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Preface

Sensitivity analysis addresses one of the most persistent of all questions: what would
happen if ? Within the field of demography, sensitivity analysis might be said to
have originated with the groundbreaking, yet very different, papers of Hamilton
(1966) and Keyfitz (1971). Hamilton calculated the sensitivity of the intrinsic rate
of increase, r , to changes in age-specific mortality. He interpreted r as a measure of
individual fitness, capturing the effects of the phenotype on mortality and fertility.
The resulting sensitivities are measures of the strength of natural selection on
aging and senescence. Keyfitz calculated sensitivities of population growth rate, life
expectancy, and other quantities. Taking a demographic perspective, he interpreted
the results as showing the linkage between age-specific rates at the individual level
and the “intrinsic” rates expressed at the population level. Both these perspectives
on sensitivity analysis continue to play major roles in demography and population
biology. Connecting traits to individual rates, and those rates to measures of fitness,
is the foundation of evolutionary demography. Understanding linkages between
individual rates and population outcomes informs population projections, policy and
spending, conservation, health demography, ecotoxicology, and so on.

Fast forward to today. The diversity of demographic models, of the outcomes
that can be calculated, and the power of the mathematical tools available to analyze
them far exceed those of 50 years ago. Much of this progress is due to the
formulation of demographic models in terms of matrices. P. H. Leslie formulated
matrix models in the 1940s (Leslie 1945), but they were mostly ignored for
two decades until revitalized by a series of studies in the 1960s (Keyfitz 1964;
Lefkovitch 1965; Rogers 1968). In the very first issue of the first volume of the
new journal Demography, Nathan Keyfitz described population projection as a
matrix operator (Keyfitz 1964). This book relies on matrix formulations generalized
beyond projections to age-structured and stage-structured populations, to linear and
nonlinear dynamics, to time-invariant and time-varying vital rates, and to multistate
models that combine age and stage information.
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The matrix formulation provides easily computable outcomes at the level of
the individual (e.g., risks of mortality, longevity, lifetime reproduction), the cohort
(e.g., distributions of age or stage at death), and the population (e.g., population
growth rate). The mathematical connection of matrix models and the theory of finite-
state Markov chains make it possible to go beyond expected outcomes to calculate
variances and higher moments and to take full advantage of the stochasticity of
demographic events at the individual level (individual stochasticity).

The sensitivity analysis of these diverse outcomes is made possible by the
even more recently developed mathematical tool of matrix calculus (Magnus and
Neudecker 1988). Matrix calculus permits easy differentiation of scalar-, vector-,
and matrix-valued functions of scalar-, vector-, and matrix-valued arguments. This
entire book is an application of these methods to demographic problems.

Organization The book is (imperfectly) divided into five parts. Part I contains an
introduction and a summary of the matrix calculus methods that are used throughout
the book.

Part II analyzes linear models for population growth, longevity, and reproduction.
In linear models, the per-capita vital rates are independent of population size and
structure. When the rates are also time-invariant, these models lead to a stable
age or stage structure and exponential growth. The rate of growth is one of
the most fundamental outcomes of stable population theory. Chapter 3 analyzes
the sensitivity of population growth rate from three directions: differentiation of
the characteristic equation, eigenvalue perturbation theory, and matrix calculus,
providing the first application of the methods that form the basis of the subsequent
chapters. Chapter 4 focuses on longevity, presenting the sensitivity analysis of
life expectancy, variance in longevity, and life disparity. Chapter 5 introduces the
important concept of individual stochasticity (stochastic outcomes of probabilistic
transitions in the life cycle) and explores its effects on longevity, net reproductive
rate, birth intervals, and age at reproduction. Some aspects of time variation
are introduced, including the first appearance in the book of the powerful vec-
permutation matrix method to describe temporally varying environments.

A critical first step in the construction of any demographic model is the choice
of the individual state (i-state) variables that capture the relevant information about
individuals. Age, developmental stage, body size, and a variety of other properties
have been used as i-states. However, it is often the case that a combination of age and
some other characteristic is necessary to describe individuals. Chapter 6 presents the
sensitivity analysis of such models, using the vec-permutation method to construct
multistate models and matrix calculus to differentiate the results.

Part III relaxes the assumption of time invariance. Chapter 7 presents the
sensitivity analysis of transient dynamics, i.e., dynamics that happen in the short
term, before asymptotic behavior appears. Short-term population growth and struc-
ture may differ in important ways from the growth and structure implied by
stable population theory. Chapter 7 explores these differences, for cases where
the vital rates may be fixed, varying, or even nonlinear. Chapter 8 analyzes
periodic models. Such models appear in a variety of guises: as matrix products
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describing periodic (e.g., seasonal) environmental variation and as matrix products
describing distinct processes embedded within an apparently single projection
matrix and in the construction of multistate matrix models. In each case, the goal
is to describe the sensitivity of some overall outcome, calculated from the entire
periodic matrix product, to changes in parameters affecting each component of the
matrix. Chapter 9 analyzes population growth in stochastic environments and the
problem of decomposing differences in stochastic growth rates into components
due to the environment and to the vital rates. This requires a combination of the
first-order approximate decomposition known as life table response experiment
(LTRE) analysis with the more specialized Kitagawa-Keyfitz decomposition and
has potential implications far beyond the stochastic environment case.

Part IV analyzes nonlinear models, including density-dependent models,
frequency-dependent models (e.g., models for the interaction of the sexes),
nonlinear models for subsidized populations, and a nonlinear approach to the
sensitivity of the stable structure and the reproductive value of linear models.

Finally, Part V returns to the analysis of the Markov chain models that form the
basis of many of the demographic calculations throughout the book. These chapters
take a more mathematical approach to the sensitivity analysis of Markov chains,
including some aspects that have yet to find wide demographic application (but the
potential is there). Chapter 11 analyzes discrete-time chains, both the absorbing
chains familiar in demography (death is an absorbing state in most models) and
ergodic chains that include no absorbing states. Chapter 12 presents the sensitivity
analysis of continuous-time absorbing Markov chains, using as an example of a
model for the stages of colorectal cancer.

Most of the chapters here are based on, or extended from, papers that have
appeared in a variety of journals in ecology, population biology, human demography,
and applied mathematics. There is overlap among the chapters. This is a feature,
not a bug, because it means that similar calculations are revisited with different
perspectives, different derivations, and different examples. When choices arose, I
tried to choose the presentation that would make things easier for the reader.

The material here certainly does not exhaust the applications of matrix calculus
in the sensitivity analysis of demographic models. I have tried to point out directions
for further development.
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Part I
Introductory and Methodological



Chapter 1
Introduction: Sensitivity Analysis – What
and Why?

1.1 Introduction

Demography is a science that connects individual processes and events to the
development of cohorts and then to the dynamics of populations. It does so with
mathematical models that distinguish among individuals based on their character-
istics.1 The most familiar such model is the life table, which records mortality and
fertility of the individual as a function of age, and is used to calculate properties of
cohorts (e.g., the distribution of age at death) and populations (e.g., the intrinsic rate
of increase).

The life table is the most familiar, but demography has proceeded far beyond
that in both models and analyses. In any case, though, a model is defined first by its
structure (the states of individuals and the transitions possible among them), then
by the rates at which individuals develop, survive, and reproduce throughout the
life cycle, then by the functional dependence of those rates (time-invariant or time-
varying, density-independent or density-dependent, deterministic or stochastic), and
finally by the values of the parameters that define the rates. A set of parameters
operating within a given model generates the demographic outcomes calculated
from the model (population growth rate, population structure, equilibria, cycles,
measures of longevity, state occupancy times, transient behavior and projections,
and so on). The sensitivity problem is to understand how the outcome[s] change in
response to changes in the parameters.

1Technically, these characteristics are known as individual state variables, or i-states (Metz and
Diekmann 1986; Caswell 2001). Their task is to capture all the information about the individual’s
history that is relevant to determining its future fate, and a major task of demography is to discover
those aspects of the individual necessary for a successful i-state (e.g., de Vries and Caswell 2017).
In the models considered here, the population state (p-state) is a distribution function over the set of
i-states. Thus, for example, age as an i-state leads to a population described by its age distribution.
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4 1 Introduction: Sensitivity Analysis – What and Why?

Why should we care about the effects of change?

• We may be concerned with particular changes that we have reason to believe will
occur (due to, e.g., changes in society, changes in the environment, changes in
policy) and want to know how they will affect the outcome of interest.

• We may want to evaluate the effect of changes that we hope to cause as matters
of policy, or to compare alternative policies for their effects.

• We may be interested in evolutionary demographic questions. Natural selection
is a process that explores the consequences for fitness (which is itself a demo-
graphic outcome) of changing the phenotypic traits that influence demographic
parameters.

• We may want to identify the parameters have the biggest effect on the outcome,
in order to allocate sampling or measurement efforts where they are most needed.

• At a very basic level, we may simply want to know how the system works,
how the outcomes are determined. Just as an empirical study might include
experiments to manipulate factors and see how outcomes change, sensitivity
analysis of a mathematical model reveals how outcomes respond to parameter
changes.

It is not an overstatement to say that no model is every fully understood if it does
not include a sensitivity analysis.

1.2 Sensitivity, Calculus, and Matrix Calculus

The change in an outcome in response to a change in a parameter can be treated as a
problem in differential calculus. Let ξ denote some dependent variable and θ some
parameter. The sensitivity problem can be approached via the derivative

dξ

dθ
(1.1)

or the elasticity, or proportional sensitivity2

εξ

εθ
= θ

ξ

dξ

dθ
= d log ξ

d log θ
(1.2)

Note that I will use “sensitivity analysis” to refer generically to both sensitivity
and elasticity.

The sensitivity problem is a challenging task, rather than an exercise in under-
graduate calculus, because the dependence of ξ on θ may be complicated, and

2There seems to be no standard notation for elasticities; the one I am using here is based on a
suggestion by Samuelson (1947).
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because ξ may be a scalar (e.g. life expectancy at birth, or population growth rate)
or a vector (e.g., a stable stage distribution or a projected population structure)
or a matrix (e.g., the matrix of mean occupancy times). Similarly, θ may be a
scalar (e.g., the Gompertz rate of aging) or a vector (e.g., the age schedule of
mortality rates), or a matrix (e.g., the transition matrix among life cycle stages).
In addition, the chains of causation in even simple demographic models are
complicated. Tracing the causal chains from a set of parameters (of which there
may be many) to a set of outcomes (again, many) with complicated interactions is
hard.

This book is an in depth exploration of sensitivity analyses based on matrix
formulations of demographic calculations. Matrix formulations are designed pre-
cisely to map transformations from one multidimensional space to another. Thus
they simplify computations, clarify notation, and increase analytical power.3

The premise of this book is that demography as a discipline is neither defined
by, nor limited to, a taxon. You will find here examples and analyses of humans, of
non-human animals, and plants. Human demography and population biology have
mutually informed each other from the beginning, and I see no reason for them to
stop now.

It is important to remember that the diversity of complex life histories among
the species that occupy our world poses a challenge to demographic analysis that is
identical to the challenge posed by the complicated lives of humans. The dynamics
of health status, family structure, or socio-economic status introduce complications
to the life course exactly comparable to the dynamics of size growth in plants,
metamorphosis in insects, or breeding status in birds.

A bit of history The earliest focus of demographic sensitivity analysis was
population growth rate λ (or the intrinsic rate of increase r = log λ) in linear
demographic models. Hamilton (1966) was the first to solve this, in the context
of the evolution of senescence. Demetrius (1969) derived a corresponding matrix
expression, apparently unaware of Hamilton’s results. Goodman (1971) was the
first to notice the connection to reproductive value (see Chap. 3). Keyfitz (1971)
derived the sensitivity of r , but also of life expectancy, mean age at death,and other
outcomes.

All these analyses were based on age-classified demographic models. These
results were generalized to stage-classified models by applying eigenvalue pertur-
bation theory (Caswell 1978), followed by elasticity calculations (de Kroon et al.
1986), sensitivities of eigenvectors (Caswell 1982), lower-level parameters (Caswell
1989b), second derivatives of eigenvalues (Caswell 1996), the population spreading
rate (Neubert and Caswell 2000), transient dynamics (Caswell 2007) and other
things. Following the important early work of Tuljapurkar (1990), the sensitivity

3That does not mean that calculations made by other means are wrong. I am a methodological
pluralist, and I do not believe that it is necessary to attack other methods in order to justify the use
of matrix methods.
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analysis of stochastic models developed in parallel with that of deterministic models
(e.g. Tuljapurkar et al. 2003; Haridas and Tuljapurkar 2005; Horvitz et al. 2005;
Steinsaltz et al. 2011).

Matrix calculus, permitting differentiation of scalar-, vector-, or matrix-valued
functions of scalar, vector, or matrix arguments, began to be developed in the
1960s (see Nel (1980) for some history and comparison of different methods).
The approach we will use here was introduced by Neudecker (1969) and expanded
by Magnus and Neudecker (1985). A comprehensive, but mathematically difficult,
treatment is given in Magnus and Neudecker (1988). Chapter 2 gives a brief
presentation of the matrix calculus methods we will utilize in this book.

1.3 Some Issues

Sensitivity analysis is more than an algebraic exercise; it is a tool for making
inferences and drawing conclusions about substantive demographic issues. It is
useful to bring to the discussion a perspective on some questions.

1.3.1 Prospective and Retrospective Analyses: Sensitivity and
Decomposition

If some variable ξ is a function of a set of parameters θ1, . . . , θp, then ∂ξ
∂θi

gives
the rate of change of ξ in response to a change in the ith parameter, holding the
rest constant. Contrary to what is sometimes assumed, this calculation requires no
assumption that it is actually possible to change the parameters. If the flight velocity
of pigs is one of the parameters in the model, the analysis will happily answer the
question of what would happen if pigs could fly.

Nor is there any assumption that changes in θi have ever happened in the past.
The sensitivity analysis looks forward, asking what would happen if this or that
parameter were to change. It is thus referred to as prospective analysis (Caswell
2000).

On the other hand, suppose you find yourself considering two values of ξ , that
have resulted from two different situations (times, places, conditions), each with its
own set of parameters:

θ
(1)
1 , θ

(1)
2 , . . . −→ ξ (1)

θ
(2)
1 , θ

(2)
2 , . . . −→ ξ (2)

You ask, what caused the difference between ξ (2) and ξ (1). Knowing the derivatives
∂ξ
∂θi

cannot tell you, because you are not asking the counterfactual question of what
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would happen if, but the very factual question of what actually happened between
the two situations. This is a retrospective analysis, familiar to human demographers
as a decomposition problem (e.g., Kitagawa 1955; Canudas Romo 2003).

One widely used approach to understanding the causes of observed differences
is life table response experiment (LTRE) analysis,4 which uses a first-order approx-
imation to decompose the differences,

�ξ = ξ (2) − ξ (1) ≈
∑

i

∂ξ

∂θi

(
θ

(2)
i − θ

(1)
i

)
. (1.3)

The ith term in the summation is the contribution of the difference in the parameter
θi to the difference in the outcome, �ξ . These contributions reflect both the
sensitivity of ξ to the parameters and the differences between conditions in each
of the parameters. Parameters to which ξ is not very sensitive can make large
contributions if the difference �θi is big enough. Contributions to which ξ is very
sensitive can make small contributions if θi does not change much. The matrix
calculus version of this decomposition is given in Sect. 2.9, applied to differences
in life disparity in Chap. 4, to periodic environments in Chap. 8, and explored in the
challenging context of stochastic models in Chap. 9.

The distinction between prospective and retrospective analysis is obvious once
the questions they address are specified, but it has challenged a number of authors
(e.g., Wisdom and Mills 1997; Manlik et al. 2017). A particularly insightful
discussion of these ideas, in somewhat different terminology, appears in Nathan
Keyfitz’s essay, How do we know the facts of demography?, which now appears as
Chapter 20 of Keyfitz and Caswell (2005).

1.3.2 Uncertainty Propagation

Suppose that ξ is a function of θ , but θ is known only imperfectly. Then ξ is
also known only imperfectly; the uncertainty in θ is propagated from θ to ξ . The
sensitivity dξ/dθ alone says nothing about uncertainty, and the uncertainty in ξ

says nothing about the sensitivity.
Uncertainty propagation can be calculated by simulation if a probability dis-

tribution is known that can describe the uncertainty in θ . Sampling from this
distribution and calculating ξ for each sampled parameter gives the distribution
of ξ resulting from the uncertainty in θ (e.g. Caswell et al. 1998; Salomon et al.

4This awkward but well entrenched nomenclature was created when I was trying to understand the
interpretation of experiments in ecotoxicology in which laboratory cohorts would be exposed to
some noxious substance, and a life table (mortality and fertility schedule) measured as a response
variable (Caswell 1989a). It soon became apparent that the method could be applied to any
comparison of different conditions, and that the response could be any demographic variable. See
(Caswell 2001, Chapter 10) for details.
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2001). If the distribution of θ comes from an empirical set of measurements,
this approach converges to the bootstrap (Efron and Tibshirani 1993). If θ has
a parametric distribution (e.g., the multivariate normal distribution returned by
maximum likelihood estimation) the technique is sometimes known as a parametric
bootstrap (e.g., Regehr et al. 2010).

Sensitivity analysis can contribute to uncertainty propagation analysis through
the first order, small variance approximation to the variance in ξ ,

V (ξ) ≈
∑

i,j

(
∂ξ

∂θi

)(
∂ξ

∂θj

)
Cov(θi, θj ) (1.4)

Notice again that sensitivity does not, by itself, say anything about uncertainty, but
it does show how the (co)variance in parameters will propagate to the variance in
the outcome ξ .

1.3.3 Why Not Just Simulate?

If you work on these problems, or if you apply these methods in particular studies,
eventually you will be asked (often by a reviewer), why not just do it all by
simulation?Just evaluate ξ at the value θ , and at θ + �θ , and then approximate
the derivative as

�ξ

�θ
= ξ(θ + �θ) − ξ(θ)

�θ
(1.5)

for some very small value of �θ .
Three answers come to mind. First, if θ and the model are of sufficiently high

dimension, there can be a lot of these perturbations to be calculated. For example,
population projections of the type analyzed by Caswell and Sanchez Gassen (2015),
with 102 ages, 2 sexes, 3 vital rates, and projections on the order of 50 years,
have over 30,000 parameters. A numerical perturbation of each of these would be
painful.

Second, the computation of derivatives by numerical perturbations is a noto-
riously ill-behaved problem. A standard reference on computations in applied
mathematics says that this approximation is “almost guaranteed to produce inac-
curate results” (Press et al. 1992, p. 185). It is subject to truncation error (caused
by making the perturbation too large) and roundoff error (caused by making the
perturbation too small). In some applications these errors will be unimportant, but
in others they can be crucial (e.g., Hunter and Caswell 2009, for an example in
mark-recapture analysis)s.

Third, and more basic and telling: an exact answer is always an improvement
over an approximation. When an exact answer is available, in an easily computable
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form, there must be strong arguments to support the idea that a less efficient and
less accurate approximation is just as good. And having both exact and approximate
methods is even better.

These arguments apply to numerical calculation of derivatives. But simulation
has an important place in analyzing scenarios; i.e., the results of specified collec-
tions of parameters, usually with multiple and large differences among them. When
population projections are reported with “high,” “medium,” and “low” fertility
scenarios, the point is to compare a range of multivariate alternatives. Other
examples include comparisons of screening procedures for colorectal cancer (Wu
et al. 2006), or projections based on IPCC global climate models (e.g., Jenouvrier
et al. 2012). In principle, sensitivity analysis could support these calculations
by suggesting interesting scenarios, highlighting the parameters with the biggest
impact on the outcome.

1.3.4 Sensitivity and Identifying Targets for Intervention

To intervene is to change something. Population biologists concerned with endan-
gered species would like to intervene to increase the population growth rate. Those
concerned with invasive pests would like to do the same, but in the opposite
direction. Human demographers focused on aging societies wonder about how
policies would change age distributions or dependency ratios. In all these cases,
the interventions operate through changes in demographic parameters, and thus
sensitivity analysis can reveal something about their effects.

This logic has led to the use of prospective perturbation analyses in conservation
biology, using the sensitivity or elasticity of population growth rate to identify
promising targets for intervention. The first such use involved the loggerhead sea
turtle (Crouse et al. 1987). Standard practice at the time was to focus on protecting
eggs and hatchlings on nesting beaches. But a sensitivity analysis showed that
population growth rate was not very sensitive to these stages, and much more
sensitive to changes in survival of adults at sea. This led to a recommendation, and
then a policy, to install “turtle excluder devices” on the nets used in coastal shrimp
fisheries in the United States, to reduce mortality due to adult turtles being captured
in those nets.

This basic idea has become a part of the toolkit for conservation biology, but
has also fallen victim to a kind of magical thinking that first makes unrealistic
expectations of the sensitivity analysis and then blames the analysis for failing
to meet those expectations. For a recent example see Manlik et al. (2017); for a
thorough description of the issues and some of their solutions, see Caswell (2001,
Chapter 18).

The fact remains that knowing the sensitivity of some outcome ξ to some
parameter θ gives the rate of change of ξ in response to an intervention that changes
θ . That is valuable information to have in considering the various interventions that
might bring about a desired change.
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1.3.5 The Dream of Easy Interpretation

This book is full of long and complicated formulas. Occasionally, these formulas
yield easy, readily apparent, qualitative interpretations.5 But not often. There is a
reason for this. The formulas are complicated because the processes are compli-
cated, and because the results are given at a high level of generality. Chapter 10,
for example, analyzes the sensitivity of nonlinear, density-dependent models. It
derives a complicated formula for the sensitivity of any function of the equilibrium
population, to changes in any parameter affecting any of the vital rates, in any age-
or stage-specific way, for any choice of stage classification and any survival, fertility,
and transition rates, with any pattern of density dependence, for any species with any
kind of life history. Accounting for that web of dependencies, in such generality,
makes finding an easily interpretable formula an unlikely dream.

Not an impossible dream, but in general, insights of that kind arise from
simplifying general methods to address particular situations. Specifying a particular
demographic structure, choosing an outcome variable of interest, and carefully
specifying the functional dependencies, if done skillfully, can lead to qualitative
results.

1.4 The Importance of Change

Questions of change lurk in almost every demographic (every scientific?) study. We
ask how things have changed in the past, how they differ among populations in the
present, and how they will, or may, change in the future. Even apparently simple
descriptive statements (the results of a census in a particular time and place, for
example) are almost immediately examined in comparison with other times and/or
places.

Sensitivity analysis is a powerful tool for analyzing change, in the special case of
demographic outcomes that are calculated as functions of some set of parameters.
As the chapters to come will make clear, this covers a wide landscape of interesting
demographic questions. And the list is not yet complete.
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Chapter 2
Matrix Calculus and Notation

2.1 Introduction: Can It Possibly Be That Simple?

In October of 2005, I scribbled in a notebook, “can it possibly be that simple?” I
was referring to the sensitivity of transient dynamics (the eventual results appear
in Chap. 7), and had just begun to use matrix calculus as a tool. The answer to my
question was yes. It can be that simple.

This book relies on this set of mathematical techniques. This chapter introduces
the basics, which will be used throughout the text. For more information, I
recommend four sources in particular. The most complete treatment, but not the
easiest starting point, is the book by Magnus and Neudecker (1988). More accessible
introductions can be found in the paper by Magnus and Neudecker (1985) and
especially the text by Abadir and Magnus (2005). A review paper by Nel (1980)
is helpful in placing the Magnus-Neudecker formulation in the context of other
attempts at a calculus of matrices.

Sensitivity analysis asks how much change in an outcome variable y is caused
by a change in some parameter x. At its most basic level, and with some reasonable
assumptions about the continuity and differentiability of the functional relationships
involved, the solution is given by differential calculus. If y is a function of x, then
the derivative

dy

dx

tells how y responds to a change in x, i.e., the sensitivity of y to a change in x.
However, the outcomes of a demographic calculation may be scalar-valued (e.g.,

the population growth rate λ), vector-valued (e.g., the stable stage distribution),
or matrix-valued (e.g., the fundamental matrix). Any of these outcomes may be

© The Author(s) 2019
H. Caswell, Sensitivity Analysis: Matrix Methods in Demography
and Ecology, Demographic Research Monographs,
https://doi.org/10.1007/978-3-030-10534-1_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10534-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-10534-1_2


14 2 Matrix Calculus and Notation

functions of scalar-valued parameters (e.g., the Gompertz aging rate), vector-valued
parameters (e.g., the mortality schedule), or matrix-valued parameters (e.g., the
transition matrix) parameters. Thus, sensitivity analysis in demography requires
more than the simple derivative in (2.1). We want a consistent and flexible approach
to differentiating

⎧
⎨

⎩

scalar-valued
vector-valued
matrix-valued

⎫
⎬

⎭ functions of

⎧
⎨

⎩

scalar
vector
matrix

⎫
⎬

⎭ arguments

2.2 Notation and Matrix Operations

2.2.1 Notation

Matrices are denoted by upper case bold symbols (e.g., A), vectors (usually) by
lower case bold symbols (n). The (i, j) entry of the matrix A is aij , and the ith
entry of the vector n is ni . Sometimes we will use MATLAB notation, and write

X(i, :) = row i of X (2.1)

X(:, j) = column j of X (2.2)

The notation

(
x(ij)

)

denotes a matrix whose (i, j) entry is x. For example,

(
dyi

dxj

)

is the matrix whose (i, j) entry is the derivative of yi with respect to xj .
The transpose of X is XT. Logarithms are natural logarithms. The vector norm

‖x‖ is, unless noted otherwise, the 1-norm. The symbol D (x) denotes the square
matrix with x on the diagonal and zeros elsewhere. The symbol 1 denotes a vector
of ones. The vector ei is a unit vector with 1 in the ith entry and zeros elsewhere.
The identity matrix is I. Where necessary for clarity, the dimension of matrices or
vectors will be indicated by a subscript. Thus Is is a s × s identity matrix, 1s is an
s × 1 vector of ones, and Xm×n is a m × n matrix.

In some places (Chaps. 6 and 10) block-structured matrices appear; these are
denoted by either A or Ã, depending on the context and the role of the matrix.
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2.2.2 Operations

In addition to the familiar matrix product AB, we will also use the Hadamard, or
elementwise product

A ◦ B = (
aij bij

)
(2.3)

and the Kronecker product

A ⊗ B = (
aij B

)
(2.4)

The Hadamard product requires that A and B be the same size. The Kronecker
product is defined for any sizes of A and B. Some useful properties of the Kronecker
product include

(A ⊗ B)−1 =
(

A−1 ⊗ B−1
)

(2.5)

(A ⊗ B)T =
(

AT ⊗ BT
)

(2.6)

A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C) (2.7)

and, provided that the matrices are of the right size for the products to be defined,

(A1 ⊗ B1) (A2 ⊗ B2) = (A1A2 ⊗ B1B2) . (2.8)

2.2.3 The Vec Operator and Vec-Permutation Matrix

The vec operator transforms a m × n matrix A into a mn × 1 vector by stacking the
columns one above the next,

vec A =
⎛

⎜⎝
A(:, 1)

...

A(:, n)

⎞

⎟⎠ (2.9)

For example,

vec

(
a b

c d

)
=

⎛

⎜⎜⎝

a

c

b

d

⎞

⎟⎟⎠ . (2.10)
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The vec of A and the vec of AT are rearrangements of the same entries; they are
related by

vec AT = Km,nvec A (2.11)

where A is m × n and Km,n is the vec-permutation matrix (Henderson and Searle
1981) or commutation matrix (Magnus and Neudecker 1979). The vec-permutation
matrix can be calculated as

Km,n =
m∑

i=1

n∑

j=1

(
Eij ⊗ ET

ij

)
(2.12)

where Eij is a matrix, of dimension m × n, with a 1 in the (i, j) entry and zeros
elsewhere. Like any permutation matrix, K−1 = KT.

The vec operator and the vec-permutation matrix are particularly important in
multistate models (e.g., age×stage-classified models), where they are used in both
the formulation and analysis of the models (e.g., Caswell 2012, 2014; Caswell and
Salguero-Gómez 2013; Caswell et al. 2018); see also Chap. 6. Extensions to an
arbitrary number of dimensions, so-called hyperstate models, have been presented
by Roth and Caswell (2016).

2.2.4 Roth’s Theorem

The vec operator and the Kronecker product are connected by a theorem due to Roth
(1934):

vec (ABC) =
(

CT ⊗ A
)

vec B. (2.13)

We will often want to obtain the vec of a matrix that appears in the middle of a
product; we will use Roth’s theorem repeatedly.

2.3 Defining Matrix Derivatives

The derivative of a scalar y with respect to a scalar x is familiar. What, however,
does it mean to speak of the derivative of a scalar with respect to a vector, or of
a vector with respect to another vector, or any other combination? These can be
defined in more than one way and the choice is critical (Nel 1980; Magnus and
Neudecker 1985). This book relies on the notation due to Magnus and Neudecker,
because it makes certain operations possible and consistent.

• If x and y are scalars, the derivative of y with respect to x is the familiar derivative
dy/dx.
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• If y is a n × 1 vector and x a scalar, the derivative of y with respect to x is the
n × 1 column vector

dy
dx

=

⎛

⎜⎜⎜⎜⎝

dy1

dx
...

dyn

dx

⎞

⎟⎟⎟⎟⎠
. (2.14)

• If y is a scalar and x a m × 1 vector, the derivative of y with respect to x is the
1 × m row vector (called the gradient vector)

dy

dxT
=

(
∂y

∂x1
· · · ∂y

∂xm

)
. (2.15)

Note the orientation of dy/dx as a column vector and dy/dxT as a row vector.
• If y is a n × 1 vector and x a m × 1 vector, the derivative of y with respect to x

is defined to be the n × m matrix whose (i, j) entry is the derivative of yi with
respect to xj , i.e.,

dy

dxT
=

(
dyi

dxj

)
(2.16)

(this matrix is called the Jacobian matrix).
• Derivatives involving matrices are written by first transforming the matrices

into vectors using the vec operator, and then applying the rules for vector
differentiation to the resulting vectors. Thus, the derivative of the m × n matrix
Y with respect to the p × q matrix X is the mn × pq matrix

dvec Y

d (vec X)T
. (2.17)

From now on, I will write vec TX for (vec X)T.

2.4 The Chain Rule

The chain rule for differentiation is your friend. The Magnus-Neudecker notation,
unlike some alternatives, extends the familiar scalar chain rule to derivatives of
vectors and matrices (Nel 1980; Magnus and Neudecker 1985). If u (size m × 1) is
a function of v (size n × 1) and v is a function of x (size p × 1), then

du

dxT
︸︷︷︸
m×p

=
(

du

dvT

)

︸ ︷︷ ︸
m×n

(
dv

dxT

)

︸ ︷︷ ︸
n×p

(2.18)
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Notice that the dimensions are correct, and that the order of the multiplication
matters. Checking dimensional consistency in this way is a useful way to find errors.

2.5 Derivatives from Differentials

The key to the matrix calculus of Magnus and Neudecker (1988) is the relationship
between the differential and the derivative of a function. Experience suggests that,
for many readers of this book, this relationship is shrouded in the mists of long-ago
calculus classes.

2.5.1 Differentials of Scalar Function

Start with scalars. Suppose that y = f (x) is a differentiable function at x = x0.
Then the derivative of y with respect to x at the point x0 is defined as

f ′(x0) = lim
h→0

f (x0 + h) − f (x0)

h
. (2.19)

Now define the differential of y. This is customarily denoted dy, but for the moment,
I will denote it by cy. The differential of y at x0 is a function of h, defined by

cy(x0, h) = f ′(x0)h. (2.20)

There is no requirement that h be “small.” Since x is a function of itself, x = g(x),
with g′(x) = 1, we also have cx(x0, h) = g′(x0)h = h. Thus the ratio of the
differential of y and the differential of x is

cy(x0, h)

cx(x0, h)
= f ′(x0)h

h
= f ′(x0). (2.21)

That is, the derivative is equal to the ratio of the differentials.
Now, return to the standard notation of dy for the differential of y. This gives

two meanings to the familiar notation for derivatives,

dy

dx

∣∣∣∣
x0

= f ′(x0). (2.22)

The left hand side can be regarded either as equivalent to the limit (2.19) or the ratio
of the differentials given by (2.21). Mathematicians are strangely unconcerned with
this ambiguity (e.g., Hardy 1952).
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All this leads to a set of familiar rules for calculating differentials that guarantee
that they can be used to create derivatives. A few of these, for scalars, are

d(u + v) = du + dv (2.23)

d(cu) = c du (2.24)

d(uv) = u(dv) + (du)v (2.25)

d(eu) = eudu (2.26)

d(log u) = 1

u
du (2.27)

If y = f (x1, x2), then the total differential is

dy = ∂f

∂x1
dx1 + ∂f

∂x2
dx2. (2.28)

Derivatives can be constructed from these expressions at will by dividing by
differentials. For example, dividing (2.23) by dx gives d(u + v)/dx = du/dx +
dv/dx. From (2.28), we have

dy

dx1
= ∂f

∂x1
+ ∂f

∂x2

dx2

dx1
(2.29)

dy

dx2
= ∂f

∂x1

dx1

dx2
+ ∂f

∂x2
. (2.30)

2.5.2 Differentials of Vectors and Matrices

To extend these concepts to matrices, we define the differential of a matrix (or
vector) as the matrix (or vector) of differentials of the elements; i.e.,

dX = (
dxij

)
. (2.31)

This definition leads to some basic rules for differentials of matrices:

d(cU) = c(dU) (2.32)

d(U + V) = dU + dV (2.33)

d(UV) = (dU)V + U(dV) (2.34)

d(U ⊗ V) = (dU) ⊗ V + U ⊗ (dV) (2.35)
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d(U ◦ V) = (dU) ◦ V + U ◦ (dV) (2.36)

dvec U = vec dU (2.37)

where c is a constant, and, of course, the dimensions of U and V must be
conformable. The differentials of an operators applied elementwise to a vector can
be obtained from the differentials of the elements. For example, suppose u is a s ×1
vector, and the exponential is applied elementwise. Then

d(exp(u)) =
⎛

⎜⎝
eu1du1

...

eus dus

⎞

⎟⎠ (2.38)

= D
[

exp(u)
]
du. (2.39)

If y is a function of x1 and x2, the total differential is given just as in (2.28), by

dy = ∂y

∂xT
1

dx1 + ∂y

∂xT
2

dx2 (2.40)

2.6 The First Identification Theorem

For scalar y and x,

dy = qdx �⇒ dy

dx
= q. (2.41)

That much is easy. But, suppose that y is a n× 1 vector function of the m× 1 vector
x. The differential dy is the n × 1 vector

dy =
⎛

⎜⎝
dy1
...

dyn

⎞

⎟⎠ (2.42)

which, by the total derivative rule, is

dy =

⎛

⎜⎜⎜⎜⎝

∂y1

∂x1
dx1 + · · · + ∂y1

∂xm

dxm

...
∂yn

∂x1
dx1 + · · · + ∂yn

∂xm

dxm

⎞

⎟⎟⎟⎟⎠
(2.43)
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=

⎛

⎜⎜⎝

∂y1
∂x1

· · · ∂y1
∂xm

...
...

∂yn

∂x1
· · · ∂yn

∂xm

⎞

⎟⎟⎠

⎛

⎜⎝
dx1
...

dxm

⎞

⎟⎠ (2.44)

= Q dx. (2.45)

If these were scalars, dividing both sides by dx would give Q as the derivative
of y with respect to x. But, one cannot divide by a vector. Instead, Magnus and
Neudecker proved that if it can be shown that

dy = Q dx (2.46)

then the derivative is

dy

dxT
= Q. (2.47)

This is the First Identification Theorem of Magnus and Neudecker (1988).1

2.6.1 The Chain Rule and the First Identification Theorem

Suppose that dy is given by (2.46), and that x is in turn a function of some vector θ .
Then

dx = dx

dθT
dθ (2.48)

and

dy

dθT
= Q

dx

dθT
. (2.49)

In other words, the differential expression (2.46) can be transformed into a derivative
with respect to any vector by careful use of the chain rule. This applies equally to
more complicated expressions for the differential. Suppose that

dy = Qdx + Rdz. (2.50)

1There is also a second identification theorem that provides the second derivatives of matrix
functions. See Shyu and Caswell (2014) for applications of this theory to the second derivatives of
measures of population growth rate.
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Applying the chain rule to the differentials on the right hand side gives

dy = Q
dx

dθT
dθ + R

dz

dθT
dθ (2.51)

for any vector θ . Thus

dy =
(

Q
dx

dθT
+ R

dz

dθT

)
dθ , (2.52)

and the First Identification Theorem gives

dy

dθT
=

(
Q

dx

dθT
+ R

dz

dθT

)
. (2.53)

2.7 Elasticity

When parameters are measured on different scales, it is sometimes helpful to
calculate proportional effects of proportional perturbations, also called elasticities.
The elasticity of yi to θj is

εyi

εθj

= θj

yi

dyi

dθj

. (2.54)

For vectors y and θ , this becomes

εy

εθT
= D (y)−1 dy

dθT
D (θ). (2.55)

There seems to be no accepted notation for elasticities; the notation used here is
adapted from that in Samuelson (1947).

2.8 Some Useful Matrix Calculus Results

Several matrix calculus results will be used repeatedly. Many more can be found in
Magnus and Neudecker (1988) and Abadir and Magnus (2005).

1. The matrix product Y = AB. Differentiate,

dY = (dA)B + A(dB). (2.56)
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Then write (or imagine writing; with practice one does not actually need this step
explicitly)

(dA) B = I (dA) B (2.57)

A (dB) = A (dB) I (2.58)

and apply the vec operator and Roth’s theorem, to obtain

dvec Y =
(

BT ⊗ I
)

dvec A + (I ⊗ A) dvec B. (2.59)

The chain rule gives, for any vector variable θ

dvec Y

dθT
=

(
BT ⊗ I

) dvec A

dθT
+ (I ⊗ A)

dvec B

dθT
. (2.60)

2. The Hadamard product Y = A ◦ B. Differentiate the product,

dY = dA ◦ B + A ◦ dB, (2.61)

then vec

dvec Y = dvec A ◦ vec B + vec A ◦ dvec B. (2.62)

It will be useful to replace the Hadamard products, which we do using the fact
that x ◦ y = D (x)y, to get

dvec Y = D (vec B)dvec A + D (vec A)dvec B. (2.63)

The chain rule gives the derivative from the differential,

dvec Y

dθT
= D (vec B)

dvec A

dθT
+ D (vec A)

dvec B

dθT
. (2.64)

3. Diagonal matrices. The diagonal matrix D (x), with the vector x on the diagonal
and zeros elsewhere, can be written

D (x) = I ◦
(

1 xT
)

(2.65)

Differentiate both sides,

dD (x) = I ◦
(

1 dxT
)

(2.66)
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and vec the result

dvecD (x) = D (vec I)vec
(

1 dxT
)

(2.67)

= D (vec I) (I ⊗ 1) dx (2.68)

The First Identification Theorem gives

dvecD (x)

dθT
= D (vec I) (I ⊗ 1)

dx

dθT
. (2.69)

The identity matrix in (2.65) masks the matrix
(
1 xT

)
, setting to zero all but

the diagonal elements. Matrices other than I can be used in this way to mask
entries of a matrix. For example, the transition matrix for a Leslie matrix, with a
vector of survival probabilities p on the subdiagonal, is obtained by setting x = p
and replacing I with a matrix Z that contains ones on the subdiagonal and zeros
elsewhere (see, e.g., Chap. 4).

Some Markov chain calculations (Chaps. 5 and 11) involve a matrix Ndg,
which contains the diagonal elements of N on the diagonal and zeros elsewhere.
This can be written

Ndg = I ◦ N. (2.70)

Differentiating and applying the vec operator yields

dvec Ndg = D (vec I)dvec N. (2.71)

4. The Kronecker product. Differentiating the Kronecker product is a bit more
complicated (Magnus and Neudecker 1985, Theorem 11). We want an expression
for the differential of the product in terms of the differentials of the components,
something of the form

dvec (A ⊗ B) = Z1dvec A + Z2dvec B (2.72)

for some matrices Z1 and Z2.
This requires a result for the vec of the Kronecker product. Let A be of

dimension m × p and B be r × s. Then

vec (A ⊗ B) = (
Ip ⊗ Ks,m ⊗ Ir

)
(vec A ⊗ vec B) . (2.73)

Let Y = A ⊗ B. Differentiate,

dY = (dA ⊗ B) + (A ⊗ dB) (2.74)
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and vec

dvec Y = (
Ip ⊗ Ks,m ⊗ Ir

) [
(dvec A ⊗ vec B) + (vec A ⊗ dvec B)

]
.

(2.75)
With some ingenious simplifications (Magnus and Neudecker 1985), this reduces
to (2.72) with

Z1 = (
Ip ⊗ Ks,m ⊗ Ir

)
(Im ⊗ vec B) (2.76)

Z2 = (
Ip ⊗ Ks,m ⊗ Ir

)
(vec A ⊗ Irs) . (2.77)

Substituting Z1 and Z2 into (2.72) gives the differential of the Kronecker product
in terms of the differentials of its component matrices.

5. The matrix inverse. The inverse of X satisfies

XX−1 = I. (2.78)

Differentiate both sides

(dX) X−1 + X
(
dX−1

)
= 0, (2.79)

then vec
[(

X−1
)T ⊗ I

]
dvec X + [I ⊗ X] dvec X−1 = 0 (2.80)

and finally solve for dvec X−1

dvec X−1 = − [I ⊗ X]−1
[(

X−1
)T ⊗ I

]
dvec X (2.81)

The properties (2.5) and (2.8) of the Kronecker product let this be simplified to

dvec X−1 = −
[(

X−1
)T ⊗ X−1

]
dvec X (2.82)

6. The square root and ratios. In calculating standard deviations and coefficients of
variation it is useful to calculate the elementwise square root and the elementwise
ratio of two vectors. If x is a non-negative vector, and the square root

√
x is taken

elementwise, then

d
√

x = 1

2
D

(√
x
)−1

dx. (2.83)
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For the elementwise ratio, let x and y be m × 1 vectors, with y nonzero. Let w be
a vector whose ith element is xi/yi ; i.e., w = D (y)−1x. Then

dw = D (y)−1dx −
[
xTD (y)−1 ⊗ D (y)−1

]
D (vec Im) (Im ⊗ 1m) dy.

(2.84)

This list could go on. The books by Magnus and Neudecker (1988) and Abadir
and Magnus (2005) contain many other results, and demographically relevant
derivations appear throughout this book, especially in Chap. 5.

2.9 LTRE Decomposition of Demographic Differences

The LTRE decomposition in Sect. 1.3.1 extends readily to matrix calculus. Suppose
that a demographic outcome ξ , dimension (s × 1), is a function of a vector θ

of parameters, dimension (p × 1). Suppose that results are obtained under two
“conditions,” with parameters θ (1) and θ (2). Define the parameter difference as
�θ = θ (2) − θ (1) and the effect as �ξ = ξ (2) − ξ (1). Then, to first order,

�ξ ≈
p∑

i=1

dξ

dθi

�θi (2.85)

= dξ

dθT
�θ . (2.86)

Writing

�θ = D (�θ)1p, (2.87)

we create a contribution matrix C, of dimension s × p,

C = dξ

dθT
D (�θ). (2.88)

The (i, j) entry of C is the contribution of �θj to the difference ξi , for i = 1, . . . , s

and j = 1, . . . , p. The rows and columns of C give

C(i, :) = contributions of �θ to �ξi (2.89)

C(:, j) = contributions of θj to �ξ (2.90)
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When calculating C, the derivative of ξ must be evaluated somewhere. Experi-
ence suggests that the evaluating it at the midpoint between θ (1) and θ (2) gives good
results (Logofet and Lesnaya 1997; Caswell 2001).

2.10 A Protocol for Sensitivity Analysis

The calculations may grow to be complex, but the protocol is simple:

1. write a matrix expression for the outcome,
2. differentiate,
3. vec,
4. simplify,
5. calculate derivatives from the differentials, and
6. extend using the chain rule

The rest of this book shows what can be done with this simple procedure.
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Chapter 3
The Sensitivity of Population Growth
Rate: Three Approaches

3.1 Introduction

The essence of stable population theory is the fact that a population subject to time-
invariant vital rates will (with a few exceptions not of interest here) converge to
a stable structure and grow exponentially at a constant rate (the population growth
rate, or intrinsic rate of increase). The calculation of the population growth rate from
the vital rates is one of the most important accomplishments of formal demography
(Sharpe and Lotka 1911).1 Ecologists recognized early on that, by integrating
survival and fertility over the life course, the population growth rate provided a
powerful tool for describing the population consequences of environmental condi-
tions (e.g., Birch 1953). For the same reason, evolutionary biologists recognized
it as a measure of fitness (Fisher 1930), although that concept requires careful
consideration of both demographic and genetic processes (Charlesworth 1994; de
Vries and Caswell 2018).

This makes the sensitivity analysis of population growth rate an important
problem. It has been approached in three ways. The earliest approach (Hamilton
1966) is specific to age-classified models, and relies on differentiation of the
characteristic equation. The second (Caswell 1978) applies to stage-classified as
well as age-classified models, and uses eigenvalue perturbation theory. The third is
based on matrix calculus and is more flexible than its predecessors.

Chapter 3 is modified, under the terms of a Creative Commons Attribution License, from Caswell,
H. 2010. Reproductive value, the stable stage distribution, and the sensitivity of the population
growth rate to changes in vital rates. Demographic Research 23:531–548, ©Hal Caswell.
1Leonard Euler had obtained the result in 1760, but his derivation rediscovered until 1970 (Keyfitz
and Keyfitz 1970).

© The Author(s) 2019
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3.2 Hamilton’s Equation for Age-Classified Populations

Consider an age-classified model, in which age x is a continuous variable, with
mortality rate μ(x) and maternity function m(x). The survivorship function is

�(x) = exp

(
−
∫ x

0
μ(a)da

)
(3.1)

and the population growth rate r is the solution to the Euler-Lotka equation

1 =
∫ ∞

0
e−ra�(a)m(a)da. (3.2)

The stable age distribution, reproductive value function, birth rate, and generation
time (mean age of reproduction in the stable population) are given by

c(x) = e−rx�(x)∫∞
0 e−ra�(a)da

stable age distribution (3.3)

v(x) = erx

�(x)

∫ ∞

x

e−ra�(a)m(a)da reproductive value (3.4)

b =
[∫ ∞

0
e−ra�(a)da

]−1

birth rate (3.5)

Ā =
∫ ∞

0
ae−ra�(a)m(a)da generation time (3.6)

Sensitivity of r Hamilton (1966) derived the sensitivities of r to changes in
mortality and fertility at a specified age x. His results are equivalent to

dr

dμ(x)
= −c(x)v(x)

bĀ
(3.7)

dr

dm(x)
= c(x)

bĀ
(3.8)

That is, the sensitivity of r to a change in mortality at age x is proportional to the
product of the reproductive value at age x and the abundance of age x in the stable
age distribution. The sensitivity of r to a change in fertility at age x is proportional
to the stable age distribution (and the reproductive value at age 0, which equals 1).
The proportionality constant in each case is the inverse of the product of the birth
rate and the mean age of reproduction.
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Derivation Hamilton’s results are obtained by implicit differentiation of the Euler-
Lotka equation (3.2). We will derive Hamilton’s original formulation and then
show how it reduces to the relation between the stable age distribution and the
reproductive value distribution in (3.7) and (3.8).

First, introduce a perturbation parameter θ to measure the change in mortality or
fertility at the specified age. Writing survival, fertility, and r as functions of θ gives
the Euler-Lotka equation

1 =
∫ ∞

0
e−r(θ)a�(θ, a)m(θ, a) da. (3.9)

Differentiating both sides of (3.9) with respect to θ gives

0 = −dr(θ)

dθ

∫ ∞

0
ae−r(θ)a�(θ, a)m(θ, a) da

+
∫ ∞

0
e−r(θ)a d�(θ, a)

dθ
m(θ, a) da

+
∫ ∞

0
e−r(θ)a�(θ, a)

dm(θ, a)

dθ
da. (3.10)

Solving (3.10) for dr/dθ gives

dr(θ)

dθ
= 1

Ā

⎛

⎜⎜⎜⎝

∫ ∞

0
e−r(θ)a d�(θ, a)

dθ
m(θ, a) da

︸ ︷︷ ︸
mortality

+
∫ ∞

0
e−r(θ)a�(θ, a)

dm(θ, a)

dθ
da

︸ ︷︷ ︸
fertility

⎞

⎟⎟⎟⎠

(3.11)
Equation (3.11) has two terms, one capturing effects of θ on mortality and the other
capturing effects on fertility.

3.2.1 Effects of Changes in Mortality

We want to perturb mortality at one exact age x (remember that age and time are
continuous), leaving mortality at all other ages unchanged. To do this, we use the
unit impulse function, or Dirac delta function. This is a generalized function defined
by

δ(x) = 0 x �= 0 (3.12)
∫ ∞

−∞
δ(s)ds = 1. (3.13)
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The unit impulse is used in signal processing (e.g., Kamen and Heck 1997, p. 7)
to represent the limit of a perturbation of unit strength applied over a shorter and
shorter time interval. Think of a normal distribution with mean 0, in the limit as the
variance goes to 0, while the area under the curve remains at 1. The most useful
properties of the unit impulse, for our application, are

∫ ∞

−∞
δ(a − x)f (a)da = f (x) (3.14)

and
∫ x

−∞
δ(s)ds = H(x) (3.15)

where H(x) is the Heaviside function, or unit step function, which satisfies H(x) =
0 for x < 0 and H(x) = 1 for x > 0.

We write mortality as

μ(θ, a) = μ(0, a) + θδ(a − x) (3.16)

where δ(x) is the unit impulse function. The sensitivity of r to μ(x) is obtained as
the derivative of r with respect to θ , evaluated at θ = 0,

dr

dμ(x)
= dr

dθ

∣∣∣∣
θ=0

. (3.17)

Because only mortality is affected by θ

dm(θ, a)

dθ
= 0 (3.18)

dμ(θ, a)

dθ
= δ(a − x). (3.19)

From (3.1),

d�(θ, a)

dθ
= −e− ∫ a

0 μ(θ,s)ds

∫ a

0
δ(a − x)da (3.20)

= −�(θ, a)H(a − x). (3.21)

Substituting into (3.11) and evaluating at θ = 0 gives

dr

dμ(x)
= −1

Ā

(∫ ∞

x

e−ra�(a)m(a)da

)
. (3.22)
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The integral in (3.22) is close to the reproductive value v(x) given by (3.4);
specifically,

∫ ∞

x

e−ra�(a)m(a)da = �(x)e−rxv(x). (3.23)

However, from (3.3) and (3.5), �(x)e−rx = c(x)/b. Making these substitutions
into (3.22) gives the formal relationship (3.7).

3.2.2 Effects of Changes in Fertility

Following the same approach, if the perturbation affects fertility at exact age x, we
write

m(θ, a) = m(0, a) + θδ(a − x). (3.24)

Because only fertility is affected by θ , dμ(θ, a)/dθ = 0 and dm(θ, a)/dθ = δ(a −
x). Substituting these into (3.11) and evaluating the result at θ = 0 gives

dr

dm(x)
= 1

Ā

(
e−rx�(x)

)
. (3.25)

From (3.3) and (3.5) it can be seen that the numerator is c(x)/b, which leads to the
formal relationship (3.8).

3.2.3 History and Perspectives

Hamilton (1966) obtained the relationship (3.22) in his analysis of the evolution
of senescence. From (3.22) and (3.8) it is apparent that (provided r ≥ 0) the
magnitudes of the sensitivities of r to mortality and fertility decline with age. These
sensitivities measure the selection gradients on age-specific mortality and fertility.
Thus Hamilton concluded that the strength of selection against deleterious mutations
would necessarily decline with their age of action, that small positive effects at early
ages could easily compensate for much larger negative effects at later ages, and that
the evolution of senescence was therefore inevitable.

In the years that followed Hamilton’s paper, several other authors developed
perturbation analysis for r , using related methods. Demetrius (1969) used a discrete
age-classified model, and Emlen (1970) used Hamilton’s results to derive the
dynamics of gene frequencies resulting from the selection gradients on age-specific
survival and fertility.
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Keyfitz (1971) in a remarkable paper, used implicit differentiation to obtain the
sensitivity of population growth rate, life expectancy, birth rates, death rates, and
the stable age distribution, apparently independently of Hamilton. He noted the
appearance of reproductive value in the sensitivity of r to mortality. Goodman
(1971) was apparently the first to note that the sensitivities of r to mortality and
fertility could be expressed in terms of the stable age distribution and reproductive
value.

When Hamilton’s paper appeared, it was regarded as difficult and esoteric, but
it had a great impact. It provided the analytical machinery for examining trade-offs
between opposing demographic traits, known as antagonistic pleiotropy (Williams
1957; Rose 1991). It also describes the accumulation of deleterious mutations due
to the balance between mutation and selection (e.g., Steinsaltz et al. 2005). These
ideas are fundamental to the analysis of human aging (e.g., Rose 1991; Wachter and
Finch 1997; Carey and Tuljapurkar 2003; Baudisch 2008) and, more generally, the
analysis of life history evolution in humans and other species (e.g., Charlesworth
1994; Stearns 1992).

3.3 Stage-Classified Populations: Eigenvalue Perturbations

Implicit in Hamilton’s analysis is the assumption that the vital rates are functions
of age. In many cases, they are not. In humans, characteristics such as education,
marital status, health status, or spatial location, may provide important information
in addition to age. In other species, the vital rates may depend on developmental
stage or body size more than on age. Such populations are described by stage-
classified demographic models, of which the age-classified theory is a special
case.

Stage-classified demography can be analyzed using matrix population models
(Leslie 1945; Caswell 2001). The discrete-time population growth rate λ is the
dominant eigenvalue of the population projection matrix A (guaranteed to be real
and positive by the Perron-Frobenius theorem). Let n(t) be the population vector at
time t , and A the population projection matrix, with

n(t + 1) = An(t) (3.26)

and the population growth rate is given by the dominant eigenvalue λ of A. The
stable stage distribution is given by the corresponding right eigenvector w and the
reproductive value function by the left eigenvector v; they satisfy

Aw = λw (3.27)

vTA = λvT (3.28)
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Sensitivity of λ The effects of perturbations on population growth are approached
by looking for the sensitivity of an eigenvalue to changes in the entries of a matrix.
We will see that the sensitivity of λ to a change in the entry aij of A is (Caswell
1978)

∂λ

∂aij

= viwj

vTw
. (3.29)

The entry aij measures the per-capita production of stage i by stage j . Thus the
effect of a change in aij is proportional to the reproductive value of the destination
stage and to the abundance of the origin stage in the stable population. This
is a generalization of the relationships (3.7) and (3.8) obtained from Hamilton’s
analysis.

Derivation The eigenvalue λ is a solution to the characteristic equation of A, which
generalizes the Euler-Lotka equation (3.2). Except in special cases, however, the
characteristic equation cannot be written down explicitly, making the implicit dif-
ferentiation approach used by Hamilton impossible. Instead, the relationship (3.29)
is obtained by a perturbation expansion. Suppose that A is perturbed to A + �A.
This will result in perturbations of λ and of w, which must satisfy

(A + �A) (w + �w) = (λ + �λ)(w + �w). (3.30)

Expanding the products, setting second order terms to zero, and remembering that
Aw = λw gives

A(�w) + (�A)w = λ(�w) + (�λ)w. (3.31)

Multiply on the left by vT and simplify to obtain

(�λ)vTw = vT(�A)w. (3.32)

If the perturbation affects only one entry, say aij , of A, then

�λ = viwj

(
�aij

)

vTw
. (3.33)

Dividing both sides by �aij and taking the limit as �aij → 0 gives the sensitivity
result (3.29).

3.3.1 Age-Classified Models as a Special Case

To compare (3.29) with Hamilton’s results (3.7) and (3.8), consider an age-classified
matrix (a Leslie matrix) with fertilities Fi in the first row, survival probabilities Pi on
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the subdiagonal, and zeros elsewhere (Leslie 1945; Keyfitz 1968). In this case (3.29)
simplifies to

∂λ

∂Pi

= vi+1wi

vTw
(3.34)

∂λ

∂Fi

= v1wi

vTw
. (3.35)

Equation (3.34) corresponds to (3.7); the sensitivity is proportional to the product of
the reproductive value and the stable stage distribution. Equation (3.35) corresponds
to (3.8), and shows why reproductive value is apparently missing from (3.8):
reproductive value at birth [v(0) in Hamilton’s notation] is scaled to equal 1.

3.3.2 Sensitivity to Lower-Level Demographic Parameters

The entries of A are often functions of other, lower-level parameters. The sensitivity
of λ to these parameters is obtained by the chain rule. For example, suppose that
stage 1 may contribute individuals to stages 2 or 3 (Fig. 3.1). Write the transition
probabilities as

a21 = γ σ (3.36)

a31 = (1 − γ )σ (3.37)

where σ is the survival probability and γ the probability that the individual moves
to stage 2, conditional on survival. Then the sensitivities of λ to γ and to σ are given
by

dλ

dσ
= ∂λ

∂a21

da21

dσ
+ ∂λ

∂a31

da31

dσ
(3.38)

= w1 [γ v2 + (1 − γ )v3]

vTw
(3.39)

Fig. 3.1 An example of
lower-level parameters
appearing in a portion of a
life cycle. Individuals in stage
1 survive with probability σ ,
and, conditional on survival,
move to stage 2 with
probability γ and to stage 3
with probability 1 − γ

1

2

3

a21 = σγ

a31 = σ(1−γ)
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dλ

dγ
= ∂λ

∂a21

da21

dγ
+ ∂λ

∂a31

da31

dγ
(3.40)

= σw1 (v2 − v3)

vTw
. (3.41)

The sensitivity to survival is proportional to the weighted average of the reproduc-
tive values of the destination stages, and the sensitivity to the transition probability
γ is proportional to the difference in reproductive value between the destination
stages.

3.3.3 History

I first encountered the basis for this perturbation expansion in a paper by C.A.
Desoer in the proceedings of an engineering conference (Desoer 1967).2 Eigenvalue
perturbations were of particular interest to engineers in the 1960s as part of a
shift from frequency-domain methods to state-space methods in the study of linear
systems (Zadeh and Desoer 1963). However, the result dates back to Jacobi (1846),
and has been independently rediscovered many times (e.g., Faddeev 1959; Papoulis
1966; Franklin 1968). In population biology, this perturbation approach has been
extended to many other sensitivity problems, including the sensitivity of subdomi-
nant eigenvalues and transient behavior, of growth rates in periodic and stochastic
environments, of the eigenvectors, and of the spreading speed in biological or
demographic invasions (see Caswell (2001) for reviews and references).

3.4 Growth Rate Sensitivity via Matrix Calculus

Matrix calculus provides a still more general approach to the sensitivity analysis
of the population growth rate. Equation (3.29) perturbs only a single entry of A;
derivatives with respect to other parameters are assembled by summing their effects
over all the entries of A, as in (3.41). Using matrix calculus, we now consider λ as
a scalar function of A and A as a matrix-valued function of a parameter vector θ .

Sensitivity of λ We will show that the derivative of λ with respect to θ is

dλ

dθT
=

(
wT ⊗ vT

vTw

)(
dvec A

dθT

)
, (3.42)

2By a fortunate accident; I was searching for something completely different. We may wonder
whether the chances of such coincidences are higher or lower in the internet search era.



40 3 The Sensitivity of Population Growth Rate: Three Approaches

where ⊗ denotes the Kronecker product. If θ is a p × 1 vector of parameters, then
dλ/dθT is a 1 × p matrix whose ith entry is dλ/dθi .

Derivation Following the steps in Chap. 2, begin by taking the differential of both
sides of (3.27) to give

(dA)w + A(dw) = (dλ)w + λ(dw). (3.43)

Multiply both sides on the left by vT and simplify to obtain

(dλ)vTw = vT(dA)w (3.44)

Next, apply the vec operator to both sides of (3.44). Since the left side is a scalar, the
vec operator has no effect. The right side is a product of three quantities, so Roth’s
theorem implies that

(dλ)vTw =
(

wT ⊗ vT
)

dvec A. (3.45)

The First Identification Theorem then gives

dλ

dvec TA
= wT ⊗ vT

vTw
. (3.46)

Finally, the chain rule (2.18) gives us

dλ

dθT
= dλ

dvec TA

dvec A

dθT
. (3.47)

The matrix calculus approach is particularly powerful because of the flexibility in
specifying the effect of θ on the vital rates. Suppose that A depends on a vector σ

of survival probabilities, which are a function of the concentration X of a pollutant,
which in turn is changing as a function of time t . The rate of change of λ over
time is

dλ

dt
=

(
dλ

dvec TA

)(
dvec A

dσT

)(
dσ

dX

)(
dX

dt

)
(3.48)

Each of the terms in (3.48) can be evaluated separately; the matrix product gives the
correct dimension for the final sensitivity result (a 1 × 1 scalar in this case).

3.5 Second Derivatives of Population Growth Rate

The second derivatives of λ measure the curvature of the response to changes in
parameters. They have important applications in evolutionary demography, where
they indicate the action of stabilizing, disruptive, or correlational selection on
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fitness-related traits (e.g., Phillips and Arnold 1989; Caswell 2001), in adaptive
dynamics, where they help determine the stability of evolutionary singular strategies
(e.g., Diekmann 2004), and in extending sensitivity analysis to second-order effects.

Since the first derivatives of λ are written, in Eqs. (3.29) and (3.46), in terms
of the right and left eigenvectors of A, the second derivatives of λ require the first
derivatives of those eigenvectors. Caswell (1996) derived the second derivatives of λ

to entries of A by an extension of the method in Sect. 3.3. However, a more general
and rigorous method is available using matrix calculus.

Consider a (scalar) variable ξ which is a function of a vector θ of parameters.
The complete set of second derivatives of ξ are given by the Hessian matrix

H =
(

∂2ξ

∂θi∂θj

)
(3.49)

Magnus and Neudecker (1988) proved (their Second Identification Theorem) that if
the second differential of ξ can be written as

d2ξ = dθTBdθ (3.50)

for some matrix B, then

H = 1

2

(
B + BT

)
. (3.51)

Shyu and Caswell (2014) used this approach to derive the second derivatives of the
population growth rate λ, the continuous-time population growth rate r = log λ,
and the net reproductive rate R0, to changes in either the entries of A or to arbitrary
lower-level parameters of which A is a function. We will not explore second
derivatives in this book, but Shyu’s other work (Shyu and Caswell 2016a,b) applies
them to analyze the evolutionary demography of sex ratios, and Caswell and Shyu
(2017) use them to analyze the effects of mortality on the selection gradients on
senescence.

3.6 Conclusion

Each of the three approaches to growth rate sensitivity, leading to Eqs. (3.7),
(3.8), (3.29), and (3.42), uses its own analytical methods. They agree, however, in
showing how the sensitivity of population growth rate can be written in terms of
the stable stage distribution and the reproductive value. In general, the effect of a
change in the rate at which individuals move from stage j to stage i is proportional
to the abundance of the origin stage (j ) and the reproductive value of the destination
stage (i). If a transition yields individuals with low reproductive value, or if few
individuals are available to experience the change in the rate of transition, the effect
on population growth will be small.
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Chapter 4
Sensitivity Analysis of Longevity and Life
Disparity

4.1 Introduction

The population growth rate (λ or r) analyzed in Chap. 3 is a population-level
consequence of the individual-level vital rates. A similarly basic outcome, at
the individual or cohort level, is longevity: the length of individual life. The
most commonly encountered description of longevity is its expectation, the life
expectancy. However, longevity is a random variable, differing among individuals
(even when those individuals are subject to the same rates and hazards) because
of the random vagaries of mortality and survival. Therefore, it is important to also
consider its variance and higher moments. This chapter introduces the sensitivity
analysis of longevity, which will be explored in more detail in Chaps. 5, 11, and 12.

As in Chap. 3, we will begin by reviewing a classic formula for the sensitivity of
life expectancy in age-classified models. The we will use matrix calculus to derive
more general formulas for the moments of longevity, the distribution of age or stage
at death, and the life disparity, applicable to age- or stage-classified populations.

4.2 Life Expectancy in Age-Classified Populations

Notation It is customary to denote life expectancy by symbols like eo
x or e(x), but

in general the symbol e plays too many roles in mathematics to be helpful for our
purposes. So, when we make the transition to matrix formulations, I will use the
symbol η, in various vector and scalar manifestations, to indicate longevity.

Perturbation analysis of longevity has been pursued mostly within the framework
of age-classified life cycles (e.g., Canudas Romo 2003; Keyfitz 1971; Pollard 1982;
Vaupel 1986; Vaupel and Canudas Romo 2003). The life expectancy at age x is
given by
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e(x) = 1

�(x)

∫ ∞

x

�(s)ds (4.1)

where the survivorship function �(x) is the probability of survival to age x.
The classical result for the sensitivity of life expectancy at birth to a change in

mortality at age a is

de(0)

dμ(a)
= −�(a)e(a). (4.2)

That is, the sensitivity of life expectancy at birth to a change in mortality at age a is
equal to the product of the probability of survival to age a and the life expectancy
at age a. In other words, e(0) is most sensitive to changes in mortality at ages
to which lots of individuals survive (to experience the change in mortality) and
beyond which there is lots of longevity remaining (so they can enjoy the change
in mortality). The derivative is negative because increasing mortality reduces life
expectancy.

The result was presented independently by Keyfitz (1971) who also referenced
some earlier approaches (Wilson 1938; Irwin 1949) and by Pollard (1982). Keyfitz’s
derivation was sketchy, and Pollard simply stated that the result was well-known,
and gave no derivation. From a general sensitivity analysis perspective, we can
derive the result using the same approach applied in Chap. 3 to population growth
rate.

4.2.1 Derivation

Differentiating (4.1) with respect to mortality at some specified age a gives

de(0)

dμ(a)
=

∫ ∞

0

d�(s)

dμ(a)
ds (4.3)

and our problem reduces to finding the derivative of �(s) with respect to μ(a). To
do so, introduce a parameter θ to measure the size of the perturbation at age a, and
write mortality as

μ(x, θ) = μ(x, 0) + θ δ(x − a) (4.4)

where δ(x − a) is the Dirac delta function.1 The derivative with respect to μ(a) is
obtained by differentiating with respect to θ and evaluating the result at θ = 0.

1See Chap. 3 for a description of this generalized function.
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Write survivorship as

�(x, θ) = exp

[
−
∫ x

0
μ(z, θ)dz

]
(4.5)

so that

d�(x, θ)

dθ
= −�(x, θ)

∫ x

0

dμ(z, θ)

dθ
dz (4.6)

From (4.4) we have

dμ(z, θ)

dθ
= δ(z − a) (4.7)

so that

d�(x, θ)

dθ
= −�(x, θ)

∫ ∞

0
δ(z − a)dz (4.8)

= −�(x, θ)H(x − a) (4.9)

where H(·) is the unit step function. Substituting this into (4.3) and evaluating at
θ = 0 gives

de(0)

dμ(a)
= −

∫ ∞

0
�(s)H(s − a)ds (4.10)

= −
∫ ∞

a

�(s)ds (4.11)

which, by (4.1) is equal to (4.2).

4.3 A Markov Chain Model for the Life Cycle

Age has a special status in demography because it is continuous, linear, and permits
movement in only one direction and at one rate (age increases by one unit for every
unit of time). All other demographic characteristics have the potential for much
greater flexibility, and the operators that describe movement and development of
individuals require an equal degree of flexibility. This book is devoted to matrix
formulations of these problems, which have the great advantage of permitting
both age and stage-classified models. The basic formulation, as far as longevity
is concerned, is that of a finite-state absorbing Markov chain.
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4.3.1 A Markov Chain Formulation of the Life Cycle

We describe the life cycle as an absorbing Markov chain. This approach was pio-
neered in demography by Feichtinger (1971) and Hoem (1969), and has been greatly
extended in recent years (Caswell 2001, 2006, 2009; Horvitz and Tuljapurkar 2008;
Tuljapurkar and Horvitz 2006; Steinsaltz and Evans 2004). Good sources for the
basic theory of absorbing Markov chains are Kemeny and Snell (1976) and Iosifescu
(1980).

These models will be explored in more detail in Chaps. 5 and 11. The sensitivity
analysis of measures of variance in longevity has been developed by Van Raalte
and Caswell (2013) and Engelman et al. (2014). An important extension of Markov
chain models for longevity is the incorporation of “rewards” to represent the value,
in some sense, of the length of life, extending methods developed for dynamic
programming (Howard 1960). The rewards include the production of offspring
(Caswell 2011; van Daalen and Caswell 2015, 2017), the accumulation of income
and expenditures (Caswell and Kluge 2015) and healthy longevity (Caswell and
Zarulli 2018). The sensitivity analysis of these important models is derived in van
Daalen and Caswell (2017).

Markov chain theory distinguishes between recurrent and transient states. A
recurrent state has the property that the probability of returning to that state at least
once is 1. A transient state is one for which that probability is less than 1. If a Markov
chain contains transient states, it will eventually leave those states and arrive in a
recurrent state or class of states, where it will remain permanently. Such a chain
is called absorbing. Absorbing chains are the basic model for the demography of
individuals because life is inherently transient. Any individual will, with probability
one, eventually leave the set of living states and be absorbed by death.

If a Markov chain consists of a single set of recurrent states that all communicate
with each other, it is said to be ergodic. The transition matrix for an ergodic chain is
irreducible and primitive. Ergodic Markov chains play a limited role in demographic
contexts because they cannot include mortality. Chapter 11 will, however, present
the sensitivity analysis of these models.

In demographic models, individuals move among a set of transient (i.e., living)
states in their life cycle before they eventually reach an absorbing state (death).
Transient states may represent age classes, developmental or life history stages, or
states defined by health, employment, economic, or other kinds of status. In studying
longevity, we are particularly interested in absorbing states representing death, or
perhaps death classified by age or stage at death, or by cause of death. The analysis
applies equally to other ways of leaving the life cycle (e.g., graduation in a model
of educational states, discharge from treatment in model of health states).

Number the stages in the life cycle so that the transient states are 1, . . . , s and
the absorbing states are s + 1, . . . , s + a. Then the transition matrix of the Markov
chain is
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P =
(

U 0
M I

)
(4.12)

Here, U is the s × s matrix of transition probabilities among the transient states.
The a × s matrix M gives the probabilities of absorption in each of the absorbing
states. The columns of P sum to one. I assume that the spectral radius (the dominant
eigenvalue) of U is strictly less than one; a sufficient condition for this is that there
is a non-zero probability of ultimate death for every stage.

Age-classified models are a special case with survival probabilities on the
subdiagonal (and possibly in the last diagonal entry); e.g., for s = 3 in which

U =
⎛

⎝
0 0 0
p1 0 0
0 p2 p3

⎞

⎠ (4.13)

The age-specific survival probability is pi = e−μi , with μi a mortality rate applying
to age class i. The (s, s) entry of U is an age-independent survival probability for a
final open-ended age class, with a remaining life expectancy of 1/(1−ps). If ps = 0
no one survives beyond age class s. When the age-classified model is constructed
from a life table, pi = 1−qi−1; that is, the survival of age-class 1 is the complement
of the probability of death between age 0 and 1.

The mortality matrix M gives the probabilities of transition from each of the
transient states to each of the absorbing states. Figure 4.1 shows some examples of
life cycle formulations that can arise, including both age and stage classification in
the transient states, and absorbing states classified by age at death, grouped ages at
death, stage at death, or cause of death. The resulting mortality matrices are

Figure 4.1a M = (
1 − P1 1 − P2 1 − P3 1

)
(4.14)

Figure 4.1b M =

⎛

⎜⎜⎝

1 − P1 0 0 0
0 1 − P2 0 0
0 0 1 − P3 0
0 0 0 1 − P4

⎞

⎟⎟⎠ (4.15)

Figure 4.1c M =
(

1 − P1 1 − P2 0 0
0 0 1 − P3 1 − P4

)
(4.16)

Figure 4.1d M =

⎛

⎜⎜⎝

q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4

⎞

⎟⎟⎠ (4.17)
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Fig. 4.1 Life cycle graphs showing some alternative choices for structure of the absorbing state:
death, age at death, stage at death, or cause of death. (a) Age-classified with one dead state. (b)
Age-classified, age at death. (c) Age-classified, grouped ages at death. (d) Stage-classified, stage
at death. (e) Age-classified, causes of death

Figure 4.1e M =
(

q1 q2 q3 q4

s1 s2 s3 s4

)
(4.18)

The beauty of formulating longevity as a Markov chain is that many statistics of
longevity can be written in terms of the matrices U and M and sensitivity analysis
can be carried out using matrix calculus.

4.3.2 Occupancy Times

Consider an individual in transient state j . Eventual absortion is certain. But before
that, the individual will occupy various transient states. The number of such visits,
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the occupancy time2 is the basic unit of longevity. Occupancy is particularly central
in studies of health demography, where it quantifies the parts of a life spent in
different health states. But, even without the added dimension of something like
health, occupancy of transient states is the basis of longevity analysis.

Let νij be the number of visits to transient state i by an individual in transient
state j , prior to absorption. Its expectation is given by the fundamental matrix (e.g.,
Kemeny and Snell 1976; Iosifescu 1980)

N = (
E(νij )

)
(4.19)

= (I − U)−1 (4.20)

More details, and examples, for the higher moments and variances of occupancy
times are given in Chaps. 5 and 11.

4.3.3 Longevity

The longevity of an individual in state j can be equated to the total occupancy time
of all transient states by that individual, prior to eventual absorption. Let ηj be this
longevity; the expectation of ηj is the sum of the elements in column j of N. We
define η1 and η2 as the vectors containing the first and second moments of longevity,
respectively. Then

E(η)T = ηT
1 = 1TN (4.21)

Figure 4.2a shows the life expectancy for India in 1961 and Japan in 2006.
The vector of the second moments of longevity satisfies

ηT
2 = ηT

1 (2N − I) (4.22)

(Iosifescu 1980). The variance and standard deviation of longevity are thus

V (η)T = η2 − η1 ◦ η1 (4.23)

SD(η) = √
V (η) (4.24)

where the square root is taken element-wise.

2Because time is discrete here, the number of visits is equal to the number of time increments,
which is the amount of time spent in the state. In continuous-time models, the number of visits to,
and the length of time spent in, a transient state are different. The corresponding calculations for
continuous-time models are given in Chap. 12.
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(d) Sensitivity of variance in longevity
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Fig. 4.2 Calculations for longevity of India (1961) and Japan (2006). (a) Remaining life
expectancy as a function of age. (b) Standard deviation of remaining longevity as a function of
age. Vertical line at age 10 indicates SD10, sometimes used as a measure of lifespan disparity. (c)
Sensitivity of life expectancy at birth to changes mortality at each age. (d) Sensitivity of variance in
longevity at birth to changes in mortality at each age. (e) Sensitivity of life disparity η† to changes
in mortality at each age
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Note that V (η) and SD(η) are vectors; their elements give the variance or
standard deviation of longevity for individuals in each stage, making it easy to
examine variation in remaining longevity conditional on the starting age. This
conditioning can be important; Edwards and Tuljapurkar (2005) have made a strong
case that SD(η10), starting from age 10, is a good index to prevent infant and child
mortality from obscuring patterns in old age longevity.

Figure 4.2b shows SD(η) for India and Japan. The standard deviation at birth,
SD(η1) is roughly twice as great in India as in Japan, a discrepancy that remains at
SD(η10). Eventually, beyond the age of 50, SD(η) becomes greater in India than in
Japan.

4.3.4 Age or Stage at Death

If the model contains more than one absorbing state (as in all the cases but the first in
Fig. 4.1), the eventual fate of an individual is uncertain. The probability distributions
of the eventual absorbing state are given by the columns of the matrix

B = MN (4.25)

where bij is the probability of eventual absorption in absorbing state i for an
individual starting in transient state j (Iosifescu 1980).

Suppose that the absorbing stages are defined as the age (or stage) at death, as in
Fig. 4.1b, d. Then M is given by Eq. (4.17) and the j th column of B is the probability
distribution of age at death for an individual starting in age class j :

ψj = B(:, j) = Bej . (4.26)

4.3.5 Life Lost and Life Disparity

When an individual dies, it loses the remaining life that it would have experienced,
had it not died. This counterfactual proposition seems abstract, but we can make it
concrete by asking for the expectation of that lost lifetime. An individual that dies at
age x will lose, on average, an amount of life given by the life expectancy at age x.
Averaging this remaining life expectancy over the distribution of age at death gives
the mean life lost due to mortality. Vaupel and Canudas Romo (2003) denoted the
life lost by e†. Here we define the vector η†, whose ith entry is the expected life lost
due to mortality by an individual starting in age class i; it is given by

(
η†
)T = ηT

1 B. (4.27)
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Calculations of life lost from mortality due to specific causes of death play a
central role in the calculations of disability-adjusted life years (DALYs) used in
calculations of the burden of diseases (e.g., Devleesschauwer et al. 2014; GBD
2016 DALYs and HALE Collaborators 2017). See Caswell and Zarulli (2018) for
the relationship between DALY calculations and Markov chain methods, and for a
calculation of the variance in life lost.

The life lost η† has an additional interpretation as a measure of disparity.
Consider a population in which everyone dies at the same age. In such a situation,
η† = 0, because at the age of death, there is no additional life expectancy. Thus η† is
a measure of “life disparity;” the larger its value, the more disparity there is among
individuals in age at death (Vaupel et al. 2011).

The values of life disparity in age class 1, for Japan and India, in years, are

η
†
1 =

{
10.1 Japan
23.9 India

(4.28)

Just as India has a much larger variance in longevity than Japan, it also has a higher
life disparity.

4.4 Sensitivity Analysis

Our goal is to obtain expressions for the derivatives of E(η), V (η), SD(η), B, and
η†, with respect to changes in age specific-mortality rates. The calculations and
some results (contrasting the mortality schedules of Japan and India) are given here.
More details are presented in Chaps. 5 and 11. Results are presented in terms of an
arbitrary vector θ of parameters on which U and M depend. In the examples, θ will
be the vector μ of age-specific mortality rates.

4.4.1 Sensitivity of the Fundamental Matrix

The fundamental matrix N appears in many of these formulas. Its sensitivity was
first obtained by Caswell (2006). Suppose that U is a function of some vector θ of
parameters. Then

dvec N

dθT
=

(
NT ⊗ N

) dvec U

dθT
(4.29)

(see Chap. 5).
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4.4.2 Sensitivity of Life Expectancy

The sensitivity of the vector of life expectancy as a function of age is obtained by
differentiating (4.21),

dηT
1 = 1T(dN) (4.30)

Applying the vec operator and Roth’s theorem (2.13) gives

dη1 =
(

I ⊗ 1T
)

dvec N (4.31)

=
(

I ⊗ 1T
) (

NT ⊗ N
)

dvec U (4.32)

=
(

NT ⊗ ηT
1

)
dvec U. (4.33)

The last step uses the fact that (A ⊗ B)(C ⊗ D) = (AC ⊗ BD). Applying the chain
rule and the first identification theorem gives the result

dη1

dθT
=

(
NT ⊗ ηT

1

) dvec U

dθT
(4.34)

Sensitivity to mortality If interest focuses on changes in age-specific mortality, so
that θ = μ, then the sensitivity formula expands, using the chain rule, to

dη1

dμT
=

(
NT ⊗ ηT

1

) dvec U

dμT
(4.35)

This can be evaluated in several ways, depending on how the matrix U is written as
a function of mortality. One approach is used in Sect. 4.4.3, and a somewhat more
widely useful approach in Sect. 4.4.4.

The results for Japan and India are shown in Fig. 4.2. Life expectancy is more
sensitive to changes in mortality in Japan than in India; the (absolute value of)
sensitivity decreases almost linearly with age in Japan, and slightly less linearly
in India (Fig. 4.2). On the other hand, life expectancy is more elastic to changes in
mortality in India, and less so in Japan.

4.4.3 Generalizing the Keyfitz-Pollard Formula

The Keyfitz-Pollard formula for the sensitivity of life expectancy to changes in
mortality rate, given in Eq. (4.2), has a clear interpretation: the sensitivity to
mortality at age a depends on the probability of survival to age a and the remaining
life expectancy at age a. We are now in a position to generalize this to stage-
classified matrix models.
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First, we derive the matrix version of the Keyfitz-Pollard result, for the sensitivity
of life expectancy of age class 1, which is

dE (η1) =
(

eT
1 ⊗ 1T

)
dvec N (4.36)

=
(

eT
1 ⊗ 1T

) (
NT ⊗ N

)
dvec U (4.37)

Consider a population with s age classes and let μi be the mortality rate and pi =
exp(−μi) the survival probability for age class i. The matrix U is given by (4.13),
which can be written

U =
s−1∑

k=1

(
ek+1eT

k

)
pk (4.38)

where ek is the unit vector, of length s, with a 1 in the kth position and zeros
elsewhere. Differentiating U and applying the vec operator gives

dvec U = −
s−1∑

k=1

(ek ⊗ ek+1) pk (dμk) (4.39)

Substitute (4.39) into (4.37) and consider a perturbation of mortality at age a; the
result is

dE(η1)

dμa

= −
(

eT
1 ⊗ 1T

) (
NT ⊗ N

)
(ea ⊗ ea+1) pa. (4.40)

This simplifies to

dE(η1)

dμa

= −
(

eT
1 NTea ⊗ 1TNea+1

)
pa (4.41)

= −E (νa) pa︸ ︷︷ ︸
survival

E (ηa+1)︸ ︷︷ ︸
expectancy

age-classified (4.42)

In an age-classified model, νa is either 0 or 1 (you cannot occupy a year of age for
more than 1 year); hence the E (νa) is the probability of survival to age a. Thus we
have a matrix version of the Keyfitz-Pollard result: the sensitivity of life expectancy
is the probability of survival to age a times the probability of survival from a to
a + 1, times the life expectancy at age a + 1.

Now apply the same approach to a stage-classified model, in which U can be
written as the product of a diagonal matrix � with survival probabilities on the
diagonal, and a stochastic matrix G giving the transition probabilities conditional
on survival:
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U = G� (4.43)

= G

⎛

⎜⎝
p1 · · · 0
...

. . .
...

0 · · · ps

⎞

⎟⎠ (4.44)

= G
s∑

k=1

(
ekeT

k

)
pk (4.45)

Differentiating and applying the vec operator gives

dvec U =
s∑

k=1

(ek ⊗ Gek) pk (dμk) (4.46)

Substitute this into (4.37) and focus on a change in mortality at stage a; the result is

dE(η1)

dμa

= −
(

eT
1 ⊗ 1T

) (
NT ⊗ N

)
(ea ⊗ Gea) pa (4.47)

which simplifies to

dE (η1)

dμa

= −
(

eT
1 NTea ⊗ 1TNGea

)
pa (4.48)

= −E (νa1) E
(
ηT

)
G(:, a)pa (4.49)

= − E (νa1)︸ ︷︷ ︸
occupancy

s∑

h=1

pagha︸ ︷︷ ︸
transitions

E (ηh)︸ ︷︷ ︸
expectancy

stage-classified (4.50)

Equation (4.50) is the stage-classified version of Keyfitz-Pollard: the sensitivity
of life expectancy to a change in mortality in stage j is the product of the expected
time spent in stage j and the remaining life expectancy, calculated as an average of
the life expectancy of all stages k, weighted by the probability of transition from j

to k. This can be simplified further by noting that, for either age or stage-classified
populations, G(:, a)pa = U(:, a), so that a completely general expression is

dE (η1)

dμa

= −E (νa1) E
(
ηT

)
U(:, a) age- or stage-classified (4.51)

4.4.4 Sensitivity of the Variance of Longevity

The sensitivity of the variance in longevity is obtained by differentiating (4.23)
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dV (η) = dη2 − 2
(
η1 ◦ dη1

)
(4.52)

and applying the vec operator (using results from Chap. 2 on the vec of the
Hadamard product), to obtain

dV (η) = dη2 − 2D (η1)dη1. (4.53)

The derivative of η1 is already given by (4.33):

dη1 =
(

NT ⊗ ηT
1

)
dvec U. (4.54)

The derivative of η2 is obtained by differentiating (4.22):

dηT
2 = 2

(
dηT

1

)
N + dηT

1 (dN) − dηT
1 (4.55)

Applying the vec operator to both sides and substituting (4.29) for dvec N gives

dη2 =
(

2NT − I
)

dη1 + 2
(

NT ⊗ ηT
1 N

)
dvec U (4.56)

Inserting (4.54) for dη1 and (4.56) for dη2 into (4.53) gives the sensitivity of
the variance in remaining longevity, for any starting age or stage, to changes in
U. The sensitivity of longevity to mortality is obtained by differentiating U with
respect to μ.

Derivatives of U The derivative of U to the mortality vector μ are obtained as
follows. For an age-classified model, define an age-advancement matrix

L =
⎛

⎝
0 0 0
1 0 0
0 1 [1]

⎞

⎠ (4.57)

(show here for three age classes, with the optional open-ended last age class).
This matrix will mask the entries of a matrix 1pT, that contains p in each row,
to obtain

U = L ◦
(

1pT
)

(4.58)

Differentiating and applying the vec operator gives

dU = L ◦
(

1
(
dpT

))
(4.59)

dvec U = D (vec L) (I ⊗ 1) dp. (4.60)
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Since p = exp(−μ),

dp = −D (p)dμ, (4.61)

and hence

dvec U = −D (vec L) (I ⊗ 1)D (p)dμ age-classified (4.62)

For a stage-classified model, write U = G�, as in (4.44) as

U = G
[
I ◦

(
1pT

)]
(4.63)

Differentiating and applying the vec operator, following the strategy of (4.60), gives

dvec U = − (I ⊗ G)D (vec I) (I ⊗ 1)D (p)dμ stage-classified (4.64)

Substituting (4.62) and (4.64) into the expressions for dη1 and dη2, and
substituting those into (4.53) gives the sensitivity of the variance in longevity to
age- or stage-specific mortality. It is possible to carry out the substitutions and to
arrive at a single (large) expression for dV (η); see Chap. 5.

Figure 4.2d shows the sensitivity and elasticity of variance of longevity to
changes in age-specific mortality. The variance is more sensitive to mortality
changes in Japan than in India, and the sensitivities are highest at young ages. Both
life tables have the property that sensitivities are positive at early ages (≈0–20 for
India, ≈0–80 for Japan) and then become negative. Before this age, reductions in
mortality will reduce variance; after this age, reductions in mortality increase the
variance. See Sect. 4.4.6 for more on this.

4.4.5 Sensitivity of the Distribution of Age at Death

The sensitivity of the distribution of age or stage at death is obtained by differenti-
ating (4.25) and applying the vec operator,

dvec B =
(

NT ⊗ I
)

dvec M + (I ⊗ M) dvec N. (4.65)

We already know dvec N. To obtain dvec M, note that when the absorbing states are
defined in terms of stage at death

M = I − D (p) (4.66)
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and thus

dvec M = −D (vec I) (I ⊗ 1) dp (4.67)

It is revealing to write the sensitivity of B to changes in mortality using the chain
rule,

dvec B

dμT
=

(
NT ⊗ I

) dvec M

dpT

dp

dμT
+ (I ⊗ M)

dvec N

dvec TU

dvec U

dpT

dp

dμT
(4.68)

and to recognize how many of the pieces we have already obtained.
The distribution of stage at death for individuals starting in stage j is given by

column j of B; i.e., ψj = B(:, j). The sensitivity of ψj to changes in mortality is

dψj

dμT
= (

ej ⊗ I
) dvec B

dμT
(4.69)

for any age or stage j of interest.

4.4.6 Sensitivity of Life Disparity

To get the sensitivity of the vector η†, differentiate and apply the vec operator to
Eq. (4.27), which gives

dη† = BTdη1 +
(

I ⊗ ηT
1

)
dvec B. (4.70)

Evaluating this expression for the data on India and Japan, we see that the
sensitivity of η† shows a pattern similar to that of the sensitivity of V (η) (Fig. 4.2),
confirming that these indices are measuring similar aspects of disparity in longevity.

In particular, they show the existence of a critical age, before which reductions
in mortality reduce disparity and after which they have the opposite effect. Zhang
and Vaupel (2009) showed that this critical age, which they describe as separating
“early” from “late” deaths is a general property of η†. Although the details depend
on which index of disparity one uses, the existence of a critical age separating
positive and negative sensitivities is also a property of other measures of variation in
longevity (Van Raalte and Caswell 2013). Vaupel et al. (2011) have used the critical
age to decompose historical changes in lifespan disparity into components due to
early and late mortality.
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4.5 A Time-Series LTRE Decomposition: Life Disparity

The LTRE decomposition analysis in Sect. 2.9 can be used to decompose time series
such as these into their components. We apply it here to calculate the contributions,
to a long trajectory of changes in η†, of changes in early and late mortality.

Suppose that some demographic outcome ξ(t) (dimension s × 1) is measured
as a function of a parameter vector θ (dimension p × 1), at times 1, 2, . . . T . The
changes in ξ(t) over time result from the changes in the parameters,

�ξ(t) = ξ(t + 1) − ξ(t) (4.71)

�θ(t) = θ(t + 1) − θ(t) (4.72)

The decomposition analysis for such sequences was introduced as a “regression
LTRE” method in the context of ecotoxicology and response to environmental
factors (e.g., Caswell 1996; Knight et al. 2009). The same approach was introduced
independently by Horiuchi et al. (2008) to decompose differences between two
conditions by imagining a continuous path from one to the other.

The analysis starts by considering the change in ξ over time,

dξ(t)

dt
= dξ(t)

dθT(t)

dθ(t)

dt
(4.73)

If the time series is evaluated at discrete times t = 1, . . . , T , then to first order

�ξ(t) ≈ dξ(t)

dθT(t)
�θ(t) s × 1 (4.74)

The contributions to �ξ(t) are displayed separately in a contribution matrix

C(t) = dξ(t)

dθT(t)
D [�θ(t)] s × p (4.75)

the (i, j) entry of C(t) is the contribution of �θj (t) to �ξi(t). The contributions
additive over time, so the contributions of all the changes, integrated from t1 to t2,
are given by the entries of

C (t1, t2) =
t2∑

t=t1

C(t) (4.76)

Suppose the dependent variable is ξ = η† and the parameter vector is θ = μ.
At each time and for each age, we aggregate the contributions from early and late

mortality. Let X be an indicator matrix whose entries define whether a particular
entry of C(t) is to be counted as early or late:
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xij =
{

1 θj contributes to �ξi

0 otherwise
(4.77)

Then

c(t) = (C(t) ◦ X) 1 (4.78)

is a vector giving the contributions to the change in ξ from the parameters chosen in
X. Defining Xearly and Xlate gives changes at time t due to early and late mortality.
The LTRE analysis is then

cearly(t1, t2) =
t2∑

t1

cearly(t) (4.79)

and similarly for clate(t1, t2).
As an example, Fig. 4.3a, b shows a time series of life expectancy (increasing

from about 40–80 years between 1800 and 2010) and life disparity for Swedish
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Fig. 4.3 (a) Historical trends in life expectancy at birth from 1800 to 2010. (b) Historical trends
in life disparity (mean years of life lost due to mortality) for ages 0 and 50 years. (c) Contributions
from early and late mortality improvement to the change in disparity at age 0. (d) The contributions
for disparity at age 50. (Data for Swedish females, from the Human Mortality Database)
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females, based on data from Human Mortality Database (2016). As in most
developed countries, life disparity at birth dropped dramatically from 1850 to about
1950 (e.g., Edwards 2011; Vaupel et al. 2011). Declines at later ages were less
dramatic, and remaining life disparity conditional on survival to age 50 has been
almost flat (Engelman et al. 2014). How did changes in early and late mortality
contribute to these patterns?

Figure 4.3c, d show the cumulative sums of the contributions cearly and clate, and
their total, for ages 0 and 50. The decline in life disparity at birth was driven almost
completely by improvements in early mortality, which completely overshadowed a
small increase in disparity that was generated by improvements in late life mortality.
The picture for remaining life disparity at age 50 is different: the contributions
from changes in early and late life mortality almost completely cancel each other
out. These patterns, looking at the details of a single time series, agree with the
much more general exploration of multiple countries, using a different approach, by
Vaupel et al. (2011).

The accuracy of the decomposition can be evaluated by comparing the time
series calculated from the total contributions, as shown in Fig. 4.3c, d, with the
observed series, as shown in Fig. 4.3b. The agreement is extremely close; the LTRE
decomposition captures the end result of the historical changes from 1800 to 2010
with an error of less than 0.1%.

4.6 Conclusion

This chapter and Chap. 3 contain examples of different approaches to the sensitivity
analysis, of population growth rate and longevity, respectively. The power and
flexibility of matrix calculus methods is apparent: the models are not restricted to
age- or stage-classification, the absorbing states may be a single category of death or
some more diverse set, the demographic outcomes are not limited to expectations,
and the independent variables, the parameters that are being perturbed, can be
anything of interest. The only requirement is that a chain of functional dependence
can be followed: the outcome ξ depends on U, which depends on p, which depends
on μ, . . . and so on. Mortality might depend on health status, which might depend
on income level, which might depend on education, . . . , and so on. The sensitivity
of ξ to any of these parameters is a application of the chain rule.
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Chapter 5
Individual Stochasticity and Implicit Age
Dependence

5.1 Introduction

Demography is the study of the population consequences of the fates of individuals.
As an individual organism develops through its life cycle it may increase in size,
change its morphology, develop new physiological functions, exhibit new behaviors,
or move to new locations. It may marry and divorce, become ill and recover, or
change its employment status. It may change sex and/or change its reproductive
status. These changes can be dramatic. This developmental process, and its attendant
risks of death and opportunities for reproduction, determine the rates of birth and
death that, in turn, determine population growth or decline.

Individuals are differentiated on the basis of age or, in general, life cycle stages.
The movement of an individual through its life cycle is a random process, and
although the eventual destination (death) is certain, the pathways taken to that
destination are stochastic and will differ even between identical individuals; this
is individual stochasticity. A stage-classified demographic model contains implicit
age-specific information, which can be analyzed using Markov chain methods. The
living stages in the life cycles are transient states in an absorbing Markov chain, in
which death is an absorbing state.

This chapter presents Markov chain methods for computing the mean and
variance of the lifetime number of visits to any transient state, the mean and variance
of longevity, the net reproductive rate R0, and the cohort generation time. It presents
the matrix calculus methods needed to calculate the sensitivity and elasticity of all
these indices to any life history parameters.

Chapter 5 is modified from Caswell, H. 2009. Stage, age, and individual stochasticity in
demography. The Per Brinck Oikos Award Lecture 2008. Oikos 118:1763–1782. ©Hal Caswell
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The Markov chain approach is then generalized to variable environments (deter-
ministic environmental sequences, periodic environments, iid random environ-
ments, Markovian environments). Variable environments are analyzed using the
vec-permutation method to create a model that classifies individuals jointly by the
stage and environmental condition. Throughout, examples are presented using the
North Atlantic right whale (Eubaleana glacialis) and an endangered prairie plant
(Lomatium bradshawii) in a stochastic fire environment.

5.1.1 Age and Stage, Implicit and Explicit

The essence of demography is the connection between the fates of individual
organisms and the dynamics of populations. There exist diverse mathematical
frameworks in which this connection can be studied (Keyfitz 1967; Metz and Diek-
mann 1986; Nisbet and Gurney 1982; Caswell 1989; Tuljapurkar and Caswell 1997;
Caswell et al. 1997; DeAngelis and Gross 1992; Ellner et al. 2016). Regardless
of the type of equations used, demographic analysis must account for differences
among individuals, and the ways in which those differences affect the vital
rates.

Among the many ways that individuals may differ, age has long had a kind
of conceptual priority. Age is universal in the sense that every organism becomes
one minute older with the passage of one minute of time. Age is also often
associated with predictable changes in the vital rates. However, in some organ-
isms characteristics other than age provide more and better information about
an individual. Ecologists recognized this long ago, and have developed demo-
graphic theory based on size, maturity, physiological condition, instar, spatial
location, etc.—referred to in general as “stage-classified” demography. Human
demographers, who were responsible for the classical age-classified theory, by
no means deny the importance of other properties, such as employment, par-
ity, or health status; see Land and Rogers (1982), Goldman (1994), Robine
et al. (2003), and Willekens (2014) for a sample of the kinds of issues that
arise.

Even when the demographic model is entirely stage-classified, however, age is
still implicitly present. Individuals in a given stage may differ in age, and individuals
of a given age may be found in many different stages, but each individual still
becomes one unit of age older with the passage of each unit of time. Extracting
this implicit age-dependent information makes it possible to calculate interesting
age-specific properties, such as survivorship, longevity, life expectancy, generation
time, and net reproductive rate (Cochran and Ellner 1992; Caswell 2001, 2006;
Tuljapurkar and Horvitz 2006; Horvitz and Tuljapurkar 2008).1

1Explicit age and stage dependence is explored in Chap. 6; see also Caswell and Salguero-Gómez
(2013) and Caswell et al. (2018).
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In this chapter, I show how to calculate some of these implicit age-specific
properties from any stage-classified model. The trick is to formulate the life cycle
as a Markov chain, and to generalize the “life” cycle to include death as a stage.
Because death is permanent, it is called an absorbing state, and the theory of
absorbing Markov chains provides the starting point for our analysis (Feichtinger
1971; Caswell 2001).

A Markov chain is a stochastic model for the movement of a particle among a set
of states (e.g., Kemeny and Snell 1976; Iosifescu 1980). The probability distribution
of the next state of the particle may depend on the current state, but not on earlier
states. In our context, a “particle” is an individual organism. The states correspond
to the stages of the life cycle, plus death (or perhaps multiple types of death, for
example deaths due to different causes). This structure is ideally suited to asking
questions about individual stochasticity, because it accounts for all the possible
pathways, and their probabilities, that an individual can follow through its life. I will
focus on discrete-time models, but much of the theory can no doubt be generalized
to continuous-time models.

The use of Markov chains in demographic analysis is not new. As far as I
know, Feichtinger (1971, 1973) was the first to use discrete-time absorbing Markov
chains in demography, paying particular attention to competing risks and multiple
causes of death. At around the same time, Hoem (1969) applied continuous-time
Markov chains in the analysis of insurance systems (with states such as “active,”
“disabled,” and “dead”). Later, Cochran and Ellner (1992) independently proposed
the use of Markov chains to generate age-classified statistics from stage-classified
models, but minimized the use of matrix notation in their presentation. Influenced by
Feichtinger’s work, and relying heavily on Iosifescu’s (1980) treatment of absorbing
Markov chains, I extended the calculations using matrix notation (Caswell 2001;
Keyfitz and Caswell 2005), introduced sensitivity analysis (Caswell 2006), and
presented results for both time-invariant and time-varying models. At the same
time, Tuljapurkar and Horvitz (2006) and Horvitz and Tuljapurkar (2008) devel-
oped the same approaches and presented a more extensive investigation of time
variation.

5.1.2 Individual Stochasticity and Heterogeneity

Consider a newborn individual. As it develops through the stages of its life cycle,
it may grow, shrink, mature, move, reproduce, and allocate resources among its
biological processes. At each moment, it is exposed to various mortality risks.
At each moment, it has some chance of reproducing. Because these processes are
stochastic, the lives of any two individuals may differ. These random outcomes—
this individual stochasticity—imply that the age-specific properties of an individual
(say, longevity) are random variables—there is a distribution among individuals that
should be characterized by its mean, moments, etc. (Caswell 2009).
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It is critical to notice that the calculation of these moments explicitly assumes
that every individual in a given stage experiences exactly the same rates and
hazards. There is no heterogeneity among the individuals (or, at least, none that
matters demographically), even though there is variation in their lifetime properties.
Empirical studies of longevity or lifetime reproductive output find that the variation
among individuals is usually large, but it is a mistake to jump to the conclusion that
it is due to heterogeneity among individuals without first examining the variance
that is inevitably created by individual stochasticity (e.g., Tuljapurkar et al. 2009;
Steiner and Tuljapurkar 2012; Caswell 2011; Caswell and Kluge 2015; Caswell and
Vindenes 2018; Hartemink et al. 2017; Hartemink and Caswell 2018; van Daalen
and Caswell 2017).

5.1.3 Examples

The calculations will be demonstrated by means of two case studies. The first is
a stage-classified model for the North Atlantic right whale (Eubaleana glacialis).
Later, in Sect. 5.5.4, a stochastic matrix model for the threatened prairie plant
Lomatium bradshawii will appear as part of a study of variable environments.

The North Atlantic right whale is a large, highly endangered baleen whale (Kraus
and Rolland 2007). Once abundant in the north Atlantic, it was decimated by
whaling, beginning as much as a thousand years ago (Reeves et al. 2007). By 1900
the eastern North Atlantic stock had been effectively eliminated, and the western
North Atlantic stock hunted to near extinction. The population has recovered only
slowly since receiving at least nominal protection in 1935, and now numbers only
about 300 individuals. Right whales migrate along the Atlantic coast of North
America, from summer feeding grounds in the Gulf of Maine and Bay of Fundy to
winter calving grounds off the Southeastern U.S. They are killed by ship collisions
and entanglement in fishing gear (Kraus et al. 2005), and may also be affected by
pollution of coastal waters.

Individual right whales are photographically identifiable by scars and callosity
patterns. Since 1980, the New England Aquarium has surveyed the population,
accumulating a database of over 10,000 sightings (Crone and Kraus 1990). Treating
the first year of identification of an individual as marking, and each year of
resighting as a recapture, permits the use of mark-recapture statistics to estimate
demographic parameters of this endangered population (Caswell et al. 1999;
Fujiwara and Caswell 2001, 2002; Caswell and Fujiwara 2004).

Figure 5.1 shows a life cycle graph used by Caswell and Fujiwara (2004) as the
basis of a stage-structured matrix population model for the right whale. The stages
are calves, immature females, mature but non-reproductive females, mothers, and
“resting” mothers (because of the long period of parental care and gestation, right
whales do not reproduce in the year after giving birth). This life cycle is typical of
large, long-lived monovular mammals and birds.
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1

Fig. 5.1 Absorbing Markov chain transition graph for females of the North Atlantic right whale
(Eubalaena glacialis). Projection interval is 1 year. Stages: 1 = calf, 2 = immature, 3 = mature,
4 = mother, 5 = post-breeding female, 6 = death. See Caswell and Fujiwara (2004) for explanation
and parameter estimates

The model is parameterized in terms of survival probabilities σ1, . . . , σ5, the
probability of maturation γ2, and the birth probability γ3. The projection matrix is

A =

⎛

⎜⎜⎜⎜⎜⎝

0 0 F 0 0
σ1 σ2(1 − γ2) 0 0 0
0 σ2γ2 σ3(1 − γ3) 0 σ5

0 0 σ3γ3 0 0
0 0 0 σ4 0

⎞

⎟⎟⎟⎟⎟⎠
(5.1)

The fertility term in the (1, 3) position is F = 0.5σ3γ3
√

σ4, accounting for the sex
ratio, the survival of mature females, their probability of giving birth if they survive,
and the effect of survival of the mother on survival of the calf. For reasons related
to parameter estimation, σ5 is constrained to equal σ3.

5.2 Markov Chains

The familiar life cycle graph (e.g., Fig. 5.1) corresponds to a projection matrix
A, in which aij gives the per-capita production of stage i individuals at t + 1
by a stage j individual at t . This production may occur by the transition of an
individual from stage j to stage i, or by the production of one or more new
individuals (by reproduction, fragmentation, etc.). So, we partition A into a matrix
U describing transition probabilities of extant individuals and a matrix F describing
the production of new individuals

A = U + F (5.2)

The column sums of U are all less than or equal to 1. Because individuals eventually
die and pass out of the stages contained in U, those stages are called transient states.
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5.2.1 An Absorbing Markov Chain

If we include death explicitly (Fig. 5.1) and remove the arcs representing reproduc-
tion, we obtain the graph corresponding to the transition matrix for an absorbing
Markov chain

P =
(

U 0
m 1

)
(5.3)

The element mj of the vector m is the probability of mortality of an individual in
stage j . Death is an absorbing state. I will assume that at least one absorbing state is
accessible from any transient state in U, and that the spectral radius of U is strictly
less than 1. This guarantees that, with probability 1, every individual ends up in the
absorbing state.

The right whale Fujiwara estimated U by applying multi-stage mark-recapture
methods to the photographic identification catalog. Although the best model, out
of a large number evaluated, included significant time variation in survival and birth
rates, here I will analyze a single matrix obtained from a time-invariant model. The
complete transient matrix U and the fertility matrix F are

U =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0.90 0.85 0 0 0

0 0.12 0.71 0 1.00
0 0 0.29 0 0
0 0 0 0.85 0

⎞

⎟⎟⎟⎟⎟⎠
(5.4)

F =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0.13 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
(5.5)

5.2.2 Occupancy Times and the Fundamental Matrix

As the syllogism asserts, all men are mortal; absorbtion is certain. Our question is,
how long does absorbtion take and what happens en route? From a demographic
perspective, this is asking about the lifespan of an individual and the events that
happen during that lifetime. The key to these questions is the fundamental matrix of
the absorbing Markov chain. Consider an individual presently in transient state j .
As time passes, it will visit other transient states, repeating some, skipping others,
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until it eventually dies. Let νij denote the number of visits to, or the occupancy time
in, transient state i that our individual, starting in transient state j , makes before
being absorbed. The νij are random variables, reflecting individual stochasticity.

The entries of the matrix U give the probabilities of visiting each of the transient
states after one time step. The entries of U2 give the probabilities of visiting each of
the transient states after two time steps. Adding the powers of U gives the expected
number of visits to each transient state, over a lifetime, in a matrix N; i.e.,

N = (
E(νij )

)

=
∞∑

t=0

Ut

= (I − U)−1 . (5.6)

The right whale The fundamental matrix for the right whale is calculated from
(5.6) to be

N =

⎛

⎜⎜⎜⎜⎜⎝

1.00 0.00 0.00 0.00 0.00
5.88 6.52 0.00 0.00 0.00

16.35 18.11 22.94 19.49 22.94
4.74 5.25 6.65 6.65 6.65
4.02 4.46 5.65 5.65 6.65

⎞

⎟⎟⎟⎟⎟⎠
. (5.7)

The first column corresponds to calves. On average, a calf will spend 1 year as a calf,
5.9 years as a juvenile, 16.3 years as a mature but non-breeding female, etc. Row
4 of N is of particular interest. Stage 4 represents mothers, so n4j is the expected
number of reproductive events that a female in stage j will experience during her
remaining lifetime. Based on this model, a newborn calf could expect to give birth
n41 = 4.74 times. A mature female could expect to give birth n43 = 6.65 times; the
difference reflects the likelihood of mortality between birth and maturity.2

We would like to know how the entries of N vary in response to changes in the
vital rates. To accomplish this, we need matrix calculus, which is the topic of the
next section.

2Note that n43 = n44 = n45 = n55 and n53 = n54. This seems to be due to the fact, specific to these
data, that the survival probability of stages 3 and 5 is indistinguishable from 1.0, and influences the
results below.
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5.2.3 Sensitivity of the Fundamental Matrix

Let us apply matrix calculus to find the sensitivity of the fundamental matrix N
(Caswell 2006). This result will appear in the sensitivity analysis of most other
demographic quantities. Let θ be a vector of parameters (of dimension p × 1) on
which the entries of the transition matrix U depend. The fundamental matrix satisfies

I = NN−1. (5.8)

Differentiating both sides gives

0 = (dN)N−1 + N
(
dN−1

)
. (5.9)

Applying the vec operator and Roth’s theorem to both sides gives

vec 0 =
[(

N−1
)T ⊗ Is

]
dvec N + (Is ⊗ N) dvec N−1 (5.10)

Solving for dvec N gives

dvec N =
[(

N−1
)T ⊗ Is

]−1

(Is ⊗ N) dvec U (5.11)

To simplify this, it helps to know two facts about the Kronecker product:

(A ⊗ B)−1 = A−1 ⊗ B−1 (5.12)

(A ⊗ B) (C ⊗ D) = (AC ⊗ BD) (5.13)

provided that the sizes of the matrices permit the indicated operations. Thus dvec N
in (5.11) simplifies to

dvec N =
(

NT ⊗ N
)

dvec U (5.14)

The identification theorem (2.47) implies

dvec N

dvec TU
= NT ⊗ N (5.15)

and the chain rule permits us to write

dvec N

dθT
=

(
NT ⊗ N

) dvec U

dθT
(5.16)
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Fig. 5.2 Elasticity, to each of the vital rates, of reproductive outcomes in the right whale. (a) The
elasticity of the expected lifetime number of reproductive events (E(ν41)). (b) The elasticity of
the variance in the lifetime number of reproductive events, V (ν41). Vital rates: s1–s4 are survival
probabilities (s5 = s3 by assumption in this model); g2 is the probability of maturation, and g3 is
the probability of reproduction

The left-hand side of (5.16) is a matrix, of dimension s2 × p, containing the
sensitivity of every entry of N to every parameter in θ . The matrix dvec U/dθT

is an s2 × p matrix containing the sensitivities of all the elements of U to all the
elements of θ . From (2.55), the elasticity of the fundamental matrix is given by

εvec N

εθT
= D (vec N)−1 dvec N

dθT
D (θ) (5.17)

The right whale As an example, we use (5.16) and (5.17) to calculate the elasticity
of the expected lifetime number of reproductive events, E(ν41) = n41, with respect
to the survival probabilities σ1, . . . , σ4, the maturation probability γ2, and the
breeding probability γ3. Figure 5.2 shows that the number of breeding events is
most elastic to mature female survival (σ3), and less so to the survival of mature
females or mothers (σ2 and σ4). Changes in the probability of giving birth, γ3, have,
remarkably enough, no impact on the expected number of reproductive events.

The elasticity of n41 to σ3 (survival of mature females) is approximately 30. This
implies that a 1% increase in σ3 would produce about a 30% increase in the expected
number of reproductive events.

5.3 From Stage to Age

The fundamental matrix summarizes the age-specific information implicit in the
transient matrix U, even if the model is stage-classified and age does not appear
explicitly. We now extend this, to explore a series of age-specific demographic
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indices and their sensitivity analyses. Some are well known (R0, generation time),
others little explored (variance in longevity, for example). They can, however, all be
easily calculated from any stage-classified model.

5.3.1 Variance in Occupancy Time

The occupancy time in any transient state is a random variable; the fundamental
matrix N gives its mean. Some individuals will visit that state more often, some
less often, some not at all. This basic property of individual stochasticity can be
described by the variance of νij . Iosifescu (1980), Theorem 3.1 gives a formula for
all the moments of the νij ; from this we can calculate the matrix of variances

V = (
V (νij )

) = (
2Ndg − I

)
N − N ◦ N (5.18)

(Caswell 2006) where ◦ denotes the Hadamard, or element-by-element, product and
Ndg is a matrix with the diagonal elements of N on its diagonal and zeros elsewhere.
The standard deviations of the occuancy times are the square roots of the elements
of V.

The right whale For the right whale, the matrix of variances calculated from
(5.18) is

V =

⎛

⎜⎜⎜⎜⎜⎝

0.00 0.00 0.00 0.00 0.00
36.18 35.95 0.00 0.00 0.00

466.44 484.80 503.32 494.86 503.32
35.80 36.98 37.54 37.54 37.54
33.28 34.94 37.54 37.54 37.54

⎞

⎟⎟⎟⎟⎟⎠
, (5.19)

and the corresponding standard deviations are

(
SD(νij )

) =

⎛

⎜⎜⎜⎜⎜⎝

0.00 0.00 0.00 0.00 0.00
6.02 6.00 0.00 0.00 0.00

21.60 22.02 22.43 22.25 22.43
5.98 6.08 6.13 6.13 6.13
5.77 5.91 6.13 6.13 6.13

⎞

⎟⎟⎟⎟⎟⎠
. (5.20)

The variance in the νij is the result of luck, not heterogeneity. That is, it is
the variance among a group of individuals all experiencing exactly the same
stage-specific transition and mortality probabilities in U. As such, it can provide
a null model for studies of heterogeneity in quantities such as the number of
reproductive events. This idea has been explored independently, and in more detail,
by Tuljapurkar and colleagues (Tuljapurkar et al. 2009; Steiner and Tuljapurkar
2012).
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The sensitivity of the variance is derived in Appendix A.1 as

dvec V

dθT
=

[
2
(

NT ⊗ Is

)
D (vec Is) + 2

(
Is ⊗ Ndg

)

−Is2 − 2D (vec N)

]
dvec N

dθT
(5.21)

Elasticities of V are calculated using (2.55).

Hint Before looking at Appendix A.1, to derive (5.21), write Ndg = I ◦ N,
differentiate (5.18), and use the fact that vec (A ◦ B) = D (vec A)vec B =
D (vec B)vec A.

The right whale The elasticities of V (ν41), calculated from (5.21) and (5.17), are
shown in Fig. 5.2b. They are roughly proportional to the elasticities of E (ν41); that
is, the vital rates that have large effects on the expected number of reproductive
events also have large effects on the variance.

5.3.2 Longevity and Life Expectancy

Longevity is an important demographic characteristic (Carey 2003). Mean
longevity, or life expectancy, it is one of the most widely reported demographic
statistics, used to compare populations, species, countries, regions, historical
periods, etc., and to examine the effects of evolutionary, management, medical,
and social processes. The longevity of an individual is the sum of the time spent in
all of the transient states before final absorption. Let the random variable ηj denote
the longevity of an individual currently in stage j . Then

ηj =
∑

i

νij . (5.22)

A vector E(η) of expected longevities, or life expectancies, is obtained by summing
the columns of N:

E(ηT) = 1TN (5.23)

where 1 is a vector of ones. Often, life expectancy at birth is of primary interest.
If stages are numbered so that birth corresponds to stage 1, then life expectancy at
birth is

E(η1) = 1TNe1 (5.24)

where e1 is a vector with 1 in the first entry and zeros elsewhere.
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The sensitivity of life expectancy in age-classified models has been studied by
Pollard (1982) and Keyfitz (1971); see Keyfitz and Caswell (2005, Section 4.3),
Vaupel (1986), and Vaupel and Canudas Romo (2003).

For more general stage-classified models, the sensitivity of E(η) is (Caswell
2006)

dE(η)

dθT
=

(
Is ⊗ 1T

) (
NT ⊗ N

) dvec U

dθT
(5.25)

Hint To obtain (5.25), differentiate both sides of (5.23), apply the vec operator, and
use (5.16) for the derivative of N. See Appendix A.2 for the derivation.

The right whale For the right whale, the vector of life expectancies is

E(ηT) = (
32.0 34.3 35.2 31.8 36.2

)
(5.26)

Because mortality rates vary relatively little among stages, the life expectancies of
the stages differ by only about 15%. Thus life expectancy for a calf implied by these
data was 32 years. The elasticities of life expectancy to the vital rates are shown in
Fig. 5.3. Life expectancy is most elastic to mature female survival σ3, and less so to
σ2 and σ3. This partly reflects the longer amount of time spent as a mature female,
compared to an immature female or mother; see (5.7). The elasticity to the birth rate
γ3 is negative, because of the reduced survival of mothers. A 1% increase in γ3 will
lead to a 0.51% decrease in life expectancy. This is one possible measure of the cost
of reproduction.
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Fig. 5.3 Elasticities of longevity for the right whale. (a) The elasticity, to each of the vital rates,
of life expectancy for a female right whale calf. (b) The elasticity of the variance in longevity for
a female right whale calf. Parameters as in Fig. 5.2
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5.3.3 Variance in Longevity

Like the occupancy time in a transient state, longevity is a random variable, the
variability of which is a measure of individual stochasticity. Individuals differ in
longevity depending on the pathways taken from birth to death. This variance has
been explored by human demographers, using life table methods, as one way of
studying the inequality in life span generated by a given mortality schedule, and how
that inequality has changed over time (e.g., Wilmoth and Horiuchi 1999; Shkolnikov
et al. 2003; Edwards and Tuljapurkar 2005; Van Raalte and Caswell 2013).

The variance of the time to absorbtion is

V (ηT) = 1TN (2N − I) − E
(
ηT

)
◦ E

(
ηT

)
. (5.27)

(Caswell 2006; Iosifescu 1980).
The sensitivity of the variance in longevity is

dV (η)

dθT
=

[
2
(

NT ⊗ 1T
)

+ 2
(

Is ⊗ 1TN
)

−
(

Is ⊗ 1T
)

− 2D (E (η))
(

Is ⊗ 1T
) ] (

NT ⊗ N
) dU

dθT
(5.28)

The first entry of (5.28) is the sensitivity of the variance in longevity starting in
stage 1.

Hint To derive (5.28), differentiate (5.27) and apply the vec operator and Roth’s
theorem to each term, using (5.25) for the derivative of E(η). See Sect. A.3 for
details.

The right whale For the right whale, the variance and standard deviation of
longevity are given by

V (η)T = (
1157 1167 1172 1163 1172

)
(5.29)

SD(η)T = (
34.0 34.2 34.2 34.1 34.2

)
(5.30)

The life expectancy at birth of 32 years has a standard deviation of about 34 years.
Note that this result implies a very long positive tail of longevity. The interpretation
of this result is tricky; I will return to it in Sect. 5.7.

The elasticities of the variance of longevity of a calf are shown in Fig. 5.3b. The
variance in longevity is increased by increases in σ3, less so by increases in σ2 and
σ4. The pattern of the elasticities is strikingly similar to that of the elasticities of
E(η).
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5.3.4 Cohort Generation Time

Generation time measures the typical age at which offspring are produced, or the
age at which the typical offspring is produced. It appears in the IUCN criteria
for classifying threatened species (IUCN Species Survival Commission 2001)
as well as in various evolutionary considerations. There are several definitions
of generation time (Coale 1972); here we will examine the cohort generation
time, defined as the mean age of production of offspring in a cohort of newborn
individuals. From the definition it is clear why calculation of generation time is a
problem in stage-classified models, in which the age of parents does not appear.
Moreover, in stage-classified models, individuals may be born into several stages
(e.g., cleisthogamous vs. chasmogamous seeds; LeCorff and Horvitz 2005), each
with a different subsequent pattern of development, survival, and fertility. There
could be a different generation time for each type of offspring, and if individuals
may produce more than one type of offspring, the average age at which they are
produced could differ from one kind of offspring to another.

Thus, we expect to have a generation time that measures the mean age of
production of offspring of type i by an individual born in stage j . Write this as
a vector μ(j). Then it can be shown (Sect. A.5) that

μ(j) = D
(
FNej

)−1 FNUNej (5.31)

The sensitivity of μ(j) is obtained by a methodical application of matrix calculus
to (5.31). To simplify notation, define

X = D
(
FNej

)
(5.32)

r = FNUNej (5.33)

The resulting sensitivity of μ(j) is

dμ(j)

dθT
= −

(
rT ⊗ I

) (
X−1 ⊗ X−1

)
D (vec I)

×
[ (

1eT
j NT ⊗ I

) dvec F

dθT
+ (

1ej ⊗ F
) dvec N

dθT

]

+
{ [(

NUNej

)T ⊗ I
] dvec F

dθT
+
[(

UNej

)T ⊗ F
] dvec N

dθT

+
[(

Nej

)T ⊗ FN
] dvec U

dθT
+
[
eT
j ⊗ FNU

] dvec N

dθT

}
(5.34)
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Fig. 5.4 The elasticity, to
each of the vital rates, of the
cohort generation time for a
newborn calf right whale.
Parameters as in Fig. 5.2
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Hint To derive (5.34), it helps to note that, for any vector z, one can write D (z) =
I◦z1T. Apply this to X, differentiate all the terms in μ(j), and apply the vec operator.
With any luck, you will come out to this answer. See Sect. A.5.1 for derivation.

The right whale The elasticities of the generation time μ(1) of a calf are shown in
Fig. 5.4. Changes in early survival (σ1 and σ2) have little effect. Adult survival σ3
and, to a lesser extent, σ4 increase the generation time by extending the reproductive
lifespan. The maturation probability γ2 and the birth probability γ3 have negative
effects on generation time, because they speed up reproduction.

5.4 The Net Reproductive Rate

In age-classified demography, the net reproductive rate R0 measures lifetime
reproductive output. It also appears in epidemiology, where it measures the potential
of a disease to spread (e.g., Diekmann et al. 1990; van den Driessche and Watmough
2002). The classical net reproductive rate satisfies three conditions:

C1: R0 measures the expected lifetime production of offspring.
C2: R0 measures the rate of increase per generation (in contrast to the rate of

increase per unit of time, which is given by λ or r).
C3: R0 is an indicator function for population persistence. If R0 > 1 then an

individual will, on average, produce more than enough offspring to replace
itself, the next generation will be larger than the present generation, and the
population will grow. If R0 < 1, each generation is smaller than the one
before, and the population will decline to extinction.

In classical demography (Lotka 1939; Rhodes 1940),

R0 =
∫ ∞

0
�(x)m(x)dx (5.35)
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where �(x) is survivorship to age x and m(x) is the maternity function. It is not
difficult to show that R0 defined in this way satisfies conditions C1, C2, and C3.

In stage-classified models, however, the calculation of R0 must account for the
multiple pathways that an individual may follow through the life cycle, and the pro-
duction of multiple kinds of offspring along each of these pathways. Rogers (1974;
see also Lebreton 1996) considered R0 in the context of an age-classified population
distributed across a set of spatial regions. However, these calculations assume that
age-specific survival and fertility schedules are available for each region. A more
general solution was provided by Cushing and Zhou (1994) for stage-classified
populations with no age-specific information. Their analysis produces an index that
satisfies as many as possible of the conditions C1, C2, and C3. de Camino-Beck and
Lewis (2007, 2008) have derived graph-theoretic ways to calculate R0.

Consider an initial cohort at t = 0 with structure x0, and call this the first
generation. This cohort will produce offspring according to Fx0. The survivors of
the cohort at t = 1 will produce offspring according to FUx0. The survivors at
t = 2 will produce offspring FU2x0, and so on. The second generation is composed
of all the offspring of the first generation, obtained by summing over the lifetime of
the cohort

x(1) =
(

F
∞∑

i=0

Ui

)
x0

= (FN) x0 (5.36)

Iterating this process leads to a model for the growth from one generation to the next

x(k + 1) = FNx(k) (5.37)

Cushing and Zhou (1994) define R0 as the per-generation growth rate, given by the
dominant eigenvalue ρ of FN,

R0 = ρ[FN] (5.38)

Thus the Cushing-Zhou measure of R0 clearly satisfies condition C2. Cushing and
Zhou (1994) also prove (their Theorem 3) that R0 defined in this way is less than,
equal to, or greater than 1 if and only if λ is less than, equal to, or greater than one,
respectively, thus satisfying condition C3.

The relation between lifetime offspring production and R0 (condition C1) is more
complicated when the life cycle contains multiple types of offspring. If only a single
type of offspring is produced (call it stage 1), then F will have nonzero entries only in
its first row, and FN will be upper triangular, with its dominant eigenvalue appearing
in the (1, 1) position. i.e., the sum of the fertilities of each stage weighted by the
expected time spent in that stage. This is precisely the expected lifetime offspring
production, so for the case of a single type of offspring, the Cushing-Zhou R0 also
satisfies C1.
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However, if the life cycle contains multiple types of offspring (say stages
1, . . . , h), the upper left h × h corner of FN will contain the expected lifetime
production of offspring of types 1, . . . , h by individuals starting life as types
1, . . . , h. Since such a life cycle contains more than one kind of expected lifetime
production of offspring, R0 cannot satisfy C1 in the sense of being the expected
lifetime reproduction. Instead, R0 is calculated from all these expectations (as the
dominant eigenvalue of this h × h submatrix). It determines per-generation growth
and population persistence as a function of the expected lifetime production of all
types of offspring in a way that satisfies C2 and C3.

The right whale The right whale produces only a single type of offspring. The
fundamental matrix N is given by (5.7), the fertility matrix is given by (5.5), and the
generation growth matrix is

FN =

⎛

⎜⎜⎜⎜⎜⎝

2.18 2.42 3.06 2.60 3.06
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
(5.39)

The dominant eigenvalue of FN is its (1, 1) entry

R0 =
∑

j

f1jE(νj1) = 2.18 (5.40)

It is interesting to compare R0 = 2.18 with E(ν14) = 4.74. Only female offspring
are counted in R0, whereas E(ν14) counts reproductive events regardless of the sex
of the offspring produced. Still, R0 is less than half of E(ν14), because of the less
than perfect survival of calves from t to t + 1.

5.4.1 Net Reproductive Rate in Periodic Environments

Periodic time-varying models (Caswell 2001, Chapter 13) are an interesting special
case of the multiple offspring type problem. In a periodic model, apparently
identical offspring (e.g., seeds) produced at different phases of the cycle (e.g.,
seasons) are, in effect, of different types of. To the extent that they face different
environments, they will differ in their expected offspring production, and R0 will
differ depending on the phase of the cycle in which it is calculated.

The net reproductive rate in a periodic environment was calculated by Hunter
and Caswell (2005a) in a study of the sooty shearwater, a pelagic seabird nesting
on offshore islands in New Zealand. In that study, the year was divided into two
short phases, during which breeding and harvest of chicks occur, and a longer phase
encompassing the rest of the year. Let Bi = Ui+Fi be the projection matrix in phase
i of the cycle. Without loss of generality, consider an environment with a period of 2
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(e.g., winter and summer). The population is projected over a year, starting in phase
1, by

A1 = B2B1 (5.41)

which is decomposed as

A1 = (U2 + F2) (U1 + F1)

= U2U1 + U2F1 + F2U1 + F2F1 (5.42)

The first term includes only transitions, whereas the last three terms all describe
some aspect of reproduction. Thus the annual matrix is A1 = Û + F̂, where

Û1 = U2U1 (5.43)

F̂1 = U2F1 + F2U1 + F2F1 (5.44)

and

R
(1)
0 = ρ

[
F̂1

(
I − Û1

)−1
]

(5.45)

where the superscript 1 indicates that this is the net reproductive rate of a generation
beginning in season 1. The corresponding matrices for a generation starting in
season 2 are obtained from

A2 = B1B2 (5.46)

and lead to a net reproductive rate R
(2)
0 . It is easily verified that R

(1)
0 �= R

(2)
0 in

general. This contrasts with the population growth rate λ, which is independent of
cyclic permutation of the seasons. However, since λ is the same for A1 and A2, it
must be the case that R

(1)
0 and R

(2)
0 are both greater than or less than 1 together.

An alternative formulation of R0 in periodic environments was published at the
same time as Caswell (2009), by Bacaër (2009). He wrote the model, using methods
equivalent to those in Sect. 5.5 below, by jointly classifying individuals by stage and
by their phase within a seasonal cycle. Let Ai = Ui + Fi be the projection matrix
in season i. Then, for example with three seasons, the projection matrix would take
the block-circulant form

Ã =
⎛

⎝
0 0 A3

A1 0 0
0 A2 0

⎞

⎠ (5.47)

(with similar formulations for Ũ and F̃). After some manipulations, Bacaër shows
that R0 is the dominant eigenvalue of the matrix3

3It might be easier to apply the Cushing-Zhou theorem directly to Ã and write

R0 = ρ

(
F̃
(

I − Ũ
)−1

)
(5.48)

but Bacaër does not do this.
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⎛

⎝
F1 0 0
0 F2 0
0 0 F3

⎞

⎠

⎛

⎝
−U1 I 0

0 −U2 I
I 0 −U3

⎞

⎠
−1

. (5.49)

Bacaër (2009) proves that R0 calculated in this way satisfies condition C3, providing
an indicator for population growth (R0 > 1) or decline (R0 < 1). However, this
definition of R0 does not satisfy C1 because it does not distinguish the different
lifetime reproductive output of individuals born in different seasons.

Cushing and Ackleh (2012) returned to this issue. They argue that the standard
approach for studying dynamics of periodic models is to study the “periodic
composite map”, which is the map for the entire cycle composed of the product
of the phase-specific matrices, as in (5.41), which projects over the entire cycle,
rather than from one season to the next. They separate transitions and reproduction
as in Eqs. (5.43) and (5.44), and prove that R0 calculated in this way satisfies C1
(with a different lifetime reproductive output for each starting season) and C3 (so
that the values of R0 in each season agree in their determination of positive or
negative growth). Cushing and Ackleh (2012) also explore the net reproductive rate
in nonlinear models, in which R0 calculated at zero density determines whether the
extinction equilibrium is stable.

In the end, it is valuable to have two different ways of calculating R0, but it
highlights the need to carefully specify which properties one wants the index to
have.

5.4.2 Sensitivity of the Net Reproductive Rate

Since R0 is obtained as an eigenvalue, its sensitivity to parameter changes is easy
to derive. Let x and y be the right and left eigenvectors of FN corresponding to R0.
Then (Caswell 2006) the sensitivity of R0 is

dR0

dθT
=

(
yTNT ⊗ xT

) dvec F

dθT
+
(

yTNT ⊗ xTFN
) dvec U

dθT
(5.50)

The first term captures the effects of changing fertility, the second term captures
effects of changes in survival and transitions. The derivation of (5.50) is given in
Appendix A.4.

Hint To derive (5.50), write R0 = ρ[FN] and write dR0 in terms of the right and
left eigenvectors of FN and the differential of FN. Then expand d(FN) = (dF)N +
Fd(N) and apply the vec operator and the chain rule.

The right whale The elasticity of R0 is shown in Fig. 5.5; R0 is most elastic to
σ3, less so to σ2 and σ4. Remarkably, the elasticity of R0 to the birth probability
γ3 is zero (actually, ∼ 10−9). This is a case where lifetime reproductive output is
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Fig. 5.5 The elasticity, to
each of the vital rates, of the
net reproductive rate (R0) for
the right whale. Parameters as
in Fig. 5.2
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affected strongly by survival, slightly by maturation, but not at all by the probability
of breeding given survival. This seems to be a consequence of the lower survival
probability of mothers; an increase in γ3 increases the probability of reproduction,
but reduces the lifetime over which that reproduction will be realized.

5.4.3 Invasion Exponents, Selection Gradients, and R0

Selection on life history traits can be studied in terms of the invasion exponent,
which measures the rate at which a mutation, introduced at low densities, will
increase in the environment created by a resident phenotype (Metz et al. 1992;
Ferriére and Gatto 1993); for a recent introduction see Otto and Day (2007). The
selection gradient on a trait is the derivative of the invasion exponent with respect to
the value of the trait. If the derivative is positive, selection favors an increase in the
trait, and vice-versa. The invasion exponent in a density-independent model is given
by log λ. In a density-dependent model, the invasion exponent is given by the growth
rate at equilibrium, λ[n̂]. The net reproductive rate R0 is not, strictly speaking,
an invasion exponent, but because it measures expected lifetime reproduction, it is
attractive as a measure of fitness (see, e.g., the discussion in Kozlowski 1999). Using
R0 as a measure of fitness will lead to erroneous conclusions unless the selection
gradients, measured in terms of λ and of R0, give the same answers, i.e., unless
dR0/dθ ∝ d log λ/dθ .

For an age-classified model, we write R0 in terms of the net maternity function
φ(x, θ) = �(x, θ)m(x, θ) where both survival and reproduction depend on some
parameter θ . Then

R0(θ) =
∫ ∞

0
φ(x, θ)dx (5.51)
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The growth rate r = log λ is the solution to

1 =
∫ ∞

0
φ(x, θ)e−r(θ)xdx (5.52)

Differentiating (5.51) and (5.52) gives

dR0

dθ
=

∫ ∞

0

dφ(x, θ)

dθ
dx (5.53)

dr

dθ
=

∫∞
0 e−rx dφ(x,θ)

dθ
dx

∫∞
0 xφ(x, θ)e−rxdx

(5.54)

Equation (5.54) is Hamilton’s (1966) famous result; the denominator is the genera-
tion time measured as the average age of reproduction in the stable age distribution
(see Chap. 3).

When R0 = 1 and r = 0, it follows from (5.53) and (5.54) that the gradients
dr/dθ and dR0/dθ are proportional. Use of either will lead to the same conclusions
about selection. But when r �= 0, this is not the case. If r > 0, then dr/dθ is
reduced for traits that operate at later ages, because dφ/dx is weighted by e−rx . It
is an open problem to generalize this result to stage-classified models, and prove
that

d log λ

dθT
∝ dR0

dθT
(5.55)

when λ = R0 = 1. In a few cases I have examined, it appears to be true numerically.
As the following example shows, it is certainly the case that when λ �= 1, the
derivatives are not generally proportional.

The right whale The lack of proportionality between the selection gradients in
terms of λ and of R0 means that evolutionary conclusions will differ depending
on which is used, especially when tradeoffs exist between two or more traits.
For example, for the right whale, λ = 1.025 and R0 = 2.183. Figure 5.6
shows the sensitivity of λ and of R0; while the patterns are similar, they are not
proportional, and the use of R0 as an invasion exponent would result in erroneous
predictions. Suppose a trait existed that would increase the birth probability γ3
at the cost of a reduction in calf survival σ1, with the cost measured by c =
−dσ1/dγ3. An increase in this trait would be favored by selection provided
that

c <
∂λ/∂γ3

∂λ/∂σ1
= 0.96 (5.56)
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Fig. 5.6 (a) The sensitivity, to each of the vital rates, of the net reproductive rate R0 for the right
whale. (b) The sensitivity of population growth rate λ. The derivative of λ is the selection gradient;
use of the derivative of R0 leads to erroneous predictions unless the population is at equilibrium.
Parameters as in Fig. 5.2

But if expected lifetime reproduction was used as an invasion exponent, the analysis
would conclude that selection would favor an increase in the trait only if

c <
∂R0/∂γ3

∂R0/∂σ1
= 0.0 (5.57)

That is, according to R0, any cost whatsoever of increased birth rate would
prevent selection from favoring it. According to λ (and correctly, in this case),
selection would favor increased birth rate provided that the cost was not too great.
In spite of the superficial similarity of the patterns in Fig. 5.6, the evolutionary
implications are quite different, reflecting the impact of timing of life history
events on λ. The sensitivities of λ to σ2 and γ2, which influence early survival
and the age at maturity, are larger than the sensitivities of R0 to the same
parameters.

5.4.4 Beyond R0: Individual Stochasticity in Lifetime
Reproduction

Variation among individuals is fundamental to population biology. As argued
here, two sources of variation must be distinguished: heterogeneity and individ-
ual stochasticity Heterogeneity refers to genuine differences among individuals,
because of which the individuals experience different vital rates. Individual stochas-
ticity refers to the apparent differences that result from the random outcome of
identical vital rates, applied to identical individuals. We have seen above that
individual stochasticity is always present. That is particularly true of lifetime
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reproductive output (LRO). The net reproductive rate is the expectation of LRO,
but what can we say about the variance among individuals.

Empirical measurement shows that LRO is usually highly variable among
individuals and positively skewed. Typically, a few individuals produce many
offspring while most produce few, or none at all (Clutton-Brock 1988; Newton
1989). If this variance reflected heterogeneity among individual properties, and
if the heterogeneity had a genetic basis, the variance would provide material for
natural selection (the “opportunity for selection” of Crow 1958). Population and
quantitative genetics are replete with methods to measure such genetic variation;
e.g., Lande and Arnold (1983) and Endler (1986).

However, variance among individuals in LRO is not evidence of heterogeneity,
genetic or otherwise; some is due to individual stochasticity. Only after evaluating
the extent of individual stochasticity can data on LRO be interpreted as evidence
for heterogeneity (Caswell 2011; Tuljapurkar et al. 2009; Steiner et al. 2010;
Steiner and Tuljapurkar 2012). Caswell (2011) developed a method to calculate
the mean, variance, and higher moments of lifetime reproductive output for any
age- or stage-classified life cycle, using Markov chains with rewards; see van
Daalen and Caswell (2015, 2017) for full details. In these models4 the movement of
the individual through its life cycle is described by an absorbing Markov chain;
mortality appears as transitions to an absorbing (dead) state. At each step, the
individual accumulates a “reward.” In our context, the reward is the production
of offspring. The reproductive reward is a random variable with a specified set
of moments. The reward accumulated by the inevitable death of the individual is
its LRO. Although every individual experiences the same vital rates—there is no
heterogeneity—each individual may experience a different life and thus a different
lifetime reproductive output.

Stage-specific reproductive output is specified by a set of reward matrices Rk .
The (i, j) element of Rk is the kth moment of the reproductive output associated
with the transition from stage j to stage i. Given the reward matrices, the Markov
chain transition matrix P, and the reasonable assumption that the dead do not
reproduce, all the moments of LRO can be calculated (van Daalen and Caswell
2017).

Let ρ̃k be a vector containing the kth moments of LRO for individuals starting
in each transient (living) stage. Then, it has been shown (van Daalen and Caswell
2017) that, e.g., the first two moments of LRO are

ρ̃1 = NTZ (P ◦ R1)
T 1s+1 (5.58)

ρ̃2 = NT
[
Z(P ◦ R2)

T1s+1 + 2(U ◦ R1)
Tρ̃1

]
(5.59)

4Markov chains with rewards have a long history in stochastic process theory; see Howard (1960),
Puterman (1994), and Sheskin (2010).
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where s is the number of stages in the life cycle, ◦ denotes the Hadamard product,
N = (I − U)−1 is the fundamental matrix of the Markov chain and Z is a matrix that
selects the living states. From these moment vectors we can calculate all the statistics
of LRO. In addition, the full sensitivity analysis, calculating the derivatives of any
of the moments of LRO to any parameters affecting any of the transition, mortality,
or reward matrices, has been presented by van Daalen and Caswell (2017).

One of the most significant findings of this line of research has been that, in many
cases, individual stochasticity can account for most or all of the observed phenotypic
variance in LRO (Steiner and Tuljapurkar 2012; van Daalen and Caswell 2017). It
appears that the contribution of stochasticity to variance in lifetime reproductive
output has been underappreciated.

5.5 Variable and Stochastic Environments

The variance due to individual stochasticity can be examined in the case of
variable environments (Caswell 2006; Tuljapurkar and Horvitz 2006; Horvitz and
Tuljapurkar 2008; see also Chap. 8). Several cases can be considered:

• Deterministic aperiodic environments. These usually appear as specific historical
sequences; e.g., the specific sequence of vital rates exhibited by the right whale
between 1980 and 1998 (Caswell 2006). That sequence is fixed, and is neither
random nor periodic.

• Periodic environments. A periodic model may describe seasonal variation within
a year, or may approximate inter-annual variability in events such as floods, fires,
or hurricanes.

• Stochastic iid environments. In such environments, successive states are drawn
independently from a fixed probability distribution; hence the identifier iid, short
for “independent and identically distributed.”

• Markovian stochastic environments. In a Markovian environment the probability
distribution of the next environmental state may depend on the current state.
This permits study of the effects of environmental autocorrelation. Markovian
environments include periodic and iid environments as special cases.

See Tuljapurkar (1990) for a thorough discussion of types of stochastic environ-
ments.

When studying variable environments, it is important to distinguish period and
cohort calculations. Period calculations are based on the vital rates in a given year.
They describe the results of the hypothetical situation where the conditions of year
t are maintained indefinitely, and compare those to the results for conditions in
year t + 1, etc. Period calculations are a way to summarize the effects of changing
environment. But an individual born in year t does not live its life under the
conditions of year t . It spends its first year of life under the conditions in year t ,
its second year under the conditions of year t + 1, and so on. Results calculated
in this way are called cohort calculations, because they describe a cohort born in
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year t and living through the environmental sequence starting then. Period-specific
calculations are easy; simply apply the time-invariant calculation to the vital rates
of each year and tabulate the results. Cohort calculations, however, must account for
all the possible environmental sequences through which a cohort may pass. Caswell
(2006) and Tuljapurkar and Horvitz (2006) independently introduced two different,
complementary approaches to doing so. I will present the former approach here.

5.5.1 A Model for Variable Environments

In a variable environment, the transient matrix U is a time-varying matrix U(t). We
can define a fundamental matrix by

N = I + U(0) + U(1)U(0) + U(2)U(1)U(0) + · · · (5.60)

The (i, j) element of N is the expected occupancy time in transient state i by
an individual starting in transient state j at time 0, and experiencing the specific
sequence of environments U(0), U(1), . . .. Thus there will be a different matrix N
for each possible environmental sequence.

Tuljapurkar and Horvitz (2006), whose paper I highly recommend, work directly
from (5.60) to develop the means and variances of N, η, and survivorship, in
periodic, iid, and Markovian environments. Here, we consider an approach in
which an individual is jointly classified by stage and environment, using the vec-
permutation model developed by Hunter and Caswell (2005b).

Suppose that there are q environmental states ε = 1, . . . , q and s stages, g =
1, . . . , s. Corresponding to environment i is a s × s transient matrix Ui . Assemble
the matrices Ui into a block-diagonal matrix

U =
⎛

⎜⎝
U1

. . .

Uq

⎞

⎟⎠ (5.61)

of dimension sq × sq.
The transitions among environmental states are defined by a q × q column-

stochastic matrix D. Use the matrix D to construct a block-diagonal environmental
transition matrix

D =

⎛

⎜⎜⎜⎝

D 0 · · · 0
0 D · · · 0

. . .

0 0 · · · D

⎞

⎟⎟⎟⎠ (5.62)

of dimension sq × sq.
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Suppose that there are 4 environmental states. In an aperiodic deterministic
environment,

D =

⎛

⎜⎜⎜⎝

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 1

⎞

⎟⎟⎟⎠ (5.63)

That is, the environment moves deterministically from state 1 to state 2 to state 3 to
state 4. Setting d44 = 1 solves the problem of what to do at the end of the sequence,
by the (possibly satisfactory) trick of letting the final state repeat indefinitely. In a
periodic environment,

D =

⎛

⎜⎜⎜⎝

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

⎞

⎟⎟⎟⎠ (5.64)

In an iid environment in which environment i occurs with probability πi ,

D =

⎛

⎜⎜⎜⎝

π1 π1 π1 π1

π2 π2 π2 π2

π3 π3 π3 π3

π4 π4 π4 π4

⎞

⎟⎟⎟⎠ (5.65)

In a Markovian environment, D is a column stochastic transition matrix describing
the transition probabilities. I will assume that the environmental Markov chain is
ergodic, with a stationary probability distribution denoted by π . This gives the long-
term frequency of occurrence of each environmental state.

The state of the cohort can be specified by a matrix X, of dimension s × q, with
rows corresponding to stages and columns to environments, and where xij (t) is the
expected number of individuals in stage i and environmental state j at time t .

X(t) =

⎛

⎜⎜⎝

x11 · · · x1q

...
...

xs1 · · · xsq

⎞

⎟⎟⎠ (5.66)

We rearrange X into a vector by applying the vec operator to XT,

vec XT = (
x11 · · · x1q · · · xs1 · · · xsq

)T
(5.67)
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The first block of entries gives stage 1 individuals in environments 1 through q. The
second block gives stage 2 individuals in environments 1 through q, and so on.

To describe the dynamics of the cohort, suppose that individuals first move
among stages, according to the vital rates determined by the current environment,
and then the environment changes to a new state according to D. Then

vec TX(t + 1) = D Ks,q U KT
s,q vec TX(t) (5.68)

The matrix Ks,q is the vec-permutation matrix (Henderson and Searle 1981; Hunter
and Caswell 2005b), commutation matrix (Magnus and Neudecker 1979), which
permutes the entries of a vector so that

vec TX = Ks,qvec X (5.69)

(see Sect. 2.2.3). Like all permutation matrices, its transpose is also its inverse.
Its role here is to rearrange the population vector into a form appropriate for
multiplication by the block-diagonal matrices B and D.

Working from right to left, (5.68) first rearranges the vector, then applies the
block-transition matrix U, then reverses the rearrangement of the vector, and finally
applies the environmental transition block matrix D to obtain the expected cohort at
t + 1. This gives a transition matrix for the joint process,

Ũ = D Ks,q U KT
s,q (5.70)

that incorporates the demographic transitions within each environment and the
patterns of time variation among environments.5 Here and in what follows, the tilde
distinguishes the matrix from the environment-specific matrices.

Matrices of similar form, but not using this formalism, were introduced by
Horvitz to study populations in habitat patches where the habitat patches change
state over time, for example in recovering from disturbance (Horvitz and Schemske
1986; Pascarella and Horvitz 1998). Horvitz introduced the term “megamatrix” to
describe these models. A megamatrix, in the sense of Horvitz, is a special case
of (5.70) when the population is classified by stages within environmental states, the
demographic matrices are applied first, and the environmental transition matrices Di

are identical for all stages, as is the case in (5.62).

5Note that (5.68) computes the expected population at t + 1 from the expected population at t .
It might be tempting to do this with the projection matrix A and use the eigenvalues of Ã to
calculate the stochastic population growth rate. However, this would give the growth rate of the
mean population, but not the stochastic growth rate (which is always less than or equal to the
growth rate of the mean population). For calculations such as moments of longevity, which are
explicitly properties of the expected population, the difference does not arise.
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5.5.2 The Fundamental Matrix

Since Ũ is the transient matrix of an absorbing Markov chain, the fundamental
matrix in the time-varying environment is

Ñ = (
Isp − Ũ

)−1
(5.71)

The elements of Ñ give the expected occupancy times in each stage, in each
environment, as a function of the starting stage and starting environment.

Notation alert Developing a complete system of notation for Ñ would obscure
more than it would clarify. Pictures can help. As I present the fundamental matrix
and some of the properties calculated from it, I will use diagrams for a simple
case with three stages and two environments. I will often indicate the dimension of
matrices and vectors with subscripts. I will use g to denote stages (g = 1, 2, . . . , s)
and ε to denote environments (ε = 1, . . . , q). I will use superscripts on Ñ and
quantities derived from it, to distinguish different ways of combining information
across environmental states (see Table 5.1).

Recall that in a constant environment, νij was the number of visits to stage i,
starting in stage j . Now we must consider the visits to stage i in environment ε,
starting in stage j and environment ε0, so we write

Ñ = E
(
νij,ε |ε0

)
(5.72)

Table 5.1 Superscript notation for time-varying models. The tilde indicates quantities calculated
from the complete transient matrix Ũ in (5.70). Occupancy and times to absorbtion depend on the
initial and final demographic and environmental states. The superscripts (‡, §,♥) indicate choices
of summing and averaging over the environmental states. The superscripts are shown here for the
fundamental matrix Ñ

Symbol Definition Description Equation

Ñ E
(
νij,ε |ε0

)
Expected visits to state i in environment ε, starting from
state j in environment ε0

(5.72)

Ñ‡ E
(
νij |ε0

)
Expected visits to state i, summed over environments, start-
ing from state j in environment ε0

(5.73)

Ñ‡‡ Rearrangement of the rows and columns of Ñ‡ (5.74)

Ñ§ E
(
νij,ε

)
Expected visits to state i and environmental state ε, averaged
over initial environmental states

(5.75)

Ñ§§ Rearrangement of the rows and columns of Ñ§ (5.76)

Ñ♥ E
(
νij

)
Expected visits to state i summed over environments, start-
ing from state j and averaged over initial environmental
states

(5.77)
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The structure of Ñ when s = 3 and q = 2 is

Ñsq×sq :

g = 1 g = 2 g = 3
ε0 = 1 ε0 = 2 ε0 = 1 ε0 = 2 ε0 = 1 ε0 = 2

g = 1 ε = 1
ε = 2

g = 2 ε = 1
ε = 2

g = 3 ε = 1
ε = 2

From Ñ we can obtain the expected occupancy time in each stage, regardless of the
environment in which those visits occur, by aggregating rows. The resulting matrix
Ñ‡ is

Ñ‡ = E
(
νij |ε0

)

=
(

Is ⊗ 1T
q×1

)
Ñ (5.73)

where 1q×1 is a vector of ones. The structure of Ñ‡ is

Ñ‡
s×sq :

g = 1 g = 2 g = 3
ε0 = 1 ε0 = 2 ε0 = 1 ε0 = 2 ε0 = 1 ε0 = 2

g = 1
g = 2
g = 3

If it is useful to group stages within initial environments, rather than grouping
environments within stages, Ñ‡ can be rearranged as

Ñ‡‡ = Ñ‡ Ks,q (5.74)

with the structure

Ñ‡‡
s×sq :

ε0 = 1 ε0 = 2
g = 1 g = 2 g = 3 g = 1 g = 2 g = 3

g = 1
g = 2
g = 3
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The matrices Ñ‡ and Ñ‡‡ both display expected occupancy of each stage as a
function of initial state and environment. To describe the fates of individuals without
specifying their initial environment, we take an expectation over the stationary
distribution π of initial environments. This gives

Ñ§ = E
[
νij,ε

]

= Ñ (Is ⊗ π) (5.75)

The structure of Ñ§ is

Ñ§
sq×s :

ε0 = ε̄

g = 1 g = 2 g = 3
g = 1 ε = 1

ε = 2
g = 2 ε = 1

ε = 2
g = 3 ε = 1

ε = 2

The rows of Ñ§ can be rearranged to display stages within environments, giving

Ñ§§ = KT
s,q Ñ§ (5.76)

with the structure

Ñ§§
sq×s :

ε0 = ε̄

g = 1 g = 2 g = 3
ε = 1 g = 1

g = 2
g = 3

ε = 2 g = 1
g = 2
g = 3

Finally, aggregating over destination environments and averaging over initial
environments gives a matrix containing the expected occupancy of stages as a
function of initial stage, averaged over environments

Ñ♥ = E
[
νij

]

=
(

Is ⊗ 1T
q×1

)
Ñ (Is ⊗ π) (5.77)
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The structure of Ñ♥ is

Ñ♥
s×s :

ε0 = ε̄

g = 1 g = 2 g = 3
g = 1
g = 2
g = 3

The matrix Ñ♥, obtained by the simple calculation (5.77), is “the” fundamental
matrix for the variable environment. It could be compared directly to the fundamen-
tal matrix in a constant environment (e.g., the environment defined by one of the
environmental states).

5.5.3 Longevity in a Variable Environment

Life expectancy, as a function of initial stage and initial environment is obtained by
summing the columns of Ñ,

E
(
η̃T

)
= E

[
ηT|ε0

]

= 1T
sq×1Ñ (5.78)

The structure of E
(
η̃T) is

E
(
η̃T):

g = 1 g = 2 g = 3
ε0 = 1 ε0 = 2 ε0 = 1 ε0 = 2 ε0 = 1 ε0 = 2

Averaging this conditional life expectancy over the stationary distribution π of
initial environments gives

E
(
η̃♥) = E (̃η) (Is ⊗ π) (5.79)

This measure of life expectancy in a variable environment is directly comparable to
E (η) calculated from the same life history in a constant environment.

5.5.3.1 Variance in Longevity

In a constant environment, the variance among individuals in longevity is due to
individual stochasticity. In a time-varying environment, the variance contains an
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additional component due to differences among individuals as a function of their
environment at birth. Applying (5.27) to Ñ we obtain the variances conditional on
the initial environment:

V
[
η̃T|ε0

]
= E

(
η̃T

) (
2Ñ − Isq

) − E
(
η̃T

)
◦ E

(
η̃T

)
(5.80)

As indicated by the notation, V
[
η̃T|ε0

]
is a conditional variance of η̃, given

the initial environment ε0. The initial environment is distributed according to the
stationary distribution π , so the unconditional longevity η follows a finite mixture
distribution with mixing distribution π .

The unconditional variance of η, taking account of both sources of variability, is

V
[
η̃T

]
= V

[
E(̃ηT|ε0)

]
+ Eπ

[
V (̃ηT|ε0)

]
(5.81)

where Eπ denotes the expectation over the stationary distribution π of initial
environments (Rényi 1970, p. 275, Theorem 1). This can be rearranged as

V
[
η̃T

]
= Eπ

[
η̃T ◦ η̃T

]
− Eπ

[
η̃T

]
◦ Eπ

[
η̃T

]
+ Eπ

[
V (ηT|ε0)

]

=
[
E
(
η̃T

)
◦ E

(
η̃T

)]
(Is ⊗ π) −

[
E
(
η̃♥) ◦ E

(
η̃♥)]T

+V
[
η̃T|ε0

]
(Is ⊗ π) (5.82)

(e.g., Frühwirth-Schnatter 2006, p. 10). This variance decomposition has developed
into a powerful tool for the analysis of heterogeneity in demography (Edwards 2011;
Hartemink and Caswell 2018; Hartemink et al. 2017; Caswell et al. 2018; Jenouvrier
et al. 2018).

The choice of the mixing distribution π is important. Hernandez-Suarez et al.
(2012) present an alternative where π is the stationary distribution of births across
environments, rather than the distribution of environments itself.

5.5.4 A Time-Varying Example: Lomatium bradshawii

Lomatium bradshawii is an endangered herbaceous perennial plant, found in only
a few isolated populations in prairies of Oregon and Washington. These habitats
were, until recent times, subject to natural and anthropogenic fires, to which L.
bradshawii seems to have adapted. Fall-season fires increase plant size and seedling
recruitment, but the effect fades within a few years. Populations in burned areas have
higher growth rates and lower probabilities of extinction than unburned populations
(Caswell and Kaye 2001).
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A stochastic demographic model for L. bradshawii was developed by Caswell
and Kaye (2001), Kaye et al. (2001), and Kaye and Pyke (2003) based on data from
an experimental study using controlled burning. Individuals were classified into six
stages based on size and reproductive status: yearlings, small and large vegetative
plants, and small, medium, and large reproductive plants. The environment was
classified into four states defined by fire history: the year of a fire and 1, 2, and
3+ years post-fire. Projection matrices were estimated in each environment; the
example here is based on one of the two sites (Rose Prairie) in the original study.
The matrices are given in Caswell and Kaye (2001).

L. bradshawii performs well under recently burned conditions, but less well in
sites that have not been recently burned. For example, the values of λ are

Years since fire: 0 1 2 ≥ 3
Growth rate λ : 1.18 1.12 0.48 0.88

Caswell and Kaye (2001) found a minimum frequency of fire (0.4–0.5) below which
the stochastic growth rate was negative and the population would be unable to
persist. Effects of autocorrelation were small, but positive autocorrelation reduced
the stochastic growth rate.

As an example of a time-varying analysis, let us examine L. bradshawii in
a Markovian environment. Let f be the long-term frequency of fire, and ρ the
temporal autocorrelation. Then the transition matrix for environmental states is

D =

⎛

⎜⎜⎝

p q q q

1 − p 0 0 0
0 1 − q 0 0
0 0 1 − q 1 − q

⎞

⎟⎟⎠ (5.83)

where q = f (1 − ρ) and p = ρ + q.
Figure 5.7a shows the life expectancy E (̃η|ε0) of L. bradshawii as a function of

initial stage and initial environmental state, from (5.78). Life expectancy increases
with the stage (size) of a plant. A seedling has its greatest life expectancy in the
year of a fire, less in an environment three or more years post-fire. A large flowering
plant, in contrast, has its greatest life expectancy in an environment three or more
years post-fire. When the environment-dependence is averaged over the stationary
distribution of environmental states, there is a smooth increase in life expectancy
from ∼2.5 years for a seedling to 8 years for a large flowering plant (Fig. 5.7b). The
standard deviation of longevity also increases with stage, in a pattern very similar to
that of the expectation.

These patterns in the mean and variance of longevity (Fig. 5.7) depend on
the stochastic properties of the environment—in this case, the frequency f and
autocorrelation ρ of fires. Even with an environmental model this simple, the effects
of f and ρ can be complicated. I know of no previous attempts to examine their
effects on longevity. To do so, I calculated life expectancy with f = 0.5 for
autocorrelation −1 < ρ < 1, and with ρ = 0 for fire frequency 0 < f < 1.
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Fig. 5.7 The expectation and standard deviation of longevity for Lomatium bradshawii in a
stochastic fire environment. (a) Expected longevity conditional on initial environment (ε0). (b)
Expected longevity averaged over the stationary distribution of initial environments. (c) The
standard deviation of longevity conditional on initial environment. (d) The standard deviation of
longevity over the stationary distribution of initial environments. The frequency of fire is 0.5 and
the temporal autocorrelation ρ = 0.7

The life expectancy of early life cycle stages increases monotonically with fire
frequency (Fig. 5.8a), but the life expectancy of large reproductive plants is greatest
at either low or high fire frequencies. The standard deviation of longevity increases
with f (Fig. 5.8b). As f → 1, the standard deviation of longevity is approximately
twice the mean.

The autocorrelation of fires has little effect on the life expectancy of seedlings,
but a larger effect on that of large plants. For the latter, life expectancy is maximized
as ρ → −1 (alternating fire and non-fire years) or as ρ → 1 (long periods of fires
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Fig. 5.8 The expectation and standard deviation of longevity, averaged over the stationary
distribution of initial environments, for Lomatium bradshawii, as a function of the initial stage, the
fire frequency f , and the temporal autocorrelation ρ. Parameters as in Fig. 5.7. (a) Life expectancy
η̃♥. (b) Standard deviation of longevity. (c) Life expectancy η̃♥. (d) Standard deviation of longevity

alternating with long periods without fire). The standard deviation of longevity also
shows a strong U-shaped response to ρ for all stages. The generality of this pattern
is unknown.

5.6 The Importance of Individual Stochasticity

The concept of individual stochasticity strikes to the heart of one of the most
fundamental problems in population biology: the sources of variability among indi-
viduals. Heterogeneity—genuine differences among individuals—translates into
differences in the age- or stage-specific vital rates to which they are subject.
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Heterogeneity may arise from genetics, from physiological effects, from health
conditions, or from unknown causes (“frailty,” “quality”). Stochasticity results
from the random outcomes of probabilistic processes. Markov chains naturally
treat individual trajectories (i.e., individual lives) as realizations of an underlying
stochastic process, and so much of this chapter has been focused on the analysis
of individual stochasticity. The distinction is particularly important in evolutionary
demography, where variance in lifetime reproductive output is routinely treated as
variance in fitness, or a component of fitness. See Sect. 5.4.4 for some recent work
on this problem.

Individual stochasticity is an important component of demography, for both
human and non-human populations. It complements environmental stochasticity
(externally imposed random changes in vital rates) and demographic stochasticity
(randomness in the growth of populations due to stochastic survival and reproduc-
tion) (Caswell and Vindenes 2018). Individual stochasticity reflects randomness in
the pathways that individuals take through the life cycle. It expresses itself in inter-
individual variation in occupancy times, longevity, lifetime reproductive output, and
other outcomes. The availability of methods based on Markov chains promises
to change the way population biologists approach the analysis of variance among
individuals (Caswell 2011; Tuljapurkar et al. 2009; Steiner and Tuljapurkar 2012;
van Daalen and Caswell 2015; van Daalen and Caswell 2017).

5.7 Discussion

Taking advantage of the Markov chain formulation of the life cycle opens up a
wealth of demographic information. The age-classified information extracted from
a stage-classified model can form a valuable component of behavioral studies,
especially if the model (like the right whale example) includes reproductive behavior
as part of the life cycle structure. Longevity provides a powerful way to compare
mortality schedules among species, populations, or environmental conditions, but
it has been inaccessible to stage-classified analysis prior to the development of
Markov chain methods. The generation time characterizes an important population
time scale, with implications in conservation (IUCN Species Survival Commission
2001), but there has been no way to compute it from stage-classified models.

Stage-classified life cycles may have consequences that are not yet appreciated,
but must be considered when interpreting the results. For example, any stage-
classified model eventually leads to an age-independent mortality rate (Horvitz
and Tuljapurkar 2008), and so is of limited use in the study of senescence. This
fact has consequences for life expectancy and variance in longevity that are not
well understood (at least by me). For the right whale, expected longevity at birth
is 32 years with a standard deviation of 34 years. It is unlikely that there are
appreciable numbers of whales alive at even one standard deviation above this mean.
The high survival probability and the assumption of age-independence lead to the
high standard deviation. Those of us who work with stage-classified models are
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accustomed to this, but discount its importance because it (often) has little effect
on λ. It will be important to determine the stochastic consequences of simplifying
assumptions in the life cycle graph.

This chapter does not begin to exhaust the information that can be extracted
from the Markov chain formulation of a stage-classified model. Three examples
of particular interest are the occupancy of sets of states, the problem of competing
risks, and the calculation of passage times. It is often of interest to calculate the
statistics of occupancy of sets of states (e.g., all reproductive classes, or all stages
in some particular health condition). We have seen how to calculate the moments
of the occupancy time of single states. The mean occupancy time of a set of states
is the sum of the mean occupancy times of each state, but that is not true for the
variance or higher moments. Roth and Caswell (2018) derived a general expression
for all the statistics, and the complete distribution, of occupancy time for any set
of states. If more than one absorbing state exists (e.g., death at different stages, or
from different causes), then the risks of absorbtion compete, because an individual
can only be absorbed (i.e., die) once. It is possible to calculate the probability of
absorbtion in each state, and to explore the effects of changing one risk on the
probability of experiencing another (Caswell and Ouellette 2018). Passage times
refer to the time required to get from one stage to another in the life cycle. An
important passage time is the birth interval: the time from one birth to the next. This
can only be calculated for individuals that do reproduce a second time (otherwise
the interval is infinite), and so it requires developing a chain that is conditional on
successfully reaching the reproductive state (Caswell 2001). In species that produce
only one or a few offspring, reproduction cannot be adjusted in response to the
environment by changing offspring number, and so changes in the birth interval are
particularly important in such species.

A Appendix: Derivations

This appendix contains step-by-step derivations of many of the results in this
chapter, especially for sensitivities. Taking advantage of the freedom from length
limits, I have tried to show the derivations step-by-step. Recall the definitions of the
Hadamard product

A ◦ B = (
aij bij

)
, (5.84)

the Kronecker product

A ⊗ B = (
aij B

)
, (5.85)



104 5 Individual Stochasticity and Implicit Age Dependence

the vec operator

vec

(
a b

c d

)
=

⎛

⎜⎜⎝

a

c

b

d

⎞

⎟⎟⎠ , (5.86)

and Roth’s theorem

vec (ABC) =
(

CT ⊗ A
)

vec B. (5.87)

A.1 Variance in Occupancy Times

The occupancy time in transient state i, starting from transient state j , is νij . The
matrix of variances of the νij is

V = (
V (νij )

) = (
2Ndg − Is

)
N − N ◦ N (5.88)

(Caswell 2006, derived from Theorem 3.1 of Iosifescu 1980) where Ndg is a matrix
with the diagonal elements of N on its diagonal and zeros elsewhere; it can be
written

Ndg = Is ◦ N (5.89)

Differentiating both sides of (5.88) gives

dV = 2(Is ◦ dN)N + 2(Is ◦ N)(dN) − dN

−(dN) ◦ N − N ◦ (dN) (5.90)

The next step is to apply the vec operator to both sides. The vec of a Hadamard
product can be written in two ways:

vec (A ◦ B) = D (vec A)vec B = D (vec B)vec A. (5.91)

Using this result and Roth’s theorem (5.87) gives

dvec V = 2
(

NT ⊗ Is

)
D (vec Is)dvec N + 2

[
Is ⊗ (I ◦ N)

]
dvec N

−dvec N − 2D (vec N)dvec N (5.92)
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Factoring out dvec N and using the chain rule gives the final result

dvec V

dθT
=

[
2
(

NT ⊗ Is

)
D (vec Is) + 2

(
Is ⊗ Ndg

)

−Is2 − 2D (vec N)

]
dvec N

dθT
(5.93)

A.2 Life Expectancy

Let ηi be the time to absorbtion (i.e., death) of an individual currently in stage i.
The vector E(η) of expected values of the ηi satisfies

E(η)T = 1TN (5.94)

where 1 is a vector of ones. Differentiating both sides gives

dE(η)T = 1T(dN) (5.95)

Applying the vec operator gives

dE(η) =
(

Is ⊗ 1T
)

dvec N (5.96)

Applying the identification theorem and the chain rule, and using (5.16) for the
sensitivity of the fundamental matrix, gives

dE(η)

dθT
=

(
IT
s ⊗ 1T

) (
NT ⊗ N

) dvec U

dθT
(5.97)

This gives the derivative of the entire vector of life expectancies. Suppose that stage
1 corresponds to birth. The life expectancy at birth is then

E(η1) = 1TNe1 (5.98)

where e1 is a vector with 1 in the first position and zeros elsewhere. Following the
same derivation gives

dE(η1)

dθT
=

(
eT

1 ⊗ 1T
) (

NT ⊗ N
) dvec U

dθT
(5.99)
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A.3 Variance in Longevity

The variance of the time to absorbtion satisfies

V (η)T = 1TN (2N − I) − E
(
ηT

)
◦ E

(
ηT

)
(5.100)

(Caswell 2006, derived from Theorem 3.2 of Iosifescu 1980). Differentiating gives

dV (η)T = 21T(dN)N + 21TN(dN) − 1T(dN) − 2E
(
ηT

)
◦ dE

(
ηT

)
(5.101)

Applying the vec operator and Roth’s theorem (5.87), using (5.91) for the vec of the
Hadamard product, gives

dV (η) =
[
2
(

NT ⊗ 1T
)

+ 2
(

Is ⊗ 1TN
)

−
(

Is ⊗ 1T
) ]

dvec N − 2D
(
E(η)

)
dE(η) (5.102)

Substituting (5.96) for dE(η) gives

dV (η) =
[
2
(

NT ⊗ 1T
)

+ 2
(

Is ⊗ 1TN
)

−
(

Is ⊗ 1T
)

− 2D
(
E(η)

) (
Is ⊗ 1T

) ]
dvec N (5.103)

Using (5.16) for the sensitivity of N, the identification theorem, and the chain rule
finally leads to

dV (η)

dθT
=

[
2
(

NT ⊗ 1T
)

+ 2
(

Is ⊗ 1TN
)

−
(

Is ⊗ 1T
)

− 2D (E(η))
(

Is ⊗ 1T
) ] (

NT ⊗ N
) dvec U

dθT
(5.104)

A.4 Net Reproductive Rate

The net reproductive rate R0 is given by the dominant eigenvalue of FN. Let y and
x be the right and left eigenvectors, respectively, of FN, corresponding to R0. The
matrix calculus version of the standard eigenvalue perturbation result (e.g., Caswell
1978) gives

dR0 = xTd(FN)y

= xT [(dF)N + F(dN)] y (5.105)
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Applying the vec operator to both sides gives

dR0 =
(

yTNT ⊗ xT
)

dvec F +
(

yT ⊗ xTF
)

dvec N (5.106)

Applying the chain rule and the result (5.14) for dvec N gives the sensitivity of R0 in
terms of effects of the parameter vector θ on the fertility matrix F and the transient
matrix U:

dR0

dθT
=

(
yTNT ⊗ xT

) dvec F

dθT
+
(

yT ⊗ xTF
) (

NT ⊗ N
) dvec U

dθT
(5.107)

A.5 Cohort Generation Time

To derive the cohort generation time, we begin at time t = 0 with an individual
newly born in stage j . This tiny cohort is described by an initial vector ej . The
expected survivors of this cohort at time t are Utej . The expected offspring produced
by these survivors at time t are FUtej . Summing over the lifetime of the cohort gives
a vector of expected lifetime reproduction, of all types of offspring,

E(total offspring) =
∞∑

t=0

FUtej

= F

( ∞∑

t=0

Ut

)
ej

= FNej (5.108)

Let m(j)(t) be the vector of offspring production at time t , expressed as a proportion
of the lifetime total of the individual starting in stage j . Then

m(j)(t) = D
(
FNej

)−1 (FUtej

)
(5.109)

If no offspring of some stage, say stage i, are produced, then set m
(j)
i (t) = 0.

The cohort generation time μ(j) is the expectation of the distribution defined by
m(j)(t):

μ(j) =
∞∑

x=0

xm(j)(x)

=
∑

x

D
(
FNej

)−1
xFUxej

= D
(
FNej

)−1 F

(
∑

x

xUx

)
ej . (5.110)
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The summation can be simplified

∑

x

xUx = 0 + U + 2U2 + 3U3 + · · ·

= U
[
0 + U + 2U2 + · · · + I + U + U2 + · · ·

]

= U

[
N +

∑

x

xUx

]
. (5.111)

Solving this gives

∑

x

xUx = NUN. (5.112)

Putting all the pieces together gives the generation time

μ(j) = D
(
FNej

)−1 FNUNej . (5.113)

A.5.1 Sensitivity of Generation Time

To differentiate (5.113) may seem complicated. To make life easier, define some
notation,

X = D
(
FNej

)
(5.114)

r = FNUNej (5.115)

in terms of which (5.113)

μ(j) = X−1r. (5.116)

Differentiate,

dμ(j) = d
(

X−1
)

r + X−1dr (5.117)

and apply the vec operator

dμ(j) =
(

rT ⊗ I
)

dvec X−1 + X−1dvec r. (5.118)

The same steps that led to Eq. (5.14) for dvec N, and noting that X is symmetric,
leads to

dvec X−1 = −
(

X−1 ⊗ X−1
)

dvec X. (5.119)
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The differential of vec X is obtained by writing

X = I ◦
(

FNej 1T
)

. (5.120)

Differentiating and using the rule (5.91) for the vec of a Hadamard product gives

dvec X = D (vec I)
[(

1eT
j NT ⊗ I

)
dvec F + (

1ej ⊗ F
)
dvec N

]
(5.121)

Differentiating r and applying the vec operator gives

dvec r =
[(

NUNej

)T ⊗ I
]
dvec F +

[(
UNej

)T ⊗ F
]
dvec N

+
[(

Nej

)T ⊗ FN
]
dvec U +

[
eT
j ⊗ fNU

]
dvec N (5.122)

Whew!
Finally, substituting (5.119), (5.121) and (5.122) into (5.117), we obtain

dμ(j)

dθT
= −

(
rT ⊗ I

) (
X−1 ⊗ X−1

)
D (vec I)

×
[ (

1eT
j NT ⊗ I

) dvec F

dθT
+ (

1ej ⊗ F
) dvec N

dθT

]

+
{ [(

NUNej

)T ⊗ I
] dvec F

dθT
+
[(

UNej

)T ⊗ F
] dvec N

dθT

+
[(

Nej

)T ⊗ FN
] dvec U

dθT
+
[
eT
j ⊗ FNU

] dvec N

dθT

}
. (5.123)

This may be an impressive formula, but it is straightforward to compute, given the
derivatives of U, F, and N with respect to θ .
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Chapter 6
Age × Stage-Classified Models

6.1 Introduction

The first step in developing any kind of structured population model is choosing one
or more variables in terms of which to describe the population structure. The job of
these i-state variables is to encapsulate all the information about the past experience
of an individual that is relevant to its future behavior (Metz and Diekmann 1986;
Caswell 2001). Classical demography (for both humans and for non-human animals
and plants) uses age as a i-state, but other, more biologically relevant criteria (e.g.,
size, developmental stage, parity, physiological condition, etc.) are now widely used
in ecology, with age-classified models viewed as a special case.

However, it has long been recognized that cases exist where it is important to
classify individuals by both age and stage.

1. Even in a stage-classified model, age still exists; every individual becomes older,
by one unit of age, with the passage of each unit of time (e.g., Feichtinger
1971a; Caswell 2001, 2006, 2009; Tuljapurkar and Horvitz 2006; Horvitz and
Tuljapurkar 2008). In these analyses, age dependence is implicit in the stage-
classified model (see Chap. 5). Models that include both age and stage provide
information that goes beyond this implicit dependence.

2. If the vital rates depend on both age and stage, only a model that includes both
can reveal the joint action of age-and stage-specific processes (e.g., Goodman
1969). Such models, of course, require information on the joint age-dependence
and stage-dependence of the vital rates, and thus are challenging to construct.
A special case that has been extensively explored is the multi-regional case, in

This chapter is modified, under a Creative Commons Attribution License, from Caswell, H.
2012. Matrix models and sensitivity analysis of populations classified by age and stage: a vec-
permutation matrix approach. Theoretical Ecology 5:403–417.

© The Author(s) 2019
H. Caswell, Sensitivity Analysis: Matrix Methods in Demography
and Ecology, Demographic Research Monographs,
https://doi.org/10.1007/978-3-030-10534-1_6

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10534-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-10534-1_6


116 6 Age × Stage-Classified Models

which the stage variable describes spatial location (e.g., Rogers 1966; Lebreton
1996). Models that combine age and some measure of health or disability status
are an important part of health demography (e.g., Willekens 2014; Peeters et al.
2002; Wu et al. 2006; Zhou et al. 2016).

This chapter presents a model framework in which individuals are classified
by age and stage, using the vec-permutation matrix approach (so-called for the
role that the vec-permutation matrix plays in rearranging age and stage categories
in the population vector). This formalism was introduced by Hunter and Caswell
(2005) for populations classified by stage and location, was used in Chap. 5 to
classify individuals by stage and environmental state; it has also been applied to
stage and infection status (Klepac and Caswell 2011), stage and age (Caswell
2012; Caswell et al. 2018), and age and frailty (Caswell 2014). Megamatrix
models (e.g., Pascarella and Horvitz 1998; Horvitz and Tuljapurkar 2008) can
be written using this approach, as can block-structured multiregional models
(e.g., Rogers 1975; Lebreton 1996). Matrix models can describe both popula-
tion dynamics and cohort dynamics. Population dynamics (population growth,
age and stage structure, reproductive value) depend on both the transitions of
extant individuals and the production of new individuals by reproduction. In
contrast, cohort dynamics (survivorship, life expectancy, age at death, generation
time) depend only on the fates of already existing individuals. This chapter
describes both kinds of analysis. For a more complete review and treatment,
see Caswell et al. (2018).

6.2 Model Construction

The construction and analysis of these models requires a number of differ-
ent matrices and operators (some of the notation is collected in Table 6.1).
Individuals are classified into stages 1, . . . , s and age classes 1, . . . , ω. The
model treats the processes of moving among stages and moving among age
classes as alternating. First, stage-specific demography operates to move individuals
among stages and to produce new offspring, with rates appropriate to their ages.
Then aging acts to move individuals to the next older age, and the process
repeats.

Define a stage-classified projection matrix Ai , of dimension s × s, for each age
class, i = 1, . . . , ω. Decompose Ai into

Ai = Ui + Fi (6.1)

where Ui contains the transition probabilities of extant individuals and Fi describes
the generation of new individuals by reproduction.
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Table 6.1 Mathematical notation used in this chapter. Dimensions are shown, where relevant, for
matrices and vectors; s denotes the number of stages and ω the number of age classes

Quantity Description Dimension

Ai , Fi , Ui Stage-classified projection, fertility, and
transition matrices for age class i

s × s

DU, DF Age transition matrices for individuals
already present in the population and for
new individuals produced by reproduction

ω × ω

A,F,U,D Block-diagonal matrices sω × sω

Ã, Ũ, etc. Age × stage matrices constructed from
block-diagonal matrices using the vec-
permutation matrix

sω × sω

Ks,ω, K Vec-permutation matrix sω × sω

Is Identity matrix s × s

1s Vector of ones s × 1

ei The ith unit vector, with a 1 in the ith entry
and zeros elsewhere

Various

Eij A matrix with a 1 in the (i, j) position, and
zeros elsewhere

Various

⊗ Kronecker product

◦ Hadamard, or element-by-element, product

vec X The vec operator, which stacks the columns
of a m × n matrix X into a mn × 1 vector

D (x) A diagonal matrix with x on the diagonal
and zeros elsewhere

Aging is described by two matrices, each of dimension ω × ω (shown here for
3 × 3, but easily generalized),

DU =
⎛

⎝
0 0 0
1 0 0
0 1 1

⎞

⎠ dimension ω × ω (6.2)

DF =
⎛

⎝
1 1 1
0 0 0
0 0 0

⎞

⎠ ω × ω (6.3)

The matrix DU applies to extant individuals; such an individual advances to the next
age class. I have set the (ω, ω) entry of DU to 1, so that the last age class contains
individuals of age ω and older. If this entry were set to 0, all individuals in the
last age class would die. The matrix DF applies to individuals newly created by
reproduction; such newborn individuals are placed in the first age class, regardless
of the age of their parents.
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Using the matrices Ai , Ui , Fi , DU, and DF, construct block-diagonal matrices,
each of dimension sω × sω. For example,

A =
⎛

⎜⎝
A1

. . .

Aω

⎞

⎟⎠ (6.4)

with similar structures for U, F, DU, and DF. These block-diagonal matrices can be
written

A =
ω∑

i=1

(Eii ⊗ Ai ) (6.5)

U =
ω∑

i=1

(Eii ⊗ Ui ) (6.6)

F =
ω∑

i=1

(Eii ⊗ Fi ) (6.7)

DU = Is ⊗ DU (6.8)

DF = Is ⊗ DF (6.9)

where Eii is of dimension ω × ω.
If the demography is strictly stage-dependent, so that Ai = A, for i = 1, . . . , ω,

then the block-diagonal matrices A, F, and U reduce to, e.g.,

A = Iω ⊗ A (6.10)

with corresponding expressions for F and U.
The state of the population at time t could be described by a 2-dimensional array

N (t) =
⎛

⎜⎝
n11 · · · n1ω

...
...

ns1 · · · nsω

⎞

⎟⎠ (t) s × ω (6.11)

where rows correspond to stages and columns to age classes. However, such a 2-
dimensional array cannot be projected directly; instead, it is transformed to a vector,

n(t) = vecN (t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n11
...

ns1
...

n1ω

...

nsω

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(t) sω × 1 (6.12)
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using the vec operator, which stacks the columns of the matrix one above the
next. The vector n(t) created in this way contains the stages arranged within age
classes. An alternative configuration, with ages arranged within stages, is obtained
by applying the vec operator to N T:

vecN T(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n11
...

n1ω

...

ns1
...

nsω

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(t) sω × 1 (6.13)

The two vectors vecN and vecN T are related by the vec-permutation matrix, or
commutation matrix, K, (Henderson and Searle 1981),

vecN T = Ks,ωvecN (6.14)

(see Sect. 2.2.3). Where no confusion seems likely to arise, we will suppress the
subscripts and write Ks,ω as K. As with any permutation matrix, KT = K−1.

The goal of the model is to project the age-stage vector n = vecN from t to
t + 1. The complete projection is given by

n(t + 1) =
(

KT
DUKU + KT

DFKF

)
n(t) (6.15)

This deserves some explanation. Consider the first term on the right hand side,
KT

DUKU. Reading from right to left, it first operates on the vector n(t) with the
block diagonal matrix U, which moves surviving extant individuals among stages
without changing their age. Then the resulting vector is rearranged by the vec-
permutation matrix K to group individuals by age classes within each stage. The
block diagonal matrix DU then moves each surviving individual to the next older age
class. Finally, KT rearranges the vector back to the stage-within-age arrangement of
n(t).

The second term in (6.15), KT
DFKF, carries out a similar sequence of trans-

formations for the generation of new individuals. First, newborn individuals are
produced according to the block-diagonal fertility matrix F. The resulting vector
is rearranged by the vec-permutation matrix, and then the matrix DF places all the
newborn individuals into the first age class. Finally, KT rearranges the vector to the
stage-within-age arrangement.
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I will write the age × stage projection matrix in (6.15) as

Ã =
(

KT
DUKU + KT

DFKF

)
(6.16)

=
(

Ũ + F̃
)

(6.17)

The matrices Ã, Ũ, and F̃ that operate on the age-stage vector n are denoted with
a tilde (Ã, Ũ, F̃); these matrices define the age × stage-classified model and can be
subjected to all the usual demographic analyses.

6.3 Sensitivity Analysis

Age-stage models pose particular challenges for perturbation analysis, because
interest naturally focuses on changes in the matrices Fi and Ui (i = 1, . . . , ω),
which are deeply embedded within F̃, Ũ, and Ã.

Consider a generic dependent variable ξ , which is a scalar- or vector-valued
function of Ã. In the examples to follow, ξ will be either the population growth
rate λ or the joint distribution of age and stage at death in a cohort, but it could
be any variable calculated from Ã. Let θ be a vector of parameters; these could
be entries of the matrices, or lower-level parameters determining those entries.
The goal of perturbation analysis is to obtain the derivative of ξ with respect
to θ ,

dξ

dθT
= dξ

dvec TÃ

dvec Ã

dθT
. (6.18)

The first term in (6.18) is the derivative of ξ with respect to the matrix Ã. If, for
example, ξ was the dominant eigenvalue λ, then this term would be the matrix
calculus version of the well-known eigenvalue sensitivity equation.

The second term in (6.18) requires differentiating Ã with respect to the parame-
ters that determine it. From (6.16), write

Ã = QUU + QFF (6.19)

where QU = KT
DUK and QF = KT

DFK are the (constant) matrix products
appearing in the definition of Ũ and F̃ in (6.16).

Differentiating Ã in (6.19) gives

dvec Ã = (Isw ⊗ QU) dvecU + (Isw ⊗ QF) dvecF (6.20)
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This requires the differentials of U and F. Differentiating U in (6.6) gives

dU =
ω∑

i=1

(Eii ⊗ dUi ) (6.21)

Applying the vec operator to dU gives

dvecU =
ω∑

i=1

(Eii ⊗ K ⊗ Is)
(
vec Iω ⊗ Is2

)
dvec Ui (6.22)

using the results of Magnus and Neudecker (1985, Theorem 11); see also Klepac
and Caswell (2011, Appendix B) on the derivative of the Kronecker product.
Differentiation of F proceeds in the same fashion, yielding

dvecF =
ω∑

i=1

(Eii ⊗ K ⊗ Is)
(
vec Iω ⊗ Is2

)
dvec Fi (6.23)

In the special case where U and F are constructed from single stage-classified
matrices U and F, as in (6.10), Eqs. (6.22) and (6.23) simplify even further to

dvecU = (Iω ⊗ K ⊗ Is)
(
vec Iω ⊗ Is2

)
dvec U (6.24)

dvecF = (Iω ⊗ K ⊗ Is)
(
vec Iω ⊗ Is2

)
dvec F (6.25)

Substituting (6.22) and (6.23) into (6.20) and then substituting (6.20) into (6.18)
yields the general result for the derivative

dξ

dθT
= dξ

dvec TÃ

[
(Isw ⊗ QU)

ω∑

i=1

(Eii ⊗ K ⊗ Is)
(
vec Iω ⊗ Is2

) dvec Ui

dθT

]

+ dξ

dvec TÃ

[
(Isw ⊗ QF)

ω∑

i=1

(Eii ⊗ K ⊗ Is)
(
vec Iω ⊗ Is2

) dvec Fi

dθT

]

(6.26)

Notice that (6.26) requires only three pieces of demographic information: the
derivatives of Ui and Fi with respect to the parameters (whatever those may be in
the case at hand) and the sensitivity of the dependent variable ξ (whatever that may
be) to the elements of the matrix Ã from which it is calculated. All the other pieces
of (6.26) are constants. Some of these constant matrices may be large, depending
on s and ω, but they are very sparse; the sparse matrix technology available in
MATLAB can be extremely useful in implementation. An alternative formulation of
the differentials of the block matrices U and F is given in Caswell and van Daalen
(2016).
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6.4 Examples

Here we consider two examples of the sensitivity analysis of age-stage model to
extract age-classified information from a stage-classified model. The first example
will derive the sensitivity of the population growth rate λ, obtaining the sensitivity of
λ to both age- and stage-specific survival, permitting examination of how selection
pressures on senescence-inducing traits would vary from stage to stage. The second
example is an analysis of the joint distribution of age and stage at death.

These examples are based on a stage-classified model (Parker 2000) for Scotch
broom (Cytisus scoparius). Scotch broom is a large (up to 4 m tall) leguminous
shrub, introduced into North America from Europe in the late nineteenth century.
It is an invasive plant, considered a pest in the northwestern parts of North
America. Stage-classified demographic models have been used to evaluate potential
management policies for the plant (Parker 2000) and to investigate its potential for
spatial spread (Neubert and Parker 2004).

The model contains seven stages (stage 1 = seeds, 2 = seedlings, 3 = juveniles,
4 = small adults, 5 = medium adults, 6 = large adults, 7 = extra-large adults), and
parameters were estimated at a number of locations in Washington State. As is
typical with many perennial plant species, survival is low for seeds and seedlings,
but increases dramatically in larger stages. Parker’s study presented estimated
projection matrices for plants at the edge, at intermediate locations, and at the
center of an invading stand. Plants near the center experience more crowding, with
resulting reduced rates of survival, growth, and fertility.

6.4.1 Population Growth Rate and Selection Gradients

The population growth rate λ, the stable age or stage distribution w, and age or
stage-specific reproductive value vector v are given by the dominant eigenvalue
and corresponding right and left eigenvectors of the population projection matrix,
respectively. In evolutionary demography, λ measures the fitness of a phenotype,
in that it gives the eventual rate at which descendants of an individual with that
phenotype will increase. The selection gradient on a vector of traits θ is given by

dλ

dθT
(6.27)

These gradients play a fundamental role in evolutionary biodemography, whether
evolution is conceived of in terms of population genetics, quantitative genetics,
adaptive dynamics, or mutation accumulation (e.g., Metz et al. 1992; Dercole and
Rinaldi 2008; Rice 2004; Barfield et al. 2011). If the gradient is positive, selection
favors an increase in the trait, and vice-versa.
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In this application, ξ in (6.18) is the dominant eigenvalue λ. Let w and v be
the right and left eigenvectors corresponding to λ, scaled so that vTw = 1. Then,
in (6.26),

dλ

dvec TÃ
= wT ⊗ vT. (6.28)

See Chap. 3 and Caswell (2010).
In this model, the vital rates are functions only of stage; the phenotype is blind

to the age of the individual. However, the terms in the summations in (6.26) give
the selection gradients on traits that would modify the phenotype at each age.
That is,

dλ

dθT

∣∣∣∣
age=i

= dλ

dvec TÃ

[
(Isw ⊗ QU) (Eii ⊗ K ⊗ Is)

(
vec Iω ⊗ Is2

) dvec Ui

dθT

]

+ dλ

dvec TÃ

[
(Isw ⊗ QF) (Eii ⊗ K ⊗ Is)

(
vec Iω ⊗ Is2

) dvec Fi

dθT

]

(6.29)

Thus, these terms reveal the selection patterns that would operate on a mutation that
was able to detect the age of an individual within a given stage, or that affected age
differentially depending on the stage of the individual.

To examine the selection gradients on survival, it is necessary to separate survival
from inter-stage transitions in U. Let σ be the vector of stage-specific survival
probabilities. The matrix U can be written as the product of a matrix � = 1sσ

T

containing the survival probabilities on the diagonal and a matrix G of transition
probabilities, conditional on survival;

U = G�. (6.30)

(cf. Chap. 8). If F is independent1 of σ , then

dU = G d�. (6.31)

Applying the vec operator gives

dvec U = (Is ⊗ G) vecD (1sdσT)

= (Is ⊗ G)D (vec Is) (Is ⊗ 1s) dσ (6.32)

1By assuming that F does not depend on σ , I am in effect choosing a pre-breeding census and
excluding neonatal mortality from σ .
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which implies that

dvec U

dσT
= (Is ⊗ G)D (vec Is) (Is ⊗ 1s) (6.33)

Setting θ = σ and substituting (6.33) and (6.28) into (6.18) gives the selection
gradient on σ . Substituting (6.33) and (6.28) into (6.29), with dvec F/dθT = 0,
gives the selection gradient on σ as a function of age and stage.

Results The projection matrix A for Scotch broom2 is

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.740 0 3.400 47.1 108.700 1120.0 3339.0
0.001 0.310 0 0 0 0 0

0 0.350 0.310 0 0 0 0
0 0.038 0.290 0.024 0 0 0
0 0 0.069 0.390 0.320 0 0.091
0 0 0 0.440 0.440 0.530 0.091
0 0 0 0 0.029 0.400 0.730

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.34)

The matrix U is obtained from A by setting all elements in the first row, except
for a11, to zero. The matrix F is a 7 × 7 matrix with the elements of row 1, columns
2–7 of A in the corresponding positions, and zeros elsewhere. The maximum age
was set to ω = 30. The aging matrices DU and DF are given by (6.2) and (6.3) with
ω = 30. Because the vital rates do not depend on age, the dominant eigenvalues of
A and Ã should be identical, and they are; λ = 1.268.

The selection gradients on stage-specific survival (i.e., sensitivities of λ to σ ) are
shown in Fig. 6.1. There is a steady decline with increasing stage, from seeds to
medium-sized adults, but then an increase for large and extra-large adults. A quite
different pattern emerges when the selection gradients are calculated as functions
of both age and stage, using (6.29). These results are shown in Fig. 6.2. The age-
specific selection gradients on survival in stages 1–3 are strictly decreasing with age.
But the age-specific selection gradients on survival in the adult stages 4–7 increase
with age, level off, and then decline. The increase is longer and more pronounced in
the larger adult stages.

It is now known that this pattern is widespread in plant populations. It appears
in all eight of the Scotch broom populations studied by Parker (2000), and in
almost all of 36 species of plants examined by Caswell and Salguero-Gómez
(2013). It has important implications for the evolution of senescence. Hamilton
(1966) showed that the selection gradient on age-specific mortality is always
decreases with age, and argued that this implied that selection would always lead to
senescence. Incorporating stage-dependence as well as age-dependence of the vital

2This is the matrix for the Discovery Park population, 1993–1994, edge conditions; taken from the
Appendix of Parker (2000).
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Fig. 6.1 Sensitivity of
population growth rate λ to
stage-specific survival
probabilities. Calculated for
the stage-classified model of
Scotch broom (Cytisus
scoparius) using data from
Parker (2000). Stages:
1 = seeds, 2 = seedlings,
3 = juveniles, 4 = small adults,
5 = medium adults, 6 = large
adults, 7 = extra-large adults
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Fig. 6.2 Sensitivity of
population growth rate λ to
stage-specific survival as a
function of age, for Scotch
broom. Stages defined as in
Fig. 6.1
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rates means that, over some range of ages, the selection gradient increases (contra-
senescent selection in the terminology of Caswell and Salguero-Gómez 2013). Thus
conclusions that follow from the general decline in selection gradients with age
may not apply to traits that affect age-specific survival differentially depending
on developmental stage. Traits that affect survival in adult stages should postpone
senescence for at least some time.
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6.4.2 Distributions of Age and Stage at Death

The pattern of longevity within a population is captured by the probability dis-
tribution of the age at death, one of the standard results of age-classified life
table analysis. The moments of the age at death and their sensitivity can also
be calculated directly from stage-classified models using Markov chain methods
(Feichtinger 1971b; Caswell 2001, 2006, 2009; Tuljapurkar and Horvitz 2006;
Horvitz and Tuljapurkar 2008); see Chaps. 4 and 5. Here we can go beyond that
and get the full joint distribution of stage and age at death, along with the marginal
distributions of age at death and stage at death, implied by an age × stage classified
model.

To do this, note that the cohort projection matrix Ũ describes movement
of individuals among transient states of an absorbing Markov chain, where the
absorbing state is death, or death classified by stage or age at death. The transition
matrix of the chain is

P̃ =
(

Ũ 0

M̃ I

)
(6.35)

By properly structuring M, the model can give information about the age, stage,
or the joint distribution of age and stage at death.3 Each row of M̃ corresponds
to an absorbing state, and m̃ij is the probability of a transition from transient
state j to absorbing state i. To compute the distribution of age and stage at
death, we define the absorbing states to correspond to the age × stage combination
at death. Thus M̃ contains probabilities of death on the diagonal and zeros
elsewhere,

M̃ = Isω − D
(

1T
sωŨ

)
. (6.36)

The fundamental matrix of the Markov chain in (6.35) is

Ñ =
(

I − Ũ
)−1

(6.37)

The (i, j) element of Ñ is the expected number of visits that an individual in state j

will make to transient state i before death.
Consider the eventual fate of an individual starting in transient state j . Let

b̃ij = P
[
eventual absorption in i | starting in j

]
(6.38)

3This also leads to a powerful approach, including sensitivity analysis, for cause of death
calculations (Caswell and Ouellette 2016, 2018).
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The b̃ij are the elements of the matrix B̃ (sω × sω) given by

B̃ = M̃Ñ (6.39)

(Iosifescu 1980, Theorem 3.3; see also Caswell 2001, Section 5.1). Since the
absorbing states (the rows of M̃) correspond to combinations of age and stage at
death, column j of B̃ gives the joint distribution of age and stage at death, starting
from state (i.e., age × stage combination) j :

B̃(:, j) = B̃ej (6.40)

using MATLAB notation in which X(:, j) is column j of X, and where ej is a vector
of length sω with a 1 in the j th entry and zeros elsewhere. The rows of B̃ correspond
to combinations of stage and age at death. Summing the rows over stages gives the
marginal distribution of age at death, starting in column j of B̃, as

gj =
(

Iω ⊗ 1T
s

)
B̃(:, j) marginal age distribution ω × 1 (6.41)

Similarly, summing over ages gives the marginal distribution of stage at death:

hj =
(

1T
ω ⊗ Is

)
B̃(:, j) marginal stage distribution s × 1 (6.42)

6.4.2.1 Perturbation Analysis

In the general sensitivity equation (6.18), the dependent variable ξ = B̃(:, j). This
depends only on Ũ, so the first term in (6.18) can be shown to be

dξ

dvec Ã
= dB̃(:, j)

dvec Ũ
(6.43)

= −
(

eT
j ÑT ⊗ Isω

)
D (vec Isω)

(
Isω ⊗ 1sω1T

sω

)
+
(

eT
j ÑT ⊗ B̃

)

(6.44)

The desired derivative dB̃(:, j)/dθT is obtained by substituting (6.44) for
dξ/dvec Ã in (6.26), setting dvec Fi/dθT = 0.

The sensitivities of the marginal distributions of age and stage at death are then
given by

dgj

dθT
=

(
Iω ⊗ 1T

s

) dB̃(:, j)

dθT
(6.45)

dhj

dθT
=

(
1T
ω ⊗ Is

) dB̃(:, j)

dθT
(6.46)
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Derivation To derive the sensitivity of the joint distribution of age and stage at
death, conditional on some starting age × stage combination, we start by differenti-
ating equation (6.40) for column j of B̃ and applying the vec operator,

dB̃(:, j) =
(

eT
j ⊗ Isω

)
dvec B̃. (6.47)

However, from (6.39), B̃ = M̃Ñ, so

dB̃ =
(
dM̃

)
Ñ + M̃

(
dÑ

)
. (6.48)

and

dvec B̃ =
(

ÑT ⊗ Isω

)
dvec M̃ +

(
Isω ⊗ M̃

)
dvec Ñ. (6.49)

The differential of the fundamental matrix Ñ is

dvec Ñ =
(

ÑT ⊗ Ñ
)

dvec Ũ (6.50)

(Caswell 2006; see Chap. 5). The differential of M̃ is obtained by rewriting (6.36)
as

M̃ = Isω − Isω ◦
(

1sω1T
sωŨ

)
, (6.51)

differentiating,

dM̃ = −Isω ◦
[
1sω1T

sω

(
dŨ

)]
, (6.52)

and applying the vec operator to obtain

dvec M̃ = −D (vec Isω)
(

Isω ⊗ 1sω1T
sω

)
dvec Ũ (6.53)

Substituting (6.50) and (6.53) into (6.49) gives

dvec B̃ =
[

−
(

ÑT ⊗ Isω

)
D (vec Isω)

(
Isω ⊗ 1sω1T

sω

)

+
(

Isω ⊗ M̃
) (

ÑT ⊗ Ñ
) ]

dvec Ũ (6.54)

Substituting this into (6.47) gives

dB̃(:, j) =
[

−
(

eT
j ⊗ Isω

) (
ÑT ⊗ Isω

)
D (vec Isω)

(
Isω ⊗ 1sω1T

sω

)

+
(

eT
j ⊗ Isω

) (
Isω ⊗ M̃

) (
ÑT ⊗ Ñ

)]
dvec Ũ (6.55)



6.4 Examples 129

Equation (6.55) can be simplified to obtain (6.44), using the fact that

(A ⊗ B) (C ⊗ D) = (AC ⊗ BD) ,

provided the products exist.

Results Figure 6.3 shows the joint distribution of age and stage at death for a
seed of age 1 (one definition of “newborn” in this life cycle), with ω = 40.
Almost all seeds will die as seeds, because the germination probability is low,
a21 = 0.001; see (6.34). The fates of seedlings (another possible choice for newborn
status) are more diverse, and those of juveniles and small adults even moreso; the
distributions show what proportion will die as seedlings, juveniles, etc., and at what
ages (Fig. 6.3).

The marginal distribution of age at death, for individuals in each initial stage, is
given in Fig. 6.4. Not surprisingly, larger stages have an age distribution of death
shifted to later ages, including some probability of survival to age class ω (≥ 40
years in this calculation).

The sensitivity of g2 (the marginal distribution of age at death for a seedling)
is shown in Fig. 6.5. Changes in the survival of seeds (σ1) have no effect on this
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Fig. 6.3 The joint probability distribution of age (1, . . . , 10) and stage (1, . . . , 7) at death for an
individual seed, seedling, juvenile, or small adult of Scotch broom. Stages as in Fig. 6.1
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Fig. 6.4 The marginal
distributions of age at death
for individuals of Scotch
broom in each stage.
Maximum age is ω = 40.
Stages as in Fig. 6.1
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Fig. 6.5 Sensitivity of the marginal distribution of age at death, g2, to the survival probabilities of
each stage, for an individual starting in stage 2 (seedlings). Stages as in Fig. 6.1

distribution, because seedlings have already left the seed stage. Changes in σ2–σ7
shift the distribution to progressively older ages, by reducing the probability of death
at young ages and increasing it at older ages.
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6.5 Discussion

Models in which individuals are classified by both age and stage extend demo-
graphic analyses in several directions. They permit biodemographic analyses of
aging to take advantage of the many stage-classified demographic analyses accu-
mulated by ecologists (Salguero-Gómez et al. 2015, 2016). They also permit human
demographers to take account of factors other than age in determining mortality,
longevity, fertility, and population dynamics.

Age- and stage-specific demographic processes are often combined in demogra-
phy using multistate life table methods (e.g., Rogers 1975; Willekens 2002, 2014).
These are usually focused on cohort dynamics and associated survival statistics (but
see Rogers 1975, Chap. 5 for an explicit consideration of population projection).
Multistate life table models are written as continuous-parameter, discrete-state
Markov chains, where the parameter represents age and the states represent stages.
In order to solve the resulting equations, the dynamics must be approximated over a
(usually short) finite age interval; this would correspond to the sequence of matrices
Ai in the model here. The age × stage-classified model described by Ã is a way
to solve the discretized equations in a single step, and makes possible a variety of
analyses that are difficult or impossible in the usual life table formulation. Further
investigation of the relation between continuous multistate life table methods and
age × stage-classified models will be interesting.

These analyses blur the distinction (Chap. 5) between implicit and explicit age
dependence. If the Ai are truly identical, by definition only implicit age dependence
is revealed. But the structure of the age × stage model separates all of the age-
dependent Ai , and thus is ready to include any degree of explicit joint dependence
of the vital rates on age and stage.

Given sufficient longitudinal data on both age and stage, it is possible to estimate
the stage-specific matrices Ai as explicit functions of age; see Peeters et al. (2002)
for an example of a study of human heart disease, and Lebreton et al. (2009) for
a review of methods used in multistate capture-mark-recapture analysis in ecology.
Needless to say, the data requirements for a full age × stage parameterization are
challenging. I suspect that the development of estimation methods at intermediate
levels of detail will be an important step.

6.5.1 Reducibility and Ergodicity

The properties of Ã raise an important theoretical and technical issue regarding
population growth, fitness, and selection gradients. The use of λ as a measure of
fitness is usually justified by the strong ergodic theorem (Cohen 1979, Caswell 2001,
Section 4.5.2), which guarantees the eventual convergence to the stable population
structure and growth at a rate given by the dominant eigenvalue λ. A sufficient
condition for this convergence is that the projection matrix be irreducible; i.e.,
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that there exist a pathway connecting any two stages. Stott et al. (2010) surveyed
published population projection matrices and found that reducible matrices were
not uncommon, and explored the implications for ergodicity. Reducible matrices are
not as bad as some people think, but it is important to understand their implications,
especially for age × stage models.

General results about the irreducibility of block-structured matrices are difficult;
see Csetenyi and Logofet (1989), Logofet (1993, Chap. 3), and Logofet and Belova
(2007) for some important graph-theoretical results. However, the age × stage
matrices developed here are unusual among population models in that they are
(almost) always reducible, because they contain categories to which there are no
possible pathways. This arises because age 1 individuals are produced only by
reproduction. Hence there can never be age 1 individuals in any stage that is not
produced by reproduction. For example, Scotch broom reproduces only by seeds,
so age 1 seeds appear in the model. However, the matrix Ã also contains entries
corresponding to age 1 seedlings, age 1 juveniles, age 1 adults, etc. These do not
exist, and because there are no pathways to these stages from any other stages, the
matrix Ã is reducible.

The Perron-Frobenius theorem guarantees that a reducible non-negative matrix
will have a real, non-negative, dominant eigenvalue that is at least as large as any
of the others. However, the asymptotic population growth rate and structure may
depend on initial conditions (Caswell 2001, Section 4.5.4) This means that one must
ascertain that the eigenvalues and eigenvectors under analysis correspond to initial
conditions of interest.

Appendix A shows that a necessary and sufficient condition for population
growth to be described by the dominant eigenvalue λ of Ã, regardless of the (non-
negative and non-zero) initial population vector, is that the left eigenvector v be
strictly positive, and that this corresponds to a particular block-triangular form of Ã.
This provides a simple check for the ergodicity of population growth, and justifies
the use of λ as a population growth rate and measure of fitness.

Primitivity may be difficult to evaluate for an age × stage matrix (but see Logofet
1993) but as with any projection matrix model, the long-term average growth rate
of a primitive matrix is still given by the dominant real eigenvalue.

The matrix Ã for Scotch broom in (6.34) is reducible, as shown by calculating(
Isω + Ã

)sω

and finding that this matrix contains zeros (Caswell 2001). However,

the left eigenvector v is strictly positive, so we know that the population eventually
grows at the rate λ regardless of initial conditions.

6.5.2 A Protocol for Age × Stage-Classified Models

The approach outlined here gives a step-by-step procedure for constructing and
analyzing age × stage-classified matrix population models.
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1. Choose a question, and a corresponding demographic outcome. Are you inter-
ested in population dynamics (growth, structure, transients)? Or in cohort
dynamics (survival, longevity)? Or in some combination of the two?

2. Obtain the stage-classified projection matrices Ai for ages i = 1, . . . , ω.
3. Decompose Ai = Ui + Fi .
4. Construct the block-diagonal matrices A, F, U, and D, according to Eqs. (6.5)–

(6.10).
5. Construct the age × stage matrices Ã, F̃, Ũ using (6.16) and, if appropriate for

the question at hand, also M̃ and P̃ using (6.35) and (6.36).
6. Analyze the model, e.g., by computing eigenvalues, eigenvectors, the fundamen-

tal matrix, etc., as appropriate. If necessary, check for reducibility and ergodicity
using the methods in Sect. 6.5.1.

7. For sensitivity analysis,

(a) choose a dependent variable ξ and a vector of parameters θ ,
(b) compute the sensitivity matrix dξ/dvec TÃ,
(c) compute the matrices:

dvec Ai

dθT
,

dvec Ui

dθT
, and

dvec Fi

dθT

(d) compute dξ/dθT according to (6.18).

The explicit connection between matrix population models and absorbing
Markov chain theory makes it possible to analyze both population dynamics and
cohort dynamics in a unified framework (cf. Feichtinger 1971a; Caswell 2001,
2006, 2009). Cohort dynamics are, in essence, the demography of individuals.
It may seem paradoxical to speak of the demography of individuals, but that is
what it is, because the statistical properties of a cohort (e.g., average lifespan) are
probabilistic properties of an individual (e.g., life expectancy). Demography in
general, and matrix population models in particular, provides the link between the
individual and the population.

A Appendix: Population Growth and Reducible Matrices

Some ergodic properties of population growth under the action of reducible matrices
are described by Caswell (2001, Section4.5.4). Here we can extend the analysis.

Let A be a reducible non-negative projection matrix. By permutation of its rows
and columns (i.e., renumbering the stages in the life cycle), A can be transformed to
a block lower-triangular form. Here is an example:

A =

⎛

⎜⎜⎝

B11 0 0 0
B21 B22 0 0
B31 B32 B33 0
B41 B42 B43 B44

⎞

⎟⎟⎠ . (6.56)
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In this form, all the diagonal blocks Bii are either irreducible matrices or 1 × 1 (i.e.
scalar) zero matrices. The block triangular form is unique, up to a renumbering
of the blocks and permutation of indices within blocks (Gantmacher 1959). It
corresponds to a decomposition of the state space into a set of subspaces; let Ri

be the subspace corresponding to the block Bii .
Some or all of the subdiagonal blocks in (6.56) may be zero. For reasons that will

become apparent, consider an example where B21 = B43 = 0; i.e.,

A =

⎛

⎜⎜⎝

B11 0 0 0
0 B22 0 0

B31 B32 B33 0
B41 B42 0 B44

⎞

⎟⎟⎠ (6.57)

Gantmacher (1959, Section 13.4) calls a block Bii isolated if there are no other
non-zero blocks on its row, that is, if Bij = 0 for j < i. I will call such a block
row-isolated, and introduce the term column-isolated to describe any block Bii with
no other non-zero blocks in its column, that is, Bj i = 0 for j > i. In the matrix
in (6.57), the blocks B11 and B22 are row-isolated and the blocks B33 and B44 are
column-isolated.

If Bii is row-isolated, then the life cycle graph contains no pathways from any
state outside of the subspace Ri to any state inside Ri , and Ri is a source. If Bii is
column-isolated, then the life cycle graph contains no pathways from any state in
Ri to any state outside Ri , and Ri is a sink.

The eigenvalues of A are the eigenvalues of the diagonal blocks Bii . Let λ1
be the dominant eigenvalue of A, with right and left eigenvectors w1 and v1. The
Perron-Frobenius theorem guarantees that λ1, w1, and v1 are real and non-negative.
Gantmacher (1959, Chap. 13, Theorem 6) proves that the eigenvector w1 is strictly
positive if and only if λ1 is an eigenvalue of every row-isolated block, and is not an
eigenvalue of any of the non-row-isolated blocks. This makes it easy to demonstrate
the following corollary.

Corollary: Positivity of v1 Let v1 be the left eigenvector corresponding to λ1[A].
Then v1 is strictly positive if and only if λ1[A] is an eigenvalue of every column-
isolated block, and is not an eigenvalue of any non-column-isolated block.

To see this, note that v1 is the right eigenvector of AT. The column-isolated
blocks of A become row-isolated blocks of the block lower-triangular form of AT,
and application of Gantmacher’s Theorem 6 proves the Corollary.

For example, transposing (6.57) gives

AT =

⎛

⎜⎜⎜⎝

BT
11 0 BT

31 BT
41

0 BT
22 BT

32 BT
42

0 0 BT
33 0

0 0 0 BT
44

⎞

⎟⎟⎟⎠ (6.58)
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Reversing the order of the rows and columns gives the block lower-triangular form

⎛

⎜⎜⎜⎝

BT
44 0 0 0

0 BT
33 0 0

BT
42 BT

32 BT
22 0

BT
41 BT

31 0 BT
11

⎞

⎟⎟⎟⎠ (6.59)

The column-isolated blocks in A (B33 and B44) now appear as row-isolated blocks
in AT. Gantmacher’s result shows that the eigenvector v1 will be positive if and only
if λ1 is an eigenvalue of each of those blocks.

The usefulness of the Corollary follows from the population projection model

n(t + 1) = An(t) n(0) = n0 (6.60)

and its solution4

n(t) =
s∑

i=1

ciλ
t
iwi (6.61)

=
s∑

i=1

(
vT
i n0

)
λt

iwi (6.62)

Caswell (2001). If n0 is such that c1 = vT
1 n0 is positive, then λt

1 will eventually
dominate all other terms in the solution and the population will grow at the rate λ1
with stable structure w1. We know the following about c1:

1. If A is irreducible, then by the Perron-Frobenius theorem v1 is strictly positive,
so any non-negative, non-zero initial population n0 leads to a positive value of c1
and eventual growth at the rate λ1.

2. If A is reducible and v1 is strictly positive, any non-negative, non-zero n0 leads
to a positive value of c1 and growth at the rate λ1.

3. If A is reducible and v1 contains zero entries corresponding to a subspace Ri ,
then initial conditions with positive support only in Ri will lead to c1 = 0, and
λ1 will make no contribution to population growth from those initial vectors.

In the first two cases, population growth is ergodic from any non-zero initial
population. In the third case, there exists a basin of attraction leading to growth
according to λ1, and a basin (or basins) of attraction for growth according to the
dominant eigenvalues of the diagonal blocks Bii corresponding to the zero entries
of v1.

4This holds provided that A is diagonalizable, which is a generic property for linear operators
(Hirsch and Smale 1974, p. 157).



136 6 Age × Stage-Classified Models

Bibliography

Barfield, M., R. D. Holt, and R. Gomulkiewicz. 2011. Evolution in stage-structured populations.
American Naturalist 177:397–409.

Caswell, H. 2001. Matrix Population Models: Construction, Analysis, and Interpretation. 2nd
edition. Sinauer Associates, Sunderland, MA.

Caswell, H., 2006. Applications of Markov chains in demography. Pages 319–334 in MAM2006:
Markov Anniversary Meeting. Boson Books, Raleigh, North Carolina.

Caswell, H. 2009. Stage, age and individual stochasticity in demography. Oikos 118:1763–1782.
Caswell, H. 2010. Reproductive value, the stable stage distribution, and the sensitivity of the

population growth rate to changes in vital rates. Demographic Research 23:531–548.
Caswell, H. 2012. Matrix models and sensitivity analysis of populations classified by age and

stage: a vec-permutation matrix approach. Theoretical Ecology 5:403–417.
Caswell, H. 2014. A matrix approach to the statistics of longevity in heterogeneous frailty models.

Demographic Research 31:553–592.
Caswell, H., C. de Vries, N. Hartemink, G. Roth, and S. F. van Daalen. 2018. Age × stage-

classified demographic analysis: a comprehensive approach. Ecological Monographs 88:560–
584.

Caswell, H., and N. Ouellette, 2016. Mortality and causes of death: matrix formulation and
sensitivity analysis. European Population Conference 2016, Mainz, Germany. URL http://
epc2016.princeton.edu/papers/160437.

Caswell, H., and N. Ouellette, 2018. Cause-of-death analysis: matrix formulation and sensitivity
analysis. In prep.

Caswell, H., and R. Salguero-Gómez. 2013. Age, stage and senescence in plants. Journal of
Ecology 101:585–595.

Caswell, H., and S. F. van Daalen. 2016. A note on the vec operator applied to unbalanced block-
structured matrices. Journal of Applied Mathematics 2016:1–3.

Cohen, J. E. 1979. Ergodic theorems in demography. Bulletin of the American Mathematical
Society 1:275–295.

Csetenyi, A. I., and D. O. Logofet. 1989. Leslie model revisited: some generalizations to block
structures. Ecological Modelling 48:277–290.

Dercole, F., and S. Rinaldi. 2008. Analysis of evolutionary processes: the adaptive dynamics
approach and its applications. Princeton University Press, Princeton, NJ, USA.

Feichtinger, G. 1971a. Stochastische Modelle Demographischer Prozesse. Lecture notes in
operations research and mathematical systems, Springer-Verlag, Berlin, Germany.

Feichtinger, G. 1971b. Stochastische Modelle demographischer Prozesse. Lecture Notes in
Economics and Mathematical Systems, Springer-Verlag, Berlin.

Gantmacher, F. R. 1959. Matrix Theory. Chelsea, New York, New York.
Goodman, L. A. 1969. The analysis of population growth when the birth and death rates depend

upon several factors. Biometrics 25:659–681.
Hamilton, W. D. 1966. The moulding of senescence by natural selection. Journal of Theoretical

Biology 12:12–45.
Henderson, H. V., and S. R. Searle. 1981. The vec-permutation matrix, the vec operator and

Kronecker products: a review. Linear and Multilinear Algebra 9:271–288.
Hirsch, M. W., and S. Smale. 1974. Differential equations, dynamical systems, and linear algebra.

Academic Press, New York, NY, USA.
Horvitz, C. C., and S. Tuljapurkar. 2008. Stage dynamics, period survival, and mortality plateaus.

American Naturalist 172:203–215.
Hunter, C. M., and H. Caswell. 2005. The use of the vec-permutation matrix in spatial matrix

population models. Ecological Modelling 188:15–21.

http://epc2016.princeton.edu/papers/160437
http://epc2016.princeton.edu/papers/160437


Bibliography 137

Iosifescu, M. 1980. Finite Markov Processes and Their Applications. Wiley, New York, New
York.

Klepac, P., and H. Caswell. 2011. The stage-structured epidemic: linking disease and demography
with a multi-state matrix approach model. Theoretical Ecology 4:301–319.

Lebreton, J. 1996. Demographic models for subdivided populations: the renewal equation
approach. Theoretical Population Biology 49:291–313.

Lebreton, J.-D., J. D. Nichols, R. J. Barker, R. Pradel, and J. A. Spendelow. 2009. Modeling
individual animal histories with multistate capture-recapture models. Advances in Ecological
Research 41:87–173.

Logofet, D. O. 1993. Matrices and graphs: stability problems in mathematical ecology. CRC
Press, Boca Raton, FL, USA.

Logofet, D. O., and I. N. Belova. 2007. Nonnegative matrices as a tool to model population
dynamics: classical models and contemporary expansions (in Russian with English summary).
Journal of Mathematical Sciences 155:894–907.

Magnus, J. R., and H. Neudecker. 1985. Matrix differential calculus with applications to simple,
Hadamard, and Kronecker products. Journal of Mathematical Psychology 29:474–492.

Metz, J. A. J., and O. Diekmann. 1986. The dynamics of physiologically structured populations.
Springer-Verlag, Berlin, Germany.

Metz, J. A. J., R. M. Nisbet, and S. A. H. Geritz. 1992. How should we define ‘fitness’ for general
ecological scenarios? Trends in Ecology and Evolution 7:198–202.

Neubert, M. G., and I. M. Parker. 2004. Projecting rates of spread for invasive species. Risk
Analysis 24:817–831.

Parker, I. M. 2000. Invasion dynamics of Cytisus scoparius: a matrix model approach. Ecological
Applications 10:726–743.

Pascarella, J. B., and C. C. Horvitz. 1998. Hurricane disturbance and the population dynamics of
a tropical understory shrub: megamatrix elasticity analysis. Ecology 79:547–563.

Peeters, A., A. A. Mamun, F. Willekens, and L. Bonneux. 2002. A cardiovascular life history: a
life course analysis of the original Framingham Heart Study cohort. European Heart Journal
23:458–466.

Rice, S. H. 2004. Evolutionary theory: mathematical and conceptual foundations. Sinauer,
Sunderland, MA, USA.

Rogers, A. 1966. The multiregional matrix growth operator and the stable interregional age
structure. Demography 3:537–544.

Rogers, A. 1975. Introduction to multiregional mathematical demography. Wiley, New York, NY,
USA.

Salguero-Gómez, R., O. R. Jones, C. R. Archer, C. Bein, H. Buhr, C. Farack, F. Gottschalk,
A. Hartmann, A. Henning, G. Hoppe, G. Romer, T. Ruoff, V. Sommer, J. Wille, J. Voigt, S. Zeh,
D. Vieregg, Y. M. Buckley, J. Che-Castaldo, D. Hodgson, A. Scheuerlein, H. Caswell, and J. W.
Vaupel. 2016. COMADRE: a global data base of animal demography. Journal of Animal
Ecology 85:371–384.

Salguero-Gómez, R., O. R. Jones, C. R. Archer, Y. M. Buckley, J. Che-Castaldo, H. Caswell,
D. Hodgson, A. Scheuerlein, D. A. Conde, E. Brinks, et al. 2015. The COMPADRE Plant
Matrix Database: an open online repository for plant demography. Journal of Ecology 103:202–
218.

Stott, I., S. Townley, D. Carslake, and D. J. Hodgson. 2010. On reducibility and ergodicity of
population projection matrix models. Methods in Ecology and Evolution 1:242–252.

Tuljapurkar, S., and C. C. Horvitz. 2006. From stage to age in variable environments: life
expectancy and survivorship. Ecology 87:1497–1509.

Willekens, F. 2014. Multistate Analysis of Life Histories with R. Springer, New York, New York.
Willekens, F. J., 2002. Multistate demography. in Encyclopaedia of Population. Macmillan

Reference, New York, NY, USA.



138 6 Age × Stage-Classified Models

Wu, G.-M., Y.-M. Wang, M.-F. Yen, J.-M. Wong, H.-C. Lai, J. Warwick, and C. TH-H. 2006. Cost-
effectiveness analysis of colorectal cancer screening with stool DNA testing in intermediate-
incidence countries. BMC Cancer 6:136.

Zhou, Y., H. Putter, and G. Doblhammer. 2016. Years of life lost due to lower extremity injury in
association with dementia, and care need: A 6-year follow-up population-based study using a
multi-state approach among German elderly. BMC Geriatrics 16:9.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Part III
Time-Varying and Stochastic Models



Chapter 7
Transient Population Dynamics

7.1 Introduction

Short-term, transient population dynamics can differ in important ways from long-
term asymptotic dynamics. Just as perturbation analysis (sensitivity and elasticity)
of the asymptotic growth rate reveals the effects of the vital rates on long-
term growth (Chap. 3), the perturbation analysis of transient dynamics can reveal
the determinants of short-term patterns. This chapter presents a comprehensive
approach to transient sensitivity analysis that applies to linear time-invariant, time-
varying, subsidized, stochastic, nonlinear, and spatial models.

In a constant environment, once a population converges to its stable stage
structure, it grows exponentially at a constant rate λ. However, depending on initial
conditions, short-term transient dynamics can differ from the asymptotic dynamics.
It has long been recognized that a focus on λ alone can obscure these important
transient effects (e.g., Lotka 1939; Coale 1972). There have been attempts to develop
transient sensitivity analyses using all the eigenvalues of the projection matrix
(Fox and Gurevitch 2000), but these are complicated to calculate and limited in
application. Matrix calculus allows us to do better (Caswell 2007).

7.2 Time-Invariant Models

Armed with matrix calculus, consider the linear time-invariant model,

n(t + 1) = An(t) n(0) = n0, (7.1)

Chapter 7 is modified, by permission of John Wiley and Sons, from Caswell, H. 2007. Sensitivity
analysis of transient population dynamics. Ecology Letters 10:1–15.
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where n is s × 1 and A is s × s; s the number of stages. Assume that A = A[θ ]
depends on a p × 1 vector of parameters θ , which could be entries of A, lower-level
parameters, or elements of the initial vector.

The sequence of matrices

dn(t)

dθ T
t = 1, 2, . . . (7.2)

gives the effect of all the parameters on all the entries of n(t). From it we can
calculate the sensitivities and elasticities of other dependent variables (Sect. 7.3).

We differentiate the model (7.1), obtaining

dn(t + 1) = A dn(t) + (dA) n(t), (7.3)

and then apply the vec operator to both sides, remembering that since n is a vector,
vec n = n,

dn(t + 1) = Adn(t) + (
nT(t) ⊗ Is

)
dvec A. (7.4)

Then the first identification theorem and the chain rule, from Eqs. (2.47) and (2.18),
give the sensitivity of n(t + 1) to the elements of A,

dn(t + 1)

dvec TA
= A

dn(t)

dvec TA
+ (

nT(t) ⊗ Is

)
. (7.5)

The chain rule extends (7.5) to give the sensitivity to lower-level parameters,

dn(t + 1)

dθ T
= dn(t + 1)

dvec TA
dvec A

dθ T

= A
dn(t)

dθ T
+ (

nT(t) ⊗ Is

) dvec A
dθ T

. (7.6)

Equations (7.5) and (7.6) are matrix difference equations in the sensitivities of n(t)

to the elements of vec A or of θ . If we know dn(t)/dθ T and n(t), we can calculate
dn(t + 1)/dθ T and n(t + 1) and continue this iteration to obtain the transient
sensitivities at any time. If the parameters in θ affect the vital rates but not the
initial population, the appropriate initial condition for this iteration is

dn(0)

dθ T
= 0s×p. (7.7)

If θ affects only the initial population, then

dn(0)

dθ T
= Is (7.8)

gives the sensitivity of transient dynamics to a change in initial conditions.



7.3 Sensitivity of What? Choosing Dependent Variables 143

7.3 Sensitivity of What? Choosing Dependent Variables

The sensitivity of other dependent variables may be more interesting than that
of n(t). In an early (and relatively crude) transient analysis, Caswell and Werner
(1978) analyzed the transient dynamics of the plant teasel (Dipsacus sylvestris) in
terms of rosette area at time t (which might affect resistance to invasion by later
successional species) and cumulative seed production up to time t (which might
affect colonization of new sites). For a weedy species like teasel, either of these
dependent variables might be more relevant than the asymptotic growth rate.

Here are some other biologically interesting dependent variables. They are easy
to calculate from dn(t)/dθ T.

1. Population density, as measured by a weighted sum of stage densities. Let c ≥ 0
be a weight vector. Then population density is N(t) = cTn(t). This includes total
density (c = 1s , a vector of ones), the density of a subset of stages (ci = 1 for
stages to be counted; ci = 0 otherwise), biomass (ci is the biomass of stage i),
basal area, metabolic rate, etc. The sensitivity of N(t) is

dN(t)

dθ T
= cT dn(t)

dθ T
. (7.9)

2. Ratios measuring the relative abundances of different stages:

R(t) = aTn(t)

bTn(t)
. (7.10)

where a and b are weight vectors. Examples include the dependency ratio (in
human demography, the ratio of the individuals below 15 or above 65 to those
between 15 and 65), the sex ratio in a two-sex model, and the ratio of juveniles to
adults, which is important in wildlife management (Williams et al. 2002; Skalski
et al. 2005). The sensitivity of R(t) is

dR(t)

dθ T
=

(
bTn(t)aT − aTn(t)bT

(bTn(t))2

)
dn(t)

dθ T
. (7.11)

3. Cumulative density up to a specified time,

C(t) =
t∑

i=0

cTn(i), (7.12)

the sensitivity of which is

dC(t)

dθ T
= cT

t∑

i=0

dn(i)

dθ T
. (7.13)
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4. Average density over an interval,

N̄(t1, t2) = 1

t2 − t1

t2∑

i=t1

N(i), (7.14)

the sensitivity of which is

dN̄(t1, t2)

dθ T
= 1

t2 − t1

t2∑

i=t1

cT dn(i)

dθ T
. (7.15)

5. Maximum (or minimum) density over an interval,

M(t1, t2) = max
t1≤i≤t2

N(i). (7.16)

Let t̃ be the time such that M(t1, t2) = N(t̃). Then, except in the unlikely event
of ties,

dM(t1, t2)

dθ T
= cT dn(t̃)

dθ T
(7.17)

with a similar expression for the minimum.
6. Variance in density over an interval t1 ≤ t ≤ t2,

V (t1, t2) = 1

t2 − t1

t2∑

i=t1

N2(i) − [
N̄(t1, t2)

]2
. (7.18)

The sensitivity of V is

dV (t1, t2)

dθ T
= 2

t2 − t1

⎡

⎣
t2∑

i=t1

N(i)
dN(i)

dθ T
− N̄(t1, t2)

t2∑

i=t1

dN(i)

dθ T

⎤

⎦ (7.19)

= 2

t2 − t1

⎡

⎣
t2∑

i=t1

(
N(i) − N̄(t1, t2)

)
dN(i)

dθ T

⎤

⎦ . (7.20)

7. The transient population growth rate at time t ,

r(t) = log
N(t + 1)

N(t)
. (7.21)
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The sensitivity of r is

dr(t)

dθ T
= cT

N(t + 1)

dn(t + 1)

dθ T
− cT

N(t)

dn(t)

dθ T
. (7.22)

8. Average growth rate over an interval t1 ≤ t ≤ t2,

r̄(t1, t2) = 1

t2 − t1
log

N(t2)

N(t1)
, (7.23)

the sensitivity of which is

dr̄(t1, t2)

dθ T
= 1

t2 − t1

(
cT

N(t2)

dn(t2)

dθ T
− cT

N(t1)

dn(t1)

dθ T

)
. (7.24)

7.4 Elasticity Analysis

Transient elasticities are easily calculated from the sensitivities. The elasticity of
ni(t) to θj is

εni

εθj

= θj

ni(t)

dni(t)

dθj

. (7.25)

Creating a matrix of these elasticities requires multiplying column j of dn/dθ T by
θj and dividing row i by ni . This is just

D [n(t)]−1 dn(t)

dθ T
D [θ ], (7.26)

where D [x] is a matrix with x on the diagonal and zeros elsewhere. The elasticity
of any other (scalar- or vector-valued) dependent variable f (n(t)) is given by

D
[
f (n(t))

]−1 df (n(t))

dθ T
D [θ]. (7.27)

Example: A transient outbreak: elasticity to lower-level parameters Consider
a hypothetical size-classified population with

A =

⎛

⎜⎜⎝

0.3763 0 0.8431 8.4312
0.1939 0.5421 0 0

0 0.1177 0.5240 0
0 0 0.1291 0.5254

⎞

⎟⎟⎠ . (7.28)
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Fig. 7.1 Dynamics of a
transient population outbreak.
The projection matrix (7.28)
has λ = 0.92, but an initial
condition of a single adult
leads to a rapid outbreak that
lasts for over 25 years

0 10 20 30
0

2

4

6

8

10

Year
D

en
si

ty

Stage 1
2
3
4

The asymptotic growth rate calculated as the dominant eigenvalue of A is
λ = 0.92, so the population is headed for eventual decline. However, the initial
condition

n0 = (
0 0 0 1

)T
(7.29)

(introduction of a large adult) produces a dramatic transient outbreak (Fig. 7.1),
during which total population increases by over 900% and remains above its initial
value for about 25 years.1

If this was a pest its asymptotic fate (extinction) would be reassuring, but
λ would reveal nothing about the transient outbreak. A manager might want to
know how changes in the lower-level survival probabilities σi , growth probabil-
ities γi , and fertilities fi would affect the outbreak, where the elements of A
are

aii = σi(1 − γi) i = 1, . . . , 4
ai+1,i = σiγi i = 1, . . . , 3

a1i = fi i = 3, 4.

(7.30)

If the impact of the pest was related to size, the manager might measure population
density with weights, say cT = (

1 2 3 4
)
. Two measures of damage might be

the maximum of the outbreak and the cumulative population size over the entire
outbreak. Finally, to put everything on a proportional basis, the manager might want
to use elasticities.

1The curious reader may wish to know that A was obtained by a random search for size-classified
matrices with high reactivity (Neubert and Caswell 1997; Caswell and Neubert 2005; Verdy and
Caswell 2008).
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Define θ as the 9 × 1 vector whose entries are σ1–σ4, γ1–γ3, and f3–f4. The
derivatives dvec A/dθ T are obtained from (7.30). The sensitivity of n(t) to changes
in θ is given by (7.6). Using (7.9) and (7.27) we obtain the elasticity of N(t) to θ as

εN(t)

εθ T
= 1

N(t)
cT dn(t)

dθ T
D (θ). (7.31)

The peak of the outbreak occurs at t = 2; thus (7.17) gives the elasticity of the peak
density to θ as

εN(2)

εθ T
= 1

N(2)
cT dn(2)

dθ T
D (θ). (7.32)

The cumulative density up to time t is given by (7.12) and the sensitivity by (7.13),
so the elasticity is

1

cT
∑t

0 n(t)
cT

t∑

i=0

dn(i)

dθ T
D (θ). (7.33)

Results are shown in Fig. 7.2. The elasticities of the maximum outbreak density are
very different from those of λ. The elasticity of the cumulative density over the first
5 years has a similar pattern, also very different from that of λ. However, by the end
of the outbreak (25 years) the elasticity of cumulative density is quite similar to that
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Fig. 7.2 The elasticities of the maximum population density, of the cumulative densities up to
t = 5 and t = 25, and of λ to the lower-level demographic parameters, for the outbreak shown in
Fig. 7.1
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of λ, so management over this time scale could reasonably rely on the elasticity of
λ to compare control tactics. Intermediate steps and MATLAB code are found in an
appendix to Caswell (2007). �

7.5 Sensitivity of Time-Varying Models

Now consider the time-varying model

n(t + 1) = Atn(t) n(0) = n0, (7.34)

where At , t = 1, . . . , T is a specified sequence of matrices.
Take the differential of both sides of (7.34)

dn(t + 1) = At dn(t) + (dAt ) n(t), (7.35)

and apply the vec operator to obtain

dn(t + 1) = At dn(t) + (
nT(t) ⊗ Is

)
(dvec At ) . (7.36)

Not only the transient behavior of the population, but also the parameter vector
θ , the matrix At , and the perturbation applied to θ may change over time. The
sensitivity analysis must reflect both types of variation. So, let us treat At as a
function of θ(t), and consider a perturbation of θ at some time u. Applying the
chain rule to (7.36), we obtain

dn(t + 1)

dθ T(u)
= At

dn(t)

dθ T(u)
+ (

nT(t) ⊗ Is

) dvec At

dθ T(u)
(7.37)

which has the same form as (7.6) except that the matrix and the matrix derivative
vary over time.

Some useful simplifications follow from this formulation.

1. Perturbation of matrix elements. If θ(t) consists of the elements of vec At , then

dvec At

dθ T(t)
= Is2 (7.38)

and can be eliminated from the expressions where it appears.
2. No time travel. Suppose that θ(t) is perturbed at some time t = u. Then

dvec At

dθ T(u)
= 0s2×p for t < u (7.39)

However, the effects of the perturbation continue after t = u, so that
dn(t)/dθ T(u) will generally be non-zero for t > u.
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3. Perturbations at every time. A permanent modification of the parameters can be
considered a perturbation of θ(t) for every time t = 0, 1, . . ., so that

θ(t) −→ θ(t) + dθ . (7.40)

The sensitivity of the population vector is then

dn(t + 1)

dθ T
= At

dn(t)

dθ T
+ (

nT(t) ⊗ Is

) dvec At

dθ T
(7.41)

4. Perturbation over a range of times. One might be interested in perturbation over
some time period T1 ≤ t ≤ T2. The effect of such a perturbation on transient
dynamics is

dn(t + 1)

dθ T(u)
= At

dn(t)

dθ T(u)
+ (

nT(t) ⊗ Is

)
J (t)

dvec At

dθ T(u)
(7.42)

where J (t) is an indicator variable

J (t) =
{

1 T1 ≤ t ≤ T2

0 otherwise
(7.43)

These calculations have been extended to apply to population projections (Caswell
and Sanchez Gassen 2015; Sanchez Gassen and Caswell 2018); see Sect. 7.8 below.

7.6 Sensitivity of Subsidized Populations

An interesting special case of time-varying models is that of subsidized populations
(e.g., Pascual and Caswell 1991), which receive an input of individuals2

n(t + 1) = Atn(t) + b(t). (7.44)

The subsidy vector b(t) might represent immigration, or the introduction of
individual animals from a captive release program, or dispersal of the larvae of
marine invertebrates or the seeds of plants. If b(t) < 0, then it could represent
the removal or harvest of individuals from the population (e.g., Hauser et al. 2006).3

Differentiating gives:

dn(t + 1)

dθ T
= At

dn(t)

dθ T
+ (

nT(t) ⊗ Is

) dvec At

dθ T
+ db(t)

dθ T
. (7.45)

2See Chap. 10 and Caswell (2008) for analysis of the equilibria of both linear and nonlinear
versions of this equation, with applications to organizational dynamics and marine invertebrates.
3This type of harvest is unstable in the long run, but we are dealing here with transient dynamics.
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If θ affects only the vital rates and not the subsidy process, then dn(t)/θ T reduces
to (7.37), and subsidy affects the sensitivity only through its effect on (nT(t) ⊗ Is).
On the other hand, setting θ = b gives the effect of changes in the subsidy process:

dn(t + 1)

dbT
= At

dn(t)

dbT
+ Is . (7.46)

Example: A subsidized model for the reintroduction of the Griffon vulture
The griffon vulture (Gyps fulvus) was once widely distributed in Europe, but
has been eliminated from many areas, due primarily to poisoning and shooting.
A reintroduction program has re-established a population in the Massif Central
of southern France; Sarrazin and Legendre (2000) have analyzed this program.
Reintroduction programs are increasingly important in conservation biology (Sar-
razin and Barbault 1996; Snyder and Snyder 2000), and will become an important
application of subsidized models. Transient dynamics are naturally critical for
evaluating reintroduction programs, because the programs are of finite duration
and are evaluated by short-term measures of success at, or shortly after, their
conclusion.

In the case of the griffon vulture, birds can be introduced as juveniles or adults.
Adults introduced from captivity have lower fertility and lower survival than wild
adults. Here I use a simplification of the Sarrazin-Legendre model to show how
transient sensitivity analysis could be used. The life cycle contains four age classes
and a stage representing captive-reared adults (Fig. 7.3a). The survival of released
adults is a fraction p of that of wild adults, and their fertility a fraction q of that
of the wild adults. I assume these costs persist indefinitely; Sarrazin and Legendre
(2000) explore both short- and long-term costs. Suppose that a manager is interested
in the effects of the annual number b1 of juveniles released, the number b5 of
adults released, and the relative survival p and relative fertility q of captive-reared
adults.

One measure of success will be the population size at the end of the introduction
program. The best such population, in terms of future population size, would be one
with the highest total reproductive value, N = vTn (also called the stable equivalent
population; see Chapters 8–9 of Keyfitz and Caswell 2005). The elasticity of stable
equivalent population size4 is

εN

εθ T
= 1

vTn(t)
vT dn(t)

dθ T
D (θ) t = 1, . . . , T (7.47)

where v is the reproductive value vector from A and θ T = (
b1 b5 p q

)
.

4The parameters under investigation here do not affect the reproductive value vector v. To analyze
the sensitivity of stable equivalent population to, say, σi , would require the derivative of v as well;
this is presented in Chap. 10.
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Fig. 7.3 (a) The life cycle graph and (b) the transient elasticity of stable equivalent population size
N(t) = vTn(t) to changes in juvenile introductions (b1), adult introductions (b5), adult survival
costs (p), and adult fertility costs (q) for the Griffon vulture. Parameter values from Sarrazin and
Legendre (2000); σj = 0.86, σa = 0.98, f = 0.33, p = 0.75, q = 0.51

Using parameter values in Sarrazin and Legendre (2000) and setting b1 = b5
(i.e., evaluating the value of juveniles and adults from a situation where they
are introduced in equal numbers) gives the result in Fig. 7.3b, for an introduction
program duration of up to 20 years.

It is always better to increase the number of juveniles relative to the number
of adults introduced. The benefits of reducing survival and fertility costs (i.e.,
increasing p or q) increases with the duration of the program, as they have longer
times available to operate. Reductions in the survival cost would have more impact
than reductions in the fertility costs. These results are strongly influenced by the
fact that the reproductive value of captive-reared adults is lower than that of newly
fledged or released juveniles, which is reflected in the high elasticity of N(t) to
juvenile releases. �

7.7 Sensitivity of Nonlinear Models

In density- or frequency-dependent models, the vital rates depend on the parameters
θ and current population density n(t):

n(t + 1) = A[θ , n(t)] n(t). (7.48)

Changes in θ affect dynamics directly, through A, and indirectly, through n(t). The
transient sensitivity of n(t) to parameter changes must include both effects.

Differentiating both sides of (7.48) and applying the vec operator gives the
familiar differential expression

dn(t + 1) = A[θ , n(t)]dn(t) + (
nT(t) ⊗ Is

)
dvec A[θ , n(t)]. (7.49)
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But now, unlike in the linear case, dvec A includes both direct effects through θ and
indirect effects through n, so the total differential is

dvec A = ∂vec A
∂θ T

dθ + ∂vec A
∂nT

∂n(t)

∂θ T
dθ . (7.50)

Substituting (7.50) into (7.49) gives

dn(t + 1)

dθ T
= A[θ, n(t)] dn(t)

dθ T

+ (
nT(t) ⊗ Is

) ∂vec A[θ , n(t)]
∂θ T

+ (
nT(t) ⊗ Is

) ∂vec A[θ , n(t)]
∂nT(t)

dn(t)

dθ T
. (7.51)

The first two terms are familiar from the density-independent case; the third term
accounts for the effects of θ on A through its effects on n(t). Rearranging terms
gives the transient sensitivity,

dn(t + 1)

dθ T
=

{
A[θ , n(t)] + (

nT(t) ⊗ Is

) ∂vec A[θ , n(t)]
∂nT(t)

}
dn(t)

dθ T

+ (
nT(t) ⊗ Is

) ∂vec A[θ , n(t)]
∂θ T

. (7.52)

Example: Transient sensitivity of Tribolium Flour beetles of the genus Tribolium
have been used for a series of models of, and experiments on, nonlinear dynamics,
reviewed by Cushing et al. (2003). Tribolium lives in stored flour. Adults and
larvae cannibalize eggs, and adults cannibalize pupae; these interactions provide the
density-dependence, and are captured in a three-stage (larvae, pupae, and adults)
model, with

A[θ , n] =
⎛

⎝
0 0 b exp(−celn1 − cean3)

1 − μl 0 0
0 exp(−cpa)n3 1 − μa

⎞

⎠ (7.53)

where b is the clutch size, cea , cel , and cpa are cannibalism rates (of eggs by adults,
eggs by larvae, and pupae by adults), and μl and μa are larval and adult mortalities.
Parameter values from experiments reported by Costantino et al. (1997) give the
transient dynamics in Fig. 7.4, following introduction of a single adult.

The sensitivity of this transient behavior requires the derivatives of A[θ, n] to the
parameters and to the densities. Substituting these derivatives into (7.52) gives the
transient sensitivities by a simple iteration. The derivative matrices are given in an
appendix to Caswell (2007).



7.7 Sensitivity of Nonlinear Models 153

0 5 10 15 20
0

50

100

150

200

250

300

Time

D
en

si
ty

larvae

pupae

adults

(a) Dynamics

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

2

Time

E
la

st
ic

ity
 o

f N
m

to
 θ

b
c

ea

c
el

c
pa

μ
a

μ
l

(b) Elasticity

Fig. 7.4 (a) The transient dynamics of the Tribolium model following introduction of a single
adult. Parameters from Costantino et al. (1997). (b) The transient elasticity of the metabolic
population size Nm(t) to each of the parameters of the Tribolium model, for the first 20 time
steps following the introduction of a single adult

Tribolium is a pest. The damage it causes might, I suppose, be related to its
consumption, which might be measured by the metabolic rate. Emekci et al. (2001)
estimated the per capita metabolic rate of larvae, pupae, and adults. Using their
results, we define the metabolic population size as Nm(t) = cTn(t) where cT =(

9 1 4.5
)
μl CO2 h−1. The elasticities of Nm(t) to the parameters are

εNm

εθ T
= 1

Nm(t)
cT dn(t)

dθ T
D (θ). (7.54)

for t = 1, . . . , 20.
The results are shown in Fig. 7.4. For the first 5 or so iterations, Nm is more

elastic to the clutch size than to the cannibalism or mortality rates. After that,
the impact of b declines and the impact (negative) of the cannibalism coefficients
increases. Beyond 10 time steps, Nm is affected primarily by b (positively) and
cea(negatively). Changes in mortality (μa and μl) have only small effects. Such
changes in the relative impact of the parameters over short periods of time are
typical of transient sensitivities. Interestingly, the elasticities of total population size
Ntot = ∑

ni (not shown) show a similar pattern, but lack the period-2 fluctuation
evident in Fig. 7.4. This reflects the interaction of the weighting pattern (much
more uneven in the calculation of Nm than Ntot) and transient fluctuations in
the stage distribution. Asymptotic sensitivity calculations are unaffected by such
differences.

The parameter values used here lead to a stable equilibrium, but the transient
calculations apply equally to other types of dynamics. �
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7.8 Sensitivity of Population Projections

The most common transient analyses of populations appear in the population
projections provided by local, national, and international offices. These projections
are usually carried out by the cohort component method, which uses mortality,
fertility, and migration to describe the dynamics of each age×sex combination.
The calculations are transient because the begin with the current, rather than an
asymptotic, age-sex distribution and are carried out over a short time horizon
(usually a few decades). In the first issue of the first volume of the then-new
journal Demography, Nathan Keyfitz described the “population projection as a
matrix operator” (Keyfitz 1964). He showed that population projections using
the cohort component method could be written as matrix population models, and
emphasized the value in doing so to focus attention on the mathematical structure
of the projection, inviting deeper analyses of its properties with more powerful
mathematical tools. Considering projections as matrix operators allows the use of
matrix calculus methods to develop a thorough perturbation analysis of population
projections (Caswell and Sanchez Gassen 2015; Sanchez Gassen and Caswell
2018).

To present the basics of projection sensitivity analysis, we begin with a simple
one-sex model, but we focus most of our attention on a two-sex model that includes
separate rates for males and females.

The single-sex projection can be written as

n(t + 1) = A(t)n(t) + b(t) n(0) = n0 (7.55)

where n(t) is a vector whose entries are the numbers of individuals in each age class
or stage at time t , A(t) is a projection matrix incorporating the vital rates at time t ,
and b(t) is a vector giving the number of immigrants in each age class or stage at
time t . The projection begins with a specified initial condition, denoted n0, and is
carried out until some target time T .

To develop a two-sex projection, we define population vectors nf and nm, and
projection matrices Af and Am, for females and males, respectively. We assume
that reproduction is female dominant,5 so all fertility is attributed to females. We
decompose the projection matrices for females and males into

Af (t) = Uf (t) + φF(t) (7.56)

Am(t) = Um(t) (7.57)

where U describes transitions and survival of extant individuals and F describes the
production of new individuals by reproduction.

5Two-sex models that do not assume dominance by one sex have been used to project animal
populations, but not, as far as I know, human populations (e.g., Jenouvrier et al. 2009, 2010, 2012).
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In an age-classified model, F will have effective fertilities (including infant and
maternal survival as appropriate) on the first row and zeros elsewhere. A proportion
φ of the offspring are female. This model attributes reproduction to females; hence
there is no need to create separate fertility matrices for reproduction by males and
females.

The male component of the population is projected by the survival matrix Um; the
input of new individuals comes from the female population. The projection model
becomes

nf (t + 1) =
[
Uf (t) + φF(t)

]
nf (t) + bf (t) (7.58)

nm(t + 1) = Um(t)nm(t) + (1 − φ)F(t)nf (t) + bm(t) (7.59)

The sensitivity of the two-sex projection is given by the two derivatives,

dnf (t)

dθ T(u)
and

dnm(t)

dθ T(u)
t, u = 0, . . . , T .

These sensitivities are obtained from dynamic expressions, for the female
population

dnf (t + 1)

dθT(u)︸ ︷︷ ︸
sensitivity at t + 1

=
(

Uf (t) + φF(t)
) dnf (t)

dθT(u)︸ ︷︷ ︸
sensitivity at t

+
(

nT
f (t) ⊗ Iω

)(dvec Uf (t)

dθT(u)
+ φ

dvec F(t)

dθT(u)

)

︸ ︷︷ ︸
effects via female transitions and fertility

+ dbf (t)

dθT(u)︸ ︷︷ ︸
effects via immigration

(7.60)

and the male population

dnm(t + 1)

dθT(u)︸ ︷︷ ︸
sensitivity at t + 1

= Um(t)
dnm(t)

dθT(u)
+ (1 − φ)F(t)

dnf (t)

dθT(u)︸ ︷︷ ︸
sensitivities at t

+ (
nT

m(t) ⊗ Iω

) dvec Um(t)

dθT(u)︸ ︷︷ ︸
effects via male transitions

+ (1 − φ)
(

nT
f (t) ⊗ Iω

) dvec F(t)

dθT(u)︸ ︷︷ ︸
effects via female fertility

+ dbm(t)

dθT(u)︸ ︷︷ ︸
effects via immigration

(7.61)

Equations (7.60) and (7.61) are iterated from initial conditions

dnf (0)

dθ T(u)
= dnm(0)

dθ T(u)
= 0ω×p (7.62)
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along with the iteration of equations (7.58) and (7.59) for the population vectors
nf (t) and nm(t). For complete details, see Caswell and Sanchez Gassen (2015).

The terms in (7.61) are labelled to show how the processes of transitions, fertility
and migration, for males and females, combine to produce sensitivity of a transient
population. As before, the sensitivity at t + 1 depends on the sensitivity at time t

and on the effects of the parameter vector on the transition and fertility matrices and
on the immigration vector. In the next section we turn to the calculation of these
derivatives.

The elasticities of nf (t) are given by

εnf (t)

εθ T(u)
= D

[
nf (t)

]−1 dnf (t)

dθ T(u)
D

[
θ(u)

]
(7.63)

with a similar expression for nm.
Caswell and Sanchez Gassen (2015) present a detailed analysis of a projection

for the population of Spain, published by the Instituto Nacional de Estadística (INE),
for the years 2012–2052. They calculated the sensitivity and elasticity of total
population, male and female population, the school age population (6–16 years),
the part of the population expected to suffer from dementia, and the dependency
and support ratios. All these outcomes are calculated from the basic projection
using the methods in Sect. 7.3. In a more extensive comparison, Sanchez Gassen
and Caswell (2018) have applied the approach to the Europop2013 projections for
the 28 member states of the European Union, plus Iceland, Norway, and Sweden,
for the years 2013–2080.

7.9 Discussion

In addition to their obvious role in population projections, transient effects are
critically important in studies of climate change and other short term management
issues (Ezard et al. 2010). A recent study found that simulations of invasive species
were strongly influenced by transient effects (Muthukrishnan et al. 2018). Matrix
calculus makes transient sensitivity analysis straightforward and applicable to a
wide range of models and perturbations. The approach calculates sensitivities and
elasticities as a dynamic system, iterated in parallel with the dynamics of the
transient solution itself.

This dynamic approach reveals the fundamental structure underlying the sensi-
tivity calculation. The results bear a striking family resemblance, from the linear,
time-invariant case (7.6), to the time-varying case (7.41), the case of subsidized
populations (7.45), the nonlinear case (7.52), and the time-varying, two-sex, subsi-
dized model that forms the basis for the cohort component method of population
projection in equations (7.61) and (7.60).

The examples here sound like stories—suppose that someone (e.g., a manager)
is interested in some aspect of the population (e.g., its total size, or variance, or
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average growth,. . . ) over some time interval. Or suppose that mortality, fertility,
and immigration develop in the following way. This emphasizes the flexibility of
this approach, and also the importance about thinking clearly about the dependent
variables and time scales of interest. The list of dependent variables in Sect. 7.3
can no doubt be extended. It may be repeating the obvious, but transient sensitivity
analysis depends on initial conditions. Each of the examples had to choose an initial
condition and argue for its relevance.

Section 10.2.6 in Chap. 10 briefly considers the sensitivity analysis of equilibria
to continuous-time systems. Richard et al. (2015) have developed a very general
sensitivity analysis of transient dynamics in continuous systems (both linear and
nonlinear). They point out and nicely demonstrate the parallels between continuous-
time models and the discrete-time models considered here, the link being the
creation of a dynamic model for the sensitivities that is solved along with the
dynamics of the system itself.
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Chapter 8
Periodic Models

8.1 Introduction

Periodic matrix models are often used to study cyclical temporal variation (seasonal
or interannual), sometimes as a (perhaps crude) approximation to stochastic models.
However, formally periodic models also appear when multiple processes (e.g.,
demography and dispersal) operate within a single projection interval. The models
take the form of periodic matrix products. A familiar example is when population
projection over an annual interval is described as a product of seasonal operators.
The perturbation analysis of periodic models (Caswell and Trevisan 1994; Lesnoff
et al. 2003; Caswell and Shyu 2012) must specify both the vital rates affected by
the perturbation and the timing of the perturbation within the cycle. This chapter
presents a general approach to the perturbation analysis of both linear and nonlinear
periodic models. The results consist of a series of analyses of some of the most
commonly encountered periodic models.

If the environment is time-invariant on the scale of a chosen projection interval
(e.g., from year to year), the result is a periodic matrix population model in which
the seasonal product repeats itself. Such a model can be written as

n(t + 1) = Bp · · · B2B1n(t) (8.1)

Here, Bi is the matrix at phase i of the cycle and p is the period. The period is the
number of phases in the cycle; i.e., the number of matrices in the periodic matrix
product in (8.1). Neither the identities nor the number of stages need be the same
from one phase to the next, so the matrices Bi may be rectangular rather than square.

Chapter 8 is modified, under the terms of a Journal Publishing Agreement with Elsevier Publishers,
from: Caswell, H. and E. Shyu. 2012. Sensitivity analysis of periodic matrix population models.
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The phases need not be the same length, so the period may or may not be measured
in units of time. For example, in the model of Pico et al. (2002), each season is of
2 months duration, and the period (p = 6) corresponds directly to a time scale. In
contrast, the model of Hunter and Caswell (2005a) has three phases, with durations
of 3 weeks, 5 weeks, and 10 months, respectively. The period (p = 3) of that model
does not correspond to a time scale, but it identifies the number of matrices in the
periodic product and appears in calculations in the same role as p = 6 in the model
of Pico et al. (2002).

The projection matrix over the entire periodic cycle is1

A = Bp · · · B2B1 (8.2)

The earliest studies of periodic matrix models were due to Darwin and Williams
(1964), Skellam (1966), and MacArthur (1968). In recent years, with little fanfare,
periodic models have emerged as an important tool for incorporating multiple
processes within a single projection interval. Uses of periodic models include the
following.

1. Seasonal variation. Plants and animals experience obvious and dramatic seasonal
variation in their demographic rates. Periodic models have been used to describe
this variation, with seasons variously defined in terms of monthly periods,
calendar seasons, or in terms of environmental events such as rainfall or flood
patterns (e.g., Smith et al. 2005).

Although annual or near-annual species are obvious candidates for periodic
models, within-year time scales may also be important for long-lived species. For
example, Hunter and Caswell (2005a) incorporated chick development events on
a time scale of weeks into a periodic model for the sooty shearwater, which has a
lifetime of decades. Similarly, Jenouvrier et al. (2010, 2014) have used periodic
models to capture the timing of events in the breeding cycle within a portion of
the year in the long-lived emperor penguin.

1Although we will not address it in this chapter, the model (8.1) can be written in a way that
explicitly defines the starting phase in the cycle. As written, A in (8.2) projects from phase 1 to
phase 1; if desired we could write this as A1 and define matrices

A2 = B1Bp · · · B2

.

.

.

Ap = Bp−1 · · · B1Bp

The Ai are obtained by cyclic permutations of the sequence {Bp, . . . , B1}; each of these projects
from a different phase in the cycle. Some demographic properties (e.g., the population growth rate
λ) are invariant with respect to such permutations; others (e.g., the eigenvectors) are not (Caswell
2001). In this chapter, we will start with phase 1 and refer to A rather than A1.
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2. Periodic interannual variability. Periodic models based on sequences of annual
observations have been used to study effects of inter-event intervals, where events
include fires, floods, ENSO events, etc.

3. Harvest and management. These activities often take place at specified points
within an annual or interannual cycle. Periodic models have been used to study
the effects of their timing; one of the earliest periodic models being devoted to
seasonal harvesting (Darwin and Williams 1964).

4. Conditional probabilities. Periodic matrix products appear when models are
written as products of conditional probabilities. In stage-classified models, for
example, a transition matrix U, is written as the product of a diagonal matrix
� (with survival probabilities σ on the diagonal) and a matrix G of transition
probabilities conditional on survival:

U = G� (8.3)

which creates a period-2 periodic matrix product within the model.
5. Multistate vec-permutation models. When individuals are classified by two

or more criteria (e.g., stage and location), the dynamics over the projection
interval can be described in terms of the processes affecting each criterion (e.g.,
transitions and movement). The result is a periodic model that uses the vec-
permutation matrix to generate a block-structured projection matrix over the
entire interval. See Chap. 6 for analysis of such models.

6. Nonlinear models. Henson and Cushing (1997) developed a model for Tribolium
in an experimental system in which container size was varied periodically. Shyu
et al. (2013) developed a nonlinear seasonal model of an invasive plant to account
for the timing of both density effects and management actions within the year.
In such models, cyclic dynamics can be produced both by the environmental
periodicity and the nonlinearities (e.g., Cushing 2006).

8.1.1 Perturbation Analysis

As in Fig. 8.1, we suppose that in phase i of the cycle, the parameter vector takes on
the value θ i and determines the matrix Bi . The projection matrix A is the product,
in the specified order, of the Bi . Although the output ξ is calculated from A, the
parameter dependence operates through the Bi (Fig. 8.1). The sensitivity of ξ to the
elements of A is in general not of interest, because those elements are complicated
expressions involving the elements of all the Bi , and thus mix disparate biological
processes. Here we calculate the sensitivity of demographic outcomes to the entries
of the Bi .

In this chapter we analyze linear periodic models of the form (8.1) and the
cyclic dynamics of nonlinear seasonal models with delayed density effects. We
will briefly discuss the generalization of the multistate age×stage-classified models
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Table 8.1 Table of symbols in this chapter

Symbol Meaning

si Number of stages at phase i of the cycle

p Period of the cycle

q Dimension of parameter vector θ

r Number of locations in spatial model

θ i Parameter vector evaluated at phase i

Bi Projection matrix from phase i to phase i + 1, or in location i

Cj
i Ordered product Bj · · · Bi of matrices from i to j

Mi Dispersal matrix for stage i

A Projection matrix over entire cycle

Ai Projection matrix over cycle, starting at phase i

Ri Matrix of LTRE contributions from phase i

Es,i s × s matrix with 1 in (i, i) position and 0 elsewhere

Is Identity matrix of dimension s

D (x) Diagonal matrix with x on the diagonal

1 Vector of ones

B, M, etc. Block-structured matrices

◦ Hadamard, or element-by-element product

⊗ Kronecker product

θ1

θ2θ

θp

B1[θ1]

Parameter
vector

Parameters
at each phase

Matrices
at each phase

Matrix over
entire projection

cycle

Output variable

B2[θ2] A = Bp....B1      ξ

Bp[θp]

Fig. 8.1 A vector θ of parameters determines an output variable ξ , which may be a scalar, vector,
or matrix. The parameter vector will generally take on different values at each phase in the cycle,
and determine the phase-specific matrix Bi . These matrices determine the projection matrix A as
a periodic matrix product; the output variable is computed from A. The perturbation problem is to
compute the sensitivity or elasticity of ξ to θ

explored in Chap. 6 to an arbitrary number of classifications. We extend the LTRE
decomposition analysis to the periodic case, making it possible to analyze effects of
parameter changes at any point in a periodic environment.
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8.2 Linear Models

Consider the basic model (8.1) with projection matrix (8.2). The period of the cycle
is p. To allow for differences in the state vector at different phases within the cycle,
define the number of stages at phase i as si . Thus the matrix Bi is of dimension
si+1 × si , with the subscript i interpreted mod(p) (that is, (p + 1) mod(p) = 1).

Let ξ (dimension m × 1) denote an output variable calculated from A, where
ξ might be a scalar, a vector, or a vectorized matrix. Let θ be a parameter vector
(dimension q × 1). The derivative of ξ with respect to θ is the m × q matrix

dξ

dθ T
=

(
dξi

dθj

)
i = 1, . . . , m; j = 1, . . . , q (8.4)

By the chain rule, the effects of the parameters on ξ are captured in the matrix
product

dξ

dθ T
= dξ

dvec TA
dvec A

dθ T
. (8.5)

The first term in (8.5) is the derivative of the output variable ξ with respect to the
matrix A from which it is calculated. The second term in (8.5) is the derivative of
the periodic product matrix A with respect to the parameter vector θ . To obtain this,
differentiate (8.2), to obtain

dA = Bp · · · B2 (dB1)

+Bp · · · (dB2) B1

...

+ (
dBp

)
Bp−1 · · · B1 (8.6)

It is convenient to define the matrix Cj
i as the ordered product (from right to left) of

the B matrices from i up to j :

Cj
i = Bj · · · Bi i ≤ j (8.7)

and set C0
1 = Cp

p+1 = Is1 . Then (8.6) becomes

dA = Cp

2 (dB1) + Cp

3 (dB2) C1
1 · · · + (

dBp

)
Cp−1

1 (8.8)

Applying the vec operator to both sides gives

dvec A =
p∑

i=1

[(
Ci−1

1

)T ⊗ Cp

i+1

]
dvec Bi (8.9)
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Equation (8.9) accounts automatically for the possibly different dimensions of the
Bi . The resulting derivative with respect to the parameter vector θ is

dvec A
dθ T

=
p∑

i=1

[(
Ci−1

1

)T ⊗ Cp

i+1

] dvec Bi

dθ T
. (8.10)

where dvec Bi/dθ T is the derivative of the matrix Bi with respect to the parameter
vector θ , evaluated at θ i . Equation (8.10) sums the contributions of the derivatives
of all of the phase-specific matrices Bi with respect to θ , thus accounting for all the
ways in which θ may affect the demographic rates at each point in the cycle. As
written, (8.10) gives the result of perturbing θ at each point in the cycle. The effect
of a phase-specific perturbation is easily obtained by summing only over phases in
which θ i is modified.

Substituting (8.10) into the formula (8.5) gives the general expression for the
sensitivity of ξ to changes affecting any or all of the Bi :

dξ

dθ T
= dξ

dvec TA

(
p∑

i=1

[(
Ci−1

1

)T ⊗ Cp

i+1

] dvec Bi

dθ T

)
. (8.11)

The elasticity of ξ to θ is the matrix

εξ

εθ T
=

(
θj

ξi

dξi

dθj

)
(8.12)

= D (ξ)−1 dξ

dvec TA

(
p∑

i=1

[(
Ci−1

1

)T ⊗ Cp

i+1

] dvec Bi

dθ T

)
D (θ) (8.13)

where D (x) is a diagonal matrix with x on the diagonal and zeros elsewhere.
Because elasticities are logarithmic derivatives, they apply only when ξ > 0 and
θ ≥ 0.

8.2.1 A Simple Harvest Model

The projection matrix for a simple harvest model (e.g., Hauser et al. 2006) can be
written

A = B (I − H) . (8.14)

The matrix B describes demography in the absence of harvest. The matrix H =
D (h) is a harvest matrix, where hi is the probability that an individual of stage i
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is harvested.2 Either B, H, or both may be functions of a vector θ of parameters.
Differentiating (8.14) and applying the vec operator gives

dvec A = − (Is ⊗ B) dvec H + [
(I − H)T ⊗ Is

]
dvec B. (8.15)

The diagonal matrix H can be written

H = Is ◦ (1shT
)

(8.16)

where 1s is a s × 1 vector of ones and ◦ denotes the Hadamard product. The
differential of H in (8.16) is

dvec H = D (vec Is) (Is ⊗ 1s) dh. (8.17)

Combining (8.16) and (8.15) and applying the chain rule gives the derivative with
respect to θ :

dvec A
dθ T

= − (Is ⊗ B)D (vec Is) (Is ⊗ 1s)
dh
dθ T

︸ ︷︷ ︸
perturbations of h

+ [
(I − H)T ⊗ Is

] dvec B
dθ T

︸ ︷︷ ︸
perturbations of B

.

(8.18)
The conditional probability model (8.3) has the same form as the harvest

model (8.14), so a similar analysis applies to it as well:

dvec U = (I ⊗ G)D (vec I) (I ⊗ 1) dσ + (� ⊗ I) dvec G. (8.19)

However, the conditional transition matrix G is column-stochastic (all columns
sum to 1), because all loss of individuals is accounted for by �. Thus relevant
perturbations must be parameterized so that the stochasticity is preserved. For
example, if G describes growth in the standard size-classified model (Caswell 2001,
Section 4.2), e.g.,

G =
⎛

⎝
1 − γ1 0 0

γ1 1 − γ2 0
0 γ2 1 − γ3

⎞

⎠ (8.20)

then perturbations of the γi will preserve stochasticity of G. If G has no such
convenient parameterization, then changes in the entries of G must be compensated
for by changes elsewhere in the same column (see Caswell 2001; Hill et al. 2004;

2Alternatively, let μi be the mortality due to harvest experienced by an individual in stage i. Then
H = exp [−D (μ)]. Harvest imposes an additional, additive hazard on top of the natural mortality
contained in B.
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Theorem 4.5 of Caswell 2013). For explicit formulas for compensation, see Chap. 11
of this volume; for an application, see van Daalen and Caswell (2017).

The harvest model (8.14) can be extended to describe harvest imposed at a
specified phase within a p-cycle. Suppose that harvest takes place between phase
m and phase m + 1, so that

A = Bp · · · Bm+1 (I − H) Bm · · · B1 (8.21)

(see Darwin and Williams (1964) for an early example of this kind of seasonal
harvest model). Using the same approach, it can be shown that

dvec A
dθ T

= − [(
Cm

1

)T ⊗ Cp

m+1

] dvec H
dθ T

+ [
Is1 ⊗ Cp

m+1 (I − H)
] m∑

i=1

[(
Ci−1

1

)T ⊗ Cm
i+1

] dvec Bi

dθ T

+ [(
(I − H) Cm

1

)T ⊗ Is1

] p∑

i=m+1

[(
Ci−1

m+1

)T ⊗ Cp

i+1

] dvec Bi

dθ T

(8.22)

The expression (8.17) can be substituted for dvec H in (8.22), and the resulting
expression for dvec A/dθ T substituted into (8.5).

8.3 Multistate Models

We have encountered several examples of models in which individuals are classified
by two criteria (age and stage, stage and environmental state, stage and location,
etc.). These multistate models can be constructed by the vec-permutation matrix
approach; see Chaps. 5 and 6 or Hunter and Caswell (2005b) and Caswell et al.
(2018).

Suppose individuals classified by two criteria; e.g., stages (1, . . . , s) and loca-
tions (1, . . . , r). One might describe population dynamics in terms of stage transi-
tions within locations, and spatial movement within stages, with the two processes
acting sequentially. Thus individuals first survive and reproduce according to their
stage-specific demography, and then disperse among locations, and then repeat. Let
Bi be the s × s matrix describing transitions and reproduction within location i, and
Mj the r × r matrix describing movement probabilities for stage j . Let B and M

be the sr × sr block diagonal matrices with the Bi and the Mj , respectively, on the
diagonal.

The population is projected by

n(t + 1) = KT
MKB n(t).. (8.23)
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The matrix K is the vec-permutation matrix, or commutation matrix, (Henderson
and Searle 1981; Magnus and Neudecker 1979), which satisfies

vecN T = K vecN (8.24)

For the calculation of K, see Sect. 2.2.3.
The model (8.23) is formally periodic, with the operation of B and M alternating;

thus the projection matrix is

A = KT
MKB. (8.25)

The dependence of A on the parameters θ can take place through Bi [θ], Mi [θ ], or
both.

The general sensitivity formula (8.5) requires the derivative dA/dθ T. Differenti-
ating (8.25) gives

dA = KT (dM) KB + KT
MK (dB) . (8.26)

Applying the vec operator gives

dvec A = (
B

TKT ⊗ KT
)
dvecM + (

Isp ⊗ KT
MK

)
dvecB (8.27)

We want to express dvecB and dM in terms of the derivatives of their diagonal
entries Bi and Mj . This can be done using equations (14) and (15) of Caswell and
van Daalen (2016). Define the matrices Pi and Qi , of dimension rs × s and s × rs,
respectively,

Pi =
⎛

⎝
0s(i−1)×s

Is

0s(r−i)×s

⎞

⎠ Qi = (
0s×(i−1)s Is 0s×(r−i)s

)
. (8.28)

Then

dvecB =
r∑

i=1

(
QT

i ⊗ Pi

)
dvec Bi . (8.29)

Similarly, for M, define matrices Ri and Si

Ri =
⎛

⎝
0r(i−1)×r

Ir

0r(s−i)×r

⎞

⎠ Si = (
0r×(i−1)r Ir 0r×(s−i)r

)
. (8.30)
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Then

dvecM =
s∑

i=1

(
ST

i ⊗ Ri

)
vec Mi . (8.31)

Substituting (8.29) and (8.31) into the expression (8.27) for dvec A gives the final
result

dvec A
dθ T

= X1

s∑

j=1

(
ST

j ⊗ Rj

) dvec Mj

dθ T

︸ ︷︷ ︸
perturbations of the Mj

+ X2

r∑

i=1

(
QT

i ⊗ Pi

) dvec Bi

dθ T

︸ ︷︷ ︸
perturbations of the Bi

(8.32)

where X1 and X2 are constant matrices,

X1 = (
B

TKT ⊗ KT
)

(8.33)

X2 = (
Isr ⊗ KT

MK
)

(8.34)

that need be calculated only once. Although X1, X2, and the Kronecker products
appearing in the summations are large, they are also extremely sparse. The sparse
matrix capabilities in MATLAB can take advantage of this fact. Substituting (8.32)
into (8.5) gives the sensitivity of an output variable ξ to changes in parameters that
perturb any or all of the Mj and Bi .

8.4 Nonlinear Models and Delayed Density Dependence

Anticipating the more extensive treatment in Chap. 10, we consider the effects
of nonlinearity in periodic models. You may want to return to this section after
Sect. 10.7, which analyzes periodic oscillations arising from time-invariant non-
linearities. When periodic environmental changes interact with such oscillations,
the results can be complicated, and such interactions are the focus of the present
section.

In a periodic nonlinear model, each of the Bi in (8.2) may depend on density.
Especially in seasonal models, the vital rates in the matrix Bi may depend on
densities not only at phase i, but at previous phases within the cycle as well. For
example, in a study of the invasive plant garlic mustard (Alliaria petiolata) Shyu
et al. (2013) found that seed production of fruiting plants in the fall reflected the
density experienced by vegetative rosettes in the early spring.

To develop a model including such delayed density dependence, define

ni (t) = population at season i in year t (8.35)
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Starting at season 1, the dynamics are given by

n1(t + 1) = Bpnp(t)

n2(t) = B1n1(t)

... (8.36)

np(t) = Bp−1np−1(t)

Density-dependence, in a general form, means that the matrices Bi may be functions
of densities over one cycle prior to season i:

B1 = B1
[
n1(t), np(t − 1), . . . , n2(t − 1)

]

B2 = B2
[
n2(t), n1(t), np(t − 1), . . . , n3(t − 1)

]

... (8.37)

Bp = Bp

[
np(t), np−1(t), . . . , n1(t)

]

A fixed point on the interannual time scale, from t to t + 1, is a p-cycle on the
seasonal scale, satisfying

n̂1 = Bp

[
n̂1, . . . , n̂p

]
n̂p

n̂2 = B1
[
n̂1, . . . , n̂p

]
n̂1

... (8.38)

n̂p = Bp−1
[
n̂1, . . . , n̂p

]
n̂p−1

A k-cycle on the interannual time scale is a kp-cycle on the seasonal time scale, the
points of which are numbered n̂1, . . . , n̂kp. The corresponding sequence of matrices,
in which the annual cycle B1, . . . , Bp is repeated k times, is defined as B1, . . . , Bkp.
With this notation, (8.38) still holds, with kp instead of p entries.

Differentiating (8.38) yields

dn̂i = (dBi−1) n̂i−1 + Bi−1
(
dn̂i−1

)
i = 1, . . . , p (8.39)

where the subscripts on n̂ and B are interpreted modulo p. Applying the vec operator
to (8.39) yields

dn̂i = (
n̂T

i−1 ⊗ Is

)
dvec Bi−1 + Bi−1dn̂i−1. (8.40)
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The sensitivity analysis of the cycle involves a set of block-structured matrices,
the form of which is easily generalized from the special case with p = 3. Assuming
p = 3 and noting that B depends on all the n̂i as well as on the parameter vector θ ,
the total differential of Bi−1 in (8.40) is

dvec Bi−1 = ∂vec Bi−1

∂nT
1

dn̂1 + ∂vec Bi−1

∂nT
2

dn̂2 + ∂vec Bi−1

∂nT
3

dn̂3 + ∂vec Bi−1

∂θ T
dθ

(8.41)
For notational convenience, define the matrices

Hi = (
n̂T

i ⊗ Is

)
i = 1, . . . , p (8.42)

Substituting (8.41) into (8.40) produces the set of equations

dn̂1 = H3
∂vec B3

∂θ T
dθ + H3

p∑

j=1

∂vec B3

∂nT
j

dn̂j + B3dn̂3

dn̂2 = H1
∂vec B1

∂θ T
dθ + H1

p∑

j=1

∂vec B1

∂nT
j

dn̂j + B1dn̂1 (8.43)

dn̂1 = H2
∂vec B2

∂θ T
dθ + H2

p∑

j=1

∂vec B2

∂nT
j

dn̂j + B2dn̂2

This set of equations can be reduced to a single equation by collecting all the points
on the kp-cycle into a single vector. Write an array (of dimension sp × k)

N =
yr. 1 yr. k

season 1 n̂1 · · · n̂1
...

...
...

season p n̂p · · · n̂p

(8.44)

Then write the vector (of dimension spk × 1)

N = vecN (8.45)

In terms of this vector, the set of equations (8.43) can be rewritten

dN

dθ T
= [

Iskp − B − HC
]−1

HD. (8.46)
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where H and B are the block-circulant matrices

H =
⎛

⎝
0 0 H3

H1 0 0
0 H2 0

⎞

⎠ (8.47)

B =
⎛

⎝
0 0 B3

B1 0 0
0 B2 0

⎞

⎠ , (8.48)

and C and D are the block matrices

C =

⎛

⎜⎜⎜⎜⎜⎝

∂vec B1

∂nT
1

· · · ∂vec B1

∂nT
3

...
. . .

...
∂vec B3

∂nT
1

. . .
∂vec B3

∂nT
3

⎞

⎟⎟⎟⎟⎟⎠
(8.49)

D =

⎛

⎜⎜⎜⎜⎜⎜⎝

∂vec B1

∂θ T

∂vec B2

∂θ T

∂vec B3

∂θ T

⎞

⎟⎟⎟⎟⎟⎟⎠
. (8.50)

All the derivatives are evaluated at n̂1, . . . , n̂3.

8.4.1 Averages

The vector dN/dθ T created by (8.46) contains the sensitivities of all s stages, at each
of p seasons within the year, for each of the k years within the inter-annual k-cycle.
If this is too much information, one can calculate the sensitivity of averages, or other
linear combinations, taken in various ways.

To write these averages, let bm be a m × 1 vector of weights. For a simple
average of m quantities, each entry of bm is 1/m; for a weighted average, the
entries of bm would be non-negative numbers summing to 1. More generally, b may
contain arbitrary weights, such as biomass, metabolic rate, economic value, etc. See
Chaps. 7 and 10. To calculate averages from N, first apply these vectors to average
over rows or columns of N and then apply the vec operator to express the results as
averages over N.
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Annual fixed point If the dynamics are a fixed point on the annual time scale,
averages can be calculated over stages (using a vector bs), over seasons (using a
vector bp), or both. The p × 1 vector of averages over stages is

avg. over stages = vec
(
bT

sN
)

(8.51)

= (
Ip ⊗ bT

s

)
N (8.52)

The s × 1 vector of averages over seasons is

avg. over seasons =
(

bT
p ⊗ Is

)
N (8.53)

The average over both seasons and stages (a scalar) is

avg. over stages and seasons =
(

bT
p ⊗ bT

s

)
N (8.54)

Because the average is a linear operator, the sensitivities of these averages are
obtained by applying the same weights to the derivative dN/dθ T in (8.46):

sensitivity of avg. over stages = (
Ip ⊗ bT

s

) dN

dθ T
(8.55)

sensitivity of avg. over seasons =
(

bT
p ⊗ Is

) dN

dθ T
(8.56)

sensitivity of avg. over both =
(

bT
p ⊗ bT

s

) dN

dθ T
(8.57)

Annual k-cycle When the dynamics produce a k-cycle on the annual time scale,
averages can be calculated over any desired combination of stages, seasons, and
years. Table 8.2 gives the resulting expressions for the averages. As in the case of
equations (8.55) and (8.56), the sensitivities of these averages to parameters are
obtained by applying the same weights to dN/dθ T.

8.4.2 A Nonlinear Example

As an example of the calculations for nonlinear systems, imagine an organism
with two stages: immature juveniles and reproducing adults. Suppose that the year
contains two seasons: a benign, reproduction-heavy Season 1 and a harsh, mortality-
heavy Season 2. The life cycle graph is shown in Fig. 8.2. Adults in Season 1 all
survive to Season 2 and give birth to new juveniles with per-capita fertility f , which
depends on adult density in Season 1 according to f [n1] = ae−bn2 , where a and b

are the maximum fertility and the strength of density-dependence, respectively, and
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Table 8.2 Calculation of averages of attractors of nonlinear periodic matrix population models.
The upper half of the table shows averages over stages and over seasons when the dynamics are
a fixed point on the inter-annual time scale, and thus a p-cycle on the seasonal time scale. The
lower half of the table shows averages over all combinations of stages, seasons, and years, when
the dynamics are a k-cycle on the inter-annual time scale, and thus a kp-cycle on the seasonal time
scale

Average over Formula Vectors Dimension

Stages
(
Ip ⊗ bT

s

)
N 1 p × 1

Seasons
(

bT
p ⊗ Is

)
N 1 s × 1

Seasons and stages
(

bT
p ⊗ bs

)
N 1 1 × 1

Stages
(
Ik ⊗ Ip ⊗ bT

s

)
N 1 kp × 1

Seasons
(

Ik ⊗ bT
p ⊗ Is

)
N k s × 1

Years
(
bk ⊗ Ip ⊗ Is

)
N p s × 1

Seasons and years
(

bT
k ⊗ bT

p ⊗ Is

)
N 1 s × 1

Seasons and stages
(

Ik ⊗ bT
p ⊗ bT

s

)
N 1 k × 1

Years and stages
(
bT

k ⊗ Ip ⊗ bT
s

)
N 1 p × 1

Stages, seasons, years
(

bT
k ⊗ bT

p ⊗ bT
s

)
N 1 1 × 1

Fig. 8.2 A periodic life cycle
graph for a simple two-stage,
two-season nonlinear model.
J and A denote juveniles and
adults, respectively

J A

J A

J A

Season 1

Season 2

Season 1

SJ

f(n)

Sa

1

n2 is the adult density in Season 1. In the harsher Season 2, juveniles and adults
survive with probabilities sj and sa . A juvenile that survives to Season 1 matures
into an adult.

This life cycle produces seasonal transition matrices B1 and B2:

B1[n1] =
(

0 f [n1]
0 1

)
(8.58)

B2 =
(

0 0
sj sa

)
(8.59)
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Fig. 8.3 A bifurcation diagram on the seasonal time scale for the two-season, two-stage model
of Fig. 8.2. Total densities are plotted for Season 1 (•) and 2 (+). Parameters: a = 20, b = 1,
sj = 0.5; sa varied from 0 to 1

and the nonlinear periodic model

n1(t + 1) = B2n2(t)

n2(t) = B1 [n1(t)] n1(t) (8.60)

Figure 8.3 is a bifurcation diagram for the system (8.60) in response to changes in
adult survival sa . When adults are long-lived (sa � 0.22) there is a 2-cycle on the
seasonal scale, corresponding to a fixed point on the annual time scale, satisfying

n̂1 = B2n̂2 (8.61)

n̂2 = B1[n̂1]n̂1 (8.62)

At sa ≈ 0.22 this 2-cycle bifurcates to a 4-cycle on the seasonal time scale,
corresponding to a 2-cycle on the annual scale.

To derive the block matrices C and D in Eqs. (8.49) and (8.50), define the
parameter vector as

θ = (
sj sa a b

)T
. (8.63)
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The derivative matrices are

dvec B1

dθ T
=

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 e−bn̂2 −an̂2e

−bn̂2

0 0 0 0

⎞

⎟⎟⎠ (8.64)

dvec B2

dθ T
=

⎛

⎜⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0

⎞

⎟⎟⎠ (8.65)

dvec B1

dnT
=

⎛

⎜⎜⎝

0 0
0 0
0 −abe−bn̂2

0 0

⎞

⎟⎟⎠ (8.66)

dvec B2

dnT
= 0 (dimension 4 × 2) (8.67)

We calculate the sensitivities of the equilibrium population at each phase of the
cycle using Eq. (8.46) with sa = 0.4 (a 2-cycle on the seasonal time scale; see
Fig. 8.3) and with sa = 0.1 (a 4-cycle on the seasonal time scale). The results, and
the sensitivities of several averages, are shown in Fig. 8.4.

At the seasonal 2-cycle (annual fixed point), increases in sj or sa increase
density in Season 1 and reduce density in Season 2, and have little effect on the

sj sa a b

Avg Over Stages
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Fig. 8.4 Sensitivities of equilibrium total population size in Seasons 1 and 2, as well as the annual
population average, to the demographic parameters sj , sa , a, and b. Left: sensitivities when sa =
0.4 (seasonal 2-cycle, annual equilibrium). Right: sensitivities when sj = 0.1 (seasonal 4-cycle,
annual 2-cycle)
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density averaged over seasons. The maximum fertility level a has little effect at
either season, and the density-dependent parameter b has large negative effects
throughout.

At the 4-point seasonal cycle (2-cycle on the annual time scale), the patterns are
more complicated. We describe them in terms of the kp = 4 seasons in the cycle.
The maximum fertility a has little effect at any point. The survival probabilities sj
and sa have effects that are opposite in sign: an increase in sj increases the density
in seasons 1 and 4, and reduces it in seasons 2 and 3. An increase in sa has the
opposite effect. Averaged over years, both sa and sj increase density in season 1
and reduce it in season 2, thus increasing the amplitude of the oscillation. Averaged
over seasons, sa and sj have opposite effects. When averaged over stages, seasons,
and years, the effects of sa cancel each other out, and only sj and b have appreciable
effects.

Even in this simple example, it is clear that parameter changes can have effects
that differ among seasons and years. A set of MATLAB scripts to carry out these
calculations appears in an online supplement to Caswell and Shyu (2012).

8.5 LTRE Decomposition Analysis

The LTRE decomposition analysis introduced in Sects. 2.9 and 4.5 can be extended
to obtain the contributions, to any given outcome, of differences in parameters at
each phase of the cycle.

Suppose that ξ is a m × 1 dependent variable (scalar or vector-valued), a
function of a parameter vector θ that takes on values θ1, . . . , θp over the cycle.
Use superscripts to denote two conditions,3 which produce results ξ (1) and ξ (2):

θ
(1)
1 , . . . , θ (1)

p → ξ (1) (8.68)

θ
(2)
1 , . . . , θ (2)

p → ξ (2) (8.69)

To first order, the effect on ξ is

ξ (2) − ξ (1) ≈
p∑

k=1

dξ

dθ T
k

(
θ

(2)
k − θ

(1)
k

)
(8.70)

The kth term in the summation in (8.70) is the total contribution, over all of the
parameters in θ , of parameter differences in phase k of the cycle.

Define Rk as a m × p contribution matrix whose entries are the contributions of
parameter θj in phase k to the effects on outcome variable ξi . Then

Rk = dξ

dθ T
k

D
(
θ

(2)
k − θ

(1)
k

)
(8.71)

3The extension to more than two conditions is easy; see Caswell (2001).
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where the derivative is evaluated at the average of θ (1) and θ (2). These contributions
are a decomposition of the approximate effect in (8.70),

ξ (2) − ξ (1) ≈
p∑

k=1

Rk1p (8.72)

The contribution matrix (8.71) requires dξ/dθ T
k , that is, the derivative of ξ to

the parameter at phase k of the cycle. In the linear model (8.2), this is given by
the kth term in the summation in (8.11). In the case of the nonlinear model (8.36),
the derivative is obtained from Eq. (8.46) by setting all blocks of D, except those
corresponding to phase k, to zero.

8.6 Discussion

The distinguishing feature of periodic models is that the dynamics over a projection
interval are given by a periodic product of matrices. The periodic product may reflect
the existence of multiple timescales (e.g., seasonal and annual), or the operation of
multiple processes (e.g., demography and harvest), or express conditional proba-
bilities, or arise from classifying individuals by multiple criteria. The sensitivity
analysis of periodic models must account for the chain of causation (Fig. 8.1) from
demographic parameters at each phase in the cycle to the corresponding projection
matrices, and thence to the periodic matrix product over the whole cycle, and finally
to demographic outcome ξ . Matrix calculus makes this easy to do, starting with a
simple chain rule expression (see Eq. (8.5)) and then using an appropriate version
of (8.9) to calculate the derivative dvec A/dθ T.
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Chapter 9
LTRE Decomposition of the Stochastic
Growth Rate

9.1 Introduction

The basic unit of comparative demography is a study that reports the value of
some demographic outcome in two populations that differ in a set of vital rates.
One challenge of such studies is to account for the difference in outcomes by
decomposing that difference into contributions from differences in each of the
parameters. It frequently happens that small differences in some parameters make
large contributions to the difference in outcomes, and vice-versa.

In some parts of the literature, such studies are called life table response experi-
ment (or LTRE) analyses; versions of this analysis have appeared in Sect. 1.3.1 and
Chaps. 2, 4, and 8. The term was introduced by in the context of laboratory studies
of the population effects of pollutants, hence the use of the word “experiment”
(Caswell 1989). The conditions among which the populations are compared will be
called “treatments” here, but there is no restriction to experimental manipulations.

Similar decomposition analyses have been developed independently in ecology
and human demography. For example, Pollard’s (1988) study of life expectancy used
methods very similar to LTRE analyses of the population growth rate. Horiuchi et al.
(2008) developed a method for continuous variables that is essentially identical to
that used by ecologists for regression LTRE calculations (Caswell 1996). Canudas
Romo (2003) reviews the human demographic literature.

This chapter uses matrix calculus to extend LTRE analysis to stochastic models,
by showing how to decompose differences in the stochastic growth rate, log λs .
Because stochastic models include both environmental fluctuations and the vital
rate responses to those fluctuations, their structure is richer than that of time-

Chapter 9 is modified from: Caswell, H. 2010. Life table response experiment analysis of the
stochastic growth rate. Journal of Ecology 98:324–333. ©Hal Caswell.
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invariant models. Stochastic LTRE analysis thus requires a new approach to
decomposing these differences. The payoffs, in terms of demographic and biological
understanding, are great.

9.2 Decomposition with Derivatives

The familiar LTRE analysis uses derivatives to approximate the contributions of the
vital rates to some (vector-valued) outcome ξ (dimension q × 1), as described in
Chap. 2. Suppose that ξ depends on a vector θ of vital rates (dimension p × 1), and
that observations are available under two treatments, with

θ (1) −→ ξ (1) (9.1)

θ (2) −→ ξ (2). (9.2)

Using matrix calculus notation, to first order,

ξ (2) − ξ (1) ≈ dξ

dθ T

(
θ (2) − θ (1)

)
. (9.3)

where the derivative of ξ is evaluated at the mean of the two parameter vectors.
All the contributions to the difference ξ (2) − ξ (1) are contained in a matrix C

(dimension q × p) given by

C = dξ

dθ T
D

(
θ (2) − θ (1)

)
(9.4)

where the derivative is evaluated at the mean of θ (1) and θ (2).
The entry C(i, j) of the contribution matrix is the contribution of the difference

�θj to the difference in �ξi . The columns and rows of C give

C(:, j) = contribution of �θj to �ξ (9.5)

C(i, :) = contribution of �θ to �ξi. (9.6)

The sum over rows of C is the approximation (9.3) to the treatment effect on ξ

ξ (2) − ξ (1) ≈ C 1p. (9.7)

The accuracy of this approximation gives a measure of the adequacy of the first-
order assumption. Contributions can be small either because the treatment has little
effect on θi or because ξ does not respond much to changes in θi .

The contribution matrix C takes advantage of matrix calculus to provide a simple
calculation for decomposition of scalar-, vector- or matrix-valued differences.
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Studies including more than two treatments or conditions are analyzed by defining
a reference parameter vector θ r and calculating a matrix Ci for treatment i in terms
of the parameter difference θ i − θ r . The reference treatment might be the average
parameter set, or the parameters for a “control” condition, etc.

9.3 Kitagawa and Keyfitz: Decomposition Without
Derivatives

In decomposing differences in the stochastic growth rate, we encounter variables
for which the derivatives in (9.3) cannot be calculated. Fortunately, an alternative
method for decomposition is available that does not rely on derivatives. It was
introduced by Kitagawa (1955) to explore the effects of age-specific death rates
and of age distribution on crude death rates. The method was later extended
by Keyfitz to decompose differences in age distributions, dependency ratios, and
population growth rates into contributions from the entire mortality and fertility
schedules (Keyfitz 1968, Section 7.4; Keyfitz and Caswell 2005, Section 10.1).
Canudas Romo (2003) summarizes more recent extensions of the approach in
demography.

Suppose that ξ depends on two variables, with values (a, b) in Treatment 1 and
(A,B) in Treatment 2. Thus

ξ (1) = ξ [a, b] (9.8)

ξ (2) = ξ [A,B]. (9.9)

To decompose the treatment effect ξ [A,B] − ξ [a, b] into contributions from A − a

and B −b, the Kitagawa-Keyfitz method proceeds by exchanging variables between
the two treatments and calculating ξ for all possible combinations. The effect of
A − a, against the background of B, is ξ [A,B] − ξ [a, B]. The effect of A − a,
against the background of b is ξ [A, b] − ξ [a, b]. The overall contribution of A − a

is obtained by averaging its effect against the two backgrounds:

C(A − a) = 1/2

(
ξ [A,B] − ξ [a, B]

)

+ 1/2

(
ξ [A, b] − ξ [a, b]

)
. (9.10)

Similarly, the contribution of B − b is

C(B − b) = 1/2

(
ξ [A,B] − ξ [A, b]

)

+ 1/2

(
ξ [a, B] − ξ [a, b]

)
. (9.11)
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If this appears familiar, it may be because this process of averaging differences
across different backgrounds is precisely analogous to the calculation of main
effects in a two-way ANOVA (e.g., Steel and Torrie 1960, Section 11.2).

9.4 Stochastic Population Growth

A stochastic model contains two components: a model for the dynamics of the
environment and a model for the response of the vital rates to the environment
(Cohen 1979; Tuljapurkar 1990; Caswell 2001). I focus here on the stochastic
population growth rate, log λs . Consider a population growing according to

n(t + 1) = A(t)n(t) (9.12)

where the projection matrix A(t) is generated by a realization of an ergodic
stochastic environment that produces, for every environmental state, a set of vital
rates that satisfy certain regularity conditions. Then, the asymptotic long-term
growth rate is, with probability one,

log λs = lim
T →∞

1

T
log

∥∥∥A(T − 1) · · · A(0)n0

∥∥∥ (9.13)

(Cohen 1976; Tuljapurkar and Orzack 1980; Tuljapurkar 1990). This growth rate
plays a central role in demography and biodemography in stochastic environments,
exactly analogous to the role played by the population growth rate λ or r = log λ

in stable population theory in constant environments. Cohen (1986) and Lee and
Tuljapurkar (1994) have incorporated models of the form (9.12), with the addition
of immigration terms, into the context of human population projections, to provide
estimates of confidence intervals more rigorous than the “high, medium, low”
scenarios usually reported.

The additional component in stochastic environments adds an extra layer of
complexity to the LTRE decomposition of the stochastic growth rate (Fig. 9.1).
The differences in log λs between two treatments is partly due to differences in
the environmental dynamics and partly to differences in the vital rates within each
environmental state.

In this chapter, I consider the case in which the environment is described by a
finite-state Markov chain. Ecological examples include years with our without fire
(Silva et al. 1991), years since fire (Caswell and Kaye 2001), years with early or late
floods, or with high or low precipitation (Smith et al. 2005) and years with good or
poor sea ice conditions (Hunter et al. 2010; Jenouvrier et al. 2009b). The Markovian
environment case also includes the situation where the environment is modelled
implicitly by selecting randomly from a set of empirically-measured matrices (e.g.,
Bierzychudek 1982; Cohen et al. 1983; Jenouvrier et al. 2009a). Let u(t) be the
state of the environment at time t . The environmental dynamics are determined by
the Markov chain transition matrix P, where pij = P [u(t + 1) = i|u(t) = j ].
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Treatment i

Treatment i

Vital rates θ

Θ = {θ1, ...θK}

(i)

(i)
Environmental
dynamics P

Growth rate λ

λ

Vital rate response

Growth rate log s

(a)

(b)

Fig. 9.1 The determination of population growth rate in (a) time-invariant and (b) stochastic
models. The deterministic growth rate λ is defined by a set of vital rates, which are determined
by the environment (“treatment”). The stochastic growth rate log λs requires an additional model
for the stochastic dynamics of the environment and a function giving the response of the vital rates
to the state of the environment

The second part of the model is the response of the vital rates to the environment.
Let θ be a vector of parameters that determine the projection matrix A. The vectors
θ1, . . . , θK correspond to environmental states 1, . . . , K . I will write the entire set
of vital rates as

� = {θ1, . . . , θK} . (9.14)

We write A(t) = A[θ(t)], and the stochastic growth rate (9.13) becomes

log λs [P,�] = lim
T →∞

1

T
log

∥∥∥A[θ(T − 1)] · · · A[θ(0)] n0

∥∥∥ (9.15)

where θ(t) is the parameter vector created by the environmental state u(t). I have
written log λs as an explicit function of P and � to emphasize that it depends on
both the environment and the vital rate response.

9.4.1 Environment-Specific Sensitivities

The sensitivity of log λs to the vital rates was given by Tuljapurkar (1990). For the
LTRE analysis, we require the derivatives of log λs with respect to the parameters
in each state of the environment; i.e., to each of the vectors θ i in �. These
environment-specific sensitivities were given by Caswell (2005) and independently
by Horvitz et al. (2005), and have been applied by Gervais et al. (2006), Aberg
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et al. (2009), and Svensson et al. (2009). Rewriting Tuljapurkar’s (1990) formula in
matrix calculus notation yields the derivative of log λs with respect to the vital rate
vector in environment i:

d log λs

dθ T

∣∣∣∣
u=i

= lim
T →∞

1

T

T −1∑

t=0

Jt

[
w(t)T ⊗ v(t + 1)T

]

RtvT(t + 1)w(t + 1)

dvec A[θ(t)]
dθ T

. (9.16)

This is the stochastic analogue of the expression (3.46) in Chap. 3, for the sensitivity
of the deterministic growth rate. The vectors w(t) and v(t) are the stochastic
analogues of the right and left eigenvectors of a deterministic model, and Rt is the
growth of total population size from t to t + 1. See Caswell (2001, Section 14.4) for
a step-by-step algorithm for the calculation.

To make sensitivity environment-dependent, Jt is an indicator variable, defined
as

Jt =
{

1 if u(t) = i

0 otherwise
(9.17)

If the parameters θ consist of the elements of A, then dvec A/dθ T = I, where I is
the identity matrix. If θ contains lower-level parameters, then dvec A/dθ T contains
the derivatives of A with respect to these parameters.

9.5 LTRE Decomposition Analysis for log λs

Suppose now that we have two treatments, and want to decompose the difference,

log λ(2)
s − log λ(1)

s = log λs

[
P(2),�(2)

]
− log λs

[
P(1),�(1)

]
(9.18)

into contributions. This difference compares growth in treatment 2 to growth
in treatment 1. Treatment 1, the reference treatment, could be a control in a
manipulative experiment, or some other specific condition of interest (as in the
example to be considered below), or an average over treatments in a factorial
experiment.

The treatment effect on log λs in (9.18) depends on both the differences in
environmental dynamics (captured in the transition matrices P(1) and P(2)) and
the differences in the vital rate responses (captured in the parameter arrays �(1)

and �(2)). Because log λs is calculated numerically from (9.15) by simulation, it
cannot be differentiated1 with respect to P, so we will use the Kitagawa-Keyfitz

1Well, not by me. But see Steinsaltz et al. (2011) for a rigorous development of the sensitivity
analysis of stochastic growth rates that includes the effects of changes in the entries of P.
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decomposition for the environmental dynamics contribution, and environment-
specific derivatives (9.16) for the vital rate response contributions

Let us consider three cases: the case where only the vital rate responses differ,
the case where only the environmental dynamics differ, and finally the case where
both differ.

9.5.1 Case 1: Vital Rates Differ, Environments Identical

Consider two treatments that affect the vital rate responses but not the environmental
dynamics. For example, one might want to compare low and high fertility sites
subjected to a common fire frequency. The transition matrix P is identical in the
two sites, but the vital rates differ. The stochastic growth rates are

log λ(1)
s = log λs

[
P,�(1)

]
(9.19)

log λ(2)
s = log λs

[
P,�(2)

]
. (9.20)

The difference in log λs is composed of contributions from vital rate differences in
each state of the environment. To first order,

log λ(2)
s − log λ(1)

s ≈
K∑

i=1

(
∂ log λs

∂θ T

∣∣∣∣
u=i

)(
θ

(2)
i − θ

(1)
i

)
(9.21)

where the derivatives are environment-specific sensitivities (9.16), and are evaluated
at the mean of �(1) and �(2). The ith term of the summation in (9.21) is the
contribution of differences in the ith environment. These can be written as the
elements of a contribution matrix (dimension 1 × p)

C(θ i ) = ∂ log λs

∂θ T

∣∣∣∣
u=i

D
(
θ

(2)
i − θ

(1)
i

)
i = 1, . . . , K. (9.22)

9.5.2 Case 2: Vital Rates Identical, Environments Differ

Now consider two treatments that affect the environmental dynamics (given by
P(1) and P(2)) but not the vital rate responses. For example, a comparison of
population growth before and after implementing a fire control strategy that changes
the frequency of fire, but has no effect on how the vital rates respond to fire. The
stochastic growth rates are

log λ(1)
s = log λs

[
P(1),�

]
(9.23)

log λ(2)
s = log λs

[
P(2),�

]
. (9.24)
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The matrices P(1) and P(2) may differ in their long-term frequencies of environ-
mental states. Those long-term frequencies are given by the stationary distributions,
i.e., the right eigenvector π corresponding to the dominant eigenvalue of P (which
always equals 1), scaled so that π sums to 1. The same frequency of environmental
states, however, can be obtained from processes with different autocorrelation
patterns, from negative autocorrelation (where states tend to alternate) to positive
autocorrelation (characterized by long runs of the same state; see Caswell and Kaye
(2001, Fig. 2) for an example). So, P(1) and P(2) may differ in their stationary
distributions, autocorrelation patterns, or both. To separate the contributions from
these, using the Kitagawa-Keyfitz decomposition, we construct a Markov chain with
the same stationary distribution π as P, but in which successive environmental states
are independent, and hence there is no autocorrelation. This chain has the transition
matrix

Q = π1T (9.25)

where 1 is a vector of ones. Because the next state is independent of the previous
state, and the same matrix is applied at each time, this process is called “independent
and identically distributed,” and abbreviated “iid.”

The contribution to log λ
(2)
s − log λ

(1)
s of differences in P is

C(P) = log λs

[
P(2),�

]
− log λs

[
P(1),�

]
. (9.26)

The contribution of the difference in the iid part of the environment is

C(Q) = log λs

[
Q(2),�

]
− log λs

[
Q(1),�

]
. (9.27)

The contribution of differences in environmental autocorrelation, denoted by C(R),
is obtained by subtraction;

C(R) = C(P) − C(Q). (9.28)

9.5.3 Case 3: Vital Rates and Environments Differ

Finally, consider two treatments that differ in both the environmental dynamics (P(1)

and P(2)) and the vital rate responses (�(1) and �(2)). The stochastic growth rates
are

log λ(1)
s = log λs

[
P(1),�(1)

]
(9.29)

log λ(2)
s = log λs

[
P(2),�(2)

]
. (9.30)
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Our goal is to decompose log λ
(2)
s − log λ

(1)
s into contributions from the differences

in the stationary environmental frequencies (C(Q)), in the autocorrelation pattern
(C(R)), and in the vital rates in each environmental state (C(θ1), . . . , C(θK)). The
decomposition analysis proceeds in three steps.

1. Write the contributions of the environmental differences using the Kitagawa-
Keyfitz method

C(P) = 1

2

(
log λs

[
P(2),�(2)

]
− log λs

[
P(1),�(2)

]

+ log λs

[
P(2),�(1)

]
− log λs

[
P(1),�(1)

])
(9.31)

C(Q) = 1

2

(
log λs

[
Q(2),�(2)

]
− log λs

[
Q(1),�(2)

]

+ log λs

[
Q(2),�(1)

]
− log λs

[
Q(1),�(1)

])
(9.32)

C(R) = C(P) − C(Q) (9.33)

Each of C(P), C(Q), andC(R) is a scalar.
2. Write the contributions of the vital rate differences using the Kitagawa-Keyfitz

method

C(�) = 1

2

{
log λs

[
P(2),�(2)

]
− log λs

[
P(2),�(1)

]}

+ 1

2

{
log λs

[
P(1),�(2)

]
− log λs

[
P(1),�(1)

]}
(9.34)

C(�) is a scalar, summing the effects of differences in all of the parameter
responses at all states of the environment. It is decomposed further in the next
step:

3. Use the environment-specific derivatives of log λs to decompose each term
in (9.34) into contributions from the vital rates in each environment, using (9.22)

C (θ i ) = 1

2

(
∂log λs

[
P(2), �̄

]

∂θ T

∣∣∣∣∣
u=i

)
D

(
θ

(2)
i − θ

(1)
i

)

+ 1

2

(
∂ log λs

[
P(1), �̄

]

∂θ T

∣∣∣∣∣
u=i

)
D

(
θ

(2)
i − θ

(1)
i

)
i = 1, . . . , K

(9.35)
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for i = 1, . . . , K , with the derivatives evaluated at �̄, the mean of the vital rates
in the two treatments being compared. The matrix C(θ i ) is (1×p) vector, whose
entries give the contributions to the differences in log λs from each of the vital
rates in environment i.

The total contribution of the parameter differences given in (9.34) is

C(�) =
K∑

i=1

C (θ i ) 1p. (9.36)

These calculations are easily implemented by writing subroutines to calculate
log λs and the environment-specific sensitivities given a transition matrix and a
set of parameters. The accuracy of the approximations involved can be checked
by comparing

log λ(2)
s − log λ(2)

s

?≈ C(Q) + C(R) +
K∑

i=1

C (θ i ) 1p. (9.37)

9.6 An Example: Fire and an Endangered Plant

I know of no comparative studies of stochastic population growth that include
differences in both the environmental dynamics and the vital rate responses, so here
is an artificial example, based on a model for an endangered plant, Lomatium brad-
shawii, in a stochastic fire environment (Caswell and Kaye 2001). L. bradshawii
(Apiaceae) is a polycarpic herbaceous perennial plant. It exists in only a few isolated
populations in prairies of Oregon and Washington. These habitats were, until recent
times, subject to natural and anthropogenic fires, to which L. bradshawii seems
to have adapted. Fires increase plant size and seedling recruitment, but the effect
fades within a few years. Populations in recently burned areas have higher growth
rates and lower probabilities of extinction than unburned populations. For more
information, see Pendergrass et al. (1999), Caswell and Kaye (2001), and Kaye
et al. (2001).

A stochastic demographic model for L. bradshawii was developed by Caswell
and Kaye (2001), based on data from an experimental burning study. Individuals
were classified into six stages based on size and reproductive status: yearlings, small
and large vegetative plants, and small, medium, and large reproductive plants. The
environment was classified into four states defined by the time since the most recent
fire: the year of a fire and 1, 2, and 3+ years post-fire, and vital rates were estimated
in each of these environmental states. The matrices are given in Caswell and Kaye
(2001).

Populations were studied in two sites: Fisher Butte (FB) and Rose Prairie (RP)
in western Oregon. The two sites differed in quality for L. bradshawii, with RP
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Table 9.1 The population
growth rate λ calculated from
the environment-specific
matrices A[θ i ] for L.
bradshawii. (From Caswell
and Kaye 2001)

Fisher Butte Rose Prairie

Years post-fire λ λ

0 1.020 1.155

1 0.984 1.118

2 0.662 0.483

≥3 0.869 0.906

superior to FB. Population growth rates were generally higher at RP than at FP
(Table 9.1), and the stochastic growth rate was higher in RP than FB at any fire
frequency. The critical fire frequency required to maintain L. bradshawii populations
was about 0.8–0.9 at FB, but only 0.4–0.5 at RP. The causes of the differences
between the sites are not known (Pendergrass et al. 1999).

9.6.1 The Stochastic Fire Environment

The model for environmental dynamics is a two-state Markov chain for fires (each
year is either fire or no fire). This generates a four-state Markov chain for the
environmental states (0, 1, 2, and 3 or more years post-fire). Let f be the long-term
frequency of fire, and ρ the temporal autocorrelation coefficient of the fire process
(the magnitude of ρ determines the rate of decay of correlation as time increases,
the sign of ρ determines whether the correlation is of one sign, or oscillates). In
the two-state fire model, the probability of fire in year t + 1 if there was no fire
in year t is q = f (1 − ρ). The probability of a fire if there was a fire in year t is
p = q + ρ (see Caswell 2001, Section 14.1). The resulting transition matrix for the
four environmental states is

P =

⎛

⎜⎜⎝

p q q q

1 − p 0 0 0
0 1 − q 0 0
0 0 1 − q 1 − q

⎞

⎟⎟⎠ . (9.38)

If ρ < 0, f must satisfy

−ρ

1 − ρ
≤ f ≤ 1

1 − ρ
(9.39)

in order to keep probabilities bounded between 0 and 1. See Caswell and Kaye
(2001). Note that even if the fire process is iid, so that ρ = 0, the environmental
process given by (9.38) is not iid.
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9.6.2 LTRE Analysis

There is no information on differences in fire dynamics at the two sites, so Caswell
and Kaye (2001) studied the response of log λs to the frequency and autocorrelation
of fires. Here, we use stochastic LTRE analysis to decompose the differences in
log λs in three hypothetical scenarios of environmental differences. I will use the
matrix entries as the vital rates θ , there being no natural lower-level parameterization
in this model. MATLAB code for the calculations is available as an appendix to
Caswell (2010).

The stochastic growth rate log λs increases with fire frequency for both species.
The RP site has a growth advantage, with log λ

(RP)
s > log λ

(FB)
s at all fire

frequencies. The RP advantage, measured by log λ
(RP)
s − log λ

(RP)
s increases from

≈0.02 when f = 0 to ≈0.13 when f = 1.

Differences in vital rates and environmental transitions (Case 3) Suppose that
the two sites differ in both environmental dynamics and vital rate responses, with
fire frequencies, autocorrelations, and resulting stochastic growth of

FB RP
f 0.5 0.7
ρ −0.5 0.5

log λs −0.043 0.081

In this hypothetical scenario, the FB population tends to experience alternating years
with and without fires; in RP, there is a tendency for long runs of years with and
without fires. For additional scenarios, see Caswell (2010).

To decompose the treatment effect log λ
(RP)
s − log λ

(FB)
s , we construct the

Markov chain transition matrices from (9.38), and calculate the stationary distri-
butions π (RP ) and π (FB) as eigenvectors of P. For each site, we generate the iid
transition matrix Q from (9.25), and compute the contributions C(P) from (9.31),
C(Q) from (9.32), and C(R) from (9.33). Then we compute the environment-
specific sensitivities of log λs from (9.16), for both P(RP ) and P(FB), and use these
to calculate the contributions C(θ i ) of the vital rates in each environmental state,
using (9.35). Finally, we sum the C(θ i ) to obtain the integrated effect of all vital
rate differences in each environment.

Figure 9.2 shows these contributions. Most of the growth rate advantage of the
RP site can be attributed to an RP advantage in A[θ1] and A[θ2] (the year of a
fire and the year immediately following a fire). The difference in the long-term
frequency of environmental states, and the differences in autocorrelation patterns,
make relatively little contribution.
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Fig. 9.2 The contributions of the iid component of the environment (Q), the autocorrelated
component of the environment (R), and the projection matrix entries in each environmental state
(A1, . . . A4) to the difference in the stochastic growth rate log λs between the Rose Prairie (RP)
and Fisher Butte (FB) populations of Lomatium bradshawii. Calculations assume fire frequencies
of 0.5 for FB and 0.7 for RP, and autocorrelations ρ = −0.5 for FB and ρ = 0.5 for RP

The accuracy of the approximations involved in the LTRE analysis is good. The
sum of the contributions in Fig. 9.2 is 0.1192, while the actual difference in log λs

is 0.1219 (an accuracy of 98%).
Alternatively, suppose that some kind of fire prevention program in the RP

site reduced the fire frequency to f = 0.1 (well below the critical threshold for
persistence), but a fire management program increased the fire frequency in the FP
site to f = 0.9.

FB RP
f 0.9 0.1
ρ 0.0 0.0

log λs 0.027 −0.113

Now log λ
(FB)
s > log λ

(RP)
s , despite the general advantage in vital rates of RP over

FB in most environmental states. Figure 9.3 presents the contributions to � log λs

from differences in fire frequency, autocorrelation, and vital rates, and shows how
the contributions of the vital rate differences are, in this case, overwhelmed by the
RP disadvantage due to the stationary distribution of the environment.

The sum of the contributions in Fig. 9.3 is −0.1326, while the actual difference in
log λs is −0.1395 (an accuracy of 95%, even with a very large difference in growth
rate).
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Fig. 9.3 The contributions of the iid component of the environment (Q), the autocorrelated
component of the environment (R), and the matrix entries in each environmental state (A1, . . . A4)
to the difference in the stochastic growth rate log λs between the Rose Prairie (RP) and Fisher Butte
(FB) populations of Lomatium bradshawii. Calculations assume fire frequencies of 0.9 for FB and
0.1 for RP, and autocorrelation ρ = 0 for both populations

9.7 Discussion

This application of matrix calculus provides a general framework for decompo-
sition analysis of the stochastic growth rate in Markovian environments. It is
a direct generalization of the familiar LTRE approaches for time-invariant and
periodic models, but combined with the powerful Kitagawa-Keyfitz decomposition.
Comparative studies of the stochastic growth rate require additional data on the
stochastic dynamics of the environment, beyond that needed for time-invariant
models (Fig. 9.1). Many stochastic studies present conditional results; for example,
the study of L. bradshawii provides log λs as a function of f , ρ, and �, but does
not estimate the value of log λs actually exhibited in either of the two sites. To do so
would require long-term data on the stochastic environment, which is hard to come
by. However, such information may possibly be extracted from historical data (e.g.,
Smith et al. 2005; Lawler et al. 2009), or projected from climate models (Hunter
et al. 2010; Jenouvrier et al. 2009b).

The methods presented here are not limited to Markovian environments in which
the environmental states have an interpretation (years since fire, flood conditions,
etc.). They can also be used when matrices are randomly selected from a series
collected over time (e.g., the early study of Bierzychudek (1982) based on two
yearly matrices, or the study by Jenouvrier et al. (2009b) based on 44 years of
matrices for emperor penguins). Although such models are indeed Markov chains,
if years are simply a random sample of environmental variation, then it is of little
interest to know the contribution of vital rate differences in, say, 1988 compared to
1989 or 1987. In these models, the mean and variance of the vital rates may be of
more interest. Davison et al. (2010), drawing on the stochastic elasticity results of
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Tuljapurkar et al. (2003), have presented an approach to LTRE analysis in terms of
the contributions of differences in the mean and the variance of the vital rates. That
method nicely complements the approach presented here.

In the analysis of Lomatium bradshawii, even large differences in environmental
autocorrelation made small contributions to treatment effects on log λs . This is not
surprising, given the generally small impact of changes in autocorrelation on the
stochastic growth rate in this model (Caswell and Kaye 2001). It is, however, not
guaranteed. Given the proper interaction between environmental states and the stage
structure, autocorrelation can have dramatic impacts on the growth rate (Caswell
2001, Example 14.1). How often this happens in nature will only be revealed by
further comparative studies.

Changing focus from plants in a fluctuating fire environment to human popula-
tions projected in response to stochastic fluctuations in mortality and fertility (e.g.,
Tuljapurkar 1992; Lee and Tuljapurkar 1994), there are possibilities for applying
this approach to population projections. However, such attempts will be challenging
because the stochastic environments are not stationary, and the interest is not in
asymptotic stochastic growth, but in short term transient dynamics. A combination
of the transient analyses in Chap. 7 with the decomposition approach here might
yield interesting results.
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Part IV
Nonlinear Models



Chapter 10
Sensitivity Analysis of Nonlinear
Demographic Models

10.1 Introduction

Nonlinearities in demographic models arise due to density dependence, frequency
dependence (in 2-sex models), feedback through the environment or the economy,
recruitment subsidy due to immigration, and from the scaling inherent in calcula-
tions of proportional population structure. This chapter presents a series of analyses
particular to nonlinear models: the sensitivity and elasticity of equilibria, cycles,
ratios (e.g., dependency ratios), age averages and variances, temporal averages and
variances, life expectancies, and population growth rates, for both age-classified and
stage-classified models.

Nonlinearity is defined in contrast to linearity. If x is an age or stage distribution
vector, and if the dynamics of x are given by

x(t + 1) = f [x(t)], (10.1)

then the model is linear if f (·) is a linear function, i.e., if

f (ax1 + bx2) = af (x1) + bf (x2) (10.2)

for any constants a and b and any vectors x1 and x2.
If a model is not linear, it is nonlinear. Not surprisingly, this covers a lot of

territory, but nonlinearity in demographic models can be classified into four main
sources: density dependence, environmental feedback, interactions between the
sexes, and models that arise in calculation of proportional structure.

Chapter 10 is modified, under the terms of a Creative Commons Attribution License, from:
Caswell, H. 2008. Perturbation analysis of nonlinear matrix population models. Demographic
Research 18:59–116. ©Hal Caswell.

© The Author(s) 2019
H. Caswell, Sensitivity Analysis: Matrix Methods in Demography
and Ecology, Demographic Research Monographs,
https://doi.org/10.1007/978-3-030-10534-1_10
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Density dependence: arises when one or more of the per-capita vital rates
are functions of the numbers or density of the population. Such effects have
been incorporated into demographic studies of plants (e.g., Solbrig et al.
1988; Gillman et al. 1993; Silva Matos et al. 1999; Pardini et al. 2009;
Shyu et al. 2013) and animals (e.g., Pennycuick 1969; Clutton-Brock et al.
1997; Cushing et al. 2003; Bonenfant et al. 2009). Density dependence has
been intensively studied in the laboratory (e.g., Pearl et al. 1927; Frank
et al. 1957; Costantino and Desharnais 1991; Carey et al. 1995; Mueller and
Joshi 2000; Cushing et al. 2003). It can arise from competition for food,
space, or other resources, or from interactions (e.g., cannibalism) among
individuals.

Simple density dependence is less often invoked by human demogra-
phers1. Weiss and Smouse (1976) proposed a density-dependent matrix model,
and Wood and Smouse (1982) applied it to the Gainj people of Papua New
Guinea. Density dependence is included in epidemiological feedback models
applied to a rural English population in the sixteenth and seventeenth centuries
by Scott and Duncan (1998).

The Easterlin effect (1961) produces density dependence in which fertility is a
function of cohort size. Analysis of the Easterlin effect has focused mostly on the
possibility that it could generate cycles in births (e.g., Lee 1974, 1976; Frauenthal
and Swick 1983; Wachter and Lee 1989; Chu 1998).

Environmental (or economic) feedback. Density-dependent models are often
an attempt to sneak in, by the back door as it were, a feedback through
the environment. A change in population size changes some aspect of the
environment, which affects the vital rates, which in turn affect future population
size. Models in which the feedback operates through resource consumption are
the basis for the food chain and food web models that underlie models of global
biogeochemistry (e.g.,. Hsu et al. 1977; Tilman 1982; Murdoch et al. 2003;
Fennel and Neumann 2004). These models are typically unstructured, but there is
a rich literature on structured models, written as partial differential equations, to
incorporate physiological structure and resource feedback (de Roos and Persson
2013).

Feedback models are also invoked in human demography, with the feedback
operating through the economy (Lee 1986, 1987; Chu 1998). An interesting
aspect of these approaches is the possibility that, if larger populations support
more robust economies, the feedback could be positive instead of negative (Lee
1986; Cohen 1995, Appendix 6). An exciting combination of ecological and

1Lee (1987) reviewed the situation and said “. . . we might say that human demography is all about
Leslie matrices and the determinants of unconstrained growth in linear models, whereas animal
population studies are all about Malthusian equilibrium through density dependence in nonlinear
models . . . ”. He admits that this is an exaggeration, and there clearly are nonlinear concerns in
human demography (Bonneuil 1994), but a non-exhaustive survey finds no mention of density
dependence in several contemporary human demography texts (e.g., Hinde 1998; Preston et al.
2001; Keyfitz and Caswell 2005).
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economic feedback appears in the food ratio model recently proposed by Lee
and Tuljapurkar (2008).

Two-sex models. To the extent that both males and females are required for
reproduction (and, in the bigger scheme of things, this is not always so),
demography is nonlinear because the marriage function or mating function
cannot satisfy (10.2). Nonlinear two-sex models have a long tradition in human
demography (see reviews in Keyfitz 1972; Pollard 1977) and have been applied
in ecology (e.g., Lindström and Kokko 1998; Legendre et al. 1999; Kokko and
Rankin 2006; Lenz et al. 2007; Jenouvrier et al. 2010, 2012). Their mathematical
properties have been investigated by e.g, Caswell and Weeks (1986), Chung
(1994) and Iannelli et al. (2005) and in a very abstract setting by Nussbaum
(1988, 1989).

In their most basic form, two-sex models differ from density-dependent
models in that the vital rates depend only on the relative, not the absolute,
abundances of stages in the population (they are sometimes called frequency-
dependent for this reason). This has important implications for their dynamics.

Models for proportional population structure. Even when the dynamics of
abundance are linear, the dynamics of proportional population structure are
nonlinear (e.g., Tuljapurkar 1997). This leads to some useful results on the
sensitivity of the stable age or stage distribution and the reproductive value.

Linear models lead to exponential growth and convergence to a stable structure.
Much of their analysis focuses on the population growth rate λ or r = log λ.
Nonlinear models do not usually lead to exponential growth (frequency-dependent
two-sex models are an exception). Instead, their trajectories converge to an attractor.
The attractor may be an equilibrium point, a cycle, an invariant loop (yielding
quasiperiodic dynamics), or a strange attractor (yielding chaotic dynamics); see
Cushing (1998) or Caswell (2001, Chapter 16) for a detailed discussion.

This chapter analyzes the sensitivity and elasticity of equilibria and cycles.
Because the dynamic models considered here are discrete, solutions always exist
and are unique. The nature and the number of the attractors depends on the specific
model. Perturbation analysis always considers perturbations of something, so the
equilibria or cycles must be found before their perturbation properties can be
analyzed.

10.2 Density-Dependent Models

We begin with the basic discrete-time2 density-dependent model, written as

n(t + 1) = A[θ , n(t)] n(t) (10.3)

2It is possible to generalize to continuous-time models, that would be written

dn
dt

= A[θ , n(t)] n(t)
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where n(t) is a population vector of dimension s×1 and A is a population projection
matrix of dimension s × s. The matrix A depends on a p × 1 vector θ of parameters
as well as on the current population vector n(t).3

10.2.1 Linearizations Around Equilibria

An equilibrium of (10.3) satisfies

n̂ = A
[
θ , n̂

]
n̂. (10.4)

Such an equilibrium may be stable (small perturbations from n̂ eventually return
to the equilibrium) or unstable.4 That stability is determine by the linearization of
the nonlinear system (10.3) near x̂. That is, define the deviation from x̂ as z(t) =
x(t) − x̂. Then z(t) follows

z(t + 1)M[θ , x̂]z(t) (10.5)

The matrix M is the Jacobian matrix,

M = ∂x(t + 1)

∂xT(t)

∣∣∣∣
x̂

(10.6)

To obtain M, differentiate both sides of (10.3),

dx(t + 1) = (dA) x + A (dx) (10.7)

Applying the vec operator to both sides gives

dx(t + 1) =
(

xT ⊗ Is

)
dvec A + Adx (10.8)

from which

M =
(

xT ⊗ Is

) dvec A

dxT
+ A (10.9)

for some appropriately defined matrix function A; see Verdy and Caswell (2008). Such models are
less often used, but see Shyu and Caswell (2016a, 2018) for a two-sex model example.
3The explicit dependence on θ and n(t) will be neglected when it is obvious from the context.
4A careful consideration of stability requires more care with the definition of these terms, but will
not concern us here. See Caswell (2001) and Cushing (1998) for more details.
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where Is is an identity matrix of order s. The linearization at the equilibrium is
obtained by evaluating M at x = x̂:

M
[
θ , x̂

] =
(

x̂T ⊗ Is

) ∂vec A
[
θ, x̂

]

∂xT
+ A

[
θ , x̂

]
(10.10)

If all the eigenvalues of M are less than one in magnitude, the equilibrium x̂ is
locally asymptotically stable. The linearization also provides valuable information
about short-term transient responses to perturbation; see Sect. 10.2.4.

10.2.2 Sensitivity of Equilibrium

Our goal is to find the derivatives of all the entries of n̂ with respect to all of the
parameters in θ ; these are the entries of the s × p matrix

dn̂

dθT
.

We begin by taking the differential of both sides of (10.4):

dn̂ = (dA)n̂ + A(dn̂). (10.11)

Rewrite this as

dn̂ = Is(dA)n̂ + A(dn̂), (10.12)

where Is is an identity matrix of dimension s. Next apply the vec operator to both
sides, remembering that since n̂ is a column vector, vec n̂ = n̂, and apply Roth’s
theorem, to obtain

dn̂ =
(

n̂T ⊗ Is

)
dvec A + Adn̂. (10.13)

However, A is a function of both θ and n̂, so

dvec A = ∂vec A

∂θT
dθ + ∂vec A

∂nT
dn̂. (10.14)

Substituting (10.14) into (10.13) and applying the chain rule leads to5

dn̂

dθT
=

(
n̂T ⊗ Is

)(∂vec A

∂θT
+ ∂vec A

∂nT

dn̂

dθT

)
+ A

dn̂

dθT
. (10.15)

5It is reassuring to check that the dimensions of all these quantities are compatible:
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Finally, solve (10.15) for dn̂/dθT to obtain

dn̂

dθT
=

(
Is − A −

(
n̂T ⊗ Is

) ∂vec A

∂nT

)−1 (
n̂T ⊗ Is

) ∂vec A

∂θT
(10.16)

where A, ∂vec A/∂θT, and ∂vec A/∂n̂T are evaluated at n̂.
Comparing (10.16) and Eq. (10.10) for the linearization, we see that the sensitiv-

ity of equilibrium can be written

dn̂

dθT
= (Is − M)−1

(
n̂T ⊗ Is

) ∂vec A

∂θT
. (10.17)

The matrix (Is − M) is singular if 1 is an eigenvalue of M; i.e., at a bifurcation
point when the equilibrium n̂ becomes unstable. At that point, quite appropriately,
the sensitivity is not defined because the change in the equilibrium is not continuous.

The following example, applying (10.16) to a simple model, shows the basic
steps and output of the analysis.

Example 1: A simple two-stage model The most basic distinction in the life cycle
of many organisms is between non-reproducing juveniles and reproducing adults.
A model based on these stages (Neubert and Caswell 2000) is parameterized by
the juvenile survival σ1, the adult survival σ2, the growth or maturation probability
γ (the expected time to maturity is 1/γ ), and the adult fertility f . The projection
matrix is

A =
(

σ1(1 − γ ) f

σ1γ σ2

)
. (10.18)

Any of the vital rates could be density-dependent; here we suppose that juvenile
survival σ1 depends on total density:

σ1(n) = σ̃ exp(−1Tn); (10.19)

where 1 is a vector of ones.
Define the parameter vector as θ = (

f γ σ̃ σ2
)T

. To apply (10.16) requires the
derivatives of A[θ, n] with respect to θ and with respect to n. These are

dn̂

dθT
︸︷︷︸
s×p

=
(

n̂T ⊗ Is

)

︸ ︷︷ ︸
s×s2

⎛

⎜⎜⎜⎝
∂vec A

∂θT
︸ ︷︷ ︸

s2×p

+ ∂vec A

∂nT
︸ ︷︷ ︸

s2×s

∂n̂

∂θT
︸︷︷︸
s×p

⎞

⎟⎟⎟⎠ + A︸︷︷︸
s×s

dn̂

dθT
︸︷︷︸
s×p

.
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dvec A
df

= vec

(
0 1

0 0

)
(10.20)

dvec A
dγ

= vec

(−σ1(n) 0

σ1(n) 0

)
(10.21)

dvec A
dσ̃

= vec

(
(1 − γ ) exp(−1Tn) 0

γ exp(−1Tn) 0

)
(10.22)

dvec A
dσ2

= vec

(
0 0

0 1

)
(10.23)

dvec A
dn1

= dvec A
dn2

= vec

(−σ1(n)(1 − γ ) 0

−σ1(n)γ 0

)
. (10.24)

The derivative of A with respect to the θ is the 4 × 4 matrix

∂vec A

∂θT
=

⎛

⎜⎜⎝

0 −σ1(n) (1 − γ ) exp(−1Tn) 0
0 σ1(n) γ exp(−1Tn) 0
1 0 0 0
0 0 0 1

⎞

⎟⎟⎠ , (10.25)

where each column corresponds to an entry of θ and each row to an element of
vec A. The derivative of A with respect to n is

∂vec A

∂nT
=

⎛

⎜⎜⎝

−σ1(n)(1 − γ ) −σ1(n)(1 − γ )

−σ1(n)γ −σ1(n)γ

0 0
0 0

⎞

⎟⎟⎠ . (10.26)

Each column corresponds to an entry of n and each row to an element of vec A.
Using some arbitrary parameter values (not unreasonable for humans or other

large mammals)

f = 0.25

γ = 1/15

σ̃ = 0.98

σ2 = 0.95
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leads to an equilibrium population

n̂ =
(

0.1053
0.1109

)
, (10.27)

obtained by iterating the model to convergence.
These patterns reflect the life history, although comparative study of this

dependence has scarcely begun. For example, if the demographic parameters were
more appropriate for an insect, say with high fertility (f = 70), rapid maturation
(γ = 0.9), and low juvenile survival (σ̃ = 0.1), and in which most adults die after
reproducing once (σ2 = 0.01), then the equilibrium would become

n̂ =
(

1.826
0.026

)
(10.28)

with sensitivities

dn̂

dθT
=

(
0.01 1.08 9.86 0.99

−0.0002 0.02 0.14 0.01

)
. (10.29)

In this life history, increases in fertility have very small effects on the equilibrium
population, and the effect of increased fertility on adult density is slightly negative.
Changes in the maturation rate or in juvenile or adult survival have much larger
impacts on juvenile density than on adult density. �

10.2.3 Dependent Variables: Beyond n̂

The equilibrium vector n̂ is usually not the only dependent variable of interest. If
we write m = m(n) for any vector- or scalar-valued transformation of n, then the
sensitivity of m is just

dm̂

dθT
= dm̂

dnT

dn̂

dθT
. (10.30)

The possibilities for dependent variables are, roughly speaking, limited only by
one’s imagination. The following is a list of examples.

1. Weighted population density. Let c ≥ 0 be a vector of weights. Weighted
population density is then N(t) = cTn(t). Examples include total density
(c = 1), the density of a subset of stages (ci = 1 for stages to be counted;
ci = 0 otherwise), biomass (ci is the biomass of stage i), basal area, metabolic
rate, etc. The sensitivity of N̂ is
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dN̂

dθT
= cT dn̂

dθT
. (10.31)

2. Ratios, measuring the relative abundances of different stages. Let

R(t) = aTn(t)

bTn(t)
(10.32)

where a ≥ 0 and b ≥ 0 are weight vectors. Examples include the dependency
ratio (in human populations, the ratio of the individuals below 15 or above 65
to those between 15 and 65; see Sect. 10.5.3), the sex ratio, and the ratio of
juveniles to adults, which is used in wildlife management; see Skalski et al.
(2005). Differentiating (10.32) gives

dR̂

dθT
=

(
bTn̂aT − aTn̂bT

(
bTn̂

)2

)
dn̂

dθT
. (10.33)

3. Age or stage averages. These include quantities such as the mean age or size in
the stable population or at equilibrium and the mean age at reproduction in the
stable population. Their perturbation analysis is presented in Sect. 10.5.4.

4. Properties of cycles. Nonlinear models may produce population cycles. Attention
may focus on the mean, the variance, or higher moments of the population vector
or of some scalar measure of density, over such cycles. The sensitivity of these
moments is explored in Sect. 10.7.

10.2.4 Reactivity and Transient Dynamics

The asymptotic stability of an equilibrium is determined by the eigenvalues of the
Jacobian matrix M in (10.9), evaluated at that equilibrium. In the short term, how-
ever, perturbations of the population away from the equilibrium can exhibit transient
dynamics that differ from their asymptotic behavior. In particular, perturbations of
stable equilibria, that are destined to eventually return to the equilibrium, may move
(much) farther away before that return. Neubert and Caswell (1997) introduced
three indices, each calculated from M, to quantify these transient responses.6

The reactivity of an asymptotically stable equilibrium is the maximum, over all
perturbations, of the rate at which the trajectory departs from the equilibrium. At any
time following a perturbation, there is a maximum (over all perturbations) deviation

6Because these indices are calculated from M, they are properly considered properties of the
system and its dynamics. Stott et al. (2011) and Stott (2016) have also considered indices of
transient response that reflect the particular initial condition rather than the inherent dynamics
of the system.
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from the equilibrium. This maximum is the amplification envelope. It gives an upper
bound on the extent of transient amplification as a function of time. The phrase “over
all perturbations” in these definitions signals that the transient amplification depends
on the direction of the perturbation. The perturbation that produces the maximum
amplification at any specified time is the optimal perturbation (Verdy and Caswell
2008).7

The transient dynamics of the perturbed system are described by the evolution of
the magnitude of z, as measured by the Euclidean norm ‖z‖ = √

zTz. The reactivity
is the maximum, over all perturbations, of the growth rate of ‖z‖, as t → 0, and is
given by

ν0 =
{

λ1 [H(M)] continuous time

log σ1 (M) discrete time
(10.34)

The matrix H(M) = (
M + MT

)
/2 is the Hermitian part of M and λ1 denotes

the eigenvalue with largest real part (Neubert and Caswell 1997). In discrete time,
reactivity is the log of the largest singular value of M, which we denote σ1(M).

The amplification envelope is

ρ(t) =
{

σ1
(
eMt

)
continuous

σ1
(
Mt

)
discrete

(10.35)

The optimal perturbation, normalized to length 1, is given by the right singular
vector corresponding to the singular value that defines ρ(t).

Verdy and Caswell (2008) presented a complete sensitivity analysis of reactivity,
the amplification envelope, and the optimal perturbation, in both continuous and
discrete time. Suppose the ξ be one of the indices, and suppose that the model
depends on a parameter vector θ . Changes in θ will change the equilibrium vector,
which will contribute to changes in the Jacobian matrix, so that the sensitivity of ξ

to θ is

dξ

dθT
=

(
dξ

dvec TM

)(
∂vec M

∂θT
+ ∂vec M

∂n̂T

dn̂

dθT

)
(10.36)

The sensitivity of ξ in (10.36) requires four pieces: the linearization M at the
equilibrium, which is given by (10.10), the sensitivity of the equilibrium n̂ to the
parameters, which is given by (10.16), the sensitivity of the Jacobian matrix M to
the parameters, and the sensitivity of the index ξ to the matrix M. The sensitivity

7It is now known that reactivity is a common property of many ecological systems, including
populations described by discrete matrix population models (Neubert and Caswell 1997; Chen
and Cohen 2001; Neubert et al. 2004; Marvier et al. 2004; Caswell and Neubert 2005; Verdy and
Caswell 2008).
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of ξ to M depends on which index, but the calculations involve perturbations of
eigenvalues, singular values, or the matrix exponential, and are given in Verdy and
Caswell (2008). The derivative of the linearization M is obtained by differentiating
all the terms in Eq. (10.10); the result, along with several examples, is given in Verdy
and Caswell (2008, eq. (37)).

10.2.5 Elasticity Analysis

The derivatives in the matrix dn̂/dθT give the results of small additive perturbations
of the parameters. It is often useful to study the elasticities, which give the
proportional result of small proportional perturbations,

εn̂

εθT
= D

(
n̂
)−1 dn̂

dθT
D (θ), (10.37)

The elasticity of any other (scalar- or vector-valued) dependent variable f (n̂) is
given by

εf (n̂)

εθT
= D

(
f (n̂)

)−1 df (n̂)

dθT
D (θ). (10.38)

As usual, elasticities can only be calculated when θ ≥ 0 and f (n̂) > 0.

Example 2: Metabolic population size in Tribolium Flour beetles of the genus
Tribolium have been the subject of a long series of experiments on nonlinear
population dynamics (reviewed by Cushing et al. 2003). Tribolium lives in stored
flour. In addition to feeding on the flour, adults and larvae cannibalize eggs, and
adults cannibalize pupae. These interactions are the source of nonlinearity in the
demography, and are captured in a three-stage (larvae, pupae, and adults) model.
The projection matrix is

A[θ, n] =
⎛

⎝
0 0 b exp(−celn1 − cean3)

1 − μl 0 0
0 exp(−cpan3) 1 − μa

⎞

⎠ (10.39)

where b is the clutch size, cea , cel , and cpa are rates of cannibalism (of eggs by
adults, eggs by larvae, and pupae by adults, respectively), and μl and μa are larval
and adult mortalities (the mortality of pupae, in these laboratory conditions, is
effectively zero). Parameter values from an experiment reported by Costantino et al.
(1997)

b = 6.598

cea = 1.155 × 10−2
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cel = 1.209 × 10−2

cpa = 4.7 × 10−3

μa = 7.729 × 10−3

μl = 2.055 × 10−1

produce a stable equilibrium

n̂ =
⎛

⎝
22.6
18.0

385.2

⎞

⎠ . (10.40)

The sensitivity of n̂ is calculated using (10.16). However, the damage caused
by Tribolium as a pest of stored grain products might well depend more on
metabolism than on numbers. Emekci et al. (2001) estimated the metabolic
rates of larvae, pupae, and adults as 9, 1, and 4.5 μl CO2 h−1, respectively.
We define the metabolic population size as Nm(t) = cTn(t) where cT =(

9 1 4.5
)
, and calculate the sensitivity and elasticity of N̂m using (10.37)

and (10.31).
Figure 10.1 shows the elasticity of n̂ and N̂m to each of the parameters. The

elasticities are diverse and perhaps counterintuitive. Increases in fecundity increase
the equilibrium density of all stages; increases in the cannibalism of eggs by adults
reduces the density of all stages. But increased cannibalism of pupae by adults
increases the density of larvae and pupae, as does an increase in the mortality of
adults.
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Fig. 10.1 Sensitivity analysis of equilibrium for the flour beetle Tribolium in Example 2. (a) The
elasticity of the equilibrium n̂ to the parameters (see Example 2 for definitions). (b) The elasticity
of the equilibrium population respiration rate N̂m to the parameters
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When the stages are weighted by their metabolic rate, the elasticity of N̂m to
fecundity is positive, but the elasticities to all the other parameters (cannibalism
rates and mortalities) are negative. The positive effects of cpa and μa on n̂ disappear
when the stages are weighted according to metabolism. �

10.2.6 Continuous-Time Models

We have focused on discrete-time models throughout this book. An analogous
perturbation analysis can be carried out on continuous-time models of the form

dn
dt

= A [n(t)] n(t) (10.41)

Verdy and Caswell (2008) present a parallel presentation of the continuous and
discrete models. The linearization at n̂ is, once again, given by (10.10). If all the
eigenvalues of M have negative real parts, the equilibrium is locally stable.

The sensitivity of the equilibrium n̂ is

dn̂

dθT
=

{
−A −

(
n̂T ⊗ Is

) ∂vec A

∂nT

}−1 (
n̂T ⊗ Is

) ∂vec A

∂θT
, (10.42)

with A and all its derivatives evaluated at the equilibrium n̂. Substituting (10.10) for
M gives

dn̂

dθT
= −M−1

(
n̂T ⊗ Is

) ∂vec A

∂θT
, (10.43)

and M is nonsingular unless 0 is an eigenvalue of M, which corresponds to a
bifurcation point of the equilibrium.

10.3 Environmental Feedback Models

Environmental (or economic) feedback models write the vital rates as functions of
some environmental variable, which in turn depends on population density. Feed-
back models may be static or dynamic. In static feedback models, the environment
depends only on current conditions, with no inherent dynamics of its own. In
dynamic feedback models, the environment can have dynamics as complicated as
those of the population (e.g., if the environmental variable was the abundance of a
prey species, affecting the dynamics of a predator species). The sensitivity analysis
of dynamic feedback models is given in Sect. 10.8.
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A static feedback model can be written

n(t + 1) = A[θ , n(t), g(t)] n(t) (10.44)

g(t) = g[θ , n(t)] (10.45)

where g(t) is a vector (of dimension q × 1) describing the ecological or economic
aspects of the environment on which the vital rates depend. As written here, the
model admits the possibility that the vital rates in A might depend directly on n as
well as on the environment.

At equilibrium

n̂ = A[θ, n̂, ĝ]n̂ (10.46)

ĝ = g[θ , n̂]. (10.47)

Differentiating these expressions gives

dn̂ = A(dn̂) + (dA)n̂ (10.48)

dĝ = ∂ ĝ

∂θT
dθ + ∂ ĝ

∂n
dn̂. (10.49)

Applying the vec operator to (10.48) and expanding dvec A gives

dn̂ =
(

n̂T ⊗ Is

) [∂vec A

∂θT
dθ + ∂vec A

∂gT
dĝ

]
+ Adn̂. (10.50)

Substituting (10.49) for dĝ and rearranging gives

dn̂ =
(

n̂T ⊗ Is

) [∂vec A

∂θT
+ ∂vec A

∂gT

∂ ĝ

∂θT

]
dθ

+
[

A +
(

n̂T ⊗ Is

) ∂vec A

∂gT

∂ ĝ

∂nT

]
dn̂. (10.51)

Solving for dn̂ and applying the identification theorem yields

dn̂

dθT
=

[
Is − A −

(
n̂T ⊗ Is

) ∂vec A

∂gT

∂ ĝ

∂nT

]−1

× (
n̂ ⊗ Is

) [∂vec A

∂θT
+ ∂vec A

∂gT

∂ ĝ

∂θT

]
. (10.52)
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In this expansion, A, g, and all derivatives are evaluated at (n̂, ĝ). A comparison
of (10.52) with (10.16) shows that including the feedback mechanism has simply
written dvec A/dnT and dvec A/dθT in terms of g using the chain rule.

The environmental variable g may be of interest in its own right (e.g., in the food
ratio model of Lee and Tuljapurkar (2008), in which it is a measure of well-being,
measured in terms of food per individual). The sensitivity of ĝ at equilibrium is

dĝ

dθT
= ∂ ĝ

∂θT
+ ∂ ĝ

∂n
dn̂

dθT
(10.53)

where dĝ/dθT is given by (10.49) and (dn̂/dθT) by (10.52).

10.4 Subsidized Populations and Competition for Space

A subsidized population is one in which new individuals are recruited from
elsewhere rather than (or in addition to) being generated by local reproduction.
Subsidy is important in many plant and animal populations, especially of benthic
marine invertebrates and fish. Many of these species produce planktonic larvae that
may disperse very long distances (Scheltema 1971) before they settle and become
sessile for the rest of their lives. Thus a significant part—maybe even all—of the
recruitment at any location is independent of local fertility (e.g., Almany et al.
2007). Subsidized models have been used to analyze conservation programs in
which captive-reared animals are released into a wild or re-established population
(Sarrazin and Legendre 2000). They have been applied to the demography of human
organizations; e.g., schools, businesses, learned societies (Gani 1963; Pollard 1968;
Bartholomew 1982). They are also the basis of cohort-component population
projections that include immigration.

In the simplest subsidized models, both local demography and recruitment are
density-independent. Alternatively, recruitment may depend on some resource (e.g.,
space) whose availability depends on the local population, or the local demography
after settlement may be density-dependent. All three cases can lead to equilibrium
populations.

10.4.1 Density-Independent Subsidized Populations

The model,

n(t + 1) = A[θ]n(t) + b[θ ], (10.54)
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includes a subsidy vector b giving the input of individuals to the population.8 The
parameters θ may affect A or b, or both. If the fertility appearing in A is below
replacement, so that λ < 1, then a stable equilibrium n̂ exists.9 This equilibrium
satisfies

n̂ = An̂ + b (10.55)

= (Is − A)−1 b. (10.56)

Differentiating (10.55) and applying the vec operator yields

dn̂ =
(

n̂T ⊗ Is

)
dvec A + A

(
dn̂

) + db (10.57)

Solving for dn̂ and applying the chain rule gives the sensitivity of the equilibrium,

dn̂

dθT
= (Is − A)−1

{(
n̂T ⊗ Is

) dvec A

dθT
+ db

dθT

}
. (10.58)

Example 3: The Australian Academy of Sciences Most human organizations are
subsidized; recruits (new students in a school, new employees in a company) come
from outside, not from local reproduction. In an early example of a subsidized
population model, Pollard (1968) analyzed the age structure of the Australian
Academy of Sciences, recruitment to which takes place by election.10 The Academy
had been founded in 1954, and between 1955 and 1963 had elected about 6 new
Fellows each year, with an age distribution (Pollard 1968, Table 2) given by

Age Percent

30–34 0.0

35–39 12.2

40–44 24.5

45–49 26.5

50–54 20.4

55–59 4.1

60–64 10.2

65–69 2.0

8The same model could describe harvest if b ≤ 0 (e.g., Hauser et al. 2006). This form of harvest
produces unstable equilibria, and is not considered further here.
9If λ > 1, the population grows exponentially and the subsidy eventually becomes negligible. The
equilibrium in this case is non-positive (and hence biologically irrelevant) and unstable. If λ = 1
then the population would remain constant in the absence of subsidy; any non-zero subsidy will
then lead to unbounded population growth.
10Pollard’s paper is remarkable for its treatment of both deterministic and stochastic models, but
here I consider only the deterministic case.
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Pollard interpolated this distribution to 1-year age classes, and combined it with a
1954 life table for Australian males (only one woman, the redoubtable geologist
Dorothy Hill in 1956, had been elected to the Academy prior to 1969) to construct a
model of the form (10.54). He calculated the equilibrium size and age composition
of the Academy. Here, I have used the male life table for Australia 1953–1955 in
Keyfitz and Flieger (1968, p. 558) to construct an age-classified matrix A with age-
specific probabilities of survival Pi on its subdiagonal and zeros elsewhere. Were
these vital rates and the age distribution of the subsidy vector to remain constant,
the Academy would reach an equilibrium size of N̂ = 149.5 with an age distribution
n̂ shown in Fig. 10.2a.

As parameters, consider the age-specific mortality rates μi = − log Pi , and

define the parameter vector θ = (
μ1 μ2 . . .

)T
. Equation (10.58) then gives the

sensitivity of the equilibrium population to changes in age-specific mortality. The

20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Age

E
qu

ili
br

iu
m

 n
um

be
r

(a)

20 30 40 50 60 70 80 90
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Age

S
en

si
tiv

ity
 o

f N
 to

 m
or

ta
lit

y

(b)

20 30 40 50 60 70 80 90
−0.2

−0.15

−0.1

−0.05

0

0.05

Age

S
en

si
tiv

ity
 o

f p
ro

po
rt

io
n 

>
70

 to
 m

or
ta

lit
y

(c)

Fig. 10.2 Analysis of the equilibrium of a linear subsidized model for the Australian Academy
of Science, based on Pollard (1968). (a) The equilibrium age structure of the Academy, assuming
recruitment of 6 members per year. (b) The sensitivity, to changes in age-specific mortality, of the
number of members. (c) The sensitivity, to changes in age-specific mortality, of the proportion of
members over 70 years old
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sensitivity of the total size of the Academy, N̂ = 1Tn̂, calculated using (10.31), is
shown in Fig. 10.2b. It shows that increases in mortality reduce N̂ (not surprising),
with the greatest effect coming from changes in mortality at ages 48–58.

Because learned societies are often concerned with their age distributions,
Pollard (1968) examined the proportion of members over age 70. At equilibrium,
this proportion is R̂ = 0.26. The sensitivity dR̂/dθT, calculated using (10.33),
is shown in Fig. 10.2c. Increases in mortality before age 48 would increase the
proportion of members over 70, while increases in mortality after age 48 would
decrease it.11 �

10.4.2 Linear Subsidized Models with Competition for Space

Recruitment in subsidized populations may be limited by the availability of a
resource. Roughgarden et al. (1985; see also Pascual and Caswell 1991) presented a
model for a population of sessile organisms, such as barnacles, in which recruitment
is limited by available space. Barnacles12 produce larvae that disperse in the
plankton for several weeks before settling onto a rock surface or other suitable
substrate, after which they no longer move.

Roughgarden’s model supposes that settlement is proportional to the free space
F(t). Thus the subsidy vector is

b(t) = (
φF(t) 0 · · · 0

)T
, (10.59)

where φ is the settlement rate per unit of free space, and is determined by the pool
of available larvae. The free space is the difference between the total area A and the
space occupied by the population,

F(t) = A − gTn(t) (10.60)

where g is a vector of stage-specific basal areas. Suppose that all locally-produced
larvae are advected away, so that the first row of A is zero. Then, substituting (10.60)
into (10.59) and rearranging gives

n(t + 1) = Bn(t) + (
φA 0 · · · 0

)T
(10.61)

11It is possible to calculate the average age of the Academy, and its sensitivity, using results to be
introduced in Sect. 10.5.4. The response is very similar to that of the proportion over age 70.
12The temptation to draw analogies between barnacles and the members of learned academies is
almost irresistible.
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where

B =

⎛

⎜⎜⎜⎝

−φg1 −φg2 · · · −φgs

a21 a22 · · · a2s

...
...

. . .
...

as1 as2 · · · ass

⎞

⎟⎟⎟⎠ . (10.62)

Although it includes competition for space, the model is linear. The equilibrium n̂
of (10.61) is stable if the spectral radius of B is less than one.13 The formula (10.58)
gives the sensitivity of this equilibrium to changes in the vital rates, the settlement
rate, or the individual growth rate. This model might apply to any situation where
the recruitment of new individuals depends on the availability of a resource (space,
jobs, housing) that can be monopolized by residents.

Example 4: Intertidal barnacles Gaines and Roughgarden (1985) modelled a
population of the barnacle Balanus glandula in central California. In one site
(denoted KLM in their paper), they reported age-independent survival with a
probability of Pi = 0.985 per week, i = 1, . . . , 52. The growth in basal area
of an individual barnacle could be described by gx = π(ρx)2, where x is
age in weeks and ρ is the radial growth rate (ρ = 0.0041 cm/wk). The mean
settlement rate was φ = 0.107. The matrix B contains survival probabilities
Pi on the subdiagonal, terms of the form −φgi in the first row, and zeros
elsewhere.

The equilibrium population n̂ has an exponential age distribution (Fig. 10.3a). It
is scaled here relative to total area, so A = 1. The equilibrium proportion of free
space is F̂ = 0.865.

To calculate sensitivities, let the parameters be age-specific survival probabilities,
so that θ = (

P1 · · · P52
)
. Some of the possible sensitivities are shown in Fig. 10.3.

Increasing survival at age j (ages j = 10, 20, 40 are shown) reduces the abundance
of ages younger than j and increases the abundance of ages older than j (Fig. 10.3b).
A perturbation to a parameter, call it ξ , that affects survival at all ages would have
the effect

dn̂
dξ

= dn̂

dθT

dθ

dξ
= dn̂

dθ
1 (10.63)

where 1 is a vector of ones. An increase in overall survival would reduce the
abundance of age classes 1–6 and increase the abundance of older age classes
(Fig. 10.3c).

13Because B contains negative elements, its dominant eigenvalue may be complex or negative,
leading to oscillatory approach to the equilibrium.
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The sensitivity of n̂ to the larval settlement rate φ is obtained from (10.58) by
setting dvec B/dφ = 0s2×1, and

db
dφ

= (
F̂ 0 · · · 0

)T

Not surprisingly, increases in φ increase n̂, with the largest effect on the young age
classes (Fig. 10.3d). The sensitivity of n̂ to the radial growth rate ρ is obtained by
writing

dvec B
dρ

= dvec B

dgT

dg
dρ

(10.64)

This sensitivity is negative, with the greatest impact on young age classes
(Fig. 10.3e).
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Fig. 10.3 Sensitivity analysis of a subsidized population of the intertidal barnacle Balanus
glandula. (a) The equilibrium population n̂ (scaled relative to a unit of area A = 1). (b) The
sensitivity of b̂on to a change in survival at ages j = 10, 20, 40. (c) The sensitivity of n̂ to changes
in overall survival at all ages. (d) The sensitivity of n̂ to the settlement rate φ per unit area. A
sensitivity analysis of a subsidized population of the intertidal barnacle Balanus glandula.
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Fig. 10.3 (continued) (e) The sensitivity of n̂ to the radial growth rate ρ. (f) The sensitivity of the
equilibrium free space F̂ to age-specific survival. (g) The sensitivity of F̂ to changes in overall
survival, settlement rate, and radial growth rate. Based on data of Gaines and Roughgarden (1985)

Finally, the sensitivity of the equilibrium free space is given by

dF̂

dθT
= dF̂

dnT

dn̂

dθT
= −gT dn̂

dθT
(10.65)

Increases in survival reduce the amount of free space at equilibrium; the effect
is largest for changes in survival of young age classes (Fig. 10.3f). Figure 10.3g
compares the effect on F̂ of changes in overall survival, settlement, and radial
growth rate. It is not surprising that increases in survival or settlement will reduce
free space, but perhaps surprising that increases in the radial growth rate actually
increase F̂ . �

10.4.3 Density-Dependent Subsidized Models

Once individuals arrive in the population, they may experience a variety of density-
dependent effects, that can be incorporated in a model

n(t + 1) = A [θ , n(t)] n(t) + b. (10.66)
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The sensitivity result (10.58) applies to this model by substituting

dvec A = ∂vec A

∂θT
dθ + ∂vec A

∂nT
dn̂ (10.67)

into (10.57) and solving for dn̂, to obtain

dn̂

dθT
=

(
Is − A −

(
n̂T ⊗ Is

) ∂vec A

∂nT

)−1 {(
n̂T ⊗ Is

) ∂vec A

∂θT
+ db

dθT

}
.

(10.68)
where A, b, and all derivatives of A and b are evaluated at n̂.

10.5 Stable Structure and Reproductive Value

The linear model n(t +1) = An(t) will, if A is primitive, converge to a stable age or
stage distribution. But while the dynamics of the population vector n(t) are linear,
the dynamics of the proportional population structure are nonlinear (Tuljapurkar
1997). We can take advantage of this to analyze the sensitivity of proportional
structures by writing them as equilibria of nonlinear maps.

10.5.1 Stable Structure

The sensitivity of the stable stage distribution has been approached as an eigenvector
perturbation problem (e.g., Caswell 1982, 2001; Kirkland and Neumann 1994), but
those calculations are complicated. Analysis of the equilibrium of the nonlinear
model (10.69) is much easier.

Let p denote the proportional stage structure vector (p ≥ 0, 1Tp = 1). The
dynamics of p(t) satisfy

p(t + 1) = Ap(t)

‖Ap(t)‖ . (10.69)

The stable stage distribution is an equilibrium of (10.69); it satisfies

p̂ = Ap̂

1TAp̂
(10.70)

where the 1-norm can be replaced by 1TAp̂ because p̂ is non-negative. Differentiat-
ing both sides gives
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dp̂ = 1
(
1TAp̂

)2

[
1TAp̂(dA)p̂ + 1TAp̂A(dp̂) − Ap̂1T(dA)p̂ − Ap̂1TA(dp̂)

]

(10.71)

Note that Ap̂ = λp̂ and 1TAp̂ = λ, where λ is the dominant eigenvalue of A.
Making these substitutions and applying the vec operator to both sides gives

λ dp̂ =
[ (

p̂T ⊗ Is

)
−
(

p̂T ⊗ p̂1T
)]

dvec A +
[
A − p̂1TA

]
dp̂ (10.72)

Solving for dp̂ and applying the chain rule gives

dp̂

dθT
=

(
λIs − A + p̂1TA

)−1 (
p̂T ⊗ Is − p̂T ⊗ p̂1T

) dvec A

dθT
(10.73)

Example 5: A human age distribution As an example, consider the age
distribution of the population of the United States in 1985 (data from Keyfitz
and Flieger 1990). These vital rates yield a declining population (λ = 0.975) and an
age distribution skewed towards older ages (Fig. 10.4). Applying (10.73) yields the
sensitivity of p̂ to age-specific survival probabilities Pi and fertilities Fi , where age
classes i = 1, . . . , 18 correspond to ages 0–5, . . ., 85–90. The overall patterns are
familiar from previous sensitivity analyses of stable age distributions (e.g., Caswell
2001, Figure 9.22). Increasing survival probability at a given age increases the
relative abundance of the next several age classes, at the expense of younger and
older age classes. Increasing fertility at a given age increases the abundance of
young age classes at the expense of older age classes. �

10.5.2 Reproductive Value

A similar approach gives the sensitivity of the reproductive value vector v, given
by the left eigenvector of A corresponding to λ. Reproductive value is customarily
scaled so that v1 = 1. Scaled in this way, v satisfies

v̂T = v̂TA

v̂TAe1
(10.74)

where e1 is a vector with 1 in the first entry and zeros elsewhere. Differentiating
both sides gives

dv̂T = 1
(
v̂TAe1

)2

[
v̂TAe1(dv̂T)A+v̂TAe1v̂T(dA)

−(dv̂T)Ae1v̂TA−v̂T(dA)e1v̂TA
]

(10.75)
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Fig. 10.4 Stable age distribution and sensitivity of stable age distribution to age-specific survival
and fertility. (a) The stable age distribution. (b) The sensitivity of the stable age distribution to
changes in survival (P5) in age class 5. (c) Sensitivity of the stable age distribution to changes in
fertility (F5) in age class 5. Based on life table data for the United States in 1985 (Keyfitz and
Flieger 1990)

But v̂TA = λv̂T and v̂TAe1 = λ. Making these substitutions and applying the vec
operator (remembering that vec vT = v) gives

λdv =
[ (

Is ⊗ v̂T
)

−
(

v̂eT
1 ⊗ v̂T

)]
dvec A +

(
AT − v̂eT

1 AT
)

dv. (10.76)

Solving for dv and using the chain rule gives

dv̂

dθT
=

(
λIs − AT + v̂eT

1 AT
)−1 [ (

Is ⊗ v̂T
)

−
(

v̂eT
1 ⊗ v̂T

)] dvec A

dθT
(10.77)

In stable population theory, in the calculation of second derivatives of population
growth rate (Shyu and Caswell 2014), and in the analysis of multitype branching
processes for demographic stochasticity (Caswell and Vindenes 2018), it is neces-
sary to use the sensitivity of v subject to the scaling

vTw = 1. (10.78)



10.5 Stable Structure and Reproductive Value 223

The resulting derivative is

dv

dθT
=

(
λI − AT + λvwT

)−1

×
([(

I − vwT
)

⊗ vT
]

− λ
(

v ⊗ vT
) dw

dvec TA

)
dvec A

dθT
. (10.79)

(see Caswell and Vindenes 2018 for derivation).

10.5.3 Sensitivity of the Dependency Ratio

The dependency ratio characterizes an age distribution by the relative abundance
of two groups, one assumed to be dependent and the other productive (Keyfitz and
Flieger 1990, p. 32). It is often assumed that persons younger than 15 or older than
65 are dependent on productive individuals between 15 and 65. The dependency
ratio is defined as

D = aTp̂

bTp̂
(10.80)

where a is a vector with ones for the dependent ages and zeros otherwise, and b is
its complement. Applying Eq. (10.33) for the sensitivity of a ratio gives

dD

dθT
=

(
bTp̂aT − aTp̂bT

(
bTp̂

)2

)
dp̂

dθT
. (10.81)

where dp̂/θT is given by (10.73).
This result can be generalized in several ways. The analysis may be performed

separately for the dependent young and the dependent old, by suitable modification
of a and b. These two components are likely to be influenced by different
demographic factors and can respond to perturbations in opposite directions. The
0-1 vectors a and b may be replaced by vectors of weights; e.g., age-specific
consumption and age-specific income (Fürnkranz-Prskawetz and Sambt 2014).
For an example applied to a population projection for Spain, see Caswell and
Sanchez Gassen (2015). The analysis also applies to stage-classified models,
provided that dependent and independent stages can be identified. It also applies
to nonlinear models, with the stable stage distribution p̂ replaced by the equilibrium
population n̂ in (10.81). It can be extended to transient dynamics, where the age
distribution, and thus the dependency ratio, varies over time (Caswell 2007), as
is the case in population projections (Caswell and Sanchez Gassen 2015). Finally,
the sensitivity (10.81) makes it possible to carry out LTRE analyses to decompose
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differences in dependency ratios into components due to differences in each of the
vital rates (see Chaps. 2, 8, and 9).

Example 5: (cont’d) Dependency ratios in human populations The United
States in 1985 had a set of vital rates leading to a low growth rate (λ = 0.975), and a
relatively low dependency ratio, dominated by the old. Kuwait in 1970, in contrast,
had a high growth rate (λ = 1.210) and one of the highest dependency ratios listed
in the compilation of Keyfitz and Flieger (1990), dominated by the young:

U.S.A. 1985 Kuwait 1970
D 0.668 1.025
Dy 0.260 0.956
Do 0.406 0.069

where Dy and Do are the dependency ratios calculated for the young and old
separately. The sensitivities of D, Dy, and Do to changes in age-specific survival
and fertility are shown in Fig. 10.5. The responses of D to changes in the vital rates
differ between the two countries. In the U.S., increases in fertility would reduce
D. In Kuwait, increases in fertility (especially at young ages) would increase D.
In the U.S., increases in survival14 before age 30 reduce D; increases after age 30
increase D. In Kuwait, increases in survival, except at very young and very old ages,
reduce D.

Breaking D into its young and old components helps to explain these differences.
In both countries, there is a crossover in survival effects. Increases in survival at
early ages increase Dy and reduce Do. At later ages, increases in survival reduce
Dy and increase Do. Increases in fertility increase Dy and reduce Do. In the U.S.
population, both these effects are large, with the negative effect on Do larger than
the positive effect on Dy. In the Kuwaiti population, the positive effect on Dy is
much greater than the negative effect on Do. �

10.5.4 Sensitivity of Mean Age and Related Quantities

From an age distribution p̂, it is possible to compute the mean age of any age-specific
property (e.g., production of children, collection of retirement benefits, exposure to
toxic chemicals); see Chu (1998, p. 26) for general discussions. The most familiar
of these is the mean age of reproduction, which is one measure of generation time
(Coale 1972).

Let f be a vector of age-specific per-capita fertilities. The age distribution of
offspring production is then f ◦ p̂, where ◦ is the Hadamard, or element-by-element
product. The mean age of the mothers of these offspring is obtained by normalizing
f ◦ p̂ to sum to 1 and taking the mean over the resulting distribution,

14Or, equivalently, reductions in mortality. For these parameter values, the sensitivity to mortality
is approximately the sensitivity to survival with the opposite sign.
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Fig. 10.5 Sensitivity of the dependency ratio D, and of its old and young components, to age-
specific survival and fertility. Left: calculated from the stable age distribution of the United States in
1985. Right: calculated from the stable age distribution of Kuwait in 1970. (a) and (b): Sensitivity
of D to survival (Pi ) and fertility (Fi ). (c) and (d): Sensitivity of the components of D to survival.
(e) and (f): Sensitivity of the components of D to fertility. Life table data from Keyfitz and Flieger
(1990)
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āf = cT
(
f ◦ p̂

)

1T
(
f ◦ p̂

) (10.82)

where

cT = (
1 2 · · · s

)
,

with s as the last age class.
Now differentiate āf, following the now-familiar rules for ratios. The differential

of the Hadamard product of two vectors is d(a ◦ b) = D (a)db + D (b)da. The
result is

dāf

dθT
=

(
1T

(
f ◦ p̂

)
cT − cT

(
f ◦ p̂

)
1T

(
fTp̂

)2

)(
D (f)

dp̂

dθT
+ D (p̂)

df

dθT

)
(10.83)

where dp̂/dθT is given by (10.73).
This result can be generalized in several ways. Setting f = 1 makes the age-

specific property that of simply being alive, and ā1 = cT1 is then the mean age of
the stable population, the sensitivity of which is

dā

dθT
= cT dp̂

dθT
(10.84)

The calculations can also be applied to the equilibrium population in a nonlinear
model by substituting n̂ for p̂. They apply directly to stage-classified models with
stages defined on an interval scale (e.g., size classes), in which case they give, e.g.,
the mean size at reproduction. If the stages are not evenly spaced, then c would be
replaced by

cT = (
x1 x2 · · · xs

)
(10.85)

where xi is the value associated with stage i.

Example 5: (cont’d) Mean age of reproduction The mean age of reproduction in
the stable age distribution of the United States in 1985 was āf = 24.02 years (using
the mid-points of the 5-year age intervals as the measure of age). The sensitivities of
āf to changes in age-specific survival and fertility are shown in Fig. 10.6. Increases
in survival prior to age 15 reduce āf. Increases in survival after age 45 have almost
no effect on āf, because fertility is essentially zero after this age. Between age 15
and age 45, increases in survival increase the mean age of reproduction.

Increases in fertility reduce āf if they happen before age 25 and increase āf if they
happen after age 25. These sensitivities are quite large, although this is somewhat
irrelevant since the largest sensitivities are for ages at which fertility is zero and
unlikely to be modified. �
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Fig. 10.6 Sensitivity of the mean age at reproduction to changes in age-specific survival and
fertility, for the life table of the population of the United States, 1985. (Data from Keyfitz and
Flieger 1990)

10.5.5 Sensitivity of Variance in Age

We can also calculate the sensitivity of the higher moments. For example, the
variance in the age at reproduction is

Vf = a2
f − (āf)

2 . (10.86)

This variance might, for example, be useful as a measure of the extent of iteroparity.
The sensitivity of Vf to changes in parameters is obtained by writing the first
term as

a2
f = (c ◦ c)T

(
f ◦ p̂

)

1T
(
f ◦ p̂

) (10.87)

and then differentiating

dVf = d
(
a2

f

)
− 2āf (dāf) . (10.88)

The final result is

dVf

dθT
=

(
1T(f ◦ p̂)(c ◦ c)T − (c ◦ c)T

(
f ◦ p̂

)
1T

(
fTp̂

)2

)

×
(
D (f)

dp̂

dθT
+ D (p̂)

df

dθT

)
− 2āf

dāf

dθT
. (10.89)

where dp̂/dθT is given by (10.73) and dāf/dθT is given by (10.83).
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10.6 Frequency-Dependent Two-Sex Models

In sexually reproducing species, a particular sort of nonlinearity arises from the
dependence of reproduction on the relative abundance of males and females. This
dependence is captured in a marriage function or mating rule (e.g., McFarland 1972;
Pollak 1987, 1990) When the vital rates depend only on the relative, rather than the
absolute, abundance of males and females, then A[θ , n] is homogeneous of degree
0 in n; i.e.,

A[θ , cn] = A[θ, n] for any c �= 0. (10.90)

Such models have been called frequency-dependent (Caswell and Weeks 1986;
Caswell 2001) to distinguish them from density-dependent nonlinear models that
do not have this homogeneity property.

Because of the homogeneity of A[θ, n], frequency-dependent models do not
converge to an equilibrium density n̂. Instead, there may exist15 a stable equilibrium
proportional structure p̂ to which the population will converge, at which point it
grows exponentially at a rate λ given by the dominant eigenvalue of A[θ , p̂]. Thus
sensitivity analysis of two-sex models must include both the population structure
and the population growth rate.

Note that matrix models that include Mendelian genetics are also homogeneous
of degree zero, but it is confusing to call them frequency-dependent, because doing
so creates confusion with the genetic phenomenon of frequency-dependent fitness,
which is a different thing altogether (de Vries and Caswell 2018).

10.6.1 Sensitivity of the Population Structure

The equilibrium proportional population structure p̂ satisfies

p̂ = A[θ, p̂] p̂
‖A[θ , p̂] p̂‖ (10.91)

where p̂i ≥ 0 and 1Tp̂ = 1. Differentiating (10.91) gives

dp̂ =
1TAp̂

[
(dA)p̂ + A(dp̂)

]
− Ap̂

[
1T(dA)p̂ + 1TA(dp̂)

]

(
1TAp̂

)2 . (10.92)

15A sufficient, but not necessary, condition for the existence of an equilibrium is that A cannot
map a nonzero vector n directly to zero; necessary conditions are more difficult (Nussbaum 1988,
1989). See also Martcheva (1999).
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Making the substitutions Ap̂ = λp̂ and 1TAp̂ = λ and rearranging gives

λdp̂ = (dA)p̂ + A(dp̂) − p̂1T(dA)p̂ − p̂1TA(dp̂). (10.93)

Applying the vec operator to both sides, expanding dvec A, invoking the chain rule,
and solving for dp̂/dθT gives

dp̂

dθT
=

[
λIs − A + p̂1TA −

[
p̂T ⊗

(
Is − p̂1T

)] ∂vec A

∂pT

]−1

×
[

p̂T ⊗
(

Is − p̂1T
)] ∂vec A

∂θT
(10.94)

where A and all derivatives are evaluated at p̂. Note that (10.94) differs from the
expression (10.73) for the stable stage distribution in the linear model only in the
term involving ∂vec A/∂pT, which of course is zero in the linear model.

10.6.2 Population Growth Rate in Two-Sex Models

Because a population with the equilibrium structure grows exponentially, I once
suggested treating A[θ, p̂] as a constant matrix and applying eigenvalue sensitivity
analysis to it, in order to examine life history evolution in 2-sex models (Caswell
2001, p. 577). This was incorrect, because it ignored the effect of parameter changes
on A through their effects on the equilibrium p̂. A correct calculation obtains the
sensitivity of λ including effects of parameters on both A and p̂.

Note that p̂ is a right eigenvector of A[θ, p̂] corresponding to λ. Let v be the
corresponding left eigenvector, where vTA[θ , p̂] = λvT and vTp̂ = 1. Then

dλ = vT(dA)p̂ (10.95)

Caswell (1978). Apply the vec operator and Roth’s theorem to get

dλ =
(

p̂T ⊗ vT
)

dvec A. (10.96)

Expanding dvec A gives

dλ

dθT
=

(
p̂T ⊗ vT

) [∂vec A

∂θT
+ ∂vec A

∂p̂T

dp̂

dθT

]
(10.97)

where A, v, and the derivatives of A are all evaluated at the equilibrium p̂, and
dp̂/dθT is given by (10.94).

Note that λ is the invasion exponent for this model, and thus the sensitivity of
λ to a parameter gives the selection gradient on that parameter. Tuljapurkar et al.
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Fig. 10.7 Life cycle graph
for the 2-sex model for
passerine birds (Legendre
et al. 1999). Stages 1 and 2
are juvenile and adult
females; stages 3 and 4 are
juvenile and adult males.
Parameters are stage specific
survival probabilities σi ,
stage-specific fertilities Fi ,
and primary sex ratio
(proportion female) ρ
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(2007) used this fact to explore the effect of male fertility patterns on the evolution
of aging; the sensitivity (10.97) could be used to generalize such results. Recent
work by Shyu has coupled these calculations to the methods of adaptive dynamics
to examine the evolution of sex ratios (Shyu and Caswell 2016a,b).

Although two-sex models are an important case of homogeneous models, they
are not the only case. Keyfitz’s (1972) interpretation of the Easterlin hypothesis
describes fertility as dependent on only the relative, not absolute, size of a cohort. A
model based on this premise would be frequency-dependent (homogeneous) and
would lead to an exponentially growing population to which (10.97) would be
applicable.

Example 6: A two-sex model for passerine birds Legendre et al. (1999) used a
frequency-dependent two-sex model to study the introductions of passerine birds
to New Zealand. The life cycle includes two age classes (first year and older) for
females and for males. The life cycle graph is shown in Fig. 10.7. The numbers of
females and males are Nf = n1 + n2 and Nm = n3 + n4, respectively.

Because passerines are typically monogamous within a breeding season, and
assuming that mating is indiscriminate with respect to age, Legendre et al. (1999)
used as a mating function

B(n) = min
(
Nf ,Nm

)
, (10.98)

giving the number of matings as a function of the number of males and females. The
per-capita fertility of a female of age-class i is the number of matings divided by the
number of females and multiplied by the number of surviving offspring per mating.

F(n) = σ0φiB(n)

Nf

(10.99)
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=
{

σ0φi
Nm

Nf
Nf ≥ Nm

σ0φ Nf < Nm

(10.100)

where σ0 is the probability of survival from fledging to age 1 and φi is the clutch size
of age class i. When males are the scarcer sex (the avian equivalent of a marriage
squeeze) fertility is proportional to the ratio of males to females. When females are
the scarcer sex, all females are mated and fertility depends only on fecundity and
neonatal survival.

Births are allocated to females and males according to a primary sex ratio ρ

which gives the proportion female. The resulting two-sex projection matrix is

A[n] =

⎛

⎜⎜⎝

ρF1(n) ρF2(n) 0 0
σ1 σ2 0 0

(1 − ρ)F1(n) (1 − ρ)F2(n) 0 0
0 0 σ3 σ4

⎞

⎟⎟⎠ (10.101)

Legendre et al. (1999) assigned typical values for passerine birds of σ0 = 0.2,
φi = 7, and ρ = 0.5. They set male and female survival equal (σ1 = σ3 = 0.35,
σ2 = σ4 = 0.4), but this is a pathological special case in this model, so instead I
consider two cases, one in which male mortality is higher than female mortality, and
one in which the difference is reversed.16 The survival probabilities and equilibrium
population structures are

σ =

⎛

⎜⎜⎝

0.35
0.5
0.25
0.4

⎞

⎟⎟⎠ p̂ =

⎛

⎜⎜⎝

0.320
0.226
0.320
0.134

⎞

⎟⎟⎠ (10.102)

σ =

⎛

⎜⎜⎝

0.25
0.4
0.35
0.5

⎞

⎟⎟⎠ p̂ =

⎛

⎜⎜⎝

0.320
0.134
0.320
0.226

⎞

⎟⎟⎠ (10.103)

The elasticities of p̂ to each of the parameters, calculated from (10.94), are
shown in Table 10.1. Regardless of which sex is scarcer, increasing neonatal survival
increases the proportion of young, at the expense of the proportion of adults, in both
sexes. Increasing the sex ratio ρ increases the proportion of females at the expense
of males. Increasing female survival (σ1 or σ2) increases the proportion of adult
females at the expense of all other stages; increasing male survival has the opposite

16In a survey of the literature, adult mortality for female passerines exceeded that for males in 21
out of 28 cases (Promislow et al. 1992). Birds differ from mammals in this respect.
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Table 10.1 Elasticity of p̂ to parameters in two-sex model for passerine birds, under two mortality
scenarios. When male mortality is greater than female mortality, males are rarer than females and
fertility at equilibrium is limited by the mating function. When male mortality is less than female
mortality, females are rare and fertility is not affected by the mating function

Males rare

Stage σ0 ρ σ1 σ2 σ3 σ4 φ1 φ2

p̂1 0.455 0.453 −0.226 −0.229 0.000 0.000 0.266 0.189

p̂2 −0.890 1.799 0.774 0.783 −0.398 −0.268 −0.521 −0.369

p̂3 0.455 −1.547 −0.226 −0.229 0.000 0.000 0.266 0.189

p̂4 −0.664 −0.428 −0.226 −0.229 0.669 0.450 −0.389 −0.275

Females rare

Stage σ0 ρ σ1 σ2 σ3 σ4 φ1 φ2

p̂1 0.455 1.547 0.000 0.000 −0.226 −0.229 0.320 0.135

p̂2 −0.664 0.428 0.669 0.450 −0.226 −0.229 −0.467 −0.197

p̂3 0.455 −0.453 0.000 0.000 −0.226 −0.229 0.320 0.135

p̂4 −0.890 −1.799 −0.398 −0.268 0.774 0.783 −0.627 −0.264

effect. However, when females are rare, increasing female survival has no effect on
the proportion of juveniles. When males are rare, increases in male survival have no
effect on the proportion of juveniles. Increasing fecundity increases the proportion
of juveniles, at the expense of adults, in both sexes and for either mortality
pattern.

The elasticity of the population growth rate λ at equilibrium is shown in
Table 10.2, and is compared to the naive calculation that treats A[θ , p̂] as a fixed
matrix. When males are rare, so that fertility is limited by the mating function, the
naive calculations are dramatically wrong. When calculated correctly, increases in
the primary sex ratio ρ reduce λ, because they reduce the availability of males.
Increases in female survival have no effect on λ, because the extra females produced
have no opportunity to reproduce. Increases in male survival increase λ because they
increase female fertility. In each case, the naive calculation leads, incorrectly, to the
opposite conclusion.

When females are rare (which renders the model linear and female-dominant at
equilibrium), the correct and the naive calculations agree. This is a consequence
of using the minimum as a birth function. Some preliminary calculations using the
harmonic mean birth function,

B(n) = 2Nf Nm

Nf + Nm

, (10.104)

in which both males and females influence fertility at all population structures,
suggest that the naive elasticity calculations are always incorrect.

Sometimes the correct calculations lead to apparent paradoxes. Jenouvrier et al.
(2010) developed a two-sex model for the Emperor penguin. It was a periodic model,
with phases defined by events within the breeding cycle (cf. Chap. 8), and included a
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Table 10.2 The elasticity of
λ to parameters in the
two-sex model for passerine
birds, under two mortality
scenarios. The correct
calculation is based
on (10.97). The naive
calculation incorrectly treats
A[p̂, θ ] as a fixed matrix,
ignoring the effect of
parameters on the equilibrium
population structure p̂

Males rare Females rare

Correct Naive Correct Naive

σ0 0.669 0.545 0.669 0.669

ρ −0.669 0.545 0.669 0.669

σ1 0 0.226 0.198 0.198

σ2 0 0.229 0.133 0.133

σ3 0.198 0 0 0

σ4 0.133 0 0 0

φ1 0.392 0.319 0.471 0.471

φ2 0.277 0.226 0.198 0.198

mating function applied to adults at the breeding colony. Because Emperor penguins
breed, and share parental care, in the midst of the Antarctic winter,17 they must be
strictly monogamous, and hence Jenouvrier used the minimum as a mating function.

Analysis of the equilibrium growth rate revealed that the sensitivity of λ to adult
female survival was negative. This is impossible in a linear model, but happens in
this frequency-dependent model because increasing adult female survival increases
the proportion of females (already greater than the proportion of males) and thus
decreases mating probability. The negative effect of reduced mating overwhelms the
positive effect of improved adult survival; the net result is a reduction in population
growth rate; see Jenouvrier et al. (2010) for details. �

10.6.3 The Birth Matrix-Mating Rule Model

Pollak (1987, 1990) introduced a powerful conceptual approach to two-sex models,
which he called the birth matrix-mating rule (BMMR) model. This model separates
the processes of mating, birth, and life cycle stage transitions, and treats them as
a periodic process. When generalized to stage-structured models, it contains three
main components:

1. A birth matrix whose entries give the expected number of male and female
offspring produced by a mating of a male of age (or stage) i and a female of
age j .

2. A mating rule function that gives the number of matings uij between males of
age (or stage) i and females of age j .

3. A set of sex-specific mortality schedules, which project surviving individuals to
the next age class, or, in our generalization, include other stage-specific life cycle
transitions.

17Dramatically portrayed in the movie, March of the Penguins.
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A matrix version of the BMMR has recently been developed, using a novel
continuous-time formulation of periodic matrix models (Shyu and Caswell 2018).
The mating, birth, and transition processes are described, respectively, by matrices
U, B, and T. To explore the theoretical consequences of two-sex reproduction, the
matrices are parameterized in terms of continuous-time rates rather than discrete-
time probabilities. In continuous time, the periodic matrix product that would
describe such a process in discrete time converges to a sum of the rate matrices.
The dynamics of the population are given by

dn(t)

dt
= A

[
n(t)

]
n(t) (10.105)

where

A
[
n(t)

] = 1

3

(
T + B + U[n(t)]

)
n(t) (10.106)

That is, the projection matrix is the mean of the three component matrices, and is
nonlinear because of the dependence of union formation (the matrix U) on n. Shyu
and Caswell (2016a,b, 2018) explore this model in the context of sex ratio evolution
and of sex-biased harvesting, deriving the sensitivity of the population growth rate
as a measure of the selection gradient.

10.7 Sensitivity of Population Cycles

Equilibria are not the only attractors relevant in nature (e.g., Clutton-Brock et al.
1997) or the laboratory (Cushing et al. 2003). Cycles, invariant loops, and strange
attractors also occur, and are sensitive to changes in parameters. This section
examines the sensitivity of cycles.

10.7.1 Sensitivity of the Population Vector

A k-cycle is a sequence of population vectors n̂1, . . . , n̂k , satisfying

n̂i+1 = A
[
θ, n̂i

]
n̂i i = 1, . . . , k − 1

n̂1 = A
[
θ, n̂k

]
n̂k. (10.107)

A change in parameters will modify each point in the cycle; the first goal of
perturbation analysis is thus to find the sensitivities
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dn̂1

dθT
, . . . ,

dn̂k

dθT
. (10.108)

The following is the derivation of these sensitivities for a 2-cycle. The extension to
cycles of arbitrary length will follow. To simplify notation, define

Ai ≡ A
[
θ, n̂i

]
. (10.109)

The 2-cycle satisfies

n̂1 = A2n̂2 (10.110)

n̂2 = A1n̂1 (10.111)

Differentiating both equations, applying the vec operator, and expanding
dvec Ai/dθT yields a system of equations

dn̂1

dθT
=

(
n̂T

2 ⊗ Is

) ∂vec A2

∂θT
+
(

n̂T
2 ⊗ Is

) ∂vec A2

∂nT
2

(
dn̂2

dθT

)

+A2

(
dn̂2

dθT

)
(10.112)

dn̂2

dθT
=

(
n̂T

1 ⊗ Is

) ∂vec A1

∂θT
+
(

n̂T
1 ⊗ Is

) ∂vec A1

∂nT
1

(
dn̂1

dθT

)

+A1

(
dn̂1

dθT

)
(10.113)

This system can be written in block matrix form. Define Hi ≡ n̂T
i ⊗ Is . Then

d

dθT

(
n̂1

n̂2

)
=

(
0 H2

H1 0

)
⎛

⎜⎜⎝

∂vec A1

∂θT

∂vec A2

∂θT

⎞

⎟⎟⎠

+

⎡

⎢⎢⎣

(
0 H2

H1 0

)
⎛

⎜⎜⎝

∂vec A1

∂nT
1

0

0
∂vec A2

∂nT
2

⎞

⎟⎟⎠ +
(

0 A2

A1 0

)
⎤

⎥⎥⎦

× d

dθT

(
n̂1

n̂2

)
(10.114)
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Solving for the sensitivities gives

d

dθT

(
n̂1

n̂2

)
=

⎡

⎢⎢⎣I2s −
(

0 H2

H1 0

)
⎛

⎜⎜⎝

∂vec A1

∂nT
1

0

0
∂vec A2

∂nT
2

⎞

⎟⎟⎠

−
(

0 A2

A1 0

)
⎤

⎥⎥⎦

−1
(

0 H2

H1 0

)
⎛

⎜⎜⎝

∂vec A1

∂θT

∂vec A2

∂θT

⎞

⎟⎟⎠ (10.115)

where the matrices Ai and the derivatives of Ai are all evaluated at n̂i . The analogy
with (10.16) is apparent.

This calculation can be extended to cycles of any period, in terms of block
matrices as in (10.115). The pattern of the block matrices is clear from a 3-cycle.
Define the following matrices:

N =
⎛

⎝
n̂1

n̂2

n̂3

⎞

⎠ (10.116)

A =
⎛

⎝
0 0 A3

A1 0 0
0 A2 0

⎞

⎠ (10.117)

H =
⎛

⎝
0 0 H3

H1 0 0
0 H2 0

⎞

⎠ (10.118)

C =

⎛

⎜⎜⎜⎜⎜⎜⎝

∂vec A1

∂nT
1

0 0

0
∂vec A2

∂nT
2

0

0 0
∂vec A3

∂nT
3

⎞

⎟⎟⎟⎟⎟⎟⎠
(10.119)
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D =

⎛

⎜⎜⎜⎜⎜⎜⎝

∂vec A1

∂θT

∂vec A1

∂θT

∂vec A1

∂θT

⎞

⎟⎟⎟⎟⎟⎟⎠
. (10.120)

In terms of these matrices, the sensitivity of each point in the 3-cycle is given by

dN

dθT
= [I3s − A − HC]−1

HD. (10.121)

10.7.2 Sensitivity of Weighted Densities and Time Averages

The matrix dN/dθT contains the sensitivity of every stage to every parameter at
every point in the cycle. This potential overload of information can be simplified
by calculating the sensitivities of weighted densities and/or time averages over the
cycle. To do this, it is convenient to write the points in the cycle as an array (of
dimension s × k)

G = (
n̂1 n̂2 · · · n̂k

)
. (10.122)

The block vector N is

N = vec G. (10.123)

Weighted densities. Let c be a vector of weights, and let N̂i = cTn̂i be the
(scalar) weighted density at the ith point on the cycle. Then write

n̂ =
⎛

⎜⎝
N̂1
...

N̂k

⎞

⎟⎠ (10.124)

The vector n̂ can be calculated from N as

n̂ = (
cTn̂1 · · · cTn̂k

)T

= vec
(

cTG
)

=
(

Ik ⊗ cT
)

vec G
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=
(

Ik ⊗ cT
)
N dimension = k × 1. (10.125)

Time-averaged population vector. Let b be a probability vector (bi ≥ 0, 1Tb =
1) and define the time-averaged population vector as

n̄ =
k∑

i=1

bi n̂i . (10.126)

Then

n̄ = Gb

=
(

bT ⊗ Is

)
vec G

=
(

bT ⊗ Is

)
N dimension = s × 1 (10.127)

Time-averaged weighted density. Taking the time average of the N̂i gives

N̄ =
∑

i

bicTn̂i

= cTGb

=
(

bT ⊗ cT
)
N (10.128)

Thus the sensitivities of the weighted densities, the time-averaged popula-
tion, and the time-averaged weighted density are obtained by differentiat-
ing (10.125), (10.127), and (10.128) as

dn̂

dθT
=

(
Ik ⊗ cT

) dN

dθT
(10.129)

dn̄

dθT
=

(
bT ⊗ Is

) dN

dθT
(10.130)

dN̄

dθT
=

(
bT ⊗ cT

) dN

dθT
(10.131)

where dN/θT is given by (10.121).

Example 7 A 2-cycle in the Tribolium model A series of experiments on Tri-
bolium reported by Dennis et al. (1995) produced stable 2-cycles by experimentally
manipulating the adult mortality μa . Using the model in Example 2 and the
estimated parameters
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b = 11.677

cea = 1.100 × 10−2

cel = 9.3 × 10−3

cpa = 1.78 × 10−2

μa = 1.108 × 10−1

μl = 5.129 × 10−1

(Dennis et al. 1995, Table 1) leads to a 2-cycle

n̂1 =
⎛

⎝
325.3

8.9
118.5

⎞

⎠ n̂2 =
⎛

⎝
18.2

158.4
106.4

⎞

⎠ , (10.132)

in which the population oscillates between a state dominated by larvae and adults
and a state dominated by pupae and adults.

As an example of the rich sensitivity analyses possible for even such a simple
model, consider the elasticity of the population vector n̂i , of the total population
N̂i = 1Tn̂i , of the total population respiration R̂i = cTn̂i (with c the vector of stage-
specific respiration rates from Example 2), and of the time averages n̄, N̄ , and R̄.
The results are collected in Fig. 10.8.

First, the elasticities of the n̂i differ from stage to stage and from one point on
the cycle to another (Fig. 10.8a). Increases in fecundity, for example, increase the
density of larvae and reduce the density of pupae in n̂1, but have the opposite effects
in n̂2. The elasticities to b, cea , and cel are much larger than those to the other
parameters (cf. the elasticities of the equilibrium n̂ in Fig. 10.1).

The elasticities of total population are similar at the two points in the cycle
(Fig. 10.8b), except that larval mortality μl has a large negative effect on N̂2, but
only a small effect on N̂1. The elasticities of total respiration R̂i , however, are
different at the two points in the cycle (Fig. 10.8c).

The elasticities of the time-averaged population vector n̄ (Fig. 10.8d) are similar
to those of the equilibrium vector in Fig. 10.1 (although they need not be). This
pattern is not predictable from the patterns of the elasticities of the population
vectors n̂1 and n̂2 (Fig. 10.8a).

Finally, the elasticities of the time averages, N̄ and R̄, of the weighted densities
are similar to each other and to the elasticities of the time-averaged population n̄.

The sensitivity analysis of cycles thus depends very much on the dependent
variables of interest. The matrix dN/dθT (Fig. 10.8a) contains 36 pieces of infor-
mation: the effects of 6 parameters on 3 stages at 2 points in the cycle. A focus on
weighted density reduces this to 12 (Fig. 10.8b,c), but the results may depend very
much on the particular weighting vector chosen. A focus on time averages reduces
the information from 36 to 18 numbers (Fig. 10.8d), and the response of the time-
averaged weighted densities finally are described by just 6 numbers. The good news
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Fig. 10.8 Analysis of a 2-cycle in the Tribolium model. (a) Elasticity of the density of each stage,
with respect to each parameter, at n̂1 and n̂2. (b) Elasticity of the total population N̂ at each point
in the cycle. (c) Elasticity of the total respiration R̂ at each point in the cycle. (d) Elasticity of
the time-averaged population n̄. (e) Elasticity of the time-averaged total population N̄ and the
time-averaged total respiration R̄
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is that Eqs. (10.121), (10.125), (10.127), and (10.128) make it easy to compute all
these sensitivities. �

10.7.3 Sensitivity of Temporal Variance in Density

The variance over a cycle in a weighted density N̂ can be written

V (N̂) = E(N̂2) −
[
E(N̂)

]2
(10.133)

where E(N̂) = N̄ = cTGb and

E(N̂2) =
k∑

i=1

bi

(
cTn̂i

)2
(10.134)

= (c ◦ c)T(G ◦ G)b (10.135)

Taking the differential of E(N̂2) and applying the vec operator gives

dE(N̂2) = 2
[
bT ⊗ (c ◦ c)T

]
D (N) dN. (10.136)

Combining this with the differential of E(N̂)2 gives the sensitivity of V (N̂):

dV (N̂)

dθT
= 2

{[
bT ⊗ (c ◦ c)T

]
D (N) − N̄

(
bT ⊗ cT

)} dN

dθT
(10.137)

where dN/dθT is given by (10.121). The extension to higher moments, should one
want to know, say, the sensitivity of the skewness of population size over a cycle, is
possible.

10.7.4 Periodic Dynamics in Periodic Environments

Periodic environments (e.g., seasons within a year) are described by periodic
products of matrices. If the environmental cycle contains p phases, then matrices
A1, . . . Ap describe the dynamics at each phase, and the periodic product Ap · · · A1
projects the population over an entire cycle. Nonlinear periodic models permit the
Ai to depend on the population vector at any point in the cycle, including delayed
dependence (e.g., the reproductive success of an individual plant in the fall may
depend on the density it experienced in the spring). A fixed point on the inter-annual
time scale is a p-cycle on the seasonal time scale. A k-cycle on the inter-annual
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scale corresponds to a kp-cycle on the seasonal time scale. The sensitivity analysis
of these models is given by Caswell and Shyu (2012) and presented here in Chap. 8.
For an application to the dynamics of an invasive plant population, see Shyu et al.
(2013).

10.8 Dynamic Environmental Feedback Models

The commonly encountered forms of density dependence are usually a shorthand
for a feedback between a population and some aspect of its environment.18 The
static feedback model of Sect. 10.3 begins to incorporate environmental feedback,
but assumed that the environmental variable g(t) had no inherent dynamics of its
own. A more general, dynamic environmental feedback model can be written

n(t + 1) = A[θ , n(t), g(t)]n(t)

g(t + 1) = B[θ , n(t), g(t)]g(t) (10.138)

allowing for n(t) to depend on both the environment and on its own density, and
likewise for the environmental factor.

The sensitivity of the equilibrium of (10.138) can be found using an approach
similar to that applied above to cycles. At equilibrium,

n̂ = A[θ, n̂, ĝ]n̂ (10.139)

ĝ = B[θ, n̂, ĝ]ĝ (10.140)

Differentiating both sides of each equation, expanding dvec A and dvec B, and
applying the vec operator gives

dn̂ = A
(
dn̂

) +
(

n̂T ⊗ Is

)(∂vec A

∂θT
dθ + ∂A

∂nT
dn̂ + ∂A

∂gT
dĝ

)
(10.141)

dĝ = B
(
dn̂

) +
(

ĝT ⊗ Iq

)(∂vec B

∂θT
dθ + ∂B

∂nT
dn̂ + ∂B

∂gT
dĝ

)
. (10.142)

Applying the identification theorem and the chain rule gives

18Early writers even interpreted the simple logistic equation as an interplay between a biotic
potential for exponential growth and an environmental resistance due to lack of resources or
interaction with predators (e.g., Chapman 1931). Incorporating a fully dynamic feedback greatly
expands the range of phenomena that can be explained (see de Roos and Persson (2013) for an
extensive development of this approach).
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dn̂

dθT
= A

dn̂

dθT
+ (

n̂ ⊗ Is

) ∂vec A

∂θT
+ (

n̂ ⊗ Is

) ∂vec A

∂nT

dn̂

dθT

+ (
n̂ ⊗ Is

) ∂vec A

∂gT

dĝ

dθT
(10.143)

with a similar expression for dĝ/dθT. All matrices and their derivatives are
evaluated at the equilibrium (n̂, ĝ). This system can be written in block matrix form
by defining

H ≡
(

n̂T ⊗ Is

)
(10.144)

J ≡
(

ĝT ⊗ Iq

)
(10.145)

Then define

A =
(

A 0
0 B

)
(10.146)

H =
(

0 H
J 0

)
(10.147)

C =

⎛

⎜⎜⎝

∂vec B

∂nT

∂vec B

∂gT

∂vec A

∂nT

∂vec A

∂gT

⎞

⎟⎟⎠ (10.148)

D =

⎛

⎜⎜⎝

∂vec A

∂θT

∂vec B

∂θT

⎞

⎟⎟⎠ (10.149)

N =
(

n̂
ĝ

)
(10.150)

In terms of these matrices,

dN

dθT
= HD + (A + HC)

dN

dθT
. (10.151)

Solving for dN/dθ t r gives the sensitivity of both the population and the environ-
mental factor,
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dN

dθT
= (

Is+q − A − HC
)−1

HD. (10.152)

10.9 Stage-Structured Epidemics

The transmission of infectious diseases is a source of nonlinearity because the
rate of transmission depends on the abundance of infected and non-infected
individuals. When demographic structure is added to the picture, the models can
become complicated because the transmission process, the recovery process, and
the consequences of infection may all vary among age classes or stages.

Klepac and Caswell (2011) developed a general framework for stage-classified
epidemics, using the vec-permutation formulation (e.g., Chaps. 5 and 6). Individuals
were jointly classified by stage and infection category, and nonlinearity was intro-
duced by the disease transmission process. Klepac and Caswell (2011) calculated
sensitivities and elasticities of equilibria and cycles of the stage × infection dis-
tribution and, of stage-specific prevalence, to parameters specifying demographic,
infection, and recovery processes.

Coupling demography and epidemiology requires attention to time scales.
Suppose that the demographic processes operate on one time scale: say, years. For
some diseases, the infection/recovery process might operate on a much longer time
scale (decades). Or the disease might play out on a much shorter time scale (weeks).
When the disease time scale is shorter than the demographic time scale, the matrices
in Klepac’s model that define disease transmission operate many times within a
single year; the result is a periodic model on the infection time scale. See Klepac
and Caswell (2011) for details.

10.10 Moments of Longevity in Nonlinear Models

The statistics of longevity (e.g., life expectancy) are traditionally calculated from
linear age-classified models (see Chap. 4) or from linear stage-classified models (see
Chap. 5). In a nonlinear model at equilibrium, the projection matrix is constant and
an individual experiences a fixed schedule of vital rates, from which all the usual
statistics of longevity can be calculated. Write the density-dependent projection
matrix as

A[θ , n] = U[θ , n] + F[θ , n] (10.153)

where U contains the transition probabilities for individuals already present in the
population and F describes the production of new individuals by reproduction. The
matrix U is the transient matrix of an absorbing Markov chain, with death as an
absorbing state. The fundamental matrix of this chain at equilibrium is
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N[θ, n̂] =
(

Is − U[θ , n̂]
)−1

(10.154)

where the inverse is guaranteed to exist if the spectral radius of U is less than 1.
The (i, j) element of N is the expected time spent in stage i, before death, by an
individual in stage j .

As in Chap. 4, the vector η1 containing the mean longevity of each age class or
stage is given by

ηT
1 = 1T

s N[n̂]. (10.155)

The moments of longevity and other indices are calculated from N
(
θ , n̂

)
just as in

the linear case. All the sensitivity results of Chaps. 4 and 5 apply directly, except that
the derivative of N

(
θ , n̂

)
must include both the direct effects of θ and the indirect

effects through n̂. For convenience, write N̂ and Û for the matrices at equilibrium.
Then

dvec N̂ =
(

N̂T ⊗ N̂
)

dvec Û (10.156)

=
(

N̂T ⊗ N̂
)[dvec Û

dθT
dθ + dÛ

dn̂T
dn̂

]
(10.157)

where Û, N̂, and the derivatives of U are all evaluated at equilibrium and dn̂/dθT is
given by (10.16). Comparing this with equation (4.34) shows that the nonlinearity
adds an extra term, capturing the way that changes in θ affect the vital rates through
changes in equilibrium density.

This approach can be used to generalize the results for higher moments of
longevity (Chaps. 4, 5, and 11) to the nonlinear case.

10.11 Summary

Table 10.3 lists the perturbation analysis results in this chapter; they comprise
a fairly complete analysis for nonlinear demographic models. The nonlinearities
may arise from density dependence, frequency dependence, environmental feed-
back, proportional population structure calculations, or recruitment subsidy. The
sensitivity calculations accommodate a wide range of dependent variables and the
calculation of both sensitivity and elasticity with respect to any kind of demographic
parameters.

As in other chapters, most of the results in this chapter follow a straightforward
method:

1. Write the model, specifying the dependence of the vital rates on θ and n.
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2. Write a matrix expression for the demographic outcome of interest (e.g., the
equilibrium population).

3. Differentiate this expression.
4. Use the vec operator and Roth’s theorem to obtain an expression that involves

only the differentials of vectors.
5. Use the chain rule for total differentials to expand the operators (e.g., dvecA)

that are functions of both θ and n, as in (10.14).
6. Use the first identification theorem and the chain rule to extend the results

to sensitivities of any desired dependent variable with respect to any set of
parameters

References

Almany, G. R., M. L. Berumen, S. R. Thorrold, S. Planes, and G. P. Jones. 2007. Local
replenishment of coral reef fish populations in a marine reserve. Science 316:742–744.

Bartholomew, D. J. 1982. Stochastic models for social processes. Wiley, New York, New York,
USA.

Bonenfant, C., J.-M. Gaillard, T. Coulson, M. Festa-Bianchet, A. Loison, M. Garel, L. E. Loe,
P. Blanchard, N. Pettorelli, J. Owen-Smith, Norman Du Toit, and P. Duncan. 2009. Empirical
evidence of density-dependence in populations of large herbivores. Advances in Ecological
Research 41:313–357.

Bonneuil, N. 1994. Special issue: nonlinear models in demography. Mathematical Population
Studies 5:1.

Carey, J. R., P. Liedo, and J. W. Vaupel. 1995. Mortality dynamics of density in the Mediterranean
fruit fly. Experimental Gerontology 30:605–629.

Caswell, H. 1978. A general formula for the sensitivity of population growth rate to changes in
life history parameters. Theoretical Population Biology 14:215–230.

Caswell, H. 1982. Optimal life histories and the maximization of reproductive value: a general
theorem for complex life cycles. Ecology 63:1218–1222.

Caswell, H. 2001. Matrix Population Models: Construction, Analysis, and Interpretation. 2nd
edition. Sinauer Associates, Sunderland, MA.

Caswell, H. 2007. Sensitivity analysis of transient population dynamics. Ecology Letters 10:1–15.
Caswell, H., and M. G. Neubert. 2005. Reactivity and transient dynamics of discrete-time

ecological systems. Journal of Difference Equations and Applications 11:295–310.
Caswell, H., and N. Sanchez Gassen. 2015. The sensitivity analysis of population projections.

Demographic Research 33:801–840.
Caswell, H., and E. Shyu. 2012. Sensitivity analysis of periodic matrix population models.

Theoretical Population Biology 82:329–339.
Caswell, H., and Y. Vindenes. 2018. Demographic variance in heterogeneous populations: Matrix

models and sensitivity analysis. Oikos 127:648–663.
Caswell, H., and D. E. Weeks. 1986. Two-sex models: chaos, extinction, and other dynamic

consequences of sex. The American Naturalist 128:707–735.
Chapman, R. N. 1931. Animal Ecology with Especial Reference to Insects. McGraw-Hill, New

York, New York, USA.
Chen, X., and J. E. Cohen. 2001. Transient dynamics and food–web complexity in the Lotka–

Volterra cascade model. Proceedings of the Royal Society of London B: Biological Sciences
268:869–877.

Chu, C. Y. C. 1998. Population dynamics: a new economic approach. Oxford University Press,
New York, New York, USA.



References 249

Chung, R. 1994. Cycles in the two-sex problem: an investigation of a nonlinear demographic
model. Mathematical Population Studies 5:45–74.

Clutton-Brock, J. H., A. W. Illius, K. Wilson, B. T. Grenfell, A. D. C. MacColl, and S. D. Albon.
1997. Stability and instability in ungulate populations: an empirical analysis. American
Naturalist 149:195–219.

Coale, A. J. 1972. The growth and structure of human populations: a mathematical approach.
Princeton University Press, Princeton, New Jersey.

Cohen, J. E. 1995. How many people can the earth support? W. W. Norton, New York, New York,
USA.

Costantino, R. F., and R. A. Desharnais. 1991. Population dynamics and the Tribolium model:
genetics and demography. Springer-Verlag, New York, New York, USA.

Costantino, R. F., R. A. Desharnais, J. M. Cushing, and B. Dennis. 1997. Chaotic dynamics in an
insect population. Science 275:389–391.

Cushing, J. M. 1998. An introduction to structured population dynamics. SIAM, Philadelphia,
Pennsylvania, USA.

Cushing, J. M., R. F. Costantino, B. Dennis, R. A. Desharnais, and S. M. Henson. 2003. Chaos in
ecology: experimental nonlinear dynamics. Academic Press, San Diego, California, USA.

de Roos, A. M., and L. Persson. 2013. Population and community ecology of ontogenetic
development. Princeton University Press, Princeton, New Jersey, USA.

de Vries, C., and H. Caswell. 2018. Stage-stuctured evolutionary demography: linking life
histories, population genetics, and ecological dynamics. (in prep.).

Dennis, B., R. A. Desharnais, J. M. Cushing, and R. F. Costantino. 1995. Nonlinear demographic
dynamics: mathematical models, statistical methods, and biological experiments. Ecological
Monographs 65:261–282.

Easterlin, R. 1961. The American baby boom in historical perspective. American Economic
Review 51:860–911.

Emekci, M., S. Navarro, J. E. Donahaye, M. Rindner, and A. Azrieli, 2001. Respiration of stored
product pests in hermetic conditions. Pages 26–35 in J. Donahaye, S. Navarro, and J. G. Leesch,
editors. Proceedings of the International Conference on Controlled Atmosphere and Fumigation
in Stored Products. Executive Printing Services, Clovis, California, USA.

Fennel, W., and T. Neumann. 2004. Introduction to the modelling of marine ecosystems. Elsevier,
Amsterdam, Netherlands.

Frank, P. W., C. D. Boll, and R. W. Kelly. 1957. Vital statistics of laboratory cultures of Daphnia
pulex DeGeer as related to density. Physiological Zoology 30:287–305.

Frauenthal, J., and K. Swick. 1983. Limit cycle oscillations of the human population. Demography
20:285–298.

Fürnkranz-Prskawetz, A., and J. Sambt. 2014. Economic support ratios and the demographic
dividend in Europe. Demographic Research 30:963–1010.

Gaines, S., and J. Roughgarden. 1985. Larval settlement rate: a leading determinant of structure in
an ecological community of the marine intertidal zone. Proceedings of the National Academy
of Sciences USA 82:3707–3711.

Gani, J. 1963. Formulae for projecting enrolments and degrees awarded in universities. Journal of
the Royal Statistical Society A 126:400–409.

Gillman, M., J. M. Bullock, J. ilvertown, and B. C. Hill. 1993. A density-dependent model
of Cirsium vulgare population dynamics using field-estimated parameter values. Oecologia
96:282–289.

Hauser, C. E., E. G. Cooch, and J.-D. Lebreton. 2006. Control of structured populations by harvest.
Ecological Modelling 196:462–470.

Hinde, A. 1998. Demographic methods. Arnold, London, United Kingdom.
Hsu, S. B., S. P. Hubbell, and P. Waltman. 1977. A mathematical theory for single-nutrient

competition in continuous cultures of microorganisms. SIAM Journal of Applied Mathematics
32:366–383.

Iannelli, M., M. Martcheva, and F. A. Milner. 2005. Gender-structured population modeling:
mathematical methods, numerics, and simulations. SIAM, Philadelphia, Pennsylvania, USA.



250 10 Sensitivity Analysis of Nonlinear Demographic Models

Jenouvrier, S., H. Caswell, C. Barbraud, and H. Weimerskirch. 2010. Mating behavior, population
growth, and the operational sex ratio: a periodic two-sex model approach. The American
Naturalist 175:739–752.

Jenouvrier, S., M. Holland, J. Stroeve, C. Barbraud, H. Weimerskirch, M. Serreze, and H. Caswell.
2012. Effects of climate change on an emperor penguin population: analysis of coupled
demographic and climate models. Global Change Biology 18:2756–2770.

Keyfitz, N. 1972. The mathematics of sex and marriage. Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability 6:89–108.

Keyfitz, N., and H. Caswell. 2005. Applied mathematical demography. 3rd edition. Springer, New
York, New York.

Keyfitz, N., and W. Flieger. 1968. World population: an analysis of vital data. The University of
Chicago Press, Chicago, Illinois, USA.

Keyfitz, N., and W. Flieger. 1990. World population growth and aging: demographic trends in the
late twentieth century. University of Chicago Press, Chicago, Illinois, USA.

Kirkland, S. J., and M. Neumann. 1994. Convexity and concavity of the Perron root and vector of
Leslie matrices with applications to a population model. SIAM Journal of Matrix Analysis and
Applications 15:1092–1107.

Klepac, P., and H. Caswell. 2011. The stage-structured epidemic: linking disease and demography
with a multi-state matrix approach model. Theoretical Ecology 4:301–319.

Kokko, H., and D. J. Rankin. 2006. Lonely hearts or sex in the city? Density-dependent effects in
mating systems. Philosophical Transactions of the Royal Society B 361:319–334.

Lee, C. T., and S. Tuljapurkar. 2008. Population and prehistory I: Food-dependent population
growth in constant environments. Theoretical Population Biology 73:473–482.

Lee, R. D. 1974. The formal dynamics of controlled populations and the echo, the boom, and the
bust. Demography 11:563–585.

Lee, R. D. 1976. Demographic forecasting and the Easterlin hypothesis. Population and
Development Review 2:459–468.

Lee, R. D., 1986. Malthus and Boserup: a dynamic synthesis. Pages 96–130 in D. Coleman and
R. Schofield, editors. The state of population theory: forward from Malthus. Blackwell, Oxford,
United Kingdom.

Lee, R. D. 1987. Population dynamics of humans and other animals. Demography 24:443–465.
Legendre, S., J. Clobert, A. P. Møller, and G. Sorci. 1999. Demographic stochasticity and

social mating system in the process of extinction of small populations: the case of passerines
introduced to New Zealand. American Naturalist 153:449–463.

Lenz, T. L., A. Jacob, and C. Wedekind. 2007. Manipulating sex ratio to increase population
growth: the example of the Lesser Kestrel. Animal Conservation 10:236–244.

Lindström, J., and H. Kokko, 1998. Sexual reproduction and population dynamics: the role of
polygyny and demographic sex differences. Proceedings of the Royal Society B 265:483–488.

Martcheva, M. 1999. Exponential growth in age-structured two-sex populations. Mathematical
Biosciences 157:1–22.

Marvier, M., P. Kareiva, and M. G. Neubert. 2004. Habitat destruction, fragmentation, and
disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk
analysis 24:869–878.

McFarland, D. D., 1972. Comparison of alternative marriage models. in T. N. E. Greville, editor.
Population dynamics. Academic Press, New York, New York, USA.

Mueller, L. D., and A. Joshi. 2000. Stability in model populations. Princeton University Press,
Princeton, New Jersey, USA.

Murdoch, W. W., C. J. Briggs, and R. M. Nisbet. 2003. Consumer-resource dynamics. Princeton
University Press, Princeton, New Jersey, USA.

Neubert, M. G., and H. Caswell. 1997. Alternatives to resilience for measuring the responses of
ecological systems to perturbations. Ecology 78:653–665.

Neubert, M. G., and H. Caswell. 2000. Density-dependent vital rates and their population dynamic
consequences. Journal of Mathematical Biology 43:103–121.



References 251

Neubert, M. G., T. Klanjscek, and H. Caswell. 2004. Reactivity and transient dynamics of predator-
prey and food web models. Ecological Modelling 179:29–38.

Nussbaum, R. D. 1988. Iterated nonlinear maps and Hilbert’s projective metric. American
Mathematical Society, Providence, Rhode Island, USA.

Nussbaum, R. D. 1989. Iterated nonlinear maps and Hilbert’s projective metric, II. American
Mathematical Society, Providence, Rhode Island, USA.

Pardini, E. A., J. M. Drake, J. M. Chase, and T. M. Knight. 2009. Complex population dynamics
and control of the invasive biennial Alliaria petiolata (garlic mustard). Ecological Applications
19:387–397.

Pascual, M., and H. Caswell. 1991. The dynamics of a size-classified benthic population with
reproductive subsidy. Theoretical Population Biology 39:129–147.

Pearl, R., J. R. Miner, and S. L. Parker. 1927. Experimental studies on the duration of life. XI.
Density of population and life duration in Drosophila. American Naturalist 61:289–318.

Pennycuick, L. 1969. A computer model of the Oxford Great Tit population. Journal of Theoretical
Biology 22:381–400.

Pollak, R. A. 1987. The two-sex problem with persistent unions: a generalization of the birth
matrix-mating rule model. Theoretical Population Biology 32:176–187.

Pollak, R. A. 1990. Two-sex demographic models. Journal of Political Economy 98:399–420.
Pollard, J. H. 1968. A note on the age structures of learned societies. Journal of the Royal

Statistical Society A 131:569–578.
Pollard, J. H., 1977. The continuing attempt to incorporate both sexes into marriage analysis. Pages

291–308 in International Population Conference. International Union for the Scientific Study
of Population.

Preston, S. H., P. Heuveline, and M. Guillot. 2001. Demography: measuring and modeling
population processes. Blackwell, Oxford, United Kingdom.

Promislow, D. E. L., R. Montgomerie, and T. E. Martin. 1992. Mortality costs of sexual
dimorphism in birds. Proceedings of the Royal Society of London B 250:143–150.

Roughgarden, J., Y. Iwasa, and C. Baxter. 1985. Demographic theory for an open marine
population with space-limited recruitment. Ecology 66:54–67.

Sarrazin, F., and S. Legendre. 2000. Demographic approach to releasing adults versus young in
reintroductions. Conservation Biology 14:488–500.

Scheltema, R. S. 1971. Larval dispersal as a means of genetic exchange between geographically
separated populations of shallow-water benthic marine gastropods. Biological Bulletin
140:284–322.

Scott, S., and C. J. Duncan. 1998. Human demography and disease. Cambridge University Press,
Cambridge, United Kingdom.

Shyu, E., and H. Caswell. 2014. Calculating second derivatives of population growth rates for
ecology and evolution. Methods in Ecology and Evolution 5:473–482.

Shyu, E., and H. Caswell. 2016a. A demographic model for sex ratio evolution and the effects of
sex-biased offspring costs. Ecology and Evolution 6:1470–1492.

Shyu, E., and H. Caswell. 2016b. Frequency-dependent two-sex models: a new approach to sex
ratio evolution with multiple maternal conditions. Ecology and Evolution 6:6855–6879.

Shyu, E., and H. Caswell. 2018. Mating, births, and transitions: a flexible two-sex matrix model
for evolutionary demography. Population Ecology 60:21–36.

Shyu, E., E. A. Pardini, T. M. Knight, and H. Caswell. 2013. A seasonal, density-dependent model
for the management of an invasive weed. Ecological Applications 23:1893–1905.

Silva Matos, D. M., R. P. Freckleton, and A. R. Watkinson. 1999. The role of density dependence
in the population dynamics of a tropical palm. Ecology 80:2635–2650.

Skalski, J. R., K. E. Ryding, and J. Millspaugh. 2005. Wildlife demography: analysis of sex, age,
and count data. Academic Press, San Diego, California, USA.

Solbrig, O. T., R. Sarandon, and W. Bossert. 1988. A density-dependent growth model of a
perennial herb, Viola fimbriatula. American Naturalist 131:385–400.

Stott, I. 2016. Perturbation analysis of transient population dynamics using matrix projection
models. Methods in Ecology and Evolution 7:666–678.



252 10 Sensitivity Analysis of Nonlinear Demographic Models

Stott, I., S. Townley, and D. J. Hodgson. 2011. A framework for studying transient dynamics of
population projection matrix models. Ecology Letters 14:959–970.

Tilman, D. 1982. Resource competition and community structure. Princeton University Press,
Princeton, New Jersey, USA.

Tuljapurkar, S., 1997. Stochastic matrix models. Pages 59–87 in S. Tuljapurkar and H. Caswell,
editors. Structured-population models in marine terrestrial, and freshwater systems. Chapman
and Hall, New York, New York, USA.

Tuljapurkar, S., C. O. Puleston, and M. D. Gurven. 2007. Why men matter: mating patterns drive
evolution of human lifespan. PLoS ONE 2:e785.

Verdy, A., and H. Caswell. 2008. Sensitivity analysis of reactive ecological dynamics. Bulletin of
Mathematical Biology 70:1634–1659.

Wachter, K. W., and R. D. Lee. 1989. U.S. births and limit cycle models. Demography 26:99–115.
Weiss, K. M., and P. E. Smouse. 1976. The demographic stability of small human populations.

Journal of Human Evolution 5:59–73.
Wood, J. W., and P. E. Smouse. 1982. A method of analyzing density-dependent vital rates with

an applicaion to the Gainj of Papua New Guinea. American Journal of Physical Anthropology
58:403–411.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Part V
Markov Chains



Chapter 11
Sensitivity Analysis of Discrete Markov
Chains

11.1 Introduction

As we have seen repeatedly, Markov chains are often used as mathematical models
of demographic (as well as other natural) phenomena, with transition probabilities
defined in terms of parameters that are of interest in the scientific question at
hand. Sensitivity analysis is an important way to quantify the effects of changes
in these parameters on the behavior of the chain. This chapter revisits, in a more
rigorous way, some of the quantities already explored for absorbing Markov chains
(Chaps. 4, 5, and 6). It will also consider ergodic Markov chains (in which no
absorbing states exist), and calculate the sensitivity of the stationary distribution
and measures of the rate of convergence.

Perturbation (or sensitivity) analysis is a long-standing problem in the theory
of Markov chains (Schweitzer 1968; Conlisk 1985; Golub and Meyer 1986;
Funderlic and Meyer 1986; Seneta 1988, 1993; Meyer 1994; Cho and Meyer 2000;
Mitrophanov 2003, 2005; Mitrophanov et al. 2005; Kirkland et al. 2008). When
Markov chains are applied as models of physical, biological, or social systems, they
are often defined as functions of parameters that have substantive meaning.
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11.2 Absorbing Chains

The transition matrix for a discrete-time absorbing chain can be written

P =
(

U 0
M I

)
(11.1)

where U, of dimension s × s, is the transition matrix among the s transient states,
and M, of dimension a × s, contains probabilities of transition from the transient
states to the a absorbing states. Assume that the spectral radius of U is strictly less
than 1. Because we are concerned here with absorption, but not what happens after,
we ignore transitions among absorbing states; hence the identity matrix (a × a) in
the lower right corner. The matrices U[θ ] and M[θ ] are functions of a vector of
parameters. We assume that θ varies over some set in which the column sums of P
are 1 and the spectral radius of U is strictly less than one.

11.2.1 Occupancy: Visits to Transient States

Let νij be the number of visits to transient state i, prior to absorption, by an
individual starting in transient state j . The expectations of the νij are entries of

the fundamental matrix N = N1 =
(
E(ηij )

)
:

N = (I − U)−1 (11.2)

(e.g., Kemeny and Snell 1960; Iosifescu 1980). Let Nk =
(
E(ηk

ij )
)

be a matrix

containing the kth moments about the origin of the νij . The first several of these
matrices are (Iosifescu 1980, Thm. 3.1)

N1 = (I − U)−1 (11.3)

N2 = (
2Ndg − I

)
N1 (11.4)

N3 =
(

6N2
dg − 6Ndg + I

)
N1 (11.5)

N4 =
(

24N3
dg − 36N2

dg + 14Ndg − I
)

N1. (11.6)

Theorem 11.2.1 Let Nk be the matrix of kth moments of the νij , as given by (11.3),
(11.4), (11.5), and (11.6). The sensitivities of Nk , for k = 1, . . . , 4 are

dvec N1 =
(

NT
1 ⊗ N1

)
dvec U (11.7)
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dvec N2 =
[
2
(
I ⊗ Ndg

) − Is2

]
dvec N1 + 2

(
NT ⊗ I

)
dvec Ndg (11.8)

dvec N3 =
[
I ⊗

(
6N2

dg − 6Ndg + I
)]

dvec N1

+
[
6
(

NTNdg ⊗ I
)

+ 6
(

NT ⊗ Ndg

)
− 6

(
NT ⊗ I

)]
dvec Ndg (11.9)

dvec N4 =
[
I ⊗

(
24N3

dg − 36N2
dg + 14Ndg − I

)]
dvec N1

+
[
24

(
NTN2

dg ⊗ I
)

+ 24
(

NTNdg ⊗ Ndg

)
+ 24

(
NT ⊗ N2

dg

)

−36
(
NTNdg ⊗ I

)
−36

(
NT ⊗ Ndg

)
+14

(
NT ⊗ I

)]
dvec Ndg (11.10)

where (see Sect. 2.8)

dNdg = I ◦ dN1 (11.11)

dvec Ndg = D (vec I)dvec N1. (11.12)

Proof The result (11.7) is derived in Caswell (2006, Section 3.1). For k > 1, and
considering Nk as a function of N1 and Ndg, the total differential of Nk is

dvec Nk = ∂vec Nk

∂vec TN1
dvec N1 + ∂vec Nk

∂vec TNdg
dvec Ndg. (11.13)

The two terms of (11.13) are the partial differentials of vec Nk , obtained by taking
differentials treating only N1 or only Ndg as variables, respectively. Denote these
partial differentials as ∂N1 ∂N1 and ∂Ndg and ∂Ndg . Differentiating N2 in (11.4), gives

∂N1 N2 = 2Ndg (dN1) − dN1 (11.14)

∂Ndg N2 = 2
(
dNdg

)
N1. (11.15)

Applying the vec operator gives

∂N1 vec N2 =
[
2
(
I ⊗ Ndg

) − Is2

]
dvec N1 (11.16)

∂Ndg vec N2 = 2
(

NT
1 ⊗ I

)
dvec Ndg, (11.17)

and (11.13) becomes

dvec N2 =
[
2
(
I ⊗ Ndg

) − Is2

]
dvec N1 + 2

(
NT

1 ⊗ I
)

dvec Ndg, (11.18)
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which is (11.8). The derivations of dvec N3 and dvec N4 follow the same sequence
of steps. The details are given in Appendix A. ��

The derivatives of N2, N3, and N4 can be used to study the variance, standard
deviation, coefficient of variation, skewness, and kurtosis of the number of visits to
the transient states (Caswell 2006, 2009, 2011).

11.2.2 Time to Absorption

Let ηj be the time to absorption starting in transient state j and let ηk =
E
(
ηk

1, · · · , ηk
s

)T
. The first several of these moments are (Iosifescu 1980, Thm. 3.2)

ηT
1 = 1TN1 (11.19)

ηT
2 = ηT

1 (2N1 − I) (11.20)

ηT
3 = ηT

1

(
6N2

1 − 6N1 + I
)

(11.21)

ηT
4 = ηT

1

(
24N3

1 − 36N2
1 + 14N1 − I

)
. (11.22)

Theorem 11.2.2 Let ηk be the vector of the kth moments of the ηi . The sensitivities
of these moment vectors are

dη1 =
(

I ⊗ 1T
)

dvec N1 (11.23)

dη2 =
(

2NT
1 − I

)
dη1 + 2

(
I ⊗ ηT

1

)
dvec N1 (11.24)

dη3 =
(

6n2 − 6N1 + I
)T

dη1

+
[
6
(

NT
1 ⊗ ηT

1

)
+ 6

(
I ⊗ ηT

1 N1

)
− 6

(
I ⊗ ηT

1

) ]
dvec N1 (11.25)

dη4 =
(

24N3
1 − 36N2

1 + 14N1 − I
)T

dη1

+
{

24

[(
NT

1

)2 ⊗ ηT
1

]
+ 24

(
NT

1 ⊗ ηT
1 N1

)
+ 24

(
I ⊗ ηT

1 N2
1

)

−36
(

NT
1 ⊗ ηT

1

)
− 36

(
I ⊗ ηT

1 N1

)
+ 14

(
I ⊗ ηT

1

) }
dvec N1 (11.26)

where dvec N1 is given by (11.7).
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Proof The derivative of η1 is obtained (Caswell 2006) by differentiating to get
dηT

1 = 1T (dN1) and then applying the vec operator. For the higher moments,
consider the ηk to be functions of η1 and N1, and write the total differential

dηk = ∂ηk

∂ηT
1

dη1 + ∂ηk

∂vec TN1
dvec N1. (11.27)

The partial differentials of η2 with respect to η1 and N1 are

∂η1η
T
2 =

(
dηT

1

)
(2N1 − I) (11.28)

∂N1η
T
2 = 2ηT

1 (dN1) . (11.29)

Applying the vec operator gives

∂η1η2 =
(

2NT
1 − I

)
dη1 (11.30)

∂N1η2 = 2
(

I ⊗ ηT
1

)
dvec N1 (11.31)

which combine according to (11.27) to yield (11.24). The derivations of dη3 and
dη4 follow the same sequence of steps; the details are shown in Appendix A. ��

11.2.3 Number of States Visited Before Absorption

Let ξi ≥ 1 be the number of distinct transient states visited before absorption, and
let ξ1 = E(ξ). Then

ξT
1 = 1TN−1

dg N1 (11.32)

(Iosifescu 1980, Sect. 3.2.5), where N−1
dg = (

Ndg
)−1.

Theorem 11.2.3 Let ξ1 = E(ξ). The sensitivity of ξ is

dξ1 =
[
−
(

NT
1 ⊗ 1T

) (
N−1

dg ⊗ N−1
dg

)
D (vec I) +

(
I ⊗ 1TN−1

dg

)]
dvec N1,

(11.33)
where dvec N1 is given by (11.7).
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Proof Differentiating (11.32) yields

dξT
1 = 1T

(
dN−1

dg

)
N1 + 1TN−1

dg dN1. (11.34)

Applying the vec operator yields

dξ1 =
(

NT
1 ⊗ 1T

)
dvec N−1

dg +
(

I ⊗ 1TN−1
dg

)
dvec N1. (11.35)

Applying (2.82) to dvec N−1
dg and using (11.12) for dvec Ndg gives

dξ1 = −
(

NT
1 ⊗ 1T

) (
N−1

dg ⊗ N−1
dg

)
D (vec I)dvec N1 +

(
I ⊗ 1TN−1

dg

)
dvec N1

(11.36)
which simplifies to (11.33). ��

11.2.4 Multiple Absorbing States and Probabilities
of Absorption

When the chain includes a > 1 absorbing states, the entry mij of the a×s submatrix
M in (11.1) is the probability of transition from transient state j to absorbing state
i. The result of the competing risks of absorption is a set of probabilities bij =
P
[
absorption in i |starting in j

]
for i = 1, . . . , a and j = 1, . . . , s. The matrix

B = (
bij

) = MN1 (Iosifescu 1980, Thm. 3.3).

Theorem 11.2.4 Let B = MN1 be the matrix of absorption probabilities. Then

dvec B =
(

NT
1 ⊗ I

)
dvec M +

(
NT

1 ⊗ B
)

dvec U. (11.37)

Proof Differentiating B yields

dB = (dM) N1 + M (dN1) . (11.38)

Applying the vec operator gives

dvec B =
(

NT
1 ⊗ I

)
dvec M + (I ⊗ M) dvec N1. (11.39)

Substituting (11.7) for dvec N1 and simplifying gives (11.37). ��
Column j of B is the probability distribution of the eventual absorption state for

an individual starting in transient state j . Usually a few of those starting states are
of particular interest (e.g., states corresponding to “birth” or to the start of some
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process). Let B(:, j) = Bej denote column j of B, where ej is the j th unit vector
of length s. Thus the derivative of B(:, j) is

dvec B(:, j) =
(

eT
j ⊗ Is

)
dvec B (11.40)

where dvec B is given by (11.37). Similarly, row i of B is B(i, :) = eT
i B and

dvec B(i, :) =
(

Is ⊗ eT
i

)
dvec B (11.41)

where ei is the ith unit vector of length a.

11.2.5 The Quasistationary Distribution

The quasistationary distribution of an absorbing Markov chain gives the limiting
probability distribution, over the set of transient states, of the state of an individual
that has yet to be absorbed. Let w and v be the right and left eigenvectors associated
with the dominant eigenvalue of U, normalized so that ‖w‖ = ‖v‖ = 1. Darroch
and Seneta (1965) defined two quasistationary distributions in terms of w and v. The
limiting probability distribution of the state of an individual, given that absorption
has not yet happened, converges to

qa = w (11.42)

The limiting probability distribution of the state of an individual, given that
absorption has not happened and will not happen for a long time, is

qb = w ◦ v

wTv
(11.43)

Horvitz and Tuljapurkar (2008) pointed out that the convergence to the quasista-
tionary distribution implies that, in a stage-classified model, mortality eventually
becomes independent of age.

Lemma 1 Let the dominant eigenvalue of U, guaranteed real and nonnegative by
the Perron-Frobenius theorem, satisfy 0 < λ < 1, and let w and v be the right and
left eigenvectors corresponding to λ, scaled so that wTv = 1. Then

dw =
(
λIs − U + w1TU

)−1 [
wT ⊗

(
Is − w1T

)]
dvec U (11.44)

dv =
(
λIs − UT + veT

1 UT
)−1 [ (

Is − veT
1

)
⊗ vT

]
dvec U (11.45)
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Proof Equation (11.44) is proven in Caswell (2008, Section 6.1). Equation (11.45)
is obtained by treating v as the right eigenvector of UT. ��
Theorem 11.2.5 The derivative of the quasistationary distribution qa is given
by (11.44). The derivative of the quasistationary distribution qb is

dqb = 1

vTw

[ (
D (v) − qbvT

)
dw +

(
D (w) − qbwT

)
dv

]
(11.46)

where dw and dv are given by (11.44) and (11.45) respectively.

Proof The derivative of qa follows from its definition as the scaled right eigenvector
of U. For qb, differentiating (11.43) gives

dqb = 1
(
vTw

)2

{ (
vTw

)
d (v ◦ w) − (v ◦ w)

[(
dvT

)
w + vT (dw)

]}
(11.47)

= 1

vTw

[
d (v ◦ w) − qb

(
dvT

)
w − qbvT (dw)

]
(11.48)

Applying the vec operator gives

dqb = 1

vTw

[
D (v)dw + D (w)dv −

(
wT ⊗ qb

)
dv − qbvTdw

]
(11.49)

which simplifies to give (11.46). ��

11.3 Life Lost Due to Mortality

The approach here makes it easy to compute the sensitivity of a variety of dependent
variables calculated from the Markov chain. As an example of this flexibility,
consider a recently developed demographic index, the number of years of life lost
due to mortality (Vaupel and Canudas Romo 2003).

The transient states of the chains are age classes, absorption corresponds to death,
and absorbing states correspond to age at death. Let μi be the mortality rate and
pi = exp(−μi) the survival probability at age i. The matrix U has the pi on the
subdiagonal and zeros elsewhere. The matrix M has 1 − pi on the diagonal and
zeros elsewhere. Let f = B(:, 1) be the distribution of age at death and η1 the vector
of expected longevity as a function of age.

A death at age i represents the loss of some number of years of life beyond that
age. The expectation of that loss is given by the ith entry of η1, and the expected
number of years lost over the distribution of age at death is η† = ηT

1 f. This quantity
also measures the disparity among individuals in longevity (Vaupel and Canudas
Romo 2003). If everyone died at the identical age x, f would be a delta function at x
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and further life expectancy at age x would be zero; their product would give η† = 0.
Declines in discrepancy have accompanied increases in life expectancy observed in
developed countries (Edwards and Tuljapurkar 2005; Wilmoth and Horiuchi 1999).
Thus it is useful to know how η† responds to changes in mortality.

Differentiating η† gives

dη† =
(
dηT

1

)
Be1 + ηT

1 (dB) e1. (11.50)

Applying the vec operator gives

dη† = eT
1 bTdηT

1 +
(

eT
1 ⊗ ηT

1

)
dvec B. (11.51)

Substituting (11.23) for dη1 and (11.37) for dvec B gives

dη† = fT
(

I ⊗ 1T
)

dvec N1 +
(

eT
1 ⊗ ηT

1

)

[ (
NT

1 ⊗ I
)

dvec M +
(

NT
1 ⊗ B

)
dvec U

]
(11.52)

Simplifying and writing derivatives in terms of μ gives

dη†

dμT
=

[
fT
(

NT
1 ⊗ ηT

1

)
+
(

eT
1 NT

1 ⊗ ηT
1 B

)]

dvec U

dμT
+
(

eT
1 NT

1 ⊗ ηT
1

) dvec M

dμT
(11.53)

Because mortality rates vary over several orders of magnitude with age, it is useful
to present the results as elasticities,

εη†

εμT
= 1

η†

dη†

dμT
D (μ). (11.54)

Figure 11.1 shows these elasticities for two populations chosen to have very
different life expectancies: India in 1961, with female life expectancy of 45 years
and η† = 23.9 years and Japan in 2006, with female life expectancy of 86 years
and η† = 10.1 years (Human Mortality Database 2016). In both cases, elasticities
are positive from birth to some age (≈50 for India, ≈85 for Japan) and negative
thereafter. This implies that reductions in infant and early life mortality would
reduce η†, whereas reductions in old age mortality would increase η†. Zhang and
Vaupel (2009) have shown that the existence of such a critical age is a general
property of these models.
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Fig. 11.1 The elasticity of
mean years of life lost due to
mortality, η†, to changes in
age-specific mortality,
calculated from the female
life tables of India in 1961
and of Japan in 2006. (Data
obtained from the Human
Mortality Database 2016)
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11.4 Ergodic Chains

Now let us consider perturbations of an ergodic finite-state Markov chain with an
irreducible, primitive, column-stochastic transition matrix P of dimension s × s.
The stationary distribution π is given by the right eigenvector, scaled to sum to 1,
corresponding to the dominant eigenvalue λ1 = 1 of P. The fundamental matrix of

the chain is Z = (
I − P + π1T

)−1
(Kemeny and Snell 1960).

We are interested only in perturbations that preserve the column-stochasticity
of P; i.e., for which P remains a stochastic matrix. Such perturbations are easily
defined when the pij depend explicitly on a parameter vector θ . However, when
the parameters of interest are the pij themselves, an implicit parameterization must
be defined to preserve the stochastic nature of P under perturbation (Conlisk 1985;
Caswell 2001). In Sect. 11.4.5 we will explore new expressions for two different
forms of implicit parameterization.

Previous studies of perturbations of ergodic chains focus almost completely on
perturbations of the stationary distribution, and are divided between those focusing
on sensitivity as a derivative (e.g., Schweitzer 1968; Conlisk 1985; Golub and
Meyer 1986) and studies focusing on perturbation bounds and condition numbers
(Funderlic and Meyer 1986; Meyer 1994; Seneta 1988; Hunter 2005; Kirkland
2003); for reviews see Cho and Meyer (2000) and Kirkland et al. (2008). The
approach here is similar in spirit to that of Schweitzer (1968), Conlisk (1985), and
Golub and Meyer (1986), in that we focus on derivatives of Markov chain properties
with respect to parameter perturbations, but taking advantage of the matrix calculus
approach. We do not consider perturbation bounds here.
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11.4.1 The Stationary Distribution

Theorem 11.4.1 Let π be the stationary distribution, satisfying Pπ = π and
1Tπ = 1. The sensitivity of π is

dπ =
[
πT ⊗

(
Z − π1T

)]
dvec P (11.55)

where Z is the fundamental matrix of the chain.

Proof The vector π is the right eigenvector of P, scaled to sum to 1.
Applying Lemma 1, and noting that λ = 1 and 1TP = 1T, gives dπ =
Z
[
πT ⊗ (

Is − π1T
)]

dvec P. Noting that Zπ = π and simplifying the Kronecker
products yields (11.55). ��

Based on an analysis of eigenvector sensitivity (Meyer and Stewart 1982), Golub
and Meyer (1986) derived an expression for the derivative of π to a change in a
single element of P using the group generalized inverse (I − P)# of I − P. Since
(I − P)# = Z − π1T (Golub and Meyer 1986), expression (11.55) is exactly the
Golub-Meyer result expressed in matrix calculus notation. Our results here permit
sensitivity analysis of functions of π using only the chain rule. If g(π) is a vector-
or scalar-valued function of π , then

dg(π) = dg

dπT

dπ

dvec TP
dvec P (11.56)

Some examples will appear in Sect. 11.5.

11.4.2 The Fundamental Matrix

The fundamental matrix Z = (
I − P + π1T

)−1
plays a role in ergodic chains similar

to that played by N1 in absorbing chains (Kemeny and Snell 1960). It has been
extended using generalized inverses (Meyer 1975; Kemeny 1981), but we do not
consider those extensions here.

Theorem 11.4.2 The sensitivity of the fundamental matrix is

dvec Z =
(

ZT ⊗ Z
) {

Is2 −
[
1πT ⊗

(
Z − π1T

)]}
dvec P (11.57)

Proof From (2.82),

dvec Z = −
(

ZT ⊗ Z
)

dvec
(

I − P + π1T
)

(11.58)

=
(

ZT ⊗ Z
) (

dvec P − (1 ⊗ Is) dπ
)

(11.59)
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Substituting (11.55) for dπ and simplifying gives (11.57). ��

11.4.3 The First Passage Time Matrix

Let R =
(
rij

)
be the matrix of mean first passage times from j to i, given by

Iosifescu (1980, Thm. 4.7).

R = D (π)−1
(

I − Z + ZdgE
)

. (11.60)

Again, this is the transpose of the expression obtained when P is row-stochastic.

Theorem 11.4.3 The sensitivity of R is

dvec R = −
[
RT ⊗ D (π)−1

]
D (vec Is) (1 ⊗ Is) dπ

−
{ [

Is ⊗ D (π)−1
]

−
[
E ⊗ D (π)−1

]
D (vec Is)

}
dvec Z (11.61)

where dπ is given by (11.55) and dvec Z is given by (11.57).

Proof Differentiating (11.60) gives

dR = d
[
D (π)−1

] (
I − Z + ZdgE

)
+ D (π)−1

[
− dZ + (

dZdg
)

E
]
. (11.62)

Applying the vec operator gives

dvec R =
[ (

I − Z + ZdgE
)T ⊗ Is

]
dvec

[
D (π)−1

]

−
[
Is ⊗ D (π)−1

]
dvec Z +

[
E ⊗ D (π)−1

]
dvec Zdg. (11.63)

Using (2.82) for dvec
[
D (π)−1

]
, (2.69) for dvecD (π), and (11.12) for dvec Zdg

yields

dvec R = −
[
RTD (π) ⊗ Is

] [
D (π)−1 ⊗ D (π)−1

]
D (vec I) (1 ⊗ I) dπ

−
[
I ⊗ D (π)−1

]
dvec Z +

[
E ⊗ D (π)−1

]
D (vec I) dvec Z (11.64)

which simplifies to give (11.61). ��
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11.4.4 Mixing Time and the Kemeny Constant

The mixing time K of a chain is the mean time required to get from a specified
state to a state chosen at random from the stationary distribution π . Remarkably, K

is independent of the starting state (Grinstead and Snell 2003; Hunter 2006) and is
sometimes called Kemeny’s constant; it is a measure of the rate of convergence to
stationarity, and is K = trace(Z) (Hunter 2006). In addition to being a quantity of
interest in itself, the rate of convergence also plays a role in the sensitivity of the
stationary distribution of ergodic chains (Hunter 2005; Mitrophanov 2005).

Theorem 11.4.4 The sensitivity of K is

dK = (vec Is)
T dvec Z. (11.65)

Proof Differentiating K = trace(Z) gives

dK = 1T (I ◦ dZ) 1. (11.66)

Applying the vec operator gives

dK =
(

1T ⊗ 1T
)
D (vec I)dvec Z (11.67)

which simplifies to (11.65). ��

11.4.5 Implicit Parameters and Compensation

Theorems 11.4.1, 11.4.2, 11.4.3, and 11.4.4 are written in terms of dvec P. However,
perturbation of any element, say pkj , to pkj + θkj , must be compensated for by
adjustments of the other elements in column j so that the column sum remains
equal to 1 (Conlisk 1985). Two kinds of compensation are likely to be of use
in applications: additive and proportional. Additive compensation adjusts all the
elements of the column by an equal amount, distributing the perturbation θkj

additively over column j . Proportional compensation distributes θkj in proportion
to the values of the pij , for i �= k. Proportional compensation is attractive because
it preserves the pattern of zero and non-zero elements within P.

To develop the compensation formulae, let us start by considering a probability
vector p, of dimension s × 1, with pi ≥ 0 and

∑
i pi = 1. Let θi be the perturbation

of pi , and write

p(θ) = p(0) + Aθ (11.68)



268 11 Sensitivity Analysis of Discrete Markov Chains

for some matrix A to be determined. If y is a function of p, then

dy = dy

dpT

dp

dθT
dθ (11.69)

evaluated at θ = 0.

Additive compensation For the case of additive compensation, we write

p1(θ) = p1(0) + θ1 − θ2

s − 1
− · · · − θs

s − 1

p2(θ) = p2(0) − θ1

s − 1
+ θ2 − · · · − θs

s − 1

... (11.70)

ps(θ) = ps(0) − θ1

s − 1
− θ2

s − 1
− · · · + θs

The perturbation θ1 is added to p1 and compensated for by subtracting θ1/(s − 1)

from all other entries of p; clearly
∑

i pi(θ) = 1 for any perturbation vector θ .
The system of Eqs. (11.70) can be written

p(θ) = p(0) +
(

I − 1

s − 1
C
)

θ . (11.71)

Defining E to be a matrix of ones, then the matrix C can be written (as a so-called
Toeplitz matrix) as C = E − I, with zeros on the diagonal and ones elsewhere. Thus
the matrix A in (11.68) is

A = I − 1

s − 1
C (11.72)

Proportional compensation For proportional compensation, assume that pi < 1
for all i. The vector p(θ) is

p1(θ) = p1(0) + θ1 − p1θ2

1 − p2
− · · · − p1θs

1 − ps

p2(θ) = p2(0) − p2θ1

1 − p1
+ θ2 − · · · − p2θs

1 − ps

... (11.73)

ps(θ) = ps(0) − psθ1

1 − p1
− psθ2

1 − p2
− · · · + θs
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The perturbation θ1 is added to p1 and compensated for by subtracting θ1pi/(1−p1)

from the ith entry of p. Again,
∑

i pi(θ) = 1 for any perturbation vector θ .
Equation (11.73) can be written

p(θ) = p(0) +
[
I − D (p) C D (1 − p)−1

]
θ (11.74)

so that the matrix A in (11.68) is

A = I − D (p) C D (1 − p)−1 (11.75)

The transition matrix We have derived compensation formulae for a single
probability vector p. Now consider perturbation of a probability matrix P, each
column of which is a probability vector. Define a perturbation matrix � where θij

is the perturbation of pij . Perturbations of column j are to be compensated by a
matrix Aj , so that

P(�) = P(0) +
[
A1�(:, 1) · · · As�(:, s)

]
(11.76)

where Ai compensates for the changes in column i of P. Applying the vec operator
to (11.76) gives

vec P(�) = vec P(0) +
⎛

⎜⎝
A1

. . .

As

⎞

⎟⎠ vec � (11.77)

= vec P(0) +
s∑

i=1

(Eii ⊗ Ai ) vec �. (11.78)

The terms in the summation in (11.78) are recognizable as the vec of the product
Ai�Eii ; thus

P(�) = P(0) +
s∑

i=1

Ai�Eii (11.79)

where Eii is a matrix with a 1 in the (i, i) entry and zeros elsewhere.

Theorem 11.4.5 Let P be a column-stochastic s × s transition matrix. Let � be
a matrix of perturbations, where θij is applied to pij , and the other entries of �

compensate for the perturbation. Let C = E − I. If compensation is additive, then

P(�) = P(0) +
(

I − 1

s − 1
C
)

� (11.80)
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dvec P

dvec T�
=

[
Is2 − 1

s − 1
(Is ⊗ C)

]
. (11.81)

If compensation is proportional, then

P(�) = P(0) +
s∑

i=1

{
I − D [P(:, i)] C D [1 − P(:, i)]−1

}
�Eii (11.82)

dvec P

dvec T�
= Is2 −

s∑

i=1

{
Eii ⊗ D [P(:, i)] C D [1 − P(:, i)]

}
. (11.83)

Proof P(�) is given by (11.79). If compensation is additive, Ai is given by (11.72)
for all i. Substituting into (11.79) gives (11.80). Differentiating (11.80) and applying
the vec operator gives (11.81).

If compensation is proportional, substituting (11.75) for Ai in (11.79)
gives (11.82). Differentiating yields

dP = (dθ)

s∑

i=1

Eii −
s∑

i=1

D [P(:, 1)] C D [1 − P(:, i)]−1(d�)Eii . (11.84)

Using the vec operator gives (11.83). ��
Perturbations of P subject to compensation are given by perturbations of �. Thus

for any function y(P) we can write

dy

dvec TP

∣∣∣∣
comp

= dy

dvec TP

dvec P

dvec T�
(11.85)

where dvec P/dvec T� is given (for additive and proportional compensation) by
Theorem 11.4.5. The slight notational complexity is worthwhile for clarifying how
to use Theorem 11.4.5 in practice.

11.5 Species Succession in a Marine Community

Markov chains are used by ecologists as models of species replacement (succession)
in ecological communities; (e.g., Horn 1975; Hill et al. 2004; Nelis and Wootton
2010). In these models, the state of a point on a landscape is given by the species
occupying that point. The entry pij of P is the probability that species j is replaced
by species i between t and t +1. If a community consists of a large number of points
independently subject to the transition probabilities in P, the stationary distribution
π will give the relative frequencies of species in the community at equilibrium.
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Hill et al. (2004) used a Markov chain to describe a community of encrusting
organisms occupying rock surfaces at 30–35 m depth in the Gulf of Maine. The
Markov chain contained 14 species plus an additional state (“bare rock”) for
unoccupied substrate. The matrix P was estimated from longitudinal data (Hill et al.
2002, 2004) and is given, along with a list of species names, in Appendix B. We
will use the results of this chapter to analyze the sensitivity of species diversity
and the Kemeny constant to the processes of colonization and replacement that
determing P.

11.5.1 Biotic Diversity

The stationary distribution π , with the species numbered in order of decreasing
abundance and bare rock placed at the end as state 15, is shown in Fig. 11.2. The
two dominant species are an encrusting sponge (called Hymedesmia) and a bryozoan
(Crisia).

The entropy of this stationary distribution, H(π) = −πT(log π), where the
logarithm is applied elementwise, is used as an index of biodiversity; it is maximal
when all species are equally abundant and goes to 0 in a community dominated by
a single species. The sensitivity of H is

dH = −
(

log πT + 1T
)

dπ (11.86)

Most ecologists, however, would not include bare substrate in a measure of
biodiversity, so we define instead a “biotic diversity” Hb(π) = H (πb) where

πb = Gπ

‖Gπ‖ . (11.87)

Fig. 11.2 The stationary
distribution for the subtidal
benthic community
succession model of Hill
et al. (2004). States 1–14
correspond to species,
numbered in decreasing order
of abundance in the stationary
distribution. State 15 is bare
rock, unoccupied by any
species. For the identity of
species and the transition
matrix, see Appendix B
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The matrix G, of dimension 14 × 15, is a 0–1 matrix that selects rows 1–14 of π .
Because π is positive, ‖Gπ‖ = 1TGπ . Differentiating πb gives

dπb =
(

G

1TGπ
− Gπ1TG

(
1TGπ

)2

)
dπ (11.88)

which simplifies to

dπb =
(

G − πb1TG

1TGπ

)
dπ (11.89)

This model contains no explicit parameters; perturbations of the transition
probabilities themselves are of interest and a compensation pattern is needed.
Because the relative magnitudes of the entries in a column of P reflect the relative
abilities of species to capture or to hold space, proportional compensation is
appropriate in this case because it preserves these relative abilities.

The sensitivity and elasticity of the biotic diversity Hb to changes in the matrix
P, subject to proportional compensation, are

dHb

dvec TP

∣∣∣∣
comp

= dHb

dπT
b︸︷︷︸

1

dπb

dπT
︸︷︷︸

2

dπ

dvec TP︸ ︷︷ ︸
3

dvec P

dvec T�︸ ︷︷ ︸
4

(11.90)

εHb

εvec TP

∣∣∣∣
comp

= 1

Hb

dHb

dvec TP
D (vec P) (11.91)

Term 1 on the right hand side of (11.90) is the derivative of Hb with respect to
πb, and is given by (11.86). Term 2 is the derivative of the biotic diversity vector
πb with respect to the full diversity vector π , given by (11.89). Term 3 is the
derivative of the diversity vector π with respect to the transition matrix P, given
by, (11.55). Finally, Term 4 is the derivative of the matrix P taking into account the
compensation structure in (11.83).

The sensitivity and elasticity vectors (11.90) and (11.91) are of dimension
1 × s2 = 1 × 255. To reduce the number of independent perturbations, we
consider subsets of the pij : disturbance (in which a species is replaced by bare
rock), colonization of unoccupied space, replacement of one species by another,
and persistence of a species in its location, where

P [disturbance of sp. i] = psi

P [colonization by sp. i] = pis

P [persistence of sp. i] = pii
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Fig. 11.3 The elasticity of the biotic diversity Hb(π) calculated over the biotic states of the
stationary distribution of the subtidal benthic community succession model of Hill et al. (2004).
States 1–14 correspond to species, numbered in decreasing order of abundance in the stationary
distribution. State 15 is bare rock, unoccupied by any species. For the identity of species and the
transition matrix, see Appendix B

P [replacement of sp. i] =
∑

k �=i,s

pki

P [replacement by sp. i] =
∑

j �=i,s

pij .

Extracting the corresponding elements of εHb

εvec TP
gives the elasticities to these

classes of probabilities. Figure 11.3 shows that the dominant species (1 and 2)
have impacts that are larger than, and opposite in sign to, those of the remaining
species. Biodiversity would be enhanced by increasing the disturbance of, or the
replacement of, species 1 and 2, and reduced by increasing the rates of colonization
by, persistence of, or replacement by species 1 and 2.

11.5.2 The Kemeny Constant and Ecological Mixing

Ecologists have used several measures of the rate of convergence of communities
modelled by Markov chains, including the damping ratio and Dobrushin’s coef-
ficient of ergodicity (Hill et al. 2004). The Kemeny constant K is an interesting
addition to this list; it gives the expected time to get from any initial state to
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Fig. 11.4 The sensitivity of the Kemeny constant K of the subtidal benthic community succession
model of Hill et al. (2004). States 1–14 correspond to species, numbered in decreasing order of
abundance in the stationary distribution. State 15 is bare rock, unoccupied by any species. For the
identity of species and the transition matrix, see Appendix B

a state selected at random from the stationary distribution (Hunter 2006). Once
reaching that state, the behavior of the chain and the stationary process are
indistinguishable.

The sensitivity of K , subject to compensation, is

dK

dvec TP

∣∣∣∣
comp

= dK

dvec TZ

dvec Z

dvec TP

dvec P

dvec T�
(11.92)

where the three terms on the right hand side are given by (11.65), (11.57),
and (11.83), respectively.

Figure 11.4 shows the sensitivities dK/dvec TP, subject to proportional
compensation, and aggregated as in Fig. 11.3. Unlike the case with Hb, the
two dominant species do not stand out from the others. Increases in the rates
of replacement will speed up convergence, and increases in persistence will
slow convergence. The disturbance of, colonization by, persistence of, and
replacement of species 6 (it is a sea anemone, Urticina crassicornis) have
particularly large impacts on K . Examination of row 6 and column 6 of P
(Appendix B) shows that U. crassicornis has the highest probability of persistence
(p66 = 0.86), and one of the lowest rates of disturbance, in the community.
While it is far from dominant (Fig. 11.2), it has a major impact on the rate
of mixing.
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11.6 Discussion

Given that many properties of finite state Markov chains can be expressed as
simple matrix expressions, matrix calculus is an attractive approach to finding
the sensitivity and elasticity to parameter perturbations. Most of the literature on
perturbation analysis of Markov chains has focused on the stationary distribution
of ergodic chains, but the approach here is equally applicable to absorbing chains,
and to dependent variables other than the stationary distribution. The perturbation
of ergodic chains is often studied using generalized inverses, since the influential
studies of Meyer (Meyer 1975, 1994; Golub and Meyer 1986; Funderlic and Meyer
1986). Matrix calculus provides a complementary approach; the sensitivity of the
stationary distribution π obtained here agrees with the result obtained by Golub and
Meyer (1986) using the group generalized inverse.

The examples shown here are typical of cases where absorbing or ergodic
Markov chains are used in population biology and ecology. In each example, the
dependent variables of interest are functions several steps removed from the chain
itself. The ease with which one can differentiate such functions is a particularly
attractive property of the matrix calculus approach.

A Appendix A: Proofs

Theorems 11.2.1 and 11.2.2 give the sensitivities of the moments of the number of
visits to transient states and of the time to absorption, respectively. These results are
obtained by applying matrix calculus to the expressions for the moments. Proofs are
given in the text for the first two moments; the proofs for the others follow the same
steps but introduce no new concepts, and so are presented here.

A.1 Derivatives of the Moments of Occupancy Times

To continue the proof of Theorem 11.2.1, take partial differentials of N3 in (11.5)
with respect to N1 and Ndg, to obtain

∂N1N3 =
(

6N2
dg − 6Ndg + I

)
dN1 (11.93)

∂NdgN3 = 6
(
dNdg

)
NdgN1 + 6Ndg

(
dNdg

)
N1 − 6

(
dNdg

)
N1 (11.94)

Applying the vec operator to each term and using Roth’s theorem gives

∂N1vec N3 =
[
I ⊗

(
6N2

dg − 6Ndg + I
)]

dvec N1 (11.95)
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∂Ndgvec N3 =
[
6
(

NT
1 Ndg ⊗ I

)
+ 6

(
NT ⊗ Ndg

)
− 6

(
NT

1 ⊗ I
)]

dvec Ndg. (11.96)

Substituting (11.95) and (11.96) into (11.13) gives (11.9).
Taking partial differentials of N4 in (11.6) gives

∂N1N4 =
(

24N3
dg − 36N2

dg + 14Ndg − I
)

dN1 (11.97)

∂NdgN4 = 24
(
dNdg

)
N2

dgN1 + 24Ndg
(
dNdg

)
NdgN1 + 24N2

dg

(
dNdg

)
N1

−36
(
dNdg

)
NdgN1 − 36Ndg

(
dNdg

)
N1 + 14

(
dNdg

)
N1. (11.98)

Applying the vec operator yields

∂N1 vec N4 =
[
I ⊗

(
24N3

dg − 36N2
dg + 14Ndg − I

)]
dvec N1 (11.99)

∂Ndg vec N4 =
[
24

(
NT

1 N2
dg ⊗ I

)
+ 24

(
NT

1 Ndg ⊗ Ndg

)
+ 24

(
NT

1 ⊗ N2
dg

)

−36
(

NT
1 Ndg ⊗ I

)
− 36

(
NT

1 ⊗ Ndg

)

+14
(

NT
1 ⊗ I

)]
dvec Ndg. (11.100)

Substituting (11.99) and (11.100) into (11.13) gives (11.10).

A.2 Derivatives of the Moments of Time to Absorption

To continue the proof of Theorem 11.2.2, take partial differentials of η3, in (11.21)
with respect to η1 and N1, to obtain

∂η1η
T
3 =

(
dηT

1

) (
6N2

1 − 6N1 + I
)

(11.101)

∂N1η
T
3 = 6ηT

1 (dN1) + 6ηT
1 N1 (dN1) − 6ηT

1 (dN1) . (11.102)

Applying the vec operator yields

∂η1η3 =
(

6N2
1 − 6N1 + I

)T
dη1 (11.103)

∂N1η3 =
[
6
(

NT
1 ⊗ ηT

1

)
+ 6

(
I ⊗ ηT

1 N1

)
− 6

(
I ⊗ ηT

1

)]
dvec N1 (11.104)

which combine to yield (11.25).
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The partial differentials of η4 in (11.22) with respect to η1 and N1 are

∂η1η
T
4 = dηT

1

(
24N3

1 − 36N2
1 + 14N1 − I

)
(11.105)

∂N1η
T
4 = ηT

1

[
24 (dN1) N2

1 + 24N1 (dN1) N1 + 24N2
1 (dN1)

− 36 (dN1) N1 − 36N1 (dN1) + 14dN1

]
. (11.106)

Applying the vec operator to each equation gives

∂η1η4 =
(

24N3
1 − 36N2

1 + 14N1 − I
)T

dη1 (11.107)

∂N1η4 =
{

24

[(
N2

1

)T ⊗ ηT
1

]
+ 24

(
NT

1 ⊗ ηT
1 N1

)
+ 24

(
I ⊗ ηT

1 NT
1

)

− 36
(

NT
1 ⊗ ηT

1

)
− 36

(
I ⊗ ηT

1 N1

)
+ 14

(
I ⊗ ηT

1

)}
dvec N1 (11.108)

which combine to give (11.26).

B Appendix B: Marine Community Matrix

Model states Species type State ID Number

1 Hymedesmia 1 sp. Sponge HY1 14875

2 Crisia eburnea Bryozoan CRI 9915

3 Myxilla fimbriata Sponge MYX 4525

4 Mycale lingua Sponge MYC 3001

5 Filograna implexa Polychaete FIL 2219

6 Urticina crassicornis Sea anemone URT 992

7 Ascidia callosa Ascidian ASC 1052

8 Aplidium pallidum Ascidian APL 1166

9 Hymedesmia 2 sp. Sponge HY2 1226

10 Idmidronea atlantica Bryozoan IDM 730

11 Coralline Algae Encrusting algae COR 875

12 Metridium senile Sea anemone MET 1298

13 Parasmittina jeffreysi Bryozoan PAR 402

14 Spirorbis spirorbis Polychaete SPI 225

15 Bare Rock BR 4266
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The transition matrix for the marine benthic community (Hill et al. 2004) is

P =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.771 0.145 0.052 0.017 0.117 0.009 0.241 0.199 0.056 0.309 0.056 0.025 0.321 0.158 0.101
0.102 0.609 0.061 0.054 0.218 0.024 0.223 0.235 0.147 0.228 0.222 0.068 0.179 0.448 0.320
0.017 0.031 0.710 0.006 0.035 0.012 0.051 0.038 0.026 0.031 0.028 0.018 0.023 0.018 0.025
0.004 0.011 0.004 0.839 0.004 0.000 0.016 0.018 0.011 0.010 0.008 0.030 0.000 0.018 0.009
0.015 0.028 0.020 0.005 0.404 0.016 0.080 0.089 0.020 0.027 0.036 0.016 0.063 0.085 0.062
0.001 0.005 0.004 0.000 0.008 0.863 0.024 0.007 0.006 0.006 0.000 0.000 0.000 0.006 0.005
0.018 0.022 0.008 0.004 0.033 0.001 0.105 0.044 0.011 0.042 0.025 0.010 0.030 0.030 0.048
0.012 0.025 0.008 0.006 0.032 0.007 0.041 0.154 0.026 0.031 0.020 0.016 0.020 0.018 0.034
0.002 0.011 0.025 0.008 0.013 0.016 0.014 0.015 0.586 0.010 0.007 0.004 0.003 0.018 0.013
0.014 0.015 0.003 0.004 0.007 0.003 0.033 0.027 0.021 0.165 0.007 0.003 0.020 0.030 0.031
0.003 0.012 0.005 0.006 0.006 0.004 0.025 0.016 0.006 0.013 0.507 0.001 0.017 0.006 0.017
0.002 0.008 0.007 0.011 0.005 0.007 0.005 0.020 0.005 0.008 0.002 0.537 0.000 0.006 0.017
0.005 0.005 0.002 0.000 0.006 0.000 0.014 0.009 0.001 0.012 0.005 0.003 0.248 0.000 0.011
0.003 0.004 0.008 0.003 0.005 0.000 0.012 0.009 0.005 0.006 0.003 0.003 0.000 0.030 0.013
0.029 0.069 0.084 0.036 0.108 0.036 0.115 0.122 0.074 0.104 0.076 0.266 0.076 0.127 0.294

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.109)
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Chapter 12
Sensitivity Analysis of Continuous
Markov Chains

12.1 Introduction

When Markov chains are used as mathematical models of natural or social
phenomena, the transition intensities or probabilities are usually defined in terms of
parameters that are relevant to the scientific question at hand. Sensitivity analysis
of such models is important because it quantifies the dependence of the model
behavior on the parameters. This chapter presents sensitivity results for finite-state,
continuous-time absorbing Markov chains, paralleling the approach for discrete-
time chains in Chap. 11. In absorbing chains, interest focuses on behavior prior
to absorption (time spent in transient states and time to absorption) and on the
probabilities of absorption in each absorbing state. Here we will derive formulae
for the sensitivity and the elasticity (i.e., proportional sensitivity) of the moments
of the time to absorption, the time spent in each transient state, and the number of
visits to each transient state.

The most basic difference between discrete-time and continuous-time Markov
chains is that the former are defined by transition probabilities, while the latter are
defined by transition rates. This leads to differences in the structure of the matrices,
but there is a nice parallelism in the results.

Perturbation analysis of Markov chains has a long history (Schweitzer 1968;
Meyer 1975). Most of the literature, however, is devoted to discrete-time chains,
and most of that focuses on ergodic chains and the perturbation analysis of the
stationary distribution; e.g. Funderlic and Meyer (1986), Golub and Meyer (1986),
Hunter (2005), Cho and Meyer (2000), and Seneta (1993). Much less attention has
been paid to continuous-time chains. Perturbation expansions have been developed
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Perturbation analysis of continuous-time absorbing Markov chains. Numerical Linear Algebra with
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for the stationary distribution of ergodic continuous-time chains, with application
to queueing models (Altman et al. 2004), and sensitivity results and perturbation
bounds presented for transient solutions (Ramesh and Trivedi 1993; Mitrophanov
2004). The operations research literature contains many studies of the sensitivity
of performance measures calculated over realizations of a continuous-time ergodic
Markov chain; e.g., Cao (1989), Glasserman (1992), and Cao et al. (1996). The
results to be presented here complement and extend the existing literature on
perturbation analysis of Markov chains, by focusing on the statistical properties of
the solutions of absorbing continuous-time chains, by introducing the use of matrix
calculus, and (as a consequence of that technique) extending the range of parameters
whose effects can be evaluated.

12.1.1 Absorbing Markov Chains

I consider a finite state, homogeneous, continuous-time Markov chain with intensity
matrix Q, where qij is the rate of transition from stage j to stage i. The intensity
matrix satisfies qij ≥ 0 for i �= j and qjj = −∑

i �=j qij . Note that Q is written
in column-to-row orientation, and operates on column vectors. An absorbing chain
contains at least one absorbing class of states. Numbering the states so that the
transient states appear before the absorbing states leads to the intensity matrix

Q =
(

U 0
M 0

)
. (12.1)

The matrix U contains rates of transitions among the transient states, and M contains
the rates of transition from transient to absorbing states.

I assume that U and M are differentiable functions of a vector θ of parameters,
and that Q[θ] remains an intensity matrix for sufficiently small perturbations of θ .
This includes as a special case the situation where the elements of θ are simply
some or all of the qij , i �= j . The goal of the perturbation analysis is to obtain the
derivatives of properties of the chain with respect to θ .

12.2 Occupancy Time in Transient States

Let s be the number of transient states, and νij be the time spent in transient state i by

an individual starting in transient state j . Define Nk = E
(
νk
ij

)
as the matrix whose

entries are the kth moments, and Ndg = (N1)dg. The matrix N1 of expectations is
the fundamental matrix of the chain. The first several moments of occupancy times
are given by the entries of the matrices

N1 = −U−1 (12.2)
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N2 = 2NdgN1 (12.3)

N3 = 6N2
dgN1 (12.4)

N4 = 24N3
dgN1 (12.5)

and, in general, by

Nk = kNdgNk−1 k ≥ 2 (12.6)

(Iosifescu 1980, Thm. 8.7).
The differentials of the moments (12.2), (12.3), (12.4), and (12.5) are

dvec N1 =
(

NT
1 ⊗ N1

)
dvec U (12.7)

dvec N2 = 2
{ (

NT
1 ⊗ I

)
D (vec I) + (

I ⊗ Ndg
)} (

NT
1 ⊗ N1

)
dvec U (12.8)

dvec N3 = 6
{

2
(

NT
1 ⊗ Ndg

)
D (vec I) +

(
I ⊗ N2

dg

)} (
NT

1 ⊗ N1

)
dvec U

(12.9)

dvec N4 = 24
{

3
(

NT
1 ⊗ N2

dg

)
D (vec I) +

(
I ⊗ N3

dg

)} (
NT

1 ⊗ N1

)
dvec U

(12.10)

where I = Is throughout. A recursive relation for all the moments is

dvec Nk = k
(

NT
k−1 ⊗ I

)
D (vec I)dvec N + k

(
I ⊗ Ndg

)
dvec Nk−1 k ≥ 2.

(12.11)

The variance, standard deviation, and coefficient of variation of the νij are
important in applications; they are

V
(
νij

) = N2 − N1 ◦ N1 (12.12)

SD
(
νij

) =
√

V
(
νij

)
(12.13)

CV
(
νij

) = D (vec N1)
−1 vec SD

(
νij

)
(12.14)

where the square root is taken elementwise. Their derivatives are

dvec V = 2
[ (

NT ⊗ I
)
D (vec I) + (

I ⊗ Ndg
) − D (vec N)

]
dvec N1

(12.15)

dvec SD = 1

2
D

[
vec SD

(
νij

)]−1
dvec V (12.16)
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dvec CV = D (vec N1)
−1 dvec SD

−
[
(vec SD)T D (vec N1)

−1 ⊗ D (vec N1)
−1
]

×D
(
vec Is2

) (
1s2 ⊗ Is2

)
dvec N1 (12.17)

(suppressing the arguments of V , SD and CV ). Because N1 usually contains zeros,
D (vec N1)

−1 must be restricted to the non-zero entries; the coefficient of variation
is undefined if the mean is zero.

Derivation The fundamental matrix N1 = −U−1. Applying (2.82) yields (12.7).
The derivatives of the higher moments are obtained by differentiating N2 – N4
in (12.3), (12.4), and (12.5). For example, the differential of N4 is

dN4 = 24
{

3N2
dg

(
dNdg

)
N1 + N3

dg (dN1)
}

, (12.18)

using the fact that Ndg commutes with itself and dNdg. Applying the vec operator
gives

dvec N4 = 24
{

3
(

NT
2 ⊗ N2

dg

)
dvec Ndg +

(
Is ⊗ N3

dg

)
dvec N1

}
. (12.19)

Substituting (11.12) for dvec Ndg and (12.7) for dvec N1 gives (12.10).
Results (12.8) and (12.9) are obtained in similar fashion.

Differentiating the recurrence relationship (12.6) gives

dNk = k
(
dNdg

)
Nk−1 + sNdg (dNk−1) . (12.20)

Apply the vec operator,

dvec Nk = k
(

NT
k−1 ⊗ Is

)
dvec Ndg + k

(
Is ⊗ Ndg

)
dvec Nk−1, (12.21)

and substitute (11.12) for dvec Ndg to obtain (12.11).
The derivative of V in (12.15) comes from differentiating (12.12),

dV = dN2 − 2N1 ◦ dN1, (12.22)

applying the vec operator,

Dvec V = dvec N2 − 2D (vec N1) dvec N1, (12.23)

and then using (12.7) and (12.8). The derivative of SD
(
νij

)
in (12.16) follows

from (2.83). The derivative of CV
(
νij

)
in (12.17) is obtained using (2.84), with

x = vec SD and y = vec N1.
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12.3 Longevity: Time to Absorption

Let ηj be the time to absorption for an individual currently in transient state j . The
vectors of the kth moments of the time to absorption, ηk , satisfy

ηT
1 = 1TN1 (12.24)

ηT
2 = (2)1TN2

1 (12.25)

ηT
3 = (6)1TN3

1 (12.26)

ηT
4 = (24)1TN4

1 (12.27)

and in general

ηT
k = kηT

k−1N1 k ≥ 2 (12.28)

(Iosifescu 1980, Thm. 8.6)
The variance, standard deviation, and coefficient of variation of the time to

absorption are

V (η) = η2 − η1 ◦ η1 (12.29)

SD (η) = √
V (η) (12.30)

CV (η) = D
(
SD(η)

)−1
η1 (12.31)

with the square root taken elementwise.
The derivatives of the moments in (12.24), (12.25), (12.26), and (12.27) are given

by

dη1 =
(

NT
1 ⊗ ηT

1

)
dvec U (12.32)

dη2 =
{

2

[(
NT

1

)2 ⊗ ηT
1

]
+ 2

(
NT

1 ⊗ ηT
1 N1

)}
dvec U (12.33)

dη3 =
{

6

[(
NT

1

)3 ⊗ ηT
1

]
+ 6

[(
NT

1

)2 ⊗ ηT
1 N1

]

+ 3
(

NT
1 ⊗ ηT

2 N1

)}
dvec U (12.34)

dη4 =
{

24

[(
NT

1

)4 ⊗ ηT
1

]
+ 24

[(
NT

1

)3 ⊗ ηT
1 N1

]

+12

[(
NT

1

)2 ⊗ ηT
2 N1

]
+ 4

(
NT

1 ⊗ ηT
3 N1

)}
dvec U (12.35)
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and, recursively,

dηk = kNT
1 dηk−1 + k

(
Is ⊗ ηT

k−1

)
dvec N1. (12.36)

The derivatives of the variance, standard deviation, and coefficient of variation of
the time to absorption are (suppressing the arguments)

dV = 2

{[(
NT

1

)2 ⊗ ηT
1

]
+
(

NT
1 ⊗ ηT

1 N1

)
− D

(
η1
) (

NT
1 ⊗ ηT

1

)}
dvec U

(12.37)

dSD = 1

2
D (SD)−1 dV (12.38)

dCV = D
(
η1
)−1

dSD −
[
SDTD

(
η1
)−1 ⊗ D

(
η1
)−1

]

×D (vec Is) (1s ⊗ Is) dη1. (12.39)

Derivation Differentiating (12.24) for the expected time to absorption gives

dηT
1 = 1T

s dN1, (12.40)

Applying the vec operator, substituting (12.7) for dvec N1, and simplifying
gives (12.32). The derivatives of the higher moments are obtained in the same
way; e.g., for η4,

dηT
4 = (24)1T

s

[
(dN1) N3

1 + N1 (dN1) N2
1 + N2

1 (dN1) N1 + N3
1 (dN1)

]
.

(12.41)
Applying the vec operator yields

dη4 = 24

{[(
NT

1

)3 ⊗ 1T
s

]
+
[(

NT
1

)2 ⊗ 1T
s N1

]
+
[
NT

1 ⊗ 1T
s N2

1

]

+
[
Is ⊗ 1T

s N3
1

]}
dvec N1. (12.42)

Substituting (12.7) for dvec N1 and simplifying using Eqs. (12.24), (12.25),
and (12.26) gives (12.35). The derivatives of the second and third moments, (12.33)
and (12.34), are obtained in similar fashion.

The recursive formula (12.36) is obtained by differentiating (12.28)

dηT
k = k

(
dηT

k−1

)
N1 + kηT

k−1dN1. (12.43)

Apply the vec operator,

dηk = kNT
1 dηk−1 + k

(
Is ⊗ ηT

k−1

)
dvec N1, (12.44)

substitute (12.7) for dvec N1, and simplify, to obtain (12.36).
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Differentiating (12.29) for the variance yields

dV = dη2 − 2η1 ◦ dη1. (12.45)

Applying the vec operator gives

dV = dη2 − 2D
(
η1
)
dη1. (12.46)

Substituting (12.32) for dη1 and (12.33) for dη2 gives the result (12.37). The
derivatives of the standard deviation, in (12.38), and the coefficient of variation,
in (12.39), are obtained by differentiating (12.30) and (12.31) and applying (2.83)
and (2.84).

12.4 Multiple Absorbing States and Probabilities of
Absorption

Consider a chain that includes a > 1 absorbing states. The entry mij of the a × s

submatrix M in (12.1) is the rate of transition from transient state j to absorbing
state i. The probabilities of absorption are defined as

bij = P
[
absorption in i |starting in j

]
. (12.47)

The a × s matrix B = (
bij

)
is

B = MN1 (12.48)

(Iosifescu 1980, Section 8.5.6). Column j of B is the probability distribution of the
eventual absorption state for an individual starting in transient state j . Usually a few
starting states are of particular interest (e.g., states corresponding to “birth”). Let
B(:, j) = Bej denote column j of B, where ej is the j th unit vector of length s.
Then

dB(:, j) =
(

eT
j ⊗ Is

)
dvec B. (12.49)

Similarly, row i of B is B(i, :) = eT
i B and

dvec B(i, :) =
(

Is ⊗ eT
i

)
dvec B (12.50)

where ei is the ith unit vector of length a. The derivative of B in (12.49)
and (12.50) is

dvec B =
(

NT
1 ⊗ I

)
dvec M +

(
NT

1 ⊗ B
)

dvec U. (12.51)
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Derivations Differentiating (12.48) yields

dB = (dM) N1 + M (dN1) . (12.52)

Applying the vec operator and simplifying gives

dvec B =
(

NT
1 ⊗ I

)
dvec M + (I ⊗ M) dvec N1 (12.53)

Substituting (12.7) for dvec N1 and simplifying gives (12.51).

12.5 The Embedded Chain: Discrete Transitions Within a
Continuous Process

If a continuous-time chain is observed only at the moments when it changes state,
the result is a discrete-time process called the embedded Markov chain, or the jump
chain, associated with Q (Iosifescu 1980, Section 8.3.2). The transition matrix of
this embedded chain can be written

P̂ =
(

Û 0

M̂ Ia

)
(12.54)

where

Û = Is − UU−1
dg (12.55)

M̂ = −MU−1
dg . (12.56)

The embedded chain provides information on the number of visits to each transient
state, rather than the time spent in each transient state. The expected numbers of
such visits are given by the fundamental matrix

N̂1 = (
I − Û

)−1
. (12.57)

The sensitivity analysis of the embedded chain follows directly from the discrete-
time results in previous chapters (Chaps. 4 and 5).

In particular, the differential of N̂1 is Caswell (2006)

dvec N̂1 =
(

N̂T
1 ⊗ N̂1

)
dvec Û. (12.58)
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However, this derivative is unlikely to be the sensitivity we are looking for. The
continuous-time chain is likely to be parameterized in terms of the rate matrices U
and M, rather than the probability matrices Û and M̂. To express the perturbation
analysis of P̂ in terms of the parameters of Q requires the derivatives of the
embedded chain with respect to the continuous chain; i.e.,

dvec Û

dvec TU
and

dvec M̂

dvec TM
.

These derivatives are

dvec Û =
[
−
(

U−1
dg ⊗ Is

)
+
(

U−1
dg ⊗ UU−1

dg

)
D (vec Is)

]
dvec U (12.59)

dvec M̂ = −
(

U−1
dg ⊗ Ia

)
dvec M (12.60)

+ (Is ⊗ M)
(

U−1
dg ⊗ U−1

dg

)
× D (vec Is) dvec U.

Using (12.59) and (12.61), one can write

dvec N̂1

dθT
=

(
N̂T

1 ⊗ N̂1

) dvec Û

dvec TU

dvec U

dθT
. (12.61)

Derivation Differentiate Û in (12.55),

dÛ = − (dU) U−1
dg − U

(
dU−1

dg

)
, (12.62)

apply the vec operator, and use (2.82) and (11.12) for dvec U−1
dg . The result is

dvec Û = −
[(

U−1
dg

)T ⊗ Is

]
dvec U − (Is ⊗ U) dvec U−1

dg

= −
(

U−1
dg ⊗ Is

)
dvec U + (Is ⊗ U)

(
U−1

dg ⊗ U−1
dg

)
D (vec Is)dvec U

which simplifies to give (12.59). Similarly, differentiating M̂ in (12.56) and applying
the vec operator gives

dvec M̂ = −
(

U−1
dg ⊗ Ia

)
dvec M − (Is ⊗ M) dvec U−1

dg . (12.63)

Using (2.82) and (11.12) for dvec U−1
dg and simplifying gives (12.61).
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12.6 An Example: A Model of Disease Progression

An important area of application of continuous-time Markov chains is the modelling
of transitions among disease states. In this context, the time to absorption is
longevity, and the time spent in various transient states has implications for the
quality of life during the disease. Fix and Neyman (1951) introduced the idea and
proposed a 4-state model for cancer, with two transient states (under treatment or
not) and two absorbing states (death from cancer or from other causes). Kay (1986)
proposed a model with k disease states and an absorbing state representing death.
There is now a large literature on such models and their estimation. Recently, studies
have proliferated that use Markov chain models of disease transmission to explore
the cost-effectiveness of screening and treatment procedures (e.g., Kuo et al. 1999;
Chen et al. 1999; Wu et al. 2006; Sonnenberg and Beck 1993).

Sensitivity analysis reveals how these demographic properties respond to
changes in parameters. As an example, I consider a model for the progression
of colorectal cancer (CRC) that was developed to study the cost-effectiveness of a
new CRC screening technique based on DNA testing of stool samples (Wu et al.
2006). The model includes 7 transient states (normal, small and large adenoma,
early and late preclinical CRC, and early and late clinical CRC) and 2 absorbing
states (death from CRC and death from other causes); see Fig. 12.1. Parameters
were estimated from the literature and from clinical studies in Taiwan.

This model, which describes the so-called natural history of the disease, was
embedded in a larger decision model to compare the cost-effectiveness of screening
strategies. The intensity matrix (12.1) corresponding to Fig. 12.1 is

Fig. 12.1 State transition diagram for an absorbing Markov chain model of colorectal cancer
(CRC) progression. The model includes 7 transient states based on the stage of development of
adenoma (polyps) or cancer, and two absorbing states corresponding to death from CRC and death
from other causes (OCD). Transition rates are given by λi , and mortality rate from other causes by
μ. (Modified, under the terms of a Creative Commons Attribution License, from Figure 1 of Wu
et al. 2006)
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Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ1 − μ 0 0 0 0 0 0 0 0
λ1 −λ2 − μ 0 0 0 0 0 0 0
0 λ2 −λ3 − μ 0 0 0 0 0 0
0 0 λ3 −λ4 − λ5 − μ 0 0 0 0 0
0 0 0 λ4 −λ6 − μ 0 0 0 0
0 0 0 λ5 0 −λ7 − μ 0 0 0
0 0 0 0 λ6 0 −λ8 − μ 0 0
0 0 0 0 0 λ7 λ8 0 0
μ μ μ μ μ μ μ 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(12.64)

The λi are transition rates; μ is the mortality rate from other causes of death. The
incidence rate of small adenoma (λ1) and the mortality rate due to other causes
of death (μ) are age-dependent. Here I have analyzed values for age 70; based
on figures in Wu et al. (2006). This leads to a parameter vector (all rates are per
year):

θ =

⎛

⎜⎜⎜⎝

λ1
...

λ8

μ

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.52 × 10−2

3.46 × 10−2

2.15 × 10−2

3.70 × 10−1

2.38 × 10−1

4.85 × 10−1

3.02 × 10−2

2.10 × 10−1

2.20 × 10−2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.65)

12.6.1 Sensitivity Results

The fundamental matrix (12.2) is

N1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

26.9 0 0 0 0 0 0
7.2 17.7 0 0 0 0 0
5.7 14.0 23.0 0 0 0 0
0.2 0.5 0.8 1.6 0 0 0
0.1 0.4 0.6 1.2 2.0 0 0
0.9 2.2 3.6 7.2 0 19.2 0
0.3 0.7 1.2 2.4 4.1 0.00 4.3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.66)

Thus, given these rates, a 70-year old normal condition individual would expect
to spend 27 years in stage 1, and only 0.9 and 0.3 years in stages 6 and 7 (early
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and late clinical CRC).1 Individuals in more advanced stages can expect to spend
progressively longer periods in stages 6 and 7 (compare across rows 6 and 7 of N1).

The standard deviations (12.13) of the times spent in the transient states are

SD
(
νij

) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

26.9 0 0 0 0 0 0
14.2 17.7 0 0 0 0 0
15.2 21.2 23.0 0 0 0 0
0.8 1.1 1.4 1.6 0 0 0
0.7 1.1 1.4 1.8 2.0 0 0
5.8 8.9 11.2 15.0 0 19.2 0
1.6 2.4 3.0 3.9 4.3 0 4.3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.67)

Clearly, considerable variation can be expected in the times spent in the various
states; the standard deviation equals or exceeds the mean in every case.

Considering the sensitivity analysis of the time spent in transient states, focus on
the fate of a normal (state 1) individual. The expected times spent in each state by
such an individual are give by N1(:, 1). From (12.7) and (2.55) the sensitivity and
elasticity of N(:, 1) are

dN1(:, 1)

dθT
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−722.6 0 0 0 0 0 0 0 −722.6
280.9 −127.5 0 0 0 0 0 0 −321.6
223.4 64.5 −132.0 0 0 0 0 0 −387.8

7.6 2.2 4.6 −0.3 −0.3 0 0 0 −13.5
5.6 1.6 3.4 0.2 −0.2 −0.3 0 0 −10.2

34.8 10.0 21.0 −1.4 2.3 0 −17.1 0 −79.0
11.6 3.4 7.0 0.3 −0.5 0 0 −1.3 −22.5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

εN1(:, 1)

εθT
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.4 0 0 0 0 0 0 0 −0.6
0.6 −0.6 0 0 0 0 0 0 −1.0
0.6 0.4 −0.5 0 0 0 0 0 −1.5
0.6 0.4 0.5 −0.6 −0.4 0 0 0 −1.5
0.6 0.4 0.5 0.4 −0.4 −1.0 0 0 −1.5
0.6 0.4 0.5 −0.6 0.6 0 −0.6 0 −1.9
0.6 0.4 0.5 0.4 −0.4 0.0 0 −0.9 −1.7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.68)

These elasticities imply that a 1% increase in λ1 will (to first order) cause about
a 0.4% decrease in the mean time spent in the normal state and a 0.6% increase in
the mean time spent in each other state. A 1% increase in λ4 (the rate of transition
between early and late preclinical CRC) creates a 0.6% decrease in the time spent

1This calculation holds the mortality rate fixed at its values at age 70; in reality it increases with
age. Wu et al. (2006) included age variation by providing values of λ1 (the rate of progression
from normal to small adenoma) specific to 5-year intervals from 50 to 70 years of age; all other
parameters were age-invariant.
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in stages 4 and 6 (the early CRC stages) and a 0.4% increase in the time spent in
stages 5 and 7 (the late CRC stages). An increase in the mortality rate μ due to other
causes of death reduces the time spent in any of the transient states.

The elasticity of the variance in the time spent in the transient states by an
individual in state 1 is

εV (νi1)

εθT
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.8 0 0 0 0 0 0 0 −1.2
0.4 −1.2 0 0 0 0 0 0 −1.2
0.5 0.3 −1.0 0 0 0 0 0 −1.8
0.5 0.4 0.5 −1.2 −0.8 0 0 0 −1.5
0.6 0.4 0.5 0.4 −0.4 −1.9 0 0 −1.6
0.6 0.4 0.5 −0.6 0.6 0 −1.2 0 −2.3
0.6 0.4 0.5 0.4 −0.4 0.0 0 −1.8 −1.7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.69)

The sign pattern is the same as that of the elasticities of the mean times in (12.68),
so we conclude that any parameter change that increases the mean time spent in
a transient state will also increase the variance in that time. The elasticities of the
variance are comparable to those of the mean (cf. (12.68) and (12.69)), showing that
the means and the variance respond with roughly equal proportional changes.

Longevity is measured by the time to absorption, and is a primary concern in
analyses of screening or treatment protocols. The vectors of the mean, standard
deviation, and coefficient of variation of longevity are

η1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

41.4
35.5
29.1
12.4
6.1

19.2
4.3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

SD(η) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

37.4
30.3
25.8
14.1

4.7
19.2

4.3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

CV (η) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.9
0.9
0.9
1.1
0.8
1.0
1.0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.70)

The sensitivity and elasticity of expected longevity (life expectancy) with respect to
θ are

dη1

dθT
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−158.7 −45.8 −96.0 −1.2 1.3 −0.2 −17.1 −1.3 −1557.2
0 −112.2 −234.9 −3.0 3.2 −0.6 −41.9 −3.2 −1089.1
0 0 −384.2 −5.0 5.3 −1.0 −68.6 −5.2 −756.5
0 0 0 −10.0 10.7 −2.1 −138.8 −10.4 −176.0
0 0 0 0 0 −3.5 0 −17.8 −29.8
0 0 0 0 0 0 −367.0 0 −367.0
0 0 0 0 0 0 0 −18.6 −18.6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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εη1

εθT
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.06 −0.04 −0.05 −0.01 0.01 −0.00 −0.01 −0.01 −0.83
0 −0.11 −0.14 −0.03 0.02 −0.01 −0.04 −0.02 −0.68
0 0 −0.28 −0.06 0.04 −0.02 −0.07 −0.04 −0.57
0 0 0 −0.30 0.21 −0.08 −0.34 −0.18 −0.31
0 0 0 0 0 −0.28 0 −0.61 −0.11
0 0 0 0 0 0 −0.58 0 −0.42
0 0 0 0 0 0 0 −0.91 −0.09

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.71)

Almost all the nonzero elements are negative, because increasing any of the
rates leading towards clinical CRC reduces life expectancy, as does increasing the
mortality rate due to other causes of death. The exceptions are the sensitivities and
elasticities of η1 to λ5 (in column 5 of these matrices), which are positive because
λ5 delays the onset of clinical CRC (cf. Fig. 12.1).

The elasticities of E(η1), the life expectancy of a normal individual, to a change
in θ , appear in the first row of (12.71). The largest of these (except for the last
column, representing mortality from other causes of death) are to changes in
λ1, λ2, and λ3, the rates of transition from normal to small adenoma, small to
large adenoma, and large adenoma to preclinical CRC. The rates λ2 and λ3 have
large effects on E(η2), and λ3 has a large effect on E(η3). These transitions are
targets of screening and early treatment; this analysis quantifies the effect that such
interventions could have.

The sensitivity and elasticity of the standard deviation of longevity are

dSD (η)

dθT
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.27 −0.07 −0.16 −0.00 0.00 −0.00 −0.03 −0.00 −1.19
0 −0.13 −0.31 −0.00 0.00 −0.00 −0.06 −0.00 −0.76
0 0 −0.43 −0.00 0.00 −0.00 −0.09 −0.00 −0.61
0 0 0 −0.01 0.01 0.00 −0.27 0.00 −0.27
0 0 0 0 0 −0 0.00 −0.02 −0.02
0 0 0 0 0 0 −0.37 0 −0.37
0 0 0 0 0 0 0 −0.02 −0.02

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× 103

(12.72)
and

εSD (η)

εθT
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.11 −0.06 −0.09 −0.02 0.01 −0.00 −0.02 −0.01 −0.70
0 −0.15 −0.22 −0.04 0.03 −0.00 −0.06 −0.01 −0.55
0 0 −0.36 −0.05 0.05 −0.00 −0.11 −0.01 −0.52
0 0 0 −0.23 0.23 0.01 −0.58 0.00 −0.43
0 0 0 0 0 −0.16 0.00 −0.75 −0.09
0 0 0 0 0 0 −0.58 0 −0.42
0 0 0 0 0 0 0 −0.91 −0.09

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.73)

These have the same sign pattern as the sensitivity of η1, indicating that any
increase in life expectancy will be accompanied by an increase in the variance
of longevity. The coefficient of variation takes this joint change into account;
from (12.39),
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εCV (η)

εθT
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.04 0.02 0.03 0.00 −0.00 −0.00 0.01 −0.00 −0.31
0 −0.00 0.02 −0.01 0.00 −0.01 0.01 −0.01 −0.38
0 0 −0.01 −0.03 0.01 −0.02 0.01 −0.04 −0.21

0.00 0.00 0.00 −0.00 −0.07 −0.08 0.32 −0.14 0.19
0 0 0 0.00 0.00 −0.30 0.00 −0.27 −0.09
0 0 0 0 0 0.00 0.00 0.00 0.00
0 0 0 0 0 0 0 0.00 0.00

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.74)

Most of these elasticities are small, suggesting that the mean and standard
deviation respond roughly proportionally, so that the CV does not change much.

The matrix B in (12.48), giving the ultimate probability of death from CRC (row
1) or other causes of death (row 2) is

B =
(

0.1 0.2 0.4 0.7 0.9 0.6 0.9
0.9 0.8 0.6 0.3 0.1 0.4 0.1

)
. (12.75)

Focusing on the probability of death due to CRC, the sensitivity and elasticity,
from (12.50), are

dvec B(1, :)
dθT

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.5 1.0 2.1 0.0 −0.0 0.0 0.4 0.0 −7.1
0 2.5 5.2 0.1 −0.1 0.0 0.9 0.1 −11.5
0 0 8.4 0.1 −0.1 0.0 1.5 0.1 −12.5
0 0 0 0.2 −0.2 0.1 3.0 0.2 −8.5
0 0 0 0 0 0.1 0.00 0.4 −5.4
0 0 0 0 0 0 8.1 0 −11.1
0 0 0 0 0 0 0 0.4 −3.9

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

εvec B(1, :)
εθT

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.6 0.4 0.5 0.1 −0.1 0.0 0.1 0.1 −1.7
0 0.4 0.5 0.1 −0.1 0.0 0.1 0.1 −1.2
0 0 0.5 0.1 −0.1 0.0 0.1 0.1 −0.8
0 0 0 0.1 −0.1 0.0 0.1 0.0 −0.3
0 0 0 0 0 0.0 0 0.1 −0.1
0 0 0 0 0 0 0.4 0 −0.4
0 0 0 0 0 0 0 0.1 −0.1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The probability of death from CRC could be reduced by increasing the mortality
rate due to other causes (last column), although this is not an attractive treatment
option. A more useful interpretation of the last column is as an indication of the
increase in death from CRC that would result from reducing other causes of death.

For normal individuals, the risk of death from CRC is most elastic to changes in
λ2, λ3, and λ4 (row 1). The row sums of the elasticity matrix, corresponding to the
effects of a proportional change in all rates, sum to zero because a change of time
scale does not affect the probability of absorption.
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12.6.2 Sensitivity of the Embedded Chain

The transition matrix P̂ in (12.54) for the embedded chain is

P̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0.41 0 0 0 0 0 0 0 0

0 0.61 0 0 0 0 0 0 0
0 0 0.49 0 0 0 0 0 0
0 0 0 0.59 0 0 0 0 0
0 0 0 0.38 0 0 0 0 0
0 0 0 0 0.96 0 0 0 0
0 0 0 0 0 0.58 0.91 0 0

0.59 0.39 0.51 0.03 0.04 0.42 0.09 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.76)

The fundamental matrix N̂1 from (12.57) is

N̂1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0 0 0 0 0 0 0
0.4 1.0 0 0 0 0 0
0.2 0.6 1.0 0 0 0 0
0.1 0.3 0.5 1.0 0 0 0
0.1 0.2 0.3 0.6 1.0 0 0
0.1 0.1 0.2 0.4 0 1.0 0
0.1 0.2 0.3 0.6 1.0 0 1.0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.77)

In this continuous-time chain, states cannot be re-entered (cf. Fig. 12.1). Because a
state can be visited at most once, the mean number of visits is also the probability
of ever entering the state. Thus the probabilities that a normal individual will
ever suffer early or late clinical CRC are N̂1(6, 1) = 0.1, and N̂1(7, 1) = 0.07,
respectively. These probabilities increase for individuals in successively later stages;
for an individual with large adenoma the probabilities are N̂1(6.3) = 0.2 and
N̂1(7, 3) = 0.3, respectively.

Focusing sensitivity analysis on individuals in the normal state (state 1), the
sensitivities and elasticities of the number of visits are

dN̂1(:, 1)

dθT
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
15.9 0 0 0 0 0 0 0 −11.0
9.7 2.8 0 0 0 0 0 0 −11.1
4.8 1.4 2.9 0 0 0 0 0 −8.3
2.8 0.8 1.7 0.1 −0.1 0 0 0 −5.0
1.8 0.5 1.1 −0.1 0.1 0 0 0 −3.2
2.7 0.8 1.6 0.1 −0.1 0.0 0 0 −4.9

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12.78)
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and

εN̂1(:, 1)

εθT
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0.6 0 0 0 0 0 0 0 −0.6
0.6 0.4 0 0 0 0 0 0 −1.0
0.6 0.4 0.5 0 0 0 0 0 −1.5
0.6 0.4 0.5 0.4 −0.4 0 0 0 −1.5
0.6 0.4 0.5 −0.6 0.6 0 0 0 −1.5
0.6 0.4 0.5 0.41 −0.4 0.04 0 0 −1.5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.79)

The sensitivities and elasticities of the probability of contracting clinical CRC are
given by the last two rows. These probabilities are highly elastic to λ1, λ2 and λ3.
The elasticities to μ indicate that every 1% reduction in mortality due to other causes
will cause about a 1.5% increase in the probability of experiencing clinical CRC.

12.7 Discussion

The results of this chapter have been presented in terms of differentials of, or
derivatives with respect to, a general vector θ of parameters. The nature of these
parameters and their relation to Q, U, or M can be very general. At its simplest,
θ could consist of some subset of the elements of Q. This is the case in the
CRC example (Sect. 12.6), in which the parameters are transition rates λi and
mortality rates μi . More generally, the transition rates might themselves be written
as functions of other variables. For example, in Van Den Hout and Matthews

(2009a,b) the rates are written as qij = exp
(
βT

ij z
)

, i �= j , where z is a vector of

covariates (e.g., age, medical care) and βij is a vector of coefficients to be estimated.
The results presented here can be applied directly to such cases, and indeed to even
more complicated functional dependencies, using the chain rule. Thus, focusing
on parametric dependence is not only scientifically valuable (these are, after all,
the relationships of interest in applications of Markov chains) but also extremely
general.

Epidemic models are often written as continuous-time Markov chains, specified
in terms of rates of movement among infection states. Gómez-Corral and López-
García (2018) extended the methods of this chapter to a model in which individuals
are classified by two state variables (a level-dependent quasi-birth-death process).
The model may be considered a continuous-time analog of the age×stage models of
Chap. 6 (Caswell 2012; Caswell and Salguero-Gómez 2013; Caswell et al. 2018).
Their approach takes advantage of the block structure of the intensity matrix for such
processes. They have also applied the approach to receptor-ligand complexes within
cells (López-García et al. 2018). As far removed from demography as molecules
may seem, the concepts of i-state transitions, of inferring population behavior from
individual trajectories, and of sensitivity analysis still apply. That’s a good thing.
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