature, any curved surface on this 
model is actually a staircase approximation of the true smooth geometry. This may 
likely play a part in the transmission coefficient calculation and could add further 
justification for use of a triangular surface based mesh.

19.5  �Conclusions

This work describes the construction of a finite element compatible model with 
highly refined outer ear and ear canal structures. This model was created to address 
the specific need of simulating advanced wireless wearable technologies and to 
efficiently design in virtual space wearable antennas for on-body propagation. 
Simulation results were shown to closely match experimental measurements.

Future improvements may consist of augmenting this model with internal ear 
cartilage structures and assessing the impact of ear morphology on antenna 
performance. This latter item could include examining the size and spacing of the 
ear relative to the scalp of the model.
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Chapter 20
Water-Content Electrical Property 
Tomography (wEPT) for Mapping Brain 
Tissue Conductivity in the 200–1000 kHz 
Range: Results of an Animal Study

Cornelia Wenger, Hadas Sara Hershkovich, Catherine Tempel-Brami, 
Moshe Giladi, and Ze’ev Bomzon

20.1  �Introduction and Motivation

Methods for non-invasively imaging the electrical properties (EPs) of tissues in vivo 
have been a recent topic of significant interest. Specifically, many research groups 
have attempted to create volumetric images of electrical conductivity (σ) and rela-
tive permittivity (εr) at specific frequencies. These studies have been motivated by a 
number of reasons, the primary one being that the interaction between applied elec-
tromagnetic fields and biological tissue is determined by their EPs [1]. Thus, non-
invasively imaging EPs within the body offers important insight for a variety of 
clinical applications.

One example is the safety studies concerned with understanding tissue heating 
that occurs during high-field MRI applications [2–5]. The calculation of the local 
specific absorption rate (SAR) of tissue requires knowledge of the electric field 
induced by radiofrequency excitation and the local EPs of tissues [4]. And as sum-
marized in [3], the actual local SAR pattern varies significantly with patient size and 
position, as well as patient-specific EPs. Antenna design for wearable and implant-
able medical devices is another high-frequency application that would benefit from 
knowledge of the patient-specific EP distribution [6]. And virtual human models are 
often used to estimate induced electric fields, which would benefit from individual 
and frequency-dependent EP maps [6]. Major low frequency medical applications 
which are being studied with computational models include neurostimulation tech-
niques (such as TMS [7] or tDCS [8]) or MEG/EEF source detection studies. In all 
of these studies, knowledge of the spatial distribution of the induced electric field is 
necessary to interpret experimental results and to optimize field delivery [9]. 
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Therefore, a method for rapidly creating accurate and patient-specific EP maps 
would be important for future improvement of these medical applications.

Furthermore, experimental measurements have revealed that the EPs of patho-
logical tissues often differ from those of healthy tissues, with generally higher σ and 
εr values in cancerous tissue at both low and high frequencies [10–16]. The authors 
associate the EP difference with the changes in water content that occur in neoplas-
tic tissue, which are due to varying protein hydration, vascularization, alterations in 
membrane permeability and amount of extracellular fluid, as well as packing den-
sity, and cancer cell orientation. Thus, mapping EPs may help to detect malignant 
regions with higher sensitivity than current imaging techniques. This knowledge 
contributes to further development and treatment planning of medical applications 
such as radiofrequency tissue ablation, electro-chemotherapy and gene therapy with 
reversible electroporation, nanoscale pulsing, and irreversible electroporation, as 
described and summarized in [16, 17].

Another example, and the motivation for this study, is a cancer treatment modal-
ity called Tumor Treating Fields (TTFields). TTFields are an antimitotic cancer 
treatment using alternating electric fields with intermediate frequencies (between 
100 and 300 kHz) and low intensities (between 1 and 3 V/cm) to disrupt cell divi-
sion in tumors [18, 19]. TTFields are FDA approved as a monotherapy for recurrent 
glioblastoma [20] and as a combination therapy with chemotherapy for newly diag-
nosed glioblastoma patients [21]. TTFields treatment of glioblastoma is performed 
with the Optune™ device, which delivers alternating electric fields at a frequency of 
200 kHz via two pairs of transducer arrays [22, 23]. Since TTFields treatment effi-
cacy depends on delivered field intensity at the target, patient-specific treatment 
planning [24] provides array layouts with personalized locations of transducers to 
optimize induced field intensity in the tumor. Several computational modeling stud-
ies have used realistic computational head models to study the induced electric field 
distribution during Optune™ treatment [25–27]. These studies all showed that the 
field intensity delivered to the tumor is dependent on the dielectric properties, spe-
cifically the electric conductivity σ of the healthy and pathological tissues of the 
patient’s brain [26, 28, 29]. These computational studies usually assume homoge-
nous and isotropic EPs in different tissue types, which is a reasonable assumption 
for well-studied healthy brain tissues like the gray matter (GM), white matter (WM), 
and cerebrospinal fluid (CSF) [30, 31]. Yet, the glioblastoma tumor area is typically 
a very heterogeneous region composed of enhancing or non-enhancing parts, and 
cystic or necrotic compartments. Furthermore, EP measurements of cancerous tis-
sue also predict higher patient variability compared to healthy tissue (e.g [32]). 
Thus, a patient-specific EP map of the brain would be optimal to accurately evaluate 
the induced electric field distribution and intensities at the tumor bed. For a detailed 
review on preclinical, clinical, and modeling studies related to TTFields, see [33].

A variety of different approaches have been proposed to non-invasively image 
EPs of biological tissue at different frequencies over the past two decades. The old-
est methods for mapping EPs in a volume include electrical impedance tomogra-
phy [34] and magnetic induction tomography [35]. These techniques suffer from 
the inherently ill-posedness of the inverse problem, leading to low resolution, low 
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sensitivity, and limited applicability in the clinic. Other attempts to obtain EP maps 
with high spatial resolution include magnetic resonance electrical impedance 
tomography (MREIT) [36], as well as other (magneto-) acoustic methods. MREIT 
was proposed to perform conductivity imaging at DC using the MR current density 
imaging approach [37]. According to [38], it remains a technical problem to reduce 
current injection down to a level for routine clinical use while maintaining the spa-
tial resolution of the resulting conductivity image without long imaging sequences. 
More recently, in an attempt to overcome the limitations of these techniques, 
MR-based electrical properties tomography (EPT) was introduced by Haacke et al. 
[39]. EPT is based on B1 mapping, i.e., the EPs are reconstructed from measurable 
RF-coil-induced magnetic fields (B1 fields) by employing Maxwell’s equation. The 
EPT approach has been well studied and a comprehensive review can be found in 
[40]. However, a recent study [41] points out certain challenges associated with 
EPT, including boundary reconstruction errors due to the fact that the Helmholtz 
equation does not hold at regions where tissue types coexist and the high degree of 
symmetry that is needed to obtain higher signal-to-noise ratio.

The authors of this study propose a new, alternative approach termed water-
content-based electrical properties tomography (wEPT) [41]. wEPT utilizes two 
T1-MR images to map σ and εr within tissue. The foundation for wEPT is Maxwell’s 
mixture theory, which suggests that tissue conductivity is highly correlated with 
water content, which in turn can be estimated from the ratio between two T1-weighted 
MR images with different repetition times (TR). wEPT has been used to map brain 
conductivity at 128  MHz without concern about inhomogeneity among tissues. 
Because wEPT mapping is based on relatively standard and rapid MRI imaging 
sequences, it is a highly attractive approach for implementation in research and in 
the clinic.

Having TTFields treatment of glioblastoma patients in mind, the aims of this 
study were

	(a)	 To test whether wEPT can be applied to the frequency range of 200–1000 kHz
	(b)	 To establish that wEPT can be used to map σ of healthy brain tissue in this fre-

quency range
	(c)	 To investigate whether or not wEPT can be used to map EPs in brain tumors

To achieve these goals, a series of experiments was performed utilizing BSA 
phantoms, samples of calf brain and in vivo experiments in tumor bearing-rats. A 
detailed description of the experiments and their results follow.

20.2  �Methods and Results

This section starts with a summary of the theoretical basis behind the wEPT 
approach (Sect. 20.2.1).

In order to address our above-stated aims, the study was performed in three 
stages. Materials and methods as well as obtained results will be presented in 

20  Water-Content Electrical Property Tomography (wEPT) for Mapping Brain Tissue…



370

chronological order of experiments: First the feasibility of applying wEPT at 
200 kHz was established by performing wEPT measurements on phantoms (Sect. 
20.2.2). Then, wEPT was applied to estimate the EPs of healthy brain tissue derived 
from calf brains (Sect. 20.2.3). Finally, we tested the applicability of wEPT to map 
σ in tumor tissue derived from tumor bearing-rats (Sect. 20.2.4).

All imaging was performed on an in-house Bruker ICON 1.0 T MRI machine. 
Animal experiments were approved by the Israeli Animal Care.

20.2.1  �Theory of wEPT

The specific EPs of a tissue are determined by relative intra- and extracellular vol-
umes, membrane permeability, ion concentration, and mobility [15]. During studies 
of the dielectric properties of various types of tumor and normal tissues with vary-
ing water content, it has been demonstrated that their EPs conform to the Maxwell 
mixture theory for high and low water-content tissues [42–44]. Since cell mem-
branes have low impedance at RF frequencies, the EPs of a tissue become highly 
correlated with the water fraction. It has been reported that the tissues’ conductivity 
at these frequencies is mostly determined by the ionic conductivity of cytoplasm 
and that the permittivity is likely determined by the water fraction [45]. For ultra-
high frequencies, the EPs are almost entirely determined by the water content due 
to the polarization of polar media-like water [15, 42].

Thus, the wEPT approach assumes that at an imaging frequency of 128 MHz, the 
electrical conductivity σ and the relative permittivity εr can be modeled as a mono-
tonic function of tissue water content (WC) under the principle of Maxwell’s mix-
ture theory. The wEPT approach seeks to circumvent the need for lengthy imaging 
processes by computing the WC maps using a transfer function derived from the 
image ratio (IR) of two T1-weighted images with different repetition times (TR) via

	 WC IR= −w e w
1

2

	 (20.1)

where w1 and w2 are determined through curve fitting.
The image ratio assumption is based on the fact that both properties, the WC and 

the IR, can be expressed as functions of the T1 relaxation values (T1). On the one 
hand, early works had already demonstrated that the WC can be directly related to 
the T1 value in living tissue [46]. On the other hand, the IR can be expressed by
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where θ1 and θ2are the nominal angles of the excitation and refocusing pulses, κ is a 
factor compensating signal gain fluctuations, and TRs and TRl are the short and long 
repetition times of the two images, respectively.
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In order to connect WC and the EPs of brain tissues, the authors in [41] used 
landmark points for the three primary brain tissues (GM, WM, and CSF) and gath-
ered corresponding values for WC, σ, and ε from an extensive literature search. Two 
separate curve fitting procedures revealed the best fit for a monotonically increasing 
function between WC and the EPs at 128 MHz:

	 σ = +c c ec1 2
3WC

	 (20.2a)

	 ε = + +p p p1
2

2 3WC WC 	 (20.2b)

In order to find appropriate values for short and long repetition times, the authors 
in [41] plotted IR as a function of T1 with different combinations of TRs and TRl 
and assuming θ1 = 90°, θ2 = 180°, and κ = 1. The preferred combination was deter-
mined by the largest IR signal and greatest difference between the WM with the 
highest T1 and the CSF with the lowest T1. In the original study, TRs=700 ms and 
TRl=3000 ms were considered.

20.2.2  �BSA Phantom

We initially conducted a phantom study to test the feasibility of performing wEPT 
studies for a lower frequency of 200 kHz. The phantom was created by placing dif-
ferent solutions of BSA (bovine serum albumin) in DPBS (Dulbecco’s phosphate-
buffered saline) into a plastic plate with cylindrical chambers. Each chamber was 
filled with solutions of varying concentrations of albumin (20%, 25%, 30%, and 
40%). In order to obtain the coefficients of the wEPT model equations, we mea-
sured four parameters of the BSA solutions at 200  kHz: T1, WC, σ, and εr 
(Table 20.1). The T1 value of the solutions was estimated using the variable TR 
method, in which the T1 value is estimated from exponential curve fitting of the 
signal intensity in a voxel for a selection of spin-echo images with varying TRs 
(compare Fig. 20.1b). The WC of the solutions can be deduced from the known 

Table 20.1  BSA experiment

BSA20 BSA25 BSA30 BSA40

T1 measured 1119.4 928.0 741.0 483.2
WC measured 79% 75% 70% 60%
WC wEPT 80% 75% 70% 60%
σ measured 0.90 0.79 0.69 0.49
σ wEPT 0.88 0.79 0.69 0.49
ε measured 315.60 284.89 277.17 262.51
ε wEPT 300.44 284.94 277.20 261.92

Measured and wEPT-estimated values of T1 (ms), WC (%), σ (S/m), and εr at 200 kHz for four 
BSA solutions
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concentration of albumin in each solution. The EPs of the solutions were measured 
utilizing the parallel-plates method with a cylindrical chamber (10 mm diameter, 
9 mm thickness) sandwiched between two Ag/AgCl electrodes, which were con-
nected to an LCR meter (Keysight E4980AL). Sample impedance was measured in 
the range of 20 Hz to 1 MHz, and σ and εr were derived from these measurements 
using a well-established procedure. By testing different combinations of 13 spin-
echo images with TR ranging from 50 ms to 5 s, we found that a combination of 
TRs/TRl=700/4000 yields optimal distinction of IR values between the BSA solu-
tions tested. Furthermore, a few different curve-fitting methods were tested for map-
ping EPs at 200  kHz from WC (including polynomial and exponential fitting), 
which all yielded similar wEPT estimations. Table 20.1 summarizes experimentally 
measured values of T1, WC, σ, and ε at 200 kHz, as well as the estimated values 
with wEPT, which are the mean values of the properties in the central ROIs. 
Obtained results predict that wEPT estimations of the WC and EPs in all solutions 
match very well with corresponding measurements. Only minor discrepancies are 
found for the BSA 20% solution with the highest WC.

20.2.3  �Calf Brain Samples

In order to establish a wEPT model for mapping brain tissue EPs at 200 kHz, appro-
priate coefficients have to be found via curve fitting experimental measurements to 
Eqs.  20.1, 20.2a, and 20.2b. Thus, measurements of T1, WC, σ, and ε were 

Fig. 20.1  Experimental setup of brain tissue measurements. (a) GM and WM sample preparation 
(b) T1 values were estimated with the variable TR method. (c) An LCR meter was used to estimate 
σ and ε for frequencies between 20 Hz and 1 MHz. (d) WC is estimated as the difference between 
the weight of wet and dry tissue samples
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performed for three tissue types: GM, WM, and CSF. The first experiments with 
brain tissue were conducted with excised samples of three calf brains received 
48–72 hours postmortem. Although there was some uncertainty about storage and 
handling of the first bovine brains prior to delivery, we wanted to establish a work-
flow for experimental procedures and refine our planned methodology.

For sample preparation, the brain was cut using tweezers to expose the thalamus 
where cylindrical samples of GM were punched out. Cylindrical WM samples were 
punched out of thick coronal slices. Different punches with diameters ranging from 
5 to 7 mm were used, depending on the operator and the brain region. The samples 
were placed in a 5 mm thick polycarbonate plate with holes of 5 mm diameter, and 
were sealed with cellophane (Fig. 20.1a).

To estimate T1, plates containing up to eight samples were placed in the MRI to 
acquire spin-echo images with variable TRs (Fig.  20.1b). Samples were initially 
kept about 2 mm thicker than the plates to ensure good image quality. The plates 
were moved to the LCR measurement station after MRI image acquisition 
(Fig. 20.1c). The cover of each sample was removed just before measurement, when 
it was cut to the plate thickness of 5 mm. While assuring full contact, the Ag/AgCl 
electrodes were placed on the top and bottom of each tissue sample. The LCR meter 
was used to record the impedance of each sample for a frequency sweep between 
20 Hz and 1 MHz, at a lab temperature of about 21 °C. σ and ε values were derived 
from the impedance measurements assuming a parallel plate measurement system 
geometry.

The WC of the samples was defined as the weight difference between wet and 
dry tissue samples. After the LCR measurement, the samples were transferred to a 
pre-weighted weighing paper. The gross weight of sample and paper was docu-
mented with a scale (ME104 Metler Toledo SN004) prior to and then after placing 
them in an oven at 70 °C for 48 h of drying (Fig. 20.1d). A preliminary experiment 
assured that the weight of the paper is not affected by the drying process.

Using this process, measurements of T1, WC, σ, ε of 32 different calf brain 
samples (16 WM, 13 GM, 3 mixed samples) were obtained. For model completion, 
two porcine CSF samples were also measured. In order to implement wEPT on 
these samples, T1-weighted images with TRs = 700 ms and TRl = 3000 ms were cho-
sen for calculating IR.  IR was plotted against the measured WC of all 34 tissue 
samples, and coefficients w1 and w2 in Eq.  20.1 were found via curve fitting 
(Fig. 20.2a). Subsequently, the same procedure was performed for equations that 
relate the WC to the EPs (Eqs. 20.2a and 20.2b). We created two sets of σ coeffi-
cients c1, c2, c3 and εr coefficients p1, p2, p3. One set of coefficients was for a fre-
quency of 200 kHz (Fig. 20.2b, c); the second set was for the highest measured 
frequency of 1 MHz (data not shown).

The following procedure was used to analyze the wEPT model of the bovine 
brain samples and estimate EPs at 200 kHz and 1 MHz: IR was calculated for each 
voxel in the sample, corresponding WC values are calculated via Eq. 20.1 and EP 
values with Eqs. 20.2a and 20.2b. The estimated properties were averaged over the 
sample volume to yield the average IR, WC, and EPs of each sample, which were 
compared to the measured values (compare Table 20.2). Figure 20.3 illustrates the 
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results of this procedure for two GM and two WM samples. The WC map and EP 
maps at 200 kHz and 1 MHz clearly show the different tissue types. The estimated 
values corresponding to the color scale match measured mean values of these prop-
erties in all GM and WM samples (displayed in each panel).

It is important to note that the dimensionless factor κ = kshort/klong ≈ 1 in the equa-
tion for calculating IR compensates for the signal gain fluctuations of the scanner at 
different TRs. Preliminary analysis predicted that κ = 0.9894 should be used for our 
studies. Indeed, introducing this factor into the calculation of IR minimized the dif-
ference between measured and wEPT estimated EPs (Table 20.2). Thus, this factor 

Fig. 20.2  wEPT model creation for brain tissue of calves1–3, for WM (blue), GM (red), mixed 
samples (green), and pig CSF (purple). Model coefficients were obtained by curve fitting for map-
ping WC from IR with Eq.  20.1 (a), for σ mapping with Eq.  20.2a (b), and εr mapping with 
Eq. 20.2b (c). The equations with their coefficients are listed above each panel

Table 20.2  Average relative error of wEPT estimates in all brain samples of calves 1–3 compared 
to measured values

IR (%) WC (%) σ200kHz (%) σ1MHz (%) ε200kHz (%) ε1MHz (%)

mod_a1 1.3 3.8 14.2 13.3 10.3 11.1
mod_a2 0.9 3.5 13.2 12.3 10.4 11.7
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was introduced into all subsequent wEPT calculations presented in this study. Errors 
in wEPT estimation of IR, WC, and EPs compared to measured values were aver-
aged among all calf tissue samples. Results are presented in Table 20.2 for wEPT 
estimations before κ corrections (mod_a1) and after (mod_a2). It should further be 
mentioned that two more adaptions have been analyzed for mapping σ at 200 kHz. 
When a fourth-order polynomial is used instead of the exponential form of Eq. 20.2a, 
σ200kHz error further reduces to 11.2%.

This first study established the feasibility of using wEPT to measure the EPs of 
healthy brain tissue samples. However, the study had several shortcomings:

	(a)	 Tissue samples were measured 48–72 hours after death. Thus, we wanted to test 
how time from death might influence the measured EPs.

	(b)	 Tissues samples were measured at 20–22 °C. Thus, we wanted to test how tem-
perature might influence the measured EPs.

	(c)	 Samples were excised prior to MRI imaging. Thus, we wanted to test if remov-
ing tissue from a bulk might influence the measured and wEPT-estimated EPs. 
This last point is important to clarify when establishing the use of wEPT for 
in vivo models.

To address these issues, a set of measurements was performed on three freshly 
excised calf brains (calves 4–6). Previous measurements in calves 1–3 showed that 
the EPs measured in different hemispheres for the same tissue type are essentially 
equal. Thus, the left and right hemispheres were separated to test the influence of 
time from death on EPs. The left hemisphere was used for measurements on the 
same day (“fresh” samples). The right hemisphere was preserved at 4 °C for 48 h 
before measurements were collected (“48 h” samples). The temperature of the brain 
was measured with a thermocouple to establish the effect of temperature on mea-
surements. To account for differences in wEPT estimates that may occur when 
small samples are excised from the bulk, wEPT imaging was first performed on a 
large bulk section of cow brain. After imaging, a rectangular piece of cortex con-
taining the thalamus was removed from the hemisphere (Fig.  20.4a) for sample 

Fig. 20.3  wEPT-estimated maps of two GM (id’s = {2,3} top samples) and two WM (id’s = {1,4} 
bottom samples) excised tissue samples of calf1. Model equations used correspond to Fig. 20.4. 
The WC map (left), σ at 200 kHz and 1 MHz (middle), and εr at 200 kHz and 1 MHz (right) are 
presented with fixed color scales for the EPs to show their frequency dependence. In each panel, 
the corresponding mean values of the measurements are displayed for the two tissues. These values 
compare well with obtained maps
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punching. To prevent dehydration, the piece was covered with a glove and a 
sealed-by-heat plastic bag (Fig. 20.4b) before placing it into the coil for imaging 
(Fig.  20.4c). Each MRI session included T1-weighted (T1w) and T2-weighted 
(T2w) axial scans. T1w scans were used for wEPT mapping and T2w axial scans 
were used for identifying brain anatomy and segmentation of excised samples 
(Fig. 20.4 bottom left). Details of the imaging sequences in each brain piece are as 
follows:

T1w axial: RARE protocol, TR = 700 ms or TR = 4000 ms, TE = 11 ms, RARE 
factor  =  1, 4 averages, 10 slices of 1.25  mm thickness and gap of 1.25  mm 
between slices, FOV = 3 cm, matrix 140, in-plane resolution 214 μm, acquisition 
time = 6.32 min or 37.20 min. Two intercalated scans were acquired to avoid 
slice cross-talk artifacts.

T2w axial: RARE protocol, TR = 4400 ms, TE = 85 ms, RARE factor = 12, 12 aver-
ages, 20 slices of 1.25 mm thickness, FOV = 3 cm, matrix 140, in-plane resolu-
tion 214 μm, acquisition time = 9.40 min.

Calf brain sections were prepared for EPs and WC measurements immediately 
after the MRI. The orientation was marked and kept clear throughout the entire 
procedure. At all times, the brain sections were covered either with a glove or 
with a cellophane film to minimize dehydration. A minimum of nine samples per 
brain section was collected with 5 or 6 mm punches including 2–3 WM samples, 
2 GM samples from the thalamus, and 1 additional GM sample and 2 mixed tissue 

Fig. 20.4  Experimental procedures (top) and wEPT analysis (bottom) of the calf4 brain. The 
excised brain is separated into two hemispheres and a rectangular piece of cortex containing the 
thalamus is removed (a). Prior to sample punching, the whole brain piece is covered and wrapped 
for assuring tissue hydration (b), image taken prior to placing the sample in the coil for MR image 
acquisition (c). All samples that will be measured for their WC and EPs are segmented in the T2w 
image of the calf piece (bottom left). A 3D rendering of all samples is represented and one slice 
through samples with id’s  =  {14, 16, 17, 18}. Corresponding T1w images with TRs/
TRl = 700/4000 ms are loaded into MATLAB and their IR is calculated. The WC and EP maps are 
evaluated with the wEPT model equations; WC and σ200kHz maps are displayed for the same slice 
in the bottom right. The outlines of the segmented tissue samples are also indicated, which can be 
used for evaluating mean values of estimated properties in order to be compared to their measured 
values
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samples from the cortex. Samples were segmented from the T2w images using 
ITK-SNAP (Fig. 20.4 bottom left). The impedance measurements with the LCR 
system, the calculation of Eps, and the weighing method for WC estimation have 
already been described previously. At the end of the first day, two more samples 
were measured from the first calf (calf 4) to compare changes in the first few 
hours post excision. Results showed that measurements 2 h post excision are sim-
ilar to those collected from samples analyzed 12 h post excision. On the following 
day, the EP and WC measurement procedure was repeated for the three right 
hemisphere brain sections.

In summary, we excised a total of 57 samples from three different calves, 30 of 
which were analyzed immediately after excision (“fresh”) and the other 27 samples 
with a delay of a total of 48 h. After discarding uncertain measurements, we decided 
on 56 reliable WC measurements and 39 reliable EP measurements originating from 
calves 4–6. Results showed no significant difference between measurements in 
fresh calf samples compared to 48 h samples. However, certain discrepancies in 
comparison to the measurements of calves 1–3 can be observed (Fig. 20.5). The WC 
measurements were similar in calves 1–3 and calves 4–6, with a higher mean value 
of 73% in the WM of calves 4–6 in comparison to a mean of 69% in calves 1–3. The 
mean WC value in the GM remained at 82%. Higher differences have been found 
for EP measurements, whereas at 200  kHz calves 4–6 show lower σ values and 
higher ε values in both tissues, i.e., the mean σ200kHz in the WM decreased from 
0.12 S/m to 0.10 S/m, in the GM from 0.19 S/m to 0.13 S/m for calves 1–3 and 

Fig. 20.5  Measurements of WC and σ200kHz in all WM (blue), GM (red), and mixed (green) sam-
ples of calves 1–3 (dots) compared to “fresh” samples of calves 4–6 (squares) and “48 h” samples 
of calves 4–6 (diamonds). The black lines show the best fit according to Eq. 20.2a for all calves 1–3 
samples (thin line) and all calves 4–6 samples (thick line). Mean values are indicated for WM 
(purple) and GM (orange) for calves 1–3 samples (crosses) and calves 4–6 samples (triangle). Note 
the discrepancies between the first and second set of measurements in bovine brain samples, which 
were a result of the different storage condition before experimental procedures were established, 
i.e., the temperature in the refrigerator of calves 1–3 was too low
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calves 4–6, respectively. For ε200kHz, mean values are 1484 vs 1630 in the WM and 
1840 vs 2487 in the GM of calves 1–3 and calves 4–6, respectively.

All calf WC and σ200kHz measurements are presented in Fig. 20.5. Colors corre-
spond to the tissue type; marker symbols show the differences between calves 1–3 
(dots) and fresh (squares) and 48 h (diamonds) samples of calves 4–6. The pairs of 
mean values of the WC and σ200kHz are also indicated as crosses for calves 1–3 and 
triangles for all calves 4–6 samples, purple markers correspond to WM samples and 
orange markers to GM samples. Furthermore, the lines indicate optimal fits to 
Eq. 20.2a for mapping σ from WC. It is obvious that the same coefficients used in 
Eq. 20.2a for the calves 1–3 measurements (thin black line) will not best represent 
the new measurements from calves 4–6 (thick black line).

Furthermore, a slightly different combination of TRs was used in the two T1w 
images of the wEPT imaging sequence for calves 4–6, i.e., TRs  =  700  ms and 
TRl = 4000 ms were used instead of TRl being 3000 ms as was the case for calves 
1–3 studies. Therefore, the coefficients in Eq.  20.1 had to be refitted for altered 
values of IR. This model will be designated as mod_b, with coefficients w1 = 1.3028 
and w2 = 0.9134. In a next step, two new sets of coefficients for Eq. 20.2a were cre-
ated from the measurements of calves 4–6, one for mapping from WC to σ200kHz 
(thick black line in Fig. 20.5) and one for σ1MHz. The new coefficients were found via 
curve fitting, c1  =  0.0759, c2  =  1.2351E-08, and c3  =  18.7575 for 200  kHz and 
c1 = 0.0952, c2 = 2.1919e-08, and c3 = 18.1696 for 1 MHz. This model is called 
mod_c.

Typical wEPT model analysis, including WC and σ map creation, is illustrated in 
Fig. 20.4 at the bottom right. The presented slice corresponds to the T2w image that 
was used for segmentation. Therefore, it is possible to use the segmentation data and 
calculate mean values of WC and σ in a 3D representation of each tissue sample. 
The mean values can be compared to the corresponding measurement as presented 
in Table 20.3 for both tested models. Although an average error for WC estimation 
of 2.5% with mod_b is very low, the errors in the σ estimates are high. As expected, 
Eq. 20.2a derived from the data for calves 1–3 (mod_b, thin line in Fig. 20.5) does 
not optimally fit the measured WC and σ values of calves 4–6. The adequate wEPT 
model mod_c performs well for σ estimates with average errors as low as 13.6% for 
200 kHz and 13.3% for 1 MHz.

We also conducted experiments to estimate the temperature dependence of the 
properties. Another calf brain was measured 24 hour post excision for this experi-
ment. Four samples were extracted for these tests: two GM samples from the thala-
mus and two WM samples. Each sample was 5 mm thick and 5 mm in diameter. The 
base temperature of the samples was 20 °C. Samples were placed in the plate to be 

Table 20.3  Average relative error of wEPT estimates in all brain samples of calves 4–6 compared 
to measured values

WC (%) σ200kHz (%) σ1MHz (%)

mod_b 2.5 41.1 30.7
mod_c 3.3 13.6 13.3
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measured with the Ag/AgCl electrodes. In order to gradually warm the tissue  
samples in the plate, lab gloves filled with hot water (~70  °C) were positioned 
around the setup and fixated to keep it heated. A thermocouple was placed on the 
plate next to the electrode to monitor the temperature. When the temperature 
increased sufficiently, the electrodes were removed and the thermocouple was 
inserted into the sample to measure the actual tissue temperature. When the tem-
perature increased a few degrees, LCR measurements of the impedance were manu-
ally logged in the notebook at a single frequency of 200 kHz.

Measurements of σ200kHz for increasing sample temperature are shown in 
Fig. 20.6. The exponential trend lines for GM (blue) and WM (red) are displayed. 
Two conclusions can be drawn from this study. When the body temperature of 37 °C 
is assumed, this would result in GM conductivity of 0.194 S/m and for the WM 
0.102 S/m, which are in good agreement with values reported in the literature, e.g., 
σGM = 0.25 S/m and σGM = 0.12 S/m at 200 kHz were assumed in previous simulation 
studies [47]. Second, our measurements of excised samples were conducted at a 
room temperature of about 21 °C. According to these results, the multiplication fac-
tor for increasing σ from 21 °C to 37 °C is very similar. Note that this will be impor-
tant when conducting in  vivo wEPT studies because the temperature of tissues 
imaged in live animals are higher than in excised samples.

20.2.4  �In Vivo wEPT Study: Healthy and Tumor-Bearing Rats

One of the main objectives of this study was to investigate if the wEPT approach can 
be used to create in vivo maps of WC and σ in rat brain tumor models. In order to 
establish optimal experimental procedures and validate the wEPT model, a study 
was performed in one healthy rat (Fisher F334 rat, male, 10.2  weeks old from 
Envigo, USA). Similar to the bovine brain experiments, 16 tissue samples were 
taken from the excised brain and T1, WC, and EPs were measured. But prior to 
euthanizing the animal (Pentane 1  ml injected into the thorax cage after strong 

Fig. 20.6  Temperature-
dependence of conductivity 
at 200 kHz for sample 
temperatures between ~18 
and 38 °C. σ was measured 
for two GM (blue) and two 
WM (red) samples of one 
calf brain. Exponential 
trend lines are displayed 
for both tissues
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anesthetization with ketamine/xylasine), we performed in vivo MRI imaging of the 
rat with the inclusion of the wEPT sequence (two T1w images with different TRs).

In more detail, the live animal was anesthetized with isoflurane (2%) and placed 
in the rat head coil of the MRI in the prone position. The brain was first localized in 
the axial, sagittal, and coronal position. Twelve slices were chosen orthogonally to 
the brain covering the olfactory bulb (front part of brain) to the cerebellum (back of 
the brain) (Fig. 20.7 top). A T2w image and corresponding stacks of T1w images for 
T1 value estimation and wEPT analysis were acquired. General image sequence 
parameters remain the same as previously listed (compare Sect. 20.2.3) The whole 
brain was excised and placed in a rat brain slicer (Zivic labs) to subsequently extract 
cylindrical samples (Fig. 20.7 middle). Two blades with a measured thickness of 
0.2–0.3 mm were inserted in the slicer. We used a 3.5 mm punch and obtained three 
samples from the front of the brain, six samples from the midbrain (Fig. 20.7 mid-
dle), three samples from the hindbrain, and four more samples of the remainder of 
the back brain, which were not imaged in vivo because it was outside the FOV.

After sample preparation, impedance measurements were taken with the LCR 
meter and their EPs estimated using the known sample dimensions. The T1 value of 
the samples was evaluated with MR imaging using the variable TR method, which 
includes images for further wEPT analysis (T1w images with TRs/
TRl = 700/4000 ms). In order to monitor tissue dehydration in the MRI, the samples 
have been weighed pre- and post imaging. The sample WC was again estimated as 
the difference between wet and dry weights.

Experimental results predicted lower WC values in the rat samples than expected, 
which could be a result of the very small sample size possibly leading to fast drying 
of tissue. Furthermore, tissue samples of the rat are far more heterogeneous than in 
the calf. Thus, σ measurements of rat samples only showed a very minor increase in 
average values of GM compared to the WM samples. In conclusion, it is not recom-
mended to use the 16 measurements of the rat samples to create a new wEPT model 
(finding coefficients that best match Eqs. 20.1 and 20.2a). Instead, we employed the 
wEPT models originating from calf measurements.

The ex vivo MRIs were analyzed in the same manner as calves 1–3 and calves 
4–6, i.e., the two T1w images were loaded, maps were created, and mean values of 
estimated properties were calculated according to the segmentation masks of each 
sample. We used the previously described mod_b and mod_1 settings for wEPT 
analysis. Table 20.4 summarizes average errors of wEPT estimates of WC, σ200kHz, 
σ1MHz compared to measurements in all 16 rat1 samples. Higher deviations of mea-
sured values were observed for the rat versus calf data. The higher WC errors might 
be related to the measurement problems of WC encountered in the small rat 
samples.

Surprisingly, the model that performed the best for σ estimation with wEPT was 
mod_b (calves 1–3 data) with the lowest average relative errors for both frequen-
cies, 200 kHz and 1 MHz. However, the worst case of average error is 23.9% for σ 
estimations at 200 kHz, which is still reasonable given the high heterogeneity in the 
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Fig. 20.7  Experimental procedures in healthy rat1. (top) The in vivo MRI localization of the brain 
in axial, coronal, and sagittal views. (middle) Excised brain in the brain slicer and slice of mid-
brain, where one sample with id = 4 is already punched out. The locations of five additionally 
planned punch sites are indicated. (bottom) Corresponding sample segmentation in ITK-Snap 
along with a 3D rendering of 12 tissue samples with their labels and one corresponding slice 
through samples with the same id = {4–9}
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samples as compared to calf experiments. Also note that given the small sample 
size, many pixels in the MRI image corresponded to more than one tissue sample 
which might also affect the results. In general, reported mean values of wEPT  
estimations depend on the quality of the segmentation.

Subsequently, the in vivo MRI data of healthy rat1 was analyzed. This was the 
first time an imaging dataset of a live animal was used with a more realistic 3D 
representation of the excised samples (Fig. 20.7 bottom). However, recall that only 
12 of the 16 samples were visible in the in vivo wEPT studies. The wEPT sequence 
consisted of two T1w images (TRs/TRl = 700/4000 ms) each with 12 slices through 
the rat’s brain (Fig. 20.7). wEPT analysis again yielded maps of IR, WC, σ200kHz, and 
σ1MHz, which were created with MATLAB (data not shown, but compare Fig. 20.9 of 
a tumor-bearing rat) and the corresponding segmentation consisting of 3D masks 
for each tissue sample can be used to evaluate mean values of the estimations.

In addition to mod_b and mod_c, another wEPT model termed mod_d was cre-
ated that used that accounts for the temperature dependency of T1 and σ based on 
the calves 4–6 dataset (Fig.  20.6). The T1 relaxation value of tissue is not only 
dependent on the imaging frequency but also on the temperature. In order to account 
for these changes, the estimated T1 values in the ex vivo samples of rat1 at 20–22 °C 
were compared to the corresponding T1 values in the in  vivo images at 
35–37  °C.  Results predicted a multiplication factor of 1.3003 of T1 values for 
increasing the temperature. Since the WC of tissue is independent of temperature, it 
follows that the calculated IR has to be multiplied by a factor of IRTempCor = 0.8587 
to obtain adapted IR values that are valid for in vivo MRI data. The T1 plateau for 
the high CSF value at 37  °C could not be reached; therefore, no reliable results 
could be obtained for the CSF with our scanner. Thus, for temperature adjustment 
of the CSF values, the same factor of 0.8587 was used to reduce the IR. After cor-
recting IR values, curve fitting was applied to find the new coefficients of Eq. 20.1 
in mod_d, which were found to be w1 = 1.2598 and w2 = 1.0384. Subsequently, the 
conductivity values of all brain tissue samples of calves 4–6 were multiplied by a 
factor of σTempCor = 1.49 (at 200 kHz and 1 MHz) to account for increased conductiv-
ity at an in vivo temperature of 37 °C. A previous experiment (Fig. 20.6) revealed 
that the increase of σ with temperature is only slightly different for GM and WM; 
therefore, the average of the two evaluated factors was chosen for σTempCor. The same 
factor was used for conductivity adjustments of all brain samples at 1 MHz, although 
the preliminary study was only performed for 200 kHz. The conductivity of CSF 
was assumed to be 1.67 S/m at both frequencies. For the completion of mod_d, 
curve fitting was applied to find the coefficients in Eq.  20.2a, c1  =  0.1214, 

Table 20.4  Average error of wEPT estimates in all brain samples of rat1 compared to measured 
values

WC (%) σ200kHz (%) σ1MHz (%)

mod_b 7.4 21.7 19.1
mod_c 6.6 23.9 20.2

C. Wenger et al.



383

c2  =  2.4469e-8, c3  =  18.2031 for 200  kHz and c1  =  0.1481, c2  =  6.9562e-8, 
c3 = 17.1286 for 1 MHz.

It should be mentioned that curve fitting was also repeated for σ mapping for 
adjusting sample values with a tissue-type specific factor (one for GM, one for 
WM). The results for the coefficients c1,c2,c3 were the same for 200 kHz and only 
slightly different at 1  MHz. Therefore, any other temperature-dependent adapta-
tions of the conductivity were neglected.

Average values for WC, σ200kHz, and σ1MHz estimations of the three wEPT models 
(mod_b, mod_c, mod_d) were evaluated in the 12 tissue samples visible in the 
in vivo study. The average error to corresponding measurements are presented in 
Table 20.5. For comparing measured σ values to wEPT estimates with mod_d, the 
recorded mean values in the samples which correspond to in vivo temperature have 
to be adjusted by multiplying with 0.67 (the reciprocal of σTempCor). As was the case 
for the ex vivo studies, errors of WC estimates are relatively high, which might be 
due to already mentioned measurement errors. Surprisingly, conductivity estima-
tions were best for mod_b and higher average errors were found for mod_c, as 
expected. Model mod_d, which was specifically derived for in vivo studies, shows 
average errors for the σ estimations of 18.6% and 16.8% for 200 kHz and 1 MHz, 
respectively.

It should be noted that the difference in average errors in the in vivo wEPT model 
might appear lower compared to the ex vivo errors (Table 20.4) because the segmen-
tation of the in vivo images represents a larger portion of the actual tissue sample. 
The brain samples of the rat brain are far more heterogeneous than those of the calf, 
making it difficult to estimate EP values from the impedance measurements. 
Furthermore, the small brain samples are only partially visible in the ex vivo MRIs, 
which may explain the variation in reported values. Therefore, to improve the mea-
surement and imaging data for the tumor-bearing rats, the protocol was adjusted 
such that larger (but fewer) tissue samples were collected.

Four tumor-bearing F334 rats (rats 2–5) have been investigated during this study. 
The main goals were to create in vivo maps of WC and σ and to obtain measure-
ments of excised tumor samples and compare them to measurements of their con-
tralateral counterparts. Two tumor types, RG2 cells in rat2 and F98 cells in rats 3–5, 
were considered.

Under general anesthesia (isoflurane for induction and then i.p. injection of xyla-
sine 10 mg/kg/ketamine 75 mg/kg), the rat head was shaved and the animal immo-
bilized on the stereotactic unit. After disinfection and incision of the skin of the 

Table 20.5  Average error of in vivo wEPT estimates from the 12 imaged brain samples of rat1 
compared to measured values

WC (%) σ200kHz (%) σ1MHz (%)

mod_b 5.2 12.5 11.1
mod_c 7.2 41.8 32.9
mod_d 5.5 18.6 16.8
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head, a hole was drilled through the skull at coordinates corresponding to the right 
thalamus (2.5 mm lateral to midline, 1 mm anterior to the coronal fissure). A 10 μl 
mixture of cells (5000 cells in rats 2–3 and 10,000 cells in rats 4–5) and matrigel 
matrix ref. 354,263 (1:1) was slowly injected with a 0.5 cc insulin syringe 30 G, at 
a depth of 3 mm under the dura. The syringe was placed vertically. The muscles and 
skin were sutured 2  minutes after the injection. The analgesic Calmogine 
(Vitoquenol) was injected subcutaneously 10  mg, and another analgesic 
(Buprenorphine, 2  mg/ml) was delivered via the drinking water throughout the 
experiment.

MRI images were acquired at selected time points: rat2 was imaged 7, 13, an 
15 days after cell injection; rat3 at 7,13, 16, and 19 days after injection; and rats 4–5 
at 10 and 14 days. Before each imaging session, rats were anesthetized using 2% 
isoflurane in air (SomnoSuite, Kent Instruments) and placed in the prone position 
into the dedicated head coil. The MRI sequence protocol was identical to that of 
healthy rat1. However, the T2w axial scan now also contributes to tumor detection 
and to the brain slicing and sampling plans as well as the segmentation of the ex vivo 
samples and tumor. Figure 20.8 plots the estimated tumor volume in the four tumor-
bearing rats according to the T2w MRIs that have been acquired at different days 
after tumor cell injection.

After the final in vivo MRI, each rat was sacrificed by overdose of pentobarbi-
tal and the whole brain was carefully removed in one piece as depicted in the top 
left of Fig. 20.9. The excised brain was placed in the brain slicer and three slices 
per animal were created. Samples were punched out using 5 mm punches when-
ever possible. One tumor sample and the corresponding contralateral sample 
were taken from the middle slice, as shown at the top of Fig. 20.9. The brain, the 
slices, and the tissue samples were covered with a glove or cellophane film when-

Fig. 20.8  Tumor volume estimated by T2w imaging segmentation over time for four tumor-
bearing rats
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ever possible during the experimental procedures to minimize dehydration. WC 
and EP measurements were obtained using the previously described LCR meter 
and the weighing method. Different numbers of samples were punched out from 
the four rat brains, the middle slice contains the tumor sample and the contralat-
eral sample (Fig. 20.9). We did not measure EPs in all of the samples. However, 
we had combined measurements of WC and EPs in six samples of rats 2–4 and 
five samples of rat5 (id’s = {4-8}), including tumor and contralateral samples in 
all animals.

It was expected that the tumor sample would have the highest WC and conse-
quently also the highest σ values. This was almost always the case, except in rat2, 
where one sample from the right part of the front of the brain had an unrealistically 
high value of 94%. The measured WC values of the samples for each rat are shown 

Fig. 20.9  Experimental procedures in F98 tumor-bearing rat5 for the final in vivo MRI images, 
which were acquired 14 days post-injection of tumor cells. (top) The excised brain was cut into 
three slices, the middle one containing the tumor and contralateral samples. The three slices cor-
responding to the middle brain slice containing the tumor (id = 4, yellow) and contralateral sample 
(id = 5, cyan). These three slices are reproduced in the T2w image with the overlaid segmentation 
(middle). A 3D rendering with the label description is provided to the right. (bottom) Corresponding 
WC and σ200kHz maps are presented. Outlines of the segmentation are superimposed on these maps

20  Water-Content Electrical Property Tomography (wEPT) for Mapping Brain Tissue…



386

in the top plot of Fig.  20.10. The red crosses indicate the tumor sample, which 
indeed have the highest measured WC in rats 3–5. The contralateral sample is indi-
cated by a yellow cross. Also note, that rat2 not only had one very high measure-
ment of a brain tissue sample but also the measured tumor WC is lower than the WC 
of the contralateral sample.

According to the σ measurements at 200 kHz (Fig. 20.10 bottom), the tumor only 
has the highest conductivity in rat3 and rat5, it is however always higher than the 
conductivity of the contralateral sample. This increase is even more pronounced for 
σ measurements at 1 MHz (data not shown).

Subsequently, we performed wEPT analysis with the final in  vivo MRI data 
from the four tumor-bearing rats. As an example, WC and σ200kHz maps are repro-
duced for rat5 in the bottom part of Fig. 20.9. The tumor and contralateral samples 
were visible in three slices of the MRI dataset. Anatomical structures are well 
represented in both maps. The higher WC fraction and the higher conductivity in 
the tumor compared to the contralateral sample are clearly visible. The mean val-
ues of wEPT estimations of WC and σ were calculated according to the sample 
segmentation. Similar to the studies in healthy rat1, we considered mod_b, mod_c, 
and mod_d. Average errors obtained in all 23 samples from rats 2–5, including the 
tumor sample are presented in Table 20.6. A particularly low average error of WC 
estimations of 2.2% are predicted for mod_b and mod_d. Generally, the average 
errors for WC estimation are lower in the tumor-bearing rats than in healthy rat1, 
which might again indicate measurement errors in the WC of rat1. For wEPT esti-

Fig. 20.10  Measured and wEPT-estimated values of WC (top) and σ200kHz (bottom) in six samples 
of rats 2–4 and five samples of rat5. The data is sorted according to the measurements (black). The 
mean values in the corresponding sample according to wEPT estimations are displayed, mod_b 
(green), mod_d (blue). Tumor samples are indicated with a red cross and contralateral samples in 
yellow
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mations of σ, the best performing model is surprisingly mod_b. However, the aver-
age error for σ200kHz in wEPT estimations with the in vivo model mod_d is only 
slightly higher with 23.3%. And as expected, mod_c does not produce accurate 
estimations of WC or σ.

The wEPT estimations of WC and σ200kHz of the two best performing models are 
also displayed in Fig. 20.10 for each samples, mod_b in green and mod_d in blue. 
The top part of Fig. 20.10 indicates that WC estimations with the wEPT approach 
matches the measurements quite well. It is also likely that the wEPT estimations in 
rat2 are more realistic than the actual measurements, given the high outlier and also 
the low tumor WC. The trend for σ estimations is not the same when compared to 
the measurements in the rat samples (Fig. 20.10 bottom). When σ is estimated with 
the wEPT approach, the tumor always has the highest value, i.e., the sample with 
the red cross has the highest conductivity. Thus, the contralateral sample always 
shows lower conductivity than the tumor in each animal for measurements and 
wEPT-estimated values contrary to the measurements.

20.3  �Summary and Discussion

In this study, we investigated if the wEPT approach can be adapted for mapping 
EPs, specifically the conductivity of brain tissue, between 200 kHz and 1 MHz. We 
conducted experimental measurements and wEPT analysis in a phantom study with 
BSA solutions, in tissue samples excised from calf and rat brains, and in tumor-
bearing rat models. The wEPT analysis included model creation and estimation 
analysis, i.e., first the optimal coefficients of mapping functions for WC and EP 
have to be found, then the maps can be created and values in different areas can be 
estimated and compared to corresponding measurements.

The feasibility study with four BSA solutions of varying albumin concentrations 
predicted good agreement between experimentally measured values of IR, WC, σ, 
and ε at 200 kHz and 1 MHz and wEPT estimations (Table 20.1). We then per-
formed extensive studies with excised calf brain samples. We measured properties 
(T1, WC, and EP between 20 Hz and 1 MHz) of excised samples of WM and GM 
(Fig. 20.1). New wEPT models have been developed based on this data (Figs. 20.2 
and 20.5), i.e., optimal coefficients in mapping functions (IR➔ WC, WC➔ σ, WC➔ 
ε) have been estimated by curve fitting. Maps of WC and EPs at 200 kHz and 1 MHz 

Table 20.6  Average error of in vivo wEPT estimates compared to measured values in all tissue 
samples (including the tumor sample) of rats 2–5

WC (%) σ200kHz (%) σ1MHz (%)

mod_b 2.2 22.1 20.9
mod_c 6.7 110.2 80.2
mod_d 2.2 23.3 21.6
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have been created for excised calf samples and pieces of calf brain with the wEPT 
imaging approach (Fig. 20.3 and Fig. 20.4). Tissue types can be distinguished in the 
maps and average errors compared to measurements are low for WC (<3.5%) and 
reasonable for σ estimations at 200 kHz (<13.6%), compare Tables 20.2 and 20.3.

The next set of studies was performed in rat models, using one healthy rat and 
four tumor-bearing rats. Experimental measurements revealed WC and EPs of brain 
tissue samples and tumor samples excised postmortem (Figs.  20.7 and 20.9). 
Previously derived wEPT model equations were used to study in vivo images of the 
rats. Furthermore, we created an adapted wEPT model that incorporates adjust-
ments considering the temperature dependence of T1 values and σ of brain tissue 
(Fig.  20.6). WC and σ200kHz maps were created for the animals and analyzed 
(Fig. 20.9). The brain anatomy, distribution of different tissue types, and also the 
tumor are clearly visible in the created maps. Average errors between measurements 
and wEPT estimations were calculated (Tables 20.5 and 20.6). WC estimations 
show low average errors and correspond very well to the measurements in each 
sample (Fig. 20.10). Average errors of σ200kHz estimations in all samples including 
the tumor samples were reasonable (22–23%). Yet, wEPT estimations predict high-
est WC and σ in the tumor sample, which although expected was not that case for 
our measurements in all animals. For example rat2 and rat4 measurements predict 
higher σ values in healthy brain tissue.

However, at this point it should be noted that we estimated measurement errors 
for WC of ±1% and measurement errors of σ of ±10%. Measurement quality is 
dependent on tissue sample preparation and handling. For example, the differences 
between measurements of calves 1–3 and calves 4–6 may come from different stor-
age conditions in the office vs. in the butcher refrigerator. Too cold temperature in 
the butcher refrigerator could generate the higher conductivity we observed in 
calves 1–3. Furthermore, we saw some discrepancies in the WC measurements of 
healthy rat1, possibly because of fast drying of samples of small sample size. 
Furthermore, the samples of rat brain are more heterogeneous and it is difficult to 
obtain samples that only represent one type of tissue. Figure 20.11 summarizes the 
measurements of WC and σ200kHz in all tissue samples.

In the first studies, we also concentrated on estimations of the relative permittiv-
ity εr, which were neglected in later investigations. This is due to the fact that we are 
most interested in applying the wEPT approach for modeling induced electric fields 
during Optune treatment of patients with GBM. Computational studies have shown 
that at a frequency of 200 kHz, the field is almost completely shaped by the tissue 
conductivity [25]. Furthermore, relative errors from calves 1–3 data revealed better 
agreement than the conductivity mapping results. This is somewhat surprising given 
the fact that the permittivity is not strictly increasing for increasing water content of 
the tissue at our frequency range because the CSF with the highest water content has 
the lowest permittivity.

However, on a general note, all reported wEPT-estimated mean values are depen-
dent on the underlying sample segmentation. For higher image resolution, a bigger 
section of the samples can be imaged and used for the estimations. For ex  vivo 
wEPT studies, we usually had only one MRI slice through the sample with a lower 
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number of pixels contributing to the tissue, compared to in vivo wEPT studies with 
a more realistic 3D representation of samples. Yet, additional experiments might be 
necessary for validation of the adapted in vivo wEPT model. Specifically, the tem-
perature dependence of EPs of brain tissue might be investigated in more detail.

Also, wEPT is an imaging technique for estimating WC and EPs. Thus, the 
results are dependent on imaging quality and general procedures for reprocessing 
(such as denoising algorithms) might be studied in more detail. The authors of the 
original wEPT article further investigated the effect of B1 inhomogeneities and 
found that errors may reach ±20% for σ and ± 11% for εr estimations. Yet their 
approach was described for a frequency of 128 MHz and it was conducted with a 
3 T MRI scanner.

In conclusion, with our adapted wEPT approach, the frequency independent WC 
maps produce reliable results. It remains questionable if the relationship between 
WC and EPs of healthy and pathological tissues for frequencies in the 100–1000 kHz 
range is sufficient. At frequencies lower than 10 kHz, cell membranes act as capaci-

Fig. 20.11  Measurements of WC (top) and σ200kHz (bottom) all tissue samples originating from 
different animal samples
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tive elements because of their low conductivity. As the frequency increases, this 
membrane capacitance effect disappears, allowing electric currents to flow more 
freely according to the local ionic conductivity. As a result, the EPs of the tissues 
become highly correlated with the tissue water fraction. According to our results, 
adapting wEPT to frequencies between 100 and 1000 kHz is likely at the verge of 
producing reliable results. In future studies, the approach might be enhanced by 
including adaptations according to additional radiological features derived from 
other imaging modalities, such as T2-weighted imaging or diffusion imaging.

Improving and refining an approach for non-inversely mapping the EPs within 
the brain would be of high interest for planning and adapting the Optune treatment. 
Some studies have already been conducted with optimized EPT sequences for 
reconstructing EPs in brain tumors [48–50]. Results predict higher conductivity in 
the tumor compared to healthy tissue and a greater variability of EPs in individual 
tumor areas among patients. However, the wEPT approach would be of particular 
interest because it only requires two T1w images, which resemble the conventional 
T1 and proton density (PD) images that are acquired routinely. A preliminary study 
has already been conducted and WC and σ maps have been created for three GBM 
patients. Results will be presented in a future publication.
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