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Introduction

The current definition of dilated cardiomyopathy (DCM) is relatively simple: it is a 
heart muscle disease characterized by left ventricular (LV) or biventricular dilation 
and systolic dysfunction in the absence of either pressure or volume overload or 
coronary artery disease sufficient enough to explain the dysfunction. In the last 30 
years, prognosis of patients with DCM has dramatically been improved with few 
similarities in the history of cardiology and medicine. Typically, in the 1980s, the 
average survival rate was approximately 50% in a 5-year follow-up. Nowadays, at 
10 years of follow-up, the survival/free from heart transplant rate is far beyond 85%, 
and the projection of this improvement is significantly better for those who have had 
DCM diagnosed in the late 2010s.

This improvement in outcomes is fundamentally due to a better characterization 
of etiological factors, medical management for heart failure, and device treatment, 
like the implantable cardioverter defibrillator (ICD), for sudden cardiac death pre-
vention. However, other milestones should be recognized for the improvement in 
the survival rate, namely, the early diagnosis due to familial and sport-related 
screening, which allow detection of DCM at a less severe stage, and the uninter-
rupted, active, and individualized long-term follow-up with continuous reevaluation 
of the disease and re-stratification of the risk.

On the basis of these points, the most obvious conclusion could be that DCM is 
currently a relatively benign disease, with concrete treatment strategies and solid 
therapeutic regimens. However, clinical management of DCM patients is still one of 
the most challenging scenarios even for tertiary referral centers. DCM patients are 
usually young (between their 30s and 50s), still of working age with usually a solid 
economic and social background. Several pitfalls may be present during diagnostic 
workup and risk stratification of these patients. First of all, DCM is usually a mostly 
genetically determined disease. Indeed, the novel techniques of DNA sequencing 
revealed that genetically determined DCMs are vastly more common than once 
believed and it is far from being a monogenic disease, with multiple unknown epi-
genetic interactions. The incomplete penetrance and the epigenetic regulations are 
responsible for the so-called genotype-positive-phenotype-negative patients. 
Therefore, the management of information derived from genetic testing, both for 
probands and for relatives, is still debated and not definite. The continuous effort of 
researchers to identify the mechanism underlying the disease is fundamental to 
improving the survival of those patients.
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Etiological characterization of newly discovered DCM is crucial. Removing all 
the possible triggers of the disease (i.e., tachyarrhythmias, hypertension, alcohol, 
chemotherapy, inflammation) is fundamental to promoting a reverse remodeling. In 
this perspective, the investigation of the complex interaction between environmen-
tal factors and genetic background is still obscure, which, if adequately enlightened 
in the future, could open more favorable scenarios where care is individually tai-
lored on the basis of self-genetic background, lifestyle, and environment, thus giv-
ing the opportunity to make precision medicine clinically real.

Genetic testing alone, however, is not enough in a comprehensive deductive 
approach, which targets every hint of a specific etiology (the so-called red-flag 
approach). An approach should include a complete evaluation, starting from a phys-
ical examination, family history, electrocardiogram (ECG), biohumoral analysis, 
echocardiogram, and reaching the magnetic resonance and all the state-of-the-art 
techniques.

Altogether, these techniques should be implemented to address still unresolved 
issues in clinical management of DCM patients, such as the arrhythmic risk stratifi-
cation (mostly in the early phase) and the absence of multiparametric and dynamic 
risk scores. These issues are pivotal, identifying DCM patient responders to medical 
treatment or those requiring ICD implantation despite their ejection fraction and 
predicting the evolution of the disease in those with specific mutations or specific 
features.

Lastly, the dramatic drop of the event rate in DCM, which is still a relatively rare 
disease, created the need for international cooperation with larger populations to 
have definite and reliable information on this disease. The quest for international 
consortiums to share information on well-selected and well-characterized DCM 
patients will have undoubtedly a positive impact on clinical management.

In conclusion, notwithstanding the advancements made to improve prognosis of 
DCMs, clinical management of these patients and the interaction with their families 
are still complex issues, since a not insignificant number of patients still have an 
unfavorable prognosis in the short term, despite their relatively young age.

Starting from these concepts, the idea of this book is to explore the DCM uni-
verse providing the most updated knowledge on pathophysiology and identifying 
practical guidelines useful for clinical management of DCM patients. The main aim 
of this book is to help cardiologists in their everyday clinical practice to deal with 
this disease in a multifaceted and multidisciplinary approach and to aid the evolu-
tion of concepts, classifications, and definitions. Far from providing the absolute 
truth, inexistent both in medicine and in single diseases such as the DCM, this book 
is intended to provide the clinical and scientific international experience of a referral 
center for DCM that has treated DCM patients for more than 40 years.

We should thank Prof. Fulvio Camerini who, together with Prof. Luisa Mestroni, 
in the late 1970s, launched the idea of a registry for heart muscle diseases, which has 
now enrolled and followed up more than 2000 patients. The registry is currently part 
of an international collaborative network and contributed to identifying the wide pat-
terns and trajectories of the disease from the very beginning to long-term follow-up. 
All this information has led to critical and reliable scientific publications.
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Furthermore, throughout these years, DCM revealed itself to be a complex dis-
ease, requiring a multidisciplinary approach and critical clinical thinking, both in 
the early diagnostic phase and during the entire follow-up.

Our gratitude is extended to all those people who, ranging from the world of 
genetics, molecular biology, bioinformatics, immunology, virology, neurology, car-
diovascular pathology, cardiac imaging, and invasive cardiology, together with cli-
nicians, wrote the changes in the natural history of this disease. From its historical 
doom of “congestive” disease in the late 1970s, DCM has progressively been recog-
nized as a complex model of heart failure, which, however, still presents obscurities 
regarding the pathogenesis, treatment, and evolution.

Thanks to Andrea Di Lenarda, Marco Merlo, Bruno Pinamonti, Furio Silvestri, 
and Rossana Bussani who gave energy and essential contribution to this adventure.

Heartfelt thanks are extended to the hundreds of fellows who have worked on the 
registry over the last 40 years. Their passion, commitment, and sacrifice have been 
the milestones for a deeper knowledge of this complex disease. Thanks are also 
extended to all the cardiologists who have referred their patients to our center for the 
successful collaboration. Finally, thanks are also extended to all the patients who, 
with their problems, questions, and expectations, motivate us every day to progress 
in knowledge.

Introduction
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LVRR	 Left ventricular reverse remodeling
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1.1	 �Dilated Cardiomyopathies: The Classification Pathway

Cardiomyopathies (CMPs) are myocardial disorders in which the heart muscle has 
structural and functional abnormalities in the absence of other causes sufficient to 
cause the disease. Until a few decades ago in medical literature, there was uncer-
tainty and confusion about this entity. In the last years, advances in pathophysiol-
ogy, pathology, biomarkers, genetics and molecular medicine, echocardiography, 
and cardiac magnetic resonance have brought light in the darkness.

Since 1956 several definitions of CMPs have been adopted using terms as 
“inflammatory,” “non-coronary,” “myocardial disorders of unknown etiology” [1]. 
Classifications tried to make order in the complexity and, historically, were mainly 
based on phenotype [2, 3] missing multiple other aspects. In 2006 the American 
Heart Association proposed the definition of CMPs as follows: “cardiomyopathies 
are a heterogeneous group of diseases of the myocardium associated with mechani-
cal and/or electrical dysfunction that usually (but not invariably) exhibit inappropri-
ate ventricular hypertrophy or dilatation and are due to a variety of causes that 
frequently are genetic. Cardiomyopathies either are confined to the heart or are part 
of generalized systemic disorders, often leading to cardiovascular death or progres-
sive heart failure (HF) related disability” [4]. This classification is based on etiol-
ogy, distinguishing CMP in genetic, acquired, and mixed, and splits CMPs into two 
groups, primary or secondary, as they involve predominately the heart or as a part of 
systemic disease. Brugada syndrome, long QT syndromes, short QT syndromes, 
catecholaminergic ventricular polymorphic tachycardia, and Asian sudden unex-
plained nocturnal deaths are put separately, but for the first time, channelopathies 
were mentioned in the classification of genetic cardiomyopathies.

Two years later the European Society of Cardiology (ESC) chose a clinical and 
morphological classification (Fig. 1.1), reporting CMPs as “myocardial disorders in 
which structure and function of the myocardium are abnormal, in the absence of coro-
nary artery disease, hypertension, valvular heart disease and congenital heart disease 
sufficient to cause the observed abnormality”. Dilated CMP, hypertrophic CMP, 
restrictive CMP, and arrhythmogenic right ventricular CMP are the four main specific 
phenotypes that have to be subsequently subclassified in familial and nonfamilial. 
Actually the picture is not so simple, with heterogeneity and overlapping forms [5].

DISEASE SUBTYPE

UNIDENTIFIED GENE
DEFECT

HCM
DCM
ARVC
RCM
Unclassified NON FAMILIAL /

NON GENETIC

FAMILIAL / GENETIC

CARDIOMYOPATHIES
IDIOPATHIC

DISEASE SUBTYPE

Fig. 1.1  The 2008 ESC classification of cardiomyopathies. From Elliott P. et al. European Heart 
Journal 2008

M. Merlo et al.
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The need to integrate the above multiple aspects of CMPs prompts last classifica-
tion available, proposed by Arbustini et al. in 2013 and endorsed by the World Heart 
Federation, the MOGE(S), a morphofunctional classification, enriched with extra-
cardiac involvement, mode of inheritance with effect of mutation on gene function, 
and functional status. In details MOGE(S) acronym stands for morphofunctional 
characteristics (M), organ involvement (O), genetic or familial inheritance pattern 
(G), etiological information (E), and functional status (S). This system resembles 
the TNM classification of tumors and provides a genotype-phenotype correlation 
[6]. It seems to be a challenging way to describe CMPs in everyday life; however, it 
pushes clinicians to clarify etiology and familiar history and to have a comprehen-
sive approach to the patients, not focusing only on the heart. Actually, even if it 
represents a translation link between basic science and clinical medicine, However, 
its use in clinical practice is rare [7].

Although major advances in knowledge as reported above, DCM is the cardio-
myopathy that, between all others, still lacks of complete characterization and 
understanding. The term DCM encloses multiple entities, and, so far, no classifica-
tion has been able to portrait it adequately.

Anyway, continuous efforts are made by researchers, and in 2016, a new state-
ment has been published. Pinto et  al. proposed a revised definition of DCM 
(Fig. 1.2), which tries to encompass the broad clinical features of the disease and its 
changes during time. They emphasize the progression of the disease from a preclini-
cal state with no cardiac dilation through isolated ventricular dilation or arrhythmic 
cardiomyopathy, characterized by arrhythmogenic features as supraventricular/ven-
tricular arrhythmias and/or conduction defects observed in myocarditis, genetic 
defects, and neuromuscular diseases. Furthermore, they introduce a new entity 
called “the hypokinetic non-dilated cardiomyopathy (HNDC)” which is the overt 
phase of systolic dysfunction not associated with ventricular dilation, as it happens 
in DCM caused by Lamin A/C defects. The final landing remains DCM [8].

Another new concept comes from the recent awareness that DCM overlaps with 
arrhythmogenic right ventricular cardiomyopathy (ARVC). They may share disease-
causing mutations; desmosomal gene defects are known to be mutated in DCM and 

ARRHYTHMIC
CM

DCM CLINICAL SPECTRUM

PRECLINICAL  PHASE

NO CARDIAC EXPRESSION
(genotipe +/phenotype -) 

ISOLATED
VENTRICULAR

DILATION

CLINICAL  PHASE

MILDLY
DILATED CM 

DILATED CM
with severe
ventricular
dysfunction

Fig. 1.2  The DCM clinical spectrum. From Pinto Y.M. et al., European Heart Journal 2016
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ARVC. Moreover, patients with ARVC can show a left ventricular involvement, and 
the other way around a DCM relative may demonstrate ventricular ectopy coming 
from the right ventricle [8].

Maybe in the next classification there will be room for this overlap form with 
specific gene defects.

Despite major scientific progresses in the last decades, DCM still remains the 
third cause of HF and the first cause of cardiac transplant worldwide, with high 
clinical relevance given its mortality-morbidity risk in such a young population with 
long life expectancy (mean age at diagnosis is 45 years) (Fig. 1.3).

Major advances have been made in DCM since the 1980s when it was considered 
an end-stage condition, as a cancer, with 50% of mortality at 2 years. Nowadays, the 
estimated free survival from death and heart transplant is approximately of 85% at 
10 years [9]. This is the result of earlier diagnosis with consequent earlier beginning 
of evidence-based therapy, which has dramatically improved in the last 30 years 
with introduction of neurohormonal agent (most recent sacubitril-valsartan) and 
non-pharmacological therapy (implantable cardioverter defibrillator (ICD) and 
resynchronization therapy). Unfortunately, we are not always able to adequately 

a b

d e

c

Fig. 1.3  Gross anatomy and histological specimen representative of DCM. (a, b) Gross anatomy 
of an explanted heart from a 26-year-old patient with DCM. (c) Azan-Mallory staining of a female 
patient with DCM and severe LV dysfunction; (d) histology from a patient with Duchenne’s dys-
trophy; (e) Azan-Mallory staining from an explanted heart from a patient affected by genetically 
determined DCM (double mutation in desmin and potassium channels). Courtesy of Prof. Bussani, 
University of Trieste

M. Merlo et al.
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stratify the risk in this population, especially at the beginning of the disease when 
the adverse left ventricular remodeling is not the only adverse predictor and major 
arrhythmic events can happen in patients not satisfying criteria for ICD implanta-
tion. Anyway, severe mitral regurgitation, right ventricular dysfunction, and restric-
tive filling pattern have been recognized as predictors of adverse events as expression 
of advanced disease [10–12]. On the other hand, caution has to be taken to avoid 
early useless ICD implantation motivated only by low ejection fraction: studies 
have demonstrated that left ventricular reverse remodeling is a process that lasts 
3–9 months after the diagnosis (to be completed in 24 months) [13]. A global evalu-
ation comprehensive of late gadolinium enhancement and peak circumferential 
strain assessed by cardiac magnetic resonance (CMR) performs better than clinical-
echocardiographic evaluation alone in the prediction of left ventricular reverse 
remodeling (LVRR) in patient recently diagnosed with DCM receiving evidence-
based therapy [14].

DCM carries important ethical issues as the identification of asymptomatic car-
riers of gene mutations in a family, potential risk of pregnancy, and sport participa-
tion. These are common situations that the clinical cardiologist has to face with, 
often without specific guidelines.

Some help in the management of DCM comes from registries enrolling clinical, 
instrumental, and prognostic data of large cohorts of patients affected and strictly fol-
lowed in the long term. In our Institution this is a common behavior, since we can extrap-
olate thousands of data from the Heart Muscle Disease Registry, active from 1978 [15].

1.2	 �Genetic Dilated Cardiomyopathy and Etiological 
Classification

Familial forms account for the at least 40% of cases, and thanks to the recent dis-
coveries in the genetic field, clinicians have the opportunity, but also the responsi-
bility, to provide an etiological diagnosis, stratify the risk and treat patients with the 
best strategy available. So, when acquired causes (e.g. hypertension, coronary artery 
disease, valvular heart disease, arrhythmias, etc.) have been excluded, there is a 
family history of DCM and there are clinical clues suggesting the diagnosis (what 
we used to call “red flags”: deafness, blindness, muscular disorders, etc.), we rec-
ommend to perform the genetic screening [13]. Anyway, it has to be stressed that de 
novo mutations exist, so a negative family history doesn’t rule out a genetic DCM, 
and that is mandatory for an appropriate patient selection in order to avoid noise, as 
will be explained below.

Guidelines and position papers recommend, with level C of evidence, genetic 
testing in the proband (the first or the most affected in the family, as this gives a high 
positive predictive value) in order to provide diagnostic/prognostic information, aid 
therapeutic choices, and prompt cascade screening in relatives [16]. Family screen-
ing allows an early diagnosis in a consistent number of patients, facilitating the 
diagnosis in non-proband DCM patients at an early stage of the disease, giving the 
chance to start optimal medical therapy earlier [17].

1  Historical Terminology, Classifications, and Present Definition of DCM
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Genetic background of DCM is a wide and complex issue. So far, more than 50 
genes encoding for cytoskeleton, sarcomeric proteins, sarcolemma, nuclear enve-
lope ion channels, and intercellular junctions have been found to be implicated in 
DCM, and several other genes remain to be discovered. There is variable clinical 
presentation (also in the same family), incomplete penetrance, age-related pene-
trance, and lack of specific phenotype (meaning that the same gene mutation can 
cause different cardiomyopathies) [13].

However, unlike few decades ago, when cardiomyopathies were a confused mat-
ter, now we are living an historical breakthrough: from a pure phenotype classifica-
tion, we are moving toward a best understanding of DCM and a more “personal” 
characterization of the disease, thanks to genetics [18]. In particular, there is grow-
ing evidence in the field of genotype-phenotype correlation with remarkable impli-
cations in the management of patients.

Although a strong genotype-phenotype relationship is currently accepted only 
for LMNA/C, recently a body of data is emerging in this field. Some rare sarcomeric 
variants carry poor prognosis after the age of 50, supporting the role of genetic test-
ing in further risk stratification [19]. Furthermore, cytoskeleton Z-disk mutations 
are demonstrated as inversely related with LVRR. Moreover, since these proteins 
are not involved in beta-adrenergic activity, they are not targeted by antineurohor-
monal drugs limiting the therapeutic effect of the widespread molecules used in 
HFβ management [20].

Thus, the updated approach to DCM is now comprehensive of genetic evaluation 
with identification of genes and their corresponding phenotypic expression, accepting 
that most genotype-phenotype correlation remains unknown and, to date, globally, the 
genetic background is not able to predict disease evolution and response to therapy.

1.3	 �Future Perspectives

As frequently happens in medicine, there are unresolved issues, which are outlined 
below and which will be further explained in the focused chapters of the book.

Our efforts must focus on identifying the underlying DCM cause, in order to further 
reduce the number of “idiopathic DCM.” Progresses have been made in this field; we 
know that in the 1980s, almost 50% of DCM didn’t have a specific cause. Nowadays 
the etiologic characterization has dramatically improved so that it is possible to under-
stand the etiologic basis of many so-called idiopathic heart muscle disease [3].

Thanks to etiology-directed management, the DCM prognosis has considerably 
improved and clinicians must persist in this task [21].

In patient with clinically suspected myocarditis as a possible explanation for 
ventricular dysfunction, there is the need to proceed with endomyocardial biopsy 
(EMB), with histopathology, immunohistochemistry, and molecular analysis. It has 
a fundamental role in identifying the underlying etiology (e.g., giant cell, eosino-
philic myocarditis, sarcoidosis) which imply different treatments and prognosis. It 
is also the basis for safe immunosuppressive therapy, after the exclusion of viral 
infection [22].

M. Merlo et al.
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Valuable aids in the etiologic characterization of DCM come from the recent 
advances in echocardiography.

An interesting tool is speckle-tracking strain analysis for assessing cardiac 
mechanics and segmental and global LV function. This technique allows the 
evaluation of myocardial deformation in all its components (i.e., longitudinal 
and circumferential shortening and radial thickening). All parameters may be 
reduced in DCM, beginning in the preclinical phase and allowing an early iden-
tification of disease [23].

Another essential tool is cardiovascular magnetic resonance (CMR). It provides 
additional prognostic information as it is the gold standard technique for biventricu-
lar morphological and functional evaluation and tissue characterization [24].

It is frequently adopted in the setting of myocarditis in stable patients or after 
EMB in life-threatening presentations, according to Lake Louise criteria [22].

A step toward a comprehensive DCM classification and an attempt to reconcile 
clinic with genetic in the complexity of the disease is genotype-phenotype correla-
tion, with its prognostic implication in clinical practice. A clear example of this 
relation is the LMNA/C, but other gene defects are emerging, such as Filamin C 
[25]. It is possible that in the future genetic cluster classification will be completed 
studying every gene mutation, thanks to whole-genome sequencing, taking care of 
the patient instead of the disease.

Our efforts are focused on a personalized medicine approach including technolo-
gies at the services of each patient maybe with genic therapy or specific anti-
inflammatory therapy targeted to the specific etiology.
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Dilated cardiomyopathy (DCM) is a cardiac disease characterized by LV dilatation 
and impaired systolic function. An acquired dilated phenotype may result from a 
variety of factors including coronary artery disease (CAD), hypertension, myocardi-
tis, valvular and congenital heart disease, drug toxicity, alcohol abuse and metabolic 
disease. Indeed, the diagnosis of “primary” DCM is often of exclusion. Among the 
forms of primitive DCM, familiar forms and idiopathic forms are identified [1–4]. 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13864-6_2&domain=pdf
mailto:andrea.dilenarda@asuits.sanita.fvg.it
mailto:gerardina.lardieri@aas2.sanita.fvg.it


12

The epidemiology of this condition is quite complex, due to misdiagnosis, continu-
ous reclassification and changing definitions. Furthermore, since investigations 
were performed on small populations in specific geographic areas and were not 
representative of the general population, epidemiological studies on DCM are 
affected by many limitations. Another, but substantial, limitation of epidemiological 
studies conducted on this pathology depends upon the lack of standardized diagnos-
tic criteria [5].

Initial estimations of prevalence data for DCM came from a population-based 
study by Codd et  al. conducted on the Olmsted Country population (Minnesota, 
USA) between 1975 and 1984. According to this study, the prevalence rates were 
higher for men, with a male/female ratio of 3:1 [6]. Age- and sex-adjusted preva-
lence rates reached 36.5/100,000 subjects, and incidence rates were found 6/100,000 
person years. Younger patients (<55  years) were more frequently affected (inci-
dence up to 17.9/100,000). Data related to the epidemiology in different ethnicities 
suggest a 2.7-fold increased risk associated with black race [7]. Death certificates 
from the National Center for Health Statistics’ confirmed a 2.5-fold increased risk 
in blacks more than in whites, with black men having the highest prevalence 
(27/100,000 in black men versus 11/100,000 in white men) [8]. In Italy, the first data 
on the incidence of DCM go back to a prospective post-mortem study on consecu-
tive necropsies performed during a 2-year period (November 1987–November 
1989) in the Department of Pathology at Trieste University. Incidence of DCM at 
autopsy was estimated at 4.5/100,000/year, while clinical incidence in the same 
period was 2.45/100,000/year. The total incidence was 6.95/100,000/year in accor-
dance with the study by Codd et al. [5, 6]. Table 2.1 shows a summary of major 
epidemiologic studies.

2.1	 �Towards Contemporary Clinical Epidemiology 
in Dilated Cardiomyopathy

The 2008 position statement from the European Working Group on Myocardial and 
Pericardial Diseases was a definitive turning point and shed new light upon the dark 
side of cardiomyopathies [9]. Cardiomyopathies were defined as “myocardial disor-
ders in which the heart muscle is structurally and functionally abnormal, in the 
absence of coronary artery disease, hypertension, valvular disease and congenital 
heart disease sufficient to cause the observed myocardial abnormality” [10].

Table 2.1  Major 
epidemiologic studies in 
dilated cardiomyopathy

Study Incidence/prevalence
Torp et al. 1978 3/100,000/year [20]
Bagger et al. 1984 0.73/100,000/year [21]
Williams et al. 1985 8.3/100,000 [22]
Codd et al. 1989 36.5/100,000 [6]
Dolara et al. 1989 1.8/100,000/year [23]
Rakar et al. 1997 6.95/100,000/year [5]
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They were grouped into specific morphological and functional phenotypes 
and further divided into familial and nonfamilial forms. Diagnostic criteria have 
two main objectives: to support and facilitate the recognition of the disease and 
to allow the early diagnosis in affected asymptomatic family members. The con-
sensus paper combined a clinical mind-set with first- and second-level diagnostic 
tools (i.e. ECG and echocardiography), placing the emphasis on family history of 
cardiac and neuromuscular diseases. The diagnostic paradigm shifted from a 
pathophysiological mechanism to a morphological and functional point of view, 
and the new awareness of a familial pattern in this disease built the basis of rela-
tives screening [11].

In recent years, the diagnosis of DCM became reliable even in centres of dif-
ferent countries, thus allowing multicentre studies with more numerous and rep-
resentative populations of well-studied patients. Furthermore, female sex gained 
attention in scientific literature and gender differences became an important 
topic to address.

Diagnostic criteria only partially overcame the difficulties faced in epidemio-
logic studies because of the challenging diagnosis and clinical presentation of the 
disease. Hershberger and colleagues estimated DCM prevalence on the basis of the 
known DCM to HCM ratio of ≈2:1. Therefore the surrogate DCM was found to be 
about 1–250 subjects [12], resulting from the early diagnosis, more effective treat-
ments and a reduced mortality of patient partially linked to the identification of 
DCM in asymptomatic subjects. Current guidelines report a prevalence of familial 
DCM ranging from ≈30 to 50% of cases, with 40% having an identifiable genetic 
cause [13–15].

Table 2.2 shows the frequency of DCM in special categories.
DCM was originally considered a rare disease, and the possibility of a familiar 

substrate was ignored. Over time, DCM was found to be a major cause of HF affect-
ing especially young patients, with absent or nonsignificant comorbidity and a long 
life expectancy, thus emerging as a major indication to heart transplantation [1]. The 
need to improve diagnostic accuracy for this population gave new life to scientific 
literature. DCM started to be considered a systemic condition rather than an isolated 
disease, and ventricular dilatation was found a common pathway of several cardiac 
diseases [3].

The studies carried out more recently were not built upon the solely basis of the 
phenotype, thus reflecting the epidemiology of the disease with higher accuracy. 
However, despite major efforts, the true incidence and prevalence of DCM still 
remains to be determined.

Table 2.2  Frequency of dilated cardiomyopathy in special groups

Categories Prevalence ratios
Female to male Between 1:1.3 and 1:1.5 [7, 23]
White (W) to African-Americans (AA) 1:2.45

W 11/100,000 AA 27/100,000 [7]
Familial forms 30–50% [14]

2  Epidemiology
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2.2	 �Genetics and Future Perspectives

As previously discussed, it has been known for decades that familial clinical 
screening in idiopathic DCM would reveal a significant amount of first-degree 
affected subjects (20–48%). However, only in the last few years, the role of 
genetics has become predominant in the approach of DCM patients, and the com-
plexity of genetic mechanisms, genotype and environment interactions and 
genotype-phenotype correlations have become clearer. A fundamental role for 
these achievements has been played in recent years by the technological progress 
with the so-called next-generation sequencing (NGS) techniques, also used to 
sequence the entire human genome (coding and noncoding regions of DNA), 
referred to as whole-genome sequencing (WGS), with panels of dozens of genes 
at reduced cost [16].

In the most recent reports, approximately 40% of DCM cases have an identifi-
able genetic pathogenic variant. An important issue in this setting is the vast genetic 
as well as phenotypic heterogeneity in familial DCM, meaning that more than one 
mutation could be found and sometimes different morphological forms are showed 
in a single family: this is a major obstacle in clinical practice and in genetic report 
interpretations, because unreported pathogenic mutations must be validated, a pro-
cess that needs time and delays the screening of other family members [17].

Thanks to the efforts in this field, a growing number of genes involved in DCM 
have been identified, and currently most panels cover 30–40 genes. Recently, many 
European centres have put their data together to create the first “Atlas of the clinical 
genetics of human Dilated Cardiomyopathy” [18].

Nowadays, the role of genetics is becoming more and more important in clini-
cal practice. In fact, there is an increasing evidence that identifying a disease-
causing variant may have important patient management implications in terms of 
severity of the disease, prognosis and survival rates. For example, McNair et al. 
reported that 1.7% of DCM families have SCN5A gene mutations linked to a 
strong arrhythmic pattern [19] and that Lamin A/C mutation carriers have a well-
known risk of major ventricular arrhythmias/sudden death and conduction system 
abnormalities: this evidence may lead clinical cardiologist to consider ICD 
implantations in a cluster of patients that do not match the usual criteria indicated 
by the HF guidelines [20].

Epidemiology of DCM is rapidly changing. Furthermore, genetic testing may 
identify asymptomatic carriers, which lead to redefine prevention strategies, sport 
recommendations and ICD implantation. Nevertheless, it may guide reproductive 
decision-making, which could further modify the incidence and prevalence of DCM 
in the future decades [21].
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Dilated cardiomyopathy (DCM) is characterized by dilated left ventricle with sys-
tolic dysfunction that is not caused by ischemic or valvular heart disease.

The hallmark pathophysiologic feature of DCM is systolic dysfunction of the left 
or both ventricles. Reduced sarcomere contractility increases ventricular volumes to 
maintain cardiac output through the Frank-Starling mechanism, producing the thin-
walled dilated LV appearance that is observed in overt DCM.

Frank and Starling demonstrated that increased ventricular preload augments 
contractility, but excessive pressure and volume induces a plateau and then a reduc-
tion in myocardial contraction [1]. Abnormal hemodynamics leads further to left 
ventricular (LV) remodeling.

Cardiac remodeling in response to an inciting myocardial insult or an underly-
ing genetic abnormality has been classically considered the pathognomonic aspect 
of DCM.

3.1	 �Ventricular Remodeling in DCM

The term ventricular remodeling refers to alteration in ventricular architecture, with 
associated increased volume and altered chamber configuration, driven on a histo-
logic level by a combination of pathologic myocyte hypertrophy, myocyte apopto-
sis, myofibroblast proliferation, and interstitial fibrosis.

Pathologic LV remodeling is closely linked to activation of a series of neuroen-
docrine, paracrine, and autocrine factors, which are upregulated after myocardial 
injury and in the setting of increased LV wall stress and hemodynamic derange-
ment. Contributing factors include the renin-angiotensin-aldosterone (RAA) axis, 
the adrenergic nervous system, increased oxidative stress, pro-inflammatory cyto-
kines, and endothelin. Both RAA system inhibition and beta-adrenergic blockade 
have shown to markedly attenuate or reverse LV remodeling in patients with heart 
failure and LV dilation.

Left ventricular remodeling results in characteristic alterations of left ventricular 
function that can be described in terms of altered left ventricular pressure-volume 
relationship. Left ventricular dilatation and reduced systolic function induce a right-
ward displacement of the pressure-volume curve with increased left ventricular end-
diastolic volumes and pressures. Despite increased preload, stroke volume may be 
reduced, and end-systolic pressure to volume ratio (index of contractility) is 
depressed. In addition to this, diastolic dysfunction due to incomplete relaxation 
after disturbed excitation-contraction coupling processes and increased stiffness 
due to altered extracellular matrix composition cause an additional upward shift of 
the pressure-volume relation.

When the preload reserve is exhausted, the stroke volume becomes sensitive to 
alterations in the afterload. It depends on blood viscosity, vascular resistance, vas-
cular distensibility, and mainly myocardial wall tension.

Calculations of myocardial wall tension are defined by the Laplace equation and 
are expressed in terms of tension, T, per unit of cross-sectional area (dynes per cen-
timeter [dyn/cm]).
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Within a cylinder, the law of Laplace states that wall tension is equal to the pres-
sure within a thick-walled cylinder times the radius of curvature of the wall:

	 T P R h= ´ / 	

where T is wall tension (dyn/cm), P is pressure (dyn/cm2), R is the radius (cm), and 
h is wall thickness.

Two fundamental principles stem from the relationship between the geometry of 
the ventricular cavity and the tension on its muscular walls: (1) dilatation of the 
ventricles leads directly to an increase in tension and (2) an increase in wall thick-
ness reduces the tension on any individual muscle fiber. Therefore, ventricular 
hypertrophy reduces afterload by distributing tension among more muscle fibers.

Dilatation of the heart decreases cardiac efficiency as measured by myocardial 
oxygen consumption unless hypertrophy is sufficient to normalize wall stress. In 
HF, wall tension (or stress) is high, and thus, afterload is increased. The energetic 
consequences of the law of Laplace can have some role in progressive deterioration 
of energy-starved cardiac myocytes in the failing heart.

3.2	 �Genetic Pathophysiology and New Possible Proteins 
Involved in DCM [2]

A great diversity of pathogenetic pathways has been hypothesized to explain the 
development of DCM, depending on the affected genes and the dislodged intracel-
lular structures or pathways.

The wide variety of genes involved in the pathophysiology of DCM gives an 
insight to think of DCM as a group of diseases, instead of a single form of cardio-
myopathy (Fig. 3.1).

Genetic mutations suggest several mechanisms of ventricular dysfunction in 
DCM as follows:

•	 Deficit in force generation (sarcomere DCM): Mutations within genes encoding 
titin, myosin, actin, troponin, and tropomyosin result in the expression of abnor-
mally functioning proteins, thus leading to myocardial dysfunction and 
DCM. Sarcomere gene mutations are the most frequent causes of DCM with 
truncating mutations in titin (TTNtvs) occur in 25% of end-stage disease and in 
15% of ambulatory DCM patients [3, 4].

•	 Defects in nuclear envelope (laminopathies): These diseases are characterized by 
variable degrees of heart and skeletal muscle involvement. Mutations involve Lamin-
A/C and emerin coding genes. Dominant Lamin A/C mutations occur in approxi-
mately 6% of DCM cases and are far more common in DCM with conduction system 
disease [5]. Electrophysiological abnormalities (conduction system block and atrial 
fibrillation) often precede DCM that relentlessly progresses to HF [6, 7]. The severity 
of the associated skeletal myopathy is variable. Most Lamin A/C mutations cause 
haploinsufficiency, and mouse models of these mutations demonstrate inadequate 
response to mechanical strain, which may promote premature cardiomyocyte death.
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•	 Deficit in force transmission (cytoskeletal cardiomyopathies): Mutations involv-
ing protein members of the cytoskeletal apparatus, like filamins, dystrophin, des-
min, d-sarcoglycan, and vinculin, are responsible for muscular dystrophies, 
which are often associated with DCM.

•	 Filamins are large cytoskeletal actin cross-linking proteins that stabilize the actin 
filament networks and link them to the cell membrane by binding transmem-
brane proteins and ion channels [8]. Filamin C encodes a large protein (2725 
amino acids) primarily expressed in the cardiac and skeletal muscle that interacts 
with sarcomeric proteins in the Z-disc and the sarcolemma. Filamin C truncation 
variants are associated with a severe arrhythmogenic DCM phenotype in the 
absence of overt skeletal muscle disease.

•	 Deficit in protein post-translational modifications (glycosylation processes-
cardiomyopathies): An example comes from dolichol kinase gene mutations, 
resulting in impairment of protein glycosylation processes inside the cell organ-
elles, thus manifesting as syndromic conditions with hypertrophic phenotype 
and as non-syndromic DCM phenotype [9].

•	 Impaired cell-to-cell adhesion (desmosomal cardiomyopathies): Mutations in 
genes encoding desmosomal proteins are responsible for arrhythmogenic right 
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RBM20

Nuclear Lamina

Mitochondria

Nucleus

Sarcomeres
TTN, TNNT2, TPM1, MYH7, MyBPC3

Cytoskeletal Network

Dystrophin Complex

Fig. 3.1  Cardiomyocyte compartments contributing to genetically mediated dilated cardiomyop-
athy. See Legend for abbreviations and acronyms. (Adapted from McNally EM, Mestroni L, 
Dilated Cardiomyopathy Genetic Determinants and Mechanisms CircRes. 2017;121:731–748. 
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ventricular Cardiomyopahty (ARVC) and also for DCM, with a prevalence of up 
to 13% in a DCM cohort [10].

•	 Deficit in energy production (mitochondrial cardiomyopathies): They are char-
acterized by defects in the oxidative phosphorylation that result in deficient 
energy production in the form of ATP. They include hypertrophic, dilated, and 
LV non-compaction phenotypes.

•	 Calcium-cycling abnormalities: A DCM mutation has been described in the 
phospholamban gene. Phospholamban is responsible for inhibition of sarco-/
endoplasmic reticulum Ca2+ –ATPase (SERCA) function. Mutations in the gene 
result in increased SERCA inhibition with defective calcium reuptake, with con-
sequent reduction in contractility and heart dilation.

•	 Ion channel abnormalities: Mutations in ion channel genes (SCN5A, ABCC9) 
are typically associated with a variety of arrhythmic disorders. The ventricular 
dilation and DCM pattern is less common and almost always preceded by 
arrhythmias and/or conduction system defects [11, 12]. The pathogenetic mecha-
nisms are poorly understood.

•	 Spliceosomal defects: RBM20 is an RNA binding protein involved in alternative 
splicing process. DCM associated with RBM20 mutations is frequently associ-
ated with early onset, severe heart failure, and high arrhythmic potential.

•	 Epigenetic perturbation: Missense mutation in GATAD1 gene is associated with 
DCM. GATAD1 encodes for a protein that is thought to bind to a histone modi-
fication site that regulates gene expression.

•	 Protein misfolding disease: Mutations in presenilin genes have been recently 
identified in patients with DCM [13]. Presenilins are also expressed in the heart 
and play a role in heart development. Aβ amyloid is a possible novel cause of 
myocardial dysfunction. Echocardiographic measurements of myocardial func-
tion suggest that patients with Alzheimer’s disease (AD) present with an antici-
pated diastolic dysfunction. As in the brain, A β40 and A β42 are present in the 
heart, and their expression is increased in AD [14].

•	 RAS-MAPK pathway disruption: Mutations in RAF-1 gene are responsible for 
rare variants of childhood-onset, non-syndromic DCM.

3.3	 �Molecular Mechanisms of Cardiac Remodeling in HF [15]

DCM is histologically characterized by diffuse fibrosis, compensatory hypertrophy of 
the other myocytes, and myocyte dropout. Myocyte hypertrophy is promoted by cat-
echolaminergic stimulation, stretch activation of integrins by myocyte and fibroblast, 
G protein-mediated intracellular signaling, and micro-RNA networks. A new gene 
expression toward a fetal pattern results in profound morphological rearrangements. 
The rate of myocyte apoptosis and consequently progressive cells lost is increased in 
DCM. This process is partly favored by the elevated expression of fetal genes.

Neurohormonal systems. Acutely reduced cardiac output or vascular underfilling 
leads to baroreceptor-mediated sympathetic nervous activity with elevation of heart 
rate, blood pressure, and vasoconstriction. Although these changes maintain an 
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adequate cardiac output, at the end they lead to vicious circle. Catecholamines promote 
arrhythmias, myocardial ischemia, myocyte hypertrophy, and apoptosis and cause dif-
ferent signal-transduction abnormalities (e.g., beta-1 receptor downregulation) [16].

HF results from increased sympathetic nervous activity, but the renin-angiotensin-
aldosterone system (RAAS) is also pathologically activated.

Angiotensin II (ATII) is the most powerful mediator of the RAAS. Its activity is 
mediated by two major G protein receptor associated receptors: angiotensin type-1 
and type-2 receptor (AT1R and AT2R). AT1R is expressed mainly in the vascula-
ture, kidney, adrenal cortex, lungs, and brain, and its activation promotes vasocon-
striction; AT2R is mainly expressed in the myocardium and promotes vasodilatation 
and antiproliferative, anti-oxidative, and anti-inflammation effects.

ATII contributes to the increased activity of the sympathetic nervous system by 
stimulating the adrenal glands and the juxtaglomerular apparatus of the kidney with 
resulting elevation of plasma renin levels.

Furthermore, ATII stimulates adrenal secretion of aldosterone which, together 
with vasopressin, reduces renal excretion of water and sodium [17], configuring an 
inappropriate ADH secretion syndrome.

Finally, ATII contributes to cardiac remodeling promoting myocyte hypertrophy 
and apoptosis and structural and biochemical alterations in the ECM [18, 19].

Natriuretic peptides. Natriuretic peptides are hormones produced by the heart. 
The most important ones are atrial natriuretic peptide (ANP), mainly produced in 
the atria, and B-type natriuretic peptide (BNP) which is mainly released by ven-
tricular myocardium. They are released in response to myocardial stretch and act as 
counter-regulatory hormones promoting natriuresis, diuresis, and vasodilation. 
Their plasma concentrations raise in proportion to HF severity and are consolidated 
markers of poor prognosis in overt HF.

Inflammation. Inflammation may also play a role in pathophysiology of 
DCM. Many studies have shown an increase in different inflammatory mediators 
(e.g., tumor necrosis factor α (TNFα), interleukin (IL) 1beta). IL-2, IL-6, Fas ligand, 
monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory pro-
tein α (MIP-1α) in HF have also been renamed as an inflammatory disease.

TNFα, for example, has a negative inotropic toxic effect on the myocardium that 
is connected to adverse ventricular remodeling in DCM.

Extracellular matrix. The extracellular matrix in the heart provides the scaffold-
ing within which contractile cardiomyocytes are housed; it contains a basement 
membrane, collagen network, proteoglycans, and glycosaminoglycans. Of the dif-
ferent types of collagens, type I and III collagens are the predominant forms found 
in fibrils deposited in scar tissue after myocardial injury, more specifically demon-
strated in myocardial infarction models. These collagens are initially synthesized by 
cardiac fibroblasts as procollagen precursors before both the N-terminal and the 
C-terminal are cleaved by proteinases, and then the resulting tropocollagen is 
assembled into mature fibrils. Markers of collagen turnover such as serum N-terminal 
type III collagen peptide (PIIINP) have been associated with increased mortality 
and hospitalization rates, and procollagen type I and PIIINP levels appeared to 
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decrease following aldosterone antagonist therapy in chronic HF patients [20]. In 
the 967 Framingham subjects without HF, PIIINP levels were not independently 
associated with LV mass, fractional shortening, end-diastolic dimensions, or left 
atrial size [21].

The extracellular matrix is a rather dynamic system that is constantly turned 
over. In the setting of cardiac or extracardiac injury, regulation of extracellular 
matrix likely plays an important role in ventricular remodeling and fibrosis. For 
example, bone morphogenetic protein 1, a C-proteinase, plays a crucial role in the 
processing of extracellular matrix proteins and collagen deposition and regulation 
of excessive collagen deposition in fibrosis after tissue injury [22]. Recent studies 
have found that gene expression of tissue inhibitor of metalloproteinases-1 (TIMP-
1) and matrix metallopeptidase-9 (MMP-9) was significantly increased in the bor-
der zone of myocardial infarct models as well as ischemic HF models in rats and 
that treatment with antifibrotic therapy can prevent the upregulation of MMP-9, 
ultimately leading to suppression of collagen deposition [23, 24]. Interestingly, con-
centrations of TIMP-1 appeared to correlate with diastolic LV dysfunction [25]. In 
a multimarker analysis of HF patients, a panel that included TIMP-1 as well as 
NT-proBNP, hs-TnT, growth differentiation factor 15, and insulin-like growth 
factor-binding protein 4 had the best performance in predicting all-cause mortality 
at 3-year follow-up.

Calcium. Cytoplasmic Ca2+ has a key role in cardiac contraction triggering the 
interaction of the myosin-thick and actin-thin myofilament. During the depolariza-
tion of the myocyte, Ca2+ enters the myocyte through L-type Ca2+ channels known 
as transverse tubules, which are close to the sarcoplasmic reticulum (SR) and stimu-
lates the release of much greater quantities of Ca2+ from the SR into the cytoplasm 
through the Ca2+ release channels, the ryanodine receptors (RyR2). After reaching a 
critical concentration, the cytoplasmic Ca2+ activates the contractile system of the 
myocyte. The sarco-/endoplasmic reticular adenosine triphosphate-driven [Ca2+] 
(SERCA2a) pump returns cytoplasmic Ca2+ to the SR against a concentration gradi-
ent, and this ends contraction and initiates myocyte relaxation.

Several abnormal Ca2+ cycling may be observed in HF. A first condition is a dia-
stolic leak of Ca2+ through altered RyR2 with the reduction of the Ca2+ content of 
the SR and then a reduction of Ca2+ that can be released during activation [26]. 
Some have attributed this mechanism to the hyper-phosphorylation of RyR2 at ser-
ine 2808 by phosphokinase A [27], others to the phosphorylation at serine 2814 by 
another enzyme, Ca2+/calmodulin-dependent protein kinase II [28].

Another alteration of calcium metabolism is due to a loss of function of the 
SERCA2a pump with a reduction of Ca2+ content of cardiac SR. Phospholamban is 
SERCA2a-protein regulator. In the dephosphorylated state, phospholamban inhibits 
SERCA2a. Stimulation of b-adrenergic receptors normally causes the phosphoryla-
tion of phospholamban and thereby disinhibits SERCA2a, enhancing both cardiac 
contraction and relaxation. For the desensitization of myocardial b-receptors that 
occurs in HF, this mechanism provided by adrenergic stimulation may be reduced 
in this condition [29].
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AL	 Amyloid light chain
ATTR	 Amyloid transthyretin
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CMR	 Cardiovascular magnetic resonance
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EF	 Ejection fraction
EMB	 Endomyocardial biopsy
FDG	 Fluorodeoxyglucose
HF	 Heart failure
HRS	 Heart Rhythm Society
ICD	 Implantable cardioverter defibrillator
LGE	 Late gadolinium enhancement
LV	 Left ventricle
LVRR	 Left ventricular reverse remodeling
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4.1	 �Clinical Presentation

Most patients affected by dilated cardiomyopathy (DCM) present between the ages 
of 20 and 60, but the disease can occur also in children and older adults. They are 
most commonly Caucasian males. Furthermore, with respect to other heart failure 
etiologies, the comorbidity profile of DCM patients is very low. Finally, due to the 
frequent long-standing asymptomatic left ventricular dysfunction, these patients are 
often scarcely symptomatic for heart failure (HF) at diagnosis in spite of impor-
tantly remodeled left ventricle. Useful patterns in diagnosing DCM are:

	1.	 Heart failure symptoms (progressive dyspnea with exertion, impaired exercise 
capacity, orthopnea, paroxysmal nocturnal dyspnea, and peripheral edema)

	2.	 Incidental detection of asymptomatic cardiomegaly
	3.	 Incidental detection of left bundle branch block (e.g., sport screening in coun-

tries with ECG sport screening)
	4.	 Symptoms related to coexisting arrhythmia, conduction disturbance, thrombo-

embolic complications
	5.	 Sudden death
	6.	 Familial screening

4.2	 �Etiological Classification: A Critical Issue in Clinical 
Management of DCM

DCM prognoses have changed dramatically in the last decades [1]. This aspect is 
due to an improvement in HF therapy, both pharmacologic and non-pharmacologic 
(e.g., devices and MitraClip©), promoting left ventricular reverse remodeling 
(LVRR). However, the diagnostic effort facing a newly discovered DCM phenotype 
is critical to address a tailored therapy and to improve the LVRR amount and long-
term survival [2]. In fact, DCM is a generic term that encases several different dis-
eases. Timing is also a crucial aspect since delaying an accurate etiological definition 
of nonischemic DCM could mean to increase the event rate. In this sense a red flags 
approach appears important, and advanced diagnostic tools should be used not in 
every patient but in whom red flags suggest utility rather than futility [3].

4.2.1	 �Need of Reclassification of the Disease During Follow-Up

The overall improvement of prognosis in DCM makes quite frequent to see in clini-
cal practice patients with >10 years of disease. In these patients an eventual worsen-
ing of systolic function or arrhythmias could be explained by a progression of the 
disease but also by a developed superimposed coronary artery disease, valvulopa-
thy, or active myocarditis. In this sense repeated etiological classification of disease 
is advocated and appears crucial periodically during follow-up [4].
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4.3	 �Exclusion of Reversible Causes of Left Ventricular 
Dysfunction/Dilation

It is pivotal to exclude possible removable causes of left ventricular dysfunction 
[4]. First and by far most important is to exclude an ischemic cardiomyopathy 
that is conventionally distinguished from DCM by the presence of >50% steno-
sis in the left main stem, proximal left anterior descending artery, or two or 
more epicardial coronary arteries on invasive or computed tomography coro-
nary angiography (2). Late gadolinium enhancement (LGE) at cardiovascular 
magnetic resonance (CMR) provides an alternative approach and may identify 
prior myocardial infarction (subendocardial or transmural LGE) in as many as 
13% of patients with suspected DCM and unobstructed coronary arteries [5]. In 
addition to ischemic cardiomyopathy, DCM must also be distinguished from 
other nonischemic cardiomyopathies and physiological adaptations that may 
generate similar patterns of left ventricle (LV) remodeling [6]. One example is 
represented by valvular heart disease associated with left ventricular systolic 
dysfunction.

Hypertensive dilated cardiomyopathy is a challenging entity from diagnos-
tic standpoint. These patients usually are older and with more comorbidities, 
tolerating higher doses of drugs, or with high pressure in spite of LV dysfunc-
tion and a septal thickness of more than 12 mm [7]. However, it is still unknown 
why only few hypertensive patients develop LV systolic dysfunction in the 
absence of concomitant coronary artery disease. A genetic background favor-
able to develop DCM is likely, but future focused studies are advocated to 
elucidate this issue.

The term “idiopathic DCM” is often used in clinical practice and in some series 
accounts for 20–30% of nonischemic HF. However, the approach to a patient with 
nonischemic DCM rarely seeks reversible factors other than hypertension, valve 
disease, and congenital heart disease. Other examples of commonly overlooked or 
underappreciated reversible environmental triggers for LV dysfunction include sus-
tained supraventricular arrhythmias or very frequent ventricular ectopic beats, 
which can lead to tachycardia-induced cardiomyopathy; substance abuse (e.g., alco-
hol, cocaine); acute emotional stress or chemotherapies that cause catecholamine 
(i.e., Takotsubo) or toxin-induced cardiomyopathies; and systemic autoimmune dis-
orders (e.g., Churg–Strauss syndrome and sarcoidosis). New-onset HF with LV dys-
function occurring during pregnancy or the postpartum period could identify a 
peripartum cardiomyopathy. Confirmation of active myocarditis as the cause of 
recent onset severe HF is particularly important as it may require investigations 
(e.g., endomyocardial biopsy) [8].

Accordingly, a comprehensive integrated approach, including third-level diag-
nostic tools, should be systematically implemented in clinical practice to remove 
every possible reversible cause through specific therapeutic interventions. This 
issue appears essential to promote left ventricular reverse remodeling and subse-
quent outcome improvement [2] (Fig. 4.1).
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4.4	 �Diagnostic Work-Up in New-Onset LV Dysfunction/
Dilation: A “Red Flags” Approach

As previously stated, DCM may present with multiple clinical scenarios. However, 
the clinical approach to a suspected DCM requires a step-by-step work-up. It is cru-
cial to start from the family and personal history, to perform a comprehensive physi-
cal examination and to interpret all the available diagnostic tools. Rapezzi and 
colleagues first described the so-called red flags approach in cardiomyopathies to 
guide the selection of the appropriate diagnostic techniques [3]. The easily missed 
boxes (see below) provide some important examples of this approach and of difficul-
ties of differential diagnosis in approaching a newly diagnosed nonischemic DCM.

4.4.1	 �Personal and Family History

In the adulthood, the onset of the disease is generally observed during the third or 
fourth decade of life. This is “unusual” in classic genetic diseases. Since genetic 
forms account for 20–50% of DCM cases, the first clinical examination should 
include a very careful assessment of the patient’s family history [9]. The recording 
of a complete family pedigree is helpful in determining the possible mode of genetic 
transmission (autosomal dominant, autosomal recessive, X-linked, matrilinear) and 
in detecting other cardiac and non-cardiac traits associated with DCM. The pedigree 
is by far the most important genetic tool in the systematic approach to DCM [9]. 
Importantly, a negative family history does not rule out a genetic form of DCM as 
de novo genetic mutations can be responsible for sporadic DCM. Systematic famil-
ial screening is an important way of diagnosis shedding light on early phases of 
disease with favorable prognosis [10].

Genetically
determined

iDCM DCM

Post
Myocarditis

Excessive
b-adrenergic

stimuli Peripartum

Auto-immune
Disease

Chemotherapy

Alcohol

Hypertension

DysthyroidismTachycardia

Fig. 4.1  Etiological characterization of DCM. DCM dilated cardiomyopathy, IDCM idiopathic 
dilated cardiomyopathy. From Merlo et  al. Evolving Concepts in Dilated Cardiomyopathy, 
EJHF.2018. 20(2):228–239
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A distinct clinical entity is the DCM formed in pediatric patients. The prognosis 
in this specific population is poorer than in adulthood, carrying more HF and arrhyth-
mic events. This translates in a need of more aggressive treatments and follow-up in 
pediatric DCMs [11], implicating difficult clinical choices due to the age of the 
patients. The reasons of this particularly aggressive form in children are largely 
unknown. Other forms of LV dysfunction, such as active myocarditis, appear to carry 
an ominous prognosis in children [12]. It is possible that specific immunologic path-
ways could be involved, but this represents an important field for future research.

4.4.2	 �Symptoms and Physical Examination

Clinically, signs and symptoms of heart failure often characterize the onset of the 
disease, but young individuals can remain asymptomatic for a long time despite hav-
ing LV dysfunction. A history of palpitations and syncope should be carefully inves-
tigated, as they can be the clinical expressions of serious ventricular arrhythmias. 
Neurologic examination is of paramount importance. A search for multisystem 
involvement should be part of the clinical examination, in particular looking for signs 
of skeletal myopathy or neurosensory disorders [3]. For example, cases of DCM 
associated with learning difficulties, blindness, and deafness should be recognized.

4.4.3	 �12 Lead Electrocardiogram

Historically, electrocardiogram in DCM has been considered non-specific. However, in 
some cases it can provide clues to specific forms of DCM. For example, posterolateral 
pseudonecrosis (that requires exclusion of true necrosis with coronary angiogram) is 
typical of dystrophin-related DCM. Atrioventricular blocks (of various degrees) can 
suggest a mutation in LMNA and are usually related to an important arrhythmic burden 
[13]. Sinus bradycardia and atrial standstill have been associated to myotonic dystro-
phy and Emery–Dreifuss muscular dystrophy [3]. Other important red flags include 
low QRS voltages, right bundle branch conduction abnormalities, and anterolateral/
inferior negative T waves which can lead to a diagnosis of biventricular or left-domi-
nant arrhythmogenic cardiomyopathy [14]. Left bundle branch block and left atrial 
enlargement are usually markers of long-standing disease, the former also having prog-
nostic and therapeutic implications (i.e., resynchronization therapy) [15]. Finally, in 
contrast to other cardiomyopathies, there is a lack of studies on a systematic evaluation 
of ECG in a large cohort of DCM. These studies could provide in the future possible 
diagnostic and prognostic tools derived by a simple and often neglected tool as ECG.

4.4.4	 �Laboratory Tests

In HF with reduced ejection fraction, natriuretic peptides have clinical utility for the 
diagnosis and prognostic stratification. In fact, guidelines recommend dosage of 
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brain natriuretic peptide (BNP) or N-terminal pro-BNP at the time of the first evalu-
ation and systematically during follow-up [16]. However, BNP rises irrespective of 
HF etiology. Instead, elevations in serum creatine phosphokinase can suggest spe-
cific genetic disorders such as dystrophinopathy, laminopathy, or desminopathy [3]. 
Whether clinical evidence of neuromuscular involvement is found or not, in these 
patients a complete neurological work-up is generally warranted. Other important 
laboratory markers suggesting specific etiologies are high transferrin saturation and 
hyperferritinemia in hemochromatosis, or lactic acidosis and leucopoenia in rare 
forms of mitochondrial diseases [3].

4.4.4.1	 �Genetic Testing
While there is a general appreciation that DCM can be caused by many different 
disease processes, in everyday clinical practice it is often considered under the 
catch-all heading of “nonischemic HF” with reduced ejection fraction. However, the 
concept that DCM represents a family of diseases characterized by complex interac-
tions between environment and genetic predispositions is gaining prominence as the 
clinical impact of a precise diagnosis is better appreciated [17]. Nowadays, after the 
exclusion of possible removable causes of LV dysfunction, in both familial and 
sporadic cases, particularly in the presence of “red flags” suggesting possible 
genetic forms of DCM, a genetic testing with a next-generation sequencing approach 
is indicated. Despite current guidelines recognize a genotype–phenotype correla-
tion only in LMNA carriers, there is a growing amount of data that supports geno-
type–phenotype correlations also for other genes (i.e., desmosomal, FLNC [18], 
TTN [19], sarcomere) (see Chap. 5). In this sense, it is emerging a new, widely 
unexplored, and important overlap syndrome between DCM and right ventricular 
cardiomyopathy called arrhythmogenic cardiomyopathy, often determined by muta-
tions of LMNA, FLNC, or desmosomal genes. Therefore, it exists the next future 
perspective of an extensive use of genetic testing in DCM, even if the current knowl-
edge on genotype–phenotype correlation and application of precision medicine in 
DCM is still embryonic [20].

4.4.5	 �Echocardiography

Two-dimensional Doppler echocardiography has an important role in the diagnostic 
and prognostic assessment of DCM [21]. Echocardiography has the main advantage 
of being very practical and quite affordable making it the perfect tool for first-line 
diagnosis and follow-up of DCM patients. In fact, evaluation of LV ejection fraction 
and LV dimensions represents the first-line approach to a DCM patient and should 
be periodically repeated during the follow-up. Different patterns of DCM have been 
described according to the grade of LV dilation. Hypokinetic non-dilated cardiomy-
opathy (or mildly dilated cardiomyopathy) has been recently introduced as a dis-
tinct clinical entity [6, 22]. Specific genetic forms, such as LMNA mutations, can 
cause isolated LV systolic dysfunction without dilatation and have a much higher 
arrhythmic burden [23]. A reduced LV ejection fraction with preserved LV size can 

M. Merlo et al.



33

be also observed in the early (preclinical) stages of disease and is generally associ-
ated with a good prognosis [22]. The presence of some particular features such as a 
restrictive LV filling pattern and non-sustained ventricular arrhythmia carries a 
higher risk of an adverse outcome [24, 25]. Similar clues may suggest involvement 
of specific genes. Alternatively, active myocarditis can also present with depressed 
ejection fraction but not extensive LV remodeling, frequently in association with a 
high arrhythmic burden [8, 12].

Myocardial deformation imaging techniques (e.g., speckle tracking) offer greater 
sensitivity than LV ejection fraction for identifying subtle abnormalities of systolic 
function and may assist in the early detection of disease [26].

In addition to the examination of LV systolic function and size, the presence 
and the severity of functional mitral regurgitation [27] have important implica-
tions for therapeutic and prognostic strategies. Left ventricular diastolic function 
should be systematically assessed for the estimation of left ventricular filling 
pressures and the identification of restrictive filling pattern [24]. The right ven-
tricle along with the estimation of pulmonary arterial pressure is also essential in 
the stratification of the disease [28].

Box 4.1 Easily Missed: Cardiac Amyloidosis
Amyloidosis is a disease complex caused by extracellular deposition of insol-
uble abnormal fibrils composed of misfolded proteins, which can alter tissue 
structure and impair function of multiple organs including the heart. Types of 
amyloidosis which commonly affect the heart include primary systemic amy-
loidosis (amyloid light chain (AL)) and transthyretin amyloidosis (amyloid 
transthyretin), the latter of which may be acquired in older individuals (wild 
type) or inherited in younger patients (hereditary).

Cardiac amyloidosis usually starts as restrictive cardiomyopathy with nor-
mal or mildly depressed LV systolic dysfunction and significant diastolic HF 
and can progress to severe systolic dysfunction in advanced stages. Once 
amyloid infiltration involves the heart, prognosis significantly worsens. In 
fact, median survival in AL amyloidosis is ≈13 months but decreases drasti-
cally to 4 months with the onset of HF symptoms [29].

Reduced QRS voltage amplitude on ECG is noted in the limb leads in 
≈50% of cases, but the true electrocardiographic hallmark of cardiac amyloi-
dosis is the disproportion between left ventricular wall thickness and QRS 
voltages [29]. A pseudoinfarct pattern in the precordial leads is another elec-
trocardiographic feature.

In some cases, echocardiography could suggest the diagnosis and hence 
enhance the sensitivity of physical examination. Typical echocardio-
graphic features of amyloidosis include thickened ventricular walls (right 
and left) in the setting of normal ventricular size, biatrial dilatation, the 
presence of a pericardial effusion, and valvular thickening without 
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4.4.6	 �Cardiovascular Magnetic Resonance

Cardiovascular magnetic resonance (CMR) imaging is considered the gold standard 
for assessment of ventricular volumes and ejection fraction, enabling confident 
diagnosis of DCM in borderline cases and improving the characterization of disease 
severity in patients with known LV dysfunction.

Another crucial aspect of CMR is tissue characterization that can be useful in 
diagnosis of specific forms of DCM [5, 33]. The identification of myocardial 
edema (in T2-weighted images) suggests active myocarditis and late gadolinium 
enhancement (LGE) representing replacement fibrosis and is detectable in 
approximately one-third of cases of DCM with a distinctive mid-wall distribu-
tion, more frequently within the septal wall [5]. The presence of LGE in DCM 
carries important prognostic implications in terms of low probability of LV 
reverse remodeling and increased risk of sudden cardiac death [5, 34]. Moreover, 
the distribution of LGE may be suggestive of some DCM phenotypes; for 
instance, an inferolateral or posterolateral location is typical of muscular dystro-
phy, whereas subepicardial or transmural patchy distribution of LGE is sugges-
tive of myocarditis or sarcoidosis [35].

significant dysfunction [30]. Increased echogenicity of the myocardium, 
termed granular sparkling, is not very sensitive or specific when evaluated 
in isolation. Even if the global LV function is usually impaired only in 
advanced cardiac amyloidosis, longitudinal dysfunction precedes the 
onset of heart failure. This is best detected by strain imaging, which typi-
cally shows impairment of longitudinal strain at the base of the left ven-
tricle, with relatively well-preserved apical strain. When strain is color 
coded, a “bull’s eye” with an apical sparing pattern is found; it is both 
sensitive and specific for the diagnosis of cardiac amyloidosis [31]. In 
contrast CMR findings in cardiac amyloidosis are aspecific. In fact late 
gadolinium enhancement is simply an expression of interstitial expansion 
that can be frequently found in storage diseases (e.g., Anderson–Fabry and 
Danon disease) [30].

Scintigraphy with bone-seeking tracers (DPD Tc in Europe and PYP Tc in 
the USA) is an important technique in the diagnosis of amyloidosis. 
Myocardial uptake is strictly dependent on etiology: absent or mild in AL, 
present in ATTR, and variable in other rarer genetic forms [32]. A strong myo-
cardial tracer uptake is highly sensitive for ATTR cardiac amyloidosis (both 
hereditary and wild type). Furthermore, specificity in relation to sarcomeric 
hypertrophic cardiomyopathy has also been shown to be high [30]. There are 
potential pitfalls since a negative scintigraphy does not rule out a diagnosis of 
cardiac amyloidosis and mild myocardial tracer uptake does not allow a dif-
ferential diagnosis between ATTR and AL [30].
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Emerging CMR techniques, specifically T1 mapping, provide assessment of the 
interstitial fibrosis and could represent in the future a tool for early diagnosis and 
risk stratification of DCM [36].

CMR T2* imaging is the preferred technique for the detection and quantification 
of iron deposits within the myocardium in patients with hemochromatosis.

Box 4.2 Easily Missed: Cardiac Sarcoidosis
Sarcoidosis is a multisystemic inflammatory disease of unknown origin char-
acterized by noncaseating granuloma formation in multiple organ systems. 
The disease affects more frequently the lung (more than 90% of patients), but 
it can also involve the heart, liver, spleen, skin, eyes, parotid gland, and other 
organs and tissues. A certain diagnosis requires histopathologic demonstra-
tion of noncaseating granulomas at lung biopsy. Clinically cardiac involve-
ment occurs in about 5% of patients with sarcoidosis, but autopsy findings 
and, more recently, data based on CMR studies showed that 25–50% of 
patients with sarcoidosis have some degree of cardiac involvement. The prin-
cipal manifestations are conduction abnormalities, ventricular arrhythmias 
(including sudden death), and heart failure [37, 38].

Diagnosis of cardiac sarcoidosis is challenging, and diagnostic criteria rely 
on the presence of noncaseating granuloma on histological examination of 
myocardial tissue. Among patients with extra-cardiac sarcoidosis, diagnosis 
of cardiac sarcoidosis is probable in the presence of reduced LVEF, unex-
plained ventricular tachycardia, conduction block (Mobitz type II or 3° heart 
blocks), patchy uptake at cardiac FDG–PET or a LGE on CMR, or gallium 
uptake in a pattern consistent with cardiac sarcoidosis [39].

Preliminary tests, such as ECG, chest radiography, and echocardiography, 
are non-specific for cardiac sarcoidosis (CS).

Abnormal electrocardiographic findings include various degrees of con-
duction block, such as bundle branch block (right bundle branch block more 
common than left bundle branch block) and fascicular block, QRS complex 
fragmentation, pathological Q waves, and ST–T changes. Notably, only a 
small proportion (3–9%) of patient with asymptomatic cardiac sarcoidosis 
have an abnormal ECG [38, 39].

Echocardiographic abnormalities are variable and non-specific and are 
present in about 77% of patients with systemic sarcoidosis [40]. The most 
common features are interventricular thinning, especially basal focal areas of 
akinesia or dyskinesia or aneurysm, and other common findings are cardiac 
chambers enlargement, left and/or right ventricular systolic dysfunction, and/
or and diastolic dysfunction [40]. Granulomatous inflammation can be rarely 
seen as macroscopic areas of bright echoes, with a “speckled” or “snowstorm” 
pattern at two-dimensional echocardiography [39].

In the recent years, CMR has emerged as a valuable imaging tool for 
early diagnosis of cardiac sarcoidosis [41]. Thanks to its accuracy and 
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resolution, it is able to detect both structural and functional abnormalities 
and to differentiate them from ischemic lesions. CMR has a specificity of 
about 78% for cardiac sarcoidosis making it the diagnostic tool of choice 
[41]. CMR abnormalities include not only granulomatous infiltration but 
also inflammation, edema, and fibrosis [41]. Different patterns of LGE can 
be found in patients with cardiac sarcoidosis. Early enhancement of granu-
lomas in T2-weighted images is suggestive of the presence of inflammation 
and edema [41, 42]. The most common patterns of LGE distribution are 
subepicardial and mid-myocardial, with preferential involvement of the 
basal septum or inferolateral wall [43]. Right ventricular involvement has 
been described, too [43].

Another important imaging technique for CS diagnosis is FDG–PET. Focal 
or focal-on-diffuse FDG uptake, which represents active inflammation, can 
suggest CS.  These findings have a low specificity, since these patterns are 
seen in other inflammatory myocardial diseases, too.

EMB is still considered an important tool for certain diagnosis of cardiac 
sarcoidosis. However, it has low sensitivity (25%) due to the focal localization 
of lesions. Moreover, EMB is most commonly performed from the right ven-
tricle, while disease involvement is more common in the basal septum and 
inferolateral LV wall, regions that are more difficult to biopsy [39]. Current 
consensus guidelines now suggest electrophysiological (electroanatomic 
mapping) or image-guided (PET or CMR) biopsy procedures to increase its 
sensitivity [39].

The arrhythmic risk in cardiac sarcoidosis patients raises the issue of the 
risk stratification of sudden death and when to consider ICD implantation. 
Several studies demonstrated that the only consistent association with ICD 
intervention in these patients was with reduced LVEF. However, a signifi-
cant rate of ICD intervention occurred also in patients with low to moderate 
LVEF reduction, while none of those with normal LV and RV ejection frac-
tion had appropriate ICD therapy [44]. Current consensus guidelines rec-
ommend ICD implantation in patients with known cardiac sarcoidosis and 
spontaneous sustained ventricular arrhythmias or prior cardiac arrest and/
or if LVEF <35% (despite optimal medical therapy and trial of immuno-
suppression). ICD implantation can also be useful in patients with unex-
plained syncope and inducible ventricular arrhythmias. ICD implantation 
has also been considered at the time of pacemaker implantation (when indi-
cated) and may be considered in patients with LVEF in the range of 
36–49%, despite optimal medical therapy for heart failure and a period of 
immunosuppression [39].

Interestingly, these guidelines, enhancing the role of CMR, stated that ICD 
implantation may be considered if patients have evidence of late gadolinium 
enhancement on CMR [40].
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4.4.7	 �Cardiac Catheterizations and Procedures

4.4.7.1	 �Coronary Angiogram
In the diagnostic assessment of a depressed LV ejection fraction of unknown origin, 
coronary angiography is required to rule out coronary artery disease, particularly in 
patients above 35 years, males, and those carrying cardiovascular risk factors. 
Computed tomography angiography can be considered as an alternative, particu-
larly if the pretest probability of ischemic disease is low to moderate.

4.4.7.2	 �Cardiac Catheterization
Right heart catheterization should be limited to selected cases, such as in patients 
with advanced disease who are candidates for cardiac transplantation, due to its 
limited importance in the diagnostic work-up. However it is pivotal for prognostic 
stratification.

4.4.7.3	 �Endomyocardial Biopsy
The role of endomyocardial biopsy in the diagnosis of DCM remains controversial. 
Modern immunohistochemical methods improve sensitivity compared with the tra-
ditional histopathological Dallas criteria [45], but endomyocardial biopsy should 
generally be reserved for selected cases such as patients with severe heart failure, 
refractory hemodynamic impairment or life-threatening arrhythmias that are poten-
tially caused by myocarditis and might be responsive to immunosuppression or anti-
viral therapy [8, 46, 47]. Endomyocardial biopsy can also be useful when specific 
diseases with targeted treatment strategies are suspected (i.e., sarcoidosis and 
hemochromatosis).

Box 4.3 Easily Missed: Active Myocarditis
Myocarditis represents an underdiagnosed cause of DCM. Myocarditis is an 
inflammatory disease of the myocardium characterized by a great heterogene-
ity of presentation and evolution. Common clinical scenarios associated with 
myocarditis may range from subclinical asymptomatic myocarditis to peri-
myocarditis resembling an acute coronary syndrome, to syncope from ven-
tricular arrhythmias or heart block, to heart failure associated with progressive 
or chronic DCM, to severe acute heart failure in some cases requiring inten-
sive hemodynamic support [48].

Myocarditis can be caused by a broad range of infectious agents, including 
viruses, bacteria, fungi, and protozoa, as well as noninfectious triggers, such 
as toxins and hypersensitive reactions. Among these triggers, viral infection 
has been documented to constitute the most prevalent cause of myocarditis.

Clinical suspicion of inflammatory heart disease is crucial in the clinical 
scenarios presented above, especially in newly diagnosed DCM or in the pres-
ence of life-threatening arrhythmias: history of recent flu-like symptoms 
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(present in 35–65% of cases) or viral gastroenteritis may raise this suspicion. 
A previous insect bite, suspicious of Borrelia or rickettsiae, should always be 
investigated [8].

In patients with clinically suspected acute myocarditis, confirmatory test-
ing usually begins with serum biomarkers. However, Troponin I may be raised 
in only 34% of patients with acute myocarditis [49]. Non-specific serum 
markers of inflammation, such as C-reactive protein, erythrocyte sedimenta-
tion rate, and leucocyte count, are frequently increased in patients with sus-
pected myocarditis, but low specificity limits their diagnostic value.

Patients with myocarditis might mostly have non-specific changes on 
ECG. These include sinus tachycardia, ST wave and T wave abnormalities, 
and, sometimes, PR depression and diffuse ST segment elevation (if there is 
concomitant peri-epicardial inflammation). Electrocardiographic changes 
that are associated with poor prognosis in acute myocarditis include widened 
QRS and Q waves [50].

Echocardiography is mandatory in patients with suspected myocarditis. 
The entity of left ventricular dysfunction and wall motion abnormalities not 
associated with a coronary distribution are useful tool to suggest an acute myo-
carditis. In fulminant cases, there might be wall thickening due to edema [51].

Cardiac MRI sensitivity varies with clinical presentation and extent of cell 
necrosis [52]. In high- and intermediate-risk forms (i.e., myocarditis present-
ing with heart failure or arrhythmias associated with LV dysfunctions), car-
diac MRI has modest diagnostic accuracy, in fact the edema may be absent in 
T2-weighted images since its presence highly depends by the timing of MRI 
performance. In patients with biopsy-proven viral myocarditis, the presence 
of myocardial scar, indicated by LGE, is an independent predictor of all-cause 
mortality and cardiac mortality, but no data are available about the prognostic 
value of additional cardiac MRI-related parameters, such as the pattern of 
distribution and the extension of LGE [53].

Endomyocardial biopsy (EMB) is the gold standard for the diagnosis of 
myocarditis, although its role is still controversial. Indeed, it is associated 
with a non-negligible rate of major complications, even in specialized centers 
(around 1% of the cases) [54], and its diagnostic accuracy is still debated, 
highly depending on the operator experience, on the number and the location 
of tissue samples, and on the timing of the EMB. Therefore, EMB should be 
performed only in selected life-threatening scenarios, such as heart failure 
with severe ventricular dysfunction and/or life-threatening arrhythmias refrac-
tory to optimized medical therapy in the short term (usually 3 weeks) [8, 55].

Recently, practical and clinically oriented classification of myocarditis and 
its clinical management has been proposed based on event risk derived by 
clinical and laboratory presentation and short-term evolution, as seen in 
Fig. 4.2 [8].
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Fig. 4.2  Characterization of DCM vs. active myocarditis at diagnosis. The role of ECG (panels 
(a) vs. (b): note the left bundle branch block vs. low QRS voltages), echocardiography (panels (c) 
vs. (d): note the huge vs. mild left ventricular/atrial dilation), cardiac magnetic resonance (panels 
(e) vs. (f): note the mid-wall distribution pattern of late gadolinium enhancement vs. myocardial 
edema at T2-weighted imaging), endomyocardial biopsy (panels (g) vs. (h): note the cardiomyo-
cyte damage and the myocardial fibrosis [in blue] vs. active lymphocytic inflammation). 
Reproduced with permission from Merlo et al. Evolving Concepts in Dilated Cardiomyopathy, 
EJHF.2018. 20(2):228–239
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4.5	 �Conclusions

New-onset dilated cardiomyopathy is still a diagnostic challenge for clinical cardi-
ologists. It is pivotal to exclude possible removable causes of left ventricular dys-
function because this has prognostic implications. A comprehensive, systematic, 
and integrated approach, including third-level diagnostic tools, should be imple-
mented in clinical practice to remove every possible reversible cause through spe-
cific therapeutic interventions. This issue appears essential to promote left ventricular 
reverse remodeling and subsequent outcome improvement. Excluding treatable 
causes is by far the most important issue. Cardiac sarcoidosis, cardiac amyloidosis, 
and acute myocarditis are paradigmatic examples and should be carefully excluded.
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5.1	 �DCM-Associated Genes

Nowadays, genetic laboratories from the USA and Europe offer different pan-
els of genes related to DCM, ranging from 30 to more than 150 genes, with a 
great part of them only anecdotally associated with the disease or with a puta-
tive link on the basis of biological relationship with known genes. A detailed 
analysis of each different gene is far beyond the aim of this chapter, which will 
be focused in the complexity of the interpretation of “evidence-based” DCM 
genetic background. Here below is presented a brief list of the most investi-
gated and evidence-based genes, grouped according to functional intracellular 
similarity. Cardiac sarcomeric and cytoskeletal genes (TTN overall) are the 
most frequently encountered. Other involved genes spread all over cardiomyo-
cyte biological pathways and cell compartments, encoding components of des-
mosome, structural cytoskeleton, nuclear lamina, mitochondria, and ion 
flux-handling proteins [1] (Fig. 5.1).

We must premise that in these years times are rapidly changing, and this list may 
be no more representative of the entire genetic landscape of the disease in the next 
years.

Human cardiomyocytes : 
( Red: n-Cadherin; Green: alpha actinin; Blue: DAPI)
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Fig. 5.1  Cardiomyocytes’ immunofluorescence, with schematic representation of gene clusters 
involved in DCM pathogenesis (courtesy of the authors)
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5.1.1	 �Titin

(See Sect. 5.5.1)

5.1.2	 �Lamin A/C

(See Sect. 5.5.2)

5.1.3	 Structural Cytoskeleton Z-Disk Genes

Cardiomyocyte’s structural integrity, sarcomeric orientation and contraction, and 
mechano-sensing transductions depend on cytoskeleton and Z-disk correct func-
tion. DES, DMD, FLNC, NEXN, NEBL, LDB3, and VCL encode for component of 
both sarcolemmal and sarcoplasmatic intermediate filaments, co-localizing to sar-
colemmal membrane, sarcoplasmic membrane, and Z-disk structure. Notably, no or 
only a mild ATPase activity is known for these genes; thus all belongs to non-motor 
actin-binding protein group inside Z-disk structure. Mutations in these genes 
accounted for 5–10% of familial DCM, but this prevalence could increase after the 
inclusion of the recently discovered Filamin C (FLNC) gene.

Desmin (DES): Desmin is a cytoskeletal protein which forms muscle-specific 
intermediate filaments.

Mutations in the gene encoding Desmin cause a wide spectrum of phenotypes of 
different cardiomyopathies, skeletal myopathies, and mixed skeletal and cardiac 
myopathies. Desmin mutations account for 1–2% of all cases of DCM.  Cardiac 
manifestations include restrictive cardiomyopathy (RCM), DCM, conduction sys-
tem diseases, arrhythmias, and sudden death. Isolate cardiac phenotype is reported, 
or it can precede skeletal muscle involvement [2–4]. Truncating DES variants are 
associated with anticipated and more severe forms of DCM with diffuse LV fibrosis 
(unpublished data from Heart Muscle Disease Registry of Trieste, HMDR).

Dystrophin (DMD): The Dystrophin gene is located on the short arm of the X 
chromosome and consequently shows an x-linked pattern of inheritance. The dystro-
phin protein, in conjunction with the dystrophin glycoprotein complex, has an impor-
tant role in force transmission, being integral to the mechanical link between the 
intracellular cytoskeleton and the extracellular matrix. Cardiac involvement is present 
in approximately 90% of the cases of Duchenne’s muscular dystrophy and 70% of 
Becker’s muscular dystrophy. Abnormal Q waves (“pseudonecrosis”) in lead I, aVL, 
and V6 or in lead II, III, and aVF have been described. Right bundle branch block, 
atrioventricular block, and supraventricular arrhythmias can be present. About 10% of 
female carriers of DMD mutations (Duchenne or Becker type) may develop a DCM in 
the absence of clinical involvement of skeletal muscle and, although in anecdotal 
forms, missense and truncating variants of DMD may present with isolated cardiac 
involvement in males, with DCM, and no signs of muscular dystrophy [5–8].

Filamin C (See Sect. 5.5.3)
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Vinculin (VCL): This gene encodes a cytoskeletal protein (Vinculin) involved in 
cell-matrix and cell-cell adhesion. Specifically, Vinculin is involved in the linkage 
of integrin adhesion molecules to the actin cytoskeleton. Mutations in this gene, 
especially in cardiac-specific isoform metavinculin, are very rarely found (less than 
ten variants described so far) and have been mainly related to DCM but also to 
hypertrophic cardiomyopathy (HCM). Nowadays, only a limited number of cases 
sustain these associations, and segregation studies were no or only marginally in 
support of it. Moreover, some of the described families harbored a second mutation 
that explained the phenotype [9, 10].

Lim Domain Binding 3 (LDB3, or Cypher Zasp): LDB3 interact with alpha-
actinin-2 and to protein kinase C, maintaining the structure of the Z-disk during 
muscle contraction and contributing to signal transduction cascades including car-
diac hypertrophy and ventricular remodeling pathways. Mutations in this gene have 
been associated with left ventricular non-compaction (LVNC), DCM, HCM, skele-
tal myopathy, and peripheral neuropathy. The evidence on the pathogenicity of 
many of the first described variants is actually weak, as some of them have been 
found with similar frequency in patients and controls [11]. Those variants that are 
more likely pathogenic are mainly located in some of the zinc-binding LIM domains 
of the protein [12].

5.1.4	 ��Desmosomal Genes

Desmosome is a symmetric myocyte structure in which each part resides in the 
cytoplasm of one of a pair of adjacent cells, anchoring intermediate filaments in the 
cytoskeleton to the cell surface. In combination with the adherents and gap junc-
tions, it connects myocardial cells maintaining both the mechanical and electrical 
integrity of the heart. Several desmosome genes have been identified in patients 
with DCM, usually inherited with an autosomal dominant pattern. Interestingly, 
desmosome genes (Plakophilin-2 (PKP2), Desmoplakin (DSP), Desmocollin-2 
(DSC2), Desmoglein-2 (DSG2), and Plakoglobin (JUP)) were initially described as 
causing arrhythmogenic right ventricular cardiomyopathy (ARVC), but in 2010, 
Elliott et al. demonstrated a prevalence of 5% of desmosomal protein coding genes 
mutations among 100 unrelated DCM patients [13]: in relation to this aspect, it is 
now useful to introduce the concept of “overlapping, gene-driven phenotype” 
between different forms of cardiomyopathies (which turns out to be a recurrent 
feature in many genotypes)—even if originally described as linked to a peculiar 
phenotype (in the case of JUP and DSP genes with Naxos and Carvajal diseases and 
with ARVC), a specific genotype can manifest itself in different ways according to 
others, also non-genetic, modifiers.

Furthermore, the genetic overlap between ARVC and DCM has also been shown 
in most of non-desmosomal ARVC-related genes (e.g., LMNA, TMEM43), increas-
ing the possibility of a clinical overlap between different forms of cardiomyopathy.

It is worth mentioning the similarity between specific cardiac and cutaneous des-
mosomal protein isoforms: Desmoplakin, plakoglobin, and plakophilin-2 are, in 
fact, constitutively expressed in desmosomes of both cardiomyocytes and 
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keratinocytes, and a radical mutation in one of these two proteins often may result 
in cardio-cutaneous syndromes. Cadherins, conversely (DSC and DSG), have differ-
ent isoforms preferentially expressed in the heart (isoform 2) or in the cutis (iso-
forms 1 and 3) [14, 15].

Desmoplakin (DSP): DSP codes for the protein desmoplakin, an intracellular 
obligate component of desmosomes that anchors intermediate filaments, such as 
desmin and filamins, to the inner desmosomal plaques, while the N terminus of the 
protein (extracellular domains) interacts with plakophilin and plakoglobin. DSP-
related DCM is associated with increased ventricular arrhythmic burden and left 
ventricular fibrosis, with or without right ventricular involvement (arrhythmogenic 
cardiomyopathy). In general, frameshift and nonsense mutations in DSP are consid-
ered as disease causing, even when they have not been previously described, while 
missense variants must be evaluated case by case. As previously mentioned, DSP 
mutations, if present in homozygosity and with autosomal recessive inheritance pat-
tern, have also been associated with a series of diseases characterized by cardiac and 
cutaneous involvement, such as Carvajal syndrome (woolly hair, keratoderma, 
DCM), keratosis palmoplantaris striata II, woolly hair, and lethal acantholytic epi-
dermolysis bullosa. To date, large observational studies investigating the prognosis 
and the clinical manifestation related to DSP-DCM in respect to other genotypes are 
still lacking, but preliminary data from single-family studies and from HMDR of 
Trieste seems to confirm the increased risk of malignant ventricular arrhythmias.

5.1.5	 �Sarcomeric (Motor) Genes

Mutations in genes encoding for proteins that form sarcomeric thick and thin fila-
ments have been largely recognized as DCM causing. These proteins (Myosin-
heavy chain alpha and beta (MYH6 and MYH7, respectively), myosin-binding 
protein C3 (MYBPC3), troponins (TNNT2, TNNI3, TNNC1), tropomyosin 1 (TPM1), 
cardiac actinin 1 (ACTN1), myopalladin (MYPN)) share catalytic activity and are 
involved in sarcomeric contraction (MYPN shares also structural properties with 
Z-disk genes); comprehensively, these genes are involved in about 10% of cases of 
genetic DCM. Also this group of genes is characterized by a large overlapping of 
phenotypes: this is due to increased allelic heterogeneity, where different mutations 
resulting in different phenotypes are scattered and intercalated through the entire 
nucleotide sequence of a given gene, and, more interestingly, a single variant may 
express itself in different phenotypes inside the same family [16, 17]. Here below a 
brief list of most frequently encountered sarcomeric genes in DCM genotyping:

Myosin-heavy chain alpha (MYH7): MYH6 codes for the alpha subunit of car-
diac myosin heavy chain. It is the predominant isoform of myosin heavy chain at the 
embryonic myocardium. The ATPase activity and the shortening velocity of this 
isoform are higher than those of the adult beta-myosin isoforms. After birth, MYH6 
expression decreases and represents on average 7% of ventricular myosin in the 
adult heart. Despite its low expression, the presence of alpha-myosin is important 
for ventricular function, and its expression in adult atrial myocardium remains ele-
vated, being the main isoform in this tissue (MYH6 variants are also strongly 
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associated with atrial septal defects). The characterization of this gene in DCM is 
representative of the evolving knowledge in cardiac genetics: previous studies have 
highlighted the importance of MYH6 mutations in DCM patients, elucidating also a 
possible negative prognostic effect [18]. These MYH6 mutations were distributed in 
highly conserved residues and were predicted to negatively affect protein function, 
but, nevertheless, the progression of knowledge of genetic databases has cast some 
doubts about the real contribute of this gene in DCM, since there seems to be no 
significant mutation excess in DCM patients in respect to controls. Variant is this 
gene should be evaluated carefully case by case [11].

Myosin-heavy chain beta (MYH7): β myosin heavy chain was the first sarco-
meric protein to be linked with cardiomyopathy, and mutations in MYH7 are now 
common causes of HCM and are also associated with DCM, LVNC, and RCM. In 
respect to DCM, they are responsible for about 4–6% of cases of familial 
DCM.  Truncating variants should generally be considered pathogenic. The con-
verter region of the protein (amino acid: 700–790) represents a mutation hotspot 
which have been shown to correlate with possible overlapping phenotypes and 
severe prognosis [16, 17].

Troponin T type 2 (TNNT2):The protein troponin T type 2 is the tropomyosin-
binding subunit of the troponin complex, which is located on the thin filament of 
striated muscles and regulates muscle contraction in response to alterations in intra-
cellular calcium ion concentration. Mutations in TNNT2 have also been associated 
with HCM, DCM, RCM, and LVNC.  Patients with TNNT2 mutations generally 
exhibit a high frequency of premature sudden cardiac death. It accounts for 2–3% of 
DCM familial forms. Variant Arg173Trp has been clearly associated almost exclu-
sively with dilated phenotype [19].

Myosin-binding protein C3 (MYBPC3): This gene 3 encodes for a member of 
myosin-associated proteins, which localized in the cross-bridge-bearing zone (C 
region) of A bands in cardiac muscle. It is the most common mutated gene in HCM, 
and, as others sarcomeric genes, it has been associated also with dilated or non-
compaction phenotype. The more recent evidences raise questions about its contri-
bution to DCM phenotype, given the relatively similar prevalence of MYBPC3 rare 
variants in healthy and affected individuals of explored populations [11]. However, 
it must be underlined that some HCM that develop “burnout” physiology may turn 
in dilated phenotype: particular attention should be paid to this aspect when facing 
a DCM patient with a rare variant in MYBPC3.

5.1.6	 �Ion Channel-Related Genes

Genes encoding for ion-channel proteins are strongly associated with channelopat-
ies, but, in the last years, a growing amount of studies extended the phenotypical 
spectrum of clinical entities related to a defect in one of these genes to also to struc-
tural (dilated or non-compaction) phenotypes. The mechanistic links behind these 
associations is still poorly understood, but it is potentially related to altered mem-
brane stability (i.e., syntrophin-mediated interaction between SCN5A and DMD) or 
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altered calcium handling leading to sarcomeric inefficiency (phospholamban (PLN) 
and RYR2 variants). HCN4 (hyperpolarization-activated cyclic nucleotide-gated 
potassium channel 4) mutations have also been recently shown to be associated with 
LVNC, with or without DCM overlap (NB: the association between HCN4 and 
DCM needs still to be demonstrated) [20–23].

SCN5A: This gene encodes the voltage-gated sodium channel known as 
tetrodotoxin-resistant Nav1.5 dependent. The protein expression is predominant at 
heart. It is responsible for the fast sodium current that causes phase 0 of the action 
potential. Mutations in this gene, with marked allelic heterogeneity, have been 
strongly associated with Brugada syndrome in case of loss of function effect and 
long QT type 3  in case of gain of function effect, both diseases with autosomal 
dominant transmission. The association with DCM has been, in proportion, very 
rarely reported; it is generally accepted that these mutations are located in two spe-
cific regions of the channel: in the voltage-sensitive domain (VSD) and intracellular 
loops. One of the best characterized mutations is Arg222Gln [20], which affects the 
VSD. This mutation is also associated with frequent ventricular arrhythmias, car-
diac conduction disease, and, in some cases, atrial fibrillation. None of the carriers 
presented a prolonged QTc. Recently, especially for truncating variants, the associa-
tion with DCM has been further confirmed [11].

Ryanodine Receptor 2 (RYR2): This gene encodes a ryanodine receptor 
found in cardiac muscle sarcoplasmic reticulum. The encoded protein is one of 
the components of calcium channel, mediating the release of Ca2+ from the sar-
coplasmic reticulum into the cytoplasm and thereby playing a key role in trigger-
ing cardiac muscle contraction. Mutations (>95% missense) in this gene are 
known to result in catecholaminergic polymorphic ventricular tachycardia 
(CPVT), typically in the absence of structural heart disease. Some missense 
mutations have also been originally associated with the development of ARVC; 
however, it is now accepted that these carriers had not fulfilled current diagnostic 
criteria for the disease. Among missense variants, only one has been clearly asso-
ciated with the development of structural (hypertrophic) heart disease in patients 
diagnosed with CPVT.  A different variant (exon 3 deletion) has been demon-
strated, in two families, to segregate with CPVT and progressive left ventricular 
dysfunction and/or cavity enlargement in some members [20]. Thus, the pres-
ence of DCM without CPVT phenotype related to RYR2 (radical) mutations is 
yet to be demonstrated.

5.1.7	 �Other Genes

BCL2-Associated Athanogene 3, BAG3: Members of the BAG family, including 
BAG3, are cytoprotective proteins that bind to and regulate Hsp70 family molecular 
chaperones. Heterozygous mutations in BAG3 have been associated with 
DCM. Mechanism of disease may, at least in part, depends on a decreased capabil-
ity to compensate external stressors. The severity of DCM, in fact, has been shown 
to vary considerably between carriers. By the age of 70, the disease penetrance is 
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apparently 100%. Both non-truncating and truncating BAG3 mutations are reported, 
with variable penetrance. A specific variant (Pro209Leu), typically a spontaneous 
de novo variant, is linked to pediatric myofibrillar myopathy [24, 25].

RNA-Binding Motif Protein 20, RBM20: This gene encodes a RNA-binding 
protein that acts as a regulator of mRNA splicing of a subset of genes involved in 
cardiac development, mainly sarcomeric genes (TTN, but also MYH7, TNNT2, and 
others). The association of this gene with DCM was firstly established in 2009 by 
genome-wide linkage analysis and progressively confirmed by subsequent studies. 
Remarkably, these mutations were located in exon 9, which appears to be a muta-
tional hotspot. Nowadays, also mutations out of exon 9 are reported to be DCM 
causative, with similar penetrance and clinical manifestations. In respect to preva-
lence in DCM families, RBM 20 represents a rare genotype, accounting for 2–3% of 
cases. For this reason, so far, we should underline that evidence-based genotype-
phenotype correlations are still lacking: only a small number of studies, in fact, with 
small numbers of index-patients or families, and short follow-up, reported a pheno-
type characterized by “severe heart failure, arrhythmia, and the need for cardiac 
transplantation” [26, 27], which still need to be confirmed in further studies.

5.2	 �Technical Issues in Genetic Sequencing

Over the last three decades, different approaches and technologies have been used 
to obtain genetic information in families or sporadic patients with hereditary dis-
eases. Linkage analysis was the first method used to identify new disease genes, but 
this technique requires very large families or a large number of sporadic cases. The 
advent of “old” sequencing technology (Sanger method) has made genetic analysis 
much more effective, but with timing analysis and high costs, especially for pathol-
ogies with high genetic heterogeneity such as cardiomyopathies.

More recently we are witnessing a revolution in medical genetics and scientific 
research applied both to the identification of new disease genes and to the massive 
parallel study of a large number of genes. This is due to the discovery of high-
efficiency instruments (NGS) that allowed the entry into what is called the era of the 
precision medicine; speed, reliability, and limited costs are the advantages peculiar 
of these techniques that allow the parallel analysis of a large number of genes.

NGS technologies can be applied in various formats, with the aim of sequencing 
the entire genome (including non-coding parts), or the exome, which includes only 
the coding regions of the genome, or a group (panel) of selected genes. Currently (but 
technologies are continuously improving), the latter application seems to offer the 
best compromise between costs, execution speed, and accuracy for certified diagnos-
tic purposes, as it usually guarantees greater coverage of the analyzed genes [28, 29].

Different next-generation platforms have been proposed, differing from each 
other mainly in their methods of clonal amplification of short DNA fragments (50–
400 bases) as a genomic library template and how these fragment libraries are sub-
sequently sequenced through repetitive cycles to provide a nucleotide readout (see 
Table 5.1) [30].
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However, the discovery of new single nucleotide variants (SNVs) using NGS still 
requires validation with Sanger sequencing methods because of the possible loss of 
precision in obtaining a really high number of short DNA fragments using the poly-
merase chain reaction (PCR) during library building. NGS platforms have in fact 
error rates of approximately ten times higher (1 in 1000 bases with 20× coverage) 
than Sanger sequencing (1 in 10,000 bases). Although the reading depth cutoff for 
NGS platforms is conventionally set at 20×, many studies indicate that average read-
ing depths greater than 100× are required for the use of these platforms as indepen-
dent tool for newly discovered variants, even under optimal conditions [31].

5.3	 �The Complexity in Variant Classification Process

Traditionally, a mutation is defined as a permanent change in the nucleotide 
sequence, whereas a polymorphism is defined as a variant with a frequency above 
1%. These terms, however, which have been used widely, actually seem no longer 
suitable to describe the complexity of interindividual genetic variability. The Human 
Genome Project, culminating in 2001 with the determination of the complete 
sequence of human DNA [32], provided a first quantitative assessment of the inter-
individual genetic variability and the possible impact that this variability has on 
human health. Subsequent multiple international projects (like ESP and 1000 

Table 5.1  Comparison between the most common NGS platforms

Sequencer

NGS whole genome platforms Compact NGS sequencers
SOLID 5500 
XL W 
(Applied 
Biosystems®, 
Thermo 
Fisher®)

454 GS FLX
Titanium XL 
(Roche®)

HiSeq 4000 
(Illumina®)

MiSeq 
(Illumina)

PGM Ion 
torrent 
(Thermo 
Fisher)

Methods Sequencing 
by ligation

Pyrosequencing Sequencing 
by synthesis

Sequencing 
by synthesis

Semiconductor 
sequencing

Most used 
sequencing 
application

Whole 
exome/
genome

Whole exome/
genome

Whole 
exome/
genome

Target Target

Read length 
(bp)

35–50 700 150 300 400

Reads per run 1.2–1.4 
billion

1 million 2.5–5 billion 15 million 80 million

Run time 2–7 days 24 h 1–3 days 24 h 3 h
Advantage Low error 

rate
Read length, fast Low error 

rate
High 
throughput

Low error 
rate

Short time
Less expensive

Disadvantage Short read 
length, long 
run time

Homopolymer 
errors

Short read 
length

Higher cost Homopolymer 
errors
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genomes, recently merged with other projects in the most comprehensive exome 
and genome database: gnomAD; http://gnomad.broadinstitute.org) led to the con-
clusion that about 1  in 1000 nucleotides in the human genome (three million in 
total) differs between people, and this variation is largely responsible for the physi-
cal, behavioral, and medical unique characteristics of each individual. In this line, 
the term “mutation” is no more strictly associated with the concept of pathogenicity, 
as the term polymorphism with the concept of benignity.

Taking into account the higher complexity of genetic information, the American 
College of Medical Genetics and Genomics (ACMG) 2015 guidelines defined a 
new standard [33]; both terms, mutation and polymorphism, should now be 
replaced by the term “variant,” followed by one of these modifiers: (I) pathogenic, 
(II) likely pathogenic, (III) uncertain significance, (IV) likely benign, or (V) 
benign. Several stringent criteria are required to reach one of these different modi-
fiers, which are defined by crosschecking the evidence that derives from different 
categories of evaluation: (a) population and disease-specific genetic databases, (b) 
in silico predictive algorithms, (c) biochemical characteristics, (d) literature evi-
dences. A free access website, http://wintervar.wglab.org/results.php, released 
from ACMG, allows a guideline-based, point-by-point analysis of each—mis-
sense—variant of interest.

This classification approach is more stringent than the previous ones and may 
result in a larger proportion of variants being categorized as uncertain significance. 
It is hoped that this approach will reduce the substantial number of variants being 
reported as “causative” of disease without having sufficient supporting evidence for 
that classification. It is important to keep in mind that when a variant is classified as 
pathogenic, healthcare providers are highly likely to take that as “actionable,” i.e., 
to alter the treatment or surveillance of a patient or remove such management in a 
genotype-negative family member, based on that determination [11].

In recent years, in fact, genetic laboratories often showed a lack of uniformity in 
the definition of variants, especially for variants originally described in the past lit-
erature, which are still reported as pathogenic in older databases but were subse-
quently found to be too common in general population, so unlikely to be disease 
causing. This dis-homogeneity potentially led to different clinical management of 
similar variants.

A similar argument is related to new candidate genes: these genes are included in 
offered extended panel tests on the basis of a putative biological relationship with 
known disease-causing genes, but—still—in the absence of solid population or sci-
entific supporting data. The actual net effect of extended gene panels is an increase 
in the amount of variants of unknown significance and a relative decrease in action-
able variants.

It is important now to provide a brief mention to the mostly used of these “clini-
cally oriented variant classification” databases: ClinVar and HGMD [34, 35]. The 
ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/) is a public database that 
better represents the “historical” process that characterizes the classification of each 
variant: quoting, “ClinVar is a freely accessible, public archive of reports ‘coming 
from research and diagnostic laboratories’ of the relationships among human 
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variations and phenotypes, with supporting evidence. ClinVar thus facilitates access 
to (…) the history of that interpretation.” The Human Gene Mutation Database 
(HGMD®, https://portal.biobase-international.com/hgmd/pro/start.php), available 
under subscription in the most updated version (last 3 years), is the other most reli-
able source of information about “known (published) gene lesions responsible for 
human inherited disease.” Since nowadays not all laboratories are active submitters 
to ClinVar or HGMD®, clinicians should still be careful in referring to them as a 
gold standard for variant classification: when a potentially disease related rare vari-
ant is found in a patient, these databases should be intended as a valuable source of 
informations to crosscheck with, but representing only a part of the multi-paramet-
ric approach that finally lead to definite variant classification.

In respect to variants in DCM-related genes, a recent report [11] shed some light 
in this topic, helping the clinicians to reassess the classification of variants and 
genes offered by clinical laboratories according to the new guideline standards, in 
order to elucidate the common characteristics of true actionable variants. The 
authors found that in some genes, previously strongly associated with a given car-
diomyopathy, a rare variant was not clinically informative because there is an unac-
ceptably high likelihood of false positive interpretation, while, by contrast, in other 
genes, diagnostic laboratories may have been overly conservative when assessing 
variant pathogenicity. Interestingly, some genes proposed on the basis of several 
(but dated) studies as among the most common causes of DCM (e.g., MYBPC3, 
MYH6, and missense variants in SCN5A) showed no excess variation among affected 
cases, raising an important question about their contribution to DCM phenotype 
development. Identifying the frequency of the most common HCM pathogenic vari-
ant in the available population databases (c.1504C>T in MYBPC3: 2.5 × 10−5) as the 
conservative upper bound, this study clearly elucidated what is the major allele 
frequency (MAF) threshold for a rare variant to be considered pathogenic: 0.0001 
in ExAC (ExAC is the first release version of gnomAD, composed by exome data).

The emerging concept is the odds ratio (OR) of a given variant, to be disease 
causing (e.g., LMNA-truncating variants (tv) reached an OR of ∼99 to develop 
DCM, TTN-truncating variant an OR ∼20 to ∼50, FLNC not tested): the higher OR 
corresponds to higher actionability.

To summarize, clinicians should be aware that the “pathogenicity” of a variant is 
a fluid and evolving definition that should be periodically re-evaluated with the 
evidence coming from database and scientific progress, in order to be continuously 
customized to the patient.

5.4	 �The External Modulation of Genotype:  
Environmental Triggers

In DCM, both in sporadic and in familial cases, the pathogenicity of a gene variant 
is modulated by interfering, non-genetic environmental factors: this interaction 
could be largely responsible for variability in disease phenotype and prognosis. It 
is important to keep in mind how the actual knowledge in this field (contribution of 
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interfering factors) may still be invalidated by a different accuracy in underlying 
genetic characterization, with the oldest reports being published before the release 
of 2015 ACMG standard. Below is reported a brief summary of known interfering 
environmental factors: inflammation, toxic exposure, hormones, and metabolic 
profile. Notably, in this field the research is currently very active, and all the fol-
lowing statements are susceptible to possible modifications in the next future 
(Table 5.2).

To conclude, we may say that the phenotypically normal heart with a pathogenic 
variant (definition that should be constantly re-evaluated) represents a model of fail-
ing but compensated heart, which is no or less able to sustain a second, environmen-
tal, failing hit [48]: all these potential “second hits” must be taken into account in 
DCM treatment and prognosis stratification.

5.5	 �Evidence-Based Genotype-Phenotype Correlations

As previously mentioned, the key factor for a correct genotype-phenotype analysis 
is the accuracy of the underlying variant classification: reliable genotype-dependent 
phenotypic informations are in fact achievable only if driven by a solid pathogenic-
ity assessment.

Then, as patient’s phenotype represents the final results of a long-lasting process 
of interactions between genetic background and environment, clinicians are aware 
that discovering the net effect of the pathogenic variant requires a careful “pruning” 
of “confounding” factors. Furthermore, some correlations could also be outlined “a 
posteriori”, i.e., by the type of response to the medical therapy.

Finally, in assessing this correlation, it is important to focus on what is the best 
starting point: specific mutation versus specific gene versus specific clusters of 
genes with similar function inside the cardiomyocyte.

In this line, in respect to truly personalized medicine, the most correct approach 
should be the correlation between a specific pathogenic variant in a gene and its 
“private” phenotype, but, in order to achieve a more clinically meaningful classifi-
cation, gene clustering attempts have been made and were shown to allow a rough, 
but functional, orientation, especially in therapeutic management [49]. At the cur-
rent state of knowledge, a good compromise could be represented by the correlation 
between a specific gene and its phenotype, just preceded by a brief general distinc-
tion on the two main categories of variant (in respect to structural protein effect): 
missense and truncating (or radical). Generally speaking, the former is expected to 
affect protein morphology and/or function by changing a single amino acid in the 
protein sequence, while the latter is expected to cause a premature truncation of the 
amino acid sequence, leading to a decrease of total protein amount or effectiveness 
at the cellular level, mainly through nonsense-mediated decay (NMD). Consequently, 
truncating variants are generally considered less tolerated and linked to haploinsuf-
ficiency. Among all the human genes, the ones that are most conserved, expressed 
in early development, and highly tissue specific usually do not tolerate to be 
expressed in a single copy and are called haploinsufficient genes [50]. All 
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cardiomyopathy-causing genes are included in this category, but they are not 
mutated with similar proportions of truncating and missense variants: for example, 
truncating variants on TTN have been discovered as the most frequent mutations in 
all DCM, whereas, in other DCM disease-causing genes, missense variants are the 
most frequently encountered (with, interestingly, similar actionability). With these 
principles in mind, among the several papers published on this topic, only few of 
them demonstrate evidence-based genotype-phenotype correlations that are helpful 
in the clinical management of patients with genetic DCM. To date, the best charac-
terized correlations regard LMNA and TTN genes. Filamin C and other genes, in the 
next future, may reach a similar level of evidence (Fig. 5.2).

5.5.1	 �Lamin A/C

LMNA represent the more investigated gene in DCM, and the natural history of 
LMNA-DCM has been outlined in several papers [52–54]. Comprehensively, with a 
confirmed mortality rate around 12% at 4 years (up to 30% at 12 years of follow-
up), it could be considered the more aggressive genotype in DCM. Its phenotypic 
expression is characterized by a relatively high incidence of sudden cardiac death or 
major ventricular arrhythmias, even before the development of systolic left ven-
tricular dysfunction. The median age at disease onset is between 30 and 40 years, 
and penetrance is almost complete at the age of 70 [52].

It is associated also to a primary disease of the conduction system, with supra-
ventricular arrhythmias and atrioventricular block, by some authors called LMNA 
“atriopathy.” To date, LMNA pathogenic variants represent the only genetic back-
ground in DCM that is included in current guidelines, as it may change clinical 
choices such as the implantable cardioverter-defibrillator (ICD) therapy in primary 
prevention regardless of left ventricular ejection fraction values (Class IIa, level of 
evidence B, for ICD implantation in the presence of risk factors [55]: NSVT during 
ambulatory electrocardiogram monitoring, LVEF < 45% at first evaluation, male 
sex, and non-missense mutations).

The type of variant (missense versus truncating) and its site (before or after the 
nuclear lamina interacting domain) have also been addressed in respect to progno-
sis: actual evidence shows that mortality rates are similar, but truncating variants are 
related to anticipated penetrance of the disease. No clear effect is still demonstrated 
in respect to the site of variants [56].

5.5.2	 �Titin

Titin (TTN) is known as the largest sarcomeric protein that resides within the heart 
muscle. Due to alternative splicing of TTN, the heart expresses two major isoforms 
(N2B and N2BA) that incorporate four distinct regions termed the Z-line, I-band, 
A-band, and M-line. The amino terminus of Titin is embedded in the sarcomere 
Z-disk and participates in myofibril assembly, stabilization, and maintenance. The 
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elastic I-band behaves as a bidirectional spring, restoring sarcomeres to their resting 
length after systole and limiting their stretch in early diastole. The inextensible 
A-band binds myosin and myosin-binding protein and is thought to be critical for 
biomechanical sensing and signaling. The M-band contains a kinase that may par-
ticipate in strain-sensitive signaling and affect gene expression and cardiac remod-
eling in DCM.

Due to its higher prevalence in DCM population in respect to Lamin A/c (TTN 
12–18% of whole DCM population, versus LMNA 4–6%), Titin is becoming the 
more broadly assessed genotype, despite its relatively recent discovery as a DCM-
related gene [57]. To date, the evidence of pathogenicity is related almost exclu-
sively to truncating variants. Since Titin-truncating variants (TTNtv) were reported 
also in 2–3% of general population without overt cardiomyopathy, many efforts 
have been made, firstly, to outline the characteristics that distinguish the disease-
related truncating variants from the benign ones.

An important study by Roberts et al. elucidated the importance of the specific 
site of truncating variants: of the 364 exons of the entire gene, only a part of them is 
translated in cardiac isoforms N2B and N2BA [58]: Proportion (or percentage) of 
exons spliced in (PSI) is the concept that allows to correlate the exon site of the 
truncating variant with the molecular—and clinical—consequences of this trunca-
tion, with a PSI > 15% set as a lowest threshold to be penetrant and PSI > 90% 
describing exons sites with higher cardiac expression and higher association with 
fully penetrant DCM phenotype. The entire A-band and the proximal or terminal 
part of I-band contain exons with PSI proximal to 100%. Tv in M-band exons and 
Z-band exons should be evaluated case by case. This is the reason why the OR of a 
TTNtv varies between 20 and 50 according to the site involved by the mutation.

A second paper by the same group further demonstrates this concept, showing 
that also in general population without overt cardiomyopathy, the presence of TTNtv 
in sites with PSI > 15% mildly, but significantly, affects cardiac dimensions and 
function when assessed with 3D cardiac magnetic resonance [48].

Lower ventricular mass values, with lower ventricular wall thickness, have been 
recently outlined as a peculiar phenotypic manifestation of TTNtv [49, 59].

In respect to other clinical manifestations of TTN-related DCM, evidences are in 
favor of a relatively mild and treatable form of the disease in respect to LMNA-
related one, with lower mortality rates, in line with the general DCM population. 
This could be true, especially in relatives that are diagnosed in a preclinical state 
[49, 59].

Clinicians must be aware that TTNtv, even if in small proportion of cases, could 
be linked to malignant ventricular arrhythmias especially in the presence of external 
modifiers: comprehensively, the sum of the actual evidences recommends a com-
plete and continuous clinical follow-up of patients with TTNtv-related DCM and 
their relatives, even in the absence of overt cardiomyopathy [60].

Titin missense variants, on the contrary, nowadays are considered mostly as 
benign. This assumption has been tested in a recent multicenter study that sequenced 
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TTN gene in a cohort of 147 DCM patients in which the outcome was not affected 
by the presence of Titin missense variants, confirming that most of these variants 
could be in fact benign (despite a highly conservative and accurate selection of vari-
ants: lowest population frequency, familial segregation, software predictions of 
pathogenicity) [61]. Recently, however, this “simple” classification has been ques-
tioned: a report in fact elucidated the pathogenicity of a specific TTN missense vari-
ant in DCM phenotype with non-compaction aspects, raising the threshold of 
complexity in TTN variant evaluation [62].

5.5.3	 �Filamin C

FLNC encodes filamin C, an intermediate filament that cross-links polymerized 
actin, contributing in anchoring cellular membrane proteins to cytoskeleton and in 
maintaining sarcomeric and Z-disk stability. It directly interacts with two protein 
complexes that link the subsarcolemmal actin cytoskeleton to the extracellular 
matrix: (1) the dystrophin-associated glycoprotein and (2) the integrin complexes, 
while, at intercalated disks, filamin C is located in the fascia adherens [63].

The association with DCM was initially reported by two separate studies [63, 
64]. Ortiz et al. evaluated with NGS panels a cohort of 2877 patients referred for 
various cardiac diseases (including channelopathies and HCM, the latter represent-
ing almost one half of the cases) and identified 28 unrelated probands with FLNC-
truncating variants, previously diagnosed mainly with DCM or, in minor part, with 
arrhythmogenic or RCM. Truncating variants in FLNC came out to cause an over-
lapping phenotype of dilated and left dominant arrhythmogenic cardiomyopathy 
complicated by frequent premature sudden death, with the phenotypic hallmark rep-
resented by subepicardial-transmural fibrosis in inferolateral LV wall. Interestingly, 
a small portion of probands (<5%) had prominent right ventricular involvement or 
restrictive phenotype.

The cumulative incidence of MVA or SD was found to be between 15 and 20% 
in a median follow-up of 5 years, and the mortality rate was about 6% for the same 
follow-up. We should underline that these data refer to a limited cohort of probands 
referred for genetic testing due to aggressive familial disease, representing a poten-
tial selection bias. Data on large cohorts of FLNCtv-related DCM patients are still 
lacking to confirm or modulate this aggressive phenotype.

Furthermore, it is worth mentioning that FLNC missense variants have been iden-
tified in a previous study also in families with HCM, although with a mild degree of 
LV hypertrophy. As for other cytoskeletal or sarcomeric genotypes with allelic het-
erogeneity, this fact suggests that filaminopathies can generate a spectrum of differ-
ent cardiac disorders that at least in part may be related to the type of variant [65].

FLNC has only recently been included in the genetic screening of patients with 
inherited cardiomyopathies and sudden death, and its real prevalence in DCM has 
still to be elucidated. Figure 5.3 shows familial pedigrees of three families carrying 
FLNCtv.
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5.5.4	 �Insights from Clinical Presentation and Left Ventricular 
Reverse Remodeling (LVRR)

In clinical practice, especially in newly diagnosed DCM patients without familial 
history of cardiac disease, cardiologists may find useful to know peculiar findings 
that are representative of a specific genotype and, hopefully, able to guide disease 
treatment and prognostic assessment, at least in the short time.

A recent report from HMDR of Trieste tried to shed some light in this sense, dif-
ferentiating genotypes on the basis of response to therapy: a different response, in 
fact, can be interpreted as the indirect evidence of different, mutation-driven, under-
lying pathogenic processes [49]. These mutation-dependent processes may not, or 
only marginally, be detectable otherwise.

Despite several limitations (possible selection bias in single referral center, lim-
ited number of patients partially grouped in gene clusters, thus introducing a pos-
sible heterogenic genetic background), this study allowed some interesting 
observations both in clinical presentation and LVRR rate in different genetic-based 
DCM, especially in relatively less investigated genotypes.

In respect to clinical presentation, most of the clinical and instrumental charac-
teristics did not differ between the different genotypes. Except for a lower rate of 
left bundle-brunch block in both TTN and structural cytoskeleton Z-disk group and 
a trend toward a mild degree of LV dilation and dysfunction in LMNA mutation car-
riers (part of these findings have been subsequently confirmed in other studies) [59, 
60], symptoms, electrocardiographic, and echocardiographic findings were grossly 
similar across different genotypes, being consistent with the hypothesis that DCM 
represents the final common phenotype of multiple genetic-based cardiac diseases 
and their relationship with environmental modifiers.

The most interesting finding was related to LVRR: a significant association was 
in fact demonstrated between lack of LVRR and specific genotypes (FLNC, DES, 
DMD, and other cytoskeletal Z-disk genes overall, followed by LMNAc). Conversely, 
TTN genotypes were most frequently associated with positive LVRR on optimal 
medical therapy (Fig. 5.4).
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Fig. 5.3  Familial pedigrees of three families carrying FLNCtv
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This kind of approach showed how phenotype correlations can be inferred also 
in this way, as an “ongoing” process, once more related to the interactions with 
external modifiers, in these cases represented by medications.

To conclude, the emerging concept elucidated in this chapter is that disease 
manifestation and prognosis are the results of the interaction between genotype 
and environment: the contribution of each factor to the patient’s clinical status is 
modulated by (1) genetic variant’s actionability and (2) type and severity of envi-
ronmental factor(s). Summarizing, high actionable genotypes (with higher OR, 
as LMNAtv, or double pathogenic variants) may be per se the major determinants 
of disease manifestation/prognosis, while strong interfering environmental fac-
tors (e.g., chemotherapy) play a major role especially in cases with less action-
able genotype.

Future perspectives in genetics will further investigate these aspects.
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6.1	 �Spectrum of Disease

Before diagnosing dilated cardiomyopathy (DCM), it is necessary to exclude condi-
tions with phenotypic overlap. A comprehensive integrated approach to patients 
with a newly diagnosed DCM is essential in order to achieve an accurate early 
prognostic stratification.

In many DCM individuals, there is a preclinical phase without cardiac expres-
sion that subsequently progresses toward mild cardiac abnormalities, such as iso-
lated left ventricular (LV) dilatation, subtle systolic dysfunction, or arrhythmogenic 
features (ventricular or supraventricular arrhythmia or conduction defects) that can 
be observed in myocarditis [1, 2] or in the early phase of genetic diseases [3]. The 
overt phase of systolic dysfunction is usually associated with LV dilatation, but this 
may be absent in some cases causing diagnostic confusion (described in Lamin A/C 
gene mutation carriers [4, 5] and also in some patients without a known genetic 
cause [6–8] (Fig. 6.1).

Thus, in this context every effort has to be made to obtain an accurate diagnosis 
(cardiac magnetic resonance (CMR), endomyocardial biopsy (EMB), biomarkers, 
etc.), with the aim to personalize patient management according to specific 
etiology.

The prognosis of DCM has improved in the course of the past years [9] with the 
use of evidence-based therapies, both pharmacological and non-pharmacological 
[10–12], and also due to the constant effort to diagnose this cardiomyopathy in the 
early stages (Figs.  6.2, 6.3, and 6.4) [13]. Identifying patients with DCM in an 
asymptomatic phase is equivalent to early diagnosis and guarantees a better long-
term survival for the patients [14].

0Heart FailureArrhythmias
Asymptomatic
LV dysfunction

DCM: SPECTRUM OF DISEASE

ETIOLOGY

DIAGNOSIS

DIFFERENTIAL
DIAGNOSIS

• Genetic forms

• Sport screening
• Familial screening

• Genetic forms
• Inflammatory forms

• Arrhytmogenic
 Cardiomyopathy

• ARVC
• Sarcoidosis

• Genetic forms
• Inflammatory forms
• Alcohol
• Chemoterapic

• Endstage HCM
• Acute myocarditis

Fig. 6.1  Dilated cardiomyopathy: spectrum of disease
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6.2	 �Clinical Presentation

In old series, initial symptoms of heart failure were present in 80% of patients with 
DCM [15]. These symptoms include excessive sweating, orthopnea, and fatigue 
after mild exertion. Abdominal discomfort, nausea, anorexia, and cachexia can be 
prominent in advanced cases. Circulatory collapse is the most severe manifestation 
of congestive heart failure. Thromboembolic events and, rarely, sudden cardiac 
death (SCD) might be the initial symptom, particularly in infants. Other symptoms 
include those related to ventricular or supraventricular arrhythmias (i.e., palpita-
tions, syncope, fatigue).

In more recent years, however, the clinical presentation has somehow changed. 
In fact, the diagnosis often now occurs in asymptomatic individuals, mostly due to 
family and sports screening programs. Careful attention has to be made in evaluat-
ing the arrhythmic risk of these patients, since a non-negligible number of events 
can occur in the first months following the diagnosis.

Despite recent advances in medical treatment, LV dysfunction associated with 
signs of congestive heart failure (HF) is characterized by significant mortality [16]. 
Patients may progress through an asymptomatic phase of LV systolic dysfunction of 
various degrees, from mild to severe, before the development of overt HF [17–19]. 
LV dysfunction has frequently a progressive nature, and that is the reason for 
increasing interest regarding its preclinical state.

Most patients affected by DCM who present clinically with HF show symptoms 
and signs due to excess fluid accumulation (dyspnea, orthopnea, edema, pain from 
hepatic congestion, and abdominal discomfort due to ascites), sometimes associated 
with those due to a reduction in cardiac output (fatigue, weakness) [20].
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In most patients with HF who require hospitalization, the reason for admission is 
volume overload. In clinical practice, four signs are commonly used to predict ele-
vated filling pressures: jugular venous distention/abdominojugular reflux, presence 
of an S3 and/or S4, rales, and pedal edema. According to current international 
guidelines on HF [21, 22], the patient with HF can be clinically assessed along two 
basic axes—volume status (“dry” or “wet”) and perfusion status (“warm” or 
“cold”)—as a useful guide to therapy.

This approach has prognostic usefulness, particularly in assessing patients at dis-
charge after admission for heart failure. For example, such patients discharged with 
a “wet” or “cold” profile experience worse outcomes (HR, 1.5; 95% CI, 1.1–12.1; 
P  =  0.017) compared with those discharged “warm and dry” (HR 0.9; 95% CI, 
0.7–2.1; P = 0.5) [23].

In chronic presentations (months), symptoms as peripheral edema, abdominal 
distension, and anorexia may be more pronounced than dyspnea.

On the other hand, a decompensated chronic HF can lead to low-output 
symptoms.

Four major findings suggest severity of the cardiac dysfunction and low output: 
resting sinus tachycardia, narrow pulse pressure, diaphoresis, and peripheral 
vasoconstriction.

An irregularly irregular pulse is suggestive of atrial fibrillation which frequently 
accompanies HF. Pulsus alternans is a sign of severe left ventricular (LV) systolic 
failure. This phenomenon is characterized by evenly spaced alternating strong and 
weak peripheral pulses.

A laterally displaced apical impulse that is past the midclavicular line is usually 
indicative of LV enlargement.

An S3 gallop is associated with left atrial pressures exceeding 20 mmHg and 
increased LV end-diastolic pressures (>15 mmHg).

An apical systolic murmur is associated with mitral regurgitation, often present 
in these patients.

Patients with chronic HF often develop secondary pulmonary hypertension, 
which can contribute to dyspnea as pulmonary pressures rise with exertion. These 
patients may also complain of substernal chest pressure, typical of angina. In this 
setting, elevated right ventricular end-diastolic pressure leads to secondary right 
ventricular subendocardial ischemia. Physical signs of pulmonary hypertension can 
include increased intensity of P2, a murmur of pulmonary insufficiency, a paraster-
nal lift, and a palpable pulmonic tap (felt in the left second intercostal space) [20].

In patients with arrhythmic presentation, the onset of the disease may be the 
presence of palpitations, syncopal or near-syncopal episodes, or in some of them 
SCD. Thus, arrhythmic risk stratification is a major concern, as discussed in the fol-
lowing chapters.

6.3	 �Natural History

In the past, the prognosis of DCM was considered ominous [24], and the disease 
was frequently progressive to death due to HF or heart transplantation.
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Table 6.1  Occurrence of major events in patients with DCM according to the decade of 
enrolment

First decade 
(1978–
1987) (110 
patients)

Second 
decade 
(1988–1997) 
(376 patients)

Third decade 
(1998–2007) 
(367 patients)

P-value
First vs. second decade 
first vs. third decade 
second vs. third decade

Mean follow-up 
(months)

151 ± 29 153 ± 82 93 ± 41 0.389 0.03 <0.001

All-cause mortality/
heart transplant, n (%)

77 (70) 178 (47) 53 (14) <0.001 <0.001 <0.001

Incidence (events/100 
patients/year)

5.6 3.9 1.9

Heart transplant,  
n (%)

6 (6) 51 (14) 17 (5) 0.02 0.724 <0.001

Incidence (events/100 
patients/year)

0.4 1.1 0.6

Cardiovascular death, 
n (%)

57 (52) 91 (24) 18 (5) <0.001 <0.001 <0.001

Incidence (events/100 
patients/year)

4.1 2.0 0.6

Pump-failure death,  
n (%)

38 (35) 32 (9) 6 (2) <0.001 <0.001 <0.001

Incidence (events/100 
patients/year)

2.8 0.7 0.2

Unexpected sudden 
death, n (%)

16 (15) 51 (14) 9 (3) 0.793 <0.001 <0.001

Incidence (events/100 
patients/year)

1.2 1.1 0.3

Unknown cause death, 
n (%)

13 (12) 31 (9) 16 (4) 0.338 0.004 0.014

Incidence (events/100 
patients/year)

1.0 0.7 0.6

Appropriate 
intervention of ICD (% 
of Implanted patients)

0 32 38 NC* NC* 0.499

Incidence (events/100 
implanted patients/
year)

NC 2.4 4.8

From Merlo et al., Long-term prognostic impact of therapeutic strategies in patients with idio-
pathic dilated cardiomyopathy: changing mortality over the last 30 years, Eur J Heart Fail, 2014; 
16(3):317–24
P-value <0.05 are in bold type
ICD Implanted cardioverter–defibrillator, NC not calculable
*P-value not calculated; only two patients implanted with ICD in the first decade

By time the patients are diagnosed, they often have severe contractile dysfunc-
tion and remodeling of the ventricles, reflecting a long period of asymptomatic 
silent disease progression.

However, implementation of optimal pharmacological and non-pharmacological 
treatments has dramatically improved the prognosis of DCM [25] with an estimated 
survival free from death or heart transplantation up to 85% at 10 years [13, 26, 27] 
(Table 6.1).
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Moreover, the lower prevalence of comorbidities when compared to most patients 
with other forms of systolic LV dysfunction suggests that individuals with DCM 
tend to have fewer non-cardiovascular events [25]. In hypertensive heart disease, for 
example, there is a lower incidence of arrhythmic events and a greater competitive 
risk of non-cardiovascular events [28].

The improved outcomes in DCM are paralleled by a higher rate of LV reverse 
remodeling (LVRR): in recent years several studies revealed that almost 40% of 
patients experience a significant LVRR when treated with evidence-based pharma-
cological and device treatments [26].

From a pure mechanistic standpoint, LVRR is the result of either the removal 
of the noxious stimuli that triggered cardiac dysfunction or of the institution of 
therapies favorably interfering with the process of LV remodeling. Factors recog-
nized to trigger or amplify LV remodeling include changes in myocardial wall 
tension and neurohormonal activation. Initially a compensatory process, the 
release of hypovolemic hormones (such as renin, antidiuretic hormone, and nor-
epinephrine) eventually contributes to the progression of DCM, and pharmaco-
logic therapies that reduce neurohormonal activation have been shown to promote 
LVRR [29].

The process of LVRR may take up to 2 years following diagnosis. The following 
aspects, evaluated at baseline and during follow-up, have been demonstrated as 
influencing the course and the prognosis of the disease and the likelihood of LVRR 
in the early stages and should be hence systematically assessed:

	(a)	 Right ventricular function at diagnosis is an important prognostic feature in 
DCM [30]. The recovery of right ventricular function under therapy is frequent 
and can already be observed at 6 months. It precedes LVRR and is emerging as 
an early therapeutic target and an independent prognostic predictor [31]. 
Improvement in right ventricular function is also described in CRT recipients as 
a secondary expression of hemodynamic improvement very early after resyn-
chronization, with consequently favorable survival rates [32]. In contrast, the 
development of right ventricular dysfunction during long-term follow-up is an 
expression of structural progression of the disease and portends a negative out-
come [31].

	(b)	 Functional mitral regurgitation conveys important prognostic implications. 
Moderate to severe mitral regurgitation at diagnosis or persistent despite 
optimal medical treatment or CRT is associated with poorer outcomes [32, 
33]. Patients with DCM and hemodynamically important mitral regurgita-
tion may require invasive therapeutic strategies such as percutaneous repair 
of the mitral valve, mechanical circulatory support, or even heart 
transplantation.

	(c)	 Left bundle branch block (LBBB) is a frequent ECG marker at diagnosis and is 
negatively associated with the likelihood of LVRR [26]. Importantly the devel-
opment of new LBBB during follow-up is a strong independent prognostic pre-
dictor of all-cause mortality [34].
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	(d)	 The onset of atrial fibrillation during the follow-up is a sign of structural pro-
gression of the disease and negatively impacts on the prognosis of these patients, 
despite effective treatments [35].

	(e)	 In patients with DCM, the persistence of restrictive filing at 3 months after pre-
sentation is associated with a high mortality and transplantation rate. On the 
other hand, patients with reversible restrictive filling have a high probability of 
improvement and excellent survival. Thus, reassessment of these patients after 
3 months of therapy gives additional prognostic information with respect to the 
initial evaluation [36].

The implications of these observations are that a multi-parametric approach to 
diagnosis and long-term follow-up, not limited to the LV systolic function and size 
alone, appear essential in order to improve the quality of clinical management of 
DCM patients [37].

In spite of this therapeutic success, emerging evidence suggests that some 
patients remain vulnerable to SCD and refractory HF requiring heart transplant or 
mechanical circulatory support [26].

Thus, the outcome of patients with DCM often remains unpredictable, and major 
adverse events may occur in the first months following the diagnosis [7, 38].

Furthermore, even when there is improvement in LV dysfunction, the potential 
for later decline in systolic function remains, despite uninterrupted treatment [37].

Sometimes LVRR is pronounced enough to result in a normalization of both 
LVEF and LV diameters, in a process that has been referred to as “apparent heal-
ing” or “myocardial remission” [39]. Nevertheless, in a retrospective observa-
tional study, only about 10% of DCM patients showed persistent apparent healing 
at long term (10 years), but the vast majority of them experienced a recurrence of 
LV dysfunction in a very long term, thus suggesting that the observed healing was 
only apparent and that true myocardial recovery is at most a rare event in DCM 
patients [40, 41].

This last issue emphasizes the pivotal role not only of an accurate and complete 
initial diagnostic evaluation but also of continuous and tailored, modulated therapy 
and individualized, long-term accurate surveillance in order to recognize and treat 
the first signs of late disease progression (Fig. 6.5).

Modern management of HF has increased the survival rates of DCM and has 
resulted in long periods of clinical stability [25, 42]. Consequently, affected patients 
followed for beyond 10–15 years are often encountered in clinical practice.

It has to be noted, in addition, that the patients should be continuously and criti-
cally reassessed, particularly in the presence of cardiovascular risk factors. Indeed, 
abrupt worsening of LV function or an increased ventricular arrhythmic burden can 
be caused not only by the DCM progression but also by the development of new 
co-pathologies. Therefore, the possible presence of coronary artery disease, hyper-
tensive heart disease, structured valve disease, or an acute myocarditis should be 
systematically ruled out during the follow-up [37].
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2D	 Two-dimensional
3D	 Three-dimensional
AC	 Arrhythmogenic cardiomyopathy
CFR	 Coronary flow reserve
CMR	 Cardiac magnetic resonance
CRT	 Cardiac resynchronization therapy
CT	 Computed tomography
DCM	 Dilated cardiomyopathy
DSE	 Dobutamine stress echocardiography
EDV	 End-diastolic volume
EF	 Ejection fraction
EROA	 Effective regurgitant orifice area
ESV	 End-systolic volume
FAC	 Fractional area change
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GLS	 Global longitudinal strain
ICD	 Implantable cardioverter defibrillator
LA	 Left atrial
LBBB	 Left bundle branch block
LGE	 Late gadolinium enhancement
LV	 Left ventricular
LVRR	 Left ventricular reverse remodeling
MR	 Mitral regurgitation
MV	 Mitral valve
NYHA	 New York Heart Association
PISA	 Proximal isovelocity surface area
PW	 Pulsed wave
RV	 Right ventricular
RVol	 Regurgitant volume
SDI	 Systolic dyssynchrony index
STE	 Speckle-tracking echocardiography
TAPSE	 Tricuspid annular peak systolic excursion
TDI	 Tissue Doppler imaging
TR	 Tricuspid regurgitation
WMSI	 Wall motion score index

7.1	 �Echocardiographic Features of Dilated Cardiomyopathy

Echocardiography has crucial importance in the diagnosis of dilated cardiomyopa-
thy (DCM). Indeed, it is still considered as the main tool for both diagnosis and 
follow-up of patients with DCM. Main echocardiographic features of dilated car-
diomyopathy (DCM) are summarized in Table 7.1 [1–3]. DCM is defined in the 
presence of left ventricular (LV) ejection fraction (EF) <45% and LV end-diastolic 
diameter >2.7 cm/m2 or >117% predicted value corrected for age and body surface 
area [1, 3, 4].

The hallmark of the disease is a global LV dilation (Fig. 7.1). With the progres-
sion of the disease, the LV shows a change in its geometry becoming more spheri-
cal, with increased short axis/long axis ratio (sphericity index) [5] (Fig. 7.2). In a 
minority of cases of DCM, the LV end-diastolic diameter is still within 15% of 
normal values. This entity is classified as “mildly dilated cardiomyopathy” [6].

LV dilation can usually be accompanied by LV eccentric hypertrophy, with nor-
mal or only mildly increased LV wall thickness and increased LV mass (due to LV 
dilation). This feature is important for differential diagnosis between idiopathic 
DCM and other causes of dysfunction, such as end-stage hypertrophic cardiomy-
opathy and infiltrative or hypertensive heart disease.

Diffuse hypokinesis is typically seen in DCM, although regional wall motion 
abnormalities with akinesis or dyskinesis may be noticed, mostly at LV septum or 
apex, while better contractility is more common in the posterior and lateral walls. 
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The presence of a coronary artery distribution of wall motion abnormalities raises 
the suspicion of coronary artery disease. “Idiopathic LV aneurysms” are rarely seen 
in DCM and should be distinguished from cases of myocarditis, sarcoidosis, or left-
dominant arrhythmogenic cardiomyopathy (AC) [7].

As in other cardiac diseases, the main parameter adopted to evaluate LV systolic 
dysfunction with standard echocardiography is LV EF assessed with two-
dimensional (2D) biplane modified Simpson’s rule (Fig. 7.3), with the use of con-
trast agents in the case of poor baseline image quality. Moreover, dP/dT and cardiac 

Table 7.1  Echocardiographic features of DCM

Echocardiographic 
parameters Cutoff/features Comments
LV dilatation LV end-diastolic diameter 

>2.7 cm/m2 or >117% 
predicted value corrected 
for age and body surface 
area
Increased sphericity index 
is common

Not necessary for diagnosis (e.g., mildly 
dilated cardiomyopathy)

LV systolic 
dysfunction

EF < 45% Impaired global contractility

LV wall motion 
abnormalities

Diffuse hypokinesis Possible regional wall motion abnormalities 
mostly in LV septum and apex

LV wall thickness Normal or only mildly 
increased

Common presence of LV eccentric 
hypertrophy

LV diastolic 
dysfunction

“Restrictive pattern” 
(E < 150 ms and E/A 
ratio > 2) is related to 
increased LV stiffness

Useful hallmark of advanced diastolic 
dysfunction and elevated LV filling 
pressure. Can vary during follow-up

LV dyssynchrony Qualitative + quantitative 
polyparametric evaluation

Frequent if severe LV dysfunction and 
LBBB; not a  selection criteria for CRT

RV dilation and 
dysfunction

TAPSE < 14 mm, RV 
FAC < 35%

Secondary of biventricular involvement 
and/or pulmonary hypertension

LA dilation End-systolic LA volume 
index >34 ml/m2 

Associated with diastolic dysfunction, MR, 
atrial fibrillation

Functional MR EROA > 0.20 cm2 
identifies a significant 
functional MR

Contributes to increase of LV filling 
pressure and decrease of forward stroke 
volume; increases LV adverse remodeling

Functional TR Common in presence of RV dilation and 
dysfunction  and pulmonary hypertension

Dobutamine or 
exercise stress 
echocardiographic 
test

Assessment of presence or 
absence of LV inotropic 
response; sustained 
improvement vs. biphasic 
response

CRT cardiac resynchronization therapy, DCM dilated cardiomyopathy, EF ejection fraction, EROA 
effective regurgitant orifice area, FAC fractional area change, LA left atrial, LV left ventricular, MR 
mitral regurgitation, RV right ventricular, TAPSE tricuspid annular peak systolic excursion, TR 
tricuspid regurgitation
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Fig. 7.1  Transthoracic echocardiography of dilated cardiomyopathy, parasternal long axis view 
with evidence of significant left ventricular (LV) dilatation. Of note, mitral valve annular dilata-
tion, with leaflet tethering and reduced coaptation, is also present

Fig. 7.2  Two-dimensional transthoracic echocardiography of dilated cardiomyopathy, apical 
four-chamber view. Significant left ventricular remodeling with increased sphericity and presence 
of implantable defibrillator lead in the right side of the heart are also seen
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output are further load-dependent parameters of LV performance, frequently used in 
association with LV EF. Tissue Doppler imaging (TDI) mitral annulus velocity can 
be also reduced showing LV longitudinal dysfunction. Severe LV dilation and dys-
function can trigger development of spontaneous echocontrast and LV thrombi for-
mation, increasing the risk of systemic thromboembolism [8].

Diastolic dysfunction is frequent in DCM, reflecting structural LV wall pathology 
(particularly fibrosis), and chamber remodeling. Both abnormal relaxation and increased 
LV stiffness are present in the disease, with resulting increased LV filling pressure. LV 
diastolic dysfunction can be evaluated with several echocardiographic parameters. In 
particular, a “restrictive LV filling pattern” (Fig. 7.4) characterized by a short decelera-
tion time of E (<150 ms) and an increased E/A ratio (>2) at transmitral inflow pulsed 
Doppler tracing is related to increased LV stiffness and filling pressures and usually 
reflects a more advanced stage of the disease. Frequently the restrictive filling pattern is 
associated with severe LV dilation, systolic dysfunction, left atrial (LA) dilation, right 
ventricular (RV) involvement, and functional MR [9]. On another side, an increased 
E/E′ ratio (i.e., early diastolic mitral filling E/early diastolic mitral annular velocity E′ at 
TDI) strongly correlates with diastolic dysfunction and increased LV filling pressure.

Additional indices useful to evaluate diastolic dysfunction are the response of the 
mitral flow pattern to Valsalva maneuver, the pattern of pulmonary venous Doppler 
curve, and LA dilation (Fig. 7.5). The latter is frequent in DCM and depends on 
multiple factors (severity and duration of the disease, LV filling pressure, presence 
and severity of MR, presence of atrial fibrillation). Changes in diastolic pattern can 
be seen during the course of the disease, i.e., worsening or improvement after opti-
mal treatment [10].

LV mechanical dyssynchrony is another important aspect that can be evaluated 
with echocardiography in DCM patients with heart failure, LV systolic dysfunction, 
and left bundle branch block (LBBB). Echocardiography provides a multiparametric 

Fig. 7.3  Two-dimensional transthoracic echocardiography of dilated cardiomyopathy, apical 
four-chamber view. Quantification of left ventricular (LV) volumes and ejection fraction (EF) cal-
culated using the biplane Simpson’s method. Quantitative data: LV end-diastolic volume 297 mL, 
LV end-systolic volume 234 mL, LVEF 21%
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qualitative and quantitative approach for assessment of LV mechanical dyssynchrony 
[11]. The “apical rocking” motion of the LV yields a first qualitative diagnostic hint, 
which should be confirmed by other indices, as “septal flash,” septal to posterior wall 
motion delay at M-mode, and TDI-derived indices (intervals from QRS to peak sys-
tolic velocities of wall motion of different LV segments, assessing the delay between 
opposite LV walls). Also the presence of significant interventricular dyssynchrony, 
demonstrated by the time delay between the LV and RV ejections at pulsed-wave 
(PW) Doppler, was proven to be associated with higher probability of favorable 
response to CRT in DCM patients [12]. However, echo-Doppler indexes of dyssyn-
chrony are scarcely reliable [13, 14], and therefore, current guidelines do not recom-
mend echocardiography as selection criteria for CRT [15].

Functional MR in DCM is secondary to several concurrent factors. LV enlarge-
ment and mitral annulus dilation cause papillary muscle displacement and systolic 
retraction of mitral valve (MV) leaflets toward the LV apex resulting in leaflet mal-
coaptation [16] (Fig. 7.6). On the other side, MR itself increases the LV and LA 

a b

c d

Fig. 7.4  Case of dilated cardiomyopathy with severe diastolic dysfunction. Panel (a) pulsed-wave 
Doppler at mitral valve inflow. Predominant E wave with rapid deceleration time and increased E/A 
ratio, consistent with restrictive filling pattern. Quantitative data: E wave 1.1 m/s, E wave deceleration 
time 100 ms, A wave 0.2 m/s, E/A ratio 5.5. Panel (b) pulsed-wave Doppler of the pulmonary vein flow, 
with predominance of diastolic flow, compatible with increased LV filling pressure. Quantitative data: 
S wave 0.4 m/s, D wave 0.9 ms, S/D ratio 0.4, systolic fraction of the pulmonary vein velocity-time 
integral 0.3. Panel (c) and (d) medial and lateral tissue Doppler velocities for the estimation of the left 
ventricular filling pressure. Quantitative data: medial S′ wave 0.04 m/s, medial E′ wave 0.07 m/s, medial 
A′ wave 0.03 m/s, lateral S′ 0.05 m/s, lateral E′ 0.12 m/s, lateral A′ 0.03 m/s, E/E′ (medial) ratio 16
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a b

Fig. 7.5  Two-dimensional transthoracic echocardiography of an advanced case of dilated cardio-
myopathy, apical four-chamber view. Panel (a) extreme remodeling of the heart chambers. Panel 
(b) severe left atrial enlargement

Fig. 7.6  Two-dimensional transthoracic echocardiography of dilated cardiomyopathy, apical 
four-chamber view, color Doppler study. Presence of significant functional mitral regurgitation due 
to dilatation of the mitral valve annulus and tethering of mitral valve leaflets
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volume overload causing further LV dilation and remodeling, which consecutively 
escalates the degree of MR.  Hemodynamically significant MR contributes to 
increase LA pressure and decreases LV forward stroke volume, worsening the 
patients’ status. According to the current guidelines, a cutoff of effective regurgitant 
orifice area (EROA) >0.20 cm2 identifies a significant functional MR [17] (Fig. 7.7).

Echocardiography is pivotal to assess MV morphology, quantify mitral annulus 
dilation, and rule out the presence of structural leaflet disease. Furthermore, it is 
important to evaluate MR severity with a multiparametric approach [17]. To increase 
sensitivity and specificity in detecting the severity of MR, transesophageal echocar-
diography provides the best accuracy. Indeed, transesophageal echocardiograms are 
capable of providing a more accurate estimation of morphological (MV annulus 
dilation, quantification of systolic leaflet retraction, coaptation depth, and tenting 
area) and functional (EROA calculated with proximal isovelocity surface area 
[PISA], regurgitant volume [RVol]) parameters.

RV dilation and systolic dysfunction are frequent in DCM and can represent 
biventricular involvement of the disease (30% of DCM cases) and/or are secondary 
to RV pressure overload due to left-side disease [18, 19]. RV dysfunction correlates 
with worse functional status and more advanced heart failure [20]. The presence of 
RV dilation is usually assessed with 2D echocardiography from standard echo views 
(Fig. 7.8). RV systolic function is estimated with various parameters, as fractional 
area change (FAC), tricuspid annular peak systolic excursion (TAPSE), TDI, sys-
tolic tricuspid annular velocity, and RV myocardial performance index [21] 
(Fig. 7.9).

In the presence of RV dilation and dysfunction, functional tricuspid regurgitation 
(TR) and pulmonary hypertension are quite common in DCM. Pulmonary hyperten-
sion is more frequently associated with the severity of functional MR and LV 

a b

Fig. 7.7  Two-dimensional transthoracic echocardiography of dilated cardiomyopathy with severe 
mitral regurgitation (MR). Quantification of the effective regurgitant orifice area (EROA) with the 
proximal isovelocity surface area (PISA) method. Panel (a) apical four-chamber view focused on 
mitral regurgitation jet origin for the measurement of the PISA radius. Panel (b) continuous wave 
Doppler of the regurgitant jet with low velocity and a triangular profile, suggestive of severe 
MR. Quantitative data: PISA radius 1 cm, EROA 59 mm2
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diastolic dysfunction than with the degree of LV systolic dysfunction [19]. In par-
ticular, patients with “restrictive” or pseudonormal mitral inflow patterns have a 
higher pulmonary artery systolic pressure, and the improvement to an impaired 
relaxation pattern appears to be followed by a significant reduction of pulmonary 
artery pressure [22].

Stress echocardiography can be useful in DCM to assess the myocardial con-
tractile reserve and the presence of inducible ischemia and to evaluate the coro-
nary flow reserve (CFR) [23]. However, to date there is no standardized protocol 
for stress echocardiography in patients with LV dysfunction, and the preferred 

a b c

Fig. 7.8  Two-dimensional transthoracic echocardiography of dilated cardiomyopathy, apical 
four-chamber view focused on the right ventricle (Panel a) for RV systolic function evaluation with 
fractional area change (FAC) method. Panel (b) RV end-diastolic area contour. Panel (c) end-
systolic area contour. Quantitative data: RV end-diastolic area 23.3  cm2, RV end-systolic area 
18.86 cm2, RV FAC 19.1%, consistent with severe RV systolic dysfunction

a b

Fig. 7.9  Transthoracic echocardiography of dilated cardiomyopathy with associated right ventricu-
lar (RV) dysfunction. Assessment of right ventricular longitudinal function with M-mode tricuspid 
annular peak systolic excursion – TAPSE – (Panel a) and tissue Doppler S′ wave velocity (Panel b). 
Quantitative data: TAPSE 17 mm, S′ 10 cm/s, consistent with mild RV systolic dysfunction
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stress technique (dobutamine, dipyridamole, or exercise) is chosen depending on 
the indication of the test, the exercise ability of each patient, image quality, and 
expertise of the center.

Exercise is the most physiological stress test, which should be used if the patient is 
able to exercise. However, the most used test in DCM patients is dobutamine stress 
echocardiography (DSE) [24]. Low-dose dobutamine is the method of choice for 
assessment of myocardial contractile reserve. Also dipyridamole is a feasible test that 
can be used to assess the contractile response; it is less arrhythmogenic and better 
tolerated [23]. A LV EF increase >20% or a wall motion score index (WMSI) >0.44 
from baseline recognizes patients with preserved contractile reserve. A biphasic 
response in at least two segments and/or extensive ischemic response during high-
dose dobutamine or exercise stress can help to identify ischemic cardiomyopathy, 
whereas idiopathic DCM is characterized by sustained improvement of LV function. 
Absence of inotropic response identifies patients with severe cardiomyopathy [23].

Dipyridamole stress test allows a combined assessment of contractile reserve and 
CFR on left anterior descending artery (defined by the ratio of hyperemic to rest 
peak diastolic flow velocity, normal value >2.5). CFR is often reduced in DCM, and 
it is associated with the functional class and the oxygen consumption.

DSE can also be useful to unmask a significant LV intraventricular dyssynchrony 
[25] and helps to identify potential responders to CRT (together with the presence 
of contractile reserve). Furthermore, it can be used to discriminate between true 
aortic valve stenosis and pseudo-stenosis combined with DCM [23]. However, to 
date, indications for stress echocardiography in the setting of functional MR in idio-
pathic DCM are controversial [26].

Importantly, many of the aforementioned echocardiographic parameters, evalu-
ated at baseline and at follow-up, are crucial for the prognostic stratification of 
DCM patients (see paragraph on prognostic role of echocardiography in DCM) and 
are useful to evaluate the progression of the disease and the response to therapy.

7.2	 �Role of New Echocardiographic Techniques

Technological advances in the field of cardiac ultrasound have led to new noninva-
sive techniques, such as 3D echocardiography, TDI, and speckle-tracking echocar-
diography (STE). These techniques have demonstrated a significant incremental 
value over basic echocardiography [2, 27–29].

Accurate LV volume and EF quantification is crucial in the echocardiographic 
evaluation of patients with DCM. However, it is well known that M-mode and 2D 
evaluation of LV volumes and EF have limitations [30]. LV volume measurement by 
2D echocardiography is highly dependent on user’s experience (in manually tracing 
of endocardium and in visualization of perpendicular imaging planes), and this 
approach relies on geometrical assumption about the shape of the LV. The greatest 
advantage of 3D echocardiography in the evaluation of the LV includes indepen-
dence from geometric assumption, semiautomatic delineation of the endocardium 
border, and the absence of errors deriving from “foreshortening” of the LV apex [31, 32]. 
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With 3D echocardiography, only one acquisition is needed to obtain volumes and 
EF and provides the possibility for quantitative assessment of LV regional wall 
motion by measuring the volume change of each segment in the cardiac cycle 
(Fig. 7.10). Three-dimensional measurements and reporting of LV volumes are rec-
ommended when feasible, depending on image quality and center expertise. Three-
dimensional echocardiography demonstrated high feasibility in DCM patients [33] 
and has been extensively validated against cardiac magnetic resonance (CMR). It 
has been demonstrated to be more time-saving, reproducible, and accurate than con-
ventional 2D echocardiography for LV volumes, mass, and EF measurements, with 
lower inter- and intra-observer variability [34–37]. Three-dimensional echocardiog-
raphy slightly underestimates both LV EDV and ESV in comparison with those 
measured with CMR. A recent meta-analysis of 23 studies comparing 3D echocar-
diography with CMR volumes and EF demonstrated biases of −19  ±  34  mL, 
−10 ± 30 mL, and −1 ± 12% for LV EDV and ESV and EF, respectively [38]. The 
lower spatial resolution of 3D echocardiography compared to CMR is responsible 
for this underestimation. With 3D echocardiography, it is often difficult to identify 
the endocardial-trabecular border and the blood-trabecular interface. In a review of 
sources of error, it was shown that the agreement between 3D echocardiography and 
CMR improved when the trabeculae were excluded from the LV cavity [39].

Technological advances in the field of cardiac ultrasound have led to further new 
noninvasive techniques, such as TDI and STE, for assessing cardiac mechanics and 
segmental and global LV function. The peak systolic myocardial velocity S′, a sim-
ple TDI index of systolic longitudinal function, is a marker of impaired subendocar-
dial fiber contraction and correlates with myocardial fibrosis [40]. STE has emerged 
as a novel technology to detect myocardial abnormalities. Strain analysis allows 
discrimination between active and passive movement of myocardial segments and 
permits separate assessment of distinct components of myocardial deformation 
(longitudinal and circumferential shortening, radial thickening, rotation, and twist-
ing). Patients with DCM have an increased LV mass and volume and typically 

Fig. 7.10  Three-
dimensional reconstruction 
of left ventricular (LV) 
volumes. Severe LV 
dilatation and remodeling. 
Quantitative data: LV 
end-diastolic volume 
307 mL, LV end-systolic 
volume 234 mL, LV 
ejection fraction 24%, 3D 
global longitudinal strain 
(GLS) −8.4%
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decreased contractility of the LV walls [41]. These changes lead to impaired strain 
in all direction (longitudinal, radial, and circumferential) [42–45].

Strain echocardiography is important for the arrhythmic risk stratification of 
patients with DCM since global longitudinal strain (GLS) is a promising marker of 
arrhythmias. Mechanical dispersion predicted arrhythmic events in patients with 
DCM independently of LV EF [46]. Speckle-tracking longitudinal deformation has 
also a potential role in assessing fibrosis as detected by contrast CMR late gadolin-
ium enhancement (LGE), but the relationship between myocardial fibrosis and seg-
mental strain is still not well established, especially in setting of DCM. In a small 
prospective study, abnormal 3D speckle-tracking GLS could detect LGE-
determinant myocardial fibrosis with a sensitivity of 85%, a specificity of 85%, a 
positive predictive value of 69%, and a negative predictive value of 93%, consider-
ing an optimal GLS cutoff value of −15.25% [47].

LV twist and torsion have been investigated with different measurement methods 
during the past two decades, using tagged CMR as the gold standard [48]. Many 
studies using different echocardiographic techniques, like TDI, STE, velocity vec-
tor imaging, and 3D STE, showed that LV torsion (twisting and untwisting) repre-
sents an important mechanism for both ejection and filling. LV twist/torsion indexes 
are significantly impaired in patients with DCM correlating with worse functional 
capacity and LV function [42, 49, 50]. Reduced LV torsion in patients with DCM 
was found to be a predictor of response to CRT and increased after 8 months of 
therapy [51].

The accuracy of LV mass determined by 3D echocardiography is similar to that 
of CMR in most patients, showing only a slight overestimation [37, 52, 53].

Advanced indices of LV intraventricular mechanical dyssynchrony are based on 
TDI, speckle-tracking imaging, and 3D echocardiography [11]. As stated in the pre-
vious paragraph, the role of echocardiography in assessing LV mechanic dyssyn-
chrony in DCM patients remains controversial to date. The Predictors of Response 
to Cardiac Resynchronization Therapy (PROSPECT) trial examined the predictive 
value of 12 echocardiographic parameters of dyssynchrony, including both conven-
tional- and TDI-based methods, showing only a modest sensitivity and specificity of 
these markers [54]. Three-dimensional echocardiography has been used as a tech-
nique for dyssynchrony quantification. The systolic dyssynchrony index (SDI) is 
calculated as the standard deviation of regional ejection time (time to reach minimal 
volume). Three-dimensional echocardiography allows evaluating all LV segments 
simultaneously, displaying a “bull’s eye” map, which demonstrates the time required 
to each segment to reach minimal volume. Three-dimensional echocardiography-
derived LV SDI was described as highly predictive of response to CRT at 48 h [55], 
6 months [56, 57], and 1 year of follow-up [58]. Benefits from CRT have been 
defined as a ≥15% reduction in LV ESV at follow-up [56–58], which can also read-
ily be measured by 3D echocardiography.

Several groups have addressed analysis of LV strain of opposite walls by STE as 
the ideal technique for the assessment of LV intraventricular dyssynchrony [14, 59, 
60]. Radial strain values were demonstrated to be reliable indexes of LV mechanical 
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dyssynchrony useful to identify potential responders to CRT [59]. The Speckle 
Tracking and Resynchronization (STAR) study demonstrated that radial and trans-
verse LV strain values were significantly related to LV EF response and long-term 
outcome after CRT [60]. On the other hand, absence of radial or transverse dyssyn-
chrony (≥130 ms time difference in peak strain values between opposing segments) 
at baseline was an adverse prognostic factor after CRT [60]. In one study pacing at 
the site of the latest mechanical activation, as determined by speckle-tracking radial 
strain analysis, resulted in superior echocardiographic response after 6 months of 
CRT and better prognosis during long-term follow-up. Moreover, the demonstration 
of scar tissue by speckle-tracking GLS was found to be an independent predictor of 
lack of response to CRT and was related to the total scar burden assessed with CMR 
[61]. Furthermore, 3D speckle-tracking strain indices have been studied to quantify 
dyssynchrony before and after CRT [62].

For the echocardiographic assessment of LV diastolic dysfunction in patients 
with DCM, the ratio of early diastolic transmitral flow velocity to early diastolic 
annular velocity (E/E′) is frequently used to predict an increase in LV filling pres-
sure. This approach, however, has several limitations, and its accuracy is question-
able, particularly in patients with advanced DCM and severe heart failure. A study 
with invasive hemodynamic assessment as gold standard showed that E/E′ ratio had 
a weak correlation with LV filling pressure in DCM, particularly those with severe 
LV dilatation and after CRT [63]. Other new indices for LV diastolic dysfunction 
evaluation obtained by speckle-tracking techniques analysis are promising. 
Circumferential strain and strain rate during late diastolic LV filling, E/circumferen-
tial strain rate at early diastolic LV filling, and E/circumferential strain at the time of 
peak E wave had greater area under the curve than the E/E′ ratio for the prediction 
of pulmonary capillary wedge pressure >12 mmHg [64].

Importantly, 2D LA strain assessment with speckle-tracking technique demon-
strated a better correlation than other Doppler indices, such as E/E′ ratio, with LV 
filling pressure as measured by right catheterization, in patients with advanced sys-
tolic heart failure [65]. In particular, the peak atrial longitudinal strain that corre-
sponds to LA expansion during the reservoir phase is reduced in the presence of an 
increased LA pressure, and this parameter could be useful in the multiparametric 
assessment of LV filling pressure. In addition, LA strain represents a promising 
noninvasive technique to assess left atrial pump function in patients with DCM. Two-
dimensional STE-based LA function is impaired in patients with nonischemic DCM 
[66]. In a study with 134 patients with either idiopathic or ischemic DCM, LA sys-
tolic deformation was more depressed in idiopathic compared with ischemic DCM 
and was closely associated with functional capacity during effort. LA lateral wall 
systolic strain and LA volume were powerful independent predictors of peak oxy-
gen consumption during cardiopulmonary exercise testing [67].

Quantification of MR is challenging and should be performed by using 2D or 3D 
vena contracta and PISA method [17, 68]. It is well known that the 2D vena con-
tracta and PISA method have several limitations. These methods assume the EROA 
is nearly circular, and the exact shape and size might not be accurately assessed due 
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to the limited scan plane orientation of 2D echocardiography. Real-time 3D echo-
cardiography is now available to overcome this limitation, which is particularly 
relevant in patients with functional MR, in whom EROA geometry is usually com-
plex and asymmetric [69–71]. The direct measurement of the regurgitation orifice 
area with 3D echocardiography avoids the underestimation of its size, indepen-
dently from the eccentricity of the MR jet or from cardiac rhythm [72, 73]. 
Quantification of RVol of functional MR with 3D echocardiography showed excel-
lent correlation with RVol measured by CMR (r = 0.94), without a significant differ-
ence between these techniques (mean difference = −0.08 mL/beat). Conversely, 2D 
echocardiography approach from the four-chamber view significantly underesti-
mated RVol (r = 0.006) as compared with CMR (mean difference = 2.9 mL/beat) 
[73]. Currently, dedicated MV analysis softwares allow a fast, complete, and repro-
ducible evaluation of MV anatomy and function (MV annulus dimensions, MV 
annulus displacement, MV leaflet surface, tenting volume, aortomitral angle, and 
papillary muscle geometry) [74–76]. Furthermore, 3D transesophageal echocar-
diography plays an important role in the selection of patients for MitraClip, in the 
echocardiographic guidance of the procedure and in the pre- and post-procedural 
MR quantification [77].

Multiparametric advanced echocardiographic assessment of RV includes the 
measurement of volumes and EF by 3D technology and semiautomatic software 
quantification and analysis of RV longitudinal strain by 2D and 3D speckle-tracking 
technology (Fig.  7.11). Reduced RV strain and 3D RV EF are associated with 
decreased exercise capacity in DCM [78, 79].

Fig. 7.11  Three-
dimensional reconstruction 
of right ventricular (RV) 
volumes. Severe RV 
dysfunction. Quantitative 
data: RV end-diastolic 
volume 109 mL, RV 
end-systolic volume 
92 mL, RV ejection 
fraction 15%, 3D 
longitudinal strain of the 
free-wall −11.5%
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7.3	 �Clinical Echocardiography in DCM: Advantages 
and Limitations in Clinical Practice

Echocardiography is the first-level imaging tool, which plays a valuable role in 
many steps of the clinical management of patients with DCM. These include pri-
marily the diagnosis of DCM and its differentiation from other diseases causing LV 
dysfunction in heart failure patients (Table 7.2) [1, 2, 27, 28]. The echocardiographic 
demonstration of LV dilation and systolic dysfunction is diagnostic for DCM but 
only after exclusion of other specific causes of heart disease. The differential 

Table 7.2  Echocardiographic clues in differential diagnosis of DCM

Echocardiographic features Possible differential diagnosis vs. DCM
Associated significant LV hypertrophy 1. Advanced hypertrophic cardiomyopathy

2. Advanced infiltrative/storage cardiomyopathy
3. Advanced hypertensive heart disease

Segmental wall motion abnormalities 
with coronary artery distribution

Ischemic cardiomyopathy

Biphasic response in at least two LV 
segments and/or extensive ischemic 
response during high-dose dobutamine 
or exercise stress

Ischemic cardiomyopathy

Wall motion abnormalities with 
non-coronary distribution/idiopathic 
LV aneurysms

1. Left-dominant or biventricular AC
2. Myocarditis
3. Cardiac sarcoidosis

Prevalent RV dilation and dysfunction 1. �Arrhythmogenic RV cardiomyopathy with 
biventricular involvement

2. Congenital heart disease
3. Pulmonary hypertension

Presence of RV/LV aneurysms AC
Low-gradient aortic valve 
stenosis + LV dysfunction

True severe aortic valve stenosis vs. pseudo-severe 
aortic stenosis + DCM > differentiation by response 
to DSE

Significant MR + LV dysfunction Functional MR+DCM vs. organic MR + secondary 
LV dysfunction > through 
transthoracic + transesophageal echocardiography 
assessment of MV

LV dysfunction without severe 
dilation, LV hypertrophy, non-
coronary wall motion abnormalities, 
LV thrombi

Myocarditis

Reversibility of pathological 
echocardiographic parameters once 
the causal factors are removed

Other cardiomyopathies: inflammatory, alcoholic, 
tachycardia-induced, stress-induced, chemotherapy-
induced, peripartum

Mild/moderate LV systolic 
dysfunction without significant 
dilation + severe diastolic dysfunction

Mildly dilated cardiomyopathy vs. restrictive 
cardiomyopathy

AC arrhythmogenic cardiomyopathy, DCM dilated cardiomyopathy, DSE dobutamine stress echo-
cardiography, LV left ventricular, MV mitral valve, MR mitral regurgitation, RV right ventricular
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diagnosis of various possible causes of heart failure is particularly challenging for 
the clinician. Therefore echocardiography provides relevant help recognizing “red 
flags” and directing further second-level imaging techniques, in order to obtain the 
final diagnosis [80, 81].

“Red flags” echocardiographic clues can raise the suspicion of a diagnosis but are 
however not totally specific for a definitive etiology. For example, documentation of 
LV dysfunction, not necessarily associated with LV hypertrophy, in patients with 
history of systemic hypertension may clarify the cause of LV dysfunction as end-
stage dilated and hypokinetic phase of hypertensive heart disease that may mimic a 
DCM [82]. Also multivessel coronary heart disease can be indistinguishable by 
echocardiography from DCM, and sometimes only coronary angiography clarifies 
the diagnosis. In some cases, a diagnostic hint originates from the evidence of seg-
mental wall motion abnormalities with coronary distribution, as well as the proof of 
an ischemic “biphasic” response at DSE. Other noninvasive imaging techniques, as 
CMR which evaluates the LGE pattern, single-photon emission computed tomogra-
phy (CT) which assesses perfusion abnormalities, and CT which depicts the coro-
nary anatomy, are useful to differentiate ischemic from nonischemic DCM.

Regarding the differential diagnosis in the case of DCM associated with valve 
disease, low-dose dobutamine stress test is particularly valuable in the differentia-
tion between a true severe aortic valve stenosis with consequent LV dysfunction and 
a pseudo-aortic valve stenosis in the presence of DCM. Also a severe MR can lead 
to advanced LV dysfunction: in this case transthoracic and transesophageal echocar-
diographic assessment of MV apparatus is valuable in excluding organic MV 
disease.

Several other cardiomyopathies can mimic the morphological features of 
DCM.  Echocardiography can give diagnostic hints but remains often limited in 
defining DCM etiology, thus suggesting the use of second-level imaging investiga-
tions, primarily CMR which can recognize distinct LGE distribution in different 
cardiomyopathies. Myocarditis is echocardiographically characterized by LV dys-
function frequently without severe dilation, sometimes LV hypertrophy due to inter-
stitial edema, wall motion abnormalities with non-coronary distribution, and 
possible presence of LV thrombi [83]. CMR in these cases facilitates the diagnosis 
detecting myocardial edema, but the diagnostic gold standard remains endomyocar-
dial biopsy. AC with biventricular or “left-dominant” involvement can be suspected 
by echocardiography in presence of biventricular dysfunction and in presence of 
RV/LV aneurysms [84]. Again, the diagnostic imaging tool of choice in suspected 
AC is CMR [85]. Also advanced hypertrophic cardiomyopathy in hypokinetic-
dilated end-stage has echocardiographic features similar to DCM with LV spherical 
remodeling and apparent regression of LV hypertrophy [86]. The presence of previ-
ous echocardiographic exams with documentation of severe LV hypertrophy typical 
of hypertrophic cardiomyopathy may help the diagnosis in these extreme cases. Of 
note, evidence of significant LV hypertrophy may also suggest advanced stages of 
infiltrative/storage cardiomyopathy [87]. Hemochromatosis causes a restrictive car-
diomyopathy which progresses to an end-stage DCM with echocardiographic fea-
tures undistinguishable from idiopathic DCM.  Therefore, CMR is the imaging 

B. Pinamonti et al.



99

modality of choice to detect the iron overload in the myocardium. Also the differen-
tial diagnosis between LV non-compaction and DCM with conspicuous trabecula-
tions secondary to LV remodeling is often possible only with CMR. Finally, other 
cardiomyopathies (inflammatory, alcoholic, tachycardia-induced [88], stress-
induced, chemotherapy-induced, peripartum) usually show a reversibility of patho-
logical echocardiographic parameters once the causal factors have resolved; 
therefore echocardiography is extremely valuable in follow-up of these patients.

Echocardiography is also important in the early diagnosis of DCM in patients 
with positive familiar history and/or in presence of a positive genetic mutation [4, 89, 
90]. The diagnosis of DCM is obtained in presence of two or more affected family 
members or in presence of a first-degree relative of a DCM patient with unexplained 
sudden death at <35 years [1]. Familiar screening including history, physical exami-
nation, ECG, and echocardiography is indicated in probands and first-degree rela-
tives. LV dilation and reduced fractional shortening are common in asymptomatic 
relatives of patients with DCM and are associated with a significant risk for disease 
progression [90]. Advanced echocardiographic techniques as myocardial deforma-
tion imaging might permit the detection of latent DCM (with reduced strain) earlier 
than LV enlargement and depression of EF [91]. In controversial cases other imaging 
techniques as CMR, as well as follow-up reassessment, are indicated.

In addition, several echocardiographic parameters, assessed at baseline and at 
follow-up, are relevant for prognostic stratification of DCM patients (see paragraph 
about prognostic role of echocardiography in DCM) and help the clinician in assess-
ing the progression of the disease and the response to treatment. They also guide in 
taking decisions not only about pharmacological therapy but also indication for inva-
sive treatments as implantable device therapy (implantable cardioverter defibrillators 
(ICD), CRT, and correction of valvulopathy [92–95]). Documentation of LV 
EF < 30%, severe LV dilatation, and LV thrombosis suggests the indication for anti-
coagulation therapy in order to lower the risk of thromboembolism. Echocardiographic 
LV EF measurement is an important parameter for determining the appropriateness 
of ICD and CRT implantation. LV EF ≤ 35% in association with advanced New York 
Heart Association (NYHA) class despite optimal medical therapy for at least 3 
months is considered in the indication for ICD and, if prolonged QRS is present, is 
an echo criterion for the selection of patients for CRT. Accurate MV echocardio-
graphic evaluation is becoming increasingly more relevant due to the emerging role 
of percutaneous procedures to treat functional MR. In particular, the percutaneous 
mitral valve edge-to-edge repair with MitraClip implantation in heart failure patients 
with severe functional MR and high risk for surgery is a new therapeutic possibility. 
Echocardiography is fundamental not only in the selection of patients [96] but also 
in guiding the procedure and in the follow-up. Echocardiography can also provide 
assistance in the implantation of ventricular assist devices and the evaluation for 
heart transplantation in end-stage heart failure patients.

In conclusion, echocardiography is the first-line imaging exam in patients with 
DCM, and it has a pivotal role in assessing its morphological and functional features 
and in piloting treatment options. However, sometimes echocardiographic data are 
not sufficient, and they should guide further and more specific cardiac diagnostic 
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investigations. General advantages of echocardiography over other imaging tech-
niques in clinical everyday practice are its extensive availability, accessibility, and 
low cost. Furthermore, it is noninvasive, safe, and free from radiations and can be 
performed in patients with heart devices who cannot undergo magnetic fields. 
Limitations of echocardiography include inadequate image quality and unfeasibility 
for tissue characterization. Moreover, as other imaging techniques, the operators 
require a learning curve and adequate expertise and familiarity with the disease.

7.4	 �Prognostic Role of Echocardiographic Data in DCM

The natural history of DCM has dramatically improved in the last 20 years as a 
result of the introduction in clinical practice of beta-blockers, ACE inhibitors, and 
mineralocorticoid receptor antagonists which showed not only a reduction in mor-
tality and morbidity but also significant improvements in terms of LV reverse 
remodeling (LVRR) [27, 28, 97, 98]. Therefore, studies on the prognostic role of 
echocardiography should be contextualized in their historical phase of conception, 
keeping in mind that during the last three decades, the gradual optimization of med-
ical therapy has paralleled a significant improvement in survival [99].

The main echocardiographic parameters useful to assess the prognosis in patients 
with DCM are summarized in Table 7.3.

LV dilatation and systolic dysfunction are the hallmarks of the disease and mark-
ers of adverse outcome [2, 18, 27, 28, 100]. Remodeling in DCM includes other 
features as dyssynchronous ventricular contraction, functional MR, dilatation of 
other chambers, and myocardial fibrosis. Conversely, LVRR, characterized by a 
decrease in LV dimensions and the normalization of shape associated with a signifi-
cant improvement of systolic function, is a therapeutic goal (nowadays achieved in 
almost 40% of patients in optimal medical and device treatment) and adds prognos-
tic value for the stratification of long-term risk [92]. Therefore, although baseline 
LV EF is an independent predictor or outcome both in adults and children with 
idiopathic DCM [101], a serial thorough assessment of LV size and systolic func-
tion, especially after medical treatment optimization, is pivotal in the management 
of these patients. At approximately 24 months after diagnosis and establishment of 
optimal medical therapy, LVRR is considered completed; nonetheless, possible dis-
ease progression indicates the need for continuous follow-up, lifelong therapy, and 
evaluation of potential negative prognostic factors (including atrial fibrillation, LV 
restrictive filling, RV dysfunction, LBBB, functional MR) [27].

Severe LV diastolic dysfunction, characterized by restrictive filling pattern, has 
been demonstrated a powerful adverse prognostic sign specifically in patients with 
DCM, as in other patients with heart failure [9]. Furthermore, persistence of LV 
restrictive filling pattern is associated with high mortality and transplantation rate, 
while patients with reversible restrictive filling have a high probability of improve-
ment and excellent survival [10]. Early diastolic mitral filling E/early diastolic mitral 
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Table 7.3  Main echocardiographic parameters clinically useful to assess prognosis in patients 
with DCM

Echo parameters Comments References
At first 
assessment

LV dilatation Larger indexed LV ESV is predictor of 
early arrhythmic events

[27, 120]

LV EF Independent predictor of outcome [101]
LV diastolic 
dysfunction

Independent prognostic indicator of poor 
outcome or heart transplantation

[9]

Functional MR Independently associated with a poor 
prognosis

[92, 106]

RV dysfunction Correlates with worse functional status, 
more advanced LV failure, and has 
prognostic importance. Biventricular 
dilation is associated with a worse 
prognosis as compared to isolated LV 
dilation

[20]

LA enlargement Correlates with ↓exercise tolerance and 
↑pro-BNP

[105]

Pulmonary artery 
pressure

Peak TR velocity >2.5 m/s is associated 
with increased mortality, increased 
hospitalization, and higher incidence of 
heart failure

[115]

LV GLS Independent predictor of arrhythmogenic 
events in DCM

[46]

Contractile reserve 
at DSE

Predicts outcome [24]

At 
follow-up

LVRR Characterized by a decrease in LV 
dimensions and normalization of LV 
shape associated with a significant 
improvement of systolic function. It is 
one of the main determinants of 
prognosis

[27, 92]

Persistent vs. 
reversible LV 
restrictive filling 
pattern

Associated with subsequent  mortality 
and transplantation rate

[10]

Improvement of 
functional MR

Early improvement is a favorable 
independent prognostic factor

[107, 108]

Regression vs. 
persistence or new 
development of 
RV systolic 
dysfunction

Independent risk factor of subsequent 
outcome

[112, 113]

DCM dilated cardiomyopathy, DSE dobutamine stress echocardiography, EF ejection fraction, 
ESV end-systolic volume, FAC fractional area change, GLS global longitudinal strain, LA left 
atrial, LV left ventricular, LVRR left ventricular reverse remodeling, MR mitral regurgitation, RV 
right ventricular, TR tricuspid regurgitation
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annular velocity E′ at TDI (E/E′ ratio) is associated with exercise capacity in DCM 
[102]. E/E′ ratio was also demonstrated to be a powerful predictor of clinical outcome 
in DCM patients [103]. Furthermore, baseline lateral E/E′ ratio was an independent 
predictor for cardiac events in patients with heart failure treated with CRT [104].

LA enlargement is often observed in DCM as a consequence of LV diastolic 
dysfunction, functional MR, and atrial fibrillation. LA volume has incremental 
prognostic value in patients with DCM and correlates with exercise tolerance and 
pro-BNP [105].

Functional MR is independently associated with a poor prognosis in patients with 
LV dysfunction [16, 92, 106]. Improvement of functional MR in response to pharma-
cological therapy and CRT has been previously demonstrated [107]. Stolfo et  al. 
[108] showed that in patients with DCM receiving optimal medical treatment, early 
improvement of functional MR is frequent (more than half of the cases) and is a 
favorable independent prognostic factor. Furthermore, early improvement of func-
tional MR is frequently documented after CRT implantation in DCM and is associ-
ated with improved transplant-free survival [109]. With the emergence of percutaneous 
transcatheter MV procedures for the treatment of MR (MitraClip repair), the prog-
nostic importance of correction of functional MR in DCM is likely to increase [110].

Concomitant RV dysfunction, in particular TAPSE  <  14  mm, represents an 
adverse prognostic marker in DCM [111].

The serial assessment of RV function by echocardiography is useful, particularly 
after optimization of medical therapy or after CRT. A regression of RV dysfunction 
is associated with a favorable transplant-free survival, whereas the persistence or 
the new development of RV systolic dysfunction is an independent risk factor of 
adverse outcome [112–114].

Functional TR is often associated with RV dilatation, RV dysfunction, or pulmo-
nary hypertension. Pulmonary artery pressure measured from TR velocity provides 
additional prognostic information as peak TR velocity of more than 2.5 m/s is asso-
ciated with increased mortality, increased hospitalization, and higher incidence of 
heart failure [115].

A significant prolongation of QRS duration in the context of LBBB is the main 
marker of ventricular dyssynchrony used in trials of CRT [116]. Echocardiographic 
techniques may also detect mechanical dyssynchrony in some patients without sig-
nificant QRS prolongation. However, in a large series of patients with systolic heart 
failure, echocardiographic evidence of LV dyssynchrony and a QRS duration of less 
than 130 ms, CRT did not reduce the rate of death or hospitalization for heart failure 
and may increase mortality [117]. Therefore, assessment of dyssynchrony should 
not be part of the routine echocardiographic evaluation for patients with DCM and 
should be used in selected cases only.

Recent data demonstrated that the reversion after CRT treatment of simple quali-
tative echocardiographic signs of LV intraventricular dyssynchrony (septal flash and 
apical rocking) is a favorable prognostic sign and is associated with frequent 
improvement of LV function [118].

Few data are presently available about prognostic value of evaluation of LV 
strain by STE in DCM.  LV subendocardial longitudinal function is often early 

B. Pinamonti et al.



103

deranged in DCM, and LV GLS is markedly decreased in DCM when compared 
with healthy controls [119]. As showed by Haugaa et al., LV GLS may be a valuable 
tool in the selection of candidates for CRT and independent predictor of arrhythmo-
genic events in DCM [46].

As previously stated, approximately one third of patients with DCM exhibit an 
improvement of LV function on optimal medical therapy. Merlo et al. [92] showed 
on a large cohort of patients with idiopathic DCM that LVRR (defined as a normal-
ization or improvement of LV systolic function and a significant decrease in LV 
size) is related with more favorable outcomes in the long term. In this study, base-
line independent predictors of LVRR were higher systolic blood pressure and the 
absence of LBBB. Notably, no baseline echocardiographic parameters were predic-
tive of subsequent LVRR.

The implantation of an ICD in selected patients with DCM may prevent sudden 
cardiac death. Current international guidelines recommend ICD implantation in 
patients and previous cardiac arrest (secondary prevention) or in patients with 
severely reduced EF (≤35%) and NYHA II/III despite optimal medical therapy (pri-
mary prevention) with a life expectancy >1 year [15]. It is recommended that 
patients should receive at least 3 months of optimal medical therapy before consid-
ering ICD implantation in primary prevention, as LVRR with recovery of systolic 
function may lead to unnecessary implantation. Patients that experience sudden 
death or major ventricular arrhythmias within the 6 months window after diagnosis 
are approximately 2%; larger indexed LV ESV and QRS duration are predictors of 
early arrhythmic events [120].

Assessment of contractile reserve by DSE may be a useful tool to predict out-
come in patients with DCM [121]. There is no general consensus on the definition 
of positive response to dobutamine in this specific context, but generally an increase 
in LVEF from rest to peak stress by ≥5 points or a percentage change from baseline 
of ≥20% indicates the presence of contractile reserve [122]. Pinamonti et al. [24] 
investigated 51 patients with DCM with DSE and found that the addition of DSE-
derived information added a moderate but significant improvement of sensitivity to 
a model based only on rest echocardiography, with a general low predictive power. 
In addition, a reduced CFR during dipyridamole vasodilator test together with 
absence of contractile reserve provides additional negative prognostic value in 
DCM patients. CFR on left anterior descending artery less than 2 yields the worse 
prognosis [123].

In conclusion, echocardiography remains an extremely useful tool for the prog-
nostic stratification of patients with DCM.  The approach to echocardiographic 
interpretation should be holistic and not focused only on the LV systolic function or 
the regional wall motion abnormalities but also on the possible coexistence of dia-
stolic impairment, valvular defects as functional MR, and other chamber dilatation. 
A serial echocardiographic assessment is mandatory in patients with DCM in order 
to capture possible improvements due to medical treatment and adverse progression 
of the disease, to clarify the possible presence of specific etiologies often character-
ized by reversibility of the systolic function (as myocarditis or alcoholic cardiomy-
opathy), and finally to select patients that may benefit from device therapy.
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Abbreviations and Acronyms

2D	 Two-dimensional
CAD	 Coronary artery disease
CCT	 Cardiac computed tomography
CMR	 Cardiac magnetic resonance
CRT	 Cardiac resynchronization therapy
CT	 Computed tomography
CTCA	 Computed tomography coronary angiography
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LVRR	 Left ventricular reverse remodeling
MOLLI	 Modified look-locker inversion recovery
RV	 Right ventricular
RVEF	 Right ventricular ejection fraction
SAPPHIRE	 Saturation pulse prepared heart rate-independent inversion recovery
SASHA	 Saturation recovery single-shot acquisition
SCD	 Sudden cardiac death
Sh-MOLLI	 Shortened modified look-locker inversion recovery
SSFP	 Steady-state free precession
STIR	 Short tau inversion recovery

8.1	 �Cardiac Magnetic Resonance

Cardiac magnetic resonance (CMR) has become an extensively validated nonin-
vasive diagnostic imaging tool. Through its ability to assess cardiac morphology 
and function, and to characterize myocardial tissue in a reliable and reproducible 
fashion, it plays a pivotal role in the management of patients with dilated cardio-
myopathy (DCM). In particular, it increases diagnostic accuracy and it aids in 
determining the etiology of left ventricular (LV) dysfunction and in prognostic 
stratification.

8.2	 �Diagnostic Accuracy

Steady-state free precession (SSFP) sequences are cornerstone sequences in 
CMR. Owing to their elevated spatial, temporal, and contrast resolution and lesser 
approximation in delineating endocardial borders than two-dimensional (2D) 
echocardiography, they minimize operator dependence and variability of intra- 
and interobserver reproducibility. SSFP cine imaging is currently regarded as the 
gold standard imaging technique for the evaluation of LV volume and systolic 
function [1, 2], as it is not affected by the geometric assumptions used in 2D echo-
cardiography for the LV (such as the area-length method) [3] (Fig. 8.1). In addi-
tion, the precise identification of endocardial borders allows more accurate and 
reliable evaluation of the extent of non-compacted myocardium than does 2D 
echocardiography, thus allowing a more precise diagnosis of myocardial non-
compaction [4] (Fig. 8.2). CMR also allows for accurate and reproducible, nonin-
vasive measurement of the left atrial [5, 6] and right ventricular volume and 
function [7, 8].

LV thrombus is a potential complication of severe LV dysfunction. Late gado-
linium enhancement (LGE) CMR imaging is the most accurate imaging modality to 
detect left ventricular thrombus [9], in particular when acquiring LGE sequences 
with a long inversion time (compared to that needed to null normal myocardium) in 
order to selectively null the avascular thrombus [10] (Fig. 8.3).
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a b c

Fig. 8.1  Calculation of LV- and RVEF in MR with SSFP cine sequences. Diastolic (a) and sys-
tolic (b) endocardial contours are outlined in multislice short-axis cine runs covering the entirety 
of the ventricles (c); slices are 8–10mm apart. Diastolic and systolic volumes are thus obtained

a b

Fig. 8.2  SSFP imaging of left ventricular non-compaction in three-chamber (a) and short-axis (b) 
views

a b

Fig. 8.3  Inversion recovery images with long inversion time in four chamber of the left ventricu-
lar thrombus in patients with left ventricular dysfunction secondary to myocardial infarction (a), 
and myocarditis presenting as heart failure (b)
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8.3	 �Differential Diagnosis

DCM is a condition characterized by LV dilatation and dysfunction and may rep-
resent the end stage of multiple cardiac disease processes of different etiology. 
The origin may be ischemic, inflammatory, infectious, hypertensive, or idiopathic. 
Accurate diagnostic characterization of DCM is of foremost importance in order 
to guide tailored treatment for patients affected by this condition. CMR is an 
important noninvasive imaging tool that helps to characterize the etiology of 
DCM.  This is achieved by evaluating the presence and distribution of macro-
scopic myocardial fibrosis with LGE sequences (Fig. 8.3 differential diagnosis). 
In particular, LGE is usually found in patients with LV dysfunction secondary to 
coronary artery disease. The pattern of distribution follows coronary perfusion 
territories, and the scar may be subendocardial or transmural. In patients present-
ing with de novo acute heart failure (HF) and no clinical or electrocardiographic 
suggestion of ischemic etiology, LGE-CMR is sensitive and specific for the pres-
ence of underlying significant coronary artery disease (CAD) [11, 12]. Conversely, 
LGE is absent in most patients with left ventricular dysfunction of nonischemic 
origin. If present in DCM, LGE is typically found in a mid-wall distribution with-
out an apparent correlation to coronary perfusion territories [13, 14] (Fig. 8.4). 
Mid-wall LGE was found in 10–28% of patients with DCM [13, 15]. Coexistent 
subendocardial LGE may indicate ischemic contribution to HF etiology despite 
the absence of angina and significant stenoses on coronary angiography, as infarc-
tion may follow coronary spasm or embolism, followed by spontaneous coronary 
recanalization [13, 16, 17].

8.4	 �Myocarditis Presenting as Left Ventricular Dysfunction

Patients presenting with HF and LV dysfunction with or without dilatation may be 
affected by active myocarditis. Inflammatory processes are characterized by 
increased water content due to edema. CMR may show edema at T2-weighted 
sequences such as short tau inversion recovery (STIR), diffuse hyperemia at global 
relative enhancement (GRE) sequences or T1-weighted sequences early after gado-
linium administration, or LGE with a myocarditic pattern (patchy subepicardial 
and/or mid-wall) (Fig. 8.5). Finding at least two of the aforementioned three crite-
ria, the Lake Louise criteria (LLC) was found to have good diagnostic accuracy in 
identifying myocarditis presenting with chest pain and troponin release [18]. 
However, the sensitivity of the LLC criteria is greatest for patients with infarct-like 
rather than HF or arrhythmic presentations [19, 20].

Recently, T2-mapping sequences were designed to obtain a T2 signal intensity 
decay curve of the myocardium, in order to estimate myocardial T2 value and gen-
erate a color T2 map off-line (Fig. 8.6). Normal native T2 time ranges between 39 
and 59 ms. T2 relaxation time is increased in conditions characterized by myocar-
dial edema [21]. In a recent study, patients with recent-onset HF and clinically sus-
pected myocarditis revealed higher median global myocardial T2 values in those 
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with biopsy-proven active myocarditis at T2 mapping, while there were no signifi-
cant differences in native or post-contrast global myocardial T1 [22]. Caution must 
be applied when interpreting these results as T2 values may differ according to 
sequences and field strength [23, 24]. Furthermore, increased T2 values may be 
found in DCM patients without inflammation. Finally, differences between normal 
and pathological subjects can be very subtle and reported in the range of 10–20 ms, 
sometimes even overlapping normal T2 values, making it therefore difficult to 
define precise cutoff values [23, 25]. Nevertheless, despite these limitations T2 
mapping can overcome the T2 or STIR sequence artifacts and is the only mapping 
sequence that allows for discrimination between inflammatory and noninflamma-
tory cardiomyopathies [26].

a b

c d

Fig. 8.4  Late gadolinium enhancement imaging in a case of DCM in four-chamber (a) and short-
axis (b) views showing patchy distribution of LGE (septal intramural and subepicardial free wall). 
LGE imaging in a case of LV dysfunction secondary to prior anterior myocardial infarction in 
two-chamber (c) and short-axis (d) views, showing transmural LGE in the left anterior descending 
territory
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As native T1 values increase with increasing myocardial water content, native T1 
mapping may serve as a complementary technique to T2-weighted imaging for 
assessing myocardial edema in myocarditis presenting as infarct-like syndrome [22, 
27] or where gadolinium is contraindicated. However, since native T1 values 
increase both with water content and with diffuse fibrosis, it is not able to discrimi-
nate between inflammatory and noninflammatory cardiomyopathies in patients pre-
senting with heart failure [28].

a b

Fig. 8.5  CMR imaging in a patient with acute myocarditis: short-axis T2-weighted images (a) 
show edema, and short-axis LGE images (b) show patchy subepicardial LGE in the septum, infe-
rior and anterolateral walls

a

b

c

Fig. 8.6  T2 mapping with multi-echo spin-echo sequence: endocardial and epicardial contours 
are traced in all slices for each echo time (a). A T2 decay curve fit is obtained, and the T2 value is 
calculated for the region of interest (b). Results can also be depicted in color-coded maps (c)
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8.5	 �Other Secondary Forms of DCM

CMR may help in diagnosing Chagas cardiomyopathy, caused by Trypanosoma 
cruzi infection, which results in LV dysfunction, HF, and ventricular arrhythmias. 
Its typical pattern is characterized by DCM with aneurysm formation with preferen-
tial sites at the apex and infero-lateral walls, which can be easily detected with SSFP 
cine imaging. The pattern of LGE is variable and may involve any or all layers of 
the myocardial wall [29, 30]. CMR was also found to identify the early stages of the 
disease [29].

Cardiac involvement of sarcoidosis may manifest itself as LV dilatation and dys-
function. Patients with sarcoidosis develop large areas of LGE with variable distri-
bution, which can precede the occurrence of LV dilatation, frequently involving the 
mid-wall of the basal septum, basal and lateral segments of the LV, and papillary 
muscles, unrelated to vascular territories [31].

8.6	 �Prognostic Stratification

Risk stratification is of foremost importance in DCM, particularly regarding the risk 
of sudden arrhythmic cardiac death (SCD). LV ejection fraction (LVEF) is the stron-
gest predictor of progression to HF [32], while LV volume and mass are indepen-
dently correlated with mortality and morbidity. Therefore, accurate quantification of 
all these parameters is essential to adequately evaluate patients and to monitor pro-
gression of disease and response to different therapeutic agents [33]. LVEF is the 
main criterion to select patients for primary prevention of SCD with implantable 
cardioverter-defibrillator (ICD) [34–36]. However, LVEF has low sensitivity and 
low specificity for the prediction of SCD [34, 37]. The use of low LVEF alone as an 
indicator for ICD placement is associated with both a low event rate of SCD in the 
control and treatment groups and a significant number of inappropriate ICD shocks 
[38]. Risk stratification for SCD among patients with nonischemic cardiomyopathy 
remains inadequate, causing ongoing clinical challenges in the appropriate identifi-
cation of candidates for primary prevention ICDs [39].

In DCM, the remodeling process is characterized by changes in the extracellular 
matrix and interstitial fibrosis. The fibrous tissue constitutes a substrate for ventricu-
lar arrhythmias by inducing slow and heterogeneous conduction, favoring reentrant 
circuits, and producing vulnerability to life-threatening ventricular tachyarrhyth-
mias [40]. Areas of LGE detected by CMR correlate well with histologically 
detected regional myocardial fibrosis in animal models and human explanted hearts 
[41, 42].

Several studies demonstrated that LGE is associated with an increased risk of 
adverse remodeling, hospitalization for HF, ventricular arrhythmia induction, 
and SCD in patients with DCM [43–52]. A recent meta-analysis showed that 
LGE was present in a considerable proportion of patients with DCM (44%), and 
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it had a strong and significant association with the risk for ventricular arrhyth-
mias and SCD. This association was consistently observed in patients at different 
stages of their cardiomyopathy and was independent of LVEF [53]. In DCM 
patients undergoing ICD placement for primary prevention of SCD, the presence 
of myocardial fibrosis is also predictive of appropriate device therapy [46, 54] 
regardless of LVEF. Mid-wall LGE may also identify a subgroup at high risk of 
SCD despite mild or moderate LV systolic impairment, not meeting conventional 
criteria for ICD implantation [55, 56]. Moreover, LGE extent is also associated 
with adverse outcomes [44]. However, LGE extent is variably described in stud-
ies, and there is no current consensus on the best method of LGE quantification 
[50]. A relationship between patterns of myocardial scar and arrhythmogenesis 
was also suggested: a scar with a transmurality of 26–75% is predictive of induc-
ible ventricular tachycardia [43]. The detailed characterization of the heteroge-
neous boundary zone surrounding the LGE-CMR base scar has been linked to 
all-cause mortality and the most frequent ventricular arrhythmias although its 
role in DCM patients is still controversial [57]. Despite the abovementioned 
strong evidences, however, current guidelines from European Society of 
Cardiology [35] and more recently from American College of Cardiology/
American Heart Association/Heart Rhythm Society [36] do not mention arrhyth-
mic risk stratification with LGE-CMR.

The presence and extent of LGE in patients with DCM also predicts a lack of 
improvement in LV function despite optimal medical treatment compared to a sig-
nificant improvement in patients without LGE [48, 58–61]. Furthermore, LGE 
detected at CMR correlates with LV diastolic function evaluated by Doppler echo-
cardiography. Patients with DCM and positive LGE have indices of higher diastolic 
filling pressure [62–64]. The presence and extent of LGE also correlates with echo-
cardiographic measures of LV systolic dyssynchrony, an indicator of poor clinical 
outcome [65].

Scar burden was also found to be predictive of poor response to cardiac resyn-
chronization therapy (CRT) [66]. Specifically, pacing over scar was associated with 
a higher risk of cardiac mortality or HF hospitalizations compared with pacing via-
ble myocardium [67, 68]. Moreover, pacing a transmural scar was associated with a 
worse outcome than pacing a subendocardial scar [69]. Scar in the vicinity of right 
ventricular (RV) lead during CRT may also be associated with suboptimal left ven-
tricular reverse remodeling (LVRR) [70]. However, the strategy avoiding myocar-
dial scar in lead implantation has not been evaluated by multicenter, randomized, 
controlled trials.

8.7	 �Macroscopic vs. Diffuse Fibrosis

Myocardial scar is the main substrate for ventricular arrhythmias, but not all 
patients with DCM have identifiable scars, especially in cases of diffuse fibrosis. In 
most patients with DCM, myocardial fibrosis does not progress focally but instead 
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gradually and randomly, leading to irreversible replacement fibrosis [42, 71]. LGE 
sequences are designed to improve signal contrast differences between zones of 
normal myocardium and zones with focal fibrosis or necrosis [72, 73]. The tech-
nique is however very limited in the quantification of widespread tissue fibrosis 
[72, 74, 75]. This impairment has been nowadays overcome with the introduction 
of another family of sequences (MOLLI, Sh-MOLLI, SASHA, and SAPPHIRE) 
that are able to quantitatively identify real myocardial T1 recovery time, native and 
post-contrast, and to quantify extracellular volume (ECV). It is also possible to 
assess all the collected data in color maps (Fig. 8.7) [76–78]. T1-mapping tech-
niques correlate with myocardial histology [79–82] and may allow the early dif-
ferentiation of diseased myocardium from healthy myocardium, in the absence of 
LGE [80, 83]. Native T1 and ECV are increased, and post-contrast T1 is decreased 
in nonischemic DCM patients [81, 83, 84]. All T1-mapping measures have been 
linked to prognosis in nonischemic DCM patients [85–88]. However, native T1 
was found to be the sole independent predictor of all-cause and HF composite 
endpoints in a recent large prospective multicenter observational study [86]. Native 
T1 has also shown a strong relationship with markers of structural and functional 
LV remodeling, diastolic impairment, and the severity of functional mitral regurgi-
tation [89–91].

aa c

d

b

Fig. 8.7  T1 mapping with modified look-locker sequence: inversion recovery images with differ-
ent inversion times are obtained (a) in short-axis views, before (native) and after (contrast-
enhanced) gadolinium administration. The signal intensity is measured in each image, and a T1 
relaxation curve (b) is obtained for the myocardium (green) and blood (orange). Results can be 
depicted as color-coded maps of native myocardial T1 (c) and ECV (d)
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8.8	 �Strain Analysis

In DCM, the occurrence of nonhomogeneous fibrous substitution of cardiomyo-
cytes may alter mechanical activity in these areas [92], thus leading to a heteroge-
neous compromise of regional contractile function [93]. Myocardial deformation 
analysis can supply useful information for the evaluation of global and regional 
myocardial function [94, 95]. CMR tagging is considered a reference standard for 
the assessment of myocardial regional function [96]. By adding grids or lines to the 
imaging plane through selective saturation pulses, and following them throughout 
the cardiac cycle, myocardial deformation can be quantitatively analyzed. However, 
the need for additional acquisition sequences and time-consuming protocols have 
limited its clinical application. Recently, new CMR feature tracking technology, 
which agrees well with CMR tagging, has allowed for the assessment of global and 
regional myocardial strain by tracking patterns of features or irregularities com-
prised between the endocardial and epicardial borders during cardiac cycle using 
SSFP long-axis and short-axis cine images (Fig. 8.8). This technology, similar to 
speckle tracking, can be applied to routine cine-CMR acquisitions, thus avoiding 
the need for dedicated pulse sequences [97]. Global longitudinal, circumferential, 
and radial strain are significantly impaired in patients with DCM [98]. More impor-
tantly, there is growing evidence that CMR-derived strain analysis is a predictor of 
adverse events in patients with nonischemic DCM [99–101]. In particular, global 
longitudinal strain analysis has independent and incremental prognostic value to 

a b c

d e f

Fig. 8.8  Strain analysis in a normal subject (a–c) and in a patient with DCM (d–f) at 1.5T. Color-
coded maps of peak longitudinal strain in two-chamber (a, d) and four-chamber (b, e) views. 
Bull’s-eye graphic depicting peak longitudinal strain values in all AHA segments (c, f)
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other risk factors including LVEF, LGE, and ECV [99–103]. Peak circumferential 
strain in association with the absence of LGE and LV mass were found to be predic-
tive of LVRR [104].

Cardiac dyssynchrony assessed by CMR strain analysis, associated with LGE 
imaging, was also suggested to better predict improvement in functional class after 
CRT implantation [105], compared to currently recommended parameters for 
patient selection [106].

8.9	 �Other Prognostic Indicators

Biventricular involvement in DCM identifies a subset of patients with poor outcome 
[107, 108]. CMR is considered the gold standard for noninvasive assessment of RV 
function [7, 8]. RV ejection fraction (RVEF) ≤45% was shown to be independently 
associated with adverse outcome in nonischemic DCM patients [109]. Furthermore, 
RV longitudinal strain is also an independent predictor of outcome and offers addi-
tional prognostic information over RVEF [110].

Left atrial enlargement is associated with adverse outcome in patients with DCM 
[111, 112]. Left atrial volume (LAV) provides the most accurate estimate of left atrial 
size compared to linear dimension in M-mode and area in 2D echocardiography 
[113]. Echocardiographic measures systematically underestimate LAV compared to 
CMR [6], even though both methods are reproducible and have limited intra- or 
interobserver variability. A LAV index >72 mL/m2, measured with the biplane area-
length method, was found to be an independent predictor of adverse events in DCM 
[114]. Conversely, LAV index<38 mL/m2 is predictive of LVRR [115].

Finally, RV dysfunction [109], but not greater degrees of trabeculation [116], is 
an independent predictor of survival and HF outcomes in patients with DCM.

8.10	 �Computed Tomography

Cardiac computed tomography (CCT) is a noninvasive cardiac imaging technique 
that is increasingly gaining importance in DCM patients. It is mainly used to test for 
the presence of CAD but may also play a role in the evaluation of cardiac volumes 
and function, characterization of the type of cardiomyopathy, and treatment 
planning.

Calcium score may be useful in excluding CAD as the etiology for HF. In patients 
with HF, an Agatston score of 0 has been shown to have 100% specificity in exclud-
ing left main or ≥2-vessel coronary artery disease [117, 118]. Computed tomogra-
phy coronary angiography (CTCA) (Fig.  8.9) is a highly accurate diagnostic 
modality for excluding CAD in patients with DCM of undetermined cause [119–
122], especially in the low- to intermediate-risk population due to its high specific-
ity (95–98%) and negative predictive value (95–100%) [123–125].

Prospective ECG triggering is the preferred CTCA mode to minimize radiation 
dose, although this is possible only if the heart rate is slow and regular. Retrospective 
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ECG gating must be used if the heart rate is high or irregular. This mode is also used 
for the evaluation of cardiac function and volumes, wall motion, and valvular abnor-
malities, with good correlation with CMR and contrast-enhanced echocardiography 
[2, 126–129]. Latest technologies such as CT perfusion and CT-FFR may give addi-
tional important information on the hemodynamic significance of coronary artery 
disease [130–135].

There is increasing evidence supporting the usefulness of CCT for the detection 
of myocardial fibrosis in patients with hypertrophic cardiomyopathy [136] and after 
myocardial infarction [137, 138] through late iodine enhancement (LIE), although 
CMR remains more sensitive. However, data in DCM patients are still limited. 
Initial data suggest that LIE-CCT correlates well with LGE-CMR and electro-
anatomic mapping [139, 140]. LIE may also be used for ECV assessment [141]. It 
has good correlation with T1-mapping methods and is associated with increased LV 
volume and reduced EF and circumferential strain [142]. Dual-energy CT reduces 
imaging artifacts and increases contrast to noise ratio and thus may improve LIE 
images compared to conventional CT [143, 144].

A number of challenges still remain, relating to the required contrast dose, image 
quality, and radiation exposure. CTCA has been given a high appropriateness rating 
for the evaluation of ischemic etiology in patients presenting with HF [145, 146]. 
However, for all other indications, CCT should still be reserved for patients with 
contraindications or suboptimal results of other imaging tests.
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9.1	 �Introduction

Endomyocardial biopsy (EMB) is a useful diagnostic tool for the investigation and 
treatment of myocardial diseases. The introduction of the transvascular endomyo-
cardial bioptome by Konno and Sakakibara in 1962 [1] has been an important 
breakthrough in the EMB and in the in vivo diagnosis of heart muscle diseases. 
EMB has spread in subsequent years due to the availability of new and better 
devices, to the improved skill of the operators and to the development of new and 
more sophisticated methods of diagnosis.

In the first years, opinions on the use and on the usefulness of EMB in myocardial 
diseases were conflicting. Ferrans and Roberts [2], as early as 1978, concluded that 
in patients with suspected dilated cardiomyopathy (DCM), the technique is “infor-
mative” but of limited “diagnostic value”. In spite of recurrent variations of opinions 
on the use and usefulness of EMB in myocardial diseases, its expansion gave the 
cardiologist the possibility of increasing the understanding about the histology of 
heart muscle disease, with an important role in the diagnosis of acute myocarditis.

The main use of EMB is the routine surveillance for rejection of a transplanted 
heart, but this scenario is outside the scope of this report.

9.2	 �Technique

Early EMBs were usually performed from the right ventricle (RV) and subsequently 
also from the left ventricle (LV). Although there are no clear recommendations, in 
our experience an approach based on the clinical question is preferred [3, 4], also 
considering the procedural feasibility in the individual patient (e.g. presence of left 
ventricular thrombosis, aortic valvular prosthesis or intra-aortic balloon pump).

In the largest head-to-head comparison study, complication rates for LV (0.33%) 
and RV (0.45%) EMB were comparable [5]. Actual techniques enable to perform 
multiple drawings of tissue samples from both ventricles with low incidence of pro-
cedural complications, but this is mostly dependent by the expertise of the operator.

Fluoroscopy is the most useful imaging modality and is often sufficient, but two-
dimensional and three-dimensional echocardiography are increasingly being used 
to accurately direct biopsy forceps and reduce the likelihood of perforation or recur-
rent biopsy of the same area [6].

For the RV EMB, the right internal jugular vein is the most common access route. 
Alternative approaches include femoral vein, using longer bioptomes, and subcla-
vian and brachial veins. Once in the right atrium, anticlockwise rotation might be 
needed to traverse the tricuspid valve, and then clockwise rotation will bring the tip 
with the open jaws into contact with the ventricular septum, the preferred site for 
EMB because of safety problems (direction of rotation should be reversed if 
approaching from the femoral vein). Going on in the ventricular chamber with open 
jaws reduces the perforation risk because it uses a greater contact surface. 
Confirmation of positioning on the septum can be made using contrast injection by 
the long sheath. Resistance can be appreciated by the operator and only gentle for-
ward pressure is required. Ventricular ectopy or non-sustained ventricular 
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tachycardia is common while the bioptome is in contact with the ventricular myocar-
dium. The forceps should be closed and pulled away from the heart carefully, at 
which point a small amount of tension might be felt as the sample is removed [6]. 
The LV can be reached in two ways, in a retrograde direction from the aorta or via 
trans-septal puncture (uncommon). Currently, the typical approach for EMB is still 
via the femoral artery, but transradial access is increasingly adopted, particularly in 
patients with a significant bleeding risk. General advice about steering the bioptome 
is as for the right ventricle. Crossing the aortic valve is performed in the routine way, 
using a pigtail catheter into the long sheath to enter the LV. A ventriculography in the 
left anterior oblique projection should allow positioning of the sheath in the midcav-
ity so that the bioptome forceps can open free of the ventricular wall. Before the 
procedure i.v. heparin is given to target an activated clotting time of 250–300 s to 
reduce the risk of embolism [6]. Technique for sampling the myocardium itself is as 
per RV EMB, with particular care to avoid damaging mitral valve apparatus. The 
sheath should be aspirated and flushed between each sample as the risk and conse-
quence of air or tissue embolism is ostensibly higher than in the RV [7]. The median 
number of bioptic samples per patient is 4 (minimum–maximum, 1–6).

False-negative results are possible, particularly with multifocal or microfocal local-
ized diseases (Table 9.1) [8]. Conflicting data exist regarding the benefit of cardiac 
magnetic resonance (CMR)-guided targeting of areas of late gadolinium enhancement 
[6]. An analysis of 540 patients undergoing CMR and EMB demonstrated no addi-
tional diagnostic yield when targeting areas of late gadolinium enhancement [3, 7].

Table 9.1  Indications and pitfalls of endomyocardial biopsy

Indications for endomyocardial biopsy
Pitfalls of endomyocardial 
biopsy

• �Suspected myocarditis in patients with high-risk syndromes 
(cardiogenic shock, refractory heart failure or left ventricular 
dysfunction with LVEF <40% despite conventional therapy, 
persistent life-threatening ventricular arrhythmias)

• Suspected giant cell myocarditis or eosinophilic myocarditis
• Suspected cardiac sarcoidosisa

• Suspected end-stage HCM
• Suspected infiltrative cardiomyopathyb

• �Out-of-hospital cardiac arrest without significant coronary 
artery disease

• Monitoring cardiac transplant rejection status
• Histological diagnosis of cardiac tumorsc

Diagnostic accuracy of 
EMB depends on:
• �Expertise of operator who 

performs the procedure
• �Timing of the procedure 

related to beginning of 
patient symptoms

• �Biopsy site (RV or LV)
• �Number of bioptic 

samples
• �Expertise of pathologist 

who analyses the samples
• Patchy diseases

aIn cardiac sarcoidosis (CS), the EMB has low sensitivity due to the focal nature of the disease, 
revealing non-caseating granulomas in less than 25% of patients with CS [30]
bIn cardiac amyloidosis, the role of EMB has been resized by the recent implementation of non-
invasive diagnostic technique as CMR, positron emission tomography (PET) and single-photon 
emission computed tomography (SPECT)
cFollowing characterization of a cardiac tumour, our multidisciplinary care team, which include 
cardiologists, radiologists, oncologists and cardiac surgeons, sit down together to develop an indi-
vidualized treatment plan in order to achieve the optimal outcome. In general, patients with a pri-
mary cardiac tumour require surgical resection
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9.3	 �Complications

EMB is invariably characterized by a mild, but not negligible, rate of major compli-
cations (around 1%) even when performed by experienced operators [3, 5, 9]. 
Complications include vasovagal syncope, vascular damage, pneumothorax, supra-
ventricular and ventricular arrhythmias, heart block, damage to the tricuspid valve, 
ventricular perforation, pericardial tamponade, coronary-cameral fistula formation, 
bleeding complications and pulmonary and systemic embolism [6]. The risks of 
EMB likely vary with the experience of the operator, clinical status of the patient, 
presence or absence of left bundle branch block, access site and possibly bioptome. 
An echocardiographic control and a low dose of heparin are useful to minimize the 
risk of systemic embolism during LV EMB [10].

The death associated with EMB is possible and can be the result of perforation 
with pericardial tamponade [11]. Patients with increased right ventricular systolic 
pressures, bleeding diathesis, recent receipt of heparin or right ventricular enlarge-
ment seem to be at higher risk in case of RV EMB.

9.4	 �Indications in DCM Scenarios

EMB is an invasive procedure, and for this reason it is fundamental a correct 
selection of patients to undergo this diagnostic technique. In addition to some 
particular clinical contexts as after heart transplantation or suspected infiltrative 
disorders with heart failure presentation such as amyloidosis, the most frequent 
indication to EMB is suspected acute myocarditis in patients with “major” symp-
toms (DCM with mildly dilated left ventricle, recent-onset heart failure with rel-
evant left ventricular dysfunction, sustained ventricular arrhythmias) [Fig. 9.1; 
Case I–IV; Figs. 9.2, 9.3, 9.4 and 9.5] [4].

Myocarditis is an inflammatory process affecting the myocardium that can be 
caused by infectious agents like virus, bacteria, rickettsia, protozoa and fungi but 
can be caused also by other agents like toxins, medications and autoimmune phe-
nomena. It is characterized by extreme variability in clinical presentation and ensu-
ing evolution, including a presentation as DCM with severe systolic dysfunction. 
This variability necessitates patient-tailored diagnostic and therapeutic manage-
ment in which the advanced and often costly testing and treatments are reserved for 
those with the most severe and threatening clinical presentation.

Histopathologic analysis of myocardial tissue samples collected with EMB is the 
only way to definitively diagnose myocarditis. International recommendations 
about EMB implementation in clinical practice are controversial. The American 
College of Cardiology/American Heart Association guidelines recommend EMB in 
patients with severe clinical presentation in terms of recent heart failure or life-
threatening arrhythmias [10, 12]. Conversely, the position statement on the diagno-
sis and management of myocarditis by the European Society of Cardiology Working 
Group on Myocardial and Pericardial Diseases expanded the spectrum of EMB 
indications, recommending this test for all cases of clinically suspected myocarditis 
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regardless of the pattern and severity of clinical presentation [13]. In clinical prac-
tice, the value of EMB becomes crucial in detecting the specific histotype of the 
myocarditis and assessing the immunologic and virologic status of the myocardium 
through immunohistochemical and biomolecular PCR (polymerase chain reaction) 
analyses.

Hence, EMB should be performed for the in-depth evaluation of suspected myo-
carditis with recent-onset high-risk major clinical syndromes (heart failure and/or 
life-threatening arrhythmias, in particular when associated with severe left ventricu-
lar dysfunction), not responding to standard optimized medical therapy in the short 
term (from hours to 2 weeks after admission, on the basis of clinical status severity) 
[10]. The in-depth characterization of the myocardial substrate can provide the 
guide for a biopsy-driven therapeutic plan [14, 15]. Conversely, the value of EMB 
is questionable in patients presenting with low-risk syndromes and responding to 
standard care [8]. Finally, in the setting of intermediate-risk syndromes (presence of 
structural or functional abnormalities, such as mild-to-moderate ventricular dys-
function, persistent wall motion or ECG abnormalities, late gadolinium enhance-
ment in the absence of severe left ventricular dysfunction and remodelling on 
cardiac magnetic resonance imaging or frequent non-sustained ventricular arrhyth-
mias), EMB should be considered on a case-by-case basis according to the clinical 
status of the patient, the presence of extensive structured myocardial involvement 
and when findings on cardiac magnetic resonance imaging cannot be considered 
conclusive [4]. In particular, EMB could be useful in diagnosing cardiac sarcoidosis 
or giant cell myocarditis allowing to plan an appropriate therapeutic management 
[3, 16]. In this setting, unexplained heart failure of >3 months’ duration associated 
with a dilated left ventricle and new ventricular arrhythmias, Mobitz type II second- 
or third-degree AV heart block, or failure to respond to usual care within 1–2 weeks 
can be the clinical presentation of cardiac sarcoidosis or idiopathic granulomatous 
myocarditis. EMB is reasonable in this clinical setting (class of recommendation 2a, 
level of evidence C) [10]. Interestingly, cardiac involvement is present in about 25% 
of patients with systemic sarcoidosis [17], but symptoms referable to cardiac sar-
coidosis occur in only 5% of sarcoid patients [18, 19], and up to 50% of patients 
with granulomatous inflammation in the heart have no evidence of extracardiac dis-
ease. Patients with cardiac sarcoidosis sometimes may be distinguished from those 
with DCM by a high rate of heart block (8–67%) [4].

Suspected eosinophilic myocarditis can be another setting in which EMB can 
help to define the specific diagnosis. Eosinophilic myocarditis is associated with the 
hypereosinophilic syndrome and it typically evolves over weeks to months. The 
presentation is usually biventricular heart failure, although arrhythmias may lead to 
sudden death. Usually hypereosinophilia precedes or coincides with the onset of 
cardiac symptoms, but the eosinophilia may be delayed [20]. Eosinophilic myocar-
ditis may also occur in the setting of hypersensitivity myocarditis (HSM), malig-
nancy or parasite infection and early in the course of endocardial fibrosis. Early 
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suspicion and recognition of HSM may lead to withdrawal of offending medications 
and administration of high dosage of corticosteroids. The hallmark histological 
findings of HSM include an interstitial infiltrate with prominent eosinophils with 
little myocyte necrosis; however, granulomatous myocarditis, or necrotizing eosin-
ophilic myocarditis, may also be a manifestation of drug hypersensitivity [21] and 
may be distinguished from common forms of HSM only by EMB.

Moreover, the degree of fibrosis seen on EMB can be correlated with a poorer 
prognosis in terms of major adverse cardiovascular events (defined as cardiovascu-
lar death, an arrhythmic event and heart failure-related hospital admission) [22].

In conclusion, while in the past EMB was used more extensively in DCM patients 
also only for the detection of a histological typical pattern like cell involutive aspects 
and fibrosis, without a direct gain in terms of therapy, now the indications in DCM 
are limited to some selected cases (Table 9.1).

9.5	 �Diagnosis of Myocarditis

EMB, using standardized histopathological [23] and immunohistochemical diag-
nostic criteria, is the current gold standard by which a diagnosis of myocarditis is 
made. The Dallas criteria define active myocarditis as an inflammatory infiltrate of 
the myocardium with necrosis and/or degeneration of adjacent myocytes. The infil-
trates are usually lymphocytic but might be neutrophilic or, occasionally, eosino-
philic and almost always include macrophages [see Case I–IV]. “Borderline 
myocarditis” is the term used when the inflammatory infiltrate is too sparse or myo-
cyte injury is not demonstrated [23]. The Dallas criteria are limited, however, by 
virtue of a high degree of interobserver variability in pathological interpretation and 
the inability to detect noncellular inflammatory processes and yield diagnostic 
information in only 10–20% of patients [24, 25]. Therefore, immunohistochemistry 
with the use of a large panel of monoclonal and polyclonal antibodies is now obliga-
tory to differentiate the inflammatory components present and the immunological 
processes activated [13]. According to the WHO definition, active myocarditis is 
present with immunohistochemical detection of focal or diffuse mononuclear infil-
trates (T lymphocytes and macrophages) using a cut-off of >14 cells per mm2, in 
addition to increased expression of HLA class II molecules [26]. Molecular detec-
tion of viral genomic sequences in diseased myocardium is also feasible and, when 
coupled with immunohistochemical analysis, increases the diagnostic accuracy of 
EMB in addition to providing an aetiology and offering prognostic information [5, 
27, 28]. Information about the safety of particular treatments can also be gleaned 
from data obtained via EMB. Detection of specific HLA markers on EMB tissue 
sections combined with the absence of infectious agents (PCR-negative for viral 
genome) suggests either primary or postinfectious immune-mediated myocarditis, 
at which point immunosuppression might be considered [29].
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a b

c d

Fig. 9.2  (a, b) The haematoxylin-eosin (H&E) stain shows diffuse myocardial inflammatory infil-
trates (lymphocytes, granulocytes, eosinophils) with some granulomatous pattern (a, H&E ×10; 
b, H&E ×40). (c) Myocardial interstitium with diffuse infiltrates of CD4-positive T cells (CD4 
×40). (d) High expression of HLA-DR by inflammatory elements (HLA-DR ×20)

9.6	 �Examples of Endomyocardial Biopsy

9.6.1	 �Case I (J.D.)

EMB of patient (J.D., 30 years old, M) admitted with fulminant myocarditis with 
need of inotropes and intra-aortic balloon pump (IABP). Initial left ventricular ejec-
tion fraction (LVEF) 27%, left ventricular end-diastolic diameter (LVEDD) 56 mm 
and left ventricular end-diastolic volume index (LVEDVi) 39 mL/m2. Discharged 
after 2 weeks with LVEF 65%. LVEF at 15 months of follow-up 62% (Fig. 9.2).
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9.6.2	 �Case II (C.P.)

EMB of patient (C.P., 52 years old, F) admitted with fulminant myocarditis with 
need of inotropes and non-invasive ventilation (NIV). Initial LVEF 36%, LVEDD 
45 mm, LVEDVi 37 mL/m2. Discharged after 2 weeks with LVEF 49%. LVEF at 
2 years of follow-up 54% (Fig. 9.3).

a b

c d

Fig. 9.3  (a, b) The haematoxylin-eosin (H&E) stain shows diffuse myocardial lympho-histiocytic 
infiltrates associated with myocyte degeneration, fraying and myocyte necrosis. The myocardial 
interstitium appears wide with abundant oedema and mild fibrosis (newly formed) (a, H&E ×20; 
b, H&E ×40). (c) Myocardial interstitium with diffuse infiltrates of CD8-positive suppressor cells 
(CD8 ×10). (d) High expression of HLA-DR by inflammatory elements, endothelium and myo-
cytes (HLA-DR ×20)
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c d

Fig. 9.4  (a, b) The haematoxylin-eosin (H&E) stain shows many myocardial lympho-histiocytic 
infiltrates, some of them localized in a wide fibrotic matrix. The EMB shows also cell involutive 
aspects (hypertrophic cells and/or cells with loss of contractile proteins) (a, H&E ×10; b, H&E ×10). 
(c) Mallory’s trichrome stain shows interstitial fibrosis and severe involutive aspects of myocells 
(Mallory Trichrome ×20). (d) Diffuse myocardial lympho-histiocytic infiltrates (CD68 KP1 ×10)

9.6.3	 �Case III (C.S.)

EMB of patient (C.S., 51 years old, M) admitted with non-fulminant myocarditis. 
Initial LVEF 29%, LVEDD 62 mm, LVEDVi 80 mL/m2. Discharged after 12 days 
with LVEF 28%, LVEDD 63 mm, LVEDVi 93 mL/m2. LVEF at 3 years of follow-up 
43% (Fig. 9.4).
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a b

c d

Fig. 9.5  (a) The haematoxylin-eosin (H&E) stain shows myocardial lympho-histiocytic infil-
trate with replacement myocardial fibrosis (H&E ×20). (b) The EMB shows also hypertrophy, 
attenuation and involutive aspects of myocells with loss of contractile proteins (H&E ×20).  
(c) Mallory’s trichrome stain shows interstitial and replacement fibrosis (Mallory trichrome ×10). 
(d) HLA-DR expression by interstitial inflammatory elements and by some myocells 
(HLA-DR ×20)

9.6.4	 �Case IV (C.F.)

EMB of patient (C.F., 61 years old, M) admitted with non-fulminant myocarditis. 
Initial LVEF 27%, LVEDD 70 mm, LVEDVi 92 mL/m2. Discharged after 21 days 
with LVEF 26%, LVEDD 71 mm, LVEDVi 97 mL/m2. LVEF at 1 year of follow-up 
49% (Fig. 9.5).
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ATP	 Antitachycardia therapy
AV	 Atrioventricular block
BBR	 Bundle branch reentry
CA	 Catheter ablation
CASTLE-AF	 Catheter ablation vs. standard conventional treatment in patients 

with left ventricular dysfunction and atrial fibrillation
CMR	 Cardiac magnetic resonance
DCM	 Dilated cardiomyopathy
EAM	 Electroanatomic mapping
ECG	 Electrocardiogram
ES	 Electrical storm
ESC	 European Society of Cardiology
HF	 Heart failure
HR	 Hazard ratio
HRS	 Heart Rhythm Society
ICD	 Implantable cardioverter-defibrillator
LBBB	 Left bundle branch block
LGE	 Late gadolinium enhancement
LMNA	 Lamin A/C
LVEF	 Left ventricular ejection fraction
NS	 Nonsustained
OR	 Odds ratio
PJRT	 Permanent junctional reciprocating tachycardia
RBBB	 Right bundle branch block
RF	 Radiofrequency
SCN5A	 Sodium voltage-gated channel alpha subunit 5
SCD	 Sudden cardiac death
SR	 Sinus rhythm
VA	 Ventricular arrhythmias
VEB	 Ventricular ectopic beats
VT	 Ventricular tachycardia

10.1  �Burden and Kinds of Arrhythmias in Dilated 
Cardiomyopathy: Risk Stratification of Sudden Death

Patients with dilated cardiomyopathy (DCM) can develop a broad range of brady-
rhythmias and tachyarrhythmias including sinus node dysfunction, various degrees 
of atrioventricular block, interventricular conduction delay, and atrial and ventricu-
lar arrhythmias.

Conduction system disease (sinus node dysfunction, various degrees of atrioven-
tricular block (AV), interventricular conduction delay, and bundle branch block) can 
occur with all cardiomyopathies, particularly in some familial forms such as lamin 
A/C mutations (LMNA), mitochondrial diseases, storage disorders (Fabry disease), 
and infiltrative diseases (amyloidosis).
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The arrhythmogenic substrate can be explained by an “irritable focus” resulting 
from myocardial fibrosis, high catecholamine levels, or stretching of myocardial 
fibers. In addition, the disruption of the link between the sarcolemma, the cytoskel-
eton, and the sarcomere can lead to modifications of ion channel function [1].

As the majority of dysfunctional ion channels are localized in the sarcolemma, 
disruption of the sarcolemma-sarcomere link could cause ion channel dysfunction; 
conversely, it is possible that the function of an ion channel caused by a gene muta-
tion is primarily disturbed, leading to dysfunction of cytoskeletal protein binding 
partners and mechanical impairment with “secondary” DCM.

For example, in patients with DCM and sodium voltage-gated channel alpha 
subunit 5 (SCN5A) mutations, arrhythmias can be particularly frequent, including 
supraventricular arrhythmias (86%), sick sinus syndrome (33%), atrial fibrillation 
(AF) (60%), ventricular tachycardia (VT) (33%), and conduction disease (60%) [2]. 
Functional abnormalities in the sarcolemma, cytoskeleton, or sarcomere can occur 
secondarily to the SCN5A mutations, while desmosomal and other intercalated disk 
proteins could also play a role in the different phenotypes (arrhythmic and DCM) 
that result from SCN5A mutations.

10.1.1  �Bradyrhythmias and Conduction Abnormalities

Conduction system diseases can occur with virtually all cardiomyopathies but is 
particularly prevalent in some familial forms of DCM such as the LMNA mutations 
and inflammatory, mitochondrial, storage, or infiltrative diseases [3]. Mutations of 
LMNA account for 6% of patients with DCM and [4] account for 33% of the DCMs 
with AV block [5]. In a large population with familial and sporadic DCM, conduc-
tion defects were present in 62% of patients with and only in 6% without LMNA 
mutations [6]. In these patients conduction abnormalities can occur even years 
before heart failure or left ventricular (LV) dysfunction, so the onset of AV conduc-
tion defects in middle age or earlier should prompt an evaluation for inflammatory 
or familial cardiomyopathy, and even in the presence of normal left ventricular 
function, a close follow-up is needed.

Left bundle branch block (LBBB) is present in 25–30% of patients with DCM; 
right bundle branch block (RBBB) is rare, accounting for less than 5% of patients 
[7, 8], while RBBB and AV block are the predominant features in sarcoidosis [9].

No clear data about the meaning of bradyrhythmias in patients with DCM have 
been reported, but LMNA defects, often present in these patients, are associated with 
a worse prognosis [6]. Some data suggest that an implantable cardiac defibrillator 
(ICD) should be considered in all patient candidates to pacemaker implantation even 
in the absence of left ventricular dysfunction or ventricular tachyarrhythmias [10].

The prognostic role of bundle branch blocks (particularly LBBB) is debated; 
patients with LBBB can have a higher risk of death from heart failure or heart trans-
plantation [7], but its onset during follow-up, rather than its mere presence, seems 
to be more relevant for the risk stratification of all-cause mortality: Aleksova et al., 
analyzing 608 patients with DCM from our registry [8], observed that patients with 
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baseline LBBB had a significantly higher mortality rate than those without LBBB 
at the univariate analysis, but after a multiple covariate adjustment, only new-onset 
LBBB was an independent predictor of all-cause mortality (HR 3.18, 95% CI:1.90–
5.31, P < 0.001) at multivariable analysis.

10.1.2  �Supraventricular Arrhythmias

Supraventricular arrhythmias can occur in patients with DCM, but their presence 
should prompt investigation for familial LMNA cardiomyopathy (present in 73% of 
patients with these gene carriers and only in 36% of patients without this gene 
defect) [6].

AV nodal reentry and accessory pathway-related tachycardia are usually unre-
lated to the DCM, while incessant atrial tachycardia can be the cause rather than the 
consequence of left ventricular dysfunction; however, in these patients diffuse fibro-
sis or alterations in the structure or LV function can be present also in the long-term 
follow-up, suggesting that, even after a successful treatment of arrhythmias, recov-
ery can be incomplete due to a late treatment or the coexistence of a structural heart 
disease.

AF is present in about 10–15% of patients with DCM [11].

10.1.3  �Ventricular Arrhythmias

Ventricular ectopic beats (VEB) and nonsustained ventricular arrhythmias (nsVA) 
are observed in about 40% of patients with DCM and reflect a particular arrhythmo-
genic substrate involving rapid nonsustained VT (nsVT) and/or frequent VEB, the 
latter occurring in up to 30% of cases [12]. However, the prognostic role of these 
arrhythmias is not clear, and conflicting data have been published in the last 30 years. 
Some studies [13–16] suggested a worse prognosis and a higher risk of Sudden 
Cardiac Death (SCD) in patients with nsVA. In others [17], nonsustained VT were 
predictors of SCD at univariate, but not at multivariable analysis, or were not predic-
tive of SCD, maybe in light of the high incidence of nsVT in patients with DCM.

It was proposed that only the association of VA with other risk factors, as low left 
ventricular ejection fraction (LVEF), could help to identify patients at higher risk. 
Differently from other experiences, we observed that nsVT are associated with a 
higher risk only in patients without severe LV dysfunction (LVEF > 0.35) while in 
patients with LVEF ≤ 0.35 they do not give any additional information [18].

In addition, we did not identify any specific characteristic VT that can be useful 
for the risk. However, an “arrhythmic pattern” at presentation, as defined by the 
presence of unexplained syncope, nsVT, ≥1000 VEB/24 h, or ≥50 ventricular cou-
plets/24 h, was associated with a higher incidence of SCD, sustained VT, or ven-
tricular fibrillation compared with other patients (30.3% vs. 17.6%, P  =  0.022), 
independently from LVEF, with no difference in the total mortality [12].
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10.1.4  �Mechanisms

In heart failure, the mechanisms of atrial and ventricular tachyarrhythmias can be 
multiple.

According to old studies published decades ago, VEB and nonsustained VT in 
patients with DCM are initiated by a focal mechanism [19]. However, sustained VA 
are caused by reentry [20] in a significant amount of patients with DCM, as sug-
gested also by the high rate and efficacy of antitachycardia therapy (ATP), unex-
pectedly similar to that found in patients with ischemic cardiomyopathy [21].

Bundle branch block reentry (BBR) VT is a form of sustained monomorphic VT 
that utilizes the conduction system as a reentry circuit, usually with anterograde 
propagation over the right bundle and retrograde conduction over the left bundle. 
Activation of the ventricles via the right bundle fibers produces VT that has a typical 
LBBB QRS morphology. More rarely, the reverse sequence of conduction can also 
occur, leading to an RBBB configuration. BBR VT are not uncommon in 
DCM. Rapid VT (>200 beats/min), often resulting in syncope or cardiac arrest, is 
the clinical presentation. Catheter ablation of the right bundle is highly effective in 
abolishing BBR VT, often (but not always) resulting in complete AV block (because 
of the preexistent LBBB, which sometimes is not complete). However, because of 
severe LV dysfunction, ICD and/or cardiac resynchronization therapy is required in 
most patients.

10.1.5  �Risk Stratification of Sudden Cardiac Death

The assessment of SCD risk in patients with DCM has been a challenge for the last 
30 years; nevertheless, both total mortality and SCD rate have been definitely 
reduced in the last three decades: [22] in the 1980s, SCD rate was up to 18% per 
year [13, 15], but it was only around 2–3% in patients medically evaluated in the 
early 2000 [17, 23]. According to the Trieste Cardiomyopathy Registry, including 
more than 1000 DCM patients with a mean follow-up of 10 years, the incidence of 
major cardiac events has fallen to less than 2% per year, while the incidence of SCD 
is less than 0.5% per year. This could have several explanations, including a better 
diagnostic definition, an earlier diagnosis, the widespread of beta-blockers and min-
eralocorticoid receptor antagonists (the only drugs significantly associated with a 
SCD reduction) and, finally, ICD and resynchronization therapy [24].

Because of the relatively low incidence of events, it is difficult to identify patients 
who could benefit more from ICD treatment and to demonstrate a significant mor-
tality reduction in a not well-selected population. This could also explain why most 
trials evaluating patients with DCM failed to prove a statistically significant benefit 
of ICD even in the presence of SCD reduction. In addition, in some trials, patients 
with nonischemic cardiomyopathy (which is not always synonymous of DCM) of 
different etiologies and a non-negligible risk of non-arrhythmic death (due to pump 
failure or noncardiac events) were included [25].
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Another important issue is the timing of risk stratification. Only 31% of the 
patients with LVEF ≤ 0.35 and NYHA class II–III at first presentation still have 
ICD indications 6 months after medical therapy implementation [26]. According to 
current European guidelines, at least 3 months of optimal medical treatment is 
required before considering ICD implantation [27].

Despite hundreds of publications and several parameters analyzed, the severity 
of left ventricular dysfunction is still the major predictor of arrhythmic events, and 
current guidelines for ICD implantation in patients with DCM rely solely on LVEF 
value (together with the New York Heart Association functional class) [27, 28].

However, the odds ratio (OR) for LVEF is only 2.86, with sensitivity and speci-
ficity of 71.1% and 50.5%, respectively [29], suggesting that many patients with 
severe LV dysfunction do not benefit from ICD implantation but also that many 
patients with LVEF ≥ 0.35 can be at risk of SCD.

In addition to LVEF, many other parameters have been evaluated. According to 
the meta-analysis by Goldberger et al., four groups of parameters were considered: 
autonomic parameters (heart rate variability, baroreflex sensitivity, heart rate turbu-
lence), functional parameters (as LVEF, left ventricular dimensions), depolarization 
abnormalities (fragmented QRS, intraventricular delay, signal-averaged ECG), 
repolarization abnormalities (T wave alternans), and arrhythmic markers (spontane-
ous or induced arrhythmias) [29].

Taken individually, disturbances in autonomic function are poorly correlated with 
the risk of SCD, but also for other parameters, at best, the OR is generally between 2 
and 4. T wave alternans was the most sensitive predictor, while electrophysiologic 
study (EPS) was the most specific. EPS has been thought to have no utility in predict-
ing the risk of SCD, despite the presence of scars, and reentry has been considered 
the most frequent mechanism of sustained VT in DCM. However, Gatzoulis et al. 
recently found that the incidence of VT terminated by the ICD during a median fol-
low-up of 42 months was 73% in patients with induction of sustained VA at EPS, 
compared with 18% in non-inducible patients [12].

Despite its utility for selecting patients to receive an ICD has yet to be demon-
strated, late gadolinium enhancement (LGE) by cardiac magnetic resonance (CMR) 
can detect the presence, site, and extension of cardiac fibrosis. Recently, two meta-
analyses involving approximately 3000 patients each were published. According to 
the analysis performed by Disertori et al. [30] in a population with both ischemic and 
nonischemic cardiomyopathy, a composite arrhythmic end point (SCD, aborted 
SCD, VT/VF, and appropriate ICD therapy) was reached in 23.9% of patients with a 
positive LGE test (annualized event rate of 8.6%) vs. 4.9% of patients with a negative 
LGE test (annualized event rate of 1.7%; p < 0.0001). The OR was 5.62, without 
finding any difference between ischemic and nonischemic patients. In the subgroup 
of patients with LVEF ≤0.30, the OR for the arrhythmic events increased to 9.56.

The CMR Guide (Cardiac Magnetic Resonance Guided Management of Mild-
Moderate Left Ventricular Systolic Dysfunction) trial, which is currently randomizing 
ischemic and nonischemic patients with LVEF 36–50% and presence of LGE to either 
ICD or an implantable loop recorder, will help to identify the role of CMR for selec-
tion of candidates to ICD but is estimated to be completed in December 2020 [31].
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Another promising tool for the risk stratification, at least in some subgroups of 
patients, is the genetic analysis. Some genetic defects have been associated both 
with LV dysfunction and high risk of SCD. In most cases, these defects can be sus-
pected through some “red flags” as conduction defects or supraventricular arrhyth-
mias sometimes preceding the occurrence of LV dysfunction [6, 32] or alteration in 
the ion channel gene SCN5A [2]. When associated to other risk factors as nsVT, 
LVEF < 0.45, non-missense mutation, and male sex, LMNA defects even in the 
absence of severe LV dysfunction represent a IIa recommendation to ICD implant 
according to both European and American guidelines [27, 28, 33]. In addition, in 
muscular dystrophies involving LMNA defects, an ICD is suggested as a IIb recom-
mendation in the presence of conduction abnormalities and need of pacemaker 
implantation [27].

10.1.6  �Role of Supraventricular and Ventricular Arrhythmias 
in Pathogenesis of DCM

10.1.6.1  �Definition and Pathophysiology
Arrhythmias can initiate or aggravate acute heart failure (HF) in patients with pre-
existing heart disease. The arrhythmia-induced cardiomyopathy (AIC), known also 
as tachycardia-induced cardiomyopathy, is an important and potentially reversible 
cause of HF and DCM.

In 1949, Philips and Levine published the first description of HF induced by AF 
in patients without structural heart disease [34]. In the last decades, many reports 
underlined the role of arrhythmias in inducing HF or a DCM with a recovery of LV 
function after restoration of sinus rhythm or an adequate rate control.

Currently the AIC is defined on the basis of clinical criteria:

•	 Sustained heart rate >100/min
•	 Exclusion of other causes of HF
•	 Recovery (partial or complete) of LV function after achieving arrhythmia control 

(i.e., restoration of sinus rhythm or rate control)

Two forms of AIC can be identified: in the first form, “arrhythmia-induced” car-
diomyopathy, the arrhythmia is the only identifiable cause of ventricular dysfunc-
tion, and in the second form, “arrhythmia-mediated,” the arrhythmias aggravate 
ventricular dysfunction or worsens HF in subjects with underlying heart disease 
[35]. In patients with recent-onset HF and concomitant arrhythmias, a small LV 
end-diastolic diameter and mass index could indicate an AIC instead of a true DCM.

In animal models, the ventricular rapid pacing model demonstrated a more rapid 
reduction in LV function compared to the atrial pacing model, suggesting that myo-
cardial electrical dyssynchrony plays an additional role accelerating the LV dys-
function [36].

In patients with AIC, the temporal relationship between occurrence of arrhyth-
mias and development of LV remodeling, dysfunction and HF are not predictable. It 
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is multifactorial, and there is no specific cutoff in heart rate determining a higher 
risk of developing AIC.

10.1.6.2	 �Specific Clinical Pictures
In adults, AF is the most common cause of AIC and is a concomitant arrhythmia in 
10 up to 50% of patients in different cohort with HF [37]. Many mechanisms have 
been suggested as triggers for AIC during AF: loss of atrial contraction with con-
comitant irregular rhythm, resting tachycardia and inadequate exercise response 
affecting diastolic filling, and increasing left-sided filling pressure eventually lead-
ing to functional mitral regurgitation and mechano-electrical changes in the left 
atrium with a perpetuating cycle. The therapeutic options and strategies in patients 
with AF vary from a rate control (drugs or AV-node ablation with biventricular pac-
ing) to a rhythm control strategy (amiodarone and cardioversion or ablation).

In adults a persistent atrial flutter can play a significant role in patients with sus-
pected AIC, because rate control is more difficult to achieve, given less concealed 
AV-node conduction. In this subgroup of patients, a catheter ablation is the therapy 
of first choice.

Less often, a persistent supraventricular tachycardia can induce an AIC, and also 
in this subset, whenever possible, a catheter ablation can normalize LV function.

Another important subset of AIC includes patients with idiopathic VT or fre-
quent VEB; also in this subset, many different mechanisms have been postulated as 
ventricular dyssynchrony (in particular in VEB arising from right or left ventricular 
outflow tract with LBBB morphology), abnormal ventricular filling, and modifica-
tion of Ca++ handling. Moreover, some clinical characteristics have been identified 
in patients at high risk for AIC development: a high VEB burden (>24% or >26% 
per day is cutoff strongly related to AIC with recovery after VEB ablation) [38, 39], 
interpolated VEB, retrograde P waves, male sex, asymptomatic VEB, QRS dura-
tion, and LBBB morphology.

In children, supraventricular arrhythmias are the main trigger for AIC, in particu-
lar atrial ectopic tachycardia and permanent junctional reciprocating tachycardia 
(PJRT). Atrial tachycardias arising from foci near the sinus node are more difficult to 
identify, usually appearing in children without structural heart disease. The clinical 
course of PJRT is often incessant with an unlikely spontaneous resolution and a 
higher risk of AIC; also in this setting, the catheter ablation is the treatment of first 
choice. In children, ventricular arrhythmias are rarely identifiable as the cause of HF.

10.1.7  �Management of Atrial Arrhythmias in Dilated 
Cardiomyopathy and Heart Failure

Congestive HF and AF often coexist and adversely affect each other with respect to 
management and prognosis. No specific data on patients with DCM exist. Generally 
HF predisposes to AF promoting atrial electrical and structural change, whereas 
conversely, AF is implicated in the development and/or exacerbation of LV 
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dysfunction as discussed. AF has been demonstrated to increase the mortality risk 
1.5- to 2-fold in both sexes and across a wide range of ages. The risk of patients with 
HF developing AF is 1.6-fold in males and 2.7-fold in females, and the prevalence 
of AF increases with HF severity, ranging from 5% in functional class I patients to 
≈50% in class IV patients [40]. It is intuitive that maintenance of normal sinus 
rhythm (SR) should improve functional status and possibly reduce mortality in this 
population. Nevertheless, large randomized trials failed to demonstrate any signifi-
cant mortality benefit of a pharmacologically based rhythm control strategy, even in 
patients with LV dysfunction when compared to a rate control strategy [41–43]. 
In-depth analysis of these trials, indeed, demonstrated that the use of antiarrhythmic 
drug therapy to restore SR was associated with a 49% increase in mortality rate. 
Therefore, pursuing SR by non-pharmacologic means can be justified, considering 
also that several studies have demonstrated the superiority of catheter ablation over 
medical therapy [44, 45]. Catheter ablation has demonstrated its superiority also 
compared to AV-node ablation and biventricular pacing and is associated with the 
reduction of inappropriate and appropriate ICD therapies and with improvement in 
LVEF in patients with DCM [46]. The multicenter randomized AATAC (Ablation 
vs. Amiodarone for Treatment of Atrial Fibrillation in Patients with Congestive 
Heart Failure and an Implanted ICD/CRTD) trial [40] first showed a mortality ben-
efit of catheter ablation vs. amiodarone, albeit in a combined secondary end point. 
In the CASTLE-AF trial [47], catheter ablation reduced death or hospitalization for 
heart failure in patients with congestive HF and AF compared with those assigned 
to medical therapy. Freedom from AF was strongly associated with stroke-free 
survival.

Cure of AF does not necessary imply its complete elimination. A significant 
reduction in the amount of time in AF after catheter ablation may be sufficient for 
achieving clinical benefit in patients with congestive HF. Although available data 
suggest that the safety and efficacy of catheter ablation are very similar in patients 
with HF and in those with normal hearts [48], success rate and long-term outcomes 
are expected to be influenced by patient complexity and concomitant comorbidities. 
It is well known that HF is an independent predictor of recurrent arrhythmia after 
catheter ablation; however, other covariates (such as age, sex, diabetes mellitus, and 
hypertension) have shown an association with ablation outcome. Additional 
imaging-based variables to predict efficacy and risk of ablation (as left atrial strain 
by speckle-tracking echocardiography and CMR for left atrial fibrosis size) are cur-
rently under investigation.

10.1.8  �Management of Ventricular Arrhythmias in Dilated 
Cardiomyopathy

The life expectancy of patients affected by DCM is progressively growing. As a 
consequence, recurrent VT and electrical storm (ES) represent an emerging prob-
lem mainly in patients with severely depressed LVEF in whom frequent ICD 
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shocks have been associated with poor quality of life, repeated hospitalizations, 
and increased mortality. In this setting, catheter ablation (CA) has demonstrated 
to be superior to antiarrhythmic drugs (AAD) in reducing VT recurrences and 
ICD shocks even if a mortality benefit has never been convincingly proven [49, 
50]. The management of VT in this setting is challenging because of the complex-
ity of the substrate and the underlying HF.  Outcomes after CA are generally 
poorer compared to those of post-infarct VT. However, the evolution of electro-
anatomic mapping (EAM) systems together with the integration of noninvasive 
imaging modalities has significantly improved ablation strategies and long-term 
outcomes.

10.1.9  �Antiarrhythmic Drug Therapy of Ventricular Arrhythmias

Therapy with AADs is often used to prevent long-term recurrences. In a recent 
meta-analysis of randomized controlled trials, a 1.5-fold reduction of VAs leading 
to appropriate ICD shocks has been noted with AADs compared to control medical 
therapy in patients with structural heart disease [49]. However, there is a substan-
tial lack of data on efficacy and safety of AADs in patients with DCM. In such 
population, the choice of a specific drug should always take into account a poten-
tial negative inotropic effect with the associated possibility of worsening of the 
hemodynamic status along with proarrhythmic effects (Table 10.1). Amiodarone is 
usually the drug of choice as its efficacy has been demonstrated in randomized 
controlled trials with an overall threefold reduction of the risk of recurrent VT 
compared to beta-blockers. Unfortunately, the use of amiodarone is burdened by a 
high prevalence of organ toxicity (i.e., thyroid disorders, hepatitis, pulmonary 
fibrosis). Furthermore, the long-term use of amiodarone has been associated with 
an increased risk of death [49, 51, 52]. Another commonly used class III AAD is 
sotalol. Albeit its use seems to be safe in patients with structural heart disease and 
HF, it has failed to demonstrate its superiority to other β-blockers in preventing 
recurrent ICD shocks [53–55]. Class I AADs should usually be avoided due to their 
significant negative inotropic effect and their potential proarrhythmic effect. 
Specifically, class IC drugs are contraindicated having been demonstrated to 
increase mortality in patients with structural heart disease [56]. Other class I AADs 
like mexiletine or procainamide may be used in adjunction to class III AADs or 
whether class III AADs cannot be administered. Adjuvant therapy with mexiletine 
has shown to reduce appropriate ICD therapies in case of amiodarone inefficacy 
[57]. However, it can worsen hemodynamic status in patients with severely reduced 
LVEF, and therefore its administration should be considered with caution. 
Procainamide is currently available only as an intravenous formulation in most 
countries, and there is some evidence suggesting high efficacy for acute termina-
tion of hemodynamically stable monomorphic VT even if it is generally avoided 
due to a significant risk of severe hypotension. No data concerning long-term oral 
administration are currently available.
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Table 10.1  Antiarrhythmic medications for acute and long-term treatment of ventricular tachy-
cardia in patients with structural heart disease

Acute 
management

Long-term 
treatment

Desired plasma 
concentration

β-blockers Propranolol Bolus: 0.15 mg/kg 
IV over 10 min

10–40 mg orally 
three to four 
times a day

NA

Metoprolol Bolus: 2–5 mg IV 
every 5 min up to 
three doses in 
15 min

25 mg orally 
twice a day up to 
200 mg a day

NA

Esmolol Bolus: 300–
500 mg/kg IV for 
1 min
Infusion: 
25–50 mg/kg/min 
up to a maximum 
dose of 250 mg/
kg/min (titration 
every 5–10 min)

Not 
recommended

NA

Class III 
agents

Amiodarone Bolus: 150 mg IV 
over 10 min, up to 
total 2.2 g in 24 h
Infusion: 1 mg/
min for 6 h and 
then 0.5 mg/min 
for 18 h

Oral load: 
800 mg orally 
twice a day until 
10 g total
Maintenance 
dose: 200–
400 mg orally 
daily

1.0–2.5 μg/mL
No efficacy proven for 
plasma concentrations 
<0.5 μg/mL
Serious toxicity risk for 
plasma concentrations 
>2.5 μg/mL

Sotalol Not recommended 80 mg orally 
twice a day, up to 
160 mg twice a 
day (serious side 
effects >320 mg/
day)

1–3 μg/mL (not of great 
value, usually 
monitored by QT 
prolongation with 
indication to reduction/
discontinuation if 
prolongation >15–20%)

Class I 
agents

Procainamide Bolus: 10 mg/kg 
IV over 20 min
Infusion: up to 
2–3 g/24 h

3–6 g orally daily 
fractionated in 
≥3 
administrations

4–12 μg/mL

Lidocaine Bolus: 1.0–
1.5 mg/kg IV, 
repeat dose of 
0.5–0.75 mg/kg 
IV up to a total 
dose of 3 mg/kg
Infusion: 20 μg/
kg/min IV

Not 
recommended

2–6 μg/mL

Mexiletine Not recommended 200 mg orally 
three times a day, 
up to 400 mg 
orally three times 
a day

0.6–1.7 μg/mL
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10.1.10  �Catheter Ablation of Ventricular Arrhythmias

Current American Heart Association/American College of Cardiology/Heart 
Rhythm Society guidelines recommend CA in patients with sustained monomor-
phic VT refractory to AAD therapy, including patients with ES not due to a transient 
or reversible cause [28]. Radiofrequency CA has proven to be highly effective in 
controlling VT compared to AADs. However, a clear mortality benefit related to CA 
has never been reproduced [50, 58–60]. Outcomes after CA of VT in the setting of 
DCM are heterogeneous and generally poorer compared to ischemic cardiomyopa-
thy (Table 10.2). Technically, comprehensive substrate-based ablation approaches 

Table 10.2  Principal studies assessing the role of VT ablation in dilated cardiomyopathy

Study

Number 
of 
patients Age

Baseline 
LVEF 
(%)

Epicardial 
procedures 
(%)

Amiodarone at 
time of 
procedure (%)

VT 
recurrence, 
%

Follow-up, 
months

Hsia et al. 
2003 [61]

19 61 ± 16 34 ± 11 0 63 58 22 ± 12

Soejima 
et al.  
2004 [20]

28 54 ± 14 30 ± 11 29 43 36 9 ± 9

Cano et al. 
2009 [62]

22 56 ± 13 30 ± 13 100 59 29 18 ± 7

Nakahara 
et al.  
2010 [63]

16 59 ± 11 27 ± 12 75 88 50 15 ± 13

Schmidt 
et al.  
2010 [64]

16 57 ± 11 32 ± 8 94 69 47 12 (median)

Arya et al. 
2010 [65]

13 57 ± 18 33 ± 9 24 – 38 23 (median)

Haqqani 
et al.  
2011 [66]

31 59 ± 12 30 ± 14 45 74 32 20 ± 28

Piers et al. 
2013 [67]

45 60 ± 16 44 ± 14 64 42 53 24 (median)

Dinov et al. 
2014 [68]

63 59 ± 13 34 ± 11 30 33 59 12

Oloriz et al. 
2014 [69]

87 – – 74 – 51 18 (median)

Dinov et al. 
2015 [70]

102 59 ± 15 33 ± 12 28 – 56 24

Tung et al. 
2015 [59]

966 – – – – 32 12

Yu et al.  
2015 [71]

73 – – – – 60 6

Muser 
et al.  
2016 [58]

282 59 ± 15 36 ± 13 38 59 31 48 (median)
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are related to better outcomes with long-term recurrence rates as low as 30% in 
experienced centers [58, 72].

Patients with advanced HF or ES are a high-risk group in which recurrent VT 
may simply represent a marker of worsening HF status, with limited possibility for 
achieving long-lasting arrhythmia control. In this setting, even if not able to directly 
improve survival, CA can still result in improved quality of life by reducing the 
number of ICD therapies and the need for AADs. In a large series of 193 patients, 
acute hemodynamic decompensation (AHD) occurred in 11% of subjects and was 
significantly related to increased mortality at follow-up (50% mortality after a mean 
follow-up of 21 months vs. 11%) [73]. In the same study, logistic regression analy-
sis identified eight predictors of AHD which formed the PAINESD risk score, 
namely, chronic obstructive pulmonary disease (five points), age >60 years (three 
points), general anesthesia (four points), ischemic cardiomyopathy (six points), 
NYHA functional class III or IV (six points), ejection fraction <25% (three points), 
presentation with VT storm (five points), and diabetes mellitus (three points) 
(Fig. 10.1) [73]. The predictive value of this score in identifying patients at high risk 
of adverse procedural outcomes has been subsequently validated in independent 
studies and, more recently, in a large international multicenter VT ablation registry 
[74]. It has been recently reported how patients undergoing VT ablation and consid-
ered at high risk on the basis of PAINESD score (PAINESD ≥15) showed a substan-
tial mortality benefit if treated with preemptive mechanical hemodynamic support 
(MHS) highlighting its potential role as bedside tool to select patients who may 

PAINESD RISK SCORE

VARIABLE

Pulmonary disease [chronic obstructive] – COPD

Age >60 years

Ischemic cardiomyopathy

NYHA class III or IV

Ejection fraction <25%

Storm [VT]

Diabetes mellitus

Anesthesia [general]

SCORE

5

3

6

6

3

5

3

4

Incidence of AHD
All variables included

%

25

30

20

15

10

5

0
T1 (<10 points) T2 (10-16 points) T3 (≥17 points)

Incidence of AHD
Excluding the variable 
“general anesthesia”

%

25

30

20

15

10

5

0
T1 (£8 points) T2 (9-14 points) T3 (≥15 points)

Fig. 10.1  Schematic representation of the PAINESD risk score to predict acute hemodynamic 
decompensation (AHD) during catheter ablation of ventricular tachycardia in patients with struc-
tural heart disease (Reproduced with permission from Santangeli et al. [73])
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mostly benefit by advanced HF management and prophylactic implantation of a 
MHS device to reduce the risk of AHD and improve post-procedural outcomes.

10.1.11  �Characteristics of the Arrhythmogenic Substrate and Its 
Impact on Catheter Ablation Approach

The electrophysiologic substrate of sustained VT in the setting of structural heart 
disease is usually represented by scar-related reentry, and the destruction of this 
substrate can potentially prevent VT (Fig.  10.2). The EAM substrate typically 
involves the basal perivalvular region of the LV and the interventricular septum with 
a high prevalence of midmyocardial or subepicardial substrates. Two typical scar 
patterns (anteroseptal and inferolateral) are found in up to 90% of patients with 
DCM and VT [66, 76]. Two VT morphologies are usually seen in presence of 
anteroseptal substrate: RBBB with inferior axis and positive concordance through-
out the precordial leads or LBBB with inferior axis and early (≤V3) precordial 
transition (Figs. 10.3 and 10.4) [76]. Occasionally, VT arising from the septum may 
also present a characteristic precordial transition pattern break in V2 with a pre-
dominant R wave in V1 and V3 but an abrupt loss of the R wave in lead V2 due to 
an exit close to the anterior interventricular sulcus (opposite to lead V2) [66, 77]. A 
predominant inferolateral substrate can instead be identified in about half of the 

Fig. 10.2  Classic figure-of-eight reentry circuit as described by Stevenson et al. [75]. Blue regions 
represent areas of dense scar not excitable during tachycardia. The activation wave front propa-
gates around two lines of conduction block sharing a central common isthmus. Bystander path-
ways can be attached to any point in the circuit and represent areas of tissue activated by the wave 
front but not playing an active role in the reentrant circuit
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patients, and, in the majority of them (about 60%), the critical VT sites are located 
on the epicardium. These patients typically present VTs of RBBB morphology with 
right superior axis and late (≥V5) precordial transition (Fig. 10.5) [76]. The distinc-
tion between these two patterns is of great clinical value in terms of both procedural 
planning and outcomes. In patients with a predominant anteroseptal substrate, an 
epicardial approach is largely unnecessary, and the complex local anatomy (i.e., 
proximity to coronary vessels, presence of epicardial fat) usually limits the possibil-
ity to perform CA. Conversely, an epicardial approach is often required to achieve 
VT control in patients with a predominant inferolateral pattern. Even if epicardial 
coronary vessels and the phrenic nerve may obstacle epicardial CA in patients with 
inferolateral substrate, these patients typically have a more favorable outcome (75% 
vs. 25% VT-free survival at 1.5-year follow-up) and a lower need for redo proce-
dures (7% vs. 59%) compared to patients with anteroseptal substrate [69]. In patients 
with septal VTs, the intramural location of the substrate can be difficult to address 
and may require sequential LV and right ventricular (RV) CA as well as the use of 
high RF energy potentially leading to collateral injury of the conduction system. A 
series of different approaches like bipolar RF ablation, high-intensity focused ultra-
sound, retractable needle ablation, and intracoronary ethanol ablation have been 
described to overcome the aforementioned limits, but none of them is currently 
available in routine clinical practice.

A variety of criteria can be used to address the need for epicardial mapping/abla-
tion: (1) a 12-lead ECG of the VT suggesting an epicardial origin; (2) evidence of 
epicardial substrate on imaging studies (i.e., magnetic resonance, intracardiac echo-
cardiography); (3) a unipolar voltage abnormality (<8.3 mV) in the presence of no 
or minimal bipolar (<1.5 mV) abnormality; and finally, failure of endocardial abla-
tion (either early VT recurrence or persistent inducibility of clinical VT). Epicardial 
ablation approach is usually associated with a higher incidence of complications; 

VT#1
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VT#2 VT#3 VT#4a b

Fig. 10.3  Endocardial bipolar electroanatomic maps of a patient with multiple ventricular tachy-
cardias (VT) arising from the interventricular septum who underwent extensive ablation from both 
the left ventricular (a, red dots) and right ventricular (b, light blue overlaid on LV septum) side of 
the septum
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Fig. 10.4  Example of a 60-year-old lady with idiopathic dilated cardiomyopathy and left ven-
tricular (LV) ejection fraction of 30% presenting with multiple ventricular tachycardias (VT) with 
both left bundle and right bundle branch morphology and inferior axis (a) consistent with an origin 
from the interventricular septum. Electroanatomic voltage mapping showed the presence of a 
small bipolar (b) and a larger unipolar (c) voltage abnormality involving the anterior septum. 
Extensive septal substrate ablation was performed from both the right and left side of the septum 
(b–d, red dots) targeting sites showing late potentials (d, red arrow) and long stim to QRS (e)

moreover, in a substantial proportion of cases (about 30%), even if critical VT sites 
are found on the epicardial surface, CA cannot be safely performed due to close 
proximity of epicardial coronary vessels and left phrenic nerve or presence of epi-
cardial fat. Several ECG features have been correlated to epicardial VT origin like 
wide QRS complexes (shortest RS complex in precordial leads ≥121  ms), slow 
initial upstroke of the QRS complex “pseudo delta wave” ≥34  ms, intrinsicoid 
deflection time ≥85  ms, and maximum deflection index (shortest QRS onset to 
maximum precordial deflection/QRS duration) ≥0.55 (Fig. 10.6) [78].
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Fig. 10.5  Example of endocardial (a) and epicardial (b and c) substrate modification in a patient 
with minimal endocardial substrate and typical inferolateral epicardial substrate. Black dots (b and 
c) indicate abnormal electrograms. Coronary angiography was performed to confirm safe distance 
of the ablation sites on the epicardium from the major coronary vessels (Reproduced with permis-
sion from Muser et al. [58])

10.1.12  �Role of ICD in DCM

Since the beginning of this century, many studies evaluated the role of ICD for pri-
mary prevention of SD in patients with DCM. Despite a striking reduction of SD 
was evident in most cases, total mortality was not significantly reduced in all trials 
with the exception of the COMPANION study, comparing resynchronization ther-
apy (CRT-P) only with resynchronization therapy + ICD (CRT-D).

Mortality rate in nonischemic heart disease is lower than in ischemic heart dis-
ease (5.4% per year vs. 11.3% per year, respectively) [79], and this could partially 
explain why the absolute mortality reduction in patients with LV dysfunction of 
nonischemic origin is less evident [79]. In addition, nonischemic heart disease is not 
a synonymous of DCM: in unselected population with “nonischemic” HF, patients 
with other etiologies (hypertension, valvular heart disease, unrecognized myocardi-
tis) have been included. The risk of death for other reasons (HF or noncardiac 
causes) can be not negligible, especially in older patients with other comorbidities, 
so the benefit of ICD could have been weakened by the competing risk due to other 
causes of death. Therefore, it is not surprising that in nonischemic patients, a signifi-
cant effect on total mortality can be observed only in patients less likely to die for 
reasons different from SD (as young patients without severe heart failure symp-
toms) [25].

Nevertheless, the 2015 European Society of Cardiology (ESC) [27] Ventricular 
Arrhythmia Guidelines and the 2016 ESC Heart Failure Guidelines [80] give a 1B 
recommendation, while the 2017 AHA/ACC/HRS Guidelines give a 1A recommen-
dation for ICD implantation for primary prevention in patients with nonischemic 
etiology [28].
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KCCQ	 Kansas City Cardiomyopathy Questionnaire
KIM-1	 Kidney injury molecule-1
LGE	 Late gadolinium enhancement
LVAD	 Left ventricular assist device
LVEF	 Left ventricle ejection fraction
LVRR	 Left ventricular reverse remodelling
MACE	 Major adverse cardiac event
MLHFQ	 Minnesota Living with Heart Failure Questionnaire
MRI	 Magnetic resonance imaging
NPs	 Natriuretic peptides
NT-proBNP	 N-terminal pro-BNP
NYHA	 New York Heart Association
SHFM	 Seattle Heart Failure Model
sST2	 Soluble ST2
TGF	 Transforming growth factor
Tns	 Troponins
WRF	 Worsening renal function

Dilated cardiomyopathy (DCM) is associated with the loss of cardiomyocytes 
(CMs) and with the replacement of lost CMs by non-contractile fibrous tissue.

In the past years, the inability of the heart to repair itself after damage has led to 
the conclusion that CMs are unable to proliferate. More recently, however, it was 
discovered that CMs conserve a very low proliferation rate throughout adult life 
[1–3]. Consequently, many strategies to enhance endogenous CM proliferation and 
achieve myocardial repair have been developed.

11.1	 �Strategies for Heart Regeneration

Strategies for heart regeneration and repair may be divided into two broad groups, 
based on either cell or gene therapy (Fig. 11.1).

11.1.1	 �Cell Therapy

Several populations of putative cardiac progenitor cells, bone marrow-derived stem 
cells and pluripotent stem cells have been identified in the last two decades. 
Generally, cardiac progenitor cells are very rare in heart tissue and heterogeneous in 
nature, but all identified populations have been originally reported to be able to dif-
ferentiate in vitro in various cell lines, among which CMs [4]. Cardiac progenitor 
cells and bone marrow-derived stem cells were thought to be able to engraft in dam-
aged tissue and proliferate and differentiate in mature CMs [5]. Based on these 
original findings, administration of cardiac progenitor cells or bone marrow-derived 
stem cells has been extensively investigated in clinical trials for the treatment of 
ischaemic cardiomyopathy [5, 6] and DCM (see below). The negative outcome of 
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these trials and a proper re-evaluation of the results obtained in experimental ani-
mals eventually led to the conclusion that none of these so-called stem cell popula-
tions efficiently engraft in heart tissue, proliferate and differentiate into functional 
CMs. The marginal beneficial effects of cell administration are mainly due to their 
paracrine anti-apoptotic and pro-angiogenic effect, limited by their very short per-
sistence in vivo [7].

Another cell-based strategy involves the production and in vitro expansion of 
CMs from human embryonic stem cells or iPSCs [8]. The treatment in culture of 
these cells with an appropriate cocktail of growth factors leads to the production of 
relatively pure CM populations that can be injected directly as a cell suspension in 
the heart or grow and engraft into 3D synthetic matrices creating heart tissue 
patches. A major limitation in the clinical application of embryonic stem cell- and 
iPSC-derived CMs relates to the relative difficulty in expanding and differentiating 
these cells in large numbers and to the high cost needed for the their production and 
characterization [9]. In addition, CMs administered as a cell suspension poorly 
couple with native CMs, thus asynchronously contracting and potentially being 
arrhythmogenic [10]. The use of cardiac patches is also limited by the poor electro-
mechanical coupling with native heart tissue and by the need of a very high amount 
of CMs to produce a sufficiently large cardiac patch. Improvement in these tech-
nologies is however expected in the next years; for example, Shadrin et al. [11] 
recently reported the production of a patch with clinically relevant dimensions 
(4 × 4 cm).

An additional cell-based strategy is in vivo cell reprogramming. Treatment of 
fibroblasts in heart tissue with a cocktail of growth factors may directly induce their 

Viral vectors Fibroblasts

Cardiomyocytes

Synthetic
microRNA

Plasmids

Administration

Engraftment

Reprogramming

Engraftment

DifferentiationCPCs

IPSCs
ESCs

In vivo direct
reprogramming

Chemical compounds

R1
R2

R3
N

OH

Gene therapy Cell therapy

Fig. 11.1  Schematic representation of the strategies to enhance myocardial regeneration. On the 
left, strategies based on gene therapy, involving the administration of viral vectors, plasmids or 
synthetic RNA molecules (messenger RNA or microRNA) or the interference with specific genes 
using chemical compounds or microRNAs. On the right, strategies based on cell therapy, such as 
in  vitro cardiomyocytes production from ESCs, IPSCs or CPCs and following engraftment of 
obtained cardiomyocytes or in vivo direct reprogramming of fibroblasts
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transdifferentiation in CMs. This strategy has been already applied with success in 
animal models, and clinical trials are awaited to confirm their efficacy in humans 
[12]. Principal limitations of this strategy are the low yield of conversion of fibro-
blasts to CMs and the need to use viral vectors as administration tools, which is 
fraught with low efficiency in vivo.

11.1.2	 �Gene Therapy

Gene therapy strategies aim at enhancing endogenous CM proliferation by the 
administration of genes encoding for proteins or non-coding RNAs. The discovery 
of new genes with therapeutic potential in this field mirrors the study of the mecha-
nisms that regulate CM proliferation during embryonic and foetal development and 
the mechanism that induce CM withdrawal from proliferative state after birth [13]. 
With this approach, a protein, neuregulin-1 [14], and an intracellular signal trans-
mission pathway, the Hippo pathway [15], have been identified as fundamental 
regulators of CM differentiation and proliferation during embryogenesis. 
Overexpression of neuregulin receptor ErbB2 and deactivation of the suppressive 
Hippo pathway have both been proven effective in animal models of myocardial 
infarction and may reach the clinical scenario as potential new therapies in a few 
years [13, 16].

In the field of gene therapy, microRNAs have been extensively studied as poten-
tial tools to induce heart regeneration due to their ability to control complex cellular 
processes such as proliferation, apoptosis, differentiation, migration and metabo-
lism. Several microRNAs have been identified as regulators of CM proliferation 
(e.g. miR-1, miR-499, miR-133, miR-29a, miR-15 family as proliferation inhibitors 
and miR-17/92, miR-302/367, miR-199a-3p and miR-590-3p as proliferation acti-
vators) [17]. Some of the miRNAs have been characterized in preclinical models as 
potential therapeutic tools for heart regeneration, especially after myocardial infarc-
tion. Also in this case, clinical studies are warranted in the incoming years.

11.2	 �Regenerative Approaches in Dilated Cardiomyopathy

In the field of regenerative medicine, much effort has been put on the study of new 
therapies for ischaemic cardiomyopathy, whereas attempts to find new therapies in 
DCM have instead been limited [18, 19].

DCM has lagged behind in the field of regenerative medicine mostly because of 
its lower prevalence in comparison with ischaemic heart disease. Preclinical models 
of DCM are more difficult to obtain being DCM the final common phenotype of 
multiple pathophysiological processes, some of which even poorly understood. 
Moreover, the presence of regenerating cells and the extension of regenerated tissue 
are much easier to identify in ischaemic heart disease models, in which the necrotic 
tissue and scar are even macroscopically well-defined, than in DCM models, in 
which loss of CMs and fibrosis is diffuse. As a consequence, only a few preclinical 
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studies have been conducted in models of DCM with a definite aetiology (i.e. 
anthracycline-induced cardiomyopathy [20] and chagasic cardiomyopathy [21]).

Despite the scarce preclinical experience in DCM, a few clinical trials have been 
conducted to assess the effect of putative stem cell administration in non-ischaemic 
DCM.

The DCM branch of MiHeart trial has been the first, and to date only, multicen-
tre, double-blinded, placebo-controlled phase I–II trial testing the efficacy of bone 
marrow-derived mononuclear cells (BMMNCs) in patients affected by non-
ischaemic DCM [22]. Subjects enrolled had a previous diagnosis of heart failure, 
heart failure symptoms for at least 1  year, a diagnosis of non-ischaemic DCM 
according to the World Health Organization criteria, LVEF <35% and NYHA class 
III or IV and were on optimal medical therapy for at least 4 weeks before random-
ization and throughout the study. One hundred sixteen patients were enrolled and 
randomized (1:1) to intracoronary injection of BMMNCs or placebo injection. The 
treatment proved safe, but at 12 months of follow-up, there were no statistically 
significant differences with regard to LVEF, MLHFQ score, 6-min walk test, VO2 
max or NYHA classification. Thus, the investigators concluded that BMMNCs do 
not have a beneficial effect in the setting of DCM. This is most likely related to the 
wrong assumption that the administered cells had a true regenerative potential.

Other smaller studies have been conducted to assess the efficacy of stem cell 
treatment in the setting of DCM.

The first proof-of-concept study in this field was TOPCARE-DCM, a cohort 
study enrolling 33 patients affected by DCM with LVEF ≤40% and NYHA class 
I–III [23]. All patients underwent intracoronary infusion of BMMNCs, and investi-
gators reported a mean improvement in LVEF at 3 months of 3.2% as assessed by 
echocardiography. It has to be underlined that this is a single-centre, nonrandom-
ized, prospective cohort study.

Vrtovec et  al. reported in three different studies [24–26] that treatment with 
CD34+ cells led to significant improvement in global ejection fraction and in 1-year 
mortality. Nevertheless, all these studies enrolled a small cohort of patients, were 
performed at a single centre, were not double-blind nor placebo-controlled and were 
not powered to test for mortality.

The Autologous Bone Marrow Cells in DCM (ABCD) trial enrolled 84 patients 
with non-ischaemic DCM, LVEF ≤35% and NYHA class ≥II that were randomized 
to intracoronary infusion of BMMNCs or optimal medical therapy [27]. At 3-year 
follow-up investigators reported a mean improvement in ejection fraction of 5.9% 
in the treated group with a significant difference between treated and control group 
in LVEF, left ventricle end-diastolic volume and KCCQ functional status and clini-
cal summary score.

The INTRACELL study randomized 30 patients affected by non-ischaemic 
DCM, LVEF ≤35% and NYHA class III or IV to intramyocardial injection of 
BMMNCs or optimal medical therapy, but at follow-up there was no improvement 
in LVEF [28].

The IMPACT-DCM/Catheter-DCM enrolled both patients affected by ischaemic 
and non-ischaemic DCM (29 patients with non-ischaemic DCM) and randomized 
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them to transendocardial injections with BMMNCs enriched in mesenchymal stro-
mal cells and M2-like macrophages or to optimal medical therapy [29]. After 1 year 
of follow-up, there were no significant differences between control and treated 
group in terms of LVEF and functional status.

Taken together, the data from these experimentations, most of which were small, 
single-centre and non-blinded, indicate that the eventual benefit provided by adminis-
tration of bone marrow mononuclear cells is marginal at best and most likely related 
to the paracrine effect of these cells rather than to their regenerative potential [30].

As a consequence, regenerative approaches to heal the heart, both in the isch-
aemic and non-ischaemic settings, are now moving from stem cell therapies to gene 
therapy, which presents with a much more relevant preclinical background, holding 
high promise, even though still far from extensive clinical application.

11.3	 �Biomarkers and Dilated Cardiomyopathy

Idiopathic DCM is a primary myocardial disease characterized by progressive left 
ventricular o biventricular dilatation and dysfunction, presenting with different 
degrees of HF, ranging from asymptomatic dysfunction to advanced HF with refrac-
tory symptoms, which often requires heart transplantation. Patients with idiopathic 
DCM are younger than those with ischaemic cardiomyopathy, have fewer comor-
bidities and have a longer life expectancy. For this reason, prognostic assessment is 
particularly important for these patients.

In the last years, the advances in the comprehension of HF pathophysiology led 
to the identification of several molecules that act as biomarkers and are representa-
tive of HF complex biological mechanisms, such as inflammation, oxidative stress 
and neurohormonal activation. Biomarkers may help clinicians in diagnosing, 
assessing severity and especially predicting prognosis of HF. The term biomarker 
was defined in 2001 by the Biomarkers Definition Working Group of the National 
Institutes of Health [31] as “a characteristic that is objectively measured and evalu-
ated as an indicator of normal biological processes, pathogenic processes, or phar-
macologic responses to a therapeutic intervention”. Focusing on laboratory 
biomarkers, Prof. Braunwald identified seven main categories, corresponding to an 
equal number of pathobiological processes occurring in HF: myocardial stretch, 
inflammation, matrix remodelling, myocyte injury, renal dysfunction, neurohu-
moral activation and oxidative stress [32].

The most widely used biomarkers in patients suffering from HF are natriuretic 
peptides. BNP and NT-proBNP are secreted in response to the stretching of atrial 
and ventricular walls and are recommended tools for the diagnosis of HF, accord-
ing to the latest ESC guidelines [33]. Accordingly, the evaluation of their plasmatic 
concentration on hospital admission is predictive of outcome in patients with acute 
HF, and their increase despite optimized therapy in chronic HF predicts morbidity 
and mortality [34]. Moreover, in the setting of acute decompensated HF, the occur-
rence of WRF with a significant decrease of BNP is a marker of adequate decon-
gestion and favourable outcome [35]. Few studies investigated the role of natriuretic 
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peptides in the peculiar setting of idiopathic DCM. BNP was correlated to clinical 
severity of HF and congestion [36], and NT-proBNP correlated with LVEF, NYHA 
class and mortality [37], identifying patients with a more severe HF, and it was the 
best predictor of long-term LVRR, which by itself is a predictor of favourable out-
comes [38].

Inflammation and matrix remodelling, expressed as fibrosis, are two pathobio-
logical processes involved in systolic and diastolic dysfunction, leading to cardiac 
remodelling and overt heart failure. Gal-3 is a lectin secreted by activated macro-
phages that favours the development of cardiac fibrosis via fibroblast stimulation 
[39] and represents the link between inflammation and fibrosis. Gal-3 already 
showed to have a prognostic role in patients affected by HF: the higher the levels, 
the more severe the cardiac fibrosis and left ventricular remodelling [40]. In the set-
ting of chronic HF, values of plasmatic Gal-3 above 17.8 ng/mL predict an unfa-
vourable outcome in terms of hospitalization and mortality [41, 42]. However, 
Gal-3 is not a heart-specific biomarker and is abundantly expressed in many organs 
and tissues, and its values are influenced also by comorbid conditions such as dia-
betes and renal or liver dysfunction [40]. With specific regard to idiopathic DCM, 
Besler et al. showed that Gal-3 myocardial expression directly correlates with the 
extent of histologically assessed cardiac fibrosis [43]. Additionally, in this peculiar 
setting, Gal-3 maintains its predictive power. Indeed, in two independent studies, 
Gal-3 was compared with LGE presence at cardiac MRI in idiopathic DCM patients. 
Gal-3 plasma levels represented the extent of fibrosis at MRI [44], and both Gal-3 
and LGE presence significantly predicted MACEs in DCM, especially when the 
two are combined [45]. Another biomarker of inflammation and fibrosis is sST2, a 
member of the interleukin (IL)-1 receptor-like family, that is secreted in response to 
myocardial strain and IL1 stimulation [46]. sST2, acting as a decoy receptor, reduces 
the cardioprotective effects of IL-33. High sST2 values are predictors of short- and 
long-term mortality in chronic HF [47]. Ky et al. demonstrated that patients with 
sST2 higher than 36.6 ng/mL have a three times higher risk of death or cardiac 
transplantation than those with lower values [48]. When compared to other bio-
markers, sST2 is superior to Gal-3 and NT-proBNP in risk stratification [39], being 
the best predictor of cardiovascular mortality. These results are particularly interest-
ing, because sST2 levels are not significantly influenced by other conditions, such 
as renal dysfunction or obesity [49]. Moreover, the increase over time of sST2 levels 
is predictive of disease progression in HF [50] and could identify patients with a 
more severe fibrosis. Lupon et al. developed the ST2-R2 score to predict reverse 
remodelling in HF with systolic dysfunction; patients with sST2 values above 
48  ng/mL will unlikely experience LVRR [51]. These findings are confirmed in 
idiopathic DCM stable patients: Wojciechowska et al. demonstrated that sST2 cor-
relates with all-cause mortality and the combined outcome of death, cardiac trans-
plantation and LVAD implantation, in particular when assessing serial changes in 
sST2 values [52].

Besides Gal-3 and sST2, the inflammatory and fibrotic processes are also mir-
rored by elevation of interleukin and growth factor levels, which can therefore be 
employed as useful biomarkers for prognostic stratification. The activation of the 
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inflammasome drives the inflammatory response that promotes cardiac remodelling 
and heart failure [53]. This process can be detected dosing circulating interleukins. 
In idiopathic DCM patients, IL-1β showed to be a highly significant long-term pre-
dictor of death or cardiac transplantation [54].

GDF-15 belongs to the TGF family and is involved in inflammation, fibrosis 
and ventricular remodelling [55]. In idiopathic DCM patients, it correlates with 
symptoms severity, BNP and sST2 levels and grade of systolic dysfunction. 
Stojkovic et al. demonstrated that GDF-15 is able to predict not only all-cause 
mortality, but also arrhythmic deaths, which are a not negligible cause of mortal-
ity in idiopathic DCM patients. GDF-15 levels above 884 pg/mL conferred a two 
times higher risk of arrhythmic death or resuscitated cardiac arrest and a three 
times higher risk of all-cause mortality, predicting the outcome with a higher 
accuracy than ST2 [56].

Troponins are well-known markers of myocardial injury. In the setting of HF, 
high values of troponin I or T predict a worse grade of left ventricular dysfunction 
and a higher risk of death [40]. In a study by Kawahara et al., hs-TnT value above 
0.01  ng/mL reflected the degree of myocardial damage and was an independent 
predictor of mortality, especially when combined with left ventricular dysfunction. 
The result was conserved even in the cohort of patients with chronic HF caused by 
idiopathic DCM patients [57].

Besides laboratory biomarkers, also clinical variables are important in defining 
prognosis in HF in clinically stable idiopathic DCM patients. Aleksova et al. dem-
onstrated that anaemia, defined as haemoglobin concentration lower than 13 g/dL in 
men and 12 g/dL in women, was a predictor of unfavourable outcomes. Moreover, 
the new onset of anaemia was as well an independent predictor of poor outcome, 
leading to a doubled risk of death or heart transplantation [58].

Renal failure is as well-known prognostically relevant complication occurring in 
HF patients. Consistently, creatinine, BUN and estimated GFR are independent pre-
dictors of prognosis [40]. However, WRF occurs frequently during uptitration of 
diuretic treatment in case of clinical congestion and is not necessarily related to 
poor outcomes [35]. In idiopathic DCM, renal failure occurs in 20% of patients dur-
ing the first 8 years after diagnosis, up to 50% at 20-year follow-up [59]. In these 
patients, a GFR between 30 and 60 mL/min/1.73 m2 nearly triplicates the risk for 
cardiac events [60]. NGAL and KIM-1 are useful biomarkers in early detection of 
WRF, even before the decline in GFR. When used in HF patients, they are also pre-
dictors of all-cause mortality and hospital admission [61].

In clinical practice, biomarkers are widely used to better characterize patients 
with HF and are useful tools in predicting prognosis (Fig. 11.2). The wide spectrum 
of pathophysiological processes explored by the amount of available biomarkers 
and the specific characteristics of each one make them advantageous especially 
when used in combination. The additive value of a multimarker approach in HF has 
been largely investigated in literature. Pascual-Figal et al. stratified acutely decom-
pensated HF patients using sST2, NT-proBNP and hs-TnT: patients with all three 
biomarkers elevated had 50% of risk of death, compared to 0% of risk in those with 
none elevated [62]. Ky et  al. identified eight biomarkers ameliorating risk 
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stratification in addition to the SHFM, a validated risk score in HF patients. They 
identified three classes of risk: low, intermediate and high; the latter two had, respec-
tively, 4.7- and 13.3-fold increase of risk of adverse outcomes [63]. Lupon et al. 
developed a risk calculator (BCN Bio-HF) incorporating NT-proBNP, hs-TnT, sST2 
and clinical variables; when biomarkers levels were added, a better risk classifica-
tion in individual prediction of death was achieved [64].

In conclusion, a multimarker strategy is able to characterize every patient identi-
fying those with more fibrotic, inflammatory or ischaemic elements. Multimarker 
strategy gives a deeper insight in HF pathophysiology and, above all, is needed for a 
tailored diagnostic and therapeutic strategy based on each patient’s characteristics.
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Abbreviations and Acronyms

ACEi	 Angiotensin-converting enzyme inhibitors
ARBs	 Angiotensin receptor blockers
CMR	 Cardiac magnetic resonance
CPET	 Cardiopulmonary exercise test
CRT	 Cardiac resynchronization therapy
DCM	 Dilated cardiomyopathy
EMB	 Endomyocardial biopsy
FMR	 Functional mitral regurgitation
ICD	 Implantable cardioverter-defibrillator
LGE	 Late gadolinium enhancement
LMNA	 Lamin A/C
LVEF	 Left ventricular ejection fraction
LVRR	 Left ventricular reverse remodeling
RAAS	 Renin-angiotensin-aldosterone system
SCD	 Sudden cardiac death
TTN	 Titin

Dilated cardiomyopathy (DCM) is a particular phenotype of heart failure, frequently 
with a genetic background, which affects mostly relatively young patients with low 
comorbidity. Patients affected by DCM are usually in their third/fifth decade of life 
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and more frequently males (male/female ratio 3:1) [1]. It is a relatively rare disease 
(prevalence approximately 1:250); however, it requires difficult choices in terms of 
clinical management, device treatment, and indication to heart transplantation, thus 
emphasizing the role of an accurate prognostic stratification [2].

The Heart Muscle Disease Registry of Trieste enrolled so far more than 1500 
patients with DCM, followed for more than 10  years, and represents the largest 
monocentric registry for this type of disease. The information obtained from the 
analysis of those data is crucial to understand the cornerstones of the management 
of patients with DCM. Yet from the early 1990s, significant improvements in prog-
nosis of DCM patients have been achieved. Indeed, the yearly incidence of adverse 
events, death, or heart transplantation has been dramatically reduced to less than 2% 
per year, the incidence of sudden cardiac death (SCD) less than 0.5% per year, and 
a survival free from transplantation more than 87% at 8 years of follow-up [3, 4]. All 
these achievements are mainly due to several milestones reached in the manage-
ment of DCM patients. Earlier diagnosis, etiological characterization, optimized 
medical therapy, and timely device implantation have been the main goals in this 
fight [2].

12.1	 �Prognosis of DCM: The Milestones of the Management

In the last decades, prognosis of DCM has dramatically been improved. The data 
from the Heart Muscle Disease Registry of Trieste perfectly highlight the results 
over time. Once believed as an irreversible disease, DCM has rapidly become a 
more treatable condition thanks to the advancements made. Analyzing three 
decades of enrollment of the Heart Muscle Disease Registry of Trieste is possible 
to underline the milestones reached in the management of DCM patients. In the 
late 1980s, treatment of patients with DCM was mainly symptomatic. 
Approximately one third of patients were treated with renin-angiotensin-aldoste-
rone system (RAAS) blockade, and less than 15% of patients were treated with 
beta-blockers [5]. Neurohormonal blockade was yet at the beginning, and only a 
minority of patients received optimized medical treatment. With time, in the 
1990s, treatment with angiotensin-converting enzyme inhibitors (ACEi) or angio-
tensin receptor blockers (ARBs) and with beta-blockers became widespread. 
These improvements led to a significant shift upward of the survival curves, with 
a reduction of mortality of approximately 20% [5]. Finally, with the introduction 
of cardiac devices such as implantable cardioverter-defibrillator (ICD) and car-
diac resynchronization therapy (CRT), the incidence of SCD and the occurrence 
of life-threatening arrhythmias have been dramatically reduced with parallel 
prognostic improvements [5]. Therefore, proper management of DCM patients 
follows the guidelines on HF and requires multidisciplinary cardiologic approach 
among clinicians, invasive cardiologist, electrophysiologist, and noninvasive 
imaging specialists in order to optimize medical and device treatment for those 
patients.
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12.2	 �Etiological Characterization as an Important  
Prognostic Factor

Etiological characterization of DCM is the hinge of clinical management, funda-
mental to improve the outcome of the disease. Ideally, patients with nonischemic 
DCM should undergo each and every diagnostic test to rule out potentially revers-
ible causes of left ventricular dysfunction, which may benefit from specific thera-
peutic intervention. Several noxae may lead to a clinical phenotype of DCM. Among 
the most common causes, tachyarrhythmias (either frequent ventricular ectopy, ven-
tricular tachycardia, or atrial tachyarrhythmias), elevated catecholamine level, or 
exogenous toxins, such as alcohol or cocaine, may be a reversible cause of 
DCM. Furthermore, systemic inflammatory syndromes, such as systemic autoim-
mune disorders (e.g., Churg-Strauss syndrome, sarcoidosis), and a significant his-
tory of arterial hypertension are common reversible causes of DCM [2, 4].

Severe left ventricular dysfunction can also be secondary to inflammatory car-
diomyopathy. In this scenario, prompt diagnosis and timely management of post-
myocarditis DCM or acute myocarditis with severe left ventricular dysfunction 
have significant prognostic implications. In those patients, a comprehensive inte-
grated approach, including third-level diagnostic tools, such as cardiac magnetic 
resonance (CMR) and endomyocardial biopsy (EMB) in selected cases, should be 
systematically performed given their prognostic significance. Indeed, as recently 
reported, patients with post-myocarditis DCM have better outcomes compared to 
those with genetically determined DCMs [6–8].

Thus, differentiating between idiopathic DCM, genetically determined disease, 
and DCM of specific etiologies plays a fundamental role in the management and 
prognostic stratification. In the latter cases, nearly all patients experience favorable 
left ventricular reverse remodeling (LVRR) when the initial noxa has been dis-
missed or treated [2, 4]. Therefore, prognostic stratification should include proper 
etiological characterization and third-level analysis, such as CMR, and should sys-
tematically be performed in each and every patient with DCM from unknown cause.

12.3	 �DCM as a Dynamic Disease: The Importance 
of Follow-Up

DCM has been considered for a long time as an invariably irreversible condition. 
The cumulative experience derived from referral centers revealed that almost 40% 
of DCM patients under optimal medical and device treatments experience a signifi-
cant left ventricular reverse remodeling [2–4, 9]. Optimal management of DCM is 
largely based on conventional therapy of systolic heart failure, according to current 
guidelines [10]. ACE inhibitors/angiotensin receptor blockers, beta-blockers, and 
mineralocorticoid receptor antagonists remain the cornerstone of DCM therapy. In 
persistently symptomatic patients fulfilling specific criteria, ivabradine may be 
advocated on top of medical therapy [10]. Despite the striking results of the 
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PARADIGM-HF trial and the data on the long-term outcomes in patients treated 
with LCZ-696 [11, 12], no data are available on the sacubitril/valsartan in the spe-
cific subgroup of patients with DCM.

Device treatment represents nowadays one of the pillars of the management of 
DCM patients. On the one hand, cardiac resynchronization therapy (CRT) is able 
to reduce mortality and improve outcomes of patients with DCM. On the other 
hand, the role of ICD in nonischemic cardiomyopathies is still controversial, and 
the correction of mitral regurgitation with MitraClip®, although can contribute to 
LV reverse remodeling (LVRR), has limited evidences from large series of DCM 
patients [2, 13–15].

From our experience, DCM natural history is characterized by improvement of 
ventricular involvement within 2 years from optimization of therapy, followed by a 
subsequent period of stability. As previously described, a complete LVRR within 
24 months from the onset of the disease has been recently demonstrated as an inde-
pendent prognostic tool [16]. CRT has been proven to positively influence LVRR, 
possibly inducing a persistent normalization of LV size and dimension specifically 
in DCM [17–20]. Noteworthy, identification of early markers of LVRR is still foggy 
highlighting the difficulties in prognostic stratification of those patients. However, 
patients without left bundle branch block (LBBB) at ECG [16] or late gadolinium 
enhancement (LGE) at CMR [21] are the most likely candidates to a favorable evo-
lution of the disease.

12.4	 �Left Ventricular Reverse Remodeling Beyond  
the Left Ventricle

Besides LVRR, it is important to define specific and earlier features for prognostic 
stratification in DCM patients. Genetic background seems to have an impact on the 
prognosis of patients with DCM. The improved efficiency of genetic testing allowed 
better characterization of pathogenic mutations and their prognostic role. Mutations 
in lamin A/C (LMNA) have distinct genotype-phenotype correlations, requiring 
therefore specific treatments. Cytoskeleton and Z-disk mutations are associated 
with lower probability of LVRR, whereas mutations in gene encoding for desmo-
somal proteins and titin (TTN) mutations tend to have higher rate of LVRR. However, 
clear evidences on these scenarios should be further investigated [22].

Noninvasive assessments provide critical information of natural history of 
DCM. Hemodynamic indexes measured at echocardiography, i.e., improvement of 
functional mitral regurgitation (FMR) and right ventricular function, seem to fore-
tell amelioration of ventricular function and thus LVRR. Those two indexes emerged 
already at a short time point of 6 months and represent early therapeutic targets and 
upmost useful tools for prognostic stratification in DCM [13, 14, 23]. The presence 
and the severity of FMR convey important therapeutic (i.e., percutaneous repair of 
mitral valve) and prognostic implications [13, 23], and right ventricular (RV) dys-
function along with the estimation of pulmonary arterial pressure is essential in the 
stratification of the disease [13, 23]. Furthermore, left ventricular diastolic function 
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and left atrial dimension should be systematically assessed for the estimation of left 
ventricular filling pressures and identification of restrictive filling pattern [24].

The definite identification of predictors of LVRR appears to be an important 
target for future researches, and the genetic background of LVRR appears to be the 
most interesting field to be explored. Therefore, echocardiographic evaluation of 
patients affected by DCM should be as much accurate as possible, beyond LV sys-
tolic function and dimensions, both at baseline and during follow-up. Newer nonin-
vasive techniques assessing myocardial deformation (e.g., speckle-tracking 
echocardiography or CMR-derived strain) have greater sensitivity than Left 
Ventricular Ejection Fraction (LVEF) for identifying subclinical abnormalities of 
systolic function and may assume a role in the early detection of disease [2, 3, 25].

12.5	 �Prognostic Role of Cardiopulmonary Exercise Testing

DCM represents a specific model of HF characterized by relatively young patients 
with low comorbidity rate and a long asymptomatic history of disease, and these 
features may affect the traditional evaluation of symptomatic heart failure patients. 
In clinical management of DCM patients, this issue has always to be considered 
since it may influence the diagnostic and therapeutic workup. Cardiopulmonary 
exercise test (CPET), using peak of oxygen consumption, has driven the optimal 
timing for the selection of heart transplant candidates [26]. Due to the advances in 
knowledge of exercise impairment in HF, new indexes have been proposed, includ-
ing the percentage of predicted peak VO2, peak systolic blood pressure, and ventila-
tory efficiency, expressed as VE/VCO2 slope [2, 3, 27–29]. Notably, patients affected 
by DCM perform better at CPET compared to other etiologies of HF due to their 
intrinsic characteristics; therefore the abovementioned markers need further future 
validation in DCM. Recently predicted VO2% and VE/VCO2 slope emerged as the 
strongest CPET predictors in a large cohort of DCM, with cutoffs of 60% and 29%, 
respectively [30]. Validation in prospective series is advocated, but it is clear that the 
etiology of HF is fundamental in interpreting the parameters of CPET for candi-
dates to heart transplant [30].

12.6	 �Arrhythmic Risk Stratification

In the last years, ICDs dramatically reduced the risk of SCD and mortality in patients 
with reduced ejection fraction HF on optimal medical treatment [10]. However, in 
patients with nonischemic cardiomyopathies, the real benefits of ICD implantation 
appear disputable [15, 31, 32]. Although ICD implantation dropped the mortality 
rate in young and mildly symptomatic patients with DCM [5], ICD indication for 
primary prevention of SCD is largely based on the severity of systolic dysfunction 
[10, 33]. However, approximately 50% of SCD occur in patients without severely 
reduced LVEF [34]. Therefore, it appears crucial a more accurate characterization 
of the arrhythmic risk in DCM patients (Fig. 12.1) [35].
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Furthermore, early arrhythmic stratification in DCM patients may encase impor-
tant prognostic features. Indeed, solely one third of cases on optimal medical ther-
apy, admitted with the criteria for ICD implantation, maintain those criteria over a 
6-month follow-up [19]. The occurrence of LVRR has important prognostic impli-
cations in particular in those candidates for ICD implantation in primary prevention. 
Accordingly, a wait-and-see period of about 3–9 months on optimal medical ther-
apy is recommended before the ICD implantation [2, 10, 33]. However as showed 
by Losurdo et al., approximately 2% of patients with DCM die suddenly in the first 
6 months after the diagnosis [36]. Unfortunately, there are not yet definitive predic-
tors of early arrhythmic events. A severe LV dilatation at baseline with prolonged 
QRS duration and a long duration of symptoms seem to be useful tools in identify-
ing high-risk patients [36]. Moreover the familial history of SCD, the history of 
probable cardiac syncope, or the presence of highly arrhythmic expression at Holter 
ECG monitoring could identify arrhythmogenic DCM at elevated risk of SCD [37]. 
Further data are required to confirm these findings. In the next future, techniques as 
CMR and specific genetic tests could help for better identification of patients at 
higher risk [2, 21, 38].

Preclinical Phase

Etiological Diagnosis

•   Familial screening

•   Fibrotic Burden
•   Biomarkers
•   Arrhythmias
•   Genetics

New predictors

Dinamic scoresMultiparametric approach

•   Imaging
•   EMB
•   Genetic

Remodeling
Evaluation
•   TTE/TEE
•   CMR (LGE)

Current guideline
indications for
ICD:
•   LVEF< 35%
•   NYHA II/III
•   > 3 months OMT

ICD

Fig. 12.1  Arrhythmic risk evaluation and the need for novel predictors in DCM. CMR cardiac 
magnetic resonance, EMB endomyocardial biopsy, LGE late gadolinium enhancement, LVEF left 
ventricular ejection fraction, NYHA New York Heart Association, TEE transesophageal echocar-
diogram, TTE transthoracic echocardiogram
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12.7	 �The “Apparent Healing” Phenomenon

Approximately 15% of patients with DCM on optimal medical treatment normalize 
their LV size and function persistently over 10 years of follow-up. However, over a 
very long-term follow-up (15 years), a non-negligible percentage (5%) of patients 
with persistent “apparent healing” as a consequence of progressive deterioration of 
left ventricular function underwent CRT-ICD implantation, died for refractory heart 
failure, or needed cardiac transplantation [2, 3, 5, 39]. Therefore, at the current state 
of knowledge, the treatment should be continued lifelong and also in apparently 
stable/healed DCM patients (Fig. 12.2).

12.8	 �Uninterrupted Follow-Up and Continuous 
Reclassification of the Disease

Optimal treatment of patients with DCM has significantly increased the survival 
rates and has resulted in long periods of clinical stability. Data from the registries 
highlighted that from the sixth to eighth year of follow-up, a new progression of the 
disease may occur [2, 4, 39], indicating the pivotal role not only of an accurate and 
complete initial diagnosis but also of a continuous, individualized, and long-term 
follow-up evaluation in DCM patients (Table 12.1). In everyday clinical practice, 
DCM patients of more than 50–60 years of age and with duration of the disease of 
more than 10 years are more often seen. In those patients systematic reassessment 
of risk factors and continuous reclassification of the disease is mandatory (Fig. 12.3). 

DCM patients
Apparent
healing

Persistent Apparent
Healing

Continuous follow-up
Uninterrupted therapy

Non persistent
Apparent Healing

Death/HTx

Baseline mid-term
12-24 months

Long term
120-180 months

Very long term
>180 months

Continuous follow-up
Uninterrupted therapy

Fig. 12.2  Proposed follow-up time points to assess apparent healing. DCM dilated cardiomyopa-
thy, HTx heart transplantation
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Table 12.1  Important time points in the natural history of DCM

Time Evaluation
Baseline • �Complete evaluation (noninvasive and invasive, if necessary) in order to assess 

an etiological characterization, to decide timing of individualized follow-up 
and timing and type of therapeutic strategies

• Administration of optimal medical treatment
3–9 months • �“Hemodynamic” reverse remodeling (improvement of mitral regurgitation; 

normalization of right ventricular systolic function; improvement of diastolic 
dysfunction)

• Consider ICD/CRT-D implantation
• Attention to the onset of negative prognostic factorsa

24 months • Left ventricular reverse remodeling completed
• Attention to the onset of negative prognostic factorsa

72–
84 months

• Possible progression of the disease after stability induced by medical therapy
• �Reclassification of the disease in the presence of progression of the disease 

(attention to possible onset of possible causes of left ventricular dysfunction: 
hypertension; diabetes; ischemic heart disease; structural valve disease)

• Attention to the onset of negative prognostic factorsa

After 
120 months

• �Need of continuing follow-up and therapy lifelong in order to early detect 
signs of progression of the disease in the long term

• Attention to the onset of negative prognostic factorsa

CRT-D cardiac resynchronization therapy defibrillator, ICD implanted cardioverter-defibrillator
aNegative prognostic factors: atrial fibrillation; right ventricular dysfunction; left ventricular bun-
dle branch block; functional mitral regurgitation

Early
Diagnosis

Etiological
characterization

Baseline 24 months Lifelong

Individualized
and close
follow-up

Continuous
reclassification

during the follow-up

•   Atrial Fibrillation
•   New onset LBBB
•   Progression Valve
    disease
•   Coronary artery
    disease

Fig. 12.3  Key point in DCM management. LBBB left bundle branch block

Abrupt deterioration of LV ejection fraction or progressive LV dilation as well as 
new onset of significant arrhythmic burden could be related to the progression of the 
disease but also to the development of coronary artery disease; hypertensive heart 
disease, structured valve disease, or acute myocarditis should be ruled out given 
their prognostic relevance in the natural history of the disease (Fig. 12.4) [2, 3].
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LV	 Left ventricular
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MRA	 Mineralocorticoid receptor antagonists
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NIDCM	 Nonischemic dilated cardiomyopathy
RV	 Right ventricular
SCD	 Sudden cardiac death
VT	 Ventricular tachycardia

Dilated cardiomyopathy (DCM) is a frequent cause of heart failure (HF) and is 
characterized by dilation and impaired contraction of one or both ventricles. Patients 
affected by DCM have impaired systolic function and may or may not develop overt 
HF and atrial and/or ventricular arrhythmias. Sudden cardiac death (SCD) can occur 
at any stage of the disease. Important breakthroughs have redefined opportunities to 
change the natural history of the disease with familial and sport activity screening 
programs and a broad range of medical therapies, devices, and care strategies, 
including readmission reduction programs and ambulatory outpatient disease man-
agement for those with more advanced disease (Table 13.1, Fig. 13.1).

Table 13.1  Screening programs and pharmacological and non-pharmacological treatments of HF 
in DCM patients: levels of recommendations from ESC guidelines

When? Recommendation

Screening
Familial 
screening 
program

– �First-degree relatives, if a specific gene mutation is 
identified in the proband

Recommended (from 
age 10 to 12 years)

– Family history of SCD in a first-degree relative Can be useful
Sport activity 
screening

– �For all young competitive athletes by history, physical 
examination, and ECG

Recommended by 
ESC

– �For all young competitive athletes with history and 
physical examination

Recommended by 
AHA/ACC

Pharmacological treatment
ACEi – �Patients with asymptomatic LV systolic dysfunction, in 

order to prevent or delay the onset of HF
Recommended (I B)

– �Patients with symptomatic LV systolic dysfunction, in 
order to reduce HF, hospitalization, and death

Recommended (I A)

ARB – �Patients with symptomatic LV systolic dysfunction, in 
order to reduce HF hospitalization and death, unable to 
tolerate an ACE-I

Recommended (I B)

Beta-blocker – �Patients with symptomatic LV systolic dysfunction, in 
order to reduce HF, hospitalization, and death

Recommended (I A)

MRA – �Patients with LV systolic dysfunction still symptomatic 
with an optimized dosage of ACEi and beta-blocker, in 
order to reduce HF hospitalization and death

Recommended (I A)

Sacubitril/
Valsartan

– �Patients with LV systolic dysfunction (EF ≤ 35%) still 
symptomatic (NYHA II–III) with an optimized dosage 
of ACEi (or ARB), beta-blocker, and MRA in order to 
reduce HF hospitalization and death

Recommended (I B)

Ivabradine – �Patients with LV systolic dysfunction (EF ≤ 35%) still 
symptomatic, in sinus rhythm and a resting heart rate 
≥70 bpm, with an optimized dosage of ACEi(or ARB), 
beta-blocker, and MRA in order to reduce HF 
hospitalization and cardiovascular death

Recommended  
(IIa B)
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Table 13.1  (continued)

When? Recommendation

Diuretics – To reduce symptoms and signs of congestion Recommended (I B)
Hydralazine and 
isosorbide 
dinitrate

– �Black patients with symptomatic LV systolic 
dysfunction in case of intolerance or contraindication 
to ACEi or ARB, in order to reduce mortality

Recommended  
(IIb B)

– �Patients with LV systolic dysfunction (EF ≤ 35%) and 
still symptomatic (NYHA III–IV) with an optimized 
dosage of ACEi and beta-blocker, in order to reduce 
HF hospitalization and death

Recommended  
(IIa B)

Non-pharmacological treatment
ICD – �Patients with LV systolic dysfunction (EF ≤ 35%) and 

symptomatic (NYHA II–III) despite 3 months of 
OMT, in order to reduce SCD and all-cause mortality

Recommended (I B)

CRT – �Patients with LV systolic dysfunction (EF ≤ 35%), in 
sinus rhythm and symptomatic despite OMT, in order 
to reduce morbidity and mortality

 � • QRS duration ≥150 ms and LBBB QRS Recommended (I A)
 � • QRS duration 130–149 ms and LBBB QRS Recommended (I B)
 � • QRS duration ≥150 and non-LBBB QRS Recommended  

(IIa B)
 � • QRS duration 130–149 ms Recommended  

(IIb B)
IABP or 
VA-ECMO

– �Refractory acute HF or cardiogenic shock, with a 
short-term MCS, depending on patient age, 
comorbidities, and neurological function

Recommended  
(IIb C)

MitraClip – �HF patients with moderate to severe secondary FMR, 
inoperable or at high surgical risk, in order to improve 
symptoms and quality of life

Recommended  
(IIb C)

LVAD – �Patients with LV systolic dysfunction (LVEF ≤ 35%), 
end-stage HF despite OMT/device and eligible for HT, 
in order to improve symptoms and reduce the HF 
hospitalization and premature death (bridge to 
transplant)

Recommended  
(IIa C)

– �Patients with LV systolic dysfunction (LVEF ≤ 35%), 
end-stage HF despite OMT/device and not eligible for 
HT, in order to improve symptoms and reduce the HF 
hospitalization and premature death

Recommended  
(IIa B)

HT – �Patients with LV systolic dysfunction (LVEF ≤ 35%), 
end-stage HF despite OMT in the absence of 
contraindications, in order to increase survival, 
exercise capacity, and quality of life

Recommended

SCD sudden cardiac death, ESC European Society of Cardiology, AHA American Heart Association, 
ACC American College of Cardiology, LV left ventricle, HF heart failure, ACEi angiotensin-converting 
enzyme inhibitor, ARB angiotensin II type I receptor blockers, MRA mineralocorticoid/aldosterone 
receptor antagonists, EF ejection fraction, ICD implantable cardioverter-defibrillator, CRT cardiac 
resynchronization therapy, FMR functional mitral regurgitation, IABP intra-aortic balloon pump, 
VA-ECMO venoarterial extracorporeal membrane oxygenation, LVAD implantable left ventricular assist 
device, HT heart transplantation
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13.1	 �Familial Screening Program

Contrary to what was believed in the past, in the broad spectrum of DCM, 20–50% 
forms are now known to be familial [1]. Autosomal dominant inheritance is the 
most frequent pattern of transmission, with less than 50% chance of inheriting the 
disease for each pregnancy because of incomplete penetrance [2].

These elements represent the rationale to perform a complete family screening in 
order to identify preclinic manifestations of DCM among relatives, taking into 
account that DCM has a progressive course [3] and family members can remain 
asymptomatic for a long period [4–7]. Familial screening program, recommended 
to proband’s first-degree relatives, allows an early identification and treatment of the 
disease, reducing morbidity and mortality and preventing the high costs of advanced 
HF management [8].

Family history of at least three generations is recommended in order to recognize 
the potential heritability of the disease [9]. The pedigree analysis should investigate 
family occurrence of HF of unknown etiology before the age of 60, SCD, and pace-
maker implantation early in life [4]. Furthermore, family history of skeletal myopa-
thies (as Duchenne or Becker disease) or presence of sensorineural hearing loss 
(congenital or occurred after the second decade of life) can suggest the diagnosis of 
a syndromic disease involving also the heart.

When the disease is recognized in at least two close relatives, a final diagnosis of 
familial DCM can be made [3, 4, 10].

In addition to family history, periodic screening, consisting of physical examina-
tion and instrumental evaluation (ECG and echocardiogram), can mark the transi-
tion to the phenotypic expression of the disease, even when the relative is yet 
asymptomatic [4, 6]. An early detection of this transition represents the rationale for 
familial screening proposed by European and American guidelines [11, 12].

According to guidelines, genetic testing is recommended for first-degree rela-
tives when a specific mutation is identified in the proband [4, 11, 13], starting from 
the age of 10–12, although earlier testing can be considered in laminopathies [11].

In genotype-positive relatives, annual clinical follow-up is recommended in order 
to recognized an early expression of the disease [11]. Conversely, clinical follow-up 
is not required in the case of negative genetic testing, which excludes future develop-
ment of the disease and the risk of its transmission to the offspring [11].

In case of proband’s death, postmortem molecular analyses can be useful to 
detect the disease-causing mutation in addition to an accurate histological and mor-
phological evaluation of the heart in order to clarify the disease phenotype [14].

Genetic testing, however, is not always conclusive: identification of uncertain 
significant genetic variants or the absence of any identified mutation in the proband 
on extensive gene screening represents an example of diagnostic ineffectiveness. In 
these settings, genetic testing is not recommended for close relatives [15].

Repeated cardiac evaluation should be performed at regular intervals: every 
1–3 years until the age of 10, 1–2 years between 10 and 20 years, and then every 
2–5 years until the age of 50–60, when the penetrance of DCM is usually com-
plete [11].
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When a relative is diagnosed as a new case of DCM, even if asymptomatic, 
the clinical work-up described for the proband starts, including additional tests, 
such as cardiopulmonary exercise and/or cardiac magnetic resonance imaging 
(MRI) [11].

13.2	 �Sport Activity Screening Program

SCD has been associated to competitive sport activity in the adolescents and young 
adult athletes [16, 17], with an increased risk compared with nonathletic counter-
parts [18]. Specific cardiomyopathies have been recognized as leading causes of 
sport-related cardiac arrest such as hypertrophic cardiomyopathy in the USA and 
arrhythmogenic right ventricular cardiomyopathy in Italy [18, 19].

DCM has been also taken into account as a possible cause of SCD: in interna-
tional records 1–8% of fatalities of cardiovascular origin have been related to DCM 
[18–20]. In this context, clinical evaluation of athletes has the important goal of 
identifying the disease when asymptomatic and protecting them from SCD by sport 
competition restriction and specific treatment.

American Heart Association/American College of Cardiology (AHA/ACC) and 
European Society of Cardiology (ESC) recommendations agree that cardiovascular 
screening for young athletes is justifiable and compelling on ethical, legal, and med-
ical grounds [21, 22], but the two societies propose different screening programs.

The AHA/ACC focuses screening only on physical examination and medical 
history with consequent cost restriction and reduction of false-positive ECG [22]. 
On the other hand, ESC and International Olympic Committee recommend also to 
perform a resting 12-lead ECG [21, 23], in order to detect abnormalities connected 
to preclinical pathological cardiovascular conditions that cannot be identified by the 
only clinical approach [21, 23, 24].

The most frequent ECG abnormal findings always requiring further assessment 
to exclude the presence of a cardiomyopathy are the following:

–– T-wave inversion in lateral, infero-lateral, or extended to anterior leads
–– ST-segment depression
–– Pathologic Q waves
–– Complete left bundle branch block (LBBB)
–– Multiple premature ventricular beats

When pathological findings emerge, the initial evaluation requires additional 
tests [18, 21], as recommended by the ESC section of Sports Cardiology, based 
itself on the Italian protocol [21]: echocardiography, stress testing, Holter ECG 
monitoring, and eventually cardiac MRI in selected cases [24, 25].

In some cases, differential diagnosis between DCM and athlete’s heart may be 
challenging. Indeed, athlete’s heart is a clinical phenotype derived from cardiac 
remodeling induced by sport activity, mostly in endurance sports, and is character-
ized by enlarging left ventricle with borderline or mildly reduced left ventricular 
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ejection fraction (LVEF) (i.e., between 45 and 55%) [26]. There are many hints 
helping to distinguish DCM from athlete’s heart [25]:

–– Positive family history of SCD, cardiac arrest, or cardiac disease
–– ECG abnormalities
–– Ventricular arrhythmias at 24-h Holter ECG monitoring or stress testing
–– LVEF below 45% and regional wall motion abnormalities
–– Right ventricular dysfunction associated with LV dysfunction
–– Late gadolinium enhancement (LGE) at cardiac MRI

In doubt or borderline cases, demonstrating a significant increase in LVEF during 
exercise echocardiography or LVEF and diameter normalization at cardiac MRI after 
an adequate period of detraining may support the diagnosis of athlete’s heart [27]. 
Sport screening benefits go beyond the detection of DCM in the single athlete: when 
the disease is recognized, a cardiological evaluation can be extended to the first-
degree relatives in order to identify other potential affected family members [18].

Athletes recognized to be affected by DCM should not participate in competitive 
sports because of an increased risk of SCD during exercise [21]. Finally, there are 
no sufficient evidences supporting that sport activity increases the risk of DCM 
development or SCD in genotype-positive/phenotype-negative athletes [25].

13.3	 �Medical Treatment

DCM is a common cause of HF and treatment reflects the management of chronic 
HF. DCM patients, indeed, can be divided into two different classes on the base of 
the presence of clinical symptoms:

–– Asymptomatic left ventricular systolic dysfunction: in patients with depressed 
LV systolic function in the absence of symptoms, onset of HF should be delayed 
or prevented primarily by controlling hypertension [28] and, when the LVEF is 
≤40%, by initiating angiotensin-converting enzyme inhibitor (ACEi) therapy 
[29] prior to beta-blocker therapy, since the evidences supporting ACEi therapy 
are stronger [30].

–– Symptomatic HF with reduced ejection fraction: patients of this category should 
all be treated. The goals of therapy are to reduce mortality and morbidity; 
improve symptoms, quality of life, and functional status and decrease hospital-
ization rate [31].

Pharmacologic and device therapy should be primarily accompanied by the man-
agement of contributing factors of HF and by lifestyle modification. For instance, 
hypertension and ischemic heart disease can impair cardiac function and exacerbate 
HF clinical symptoms; therefore, they should be considered and treated in DCM 
patients [12]. The main lifestyle recommendations are sodium and fluid restriction, 
abstinence from alcohol intake, and adequate body weight loss [31].
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For patients with symptomatic HF, a new therapeutic algorithm has been pro-
posed by the current European guidelines [31]. Neurohormonal antagonists, ACEi 
or angiotensin II type I receptor blockers (ARB) in case of ACEi intolerance, are 
recommended from the beginning in association with beta-blocker. The addition of 
mineralocorticoid receptor antagonists (MRA) should be considered in patients still 
symptomatic with an optimized dosage of ACEi and beta-blocker. ACEi [29, 32, 
33], ARB [34, 35], beta-blocker [36–38], and MRA [39, 40] have demonstrated, in 
several clinical trials, to reduce risk of HF hospitalization and death in patient with 
HF and reduced EF.

More recently, two new molecules have been included to the recommended phar-
macological therapy: an angiotensin receptor-neprilysin inhibitor (ARNI) and the 
hyperpolarization channel blocker ivabradine [31]. In particular, Sacubitril/Valsartan, 
tested in PARADIGM trial, is recommended for patients on optimal medical therapy, 
tolerating ACEi or ARB, but still in II–III NYHA class [31, 41]. Ivabradine is indicated 
for patients in sinus rhythm that continue to have a resting heart rate over 70 bpm even 
on beta-blocker therapy based on SHIFT trial [31, 42]. Both these two drugs have 
shown to improve survival and reduce hospitalization in patients with HF [41, 42].

Diuretic therapy is intended to reduce symptoms and signs of congestion, but no 
clinical trial could demonstrate any effect on morbidity and mortality [31].

Finally, in case of intolerance or contraindication to ACEi or ARB, combination 
of hydralazine and isosorbide dinitrate (not approved in Italy) in symptomatic 
patients with HF and reduced LVEF has demonstrated to reduce mortality [43]. The 
same association, combined with conventional HF therapy, in NYHA class III–IV 
black patients, can reduce mortality and HF hospitalizations [44].

Cardioactive pharmacological drugs should be adjusted and up-titrated every 
2 weeks to the maximally tolerated doses that should be achieved within 3–6 months 
from initial diagnosis of HF [45]. During follow-up, frequent reassessment of the 
clinical status, biohumoral parameters, and ventricular function should be per-
formed in order to achieve therapeutic decision about possible defibrillator or biven-
tricular pacing implantation [31].

13.4	 �Ventricular and Supraventricular Arrhythmias

Ventricular and supraventricular arrhythmias often coexist with DCM and HF. The 
treatment of atrial fibrillation (AF) can substantially alter long-term outcomes in 
patients with heart failure, but the subject of what is the most effective management 
strategy is debated. Rhythm control with antiarrhythmic drugs is not superior to rate 
control in patients with coexisting HF and AF [46]. Catheter ablation is a well-
established option for symptomatic atrial fibrillation that is resistant to drug therapy 
in patients with otherwise normal cardiac function, and various studies have shown 
that ablation is associated with positive outcomes in patients with heart failure [47]. 
A recent study showed that catheter ablation for AF in patients with HF was associ-
ated with a significantly lower rate of a composite end point of death from any cause 
or hospitalization for worsening heart failure than was medical therapy [48].
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Finally, a common feature of DCM regardless of the underlying cause is a pro-
pensity to ventricular arrhythmias, being expression of disease’s end stage or an 
intrinsic characteristic of the disease, often connected to particular genotype (i.e., 
laminopathies). Therapy for ventricular arrhythmias is also needed for recurrent 
arrhythmias that cause symptoms, most commonly recurrent ICD shocks. 
Amiodarone is the preferred major antiarrhythmic agent, particularly when ven-
tricular function is severely depressed. In patients with compensated heart failure, 
sotalol is an option. For patients with recurrent sustained monomorphic ventricular 
tachycardia (VT), catheter ablation is a therapeutic option to consider, but experi-
ence is limited in comparison with that for VTs that occur in patients with coronary 
artery disease. Success rates depend on VT substrate location, which can be endo-
cardial, intramural, or epicardial. Endocardial VTs can be generally ablated, whereas 
an epicardial approach is necessary in one-third of cases, but it is associated with 
higher complication rates. However, sustained monomorphic VT that triggers fre-
quent ICD shocks or electrical storms can be controlled with ablation and adjunc-
tive antiarrhythmic medications in the majority of cases. Experienced centers 
performing catheter ablation in patients with nonischemic cardiomyopathy have 
reported that complete absence of inducible VT can be achieved in 38–67% of 
patients [49].

13.5	 �Implantable Cardioverter-Defibrillator

Prophylactic implantation of an ICD is a class I recommendation for patients with 
nonischemic dilated cardiomyopathy (NIDCM), symptomatic HF with NYHA 
class II–III, and an LVEF ≤ 35% [31]. However, the evidence for a benefit is stron-
ger for patients with ischemic heart disease than it is for patients with other HF 
etiologies. Among patients with NIDCM, these indications are based on two ran-
domized trials, the DEFINITE and SCD-HeFT trial, performed in the 2000s, which 
showed a trend toward a reduction of mortality in the ICD arm [50–52]. Accordingly, 
the current recommendation is based on analysis of subgroup of NIDCM patients of 
minor trials or on meta-analysis of smaller studies with NIDCM patients [51].

The recent DANISH trial [53] casts a shadow on this strong recommendation: 
1156 patients with severe nonischemic LV systolic impairment were randomly 
assigned to receive an ICD on top of medical therapy or medical therapy alone and 
followed for a median of 5.6  years. In both ICD and control arms, 58% of the 
patients received cardiac resynchronization therapy (CRT). Although ICD was asso-
ciated with a risk of SCD that was half that associated with conventional therapy, 
mortality from any cause was similar in the ICD and control groups (HR 0.87; 95% 
CI 0.68–1.12), as well as in patients with CRT-defibrillator (CRT-D) and CRT-
pacemaker (CRT-P) (p = 0.59), leaving unclear whether patients eligible for CRT 
should routinely receive an ICD. These results, probably due to lower rates of events 
in NIDCM than ischemic patients and the comprehensive medical therapy plus CRT 
of study population, urge the search for other predictors of sudden death over LVEF, 
in order to identify the patient who can best benefit from ICD, potentially reducing 
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device-related adverse events in those who will not experience appropriate ICD 
interventions. Other noninvasive markers of arrhythmic risk may help to improve 
the appropriateness of ICD implantation: fibrosis identification by late gadolinium 
enhancement in cardiac MRI seems the most promising risk predictor [54].

13.6	 �Cardiac Resynchronization Therapy

Approximately 30% of patients with HF and LV systolic function impairment have 
a wide QRS complex on the surface electrocardiogram [55], and cumulative mortal-
ity increases proportionally with QRS duration [56]. Left bundle branch block 
(LBBB), associated itself with increased mortality, determines ventricular dyssyn-
chrony as the final result of transmural functional line of block located between the 
LV septum and the lateral wall with a prolonged activation time [57]. Use of biven-
tricular pacing had been proposed in pharmacological refractory HF patients with 
intraventricular conduction delay to optimize cardiac performance, through epicar-
dial and then transvenous electrodes. Since then, many trials have demonstrated that 
CRT, in appropriately selected patients, reduces mortality and morbidity [58] and 
improves systolic function, symptoms, and quality of life [59, 60].

The effect of CRT, compared to optimized medical therapy, was evaluated by 
two trials. The COMPANION study demonstrated for the first time a better outcome 
in patients implanted with CRT plus a defibrillator with advanced HF and a QRS 
interval > 120 ms than those under pharmacological therapy alone [61]: in the sub-
group analyses, hazard ratios for death from any cause of CRT-D as compared with 
pharmacologic therapy were 0.50 (95% CI, 0.29–0.88) in NIDCM. In the CARE-HF 
study, CRT reduced all-cause mortality, and the survival benefit with CRT-D over an 
implantable ICD was consistent in a subgroup analysis of patients with ischemic 
and nonischemic DCM [62].

Patients enrolled in CRT trials had severe LV systolic dysfunction: most patients 
had a LVEF  <  35%, but other, as MADIT-CRT [59] or RAFT [63], considered 
LVEF < 30%. Only few patients with an LVEF of 35–40% have been randomized.

As a result, CRT is indicated, according to ESC guidelines [31], as class I recom-
mendation for patients in sinus rhythm, with LBBB, a QRS longer than 130 ms, and 
LVEF of 35% or less. Evidences are weaker for non-LBBB intraventricular conduc-
tion delay and QRS < 150 ms. CRT is contraindicated when QRS is not prolonged: 
a recent study demonstrated that in patients with systolic HF and a QRS dura-
tion < 130 ms, CRT may increase mortality and has no effect on the rate of death or 
hospitalization for HF [64].

Reverse remodeling is one of the most important mechanisms of action of CRT, but 
not all patients respond successfully: patients with nonischemic etiology have greater 
improvement in LV function and decrease in NYHA class after CRT [65]. Data from 
MADIT-CRT were used to identify factors associated with positive response: female 
sex, nonischemic etiology, QRS ≥ 150 ms, LBBB, prior HF hospitalization, baseline 
LVEDV < 125 mL/m2, and LAVI (left atrial volume index) < 40 mL/m2 were associ-
ated with favorable reverse modeling after CRT implantation [66].
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Choice between CRT-P and CRT-D may be hard in selected patients, since most 
of them with LVEF ≤ 35% have an indication for a concomitant ICD. There are no 
prospective data proving a benefit of CRT-D over CRT-P, and the only randomized 
trial to compare CRT-P and CRT-D failed to demonstrate a difference in morbidity 
or mortality between these strategies [61]. Observational and retrospective studies 
show that older patients (age ≥ 75 years), particularly if without dilated LV and with 
nonischemic etiology, and pacemaker-dependent patients are less likely to benefit 
from CRT-D compared with CRT-P [67, 68].

13.7	 �Advanced Heart Failure, Mechanical Circulatory 
Support, Functional Mitral Regurgitation Correction, 
Heart Transplantation, and Palliative Care

Use of optimal medical therapy, cardiac resynchronization, and implantable defibril-
lators has changed HF prognosis dramatically. However, 0.5–5% of patients respond 
poorly to recommended therapy and can develop severe chronic advanced HF with a 
wide scenario going from refractory deterioration up to cardiogenic shock [69].

Mechanical circulatory support (MCS) devices can be used in critically ill HF 
patients who can’t be stabilized by medical therapy alone. Their goals are to unload 
the failing ventricle and maintain an adequate end-organ perfusion. Acute and 
chronic settings require different types of MCS, with short- or mid-/long-term 
action.

Short-term MCS (few days to weeks) are the systems of choice in patients with 
acute HF or cardiogenic shock: they include intra-aortic balloon pump and venoar-
terial extracorporeal membrane oxygenation. They permit to stabilize hemodynam-
ics and gain time for recovery or reevaluation for the possibility of either a more 
durable MCS or heart transplant.

In a more chronic setting, functional mitral regurgitation (FMR) is a common 
finding in patients with DCM and left ventricular impairment and is associated with 
a poor prognosis [70]. In recent years percutaneous correction of mitral regurgita-
tion with the MitraClip system has been established as an alternative treatment 
option for surgically high-risk patients with degenerative and FMR [71]. Worldwide 
experience reports high procedural success rates and favorable clinical outcomes in 
patients with systolic HF and FMR [71, 72]. Patient selection is a crucial issue to 
obtain the best benefit for patients. A recent report showed that anteroposterior 
diameter of the mitral annulus and LV end-diastolic volume were significantly asso-
ciated with device failure during follow-up, and the assessment of these two param-
eters might be particularly useful for the selection of the optimal candidates to 
percutaneous treatment of FMR [73].

Heart transplantation (HT) is a well-recognized treatment that significantly 
increases quality of life and survival for eligible patients with advanced HF, severe 
symptoms, poor prognosis, and no remaining alternative choices [74]. Unfortunately 
suitable donor availability is extremely limited. In these cases, implantable left ven-
tricular assist device (LVAD) technology has improved considerably in the last 
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years. This MCS, historically used only for short periods as bridge-to-transplantation, 
nowadays is being used increasingly also as a permanent treatment or “destination 
therapy” [75]. In this scenario, right ventricular (RV) assessment is crucial consider-
ing RV failure to occur in up to 50% of cases following LVAD implantation and 
resulting in high perioperative mortality and morbidity rates [76–78]. An important 
contribution to evaluation for candidacy to LVAD was the introduction of the 
INTERMACS classification, which categorizes patients for the purpose of risk 
assessment prior to LVAD implant or HT [79], ranging from 1 (cardiogenic shock) 
to 7 (advanced NYHA III), and describes patient’s clinical status in terms of hemo-
dynamic stability, inotrope dependence, and functional capacity. Since outcomes in 
INTERMACS 3 (stable on inotropes) are better than in class I–II, this class has been 
advocated as the optimal group for implantation. However, the choice remains 
tough for clinicians, since patients can experience adverse events and complications 
in up to 60% of cases by 6 months postimplantation, including bleeding, thrombo-
embolic events, infections, and right ventricle failure [80].

Advanced ages, multiple comorbidities, and poorly controlled symptoms charac-
terize the HF terminal stage. In this setting, symptoms management and emotional 
support of the patients and their family are the principal components of palliative 
care in advanced HF, in order to improve quality of life [31]. Currently, no consen-
sus has been reached in international guidelines about the right time to start pallia-
tive care because of the absence of end-of-life objective criteria. However, the 
decisions should be always taken by physicians according to the patient and the 
family.
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14.1	 �Toward a Personalized Medicine: A Genetic Approach

One of the major challenges in nonischemic Dilated Cardiomyopathy (DCM) is the 
complex and heterogeneous etiology of the disease [1].

Indeed, DCM is the final common pathway of different pathogenic processes, 
and distinguishing between this complex etiological diversity is emerging as a use-
ful tool to a better prognostic stratification and a targeted therapy.

It has already been shown that post-myocarditis DCM could have a better prog-
nosis compared to the idiopathic form [2]. Moreover, it is well known that second-
ary forms show reversibility after removing the trigger factors [3–5]. More undefined 
is the prognostic relevance of certain gene mutations in the setting of genetically 
determined DCM.

Over the years, there has been increasing evidence that DCM is a familial or 
genetic disease in a consistent proportion of cases. In this setting, the mere morpho-
functional classification doesn’t allow proper risk stratification, and the important 
information on the causal gene gets lost as well as the cascade familial genetic 
screening.

The relatively recent proposal of a new classification that integrates phenotype 
description and genetic information at the same level moves in this direction [6]. At 
the same time when genetic testing is becoming part of a routine, its role in decision-
making is still very limited.

The cascade genetic familial screening remains the most direct consequence of a 
positive genetic test, in order to obtain an early diagnosis in relatives, as this facili-
tates prompt prophylactic therapy in early or preclinical disease with a subsequent 
improved clinical outcome [7].

Relatives without the mutation can be discharged, although the complex interac-
tion between environmental factors and predisposing gene variants and the possible 
coexistence of multiple mutations in developing the dilated phenotype make it 
impossible to exclude at all a pathogenic evolution, even in the absence of the causal 
pathogenic mutation. On the contrary, mutation carriers deserve more frequent clin-
ical surveillance. Given the incomplete penetrance of such mutations, the early 
identification of pathogenic predictors represents an intriguing issue to be deeper 
investigated.

In the past years, left ventricular enlargement in the absence of systolic dysfunc-
tion emerged as a possible predictor of progression to overt DCM in asymptomatic 
relatives [8].

More recently, modern imaging techniques, such as speckle tracking echocar-
diography, are getting ahead in the hazy area of preclinical diagnosis [9]. Interesting 
data on their capacity to identify subtle abnormalities in contractile function need to 
be improved with larger numbers and should be extended to cardiac magnetic reso-
nance (CMR) feature tracking analysis.

A flash-forward to the future of personalized medicine could be the understand-
ing of a precise genotype-phenotype correlation. Actually, many efforts of the clini-
cal research are moving in this direction. The implications in terms of early 
diagnosis, prognostic stratification, and targeted therapy would be revolutionary.
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Lamin A/C (LMNA) mutations represent the example on how the identification of 
a specific mutation can change the routine management, by gaining a class IIa indi-
cation for ICD implantation in the presence of certain additional risk factors, regard-
less of left ventricular dysfunction severity [10].

The same gene is targeted by a new molecule, ARRY-797, which showed 
promising results in a phase II clinical trial. The small molecule is an inhibitor of 
the p38-MAPK pathway, which appears to be upregulated in LMNA-deficient 
mouse.

Other attempts to identify a genotype-phenotype correlation have been made rid-
ing the wave of LMNA, leading to interesting results.

For example, rare sarcomeric gene variants could harbor a poor long-term prog-
nosis [11], while cytoskeleton Z-disk mutations demonstrate a lower rate of left 
ventricular reverse remodeling after optimized medical therapy [12].

Filling the gap of knowledge in this area requires many other efforts. The inter-
pretation of the results of genetic testing is often hard, given the high prevalence of 
private mutations. To generate a response, it’s necessary to assess the possible 
pathogenicity, based on structure-function models and evidence of interspecies con-
servation [13].

The pathogenic role of several mutations is still not well characterized. For 
example, some titin (TTN) missense variants could have a potential pathogenic role, 
suggested by their nonrandom distribution in affected members [14].

Moreover, little is known about the role of modifier genes and environmental 
interaction on the development of an overt phenotype. A recent study highlighted a 
shared genetic predisposition in women with peripartum cardiomyopathy compared 
with patients with idiopathic dilated cardiomyopathy, suggesting that different 
insults could unmask the same dilative phenotype in patients with similar genetic 
background [15]. It is also probable that a genetic predisposition favors the develop-
ment of a dilative phenotype in the presence of different trigger factors, such as 
inflammation, toxic insults from alcohol [16] or drugs, and tachycardia. Furthermore, 
the association of two or more potentially pathogenic factors has been associated 
with worse prognosis [17].

The complexity of mutational status in DCM is made more difficult by the 
absence of co-segregation of modifier genes. Variance component analysis may 
help to identify the relative impact of genetic and environmental factors. This tech-
nique allows a comparison of phenotypic variability within and between families 
carrying the same primary mutation [18].

Adding complexity to this context, the majority of genes responsible for DCM 
are not specific, but show a significant overlap with hypertrophic (HCM), restrictive 
(RCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), and channelo-
pathies [19]. Moreover, the distinctive phenotype of DCM (left ventricular dilation 
and dysfunction) can frequently overlap with other distinctive traits of different 
cardiomyopathies (Fig. 14.1). It is intriguing how the same mutation in the gene 
coding for troponin T (TNNT2) has shown variable phenotypic expression ranging 
from DCM to HCM and RCM within the same family [20]. Many genes are associ-
ated with arrhythmic tendency and are reviewed in the next paragraph.
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Summing up, genetics currently represents one of the most important fields of 
increasing knowledge in order to further improve the outcomes of DCM.  Early 
diagnosis, the complexity of genotype-phenotype interaction, the pathogenic role of 
certain mutations, and the interplay with environmental factors all represent unre-
solved issues to be better understood for improving care.

14.2	 �The Challenge of Arrhythmic Stratification

To date, another important open issue is the arrhythmic stratification, in order to 
carefully identify patients who are most likely to die from arrhythmia and could 
benefit from an implantable cardioverter-defibrillator (ICD), mostly in the first 
phases after diagnosis.

Mortality in DCM results typically from pump failure or sudden cardiac death 
(SCD). The latter occurs out of hospital in the majority of patients and could be 
prevented by an appropriate ICD intervention [21].

ICD implantation for primary prevention is recommended in patients with DCM, 
New York Heart Association (NYHA) classes II–III, and a left ventricular ejection 
fraction (LVEF) ≤ 35% despite optimized medical therapy [22].

The capacity of this device to interrupt malignant arrhythmias, thus preventing 
death, is unquestionable. However, its role in preventing overall mortality in non-
ischemic DCM is still debated, given the negative results of many trials in the past 
years [23–25] and only one demonstrating benefit in both ischemic and nonisch-
emic populations [26].

Fig. 14.1  Overlap phenotypes between DCM and other cardiomyopathies. ARVC arrhythmo-
genic right ventricular cardiomyopathy, CMP cardiomyopathy, DCM dilated cardiomyopathy, 
HCM hypertrophic cardiomyopathy
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The recent publication of the DANISH trial has once again raised this issue [27]. 
While overall mortality was similar in both study groups, younger patients had a 
clear benefit from ICD implantation, resulting in reduction of overall mortality, 
other than SCD. The lower prevalence of comorbidities and competing causes of 
death in this population could explain this outcome.

This result would encourage the development of a new decisional algorithm for 
ICD implantation, in order to guarantee greater quality-adjusted life years and pre-
vent futile inappropriate shocks and complications, such as device infections (respec-
tively, 4.9% and 5.9% over 5.6 years in DANISH trial). It is well demonstrated in fact 
the negative prognostic impact of inappropriate ICD implantation [28].

The novel approach should at first make a negative selection, excluding patients 
with high mortality risk from competing causes. Several models have been devel-
oped to predict non-sudden mortality, based on clinical parameters [29] and serum 
biomarkers [30], claiming for a multiparametric algorithm that possibly combines 
clinical data, biomarker quantification, CMR evaluation, and genetic testing to pre-
dict the risk of death from pump failure rather than from malignant arrhythmia.

Once this negative selection has been made, patients at higher risk for SCD 
should be identified. By now, the only validated parameter is LVEF, being its rela-
tionship with the extent of myocardial lesion, and thus the arrhythmogenic risk, the 
physiopathological rationale.

Nonetheless, as discussed above, the selection of patients with nonischemic 
DCM based on this parameter has shown poor specificity and low incidence of 
appropriate therapies.

Useful information comes from a basic clinical approach. Easily collectable 
data, such as unexplained syncope, Holter ECG monitoring showing rapid nonsus-
tained ventricular tachycardia, and frequent premature ventricular contraction and 
couplets, have been related to a higher incidence of SCD and malignant arrhyth-
mias, even in the absence of overt heart failure. When combined with a family his-
tory of major arrhythmias or SCD, the risk was increased [31].

Integrating clinical data with the aforementioned genetic testing could increase 
the capacity to identify at-risk patients. Beyond the widely known LMNA mutations, 
other mutations have been related to arrhythmic phenotypes. Future-focused 
research should be developed, but some preliminary results are already available.

Truncating filamin C (FLNC) mutations have been associated with an overlap-
ping phenotype of dilated and left-dominant arrhythmogenic cardiomyopathies, 
complicated by frequent premature SCD [32]. The same arrhythmic tendency has 
been shown in carriers of TNNT2 [33], phospholamban (PLN) [34], RNA-binding 
motif protein 20 (RBM20) [35], TTN [36], and desmosomal mutations. Together, 
these data suggest that, in the future, genotypes other than LMNA could benefit from 
an early ICD implantation independently from LVEF reduction.

Conversely, dystrophin (DMD) mutations have been related to a DCM phenotype 
more susceptible to heart failure than arrhythmic events. This mutation could iden-
tify patients whose treatment could be directed toward advanced heart failure thera-
pies rather than protection from SCD.

A helpful prognostic tool could come from imaging techniques. Global longitu-
dinal strain (GLS), assessed by means of echocardiography, could be a useful tool 

14  Unresolved Issues and Future Perspectives



222

to evaluate arrhythmic risk in DCM patients, by identifying those with mechanical 
dispersion, which show higher arrhythmic propensity [37]. More recently, CMR 
strain imaging was shown to predict outcome in a nonischemic DCM population 
independently from validated parameters such as NYHA class and LVEF, but more 
studies are needed to clarify its role also in the setting of SCD.

Actually, CMR represents the most promising tool in assessing arrhythmic risk. 
The presence of late gadolinium enhancement (LGE), a marker of fibrosis, has been 
shown in approximately 30% of DCM patients [38]. Its presence and, less certainly, 
its extent have been related to a higher risk of SCD and aborted SCD, identifying a 
subgroup of patients at high risk of arrhythmic events independently from LVEF [39].

LGE is now widely assessed during follow-up of DCM patients, although its use 
as a marker of arrhythmogenicity has not yet been mentioned in clinical guidelines. 
But its robust correlation with SCD makes it the most suitable tool to be incorpo-
rated into combined models of prediction.

Less clear is the possible association between interstitial fibrosis, assessed by 
T1-mapping, and SCD. An association between T1 values and overall mortality has 
been shown, as well as with major arrhythmic endpoints [40].

Right ventricular systolic dysfunction at diagnosis and during follow-up appears 
as a powerful and independent predictor of mortality outcome in large series, 
although its role in favoring SCD itself is still not clarified [41, 42].

Finally, recent reports identified left atrial emptying fraction (LAEF), assessed 
by CMR, as an independent predictor of appropriate device therapy in patients with 
ischemic and dilated cardiomyopathy, who had an ICD in primary prevention [43].

Parameters of electrical instability, such as T-wave alternans or fragmented QRS 
at ECG, could improve models of prediction, but yet no single index of electrical 
instability was more accurate than LVEF in predicting arrhythmic events, although 
some showed high negative predictive value [44].

The same importance as the selection of patients is the correct timing of ICD 
implantation.

Only one third of patients with DCM, satisfying criteria for ICD implantation, 
maintain their eligibility after 3–9 months of OMT (optimal medical therapy) [45], 
making it mandatory a waiting period of at least 3 months of OMT. This period is 
very important, because inappropriate ICD implantation has not only an economic 
impact on public healthcare system but is also associated with higher in-hospital 
death and post-procedural complication rate [28].

Importantly, a non-negligible proportion of patients could die in the first 
6  months, during therapy titration. These patients should be carefully identified, 
because they could benefit from an early ICD implantation or from a wearable 
cardioverter-defibrillator. Higher left ventricular end-systolic indexed volumes, lon-
ger QRS, and intolerance to beta-blockers have been shown to characterize this 
high-risk population [46], but further studies are needed to integrate these parame-
ters into a validated, universally accepted multiparametric model. The role of wear-
able cardioverter-defibrillators in this setting is still debated, and registry studies 
failed to demonstrate a clear benefit of this bridge solution in nonischemic DCM 
[47]. Properly selected higher-risk patients should be evaluated into a randomized 
controlled trial, in order to obtain more robust data.
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Periodic reassessment of arrhythmic risk should also be performed, as DCM is a 
dynamic condition, with the possibility of exacerbation also after many years of sta-
bility. Moreover, the predictors of arrhythmogenicity may change at subsequent 
evaluations. Surprisingly, impaired LVEF was associated with worse arrhythmic out-
come only in the long term, while best early predictors were, respectively, QRS dura-
tion, mitral regurgitation, and disease duration at baseline and NYHA functional 
class III or IV, syncope, disease duration, and left ventricular end-diastolic volume at 
12-month evaluation [48].

In conclusion, the current guidelines show poor capacity to identify nonischemic 
DCM patients likely to benefit from primary prevention ICD implantation.

The way forward needs the identification of parameters, which should be incor-
porated together into a multiparametric and dynamic model, which permit an early 
identification of higher-risk patients and a periodic risk reassessment.

To pursue this objective, different approaches should be combined, ranging from 
clinical data, genetics, standard and modern imaging techniques, to electrophysio-
logical data.

14.3	 �Toward Innovation in Therapy

Mortality rates in patients with DCM have significantly decreased over years. The 
basis of this success lies in the sequential introduction of drugs and the appropriate 
use of device therapy, which contributed to the decline of both cardiovascular and 
SCD risk [49].

The major leap came with the use of angiotensin-converting enzyme inhibitors, 
promptly followed by beta-blockers and mineralocorticoid-receptor antagonists. 
Despite the efficacy of these therapies, the spectrum of drugs used in heart failure 
due to DCM still remains very limited.

The recent introduction of the angiotensin receptor-neprilysin inhibitor sacu-
bitril/valsartan raises the possibility for a further improvement of prognosis in 
DCM [50].

Nevertheless, all the currently approved drugs act on the common physiopatho-
logical mechanisms of heart failure. A big improvement would come from the 
development of therapies more specifically focused on DCM itself and its underly-
ing mechanisms.

In this setting, the stimulation of the endogenous regenerative capacity of the 
myocardium and its replacement by new cells or tissue are promising paths to be 
further investigated.

The myocardium has poor intrinsic regenerative capacity, although resident car-
diac progenitor cells have been shown to persist in adult mammalian hearts.

Given the role of paracrine signaling pathways in myocardial repair, a promising 
approach comes from the development of exosomes, whose effect has been investi-
gated in several preclinical studies, targeted by now to the regeneration after myo-
cardial infarction [51].

A similar mechanism of action is shared by autologous and allogenic mesenchy-
mal stem cells derived from bone marrow and myocardial biopsies.

14  Unresolved Issues and Future Perspectives



224

The capacity of these cells to promote angiogenesis, mitigate inflammation and 
apoptotic cell death, and reduce myocardial fibrosis represents a good opportunity 
for their use in DCM.

In this sense, the demonstration of feasibility and safety of their transendocardial 
injection in 37 patients with nonischemic DCM is encouraging and should promote 
future research [52]. A caveat remains the risk of sensitization against donor cell-
specific HLA that could hamper a future heart transplantation.

Likewise, in animal studies, gene therapy showed potential beneficial effects in 
the setting of nonischemic heart failure [53].

Last but not least, the small RNA-based therapeutics, hanging on the evidence of 
a pivotal role of microRNAs in the postnatal cardiomyocyte proliferation in animal 
models, represents a potential targeted therapy for myocardial regeneration [54].

Hence there are still many open issues to be deeper investigated by translational 
research in the way of understanding the mechanisms and developing targeted ther-
apies in the field of DCM.

In conclusion, the very next future of DCM management should go through the 
better understanding of the etiology of the disease, the correct risk stratification, and 
the development of new therapies (Table 14.1). The rapidly increasing knowledge 
should be combined into an interconnected network with the purpose of a multipa-
rametric evaluation of the disease.

Table 14.1  Unresolved issues and future perspectives in arrhythmic stratification of idiopathic 
dilated cardiomyopathy

Unresolved issues and future perspectives in arrhythmic risk stratification
Critical issue What is known Future directions
Proper risk 
stratification

Primary prevention ICD:
Is recommended in NYHA class 
II–III DCM patients with 
LVEF ≤ 35% despite OMT, with 
survival expectancy >1 year
Should be considered in DCM 
patients with LMNA mutation 
and clinical risk factors (NSVT 
during ambulatory ECG 
monitoring, LVEF < 45% at first 
evaluation, male sex, non-
missense mutations)

Creation of a multiparametric score, 
which encompasses:
Clinical data (syncope; NSVT; family 
history)
Search for proarrhythmic mutations 
(LMNA; FLNC, etc.)
Functional imaging parameters (GLS; 
LAEF)
Structural imaging parameters (LGE; 
T1 mapping)
Parameters of electrical instability 
(T-wave alternans, fragmented QRS)

Proper timing of 
implantation

ICD should be implanted in 
primary prevention only after at 
least 3 months of OMT

Identification of higher-risk patients 
who could benefit from early ICD 
implantation (higher LVESVi; larger 
QRS; intolerance to beta-blockers)
Defining a role for wearable 
cardioverter-defibrillators

Periodic 
reassessment of 
arrhythmic risk

Currently, no time-dependent 
parameters are known

Creation of a dynamic score, with 
different predictors at subsequent 
evaluations

DCM dilated cardiomyopathy, FLNC filamin, GLS global longitudinal strain, ICD implantable 
cardioverter-defibrillator, LAEF left atrial emptying fraction, LGE late gadolinium enhancement, 
LMNA lamin, LVEF left ventricular ejection fraction, LVESVi left ventricular end-systolic volume 
indexed, NYHA New York Heart Association, NSVT nonsustained ventricular tachycardia, OMT 
optimized medical therapy

M. Merlo et al.



225

References

	 1.	Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of 
the cardiomyopathies: a position statement from the European Society of Cardiology Working 
Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29:270–6.

	 2.	Merlo M, Anzini M, Bussani R, Artico J, Barbati G, Stolfo D, et al. Characterization and long-
term prognosis of postmyocarditic dilated cardiomyopathy compared with idiopathic dilated 
cardiomyopathy. Am J Cardiol. 2016;118:895–900.

	 3.	Brembilla-Perrot B, Ferreira JP, Manenti V, Sellal JM, Olivier A, Villemin T, et al. Predictors 
and prognostic significance of tachycardiomyopathy: insights from a cohort of 1269 patients 
undergoing atrial flutter ablation. Eur J Heart Fail. 2016;18:394–401.

	 4.	Cooper LT, Mather PJ, Alexis JD, Pauly DF, Torre-Amione G, Wittstein IS, et al. Myocardial 
recovery in peripartum cardiomyopathy: prospective comparison with recent onset cardiomy-
opathy in men and nonperipartum women. J Card Fail. 2012;18:28–33.

	 5.	Guzzo-Merello G, Segovia J, Dominguez F, Cobo-Marcos M, Gomez-Bueno M, Avellana P, 
et al. Natural history and prognostic factors in alcoholic cardiomyopathy. JACC Heart Fail. 
2015;3:78–86.

	 6.	Arbustini E, Narula N, Tavazzi L, Serio A, Grasso M, Favalli V, et al. The MOGE(S) classifica-
tion of cardiomyopathy for clinicians. J Am Coll Cardiol. 2014;64:304–18.

	 7.	Moretti M, Merlo M, Barbati G, Di Lenarda A, Brun F, Pinamonti B, et al. Prognostic impact 
of familial screening in dilated cardiomyopathy. Eur J Heart Fail. 2010;12:922–7.

	 8.	Fatkin D, Yeoh T, Hayward CS, Benson V, Sheu A, Richmond Z, et  al. Evaluation of left 
ventricular enlargement as a marker of early disease in familial dilated cardiomyopathy. Circ 
Cardiovasc Genet. 2011;4:342–8.

	 9.	Lakdawala NK, Thune JJ, Colan SD, Cirino AL, Farrohi F, Rivero J, et al. Subtle abnormalities 
in contractile function are an early manifestation of sarcomere mutations in dilated cardiomy-
opathy. Circ Cardiovasc Genet. 2012;5:503–10.

	10.	Priori SG, Blomström-Lundqvist C, Mazzanti A. 2015 ESC guidelines for the management of 
patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 
2015;8:746–837.

	11.	Merlo M, Sinagra G, Carniel E, Slavov D, Zhu X, Barbati G, et  al. Poor prognosis of 
rare sarcomeric gene variants in patients with dilated cardiomyopathy. Clin Transl Sci. 
2013;6:424–8.

	12.	Dal Ferro M, Stolfo D, Altinier A, Gigli M, Perrieri M, Ramani F, et al. Association between 
mutation status and left ventricular reverse remodelling in dilated cardiomyopathy. Heart. 
2017;103:1704–10.

	13.	Jacoby D, McKenna WJ. Genetics of inherited cardiomyopathy. Eur Heart J. 2012;33:296–304.
	14.	Begay RL, Graw S, Sinagra G, Merlo M, Slavov D, Gowan K, et al. Role of titin missense 

variants in dilated cardiomyopathy. J Am Heart Assoc. 2015;4(11).
	15.	Ware JS, Li J, Mazaika E, Yasso CM, DeSouza T, Cappola TP, et al. Shared genetic predisposi-

tion in peripartum and dilated cardiomyopathies. N Engl J Med. 2016;374:233–41.
	16.	Ware JS, Amor-Salamanca A, Tayal U, Govind R, Serrano I, Pascual-figal DA, et al. Genetic 

etiology for alcohol-induced cardiac toxicity. J Am Coll Cardiol. 2018;71:2293–302.
	17.	Hazebroek MR, Moors S, Dennert R, van den Wijngaard A, Krapels I, Hoos M, et al. Prognostic 

relevance of gene-environment interactions in patients with dilated cardiomyopathy: applying 
the MOGE(S) classification. J Am Coll Cardiol. 2015;66:1313–23.

	18.	Sen-Chowdhry S, Syrris P, Pantazis A, Quarta G, McKenna WJ, Chambers JC. Mutational 
heterogeneity, modifier genes, and environmental influences contribute to phenotypic diversity 
of arrhythmogenic cardiomyopathy. Circ Cardiovasc Genet. 2010;3:323–30.

	19.	Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse 
genetic architecture. Nat Rev Cardiol. 2013;10:531–47.

	20.	Menon SC, Michels VV, Pellikka PA, Ballew JD, Karst ML, Herron KJ, et al. Cardiac troponin 
T mutation in familial cardiomyopathy with variable remodeling and restrictive physiology. 
Clin Genet. 2008;74:445–54.

	21.	Halliday BP, Cleland JGF, Goldberger JJ, Prasad SK. Personalizing risk stratification for sud-
den death in dilated cardiomyopathy. Circulation. 2017;136:215–31.

14  Unresolved Issues and Future Perspectives



226

	22.	Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et  al. 2016 ESC 
guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 
2016;37:2129–2200m.

	23.	Bansch D. Primary prevention of sudden cardiac death in idiopathic dilated cardiomyopathy: 
the cardiomyopathy trial (CAT). Circulation. 2002;105:1453–8.

	24.	Strickberger SA, Hummel JD, Bartlett TG, Frumin HI, Schuger CD, Beau SL, et  al. 
Amiodarone versus implantable cardioverter-defibrillator: randomized trial in patients with 
nonischemic dilated cardiomyopathy and asymptomatic nonsustained ventricular tachycar-
dia—AMIOVIRT. J Am Coll Cardiol. 2003;41:1707–12.

	25.	Kadish A, Dyer A, Daubert JP, Quigg R, Estes NAM, Anderson KP, et al. Prophylactic defibril-
lator implantation in patients with nonischemic dilated cardiomyopathy for the defibrillators in 
non-ischemic cardiomyopathy treatment evaluation (DEFINITE) investigators. N Engl J Med. 
2004;350:2151–8.

	26.	Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implant-
able cardioverter–defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.

	27.	Køber L, Thune JJ, Nielsen JC, Haarbo J, Videbæk L, Korup E, et al. Defibrillator implantation 
in patients with nonischemic systolic heart failure. N Engl J Med. 2016;375:1221–30.

	28.	Al-Khatib SM, Hellkamp A, Curtis J, Mark D, Peterson E, Sanders GD, et al. Non-evidence-
based ICD implantations in the United States. JAMA. 2011;305:43–9.

	29.	Mozaffarian D, Anker SD, Anand I, Linker DT, Sullivan MD, Cleland JGF, et al. Prediction of 
mode of death in heart failure: the Seattle heart failure model. Circulation. 2007;116:392–8.

	30.	Zhang Y, Guallar E, Blasco-Colmenares E, Dalal D, Butcher B, Norgard S, et al. Clinical and 
serum-based markers are associated with death within 1 year of de novo implant in primary 
prevention ICD recipients. Heart Rhythm. 2015;12:360–6.

	31.	Spezzacatene A, Sinagra G, Merlo M, Barbati G, Graw SL, Brun F, et al. Arrhythmogenic phe-
notype in dilated cardiomyopathy: natural history and predictors of life-threatening arrhyth-
mias. J Am Heart Assoc. 2015;4:e002149.

	32.	Begay RL, Graw SL, Sinagra G, Asimaki A, Rowland TJ, Slavov DB, et al. Filamin C trunca-
tion mutations are associated with arrhythmogenic dilated cardiomyopathy and changes in the 
cell–cell adhesion structures. JACC Clin Electrophysiol. 2018;4:504–14.

	33.	Fiset C, Giles WR. Cardiac troponin T mutations promote life-threatening arrhythmias. J Clin 
Invest. 2008;118:3845–7.

	34.	Van Rijsingen IAW, Van Der Zwaag PA, Groeneweg JA, Nannenberg EA, Jongbloed JDH, 
Zwinderman AH, et al. Outcome in phospholamban R14del carriers results of a large multi-
centre cohort study. Circ Cardiovasc Genet. 2014;7:455–65.

	35.	Refaat MM, Lubitz SA, Makino S, Islam Z, Frangiskakis JM, Mehdi H, et al. Genetic variation 
in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart 
Rhythm. 2012;9:390–6.

	36.	Verdonschot JAJ, Hazebroek MR, Derks KWJ, Barandiarán Aizpurua A, Merken JJ, Wang P, 
et al. Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and 
long-term life-threatening arrhythmias. Eur Heart J. 2018;39:864–73.

	37.	Haugaa KH, Goebel B, Dahlslett T, Meyer K, Jung C, Lauten A, et al. Risk assessment of 
ventricular arrhythmias in patients with nonischemic dilated cardiomyopathy by strain echo-
cardiography. J Am Soc Echocardiogr. 2012;25:667–73.

	38.	Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, et  al. Association of fibrosis 
with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. 
JAMA. 2013;309:896–908.

	39.	Di Marco A, Anguera I, Schmitt M, Klem I, Neilan T, White JA, et  al. Late gadolinium 
enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopa-
thy: systematic review and meta-analysis. JACC Heart Fail. 2017;5:28–38.

	40.	Chen Z, Sohal M, Voigt T, Sammut E, Tobon-Gomez C, Child N, et  al. Myocardial tissue 
characterization by cardiac magnetic resonance imaging using T1 mapping predicts ven-
tricular arrhythmia in ischemic and non-ischemic cardiomyopathy patients with implantable 
cardioverter-defibrillators. Heart Rhythm. 2015;12:792–801.

M. Merlo et al.



227

	41.	Gulati A, Ismail TF, Jabbour A, Alpendurada F, Guha K, Ismail NA, et al. The prevalence and 
prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardio-
myopathy. Circulation. 2013;128:1623–33.

	42.	Merlo M, Gobbo M, Stolfo D, Losurdo P, Ramani F, Barbati G, et al. The prognostic impact of 
the evolution of RV function in idiopathic DCM. JACC Cardiovasc Imaging. 2016;9:1034–42.

	43.	Rijnierse MT, Kamali Sadeghian M, Schuurmans Stekhoven S, Biesbroek PS, van der Lingen 
ALC, van de Ven PM, et  al. Usefulness of left atrial emptying fraction to predict ventric-
ular arrhythmias in patients with implantable cardioverter defibrillators. Am J Cardiol. 
2017;120:243–50.

	44.	Goldberger JJ, Subačius H, Patel T, Cunnane R, Kadish AH.  Sudden cardiac death risk 
stratification in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol. 
2014;63:1879–89.

	45.	Zecchin M, Merlo M, Pivetta A, Barbati G, Lutman C, Gregori D, et al. How can optimization 
of medical treatment avoid unnecessary implantable cardioverter-defibrillator implantations in 
patients with idiopathic dilated cardiomyopathy presenting with “SCD-HeFT criteria?”. Am J 
Cardiol. 2012;109:729–35.

	46.	Losurdo P, Stolfo D, Merlo M, Barbati G, Gobbo M, Gigli M, et al. Early arrhythmic events in 
idiopathic dilated cardiomyopathy. JACC Clin Electrophysiol. 2016;2:535–43.

	47.	Kutyifa V, Moss AJ, Klein H, Biton Y, McNitt S, MacKecknie B, et  al. Use of the wear-
able cardioverter defibrillator in high-risk cardiac patients data from the prospective registry 
of patients using the wearable cardioverter defibrillator (WEARIT-II registry). Circulation. 
2015;132:1613–9.

	48.	Stolfo D, Ceschia N, Zecchin M, De Luca A, Gobbo M, Barbati G, et al. Arrhythmic risk strati-
fication in patients with idiopathic dilated cardiomyopathy. Am J Cardiol. 2018;121:1601–9.

	49.	Merlo M, Pivetta A, Pinamonti B, Stolfo D, Zecchin M, Barbati G, et al. Long-term prognostic 
impact of therapeutic strategies in patients with idiopathic dilated cardiomyopathy: changing 
mortality over the last 30 years. Eur J Heart Fail. 2014;16:317–24.

	50.	McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin–
neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.

	51.	Maring JA, Beez CM, Falk V, Seifert M, Stamm C. Myocardial regeneration via progenitor 
cell-derived exosomes. Stem Cells Int. 2017;2017:7849851.

	52.	Hare JM, DiFede DL, Castellanos AM, Florea V, Landin AM, El-Khorazaty J, et al. Randomized 
comparison of allogeneic vs. autologous mesenchymal stem cells for non-ischemic dilated car-
diomyopathy: POSEIDON-DCM trial. J Am Coll Cardiol. 2017;69:526–37.

	53.	Woitek F, Zentilin L, Hoffman NE, Powers JC, Ottiger I, Parikh S, et al. Intracoronary cyto-
protective gene therapy: a study of VEGF-B167 in a pre-clinical animal model of dilated car-
diomyopathy. J Am Coll Cardiol. 2015;66:139–53.

	54.	Giacca M, Zacchigna S. Harnessing the microRNA pathway for cardiac regeneration. J Mol 
Cell Cardiol. 2015;89(Pt A):68–74.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

14  Unresolved Issues and Future Perspectives

http://creativecommons.org/licenses/by/4.0/


229© The Author(s) 2019
G. Sinagra et al. (eds.), Dilated Cardiomyopathy, 
https://doi.org/10.1007/978-3-030-13864-6_15

G. Sinagra · M. Merlo 
Cardiovascular Department, Azienda Sanitaria Universitaria Integrata, Trieste, Italy
e-mail: gianfranco.sinagra@asuits.sanita.fvg.it; marco.merlo@asuits.sanita.fvg.it

E. Fabris (*) · S. Romani · F. Negri · D. Stolfo · F. Brun
Cardiovascular Department, Azienda Sanitaria Universitaria Integrata, University of Trieste 
(ASUITS), Trieste, Italy
e-mail: davide.stolfo@asuits.sanita.fvg.it; francesca.brun@asuits.sanita.fvg.it

15Dilated Cardiomyopathy 
at the Crossroad: Multidisciplinary 
Approach

Gianfranco Sinagra, Enrico Fabris, Simona Romani, 
Francesco Negri, Davide Stolfo, Francesca Brun, 
and Marco Merlo

Abbreviations and Acronyms

ACEi	 Angiotensin converting enzyme inhibitors
BMD	 Becker muscular dystrophy
BNP	 Brain natriuretic peptide
CK	 Creatine kinase
CMR	 Cardiac magnetic resonance
CS	 Cardiac sarcoidosis
DCM	 Dilated cardiomyopathy
DMD	 Duchenne muscular dystrophy
ECG	 Electrocardiogram
ECG-SA	 Signal-averaged electrocardiography
EDMD	 Emery-Dreifuss muscular dystrophy
HF	 Heart failure
LGMD	 Limb-girdle muscular dystrophy
LV	 Left ventricular
LVEF	 Left ventricular ejection fraction
NYHA	 New York Heart Association
SLE	 Systemic lupus erythematosus
TTNtv	 Truncation variants in the gene encoding titin
VT	 Ventricular tachycardia

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13864-6_15&domain=pdf
mailto:gianfranco.sinagra@asuits.sanita.fvg.it
mailto:marco.merlo@asuits.sanita.fvg.it
mailto:davide.stolfo@asuits.sanita.fvg.it
mailto:francesca.brun@asuits.sanita.fvg.it


230

Table 15.1  Clinical “red flags” and potential related DCM subgroup

Abnormalities

Potential specific 
DCM subgroup or 
systemic disease

Laboratory tests 
suggested

Medical history/
physical 
examination

Mental retardation Dystrophinopathies,
Mitochondrial 
diseases,
Myotonic dystrophy

Creatine kinase

Visual impairment Myotonic dystrophy Creatine kinase
Muscle weakness Desminopathy,

Dystrophinopathies,
Sarcoglycanopathies,
Laminopathies,
Myotonic dystrophy

Creatine kinase

Myotonia Myotonic dystrophy Creatine kinase
Pigmentation of the 
skin

Hemochromatosis Serum iron, ferritin, 
transferrin saturation

Uveitis; nodular 
erythema; arthralgias

Sarcoidosis Serum angiotensin-
converting enzyme

Malar rash, discoid 
rash, oral ulcers, 
arthritis, serositis; 
fibrosis and thickening 
of the skin

Connective tissue 
disorder (Systemic 
lupus erythematosus, 
scleroderma)

Autoantibody screen,
erythrocyte 
sedimentation rate,
proteinuria research

Chemotherapy exposure 
(anthracyclines, 
trastuzumab, etc.)

DCM related to 
chemotherapeutic 
agents

Troponin

History of 
amphetamines, cocaine 
intake

DCM related to toxic 
agents

Urine toxicology 
screen for cocaine/
amphetamine abuse

Alcohol abuse Alcoholic DCM Liver function
Mean corpuscular 
volume

Pregnancy Peripartum-DCM
Electrocardiography Atrioventricular block Myocarditis (Lyme 

disease, Chagas 
disease)
Sarcoidosis
Laminopathy
Desminopathy
Myotonic dystrophy
Emery-Dreifuss 1

Specific serum 
autoantibodies for 
suspected infection: 
Lyme disease, Chagas 
disease, etc.
Serum angiotensin-
converting enzyme 
(sarcoidosis)
Creatine kinase

“Posterolateral 
infarction” pattern

Dystrophin-related 
cardiomyopathy,
Limb-girdle 
muscular dystrophy,
Sarcoidosis

Creatine kinase,
Serum angiotensin-
converting enzyme 
(sarcoidosis)

Echocardiography Posterolateral akinesia/
dyskinesia

Dystrophin-related 
cardiomyopathy

Creatine kinase

Mild dilatation/segment 
kinetic alterations with 
non-coronary 
distribution

Myocarditis,
Sarcoidosis

Troponin (myocarditis)
Serum angiotensin-
converting enzyme 
(sarcoidosis)
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Dilated cardiomyopathy (DCM) constitutes a broad cardiac phenotype that can 
arise from a multitude of myocardial insults. Rigorous etiological evaluation may 
allow to identify specific treatments, targeted to the underlying cause [1]. This 
approach requires clinical acumen (Table 15.1) and a multidisciplinary approach, 
with close collaboration with other specialists, as represented in Fig. 15.1.

Indeed, evaluation of patients with DCM requires a thorough understanding of 
potential complex pathophysiology that may be different in each patient [2]. In cer-
tain cases, with the elimination of the cause and the appropriate treatment, reversal 
of myocardial damage and recovery of cardiac dysfunction can occur, and therefore 
treatment should be individualized and should target the underlying cause, when 
added to the standard systolic heart failure (HF) therapies.

15.1	 �Sarcoidosis: Co-working with Pneumologists

Sarcoidosis is a systemic disease, characterized by noncaseating granuloma forma-
tion in multiple organ systems. The lung is the most frequently involved organ, and 
symptomatic patients have usually dry cough and dyspnea. Red flag of the disease 
is a bilateral lymphadenopathy at chest X-ray that is abnormal in about 90% of 
patients with pulmonary sarcoidosis [3]. In acute forms the multi-organ involve-
ment suggests the diagnosis (uveitis, nodular erythema, arthralgia, etc.). Clinically 

Scleroderma
Toxic myocarditis

LESSarcoidosis

Dermatologist
Pneumologist

Nephrologist

Hematologist
Cardiologist

Oncologist

Infectiologist

Neurologist

DCM
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Fabry
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Myocarditis

Lyme disease
Chagas

cardiomyopathy
Viral infections

Fig. 15.1  Complex interactions between multiple specialties in the clinical management of DCM
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manifest cardiac involvement occurs in about 5% of patients with sarcoidosis [4]. 
The diagnosis of cardiac sarcoidosis (CS) requires appropriate clinical suspicion 
and the integration of clinical and pathologic data together with the results of 
advanced cardiac imaging techniques.

See Chap. 4 for diagnosis of sarcoidosis.

15.1.1	 �Treatment

The management of CS often requires multidisciplinary care teams. Indeed, electro-
physiologists, heart failure specialists, imaging experts, pneumologists, and rheu-
matologists (especially when other organ involvement is present and when “biologic 
therapy” is required) have to work together to provide optimal patient management. 
Systemic corticosteroids remain the first-line treatment for sarcoidosis followed, if 
ineffective, by methotrexate. In patients with ventricular tachycardia (VT), refrac-
tory to immunosuppressive therapy, a first-line treatment is with antiarrhythmic 
drugs; then, if VT still persists, a catheter ablation is indicated (class IIa) [5]. 
Implantable cardioverter-defibrillator is indicated, over the conventional indication, 
if a patient with CS (independently of ventricular function) has an indication for 
permanent pacemaker implantation and presents unexplained syncope or near-
syncope and/or inducible sustained ventricular arrhythmias (class IIa) [5]. Many 
aspects of CS management, however, are not still fully understood, and further stud-
ies are needed for a better comprehension of the pathology, adequate risk stratifica-
tion, treatment, and targeted follow-up.

15.2	 �Autoimmune Cardiomyopathy: Co-working 
with Rheumatologists

15.2.1	 �Systemic Lupus Erythematosus

Autoimmune diseases may be rare causes of cardiomyopathy and heart failure, 
mediated by several potential mechanisms, including immune-mediated myocardi-
tis, progressive fibrosis, and apoptosis with resultant dilated phenotype.

The association between autoimmune disorders and DCM includes various auto-
immune diseases, as the systemic lupus erythematosus (SLE) but also dermatomyo-
sitis, scleroderma, rheumatoid arthritis, and polyarteritis nodosa [2].

DCM is not a prominent manifestation of SLE; however myocardial involvement 
is not uncommon in the disease. At echocardiographic studies about 6% of SLE 
patients showed global hypokinesia [6], and evidence of myocarditis can be found 
at postmortem examination in approximately 40% of cases [7]. According to guide-
lines [8], the diagnosis of SLE can be made by a combination of clinical features 
and laboratory tests. Immunological tests should be investigated by cardiologists 
especially in a young woman with unexplained left ventricular dysfunction associ-
ated with clinical symptoms suggestive of autoimmune disorder (fatigue, fever, 
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associated with skin, musculoskeletal, and mild hematologic disorders). Among 
immunological tests, antinuclear antibodies are present in 95% of SLE patients. 
This test however has a high sensitivity but a low specificity [9].

Cardiovascular manifestations of SLE are heterogeneous and, in addition to peri-
carditis and less often myocarditis, may include also coronary artery disease, con-
duction system disease, valvular disease, and pulmonary hypertension in various 
associations [9]. Particularly, 12-lead ECG abnormalities include non-specific ST-T 
changes, left ventricular (LV) hypertrophy, and supraventricular/ventricular arrhyth-
mias [10]. Signal-averaged electrocardiography (ECG-SA) is currently used for 
recording ventricular late potentials which are the expression of slowed and disor-
ganized conduction through zones of myocardial scarring. Left ventricular diastolic 
dysfunction has been documented both in active and quiescent SLE patients. Active 
chronic myocarditis can be detected using cardiac magnetic resonance (CMR).

15.2.2	 �Treatment

Main drugs for disease treatment are corticosteroids and hydroxychloroquine in 
mild disease; in moderate and severe disease, other immunosuppressive drugs (e.g., 
methotrexate, cyclosporine, azathioprine, etc.) have to be added [8].

15.3	 �Infectious Disease and Cardiomyopathy: Co-working 
with Infectious Disease Specialist

15.3.1	 �Chagas Cardiomyopathy

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, which is 
transmitted by large, blood-sucking reduviid bugs of the subfamily Triatominae. This 
illness was originally confined to poor, rural areas of South and Central America; 
however in recent years, the disease is also spreading in the USA, Canada, and Europe 
due to the influx of immigrants from endemic countries [11]. The chronic cardiac 
involvement manifests as Chagas cardiomyopathy, characterized by a chronic myo-
carditis that involves all cardiac chambers and damage to the conduction system [12].

The myocardium damage is generally a progressive process that can be classified 
into stages: those with a normal ECG are considered to have the indeterminate 
phase of the disease (stage A). The appearance of ECG abnormalities implies dis-
ease progression (stage B) and precedes the appearance of symptoms of heart fail-
ure (stages C and D) [13]. The most common initial signs are left anterior fascicular 
block, right bundle branch block, and segmental left ventricular wall motion abnor-
malities (the segments frequently involved are the infero-lateral wall and the apex). 
Late manifestations include sinus node dysfunction leading to severe bradycardia, 
high-degree atrioventricular blocks, non-sustained or sustained ventricular tachy-
cardia, progressive dilated cardiomyopathy with congestive heart failure, apical 
aneurysms (usually of the left ventricle), and emboli [11].
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The diagnosis of chronic infection relies on serological testing, through detection 
of IgG antibodies against T. cruzi. Cardiac involvement should be evaluated through 
ECG and echocardiography. A direct relationship exists between the number of alter-
ations identified in a single ECG and the severity of myocardial damage. Holter 
monitoring, exercise stress testing, and cardiac MRI (CMR) should be considered in 
symptomatic patients [11]. New York Heart Association (NYHA) functional class, 
left ventricular systolic function, cardiomegaly, and non-sustained ventricular tachy-
cardia have been consistently identified as important prognostic markers [14].

15.3.2	 �Treatment

The treatment of Chagas cardiomyopathy involves both parasite-specific therapy 
and adjunctive therapy for the management of heart failure. Treatment with antitry-
panosomal drugs, benznidazole or nifurtimox, is generally offered to patients with 
chronic disease in the indeterminate phase and patients with mild to moderate dis-
ease. Sudden death is the main cause of death, followed by refractory heart failure 
and thromboembolism [11]. Although both amiodarone and implantable 
cardioverter-defibrillator have been used, data for these patients are scarce.

15.3.3	 �Lyme Disease

Lyme disease is a spirochetal infection, which is transmitted by the bite of infected 
Ixodes spp. ticks. In most cases, it is caused by Borrelia burgdorferi. The disease is 
diffused especially in wooded areas. Cardiac involvement occurs during the early 
disseminated phase of the disease. B. burgdorferi can affect all layers of the heart, 
causing a transmural inflammation, with a predominance of macrophage and lym-
phocytes. Moreover, vasculitis of the small and large intramyocardial vessel can 
occur [15].

The cardiac manifestations are usually coincident with other symptoms of the 
disease (erythema, arthritis, or neurologic disease); however, in rare cases, there is 
an exclusive cardiac involvement. The principal manifestation of Lyme carditis is 
self-limited alteration of the conduction system and commonly varying degrees of 
atrioventricular block. Less frequently pericarditis, endocarditis, myocarditis, peri-
cardial effusion, myocardial infarction, coronary artery aneurysm, QT interval pro-
longation, tachyarrhythmias, and congestive heart failure have been reported [15]. 
Lyme myopericarditis is often self-limiting and mild. However, occasionally 
patients can develop symptomatic myocarditis with cardiac dysfunction [15]. 
Lardieri et al. reported two cases of patients affected by DCM in which B. burgdor-
feri was grown in the culture of myocardial biopsies. Cardiac function returned to 
normal following treatment with penicillin, in addition to standard heart failure 
therapy [16].

The diagnosis of Lyme carditis is challenging and requires the confirmation of the 
association between historical, clinical, and laboratory data. The disease is diagnosed 
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most easily when the cardiac involvement presents in association with a history of 
thick bite and classical Lyme manifestations (erythema migrans, arthritis), in the set-
ting of positive serologic testing for B. burgdorferi antibodies [15]. Echocardiography 
may provide evidence of myocardial dysfunction. Cardiac MRI plays a supportive 
role, typically displaying non-specific epicardial contrast enhancement [17].

15.3.4	 �Treatment

Antibiotic therapy in the early stages of the disease prevents or attenuates later com-
plications. Patients who have minor cardiac involvement (PR interval less than 
300 ms) and no other symptoms should receive oral antibiotics, amoxicillin or dox-
ycycline. Patients who have more severe cardiac involvement, such as second- or 
third-degree atrioventricular block or congestive heart failure, should be hospital-
ized and treated with intravenous ceftriaxone or high-dose penicillin G. Complete 
atrioventricular block usually resolves within 1 week, while minor conduction dis-
turbances regress in 6 weeks [15].

15.4	 �Dilated Cardiomyopathy Associated 
with Neuromuscular Diseases: Co-working 
with Neurologists

Neuromuscular diseases encompass a broad spectrum of diagnoses with overlap-
ping but distinct phenotypes [18], and most forms of cardiac involvement are 
detected from childhood to the second decade of life, but others can remain asymp-
tomatic until later in life [18].

DCM occurs in a variety of inherited neuromuscular disorders and represents the 
interface between the cardiology and neurology specialties. Patients with DCM 
should undergo a comprehensive examination which includes a neuromuscular 
examination in order to detect potential neuromuscular disorders. Moreover, serum 
creatine kinase (CK) dosage is useful during the diagnostic work-up of DCM with 
potential skeletal muscle involvement (see Table 15.1).

–– X-linked recessive muscular dystrophies include Duchenne muscular dystrophy 
(DMD) with a more severe phenotype and Becker muscular dystrophy (BMD) 
with milder and more variable phenotype. These are caused by mutations within 
the dystrophin gene, located on the X chromosome. Physical exam can reveal calf 
pseudohypertrophy, shortening of the Achilles tendons and hyporeflexia or are-
flexia in weak muscles, lumbar lordosis which compensates for gluteal weakness, 
and the classic Gower’s sign (the use of the hands and arms to “walk” up the own 
body from a squatting position due to lack of hip and thigh muscle strength). The 
incidence of cardiomyopathy in DMD increases with age. Although it is estimated 
that 25% of boys have cardiomyopathy at 6 years of age and 59% by 10 years of 
age, cardiac involvement is nearly ubiquitous in older patients with DMD, as 
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more than 80% of young men over 18 years of age demonstrate evidence of car-
diac dysfunction [19, 20]. Cardiac involvement leads to a progressive decline in 
cardiac function with age, resulting in ventricular dysfunction that contributes to 
early death for heart failure. DMD causes a primary cardiomyopathy character-
ized by extensive fibrosis of postero-basal left ventricular wall, resulting in the 
characteristic electrocardiographic change of tall right precordial R waves and 
deep Q waves in leads I, aVL, and V5–6. Clinical cardiologist should be aware of 
this “red flag” which may orient to a dystrophin-related cardiomyopathy. 
Currently, clinical guidelines recommend the initial cardiac screening at the time 
of diagnosis of DMD, every 2 years until 10 years of age and then yearly thereaf-
ter. It seems that angiotensin converting enzyme inhibitors (ACEi) and beta-
blockers may delay the onset and the progression of cardiac dysfunction and have 
to be recommended earlier in this disease and should become the mainstay of 
treatment of dystrophinopathic cardiomyopathy [21, 22].

–– Emery-Dreifuss muscular dystrophy (EDMD) is a genetically heterogeneous 
disorder that can be inherited as an X-linked recessive, autosomal dominant or 
autosomal recessive disorder. The disease is generally characterized by progres-
sive muscle wasting and weakness with typically early contractures of the 
elbows, Achilles tendons, and spine. DCM is seen in most patients with EDMD 
with common association of atrioventricular defects; however there is no correla-
tion between the degree of neuromuscular involvement and the severity of car-
diac abnormalities. Arrhythmogenic dilated cardiomyopathy and ventricular 
tachyarrhythmias are more common in autosomal dominant form (due to lamin 
A/C mutations).

–– Limb-girdle muscular dystrophy (LGMD) is still used as a generic term to 
describe those patients with muscular dystrophy of girdle distribution. Indeed, it 
is characterized by proximal weakness affecting the pelvic and shoulder girdles. 
There is broad clinical heterogeneity among the various LGMDs, and cardiac 
involvement is very common in lamin A/C mutation, which presents arrhythmias 
and conduction abnormalities and sarcoglycan disease which frequently presents 
a DCM phenotype.

–– Myotonic muscular dystrophies, type 1 and type 2, are characterized by myoto-
nia, seen as an impaired relaxation after muscle contraction. Myotonic dystrophy 
is a multisystemic disease and can be associated with DCM [23–26]. Cardiac 
manifestations include also atrioventricular block with occasional progression to 
complete heat block, atrial fibrillation, ventricular tachyarrhythmias, and reduced 
left ventricular ejection fraction.

15.5	 �Primary Iron-Overload Cardiomyopathy: Co-working 
with the Hematologists

Iron-overload cardiomyopathy can result from a primary disorder of iron metabo-
lism or from secondary causes of iron overload, such as hematologic disorders. 
Hereditary hemochromatosis is commonly due to mutations in the HFE gene, an 
autosomal recessive disorder in which there is increased intestinal iron absorption. 
Cardiac hemochromatosis is an important and potentially preventable cause of heart 
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failure [27]. This is initially characterized by diastolic dysfunction and conduction 
disturbances and in later stages by DCM. When evaluating a new cardiomyopathy, 
screening for iron overload should include serum ferritin and transferrin saturation. 
Cardiac involvement in hemochromatosis can often be diagnosed on the basis of 
history, clinical examination, laboratory testing, and noninvasive imaging. 
Myocardial iron overload can be detected also by CMR.

Current treatment modalities to remove excess iron stores include therapeutic 
phlebotomy and iron-chelating agents; congestive heart failure should be treated 
with standard heart failure treatment regimens. Timely diagnosis and treatment can 
prevent and in some cases reverse left ventricular dysfunction.

15.6	 �Cardiomyopathy Related to Chemotherapeutic Agents: 
Co-working with Oncologists

Cancer patients receiving chemotherapy have an increased risk of developing car-
diovascular complications. Cardiotoxicity is one of the most concerning of these 
complications and is defined as a left ventricular ejection fraction (LVEF) decline of 
≥5 to <55% with heart failure symptoms or an asymptomatic decrease of LVEF 
≥10 to <55% during cancer therapy [2, 28].

Two different patterns of cytotoxicity have been recognized:

–– Type I refers to the effects of the drugs that determine acute myocyte injury, 
causing irreversible damage and depressed cardiac function on a dose-dependent 
basis. The most commonly accepted pathophysiological mechanism of cardio-
toxicity is oxidative damage: these molecules form complexes with iron causing 
free radicals production [29]. Anthracyclines are the prototype for this category. 
The cardiac damage is dose-dependent; for this reason, in an attempt to reduce 
this injury, the initial dose, which is recommended not to be exceeded, is usually 
the one that has shown to cause less than 5% of heart failure cases. In comparison 
with other cardiomyopathies, anthracycline cardiotoxicity appears to have a sub-
stantially worse prognosis, with mortality rates up to 60% at 2 years. The hazard 
ratio for mortality has been reported as being over threefold that of idiopathic 
dilated cardiomyopathy [30]. For this reason, cardiac-sparing and cardioprotec-
tive strategies have been developed to reduce cardiac damage.

–– Type II refers to a pattern of often reversible cardiomyopathy with no evidence 
of acute myocyte injury. This type of cytotoxicity is not dose-dependent. Cardiac 
damage does not appear to occur in all patients, is expressed in a broad range of 
severity, and is not associated with identifiable ultrastructural abnormalities. 
Trastuzumab, a monoclonal antibody, is an example of these agents and may 
cause a reversible myocyte dysfunction.

Patients undergoing chemotherapy should have careful clinical evaluation and 
assessment of cardiovascular risk factors and comorbidities before initiating the 
treatment.

After the treatment beginning, the most frequently used modality for detecting 
cardiotoxicity is the periodic measurement of left ventricular ejection fraction by 

15  Dilated Cardiomyopathy at the Crossroad: Multidisciplinary Approach



238

using echocardiography. Global systolic longitudinal strain assessed by speckle 
tracking technology has been reported to accurately predict a subsequent decrease in 
ejection fraction [31]. The use of cardiac biomarkers, in particular troponins, during 
cardiotoxic chemotherapy, has emerged in the last decade and has proven to be a 
sensitive and specific tool for early identification and monitoring of anticancer drug-
induced cardiac injury. Brain natriuretic peptide (BNP) may be useful, but its role in 
routine surveillance to define high-risk patients is not well established [28, 31].

The timing of cardiotoxicity surveillance, using echocardiography and bio-
markers, needs to be personalized to the patients, considering their baseline cardio-
vascular risk and the specific cancer treatment protocol. Baseline echocardiography 
is recommended in all patients. Lifelong surveillance should be offered to patients 
treated with high doses of anthracycline and to survivors of childhood cancer [31].

15.6.1	 �Treatment

If left ventricular ejection fraction decreases >10% to a value below the lower limit 
of normal, ACEi and beta-blockers are recommended [31]. Moreover, when heart 
failure develops during chemotherapy, it is important to refer the patients to a car-
dio-oncology specialist and to have a close liaison with the oncology team to deter-
mine the necessity and duration of any interruption of cancer treatment [28, 31]. 
The time from the detection of cardiotoxicity, at the surveillance echocardiography, 
to the start of heart failure therapy is a crucial variable for recovery of cardiac dys-
function [32]. The historical dogma that anthracycline toxicity is irreversible is 
mainly due to the fact that the cardiac damage was identified late, while it has been 
shown that the large majority of patients with left ventricular dysfunction can 
improve with early therapy [2].

15.7	 �Alcoholic Cardiomyopathy

Alcoholic cardiomyopathy is a form of acquired dilated cardiomyopathy associated 
with a long history of heavy alcohol abuse (commonly defined as the consumption 
of over 80–90 g per day over a period of at least 5 years). The disease has a similar 
prevalence in men and women, although women seem to require a lower total life-
time dose of ethanol to develop symptoms.

Several mechanisms are implicated in mediating the adverse effects of ethanol: 
oxidative stress, apoptotic cell death, impaired mitochondrial bioenergetics/stress, 
derangements in fatty acid metabolism and transport, and accelerated protein catab-
olism [33]. Moreover, genetic factors may predispose to the disease. In a recent 
study, Ware et  al. have shown that truncation variants in the gene encoding titin 
(TTNtv) represent an important genetic predisposition to alcoholic cardiomyopathy 
and that the combination of these variants and excess alcohol consumption is asso-
ciated with worse left ventricular ejection fraction in patients affected by dilated 
cardiomyopathy [34].
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Alcoholic cardiomyopathy is characterized by depressed cardiac output, reduced 
myocardial contractility, and dilatation of all the chambers of the heart. The effect 
of alcohol on left ventricular function is dose-dependent and progressive, causing, 
initially, a subclinical diastolic and/or systolic dysfunction, up to the development 
of low-output dilated cardiomyopathy, leading to episodes of congestive heart fail-
ure and even to sudden death [35]. Echocardiography is able to detect subclinical 
changes in cardiac function, which occur in the early stages of the disease, as abnor-
mal Doppler transmitral flow pattern, indicating impaired left ventricle relaxation; 
changes in left ventricle volume before the changes in cardiac mass and impairment 
of diastolic filling may be a sensitive marker of the detrimental effect of alcohol on 
the heart [36].

Other clinical manifestations of alcoholic cardiomyopathy are arrhythmias. 
Indeed, chronic alcohol abuse produces multiple physiologic aberrancies in the 
heart, including ultrastructural changes, effects on the QT interval and heart rate 
variability, and proarrhythmic electrolyte abnormalities, creating a substrate for 
triggering nonfatal and fatal arrhythmias [35, 37].

The natural history of alcoholic cardiomyopathy compared with idiopathic 
dilated cardiomyopathy has been a highly controversial issue [38, 39]. The largest 
series of patients with alcoholic cardiomyopathy and the earliest to include signifi-
cant numbers of patients receiving beta-blocker therapy, as well as angiotensin-
converting enzyme inhibitor therapy, reported a better prognosis with alcoholic 
cardiomyopathy than with idiopathic dilated cardiomyopathy [40].

15.7.1	 �Treatment

Complete alcohol withdrawal is usually recommended to all patients with alcoholic 
cardiomyopathy [41]. Medical therapy is no different from that for other etiologies 
of heart failure. Moreover, any nutritional deficiencies should be corrected. The use 
of vitamin supplements is recommended in case of a deficiency, in particular B 
complex vitamins. Furthermore, it is necessary to correct the electrolyte distur-
bances, in order to avoid dangerous arrhythmias.
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