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Universitat Autònoma de Barcelona

Kristian Seip

Norwegian University of Science and Technology

http://ffsb.espais.iec.cat/en


Ferran Sunyer i Balaguer Prize winners since 2007:

2007 Rosa Miró-Roig
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Preface

The subject of Hardy inequalities has now been a fascinating subject of continuous
research by numerous mathematicians for exactly1 one century, 1918–2018.

It appears to have been inspired by D. Hilbert’s investigations in the theory
of integral equations where he came across a beautiful fact that the series

∞∑
m,n=1

aman
m+ n

with positive entries an ≥ 0 is convergent whenever
∑∞

m=1 a
2
m is convergent.

In a few years period at least four different proofs of this fact have been
published: the original proof of Hilbert given by his doctoral student H. Weyl in
1908 in his Inaugural-Dissertation [Wey08a, Page 83] also appearing in [Wey08b], a
proof by F. Wiener [Wie10] in 1910, and two proofs by I. Schur [Sch11] in 1911. All
these proofs including Wiener’s proof in the paper bearing the title “Elementarer
Beweis eines Reihensatzes von Herrn Hilbert” were still not considered elementary
enough by G.H. Hardy, so he came up in 1918 with yet another proof in [Har19]
which seemed to him “to lack nothing in simplicity”. In fact, there, he derived
Hilbert’s theorem as a simple 3-line corollary to the following statement: if the
series

∑∞
m=1 a

2
m is convergent and we set An := a1 + · · ·+ an, then also the series

∞∑
n=1

(
An
n

)2

is convergent. Thus, this moment could be considered as the birth of what is now
known as Hardy’s inequalities, although Hardy himself reservedly commented on
his theorem with “it seems to be of some interest in itself”.

After G.H. Hardy communicated his proof to Marcel Riesz, at once Riesz
came up with another argument leading to the following generalization of Hardy’s

1The original inequality was published by G.H. Hardy in “Notes on some points in the inte-
gral calculus (51)”, Messenger of Mathematics, 48 (1918), pp. 107–112, see the note in [Har20,
Footnote 4] for a historic remark.

xiii



xiv Preface

result: if κ > 1 and
∑∞

m=1 a
κ
m is convergent, then also the series

∞∑
n=1

(
An
n

)κ

is convergent. Thus, this can be also regarded as the birth of what is now known
as Lp-Hardy’s inequalities (but should be probably then called Hardy–Riesz in-
equalities). The proof of Riesz and the historical account of this matter was then
published as a short note2 by Hardy in [Har20]. Hardy also gave the exact value
of the best constant in the inequality, together with its extension to the integral
formulation in the form of∫ ∞

a

(∫ x
a
f(t)dt

x

)κ

dx ≤
(

κ

κ − 1

)κ ∫ ∞

a

fκ(x)dx,

where a and f are positive. Interestingly, Hardy called his own proof for the best
constant “unnecessarily complicated”, so in [Har20] he gave another simpler proof
that was “sent to him by Prof. Schur by letter”.

Over the last 100 years the subject of Hardy inequalities and related analysis
has been a topic of intensive research: currently MathSciNet lists more than 800
papers containing words ‘Hardy inequality’ in the title, and almost 3500 papers
containing words ‘Hardy inequality’ in the abstract or in the review. In view of
this wealth of information we apologize for the inevitability of missing to mention
many important contributions to the subject.

Nevertheless, the Hardy inequalities with many references have been already
presented in several monographs and reviews; here we can mention excellent pre-
sentations by Opic and Kufner [OK90] in 1990, Davies [Dav99] in 1999, Kufner
and Persson [KP03] (and with Samko [KPS17]), Edmunds and Evans [EE04] in
2004, part of Mazya’s books [Maz85, Maz11], Ghoussoub and Moradifam [GM13]
in 2013, and Balinsky, Evans and Lewis [BEL15] in 2015, as well as books on
different areas related to Hardy inequalities: Hardy inequalities on time scales
[AOS16], Hardy inequalities with general kernels [KHPP13], weighted Hardy in-
equalities [KP03], Hardy inequalities and sequence spaces [GE98]. The history and
prehistory of Hardy inequalities were discussed in [KMP07] and in [KMP06], re-
spectively, also with ‘what should have happened if Hardy had discovered this’
considerations [PS12].

However, all of these presentations are largely confined to the Euclidean part
of the available wealth of information on this subject.

At the same time there is another layer of intensive research over the recent
years related to Hardy and related inequalities in subelliptic settings motivated

2It seems Hardy liked publishing such notes as, according to MathSciNet, 51 of his papers start
with the words “A note on. . . ”, together with papers titled “Additional note on. . . ” or “A further
note on. . . ”



Preface xv

by their applications to problems involving sub-Laplacians. This is complemented
by the more general anisotropic versions of the theory.

In this direction, the subelliptic ideas of the analysis on the Heisenberg group,
significantly advanced by Folland and Stein in [FS74], were subsequently consis-
tently developed by Folland [Fol75] leading to the foundations for analysis on
stratified groups (or homogeneous Carnot groups). Furthermore, in their funda-
mental book [FS82] in 1982 titled “Hardy spaces on homogeneous groups”, Folland
and Stein laid down foundations for the ‘anisotropic’ analysis on general homoge-
neous groups, i.e., Lie groups equipped with a compatible family of dilations. Such
groups are necessarily nilpotent, and the realm of homogeneous groups almost ex-
hausts the whole class of nilpotent Lie groups including the classes of stratified,
and more generally, graded groups. Happily, the title of our monograph pays tribute
to G.H. Hardy as well as to Folland and Stein’s book.

Among many, one of the motivations behind doing analysis on homogeneous
groups is the “distillation of ideas and results of harmonic analysis depending only
on the group and dilation structures”.

The place where Hardy inequalities and homogeneous groups meet is a beau-
tiful area of mathematics which was not consistently treated in the book form. We
took it as an incentive to write this monograph to collect and deepen the under-
standing of Hardy inequalities and closely related topics from the point of view of
Folland and Stein’s homogeneous groups. While we describe the general theory of
Hardy, Rellich, Caffarelli–Kohn–Nirenberg, Sobolev, and other inequalities in the
setting of general homogeneous groups, a particular attention is paid to the special
class of stratified groups. In this setting the theory of Hardy inequalities becomes
intricately intertwined with the properties of sub-Laplacians and subelliptic partial
differential equations.

These topics constitute the core of this book with the material comple-
mented with additional closely related topics such as uncertainty principles, func-
tion spaces on homogeneous groups, the potential theory for stratified groups, and
elements of the potential theory and related Hardy–Rellich inequalities for general
Hörmander’s sums of squares and their fundamental solutions.

We tried to make the exposition self-contained as much as possible, giving
relevant references for further material. In general, for an extensive discussion
of the background material related to the general theory of homogeneous and
stratified groups we can refer the reader to the monograph [FR16] of which the
current book is also a natural outgrowth.
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Introduction

The present book is devoted to the exposition of the research developments at the
intersection of two active fields of mathematics: Hardy inequalities and related
analysis, and the noncommutative analysis in the setting of nilpotent Lie groups
of different types. Both subjects are very broad and deserve separate monograph
presentations on their own, and many good books are already available.

However, the recent active research in the area does allow one to make a
consistent treatment of ‘anisotropic’ Hardy inequalities, their numerous features,
and a number of related topics. This brings many new insights to the subject,
also allowing to underline the interesting character of its subelliptic features. The
progress in this field is facilitated by the rapid developments in both areas of Hardy
inequalities and related topics, and in the noncommutative analysis on Folland and
Stein’s homogeneous groups.

We will now give some short insights into both fields and into the scope of
this book. Here we only give a general overview, with more detailed references and
explanations of different features presented throughout the monograph.

Hardy inequalities and related topics

The classical L2-Hardy inequality in the modern literature in the Euclidean space
Rn with n ≥ 3 can be written in the form∥∥∥∥ f

|x|E

∥∥∥∥
L2(Rn)

≤ 2

n− 2
‖∇f‖L2(Rn) , (1)

where ∇ is the standard gradient in Rn,

|x|E =
√
x21 + · · ·+ x2n

is the Euclidean norm, f ∈ C∞
0 (Rn), and where the constant 2

n−2 is known to be
sharp. In addition to references in the preface, the multidimensional version of the
Hardy inequality was proved by J. Leray [Ler33].

It has numerous applications in different fields, for example in the spec-
tral theory, leading to the lower bounds for the quadratic form associated to the
Laplacian operator. It is also related to many other areas and fields, notably to

1© The Editor(s) (if applicable) and The Author(s) 2019 
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the uncertainty principles. The uncertainty principle in physics is a fundamental
concept going back to Heisenberg’s work on quantum mechanics [Hei27, Hei85], as
well as to its mathematical justification by Hermann Weyl [Wey50]. In the simplest
Euclidean setting it can be stated as the inequality(∫

Rn

|∇φ|2dx
)(∫

Rn

|x|2Eφ2dx
)
≥ n2

4

(∫
Rn

φ2dx

)2

, (2)

for all real-valued functions φ ∈ C∞
0 (Rn), where the constant n2

4 is sharp. It can
be shown to be a consequence of (1). There are good surveys on the mathematical
aspects of uncertainty principles by Fefferman [Fef83] and by Folland and Sitaram
[FS97]. We also note that the uncertainty principle can be also obtained without
Hardy inequalities, see, e.g., Ciatti, Ricci and Sundari [CRS07].

The inequality (1) can be extended to Lp-spaces, taking the form∥∥∥∥ f

|x|E

∥∥∥∥
Lp(Rn)

≤ p

n− p ‖∇f‖Lp(Rn) , n ≥ 2, 1 ≤ p < n, (3)

where f ∈ C∞
0 (Rn), and where the constant p

n−p is known to be sharp.

As mentioned in the preface, such inequalities go back to Hardy [Har19], and
have been evolving and growing over the years. In fact, the subject is so deep
and broad at the same time that it would be impossible to give justice to all the
authors who have made their contributions. To this end, we can refer to several
extensive presentations of the subject in the books and surveys and the references
therein: Opic and Kufner [OK90] in 1990, Davies [Dav99] in 1999, Edmunds and
Evans [EE04] in 2004, part of Mazya’s books [Maz85, Maz11], Ghoussoub and
Moradifam [GM13] in 2013, and the recent book by Balinsky, Evans and Lewis
[BEL15]. Hardy type inequalities have been very intensively studied, see, e.g., also
Davies and Hinz [DH98], Davies [Dav99] as well as Ghoussoub and Moradifam
[GM11] for reviews and applications.

One further extension of the Hardy inequality is the now classical result by
Rellich appearing at the 1954 ICM in Amsterdam [Rel56] with the inequality∥∥∥∥ f

|x|2E

∥∥∥∥
L2(Rn)

≤ 4

n(n− 4)
‖Δf‖L2(Rn), n ≥ 5, (4)

with the sharp constant. We can refer, for example, to Davies and Hinz [DH98]
(see also Brézis and Vázquez [BV97]) for further history and later extensions,
including the derivation of sharp constants.

Higher-order Hardy inequalities have been also intensively investigated. Some
of such results go back to 1961 to Birman [Bir61, p. 48] who has shown, for
functions f ∈ Ck0 (0,∞), the family of inequalities∥∥∥∥ fxk

∥∥∥∥
L2(0,∞)

≤ 2k

(2k − 1)!!

∥∥∥f (k)
∥∥∥
L2(0,∞)

, k ∈ N, (5)
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where (2k − 1)!! = (2k − 1) · (2k − 3) · · · 3 · 1. For k = 1 and k = 2 this reduces to
one-dimensional Hardy and Rellich inequalities, respectively. Such one-dimensional
inequalities have recently found new life and one can find their historical discussion
by Gesztesy, Littlejohn, Michael and Wellman in [GLMW17].

There is now a whole scope of related inequalities playing fundamental roles
in different branches of mathematics, in particular, in the theory of linear and
nonlinear partial differential equations. For example, the analysis of more general
weighted Hardy–Sobolev type inequalities has also a long history, initiated by
Caffarelli, Kohn and Nirenberg [CKN84] as well as by Brézis and Nirenberg in
[BN83], and then Brézis and Lieb [BL85] with a mixture with Sobolev inequalities,
Brézis and Vázquez in [BV97, Section 4], also [BM97], with many subsequent works
in this direction. We also refer to more recent paper of Hoffmann-Ostenhof and
Laptev [HOL15] on this subject and to further references therein. Many of these
inequalities will be also appearing in the present book.

Of course, there are many more aspects to Hardy inequalities. In particular,
working in domains, one can establish inequalities under certain boundary condi-
tions. For example, for Hardy inequalities for Robin Laplacians and p-Laplacians
see [KL12] and [EKL15], respectively, or [LW99, BLS04] for magnetic versions,
or [BM97, HOHOL02] for versions involving the distance to the boundary. For
Hardy inequalities for discrete Laplacians see, e.g., [KL16], or [HOHOLT08] for
many-particle versions.

Homogeneous groups of different types

The harmonic analysis on homogeneous groups goes back to 1982 to Folland and
Stein who in their book [FS82] laid down the foundations of ‘anisotropic’ harmonic
analysis, that is, the harmonic analysis that depends only on the group and dilation
structures of the group.

Such homogeneous groups are necessarily nilpotent, and provide a unified
framework including many well-known classes of (nilpotent) Lie groups: the Eu-
clidean space, the Heisenberg group, H-type groups, polarizable Carnot groups,
stratified groups (homogeneous Carnot groups), graded groups. All of these groups
are homogeneous and have the rational weights for their dilations.

The class of homogeneous groups is closer to the classical analysis than one
might first think: in fact, any homogeneous group can be identified with some space
Rn with a polynomial group law. The simplest examples are Rn itself, where the
group law is linear, or the Heisenberg group, where the group law is quadratic in
the last variable.

An important feature of homogeneous groups is that they do not have to
allow for homogeneous hypoelliptic left invariant partial differential operators. In
fact, if such an operator exists, the group has to be graded and its weights of
dilations are rational. The class of stratified groups is a particularly important
class of graded groups allowing for a homogeneous second-order sub-Laplacian. In
general, nilpotent Lie groups provide local models for many questions in subelliptic
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analysis and sub-Riemannian geometry, their importance widely recognized since
the essential role they played in deriving sharp subelliptic estimates for differential
operators on manifolds, starting from the seminal paper by Rothschild and Stein
[RS76] (see also [Fol77, Rot83]).

In order to facilitate the exposition in the sequel, in Chapter 1 we will recall
all the necessary facts needed for the analysis in this book.

We note, however, that the general scope of techniques available on such
groups is much more extensive than presented in Chapter 1. The fundamental
paper by Folland [Fol75] developed the rich functional analysis on stratified groups.
Further functional spaces (e.g., of Besov type) on stratified groups have been
analysed by Saka [Sak79]. There are many sources with rather comprehensive
and deep treatments of general nilpotent Lie groups, for example, the books by
Goodman [Goo76] or Corwin and Greanleaf [CG90]. Good sources of information
are the notes by Fulvio Ricci [Ric] and Folland’s books [Fol89, Fol95, Fol16].

As a side remark we can note that there is also a number of recent works
developing function spaces on graded groups extending Folland and Saka’s con-
structions in the stratified case, see [FR17] and [FR16] for Sobolev, and [CR16]
and [CR17] for Besov spaces, respectively.

In our presentation and approach to the basic analysis on homogeneous
groups of different types we mostly rely on the recent open access book [FR16].
Moreover, the exposition of the topics in this book is done more in the spirit
of the classical potential theory, without much reference to the Fourier analysis.
However, here we should mention that the noncommutative Fourier analysis on
nilpotent Lie groups is extremely rich, with many powerful approaches available,
such as Kirillov’s orbit method [Kir04], Mackey general description of the unitary
dual, or the von Neumann algebra approaches of Dixmier [Dix77, Dix81]. We can
refer to [FR16, Appendix B] for a workable summary of these methods.

The recently developed noncommutative quantization theories on nilpotent
Lie groups, in particular, the global theory of pseudo-differential operators on
graded groups, indeed heavily rely on such Fourier analysis. We refer the interested
reader to [FR16] for the thorough exposition and application of such methods. A
good exposition of the analysis of questions not requiring the Fourier analysis, in
the setting of stratified groups, can be found in the book [BLU07] by Bonfiglioli,
Lanconelli and Uguzzoni.

Hardy inequalities and potential theory on stratified groups

The study of the subelliptic Hardy inequalities has also begun more than 40 years
ago due to their importance for many questions involving subelliptic partial differ-
ential equations, unique continuation, sub-Riemannian geometry, subelliptic spec-
tral theory, etc. Not surprisingly, here the work started with the most important
example of the Heisenberg group, where we can mention a fundamental contribu-
tion by Garofalo and Lanconelli [GL90].
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There is a deep link with the properties of the fundamental solutions for the
sub-Laplacian on stratified groups. In general, the understanding of the fundamen-
tal solutions of differential operators is one of the keys for solving boundary value
problems for differential equations in a domain, and this idea has a long history
dating back to the works of mathematicians such as Gauss [Gau77, Gau29] and
Green [Gre28].

In general, the sub-Laplacians on stratified (and on more general graded)
groups play important roles not only in theoretical settings (see, e.g., Gromov
[Gro96] or Danielli, Garofalo and Nhieu [DGN07] for general expositions from
different points of view), but also in applications of mathematics, for example
in mathematical models of crystal material and human vision (see, for example,
[Chr98] and [CMS04]).

The fundamental solution for the sub-Laplacian on stratified groups behaves
well and was already understood by Folland [Fol75]. In particular, one always has
its existence and uniqueness, an advantageous feature when compared to higher-
order operators on stratified groups, or more general hypoelliptic operators on
graded groups, see Geller [Gel83], and an exposition in [FR16, Section 3.2.7].

Roughly speaking, there are three versions of Hardy type inequalities on
stratified groups available in the literature:

(A) Using the homogeneous quasi-norm, sometimes called the L-gauge, given by
the appropriate power of the fundamental solution of the sub-Laplacian L.
Thus, if d(x) is the L-gauge, then d(x)2−Q is a constant multiple of Folland’s
[Fol75] fundamental solution of the sub-Laplacian L, with Q being the ho-
mogeneous dimension of the stratified group G; these will be discussed in
Chapter 7.

(B) Using the Carnot–Carathéodory distance, i.e., the control distance associated
to the sub-Laplacian.

(C) Using the Euclidean distance on the first stratum of the group.

One can note that if one is not interested in best constants in such inequalities
one can work with any of these equivalent quasi-norms. In fact, in such a case one
can also work with fractional-order derivatives expressed as arbitrary powers of the
sub-Laplacian, see, e.g., Ciatti, Cowling and Ricci [CCR15] for such an analysis on
stratified groups, as well as Yafaev [Yaf99] for some Euclidean considerations also
with best constants, or Hoffmann-Ostenhof and Laptev [HOL15] and references
therein.

However, the best constants in the corresponding inequalities in cases (A)–
(C) above may depend on the quasi-norm that one is using.

Thus, in the case (A) there is an extensive literature on Hardy inequalities
and related topics on stratified groups relating them to the fundamental solution to
the sub-Laplacian. Here we can briefly mention some papers [GL90, GK08, Gri03,
NZW01, HN03, D’A04b, WN08, DGP11, Kom10, JS11, Lia13, Yan13, CCR15,
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Yen16, GKY17], with more details and acknowledgements given throughout the
book. Here, the Hardy inequality typically takes the form∥∥∥∥ f

d(x)

∥∥∥∥
Lp(G)

≤ p

Q− p ‖∇Hf‖Lp(G) , Q ≥ 3, 1 < p < Q, (6)

where Q is the homogeneous dimension of the stratified group G, ∇H is the hor-
izontal gradient, and d(x) is the so-called L-gauge related to the fundamental
solution of the sub-Laplacian, and the constant is sharp. The analysis in the case
(A) in terms of the fundamental solution of the sub-Laplacian will be the subject
of Chapter 11 of this book.

The results on Hardy and other inequalities for the case (B) are less extensive,
mostly devoted to the case of the Heisenberg group. However, the case (C) has
recently attracted a lot of attention due to its geometrically clear nature and
importance for questions in partial differential equations, see, e.g., [BT02a] and
[D’A04b]. A typical horizontal Hardy inequality would take the form∥∥∥∥ f

|x′|
∥∥∥∥
Lp(G)

≤ p

N − p ‖∇Hf‖Lp(G) , 1 < p < N, (7)

where N is the dimension of the first stratum, x′ denotes the variables in the first
stratum of G, and

|x′| =
√
x′21 + · · ·+ x′2N

is the Euclidean norm on the first stratum of G, which can be identified with RN .
The constant p

N−p in (7) is also sharp.

In Chapter 6 we aim at giving a comprehensive treatment of such horizontal
estimates based on the divergence relations and on the potential theory on the
stratified groups.

Another ingredient that we find to be missing in the literature in the setting
of stratified groups is the classical style potential theory working with layer po-
tential operators. Indeed, nowadays the appearing boundary layer operators and
elements of the potential theory serve as the main apparatus for the analysis and
construction of solutions to boundary value problems. That have led to a vast
literature concerning modern theory of boundary layer operators and potential
theory in Rn as well as their important applications. In the subelliptic setting we
can mention the works of Jerison [Jer81] and Romero [Rom91] on the Heisenberg
group. We refer to [GL03], [GN88], [GW92], [LU97], [RS17d] and [WN16] as well
as to references therein for more general Green function analysis of second order
subelliptic (and weighted degenerate) operators. In this book, we follow a more
geometric approach of our recent paper [RS17c] to present such a subject in the
setting of general stratified groups, and to give its applications to several ques-
tions, such as boundary value problems for the sub-Laplacian, traces of Newton
potential operators, and Hardy inequalities with boundary terms. All these topics
will be the subject of discussions in Chapter 11.
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The boundary value problems in the subelliptic settings are substantially
more complicated than in the elliptic case due to the appearance of so-called
characteristic points at the boundary – some problems of such a type are well
explained, e.g., in [DGN06]. However, there is still a particular type of boundary
conditions (Kac’ boundary value problem) which can be viewed as a subelliptic
version of M. Kac’s question: is there any boundary value problem for the Laplacian
which is explicitly solvable in the classical sense for any smooth domain?

An answer to M. Kac’s question was given in [RS16c] for the Heisenberg
group and in [RS17c] for general stratified groups. The appearing boundary condi-
tions are, however, nonlocal and the corresponding boundary value problem can be
called Kac’s boundary value problem. One interesting fact is that the explicit solu-
tions that one constructs for Kac’s boundary value problem for the sub-Laplacian
work also well in the presence of characteristic points on the boundary.

In Section 11.5 we also discuss another version of such a question: is there
a class of domains in which the Dirichlet boundary value problem for the sub-
Laplacian is explicitly solvable in the classical sense? This is discussed in the
setting of H-type groups following our recent paper [GRS17] with Nicola Garofalo.

Furthermore, in Chapter 12 we will give an exposition of the potential the-
ory and related Hardy–Rellich inequalities for more general Hörmander’s sums of
squares, based on the properties of the fundamental solutions rather than those
of the L-gauge. This has a definitive advantage of eliminating the need to use
Folland’s formula relating the L-gauge with the fundamental solution. As a result,
we can extend the analysis to more general settings, also those without any group
structure, dealing with Hörmander’s sums of squares beyond the setting of the
stratified groups.

In general, there are several ways to obtain improvements of Hardy inequal-
ities by including boundary terms. For the Laplacians such problems have been
considered in [ACR02] by using variational method and in [WZ03] by using confor-
mal transformation method. The methods described in this book are based on the
potential theory and, compared to other approaches, do not rely so much on the
particular structure of the Euclidean space. Certain Hardy and Rellich inequalities
for sums of squares have been considered by Grillo [Gri03], compared to which our
approach provides refinements from several points of view, based on the general-
ized representation formulae (Green’s formulae) of non-subharmonic functions for
improved Hardy and Rellich type inequalities with boundary terms.

Hardy inequalities and related topics on homogeneous groups

The lack of homogeneous hypoelliptic left invariant differential operators on gen-
eral homogeneous groups is compensated by several other advantageous properties,
such as a good polar decomposition which, combined with dilations, still allows
one to explore the radial structure of the group. For this purpose, we extensively
work with the radial derivative operator R and the Euler operator E which we
describe in Section 1.3.
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This fits well with the structure of Hardy and other inequalities as their max-
imisers are often achieved on radial functions. An advantage of such an approach is
that one can also work with arbitrary quasi-norms and anisotropic structures still
yielding similar properties and best constants in the inequalities. In addition, in
Section 1.3.3 we demonstrate how the Hardy type inequalities for radial functions
often imply similar inequalities for functions of general (non-radial) type.

Thus, Chapter 2 is devoted to Hardy inequalities on homogeneous groups,
their weighted and critical versions, stability and remainder estimates. Further-
more, Chapter 3 is devoted to Rellich, Caffarelli–Kohn–Nirenberg and Sobolev
type inequalities on homogeneous groups. In Chapter 9 we present different ver-
sions of uncertainty principles on homogeneous groups. We follow an abstract
approach by defining abstract position and momentum operators satisfying min-
imal structural properties, already allowing one to establish a number of uncer-
tainty type relations. Consequently, different choices of such abstract position and
momentum operators are possible based on the additional structural properties
available on the group.

In Chapter 10 we discuss different function spaces on homogeneous groups,
with or without differentiability properties. The spaces involving radial deriva-
tives are the Euler–Hilbert–Sobolev and Sobolev–Lorentz–Zygmund spaces. We
investigate their basic properties and embeddings. The spaces not involving the
differentiable structure are the Morrey and Campanato spaces. There, we discuss
the boundedness of integral operators, namely, the Hardy–Littlewood maximal
operator, Bessel–Riesz operators, generalized Bessel–Riesz operators, generalized
fractional integral operators and Olsen type inequalities in generalized Morrey
spaces on homogeneous groups.

Incidentally, all these and other results on homogeneous groups in this book
give new statements already in the Euclidean setting of Rn when we are working
with anisotropic differential structure in view of the arbitrariness of the choice of
any homogeneous quasi-norm.

Let us consider, for instance, the following Bessel–Riesz operators

Iα,γf(x) =

∫
Rn

|x− y|α−nE

(1 + |x− y|E)γ f(y)dy, (8)

where f ∈ Lploc(Rn), p ≥ 1, γ ≥ 0 and 0 < α < n. Classical results on the Bessel–
Riesz operators are due to Hardy, Littlewood and Sobolev, precisely, the bound-
edness of the Bessel–Riesz operators on Lebesgue spaces was shown by Hardy
and Littlewood in [HL27], [HL32] and by Sobolev in [Sob38]. In the case of Rn,
the Hardy–Littlewood maximal operator, the Riesz potential Iα,0 = Iα, the gen-
eralized fractional integral operators, which are a generalized form of the Riesz
potential Iα,0 = Iα, Bessel–Riesz operators and Olsen type inequalities are widely
analysed on Lebesgue spaces, Morrey spaces and generalized Morrey spaces. For
further discussions in this direction we refer to [Ada75, CF87, BNC14, Nak94,
EN04, Eri02, KNS99, Nak01, Nak02, GE09, SST12, IGLE15, IGE16], as well as to
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[Bur13] for a recent survey. Morrey spaces for non-Euclidean distances find their
applications in many problems, see, e.g., [GS15a, GS15b] and [GS16]. A natural
analogue of the Bessel–Riesz operator (8) on homogeneous groups is the operator

Iα,γf(x) :=

∫
G

|xy−1|α−Q
(1 + |xy−1|)γ f(y)dy.

In the setting of graded Lie groups the connections between these operators and the
Sobolev spaces have been investigated in [FR16, Chapter 4] using the heat kernel
methods. Here, in Chapter 10 we concentrate on the harmonic analysis aspects in
the framework of Morrey and Campanato spaces on homogeneous groups.

In addition, we can mention an overview of constructions for Morrey–Campa-
nato spaces in [RSS13] by Rafeiro, N. Samko and S. Samko, or in [RT15] by
Rosenthal and Triebel. It is worth noting that Morrey–Campanato spaces can
be interpolated [VS14]. One also considered variable exponent versions of Morrey
spaces and maximal and singular operators there, see [GS13, GS16] and references
therein.

In Chapter 4 we look at the Hardy inequalities from the point of view of
operators of fractional orders. Certainly, fractional powers of Laplacians and sub-
Laplacians can be defined in different ways, e.g., using the Fourier or spectral
analysis. However, here, we first adopt the integral representation that turns out
to make perfect sense on general homogeneous groups. More specifically, for p > 1
and s ∈ (0, 1), we consider the fractional p-sub-Laplacian (−Δp)

s on a general
homogeneous group G defined by the formula

(−Δp)
su(x) := 2 lim

δ↘0

∫
G\B(x,δ)

|u(x) − u(y)|p−2(u(x)− u(y))
|y−1x|Q+sp

dy, x ∈ G,

where B(x, δ) = B|·|(x, δ) is a quasi-ball with respect to the quasi-norm | · |, with
radius δ centred at x ∈ G. It turns out that this operator has many advantageous
properties similar to those exhibited by the usual p-Laplacians on the Euclidean
spaces, and in Chapter 4 we present their analysis and some applications to ‘partial
differential’ functional equations and related spectral questions. Consequently, we
look at operators of fractional orders from a different point of view, and in Section
4.7 we discuss the boundedness of the operator

Tαf(x) := |x|−αL−α/2f(x),
on Lp-spaces on stratified Lie groups, where L is a sub-Laplacian. The analysis is
based on the Riesz kernel representation of such operators, and we also supplement
it with several versions of the Landau–Kolmogorov inequalities.

In Chapter 5 we discuss integral versions of Hardy inequalities. In fact, such
a point of view goes back to one of the original versions of such inequalities by
Hardy [Har20], where he has shown the inequality∫ ∞

b

(∫ x
b
f(t)dt

x

)p
dx ≤

(
p

p− 1

)p ∫ ∞

b

f(x)pdx,
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where p > 1, b > 0, and f ≥ 0 is a non-negative function. It turns out that such
an inequality can be also put in the framework of general homogeneous groups,
especially since it does not involve derivatives, so that one does not need to specify
one’s analysis to a particular choice of the gradient. Thus, in Chapter 5 we present
inequalities of such a type in weighted and unweighted settings, actually providing
characterizations of weights for which integral Hardy inequalities hold true. We
also present inequalities in the convolution form which, in turn, can be used for
the derivation of Hardy–Littlewood–Sobolev and Stein–Weiss inequalities. The
latter can be then established both on general homogeneous groups as well as on
stratified/graded groups using Riesz kernels of hypoelliptic differential operators.

In Chapter 8 we discuss the so-called geometric versions of Hardy inequalities.
By this one usually means Hardy inequalities on domains when the distance to
the boundary enters the inequality as a weight. For example, if Ω is a convex open
set of the Euclidean space Rn, then a geometric version of the Hardy inequality
can take a form ∫

Ω

|∇u|2dx ≥ 1

4

∫
Ω

|u|2
dist(x, ∂Ω)2

dx,

for all u ∈ C∞
0 (Ω), with the sharp constant 1/4. In the case of half-spaces and,

more generally, convex domains, in Chapter 8 we present such inequalities in the
setting of stratified groups.

Open Access. This chapter is licensed under the terms of the Creative Commons At-
tribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chap-
ter’s Creative Commons license, unless indicated otherwise in a credit line to the material.
If material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 1

Analysis on Homogeneous Groups

In this chapter we provide preliminaries for the analysis on homogeneous groups to
make the use of the monograph more self-sufficient. We make a selection of topics
which will be playing a role in the subsequent analysis. Thus, we first discuss
relevant properties of general Lie groups and algebras and then concentrate on
properties of homogeneous groups required for our further analysis. Lastly, we
introduce the notion of the Euler operator on homogeneous groups and establish
its main properties.

This chapter is not intended to be a comprehensive treatise of homogeneous
groups but rather a description of a collection of tools used throughout the book.
The theory of homogeneous groups for their use in analysis was developed by Fol-
land and Stein [FS82]. A recent rather comprehensive description of homogeneous
groups and their place among nilpotent Lie groups have appeared in [FR16]. We
refer to both books for the expositions devoted specifically to homogeneous groups.
For some related information we may also refer to Ricci’s notes [Ric].

There are many sources with rather comprehensive and deep treatments of
nilpotent Lie groups, for example the books by Goodman [Goo76] or Corwin and
Greanleaf [CG90]. There are also many books on groups or Lie groups, we can
refer for example to [RT10, Part III] for a basic introduction. Therefore, we assume
the reader to have some familiarity with the concepts of the Lie groups and Lie
algebras.

1.1 Homogeneous groups

In this section we discuss nilpotent Lie algebras and groups in the spirit of Folland
and Stein’s book [FS82] as well as introduce homogeneous (Lie) groups. For more
analysis and details in this direction we refer to the recent open access book [FR16].

Let g be a Lie algebra (always assumed real and finite-dimensional), and
let G be the corresponding connected and simply-connected Lie group. The lower

© The Editor(s) (if applicable) and The Author(s) 2019 
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central series of g is defined inductively by

g(1) :=g, g(j) := [g, g(j−1)].

If the lower central series of a Lie algebra g terminates at 0 in a finite number
of steps then this Lie algebra is called nilpotent. Moreover, if g(s+1) = {0} and
g(s) �= {0}, then g is said to be nilpotent of step s. A Lie group G is nilpotent
(of step s) whenever its Lie algebra is nilpotent (of step s). If exp : g → G is
the exponential map, by the Campbell–Hausdorff formula for X,Y ∈ g sufficiently
close to 0 we have

expX expY = expH(X,Y ),

where H(X,Y ), the Campbell–Hausdorff series, is an infinite linear combination
of X and Y and their iterated commutators and H is universal, i.e., independent
of g, and that

H(X,Y ) = X + Y +
1

2
[X,Y ] + · · · ,

where the dots indicate terms of order ≥ 3.

If g is nilpotent, the Campbell–Hausdorff series terminates after finitely many
terms and defines a polynomial map from V × V to V , where V is the underlying
vector space of g.

Altogether, we have the following useful properties:

Proposition 1.1.1 (Exponential mapping and Haar measure). Let G be a connected
and simply-connected nilpotent Lie group with Lie algebra g. Then:

(i) The exponential map exp is a diffeomorphism from g to G. Moreover, if G
is identified with g via exp, then the group law (x, y) 
→ xy is a polynomial
map.

(ii) If λ denotes a Lebesgue measure on g, then λ ◦ exp−1 is a bi-invariant Haar
measure on G.

Proof of Proposition 1.1.1. Part (i) is a direct consequence of the fact that G is
uniquely (up to isomorphism) determined by g, see, e.g., [FS82, Proposition 1.2],
[CG90, Section 1.2] or [FR16, Proposition 1.6.6].

Let us give an argument for Part (ii). Let us denote the lower central series
for g by

g(1), . . . , g(m), g(m+1) = {0}
and denote

n := dim g and nj := dim g(j).

Let Xn−nm+1, . . . , Xn be a basis for g(m), and we extend it to a basis

Xn−nm−1+1, . . . , Xn

for g(m−1), and so forth obtaining eventually a basisX1, . . . , Xn for g. Let ξ1, . . . , ξn
be the dual basis for g∗, and let ηk := ξk ◦ exp−1. These η1, . . . , ηn are a system
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of global coordinates on G. By using the Campbell–Hausdorff formula and the
construction of the ηk’s we obtain

ηk(xy) = ηk(x) + ηk(y) + Pk(x, y),

where Pk(x, y) depends only on the coordinates ηi(x), ηi(y) with i < k. Thus, with
respect to the coordinates ηk, the differentials of the maps x 
→ xy with fixed y and
y 
→ xy with fixed x are given by lower triangular matrices with only 1 elements
on the diagonal, and therefore, each of the determinants is equal to one. This
implies that the volume form dη1 · · · dηn on G, which corresponds to the Lebesgue
measure on g, is left and right invariant. �

Definition 1.1.2 (Dilations on a Lie algebra). A family of dilations of a Lie algebra
g is a family of linear mappings

{δr : r > 0}

from g to itself which satisfies:

• the mappings are of the form

δr = exp(A log r),

where A is a diagonalisable linear operator on g with positive eigenvalues.

• In particular, δrs = δrδs for all r, s > 0. If α > 0 and {δr} is a family of

dilations on g, then so is {δ̃r}, where

δ̃r := δrα = exp (αA log r).

By adjusting α we can always assume that the minimum eigenvalue of A is
equal to 1.

Let A be the set of eigenvalues of A and denote byWa ⊂ g the corresponding
eigenfunction space of A, where a ∈ A. Then we have

δrX = raX for X ∈ Wa.

If X ∈Wa and Y ∈Wb, then

δr[X,Y ] = [δrX, δrY ] = ra+b[X,Y ]

and thus [Wa,Wb] ⊂ Wa+b. In particular, since a ≥ 1 for a ∈ A, we see that
g(j) ⊂

⊕
a≥jWa. Since the setA is finite, it follows that g(j) = {0} for j sufficiently

large. Thus, we obtain:

Proposition 1.1.3 (Lie algebras with dilations are nilpotent). If a Lie algebra g
admits a family of dilations then it is nilpotent.
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However, not all nilpotent Lie algebras admit a dilation structure: an example
of a (nine-dimensional) nilpotent Lie algebra that does not allow any compatible
family of dilations was constructed by Dyer [Dye70].

Definition 1.1.4 (Graded Lie algebras and groups). A Lie algebra g is called graded
if it is endowed with a vector space decomposition (where all but finitely many of
the Vk’s are 0)

g = ⊕∞
j=1Vj such that [Vi, Vj ] ⊂ Vi+j .

Consequently, a Lie group is called graded if it is a connected simply-connected
Lie group whose Lie algebra is graded.

Definition 1.1.5 (Stratified Lie algebras and groups). A graded Lie algebra g is
called stratified if V1 generates g as an algebra. In this case, if g is nilpotent of step
m we have

g = ⊕mj=1Vj , [Vj , V1] = Vj+1,

and the natural dilations of g are given by

δr

(
m∑
k=1

Xk

)
=

m∑
k=1

rkXk, (Xk ∈ Vk).

Consequently, a Lie group is called stratified if it is a connected simply-connected
Lie group whose Lie algebra is stratified.

Definition 1.1.6 (Homogeneous groups). Let δr be dilations on G. We say that a
Lie group G is a homogeneous group if:

a. It is a connected and simply-connected nilpotent Lie group G whose Lie
algebra g is endowed with a family of dilations {δr}.

b. The maps exp ◦ δr ◦ exp−1 are group automorphism of G.

Since the exponential mapping exp is a global diffeomorphism from g to G

by Proposition 1.1.1, (i), it induces the corresponding family on G which we may
still call the dilations on G and denote by δr. Thus, for x ∈ G we will write δr(x)
or abbreviate it writing simply rx.

The origin of G will be usually denoted by 0.

Now let us give some well-known examples of homogeneous groups.

Example 1.1.7 (Abelian groups). The Euclidean space Rn is a homogeneous group
with dilation given by the scalar multiplication.

Example 1.1.8 (Heisenberg groups). If n is a positive integer, the Heisenberg group
Hn is the group whose underlying manifold is Cn×R and whose multiplication is
given by

(z1, . . . , zn, t)(z
′
1, . . . , z

′
n, t

′) =

(
z1 + z′1, . . . , zn + z′n, t+ t′ + 2Im

n∑
k=1

zkz
′
k

)
.
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The Heisenberg group Hn is a homogeneous group with dilations

δr(z1, . . . , zn, t) = (rz1, . . . , rzn, r
2t).

Example 1.1.9 (Upper triangular groups). Let G be the group of all n × n real
matrices (aij) such that aii = 1 for 1 ≤ i ≤ n and aij = 0 when i > j. Then G is
a homogeneous group with dilations

δr(aij) = rj−iaij .

These Examples 1.1.7, 1.1.8 and 1.1.9 are all examples of the stratified groups.
It is also possible to define other families of dilations on these groups. For instance,
on R

n we can define

δr(x1, . . . , xn) = (rd1x1, . . . , r
dnxn),

where 1 = d1 ≤ d2 ≤ · · · ≤ dn, and on Hn we can define

δr(x1 + iy1, . . . , xn + iyn, t) = (ra1x1 + irb1y1, . . . , r
anxn + irbnyn, r

ct),

where min {a1, . . . , an, b1, . . . , bn} = 1 and aj + bj = c for all j. In general, these
dilations do not have to be stratified. However, when we refer to Rn or Hn we shall
assume that they are equipped with the natural dilations defined in Examples
1.1.7, 1.1.8 unless we state otherwise.

Let d1, . . . , dn be the eigenvalues of A, enumerated in nondecreasing or-
der according to their multiplicity, and let d = max dk. The mappings {δr =
exp(A log r)} give the dilation structure to an n-dimensional homogeneous group
G, with

1 = d1 ≤ d2 ≤ · · · ≤ dn = d. (1.1)

Let us fix a basis {Xk}nk=1 of the Lie algebra g of the Lie group G such that

AXk = dkXk

for each k. Then one can define a standard Euclidean norm ‖ · ‖ on g by declaring
the Xk’s to be orthonormal. This norm can be also considered as a function on G

by the formula
‖x‖ = ‖ exp−1 x‖. (1.2)

The number

Q :=

n∑
k=1

dk = Tr(A) (1.3)

is called the homogeneous dimension of G. From now on Q will always denote the
homogeneous dimension of G.
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1.2 Properties of homogeneous groups

In this section we discuss properties of homogeneous groups that are important
for their understanding and that will be also useful for our further analysis. For
different further properties of homogeneous and graded groups we can refer the
reader to the open access book [FR16, Chapter 3].

1.2.1 Homogeneous quasi-norms

We start by the definition of a quasi-norm.

Definition 1.2.1 (Quasi-norms). Let us define a homogeneous quasi-norm on a
homogeneous group G to be a continuous function x 
→ |x| from G to [0,∞) that
satisfies

(a) for all x ∈ G and r > 0:

|x−1| = |x| and |rx| = r|x|.

(b) The non-degeneracy:

|x| = 0 if and only if x = 0.

Here and elsewhere we denote by rx = δrx the dilation of x induced by the
dilations on the Lie algebra through the exponential mapping.

There always exist homogeneous quasi-norms on homogeneous groups. More-
over, there always exist quasi-norms that are C∞-smooth on G\{0}. Let us give
such an example. Observe that

X =

n∑
k=1

ckXk ∈ g implies ‖δrX‖ =
(

n∑
k=1

c2kr
2dk

) 1/2

,

where ‖ · ‖ is the Euclidean norm from (1.2). We can notice that for X �= 0 the
function ‖δrX‖ is a strictly increasing function of r, and it tends to 0 and ∞ as
r→ 0 and r→∞, respectively. Now, for x = expX , we can define a homogeneous
quasi-norm on G by setting

|0| := 0 and |x| := 1/r for x �= 0,

where r = r(X) > 0 is the unique number such that

‖δr(X)X‖ = 1.

By the implicit function theorem and the fact that the Euclidean unit sphere is a
C∞ manifold we see that this function is C∞ on G\{0}.
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If x ∈ G and r > 0 we define the ball of radius r about x by

B(x, r) := {y ∈ G : |x−1y| < r}.

It can be noticed that B(x, r) is the left translate by x of B(0, r), which in turn
is the image under δr of B(0, 1).

Lemma 1.2.2 (Closed quasi-balls are compact). B(x, r) is compact for any x ∈ G

and r > 0.

Proof. Let us define

ρ(x) :=

n∑
k=1

|ck|
dk

for x = exp

(
n∑
k=1

ckXk

)
,

where dk are as in (1.1). Then ρ satisfies all the properties of a homogeneous quasi-
norm. Obviously {x : ρ(x) = 1} is compact and does not contain 0, so the function
x 
→ |x| attains a positive minimum η on it. Since |rx| = r|x| and ρ(rx) = rρ(x),
it follows that |x| ≥ ηρ(x) for all x and for some η > 0, and hence that

B(0, η) ⊂ {x : ρ(x) ≤ 1}.

Thus, B(0, η) is compact, and it follows by dilation and translation that B(x, r)
is compact for all r > 0, x ∈ G. �

We can compare the quasi-norms with each other and with the Euclidean
norm (1.2).

Proposition 1.2.3 (Quasi-norms and the Euclidean norm). We have the following
properties:

(1) Any two homogeneous quasi-norms on a homogeneous group are equivalent.

(2) There are the constants C1, C2 > 0 such that

C1‖x‖ ≤ |x| ≤ C2‖x‖1/d for all |x| ≤ 1.

Proof. Proof of Part (2). When y = exp(
∑
ckXk) we have ‖ry‖ = (

∑
c2kr

2dk)1/2

and hence
rd‖y‖ ≤ ‖ry‖ ≤ r‖y‖

for r ≤ 1. A positive maximum C−1
1 and a positive minimum C−d

2 on {y : |y| = 1}
are attained by the Euclidean norm ‖y‖ in view of the compactness in Lemma
1.2.2. Any x �= 0 can be written as x = |x|y where |y| = 1, so that for |x| ≤ 1,

‖x‖ ≤ |x|‖y‖ ≤ C−1
1 |x|, ‖x‖ ≥ |x|d‖y‖ ≥ C−d

2 |x|d,

completing the proof of Part (2).
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Proof of Part (1). Let | · |1 and | · |2 be two homogeneous quasi-norms. By a
similar argument to Part (2), we observe that since the ball B(0, 1) with respect
to | · |1 is compact by Lemma 1.2.2, and | · |2 is continuous, we have∣∣∣∣ x|x|1

∣∣∣∣
2

≤ C <∞

for all x �= 0. By homogeneity it follows that |x|2 ≤ C|x|1 for all x ∈ G. Switching
the roles of | · |1 and | · |2 we obtain the statement. �

The reason why the homogeneous quasi-norms have the prefix ‘quasi’ be-
comes clear from the following proposition that shows that in general the triangle
inequality is satisfied only with some constant:

Proposition 1.2.4 (Triangle inequality with constant). Let G be a homogeneous
group. Then we have the following properties:

(1) If | · | is a homogeneous quasi-norm on G, there exists C > 0 such that for
every x, y ∈ G, we have

|xy| ≤ C(|x|+ |y|).

(2) There always exists a homogeneous quasi-norm | · | on G which satisfies the
triangle inequality (with constant C = 1):

|xy| ≤ |x|+ |y| (1.4)

for all x, y ∈ G.

Proof. Let us prove Part (1). The function (x, y) 
→ |xy| attains a finite maximum
C > 0 on the set {(x, y) ∈ G × G : |x| + |y| = 1} which is compact by Lemma
1.2.2. Then, given any x, y ∈ G, set r = |x|+ |y|. It follows that

|xy| = r|r−1(xy)| = r|(r−1x)(r−1y)| ≤ Cr = C(|x| + |y|),

completing the proof.

We leave Part (2) without proof, referring to [FR16, Proposition 3.1.38 and
Theorem 3.1.39] for the complete argument. �

Proposition 1.2.5. There exists a constant C > 0 such that for every x ∈ G and
s ∈ [0, 1], we have

| exp(s log(x))| ≤ C|x|. (1.5)

Proof. Let x �= 0, otherwise (1.5) is trivial. Using the fact that | · | is homogeneous
of degree 1, we have

| exp(s log(x))|
|x| = |δ1/|x|(exp(s log(x))| = | exp(s log(δ1/|x|(x))|.
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With |δ1/|x|(x)| = 1, it follows that

| exp(s log(x))|
|x| ≤ max

ξ∈G:|ξ|=1,s∈[0,1]
ρ(exp(s log(ξ))) =: C.

Note that C is finite, since the set {ξ : |ξ| = 1} is compact (see Lemma 1.2.2) as
well as | · |, exp and log are all continuous functions. �

The bi-invariant Haar measure on G comes from the Lebesgue measure on
g by Proposition 1.1.1. Fixing the normalisation of the Haar measure on G we
require that the Haar measure of B(0, 1) is 1. (Thus, if G = Rn with the usual
Lebesgue measure, our Haar measure is Γ((n + 2)/2)/π n/2 times the Lebesgue
measure.) The measure of any measurable set E ⊂ G will be denoted by |E|, and
we shall denote the integral of a function f with respect to this measure by

∫
G
fdx

or by
∫
G
f(x)dx, or simply by

∫
f or by

∫
f(x)dx.

Recalling (1.3), the homogeneous dimension of G is

Q =

n∑
k=1

dk = Tr(A),

and we have
|δr(E)| = rQ|E|, d(rx) = rQdx. (1.6)

In particular, we have |B(x, r)| = rQ for all r > 0 and x ∈ G.

Definition 1.2.6 (Homogeneous functions and operators). A function f on G\{0}
is said to be homogeneous of degree λ if it satisfies

f ◦ δr = rλf for all r > 0.

We note that for f and g, we have the formula∫
G

f(x) (g ◦ δr)(x)dx = r−Q
∫
G

(f ◦ δ 1/r)(x)g(x)dx,

given that the integrals exist. Hence we can extend the mapping f 
→ f ◦ δr
to distributions by defining, for any distribution f and any test function φ, the
distribution f ◦ δr by

〈f ◦ δr, φ〉 = r−Q〈f, φ ◦ δ 1/r〉,
where 〈·, ·〉 denotes the usual duality between functions and distributions. The
distribution f is called homogeneous of degree λ if it satisfies

f ◦ δr = rλf for all r > 0.

Also, a linear operator D on G is called homogeneous of degree λ if it satisfies

D(f ◦ δr) = rλ(Df) ◦ δr for all r > 0,

for any f . IfD is a linear operator homogeneous of degree λ and f is a homogeneous
function of degree μ, then Df is homogeneous of degree μ−λ.
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The following extension of the reverse triangle inequality is often useful:

Proposition 1.2.7 (Reverse triangle inequality). Let f be a homogeneous function
of degree λ and of class C1 on G\{0}. Then there is a constant C > 0 such that
we have

|f(xy)− f(x)| ≤ C|y||x|λ−1 for all |y| ≤ |x|/2.

Proof. Suppose that |x| = 1 and |y| ≤ 1/2, and we use the fact that both sides
of the desired inequality are homogeneous of degree λ. In this case x and xy are
bounded, and also bounded away from zero, and the map y 
→ xy is C1, so by the
usual mean value theorem and Proposition 1.2.3, we obtain

|f(xy)− f(x)| ≤ C‖y‖ ≤ C ′|y| = C′|y||x|λ−1,

using that both sides of the desired inequality are homogeneous functions of the
same degree λ. �

In particular, this proposition can be applied to C1 homogeneous quasi-
norms. Specifically, the combination of Proposition 1.2.4 and Proposition 1.2.7
leads to a constant γ > 0 such that we have

|xy| ≤ γ(|x|+ |y|) for all x, y ∈ G, (1.7)

||xy| − |x|| ≤ γ|y| for all x, y ∈ G with |y| ≤ |x|/2. (1.8)

Henceforth, γ will always be called the minimal constant satisfying (1.7) and (1.8).
Obviously, γ ≥ 1. We will be using (1.7) and (1.8) without comment in the sequel.
The following simple fact will also be useful later:

Lemma 1.2.8 (Peetre type inequality). For every x, y ∈ G and s > 0, we have

(1 + |x|)s(1 + |y|)−s ≤ γs(1 + |xy−1|)s.

Proof. Because of |x| ≤ γ(|xy−1|+ |y|) we have

1 + |x| ≤ γ(1 + |xy−1|)(1 + |y|),

and we obtain the needed inequality by raising both sides to the sth power. �

Let us now fix the notation for some common function spaces on G. Let Ω ⊂
G, and let C(Ω) (C0(Ω)) be the space of continuous functions on G (continuous
functions with compact support, respectively). If Ω is open, then C(k)(Ω) is called
the class of k times continuously differentiable functions on Ω,

C∞(Ω) =

∞⋂
k=1

C(k)(Ω) and C∞
0 (Ω) = C∞(Ω) ∩ C0(Ω).
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When Ω = G we shall usually omit mentioning it. If 0 < p ≤ ∞, then Lp will
denote the usual Lebesgue space on G. For 0 < p <∞ we write

‖f‖p :=
(∫

G

|f(x)|pdx
) 1/p

,

despite the fact that this is not a norm for p < 1. However, the map (f, g) 
→
‖f − g‖pp is a metric on Lp for p < 1. We recall that if f is a measurable function
on G, its distribution function λf : [0,∞]→ [0,∞] is defined by

λf (α) := |{x : |f(x)| > α}|, (1.9)

and its nonincreasing rearrangement f∗ : [0,∞)→ [0,∞) is defined by

f∗(t) = inf{α : λf (α) ≤ t}. (1.10)

Moreover,∫
G

|f(x)|pdx = −
∫ ∞

0

αpdλf (α) = p

∫ ∞

0

αp−1λf (α)dα =

∫ ∞

0

f∗(t)pdt.

For 0 < p <∞, the weak-Lp is the space of functions f such that

[f ]p := sup
α>0

αpλf (α) = sup
t>0

t 1/pf∗(t) <∞.

This [·]p is not a norm but it defines a topology on the weak-Lp space. A sub-
additive operator which is bounded from Lp to weak Lq is said to be weak type
(p, q).

1.2.2 Polar coordinates

There is an analogue of polar coordinates on homogeneous groups. We start with
the following observation:

Proposition 1.2.9 (Polar decomposition: a special case). Let f be a locally integrable
function on G\{0} and assume that it is homogeneous of degree −Q. Then there is
a constant μf (the ‘average value’ of f) such that for every g ∈ L1((0,∞), r−1dr),
we have ∫

G

f(x)g(|x|)dx = μf

∫ ∞

0

g(r)r−1dr. (1.11)

Proof. Define Lf : (0,∞)→ C by

Lf (r) :=

{ ∫
1≤|x|≤r f(x)dx if r ≥ 1,

− ∫
r≤|x|≤1

f(x)dx if r < 1.
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By changing the variables x 
→ sx and using the homogeneity of f , it can be
verified that

Lf (rs) = Lf(r) + Lf (s)

for all r, s > 0. From the continuity of Lf , it then follows that

Lf = Lf (e) log r,

and we set μf := Lf (e). Then equality (1.11) is obvious when g is the characteristic
function of an interval, and it follows in general by taking linear combinations and
limits of such functions. �
Proposition 1.2.10 (Polar decomposition). Let

℘ := {x ∈ G : |x| = 1} (1.12)

be the unit sphere with respect to the homogeneous quasi-norm | · |. Then there is
a unique Radon measure σ on ℘ such that for all f ∈ L1(G),∫

G

f(x)dx =

∫ ∞

0

∫
℘

f(ry)rQ−1dσ(y)dr. (1.13)

Proof. Let f̃ ∈ C(G\{0}) be the homogeneous extension of f ∈ C(℘) defined by

f̃(x) := |x|−Qf(|x|−1x).

Then f̃ satisfies the hypotheses of Proposition 1.2.9. The map f 
→ μf̃ is clearly a

positive linear functional on C(℘), so it is given by the integration against some
Radon measure σ on ℘. If g ∈ C0(0,∞) then we have∫

G

f(|x|−1x)g(|x|)dx =

∫
G

f̃(x)|x|Qg(|x|)dx = μf̃

∫ ∞

0

rQ−1g(r)dr

=

∫ ∞

0

∫
℘

f(y)g(r)rQ−1dσ(y)dr.

Since linear combination of functions of the form f(|x|−1x)g(|x|) are dense in
L1(G), this completes the existence proof, and from the decomposition it follows
that such a measure is necessarily unique. �
Corollary 1.2.11. Let C := σ(℘). Then if 0 < a < b <∞ and α ∈ C, we have∫

a<|x|<b
|x|α−Qdx =

{
Cα−1(bα − aα) if α �= 0,

C log(b/a) if α = 0.

Corollary 1.2.12. Let f be a measurable function on G such that

f(x) = O(|x|α−Q)
for some α ∈ R. If α > 0 then f is integrable near 0, and if α < 0 then f is
integrable near ∞.

These two corollaries will be frequently used without comment in the sequel.
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1.2.3 Convolutions

Let f and g be two integrable function on G. Then their convolution f ∗ g is well
defined by

(f ∗ g)(x) :=
∫
G

f(y)g(y−1x)dy =

∫
G

f(xy−1)g(y)dy.

The basic facts about convolution of Lp and weak-Lp functions can be for-
mulated in two propositions. For other properties of convolutions on groups we
can refer to [FR16, Sections 1.5 and 3.1.10].

Proposition 1.2.13 (Young’s inequality). Suppose

1 ≤ p, q, r ≤ ∞ and
1

p
+

1

q
=

1

r
+ 1.

If f ∈ Lp and g ∈ Lq, then f ∗ g ∈ Lr and

‖f ∗ g‖Lr(G) ≤ ‖f‖Lp(G)‖g‖Lq(G).

Proof. First assuming r = ∞, in this case p and q are conjugate exponents and
the result follows from Hölder’s inequality.

Second assuming r = q, p = 1, let q′ be the conjugate exponent to q. By
Hölder’s inequality,

|f ∗ g(x)| ≤
∫
G

|f(xy−1)|(1/q)+(1/q′)|g(y)|dy

≤
(∫

G

|f(xy−1)|dy
)1/q′ (∫

G

|f(xy−1)||g(y)|qdy
)1/q

= ‖f‖1/q′1

(∫
G

|f(xy−1)||g(y)|qdy
)1/q

.

Thus, by Fubini’s theorem, we obtain∫
G

|f ∗ g(x)|qdx ≤ ‖f‖q/q′1

∫
G

∫
G

|f(xy−1)||g(y)|qdydx

= ‖f‖(q/q′)+1
1 ‖g‖qq,

so that ‖f ∗ g‖q ≤ ‖f‖1‖g‖q. The rest follows by interpolation. �
Proposition 1.2.14 (Young’s inequality for weak-Lp spaces). Suppose

q ≤ p <∞, 1 < q, r <∞, and
1

p
+

1

q
=

1

r
+ 1.

If f ∈ Lp and g ∈ Lq then f ∗ g ∈ weak-Lr and there exists C1 = C1(p, q) such
that

[f ∗ g]r ≤ C1‖f‖p[g]q.
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Moreover, if p > 1 then f ∗ g ∈ Lr and there exists C2 = C2(p, q) such that

‖f ∗ g‖r ≤ C2‖f‖p[g]q.
Proof. By the Marcinkiewicz interpolation theorem one can notice that the strong
result for p > 1 follows from the weak result. Suppose then that f ∈ Lp and
g ∈ Lq, and (without loss of generality) that ‖f‖p = [q]q = 1. Given α > 0 set

M := (α/2) r/q(q/r)r/qp
′
,

where p′ is the conjugate exponent to p. Define g1(x) := g(x) if |g(x)| ≤ M and
g1(x) := 0 otherwise, and set g2 := g − g1. Since

λf∗g(α) ≤ λf∗g1(α/2) + λf∗g2(α/2),

it is enough to show that each term on the right side is bounded by Cα−r, where
C depends only on p and q. On the one hand, since q−1 − (p′)−1 = r−1 > 0 we
have p′q > 0 and therefore∫

G

|g1(x)|p′dx = p′
∫ ∞

0

αp
′−1λg1(α)dα ≤ p′

∫ M

0

αp
′−1λg(α)dα

≤ p′
∫ M

0

αp
′−1−qdα =

p′

p′ − qM
p′−q =

r

q
M qp′/r = (α/2)p

′
.

Thus, for every x ∈ G, by Hölder’s inequality (or by Proposition 1.2.13) we have

|f ∗ g1(x)| ≤ ‖f‖p‖g1‖p′ ≤ α/2,
which implies that λf∗g1(α/2) = 0. On the other hand, since q > 1, we have∫

G

|g2(x)|dx =

∫ ∞

0

λg2(α)dα =

∫ M

0

λg(M)dα+

∫ ∞

M

λg(α)dα

≤M ·M−q +
∫ ∞

M

α−qdα =
q

q − 1
M1−q,

and therefore by Proposition 1.2.13,

‖f ∗ g2‖p ≤ ‖f‖p‖g2‖1 ≤ q(q − 1)−1M1−q.

But then

λf∗g2(α/2) ≤ [2‖f ∗ g2‖p/α]p

≤
(
2

α

)p (
q

q − 1

)p
M (1−q)p

= C(p, q)α−r .

This completes the proof. �
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Now let us summarize some properties of approximations to the identity in
terms of the convolution. The following notation will be used throughout this
monograph: if φ is a function on G and t > 0, we define φt by

φt := t−Qφ ◦ δ 1/t, that is, φt(x) := t−Qφ(x/t). (1.14)

We notice that if φ ∈ L1(G) then
∫
G
φt(x)dx is independent of t.

Proposition 1.2.15 (Approximation of identity). Let φ ∈ L1(G) and let a :=∫
G
φ(x)dx. Then we have the following properties:

(i) If f ∈ Lp(G) for 1 ≤ p <∞, then ‖f ∗ φt − af‖p → 0 as t→ 0.

(ii) If f is bounded and right uniformly continuous, then ‖f ∗ φt − af‖∞ → 0 as
t→ 0.

(iii) If f is bounded on G and continuous on an open set Ω ⊂ G, then f ∗φt−af →
0 uniformly on compact subsets of Ω as t→ 0.

Proof. For a function f on G and y ∈ G, let us define

fy(x) := f(xy−1).

If f ∈ Lp for 1 ≤ p <∞, then it can be shown that

‖fy − f‖p → 0 as y → 0, (1.15)

for example, using the fact that C0 is dense in Lp. If p = ∞, property (1.15)
holds if and only if f is (almost everywhere equal to) a right uniformly continuous
function. We now observe that

f ∗ φt(x) − af(x) =
∫
G

f(xy−1)t−Qφ(y/t)dy − af(x)

=

∫
G

f(x(tz)−1)φ(z)dz − af(x)

=

∫
G

[f(x(tz)−1)− f(x)]φ(z)dz.

Hence by Minkowski’s inequality,

‖f ∗ φt − af‖p ≤
∫
G

‖f tz − f‖p|φ(z)|dz.

Since ‖f tz − f‖p ≤ 2‖f‖p, under the hypothesis of (i) or (ii) it follows from (1.15)
and the dominated convergence theorem that ‖f ∗ φt − af‖ → 0. The routine
modification of this argument (with p =∞) needed to establish (iii) is left to the
reader. �
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1.2.4 Polynomials

The Lie algebra g of G can be understood from different prospectives:

• as tangent vectors at the origin,

• as left invariant (and right invariant) vector fields.

While in this book we will not make much use of the first interpretation, we will
need the second. Consequently, let us denote by gL and gR the spaces of left
invariant and right invariant vector fields on G.

Let us fix a basis X1, . . . , Xn for g consisting of eigenvectors for the dilations
δr with eigenvalues rd1 , . . . , rdn , i.e., such that

δrXk = rdkXk.

In other words, first, we consider Xk as left invariant differential operators on G

and we denote by Y1, . . . , Yn the corresponding basis for gR: that is, Yk is the
element of gR such that Yk|0 = Xk|0 and for f ∈ C1 we have

Xkf(y) =
d

dt
f(y · exp(tXk))|t=0,

Ykf(y) =
d

dt
f(exp(tXk) · y)|t=0.

Then Xk and Yk are the differential operators homogeneous of degree dk since

Xk(f ◦ δr)(y) = d

dt
f((ry) exp(rdk tXk))|t=0

= rdk
d

dt
f((ry) exp(tXk))|t=0

= rdk(Xkf ◦ δr)(y),
and similarly for Yk. For I = (i1, . . . , in) ∈ Nn, we use the notation

XI = X i1
1 X

i2
2 · · ·X in

n , Y I = Y i11 Y i22 · · ·Y inn .

According to the Poincaré–Birkhoff–Witt theorem, the operators XI give a ba-
sis for the algebra of left invariant differential operators on the Lie group G. In
addition, we also use the notations

|I| := i1 + i2 + · · ·+ in, d(I) := d1i1 + d2i2 + · · ·+ dnin. (1.16)

Here |I| is called an order of the differential operators XI and Y I , and d(I) is
their degree of homogeneity or the homogeneous degree. If we denote by Δ the set
of all numbers d(I) as I ranges over Nn then we have N ⊂ Δ as d1 = 1.

There are two useful facts. On the one hand, left translations are isometries
on L2(G), and the operators Xk and Yk are formally skew-adjoint. Therefore,∫

G

(XIf)g = (−1)|I|
∫
G

f(XIg),

∫
G

f(Y Ig) = (−1)|I|
∫
G

(Y If)g,
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for all smooth functions f and g for which the integrands decay suitably at infinity.
On the other hand, the operators XI and Y I interact with convolutions by the
formulae

XI(f ∗ g) = f ∗ (XIg), Y I(f ∗ g) = (Y If) ∗ g, (XIf) ∗ g = f ∗ (Y Ig).
Except for the last one these equalities are direct consequences of differentiating,
and the third can be obtained by integration by parts:

(XIf) ∗ g(x) =
∫
G

XIf(xy)g(y−1)dy = (−1)|I|
∫
G

f(xy)XI [g(y−1)]dy

=

∫
G

f(xy)(Y Ig)(y−1)dy = f ∗ (Y Ig)(x).

Definition 1.2.16 (Polynomials on the homogeneous group G). A function P on G

will be called a polynomial if P ◦ exp is a polynomial on g.

We can form a global coordinate system on G and generate the algebra of
polynomials on G by setting

ηk = ξk ◦ exp−1,

where η1, . . . , ηn are polynomials on G, and ξ1, . . . , ξn are the basis for the linear
forms on g dual to the basis X1, . . . , Xn for g. Therefore, each polynomial on G

can be defined uniquely in the form

P =
∑
I

aIη
I ,

where
ηI = ηi11 · · · ηinn ,

aI ∈ C, and all but finitely many of the coefficients aI vanish. Since ηI is homo-
geneous of degree d(I), the set of possible homogeneous degrees for polynomials
coincides with the set Δ. The isotropic degree of a polynomial P is

max{|I| : aI �= 0}.
And the homogeneous degree of a polynomial P is

max{d(I) : aI �= 0}.
By P iso

N , for N ∈ N, we denote the space of polynomials of isotropic degree ≤ N ,
and by Pa, for a ∈ Δ, we denote the space of polynomials of homogeneous degree
≤ a. Since 1 ≤ dk ≤ d for k = 1, . . . , n, we observe that

PN ⊂ P iso
N ⊂ PdN

for N ∈ N.
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There is a more explicit description of the group law in terms of the coordi-
nates ηk since the map

(x, y) 
→ ηk(xy)

is a polynomial on G×G. Thus, we have

ηk((rx)(ry)) = rdkηk(xy),

that is, it is jointly homogeneous of degree dk and, according to the Baker–
Campbell–Hausdorff formula, we have ηk(xy) = ηk(x) + ηk(y) modulo terms of
isotropic degree ≥ 2. It follows that

ηk(xy) = ηk(x) + ηk(y) +
∑

I 	=0,J 	=0,d(I)+d(J)=dk

CIJk ηI(x)ηJ (y), (1.17)

where CIJk are constants. It is easy to see that the monomials ηI , ηJ can only
involve coordinates with homogeneous degree less than dk, since the multi-indices
I and J in (1.17) must satisfy d(I) < dk and d(J) < dk. In particular, only the
coordinates η1, . . . , ηj−1 can be involved, for instance:

dk = 1 : ηk(xy) = ηk(x) + ηk(y),

dk = 2 : ηk(xy) = ηk(x) + ηk(y) +
∑

dj=dl=1

Cjlk ηj(x)ηl(y).

Proposition 1.2.17 (Polynomials are translation invariant). For any a ∈ Δ, Pa is
left translation invariant.

Proof. According the formula (1.17), it is easy to see that ηk(xy) is in Pdk (as a
function of x for each y, and also as a function of y for each x). On the other hand,
the ηk’s generate all polynomials, therefore Pa is left translation invariant for all
a ∈ Δ. �
Definition 1.2.18 (Coordinate functions on the group). For x ∈ G and k = 1, . . . , n,
we can think of

xk := ηk(x)

as the coordinates of the variable x. Thus, each xk becomes a polynomial of ho-
mogeneous degree k.

We now establish a link between left and right invariant differential operators
and derivatives with respect to coordinate functions on the group.

Proposition 1.2.19 (Formulae for invariant derivatives). We have

Xk =
∑

Pkj(∂/∂xj), Yk =
∑

Qkj(∂/∂xj), (1.18)

where Pkk = Qkk = 1, Pkj = Qkj = 0 if dj < dk or if dj = dk and j �= k, and
Pkj , Qkj are homogeneous polynomials of degree dk − dj if dj > dk.
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Proof. Let us define the operator Lx : G → G by Lx(y) := xy for x ∈ G. Then,
using the fact that Xk agrees with ∂/∂xk at 0, for each differentiable function f
on G and x ∈ G, we have

Xkf(x) = (Xkf) ◦ Lx(0) = Xk(f ◦ Lx)(0) = (∂/∂xk)(f ◦ Lx)(0).

Therefore, by the chain rule, we obtain

Xkf(x) =

n∑
k=1

∂f

∂xk
(x)

∂[xk ◦ Lx]
∂xk

(0).

But by formula (1.17) it follows that

∂[xj ◦ Lx]
∂xk

(0) = δkj +
∑

d(I)=dj−dk
C
I[k]
j ηI(x),

where [k] is the multi-index with 1 in the kth place and zeros elsewhere. The
desired result for Xk follows from this, and for Yk it can be proved in a similar
way. �

There are also similar expressions for ∂/∂xk in terms of Xj or Yj :

∂/∂xk =
∑

P ′
kjXj =

∑
Q′
kjYj ,

where P ′
kj , Q

′
kj are of the same form as Pkj , Qkj in (1.18). Above formulae can

be directly obtained from (1.18) with j = n, that is, we have

Xn = ∂/∂xn,

Xn−1 = ∂/∂xn−1 + P(n−1)n∂/∂xn,

Xn−2 = ∂/∂xn−2 + P(n−2)(n−1)∂/∂xn−1 + P(n−2)n∂/∂xn,

therefore, we obtain

∂/∂xn = Xn,

∂/∂xn−1 = Xn−1 − P(n−1)n∂/∂xn,

∂/∂xn−2 = Xn−2 − P(n−2)(n−1)∂/∂xn−1 − P(n−2)n∂/∂xn,

and so on. Similarly, one can obtain expressions for higher-order derivatives. For
instance,

XI =
∑

|J|≤|I|,d(J)≥d(I)
PIJ (∂/∂x)

J , (1.19)

where PIJ is a homogeneous polynomial of degree d(J) − d(I). Analogously, we
obtain formulae for Y I in terms of (∂/∂x)J and for (∂/∂x)I in terms of XJ or
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Y J , that is,

XI =
∑

|J|≤|I|,d(J)≤d(I)
PIJY

J ,

Y I =
∑

|J|≤|I|,d(J)≤d(I)
QIJX

J ,

where PIJ and QIJ are homogeneous polynomials of degree d(J)− d(I).
Proposition 1.2.20 (Determination of invariant differential operators). Let a ∈
Δ and let μ := dimPa. Then the following maps are linear isomorphisms from
Pa to Cμ:

(i) P → ((∂/∂x)IP (0))d(I)≤a,

(ii) P → (XIP (0))d(I)≤a,

(iii) P → (Y IP (0))d(I)≤a.

Proof. Note that Case (i) is a simple consequence of Taylor’s theorem. Also, in
view of (1.19), since PIJ is a constant function when d(I) = d(J) and PIJ(0) = 0
when d(J) > d(I), we have

XI |0 =
∑

|J|≤|I|,d(J)=d(I)
PIJ (∂/∂x)

J |0,

and similarly for the other formulae relating XI , Y I and (∂/∂η)I . Cases (ii) and
(iii) follow easily from this observation together with Case (i). �

The properties above motivate the following:

Definition 1.2.21 (Taylor polynomials). Let x ∈ G, a ∈ Δ, and let f be a function
whose (distributional) derivatives XIf (resp. Y If) are continuous functions in a
neighborhood of x for d(I) ≤ a. The left (resp. right) Taylor polynomial of f at x
of homogeneous degree a is the unique P ∈ Pa such that XIP (0) = XIf(x) (resp.
Y IP (0) = Y If(x)) for all I such that d(I) ≤ a.

Now we provide simple proofs of an explicit expression of the Taylor formula
and the Taylor inequality in the spirit of [Bon09].

Let X ∈ g be given, and suppose γ(t) is any integral curve of X , i.e.

γ̇ = X(γ(t))

for all t ∈ R. If m ∈ N ∪ {0} and u ∈ Cm+1(G) is real-valued, then since

dk

dtk
(u(γ(t))) = (Xku)(γ(t)),
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for each k ∈ N∪{0}, by applying the usual Taylor formula (with integral reminder)
to t 
→ u(γ(t)), we obtain

u(γ(t)) =

m∑
k=0

tk

k!
(Xku)(γ(0)) +

1

m!

∫ t

0

(t− s)m(Xm+1u)(γ(s))ds. (1.20)

Moreover, it is easy to see that the integral curve γ of log h starting at x is
s 
→ γ(s) = x exp(s log h). With γ(0) = x, γ(1) = xh, we get

u(xh) =

m∑
k=0

1

k!
((log h)ku)(x) +

1

m!

∫ 1

0

(1− s)m((log h)m+1u)(x exp(s log h))ds.

(1.21)

On the other hand, there always exist (polynomial) functions G � h 
→
ζi(h) ∈ R such that

log h = ζ1(h)X1 + · · ·+ ζn(h)Xn,

for all h ∈ G, where {X1, . . . , Xn} is a basis of the Lie algebra of G. Thus, we have

(log h)k =

(
n∑
i=1

ζi(h)Xi

)k
=

n∑
i1,...,ik=1

ζi1(h) · · · ζik (h)Xi1 · · ·Xik ,

for every k ∈ N.

Therefore, (1.21) implies that

u(xh) = u(x) +

m∑
k=1

∑
I=(i1,...,ik),i1,...,ik≤n

XIu(x)

k!
ζi1(h) · · · ζik (h)

+
∑

I=(i1,...,im+1),i1,...,in+1≤n
ζi1(h) · · · ζim+1(h)

×
∫ 1

0

(XIu)

⎛⎝x exp
⎛⎝∑
i≤n

sζi(h)Xi

⎞⎠⎞⎠ (1− s)m
m!

ds,

(1.22)

where XI = Xi1 · · ·Xik and I = (i1, . . . , ik) with i1, . . . , ik ∈ {1, . . . , n}.
For a multi-index α, we will be using the notations (1.16), i.e.,

|α| = α1 + · · ·+ αn, d(α) = d1α1 + · · ·+ dnαn,

where dj is the homogeneous degree of Xk; these are called the Euclidean length
and the homogeneous length of α, respectively. One also sets

G := {d(α) : α ∈ (N ∪ {0})n}.
As usual, [β] below is the integer part of the real number β. Now we are in a
position to state the Taylor formula on homogeneous groups.



32 Chapter 1. Analysis on Homogeneous Groups

Theorem 1.2.22 (Taylor formula). Let G be a homogeneous group (identified with
Rn as a topological space). Suppose {X1, . . . , Xn} is the Jacobian basis for its Lie
algebra, m ∈ G and u ∈ C [m]+1(G). Let also x0 ∈ G be fixed. Then, for every
x ∈ G we have

u(x) = Pm(u, x0)(x) +Rm(x, x0) (1.23)

= u(x0) +

[m]∑
k=1

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)≤m

XIu(x0)

k!
ζi1(x

−1
0 x) · · · ζik(x−1

0 x) +Rm(x, x0),

where the reminder term Rm(x, x0) is given by

Rm(x, x0) =

[m]∑
k=1

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)>m

XIu(x0)

k!
ζi1(x

−1
0 x) · · · ζik(x−1

0 x)

+
∑

I=(i1,...,i[n]+1),
i1,...,i[m]+1≤n

ζi1(x
−1
0 x) · · · ζi[m]+1

(x−1
0 x)

×
∫ 1

0

(XIu)

⎛⎝x0 exp
⎛⎝∑
i≤n

sζi(x
−1
0 x)Xi

⎞⎠⎞⎠ (1− s)[m]

[m]!
ds.

Proof of Theorem 1.2.22. If x0 ∈ G is any fixed element, by replacing x and h in
the formula (1.22) by respectively x0 and x−1

0 x, we obtain the following:

u(x) = u(x0) +

[m]∑
k=1

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)>m

XIu(x0)

k!
ζi1 (x

−1
0 x) · · · ζik(x−1

0 x)

+
∑

I=(i1,...,i[m]+1),
i1,...,i[m]+1≤n

ζi1 (x
−1
0 x) · · · ζi[m]+1

(x−1
0 x) (1.24)

×
∫ 1

0

(XIu)

⎛⎝x0 exp
⎛⎝∑
i≤n

sζi(x
−1
0 x)Xi

⎞⎠⎞⎠ (1− s)[m]

[m]!
ds.

Since a polynomial ζi(x) is homogeneous of degree σi, there exists C1 > 0 such
that

C−1
1 |x|σi ≤ |ζi(x)| ≤ C1|x|σi , ∀x ∈ G, i = 1, . . . , n.

As a consequence, for every k ∈ N, ζi1 · · · ζik is a homogeneous polynomial of degree
di1 + · · ·+ dik . Similarly, ζi1 · · · ζi[m]+1

is homogeneous of degree ≥ [m] + 1 (since
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the di’s are ≥ 1) and, there appear only derivatives XIu with d(I) ≥ [m] + 1 > m
in the integral summands.

We restate (1.24) emphasizing out the polynomial of degree ≤ m in the
right-hand side:

u(x) = u(x0) +

[m]∑
k=1

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)≤m

XIu(x0)

k!
ζi1(x

−1
0 x) · · · ζik (x−1

0 x)

+

[m]∑
k=1

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)>m

XIu(x0)

k!
ζi1(x

−1
0 x) · · · ζik (x−1

0 x)

+
∑

I=(i1,...,i[m]+1),
i1,...,i[m]+1≤n

ζi1(x
−1
0 x) · · · ζi[m]+1

(x−1
0 x)

×
∫ 1

0

(XIu)

⎛⎝x0 exp
⎛⎝∑
i≤n

sζi(x
−1
0 x)Xi

⎞⎠⎞⎠ (1 − s)[m]

[m]!
ds

=: Pm(u, x0)(x) +Rm(x, x0).

By construction, Pm(u, x0)(x) is a polynomial of homogeneous degree ≤ m. �
Theorem 1.2.23 (Taylor inequality). Assume the hypotheses of Theorem 1.2.22.
Then for every fixed homogeneous norm | · | on G and every m ∈ G, there exists
C > 0 (depending on G and | · |) such that

|Rm(x, x0)| ≤
[m]+1∑
k=1

Ck

k!

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)>m

|x−1
0 x|d(I) sup

|y|≤C|x−1
0 x|
|XIu(x

−1
0 y)|. (1.25)

Moreover, an explicit formula for the Taylor polynomial Pm(u, x0) of degree m ∈ G
related to u about x0 is

Pm(u, x0)(x) = u(x0)

+

[m]∑
k=1

∑
I=(i1,...,ik),i1,...,ik≤n,d(I)≤m

XIu(x0)

k!
ζi1 (x

−1
0 x) · · · ζik(x−1

0 x). (1.26)

Proof of Theorem 1.2.23. Since

n∑
i=1

sζi(x)Xi = s log(x)
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by Proposition 1.2.5 we obtain∣∣∣∣∣∣(XIu)

⎛⎝exp

⎛⎝∑
i≤n

sζi(x)Xi

⎞⎠⎞⎠∣∣∣∣∣∣ ≤ sup
|y|≤C0|x|

|XIu(y)|.

This implies that

|Rm(x−1
0 x)| ≤

[m]+1∑
k=1

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)>m

sup
|y|≤C0|x−1

0 x|
|XIu(x

−1
0 y)|ζi1(x

−1
0 x) · · · ζik(x−1

0 x)

k!

≤
[m]+1∑
k=1

Ck1
k!

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)>m

|x−1
0 x|σ(I) sup

|y|≤C0|x−1
0 x|
|XIu(x

−1
0 y)|.

Choosing C := max{C0, C1} we complete the proof of the Taylor inequality (1.25).

First, note that the above estimate of Rm gives Rm(x) = O(ρm+ε(x)) as
x→ 0, where

ε := min
k=1,...,[m]+1

{d(I)−m : I = (i1, . . . , ik), i1, . . . , ik ≤ n, d(I) > m}. (1.27)

Thus, the Taylor formula (1.23) can be rewritten as u(x)=Pm(x)+O(|x|m+ε)
as x→ 0, with ε > 0 as in (1.27).

Now let us see that there exists at most one polynomial function P on G,
with degree ≤ m, such that, for some ε > 0 (depending on P and m) it holds

u(x) = P (x) +Ox→x0(|x−1
0 x|m+ε). (1.28)

Indeed, suppose there are two such polynomials, A and B (with related ε1, ε2 > 0).
Then setting ε := min{ε1, ε2} we have

Q(x) := B −A = Ox→x0(|x−1
0 x|m+ε).

Setting Q̃(z) := Q(x0z), this is equivalent to

Q̃(z) = Oz→0(|z|m+ε). (1.29)

The fact that Q is a polynomial of degree at most m and the ith component
function of x0z is a polynomial in z of degree at most di, it follows that Q(x0z) is
a polynomial in z of degree at most m.

Therefore, (1.29) is valid if and only if Q̃ ≡ 0, that is, Q(x0z) = 0 for all
z ∈ G. This is in turn equivalent to Q ≡ 0, i.e., A ≡ B. Note that the equivalence
of all homogeneous norms (cf. Proposition 1.2.3) implies that a polynomial P as
in (1.28) is independent of | · |. Thus, Pm is the Taylor polynomial of degree m
related to u, which has the explicit formula (1.26). �
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1.3 Radial and Euler operators

An important tool for working on homogeneous groups will be an extensive use of
radial and Euler operators. We now discuss them in some detail and establish a
number of properties used throughout the book.

1.3.1 Radial derivative

First we introduce a radial derivative (acting on a differentiable function f) on a
homogeneous group G by

Rf(x) := df(x)

d|x| , (1.30)

where |x| is a homogeneous quasi-norm of G. Note that the homogeneous quasi-
norm |x| in the formula (1.30) can be arbitrary, that is, in general the radial
operator R depends on a chosen homogeneous quasi-norm.

Let {X1, . . . , Xn} be a basis of the Lie algebra g of G such that we have

AXk = νkXk for every k = 1, . . . , n.

Then the matrix A can be taken to be A = diag(ν1, . . . , νn) and each Xk is
homogeneous of degree νk. By decomposing the vector exp−1

G
(x) in g with respect

to the basis {X1, . . . , Xn}, we get the vector

e(x) = (e1(x), . . . , en(x))

given by the formula

exp−1
G

(x) = e(x) · ∇ ≡
n∑
j=1

ej(x)Xj ,

where
∇ = (X1, . . . , Xn)

is the full gradient. It gives the equality

x = expG (e1(x)X1 + · · ·+ en(x)Xn) . (1.31)

By homogeneity and denoting x = ry, with y ∈ ℘ being on the quasi-sphere (1.12),
we get

e(x) = e(ry) = (rν1e1(y), . . . , r
νnen(y)).

Indeed, since each Xk is homogeneous of degree νk, from (1.31) we get that

rx = expG (rν1e1(x)X1 + · · ·+ rνnen(x)Xn) ,

and hence
e(rx) = (rν1e1(x), . . . , r

νnen(x)).
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Thus, since r > 0 is arbitrary, without loss of generality taking |x| = 1, we can
write

d

d|rx|f(rx) =
d

dr
f(exp

G (rν1e1(x)X1 + · · ·+ rνnen(x)Xn)). (1.32)

So, summarizing, one obtains

d

d|x| (f(x)) =
d

dr
(f(ry)) =

d

dr
(f(expG (rν1e1(y)X1 + · · ·+ rνnen(y)Xn))).

(1.33)
Throughout this book we will be often abbreviate the notation by writing

R :=
d

dr
, (1.34)

meaning that the derivative is taken with respect to the radial direction with
respect to the quasi-norm | · |.

We can also observe that for any differentiable function f we have

d

d|x|f(x) =
d

d|x|f
(
x

|x| |x|
)

=
x

|x|
d

dx
f(x) =

x · ∇E
|x| f(x), (1.35)

since for x ∈ G, we have that x
|x| does not depend on |x|, and where

∇E =

(
∂

∂x1
, . . . ,

∂

∂xn

)
is an anisotropic (Euclidean) gradient on G consisting of partial derivatives with
respect to coordinate functions.

Although xj and ∂
∂xj

may have degrees of homogeneity depending on j, the
operator

R =
x · ∇E
|x| =

d

d|x| (1.36)

is homogeneous of degree −1.

1.3.2 Euler operator

Given the radial derivative operator R, we define the Euler operator on G by

E := |x|R. (1.37)

Since R is homogeneous of degree −1, the operator E is homogeneous of degree 0.

We can note the following useful property shedding some more light on the
link between the radial derivative and the Euler operators, also clarifying how to
take derivatives with respect to points that are not on the quasi-sphere ℘. Thus,
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for x ∈ G, we can write x = ry with y ∈ ℘. Then, denoting ρ := etr for t ∈ R, we
have

d

dt
(f(etx)) =

d

dt
(f(etry)) =

d

dt
(f(ρy)) = ρ

d

dρ
(f(ρy)) = Ef(ρy) = Ef(etx),

that is,
d

dt
f(etx) = Ef(etx). (1.38)

The Euler operator has the following useful properties, also justifying the
name of Euler associated to this operator.

Proposition 1.3.1 (Properties of the Euler operator). We have the following prop-
erties:

(i) Let ν ∈ R. If f : G\{0} → R is differentiable, then

E(f) = νf if and only if f(rx) = rνf(x) (∀r > 0, x �= 0).

(ii) The formal adjoint operator of E has the form

E
∗ = −QI− E, (1.39)

where I is the identity operator.

(iii) For all complex-valued functions f ∈ C∞
0 (G\{0}) we have

‖Ef‖L2(G) = ‖E∗f‖L2(G) . (1.40)

Proof. Part (i). If a function f is positively homogeneous of order ν, that is, if

f(rx) = rνf(x)

holds for all r > 0 and x := ρy �= 0, y ∈ ℘, then using (1.30) for such an f , it
follows that

Ef = νf(x).

Conversely, let us fix x �= 0 and define

g(r) := f(rx).

Using (1.30), the equality Ef(rx) = νf(rx) means that

g′(r) =
d

dr
f(rx) =

1

r
Ef(rx) =

ν

r
f(rx) =

ν

r
g(r).

Consequently, g(r) = g(1)rν , i.e., f(rx) = rνf(x) and thus f is positively homo-
geneous of order ν.
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Part (ii). We can calculate the formal adjoint operator of E on C∞
0 (G\{0})

as follows:∫
G

Ef(x)g(x)dx =

∫ ∞

0

∫
℘

d

dr
f(ry)g(ry)rQdσ(y)dr

= −
∫ ∞

0

∫
℘

f(ry)

(
QrQ−1g(ry) + rQ

d

dr
g(ry)

)
dσ(y)dr

= −
∫
G

f(x)(Q + E)g(x)dx,

by the polar decomposition in Proposition 1.2.10 and the integration by parts
using formula (1.30).

Part (iii). By using the representation of E∗ in (1.39), we get

‖E∗f‖2L2(G) = ‖(−QI− E)f‖2L2(G)

= Q2 ‖f‖2L2(G) + 2QRe

∫
G

f(x)Ef(x)dx+ ‖Ef‖2L2(G) .
(1.41)

Then we have

2QRe

∫
G

f(x)Ef(x)dx = 2QRe

∫ ∞

0

∫
℘

f(ry)
d

dr
f(ry)rQdσ(y)dr

= Q

∫ ∞

0

rQ
∫
℘

d

dr
(|f(ry)|2)dσ(y)dr

= −Q2

∫ ∞

0

∫
℘

|f(ry)|2rQ−1dσ(y)dr

= −Q2 ‖f‖2L2(G) .

(1.42)

Combining this with (1.41) we obtain (1.40). �

Let us introduce the following operator that will be of importance in the
sequel,

A := EE
∗.

It is easy to see that this operator is formally self-adjoint, that is,

A = EE
∗ = E

∗
E = A

∗,

where we can use Proposition 1.3.1, Part (ii), to also write

EE
∗ = E

∗
E = −QE− E

2.

Then by replacing f by Ef in (1.40), we obtain the equality

‖Af‖L2(G) =
∥∥E2f

∥∥
L2(G)

(1.43)
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for all complex-valued functions f ∈ C∞
0 (G\{0}). Moreover, the operator A is

Komatsu-non-negative in L2(G), which means that (−∞, 0) is included in the
resolvent set ρ(A) of A and we have the property

∃M > 0, ∀λ > 0, ‖(λ+ A)−1‖L2(G)→L2(G) ≤Mλ−1.

Indeed, and more precisely, we have the following:

Lemma 1.3.2 (A = EE∗ is Komatsu-non-negative). The operator A = EE∗ is
Komatsu-non-negative in L2(G):

‖(λ+ A)−1‖L2(G)→L2(G) ≤ λ−1 for all λ > 0. (1.44)

Proof. We start with f ∈ C∞
0 (G\{0}). Using Proposition 1.3.1, Part (ii), a direct

calculation shows that we have the equality

‖(λI+ A)f‖2L2(G) = ‖(λI− E(QI+ E))f‖2L2(G)

= λ2 ‖f‖2L2(G) + ‖E(QI+ E)f‖2L2(G) − 2λRe

∫
G

f(x)QEf + E2fdx.
(1.45)

Since

Re

∫
G

f(x)E2fdx = Re

∫ ∞

0

∫
℘

f(ry)
d

dr
(Ef(ry))rQdσ(y)dr

= −Re
∫ ∞

0

∫
℘

(Ef(ry))

(
rQ

d

dr
f(ry) +QrQ−1f(ry)

)
dσ(y)dr

= −‖Ef‖2L2(G) −QRe

∫
G

Ef(x)f(x)dx,

we have

−2λRe
∫
G

f(x)QEf(x) + E2f(x)dx

= −2λQRe

∫
G

f(x)Ef(x)dx− 2λRe

∫
G

f(x)E2f(x)dx = 2λ ‖Ef‖2L2(G) . (1.46)

Combining (1.45) with (1.46), we obtain the equality

‖(λI− E(QI+ E))f‖2L2(G) = λ2 ‖f‖2L2(G) + 2λ ‖Ef‖2L2(G) + ‖E(QI+ E)f‖2L2(G) .

By dropping positive terms, it follows that

‖(λI− E(QI+ E))f‖2L2(G) ≥ λ2 ‖f‖2L2(G) ,

which implies (1.44). �

We can refer to [FR16, Section A.3] for more details on general further prop-
erties of Komatsu-non-negative operators and their use in the theory of fractional
powers of operators.
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1.3.3 From radial to non-radial inequalities

Now we show that the Euler operator and, consequently, also the radial derivative
operator, have a very useful property that in order to prove certain inequalities
on G is may be enough to prove them only for radially symmetric functions. We
summarize it in the following proposition. Such ideas will be of use, for example,
in the analysis of remainder estimates in Theorem 2.3.1 or in Theorem 3.2.6.

As usual, we will say that a function f = f(x) on G is radial, or radially
symmetric, if it depends only on |x|; clearly, this notion depends on the seminorm
that we are using.

Proposition 1.3.3 (Radialisation of functions). Let φ1, φ2, φ3 ∈ L1
loc(G) be arbitrary

radially symmetric functions. For f ∈ Lploc(G), define its radial average by

f̃(|x|) :=
(

1

|℘|
∫
℘

|f(|x|y)|pdσ(y)
) 1/p

. (1.47)

Then for any f ∈ Lploc(G) and 1 < p <∞ we have the equality∫
G

φ1(x)
∣∣∣f̃(|x|)∣∣∣p dx =

∫
G

φ1(x) |f(x)|p dx. (1.48)

Moreover, if φ2, φ3 ≥ 0, we have the inequalities∫
G

φ2(x)
∣∣∣Ek f̃(|x|)∣∣∣p dx ≤ ∫

G

φ2(x)
∣∣Ekf(x)∣∣p dx (1.49)

and ∫
G

φ3(x)
∣∣∣Rkf̃(|x|)∣∣∣p dx ≤ ∫

G

φ3(x)
∣∣Rkf(x)∣∣p dx, (1.50)

for all 1 < p < ∞, any k ∈ N and all f ∈ Lploc(G) such that Ekf ∈ Lploc(G) or
Rkf ∈ Lploc(G), respectively. The constants in these inequalities are sharp, and are

attained when f = f̃ .

Proof. Using definition (1.47) and the polar decomposition formula in Proposition
1.2.10, we have∫

G

|f̃(|x|)|pφ1(x)dx = |℘|
∫ ∞

0

|f̃(r)|pφ1(r)rQ−1dr

= |℘|
∫ ∞

0

1

|℘|
∫
℘

|f(ry)|pdσ(y)φ1(r)rQ−1dr =

∫
G

|f(x)|pφ1(x)dx,
(1.51)

which proves the identity (1.48).

To prove (1.49) let us show first that

|Ekf̃ | ≤
(

1

|℘|
∫
℘

∣∣Ekf(ry)∣∣p dσ(y)) 1
p

, r = |x|, (1.52)
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holds for any k ∈ N. We use the induction. For k = 1, by the Hölder inequality we
obtain

|Ef̃ | = r

(
1

|℘|
∫
℘

|f(ry)|pdσ(y)
) 1
p−1

1

|℘|
∣∣∣∣∫
℘

|f(ry)|p−2f(ry)
d

dr
f(ry)dσ(y)

∣∣∣∣
≤
(

1

|℘|
∫
℘

|f(ry)|pdσ(y)
) 1−p

p 1

|℘|
∫
℘

|f(ry)|p−1

∣∣∣∣r ddr f(ry)
∣∣∣∣ dσ(y)

≤
(

1

|℘|
∫
℘

|f(ry)|pdσ(y)
)1−p

p 1

|℘|
(∫

℘

∣∣∣∣r ddr f(ry)
∣∣∣∣p dσ(y))

1
p
(∫

℘

|f(ry)|pdσ(y)
)p−1

p

=

(
1

|℘|
∫
℘

|Ef(ry)|p dσ(y)
) 1
p

.

For the induction step, we assume that for some � ∈ N we have

|E�f̃ | ≤
(

1

|℘|
∫
℘

∣∣E�f(ry)∣∣p dσ(y)) 1/p

, (1.53)

and we want to prove that it then follows that

|E�+1f̃ | ≤
(

1

|℘|
∫
℘

∣∣E�+1f(ry)
∣∣p dσ(y)) 1/p

.

So, using (1.53), similarly to the case � = 1 above, we calculate

|E�+1f̃(r)| ≤
∣∣∣∣∣E
((

1

|℘|
∫
℘

∣∣E�f(ry)∣∣p dσ(y)) 1
p

)∣∣∣∣∣
= r

(
1

|℘|
∫
℘

∣∣E�f(ry)∣∣p dσ(y))1
p−1 ∣∣∣∣ 1

|℘|
∫
℘

∣∣E�f(ry)∣∣p−2
Ef(ry)

d

dr
(E�f(ry))dσ(y)

∣∣∣∣
≤
(

1

|℘|
∫
℘

∣∣E�f(ry)∣∣p dσ(y)) 1
p−1(

1

|℘|
∫
℘

∣∣E�f(ry)∣∣p−1 ∣∣E�+1f(ry)
∣∣ dσ(y))

≤
(

1

|℘|
∫
℘

|E�f(ry)|pdσ(y)
) 1
p−1

1

|℘|
(∫

℘

∣∣E�+1f(ry)
∣∣p dσ(y)) 1

p

×
(∫

℘

|E�f(ry)|pdσ(y)
) p−1

p

=

(
1

|℘|
∫
℘

∣∣E�+1f(ry)
∣∣p dσ(y)) 1

p

.

Here in the last line we have used Hölder’s inequality. It proves (1.52).
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Now (1.52) yields∫
G

∣∣∣Ekf̃(x)∣∣∣p φ2(x)dx = |℘|
∫ ∞

0

∣∣∣Ekf̃(r)∣∣∣p φ2(r)rQ−1dr

≤ |℘|
∫ ∞

0

1

|℘|
∫
℘

∣∣Ekf(ry)∣∣p φ2(r)rQ−1dσ(y)dr

=

∫
G

∣∣Ekf(x)∣∣p φ2(x)dx.
This completes the proof of (1.49). The proof of (1.50) is similar. �

1.3.4 Euler semigroup e−tE∗E

Here we will describe the operator semigroup {e−tE∗
E}t>0 associated with the

Euler operator on homogeneous groups.

Theorem 1.3.4 (Euler semigroup). Let G be a homogeneous group of homogeneous
dimension Q. Let x ∈ G, x �= 0, and let y := x

|x| , and t > 0. Then the semigroup

e−tE
∗
E is given by

(e−tE
∗
Ef)(x) =

e−tQ
2/4

√
4πt

|x|−Q/2
∫ ∞

0

e−
(ln |x|−ln s)2

4t s−Q/2f(sy)sQ−1ds. (1.54)

Before we prove formula (1.54), let us introduce some notation that will be
useful in the sequel. Thus, let us define the map F : L2(G) → L2(R × ℘) by the
formula

(Ff)(s, y) := esQ/2f(esy), (1.55)

for y ∈ ℘ and s ∈ R. Its inverse map F−1 : L2(R × ℘) → L2(G) can be given by
the formula

(F−1g)(x) := r−Q/2g(ln r, y), (1.56)

and one can readily check that F preserves the L2 norm. The map F can be also
described as

(Ff)(s, y) = (U(s)f)(y)

for all y ∈ ℘ and s ∈ R, with the dilation mapping U(t) defined by

U(t)f(x) := etQ/2f(etx). (1.57)

We then immediately have

(F (U(t)f))(s, y) = (U(s)(U(t)f))(y) = (U(s+ t)f)(y) = (Ff)(s+ t, y). (1.58)

The dilations U(t) can be linked to the Euler operator through the relation

d

dt
f(etx) = Ef(etx), x ∈ G,
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see (1.38). It then follows that these dilations can be also seen as a group of unitary
operators U(t) = eiAt with the generator

Af =
1

i

d

dt
U(t)f |t=0=

1

i

(
E+

Q

2

)
f = −iEf − iQ

2
f. (1.59)

Since E
∗ = −QI − E by Proposition 1.3.1, Part (ii), the formula (1.59) implies

that

A = A∗ = −iE− iQ
2
, (1.60)

which yields the relation

A = E
∗
E =

(
−iA− Q

2

)(
iA− Q

2

)
= A2 +

Q2

4
. (1.61)

The family U(t) is mapped to the multiplication by exponents eitτ through the
Mellin transformationM : L2(G)→ L2(R×℘) defined by the formulaM = F ◦F ,
where F is the Fourier transform on R, that is,

(Mf)(τ, y) :=
1√
2π

∫
R

e−isτ (Ff)(s, y)ds. (1.62)

Indeed, using (1.58) and changing variables, we have

(MU(t)f)(τ, y) =
1√
2π

∫
R

e−isτ (Ff)(s+ t, y)ds

=
eitτ√
2π

∫
R

e−isτ (Ff)(s, y)ds = eitτ (Mf)(τ, y).

(1.63)

Before finally proving Theorem 1.3.4, let us point out that it implies the
following representation of the semigroup e−tA

2

.

Corollary 1.3.5 (Semigroup e−tA
2

). Let F and F−1 be mappings as in (1.55) and
(1.56), respectively. Then we have

Fe−tA
2

F−1f(r, y) =
1√
4πt

∫
R

exp

(
− (r − s)2

4t

)
f(sy)ds. (1.64)

Proof of Corollary 1.3.5. Setting e−tA
2

= etQ
2/4e−tE

∗
E as well as combining (1.55)

and (1.56), and using (1.54) we get

Fe−tA
2

F−1f(r, y)

= F

(
etQ

2/4 e
−tQ2/4r−Q/2√

4πt

∫ ∞

0

e−
(ln r−ln s)2

4t sQ/2−1(s−Q/2f(ln s, y))ds

)

= erQ/2
e−rQ/2√

4πt

∫ ∞

0

e−
(r−ln s)2

4t
f(ln s, y)

s
ds =

1√
4πt

∫ ∞

−∞
e−

(r−s1)2

4t f(s1y)ds1,

which is (1.64), where we have used the new variable s = es1 in the last line. �
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Let us finally prove Theorem 1.3.4.

Proof of Theorem 1.3.4. Noting that from the definition we have iAeitA = ∂tU(t),
we can calculate

(MiAeiAtf)(τ, y) = (M∂tU(t)f)(τ, y) = ∂t(MU(t)f)(τ, y).

Now using (1.63) we get from above that

(MiAeiAtf)(τ, y) = ∂te
itτ (Mf)(τ, y) = iτeitτ (Mf)(τ, y),

which (after setting t = 0) implies

(MAf)(τ, y) = τ(Mf)(τ, y) (1.65)

for f in the domain D(A). It follows that the condition f ∈ D(A) can be described
by the property that the function (τ, y) 
→ τ(Mf)(τ, y) ∈ L2(R× ℘).

So, first we prove that

(Me−tA
2

f)(τ, y) = e−tτ
2

(Mf)(τ, y). (1.66)

We have

(Me−tA
2

f)(τ, y) =

∞∑
k=0

(−t)k
k!

(MA2kf)(τ, y). (1.67)

Moreover, by iterating (1.65), it follows that

(MA2kf)(τ, y) = τ2k(Mf)(τ, y), k = 0, 1, 2, . . . .

Combining this with (1.67), we get

(Me−tA
2

f)(τ, y) =
∞∑
k=0

(−t)k
k!

τ2k(Mf)(τ, y) = e−tτ
2

(Mf)(τ, y).

That is, we have showed that (1.66) holds. Thus, it follows that

e−tA
2

=M−1e−tτ
2

M.

Here by using that M = F ◦ F , we have

e−tA
2

= F−1 ◦ F−1(e−tτ
2F ◦ F ). (1.68)

Furthermore, we calculate

F−1(e−tτ
2

Mf)(λ, y) = F−1(e−tτ
2F ◦ F )(λ, y)

=
1

2π

∫
R

∫
R

eiλτe−tτ
2

e−isτ (Ff)(s, y)dsdτ

=
1

2π

∫
R

(∫
R

e−tτ
2+i(λ−s)τdτ

)
(Ff)(s, y)ds

=
1√
4πt

∫
R

e−
(λ−s)2

4t (Ff)(s, y)ds =: ϕt(λ, y),
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since ∫
R

e−tτ
2+i(λ−s)τdτ =

√
π

t
e−

(λ−s)2
4t .

From this and (1.68), using (1.55), (1.56) and M = F ◦ F with x = |x|y, we
compute

(e−tA
2

f)(|x|y) = (F−1ϕt)(|x|y) = r−Q/2ϕt(ln |x|, y)
=

1√
4πt
|x|−Q/2

∫
R

e−
(ln |x|−s)2

4t (Ff)(s, y)ds

=
1√
4πt
|x|−Q/2

∫ ∞

0

e−
(ln |x|−ln z)2

4t z
Q
2 −1f(zy)dz,

where we have used the change of variables z = es in the last line.

Since we have e−tE
∗
E = e−tQ

2/4e−tA
2

by (1.61), we arrive at

(e−tE
∗
Ef)(|x|y) = e−tQ

2/4(e−tA
2

f)(|x|y)
=

1√
4πt
|x|−Q/2e−tQ2/4

∫ ∞

0

e−
(ln |x|−ln z)2

4t z
Q
2 −1f(zy)dz

=
1√
4πt
|x|−Q/2e−tQ2/4

∫ ∞

0

e−
(ln |x|−ln z)2

4t z−
Q
2 f(zy)zQ−1dz,

completing the proof of (1.54). �
Remark 1.3.6.

1. The representation of the Euler semigroup in Theorem 1.3.4 becomes in-
strumental in deriving several forms of the Hardy–Sobolev and Gagliardo–
Nirenberg type inequalities for the Euler operator, as we will show in the
sequel, see, e.g., Section 10.4.

2. In the Euclidean case R
n, the results of this section have been obtained in

[BEHL08]. For general homogeneous groups, our presentation followed the
results obtained in [RSY18a].
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1.4 Stratified groups

An important special case of homogeneous groups is that of stratified groups
introduced in Definition 1.1.5. Because this is an important class that will be
analysed in Chapter 6 from the point of view of Hardy and other inequalities, here
we will provide more details on it and fix the corresponding notation.

1.4.1 Stratified Lie groups

We recall the definition of stratified groups.

Definition 1.4.1 (Stratified groups). A Lie group G = (Rn, ◦) is called a stratified
group (or a homogeneous Carnot group) if it satisfies the following conditions:

(a) For some natural numbers N + N2 + · · · + Nr = n, that is N = N1, the
decomposition Rn = RN ×· · ·×RNr is valid, and for every λ > 0 the dilation
δλ : Rn → Rn given by

δλ(x) ≡ δλ(x′, x(2), . . . , x(r)) := (λx′, λ2x(2), . . . , λrx(r))

is an automorphism of the group G. Here x′ ≡ x(1) ∈ RN and x(k) ∈ RNk for
k = 2, . . . , r.

(b) Let N be as in (a) and let X1, . . . , XN be the left invariant vector fields on
G such that Xk(0) =

∂
∂xk
|0 for k = 1, . . . , N. Then

rank(Lie{X1, . . . , XN}) = n,

for every x ∈ Rn, i.e., the iterated commutators of X1, . . . , XN span the Lie
algebra of G.

The number r is called the step of G and the left invariant vector fields
X1, . . . , XN are called the (Jacobian) generators ofG. The homogeneous dimension
of a stratified Lie group G is given by

Q =

r∑
k=1

kNk, N1 = N.

The second-order differential operator

L =

N∑
k=1

X2
k (1.69)

is called the (canonical) sub-Laplacian onG. The sub-Laplacian L is a left invariant
homogeneous hypoelliptic differential operator and it is elliptic if and only if the
step of G is equal to 1.
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The hypoellipticity of L means that for a distribution f ∈ D′(Ω) in any open
set Ω, if Lf ∈ C∞(Ω) then f ∈ C∞(Ω). It is a special case of Hörmander’s sum
of squares theorem [Hör67].

The left invariant vector field Xk has an explicit form given in Proposition
1.2.19, namely,

Xk =
∂

∂x′k
+

r∑
l=2

Nl∑
m=1

a
(l)
k,m(x′, . . . , x(l−1))

∂

∂x
(l)
m

, (1.70)

where a
(l)
k,m is a homogeneous (with respect to δλ) polynomial function of degree

l− 1. We will also use the following notation for the horizontal gradient

∇H := (X1, . . . , XN ),

for the horizontal divergence

divHv := ∇H · v,
and for the horizontal p-Laplacian (or p-sub-Laplacian)

Lpf := divH(|∇Hf |p−2∇Hf), 1 < p <∞. (1.71)

Denoting the Euclidean distance by

|x′| =
√
x′21 + · · ·+ x′2N

for the Euclidean norm on RN , the representation (1.70) for derivatives leads to
the identities

|∇H |x′|γ | = γ|x′|γ−1, (1.72)

and

divH

(
x′

|x′|γ
)

=

∑N
j=1 |x′|γXjx

′
j −

∑N
j=1 x

′
jγ|x′|γ−1Xj |x′|

|x′|2γ =
N − γ
|x′|γ (1.73)

for all γ ∈ R, |x′| �= 0.

It was shown by Folland [Fol75] that the sub-Laplacian L in (1.69) on a
general stratified group G has a unique fundamental solution ε, that is,

Lε = δ, (1.74)

where δ is the delta-distribution at the unit element of G. Moreover, the function
ε is homogeneous of degree 2−Q.

The function

d(x) :=

{
ε(x)

1
2−Q , for x �= 0,

0, for x = 0,
(1.75)
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is called the L-gauge on G. It is a homogeneous quasi-norm on G, that is, it is a
continuous function d : G → [0,∞), smooth away from the origin, which satisfies
the conditions

d(λx) = λd(x), d(x−1) = d(x) and d(x) = 0 if only if x = 0. (1.76)

We refer to the original paper [Fol75] by Folland as well as to a recent pre-
sentation in [FR16, Section 3.2.7] for further details and properties of these fun-
damental solutions.

For future use, we record the action of L on d and its powers. Since Ld2−Q = 0
in G\{0}, a straightforward calculation shows that for Q ≥ 3 we have

Ld = (Q− 1)
|∇Hd|2
d

in G\{0}, (1.77)

as well as, consequently, for all α ∈ R,

Ldα = α(α +Q− 2)dα−2|∇Hd|2 in G\{0}. (1.78)

1.4.2 Extended sub-Laplacians

In general, most of the results described in this book in the setting of stratified
groups can be extended to any second-order hypoelliptic differential operators
which are “equivalent” to the sub-Laplacian L. Let us very briefly discuss this
matter in the sprit of [BLU07].

Let A = (ak,j)1≤k,j≤N1 be a positive-definite symmetric matrix. Consider
the following second-order hypoelliptic differential operator based on the matrix
A and the vector fields {X1, . . . , XN1} from the first stratum, given by

LA =

N1∑
k,j=1

ak,jXkXj . (1.79)

For instance, in the Euclidean case, that is, for G = (RN ,+) and N1 = N , the
constant coefficients second-order elliptic operator

ΔA =

N∑
k,j=1

ak,j
∂2

∂xk∂xj

is transformed into the Laplacian

Δ =

N∑
k=1

∂2

∂x2k

under a linear change of coordinates in RN . Thus, the operator ΔA is “equivalent”
to the operator Δ by a linear change of the coordinate system.
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In general, to apply the above argument to transformLA to the sub-Laplacian
L it is not enough to change the basis by a linear transformation. However, it is
enough in the setting of free stratified groups. We say that a stratified group G is
a free stratified group if its Lie algebra is (isomorphic to) a free Lie algebra. For
instance, the Heisenberg group H1 is a free stratified group. In this case we have
the following result.

Theorem 1.4.2 ([BLU07]). Let G be a free stratified group and let A be a given
positive-definite symmetric matrix. Let X = {X1, . . . , XN1} be left invariant vector
fields in the first stratum of the Lie algebra of G. Let

Yk :=

N1∑
j=1

(
A

1
2

)
k,j
Xj , k = 1, . . . , N1.

Consider the related second-order differential operator

LA =

N1∑
k=1

Y 2
k =

N1∑
k,j=1

ak,jXkXj .

Then there exists a Lie group automorphism TA of G such that

Yk(u ◦ TA) = (Xku) ◦ TA, k = 1, . . . , N1,

LA(u ◦ TA) = (Lu) ◦ TA,
for every smooth function u : G → R. Moreover, TA has polynomial component
functions and commutes with the dilations of G.

Remark 1.4.3. The automorphism TA may not exist when G is not a free stratified
group. However, for any stratified group G one can find a different stratified group
G∗ = (RN , ∗, δλ), that is, the stratified group with the same underlying manifold
RN and the same group of dilations δλ as G, and a Lie-group isomorphism from
G to G∗ turning the extended sub-Laplacian LA on G into the sub-Laplacian L
on G∗, see [BLU07, Chapter 16.3].

1.4.3 Divergence theorem

Here we discuss the divergence theorem on stratified Lie groups that will be useful
for our analysis at different places of the book.

Let dν denote the volume element on G corresponding to the first stratum
on G:

dν := dν(x) =

N∧
j=1

dxj . (1.80)

However, for simplicity of the exposition, we will mainly use the notation dx :=
dν(x). Regarding it as a differential form, let 〈Xk, dν〉 denote the natural pairing
between vector fields and differential forms. As it will follow from the proof of The-
orem 1.4.5, using formula (1.70) for the left invariant operatorsXk expressing them
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in terms of the Euclidean derivatives, the pairing 〈Xk, dν〉 can be also expressed
in terms of the differential forms corresponding to the Euclidean coordinates in
the form

〈Xk, dν(x)〉 =
N1∧

j=1,j 	=k
dx

(1)
j

r∧
l=2

Nl∧
m=1

θl,m, (1.81)

with

θl,m = −
N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx

(1)
k + dx(l)m , (1.82)

for l = 2, . . . , r and m = 1, . . . , Nl, where a
(l)
k,m is a homogeneous polynomial of

degree l − 1 from (1.70).

Definition 1.4.4 (Admissible domains). A bounded open set Ω ⊂ G will be called
an admissible domain if its boundary ∂Ω is piecewise smooth and simple, that is,
it has no self-intersections. The condition for the boundary to be simple amounts
to ∂Ω being orientable.

The following divergence theorem can be regarded as a consequence of the
abstract Stokes formula. However, we give a detailed local proof which will also
lead to the explicit representation formula (1.82) that will be of use in the sequel.

Theorem 1.4.5 (Divergence formula). Let Ω ⊂ G be an admissible domain. Let
fk ∈ C1(Ω)

⋂
C(Ω), k = 1, . . . , N1. Then for each k = 1, . . . , N1, we have∫

Ω

Xkfkdν =

∫
∂Ω

fk〈Xk, dν〉. (1.83)

Consequently, we also have∫
Ω

N1∑
k=1

Xkfkdν =

∫
∂Ω

N1∑
k=1

fk〈Xk, dν〉. (1.84)

Proof of Theorem 1.4.5. Using (1.70), for any function f we obtain the following
differentiation formula

df =

N1∑
k=1

∂f

∂x
(1)
k

dx
(1)
k +

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

dx(l)m

=

N1∑
k=1

Xkfdx
(1)
k −

N1∑
k=1

r∑
l=2

Nl∑
m=1

a
(l)
k,m(x(1), . . . , x(l−1))

∂f

∂x
(l)
m

dx
(l)
k

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

dx(l)m

=

N1∑
k=1

Xkfdx
(1)
k +

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

(
−

N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx

(1)
k + dx(l)m

)

=

N1∑
k=1

Xkfdx
(1)
k +

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

θl,m,
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where for each l = 2, . . . , r and m = 1, . . . , Nl,

θl,m = −
N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx

(1)
k + dx(l)m .

That is, we can write

df =

N1∑
k=1

Xkfdx
(1)
k +

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

θl,m. (1.85)

It is simple to see that

〈Xs, dx
(1)
j 〉 =

∂

∂x
(1)
s

dx
(1)
j = δsj ,

where δsj is the Kronecker delta. Moreover, we have

〈Xs, θl,m〉

=

(
∂

∂x
(1)
s

+

r∑
h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

∂

∂x
(h)
g

)

×
(
−

N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx

(1)
k + dx(l)m

)

= −
N1∑
k=1

(
∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k

−
N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))

∂

∂x
(1)
s

dx
(1)
k +

∂

∂x
(1)
s

dx(l)m

−
N1∑
k=1

r∑
h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

(
∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k

−
N1∑
k=1

r∑
h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))a

(l)
k,m(x(1), . . . , x(l−1))

∂

∂x
(h)
g

dx
(1)
k

+
r∑

h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

∂

∂x
(h)
g

dx(l)m

= −
N1∑
k=1

(
∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k −

N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))δsk

−
N1∑
k=1

r∑
h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

(
∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k
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+

r∑
h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))δgmδhl

= −
N1∑
k=1

r∑
h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

(
∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k

−
N1∑
k=1

(
∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k

= −
N1∑
k=1

[ r∑
h=2

Nl∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

(
∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

)

+
∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1))

]
dx

(1)
k .

That is, we have

〈Xs, dx
(1)
j 〉 = δsj ,

for s, j = 1, . . . , N1, and

〈Xs, θl,m〉 =
N1∑
k=1

Ckdx(1)k ,

for s = 1, . . . , N1, l = 2, . . . , r, m = 1, . . . , Nl. Here we used the notation

Ck = −
r∑

h=2

Nl∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

− ∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1)).

By (1.80) we have

dν = dν(x) =
N∧
j=1

dxj =

N1∧
j=1

dx
(1)
j

r∧
l=2

Nl∧
m=1

dx(l)m =

N1∧
j=1

dx
(1)
j

r∧
l=2

Nl∧
m=1

θl,m,

so that we obtain

〈Xk, dν(x)〉 =
N1∧

j=1,j 	=k
dx

(1)
j

r∧
l=2

Nl∧
m=1

θl,m.

Therefore, using (1.85) we get

d(fs〈Xs, dν(x)〉) = dfs ∧ 〈Xs, dν(x)〉

=

N1∑
k=1

Xkfsdx
(1)
k ∧ 〈Xs, dν(x)〉 +

r∑
l=2

Nl∑
m=1

∂fs

∂x
(l)
m

θl,m ∧ 〈Xs, dν(x)〉

= Xsfsdν(x),
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that is, we have

d(〈fkXk, dν(x)〉) = Xkfkdν(x), k = 1, . . . , N1.

Now using the classical Stokes theorem (see, e.g., [DFN84, Theorem 26.3.1]) we
obtain (1.83). Taking a sum over k we also obtain (1.84). �

1.4.4 Green’s identities for sub-Laplacians

In this section we prove Green’s first and second formulae for the sub-Laplacian
on stratified groups. These formulae will be useful throughout the book when we
will be dealing with inequalities and with the potential theory on stratified groups.
We will formulate them in admissible domains in the sense of Definition 1.4.4.

Theorem 1.4.6 (Green’s first and second identities). Let G be a stratified group
and let Ω ⊂ G be an admissible domain.

(1) Green’s first identity: Let v ∈ C1(Ω)
⋂
C(Ω) and u ∈ C2(Ω)

⋂
C1(Ω). Then∫

Ω

(
(∇̃v)u+ vLu

)
dν =

∫
∂Ω

v〈∇̃u, dν〉, (1.86)

where L is the sub-Laplacian on G and where the vector field ∇̃u is defined by

∇̃u :=

N1∑
k=1

(Xku)Xk. (1.87)

(2) Green’s second identity: Let u, v ∈ C2(Ω)
⋂
C1(Ω). Then∫

Ω

(uLv − vLu)dν =

∫
∂Ω

(u〈∇̃v, dν〉 − v〈∇̃u, dν〉). (1.88)

Remark 1.4.7.

1. The definition (1.87) means that ∇̃u is a vector field. Consequently, the

expression (∇̃v)u is a scalar, given by

(
∇̃v

)
u = ∇̃vu =

N1∑
k=1

(Xkv) (Xku) =

N1∑
k=1

XkvXku.

At the same time the expression ∇̃(vu) is a vector field, also understood as
an operator.

2. Although we formulate Green’s identities in bounded domains, they are still
applicable in unbounded domains for functions with necessary decay rates at
infinity. It can be readily shown by the standard argument using quasi-balls
with radii R→∞.
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3. The version (1.86) of Green’s first identity was proved for the ball in [Gav77]
and for any smooth domain of the complex Heisenberg group in [Rom91].
Other analogues have been also obtained in [BLU07] and [CGN08] but using
different terminologies. Also, the group structure is not needed for it, see
Proposition 12.2.1, with other versions also known, see, e.g., [CGL93]. The
version given in Theorem 1.4.6 was obtained in [RS17c].

Proof of Theorem 1.4.6. Part (1). Let fk := vXku, so that

N1∑
k=1

Xkfk = (∇̃v)u + vLu.

By using the divergence formula in Theorem 1.4.5 we obtain∫
Ω

(
∇̃vu+ vLu

)
dν =

∫
Ω

N1∑
k=1

Xkfkdν =

∫
∂Ω

N1∑
k=1

〈fkXk, dν〉

=

∫
∂Ω

N1∑
k=1

〈vXkuXk, dν〉 =
∫
∂Ω

v〈∇̃u, dν〉,

yielding (1.86).

Part (2). Rewriting (1.86) we have∫
Ω

(
(∇̃u)v + uLv

)
dν =

∫
∂Ω

u〈∇̃v, dν〉,
∫
Ω

(
(∇̃v)u + vLu

)
dν =

∫
∂Ω

v〈∇̃u, dν〉.

By subtracting the second identity from the first one and using

(∇̃u)v = (∇̃v)u,

we obtain (1.88). �

Taking v = 1 in Theorem 1.4.6 we obtain the following analogue of Gauss’
mean value formula for harmonic functions:

Corollary 1.4.8 (Gauss’ mean value formula). If Lu = 0 in an admissible domain
Ω ⊂ G, then ∫

∂Ω

〈∇̃u, dν〉 = 0.

As in the classical theory, we can approximate functions with (weak) singu-
larities such as smooth functions because the Green formulae are still valid for
them. In this sense, without further justification and using these Green formulae,
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in particular, we apply them to the fundamental solution ε of the sub-Laplacian
L as in (1.74). We define the function

ε(x, y) := ε(x−1y). (1.89)

The properties of the L-gauge imply that ε(x, y) = ε(y, x).

Thus, for x ∈ Ω, taking v = 1 and u(y) = ε(x, y) we can record the following
consequence of Theorem 1.4.6, (1):

Corollary 1.4.9. If Ω ⊂ G is an admissible domain, and x ∈ Ω, then∫
∂Ω

〈∇̃ε(x, y), dν(y)〉 = 1,

where ε is the fundamental solution of the sub-Laplacian L.

Putting the fundamental solution ε instead of v in (1.88) we obtain the
following representation formulae.

Corollary 1.4.10 (Representation formulae for functions on stratified groups). Let
G be a stratified group and let Ω ⊂ G be an admissible domain.

(1) Let u ∈ C2(Ω)
⋂
C1(Ω). Then for x ∈ Ω we have

u(x) =

∫
Ω

ε(x, y)Lu(y)dν(y)

+

∫
∂Ω

u(y)〈∇̃ε(x, y), dν(y)〉 −
∫
∂Ω

ε(x, y)〈∇̃u(y), dν(y)〉.

(2) Let u ∈ C2(Ω)
⋂
C1(Ω) and Lu = 0 on Ω, then for x ∈ Ω we have

u(x) =

∫
∂Ω

u(y)〈∇̃ε(x, y), dν(y)〉 −
∫
∂Ω

ε(x, y)〈∇̃u(y), dν(y)〉.

(3) Let u ∈ C2(Ω)
⋂
C1(Ω) and u(x) = 0, x ∈ ∂Ω, then

u(x) =

∫
Ω

ε(x, y)Lu(y)dν(y) −
∫
∂Ω

ε(x, y)〈∇̃u(y), dν(y)〉.

(4) Let u ∈ C2(Ω)
⋂
C1(Ω) and

∑N1

j=1Xju〈Xj , dν〉 = 0 on ∂Ω, then

u(x) =

∫
Ω

ε(x, y)Lu(y)dν(y) +
∫
∂Ω

u(y)〈∇̃ε(x, y), dν(y)〉.
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1.4.5 Green’s identities for p-sub-Laplacians

In this section we show how Green’s first and second formulae for the sub-Laplacian
from Section 1.4.4 on stratified groups can be extended to the p-sub-Laplacian for
all 1 < p < ∞. As before, we will formulate them in admissible domains in
the sense of Definition 1.4.4. We recall the definition of the p-sub-Laplacian from
(1.71) as

Lpf := divH(|∇Hf |p−2∇Hf), 1 < p <∞.
Theorem 1.4.11 (Green’s first and second identities for p-sub-Laplacian). Let G
be a stratified group and let Ω ⊂ G be an admissible domain. Let 1 < p <∞.
(1) Green’s first identity: Let v ∈ C1(Ω)

⋂
C(Ω) and u ∈ C2(Ω)

⋂
C1(Ω). Then∫

Ω

(
(|∇Gu|p−2∇̃v)u + vLpu

)
dν =

∫
∂Ω

|∇Gu|p−2v〈∇̃u, dν〉, (1.90)

where

∇̃u =

N1∑
k=1

(Xku)Xk.

(2) Green’s second identity: Let u, v ∈ C2(Ω)
⋂
C1(Ω). Then∫

Ω

(
uLpv − vLpu+ (|∇Gv|p−2 − |∇Gu|p−2)(∇̃v)u

)
dν

=

∫
∂Ω

(|∇Gv|p−2u〈∇̃v, dν〉 − |∇Gu|p−2v〈∇̃u, dν〉).
(1.91)

Proof of Theorem 1.4.11. Part (1). Let fk := v|∇Gu|p−2Xku, then

N1∑
k=1

Xkfk = (|∇Gu|p−2∇̃v)u+ vLpu.

By integrating both sides of this equality over Ω and using Proposition 1.4.5 we
obtain∫

Ω

(
(|∇Gu|p−2∇̃v)u + vLpu

)
dν =

∫
Ω

N1∑
k=1

Xkfkdν =

∫
∂Ω

N1∑
k=1

〈fkXk, dν〉

=

∫
∂Ω

N1∑
k=1

〈v|∇Gu|p−2XkuXk, dν〉 =
∫
∂Ω

|∇Gu|p−2v〈∇̃u, dν〉,

showing (1.90).
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Part (2). Using (1.90) we have∫
Ω

(
(|∇Gv|p−2∇̃u)v + uLpv

)
dν =

∫
∂Ω

|∇Gv|p−2u〈∇̃v, dν〉,∫
Ω

(
(|∇Gu|p−2∇̃v)u+ vLpu

)
dν =

∫
∂Ω

|∇Gu|p−2v〈∇̃u, dν〉.

By subtracting the second identity from the first one, the equality

(∇̃u)v = (∇̃v)u
implies (1.91). �

Taking v = 1 in Theorem 1.4.11 we get the following analogue of Gauss’
mean value formula for p-harmonic functions:

Corollary 1.4.12 (Gauss’ mean value formula for p-harmonic functions). If 1 <
p <∞ and Lpu = 0 in an admissible domain Ω ⊂ G, then∫

∂Ω

|∇Gu|p−2〈∇̃u, dν〉 = 0.

1.4.6 Sub-Laplacians with drift

In this section we briefly describe the so-called sub-Laplacians with drift. While
such operators can be analysed on more general groups, we restrict our presen-
tation to stratified groups G only since this will be the setting where we will be
using these operators.

Definition 1.4.13 (Sub-Laplacian with drift). The (extended) positive sub-La-
placian with drift is defined on C∞

0 (G) as the operator

LX := −
N∑

i,j=1

ai,jXiXj − γX, (1.92)

where γ ∈ R, the matrix (ai,j)
N
i,j=1 is real, symmetric, positive definite, and X ∈ g

is a left invariant vector field on G.

Similar to Section 1.4.2 the operator (1.92) can be transformed to the (posi-
tive) sub-Laplacian with drift of the form

LX = −
N∑
j=1

X2
j − γX := L0 − γX, (1.93)

where L0 is the positive sub-Laplacian on G defined by

L0 = −
N∑
j=1

X2
j . (1.94)

The details of such a transformation can be found in [HMM05] or [MOV17].
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If X =
∑N

j=1 ajXj , then we denote ‖X‖ :=
(∑N

j=1 a
2
j

)1/2

and

bX :=
‖X‖
2

, (1.95)

where aj ∈ R for j = 1, . . . , N .

Let us collect the following spectral properties of (positive) sub-Laplacians
with drift (1.93) which are true on more general groups than the stratified ones. In
the case γ = 1 this was shown in [HMM05, Proposition 3.1] while here we follow
[RY18b] for general γ ∈ R:

Proposition 1.4.14 (Spectral properties of sub-Laplacians with drift). Let G be
a connected Lie group with unit e, X1, . . . , XN an algebraic basis of g and let
X ∈ g\{0}. Let γ ∈ R. Then we have for the operator LX , with domain C∞

0 (G),
the following properties:

(i) the operator LX is symmetric on L2(G, μ) for some positive measure μ on
G if and only if there exists a positive character χ of G and a constant C
such that μ = CμX and ∇Hχ|e = γX |e, where μX is the measure absolutely
continuous with respect to the Haar measure μ with density χ;

(ii) assume that ∇Hχ|e = γX |e for some positive character χ of G. Then the
operator LX is essentially self-adjoint on L2(G, μX) and its spectrum is con-
tained in the interval [γ2b2X ,∞).

Proof of Proposition 1.4.14. Let μ be a positive measure on G. Then for all test
functions φ, ψ ∈ C∞

0 (G) we can calculate

∫
G

(LXφ)ψdμ = −
N∑
j=1

(∫
G

(X2
j φ)ψdμ

)
− γ

∫
G

ψXφdμ

=

N∑
j=1

(∫
G

XjφXjψdμ+

∫
G

ψXjφXjμ

)
+ γ

∫
G

φXψdμ+ γ

∫
G

φψXμ

=
N∑
j=1

(
−
∫
G

φX2
j ψdμ− 2

∫
G

φXjψXjμ−
∫
G

φψX2
j μ

)
+ γ

∫
G

φXψdμ+ γ

∫
G

φψXμ

=

∫
G

φ(LXψ)dμ+ 2γ

∫
G

φXψdμ− 2

∫
G

φ∇Hψ∇Hμ+

∫
G

φψ(L0 + γX)μ

=

∫
G

φ(LXψ)dμ+ 〈φ, 2γ(Xψ)μ− 2∇Hψ∇Hμ+ ψ(L0 + γX)μ〉

=:

∫
G

φ(LXψ)dμ+ I(φ, ψ, μ), (1.96)
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where L0 is defined in (1.94), ∇H = (X1, . . . , XN ) and 〈·, ·〉 is the pairing between
distributions and test functions on G. From this we see that LX is symmetric on
L2(G, μ) if and only if I(φ, ψ, μ) = 0 for all functions φ and ψ, that is,

(L0 + γX)μ = 0, γ(Xψ)μ−∇Hψ∇Hμ = 0, ∀ψ ∈ C∞
0 (G). (1.97)

The vector fields X1, . . . , XN satisfy Hörmander’s condition, so that L0 + γX
is hypoelliptic, which implies with the condition (L0 + γX)μ = 0 that μ has a
smooth density ω with respect to the Haar measure. Then, as in [HMM05, Proof
of Proposition 3.1], we show that

X =

N∑
j=1

ajXj , (1.98)

for some coefficients a1, . . . , aN . Using the fact that X1, . . . , XN are linearly inde-
pendent and the second equation of (1.97), we obtain that

Xkω = γakω, (1.99)

where k = 1, . . . , N . The solution of (1.99) is given by

ω(x) = ω(e) exp

(
γ

∫ 1

0

N∑
k=1

akϑk(t)dt

)
,

which is a positive and uniquely determined by its value at the identity, where
ϑk(t) is the piecewise C1 path. By normalizing ω, we get that ω(e) = 1, and that
it is a character of G. Then, we see that the function x 
→ ω(xy)/ω(y) is a solution
of (1.99) for any y in G. Since the value of this function at the identity is 1, we
have ω(xy) = ω(x)ω(y) for any x, y ∈ G, and ω is a character of G. From (1.98)
and (1.99), we get ∇Hχ|e = γX |e with χ = ω. This proves Part (i) of Proposition
1.4.14.

As in the case γ = 1 (see [HMM05, Proposition 3.1]), by considering the
isometry U2f = χ−1/2f of L2(G, μ) onto L2(G, μX), we have

χ
1
2LX(χ− 1

2 f) = (L0 + γ2b2X)f, (1.100)

which is an essentially self-adjoint operator on L2(G, μ), where bX is defined in
(1.95). Since the spectrum of this operator is contained in [γ2b2X ,∞), we obtain
that LX is essentially self-adjoint on L2(G, μX) and its spectrum is contained in
[γ2b2X ,∞).

This completes the proof of Proposition 1.4.14. �

As a corollary of Proposition 1.4.14 let us collect the properties that will be
important for us in the sequel.
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Corollary 1.4.15 (Transformation of sub-Laplacian with drift). Let G be a stratified
group and assume conditions of Proposition 1.4.14. Assume that there exists a
positive character χ of G such that

∇Hχ|e = γX |e.
Then the operator LX is formally self-adjoint with respect to the positive measure
μX = χμ, where μ is the Haar measure of G. The operator LX is self-adjoint on
L2(G, μX) and the mapping

L2(G, μ) � f 
→ χ−1/2f ∈ L2(G, μX) (1.101)

is an isometric isomorphism.

For a detailed discussion about more properties of the sub-Laplacians with
drift we refer to [HMM04], [HMM05] and [MOV17].

1.4.7 Polarizable Carnot groups

In (1.74) we recalled the result of Folland that the sub-Laplacian L on general
stratified groups always has a unique fundamental solution ε. The explicit formula
(1.75) relating the fundamental solution to the L-gauge turns out to be useful in
many explicit calculations.

In applications to nonlinear partial differential equations, a natural question
arises to express the fundamental solution of the p-sub-Laplacian (1.71) in terms of
the fundamental solution of the sub-Laplacian or, equivalently, in terms of the L-
gauge. One of the largest classes of stratified Lie groups, for which the fundamental
solution of the p-sub-Laplacian is known to be expressed explicitly in terms of the
L-gauge are the so-called polarizable Carnot groups which we now briefly discuss.

A Lie group G is called a polarizable Carnot group if the L-gauge d satisfies
the following ∞-sub-Laplacian equality

L∞d :=
1

2
〈∇H(|∇Hd|2),∇Hd〉 = 0 in G\{0}. (1.102)

It is known that the Euclidean space, the Heisenberg group Hn and Kaplan’s
H-type groups are polarizable Carnot groups.

It was shown by Balogh and Tyson in [BT02b] that if G is a polarizable
Carnot group, then the fundamental solutions of the p-sub-Laplacian (1.71) are
given by the explicit formulae

εp :=

{
cpd

p−Q
p−1 , if p �= Q,

−cQ log d, if p = Q.
(1.103)

This class of groups also admits an advantageous version of the polar coor-
dinates decomposition. In particular, it can be shown (see [BT02b, Proposition
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2.20]) that (1.103) implies a useful identity

L∞u =
Q− 1

Q− 2

|∇Hu|4
u

,

which can be also written as

N∑
j=1

uXjuXj|∇Hu|
|∇Hu|3 =

Q− 1

Q− 2
. (1.104)

It can be shown that the L-gauge d on polarizable Carnot groups satisfies a num-
ber of further useful relations. For example, the following formula established in
[BT02b] will be useful for some calculations in the sequel:

∇H
(

d

|∇Hd|2∇Hd
)

= Q in G\Z , (1.105)

where the set
Z := {0}

⋃
{x ∈ G\{0} : ∇Hd = 0}

has Haar measure zero, and we have ∇Hd �= 0 for a.e. x ∈ G.

As usual, the Green identities are still valid for functions with (weak) singu-
larities provided we can approximate them by smooth functions. Thus, for exam-
ple, for x ∈ Ω in a polarizable Carnot group, taking v = 1 and u(y) = εp(x, y) we
have the following corollary of Theorem 1.4.11 as an extension of Corollary 1.4.9:

Corollary 1.4.16. Let Ω be an admissible domain in a polarizable Carnot group G

and let x ∈ Ω. Then we have∫
∂Ω

|∇Gεp|p−2〈∇̃εp(x, y), dν(y)〉 = 1.

Note that there are stratified Lie groups other than polarizable Carnot groups
where the fundamental solution of the sub-Laplacian can be expressed explicitly
(see, e.g., [BT02b, Section 6]).

In particular, since on the polarizable Carnot groups we have the fundamental
solution εp, putting it instead of v in (1.91) we get the following representation
type formulae extending those for p = 2 from Corollary 1.4.10:

Corollary 1.4.17 (Representation formulae for functions on polarizable Carnot
groups). Let Ω be an admissible domain in a polarizable Carnot group G.

1. Let u ∈ C2(Ω)
⋂
C1(Ω). Then for x ∈ Ω we have

u(x) =

∫
Ω

εpLpu− (|∇Gεp|p−2 − |∇Gu|p−2)(∇̃εp)udν

+

∫
∂Ω

(|∇Gεp|p−2u〈∇̃εp, dν〉 − |∇Gu|p−2εp〈∇̃u, dν〉).
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2. Let u ∈ C2(Ω)
⋂
C1(Ω) and Lpu = 0 on Ω, then for x ∈ Ω we have

u(x) =

∫
Ω

(|∇Gu|p−2 − |∇Gεp|p−2)(∇̃εp)udν

+

∫
∂Ω

(|∇Gεp|p−2u〈∇̃εp, dν〉 − |∇Gu|p−2εp〈∇̃u, dν〉).

3. Let u ∈ C2(Ω)
⋂
C1(Ω) and

u(x) = 0, x ∈ ∂Ω,

then

u(x) =

∫
Ω

εpLpu− (|∇Gεp|p−2 − |∇Gu|p−2)(∇̃εp)udν

−
∫
∂Ω

|∇Gu|p−2εp〈∇̃u, dν〉.

4. Let u ∈ C2(Ω)
⋂
C1(Ω) and

∑N1

j=1Xju〈Xj , dν〉 = 0 on ∂Ω, then

u(x) =

∫
Ω

εpLpu− (|∇Gεp|p−2 − |∇Gu|p−2)(∇̃εp)udν

+

∫
∂Ω

|∇Gεp|p−2u〈∇̃εp, dν〉.

1.4.8 Heisenberg group

One of the important examples of the stratified groups is the Heisenberg group that
was introduced in Example 1.1.8. Here we collect several of its basic properties that
will be of use later in the book. We will give both real and complex descriptions
of the Heisenberg group as both will be of use to us in the sequel.

Real description of the Heisenberg group. The Heisenberg group Hn is the man-
ifold R2n+1 but with the group law given by

(x(1), y(1), t(1))(x(2), y(2), t(2))

:=

(
x(1) + x(2), y(1) + y(2), t(1) + t(2) +

1

2
(x(1) · y(2) − x(2) · y(1))

)
,

(1.106)

for (x(1), y(1), t(1)), (x(2), y(2), t(2)) ∈ Rn × Rn × R ∼ Hn, where x(1) · y(2) and
x(2) · y(1) are the usual scalar products on Rn. The canonical basis of the Lie
algebra hn of the Heisenberg group H

n is given by the left invariant vector fields

Xj = ∂xj −
yj
2
∂t, Yj = ∂yj +

xj
2
∂t, j = 1, . . . , n, T = ∂t. (1.107)
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It follows that the basis elements Xj, Yj , T , j = 1, . . . , n, have the following com-
mutator relations,

[Xj , Yj ] = T, j = 1, . . . , n,

with all the other commutators being zero. The Heisenberg (Lie) algebra hn is
stratified via the decomposition

hn = V1 ⊕ V2,
where V1 is linearly spanned by the Xj ’s and Yj ’s, and V2 = RT . Therefore, the
natural dilations on hn are given by

δr(Xj) = rXj , δr(Yj) = rYj , δr(T ) = r2T.

On the level of the Heisenberg group Hn this can be expressed as

δr(x, y, t) = r(x, y, t) = (rx, ry, r2t), (x, y, t) ∈ H
n, r > 0.

Consequently, Q = 2n+2 is the homogeneous dimension of the Heisenberg group
Hn. The (negative) sub-Laplacian on Hn is given by

L :=

n∑
j=1

(X2
j + Y 2

j ) =

n∑
j=1

(
∂xj −

yj
2
∂t

)2
+
(
∂yj +

xj
2
∂t

)2
,

corresponding to the horizontal gradient

∇H := (X1, . . . , Xn, Y1, . . . , Yn).

We can also write

L = Δx,y +
|x|2 + |y|2

4
∂2t + Z∂t, with Z =

n∑
j=1

(xj∂yj − yj∂xj ),

where Δx,y is the Euclidean Laplacian with respect to x, y, and Z is the tangential
derivative in the (x, y)-variables.

Complex description of the Heisenberg group. There is an alternative description
of the Heisenberg group using complex rather than real variables. It is easy to see
that both descriptions are equivalent.

The Heisenberg group Hn is the space Cn × R with the group operation
given by

(ζ, t) ◦ (η, τ) = (ζ + η, t+ τ + 2 Im ζη), (1.108)

for (ζ, t), (η, τ) ∈ Cn × R.

Comparing (1.106) with (1.108) we can note the change of the constant from
1
2 to 2. As a result, we are getting different constants in the group law and in the
formulae for the left invariant vector fields. We chose to give two descriptions with
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different constants since the adaptation of such constants in real and complex de-
scriptions of the Heisenberg group seems to be happening in most of the literature.
As a result, it will make it more convenient to refer to the relevant literature when
needed. This should lead to no confusion since we will never be using these two
descriptions at the same time. We note that in general, one can put any constant
instead of 1

2 or 2, the appearing objects are all isomorphic. We can refer the reader
to [FR16, Section 6.1.1] for a detailed discussion on the choice of constants in the
descriptions of the Heisenberg group.

Writing ζ = x+ iy with xj , yj , j = 1, . . . , n, the real coordinates on Hn, the
left invariant vector fields

X̃j =
∂

∂xj
+ 2yj

∂

∂t
, j = 1, . . . , n,

Ỹj =
∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , n,

T =
∂

∂t
,

form a basis for the Lie algebra hn of Hn; again, this can be compared to (1.107).

At the same time, Hn can be seen as the boundary of the Siegel upper half-
space in Cn+1,

H
n = {(ζ, zn+1) ∈ C

n+1 : Im zn+1 = |ζ|2, ζ = (z1, . . . , zn)}.

Again, we can refer the reader, e.g., to [FR16, Section 6.1.1] for more details on
different descriptions of the Heisenberg group.

Parametrising Hn by z = (ζ, t) where t = Re zn+1, a basis for the complex
tangent space of Hn at the point z is given by the left invariant vector fields

Xj =
∂

∂zj
+ iz

∂

∂t
, j = 1, . . . , n.

We denote their conjugates by

Xj ≡ Xj =
∂

∂zj
− iz ∂

∂t
, j = 1, . . . , n.

The operator

La,b =
n∑
j=1

(aXjXj + bXjXj), a+ b = n, (1.109)

is a left invariant, rotation invariant differential operator that is homogeneous
of degree two. We can refer to the book of Folland and Kohn [FK72] for fur-
ther properties of such operators. However, we can note that this operator is a
slight generalization of the standard sub-Laplacian or Kohn-Laplacian Lb on the
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Heisenberg group Hn which, when acting on the coefficients of a (0, q)-form can
be written as

Lb = − 1

n

n∑
j=1

(
(n− q)XjXj + qXjXj

)
.

Folland and Stein [FS74] obtained the fundamental solution of the operator
La,b as a constant multiple of the function

εa,b(z) = ε(z) = ε(ζ, t) =
1

(t+ i|ζ|2)a(t− i|ζ|2)b . (1.110)

More precisely, the distribution 1
ca,b

ε is the fundamental solution of La,b since ε

from (1.110) satisfies the equation

La,bε = ca,bδ. (1.111)

The constant ca,b is zero if a and b = −1,−2, . . . , n, n+1, . . . , and ca,b �= 0 if a or
b �= −1,−2, . . . , n, n+ 1, . . . . In fact, then we can take

ca,b =
2(a2 + b2)Vol(B1)

(2i)n+1

n!

a(a− 1) · · · (a− n) (1− exp(−2iaπ)) (1.112)

for a �∈ Z, see Romero [Rom91, Proof of Theorem 1.6]. We will use the above
description of the Heisenberg group and of the (rescaled) fundamental solution
(1.110) to La,b in Section 11.3.3.

1.4.9 Quaternionic Heisenberg group

In this section we describe the basics of the quaternionic version of the Heisenberg
group. We start by recalling the notion of quaternions and summarizing their
main properties. As the space of quaternions is usually denoted by H, we keep this
notation here as well. There should be no notational confusion with the Heisenberg
group since the quaternionic notation will be mostly localized to this section only.

Let H be the set of quaternions

x := x0 + x1i1 + x2i2 + x3i3,

where (x0, x1, x2, x3) ∈ R4, and 1, i1, i2, i3 are the basis elements of H with the
following rules of multiplication:

i21 = i22 = i23 = i1i2i3 = −1,
i1i2 = −i2i1 = i3, i2i3 = −i3i2 = i1, i3i1 = −i1i3 = i2.

The usual convention is that the real part of x ∈ H is the real number x0 and
its imaginary part is the point (x1, x2, x3) ∈ R

3. And so, the real and imaginary
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parts of x can be denoted by �x and �x, respectively. In addition, we use more
precise notations for the imaginary parts as

�1x := x1, �2x := x2, �3x := x3.

The conjugate of x is denoted by

x := x0 − x1i1 − x2i2 − x3i3,
and the modulus |x| is defined by

|x|2 := xx =

3∑
j=0

x2j .

The Grassmanian product (or the quaternion product) of x and y is defined by

xy := (x0y0 −�x · �y) + (x0�y + y0�x+ �x×�y),
where

�x×�y := det

⎛⎝ i1 i2 i3
x1 x2 x3
y1 y2 y3

⎞⎠ .

Let us denote Hq := H × R3, it is called the quaternion Heisenberg group. Then
Hq becomes a non-commutative group with the group law

(x, t1, t2, t3) ◦ (y, τ1, τ2, τ3)
:= (x+ y, t1 + τ1 − 2�1(yx), t2 + y2 − 2�2(yx), t3 + τ3 − 2�3(yx)),

for all (x, t), (y, τ) ∈ Hq. We note that e = (0, 0, 0, 0) is the identity element of Hq
and the inverse of every element (x, t1, t2, t3) ∈ Hq is (−x,−t1,−t2,−t3).

The Haar measure on Hq coincides with the Lebesgue measure on H × R3

which is denoted by dν = dxdt. Let hq be the Lie algebra of left invariant vector
fields on Hq. A basis of hq is given by {X0, X1, X2, X3} and {T1, T2, T3}, where

X0 =
∂

∂x0
− 2x1

∂

∂t1
− 2x2

∂

∂t2
− 2x3

∂

∂t3
,

X1 =
∂

∂x1
+ 2x0

∂

∂t1
− 2x3

∂

∂t2
+ 2x2

∂

∂t3
,

X2 =
∂

∂x2
+ 2x3

∂

∂t1
+ 2x0

∂

∂t2
− 2x1

∂

∂t3
,

X3 =
∂

∂x3
− 2x2

∂

∂t1
+ 2x1

∂

∂t2
+ 2x0

∂

∂t3
,

and

Tk =
∂

∂tk
, k = 1, 2, 3.
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The Lie brackets of these vector fields are given by

[X0, X1] = [X3, X2] = 4T1,

[X0, X2] = [X1, X3] = 4T2,

[X0, X3] = [X2, X1] = 4T3.

Thus, the sub-Laplacian on Hq is given by

L =

3∑
j=0

X2
j = Δx − 4|x|2Δt − 4

3∑
k=1

(ikx · ∇x) ∂
∂tk

, (1.113)

where

Δx =

3∑
k=0

∂2

∂x2k
, and Δt =

3∑
k=1

∂2

∂t2k
.

Note that the fundamental solution of the sub-Laplacian L on Hq was found by
Tie and Wong in [TW09]. We restate their results in the following theorem.

Theorem 1.4.18 (Fundamental solutions for sub-Laplacian on quaternion Heisen-
berg groups). The fundamental solution Γ(ξ) of the sub-Laplacian L on the quater-
nion Heisenberg group Hq is given by

Γ(ξ) := Γ(|x|, t) = 2

(2π)7/2|x|2
∫
S2

1

(|x|2 − i(t · n))3 dσ, (1.114)

where ξ = (x, t) ∈ Hq, n = (n1, n2, n3) is a point on the unit sphere S2 in R3 with
centre at the origin, and dσ is the surface measure on S2. That is,

LΓζ = −δζ, (1.115)

where Γζ(ξ) = Γ(ζ−1 ◦ ξ) and δζ is the Dirac distribution at ζ ≡ (y, τ) ∈ Hq.

The quaternion Heisenberg group is a special case of the model step two
nilpotent Lie group. It is a homogeneous group with respect to the dilation

δλ : R7 → R
7, δλ = (λx, λ2t).

Thus,

d(ξ) =
1

Γ 1/8(ξ)
, ξ = (x, t) ∈ Hq, (1.116)

is a homogeneous quasi-norm on Hq with respect to the dilation δλ (see, e.g.,
[Cyg81]).
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1.4.10 H-type groups

The H-type groups are a special family of stratified groups with a similar struc-
ture to that of the Heisenberg group; one of their important features is that the
fundamental solutions to the sub-Laplacian are known explicitly.

We briefly recall the main notions related to this family of groups adopting
the notation from [BLU07]; we refer to it for further details.

Definition 1.4.19 (Prototype H-type groups). The space Rm+n equipped with the
group law

(x, t) ◦ (y, τ) =
(

xk + yk, k = 1, . . . ,m
tk + τk +

1
2 〈A(k)x, y〉, k = 1, . . . , n

)
(1.117)

and with the dilations
δλ(x, t) = (λx, λ2t)

is called a prototype H-type group. Here A(k) is an m×m skew-symmetric orthog-
onal matrix, such that,

A(k)A(l) +A(l)A(k) = 0

for all k, l ∈ {1, . . . , n} with k �= l.

Clearly, the Euclidean (Abelian) group and the Heisenberg group are exam-
ples of prototype H-type groups.

We leave aside the general H-type groups since it can be shown that any (ab-
stract) H-type group is naturally isomorphic to a prototypeH-group (see [BLU07,
Theorem 18.2.1]).

It can be directly checked that prototype H-groups are two step nilpotent
Lie groups in which the identity of the group is the origin (0, 0) and the inverse of
(x, t) is

(x, t)−1 = (−x,−t).
It can be also verified that the vector field in the Lie algebra g of G that agrees
at the origin with ∂

∂xj
, j = 1, . . . ,m, is given by

Xj =
∂

∂xj
+

1

2

n∑
k=1

(
m∑
i=1

akj,ixi

)
∂

∂tk
, (1.118)

where akj,i is the (j, i)th element of the matrix A(k).

The prototype H-type groups are stratified with a basis of the first stratum
given by these vector fields X1, . . . , Xm. Thus, the (negative) sub-Laplacian on a
prototype H-type group G is given by

L =

m∑
j=1

X2
j = Δx +

1

4
|x|2Δt +

n∑
k=1

〈A(k)x,∇x〉 ∂
∂tk

, (1.119)
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where Δ and ∇ are the Euclidean Laplacian and the Euclidean gradient, respec-
tively. There is no restriction to suppose that, if � is the centre of the Lie algebra
g of G, �⊥ is the orthogonal complement of � and

m = dim(�⊥), n = dim(�).

So, the R
n-component of the prototype H-type group G � R

m+n can be thought
of as of its centre.

We have that the homogeneous dimension of the group is

Q = m+ 2n.

We note that since for H-type groups we have m ≥ 2 and n ≥ 1, we actually
always have Q ≥ 4.

Now using a generic coordinate ξ ≡ (x, t), x ∈ Rm, t ∈ Rn, let us introduce
the following functions on G:

v : G→ �⊥, v(ξ) :=

m∑
j=1

〈exp−1
G

(ξ), Xj〉Xj ,

where {X1, . . . , Xm} is an orthogonal basis of �⊥,

z : G→ �, z(ξ) :=

n∑
j=1

〈exp−1
G

(ξ), Zj〉Zj ,

where {Z1, . . . , Zn} is an orthogonal basis of �. Thus, by the definition of v and
z, for any ξ ∈ G, one has

ξ = exp(v(ξ) + z(ξ)), v(ξ) ∈ �⊥, z(ξ) ∈ �,
and by a direct calculation we have (see, e.g., [BLU07, Proof of Remark 18.3.3])
that

|v(ξ)| = |x|, |z(ξ)| = |t|.
The fundamental solutions for the sub-Laplacian on abstract H-type groups were
found by A. Kaplan in [Kap80]. Such results boil down to the following statement.

Theorem 1.4.20 (Fundamental solutions for sub-Laplacian on H-type groups).
There exists a positive constant c such that

Γ(ξ) := c
(|x|4 + 16|t|2)(2−Q)/4

is the fundamental solution of the sub-Laplacian L, that is,
LΓζ = −δζ, (1.120)

where Γζ(ξ) = Γ(ζ−1 ◦ ξ) and δζ is the Dirac distribution at ζ ≡ (y, τ) ∈ G.



70 Chapter 1. Analysis on Homogeneous Groups

For future use in Section 11.5, we will prefer to have the appearing function
Γ positive, which leads to the appearance of the minus sign in (1.120).

For further details and analysis on H-type and related groups we may refer
the reader to Kohn–Nirenberg [KN65], Folland [Fol75], Kaplan [Kap80], as well as
to a more detailed exposition in [BLU07].

Open Access. This chapter is licensed under the terms of the Creative Commons At-
tribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chap-
ter’s Creative Commons license, unless indicated otherwise in a credit line to the material.
If material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Chapter 2

Hardy Inequalities on Homogeneous Groups

This chapter is devoted to Hardy inequalities and the analysis of their remainders
in different forms. Moreover, we discuss several related inequalities such as Rellich
inequalities and uncertainty principles.

In this chapter we will use all the notations given in Chapter 1 concerning
homogeneous groups and the operators defined on it. In particular, G is always a
homogeneous group of homogeneous dimension Q ≥ 1. Some statements will hold
for Q ≥ 2 or for Q ≥ 3 but we will be specifying this explicitly in formulations
when needed.

2.1 Hardy inequalities and sharp remainders

In this section we analyse the anisotropic version of the classical Lp-Hardy in-
equality ∥∥∥∥ f

|x|E

∥∥∥∥
Lp(Rn)

≤ p

n− p ‖∇f‖Lp(Rn) , n ≥ 2, 1 ≤ p < n, (2.1)

where ∇ is the standard gradient in R
n, |x|E =

√
x21 + · · ·+ x2n is the Euclidean

norm, f ∈ C∞
0 (Rn), and the constant p

n−p is known to be sharp. We also discuss
in detail its critical cases and remainder estimates. As consequences, we derive
Rellich type inequalities and the corresponding uncertainty principles.

2.1.1 Hardy inequality and uncertainty principle

First we establish the Lp-Hardy inequality and derive a formula for the remainder
on a homogeneous group G of homogeneous dimension Q ≥ 2. The radial operator
R from (1.30) is entering the appearing expressions.

Theorem 2.1.1 (Hardy inequalities on homogeneous groups). Let | · | be any ho-
mogeneous quasi-norm on G.

© The Editor(s) (if applicable) and The Author(s) 2019 
M. Ruzhansky, D. Suragan, Hardy Inequalities on Homogeneous Groups,  
Progress in Mathematics 327, https://doi.org/10.1007/978-3-030-02895-4_3 
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(i) Let f ∈ C∞
0 (G\{0}) be a complex-valued function. Then we have∥∥∥∥ f|x|

∥∥∥∥
Lp(G)

≤ p

Q − p ‖Rf‖Lp(G) , 1 < p < Q, (2.2)

where the constant p
Q−p is sharp. Moreover, the equality in (2.2) is attained

if and only if f = 0.

(ii) For a real-valued function f ∈ C∞
0 (G\{0}) and with the notations

u := u(x) = − p

Q− pRf(x),

v := v(x) =
f(x)

|x| ,

we have

‖u‖pLp(G) − ‖v‖pLp(G) = p

∫
G

Ip(v, u)|v − u|2dx, (2.3)

where

Ip(h, g) = (p− 1)

∫ 1

0

|ξh+ (1− ξ)g|p−2ξdξ. (2.4)

(iii) For Q ≥ 3, for a complex-valued function f ∈ C∞
0 (G\{0}) we have

‖Rf‖2L2(G) =

(
Q− 2

2

)2 ∥∥∥∥ f|x|
∥∥∥∥2
L2(G)

+

∥∥∥∥Rf +
Q− 2

2

f

|x|
∥∥∥∥2
L2(G)

, (2.5)

that is, when p = 2, (2.3) holds for complex-valued functions as well.

Remark 2.1.2.

1. In the case of G = Rn and |x| = |x|E =
√
x21 + · · ·+ x2n the Euclidean norm,

we haveQ = n andR = ∂r is the usual radial derivative, and (2.2) implies the
classical Hardy inequality (2.1). Indeed, in this case for 1 < p < n inequality
(2.2) yields∥∥∥∥ f

|x|E

∥∥∥∥
Lp(Rn)

≤ p

n− p ‖Rf‖Lp(Rn) =
p

n− p ‖∂rf‖Lp(Rn)

=
p

n− p
∥∥∥∥ x

|x|E · ∇f
∥∥∥∥
Lp(Rn)

≤ p

n− p ‖∇f‖Lp(Rn) ,
(2.6)

in view of the Cauchy–Schwarz inequality for the Euclidean norm.

An interesting feature of the Hardy inequality in Part (i) is that the
constant in (2.2) is sharp for any homogeneous quasi-norm | · |.

2. In the setting of Part 1 above the remainder formula (2.3) for the Euclidean
norm | · |E in R

n was analysed by Ioku, Ishiwata and Ozawa [IIO17].
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3. In Theorem 2.1.1, Part (ii) implies Part (i). To show it one can notice that
the right-hand side of (2.3) is non-negative, which implies that∥∥∥∥ f|x|

∥∥∥∥
Lp(G)

≤ p

Q− p ‖Rf‖Lp(G) , 1 < p < Q, (2.7)

for any real-valued f ∈ C∞
0 (G\{0}).Moreover, by using the following identity

we obtain the same inequality for all complex-valued functions: for all z ∈ C

we have

|z|p =
(∫ π

−π
| cos θ|pdθ

)−1 ∫ π

−π
|Re(z) cos θ + Im(z) sin θ|p dθ, (2.8)

which is a consequence of the decomposition of a complex number z =
r(cos φ+ i sinφ).

That is, we obtain inequality (2.2), and also that the constant p
Q−p is

sharp, in view of the remainder formula. Now let us show that this constant
is attained only for f = 0. Identity (2.8) says that it is sufficient to look only
for real-valued functions f . If the right-hand side of (2.3) vanishes, then we
must have u = v, that is,

− p

Q− pRf(x) =
f(x)

|x| .

This also means that Ef = −Q−p
p f . Lemma 1.3.1 implies that f is positively

homogeneous of order −Q−p
p , i.e., there exists a function h : ℘→ C such that

f(x) = |x|−Q−p
p h

(
x

|x|
)
, (2.9)

where ℘ is the unit sphere for the quasi-norm | · |. It confirms that f cannot
be compactly supported unless it is identically zero.

4. The identity (2.8) has been often used in similar estimates for passing from
real-valued to complex-valued functions, see, e.g., Davies [Dav80, p. 176].

5. Let us denote by H1
R(G) the functional space of the functions f ∈ L2(G) with

Rf ∈ L2(G). Then Theorem 2.1.1 can be extended for functions in H1
R(G),

that is, the proof of (2.2) given above works in this case. As for the sharpness

and the equality in (2.2), having (2.9) also implies that f(x)
|x| = |x|−Q

p h
(
x
|x|
)

is not in Lp(G) unless h = 0 and f = 0.

Remark 2.1.2, Part 2, shows that (2.3) implies Part (i) of Theorem 2.1.1, that
is, we only need to prove Parts (ii) and (iii). However, we now give an independent
proof of (2.2) for complex-valued functions without relying on the formula (2.8).
We see that this argument will be also useful in the proof of Part (ii).
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Proof of Theorem 2.1.1. Proof of Part (i). Using the polar decomposition from
Proposition 1.2.10, a direct calculation shows that∫

G

|f(x)|p
|x|p dx =

∫ ∞

0

∫
℘

|f(ry)|p
rp

rQ−1dσ(y)dr

= − p

Q− p
∫ ∞

0

rQ−p Re
∫
℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

= − p

Q− pRe
∫
G

|f(x)|p−2f(x)

|x|p−1

df(x)

d|x| dx. (2.10)

Now by the Hölder inequality with 1
p + 1

q = 1 we obtain∫
G

|f(x)|p
|x|p dx = − p

Q− pRe
∫
G

|f(x)|p−2f(x)

|x|p−1

df(x)

d|x| dx

≤ p

Q− p
(∫

G

∣∣∣∣ |f(x)|p−2f(x)

|x|p−1

∣∣∣∣q dx)
1
q
(∫

G

∣∣∣∣df(x)d|x|
∣∣∣∣p dx)

1
p

=
p

Q− p
(∫

G

|f(x)|p
|x|p dx

)1− 1
p
∥∥∥∥df(x)d|x|

∥∥∥∥
Lp(G)

.

This proves inequality (2.2) in Part (i).

Proof of Part (ii). Since

u := u(x) = − p

Q− pRf, and v := v(x) =
f(x)

|x| ,

the formula (2.10) can be restated as

‖v‖pLp(G) = Re

∫
G

|v|p−2vudx. (2.11)

For a real-valued f the formula (2.10) becomes∫
G

|f(x)|p
|x|p dx = − p

Q− p
∫
G

|f(x)|p−2f(x)

|x|p−1

df(x)

d|x| dx

and (2.11) becomes

‖v‖pLp(G) =

∫
G

|v|p−2vudx. (2.12)

Moreover, for any Lp-integrable real-valued functions u and v, we have

‖u‖pLp(G) − ‖v‖pLp(G) + p

∫
G

(|v|p − |v|p−2vu)dx

=

∫
G

(|u|p + (p− 1)|v|p − p|v|p−2vu)dx = p

∫
G

Ip(v, u)|v − u|2dx,
(2.13)
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where

Ip(v, u) = (p− 1)

∫ 1

0

|ξv + (1− ξ)u|p−2ξdξ.

To show the last equality in (2.13), we observe the identity, for real numbers u �= v,

1

p
|u|p +

(
1− 1

p

)
|v|p − |v|p−2vu

=

(
1− 1

p

)
(|v|p − |u|p)− u(|v|p−2v − |u|p−2u)

= (p− 1)

∫ 1

0

|ξv + (1 − ξ)u|p−2(ξv + (1− ξ)u)dξ (v − u)

− (p− 1)

∫ 1

0

|ξv + (1− ξ)u|p−2dξ u(v − u)

= (p− 1)

∫ 1

0

|ξv + (1 − ξ)u|p−2ξdξ (v − u)2,

using the integral expression for the remainder in the Taylor expansion formula.

Combining (2.13) with (2.12) we arrive at

‖u‖pLp(G) − ‖v‖pLp(G) = p

∫
G

Ip(v, u)|v − u|2dx.

It completes the proof of Part (ii).

Proof of Part (iii). When p = 2, the equality (2.11) for complex-valued func-
tions reduces to

‖v‖2L2(G) = Re

∫
G

vudx.

Then we have

‖u‖2L2(G) − ‖v‖2L2(G) = ‖u‖2L2(G) − ‖v‖2L2(G) + 2

∫
G

(|v|2 − Re vu)dx

=

∫
G

(|u|2 + |v|2 − 2Re vu)dx =

∫
G

|u− v|2dx,

that is, (2.5) is proved. �

As a direct consequence of the inequality (2.2) we obtain the corresponding
uncertainty principle:

Corollary 2.1.3 (Uncertainty principle on homogeneous groups). For every com-
plex-valued function f ∈ C∞

0 (G\{0}) we have(∫
G

∣∣∣∣df(x)d|x|
∣∣∣∣p dx) 1/p(∫

G

|x|q |f |qdx
) 1/q

≥ Q− p
p

∫
G

|f |2dx. (2.14)

Here Q ≥ 2, | · | is an arbitrary homogeneous quasi-norm on G, 1 < p < Q and
1
p + 1

q = 1.
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Proof. The inequality (2.7) and the Hölder inequality imply that

(∫
G

∣∣∣∣df(x)d|x|
∣∣∣∣p dx)

1
p
(∫

G

|x|q|f |qdx
) 1
q

≥ Q− p
p

(∫
G

|f |p
|x|p dx

) 1
p
(∫

G

|x|q|f |qdx
) 1
q

≥ Q− p
p

∫
G

|f |2dx,

This shows (2.14). �

Remark 2.1.4. In the Abelian case G = (Rn,+) with the standard Euclidean
distance |x|E , we have Q = n, so that (2.14) with p = q = 2 and n ≥ 3 implies the
uncertainty principle∫

Rn

∣∣∣∣ x

|x|E · ∇u(x)
∣∣∣∣2 dx∫

Rn

|x|2E |u(x)|2dx ≥
(
n− 2

2

)2(∫
Rn

|u(x)|2dx
)2

, (2.15)

which in turn implies the classical uncertainty principle for G ≡ R
n:∫

Rn

|∇u(x)|2dx
∫
Rn

|x|2E |u(x)|2dx ≥
(
n− 2

2

)2(∫
Rn

|u(x)|2dx
)2

, n ≥ 3.

2.1.2 Weighted Hardy inequalities

In this section G is a homogeneous group of homogeneous dimension Q ≥ 3. Let
| · | be an arbitrary homogeneous quasi-norm on G. Here, we are going to discuss
weighted Hardy inequalities on G which are the consequences of exact equalities.

Theorem 2.1.5 (Weighted Hardy identity in L2(G)). Let G be a homogeneous group
of homogeneous dimension Q ≥ 3 and let | · | be a homogeneous quasi-norm on G.
Then for every complex-valued function f ∈ C∞

0 (G\{0}) and for any α ∈ R we
have the equality∥∥∥∥ 1

|x|αRf
∥∥∥∥2
L2(G)

=

(
Q− 2

2
− α

)2 ∥∥∥∥ f

|x|α+1

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αRf +
Q − 2− 2α

2|x|α+1
f

∥∥∥∥2
L2(G)

.

(2.16)

The equality (2.16) implies many different inequalities. For instance, by tak-
ing α = 1 and simplifying its coefficient, for any Q ≥ 3 we obtain the identity∥∥∥∥ 1

|x|Rf
∥∥∥∥2
L2(G)

=

(
Q− 4

2

)2 ∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f
∥∥∥∥2
L2(G)

. (2.17)

By dropping the last term in (2.16) which is non-negative we obtain:
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Corollary 2.1.6 (Weighted Hardy inequality in L2(G)). Let Q ≥ 3 and let α ∈ R be
such that Q− 2− 2α �= 0. Then for all complex-valued functions f ∈ C∞

0 (G\{0})
we have ∥∥∥∥ f

|x|α+1

∥∥∥∥
L2(G)

≤ 2

|Q− 2− 2α|
∥∥∥∥ 1

|x|αRf
∥∥∥∥
L2(G)

. (2.18)

Here the constant 2
|Q−2−2α| is sharp and it is attained if and only if f = 0.

Remark 2.1.7.

1. It is interesting to note that the constant 2
|Q−2−2α| in (2.18) is sharp for any

homogeneous quasi-norm | · | on G.

2. When α = 1, (2.17) or (2.18) also imply that∥∥∥∥ f

|x|2
∥∥∥∥
L2(G)

≤ 2

Q− 4

∥∥∥∥ 1

|x|Rf
∥∥∥∥
L2(G)

, Q ≥ 5, (2.19)

again with 2
Q−4 being the sharp constant.

3. If α = 0, the identity (2.16) recovers Part (iii) of Theorem 2.1.1. However,
we will use Part (iii) of Theorem 2.1.1 in the proof of Theorem 2.1.5.

4. In the Abelian case G = (Rn,+), n ≥ 3, we have Q = n, so for any homoge-
neous quasi-norm | · | on R

n identity (2.16) implies the following inequality
with the optimal constant:

|n− 2− 2α|
2

∥∥∥∥ f

|x|α+1

∥∥∥∥
L2(Rn)

≤
∥∥∥∥ 1

|x|α
x

|x| · ∇f
∥∥∥∥
L2(Rn)

for all α ∈ R.

In the case of the Euclidean distance |x|E =
√
x21 + · · ·+ x2n, by the Cauchy–

Schwarz inequality we obtain the following estimate:

|n− 2− 2α|
2

∥∥∥∥ f

|x|α+1
E

∥∥∥∥
L2(Rn)

≤
∥∥∥∥ 1

|x|αE
∇f

∥∥∥∥
L2(Rn)

(2.20)

for all α ∈ R and for any f ∈ C∞
0 (Rn\{0}). The sharpness of the constant

|n−2−2α|
2 in the Euclidean case of Rn with the Euclidean norm, (2.20) was

shown in [CW01, Theorem 1.1. (ii)].

5. Hardy inequalities with homogeneous weights have been also considered by
Hoffmann-Ostenhof and Laptev [HOL15]. There are also further many-part-
icle versions of such inequalities, see [HOHOLT08] and many further refer-
ences therein. We will discuss some of such inequalities in Section 6.11 and
Section 6.12.

6. Theorem 2.1.5 was established in [RS17b]. Its extension from L2 to Lp spaces
presented in Theorem 2.1.8 was made in [Ngu17].
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Proof of Theorem 2.1.5. We first observe the equality

1

|x|αRf = R f

|x|α + α
f

|x|α+1
(2.21)

for any α ∈ R, which follows from

R f

|x|α =
1

|x|αRf + fR 1

|x|α

and hence, by using (1.30), we have

R 1

|x|α =
d

dr

1

rα
= −α 1

rα+1
= −α 1

|x|α+1
, r = |x|.

Then using (2.21) we can write∥∥∥∥ 1

|x|αRf
∥∥∥∥2
L2(G)

=

∥∥∥∥R f

|x|α +
αf

|x|α+1

∥∥∥∥2
L2(G)

=

∥∥∥∥R f

|x|α
∥∥∥∥2
L2(G)

+ 2αRe

∫
G

R
(

f

|x|α
)

f

|x|α+1
dx+

∥∥∥∥ αf

|x|α+1

∥∥∥∥2
L2(G)

.

By applying (2.5) to the function f
|x|α and using (2.21) we have that∥∥∥∥R f

|x|α
∥∥∥∥2
L2(G)

=

(
Q− 2

2

)2 ∥∥∥∥ f

|x|1+α
∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αRf +
Q− 2− 2α

2|x|α+1
f

∥∥∥∥2
L2(G)

.

In addition, a direct calculation using the polar decomposition in Proposition
1.2.10 shows that

2αRe

∫
G

R
(

f

|x|α
)

f

|x|α+1
dx = 2αRe

∫ ∞

0

rQ−2

∫
℘

d

dr

(
f(ry)

rα

)
f(ry)

rα
dσ(y)dr

= α

∫ ∞

0

rQ−2

∫
℘

d

dr

( |f(ry)|2
r2α

)
dσ(y)dr = −α(Q− 2)

∥∥∥∥ f

|x|α+1

∥∥∥∥2
L2(G)

.

In conclusion, combining these identities we arrive at∥∥∥∥ 1

|x|αRf
∥∥∥∥2
L2(G)

=

(
Q− 2

2
− α

)2 ∥∥∥∥ f

|x|α+1

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αRf +
Q− 2− 2α

2|x|α+1
f

∥∥∥∥2
L2(G)

,

yielding (2.16). �

To present a weighted Lp-Hardy inequality on G we will use the following
function Rp in analogy to Ip in (2.4). For ξ, η ∈ C we denote

Rp(ξ, η) :=
1

p
|η|p + p− 1

p
|ξ|p − Re(|ξ|p−2ξη). (2.22)
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By the convexity of the function z 
→ |z|p we see that Rp(ξ, η) ≥ 0 is non-negative
and Rp(ξ, η) = 0 and if and only if ξ = η. If ξ, η ∈ R, we then have

Rp(ξ, η) = (p− 1)

∫ 1

0

|tξ + (1 − t)η|p−2tdt |ξ − η|2,

analogous to Ip in (2.4).

Theorem 2.1.8 (Weighted Hardy identity in Lp(G)). Let G be a homogeneous group
of homogeneous dimension Q. Let 1 < p < Q and α ∈ R. Then for any homoge-
neous quasi-norm | · | on G and for all complex-valued functions f ∈ C∞

0 (G\{0})
we have∥∥∥∥Rf|x|α

∥∥∥∥p
Lp(G)

=

∣∣∣∣Q− p(1 + α)

p

∣∣∣∣p ∫
G

|f |p
|x|p(1+α) dx

+ p

∫
G

1

|x|pαRp
(
−Q− p(1 + α)

p

f

|x| ,Rf
)
dx.

(2.23)

By dropping the last term in (2.23) which is non-negative we obtain:

Corollary 2.1.9 (Weighted Hardy inequality in Lp(G)). Let 1 < p < Q and let
α ∈ R. Then for all complex-valued functions f ∈ C∞

0 (G\{0}) we have

|Q− p(1 + α)|
p

∥∥∥∥ f

|x|1+α
∥∥∥∥
Lp(G)

≤
∥∥∥∥Rf|x|α

∥∥∥∥
Lp(G)

. (2.24)

If Q − p(1 + α) �= 0, then the constant |Q−p(1+α)|
p in (2.24) is sharp and it is

attained if and only if f = 0.

Proof of Theorem 2.1.8. We can assume that Q− p(1 +α) �= 0, otherwise there is
nothing to prove. A direct calculation gives∫

G

|f(x)|p
|x|p(1+α) dx =

∫ ∞

0

rQ−p(1+α)−1

∫
℘

|f(ry)|pdσ(y)dr

=
1

Q− p(1 + α)

∫ ∞

0

(rQ−p(1+α))′
∫
℘

|f(ry)|pdσ(y)dr

= − 1

Q− p(1 + α)
Re

∫ ∞

0

rQ−p(1+α)
∫
℘

|f(ry)|p−2f(ry)Rf(ry)dσ(y)dr

= − 1

Q− p(1 + α)
Re

∫
G

|f(x)|p−2f(x)

|x|(p−1)(1+α)

Rf(x)
|x|α dx

=
p− 1

p

∫
G

|f |p
|x|p(1+α) dx +

1

p

(
p

|Q− p(1 + α)|
)p ∫

G

|Rf |p
|x|pα dx

−
∫
G

Rp

(
f

|x|1+α ,−
p

Q− p(1 + α)

Rf
|x|α

)
dx,

which implies the identity (2.23). �
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Proof of Corollary 2.1.9. The equality (2.23) implies inequality (2.24) since the
last term in (2.23) is non-negative. Let us now show the sharpness of the constant.
For this we approximate the function r−(Q−p(1+α))/p by smooth compactly sup-
ported functions, for details of such an argument see also the proof of Theorem
3.1.4. Using (2.23) it follows that the equality in (2.24) holds if and only if

Rp

(
−Q− p(1 + α)

p

f

|x| ,Rf
)

= 0,

or, equivalently,

Rf = −Q− p(1 + α)

p

f

|x| .
In turn, this is equivalent to

Ef = −Q− p(1 + α)

p
f.

By Proposition 1.3.1 it follows that f is positively homogeneous of order −(Q −
p(1 + α))/p. Since |f |/|x|1+α is in Lp(G), it follows that f = 0. �

2.1.3 Hardy inequalities with super weights

In this section we discuss sharp Lp-Hardy type inequalities with super weights,
i.e., with weights of the form

(a+ b|x|α)βp
|x|m . (2.25)

Such weights are sometimes called the super weights because of the arbitrariness of
the choice of any homogeneous quasi-norm as well as a wide range of parameters.
However, all the inequalities can be obtained with best constants.

Theorem 2.1.10 (Hardy inequalities with super weights). Let G be a homogeneous
group of homogeneous dimension Q ≥ 1. Let a, b > 0 and 1 < p < ∞. Then we
have the following inequalities:

(i) If αβ > 0 and pm ≤ Q− p, then for all f ∈ C∞
0 (G\{0}) we have

Q− pm− p
p

∥∥∥∥∥ (a+ b|x|α)βp
|x|m+1

f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)βp

|x|m Rf
∥∥∥∥∥
Lp(G)

. (2.26)

If Q �= pm+ p then the constant Q−pm−p
p is sharp.

(ii) If αβ < 0 and pm− αβ ≤ Q− p, then for all f ∈ C∞
0 (G\{0}) we have

Q− pm+ αβ − p
p

∥∥∥∥∥ (a+ b|x|α)βp
|x|m+1

f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)βp

|x|m Rf
∥∥∥∥∥
Lp(G)

. (2.27)

If Q �= pm+ p− αβ then the constant Q−pm+αβ−p
p is sharp.
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Proof of Theorem 2.1.10. Proof of Part (i). We can assume Q �= pm + p since in
the case Q = pm+ p there is nothing to prove. As usual with (r, y) = (|x|, x|x|) ∈
(0,∞)× ℘ on G, where

℘ := {x ∈ G : |x| = 1},
using the polar decomposition in Proposition 1.2.10 and integrating by parts, we
obtain∫

G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx =

∫ ∞

0

∫
℘

(a+ brα)β

rpm+p
|f(ry)|prQ−1dσ(y)dr. (2.28)

Since a, b > 0, αβ > 0 and m < Q−p
p we obtain∫

G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx

≤
∫ ∞

0

∫
℘

(a+ brα)βrQ−1−pm−p
(

αβbrα

(a+ brα)(Q − pm− p) + 1

)
|f(ry)|pdσ(y)dr

=

∫ ∞

0

∫
℘

d

dr

(
(a+ brα)βrQ−pm−p

Q− pm− p
)
|f(ry)|pdσ(y)dr

= − p

Q− pm− p
∫ ∞

0

(a+ brα)βrQ−pm−p Re
∫
℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤
∣∣∣∣ p

Q− pm− p
∣∣∣∣ ∫

G

(a+ b|x|α)β |Rf(x)||f(x)|p−1

|x|pm+p−1
dx

=
p

Q− pm− p
∫
G

(a+ b|x|α)β(p−1)
p |f(x)|p−1

|x|(m+1)(p−1)

(a+ b|x|α)βp
|x|m |Rf(x)|dx.

Now by using Hölder’s inequality we arrive at the inequality∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx

≤ p

Q− pm− p
(∫

G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx
)p−1

p
(∫

G

(a+ b|x|α)β
|x|pm |Rf(x)|pdx

)1
p

,

which gives (2.26).

We need to check the equality condition in the above Hölder inequality in
order to show the sharpness of the constant. Setting

g(x) = |x|C ,
where C ∈ R, C �= 0 and Q �= pm+ p a direct calculation shows∣∣∣∣ 1C

∣∣∣∣p
(
(a+ b|x|α)βp |Rg(x)|

|x|m
)p

=

(
(a+ b|x|α)β(p−1)

p |g(x)|p−1

|x|(m+1)(p−1)

) p
p−1

,

which satisfies the equality condition of the Hölder inequality. This gives the sharp-
ness of the constant Q−pm−p

p in the inequality (2.26).
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Proof of Part (ii). Here we can assume that Q �= pm+ p− αβ since for Q =
pm+p−αβ there is nothing to prove. Using the polar decomposition in Proposition
1.2.10, as before we have the equality (2.28). Since αβ < 0 and pm− αβ < Q− p
we obtain∫

G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx

≤
∫ ∞

0

∫
℘

(a+ brα)βrQ−1−pm−p

×
(

brα

a+ brα
+

a

a+ brα
· Q− pm− p
Q− pm− p+ αβ

)
|f(ry)|pdσ(y)dr

=

∫ ∞

0

∫
℘

(a+ brα)βrQ−1−pm−p

Q− pm− p+ αβ

(
αβbrα

a+ brα
+Q − pm− p

)
|f(ry)|pdσ(y)dr

=

∫ ∞

0

∫
℘

d

dr

(
(a+ brα)βrQ−pm−p

Q− pm− p+ αβ

)
|f(ry)|pdσ(y)dr

= − p

Q− pm− p+ αβ

×
∫ ∞

0

(a+ brα)βrQ−pm−p Re
∫
℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤
∣∣∣∣ p

Q− pm− p+ αβ

∣∣∣∣ ∫
G

(a+ b|x|α)β |Rf(x)||f(x)|p−1

|x|pm+p−1
dx

=
p

Q− pm− p+ αβ

∫
G

(a+ b|x|α)β(p−1)
p |f(x)|p−1

|x|(m+1)(p−1)

(a+ b|x|α)βp
|x|m |Rf(x)|dx.

By Hölder’s inequality, it follows that∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx ≤ p

Q− pm− p+ αβ

(∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx
) (p−1)/p

×
(∫

G

(a+ b|x|α)β
|x|pm |Rf(x)|pdx

) 1/p

,

which gives (2.27).

To show the sharpness of the constant we will check the equality condition
in the above Hölder inequality. Thus, by taking

h(x) = |x|C ,
where C ∈ R, C �= 0 and Q �= pm+ p− αβ, we get∣∣∣∣ 1C

∣∣∣∣p
(
(a+ b|x|α)βp |Rh(x)|

|x|m
)p

=

(
(a+ b|x|α)β(p−1)

p |h(x)|p−1

|x|(m+1)(p−1)

)p/(p−1)

,

which satisfies the equality condition in Hölder’s inequality. This gives the sharp-
ness of the constant Q−pm−p+αβ

p in (2.27). �
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2.1.4 Hardy inequalities of higher order with super weights

The iteration process gives the following higher-order Lp-Hardy type inequalities
with super weights. Here as before, G is a homogeneous group of homogeneous
dimension Q ≥ 1 and | · | is a homogeneous quasi-norm on G.

Theorem 2.1.11 (Higher-order Hardy inequalities with super weights). Let a, b > 0
and 1 < p <∞, Q ≥ 1, k ∈ N. Then we have the following inequalities.

(i) If αβ > 0 and pm ≤ Q− p, then for all f ∈ C∞
0 (G\{0}) we have⎡⎣k−1∏

j=0

(
Q− p
p
− (m+ j)

)⎤⎦∥∥∥∥∥ (a+ b|x|α)βp
|x|m+k

f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)βp

|x|m Rkf
∥∥∥∥∥
Lp(G)

.

(2.29)

(ii) If αβ < 0 and pm− αβ ≤ Q− p, then for all f ∈ C∞
0 (G\{0}) we have⎡⎣k−1∏

j=0

(
Q− p+ αβ

p
− (m+ j)

)⎤⎦∥∥∥∥∥ (a+ b|x|α)βp
|x|m+k

f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)βp

|x|m Rkf
∥∥∥∥∥
Lp(G)

.

(2.30)

Remark 2.1.12. 1. In the case of k = 1, (2.29) gives inequality (2.26), and (2.30)
gives inequality (2.27).

2. In the Euclidean case G = R
n and | · | = | · |E the Euclidean norm, the super

weights in the form (2.25) have appeared in [GM08], together with some
applications to problems for differential equations. The case of homogeneous
groups, as well as the iterative higher order estimates as in Theorem 2.1.11
were analysed in [RSY17b, RSY18b].

Proof of Theorem 2.1.11. We can iterate (2.26). That is, we start with

Q− pm− p
p

∥∥∥∥∥ (a+ b|x|α)βp
|x|m+1

f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)βp

|x|m Rf
∥∥∥∥∥
Lp(G)

. (2.31)

In (2.31) replacing f by Rf we obtain

Q− pm− p
p

∥∥∥∥∥ (a+ b|x|α)βp
|x|m+1

Rf
∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)βp

|x|m R2f

∥∥∥∥∥
Lp(G)

. (2.32)



84 Chapter 2. Hardy Inequalities on Homogeneous Groups

On the other hand, replacing m by m+ 1, (2.31) gives

Q− p(m+ 1)− p
p

∥∥∥∥∥ (a+ b|x|α)βp
|x|m+2

f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)βp
|x|m+1

Rf
∥∥∥∥∥
Lp(G)

.

Combining this with (2.32) we obtain(
Q− pm− p

p

)(
Q− p(m+ 1)− p

p

)∥∥∥∥∥ (a+ b|x|α)βp
|x|m+2

f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)βp

|x|m R2f

∥∥∥∥∥
Lp(G)

.

This iteration process gives

k−1∏
j=0

(
Q− p
p
− (m+ j)

)∥∥∥∥∥ (a+ b|x|α)βp
|x|m+k

f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)βp

|x|m Rkf
∥∥∥∥∥
Lp(G)

.

Similarly, we have for αβ < 0, pm− αβ ≤ Q− 2 and f ∈ C∞
0 (G\{0}) that

k−1∏
j=0

(
Q− p+ αβ

p
− (m+ j)

)∥∥∥∥∥ (a+ b|x|α)βp
|x|m+k

f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)βp

|x|m Rkf
∥∥∥∥∥
Lp(G)

,

completing the proof. �

2.1.5 Two-weight Hardy inequalities

In this section, using the method of factorization of differential expressions, we
obtain Hardy type inequalities with two general weights φ(x) and ψ(x). The idea
of the factorization method can be best illustrated by the following example of an
estimate due to Gesztesy and Littlejohn [GL17].

Example 2.1.13 (Gesztesy and Littlejohn two-parameter inequality). Let α, β ∈ R,
x ∈ Rn\{0} and n ≥ 2. Let us define the operator

Tα,β := −Δ+ α|x|−2
E x · ∇+ β|x|−2

E .

One readily checks that its formal adjoint is given by

T+
α,β := −Δ− α|x|−2

E x · ∇+ (β − α(n− 2))|x|−2
E .
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Using the non-negativity of the operator T+
α,βTα,β on C∞

0 (Rn\{0}), for all f ∈
C∞

0 (Rn\{0}) we can deduce that∫
Rn

|(Δf)(x)|2dx ≥((n− 4)α− 2β)

∫
Rn

|x|−2
E |(∇f)(x)|2dx

− α(α − 4)

∫
Rn

|x|−4
E |x · (∇f)(x)|2dx

+ β((n− 4)(α− 2)− β)
∫
Rn

|x|−4
E |f(x)|2dx.

(2.33)

By choosing particular values of α and β it can be checked that this inequality
yields classical Rellich and Hardy–Rellich type inequalities as special cases, see
[GL17] for details.

On the other hand, using the non-negativity of the operator Tα,βT
+
α,β , it was

shown in [RY17] that for α, β ∈ R and n ≥ 2, and for all f ∈ C∞
0 (Rn\{0}) we can

deduce another two-parameter inequality∫
Rn

|(Δf)(x)|2dx (2.34)

≥ (nα− 2β)

∫
Rn

|x|−2
E |(∇f)(x)|2dx− α(α+ 4)

∫
Rn

|x|−4
E |x · (∇f)(x)|2dx

+ (2(n− 4)(α(n− 2)− β)− 2α2(n− 2) + αβn− β2)

∫
Rn

|x|−4
E |f(x)|2dx.

The following result is a two-weight inequality on general homogeneous
groups with general weights.

Theorem 2.1.14 (Two-weight Hardy inequality). Let G be a homogeneous group of
homogeneous dimension Q ≥ 3 and let | · | be a homogeneous quasi-norm on G. Let
φ, ψ ∈ L2

loc(G\{0}) be any real-valued functions such that Rφ,Rψ ∈ L2
loc(G\{0}).

Let α ∈ R. Then for all complex-valued functions f ∈ C∞
0 (G\{0}) we have in-

equalities∫
G

(φ(x))2|Rf(x)|2dx

≥ α
∫
G

(φ(x)Rψ(x) + ψ(x)Rφ(x)) |f(x)|2dx

+ α(Q− 1)

∫
G

φ(x)ψ(x)

|x| |f(x)|2dx− α2

∫
G

(ψ(x))2|f(x)|2dx

(2.35)

and ∫
G

(φ(x))2|Rf(x)|2dx

≥ α
∫
G

(ψ(x)Rφ(x) − φ(x)Rψ(x)) |f(x)|2dx
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+ α(Q − 1)

∫
G

φ(x)ψ(x)

|x| |f(x)|2dx− α2

∫
G

(ψ(x))2|f(x)|2dx

− (Q− 1)

∫
G

(φ(x))2

|x|2 |f(x)|2dx+ (Q − 1)

∫
G

φ(x)Rφ(x)
|x| |f(x)|2dx

+

∫
G

φ(x)R2φ(x)|f(x)|2dx. (2.36)

From Theorem 2.1.14 one can get different weighted Hardy inequalities. Let
us point out several examples.

Remark 2.1.15.

1. If we take φ(x) ≡ 1 in Theorem 2.1.14, we obtain for all α ∈ R and for all
f ∈ C∞

0 (G\{0}) families of inequalities∫
G

|Rf(x)|2dx ≥
∫
G

(
αRφ(x) + α(Q− 1)

ψ(x)

|x| − α
2(ψ(x))2

)
|f(x)|2dx

and∫
G

|Rf(x)|2dx

≥
∫
G

(
−αRφ(x) + α(Q − 1)

ψ(x)

|x| − α
2(ψ(x))2 − Q− 1

|x|2
)
|f(x)|2dx.

2. If we take φ(x) = |x|−a and ψ(x) = |x|−b for a, b ∈ R, then (2.35) implies
that∫

G

|Rf(x)|2
|x|2a dx ≥ α(Q − a− b− 1)

∫
G

|f(x)|2
|x|a+b+1

dx− α2

∫
G

|f(x)|2
|x|2b dx.

In the case when we take b = a+ 1, we get∫
G

|Rf(x)|2
|x|2a dx ≥ (α(Q − 2a− 2)− α2)

∫
G

|f(x)|2
|x|2a+2

dx.

Then, by maximizing the constant (α(Q − 2a − 2) − α2) with respect to α
we obtain the weighted Hardy inequality from Corollary 2.1.6, namely,∫

G

|Rf(x)|2
|x|2a dx ≥ (Q− 2a− 2)2

4

∫
G

|f(x)|2
|x|2a+2

dx, (2.37)

for which it is known that the constant in (2.37) is sharp.



2.1. Hardy inequalities and sharp remainders 87

3. If we take φ(x) = |x|−a(log |x|)c and ψ(x) = |x|−b(log |x|)d for a, b, c, d ∈ R,
then we obtain from (2.35) the inequality∫

G

(log |x|)2c
|x|2a |Rf(x)|2dx

≥ α
∫
G

(
(c+ d)(log |x|)c+d−1 + (Q− 1− a− b)(log |x|)c+d

|x|a+b+1

)
|f(x)|2dx

− α2

∫
G

(log |x|)2d
|x|2b |f(x)|2dx.

If we take a = Q−2
2 , b = Q

2 , c = 1 and d = 0, it follows that∫
G

(log |x|)2
|x|Q−2

|Rf(x)|2dx ≥ (α− α2)

∫
G

|f(x)|2
|x|Q dx.

After maximizing the above constant with respect to α we obtain the critical
Hardy inequality∫

G

(log |x|)2
|x|Q−2

|Rf(x)|2dx ≥ 1

4

∫
G

|f(x)|2
|x|Q dx, (2.38)

recovering the critical inequality in Theorem 2.2.4. There, it is shown that
the constant 1

4 in (2.38) is sharp.

4. We can refer to [GL17] for a thorough discussion of the factorization method,
its history and different features. We also refer to [GP80] for obtaining the
Hardy inequality and to [Ges84] for logarithmic refinements by this factor-
ization method.

The inequalities in Theorem 2.1.14 were obtained in [RY17] which we
follow for the proof.

Proof of Theorem 2.1.14. Let us introduce the one-parameter differential expres-
sion

Tα := φ(x)R + αψ(x).

One can readily calculate for the formal adjoint operator of Tα on C∞
0 (G\{0}):∫

G

φ(x)Rf(x)g(x)dx+ α

∫
G

ψ(x)f(x)g(x)dx

=

∫ ∞

0

∫
℘

φ(ry)
d

dr
(f(ry))g(ry)rQ−1dσ(y)dr + α

∫
G

ψ(x)f(x)g(x)dx

= −
∫ ∞

0

∫
℘

φ(ry)f(ry)
d

dr
(g(ry))rQ−1dσ(y)dr

− (Q− 1)

∫ ∞

0

∫
℘

φ(ry)f(ry)g(ry)rQ−2dσ(y)dr + α

∫
G

ψ(x)f(x)g(x)dx
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=

∫
G

f(x)
(
−φ(x)Rg(x)

)
dx− (Q− 1)

∫
G

f(x)

(
φ(x)

|x| g(x)
)
dx

−
∫
G

f(x)
(
Rφ(x)g(x)

)
dx+ α

∫
G

f(x)
(
ψ(x)g(x)

)
dx.

Thus, the formal adjoint operator of Tα has the form

T+
α := −φ(x)R− Q− 1

|x| φ(x) −Rφ(x) + αψ(x),

where x �= 0. Then we have

(T+
α Tαf)(x) = − φ(x)R(φ(x)Rf(x)) − αφ(x)R(f(x)ψ(x)) −

Q− 1

|x| (φ(x))2Rf(x)

− α(Q − 1)

|x| φ(x)ψ(x)f(x) − φ(x)Rφ(x)Rf(x) − αψ(x)f(x)Rφ(x)

+ αφ(x)ψ(x)Rf(x) + α2(ψ(x))2f(x).

By the non-negativity of T+
α Tα, introducing polar coordinates (r, y) = (|x|, x|x|) ∈

(0,∞)× ℘ on G, where ℘ is the quasi-sphere as in (1.12), and using Proposition
1.2.10 one calculates

0 ≤
∫
G

|(Tαf)(x)|2dx =

∫
G

f(x)(T+
α Tαf)(x)dx

= Re

∫
G

f(x)(T+
α Tαf)(x)dx =: I1 + I2 + I3 + I4 + I5 + I6,

(2.39)

where we set

I1 = − Re

∫ ∞

0

∫
℘

f(ry)φ(ry)
d

dr

(
φ(ry)

d

dr
(f(ry))

)
rQ−1dσ(y)dr, (2.40)

I2 = − αRe
∫ ∞

0

∫
℘

f(ry)φ(ry)
d

dr
(f(ry)ψ(ry))rQ−1dσ(y)dr,

I3 = − (Q− 1)Re

∫ ∞

0

∫
℘

f(ry)
(φ(ry))2 d

dr (f(ry))

r
rQ−1dσ(y)dr,

I4 = − α(Q− 1)

∫
G

φ(x)ψ(x)

|x| |f(x)|2dx− α
∫
G

Rφ(x)ψ(x)|f(x)|2dx

+ α2

∫
G

(ψ(x))2|f(x)|2dx,

I5 = − Re

∫ ∞

0

∫
℘

f(ry)
d

dr
(φ(ry))φ(ry)

d

dr
(f(ry))rQ−1dσ(y)dr

and

I6 = αRe

∫ ∞

0

∫
℘

f(ry)φ(ry)ψ(ry)
d

dr
(f(ry))rQ−1dσ(y)dr.
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Now we simplify the sum of the terms I1, I2, I3, I5 and I6. By a direct calculation
we obtain

I1 = (Q− 1)Re

∫ ∞

0

∫
℘

(φ(ry))2f(ry)
d

dr
(f(ry))rQ−2dσ(y)dr

+Re

∫ ∞

0

∫
℘

(φ(ry))2
d

dr
(f(ry))

d

dr
(f(ry))rQ−1dσ(y)dr

+Re

∫ ∞

0

∫
℘

φ(ry)
d

dr
(φ(ry))

d

dr
f(ry)f(ry)rQ−1dσ(y)dr

=
Q− 1

2

∫ ∞

0

∫
℘

(φ(ry))2
d

dr
|f(ry)|2rQ−2dσ(y)dr

+

∫ ∞

0

∫
℘

(φ(ry))2
∣∣∣∣ ddr (f(ry))

∣∣∣∣2 rQ−1dσ(y)dr

+
1

2

∫ ∞

0

∫
℘

φ(ry)
d

dr
(φ(ry))

d

dr
|f(ry)|2rQ−1dσ(y)dr

=

∫ ∞

0

∫
℘

(φ(ry))2
∣∣∣∣ ddr (f(ry))

∣∣∣∣2 rQ−1dσ(y)dr

− (Q− 1)(Q − 2)

2

∫ ∞

0

∫
℘

(φ(ry))2|f(ry)|2rQ−3dσ(y)dr

− (Q − 1)

∫ ∞

0

∫
℘

φ(ry)
d

dr
(φ(ry))|f(ry)|2rQ−2dσ(y)dr

− 1

2

∫ ∞

0

∫
℘

(
d

dr
(φ(ry))

)2

|f(ry)|2rQ−1dσ(y)dr

− 1

2

∫ ∞

0

∫
℘

φ(ry)
d2

dr2
(φ(ry))|f(ry)|2rQ−1dσ(y)dr

− Q− 1

2

∫ ∞

0

∫
℘

φ(ry)
d

dr
(φ(ry))|f(ry)|2rQ−2dσ(y)dr

=

∫
G

(φ(x))2|Rf(x)|2dx− (Q− 1)(Q− 2)

2

∫
G

(φ(x))2

|x|2 |f(x)|2dx

− (Q − 1)

∫
G

φ(x)Rφ(x)
|x| |f(x)|2dx− 1

2

∫
G

(Rφ(x))2|f(x)|2dx

− 1

2

∫
G

R2φ(x)φ(x)|f(x)|2dx− Q− 1

2

∫
G

φ(x)Rφ(x)
|x| |f(x)|2dx.

Now we calculate I2 as follows,

I2 = − αRe
∫ ∞

0

∫
℘

φ(ry)ψ(ry)f(ry)
d

dr
(f(ry))rQ−1dσ(y)dr
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− α
∫ ∞

0

∫
℘

φ(ry)
d

dr
(ψ(ry))|f(ry)|2rQ−1dσ(y)dr

= − α

2

∫ ∞

0

∫
℘

φ(ry)ψ(ry)
d

dr
|f(ry)|2rQ−1dσ(y)dr

− α
∫ ∞

0

∫
℘

φ(ry)
d

dr
(ψ(ry))|f(ry)|2rQ−1dσ(y)dr

= − α
∫ ∞

0

∫
℘

φ(ry)
d

dr
(ψ(ry))|f(ry)|2rQ−1dσ(y)dr

+
α

2

∫ ∞

0

∫
℘

ψ(ry)
d

dr
(φ(ry))|f(ry)|2rQ−1dσ(y)dr

+
α

2

∫ ∞

0

∫
℘

φ(ry)
d

dr
(ψ(ry))|f(ry)|2rQ−1dσ(y)dr

+
α(Q − 1)

2

∫ ∞

0

∫
℘

φ(ry)ψ(ry)|f(ry)|2rQ−2dσ(y)dr

=
α

2

∫
G

ψ(x)Rφ(x)|f(x)|2dx+
α

2

∫
G

φ(x)Rψ(x)|f(x)|2dx

+
α(Q − 1)

2

∫
G

φ(x)ψ(x)

|x| |f(x)|2dx− α
∫
G

φ(x)Rψ(x)|f(x)|2dx.

For I3, one has

I3 = − (Q− 1)Re

∫ ∞

0

∫
℘

(φ(ry))2f(ry)
d

dr
(f(ry))rQ−2dσ(y)dr

= − Q− 1

2

∫ ∞

0

∫
℘

(φ(ry))2
d

dr
|f(ry)|2rQ−2dσ(y)dr

= (Q − 1)

∫ ∞

0

∫
℘

φ(ry)
d

dr
(φ(ry))|f(ry)|2rQ−2dσ(y)dr

+
(Q− 1)(Q− 2)

2

∫ ∞

0

∫
℘

(φ(ry))2|f(ry)|2rQ−3dσ(y)dr

= (Q − 1)

∫
G

φ(x)Rφ(x)
|x| |f(x)|2dx+

(Q− 1)(Q − 2)

2

∫
G

(φ(x))2

|x|2 |f(x)|2dx.

For I5, we have

I5 = − Re

∫ ∞

0

∫
℘

f(ry)
d

dr
(φ(ry))φ(ry)

d

dr
(f(ry))rQ−1dσ(y)dr

= − 1

2

∫ ∞

0

∫
℘

d

dr
(φ(ry))φ(ry)

d

dr
|f(ry)|2rQ−1dσ(y)dr

=
1

2

∫ ∞

0

∫
℘

φ(ry)
d2

dr2
(φ(ry))|f(ry)|2rQ−1dσ(y)dr
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+
1

2

∫ ∞

0

∫
℘

(
d

dr
(φ(ry))

)2

|f(ry)|2rQ−1dσ(y)dr

+
Q− 1

2

∫ ∞

0

∫
℘

φ(ry) ddr (φ(ry))

r
|f(ry)|2rQ−1dσ(y)dr

=
1

2

∫
G

R2φ(x)φ(x)|f(x)|2dx +
1

2

∫
G

(Rφ(x))2 |f(x)|2dx

+
Q− 1

2

∫
G

Rφ(x)φ(x)
|x| |f(x)|2dx.

Finally, for I6 we obtain

I6 = αRe

∫ ∞

0

∫
℘

f(ry)φ(ry)ψ(ry)
d

dr
(f(ry))rQ−1dσ(y)dr (2.41)

=
α

2

∫ ∞

0

∫
℘

φ(ry)ψ(ry)
d

dr
|f(ry)|2rQ−1dσ(y)dr

= − α

2

∫ ∞

0

∫
℘

d

dr
(φ(ry))ψ(ry)|f(ry)|2rQ−1dσ(y)dr

− α

2

∫ ∞

0

∫
℘

d

dr
(ψ(ry))φ(ry)|f(ry)|2rQ−1dσ(y)dr

− α(Q − 1)

2

∫ ∞

0

∫
℘

φ(ry)ψ(ry)
|f(ry)|2

r
rQ−1dσ(y)dr

= − α

2

∫
G

Rφ(x)ψ(x)|f(x)|2dx− α

2

∫
G

φ(x)Rψ(x)|f(x)|2dx

− α(Q − 1)

2

∫
G

φ(x)ψ(x)

|x| |f(x)|2dx.

Putting (2.40)–(2.41) in (2.39), we obtain that∫
G

(φ(x))2|Rf(x)|2dx

− α
∫
G

(
φ(x)Rψ(x) + ψ(x)Rφ(x) + (Q − 1)

φ(x)ψ(x)

|x|
)
|f(x)|2dx

+ α2

∫
G

(ψ(x))2|f(x)|2dx ≥ 0,

which implies (2.35).

Thus, we have obtained (2.35) using the non-negativity of T+
α Tα. Now we can

obtain (2.36) using the non-negativity of TαT
+
α . Similar to the above we calculate

(TαT
+
α f)(x) = − φ(x)R(φ(x)Rf(x)) + αφ(x)R(f(x)ψ(x)) − Q− 1

|x| (φ(x))2Rf(x)
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− α(Q − 1)

|x| φ(x)ψ(x)f(x) − φ(x)Rφ(x)Rf(x) − αψ(x)f(x)Rφ(x)

− αφ(x)ψ(x)Rf(x) + α2(ψ(x))2f(x)

− (Q − 1)φ(x)f(x)R
(
φ(x)

|x|
)
− φ(x)f(x)R2φ(x).

Using the non-negativity of TαT
+
α we get

0 ≤
∫
G

|(Tαf)(x)|2dx =

∫
G

f(x)(TαT
+
α f)(x)dx

= Re

∫
G

f(x)(TαT
+
α f)(x)dx = Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4 + Ĩ5 + Ĩ6,

where
Ĩ1 = I1, Ĩ2 = −I2, Ĩ3 = I3, Ĩ4 = I4 +A, Ĩ5 = I5, Ĩ6 = −I6

with

A = −(Q− 1)

∫
G

φ(x)|f(x)|2R
(
φ(x)

|x|
)
dx−

∫
G

φ(x)R2φ(x)|f(x)|2dx.

Taking into account these and (2.40)–(2.41), we obtain (2.36). �

To finish this section, we observe another version of weighted Hardy inequal-
ity with the radial derivative. Anticipating the material presented in later chapters,
the proof will be based on the integral Hardy inequality from Theorem 5.1.1.

Theorem 2.1.16 (Weighted Hardy inequality for radial functions). Let G be a
homogeneous group of homogeneous dimension Q. Let φ > 0, ψ > 0 be positive
weight functions on G and let 1 < p ≤ q <∞. Then there exists a positive constant
C > 0 such that(∫

G

φ(x)|f(x)|qdx
) 1/q

≤ C
(∫

G

ψ(x)|Rf(x)|pdx
) 1/p

(2.42)

holds for all radial functions f with f(0) = 0 if and only if

sup
R>0

(∫
|x|≥R

φ(x)dx

) 1/q (∫ R

0

(∫
℘

rQ−1ψ(ry)dσ(y)

)1−p′
dr

)1/p′

<∞. (2.43)

Remark 2.1.17. In the Abelian case G = (Rn,+) and Q = n, (2.42) was obtained
in [DHK97] and in [Saw84]. On homogeneous groups it was observed in [RY18a]
and we follow the proof there.

Proof of Theorem 2.1.16. For r = |x|, let us denote f̃(r) = f(x). We also denote

Φ(r) :=

∫
℘

rQ−1φ(ry)dσ(y), Ψ(r) :=

∫
℘

rQ−1ψ(ry)dσ(y).
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Consequently, using f̃(0) = 0, we have(∫
G

φ(x)|f(x)|qdx
) 1/q

=

(∫
℘

∫ ∞

0

rQ−1φ(ry)|f̃ (r)|qdrdσ(y)
) 1/q

=

(∫ ∞

0

Φ(r)|f̃ (r)|qdr
) 1/q

=

(∫ ∞

0

Φ(r)

∣∣∣∣∫ r

0

Rf̃(r)dr
∣∣∣∣q dr) 1/q

≤ C
(∫ ∞

0

Ψ(r)
∣∣∣Rf̃(r)∣∣∣p dr) 1/p

= C

(∫
G

ψ(x)|Rf(x)|pdx
)1/p

if and only if the condition (2.43) holds by Theorem 5.1.1, namely by (5.2) and
(5.3). �

2.2 Critical Hardy inequalities

In this section we discuss critical Hardy inequalities. The critical behaviour may be
manifested with respect to different parameters. For example, one major critical
case arises when we have p = Q in (2.2). In this case, in the Euclidean case of Rn

with p = Q = n it is known that the Hardy inequality (2.1) fails for any constant,
see, e.g., [ET99] and [IIO16a], and references therein. In such critical cases it is
natural to expect the appearance of the logarithmic terms.

One version of such a critical case is the inequality

sup
R>0

∥∥∥∥∥ f − fR|x|log R
|x|

∥∥∥∥∥
LQ(G)

≤ Q

Q− 1
‖Rf‖LQ(G) , Q ≥ 2, (2.44)

for all f ∈ C∞
0 (G\{0}), where we denote

fR(x) := f

(
R
x

|x|
)

for x ∈ G and R > 0.

In fact, this inequality is a special case (with p = Q) of the following more general
family of critical inequalities derived in Theorem 2.2.1, namely,

sup
R>0

∥∥∥∥∥∥ f − fR
|x|Qp log R

|x|

∥∥∥∥∥∥
Lp(G)

≤ p

p− 1

∥∥∥∥∥ 1

|x|Qp −1
Rf

∥∥∥∥∥
Lp(G)

, (2.45)

for all 1 < p < ∞. Here the constant p
p−1 in (2.45) is sharp but is in general

unattainable.
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The inequalities (2.45) are all critical with respect to their weight |x|−Q
p

in Lp-space because its pth power gives |x|−Q which is the critical order for the
integrability at zero and at infinity in Lp(G).

Moreover, we show another type of a critical Hardy inequality on general
homogeneous groups with the logarithm being on the right-hand side:∥∥∥∥ f|x|

∥∥∥∥
LQ(G)

≤ Q‖(log |x|)Rf‖LQ(G). (2.46)

Furthermore, we also give improved versions of the Hardy inequality (2.1)
on quasi-balls of homogeneous (Lie) groups, the so-called Hardy–Sobolev type
inequalities.

2.2.1 Critical Hardy inequalities

First we discuss a family of generalized critical Hardy inequalities on the homoge-
neous group G mentioned in (2.45). In this section, G is a homogeneous group of
homogeneous dimension Q ≥ 2 and | · | is an arbitrary homogeneous quasi-norm
on G.

Theorem 2.2.1 (A family of critical Hardy inequalities). Let f ∈ C∞
0 (G\{0}) and

denote fR(x) := f(R x
|x|) for x ∈ G and R > 0. Then we have the inequalities

sup
R>0

∥∥∥∥∥∥ f − fR
|x|Qp log R

|x|

∥∥∥∥∥∥
Lp(G)

≤ p

p− 1

∥∥∥∥∥ 1

|x|Qp −1
Rf

∥∥∥∥∥
Lp(G)

, 1 < p <∞, (2.47)

where the constant p
p−1 is sharp. Moreover, denoting

uR(x) :=
f(x)− fR(x)
|x|Qp log R|x|

and v(x) :=
1

|x|Qp −1
Rf(x),

for each R > 0 we have the following expression for the remainder:∥∥∥∥∥∥ f − fR
|x|Qp log R|x|

∥∥∥∥∥∥
p

Lp(G)

=

(
p

p− 1

)p ∥∥∥∥∥ 1

|x|Qp −1
Rf

∥∥∥∥∥
p

Lp(G)

− p
∫
G

I(uR,− p

p− 1
v)

∣∣∣∣ p

p− 1
v + uR

∣∣∣∣2 dx,
(2.48)

where I is defined by

I(u, g) :=

(
1

p
|g|p +

(
1− 1

p

)
|u|p − |u|p−2Re(ug)

)
|u− g|−2 ≥ 0, u �= g,

I(g, g) :=
p− 1

2
|g|p−2.
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Remark 2.2.2.

1. For p = Q the inequality (2.47) becomes

sup
R>0

∥∥∥∥∥ f − fR
|x|log R

|x|

∥∥∥∥∥
LQ(G)

≤ Q

Q − 1
‖Rf‖LQ(G) , Q ≥ 2, (2.49)

which gives the mentioned critical estimate (2.44).

2. In the Euclidean isotropic case G = R
n with the Euclidean norm | · |E , similar

to Remark 2.1.2, Part 1, inequalities (2.47) yields inequalities for the usual
gradient ∇ in Rn for all 1 < p <∞:

sup
R>0

∥∥∥∥∥∥ f − fR
|x|

n
p

E log
R

|x|E

∥∥∥∥∥∥
Lp(Rn)

≤ p

p− 1

∥∥∥∥∥ 1

|x|
n
p−1

E

∇f
∥∥∥∥∥
Lp(Rn)

, (2.50)

where fR(x) := f(R x
|x|E ) for x ∈ Rn and R > 0. The critical inequality (2.49)

becomes

sup
R>0

∥∥∥∥∥ f − fR
|x|E log R

|x|E

∥∥∥∥∥
Ln(Rn)

≤ n

n− 1
‖∇f‖Ln(Rn) , n ≥ 2. (2.51)

3. For the sharpness of the constant p
p−1 in (2.47) we refer to the Euclidean

case with the Euclidean norm where this constant is known to be sharp
but is in general unattainable. This was shown in [IIO16a]. In the case of
general homogeneous groups this follows from the expression (2.48) for the
remainder.

4. For p = 2, in the Euclidean case G = Rn with the Euclidean norm, the
estimate (2.50) was shown in [MOW17a]. In principle, this case can be also
obtained from [MOW15a, Theorem 1.1]. Inequality (2.51) in bounded do-
mains of Rn was analysed in [II15].

Proof of Theorem 2.2.1. Using the polar decomposition in Proposition 1.2.10, a
straightforward calculation shows∫
B(0,R)

|f(x)−fR(x)|p
|x|Q|log R

|x| |p
dx

=

∫ R

0

∫
℘

|f(ry)−f(Ry)|p
rQ
(
logRr

)p rQ−1dσ(y)dr

=

∫ R

0

d

dr

(
1

p−1

1(
logRr

)p−1

∫
℘

|f(ry)−f(Ry)|pdσ(y)
)
dr
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− p

p−1
Re

∫ R

0

(
1(

logRr
)p−1

∫
℘

|f(ry)−f(Ry)|p−2(f(ry)−f(Ry))df(ry)
dr

dσ(y)

)
dr

=− p

p−1
Re

∫ R

0

(
1(

logRr
)p−1

∫
℘

|f(ry)−f(Ry)|p−2(f(ry)−f(Ry))df(ry)
dr

dσ(y)

)
dr,

where σ is the Borel measure on ℘ and the contribution on the boundary at r = R
vanishes due to the inequalities

|f(ry)− f(Ry)| ≤ C(R − r), R− r
R

≤ log
R

r
.

By using the formula (1.30) we obtain∫
B(0,R)

|f(x)− fR(x)|p
|x|Q|log R

|x| |p
dx

= − p

p− 1
Re

∫ R

0

1(
logRr

)p−1

∫
℘

|f(ry)− f(Ry)|p−2(f(ry) − f(Ry))df(ry)
dr

dσ(y)dr

= − p

p− 1
Re

∫
B(0,R)

∣∣∣∣∣∣f(x)− fR(x)|x|Qp log R
|x|

∣∣∣∣∣∣
p−2

(f(x)− fR(x))
|x|Qp log R

|x|

1

|x|Qp −1

df(x)

d|x| dx.

Similarly, one has∫
Bc(0,R)

|f(x)−fR(x)|p
|x|Q|log R

|x| |p
dx=

∫ ∞

R

∫
℘

|f(ry)−f(Ry)|p
rQ
(
log rR

)p rQ−1dσ(y)dr

=−
∫ ∞

R

d

dr

(
1

p−1

1(
log rR

)p−1

∫
℘

|f(ry)−f(Ry)|pdσ(y)
)
dr

+
p

p−1
Re

∫ ∞

R

(
1(

log rR
)p−1

∫
℘

|f(ry)−f(Ry)|p−2(f(ry)−f(Ry))df(ry)
dr

dσ(y)

)
dr

=− p

p−1
Re

∫
Bc(0,R)

∣∣∣∣∣∣f(x)−fR(x)|x|Qp log R|x|

∣∣∣∣∣∣
p−2

(f(x)−fR(x))
|x|Qp log R

|x|

1

|x|Qp −1

df(x)

d|x| dx.

This implies that∫
G

|f(x)− fR(x)|p
|x|Q|log R

|x| |p
dx

= − p

p− 1
Re

∫
G

∣∣∣∣∣∣f(x)− fR(x)|x|Qp log R|x|

∣∣∣∣∣∣
p−2

(f(x)− fR(x))
|x|Qp log R

|x|

1

|x|Qp −1

df(x)

d|x| dx

=

(
p

p− 1

)p
‖v‖pLp(G) − p

∫
G

I(u,− p

p− 1
v)

∣∣∣∣ p

p− 1
v + u

∣∣∣∣2 dx,
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with

u =
f(x)− fR(x)
|x|Qp log R

|x|
, v =

1

|x|Qp −1

df(x)

d|x| ,

and I is defined by

I(f, g) :=

(
1

p
|g|p + 1

p′
|f |p − |f |p−2 Re(fg)

)
|f − g|−2 ≥ 0, f �= g,

1

p
+

1

p′
= 1,

I(g, g) :=
p− 1

2
|g|p−2.

Thus, we establish

‖u‖pLp(G) =

(
p

p− 1

)p
‖v‖pLp(G) − p

∫
G

I

(
u,− p

p− 1
v

) ∣∣∣∣ p

p− 1
v + u

∣∣∣∣2 dx.
This proves the equality (2.48) and the inequality (2.47) since the last term is
non-positive. �

We have the following consequence of Theorem 2.2.1:

Corollary 2.2.3 (Critical uncertainty type principles). Let 1 < p < ∞ and f ∈
C∞

0 (G\{0}). Then for any R > 0 and 1
p + 1

q = 1
2 with q > 1, we have∥∥∥∥∥ 1

|x|Qp −1
Rf

∥∥∥∥∥
Lp(G)

‖f‖Lq(G) ≥
p− 1

p

∥∥∥∥∥∥ f(f − fR)|x|Qp log R
|x|

∥∥∥∥∥∥
L2(G)

(2.52)

and also∥∥∥∥∥ 1

|x|Qp −1
Rf

∥∥∥∥∥
Lp(G)

∥∥∥∥∥∥ f − fR
|x| Qp′ log R

|x|

∥∥∥∥∥∥
Lp′(G)

≥ p− 1

p

∥∥∥∥∥∥ f − fR
|x|Q2 log R

|x|

∥∥∥∥∥∥
2

L2(G)

(2.53)

for 1
p + 1

p′ = 1.

Proof of Corollary 2.2.3. By Theorem 2.2.1 and Hölder’s inequality we have∥∥∥∥∥ 1

|x|Qp −1
Rf

∥∥∥∥∥
Lp(G)

‖f‖Lq(G) ≥
p− 1

p

∥∥∥∥∥∥ f − fR
|x|Qp log R

|x|

∥∥∥∥∥∥
Lp(G)

‖f‖Lq(G)

=
p− 1

p

⎛⎜⎝∫
G

∣∣∣∣∣∣ f − fR
|x|Qp log R

|x|

∣∣∣∣∣∣
2 p2

dx

⎞⎟⎠
1
2

2
p (∫

G

|f |2 q2 dx
) 1

2
2
q

≥ p− 1

p

⎛⎜⎝∫
G

∣∣∣∣∣∣ f(f − fR)|x|Qp log R
|x|

∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2

=
p− 1

p

∥∥∥∥∥∥ f(f − fR)|x|Qp log R|x|

∥∥∥∥∥∥
L2(G)

.

The formula (2.52) is proved. The proof of (2.53) is similar so we can omit it. �
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2.2.2 Another type of critical Hardy inequality

In this section we analyse another type of a critical Hardy inequality when the log-
arithmic term appears on the other side of the inequality. This extends inequality
(2.38) that was obtained for p = 2 by a factorization method.

Theorem 2.2.4 (Critical Hardy inequality). Let G be a homogeneous group of ho-
mogeneous dimension Q ≥ 1 and let | · | be a homogeneous quasi-norm on G. Let
1 < p <∞. Then for any complex-valued function f ∈ C∞

0 (G\{0}) we have∫
G

|f(x)|p
|x|Q dx ≤ pp

∫
G

| log |x||p
|x|Q−p |Rf(x)|pdx, (2.54)

and the constant pp in this inequality is sharp.

Remark 2.2.5.

1. Inequality (2.54) was mentioned in (2.46) as another type of a critical Hardy
inequality in the critical case of p = Q, in which case we have∫

G

|f(x)|Q
|x|Q dx ≤ QQ

∫
G

|(log |x|)Rf(x)|Qdx. (2.55)

2. In the Euclidean case G = (Rn,+) we have Q = n, so for any quasi-norm
| · | on Rn the inequality (2.54) implies a new inequality with the optimal
constant: For each f ∈ C∞

0 (Rn\{0}), we have∥∥∥∥ f|x|
∥∥∥∥
Ln(Rn)

≤ n
∥∥∥∥(log |x|) x

|x| · ∇f
∥∥∥∥
Ln(Rn)

. (2.56)

If we take now the standard Euclidean distance |x|E =
√
x21 + · · ·+ x2n, it

follows that we have∥∥∥∥ f

|x|E

∥∥∥∥
Ln(Rn)

≤ n ‖(log |x|E)∇f‖Ln(Rn) , (2.57)

for all f ∈ C∞
0 (Rn\{0}), where ∇ is the standard gradient in Rn. The con-

stants in the above inequalities are sharp.

3. The inequality (2.57) and its consequence are analogous to the critical Hardy
inequality of Edmunds and Triebel [ET99] that they showed in Rn for the
Euclidean norm | · |E in bounded domains B ⊂ Rn:∥∥∥∥∥ f(x)

|x|E(1 + log 1
|x|E )

∥∥∥∥∥
Ln(B)

≤ n

n− 1
‖∇f‖Ln(B) , n ≥ 2, (2.58)

with sharp constant n
n−1 , which was also discussed in [AS06]. This inequality

was also shown to be equivalent to the critical case of the Sobolev–Lorentz
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inequality. However, a different feature of (2.57) compared to (2.58) is that
the logarithmic term enters the other side of the inequality. Inequalities of
this type have been investigated in [RS16a].

Proof of Theorem 2.2.4. Let R > 0 be such that suppf ⊂ B(0, R). A direct cal-
culation using the polar decomposition in Proposition 1.2.10 with integration by
parts yields∫

B(0,R)

|f(x)|p
|x|Q dx =

∫ R

0

∫
℘

|f(δr(y))|prQ−1−Qdσ(y)dr

= −p
∫ R

0

log rRe

∫
℘

|f(δr(y))|p−2f(δr(y))
df(δr(y))

dr
dσ(y)dr

≤ p
∫
B(0,R)

|Rf(x)||f(x)|p−1

|x|Q−1
| log |x||dx

= p

∫
B(0,R)

|Rf(x)|| log |x||
|x|Qp −1

|f(x)|p−1

|x|Q(p−1)
p

dx,

and by using the Hölder inequality, we obtain that

∫
B(0,R)

|f(x)|p
|x|Q dx ≤ p

(∫
B(0,R)

|Rf(x)|p| log |x||p
|x|Q−p dx

) 1
p
(∫

B(0,R)

|f(x)|p
|x|Q dx

) p−1
p

,

which gives (2.54).

Now it remains to show the optimality of the constant, so we need to check
the equality condition in the above Hölder inequality. Let us consider the test
function

h(x) = log |x|.
Thus, we have (

|Rh(x)|| log |x||
|x|Qp −1

)p
=

(
|h(x)|p−1

|x|Q(p−1)
p

) p
p−1

,

which satisfies the equality condition in Hölder’s inequality. This gives the opti-
mality of the constant pp in (2.54). �

As usual, the Hardy inequality implies the corresponding uncertainty princi-
ple:

Corollary 2.2.6 (Another type of critical uncertainty principle). Let G be a ho-
mogeneous group of homogeneous dimension Q ≥ 2. Let | · | be a homogeneous
quasi-norm on G. Then for each f ∈ C∞

0 (G\{0}) we have(∫
G

|(log |x|)Rf |Q dx
) 1
Q
(∫

G

|x| Q
Q−1 |f | Q

Q−1 dx

)Q−1
Q

≥ 1

Q

∫
G

|f |2dx. (2.59)



100 Chapter 2. Hardy Inequalities on Homogeneous Groups

Proof. From the inequality (2.54) we get(∫
B(0,R)

|(log |x|)Rf |Q dx
) 1
Q
(∫

B(0,R)

|x| Q
Q−1 |f | Q

Q−1 dx

)Q−1
Q

≥ 1

Q

(∫
B(0,R)

|f |Q
|x|Q dx

) 1
Q
(∫

B(0,R)

|x| Q
Q−1 |f | Q

Q−1 dx

)Q−1
Q

≥ 1

Q

∫
B(0,R)

|f |2dx,

where we have used the Hölder inequality in the last line. This shows (2.59). �

2.2.3 Critical Hardy inequalities of logarithmic type

In this section we present yet another logarithmic type of critical Hardy inequalities
on the homogeneous group G of homogeneous dimension Q ≥ 1. As usual, let | · |
be a homogeneous quasi-norm on G.

Theorem 2.2.7 (Another family of logarithmic Hardy inequalities). Let 1 < γ <
∞ and max{1, γ − 1} < p < ∞. Then for all complex-valued functions f ∈
C∞

0 (G\{0}) and all R > 0 we have the inequality∥∥∥∥∥∥∥
f − fR

|x|Qp
(
log R

|x|
) γ
p

∥∥∥∥∥∥∥
Lp(G)

≤ p

γ − 1

∥∥∥∥∥|x| p−Qp
(
log

R

|x|
) p−γ

p

Rf
∥∥∥∥∥
Lp(G)

, (2.60)

where fR(x) := f
(
R x

|x|
)
, and the constant p

γ−1 is sharp.

Proof of Theorem 2.2.7. For a quasi-ball B(0, R) we have using the polar decom-
position in Proposition 1.2.10 that∫

B(0,R)

|f(x)− fR(x)|p
|x|Q

∣∣∣log R
|x|
∣∣∣γ dx =

∫ R

0

∫
℘

|f(ry) − f(Ry)|p
rQ
(
log R

r

)γ rQ−1dσ(y)dr

=

∫ R

0

d

dr

(
1

(γ − 1)
(
log R

r

)γ−1

∫
℘

|f(ry)− f(Ry)|pdσ(y)
)
dr

− p

γ − 1
Re

∫ R

0

(
log

R

r

)−γ+1

×
∫
℘

|f(ry)− f(Ry)|p−2(f(ry)− f(Ry))df(ry)
dr

dσ(y)dr

= − p

γ − 1
Re

∫ R

0

(
log

R

r

)−γ+1

×
∫
℘

|f(ry)− f(Ry)|p−2(f(ry)− f(Ry))df(ry)
dr

dσ(y)dr,
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where p−γ+1 > 0, so that the boundary term at r = R vanishes due to inequalities

|f(ry)− f(Ry)| ≤ C(R − r), log
R

r
≥ R − r

R
.

Then by the Hölder inequality we get∫ R

0

∫
℘

|f(ry)− f(Ry)|p
r
(
log R

r

)γ dσ(y)dr

= − p

γ − 1
Re

∫ R

0

(
log

R

r

)−γ+1∫
℘

|f(ry)− f(Ry)|p−2(f(ry)− f(Ry))df(ry)
dr

dσ(y)dr

≤ p

γ − 1

∫ R

0

(
log

R

r

)−γ+1 ∫
℘

|f(ry)− f(Ry)|p−1

∣∣∣∣df(ry)dr

∣∣∣∣ dσ(y)dr
≤ p

γ − 1

(∫ R

0

∫
℘

|f(ry)− f(Ry)|p
r
(
log R

r

)γ dσ(y)dr

) (p−1)/p

×
(∫ R

0

∫
℘

rp−1

(
log

R

r

)p−γ ∣∣∣∣df(ry)dr

∣∣∣∣p dσ(y)dr
) 1/p

.

Thus, we obtain⎛⎝∫
B(0,R)

|f(x) − fR(x)|p

|x|Q
∣∣∣log R

|x|
∣∣∣γ dx

⎞⎠ 1/p

≤ p

γ − 1

(∫
B(0,R)

|x|p−Q
∣∣∣∣log R

|x|
∣∣∣∣p−γ |Rf(x)|p dx

) 1/p

.

(2.61)

Similarly, we have⎛⎝∫
Bc(0,R)

|f(x)− fR(x)|p

|x|Q
∣∣∣log R

|x|
∣∣∣γ dx

⎞⎠ 1/p

≤ p

γ − 1

(∫
Bc(0,R)

|x|p−Q
∣∣∣∣log R

|x|
∣∣∣∣p−γ |Rf(x)|p dx

) 1/p

.

(2.62)

The inequalities (2.61) and (2.62) imply (2.60). Furthermore, the optimality of the
constant in (2.60) is proved exactly in the same way as in the Euclidean case (see
[MOW15b, Section 3]). �
Corollary 2.2.8 (Another family of logarithmic uncertainty type principles). Let
1 < p <∞ and q > 1 be such that 1

p +
1
q = 1

2 . Let 1 < γ <∞ and max{1, γ−1} <
p <∞. Then for any R > 0 and f ∈ C∞

0 (G\{0}) we have∥∥∥∥∥|x| p−Qp
(
log

R

|x|
) (p−γ)/p

Rf
∥∥∥∥∥
Lp(G)

‖f‖Lq(G) ≥
γ − 1

p

∥∥∥∥∥ f(f − fR)
|x|Qp (log(R/ |x|)) γ/p

∥∥∥∥∥
L2(G)

.
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Moreover,∥∥∥∥∥|x| p−Qp
(
log

R

|x|
) p−γ

p

Rf
∥∥∥∥∥
Lp(G)

∥∥∥∥∥∥∥
f − fR

|x| Qp′
(
log R

|x|
)2− γ

p

∥∥∥∥∥∥∥
Lp′(G)

≥ γ − 1

p

∥∥∥∥∥∥ f − fR
|x|Q2 log R

|x|

∥∥∥∥∥∥
2

L2(G)

(2.63)

holds for 1
p + 1

p′ = 1.

Proof of Corollary 2.2.8. By (2.60), we have

∥∥∥∥∥|x| p−Qp
(
log

R

|x|
) p−γ

p

Rf
∥∥∥∥∥
Lp(G)

‖f‖Lq(G)≥ γ − 1

p

∥∥∥∥∥∥∥
f − fR

|x|Qp
(
log R

|x|
) γ
p

∥∥∥∥∥∥∥
Lp(G)

‖f‖Lq(G)

=
γ − 1

p

⎛⎜⎜⎝∫
G

∣∣∣∣∣∣∣
f(x)− fR(x)
|x|Qp

(
log R

|x|
) γ
p

∣∣∣∣∣∣∣
2 p2

dx

⎞⎟⎟⎠
1
2

2
p (∫

G

|f(x)|2 q2 dx
) 1

2
2
q

,

and using Hölder’s inequality, we obtain∥∥∥∥∥|x| p−Qp
(
log

R

|x|
) p−γ

p

Rf
∥∥∥∥∥
Lp(G)

‖f‖Lq(G)

≥ γ − 1

p

⎛⎜⎝∫
G

∣∣∣∣∣∣∣
f(x)(f(x) − fR(x))
|x|Qp

(
log R

|x|
)γ/p

∣∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2

=
γ − 1

p

∥∥∥∥∥∥∥
f(f − fR)

|x|Qp
(
log R

|x|
)γ/p

∥∥∥∥∥∥∥
L2(G)

.

Similarly, one can prove (2.63). �
Remark 2.2.9. When γ = p, the statement in Theorem 2.2.7 appeared in [RS16a,
Theorem 3.1] in the form∥∥∥∥∥∥ f − fR

|x|Qp log R
|x|

∥∥∥∥∥∥
Lp(G)

≤ p

p− 1

∥∥∥|x| p−Qp Rf∥∥∥
Lp(G)

, 1 < p <∞, (2.64)

for all R > 0. For general p and γ it was analysed in [RS16a]. In the Euclidean case
with the Euclidean distance such inequalities have been analysed in [MOW15b,
Section 3].
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2.3 Remainder estimates

In this section we analyse the remainder estimates for Lp-weighted Hardy in-
equalities with sharp constants on homogeneous groups. In addition, other refined
versions involving a distance and the critical case p = Q = 2 on the quasi-ball are
discussed.

The analysis of remainder terms in Hardy inequalities has a long history
initiated by Brézis and Nirenberg in [BN83], with subsequent works by Brézis and
Lieb [BL85] for Hardy–Sobolev inequalities, Brézis and Vázquez in [BV97, Section
4]. Nowadays there is a lot of literature on this subject and this section will contain
some further references on this subject.

2.3.1 Remainder estimates for Lp-weighted Hardy inequalities

Let G be a homogeneous group of homogeneous dimension Q ≥ 3 and let | · | be a
homogeneous quasi-norm on G. We now present a family of remainder estimates
for the weighted Lp-Hardy inequalities, with a freedom of choosing the parameter
b ∈ R.

Theorem 2.3.1 (Remainder estimates for Lp-weighted Hardy inequalities). Let

2 ≤ p < Q, −∞ < α <
Q− p
p

,

and let

δ1 = Q− p− αp− Q+ pb

p
,

δ2 = Q− p− αp− bp

p− 1
,

for b ∈ R. Then for all complex-valued functions f ∈ C∞
0 (G\{0}) we have∫

G

|Rf(x)|p
|x|αp dx −

(
Q− p− αp

p

)p ∫
G

|f(x)|p
|x|p(α+1)

dx

≥ Cp
(∫

G
|f(x)|p|x|δ1dx)p(∫

G
|f(x)|p|x|δ2dx)p−1 ,

(2.65)

where the constant Cp = cp

∣∣∣Q(p−1)−pb
p2

∣∣∣p is sharp, with

cp = min
0<t≤1/2

((1− t)p − tp + ptp−1). (2.66)

Due to the positivity of the last remainder term, Theorem 2.3.1 implies the
Lp-weighted Hardy inequalities with the radial derivative. In the case of the Eu-
clidean norm, they reduce to the usual Lp-weighted Hardy estimates:
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Remark 2.3.2 (Lp-weighted Hardy inequalities).

1. If we take b = Q(p−1)
p we have Cp = 0, and then inequality (2.65) gives the

Lp-weighted Hardy inequalities with sharp constant on G:∫
G

|Rf(x)|p
|x|αp dx ≥

(
Q− p− αp

p

)p ∫
G

|f(x)|p
|x|p(α+1)

dx,

−∞ < α <
Q− p
p

, 2 ≤ p < Q,

(2.67)

for all complex-valued functions f ∈ C∞
0 (G\{0}). Such inequalities on ho-

mogeneous groups have been investigated in [RS17b], and their remainders
have been analysed in [RSY18b].

2. If G = (Rn,+) with Q = n, the inequality (2.67) gives the Lp-weighted
Hardy inequalities with sharp constant for any quasi-norm on R

n: For any
complex-valued function f ∈ C∞

0 (Rn\{0}) we obtain∫
Rn

∣∣∣∣ x|x| · ∇f(x)
∣∣∣∣p |x|−αpdx ≥ (n− p− αpp

)p ∫
Rn

|f(x)|p
|x|p(α+1)

dx,

where −∞ < α < n−p
p and 2 ≤ p < n, and where ∇ is the standard gradient

in R
n. Now, if we take the Euclidean norm |x|E =

√
x21 + x22 + · · ·+ x2n, by

using the Schwarz inequality we obtain the Euclidean form of the Lp-weighted
Hardy inequalities with sharp constants:∫

Rn

|∇f(x)|p
|x|αpE

dx ≥
(
n− p− αp

p

)p ∫
Rn

|f(x)|p
|x|p(α+1)

E

dx,

−∞ < α <
n− p
p

, 2 ≤ p < n,

(2.68)

for any complex-valued function f ∈ C∞
0 (Rn\{0}).

3. Moreover, for any function f ∈ C∞
0 (Rn\{0}) and for any b ∈ R, we have∫

Rn

∣∣∣∣ x|x| · ∇f(x)
∣∣∣∣p |x|−αpdx− (n− p− αpp

)p ∫
Rn

|f(x)|p
|x|p(α+1)

dx

≥ Cp
(∫

Rn
|f(x)|p|x|δ1dx)p(∫

Rn
|f(x)|p|x|δ2dx)p−1 , 2 ≤ p < n, −∞ < α <

n− p
p

,

(2.69)

where ∇ is the standard gradient in R
n. As in Part 2 above, by the Schwarz

inequality with the usual Euclidean distance | · |E , we obtain∫
Rn

|∇f(x)|p
|x|αpE

dx −
(
n− p− αp

p

)p ∫
Rn

|f(x)|p
|x|p(α+1)

E

dx

≥ Cp

(∫
Rn
|f(x)|p|x|δ1E dx

)p
(∫

Rn
|f(x)|p|x|δ2E dx

)p−1 , 2 ≤ p < n, −∞ < α <
n− p
p

,

(2.70)
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for all complex-valued functions f ∈ C∞
0 (Rn\{0}) and for any b ∈ R, where

the constant Cp is sharp.

4. In Rn a variant of inequality (2.65) is known for radially symmetric functions.
Let n ≥ 3, 2 ≤ p < n and −∞ < α < n−p

p . Let N ∈ N, t ∈ (0, 1),

γ < min{1 − t, p−Np } and δ = N − n + N
1−t−γ

(
γ + n−p−αp

p

)
. Then there

exists a constant C > 0 such that the inequality∫
Rn

|∇f |p
|x|αpE

dx−
(
n− p− αp

p

)p ∫
Rn

|f |p
|x|p(α+1)

E

dx

≥ C
(∫

Rn
|f | N

1−t−γ |x|δEdx
) p(1−t−γ)

Nt

(∫
Rn
|f |p|x|−αpE dx

) 1−t
t

holds for all radially symmetric functions f ∈ W 1,p
0,α(R

n), f �= 0, where

W 1,p
0,α(R

n) is an appropriate Sobolev type space. For α = 0 this was shown
by Sano and Takahashi [ST17] and then extended in [ST18a] for any −∞ <
α < n−p

p .

5. The constant cp in (2.66) appears in view of the following result that will be
also of use in the determination of this constant:

Lemma 2.3.3 ([FS08]). Let p ≥ 2 and let a, b be real numbers. Then there
exists cp > 0 such that

|a− b|p ≥ |a|p − p|a|p−2ab+ cp|b|p

holds, where cp = min
0<t≤1/2

((1− t)p − tp + ptp−1) is sharp in this inequality.

6. Remainder estimates of different forms are possible. In general, it is known
from Ghoussoub and Moradifam [GM08] that there are no strictly positive
functions V ∈ C1(0,∞) such that the inequality∫

Rn

|∇f |2dx ≥
(
n− 2

2

)2 ∫
Rn

|f |2
|x|2E

dx+

∫
Rn

V (|x|E)|f |2dx

holds for all Sobolev space functions f ∈ W 1,2(Rn). At the same time, Cianchi
and Ferone showed in [CF08] that for all 1 < p < n there exists a constant
C = C(p, n) such that∫

Rn

|∇f |pdx ≥
(
n− p
p

)p ∫
Rn

|f |p
|x|pE

dx (1 + Cdp(f)
2p∗)

holds for all real-valued weakly differentiable functions f in R
n such that f

and |∇f | ∈ Lp(Rn) go to zero at infinity, where

dp(f) = inf
c∈R

‖f − c|x|−
n−p
p

E ‖Lp∗,∞(Rn)

‖f‖Lp∗,p(Rn)
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with p∗ = np
n−p , and Lτ,σ(Rn) is the Lorentz space for 0 < τ ≤ ∞ and

1 ≤ σ ≤ ∞. In the case of a bounded domain Ω, Wang and Willem [WW03]
for p = 2 and Abdellaoui, Colorado and Peral [ACP05] for 1 < p < ∞
investigated other expressions of remainders, see also [ST17] and [ST18a] for
more details.

In the following proof we will rely on a useful feature that some estimates
involving radial derivatives of the Euler operator can be proved first for radial
functions, and then extended to non-radial ones by a more abstract argument, see
Section 1.3.3.

Proof of Theorem 2.3.1. Let f ∈ C∞
0 (G\{0}) be a radial function, then f can be

represented as f(x) = f̃(|x|). By using Brézis–Vázquez’ idea ([BV97]), we define

g̃(r) := r
Q−p−αp

p f̃(r). (2.71)

Since f̃ = f̃(r) ∈ C∞
0 (0,∞) and α < Q−p

p , we have g̃(0) = 0 and g̃(+∞) = 0. We
set

g(x) := g̃(|x|)
for x ∈ G. Introducing polar coordinates (r, y) = (|x|, x|x|) ∈ (0,∞) × ℘ on G, by

Proposition 1.2.10 we have

J :=

∫
G

|Rf(x)|p
|x|αp dx−

(
Q− p− αp

p

)p ∫
G

|f(x)|p
|x|p(α+1)

dx

= |℘|
∫ ∞

0

∣∣∣∣ ddr f̃(r)
∣∣∣∣pr−αp+Q−1dr − |℘|

(
Q− p− αp

p

)p∫ ∞

0

|f̃(r)|pr−p(α+1)+Q−1dr

= |℘|
∫ ∞

0

∣∣∣∣(Q− p− αpp

)
r−

Q−αp
p g̃(r)− r−Q−p−αp

p
d

dr
g̃(r)

∣∣∣∣p rQ−1−αpdr

− |℘|
(
Q− p− αp

p

)p ∫ ∞

0

|g̃(r)|pr−1dr,

where |℘| is theQ−1-dimensional surface measure of the unit sphere. Here applying
Lemma 2.3.3 to the integrand of the first term in the last expression above, we get∣∣∣∣(Q − p− αpp

)
r−

Q−αp
p g̃(r)− r−Q−p−αp

p
d

dr
g̃(r)

∣∣∣∣p rQ−1−αp

≥
((

Q− p− αp
p

)p
r−Q+αp|g̃(r)|p

)
rQ−1−αp

− p
(
Q− p− αp

p

)p−1

|g̃(r)|p−2g̃(r)
d

dr
g̃(r)r−(Q−αp

p )(p−1)r−(Q−p−αp
p )rQ−1−αp

+ cp

∣∣∣∣ ddr g̃(r)
∣∣∣∣p r−Q+p+αprQ−1−αp
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=

(
Q− p− αp

p

)p
r−1|g̃(r)|p − p

(
Q− p− αp

p

)p−1

|g̃(r)|p−2g̃(r)
d

dr
g̃(r)

+ cp

∣∣∣∣ ddr g̃(r)
∣∣∣∣p rp−1.

Since g̃(0) = g̃(+∞) = 0 and p ≥ 2, we note that

p

∫ ∞

0

|g̃(r)|p−2g̃(r)
d

dr
g̃(r)dr =

∫ ∞

0

d

dr
(|g̃(r)|p)dr = 0.

This gives a so-called ground state representation of the Hardy difference J :

J ≥ cp|℘|
∫ ∞

0

∣∣∣∣ ddr g̃(r)
∣∣∣∣p rp−1dr = cp

∫
G

|Rg(x)|p|x|p−Qdx. (2.72)

Putting a = Q−p
p in Lemma 2.3.3, we obtain for any b ∈ R that∣∣∣∣Q(p− 1)− pb

p2

∣∣∣∣ ∫
G

|g|p|x|−Q+pb
p dx

≤
(∫

G

|Rg|p|x|p−Qdx
) 1
p
(∫

G

|g|p|x|− bp
p−1 dx

) p−1
p

.

It gives the estimate

J ≥ cp
∫
G

|Rg(x)|p|x|p−Qdx

≥ cp
∣∣∣∣Q(p− 1)− pb

p2

∣∣∣∣p
(∫

G
|g|p|x|−Q+pb

p dx
)p

(∫
G
|g|p|x|− bp

p−1 dx
)p−1 .

(2.73)

Taking into account that g(x) = g̃(|x|), x ∈ G, and (2.71), one calculates∫
G

|x|−Q+pb
p |g(x)|pdx = |℘|

∫ ∞

0

rQ−p−αp|f̃(r)|pr−Q+pb
p rQ−1dr

=

∫
G

|f(x)|p|x|Q−p−αp−Q+pb
p dx =

∫
G

|f(x)|p|x|δ1dx.

On the other hand,∫
G

|x|− bp
p−1 |g(x)|pdx = |℘|

∫ ∞

0

rQ−p−αp|f̃(r)|pr− bp
p−1 rQ−1dr

=

∫
G

|f(x)|p|x|Q−p−αp− bp
p−1 dx =

∫
G

|f(x)|p|x|δ2dx.
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Putting these equalities into (2.73), we obtain

J ≥ cp
∣∣∣∣Q(p− 1)− pb

p2

∣∣∣∣p
(∫

G
|f(x)|p|x|δ1dx)p(∫

G
|f(x)|p|x|δ2dx)p−1 .

Now let us prove the statement for non-radial functions. For a non-radial function
f we consider the radial one obtained as its spherical average with respect to the
homogeneous quasi-norm | · |:

U(r) :=

(
1

|℘|
∫
℘

|f(ry)|pdσ(y)
) 1
p

. (2.74)

Using Hölder’s inequality, we calculate

d

dr
U(r) =

1

p

(
1

|℘|
∫
℘

|f(ry)|pdσ(y)
) 1
p−1

1

|℘|
∫
℘

p|f(ry)|p−2f(ry)
d

dr
f(ry)dσ(y)

≤
(

1

|℘|
∫
℘

|f(ry)|pdσ(y)
) 1
p−1

1

|℘|
∫
℘

|f(ry)|p−1

∣∣∣∣ ddr f(ry)
∣∣∣∣ dσ(y)

≤
(

1

|℘|
∫
℘

|f(ry)|pdσ(y)
) 1
p−1

1

|℘|
(∫

℘

∣∣∣∣ ddr f(ry)
∣∣∣∣p dσ(y))

1
p
(∫

℘

|f(ry)|pdσ(y)
)p−1

p

=

(
1

|℘|
∫
℘

∣∣∣∣ ddr f(ry)
∣∣∣∣p dσ(y))

1
p

.

Here we note that since there exists the function h(x) = e−|x| which satisfies the
equality ∣∣∣∣ ddrh(x)

∣∣∣∣p = (|h(x)|p−1)
p
p−1 ,

the equality condition in the above Hölder inequality holds. Thus, we have

d

dr
U(r) ≤

(
1

|℘|
∫
℘

∣∣∣∣ ddr f(ry)
∣∣∣∣p dσ(y))

1
p

.

It follows that

|℘|
∫ ∞

0

∣∣∣∣ ddrU(r)

∣∣∣∣p rQ−1−αpdr ≤ |℘|
∫ ∞

0

1

|℘|
∫
℘

∣∣∣∣ ddr f(ry)
∣∣∣∣p rQ−1−αpdσ(y)dr

=

∫
G

|Rf |p |x|−αpdx,

that is, ∫
G

|RU |p |x|−αpdx ≤
∫
G

|Rf |p |x|−αpdx. (2.75)
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In view of (2.74), we obtain the equality∫
G

|U(|x|)|p|x|θdx = |℘|
∫ ∞

0

|U(r)|prθ+Q−1dr (2.76)

= |℘|
∫ ∞

0

1

|℘|
∫
℘

|f(ry)|pdσ(y)rθ+Q−1dr =

∫
G

|f(x)|p|x|θdx,

for any θ ∈ R. Then, it is easy to see that (2.75) and (2.76) imply that (2.65) holds
also for all non-radial functions. �

2.3.2 Critical and subcritical Hardy inequalities

Here we discuss the relation between the critical and the subcritical Hardy in-
equalities on homogeneous groups. We formulate this relation for functions that
are radially symmetric with respect to a homogeneous quasi-norm | · | on G.

Proposition 2.3.4 (Critical and subcritical Hardy inequalities). Let G be a homoge-

neous group of homogeneous dimension Q ≥ 3 and let G̃ be a homogeneous group
of homogeneous dimension m ≥ 2, and assume that Q ≥ m + 1. Let | · | denote
homogeneous quasi-norms on G and on G̃. Then for any non-negative radially
symmetric function g ∈ C1

0 (B
m(0, R)\{0}), there exists a non-negative radially

symmetric function f ∈ C1
0 (B

Q(0, 1)\{0}) such that∫
BQ(0,1)

|Rf(x)|mdx−
(
Q−m
m

)m ∫
BQ(0,1)

|f(x)|m
|x|m dx

=
|℘|
|℘̃|

(
Q−m
m− 1

)m−1

(2.77)

×
⎛⎝∫

Bm(0,R)

|Rg|mdz −
(
m− 1

m

)m ∫
Bm(0,R)

|g|m
|z|m

(
log Re

|z|
)m dz

⎞⎠
holds true, where |℘| and |℘̃| are Q− 1- and m− 1-dimensional surface measures
of the unit sphere, respectively.

Proof of Proposition 2.3.4. Let r = |x|, x ∈ G and s = |z|, z ∈ G̃, where G̃ is a
homogeneous group of homogeneous dimension m. Let us define a radial function
f = f(x) ∈ C1

0 (B
Q(0, 1)\{0}) for a non-negative radial function g = g(z) ∈

C1
0 (B

m(0, R)\{0}):
f(r) = g(s(r)),

where s(r) = R exp(1− r−Q−m
m−1 ), that is,

r−
Q−m
m−1 = log

Re

s
, s′(r) =

Q−m
m− 1

r−
Q−m
m−1 −1s(r).

Here we see that s′(r) > 0 for r ∈ [0, 1] and s(0) = 0, s(1) = R. Since g(s) ≡ 0
near s = R, we also note that f ≡ 0 near r = 1.
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Then a direct calculation shows∫
BQ(0,1)

|Rf |mdx−
(
Q−m
m

)m ∫
BQ(0,1)

|f |m
|x|m dx

= |℘|
∫ 1

0

|f ′(r)|mrQ−1dr −
(
Q−m
m

)m
|℘|

∫ 1

0

fm(r)rQ−m−1dr

= |℘|
∫ R

0

|g′(s)s′(r(s))|mrQ−1(s)
ds

s′(r(s))

−
(
Q−m
m

)m
|℘|

∫ R

0

gm(s)rQ−m−1(s)
ds

s′(r(s))

= |℘|
(
Q−m
m− 1

)m−1 ∫ R

0

|g′(s)|msm−1ds

−
(
Q−m
m

)m
m− 1

Q−m |℘|
∫ R

0

gm(s)

s
(
log Re

s

)m ds
=
|℘|
|℘̃|

(
Q−m
m− 1

)m−1

×
⎛⎝∫

Bm(0,R)

|Rg|mdz −
(
m− 1

m

)m ∫
Bm(0,R)

|g|m
|z|m

(
log Re

|z|
)m dz

⎞⎠ ,

yielding (2.77). �

2.3.3 A family of Hardy–Sobolev type inequalities on quasi-balls

Let G be a homogeneous group of homogeneous dimension Q ≥ 3. It will be
convenient to denote the dilations by δr(x) = rx in the following formulations. Here
we discuss another type of Hardy–Sobolev inequalities for functions supported in
balls of radius R. As usual, we denote by B(0, R) a quasi-ball of radius R around
0 with respect to the quasi-norm | · |.
Theorem 2.3.5 (Another type of Hardy inequalities for Q ≥ 3). For each f ∈
C∞

0 (B(0, R)\{0}) and any homogeneous quasi-norm | · | on G we have(∫
B(0,R)

1

|x|2
∣∣∣∣f(x) − f (δR(x)|x|

)∣∣∣∣2 dx
) 1/2

≤ 2

Q− 2

(∫
B(0,R)

|Rf |2dx
) 1/2

,

(2.78)

and(∫
B(0,R)

1

|x|2 |f(x)|
2
dx

) 1
2

≤
(

Q

Q− 2

) 1
2 1

R

(∫
B(0,R)

|f(x)|2 dx
) 1

2

(2.79)

+
2

Q− 2

(
1 +

(
Q

Q − 2

) 1
2

)(∫
B(0,R)

|Rf |2dx
) 1

2

.
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Remark 2.3.6.

1. Theorem 2.3.5 could have been formulated for functions f ∈ C∞
0 (G\{0})

choosing R > 0 such that suppf ⊂ B(0, R). The introduction of R into the

notation is essential here since the dilated function f
(
δR(x)
|x|

)
appears in the

inequality (2.78).

2. In the Euclidean setting with the Euclidean norm inequalities in Theorem
2.3.5 have been studied in [MOW13b].

In the case Q = 2 we have the following inequalities:

Theorem 2.3.7 (Another type of critical Hardy inequality for Q = 2). Let G

be a homogeneous group of homogeneous dimension Q = 2. Then for each f ∈
C∞

0 (B(0, R)\{0}) and any homogeneous quasi-norm | · | on G we have⎛⎜⎝∫
B(0,R)

1

|x|2
∣∣∣log R|x| ∣∣∣2

∣∣∣∣f(x)− f (δR(x)|x|
)∣∣∣∣2 dx

⎞⎟⎠
1/2

≤ 2

(∫
B(0,R)

|Rf |2dx
) 1/2

,

(2.80)
and⎛⎜⎜⎜⎝

∫
B(0,R)

|f(x)|2

|x|2
(
1 +

∣∣∣log R
|x|
∣∣∣2)2 dx

⎞⎟⎟⎟⎠
1/2

≤
√
2

R

(∫
B(0,R)

|f(x)|2 dx
) 1/2

+ 2
(
1 +
√
2
)(∫

B(0,R)

|Rf |2dx
) 1/2

.

(2.81)

Proof of Theorem 2.3.5. By the polar decomposition from Proposition 1.2.10, we
write (r, y) = (|x|, x|x|) ∈ (0,∞)×℘ on G, where ℘ is the unit quasi-sphere, so that∫

B(0,R)

1

|x|2
∣∣∣∣f(x)− f (δR(x)|x|

)∣∣∣∣2 dx
=

∫ R

0

∫
℘

|f(δr(y))− f(δR(y))|2rQ−3dσ(y)dr

=
1

Q− 2
rQ−2

∫
℘

|f(δr(y))− f(δR(y))|2dσ(y)
∣∣∣∣∣
r=R

r=0

− 1

Q − 2

∫ R

0

rQ−2

(
d

dr

∫
℘

|f(δr(y))− f(δR(y))|2dσ(y)
)
dr

= − 2

Q− 2

∫ R

0

rQ−2Re

∫
℘

(f(δr(y))− f(δR(y)))df(δr(y))
dr

dσ(y)dr.
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Now using Schwarz’ inequality, we obtain∫
B(0,R)

1

|x|2
∣∣∣∣f(x)− f (δR(x)|x|

)∣∣∣∣2 dx
≤ 2

Q− 2

(∫ R

0

∫
℘

|f(δr(y))− f(δR(y))|2rQ−3dσ(y)dr

) 1/2

×
(∫ R

0

∫
℘

∣∣∣∣df(δr(y))dr

∣∣∣∣2 rQ−1dσ(y)dr

) 1/2

=
2

Q− 2

(∫
B(0,R)

1

|x|2
∣∣∣∣f(x)− f (δR(x)|x|

)∣∣∣∣2 dx
) 1/2(∫

B(0,R)

|Rf |2dx
) 1/2

.

This implies that(∫
B(0,R)

1

|x|2
∣∣∣∣f(x) − f (δR(x)|x|

)∣∣∣∣2 dx
) 1/2

≤ 2

Q− 2

(∫
B(0,R)

|Rf |2dx
) 1/2

,

that is, the inequality (2.78) is proved. The triangle inequality gives(∫
B(0,R)

1

|x|2 |f |
2dx

)1
2

=

(∫
B(0,R)

1

|x|2
∣∣∣∣f(x)− f (δR(x)|x|

)
+ f

(
δR(x)

|x|
)∣∣∣∣2 dx

)1
2

≤
(∫

B(0,R)

1

|x|2
∣∣∣∣f(x)− f (δR(x)|x|

)∣∣∣∣2 dx
)1

2

+

(∫
B(0,R)

1

|x|2
∣∣∣∣f (δR(x)|x|

)∣∣∣∣2 dx
)1

2

.

(2.82)

Moreover, we have(∫
B(0,R)

1

|x|2
∣∣∣∣f (δR(x)|x|

)∣∣∣∣2 dx
) 1

2

=

(∫ R

0

∫
℘

|f(δR(y))|2rQ−3dσ(y)dr

) 1
2

=

(
RQ−2

Q− 2

∫
℘

|f(δR(y))|2dσ(y)
) 1

2

=

(
RQ−2

Q− 2

Q

RQ

∫ R

0

∫
℘

|f(δR(y))|2rQ−1dσ(y)dr

) 1
2

=

(
Q

Q− 2

) 1
2 1

R

(∫
B(0,R)

∣∣∣∣f (δR(x)|x|
)∣∣∣∣2 dx

) 1
2

≤
(

Q

Q− 2

)1
2 1

R

⎛⎝(∫
B(0,R)

∣∣∣∣f (δR(x)|x|
)
− f(x)

∣∣∣∣2 dx
)1

2

+

(∫
B(0,R)

|f |2dx
)1

2

⎞⎠
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≤
(

Q

Q− 2

) 1
2

(∫
B(0,R)

1

|x|2
∣∣∣∣f (δR(x)|x|

)
− f(x)

∣∣∣∣2 dx
) 1

2

+

(
Q

Q− 2

) 1
2 1

R

(∫
B(0,R)

|f |2dx
) 1

2

,

thus, (∫
B(0,R)

1

|x|2
∣∣∣∣f (δR(x)|x|

)∣∣∣∣2 dx
) 1/2

≤
(

Q

Q− 2

) 1
2

(∫
B(0,R)

1

|x|2
∣∣∣∣f (δR(x)|x|

)
− f(x)

∣∣∣∣2 dx
) 1/2

+

(
Q

Q− 2

) 1
2 1

R

(∫
B(0,R)

|f |2dx
) 1/2

.

(2.83)

Combining (2.83) with (2.82) we arrive at(∫
B(0,R)

1

|x|2 |f |
2dx

) 1/2

≤
(
1 +

(
Q

Q− 2

)1/2
)(∫

B(0,R)

1

|x|2
∣∣∣∣f(x)− f (δR(x)|x|

)∣∣∣∣2 dx
) 1/2

+

(
Q

Q− 2

)1/2
1

R

(∫
B(0,R)

|f |2dx
) 1/2

.

Now by using (2.78) we arrive at (2.79). �

Proof of Theorem 2.3.7. By using polar coordinates (r, y) = (|x|, x|x|) ∈ (0,∞)×℘
on G, where ℘ is the unit quasi-sphere, one calculates∫

B(0,R)

1

|x|2|log(R/|x|)|2
∣∣∣∣f(x)− f (δR(x)|x|

)∣∣∣∣2 dx
=

∫ R

0

∫
℘

|f(δr(y))− f(δR(y))|2 1

r (log(R/r))2
dσ(y)dr

=
1

log(R/r)

∫
℘

|f(δr(y))− f(δR(y))|2dσ(y)
∣∣∣∣∣
r=R

r=0

−
∫ R

0

1

log(R/r)

(
d

dr

∫
℘

|f(δr(y))− f(δR(y))|2dσ(y)
)
dr
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= −2
∫ R

0

1

log(R/r)
Re

∫
℘

(f(δr(y))− f(δR(y)))df(δr(y))
dr

dσ(y)dr.

Here we have used the fact that

log(R/r) = log

(
1 +

(
R

r
− 1

))
≥ R

r
− 1 =

R − r
r

,

and that

|f(δr(y))− f(δR(y))|2 ≤ C|R− r|2.
Using Schwarz’s inequality we obtain∫
B(0,R)

1

|x|2|log(R/|x|)|2
∣∣∣∣f(x)− f (δR(x)|x|

)∣∣∣∣2 dx
≤ 2

(∫ R

0

∫
℘

1

r (log(R/r))
2 |f(δr(y))− f(δR(y))|2dσ(y)dr

) 1
2

×
(∫ R

0

∫
℘

∣∣∣∣df(δr(y))dr

∣∣∣∣2 rdσ(y)dr
) 1

2

= 2

(∫
B(0,R)

1

|x|2|log(R/|x|)|2
∣∣∣∣f(x)− f (δR(x)|x|

)∣∣∣∣2 dx
)1

2
(∫

B(0,R)

|Rf |2dx
)1

2

.

It completes the proof of (2.80). To show (2.81) we calculate(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2 |f(x)|
2dx

) 1/2

≤
(∫

B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f(x)− f (δR(x)|x|

)∣∣∣∣2 dx
) 1/2

+

(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f (δR(x)|x|

)∣∣∣∣2 dx
) 1/2

.

(2.84)

Moreover, we have(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f (δR(x)|x|

)∣∣∣∣2 dx
) 1

2

=

(∫ R

0

∫
℘

1

r (1 + |log(R/r)|)2 |f(δR(y))|
2dσ(y)dr

) 1
2
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=

(∫ R

0

1

r (1 + |log(R/r)|)2 dr
∫
℘

|f(δR(y))|2dσ(y)
) 1

2

=

⎛⎝ 1

1 + |log(R/r)|

∣∣∣∣∣
R

0

∫
℘

|f(δR(y))|2dσ(y)
⎞⎠

1
2

=

(∫
℘

|f(δR(y))|2dσ(y)
) 1

2

=

(
2

R2

∫ R

0

∫
℘

|f(δR(y))|2rdσ(y)dr
) 1

2

=

(
2

R2

) 1
2

(∫
B(0,R)

∣∣∣∣f (δR(x)|x|
)∣∣∣∣2 dx

) 1
2

≤
√
2

R

⎛⎝(∫
B(0,R)

∣∣∣∣f (δR(x)|x|
)
− f(x)

∣∣∣∣2 dx
) 1

2

+

(∫
B(0,R)

|f(x)|2dx
) 1

2

⎞⎠
≤ √2

(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f (δR(x)|x|

)
− f(x)

∣∣∣∣2 dx
) 1

2

+

√
2

R

(∫
B(0,R)

|f(x)|2dx
) 1

2

,

where we use the simple inequality

1

R2
≤ 1

r2(1 + log(R/r))2
, r ∈ (0, R).

Therefore, we obtain(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f (δR(x)|x|

)∣∣∣∣2 dx
) 1

2

(2.85)

≤
√
2

(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f (δR(x)|x|

)
− f(x)

∣∣∣∣2 dx
) 1

2

+

√
2

R

(∫
B(0,R)

|f(x)|2dx
) 1

2

.

Combining (2.85) with (2.84) we arrive at(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2 |f(x)|
2dx

) 1
2
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≤ (1 +
√
2)

(∫
B(0,R)

1

|x|2 (1 + |log(R/|x|)|)2
∣∣∣∣f(x)− f (δR(x)|x|

)∣∣∣∣2 dx
) 1

2

+

√
2

R

(∫
B(0,R)

|f(x)|2dx
) 1

2

.

Finally, using (2.80) we obtain (2.81). �

2.3.4 Improved Hardy inequalities on quasi-balls

For p = Q = 2 and any homogeneous quasi-norm | · | on G we have the following
refinement of Theorem 2.3.7 with an estimate for a remainder.

Theorem 2.3.8 (Remainder estimate in critical Hardy inequality for Q = 2). We
have∫

B2(0,R)

|Rf |2dx− 1

4

∫
B2(0,R)

|f(|x|)|2

|x|2
(
log R

|x|
)2 dx (2.86)

≥ 4

R2|σ̂| supν>0
ν−4

∣∣∣∣∣∣∣
∫
B2(0,R)

f(|x|)
ν − log R

|x|

|x|
(
log R

|x|
) 1

2

(
R

|x|
)1− 1

ν

dx

∣∣∣∣∣∣∣
2

, ∀ν > 0,

for all real-valued radial functions f ∈ C∞
0 (B2(0, R)\{0}), where B2(0, R) and |σ̂|

are 2-dimensional quasi-ball with radius R and 1-dimensional surface measure of
the unit sphere, respectively.

Proof of Theorem 2.3.8. Let us define the new function g = g(x) on B2(0, R) as

g(r) :=

(
log

R

r

)− 1
2

f(r), r = |x|, x ∈ B2(0, R).

One calculates

I1 :=

∫
B2(0,R)

|Rf |2dx − 1

4

∫
B2(0,R)

|f |2

|x|2
(
log R

|x|
)2 dx

= |σ̂|
∫ R

0

(f ′(r))2rdr − |σ̂|
4

∫ R

0

|f(r)|2
r2
(
log R

r

)2 rdr
= |σ̂|

∫ R

0

(
−1

2

(
log

R

r

)− 1
2 g(r)

r
+

(
log

R

r

) 1
2

g′(r)

)2

rdr − |σ̂|
4

∫ R

0

|g(r)|2
r log R

r

dr

= − |σ̂|
∫ R

0

g(r)g′(r)dr + |σ̂|
∫ R

0

|g′(r)|2r log R
r
dr
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= − |σ̂|
2

∫ R

0

(g2(r))′dr +
R2|σ̂|
4

(∫ R

0

|g′(r)|2 4

R2
r log

R

r
dr

)
,

and applying g(0) = g(R) = 0, we obtain

I1 =
R2|σ̂|
4

(∫ R

0

|g′(r)|2 4

R2
r log

R

r
dr

)
.

Taking into account that 4
R2

∫ R
0 r log R

r dr = 1 and using Hölder’s inequality, we
get(∫ R

0

|g′(r)|2 4

R2
r log

R

r
dr

)1
2

=

(∫ R

0

|g′(r)|2 4

R2
r log

R

r
dr

)1
2
(

4

R2

∫ R

0

r log
R

r
dr

)1
2

≥
∫ R

0

|g′(r)| 4
R2

r log
R

r
dr.

It follows that

I1 ≥ R2|σ̂|
4

(∫ R

0

|g′(r)| 4
R2

r log
R

r
dr

)2

≥ 4|σ̂|
R2

∣∣∣∣∣
∫ R

0

g′(r)r log
R

r
dr

∣∣∣∣∣
2

. (2.87)

Using g(0) = g(R) = 0, we have∫ R

0

g′(r)r log
R

r
dr = −

∫ R

0

g(r)

(
log

R

r
− 1

)
dr =

∫ R

0

f(r)
1 − log R

r(
log R

r

) 1
2

dr

=
1

|σ̂|
∫
B2(0,R)

f(x)
1− log R

|x|

|x|
(
log R

|x|
) 1

2

dx.

Putting this in (2.87), we arrive at

I1 ≥ 4

R2|σ̂|

∣∣∣∣∣∣∣
∫
B2(0,R)

f(x)
1− log R

|x|

|x|
(
log R

|x|
) 1

2

dx

∣∣∣∣∣∣∣
2

.

Now we note that I1 is invariant under the scaling f 
−→ fν(r) = ν−
1
2 f(R1−νrν).

Then setting

I2(f) :=

∫
B2(0,R)

f(x)
1− log R

|x|

|x|
(
log R

|x|
) 1

2

dx = |σ̂|
∫ R

0

f(r)
1 − log R

r(
log R

r

) 1
2

dr,
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one obtains

I1 ≥ 4

R2|σ̂| |I2(fν)|
2 (2.88)

for any ν > 0. On the other hand, we have

I2(fν) = |σ̂|
∫ R

0

fν(r)
1 − log R

r(
log R

r

) 1
2

dr = |σ̂|ν− 1
2

∫ R

0

f(rνR1−ν)
1− log R

r(
log R

r

) 1
2

dr.

Using a change of variable s = rνR1−ν , dr = 1
ν

(
R
s

) ν−1
ν ds, one calculates

I2(fν) ≥ |σ̂|ν− 1
2

∫ R

0

f(s)
1− log

(
R
s

) 1
ν(

log
(
R
s

) 1
ν

) 1
2

1

ν

(
R

s

)1− 1
ν

ds

= |σ̂|ν−2

∫ R

0

f(s)
ν − log R

s(
log R

s

) 1
2

(
R

s

)1− 1
ν

ds

= ν−2

∫
B2(0,R)

f(x)
ν − log R

|x|

|x|
(
log R

|x|
) 1

2

(
R

|x|
)1− 1

ν

dx. (2.89)

The estimates (2.88) and (2.89) imply (2.86). �
Theorem 2.3.9 (Remainder estimate in critical Hardy inequality). Let G be a ho-
mogeneous group of homogeneous dimension Q ≥ 2. Let | · | be a homogeneous
quasi-norm on G. Let q > 0 be such that

α = α(q, L) :=
Q− 1

Q
q + L+ 2 ≤ Q,

for −1 < L < Q − 2. Then for all real-valued positive non-increasing radial func-
tions u ∈ C∞

0 (B(0, R)) we have∫
B(0,R)

|Ru|Qdx−
(
Q − 1

Q

)Q ∫
B(0,R)

|u(x)|Q

|x|Q
(
log Re

|x|
)Q dx

≥ |℘|1−Q
q C

Q
q

⎛⎝∫
B(0,R)

|u(x)|q
|x|Q

(
log Re

|x|
)α dx

⎞⎠
Q
q

,

(2.90)

where |℘| is the measure of the unit quasi-sphere in G and

C−1 = C(L,Q, q)−1 :=

∫ 1

0

sL
(
log

1

s

)Q−1
Q q

ds

= (L+ 1)−(
Q−1
Q q+1)Γ

(
Q− 1

Q
q + 1

)
,

where Γ(·) is the Gamma function.



2.3. Remainder estimates 119

Proof of Theorem 2.3.9. As in previous proofs we set

v(s) =

(
log

Re

r

)−Q−1
Q

u(r), where r = |x|, s = s(r) =

(
log

Re

r

)−1

,

s′(r) =
s(r)

r log Re
r

≥ 0.

We have v(0) = v(1) = 0 since u(R) = 0 and, moreover,

u′(r) = −
(
Q− 1

Q

)(
log

Re

r

)− 1
Q v(s(r))

r
+

(
log

Re

r

)Q−1
Q

v′(s(r))s′(r) ≤ 0.

It is straightforward to calculate that

I :=

∫
B(0,R)

|Ru|Qdx−
(
Q− 1

Q

)Q ∫
B(0,R)

|u|Q

|x|Q
(
log Re

|x|
)Q dx

= |℘|
∫ R

0

|u′(r)|QrQ−1dr −
(
Q− 1

Q

)Q
|℘|

∫ R

0

|u(r)|Q
r
(
log Re

r

)Q dr
= |℘|

∫ R

0

(
Q − 1

Q

(
log

Re

r

)− 1
Q v(s(r))

r
−
(
log

Re

r

)Q−1
Q

v′(s(r))s′(r)

)Q
rQ−1dr

−
(
Q− 1

Q

)Q
|℘|

∫ R

0

|u(r)|Q
r
(
log Re

r

)Q dr.
By applying the third relation in Lemma 2.4.2 with

a =
Q− 1

Q

(
log

Re

r

)− 1
Q v(s(r))

r
and b =

(
log

Re

r

)Q−1
Q

v′(s(r))s′(r),

and dropping aQ ≥ 0 as well as using the boundary conditions v(0) = v(1) = 0,
we get

I ≥ − |℘|Q
(
Q− 1

Q

)Q−1 ∫ R

0

v(s(r))Q−1v′(s(r))s′(r)dr (2.91)

+ |℘|
∫ R

0

|v′(s(r))|Q(s′(r))Q
(
r log

Re

r

)Q−1

dr

= − |℘|Q
(
Q− 1

Q

)Q−1 ∫ R

0

v(s(r))Q−1v′(s(r))s′(r)dr

+ |℘|
∫ R

0

|v′(s(r))|Q 1

rQ
(
log Re

r

)2Q (r log Rer
)Q−1

dr
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= − |℘|Q
(
Q− 1

Q

)Q−1 ∫ R

0

v(s(r))Q−1v′(s(r))s′(r)dr

+ |℘|
∫ R

0

|v′(s(r))|Qs(r)Q−1s′(r)dr

= − |℘|Q
(
Q− 1

Q

)Q−1 ∫ 1

0

v(s)Q−1v′(s)ds+ |℘|
∫ 1

0

|v′(s)|QsQ−1ds

= |℘|
∫ 1

0

|v′(s)|QsQ−1ds.

Moreover, by using the inequality

|v(s)| =
∣∣∣∣∫ 1

s

v′(t)dt
∣∣∣∣ = ∣∣∣∣∫ 1

s

v′(t)t
Q−1
Q −Q−1

Q dt

∣∣∣∣
≤
(∫ 1

0

|v′(t)|QtQ−1dt

) 1
Q
(
log

1

s

)Q−1
Q

,

we obtain∫ 1

0

|v(s)|qsLds ≤
(∫ 1

0

|v′(s)|QsQ−1ds

) q
Q
∫ 1

0

sL
(
log

1

s

)Q−1
Q q

ds

for −1 < L < Q− 2. Thus, we have

∫ 1

0

|v′(s)|QsQ−1ds ≥ C q
Q

(∫ 1

0

|v(s)|qsLds
)Q

q

. (2.92)

Now it follows from (2.91) and (2.92) that

I ≥ |℘|C Q
q

(∫ 1

0

|v(s)|qsLds
)Q

q

= |℘|C Q
q

(∫ R

0

|u(r)|q
r
(
log Re

r

)α dr
)Q

q

= |℘|1−Q
q C

Q
q

⎛⎝∫ R

0

|u(x)|q
|x|Q

(
log Re

|x|
)α dx

⎞⎠
Q
q

,

where α = α(q, L) = Q−1
Q q + L+ 2. The proof is complete. �
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2.4 Stability of Hardy inequalities

Expressions for the remainder in an estimate in terms of the distance function to
the set of extremisers are sometimes called the stability estimates in the literature.
The purpose of this section is to discuss such estimates for the Hardy inequalities.
Several results of such a type have been established in the Euclidean space Rn in
[San18, ST17, ST18a, ST15, ST16]. In the following section our presentation on
homogeneous groups follows [RS18].

2.4.1 Stability of Hardy inequalities for radial functions

Let G be a homogeneous group of homogeneous dimension Q ≥ 3 and let | · | be
a homogeneous quasi-norm on G. We note that although sharp constants in the
Hardy inequalities are not achieved the formal extremisers of such inequalities are
given by homogeneous functions. To this end let us denote

fα(x) := |x|−
Q−p−αp

p (2.93)

for −∞ < α < Q−p
p , and

dR(f, g) :=

⎛⎝∫
G

|f(x)− g(x)|p∣∣∣log R
|x|
∣∣∣p |x|p(α+1)

dx

⎞⎠
1
p

(2.94)

for functions f , g for which the integral in (2.94) is finite. We start with the case
of radially symmetric functions.

Theorem 2.4.1 (Stability of Hardy inequalities for radially symmetric functions).
Let G be a homogeneous group of homogeneous dimension Q and let | · | be a
homogeneous quasi-norm on G. Let

2 ≤ p < Q and −∞ < α <
Q− p
p

.

Then for all radial complex-valued functions f ∈ C∞
0 (G\{0}) we have∫

G

|Rf(x)|p
|x|αp dx −

(
Q− p− αp

p

)p ∫
G

|f(x)|p
|x|p(α+1)

dx

≥ cp
(
p− 1

p

)p
sup
R>0

dR(f, cf (R)fα)
p,

(2.95)

where cf (R) := R
Q−p−αp

p f̃(R) with f(x) = f̃(r), |x| = r, R := d
d|x| is the radial

derivative, cp is defined in Lemma 2.3.3, i.e.,

cp = min
0<t≤1/2

((1− t)p − tp + ptp−1),

and fα and dR(·, ·) are defined in (2.93) and (2.94), respectively.
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Proof of Theorem 2.4.1. Since p ≥ 2, as in (2.72) in the proof of Theorem 2.3.1,
we have

J(f) =

∫
G

|Rf |p
|x|αp dx−

(
Q− p− αp

p

)p ∫
G

|f |p
|x|p(α+1)

dx

≥ cp|℘|
∫ ∞

0

∣∣∣∣ ddr g̃
∣∣∣∣p rp−1dr = cp

∫
G

∣∣∣∣ ddr g
∣∣∣∣p |x|p−Qdx.

By Corollary 2.2.8 with γ = p, we obtain

J(f) ≥ cp
∫
G

|Rg|p|x|p−Qdx ≥ cp
(
p− 1

p

)p ∫
G

∣∣∣g(x)− g(Rx|x| )∣∣∣p∣∣∣log R
|x|
∣∣∣p |x|Q dx

= cp

(
p− 1

p

)p ∫
G

∣∣∣|x|Q−p−αp
p f(x) −RQ−p−αp

p f(Rx|x| )
∣∣∣p∣∣∣log R

|x|
∣∣∣p |x|Q dx

for any R > 0. Here using f(x) = f̃(r), r = |x|, we can estimate

J(f) ≥ cp
(
p− 1

p

)p ∫
G

∣∣∣f(x)−RQ−p−αp
p f̃(R)|x|−Q−p−αp

p

∣∣∣p∣∣∣log R
|x|
∣∣∣p |x|p(α+1)

dx

= cp

(
p− 1

p

)p ∫
G

∣∣∣f(x)− cf (R)|x|−Q−p−αp
p

∣∣∣p∣∣∣log R
|x|
∣∣∣p |x|p(α+1)

dx,

yielding (2.95). �

2.4.2 Stability of Hardy inequalities for general functions

Here we discuss the stability of Lp-Hardy inequalities for functions which do not
have to be radially symmetric. Before discussing the stability estimates for non-
radial functions let us recall the following relations.

Lemma 2.4.2. Let a, b ∈ R. Then

(i) We have
|a− b|p − |a|p ≥ −p|a|p−2ab, p ≥ 1.

(ii) There exists a constant C = C(p) > 0 such that

|a− b|p − |a|p ≥ −p|a|p−2ab+ C|b|p, p ≥ 2.

(iii) If a ≥ 0 and a− b ≥ 0, then

(a− b)p + pap−1b− ap ≥ |b|p, p ≥ 2.
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Proof of Lemma 2.4.2. One has (see, e.g., [Lin90]) the inequality

|d|p ≥ |c|p + p|c|p−2c(d− c), p ≥ 1,

which is the condition for the convexity of the function |x|p. Now, taking a = c
and d = a− b we get the first relation. Furthermore, consider the function

g(s) := |1− s|p − |s|p + p|s|p−2s, s ∈ R.

To show (ii), it is sufficient to prove that g(s) ≥ C > 0, and then take s = a
b . Let

s ≥ 1. Then for p ≥ 2 we have

g′(s) = p((t− 1)p−1 − tp−1) + p(p− 1)sp−2 = p(p− 1)(sp−2 − tp−2) ≥ 0,

by the mean value theorem for the function xp−2, x ≥ 0. Thus, we have

g(s) ≥ g(1) = p− 1

for all s ≥ 1. Similarly, we get g(s) ≥ g(0) = 1 for all s ≤ 1. Let now 0 ≤ s ≤ 1.
Setting

Cp := min
0≤t≤1

f(t),

we assume that Cp = f(s0) for some 0 ≤ s0 ≤ 1. The first relation implies that
Cp ≥ 0. If Cp = 0, then we have f(s0) = 0 and s0−1

p f ′(s0) = 0 which implies

s0 = 0, contradicting that f(0) = 1. Therefore, we have g(s) ≥ Cp > 0. This
proves (ii). The Taylor formula yields that

(a− b)p + pap−1b− ap ≥ |b|p = p(p− 1)b2
∫ 1

0

(1− t)(a− τb)p−2dτ.

Thus, if b ≤ 0, then a − τb ≥ τ |b|, which implies (iii) in this case. On the other
hand, if 0 ≤ b, then a− τb ≥ (1− τ)|b| which implies (iii) in this case as well. �

To formulate the following result, for R > 0, let us set

dH(u;R) :=

⎛⎝∫
G

∣∣∣u(x)−RQ−p
p u

(
R x

|x|
)
|x|−Q−p

p

∣∣∣p
|x|p| log R

|x| |p
dx

⎞⎠
1
p

.

Then we have the following stability property.

Theorem 2.4.3 (Stability of Hardy inequalities for general real-valued functions).
Let G be a homogeneous group of homogeneous dimension Q and let | · | be a
homogeneous quasi-norm on G. Let 2 ≤ p < Q. Then there exists a constant
C > 0 such that for all real-valued functions u ∈ C∞

0 (G) we have∫
G

|Ru|p dx−
(
Q− p
p

)p ∫
G

|u|p
|x|p dx ≥ Cp supR>0

dpH(u;R). (2.96)
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Proof of Theorem 2.4.3. Let x = (r, y) = (|x|, x|x|) ∈ (0,∞) × ℘ on G, where ℘ is

the unit quasi-sphere ℘ := {x ∈ G : |x| = 1}, and

v(ry) := r
Q−p
p u(ry),

where u ∈ C∞
0 (G). It follows that v(0) = 0 and that lim

r→∞v(ry) = 0 for y ∈ ℘ since

u is compactly supported. Using the polar decomposition from Proposition 1.2.10
and integrating by parts, we get

D : =

∫
G

|Ru|p dx−
(
Q− p
p

)p ∫
G

|u|p
|x|p dx

=

∫
℘

∫ ∞

0

∣∣∣∣− ∂

∂r
u(ry)

∣∣∣∣p rQ−1 −
(
Q− p
p

)p
|u(ry)|prQ−p−1drdy

=

∫
℘

∫ ∞

0

∣∣∣∣Q− pp
r−

Q
p v(ry) − r−Q−p

p
∂

∂r
v(ry)

∣∣∣∣p rQ−1

−
(
Q− p
p

)p
|v(ry)|pr−1drdy.

Now using relation (ii) in Lemma 2.4.2 with the choice a = Q−p
p r−

Q
p v(ry) and

b = r−
Q−p
p ∂

∂r v(ry), and using the fact that
∫∞
0
|v|p−2v

(
∂
∂r v

)
dr = 0, we obtain

D ≥
∫
℘

∫ ∞

0

−p
(
Q− p
p

)p−1

|v(ry)|p−2v(ry)
∂

∂r
v(ry) (2.97)

+ C

∣∣∣∣ ∂∂rv(ry)
∣∣∣∣p rp−1drdy

= C

∫
G

|x|p−Q |Rv|p dx.

Finally, combining (2.97) and Remark 2.2.9, we arrive at

D ≥ Cp
∫
G

|v(x) − v(R x
|x|)|p

|x|Q| log R
|x| |p

dx = C

∫
℘

∫ ∞

0

|v(ry) − v(Ry)|p
r
∣∣log R

r

∣∣p drdy

= Cp

∫
℘

∫ ∞

0

|u(ry)−RQ−p
p u(Ry)r−

Q−p
p |p

r1+p−Q| log R
r |p

drdy,

for any R > 0. This proves the desired result. �

2.4.3 Stability of critical Hardy inequality

Here we discuss the stability of the critical Hardy inequality, i.e., the Lp-Hardy
inequality in the case p = Q. For this, let us denote

fT,R(x) := T
Q−1
Q u

(
Re−

1
T
x

|x|
)(

log
R

|x|
)Q−1

Q

.



2.4. Stability of Hardy inequalities 125

We also introduce the following ‘distance’ function:

dcH(u;T,R) :=

⎛⎜⎝∫
B(0,R)

|u(x)− fT,R(x)|Q

|x|Q
∣∣∣log R

|x|
∣∣∣Q ∣∣∣T log R

|x|
∣∣∣Q dx

⎞⎟⎠
1
Q

, (2.98)

for some parameter T > 0, functions u and fT,R for which the integral in (2.98) is
finite.

Theorem 2.4.4 (Stability of critical Hardy inequality). Let G be a homogeneous
group of homogeneous dimension Q and let | · | be a homogeneous quasi-norm
on G. Then there exists a constant C > 0 such that for all real-valued functions
u ∈ C∞

0 (B(0, R)) we have∫
B(0,R)

|Ru(x)|Q dx−
(
Q− 1

Q

)Q ∫
B(0,R)

|u(x)|Q
|x|Q(log R

|x|)
Q
dx

≥ Cp sup
T>0

dQcH(u;T,R).

(2.99)

Proof of Theorem 2.4.4. With polar coordinates (r, y) = (|x|, x|x|) ∈ (0,∞)× ℘ on

G, where ℘ is the sphere as in (1.12), we have u(x) = u(ry) ∈ C∞
0 (B(0, R)). In

addition, let us set

v(sy) :=

(
log

R

r

)−Q−1
Q

u(ry), y ∈ ℘,

where

s = s(r) :=

(
log

R

r

)−1

.

Since u ∈ C∞
0 (B(0, R)) we have v(0) = 0 and v has a compact support. Moreover,

it is straightforward that

∂

∂r
u(ry) = −

(
Q − 1

Q

)(
log

R

r

)− 1
Q v(sy)

r
+

(
log

R

r

)Q−1
Q ∂

∂s
v(sy)s′(r).

A direct calculation using the polar decomposition in Proposition 1.2.10 gives

S :=

∫
B(0,R)

|Ru|Q dx−
(
Q− 1

Q

)Q ∫
B(0,R)

|u|Q

|x|Q
(
log R

|x|
)Q dx

=

∫
℘

(∫ R

0

∣∣∣∣ ∂∂ru(ry)
∣∣∣∣Q rQ−1 −

(
Q− 1

Q

)Q |u(ry)|Q
r
(
log R

r

)Q dr
)
dy
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=

∫
℘

∫ R

0

( ∣∣∣∣∣
(
Q− 1

Q

)(
r log

R

r

)− 1
Q

v(sy) +

(
r log

R

r

)Q−1
Q ∂

∂s
v(sy)s′(r)

∣∣∣∣∣
Q

−
(
Q− 1

Q

)Q |v(sy)|Q
r log R

r

)
drdy.

Now by applying relation (ii) from Lemma 2.4.2 with the choice

a =
Q− 1

Q

(
r log

R

r

)− 1
Q

v(sy) and b =

(
r log

R

r

)Q−1
Q ∂

∂s
v(sy)s′(r),

and by using the properties that v(0) = 0 and lim
r→∞v(ry) = 0, we obtain

S ≥
∫
℘

∫ R

0

(
−Q

(
Q− 1

Q

)Q−1

|v(sy)|Q−2v(sy)
∂

∂s
v(sy)s′(r)

+ C

∣∣∣∣ ∂∂sv(sy)
∣∣∣∣Q (s′(r))Q

(
r log

R

r

)Q−1 )
drdy

=

∫
℘

∫ R

0

(
−Q

(
Q− 1

Q

)Q−1

|v(sy)|Q−2v(sy)
∂

∂s
v(sy)s′(r)

+ C

∣∣∣∣ ∂∂sv(sy)
∣∣∣∣Q 1

rQ
(
log R

r

)2Q (r log Rr
)Q−1)

drdy

=

∫
℘

∫ R

0

(
−Q

(
Q− 1

Q

)Q−1

|v(sy)|Q−2v(sy)
∂

∂s
v(sy)s′(r)

+ C

∣∣∣∣ ∂∂sv(sy)
∣∣∣∣Q 1(

log R
r

)Q−1
s′(r)

)
drdy

=

∫
℘

∫ R

0

(
−Q

(
Q− 1

Q

)Q−1

|v(sy)|Q−2v(sy)
∂

∂s
v(s)

+ C

∣∣∣∣ ∂∂sv(sy)
∣∣∣∣Q sQ−1

)
dsdy

= C

∫
G

|Rv|Q dx,

that is,

S ≥ C
∫
G

|Rv|Q dx. (2.100)

According to Remark 2.2.9 for v ∈ C∞
0 (G\{0}) with p = Q and (2.100), it

follows that

S ≥ Cp
∫
G

|v(x) − v(T x
|x|)|Q

|x|Q| log T
|x| |Q

dx = Cp

∫
℘

∫ ∞

0

|v(sy)− v(Ty)|Q
s| log T

s |Q
dsdy
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= Cp

∫
℘

∫ R

0

∣∣∣∣(log R
r

)−Q−1
Q u(ry)− T Q−1

Q u(Re−
1
T y)

∣∣∣∣Q
r(log R

r )| log(T log R
r )|Q

drdy

= Cp

∫
℘

∫ R

0

∣∣∣u(ry)− T Q−1
Q u(Re−

1
T y)(log R

r )
Q−1
Q

∣∣∣Q
r(log R

r )
Q| log(T log R

r )|Q
drdy.

Thus, we arrive at

S ≥ Cp
∫
B(0,R)

∣∣∣∣u(x)− T Q−1
Q u

(
Re−

1
T
x
|x|
)(

log R
|x|
)Q−1

Q

∣∣∣∣Q
|x|Q

∣∣∣log R
|x|
∣∣∣Q ∣∣∣log(T log R

|x|
)∣∣∣Q dx

for all T > 0. This completes the proof of Theorem 2.4.4. �
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Chapter 3

Rellich, Caffarelli–Kohn–Nirenberg, and

Sobolev Type Inequalities

This chapter is devoted to other functional inequalities usually associated to the
Hardy inequalities. These include Rellich and Caffarell–Kohn–Nirenberg inequali-
ties. We also discuss different aspects of this analysis such as their stability, higher-
order inequalities, their weighted and extended versions.

3.1 Rellich inequality

In general, the Rellich type inequalities have the following form∫
Rn

|f(x)|p
|x|αE

dx ≤ C
∫
Rn

|Δf(x)|p
|x|βE

dx

for certain constants α, β and p. The classical result by Rellich appearing at the
1954 ICM in Amsterdam [Rel56] was the inequality∥∥∥∥ f

|x|2E

∥∥∥∥
L2(Rn)

≤ 4

n(n− 4)
‖Δf‖L2(Rn), n ≥ 5. (3.1)

To find analogues of (3.1) on the homogeneous groups is an interesting ques-
tion. The first obstacle to it is that there is neither stratification nor gradation
on general homogeneous groups, so there may be no homogeneous left invariant
hypoelliptic differential operators on G at all, to formulate an expression of the
form of the right-hand side of (3.1).

However, similar to the results on the Hardy type inequalities before, the
inequality (3.1) can be expressed in terms of the radial derivative

∂r =
x

|x|E · ∇,
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taking the form∥∥∥∥ f

|x|2E

∥∥∥∥
L2(Rn)

≤ 4

n(n− 4)

∥∥∥∥∂2rf +
n− 1

|x|E ∂rf

∥∥∥∥
L2(Rn)

, n ≥ 5. (3.2)

It is well known that in the spherical coordinates on Rn the Laplacian ΔRn

decomposes in the radial and spherical parts as

ΔRnf =
∂2f

∂r2
+
n− 1

r

∂f

∂r
+

1

r2
ΔSn−1f.

So, the operator on the right-hand side in (3.2) is precisely the radial part of the
Laplacian on Rn, which can be also expressed as

∂2f

∂r2
+
n− 1

r

∂f

∂r
=

1

rn−1

∂

∂r

(
rn−1 ∂f

∂r

)
. (3.3)

Although there is no analogue of the Laplacian on general homogeneous groups,
using the radial operator R from Section 1.3, the expression (3.3) on a homoge-
neous group of homogeneous dimension Q and homogeneous quasi-norm | · | makes
perfect sense in the form of

R2f +
Q− 1

|x| Rf =
1

|x|Q−1
R (|x|Q−1Rf) . (3.4)

One aim of this section is to show that the Rellich inequality in the form
(3.2) extends to general homogeneous groups using the radial operator R, taking
the form: ∥∥∥∥ f

|x|2
∥∥∥∥
L2(G)

≤ 4

Q(Q− 4)

∥∥∥∥R2f +
Q− 1

|x| Rf
∥∥∥∥
L2(G)

, Q ≥ 5, (3.5)

for all complex-valued functions f ∈ C∞
0 (G\{0}). The operator on the right-hand

side of (3.5) is thus an analogue of the radial part of the Laplacian on Rn.

Thus, in the sequel we will be frequently use the Rellich type operator ap-
pearing in the right-hand side of (3.8) which we may denote by

R̃f := R2f +
Q− 1

|x| Rf. (3.6)

Similarly to the Hardy type inequalities from Chapter 2, the expression on
the right-hand side of (3.5) appears to be natural since there is no analogue of ho-
mogeneous Laplacian or sub-Laplacian on general homogeneous groups to extend
(3.1). Moreover, even on a group where such operators exist, this would usually
give a refinement of those inequalities since derivatives only in one direction ap-
pear.
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3.1.1 Rellich type inequalities in L2

In this section we prove the Rellich type inequality (3.5) and its weighted version.
This will be a corollary of the following identity relating different expressions
involving the radial derivatives and radially symmetric weights.

Theorem 3.1.1 (Identity leading to Rellich inequality). Let G be a homogeneous
group of homogeneous dimension Q ≥ 5. Then for arbitrary homogeneous quasi-
norm | · | on G and every complex-valued function f ∈ C∞

0 (G\{0}) we have the
identity∥∥∥∥R2f +

Q − 1

|x| Rf +
Q(Q− 4)

4|x|2 f

∥∥∥∥2
L2(G)

+
Q(Q− 4)

2

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f
∥∥∥∥2
L2(G)

=

∥∥∥∥R2f +
Q− 1

|x| Rf
∥∥∥∥2
L2(G)

−
(
Q(Q− 4)

4

)2 ∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

. (3.7)

Since the left-hand side of (3.7) is non-negative, this implies the following
Rellich type inequality on G for Q ≥ 5:

Corollary 3.1.2 (Rellich type inequality in L2(G)). For all complex-valued func-
tions f ∈ C∞

0 (G\{0}) we have∥∥∥∥ f

|x|2
∥∥∥∥
L2(G)

≤ 4

Q(Q− 4)

∥∥∥∥R2f +
Q− 1

|x| Rf
∥∥∥∥
L2(G)

, Q ≥ 5, (3.8)

where the constant 4
Q(Q−4) is sharp and it is attained if and only if f = 0.

Remark 3.1.3. Let us show that the constant 4
Q(Q−4) in (3.8) is sharp and is never

attained unless f = 0. Indeed, if the equality in (3.8) is attained, it follows that
both terms on the left-hand side of (3.7) must be zero. In particular, it means that

1

|x|Rf +
Q− 4

2|x|2 f = 0, (3.9)

and hence

Ef = −Q− 4

2
f.

In view of Proposition 1.3.1, Part (i), the function f must be positively homoge-
neous of order −Q−4

2 which is impossible since f ∈ C∞
0 (G\{0}) unless f = 0, so

that the constant is not attained unless f = 0.

Furthermore, the first term in (3.7) must be also zero, and by using (3.9) this
is equivalent to

R2f +
Q− 2

2|x| Rf = 0

which means that Rf is positively homogeneous of order −Q−2
2 . Thus, by taking

an approximation of homogeneous functions f of order −Q−4
2 , we have that Rf is
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homogeneous of order −Q−2
2 , so that the left-hand side of (3.7) converges to zero.

Therefore, the constant 4
Q(Q−4) in (3.8) is sharp.

Thus, in view of Remark 3.1.3, the statement of Corollary 3.1.2 follows from
the identity (3.7), which we will now prove.

Proof of Theorem 3.1.1. Introducing polar coordinates

(r, y) =

(
|x|, x|x|

)
∈ (0,∞)× ℘

on G, using the polar decomposition formula from Proposition 1.2.10, as well as
integrating by parts we obtain∫

G

|f(x)|2
|x|4 dx =

∫ ∞

0

∫
℘

|f(ry)|2
r4

rQ−1dσ(y)dr

= − 2

Q− 4
Re

∫ ∞

0

rQ−4

∫
℘

f(ry)
df(ry)

dr
dσ(y)dr

=
2

(Q − 3)(Q− 4)
Re

∫ ∞

0

rQ−3

∫
℘

(∣∣∣∣df(ry)dr

∣∣∣∣2 + f(ry)
d2f(ry)

dr2

)
dσ(y)dr

=
2

(Q − 3)(Q− 4)

(∥∥∥∥ 1

|x|Rf
∥∥∥∥2
L2(G)

+Re

∫
G

f(x)

|x|2 R
2f(x)dx

)
. (3.10)

For the first term, using identity (2.16) with α = 1, we have identity (2.17), i.e.,∥∥∥∥ 1

|x|Rf
∥∥∥∥2
L2(G)

=

(
Q− 4

2

)2 ∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f
∥∥∥∥2
L2(G)

. (3.11)

For the second term a direct calculation shows

Re

∫
G

f(x)

|x|2 R
2f(x)dx

= Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)
)
dx− (Q− 1)Re

∫
G

f(x)

|x|3 Rf(x)dx

= Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)
)
dx

− Q− 1

2

∫ ∞

0

rQ−4

∫
℘

d|f(ry)|2
dr

dσ(y)dr

= Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)
)
dx

+
(Q − 1)(Q− 4)

2

∫ ∞

0

rQ−5

∫
℘

|f(ry)|2dσ(y)dr
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= Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)
)
dx

+
(Q − 1)(Q− 4)

2

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

. (3.12)

Combining (3.11) and (3.12) with (3.10) we arrive at∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

=
2

(Q − 3)(Q− 4)

((
Q− 4

2

)2 ∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f
∥∥∥∥2
L2(G)

+Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)
)
dx+

(Q − 1)(Q− 4)

2

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

)
.

Collecting same terms, this gives

0 =
2Q

(Q − 3)4

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

+
2

(Q− 3)(Q− 4)

(
Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)
)
dx

+

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f
∥∥∥∥2
L2(G)

)
,

that is,

Q(Q− 4)

4

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

= −Re
∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)
)
dx−

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f
∥∥∥∥2
L2(G)

.

Multiplying both sides by 4
Q(Q−4) and simplifying we obtain

Re

∫
G

f(x)

|x|2
(
f(x)

|x|2 +
4

Q(Q− 4)

(
R2f(x) +

Q− 1

|x| Rf(x)
))

dx

= − 4

Q(Q− 4)

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f
∥∥∥∥2
L2(G)

.

(3.13)

On the other hand, we also have

2Re

∫
G

f(x)

|x|2
(
f(x)

|x|2 +
4

Q(Q− 4)

(
R2f(x) +

Q− 1

|x| Rf(x)
))

dx
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=

∥∥∥∥ f

|x|2 +
4

Q(Q− 4)

(
R2f +

Q− 1

|x| Rf
)∥∥∥∥2

L2(G)

+

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

−
∥∥∥∥ 4

Q(Q− 4)

(
R2f +

Q− 1

|x| Rf
)∥∥∥∥2

L2(G)

. (3.14)

From (3.13) and (3.14) we obtain

− 8

Q(Q− 4)

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f
∥∥∥∥2
L2(G)

=

(
4

Q(Q− 4)

)2 ∥∥∥∥Q(Q− 4)

4

f

|x|2 +R2f +
Q− 1

|x| Rf
∥∥∥∥2
L2(G)

+

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

−
(

4

Q(Q− 4)

)2 ∥∥∥∥R2f +
Q− 1

|x| Rf
∥∥∥∥2
L2(G)

,

thus,∥∥∥∥R2f +
Q − 1

|x| Rf +
Q(Q− 4)

4|x|2 f

∥∥∥∥2
L2(G)

+
Q(Q− 4)

2

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f
∥∥∥∥2
L2(G)

=

∥∥∥∥R2f +
Q− 1

|x| Rf
∥∥∥∥2
L2(G)

−
(
Q(Q− 4)

4

)2 ∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

.

This gives identity (3.7). �

In the Euclidean setting of Rn the equalities of the type of Theorem 3.1.1
were analysed in [MOW17b]. Theorem 3.1.1 was obtained in [RS17b] and it can
be extended to all α ∈ R. We present these results next, following [Ngu17], also
correcting relevant statements. We will be always using the notation

R̃f := R2f +
Q− 1

|x| Rf. (3.15)

Theorem 3.1.4 (Weighted L2-Rellich inequalities). Let G be a homogeneous group
of homogeneous dimension Q ≥ 5 and let | · | be a homogeneous quasi-norm on G.
Then we have the following properties:

(1) For any α ∈ R, for all complex-valued functions f ∈ C∞
0 (G\{0}) we have the

identity∥∥∥∥∥ R̃f|x|α
∥∥∥∥∥
2

L2(G)

= C2
α

∥∥∥∥ f

|x|α+2

∥∥∥∥2
L2(G)

+

∥∥∥∥∥ R̃f|x|α + Cα
f

|x|α+2

∥∥∥∥∥
2

L2(G)

+ 2Cα

∥∥∥∥ Rf|x|1+α +
Q− 4− 2α

2|x|α+2
f

∥∥∥∥2
L2(G)

,

(3.16)
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where

Cα =
(Q+ 2α)(Q − 4− 2α)

4
. (3.17)

(2) For any α ∈ (−Q/2, (Q − 4)/2), we have the following weighted Rellich in-
equality for all complex-valued functions f ∈ C∞

0 (G\{0}),

Cα

∥∥∥∥ f

|x|α+2

∥∥∥∥
L2(G)

≤
∥∥∥∥∥ R̃f|x|α

∥∥∥∥∥
L2(G)

, (3.18)

where the constant Cα > 0 as in (3.17) is sharp and it is attained if and only
if f = 0.

Proof of Theorem 3.1.4. Part (2) is an immediate consequence of Part (1), so we
prove Part (1) now.

We can assume that Cα �= 0 since otherwise (3.16) trivially holds. Moreover,
we can assume for the proof below that Q−3−2α �= 0. If this is zero, the statement
(3.16) would follow by continuity from the same identity for other α’s.

As in the proof of Theorem 3.1.1, we calculate∫
G

|f(x)|2
|x|4+2α

dx =

∫ ∞

0

rQ−5−2α

∫
℘

|f(ry)|2dσ(y)dr

=
1

Q− 4− 2α

∫ ∞

0

(rQ−4−2α)′
∫
℘

|f(ry)|2dσ(y)dr

= − 2

Q− 4− 2α
Re

∫ ∞

0

rQ−4−2α

∫
℘

f(ry)Rf(ry)dσ(y)dr

= − 2

(Q− 4− 2α)(Q− 3− 2α)
Re

∫ ∞

0

(rQ−3−2α)′
∫
℘

f(ry)Rf(ry)dσ(y)dr

=
2

(Q− 4− 2α)(Q − 3− 2α)
Re

∫ ∞

0

rQ−3−2α

×
∫
℘

(
|Rf(ry)|2 + f(ry)R2f(ry)

)
dσ(y)dr

=
2

(Q− 4− 2α)(Q − 3− 2α)
Re

∫
G

(
|Rf(x)|2
|x|2+2α

+
f(x)R2f(x)

|x|2+2α

)
dx. (3.19)

By Theorem 3.1.1 we have∫
G

|Rf |2
|x|2+2α

dx =
(Q − 4− 2α)2

4

∫
G

|f |2
|x|4+2α

dx+

∫
G

∣∣∣∣ Rf|x|1+α +
Q− 4− 2α

2|x|2+α f

∣∣∣∣2 dx.
(3.20)

By integration by parts we obtain

Re

∫
G

fR2f

|x|2+2α
dx = Re

∫
G

fR̃f
|x|2+2α

dx− (Q − 1)Re

∫
G

fRf
|x|3+2α

dx (3.21)
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= Re

∫
G

fR̃f
|x|2+2α

dx+
(Q − 1)(Q− 4− 2α)

2

∫
G

|f |2
|x|4+2α

dx.

Plugging (3.20) and (3.21) into (3.19) we get∫
G

|f |2
|x|4+2α

dx = − 1

Cα
Re

∫
G

fR̃f
|x|2+2α

dx− 1

Cα

∫
G

∣∣∣∣ Rf|x|1+α +
Q − 4− 2α

2|x|2+α f

∣∣∣∣2 dx
=

1

2C2
α

∫
G

|R̃f |2
|x|2α dx+

1

2

∫
G

|f |2
|x|2α+4

dx− 1

2C2
α

∫
G

∣∣∣∣∣ R̃f|x|α + Cα
f

|x|α+2

∣∣∣∣∣
2

dx

− 1

Cα

∫
G

∣∣∣∣ Rf|x|α+1
+
Q− 4− 2α

2|x|α+2
f

∣∣∣∣2 dx,
which gives equality (3.16).

The inequality (3.18) is a straightforward consequence of (3.16) since Cα > 0
for α ∈ (−Q/2, (Q− 4)/2). Let us now show that this constant is sharp. For this,
we consider the test function g(r) := r−(Q−4−2α)/2 which can be approximated
by smooth functions. For example, let η ∈ C∞

0 (R) be such that η = 1 on (−1, 1)
and η = 0 on R\(−2, 2). For any ε > 0, define fε(r) := (1− η(r/ε))r−Q−4−2α

2 η(εr),
then

lim
ε→0

fε(r) = g(r).

We have ∥∥∥ R̃g
|x|α

∥∥∥2
L2(G)∥∥∥ g

|x|α+2

∥∥∥2
L2(G)

=

∫
G

1
|x|2α

∣∣∣R2g(|x|) + Q−1
|x| Rg(|x|)

∣∣∣2 dx∫
G

|g(|x|)|2
|x|4+2α dx

= C2
α,

which shows the sharpness of Cα. If for some function f , there is equality in (3.18),
then from (3.16) we must have

Rf +
Q− 4− 2α

2|x| f = 0.

In terms of the Euler operator this can be equivalently expressed by

Ef = −Q− 4− 2α

2
f.

By Proposition 1.3.1 this implies that f is positively homogeneous of order −(Q−
4− 2α)/2, that is, there exists function h : ℘→ C such that

f(x) = |x|−(Q−4−2α)/2h(x/|x|).
Since f(x)/|x|2+α is in L2(G), we must have h = 0 on ℘ and, consequently, f = 0
on ℘. �
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3.1.2 Rellich type inequalities in Lp

In this section we describe the Lp-versions of the L2-properties presented in Section
3.1.1, where we have followed the proofs in [RS17b]. In this section we follow
[Ngu17]. We start with the identity analogous to that in Theorem 3.1.1.

Theorem 3.1.5 (Identity leading to Lp-Rellich inequality). Let G be a homogeneous
group of homogeneous dimension Q and let |·| be a homogeneous quasi-norm on G.
Let 1 < p < Q and α ∈ R. Then for all complex-valued functions f ∈ C∞

0 (G\{0})
we have∫

G

1

|x|pα
∣∣∣∣Rf +

Q− 1

|x| f

∣∣∣∣p dx =
|Q + p′α|p

(p′)p

∫
G

|f |p
|x|p(1+α) dx (3.22)

+ p

∫
G

1

|x|pαRp
(
Q+ p′α

p′
f

|x| ,Rf +
Q− 1

|x| f

)
dx,

where p′ = p/(p− 1) and Rp is as in (2.22).

Proof of Theorem 3.1.5. First, a direct calculation shows∫
G

|f |p
|x|p(1+α) dx =

∫ ∞

0

rQ−p(1+α)−1

∫
℘

|f(ry)|pdσdr

=
1

Q− p(1 + α)

∫ ∞

0

(rQ−p(1+α))′
∫
℘

|f(ry)|pdσdr

= − p

Q− p(1 + α)
Re

∫ ∞

0

rQ−p(1+α)
∫
℘

|f(ry)|p−2f(ry)Rf(ry)dσ(y)dr

= − p

Q− p(1 + α)
Re

∫
G

|f |p−2fRf
|x|p(1+α)−1

dx

= − p

Q− p(1 + α)

⎛⎝Re

∫
G

|f |p−2f

|x|(p−1)(1+α)

Rf + Q−1
|x| f

|x|α − (Q− 1)

∫
G

|f |p
|x|p(1+α) dx

⎞⎠ .

This implies further equalities,

∫
G

|f |p
|x|p(1+α) dx =

p′

Q+ p′α
Re

∫
G

|f |p−2f

|x|(p−1)(1+α)

Rf + Q−1
|x| f

|x|α dx

=
p− 1

p

∫
G

|f |p
|x|p(1+α) dx+

1

p

(p′)p

|Q+ p′α|p
∣∣∣∣Rf +

Q− 1

|x| f

∣∣∣∣2 dx
−
∫
G

Rp

(
f

|x|1+α ,
p′

Q+ p′α

Rf + Q−1
|x| f

|x|α
)
dx,

which proves (3.22). �
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Since the remainder term on the right-hand side of (3.22) is non-negative,
this implies the following Lp-version of the Rellich type inequality on G:

Corollary 3.1.6 (Rellich type inequality in Lp(G)). Let G be a homogeneous group
of homogeneous dimension Q and let | · | be a homogeneous quasi-norm on G. Let
1 < p < Q and α ∈ R. Then for all complex-valued functions f ∈ C∞

0 (G\{0})
we have ∥∥∥∥ 1

|x|α
(
Rf +

Q− 1

|x| f

)∥∥∥∥
Lp(G)

≥ |Q+ p′α|
p′

∥∥∥∥ f

|x|1+α
∥∥∥∥
Lp(G)

,

where the constant 4
Q(Q−4) is sharp and it is attained if and only if f = 0.

As a consequence of Theorem 3.1.5 we have

Corollary 3.1.7. Let G be a homogeneous group of homogeneous dimension Q.
Let | · | be any homogeneous quasi-norm on G and 1 < p < Q/2. Then for any
complex-valued f ∈ C∞

0 (G\{0}), we have∫
G

|R̃f |p
|x|pα dx =

|Q+ p′α|p
(p′)p

∫
G

|Rf |p
|x|p(1+α) dx+ p

∫
G

1

|x|pαRp
(
Q+ p′α

p′
Rf
|x| , R̃f

)
dx

(3.23)
for any α ∈ R. Here Rp is as in (2.22). As a consequence, we obtain the following
weighted Lp-Rellich type inequality

|Q+ p′α|
p′

∥∥∥∥ Rf
|x|(1+α)

∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ R̃f|x|α

∥∥∥∥∥
Lp(G)

(3.24)

for any α ∈ R and any complex-valued function f ∈ C∞
0 (G\{0}). Moreover, the

inequality (3.24) is sharp and equality holds if and only if f = 0.

Proof of Corollary 3.1.7. The equality (3.23) is exactly (3.22) with f being re-
placed by Rf . The inequality (3.24) follows immediately from (3.23) by dropping
the non-negative remainder term on the right-hand side of (3.23). The sharpness
of (3.24) is proved by using approximations of the function r−(Q′p(1+α))/p. If the
equality occurs in (3.24) for some function f , then by (3.23) we must have

R̃f =
Q + p′α
p′|x| Rf,

which is equivalent to

R2f +
Q− p(1 + α)

p|x| Rf = 0.

This can be also expressed as

E(Rf) = −Q− p(1 + α)

p
Rf.

Hence Rf is positively homogeneous of degree −(Q′p(1 + α))/p, which forces
Rf = 0 since Rf/|x|1+α is in Lp(G). Thus, we get f = 0. �
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Theorem 3.1.8 (Another weighted Lp-Rellich inequality). Let G be a homogeneous
group of homogeneous dimension Q. Let 1 < p < Q/2. Let | · | be a homogeneous
quasi-norm on G. Then we have the following properties.

(1) For all α ∈ R and for all complex-valued functions f ∈ C∞
0 (G\{0}) we have

the identity∥∥∥∥∥ R̃f|x|α
∥∥∥∥∥
p

Lp(G)

= |Cp,α|p
∫
G

|f |p
|x|p(2+α) dx + p

∫
G

1

|x|pαRp
(
Cp,α

f

|x|2 ,−R̃f
)
dx

+ p|Cp,α|p−2Cp,α(p− 1)

∫
G

|f |p−2

|x|p(2+α)−2

∣∣∣∣R|f |+ Q− p(2 + α)

p|x| |f |
∣∣∣∣2 dx

+ p|Cp,α|p−2Cp,α

∫
G

|f |p−4(Im(fRf))2
|x|p(2+α)−2

dx. (3.25)

Here Rp is as in (2.22) and

Cp,α =
(Q− 2p− pα)(Q + p′α)

pp′
,

1

p
+

1

p′
= 1. (3.26)

(2) For any α ∈ (−(p − 1)Q/p, (Q − 2p)/p) and all complex-valued functions
f ∈ C∞

0 (G\{0}) we have

Cp,α

∥∥∥∥ f

|x|2+α
∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ R̃f|x|α

∥∥∥∥∥
Lp(G)

. (3.27)

Moreover, the constant Cp,α > 0 as in (3.26) is sharp and equality in (3.27)
holds if and only if f = 0.

Proof of Theorem 3.1.8. Inequality (3.27) in Part (2) follows from Part (1) in view
of the positivity of the constant Cp,α > 0 under the corresponding conditions on α,
so we prove Part (1) now. For the argument below we may assume that Cp,α �= 0,
and that the constant on the left-hand side in the following estimate is non-zero.
Then a direct calculation using Proposition 1.2.10 and integration by parts gives

(Q− p(2 + α))(Q − p(2 + α) + 1)

p

∫
G

|f(x)|p
|x|p(2+α) dx

=
(Q − p(2 + α))(Q − p(2 + α) + 1)

p

∫ ∞

0

rQ−p(2+α)−1

∫
℘

|f(ry)|pdσ(y)dr

=
(Q − p(2 + α) + 1)

p

∫ ∞

0

(rQ−p(2+α))′
∫
℘

|f(ry)|pdσ(y)dr

= −(Q− p(2 + α) + 1)Re

∫ ∞

0

rQ−p(2+α)
∫
℘

|f(ry)|p−2f(ry)Rf(ry)dσ(y)dr
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= −Re
∫ ∞

0

(rQ−p(2+α)+1)′
∫
℘

|f(ry)|p−2f(ry)Rf(ry)dσ(y)dr

= Re

∫ ∞

0

rQ−p(2+α)+1

∫
℘

(p− 2)|f(ry)|p−4(Re(f(ry)Rf(ry)))2

+ |f(ry)|p−2|Rf(ry)|2 + |f(ry)|p−2f(ry)R2f(ry)dσ(y)dr

= Re

∫
G

1

|x|p(2+α)−2

(
(p− 2)|f |p−4(Re(fRf))2 + |f |p−2|Rf |2 + |f |p−2fR2f

)
dx

= Re

∫
G

|f |p−2f

|x|(p−1)(2+α)

R̃f
|x|α dx− (Q − 1)Re

∫
G

|f |p−2fRf
|x|p(2+α)−1

dx

+ (p− 1)

∫
G

|f |p−4(Re(fRf))2
|x|p(2+α)−2

dx+

∫
G

|f |p−4(Im(fRf))2
|x|p(2+α)−2

dx

= Re

∫
G

|f |p−2f

|x|(p−1)(2+α)

R̃f
|x|α dx+

(Q − 1)(Q− p(2 + α))

p

∫
G

|f |p
|x|p(2+α) dx

+
4(p− 1)

p2

∫
G

(R(|f |p/2))2
|x|p(2+α)−2

dx+

∫
G

|f |p−4(Im(fRf))2
|x|p(2+α)−2

dx. (3.28)

By using Theorem 3.1.1 for |f | p2 , we obtain∫
G

(R(|f |p/2))2
|x|p(2+α)−2

dx =
(Q − p(2 + α))2

4

∫
G

|f |p
|x|p(2+α) dx

+

∫
G

1

|x|p(2+α)−2

∣∣∣∣R|f |p/2 + Q− p(2 + α)

2|x| |f |p/2
∣∣∣∣2 dx.

Plugging this in (3.28) we get∫
G

|f(x)|p
|x|p(2+α) dx

= − 1

Cp,α
Re

∫
G

|f |p−2f

|x|(p−1)(2+α)

R̃f
|x|α dx−

1

Cp,α

∫
G

|f |p−4(Im(fRf))2
|x|p(2+α)−2

dx

− 1

Cp,α

4(p− 1)

p2

∫
G

1

|x|p(2+α)−2

∣∣∣∣R|f | p2 +
Q− p(2 + α)

2|x| |f | p2
∣∣∣∣2 dx

=
p− 1

p

∫
G

|f |p
|x|p(2+α) dx+

1

p

1

|Cp,α|p
∫
G

|R̃f |p
|x|pα dx−

∫
G

Rp

(
f

|x|2+α ,−
1

Cp,α

R̃f
|x|α

)
dx

− 4(p− 1)

p2Cp,α

∫
G

1

|x|p(2+α)−2

∣∣∣∣R|f | p2 +
Q− p(2 + α)

2|x| |f | p2
∣∣∣∣2 dx

− 1

Cp,α

∫
G

|f |p−4(Im(fRf))2
|x|p(2+α)−2

dx. (3.29)
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The equality (3.25) now follows from (3.29) and the equality

R(|f | p2 ) = p

2
|f | p2−1R(|f |).

Part (2). Clearly, inequality (3.27) follows from equality (3.25). As in the
proof of Theorem 3.1.4, the sharpness of (3.27) follows by considering appropriate
approximations of the function r−(Q−p(2+α))/p. Moreover, if we have equality in
(3.27) for some function f , then in view of Part (1) we must have

R(|f |) + Q− p(2 + α)

p|x| |f | = 0.

This means that

E(|f |) = −Q− p(2 + α)

p
|f |.

By Proposition 1.3.1 the function |f | must be positively homogeneous of degree
−(Q− p(2 + α))/p. Since |f |/|x|2+α is in Lp(G) we must have f = 0. �

3.1.3 Stability of Rellich type inequalities

The method used in the previous section also allows one to obtain the following
stability property for Rellich type inequalities. We present such a result following
[RS18].

Theorem 3.1.9 (Stability of Rellich type inequalities). Let G be a homogeneous
group of homogeneous dimension Q. Let | · | be a homogeneous quasi-norm on G

and let p ≥ 1. Let k ≥ 2, k ∈ N, be such that kp < Q. Then for all real-valued
radial functions u ∈ C∞

0 (G) we have∫
G

|R̃u|p
|x|(k−2)p

dx−Kp
k,p

∫
G

|u|p
|x|kp dx

≥ C sup
R>0

∫
G

∣∣∣|u(x)| p−2
2 u(x)−RQ−kp

2 |u(R)| p−2
2 u(R)|x|−Q−kp

2

∣∣∣2
|x|kp

∣∣∣log R
|x|
∣∣∣2 dx,

(3.30)

where

R̃f = R2f +
Q− 1

|x| Rf

and

Kk,p =
(Q− kp)[(k − 2)p+ (p− 1)Q]

p2
. (3.31)
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Proof of Theorem 3.1.9. For k ≥ 2, k ∈ N, and kp < Q, as in the assumptions of
the theorem, let us denote

v(r) := r
Q−kp
p u(r), where r ∈ [0,∞). (3.32)

In particular, we have v(0) = 0 and v(∞) = 0. We then calculate as follows:

−R̃u = −R2
(
r
kp−Q
p v(r)

)
− Q− 1

r
R
(
r
kp−Q
p v(r)

)
= −R

(
kp−Q
p

r
kp−Q
p −1v(r) + r

kp−Q
p Rv(r)

)
− Q− 1

r

kp−Q
p

r
kp−Q
p −1v(r) − Q− 1

r
r
kp−Q
p Rv(r)

= − kp−Q
p

(
kp−Q
p

− 1

)
r
kp−Q
p −2v(r) − kp−Q

p
r
kp−Q
p −1Rv(r)

− kp−Q
p

r
kp−Q
p −1Rv(r) − r kp−Qp R2v(r)

− Q− 1

r

kp−Q
p

r
kp−Q
p −1v(r) − Q− 1

r
r
kp−Q
p Rv(r)

= − r kp−Qp −2

(
(kp−Q)(kp−Q− p)

p2
+

(Q− 1)(kp−Q)

p

)
v(r)

− r kp−Qp −2r2
(
R2v(r) +

1

r

(
2(kp−Q)

p
+ (Q− 1)

)
Rv(r)

)
= rk−2−Q

p (Kk,pv(r) − r2R̃kv(r)),

where Kk,p is as in (3.31), and where we denote

R̃kf := R2f +
2k + Q(p−2)

p − 1

r
Rf.

By using the first inequality in Lemma 2.4.2 with a = Kk,pv(r) and b = r2R̃kv(r),
and the fact that

∫∞
0
|v|p−2vv′dr = 0 in view of v(0) = 0 and v(∞) = 0, we obtain

J :=

∫
G

|R̃u|p
|x|(k−2)p

dx−Kp
k,p

∫
G

|u|p
|x|kp dx

= |℘|
∫ ∞

0

| − R̃u(r)|prQ−1−(k−2)pdr −Kp
k,p|℘|

∫ ∞

0

|u(r)|prQ−kp−1dr

= |℘|
∫ ∞

0

(
|Kk,pv(r) − r2R̃kv(r)|p − (Kk,pv(r))

p
)
r−1dr

≥ − p|℘|Kp−1
k,p

∫ ∞

0

|v|p−2vR̃kvrdr
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= − p|℘|Kp−1
k,p

∫ ∞

0

|v|p−2v

(
v′′ +

2k + Q(p−2)
p − 1

r
v′
)
rdr

= − p|℘|Kp−1
k,p

∫ ∞

0

|v|p−2vv′′rdr.

On the other hand, we have

−
∫ ∞

0

|v|p−2vv′′rdr = (p− 1)

∫ ∞

0

|v|p−2(v′)2rdr +
∫ ∞

0

|v|p−2vv′dr

= (p− 1)

∫ ∞

0

|v|p−2(v′)2rdr

=
4(p− 1)

p2

∫ ∞

0

(
p− 2

2

)2

|v|p−2(v′)2dr

+
4(p− 1)

p2

∫ ∞

0

(p− 2)|v|p−2(v′)2 + |v|p−2(v′)2rdr

=
4(p− 1)

p2

∫ ∞

0

((
|v| p−2

2

)′
v + |v| p−2

2 v′
)2

rdr

=
4(p− 1)

p2

∫ ∞

0

|(|v| p−2
2 v)′|2rdr

=
4(p− 1)

|℘2|p2
∫
G2

∣∣∣R(|v| p−2
2 v)

∣∣∣2 dx,
where G2 is a homogeneous group of homogeneous degree 2 and |℘2| is the mea-

sure of the corresponding unit 2-quasi-ball. By using Remark 2.2.9 for |v| p−2
2 v ∈

C∞
0 (G2\{0}) in p = Q = 2 case, and combining the above equalities, we obtain

J ≥ C1

∫
G2

∣∣∣|v(x)| p−2
2 v(x) − |v(R x

|x|)|
p−2
2 v(R x

|x|)
∣∣∣2

|x|2
∣∣∣log R

|x|
∣∣∣2 dx

= C1

∫ ∞

0

∣∣∣|v(r)| p−2
2 v(r) − |v(R)| p−2

2 v(R)
∣∣∣2

r
∣∣log R

r

∣∣2 dr

= C1

∫ ∞

0

∣∣∣|u(r)| p−2
2 u(r) −RQ−kp

2 |u(R)| p−2
2 u(R)r−

Q−kp
2

∣∣∣2
r1−Q+kp

∣∣log R
r

∣∣2 dr

for any R > 0. That is, we have

J ≥ C sup
R>0

∫
G

∣∣∣|u(x)| p−2
2 u(x)−RQ−kp

2 |u(R)| p−2
2 u(R)|x|−Q−kp

2

∣∣∣2
|x|kp

∣∣∣log R
|x|
∣∣∣2 dx.

The proof is complete. �
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3.1.4 Higher-order Hardy–Rellich inequalities

In this section we show that by iterating the already established weighted Hardy
inequalities we get inequalities of higher order. An interesting feature is that we
also obtain the exact formula for the remainder which yields the sharpness of the
constants as well. That is, when p = 2, one can iterate the exact representation
formulae of the remainder that we obtained in Theorem 3.1.1. It implies higher-
order remainder equalities that can be then also used to argue the sharpness of
the constant.

Theorem 3.1.10 (Higher-order Hardy–Rellich identities and inequalities). Let G

be a homogeneous group of homogeneous dimension Q ≥ 3. Let α ∈ R and k ∈ N

be such that
k−1∏
j=0

∣∣∣∣Q− 2

2
− (α+ j)

∣∣∣∣ �= 0.

Then for all complex-valued functions f ∈ C∞
0 (G\{0}) we have

∥∥∥∥ f

|x|k+α
∥∥∥∥
L2(G)

≤
⎡⎣k−1∏
j=0

∣∣∣∣Q− 2

2
− (α + j)

∣∣∣∣
⎤⎦−1 ∥∥∥∥ 1

|x|αR
kf

∥∥∥∥
L2(G)

, (3.33)

where the constant above is sharp, and is attained if and only if f = 0.

Moreover, for all k ∈ N and α ∈ R, the following identity holds:∥∥∥∥ 1

|x|αR
kf

∥∥∥∥2
L2(G)

=

⎡⎣k−1∏
j=0

(
Q− 2

2
− (α + j)

)2
⎤⎦∥∥∥∥ f

|x|k+α
∥∥∥∥2
L2(G)

+

k−1∑
l=1

⎡⎣l−1∏
j=0

(
Q− 2

2
− (α+ j)

)2
⎤⎦

×
∥∥∥∥ 1

|x|l+αR
k−lf +

Q− 2(l+ 1 + α)

2|x|l+1+α
Rk−l−1f

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αR
kf +

Q− 2− 2α

2|x|1+α Rk−1f

∥∥∥∥2
L2(G)

. (3.34)

Remark 3.1.11. Let us point out some special cases of inequality (3.33).

1. For k = 1 inequality (3.33) gives the weighted L2-Hardy inequalities from
Corollary 2.1.6.

2. In particular, for k = 1 and α = 0, inequality (3.33) gives the L2-Hardy
inequality, i.e., (2.2) in the case of p = 2.

3. For k = 2, inequality (3.33) can be thought of as a (weighted) Hardy–Rellich
type inequality, while for larger k this corresponds to higher-order (weighted)
Rellich inequalities.
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Proof of Theorem 3.1.10. For any α ∈ R and Q ≥ 3 let us iterate the identity∥∥∥∥ 1

|x|αRf
∥∥∥∥2
L2(G)

=

(
Q− 2

2
− α

)2 ∥∥∥∥ f

|x|α+1

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αRf +
Q− 2(α+ 1)

2|x|α+1
f

∥∥∥∥2
L2(G)

,

(3.35)

given in (2.16), as follows. First, replacing f in (3.35) by Rf we have∥∥∥∥ 1

|x|αR
2f

∥∥∥∥2
L2(G)

=

(
Q− 2

2
− α

)2 ∥∥∥∥ Rf|x|α+1

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αR
2f +

Q− 2(α+ 1)

2|x|α+1
Rf

∥∥∥∥2
L2(G)

.

(3.36)

Furthermore, replacing α by α+ 1, (3.35) implies that∥∥∥∥ 1

|x|α+1
Rf

∥∥∥∥2
L2(G)

=

(
Q− 2

2
− (α+ 1)

)2 ∥∥∥∥ f

|x|α+2

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|α+1
Rf +

Q− 2(α+ 2)

2|x|α+2
f

∥∥∥∥2
L2(G)

.

Combination of this with (3.36) gives∥∥∥∥ 1

|x|αR
2f

∥∥∥∥2
L2(G)

=

(
Q− 2

2
− α

)2(
Q− 2

2
− (α + 1)

)2 ∥∥∥∥ f

|x|α+2

∥∥∥∥2
L2(G)

+

(
Q− 2

2
− α

)2 ∥∥∥∥ 1

|x|α+1
Rf +

Q− 2(α+ 2)

2|x|α+2
f

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αR
2f +

Q− 2− 2α

2|x|α+1
Rf

∥∥∥∥2
L2(G)

.

By using this iteration process further, we eventually arrive at the family of iden-
tities∥∥∥∥ 1

|x|αR
kf

∥∥∥∥2
L2(G)

=

⎡⎣k−1∏
j=0

(
Q− 2

2
− (α+ j)

)2
⎤⎦∥∥∥∥ f

|x|k+α
∥∥∥∥2
L2(G)

+
k−1∑
l=1

⎡⎣l−1∏
j=0

(
Q− 2

2
− (α + j)

)2
⎤⎦

×
∥∥∥∥ 1

|x|l+αR
k−lf +

Q− 2(l+ 1 + α)

2|x|l+1+α
Rk−l−1f

∥∥∥∥2
L2(G)
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+

∥∥∥∥ 1

|x|αR
kf +

Q− 2− 2α

2|x|1+α Rk−1f

∥∥∥∥2
L2(G)

, k = 1, 2, . . . ,

which give (3.34).

Now, by dropping positive terms, these identities imply that∥∥∥∥ 1

|x|αR
kf

∥∥∥∥2
L2(G)

≥ Ck,Q
∥∥∥∥ f

|x|k+α
∥∥∥∥2
L2(G)

,

where

Ck,Q =

k−1∏
j=0

(
Q− 2

2
− (α+ j)

)2

.

If Ck,Q �= 0, this can be written as∥∥∥∥ f

|x|k+α
∥∥∥∥2
L2(G)

≤ 1

Ck,Q

∥∥∥∥ 1

|x|αR
kf

∥∥∥∥2
L2(G)

,

which gives (3.33).

Now it remains to show the sharpness of the constant and the equality in
(3.33). To do this, we rewrite the equality

Rk−lf
|x|l+α +

Q− 2(l+ 1 + α)

2|x|l+1+α
Rk−l−1f = 0

as

|x|R(Rk−l−1f) +
Q − 2(l+ 1 + α)

2
(Rk−l−1f) = 0,

and by Proposition 1.3.1, Part (i), this means that Rk−l−1f is positively homoge-
neous of degree −Q2 + l+1+α. So, all the remainder terms vanish if f is positively

homogeneous of degree k − Q
2 + α. As this can be approximated by functions in

C∞
0 (G\{0}), the constant Ck,Q is sharp.

If this constant was attained, it would be on functions f which are posi-
tively homogeneous of degree k − Q

2 + α, in which case f
|x|k+α would be positively

homogeneous of degree −Q2 . These are in L2 if and only if they are zero. �

Theorem 3.1.4 and Theorem 3.1.10 were proved in [RS17b]. They can be
extended further to derivatives of higher order. Such results have been recently
obtained in [Ngu17] and in the rest of this subsection we describe such extensions.

Theorem 3.1.12 (Further higher-order Hardy–Rellich identities and inequalities).
Let G be a homogeneous group of homogeneous dimension Q and let | · | be a
homogeneous quasi-norm on G. We denote

R̃f := R2f +
Q− 1

|x| Rf, Cβ :=
(Q+ 2β)(Q− 4− 2β)

4
, (3.37)
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for β ∈ R, for the constants appearing below. Let k ∈ N be a positive integer and
let α ∈ R. Then for all complex-valued functions f ∈ C∞

0 (G\{0}) we have the
following identities:

(1) If Q ≥ 4k + 1, then we have(
k−1∏
i=0

C2i+α

)2 ∥∥∥∥ f

|x|2k+α
∥∥∥∥2
L2(G)

=

∥∥∥∥∥R̃kf|x|α
∥∥∥∥∥
2

L2(G)

−
∥∥∥∥∥ 1

|x|α
∣∣∣∣∣R̃kf + Cα

R̃k−1f

|x|2
∣∣∣∣∣
∥∥∥∥∥
2

L2(G)

−
k−1∑
j=1

(
k−1∏
i=0

C2i+α

)2 ∥∥∥∥∥ 1

|x|2j+α
∣∣∣∣∣R̃k−jf + C2j+α

R̃k−j−1f

|x|2
∣∣∣∣∣
∥∥∥∥∥
2

L2(G)

− 2Cα

∥∥∥∥ 1

|x|1+α
∣∣∣∣R(R̃k−1f) +

Q− 4− 2α

2|x| R̃k−1f

∣∣∣∣∥∥∥∥2
L2(G)

− 2

k−1∑
j=1

(
k−1∏
i=0

C2i+α

)2

C2j+α (3.38)

×
∥∥∥∥ 1

|x|1+α+2j

∣∣∣∣R(R̃k−j−1f) +
Q− 4− 2α− 4j

2|x| R̃k−j−1f

∣∣∣∣∥∥∥∥2
L2(G)

.

(2) If Q ≥ 4k + 3, then we have(
Q− 2− 2α

2

k−1∏
i=0

C2i+1+α

)2 ∥∥∥∥ f

|x|2k+1+α

∥∥∥∥2
L2(G)

=

∥∥∥∥∥R(R̃kf)|x|α
∥∥∥∥∥
2

L2(G)

−
∥∥∥∥ 1

|x|α
∣∣∣∣R(R̃kf) + Q− 2− 2α

2|x| R̃kf
∣∣∣∣∥∥∥∥2
L2(G)

− (Q − 2− 2α)2

4

∥∥∥∥∥ 1

|x|α
∣∣∣∣∣R̃kf + C1+α

R̃k−1f

|x|2
∣∣∣∣∣
∥∥∥∥∥
2

L2(G)

− (Q − 2− 2α)2

4

k−1∑
j=1

(
k−1∏
i=0

C2i+α

)2

×
∥∥∥∥∥ 1

|x|1+2j+α

∣∣∣∣∣R̃k−jf + C2j+1+α
R̃k−j−1f

|x|2
∣∣∣∣∣
∥∥∥∥∥
2

L2(G)

− (Q − 2− 2α)2

4
Cα+1

∥∥∥∥ 1

|x|2+α
∣∣∣∣R(R̃k−1f) +

Q− 6− 2α

2|x| R̃k−1f

∣∣∣∣∥∥∥∥2
L2(G)
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− (Q − 2− 2α)2

4

k−1∑
j=1

(
k−1∏
i=0

C2i+1+α

)2

C2j+1+α (3.39)

×
∥∥∥∥ 1

|x|2+α+2j

∣∣∣∣R(R̃k−j−1f) +
Q− 6− 2α− 4j

2|x| R̃k−j−1f

∣∣∣∣∥∥∥∥2
L2(G)

.

As consequences, for all complex-valued function f ∈ C∞
0 (G\{0}) we have the

following estimates:

(3) If Q ≥ 4k + 1 and α ∈ (−Q/2, (Q− 4k)/2), then we have(
k−1∏
i=0

C2i+α

)∥∥∥∥ f

|x|2k+α
∥∥∥∥
L2(G)

≤
∥∥∥∥∥R̃kf|x|α

∥∥∥∥∥
L2(G)

. (3.40)

(4) If Q ≥ 4k + 3 and α ∈ (−(Q+ 2)/2, (Q− 4k − 2)/2), then we have(
Q− 2− 2α

2

k−1∏
i=0

C2i+1+α

)∥∥∥∥ f

|x|2k+1+α

∥∥∥∥
L2(G)

≤
∥∥∥∥∥R(R̃kf)|x|α

∥∥∥∥∥
L2(G)

. (3.41)

Moreover, these inequalities in Parts (3) and (4) are sharp and the equalities hold
if only if f = 0.

Proof of Theorem 3.1.12. The equality (3.38) follows by induction using Theorem
3.1.4, which gives the case of k = 1. Furthermore, we have∫

G

|R(R̃kf)|2
|x|2α dx =

(Q− 2− 2α)2

4

∫
G

|R̃kf |2
|x|2+2α

dx

+

∫
G

1

|x|2α
∣∣∣∣R(R̃kf) + Q− 2− 2α

2|x| R̃kf
∣∣∣∣2 dx.

(3.42)

Thus, (3.39) follows from (3.38) and (3.42). The inequalities (3.40) and (3.41)
follow directly from these equalities since Cα+2i > 0, Cα+2i+1 > 0 for any i =
0, . . . , k − 1 corresponding to each case. To check the sharpness of constants, we
use the arguments similar to those in the proof of Theorem 3.1.4, considering
approximations of the function r−(Q−4k−2α)/2. Indeed, one has∫

G

|fε|2
|x|4k+2α

dx = (− ln ε)|℘|+O(1),

and ∫
G

|R̃kf |2
|x|2α dx =

(
k−1∏
i=0

C2i+α

)2

(− ln ε)|℘|+O(1).

This proves the sharpness of (3.40). For (3.41), we use the approximation of the
function r−(Q−2−4k−2α)/2 and similar calculations.
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Finally, suppose that for some function f we have an equality in (3.40). Then
by (3.38), we must have

Rf +
Q− 4k − 2α

2|x| f = 0.

This is equivalent to

Ef = −Q− 4k − 2α

2
f.

By Proposition 1.3.1, Part (i), it follows that f is positively homogeneous of order
−(Q − 2α − 4k)/2. Since f/|x|α+2k ∈ L2(G), this forces to have f = 0. The
sharpness of (3.41) is proved in a similar way. �

Theorem 3.1.12 can be used to derive further weighted Rellich type inequal-
ities. First we start with one iteration, continuing using the notation R̃ as in
(3.37).

Theorem 3.1.13 (Iterated weighted Rellich inequality). Let G be a homogeneous
group of homogeneous dimension Q ≥ 5, and let | · | be a homogeneous quasi-norm
on G. Then for any α ∈ R and for all complex-valued functions f ∈ C∞

0 (G\{0})
we have the identity∥∥∥∥∥ R̃f|x|α

∥∥∥∥∥
2

L2(G)

=
(Q+ 2α)2

4

∥∥∥∥ Rf|x|1+α
∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|α
∣∣∣∣R2f +

Q− 2− 2α

2|x| Rf
∣∣∣∣∥∥∥∥2
L2(G)

.

(3.43)

As a consequence, for any α ∈ R we get the inequality

|Q+ 2α|
2

∥∥∥∥ Rf|x|1+α
∥∥∥∥
L2(G)

≤
∥∥∥∥∥ R̃f|x|α

∥∥∥∥∥
L2(G)

, (3.44)

for all complex-valued functions f ∈ C∞
0 (G\{0}). For Q + 2α �= 0 the inequality

(3.44) is sharp and the equality holds if and only if f = 0.

Proof of Theorem 3.1.13. By definition (3.37) we have∫
G

|R̃f |2
|x|2α dx =

∫
G

|R(Rf)|2
|x|2α dx+2(Q−1)Re

∫
G

R(Rf)Rf
|x|2α+1

dx+(Q−1)2
∫
G

|Rf |2
|x|2+2α

dx.

Moreover, we have

2Re

∫
G

R(Rf)Rf
|x|2α+1

dx = −(Q− 2− 2α)

∫
G

|Rf |2
|x|2+2α

dx.
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On the other hand, by Theorem 3.1.1 we have the identity∫
G

|R(Rf)|2
|x|2α dx =

(Q − 2− 2α)2

4

∫
G

|Rf |2
|x|2+2α

dx

+

∫
G

1

|x|2α
∣∣∣∣R2f +

Q− 2− 2α

2|x| Rf
∣∣∣∣2 dx.

Combining these inequalities we obtain (3.43).

Identity (3.43) then implies inequality (3.44). The sharpness of inequality
(3.44) can be verified by using approximations of the function r−(Q−2α−4k)/2. If
the equality in (3.44) holds for some function f , then we must have

R2f +
Q− 2− 2α

2|x| Rf = 0.

This is equivalent to

E(Rf) = −Q− 2− 2α

2
Rf

which implies, by Proposition 1.3.1, Part (i), that Rf is positively homogeneous of
degree −(Q− 2α− 2k)/2. Since Rf/|x|1+α is in L2(G), this implies that Rf = 0.
Consequently, we must also have f = 0. �

Theorem 3.1.13 implies further identities and inequalities.

Theorem 3.1.14 (Further higher-order Rellich type identities and inequalities).
Let G be a homogeneous group of homogeneous dimension Q with a homogeneous
quasi-norm | · |. Let k, l ∈ N be such that Q ≥ 4k + 1 and k ≥ l + 1. Then for all
complex-valued functions f ∈ C∞

0 (G\{0}) we have∥∥∥∥∥R̃kf|x|α
∥∥∥∥∥
2

L2(G)

=
4

(Q − 2α)2

(
k−l−1∏
i=0

Q2 − 4(2i+ α)2

4

)2 ∥∥∥∥∥ RR̃lf
|x|2(k−l)−1+α

∥∥∥∥∥
2

L2(G)

+

(
k−l−2∏
i=0

C2i+α

)2
∥∥∥∥∥∥
∣∣∣R2R̃lf + Q+2−4(k−l)−2α

2|x| RR̃lf
∣∣∣

|x|2(k−l−1)+α

∥∥∥∥∥∥
2

L2(G)

+

∥∥∥∥∥∥
∣∣∣R̃kf + Cα

R̃k−1f
|x|2

∣∣∣
|x|α

∥∥∥∥∥∥
2

L2(G)

+
k−l−2∑
j=1

(
j−1∏
i=0

C2i+α

)2 ∥∥∥∥∥∥
∣∣∣R̃k−jf + C2j+α

R̃k−j−1f
|x|2

∣∣∣
|x|2j+α

∥∥∥∥∥∥
2

L2(G)

+ 2Cα

∥∥∥∥∥∥
∣∣∣R(R̃k−1f) + Q−4−2α

2|x| R̃k−1f
∣∣∣

|x|1+α

∥∥∥∥∥∥
2

L2(G)
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+ 2
k−l−2∑
j=1

(
j−1∏
i=0

C2i+α

)2

C2j+α

∥∥∥∥∥∥
∣∣∣R(R̃k−j−1f) + Q−4−2α−4j

2|x| R̃k−j−1f
∣∣∣

|x|1+2j+α

∥∥∥∥∥∥
2

L2(G)

(3.45)

and∥∥∥∥∥RR̃kf|x|α
∥∥∥∥∥
2

L2(G)

=

(
k−l−1∏
i=0

Q2 − 4(1 + 2i+ α)2

4

)2 ∥∥∥∥∥ RR̃lf
|x|2(k−l)+α

∥∥∥∥∥
2

L2(G)

+
(Q− 2− 2α)2

4

(
k−l−2∏
i=0

C2i+1+α

)2
∥∥∥∥∥∥
∣∣∣R2R̃lf + Q+2−4(k−l)−2α

2|x| RR̃lf
∣∣∣

|x|2(k−l−1)+1+α

∥∥∥∥∥∥
2

L2(G)

+
(Q− 2− 2α)2

4

∥∥∥∥∥∥
∣∣∣R̃kf + Cα

R̃k−1f
|x|2

∣∣∣
|x|α

∥∥∥∥∥∥
2

L2(G)

+
(Q− 2− 2α)2

4

k−l−2∑
j=1

(
j−1∏
i=0

C2i+1+α

)2
∥∥∥∥∥∥
∣∣∣R̃k−jf + C2j+1+α

R̃k−j−1f
|x|2

∣∣∣
|x|2j+α+1

∥∥∥∥∥∥
2

L2(G)

+ 2C1+α
(Q− 2− 2α)2

4

∥∥∥∥∥∥
∣∣∣R(R̃k−1f) + Q−6−2α

2|x| R̃k−1f
∣∣∣

|x|2+α

∥∥∥∥∥∥
2

L2(G)

+ 2
(Q− 2− 2α)2

4

k−l−2∑
j=1

(
j−1∏
i=0

C2i+1+α

)2

C2j+1+α

×
∥∥∥∥∥∥
∣∣∣R(R̃k−j−1f) + Q−6−2α−4j

2|x| R̃k−j−1f
∣∣∣

|x|1+2j+α

∥∥∥∥∥∥
2

L2(G)

+

∥∥∥∥∥∥
∣∣∣RR̃kf + Q−2−2α

2
R̃kf
|x|

∣∣∣
|x|α

∥∥∥∥∥∥
2

L2(G)

. (3.46)

As consequences, we have the following weighted Rellich type inequalities for
all complex-valued functions f ∈ C∞

0 (G\{0}):
(1) For any α ∈ (−Q/2, (Q− 4(k− l− 1))/2) if k ≥ l+2 and α ∈ R if k = l+1,

we have

4

(Q − 2α)2

(
k−l−1∏
i=0

Q2 − 4(2i+ α)2

4

)2 ∥∥∥∥∥ RR̃lf
|x|2(k−l)−1+α

∥∥∥∥∥
2

L2(G)

≤
∥∥∥∥∥R̃kf|x|α

∥∥∥∥∥
2

L2(G)

.

(3.47)
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(2) For any α ∈ (−(Q + 2)/2, (Q − 4(k − l) + 2)/2) if k ≥ l + 2 and α ∈ R if
k = l + 1, we have(

k−l−1∏
i=0

Q2 − 4(1 + 2i+ α)2

4

)2 ∥∥∥∥∥ RR̃lf
|x|2(k−l)+α

∥∥∥∥∥
2

L2(G)

≤
∥∥∥∥∥RR̃kf|x|α

∥∥∥∥∥
2

L2(G)

.

(3.48)

Moreover, inequalities (3.47) and (3.48) are sharp and there is an equality in each
of them if and only if f = 0.

Proof of Theorem 3.1.14. Let g := R̃k+1f . Applying (3.38) to R̃k−l−1g and then
Theorem 3.1.13 to R̃R̃lf , one obtains equality (3.45). Note that

Q+ 4(k − l − 1) + 2α

2

k−l−2∏
i=0

C2i+α =
2

Q− 2α

k−l−1∏
i=0

Q2 − 4(2i+ α)2

4
.

By applying Theorem 3.1.1 to RR̃kf , and then using (3.45) for R̃kf with weights
|x|2(1+α), together with the equality

Q− 2− 2α

2

(Q + 4(k − l − 1) + 2 + 2α)2

4

k−l−2∏
i=0

C2i+α =

k−l−1∏
i=0

Q2 − 4(1 + α+ 2i)2

4
,

we also obtain (3.46).

Consequently, inequalities (3.47) and (3.48) follow from respective identities
(3.45) and (3.46) by dropping non-negative remainder terms on the right-hand
side. The sharpness of (3.47) and (3.48) follows by considering, respectively, as in
the previous theorems, approximations of the function r−(Q−2α−4k)/2 and of the
function r−(Q−2α−2−4k)/2.

If for some function f we have the equality in (3.47), then (3.45) implies that
we have

R(R̃k−1f) +
Q− 4− 2α

2|x| R̃k−1f = 0.

This means that

E(R̃k−1f) = −Q− 4− 2α

2
R̃k−1f.

By Proposition 1.3.1, Part (i), it follows that R̃k−1f is positively homogeneous of
order−(Q−4−2α)/2. Since R̃k−1f/|x|2α ∈ L2(G), we then must have R̃k−1f = 0,
which in turn implies f = 0. The same arguments also work for (3.48). �

Using the established theorems, as a corollary one gets the following weighted
Lp-Hardy–Rellich type identities which will, in turn, imply the corresponding in-
equalities.



3.1. Rellich inequality 153

Theorem 3.1.15 (Higher-order weighted Lp-Hardy–Rellich type identities). Let G
be a homogeneous group of homogeneous dimension Q, with a homogeneous quasi-
norm | · | on G. Let k ∈ N be a positive integer, let 1 < p < Q/k, and let α ∈ R.
Then for all complex-valued functions f ∈ C∞

0 (G\{0}) we have the identities:

(1) If k = 2l, l ≥ 2, then∥∥∥∥ R̃lf

|x|α
∥∥∥∥p

Lp(G)

=

∣∣∣∣∣
l−1∏
i=0

Cp,2i+α

∣∣∣∣∣
p ∫

G

|f |p
|x|p(k+α)

dx+ p

∫
G

1

|x|pαRp

(
Cp,α

R̃l−1f

|x|2 ,−R̃lf

)
dx

+ p
l−1∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+α

∣∣∣∣∣
p ∫

G

1

|x|p(2j+α)
Rp

(
Cp,2j+α

R̃l−j−1f

|x|2 ,−R̃l−jf

)
dx

+Bp,α(p− 1)

∫
G

|R̃l−1f |p−2

|x|p(2j+α)−2

∣∣∣∣R|R̃l−1f |+ Q− p(2 + α)

p|x| |R̃l−1f |
∣∣∣∣2 dx

+Bp,α

∫
G

|R̃l−1f |p−4(Im(R̃l−1fRR̃l−1f))2

|x|p(2+α)−2
dx (3.49)

+

l−1∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+α

∣∣∣∣∣
p

Bp,α+2j

∫
G

|R̃l−j−1f |p−4(Im(R̃l−j−1fRR̃l−j−1f))2

|x|p(2(j+1)+α)−2
dx

+ (p− 1)

∫
G

|R̃l−j−1f |p−2

|x|p(2(j+1)+α)−2

∣∣∣∣R|R̃l−j−1f |+ Q− p(2(j + 1) + α)

p|x| |R̃l−j−1f |
∣∣∣∣2 dx,

where Rp is as in (2.22), i.e.,

Rp(ξ, η) :=
1

p
|η|p + p− 1

p
|ξ|p − Re(|ξ|p−2ξη),

as well as

Bp,α+2j = p|Cp,α+2j |p−2Cp,α+2j ,

and

Cp,α =
(Q− 2p− pα)(Q + p′α)

pp′
, p′ =

p

p− 1
.

(2) If k = 2l + 1, l ≥ 1, then

∥∥∥∥R(R̃lf)

|x|α
∥∥∥∥p

Lp(G)

=

∣∣∣∣Q− p(1 + α)

p

∣∣∣∣p
∣∣∣∣∣
l−1∏
i=0

Cp,2i+1+α

∣∣∣∣∣
p ∫

G

|f |p
|x|p(k+α)

dx

+ p

∫
G

1

|x|pαRp

(
−Q− p(1 + α)

p

R̃lf

|x| ,RR̃lf

)
dx

+Ap,α

∫
G

1

|x|p(1+α)
Rp

(
Cp,1+α

R̃l−1f

|x|2 ,−R̃lf

)
dx
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+Ap,α

l−1∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+1+α

∣∣∣∣∣
p ∫

G

1

|x|p(2j+1+α)
Rp

(
Cp,2j+1+α

R̃l−j−1f

|x|2 ,−R̃l−jf

)
dx

+Ap,α
Bp,α+1

p

[
(p− 1)

∫
G

|R̃l−1f |p−2

|x|p(3+α)−2

∣∣∣∣R|R̃l−1f |+ Q− p(3 + α)

p|x| |R̃l−1f |
∣∣∣∣2 dx

]

+Ap,α
Bp,α+1

p

[∫
G

|R̃l−1f |p−4(Im(R̃l−1fRR̃l−1f))2

|x|p(3+α)−2
dx

]
(3.50)

+Ap,α

l−1∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+1+α

∣∣∣∣∣
p

Bp,α+2j+1

p

[ ∫
G

|R̃l−j−1f |p−4(Im(R̃l−j−1fRR̃l−j−1f))2

|x|p(2j+3+α)−2
dx

+ (p− 1)

∫
G

|R̃l−j−1f |p−2

|x|p(2j+3+α)−2

∣∣∣∣R|R̃l−j−1f |+ Q− p(2j + 3 + α)

p|x| |R̃l−j−1f |
∣∣∣∣2 dx

]
,

where Ap,α = p
∣∣∣Q−p(1+α)

p

∣∣∣p.
Proof of Theorem 3.1.15. The equality (3.49) follows from (3.25). The equality
(3.50) is consequence of (3.49) and (3.32). Note that in (3.50), if k = 2l+1, l ≥ 1,
then the terms concerning the sum from 1 to l − 1 do not appear if l = 1. �

By dropping the non-negative remainder terms in (3.49) and (3.50), we obtain
the following higher-order weighted Lp-Hardy–Rellich type inequalities.

Corollary 3.1.16 (Higher-order weighted Lp-Hardy–Rellich type inequalities). Let
G be a homogeneous group of homogeneous dimension Q and let | · | be a homo-
geneous quasi-norm on G. Then for any α ∈ R and all complex-valued functions
f ∈ C∞

0 (G\{0}) we have:

(1) if 1 < p < Q/2k and α ∈ (−Q(p− 1))/p, (Q− 2pk)/p), then(
k−1∏
i=0

Cp,2i+α

)∥∥∥∥ f

|x|(2k+α)
∥∥∥∥
Lp(G)

≤
∥∥∥∥∥R̃kf|x|α

∥∥∥∥∥
Lp(G)

. (3.51)

(2) if 1 < p < Q/(2k + 1) and α ∈ (−(Q+ p′)/p′, (Q− p(2k + 1))/p), then

Q− p(1 + α)

p

(
k−1∏
i=0

Cp,2i+1+α

)∥∥∥∥ f

|x|(2k+1+α)

∥∥∥∥
Lp(G)

≤
∥∥∥∥∥RR̃kf|x|α

∥∥∥∥∥
Lp(G)

.

(3.52)

In the above inequalities

Cp,α =
(Q − 2p− pα)(Q + p′α)

pp′
, p′ =

p

p− 1
.

Inequalities (3.51) and (3.52) are sharp and equalities hold in each of them if and
only if f = 0.
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Proof of Corollary 3.1.16. Inequalities (3.51) and (3.52) are immediate consequen-
ces of equalities (3.49) and (3.50), respectively, since Cp,2i+α+1 ≥ 0 for 0 ≤ i ≤ k−1
under the respective assumptions on indices. The sharpness of constants in (3.51)
and (3.52) can be checked by approximating the function r−(Q−p(2k+α))/p and the
function r−(Q−p(2k+1+α))/p, respectively, by smooth compactly supported func-
tions. Moreover, if for some function f an equality holds in any of these inequal-
ities, then it follows from Theorem 3.1.15 that |f | is positively homogeneous of
degree −(Q−p(2k+α))/p and −(Q−p(2k+1+α))/p, respectively, which implies
that f = 0 in view of the condition of Lp integrability. �

As usual, Hardy inequalities imply the corresponding uncertainty principles.

Corollary 3.1.17 (Higher-order Hardy–Rellich uncertainty principles). Let G be a
homogeneous group of homogeneous dimension Q and let | · | be a homogeneous
quasi-norm on G. Let k ∈ N be a positive integer and let p > 1. Then for all
complex-valued functions f ∈ C∞

0 (G\{0}) we have:

(1) if k = 2l, l ≥ 1, and α ∈ (−Q(p− 1)/p), (Q− 2pl)/p), then(
l−1∏
i=0

Cp,2i+α

)∫
G

|f |2dx ≤
(∫

G

|R̃lf |p
|x|pα dx

) 1/p(∫
G

|f |p′ |x|p′(2l+α)dx
)1/p′

.

(3.53)

(2) if k = 2l + 1, l ≥ 0, and α ∈ (−(Q + p′)/p′, (Q − p(2l + 1))/p) if l ≥ 1 and
α ∈ R if l = 0, then∣∣∣∣∣

Q−p(1+α)
p

Cp,2l+1+α

l∏
i=0

Cp,2i+1+α

∣∣∣∣∣
∫
G

|f |2dx

≤
(∫

G

|RR̃lf |p
|x|pα dx

) 1/p(∫
G

|f |p′ |x|p′(2l+1+α)dx

) 1/p′

.

(3.54)

Proof of Corollary 3.1.17. By the Hölder inequality, we have∫
G

|f |2dx =

∫
G

|f |
|x|2l+α |f ||x|

2l+αdx ≤
(∫

G

|f |p
|x|p(2l+α) dx

)1
p
(∫

G

|f |p′ |x|p′(2l+α)dx
)1
p′
.

Further, applying inequality (3.51) to this, we get (3.53) with C2i+α > 0 for
0 ≤ i ≤ l − 1 and α ∈ (−Q(p − 1)/p, (Q − 2pl)/p). Inequality (3.54) is proved in
the same way. �

Combining Corollary 3.28 and Theorem 2.24, we obtain the weighted
Lp-Rellich type inequality below which is an Lp-analogue of Theorem 3.1.14.

Theorem 3.1.18 (Higher-order Lp-weighted Rellich identities and inequalities).
Let G be a homogeneous group of homogeneous dimension Q and let | · | be any
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homogeneous quasi-norm on G. Let k, l ∈ N be non-negative integers such that
k ≥ l + 1 and let p > 1. Then for any α ∈ R and for all complex-valued functions
f ∈ C∞

0 (G\{0}) we have∥∥∥∥∥R̃kf|x|α
∥∥∥∥∥
p

Lp(G)

=
pp

|Q− pα|p
∣∣∣∣∣
k−l−1∏
i=0

(Q − p(2i+ α))(Q + p′(2i+ α))

pp′

∣∣∣∣∣
p ∫

G

|RR̃lf |p
|x|p(2(k−l)−1+α)

dx

+ p

∣∣∣∣∣
k−l−2∏
i=0

Cp,2i+α

∣∣∣∣∣
p ∫

G

Rp

(
Q+p′(2(k−l−1)+α)

p′
RR̃lf
|x| , R̃l+1f

)
|x|p(2(k−l−1)+α)

dx

+ p

∫
G

Rp

(
−Cp,α R̃k−1f

|x|2 , R̃kf
)

|x|pα dx

+ p

k−l−2∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+α

∣∣∣∣∣
p ∫

G

Rp

(
−Cp,2j+α R̃k−j−1f

|x|2 , R̃k−jf
)

|x|p(2j+α) dx

+Bp,α(p− 1)

∫
G

|R̃k−1f |p−2

|x|p(2+α)−2

∣∣∣∣R|R̃k−1f |+ Q− p(2 + α)

p|x| |R̃k−1f |
∣∣∣∣2 dx

+Bp,α

∫
G

|R̃k−1f |p−4(Im(R̃l−1fRR̃k−1f))2

|x|p(2+α)−2
dx

+

k−l−2∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+α

∣∣∣∣∣
p

Bp,α+2j

∫
G

|R̃k−j−1f |p−4(Im(R̃k−j−1fRR̃k−j−1f))2

|x|p(2(j+1)+α)−2
dx

+ (p− 1)

∫
G

|R̃k−j−1f |p−2

|x|p(2(j+1)+α)−2

∣∣∣R|R̃k−j−1f |

+
Q− p(2(j + 1) + α)

p|x| |R̃k−j−1f |
∣∣∣∣2 dx, (3.55)

where Rp is as in (2.22):

Rp(ξ, η) :=
1

p
|η|p + p− 1

p
|ξ|p − Re(|ξ|p−2ξη),

Bp,α+2j = p|Cp,α+2j |p−2Cp,α+2j ,

and

Cp,α =
(Q − 2p− pα)(Q + p′α)

pp′
, p′ =

p

p− 1
.



3.1. Rellich inequality 157

We also have∥∥∥∥∥RR̃kf|x|α
∥∥∥∥∥
p

Lp(G)

=

∣∣∣∣∣
k−l−1∏
i=0

(Q− p(2i+ 1 + α))(Q + p′(2i+ 1 + α))

pp′

∣∣∣∣∣
p ∫

G

|RR̃lf |p
|x|p(2(k−l)−1+α)

dx

+Ap,α

∣∣∣∣∣
k−l−2∏
i=0

Cp,2i+1+α

∣∣∣∣∣
p ∫

G

Rp

(
Q+p′(2(k−l)−1+α)

p′
RR̃lf
|x| , R̃l+1f

)
|x|p(2(k−l)−1+α)

dx

+Ap,α

∫
G

Rp

(
−Cp,1+α R̃k−j−1f

|x|2 , R̃k−jf
)

|x|p(1+α) dx

+Ap,α

k−l−2∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+1+α

∣∣∣∣∣
p ∫

G

Rp

(
−Cp,2j+1+α

R̃k−j−1f
|x|2 , R̃k−jf

)
|x|p(2j+1+α)

dx

+Ap,α|Bp,α+1

p
(p− 1)

∫
G

|R̃k−1f |p−2

|x|p(3+α)−2

∣∣∣∣R|R̃k−1f |+ Q− p(3 + α)

p|x| |R̃k−1f |
∣∣∣∣2 dx

+Ap,α
Bp,α+1

p

∫
G

|R̃k−1f |p−4(Im(R̃k−1fRR̃k−1f))2

|x|p(3+α)−2
dx

+Ap,α

k−l−2∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+1+α

∣∣∣∣∣
p

Bp,2j+α+1

p

×
∫
G

|R̃k−j−1f |p−4(Im(R̃k−j−1fRR̃k−j−1f))2

|x|p(2(j+1)+1+α)−2
dx

+ (p− 1)

∫
G

|R̃k−j−1f |p−2

|x|p(2(j+1)+1+α)−2

×
∣∣∣∣R|R̃k−j−1f |+ Q− p(2(j + 1) + α)

p|x| |R̃k−j−1f |
∣∣∣∣2 dx

+ p

∫
G

1

|x|pαRp
(
−Q− p− pα

p

R̃kf
|x| ,RR̃

kf

)
dx, (3.56)

where

Ap,α = p

∣∣∣∣Q − p(1 + α)

p

∣∣∣∣p .
Consequently, we obtain the following inequalities for all functions f ∈C∞

0 (G\{0}):
for any α ∈ (−Q(p− 1)/p, (Q− 2p(k − l − 1))/2) if k − l ≥ 2 and for any α ∈ R
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if k = l + 1, we have

p

|Q− pα|

∣∣∣∣∣
k−l−1∏
i=0

(Q − p(2i+ α))(Q + p′(2i+ α))

pp′

∣∣∣∣∣
∥∥∥∥∥ RR̃lf
|x|(2(k−l)−1+α)

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥R̃kf|x|α

∥∥∥∥∥
Lp(G)

;

(3.57)

and for any α ∈ (−(Q + p′)/p′, (Q − p(2(k − l − 1) + 1))/p) if k − l ≥ 2 and for
any α ∈ R if k = l + 1, we have∣∣∣∣∣

k−l−1∏
i=0

(Q− p(2i+ 1 + α))(Q + p′(2i+ 1 + α))

pp′

∣∣∣∣∣
∥∥∥∥∥ RR̃lf
|x|(2(k−l)−1+α)

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥RR̃kf|x|α

∥∥∥∥∥
Lp(G)

.

(3.58)

Moreover, these inequalities (3.57) and (3.58) are sharp and equality in any of
them holds if and only if f = 0.

Now let us present an extension of the critical Hardy inequality to the higher-
order derivatives. To do this, still following [Ngu17] until the end of this section,
we present a critical Rellich inequality for R̃ as follows.

Theorem 3.1.19 (Critical Rellich identity and inequality for R̃). Let G be a ho-
mogeneous group of homogeneous dimension Q ≥ 3 and let | · | be a homogeneous
quasi-norm on G. Let f ∈ C∞

0 (G\{0}) be any complex-valued function and denote

fR(x) := f(Rx/|x|)
for any x ∈ G and R > 0. Then we have∥∥∥∥∥ R̃f
|x|Qp −2

∥∥∥∥∥
p

Lp(G)

=

(
(p− 1)(Q− 2)

p

)p ∫
G

|f − fR|p
|x|Q

∣∣∣ln R
|x|
∣∣∣p dx

+ p

∫
G

1

|x|Q−2p
Rp

(
(Q− 2)

Rf
|x| , R̃f

)
dx

+ p(Q− 2)p
∫
G

1

|x|Q−pRp

(
−p− 1

p

f − fR
|x| ln R

|x|
,Rf

)
dx,

(3.59)

for any 1 < p < ∞ and any R > 0. Here Rp is as in (2.22). As a consequence,
for all complex-valued functions f ∈ C∞

0 (G\{0}) we have

(p− 1)(Q− 2)

p
sup
R>0

∥∥∥∥∥∥ f − fR
|x|Qp

∣∣∣ln R
|x|
∣∣∣
∥∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ R̃f
|x|Qp −2

∥∥∥∥∥
Lp(G)

, 1 < p <∞, (3.60)

with the constant sharp (p− 1)(Q− 2)/p.
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Proof of Theorem 3.1.19. Let 1 < p < ∞. Let us first restate equality (2.48) in
the form∫

G

|Rf |p
|x|Q−p dx =

(
p− 1

p

)p ∫
G

|f − fR|p
|x|Q| ln R

|x| |p
dx

+ p

∫
G

1

|x|Q−pRp

(
−p− 1

p

f − fR
|x| ln R

|x|
,Rf

)
dx,

(3.61)

for any R > 0. It follows from Theorem 3.1.7 for α = (Q− 2p)/p that∫
G

|R̃f |p
|x|Q−2p

dx = (Q− 2)p
∫
G

|Rf |p
|x|Q−p dx

+ p

∫
G

1

|x|Q−2p
Rp

(
(Q− 2)

Rf
|x| , R̃f

)
dx.

(3.62)

The combination of (3.61) and (3.62) gives (3.59), which in turn implies (3.60).

Let us now check the sharpness of (3.60). For small enough ε, δ > 0 and for
R > 2, let us define the function

fδ(x) :=

(
ln
R

|x|
)1− 1

p−δ
g(|x|),

where g is the function as in the proof of Theorem 3.1.4. A straightforward calcu-
lation gives

Rfδ(r) = −
(
1− 1

p
− δ

)
1

r

(
ln
R

r

)− 1
p−δ

g(r) +

(
ln
R

r

)1− 1
p−δ

g′(r)

and

R2fδ(r) = − 2

(
1− 1

p
− δ

)
1

r

(
ln
R

r

)− 1
p−δ

g′(r)

−
(
1− 1

p
− δ

)(
1

p
+ δ

)
1

r2

(
ln
R

r

)−1− 1
p−δ

g(r)

+

(
1− 1

p
− δ

)
1

r2

(
ln
R

r

)− 1
p−δ

g(r) +

(
ln
R

r

)1− 1
p−δ

g′′(r).

Therefore, we have

R̃fδ(r) = − 2

(
1− 1

p
− δ

)
1

r

(
ln
R

r

)− 1
p−δ

g′(r)

− (Q− 2)

(
1− 1

p
− δ

)
1

r2

(
ln
R

r

)− 1
p−δ

g(r)

−
(
1− 1

p
− δ

)(
1

p
+ δ

)
1

r2

(
ln
R

r

)−1− 1
p−δ

g(r) +

(
ln
R

r

)1− 1
p−δ
R̃g(r).
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Since (fδ)R = 0 we obtain∫
G

|fδ − (fδ)R|p
|x|Q|| ln R

|x| |p
dx = |℘|

∫ 2

0

1

r
(lnR− ln r)−1−δpg(r)pdr

≥ |℘|
∫ 1

0

1

r
(lnR− ln r)−1−δpdr

=
1

δp
(lnR)pσ|℘|.

Thus,

lim
δ→0

∫
G

|fδ − (fδ)R|p
|x|Q|| ln R

|x| |p
dx =∞.

At the same time, direct calculations also give∫
G

1

|x|Q−2p

∣∣∣∣∣ 1|x|
(
ln
R

|x|
)− 1

p−δ
g′(|x|)

∣∣∣∣∣
p

dx = O(1),

∫
G

1

|x|Q−2p

∣∣∣∣∣ 1

|x|2
(
ln
R

|x|
)−1− 1

p−δ
g(|x|)

∣∣∣∣∣
p

dx = O(1),

∫
G

1

|x|Q−2p

∣∣∣∣∣
(
ln
R

|x|
)1− 1

p−δ
R̃g(|x|)

∣∣∣∣∣
p

dx = O(1),

and∫
G

1

|x|Q−2p

∣∣∣∣∣ 1|x|
(
ln
R

|x|
)− 1

p−δ
g′(|x|)

∣∣∣∣∣
p

dx = |℘|
∫ 2

0

1

r
(lnR− ln r)−1−δpg(r)pdr

=

∫
G

|fδ − (fδ)R|p
|x|Q|| ln R

|x| |p
dx

Consequently, we obtain

lim
δ→0

∫
G

|R̃fδ|p
|x|Q−2p dx∫

G

|fδ−(fδ)R|p
|x|Q|| ln R

|x| |p
dx

=

(
(p− 1)(Q− 2)

p

)p
.

This proves the sharpness of (3.60). �

Consequently, the following identities hold true.

Theorem 3.1.20 (Higher-order critical Rellich identities for R̃). Let G be a homo-
geneous group of homogeneous dimension Q ≥ 3 and let | · | be a homogeneous
quasi-norm on G. Let f ∈ C∞

0 (G\{0}) be any complex-valued function and denote

fR(x) := f(Rx/|x|)
for x ∈ G and R > 0.
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Then for 2 ≤ k < Q/2 we have∥∥∥∥∥ R̃kf|x|Qp −2k

∥∥∥∥∥
p

Lp(G)

=

(
Q− 2

p′

)p(k−1∏
i=1

ai,Q

)p ∫
G

|f − fR|p
|x|Q|

∣∣∣ln R
|x|
∣∣∣p dx (3.63)

+ p

(
k−1∏
i=1

ai,Q

)p ∫
G

1

|x|Q−2p
Rp

(
(Q − 2)

Rf
|x| , R̃f

)
dx

+ p(Q− 2)p

(
k−1∏
i=1

ai,Q

)p ∫
G

1

|x|Q−pRp

(
−p− 1

p

f − fR
|x| ln R

|x|
,Rf

)
dx

+ p

∫
G

1

|x|Q−2kp
Rp

(
−ak−1,Q

R̃k−1f

|x|2 , R̃kf
)
dx

+ p

k−2∑
j=1

(
k−1∏
i=1

ai,Q

)p ∫
G

1

|x|Q−2(k−j)pRp

(
−ak−j−1,Q

R̃k−j−1f

|x|2 , R̃k−jf
)
dx

+ pap−1
k−1,Q(p− 1)

∫
G

|R̃k−1f |p−2

|x|Q−2(k−1)p−2

∣∣∣∣R|R̃k−1f |+ 2(k − 1)

|x| |R̃k−1f |
∣∣∣∣2 dx

+ pap−1
k−1,Q

∫
G

|R̃k−1f |p−4(Im(R̃k−1fRR̃k−1f))2

|x|Q−2(k−1)p−2
dx

+ p

l−1∑
j=1

⎛⎝ k−1∏
i=k−j

ak−i−1,Q

⎞⎠p

ap−1
k−i−1,Q

×
∫
G

|R̃k−j−1f |p−4(Im(R̃k−j−1fRR̃k−j−1f))2

|x|Q−2(k−j−1)p−2

+ p

l−1∑
j=1

⎛⎝ k−1∏
i=k−j

ak−i−1,Q

⎞⎠p

ap−1
k−i−1,Q(p− 1)

×
∫
G

|R̃k−j−1f |p−2

|x|Q−2(k−j−1)p−2

∣∣∣∣R|R̃k−j−1f |+ Q− 2p(2(j + 1) + α)

p|x| |R̃k−j−1f |
∣∣∣∣2 dx,

where
aj,Q = 2j(Q− 2j − 2)

and Rp is as in (2.22). For 1 ≤ k < (Q − 1)/2 we also have∥∥∥∥∥ RR̃kf
|x|Qp −(2k+1)

∥∥∥∥∥
p

Lp(G)

= (2k)p
(
(p− 1)(Q − 2)

p

)p(k−1∏
i=1

ai,Q

)p ∫
G

|f − fR|p
|x|Q

∣∣∣ln R
|x|
∣∣∣p dx

+ p(2k)p

(
k−1∏
i=1

ai,Q

)p ∫
G

1

|x|Q−2p
Rp

(
(Q− 2)

Rf
|x| , R̃f

)
dx
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+ p(2k)p(Q− 2)p

(
k−1∏
i=1

ai,Q

)p ∫
G

1

|x|Q−pRp

(
−p− 1

p

f − fR
|x| ln R

|x|
,Rf

)
dx

+ p(2k)p
∫
G

1

|x|Q−2kp
Rp

(
−ak−1,Q

R̃k−1f

|x|2 , R̃kf
)
dx

+ p(2k)p
k−2∑
j=1

⎛⎝ k−1∏
i=k−j

ai,Q

⎞⎠p∫
G

1

|x|Q−2(k−j)pRp

(
−ak−j−1,Q

R̃k−j−1f

|x|2 , R̃k−jf
)
dx

+ p(2k)pap−1
k−1,Q(p− 1)

∫
G

|R̃k−1f |p−2

|x|Q−2(k−1)p−2

∣∣∣∣R|R̃k−1f |+ 2(k − 1)

|x| |R̃k−1f |
∣∣∣∣2 dx

+ p(2k)pap−1
k−1,Q

∫
G

|R̃k−1f |p−4(Im(R̃k−1fRR̃k−1f))2

|x|Q−2(k−1)p−2
dx

+ p(2k)p
k−2∑
j=1

(
k−1∏
i=1

ak−i−1,Q

)p
ap−1
k−i−1,Q

×
∫
G

|R̃k−j−1f |p−4(Im(R̃k−j−1fRR̃k−j−1f))2

|x|Q−2(k−j−1)p−2
dx

+ p(2k)p
k−2∑
j=1

(
k−1∏
i=1

ak−i−1,Q

)p
ap−1
k−i−1,Q(p− 1)

×
∫
G

|R̃k−j−1f |p−2

|x|Q−2(k−j−1)p−2

∣∣∣∣R|R̃k−j−1f |+ Q− 2p(2(j + 1) + α)

p|x| |R̃k−j−1f |
∣∣∣∣2 dx

+ p

∫
G

1

|x|Q−(2k+1)p
Rp

(
−2k R̃

kf

|x| ,RR̃
kf

)
dx. (3.64)

Proof of Theorem 3.1.20. Denoting g = R̃f and applying (3.49) to the function g
with l = k − 1, and then using (3.59), we arrive at (3.63). To prove (3.64) we use
Theorem 2.1.8 with α = (Q− 2(k + 1)p)/p which gives∥∥∥∥∥ RR̃kf
|x|Qp −(2k+1)

∥∥∥∥∥
p

Lp(G)

= (2k)p
∫
G

|R̃kf |p
|x|Q−2kp

dx

+ p

∫
G

1

|x|Q−(2k+1)p
Rp

(
−2k R̃

kf

|x| ,RR̃
kf

)
dx.

(3.65)

Now, the combination of (3.65) and (3.63) implies (3.64). �

As a consequence of Theorem 3.1.20 we have the corresponding inequalities.

Corollary 3.1.21 (Higher-order critical Rellich inequalities for R̃). Let G be a ho-
mogeneous group of homogeneous dimension Q ≥ 3 and let | · | be a homogeneous
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quasi-norm on G. Let f ∈ C∞
0 (G\{0}) be any complex-valued function and denote

fR(x) := f(Rx/|x|)

with x ∈ G and R > 0. Let 1 < p <∞. Then for any 2 ≤ k < Q/2 we have

2k−1(k − 1)!(p− 1)

p

k−1∏
i=0

(Q− 2i− 2) sup
R>0

∥∥∥∥∥∥ f − fR
|x|Qp

∣∣∣ln R
|x|
∣∣∣
∥∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ R̃f
|x|Qp −2k

∥∥∥∥∥
Lp(G)

.

(3.66)
Furthermore, for any 1 ≤ k ≤ (Q− 1)/2 we have

2kk!(p− 1)

p

k−1∏
i=0

(Q− 2i− 2) sup
R>0

∥∥∥∥∥∥ f − fR
|x|Qp

∣∣∣ln R
|x|
∣∣∣
∥∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ RR̃kf
|x|Qp −2(k+1)

∥∥∥∥∥
Lp(G)

.

(3.67)
Moreover, the constants in inequalities (3.66) and (3.67) are sharp.

Proof of Corollary 3.1.21. Inequalities (3.66) and (3.67) are immediate consequen-
ces of identities (3.63) and (3.64), respectively, since we have ai,Q ≥ 0 for 1 ≤ i ≤
k − 1, as well as the equalities

(Q − 2)(p− 1)

p

k−1∏
i=1

ai,Q =
2k−1(k − 1)!

p′

k−1∏
i=0

(Q− 2i− 2),

and
2k(Q− 2)(p− 1)

p

k−1∏
i=1

ai,Q =
2kk!(p− 1)

p

k−1∏
i=0

(Q − 2i− 2).

To show the sharpness of the constants in (3.66) and (3.67) we can use the same
argument as in the proof of Theorem 3.1.19 with the test function

fδ(x) :=

(
ln
R

|x|
)1− 1

p−δ
g(|x|).

This completes the proof. �
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3.2 Sobolev type inequalities

In this section we restate some of Hardy inequalities from the previous chapter in
terms of the Euler operator E from Section 1.3.2, relating them to Sobolev type
inequalities. We also briefly recast some of their proofs for the convenience of the
reader since fixing the notation in terms of the Euler and radial operators will be
useful in further arguments, especially for the analysis in Chapter 10.

The classical Sobolev inequality in Rn has the form

‖g‖Lp(Rn) ≤ C(p)‖∇g‖Lp∗(Rn), 1 < p, p∗ <∞, (3.68)

where ∇ is the standard gradient in Rn and

1

p
=

1

p∗
− 1

n
.

The aim of this section is to discuss another version of the Sobolev inequality (we
call it Sobolev type inequality) with respect to the operator x ·∇ instead of ∇, that
is, the inequality

‖g‖Lp(Rn) ≤ C′(p)‖x · ∇g‖Lq(Rn). (3.69)

For any λ > 0, by setting g(x) = h(λx) in (3.69), it is straightforward to see that
p = q is a necessary condition to have inequality (3.69). So, one may concentrate
on the case p = q. In the case of Rn this inequality was analysed by Ozawa and
Sasaki [OS09], now we concentrate on the setting of general homogeneous groups.

We also note that the classical Sobolev inequality (3.68) can be extended to
nilpotent Lie groups: for stratified groups see Folland [Fol75], for graded groups
see [FR17], with a general summary presented also in [FR16], and for another
version on general homogeneous groups see Section 4.3.

3.2.1 Hardy and Sobolev type inequalities

The inequality (3.70) below is such an extension of (3.69) formulated in terms of
the Euler operator E. Moreover, it turns out to be possible to derive a formula
for the remainder in this inequality. For indices 1 < p < Q this Sobolev type
inequality implies the Hardy inequality and for p = 2 they are equivalent. All this
is the subject of the following statement, an analogue of Theorem 2.1.1.

In this section, unless stated otherwise, G is a homogeneous group of homo-
geneous dimension Q ≥ 1 and | · | is a homogeneous quasi-norm on G.

Proposition 3.2.1 (Sobolev type and Hardy inequalities). We have the following
properties.

(i) For all complex-valued functions f ∈ C∞
0 (G\{0}),

‖f‖Lp(G) ≤
p

Q
‖Ef‖Lp(G) , 1 < p <∞, (3.70)

where the constant p
Q is sharp and the equality is attained if and only if f = 0.
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(ii) Let

u := u(x) = − p
Q
Ef(x), v := v(x) = f(x).

Then we have the following expression for the remainder:

‖u‖pLp(G) − ‖v‖pLp(G) = p

∫
G

Ip(v, u)|v − u|2dx, 1 < p <∞, (3.71)

for all real-valued functions f ∈ C∞
0 (G\{0}), where

Ip(h, g) = (p− 1)

∫ 1

0

|ξh+ (1− ξ)g|p−2ξdξ.

(iii) For all complex-valued functions f ∈ C∞
0 (G\{0}) the identity (3.71) with

p = 2 holds and can be written in the form

‖Ef‖2L2(G) =

(
Q

2

)2

‖f‖2L2(G) +

∥∥∥∥Ef +
Q

2
f

∥∥∥∥2
L2(G)

, Q ≥ 1. (3.72)

(iv) In the case p = 2 and Q ≥ 3 the inequality (3.70) is equivalent to Hardy’s
inequality, i.e., for any g ∈ C∞

0 (G\{0}) the inequality∥∥∥∥ g

|x|
∥∥∥∥
L2(G)

≤ 2

Q− 2
‖Rg‖L2(G) ≡

2

Q− 2

∥∥∥∥ 1

|x|Eg
∥∥∥∥
L2(G)

. (3.73)

(v) In the case 1 < p < Q the inequality (3.70) yields Hardy’s inequality for any
f ∈ C∞

0 (G\{0}), i.e., the inequality∥∥∥∥ f|x|
∥∥∥∥
Lp(G)

≤ p

Q − p ‖Rf‖Lp(G) . (3.74)

Remark 3.2.2.

1. As mentioned above in the Euclidian case, for any λ > 0, substituting g(x) =
h(λx) into the Sobolev type inequality

‖g‖Lp(G) ≤ C(p)‖Eg‖Lq(G), 1 < p, q <∞, (3.75)

and using the fact that the Euler operator is a homogeneous operator of order
zero, we obtain that p = q is a necessary condition for having inequality
(3.75).

2. In the Euclidean case G=R
n the inequality (3.70) was observed in [BEHL08]:

for any n ≥ 1 and 1 ≤ p <∞, for all f ∈ C∞
0 (Rn) we have

‖f‖Lp(Rn) ≤
p

n
‖x · ∇f‖Lp(Rn) .
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Indeed, this is a consequence of a simple integration by parts:

n

∫
Rn

|f(x)|pdx =

∫
Rn

div(x)|f(x)|pdx

= −pRe
∫
Rn

x · ∇f(x)|f(x)|p−2f(x)dx

≤ p
(∫

Rn

|x · ∇f(x)|pdx
) 1/p(∫

Rn

|f(x)|pdx
) p−1

p

,

using Hölder’s inequality in the last line.

There is a weighted version of the above inequality given in Theorem
6.6.1, see also Remark 6.6.2, Part 3.

3. The analysis in this section is based on [RSY18d].

Proof of Proposition 3.2.1. Let us first show that Part (ii) implies Part (i). By
dropping non-negative term in the right-hand side of (3.71), we get

‖f‖Lp(G) ≤
p

Q
‖Ef‖Lp(G) , 1 < p <∞, Q ≥ 1, (3.76)

for all real-valued functions f ∈ C∞
0 (G\{0}). Consequently, this inequality is valid

for all complex-valued functions if we use the identity

∀z ∈ C : |z|p =
(∫ π

−π
| cos θ|pdθ

)−1 ∫ π

−π
|Re(z) cos θ + Im(z) sin θ|p dθ, (3.77)

see (2.8).

So, the inequality (3.70) holds true and the expression for the remainder
implies that the constant p

Q is sharp.

Let us show that this constant is attained only for f = 0. In view of the
identity (3.77), it is enough to check this only for real-valued functions f . If the
right-hand side of (3.71) is zero, then we must have the equality

− p
Q
Ef(x) = f(x),

which yields that

Ef = −Q
p
f.

By the property of the Euler operator in Lemma 1.3.1 this means that f is posi-
tively homogeneous function of order −Qp , i.e., there exists a function h : ℘→ C,

where ℘ is defined by (1.12), such that

f(x) = |x|−Q
p h

(
x

|x|
)
. (3.78)



3.2. Sobolev type inequalities 167

In particular, (3.78) means that f cannot be compactly supported unless it is
identically equal to zero. Therefore, we have shown that Part (ii), namely (3.71)
implies Part (i) of Theorem 3.2.1.

Nevertheless, let us also give another direct proof of (3.70) for complex-valued
functions without using formula (3.77) and without using the remainder formula
in Part (ii).

Proof of Part (i). Introducing polar coordinates (r, y) = (|x|, x|x|) ∈ (0,∞)×℘
onG, where the sphere ℘ is defined in (1.12), we now apply the polar decomposition
formula (1.13). This and integrating by parts yield∫

G

|f(x)|pdx =

∫ ∞

0

∫
℘

|f(ry)|prQ−1dσ(y)dr

= − p
Q

∫ ∞

0

rQ Re

∫
℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

= − p
Q
Re

∫
G

|f(x)|p−2f(x)Ef(x)dx.

(3.79)

By using the Hölder inequality with an index q such that 1
p + 1

q = 1 we obtain∫
G

|f(x)|pdx = − p
Q
Re

∫
G

|f(x)|p−2f(x)Ef(x)dx

≤ p

Q

(∫
G

∣∣|f(x)|p−2f(x)
∣∣q dx) 1

q
(∫

G

|Ef(x)|p dx
) 1
p

=
p

Q

(∫
G

|f(x)|pdx
)1− 1

p

‖Ef‖Lp(G) ,

which gives inequality (3.70) in Part (i).

Proof of Part (ii). With the notation

u := u(x) = − p
Q
Ef and v := v(x) = f(x),

the formula (3.79) can be reformulated as

‖v‖pLp(G) = Re

∫
G

|v|p−2vudx. (3.80)

For any real-valued function f formula (3.79) becomes∫
G

|f(x)|pdx = − p
Q

∫
G

|f(x)|p−2f(x)Ef(x)dx,

and (3.80) becomes

‖v‖p
Lp(G) =

∫
G

|v|p−2vudx. (3.81)



168 Chapter 3. Rellich, Caffarelli–Kohn–Nirenberg, Sobolev Type Inequalities

Moreover, for all Lp-integrable real-valued functions u and v the following equali-
ties hold

‖u‖pLp(G) − ‖v‖pLp(G) + p

∫
G

(|v|p − |v|p−2vu)dx

=

∫
G

(|u|p + (p− 1)|v|p − p|v|p−2vu)dx

= p

∫
G

Ip(v, u)|v − u|2dx, 1 < p <∞,

where

Ip(v, u) = (p− 1)

∫ 1

0

|ξv + (1− ξ)u|p−2ξdξ.

Combining this with (3.81) we arrive at

‖u‖pLp(G) − ‖v‖pLp(G) = p

∫
G

Ip(v, u)|v − u|2dx,

which proves the equality (3.71).

Now we prove Part (iii). If p = 2, then the identity (3.80) can be rewritten
as

‖v‖2L2(G) = Re

∫
G

vudx.

Thus, we have

‖u‖2L2(G) − ‖v‖2L2(G) = ‖u‖2L2(G) − ‖v‖2L2(G) + 2

∫
G

(|v|2 − Re vu)dx

=

∫
G

(|u|2 + |v|2 − 2Re vu)dx

=

∫
G

|u− v|2dx,

which gives (3.72).

To show Part (iv) first we verify that the inequality (3.70) implies (3.73). A
direct calculation shows

‖Ef‖2L2(G) =

∥∥∥∥E g

|x|
∥∥∥∥2
L2(G)

=

∫ ∞

0

∫
℘

∣∣∣∣(r ddr
)
g(ry)

r

∣∣∣∣2 rQ−1dσ(y)dr

=

∥∥∥∥− g

|x| +
d

d|x|g
∥∥∥∥2
L2(G)

=

∥∥∥∥ g

|x|
∥∥∥∥2
L2(G)

− 2Re

∫
G

g

|x|
d

d|x|gdx+

∥∥∥∥ d

d|x|g
∥∥∥∥2
L2(G)

,



3.2. Sobolev type inequalities 169

where g = |x|f . From

−2Re
∫
G

g

|x|
d

d|x|gdx = −2Re
∫ ∞

0

∫
℘

g(ry)

r

d

dr
g(ry)rQ−1dσ(y)dr

= −Re
∫ ∞

0

∫
℘

d

dr
(|g|2)rQ−2dσ(y)dr

= (Q− 2)Re

∫ ∞

0

∫
℘

|g|2rQ−3dσ(y)dr

= (Q− 2)

∥∥∥∥ g

|x|
∥∥∥∥2
L2(G)

,

it follows that

‖Ef‖2L2(G) = (Q− 1)

∥∥∥∥ g|x|
∥∥∥∥2
L2(G)

+

∥∥∥∥ d

d|x|g
∥∥∥∥2
L2(G)

. (3.82)

Combining (3.70) and (3.82) we obtain∥∥∥∥ g|x|
∥∥∥∥2
L2(G)

≤ 4

Q2

(
(Q− 1)

∥∥∥∥ g|x|
∥∥∥∥2
L2(G)

+

∥∥∥∥ d

d|x|g
∥∥∥∥2
L2(G)

)
,

which gives (3.73).

Conversely, let us assume that (3.73) is valid. Then with the notation f =
g/|x| we get∥∥∥∥ d

d|x| (|x|f)
∥∥∥∥2
L2(G)

= ‖f + Ef‖2L2(G)

= ‖f‖2L2(G) + 2Re

∫
G

f(x)Ef(x)dx + ‖Ef‖2L2(G).

Hence by (1.42) and (3.73) it follows that

‖f‖2L2(G) ≤
4

(Q− 2)2

(
‖Ef‖2L2(G) − (Q− 1) ‖f‖2L2(G)

)
,

which gives

‖f‖L2(G) ≤
2

Q
‖Ef‖L2(G).

Now it remains to prove Part (v). We will show that the inequality (3.70)
gives (3.74). We have

‖R(|x|f)‖Lp(G) = ‖Ef + f‖Lp(G) ≥ ‖Ef‖Lp(G) − ‖f‖Lp(G).

Finally, by using the inequality (3.70) we establish

‖R(|x|f)‖Lp(G) ≥ Q− p
p
‖f‖Lp(G),

which implies the Hardy inequality (3.74). �
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3.2.2 Weighted Lp-Sobolev type inequalities

Now we establish weighted Lp-Sobolev type inequalities on the homogeneous group
G of homogeneous dimension Q ≥ 1.

Theorem 3.2.3 (Weighted Lp-Sobolev type inequalities). For all complex-valued
functions f ∈ C∞

0 (G\{0}), 1 < p < ∞, and any homogeneous quasi-norm | · | on
G for αp �= Q we have∥∥∥∥ f

|x|α
∥∥∥∥
Lp(G)

≤
∣∣∣∣ p

Q− αp
∣∣∣∣ ∥∥∥∥ 1

|x|αEf
∥∥∥∥
Lp(G)

for all α ∈ R. (3.83)

If αp �= Q then the constant
∣∣∣ p
Q−αp

∣∣∣ is sharp.

For αp = Q we have∥∥∥∥∥ f

|x|Qp

∥∥∥∥∥
Lp(G)

≤ p
∥∥∥∥∥ log |x||x|Qp

Ef

∥∥∥∥∥
Lp(G)

, (3.84)

where the constant p is sharp.

Proof of Theorem 3.2.3. Using the integration by parts formula from Proposition
1.2.10, for αp �= Q we obtain∫

G

|f(x)|p
|x|αp dx =

∫ ∞

0

∫
℘

|f(ry)|prQ−1−αpdσ(y)dr

= − p

Q− αp
∫ ∞

0

rQ−αpRe
∫
℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤
∣∣∣∣ p

Q− αp
∣∣∣∣ ∫

G

|Ef(x)||f(x)|p−1

|x|αp dx =

∣∣∣∣ p

Q − αp
∣∣∣∣ ∫

G

|Ef(x)||f(x)|p−1

|x|α+α(p−1)
dx.

By Hölder’s inequality, it follows that∫
G

|f(x)|p
|x|αp dx ≤

∣∣∣∣ p

Q− αp
∣∣∣∣ (∫

G

|Ef(x)|p
|x|αp dx

) 1
p
(∫

G

|f(x)|p
|x|αp dx

) p−1
p

,

which gives (3.83).

Now we show the sharpness of the constant. We need to check the equality
condition in the above Hölder inequality. Let us consider the function

g(x) =
1

|x|C ,

where C ∈ R, C �= 0 and αp �= Q. Then by a direct calculation we obtain∣∣∣∣ 1C
∣∣∣∣p( |Eg(x)||x|α

)p
=

( |g(x)|p−1

|x|α(p−1)

) p
p−1

,
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which satisfies the equality condition in Hölder’s inequality. This gives the sharp-

ness of the constant
∣∣∣ p
Q−αp

∣∣∣ in (3.83).

Now let us prove (3.84). Using integration by parts, we have∫
G

|f(x)|p
|x|Q dx =

∫ ∞

0

∫
℘

|f(ry)|prQ−1−Qdσ(y)dr

= −p
∫ ∞

0

log rRe

∫
℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤ p
∫
G

|Ef(x)||f(x)|p−1

|x|Q | log |x||dx = p

∫
G

|Ef(x)| log |x|||
|x|Qp

|f(x)|p−1

|x|Q(p−1)
p

dx.

By Hölder’s inequality, it follows that∫
G

|f(x)|p
|x|Q dx ≤ p

(∫
G

|Ef(x)|p| log |x||p
|x|Q dx

) 1/p(∫
G

|f(x)|p
|x|Q dx

) (p−1)/p

,

which gives (3.84).

Now we show the sharpness of the constant. We need to check the equality
condition in the above Hölder inequality. Let us consider the function

h(x) = (log |x|)C ,
where C ∈ R and C �= 0. Then by a direct calculation we obtain∣∣∣∣ 1C

∣∣∣∣p
(
|Eh(x)|| log |x||

|x|Qp

)p
=

(
|h(x)|p−1

|x|Q(p−1)
p

)p/(p−1)

,

which satisfies the equality condition in Hölder’s inequality. This gives the sharp-
ness of the constant p in (3.84). �

Let us consider separately the case p = 2, that is, let us restate Theorem
2.1.5 in terms of the operator E:

Proposition 3.2.4 (An identity for Euler operator). For every complex-valued func-
tion f ∈ C∞

0 (G\{0}) we have∥∥∥∥ 1

|x|αEf
∥∥∥∥2
L2(G)

=

(
Q

2
− α

)2 ∥∥∥∥ f

|x|α
∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αEf +
Q− 2α

2|x|α f

∥∥∥∥2
L2(G)

, (3.85)

for any α ∈ R.

Remark 3.2.5.

1. By dropping the non-negative last term in (3.85) we immediately get the
following inequality for α ∈ R with Q− 2α �= 0:∥∥∥∥ f

|x|α
∥∥∥∥
L2(G)

≤ 2

|Q− 2α|
∥∥∥∥ 1

|x|αEf
∥∥∥∥
L2(G)

, (3.86)
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for all complex-valued functions f ∈ C∞
0 (G\{0}), where the constant in

(3.86) is sharp and the equality is attained if and only if f = 0. This statement
on the constant and the equality follows by the same argument as that in
Remark 2.1.7.

2. By iterating the established weighted Sobolev inequality (3.83) one obtains
inequalities of higher order. Thus, for 1 < p < ∞, k ∈ N and α ∈ R with
Q �= αp we have ∥∥∥∥ f

|x|α
∥∥∥∥
Lp(G)

≤
∣∣∣∣ p

Q− αp
∣∣∣∣k ∥∥∥∥Ekf|x|α

∥∥∥∥
Lp(G)

(3.87)

for any complex-valued function f ∈ C∞
0 (G\{0}).

3. For k = 1 (3.87) implies the weighted Sobolev inequality and for k = 1 and
α = 0 this gives the Sobolev inequality. In the case k = 2 this can be thought
of as a (weighted) Sobolev–Rellich type inequality.

3.2.3 Stubbe type remainder estimates

The remainders in Hardy inequalities may be described in different ways: there
may be equalities or estimates of different forms. These are discussed in some
detail at various spaces of this book. Here, we give a remainder estimate in the
most basic case of L2. Such a type of inequalities have been analysed on Rn by
Stubbe [Stu90], and here we give its general version on homogeneous groups.

In the proof of the following statement we will use the useful feature that
some estimates involving radial derivatives of the Euler operator can be proved
first for radial functions, and then extended to non-radial ones by a more abstract
argument, see Section 1.3.3.

Theorem 3.2.6 (Stubbe type remainder estimate). Let G be a homogeneous group
of homogeneous dimension Q ≥ 3. Let | · | be a homogeneous quasi-norm. Then we

have for all f ∈ C∞
0 (G) and 0 ≤ δ < Q2

4 , the inequality

∫
G

|Ef(x)|2dx − δ
∫
G

|f(x)|2dx ≥
(
Q2

4 − δ
)Q−1

Q

(
(Q−2)2

4

)Q−1
Q

SQ

(∫
G

|x|2∗ |g(|x|)|2∗dx
) 2/2∗

(3.88)
with sharp constant, where

g(|x|) =M(f)(|x|) := 1

|℘|
∫
℘

f(|x|, y)dσ(y)

and

SQ := |℘| 2QQQ−2
Q (Q− 2)

(
Γ(Q/2)Γ(1 +Q/2)

Γ(Q)

)2/Q

. (3.89)
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Remark 3.2.7.

1. In the Abelian case G = (Rn,+), we have Q = n, and inequality (3.88)
becomes ∫

Rn

|(x · ∇)f(x)|2dx− δ
∫
Rn

|f(x)|2dx

≥
(
n2

4 − δ
)n−1

n

(
(n−2)2

4

)n−1
n

Sn

(∫
G

|x|2∗ |g(|x|)|2∗dx
) 2

2∗

.

(3.90)

2. An interesting observation is that the constant in the above inequality on R
n

is sharp for any quasi-norm | · |, that is, it does not depend on the quasi-norm
| · |. Therefore, this inequality is new already in the Euclidean setting of Rn.
When |x| = √

x21 + x22 + · · ·+ x2n is the Euclidean distance, the inequality
(3.90) was investigated in Rn in [BEHL08, Corollary 4.4] and in [Xia11,
Theorem 1.1].

3. The following result, proved in [Bli30], will be useful in the proof: Let f be
a non-negative function. Then for s ≥ 0 and q > p > 1 we have(∫ ∞

0

∣∣∣∣∫ s

0

f(r)dr

∣∣∣∣q rq/p−q−1dr

) p/q

≤ Cp,q
∫ ∞

0

|f(r)|pdr, (3.91)

where

Cp,q = (q − q/p)−p/q
⎛⎝ (q/p− 1)Γ

(
pq
q−p

)
Γ
(

p
q−p

)
Γ
(
p(q−1)
q−p

)
⎞⎠ (q−p)/q

is sharp. Moreover, the equality in (3.91) is attained for functions of the form

f(r) = c1(c2r
q/p−1 + 1) q/(p−q), c1 > 0, c2 > 0. (3.92)

Proof of Theorem 3.2.6. First we prove inequality (3.88) for | · |-radial functions
f(x) = f̃(|x|). Then we have g(r) = f̃(r) since

g(|x|) =M(f)(|x|) := 1

|℘|
∫
℘

f(|x|, y)dσ(y),

and we also have Ef(x) = |x|f̃ ′(|x|). We calculate∫
G

|Ef̃(|x|)|2dx− β(Q − β)
∫
G

|f̃(|x|)|2dx

= |℘|
(∫ ∞

0

|f̃ ′(r)|2rQ+1dr − β(Q− β)
∫ ∞

0

|f̃(r)|2rQ−1dr

)
,

(3.93)
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where 0 ≤ β < Q/2. Using the notation h(|x|) := |x|β f̃(|x|), and integrating by
parts we obtain∫ ∞

0

|h′(r)|2rQ+1−2βdr

=

∫ ∞

0

|βrβ−1f̃(r) + rβ f̃ ′(r)|2rQ+1−2βdr

= β2

∫ ∞

0

|f̃(r)|2rQ−1dr +

∫ ∞

0

|f̃ ′(r)|2rQ+1dr + β

∫ ∞

0

d

dr
|f̃(r)|2rQdr

=

∫ ∞

0

|f̃ ′(r)|2rQ+1dr − β(Q − β)
∫ ∞

0

|f̃(r)|2rQ−1dr.

(3.94)

Moreover, by changing the variables s = rQ−2β we get∫ ∞

0

|h′(r)|2rQ+1−2βdr =

∫ ∞

0

|(Q − 2β)s
Q−2β−1
Q−2β h′(s)|2sQ−2β+1

Q−2β
s

1
Q−2β−1ds

Q− 2β

= (Q − 2β)

∫ ∞

0

s2|h′(s)|2ds.
(3.95)

Combining (3.94) and (3.95), we restate (3.93) as∫
G

|Ef̃(|x|)|2dx− β(Q − β)
∫
G

|f̃(|x|)|2dx = |℘|(Q− 2β)

(∫ ∞

0

s2|h′(s)|2ds
)
.

(3.96)
Now setting φ(s) := h′(s) and ψ(s) := s−2φ(s−1), and using (3.91) with p = 2
and q = 2∗, we obtain∫ ∞

0

s2|h′(s)|2ds =
∫ ∞

0

s2|φ(s)|2ds =
∫ ∞

0

|ψ(s)|2ds

≥
(

Q

Q− 2

)Q−2
Q
(
Γ(Q/2)Γ(1 +Q/2)

Γ(Q)

) 2
Q

(∫ ∞

0

∣∣∣∣∫ s

0

|ψ(t)|dt
∣∣∣∣2∗ s 2−2Q

Q−2 ds

) 2
2∗

=

(
Q

Q− 2

)Q−2
Q
(
Γ(Q/2)Γ(1 +Q/2)

Γ(Q)

) 2
Q

(∫ ∞

0

∣∣∣∣∫ ∞

s−1

|φ(t)|dt
∣∣∣∣2∗ s 2−2Q

Q−2 ds

) 2
2∗

≥
(

Q

Q− 2

)Q−2
Q
(
Γ(Q/2)Γ(1 +Q/2)

Γ(Q)

) 2
Q
(∫ ∞

0

|h(s−1)|2∗s 2−2Q
Q−2 ds

) 2
2∗

=

(
Q

Q− 2

)Q−2
Q
(
Γ(Q/2)Γ(1 +Q/2)

Γ(Q)

) 2
Q
(∫ ∞

0

|h(s)|2∗s 2
Q−2 ds

) 2
2∗

= (Q− 2β)
2
2∗

(
Q

Q− 2

)Q−2
Q
(
Γ(Q/2)Γ(1 +Q/2)

Γ(Q)

)2
Q
(∫ ∞

0

|rf̃(r)|2∗rQ−1dr

) 2
2∗

,



3.3. Caffarelli–Kohn–Nirenberg inequalities 175

where we have used s = rQ−2β and h(r) = rβ f̃(r) in the last line. Thus, now
(3.96) implies that∫
G

|Ef̃(|x|)|2dx−β(Q−β)
∫
G

|f̃(|x|)|2dx

≥|℘|(Q−2β)
2Q−2
Q

(
Q

Q−2

)Q−2
Q
(
Γ(Q/2)Γ(1+Q/2)

Γ(Q)

) 2
Q
(∫ ∞

0

|rf̃(r)|2∗rQ−1dr

) 2
2∗

= |℘| 2Q (Q−2β)
2Q−2
Q

(
Q

Q−2

)Q−2
Q
(
Γ(Q/2)Γ(1+Q/2)

Γ(Q)

) 2
Q
(∫

G

|x|2∗ |f̃(|x|)|2∗dx
) 2

2∗

.

(3.97)

Here, denoting β = (Q −
√
Q2 − 4δ)/2 for 0 ≤ δ < Q2/4 and recalling that

g(|x|) = f̃(|x|), we see that (3.97) (with (3.89)) yields∫
G

|Ef̃(|x|)|2dx−δ
∫
G

|f̃(|x|)|2dx

≥|℘| 2Q (Q2−4δ)
Q−1
Q

(
Q

Q−2

)Q−2
Q
(
Γ(Q/2)Γ(1+Q/2)

Γ(Q)

) 2
Q
(∫

G

|x|2∗ |g(|x|)|2∗dx
) 2

2∗

=

(
Q2−4δ

(Q−2)2

)Q−1
Q

SQ

(∫
G

|x|2∗ |g(|x|)|2∗dx
) 2

2∗
. (3.98)

That is, we obtain (3.88) with sharp constant for all |·|-radial functions f ∈ C∞
0 (G).

Finally, using Proposition 1.3.3, and in (3.98) with g(|x|) = f̃(|x|), we get
(3.88) for non-radial functions. Clearly, the constant in (3.88) is sharp, since this
constant is sharp for radial functions by Remark 3.2.7, Part (3). �

3.3 Caffarelli–Kohn–Nirenberg inequalities

This section is devoted to deriving the Caffarelli–Kohn–Nirenberg inequalities in
the setting of homogeneous groups. Here we will be working with the radial oper-
ators and general quasi-norms. The case of stratified groups with the horizontal
gradient and weights will be discussed in Section 6.7.

First, we recall the classical Caffarelli–Kohn–Nirenberg inequalities on Rn

due to Caffarelli, Kohn and Nirenberg [CKN84], with | · | denoting the usual Eu-
clidean distance:

Theorem 3.3.1 (Classical Caffarelli–Kohn–Nirenberg inequality). Let n ∈ N and
let p, q, r, a, b, d, δ ∈ R be such that p, q ≥ 1, r > 0, 0 ≤ δ ≤ 1, and

1

p
+
a

n
,
1

q
+
b

n
,
1

r
+
c

n
> 0, (3.99)
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where
c = δd+ (1− δ)b.

Then there exists a positive constant C such that

‖|x|cf‖Lr(Rn) ≤ C‖|x|a|∇f |‖δLp(Rn)‖|x|bf‖1−δLq(Rn) (3.100)

holds for all f ∈ C∞
0 (Rn), if and only if the following conditions hold:

1

r
+
c

n
= δ

(
1

p
+
a− 1

n

)
+ (1− δ)

(
1

q
+
b

n

)
, (3.101)

a− d ≥ 0 if δ > 0, (3.102)

a− d ≤ 1 if δ > 0 and
1

r
+
c

n
=

1

p
+
a− 1

n
. (3.103)

Thus, in this section we are interested in inequalities of this type, and we
show that some Caffarelli–Kohn–Nirenberg inequalities continue to hold in the
setting of homogeneous groups, in particular, including the cases of anisotropic
structures on Rn, i.e., the quasi-norm | · | does not need to be the Euclidean norm
| · |E on Rn.

Some inequalities will be obtained as a consequence of the weighted Hardy
inequalities. As a particular case of such weighted inequalities we can think of the
inequalities (∫

Rn

|x|−pβE |f |pdx
) 2
p

≤ Cα,β
∫
Rn

|x|−2α
E |∇f |2dx, (3.104)

for f ∈ C∞
0 (Rn), where for n ≥ 3:

−∞ < α <
n− 2

2
, α ≤ β ≤ α+ 1, and p =

2n

n− 2 + 2(β − α) ,

and for n = 2:

−∞ < α < 0, α < β ≤ α+ 1, and p =
2

β − α.

Here

|x|E =
√
x21 + · · ·+ x2n

is the standard Euclidean norm. Moreover, we are interested in replacing the
Euclidean norm by a general quasi-norm as well as extending such inequalities
to general homogeneous groups.

As a special case we can highlight the case of p = 2 that was also studied by
[WW03] in the Euclidean setting. Here, for all f ∈ C∞

0 (Rn) we have∫
Rn

|x|−2(α+1)
E |f |2dx ≤ C̃α

∫
Rn

|x|−2α
E |∇f |2dx,
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with any n ≥ 2 and −∞ < α < 0, which in turn can be written for any f ∈
C∞

0 (Rn\{0}) as ∥∥∥∥ 1

|x|α+1
E

|f |
∥∥∥∥
L2(Rn)

≤ Cα
∥∥∥∥ 1

|x|αE
|∇f |

∥∥∥∥
L2(Rn)

, (3.105)

for all α ∈ R.

A homogeneous group version of the inequality (3.105) was obtained in Corol-
lary 2.1.6, that is, it was proved that if G is a homogeneous group of homoge-
neous dimension Q, then for any homogeneous quasi-norm | · | on G and for every
f ∈ C∞

0 (G\{0}) we have

|Q− 2− 2α|
2

∥∥∥∥ f

|x|α+1

∥∥∥∥
L2(G)

≤
∥∥∥∥ 1

|x|αRf
∥∥∥∥
L2(G)

for all α ∈ R, (3.106)

where R is the radial derivative operator with respect to the norm | · |. Note that if
α �= Q−2

2 , then the constant in (3.106) was shown to be sharp for any homogeneous
quasi-norm | · | on G.

Remark 3.3.2.

1. An alternative formulation of Theorem 3.3.1 emphasizing the appearing in-
dices was given by D’Ancona and Luca [DL12].

2. The improved versions of the Caffarelli–Kohn–Nirenberg inequality for ra-
dially symmetric functions with respect to the range of parameters were
investigated in [NDD12]. In [ZHD15] and [HZ11], weighted Hardy type in-
equalities were obtained for the generalized Baouendi–Grushin vector fields:
for γ = 0 it gives the standard gradient in Rn. We also refer to [HNZ11],
[Han15] for weighted Hardy inequalities on the Heisenberg group, to [HZD11]
and [ZHD14] on the H-type groups, and a recent paper [Yac18] on Lie groups
of polynomial growth.

3. The analysis in this section is based on [ORS18] as well as on [RSY17b] and
[RSY18b].

3.3.1 Lp-Caffarelli–Kohn–Nirenberg inequalities

In this section we generalize inequality (3.106) to Lp-cases for all 1 < p <∞. Since
all the inequalities are of similar type we will keep calling them the Caffarelli–
Kohn–Nirenberg inequalities.

Theorem 3.3.3 (Caffarelli–Kohn–Nirenberg inequality for Lp-norms). Let G be a
homogeneous group of homogeneous dimension Q ≥ 2 and let | · | be a homogeneous
quasi-norm on G. Then we have

|Q− γ|
p

∥∥∥∥∥ f

|x| γp

∥∥∥∥∥
p

Lp(G)

≤
∥∥∥∥ 1

|x|αRf
∥∥∥∥
Lp(G)

∥∥∥∥∥ f

|x| βp−1

∥∥∥∥∥
p−1

Lp(G)

, (3.107)
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for all complex-valued functions f ∈ C∞
0 (G\{0}), 1 < p < ∞, and all α, β ∈ R

with
γ = α+ β + 1.

If γ �= Q then the constant |Q−γ|
p is sharp.

Before proving this theorem let us point out some of its implications.

Remark 3.3.4.

1. In the Euclidean case G = (Rn,+), Theorem 3.3.3 gives the inequality

|n− γ|
p

∥∥∥∥∥ f

|x| γp

∥∥∥∥∥
p

Lp(Rn)

≤
∥∥∥∥ 1

|x|α
df

d|x|
∥∥∥∥
Lp(Rn)

∥∥∥∥∥ f

|x| βp−1

∥∥∥∥∥
p−1

Lp(Rn)

,

with the optimal constant. In particular, for the standard Euclidean distance
|x|E =

√
x21 + · · ·+ x2n, by using the Cauchy–Schwarz inequality, it follows

that

|n− γ|
p

∥∥∥∥∥ f

|x|
γ
p

E

∥∥∥∥∥
p

Lp(Rn)

≤
∥∥∥∥ 1

|x|αE
∇f

∥∥∥∥
Lp(Rn)

∥∥∥∥∥∥ f

|x|
β
p−1

E

∥∥∥∥∥∥
p−1

Lp(Rn)

,

for all f ∈ C∞
0 (Rn\{0}), with the sharp constant.

2. In the case α = 0, β = p − 1, and 1 < p < Q, the inequality (3.107) implies
the homogeneous group version of the Lp-Hardy inequality∥∥∥∥ 1

|x|f
∥∥∥∥
Lp(G)

≤ p

Q− p ‖Rf‖Lp(G) , (3.108)

again with p
Q−p being the best constant, see Section 2.1.1.

3. For G = (Rn,+), n ≥ 3, inequality (3.108) gives∥∥∥∥ f|x|
∥∥∥∥
Lp(Rn)

≤ p

n− p
∥∥∥∥ df

d|x|
∥∥∥∥
Lp(Rn)

. (3.109)

For the Euclidean distance, by the Cauchy–Schwarz inequality, it implies the
classical Hardy inequality:∥∥∥∥ f

|x|E

∥∥∥∥
Lp(Rn)

≤ p

n− p ‖∇f‖Lp(Rn) ,

for all f ∈ C∞
0 (Rn\{0}).

4. For the Euclidean distance, the exact formulae of the difference between
the right-hand side and the left-hand side of inequality (3.109) were investi-
gated by Ioku, Ishiwata and Ozawa [IIO16b], see also Machihara, Ozawa and
Wadade [MOW17a] as well as [IIO16a].
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5. One can obtain a number of Heisenberg–Pauli–Weyl type uncertainty in-
equities directly from the inequality (3.107) which have various consequences
and applications. For instance, if αp = α+ β + 1, inequality (3.107) gives

|Q− αp|
p

∥∥∥∥ f

|x|α
∥∥∥∥p
Lp(G)

≤
∥∥∥∥Rf|x|α

∥∥∥∥
Lp(G)

∥∥∥∥|x| 1
p−1

f

|x|α
∥∥∥∥p−1

Lp(G)

. (3.110)

For α+ β + 1 = 0 and α = −p, inequality (3.107) gives

Q

p
‖f‖pLp(G) ≤ ‖|x|pRf‖Lp(G)

∥∥∥∥ f|x|
∥∥∥∥p−1

Lp(G)

, (3.111)

all with sharp constants.

The Hardy inequality immediately implies a version of the Heisenberg–Pauli–
Weyl uncertainty principle.

Corollary 3.3.5 (Heisenberg–Pauli–Weyl type uncertainty principle). Let G be a
homogeneous group of homogeneous dimension Q ≥ 2 and let | · | be a homogeneous
quasi-norm on G. Then we have

‖f‖2L2(G) ≤
p

Q− p ‖Rf‖Lp(G) ‖|x|f‖L p
p−1 (G)

, 1 < p < Q, (3.112)

for all f ∈ C∞
0 (G\{0}).

Proof of Corollary 3.3.5. By applying the Hölder inequality to (3.108) with 1 <
p < Q, we get

‖f‖2L2(G) ≤
∥∥∥∥ 1

|x|f
∥∥∥∥
Lp(G)

‖|x|f‖
L

p
p−1 (G)

≤ p

Q− p ‖Rf‖Lp(G) ‖|x|f‖L p
p−1 (G)

,

(3.113)
giving (3.112). �
Remark 3.3.6.

1. For the Euclidean space G = (Rn,+) and p = 2, inequality (3.112) implies
the uncertainty principle for any homogeneous quasi-norm |x| on Rn:(∫

Rn

|f(x)|2dx
)2

≤
(

2

n− 2

)2 ∫
Rn

∣∣∣∣df(x)d|x|
∣∣∣∣2 dx∫

Rn

|x|2|f(x)|2dx. (3.114)

In turn this gives the classical uncertainty principle on Rn with the standard
Euclidean distance:(∫

Rn

|f(x)|2dx
)2

≤
(

2

n− 2

)2 ∫
Rn

|∇f(x)|2dx
∫
Rn

|x|2E |f(x)|2dx,

which is the Heisenberg–Pauli–Weyl uncertainty principle on the Euclidean
spaces Rn, n > 2.
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2. The stratified groups version of Corollary 3.3.5 will be discussed in Sec-
tion 4.7.

Proof of Theorem 3.3.3. In the case γ = Q the inequality is trivial, so we may
assume that γ �= Q. To use the polar decomposition in Proposition 1.2.10 we
denote (r, y) = (|x|, x|x|) ∈ (0,∞)×℘ on G, where ℘ is the unit quasi-sphere. Then

a direct calculation gives that∫
G

|f(x)|p
|x|γ dx =

∫ ∞

0

∫
℘

|f(ry)|p
rγ

rQ−1dσ(y)dr

=
1

Q− γ
∫ ∞

0

∫
℘

|f(ry)|p d r
Q−γ

dr
dσ(y)dr

= − 1

Q− γRe
∫ ∞

0

∫
℘

pf(ry)|f(ry)|p−2

(
df(ry)

dr

)
1

rγ−1
rQ−1dσ(y)dr

= − p

Q− γRe
∫
G

f(x)
|f(x)|p−2

|x|γ−1

(
d

d|x|f(x)
)
dx

≤
∣∣∣∣ p

Q− γ
∣∣∣∣ ∫

G

|f(x)|p−1

|x|γ−1

∣∣∣∣ d

d|x|f(x)
∣∣∣∣ dx

=

∣∣∣∣ p

Q− γ
∣∣∣∣ ∫

G

|f(x)|p−1

|x|α+β |Rf(x)| dx

≤
∣∣∣∣ p

Q− γ
∣∣∣∣ (∫

G

|Rf(x)|p
|x|αp dx

) 1/p
(∫

G

|f(x)|p
|x| βpp−1

dx

) (p−1)/p

,

using the Hölder inequality in the last line. Thus, we obtain∣∣∣∣Q− γp

∣∣∣∣ ∫
G

|f(x)|p
|x|γ dx ≤

(∫
G

|Rf(x)|p
|x|αp dx

) 1/p
(∫

G

|f(x)|p
|x| βpp−1

dx

) (p−1)/p

,

yielding (3.107).

Now it remains to show the sharpness of the constant. To do it we have
to examine the equality condition in the Hölder inequality. Let us consider the
following function

g(x) =

{
e−

C
λ |x|λ , λ := α− β

p−1 + 1 �= 0,
1

|x|C , α− β
p−1 + 1 = 0,

where C =
∣∣∣Q−γ

p

∣∣∣ and γ �= Q. Then one can readily check that∣∣∣∣ p

Q− γ
∣∣∣∣p |Rg(x)|p|x|αp =

|g(x)|p
|x| βpp−1

,

satisfying the equality condition in the Hölder inequality. This means that the
constant | (Q − γ)/ p| is sharp. �
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3.3.2 Higher-order Lp-Caffarelli–Kohn–Nirenberg inequalities

By iterating the Lp-Caffarelli–Kohn–Nirenberg type inequalities from Theorem
3.3.3 we can establish higher-order inequalities.

Theorem 3.3.7 (Higher-order Lp-Caffarelli–Kohn–Nirenberg inequalities). Let G

be a homogeneous group of homogeneous dimension Q ≥ 2 and let | · | be a homo-
geneous quasi-norm on G. Then for all k,m ∈ N and all 1 < p <∞ we have

|Q− γ|
p

∥∥∥∥∥ f

|x| γp

∥∥∥∥∥
p

Lp(G)

≤ Ãα,mÃβ,k
∥∥∥∥ 1

|x|α−mR
m+1f

∥∥∥∥
Lp(G)

∥∥∥∥∥ 1

|x| βp−1−k
Rkf

∥∥∥∥∥
p−1

Lp(G)

,

(3.115)
for all complex-valued function f ∈ C∞

0 (G\{0}),

γ = α+ β + 1,

and α ∈ R such that
∏m−1
j=0 |Q− p(α− j)| �= 0, and

Ãα,m := pm

⎡⎣m−1∏
j=0

|Q− p(α− j)|
⎤⎦−1

,

as well as β ∈ R such that
∏k−1
j=0

∣∣∣Q− p( β
p−1 − j)

∣∣∣ �= 0, and

Ãβ,k := pk(p−1)

⎡⎣k−1∏
j=0

∣∣∣∣Q− p( β

p− 1
− j

)∣∣∣∣
⎤⎦−(p−1)

.

For p = 2 the above constants are sharp.

Proof of Theorem 3.3.7. First, let us consider in (3.107) the case

β = γ

(
1− 1

p

)
.

In this case we have β = (α+1)(p−1) and γ = p(α+1), so that inequality (3.107)
becomes∥∥∥∥ f

|x|α+1

∥∥∥∥
Lp(G)

≤ p

|Q − p(α+ 1)|
∥∥∥∥ 1

|x|αRf
∥∥∥∥
Lp(G)

, 1 < p <∞, (3.116)

for all f ∈ C∞
0 (G\{0}) and every α ∈ R with α �= Q

p − 1.
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Now taking Rf instead of f and α−1 instead of α in (3.116) we consequently
obtain ∥∥∥∥Rf|x|α

∥∥∥∥
Lp(G)

≤ p

|Q− pα|
∥∥∥∥ 1

|x|α−1
R2f

∥∥∥∥
Lp(G)

,

for α �= Q
p . Combining it with (3.116) we get∥∥∥∥ f

|x|α+1

∥∥∥∥
Lp(G)

≤ p

|Q− p(α+ 1)|
p

|Q− pα|
∥∥∥∥ 1

|x|α−1
R2f

∥∥∥∥
Lp(G)

,

for every α ∈ R such that α �= Q
p − 1 and α �= Q

p . This iteration process yields∥∥∥∥ f

|x|θ+1

∥∥∥∥
Lp(G)

≤ Aθ,k
∥∥∥∥ 1

|x|θ+1−kRkf
∥∥∥∥
Lp(G)

, 1 < p <∞, (3.117)

for all f ∈ C∞
0 (G\{0}) and all θ ∈ R such that

∏k−1
j=0 |Q− p(θ + 1− j)| �= 0, and

Aθ,k := pk

⎡⎣k−1∏
j=0

|Q− p(θ + 1− j)|
⎤⎦−1

.

Similarly, we get∥∥∥∥ Rf|x|ϑ+1

∥∥∥∥
Lp(G)

≤ Aϑ,m
∥∥∥∥ 1

|x|ϑ+1−mRm+1f

∥∥∥∥
Lp(G)

, 1 < p <∞, (3.118)

for all f ∈ C∞
0 (G\{0}) and all ϑ ∈ R such that

∏m−1
j=0 |Q− p(ϑ+ 1− j)| �= 0, and

Aϑ,m := pm

⎡⎣m−1∏
j=0

|Q− p(ϑ+ 1− j)|
⎤⎦−1

.

Now putting ϑ+ 1 = α and θ+ 1 = β
p−1 into (3.118) and (3.117), respectively, we

arrive at (3.115).

Let us now show the sharpness of the constants in the case p = 2. This will
follow from having an exact form of the remainder in these inequalities. Recall

Theorem 3.1.10 saying that if Q ≥ 3, α ∈ R, k ∈ N and
∏k−1
j=0

∣∣∣Q−2
2 − (α + j)

∣∣∣ �= 0,

then for all complex-valued functions f ∈ C∞
0 (G\{0}) we have

∥∥∥∥ f

|x|k+α
∥∥∥∥
L2(G)

≤
⎡⎣k−1∏
j=0

∣∣∣∣Q− 2

2
− (α+ j)

∣∣∣∣
⎤⎦−1 ∥∥∥∥ 1

|x|αR
kf

∥∥∥∥
L2(G)

, (3.119)
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where the constant is sharp. In addition, from (3.34) we have the identity∥∥∥∥ 1

|x|αR
kf

∥∥∥∥2
L2(G)

=

⎡⎣k−1∏
j=0

(
Q− 2

2
− (α + j)

)2
⎤⎦∥∥∥∥ f

|x|k+α
∥∥∥∥2
L2(G)

+

k−1∑
l=1

⎡⎣l−1∏
j=0

(
Q− 2

2
− (α+ j)

)2
⎤⎦

×
∥∥∥∥ 1

|x|l+αR
k−lf +

Q− 2(l+ 1+ α)

2|x|l+1+α
Rk−l−1f

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αR
kf +

Q− 2− 2α

2|x|1+α Rk−1f

∥∥∥∥2
L2(G)

, (3.120)

for all k ∈ N and α ∈ R. When p = 2, Theorem 3.3.3 can be restated that for each
f ∈ C∞

0 (G\{0}) we have

|Q − γ|
2

∥∥∥∥ f

|x| γ2
∥∥∥∥2
L2(G)

≤
∥∥∥∥ 1

|x|αRf
∥∥∥∥
L2(G)

∥∥∥∥ f

|x|β
∥∥∥∥
L2(G)

, ∀α, β ∈ R, (3.121)

where γ = α+ β + 1. The sharpness then follows from the following remark. �
Remark 3.3.8. Combining (3.121) with (3.119) (or with (3.120)), one can obtain
a number of inequalities with sharp constants, for example:

|Q− γ|
2

∥∥∥∥ f

|x| γ2
∥∥∥∥2
L2(G)

≤ Cj(β, k)
∥∥∥∥ 1

|x|αRf
∥∥∥∥
L2(G)

∥∥∥∥ 1

|x|β−kR
kf

∥∥∥∥
L2(G)

, (3.122)

for γ = α+ β + 1 and all α, β ∈ R and k ∈ N, such that,

Cj(β, k) :=

⎡⎣k−1∏
j=0

∣∣∣∣Q− 2

2
− (β − k + j)

∣∣∣∣
⎤⎦−1

�= 0,

as well as

|Q− γ|
2

∥∥∥∥ f

|x| γ2
∥∥∥∥2
L2(G)

≤ Cj(α, k)
∥∥∥∥ 1

|x|α−kR
k+1f

∥∥∥∥
L2(G)

∥∥∥∥ f

|x|β
∥∥∥∥
L2(G)

, (3.123)

for γ = α+ β + 1 and all α, β ∈ R and k ∈ N, such that,

Cj(α, k) :=

⎡⎣k−1∏
j=0

∣∣∣∣Q− 2

2
− (α+ k + j)

∣∣∣∣
⎤⎦−1

�= 0.

It follows from (3.120) that these constants Cj(β, k) and Cj(α, k) in (3.122) and
(3.123) are sharp.
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3.3.3 New type of Lp-Caffarelli–Kohn–Nirenberg inequalities

In this section, we introduce new Caffarelli–Kohn–Nirenberg type inequalities on
homogeneous groups.

Theorem 3.3.9 (New types of Lp-Caffarelli–Kohn–Nirenberg inequalities). Let G be
a homogeneous group of homogeneous dimension Q ≥ 2. Let | · | be a homogeneous
quasi-norm on G. Let 0 < δ < 1. Then for all f ∈ C∞

0 (G\{0}) we have∥∥∥∥∥ f

|x|Q−p
p +δ

∥∥∥∥∥
Lp(G)

≤ pδ
∥∥∥∥∥ log |x|
|x|Q−p

p

Rf
∥∥∥∥∥
δ

Lp(G)

∥∥∥∥∥ f

|x|Q−p
p

∥∥∥∥∥
1−δ

Lp(G)

, 1 < p <∞. (3.124)

Moreover, we have∥∥∥∥∥ f

|x|Q−p
p +δ

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ Rf
|x|Q−2p

p

∥∥∥∥∥
1−δ

Lp(G)

∥∥∥∥∥ f

|x|Qp

∥∥∥∥∥
δ

Lp(G)

, 1 < p <∞. (3.125)

Remark 3.3.10. In the Abelian case G = (Rn,+) and Q = n, (3.124) implies a
new type of the Caffarelli–Kohn–Nirenberg inequality for any quasi-norm on Rn:
For any function f ∈ C∞

0 (Rn\{0}) and any 1 < p <∞ we have∥∥∥∥∥ f

|x|n−p
p +δ

∥∥∥∥∥
Lp(Rn)

≤ pδ
∥∥∥∥∥ log |x||x|n−p

p

(
x

|x| · ∇f
)∥∥∥∥∥

δ

Lp(Rn)

∥∥∥∥∥ f

|x|n−p
p

∥∥∥∥∥
1−δ

Lp(Rn)

. (3.126)

By the Schwarz inequality with the standard Euclidean distance given by |x|E =√
x21 + x22 + · · ·+ x2n, we obtain the Euclidean form of the Caffarelli–Kohn–Niren-

berg type inequality for any quasi-norm on Rn, for 1 < p <∞, and for all functions
f ∈ C∞

0 (Rn\{0}):∥∥∥∥∥∥ f

|x|
n−p
p +δ

E

∥∥∥∥∥∥
Lp(Rn)

≤ pδ
∥∥∥∥∥∥ log |x|E|x|

n−p
p

E

∇f
∥∥∥∥∥∥
δ

Lp(Rn)

∥∥∥∥∥∥ f

|x|
n−p
p

E

∥∥∥∥∥∥
1−δ

Lp(Rn)

, (3.127)

where ∇ is the standard gradient in Rn. Similarly, we can write the inequality
(3.125) in the Euclidean case as∥∥∥∥∥∥ f

|x|
n−p
p +δ

E

∥∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥∥ ∇f
|x|

n−2p
p

E

∥∥∥∥∥∥
1−δ

Lp(Rn)

∥∥∥∥∥ f

|x|
n
p

E

∥∥∥∥∥
δ

Lp(Rn)

, 1 < p <∞. (3.128)

Note that since 1
p + (−np ) 1n = 0, the inequality (3.128) does not follow from the

Caffarelli–Kohn–Nirenberg inequality in Theorem 3.3.3, thus providing an exten-
sion of (3.107) in terms of indices but also in terms of a possibility of choosing
any homogeneous quasi-norm on Rn.
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Proof of Theorem 3.3.9. A direct calculation shows that we have∥∥∥∥∥ f

|x|Q−p
p +δ

∥∥∥∥∥
p

Lp(G)

=

∫
G

|f(x)|p
|x|Q−p+δp dx =

∫
G

|f(x)|δp
|x|δQ · |f(x)|

p(1−δ)

|x|(Q−p)(1−δ) dx.

Using Hölder’s inequality it follows that∥∥∥∥∥ f

|x|Q−p
p +δ

∥∥∥∥∥
p

Lp(G)

≤
(∫

G

|f(x)|p
|x|Q dx

)δ (∫
G

|f(x)|p
|x|Q−p dx

)1−δ
. (3.129)

By Theorem 3.2.3, we have∫
G

|f(x)|p
|x|Q dx ≤ pp

∫
G

(log |x|)p
|x|Q |Ef(x)|pdx, 1 < p <∞,

where E = |x|R is the Euler operator. It implies that∫
G

|f(x)|p
|x|Q dx ≤ pp

∫
G

(log |x|)p
|x|Q−p |Rf(x)|pdx, 1 < p <∞.

Using this in (3.129), one obtains∥∥∥∥∥ f

|x|Q−p
p +δ

∥∥∥∥∥
p

Lp(G)

≤ ppδ
(∫

G

(log |x|)p
|x|Q−p |Rf(x)|pdx

)δ (∫
G

|f(x)|p
|x|Q−p dx

)1−δ
,

which implies (3.124).

Now let us prove (3.125). Using Theorem 3.2.3, one has∫
G

|f(x)|p
|x|Q−p dx ≤

∫
G

|Ef(x)|p
|x|Q−p dx, 1 < p <∞.

Then, using this in (3.130), we obtain∥∥∥∥∥ f

|x|Q−p
p +δ

∥∥∥∥∥
p

Lp(G)

≤
(∫

G

|f(x)|p
|x|Q dx

)δ (∫
G

|Ef(x)|p
|x|Q−p dx

)1−δ

=

(∫
G

|f(x)|p
|x|Q dx

)δ (∫
G

|Rf(x)|p
|x|Q−2p

dx

)1−δ
,

which gives (3.125), completing the proof. �

3.3.4 Extended Caffarelli–Kohn–Nirenberg inequalities

In this section, we extend the range of indices for Theorem 3.3.1. Again, we work
in the setting of general homogeneous groups: G is a homogeneous group of ho-
mogeneous dimension Q ≥ 1 and | · | is a homogeneous quasi-norm on G.
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Theorem 3.3.11 (Extended Caffarelli–Kohn–Nirenberg inequalities). Let 1 < p,
q < ∞, 0 < r < ∞, with p + q ≥ r. Let δ ∈ [0, 1] ∩ [ r−qr , pr

]
and a, b, c ∈ R.

Assume that

δr

p
+

(1 − δ)r
q

= 1 and c = δ(a− 1) + b(1− δ).

Then for all f ∈ C∞
0 (G\{0}) we have the following inequalities:

(i) If Q �= p(1− a), then we have

‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q− p(1− a)
∣∣∣∣δ ‖|x|aRf‖δLp(G)

∥∥|x|bf∥∥1−δ
Lq(G)

. (3.130)

(ii) If Q = p(1− a), then we have

‖|x|cf‖Lr(G) ≤ pδ ‖|x|a log |x|Rf‖δLp(G)

∥∥|x|bf∥∥1−δ
Lq(G)

. (3.131)

The constant in the inequality (3.130) is sharp for p = q with a − b = 1 or p �= q
with p(1− a) + bq �= 0. Moreover, the constants in (3.130) and (3.131) are sharp
for δ = 0 or δ = 1.

To compare these inequalities with those in Theorem 3.3.1 let us first for-
mulate the isotropic version of Theorem 3.3.11 in the usual setting of Rn, and its
further implication in the case of the Euclidean norm.

Corollary 3.3.12. Let | · | be a homogeneous quasi-norm on Rn, n ∈ N. Let 1 <
p, q <∞, 0 < r <∞, with p+ q ≥ r, δ ∈ [0, 1]∩ [ r−qr , pr

]
and a, b, c ∈ R. Assume

that
δr

p
+

(1 − δ)r
q

= 1 and c = δ(a− 1) + b(1− δ).
Then we have the following estimates:

(i) If n �= p(1− a), then for any function f ∈ C∞
0 (Rn\{0}) we have

‖|x|cf‖Lr(Rn) ≤
∣∣∣∣ p

n− p(1− a)
∣∣∣∣δ ∥∥∥∥|x|a( x

|x| · ∇f
)∥∥∥∥δ

Lp(Rn)

∥∥|x|bf∥∥1−δ
Lq(Rn)

.

(3.132)

(ii) In the critical case n = p(1− a) for any function f ∈ C∞
0 (Rn\{0}) we have

‖|x|cf‖Lr(Rn) ≤ pδ
∥∥∥∥|x|a log |x|( x

|x| · ∇f
)∥∥∥∥δ

Lp(Rn)

∥∥|x|bf∥∥1−δ
Lq(Rn)

. (3.133)

(iii) If | · |E is the Euclidean norm on Rn, inequalities (3.132) and (3.133) imply,
respectively,

‖|x|cEf‖Lr(Rn) ≤
∣∣∣∣ p

n− p(1− a)
∣∣∣∣δ ‖|x|aE∇f‖δLp(Rn) ∥∥|x|bEf∥∥1−δLq(Rn)

(3.134)
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for n �= p(1− a), and

‖|x|cEf‖Lr(Rn) ≤ pδ ‖|x|aE log |x|∇f‖δLp(Rn)
∥∥|x|bEf∥∥1−δLq(Rn)

, (3.135)

for n = p(1− a).
The inequality (3.132) holds for any homogeneous quasi-norm |·|, and the constant∣∣∣ p
n−p(1−a)

∣∣∣δ is sharp for p = q with a− b = 1, or for p �= q with p(1− a) + bq �= 0.

Furthermore, the constants
∣∣∣ p
n−p(1−a)

∣∣∣δ and pδ are sharp for δ = 0, 1.

Remark 3.3.13.

1. If the conditions (3.99) on the parameters hold, then the inequality (3.134)
is contained in the inequalities in Theorem 3.3.1. However, already in this
case, if we require p = q with a − b = 1 or p �= q with p(1 − a) + bq �= 0,
then (3.134) yields the inequality (3.100) with sharp constant. Moreover, the

constants
∣∣∣ p
n−p(1−a)

∣∣∣δ and pδ are sharp for δ = 0 or δ = 1. The conditions

δr

p
+

(1 − δ)r
q

= 1 and c = δ(a− 1) + b(1− δ)

imply the condition (3.101) of Theorem 3.3.1, as well as conditions (3.102)–
(3.103) which are all necessary for having estimates of this type, at least
under the conditions (3.99).

2. If the conditions (3.99) are not satisfied, then the inequality (3.134) is not
covered by Theorem 3.3.1. So, this gives an extension of Theorem 3.3.1 with
respect to the range of parameters. Indeed, let us take, for example,

1 < p = q = r <∞, a = −n− 2p

p
, b = −n

p
, c = −n− δp

p
.

Then by (3.134), for all f ∈ C∞
0 (Rn\{0}) we have the inequalities∥∥∥∥∥∥ f

|x|
n−δp
p

E

∥∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥∥ ∇f
|x|

n−2p
p

E

∥∥∥∥∥∥
δ

Lp(Rn)

∥∥∥∥∥ f

|x|
n
p

E

∥∥∥∥∥
1−δ

Lp(Rn)

, (3.136)

for all 1 < p < ∞ and 0 ≤ δ ≤ 1, where ∇ is the standard gradient in Rn.
Since we have

1

q
+
b

n
=

1

p
+

1

n

(
−n
p

)
= 0,

we see that conditions (3.99) fail, so that the inequality (3.136) is not covered
by Theorem 3.3.1.
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Proof of Theorem 3.3.11. Case δ = 0. In this case we have q = r and b = c by
δr
p + (1−δ)r

q = 1 and c = δ(a − 1) + b(1 − δ), respectively. Then, the inequalities

(3.130) and (3.131) are equivalent to the trivial estimate

‖|x|bf‖Lq(G) ≤
∥∥|x|bf∥∥

Lq(G)
,

with clearly a sharp constant.

Case δ = 1. In this case we have p = r and a− 1 = c. By Theorem 3.2.3, we
have for Q+ pc = Q + p(a− 1) �= 0 the inequality

‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q+ pc

∣∣∣∣ ‖|x|cEf‖Lr(G),

where E = |x|R is the Euler operator. Using this estimate we get

‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q+ pc

∣∣∣∣ ‖|x|c+1Rf‖Lr(G) =

∣∣∣∣ p

Q− p(1− a)
∣∣∣∣ ‖|x|aRf‖Lp(G),

which implies (3.130). For Q+ pc = Q+ p(a− 1) = 0 by Theorem 3.2.3 we obtain

‖|x|cf‖Lr(G) ≤ p‖|x|c log |x|Ef‖Lr(G)

= p‖|x|c+1 log |x|Rf‖Lr(G)

= p‖|x|a log |x|Rf‖Lp(G),

which gives (3.131). In this case, the constants in (3.130) and (3.131) are sharp,
since the constants in Theorem 3.2.3 are sharp.

Case δ ∈ (0, 1) ∩ [ r−qr , pr
]
. Using c = δ(a− 1) + b(1− δ), a direct calculation

gives

‖|x|cf‖Lr(G) =

(∫
G

|x|cr|f(x)|rdx
) 1/r

=

(∫
G

|f(x)|δr
|x|δr(1−a)

|f(x)|(1−δ)r
|x|−br(1−δ) dx

)1/r

.

Since we have δ ∈ (0, 1)∩[ r−qr , pr
]
and p+q ≥ r, then by using Hölder’s inequality

for δr
p + (1−δ)r

q = 1, we obtain

‖|x|cf‖Lr(G) ≤
(∫

G

|f(x)|p
|x|p(1−a) dx

) δ/p(∫
G

|f(x)|q
|x|−bq dx

) (1−δ)/q

=

∥∥∥∥ f

|x|1−a
∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x|−b
∥∥∥∥1−δ
Lq(G)

.

(3.137)

Here we note that when p = q and a − b = 1, the equality in Hölder’s inequality
holds for any function. We also note that in the case p �= q the function

h(x) = |x| 1
(p−q) (p(1−a)+bq) (3.138)

satisfies Hölder’s equality condition

|h|p
|x|p(1−a) =

|h|q
|x|−bq .
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If Q �= p(1− a), then by Theorem 3.2.3 we have∥∥∥∥ f

|x|1−a
∥∥∥∥δ
Lp(G)

≤
∣∣∣∣ p

Q− p(1− a)
∣∣∣∣δ ∥∥∥∥ Ef

|x|1−a
∥∥∥∥δ
Lp(G)

=

∣∣∣∣ p

Q− p(1− a)
∣∣∣∣δ ∥∥∥∥ Rf|x|−a

∥∥∥∥δ
Lp(G)

, 1 < p <∞.
(3.139)

Putting this in (3.125), one has

‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q− p(1− a)
∣∣∣∣δ ∥∥∥∥ Rf|x|−a

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x|−b
∥∥∥∥1−δ
Lq(G)

.

We note that in the case of p = q and a − b = 1, Hölder’s equality condition
of the inequalities (3.137) and (3.139) holds true for functions 1

|x|c , c ∈ R\{0}.
Moreover, in the case of p �= q and p(1− a) + bq �= 0, Hölder’s equality condition
of the inequalities (3.137) and (3.139) holds true for the function h(x) in (3.138).
Therefore, the constant in (3.130) is sharp when p = q and a − b = 1, or when
p �= q and p(1− a) + bq �= 0.

Now let us consider the case Q = p(1− a). Using Theorem 3.2.3, one has∥∥∥∥ f

|x|1−a
∥∥∥∥δ
Lp(G)

≤ pδ
∥∥∥∥ log |x||x|1−aEf

∥∥∥∥δ
Lp(G)

, 1 < p <∞.

Then, putting this in (3.137), we obtain

‖|x|cf‖Lr(G) ≤ pδ
∥∥∥∥ log |x||x|1−aEf

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x|−b
∥∥∥∥1−δ
Lq(G)

= pδ
∥∥∥∥ log |x||x|−a Rf

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x|−b
∥∥∥∥1−δ
Lq(G)

,

completing the proof. �
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Chapter 4

Fractional Hardy Inequalities

In this chapter we present results concerning fractional forms of Hardy inequali-
ties. Such a topic is well investigated in the Abelian Euclidean setting and we will
be providing relevant references in the sequel. For a general survey of fractional
Laplacians in the Euclidean setting see, e.g., [Gar17]. However, as usual, the gen-
eral approach based on homogeneous groups allows one to get insights also in the
Abelian case, for example, from the point of view of the possibility of choosing an
arbitrary quasi-norm. Moreover, another application of the setting of homogeneous
groups is that the results can be equally applied to both elliptic and subelliptic
problems.

We start by discussing fractional Sobolev and Hardy inequalities on the ho-
mogeneous groups. As a consequence of these inequalities, we derive a Lyapunov
type inequality for the fractional p-sub-Laplacian, which also implies an estimate
of the first eigenvalue in a quasi-ball for the Dirichlet fractional p-sub-Laplacian.
We also extend this analysis to systems of fractional p-sub-Laplacians and to Riesz
potential operators.

4.1 Gagliardo seminorms and fractional

p-sub-Laplacians

Throughout this chapter G will be a homogeneous group of homogeneous dimen-
sion Q. Let | · | be a homogeneous quasi-norm on G. We start with the definition
of the fractional p-sub-Laplacian.

Definition 4.1.1 (Fractional p-sub-Laplacian). Let p > 1 and let s ∈ (0, 1). For
a measurable and compactly supported function u the fractional p-sub-Laplacian
(−Δp,|·|)s = (−Δp)

s on G is defined by the formula

(−Δp)
su(x) := 2 lim

δ↘0

∫
G\B(x,δ)

|u(x)− u(y)|p−2(u(x) − u(y))
|y−1x|Q+sp

dy, x ∈ G, (4.1)

© The Editor(s) (if applicable) and The Author(s) 2019 
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where B(x, δ) = B|·|(x, δ) is a quasi-ball with respect to the quasi-norm | · |, with
radius δ centred at x ∈ G.

Definition 4.1.2 (Gagliardo seminorm and fractional Sobolev spaces). For a mea-
surable function u : G→ R, its Gagliardo seminorm is defined as

[u]s,p,|·| = [u]s,p :=

(∫
G

∫
G

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

) 1/p

. (4.2)

For p ≥ 1 and s ∈ (0, 1), the functional space

W s,p(G) = {u ∈ Lp(G) : u is measurable and [u]s,p < +∞} , (4.3)

endowed with the norm

‖u‖W s,p(G) := (‖u‖pLp(G) + [u]ps,p)
1/p, u ∈W s,p(G), (4.4)

is called the fractional Sobolev space on G. Sometimes, to emphasize the depen-
dence on a particular quasi-norm, we may write [u]s,p,|·| and W s,p,|·| but we note

that the space W s,p,|·| is independent of a particular choice of a quasi-norm due
to their equivalence, see Proposition 1.2.3.

Similarly, if Ω ⊂ G is a Haar measurable set, we define the fractional Sobolev
space W s,p(Ω) on Ω by

W s,p(Ω) =

{
u ∈ Lp(Ω) : u is measurable

and

(∫
Ω

∫
Ω

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

) 1/p

< +∞
}
,

endowed with the norm

‖u‖W s,p(Ω) :=

(
‖u‖pLp(Ω) +

∫
Ω

∫
Ω

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

) 1/p

. (4.5)

Moreover, the Sobolev space W s,p
0 (Ω) is defined as the completion of C∞

0 (Ω) with
respect to the norm ‖u‖W s,p(Ω).
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4.2 Fractional Hardy inequalities on

homogeneous groups

In the present section we establish fractional Hardy inequalities on homogeneous
groups.

Theorem 4.2.1 (Fractional Hardy inequality). Let G be a homogeneous group of
homogeneous dimension Q with a homogeneous quasi-norm |·|. Let p > 1, s ∈ (0, 1)
and Q > sp. Then for all u ∈ C∞

0 (G) we have

2μ(γ)

∫
G

|u(x)|p
|x|ps dx ≤ [u]ps,p,|·|, (4.6)

where μ(γ) is defined in (4.10).

Remark 4.2.2. In [AB17] the authors studied the weighted fractional p-Laplacian
and established the following weighted fractional Lp-Hardy inequality:

C

∫
RN

|u(x)|p
|x|ps+2β

E

dx ≤
∫
RN

∫
RN

|u(x) − u(y)|p
|x− y|N+ps

E |x|βE |y|βE
dxdy, (4.7)

where β < N−ps
2 , u ∈ C∞

0 (RN ), C > 0 is a positive constant, and | · |E is the
Euclidean distance in RN .

Before we prove Theorem 4.2.1, let us establish the following two lemmas
that will be instrumental in the proof.

Lemma 4.2.3. We fix a homogeneous quasi-norm | · | on G. Let ω ∈ W s,p
0 (Ω) and

assume that w > 0 in Ω ⊂ G. Assume that (−Δp)
sω = ν > 0 with ν ∈ L1

loc(Ω).
Then for all u ∈ C∞

0 (Ω), we have

1

2

∫
Ω

∫
Ω

|u(x)− u(y)|p
|y−1x|Q+ps

dxdy ≥
〈
(−Δp)

sω,
|u|p
ωp−1

〉
.

Proof of Lemma 4.2.3. Using the notations

v :=
|u|p
|ω|p−1

and k(x, y) :=
1

|y−1x|Q+ps
,

we get

〈(−Δp)
sω(x), v(x)〉 =

∫
Ω

v(x)dx

∫
Ω

|ω(x)− ω(y)|p−2(ω(x) − ω(y))k(x, y)dy

=

∫
Ω

|u(x)|p
|ω(x)|p−1

dx

∫
Ω

|ω(x)− ω(y)|p−2(ω(x) − ω(y))k(x, y)dy.



194 Chapter 4. Fractional Hardy Inequalities

Let us show that k(x, y) is symmetric, that is, k(x, y) = k(y, x) for all x, y ∈
G. This readily follows, since by the definition of the quasi-norm we have |x−1| =
|x| for all x ∈ G. So, since k(x, y) is symmetric, we obtain

〈(−Δp)
sω(x), v(x)〉

=
1

2

∫
Ω

∫
Ω

( |u(x)|p
|ω(x)|p−1

− |u(y)|p
|ω(y)|p−1

)
|ω(x)− ω(y)|p−2(ω(x)− ω(y))k(x, y)dydx.

Let g := u
ω and

R(x, y) := |u(x)−u(y)|p−(|g(x)|pω(x)−|g(y)|pω(y))|ω(x)−ω(y)|p−2(ω(x)−ω(y)).
Then we have

〈(−Δp)
sω, v〉+ 1

2

∫
Ω

∫
Ω

R(x, y)k(x, y)dydx =
1

2

∫
Ω

∫
Ω

|u(x)− u(y)|pk(x, y)dydx.

By the symmetry argument, we can assume that ω(x) ≥ ω(y). By using the
inequality (see, e.g., [FS08, Lemma 2.6])

|a− t|p ≥ (1− t)p−1(|a|p − t), p > 1, t ∈ [0, 1], a ∈ C, (4.8)

with t = ω(y)
ω(x) and a = g(x)

g(y) , we see that R(x, y) ≥ 0. Therefore, we have proved

the inequality

〈(−Δp)
sω, v〉 ≤ 1

2

∫
Ω

∫
Ω

|u(x) − u(y)|p
|y−1x|Q+sp

dydx,

completing the proof of Lemma 4.2.3. �

Lemma 4.2.4. Let p > 1 and γ ∈
(
0, Q−ps

p−1

)
. Then there exists a positive constant

μ(γ) > 0 such that

(−Δp)
s(|x|−γ) = μ(γ)

1

|x|ps+γ(p−1)
a.e. in G \ {0}. (4.9)

Proof of Lemma 4.2.4. Let us denote ω(x) := |x|−γ . We set r = |x| and ρ = |y|
with x = rx′ and y = ρy′ where |x′| = |y′| = 1. Then we have

(−Δp)
sω =

∫ +∞

0

||x|−γ− |y|−γ |p−2(|x|−γ− |y|−γ)|y|Q−1

(∫
|y′|=1

dσ(y)

|y−1x|Q+ps

)
d|y|

=
1

|x|ps+γ(p−1)

∫ +∞

0

∣∣∣∣1− |y|−γ|x|−γ
∣∣∣∣p−2

×
(
1− |y|

−γ

|x|−γ
) |y|Q−1

|x|Q−1

⎛⎜⎜⎜⎝
∫
|y′|=1

dσ(y)∣∣∣∣( |y|
|x|y

′
)−1

◦ x′
∣∣∣∣Q+ps

⎞⎟⎟⎟⎠ d|y|.
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Let ρ = |y|
|x| and L(ρ) =

∫
|y′|=1

dσ(y)
|(ρy′)−1◦x′|Q+ps . Then we have

(−Δp)
sω =

1

|x|ps+γ(p−1)

∫ +∞

0

|1− ρ−γ |p−2(1 − ρ−γ)L(ρ)ρQ−1dρ.

We then have (4.9) with

μ(γ) :=

∫ +∞

0

φ(ρ)dρ (4.10)

for
φ(ρ) = |1− ρ−γ |p−2(1− ρ−γ)L(ρ)ρQ−1.

Now it remains to show that μ(γ) is positive and bounded. Firstly, let us
show that μ(γ) is bounded. We have

μ(γ) =

∫ 1

0

φ(ρ)dρ +

∫ +∞

1

φ(ρ)dρ = I1 + I2. (4.11)

Using the new variable ζ = 1
ρ we have L(ρ) = L

(
1
ζ

)
= ζQ+psL(ζ) for any ζ > 0.

Thus, we get that

μ(γ) =

∫ +∞

1

(ρ−γ − 1)p−1(ρQ−1−γ(p−1) − ρps−1)L(ρ)dρ. (4.12)

For ρ→ 1 we have

(ρ−γ − 1)p−1(ρQ−1−γ(p−1) − ρps−1)L(ρ) � (ρ− 1)−1−ps+p ∈ L1(1, 2). (4.13)

Similarly, for ρ→∞ we get

(ρ−γ − 1)p−1(ρQ−1−γ(p−1) − ρps−1)L(ρ) � ρ−1−ps ∈ L1(2,∞). (4.14)

These properties show that μ(γ) is bounded. On the other hand, by (4.12) with

γ ∈
(
0, Q−ps

p−1

)
, we see that μ(γ) is positive.

Lemma 4.2.4 is proved. �

Proof of Theorem 4.2.1. Let u ∈ C∞
0 (G) and γ < Q−ps

p−1 . By Lemma 4.2.4 and
Lemma 4.2.3 we readily obtain that

1

2
[u]ps,p =

1

2

∫
G

∫
G

|u(x)− u(y)|p
|y−1x|Q+ps

dxdy

≥
〈
(−Δp)

s(|x|−γ), |u(x)|
p

|x|−γ(p−1)

〉
= μ(γ)

∫
G

|u(x)|p
|x|ps dx.

This completes the proof of Theorem 4.2.1. �
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4.3 Fractional Sobolev inequalities on

homogeneous groups

In this section we establish fractional Sobolev inequalities on homogeneous groups.

Theorem 4.3.1 (Fractional Sobolev inequality). Let G be a homogeneous group of
homogeneous dimension Q. Let us fix a homogeneous quasi-norm | · | on G. Let
p > 1, s ∈ (0, 1) and Q > sp, and let us set p∗ := Qp

Q−sp . Then there is a positive

constant C = C(Q, p, s, | · |) such that we have

‖u‖Lp∗(G) ≤ C[u]s,p,|·|, (4.15)

for all measurable compactly supported functions u : G→ R.

Remark 4.3.2. In [DNPV12] the authors obtained the fractional Sobolev inequality
in the case N > sp, 1 < p < ∞, and s ∈ (0, 1). Namely, for all measurable and
compactly supported functions u one has

‖u‖Lp∗(RN ) ≤ C[u]s,p, (4.16)

where p∗ = Np
N−sp , C = C(N, p, s) > 0 is a suitable constant independent of u, and

[u]ps,p =

∫
RN

∫
RN

|u(x) − u(y)|p
|x− y|N+sp

E

dxdy,

with | · |E being the Euclidean distance in RN .

To prove the above analogue of the fractional Sobolev inequality, first we
present the following two lemmas.

Lemma 4.3.3. Let p > 1, s ∈ (0, 1), and let K ⊂ G be a Haar measurable set. Fix
x ∈ G and a quasi-norm | · | on G. Then we have∫

Kc

dy

|y−1x|Q+sp
≥ C|K|−sp/Q, (4.17)

where C = C(Q, s, p, | · |) is a positive constant, Kc := G \K, and |K| is the Haar
measure of K.

Proof of Lemma 4.3.3. Let δ :=
(

|K|
ωQ

) 1/Q

, where ωQ is a surface measure of the

unit quasi-ball on G. For the corresponding quasi-ball B(x, δ) = B|·|(x, δ) centred
at x with radius δ, we have

|Kc ∩B(x, δ)| = |B(x, δ)| − |K ∩B(x, δ)|
= |K| − |K ∩B(x, δ)| = |K ∩Bc(x, δ)|, (4.18)
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where | · | (by abuse of notation, only in this proof) is the Haar measure on G.
Then, ∫

Kc

dy

|y−1x|Q+sp
=

∫
Kc∩B(x,δ)

dy

|y−1x|Q+sp
+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp

≥
∫
Kc∩B(x,δ)

dy

δQ+sp
+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp

=
|Kc ∩B(x, δ)|

δQ+sp
+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp
.

By using (4.18) we obtain∫
Kc

dy

|y−1x|Q+sp
≥ |K

c ∩B(x, δ)|
δQ+sp

+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp

=
|K ∩Bc(x, δ)|

δQ+sp
+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp

≥
∫
K∩Bc(x,δ)

dy

|y−1x|Q+sp
+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp

=

∫
Bc(x,δ)

dy

|y−1x|Q+sp
.

Now using the polar decomposition formula in Proposition 1.2.10 we obtain that∫
Kc

dy

|y−1x|Q+sp
≥ C|K|−sp/Q, (4.19)

completing the proof. �

We now establish a useful technical estimate for the Gagliardo seminorm
[u]s,p defined in (4.2).

Lemma 4.3.4. Let p > 1, s ∈ (0, 1) and Q > sp. Let u ∈ L∞(G) be compactly
supported and denote ak := |{|u| > 2k}| for any k ∈ Z. Then we have

C
∑

k∈Z, ak 	=0

ak+1a
−sp/Q
k 2kp ≤ [u]ps,p, (4.20)

where C = C(Q, p, s, | · |) is a positive constant.

Proof of Lemma 4.3.4. We define

Ak := {|u| > 2k}, k ∈ Z, (4.21)

and
Dk := Ak \Ak+1 = {2k < |u| ≤ 2k+1} and dk := |Dk|, (4.22)
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the Haar measure of Dk. Since Ak+1 ⊆ Ak, it follows that
ak+1 ≤ ak. (4.23)

By the assumption u ∈ L∞(G) is compactly supported, ak and dk are
bounded and vanish when k is large enough. Also, we notice that the Dk’s are
disjoint, therefore, ⋃

l∈Z, l≤k
Dl = Ack+1 (4.24)

and ⋃
l∈Z, l≥k

Dl = Ak. (4.25)

From (4.25) it follows that ∑
l∈Z, l≥k

dl = ak (4.26)

and
dk = ak −

∑
l∈Z, l≥k+1

dl. (4.27)

Since ak and dk are bounded and vanish when k is large enough, (4.26) and (4.27)
are convergent. We define the convergent series

S :=
∑

l∈Z, al−1 	=0

2lpa
−sp/Q
l−1 dl. (4.28)

We have that Dk ⊆ Ak ⊆ Ak−1, therefore, a
−sp/Q
i−1 dl ≤ a−sp/Qi−1 al−1. Thus,

{(i, l) ∈ Z s.t. ai−1 �= 0 and a
−sp/Q
i−1 dl �= 0} ⊆ {(i, l) ∈ Z s.t. al−1 �= 0}. (4.29)

By using (4.29) and (4.23), we can estimate∑
i∈Z,

ai−1 	=0

∑
l∈Z,
l≥i+1

2ipa
−sp/Q
i−1 dl =

∑
i∈Z,

ai−1 	=0

∑
l∈Z,
l≥i+1,

asp/Qdl 	=0

2ipa
−sp/Q
i−1 dl

≤
∑
i∈Z

∑
l∈Z,
l≥i+1,
al−1 	=0

2ipa
−sp/Q
i−1 dl =

∑
l∈Z,

al−1 	=0

∑
i∈Z,
i≤l−1

2ipa
−sp/Q
i−1 dl

≤
∑
l∈Z,

al−1 	=0

∑
i∈Z,
i≤l−1

2ipa
−sp/Q
l−1 dl =

∑
l∈Z,

al−1 	=0

+∞∑
k=0

2p(l−1−k)a−sp/Ql−1 dl ≤ S. (4.30)

Notice that
||u(x)| − |u(y)|| ≤ |u(x)− u(y)|,
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for any x, y ∈ G. If we fix i ∈ Z and x ∈ Di, then for any j ∈ Z with j ≤ i− 2, for
any y ∈ Dj using the above inequality, we obtain that

|u(x)− u(y)| ≥ 2i − 2j+1 ≥ 2i − 2i−1 ≥ 2i−1.

Then, using (4.24), we have∑
j∈Z, j≤i−2

∫
Dj

|u(x)− u(y)|p
|y−1x|Q+sp

dy ≥ 2(i−1)p
∑

j∈Z, j≤i−2

∫
Dj

dy

|y−1x|Q+sp

= 2(i−1)p

∫
Aci−1

dy

|y−1x|Q+sp
.

(4.31)

Now using (4.31) and Lemma 4.3.3, we obtain that∑
j∈Z, j≤i−2

∫
Dj

|u(x)− u(y)|p
|y−1x|Q+sp

dy ≥ C2ipa−sp/Qi−1 ,

with some positive constant C. That is, for any i ∈ Z, we have∑
j∈Z, j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy ≥ C2ipa−sp/Qi−1 di. (4.32)

From (4.32) and (4.27) we get∑
j∈Z, j≤i−2

∫
Di

∫
Dj

|u(x) − u(y)|p
|y−1x|Q+sp

dxdy

≥ C
⎛⎝2ipa

−sp/Q
i−1 ai −

∑
l∈Z, l≥i+1

2ipa
−sp/Q
i−1 dl

⎞⎠ .

(4.33)

By (4.32) and (4.28) it follows that∑
i∈Z,ai−1 	=0

∑
j∈Z,j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

≥ C
∑

i∈Z,ai−1 	=0

2ipa
−sp/Q
i−1 di ≥ C S.

(4.34)

Then, by using (4.30), (4.33) and (4.34), we obtain that∑
i∈Z,ai−1 	=0

∑
j∈Z,j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

≥ C
∑

i∈Z, ai−1 	=0

2ipa
−sp/Q
i−1 ai − C

∑
i∈Z,ai−1 	=0

∑
l∈Z,l≥i+1

2ipa
−sp/Q
i−1 dl



200 Chapter 4. Fractional Hardy Inequalities

≥ C
∑

i∈Z, ai−1 	=0

2ipa
−sp/Q
i−1 ai − C S

≥ C
∑

i∈Z,ai−1 	=0

2ipa
−sp/Q
i−1 ai −

∑
i∈Z,ai−1 	=0

∑
j∈Z,j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy.

This means that∑
i∈Z,ai−1 	=0

∑
j∈Z,j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

≥ C

2

∑
i∈Z,ai−1 	=0

2ipa
−sp/Q
i−1 ai,

(4.35)

for some constant C > 0. By symmetry and using (4.35), we arrive at

[u]ps,p,|·| =
∫
G

∫
G

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy =
∑
i,j∈Z

∫
Di

∫
Dj

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

≥ 2
∑

i,j∈Z, j<i

∫
Di

∫
Dj

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

≥ 2
∑

i∈Z,ai−1 	=0

∑
j∈Z,j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

≥ C
∑

i∈Z, ai−1 	=0

2ipa
−sp/Q
i−1 ai,

completing the proof of Lemma 4.3.4. �

Proof of Theorem 4.3.1. Assume that Gagliardo’s seminorm [u]s,p is bounded, i.e.,
that

[u]ps,p =

∫
G

∫
G

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy < +∞. (4.36)

Suppose also that u ∈ L∞(G).

If (4.36) is satisfied for bounded functions, it holds also for the function un,
obtained from u by cutting at levels −n and n, that is, for

un := max{min{u(x), n},−n},

for any n ∈ R and x ∈ G. Thus, using the fact that

lim
n→+∞ ‖un‖Lp(G) = ‖u‖Lp(G),
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1 < p < ∞, and by using (4.36) with the dominated convergence theorem, we
obtain that

lim
n→+∞[un]

p
s,p = lim

n→+∞

∫
G

∫
G

|un(x) − un(y)|p
|y−1x|Q+sp

dxdy

=

∫
G

∫
G

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy = [u]ps,p.

(4.37)

Defining ak and Ak as in Lemma 4.3.4, we have

||u‖Lp∗(G) =

(∑
k∈Z

∫
Ak\Ak+1

|u(x)|p∗dx
)1/p∗

≤
(∑
k∈Z

∫
Ak\Ak+1

2(k+1)p∗dx

)1/p∗

≤
(∑
k∈Z

2(k+1)p∗ak

)1/p∗

.

Recall the following fact from [DNPV12, Lemma 6.2]: let T, p > 1 and s ∈
(0, 1) be such that Q > sp, m ∈ Z, and assume that ak is a bounded, decreasing,
non-negative sequence with ak = 0 for any k ≥ m; then we have∑

k∈Z

a
(Q−sp)/Q
k T k ≤ C

∑
k∈Z, ak 	=0

ak+1a
−sp/Q
k T k, (4.38)

for some positive constant C = C(Q, s, p, T ).

Then, with p/p∗ = 1− sp/Q < 1 and T = 2p, this fact yields

‖u‖p
Lp∗(G)

≤ 2p

(∑
k∈Z

2kp
∗
ak

)p/p∗
≤ 2p

∑
k∈Z

2kpa
(Q−sp)/Q
k

≤ C
∑

k∈Z, ak 	=0

2kpa
−sp/Q
k ak+1

(4.39)

for a positive constant C = C(Q, p, s, | · |). Finally, using Lemma 4.3.4 we arrive at

‖u‖p
Lp∗(G)

≤ C
∑

k∈Z, ak 	=0

2kpa
−sp/Q
k ak+1

≤ C
∫
G

∫
G

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy = C[u]ps,p,|·|.

Theorem 4.3.1 is proved. �
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4.4 Fractional Gagliardo–Nirenberg inequalities

In this section we discuss an analogue of the fractional Gagliardo–Nirenberg in-
equality on homogeneous groups. As it can be partly expected, in its proof we
will use an already established version of a fractional Sobolev inequality on the
homogeneous groups.

Theorem 4.4.1 (Fractional Gagliargo–Nirenberg inequality). Let G be a homoge-
neous group of homogeneous dimension Q with a quasi-norm | · |. Assume that
Q ≥ 2, s ∈ (0, 1), p > 1, α ≥ 1, τ > 0, a ∈ (0, 1], Q > sp and

1

τ
= a

(
1

p
− s

Q

)
+

1− a
α

.

Then there exists C = C(s, p,Q, a, α) > 0 such that

‖u‖Lτ(G) ≤ C[u]as,p,|·|‖u‖1−aLα(G) (4.40)

holds for all u ∈ C1
c (G).

Remark 4.4.2. Theorem 4.4.1 was proved in [KRS18a]. In the Abelian case (RN ,+)
with the standard Euclidean distance instead of the quasi-norm, Theorem 4.4.1
covers the fractional Gagliardo–Nirenberg inequality which was proved in [NS18a].

Proof of Theorem 4.4.1. By using Hölder’s inequality, for every 1
τ = a

(
1
p − s

Q

)
+

1−a
α we get

‖u‖τLτ(G) =

∫
G

|u|τdx =

∫
G

|u|aτ |u|(1−a)τdx ≤ ‖u‖aτLp∗(G)‖u‖(1−a)τLα(G) , (4.41)

where p∗ = Qp
Q−sp . From (4.41), by using the fractional Sobolev inequality (Theo-

rem 4.3.1), we obtain

‖u‖τLτ(G) ≤ ‖u‖aτLp∗(G)‖u‖(1−a)τLα(G) ≤ C[u]aτs,p,|·|‖u‖(1−a)τLα(G) ,

that is,
‖u‖Lτ(G) ≤ C[u]as,p,|·|‖u‖1−aLα(G), (4.42)

where C is a positive constant independent of u. Theorem 4.4.1 is proved. �
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4.5 Fractional Caffarelli–Kohn–Nirenberg inequalities

In this section we discuss the weighted fractional Caffarelli–Kohn–Nirenberg in-
equalities on homogeneous groups. First, let us define a weighted version of frac-
tional Sobolev spaces from Definition 4.1.2.

Definition 4.5.1 (Weighted fractional Sobolev spaces). We define the weighted frac-
tional Sobolev space on a homogeneous group G with homogeneous dimension Q
and homogeneous quasi-norm | · | by

W s,p,β(G) =

{
u ∈ Lp(G) : u is measurable, (4.43)

[u]s,p,β,|·| :=
(∫

G

∫
G

|x|β1p|y|β2p|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

) 1
p

< +∞
}
,

where β1, β2 ∈ R with β = β1 + β2. We note that the space W s,p,β(G) depends
on β1 and β2. At the same time, it is independent of a particular choice of a
quasi-norm due to their equivalence, see Proposition 1.2.3.

For a Haar measurable set Ω ⊂ G, p ≥ 1, s ∈ (0, 1) and β1, β2 ∈ R with
β = β1 + β2, we define the weighted fractional Sobolev space on Ω by

W s,p,β(Ω) =

{
u ∈ Lp(Ω) : u is measurable, (4.44)

[u]s,p,β,|·|,Ω :=

(∫
Ω

∫
Ω

|x|β1p|y|β2p|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

) 1
p

< +∞
}
.

Theorem 4.5.2 (Fractional Caffarelli–Kohn–Nirenberg inequality). Let G be a ho-
mogeneous group of homogeneous dimension Q. Let Q ≥ 2, s ∈ (0, 1), p > 1,
α ≥ 1, τ > 0, a ∈ (0, 1], β1, β2, β, μ, γ ∈ R, β1 + β2 = β and

1

τ
+
γ

Q
= a

(
1

p
+
β − s
Q

)
+ (1− a)

(
1

α
+
μ

Q

)
. (4.45)

In addition, assume that, 0 ≤ β − σ with γ = aσ + (1 − a)μ. We also assume

β − σ ≤ s only if
1

τ
+
γ

Q
=

1

p
+
β − s
Q

. (4.46)

Then when 1
τ + γ

Q > 0 we have

‖|x|γu‖Lτ(G) ≤ C[u]as,p,β,|·|‖|x|μu‖1−aLα(G), (4.47)

for all u ∈ C1
c (G), and when 1

τ + γ
Q < 0 we have

‖|x|γu‖Lτ(G) ≤ C[u]as,p,β,|·|‖|x|μu‖1−aLα(G), (4.48)

for all u ∈ C1
c (G \ {0}).
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Remark 4.5.3.

1. The critical case 1
τ + γ

Q = 0 will be considered in Theorem 4.5.5.

2. In the Abelian (Euclidean) case (RN ,+) with the usual Euclidean distance
instead of the quasi-norm in Theorem 4.5.2, we get the (Abelian) fractional
Caffarelli–Kohn–Nirenberg inequality (see, e.g., [NS18a], Theorem 1.1). In
(4.48) by setting a = 1, τ = p, β1 = β2 = 0, and γ = −s, one has an
analogue of the fractional Hardy inequality on homogeneous groups.

3. In the Abelian (Euclidean) case (RN ,+) again with the usual Euclidian dis-
tance instead of the quasi-norm and by taking in (4.48) the values a = 1,
τ = p, β1 = β2 = 0, and γ = −s, we get the fractional Hardy inequality (see
[FS74, Theorem 1.1]).

4. The results of this section were obtained in [KRS18a] and we follow the
presentation there in our proof.

To prove the fractional weighted Caffarelli–Kohn–Nirenberg inequality on G

we will use Theorem 4.4.1 in the proof of the following lemma.

Lemma 4.5.4. Let Q ≥ 2, s ∈ (0, 1), p > 1, α ≥ 1, τ > 0, a ∈ (0, 1] and

1

τ
≥ a

(
1

p
− s

Q

)
+

1− a
α

.

Let λ > 0 and 0 < r < R and set

Ω = {x ∈ G : λr < |x| < λR}.
Then, for all u ∈ C1(Ω), we have(

–

∫
Ω

|u− uΩ|τdx
) 1
τ

≤ Cr,Rλ
a(sp−Q)

p [u]as,p,|·|,Ω

(
–

∫
Ω

|u|αdx
) 1−a

α

, (4.49)

where Cr,R is a positive constant independent of u and λ.

Proof of Lemma 4.5.4. Without loss of generality, we assume that 0 < s′ ≤ s and
τ ′ ≥ τ are such that

1

τ ′
= a

(
1

p
− s′

Q

)
+

1− a
α

,

and λ = 1 with
Ω1 := {x ∈ G : r < |x| < R}.

By using Theorem 4.4.1, Jensen’s inequality and [u]s′,p,|·|,Ω ≤ C[u]s,p,|·|,Ω, we
compute(

–

∫
Ω1

|u− uΩ1 |τdx
) 1/τ

=
1

|Ω1| 1τ
‖u− uΩ1‖τ ≤ Cr,R‖u− uΩ1‖Lτ′(Ω1)
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≤ Cr,R[u− uΩ1 ]
a
s′,p,|·|,Ω1

‖u‖1−aLα(Ω1)

≤ Cr,R
(∫

Ω1

∫
Ω1

|u(x)− uΩ1 − u(y) + uΩ1 |p
|y−1x|Q+s′p dxdy

) a/p

‖u‖1−aLα(Ω1)

≤ Cr,R[u]as,p,|·|,Ω1
‖u‖1−aLα(Ω1)

≤ Cr,R[u]as,p,|·|,Ω1

(
–

∫
Ω1

|u|αdx
) (1−a)/α

,

where Cr,R > 0. Let us apply the above inequality to u(λx) instead of u(x). This
yields(

–

∫
Ω1

∣∣∣∣u(λx)− –

∫
Ω1

u(λx)dx

∣∣∣∣τ dx) 1/τ

≤ Cr,R
(∫

Ω1

∫
Ω1

|u(λx)− u(λy)|p
|y−1x|Q+sp

dxdy

) a/p(
1

|Ω1|
∫
Ω1

|u(λx)|αdx
) (1−a)/α

.

Therefore, we have

(
–

∫
Ω

∣∣∣∣u(x)− –

∫
Ω

u(x)dx

∣∣∣∣τ dx)
1
τ

=

(
1

|Ω|
∫
Ω

∣∣∣∣u(x)− 1

|Ω|
∫
Ω

u(x)dx

∣∣∣∣τ dx)
1
τ

=

(
1

|Ω|
∫
Ω

∣∣∣∣u(λy)− 1

|Ω|
∫
Ω

u(λy)d(λy)

∣∣∣∣τ d(λy))
1
τ

=

(
1

|Ω1|
∫
Ω1

λQ

λQ

∣∣∣∣u(λy)− λQ

λQ|Ω1|
∫
Ω1

u(λy)dy

∣∣∣∣τ dy)
1
τ

=

(
1

|Ω1|
∫
Ω1

∣∣∣∣u(λy)− 1

|Ω1|
∫
Ω1

u(λy)dy

∣∣∣∣τ dy)
1
τ

≤ Cr,R
(∫

Ω1

∫
Ω1

|u(λx)− u(λy)|p
|y−1x|Q+sp

dxdy

) a
p
(

1

|Ω1|
∫
Ω1

|u(λx)|αdx
) 1−a

α

= Cr,R

(∫
Ω1

∫
Ω1

λ2QλQ+sp|u(λx) − u(λy)|p
λ2QλQ+sp|y−1x|Q+sp

dxdy

)a
p
(

1

|Ω1|
∫
Ω1

λQ

λQ
|u(λx)|αdx

)1−a
α

= Cr,R

(∫
Ω

∫
Ω

λsp−Q|u(λx) − u(λy)|p
|(λy)−1λx|Q+sp

d(λx)d(λy)

)a
p
(

1

|Ω|
∫
Ω

|u(λx)|αd(λx)
)1−a

α

= Cr,R

(∫
Ω

∫
Ω

λsp−Q|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

)a
p
(

1

|Ω|
∫
Ω

|u(x)|αdx
)1−a

α

= Cr,Rλ
a(sp−Q)

p [u]as,p,|·|,Ω

(
1

|Ω|
∫
Ω

|u(x)|αdx
) 1−a

α

.

This completes the proof. �
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Proof of Theorem 4.5.2. First let us consider the case (4.46), that is, β − σ ≤ s
and 1

τ + γ
Q = 1

p + β−s
Q . By using Lemma 4.5.4 with λ = 2k, r = 1, R = 2 and

Ω = Ak, we get(
–

∫
Ak

|u− uAk |τdx
)1/τ

≤ C2 ak(sp−Q)
p [u]as,p,|·|,Ak

(
–

∫
Ak

|u|αdx
) (1−a)/α

. (4.50)

Here and below Ak is the quasi-annulus defined by

Ak := {x ∈ G : 2k ≤ |x| < 2k+1},
for k ∈ Z. Now by using (4.50) we obtain∫
Ak

|u|τdx =

∫
Ak

|u− uAk + uAk |τdx

≤ C
(∫

Ak

|uAk |τdx+

∫
Ak

|u− uAk |τdx
)

= C

(∫
Ak

|uAk |τdx+
|Ak|
|Ak|

∫
Ak

|u− uAk |τdx
)

= C

(
|Ak||uAk |τ + |Ak| –

∫
Ak

|u− uAk |τdx
)

(4.51)

≤ C
⎛⎝|Ak||uAk |τ + 2

ak(sp−Q)τ
p |Ak|[u]aτs,p,|·|,Ak

(
1

|Ak|
∫
Ak

|u|αdx
)(1−a)τ

α

⎞⎠
≤ C

(
2Qk|uAk |τ + 2

ak(sp−Q)τ
p 2kQ2−

Q(1−a)τk
α [u]aτs,p,|·|,Ak‖u‖

(1−a)τ
Lα(Ak)

)
.

Then, from (4.51) we get∫
Ak

|x|γτ |u|τdx ≤ 2(k+1)γτ

∫
Ak

|u|τdx

≤ C2(Q+γτ)k|uAk |τ + C2γτk2kQ2
ak(sp−Q)τ

p 2−
Q(1−a)τk

α [u]aτs,p,|·|,Ak‖u‖
(1−a)τ
Lα(Ak)

= C2(Q+γτ)k|uAk |τ

+ C2(γτ+Q+a(sp−Q)τ
p −Q(1−a)τ

α )k
(∫

Ak

∫
Ak

2kpβ12kpβ2 |u(x)− u(y)|p
2kpβ |y−1x|Q+sp

dxdy

) aτ
p

×
(∫

Ak

2kαμ

2kαμ
|u(x)|αdx

) (1−a)τ
α

≤ C2(Q+γτ)k|uAk |τ

+ C2(γτ+Q+a(sp−Q)τ
p −Q(1−a)τ

α −aβτ−μτ(1−a))k

×
(∫

Ak

∫
Ak

|x|pβ1 |y|pβ2 |u(x)− u(y)|p
|y−1x|Q+sp

dxdy

) aτ
p
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×
(∫

Ak

|x|αμ|u(x)|αdx
) (1−a)τ

α

≤ C2(Q+γτ)k|uAk |τ (4.52)

+ C2(γτ+Q+a(sp−Q)τ
p −Q(1−a)τ

α −aβτ−μτ(1−a))k[u]aτs,p,β,|·|,Ak‖|x|μu‖
(1−a)τ
Lα(Ak)

.

Here by (4.45), we have

γτ +Q+
a(sp−Q)τ

p
− Q(1− a)τ

α
− aβτ − μτ(1 − a)

= Qτ

(
γ

Q
+

1

τ
+
a(sp−Q)

Qp
− (1− a)

α
− aβ

Q
− μ(1 − a)

Q

)
= Qτ

(
a

(
1

p
+
β − s
Q

)
+ (1− a)

(
1

α
+
μ

Q

))
+Qτ

(
a(sp−Q)

Qp
− (1− a)

α
− aβ

Q
− μ(1− a)

Q

)
= 0. (4.53)

Thus, we obtain∫
Ak

|x|γτ |u|τdx ≤ C2(γτ+Q)k|uAk |τ + C[u]aτs,p,β,|·|,Ak‖|x|μu‖
(1−a)τ
Lα(Ak)

, (4.54)

and by summing over k from m to n, we get∫
∪nk=mAk

|x|γτ |u|τdx =

∫
{2m<|x|<2n+1}

|x|γτ |u|τdx (4.55)

≤ C
n∑

k=m

2(γτ+Q)k|uAk |τ + C

n∑
k=m

[u]aτs,p,β,|·|,Ak‖|x|μu‖
(1−a)τ
Lα(Ak)

,

where k,m, n ∈ Z and m ≤ n− 2.

To prove (4.47) let us choose n such that

suppu ⊂ B2n , (4.56)

where B2n is a quasi-ball of G with the radius 2n.

Let us consider the following integral

–

∫
Ak+1∪Ak

∣∣∣∣∣u− –

∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx =
1

|Ak+1|+ |Ak|
∫
Ak+1∪Ak

∣∣∣∣∣u− –

∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx

=
1

|Ak+1|+ |Ak|

(∫
Ak+1

∣∣∣∣∣u− –

∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx+

∫
Ak

∣∣∣∣∣u− –

∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx

)
.
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On the other hand, a direct calculation gives

–

∫
Ak+1∪Ak

∣∣∣∣∣u− –

∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx

=
1

|Ak+1|+ |Ak|

(∫
Ak+1

∣∣∣∣∣u− –

∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx+

∫
Ak

∣∣∣∣∣u− –

∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx

)

≥ 1

|Ak+1|+ |Ak|
∫
Ak

∣∣∣∣∣u− –

∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx

≥ 1

|Ak+1|+ |Ak|

∣∣∣∣∣
∫
Ak

(
u− –

∫
Ak+1∪Ak

u

)
dx

∣∣∣∣∣
τ

=
1

|Ak+1|+ |Ak|

∣∣∣∣∣
∫
Ak

udx− |Ak|
|Ak+1|+ |Ak|

∫
Ak

udx− |Ak|
|Ak+1|+ |Ak|

∫
Ak+1

udx

∣∣∣∣∣
τ

=
1

|Ak+1|+ |Ak|

∣∣∣∣∣ |Ak+1|
|Ak+1|+ |Ak|

∫
Ak

udx− |Ak|
|Ak+1|+ |Ak|

∫
Ak+1

udx

∣∣∣∣∣
τ

=
1

(|Ak+1|+ |Ak|)τ+1

∣∣∣∣∣|Ak+1|
∫
Ak

udx− |Ak|
∫
Ak+1

udx

∣∣∣∣∣
τ

=
|Ak+1|τ |Ak|τ

(|Ak+1|+ |Ak|)τ+1

∣∣∣∣∣ 1

|Ak|
∫
Ak

udx− 1

|Ak+1|
∫
Ak+1

udx

∣∣∣∣∣
τ

=
|Ak+1|τ |Ak|τ

(|Ak+1|+ |Ak|)τ+1
|uAk+1

− uAk |τ

≥ C|uAk+1
− uAk |τ . (4.57)

From (4.57) and Lemma 4.5.4, we obtain

|uAk+1
− uAk |τ ≤ C –

∫
Ak+1∪Ak

∣∣∣∣∣u− –

∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx

≤ C2 ak(sp−Q)
p [u]τas,p,|·|,Ak+1∪Ak

(
–

∫
Ak+1∪Ak

|u|αdx
) (1−a)τ

α

. (4.58)

By using this fact, taking τ = 1 we have

|uAk | ≤ |uAk+1
− uAk |+ |uAk+1

|

≤ |uAk+1
|+ C2

ak(sp−Q)
p [u]as,p,|·|,Ak+1∪Ak

(
–

∫
Ak+1∪Ak

|u|αdx
) (1−a)

α

. (4.59)
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On the other hand (see, e.g., [NS18b, Lemma 2.2]), there exists a positive constant
C depending ξ > 1 and η > 1 such that 1 < ζ < ξ,

(|a|+ |b|)η ≤ ζ|a|η + C

(ζ − 1)η−1
|b|η, ∀ a, b ∈ R. (4.60)

Thus, by using with η = τ , ζ = 2γτ+Qc, where c = 2
1+2γτ+Q < 1, since

γτ +Q > 0, from the previous inequality we have

2(γτ+Q)k|uAk |τ ≤ c2(k+1)(γτ+Q)|uAk+1
|τ +C[u]τas,p,β,|·|,Ak+1∪Ak‖|x|μu‖

(1−a)τ
Lα(Ak+1∪Ak).

By summing over k from m to n and by using (4.56) we have

n∑
k=m

2(γτ+Q)k|uAk |τ ≤
n∑

k=m

c2(k+1)(γτ+Q)|uAk+1
|τ

+ C

n∑
k=m

[u]τas,p,β,|·|,Ak+1∪Ak‖|x|μu‖
(1−a)τ
Lα(Ak+1∪Ak).

(4.61)

By using (4.61), we compute

(1− c)
n∑

k=m

2(γτ+Q)k|uAk |τ ≤ 2(γτ+Q)m|uAm |τ + (1− c)
n∑

k=m+1

2(γτ+Q)k|uAk |τ

≤ C
n∑

k=m

[u]τas,p,β,|·|,Ak+1∪Ak‖|x|μu‖
(1−a)τ
Lα(Ak+1∪Ak).

This yields

n∑
k=m

2(γτ+Q)k|uAk |τ ≤ C
n∑

k=m

[u]τas,p,β,|·|,Ak+1∪Ak‖|x|μu‖
(1−a)τ
Lα(Ak+1∪Ak). (4.62)

From (4.55) and (4.62), we have∫
{2m<|x|<2n+1}

|x|γτ |u|τdx ≤ C
n∑

k=m

[u]τas,p,β,|·|,Ak+1∪Ak‖|x|μu‖
(1−a)τ
Lα(Ak+1∪Ak). (4.63)

Let s, t ≥ 0 be such that s+ t ≥ 1. Then for any xk, yk ≥ 0, we have

n∑
k=m

xsky
t
k ≤

(
n∑

k=m

xk

)s( n∑
k=m

yk

)t
. (4.64)

By using this inequality in (4.63) with s = τa
p , t = (1−a)τ

α , a
p + 1−a

α ≥ 1
τ and

s ≥ β − σ, we obtain∫
{|x|>2m}

|x|γτ |u|τdx ≤ C[u]aτs,p,β,|·|,∪∞
k=mAk

‖|x|μu‖(1−a)τLα(∪∞
k=mAk)

.

Inequality (4.47) is proved.
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Let us prove (4.48). The strategy of the proof is similar to the previous case.
Choose m such that

suppu ∩B2m = ∅. (4.65)

From Lemma 4.5.4 we have

|uAk+1
− uAk |τ ≤ C2

aτk(sp−Q)
p [u]τas,p,|·|,Ak+1∪Ak

(
–

∫
Ak+1∪Ak

|u|αdx
) (1−a)τ

α

.

By (4.60) and choosing c = 1+2γτ+Q

2 < 1, since γτ +Q < 0, we have

2(γτ+Q)(k+1)|uAk+1
|τ ≤ c2k(γτ+Q)|uAk |τ +C[u]τas,p,β,|·|,Ak+1∪Ak‖|x|μu‖

(1−a)τ
Lα(Ak+1∪Ak),

and by summing over k from m to n and by using (4.65) we obtain

n∑
k=m

2(γτ+Q)k|uAk |τ ≤ C
n−1∑

k=m−1

[u]τas,p,β,|·|,Ak+1∪Ak‖|x|μu‖
(1−a)τ
Lα(Ak+1∪Ak). (4.66)

From (4.55) and (4.66), we establish that∫
{2m<|x|<2n+1}

|x|γτ |u|τdx ≤ C
n−1∑

k=m−1

[u]τas,p,β,|·|,Ak+1∪Ak‖|x|μu‖
(1−a)τ
Lα(Ak+1∪Ak).

Now by using (4.64) we get∫
{|x|<2n+1}

|x|γτ |u|τdx ≤ C[u]τas,p,β,|·|,∪nk=−∞Ak
‖|x|μu‖(1−a)τLα(∪nk=−∞Ak)

.

The proof of the case s ≥ β − σ is complete.

Let us prove the case of β − σ > s. Without loss of generality, we assume
that

[u]s,p,β,|·| = ‖u‖Lα(G) = 1,

where
1

p
+
β − s
Q
�= 1

α
+
μ

Q
.

We also assume that a1 > 0, 1 > a2 and τ1, τ2 > 0 with

1

τ2
=
a2
p

+
1− a2
α

,

and

if
a

p
+

1− a
α
− as

Q
> 0, then

1

τ1
=
a1
p

+
1− a1
α

− a1s

Q
,

if
a

p
+

1− a
α
− as

Q
≤ 0, then

1

τ
>

1

τ1
≥ a1

p
+

1− a1
α

− a1s

Q
.

(4.67)
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Taking γ1 = a1β + (1− a1)μ and γ2 = a2(β − s) + (1− a2)μ, we obtain

1

τ1
+
γ1
Q
≥ a1

(
1

p
+
β − s
Q

)
+ (1− a1)

(
1

α
+
μ

Q

)
(4.68)

and
1

τ2
+
γ2
Q

= a2

(
1

p
+
β − s
Q

)
+ (1− a2)

(
1

α
+
μ

Q

)
. (4.69)

Let a1 and a2 be such that

|a− a1| and |a− a2| are small enough, (4.70)

a2 < a < a1, if
1

p
+
β − s
Q

>
1

α
+
μ

Q
,

a1 < a < a2, if
1

p
+
β − s
Q

<
1

α
+
μ

Q
.

(4.71)

By using (4.70)–(4.71) in (4.68), (4.69) and (4.45), we establish

1

τ1
+
γ1
Q
>

1

τ
+
γ

Q
>

1

τ2
+
γ2
Q
> 0.

From (4.67) in the case a
p +

1−a
α − as

Q > 0 with a > 0, β−σ > s and (4.70), we get

1

τ
− 1

τ1
= (a− a1)

(
1

p
− s

Q
− 1

α

)
+
a

Q
(β − σ) > 0, (4.72)

and
1

τ
− 1

τ2
= (a− a2)

(
1

p
− 1

α

)
+
a

Q
(β − σ − s) > 0. (4.73)

From (4.67), (4.72) and (4.73), we have

τ1 > τ, τ2 > τ.

Thus, using this, (4.70) and Hölder’s inequality, we obtain

‖|x|γu‖Lτ(G\B1) ≤ C‖|x|γ1u‖Lτ1 (G),
and

‖|x|γu‖Lτ(B1) ≤ C‖|x|γ2u‖Lτ2 (G),

where B1 is the unit quasi-ball. By using the previous case, we establish

‖|x|γ1u‖Lτ1(G) ≤ C[u]a1s,p,β,|·|‖|x|μu‖1−a1Lα(G) ≤ C,
and

‖|x|γ2u‖Lτ2(G) ≤ C[u]a2s,p,β,|·|‖|x|μu‖1−a2Lα(G) ≤ C.

The proof of Theorem 4.5.2 is complete. �

Now we consider the critical case 1
τ + γ

Q = 0.
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Theorem 4.5.5 (Fractional critical Caffarelli–Kohn–Nirenberg inequality). Let G
be a homogeneous group of homogeneous dimension Q. Let Q ≥ 2, s ∈ (0, 1),
p > 1, α ≥ 1, τ > 1, a ∈ (0, 1], β1, β2, β, μ, γ ∈ R, β1 + β2 = β,

1

τ
+
γ

Q
= a

(
1

p
+
β − s
Q

)
+ (1− a)

(
1

α
+
μ

Q

)
. (4.74)

In addition, assume that 0 ≤ β − σ ≤ s with γ = aσ + (1− a)μ.
If 1

τ + γ
Q = 0 and suppu ⊂ BR = {x ∈ G : |x| < R}, then we have∥∥∥∥∥ |x|γln 2R

|x|
u

∥∥∥∥∥
Lτ(G)

≤ C[u]as,p,β,|·|‖|x|μu‖1−aLα(G), (4.75)

for all u ∈ C1
c (G).

Proof of Theorem 4.5.5. The proof is similar to the proof of Theorem 4.5.2. In
(4.54), summing over k from m to n and fixing ε > 0, we have∫

{|x|>2m}

|x|γτ
ln1+ε

(
2R
|x|
) |u|τdx ≤ C n∑

k=m

1

(n+ 1− k)1+ε |uAk |
τ

+ C

n∑
k=m

[u]aτs,p,β,|·|,Ak‖|x|μu‖
(1−a)τ
Lα(Ak)

.

(4.76)

From Lemma 4.5.4, we have

|uAk+1
− uAk | ≤ C2

ak(sp−Q)
p [u]as,p,|·|,Ak+1∪Ak

(
–

∫
Ak+1∪Ak

|u|αdx
) 1−a

α

.

By using (4.60) with ζ = (n+1−k)ε
(n+ 1

2−k)ε
we get

|uAk |τ
(n+ 1− k)ε ≤

|uAk+1
|τ

(n+ 1
2 − k)ε

(4.77)

+ C(n+ 1− k)τ−1−ε[u]aτs,p,β,|·|,Ak+1∪Ak‖|x|μu‖
(1−a)τ
Lα(Ak+1∪Ak).

For ε > 0 and n ≥ k, we have

1

(n− k + 1)ε
− 1

(n− k + 3
2 )
ε
∼ 1

(n− k + 1)1+ε
. (4.78)

By using this fact, (4.77), (4.78) and ε = τ − 1, we obtain

n∑
k=m

|uAk |τ
(n+ 1− k)τ ≤ C

n∑
k=m

[u]aτs,p,β,|·|,Ak+1∪Ak‖qμ(x)u‖
(1−a)τ
Lα(Ak+1∪Ak). (4.79)
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From (4.76) and (4.79), we establish∫
{|x|>2m}

|x|γτ
lnτ 2R

|x|
|u|τdx ≤ C

n∑
k=m

[u]aτs,p,β,|·|,Ak+1∪Ak‖|x|μu‖
(1−a)τ
Lα(Ak+1∪Ak).

By using (4.64) with (4.74) and 0 ≤ β− σ ≤ s, where s = τa
p , t = (1−a)τ

α , we have
s+ t ≥ 1 and we arrive at∫

{|x|>2m}

|x|γτ
lnτ 2R

|x|
|u|τdx ≤ C

n∑
k=m

[u]aτs,p,β,|·|,∪∞
k=mAk

‖|x|μu‖(1−a)τLα(∪∞
k=mAk)

.

Theorem 4.5.5 is proved. �

4.6 Lyapunov inequalities on homogeneous groups

In this section we give an application of the preceding results to derive a Lyapunov
type inequality for the fractional p-sub-Laplacian with homogeneous Dirichlet
boundary condition on homogeneous groups. First, we summarize the basic re-
sults concerning the classical Lyapunov inequality.

Remark 4.6.1 (Euclidean Lyapunov inequalities).

1. In [Lya07], Lyapunov obtained the following result for the one-dimensional
homogeneous Dirichlet boundary value problem. Consider the second-order
ordinary differential equation{

u′′(x) + ω(x)u(x) = 0, x ∈ (a, b),

u(a) = u(b) = 0.
(4.80)

Then, if (4.80) has a non-trivial solution u, and ω = ω(x) is a real-valued
and continuous function on [a, b], then we must have∫ b

a

|ω(x)|dx > 4

b− a . (4.81)

Inequality (4.81) is called a (classical) Lyapunov inequality.

2. Nowadays, there are many extensions of the Lyapunov inequality (4.81). For
example, in [Elb81] the Lyapunov inequality for the one-dimensional Dirichlet
p-Laplacian was obtained: if{

(|u′(x)|p−2u′(x))′ + ω(x)u(x) = 0, x ∈ (a, b), 1 < p <∞,
u(a) = u(b) = 0,

(4.82)
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has a non-trivial solution u for ω ∈ L1(a, b), then∫ b

a

|ω(x)|dx > 2p

(b− a)p−1
, 1 < p <∞. (4.83)

Obviously, taking p = 2 in (4.83), we recover (4.81).

3. In [JKS17], the following Lyapunov inequality was obtained for the multi-
dimensional fractional p-Laplacian (−Δp)

s, 1 < p < ∞, s ∈ (0, 1), with a
homogeneous Dirichlet boundary condition, that is, for the equation{

(−Δp)
su = ω(x)|u|p−2u, x ∈ Ω,

u(x) = 0, x ∈ RN \ Ω, (4.84)

where Ω ⊂ RN is a measurable set, 1 < p <∞, and s ∈ (0, 1).More precisely,
let ω ∈ Lθ(Ω) with N > sp, Nsp < θ <∞, be a non-negative weight. Suppose

that the problem (4.84) has a non-trivial weak solution u ∈ W s,p
0 (Ω). Then

we have (∫
Ω

ωθ(x) dx

) 1/θ

>
C

r
sp−N

θ

Ω

, (4.85)

where C > 0 is a universal constant and rΩ is the inner radius of Ω.

The appearance of the inner radius in (4.85) motivates one to define its
analogue also in the setting of homogeneous groups.

Definition 4.6.2 (Inner quasi-radius). Let p > 1 and s ∈ (0, 1) be such that Q > sp.
Let Ω ⊂ G be a Haar measurable set. We denote by rΩ,q the inner quasi-radius of
Ω, that is,

rΩ = rΩ,|·| := sup{|x| : x ∈ Ω}. (4.86)

Clearly, the exact values depend on the choice of a homogeneous quasi-norm | · |.
As before, if the quasi-norm is fixed, we can omit it from the notation.

4.6.1 Lyapunov type inequality for fractional p-sub-Laplacians

We now turn our attention to the Lyapunov inequalities for the fractional p-
sub-Laplacian (−Δp)

s from Definition 4.1.1. Let us consider the boundary value
problem {

(−Δp)
su(x) = ω(x)|u(x)|p−2u(x), x ∈ Ω,

u(x) = 0, x ∈ G \ Ω, (4.87)

where ω ∈ L∞(Ω). A function u ∈ W s,p
0 (Ω) is called a weak solution of the problem

(4.87) if we have∫
Ω

∫
Ω

|u(x)− u(y)|p−2(u(x)− u(y))(v(x) − v(y))
|y−1x|Q+sp

dxdy

=

∫
Ω

ω(x)|u(x)|p−2u(x)v(x)dx for all v ∈ W s,p
0 (Ω).
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Theorem 4.6.3 (Lyapunov inequality for fractional p-sub-Laplacian). Let G be a
homogeneous group of homogeneous dimension Q. Let Ω ⊂ G be a Haar measurable
set. Let ω ∈ Lθ(Ω) be a non-negative function with Q

sp < θ <∞, and with Q > ps.

Suppose that the boundary value problem (4.87) has a non-trivial weak solution
u ∈ W s,p

0 (Ω). Then we have

‖ω‖Lθ(Ω) ≥ C
/
r
sp−Q/θ
Ω,|·| , (4.88)

for some C = C(Q, p, s, | · |) > 0.

Proof of Theorem 4.6.3. We fix a homogeneous quasi-norm | · | thus also elimi-

nating it from the notation. Let α := θ−θ/sp
θ−1 ∈ (0, 1) and let p∗ be the Sobolev

conjugate exponent as in Theorem 4.3.1. Let us define

β := αp+ (1− α)p∗.
Let β = pθ′ with 1/θ + 1/θ′ = 1. Then we have∫

Ω

|u(x)|β
rαspΩ

dx ≤
∫
Ω

|u(x)|β
|x|αsp dx. (4.89)

On the other hand, the Hölder inequality with exponents ν = α−1 and its conju-
gate 1/ν + 1/ν′ = 1 implies∫

Ω

|u(x)|β
|x|αsp dx ≤

∫
Ω

|u(x)|αp|u(x)|(1−α)p∗
|x|αsp dx

≤
(∫

Ω

|u(x)|p
|x|spdx

)α(∫
Ω

|u(x)|p∗dx
)1−α

.

Further, by using Theorem 4.3.1 and Theorem 4.2.1, we get∫
Ω

|u(x)|β
|x|αsp dx ≤ C

α
1

(∫
Ω

∫
Ω

|u(x)− u(y)|p
|y−1x|Q+sp

dxdy

)α/p
C

(1−α)p∗/p
2 [u](1−α)p

∗/p
s,p

≤ Cα1 [u]αs,pC(1−α)p∗/p
2 [u](1−α)p

∗/p
s,p

= C
(
[u]ps,p

)(αp+(1−α)p∗)/p
= C

(∫
Ω

ω(x)|u(x)|pdx
)θ′

≤ C
(∫

Ω

ωθ(x)dx

)θ′/θ ∫
Ω

|u(x)|pθ′dx = C‖ω‖θ′Lθ(Ω)

∫
Ω

|u(x)|βdx.

That is, we obtain ∫
Ω

|u(x)|β
|x|αsp dx ≤ C‖ω‖

θ′
Lθ(Ω)

∫
Ω

|u(x)|βdx.

Thus, from (4.89) we have

1

rαspΩ

∫
Ω

|u(x)|βdx ≤
∫
Ω

|u(x)|β
|x|αsp dx ≤ C‖ω‖

θ′
Lθ(Ω)

∫
Ω

|u(x)|βdx.
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Finally, we arrive at
C

r
sp−Q/θ
Ω

≤ ‖ω‖Lθ(Ω).

Theorem 4.6.3 is proved. �

As an application of the Lyapunov inequality, let us consider the spectral
problem for the (nonlinear) fractional p-sub-Laplacian (−Δp)

s, 1 < p < ∞, s ∈
(0, 1), with the Dirichlet boundary condition:{

(−Δp)
su = λ|u|p−2u, x ∈ Ω,

u(x) = 0, x ∈ G \ Ω. (4.90)

We define the corresponding Rayleigh quotient by

λ1 := inf
u∈W s,p

0 (Ω), u	=0

[u]ps,p
‖u‖pLp(G)

. (4.91)

Clearly, its precise value may depend on the choice of the homogeneous quasi-norm
| · |. As a consequence of Theorem 4.6.3 we have

Theorem 4.6.4 (First eigenvalue for the fractional p-sub-Laplacian). Let G be a
homogeneous group of homogeneous dimension Q. Let λ1 be the first eigenvalue of
problem (4.90) given by (4.91). Let Q > sp, s ∈ (0, 1) and 1 < p < ∞. Then we
have

λ1 ≥ sup
Q
sp<θ<∞

C

|Ω| 1θ rsp−Q/θΩ,|·|
, (4.92)

where C is a positive constant given in Theorem 4.6.3 and |Ω| is the Haar measure
of Ω.

Proof of Theorem 4.6.4. In Theorem 4.6.3, taking ω = λ ∈ Lθ(Ω) and using Lya-
punov type inequality (4.88), we get that

‖ω‖Lθ(Ω) = ‖λ‖Lθ(Ω) =

(∫
Ω

λθdx

)1/θ

≥ C

r
sp−Q/θ
Ω,|·|

.

For every θ > Q
sp , we have

λ1 ≥ C

|Ω| 1θ rsp−Q/θΩ,|·|
.

Thus, we obtain

λ1 ≥ sup
Q
sp<θ<∞

C

|Ω| 1θ rsp−Q/θΩ,|·|
,

for all Q
sp < θ <∞. Theorem 4.6.4 is proved. �
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4.6.2 Lyapunov type inequality for systems

In the previous section we have presented the Lyapunov type inequality for the
fractional p-sub-Laplacian with the homogeneous Dirichlet condition. Now we dis-
cuss the Lyapunov type inequality for the fractional p-sub-Laplacian system for
the homogeneous Dirichlet problem.

Let Ω ⊂ G be a Haar measurable set, let ωi ∈ L1(Ω), ωi ≥ 0, si ∈ (0, 1),
pi ∈ (1,∞). As before in Definition 4.1.1, for each pi we denote by (−Δpi)

si the
fractional p-sub-Laplacian on G defined by

(−Δpi)
siui(x) = 2 lim

δ↘0

∫
G\B(x,δ)

|ui(x)− ui(y)|pi−2(ui(x) − ui(y))
|y−1x|Q+sipi

dy, x ∈ G,

i = 1, . . . , n.

Here B(x, δ) is a quasi-ball with respect to a fixed quasi-norm | · |, with radius δ,
centred at x ∈ G. Let αi be positive parameters such that

n∑
i=1

αi
pi

= 1. (4.93)

Then, we consider the following system of the fractional p-sub-Laplacians:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−Δp1)

s1u1(x) = ω1(x)|u1(x)|α1−2u1(x)|u2(x)|α2 · · · |un(x)|αn , x ∈ Ω,

(−Δp2)
s2u2(x) = ω2(x)|u1(x)|α1 |u2(x)|α2−2u2(x) · · · |un(x)|αn , x ∈ Ω,

· · ·
(−Δpn)

snun(x) = ωn(x)|u1(x)|α1 |u2(x)|α2 · · · |un(x)|αn−2un(x), x ∈ Ω,
(4.94)

with homogeneous Dirichlet conditions

ui(x) = 0, x ∈ G \ Ω, i = 1, . . . , n. (4.95)

We denote by rΩ the inner quasi-radius of Ω, that is,

rΩ = rΩ,|·| := max{|x| : x ∈ Ω}.
Definition 4.6.5 (Weak solutions of the p-sub-Laplacian system). We will say
that (u1, . . . , un) ∈

∏n
i=1W

si,pi
0 (Ω) is a weak solution of (4.94)–(4.95) if for all

(v1, . . . , vn) ∈
∏n
i=1W

si,pi
0 (Ω), we have∫

G

∫
G

|ui(x) − ui(y)|pi−2(ui(x) − ui(y))(vi(x)− vi(y))
|y−1x|Q+sipi

dxdy (4.96)

=

∫
Ω

ωi(x)

⎛⎝i−1∏
j=1

|uj(x)|αj
⎞⎠⎛⎝ n∏

j=i+1

|uj(x)|αj
⎞⎠ |ui(x)|αi−2ui(x)vi(x)dx,

for every i = 1, . . . , n.
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Now we present the following analogue of the Lyapunov type inequality for
the fractional p-sub-Laplacian system on G.

Theorem 4.6.6 (Lyapunov inequality for fractional p-sub-Laplacian system). Let
G be a homogeneous group of homogeneous dimension Q. Let si ∈ (0, 1) and
pi ∈ (1,∞) be such that Q > sipi with i = 1, . . . , n. Let ωi ∈ Lθ(Ω) be a non-
negative weight and assume that

1 < max
i=1,...,n

{
Q

sipi

}
< θ <∞.

If (4.94)–(4.95) admits a non-trivial weak solution, then we have

n∏
i=1

‖ωi‖
θαi
pi

Lθ(Ω)
≥ CrQ−θ∑n

j=1 sjαj
Ω,q , (4.97)

where C is a positive constant.

Proof of Theorem 4.6.6. Set

ξi := γipi + (1− γi)p∗i , i = 1, . . . , n,

and

γi :=
θ − Q

sipi

θ − 1
, (4.98)

where p∗i =
Q

Q−sipi is the Sobolev conjugate exponent as in Theorem 4.3.1. Notice

that for all i = 1, . . . , n we have γi ∈ (0, 1) and ξi = piθ
′, where θ′ = θ

θ−1 . Then
for every i we have ∫

Ω

|ui(x)|ξi
rγisipiΩ,q

dx ≤
∫
Ω

|ui(x)|ξi
|x|γisipi dx,

and by using the Hölder inequality with νi =
1
γi

and 1
νi

+ 1
ν′
i
= 1, we get∫

Ω

|ui(x)|ξi
|x|γisipi dx =

∫
Ω

|ui(x)|γipi |ui(x)|(1−γi)p∗i
|x|γisipi dx

≤
(∫

Ω

|ui(x)|pi
|x|sipi dx

)γi (∫
Ω

|ui(x)|p∗i dx
)1−γi

.

(4.99)

On the other hand, from Theorem 4.3.1, we obtain(∫
Ω

|ui(x)|p∗i dx
)1−γi

≤ C[ui]p
∗
i (1−γi)
si,pi,|·| ,

and from Theorem 4.2.1, we have(∫
Ω

|ui(x)|pi
|x|sipi dx

)γi
≤ C[ui]piγisi,pi,|·|.
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Thus, from (4.99) and by setting ui(x) = vi(x) in (4.96), we get∫
Ω

|ui(x)|ξi
|x|γisipi dx ≤ C([ui]

pi
si,pi,|·|,Ω)

ξi
pi ≤ C([ui]pisi,pi,|·|)

ξi
pi

= C

⎛⎝∫
Ω

ωi(x)

n∏
j=1

|uj|αjdx
⎞⎠

ξi
pi

= C

⎛⎝∫
Ω

ωi(x)

n∏
j=1

|uj |αjdx
⎞⎠θ′

,

for every i = 1, . . . , n. Therefore, by using the Hölder inequality with exponents θ
and θ′, we obtain∫

Ω

|ui(x)|ξi
|x|γisipi dx ≤ C‖ωi‖

θ
θ−1

Lθ(Ω)

∫
Ω

n∏
j=1

|uj(x)|αjθ′dx.

Again by using the Hölder inequality and (4.93), we get∫
Ω

n∏
j=1

|uj(x)|αjθ′dx ≤
n∏
j=1

(∫
Ω

|uj |θ′pjdx
)αj
pj

.

It yields that ∫
Ω

|ui(x)|ξi
|x|γisipi dx ≤ C‖ωi‖

θ
θ−1

Lθ(Ω)

n∏
j=1

(∫
Ω

|uj |θ′pjdx
)αj
pj

.

That is, we have∫
Ω

|ui(x)|ξi
rγisipiΩ

dx ≤
∫
Ω

|ui(x)|ξi
|x|γisipi dx ≤ C‖ωi‖

θ
θ−1

Lθ(Ω)

n∏
j=1

(∫
Ω

|uj|θ′pjdx
)αj
pj

.

Thus, for every ei > 0 we have(∫
Ω

|ui(x)|ξi
rγisipiΩ

dx

)ei
=

1

reiγisipiΩ

(∫
Ω

|ui(x)|ξidx
)ei

≤ C‖ωi‖
eiθ

θ−1

Lθ(Ω)

n∏
j=1

(∫
Ω

|uj |θ′pjdx
) eiαj

pj

,

so that

1

r
∑n
j=1 γjsjpjej

Ω

n∏
i=1

(∫
Ω

|ui(x)|θ′pidx
)ei

≤ C
(

n∏
i=1

‖ωi‖
eiθ

θ−1

Lθ(Ω)

)⎛⎝ n∏
i=1

(∫
Ω

|ui(x)|θ′pidx
)αi

∑n
j=1 ej

pi

⎞⎠ .
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This implies

1

r
∑n
j=1 γjsjpjej

Ω

≤ C
(

n∏
i=1

‖ωi‖
eiθ

θ−1

Lθ(Ω)

)(
n∏
i=1

(
|ui(x)|θ′pidx

)αi∑n
j=1 ej

pi
−ei

)
, (4.100)

where C is a positive constant. Then, we choose ei, i = 1, . . . , n, such that
αi

∑n
j=1 ej

pi
− ei = 0. Consequently, from (4.93) we have the solution of this system

ei =
αi
pi
, i = 1, . . . , n. (4.101)

Combining (4.100), (4.98) and (4.101) we arrive at

n∏
i=1

‖ωi‖
θαi
pi

Lθ(Ω)
≥ CrQ−θ∑n

j=1 sjαj
Ω . (4.102)

Theorem 4.6.6 is proved. �

In order to discuss an application of the Lyapunov type inequality for the
fractional p-sub-Laplacian system on G, we consider the spectral problem for the
system of fractional p-sub-Laplacians:⎧⎪⎪⎨⎪⎪⎩

(−Δp1,q)
s1u1(x) = λ1α1ϕ(x)|u1(x)|α1−2u1(x)|u2(x)|α2 · · · |un(x)|αn , x ∈ Ω,

(−Δp2,q)
s2u2(x) = λ2α2ϕ(x)|u1(x)|α1 |u2(x)|α2−2u2(x) · · · |un(x)|αn , x ∈ Ω,

· · ·
(−Δpn,q)

snun(x) = λnαnϕ(x)|u1(x)|α1 |u2(x)|α2 · · · |un(x)|αn−2un(x), x ∈ Ω,
(4.103)

with
ui(x) = 0, x ∈ G \ Ω, i = 1, . . . , n, (4.104)

where Ω ⊂ G is a Haar measurable set, ϕ ∈ L1(Ω), ϕ ≥ 0 and si ∈ (0, 1),
pi ∈ (1,∞), i = 1, . . . , n.

Definition 4.6.7 (Eigenvalues of p-sub-Laplacian system (4.103)–(4.104)). We say
that λ = (λ1, . . . , λn) is an eigenvalue if the problem (4.103)–(4.104) admits at
least one non-trivial weak solution (u1, . . . , un) ∈

∏n
i=1W

si,pi
0 (Ω).

Theorem 4.6.8 (Eigenvalue estimates for p-sub-Laplacian system). Let si ∈ (0, 1)
and pi ∈ (1,∞) be such that Q > sipi, for all i = 1, . . . , n, and

1 < max
i=1,...,n

{
Q

sipi

}
< θ <∞.

Let ϕ ∈ Lθ(Ω) with ‖ϕ‖Lθ(Ω) �= 0. Then we have

λk ≥ C

αk

⎛⎝ 1∏n
i=1,i	=k λ

αi
pi

i

⎞⎠
pk
αk

⎛⎜⎝ 1

r
θ
∑
n
i=1 αisi−Q

Ω

∏n
i=1,i	=k α

θαi
pi

i

∫
Ω
ϕθ(x)dx

⎞⎟⎠
pk
θαk

,

where C is a positive constant and k = 1, . . . , n.
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Proof of Theorem 4.6.8. In Theorem 4.6.6 by setting ωk = λkαkϕ(x), k = 1, . . . , n,
we get

α
θαk
pk

k λ
θαk
pk

k

n∏
i=1,i	=k

(αiλi)
θαi
pi

n∏
i=1

‖ϕ‖
θαi
pi

Lθ(Ω)
≥ CrQ−θ∑n

j=1 sjαj
Ω,q .

So from (4.93) we have

α
θαk
pk

k λ
θαk
pk

k

n∏
i=1,i	=k

(αiλi)
θαi
pi

∫
Ω

ϕθ(x)dx ≥ CrQ−θ∑n
j=1 sjαj

Ω,q .

This yields

λ
θαk
pk

k ≥ C

α
θαk
pk

k r
θ
∑n
j=1 sjαj−Q

Ω,q

∏n
i=1,i	=k(αiλi)

θαi
pi

∫
Ω ϕ

θ(x)dx

, k = 1, . . . , n.

Therefore, we have

λk ≥ C

αk

⎛⎝ 1∏n
i=1,i	=k λ

αi
pi

i

⎞⎠
pk
αk

⎛⎜⎝ 1

r
θ
∑n
i=1 αisi−Q

Ω

∏n
i=1,i	=k α

θαi
pi

i

∫
Ω
ϕθ(x)dx

⎞⎟⎠
pk
θαk

,

k = 1, . . . , n,

completing the proof. �

4.6.3 Lyapunov type inequality for Riesz potentials

In this section we discuss the Lyapunov type inequality for the Riesz potential op-
erators on homogeneous groups. As an application, we discuss a two-sided estimate
for the first eigenvalue of the Riesz potential.

Definition 4.6.9 (Riesz potentials). Let G be a homogeneous group of homogeneous
dimension Q with a quasi-norm | · |. The Riesz potential on a Haar measurable set
Ω ⊂ G is the operator given by the formula

Ru(x) =

∫
Ω

u(y)

|y−1x|Q−2s
dy, 0 < 2s < Q. (4.105)

The (weighted) Riesz potential is defined by

R(ωu)(x) =

∫
Ω

ω(y)u(y)

|y−1x|Q−2s
dy, 0 < 2s < Q. (4.106)

A Lyapunov type inequality for the weighted Riesz potentials can be formu-
lated as follows.
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Theorem 4.6.10 (Lyapunov type inequality for weighted Riesz potentials). Let G
be a homogeneous group of homogeneous dimension Q with a quasi-norm | · |. Let
Ω ⊂ G be a Haar measurable set, let Q ≥ 2 > 2s > 0 and 1 < p < 2. Assume that
ω ∈ L p

2−p (Ω), 1
|y−1x|Q−2s ∈ L

p
p−1 (Ω× Ω) and

C0 =

∥∥∥∥ 1

|y−1x|Q−2s

∥∥∥∥
L

p
p−1 (Ω×Ω)

<∞.

Let u ∈ L p
p−1 (Ω), u �= 0, satisfy

R(ωu)(x) =

∫
Ω

ω(y)u(y)

|y−1x|Q−2s
dy = u(x), for a.e. x ∈ Ω. (4.107)

Then

‖ω‖
L

p
2−p (Ω)

≥ 1

C0
. (4.108)

Proof of Theorem 4.6.10. In (4.107), by using Hölder’s inequality for p, θ > 1 with
1
p + 1

p′ = 1 and 1
θ +

1
θ′ = 1, we get

|u(x)| =
∣∣∣∣∫

Ω

ω(y)u(y)

|y−1x|Q−2s
dy

∣∣∣∣
≤
(∫

Ω

|ω(y)u(y)|pdy
) 1
p

(∫
Ω

∣∣∣∣ 1

|y−1x|Q−2s

∣∣∣∣p′ dy
) 1
p′

≤
(∫

Ω

|ω(y)|pθdy
) 1
pθ
(∫

Ω

|u(y)|θ′pdy
) 1
θ′p

(∫
Ω

∣∣∣∣ 1

|y−1x|Q−2s

∣∣∣∣p′ dy
) 1
p′

= ‖ω‖Lpθ(Ω)‖u‖Lpθ′(Ω)

(∫
Ω

∣∣∣∣ 1

|y−1x|Q−2s

∣∣∣∣p′ dy
) 1
p′

.

Let p′ be such that p′ = pθ′, so that θ = 1
2−p . Then we have

|u(x)| ≤ ‖ω‖
L

p
2−p (Ω)

‖u‖
L

p
p−1 (Ω)

(∫
Ω

∣∣∣∣ 1

|y−1x|Q−2s

∣∣∣∣
p
p−1

dy

) p−1
p

. (4.109)

From (4.109) we calculate

‖u‖
L

p
p−1 (Ω)

≤ ‖ω‖
L

p
2−p (Ω)

‖u‖
L

p
p−1 (Ω)

(∫
Ω

∫
Ω

∣∣∣∣ 1

|y−1x|Q−2s

∣∣∣∣
p
p−1

dxdy

) p−1
p

= C0‖ω‖
L

p
2−p (Ω)

‖u‖
L

p
p−1 (Ω)

.
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Finally, since u �= 0, this implies

‖ω‖
L

p
2−p (Ω)

≥ 1

C0
,

completing the proof. �

Let us now consider the following spectral problem for the Riesz potential:

Ru(x) =

∫
Ω

u(y)

|y−1x|Q−2s
dy = λu(x), x ∈ Ω, 0 < 2s < Q. (4.110)

We recall the Rayleigh quotient for the Riesz potential:

λ1(Ω) = sup
u	=0

∫
Ω

∫
Ω

u(x)u(y)
|y−1x|Q−2s dxdy

‖u‖2L2(Ω)

, (4.111)

where λ1(Ω) is the first eigenvalue of the Riesz potential. A direct consequence of
Theorem 4.6.10 is the following estimate for this first eigenvalue.

Theorem 4.6.11 (First eigenvalue of the Riesz potential). Let G be a homogeneous
group of homogeneous dimension Q. Let Ω ⊂ G be a Haar measurable set, let
Q ≥ 2 > 2s > 0 and 1 < p < 2 with 1

|y−1x|Q−2s ∈ L
p
p−1 (Ω× Ω) and set

C0 :=

∥∥∥∥ 1

|y−1x|Q−2s

∥∥∥∥
L

p
p−1 (Ω×Ω)

.

Then for the spectral problem (4.110), we have

λ1(Ω) ≤ C0|Ω|
2−p
p . (4.112)

Proof of Theorem 4.6.11. By using (4.111), Theorem 4.6.10 and ω = 1
λ1(Ω) , we

obtain
λ1(Ω) ≤ C0|Ω|

2−p
p . (4.113)

Theorem 4.6.11 is proved. �

Euclidean case. Let us now record several applications of the above constructions
in the case of the Abelian group (RN ,+). With the Euclidean distance | · |E , the
Riesz potential is given by

Ru(x) =

∫
Ω

u(y)

|x− y|N−2s
E

dy, 0 < 2s < N, Ω ⊂ R
N , (4.114)

and the weighted Riesz potential is

R(ωu)(x) =

∫
Ω

ω(y)u(y)

|x− y|N−2s
E

dy, 0 < 2s < N, Ω ⊂ R
N . (4.115)

Then, in Theorem 4.6.10, setting G = (RN ,+) and taking the standard Euclidean
distance instead of the quasi-norm, we obtain
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Theorem 4.6.12 (Euclidean Lyapunov inequality for the Riesz potential). Let Ω ⊂
RN be a measurable set with |Ω| < ∞, 1 < p < 2 and let N ≥ 2 > 2s > 0. Let

ω ∈ L p
2−p (Ω), 1

|x−y|N−2s
E

∈ L p
p−1 (Ω× Ω) and set

S :=

∥∥∥∥∥ 1

|x− y|N−2s
E

∥∥∥∥∥
L

p
p−1 (Ω×Ω)

.

In addition, assume that u ∈ L p
p−1 (Ω), u �= 0, satisfies

R(ωu)(x) = u(x), x ∈ Ω.

Then we have

‖ω‖
L

p
2−p (Ω)

≥ 1

S
.

Now let us consider the spectral problem for the Euclidean Riesz potential
from (4.114):

Ru(x) =

∫
Ω

u(y)

|x− y|N−2s
E

dy = λu(x), 0 < 2s < N. (4.116)

Theorem 4.6.13 (Isoperimetric inequality for the Euclidean Riesz potential). Let
Ω ⊂ RN be a set with |Ω| < ∞, 1 < p < 2 and N ≥ 2 > 2s > 0 and 1 < p < 2.

Assume that ω ∈ L p
2−p (Ω), 1

|x−y|N−2s
E

∈ L p
p−1 (Ω× Ω) and set

S :=

∥∥∥∥∥ 1

|x− y|N−2s
E

∥∥∥∥∥
L

p
p−1 (Ω×Ω)

.

Then, for the spectral problem (4.116), we have,

λ1(Ω) ≤ λ1(B) ≤ S|B| 2−pp ,

where B ⊂ RN is an open ball, λ1(Ω) is the first eigenvalue of the spectral problem
(4.116), for all sets Ω with |Ω| = |B|.

Proof of Theorem 4.6.13. The proof of λ1(B) ≤ S|B| 2−pp is the same as the proof
of Theorem 4.6.11. From [RRS16] we have

λ1(B) ≥ λ1(Ω),

which completes the proof of Theorem 4.6.13. �
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4.7 Hardy inequalities for fractional sub-Laplacians

on stratified groups

In this section we discuss the Hardy inequalities involving fractional powers of
the sub-Laplacian from a different point of view. First, we observe another way of
writing the well-known one-dimensional Lp-Hardy inequality∫ ∞

0

∣∣∣∣f(x)x
∣∣∣∣p dx ≤ ( p

p− 1

)p ∫ ∞

0

∣∣∣∣df(x)dx

∣∣∣∣p dx, p > 1.

Consequently, one can replace f(x) by xf(x) and restate this inequality in terms
of the boundedness of the operator

Tf(x) =
d(xf(x))

dx
,

or of its dual operator

T ∗f(x) = x
df(x)

dx
.

In this section, we discuss this point of view and its extension to the subelliptic
setting. For fractional powers of the sub-Laplacian on stratified groups this has
been analysed in [CCR15], with subsequent extensions to more general hypoelliptic
operators and more general graded groups in [RY18a]. We discuss this matter in
the spirit of the former.

4.7.1 Riesz kernels on stratified Lie groups

In this section we briefly recapture some properties of the Riesz kernels of the
sub-Laplacians on stratified Lie groups. Historically, these have been consistently
developed in [Fol75]. For a detailed unifying description containing also higher-
order hypoelliptic operators on general graded groups, their fractional powers, and
the corresponding Riesz and Bessel kernels we refer to the exposition in [FR16,
Section 4.3] where one can find proofs of most of the properties described in this
section.

The analysis of second-order hypoelliptic operators, including the sub-Lapla-
cian, is significantly simpler than that of higher-order operators. This difference is
based on the Hunt theorem [Hun56] which asserts that the semigroup

{
e−tL

}
t>0

generated by the sub-Laplacian L (or more precisely, by its unique self-adjoint
extension) consists of convolutions with probability measures. Moreover, the hy-
poellipticity of L implies that these measures are absolutely continuous with re-
spect to the Haar measure and have densities in the Schwartz space [FS82], which
are strictly positive by the Bony maximum principle [Bon69]. Therefore, for all
t ∈ R+, there exists the heat kernel of L, that is, a function pt ∈ S(G) such that

e−tLf(x) = f ∗ pt(x) =
∫
G

f(xy−1)pt(y)dy
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for all x ∈ G and all f ∈ L2(G). Since L is homogeneous of order two with respect
to the dilations Dr of a stratified group G, we also have

pt(x) = t−Q/2P (Dt−1/2x)

for all x ∈ G, where P = p1, which this is a strictly positive function in the
Schwartz class S(G) and ∫

G

P (x)dx = 1.

Let us define the following fractional integral kernel Fα on G\{0} by

Fα(x) :=

∫ ∞

0

tα/2pt(x)
dt

t
=

∫ ∞

0

t(α−Q)/2P (Dt−1/2x)
dt

t
, Reα < Q, (4.117)

which converges absolutely and uniformly on compact subsets of G\{0} to a
smooth function, homogeneous of degree α − Q. Since P is positive Fα is pos-
itive when α is real. Thus, the function | · |α, given by the formula

|x|α :=

{
(F0(x))

−1/(Q−α) if x ∈ G\{0},
0 if x = 0,

(4.118)

is non-negative and homogeneous of degree 1, and vanishes only at the origin. So
| · |α is a homogeneous norm, and for further discussions it will be convenient to
use the norm | · |0, which is a limit of the norms | · |α.

The fractional integral Fα(x) in (4.117) is holomorphic with respect to α in
HQ := {α ∈ C : Reα < Q}, and its derivatives

F (k)
α (x) =

1

2k

∫ ∞

0

tα/2(log t)kpt(x)
dt

t

are the absolutely convergent integrals. The functions Fα are smooth and homo-
geneous of degree α − Q and locally integrable on G when 0 < Reα < Q. Thus,
the associated distributions are defined by

〈Fα, φ〉 :=
∫
G

Fα(x)φ(x)dx =

∫
G

∫ ∞

0

φ(x)t(α−Q)/2−1P (Dt−1/2x)dtdx

= 2

∫ ∞

0

∫
G

sα−1φ(Dsx)P (x)dxds (4.119)

for all φ ∈ C∞
0 (G). Now it is clear that

Iα := Γ(α/2)−1Fα

is the Riesz kernel of order α, i.e., the convolution kernel of L−α/2, that is,

L−α/2f = f ∗ Iα, (4.120)

with
Iα|α=0 = δ0. (4.121)
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The family of Riesz kernels can be analytically continued as distributions to the
half-plane HQ by the identity

Iα = L(Iα+2).

The analytic continuation to the strip {α ∈ C : −1 < Reα < Q} will be enough
for our purpose. An explicit expression is obtained by rewriting (4.119) in the form

〈Iα, φ〉 = 2

Γ
(
α
2

) ∫
G

∫ 1

0

sα−1(φ(Dsx)− φ(0))dsP (x)dx +
2φ(0)

αΓ(α2 )

+
2

Γ(α2 )

∫
G

∫ ∞

1

sα−1φ(Dsx)dsP (x)dx.

(4.122)

Since Γ′(1) = −γ and hence

1

Γ(t)
=

t

Γ(t+ 1)
= t− γt2 +O(t3) as t→ 0, (4.123)

and

st = 1 + log s

∫ t

0

sudu,

the equality (4.122) implies that for α near 0, for φ ∈ C∞
0 (G) we have

c〈Iα, φ〉 = φ(0) + 〈Λ, φ〉α+O(α2), (4.124)

where Λ is the distribution defined by

〈Λ, φ〉 :=
∫
G

∫ 1

0

1

s
(φ(Dsx)− φ(0))dsP (x)dx +

γφ(0)

2

+

∫
G

∫ ∞

1

1

s
φ(Dsx)dsP (x)dx.

(4.125)

Thus, (4.124) is the Taylor expansion of Iα around 0. By the analytic continuation
of (4.122) one obtains the following representation of the distribution Λ in terms
of the homogeneous norm | · |0 defined in (4.118): There exists a > 0 such that

〈Λ, φ〉 = 1

2

(∫
{x∈G:|x|0<a}

(φ(x) − φ(0))|x|−Q0 dx +

∫
{x∈G:|x|0>a}

φ(x)|x|−Q0 dx

)
,

(4.126)
for all φ ∈ C∞

0 .

Let 0 < Reα, 0 < Re β and Re(α + β) < Q. Then the convolution of the
Riesz potentials of orders α and β is defined pointwise by absolutely convergent
integrals as well as

Iα ∗ Iβ = Iα+β (4.127)
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is satisfied pointwise and in the sense of distributions. This identity is equivalent
to the functional equality L−α/2L−β/2 = L−(α+β)/2 and can be obtained from
(4.117) by using the properties of the heat kernel. This fact can be also extended
by using the analytical continuation. That is,

(φ ∗ Iα) ∗ Iβ = φ ∗ Iα+β
holds if Reα > −1, Re β > −1 and Re(α + β) < Q. These distributions will be
useful to present a family of Hardy type inequalities in the following sections. We
refer to [FR16, Section 4.3] for the detailed discussion of these and other properties
of the Riesz kernels and fractional powers of left invariant hypoelliptic operators.

4.7.2 Hardy inequalities for fractional powers of sub-Laplacians

As in this whole section, let L be the sub-Laplacian on the stratified Lie group
G of homogeneous dimension Q. Let us define the operator Tα on C∞

0 (G) by the
formula

Tαf := | · |−αL−α/2f = | · |−α(f ∗ Iα), −1 < Reα < Q.

Consequently, the operator

T ∗
αg = (| · |−αg) ∗ Iα

satisfies
〈f, T ∗

αg〉 = 〈Tαf, g〉 (4.128)

for all f, g ∈ C∞
0 (G). It turns out that the operator Tα is bounded on Lp(G) when

1 < p < ∞ and 0 < α < Q/p which, in turn, can be formulated as a version of a
Hardy inequality:

Theorem 4.7.1 (Hardy inequality for fractional powers of sub-Laplacian). Let G
be a stratified Lie group of homogeneous dimension Q. Let 1 < p < ∞ and 0 <
α < Q/p. Then the operator Tα extends uniquely to a bounded operator on Lp(G).

Applying this to Lα/2f rather than f we get that for all f ∈ C∞
0 (G), we have∥∥∥∥ f

|x|α
∥∥∥∥
Lp(G)

≤ ‖Tα‖Lp(G)→Lp(G)‖Lα/2f‖Lp(G), 1 < p <∞. (4.129)

Remark 4.7.2 (Hardy–Sobolev inequalities).

1. Theorem 4.7.1 was established in [CCR15]. It is easy to see that combined
with the Sobolev inequality, it implies the following Hardy–Sobolev inequality:

Let 0 ≤ b < Q and a
Q = 1

p − 1
q + b

qQ . Then there exists a positive
constant C > 0 such that we have∥∥∥∥∥ f

|x| bq

∥∥∥∥∥
Lq(G)

≤ C‖(−L) a2 f‖Lp(G). (4.130)
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Such an inequality can be interpreted as a weighted Sobolev embedding of
the homogeneous Sobolev space L̇pa(G) over Lp of order a, based on the sub-
Laplacian L. The theory of such spaces has been extensively developed by
Folland [Fol75]. We refer to [RY18a] for the inequality (4.130).

2. The asymptotic behaviour of ‖Tα‖Lp(G)→Lp(G) with respect to α will be given
in Theorem 4.7.3; in its proof we will follow the original proof in [CCR15],
as well as for Theorem 4.7.4.

3. (Critical global Hardy inequality for a = Q/p) Let 1 < p < r < ∞ and
p < q < (r−1)p′, where 1/p+1/p′ = 1. Then there exists a positive constant
C = C(p, q, r,Q) > 0 such that we have∥∥∥∥∥∥∥

f(
log

(
e+ 1

|x|
)) r

q |x|Qq

∥∥∥∥∥∥∥
Lq(G)

≤ C(‖f‖Lp(G) + ‖(−L)
Q
2p f‖Lp(G)). (4.131)

4. (Critical local Hardy inequality for a = Q/p) Let 1 < p <∞ and β ∈ [0, Q).
Let r > 0 be given and let x0 be any point of G. Then for any p ≤ q < ∞
there exists a positive constant C = C(p,Q, β, r, q) such that we have∥∥∥∥∥ f

|x| βq

∥∥∥∥∥
Lq(B(x0,r))

≤ Cq1−1/p(‖f‖Lp(B(x0,r)) + ‖(−L)
Q
2p f‖Lp(B(x0,r))),

(4.132)
and such that

lim
q→∞ sup C(p,Q, β, r, q) <∞.

Inequalities (4.131) and (4.132) have been obtained in [RY18a], to which we
refer for their proofs as well as for the expressions for the asymptotically
sharp constants in these inequalities.

5. (Trudinger–Moser inequality on stratified groups) Let Q ≥ 3 and let | · | be
a homogeneous quasi-norm on G. Then there exists a constant αQ > 0 such
that we have

sup
‖f‖

L
Q
1

(G)
≤1

∫
G

1

|x|β
(
exp(α|f(x)|Q′

)−
Q−2∑
k=0

αk|f(x)|kQ′

k!

)
dx <∞ (4.133)

for any β ∈ [0, Q) and α ∈ (0, αQ(1 − β/Q)), where Q′ = Q/(Q − 1). When

α > αQ(1 − β/Q), the integral in (4.133) is still finite for any f ∈ LQ1 (G),

but the supremum is infinite. The space LQ1 (G) is the Sobolev space with the
norm ‖f‖LQ1 (G) = ‖f‖LQ(G) + ‖∇Hf‖LQ(G).

The inequality (4.133) was obtained in [RY18a], also with a rather ex-
plicit expression for the constant αQ. We refer to the above paper also for an
extensive history of this subject.
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6. (Hardy–Sobolev inequalities on graded groups) In fact, Hardy–Sobolev in-
equalities (4.130), (4.131) and (4.132), Trudinger–Moser inequalities (4.133)
and their local versions, have been obtained in [RY18a] for general homo-
geneous left invariant hypoelliptic differential operators (the so-called Rock-
land operators) on general graded Lie groups. The methods of the proof,
however, are rather different, and somewhat more involved, than the proofs
for the sub-Laplacians presented in this section. Therefore, here we do not
present them in full generality: these results, their proofs, and expressions
for (asymptotically) best constants can be found in [RY18a].

Proof of Theorem 4.7.1. As usual here we denote the conjugate number to p by p′.
Since the integral kernel of the operator Tα is positive, its Lp-boundedness follows
from the following Schur test (see [FR75]):

Suppose that there exist a positive function g and constants Aα,p and Bα,p
such that we have

Tα(g
p′)(x) ≤ Aα,pgp′(x) and T ∗

α(g
p)(x) ≤ Bα,pup(x) (4.134)

for almost all x ∈ G. Then the estimate

‖Tαf‖Lp(G) ≤ A1/p′
α,p B

1/p
α,p ‖f‖Lp(G) (4.135)

holds for all f ∈ Lp(G).

In order to produce g as in (4.134), let us consider the family of functions
gγ := | · |γ−Q, γ > 0, and consider the convolutions gp

′
γ ∗ Iα and (| · |−αgpγ) ∗ Iα

related to the computations of Tα(g
p′
γ ) and T ∗

α(g
p
γ). Let

β′ = Q+ (γ −Q)p′ and β = Q − α+ (γ −Q)p, (4.136)

so that gp
′
γ and | · |−αgpγ have the same homogeneity as Iβ′ and Iβ , respectively.

As in the case of (4.127) these convolution integrals converge absolutely in G\{0}
if and only if 0 < β < Q− α and 0 < β′ < Q− α, i.e., for γ such that

max

(
Q

p
,
α

p
+
Q

p′

)
< γ < Q− α

p′
. (4.137)

Thus, if this condition is satisfied, then both Tα(g
p′
γ ) and T ∗

α(g
p
γ) are positive func-

tions, continuous away from the origin, and of the same homogeneity as Iβ′ and Iβ ,
respectively. The pointwise estimates (4.134) follow directly from the homogene-
ity. Finally, for γ the condition (4.137) is nontrivial if and only if 0 < α < Q/p,
completing the proof of Theorem 4.7.1. �

By Theorem 4.7.1, the operator Tα is Lp-bounded and the constant in the
inequality (4.129) depends on the choice of a homogeneous quasi-norm. While
the inequality itself holds true for any homogeneous quasi-norm (due to their
equivalence), in the case of particular homogeneous norm | · |0 from the family
(4.118) one can give the following estimate for it.
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Theorem 4.7.3 (Estimate for Lp-operator norm). Let G be a stratified Lie group of
homogeneous dimension Q. Let 1 < p < ∞ and 0 < α < Q/p. For the particular
homogeneous norm | · |0, the operator norm ‖Tα‖Lp(G)→Lp(G) satisfies

‖Tα‖Lp(G)→Lp(G) ≤ 1 + Cα+O(α2).

For the rest of this subsection, we assume that |·| = |·|0 and that the operator
Tα is defined using | · |0.
Proof of Theorem 4.7.3. The proof of Theorem 4.7.1, and especially (4.135), show
that, if

0 < α <
Q

p
and

α

p
+
Q

p′
< γ < Q− α

p′
, (4.138)

then
‖Tα‖Lp(G)→Lp(G) ≤ A1/p′

α,γ,pB
1/p
α,γ,p, (4.139)

where

Aα,γ,p := sup
|y|=1

(
| · |(γ−Q)p′

0 ∗ Iα
)
(y) = sup

|y|=1

(
| · |β′−Q

0 ∗ Iα
)
(y),

Bα,γ,p := sup
|y|=1

(
| · |(γ−Q)p−α

0 ∗ Iα
)
(y) = sup

|y|=1

(
| · |β−Q0 ∗ Iα

)
(y).

(4.140)

First let us show that there is a constant Cp such that

‖Tαf‖Lp(G)→Lp(G) ≤ 1 + Cpα+O(α2), 1 < p <∞, (4.141)

holds for all sufficiently small positive α. Assume that Q/p′ < γ < Q. Then (4.138)
is valid for α in a neighborhood of 0+. Moreover, with β and β′ as in (4.136), the
constants Aα,γ,p and Bα,γ,p in (4.140) are bounded by 1 + Lβ′α + O(α2) and
1 + Lβα+O(α2), respectively. By (4.121) we obtain

‖Tα‖Lp(G)→Lp(G) ≤ 1 +

(
Lβ′

p′
+
Lβ
p

)
α+O(α2),

which confirms (4.141). Combining this with Theorem 4.7.1 completes the proof
of Theorem 4.7.3. �
Theorem 4.7.4 (A logarithmic version of uncertainty principle). Let G be a strat-
ified Lie group and let 1 < p <∞. Then we have∫

G

(log |x|)|f(x)|pdx+

∫
G

Re((logL1/2f)(x)f(x))|f(x)|p−2dx ≥ −Cp‖f‖pLp(G).

Proof of Theorem 4.7.4. Now let us recall the distribution Λ introduced in (4.125).
We also define the operator

T ′
0f :=

(
d

dα
Tαf

)∣∣∣∣
α=0

= − logL1/2f − (log | · |0)f = −f ∗Λ− (log | · |0)f. (4.142)
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Setting φ = |y · |β−Q0 in (4.126), the integrals converge absolutely for any |y| = 1,
and so (4.124) also extends to

| · |β−Q0 ∗ Iα(y) = 1 + α| · |β−Q0 ∗ Λ(y) +O(α2);

the term O(α2) is uniform in |y| = 1. Taking the supremum over y yields the
logarithmic uncertainty inequality for T ′

0, that is, this shows that if α is small and
0 < α < Q− β, then

sup
|y|=1

(
| · |β−Q0 ∗ Iα

)
(y) ≤ 1 + Lβα+O(α2), 0 < β < Q,

where
Lβ = sup

|y|=1

(
| · |β−Q0 ∗ Λ(y)

)
. (4.143)

Let 1 < p < ∞. Taking f ∈ C∞
0 (G) with ‖f‖Lp(G) = 1 and restricting

ourselves to positive values of α for which (4.141) holds and 1 + Cpα > 0, we
consider the function

Φε(α) := (1 + (Cp + ε)α)p − ‖Tαf‖pLp(G),

where ε ≥ 0. The expression ‖Tαf‖pLp(G) can be differentiated in α at 0, and

d

dα

(
‖Tαf‖pLp(G)

) ∣∣∣∣
α=0

= p

∫
G

Re
(
T ′
0f(x)f(x)

)
|f(x)|p−2dx.

Hence Φε is differentiable at 0. Now Φε(0) = 0 and Φε(α) ≥ 0 for all sufficiently
small α, by (4.141), and so Φ′

ε(0) ≥ 0. Now we let ε tend to 0, and deduce that
Φε(0) ≥ 0. Thus, the statement of Theorem 4.7.4 follows from (4.142). �

4.7.3 Landau–Kolmogorov inequalities on stratified groups

In this section we discuss the stratified groups version of the Landau–Kolmogorov
inequality, and some of its consequences. We start with a related simpler version
of such an inequality.

Proposition 4.7.5 (Two weighted inequalities).

(1) Let G be a homogeneous group. If 1 ≤ p, q, r ≤ ∞, and

1

p
=
θ

q
+

1− θ
r

, 0 ≤ θ ≤ 1,

then
‖| · |αf‖Lp(G) ≤ ‖| · |α/θf‖θLq(G)‖f‖1−θLr(G), α ≥ 0,

holds for all f ∈ C∞
0 (G).
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(2) Let G be a stratified group and let L be a sub-Laplacian on G. Let β > 0,
γ > 0, p > 1, q ≥ 1, r > 1 be such that

γ <
Q

r
and

β + γ

p
=
γ

q
+
β

r
.

Then
‖f‖Lp(G) ≤ C‖| · |βf‖γ/(β+γ)Lq(G) ‖Lγ/2f‖β/(β+γ)Lr(G) (4.144)

holds for all f ∈ C∞
0 (G).

Proof. Part (1). Writing

(| · |α|f |)p = (| · |α|f |θ)p (|f |1−θ)p ,
then applying the Hölder inequality (with index s) we have(∫

G

(|x|α|f(x)|p)dx
)1
p

≤
(∫

G

(|x|α|f(x)|θ)ps dx) 1
ps
(∫

G

(|f(x)|1−θ)ps′dx
) 1
ps′
.

If the index s is chosen so that q = θps, then r = (1− θ)ps′, finishing the proof.

Part (2). By using the Hölder inequality and (4.129) with (4.141) we have

‖f‖Lp(G) ≤ ‖| · |βf‖γ/(β+γ)Lq(G) ‖| · |−γf‖β/(β+γ)Lr(G)

≤ C‖| · |βf‖γ/(β+γ)Lq(G) ‖Lγ/2f‖β/(β+γ)Lr(G) ,

yielding (4.144). �

Now we present the following Landau–Kolmogorov type inequality.

Theorem 4.7.6 (Landau–Kolmogorov type inequality). Let G be a stratified group
and let L be a sub-Laplacian on G. If 1 < p, q, r <∞, and

1

p
=
θ

q
+

1− θ
r

, 0 ≤ θ ≤ 1,

then we have

‖Lα/2f‖Lp(G) ≤ C‖Lα/2θf‖θLq(G)‖f‖1−θLr(G), α ≥ 0, (4.145)

for all f ∈ C∞
0 (G).

Proof of Theorem 4.7.6. To prove this theorem we will use the well-known complex
interpolation methods (see, e.g., [BL76] or [Ste56]). First, we have to see that the
operator Liy , where y ∈ R, is bounded on Ls(G) with 1 < s <∞, and that

‖Liy/2‖Ls→Ls ≤ C(s)φ(y) with φ(y) = eγ|y|.
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In the case of the stratified groups this follows from the Mihlin–Hörmander mul-
tiplier theorem (see, e.g., [Chr91], [MM90]).

Let g ∈ Lp′(G) be a compactly supported simple function of norm one. For
z in the strip S := {z ∈ C : 0 ≤ Re z ≤ α

θ }, let us define

gz(x) := ‖g‖az+bLp′(G)
g(x)|g(x)|cx+d

for all x ∈ G, where

a =
θp′

α

(
1

q
− 1

p

)
, b = −p

′

r′
, c =

θp′

α

(
1

q
− 1

p

)
, d =

p′

r′
− 1.

For Re z = η and
1

s
=

1

z
− θη

α

(
1

q
− 1

p

)
,

it follows that

‖gz‖s′Ls′(G)
=

∫
G

|gz(x)|s′dx = ‖g‖s′(aη+b)+p′
Lp′(G)

= 1.

Further, let us fix f ∈ C∞
0 (G) and set

h(z) := ez
2

∫
G

L z/2f(x)gz(x)dx.

By the assumptions on f , for each z ∈ S, the function L z/2f on G is smooth,
while gz is a simple function with compact support, and so h(z) is well defined.
In addition, if z = η + iy, then

|h(z)| ≤ eη2−y2‖L z/2f‖Ls(G)‖gz‖Ls′(G)

= eη
2−y2‖Liy/2Lη/2f‖Ls(G) ≤ Ce−y

2

φ(y)‖Lη/2f‖Ls(G),

hence
|h(η + iy)| ≤ C‖Lη/2f‖Ls(G).

Moreover, if Re z = 0, then |h(z)| ≤ C‖f‖Lr(G), while if Re z = α/θ, then |h(z)| ≤
C‖Lα/2θf‖Lq(G). On the other hand, the Phragmen–Lindelölf theorem implies that

|h(α)| ≤ C‖Lα/2θf‖θLq(G)‖f‖1−θLr(G).

Since

h(α) =

∫
G

Lα/2f(x)gα(x)dx,

and gα is an arbitrary simple function on G with compact support and Lp
′
(G)-

norm equal to 1, this completes the proof. �
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Let us present the following consequence of the Landau–Kolmogorov inequal-
ity.

Corollary 4.7.7 (Consequence of the Landau–Kolmogorov inequality). Let β > 0,
δ > 0, p > 1, s ≥ 1, r > 1 be such that

β + δ

p
=
δ

s
+
β

r
.

Then we have
‖f‖Lp(G) ≤ C‖| · |βf‖δ/(β+δ)Ls(G) ‖Lδ/2f‖β/(β+δ)Lr(G)

for all f ∈ C∞
0 (G).

Proof of Corollary 4.7.7. Obviously, if δ < Q/r, there is nothing to prove. Other-
wise, we use Proposition 4.7.5, Part (2), and the version of the Landau–Kolmogo-
rov inequality (4.145). Let 0 < θ < Q/(rδ) and γ = θδ. Then Proposition 4.7.5,
Part (2), gives that

‖f‖Lp(G) ≤ C‖| · |βf‖γ/(β+γ)Lq(G) ‖Lγ/2f‖β/(β+γ)Lr(G)

for all f ∈ C∞
0 (G). By Theorem 4.7.6, with r, s and p instead of p, q, and r, we

have
‖Lγ/2f‖Lr(G) ≤ C‖Lδ/2f‖θLs(G)‖f‖1−θLp(G),

that is,

‖f‖Lp(G) ≤ C‖| · |β0f‖γ/(β+γ)Lq(G) ‖Lγ/2f‖θβ/(β+γ)Ls(G) ‖f‖(1−θ)β/(β+γ)Lp(G) .

This completes the proof. �
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Chapter 5

Integral Hardy Inequalities

on Homogeneous Groups

In this chapter we discuss the integral form of Hardy inequalities where instead
of estimating a function by its gradient, we estimate the integral by the function
itself. This stems from the original version of Hardy’s inequality [Har20]:

∫ ∞

b

(∫ x
b f(t)dt

x

)p
dx ≤

(
p

p− 1

)p ∫ ∞

b

f(x)pdx, (5.1)

where p > 1, b > 0, and f ≥ 0 is a non-negative function. We analyse the weighted
versions of such inequalities in the setting of general homogeneous groups. Most
of the results of this chapter have been obtained in [RY18a] and here we follow
the presentation of this paper.

5.1 Two-weight integral Hardy inequalities

Here we discuss the weighted Hardy inequalities in the integral form extending
that in (5.1). It turns out that one can actually derive the necessary and sufficient
conditions on weights for these inequalities to hold.

Theorem 5.1.1 (Integral Hardy inequalities for p ≤ q). Let G be a homogeneous
group of homogeneous dimension Q and let 1 < p ≤ q <∞. Let φ1 > 0, φ2 > 0 be
positive functions on G. Then we have the following properties:

(1) The inequality

(∫
G

(∫
B(0,|x|)

f(z)dz

)q
φ1(x)dx

) 1/q

≤ C1

(∫
G

(f(x))pψ1(x)dx

) 1/p

(5.2)
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holds for all f ≥ 0 a.e. on G if and only if

A1 := sup
R>0

(∫
{|x|≥R}

φ1(x)dx

) 1/q (∫
{|x|≤R}

(ψ1(x))
−(p′−1)dx

) 1/p′

<∞.
(5.3)

(2) The inequality(∫
G

(∫
G\B(0,|x|)

f(z)dz

)q
φ2(x)dx

) 1/q

≤ C2

(∫
G

(f(x))pψ2(x)dx

) 1/p

(5.4)
holds for all f ≥ 0 a.e. on G if and only if

A2 := sup
R>0

(∫
{|x|≤R}

φ2(x)dx

) 1/q (∫
{|x|≥R}

(ψ2(x))
−(p′−1)dx

) 1/p′

<∞.
(5.5)

(3) If {Ci}2i=1 are the smallest constants for which (5.2) and (5.4) hold, then

Ai ≤ Ci ≤ (p′)
1
p′ p

1
qAi, i = 1, 2. (5.6)

Before we prove this theorem let us give a few comments.

Remark 5.1.2.

1. In the Abelian case G = (Rn,+) and Q = n, if we take p = q > 1, and

φ1(x) = |B(0, |x|)|−p and ψ1(x) = 1

in (5.2), then we have A1 = (p− 1)−1/p and(∫
Rn

∣∣∣∣∣ 1

|B(0, |x|)|
∫
B(0,|x|)

f(z)dz

∣∣∣∣∣
p

dx

) 1/p

≤ p

p− 1

(∫
Rn

|f(x)|pdx
) 1/p

,

(5.7)
where |B(0, |x|)| is the volume of the ball B(0, |x|). The inequality (5.7) was
obtained in [CG95].

2. Theorem 5.1.1 was obtained in [RY18a] and here we follow the proof from
that paper. However, due to the fact that the formulations do not make use of
the differential structure, the statement can be actually extended to general
metric measure spaces with polar decomposition. More specifically, consider
a metric space X with a Borel measure dx allowing for the following polar
decomposition at a ∈ X: we assume that there is a locally integrable function
λ ∈ L1

loc such that for all f ∈ L1(X) we have∫
X

f(x)dx =

∫ ∞

0

∫
Σ

f(r, ω)λ(r, ω)dωdr, (5.8)
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for some set Σ ⊂ X with a measure on it denoted by dω, and (r, ω) → a
as r → 0. In the case of homogeneous groups such a polar decomposition is
given in Proposition 1.2.10.

Let us denote by B(a, r) the ball in X with centre a and radius r, i.e.,

B(a, r) := {x ∈ X : d(x, a) < r},

where d is the metric on X. Once and for all we will fix some point a ∈ X,
and we will write

|x|a := d(a, x).

Then the following result was obtained in [RV18] which we record here with-
out proof.

Theorem 5.1.3 (Integral Hardy inequality in metric measure spaces). Let
1 < p ≤ q < ∞ and let s > 0. Let X be a metric measure space with a polar
decomposition (5.8) at a. Let u, v > 0 be measurable functions positive a.e.
in X such that u ∈ L1(X\{a}) and v1−p′ ∈ L1

loc(X). Denote

U(x) :=

∫
X\B(a,|x|a)

u(y)dy and V (x) :=

∫
B(a,|x|a)

v1−p
′
(y)dy

Then the inequality(∫
X

(∫
B(a,|x|a)

|f(y)|dy
)q
u(x)dx

) 1/q

≤ C
{∫

X

|f(x)|pv(x)dx
} 1/p

(5.9)

holds for all measurable functions f : X→ C if and only if any of the following
equivalent conditions hold:

1. D1 := supx 	=a

{
U

1
q (x)V

1
p′ (x)

}
<∞.

2. D2 := supx 	=a

{∫
X\B(a,|x|a) u(y)V

q( 1
p′ −s)(y)dy

}1/q

V s(x) <∞.

3. D3 := supx 	=a

{∫
B(a,|x|a) u(y)V

q( 1
p′ +s)(y)dy

}1/q

V −s(x) <∞,

provided that u, v1−p
′ ∈ L1(X).

4. D4 := supx 	=a

{∫
B(a,|x|a) v

1−p′(y)Up
′( 1
q−s)(y)dy

} 1/p′

Us(x) <∞.

5. D5 := supx 	=a

{∫
X\B(a,|x|a) v

1−p′(y)Up
′( 1
q+s)(y)dy

} 1/p′

U−s(x) <∞,

provided that u, v1−p
′ ∈ L1(X).
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Moreover, the constant C for which (5.9) holds and quantities D1–D5

are related by

D1 ≤ C ≤ D1(p
′)

1
p′ p

1
q , (5.10)

and

D1 ≤ (max(1, p′s))
1
q D2, D2 ≤

(
max(1,

1

p′s
)

) 1/q

D1,

(
sp′

1 + p′s

)1/q

D3 ≤ D1 ≤ (1 + sp′)
1
qD3,

D1 ≤ (max(1, qs))
1
p′D4, D4 ≤

(
max(1,

1

qs
)

) 1/p′

D1,

(
sq

1 + qs

)1/p′

D5 ≤ D1 ≤ (1 + sq)
1
p′D5.

3. As such, Theorem 5.1.3 is an extension of (5.1) to the setting of metric
measures spaces X with the polar decomposition (5.8): in particular, for p = q
and real-valued non-negative measurable f ≥ 0, inequality (5.9) becomes∫

X

(∫
B(a,|x|a)

f(y)dy

)p
u(x)dx ≤ C

∫
X

f(x)
p
v(x)dx,

as an extension of (5.1). Indeed, in this case we can take u(x) = 1
xp , v(x) = 1,

X = [b,∞), a = b, so that Theorem 5.1.3 implies (5.1).

4. Let us give an application of Theorem 5.1.3 in the setting of homogeneous
groups, recovering a two-weighted result obtained in [RV18]:

Corollary 5.1.4 (Characterization for homogeneous weights). Let G be a ho-
mogeneous group of homogeneous dimension Q, equipped with a homogeneous
quasi-norm | · |. Let 1 < p ≤ q <∞ and let α, β ∈ R. Then the inequality(∫

G

(∫
B(0,|x|)

|f(y)|dy
)q
|x|αdx

) 1
q

≤ C
(∫

G

|f(x)|p|x|βdx
) 1
p

(5.11)

holds for all measurable functions f : G → C if and only if α + Q < 0,

β(1 − p′) +Q > 0 and α+Q
q + β(1−p′)+Q

p′ = 0. Moreover, the best constant C

for (5.11) satisfies

σ
1
q+

1
p′

|α+Q| 1q (β(1 − p′) +Q)
1
p′
≤ C ≤ (p′)

1
p′ p

1
q

σ
1
q+

1
p′

|α+Q| 1q (β(1 − p′) +Q)
1
p′
,

where σ is the area of the unit sphere in G with respect to the quasi-norm | · |.
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Let us show how Theorem 5.1.3 implies Corollary 5.1.4. If we take a = 0,
and the power weights

u(x) = |x|α and v(x) = |x|β ,
then the inequality (5.9) holds for 1 < p ≤ q <∞ if and only if

D1 = sup
r>0

(
σ

∫ ∞

r

ραρQ−1dρ

)1/q(
σ

∫ r

0

ρβ(1−p
′)ρQ−1dρ

) 1/p′

<∞,

where σ is the area of the unit sphere in G with respect to the quasi-norm
| · |. For this supremum to be well defined we need to have α + Q < 0 and
β(1 − p′) +Q > 0. Consequently, we can calculate

D1 = σ
( 1
q+

1
p′ ) sup

r>0

(∫ ∞

r

ρα+Q−1dρ

)1/q(∫ r

0

ρβ(1−p
′)+Q−1dρ

)1/p′

= σ
( 1
q+

1
p′ ) sup

r>0

r
α+Q
q

|α+Q| 1q
r
β(1−p′)+Q

p′

(β(1− p′) +Q)
1
p′
,

which is finite if and only if the power of r is zero. Consequently, Corollary
5.1.4 follows from Theorem 5.1.3.

Proof of Theorem 5.1.1. We will prove Part (1) of the theorem since the proof of
Part (2) is similar. The obtained estimates will also show the corresponding part
of the statement in Part (3).

Thus, let us first show that (5.3) implies (5.2). Using the polar decomposition
in Proposition 1.2.10 and denoting r = |x|, we write∫

G

φ1(x)

[∫
B(0,r)

f(z)dz

]q
dx

=

∫ ∞

0

∫
℘

rQ−1φ1(ry)

[∫ r

0

∫
℘

sQ−1f(sy)dσ(y)ds

]q
dσ(y)dr.

(5.12)

Denoting

g(r) :=

{∫
℘

∫ r

0

sQ−1(ψ1(sy))
1−p′dsdσ(y)

}1/(pp′)

, (5.13)

and using Hölder’s inequality, we can estimate∫ r

0

∫
℘

sQ−1f(sy)dσ(y)ds

=

∫
℘

∫ r

0

s(Q−1)/pf(sy)(ψ1(sy))
1/pg(s)s(Q−1)/p′

×
(
(ψ1(sy))

1/pg(s)
)−1

dsdσ(y)
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≤
(∫

℘

∫ r

0

sQ−1
[
f(sy)(ψ1(sy))

1/pg(s)
]p
dsdσ(y)

) 1/p

×
(∫

℘

∫ r

0

sQ−1
[
(ψ1(sy))

1/pg(s)
]−p′

dsdσ(y)

)1/p′

. (5.14)

Let us introduce the following notations:

U(s) :=

∫
℘

sQ−1
(
f(sy)(ψ1(sy))

1/pg(s)
)p
dσ(y), (5.15)

V (r) :=

∫ r

0

∫
℘

sQ−1
(
(ψ1(sy))

1/pg(s)
)−p′

dσ(y)ds, (5.16)

W1(r) :=

∫
℘

rQ−1φ1(ry)dσ(y), (5.17)

for s, r > 0. Plugging (5.14) into (5.12) we obtain

∫
G

φ1(x)

(∫
B(0,r)

f(z)dz

)q
dx

≤
∫ ∞

0

W1(r)

(∫ r

0

U(s)ds

) q/p

(V (r))q/p
′
dr.

(5.18)

We now recall the following continuous version of the Minkowski inequality (see,
e.g., [DHK97, Formula 2.1]):

Let θ ≥ 1. Then for all f1(x), f2(x) ≥ 0 on (0,∞), we have

∫ ∞

0

f1(x)

(∫ x

0

f2(z)dz

)θ
dx ≤

(∫ ∞

0

f2(z)

(∫ ∞

z

f1(x)dx

)1/θ

dz

)θ
. (5.19)

Using this inequality with θ = q/p ≥ 1 in the right-hand side of (5.18), we can
estimate

∫
G

φ1(x)

(∫
B(0,r)

f(z)dz

)q
dx ≤

(∫ ∞

0

U(s)

(∫ ∞

s

W1(r)(V (r))q/p
′
dr

) p/q

ds

) q/p

.

(5.20)
Let us introduce one more temporary notation

T (s) :=

∫
℘

sQ−1(ψ1(sy))
1−p′dσ(y).
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Using (5.13), (5.16), the integration by parts, (5.3) and (5.17), we compute

V (r) =

∫
℘

∫ r

0

sQ−1(ψ1(sy))
1−p′

(∫ s

0

∫
℘

tQ−1(ψ1(tw))
1−p′dσ(w)dt

)−1/p

dsdσ(y)

=

∫ r

0

T (s)

(∫ s

0

T (t)dt

)−1/p

ds = p′
∫ r

0

d

ds

(∫ s

0

T (t)dt

)1/p′

ds

= p′
(∫ r

0

T (s)ds

)1/p′

= p′
(∫ r

0

∫
℘

sQ−1(ψ1(sy))
1−p′dσ(y)ds

)1/p′

≤ p′A1

(∫ ∞

r

sQ−1

∫
℘

φ1(sw)dσ(w)ds

)−1/q

= p′A1

(∫ ∞

r

W1(s)ds

)−1/q

.

Similarly, applying the integration by parts and (5.3), this implies

∫ ∞

s

W1(r)(V (r))q/p
′
dr = (p′A1)

q/p′
∫ ∞

s

W1(r)

(∫ ∞

r

W1(s)ds

)−1/p′

dr

= (p′A1)
q/p′p

(∫ ∞

s

W1(r)dr

) 1/p

= (p′A1)
q/p′p

(∫ ∞

s

∫
℘

rQ−1φ1(ry)dσ(y)dr

) 1/p

≤ (p′A1)
q/p′pA

q/p
1

(∫ s

0

rQ−1

∫
℘

(ψ1(ry))
1−p′dσ(y)dr

)−q/(p′p)

= Aq1(p
′)q/p

′
p(g(s))−q, (5.21)

where we have used (5.13) in the last line. Putting (5.21) in (5.20) and recalling
(5.15), we obtain

∫
G

φ1(x)

(∫
B(0,r)

f(z)dz

)q
dx ≤

(∫ ∞

0

U(s)Ap1(p
′)p−1pp/q(g(s))−pds

) q/p

= Aq1(p
′)q/p

′
p

(∫ ∞

0

U(s)(g(s))−pds
) q/p

= Aq1(p
′)q/p

′
p

(∫ ∞

0

∫
℘

sQ−1(f(sy))pψ1(sy)dσ(y)ds

) q/p

= Aq1(p
′)q/p

′
p

(∫
G

ψ1(x)(f(x))
pdx

) q/p

, (5.22)

yielding (5.2) with C1 = A1(p
′)1/p

′
p 1/q.



244 Chapter 5. Integral Hardy Inequalities on Homogeneous Groups

We now show the converse, namely, that (5.2) implies (5.3). For that, we set

f(x) := (ψ1(x))
1−p′χ(0,R)(|x|),

with R > 0. For this f we observe the equality(∫
G

ψ1(x)(f(x))
pdx

) 1/p
(∫

|x|≤R
(ψ1(x))

1−p′dx

)−1/p

=

(∫
|x|≤R

(ψ1(x))
1−p′dx

) 1/p(∫
|x|≤R

(ψ1(x))
1−p′dx

)−1/p

= 1.

(5.23)

Consequently, by (5.2) we have

C = C

(∫
G

ψ1(x)(f(x))
pdx

)1/p
(∫

|x|≤R
(ψ1(x))

1−p′dx

)−1/p

≥
(∫

G

φ1(x)

(∫
|z|≤|x|

f(z)dz

)q
dx

) 1/q(∫
|x|≤R

(ψ1(x))
1−p′dx

)−1/p

≥
(∫

|x|≥R
φ1(x)

(∫
|z|≤|x|

f(z)dz

)q
dx

) 1/q(∫
|x|≤R

(ψ1(x))
1−p′dx

)−1/p

=

(∫
|x|≥R

φ1(x)dx

) 1/q(∫
|z|≤R

(ψ1(z))
1−p′dz

)1/p′

. (5.24)

Combining (5.23) and (5.24), we obtain (5.3) with C ≥ A1. �

The next case is the version of Theorem 5.1.1 for the indices p > q:

Theorem 5.1.5 (Integral Hardy inequalities for p > q). Let G be a homogeneous
group of homogeneous dimension Q and let 1 < q < p <∞ and 1/δ = 1/q − 1/p.
Let φ3 and φ4 be positive functions on G. Then we have the following properties:

(1) The inequality(∫
G

(∫
B(0,|x|)

f(z)dz

)q
φ3(x)dx

) 1/q

≤ C1

(∫
G

(f(x))pψ3(x)dx

) 1/p

(5.25)
holds for all f ≥ 0 if and only if

∫
G

(∫
G\B(0,|x|)

φ3(z)dz

)δ/q (∫
B(0,|x|)

(ψ3(z))
1−p′dz

)δ/q′
(ψ3(x))

1−p′dx <∞.
(5.26)
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(2) The inequality(∫
G

(∫
G\B(0,|x|)

f(z)dz

)q
φ4(x)dx

) 1/q

≤ C2

(∫
G

(f(x))pψ4(x)dx

) 1/p

(5.27)
holds for all f ≥ 0 if and only if

∫
G

(∫
B(0,|x|)

φ4(z)dz

)δ/q(∫
G\B(0,|x|)

(ψ4(z))
1−p′dz

)δ/q′
(ψ4(x))

1−p′dx <∞.
(5.28)

Proof of Theorem 5.1.5. We will prove Part (1) of the theorem since Part (2) is
similar. We will denote

A3 :=

∫
G

(∫
G\B(0,|x|)

φ3(z)dz

)δ/q (∫
B(0,|x|)

(ψ3(z))
1−p′dz

)δ/q′
(ψ3(x))

1−p′dx.

First we prove that if A3 <∞, then we have inequality (5.25). Denote

W2(r) :=

∫
℘

rQ−1φ3(ry)dσ(y) (5.29)

and

G(s) :=

∫
℘

sQ−1h(sy)(ψ3(sy))
1−p′dσ(y) (5.30)

for h ≥ 0 on G to be chosen later. Using the polar decomposition in Proposition
1.2.10 we have the following equalities:∫
G

φ3(x)

(∫
B(0,|x|)

h(z)(ψ3(z))
1−p′dz

)q
dx

=

∫ ∞

0

∫
℘

rQ−1φ3(rw)dσ(w)

(∫ r

0

∫
℘

sQ−1h(sy)(ψ3(sy))
1−p′dσ(y)ds

)q
dr

=

∫ ∞

0

W2(r)

(∫ r

0

G(s)ds

)q
dr

= q

∫ ∞

0

G(s)

(∫ s

0

G(r)dr

)q−1 (∫ ∞

s

W2(r)dr

)
ds

= q

∫
℘

∫ ∞

0

sQ−1h(sy)(ψ3(sy))
1−p′

(∫ s

0

∫
℘

rQ−1h(rw)(ψ3(rw))
1−p′dσ(w)dr

)q−1

×
(∫ ∞

s

W2(r)dr

)
dsdσ(y)
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= q

∫
℘

∫ ∞

0

sQ−1h(sy)(ψ3(sy))
(1−p′)( 1

p+
q−1
p +p−q

p )

×
(∫

℘

∫ s
0
rQ−1h(rw)(ψ3(rw))

1−p′drdσ(w)∫
℘

∫ s
0 r

Q−1(ψ3(rw))1−p
′drdσ(w)

)q−1

×
((∫

℘

∫ s

0

rQ−1(ψ3(rw))
1−p′drdσ(w)

)q−1(∫ ∞

s

W2(r)dr

))
dsdσ(y).

Here, using Hölder’s inequality with three factors with indices 1
p +

q−1
p + p−q

p = 1,
we can estimate∫

G

φ3(x)

(∫
B(0,|x|)

h(z)(ψ3(z))
1−p′dz

)q
dx ≤ qK1K2K3, (5.31)

where

K1 =

(∫
℘

∫ ∞

0

sQ−1(h(sy))p(ψ3(sy))
1−p′dsdσ(y)

) 1/p

=

(∫
G

(h(x))p(ψ3(x))
1−p′dx

) 1/p

,

(5.32)

K2 =

(∫
℘

∫ ∞

0

sQ−1(ψ3(sy))
1−p′

×
(∫

℘

∫ s
0 r

Q−1h(rw)(ψ3(rw))
1−p′drdσ(w)∫

℘

∫ s
0 r

Q−1(ψ3(rw))1−p
′drdσ(w)

)p
dsdσ(y)

) q−1
p

(5.33)

and

K3 =

⎛⎝∫
℘

∫ ∞

0

sQ−1(ψ3(sy))
1−p′

(∫
℘

∫ s

0

rQ−1(ψ3(rw))
1−p′drdσ(w)

) (q−1)p
p−q

×
(∫ ∞

s

W2(r)dr

) p
p−q

dsdσ(y)

) p−q
p

. (5.34)

Leaving K1 as it is, we will estimate K2 and K3. We rewrite K2 as

K2 =

(∫
G

(ψ3(x))
1−p′

(
∫
B(0,|x|)(ψ3(z))1−p

′dz)p

(∫
B(0,|x|)

(ψ3(z))
1−p′h(z)dz

)p
dx

) (q−1)/p

.

We want to apply (5.2) to K2 with indices p = q, and with functions f(x) =
(ψ3(x))

1−p′h(x) and

φ1(x) =
(ψ3(x))

1−p′

(
∫
B(0,|x|)(ψ3(z))1−p

′dz)p
, ψ1(x) = (ψ3(x))

(1−p′)(1−p).
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For that, we will check the condition that

A1(R) =

⎛⎝∫
|x|≥R

(ψ3(x))
1−p′

(∫
B(0,|x|)

(ψ3(z))
1−p′dz

)−p
dx

⎞⎠ 1/p

×
(∫

|x|≤R
(ψ3(x))

1−p′dx

)1/p′

<∞

(5.35)

holds uniformly for all R > 0. Assuming (5.35) uniformly in R > 0 for a moment,
the inequality (5.2) would imply that

K2 ≤ C
(∫

G

(ψ3(x))
(1−p′)(1−p+p)(h(x))pdx

) (q−1)/p

= C

(∫
G

(h(x))p(ψ3(x))
1−p′dx

) (q−1)/p

,

(5.36)

which is something we will use later. So, let us check (5.35). For this, we denote

S(s) :=

∫
℘

sQ−1(ψ3(sw))
1−p′dσ(w).

Using integration by parts we have

A1(R) =

(∫
℘

∫ ∞

R

rQ−1(ψ3(rw))
1−p′

(∫ r

0

S(s)ds

)−p
drdσ(w)

)1
p
(∫ R

0

S(s)ds

) 1
p′

=

(∫ ∞

R

(∫ r

0

S(s)ds

)−p
S(r)dr

) 1/p(∫ R

0

S(s)ds

)1/p′

≤
⎛⎝ 1

p− 1

(∫ R

0

S(s)ds

)1−p⎞⎠ 1/p(∫ R

0

S(s)ds

)1/p′

= (p− 1)−1/p <∞,

so that (5.36) is confirmed. Next, for K3, taking into account

1

δ
=

1

q
− 1

p
=
p− q
pq

and using (5.26), we have

K3 =

(∫ ∞

0

∫
℘

(∫ ∞

s

W2(r)dr

)δ/q (∫
℘

∫ r

0

rQ−1(ψ3(rw))
1−p′drdσ(w)

)δ/q′
×sQ−1(ψ3(sy))

1−p′dσ(y)ds
) (p−q)/p
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=

⎛⎝∫
G

(∫
G\B(0,|x|)

φ3(z)dz

)δ
q
(∫

B(0,|x|)
(ψ3(z))

1−p′dz

) δ
q′

(ψ3(x))
1−p′dx

⎞⎠
p−q
p

= A
p−q
p

3 <∞. (5.37)

Now, plugging (5.32), (5.36) and (5.37) into (5.31), we obtain

∫
G

φ3(x)

(∫
B(0,|x|)

h(z)(ψ3(z))
1−p′dz

)q
dx

≤ CA
p−q
p

3

(∫
G

(h(x))p(ψ3(x))
1−p′dx

) 1
p+

q−1
p

,

which implies (5.25) after taking h := fψp
′−1

3 .

Let us now show the converse, namely, that (5.25) implies (5.26). For this,
we consider a sequence of functions

fk(x) :=

(∫
|y|≥|x|

φ3(z)dz

)δ/(pq)(∫
αk≤|z|≤|x|

(ψ3(z))
1−p′dz

)δ/(pq′)
× (ψ3(x))

1−p′χ(αk,βk)(|x|), k = 1, 2, . . . .

Inserting these functions in the place of f(x) in (5.25), we obtain (5.26), if we take
0 < αk < βk with αk ↘ 0 and βk ↗∞ for k →∞. �

5.2 Convolution Hardy inequalities

In this section we discuss integral Hardy inequalities in the convolution form. Such
inequalities are particularly useful if we make particular choices of the convolu-
tion kernels. For example, by taking the Riesz kernels of hypoelliptic differential
operators on graded groups, such inequalities can be used to derive a number of
hypoelliptic versions of Hardy inequalities. While this topic falls outside the scope
of this book, we refer to [RY18a] for such applications. The inequalities that we
will present here have been established in [RY18a] and we follow the proofs there
in our exposition.

Theorem 5.2.1 (Convolution Hardy inequality). Let G be a homogeneous Lie group
of homogeneous dimension Q and with a homogeneous quasi-norm | · |. Let 1 <
p ≤ q < ∞, 0 < a < Q/p, 0 ≤ b < Q and a

Q = 1
p − 1

q + b
qQ . Assume that there is

C2 = C2(a,Q) > 0 such that

|T (1)
a (x)| ≤ C2|x|a−Q (5.38)
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holds for all x �= 0. Then there exists a positive constant C1 = C1(p, q, a, b) > 0
such that ∥∥∥∥∥f ∗ T (1)

a

|x| bq

∥∥∥∥∥
Lq(G)

≤ C1‖f‖Lp(G) (5.39)

holds for all f ∈ Lp(G).

The critical case b = Q of Theorem 5.2.1 will be shown in Theorem 5.2.5.

Remark 5.2.2 (Riesz kernels). Let us briefly describe a typical situation when
condition (5.38) is satisfied. Without going much into detail, let us assume that
R is a positive homogeneous left invariant hypoelliptic differential operator on
G of homogeneous degree ν. The existence of such an operator implies that the
group G is graded, see [FR16, Section 4.1]. The operators R satisfying the above
properties are called Rockland operators.

Let ht denote the heat kernel associated to the operator R, see [FR16, Section
4.3.4] for a thorough treatment of this and for the proof of the following notes.
This heat kernel satisfies the following properties, see [FR16, Theorem 4.2.7 and
Lemma 4.3.8]:

Theorem 5.2.3 (Heat kernels). Let R be homogeneous left invariant hypoelliptic
differential operator on G of homogeneous degree ν and let ht be the associated
heat kernel. Then each ht is Schwartz and we have

∀s, t > 0 ht ∗ hs = ht+s, (5.40)

∀x ∈ G, r, t > 0 hrνt(rx) = r−Qht(x), (5.41)

∀x ∈ G ht(x) = ht(x−1), (5.42)∫
G

ht(x)dx = 1. (5.43)

Moreover, we have

∃C = Cα,N,� > 0 ∀t ∈ (0, 1] sup
|x|=1

|∂�tXαht(x)| ≤ Cα,N tN (5.44)

for any N ∈ N0, α ∈ Nn0 and � ∈ N0.

Furthermore, for any multi-index α ∈ Nn0 and any real number a with 0 <
a < (Q+ [α])/ν there exists a positive constant C > 0 such that∫ ∞

0

ta−1|Xαht(x)|dt ≤ C|x|−Q−[α]+νa. (5.45)

The fractional powers R−a/ν for {a ∈ R, 0 < a < Q} and (I + R)−a/ν for
a ∈ R+ are called Riesz and Bessel potentials, respectively, and they are well
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defined, see [FR16, Chapter 4.2]. Let us denote their respective kernels by Ia and
Ba. Then we have the relations

Ia(x) = 1

Γ
(
a
ν

) ∫ ∞

0

t
a
ν−1ht(x)dt (5.46)

for 0 < a < Q with a ∈ R, and

Ba(x) = 1

Γ
(
a
ν

) ∫ ∞

0

t
a
ν−1e−tht(x)dt (5.47)

for a > 0, where Γ denotes the Gamma function. Consequently, it can be shown
(see [FR16, Section 4.3.4]) that for any 0 < a < Q there exists a positive constant
C = C(Q, a) such that

|Ia(x)| ≤ C|x|−(Q−a) (5.48)

holds for all x �= 0. Therefore, the Riesz kernel Ia gives a typical example of an
operator satisfying condition (5.38).

Proof of Theorem 5.2.1. We split the integral in the left-hand side of (5.39) into
three parts: ∫

G

|(f ∗ T (1)
a )(x)|q dx|x|b ≤ 3q(M1 +M2 +M3), (5.49)

with

M1 :=

∫
G

(∫
{2|y|<|x|}

|T (1)
a (y−1x)f(y)|dy

)q
dx

|x|b ,

M2 :=

∫
G

(∫
{|x|≤2|y|<4|x|}

|T (1)
a (y−1x)f(y)|dy

)q
dx

|x|b
and

M3 :=

∫
G

(∫
{|y|>2|x|}

|T (1)
a (y−1x)f(y)|dy

)q
dx

|x|b .

First, let us estimate M1. We can assume without loss of generality that | · | is
a norm (such a norm always exists, see Proposition 1.2.4, Part (2)) since replacing
the seminorm by an equivalent one only changes the appearing constants.

Observe that by the reverse triangle inequality and the assumption 2|y| < |x|
we have

|y−1x| ≥ |x| − |y| > |x| − |x|
2

=
|x|
2
, (5.50)
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which is |x| < 2|y−1x|. Taking into account this and that T
(1)
a (x) is bounded by a

radial function which is non-increasing with respect to |x|, we can estimate

M1 ≤
∫
G

(∫
{2|y|<|x|}

|f(y)|dy
)q (

sup
{|x|<2|z|}

|T (1)
a (z)|

)q
dx

|x|b

≤ C
∫
G

(∫
{2|y|<|x|}

|f(y)|dy
)q ( |x|

2

)(a−Q)q
dx

|x|b .
(5.51)

We will now apply Theorem 5.1.1, Part (1), to estimate M1. For this we need to
check condition (5.3), that is, that

sup
R>0

(∫
{2R<|x|}

( |x|
2

)(a−Q)q
dx

|x|b
) 1
q
(∫

{|x|<R}
dx

) 1
p′

<∞. (5.52)

To check this, we consider two cases: R ≥ 1 and 0 < R < 1. For R ≥ 1, we can
estimate(∫

{2R<|x|}

( |x|
2

)(a−Q)q
dx

|x|b
) 1
q
(∫

{|x|<R}
dx

) 1
p′

≤ CR Q

p′

(∫
{2R<|x|}

( |x|
2

)(a−Q)q
dx

|x|b
) 1
q

≤ CR Q
p′

(∫
{2R<|x|}

|x|(a−Q)q−bdx

) 1
q

≤ CR Q

p′ R
(a−Q)q−b+Q

q

≤ C,

(5.53)

which is uniformly bounded since a
Q = 1

p− 1
q +

b
qQ and (a−Q)q−b+Q = −Qqp′ �= 0.

Now let us check the condition (5.52) for 0 < R < 1. Here, taking into account
that (a−Q)q − b+Q = −Qqp′ �= 0 we have

∫
{2R<|x|}

( |x|
2

)(a−Q)q
dx

|x|b ≤ CR
(a−Q)q−b+Q. (5.54)

It follows with a
Q = 1

p − 1
q +

b
qQ that

(∫
{2R<|x|}

( |x|
2

)(a−Q)q
dx

|x|b
) 1
q
(∫

{|x|<R}
dx

) 1
p′

≤ CRa−Q− b
q+

Q
q RQ/p

′ ≤ C
(5.55)
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holds for any 0 < R < 1. Thus, we have checked (5.52). Applying Theorem 5.1.1,
Part (1), we obtain

M
1
q

1 ≤ (p′)
1
p′ p

1
qA1‖f‖Lp(G). (5.56)

Let us now estimate M2. For this, we decompose M2 as

M2 =
∑
k∈Z

∫
{2k�|x|<2k+1}

(∫
{|x|�2|y|�4|x|}

|T (1)
a (y−1x)f(y)|dy

)q
dx

|x|b .

Since |x| � 2|y| � 4|x| and 2k � |x| < 2k+1, we have 2k−1 � |y| < 2k+2. As in
(5.50), assuming | · | is the norm and using the triangle inequality, we have

3|x| = |x|+ 2|x| ≥ |x|+ |y| ≥ |y−1x|, (5.57)

which implies 0 ≤ |y−1x| ≤ 3|x| < 3 · 2k+1. If we denote

Ĩa(x) := C2|x|a−Q,
then by the assumption we have

|T (1)
a (x)| ≤ Ĩa(x).

Taking into account these observations and applying Young’s inequality in Propo-
sition 1.2.13 with 1 + 1

q = 1
r +

1
p , r ∈ [1,∞], we can estimate M2 by

M2 ≤
∑
k∈Z

2−kb
∫
G

(([f · χ{2k−1�|·|<2k+2}] ∗ Ĩa)(x))qdx

=
∑
k∈Z

2−kb‖[f · χ{2k−1�|·|<2k+2}] ∗ Ĩa‖qLq(G)

≤
∑
k∈Z

2−kb‖Ĩa · χ{0�|·|<3·2k+1}‖qLr(G)‖f · χ{2k−1�|·|<2k+2}‖qLp(G)

= C2

∑
k∈Z

2−kb
(∫

|x|<3·2k+1

|x|(a−Q)rdx

) q
r

‖f · χ{2k−1�|x|<2k+2}‖qLp(G)

≤ C
∑
k∈Z

2−kb(3 · 2k+1)(
(a−Q)pq
pq+p−q +Q) pq+p−qp ‖f · χ{2k−1�|x|<2k+2}‖qLp(G)

= C
∑
k∈Z

2−kb(3 · 2k+1)b‖f · χ{2k−1�|x|<2k+2}‖qLp(G)

≤ C
∑
k∈Z

‖f · χ{2k−1�|x|<2k+2}‖qLp(G)

≤ C‖f‖qLp(G),

(5.58)

since (a−Q)pq
pq+p−q +Q = bp

pq+p−q > 0 and q ≥ p.
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Now let us estimate M3. Without loss of generality, we may assume again
that | · | is a norm. Then, similarly to (5.50) we note that 2|x| < |y| implies
|y| < 2|y−1x|. Consequently we can estimate M3 as

M3 ≤
∫
G

(∫
{|y|>2|x|}

( |y|
2

)(a−Q)

|f(y)|dy
)q

dx

|x|b .

We will apply Theorem 5.1.1, Part (2), to estimate M3. For this, we need to check
that

sup
R>0

(∫
{|x|<R}

dx

|x|b
) 1
q
(∫

{2R<|x|}

( |x|
2

)(a−Q)p′

dx

) 1
p′

<∞. (5.59)

To verify this, we consider two cases: R ≥ 1 and 0 < R < 1. First, for R ≥ 1,

using the assumption |T (1)
a (x)| ≤ C|x|a−Q and that Q �= ap, one gets(∫

{2R<|x|}

( |x|
2

)(a−Q)p′

dx

) 1
p′

≤ C
(∫

{2R<|x|}
|x|(a−Q)p′dx

) 1
p′

≤ CRa−Q
p .

(5.60)
Since R ≥ 1 we can estimate(∫

{|x|<R}

dx

|x|b
) 1
q
(∫

{2R<|x|}

( |x|
2

)(a−Q)p′

dx

) 1
p′

≤ CRa−Q
p +Q−b

q ≤ C,

since b < Q and a
Q = 1

p − 1
q + b

qQ . Now let us check the condition (5.59) for the
range 0 < R < 1. In this case, noting that ap−Q < 0 we have∫

{2R<|x|}

( |x|
2

)(a−Q)p′

dx ≤ C
∫
{2R<|x|}

|x|(a−Q)p′dx ≤ CR(a−Q)p′+Q. (5.61)

Since ∫
{|x|<R}

dx

|x|b � CRQ−b,

we have(∫
{|x|<R}

dx

|x|b
) 1
q
(∫

{2R<|x|}

( |x|
2

)(a−Q)p′

dx

) 1
p′

≤ CRQ−b
q R

(a−Q)p′+Q
p′ ≤ C,

(5.62)
since Q > b and a

Q = 1
p − 1

q + b
qQ . Thus, we have checked (5.59). Consequently,

the application of Theorem 5.1.1, Part (2), to M3 yields

M
1
q

3 ≤ (p′)
1
p′ p

1
qA2‖f‖Lp(G). (5.63)

Thus, (5.56), (5.63) and (5.58) complete the proof of Theorem 5.2.1. �
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Remark 5.2.4 (Schur test argument). In the case p = q, we can also prove Theorem
5.2.1 by using Schur’s test ([FR75]) as in the proof of Theorem 4.7.1. For the Riesz
kernels of the sub-Laplacian on stratified groups such an argument was used in
[CCR15], and the argument below was given in [RY18a].

For p = q, the condition a
Q = 1

p − 1
q + b

qQ in Theorem 5.2.1 implies that
b = ap, so we are interested in the Lp-boundedness of the operator

Saf := |x|−b/p(f ∗ |x|a−Q) = |x|−a(f ∗ |x|a−Q).
The adjoint, defined by (f, S∗

ag) = (Saf, g), is given by S∗
ag := (|x|−ag) ∗ |x|a−Q.

We now recall again the Schur test:

Assume that the integral operator S has a positive integral kernel, and that
there exist a positive function h and constants Ap and Bp such that

S(hp
′
)(x) ≤ Ap(h(x))p′ and S∗(hp)(x) ≤ Bp(h(x))p

hold for almost all x ∈ G. Then we have

‖Saf‖Lp(G) ≤ A1/p′
p B 1/p

p ‖f‖Lp(G)

for all f ∈ Lp(G).

Let us now take hc(x) := |x|c−Q with c > 0 and consider the convolution
integrals

hp
′
c ∗ |x|a−Q and (|x|−b/phpc) ∗ |x|a−Q,

which arise in the computation of Sa(h
p′
c ) and S

∗
a(h

p
c). We see that the homogeneity

orders of hp
′
c and |x|−b/phpc are (c−Q)p′ and (c−Q)p−b/p, respectively. Then, the

homogeneity orders of hp
′
c ∗ |x|a−Q and (|x|−b/phpc) ∗ |x|a−Q are a−Q+ (c−Q)p′

and a − Q + (c − Q)p − b/p, respectively. Therefore, these convolution integrals
converge absolutely in G\{0} if and only if 0 < (c − Q)p′ + Q < Q − a and
0 < (c−Q)p− b/p+Q < Q− a, that is, if

max

(
Q

p
,
a

p
+
Q

p′

)
< c < Q− a

p′

since b = ap. This condition is true if 0 < a < Q/p.

Thus, it follows from Schur’s test that

‖|x|−a(f ∗ |x|a−Q)‖Lp(G) ≤ A1/p′
a,p B

1/p
a,p ‖f‖Lp(G),

where 0 < a < Q/p, 1 < p <∞, and f ∈ Lp(G).

Taking into account this and |T (1)
a (x)| ≤ C|x|a−Q, we obtain∥∥∥∥∥f ∗ T (1)

a

|x| bp

∥∥∥∥∥
Lp(G)

≤ C
∥∥∥∥∥ |f | ∗ |T (1)

a |
|x| bp

∥∥∥∥∥
Lp(G)

≤ C‖|x|−a(|f | ∗ |x|a−Q)‖Lp(G) ≤ C‖f‖Lp(G),

(5.64)

which proves Theorem 5.2.1 in the case p = q.
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Let us now show the critical case b = Q of Theorem 5.2.1.

Theorem 5.2.5 (Critical convolution Hardy inequality). Let G be a homogeneous
Lie group of homogeneous dimension Q with a homogeneous quasi-norm | · |. Let
1 < p < r < ∞ and p < q < (r − 1)p′, where 1/p + 1/p′ = 1. Assume that for
a = Q/p we have

|T (2)
a (x)| ≤ C2

{
|x|a−Q, for x ∈ G\{0},
|x|−Q, for x ∈ G with |x| ≥ 1,

(5.65)

for some positive C2 = C2(a,Q). Then there exists a positive constant C1 =
C1(p, q, r,Q) > 0 such that∥∥∥∥∥∥∥

f ∗ T (2)
Q/p(

log
(
e + 1

|x|
)) r

q |x|Qq

∥∥∥∥∥∥∥
Lq(G)

≤ C1‖f‖Lp(G) (5.66)

holds for all f ∈ Lp(G).

Remark 5.2.6. We note that compared to the condition (5.38), the decay assump-
tion in (5.65) for large x is stronger. Continuing with the notation of Remark
5.2.2, we observe that the Bessel kernel (5.47) of the operator (I + R)−a/ν for
0 < a < Q satisfies (5.65): there exists a positive constant C = C(Q, a) > 0 such
that we have, in particular,

|Ba(x)| ≤
{
C|x|−(Q−a), for x ∈ G\{0},
C|x|−Q, for x ∈ G with |x| ≥ 1.

(5.67)

We refer to [RY18a] for further details, as well as to the original proof of Theorem
5.2.5 that we follow here.

Proof of Theorem 5.2.5. Let us split the integral in the left-hand side of (5.66)
into three parts,∫

G

|(f ∗ T (2)
Q/p)(x)|q

dx∣∣∣log(e + 1
|x|
)∣∣∣r |x|Q ≤ 3q(N1 +N2 +N3), (5.68)

where

N1 :=

∫
G

(∫
{2|y|<|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q ,

N2 :=

∫
G

(∫
{|x|≤2|y|<4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q
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and

N3 :=

∫
G

(∫
{|y|>2|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q .

We begin by estimating N1. Similar to the argument in (5.50), in the region 2|y| <
|x| we have

|y−1x| ≥ |x| − |y| > |x| − |x|
2

=
|x|
2
, (5.69)

which is |x| < 2|y−1x|. Denote

|T (2)
a (x)| ≤ B̃a(x) := C2

{
|x|a−Q, for x ∈ G\{0},
|x|−Q, for x ∈ G with |x| ≥ 1.

(5.70)

Since T
(2)
Q/p(x) is bounded by B̃Q/p(x) which is non-increasing with respect to |x|,

then using (5.69) we get

N1 ≤
∫
G

(∫
{2|y|<|x|}

|f(y)|dy
)q(

sup
{|x|<2|z|}

|T (2)
Q/p(z)|

)q
dx∣∣∣log (e+ 1
|x|
)∣∣∣r |x|Q

≤
∫
G

(∫
{2|y|<|x|}

|f(y)|dy
)q (

B̃Q/p

(x
2

))q dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q .

We will now apply Theorem 5.1.1, Part (1), to estimate N1. For this we have to
check the condition (5.3), that is, that⎛⎝∫

{2R<|x|}

(
B̃Q/p

(x
2

))q dx∣∣∣log(e + 1
|x|
)∣∣∣r |x|Q

⎞⎠
1
q (∫

{|x|<R}
dx

) 1
p′

≤ A1 (5.71)

holds uniformly for all R > 0. To verify this uniform boundedness, we consider
two cases: R ≥ 1 and 0 < R < 1. First, for R ≥ 1, using the second equality in
(5.70), we can estimate⎛⎝∫

{2R<|x|}

(
B̃Q/p

(x
2

))q dx∣∣∣log (e+ 1
|x|
)∣∣∣r |x|Q

⎞⎠
1
q (∫

{|x|<R}
dx

) 1
p′

≤ CR Q

p′

(∫
{2R<|x|}

(
B̃Q/p

(x
2

))q dx

|x|Q
) 1
q

= CR
Q

p′

(∫
{2R<|x|}

|x|−Qq−Qdx
) 1
q

≤ CR−QR
Q

p′ ≤ C. (5.72)
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Next, let us check (5.71) for 0 < R < 1. We split the integral into two terms,∫
{2R<|x|}

(
B̃Q/p

(x
2

))q dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q

=

∫
{2R<|x|<2}

(
B̃Q/p

(x
2

))q dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q

+

∫
{|x|�2}

(
B̃Q/p

(x
2

))q dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q . (5.73)

We note that the second integral in the right-hand side of (5.73) is finite by the
second equality in (5.70). For the first integral, using the first equality in (5.70),
we can estimate∫

{2R<|x|<2}

∣∣∣B̃Q/p

(x
2

)∣∣∣q dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q

≤
∫
{2R<|x|<2}

∣∣∣B̃Q/p

(x
2

)∣∣∣q dx

|x|Q

≤ C
∫
{2R<|x|<2}

|x|−Qq/p′−Qdx

≤ CR−Qq/p′ .

Combining this with (5.73), we obtain⎛⎝∫
{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣q dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q

⎞⎠
1
q (∫

{|x|<R}
dx

) 1
p′

≤ C(R−Q/p′ + 1)RQ/p
′ ≤ C

uniformly for all 0 < R < 1. Thus, we have verified (5.71), so that applying
Theorem 5.1.1, Part (1), to N1 we obtain

N
1
q

1 ≤ (p′)
1
p′ p

1
qA1‖f‖Lp(G). (5.74)

Now let us estimate N2. We decompose it into the sum

N2 =
∑
k∈Z

∫
{2k�|x|<2k+1}

(∫
{|x|�2|y|�4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

× dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q .
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Since the function
(
log

(
1
|x|
))r
|x|Q is non-decreasing with respect to |x| near the

origin, there exists an integer k0 ∈ Z with k0 � −3 such that this function is
non-decreasing in |x| ∈ (0, 2k0+1). Fixing this k0, we decompose N2 further as

N2 = N21 +N22, (5.75)

where

N21 :=

k0∑
k=−∞

∫
{2k�|x|<2k+1}

(∫
{|x|�2|y|�4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

× dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q

and

N22 :=
∞∑

k=k0+1

∫
{2k�|x|<2k+1}

(∫
{|x|�2|y|�4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

× dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q .

Let us first estimate N22. Since |x| � 2|y| � 4|x| and 2k � |x| < 2k+1, we must
also have 2k−1 � |y| < 2k+2. Before starting to estimate N22, using (5.65) and
q > p, let us show that∫

G

|T (2)
Q/p(x)|r̃dx =

∫
|x|<1

|T (2)
Q/p(x)|r̃dx+

∫
|x|≥1

|T (2)
Q/p(x)|r̃dx

≤ C2

(∫
|x|<1

|x|−Qq(p−1)
pq+p−q dx+

∫
|x|≥1

|x|− Qpq
pq+p−q dx

)
<∞,

(5.76)

where r̃ ∈ [1,∞] is such that 1 + 1
q = 1

r̃ +
1
p .

Then, (5.76) and Young’s inequality in Proposition 1.2.13 with 1+ 1
q = 1

r̃ +
1
p

and r̃ ∈ [1,∞] imply that

N22 � C

∞∑
k=k0+1

∫
{2k�|x|<2k+1}

(∫
{|x|�2|y|�4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx

� C‖[f · χ{2k−1�|·|<2k+2}] ∗ T (2)
Q/p‖qLq(G)

� C‖T (2)
Q/p‖qLr̃(G)

∞∑
k=k0+1

‖f · χ{2k−1�|·|<2k+2}‖qLp(G)

= C

∞∑
k=k0+1

(∫
{2k�|x|<2k+1}

|f(x)|pdx
) q/p
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� C

(∑
k∈Z

∫
{2k�|x|<2k+1}

|f(x)|pdx
) q/p

= C‖f‖qLp(G). (5.77)

Next, let us estimate N21. As in (5.69), assuming | · | is the norm and using
the triangle inequality and |y| � 2|x|, we can estimate

3|x| = |x|+ 2|x| ≥ |x|+ |y| ≥ |y−1x|. (5.78)

Since
(
log

(
1
|x|
))r
|x|Q is non-decreasing in |x| ∈ (0, 2k0+1) and 3|x| � |y−1x|, we

have (
log

(
1

|x|
))r

|x|Q ≥
(
log

(
1

|y−1x/ 3|
))r ∣∣∣∣y−1x

3

∣∣∣∣Q .
Consequently, this and (5.65) yield

N21 ≤ C
k0∑

k=−∞

∫
{2k≤|x|<2k+1}

(∫
{|x|≤2|y|≤4|x|}

|y−1x|− Q

p′ |f(y)|dy
)q

× dx(
log

(
1
|x|
))r
|x|Q

= C

k0∑
k=−∞

∫
{2k≤|x|<2k+1}

⎛⎜⎜⎝∫{|x|≤2|y|≤4|x|}

|y−1x|− Q

p′ |f(y)|((
log

(
1
|x|
))r
|x|Q

) 1
q

dy

⎞⎟⎟⎠
q

dx

≤C
k0∑

k=−∞

∫
{2k≤|x|<2k+1}

⎛⎜⎜⎝∫{|x|≤2|y|≤4|x|}

|y−1x|− Q

p′ |f(y)|((
log

(
1

|(y−1x)/3|
))r
|(y−1x)/3|Q

) 1
q

dy

⎞⎟⎟⎠
q

dx.

Since |x| ≤ 2|y| ≤ 4|x| and 2k ≤ |x| < 2k+1 with k ≤ k0, we must also have
2k−1 ≤ |y| < 2k+2 and |y−1x| ≤ 3|x| < 3 · 2k0+1 ≤ 3/4, using (5.78) and k0 ≤ −3.
Taking into account these and setting

g(x) :=
χB 3

4
(0)(x)(

log
(

1
|x|
)) r

q |x|Qq + Q

p′
,

we have for N21 that

N21≤C
k0∑

k=−∞

∫
{2k≤|x|<2k+1}

(∫
{|x|≤2|y|≤4|x|}

|f(y)|(
log

(
1

|y−1x|
)) r

q |y−1x|Qq + Q

p′
dy

)q
dx

≤C
k0∑

k=−∞
‖[f ·χ{2k−1≤|·|<2k+2}]∗g‖qLq(G).
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Since p < q < (r − 1)p′, we use Young’s inequality in Proposition 1.2.13 with
1 + 1

q = 1
r̃ +

1
p and r̃ ∈ [1,∞), to get

N21 ≤ C‖g‖qLr̃(G)

k0∑
k=−∞

‖f · χ{2k−1≤|·|<2k+2}‖qLp(G) ≤ C‖f‖qLp(G), (5.79)

provided that g ∈ Lr̃(G). Since
(
Q
q + Q

p′

)
r̃ = Q, rr̃

q = rp′

p′+q and q < (r − 1)p′,
then changing variables, we obtain

‖g‖r̃Lr̃(G) =

∫
B(0,3/4)

dx(
log

(
1
x

)) rp′
p′+q |x|Q

= C

∫ ∞

log( 4
3 )

dt

t
rp′
p′+q

<∞.

Let us estimate N3 now. Without loss of generality, we may assume again
that | · | is the norm. Similarly to (5.69) we obtain |y| < 2|y−1x| from 2|x| < |y|.
Then, we have for N3 that

N3 ≤
∫
G

(∫
{|y|>2|x|}

∣∣∣B̃Q/p

(y
2

)∣∣∣ |f(y)|dy)q dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q .

We will apply Theorem 5.1.1, Part (2), for the required estimate of N3. For this
we have to check the following condition:⎛⎝∫

{|x|<R}

dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q

⎞⎠
1
q (∫

{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′ dx) 1
p′

≤ A2.

(5.80)
To check this, let us consider the cases: R ≥ 1 and 0 < R < 1. Then, for R ≥ 1 by
the second equality in (5.70), we get(∫

{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′ dx) 1
p′

≤ C
(∫

{2R<|x|}
|x|−Qp′dx

) 1
p′

≤ CR−Q
p . (5.81)

Moreover, we have∫
{|x|<R}

dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q =

∫
{|x|< 1

2}

dx∣∣∣log (e+ 1
|x|
)∣∣∣r |x|Q

+

∫
{ 1

2�|x|<R}
dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q ,

and we note that the first summand in the right-hand side of above is finite since
r > 1. For the second term, we get∫

{ 1
2≤|x|<R}

dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q ≤

∫
{ 1

2≤|x|<R}
dx

|x|Q ≤ C(1 + logR). (5.82)
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Combining (5.81) and (5.82), we have for R ≥ 1 that⎛⎝∫
{|x|<R}

dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q

⎞⎠
1
q (∫

{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′ dx) 1
p′

≤ CR−Q
p (1 + logR)

1
q ≤ C.

Now let us check the condition (5.80) for 0 < R < 1. We split the integral into
two terms:∫

{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′ dx
=

∫
{2R<|x|<2}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′ dx+

∫
{|x|�2}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′ dx. (5.83)

We note that the second integral in the right-hand side of above is finite by the
second equality in (5.70). Then, using the first equality in (5.70) we get for the
first integral that∫

{2R<|x|<2}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′ dx ≤ C ∫
{2R<|x|<2}

|x|−Qdx ≤ C log

(
1

R

)
.

Combined with (5.83), it follows that∫
{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′ dx ≤ C (1 + log

(
1

R

))
. (5.84)

Since ∫
{|x|<R}

dx∣∣∣log(e+ 1
|x|
)∣∣∣r |x|Q � C

(
log

(
e+

1

R

))−(r−1)

,

and (5.84), and taking into account r > 1 and q < (r − 1)p′ we obtain that⎛⎝∫
{|x|<R}

dx∣∣∣log(e + 1
|x|
)∣∣∣r |x|Q

⎞⎠
1
q (∫

{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′ dx) 1
p′

� C

(
log

(
e+

1

R

))− r−1
q

(
1 +

(
log

(
1

R

)) 1
p′
)

� C.

(5.85)

Thus, we have checked (5.80). Consequently, applying Theorem 5.1.1, Part (2), for
the term N3, we obtain

N
1
q

3 ≤ (p′)
1
p′ p

1
qA2‖f‖Lp(G). (5.86)

Finally, a combination of (5.74), (5.86), (5.75), (5.77), (5.79) and (5.68) completes
the proof of Theorem 5.2.5. �
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5.3 Hardy–Littlewood–Sobolev inequalities

on homogeneous groups

In this section we discuss the Hardy–Littlewood–Sobolev inequality on homoge-
neous groups. We show that it can be obtained as a simple consequence of the
convolution Hardy inequality in Theorem 5.2.1. In fact, the argument implies a
little more.

Theorem 5.3.1 (Hardy–Littlewood–Sobolev inequality). Let G be a homogeneous
Lie group of homogeneous dimension Q with a homogeneous quasi-norm | · |. Let
0 < λ < Q and 1 < p, q <∞ be such that

1/p+ 1/q + (α+ λ)/Q = 2

with 0 ≤ α < Q/p′ and α + λ ≤ Q, where 1/p + 1/p′ = 1. Then there exists a
positive constant C = C(Q, λ, p, α) > 0 such that∣∣∣∣∣

∫
G

∫
G

f(x)g(y)

|x|α|y−1x|λ dxdy
∣∣∣∣∣ ≤ C‖f‖Lp(G)‖g‖Lq(G) (5.87)

holds for all f ∈ Lp(G) and g ∈ Lq(G).

Remark 5.3.2 (Stein–Weiss inequality).

1. The original Hardy–Littlewood–Sobolev inequality goes back to the work
of Hardy–Littlewood [HL27], [HL30] and Sobolev [Sob38]. More specifically,
in [HL27], Hardy and Littlewood considered the one-dimensional fractional
operator on (0,∞), given by

Tλf(x) =

∫ ∞

0

f(y)

|x− y|λ dy, 0 < λ < 1, (5.88)

and proved that if 1 < p < q < ∞ and 1
q = 1

p + λ − 1, then there is C > 0
such that

‖Tλf‖Lq(0,∞) ≤ C‖f‖Lp(0,∞),

holds for all f ∈ Lp(0,∞). The N -dimensional analogue of (5.88) can be
written by the formula

Iλf(x) =

∫
RN

f(y)

|x− y|λ dy, 0 < λ < N. (5.89)

Consequently, if was shown by Sobolev in [Sob38] that if 1 < p < q <∞ and
1
q = 1

p + λ
N − 1, then there is C > 0 such that

‖Iλf‖Lq(RN ) ≤ C‖f‖Lp(RN ),

holds for all f ∈ Lp(RN ). In [SW58], Stein and Weiss obtained the follow-
ing two-weight extension of the Hardy–Littlewood–Sobolev inequality, which
is nowadays called the Stein–Weiss inequality. More specifically, they have

shown that if 0 < λ < N , 1 < p < ∞, α < N(p−1)
p , β < N

q , α + β ≥ 0,
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1
q = 1

p + λ+α+β
N − 1, and 1 < p ≤ q < ∞, then there is C > 0 such that we

have
‖|x|−βIλf‖Lq(RN ) ≤ C‖|x|αf‖Lp(RN ). (5.90)

2. An extension of the Hardy–Littlewood–Sobolev inequality to the Heisen-
berg groups was considered in [FS74]. The sharp constants in the Hardy–
Littlewood–Sobolev inequality in the cases of RN and the Heisenberg group
were obtained in [Lie83] and [FL12], respectively.

3. In [GMS10] the analogues of the Stein–Weiss inequality were obtained on
Carnot groups. Note that in [HLZ12] the authors also proved an analogue of
the Stein–Weiss inequality on the Heisenberg groups.

4. On general homogeneous groups the statement of Theorem 5.3.1 will be
here obtained as a consequence of the integral Hardy inequalities. The es-
timate (5.87) contains the Hardy–Littlewood–Sobolev inequality and half of
the Stein–Weiss inequality. The full Stein–Weiss inequality on homogeneous
groups was obtained in [KRS18b]: Let

Iλu(x) :=

∫
G

u(y)

|y−1x|λ dy, 0 < λ < Q. (5.91)

Let 0 < λ < Q, 1 < p <∞, α < Q
p′ , β <

Q
q , α+ β ≥ 0, 1

q = 1
p + α+β+λ

Q − 1,

where 1
p + 1

p′ = 1 and 1
q +

1
q′ = 1. Then for 1 < p ≤ q <∞ we have

‖|x|−βIλu‖Lq(G) ≤ C‖|x|αu‖Lp(G). (5.92)

5. (Differential Stein–Weiss inequality on graded groups). Continuing with the
notation of Remark 5.2.2, let L̇pa(G) be the homogeneous Sobolev space over
Lp of order a associated to a Rockland operator. Such spaces are well defined
on graded groups and do not depend on a particular choice of a Rockland
operator, we refer to [FR17] or to [FR16, Section 4.4] for the extensive anal-
ysis and exposition of their properties. The following differential version of
the Stein–Weiss inequality was obtained in [RY18a]:

Theorem 5.3.3 (Differential Stein–Weiss inequality). Let G be a graded group
of homogeneous dimension Q and let |·| be a quasi-norm on G. Let 1 < p, q <
∞, 0 ≤ a < Q/p and 0 ≤ b < Q/q. Let 0 < λ < Q, 0 ≤ α < a + Q/p′ and
0 ≤ β ≤ b be such that (Q− ap)/(pQ)+ (Q− q(b−β))/(qQ)+ (α+λ)/Q= 2
and α + λ ≤ Q, where 1/p+ 1/p′ = 1. Then there exists a positive constant
C = C(Q, λ, p, α, β, a, b) such that∣∣∣∣∫

G

∫
G

f(x)g(y)

|x|α|y−1x|λ|y|β dxdy
∣∣∣∣ ≤ C‖f‖L̇pa(G)‖g‖L̇qb(G) (5.93)

holds for all f ∈ L̇pa(G) and g ∈ L̇qb(G).

While the setting of graded groups falls outside the scope of this book,
we follow [RY18a] in the proof of Theorem 5.3.1 below.
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Proof of Theorem 5.3.1. Let Ta(x) := |x|a−Q with 0 < a < Q/r for some 1 < r <
∞. Then, using Hölder’s inequality we have∣∣∣∣∣

∫
G

∫
G

f(x)g(y)

|x|α|y−1x|λ dxdy
∣∣∣∣∣ =

∣∣∣∣∫
G

f(x)
(g ∗ TQ−λ)(x)

|x|α dx

∣∣∣∣
≤ ‖f‖Lp(G)

∥∥∥∥g ∗ TQ−λ
|x|α

∥∥∥∥
Lp′(G)

.

(5.94)

Note that the conditions α+ λ ≤ Q and 1/p+ 1/q+ (α+ λ)/Q = 2 imply q ≤ p′,
while 0 < λ < Q, α < Q/p′ and 1/p+ 1/q + (α+ λ)/Q = 2 give

0 < Q− λ = Q−Q
(
2− 1

p
− 1

q

)
+ α < Q−Q

(
2− 1

p
− 1

q

)
+
Q

p′
= Q/q.

Since we have 1 < q ≤ p′ <∞, 0 ≤ αp′ < Q, 0 < Q− λ < Q/q and (Q − λ)/Q =
1/q − 1/p′ + α/Q, using Theorem 5.2.1 in (5.94) we obtain (5.87). �
Remark 5.3.4 (Reversed Hardy–Littlewood–Sobolev inequality). Let us make some
remarks concerning the reversed Hardy–Littlewood–Sobolev inequality on homo-
geneous groups. Namely, consider the inequality∫

G

∫
G

f(x)|y−1x|λf(y)dxdy ≥ CQ,λ,p‖f‖θL1(G)‖f‖2−θLp(G) (5.95)

for any 0 ≤ f ∈ L1 ∩ Lp(G) with f �≡ 0 and 0 < p < 1, where λ > 0 and
θ := (2Q− p(2Q+ λ))/(Q(1 − p)).

In the Euclidean case G = (Rn,+), i.e., with Q = n, the case p = 2n/(2n+λ)
was investigated in [DZ15] and [NN17], while the case p > n/(n+ λ) was studied
in [DFH18].

Following [RY18a], let us briefly recapture the argument in the setting of
general homogeneous groups. Namely, let us show that in the case 0 < p ≤ Q/(Q+
λ) the inequality (5.95) is not valid, namely, (5.95) fails for any CQ,λ,p > 0. In the
Euclidean case this was shown in [CDP18] when p < n/(n + λ) and in [DFH18]
when p ≤ n/(n+ λ).

Let f be a non-negative function with compact support, and let h be a non-
negative smooth function such that

∫
G
h(x)dx = 1. Then, for some A > 0, consider

the function
fε(x) := f(x) +Aε−Qh(x/ε).

Suppose now that (5.95) holds for some CQ,λ,p > 0. Putting this fε in the inequal-
ity (5.95), we obtain

CQ,λ,p ≤
∫
G

∫
G
fε(x)|y−1x|λfε(y)dxdy
‖fε‖θL1(G)‖fε‖2−θLp(G)

→
∫
G

∫
G
f(x)|y−1x|λf(y)dxdy + 2A

∫
G
|x|λf(x)dx

(
∫
G
f(x)dx +A)θ(

∫
G
(f(x))pdx)(2−θ)/p

(5.96)
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as ε→ 0+, where we have used that

• ∫
G
fε(x)dx =

∫
G
f(x)dx +A;

• when ε→ 0+, we have ∫
G

(fε(x))
pdx→

∫
G

(f(x))pdx;

• when ε→ 0+, we have∫
G

∫
G

fε(x)|y−1x|λfε(y)dxdy

=

∫
G

∫
G

f(x)|y−1x|λf(y)dxdy + 2A

∫
G

∫
G

f(x)|(ε−1y)−1x|λh(y)dxdy

+A2ε−2Q

∫
G

∫
G

h
(x
ε

)
h
(y
ε

)
dxdy

→
∫
G

∫
G

f(x)|y−1x|λf(y)dxdy + 2A

∫
G

|x|λf(x)dx,

since
∫
G
h(x)dx = 1.

Note that in (5.96) we can take also the limit as A→ +∞ since it is valid for all
A > 0. Then, when θ > 1, that is, for p < Q/(Q+ λ), taking A → +∞ in (5.96)
we see that CQ,λ,p = 0. In the case θ = 1, that is, for p = Q/(Q + λ), taking the
limit as A→ +∞ in (5.96) we get

CQ,λ,p ≤
2
∫
G
|x|λf(x)dx

(
∫
G
(f(x))pdx)1/p

. (5.97)

Finally, we show that the right-hand side of (5.97) goes to zero as R → ∞ if we
insert the function

fR(x) =

{
|x|−(Q+λ), for 1 ≤ |x| ≤ R,
0, otherwise,

(5.98)

for any R > 1. Indeed, in this case p = Q/(Q+λ), and from (5.97) we obtain that

CQ,λ,p ≤
2
∫
G
|x|λfR(x)dx

(
∫
G
(fR(x))pdx)1/p

= 2(|℘| logR)−λ/Q → 0 (5.99)

as R → ∞, where |℘| is a Q − 1-dimensional surface measure of the unit quasi-
sphere in G.

Summarizing, we conclude that for 0 < p ≤ Q/(Q+ λ) the reversed Hardy–
Littlewood–Sobolev inequality (5.95) is not valid with any constant CQ,λ,p > 0.
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5.4 Maximal weighted integral Hardy inequality

Here we present a maximal Hardy inequality in the integral form, involving the
maximal function

(Mf)(x) :=
1

|B(0, |x|)|
∫
B(0,|x|)

f(z)dz.

Theorem 5.4.1 (Maximal integral weighted Hardy inequality). Let G be a homo-
geneous group of homogeneous dimension Q with a homogeneous quasi-norm | · |.
Let φ and ψ be positive functions defined on G. Then there exists a constant C > 0
such that ∫

G

φ(x) exp(M log f)(x)dx ≤ C
∫
G

ψ(x)f(x)dx (5.100)

holds for all positive f ≥ 0 if and only if

A := sup
R>0

RQ
∫
|x|≥R

φ(x) exp
(
M log 1

ψ

)
(x)

|x|2Q dx <∞. (5.101)

Remark 5.4.2. Inequalities of the type of those in Theorem 5.4.1 in the Abelian
case G = (Rn,+) were studied in [HKK01] for the one-dimensional case n = 1,
and in [DHK97] for the multidimensional case n ≥ 1. Theorem 5.4.1 was proved
in [RSY18a] and we follow the presentation there.

Proof of Theorem 5.4.1. Let us first show (5.101) implies (5.100) for all f ≥ 0.
Denoting

W3(x) := φ(x) exp

(
M log

1

ψ

)
(x), (5.102)

as well as u(x) := f(x)ψ(x), and z = |x|ξ, we have∫
G

φ(x) exp(M log f)(x)dx

=

∫
G

φ(x) exp

(
1

|B(0, |x|)|

(∫
B(0,|x|)

log

(
1

φ

)
(z)dz +

∫
|z|≤|x|

log(φf)(z)dz

))
dx

=

∫
G

φ(x) exp

(
M log

1

φ

)
(x) exp

(
1

|B(0, |x|)|
∫
|z|≤|x|

log(φ(z)f(z))dz

)
dx

=

∫
G

W3(x) exp

(
1

|B(0, |x|)|
∫
|z|≤|x|

log(u(z))dz

)
dx

=

∫
G

W3(x) exp

(
1

|x|Q|B(0, 1)|
∫
B(0,1)

log(u(|x|ξ))|x|Qdξ
)
dx. (5.103)

Since ∫
B(0,1)

log(|ξ|Q)dξ = Q

∫
℘

∫ 1

0

rQ−1 log rdrdσ(y) = −|B(0, 1)|,
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and by using Jensen’s inequality, we obtain∫
G

φ(x) exp(M log f)(x)dx

=

∫
G

W3(x) exp

(
1

|B(0, 1)|

(∫
B(0,1)

log(|ξ|Qu(|x|ξ))dξ −
∫
B(0,1)

log(|ξ|Q)dξ
))

dx

=

∫
G

W3(x) exp

(
1

|B(0, 1)|
∫
B(0,1)

log(|ξ|Qu(|x|ξ))dξ + 1

)
dx

= e

∫
G

W3(x) exp

(
1

|B(0, 1)|
∫
B(0,1)

log(|ξ|Qu(|x|ξ))dξ
)
dx

≤ e

|B(0, 1)|
∫
G

W3(x)

∫
B(0,1)

|ξ|Qu(|x|ξ)dξdx

=
e

|B(0, 1)|
∫
℘

∫
℘

∫ ∞

0

rQ−1W3(rw)

∫ 1

0

s2Q−1u(rsy)dsdrdσ(y)dσ(w),

where |ξ| = s and |x| = r. Furthermore, with t = rs we get∫
G

φ(x) exp(M log f)(x)dx

≤ e

|B(0, 1)|
∫
℘

∫
℘

∫ ∞

0

rQ−1W3(rw)

∫ 1

0

s2Q−1u(rsy)dsdrdσ(y)dσ(w)

=
e

|B(0, 1)|
∫
℘

∫
℘

∫ 1

0

s2Q−1

∫ ∞

0

W3

(
t

s
w

)(
t

s

)Q−1

u(ty)
dt

s
dsdσ(y)dσ(w)

=
e

|B(0, 1)|
∫
℘

∫
℘

∫ 1

0

sQ−1

∫ ∞

0

W3

(
t

s
w

)
tQ−1u(ty)dtdsdσ(y)dσ(w)

=
e

|B(0, 1)|
∫
℘

∫
℘

∫ ∞

0

tQ−1u(ty)

(∫ 1

0

sQ−1W3

(
tw

s

)
ds

)
dtdσ(y)dσ(w)

=
e

|B(0, 1)|
∫
℘

∫
℘

∫ ∞

0

tQ−1u(ty)

(∫ ∞

t

(
t

r

)Q−1

W3(rw)t
dr

r2

)
dtdσ(y)dσ(w)

=
e

|B(0, 1)|
∫
℘

∫
℘

∫ ∞

0

t2Q−1u(ty)

(∫ ∞

t

r−Q−1W3(rw)dr

)
dtdσ(y)dσ(w)

≤ e

|B(0, 1)|
∫
℘

∫
℘

∫ ∞

0

tQ−1u(ty)tQ
(∫ ∞

t

rQ−1W3(rw)dr

r2Q

)
dtdσ(w)dσ(y)

=
e

|B(0, 1)|
∫
G

u(x)

(
|x|Q

∫
|z|≥|x|

W3(z)

|z|2Q dz

)
dx ≤ A e

|B(0, 1)|
∫
G

u(x)dx,

yielding (5.100), where we have used (5.101) in the last line.
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We now show that (5.100) implies (5.101). From (5.103) we notice that (5.100)
is equivalent to∫

G

W3(x) exp

(
1

|B(0, |x|)|
∫
|z|≤|x|

log(u(z))dz

)
dx ≤ C

∫
G

u(x)dx. (5.104)

Furthermore, for a function

u(x) = R−Qχ(0,R)(|x|) + e−2Q|x|−2QRQχ(R,∞)(|x|), x ∈ G, R > 0, (5.105)

we have ∫
G

W3(x) exp

(
1

|B(0, |x|)|
∫
|z|≤|x|

log(u(z))dz

)
dx

≤ C
∫
G

u(x)dx = C

∫
℘

∫ ∞

0

sQ−1u(s)dsdσ(y)

= C|℘|
(∫ R

0

sQ−1R−Qds+
∫ ∞

R

e−2QsQ−1RQs−2Qds

)

= C|℘|
(
1

Q
+
e−2Q

Q

)
=: C(Q) <∞,

since χ is the cut-off function. Thus, from this, by plugging (5.105) into the left-
hand side of (5.104) we calculate

∞ > C(Q) ≥
∫
G

W3(x) exp

(
1

|B(0, |x|)|
∫
|z|≤|x|

log(u(z))dz

)
dx

=

∫
℘

∫ ∞

0

sQ−1W3(sy) exp

(
1

|B(0, s)|
∫
℘

∫ s

0

rQ−1 log(u(r))drdσ(w)

)
dsdσ(y)

=

∫
℘

∫ ∞

0

sQ−1W3(sy) exp

( |℘|
sQ|B(0, 1)|

∫ s

0

rQ−1 log(u(r))dr

)
dsdσ(y)

=

∫
℘

(∫ R

0

sQ−1W3(sy) exp

( |℘|
sQ|B(0, 1)|

∫ s

0

rQ−1 log(u(r))dr

)
ds

)
dσ(y)

+

∫
℘

(∫ ∞

R

sQ−1W3(sy) exp

( |℘|
sQ|B(0, 1)|

(∫ R

0

rQ−1 log(R−Q)dr

+

∫ s

R

rQ−1 log(e−2Qr−2QRQ)dr

))
ds

)
dσ(y)

≥
∫
℘

(∫ ∞

R

sQ−1W3(sy) exp

(
|℘|

sQ|B(0, 1)|

(∫ R

0

rQ−1 log(R−Q)dr

+

∫ s

R

rQ−1 log(e−2Qr−2QRQ)dr

))
ds

)
dσ(y)
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=

∫
℘

(∫ ∞

R

sQ−1W3(sy) exp

(
|℘|

sQ|B(0, 1)|

(∫ R

0

rQ−1 log(R−Q)dr

+

∫ s

R

rQ−1 log(e−2Q)dr − 2Q

∫ s

R

rQ−1(log r)dr

+

∫ s

R

rQ−1 log(RQ)dr

))
ds

)
dσ(y)

=

∫
℘

(∫ ∞

R

sQ−1W3(sy) exp

( |℘|
sQ|B(0, 1)|

(
RQ log(R−Q)

Q
− 2Q

sQ −RQ
Q

−2Q
[
rQ log r

Q
− rQ

Q2

]s
R

+
sQ −RQ

Q
log(RQ)

))
ds

)
dσ(y)

=

∫
℘

∫ ∞

R

sQ−1W3(sy)

exp

( |℘|
|B(0, 1)|

(
−2 + 2RQ

sQ
− 2 log s+

2

Q
− 2RQ

QsQ
+ logR

))
dsdσ(y)

≥ e(2−2Q)

∫
℘

∫ ∞

R

sQ−1W3(sy)
R

|℘|
|B(0,1)|

s
2|℘|

|B(0,1)|
dsdσ(y)

= e2−2QRQ
∫
|x|≥R

W3(x)

|x|2Q dx = e2−2QRQ
∫
|x|≥R

φ(x) exp
(
M log 1

ψ

)
(x)

|x|2Q dx,

which implies (5.101), where we have used |℘|
|B(0,1)| = Q, 2RQ

sQ − 2RQ

QsQ > 0, and

(5.102) in the last two lines. �
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Chapter 6

Horizontal Inequalities on Stratified Groups

In this chapter we discuss versions of some of the inequalities from the previous
chapters in the setting of stratified groups. Because of the stratified structure here
we can use the horizontal gradient in the estimates.

As already outlined in the introduction there are three versions of estimates
on stratified groups available in the literature:

(A) Using the homogeneous semi-norm, sometimes called the L-gauge, given by
the appropriate power of the fundamental solution of the sub-Laplacian L.
Thus, if d(x) is the L-gauge, then d(x)2−Q is a constant multiple of Folland’s
[Fol75] fundamental solution of the sub-Laplacian L, with Q being the ho-
mogeneous dimension of the stratified group G; these will be discussed in
Chapter 7.

(B) Using the Carnot–Carathéodory distance, i.e., the control distance associated
to the sub-Laplacian.

(C) Using the Euclidean distance on the first stratum of the group.

The constants in the corresponding inequalities may depend on the quasi-
norm that one is using. There is an extensive literature on Hardy type inequalities
of stratified Lie groups, see, e.g., [DGP11], [GL90], [GK08], [Gri03], [JS11], [KS16],
[KÖ13], [Lia13], [NZW01]). For example, in the case (A) the Hardy inequality takes
the form ∥∥∥∥ f

d(x)

∥∥∥∥
Lp(G)

≤ p

Q− p ‖∇Hf‖Lp(G) , Q ≥ 3, 1 < p < Q, (6.1)

where Q is the homogeneous dimension of the stratified group G, ∇H is the hor-
izontal gradient, and d(x) is the L-gauge from (A). The analysis in the case (A)
in terms of the fundamental solution of the sub-Laplacian will be the subject of
Chapter 11. The results on Hardy and other inequalities for the case (B) are less
extensive, mostly devoted to the case of the Heisenberg group.

In this chapter we concentrate on the case (C). Thus, here throughout we
adopt the notations from Section 1.4.8 concerning the stratified groups. In this

© The Editor(s) (if applicable) and The Author(s) 2019 
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case there are several additional properties available assisting the analysis, such as
formulae (1.72) and (1.73), making certain calculations possible. It is also worth
noting that generally, for the same types of inequalities, the optimal constants in
case (C) are different than the optimal constants in case (A).

Some analysis of inequalities of the case (C) is known in the literature, see,
e.g., [BT02a] and [D’A04b]. However, in this chapter we aim at developing an
independent point of view based on the divergence relations (1.72) and (1.73).

Notation. As already mentioned, throughout this chapter we adopt the notations
from Section 1.4.8 concerning the stratified groups. In particular, G will always
be a stratified group of homogeneous dimension Q, with N being the dimension
of the first stratum. Also, x′ will denote the variables in the first stratum of G,
and ∇H will denote the horizontal gradient. To simplify the notation, we denote
simply by

|x′| =
√
x′21 + · · ·+ x′2N

the Euclidean norm on the first stratum of G, which can be identified with RN .

6.1 Horizontal Lp-Caffarelli–Kohn–Nirenberg

type inequalities

In this section we establish the horizontal version on stratified groups of the Lp-
Caffarelli–Kohn–Nirenberg type inequalities from Section 3.3.1. In particular, this
would imply the horizontal version, as in the case (C) above, of the Lp-Hardy
inequality with the sharp constant:∥∥∥∥ f

|x′|
∥∥∥∥
Lp(G)

≤ p

N − p ‖∇Hf‖Lp(G) , 1 < p < N. (6.2)

We obtain it as a special case of the following more general inequality, see Remark
6.1.2, Part 3.

Theorem 6.1.1 (Horizontal Lp-Caffarelli–Kohn–Nirenberg inequalities). For any
α, β ∈ R and every complex-valued function f ∈ C∞

0 (G\{x′ = 0}), we have

|N − γ|
p

∥∥∥∥∥ f

|x′| γp

∥∥∥∥∥
p

Lp(G)

≤
∥∥∥∥ 1

|x′|α∇Hf
∥∥∥∥
Lp(G)

∥∥∥∥∥ f

|x′| βp−1

∥∥∥∥∥
p−1

Lp(G)

, 1 < p <∞, (6.3)

where γ = α+ β + 1. If γ �= N then the constant |N−γ|
p is sharp.



6.1. Horizontal Lp-Caffarelli–Kohn–Nirenberg inequalities 273

Before proving Theorem 6.1.1, let us point out some of its consequences.

Remark 6.1.2.

1. In the Abelian case G = (Rn,+), we have N = n, ∇H = ∇ = (∂x1 , . . . , ∂xn),
so (6.3) gives the Lp-Caffarelli–Kohn–Nirenberg type inequality for Rn with
the sharp constant:

|n− γ|
p

∥∥∥∥∥ f

|x|
γ
p

E

∥∥∥∥∥
p

Lp(Rn)

≤
∥∥∥∥ 1

|x|αE
∇f

∥∥∥∥
Lp(Rn)

∥∥∥∥∥∥ f

|x|
β
p−1

E

∥∥∥∥∥∥
p−1

Lp(Rn)

, (6.4)

for all f ∈ C∞
0 (Rn\{0}), and |x|E =

√
x21 + · · ·+ x2n. In this case it becomes

a special case of Theorem 3.3.3 because a particular (Euclidean) norm is used.
In this case the inequality of this type has been analysed in, e.g., [Cos08] and
[DJSJ13].

2. (Horizontal weighted Lp-Hardy inequality) In the case

β = γ

(
1− 1

p

)
,

i.e., with β = (α + 1)(p − 1) and γ = p(α + 1), inequality (6.3) implies the
horizontal weighted Lp-Hardy type inequality

|N − p(α+ 1)|
p

∥∥∥∥ f

|x′|α+1

∥∥∥∥
Lp(G)

≤
∥∥∥∥ 1

|x′|α∇Hf
∥∥∥∥
Lp(G)

, 1 < p <∞, (6.5)

for any f ∈ C∞
0 (G\{x′ = 0}) and all α ∈ R, with sharp constant in (6.5) for

p(α+ 1) �= N .

3. (Horizontal Lp-Hardy inequality) In particular, in the case of α = 0, the
inequality (6.5) implies the following stratified group version of horizontal
Lp-Hardy inequality with the sharp constant:∥∥∥∥ f

|x′|
∥∥∥∥
Lp(G)

≤ p

N − p ‖∇Hf‖Lp(G) , 1 < p < N. (6.6)

Such a type of inequalities was also considered in [D’A04b], and in [Yen16]
in the case of the Heisenberg group.

In the case p = 2 this inequality can be in turn sharpened to the fol-
lowing inequality: If N ≥ 3 and α ∈ R, then for all complex-valued functions
f ∈ C∞

0 (G\{x′ = 0}) we have∥∥∥∥ f

|x′|
∥∥∥∥
L2(G)

≤ 2

N − 2

∥∥∥∥x′ · ∇Hf|x′|
∥∥∥∥
L2(G)

, (6.7)

where the constant 2
N−2 is sharp. This refinement will be shown in Theorem

6.4.4 by using the factorization method.
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4. Clearly, when G = (Rn,+), n ≥ 3, (6.6) implies the classical Hardy inequality
for Rn: ∥∥∥∥ f

|x|E

∥∥∥∥
Lp(Rn)

≤ p

n− p ‖∇f‖Lp(Rn) ,

for all f ∈ C∞
0 (Rn\{0}), and |x|E =

√
x21 + · · ·+ x2n.

Similar to Corollary 3.3.5, Theorem 6.1.1, and even the corresponding Hardy
inequality, immediately implies a version of the Heisenberg–Pauli–Weyl uncer-
tainty principle.

Corollary 6.1.3 (Horizontal Heisenberg–Pauli–Weyl uncertainty principle). For all
f ∈ C∞

0 (G\{x′ = 0}) we have

‖f‖2L2(G) ≤
p

N − p ‖∇Hf‖Lp(G) ‖|x′|f‖L p
p−1 (G)

, 1 < p < N. (6.8)

Proof of Corollary 6.1.3. Using (6.6) the Hölder inequality we immediately obtain

‖f‖2L2(G) ≤
∥∥∥∥ 1

|x′|f
∥∥∥∥
Lp(G)

‖|x′|f‖
L

p
p−1 (G)

≤ p

N − p ‖∇Hf‖Lp(G) ‖|x′|f‖L p
p−1 (G)

, 1 < p < N,

(6.9)

giving (6.8). �
Remark 6.1.4.

1. In the Abelian case G = (Rn,+), taking N = n, we get that (6.8) with p = 2
implies the classical uncertainty principle on Rn, namely,(∫

Rn

|f(x)|2dx
)2

≤
(

2

n− 2

)2 ∫
Rn

|∇f(x)|2dx
∫
Rn

|x|2E |f(x)|2dx, (6.10)

for all f ∈ C∞
0 (Rn\{0}). This is the Heisenberg–Pauli–Weyl uncertainty prin-

ciple on Rn. We note that we can also obtain (6.10) already as a consequence
of the radial Heisenberg–Pauli–Weyl uncertainty principle on homogeneous
groups, see Remark 3.3.6, Part 1. However, since the proofs of Theorem 3.3.3
and Theorem 6.1.1 are different, they give two different proofs of (6.10).

2. We can point out some inequalities with sharp constants as special cases of
(6.3). For example, for αp = α+ β + 1 we get

|N − αp|
p

∥∥∥∥ f

|x′|α
∥∥∥∥p
Lp(G)

≤
∥∥∥∥∇Hf|x′|α

∥∥∥∥
Lp(G)

∥∥∥|x′| 1
p−1−αf

∥∥∥p−1

Lp(G)
. (6.11)

Also, if 0 = α+ β + 1 and α = −p, then
N

p
‖f‖pLp(G) ≤ ‖|x′|p∇Hf‖Lp(G)

∥∥∥∥ f

|x′|
∥∥∥∥p−1

Lp(G)

, (6.12)

with constants in both of these inequalities being sharp.
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Proof of Theorem 6.1.1. We may assume that γ �= N since for γ = N the in-
equality (6.3) is trivial. By using the identity (1.73), the divergence theorem, and
Schwarz’ inequality, one calculates∫

G

|f(x)|p
|x′|γ dx =

1

N − γ
∫
G

|f(x)|pdivH
(

x′

|x′|γ
)
dx

= − 1

N − γRe
∫
G

pf(x)|f(x)|p−2 x
′ · ∇Hf
|x′|γ dx

≤
∣∣∣∣ p

N − γ
∣∣∣∣ ∫

G

|f(x)|p−1

|x′|γ |x′ · ∇Hf | dx

≤
∣∣∣∣ p

N − γ
∣∣∣∣ ∫

G

|f(x)|p−1

|x′|α+β |∇Hf(x)| dx

≤
∣∣∣∣ p

N − γ
∣∣∣∣ (∫

G

|∇Hf(x)|p
|x′|αp dx

) 1
p

(∫
G

|f(x)|p
|x′| βpp−1

dx

) p−1
p

.

Here in the last line we used Hölder’s inequality. This gives∣∣∣∣N − γp

∣∣∣∣ ∫
G

|f(x)|p
|x′|γ dx ≤

(∫
G

|∇Hf(x)|p
|x′|αp dx

) 1
p

(∫
G

|f(x)|p
|x′| βpp−1

dx

) p−1
p

,

proving (6.3). Let us now show the sharpness of the constant. For this, we look at
the equality condition in Hölder’s inequality. Let us consider the function

g(x) =

{
e−

C
λ |x′|λ , λ := α− β

p−1 + 1 �= 0,
1

|x′|C , α− β
p−1 + 1 = 0,

where C =
∣∣∣N−γ

p

∣∣∣ and γ �= N. Then it can be checked that∣∣∣∣ p

N − γ
∣∣∣∣p |∇Hg(x)|p|x′|αp =

|g(x)|p
|x′| βpp−1

.

Finally, approximating this function by functions in C∞
0 (G\{x′ = 0}) completes

the proof. �

6.1.1 Badiale–Tarantello conjecture

The idea of the proof of Theorem 6.1.1 implies the following similar fact in Rn

which we may split into two factors as Rn = RN × Rn−N . The best constant in
the Hardy inequality of the type of inequality (6.13) was conjectured by Badiale
and Tarantello in [BT02a, Remark 2.3]. Although it was subsequently established
in [SSW03], here we follow [RS17e] to present an independent proof of a more
general result.
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Proposition 6.1.5 (Lp-Caffarelli–Kohn–Nirenberg inequality for Euclidean decom-
position). Let x = (x′, x′′) ∈ RN × Rn−N , 1 ≤ N ≤ n, and α, β ∈ R. Then for
any f ∈ C∞

0 (Rn\{x′ = 0}), and all 1 < p <∞, we have

|N − γ|
p

∥∥∥∥∥ f

|x′| γp

∥∥∥∥∥
p

Lp(Rn)

≤
∥∥∥∥ 1

|x′|α∇f
∥∥∥∥
Lp(Rn)

∥∥∥∥∥ f

|x′| βp−1

∥∥∥∥∥
p−1

Lp(Rn)

, (6.13)

where γ = α + β + 1 and |x′| is the Euclidean norm on R
N . If γ �= N then the

constant |N−γ|
p is sharp.

Proof of Proposition 6.1.5. The proof is a modification of the proof of Theorem
6.1.1. For γ = N the inequality (6.13) is trivial, so let us assume γ �= N . Thus, by
using the identity

divN
x′

|x′|γ =
N − γ
|x′|γ ,

for all γ ∈ R and x′ ∈ RN with |x′| �= 0, where divN is the standard divergence
on RN , and applying the divergence theorem and Schwarz’ inequality one can
calculate∫

Rn

|f(x)|p
|x′|γ dx =

1

N − γ
∫
Rn

|f(x)|pdivN
(

x′

|x′|γ
)
dx

= − 1

N − γRe
∫
Rn

pf(x)|f(x)|p−2 x
′ · ∇Nf
|x′|γ dx

≤
∣∣∣∣ p

N − γ
∣∣∣∣ ∫

Rn

|f(x)|p−1

|x′|γ |x′ · ∇Nf | dx

=

∣∣∣∣ p

N − γ
∣∣∣∣ ∫

Rn

|f(x)|p−1

|x′|γ |x′0 · ∇f | dx

≤
∣∣∣∣ p

N − γ
∣∣∣∣ ∫

Rn

|f(x)|p−1

|x′|α+β |∇f(x)| dx

≤
∣∣∣∣ p

N − γ
∣∣∣∣ (∫

Rn

|∇f(x)|p
|x′|αp dx

) 1
p

(∫
Rn

|f(x)|p
|x′| βpp−1

dx

) p−1
p

,

where x′0 = (x′, 0) ∈ Rn, that is |x′0| = |x′|, ∇N is the standard gradient on RN ,
and ∇ is the gradient on Rn. Here we have used Hölder’s inequality in the last
line. This gives

∣∣∣∣N − γp

∣∣∣∣ ∫
Rn

|f(x)|p
|x′|γ dx ≤

(∫
Rn

|∇f(x)|p
|x′|αp dx

) 1
p

(∫
Rn

|f(x)|p
|x′| βpp−1

dx

) p−1
p

,
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which proves (6.13). Again as in the proof of Theorem 6.1.1 let us examine the
equality condition in the above Hölder inequality. Thus, we consider

g(x) =

{
e−

C
λ |x′|λ , λ := α− β

p−1 + 1 �= 0,
1

|x′|C , α− β
p−1 + 1 = 0,

where C =
∣∣∣N−γ

p

∣∣∣ and γ �= N. Then it can be directly checked that∣∣∣∣ p

N − γ
∣∣∣∣p |∇g(x)|p|x′|αp =

∣∣∣∣ p

N − γ
∣∣∣∣p |∇Ng(x)|p|x′|αp =

|g(x)|p
|x′| βpp−1

,

which satisfies the equality condition in Hölder’s inequality. Approximating this

function by functions in C∞
0 (Rn\{x′ = 0}) shows that the constant

∣∣∣N−γ
p

∣∣∣ is

sharp. �
Remark 6.1.6. For β = (α+1)(p− 1) and γ = p(α+1) the inequality (6.13) gives
that

|N − p(α+ 1)|
p

∥∥∥∥ f

|x′|α+1

∥∥∥∥
Lp(Rn)

≤
∥∥∥∥ 1

|x′|α∇f
∥∥∥∥
Lp(Rn)

, 1 < p <∞, (6.14)

for all f ∈ C∞
0 (Rn\{x′ = 0}) and for all α ∈ R, with the sharp constant. For

α = 0 and 1 < p < N, 2 ≤ N ≤ n, the inequality (6.14) implies that∥∥∥∥ f

|x′|
∥∥∥∥
Lp(Rn)

≤ p

N − p ‖∇f‖Lp(Rn) , (6.15)

again with p
N−p being the best constant.

6.1.2 Horizontal higher-order versions

We can iterate the Lp-Caffarelli–Kohn–Nirenberg type inequalities from Theorem
6.1.1 to obtain higher-order inequalities. Let us denote inductively

∇2
Hf := ∇H |∇Hf | and ∇mHf := ∇H |∇m−1

H f |, m ∈ N.

Then as a consequence of Theorem 6.1.1 we obtain

Corollary 6.1.7 (Higher-order horizontal Lp-Caffarelli–Kohn–Nirenberg type in-
equalities). For any k,m ∈ N and 1 < p <∞ we have

|N − γ|
p

∥∥∥∥∥ f

|x′| γp

∥∥∥∥∥
p

Lp(G)

≤ Ãα,mÃβ,k
∥∥∥∥ 1

|x′|α−m∇
m+1
H f

∥∥∥∥
Lp(G)

∥∥∥∥∥ 1

|x′| βp−1−k
∇kHf

∥∥∥∥∥
p−1

Lp(G)

,

(6.16)
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for all f ∈ C∞
0 (G\{x′ = 0}), where γ = α + β + 1, and all α ∈ R such that∏m−1

j=0 |N − p(α− j)| �= 0, and

Ãα,m := pm

⎡⎣m−1∏
j=0

|N − p(α− j)|
⎤⎦−1

,

as well as all β ∈ R such that
∏k−1
j=0

∣∣∣N − p( β
p−1 − j

)∣∣∣ �= 0, and

Ãβ,k := pk(p−1)

⎡⎣k−1∏
j=0

∣∣∣∣N − p( β

p− 1
− j

)∣∣∣∣
⎤⎦−(p−1)

.

Proof of Corollary 6.1.7. Taking |∇Hf | instead of f and α−1 instead of α in (6.5)
we consequently get∥∥∥∥∇Hf|x′|α

∥∥∥∥
Lp(G)

≤ p

|N − pα|
∥∥∥∥ 1

|x′|α−1
∇2
Hf

∥∥∥∥
Lp(G)

,

for α �= N
p . Combining it with (6.5) we obtain∥∥∥∥ f

|x′|α+1

∥∥∥∥
Lp(G)

≤ p

|N − p(α+ 1)|
p

|N − pα|
∥∥∥∥ 1

|x′|α−1
∇2
Hf

∥∥∥∥
Lp(G)

,

for each α ∈ R such that α �= N
p − 1 and α �= N

p . This iteration process gives∥∥∥∥ f

|x′|θ+1

∥∥∥∥
Lp(G)

≤ Aθ,k
∥∥∥∥ 1

|x′|θ+1−k∇kHf
∥∥∥∥
Lp(G)

, 1 < p <∞, (6.17)

for all f ∈ C∞
0 (G\{x′ = 0}) and all θ ∈ R such that

∏k−1
j=0 |N − p(θ + 1− j)| �= 0,

and

Aθ,k := pk

⎡⎣k−1∏
j=0

|N − p(θ + 1− j)|
⎤⎦−1

.

Similarly, we have∥∥∥∥ ∇Hf|x′|ϑ+1

∥∥∥∥
Lp(G)

≤ Aϑ,m
∥∥∥∥ 1

|x′|ϑ+1−m∇m+1
H f

∥∥∥∥
Lp(G)

, 1 < p <∞, (6.18)

for all f ∈ C∞
0 (G\{x′ = 0}) and all ϑ ∈ R such that

∏m−1
j=0 |N − p(ϑ+ 1− j)| �= 0,

and

Aϑ,m := pm

⎡⎣m−1∏
j=0

|N − p(ϑ+ 1− j)|
⎤⎦−1

.

Now putting ϑ+ 1 = α and θ+ 1 = β
p−1 into (6.18) and (6.17), respectively, from

(6.3) we obtain (6.16). �
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6.2 Horizontal Hardy and Rellich inequalities

First of all let us record the horizontal Hardy inequalities discussed in Remark
6.1.2:

Corollary 6.2.1 (Horizontal Lp Hardy inequalities). Let G be a stratified group with
N being the dimension of the first stratum. Then for any 1 < p <∞, α ∈ R, and
for all f ∈ C∞

0 (G\{x′ = 0}) we have∥∥∥∥ 1

|x′|α∇Hf
∥∥∥∥
Lp(G)

≥ |N − p(α+ 1)|
p

∥∥∥∥ f

|x′|α+1

∥∥∥∥
Lp(G)

. (6.19)

If p(α+ 1) �= N then the constant |N−p(α+1)|
p is sharp.

From this we move on to Rellich inequalities.

Theorem 6.2.2 (Horizontal Rellich inequalities). Let G be a stratified group with
N ≥ 3 being the dimension of the first stratum. Let δ ∈ R with −N/2 ≤ δ ≤ −1.
Then for all functions f ∈ C∞

0 (G\{x′ = 0}) we have∥∥∥∥ Lf|x′|δ
∥∥∥∥
L2(G)

≥
∣∣∣∣(N − 2δ − 4)(N + 2δ)

4

∣∣∣∣ ∥∥∥∥ f

|x′|δ+2

∥∥∥∥
L2(G)

. (6.20)

If N + 2δ �= 0, then the constant in (6.20) is sharp.

We note that another version of the Rellich inequality will be given in Corol-
lary 6.5.2.

Proof of Theorem 6.2.2. In the case p = 2 and α = δ + 1, Corollary 6.2.1 implies∥∥∥∥ ∇Hf|x′|δ+1

∥∥∥∥
L2(G)

≥
∣∣∣∣N − 2δ − 4

2

∣∣∣∣ ∥∥∥∥ f

|x′|δ+2

∥∥∥∥
L2(G)

. (6.21)

It also follows that the constant
∣∣N−2δ−4

2

∣∣ is sharp when N − 2δ − 4 �= 0. On the
other hand, Corollary 6.5.2 gives (see also Theorem 6.8.1 with p = 2, γ = 2β and
α = β − 1) ∥∥∥∥ Lf

|x′|β−1

∥∥∥∥
L2(G)

≥
∣∣∣∣N + 2β − 2

2

∣∣∣∣ ∥∥∥∥∇Hf|x′|β
∥∥∥∥
L2(G)

(6.22)

for 2−N ≤ 2β ≤ 0 and N ≥ 3.

Putting δ + 1 instead of β this gives∥∥∥∥ Lf|x′|δ
∥∥∥∥
L2(G)

≥
∣∣∣∣N + 2δ

2

∣∣∣∣ ∥∥∥∥ ∇Hf|x′|δ+1

∥∥∥∥
L2(G)

(6.23)

for 2−N ≤ 2δ+2 ≤ 0 and N ≥ 3. Combining (6.21) and (6.23), we obtain (6.20).

Now, to show the sharpness of the constant in (6.20), we observe first that
in Theorem 6.2.2 the sharpness of the constant is reduced to that in Theorem



280 Chapter 6. Horizontal Inequalities on Stratified Groups

6.1.1 which in turn is obtained by checking the equality condition in Hölder’s
inequality. Namely, the function |x′|C1 satisfies this equality condition for any real
number C1 �= 0. Similarly, in Theorem 6.8.1, the sharpness of the constant will
be obtained again from the equality condition in Hölder’s inequality, so that we
see that the same function |x′|C1 satisfies the equality condition. Therefore, the
constant in (6.23) is sharp when N + 2δ �= 0, so, the constant in (6.20) is sharp
for N + 2δ �= 0. �

6.3 Critical horizontal Hardy type inequality

For p = N the inequality (6.2) fails, and in this section we consider its critical
versions.

Theorem 6.3.1 (Critical horizontal Hardy inequality). For a bounded domain Ω ⊂
G with 0 ∈ Ω and for all f ∈ C∞

0 (Ω\{x′ = 0}) we have∥∥∥∥∥ f

|x′|log R
|x′|

∥∥∥∥∥
LN (Ω)

≤ N

N − 1

∥∥∥∥ x′|x′| · ∇Hf
∥∥∥∥
LN (Ω)

, 1 < N <∞, (6.24)

where R = sup
x∈Ω
|x′|.

To show Theorem 6.3.1 we will first prove the following more abstract theo-
rem, and then the proof of Theorem 6.3.1 will follows directly from this. Moreover,
it will imply a number of other estimates, for example the critical LN -Poincaré
inequality.

Theorem 6.3.2. Let 0 ∈ Ω ⊂ G be a bounded domain. Let g : (1,∞) → R be a
C2-function such that

g′(t) < 0, g′′(t) > 0, (6.25)

for all t > 1, and such that

(−g′(t))2(N−1)

(g′′(t))N−1
≤ C <∞, for all t > 1. (6.26)

Then we have(
N − 1

N

)N ∫
Ω

|f(x)|N
|x′|N

(
−g′

(
log

Re

|x′|
))N−2

g′′
(
log

Re

|x′|
)
dx

≤
∫
Ω

(
−g′

(
log Re|x′|

))2(N−1)

(
g′′
(
log Re|x′|

))N−1

∣∣∣∣ x′|x′| · ∇Hf(x)
∣∣∣∣N dx,

(6.27)

for all f ∈ C∞
0 (Ω\{x′ = 0}), with R = sup

x∈Ω
|x′|.
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Proof of Theorem 6.3.2. For ε > 0 a direct calculation shows

|∇HGε(x)|N−2∇HGε(x) = (−g′(Fε(x)))N−1
( |x′|N−2x′

(|x′|2 + ε2)N−1

)
,

where

Fε(x) := log
Rεe√|x′|2 + ε2

, Rε := sup
x∈Ω

√
|x′|2 + 2ε2,

and

Gε(x) = g(Fε(x)).

Since g′(t) < 0, with LN as in (1.71), we have

LNGε(x) = divH(|∇HGε(x)|N−2∇HGε(x))

= (N − 1) (−g′(Fε(x)))N−2
g′′(Fε(x))

|x′|N
(|x′|2 + ε2)N

+ (N − 1) (−g′(Fε(x)))N−1 2ε2|x′|N−2

(|x′|2 + ε2)N
.

The divergence theorem gives∫
Ω

|f |NLNGε(x)dx =

∫
Ω

|f |NdivH(|∇HGε(x)|N−2∇HGε(x))dx

= −
∫
Ω

∇H |f |N · (|∇HGε(x)|N−2∇HGε(x))dx.
(6.28)

We have∫
Ω

|f |NLNGε(x)dx

= (N − 1)

∫
Ω

|f |N (−g′(Fε(x)))N−2
g′′(Fε(x))

|x′|N
(|x′|2 + ε2)N

dx

+ (N − 1)

∫
Ω

|f |N (−g′(Fε(x)))N−1 2ε2|x′|N−2

(|x′|2 + ε2)N
dx

≥ (N − 1)

∫
Ω

|f |N (−g′(Fε(x)))N−2
g′′(Fε(x))

|x′|N
(|x′|2 + ε2)N

dx. (6.29)

Moreover,∣∣∣∣− ∫
Ω

∇H |f(x)|N · (|∇HGε(x)|N−2∇HGε(x))dx
∣∣∣∣

=

∣∣∣∣N ∫
Ω

|f(x)|N−2f(x) (−g′(Fε(x)))N−1
( |x′|N−2x′ · ∇Hf

(|x′|2 + ε2)N−1

)
dx

∣∣∣∣
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= N

∫
Ω

|f(x)|N−1 (−g′(Fε(x)))N−1
( |x′|N−2 |x′ · ∇Hf |

(|x′|2 + ε2)N−1

)
dx

≤ N
(∫

Ω

(−g′(Fε(x)))N−2
g′′(Fε(x))

|x′|N |f(x)|N
(|x′|2 + ε2)N

dx

)N−1
N

×
(∫

Ω

(−g′(Fε(x)))2(N−1)
(g′′(Fε(x)))

−(N−1)

∣∣∣∣ x′|x′| · ∇Hf
∣∣∣∣N dx

) 1
N

. (6.30)

Combining (6.28), (6.29) and (6.30) we obtain

(N − 1)

∫
Ω

|f |N (−g′(Fε(x)))N−2
g′′(Fε(x))

|x′|N
(|x′|2 + ε2)N

dx

≤ N
(∫

Ω

(−g′(Fε(x)))N−2
g′′(Fε(x))

|x′|N |f(x)|N
(|x′|2 + ε2)N

dx

)N−1
N

×
(∫

Ω

(−g′(Fε(x)))2(N−1)
(g′′(Fε(x)))

−(N−1)

∣∣∣∣ x′|x′| · ∇Hf
∣∣∣∣N dx

) 1
N

,

which means(
N − 1

N

)N ∫
Ω

|f |N (−g′(Fε(x)))N−2
g′′(Fε(x))

|x′|N
(|x′|2 + ε2)N

dx

≤
∫
Ω

(−g′(Fε(x)))2(N−1)
(g′′(Fε(x)))

−(N−1)

∣∣∣∣ x′|x′| · ∇Hf
∣∣∣∣N dx.

Now letting ε→ 0 we obtain (6.27). �

Proof of Theorem 6.3.1. If we take

g(t) = −log(t− 1),

for t > 1, then we see that this function satisfies all assumptions of Theorem 6.3.2.
That is,

g′(t) = − 1

t− 1
< 0, g′′(t) =

1

(t− 1)2
> 0,

and
(−g′(t))2(N−1)

(g′′(t))N−1
= 1, for all t > 1.

Therefore, putting

g′
(
log

Re

|x′|
)

= − 1

log R
|x′|

and g′′
(
log

Re

|x′|
)

=
1(

log R
|x′|
)2

in (6.27) we obtain (6.24). �
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One can obtain a number of inequalities from Theorem 6.3.2 by choosing
different functions g(t). For example, we get the following analogue of the LN -
Poincaré inequality for the horizontal gradient.

Corollary 6.3.3 (Horizontal critical Poincaré inequality). Let R := sup
x∈Ω
|x′|. Then

for all f ∈ C∞
0 (Ω\{x′ = 0}) we have

‖f‖LN(Ω) ≤ R ‖∇Hf‖LN (Ω) . (6.31)

Proof. Let us take

g(t) = e
Nt

1−N , t > 1,

in (6.27). Then we have

‖f‖LN(Ω) ≤
∥∥∥∥|x′| x′|x′| · ∇Hf

∥∥∥∥
LN (Ω)

.

For R = sup
x∈Ω
|x′|, the Cauchy–Schwarz inequality implies (6.31). �

Remark 6.3.4. In the Euclidean case the idea of proving Theorem 6.3.1 using
Theorem 6.3.2 was realized in [Tak15]. In this section our presentation followed
[RS17e].

6.4 Two-parameter Hardy–Rellich inequalities

by factorization

In this section we apply the factorization method, similar to the ideas explained
in Section 2.1.5, but now in the setting of stratified groups. As a result we obtain
two-parameter inequalities analogous to the Gesztesy–Littlejohn type inequalities
described in Example 2.1.13. The presentation of this section follows [RY17].

Theorem 6.4.1 (Two-parameter Hardy–Rellich inequalities). Let G be a stratified
group with N ≥ 2 being the dimension of the first stratum, and let α, β ∈ R. Then
for all complex-valued functions f ∈ C∞

0 (G\{x′ = 0}) we have

‖Lf‖2L2(G) ≥ (α(N − 2)− 2β)

∥∥∥∥∇Hf|x′|
∥∥∥∥2
L2(G)

− α2

∥∥∥∥x′ · ∇Hf|x′|2
∥∥∥∥2
L2(G)

+ CN,α,β

∥∥∥∥ f

|x′|2
∥∥∥∥2
L2(G)

,

(6.32)

where

CN,α,β = α(N − 4)(N − 2)− α2(N − 2) + 2β(4−N)− β2 + αβ(N − 2).
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Remark 6.4.2.

1. Using the Cauchy–Schwarz inequality∫
G

|x′ · (∇Hf)(x)|2
|x′|4 dx ≤

∫
G

|(∇Hf)(x)|2
|x′|2 dx,

inequality (6.32) implies the inequality

‖Lf‖2L2(G) ≥ (α(N−2)−2β−α2)

∥∥∥∥∇Hf|x′|
∥∥∥∥2
L2(G)

+CN,α,β

∥∥∥∥ f

|x′|2
∥∥∥∥2
L2(G)

. (6.33)

2. In the Abelian case G = (Rn,+), we have N = n, ∇H = ∇ = (∂x1 , . . . , ∂xn)
is the usual (full) gradient, so (6.32) implies for α, β ∈ R and for any f ∈
C∞

0 (Rn\{0}) with n ≥ 2 the inequality

‖Δf‖2L2(Rn) ≥ (α(n− 2)− 2β)

∥∥∥∥∇f|x|
∥∥∥∥2
L2(Rn)

− α2

∥∥∥∥x · ∇f|x|2
∥∥∥∥2
L2(Rn)

+ Cn,α,β

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(Rn)

.

(6.34)

This can be also compared with inequality (2.34).

Proof of Theorem 6.4.1. For two parameters α, β ∈ R, let us define

Tα,β := −L+ α
x′ · ∇H
|x′|2 +

β

|x′|2 .

One can readily check that its formal adjoint is given by

T+
α,β := −L− αx

′ · ∇H
|x′|2 − α(N − 2)− β

|x′|2 ,

for x′ �= 0. Then, by a direct calculation for any function f ∈ C∞
0 (G\{x′ = 0}) we

have

(T+
α,βTα,βf)(x)

=

(
−L− αx

′ · ∇H
|x′|2 − α(N − 2)− β

|x′|2
)(
−(Lf)(x) + α

x′ · (∇Hf)
|x′|2 +

βf(x)

|x′|2
)

= (L2f)(x) + α

(
−L

(
x′ · (∇Hf)
|x′|2

)
(x) +

x′ · ∇H
|x′|2 (Lf)(x) + N − 2

|x′|2 (Lf)(x)
)

+ β

(
−L

(
f

|x′|2
)
(x) − (Lf)(x)

|x′|2
)

+ αβ

(
−x

′ · ∇H
|x′|2

(
f

|x′|2
)
(x) +

x′ · (∇Hf)(x)
|x′|4 − (N − 2)f(x)

|x′|4
)
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+ α2

(
−
(
x′ · ∇H
|x′|2

)(
x′ · (∇Hf)
|x′|2

)
(x) − (N − 2)

x′ · (∇Hf)(x)
|x′|4

)
+ β2 f(x)

|x′|4 .

Now we calculate in the other direction,

(Tα,βT
+
α,βf)(x)

=

(
−L+ α

x′ · ∇H
|x′|2 +

β

|x′|2
)

×
(
−(Lf)(x) − αx

′ · (∇Hf)(x)
|x′|2 − (α(N − 2)− β)f(x)

|x′|2
)

= (L2f)(x) + α

(
L
(
x′ · (∇Hf)
|x′|2

)
(x) − x′ · ∇H

|x′|2 (Lf)(x) + (N − 2)L
(

f

|x′|2
)
(x)

)
+ β

(
−L

(
f

|x′|2
)
(x) − (Lf)(x)

|x′|2
)

+ αβ

(
x′ · ∇H
|x′|2

(
f

|x′|2
)
(x)− x′ · (∇Hf)(x)

|x′|4 − (N − 2)f(x)

|x′|4
)

+ α2

(
−
(
x′ · ∇H
|x′|2

)(
x′ · (∇Hf)
|x′|2

)
(x) − (N − 2)

x′ · ∇H
|x′|2

(
f

|x′|2
)
(x)

)
+ β2 f(x)

|x′|4 . (6.35)

Using that

L
(

f

|x′|2
)
(x) =

N∑
j=1

X2
j

(
f

|x′|2
)
(x)

=

N∑
j=1

Xj

(
Xjf

|x′|2 −
2x′jf
|x′|4

)
(x)

=

N∑
j=1

(
(X2

j f)(x)

|x′|2 − 4x′j(Xjf)(x)

|x′|4 +
8(x′j)

2f(x)

|x′|6 − 2f(x)

|x′|4
)

=
(Lf)(x)
|x′|2 − 4x′ · (∇Hf)(x)

|x′|4 − (2N − 8)
f(x)

|x′|4
and

x′ · ∇H
|x′|2

(
f

|x′|2
)
(x) =

f(x)

|x′|2
N∑
j=1

x′jXj(|x′|−2) +
x′ · (∇Hf)(x)

|x′|4

= −2
N∑
j=1

(x′j)
2f(x)

|x′|6 +
x′ · (∇Hf)(x)

|x′|4

= −2f(x)|x′|4 +
x′ · (∇Hf)(x)

|x′|4 ,
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in (6.35), we can write the sum (T+
α,βTα,βf)(x) + (Tα,βT

+
α,βf)(x) as

(T+
α,βTα,βf)(x) + (Tα,βT

+
α,βf)(x)

= 2(L2f)(x) + 2α(N − 2)

(
(Lf)(x)
|x′|2 − 2

x′ · (∇Hf)(x)
|x′|4 + (4 −N)

f(x)

|x′|4
)

+ 2β

(
−2(Lf)(x)
|x′|2 +

4x′ · (∇Hf)(x)
|x′|4 + (2N − 8)

f(x)

|x′|4
)
− 2αβ(N − 2)

f(x)

|x′|4

+ 2α2

(
−
(
x′ · ∇H
|x′|2

)(
x′ · (∇Hf)
|x′|2

)
(x)

− (N − 2)
x′ · (∇Hf)(x)

|x′|4 + (N − 2)
f(x)

|x′|4
)

+ 2β2 f(x)

|x′|4 . (6.36)

In order to simplify this, let us rewrite the following expression:

− 2

(
x′ · ∇H
|x′|2

)(
x′ · (∇Hf)
|x′|2

)
(x)− 2(N − 2)

x′ · (∇Hf)(x)
|x′|4 + 2(N − 2)

f(x)

|x′|4

= −2
∑N
j,k=1(x

′
jXj)(x

′
k(Xkf))(x)

|x′|4 − 2

N∑
j,k=1

x′j(−2)|x′|−3Xj |x′|x
′
k(Xkf)(x)

|x′|2

− 2(N − 2)
x′ · (∇Hf)(x)

|x′|4 + 2(N − 2)
f(x)

|x′|4

= −2
∑N
k=1 x

′
k(Xkf)(x)

|x′|4 − 2
∑N
j,k=1 x

′
jx

′
kXj(Xkf)(x)

|x′|4 +
4
∑N
k=1 x

′
k(Xkf)(x)

|x′|4

− 2(N − 2)
x′ · (∇Hf)(x)

|x′|4 + 2(N − 2)
f(x)

|x′|4

= −2(N − 3)
x′ · (∇Hf)(x)

|x′|4 − 2
∑N
j,k=1 x

′
jx

′
k(XjXkf)(x)

|x′|4 + 2(N − 2)
f(x)

|x′|4 .

Now putting this in (6.36), we obtain

(T+
α,βTα,βf)(x) + (Tα,βT

+
α,βf)(x)

= 2(L2f)(x) + (2α(N − 2)− 4β)
(Lf)(x)
|x′|2

+ (−4α(N − 2)− 2α2(N − 3) + 8β)
x′ · (∇Hf)(x)

|x′|4
+ (2α(N − 2)(4−N) + 2α2(N − 2)− 2αβ(N − 2)

+ (4N − 16)β + 2β2)
f(x)

|x′|4 − 2α2

∑N
j,k=1 x

′
jx

′
k(XjXkf)(x)

|x′|4 . (6.37)
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In general, the non-negativity of T+
α,βTα,β + Tα,βT

+
α,β and integration by parts

imply∫
G

|(Tα,βf)(x)|2dx+
∫
G

|(T+
α,βf)(x)|2dx =

∫
G

f(x)((T+
α,βTα,β+Tα,βT

+
α,β)f)(x)dx ≥ 0.

Putting (6.37) into this inequality, one calculates

2

∫
G

|(Lf)(x)|2dx+ (2α(N − 2)− 4β)

∫
G

f(x)(Lf)(x)
|x′|2 dx

+ (−4α(N − 2)− 2α2(N − 3) + 8β)

∫
G

f(x)(x′ · (∇Hf)(x))
|x′|4 dx

+ (2α(N − 2)(4−N) + 2α2(N − 2)− 2αβ(N − 2)

+ (4N − 16)β + 2β2)

∫
G

|f(x)|2
|x′|4 dx

− 2α2
N∑

j,k=1

∫
G

f(x)x′jx
′
k(XjXkf)(x)

|x′|4 dx ≥ 0. (6.38)

Using the identities∫
G

f(x)(Lf)(x)
|x′|2 dx = −

N∑
j=1

∫
G

(Xjf)(x)(Xjf)(x)

|x′|2

−
N∑
j=1

∫
G

f(x)(−2)|x′|−3Xj |x′|(Xjf)(x)dx

= 2

∫
G

f(x)(x′ · (∇Hf)(x))
|x′|4 dx−

∫
G

|(∇Hf)(x)|2
|x′|2 dx

and

N∑
j,k=1

∫
G

f(x)x′jx
′
k(XjXkf)(x)

|x′|4 dx

= −(N − 1)

N∑
k=1

∫
G

f(x)x′k(Xkf)(x)

|x′|4 dx− 2

N∑
k=1

∫
G

f(x)x′k(Xkf)(x)

|x′|4 dx

−
N∑

j,k=1

∫
G

x′jx
′
k(Xjf)(x)(Xkf)(x)

|x′|4 dx

−
N∑

j,k=1

∫
G

f(x)x′jx
′
k(Xkf)(x)(−4)|x′|−5Xj |x′|dx
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= −(N + 1)
N∑
k=1

∫
G

f(x)x′k(Xkf)(x)

|x′|4 dx+ 4
N∑

j,k=1

∫
G

f(x)(x′j)
2x′k(Xkf)(x)

|x′|6 dx

−
∫
G

|x′ · (∇Hf)(x)|2
|x′|4 dx

= −(N − 3)

∫
G

f(x)(x′ · (∇Hf)(x))
|x′|4 dx−

∫
G

|x′ · (∇Hf)(x)|2
|x′|4 dx

in (6.38), we obtain

2

∫
G

|(Lf)(x)|2dx+(4α(N−2)−8β−4α(N−2)+8β−2α2(N−3)+2α2(N−3))

×
∫
G

f(x)(x′ ·(∇Hf)(x))
|x′|4 dx

+(2α(N−2)(4−N)+2α2(N−2)−2αβ(N−2)+(4N−16)β+2β2)

×
∫
G

|f(x)|2
|x′|4 dx−(2α(N−2)−4β)

∫
G

|(∇Hf)(x)|2
|x′|2 dx

+2α2

∫
G

|x′ ·(∇Hf)(x)|2
|x′|4 dx≥0,

which implies (6.32). �

The factorization method can be used to give an elementary proof of the
horizontal L2-weighted inequality given in Remark 6.1.2, Part 3.

Proposition 6.4.3 (Horizontal L2-Hardy inequality). Let G be a stratified group
with N ≥ 3 being the dimension of the first stratum. Let α ∈ R. Then for all
complex-valued functions f ∈ C∞

0 (G\{x′ = 0}) we have

‖∇Hf‖L2(G) ≥ N − 2

2

∥∥∥∥ f

|x′|
∥∥∥∥
L2(G)

, (6.39)

where the constant N−2
2 is sharp.

Proof of Proposition 6.4.3. Let

T̃α := ∇H + α
x′

|x′|2 .

One can readily check that its formal adjoint is given by

T̃+
α = −divH + α

x′

|x′|2 ,

where x′ �= 0.
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Using (1.73) we have

T̃+
α T̃αf = −(Lf)(x) − αdivH

(
x′

|x′|2 f
)
(x) + α

x′ · (∇Hf)(x)
|x′|2 + α2 f(x)

|x′|2

= −(Lf)(x) − αdivH
(

x′

|x′|2
)
f(x) + α2 f(x)

|x′|2

= −(Lf)(x) + α(α+ 2−N)

|x′|2 f(x).

By integrating by parts and using the non-negativity of T̃+
α T̃α we have

0 ≤
∫
G

|T̃αf |2dx

=

∫
G

f(x)(T̃+
α T̃αf)(x)dx

=

∫
G

|∇Hf |2dx+ α(α+ 2−N)

∫
G

|f(x)|2
|x′|2 dx.

It follows from this that∫
G

|∇Hf(x)|2dx ≥ α(N − 2− α)
∫
G

|f(x)|2
|x′|2 dx.

By maximizing the constant with respect to α we obtain (6.39). The sharpness of
the constant follows from Remark 6.1.2, Part 3. �

By modifying the differential expression T̃α in the proof of Proposition 6.4.3
we can also show the following refinement of the L2-Hardy inequality (6.39). The
fact that it is indeed a refinement, that is, that (6.40) implies (6.39) follows by the
Cauchy–Schwarz inequality. Consequently, the sharpness of the constant in (6.40)
also follows from the sharpness of the constant in (6.39).

Theorem 6.4.4 (Refined horizontal L2-Hardy inequality). Let G be a stratified
group with N ≥ 3 being the dimension of the first stratum. Let α ∈ R. Then for
all complex-valued functions f ∈ C∞

0 (G\{x′ = 0}) we have∥∥∥∥x′ · ∇Hf|x′|
∥∥∥∥
L2(G)

≥ N − 2

2

∥∥∥∥ f

|x′|
∥∥∥∥
L2(G)

, (6.40)

where the constant N−2
2 is sharp.

Proof of Theorem 6.4.4. Let us define

T̂α :=
x′ · ∇H
|x′| +

α

|x′| .
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One can readily check that its formal adjoint is given by

T̂+
α := −x

′ · ∇H
|x′| +

α−N + 1

|x′| ,

where x′ �= 0. Using (1.73) we get(
x′ · ∇H
|x′|

)(
x′ · (∇Hf)(x)

|x′|
)

=

∑N
j,k=1(x

′
jXj)(x

′
k(Xkf)(x))

|x′|2 +

N∑
j,k=1

x′j(−1)|x′|−2Xj |x′|x
′
k(Xkf)(x)

|x′|

=

∑N
k=1 x

′
k(Xkf)(x)

|x′|2 +

∑N
j,k=1 x

′
jx

′
k(XjXkf)(x)

|x′|2 −
∑N

k=1 x
′
k(Xkf)(x)

|x′|2

=

∑N
j,k=1 x

′
jx

′
k(XjXkf)(x)

|x′|2
and

(x′ · ∇H)

(
f

|x′|
)

=

∑N
k=1 x

′
k(Xkf)(x)

|x′| +
N∑
k=1

x′k(−1)|x′|−2Xk|x′|f(x)

=
x′ · (∇Hf)(x)

|x′| − f(x)

|x′| .

From these identities we get

T̂+
α T̂αf(x) = −

∑N
j,k=1 x

′
jx

′
k(XjXkf)(x)

|x′|2

− (N − 1)
x′ · (∇Hf)(x)

|x′|2 +
α(α + 2−N)

|x′|2 f(x).

Using (1.73) again we have

N∑
j,k=1

∫
G

f(x)x′jx
′
k(XjXkf)(x)

|x′|2 dx

= −(N − 1)

N∑
k=1

∫
G

f(x)x′k(Xkf)(x)

|x′|2 dx− 2

N∑
k=1

∫
G

f(x)x′k(Xkf)(x)

|x′|2 dx

−
N∑

j,k=1

∫
G

x′jx
′
k(Xjf)(x)(Xkf)(x)

|x′|2 dx

−
N∑

j,k=1

∫
G

f(x)x′jx
′
k(Xkf)(x)(−2)|x′|−3Xj |x′|dx
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= −(N + 1)
N∑
k=1

∫
G

f(x)x′k(Xkf)(x)

|x′|2 dx+ 2
N∑

j,k=1

∫
G

f(x)(x′j)
2x′k(Xkf)(x)

|x′|4 dx

−
∫
G

|x′ · (∇Hf)(x)|2
|x′|2 dx

= −(N − 1)

∫
G

f(x)(x′ · (∇Hf)(x))
|x′|2 dx−

∫
G

|x′ · (∇Hf)(x)|2
|x′|2 dx. (6.41)

Taking into account this, integrating by parts, and using the non-negativity of the
operator T̂+

α T̂α, we get

0 ≤
∫
G

|T̂αf |2dx =

∫
G

f(x)(T̂+
α T̂αf)(x)dx

= −
∫
G

(∑N
j,k=1 x

′
jx

′
kf(x)(XjXkf)(x)

|x′|2 +
(N − 1)f(x)(x′ · (∇Hf)(x))

|x′|2
)
dx

+ α(α−N + 2)

∫
G

|f(x)|2
|x′|2 dx.

Consequently, using (6.41) we obtain∫
G

( |x′ · (∇Hf)(x)|2
|x′|2 + α(α−N + 2)

|f(x)|2
|x′|2

)
dx ≥ 0.

It now follows that∫
G

|x′ · (∇Hf)(x)|2
|x′|2 dx ≥ α((N − 2)− α)

∫
G

|f(x)|2
|x′|2 dx.

By maximizing α((N − 2)− α) with respect to α we obtain (6.40). �

Further two-parameter inequalities by factorization method are possible in
the setting of the Heisenberg group, for which we can refer the reader to [RY17].
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6.5 Hardy–Rellich type inequalities

and embedding results

We now discuss several refinements of the Hardy–Rellich inequalities with respect
to the variables in the first stratum. We recall that N stands for the dimension of
the first stratum of a stratified Lie group G here. As a consequence, we formulate
several corollaries for the embeddings of the appearing function spaces.

Theorem 6.5.1 (Horizontal L2-Hardy–Rellich type inequalities). Let α, β ∈ R. Let
N ≥ 2 be the dimension of the first stratum of a stratified Lie group G, and let | · |
be the Euclidean norm on RN . Then for all f ∈ C∞

0 (G\{x′ = 0}) we have(
N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx+ (α + β + 1)

∫
G

(x′ · ∇Hf)2
|x′|α+β+3

dx

)2

≤
∫
G

|Lf |2
|x′|2β dx

∫
G

|∇Hf |2
|x′|2α dx.

(6.42)

Moreover, if α+ β + 1 ≤ 0 then we have

N + α+ β − 1

2

∫
G

|∇Hf |2
|x′|α+β+1

dx ≤
(∫

G

|Lf |2
|x′|2β dx

)1/2(∫
G

|∇Hf |2
|x′|2α dx

) 1/2

.

(6.43)

The inequality (6.43) can be considered as a special case (p = 2) of Theo-
rem 6.8.1. In particular, taking α = β + 1, we obtain the following Rellich type
inequality:

Corollary 6.5.2 (Horizontal L2-Rellich type inequality). Let N be the dimension
of the first stratum of a stratified Lie group G and let α ≤ 0. Then for all f ∈
C∞

0 (G\{x′ = 0}) we have

(N + 2α− 2)2

4

∫
G

|∇Hf |2
|x′|2α dx ≤

∫
G

|Lf |2
|x′|2α−2

dx. (6.44)

Furthermore, we have

(N + 2α− 2)2(N − 2α− 2)2

16

∫
G

|f(x)|2
|x′|2α+2

dx ≤
∫
G

|Lf |2
|x′|2α−2

dx. (6.45)

We can compare it with another version given in Theorem 6.2.2.

Proof of Corollary 6.5.2. Inequality (6.44) follows from Theorem 6.5.1 by taking
α = β + 1. Inequality (6.45) follows from (6.44) and Corollary 6.2.1 with p = 2
which says that∥∥∥∥ 1

|x′|α∇Hf
∥∥∥∥
L2(G)

≥ |N − 2(α+ 1)|
2

∥∥∥∥ f

|x′|α+1

∥∥∥∥
L2(G)

.
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Note that the sharpness of the constant follows from the fact that in both inequal-
ities the best constants are attained when there are equalities in the corresponding
Hölder inequalities in their proofs, and these are attained on powers of |x′|. �

We note that another version of the horizontal Rellich inequality is given in
Theorem 6.2.2.

Note that when G = (Rn,+), that is, N = n, ∇H = ∇ = (∂x1 , . . . , ∂xn), then
(6.42) implies the following Hardy–Rellich type inequality for all f ∈ C∞

0 (Rn\{0}):(
n− (α+ β + 3)

2

∫
Rn

|∇f |2
|x|α+β+1

E

dx+ (α+ β + 1)

∫
Rn

(x · ∇f)2
|x|α+β+3

E

dx

)2

≤
∫
Rn

|Δf |2
|x|2βE

dx

∫
Rn

|∇f |2
|x|2αE

dx,

(6.46)

where |x|E =
√
x21 + · · ·+ x2n. This inequality was also discussed in [Cos08] and

[DJSJ13].

Proof of Theorem 6.5.1. First we note that for all s ∈ R we have∫
G

∣∣∣∣∇Hf|x′|α + s
x′

|x′|β+1
Lf
∣∣∣∣2 dx ≥ 0,

that is, ∫
G

|∇Hf |2
|x′|2α dx+ 2s

∫
G

x′ · ∇Hf
|x′|α+β+1

Lfdx+ s2
∫
G

|Lf |2
|x′|2β dx ≥ 0. (6.47)

Since ∫
G

x′ · ∇Hf
|x′|α+β+1

Lfdx =

∫
G

divH(∇Hf)
(
x′ · ∇Hf
|x′|α+β+1

)
dx

by using the divergence theorem (Theorem 1.4.5) and (1.73) we obtain∫
G

divH(∇Hf)
(
x′ · ∇Hf
|x′|α+β+1

)
dx = −1

2

∫
G

x′

|x′|α+β+1
· ∇H(|∇Hf |2)dx

−
∫
G

|∇Hf |2
|x′|α+β+1

dx+ (α + β + 1)

∫
G

(x′ · ∇Hf)2
|x′|α+β+3

dx.

Again by Theorem 1.4.5 and (1.73) we have the equality

−1

2

∫
G

x′

|x′|α+β+1
· ∇H(|∇Hf |2)dx =

N − (α+ β + 1)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx.

Thus,∫
G

x′ · ∇Hf
|x′|α+β+1

Lfdx

=
N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx+ (α + β + 1)

∫
G

(x′ · ∇Hf)2
|x′|α+β+3

dx.

(6.48)
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Therefore, the inequality (6.47) can be rewritten as

s2
∫
G

|Lf |2
|x′|2β dx+ 2s

(
N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx

+ (α+ β + 1)

∫
G

(x′ · ∇Hf)2
|x′|α+β+3

dx

)
+

∫
G

|∇Hf |2
|x′|2α dx ≥ 0.

Denoting

a :=

∫
G

|Lf |2
|x′|2β dx,

b :=
N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx+ (α + β + 1)

∫
G

(x′ · ∇Hf)2
|x′|α+β+3

dx,

and

c :=

∫
G

|∇Hf |2
|x′|2α dx

we arrive at

as2 + 2bs+ c ≥ 0,

which is equivalent to b2 − ac ≤ 0. Thus, we have(
N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx + (α+ β + 1)

∫
G

(x′ · ∇Hf)2
|x′|α+β+3

dx

)2

≤
∫
G

|Lf |2
|x′|2β dx

∫
G

|∇Hf |2
|x′|2α dx.

This shows the inequality (6.42). Now let us show the inequality (6.43). By using
Schwarz’ and Hölder’s inequality we obtain∫

G

x′ · ∇Hf
|x′|α+β+1

Lfdx ≤
∫
G

|∇Hf |
|x′|α+β Lfdx ≤

(∫
G

|Lf |2
|x′|2β dx

)1/2(∫
G

|∇Hf |2
|x′|2α dx

) 1/2

.

On the other hand, since α+ β + 1 ≤ 0 by Schwarz’ inequality we have

N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx + (α+ β + 1)

∫
G

(x′ · ∇Hf)2
|x′|α+β+3

dx

≥ N − (α+ β + 3)

2

∫
G

|∇Hf |2
|x′|α+β+1

dx+ (α+ β + 1)

∫
G

|∇Hf |2
|x′|α+β+1

dx

=
N + α+ β − 1

2

∫
G

|∇Hf |2
|x′|α+β+1

dx.

Combining the above inequalities with (6.48) we obtain (6.42). �
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The special case of Theorem 6.1.1 with p = 2 can be also shown using the
divergence formula techniques in the proof of Theorem 6.5.1:

Corollary 6.5.3 (Horizontal L2-Caffarelli–Kohn–Nirenberg inequalities). Let G be
a homogeneous stratified group with N being the dimension of the first stratum.
Let α, β ∈ R. Then for all f ∈ C∞

0 (G\{x′ = 0}) we have

|N − γ|
2

∥∥∥∥ f

|x′| γ2
∥∥∥∥2
L2(G)

≤
∥∥∥∥∇Hf|x′|α

∥∥∥∥
L2(G)

∥∥∥∥ f

|x′|β
∥∥∥∥
L2(G)

, (6.49)

where γ = α+ β + 1, and the constant |N−γ|
2 is sharp.

Proof. For all f ∈ C∞
0 (G\{x′ = 0}), α, β ∈ R and s ∈ R we have∫

G

∣∣∣∣∇Hf|x′|β + s
x′

|x′|α+1
f

∣∣∣∣2 dx � 0.

This can be written as∫
G

|∇Hf |2
|x′|2β dx+ s2

∫
G

|f |2
|x′|2α dx+ 2s

∫
G

f
x′ · ∇Hf
|x′|γ dx � 0.

By the divergence theorem (Theorem 1.4.5) we have∫
G

f
x′ · ∇Hf
|x′|γ dx = −N − γ

2

∫
G

|f |2
|x′|γ dx.

Denoting

a :=

∫
G

|f |2
|x′|2α dx, b := |N − γ|

∫
G

|f |2
|x′|γ , c :=

∫
G

|∇Hf |2
|x′|2β dx,

this means that
as2 − bs+ c � 0,

which is equivalent to b2 − 4ac � 0, that is,

|N − γ|2
(∫

G

|f |2
|x′|γ

)2

� 4

(∫
G

|f |2
|x′|2α dx

)(∫
G

|∇Hf |2
|x′|2β dx

)
,

which gives (6.49). �

The appearance of the horizontal weights in Theorem 6.5.1 prompts one
to define the following weighted Sobolev type spaces on the stratified Lie group
G (in Chapter 10 we will be discussing analogous spaces but there on general
homogeneous groups).

Definition 6.5.4 (Sobolev types spaces with horizontal weights). Let us define the
following spaces:
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(1) Let L2
α(G) be the completion of C∞

0 (G\{x′ = 0}) with respect to the norm

‖f‖L2
α
:=

(∫
G

|f |2
|x′|2α dx

) 1/2

.

(2) Let D1,2
γ (G) be the completion of C∞

0 (G\{x′ = 0}) with respect to the norm

‖f‖D1,2
γ (G) :=

(∫
G

|∇Hf |2
|x′|2γ dx

) 1/2

.

(3) Let D2,2
γ (G) be the completion of C∞

0 (G\{x′ = 0}) with respect to the norm

‖f‖D2,2
γ (G) :=

(∫
G

|Lf |2
|x′|2γ dx

)1/2

.

(4) Let H1
α,β(G) be the completion of C∞

0 (G\{x′ = 0}) with respect to the norm

‖f‖H1
α,β

:=

(∫
G

[ |f |2
|x′|2α +

|∇Hf |2
|x′|2β

]
dx

) 1/2

.

(5) Let H2
α,β(G) be the completion of C∞

0 (G\{x′ = 0}) with respect to the norm

‖f‖H2
α,β(G) :=

(∫
G

|∇Hf |2
|x′|2α +

|Lf |2
|x′|2β dx

) 1/2

.

Theorem 6.5.5 (Several horizontal embeddings). Let α, β ∈ R. We have the fol-
lowing continuous embeddings

(i) H2
α,β(G) ⊂ D2,2

α+β+1
2

(G) for α+ β − 1 �= N.

(ii) D2,2
α (G) ⊂ D1,2

α+1(G) for α ≤ N
2 − 2.

(iii) H1
α,β(G) ⊂ L2

γ/2(G) and H1
β,α(G) ⊂ L2

γ/2(G) for γ = α + β + 1, provided
that γ �= N .

Proof of Theorem 6.5.5. Since N �= α+ β − 1, from (6.43) we obtain∫
G

|∇Hf |2
|x′|2 (α+β+1)

2

dx ≤ 2

|N + α+ β − 1|
(∫

G

|Lf |2
|x′|2β dx

) 1/2(∫
G

|∇Hf |2
|x′|2α dx

)1/2

≤ 2

|N + α+ β − 1|
(∫

G

|Lf |2
|x′|2β dx+

∫
G

|∇Hf |2
|x′|2α dx

)
,

for all f ∈ C∞
0 (G\{x′ = 0}). This proves Part (i).

Part (ii) follows from the inequality (6.43), namely assuming α+ β + 3 ≤ N
and letting β = α+ 1, α �= N

2 .

The first inequality in Part (iii) follows from inequality (6.49). Since the
spaces are symmetric with respect to the parameters α, β we also have the second
embedding. �
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Using inequality (6.43) and choosing different values of α and β we can obtain
a number of Heisenberg–Pauli–Weyl type uncertainty inequalities. Let us list some
interesting cases.

Corollary 6.5.6 (Horizontal Heisenberg–Pauli–Weyl type uncertainty inequalities).
We have the following inequalities:

(1) For α ≤ N
2 − 2 and any f ∈ H2

α,α+1(G),

|N + 2α|
2

∫
G

|∇Hf |2
|x′|2(α+1)

dx ≤
(∫

G

|Lf |2
|x′|2(α+1)

dx

) 1/2(∫
G

|∇Hf |2
|x′|2α dx

)1/2

.

(2) For N ≥ 3 and any f ∈ D1,2
0 (G),

|N − 2|
2

∫
G

|∇Hf |2dx ≤
(∫

G

|x′|2(α+1)|∇Hf |2dx
) 1/2(∫

G

|Lf |2
|x′|2α dx

) 1/2

.

(3) For any f ∈ D1,2
1 (G),

N

2

∫
G

|∇Hf |2
|x′|2 dx ≤

(∫
G

|∇Hf |2dx
) 1/2(∫

G

|Lf |2
|x′|2 dx

)1/2

.

(4) For N ≥ 2 and any f ∈ D1,2
1/2(G),

N − 1

2

∫
G

|∇Hf |2
|x′| dx ≤

(∫
G

|x′|2|∇Hf |2dx
)1/2(∫

G

|Lf |2
|x′|2 dx

) 1/2

.

(5) For N ≥ 2 and any f ∈ D1,2
1/2(G),

N − 1

2

∫
G

|∇Hf |2
|x′| dx ≤

(∫
G

|∇Hf |2dx
)1/2(∫

G

|Lf |2dx
) 1/2

.

Moreover, the following inequalities hold true with sharp constants:

(6) For any f ∈ D1,2(G), taking α = 1, β = 0,(
N − 2

2

)2 ∫
G

|f |2
|x′|2 dx ≤

∫
G

|∇Hf |2dx.

(7) For any f ∈ H1
β+1,β(G), taking α = β + 1,(
N − 2(β + 1)

2

)2 ∫
G

|f |2
|x′|2(β+1)

dx ≤
∫
G

|∇Hf |2
|x′|2β dx.
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(8) For any f ∈ H1
α,α+1(G), taking β = α+ 1,(

N − 2(α+ 1)

2

)2 ∫
G

|f |2
|x′|2(α+1)

dx ≤
(∫

G

|f |2
|x′|2α dx

)1/2(∫
G

|∇Hf |2
|x′|2(α+1)

dx

)1/2
.

(9) For any f ∈ H1
−(β+1),β(G), taking α = −(β + 1), then f ∈ L2(G) and

(
N

2

)∫
G

|u|2dx ≤
(∫

G

|x′|2(β+1)|f |2dx
) 1/2(∫

G

|∇Hf |2
|x′|2β dx

)1/2

.

(10) For any f ∈ H1
0,1(G), taking α = 0, β = 1, then f ∈ L2

1(G) and∣∣∣∣N − 2

2

∣∣∣∣ ∫
G

|u|2
|x′|2 dx ≤

(∫
G

|f |2dx
) 1/2(∫

G

|∇Hf |2
|x′|2 dx

) 1/2

.

(11) For any f ∈ H1−1,1(G), N > 1, taking α = −1, β = 1, then f ∈ L2
1/2(G) and(

N − 1

2

)∫
G

|u|2
|x′|2 dx ≤

(∫
G

|x′|2|f |2dx
) 1/2(∫

G

|∇Hf |2
|x′|2 dx

) 1/2

.

(12) For any f ∈ H1(G) = H1
0,0(G), N > 1, taking α = 0, β = 0, then

f ∈ L2
1/2(G) and(

N − 1

2

)∫
G

|u|2
|x′|2 dx ≤

(∫
G

|f |2dx
)1/2(∫

G

|∇Hf |2dx
) 1/2

.

6.6 Horizontal Sobolev type inequalities

In this section, first, we are interested in Sobolev inequalities, so let us repeat
them briefly again for the sake of the reader comparing to the full homogeneous
group version discussed in Section 3.2.2. The (Euclidean) Sobolev inequality in its
simplest form has the form

‖g‖Lp(Rn) ≤ C(p)‖∇g‖Lp∗(Rn),
for all 1 < p, p∗ <∞ with

1

p
=

1

p∗
− 1

n
.

Here ∇ is the usual gradient in Rn. The following version of a Sobolev type in-
equality with respect to the operator x ·∇ instead of the standard gradient ∇ was
considered in [BEHL08, OS09]:

‖g‖Lp(Rn) ≤ C′(p)‖x · ∇g‖Lq(Rn). (6.50)
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By putting g(x) = h(λx), λ > 0, into this inequality, we see that p = q is a
necessary condition to have (6.50).

We can notice that in formula (6.50) the operator x · ∇ can be interpreted
as the homogeneous Euler operator on general homogeneous groups (see Section
1.3.2) as well as an operator on stratified groups by substituting x and ∇ with the
corresponding horizontal operations x′ and ∇H related to the first stratum of the
group.

The homogeneous groups version of such inequalities was discussed in Section
3.2.2. Thus, we will now concentrate on the horizontal interpretation presenting a
range of Caffarelli–Kohn–Nirenberg and weighted Lp-Sobolev type inequalities on
stratified Lie groups. All the inequalities can be obtained with sharp constants.

The presentation of the following results follows [RSY17a].

We start with an Lp-weighted Sobolev type inequality.

Theorem 6.6.1 (Horizontal weighted Lp-Sobolev type inequality). Let G be a
stratified group with N being the dimension of the first stratum. For any f ∈
C∞

0 (G\{x′ = 0}), and all α ∈ R, we have

|N − αp|
p

∥∥∥∥ f

|x′|α
∥∥∥∥
Lp(G)

≤
∥∥∥∥x′ · ∇Hf|x′|α

∥∥∥∥
Lp(G)

, 1 < p <∞, (6.51)

where | · | is the Euclidean norm on RN . The constant |N−αp|
p is sharp when

N �= αp.

Remark 6.6.2.

1. In the Abelian case G=(Rn,+), that is, N=n and ∇H=∇= (∂x1 , . . . , ∂xn),
the inequality (6.51) yields the Lp-weighted Sobolev type inequality for G =
Rn with the sharp constant:

|n− αp|
p

∥∥∥∥ f

|x|αE

∥∥∥∥
Lp(Rn)

≤
∥∥∥∥x · ∇f|x|αE

∥∥∥∥
Lp(Rn)

, (6.52)

for all f ∈ C∞
0 (Rn\{0}), and |x|E =

√
x21 + · · ·+ x2n. This Euclidean in-

equality was shown in [OS09].

2. Using Schwarz’ inequality in the right-hand side of (6.51) we see that (6.51)
is a refinement of the Lp-weighted Hardy inequality on stratified groups: For
any f ∈ C∞

0 (G\{x′ = 0}), and all α ∈ R, we have

|N − αp|
p

∥∥∥∥ f

|x′|α
∥∥∥∥
Lp(G)

≤
∥∥∥∥ ∇Hf|x′|α−1

∥∥∥∥
Lp(G)

, 1 < p <∞, (6.53)

where | · | is the Euclidean norm on RN . If N �= αp then the constant |N−αp|
p

is sharp. Thus, (6.51) can be regarded as a refinement of (6.53). In the case
of p = 2 they are actually equivalent, see Theorem 6.6.3. These results have
been obtained in [RSY17a].
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3. For α = 0, inequality (6.51) gives the weighted version of the homogeneous
groups inequality in Proposition 3.2.1, Part (i). In particular, in the Eu-
clidean case of Rn we have N = n, and this gives the weighted version of the
inequality in Remark 3.2.2, Part 2.

Proof of Theorem 6.6.1. Let us assume αp �= N since when αp = N there is
nothing to prove. By using the identity (1.73) and the divergence theorem we
obtain ∫

G

|f(x)|p
|x′|αp =

1

N − αp
∫
G

|f(x)|pdivH
(

x′

|x′|αp
)
dx

= − p

N − αpRe
∫
G

pf(x)|f(x)|p−2 x
′ · ∇Hf
|x′|αp dx

≤
∣∣∣∣ p

N − αp
∣∣∣∣ ∫

G

|f(x)|p−1

|x′|αp |x′ · ∇Hf |dx

≤
∣∣∣∣ p

N − αp
∣∣∣∣ ∫

G

|f(x)|p−1

|x′|α(p−1)

|x′ · ∇Hf |
|x′|α dx

≤
∣∣∣∣ p

N − αp
∣∣∣∣ ( |f(x)|p|x′|αp dx

) (p−1)/p( |x′ · ∇Hf |p
|x′|αp dx

) 1/p

,

which implies (6.51). Here in the last line the Hölder inequality has been used.
Now it remains to show the sharpness of the constant. Observe that the function

h1(x) =
1

|x′| |N−αp|
p

, N �= αp,

satisfies the equality condition in the Hölder inequality∣∣∣∣ p

N − αp
∣∣∣∣p |x′ · ∇Hh1(x)|p|x′|αp =

|h1(x)|p
|x′|αp .

This means that the constant |N−αp|
p is sharp. �

In the case of L2 the horizontal Sobolev type inequality is actually equivalent
to the Hardy inequality:

Theorem 6.6.3 (Equivalence of Sobolev type and Hardy inequalities in L2). Let G
be a stratified group with N being the dimension of the first stratum with N ≥ 3.
Then the following two statements are equivalent:

(a) For any f ∈ C∞
0 (G\{x′ = 0}), we have

‖f‖L2(G) ≤
2

N
‖x′ · ∇Hf‖L2(G). (6.54)
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(b) For any g ∈ C∞
0 (G\{x′ = 0}), we have∥∥∥∥ g

|x′|
∥∥∥∥
L2(G)

≤ 2

N − 2

∥∥∥∥ x′|x′| · ∇Hg
∥∥∥∥
L2(G)

. (6.55)

Proof of Theorem 6.6.3. Setting g = |x′|f we obtain that

‖x′ · ∇Hf‖2L2(G) =

∥∥∥∥− g

|x′| +
x′

|x′| · ∇Hg
∥∥∥∥2
L2(G)

(6.56)

=

∥∥∥∥ g

|x′|
∥∥∥∥2
L2(G)

− 2Re

∫
G

g(x)

|x′|
x′

|x′| · ∇Hg(x)dx +

∥∥∥∥ x′|x′| · ∇Hg
∥∥∥∥2
L2(G)

.

By (1.73), one calculates

−2Re
∫
G

g(x)

|x′|
x′

|x′| · ∇Hg(x)dx = −
∫
G

x′

|x′|2∇H |g(x)|
2dx

=

∫
G

divH

(
x′

|x′|2
)
|g(x)|2dx

= (N − 2)

∫
G

|g(x)|2
|x′|2 dx.

We obtain from the statement (a) and (6.56) that∥∥∥∥ g

|x′|
∥∥∥∥2
L2(G)

≤ 4

N2

(
(N − 1)

∥∥∥∥ g

|x′|
∥∥∥∥2
L2(G)

+

∥∥∥∥ x′|x′| · ∇Hg
∥∥∥∥2
L2(G)

)
,

which implies (6.55). This shows that the statement (a) gives (b).

Conversely, assume that (b) holds. Put f = g/|x′|. Then we obtain∥∥∥∥ x′|x′| · ∇H(|x′|f)
∥∥∥∥2
L2(G)

= ‖f + x′ · ∇Hf‖2L2(G)

= ‖f‖2L2(G) + 2Re

∫
G

x′f(x)∇Hfdx+ ‖x′ · ∇Hf‖2L2(G).

Using (1.73), we have

2Re

∫
G

x′f(x)∇Hfdx = −N‖f‖2L2(G).

It follows from the statement (b) that

‖f‖2L2(G) ≤
4

(N − 2)2
(‖x′ · ∇Hf‖2L2(G) − (N − 1)‖f‖2L2(G)),

which implies (6.54). �
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6.7 Horizontal extended Caffarelli–Kohn–Nirenberg

inequalities

We now present horizontal extended Caffarelli–Kohn–Nirenberg inequalities in the
setting of stratified groups. We recall that another version of such inequalities
on general homogeneous groups involving the radial derivative was discussed in
Section 3.3.

Theorem 6.7.1 (Horizontal Caffarelli–Kohn–Nirenberg type inequalities). Let 1 <
p, q < ∞, 0 < r < ∞ with p + q ≥ r, δ ∈ [0, 1] ∩ [ r−q

r , pr
]
and a, b, c ∈ R. In

addition, assume that

δr

p
+

(1 − δ)r
q

= 1 and c = δ(a− 1) + b(1− δ).

Let G be a stratified group with N being the dimension of the first stratum with
N �= p(1− a). Then the following inequality holds:

‖|x′|cf‖Lr(G) ≤
∣∣∣∣ p

N + p(a− 1)

∣∣∣∣δ ‖|x′|a∇Hf‖δLp(G)

∥∥|x′|bf∥∥1−δ
Lq(G)

(6.57)

for all f ∈ C∞
0 (G\{0}). The constant in the inequality (6.57) is sharp for p = q

with a− b = 1 or p �= q with p(1− a) + bq �= 0, or for δ = 0, 1.

Remark 6.7.2.

1. In the Abelian case G=(Rn,+), we have N=n and ∇H=∇= (∂x1 , . . . , ∂xn),
so (6.57) implies the following Caffarelli–Kohn–Nirenberg type inequality for
G = R

n: Let 1 < p, q <∞, 0 < r <∞ with p+ q ≥ r and δ ∈ [0, 1]∩ [r−qr , pr
]

and a, b, c ∈ R. Assume that δr
p + (1−δ)r

q = 1 and c = δ(a − 1) + b(1 − δ).
Then we have

‖|x|cf‖Lr(Rn) ≤
∣∣∣∣ p

n+ p(a− 1)

∣∣∣∣δ ‖|x|a∇f‖δLp(Rn) ∥∥|x|bf∥∥1−δLq(Rn)
, (6.58)

for all f ∈ C∞
0 (Rn\{0}), |x| = √

x21 + · · ·+ x2n, and n �= p(1 − a). The
constant in the inequality (6.58) is sharp for p = q with a − b = 1 or p �= q
with p(1− a) + bq �= 0, or for δ = 0, 1.

2. The inequalities (6.58) give an extension of the Caffarelli–Kohn–Nirenberg in
equalities Theorem 3.3.3 with respect to the range of indices. For example,
let us take 1 < p = q = r < ∞, a = −n−2p

p , b = −np and c = −n−δpp . Then

by (6.58), for all f ∈ C∞
0 (Rn\{0}) and all 1 < p < ∞, 0 ≤ δ ≤ 1, we have

the inequality∥∥∥∥∥ f

|x|n−δp
p

∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥ ∇f
|x|n−2p

p

∥∥∥∥∥
δ

Lp(Rn)

∥∥∥∥ f

|x|np
∥∥∥∥1−δ
Lp(Rn)

, (6.59)
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where ∇ is the standard gradient in Rn. Since we have

1

q
+
b

n
=

1

p
+

1

n

(
−n
p

)
= 0,

we see that (3.99) fails, so that the inequality (6.59) is not covered by Theo-
rem 3.3.1.

Proof of Theorem 6.7.1. Case δ = 0. Notice that in this case we have q = r and

b = c by δr
p + (1−δ)r

q = 1 and c = δ(a − 1) + b(1 − δ), respectively. Then, the
inequality (6.57) is reduced to

‖|x′|bf‖Lq(G) ≤
∥∥|x′|bf∥∥

Lq(G)
,

which is trivial.

Case δ = 1. In this case we have p = r and a−1 = c. By (6.53), for N+cp �= 0
we obtain

‖|x′|cf‖Lr(G) ≤
∣∣∣∣ p

N + cp

∣∣∣∣ ‖|x′|c+1∇Hf‖Lr(G).

The constants in (6.53) is sharp, therefore, in this case the constant in (6.57) is
sharp.

Case δ ∈ (0, 1)∩[ r−qr , pr
]
. By using c = δ(a−1)+b(1−δ), a direct calculation

gives

‖|x′|cf‖Lr(G) =

(∫
G

|x′|cr|f(x)|rdx
)1/r

=

(∫
G

|f(x)|δr
|x′|δr(1−a)

|f(x)|(1−δ)r
|x′|−br(1−δ) dx

)1/r

.

Since we have δ ∈ (0, 1)∩[ r−qr , pr
]
and p+q ≥ r, then by using Hölder’s inequality

for δr
p + (1−δ)r

q = 1, we obtain

‖|x′|cf‖Lr(G) ≤
(∫

G

|f(x)|p
|x′|p(1−a) dx

) δ/p(∫
G

|f(x)|q
|x′|−bq dx

) (1−δ)/q

=

∥∥∥∥ f

|x′|1−a
∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x′|−b
∥∥∥∥1−δ
Lq(G)

.

(6.60)

When p = q and a − b = 1, the Hölder equality condition is satisfied for all
compactly supported smooth functions. We also note that in the case p �= q the
function

h2(x) = |x′|
1

(p−q) (p(1−a)+bq) (6.61)

satisfies the Hölder equality condition:

|h2(x)|p
|x′|p(1−a) =

|h2(x)|q
|x′|−bq .
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If N �= p(1− a), then by (6.53), we have∥∥∥∥ f

|x′|1−a
∥∥∥∥δ
Lp(G)

≤
∣∣∣∣ p

N + p(a− 1)

∣∣∣∣δ ∥∥∥∥ ∇Hf|x′|−a
∥∥∥∥δ
Lp(G)

. (6.62)

Combining this with (6.60), we get

‖|x′|cf‖Lr(G) ≤
∣∣∣∣ p

N + p(a− 1)

∣∣∣∣δ ∥∥∥∥ ∇Hf|x′|−a
∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x′|−b
∥∥∥∥1−δ
Lq(G)

.

When we prove (6.62), in the same way as in the proof of Theorem 6.6.1, we note
that

h3(x) = |x′|C , C �= 0, (6.63)

satisfies the Hölder equality condition. Therefore, in the case p = q, a − b = 1
the Hölder equality condition of the inequalities (6.60) and (6.62) holds true for
h3(x) in (6.63). Moreover, in the case p �= q and p(1 − a) + bq �= 0 the Hölder
equality condition of the inequalities (6.60) and (6.62) holds true for h2(x) in
(6.61). Therefore, the constant in (6.57) is sharp when p = q, a− b = 1 or p �= q,
p(1− a) + bq �= 0. �

6.8 Horizontal Hardy–Rellich type inequalities

for p-sub-Laplacians

We prove the following Hardy–Rellich type inequalities for p-sub-Laplacians on
the stratified group G. As usual, N is the dimension of the first stratum and | · |
is the Euclidean norm on it, identified with RN .

Theorem 6.8.1 (Horizontal Hardy–Rellich inequalities for p-sub-Laplacian). Let
1 < p < N with 1

p + 1
q = 1 and α, β ∈ R be such that

p−N
p− 1

≤ γ := α+ β + 1 ≤ 0.

Then for all f ∈ C∞
0 (G\{x′ = 0}) we have

N + γ(p− 1)− p
p

∥∥∥∥∥∇Hf|x′| γp

∥∥∥∥∥
p

Lp(G)

≤
∥∥∥∥ 1

|x′|αLpf
∥∥∥∥
Lp(G)

∥∥∥∥∇Hf|x′|β
∥∥∥∥
Lq(G)

, (6.64)

where Lp is the p-sub-Laplacian operator defined by

Lpf := divH(|∇Hf |p−2∇Hf). (6.65)
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Remark 6.8.2.

1. For β = 0, α = −1 and q = p
p−1 , the inequality (6.64) gives a stratified group

Rellich type inequality for the p-sub-Laplacian Lp:

‖∇Hf‖pLp(G) ≤
p

N − p ‖|x
′|Lpf‖Lp(G) ‖∇Hf‖L p

p−1 (G)
, 1 < p < N, (6.66)

for all f ∈ C∞
0 (G\{x′ = 0}).

2. For α = 0, β = −1, the inequality (6.64) implies the following Heisenberg–
Pauli–Weyl type uncertainty principle for the p-sub-Laplacian Lp: for 1 <
p < N and for all f ∈ C∞

0 (G\{x′ = 0}) we have

‖∇Hf‖pLp(G) ≤
p

N − p ‖Lpf‖Lp(G) ‖|x′|∇Hf‖Lq(G) ,
1

p
+

1

q
= 1. (6.67)

Proof of Theorem 6.8.1. As in the proof of Theorem 6.1.1 we have∫
G

|∇Hf(x)|p
|x′|γ dx =

1

N − γ
∫
G

|∇Hf(x)|pdivH
(

x′

|x′|γ
)
dx

= − 1

N − γ
∫
G

p

2
|∇Hf(x)|p−2 x

′ · ∇H |∇Hf(x)|2
|x′|γ dx

=
p

2(γ −N)

∫
G

|∇Hf(x)|p−2 x
′ · ∇H |∇Hf(x)|2

|x′|γ dx.

(6.68)

Moreover, we have∫
G

Lpf
|x′|γ x

′ · ∇Hf(x)dx =

∫
G

divH(|∇Hf(x)|p−2∇Hf(x))
|x′|γ x′ · ∇Hf(x)dx

= −
∫
G

|∇Hf(x)|p−2∇Hf(x) · ∇H
(
x′ · ∇Hf(x)
|x′|γ

)
dx

= −
∫
G

|∇Hf(x)|p−2

(
|∇Hf(x)|2
|x′|γ +

x′ · ∇H |∇Hf(x)|2
2|x′|γ − γ |x′ · ∇Hf(x)|2

|x′|γ+2

)
dx,

that is, ∫
G

|∇Hf(x)|p−2

|x′|γ x′ · ∇H |∇Hf(x)|2dx

= 2γ

∫
G

|∇Hf(x)|p−2 |x′ · ∇Hf(x)|2
|x′|γ+2

dx− 2

∫
G

|∇Hf(x)|p
|x′|γ dx

− 2

∫
G

Lpf
|x′|γ x

′ · ∇Hf(x)dx.
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Putting this in the right-hand side of (6.68) we obtain∫
G

|∇Hf(x)|p
|x′|γ dx =

pγ

γ −N
∫
G

|∇Hf(x)|p−2 |x′ · ∇Hf(x)|2
|x′|γ+2

dx

− p

γ −N
∫
G

|∇Hf(x)|p
|x′|γ dx − p

γ −N
∫
G

Lpf
|x′|γ x

′ · ∇Hf(x)dx.

Thus, ∫
G

Lpf
|x′|γ x

′ · ∇Hf(x)dx =
N − p− γ

p

∫
G

|∇Hf(x)|p
|x′|γ dx

+ γ

∫
G

|∇Hf(x)|p−2 |x′ · ∇Hf(x)|2
|x′|γ+2

dx.

Since γ ≤ 0, applying the Cauchy–Schwarz inequality to the last integrants we get∫
G

Lpf
|x′|γ x

′ · ∇Hf(x)dx

=
N − p− γ

p

∫
G

|∇Hf(x)|p
|x′|γ dx + γ

∫
G

|∇Hf(x)|p−2 |x′ · ∇Hf(x)|2
|x′|γ+2

dx

≥ N − p− γ
p

∫
G

|∇Hf(x)|p
|x′|γ dx + γ

∫
G

|∇Hf(x)|p
|x′|γ dx

=
N + γ(p− 1)− p

p

∫
G

|∇Hf(x)|p
|x′|γ dx. (6.69)

Moreover, again applying the Cauchy–Schwarz inequality and the Hölder inequal-
ity we obtain∫

G

Lpf
|x′|γ x

′ · ∇Hf(x)dx ≤
∫
G

Lpf
|x′|γ−1

|∇Hf(x)| dx

≤
(∫

G

∣∣∣∣ Lpf|x′|α
∣∣∣∣p dx)1/p(∫

G

∣∣∣∣∇Hf|x′|β
∣∣∣∣q dx)1/q

.

Combining it with (6.69), the proof of Theorem 6.8.1 is complete. �

6.8.1 Inequalities for weighted p-sub-Laplacians

In this section, for a non-negative function 0 ≤ ρ ∈ C1(G) we consider the corre-
sponding weighted p-sub-Laplacian

Lp,ρf = divH
(
ρ(x)|∇Hf |p−2∇Hf

)
, 1 < p <∞. (6.70)

Depending on the function ρ, it satisfies the following inequalities.
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Theorem 6.8.3 (Inequalities for weighted p-sub-Laplacian). Let 0 < F ∈ C∞(G)
and 0 ≤ η ∈ L1

loc(G) be such that

ηF p−1 ≤ −Lp,ρF (6.71)

holds almost everywhere in G. Then for each 2 ≤ p <∞ there is a positive constant
Cp > 0 such that we have

‖η 1
p f‖pLp(G) + Cp

∥∥∥∥ρ 1
pF∇H f

F

∥∥∥∥p
Lp(G)

≤ ‖ρ 1
p∇Hf‖pLp(G), (6.72)

for all real-valued functions f ∈ C∞
0 (G).

Proof of Theorem 6.8.3. We observe first that for all x, y ∈ R
n there exists a

positive number Cp such that

|x|p + Cp|y|p + p|x|p−2x · y ≤ |x+ y|p, 2 ≤ p <∞. (6.73)

Therefore, we have the estimate

|g|p|∇HF |p + CpF
p|∇Hg|p + F |∇HF |p−2∇HF · ∇H |g|p

≤ |g∇HF + F∇Hg|p = |∇Hf |p,

with g = f
F . This implies that∫

G

ρ(x)|∇Hf(x)|pdx ≥
∫
G

ρ(x)|∇HF (x)|p|g(x)|pdx

+ Cp

∫
G

ρ(x)|∇Hg(x)|p|F (x)|pdx

−
∫
G

divH(ρ(x)F (x)|∇HF (x)|p−2∇HF (x))|g(x)|pdx

≥ Cp
∫
G

ρ(x)|∇Hg(x)|p|F (x)|pdx

+

∫
G

−divH(ρ(x)|∇HF (x)|p−2∇HF (x))F (x)|g(x)|pdx.

Using the assumption (6.71) it follows that∫
G

η(x)|g(x)|p|F (x)|pdx+ Cp

∫
G

ρ(x)|∇Hg(x)|p|F (x)|pdx ≤
∫
G

ρ(x)|∇Hf(x)|pdx.

Since g = f
F we obtain

‖η 1
p f‖pLp(G) + Cp

∥∥∥∥ρ 1
pF∇H

(
f

F

)∥∥∥∥p
Lp(G)

≤ ‖ρ 1
p∇Hf‖pLp(G),

proving (6.72). �
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Remark 6.8.4.

1. For p = 2, the inequality (6.73) becomes an equality with C2 = 1. Therefore,
the proof yields a remainder formula for p = 2 in the form∥∥∥∥ρ 1

2F∇H f

F

∥∥∥∥2
L2(G)

= ‖ρ 1
2∇Hf‖2L2(G) − ‖η

1
2 f‖2L2(G). (6.74)

2. In the case of 1 < p < 2 the inequality (6.73) can be also stated in the form
that for all x, y ∈ Rn there exists a positive constant Cp > 0 such that

|x|p + Cp
|y|p

(|x|+ |y|)2−p + p|x|p−2x · y ≤ |x+ y|p, 1 < p < 2, (6.75)

see, e.g., [Lin90, Lemma 4.2]. Thus, from the proof it then follows that we
have

‖η 1
p f‖pLp(G) + Cp

∥∥∥∥∥ρ 1
2

(∣∣∣∣ fF ∇HF
∣∣∣∣+ F

∣∣∣∣∇H ( fF
)∣∣∣∣)

p−2
2

|F |∇H
(
f

F

)∥∥∥∥∥
2

L2(G)

≤ ‖ρ 1
p∇Hf‖pLp(G), (6.76)

for all real-valued functions f ∈ C∞
0 (G).

As a special case, we can apply Theorem 6.8.3 to the usual p-sub-Laplacian
by taking the function ρ ≡ 1. In turn, this gives another proof of the Lp-Hardy
inequality (6.6):

Corollary 6.8.5 (Horizontal Lp-Hardy inequality). For f ∈ C∞
0 (G\{0}) we have∥∥∥∥ f

|x′|
∥∥∥∥
Lp
≤ p

N − p ‖∇Hf‖Lp , 1 < p < N. (6.77)

Proof of Corollary 6.8.5. In Theorem 6.8.3 setting ρ = 1 and

Fε = |x′ε|−
θ−p−2
p =

(
(x′1 + ε)2 + · · ·+ (x′n + ε)2

)− θ−p−2
2p ,

for a given ε > 0, using the identity (1.72) we obtain

−Lp,1Fε = −divH
(|∇HFε|p−2∇HFε

)
= −divH

(
|∇H |x′ε|−

θ−p−2
p |p−2∇H |x′ε|−

θ−p−2
p

)
=
θ − p− 2

p

∣∣∣∣θ − p− 2

p

∣∣∣∣p−2(
θ − p− 2

p
− θ + 2 +N

)
|x′ε|−

(θ−p−2)(p−1)
p −p
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=

(∣∣∣∣θ − p− 2

p

∣∣∣∣p + θ − p− 2

p

∣∣∣∣θ − p− 2

p

∣∣∣∣p−2

(−θ + 2 +N)

)
|x′ε|−

(θ−p−2)(p−1)
p −p.

(6.78)
If 1 < p < θ − 2 and θ ≤ 2 +N , then (6.78) gives

−Lp,1Fε ≥
∣∣∣∣θ − p− 2

p

∣∣∣∣p 1

|x′ε|p
F p−1
ε ,

that is, according to the assumption in Theorem 6.8.3, we can set

η(x) =

∣∣∣∣θ − p− 2

p

∣∣∣∣p 1

|x′ε|p
.

It follows that (6.72) (and also (6.76)) implies∥∥∥∥ f

|x′|
∥∥∥∥
Lp
≤ p

θ − p− 2
‖∇Hf‖Lp , 1 < p < θ − 2, θ ≤ 2 +N, θ ∈ R.

Optimizing with respect to θ we obtain (6.77). �

Remark 6.8.6.

1 A version of Theorem 6.8.3 in the Euclidean case was shown in [Yen16]. In
the presentation of this section we followed [RS17e].

2. The Heisenberg group version of (6.77) was shown in [D’A04b]. Here it is
worth to recall that on the Heisenberg group we have Q = N + 2.

3. We have included Corollary 6.8.5 as a consequence of Theorem 6.8.3 to
demonstrate that this method actually also yields best constants in some
inequalities, as this constant in the Lp-Hardy inequality (6.6) was sharp.

6.9 Horizontal Rellich inequalities for

sub-Laplacians with drift

In this section, we discuss (weighted) Rellich inequalities for sub-Laplacians with
drift. For this, we assume all the notation of Section 1.4.6 where sub-Laplacians
with drift have been discussed.

In this section we will discuss the horizontal versions, that is, with the weights
being the powers of |x′|. In Section 7.4, we will discuss a version with weights in
terms of the L-gauge but that analysis is currently available only in the setting of
polarizable Carnot groups. In the presentation of this section as well as of Section
7.4 we follow [RY18b].

The following result shows that the drift allows one to improve over the
Rellich inequality without drift, given in Theorem 6.2.2.
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Theorem 6.9.1 (Horizontal Rellich inequalities for sub-Laplacians with drift). Let
G be a stratified group with N ≥ 3 being the dimension of the first stratum. Let
δ ∈ R with −N/2 ≤ δ ≤ −1. Then for all functions f ∈ C∞

0 (G\{x′ = 0}) we have∥∥∥∥LXf|x′|δ
∥∥∥∥2
L2(G,μX )

≥
(
(N − 2δ − 4)(N + 2δ)

4

)2 ∥∥∥∥ f

|x′|δ+2

∥∥∥∥2
L2(G,μX )

+ γ2b2X
(N − 2δ − 2)(N + 2δ − 2)

2

∥∥∥∥ f

|x′|δ+1

∥∥∥∥2
L2(G,μX )

+ γ4b4X

∥∥∥∥ f

|x′|δ
∥∥∥∥2
L2(G,μX )

,

(6.79)

where LX and bX are defined in (1.93) and (1.95), respectively. If (N + 2δ)(N +
2δ − 2) �= 0, then the constants in (6.79) are sharp. Moreover, when δ = 0 and
N > 4, for all functions f ∈ C∞

0 (G\{x′ = 0}) we have

‖LXf‖2L2(G,μX ) ≥
(
N(N − 4)

4

)2 ∥∥∥∥ f

|x′|2
∥∥∥∥2
L2(G,μX )

+ γ2b2X
(N − 2)2

2

∥∥∥∥ f

|x′|
∥∥∥∥2
L2(G,μX )

+ γ4b4X‖f‖2L2(G,μX),

(6.80)

with sharp constants. The constants in (6.79) and (6.80) are sharp in the sense
that there is a sequence of functions such that the equalities in (6.79) and (6.80)
are attained in the limit of this sequence of functions, respectively.

Remark 6.9.2.

1. The improvement in Rellich inequalities with drift compared to the standard
ones as in Theorem 6.2.2 can be seen since for (N − 2δ− 2)(N +2δ− 2) ≥ 0,
by dropping positive terms in (6.79) we get the following ‘standard’ Rellich
type inequality for all functions f ∈ C∞

0 (G\{x′ = 0})∥∥∥∥LXf|x′|δ
∥∥∥∥2
L2(G,μX)

≥
(
(N − 2δ − 4)(N + 2δ)

4

)2 ∥∥∥∥ f

|x′|δ+2

∥∥∥∥2
L2(G,μX)

, (6.81)

where δ ∈ R with −N/2 ≤ δ ≤ −1 and N ≥ 3.

Similarly, from (6.80) we obtain for N > 4 and for all functions f ∈
C∞

0 (G\{x′ = 0}) the inequality

‖LXf‖L2(G,μX ) ≥
N(N − 4)

4

∥∥∥∥ f

|x′|2
∥∥∥∥
L2(G,μX )

, (6.82)

which can be compared to the Rellich inequality in Corollary 6.5.2.
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2. In the Euclidean caseG = (Rn,+), we haveN = n,∇H = ∇ = (∂x1 , . . . , ∂xn)
is the usual full gradient, and setting

X =
n∑
i=1

ai∂xi

for ai ∈ R for i = 1, . . . , n, and δ = −α, γ ∈ R, (6.79) implies, for α ≥ 1 and
n ≥ max{3, 2α}, n+ 2α− 4 > 0, that for all functions f ∈ C∞

0 (Rn\{0}) we
have ∥∥∥∥∥|x|α

(
Δ+ γ

n∑
i=1

ai∂xi

)
f

∥∥∥∥∥
2

L2(Rn,μX )

≥ (n+ 2α− 4)2(n− 2α)2

16

∥∥|x|α−2
E f

∥∥2
L2(Rn,μX )

+ γ2b2X
(n+ 2α− 2)(n− 2α− 2)

2

∥∥|x|α−1
E f

∥∥2
L2(Rn,μX )

+ γ4b4X ‖|x|αEf‖2L2(Rn,μX ) ,

(6.83)

with the measure μX on R
n given by

dμX = e−γ
∑n
i=1 aixidx,

where dx is the Lebesgue measure, and

bX =
1

2

⎛⎝ n∑
j=1

a2j

⎞⎠ 1/2

.

If (n − 2α)(n − 2α − 2) �= 0 with α ≥ 1 and n ≥ 2α, then the constants in
(6.83) are sharp, in the sense that there is a sequence of functions such that
the equality in (6.83) is attained in the limit of this sequence of functions.

In particular, for α = 0, in the Euclidean setting of Rn with n ≥ 5, for
all ai ∈ R for i = 1, . . . , n and γ ∈ R, and all f ∈ C∞

0 (Rn\{0}) we have a
family of inequalities∥∥∥∥∥

(
Δ+ γ

n∑
i=1

ai∂xi

)
f

∥∥∥∥∥
2

L2(Rn,μX )

≥ n2(n− 4)2

16

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(Rn,μX)

+ γ4b4X‖f‖2L2(Rn,μX )

+ γ2b2X
(n− 2)2

2

∥∥∥∥ f|x|
∥∥∥∥2
L2(Rn,μX )

. (6.84)
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All the constants in (6.84) are sharp in the sense that there is a sequence
of functions such that the equality in (6.84) is attained in the limit of this
sequence of functions.

Proof of Theorem 6.9.1. We denote by χ the positive character onG that appeared
in Proposition 1.4.14. Let g = g(x) ∈ C∞

0 (G\{x′ = 0}) be such that f = χ−1/2g.
Since the mapping (1.101) is an isomorphism we have∥∥∥∥LXf|x′|δ

∥∥∥∥
L2(G,μX )

=

∥∥∥∥χ 1/2LXf
|x′|δ

∥∥∥∥
L2(G,μ)

=

∥∥∥∥χ 1/2LX(χ−1/2g)

|x′|δ
∥∥∥∥
L2(G,μ)

.

By this, (1.100) and integration by parts, we have the equalities∥∥∥∥LXf|x′|δ
∥∥∥∥2
L2(G,μX )

=

∥∥∥∥ (L0 + γ2b2X)g

|x′|δ
∥∥∥∥2
L2(G,μ)

=

∥∥∥∥ L0g|x′|δ
∥∥∥∥2
L2(G,μ)

+ 2γ2b2XRe

∫
G

L0g(x)g(x)
|x′|2δ dx+ γ4b4X

∥∥∥∥ g

|x′|δ
∥∥∥∥2
L2(G,μ)

=

∥∥∥∥ L0g|x′|δ
∥∥∥∥2
L2(G,μ)

− 2γ2b2XRe

N∑
j=1

∫
G

X2
j g(x)g(x)

|x′|2δ dx+ γ4b4X

∥∥∥∥ g

|x′|δ
∥∥∥∥2
L2(G,μ)

=

∥∥∥∥ L0g|x′|δ
∥∥∥∥2
L2(G,μ)

+ 2γ2b2X

∫
G

|∇Hg(x)|2
|x′|2δ

− 4δγ2b2XRe

N∑
j=1

∫
G

x′jXjg(x)g(x)

|x′|2δ+2
dx+ γ4b4X

∥∥∥∥ g

|x′|δ
∥∥∥∥2
L2(G,μ)

. (6.85)

Since we also have the equality

Re

N∑
j=1

∫
G

x′jXjg(x)g(x)

|x′|2δ+2
dx

= (2δ + 2−N)

∫
G

|g(x)|2
|x′|2δ+2

dx− Re
N∑
j=1

∫
G

x′jg(x)Xjg(x)

|x′|2δ+2
dx,

we obtain

Re

N∑
j=1

∫
G

x′jXjg(x)g(x)

|x′|2δ+2
dx =

2δ + 2−N
2

∫
G

|g(x)|2
|x′|2δ+2

dx.

If we plug this into (6.85) we get∥∥∥∥LXf|x′|δ
∥∥∥∥2
L2(G,μX )

=

∥∥∥∥ L0g|x′|δ
∥∥∥∥2
L2(G,μ)

+ 2γ2b2X

∥∥∥∥∇Hg|x′|δ
∥∥∥∥2
L2(G,μ)

(6.86)

+ 2δ(N − 2δ − 2)γ2b2X

∥∥∥∥ g

|x′|δ+1

∥∥∥∥2
L2(G,μ)

+ γ4b4X

∥∥∥∥ g

|x′|δ
∥∥∥∥2
L2(G,μ)

.
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Using the Rellich (6.20) and Hardy (6.21) inequalities, we get from (6.86) that∥∥∥∥LXf|x′|δ
∥∥∥∥2
L2(G,μX )

≥
(
(N − 2δ − 4)(N + 2δ)

4

)2 ∥∥∥∥ g

|x′|δ+2

∥∥∥∥2
L2(G,μ)

+ γ4b4X

∥∥∥∥ g

|x′|δ
∥∥∥∥2
L2(G,μ)

+ 2γ2b2X

(
N − 2δ − 2

2

)2 ∥∥∥∥ g

|x′|δ+1

∥∥∥∥2
L2(G,μ)

+ 2δ(N − 2δ − 2)γ2b2X

∥∥∥∥ g

|x′|δ+1

∥∥∥∥2
L2(G,μ)

.

It follows then that∥∥∥∥LXf|x′|δ
∥∥∥∥2
L2(G,μX )

≥
(
(N − 2δ − 4)(N + 2δ)

4

)2 ∥∥∥∥ f

|x′|δ+2

∥∥∥∥2
L2(G,μX )

+ γ4b4X

∥∥∥∥ f

|x′|δ
∥∥∥∥2
L2(G,μX )

+ γ2b2X
(N − 2δ − 2)(N + 2δ − 2)

2

∥∥∥∥ f

|x′|δ+1

∥∥∥∥2
L2(G,μX )

.

As we have discussed in the proof of Theorem 6.2.2, since the same function
satisfies the equality conditions in Hölder’s inequalities, the constants in (6.79)
are sharp.

To obtain (6.80), that is the unweighted case δ = 0, we use the inequality
(6.21) and (6.43) in Corollary 6.5.2 that gives the inequality

‖Lf‖L2(G) ≥ N(N − 4)

4

∥∥∥∥ f

|x′|2
∥∥∥∥
L2(G)

, N ≥ 5, (6.87)

for f ∈ C∞
0 (G\{x′ = 0}). Since it is known from Corollary 6.5.2 that the constant

N(N−4)
4 is sharp in (6.87), using the same argument as for the constants in (6.79),

we obtain the sharpness of the constants in (6.80). �
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6.10 Horizontal anisotropic Hardy and

Rellich inequalities

In this section we discuss the anisotropic versions of horizontal Hardy and Rel-
lich inequalities. These inequalities appear in the analysis of anisotropic p-sub-
Laplacians. The presentation of this section follows [RSS18a]. To put the notions
in perspective, we start by recalling the Euclidean counterparts of the appearing
objects.

The anisotropic Laplacian (on RN ) is defined by

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
, (6.88)

for pi > 1, with i = 1, . . . , N . Note that choosing pi = 2 or pi = p for all i in (6.88)
we get the Laplacian and the pseudo-p-Laplacian, respectively.

A subelliptic analogue of the operator in (6.88) is the anisotropic p-sub-
Laplacian on stratified groups which is the operator of the form

Lpf :=
N∑
i=1

Xi

(|Xif |pi−2Xif
)
, 1 < pi <∞,

where Xi, i = 1, . . . , N , are the generators of the first stratum of a stratified Lie
group.

Following the classical scheme for the analysis of such operators, first, we
present the horizontal versions of the so-called Picone type identities. As a conse-
quence, Hardy and Rellich type inequalities for anisotropic sub-Laplacians can be
obtained.

6.10.1 Horizontal Picone identities

First, we discuss the horizontal Picone type identity on a stratified group G.

Lemma 6.10.1 (Horizontal Picone identity). Let Ω ⊂ G be an open set of a strat-
ified group G, and let N be the dimension of the first stratum of G. Let u, v be
differentiable a.e. in Ω, v > 0 a.e. in Ω and u ≥ 0. Denote

R(u, v) :=

N∑
i=1

|Xiu|pi −
N∑
i=1

Xi

(
upi

vpi−1

)
|Xiv|pi−2

Xiv, (6.89)

and

L(u, v) :=

N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2

XivXiu

+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi , (6.90)
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where pi > 1, i = 1, . . . , N . Then we have

L(u, v) = R(u, v) ≥ 0. (6.91)

In addition, we have L(u, v) = 0 a.e. in Ω if and only if u = cv a.e. in Ω with a
positive constant c.

Remark 6.10.2.

1. The Euclidean case of Lemma 6.10.1 was obtained by Feng and Cui [FC17].

2. Our proof of Lemma 6.10.1 follows [RSS18a] and is based on the method
of Allegretto and Huang [AH98] for the (Euclidean) p-Laplacian, see also
[NZW01].

Proof of Lemma 6.10.1. A direct computation gives

R(u, v) =

N∑
i=1

|Xiu|pi −
N∑
i=1

Xi

(
upi

vpi−1

)
|Xiv|pi−2Xiv

=

N∑
i=1

|Xiu|pi −
N∑
i=1

piu
pi−1Xiuv

pi−1 − upi(pi − 1)vpi−2Xiv

(vpi−1)2
|Xiv|pi−2Xiv

=
N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2XivXiu+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi

= L(u, v).

This proves the equality in (6.91). Now we rewrite L(u, v) to see that L(u, v) ≥ 0,
that is, we write

L(u, v) =

N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−1|Xiu|+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi

+
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2 (|Xiv||Xiu| −XivXiu) = S1 + S2,

where we denote

S1 :=

N∑
i=1

pi

[
1

pi
|Xiu|pi + pi − 1

pi

((u
v
|Xiv|

)pi−1
) pi
pi−1

]

−
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−1|Xiu|,

and

S2 :=
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2 (|Xiv||Xiu| −XivXiu) .
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We can see that S2 ≥ 0 due to |Xiv||Xiu| ≥ XivXiu. To check that we also have
S1 ≥ 0, we will use Young’s inequality for a ≥ 0 and b ≥ 0:

ab ≤ api

pi
+
bqi

qi
, (6.92)

for pi > 1, qi > 1 and 1
pi

+ 1
qi

= 1, for all i = 1, . . . , N . The equality in (6.92)

holds if and only if api = bqi , that is, if a = b
1

pi−1 .

Let us now take a = |Xiu| and b =
(
u
v |Xiv|

)pi−1
and apply (6.92) to get

pi|Xiu|
(u
v
|Xiv|

)pi−1

≤ pi
[
1

pi
|Xiu|pi + pi − 1

pi

((u
v
|Xiv|

)pi−1
) pi
pi−1

]
. (6.93)

From this we see that S1 ≥ 0 which proves that L(u, v) = S1 + S2 ≥ 0.

It is easy to see that u = cv implies R(u, v) = 0. Now let us prove that
L(u, v) = 0 implies u = cv. Due to u(x) ≥ 0 and since L(u, v)(x0) = 0, x0 ∈ Ω, we
can consider two cases u(x0) > 0 and u(x0) = 0.

(a) For the case u(x0) > 0 we conclude from L(u, v)(x0) = 0 that S1 = 0 and
S2 = 0. Then S1 = 0 implies

|Xiu| = u

v
|Xiv|, i = 1, . . . , N, (6.94)

and S2 = 0 implies

|Xiv||Xiu| −XivXiu = 0, i = 1, . . . , N. (6.95)

The combination of (6.94) and (6.95) gives

Xiu

Xiv
=
u

v
= c, with c �= 0, i = 1, . . . , N. (6.96)

(b) Let us denote
Ω∗ := {x ∈ Ω : u(x) = 0}.

If Ω∗ �= Ω, then suppose that x0 ∈ ∂Ω∗. Then there exists a sequence xk /∈ Ω∗

such that xk → x0. In particular, u(xk) �= 0, and hence by Case (a) we have
u(xk) = cv(xk). Passing to the limit we get u(x0) = cv(x0). Since u(x0) = 0
and v(x0) �= 0, we get that c = 0. But then by Case (a) again, since u = cv
and u �= 0 in Ω\Ω∗, it is impossible to have c = 0. This contradiction implies
that Ω∗ = Ω.

This completes the proof of Lemma 6.10.1. �

The following consequence of Lemma 6.10.1 will be instrumental in the proof
of the horizontal anisotropic Hardy inequality in Theorem 6.10.5.
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Lemma 6.10.3. Let Ω ⊂ G be an open set of a stratified group G, and let N be
the dimension of the first stratum of G. Let constants Ki > 0 and functions Hi(x)
with i = 1, . . . , N , be such that for an a.e. differentiable function v, such that v > 0
a.e. in Ω, we have

−Xi(|Xiv|pi−2Xiv) ≥ KiHi(x)v
pi−1, i = 1, . . . , N. (6.97)

Then, for all non-negative functions u ∈ C1(Ω) we have

N∑
i=1

∫
Ω

|Xiu|pidx ≥
N∑
i=1

Ki

∫
Ω

Hi(x)u
pidx. (6.98)

Proof of Lemma 6.10.3. In view of (6.91) and (6.97) we have

0 ≤
∫
Ω

L(u, v)dx =

∫
Ω

R(u, v)dx

=
N∑
i=1

∫
Ω

|Xiu|pidx−
N∑
i=1

∫
Ω

Xi

(
upi

vpi−1

)
|Xiv|pi−2Xivdx

=

N∑
i=1

∫
Ω

|Xiu|pidx+

N∑
i=1

∫
Ω

upi

vpi−1
Xi

(|Xiv|pi−2Xiv
)
dx

≤
N∑
i=1

∫
Ω

|Xiu|pidx−
N∑
i=1

Ki

∫
Ω

Hi(x)u
pidx,

proving the statement. �

We now present the second-order horizontal Picone type identity that will
be instrumental in the proof of Theorem 6.10.6 giving the Rellich type inequality
for the anisotropic sub-Laplacians.

Lemma 6.10.4 (Second-order horizontal Picone identity). Let Ω ⊂ G be an open
set of a stratified group G, and let N be the dimension of the first stratum of G.
Let u, v be twice differentiable a.e. in Ω and satisfying the following conditions:
u ≥ 0, v > 0, X2

i v < 0 a.e. in Ω for pi > 1, i = 1, . . . , N . Then we have

L1(u, v) = R1(u, v) ≥ 0, (6.99)

where

R1(u, v) :=

N∑
i=1

|X2
i u|pi −

N∑
i=1

X2
i

(
upi

vpi−1

)
|X2

i v|pi−2X2
i v,

and

L1(u, v) :=

N∑
i=1

|X2
i u|pi −

N∑
i=1

pi

(u
v

)pi−1

X2
i uX

2
i v|X2

i v|pi−2
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+
N∑
i=1

(pi − 1)
(u
v

)pi |X2
i v|pi

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v
(
Xiu− u

v
Xiv

)2
.

Proof of Lemma 6.10.4. A direct computation gives

X2
i

(
upi

vpi−1

)
= Xi

(
pi
upi−1

vpi−1
Xiu− (pi − 1)

upi

vpi
Xiv

)
= pi(pi − 1)

upi−2

vpi−2

(
(Xiu)v − u(Xiv)

v2

)
Xiu+ pi

upi−1

vpi−1
X2
i u

− pi(pi − 1)
upi−1

vpi−1

(
(Xiu)v − u(Xiv)

v2

)
Xiv − (pi − 1)

upi

vpi
X2
i v

= pi(pi − 1)

(
upi−2

vpi−1
|Xiu|2 − 2

upi−1

vpi
XivXiu+

upi

vpi+1
|Xiv|2

)
+ pi

upi−1

vpi−1
X2
i u− (pi − 1)

upi

vpi
X2
i v

= pi(pi − 1)
upi−2

vpi−1

(
Xiu− u

v
Xiv

)2
+ pi

upi−1

vpi−1
X2
i u− (pi − 1)

upi

vpi
X2
i v,

which yields (6.99). By Young’s inequality (6.92) we have

upi−1

vpi−1
X2
i uX

2
i v|X2

i v|pi−2 ≤ |X
2
i u|pi
pi

+
1

qi

upi

vpi
|X2

i v|pi , i = 1, . . . , N,

where pi > 1, qi > 1, 1
pi

+ 1
qi

= 1. Since X2
i v < 0 we arrive at

L1(u, v) ≥
N∑
i=1

|X2
i u|pi +

N∑
i=1

(pi − 1)
upi

vpi
|X2

i v|pi −
N∑
i=1

pi

( |X2
i u|pi
pi

+
1

qi

upi

vpi
|X2

i v|pi
)

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v
∣∣∣Xiu− u

v
Xiv

∣∣∣2
=

N∑
i=1

(
pi − 1− pi

qi

)
upi

vpi
|X2

i v|pi

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v
∣∣∣Xiu− u

v
Xiv

∣∣∣2 ≥ 0.

This completes the proof of Lemma 6.10.4. �
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6.10.2 Horizontal anisotropic Hardy type inequality

As a consequence of the horizontal Picone type identity in Lemma 6.10.1 we can
obtain the Hardy type inequality for the anisotropic sub-Laplacian on stratified
Lie groups. We recall that for x ∈ G we write customarily

x = (x′, x′′),

with coordinates x′ corresponding to the first stratum of G.

Theorem 6.10.5 (Horizontal anisotropic Hardy type inequality). Let G be a strati-
fied group with N being the dimension of its first stratum, and let Ω ⊂ G\{x′ = 0}
be an open set. Let 1 < pi < N for all i = 1, . . . , N. Then we have

N∑
i=1

∫
Ω

|Xiu|pidx ≥
N∑
i=1

(
pi − 1

pi

)pi ∫
Ω

|u|pi
|x′i|pi

dx, (6.100)

for all u ∈ C1(Ω).

Proof of Theorem 6.10.5. The proof is based on the application of Lemma 6.10.3.
For this, we introduce the auxiliary function

v :=

N∏
j=1

|x′j |αj = |x′i|αiVi, (6.101)

where Vi =
∏N
j=1,j 	=i |x′j |αj and αj =

pj−1
pj

. Then we have

Xiv = αiVi|x′i|αi−2x′i,

|Xiv|pi−2 = αpi−2
i V pi−2

i |x′i|αipi−2αi−pi+2,

|Xiv|pi−2Xiv = αpi−1
i V pi−1

i |x′i|αipi−αi−pix′i.

Consequently, we also have

−Xi(|Xiv|pi−2Xiv) =

(
pi − 1

pi

)pi vpi−1

|x′i|pi
. (6.102)

To complete the proof of Theorem 6.10.5, we choose Ki =
(
pi−1
pi

)pi
and Hi(x) =

1
|x′
i|pi , and use Lemma 6.10.3. �

6.10.3 Horizontal anisotropic Rellich type inequality

Now we present the horizontal anisotropic Rellich type inequality on stratified Lie
groups.
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Theorem 6.10.6 (Horizontal anisotropic Rellich type inequality). Let G be a strati-
fied group with N being the dimension of its first stratum, and let Ω ⊂ G\{x′ = 0}
be an open set. Then for a function u ≥ 0, u ∈ C2(Ω), and 2 < αi < N − 2 we
have the following inequality

N∑
i=1

∫
Ω

|X2
i u|pidx ≥

N∑
i=1

Ci(αi, pi)

∫
Ω

|u|pi
|x′i|2pi

dx, (6.103)

where 1 < pi < N for i = 1, . . . , N , and

Ci(αi, pi) = (αi(αi − 1))pi−1(αipi − 2pi − αi + 2)(αipi − 2pi − αi + 1).

Proof of Theorem 6.10.6. We introduce the auxiliary function

v :=
N∏
j=1

|x′j |αj = |x′i|αiVi,

we choose αj later, and where Vi :=
∏N
j=1,j 	=i |x′j |αj . Then we have

X2
i v = Xi(αiVi|x′i|αi−2x′i) = αi(αi − 1)Vi|x′i|αi−2,

|X2
i v|pi−2 = (αi(αi − 1))pi−2V pi−2

i |x′i|αipi−2pi−2αi+4,

|X2
i v|pi−2X2

i v = (αi(αi − 1))pi−1V pi−1
i |x′i|αipi−2pi−αi+2.

Consequently, we obtain

X2
i (|X2

i v|pi−2X2
i v)

= (αi(αi − 1))pi−1V pi−1
i X2

i (|x′i|αipi−2pi−αi+2)

= (αi(αi − 1))pi−1(αipi − 2pi − αi + 2)V pi−1
i Xi

(|x′i|αipi−2pi−αix′i
)

= (αi(αi − 1))pi−1(αipi − 2pi − αi + 2)(αipi − 2pi − αi + 1)

× V pi−1
i |x′i|αi(pi−1)−2pi .

Thus, for a twice differentiable function v > 0 a.e. in Ω with X2
i v < 0, we have

X2
i (|X2

i |pi−2X2
i v) = Ci(αi, pi)

vpi−1

|x′i|2pi
(6.104)

a.e. in Ω. Using (6.104) we compute

0 ≤
∫
Ω

L1(u, v)dx =

∫
Ω

R1(u, v)dx

=

N∑
i=1

∫
Ω

|X2
i u|pidx−

N∑
i=1

∫
Ω

X2
i

(
upi

vpi−1

)
|X2

i v|pi−2X2
i vdx
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=
N∑
i=1

∫
Ω

|X2
i u|pidx−

N∑
i=1

∫
Ω

upi

vpi−1
X2
i

(|X2
i v|pi−2X2

i v
)
dx

=

N∑
i=1

∫
Ω

|X2
i u|pidx−

N∑
i=1

Ci(αi, pi)

∫
Ω

|u|pi
|x′i|2pi

dx.

The proof of Theorem 6.10.6 is complete. �

6.11 Horizontal Hardy inequalities with

multiple singularities

In this section we obtain the analogue of the Hardy inequality with multiple singu-
larities on stratified Lie groups. The singularities will be represented by a family of
points {ak}mk=1 ∈ G.We will be using the usual notation ak = (a′k, a

′′
k), with a

′
k cor-

responding to the first stratum ofG. In turn, we can also write a′k = (a′k1, . . . , a
′
kN ).

From (1.17) it follows that
(xa−1

k )′ = x′ − a′k.
We denote by (xa−1

k )′j = x′j − a′kj the jth component of xa−1
k .

Theorem 6.11.1 (Horizontal Hardy inequality with multiple singularities). Let G
be a stratified group with N being the dimension of its first stratum, and let Ω ⊂ G

be an open set. Let N ≥ 3, x = (x′, x′′) ∈ G with x′ = (x′1, . . . , x′N ) being in the
first stratum of G, and let ak ∈ G, k = 1, . . . ,m, be the singularities. Then we have

∫
Ω

|∇Hu|2dx ≥
(
N − 2

2

)2 ∫
Ω

∑N
j=1

∣∣∣∣∑m
k=1

(xa−1
k

)′j
|(xa−1

k )′|N

∣∣∣∣2(∑m
k=1

1
|(xa−1

k )′|N−2

)2 |u|2dx, (6.105)

for all u ∈ C∞
0 (Ω).

Remark 6.11.2. The Euclidean case of the inequality (6.105) was obtained by
Kapitanski and Laptev [KL16]. Theorem 6.11.1 was obtained in [RSS18a] and our
presentation here follows the arguments there.

Proof of Theorem 6.11.1. Let us fix a vector-valued function

A(x) = (A1(x), . . . ,AN (x))

to be specified later. Also let λ be a real parameter. We start with the inequality

0 ≤
∫
Ω

N∑
j=1

(|Xju− λAju|2)dx

=

∫
Ω

⎛⎝|∇Hu|2 − 2λRe
N∑
j=1

AjuXju+ λ2
N∑
j=1

|Aj |2|u|2
⎞⎠ dx.
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By using the integration by parts we get

−
∫
Ω

⎛⎝λ2 N∑
j=1

|Aj |2 + λdivHA
⎞⎠ |u|2dx ≤ ∫

Ω

|∇Hu|2dx. (6.106)

We differentiate the integral on the left-hand side with respect to λ to optimize
it, yielding

2λ|A|2 + divHA = 0,

for all x ∈ Ω. This is the condition that we impose on A(x), that is, the quotient
divHA(x)
|A(x)|2 must be constant. For λ = 1

2 we get

divHA(x) = −|A(x)|2. (6.107)

Then putting (6.107) in (6.106) we have the following Hardy inequality

1

4

∫
Ω

N∑
j=1

|Aj(x)|2|u|2dx ≤
∫
Ω

|∇Hu|2dx. (6.108)

Now if we assume that A = ∇Hφ for some function φ, then (6.107) becomes

Lφ+ |∇Hφ|2 = 0.

It follows that the function
w = eφ ≥ 0

is harmonic with respect to the sub-Laplacian L. Thus, w is a constant > 0 or it
has a singularity. Let us now take

w(x) :=

m∑
k=1

1

|(xa−1
k )′|N−2

,

and then also
φ(x) := ln(w(x)).

Therefore

A(x) = ∇H(lnw) =
1

w
∇H

(
m∑
k=1

|(xa−1
k )′|2−N

)

=
1

w

m∑
k=1

∇H
⎛⎝ N∑
j=1

((xa−1
k )′j)

2

⎞⎠
2−N

2

= −N − 2

w

(
m∑
k=1

(xa−1
k )′

|(xa−1
k )′|N

)
,
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and

|A(x)|2 =

N∑
j=1

|Aj(x)|2 =

(
N − 2

w

)2 N∑
j=1

∣∣∣∣∣
m∑
k=1

(xa−1
k )′j

|(xa−1
k )′|N

∣∣∣∣∣
2

.

The inequality (6.105) now follows from (6.108), completing the proof of Theorem
6.11.1. �

We then also obtain the corresponding uncertainty principle.

Corollary 6.11.3 (Uncertainty principle with multiple singularities). Let G be a
stratified group with N being the dimension of its first stratum, and let Ω ⊂ G be
an open set. Let N ≥ 3, x = (x′, x′′) ∈ G with x′ = (x′1, . . . , x

′
N ) corresponding

to the first stratum of G. Let ak ∈ G, k = 1, . . . ,m, be the singularities, and let
1 < pi < N for i = 1, . . . , N. Then we have

N − 2

2

∫
Ω

|u|2dx ≤
(∫

Ω

|∇Hu|2dx
)1/2

⎛⎜⎜⎜⎝
∫
Ω

(∑m
k=1

1
|(xa−1

k )′|N−2

)2
∑N
j=1

∣∣∣∣∑m
k=1

(xa−1
k )′j

|(xa−1
k

)′|N

∣∣∣∣2
|u|2dx

⎞⎟⎟⎟⎠
1/2

,

for all u ∈ C∞
0 (Ω).

Proof of Corollary 6.11.3. By (6.105) and the Cauchy–Schwarz inequality we get

∫
Ω

|∇Hu|2dx
∫
Ω

(∑m
k=1

1
|(xa−1

k )′|N−2

)2
∑N

j=1

∣∣∣∣∑m
k=1

(xa−1
k )′j

|(xa−1
k )′|N

∣∣∣∣2
|u|2dx

≥
(
N − 2

2

)2 ∫
Ω

∑N
j=1

∣∣∣∣∑m
k=1

(xa−1
k )′j

|(xa−1
k )′|N

∣∣∣∣2(∑m
k=1

1
|(xa−1

k )′|N−2

)2 |u|2dx

×
∫
Ω

(∑m
k=1

1
|(xa−1

k )′|N−2

)2
∑N

j=1

∣∣∣∣∑m
k=1

(xa−1
k )′j

|(xa−1
k )′|N

∣∣∣∣2
|u|2dx

≥
(
N − 2

2

)2(∫
Ω

|u|2dx
)2

.

The proof is complete. �
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6.12 Horizontal many-particle Hardy inequality

In this section we discuss Hardy inequalities for n ≥ 1 particles on stratified Lie
groups. We denote by Gn the product

G
n :=

n︷ ︸︸ ︷
G× · · · ×G .

We consider the points x = (x1, . . . , xn) ∈ Gn, with xj ∈ G. The horizontal
component of x ∈ Gn will be denoted by x′ = (x′1, . . . , x′n), with x′i = (x′i1, . . . , x

′
iN )

being the coordinates corresponding to the first stratum of G for i = 1, . . . , n. The
(horizontal) distance between particles xi, xj ∈ G can be defined by

rij := |(xix−1
j )′| = |x′i − x′j | =

√√√√ N∑
k=1

(x′ik − x′jk)2.

We will also use the notation

∇Hi = (Xi1, . . . , XiN )

for the horizontal gradient associated to the ith particle. We denote

∇Hn := (∇H1 , . . . ,∇Hn), and Li :=
N∑
k=1

X2
ik,

the sub-Laplacian associated to the ith particle. We note that

L =

N∑
i=1

Li.

We now recall a simple but crucial inequality on Rm.

Lemma 6.12.1. Let m ≥ 1, and let

A = (A1(x), . . . ,Am(x))

be a mapping A : Rm → Rm whose components and their first derivatives are
uniformly bounded on Rm. Then for every non-trivial u ∈ C1

0 (R
m) we have∫

Rm

|∇u|2dx ≥ 1

4

(∫
Rm

divA|u|2dx)2∫
Rm
|A|2|u|2dx . (6.109)

Proof of Lemma 6.12.1. We have∣∣∣∣∫
Rm

divA|u|2dx
∣∣∣∣ = 2

∣∣∣∣Re ∫
Rm

〈A,∇u〉udx
∣∣∣∣

≤ 2

(∫
Rm

|A|2|u|2dx
) 1/2(∫

Rm

|∇u|2dx
)1/2

,

using the Cauchy–Schwarz inequality in the last line. This implies (6.109). �
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Theorem 6.12.2 (Horizontal many-particle Hardy inequality). Let G be a stratified
group with N being the dimension of its first stratum, and let Ω ⊂ Gn be an open
set. Let N ≥ 2 and n ≥ 3. Let rij = |(xix−1

j )′| = |x′i − x′j |. Then we have∫
Ω

|∇Hnu|2dx ≥ (N − 2)2

n

∫
Ω

∑
1≤i<j≤n

|u|2
r2ij

dx, (6.110)

for all u ∈ C1(Ω).

Remark 6.12.3. The Euclidean case of the inequality (6.110) was obtained by
M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, and J. Tidblom in
[HOHOLT08]. The Euclidean case of the subsequent Theorem 6.12.4 was obtained
by D. Lundholm [Lun15]. Theorem 6.12.2 and Theorem 6.12.4 were obtained in
[RSS18a] and our presentation here follows the arguments there.

Proof of Theorem 6.12.2. Let us define a mapping B1 by the formula

B1(x′i, x′j) :=
(xix

−1
j )′

r2ij
, 1 ≤ i < j ≤ n.

In the subsequent arguments we denote by divGi the horizontal divergence on Gi.
Applying inequality (6.109) to the mapping B1 we have∫

Ω

|(∇Hi −∇Hj )u|2dx ≥
1

4

(∫
Ω

(
(divHi − divHj )B1

) |u|2dx)2∫
Ω
|B1|2|u|2dx

=
1

4

(∫
Ω

2(N−2)

|(xix−1
j )′|2 |u|2dx

)2

∫
Ω

|u|2
|(xix−1

j )′|2 dx

= (N − 2)2
∫
Ω

|u|2
r2ij

dx. (6.111)

Also, we define another mapping B2 by

B2(x) :=
∑n

j=1 x
′
j∣∣∣∑n

j=1 x
′
j

∣∣∣2 .
We can calculate

∇Hi · B2 =

N∑
k=1

Xik

( ∑n
j=1 x

′
jk

|∑n
j=1 x

′
j |2
)

=
Nn|∑n

j=1 x
′
j |2 − 2n

(
(
∑n

j=1 x
′
j1)

2 + · · ·+ (
∑n

j=1 x
′
jN )2

)
|∑n

j=1 x
′
j |4

=
Nn− 2n

|∑n
j=1 x

′
j |2
.
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Applying inequality (6.109) to the mapping B2 we obtain

∫
Ω

∣∣∣∣∣
n∑
i=1

∇Hiu
∣∣∣∣∣
2

dx ≥ 1

4

(∫
Ω(
∑n

i=1 divHiB2)|u|2dx
)2∫

Ω
|B2|2|u|2dx

=
1

4

(∫
Ω

∑n
i=1

Nn−2n
|∑n

j=1 x
′
j |2 |u|

2dx
)2

∫
Ω

|u|2
|∑n

j=1 x
′
j|2 dx

=
(N − 2)2n4

4

∫
Ω

|u|2∣∣∣∑n
j=1 x

′
j

∣∣∣2 dx. (6.112)

Adding inequalities (6.111) and (6.112) and using the identity

n

n∑
i=1

|∇Hiu|2 =
∑

1≤i<j≤n

∣∣∇Hiu−∇Hju∣∣2 +
∣∣∣∣∣
n∑
i=1

∇Hiu
∣∣∣∣∣
2

,

we arrive at

n∑
i=1

∫
Ω

|∇Hiu|2dx ≥
(N − 2)2

n

∫
Ω

∑
i<j

|u|2
r2ij

dx+
(N − 2)2n3

4

∫
Ω

|u|2∣∣∣∑n
j=1 x

′
j

∣∣∣2 dx.
Because the last term on right-hand side is positive, we get

n∑
i=1

∫
Ω

|∇Hiu|2dx ≥
(N − 2)2

n

∫
Ω

∑
i<j

|u|2
r2ij

dx.

Also we have
∑n
i=1 |∇Hiu|2 = |∇Hnu|2. Putting everything together, the proof of

Theorem 6.12.2 is complete. �

The following theorem deals with the total separation of n ≥ 2 particles.

Theorem 6.12.4 (Total separation of many-particles). Let G be a stratified group
with N being the dimension of its first stratum, and let Ω ⊂ Gn be an open set.
Let ρ2 :=

∑
i<j |(xix−1

j )′|2 =
∑

i<j |x′i − x′j |2 with x′i �= x′j . Then we have

∫
Ω

|∇Hu|2dx = n

(
(n− 1)

2
N − 1

)2 ∫
Ω

|u|2
ρ2

dx+

∫
Ω

|∇Hρ−2αu|2ρ4αdx (6.113)

for all u ∈ C∞
0 (Ω) with α = 2−(n−1)N

4 .

The proof of Theorem 6.12.4 will rely on the following identity.
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Proposition 6.12.5. Let G be a stratified group with N being the dimension of
its first stratum, and let Ω ⊂ Gn be an open set. Let f : Ω → (0,∞) be twice
differentiable. Then for any function u ∈ C∞

0 (Ω) and α ∈ R, we have∫
Ω

|∇Hu|2dx =

∫
Ω

(
α(1 − α) |∇Hf |

2

f2
− αLf

f

)
|u|2dx+

∫
Ω

|∇Hv|2f2αdx,

where v := f−αu.

Proof of Proposition 6.12.5. Let us first observe that for u = fαv, we have

∇Hu = αfα−1(∇Hf)v + fα∇Hv.
By squaring the above expression we get

|∇Hu|2 = α2f2(α−1)|∇Hf |2|v|2 +Re(2αvf2α−1(∇Hf) · (∇Hv)) + f2α|∇Hv|2
= α2f2(α−1)|∇Hf |2|v|2 + αf2α−1(∇Hf) · ∇H |v|2 + f2α|∇Hv|2.

By integrating this expression over Ω, we obtain∫
Ω

|∇Hu|2dx =

∫
Ω

α2f2(α−1)|∇Hf |2|v|2dx

+

∫
Ω

Re(αf2α−1(∇Hf) · ∇H |v|2)dx+

∫
Ω

f2α|∇Hv|2dx

=

∫
Ω

α2f2(α−1)|∇Hf |2|v|2dx

− α
∫
Ω

∇H · (f2α−1∇Hf)|v|2dx+

∫
Ω

f2α|∇Hv|2dx.

We have used integration by parts to the middle term on the right-hand side. Since

∇H · (f2α−1∇Hf) = (2α− 1)f2α−2|∇Hf |2 + f2α−1Lf,
we get∫

Ω

|∇Hu|2dx =

∫
Ω

α2f2(α−1)|∇Hf |2|v|2dx−
∫
Ω

αf2α−1Lf |v|2dx

−
∫
Ω

α(2α− 1)f2α−2|∇Hf |2|v|2dx+

∫
Ω

f2α|∇Hv|2dx.

Putting back v = f−αu and collecting the terms we arrive at the equality of
Proposition 6.12.5. �

Proof of Theorem 6.12.4. With ∇Hk = (Xk1, . . . , XkN ), using the definition of ρ
we have

∇Hkρ2 = (Xk1ρ
2, . . . , XkNρ

2) = 2

n∑
k 	=j

(xkx
−1
j )′.
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Hence

Lρ2 = 2

n∑
k=1

n∑
k 	=j
∇Hk · (xkx−1

j )′ = 2n(n− 1)N, (6.114)

|∇Hρ2|2 = 8
∑

1≤i<j≤n
|(xkx−1

j )′|2

(6.115)

+ 8

n∑
k=1

∑
1≤i<j≤n

(xkx
−1
i )′ · (xkx−1

j )′ = 4nρ2,

where in the last step we used the identity

n∑
k=1

∑
1≤i<j≤n

(xkx
−1
i )′ · (xkx−1

j )′ =
n− 2

2

∑
1≤i<j≤n

|(xix−1
j )′|2.

By putting (6.114) and (6.115) in the identity of Proposition 6.12.5 with f = ρ2,
we obtain∫

Ω

|∇Hu|2dx = 4nα

(
2− (n− 1)N

2
− α

)∫
Ω

|u|2
ρ2

dx+

∫
Ω

|∇Hρ−2αu|2ρ4αdx.

To optimize we differentiate the integral

4nα

(
2− (n− 1)N

2
− α

)∫
Ω

|u|2
ρ2

dx

with respect to α, then we have

2− (n− 1)N

2
− 2α = 0 and α =

2− (n− 1)N

4
,

which completes the proof of Theorem 6.12.4. �

6.13 Hardy inequality with exponential weights

In this section, we discuss a horizontal Hardy inequality with exponential weights.
In the Euclidean case such a type of inequalities is sometimes called two parabolic
type Hardy inequalities, see Zhang [Zha17]. The following statement was obtained
in [RSS18a].

Theorem 6.13.1 (Hardy inequality with exponential horizontal weights). Let G

be a stratified group with N ≥ 3 being the dimension of its first stratum, and let
Ω ⊂ G be an open set. Let x0 ∈ Ω. Then we have∫

Ω

e−
|(xx−1

0
)′|2

4λ

(
(N − 2)2

4|x′|2 − N

4α
+
|(xx−1

0 )′|2
16λ2

)
|u|2dx ≤

∫
Ω

e−
|(xx−1

0
)′|2

4λ |∇Hu|2dx

for all u ∈ C1(Ω) and for all λ > 0.
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Proof of Theorem 6.13.1. We will use the horizontal Hardy inequality

(N − 2)2

4

∫
Ω

|v|2
|x′|2 dx ≤

∫
Ω

|∇Hv|2dx, (6.116)

see (6.6), valid for all v ∈ C1(Ω), with the choice of v = e−
|(xx−1

0 )′|2
8λ u. We note

that

∇Hv = e−
|(xx−1

0 )′|2
8λ ∇Hu− (xx−1

0 )′

4λ
e−

|(xx−1
0 )′|2
8λ u,

for all v ∈ C1(Ω). Then by inequality (6.116) we have

(N − 2)2

4

∫
Ω

e−
|(xx−1

0
)′|2

4λ
|u|2
|x′|2 dx

≤
∫
Ω

e−
|(xx−1

0
)′|2

4λ |∇Hu|2 + |(xx
−1
0 )′|2

16λ2
e−

|(xx−1
0

)′|2
4λ |u|2dx

− 1

2λ
Re

∫
Ω

(xx−1
0 )′ · (∇Hu)ue−

|(xx−1
0 )′|2
4λ dx. (6.117)

Integration by parts in the last term of the right-hand side of this inequality yields

Re

∫
Ω

(xx−1
0 )′ · (∇Hu)ue−

|(xx−1
0

)′|2
4λ dx

= −1

2

∫
Ω

(
N − |(xx

−1
0 )′|2
2λ

)
e−

|(xx−1
0

)′|2
4λ |u|2dx.

By using this in (6.117) and rearranging the terms, we complete the proof of
Theorem 6.13.1. �
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Chapter 7

Hardy–Rellich Inequalities and

Fundamental Solutions

In this chapter, we describe the Hardy and other inequalities on stratified groups
with the L-gauge weights. The appearance of such weights has been discussed
in the beginning of Chapter 6. The literature on inequalities with such weights
is rather substantial. Apart from describing new results and methods we will be
making relevant references to the results existing in the earlier literature.

While horizontal estimates in Chapter 6 can be established on general strat-
ified groups, the picture is not so complete if one is working with the L-gauge
weights. We recall that the L-gauge d(x) is a homogeneous quasi-norm arising
from the fundamental solution of the sub-Laplacian L by the condition (1.75),
namely, that d(x)2−Q is a constant multiple of Folland’s [Fol75] fundamental so-
lution of the sub-Laplacian L, with Q being the homogeneous dimension of the
stratified group G.

Using the L-gauge as a weight, the classical Hardy inequality on the Eu-
clidean space Rn, (

n− p
p

)p ∫
Rn

|φ(x)|p
|x|pE

dx ≤
∫
Rn

|∇φ(x)|pdx, (7.1)

for all φ ∈ C∞
0 (Rn) if 1 ≤ p < n, and for all φ ∈ C∞

0 (Rn\{0}) if n < p < ∞,
is replaced by inequalities involving powers of d(x). For instance, D’Ambrosio in
[D’A05] and Goldstein and Kombe in [GK08] established the following Lp-Hardy
type inequality on polarizable Carnot groups G,(

Q− p
p

)p ∫
G

|∇Hd|p
dp

|φ|pdx ≤
∫
G

|∇Hφ|pdx, (7.2)

for all φ ∈ C∞
0 (G\{0}), provided that Q ≥ 3 and 1 < p < Q. Here, as usual, Q is

the homogeneous dimension of G.

In such inequalities the explicit formula (1.103) relating the L-gauge to the
fundamental solution of the p-sub-Laplacian often plays an important role. In
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the case p = 2, since the p-sub-Laplacian is the usual sub-Laplacian, formula
(1.103) just reduces to the definition of the fundamental solution holding on general
stratified groups. Consequently, in the case p = 2 the version of (7.2) holds on any
stratified group G of homogeneous dimension Q ≥ 3 and all φ ∈ C∞

0 (G\{0}):
(
Q− 2

2

)2 ∫
G

|∇Hd|2
d2

|φ|2dx ≤
∫
G

|∇Hφ|2dx. (7.3)

It was shown in [Kom10] (see also [GK08]) that the Hardy inequality (7.3) on gen-
eral stratified groups of homogeneous dimension Q ≥ 3 also holds in its weighted
form ∫

G

dα|∇Hφ|2dx ≥
(
Q+ α− 2

2

)∫
G

dα
|∇Hd|2
d2

|φ|2dx, α > 2−Q, (7.4)

for all φ ∈ C∞
0 (G\{0}). It can be noted that the constants appearing in (7.2) and

(7.4) are sharp but are never achieved.

The aim of this chapter is to discuss these and other related inequalities, and
their further extensions. In Remark 7.1.2 we provide a more extensive historical
perspective on these inequalities.

7.1 Weighted Lp-Hardy inequalities

We start with a general version of a weighted Hardy inequality on general stratified
groups. Subsequently, in the following sections, we consider further extensions from
the point of view of the weights in the setting of polarizable Carnot groups. Here
we will be mostly working with the L-gauge defined in (1.75), namely, with

d(x) :=

{
ε(x)

1
2−Q , for x �= 0,

0, for x = 0,
(7.5)

where ε is the fundamental solution of the sub-Laplacian L on G.

Theorem 7.1.1 (Weighted Lp-Hardy inequalities with L-gauge). Let G be a strat-
ified group of homogeneous dimension Q ≥ 3. Let α ∈ R and let 1 < p < Q − α.
Then for all complex-valued functions u ∈ C∞

0 (G\{0}) we have∫
G

1

dα|∇Hd|p−2
|∇Hu|pdx ≥

(
Q− p− α

p

)p ∫
G

|∇Hd|2
dα+p

|u|pdx, (7.6)

and the constant
(
Q−p−α

p

)p
in inequality (7.6) is sharp.
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Remark 7.1.2.

1. The inequality (7.6) in the setting of stratified groups of different types has
a long history. For p = 2 and α = 0, on the Heisenberg group it was proved
by Garofalo and Lanconelli in [GL90] with an explicit expression for d being
the Koranyi norm. Still on the Heisenberg group, it was shown in [NZW01]
for α = 0 and 1 < p < Q. The weighted inequality for p = 2 was obtained
by Kombe in [Kom10]. Different further unweighted versions for p �= 2 in
the settings related to those of polarizable Carnot groups were obtained by
D’Ambrosio [D’A05], Goldstein and Kombe [GK08], and Danielli, Garofalo
and Phuc [DGP11]. The weighted Lp inequality on general stratified groups
by using a special class of weighted p-sub-Laplacians and the corresponding
fundamental solutions was obtained by Jin and Shen [JS11]. More recently,
in [Lia13] Lian has also obtained a similar result but with a sharp constant.
In the proof below we follow Lian’s arguments, as well as Lian’s proof [Lia13]
of Theorem 7.2.1.

2. Different formulations are also possible in the setting of polarizable Carnot
groups. We present them in Theorem 7.1.3 and in Theorem 7.2.2 following
[Kom10, Theorem 3.1] and [Kom10, Theorem 4.1] or [GKY17, Corollary 3.1],
respectively. Further improved remainder terms have been also analysed in
[Kom10].

3. There are other versions of Hardy inequalities that one can find in the liter-
ature, such as multi-particle inequalities (see, e.g., [Lun15] and references
therein) or Besov space versions of Hardy inequalities, see [BCG06] and
[BFKG12] for the settings of the Heisenberg group and on graded groups,
respectively.

Proof of Theorem 7.1.1. Since for some constant CQ we have that CQd
2−Q is the

fundamental solution of L, for all u ∈ C∞
0 (G\{0}), it follows that∫

G

〈∇Hd2−Q,∇Hu〉dx = −C−1
Q u(0) = 0. (7.7)

For ε > 0, let us define
uε := (|u|2 + ε2)p/2 − εp.

Then uε ≥ 0, uε ∈ C∞
0 (G\{0}), and it has the same support as u. Replacing u by

uεd
Q−p−α in inequality (7.7), we obtain∫

G

〈∇Hd,∇Huε〉
dp+α−1

dx+ (Q− p− α)
∫
G

uε
dp+α

|∇Hd|2dx = 0.

Then we can estimate

(Q− p− α)
∫
G

uε
dp+α

|∇Hd|2dx = −p
∫
G

(|u|2 + ε2)(p−2)/2u〈∇Hu,∇Hd〉 1

dp+α−1
dx
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≤ p
∫
G

(|u|2 + ε2)(p−2)/2|u||∇Hu||∇Hd|
dp+α−1

dx

≤ p
∫
G

(|u|2 + ε2)(p−1)/2|∇Hu||∇Hd|
dp+α−1

dx.

Letting ε→ 0, by the dominated convergence theorem we obtain the estimate

(Q− p− α)
∫
G

|u|p
dp+α

|∇Hd|2dx ≤ p
∫
G

|u|p−1|∇Hu||∇Hd|
dp+α−1

dx.

By Hölder’s inequality, this implies

(Q−p−α)
∫
G

|u|p
dp+α

|∇Hd|2dx ≤ p
(∫

G

|u|p
dp+α

|∇Hd|2dx
)p−1

p
(∫

G

|∇Hu|p
|∇Hd|p−2dα

dx

)1
p

,

which gives (7.6).

Let us now show that the constant
(
Q−p−α

p

)p
in inequality (7.6) is sharp.

Let f ∈ C∞
0 (0,+∞). Since f(d) ∈ C∞

0 (G\{0}), using the polar decomposition in
Proposition 1.2.10 with respect to d, we have

inf
u∈C∞

0 (G\{0})\{0}

∫
G

|∇Hu|p
|∇Hd|p−2dα dx∫

G

|u|p
dp+α |∇Hd|2dx

≤ inf
f∈C∞

0 (0,+∞)\{0}

∫
G

|∇Hf |p
|∇Hd|p−2dα dx∫

G

|f |p
dp+α |∇Hd|2dx

= inf
f∈C∞

0 (0,+∞)\{0}

∫∞
0 |f ′(d)|pdQ−α−1dd · ∫℘ |∇d|2dσ∫∞

0
|f(d)|pdQ−p−α−1dd · ∫

℘
|∇d|2dσ

= inf
f∈C∞

0 (0,+∞)\{0}

∫∞
0 |f ′(d)|pdQ−α−1dd∫∞

0 |f(d)|pdQ−p−α−1dd

= inf
f∈C∞

0 (0,+∞)\{0}

∫
RQ

|∇f(|x|)|p
|x|α dx∫

RQ

|f(|x|)|p
|x|p+α dx

=

(
Q− p− α

p

)p
,

where we abuse the notation by writing dd for the integration with respect to the
radial variable determined by d. The last equality follows from the fact that the
Euclidean weighted Hardy inequalities∫

RQ

|∇f(|x|)|p
|x|α dx ≥

(
Q− p− α

p

)p ∫
RQ

|f(|x|)|p
|x|p+α dx

hold for all f ∈ C∞
0 (RQ\{0}) and the constant here sharp and is attained as a limit

of radial functions, as it was shown by Davies and Hinz [DH98]. This completes
the proof. �
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Another type of Hardy inequality is also known on polarizable Carnot groups.
We give it next following [Kom10, Theorem 3.1] and its proof.

Theorem 7.1.3 (Another type of weighted Hardy inequalities with L-gauge). Let
G be a polarizable Carnot group of homogeneous dimension Q ≥ 3. Let 1 < p < Q
and let α ∈ R be such that α > −Q. Then for all f ∈ C∞

0 (G\{0}) we have the
inequality ∫

G

dα+p
|∇Hd · ∇Hf |p
|∇Hd|2p dx ≥

(
Q+ α

p

)p ∫
G

dα|f |pdx, (7.8)

where the constant
(
Q+α
p

)p
is sharp.

Proof of Theorem 7.1.3. Let us first recall the formula (1.105), that is,

∇H
(

d

|∇Hd|2∇Hd
)

= Q

in G\Z, where Z := {0}⋃{x ∈ G\{0} : ∇Hd = 0} has Haar measure zero, and
∇Hd �= 0 for a.e. x ∈ G. By using this formula as well as Green’s formula (see
Theorem 1.4.6) we obtain

(Q + α)

∫
G

dα|f |pdx = −p
∫
G

|f |p−2fdα+1

|∇Hd|2 ∇Hd · ∇Hfdx.

Moreover, by using Hölder’s and Young’s inequalities we can estimate

(Q + α)

∫
G

dα|f |pdx ≤ p
(∫

G

dα|f |pdx
) p−1

p
(∫

G

dα+p|∇Hd · ∇Hf |p
|∇Hd|2p dx

) 1/p

≤ (p− 1)ε−p/(p−1)

∫
G

dα|f |pdx+ εp
∫
G

dα+p|∇Hd · ∇Hf |p
|∇Hd|2p dx

for any ε > 0, that is,

ε−p(Q+ α− (p− 1)ε−p/(p−1))

∫
G

dα|f |pdx ≤
∫
G

dα+p|∇Hd · ∇Hf |p
|∇Hd|2p dx.

Since the function ε→ ε−p(Q+α−(p−1)ε−p/(p−1)) attains its maximum
(
Q+α
p

)p
at εp/(p−1) = p

Q+α , we obtain the inequality(
Q+ α

p

)p ∫
G

dα|f |pdx ≤
∫
G

dα+p|∇Hd · ∇Hf |p
|∇Hd|2p dx.

Now let us show that
(
Q+α
p

)p
is the best constant, that is, we show that we have

CH : = inf
0	=f∈C∞

0 (G)

∫
G

dα+p|∇Hd·∇Hf |p
|∇Hd|2p dx∫

G
dα|f |pdx =

(
Q+ α

p

)p
.
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Obviously, one has

(
Q+ α

p

)p
≤
∫
G

dα+p|∇Hd·∇Hf |p
|∇Hd|2p dx∫

G
dα|f |pdx

for all f ∈ C∞
0 (G\{0}), that is,

(
Q+α
p

)p
≤ CH . So, we need to show the converse,

namely, that CH ≥
(
Q+α
p

)p
. For this, consider the following family of d-radial

functions

fε(d) :=

{
d
Q+α
p +ε if d ∈ [0, 1],

d−(
Q+α
p +ε) if d > 1,

with ε > 0. Note that fε(d) can be also approximated by smooth functions with
compact support in G. We can also readily calculate that

dα+p|∇Hd · ∇Hfε|p
|∇Hd|2p =

⎧⎨⎩
(
Q+α
p + ε

)p
dQ+2α−pε if d ∈ [0, 1],(

Q+α
p + ε

)p
d−Q−ε if d > 1.

Denoting by B1 = {x ∈ G : d(x) ≤ 1} the unit d-ball, we have∫
G

dα|fε|pdx =

∫
B1

dQ+2α−pεdx +

∫
G\B1

d−Q−εdx.

For every ε > 0, the weights dQ+2α+pε and d−Q−pε are integrable at 0 and ∞,
respectively. Thus, the integral

∫
G
dα|fε|pdx is finite. Therefore, we get

(
Q+ α

p
+ ε

)p ∫
G

dα|fε|pdx =

(
Q+ α

p
+ ε

)p [∫
B1

dQ+2α−pεdx+

∫
G\B1

d−Q−εdx

]

=

∫
G

dα+p
|∇Hd · ∇Hf |p
|∇Hd|2p dx.

Moreover, we have(
Q + α

p
+ ε

)p ∫
G

dα+p
|∇Hd · ∇Hf |p
|∇Hd|2p dx ≥

(
Q + α

p
+ ε

)p ∫
G

dα|fε|pdx

=

∫
G

dα+p
|∇Hd · ∇Hf |p
|∇Hd|2p dx.

That is, CH ≤
(
Q+α
p + ε

)p
and letting ε → 0 we obtain

(
Q+α
p

)p
≤ CH . This

yields CH =
(
Q+α
p

)p
, showing the sharpness of the constant. �
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7.2 Weighted Lp-Rellich inequalities

In this section we discuss the Rellich inequality with weights given in terms of the
L-gauge.
Theorem 7.2.1 (Weighted Lp-Rellich inequalities with L-gauge). Let G be a strati-
fied group of homogeneous dimension Q ≥ 3. Let α ∈ R and let 1 < p < (Q−α)/2.
Then for all u ∈ C∞

0 (G\{0}) we have∫
G

|Lu|p
|∇Hd|2(p−1)dα

dx ≥
(
[(p− 1)Q+ α](Q − 2p− α)

p2

)p ∫
G

|∇Hd|2
d2p+α

|u|pdx, (7.9)

where the constant
(

[(p−1)Q+α](Q−2p−α)
p2

)p
in inequality (7.9) is sharp.

Proof of Theorem 7.2.1. For ε > 0, let us set

uε := (|u|2 + ε2)p/2 − εp and ωε := (|u|2 + ε2)p/4 − ε p/2.

Then we can calculate

Luε = p(|u|2 + ε2)p/2−1|∇Hu|2 + p(p− 2)(|u|2 + ε2)p/2−2|u|2|∇Hu|2
+ p(|u|2 + ε2)p/2−1uLu
≥ p(p− 1)(|u|2 + ε2)p/2−2|u|2|∇Hu|2 + p(|u|2 + ε2)p/2−1uLu

=
4(p− 1)

p
|∇Hωε|2 + p(|u|2 + ε2)p/2−1uLu.

Therefore, we have the estimate

−p
∫
G

(|u|2 + ε2)p/2−1uLu
dα+2(p−1)

dx ≥ 4(p− 1)

p

∫
G

|∇Hωε|2
dα+2(p−1)

dx−
∫
G

Luε
dα+2(p−1)

dx.

The integration by parts in the last term, using (1.78), yields

−
∫
G

Luε
dα+2(p−1)

dx = (α+ 2p− 2)(Q − α− 2p)

∫
G

uε
dα+2p

|∇Hd|2dx.

Using this and Theorem 7.1.1 we obtain

−p
∫
G

(|u|2 + ε2)p/2−1uLu
dα+2(p−1)

dx ≥ 4(p− 1)

p

∫
G

|∇Hωε|2
dα+2(p−1)

dx−
∫
G

Luε
dα+2(p−1)

dx

≥ (p− 1)(Q− 2p− α)2
p

∫
G

ω2
ε

dα+2p
|∇Hd|2dx

+ (α+ 2p− 2)(Q− α− 2p)

∫
G

uε
dα+2p

|∇Hd|2dx.
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Hence we have

(p− 1)(Q− 2p− α)2
p

∫
G

ω2
ε

dα+2p
|∇Hd|2dx

+ (α+ 2p− 2)(Q− α− 2p)

∫
G

uε
dα+2p

|∇Hd|2dx

≤ p
∫
G

(|u|2 + ε2)p/2−1|u||Lu|
dα+2(p−1)

dx ≤ p
∫
G

(|u|2 + ε2)(p−1)/2|Lu|
dα+2(p−1)

dx.

Letting ε→ 0+, the dominated convergence theorem implies that

(Q− 2p− α) ((p− 1)Q+ α)

p

∫
G

|u|p
dα+2p

|∇Hd|2dx ≤ p
∫
G

|u|p−1|Lu|
dα+2(p−1)

dx.

By Hölder’s inequality we can estimate

(Q− 2p− α) ((p− 1)Q+ α)

p

∫
G

|u|p
dα+2p

|∇Hd|2dx

≤ p
(∫

G

|u|p
dα+2p

|∇Hd|2dx
) p−1

p
(∫

G

|Lu|p
|∇Hd|2(p−1)dα

dx

) 1
p

,

which implies inequality (7.9).

The argument for the sharpness of the constant
(

(Q−2p−α)((p−1)Q+α)
p2

)p
in

(7.9) is similar to the sharpness argument in the proof of Theorem 7.1.1 (with the
similar explanation for the notation dd). Namely, for functions f ∈ C∞

0 (0,+∞),
by using Proposition 1.2.10 we can estimate

inf
u∈C∞

0 (G\{0})\{0}

∫
G

|Lu|p
|∇Hd|2(p−1)dα

dx∫
G

|u|p
dα+2p |∇Hd|2dx

≤ inf
f∈C∞

0 (0,+∞)\{0}

∫
G

|Lf(d)|p
|∇Hd|2(p−1)dα

dx∫
G

|f(d)|p
dα+2p |∇Hd|2dx

= inf
f∈C∞

0 (0,+∞)\{0}

∫∞
0 |f ′′(d) + (Q− 1)f ′(d)/d|pdQ−α−1dd · ∫℘ |∇d|2dσ∫∞

0
|f(d)|pdQ−2p−α−1dd · ∫

℘
|∇d|2dσ

= inf
f∈C∞

0 (0,+∞)\{0}

∫∞
0
|f ′′(d) + (Q− 1)f ′(d)/d|pdQ−α−1dd∫∞

0 |f(d)|pdQ−2p−α−1dd

= inf
f∈C∞

0 (0,+∞)\{0}

∫
RQ

|Lf(|x|)|p
|x|α dx∫

RQ

|f(|x|)|p
|x|2p+α dx

=

(
((p− 1)Q+ α)(Q − 2p− α)

p2

)p
,
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where the last equality follows from the weighted Rellich inequalities∫
RQ

|Lf(|x|)|p
|x|α dx ≥

(
((p− 1)Q+ α)(Q − 2p− α)

p2

)p ∫
RQ

|f(|x|)|p
|x|2p+α dx

for all f ∈ C∞
0 (RQ\{0}), and the fact that the constant here is sharp and is

attained in the limit of radial functions, [DH98]. This completes the proof. �

Another Rellich inequality is also possible, see Remark 7.1.2, Part 2. We
present it in the next statement following [Kom10, Theorem 4.1] and its proof.

Theorem 7.2.2 (Another type of weighted L2-Rellich inequalities with L-gauge).
Let G be a stratified group of homogeneous dimension Q ≥ 3, with the homogeneous
L-gauge norm d on G. Let α ∈ R be such that Q + α − 4 > 0. Then for all
f ∈ C∞

0 (G\{0}) we have∫
G

dα

|∇Hd|2 |Lf |
2dx ≥ (Q + α− 4)2(Q− α)2

16

∫
G

dα
|∇Hd|2
d4

|f |2dx, (7.10)

where the constant (Q+α−4)2(Q−α)2
16 is sharp.

Proof of Theorem 7.2.2. Recalling formula (7.5) for the L-gauge, a direct calcula-
tion gives that

Ldα−2 = (Q + α− 4)(α− 2)dα−4|∇Hd|2 + α− 2

2−Qd
Q+α−4Lε. (7.11)

As before, we can assume without loss of generality that f is real-valued. Then
(7.11) implies ∫

G

f2Ldα−2dx =

∫
G

dα−2(2fLf + 2|∇Hf |2)dx.

On the other hand, since ε is the fundamental solution of L we have∫
G

f2Ldα−2dx = (Q+ α− 4)(α− 2)

∫
G

dα−4|∇Hd|2f2dx,

with Q+ α− 4 > 0. Thus, we have

(Q+ α− 4)(α− 2)

∫
G

dα−4|∇Hd|2f2dx− 2

∫
G

dα−2fLfdx

= 2

∫
G

dα−2|∇Hf |2dx.
(7.12)

Further, using the following weighted Hardy inequality (see Corollary 7.3.2, Part
1, related to Theorem 7.1.1 for p = 2)(

Q+ α− p
p

)p ∫
G

dα
|∇Hd|p
dp

|f |pdx ≤
∫
G

dα|∇Hf |pdx,
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we arrive at

2

(
Q+ α− 4

2

)2 ∫
G

dα−4|∇Hd|2f2dx

≤ (Q + α− 4)(α− 2)

∫
G

dα−4|∇Hd|2f2dx − 2

∫
G

dα−2fLfdx.

It follows that(
Q + α− 4

2

)(
Q− α

2

)∫
G

dα−4|∇Hd|2f2dx ≤ −
∫
G

dα−2fLfdx. (7.13)

By the Cauchy–Schwarz inequality we have

−
∫
G

dα−2fLfdx ≤
(∫

G

dα−4|∇Hd|2f2dx

)1/2 (∫
G

|Lf |2
|∇Hd|2 d

αdx

) 1/2

. (7.14)

Now combination of the inequalities (7.14) and (7.13) yields (7.10).

Let us now show that the constant CR = (Q+α−4)2(Q−α)2
16 is sharp, that is,

we have the equality

CR : = inf
0	=f∈C∞

0 (G)

∫
G

dα

|∇Hd|2 |Lf |2dx∫
G
dα |∇Hd|2

d4 f2dx
=

(Q+ α− 4)2(Q − α)2
16

.

Obviously, we have∫
G

dα

|∇Hd|2 |Lf |2dx∫
G
dα |∇Hd|2

d4 f2dx
≤ (Q + α− 4)2(Q− α)2

16
,

that is, (Q+α−4)2(Q−α)2
16 ≤ CR. So, we need to show the converse, namely, that

CR ≤ (Q+α−4)2(Q−α)2
16 . To do this we define a family of d-radial functions by

fε(d) :=

⎧⎪⎨⎪⎩
(
Q+α−4

2 + ε
)2
|∇Hd|4 (Q−1)2

d2 if d ≤ 1,(
Q+α−4

2 + ε
)2 (

Q+α−4
2 − ε

)2
d−Q−α−2ε|∇Hd|4 if d > 1,

for some ε > 0. Denoting by B1 = {x ∈ G : d(x) ≤ 1} the unit d-ball, we have∫
G

dα
|Lfε|2
|∇Hd|2 dx = A

∫
B1

dα−2|∇Hd|2dx+B

∫
G\B1

d−Q−2ε|∇Hd|2dx,

where

A = (Q − 1)2
(
Q+ α− 4

2
+ ε

)2

and

B =

(
Q+ α− 4

2
+ ε

)2 (
Q+ α− 4

2
− ε

)2

.
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Since |∇Hd| is uniformly bounded andQ+α−4 > 0, the integral
∫
B1
dα−2|∇Hd|2dx

is finite. It implies that we have∫
G

dα
|Lfε|2
|∇Hd|2 dx = B

∫
G\B1

d−Q−2ε|∇Hd|2dx+O(1).

Moreover, we have∫
G

dα
|∇Hd|2
d4

f2
ε dx =

∫
B1

dα
|∇Hd|2
d4

f2
ε dx+

∫
G\B1

dα
|∇Hd|2
d4

f2
ε dx.

Since the first integral is finite we obtain∫
G

dα
|∇Hd|2
d4

f2
ε dx =

∫
G\B1

d−Q−2ε|∇Hd|2dx+O(1).

Taking ε→ 0 and noting that∫
G\B1

d−Q−2ε|∇Hd|2dx→∞,

we arrive at ∫
G

dα

|∇Hd|2 |Lfε|2dx∫
G
dα |∇Hd|2

d4 f2
ε dx

≤ (Q+ α− 4)2(Q− α)2
16

.

This means that CR = (Q+α−4)2(Q−α)2
16 , so that the constant is sharp. �

7.3 Two-weight Hardy inequalities and

uncertainty principles

In this section we consider Hardy inequalities with more general weights, pre-
senting the approach of Goldstein, Kombe and Yener [GKY17]. This can be also
extended further to Rellich inequalities, see [GKY18]. Other types of two-weight
inequalities are known in the classical Euclidean setting, see, e.g., [GM11], and a
more extensive exposition in [GM13].

Another general two-weight inequality on general homogeneous groups was
given in Theorem 2.1.14, without making any assumptions on the weights φ, ψ
there. However, in the following result, the weights V and W will be assumed to
satisfy relation (7.15).

Theorem 7.3.1 (Two-weight Lp-Hardy inequality). Let G be a stratified group. Let
V ∈ C1(G) and W ∈ L1

loc(G) be non-negative functions, and let Φ ∈ C∞(G) be a
positive function such that

−∇H · (V (x)|∇HΦ|p−2∇HΦ) ≥W (x)Φp−1 (7.15)

holds almost everywhere.
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Then there exists a positive constant cp > 0 depending only on p such that
for all φ ∈ C∞

0 (G) we have:

if p ≥ 2, then∫
G

V (x)|∇Hφ|pdx ≥
∫
G

W (x)|φ|pdx + cp

∫
G

V (x)

∣∣∣∣∇H φ

Φ

∣∣∣∣pΦpdx, (7.16)

and if 1 < p < 2, then

∫
G

V (x)|∇Hφ|pdx ≥
∫
G

W (x)|φ|pdx+ cp

∫
G

V (x)

∣∣∣∇H φ
Φ

∣∣∣2 Φ2(∣∣∣ φΦ∇HΦ
∣∣∣+ ∣∣∣∇H φ

Φ

∣∣∣Φ)2−p dx.
(7.17)

For p = 2 we have the equality in (7.16) with c2 = 1.

Proof of Theorem 7.3.1. For the proof we follow [GKY17], relying on the following
inequalities (see, for example, [Lin90, Appendix]): For any 1 < p <∞ there exists
a positive constant cp > 0 depending only on p such that for all a, b ∈ Rn we have

|a+ b|p ≥ |a|p + p|a|p−2a · b+ cp|b|p, for p ≥ 2, (7.18)

and

|a+ b|p ≥ |a|p + p|a|p−2a · b+ cp
|b|2

(|a|+ |b|)2−p , for 1 < p < 2. (7.19)

Let ϕ := φ
Φ , where 0 < Φ ∈ C∞(G) and φ ∈ C∞

0 (G). Applying the inequality
(7.18) with a = ϕ∇HΦ and b = Φ∇Hϕ, for p ≥ 2 we get

|∇Hφ|p = |ϕ∇HΦ+ Φ∇Hϕ|p
≥ |∇HΦ|p|ϕ|p +Φ|∇HΦ|p−2∇HΦ · ∇H(|ϕ|p) + cp|∇Hϕ|pΦp.

(7.20)

Multiplying this by V (x) on both sides and integrating by parts yields∫
G

V (x)|∇Hφ|pdx ≥
∫
G

V (x)|∇HΦ|p|ϕ|pdx+ cp

∫
G

V (x)|∇Hϕ|pΦpdx

−
∫
G

∇H ·
(
V (x)Φ|∇HΦ|p−2∇HΦ

) |ϕ|pdx
= −

∫
G

∇H ·
(
V (x)Φ|∇HΦ|p−2∇HΦ

)
Φ|ϕ|pdx

+ cp

∫
G

V (x)|∇Hϕ|pΦpdx.

Consequently, assumption (7.15) implies that∫
G

V (x)|∇Hφ|pdx ≥
∫
G

W (x)|ϕ|pΦpdx + cp

∫
G

V (x)|∇Hϕ|pΦpdx.

Recalling that ϕ = φ
Φ one gets (7.16).



7.3. Two-weight Hardy inequalities and uncertainty principles 343

For the case 1 < p < 2 one can use inequality (7.19) with the same choice of
a and b as above, and we leave the details to the reader. Also, the above arguments
show that if p = 2, then (7.16) is an equality with c2 = 1. �

Let us now collect some consequences of Theorem 7.3.1 on polarizable Carnot
groups, following [GKY17]. As before, we fix d to be the L-gauge on a stratified
group G. Consequently, we denote by

BR := {x ∈ G : d(x) < R} (7.21)

the ball of radius R with respect to the quasi-norm d.

Corollary 7.3.2 (Special cases of two-weight inequalities). Let G be a polarizable
Carnot group. Then we have the following inequalities:

1. Let α ∈ R, 1 < p < Q + α, γ > −1. Then we have∫
G

dα|∇Hd|γ |∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
G

dα
|∇Hd|p+γ

dp
|φ|pdx

for all φ ∈ C∞
0 (G\{0}).

2. Let Q = p > 1 and α < −1. Then we have∫
BR

(
log

R

d

)α+p
|∇Hφ|pdx ≥

( |α+ 1|
p

)p ∫
BR

(
log

R

d

)α |∇Hd|
dp
|φ|pdx

for all φ ∈ C∞
0 (BR).

3. Let α ∈ R and Q+ α > p > 1. Then we have∫
G

dα|∇Hφ|pdx ≥
(
Q+ α− p
p− 1

)p−1

(Q+ α)

∫
G

dα
|∇Hd|p

(1 + d
p
p−1 )p

|φ|pdx

for all φ ∈ C∞
0 (G).

4. Let 1 < p < Q and α > 1. Then we have∫
G

(1 + d
p
p−1 )α(p−1)|∇Hφ|pdx

≥ Q
(
p(α− 1)

p− 1

)p−1 ∫
G

|∇Hd|p

(1 + d
p
p−1 )(1−α)(p−1)

|φ|pdx

for all φ ∈ C∞
0 (G).

5. Let a, b > 0 and α, β,m ∈ R. If αβ > 0 and m ≤ Q−2
2 , then we have∫

G

(a+ bdα)β

d2m
|∇Hφ|2dx ≥ C(Q,m)2

∫
G

(a+ bdα)β

d2m+2
|∇Hd|2φ2dx

+ C(Q,m)αβb

∫
G

(a+ bdα)β−1

d2m−α+2
|∇Hd|2φ2dx,

for all φ ∈ C∞
0 (G), where C(Q,m) = Q−2m−2

2 .
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6. Let Q = p > 1. Then we have∫
BR

|∇Hφ|pdx ≥
(
p− 1

p

)p ∫
BR

|∇Hd|p
(R − d)p |φ|

pdx

for all φ ∈ C∞
0 (BR).

Proof of Corollary 7.3.2. To make the application of Theorem 7.3.1 rigorous one

can replace the function d with its regularization dε := (Γ+ ε)
1

2−Q for ε > 0, where
Γ is the fundamental solution for L, and after the application of Theorem 7.3.1
take the limit as ε→ 0.

1. The inequality follows from Theorem 7.3.1 with the choice

V = dα|∇Hd|γ with Φ = d−(
Q+α−p

p ).

2. This part follows by taking

V =

(
log

R

d

)α+p
and Φ =

(
log

R

d

) |α+1|
p

.

3. This part follows by taking

V = dα and Φ =

(
1 + d

p
p−1

)−(Q+α−p
p ,)

.

4. This part follows by taking

V =

(
1 + d

p
p−1

)α(p−1)

and Φ =

(
1 + d

p
p−1

)1−α
.

5. This part follows by taking

V =
(a+ bdα)β

d2m
and Φ = d−(

Q−2m−2
2 ).

6. This part follows by taking

V ≡ 1 and Φ = (R− d) p−1
p .

The proof is complete. �
Remark 7.3.3. The statement of Corollary 7.3.2, Part 1, was first shown by Wang
and Niu [WN08]. Part 2 was shown in [D’A05, (3.40)]. Part 4 is a version of the
Euclidean estimate [Skr13, (5.1)]. Part 5 is a version of the Euclidean estimate
[GM11, (42)]. Part 6 was shown on the Heisenberg group in [HN03] and then for
polarizable Carnot groups in [D’A05].



7.3. Two-weight Hardy inequalities and uncertainty principles 345

Theorem 7.3.1 also yields several versions of the uncertainty principles.

Corollary 7.3.4 (Special cases of two-weight uncertainty principles). Let G be a
polarizable Carnot group. Then we have the following inequalities:

1. We have (∫
G

|∇Hφ|2
|∇Hd|2 dx

)(∫
G

d2|φ|2dx
)
≥ Q2

4

(∫
G

|φ|2dx
)2

for all φ ∈ C∞
0 (G).

2. We have(∫
G

|∇Hφ|2dx
)(∫

G

d2|∇Hd|2|φ|2dx
)
≥ Q2

4

(∫
G

|∇Hd|2|φ|2dx
)2

for all φ ∈ C∞
0 (G).

3. We have(∫
G

|∇Hφ|2dx
)(∫

G

|∇Hd|2|φ|2dx
)
≥ (Q− 1)2

4

(∫
G

|∇Hd|2
d
|φ|2dx

)2

for all φ ∈ C∞
0 (G).

Proof of Corollary 7.3.4. 1. This inequality was first shown by Kombe in [Kom10],
extending the Euclidean uncertainty principle (2). Considering

V =
1

|∇Hd|2 and Φ = e−αd
2

,

for α > 0, Theorem 7.3.1 implies∫
G

1

|∇Hd|2 |∇Hφ|
2dx ≥ 2αQ

∫
G

|φ|2dx− 4α2

∫
G

d2|φ|2dx.

Let now A := −4 ∫
G
d2φ2dx, B := 2Q

∫
G
φ2dx and C := − ∫

G

|∇Hφ|2
|∇Hd|2 dx. Then the

above inequality can be expressed as Aα2 + Bα + C ≤ 0 for all α ∈ R. But this
implies that B2 − 4AC ≤ 0, which proves the statement.

2. Let us take
V ≡ 1 and Φ = e−αd,

where α > 0. Then by Theorem 7.3.1 we have∫
G

|∇Hφ|2dx ≥ 2αQ

∫
G

|∇Hd|2|φ|2dx− 4α2

∫
G

d2|∇Hd|2|φ|2dx.

The same argument as in Part 1 implies the statement.

3. The statement follows from Theorem 7.3.1 with

V ≡ 1 and Φ = e−αd,

for α > 0, and the same argument as in Part 1. �
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In [GKY17] the authors showed that on polarizable Carnot groups the state-
ment of Theorem 7.3.1 can be refined to give also the remainder estimates. Fol-
lowing [GKY17] we recapture this statement, its proof, and its consequences. In
the following theorem we consider the case p ≥ 2 noting that a similar result can
be shown also for 1 < p < 2, with a different reminder term, if one uses in the
proof (7.19) instead of (7.18).

Theorem 7.3.5 (Two-weight Lp-Hardy inequalities with remainder estimates). Let
G be a polarizable Carnot group and let Ω be a bounded domain in G with smooth
boundary ∂Ω. Assume that V is a non-negative C1-function and that δ is a positive
C∞-function such that

−∇H ·
(
V (x)dp−Q

|∇Hδ|p−2

δp−2
∇Hδ

)
≥ 0 (7.22)

holds almost everywhere in Ω. Then for any φ ∈ C∞
0 (Ω) we have∫

Ω

V (x)dα|∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
Ω

V (x)dα
|∇Hd|p
dp

|φ|pdx

+

(
Q+ α− p

p

)p−1∫
Ω

V (x)dα
|∇Hd|p−2

dp−1
∇Hd · ∇HV |φ|pdx

+
cp
pp

∫
Ω

V (x)dα
|∇Hδ|p
δp

|φ|pdx, (7.23)

where Q+ α > p ≥ 2, α ∈ R and cp = c(p) > 0.

Proof. For any φ ∈ C∞
0 (Ω) we set ϕ := d−γφ with γ < 0, a constant that will be

chosen later. By a direct computation we have

∇H(dγφ) = γdγ−1ϕ∇Hd+ dγ∇Hϕ.

Applying inequality (7.18) with a = γdγ−1ϕ∇Hd and b = dγ∇Hϕ we get

|∇Hφ|p ≥ |γ|pdp(γ−1)|∇Hd|p|φ|p
+ γ|γ|p−2dp(γ−1)+1|∇Hd|p−2∇Hd · ∇H(|ϕ|p) + cpd

pγ |∇Hϕ|p.
(7.24)

Multiplying both sides of (7.24) by V (x)dα and integrating by parts we get∫
Ω

V (x)dα|∇Hφ|pdx ≥ |γ|p
∫
Ω

V (x)dα+p(γ−1)|∇Hd|p|ϕ|pdx

− γ|γ|p−2

∫
Ω

∇H · (V (x)dα+p(γ−1)+1|∇Hd|p−2∇Hd)|ϕ|pdx

+ cp

∫
Ω

V (x)dα+pγ |∇Hϕ|pdx. (7.25)
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Using (1.77) and (1.102) we have

∇H · (V (x)dα+p(γ−1)+1|∇Hd|p−2∇Hd)
= dα+p(γ−1)+1|∇Hd|p−2∇Hd · ∇HV
+ [Q+ α+ p(γ − 1)]V (x)dα+p(γ−1)|∇Hd|p.

(7.26)

Using (7.26) we can rewrite (7.25) as∫
Ω

V (x)dα|∇Hφ|pdx ≥ ζ(Q,α, p; γ)
∫
Ω

V (x)dα+p(γ−1)|∇Hd|p|ϕ|pdx

− γ|γ|p−2

∫
Ω

dα+p(γ−1)+1|∇Hd|p−2∇Hd · ∇HV |ϕ|pdx

+ cp

∫
Ω

V (x)dα+pγ |∇Hϕ|pdx,

where ζ(Q,α, p; γ) = |γ|p − γ|γ|p−2(Q + α + γp − p). Since γ < 0 we can choose
γ = (p− α−Q)/p. Therefore, we have∫

Ω

V (x)dα|∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
Ω

V (x)
|∇Hd|p
dQ

|ϕ|pdx

+

(
Q+ α− p

p

)p−1 ∫
Ω

|∇Hd|p−2

dQ−1
∇Hd · ∇HV |ϕ|pdx

+ cp

∫
Ω

V (x)dp−Q|∇Hϕ|pdx. (7.27)

Let us analyse the last term in (7.27). Let us define ϑ := δ−1/pϕ, where 0 < δ ∈
C∞(Ω) and ϕ ∈ C∞

0 (Ω). It follows from (7.18) that

|∇Hφ|p = |1
p
δ
1−p
p ϑ∇Hδ + δ

1
p∇Hϑ|p (7.28)

≥ 1

pp
|∇Hδ|p
δp−1

|ϑ|p + 1

pp−1

|∇Hδ|p−2

δp−2
∇Hδ · ∇H(|ϑ|p) + cpδ

p|∇Hϑ|p.

Since cpδ
p|∇Hϑ|p ≥ 0, integrating by parts in (7.28) we get

cp

∫
Ω

V (x)dp−Q|∇Hϕ|pdx ≥ cp
pp

∫
Ω

V (x)dp−Q
|∇Hδ|p
δp−1

|ϑ|pdx

− cp
pp−1

∫
Ω

∇H · (V (x)dp−Q
|∇Hδ|p−2

δp−2
∇Hδ)|ϑ|pdx.

Using (7.22) and the substitution ϑ := δ−1/pd
Q+α−p

p φ we obtain

cp

∫
Ω

V (x)dp−Q|∇Hϕ|pdx ≥ cp
pp
cp
pp

∫
Ω

V (x)dp−Q
|∇Hδ|p
δp

|φ|pdx. (7.29)

Combining (7.27) and (7.29), and using ϕ = d
Q+α−p

p φ we obtain (7.23). �
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Let us now list several consequences of Theorem 7.3.5 for some specific choices
of V and δ. We recall the notation

BR := {x ∈ G : d(x) < R}
for the ball of radius R with respect to the quasi-norm d, already used in (7.21).

Corollary 7.3.6 (A collection of Lp-Hardy inequalities with remainders). Let G

be a polarizable Carnot group and let Ω be a bounded domain in G with smooth
boundary ∂Ω. Then we have the following statements.

1. For all φ ∈ C∞
0 (Ω) we have∫
Ω

dα|∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
Ω

dα
|∇Hd|p
dp

|φ|pdx

+
cp
pp

∫
Ω

dα
|∇Hd|p

(d log(Rd ))
|φ|pdx,

where Q+ α > p ≥ 2, α ∈ R, cp > 0 and R > sup
x∈Ω

d(x).

2. For all φ ∈ C∞
0 (Ω) we have∫

Ω

dα|∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
Ω

dα
|∇Hd|p
dp

|φ|pdx

+
cp
pp

∫
Ω

dα
|∇Hd|p

dp(log R
d )
p(log(log R

d ))
p
|φ|pdx,

where Q+ α > p ≥ 2, α ∈ R, cp > 0 and R > e sup
x∈Ω

d(x).

3. For all φ ∈ C∞
0 (Ω) we have∫

Ω

eddα|∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
Ω

eddα
|∇Hd|p
dp

|φ|pdx

+

(
Q+ α− p

p

)p−1 ∫
Ω

eddα
|∇Hd|p
dp−1

|φ|pdx

+
cp
pp

∫
Ω

eddα|∇Hd|p|φ|pdx,

where Q+ α > p ≥ 2, α ∈ R, cp > 0.

4. For all φ ∈ C∞
0 (BR) we have∫

BR

dα|∇Hφ|pdx ≥
(
Q+ α− p

p

)p ∫
BR

dα
|∇Hd|p
dp

|φ|pdx

+
cp
pp

∫
BR

dα
|∇Hd|p
(R− d)p |φ|

pdx,

where Q+ α > p ≥ 2, α ∈ R, cp > 0.
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Proof of Corollary 7.3.6. 1. The statement follows from Theorem 7.3.5 with

V ≡ 1 and δ = log

(
R

d

)
.

This inequality is the stratified group version of the Euclidean inequality in
[ACR02, (1.4)].

2. The statement follows from Theorem 7.3.5 with

V ≡ 1 and δ = log

(
log

R

d

)
, R > e sup

x∈Ω
d(x).

3. The statement follows from Theorem 7.3.5 with

V = ed and δ = e−d.

4. The statement follows from Theorem 7.3.5 with

V ≡ 1 and δ = R− d.
As in the proof of Corollary 7.3.2, the above applications of Theorem 7.3.5 can be

justified by considering the regularization dε := (Γ + ε)
1

2−Q for ε > 0, where Γ is
the fundamental solution for L, and after the application of Theorem 7.3.5 taking
the limit as ε→ 0. �

7.4 Rellich inequalities for sub-Laplacians with drift

In this section, we show the weighted Rellich inequality for sub-Laplacians with
drift on polarizable Carnot groups expressing the weights in terms of the funda-
mental solution of the sub-Laplacian.

We recall that in Section 6.9 we already showed Rellich inequalities for sub-
Laplacians with drift with weights expressed in terms of the variable x′ from the
first stratum.

In this section, we assume all the notation of Section 1.4.6 where sub-Laplac-
ians with drift have been discussed.

Theorem 7.4.1 (Rellich inequality for sub-Laplacian with drift with L-gauge wei-
ghts on polarizable Carnot groups). Let G be a polarizable Carnot group of ho-
mogeneous dimension Q ≥ 3 and let θ ∈ R with Q + 2θ − 4 > 0. Then for all
functions f ∈ C∞

0 (G\{0}) we have∥∥∥∥ dθ

|∇Hd|LXf
∥∥∥∥2
L2(G,μX )

≥ (Q+ 2θ − 4)2(Q − 2θ)2

16

∥∥dθ−2|∇Hd|f
∥∥2
L2(G,μX )

+ γ4b4X

∥∥∥∥ dθ

|∇Hd|f
∥∥∥∥2
L2(G,μX)

+ γ2b2X

(
(Q + 2θ − 2)(Q− 2θ − 2)

2

)∥∥dθ−1f
∥∥2
L2(G,μX )
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+ 2γ2b2X(Q − 1)(3Q− 4)
∥∥dθ−1f

∥∥2
L2(G,μX )

+ 2γ2b2X

∫
G

d2θ+2Q−2

|∇Hd|4
(
d1−Q|∇Hd|L(d1−Q|∇Hd|)− 3|∇H(d1−Q|∇Hd|)|2

)
× |f(x)|2dμX(x), (7.30)

where LX and bX are defined in (1.93) and (1.95), respectively.

Remark 7.4.2. In the Abelian case G = (Rn,+), we have N = n, ∇H = ∇ =
(∂x1 , . . . , ∂xn) is the usual full gradient, d = |x|E is the Euclidean distance, hence
|∇Hd| = 1, and setting X =

∑n
i=1 ai∂xi , the last two terms in (7.30) cancel each

other, so that we obtain the same estimate as in (6.83).

Proof of Theorem 7.4.1. The proof follows [RY18b]. Let g = g(x) ∈ C∞
0 (G\{0})

be such that f = χ−1/2g. By (1.101) we know that L2(G, μ) ∈ g 
→ χ−1/2g ∈
L2(G, μX). Then, we have∥∥∥∥ dθ

|∇Hd|LXf
∥∥∥∥
L2(G,μX)

=

∥∥∥∥ dθ

|∇Hd|χ
1/2LXf

∥∥∥∥
L2(G,μ)

=

∥∥∥∥ dθ

|∇Hd|χ
1/2LX(χ−1/2g)

∥∥∥∥
L2(G,μ)

,

where μ is the Haar (i.e., Lebesgue) measure on G. By (1.100) and integration by
parts, we calculate∥∥∥∥ dθ

|∇Hd|LXf
∥∥∥∥2
L2(G,μX )

=

∥∥∥∥ dθ

|∇Hd| (L0 + γ2b2X)g

∥∥∥∥2
L2(G,μ)

=

∥∥∥∥ dθ

|∇Hd|L0g
∥∥∥∥2
L2(G,μ)

+ 2γ2b2XRe

∫
G

d2θ

|∇Hd|2L0g(x)g(x)dx+ γ4b4X

∥∥∥∥ dθ

|∇Hd|g
∥∥∥∥2
L2(G,μ)

=

∥∥∥∥ dθ

|∇Hd|L0g
∥∥∥∥2
L2(G,μ)

− 2γ2b2XRe

N∑
j=1

∫
G

d2θ

|∇Hd|2X
2
j g(x)g(x)dx

+ γ4b4X

∥∥∥∥ dθ

|∇Hd|g
∥∥∥∥2
L2(G,μ)

=

∥∥∥∥ dθ

|∇Hd|L0g
∥∥∥∥2
L2(G,μ)

+ 2γ2b2X

∥∥∥∥ dθ

|∇Hd|∇Hg
∥∥∥∥2
L2(G,μ)

+ γ4b4X

∥∥∥∥ dθ

|∇Hd|g
∥∥∥∥2
L2(G,μ)

+ 2γ2b2XRe

N∑
j=1

∫
G

Xjg(x)g(x)Xj

(
d2θ

|∇Hd|2
)
dx

=

∥∥∥∥ dθ

|∇Hd|L0g
∥∥∥∥2
L2(G,μ)

+ 2γ2b2X

∥∥∥∥ dθ

|∇Hd|∇Hg
∥∥∥∥2
L2(G,μ)

+ γ4b4X

∥∥∥∥ dθ

|∇Hd|g
∥∥∥∥2
L2(G,μ)



7.4. Rellich inequalities for sub-Laplacians with drift 351

+ 4γ2b2XθRe
N∑
j=1

∫
G

Xjg(x)g(x)
d2θ−1Xjd

|∇Hd|2 dx

− 4γ2b2XRe

N∑
j=1

∫
G

Xjg(x)g(x)
d2θXj |∇Hd|
|∇Hd|3 dx

=:

∥∥∥∥ dθ

|∇Hd|L0g
∥∥∥∥2
L2(G,μ)

+ 2γ2b2X

∥∥∥∥ dθ

|∇Hd|∇Hg
∥∥∥∥2
L2(G,μ)

+ γ4b4X

∥∥∥∥ dθ

|∇Hd|g
∥∥∥∥2
L2(G,μ)

+ I1 + I2. (7.31)

Then, by Theorem 7.1.3 one has for Q+ 2θ − 2 > 0 that

2γ2b2X

∥∥∥∥ dθ

|∇Hd|∇Hg
∥∥∥∥2
L2(G,μ)

≥ 2γ2b2X

(
Q+ 2θ − 2

2

)2 ∥∥dθ−1g
∥∥2
L2(G,μ)

. (7.32)

On the other hand by Theorem 7.2.2 we get for Q + 2θ − 4 > 0 that∥∥∥∥ dθ

|∇Hd|L0g
∥∥∥∥2
L2(G,μ)

≥ (Q+ 2θ − 4)2(Q− 2θ)2

16

∥∥dθ−2|∇Hd|g
∥∥2
L2(G,μ)

. (7.33)

Putting (7.32) and (7.33) into (7.31) we obtain for Q+ 2θ − 4 > 0 that∥∥∥∥ dθ

|∇Hd|LXf
∥∥∥∥2
L2(G,μX )

≥ (Q + 2θ − 4)2(Q− 2θ)2

16

∥∥dθ−2|∇Hd|g
∥∥2
L2(G,μ)

+ 2γ2b2X

(
Q+ 2θ − 2

2

)2 ∥∥dθ−1g
∥∥2
L2(G,μ)

+ γ4b4X

∥∥∥∥ dθ

|∇Hd|g
∥∥∥∥2
L2(G,μ)

+ I1 + I2. (7.34)

Let us calculate I1 from (7.31):

I1 = 4γ2b2XθRe
N∑
j=1

∫
G

Xjg(x)g(x)
d2θ−1Xjd

|∇Hd|2 dx

= −4γ2b2XθRe
N∑
j=1

∫
G

g(x)Xjg(x)
d2θ−1Xjd

|∇Hd|2 dx

− 4γ2b2XθRe

N∑
j=1

∫
G

|g(x)|2Xj

(
d2θ−1Xjd

|∇Hd|2
)
dx.
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It follows that

I1 = 4γ2b2XθRe

N∑
j=1

∫
G

Xjg(x)g(x)
d2θ−1Xjd

|∇Hd|2 dx

= −2γ2b2Xθ
N∑
j=1

∫
G

|g(x)|2Xj

(
d2θ−1Xjd

|∇Hd|2
)
dx.

Putting d = u
1

2−Q we calculate

N∑
j=1

Xj

(
d2θ−1Xjd

|∇Hd|2
)

= (2−Q)

N∑
j=1

Xj

(
u

2θ−Q
2−Q

|∇Hu|2Xju

)

= (2−Q)

N∑
j=1

2θ −Q
2−Q u

2θ−2
2−Q

(Xju)
2

|∇Hu|2 + (2−Q)

N∑
j=1

u
2θ−Q
2−Q X2

j u

|∇Hu|2

− 2(2−Q)
N∑
j=1

u
2θ−Q
2−Q Xju

|∇Hu|3 Xj |∇Hu|,

which implies, using (1.104), that

I1 = −2γ2b2Xθ
∫
G

⎛⎝ N∑
j=1

Xj

(
d2θ−1Xjd

|∇Hd|2
)⎞⎠ |g(x)|2dx

= −2γ2b2Xθ(2θ +Q− 2)

∫
G

u
2θ−2
2−Q |g(x)|2dx

= −2γ2b2Xθ(2θ +Q− 2)

∫
G

|g(x)|2d2θ−2dx. (7.35)

Now for I2 by integration by parts we get

I2 = −4γ2b2XRe
N∑
j=1

∫
G

Xjg(x)g(x)
d2θXj |∇Hd|
|∇Hd|3 dx

= 2γ2b2X

N∑
j=1

∫
G

|g(x)|2Xj

(
d2θXj |∇Hd|
|∇Hd|3

)
dx.

Using d = u
1

2−Q one has

N∑
j=1

Xj

(
d2θXj |∇Hd|
|∇Hd|3

)
= (2−Q)2

N∑
j=1

Xj

(
u

2θ−3Q+3
2−Q

|∇Hu|3 Xj

(
u
Q−1
2−Q |∇Hu|

))

= (2 −Q)2
N∑
j=1

Xj

(
Q− 1

2−Qu
2θ−Q
2−Q

Xju

|∇Hu|2 + u
2θ−2Q+2

2−Q
Xj |∇Hu|
|∇Hu|3

)
=: (2 −Q)2J1 + (2−Q)2J2. (7.36)
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Then, taking into account (1.104) we have for J1 that

J1 =
N∑
j=1

Xj

(
Q− 1

2−Qu
2θ−Q
2−Q

Xju

|∇Hu|2
)

=
(Q − 1)(2θ −Q)

(Q− 2)2
u

2θ−2
2−Q

N∑
j=1

(Xju)
2

|∇Hu|2

+
Q− 1

2−Qu
2θ−Q
2−Q

N∑
j=1

X2
j u

|∇Hu|2 −
2(Q− 1)

(2 −Q)
u

2θ−Q
2−Q

N∑
j=1

XjuXj|∇Hu|
|∇Hu|3

=
(Q − 1)(2θ −Q)

(Q− 2)2
u

2θ−2
2−Q +

Q− 1

2−Qu
2θ−Q
2−Q

Lu
|∇Hu|2 +

2(Q− 1)2

(Q− 2)2
u

2θ−2
2−Q . (7.37)

Now we calculate for J2 that

J2 =
N∑
j=1

Xj

(
u

2θ−2Q+2
2−Q

Xj |∇Hu|
|∇Hu|3

)

=
2θ − 2Q+ 2

2−Q u
2θ−Q
2−Q

N∑
j=1

XjuXj|∇Hu|
|∇Hu|3

+ u
2θ−2Q+2

2−Q
N∑
j=1

X2
j |∇Hu|
|∇Hu|3 − 3u

2θ−2Q+2
2−Q

N∑
j=1

(Xj |∇Hu|)2
|∇Hu|4

=
2θ − 2Q+ 2

2−Q
(
Q− 1

Q− 2

)
u

2θ−2
2−Q + u

2θ−2Q+2
2−Q

L|∇Hu|
|∇Hu|3

− 3u
2θ−2Q+2

2−Q
|∇H |∇Hu||2
|∇Hu|4 , (7.38)

where we have used (1.104) in the last equality. Plugging (7.37) and (7.38) into
(7.36), we obtain

N∑
j=1

Xj

(
d2θXj |∇Hd|
|∇Hd|3

)
= (Q− 1)(3Q− 4)u

2θ−2
2−Q + (2−Q)(Q− 1)

Lu
|∇Hu|2

+ (Q− 2)2u
2θ−2Q+2

2−Q |∇Hu|−4(|∇Hu|L|∇Hu| − 3|∇H |∇Hu||2).
Then we get for I2 the expression

I2 = 2γ2b2X

N∑
j=1

∫
G

|g(x)|2Xj

(
d2θXj |∇Hd|
|∇Hd|3

)
dx

= 2γ2b2X(Q− 1)(3Q− 4)

∫
G

u
2θ−2
2−Q |g(x)|2dx

+ 2γ2b2X(Q− 2)2
∫
G

u
2θ−2Q+2

2−Q |∇Hu|−4(|∇Hu|L|∇Hu| − 3|∇H |∇Hu||2)|g(x)|2dx.
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Setting here u = d2−Q, we get for I2 that

I2 = 2γ2b2X(Q− 1)(3Q− 4)

∫
G

d2θ−2|g(x)|2dx

+ 2γ2b2X

∫
G

d2θ+2Q−2

|∇Hd|4
(
d1−Q|∇Hd|L(d1−Q|∇Hd|)− 3|∇H(d1−Q|∇Hd|)|2

)
|g(x)|2dx.

Thus, by this and (7.35) we have

I1 + I2 = 2γ2b2X((Q− 1)(3Q− 4)− θ(2θ +Q− 2))
∥∥∥dθ−1g

∥∥∥2

L2(G,μ)

+ 2γ2b2X

∫
G

d2θ+2Q−2

|∇Hd|4
(
d1−Q|∇Hd|L(d1−Q|∇Hd|)− 3|∇H (d1−Q|∇Hd|)|2

)
|g(x)|2dx.

Combining this with (7.34) and taking into account (1.101) we obtain Theorem
7.4.1. �

7.5 Hardy inequalities on the complex affine group

The aim of this section is to show that some of the above techniques are also
applicable for non-unimodular Lie groups. For example, consider the complex affine
groups:

Definition 7.5.1 (Complex affine group). The complex affine group is the semi-
direct product

G = C � C
∗,

where C∗ is the multiplicative group of nonzero complex numbers. This means
that G is equal to C×C∗ as a set, with the group composition law of the complex
affine group G given by

(x, y) ◦ (x′, y′) = (x+ yx′, yy′)

for all x, x′ ∈ C and y, y′ ∈ C∗. We will be also using the notation x := t+ is and
y := τ + iς . The complex affine group is a Lie group, with its Lie algebra denoted
by g.

We now fix a basis {X1, X2, X3, X4} of g given by

X1 =
∂

∂t
, X3 = t

∂

∂t
+ s

∂

∂s
+ τ

∂

∂τ
+ ς

∂

∂ς
,

X2 =
∂

∂s
, X4 = −s ∂

∂t
+ t

∂

∂s
− ς ∂

∂τ
+ τ

∂

∂ς
.

These right invariant vector fields correspond to the canonical basis elements of g,
and it will be convenient to work with right invariant vector fields here. Therefore,
the positive (sub-)Laplacian

ΔX = −
4∑
j=1

X2
j (7.39)
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is called a right invariant canonical Laplacian of the complex affine group G. The
fundamental solution of the Laplacian ΔX was computed explicitly by Gaudry
and Sjögren [GS98] in the following form

ε =
1

4π2

|y|2
|x|2 + |1− y|2 .

We will also use the notation

∇X = (X1, X2, X3, X4)

for the right invariant (canonical) gradient on G. The right invariant and the left
invariant Haar measures on G are defined by

dμr = dx
dy

|y|2 , dμl = dx
dy

|y|4 ,

with the modular function m(x, y) = |y|2, respectively. In addition, one has the
following integration rules with respect to the modular function∫

G

f(ηζ)dμl(η) = m−1(ζ)

∫
G

f(η)dμl(η),∫
G

f(η−1)m−1(η)dμl(η) =

∫
G

f(η)dμl(η).

We now present a Hardy type inequality on G with the proof relying on
properties of the fundamental solution of the right invariant canonical Laplacian
ΔX on the complex affine group G given in (7.39).

Theorem 7.5.2 (Hardy inequalities on the complex affine group). Let G be the
complex affine group. Let α ∈ R, α > 2− β, β > 2. Then we have∫

G

ε
α

2−β |∇Xu|2 dμl ≥
(
β + α− 2

2

)2 ∫
G

ε
α−2
2−β |∇Xε 1

2−β |2|u|2 dμl, (7.40)

for all u ∈ C∞
0 (G), where ∇X = (X1, X2, X3, X4).

Proof of Theorem 7.5.2. By using formula (2.8) we can assume without loss of
generality that u is real-valued. Then let us set u = dγq for some real-valued
functions d > 0, q, and a constant γ �= 0 to be chosen later. We use our usual
notation for the potential theory considerations:

∇̃u :=

4∑
k=1

(Xku)Xk.
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Then we can calculate

(∇̃u)u = (∇̃dγq)dγq

=

4∑
k=1

Xk(d
γq)Xk(d

γq)

= γ2d2γ−2
4∑

k=1

(Xkd)
2q2 + 2γd2γ−1q

4∑
k=1

XkdXkq + d2γ
4∑

k=1

(Xkq)
2

= γ2d2γ−2((∇̃d)d)q2 + 2γd2γ−1q(∇̃d)q + d2γ(∇̃q)q.

Integrating by parts we observe that

2γ

∫
G

dα+2γ−1q(∇̃d)qdμl = γ

α+ 2γ

∫
G

(∇̃dα+2γ)q2dμl

=
γ

α+ 2γ

∫
G

(∇̃q2)dα+2γdμl

= − γ

α+ 2γ

∫
G

q2ΔXd
α+2γdμl.

In particular, because of this, we will later choose γ so that dα+2γ = ε. Conse-
quently, we have∫

G

dα(∇̃u)udμl = γ2
∫
G

dα+2γ−2((∇̃d)d) q2dμl + γ

α+ 2γ

∫
G

(∇̃dα+2γ)q2dμl

+

∫
G

dα+2γ(∇̃q)qdμl

= γ2
∫
G

dα+2γ−2((∇̃d)d) q2dμl (7.41)

− γ

α+ 2γ

∫
G

q2ΔXd
α+2γdμl +

∫
G

dα+2γ(∇̃q)qdμl

≥ γ2
∫
G

dα+2γ−2((∇̃d)d) q2dμl − γ

α+ 2γ

∫
G

q2ΔXd
α+2γdμl,

since d > 0 and (∇̃q)q = |∇Xq|2 ≥ 0. On the other hand, it can be readily checked
that for a vector field X we have

γ

α+ 2γ
X2(dα+2γ) = γX(dα+2γ−1Xd) =

γ

2− βX(dα+2γ+β−2X(d2−β))

=
γ

2− β (α+ 2γ + β − 2)dα+2γ+β−3(Xd)X(d2−β) +
γ

2− β d
α+2γ+β−2X2(d2−β)

= γ(α+ 2γ + β − 2)dα+2γ−2(Xd)2 +
γ

2− β d
α+2γ+β−2X2(d2−β).
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Consequently, we get the equality

− γ

α+ 2γ
ΔXd

α+2γ = −γ(α+2γ+β−2)dα+2γ−2(∇̃d)d− γ

2− β d
α+2γ+β−2ΔXd

2−β .

(7.42)
We now substitute (7.42) into (7.41) and use that q2 = d−2γu2, so that∫

G

dα(∇̃u)udμl ≥ (− γ2 − γ(α+ β − 2))

∫
G

dα−2((∇̃d)d)u2dμl

− γ

2− β
∫
G

(ΔXd
2−β)dα+β−2u2dx.

We now take d := ε
1

2−β , and since β > 2 and ε is the fundamental solution to ΔX

we have ∫
G

(ΔXε)ε
α+β−2
2−β u2dx = 0, α > 2− β, β > 2.

Thus, we obtain∫
G

ε
α

2−β (∇̃u)u dμl ≥ (−γ2 − γ(α+ β − 2))

∫
G

ε
α−2
2−β (∇̃ε 1

2−β )ε
1

2−β u2 dμl.

Taking γ = 2−β−α
2 , we obtain (7.40). �

As usual, a Hardy inequality, such as the one in Theorem 7.5.2, implies
uncertainty principles:

Corollary 7.5.3 (Uncertainty principles on the complex affine group). Let G be the
complex affine group and let β > 2. Then for all u ∈ C∞

0 (G) we have∫
G

ε
2

2−β |∇Xε 1
2−β |2|u|2dμl

∫
G

|∇Xu|2dμl ≥
(
β − 2

2

)2(∫
G

|∇Xε 1
2−β |2|u|2dμl

)2

,

(7.43)
as well as∫

G

ε
2

2−β

|∇Xε 1
2−β |2

|u|2dμl
∫
G

|∇Xu|2dμl ≥
(
β − 2

2

)2(∫
G

|u|2dμl
)2

. (7.44)

Proof of Corollary 7.5.3. Taking α = 0 in the inequality (7.40) and using Hardy
inequality in Theorem 7.5.2, we get∫

G

ε
2

2−β |∇Xε 1
2−β |2|u|2dμl

∫
G

|∇Xu|2dμl

≥
(
β − 2

2

)2 ∫
G

ε
2

2−β |∇Xε 1
2−β |2|u|2dμl

∫
G

|∇Xε 1
2−β |2

ε
2

2−β
|u|2 dμl

≥
(
β − 2

2

)2(∫
G

|∇Xε 1
2−β |2|u|2dμl

)2

,

which shows (7.43). The proof of (7.44) is similar. �
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7.6 Hardy inequalities for Baouendi–Grushin operators

In this section, we describe a special case of the Hardy inequalities on homogeneous
groups, namely, inequalities associated to the Baouendi–Grushin vector fields on
Rn. However, the described methods also work for non-smooth vector fields al-
lowing a singularity at the origin, so we include such cases in our exposition as
well.

Definition 7.6.1 (Baouendi–Grushin operator and vector fields). Let

z = (x1, . . . , xm, y1, . . . , yk) = (x, y) ∈ R
m × R

k

with k,m ≥ 1, k +m = n. Let γ ≥ 0. Let us consider the (Baouendi–Grushin)
vector fields

Xi =
∂

∂xi
, i = 1, . . . ,m, Yj = |x|γ ∂

∂yj
, j = 1, . . . , k.

The corresponding subelliptic gradient, which is the n-dimensional vector field, is
then defined as

∇γ := (X1, . . . , Xm, Y1, . . . , Yk) = (∇x, |x|γ∇y). (7.45)

The Baouendi–Grushin operator on R
m+k is defined by

Δγ =
m∑
i=1

X2
i +

k∑
j=1

Y 2
j = Δx + |x|2γΔy = ∇γ · ∇γ , (7.46)

where Δx and Δy are the Laplace operators in the variables x ∈ Rm and y ∈ Rk,
respectively.

If γ is an even positive integer then the vector fields Xi, Yj are smooth, and
Δγ is hypoelliptic as a sum of squares of C∞ vector fields satisfying Hörmander’s
condition

rank Lie[X1, . . . , Xm, Y1, . . . , Yk] = n.

For any γ ≥ 0 the dilation structure on Rm+k associated to Δγ is

δλ(x, y) := (λx, λ1+γy)

for λ > 0. Indeed, it is easy to check that this dilation structure makes the vector
fields homogeneous,

Xi(δλ) = λδλ(Xi), Yi(δλ) = λδλ(Yi),

and hence also
∇γ ◦ δλ = λδλ∇γ .

The homogeneous dimension of Rm × Rk with respect to this dilation is

Q = m+ (1 + γ)k. (7.47)
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Definition 7.6.2 (Baouendi–Grushin distance). Let ρ(z) be the distance function,
for z = (x, y) ∈ Rm × Rk defined by

ρ = ρ(z) := (|x|2(1+γ) + (1 + γ)2|y|2) 1
2(1+γ) . (7.48)

It is easy to check that it satisfies

|∇γρ| = |x|
γ

ργ
. (7.49)

We will formulate a refined version of the Hardy inequality for Baouendi–
Grushin vector fields, and then in Remark 7.6.4 we will put it in the context of
the existing rich literature on this subject.

Theorem 7.6.3 (Refined Hardy inequality for Baouendi–Grushin vector fields).
Let (x, y) = (x1, . . . , xm, y1, . . . , yk) ∈ Rm × Rk with k,m ≥ 1, k + m = n. Let
α1, α2 ∈ R be such that

Q+ α1 − 2 > 0 and m+ γα2 > 0.

Then for all complex-valued functions f ∈ C∞
0 (Rn\{0}) we have∫

Rn

ρα1 |∇γρ|α2

(∣∣∣∣ d

d|x|f
∣∣∣∣2 + |x|2γ |∇yf |2

)
dxdy

≥
(
Q+ α1 − 2

2

)2 ∫
Rn

ρα1 |∇γρ|α2
|∇γρ|2
ρ2

|f |2dxdy,
(7.50)

with sharp constant
(
Q+α1−2

2

)2
.

Remark 7.6.4.

1. First, a Hardy inequality for Grushin operators was obtained by Garofalo
[Gar93], who has shown the inequality∫

Rn

(|∇xf |2 + |x|2γ |∇yf |2)dxdy

≥
(
Q− 2

2

)2 ∫
Rn

( |x|2γ
|x|2+2γ + (1 + γ)2|y|2

)
|f |2dxdy,

(7.51)

where x ∈ R
m, y ∈ R

k with n = m+k, m, k ≥ 1, γ ≥ 0, Q = m+(1+γ)k and
f ∈ C∞

0 (Rm×Rk\{(0, 0)}). Theorem 7.6.3 gives (7.51) when α1 = α2 = 0 in
view of the inequality ∣∣∣∣ d

d|x|f
∣∣∣∣ ≤ |∇xf |. (7.52)
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2. Weighted Lp-versions of (7.51) were investigated by D’Ambrosio in [D’A04a]
who has obtained the following estimate: Let Ω ⊂ Rn be an open set. Let
p > 1, k,m ≥ 1, α, β ∈ R be such that m+(1+γ)k > α−β and m > γp−β.
Then for every f ∈ D1,p

γ (Ω, |x|β−γpρ(1+γ)p−α) we have∫
Ω

|∇γf |p|x|β−γpρ(1+γ)p−αdxdy ≥
(
Q+ β − α

p

)p ∫
Ω

|f |p |x|
β

ρα
dxdy, (7.53)

where D1,p
γ (Ω, ω) stands for the closure of C∞

0 (Ω) in the norm(∫
Ω
|∇γf |pωdzdy

)1/p
for a weight ω ∈ L1

loc(Ω) with ω > 0 a.e. on Ω.

If 0 ∈ Ω, then the constant
(
Q+β−α

p

)p
in (7.53) is sharp. The inequality

(7.53) has also been obtained in [Kom15], and in [SJ12] for Ω = R
n with sharp

constant.

In view of (7.52), Theorem 7.6.3 refines (7.53) when p = 2 and Ω = Rn.
We also mention that in the case p = 2 inequality (7.53) has been also shown
in [Kom15] and [SJ12] by different methods.

3. In [SJ12], a Hardy–Rellich type inequality for the Baouendi–Grushin operator
was obtained in L2 with sharp constant:(

Q− α− 2

2

)2 ∫
Rn

|∇γf |2ραdxdy ≤
∫
Rn

|Δγf |2ρα+2|∇γρ|−2dxdy,

where p > 1, 2−Q
3 ≤ α ≤ Q− 2, f ∈ C∞

0 (Rn\{0}).
4. Inequalities of the above types have been also studied for subelliptic operators

of different types, see, e.g., [Gar93], [GL90], [D’A04b], [D’A04a] and [DGN06],
and also with remainder estimates, see, e.g., [DGN10] and references therein.

5. Magnetic Hardy inequalities for the Baouendi–Grushin operators have been
obtained in [LRY17]. There, the authors also obtained Hardy inequalities for
the magnetic Landau Hamiltonian.

Proof of Theorem 7.6.3. For the proof we follow [LRY17]. We denote

r := |x| and F (r, y) := ρα1 |∇γρ|α2 .

Then, using (7.48) and (7.49) we can write

F (r, y) = ρα1 |∇γρ|α2 = rα2γρα1−α2γ = rα2γ(r2(1+γ)+(1+γ)2|y|2)α1−α2γ

2(1+γ) . (7.54)

Let us first calculate the following expression∫
Rk

∫ ∞

0

(∣∣∣∣(∂r + α
∂rρ

ρ

)
f

∣∣∣∣2 + r2γ
∣∣∣∣(∇y + α

∇yρ
ρ

)
f

∣∣∣∣2
)
rm−1F (r, y)drdy

=

∫
Rk

∫ ∞

0

(|∂rf |2 + r2γ |∇yf |2
)
rm−1F (r, y)drdy
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+ α2

∫
Rk

∫ ∞

0

(∣∣∣∣∂rρρ
∣∣∣∣2 + r2γ

∣∣∣∣∇yρρ
∣∣∣∣2
)
|f |2rm−1F (r, y)drdy

+ 2αRe

∫
Rk

∫ ∞

0

∂rρ

ρ
rm−1F (r, y)∂rf · fdrdy

+ 2αRe

∫
Rk

∫ ∞

0

∇yρ
ρ
· ∇yfr2γ+m−1F (r, y)fdrdy

=: I1 + I2 + I3 + I4. (7.55)

We now calculate the terms I2, I3, I4. Using the expressions

∂rρ

ρ
=
r2γ+1

ρ2γ+2
and

∇yρ
ρ

=
(γ + 1)y

ρ2γ+2
,

we calculate∣∣∣∣∂rρρ
∣∣∣∣2 + r2γ

∣∣∣∣∇yρρ
∣∣∣∣2 =

r4γ+2 + r2γ(γ + 1)2|y|2
ρ4γ+4

=
r2γ

ρ2γ+2
=
|∇γρ|2
ρ2

. (7.56)

Thus, we obtain

I2 = α2

∫ ∞

−∞

∫ ∞

0

|∇γρ|2
ρ2

|f |2rm−1F (r, y)drdy. (7.57)

For I3, we integrate by parts to get

I3 = −α
∫
Rk

∫ ∞

0

(2γ +m+ γα2)ρ
α1−α2γ−2γ−2r2γ+m−1+γα2 |f |2drdy

− α
∫
Rk

∫ ∞

0

(α1 − α2γ − 2γ − 2)ρα1−α2γ−4γ−4r4γ+m+γα2+1|f |2drdy.

Since F (r, y) = rα2γρα1−α2γ by (7.54), we obtain

I3 = − α
∫
Rk

∫ ∞

0

(
(2γ +m+ γα2)

r2γ

ρ2γ+2
+ (α1 − α2γ − 2γ − 2)

r4γ+2

ρ4γ+4

)
× rm−1F (r, y)|f |2drdy

= − α
∫
Rk

∫ ∞

0

(
2γ +m+ γα2 + (α1 − α2γ − 2γ − 2)

r2γ+2

ρ2γ+2

)
× |∇γρ|

2

ρ2
|f |2rm−1F (r, y)drdy.

Similarly, we have for I4 that

I4 = − α
∫
Rk

∫ ∞

0

divy

(
F (r, y)

∇yρ
ρ

)
r2γ+m−1|f |2drdy

= − α(γ + 1)

∫
Rk

∫ ∞

0

divy
(
ρα1−α2γ−2γ−2y

)
rα2γ+2γ+m−1|f |2drdy
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= − α
∫
Rk

∫ ∞

0

(
(α1 − α2γ − 2γ − 2)ρα1−α2γ−2γ−3 (γ + 1)2|y|2

ρ2γ+1

)
× rα2γ+2γ+m−1|f |2drdy

− α
∫
Rk

∫ ∞

0

k(γ + 1)ρα1−α2γ−2γ−2rα2γ+2γ+m−1|f |2drdy.

Since r2γ

ρ2γ+2 =
|∇γρ|2
ρ2 and F (r, y) = rα2γρα1−α2γ by (7.56) and (7.54), respectively,

we have

I4 = − α
∫
Rk

∫ ∞

0

(
(α1 − α2γ − 2γ − 2)

(γ + 1)2|y|2
ρ2γ+2

+ k(γ + 1)

)
× |∇γρ|

2

ρ2
|f |2rm−1F (r, y)drdy.

Then, taking into account (7.48) we get

I3 + I4 = − α
∫
Rk

∫ ∞

0

(α1 − α2γ − 2γ − 2 + 2γ +m+ γα2 + k(γ + 1))

× |∇γρ|
2

ρ2
|f |2rm−1F (r, y)drdy.

Finally, using that Q = m+ (1 + γ)k we obtain

I3 + I4 = −α
∫
Rk

∫ ∞

0

(Q+ α1 − 2)
|∇γρ|2
ρ2

|f |2rm−1F (r, y)drdy. (7.58)

Putting (7.57) and (7.58) in (7.55) we get∫
Rk

∫ ∞

0

(∣∣∣∣(∂r + α
∂rρ

ρ

)
f

∣∣∣∣2 + r2γ
∣∣∣∣(∇y + α

∇yρ
ρ

)
f

∣∣∣∣2
)
rm−1F (r, y)drdy

=

∫
Rk

∫ ∞

0

(|∂rf |2 + r2γ |∇yf |2
)
rm−1F (r, y)drdy

− ((Q+ α1 − 2)α− α2
) ∫

Rk

∫ ∞

0

|∇γρ|2
ρ2

|f |2rm−1F (r, y)drdy.

By substituting α = Q+α1−2
2 and taking into account (7.54), we obtain (7.50).

The sharpness of the constant
(
Q+α1−2

2

)2
in (7.50) follows from the inequal-

ities ∫
Rn

ρα1 |∇γρ|α2

(
|∇xf |2 + |x|2γ |∇yf |2

)
dxdy

≥
∫
Rn

ρα1 |∇γρ|α2

(∣∣∣∣ d

d|x|f
∣∣∣∣2 + |x|2γ |∇yf |2

)
dxdy

≥
(
Q + α1 − 2

2

)2 ∫
Rn

ρα1 |∇γρ|α2
|∇γρ|2
ρ2

|f |2dxdy,

since it is known that this inequality is sharp in (7.53), see Remark 7.6.4, Part 2.
�
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7.7 Weighted Lp-inequalities with boundary terms

In this section, we present a generalization of the weighted Lp-Hardy, Lp-Caffarelli–
Kohn–Nirenberg, and Lp-Rellich inequalities with respect to the inclusion of
boundary terms in the setting of stratified Lie groups. The appearing weights
are controlled by a real-valued function V with the property that LV does not
change sign. In addition to the inequalities themselves we will also give their re-
fined versions involving expressions appearing due to the boundary of the domain
in which these inequalities are derived. As a consequence, one can recover many
of the Hardy type inequalities and Heisenberg–Pauli–Weyl type uncertainty prin-
ciples on stratified groups by choosing special cases of the real-valued function
V and working with functions vanishing at the boundary. The exposition of this
section follows [RSS18d]. In Section 11.4 we will discuss boundary terms again but
emphasizing the use of the L-gauge in that discussion.

Setting of this section

Thus, throughout this section Ω is an admissible domain in the stratified group
G, and V is a real-valued function in L1

loc(Ω) with partial derivatives of order up
to two in L1

loc(Ω), and such that LV is of one sign. Also, as usual, N denotes the
dimension of the first stratum of the group G and ∇H the horizontal gradient on
G. Then, as in (1.87), the vector field ∇̃u is defined by

∇̃u :=

N∑
k=1

(Xku)Xk. (7.59)

7.7.1 Hardy and Caffarelli–Kohn–Nirenberg inequalities

We start with Hardy and Caffarelli–Kohn–Nirenberg inequalities with generalized
weights.

Theorem 7.7.1 (Lp-Hardy inequality with generalized weight and boundary term).
Let 1 < p <∞. Let V be a real-valued function such that LV < 0 holds a.e. in Ω.
Then for all complex-valued functions u ∈ C2(Ω) ∩ C1(Ω) we have the inequality∥∥∥|LV | 1p u∥∥∥p

Lp(Ω)
≤ p

∥∥∥∥∥ |∇HV ||LV | p−1
p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

∥∥∥|LV | 1p u∥∥∥p−1

Lp(Ω)
−
∫
∂Ω

|u|p〈∇̃V, dx〉.

(7.60)

Proof of Theorem 7.7.1. Let us denote

υε := (|u|2 + ε2)
1
2 − ε.

Then υpε ∈ C2(Ω) ∩ C1(Ω) and using Green’s first formula in Theorem 1.4.6 and
the fact that LV < 0 we get∫

Ω

|LV |υpε dx = −
∫
Ω

LV υpε dx =

∫
Ω

(∇̃V )υpε dx−
∫
∂Ω

υpε 〈∇̃V, dx〉
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=

∫
Ω

∇HV · ∇Hυpε dx−
∫
∂Ω

υpε 〈∇̃V, dx〉

≤
∫
Ω

|∇HV ||∇Hυpε |dx−
∫
∂Ω

υpε 〈∇̃V, dx〉

= p

∫
Ω

(
|∇HV |
|LV | p−1

p

)
|LV | p−1

p υp−1
ε |∇Hυε|dx−

∫
∂Ω

υpε 〈∇̃V, dx〉,

where, as usual, (∇̃u)v = ∇Hu · ∇Hv. We then have

∇Hυε = (|u|2 + ε2)−
1
2 |u|∇H |u|,

since 0 ≤ υε ≤ |u|. Thus, we also have

υp−1
ε |∇Hυε| ≤ |u|p−1|∇H |u||.

On the other hand, let us write

u(x) = R(x) + iI(x),

where R(x) and I(x) denote the real and imaginary parts of u. We can restrict to
the set where u �= 0. Then we have

(∇H |u|)(x) = 1

|u| (R(x)∇HR(x) + I(x)∇HI(x)) if u �= 0.

Since ∣∣∣∣ 1|u| (R∇HR+ I∇HI)
∣∣∣∣2 ≤ |∇HR|2 + |∇HI|2,

we get that |∇H |u|| ≤ |∇Hu| a.e. in Ω. Therefore,∫
Ω

|LV |υpε dx ≤ p
∫
Ω

(
|∇HV |
|LV | p−1

p

|∇Hu|
)
|LV | p−1

p |u|p−1dx−
∫
∂Ω

υpε 〈∇̃V, dx〉

≤ p
(∫

Ω

( |∇HV |p
|LV |(p−1)

|∇Hu|p
)
dx

) 1
p
(∫

Ω

|LV ||u|pdx
) p−1

p

−
∫
∂Ω

υpε 〈∇̃V, dx〉,

where we have used Hölder’s inequality in the last line. Thus, when ε → 0, we
obtain (7.60). �
Remark 7.7.2.

1. If u vanishes on the boundary ∂Ω, then (7.60) extends the Davies and Hinz
result [DH98] to the following weighted Lp-Hardy type inequality on stratified
groups:∥∥∥|LV | 1p u∥∥∥

Lp(Ω)
≤ p

∥∥∥∥∥ |∇HV ||LV | p−1
p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

, 1 < p <∞. (7.61)
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2. There are a number of other interesting consequences of Theorem 7.7.1 that
we can record. We now discuss several such statements. First we present a
horizontal Lp-Caffarelli–Kohn–Nirenberg type inequality with the boundary
term on the stratified group G. Incidentally, this also gives another proof of
the horizontal Lp-Hardy type inequality (such as that in Theorem 6.2.1).

Corollary 7.7.3 (Horizontal Lp-Caffarelli–Kohn–Nirenberg inequality with bound-
ary term). Let 1 < p < ∞ and let α, β ∈ R. Let Ω be an admissible domain in a
stratified group G with N ≥ 3 being the dimension of the first stratum. Let | · |E be
the Euclidean norm on RN . Then for all u ∈ C2(Ω\{x′ = 0}) ∩ C1(Ω\{x′ = 0})
we have

|N − γ|
p

∥∥∥∥∥ u

|x′|
γ
p

E

∥∥∥∥∥
p

Lp(Ω)

≤
∥∥∥∥∇Hu|x′|αE

∥∥∥∥
Lp(Ω)

∥∥∥∥∥∥ u

|x′|
β
p−1

E

∥∥∥∥∥∥
p−1

Lp(Ω)

− 1

p

∫
∂Ω

|u|p〈∇̃|x′|2−γE , dx〉,

(7.62)
for 2 < γ < N with γ = α + β + 1. In particular, if u vanishes on the boundary
∂Ω, we have (6.3).

Proof of Corollary 7.7.3. We will show that (7.62) follows as a special case of
(7.60). Let us take

V (x) := |x′|2−γE .

Then we have

|∇HV | = |2− γ||x′|1−γE , |LV | = |(2− γ)(N − γ)||x′|−γE ,

and observe that LV = (2 − γ)(N − γ)|x′|−γE < 0. To use (7.60) we calculate the
following expressions:∥∥∥|LV | 1pu∥∥∥p

Lp(Ω)
= |(2− γ)(N − γ)|

∥∥∥∥∥ u

|x′|
γ
p

E

∥∥∥∥∥
p

Lp(Ω)

,

∥∥∥∥∥ |∇HV ||LV | p−1
p

∇Hu
∥∥∥∥∥
Lp(Ω)

=
|2 − γ|

|(2− γ)(N − γ)| p−1
p

∥∥∥∥∥∥ |∇Hu||x′|
γ−p
p

E

∥∥∥∥∥∥
Lp(Ω)

,

∥∥∥|LV | 1pu∥∥∥p−1

Lp(Ω)
= |(2− γ)(N − γ)| p−1

p

∥∥∥∥∥ u

|x′|
γ
p

E

∥∥∥∥∥
p−1

Lp(Ω)

.

Thus, (7.60) implies the inequality

|N − γ|
p

∥∥∥∥∥ u

|x′|
γ
p

E

∥∥∥∥∥
p

Lp(Ω)

≤
∥∥∥∥∥∥ ∇Hu|x′|

γ−p
p

E

∥∥∥∥∥∥
Lp(Ω)

∥∥∥∥∥ u

|x′|
γ
p

E

∥∥∥∥∥
p−1

Lp(Ω)

− 1

p

∫
∂Ω

|u|p〈∇̃|x′|2−γE , dx〉.

If we denote α = γ−p
p and β

p−1 = γ
p , we obtain (7.62). �
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Another interesting feature of Theorem 7.7.1 is that it also allows one to
obtain inequalities with the L-gauge d.

Let us give an example.

Corollary 7.7.4 (Hardy inequality with L-gauge weights and boundary term). Let
Ω ⊂ G be an admissible domain in a stratified group G of homogeneous dimension
Q ≥ 3, and assume that 0 /∈ ∂Ω. Let 2−Q < α < 0. Let u ∈ C1(Ω\{0})∩C(Ω\{0}).
Then we have

|Q+ α− 2|
p

∥∥∥dα−2
p |∇Hd| 2pu

∥∥∥
Lp(Ω)

(7.63)

≤
∥∥∥d p+α−2

p |∇Hd|
2−p
p |∇Hu|

∥∥∥
Lp(Ω)
− 1

p

∥∥∥dα−2
p |∇Hd| 2p u

∥∥∥1−p
Lp(Ω)

∫
∂Ω

dα−1|u|p〈∇̃d, dx〉.

Proof of Corollary 7.7.4. First, we can multiply both sides of the inequality (7.60)

by
∥∥∥|LV | 1p u∥∥∥1−p

Lp(Ω)
, so that we have the inequality

∥∥∥|LV | 1p u∥∥∥
Lp(Ω)

≤ p
∥∥∥∥∥ |∇HV ||LV | p−1

p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

−
∥∥∥|LV | 1p u∥∥∥1−p

Lp(Ω)

∫
∂Ω

|u|p〈∇̃V, dx〉.

(7.64)

Now, let us take V := dα. Since d = ε
1

2−Q for the fundamental solution ε of L, we
have

Ldα = ∇H(∇Hε α
2−Q ) = ∇H

(
α

2−Qε
α+Q−2
2−Q ∇Hε

)
=
α(α +Q− 2)

(2−Q)2
ε
α−4+2Q

2−Q |∇Hε|2 + α

2−Qε
α+Q−2
2−Q Lε.

Since ε is the fundamental solution of L, it follows that

Ldα =
α(α+Q − 2)

(2 −Q)2
ε
α−4+2Q

2−Q |∇Hε|2 = α(α +Q− 2)dα−2|∇Hd|2.

From this we can observe that Ldα < 0, and also a direct calculation yields the
identities ∥∥∥|Ldα| 1p u∥∥∥

Lp(Ω)
= α

1
p |Q+ α− 2| 1p

∥∥∥dα−2
p |∇Hd| 2p u

∥∥∥
Lp(Ω)

,∥∥∥∥∥ |∇Hdα||Ldα| p−1
p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

= α
1
p |Q+ α− 2| 1−pp

∥∥∥dα−2+p
p |∇Hd|

2−p
p |∇Hu|

∥∥∥
Lp(Ω)

,

∥∥∥|Ldα| 1p u∥∥∥1−p
Lp(Ω)

∫
∂Ω

|u|p〈∇̃dα, dx〉

= α
1
p |Q + α− 2| 1−pp

∥∥∥dα−2
p |∇Hd| 2p u

∥∥∥1−p
Lp(Ω)

∫
∂Ω

dα−1|u|p〈∇̃d, dx〉.
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Using (7.64) we arrive at

|Q+ α− 2|
p

∥∥∥dα−2
p |∇Hd| 2p u

∥∥∥
Lp(Ω)

≤
∥∥∥d p+α−2

p |∇Hd|
2−p
p |∇Hu|

∥∥∥
Lp(Ω)
− 1

p

∥∥∥dα−2
p |∇Hd| 2p u

∥∥∥1−p
Lp(Ω)

∫
∂Ω

dα−1|u|p〈∇̃d, dx〉,

which implies (7.63). �

The inequality (7.64) implies the following generalized Heisenberg–Pauli–
Weyl type uncertainty principle on stratified groups.

Corollary 7.7.5 (Weighted Heisenberg–Pauli–Weyl uncertainty principle with
boundary term). Let Ω ⊂ G be an admissible domain in a stratified group G

and let V ∈ C2(Ω) be real-valued. Then for all complex-valued functions u ∈
C2(Ω) ∩ C1(Ω) we have∥∥∥|LV |− 1

p u
∥∥∥
Lp(Ω)

∥∥∥∥∥ |∇HV ||LV | p−1
p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

≥ 1

p
‖u‖2Lp(Ω) +

1

p

∥∥∥|LV |− 1
p u
∥∥∥
Lp(Ω)

∥∥∥|LV | 1pu∥∥∥1−p
Lp(Ω)

∫
∂Ω

|u|p〈∇̃V, dx〉.
(7.65)

In particular, if u vanishes on the boundary ∂Ω, then we have∥∥∥|LV |− 1
p u
∥∥∥
Lp(Ω)

∥∥∥∥∥ |∇HV ||LV | p−1
p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

≥ 1

p
‖u‖2Lp(Ω) . (7.66)

By setting V = |x′|α in the inequality (7.66), we recover the Heisenberg–
Pauli–Weyl type uncertainty principle on stratified groups.

Proof of Corollary 7.7.5. By using the extended Hölder inequality and (7.64) we
have∥∥∥|LV |− 1

p u
∥∥∥
Lp(Ω)

∥∥∥∥∥ |∇HV ||LV | p−1
p

|∇Hu|
∥∥∥∥∥
Lp(Ω)

≥ 1

p

∥∥∥|LV |− 1
pu
∥∥∥
Lp(Ω)

∥∥∥|LV | 1p u∥∥∥
Lp(Ω)

+
1

p

∥∥∥|LV |− 1
p u
∥∥∥
Lp(Ω)

∥∥∥|LV | 1p u∥∥∥1−p
Lp(Ω)

∫
∂Ω

|u|p〈∇̃V, dx〉,

≥ 1

p

∥∥|u|2∥∥
L
p
2 (Ω)

+
1

p

∥∥∥|LV |− 1
pu
∥∥∥
Lp(Ω)

∥∥∥|LV | 1p u∥∥∥1−p
Lp(Ω)

∫
∂Ω

|u|p〈∇̃V, dx〉.

=
1

p
‖u‖2Lp(Ω) +

1

p

∥∥∥|LV |− 1
p u
∥∥∥
Lp(Ω)

∥∥∥|LV | 1pu∥∥∥1−p
Lp(Ω)

∫
∂Ω

|u|p〈∇̃V, dx〉,

proving (7.65). �
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7.7.2 Rellich inequalities

In this section, we describe weighted Rellich inequalities with boundary terms. We
consider first the L2 and then the Lp case.

Theorem 7.7.6 (L2-Rellich inequality with generalized weight and boundary term).
Let V ∈ C2(Ω) be a real-valued function such that LV (x) < 0 for all x ∈ Ω ⊂ G.
Then for every ε > 0 we have∥∥∥∥ |V ||LV | 12 Lu

∥∥∥∥2
L2(Ω)

≥ 2ε
∥∥∥V 1

2 |∇Hu|
∥∥∥2
L2(Ω)

+ ε(1− ε)
∥∥∥|LV | 12 u∥∥∥2

L2(Ω)

− ε
∫
∂Ω

(|u|2〈∇̃V, dx〉 − V 〈∇̃|u|2, dx〉),
(7.67)

for all complex-valued functions u ∈ C2(Ω) ∩ C1(Ω). In particular, if u vanishes
on the boundary ∂Ω, we have∥∥∥∥ |V ||LV | 12 Lu

∥∥∥∥2
L2(Ω)

≥ 2ε
∥∥∥V 1

2 |∇Hu|
∥∥∥2
L2(Ω)

+ ε(1− ε)
∥∥∥|LV | 12u∥∥∥2

L2(Ω)
.

Remark 7.7.7. In the case of Rn, an analogous L2-Rellich inequality was proved
by Schmincke [Sch72] and generalized further by Bennett [Ben89]. In the setting
of stratified group this and other results of this section were obtained in [RSS18d].

Proof of Theorem 7.7.6. Using Green’s second identity from Theorem 1.4.6 and
the condition that LV (x) < 0 in Ω, we obtain∫

Ω

|LV ||u|2dx = −
∫
Ω

V L|u|2dx−
∫
∂Ω

(|u|2〈∇̃V, dx〉 − V 〈∇̃|u|2, dx〉)

= −2
∫
Ω

V
(
Re(uLu) + |∇Hu|2

)
dx−

∫
∂Ω

(|u|2〈∇̃V, dx〉 − V 〈∇̃|u|2, dx〉).

Using the Cauchy–Schwarz inequality this implies∫
Ω

|LV ||u|2dx ≤ 2

(
1

ε

∫
Ω

|V |2
|LV | |Lu|

2dx

) 1/2(
ε

∫
Ω

|LV ||u|2dx
) 1/2

− 2

∫
Ω

V |∇Hu|2dx−
∫
∂Ω

(|u|2〈∇̃V, dx〉 − V 〈∇̃|u|2, dx〉)

≤ 1

ε

∫
Ω

|V |2
|LV | |Lu|

2dx+ ε

∫
Ω

|LV ||u|2dx

− 2

∫
Ω

V |∇Hu|2dx−
∫
∂Ω

(|u|2〈∇̃V, dx〉 − V 〈∇̃|u|2, dx〉),

yielding (7.67). �
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We now move to the case of Lp-estimates.

Theorem 7.7.8 (Lp-Rellich inequality with generalized weight and boundary term).
Let 1 ≤ p <∞. Let Ω be an admissible domain in a stratified group G. If

0 < V ∈ C(Ω), LV < 0 and L(V σ) ≤ 0

on Ω for some σ > 1, then for all u ∈ C∞
0 (Ω) we have∥∥∥|LV | 1pu∥∥∥

Lp(Ω)
≤ p2

(p− 1)σ + 1

∥∥∥∥∥ V

|LV | p−1
p

Lu
∥∥∥∥∥
Lp(Ω)

. (7.68)

Before proving Theorem 7.7.8, let us make some remarks and establish some
preliminary properties needed for its proof.

Remark 7.7.9.

1. Choosing V = |x′|−(α−2)
E in Theorem 7.7.8, with the Euclidean distance

| · |E in the first stratum of G, we obtain for any 2 < α < N and all u ∈
C∞

0 (G\{x′ = 0}), the inequality∫
G

|u|p
|x′|αE

dx ≤ Cp(N,p,α)
∫
G

|Lu|p
|x′|α−2p

E

dx, (7.69)

where

C(N,p,α) =
p2

(N − α) ((p− 1)N + α− 2p)
. (7.70)

2. Let d = ε
1

2−Q , where ε is the fundamental solution of the sub-Laplacian L.
Assume that Q ≥ 3, α < 2, and Q + α − 4 > 0. Choosing V = dα−2 in
Theorem 7.7.8, with d being the L-gauge as above, we obtain

(Q+ α− 4)2(Q − α)2
16

∫
G

dα−4|∇Hd|2|u|2dx ≤
∫
G

dα

|∇Hd|2 |Lu|
2dx. (7.71)

Theorem 7.7.8 will be proved as follows: it is a consequence of Lemma 7.7.11,

by putting C = (p−1)(σ−1)
p in Lemma 7.7.10.

Lemma 7.7.10. Let Ω be an admissible domain in a stratified group G. If V ≥ 0,
LV < 0, and there exists a constant C ≥ 0 such that

C
∥∥∥|LV | 1pu∥∥∥p

Lp(Ω)
≤ p(p− 1)

∥∥∥V 1
p |u| p−2

p |∇Hu| 2p
∥∥∥p
Lp(Ω)

, 1 < p <∞, (7.72)

for all u ∈ C∞
0 (Ω), then we have

(1 + C)
∥∥∥|LV | 1p u∥∥∥

Lp(Ω)
≤ p

∥∥∥∥∥ V

|LV | p−1
p

Lu
∥∥∥∥∥
Lp(Ω)

, (7.73)

for all u ∈ C∞
0 (Ω). If p = 1 then the statement holds for C = 0.
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Proof of Lemma 7.7.10. In view of (2.8) we can assume that u is real-valued. Let
ε > 0 and set

uε := (|u|2 + ε2)p/2 − εp.
Then 0 ≤ uε ∈ C∞

0 and∫
Ω

|LV |uεdx = −
∫
Ω

(LV )uεdx = −
∫
Ω

V Luεdx,

where

Luε = L
(
(|u|2 + ε2)

p
2 − εp

)
= ∇H · (∇H((|u|2 + ε2)

p
2 − εp))

= ∇H(p(|u|2 + ε2)
p−2
2 u∇Hu)

= p(p− 2)(|u|2 + ε2)
p−4
2 u2|∇Hu|2

+ p(|u|2 + ε2)
p−2
2 |∇Hu|2 + p(|u|2 + ε2)

p−2
2 uLu.

Then we have∫
Ω

|LV |uεdx = −
∫
Ω

(
p(p− 2)u2(u2 + ε2)

p−4
2 + p(u2 + ε2)

p−2
2

)
V |∇Hu|2dx

− p
∫
Ω

V u(u2 + ε2)
p−2
2 Ludx.

Hence we have the inequality∫
Ω

|LV |uε +
(
p(p− 2)u2(u2 + ε2)

p−4
2 + p(u2 + ε2)

p−2
2

)
V |∇Hu|2dx

≤ p
∫
Ω

V |u|(u2 + ε2)
p−2
2 |Lu|dx.

When ε→ 0, the integrand on the left-hand side is non-negative and tends to

|LV ||u|p + p(p− 1)V |u|p−2|∇Hu|2

pointwise, only for u �= 0 when p < 2, otherwise for any x. On the other hand, the
integrand on the right-hand side is bounded by

V (max |u|2 + 1)(p−1)/2 max |Lu|
and it is integrable because u ∈ C∞

0 (Ω), and so the integral tends to∫
Ω

V |u|p−1|Lu|dx

by the dominated convergence theorem. It then follows by Fatou’s lemma that∥∥∥|LV | 1p u∥∥∥p
Lp(Ω)

+ p(p− 1)
∥∥∥V 1

p |u| p−2
p |∇Hu| 2p

∥∥∥p
Lp(Ω)

≤ p
∥∥∥V 1

p |u| p−1
p |Lu| 1p

∥∥∥p
Lp(Ω)

.



7.7. Weighted Lp-inequalities with boundary terms 371

By using (7.72), followed by Hölder’s inequality, we obtain

(1 + C)
∥∥∥|LV | 1p u∥∥∥p

Lp(Ω)
≤ p

∥∥∥|LV |(p−1)V
1
p |u| p−1

p |LV |−(p−1)|Lu| 1p
∥∥∥p
Lp(Ω)

≤ p
∥∥∥|LV | 1p u∥∥∥p−1

Lp(Ω)

∥∥∥∥∥ |V |
|LV | p−1

p

Lu
∥∥∥∥∥
Lp(Ω)

.

This implies (7.73). �
Lemma 7.7.11. Let 1 < p < ∞. Let Ω be an admissible domain in a stratified
group G. If

0 < V ∈ C(Ω), LV < 0 and LV σ ≤ 0

on Ω for some σ > 1, then we have

(σ − 1)

∫
Ω

|LV ||u|pdx ≤ p2
∫
{x∈Ω,u(x) 	=0}

V |u|p−2|∇Hu|2dx <∞, (7.74)

for all u ∈ C∞
0 (Ω).

Proof of Lemma 7.7.11. We shall use that

0 ≥ L(V σ) = σV σ−2
(
(σ − 1)|∇HV |2 + V LV ) , (7.75)

and hence
(σ − 1)|∇HV |2 ≤ V |LV |.

First we consider the case p = 2: we use the inequality (7.61) to get

(σ − 1)

∫
Ω

|LV ||u|2dx ≤ 4(σ − 1)

∫
Ω

|∇HV |2
|LV | |∇Hu|

2dx

≤ 4

∫
Ω

V |∇Hu|2dx

= 4

∫
{x∈Ω;u(x) 	=0,|∇Hu|	=0}

V |∇Hu|2dx, (7.76)

the last equality valid since |{x ∈ Ω;u(x) = 0, |∇Hu| �= 0}| = 0. This proves
Lemma 7.7.11 for p = 2.

For p �= 2, denote
vε := (u2 + ε2)p/4 − ε p/2,

and let ε→ 0. Since
0 ≤ vε ≤ |u|

p
2 ,

the left-hand side of (7.76), with u replaced by vε, tends to

(σ − 1)

∫
Ω

|LV ||u|pdx



372 Chapter 7. Hardy–Rellich Inequalities and Fundamental Solutions

by the dominated convergence theorem. If u �= 0, then

|∇Hvε|2V =
∣∣∣p
2
u(u2 + ε2)

p−4
4 ∇Hu

∣∣∣2 V.
For ε→ 0 we obtain

|∇Hu|pV =
p2

4
|u|p−2|∇Hu|2V.

It follows as in the proof of Lemma 7.7.10, by using Fatou’s lemma, that the
right-hand side of (7.76) tends to

p2
∫
{x∈Ω;u(x) 	=0,|∇Hu|	=0}

V |u|p−2|∇Hu|2dx,

and this completes the proof. �
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Chapter 8

Geometric Hardy Inequalities

on Stratified Groups

Given a domain in the space, the ‘geometric’ version of Hardy inequalities usually
refers to the Hardy type inequalities where the weight is given in terms of the
distance to the boundary of the domain. In this chapter we discuss L2 and Lp

versions of the geometric Hardy inequality on the stratified group G. For the
clarity of the exposition, we first deal with the half-space domains, and then with
more general convex domains.

The results presented in this chapter have been obtained in [RSS18b], and
our exposition here follows this paper. In particular, we discuss L2 and Lp versions
of the (subelliptic) geometric Hardy inequalities in half-spaces and convex domains
on general stratified groups. As usual, these imply the geometric versions of the
uncertainty principles. A certain current drawback of the methods in the case of
convex domains is that the convexity is understood in the Euclidean sense.

8.1 L2-Hardy inequality on the half-space

In this section, we discuss an L2-version of the geometric Hardy inequality on the
half-space of the stratified group G. We start by recalling a few known results and
by putting the further analysis in perspective.

Remark 8.1.1.

1. If Ω is a convex open set of the Euclidean space, then the geometric version
of the Hardy inequality is well understood and given by∫

Ω

|∇u|2dx ≥ 1

4

∫
Ω

|u|2
dist(x, ∂Ω)2

dx,

for u ∈ C∞
0 (Ω), with the sharp constant 1/4. Nowadays, there are many

studies related to this subject, here we can mention, for example, [Anc86],
[D’A04b], [AL10], [AW07], [Dav99] and [OK90].

© The Editor(s) (if applicable) and The Author(s) 2019 
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2. In the setting of the Heisenberg group H, the geometric Hardy inequality on
the half-space

H
+ := {(x1, x2, x3) ∈ H | x3 > 0}

takes the form ∫
H+

|∇Hu|2dx ≥
∫
H+

|x1|2 + |x2|2
x23

|u|2dx,

for all u ∈ C∞
0 (H+). This inequality was obtained in [LY08], and we can also

recapture it as a consequence in Corollary 8.1.5. There are further extensions
to geometric Lp-Hardy inequalities as well as to the convex domains of the
Heisenberg group obtained in [Lar16].

The following construction can be traced back to Garofalo [Gar08].

Definition 8.1.2 (Half-space and angle function). Let G be a stratified group. In
this section the half-space of G will be defined by

G
+ := {x ∈ G : 〈x, ν〉 > d},

where d ∈ R, and ν := (ν1, . . . , νr) with νj ∈ RNj , j = 1, . . . , r, is the Riemannian
outer unit normal to ∂G+. The Euclidean distance to the boundary ∂G+ will be
denoted by dist(x, ∂G+) and given by the formula

dist(x, ∂G+) = 〈x, ν〉 − d.

The angle function on ∂G+ is defined by

W(x) :=

√√√√ N∑
i=1

〈Xi(x), ν〉2. (8.1)

In what follows we will be working in the setting of Definition 8.1.2.

Theorem 8.1.3 (Geometric L2-Hardy inequality on half-space). Let G+ be a half-
space of a stratified group G.

(1) Let β ∈ R and set C1(β) := −(β2 + β). Then we have∫
G+

|∇Hu|2dx ≥ C1(β)

∫
G+

W(x)2

dist(x, ∂G+)2
|u|2dx

+ β

∫
G+

N∑
i=1

Xi〈Xi(x), ν〉
dist(x, ∂G+)

|u|2dx,
(8.2)

for all u ∈ C∞
0 (G+).



8.1. L2-Hardy inequality on the half-space 375

(2) We have ∫
G+

|∇Hu|2dx ≥ 1

4

∫
G+

|u|2
dist(x, ∂G+)2

dx, (8.3)

for all u ∈ C∞
0 (G+).

Remark 8.1.4 (Uncertainty principle and step 2 case). In the step 2 case we have
the following simplification of Part (1) of Theorem 8.1.3.

1. Note that for the stratified groups of step 2 it follows from Proposition 1.2.19
that one can use the following basis of the left invariant vector fields

Xi =
∂

∂x′i
+

N2∑
s=1

N∑
m=1

asm,ix
′
m

∂

∂x′′s
, (8.4)

where i = 1, . . . , N and asm,i are the constants depending on the group. In
addition, we can also write x = (x′, x′′) with

x′ = (x′1, . . . , x
′
N ), x′′ = (x′′1 , . . . , x

′′
N2

),

and also ν = (ν′, ν′′) with

ν′ = (ν′1, . . . , ν
′
N ), ν′′ = (ν′′1 , . . . , ν

′′
N2

).

Then the statement of Theorem 8.1.3, Part (1), can be simplified as follows:
for all u ∈ C∞

0 (G+) and β ∈ R we have∫
G+

|∇Hu|2dx ≥ C1(β)

∫
G+

W(x)2

dist(x, ∂G+)2
|u|2dx

+K(a, ν, β)

∫
G+

|u|2
dist(x, ∂G+)

dx,

(8.5)

where C1(β) := −(β2 + β) and K(a, ν, β) = β
∑N2

s=1

∑N
i=1 a

s
i,iν

′′
s .

2. In the standard way Theorem 8.1.3, Part (2), implies the geometric uncer-
tainty principle on the half-space G+ for general stratified groups G. Indeed,
(8.3) and the Cauchy–Schwarz inequality imply∫

G+

|∇Hu|2dx
∫
G+

dist(x, ∂G+)2|u|2dx

≥ 1

4

∫
G+

1

dist(x, ∂G+)2
|u|2dx

∫
G+

dist(x, ∂G+)2|u|2dx

≥ 1

4

(∫
G+

|u|2dx
)2

.

That is, we have(∫
G+

|∇Hu|2dx
) 1

2
(∫

G+

dist(x, ∂G+)2|u|2dx
) 1

2

≥ 1

2

∫
G+

|u|2dx

for all u ∈ C∞
0 (G+).



376 Chapter 8. Geometric Hardy Inequalities on Stratified Groups

Proof of Theorem 8.1.3. Proof of Part (1). For the proof we apply the method of
factorisation. So, for any real-valued W := (W1, . . . ,WN ), Wi ∈ C1(G+), which
will be chosen later, a direct calculation gives

0 ≤
∫
G+

|∇Hu+ βWu|2dx =

∫
G+

|(X1u, . . . , XNu) + β(W1, . . . ,WN )u|2dx

=

∫
G+

|(X1u+ βW1u, . . . , XNu+ βWNu)|2dx

=

∫
G+

N∑
i=1

|Xiu+ βWiu|2dx

=

∫
G+

N∑
i=1

[|Xiu|2 + 2ReβWiuXiu+ β2W 2
i |u|2

]
dx

=

∫
G+

N∑
i=1

[|Xiu|2 + βWiXi|u|2 + β2W 2
i |u|2

]
dx

=

∫
G+

N∑
i=1

[|Xiu|2 − β(XiWi)|u|2 + β2W 2
i |u|2

]
dx.

From the above expression we get the inequality∫
G+

|∇Hu|2dx ≥
∫
G+

N∑
i=1

[
(β(XiWi)− β2W 2

i )|u|2
]
dx. (8.6)

Let us now take Wi in the form

Wi(x) =
〈Xi(x), ν〉

dist(x, ∂G+)
=
〈Xi(x), ν〉
〈x, ν〉 − d , (8.7)

where

Xi(x) = (

i︷ ︸︸ ︷
0, . . . , 1, . . . , 0, a

(2)
i,1 (x

′), . . . , a(r)i,Nr(x
′, x(2), . . . , x(r−1))),

and
ν = (ν1, ν2, . . . , νr), νj ∈ R

Nj .

Now Wi(x) can be written as

Wi(x) =
ν1,i +

∑r
l=2

∑Nl
m=1 a

(l)
i,m(x′, . . . , x(l−1))νl,m∑r

l=1 x
(l) · νl − d .

By a direct computation we have

XiWi(x) =
Xi〈Xi(x), ν〉dist(x, ∂G+)− 〈Xi(x), ν〉Xi(dist(x, ∂G

+))

dist(x, ∂G+)2

=
Xi〈Xi(x), ν〉
dist(x, ∂G+)

− 〈Xi(x), ν〉2
dist(x, ∂G+)2

,

(8.8)
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where

Xi(dist(x, ∂G
+)) = Xi

(
N∑
k=1

x′kν1,k +
r∑
l=2

Nl∑
m=1

x(l)m νl,m − d
)

= ν1,i +
r∑
l=2

Nl∑
m=1

a
(l)
i,m(x′, . . . , x(l−1))νl,m

= 〈Xi(x), ν〉.
Now combining (8.8) with (8.6) we arrive at the inequality∫

G+

|∇Hu|2dx ≥ − (β2 + β)

∫
G+

N∑
i=1

〈Xi(x), ν〉2
dist(x, ∂G+)2

|u|2dx

+ β

∫
G+

N∑
i=1

Xi〈Xi(x), ν〉
dist(x, ∂G+)

|u|2dx,

which completes the proof of Part (1).

Proof of Part (2). Let x := (x′, x(2), . . . , x(r)) ∈ G with x′ = (x′1, . . . , x
′
N ) and

x(j) ∈ RNj , j = 2, . . . , r. By taking ν := (ν′, 0, . . . , 0) with ν′ = (ν′1, . . . , ν
′
N), we

have that

Xi(x) = (

i︷ ︸︸ ︷
0, . . . , 1, . . . , 0, a

(2)
i,1 (x

′), . . . , a(r)i,Nr(x
′, x(2), . . . , x(r−1))),

so that

N∑
i=1

〈Xi(x), ν〉2 =
N∑
i=1

(ν′i)
2 = |ν′|2 = 1

and
Xi〈Xi(x), ν〉 = Xiν

′
i = 0.

Substituting this in (8.2) we get∫
G+

|∇Hu|2dx ≥ −(β2 + β)

∫
G+

|u|2
dist(x, ∂G+)2

dx.

To optimize we differentiate the right-hand side expression with respect to β, that
is, we put −2β − 1 = 0, or β = − 1

2 in this inequality, implying (8.3). �

8.1.1 Examples of Heisenberg and Engel groups

Let us give examples of the geometric L2-Hardy inequality on half-spaces from
Theorem 8.1.3 in the cases of groups of steps 2 and 3. The example of general
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stratified groups of step 2 was considered in Remark 8.1.4, Part 1, and now we
look at the special case of the Heisenberg group. In particular, it yields the estimate
that was given in Remark 8.1.1, Part 2.

Corollary 8.1.5 (Geometric L2-Hardy inequality on half-space of the Heisenberg
group). Let H+ = {(x1, x2, x3) ∈ H | x3 > 0} be a half-space of the Heisenberg
group H. Then for all u ∈ C∞

0 (H+) we have∫
H+

|∇Hu|2dx ≥
∫
H+

|x1|2 + |x2|2
x23

|u|2dx,

where ∇H = (X1, X2).

Proof of Corollary 8.1.5. Since the left invariant vector fields on the Heisenberg
group can be given by

X1 =
∂

∂x1
+ 2x2

∂

∂x3
, X2 =

∂

∂x2
− 2x1

∂

∂x3
,

with the commutator

[X1, X2] = −4 ∂

∂x3
,

choosing ν = (0, 0, 1) as the unit vector in the direction of x3 and taking d = 0 in
inequality (8.2), we get

X1(x) = (1, 0, 2x2) and X2(x) = (0, 1,−2x1),
and

〈X1(x), ν〉 = 2x2, and 〈X2(x), ν〉 = −2x1,
X1〈X1(x), ν〉 = 0, and X2〈X2(x), ν〉 = 0,

where x = (x1, x2, x3). Thus, with W(x) as in (8.1), we get

W(x)2

dist(x, ∂G+)2
= 4
|x1|2 + |x2|2

x23
.

Inserting these to (8.2) with β = − 1
2 we obtain∫

H+

|∇Hu|2dx ≥
∫
H+

|x1|2 + |x2|2
x23

|u|2dx,

completing the proof. �

Next, let us give an example for a class of stratified groups of step r = 3,
namely, the case of the Engel group.
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Definition 8.1.6 (Engel group). The Engel group E is the space R4 with the group
law given by

x ◦ y = (x1 + y1, x2 + y2, x3 + y3 + P1, x4 + y4 + P2),

where

P1 =
1

2
(x1y2 − x2y1),

P2 =
1

2
(x1y3 − x3y1) + 1

12
(x21y2 − x1y1(x2 + y2) + x2y

2
1).

The left invariant vector fields of E are generated by (the basis)

X1 =
∂

∂x1
− x2

2

∂

∂x3
−
(x3
2
− x1x2

12

) ∂

∂x4
, X3 =

∂

∂x3
+
x1
2

∂

∂x4
,

X2 =
∂

∂x2
+
x1
2

∂

∂x3
+
x21
12

∂

∂x4
, X4 =

∂

∂x4
.

The group E is stratified of step 3, with the nonzero commutation relations given by

[X1, X2] = X3, [X1, X3] = X4.

So we have

Corollary 8.1.7 (Geometric L2-Hardy inequality on half-space of the Engel group).
Let E+ = {x := (x1, x2, x3, x4) ∈ E | 〈x, ν〉 > 0} be a half-space of the Engel group
E. Then for all β ∈ R and u ∈ C∞

0 (E+) we have∫
E+

|∇Eu|2dx ≥ C1(β)

∫
E+

〈X1(x), ν〉2 + 〈X2(x), ν〉2
dist(x, ∂E+)2 |u|2dx

+
β

3

∫
E+

x2ν4
dist(x, ∂E+) |u|

2dx,

(8.9)

where ∇E = (X1, X2), ν := (ν1, ν2, ν3, ν4), and C1(β) = −(β2 + β).

In particular, if we take ν4 = 0 in (8.9), then by taking β = − 1
2 , we get the

following inequality on such E+:∫
E+

|∇Eu|2dx ≥ 1

4

∫
E+

〈X1(x), ν〉2 + 〈X2(x), ν〉2
dist(x, ∂E+)2 |u|2dx.

Proof of Corollary 8.1.7. Using the above basis of the left invariant vector fields,
we have

X1(x) =
(
1, 0,−x2

2
,−

(x3
2
− x1x2

12

))
,

X2(x) =

(
0, 1,

x1
2
,
x21
12

)
.
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It is then straightforward to see that

〈X1(x), ν〉 = ν1 − x2
2
ν3 −

(x3
2
− x1x2

12

)
ν4,

〈X2(x), ν〉 = ν2 +
x1
2
ν3 +

x21
12
ν4,

X1〈X1(x), ν〉 = x2
12
ν4 +

x2
4
ν4 =

x2ν4
3

,

X2〈X2(x), ν〉 = 0.

Now plugging these in inequality (8.2) we get the desired inequality (8.9). �

8.2 Lp-Hardy inequality on the half-space

Now we discuss an Lp version of the geometric Hardy inequality on the half-space
of G as an extension of the previous L2 arguments. We recall that the p-version
of Garofalo’s angle function from Definition 8.1.2 can be defined by the formula

Wp(x) =

(
N∑
i=1

|〈Xi(x), ν〉|p
) 1/p

, (8.10)

with W(x) :=W2(x), and where N denotes the dimension of the first stratum of
G. As before let G+ be a half-space of a stratified group G. The Lp version of the
geometric Hardy inequality from Theorem 8.1.3 can be written in the following
form.

Theorem 8.2.1 (Geometric Lp-Hardy inequality on half-space). Let G+ be a half-
space of a stratified group G and let 1 < p < ∞. Then for all u ∈ C∞

0 (G+) and
all β ∈ R we have

∫
G+

N∑
i=1

|Xiu|pdx ≥ C2(β, p)

∫
G+

Wp(x)
p

dist(x, ∂G+)p
|u|pdx (8.11)

+ β(p− 1)

∫
G+

N∑
i=1

( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−2
Xi〈Xi(x), ν〉
dist(x, ∂G+)

|u|pdx,

where C2(β, p) := −(p− 1)(|β| p
p−1 + β).

Remark 8.2.2. Note that for p ≥ 2, since

|∇Hu|p =
(

N∑
i=1

|Xiu|2
) p/2

≥
N∑
i=1

(|Xiu|2
)p/2

,
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the proof will also yield the inequality∫
G+

|∇Hu|pdx ≥ C2(β, p)

∫
G+

Wp(x)
p

dist(x, ∂G+)p
|u|pdx (8.12)

+ β(p− 1)

∫
G+

N∑
i=1

( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−2
Xi〈Xi(x), ν〉
dist(x, ∂G+)

|u|pdx.

Proof of Theorem 8.2.1. ForW ∈ C∞(G+) and f ∈ C1(G+), a direct computation
with Hölder’s inequality gives∫

G+

divH(fW )|u|pdx = −
∫
G+

fW · ∇H |u|pdx = −p
∫
G+

f〈W,∇Hu〉|u|p−1dx

≤ p
(∫

G+

|〈W,∇Hu〉|pdx
)1/p (∫

G+

|f | p
p−1 |u|pdx

) p−1
p

. (8.13)

For p > 1 and q > 1 with 1
p +

1
q = 1, we will use Young’s inequality

ab ≤ ap

p
+
bq

q
, for a ≥ 0, b ≥ 0,

with

a :=

(∫
G+

|〈W,∇Hu〉|pdx
) 1/p

and b :=

(∫
G+

|f | p
p−1 |u|pdx

) p−1
p

.

Using this Young inequality in (8.13) and rearranging the terms, we get∫
G+

|〈W,∇Hu〉|pdx ≥
∫
G+

(
divH(fW )− (p− 1)|f | p

p−1

)
|u|pdx. (8.14)

Now choosing W := Ii, which has the following form Ii = (

i︷ ︸︸ ︷
0, . . . , 1, . . . , 0) and

setting

f = β
|〈Xi(x), ν〉|p−1

dist(x, ∂G+)p−1
,

we calculate

divH(Wf) = (∇H · Ii)f = Xif = βXi

( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−1

= β(p− 1)

( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−2

Xi

( 〈Xi(x), ν〉
dist(x, ∂G+)

)
= β(p− 1)

( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−2(
Xi〈Xi(x), ν〉
dist(x, ∂G+)

− |〈Xi(x), ν〉|2
dist(x, ∂G+)2

)
= β(p− 1)

[( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−2(
Xi〈Xi(x), ν〉
dist(x, ∂G+)

)
− |〈Xi(x), ν〉|p

dist(x, ∂G+)p

]
,
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and

|f | pp−1 = |β| p
p−1
|〈Xi(x), ν〉|p
dist(x, ∂G+)p

.

Moreover, we have

〈W,∇Hu〉 =
i︷ ︸︸ ︷

(0, . . . , 1, . . . , 0) · (X1u, . . . , Xiu, . . . , XNu)
T = Xiu.

Substituting these in (8.14) and summing over i = 1, . . . , N , we obtain∫
G+

N∑
i=1

|Xiu|pdx ≥ − (p− 1)(|β| p
p−1 + β)

∫
G+

N∑
i=1

|〈Xi(x), ν〉|p
dist(x, ∂G+)p

|u|pdx (8.15)

+ β(p− 1)

∫
G+

N∑
i=1

( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−2
Xi〈Xi(x), ν〉
dist(x, ∂G+)

|u|pdx.

This completes the proof. �

8.3 L2-Hardy inequality on convex domains

In this and the following sections we extend the proceeding arguments from half-
spaces to convex domains in the stratified groups. Here, however, the convex do-
main is understood in the sense of the Euclidean space. Thus, let Ω be a convex
domain of a stratified group G and let ∂Ω be its boundary. Here for x ∈ Ω we
denote by ν(x) the unit normal for ∂Ω at a point x̂ ∈ ∂Ω, determined by the
condition

dist(x, ∂Ω) = dist(x, x̂).

For the half-space, we have the distance from the boundary dist(x, ∂Ω) = 〈x, ν〉−d.
As it was already defined in (8.10), we will use the p-version of the angle function

Wp(x) =

(
N∑
i=1

|〈Xi(x), ν〉|p
)1/p

,

with W(x) :=W2(x). We have the following extension of Theorem 8.1.3.

Theorem 8.3.1 (Geometric L2-Hardy inequality on convex domains). Let Ω be a
convex domain of a stratified group G. Then for all u ∈ C∞

0 (Ω) and all β < 0 we
have∫

Ω

|∇Hu|2dx ≥ C1(β)

∫
Ω

W(x)2

dist(x, ∂Ω)2
|u|2dx+ β

∫
Ω

N∑
i=1

Xi〈Xi(x), ν〉
dist(x, ∂Ω)

|u|2dx,
(8.16)

where C1(β) := −(β2 + β).

Proof of Theorem 8.3.1. As elsewhere in this chapter, we follow the proof for gen-
eral stratified groups of [RSS18b], based on the convex polytope approach used by
Larson [Lar16] in the case of the Heisenberg group.
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We denote the facets of Ω by {Fj}j and unit normals of these facets by {νj}j ,
which are directed inward. So, Ω can be viewed as the union of the disjoint sets

Ωj := {x ∈ Ω : dist(x, ∂Ω) = dist(x,Fj)}.
Now we follow the method as in the case of the half-space G

+ for each element
Ωj with one exception that not all the boundary values are zero when we use the
partial integration. As before we calculate

0 ≤
∫
Ωj

|∇Hu+ βWu|2dx =

∫
Ωj

N∑
i=1

|Xiu+ βWiu|2dx

=

∫
Ωj

N∑
i=1

[|Xiu|2 + 2ReβWiuXiu+ β2W 2
i |u|2

]
dx

=

∫
Ωj

N∑
i=1

[|Xiu|2 + βWiXi|u|2 + β2W 2
i |u|2

]
dx

=

∫
Ωj

N∑
i=1

[|Xiu|2 − β(XiWi)|u|2 + β2W 2
i |u|2

]
dx

+ β

∫
∂Ωj

N∑
i=1

Wi〈Xi(x), nj(x)〉|u|2dΓ∂Ωj (x),

where nj is the unit normal of ∂Ωj which is directed outward. Since Fj ⊂ ∂Ωj we
have nj = −νj . That is, we have∫

Ωj

|∇Hu|2dx ≥
∫
Ωj

N∑
i=1

[
(β(XiWi)− β2W 2

i )|u|2
]
dx

− β
∫
∂Ωj

N∑
i=1

Wi〈Xi(x), nj(x)〉|u|2dΓ∂Ωj (x).
(8.17)

The boundary terms on ∂Ω disappears since u is compactly supported in Ω. Thus,
we only need to deal with the parts of ∂Ωj in Ω. Note that for every facet of ∂Ωj
there exists some ∂Ωl which shares this facet. Denote by Γjl the common facet of
∂Ωj and ∂Ωl, with nk|Γjl = −nl|Γjl .

Now we choose Wi in the form

Wi(x) =
〈Xi(x), νj〉
dist(x, ∂Ωj)

=
〈Xi(x), νj〉
〈x, νj〉 − d ,

and a direct computation shows that

XiWi(x) =
Xi〈Xi(x), νj〉
dist(x, ∂Ωj)

− 〈Xi(x), νj〉2
dist(x, ∂Ωj)2

. (8.18)
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Substituting (8.18) into (8.17) we get∫
Ωj

|∇Hu|2dx ≥ −(β2 + β)

∫
Ωj

N∑
i=1

〈Xi(x), νj〉2
dist(x, ∂Ωj)2

|u|2dx (8.19)

+ β

∫
Ωj

N∑
i=1

Xi〈Xi(x), νj〉
dist(x, ∂Ωj)

|u|2dx− β
∫
Γjl

N∑
i=1

〈Xi(x), νj〉〈Xi(x), njl〉
dist(x,Fj) |u|2dΓjl.

Now we sum over all partition elements Ωj and let njl = nk|Γjl , i.e., the unit
normal of Γjl pointing from Ωj into Ωl. Then we have

∫
Ω

|∇Hu|2dx ≥ − (β2 + β)

∫
Ω

N∑
i=1

〈Xi(x), ν〉2
dist(x, ∂Ω)2

|u|2dx

+ β

∫
Ω

N∑
i=1

Xi〈Xi(x), ν〉
dist(x, ∂Ω)

|u|2dx

− β
∑
j 	=l

∫
Γjl

N∑
i=1

〈Xi(x), νj〉〈Xi(x), njl〉
dist(x,Fj) |u|2dΓjl

= − (β2 + β)

∫
Ω

N∑
i=1

〈Xi(x), ν〉2
dist(x, ∂Ω)2

|u|2dx

+ β

∫
Ω

N∑
i=1

Xi〈Xi(x), ν〉
dist(x, ∂Ω)

|u|2dx

− β
∑
j<l

∫
Γjl

N∑
i=1

〈Xi(x), νj − νl〉〈Xi(x), njl〉
dist(x,Fj) |u|2dΓjl.

Here we have used the fact that (by the definition) Γjl is a set with

dist(x,Fj) = dist(x,Fl).

From
Γjl = {x : x · νj − dj = x · νl − dl}

rearranging x · (νj − νl) − dj + dl = 0 we see that Γjl is a hyperplane with a
normal νj − νl. So, νj − νl is parallel to njl and one only needs to check that
(νj − νl) · njl > 0. Since njl points out and νj points into jth partition element,
νj · njl is non-negative. Similarly, we see that νl · njl is non-positive. That is,
(νj − νl) · njl > 0. On the other hand, it is easy to see that

|νj − νl|2 = (νj − νl) · (νj − νl) = 2− 2νj · νl
= 2− 2 cos(αjl),
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which implies that

(νj − νl) · njl =
√
2− 2 cos(αjl),

where αjl is the angle between νj and νl. So we obtain

∫
Ω

|∇Hu|2dx ≥ − (β2 + β)

∫
Ω

N∑
i=1

〈Xi(x), ν〉2
dist(x, ∂Ω)2

|u|2dx

+ β

∫
Ω

N∑
i=1

Xi〈Xi(x), ν〉
dist(x, ∂Ω)

|u|2dx

− β
∑
j<l

N∑
i=1

∫
Γjl

√
1− cos(αjl)

〈Xi(x), njl〉2
dist(x,Fj) |u|

2dΓjl.

Here with β < 0 and due to the boundary term signs we prove the desired inequal-
ity for the polytope convex domains.

Now we are ready to consider the general case, that is, when Ω is an arbitrary
convex domain. For each u ∈ C∞

0 (Ω) one can always choose an increasing sequence
of convex polytopes {Ωj}∞j=1 such that u ∈ C∞

0 (Ω1), Ωj ⊂ Ω and Ωj → Ω as
j → ∞. Assume that νj(x) is the above map ν (corresponding to Ωj), and then
we can calculate∫

Ω

|∇Hu|2dx =

∫
Ωj

|∇Hu|2dx

≥ −(β2 + β)

∫
Ωj

N∑
i=1

〈Xi(x), νj〉2
dist(x, ∂Ωj)2

|u|2dx+ β

∫
Ωj

N∑
i=1

Xi〈Xi(x), νj〉
dist(x, ∂Ωj)

|u|2dx

= −(β2 + β)

∫
Ω

N∑
i=1

〈Xi(x), νj〉2
dist(x, ∂Ωj)2

|u|2dx+ β

∫
Ω

N∑
i=1

Xi〈Xi(x), νj〉
dist(x, ∂Ωj)

|u|2dx

≥ −(β2 + β)

∫
Ω

N∑
i=1

〈Xi(x), νj〉2
dist(x, ∂Ω)2

|u|2dx+ β

∫
Ω

N∑
i=1

Xi〈Xi(x), νj〉
dist(x, ∂Ω)

|u|2dx .

Now we obtain the desired result by letting j →∞. �

8.4 Lp-Hardy inequality on convex domains

The same arguments as in the previous section give the general Lp-version of
Theorem 8.3.1.

Theorem 8.4.1 (Geometric Lp-Hardy inequality on convex domains). Let Ω be a
convex domain of a stratified group G. Then for all u ∈ C∞

0 (Ω) and all β < 0
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we have∫
Ω

N∑
i=1

|Xiu|pdx ≥ C2(β, p)

∫
Ω

Wp(x)
p

dist(x, ∂Ω)p
|u|pdx (8.20)

+ β(p− 1)

∫
Ω

N∑
i=1

( |〈Xi(x), ν〉|
dist(x, ∂Ω)

)p−2(
Xi〈Xi(x), ν〉
dist(x, ∂Ω)

)
|u|pdx,

where C2(β, p) := −(p− 1)(|β| p
p−1 + β).

Remark 8.4.2. Note that for p ≥ 2, since

|∇Hu|p =
(

N∑
i=1

|Xiu|2
) p/2

≥
N∑
i=1

(|Xiu|2
)p/2

, (8.21)

instead of (8.20) we have the inequality∫
Ω

|∇Hu|pdx ≥ C2(β, p)

∫
Ω

Wp(x)
p

dist(x, ∂Ω)p
|u|pdx (8.22)

+ β(p− 1)

∫
Ω

N∑
i=1

( |〈Xi(x), ν〉|
dist(x, ∂Ω)

)p−2(
Xi〈Xi(x), ν〉
dist(x, ∂Ω)

)
|u|pdx.

Proof of Theorem 8.4.1. As in the proof of Theorem 8.3.1, let us first assume that
Ω is the convex polytope. Thus, for f ∈ C1(Ωj) and W ∈ C∞(Ωj), we calculate∫

Ωj

divG(fW )|u|pdx = −p
∫
Ωj

f〈W,∇Hu〉|u|p−1dx+

∫
∂Ωj

f〈W,nj(x)〉|u|pdΓ∂Ωj (x)

≤ p
(∫

Ω

|〈W,∇Hu〉|pdx
) 1
p

(∫
Ωj

|f | p
p−1 |u|pdx

) p−1
p

+

∫
∂Ωj

f〈W,nj(x)〉|u|pdΓ∂Ωj (x),
(8.23)

where Ωj is the partition as in the proof of Theorem 8.3.1. In the last line we have
used the Hölder inequality. By using Young’s inequality in (8.23) and rearranging
the terms, we get∫

Ωj

|〈W,∇Hu〉|pdx ≥
∫
Ω

(
divG(fW )− (p− 1)|f | p

p−1

)
|u|pdx

−
∫
∂Ωj

f〈W,nj(x)〉|u|pdΓ∂Ωj (x).
(8.24)

Choosing W := Ii as a unit vector of the ith component and letting

f = β
|〈Xi(x), νj〉|p−1

dist(x,Fj)p−1
,

we calculate

divG(Wf) = Xif = βXi

( |〈Xi(x), νj〉|
dist(x,Fj)

)p−1
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= β(p− 1)

( |〈Xi(x), νj〉|
dist(x,Fj)

)p−2

Xi

( 〈Xi(x), νj〉
dist(x,Fj)

)
= β(p− 1)

( |〈Xi(x), νj〉|
dist(x,Fj)

)p−2 (
Xi〈Xi(x), νj〉
dist(x,Fj) −

|〈Xi(x), νj〉|2
dist(x,Fj)2

)
= β(p− 1)

[( |〈Xi(x), νj〉|
dist(x,Fj)

)p−2(
Xi〈Xi(x), νj〉
dist(x,Fj)

)
− |〈Xi(x), νj〉|p

dist(x,Fj)p
]
,

and

|f | p
p−1 = |β| p

p−1
|〈Xi(x), νj〉|p
dist(x,Fj)p .

Moreover, we have

〈W,∇Hu〉 = (

i︷ ︸︸ ︷
0, . . . , 1, . . . , 0) · (X1u, . . . , Xiu, . . . , XNu)

T = Xiu.

Substituting these into (8.24) and summing over all i = 1, . . . , N , we obtain∫
Ωj

N∑
i=1

|Xiu|pdx ≥ − (p− 1)(|β| p
p−1 + β)

∫
Ωj

N∑
i=1

|〈Xi(x), νj〉|p
dist(x,Fj)p |u|

pdx (8.25)

+ β(p− 1)

∫
Ωj

N∑
i=1

( |〈Xi(x), νj〉|
dist(x,Fj)

)p−2(
Xi〈Xi(x), νj〉
dist(x,Fj)

)
|u|pdx

− β
∫
∂Ωj

N∑
i=1

( |〈Xi(x), νj〉|
dist(x,Fj)

)p−1

〈Xi(x), nj(x)〉|u|pdΓ∂Ωj (x).

Now summing up over Ωj , and with the interior boundary terms we get∫
Ω

N∑
i=1

|Xiu|pdx ≥ − (p− 1)(|β| p
p−1 + β)

N∑
i=1

∫
Ω

|〈Xi(x), ν〉|p
dist(x, ∂Ω)p

|u|pdx

+ β(p− 1)
N∑
i=1

∫
Ω

( |〈Xi(x), ν〉|
dist(x, ∂Ω)

)p−2(
Xi〈Xi(x), ν〉
dist(x, ∂Ω)

)
|u|pdx

− β
∑
j 	=l

N∑
i=1

∫
Γjl

( |〈Xi(x), νj〉|
dist(x,Fj)

)p−1

〈Xi(x), njl(x)〉|u|pdΓjl

= − (p− 1)(|β| p
p−1 + β)

N∑
i=1

∫
Ω

|〈Xi(x), ν〉|p
dist(x, ∂Ω)p

|u|pdx

+ β(p− 1)
N∑
i=1

∫
Ω

( |〈Xi(x), ν〉|
dist(x, ∂Ω)

)p−2(
Xi〈Xi(x), ν〉
dist(x, ∂Ω)

)
|u|pdx

− β
∑
j<l

N∑
i=1

∫
Γjl

[( |〈Xi(x), νj〉|
dist(x,Fj)

)p−1

〈Xi(x), njl(x)〉
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−
( |〈Xi(x), νl〉|

dist(x,Fl)
)p−1

〈Xi(x), njl(x)〉
]
|u|pdΓjl.

As in the proof of Theorem 8.3.1, if the boundary term is positive we can discard
it, so we need to show that[( |〈Xi(x), νj〉|

dist(x,Fj)
)p−1

〈Xi(x), njl(x)〉 −
( |〈Xi(x), νl〉|

dist(x,Fl)
)p−1

〈Xi(x), njl(x)〉
]
≥ 0.

Since njl =
νj−νl√

2−2 cos(αjl)
and dist(x,Fj) = dist(x,Fl) on Γjl, we have

1

2− 2 cos(αjl)

[( |〈Xi(x), νj〉|
dist(x,Fj)

)p−1

〈Xi(x), νj − νl〉

−
( |〈Xi(x), νl〉|

dist(x,Fl)
)p−1

〈Xi(x), νj − νl〉
]

=
|〈Xi(x), νj〉|p − |〈Xi(x), νj〉|p−1〈Xi(x), νl〉

(2− 2 cos(αjl)) dist(x,Fj)p−1

+
−|〈Xi(x), νl〉|p−1〈Xi(x), νj〉+ |〈Xi(x), νl〉|p

(2− 2 cos(αjl)) dist(x,Fj)p−1

=
(|〈Xi(x), νj〉| − |〈Xi(x), νl〉|)

(|〈Xi(x), νj〉|p−1 − |〈Xi(x), νl〉|p−1
)

(2 − 2 cos(αjl)) dist(x,Fj)p−1
≥ 0.

Here we have used the equality

(a− b)(ap−1 − bp−1) = ap − ap−1b− bp−1a+ bp−1

with a = |〈Xi(x), νj〉| and b = |〈Xi(x), νl〉|. Thus, for β < 0 by discarding the
above boundary term (integral) we complete the proof. �
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Chapter 9

Uncertainty Relations

on Homogeneous Groups

In this chapter we discuss relations between main operators of quantum mechanics,
that is, relations between momentum and position operators as well as Euler and
Coulomb potential operators on homogeneous groups as well as their consequences.
Since in most uncertainty relations and in these operators the appearing weights
are radially symmetric, it turns out that these relations can be extended to also
hold on general homogeneous groups. In particular, we obtain both isotropic and
anisotropic uncertainty principles in a refined form, where the radial derivative
operators are used instead of the elliptic or hypoelliptic differential operators.

Throughout this book, most of the inequalities imply the corresponding un-
certainty principles. An example of such an uncertainty principle was given, for
example, in Corollary 2.1.3 as a consequence of the Hardy inequality, and also
in Corollary 3.3.5. However, in this chapter we aim at presenting an independent
treatment of inequalities following from certain identities involving the appearing
operators. In this respect such uncertainty relations can be sometimes obtained
independently from Hardy inequalities in alternative ways, see, e.g., also Ciatti,
Ricci and Sundari [CRS07].

In general, the uncertainty principles in different form have attracted a lot of
attention due to their physical applications. For example, a fundamental element of
the quantum mechanics is the uncertainty principle of Werner Heisenberg [Hei27].
It is worth observing that his original argument, while conceptually enlightening,
was experiential.

Then Wolfgang Pauli and Hermann Weyl provided the mathematical aspects
of uncertainty relations involving position and momentum operators, but the first
rigorous proof was given by Earle Kennard [Ken27]. Charles Fefferman’s work
[Fef83] and [FP81] was a starting point of studies to widely present the interpre-
tation of uncertainty inequalities as spectral properties of differential operators.
Nowadays there is vast literature on uncertainty relations and their applications.
Since we do not aim here at presenting a survey of the uncertainty relations on the
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Euclidean space Rn, we only refer to relevant works. In general, we can refer to a
recent survey [CBTW15] for further discussions and references on this subject in
the Euclidean setting, as well as to [FS97] for an overview of the history and the
relevance of this type of inequalities from a purely mathematical point of view. The
link between the uncertainty principles and the adapted Fourier analysis has been
explored in [Tha04]. The exposition of the present chapter is based on [RS17f].

9.1 Abstract position and momentum operators

The idea for our presentation is to introduce abstract position and momentum op-
erators P andM that satisfy certain relations. In particular, the classical position
and momentum operators of quantum physics satisfy these assumptions. How-
ever, this abstract point of view allows one to take different versions of position-
momentum pairs depending on the setting. We will exemplify such a possibility of
different choices in the case of the Heisenberg group, see Example 9.1.4.

9.1.1 Definition and assumptions

Throughout this chapter, the abstract position and momentum operators P and
M will be assumed to satisfy the following properties.

Definition 9.1.1 (Abstract position and momentum operators). Let P and M
be linear operators which are densely defined from L2(G) to L2(G), with their
domains containing C∞

0 (G), and such that C∞
0 (G) is an invariant subspace for

them, that is,

P(C∞
0 (G)) ⊂ C∞

0 (G) and M(C∞
0 (G)) ⊂ C∞

0 (G).

We will say that such operators P and M are abstract position and momentum
operators if they satisfy the relations

2Re
(
Pf(iM)f

)
= (P ◦ (iM))|f |2 = E|f |2 (9.1)

for all f ∈ C∞
0 (G). We will denote by D(P) and D(M) the domains of operators

P andM, respectively.

Before giving examples, let us make some remarks concerning the meaning
of the equalities in (9.1).

Remark 9.1.2.

1. The first equality in (9.1) gives a relation between the position and mo-
mentum operator; it will be clear from Example 9.1.3 that it is satisfied
by the classical position and momentum operators of the Euclidean quan-
tum mechanics. This condition is instrumental in establishing several further
properties of these operators.
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2. The second equality in (9.1) relates to position and momentum operators to
the Euler operator E on G, which was defined by

E := |x|R, (9.2)

where R is the radial derivative operator, see Section 1.3.2 for a discussion
of its properties. The main characterizing feature of the Euler operator is its
responsibility for the homogeneity property on G given in Proposition 1.3.1,
namely, that

f(λx) = λνf(x) for all λ > 0 if and only if Ef = νf,

for any differentiable function f on G. Thus, the assumption (9.1) for the
abstract position and momentum operators says that they have to give the
factorisation of the Euler operator E as in the second equality in (9.1). In this
sense, the second equality in (9.1) relates position and momentum operators
to the homogeneous structure of the group G.

3. We can note that already in the anisotropic and even isotropic Rn the results
of this chapter give some new insights in view of an arbitrary choice of a
homogeneous quasi-norm | · | and the abstract nature of these operators.

4. It is rather curious that equalities (9.1) already imply uncertainty relations of
several types, such as the Heisenberg–Kennard and Heisenberg–Pauli–Weyl
type uncertainty inequalities. Moreover, the property that the operators P
and iM factorise the Euler operator allows one to establish further relations
between them and other operators such as the radial operator, the dilations
generating operator, and the Coulomb potential operator, and prove some
equalities and inequalities among them. Such relations are presented in this
chapter.

9.1.2 Examples

If the group G is the Euclidean R
n with isotropic (standard) dilations and the

usual Abelian structure, then the operators

P := x and M := −i∇, (9.3)

i.e., the multiplication and the gradient (multiplied by −i), satisfy assumptions
(9.1). The same will hold on general homogeneous groups, as we show in Example
9.1.3. Thus, we now give several other examples extending this to general homo-
geneous groups. In particular, we give an example of a choice of abstract position
and momentum operators on general homogeneous groups. Furthermore, we show
that other choices are possible, which we exemplify in the case of the Heisenberg
group.
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Example 9.1.3 (Position and momentum on general homogeneous groups). Let G
be a homogeneous group. Let us define the operators

P := x, x ∈ G, and M := −i∇E , (9.4)

where

∇E =

(
∂

∂x1
, . . . ,

∂

∂xn

)
is an anisotropic gradient on G consisting of partial derivatives with respect to
coordinate functions. We understand the operator P as the scalar multiplication
operator by the coordinates of the variable x, i.e.,

Pv =
∑

xjvj ,

where xj are the coordinate functions of x ∈ G, see Section 1.2.4 for a discussion
of these functions on homogeneous groups.

These operators P andM are the position and momentum operators in the
sense of Definition 9.1.1. Indeed, first we observe that by elementary properties of
derivatives the first equality in the following relations is satisfied:

2Re (xf · ∇Ef) = x · ∇E |f |2 = E|f |2. (9.5)

The second equality in (9.5) follows if we recall that E is the Euler operator from
(1.37), that is, we have the relations

E = x · ∇E and R =
x · ∇E
|x| =

d

d|x| ,

see (1.35). In the notation (9.4) the relations (9.5) can be expressed as

2Re
(PfiMf

)
= (P ◦ (iM))|f |2 = E|f |2, (9.6)

showing that (9.1) is satisfied.

We note that the left invariant gradient ∇ = ∇X = (X1, . . . , Xn) and the
anisotropic (Euclidean) gradient ∇E are related and can be expressed in terms of
each other. For example, we can recall the relations

∂

∂xj
= Xj +

∑
1≤k≤n
νj<νk

pj,kXk,

for some homogeneous polynomials pj,k on G of homogeneous degree νk − νj > 0,
see Section 1.2.4.
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Example 9.1.4 (Another choice of position and momentum operators on the Heisen-
berg group). Let us consider the Heisenberg group H = H1, topologically equiva-
lent to R3. As for general nilpotent Lie groups (see Proposition 1.1.1), the expo-
nential map of H is globally invertible and its inverse map is given by the formula

exp−1
H

(x) = e(x) · ∇X ≡
3∑
j=1

ej(x)Xj , (9.7)

where ∇X = (X1, X2, X3) is the full gradient of H with

X1 =
∂

∂x1
+ 2x2

∂

∂x3
,

X2 =
∂

∂x2
− 2x1

∂

∂x3
,

X3 = −4 ∂

∂x3
,

as well as
e(x) = (e1(x), e2(x), e3(x)),

where

e1(x) = x1,

e2(x) = x2,

e3(x) = −1

4
x3.

We define the position and momentum operators for this case to be

P := e(x), x ∈ G, andM := −i∇X . (9.8)

One can readily see that these operators satisfy the relations (9.6). Now let us
check the relation (1.37) between the Euler operator EH := e(x) · ∇X and the
radial operator RH = d

d|x| :

EH = e(x) · ∇X
= x1

(
∂

∂x1
+ 2x2

∂

∂x3

)
+ x2

(
∂

∂x2
− 2x1

∂

∂x3

)
− 1

4
x3

(
−4 ∂

∂x3

)
= x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

= |x|
(
x1
|x|

∂

∂x1
+
x2
|x|

∂

∂x2
+
x3
|x|

∂

∂x3

)
= |x| d

d|x| = |x|RH.
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9.2 Position-momentum relations

In this section, we show further relations between abstract position P and mo-
mentum M operators on homogeneous groups. The obtained relations are the
consequences of the homogeneous group’s structure and the equalities (9.1).

9.2.1 Further position-momentum identities

We start with certain further identities involving the abstract position and mo-
mentum operators as a consequence of equalities (9.1).

Theorem 9.2.1 (Position-momentum identities). Let G be a homogeneous group of
homogeneous dimension Q ≥ 2. Then for every f ∈ D(P)⋂D(M) with Pf �≡ 0
andMf �≡ 0, we have the identity

‖Pf‖2L2(G) + ‖Mf‖2L2(G) = Q‖f‖2L2(G) + ‖Pf − iMf‖2L2(G)

= ‖Pf‖L2(G)‖Mf‖L2(G)

(
2−

∥∥∥∥ Pf
‖Pf‖L2(G)

+
iMf

‖Mf‖L2(G)

∥∥∥∥2
L2(G)

)
+ ‖Pf + iMf‖2L2(G). (9.9)

Proof of Theorem 9.2.1. It is enough to show (9.9) for functions f ∈ C∞
0 (G).

Indeed, in this case, because C∞
0 (G) is dense in L2(G), it is also true on D(P)⋂

D(M) by density. Using the polar decomposition from Proposition 1.2.10, the
definition (1.30) of the radial operator, and equality (9.1), we calculate

−2Re
∫
G

PfiMfdx = −
∫
G

PiM|f |2dx

= −
∫ ∞

0

∫
℘

rQ
1

r
E|f |2dσ(y)dr

= −
∫ ∞

0

∫
℘

rQ
d|f |2
dr

dσ(y)dr

= Q

∫ ∞

0

∫
℘

rQ−1|f |2dσ(y)dr

= Q

∫
G

|f |2dx

= Q‖f‖2L2(G).

Combining this with the equality

‖Pf‖2L2(G) + ‖Mf‖2L2(G) = ‖Pf + iMf‖2L2(G) − 2Re

∫
G

PfiMfdx
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we obtain the first equality in (9.9). On the other hand, we have

− 2Re

∫
G

PfiMfdx

= ‖Mf‖L2(G)‖Pf‖L2(G)

(
2−

∥∥∥∥ Pf
‖Pf‖L2(G)

+
iMf

‖Mf‖L2(G)

∥∥∥∥2
L2(G)

)
,

yielding the second equality in (9.9). �

9.2.2 Heisenberg–Kennard and Pythagorean inequalities

Immediately from (9.9) we observe the Heisenberg–Kennard type inequality as its
consequence. In the Abelian case (see, e.g., [SZ97] and [WM08]) it is also sometimes
called the Kennard uncertainty inequality.

Corollary 9.2.2 (Heisenberg–Kennard uncertainty principle). We have

Q

2
‖f‖2L2(G) ≤ ‖Pf‖L2(G)‖Mf‖L2(G). (9.10)

The first equality in (9.9) also implies the following Pythagorean type in-
equality:

Corollary 9.2.3 (Pythagorean type inequality). We have

‖
√
Qf‖2L2(G) ≤ ‖Pf‖2L2(G) + ‖Mf‖2L2(G). (9.11)

Equalities (9.9) also imply the following conditions for reaching the equalities
in Heisenberg–Kennard and Pythagorean inequalities:

Corollary 9.2.4 (Equalities in Heisenberg–Kennard and Pythagorean inequalities).
Let f ∈ D(P)⋂D(M) be such that Pf �≡ 0 and Mf �≡ 0.

(i) The equality case in the Heisenberg–Kennard uncertainty inequality (9.10)
holds, that is,

Q

2
‖f‖2L2(G) = ‖Pf‖L2(G)‖Mf‖L2(G)

if and only if

‖Pf‖L2(G)iMf = ‖Mf‖L2(G)Pf.
(ii) For f ∈ D(P)⋂D(M) we have the Pythagorean equality

‖
√
Qf‖2L2(G) = ‖Pf‖2L2(G) + ‖Mf‖2L2(G)

if and only if

Pf = iMf.
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9.3 Euler–Coulomb relations

In addition to the Euler operator that was defined by

Ef := |x|Rf, (9.12)

we also define the Coulomb potential operator as

Cf :=
1

|x|f. (9.13)

The domains of these operators are given, respectively, by

D(E) = {f ∈ L2(G) : Ef ∈ L2(G)} (9.14)

and

D(C) = {f ∈ L2(G) :
1

|x|f ∈ L
2(G)}. (9.15)

It is also immediate to observe from (1.30) that the composition of the Euler
operator and Coulomb operators gives the radial derivative operator R:

R := CE. (9.16)

Recall that in Theorem 2.1.5 it was shown that for each f ∈ C∞
0 (G\{0}) one has

the identity∥∥∥∥ 1

|x|αRf
∥∥∥∥2
L2(G)

=

(
Q− 2

2
− α

)2 ∥∥∥∥ f

|x|α+1

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αRf +
Q− 2− 2α

2|x|α+1
f

∥∥∥∥2
L2(G)

,

(9.17)
for all α ∈ R. If α = 0 from (9.17) we obtain the equality

‖Rf‖2L2(G) =

(
Q− 2

2

)2 ∥∥∥∥ 1

|x|f
∥∥∥∥2
L2(G)

+

∥∥∥∥Rf +
Q− 2

2|x| f
∥∥∥∥2
L2(G)

. (9.18)

As it was already shown before, by dropping the non-negative last term in (9.18)
we immediately obtain a version of L2-Hardy’s inequality on G:∥∥∥∥ f|x|

∥∥∥∥
L2(G)

≤ 2

Q− 2
‖Rf‖L2(G) , Q ≥ 3, (9.19)

with the constant being sharp for any quasi-norm | · |.

9.3.1 Heisenberg–Pauli–Weyl uncertainty principle

An Lp-version of the Heisenberg–Pauli–Weyl uncertainty principle was given in
Corollary 3.3.5 for a particular choice of position and momentum operators. In
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this section we show its abstract version for abstract position and momentum
operators, although restricting the consideration, as usual in this chapter, to the
case of L2-spaces.

Thus, by a standard argument the inequality (9.19) implies the following
Heisenberg–Pauli–Weyl type uncertainty principle on homogeneous groups:

Proposition 9.3.1 (Heisenberg–Pauli–Weyl type uncertainty principle). Let G be
a homogeneous group of homogeneous dimension Q ≥ 3. Then for each f ∈
C∞

0 (G\{0}) and any homogeneous quasi-norm | · | on G we have

‖f‖2L2(G) ≤
2

Q− 2
‖Rf‖L2(G) ‖|x|f‖L2(G) . (9.20)

Proof of Corollary 9.3.1. From the inequality (9.19) we get(∫
G

|Rf |2 dx
) 1/2(∫

G

|x|2|f |2dx
) 1/2

≥ Q − 2

2

(∫
G

|f |2
|x|2 dx

) 1/2(∫
G

|x|2|f |2dx
) 1/2

≥ Q− 2

2

∫
G

|f |2dx,

where we have used the Hölder inequality in the last line. This shows (9.20). �

Remark 9.3.2.

1. In the Abelian case G = (Rn,+), we have Q = n, so that (9.20) implies the
uncertainty principle with any homogeneous quasi-norm | · |:(∫

Rn

|f(x)|2dx
)2

≤
(

2

n− 2

)2 ∫
Rn

∣∣∣∣ x|x| · ∇f(x)
∣∣∣∣2 dx∫

Rn

|x|2|f(x)|2dx,
(9.21)

which in turn implies the classical uncertainty principle for G ≡ Rn with the
standard Euclidean distance |x|E :(∫

Rn

|f(x)|2dx
)2

≤
(

2

n− 2

)2 ∫
Rn

|∇f(x)|2dx
∫
Rn

|x|2E |f(x)|2dx, (9.22)

which is the classical Heisenberg–Pauli–Weyl uncertainty principle on R
n.

For the improved constant in (9.22) see (9.39).

2. Different versions of this uncertainty principle have been considered in differ-
ent settings, for example in those of stratified groups. We can refer to [GL90],
[CRS07], [CCR15] for some results, and further estimates will be shown in
Section 12.4.

Moreover, we have the following Pythagorean relation for the Euler operator:
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Proposition 9.3.3 (Pythagorean relation for Euler operator). Let G be a homoge-
neous group of homogeneous dimension Q ≥ 3. Then we have

‖Ef‖2L2(G) =

∥∥∥∥Q2 f
∥∥∥∥2
L2(G)

+

∥∥∥∥Ef +
Q

2
f

∥∥∥∥2
L2(G)

(9.23)

for any f ∈ D(E).

Proof of Proposition 9.3.3. Taking α = −1, from (9.17) we obtain (9.23) for any
f ∈ C∞

0 (G\{0}). Since D(E) ⊂ L2(G) and C∞
0 (G\{0}) is dense in L2(G), this

implies that (9.23) is also true on D(E) by density. �

Simply by dropping the positive term in the right-hand side, (9.23) implies

Corollary 9.3.4 (Lower bound for Euler operator). Let G be a homogeneous group
of homogeneous dimension Q ≥ 3. Then we have

‖f‖L2(G) ≤
2

Q
‖Ef‖L2(G) , (9.24)

for any f ∈ D(E).

9.4 Radial dilations – Coulomb relations

Using the radial derivative and Coulomb operators we can define the generator of
dilations operator by

Rg := −i
(
R+

Q− 1

2
C
)

(9.25)

with the domain

D(Rg) = {f ∈ L2(G) : Rf ∈ L2(G), Cf ∈ L2(G)}. (9.26)

First we record a commutator relation between this generator of dilations operator
Rg and the Coulomb potential operator:

Lemma 9.4.1 (Commutator relation between generator of dilations and Coulomb
operators). Let G be a homogeneous group of dimension Q ≥ 1. Then for any
f ∈ C∞

0 (G\{0}) we have
[Rg, C]f = iC2f, (9.27)

where [Rg, C] = RgC − CRg.
Proof of Lemma 9.4.1. Denoting r := |x| we have C = 1

r , and from (1.30) it follows

that Rg = −i
(
d
dr +

Q−1
2r

)
. Thus, a direct calculation shows

Rg, Ctf = RgCf − CRgf

= −i
(
− 1

r2
+

1

r

d

dr
+
Q− 1

2r2
− 1

r

d

dr
− Q− 1

2r2

)
f = i

1

r2
f = iC2f,

establishing (9.27). �
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We now analyse further properties of these operators.

Lemma 9.4.2 (Operators Rg and C are symmetric). Operators Rg and C are sym-
metric.

Proof of Lemma 9.4.2. It is a straightforward to see that C is symmetric, that is,∫
G

(Cf)fdx =

∫
G

f(Cf)dx.

Now we need to show that∫
G

(Rgf)fdx =

∫
G

f(Rgf)dx (9.28)

for any f ∈ C∞
0 (G\{0}). Since D(Rg) ⊂ L2(G) and C∞

0 (G\{0}) are dense in
L2(G) it follows that it is enough to show (9.28) on C∞

0 (G\{0}) since it then
follows also on D(Rg) by density. Using the polar decomposition from Proposition

1.2.10 and the expression Rg = −i
(
d
dr +

Q−1
2r

)
we can calculate

∫
G

(Rgf)fdx = − i
∫ ∞

0

∫
℘

rQ−1

(
df

dr
+
Q− 1

2r
f

)
fdσ(y)dr

= − i
∫ ∞

0

∫
℘

df

dr
frQ−1dσ(y)dr − iQ− 1

2

∫ ∞

0

∫
℘

rQ−1 f

r
fdσ(y)dr

= i

∫ ∞

0

∫
℘

f
df

dr
rQ−1dσ(y)dr + i(Q− 1)

∫ ∞

0

∫
℘

rQ−1 f

r
fdσ(y)dr

− iQ− 1

2

∫ ∞

0

∫
℘

rQ−1 f

r
fdσ(y)dr

=

∫ ∞

0

∫
℘

rQ−1f

(
−i df
dr
− iQ− 1

2r
f

)
dσ(y)dr =

∫
G

fRgfdν,

proving that Rg is also symmetric. �

For any symmetric operators A and B in L2 with domains D(A) and D(B),
respectively, a straightforward calculation (see, e.g., [OY17, Theorem 2.1]) shows
the equality

− i
∫
G

([A,B]f)fdν

= ‖Af‖L2(G)‖Bf‖L2(G)

(
2−

∥∥∥∥ Af

‖Af‖L2(G)
+ i

Bf

‖Bf‖L2(G)

∥∥∥∥2
L2(G)

)
,

(9.29)

for f ∈ D(A) ∩D(B) with Af �≡ 0 and Bf �≡ 0, which will be useful in our next
proof.
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Theorem 9.4.3 (Identities involving R, Rg, and C). Let G be a homogeneous group
of homogeneous dimension Q ≥ 3. Then for every f ∈ D(R) ∩ D(C) such that
f �≡ 0 and Rgf �≡ 0 we have

‖Rf‖2L2(G) = ‖Rgf‖2L2(G) +
(Q− 1)(Q− 3)

4
‖Cf‖2L2(G), (9.30)

and

‖Cf‖L2(G) = ‖Rgf‖L2(G)

(
2−

∥∥∥∥ Rgf
‖Rgf‖L2(G)

+ i
Cf

‖Cf‖L2(G)

∥∥∥∥2
L2(G)

)
. (9.31)

Proof of Theorem 9.4.3. As in the proof of Theorem 9.2.1 we can calculate

‖Rgf‖2L2(G)

=

∥∥∥∥Rf +
Q− 1

2|x| f
∥∥∥∥2
L2(G)

= ‖Rf‖2L2(G) + (Q − 1)Re

∫
G

(Rf) 1

|x|fdx+

∥∥∥∥Q− 1

2|x| f
∥∥∥∥2
L2(G)

= ‖Rf‖2L2(G) + (Q − 1)Re

∫ ∞

0

∫
℘

rQ−1

(
d

dr
f

)
1

r
fdσ(y)dr +

∥∥∥∥Q− 1

2|x| f
∥∥∥∥2
L2(G)

= ‖Rf‖2L2(G) +
Q− 1

2

∫ ∞

0

∫
℘

rQ−2 d

dr
|f |2dσ(y)dr + (Q− 1)2

4
‖Cf‖2L2(G)

= ‖Rf‖2L2(G) −
(Q− 1)(Q− 2)

2

∫ ∞

0

∫
℘

rQ−1 1

r2
|f |2dσ(y)dr + (Q− 1)2

4
‖Cf‖2L2(G)

= ‖Rf‖2L2(G) −
(Q− 1)(Q− 2)

2

∫
G

|Cf |2dx+
(Q − 1)2

4
‖Cf‖2L2(G)

= ‖Rf‖2L2(G) −
(Q− 1)(Q− 3)

4
‖Cf‖2L2(G) .

This proves (9.30). Using (9.27) and Lemma 9.4.2, in view of (9.29) we obtain

‖Cf‖2L2(G) = −i
∫
G

[Rg, C]ffdx

= ‖Rgf‖L2(G)‖Cf‖L2(G)

(
2−

∥∥∥∥ Rgf
‖Rgf‖L2(G)

+ i
Cf

‖Cf‖L2(G)

∥∥∥∥2
L2(G)

)
.

Since C∞
0 (G) is dense in L2(G), it implies that this equality is also true on

D(R) ∩D(C) by density. �

The equality (9.30) implies the following estimates:
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Corollary 9.4.4 (Estimates for Rg and C). Let G be a homogeneous group of ho-
mogeneous dimension Q ≥ 3. The generator of dilations and Coulomb potential
operator are bounded by the radial operator R, that is, we have the estimates

‖Rgf‖L2(G) ≤ ‖Rf‖L2(G), (9.32)

and √
(Q − 1)(Q− 3)

2
‖Cf‖L2(G) ≤ ‖Rf‖L2(G), (9.33)

for all f ∈ D(R) ∩D(C).
The equality (9.31) implies the following bound with an explicit constant,

independent on the choice of a homogeneous norm on G.

Corollary 9.4.5 (Bound of Coulomb operator by generator of dilations). Let G be
a homogeneous group of homogeneous dimension Q ≥ 3. The Coulomb potential
operator is bounded by the generator of dilations operator with relative bound 2,
that is,

‖Cf‖L2(G) ≤ 2‖Rgf‖L2(G), (9.34)

for all f ∈ D(R) ∩D(C) such that Rgf �≡ 0.

9.5 Further weighted uncertainty type inequalities

In this section, we give an overview of a number of further uncertainty type in-
equalities.

Theorem 9.5.1. For any quasi-norm | · |, all differentiable | · |-radial functions φ,
all p > 1, Q ≥ 2 with 1

p + 1
q = 1, and all f ∈ C1

0 (G) we have∫
G

φ′(|x|)
|x|Q−1

|f |pdx ≤
∫
G

|Rf |p dx+
p

q

∫
G

|φ(|x|)|q
|x|q(Q−1)

|f |pdx, (9.35)

and ∫
G

φ′(|x|)
|x|Q−1

|f |pdx ≤ p
(∫

G

|Rf |p dx
) 1/p(∫

G

|φ(|x|)|q
|x|q(Q−1)

|f |pdx
) 1/q

. (9.36)

Before proving this theorem, let us point out several of its consequences.

Remark 9.5.2.

1. In (9.35) taking φ = log |x| in the Euclidean (Abelian) case G = (Rn,+),
n ≥ 2, we have Q = n, and taking p = n ≥ 2, for any quasi-norm | · | on Rn,
it implies the new inequality

∫
Rn

|f |n
|x|n dx ≤

∫
Rn

|Rf |n dx+ (n− 1)

∫
Rn

∣∣∣log 1
|x|
∣∣∣ n
n−1

|x|n |f |n dx.



402 Chapter 9. Uncertainty Relations on Homogeneous Groups

In turn, by using Schwarz’ inequality with the standard Euclidean distance
|x|E =

√
x21 + · · ·+ x2n, it implies the ‘critical’ Hardy inequality

∫
Rn

|f |n
|x|nE

dx ≤
∫
Rn

|∇f |n dx+ (n− 1)

∫
Rn

∣∣∣log 1
|x|E

∣∣∣ n
n−1

|x|nE
|f |n dx, (9.37)

where ∇ is the standard gradient on R
n. It is known that there is no positive

constant C such that ∫
Rn

|f |n
|x|nE

dx ≤ C
∫
Rn

|∇f |n dx

for all f ∈ C1
0 (R

n). Therefore, the appearance of a positive additional term
(the second term) on the right-hand side of (9.37) seems essential. Critical
inequalities for different versions of critical Hardy–Sobolev type inequalities
have been investigated in [RS16a].

2. Note that this type of inequalities (Hardy–Sobolev type inequalities with
an additional term on the right-hand side) can be applied, for example in
the Euclidean case, to establish the existence and nonexistence of positive
exponentially bounded weak solutions to a parabolic type operator perturbed
by a critical singular potential (see, e.g., [ST18b]).

3. In (9.36), taking φ = |x|n in the Euclidean (Abelian) case G = (Rn,+),
n ≥ 2, we have Q = n, so for any quasi-norm | · | on Rn it implies the
following uncertainty principle∫

Rn

|f |pdx ≤ p

n

(∫
Rn

|Rf |p dx
) 1
p
(∫

Rn

|x| p
p−1 |f |pdx

) p−1
p

. (9.38)

In turn, by using Schwarz’ inequality with the standard Euclidean distance
|x|E =

√
x21 + · · ·+ x2n, it implies that∫

Rn

|f |pdx ≤ p

n

(∫
Rn

|∇f |p dx
) 1
p
(∫

Rn

|x|
p
p−1

E |f |pdx
) p−1

p

, (9.39)

where ∇ is the standard gradient on Rn. In the case when p = 2 we have(∫
Rn

|f |2dx
)2

≤
(
2

n

)2 ∫
Rn

|∇f |2 dx
∫
Rn

|x|2E |f |2dx, n ≥ 2, (9.40)

for all f ∈ C1
0 (R

n). Thus, when n = 2 inequality (9.40) gives the critical case
of the Heisenberg–Pauli–Weyl uncertainty principle (9.22). Moreover, since
2

n−2 ≥ 2
n , n ≥ 3, inequality (9.40) is an improved version of (9.22).

Note that equality case in (9.40) holds for the family of functions f =
C exp(−b|x|E), b > 0.

4. Uncertainty inequalities have been extended to many settings such as more
general Lie groups and manifolds; see Folland and Sitaram [FS97] for more
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information about older studies. On the general topic of uncertainty prin-
ciples on groups and manifolds we can refer to, e.g., [CRS07], [VSCC92],
[Tao05], among many others.

Proof of Theorem 9.5.1. By applying the polar decomposition formula in Propo-
sition 1.2.10, and integration by parts, we obtain∫

G

φ′(|x|)
|x|Q−1

|f |pdx =

∫ ∞

0

∫
℘

|f |p φ
′(r)
rQ−1

rQ−1dσ(y)dr

=

∫ ∞

0

∫
℘

|f |p d
dr
φ(r)dσ(y)dr = −

∫ ∞

0

∫
℘

φ(r)
d

dr
|f |pdσ(y)dr

= −
∫
G

φ(|x|)
|x|Q−1

R|f |pdx = −pRe
∫
G

φ(|x|)|f |p−2f

|x|Q−1
Rfdx.

Now by using Young’s inequality for p > 1 and 1
p +

1
q = 1, we arrive at∫

G

φ′(|x|)
|x|Q−1

|f |pdx = −pRe
∫
G

φ|f |p−2f

|x|Q−1
Rfdx

≤ p
∫
G

|φ||f |p−1

|x|Q−1
|Rf |dx

≤
∫
G

|Rf |p dx+
p

q

∫
G

|φ(|x|)|q
|x|q(Q−1)

|f |pdx. (9.41)

This proves inequality (9.35). Furthermore, from (9.41) by using Hölder’s inequal-
ity for p > 1 and 1

p + 1
q = 1, we establish∫

G

φ′(|x|)
|x|Q−1

|f |pdx ≤ p
∫
G

|φ||f |p−1

|x|Q−1
|Rf |dx

≤ p
(∫

G

|Rf |p dx
) 1/p (∫

G

|φ(|x|)|q
|x|q(Q−1)

|f |pdx
) 1/q

.

This completes the proof. �
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Chapter 10

Function Spaces on Homogeneous Groups

In this chapter, we describe several function spaces on homogeneous groups. The
origins of the extensive use of homogeneous groups in analysis go back to the book
[FS82] of Folland and Stein where Hardy spaces on homogeneous groups have been
thoroughly analysed. It turns out that several other function spaces can be defined
on homogeneous groups since their main structural properties essentially depend
only on the group and dilation structures. Thus, in this chapter we carry out
such a construction for Morrey and Campanato spaces and analyse their main
properties. Moreover, we describe a version of Sobolev spaces associated to the
Euler operator. We call such spaces the Euler–Hilbert–Sobolev spaces.

The constructions of this chapter are based on the analysis in [RSY18d] and
[RSY18c]. Since on general homogeneous groups we may not have a (hypoelliptic)
differential operator to start with for the usual construction of Sobolev spaces,
we develop a version of Sobolev spaces associated to the Euler operator. The
development of such spaces is linked to relevant Hardy and Sobolev inequalities
from Chapter 2 and Chapter 3. Consequently, we can also analyse properties of
maximal operators and fractional integral operators in the constructed Morrey
and Campanato spaces on homogeneous groups.

In Definition 6.5.4 and the subsequent analysis we have already considered a
collection of (horizontal) weighted Sobolev type on stratified groups, but here we
will concentrate on general homogeneous groups. Since horizontal gradients are
not available in such a setting, its action will be replaced by that of the radial
derivative combined with the corresponding Euler operator.

Thus, throughout this chapter G will denote a general homogeneous group
of homogeneous dimension denoted by Q.

10.1 Euler–Hilbert–Sobolev spaces

In this section, we introduce an Euler–Hilbert–Sobolev space on a homogeneous
group G of homogeneous dimension Q. We start with more general Euler–Sobolev

© The Editor(s) (if applicable) and The Author(s) 2019 
M. Ruzhansky, D. Suragan, Hardy Inequalities on Homogeneous Groups,  
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function spaces. The definitions and further analysis are based on the Euler oper-
ator E discussed in Section 1.3.

Definition 10.1.1 (Euler-Sobolev function spaces). We define the Euler–Sobolev
function space on G by

Lk,p(G) := C∞
0 (G\{0})‖·‖Lk,p(G) , k ∈ Z, (10.1)

i.e., as the completion of C∞
0 (G\{0}) with respect to the semi-norm

‖f‖Lk,p(G) := ‖Ekf‖Lp(G).

Let us recall a special case of inequality (3.87) with α = 0, that is,

‖f‖Lp(G) ≤
(
p

Q

)k
‖Ekf‖Lp(G), 1 < p <∞, k ∈ N. (10.2)

From the definition of the Euler–Sobolev space it follows that this inequality ex-
tends to all functions f ∈ Lk,p(G):

Corollary 10.1.2 (Embeddings of Euler–Sobolev spaces). The semi-normed spaces
(Lk,p, ‖ · ‖Lk,p), k ∈ Z, are complete spaces for any 1 < p < ∞. The norm of the
embedding operator ι : (Lk,p, ‖ · ‖Lk,p) ↪→ (Lp, ‖ · ‖Lp) satisfies

‖ι‖Lk,p→Lp ≤
(
p

Q

)k
, k ∈ N, 1 < p <∞, (10.3)

where the embedding ι is an embedding of a semi-normed subspace of Lp.

Based on Lemma 1.3.2 we can use the general theory of fractional powers
of operators as in [MS01, Chapter 5], to define fractional powers of the operator
A = EE

∗, and we denote

|E|β := A
β
2 , β ∈ C.

For a brief and specific account of the relevant theory of fractional powers that is
required for this construction we can refer the reader to the open access presen-
tation in [FR16, Appendix A]. Consequently, we obtain the following fractional
Hardy inequalities in L2(G).

Theorem 10.1.3 (Fractional Hardy inequalities in L2(G)). Let G be a homogeneous
group of homogeneous dimension Q ≥ 1. Let β ∈ C+ and let k > Reβ

2 be a positive
integer. Then for all complex-valued functions f ∈ C∞

0 (G\{0}) we have

‖f‖L2(G) ≤ C(k −
β

2
, k)

(
2

Q

)Reβ ∥∥∥|E|βf∥∥∥
L2(G)

, (10.4)

where

C(β, k) =
Γ(k + 1)

|Γ(β)Γ(k − β)|
2k−Reβ

Reβ(k − Reβ)
. (10.5)
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Proof of Theorem 10.1.3. By using [MS01, Proposition 7.2.1, p. 176] we have the
interpolation inequality∥∥∥|E|−βf∥∥∥

L2(G)
≤ C(k − β

2
, k) ‖f‖1−

Reβ
2k

L2(G)

∥∥A−kf
∥∥Reβ

2k

L2(G)
. (10.6)

By the equality (1.43) and (3.119) with α = 0 it follows that

C(k − β

2
, k) ‖f‖1−

Reβ
2k

L2(G)

∥∥A−kf
∥∥Reβ

2k

L2(G)
≤ C(k − β

2
, k) ‖f‖1−

Reβ
2k

L2(G)

(
4

Q2

)Reβ
2

‖f‖
Reβ
2k

L2(G) ,

= C(k − β

2
, k)

(
4

Q2

)Reβ
2

‖f‖L2(G) ,

which combined with (10.6) implies (10.4). �

Definition 10.1.4 (Euler–Hilbert–Sobolev function spaces). For β ∈ C+, we define
the Euler–Hilbert–Sobolev function space on G by

H
β(G) := C∞

0 (G\{0})‖·‖Hβ(G) , (10.7)

that is, as the completion of C∞
0 (G\{0}) with respect to the semi-norm

‖f‖Hβ(G) := ‖|E|βf‖L2(G).

In view of this definition we have inequality (10.4) for all f ∈ Hβ(G):

‖f‖L2(G) ≤ C(k −
β

2
, k)

(
2

Q

)Reβ ∥∥∥|E|βf∥∥∥
L2(G)

, (10.8)

where β ∈ C+, k > Reβ
2 , k ∈ N, and C(k − β

2 , k) is given by (10.5). We can
summarize these facts as follows:

Proposition 10.1.5 (Embeddings of Euler–Hilbert–Sobolev spaces). Let G be a
homogeneous group of homogeneous dimension Q ≥ 1. For any β ∈ C the semi-
normed space (Hβ , ‖ · ‖Hβ ) is a complete space. Moreover, the norm of the embed-
ding operator ι : (Hβ , ‖ · ‖Hβ ) ↪→ (L2, ‖ · ‖L2) satisfies

‖ι‖Hβ→L2 ≤ C
(
k − β

2
, k

)(
2

Q

)Reβ

, β ∈ C+, k >
Reβ

2
, k ∈ N, (10.9)

where we understand the embedding ι as an embedding of a semi-normed sub-
space of L2.
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10.1.1 Poincaré type inequality

Let Ω ⊂ G be an open set and let L̂1,p
0 (Ω) be the completion of C∞

0 (Ω\{0}) with
respect to

‖f‖
L̂1,p(Ω) := ‖f‖Lp(Ω) + ‖Ef‖Lp(Ω), 1 < p <∞.

Then we have the following completion of Hardy inequalities:

Theorem 10.1.6 (Poincaré type inequality on homogeneous groups). Let Ω be a
bounded open subset of a homogeneous group G of homogeneous dimension Q. If
1 < p <∞, f ∈ L̂1,p

0 (Ω) and Rf ≡ 1
|x|Ef ∈ Lp(Ω), then we have

‖f‖Lp(Ω) ≤ Rp

Q
‖Rf‖Lp(Ω) =

Rp

Q

∥∥∥∥ 1

|x|Ef
∥∥∥∥
Lp(Ω)

, (10.10)

where R = sup
x∈Ω
|x|.

In order to prove Theorem 10.1.6, we first show the following Hardy inequality
on open sets.

Lemma 10.1.7 (Hardy inequality on open sets). Let Ω ⊂ G be an open set. If

1 < p <∞, f ∈ L̂1,p
0 (Ω) and Ef ∈ Lp(Ω), then we have

‖f‖Lp(Ω) ≤ p

Q
‖Ef‖Lp(Ω). (10.11)

Proof of Lemma 10.1.7. Let ζ : R→ R be an even smooth function satisfying

• 0 ≤ ζ ≤ 1,

• ζ(r) = 1 if |r| ≤ 1,

• ζ(r) = 0 if |r| ≥ 2.

For λ > 0, we set
ζλ(x) := ζ(λ|x|).

By (3.70) we already have inequality (10.11) for f ∈ C∞
0 (G\{0}). There exists

some {f�}∞�=1 ∈ C∞
0 (Ω\{0}) such that f� → f in L̂1,p

0 (Ω) as � → ∞. Let λ > 0.
From (3.70) we obtain

‖ζλf�‖Lp(Ω) ≤ p

Q

(‖(Eζλ)f�‖Lp(Ω) + ‖ζλ(Ef�)‖Lp(Ω)

)
for all � ≥ 1. It is easy to see that

lim
�→∞

ζλf� = ζλf,

lim
�→∞

(Eζλ)f� = (Eζλ)f,

lim
�→∞

ζλ(Ef�) = ζλ(Ef)
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in Lp(Ω). These properties imply that

‖ζλf‖Lp(Ω) ≤ p

Q

{‖(Eζλ)f‖Lp(Ω) + ‖ζλ(Ef)‖Lp(Ω)

}
.

Since

|(Eζλ)(x)| ≤
{
sup |Eζ|, if λ−1 < |x| < 2λ−1,

0, otherwise,

we obtain (10.11) in the limit as λ→ 0. �

Proof of Theorem 10.1.6. Since R = sup
x∈Ω
|x| using Proposition 10.1.7 we obtain

‖f‖Lp(Ω) ≤ p

Q
‖Ef‖Lp(Ω) ≤ Rp

Q
‖Rf‖Lp(Ω) =

Rp

Q

∥∥∥∥ 1

|x|Ef
∥∥∥∥
Lp(Ω)

,

which gives (10.10). �

10.2 Sobolev–Lorentz–Zygmund spaces

In this section, we define several families of Lorentz type spaces and analyse their
basic properties.

Definition 10.2.1 (Lorentz, Lorentz–Zygmund, and Sobolev–Lorentz–Zygmund
spaces). Let G be a homogeneous group of homogeneous dimension Q with a
homogeneous quasi-norm | · |. We define the Lorentz type spaces on G by

L|·|,Q,p,q(G) := {f ∈ L1
loc(G) : ‖f‖L|·|,Q,p,q(G) <∞}, 0 ≤ p, q ≤ ∞,

where

‖f‖L|·|,Q,p,q(G) :=

(∫
G

(|x|Qp |f(x)|)q 1

|x|Q dx
) 1/q

.

In the sequel, if the quasi-norm | · | on G is fixed we will often abbreviate the
notation by writing

Lp,q(G) := L|·|,Q,p,q(G).

Moreover, we define the Lorentz–Zygmund spaces on G by

Lp,q,λ(G) := {f ∈ L1
loc(G) : ‖f‖Lp,q,λ(G) <∞}, 0 ≤ p, q ≤ ∞, λ ∈ R,

where

‖f‖Lp,q,λ(G) := sup
R>0

(∫
G

(
|x|Qp

∣∣∣∣log R

|x|
∣∣∣∣λ |f(x)|

)q
1

|x|Q dx
) 1/q

.
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Furthermore, we define the Sobolev–Lorentz–Zygmund spaces by

W 1Lp,q,λ(G) :=

{
f ∈ Lp,q,λ(G) :

1

|x|Ef ∈ Lp,q,λ(G)

}
,

endowed with the norm

‖ · ‖W 1Lp,q,λ(G) := ‖ · ‖Lp,q,λ(G) +

∥∥∥∥ 1

|x|E·
∥∥∥∥
Lp,q,λ(G)

.

We also define

W 1
0Lp,q,λ(G) := C∞

0 (G)
‖·‖W1Lp,q,λ(G)

as the completion of C∞
0 (G) with respect to ‖ · ‖W 1Lp,q,λ(G).

In addition, for λ1, λ2 ∈ R we introduce the Lorentz–Zygmund spaces involv-
ing the double logarithmic weights by

Lp,q,λ1,λ2(G) := {f ∈ L1
loc(G) : ‖f‖Lp,q,λ1,λ2(G) <∞},

where

‖f‖Lp,q,λ1,λ2 (G) := sup
R>0

(∫
G

(
|x|Qp

∣∣∣∣log R

|x|
∣∣∣∣λ1

∣∣∣∣log ∣∣∣∣log R

|x|
∣∣∣∣∣∣∣∣λ2

|f(x)|
)q

dx

|x|Q
)1/q

.

Remark 10.2.2. The space Lp,q,λ1,λ2(G) extends the scale of the spaces Lp,q,λ(G)
and Lp,q(G) in the sense that Lp,q,λ,0(G) = Lp,q,λ(G) and Lp,q,0,0(G) = Lp,q(G).

Similarly, we define the Sobolev–Lorentz–Zygmund spaces W 1Lp,q,λ1,λ2(G) by

W 1Lp,q,λ1,λ2(G) :=

{
f ∈ Lp,q,λ1,λ2(G) :

1

|x|Ef ∈ Lp,q,λ1,λ2(G)

}
, (10.12)

endowed with the norm

‖ · ‖W 1Lp,q,λ1,λ2 (G) := ‖ · ‖Lp,q,λ1,λ2(G) +

∥∥∥∥ 1

|x|E·
∥∥∥∥
Lp,q,λ1,λ2(G)

,

and

W 1
0Lp,q,λ1,λ2(G) := C∞

0 (G)
‖·‖W1Lp,q,λ1,λ2

(G) . (10.13)

Taking into account the special behaviour of functions

fR(x) := f

(
R
x

|x|
)
,

we introduce the Lorentz–Zygmund type spaces Lp,q,λ by

Lp,q,λ(G) := {f ∈ L1
loc(G) : ‖f‖Lp,q,λ(G) <∞}, λ ∈ R,
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where

‖f‖Lp,q,λ(G) := sup
R>0

(∫
G

(
|x|Qp

∣∣∣∣log R

|x|
∣∣∣∣λ |f − fR|

)q
dx

|x|Q
) 1/q

.

For p =∞ we define

‖f‖L∞,q,λ(G) := sup
R>0

(∫
G

(∣∣∣∣log R

|x|
∣∣∣∣λ |f − fR|

)q
dx

|x|Q
) 1/q

.

Moreover, we define the Lorentz–Zygmund type spaces Lp,q,λ1,λ2(G) by

Lp,q,λ1,λ2(G) := {f ∈ L1
loc(G) : ‖f‖Lp,q,λ1,λ2(G) <∞}, (10.14)

where

‖f‖Lp,q,λ1,λ2(G)

:= sup
R>0

(∫
G

(|x|Qp ∣∣∣∣log eR|x|
∣∣∣∣λ1

∣∣∣∣log ∣∣∣∣log eR|x|
∣∣∣∣∣∣∣∣λ2

× (χB(0,eR)(x)|f − fR|+ χBc(0,eR)(x)|f − fe2R|
))q dx
|x|Q

) 1/q

,

χB(0,eR)(x) =

{
1, x ∈ B(0, eR);

0, x /∈ B(0, eR).

For p =∞ we define

‖f‖L∞,q,λ1,λ2
(G) := sup

R>0

(∫
G

(∣∣∣∣log eR|x|
∣∣∣∣λ1

∣∣∣∣log ∣∣∣∣log eR|x|
∣∣∣∣∣∣∣∣λ2

× (χB(0,eR)(x)|f − fR|+ χBc(0,eR)(x)|f − fe2R|
))q dx
|x|Q

) 1/q

.

We now show several embeddings between the Sobolev–Lorentz–Zygmund
spaces.

Theorem 10.2.3 (Embeddings of Sobolev–Lorentz–Zygmund spaces). For all 1 <
γ <∞ and max{1, γ − 1} < q <∞ we have the continuous embedding

W 1
0LQ,q, q−1

q , q−γq
(G) ↪→ L∞,q,− 1

q ,−γ
q
(G).
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In particular, for all f ∈ W 1
0LQ,q, q−1

q , q−γq
(G) and for any R > 0 the following

inequality holds⎛⎝∫
G

χB(0,eR)(x)|f − fR|q + χBc(0,eR)(x)|f − fe2R|q∣∣∣log ∣∣∣log eR
|x|
∣∣∣∣∣∣γ ∣∣∣log eR

|x|
∣∣∣ dx

|x|Q

⎞⎠1/q

≤ q

γ − 1

(∫
G

|x|q−Q
∣∣∣∣log eR|x|

∣∣∣∣q−1 ∣∣∣∣log ∣∣∣∣log eR|x|
∣∣∣∣∣∣∣∣q−γ ∣∣∣∣ 1|x|Ef

∣∣∣∣q dx
) 1/q

,

(10.15)

where the embedding constant q
γ−1 is sharp and where we denote fR(x) := f(R x

|x|).

Remark 10.2.4.

1. The function spaces extend with respect to indices some known results for
spaces in the Abelian case Rn analysed in [MOW15b]. Embeddings of such
Euclidean spaces for some indices were considered in [Wad14], and loga-
rithmic type Hardy inequalities in Euclidean Sobolev–Zygmund spaces were
investigated in [MOW13a].

2. Despite the fact that the integrand on the right-hand side of (10.15) has
singularities for |x| = R, |x| = eR and |x| = e2R as it will be clear from the
proof we do not need to subtract the boundary value of functions on |x| = eR
on the left-hand side.

In order to prove Theorem 10.2.3, let us first establish the following estimate.

Proposition 10.2.5. Let Q ∈ N, 1 < γ <∞, and assume that max{1, γ− 1} < q <
∞. Then for all f ∈ C∞

0 (G) and any R > 0 we have the inequality⎛⎝∫
B(0,eR)

|f − fR|q∣∣∣log ∣∣∣log eR
|x|
∣∣∣∣∣∣γ ∣∣∣log eR

|x|
∣∣∣ dx|x|Q

⎞⎠ 1/q

(10.16)

≤ q

γ − 1

(∫
B(0,eR)

|x|q−Q
∣∣∣∣log eR|x|

∣∣∣∣q−1 ∣∣∣∣log ∣∣∣∣log eR|x|
∣∣∣∣∣∣∣∣q−γ ∣∣∣∣ 1|x|Ef

∣∣∣∣q dx
) 1/q

.

Proof of Proposition 10.2.5. Using the polar coordinates as in Proposition 1.2.10
and integrating by parts in a quasi-ball B(0, R) we have∫

B(0,R)

|f − fR|q∣∣∣log ∣∣∣log eR
|x|
∣∣∣∣∣∣γ ∣∣∣log eR

|x|
∣∣∣ dx|x|Q

=

∫ R

0

1

r(log eR
r )(log(log eR

r ))γ

∫
℘

|f(ry) − f(Ry)|qdσ(y)dr
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=
1

γ − 1

[(
log

(
log

eR

r

))−γ+1 ∫
℘

|f(ry) − f(Ry)|qdσ(y)
]r=R
r=0

− 1

γ − 1

∫ R

0

(
log

(
log

eR

r

))−γ+1
d

dr

∫
℘

|f(ry)− f(Ry)|qdσ(y)dr

= − q

γ − 1

∫ R

0

(
log

(
log

eR

r

))−γ+1

Re

∫
℘

|f(ry)− f(Ry)|q−2

× (f(ry)− f(Ry))df(ry)
dr

dσ(y)dr.

In the above calculation, since q−γ+1 > 0, the boundary term at r = R vanishes
due to inequalities

log

(
log

eR

r

)
=

∫ log eR
r

1

dt

t
≥ log eR

r − 1

log eR
r

=
log R

r

log eR
r

=
1

log eR
r

∫ R
r

1

dt

t
≥ 1

log eR
r

R
r − 1
R
r

=
R− r
R log eR

r

and
|f(ry)− f(Ry)| ≤ C(R − r),

for 0 < r ≤ R. It follows that∫ R

0

1

r(log eR
r )(log(log eR

r ))γ

∫
℘

|f(ry)− f(Ry)|qdσ(y)dr

≤ q

γ − 1

∫ R

0

1

(log(log eR
r ))γ−1

∫
℘

|f(ry)− f(Ry)|q−1

∣∣∣∣df(ry)dr

∣∣∣∣ dσ(y)dr
=

q

γ − 1

×
∫ R

0

1

r
q−1
q (log eR

r )
q−1
q r−

q−1
q (log eR

r )−
q−1
q

1

(log(log eR
r ))

(q−1)γ
q (log(log eR

r ))
γ−q
q

×
∫
℘

|f(ry) − f(Ry)|q−1

∣∣∣∣df(ry)dr

∣∣∣∣ dσ(y)dr.
By the Hölder inequality, we get∫ R

0

1

r(log eR
r )(log(log eR

r ))γ

∫
℘

|f(ry) − f(Ry)|qdσ(y)dr

≤ q

γ − 1

(∫ R

0

∫
℘

|f(ry)− f(Ry)|q
r(log eR

r )(log(log eR
r ))γ

dσ(y)dr

) (q−1)/q

×
(∫ R

0

∫
℘

rq−1

(
log

eR

r

)q−1(
log

(
log

eR

r

))q−γ ∣∣∣∣df(ry)dr

∣∣∣∣q dσ(y)dr
) 1/q

.
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This gives

⎛⎝∫
B(0,R)

|f − fR|q∣∣∣log ∣∣∣log eR
|x|
∣∣∣∣∣∣γ ∣∣∣log eR

|x|
∣∣∣ dx|x|Q

⎞⎠ 1/q

(10.17)

≤ q

γ − 1

(∫
B(0,R)

|x|q−Q
∣∣∣∣log eR|x|

∣∣∣∣q−1 ∣∣∣∣log ∣∣∣∣log eR|x|
∣∣∣∣∣∣∣∣q−γ ∣∣∣∣ 1|x|Ef

∣∣∣∣q dx
) 1/q

.

Now we calculate the integrals in (10.16) restricted on B(0, eR)\B(0, R):∫
B(0,eR)\B(0,R)

|f − fR|q∣∣∣log ∣∣∣log eR
|x|
∣∣∣∣∣∣γ ∣∣∣log eR

|x|
∣∣∣ dx|x|Q

=

∫ eR

R

1

r(log eR
r )(log((log eR

r )−1))γ

∫
℘

|f(ry)− f(Ry)|qdσ(y)dr

= − 1

γ − 1

⎡⎣(log

((
log

eR

r

)−1
))−γ+1 ∫

℘

|f(ry)− f(Ry)|qdσ(y)
⎤⎦r=eR
r=R

+
1

γ − 1

∫ eR

R

(
log

((
log

eR

r

)−1
))−γ+1

d

dr

∫
℘

|f(ry)− f(Ry)|qdσ(y)dr

=
q

γ − 1

∫ eR

R

(
log

((
log

eR

r

)−1
))−γ+1

Re

∫
℘

|f(ry)− f(Ry)|q−2

× (f(ry)− f(Ry))df(ry)
dr

dσ(y)dr.

Again, in the calculation above, since q − γ + 1 > 0, the boundary term at r = R
vanishes due to inequalities

log

((
log

eR

r

)−1
)

=

∫ (log eRr )
−1

1

dt

t

≥
(
log

eR

r

)((
log

eR

r

)−1

− 1

)

= 1− log
eR

r
≥ r −R

R

and

|f(ry)− f(Ry)| ≤ C(R − r),
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for R ≤ r ≤ eR. This implies∫ eR

R

1

r(log eR
r )(log((log eR

r )−1))γ

∫
℘

|f(ry)− f(Ry)|qdσ(y)dr

≤ q

γ − 1

∫ eR

R

(
log

((
log

eR

r

)−1
))−γ+1

×
∫
℘

|f(ry)− f(Ry)|q−1

∣∣∣∣df(ry)dr

∣∣∣∣ dσ(y)dr = q

γ − 1

×
∫ eR

R

1

r
q−1
q (log eR

r )
q−1
q r−

q−1
q (log eR

r )−
q−1
q

× 1(
log

(
(log eR

r )−1
)) (q−1)γ

q
(
log

(
(log eR

r )−1
)) γ−q

q

×
∫
℘

|f(ry)− f(Ry)|q−1

∣∣∣∣df(ry)dr

∣∣∣∣ dσ(y)dr.
By using the Hölder inequality, we get∫ eR

R

1

r(log eR
r )(log((log eR

r )−1))γ

∫
℘

|f(ry)− f(Ry)|qdσ(y)dr

≤ q

γ − 1

(∫ eR

R

∫
℘

|f(ry)− f(Ry)|q
r(log eR

r )(log((log eR
r )−1))γ

dσ(y)dr

) (q−1)/q

×
(∫ eR

R

∫
℘

rq−1

(
log

eR

r

)q−1
(
log

((
log

eR

r

)−1
))q−γ

×
∣∣∣∣df(ry)dr

∣∣∣∣q dσ(y)dr
) 1/q

.

Thus, we arrive at⎛⎝∫
B(0,eR)\B(0,R)

|f − fR|q∣∣∣log ∣∣∣log eR
|x|
∣∣∣∣∣∣γ ∣∣∣log eR

|x|
∣∣∣ dx|x|Q

⎞⎠1/q

≤ q

γ − 1

(∫
B(0,eR)\B(0,R)

|x|q−Q
∣∣∣∣log eR|x|

∣∣∣∣q−1 ∣∣∣∣log ∣∣∣∣log eR|x|
∣∣∣∣∣∣∣∣q−γ ∣∣∣∣ 1|x|Ef

∣∣∣∣q dx
)1/q

.

This and (10.17) imply (10.16). �

By a similar argument one can prove a dual inequality to (10.16), that is, we
have
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Proposition 10.2.6. Let 1 < γ < ∞ and max{1, γ − 1} < q < ∞. Then for all
f ∈ C∞

0 (G) and for any R > 0 we have⎛⎝∫
Bc(0,R)

|f − feR|q∣∣∣log ∣∣∣log R
|x|
∣∣∣∣∣∣γ ∣∣∣log R

|x|
∣∣∣ dx|x|Q

⎞⎠ 1/q

(10.18)

≤ q

γ − 1

(∫
Bc(0,R)

|x|q−Q
∣∣∣∣log R

|x|
∣∣∣∣q−1 ∣∣∣∣log ∣∣∣∣log R

|x|
∣∣∣∣∣∣∣∣q−γ ∣∣∣∣ 1|x|Ef

∣∣∣∣q dx
) 1/q

.

Now we are ready to prove Theorem 10.2.3.

Proof of Theorem 10.2.3. By using (10.18) with R replaced by eR we have⎛⎝∫
Bc(0,eR)

|f − fe2R|q∣∣∣log ∣∣∣log eR
|x|
∣∣∣∣∣∣γ ∣∣∣log eR

|x|
∣∣∣ dx|x|Q

⎞⎠1/q

(10.19)

≤ q

γ − 1

(∫
Bc(0,eR)

|x|q−Q
∣∣∣∣log eR|x|

∣∣∣∣q−1 ∣∣∣∣log ∣∣∣∣log eR|x|
∣∣∣∣∣∣∣∣q−γ ∣∣∣∣ 1|x|Ef

∣∣∣∣q dx
) 1/q

.

Then from (10.16) and (10.19) we get (10.15) for functions f ∈ C∞
0 (G).

Let us now show (10.15) for general functions f ∈ W 1
0LQ,q, q−1

q , q−γq
(G). First

let us verify that (10.16) holds for f ∈ W 1
0LQ,q, q−1

q , q−γq
(G). Let {fm} ⊂ C∞

0 (G)

be a sequence such that fm → f in W 1
0LQ,q, q−1

q , q−γq
(G) as m → ∞ and almost

everywhere by the definition (10.13). If we define

fR,m(x) :=
fm(x)− fm(R x

|x|)∣∣∣log ∣∣∣log eR
|x|
∣∣∣∣∣∣ γq ∣∣∣log eR

|x|
∣∣∣ 1q ,

then {fR,m}m∈N is a Cauchy sequence in Lq(G; dx
|x|Q ), which is a weighted Lebesgue

space, since the inequality (10.16) holds for fm−fk ∈ C∞
0 (G). Consequently, there

exists gR ∈ Lq(G; dx
|x|Q ) such that fR,m → gR in Lq(G; dx

|x|Q ) as m→∞. From the

inclusion {
x ∈ G\{0} : fm

(
R
x

|x|
)

� f

(
R
x

|x|
)}

⊂
⋃
r>0

{
x ∈ G\{0} : fm

(
r
x

|x|
)

� f

(
r
x

|x|
)}

= {x ∈ G\{0} : fm(x) � f(x)},

it follows that fm

(
R x

|x|
)
→ f

(
R x

|x|
)
, that is, we obtain the equality

f(x)− f(R x
|x|
)

∣∣∣log ∣∣∣log eR
|x|
∣∣∣∣∣∣γ/q ∣∣∣log eR

|x|
∣∣∣ 1/q = gR(x)

almost everywhere.
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That is, inequality (10.16) holds for all f ∈W 1
0LQ,q, q−1

q , q−γq
(G). In the same

way we establish the inequality (10.19) for any f ∈W 1
0LQ,q, q−1

q , q−γq
(G). Since in-

equalities (10.16) and (10.19) hold for any f ∈W 1
0LQ,q, q−1

q , q−γq
(G), we get (10.15)

for f ∈ W 1
0LQ,q, q−1

q , q−γq
(G).

Now it remains to show the sharpness of the constant q
γ−1 in (10.15). By

(10.15) for each f ∈ W 1
0LQ,q, q−1

q , q−γq
(B(0, R)), we have⎛⎝∫

B(0,R)

|f(x)|q∣∣∣log ∣∣∣log eR
|x|
∣∣∣∣∣∣γ ∣∣∣log eR

|x|
∣∣∣ dx|x|Q

⎞⎠ 1/q

(10.20)

≤ q

γ − 1

(∫
B(0,R)

|x|q−Q
∣∣∣∣log eR|x|

∣∣∣∣q−1 ∣∣∣∣log ∣∣∣∣log eR|x|
∣∣∣∣∣∣∣∣q−γ ∣∣∣∣ 1|x|Ef

∣∣∣∣q dx
) 1/q

.

Therefore, it is sufficient to show the sharpness of the constant q
γ−1 in (10.20). As

in the Abelian case (see [MOW15b, Section 3]), we consider a sequence of functions
{f�} for large � ∈ N defined by

f�(x) :=

⎧⎪⎪⎨⎪⎪⎩
(log(log(�eR)))

γ−1
q , when |x| ≤ 1

� ,

(log(log eR
|x| ))

γ−1
q , when 1

� ≤ |x| ≤ R
2 ,

(log(log(2e)))
γ−1
q 2

R (R− |x|), when R
2 ≤ |x| ≤ R.

It is clear that f� ∈ W 1
0LQ,q, q−1

q , q−γq
(B(0, R)). Letting f̃�(r) := f�(x) with r =

|x| ≥ 0, we get

d

dr
f̃�(r) =

⎧⎪⎨⎪⎩
0, when r < 1

� ,

−γ−1
q r−1(log(log eR

r ))
γ−1
q −1(log eR

r )−1, when 1
� < r < R

2 ,

− 2
R (log(log(2e)))

γ−1
q , when R

2 < r < R.

Denoting by |℘| the Q − 1-dimensional surface measure of the unit sphere with
respect to the quasi-norm | · |, by a direct calculation we have∫
B(0,R)

|x|q−Q
∣∣∣∣log eR|x|

∣∣∣∣q−1 ∣∣∣∣log ∣∣∣∣log eR|x|
∣∣∣∣∣∣∣∣q−γ ∣∣∣∣ 1|x|Ef

∣∣∣∣q dx
= |℘|

∫ R

0

rq−1

∣∣∣∣log eRr
∣∣∣∣q−1 ∣∣∣∣log ∣∣∣∣log eRr

∣∣∣∣∣∣∣∣q−γ ∣∣∣∣ ddr f̃�(r)
∣∣∣∣q dr

= |℘|
(
γ − 1

q

)q ∫ R
2

1


r−1

(
log

eR

r

)−1(
log

(
log

eR

r

))−1

dr

+ (log(log(2e)))γ−1

(
2

R

)q
|℘|

∫ R

R
2

rq−1

(
log

eR

r

)q−1 (
log

(
log

eR

r

))q−γ
dr
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= −|℘|
(
γ − 1

q

)q ∫ R
2

1


d

dr

(
log

(
log

(
log

eR

r

)))
+ (log(log(2e)))γ−1

(
2

R

)q
|℘|

∫ R

R
2

rq−1

(
log

eR

r

)q−1 (
log

(
log

eR

r

))q−γ
dr

=: |℘|
(
γ − 1

q

)q
(log(log(log �eR))− log(log(log 2e))) + |℘|Cγ,q, (10.21)

where

Cγ,q := (2e)q(log(log(2e)))γ−1

∫ (log(log(2e)))

0

sq−γeq(s−e
s)ds.

The assumption q − γ + 1 > 0 implies that Cγ,q < +∞. Moreover, we have∫
B(0,R)

|f(x)|q∣∣∣log ∣∣∣log eR
|x|
∣∣∣∣∣∣γ ∣∣∣log eR

|x|
∣∣∣ dx|x|Q = |℘|

∫ R

0

|f̃�(r)|q∣∣log ∣∣log eR
r

∣∣∣∣γ ∣∣log eR
r

∣∣ drr
= |℘|(log(log(�eR)))γ−1

∫ 1


0

r−1

(
log

eR

r

)−1(
log

(
log

eR

r

))−γ
dr

+ |℘|
∫ R

2

1


r−1

(
log

eR

r

)−1(
log

(
log

eR

r

))−1

dr

+ |℘|(log(log(2e)))γ−1

(
2

R

)q
×
∫ R

R
2

r−1(R − r)q
(
log

eR

r

)−1(
log

(
log

eR

r

))−γ
dr

=
|℘|
γ − 1

+ |℘|(log(log(log(�eR))− log(log(log(2e))) + |℘|CR,γ,q, (10.22)

where

CR,γ,q := (log(log(2e)))γ−1

(
2

R

)q
×
∫ R

R
2

r−1(R − r)q
(
log

eR

r

)−1(
log

(
log

eR

r

))−γ
dr.

The inequality log(log eR
r ) ≥ R−r

R for all r ≤ R and the assumption q − γ > −1
imply CR,γ,q < +∞. Then, by (10.21) and (10.22), we arrive at∫

B(0,R)

|x|q−Q
∣∣∣∣log eR|x|

∣∣∣∣q−1 ∣∣∣∣log ∣∣∣∣log eR|x|
∣∣∣∣∣∣∣∣q−γ ∣∣∣∣ 1|x|Ef

∣∣∣∣q dx
×
⎛⎝∫

B(0,R)

|f(x)|q∣∣∣log ∣∣∣log eR
|x|
∣∣∣∣∣∣γ ∣∣∣log eR

|x|
∣∣∣ dx|x|Q

⎞⎠−1

→
(
γ − 1

q

)q
as �→∞, which implies that the constant q

γ−1 in (10.20) is sharp. �
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10.3 Generalized Morrey spaces

In the next sections, we develop the theory of Morrey and Campanato spaces
on general homogeneous groups. Moreover, we analyse properties of Bessel–Riesz
operators, maximal operators, and fractional integral operators on these spaces.

A brief discussion of the general theory of Morrey and Campanato spaces
was given in the introduction, and we can refer there also for references.

10.3.1 Bessel–Riesz kernels on homogeneous groups

The classical Bessel–Riesz operators on the Euclidean space Rn are the operators
of the form

Iα,γf(x) =

∫
Rn

Kα,γ(x− y)f(y)dy =

∫
Rn

|x− y|α−n
(1 + |x− y|)γ f(y)dy, (10.23)

where γ ≥ 0 and 0 < α < n. Here, Iα,γ andKα,γ are called a Bessel–Riesz operator
and a Bessel–Riesz kernel, respectively. The original works on these operators go
back to Hardy and Littlewood in [HL27, HL32] and Sobolev in [Sob38]. We refer
to Section 5.3 for the appearance of the related operators.

Definition 10.3.1 (Bessel–Riesz kernels). A natural analogue of the operators
(10.23) in the setting of homogeneous groups are operators of the form

Iα,γf(x) :=

∫
G

Kα,γ(xy
−1)f(y)dy =

∫
G

|xy−1|α−Q
(1 + |xy−1|)γ f(y)dy, (10.24)

with the Bessel–Riesz kernels defined by

Kα,γ(z) =
|z|α−Q

(1 + |z|)γ , (10.25)

where | · | is a homogeneous quasi-norm on a homogeneous group G.

First we calculate the Lp-norms of the Bessel–Riesz kernels.

Theorem 10.3.2 (Lp-norms of Bessel–Riesz kernels). Let G be a homogeneous group
of homogeneous dimension Q with a homogeneous quasi-norm | · |. If 0 < α < Q
and γ > 0 then Kα,γ ∈ Lp1(G) and

‖Kα,γ‖Lp1(G) ∼

(∑
k∈Z

(2kR)(α−Q)p1+Q

(1 + 2kR)γp1

)1/p1

,

for Q
Q+γ−α < p1 <

Q
Q−α .

We will use the following result in some proofs.
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Lemma 10.3.3 ([IGLE15]). If b > a > 0 then for every u > 1 and R > 0 we have

∑
k∈Z

(ukR)a

(1 + ukR)b
<∞.

Proof of Theorem 10.3.2. By using the polar coordinates decomposition from Pro-
position 1.2.10, for any R > 0 we have∫

G

|Kα,γ(x)|p1dx =

∫
G

|x|(α−Q)p1

(1 + |x|)γp1 dx

=

∫ ∞

0

∫
℘

r(α−Q)p1+Q−1

(1 + r)γp1
dσ(y)dr

= |℘|
∑
k∈Z

∫
2kR≤r<2k+1R

r(α−Q)p1+Q−1

(1 + r)γp1
dr,

where |℘| is the Q−1-dimensional surface measure of the unit sphere. This implies∫
G

|Kα,γ(x)|p1dx ≤ |℘|
∑
k∈Z

1

(1 + 2kR)γp1

∫
2kR≤r<2k+1R

r(α−Q)p1+Q−1dr

=
|℘|(2(α−Q)p1+Q − 1)

(α−Q)p1 +Q

∑
k∈Z

(2kR)(α−Q)p1+Q

(1 + 2kR)γp1
.

Moreover, we have∫
G

|Kα,γ(x)|p1dx ≥ |℘|
2γp1

∑
k∈Z

1

(1 + 2kR)γp1

∫
2kR≤r<2k+1R

r(α−Q)p1+Q−1dr

=
|℘|(2(α−Q)p1+Q − 1)

2γp1((α −Q)p1 +Q)

∑
k∈Z

(2kR)(α−Q)p1+Q

(1 + 2kR)γp1
.

Combining these two inequalities, for each R > 0 we have∫
G

|Kα,γ(x)|p1dx ∼

∑
k∈Z

(2kR)(α−Q)p1+Q

(1 + 2kR)γp1
.

For p1 ∈
(

Q
Q+γ−α ,

Q
Q−α

)
using Lemma 10.3.3 with u = 2, a = (α−Q)p1 +Q and

b = γp1, we arrive at ∑
k∈Z

(2kR)(α−Q)p1+Q

(1 + 2kR)γp1
<∞,

which also implies that Kα,γ ∈ Lp1(G). �
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Since
Iα,γf = Kα,γ ∗ f,

the Young inequality in Proposition 1.2.13 immediately implies

Corollary 10.3.4 (Lp-Lq boundedness of Bessel–Riesz operators). Let 0 < α < Q
and γ > 0. Assume that 1 ≤ p, q, p1 ≤ ∞, 1

q +1 = 1
p+

1
p1

and Q
Q+γ−α < p1 <

Q
Q−α .

Then we have
‖Iα,γf‖Lq(G) ≤ ‖Kα,γ‖Lp1(G)‖f‖Lp(G)

for all f ∈ Lp(G).

This means that Iα,γ is bounded from Lp(G) to Lq(G) and that its operator
norm can be estimated as

‖Iα,γ‖Lp(G)→Lq(G) ≤ ‖Kα,γ‖Lp1(G).

10.3.2 Hardy–Littlewood maximal operator in Morrey spaces

We now define Morrey and generalized Morrey spaces on homogeneous groups and
show the boundedness of the Hardy–Littlewood maximal operator in these spaces.

As usual throughout this section G is a homogeneous group of homogeneous
dimension Q.

Definition 10.3.5 (Local Morrey spaces). Let us define the local Morrey spaces
LMp,q(G) by

LMp,q(G) := {f ∈ Lploc(G) : ‖f‖LMp,q(G) <∞}, 1 ≤ p ≤ q, (10.26)

where

‖f‖LMp,q(G) := sup
r>0

rQ(1/q−1/p)

(∫
B(0,r)

|f(x)|pdx
) 1/p

.

Sometimes these spaces are called central Morrey spaces in the literature.

Definition 10.3.6 (Generalized local Morrey spaces). Let φ : R+ → R+ and 1 ≤
p <∞. We define the generalized local Morrey space LMp,φ(G) by

LMp,φ(G) := {f ∈ Lploc(G) : ‖f‖LMp,φ(G) <∞}, (10.27)

where

‖f‖LMp,φ(G) := sup
r>0

1

φ(r)

(
1

rQ

∫
B(0,r)

|f(x)|pdx
) 1/p

.

Let us first formulate the assumptions for the function φ in the above defi-
nition.

Assumptions on φ

From now on we will assume that φ is nonincreasing and tQ/pφ(t) is nondecreasing,
so that φ satisfies the doubling condition, i.e., there exists a constant C1 > 0 such
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that we have
1

2
≤ r

s
≤ 2 =⇒ 1

C1
≤ φ(r)

φ(s)
≤ C1. (10.28)

Definition 10.3.7 (Hardy–Littlewood maximal operator). For every f ∈ Lploc(G)
we define the Hardy–Littlewood maximal operator M by

M f(x) := sup
r>0

1

|B(x, r)|
∫
B(x,r)

|f(y)|dy, (10.29)

where |B(x, r)| denotes the Haar measure of the quasi-ball B(x, r).

Using the definition (10.26) of local Morrey spaces one can readily obtain the
following estimate:

Lemma 10.3.8. For any 1 ≤ p2 ≤ p1 and Q
Q+γ−α < p1 <

Q
Q−α we have

‖Kα,γ‖LMp2,p1 (G) ≤ ‖Kα,γ‖LMp1,p1 (G) = ‖Kα,γ‖Lp1(G). (10.30)

We now prove the boundedness of the Hardy–Littlewood maximal operator
on generalized local Morrey spaces.

Theorem 10.3.9 (Hardy–Littlewood maximal operator on generalized local Morrey
spaces). Let 1 < p < ∞. Then there exists some Cp > 0 such that for all f ∈
LMp,φ(G) we have

‖M f‖LMp,φ(G) ≤ Cp‖f‖LMp,φ(G). (10.31)

Remark 10.3.10. In the Euclidean space R
n this was shown by Nakai in [Nak94].

On stratified groups (or homogeneous Carnot groups) it was shown in [GAM13,
Corollary 3.2]. For general homogeneous groups this and other results of this sec-
tion were shown in [RSY18c].

Proof of Theorem 10.3.9. From the definition of the norm of the generalized local
Morrey space (10.27) it follows that(∫

B(0,r)

|f(x)|pdx
) 1/p

≤ φ(r)rQp ‖f‖LMp,φ(G), (10.32)

for all r > 0.

On the other hand, using Corollary 2.5 (b) from Folland and Stein [FS82] we
have the general property of the maximal function(∫

B(0,r)

|M f(x)|pdx
) 1/p

≤ Cp
(∫

B(0,r)

|f(x)|pdx
) 1/p

. (10.33)

Combining (10.32) and (10.33) we arrive at

1

φ(r)

(
1

rQ

∫
B(0,r)

|M f(x)|pdx
) 1/p

≤ Cp‖f‖LMp,φ(G),

for all r > 0. But this is exactly (10.31). �
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10.3.3 Bessel–Riesz operators in Morrey spaces

In this section, we show the boundedness of the Bessel–Riesz operators on the gen-
eralized local Morrey space from Definition 10.3.6. In the Abelian caseG = (Rn,+)
and Q = n with the standard Euclidean distance |x|E =

√
x21 + x22 + · · ·+ x2n the

results of this section have been obtained in [IGE16]. The exposition of this section
follows the results obtained in [RSY18c].

Theorem 10.3.11 (Boundedness of Bessel–Riesz operators on Morrey spaces, I).
Let G be a homogeneous group of homogeneous dimension Q with a homogeneous
quasi-norm | · |. Let γ > 0 and 0 < α < Q. Let β < −α, 1 < p < ∞, and

Q
Q+γ−α < p1 <

Q
Q−α . Assume that 0 < φ(r) ≤ Crβ for all r > 0. Then for all

f ∈ LMp,φ(G) we have

‖Iα,γf‖LMq,ψ(G) ≤ Cp,φ,Q‖Kα,γ‖Lp1(G)‖f‖LMp,φ(G), (10.34)

where q =
βp′1p
βp′1+Q

and ψ(r) = (φ(r))p/q.

Proof of Theorem 10.3.11. For every f ∈ LMp,φ(G), let us write Iα,γf(x) in the
form

Iα,γf(x) := I1(x) + I2(x),

where

I1(x) :=

∫
B(x,R)

|xy−1|α−Qf(y)
(1 + |xy−1|)γ dy

and

I2(x) :=

∫
Bc(x,R)

|xy−1|α−Qf(y)
(1 + |xy−1|)γ dy,

for some R > 0.

By using the dyadic decomposition for I1 we obtain

|I1(x)| ≤
−1∑

k=−∞

∫
2kR≤|xy−1|<2k+1R

|xy−1|α−Q|f(y)|
(1 + |xy−1|)γ dy

≤
−1∑

k=−∞

(2kR)α−Q

(1 + 2kR)γ

∫
2kR≤|xy−1|<2k+1R

|f(y)|dy

≤ CM f(x)

−1∑
k=−∞

(2kR)α−Q+Q/p1(2kR)Q/p
′
1

(1 + 2kR)γ
.

From this using Hölder’s inequality for 1
p1

+ 1
p′1

= 1 we get

|I1(x)| ≤ CM f(x)

( −1∑
k=−∞

(2kR)(α−Q)p1+Q

(1 + 2kR)γp1

)1/p1 ( −1∑
k=−∞

(2kR)Q

)1/p′1

.
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Since ( −1∑
k=−∞

(2kR)(α−Q)p1+Q

(1 + 2kR)γp1

)1/p1

≤
(∑
k∈Z

(2kR)(α−Q)p1+Q

(1 + 2kR)γp1

)1/p1

∼ ‖Kα,γ‖Lp1(G),

(10.35)

we arrive at
|I1(x)| ≤ C‖Kα,γ‖Lp1(G)M f(x)RQ/p

′
1 . (10.36)

For the second term I2, by using Hölder’s inequality for 1
p +

1
p′ = 1 we obtain that

|I2(x)| ≤
∞∑
k=0

(2kR)α−Q

(1 + 2kR)γ

∫
2kR≤|xy−1|<2k+1R

|f(y)|dy

≤
∞∑
k=0

(2kR)α−Q

(1 + 2kR)γ

(∫
2kR≤|xy−1|<2k+1R

dy

) 1
p′
(∫

2kR≤|xy−1|<2k+1R

|f(y)|pdy
) 1
p

=

∞∑
k=0

(2kR)α−Q

(1 + 2kR)γ

(∫ 2k+1R

2kR

∫
℘

rQ−1dσ(y)dr

) 1
p′
(∫

2kR≤|xy−1|<2k+1R

|f(y)|pdy
)1
p

≤ C
∞∑
k=0

(2kR)α−Q

(1 + 2kR)γ
(2kR)Q/p

′
(∫

2kR≤|xy−1|<2k+1R

|f(y)|pdy
) 1
p

.

This implies that

|I2(x)| ≤ C‖f‖LMp,φ(G)

∞∑
k=0

(2kR)α−Q+Q/p1

(1 + 2kR)γ
φ(2kR)(2kR)Q/p

′
1 .

Since φ(r) ≤ Crβ by assumption, we can estimate

|I2(x)| ≤ C‖f‖LMp,φ(G)

∞∑
k=0

(2kR)α−Q+Q/p1

(1 + 2kR)γ
(2kR)β+Q/p

′
1 .

Applying Hölder’s inequality again we get

|I2(x)| ≤ C‖f‖LMp,φ(G)

( ∞∑
k=0

(2kR)(α−Q)p1+Q

(1 + 2kR)γp1

)1/p1 ( ∞∑
k=0

(2kR)βp
′
1+Q

)1/p′1

.

From the conditions p1 <
Q

Q−α and β < −α we have βp′1 + Q < 0. By Theorem
10.3.2, we also have( ∞∑

k=0

(2kR)(α−Q)p1+Q

(1 + 2kR)γp1

)1/p1

≤
(∑
k∈Z

(2kR)(α−Q)p1+Q

(1 + 2kR)γp1

)1/p1

∼ ‖Kα,γ‖Lp1(G).



10.3. Generalized Morrey spaces 425

Using these, we arrive at

|I2(x)| ≤ C‖Kα,γ‖Lp1(G)‖f‖LMp,φ(G)R
Q/p′1+β . (10.37)

Combining estimates (10.36) and (10.37) we get

|Iα,γf(x)| ≤ C‖Kα,γ‖Lp1(G)(M f(x)RQ/p
′
1 + ‖f‖LMp,φ(G)R

Q/p′1+β).

Assuming that f is not identically 0 and that M f is finite everywhere, we can

choose R > 0 such that Rβ = Mf(x)
‖f‖

LMp,φ(G) , that is,

|Iα,γf(x)| ≤ C‖Kα,γ‖Lp1(G)‖f‖
− Q

βp′
1

LMp,φ(G)
(M f(x))

1+ Q

βp′
1 ,

for every x ∈ G. Setting q =
βp′1p
βp′1+Q

, for any r > 0 we get

(∫
|x|<r

|Iα,γf(x)|qdx
) 1/q

≤ C‖Kα,γ‖Lp1(G)‖f‖1−p/qLMp,φ(G)

(∫
|x|<r

|M f(x)|pdx
) 1/q

.

Then we divide both sides by (φ(r))p/qrQ/q to get(∫
|x|<r |Iα,γf(x)|qdx

) 1/q

ψ(r)rQ/q
≤ C‖Kα,γ‖Lp1(G)‖f‖1−p/qLMp,φ(G)

(∫
|x|<r |M f(x)|pdx

) 1/q

(φ(r))p/qrQ/q
,

where ψ(r) = (φ(r))p/q. Now by taking the supremum over r > 0 we obtain that

‖Iα,γf‖LMq,ψ(G) ≤ C‖Kα,γ‖Lp1(G)‖f‖1−p/qLMp,φ(G)
‖M f‖ p/q

LMp,φ(G)
,

which gives (10.34) after applying estimate (10.31). �

Lemma 10.3.8 states, in particular, that the Bessel–Riesz kernel belongs to
local Morrey spaces. This fact will be used in the following statement refining
estimate (10.34) in Theorem 10.3.11.

Theorem 10.3.12 (Boundedness of Bessel–Riesz operators on Morrey spaces, II).
Let G be a homogeneous group of homogeneous dimension Q with a homogeneous
quasi-norm | · |. Let γ > 0, 0 < α < Q and 1 < p < ∞. Let β < −α, Q

Q+γ−α <

p2 ≤ p1 <
Q

Q−α and p2 ≥ 1. Assume that 0 < φ(r) ≤ Crβ for all r > 0. Then for

all f ∈ LMp,φ(G) we have

‖Iα,γf‖LMq,ψ(G) ≤ Cp,φ,Q‖Kα,γ‖LMp2,p1 (G)‖f‖LMp,φ(G), (10.38)

where q =
βp′1p
βp′1+Q

and ψ(r) = (φ(r))p/q.
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Indeed, this refines Theorem 10.3.11 since by Lemma 10.3.8 we can estimate

‖Iα,γf‖LMq,ψ(G) ≤ C‖Kα,γ‖LMp2,p1 (G)‖f‖LMp,φ(G)

≤ C‖Kα,γ‖Lp1(G)‖f‖LMp,φ(G).

Proof of Theorem 10.3.12. Similarly to the proof of Theorem 10.3.11 we write
Iα,γf(x) in the form

Iα,γf(x) := I1(x) + I2(x),

where

I1(x) :=

∫
B(x,R)

|xy−1|α−Qf(y)
(1 + |xy−1|)γ dy

and

I2(x) :=

∫
Bc(x,R)

|xy−1|α−Qf(y)
(1 + |xy−1|)γ dy,

for some R > 0 to be chosen later.

As before, we estimate the first term I1 by using the dyadic decomposition:

|I1(x)| ≤
−1∑

k=−∞

∫
2kR≤|xy−1|<2k+1R

|xy−1|α−Q|f(y)|
(1 + |xy−1|)γ dy

≤
−1∑

k=−∞

(2kR)α−Q

(1 + 2kR)γ

∫
2kR≤|xy−1|<2k+1R

|f(y)|dy

≤ CMf(x)

−1∑
k=−∞

(2kR)α−Q+Q/p2(2kR)Q/p
′
2

(1 + 2kR)γ
,

where 1 ≤ p2 ≤ p1. From this using Hölder’s inequality for 1
p2

+ 1
p′2

= 1, we get

|I1(x)| ≤ CM f(x)

( −1∑
k=−∞

(2kR)(α−Q)p2+Q

(1 + 2kR)γp2

)1/p2 ( −1∑
k=−∞

(2kR)Q

)1/p′2

.

In view of (10.35) we have

|I1(x)| ≤ C2M f(x)

(∫
0<|x|<R

Kp2
α,γ(x)dx

) 1/p2

RQ/p
′
2

≤ C‖Kα,γ‖LMp2,p1 (G)M f(x)RQ/p
′
1 . (10.39)

Now for I2 by using Hölder’s inequality for 1
p +

1
p′ = 1 we have

|I2(x)| ≤
∞∑
k=0

(2kR)α−Q

(1 + 2kR)γ
(2kR)Q/p

′
(∫

2kR≤|xy−1|<2k+1R

|f(y)|pdy
)1/p

,
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that is,

|I2(x)| ≤ C‖f‖LMp,φ(G)

∞∑
k=0

(2kR)αφ(2kR)

(1 + 2kR)γ

(∫
2kR≤|xy−1|<2k+1R dy

)1/p2
(2kR)Q/p2

≤ C‖f‖LMp,φ(G)

∞∑
k=0

φ(2kR)(2kR)Q/p
′
1

(∫
2kR≤|xy−1|<2k+1RK

p2
α,γ(xy

−1)dy
) 1/p2

(2kR)Q/p2−Q/p1
,

where we have used the inequality(∫
2kR≤|xy−1|<2k+1R

Kp2
α,γ(xy

−1)dy

)1/p2

∼ (2kR)(α−Q)+Q/p2

(1 + 2kR)γ
≥ C (2kR)(α−Q)

(1 + 2kR)γ

(∫
2kR≤|xy−1|<2k+1R

dy

)1/p2

.

(10.40)

Since we have φ(r) ≤ Crβ by assumption and since(∫
2kR≤|xy−1|<2k+1R

Kp2
α,γ(xy

−1)dy
)1/p2

(2kR)Q/p2−Q/p1
� ‖Kα,γ‖LMp2,p1 (G)

for every k = 0, 1, 2, . . . , we get

|I2(x)| ≤ C‖Kα,γ‖LMp2,p1 (G)‖f‖LMp,φ(G)

∞∑
k=0

(2kR)β+Q/p
′
1 .

Using that β +Q/p′1 < 0 we obtain

|I2(x)| ≤ C‖Kα,γ‖LMp2,p1 (G)‖f‖LMp,φ(G)R
β+Q/p′1 . (10.41)

Combining estimates (10.39) and (10.41) we get

|Iα,γf(x)| ≤ C‖Kα,γ‖LMp2,p1 (G)(M f(x)RQ/p
′
1 + ‖f‖LMp,φ(G)R

β+Q/p′1).

Assuming that f is not identically 0 and that M f is finite everywhere, we can

choose R > 0 such that Rβ = Mf(x)
‖f‖

LMp,φ(G)
, which yields

|Iα,γf(x)| ≤ C‖Kα,γ‖LMp2,p1 (G)‖f‖
− Q

βp′
1

LMp,φ(G)
(M f(x))

1+ Q

βp′1 .

Now by using that q =
βp′1p
βp′1+Q

, for every r > 0 we obtain(∫
|x|<r

|Iα,γf(x)|qdx
) 1/q

≤ C‖Kα,γ‖LMp2,p1 (G)‖f‖1−p/qLMp,φ(G)

(∫
|x|<r

|M f(x)|pdx
) 1/q

.
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Then we divide both sides by (φ(r))p/qrQ/q to get(∫
|x|<r |Iα,γf(x)|qdx

) 1/q

ψ(r)rQ/q

≤ C‖Kα,γ‖LMp2,p1 (G)‖f‖1−p/qLMp,φ(G)

(∫
|x|<r |M f(x)|pdx

) 1/q

(φ(r))p/qrQ/q
,

where ψ(r) = (φ(r))p/q. Taking the supremum over r > 0 and then using (10.31),
we obtain the desired result

‖Iα,γf‖LMq,ψ(G) ≤ C‖Kα,γ‖LMp2,p1(G)‖f‖1−p/qLMp,φ(G)
‖M f‖ p/q

LMp,φ(G)

≤ Cp,φ,Q‖Kα,γ‖LMp2,p1 (G)‖f‖LMp,φ(G),

proving (10.38). �

To refine and extend the obtained boundedness statements we first show
that the Bessel–Riesz kernel Kα,γ belongs to the generalized local Morrey space
LMp2,ω(G) for some p2 ≥ 1 and some function ω.

Lemma 10.3.13 (Bessel–Riesz kernel in generalized local Morrey space). Let G

be a homogeneous group of homogeneous dimension Q. Let γ > 0, p2 ≥ 1 and
Q − Q

p2
< α < Q. If ω : R+ → R+ satisfies ω(r) ≥ Crα−Q for all r > 0, then

Kα,γ ∈ LMp2,ω(G).

Proof of Lemma 10.3.13. It is sufficient to evaluate the following integral around
zero, and using polar decomposition from Proposition 1.2.10, we have∫

|x|≤R
Kp2
α,γ(x)dx =

∫
|x|≤R

|x|(α−Q)p2

(1 + |x|)γp2 dx

≤ |℘|
∫
0<r≤R

r(α−Q)p2+Q−1dr ≤ Cωp2(R)RQ.

By dividing both sides of this inequality by ωp2(R)RQ and taking p2th-root, we
obtain (∫

|x|≤RK
p2
α,γ(x)dx

)1/p2

ω(R)RQ/p2
≤ C1/p2 .

Then, we take the supremum over R > 0 to get

sup
R>0

(∫
|x|≤RK

p2
α,γ(x)dx

)1/p2

ω(R)RQ/p2
<∞,

which implies that Kα,γ ∈ LMp2,ω(G). �
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Theorem 10.3.14 (Boundedness of Bessel–Riesz operators on Morrey spaces, III).
Let G be a homogeneous group of homogeneous dimension Q with a homogeneous
quasi-norm |·|. Let 0 < α < Q, γ > 0 and 1 < p <∞. Let ω : R+ → R+ satisfy the
doubling condition (10.28) and assume that 0 < ω(r) ≤ Cr−α for all r > 0, so that
Kα,γ ∈ LMp2,ω(G) for Q

Q+γ−α < p2 <
Q

Q−α and p2 ≥ 1. Let β < −α < −Q − β
and assume that 0 < φ(r) ≤ Crβ for all r > 0. Then for all f ∈ LMp,φ(G) we
have

‖Iα,γf‖LMq,ψ(G) ≤ Cp,φ,Q‖Kα,γ‖LMp2,ω(G)‖f‖LMp,φ(G), (10.42)

where q = βp
β+Q−α and ψ(r) = (φ(r))p/q.

Proof of Theorem 10.3.14. As in the proof of Theorem 10.3.11, we write

Iα,γf(x) := I1(x) + I2(x),

where

I1(x) :=

∫
B(x,R)

|xy−1|α−Qf(y)
(1 + |xy−1|)γ dy

and

I2(x) :=

∫
Bc(x,R)

|xy−1|α−Qf(y)
(1 + |xy−1|)γ dy,

for some R > 0 to be chosen later.

First, we estimate I1 by using the dyadic decomposition

|I1(x)| ≤
−1∑

k=−∞

∫
2kR≤|xy−1|<2k+1R

|xy−1|α−Q|f(y)|
(1 + |xy−1|)γ dy

≤
−1∑

k=−∞

(2kR)α−Q

(1 + 2kR)γ

∫
2kR≤|xy−1|<2k+1R

|f(y)|dy

≤ CM f(x)

−1∑
k=−∞

(2kR)α−Q+Q/p2(2kR)Q/p
′
2

(1 + 2kR)γ
.

From this using Hölder’s inequality for 1
p2

+ 1
p′2

= 1 we get

|I1(x)| ≤ CM f(x)

( −1∑
k=−∞

(2kR)(α−Q)p2+Q

(1 + 2kR)γp2

)1/p2 ( −1∑
k=−∞

(2kR)Q

)1/p′2

.

By (10.35) we have

|I1(x)| ≤ CM f(x)

(∫
0<|x|<R

Kp2
α,γ(x)dx

) 1/p2

RQ/p
′
2

≤ C‖Kα,γ‖LMp2,ω(G)M f(x)ω(R)RQ,
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and using that ω(r) ≤ Cr−α by assumption, we arrive at

|I1(x)| ≤ C‖Kα,γ‖LMp2,ω(G)M f(x)RQ−α. (10.43)

Now let us estimate the second term I2 as follows

|I2(x)| ≤
∞∑
k=0

(2kR)α−Q

(1 + 2kR)γ

∫
2kR≤|xy−1|<2k+1R

|f(y)|dy

≤ C
∞∑
k=0

(2kR)α−Q

(1 + 2kR)γ
(2kR)Q/p

′
(∫

2kR≤|xy−1|<2k+1R

|f(y)|pdy
)1/p

≤ C‖f‖LMp,φ(G)

∞∑
k=0

(2kR)αφ(2kR)

(1 + 2kR)γ

(∫
2kR≤|xy−1|<2k+1R

dy
) 1/p2

(2kR)Q/p2
,

where we have used that
(∫

2kR≤|xy−1|<2k+1R
dy
)1/p2 ∼ (2kR)Q/p2 . Using (10.40)

we obtain

|I2(x)| ≤ C‖f‖LMp,φ(G)

∞∑
k=0

(2kR)αφ(2kR)

(2kR)α−Q

(∫
2kR≤|xy−1|<2k+1RK

p2
α,γ(xy

−1)dy
) 1
p2

(2kR)Q/p2
.

Taking into account that φ(r) ≤ Crβ and ω(r) ≤ Cr−α for all r > 0 we have

|I2(x)| ≤ C‖f‖LMp,φ(G)

∞∑
k=0

(2kR)Q−α+β

(∫
2kR≤|xy−1|<2k+1R

Kp2
α,γ(xy

−1)dy
) 1
p2

ω(2kR)(2kR)Q/p2
.

Since we have(∫
2kR≤|xy−1|<2k+1RK

p2
α,γ(xy

−1)dy
)1/p2

ω(2kR)(2kR)Q/p2
� ‖Kα,γ‖LMp2,ω(G)

for every k = 0, 1, 2, . . . , it follows that

|I2(x)| ≤ C‖Kα,γ‖LMp2,ω(G)‖f‖LMp,φ(G)

∞∑
k=0

(2kR)Q−α+β .

Since Q− α+ β < 0, it implies that

|I2(x)| ≤ C‖Kα,γ‖LMp2,ω(G)‖f‖LMp,φ(G)R
Q−α+β . (10.44)

Combining estimates (10.43) and (10.44) we get

|Iα,γf(x)| ≤ C‖Kα,γ‖LMp2,ω(G)(M f(x)RQ−α + ‖f‖LMp,φ(G)R
Q−α+β).
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Assuming that f is not identically 0 and that M f is finite everywhere, we can

choose R > 0 such that Rβ = Mf(x)
‖f‖

LMp,φ(G)
, that is

|Iα,γf(x)| ≤ C‖Kα,γ‖LMp2,ω(G)‖f‖(α−Q)/β

LMp,φ(G)
(M f(x))1+(Q−α)/β .

Since q = βp
β+Q−α , for all r > 0 we get(∫

|x|<r
|Iα,γf(x)|qdx

) 1/q

≤ C‖Kα,γ‖LMp2,ω(G)‖f‖1−p/qLMp,φ(G)

(∫
|x|<r
|M f(x)|pdx

) 1/q

.

Then we divide both sides by (φ(r))p/qrQ/q to get(∫
|x|<r |Iα,γf(x)|qdx

) 1/q

ψ(r)rQ/q

≤ C‖Kα,γ‖LMp2,ω(G)‖f‖1−p/qLMp,φ(G)

(∫
|x|<r |M f(x)|pdx

) 1/q

(φ(r))p/qrQ/q
,

where ψ(r) = (φ(r))p/q. Finally, taking the supremum over r > 0 and using
(10.31), we obtain the desired result

‖Iα,γf‖LMq,ψ(G) ≤ C‖Kα,γ‖LMp2,ω(G)‖f‖1−p/qLMp,φ(G)
‖Mf‖ p/q

LMp,φ(G)

≤ Cp,φ,Q‖Kα,γ‖LMp2,ω(G)‖f‖LMp,φ(G),

which gives (10.42). �
Remark 10.3.15. We can make the following comparison between the obtained
estimates, similarly to the Euclidean case [IGE16, Section 3], namely, that also in
the case of general homogeneous groups, Theorem 10.3.14 gives the best estimate
among the three. Indeed, if we take

ω(R) := (1 +RQ/q1)R−Q/p1

for some q1 > p1, then

‖Kα,γ‖LMp2,ω(G) ≤ ‖Kα,γ‖LMp2,p1 (G).

By Theorem 10.3.14 and Lemma 10.3.8 we then obtain

‖Iα,γf‖LMq,ψ(G) ≤ C‖Kα,γ‖LMp2,ω(G)‖f‖LMp,φ(G)

≤ C‖Kα,γ‖LMp2,p1 (G)‖f‖LMp,φ(G)

≤ C‖Kα,γ‖Lp1(G)‖f‖LMp,φ(G).
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10.3.4 Generalized Bessel–Riesz operators

In this section we investigate properties of some generalizations of Bessel–Riesz
operators.

Definition 10.3.16 (Generalized Bessel–Riesz operators). We define the generalized
Bessel–Riesz operator Iρ̃,γ by

Iρ̃,γf(x) :=

∫
G

ρ̃(|xy−1|)
(1 + |xy−1|)γ f(y)dy, (10.45)

where γ ≥ 0, ρ̃ : R+ → R+, ρ̃ satisfies the doubling condition (10.28) and the
condition ∫ 1

0

ρ̃(t)

tγ−Q+1
dt <∞. (10.46)

We denote its kernel by

Kρ̃,γ(z) =
ρ̃(|z|)

(1 + |z|)γ .

We recover the usual Bessel–Riesz kernels from Definition 10.3.1 by taking
ρ̃(t) = tα−Q for 0 < α < Q, in which case we have

Kρ̃,γ(z) = Kα,γ(z) =
|z|α−Q

(1 + |z|)γ .

Theorem 10.3.17 (Boundedness of generalized Bessel–Riesz operators on Morrey
spaces). Let G be a homogeneous group of homogeneous dimension Q with a ho-
mogeneous quasi-norm | · |. Let γ > 0. Let ρ̃ and φ satisfy the doubling condition
(10.28). Assume that φ is surjective and for some 1 < p < q <∞ satisfies∫ ∞

r

(φ(t))p

t
dt ≤ C1(φ(r))

p, (10.47)

and

φ(r)

∫ r

0

ρ̃(t)

tγ−Q+1
dt+

∫ ∞

r

ρ̃(t)φ(t)

tγ−Q+1
dt ≤ C2(φ(r))

p/q, (10.48)

for all r > 0. Then we have

‖Iρ̃,γf‖LMq,φ p/q (G)
≤ Cp,q,φ,Q‖f‖LMp,φ(G). (10.49)

Proof of Theorem 10.3.17. For every R > 0, let us write Iρ̃,γf(x) in the form

Iρ̃,γf(x) = I1,ρ̃(x) + I2,ρ̃(x),

where

I1,ρ̃(x) :=

∫
B(x,R)

ρ̃(|xy−1|)
(1 + |xy−1|)γ f(y)dy
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and

I2,ρ̃(x) :=

∫
Bc(x,R)

ρ̃(|xy−1|)
(1 + |xy−1|)γ f(y)dy.

For I1,ρ̃(x), we have

|I1,ρ̃(x)| ≤
∫
|xy−1|<R

ρ̃(|xy−1|)
(1 + |xy−1|)γ |f(y)|dy

≤
∫
|xy−1|<R

ρ̃(|xy−1|)
|xy−1|γ |f(y)|dy

=
−1∑

k=−∞

∫
2kR≤|xy−1|<2k+1R

ρ̃(|xy−1|)
|xy−1|γ |f(y)|dy.

In view of (10.28) we can estimate

|I1,ρ̃(x)| ≤ C
−1∑

k=−∞

ρ̃(2kR)

(2kR)γ

∫
|xy−1|<2k+1R

|f(y)|dy

≤ CMf(x)

−1∑
k=−∞

ρ̃(2kR)

(2kR)γ−Q

≤ CMf(x)

−1∑
k=−∞

∫ 2k+1R

2kR

ρ̃(t)

tγ−Q+1
dt

= CMf(x)

∫ R

0

ρ̃(t)

tγ−Q+1
dt,

where we have used the fact that∫ 2k+1R

2kR

ρ̃(t)

tγ−Q+1
dt ≥ C ρ̃(2kR)

(2kR)γ−Q+1
2kR ≥ C ρ̃(2kR)

(2kR)γ−Q
. (10.50)

Now, using (10.48) we obtain

|I1,ρ̃(x)| ≤ CMf(x)(φ(R))(p−q)/q . (10.51)

For I2,ρ̃(x) can estimate

|I2,ρ̃(x)| ≤
∫
|xy−1|≥R

ρ̃(|xy−1|)
(1 + |xy−1|)γ |f(y)|dy

≤
∫
|xy−1|≥R

ρ̃(|xy−1|)
|xy−1|γ |f(y)|dy

=

∞∑
k=0

∫
2kR≤|xy−1|<2k+1R

ρ̃(|xy−1|)
|xy−1|γ |f(y)|dy.
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Applying (10.28), we get

|I2,ρ̃(x)| ≤ C
∞∑
k=0

ρ̃(2kR)

(2kR)γ

∫
|xy−1|<2k+1R

|f(y)|dy.

From this using the Hölder inequality, we obtain

|I2,ρ̃(x)| ≤ C
∞∑
k=0

ρ̃(2kR)

(2kR)γ

(∫
|xy−1|<2k+1R

dy

)1− 1/p(∫
|xy−1|<2k+1R

|f(y)|dy
) 1/p

≤ C
∞∑
k=0

ρ̃(2kR)

(2kR)γ−Q+Q
p

(∫
|xy−1|<2k+1R

|f(y)|dy
) 1/p

≤ C‖f‖LMp,φ(G)

∞∑
k=0

ρ̃(2k+1R)φ(2k+1R)

(2kR)γ−Q

≤ C‖f‖LMp,φ(G)

∞∑
k=0

∫ 2k+1R

2kR

ρ̃(t)φ(t)

tγ−Q+1
dt

= C‖f‖LMp,φ(G)

∫ ∞

R

ρ̃(t)φ(t)

tγ−Q+1
dt,

where we have used the fact that∫ 2k+1R

2kR

ρ̃(t)φ(t)

tγ−Q+1
dt ≥ C ρ̃(2

k+1R)φ(2k+1R)

(2k+1R)γ−Q+1
2kR ≥ C ρ̃(2

k+1R)φ(2k+1R)

(2kR)γ−Q
.

Now, using (10.48) we obtain

|I2,ρ̃(x)| ≤ C‖f‖LMp,φ(G)(φ(R))
p/q. (10.52)

Combining estimates (10.51) and (10.52) we get

|Iρ̃,γf(x)| ≤ C(Mf(x)(φ(R))(p−q)/q + ‖f‖LMp,φ(G)(φ(R))
p/q).

Assuming that f is not identically 0 and that M f is finite everywhere and then
using the fact that φ is surjective, we can choose R > 0 such that

φ(R) = M f(x) · ‖f‖−1
LMp,φ(G)

.

Thus, for every x ∈ G, we have

|Iρ̃,γf(x)| ≤ C(M f(x))
p
q ‖f‖

q−p
q

LMp,φ(G)
.

It follows that(∫
B(0,r)

|Iρ̃,γf(x)|q
)1/q

≤ C
(∫

B(0,r)

|M f(x)|p
) 1/q

‖f‖
q−p
q

LMp,φ(G)
.
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Now dividing both sides by (φ(r))p/qrQ/q we get

1

(φ(r))p/q

(
1

rQ

∫
B(0,r)

|Iρ̃,γf(x)|q
) 1/q

≤ C 1

(φ(r))p/q

(
1

rQ

∫
B(0,r)

|M f(x)|p
)1/q

‖f‖
q−p
q

LMp,φ(G)
.

Taking the supremum over r > 0 and using the boundedness of the maximal
operator M on LMp,φ(G) from (10.31), we obtain

‖Iρ̃,γf‖LMq,φ p/q (G)
≤ Cp,q,φ,Q‖f‖LMp,φ(G).

This gives (10.49). �

10.3.5 Olsen type inequalities for Bessel–Riesz operator

In this section, we show the Olsen type inequalities for the generalized Bessel–
Riesz operator Iρ,γ . Another type of this inequality will be shown in Theorem
10.3.22.

Theorem 10.3.18 (Olsen type inequalities for generalized Bessel–Riesz operators).
Let G be a homogeneous group of homogeneous dimension Q with a homogeneous
quasi-norm | · |. Let γ > 0. Let ρ̃ and φ satisfy the doubling condition (10.28).
Assume that φ is surjective and satisfies (10.47) and (10.48). Then we have

‖WIρ̃,γf‖LMp,φ(G) ≤ Cp,φ,Q‖W‖LMp2,φ
p/p2 (G)

‖f‖LMp,φ(G), (10.53)

provided that 1 < p < p2 <∞ and W ∈ LMp2,φ
p/p2

(G).

Proof of Theorem 10.3.18. By using Hölder’s inequality, we have

1

rQ

∫
B(0,r)

|W (x)Iρ̃,γf(x)|pdx

≤
(

1

rQ

∫
B(0,r)

|W (x)|p2dx
)p/p2 (

1

rQ

∫
B(0,r)

|Iρ̃,γf(x)|
pp2
p2−p dx

) (p2−p)/p2
.

Now let us take the pth roots and then divide both sides by φ(r), so that

1

φ(r)

(
1

rQ

∫
B(0,r)

|W (x)Iρ̃,γf(x)|pdx
) 1/p

≤ 1

(φ(r))p/p2

(
1

rQ

∫
B(0,r)

|W (x)|p2dx
)1/p2

× 1

(φ(r))
p2−p
p2

(
1

rQ

∫
B(0,r)

|Iρ̃,γf(x)|
pp2
p2−p dx

) (p2−p)/pp2
.
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By taking the supremum over r > 0 and using the inequality (10.49), we get

‖WIρ̃,γf‖LMp,φ(G) ≤ Cp,φ,Q‖W‖LMp2,φ
p/p2 (G)

‖Iρ̃,γf‖
L
pp2
p2−p ,φ

p2−p
p2

(G)

.

Taking into account that 1 < p < pp2
p2−p <∞ and putting q = pp2

p2−p in (10.49), we

obtain (10.53). �

10.3.6 Fractional integral operators in Morrey spaces

In this section we extend the previous results to more general fractional inte-
gral operators, in particular establishing their boundedness and the Olsen type
inequality on generalized Morrey spaces on homogeneous groups.

Definition 10.3.19 (Generalized fractional integral operator). We define the gen-
eralized fractional integral operator Tρ by

Tρf(x) :=

∫
G

ρ(|xy−1|)
|xy−1|Q f(y)dy, (10.54)

where ρ : R+ → R+ satisfies the doubling condition (10.28) and the condition∫ 1

0

ρ(t)

t
dt <∞. (10.55)

As in the standard Euclidean case, taking ρ(t) = tα with 0 < α < Q, we have
the classical Riesz transform

Tρf(x) = Iαf(x) =

∫
G

1

|xy−1|Q−α f(y)dy.

Theorem 10.3.20 (Fractional integral operators on Morrey spaces). Let G be a
homogeneous group of homogeneous dimension Q with a homogeneous quasi-norm
| · |. Let ρ and φ satisfy the doubling condition (10.28). Assume that φ is surjective
and for some 1 < p < q <∞ satisfies the inequalities∫ ∞

r

φ(t)p

t
dt ≤ C1(φ(r))

p, (10.56)

and

φ(r)

∫ r

0

ρ(t)

t
dt+

∫ ∞

r

ρ(t)φ(t)

t
dt ≤ C2(φ(r))

p/q, (10.57)

for all r > 0. Then we have

‖Tρf‖LMq,φ p/q (G)
≤ Cp,q,φ,Q‖f‖LMp,φ(G). (10.58)
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Proof of Theorem 10.3.20. For every R > 0, let us write Tρf(x) in the form

Tρf(x) = T1(x) + T2(x),

where

T1(x) :=

∫
B(x,R)

ρ(|xy−1|)
(|xy−1|)Q f(y)dy

and

T2(x) :=

∫
Bc(x,R)

ρ(|xy−1|)
(|xy−1|)Q f(y)dy.

For T1(x), we have

|T1(x)| ≤
∫
|xy−1|<R

ρ(|xy−1|)
|xy−1|Q |f(y)|dy

=

−1∑
k=−∞

∫
2kR≤|xy−1|<2k+1R

ρ(|xy−1|)
|xy−1|Q |f(y)|dy.

By view of (10.28) we can estimate

|T1(x)| ≤ C
−1∑

k=−∞

ρ(2kR)

(2kR)Q

∫
|xy−1|<2k+1R

|f(y)|dy

≤ CM f(x)

−1∑
k=−∞

ρ(2kR)

≤ CM f(x)

−1∑
k=−∞

∫ 2k+1R

2kR

ρ(t)

t
dt

= CM f(x)

∫ R

0

ρ(t)

t
dt.

Here we have used the fact that∫ 2k+1R

2kR

ρ(t)

t
dt ≥ Cρ(2kR)

∫ 2k+1R

2kR

1

t
dt = Cρ(2kR) ln 2. (10.59)

Now, using (10.57), we obtain

|T1(x)| ≤ CM f(x)(φ(R))(p−q)/q . (10.60)

For T2(x) we estimate it as

|T2(x)| ≤
∫
|xy−1|≥R

ρ(|xy−1|)
|xy−1|Q |f(y)|dy

=

∞∑
k=0

∫
2kR≤|xy−1|<2k+1R

ρ(|xy−1|)
|xy−1|Q |f(y)|dy.
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Applying (10.28) we get

|T2(x)| ≤ C
∞∑
k=0

ρ(2kR)

(2kR)Q

∫
|xy−1|<2k+1R

|f(y)|dy.

From this using Hölder’s inequality we obtain

|T2(x)| ≤ C
∞∑
k=0

ρ(2kR)

(2kR)Q

(∫
|xy−1|<2k+1R

dy

)1−1/p(∫
|xy−1|<2k+1R

|f(y)|dy
) 1/p

≤ C
∞∑
k=0

ρ(2kR)

(2kR)Q/p

(∫
|xy−1|<2k+1R

|f(y)|dy
) 1/p

≤ C‖f‖LMp,φ(G)

∞∑
k=0

ρ(2k+1R)φ(2k+1R)

≤ C‖f‖LMp,φ(G)

∞∑
k=0

∫ 2k+1R

2kR

ρ(t)φ(t)

t

= C‖f‖LMp,φ(G)

∫ ∞

R

ρ(t)φ(t)

t
,

where we have used the fact that∫ 2k+1R

2kR

ρ(t)φ(t)

t
dt ≥ Cρ(2k+1R)φ(2k+1R)

∫ 2k+1R

2kR

1

t
dt

= Cρ(2k+1R)φ(2k+1R) ln 2.

Now, in view of (10.57) we obtain

|T2(x)| ≤ C‖f‖LMp,φ(G)(φ(R))
p/q. (10.61)

Combining estimates (10.60) and (10.61) we get

|Tρf(x)| ≤ C(M f(x)(φ(R))(p−q)/q + ‖f‖LMp,φ(G)(φ(R))
p/q).

Assuming that f is not identically 0 and that M f is finite everywhere and then
using the fact that φ is surjective, we can choose R > 0 such that

φ(R) = M f(x) · ‖f‖−1
LMp,φ(G)

.

Thus, for every x ∈ G we have

|Tρf(x)| ≤ C(M f(x))
p
q ‖f‖

q−p
q

LMp,φ(G)
.



10.3. Generalized Morrey spaces 439

It follows that(∫
B(0,r)

|Tρf(x)|q
)1/q

≤ C
(∫

B(0,r)

|M f(x)|p
) 1/q

‖f‖
q−p
q

LMp,φ(G)
.

Dividing both sides by (φ(r))p/qrQ/q we obtain

1

(φ(r))p/q

(
1

rQ

∫
B(0,r)

|Tρf(x)|q
) 1/q

≤ C 1

(φ(r))p/q

(
1

rQ

∫
B(0,r)

|M f(x)|p
)1/q

‖f‖
q−p
q

LMp,φ(G)
.

Taking the supremum over r > 0 and using the boundedness of the maximal
operator M on LMp,φ(G) shown in (10.31), we obtain

‖Tρf‖LMq,φ p/q (G)
≤ Cp,q,φ,Q‖f‖LMp,φ(G).

This gives (10.58). �

10.3.7 Olsen type inequalities for fractional integral operators

We now show Olsen type inequalities for the generalized fractional integral op-
erator Tρ and the Bessel–Riesz operator Iα,γ . This continues the analysis from
Section 10.3.5.

Theorem 10.3.21 (Olsen type inequalities for fractional integral operators). Let G
be a homogeneous group of homogeneous dimension Q with a homogeneous quasi-
norm | · |. Let ρ and φ satisfy the doubling condition (10.28). Assume that φ is
surjective and satisfies (10.56) and (10.57). Then we have

‖WTρf‖LMp,φ(G) ≤ Cp,φ,Q‖W‖LMp2,φ
p/p2 (G)

‖f‖LMp,φ(G), (10.62)

provided that 1 < p < p2 <∞ and W ∈ LMp2,φ
p/p2

(G).

Proof of Theorem 10.3.21. By using Hölder’s inequality, we have

1

rQ

∫
B(0,r)

|W (x)Tρf(x)|pdx

≤
(

1

rQ

∫
B(0,r)

|W (x)|p2dx
) p/p2 (

1

rQ

∫
B(0,r)

|Tρf(x)|
pp2
p2−p dx

) (p2−p)/p2
.
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Now let us take the pth roots and then divide both sides by φ(r) to obtain

1

φ(r)

(
1

rQ

∫
B(0,r)

|W (x)Tρf(x)|pdx
) 1/p

≤ 1

(φ(r))p/p2

(
1

rQ

∫
B(0,r)

|W (x)|p2dx
)1/p2

× 1

(φ(r))
p2−p
p2

(
1

rQ

∫
B(0,r)

|Tρf(x)|
pp2
p2−p dx

) (p2−p)/pp2
.

By taking the supremum over r > 0 and using the inequality (10.58) we get

‖WTρf‖LMp,φ(G) ≤ Cp,φ,Q‖W‖LMp2,φ
p/p2 (G)

‖Tρf‖
L
pp2
p2−p ,φ

p2−p
p2

(G)

.

Taking into account that 1 < p < pp2
p2−p <∞ and putting q = pp2

p2−p in (10.58)

we obtain (10.62). �

Theorem 10.3.22 (Olsen type inequalities for Bessel–Riesz operators). Let G be a
homogeneous group of homogeneous dimension Q with a homogeneous quasi-norm
| · |. Let 1 < p < ∞, 0 < α < Q and γ > 0. Let ω : R+ → R+ satisfy the
doubling condition and assume that 0 < ω(r) ≤ Cr−α for every r > 0, so that
Kα,γ ∈ LMp2,ω(G) for Q

Q+γ−α < p2 < Q
Q−α and p2 ≥ 1, where q = βp

β+Q−α .
Assume that 0 < φ(r) ≤ Crβ for all r > 0, where β < −α < −Q − β. Then we
have

‖WIα,γf‖LMp,φ(G) ≤ Cp,φ,Q‖W‖LMp2,φ
p/p2 (G)

‖f‖LMp,φ(G), (10.63)

provided that W ∈ LMp2,φ
p/p2

(G), where 1
p2

= 1
p − 1

q .

Proof of Theorem 10.3.22. As in Theorem 10.3.21, by using Hölder’s inequality
for 1

p2
+ 1

q = 1
p , we have

1

rQ

∫
B(0,r)

|W (x)Iα,γf(x)|pdx

≤
(

1

rQ

∫
B(0,r)

|W (x)|p2dx
)p/p2 (

1

rQ

∫
B(0,r)

|Iα,γf(x)|qdx
) p/q

.
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Now we take the pth roots and then divide both sides by φ(r) to get

1

φ(r)

(
1

rQ

∫
B(0,r)

|W (x)Iα,γf(x)|pdx
) 1/p

≤ 1

(φ(r))p/p2

(
1

rQ

∫
B(0,r)

|W (x)|p2dx
)1/p2

× 1

(φ(r))p/q

(
1

rQ

∫
B(0,r)

|Iα,γf(x)|qdx
) 1/q

.

By taking the supremum over r > 0 we have

‖WIα,γf‖LMp,φ(G) ≤ C‖W‖LMp2,φ
p/p2 (G)

‖Iα,γf‖LMq,φ p/q (G)
.

Putting ψ(r) = (φ(r))p/q and using Theorem 10.3.14 we obtain (10.63). �

10.3.8 Summary of results

Let us now briefly summarize and collect the main results shown in this section,
for a clearer overview of the statements.

Corollary 10.3.23. Let G be a homogeneous group of homogeneous dimension Q
with a homogeneous quasi-norm | · |. Then we have the following properties:

1. Let Kα,γ(x) := |x|α−n

(1+|x|)γ . If 0 < α < Q and γ > 0, then Kα,γ ∈ Lp1(G) for
Q

Q+γ−α < p1 <
Q

Q−α , and

‖Kα,γ‖Lp1(G) ∼

(∑
k∈Z

(2kR)(α−Q)p1+Q

(1 + 2kR)γp1

) 1/p1

for any R > 0.

2. For any f ∈ LMp,φ(G) and 1 < p <∞, we have

‖M f‖LMp,φ(G) ≤ Cp‖f‖LMp,φ(G),

where generalized local Morrey space LMp,φ(G) and the Hardy–Littlewood
maximal operator M are defined in (10.27) and (10.29), respectively.

3. Let Iα,γ be a Bessel–Riesz operator on a homogeneous group defined in
(10.24). Let γ > 0 and 0 < α < Q. If 0 < φ(r) ≤ Crβ for every r > 0,
β < −α, 1 < p < ∞, and Q

Q+γ−α < p1 <
Q

Q−α , then for all f ∈ LMp,φ(G)
we have

‖Iα,γf‖LMq,ψ(G) ≤ Cp,φ,Q‖Kα,γ‖Lp1(G)‖f‖LMp,φ(G),

where q =
βp′1p
βp′1+Q

and ψ(r) = (φ(r))p/q.
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4. Let γ > 0, 1 < p < ∞ and 0 < α < Q. If 0 < φ(r) ≤ Crβ for all r > 0,
β < −α, Q

Q+γ−α < p2 ≤ p1 <
Q

Q−α and p2 ≥ 1, then for all f ∈ LMp,φ(G)
we have

‖Iα,γf‖LMq,ψ(G) ≤ Cp,φ,Q‖Kα,γ‖LMp2,p1 (G)‖f‖LMp,φ(G),

where q =
βp′1p
βp′1+Q

and ψ(r) = (φ(r))p/q.

5. Let 1 < p <∞. Let ω : R+ → R+ satisfy the doubling condition and assume
that 0 < ω(r) ≤ Cr−α for all r > 0, so that Kα,γ ∈ LMp2,ω(G) for Q

Q+γ−α <
p2 <

Q
Q−α and p2 ≥ 1, where 0 < α < Q and γ > 0. If 0 < φ(r) ≤ Crβ for

all r > 0, where β < −α < −Q− β, then for all f ∈ LMp,φ(G) we have

‖Iα,γf‖LMq,ψ(G) ≤ Cp,φ,Q‖Kα,γ‖LMp2,ω(G)‖f‖LMp,φ(G),

where q = βp
β+Q−α and ψ(r) = (φ(r))p/q.

6. Let Iρ,γ be the generalized Bessel–Riesz operator defined in (10.45). Let γ > 0
and let ρ and φ satisfy the doubling condition (10.28). Let 1 < p < q < ∞.
Assume that φ is surjective and satisfies∫ ∞

r

φ(t)p

t
dt ≤ C1(φ(r))

p,

and

φ(r)

∫ r

0

ρ(t)

tγ−Q+1
dt+

∫ ∞

r

ρ(t)φ(t)

tγ−Q+1
dt ≤ C2(φ(r))

p/q,

for all r > 0. Then we have

‖Iρ,γf‖LMq,φ p/q (G)
≤ Cp,q,φ,Q‖f‖LMp,φ(G).

7. Let ρ and φ satisfy the doubling condition (10.28). Let γ > 0 and assume
that φ is surjective and satisfies (10.47) and (10.48). Then we have

‖WIρ,γf‖LMp,φ(G) ≤ Cp,φ,Q‖W‖LMp2,φ
p/p2 (G)

‖f‖LMp,φ(G), 1 < p < p2 <∞,

provided that W ∈ LMp2,φ
p/p2

(G).

8. Let Tρ be the generalized fractional integral operator defined in (10.54). Let
ρ and φ satisfy the doubling condition (10.28). Let 1 < p < q < ∞. Assume
that φ is surjective and satisfies∫ ∞

r

φ(t)p

t
dt ≤ C1(φ(r))

p,

and

φ(r)

∫ r

0

ρ(t)

t
dt+

∫ ∞

r

ρ(t)φ(t)

t
dt ≤ C2(φ(r))

p/q,
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for all r > 0. Then we have

‖Tρf‖LMq,φ p/q (G)
≤ Cp,q,φ,Q‖f‖LMp,φ(G).

9. Let ρ and φ satisfy the doubling condition (10.28). Assume that φ is surjective
and satisfies (10.56) and (10.57). Then we have

‖WTρf‖LMp,φ(G) ≤ Cp,φ,Q‖W‖LMp2,φ
p/p2 (G)

‖f‖LMp,φ(G), 1 < p < p2 <∞,

provided that W ∈ LMp2,φ
p/p2

(G).

10. Let ω : R+ → R+ satisfy the doubling condition and assume that 0 < ω(r) ≤
Cr−α for all r > 0, so that Kα,γ ∈ LMp2,ω(G) for Q

Q+γ−α < p2 < Q
Q−α

and p2 ≥ 1, where 0 < α < Q, 1 < p < ∞, q = βp
β+Q−α and γ > 0. If

0 < φ(r) ≤ Crβ for all r > 0, where β < −α < −Q− β, then we have

‖WIα,γf‖LMp,φ(G) ≤ Cp,φ,Q‖W‖LMp2,φ
p/p2 (G)

‖f‖LMp,φ(G),

provided that W ∈ LMp2,φ
p/p2

(G), where 1
p2

= 1
p − 1

q .

11. Let the generalized local Campanato space LMp,ψ(G) and operator T̃ρ be
defined in (10.67) and (10.70), respectively. Let ρ satisfy (10.55), (10.28),
(10.68), (10.69), and let φ satisfy the doubling condition (10.28) and∫∞
1

φ(t)
t dt <∞. If∫ ∞

r

φ(t)

t
dt

∫ r

0

ρ(t)

t
dt+ r

∫ ∞

r

ρ(t)φ(t)

t2
dt ≤ C3ψ(r) for all r > 0,

then we have

‖T̃ρf‖LMp,ψ(G) ≤ Cp,φ,Q‖f‖LMp,φ(G), 1 < p <∞.

10.4 Besov type space:

Gagliardo–Nirenberg inequalities

Now we discuss a family of Gagliardo–Nirenberg type inequalities on homogeneous
groups. The formulation is based on the Besov type space Bα(R × ℘), which we
define as the space of all tempered distributions f on R× ℘ with the norm

‖g‖Bα(R×℘) := sup
t>0
{t−α/2‖Fe−tA2

F−1f‖L∞(R×℘)} <∞, (10.64)

where the operators F and A are defined in Section 1.3.4, and ℘ is the quasi-sphere
from the polar decomposition in Proposition 1.2.10.

Now we state the Gagliardo–Nirenberg type inequalities:
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Theorem 10.4.1 (Gagliardo–Nirenberg type inequalities with Besov norms). Let G
be a homogeneous group of homogeneous dimension Q. Let 1 ≤ p < q <∞. Then
there exists a positive constant C = C(p, q) > 0 such that we have

‖f‖Lq(R×℘) ≤ C‖Rf‖ p/qLp(R×℘)‖f‖1−p/qBp/(p−q)(R×℘) (10.65)

for all f ∈ Bp/(p−q)(R× ℘) such that Rf ∈ Lp(R× ℘).
The following one-dimensional result will be useful for the proof:

Theorem 10.4.2 ([Led03, Theorem 1]). Let 1 ≤ p < q < ∞. Then for every
function f ∈ Lp1(Rn) there exists a positive constant C = C(p, q, n) > 0 such that

‖f‖Lq(Rn) ≤ C‖∇f‖ p/qLp(Rn)‖f‖1−p/qB
p/(p−q)
∞,∞ (Rn)

, (10.66)

where

‖f‖Bα∞,∞(Rn) := sup
t>0, x∈Rn

{
t−α/2

∣∣∣∣ 1

(4πt)n/2

∫
Rn

f(y)e−|x−y|2/4tdy
∣∣∣∣} .

Proof of Theorem 10.4.1. Using Theorem 10.4.2 with n = 1 and Theorem 1.3.5,
we obtain∫
R

|f(r, y)|qdr ≤ Cq
∫
R

∣∣∣∣∂f(r, y)∂r

∣∣∣∣p dr
×
(

sup
t>0,r∈R

tp/(2(q−p))
∣∣∣∣ 1√

4πt

∫
R

e−(r−s)2/(4t)f(s, y)ds
∣∣∣∣)q−p

= Cq
∫
R

|Rf(r, y)|pdr
(

sup
t>0,r∈R

tp/(2(q−p))
∣∣∣Fe−tA2

F−1f(r, y)
∣∣∣)q−p

≤ Cq
∫
R

|Rf(r, y)|pdr
(
sup
t>0

tp/(2(q−p))
∥∥∥Fe−tA2

F−1f
∥∥∥
L∞(R×℘)

)q−p
= Cq

∫
R

|Rf(r, y)|pdr‖f‖q−p
Bp/(p−q)(R×℘),

for any y ∈ ℘, in view of (10.64). One obtains (10.65) after integrating the above
inequality with respect to y over ℘. �
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10.5 Generalized Campanato spaces

In this section we show the boundedness of the extended version of fractional
integral operators in Campanato spaces on homogeneous groups.

As before, throughout this section G is a homogeneous group of homogeneous
dimension Q with a homogeneous quasi-norm | · |.
Definition 10.5.1 (Generalized local Campanato spaces). Assume that the function
φ(r)
r is nonincreasing. Denote

fB = fB(0,r) :=
1

rQ

∫
B(0,r)

f(y)dy,

where B(0, r) := {x ∈ G : |x| < r}. We define the generalized local Campanato
space by

LMp,φ(G) := {f ∈ Lploc(G) : ‖f‖LMp,φ(G) <∞}, (10.67)

where

‖f‖LMp,φ(G) := sup
r>0

1

φ(r)

(
1

rQ

∫
B(0,r)

|f(x)− fB|pdx
) 1/p

.

Sometimes these spaces are called central Camponato spaces in the literature.

Definition 10.5.2 (Modified generalized fractional integral operators). Let ρ : R+→
R+ satisfy (10.55), (10.28) and the following conditions:∫ ∞

r

ρ(t)

t2
dt ≤ C1

ρ(r)

r
for all r > 0; (10.68)

1

2
≤ r

s
≤ 2 =⇒

∣∣∣∣ρ(r)rQ
− ρ(s)

sQ

∣∣∣∣ ≤ C2|r − s| ρ(s)
sQ+1

. (10.69)

We define the modified version of the generalized fractional integral operator Tρ by

T̃ρf(x) :=

∫
G

(
ρ(|xy−1|)
|xy−1|Q −

ρ(|y|)(1 − χB(0,1)(y))

|y|Q
)
f(y)dy, (10.70)

where χB(0,1) is the characteristic function of B(0, 1).

For instance, the function ρ(r) = rα satisfies (10.55), (10.28) and (10.69) for
0 < α < Q, and also satisfies (10.68) for 0 < α < 1.

Theorem 10.5.3 (Fractional integral operators on Camponato spaces). Let G be a
homogeneous group of homogeneous dimension Q with a homogeneous quasi-norm
| · |. Let ρ satisfy (10.55), (10.28), (10.68), (10.69), and let φ satisfy the doubling

condition (10.28) and
∫∞
1

φ(t)
t dt <∞. If∫ ∞

r

φ(t)

t
dt

∫ r

0

ρ(t)

t
dt+ r

∫ ∞

r

ρ(t)φ(t)

t2
dt ≤ C3ψ(r) for all r > 0, (10.71)
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then we have

‖T̃ρf‖LMp,ψ(G) ≤ Cp,φ,Q‖f‖LMp,φ(G), 1 < p <∞. (10.72)

Proof of Theorem 10.5.3. For every x ∈ B(0, r) and f ∈ LMp,φ(G), let us write

T̃ρf in the form

T̃ρf(x) = T̃B(0,r)(x) + C1
B(0,r) + C2

B(0,r)

= T̃ 1
B(0,r)(x) + T̃ 2

B(0,r)(x) + C1
B(0,r) + C2

B(0,r),

where

T̃B(0,r)(x) :=

∫
G

(f(y)−fB(0,2r))

(
ρ(|xy−1|)
|xy−1|Q −

ρ(|y|)(1−χB(0,2r)(y))

|y|Q
)
dy,

C1
B(0,r) :=

∫
G

(f(y)−fB(0,2r))

(
ρ(|y|)(1−χB(0,2r)(y))

|y|Q − ρ(|y|)(1−χB(0,1)(y))

|y|Q
)
dy,

C2
B(0,r) :=

∫
G

fB(0,2r)

(
ρ(|xy−1|)
|xy−1|Q −

ρ(|y|)(1−χB(0,1)(y))

|y|Q
)
dy,

T̃ 1
B(0,r)(x) :=

∫
B(0,2r)

(f(y)−fB(0,2r))
ρ(|xy−1|)
|xy−1|Q dy,

T̃ 2
B(0,r)(x) :=

∫
Bc(0,2r)

(f(y)−fB(0,2r))

(
ρ(|xy−1|)
|xy−1|Q −

ρ(|y|)
|y|Q

)
dy.

Since ∣∣∣∣ρ(|y|)(1 − χB(0,2r)(y))

|y|Q − ρ(|y|)(1 − χB(0,1)(y))

|y|Q
∣∣∣∣

≤
{
0, |y| < min(1, 2r) or |y| ≥ max(1, 2r);
ρ(|y|)
|y|Q = const, otherwise,

we have that C1
B(0,r) is finite.

Now let us show that C2
B(0,r) is finite. For this it is enough to prove that the

following integral is finite:∫
G

(
ρ(|xy−1|)
|xy−1|Q −

ρ(|y|)(1− χB(0,1)(y))

|y|Q
)
dy

=

∫
G

(
ρ(|xy−1|)
|xy−1|Q −

ρ(|y|)
|y|Q

)
dy +

∫
B(0,1)

ρ(|y|)
|y|Q dy.

Let us denote

A :=

∫
G

(
ρ(|xy−1|)
|xy−1|Q −

ρ(|y|)
|y|Q

)
dy.

For large R > 0, we write A in the form

A = A1 +A2 +A3,
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where

A1 =

∫
B(x,R)

ρ(|xy−1|)
|xy−1|Q dy −

∫
B(0,R)

ρ(|y|)
|y|Q dy,

A2 =

∫
B(x,R+r)\B(x,R)

ρ(|xy−1|)
|xy−1|Q dy −

∫
B(x,R+r)\B(0,R)

ρ(|y|)
|y|Q dy,

A3 =

∫
Bc(x,R+r)

(
ρ(|xy−1|)
|xy−1|Q −

ρ(|y|)
|y|Q

)
dy.

Since we have
∫ 1

0
ρ(t)
t dt < +∞, it follows that

ρ(|xy−1|)
|xy−1|Q ,

ρ(|y|)
|y|Q ∈ L

1
loc(G),

and hence A1 = 0.

For A2, we have

|A2| ≤
∫
B(x,R+r)\B(x,R−r)

(
ρ(|xy−1|)
|xy−1|Q +

ρ(|y|)
|y|Q

)
dy

∼ ((R + r)Q − (R− r)Q)ρ(R)
RQ

≤ Crρ(R)
R

.

In view of conditions (10.28) and (10.68) we have that

|A2| ≤ Crρ(R)
R
→ 0 as R→ +∞.

By (10.69) we have

|A3| ≤
∫
Bc(x,R+r)

∣∣∣∣ρ(|xy−1|)
|xy−1|Q −

ρ(|y|)
|y|Q

∣∣∣∣ dy
≤ C

∫
Bc(x,R+r)

||xy−1| − |y|| ρ(|xy
−1|)

|xy−1|Q+1
dy.

By using the triangle inequality from Proposition 1.2.4 and the symmetric property
of homogeneous quasi-norms, we get

|A3| ≤ C||x|+ |y−1| − |y||
∫ +∞

R+r

∫
℘

ρ(t)

tQ+1
tQ−1dσ(y)dt ≤ C|℘|r

∫ +∞

R+r

ρ(t)

t2
dt.

The inequality (10.68) implies that the last integral is integrable and |A3| → 0 as
R→ +∞.

Summarizing these properties of A1, A2, A3 we have that A→ 0 as R→ +∞,
so that A = 0 and hence∫

G

(
ρ(|xy−1|)
|xy−1|Q −

ρ(|y|)(1− χB(0,1)(y))

|y|Q
)
dy =

∫
B(0,1)

ρ(|y|)
|y|Q dy <∞,

which implies that C2
B(0,r) is finite.
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Now before estimating T̃ 1
B(0,r), let us denote

f̃ := (f − fB(0,2r))χB(0,2r) and φ̃(r) :=

∫ ∞

r

φ(t)

t
dt.

Then we have

|T̃ 1
B(0,r)(x)| ≤

∫
B(0,2r)

|f̃(y)|ρ(|xy
−1|)

|xy−1|Q dy

=
0∑

k=−∞

∫
2kr≤|xy−1|<2k+1r

ρ(|xy−1|)
|xy−1|Q |f̃(y)|dy.

By using (10.28) and (10.59) we get

|T̃ 1
B(0,r)(x)| ≤ C

0∑
k=−∞

ρ(2kr)

(2kr)Q

∫
|xy−1|<2k+1r

|f̃(y)|dy

≤ CM f̃(x)

0∑
k=−∞

ρ(2kr) ≤ CM f̃(x)

0∑
k=−∞

ρ(2k−1r)

≤ CM f̃(x)

0∑
k=−∞

∫ 2kr

2k−1r

ρ(t)

t
dt = CM f̃(x)

∫ r

0

ρ(t)

t
dt.

Now using (10.71) we have

|T̃ 1
B(0,r)(x)| ≤ C

ψ(r)

φ̃(r)
M f̃(x).

Using (10.33) we have

1

ψ(r)

(
1

rQ

∫
B(0,r)

|T̃ 1
B(0,r)(x)|pdx

) 1/p

≤ C 1

φ̃(r)rQ/p

(∫
B(0,r)

|M f̃(x)|pdx
) 1/p

≤ C 1

φ̃(r)rQ/p
‖f̃‖Lp(G).

By the Minkowski inequality, we have

1

φ̃(r)rQ/p
‖f̃‖Lp(G) =

1

φ̃(r)rQ/p
‖(f − fB(0,2r))χB(0,2r)‖Lp(G)

≤ C 1

φ̃(r)rQ/p
(‖(f − σ(f))χB(0,2r)

‖Lp(G) + (2r)Q/p|fB(0,2r) − σ(f)|),

where σ(f) = lim
r→∞fB(0,r).
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Moreover, we obtain the following inequalities exactly in the same way as in
the standard Euclidean case (see [EN04, Section 6]):

‖f − σ(f)‖LMp,φ̃(G) ≤ C1‖f‖LMp,φ(G),

and

|fB(0,r) − σ(f)| ≤ C2‖f‖LMp,φ(G)φ̃(r).

Finally, using these inequalities we get the estimate for T̃ 1
B(0,r) as

|T̃ 1
B(0,r)(x)| ≤ C‖f‖LMp,φ(G). (10.73)

Now let us estimate T̃ 2
B(0,r). By (10.28) and (10.69) we have

|T̃ 2
B(0,r)(x)| ≤

∫
Bc(0,2r)

|f(y)− fB(0,2r)|
∣∣∣∣ρ(|xy−1|)
|xy−1|Q −

ρ(|y|)
|y|Q

∣∣∣∣ dy
≤ C||xy−1| − |y||

∫
|y|≥2r

|f(y)− fB(0,2r)| ρ(|y|)|y|Q+1
dy.

By using the triangle inequality from Proposition 1.2.4 and symmetric property
of homogeneous quasi-norms we get

|T̃ 2
B(0,r)(x)| ≤ C||x|+ |y−1| − |y||

∫
|y|≥2r

|f(y)− fB(0,2r)|
ρ(|y|)
|y|Q+1

dy

≤ C|x|
∫
|y|≥2r

|f(y)− fB(0,2r)| ρ(|y|)|y|Q+1
dy

= C|x|
∞∑
k=2

∫
2k−1r≤|y|<2kr

ρ(|y|)|f(y)− fB(0,2r)|
|y|Q+1

dy.

By using (10.28) and Hölder’s inequality we obtain

|T̃ 2
B(0,r)(x)| ≤ C|x|

∞∑
k=2

ρ(2kr)

(2kr)Q+1

∫
|y|<2kr

|f(y)− fB(0,2r)|dy

≤ C|x|
∞∑
k=2

ρ(2kr)

2kr

(
1

(2kr)Q

∫
|y|<2kr

|f(y)− fB(0,2r)|pdy
) 1/p

.

As in the Abelian case ([EN04]) we have(
1

(2kr)Q

∫
B(0,2kr)

|f(y)− fB(0,2r)|pdy
)1/p

≤ C‖f‖LMp,φ(G)

∫ 2k+1r

2r

φ(s)

s
ds,

for every k ≥ 2. The inequality (10.59) implies that∫ 2k+1r

2kr

ρ(t)

t2
dt ≥ 1

2k+1r

∫ 2k+1r

2kr

ρ(t)

t
dt ≥ C ρ(2

kr)

2kr
.
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By using the last two inequalities we get

|T̃ 2
B(0,r)(x)| ≤ C|x|‖f‖LMp,φ(G)

∞∑
k=2

ρ(2kr)

2kr

∫ 2k+1r

2r

φ(s)

s
ds

≤ C|x|‖f‖LMp,φ(G)

∞∑
k=2

∫ 2k+1r

2kr

ρ(t)

t2

(∫ t

2r

φ(s)

s
ds

)
dt

≤ C|x|‖f‖LMp,φ(G)

∫ ∞

2r

ρ(t)

t2

(∫ t

2r

φ(s)

s
ds

)
dt

= C|x|‖f‖LMp,φ(G)

∫ ∞

2r

(∫ ∞

s

ρ(t)

t2
dt

)
φ(s)

s
ds.

Using (10.68) and then (10.71), it implies that

|T̃ 2
B(0,r)(x)| ≤ Cr‖f‖LMp,φ(G)

∫ ∞

2r

ρ(s)φ(s)

s2
ds ≤ Cψ(r)‖f‖LMp,φ(G).

Finally, it follows that

1

ψ(r)

(
1

rQ

∫
B(0,r)

|T̃ 2
B(0,r)(x)|pdx

) 1/p

≤ C‖f‖LMp,φ(G). (10.74)

Combining estimates (10.73) and (10.74) we obtain (10.72). �
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Chapter 11

Elements of Potential Theory

on Stratified Groups

In this chapter, we discuss elements of the potential theory and the theory of
boundary layer operators in the setting of stratified groups. The main tools for this
analysis are the fundamental solution for the sub-Laplacian and Green’s identities
established in Section 1.4.4.

From a different perspective than ours, comparable problems have been
considered by Folland and Stein [FS74], Geller [Gel90], Jerison [Jer81], Romero
[Rom91], Capogna, Garofalo and Nhieu [CGN08], Bonfiglioli, Lanconelli and Uguz-
zoni [BLU07] and a number of other people. A general setting of degenerate elliptic
operators was considered by Bony [Bon69]. However, it seems that the potential
theory on stratified group based on the layer potentials is an ingredient missing in
the literature, and here our presentation follows the development of such a theory
in [RS17c] on general stratified groups and in [RS16c] on the Heisenberg group.

Elements of the developed potential theory and the constructed layer poten-
tials are then used in this chapter to discuss several applications. In particular,
we describe new well-posed (i.e., solvable in the classical sense) boundary value
problems in addition to using it in solving the known problems such as Dirichlet
and Neumann problems for the sub-Laplacian. Furthermore, the developed po-
tential theory is used to derive trace formulae for the Newton potential of the
sub-Laplacian to piecewise smooth surfaces, and using these conditions to con-
struct the analogue of Kac’s boundary value problem in the setting of stratified
groups which is related to Kac’s “principle of not feeling the boundary” for the
sub-Laplacian.

In this section G will be a stratified group of homogeneous dimension Q ≥ 3.
Since our analysis is based on the fundamental solution for the sub-Laplacian we
will be restricting our discussion to the case of Q ≥ 3. This is not restrictive since
it effectively rules out only the spaces R and R2 where the fundamental solution
assumes a different form and where most things presented in this chapter are
already known.

© The Editor(s) (if applicable) and The Author(s) 2019 
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11.1 Boundary value problems on stratified groups

In this section, we show how Green’s identities established in Theorem 1.4.6 can
be used to provide simple proofs for the well-posedness for a number of boundary
value problems. In particular, we provide examples of different boundary condi-
tions, such as Dirichlet, Neumann, Robin, mixed Dirichlet and Robin, or different
types of conditions on different parts of the boundary. For simplicity we restrict
the considerations in this section to zero boundary conditions only, otherwise these
problems may become very delicate due to the presence of characteristic points,
and we can refer to [DGN06] for a thorough analysis in this direction, and to
Remark 11.1.7 for some discussion.

We also note that in the subsequently considered boundary value problems,
we can assume without loss of generality (in the proofs) that functions are real-
valued since otherwise we can always take real and imaginary parts which would
then satisfy the same equations.

In this section Ω is always an admissible domain as given in Definition 1.4.4.

The following result is known by other methods but given Green’s first for-
mula in Theorem 1.4.6 its proof becomes elementary.

Proposition 11.1.1 (Dirichlet boundary value problem for sub-Laplacian). Let Ω
be an admissible domain in a stratified group G. Then the Dirichlet boundary value
problem

Lu(x) = 0, x ∈ Ω, (11.1)

u(x) = 0, x ∈ ∂Ω, (11.2)

has the unique trivial solution u ≡ 0 in the class of functions C2(Ω)
⋂
C1(Ω).

Proof of Proposition 11.1.1. Setting v = u in (1.86), by (11.1) and (11.2) we get∫
Ω

∇̃uudν =

∫
Ω

(
∇̃uu+ uLu

)
dν =

∫
∂Ω

u〈∇̃u, dν〉 = 0.

Therefore ∫
Ω

N1∑
k=1

|Xku|2dν = 0,

that is, Xku = 0, k = 1, . . . , N1. Since any element of a Jacobian basis of G is
represented by Lie brackets of {X1, . . . , XN1}, we obtain that u is a constant, so
u ≡ 0 on Ω by (11.2). �

This result has the following simple extension to stationary Schrödinger op-
erators:
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Proposition 11.1.2 (Dirichlet boundary value problem for Schrödinger operator).
Let Ω be an admissible domain in a stratified group G. Let q : Ω → R be a non-
negative bounded function: q ∈ L∞(Ω) and q(x) ≥ 0 for all x ∈ Ω. Then the
Dirichlet boundary value problem for the Schrödinger equation

−Lu(x) + q(x)u(x) = 0, x ∈ Ω, (11.3)

u(x) = 0, x ∈ ∂Ω, (11.4)

has the unique trivial solution u ≡ 0 in the class of functions C2(Ω)
⋂
C1(Ω).

Proof of Proposition 11.1.2. Using Green’s formula (1.86), from (11.3) and (11.4)
we obtain ∫

Ω

∇̃uudν =

∫
Ω

(
∇̃uu+ uLu

)
dν −

∫
Ω

q(y)|u(y)|2dν

=

∫
∂Ω

u〈∇̃u, dν〉 −
∫
Ω

q(y)|u(y)|2dν

= −
∫
Ω

q(y)|u(y)|2dν.

Therefore, we have

0 ≤
∫
Ω

N1∑
k=1

|Xku|2dν = −
∫
Ω

q(y)|u(y)|2dν ≤ 0,

that is, we must have u ≡ 0 because of (11.4). �

Similarly, we can treat von Neumann type boundary conditions.

Proposition 11.1.3 (Neumann boundary value problem for sub-Laplacian). Let Ω
be an admissible domain in a stratified group G. Then the boundary value problem

Lu(x) = 0, x ∈ Ω ⊂ G, (11.5)

N1∑
j=1

Xju〈Xj , dν〉 = 0 on ∂Ω, (11.6)

has only constant solutions u ≡ const in the class of functions C2(Ω)
⋂
C1(Ω).

Remark 11.1.4. Note that von Neumann type boundary value problems for the
sub-Laplacian have been known and studied, see, e.g., [DGN06]. However, Propo-
sition 11.1.3 provides a new measure type condition for the von Neumann type
boundary value problem.
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Proof of Proposition 11.1.3. Set v = u in (1.86), then by (11.5) and (11.6) we get∫
Ω

∇̃uudν =

∫
Ω

(
∇̃uu+ uLu

)
dν

=

∫
∂Ω

u〈∇̃u, dν〉

=

∫
∂Ω

u

N1∑
j=1

Xju〈Xj, dν〉

= 0.

Therefore ∫
Ω

N1∑
k=1

|Xku|2dν = 0,

that is, Xku = 0, k = 1, . . . , N1. Since all vector fields in g are represented by Lie
brackets of {X1, . . . , XN1}, we obtain that u is a constant. �

Similarly, the Robin type boundary conditions can be also considered.

Proposition 11.1.5 (Robin boundary value problem for sub-Laplacian). Let Ω be
an admissible domain in a stratified group G. Let ak : ∂Ω→ R, k = 1, . . . , N1, be
bounded functions such that the measure

N1∑
j=1

aj〈Xj , dν〉 ≥ 0 (11.7)

is non-negative on ∂Ω. Then the boundary value problem

Lu(x) = 0, x ∈ Ω ⊂ G, (11.8)

N1∑
j=1

(aju+Xju)〈Xj , dν〉 = 0 on ∂Ω, (11.9)

has only constant solutions u ≡ const in the class of functions C2(Ω)
⋂
C1(Ω).

Moreover, if the integral of the measure (11.7) is positive, i.e., if

∫
∂Ω

N1∑
j=1

aj〈Xj , dν〉 > 0, (11.10)

then the boundary value problem (11.8)–(11.9) has the unique trivial solution u ≡ 0
in the class of functions C2(Ω)

⋂
C1(Ω).
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Proof of Proposition 11.1.5. Set v = u in (1.86), then by (11.8) and (11.9) we get∫
Ω

∇̃uudν =

∫
Ω

(
∇̃uu+ uLu

)
dν

=

∫
∂Ω

u〈∇̃u, dν〉

=

∫
∂Ω

u

N1∑
j=1

Xju〈Xj , dν〉

= −
∫
∂Ω

u2
N1∑
j=1

aj〈Xj , dν〉.

This means that ∫
Ω

N1∑
k=1

|Xku|2dν = −
∫
∂Ω

u2
N1∑
j=1

aj〈Xj , dν〉.

Therefore, we must have∫
Ω

N1∑
k=1

|Xku|2dν = 0 and

∫
∂Ω

u2
N1∑
j=1

aj〈Xj , dν〉 = 0.

As before the first equality implies that u is a constant and the first part of
Proposition 11.1.5 is proved.

On the other hand, by the assumption (11.10) the second equality implies
that u = 0 on ∂Ω, and this implies that u ≡ 0 on Ω. �

The problems where Dirichlet or Robin conditions are imposed on different
parts of the boundary can be also considered:

Proposition 11.1.6 (Dirichlet and Robin boundary value problem for sub-Lapla-
cian). Let Ω be an admissible domain in a stratified group G. Let ak : ∂Ω → R,
k = 1, . . . , N1, be bounded functions such that the measure

N1∑
j=1

aj〈Xj , dν〉 ≥ 0 (11.11)

is non-negative on ∂Ω. Let ∂Ω1 ⊂ ∂Ω, ∂Ω1 �= {∅} and ∂Ω2 := ∂Ω\∂Ω1. Then the
boundary value problem

Lu(x) = 0, x ∈ Ω ⊂ G, (11.12)

u = 0 on ∂Ω1, (11.13)

N1∑
j=1

(aju+Xju)〈Xj , dν〉 = 0 on ∂Ω2, (11.14)

has the unique trivial solution u ≡ 0 in the class of functions C2(Ω)
⋂
C1(Ω).
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Proposition 11.1.6 can be proved in the same way as Proposition 11.1.5.

Remark 11.1.7 (More general boundary value problems). In principle, one is cer-
tainly also interested in boundary value problems for non-zero boundary data or,
more generally, for example in the Dirichlet case, for an admissible domain Ω, in{Lu = f in Ω,

u = φ on ∂Ω.
(11.15)

In the Euclidean case, when L is the Laplacian, which is elliptic, the boundary
value problem (11.15) has a classical solution in C2(Ω)∩C1(Ω) for reasonably good
functions f, φ, for example, for f ∈ Cα(Ω) with α > 0, and φ ∈ C(∂Ω).

However, in general, this fact fails completely for the hypoelliptic boundary
value problem (11.15). Thus, already on the Heisenberg group Hn, even if the
domain Ω and the boundary datum φ are real analytic and f ≡ 0, D. Jerison
[Jer81] gave an example when the solution of the Dirichlet problem (11.15) is not
better than Hölder continuous near a characteristic boundary point, that is, the
solution is not classical.

We recall that the characteristic set of Ω (related to vector fields {X1, . . .,
XN1} giving the first stratum of a stratified group G) is the set

{x ∈ ∂Ω : Xk(x) ∈ Tx(∂Ω), k = 1, . . . , N1},
with Tx(∂Ω) being the tangent space to ∂Ω at the point x. We refer to Section
11.2 more discussions on characteristic points, and also to [CGN08, Section 4]
for an extensive discussion on boundary value problems and additional conditions
allowing one to partially handle the appearing characteristic points.

The appearance of characteristic points is hard to avoid, see the next section.

11.2 Layer potentials of the sub-Laplacian

Let D ⊂ RN be an open set with boundary ∂D. Let D be a domain of class C1,
that is, a domain such that for every x0 ∈ ∂D there exist a neighbourhood Ux0 of
x0, and a function φx0 ∈ C1(Ux0), with

|∇φx0 | ≥ α > 0

in Ux0 , where ∇ is the standard gradient in RN , such that

D ∩ Ux0 = {x ∈ Ux0 | φx0(x) < 0},
∂D ∩ Ux0 = {x ∈ Ux0 | φx0(x) = 0}.

A point x0 ∈ ∂D is called characteristic with respect to vector fields {X1, . . .,
XN1}, if for Ux0 , φx0 as above we have

X1φx0(x0) = 0, . . . , XN1φx0(x0) = 0.
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Usually, bounded domains have a non-empty collection of characteristic points.
For instance, any bounded domain of class C1 in the Heisenberg group Hn with
the boundary homeomorphic to the 2n-dimensional sphere S2n, has a non-empty
characteristic set, see, e.g., [DGN06].

11.2.1 Single layer potentials

We start by defining single layer potentials for the sub-Laplacian and then analyse
their basic properties.

Definition 11.2.1 (Single layer potentials). Let the function ε(y, x) = ε(x, y) be
the fundamental solution of the sub-Laplacian as in (1.89). We define single layer
potentials for an admissible domain Ω as the functionals

Sju(x) :=
∫
∂Ω

u(y)ε(y, x)〈Xj , dν(y)〉, j = 1, . . . , N1, (11.16)

where 〈Xj , dν〉 is the canonical pairing between vector fields and differential forms,
and N1 is the dimension of the first stratum of G.

Remark 11.2.2. In [Jer81] Jerison used the single layer potential defined by

S0u(x) =
∫
∂Ω

u(y)ε(y, x)dS(y).

However, it is not integrable over characteristic points of ∂Ω, see [Rom91] for
examples. On the contrary, as we will show in Lemma 11.2.3, the single layer
potentials (11.16) are integrable over the whole boundary ∂Ω including the set of
characteristic points.

We recall from (1.89) that

ε(x, y) = [d(x, y)]2−Q = [d(x−1y)]2−Q, (11.17)

with d being the L-gauge as in (1.75).

Lemma 11.2.3 (Single layer potentials are well defined). Let ∂Ω be the boundary of
an admissible domain Ω in a stratified group G of homogeneous dimension Q ≥ 3.
Then ∫

∂Ω

ε(x, y)〈Xj , dν(y)〉

is a convergent integral for any x ∈ G such that x �∈ ∂Ω.
Proof of Lemma 11.2.3. Let BR := {y : d(x, y) < R} be a ball such that Ω ⊂ BR.
In view of (11.17) we can estimate∫

∂Ω

[d(x, y)]2−Q〈Xj , dν(y)〉 =
∫
Ω

Xj [d(x, y)]
2−Qdν(y)
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≤
∫
Ω

| Xj[d(x, y)]
2−Q | dν(y) ≤

∫
BR

| Xj [d(x, y)]
2−Q | dν(y)

= C

∫ R

0

r1−QrQ−1dr <∞,

where we have used the polar decomposition from Proposition 1.2.10 with respect
to the L-gauge d. This proves Lemma 11.2.3. �

We now establish the main basic properties of the single layer potentials.

Theorem 11.2.4 (Continuity of single layer potentials). Let ∂Ω be the boundary of
an admissible domain Ω in a stratified group G of homogeneous dimension Q ≥ 3.
Let u be bounded on ∂Ω, that is, u ∈ L∞(∂Ω). Then the single layer potential Sju
is continuous on G for all j = 1, . . . , N1.

Proof of Theorem 11.2.4. Let first x0 ∈ G be such that x0 �∈ ∂Ω. Then

|Sju(x)− Sju(x0)| =
∣∣∣∣∫
∂Ω

u(y)(ε(y, x)− ε(y, x0))〈Xj , dν(y)〉
∣∣∣∣

≤ sup
y∈∂Ω

|u(y)|
∣∣∣∣∫
∂Ω

ε(y, x)− ε(y, x0)〈Xj , dν(y)〉
∣∣∣∣ .

This means that

lim
x→x0

Sju(x) = Sju(x0),

that is, the single layer potential Sju is continuous on G\∂Ω.
Now let x0 ∈ G be such that x0 ∈ ∂Ω. Let us denote

Ωε := {y ∈ Ω : d(x0, y) < ε}.

Then we have

|Sju(x)− Sju(x0)| =
∣∣∣∣∫
∂Ω

u(y)(ε(y, x)− ε(y, x0))〈Xj , dν(y)〉
∣∣∣∣

= sup
y∈∂Ω

|u(y)|
∣∣∣∣∫
∂Ω

(ε(y, x)− ε(y, x0))〈Xj , dν(y)〉
∣∣∣∣

= sup
y∈∂Ω

|u(y)|
∣∣∣∣∫

Ω

Xj(ε(y, x)− ε(y, x0))dν(y)
∣∣∣∣

≤ sup
y∈∂Ω

|u(y)| lim
ε→0

( ∣∣∣∣∣
∫
Ω\Ωε

Xj(ε(y, x)− ε(y, x0))dν(y)
∣∣∣∣∣

+

∣∣∣∣∫
Ωε

Xj(ε(y, x)− ε(y, x0))dν(y)
∣∣∣∣ ),
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where the first term tends to zero when x→ x0. Now what is left is to show that
the second term tends to zero. This follows since

lim
ε→0

∫
Ωε

Xj(ε(y, x)− ε(y, x0))dν(y)

= lim
ε→0

(∫
Ωε

Xjε(y, x)dν(y)−
∫
Ωε

Xjε(y, x0)dν(y)

)
= lim
ε→0

(C

∫ ε

0

r1−QrQ−1dr) = C lim
ε→0

ε = 0.

This completes the proof. �

11.2.2 Double layer potential

In this section, we discuss double layer potentials and establish Plemelj type jump
relations for them.

Definition 11.2.5 (Double layer potential). We define the double layer potential as
the operator

Du(x) :=
∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉, (11.18)

where

∇̃ε =
N1∑
k=1

(Xkε)Xk,

with vector fileds Xk acting on the y-variable.

We now describe the Plemelj type jump relations for the double layer poten-
tial D.
Theorem 11.2.6 (Plemelj jump relations for double layer potential). Let Ω ⊂ G be
an admissible domain in a stratified group G of homogeneous dimension Q ≥ 3.
Let u ∈ C1(Ω)

⋂
C(Ω). For x0 ∈ ∂Ω define

D0u(x0) :=

∫
∂Ω

u(y)〈∇̃ε(y, x0), dν(y)〉,

D+u(x0) := lim
x→x0, x∈Ω

∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉,
and

D−u(x0) := lim
x→x0, x/∈Ω

∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉.

Then D+u(x0),D−u(x0) and D0u(x0) exist and verify the following jump rela-
tions:

D+u(x0)−D−u(x0) = u(x0),
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D0u(x0)−D−u(x0) = J (x0)u(x0),
D+u(x0)−D0u(x0) = (1− J (x0))u(x0),

where the jump value J (x0) is given by the formula

J (x0) =
∫
∂Ω

〈∇̃ε(y, x0), dν(y)〉,

in the sense of the (Cauchy) principal value, and where

∇̃ε =
N1∑
k=1

(Xkε)Xk.

In order to prove Theorem 11.2.6 we will need the following property.

Lemma 11.2.7. Let Ω ⊂ G be an admissible domain with the boundary ∂Ω and let
x0 ∈ ∂Ω. Let u ∈ C1(Ω)

⋂
C(Ω). Then

lim
x→x0

∫
∂Ω

[u(y)− u(x)]〈∇̃ε(y, x), dν(y)〉 =
∫
∂Ω

[u(y)− u(x0)]〈∇̃ε(y, x0), dν(y)〉.

Proof of Lemma 11.2.7. To simplify the notation in this proof we will use the
following Einstein type convention: if the index k is repeated in an integrand, it
means that it is a sum over k from 1 to N1. For example, we abbreviate it as
follows:∫
∂Ω

[u(y)−u(x)]Xkε(y, x)〈Xk, dν(y)〉 :=
N1∑
k=1

∫
∂Ω

[u(y)−u(x)]Xkε(y, x)〈Xk, dν(y)〉.

First, let us show that

lim
ε→0

∫
d(x,y)<ε

Xk {(u(y)− u(x))Xkε(y, x)} dν(y) = 0.

By using the divergence formula in Theorem 1.4.5, we can estimate

lim
ε→0

∣∣∣∣∣
∫
d(x,y)<ε

Xk {(u(y)− u(x))Xkε(y, x)} dν(y)
∣∣∣∣∣

≤ C1 lim
ε→0

∫
d(x,y)<ε

|Xkε(y, x)|dν(y)

+ lim
ε→0

∫
d(x,y)<ε

|(u(y)− u(x))XkXkε(y, x)|dν(y)

≤ C lim
ε→0

∫ ε

0

dr = 0.
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Therefore, we have∫
Ω

Xk {[u(y)− u(x)]Xkε(y, x)} dν(y)

=

∫
Ω

Xk {[u(y)− u(x)]Xkε(y, x)} dν(y)

+ lim
ε→0

∫
d(x,y)<ε

Xk {(u(y)− u(x))Xkε(y, x)} dν(y).

If we take Ωε = {y ∈ G : d(x, y) < ε}, then by the divergence formula in Theorem
1.4.5 we have

lim
x→x0

∫
∂Ω

[u(y)− u(x)]Xkε(y, x)〈Xk, dν(y)〉

= lim
x→x0

∫
Ω

Xk {[u(y)− u(x)]Xkε(y, x)} dν(y)

= lim
x→x0

lim
ε→0

{∫
Ω\Ωε

Xk {[u(y)− u(x)]Xkε(y, x)} dν(y)

+

∫
Ωε

Xk {[u(y)− u(x)]Xkε(y, x)} dν(y)
}

=

∫
Ω

Xk {[u(y)− u(x0)]Xkε(y, x0)} dν(y).

That is, we have

lim
x→x0

∫
∂Ω

[u(y)− u(x)]Xkε(y, x)〈Xk, dν(y)〉

=

∫
Ω

Xk {[u(y)− u(x0)]Xkε(y, x0)} dν(y)

=

∫
∂Ω

[u(y)− u(x0)]Xkε(y, x0)〈Xk, dν(y)〉.

Recalling the summation convention over the repeated index k, we get

lim
x→x0

∫
∂Ω

[u(y)− u(x)]〈∇̃ε(y, x), dν(y)〉 =
∫
∂Ω

[u(y)− u(x0)]〈∇̃ε(y, x0), dν(y)〉.

This proves the statement of Lemma 11.2.7. �

Proof of Theorem 11.2.6. We have

lim
x→x0,
x/∈∂Ω

∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉

= lim
x→x0,
x/∈∂Ω

(∫
∂Ω

[u(y)− u(x)]〈∇̃ε(y, x), dν(y)〉 + u(x)

∫
∂Ω

〈∇̃ε(y, x), dν(y)〉
)
.
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Choosing u = ε and v = 1 in Green’s first formula (1.86) we get∫
∂Ω

〈∇̃ε(y, x), dν(y)〉 =
{
1, x ∈ Ω,
0, x /∈ Ω̄,

see Corollary 1.4.9. Therefore, using Lemma 11.2.7 we obtain

D+u(x0) =

∫
∂Ω

[u(y)− u(x0)]〈∇̃ε(y, x0), dν(y)〉+ u(x0) (11.19)

and

D−u(x0) =
∫
∂Ω

[u(y)− u(x0)]〈∇̃ε(y, x0), dν(y)〉. (11.20)

This gives the first jump relation

D+u(x0)−D−u(x0) = u(x0).

We also have

D0u(x0) =

∫
∂Ω

u(y)〈∇̃ε(y, x0), dν(y)〉

=

∫
∂Ω

[u(y)− u(x0)]〈∇̃ε(y, x0), dν(y)〉

+ u(x0)

∫
∂Ω

〈∇̃ε(y, x0), dν(y)〉

=

∫
∂Ω

[u(y)− u(x0)]
〈
∇̃ε(y, x0), dν(y)

〉
+ J (x0)u(x0).

So we obtain

D0u(x0) =

∫
∂Ω

[u(y)− u(x0)]
〈
∇̃ε(y, x0), dν(y)

〉
+ J (x0)u(x0). (11.21)

Now we get the second jump relation by subtracting (11.20) from (11.21), and
subtracting (11.21) from (11.19) we obtain the third one. �

11.3 Traces and Kac’s problem for the sub-Laplacian

Let Ω ⊂ Rd, d ≥ 2, be a bounded domain. Then it is well known that the solution
to the Poisson equation in Ω,

Δu(x) = f(x), x ∈ Ω, (11.22)

is given by the Green formula (or the Newton potential formula)

u(x) =

∫
Ω

εd(x− y)f(y)dy, x ∈ Ω, (11.23)
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for appropriate functions f supported in Ω. Here εd is the fundamental solution
to Δ in Rd given by

εd(x− y) =
{

1
(2−d)sd

1
|x−y|d−2 , d ≥ 3,

1
2π log |x− y|, d = 2,

(11.24)

where sd = 2π
d
2

Γ( d2 )
is the surface area of the unit sphere in Rd. A question related

to the so-called Kac’s boundary value problem in Ω is

what boundary condition can be put on u on the (piecewise smooth) boundary
∂Ω so that equation (11.22) complemented by this boundary condition would
have the solution in Ω still given by the same formula (11.23), with the same

kernel εd given by (11.24)?

This question is equivalent to finding the trace of the Newton potential (11.23) on
the boundary surface ∂Ω.

It turns out that the answer to these questions is the integral boundary
condition

− 1

2
u(x)+

∫
∂Ω

∂εd(x− y)
∂ny

u(y)dSy−
∫
∂Ω

εd(x−y)∂u(y)
∂ny

dSy = 0, x ∈ ∂Ω, (11.25)

where ∂
∂ny

is the outer normal derivative at a point y on ∂Ω. Thus, the trace of the

Newton potential (11.23) on the boundary surface ∂Ω is determined by (11.25).

The boundary condition (11.25) and the subsequent spectral analysis are
often called “the principle of not feeling the boundary” and it has originally ap-
peared in M. Kac’s work [Kac51], with further extensions in Kac’s book [Kac80].
Such an analysis has several applications to the spectral theory and the asymp-
totics of Weyl’s eigenvalue counting function. Spectral problems related to the
boundary value problem (11.22), (11.25) were considered in the papers [KS09],
[KS11], [RS16b] and [RRS16]. In general, the boundary value problem (11.22),
(11.25) has several interesting properties and applications, for example discussed
by Kac [Kac51, Kac80] and Saito [Sai08].

11.3.1 Traces of Newton potential for the sub-Laplacian

The analysis of the trace of the Newton potential or of related Kac’s boundary
value problems will be relying to certain results of Folland and Stein established
in the setting of anisotropic Hölder spaces. We now define these spaces following
[FS74] and [Fol75].

Definition 11.3.1 (Hölder spaces on stratified groups). Let 0 < α < 1. Define the
anisotropic Hölder spaces Γα(Ω) on Ω ⊂ G by

Γα(Ω) := {f : Ω→ C : sup
x,y∈Ω

x 	=y

|f(x)− f(y)|
[d(x, y)]α

<∞}.
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For k ∈ N and 0 < α < 1, one defines Γk+α(Ω) as the space of all f : Ω → C

such that all derivatives of f of order k belong to Γα(Ω). A bounded function f is
called α-Hölder continuous in Ω ⊂ G if f ∈ Γα(Ω).

We now define the analogue of the Newton potential in the setting of stratified
groups. Here and in the sequel we adopt all the notations of Section 1.4.3 and of
the subsequent sections.

Definition 11.3.2 (Newton potential for sub-Laplacian). Let Ω ⊂ G be an admis-
sible domain in a stratified group G in the sense of Definition 1.4.4. The sub-
Laplacian Newton potential is defined by

u(x) =

∫
Ω

f(y)ε(y, x)dν(y), x ∈ Ω, f ∈ Γα(Ω), (11.26)

where
ε(y, x) = ε(x, y) = ε(y−1x, 0) = ε(y−1x)

is the fundamental solution (1.89) of the sub-Laplacian L, i.e.,
ε(x, y) = [d(x, y)]2−Q,

where d(x, y) = d(y−1x) is the L-gauge on G.

Remark 11.3.3. It was shown by Folland in [Fol75] that if f ∈ Γα(Ω) for α > 0
then u defined by (11.26) is twice differentiable and satisfies the equation

Lu = f.

The following theorem describes the trace of the integral operator in (11.26)
on ∂Ω. This is equivalent to finding a boundary condition for u such that the
equation Lu = f has a unique solution in C2(Ω) and this solution is the Newton
potential (11.26).

Theorem 11.3.4 (Trace of Newton potential and Kac’s boundary value problem).
Let Ω ⊂ G be an admissible domain in a stratified group G of homogeneous di-
mension Q ≥ 3. Let ε(y, x) = ε(y−1x) be the fundamental solution to L, so that

Lε = δ on G. (11.27)

Then for all f ∈ Γα(Ω), 0 < α < 1, suppf ⊂ Ω, the Newton potential (11.26) is
the unique solution in C2(Ω) ∩ C1(Ω) of the equation

Lu = f in Ω, (11.28)

with the boundary condition

(1 − J (x))u(x) +
∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉

−
∫
∂Ω

ε(y, x)〈∇̃u(y), dν(y)〉 = 0 for x ∈ ∂Ω,
(11.29)



11.3. Traces and Kac’s problem for the sub-Laplacian 465

where the jump value is given by the formula

J (x) =
∫
∂Ω

〈∇̃ε(y, x), dν(y)〉, (11.30)

with ∇̃ = ∇̃y defined by

∇̃g =

N1∑
k=1

(Xkg)Xk.

Proof of Theorem 11.3.4. Since the Newton potential (11.26) is a solution of
(11.28) it follows from Remark 11.3.3 that u is locally in Γα+2(Ω, loc) and that it
is twice differentiable in Ω. In particular, it follows that u ∈ C2(Ω) ∩ C1(Ω).

We will use the following representation formula for functions u ∈ C2(Ω) ∩
C1(Ω) shown in Corollary 1.4.10, Part 1, for all x ∈ Ω:

u(x) =

∫
Ω

f(y)ε(y, x)dν(y) +

∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉

−
∫
∂Ω

ε(y, x)〈∇̃u(y), dν(y)〉.
(11.31)

Since u given by the Newton potential formula (11.26) is a solution of (11.28),
using it in (11.31) we get, for all x ∈ Ω,∫

∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉 −
∫
∂Ω

ε(y, x)〈∇̃u(y), dν(y)〉 = 0. (11.32)

When x ∈ Ω approaches the boundary ∂Ω from the interior we can use Theorem
11.2.4 and Theorem 11.2.6 yielding the identity

(1 − J (x))u(x) +
∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉

−
∫
∂Ω

ε(y, x)〈∇̃u(y), dν(y)〉 = 0 for any x ∈ ∂Ω.
(11.33)

It follows from (11.26) that u is then a solution of the boundary value problem
(11.28) with the boundary condition (11.29).

Let us now prove its uniqueness. Assuming that u and u1 are two solutions
of the boundary value problem (11.28) and (11.29), their difference

w := u− u1 ∈ C2(Ω) ∩ C1(Ω)

satisfies the homogeneous equation

Lw = 0 in Ω, (11.34)
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and the boundary condition (11.29), i.e.,

(1− J (x))w(x) +
∫
∂Ω

w(y)〈∇̃ε(y, x), dν(y)〉

−
∫
∂Ω

ε(y, x)〈∇̃w(y), dν(y)〉 = 0, x ∈ ∂Ω.
(11.35)

The representation formula from Corollary 1.4.10, Part 2, yields the formula
for w as

w(x) =

∫
∂Ω

w(y)〈∇̃ε(y, x), dν(y)〉 −
∫
∂Ω

ε(y, x)〈∇̃w(y), dν(y)〉, (11.36)

for any x ∈ Ω. As above, when x ∈ Ω approaches the boundary ∂Ω from the
interior we can use Theorem 11.2.4 and Theorem 11.2.6 by using the properties
of the double and single layer potentials as x→ ∂Ω from interior, formula (11.36)
implies that for every x ∈ ∂Ω we have

w(x) = (1− J (x))w(x) +
∫
∂Ω

w(y)〈∇̃ε(y, x), dν(y)〉 −
∫
∂Ω

ε(y, x)〈∇̃w, dν(y)〉.

Comparing this with (11.35) we obtain that w has to satisfy

w(x) = 0, x ∈ ∂Ω. (11.37)

By Proposition 11.1.1 the boundary value problem (11.28) with the boundary
condition (11.34) has a unique trivial solution w ≡ 0 in C2(Ω)∩C1(Ω) which shows
that u = u1 in Ω. �

11.3.2 Powers of the sub-Laplacian

We now extend the analysis of Section 11.3.1 to traces and boundary value prob-
lems for powers of the sub-Laplacian on stratified groups. Here we naturally un-
derstand the powers by

Lm := LLm−1, (11.38)

for all m ∈ N.

Let Ω ⊂ G be an admissible domain in a stratified group G of homogeneous
dimension Q ≥ 3. Then for m = 1, 2, . . ., for a given f ∈ Γα(Ω), we consider the
equations

Lmu(x) = f(x), x ∈ Ω, (11.39)

Definition 11.3.5 (Generalized Newton potentials). Let ε(y, x) = ε(y−1x) be the
fundamental solution of the sub-Laplacian L as in (1.89). We define the generalized
Newton potentials by

u(x) =

∫
Ω

f(y)εm(y, x)dν(y), (11.40)
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where εm(y, x) is the fundamental solution of (11.39) such that

Lm−1εm = ε, m = 1, 2, . . . .

Namely, with a proper distributional interpretation for m = 2, 3, . . ., we take

εm(y, x) :=

∫
Ω

εm−1(y, ζ)ε(ζ, x)dν(ζ), y, x ∈ Ω, (11.41)

with
ε1(y, x) = ε(y, x).

We note that in general higher-order hypoelliptic operators on stratified
groups may not have unique fundamental solutions, see Geller [Gel83], or [FR16,
Section 3.2.7] for a detailed discussion. However, in the case of the iterated sub-
Laplacian Lm we have uniqueness in the sense of the next theorem and of the
uniqueness argument in its proof.

Theorem 11.3.6 (Traces of generalized Newton potentials and Kac’s boundary
value problem). Let Ω ⊂ G be an admissible domain in a stratified group G of
homogeneous dimension Q ≥ 3. For any f ∈ Γα(Ω), 0 < α < 1, suppf ⊂ Ω, the
generalized Newton potential (11.40) is a unique solution of the equation (11.39)
in C2m(Ω) ∩ C2m−1(Ω) with m boundary conditions

(1 − J (x))Liu(x) +
m−i−1∑
j=0

∫
∂Ω

Lj+iu(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉 (11.42)

−
m−i−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lj+iu(y)dν(y)〉 = 0, x ∈ ∂Ω,

for all i = 0, 1, . . . ,m− 1, where ∇̃ is given by

∇̃g =
N1∑
k=1

(Xkg)Xk

and J (x) is the jump function given by the formula (11.30).

Remark 11.3.7. From Theorem 11.3.6 we have that the kernel (11.41), which is a
fundamental solution of the equation (11.39), is the Green function of the boundary
value problem (11.39), (11.42) in Ω. This presents an example of an explicitly
solvable boundary value problem for the iterated sub-Laplacian in any (admissible)
domain Ω, which can be regarded as the higher order version of the original Kac’s
boundary value problem.

Proof of Theorem 11.3.6. For each x ∈ Ω, applying Green’s second formula from
Theorem 1.4.6 we obtain

u(x) =

∫
Ω

f(y)εm(y, x)dν(y) =

∫
Ω

Lmu(y)εm(y, x)dν(y)
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=

∫
Ω

Lm−1u(y)Lεm(y, x)dν(y) −
∫
∂Ω

Lm−1u(y)〈∇̃εm(y, x), dν(y)〉

+

∫
∂Ω

εm(y, x)〈∇̃Lm−1u(y), dν(y)〉

=

∫
Ω

Lm−2u(y)L2εm(y, x)dν(y) −
∫
∂Ω

Lm−2u(y)〈∇̃Lεm(y, x), dν(y)〉

+

∫
∂Ω

Lεm(y, x)〈∇̃Lm−2u(y), dν(y)〉 −
∫
∂Ω

Lm−1u(y)〈∇̃εm(y, x), dν(y)〉

+

∫
∂Ω

εm(y, x)〈∇̃Lm−1u(y), dν(y)〉
= · · ·

= u(x)−
m−1∑
j=0

∫
∂Ω

Lju(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

+

m−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lju(y), dν(y)〉, x ∈ Ω.

This implies the identity

m−1∑
j=0

∫
∂Ω

Lju(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

−
m−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lju(y), dν(y)〉 = 0, x ∈ Ω.

(11.43)

We note that the first term of the first summand, i.e., the term with j = 0 given by∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉

is the double layer potential analysed in Theorem 11.2.6. The other terms in the
above sum are single layer type potentials. In particular, by Theorem 11.2.4 they
are continuous functions on G. By using the properties of the double and single
layer potentials as x approaches the boundary ∂Ω from the interior, from (11.43)
we obtain the equality

(1− J (x))u(x) +
m−1∑
j=0

∫
∂Ω

Lju(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

−
m−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lju(y), dν(y)〉 = 0, x ∈ ∂Ω.
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From this relation we obtain the first boundary conditions for (11.40). The re-
maining boundary conditions can be derived by writing

Lm−iLiu = f, i = 0, 1, . . . ,m− 1, m = 1, 2, . . . , (11.44)

and carrying out similar arguments as above. Indeed, we have

Liu(x) =
∫
Ω

f(y)Liεm(y, x)dν(y) =
∫
Ω

Lm−iLiu(y)Liεm(y, x)dν(y)

=

∫
Ω

Lm−i−1Liu(y)LLiεm(y, x)dν(y)

−
∫
∂Ω

Lm−i−1Liu(y)〈∇̃Liεm(y, x), dν(y)〉

+

∫
∂Ω

Liεm(y, x)〈∇̃Lm−i−1Liu(y), dν(y)〉

=

∫
Ω

Lm−i−2Liu(y)L2Liεm(y, x)dν(y)

−
∫
∂Ω

Lm−i−2Liu(y)〈∇̃LLiεm(y, x), dν(y)〉

+

∫
∂Ω

LLiεm(y, x)〈∇̃Lm−i−2Liu(y), dν(y)〉

−
∫
∂Ω

Lm−i−1Liu(y)〈∇̃Liεm(y, x), dν(y)〉

+

∫
∂Ω

Liεm(y, x)〈∇̃Lm−i−1Liu(y), dν(y)〉
= · · ·
=

∫
Ω

Liu(y)Lm−iLiεm(y, x)dν(y)

−
m−i−1∑
j=0

∫
∂Ω

LjLiu(y)〈∇̃Lm−i−1−jLiεm(y, x), dν(y)〉

+

m−i−1∑
j=0

∫
∂Ω

Lm−i−1−jLiεm(y, x)〈∇̃LjLiu(y), dν(y)〉

= Liu(x)−
m−i−1∑
j=0

∫
∂Ω

Lj+iu(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

+

m−i−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lj+iu(y), dν(y)〉, x ∈ Ω,

where Liεm is a fundamental solution of the equation (11.44), that is,

Lm−iLiεm = δ, i = 0, 1, . . . ,m− 1.
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From the previous relations, for all x ∈ Ω and i = 0, 1, . . . ,m − 1, we get the
identities

m−i−1∑
j=0

∫
∂Ω

Lj+iu(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

−
m−i−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lj+iu(y), dν(y)〉 = 0.

By using the properties of the double and single layer potentials in Theorem 11.2.6
and Theorem 11.2.4 as x approaches the boundary ∂Ω from the interior of Ω, we
find that

(1− J (x))Liu(x) +
m−i−1∑
j=0

∫
∂Ω

Lj+iu(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

−
m−i−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lj+iu(y), dν(y)〉 = 0, x ∈ ∂Ω,

are all the boundary conditions of (11.40) for each i = 0, 1, . . . ,m− 1.

Let us now show the uniqueness: if a function w ∈ C2m(Ω) ∩ C2m−1(Ω)
satisfies the equation Lmw = f and the boundary conditions (11.42), then it must
coincide with the solution (11.40). Indeed, the function

v := u− w ∈ C2m(Ω) ∩ C2m−1(Ω),

where u is the generalized Newton potential (11.40), satisfies the homogeneous
equation

Lmv = 0 (11.45)

and the boundary conditions (11.42), i.e.,

Ii(v)(x) := (1 − J (x))Liv(x) +
m−i−1∑
j=0

∫
∂Ω

Lj+iv(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

−
m−i−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lj+iv(y), dν(y)〉 = 0,

i = 0, 1, . . . ,m− 1,

for x ∈ ∂Ω. By applying the Green formula from Theorem 1.4.6 to the function
v ∈ C2m(Ω)∩C2m−1(Ω) and by following the lines of the previous calculation we
obtain

0 =

∫
Ω

Lmv(x)Liεm(y, x)dν(y) =

∫
Ω

Lm−iLiv(x)Liεm(y, x)dν(y)
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=

∫
Ω

Lm−1v(x)LLiεm(y, x)dν(y) −
∫
∂Ω

Lm−1v(x)〈∇̃Liεm(y, x), dν(y)〉

+

∫
∂Ω

Liεm(y, x)〈∇̃Lm−1v(x), dν(y)〉

=

∫
Ω

Lm−2v(x)L2Liεm(y, x)dν(y) −
∫
∂Ω

Lm−2v(x)〈∇̃Li+1εm(y, x), dν(y)〉

+

∫
∂Ω

Li+1εm(y, x)〈∇̃Lm−2v(x), dν(y)〉 −
∫
∂Ω

Lm−1v(x)〈∇̃Liεm(y, x), dν(y)〉

+

∫
∂Ω

Liεm(y, x)〈∇̃Lm−1v(x), dν(y)〉
= · · ·

= Liv(x)−
m−i−1∑
j=0

∫
∂Ω

Lj+iv(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

+

m−i−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lj+iv(y), dν(y)〉, i = 0, 1, . . . ,m− 1.

By passing to the limit as x→ ∂Ω from interior, we obtain the relations

Liv(x) |x∈∂Ω= Ii(v)(x) |x∈∂Ω= 0, i = 0, 1, . . . ,m− 1. (11.46)

We claim that the boundary value problem

Lmv = 0,

Liv |∂Ω= 0, i = 0, 1, . . . ,m− 1,
(11.47)

has uniqueness trivial solution v ≡ 0 in C2m(Ω) ∩ C2m−1(Ω).

Assuming this claim for the moment we get that v = u−w ≡ 0, for all x ∈ Ω,
i.e., w coincides with u in Ω. Thus (11.40) is the unique solution of the boundary
value problem (11.39), (11.42) in Ω.

Let us now show the above claim, that is, that the boundary value problem
(11.47) has a unique solution in C2m(Ω) ∩ C2m−1(Ω). Denoting

ṽ := Lm−1v,

the claim follows by induction from the uniqueness in C2(Ω)∩C1(Ω) of the bound-
ary value problem

Lṽ = 0,

ṽ |∂Ω = 0.

The proof of Theorem 11.3.6 is complete. �
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11.3.3 Extended Kohn Laplacians on the Heisenberg group

In this section we describe more explicit formulae for the traces of the Newton
potential presented in Section 11.3.1 in the setting of the Heisenberg group. In this
analysis we adapt the complex description of the Heisenberg group as described
in Section 1.4.8, so we follow all the notation introduced there. The presentation
in this and the following sections follows [RS16c].

In particular, we will use the coordinates on the Heisenberg group Hn given
by variables z = (ζ, t), so that a basis for the complex tangent space of Hn at the
point z is given by the left invariant vector fields

Xj =
∂

∂zj
+ iz

∂

∂t
, j = 1, . . . , n.

Denoting their conjugates by

Xj := Xj =
∂

∂zj
− iz ∂

∂t
,

we will be dealing with the extended Kohn Laplacian

La,b =
n∑
j=1

(aXjXj + bXjXj), a+ b = n. (11.48)

As described in Section 1.4.8, this operator has a fundamental solution given by
a constant multiple of (1.110). Moreover, in [FS74], Folland and Stein defined
the Newton potential (volume potential) for a function f with compact support
contained in a set Ω ⊂ Hn by

u(z) =

∫
Ω

f(ξ)ε(ξ−1z)dν(ξ), (11.49)

with dν being the volume element: this is given by the Haar measure on Hn which
in turn coincides with the Lebesgue measure on Cn × R. More precisely, they
proved that

La,bu = ca,bf,

where the constant ca,b is zero if a and b = −1,−2, . . . , n, n+ 1, . . . , and ca,b �= 0
if a or b �= −1,−2, . . . , n, n + 1, . . ., given by (1.112) for a �∈ Z. For different
approaches to the fundamental solutions of La,b we can also refer to Greiner and
Stein [GS77].

With the notation for εa,b = ε as in (1.110) the distribution 1
ca,b

ε is the

fundamental solution of La,b, while ε satisfies the equation

La,bε = ca,bδ. (11.50)

In order to make our presentation compatible with the accepted ones in [FS74]
and [Rom91], in this section we will also work with the function ε although there
is a constant ca,b appearing in the identity (11.50).
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Therefore, throughout this and next sections we assume that ca,b �= 0, which
means that a and b satisfy the condition

a and b �= −1,−2, . . . , n, n+ 1, . . . .

In addition, without loss of generality we may also assume that a, b ≥ 0.

We recall the anisotropic Hölder space Γα(Ω) from Definition 11.3.1. Since
all homogeneous quasi-norms on homogeneous groups are equivalent for such a
definition we can also use an explicitly defined distance on Hn given by

|z| := (|ζ|4 + |t|2)1/4.
Thus, for 0 < α < 1, the anisotropic Hölder spaces Γα(Ω) from Definition 11.3.1
can be also described by

Γα(Ω) =

⎧⎪⎨⎪⎩f : Ω→ C : sup
z1,z2∈Ω
z1 	=z2

|f(z2)− f(z1)|
|z−1

2 z1|α
<∞

⎫⎪⎬⎪⎭ .

Remark 11.3.8. In addition to Remark 11.3.3, in the setting of the Heisenberg
groups we have that if f ∈ Γα(Ω) for α > 0 then u defined by (12.43) is twice
differentiable in the complex directions and satisfies the equation

La,bu = ca,bf.

There are several different approaches to show this result by Folland and Stein
[FS74], Greiner and Stein [GS77], and Romero [Rom91]. Moreover, Folland and
Stein have shown that if f ∈ Γα(Ω, loc) and La,bu = ca,bf , then f ∈ Γα+2(Ω, loc),
for naturally defined localisations Γα(Ω, loc) of the anisotropic Hölder spaces
Γα(Ω).

We will be using the single layer potentials introduced in Definition 11.2.1,
namely, the operators

Sjg(z) =

∫
∂Ω

g(ξ)ε(ξ, z)〈Xj , dν(ξ)〉,

where 〈X, dν〉 is the canonical pairing between vector fields and differential forms,
which are well defined by Theorem 11.2.3. Moreover, specifically in the setting of
the Heisenberg group, it was shown in [Rom91, Theorem 2.3] that if the density
of g(ξ)〈Xj , dν〉 in the operator Sj is bounded then Sg ∈ Γα(Hn) for all α < 1.

The double layer potentials have been introduced in Definition 11.2.5 on
general stratified groups. However, it will be now convenient to adapt its defini-
tion slightly to the extended Kohn Laplacians La,b. Thus, for every differentiable
function g we define the vector field

∇a,bg =

n−1∑
j=1

(aXjgXj + bXjgXj). (11.51)
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Consequently, we will be working with the double layer potential

Wu(z) =

∫
∂Ω

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉. (11.52)

Let us now record the Plemelj jump relations for double layer potential which
follow from Theorem 11.2.6.

Corollary 11.3.9. The double layer potential Wu in (11.52) has two limits

W+u(z) = lim
z0→z
z0∈Ω

∫
∂Ω

u(ξ)〈∇a,bε(ξ, z0), dν(ξ)〉

and

W−u(z) = lim
z0→z
z0 	∈Ω

∫
∂Ω

u(ξ)〈∇a,bε(ξ, z0), dν(ξ)〉,

and the principal value

W 0u(z) = p.v. Wu(z) = lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉.

For u ∈ Γα(Ω) and z ∈ ∂Ω the above limits exist and satisfy the jump relations

W+u(z)−W−u(z) = ca,bu(z),

W 0u(z)−W−u(z) = H.R.(z)u(z),

W+u(z)−W 0u(z) = (ca,b −H.R.(z))u(z),
(11.53)

where H.R(z) is the so-called half-residue given by the formula

H.R(z) = lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

〈∇a,bε(ξ, z), dν(ξ)〉. (11.54)

The first two jump relations in (11.53) follow by an adaptation of the argu-
ment in Theorem 11.2.6 keeping in mind the appearing constant ca,b. The third
jump relation in (11.53) follows by subtraction of the first two. The statement of
Corollary 11.3.9 was shown in [Rom91, Theorem 2.4].

Then we have the following analogue of Theorem 11.3.4.

Theorem 11.3.10 (Trace of Newton potential and Kac’s boundary value problem
for La,b). Let ε(ξ, z) = ε(ξ−1z) be the rescaled fundamental solution to La,b, so
that

La,bε = ca,bδ on Hn. (11.55)

For any f ∈ Γα(Ω), 0 < α < 1, suppf ⊂ Ω, the Newton potential (12.43) is the
unique solution in C2(Ω) ∩ C1(Ω) of the equation

La,bu = ca,bf (11.56)
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with the boundary condition

(ca,b −H.R(z))u(z) + lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉 (11.57)

−
∫
∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉 = 0, for z ∈ ∂Ω,

where H.R(z) is the so-called half-residue given by (11.54).

Proof of Theorem 11.3.10. Since the Newton potential

u(z) =

∫
Ω

f(ξ)ε(ξ, z)dν(ξ) (11.58)

is a solution of (11.56), from Remark 11.3.8 it follows that u is locally in
Γα+2(Ω, loc) and that it is twice complex differentiable in Ω. In particular, it
follows that u ∈ C2(Ω) ∩ C1(Ω).

From Green’s second formula in Theorem 1.4.6, similarly to Corollary 1.4.10,
Part 1, by taking into account constants ca,b, for every u ∈ C2(Ω) ∩ C1(Ω) and
every z ∈ Ω we have the representation formula

ca,bu(z) = ca,b

∫
Ω

f(ξ)ε(ξ, z)dν(ξ) +

∫
∂Ω

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉

−
∫
∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉.
(11.59)

Since u(z) given by (11.58) is a solution of (11.56), using it in (11.59), for every
z ∈ Ω we have∫

∂Ω

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉 −
∫
∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉 = 0. (11.60)

The fundamental solution ε(z) is homogeneous of degree 2 − Q = −2n; this is
a general fact (see, e.g., [FR16, Theorem 3.2.40]), or can be seen directly from
formula (1.110) since

ε(λz) = λ−2a−2bε(z) = λ−2nε(z) for any λ > 0,

since a+ b = n. It follows that ε and its first-order complex derivatives are locally
integrable. Since ε(ξ, z) = ε(ξ−1z), we obtain that as z approaches the boundary,
we can pass to the limit in the second term in (11.60).

By using this and the relation (11.53) as z ∈ Ω approaches the boundary ∂Ω
from the interior, by passing to the limit, for every z ∈ ∂Ω we get

(ca,b −H.R(z))u(z) + lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

u(ξ)〈∇a,bε(ξ, z), dν(ξ)〉

−
∫
∂Ω

ε(ξ, z)〈∇b,au(ξ), dν(ξ)〉 = 0.

(11.61)
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This shows that (11.58) is a solution of the boundary value problem (11.56)
with the boundary condition (11.57).

Now let us show the uniqueness which can be done similarly to the proof of
the uniqueness in Theorem 11.3.4. If the boundary value problem (11.56)–(11.57)
has two solutions u and u1 then the function w := u−u1 ∈ C2(Ω)∩C1(Ω) satisfies
the homogeneous equation

La,bw = 0 in Ω, (11.62)

and the boundary condition (11.57), that is,

(ca,b −H.R(z))w(z) + lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

w(ξ)〈∇a,bε(ξ, z), dν(ξ)〉

−
∫
∂Ω

ε(ξ, z)〈∇b,aw(ξ), dν(ξ)〉 = 0,

(11.63)

for all z ∈ ∂Ω.
Using the representation formula (11.59) for solutions with f ≡ 0 we have

the following representation formula for w:

ca,bw(z) =

∫
∂Ω

w(ξ)〈∇a,bε(ξ, z), dν(ξ)〉 −
∫
∂Ω

ε(ξ, z)〈∇b,aw(ξ), dν(ξ)〉

for all z ∈ Ω. As in the existence proof, by using the properties of the double and
single layer potentials as z → ∂Ω, we obtain that

ca,bw(z) = (ca,b −H.R(z))w(z) + lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

w(ξ)〈∇a,bε(ξ, z), dν(ξ)〉

−
∫
∂Ω

ε(ξ, z)〈∇b,aw, dν(ξ)〉

for all z ∈ ∂Ω. Comparing this with (11.63) we see that w must satisfy

w(z) = 0, z ∈ ∂Ω. (11.64)

By an argument similar to that in Proposition 11.1.1, the homogeneous equation
(11.62) with the Dirichlet boundary condition (11.64) has a unique trivial solution
w ≡ 0 in Ω. Therefore, we must have u = u1 in Ω. This completes the proof of
Theorem 11.3.10. �

11.3.4 Powers of the Kohn Laplacian

In this section, we carry out the analysis similar to that in Section 11.3.2 for the
powers of the extended Kohn Laplacian La,b.

As before, let Ω be an admissible domain in Hn. For m ∈ N, we denote

Lma,b := La,bLm−1
a,b .
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Then for m ∈ N, we consider the equation

Lma,bu(z) = ca,bf(z), z ∈ Ω. (11.65)

Let ε(ξ, z) = ε(ξ−1z) be the rescaled fundamental solution of the Kohn Lapla-
cian as in (11.55). Let us now define the Newton potential for the operator Lma,b by

u(z) =

∫
Ω

f(ξ)εm(ξ, z)dν(ξ), (11.66)

where εm(ξ, z) is a rescaled fundamental solution of (11.65) satisfying

Lm−1
a,b εm = ε.

With a suitable distributional interpretation, for m = 2, 3, . . ., we can write

εm(ξ, z) =

∫
Ω

εm−1(ξ, ζ)ε(ζ, z)dν(ζ), ξ, z ∈ Ω, (11.67)

with
ε1(ξ, z) = ε(ξ, z).

Theorem 11.3.11 (Traces and Kac’s boundary value problem for powers of Kohn
Laplacians La,b). For any f ∈ Γα(Ω), 0 < α < 1, suppf ⊂ Ω, the generalized
Newton potential (11.66) is a unique solution of the equation (11.65) in C2m(Ω)∩
C2m−1(Ω) with m boundary conditions

(ca,b −H.R(z))Lia,bu(z)

+

m−i−1∑
j=0

lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

Lj+ia,b u(ξ)〈∇a,bLm−1−j
a,b εm(ξ, z), dν(ξ)〉

−
m−i−1∑
j=0

∫
∂Ω

Lm−1−j
a,b εm(ξ, z)〈∇b,aLj+ia,b u(ξ)dν(ξ)〉 = 0, z ∈ ∂Ω,

(11.68)

for i = 0, 1, . . . ,m− 1, where H.R(z) is the half-residue given by (11.54).

Proof of Theorem 11.3.11. Applying Green’s second formula from Theorem 1.4.6
for each z ∈ Ω, similarly to (11.59) we get

ca,bu(z) = ca,b

∫
Ω

f(ξ)εm(ξ, z)dν(ξ)

=

∫
Ω

Lma,bu(ξ)εm(ξ, z)dν(ξ) =

∫
Ω

Lm−1
a,b u(ξ)La,bεm(ξ, z)dν(ξ)

−
∫
∂Ω

Lm−1
a,b u(ξ)〈∇a,bεm(ξ, z), dν(ξ)〉 +

∫
∂Ω

εm(ξ, z)〈∇b,aLm−1
a,b u(ξ), dν(ξ)〉
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=

∫
Ω

Lm−2
a,b u(ξ)L2a,bεm(ξ, z)dν(ξ) −

∫
∂Ω

Lm−2
a,b u(ξ)〈∇a,bLa,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

La,bεm(ξ, z)〈∇b,aLm−2
a,b u(ξ), dν(ξ)〉 −

∫
∂Ω

Lm−1
a,b u(ξ)〈∇a,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

εm(ξ, z)〈∇b,aLm−1
a,b u(ξ), dν(ξ)〉 = · · ·

= ca,bu(z)−
m−1∑
j=0

∫
∂Ω

Lja,bu(ξ)〈∇a,bLm−1−j
a,b εm(ξ, z), dν(ξ)〉

+

m−1∑
j=0

∫
∂Ω

Lm−1−j
a,b εm(ξ, z)〈∇b,aLja,bu(ξ), dν(ξ)〉, z ∈ Ω.

It follows that

m−1∑
j=0

∫
∂Ω

Lja,bu(ξ)〈∇a,bLm−1−j
a,b εm(ξ, z), dν(ξ)〉

−
m−1∑
j=0

∫
∂Ω

Lm−1−j
a,b εm(ξ, z)〈∇b,aLja,bu(ξ), dν(ξ)〉 = 0, z ∈ Ω.

(11.69)

By using the continuity of the single layer potential and Corollary 11.3.9 for the
double layer potential as z approaches the boundary ∂Ω from the interior, from
(11.69) we obtain

(ca,b −H.R(z))u(z) +
m−1∑
j=0

lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

Lja,bu(ξ)〈∇a,bLm−1−j
a,b εm(ξ, z), dν(ξ)〉

−
m−1∑
j=0

∫
∂Ω

Lm−1−j
a,b εm(ξ, z)〈∇b,aLja,bu(ξ), dν(ξ)〉 = 0, z ∈ ∂Ω.

This relation is one of the boundary conditions (11.68). Let us now derive the
remaining boundary conditions. For this, we will rewrite the equation as

Lm−i
a,b Lia,bu = ca,bf, i = 0, 1, . . . ,m− 1, m = 1, 2, . . . , (11.70)

and then use a similar argument. Thus,

ca,bLia,bu(z) = ca,b

∫
Ω

f(ξ)Lia,bεm(ξ, z)dν(ξ) =
∫
Ω

Lm−i
a,b Lia,bu(ξ)Lia,bεm(ξ, z)dν(ξ)

=

∫
Ω

Lm−i−1
a,b Lia,bu(ξ)La,bLia,bεm(ξ, z)dν(ξ)

−
∫
∂Ω

Lm−i−1
a,b Lia,bu(ξ)〈∇a,bLia,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

Lia,bεm(ξ, z)〈∇b,aLm−i−1
a,b Lia,bu(ξ), dν(ξ)〉
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=

∫
Ω

Lm−i−2
a,b Lia,bu(ξ)L2a,bLia,bεm(ξ, z)dν(ξ)

−
∫
∂Ω

Lm−i−2
a,b Lia,bu(ξ)〈∇a,bLa,bLia,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

La,bLia,bεm(ξ, z)〈∇b,aLm−i−2
a,b Lia,bu(ξ), dν(ξ)〉

−
∫
∂Ω

Lm−i−1
a,b Lia,bu(ξ)〈∇a,bLia,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

Lia,bεm(ξ, z)〈∇b,aLm−i−1
a,b Lia,bu(ξ), dν(ξ)〉

= · · ·
=

∫
Ω

Lia,bu(ξ)Lm−i
a,b Lia,bεm(ξ, z)dν(ξ)

−
m−i−1∑
j=0

∫
∂Ω

Lja,bLia,bu(ξ)〈∇a,bLm−i−1−j
a,b Lia,bεm(ξ, z), dν(ξ)〉

+

m−i−1∑
j=0

∫
∂Ω

Lm−i−1−j
a,b Lia,bεm(ξ, z)〈∇b,aLja,bLia,bu(ξ), dν(ξ)〉

= ca,bLia,bu(z)−
m−i−1∑
j=0

∫
∂Ω

Lj+ia,b u(ξ)〈∇a,bLm−1−j
a,b εm(ξ, z), dν(ξ)〉

+

m−i−1∑
j=0

∫
∂Ω

Lm−1−j
a,b εm(ξ, z)〈∇b,aLj+ia,b u(ξ), dν(ξ)〉, z ∈ Ω,

where we used that Lia,bεm is a rescaled fundamental solution of Lm−i
a,b as in (11.70).

This implies the identities

m−i−1∑
j=0

∫
∂Ω

Lj+ia,b u(ξ)〈∇a,bLm−1−j
a,b εm(ξ, z), dν(ξ)〉

−
m−i−1∑
j=0

∫
∂Ω

Lm−1−j
a,b εm(ξ, z)〈∇b,aLj+ia,b u(ξ), dν(ξ)〉 = 0,

for all z ∈ Ω and i = 0, 1, . . . ,m−1. As before, by using the continuity of the single
layer potential and Corollary 11.3.9 for the double layer potential as z approaches
the boundary ∂Ω from the interior, we find that for all z ∈ ∂Ω we have

(ca,b −H.R(z))Lia,bu(z)

+

m−i−1∑
j=0

lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

Lj+ia,b u(ξ)〈∇a,bLm−1−j
a,b εm(ξ, z), dν(ξ)〉

−
m−i−1∑
j=0

∫
∂Ω

Lm−1−j
a,b εm(ξ, z)〈∇b,aLj+ia,b u(ξ), dν(ξ)〉 = 0,

which are the boundary conditions (11.68) for all i = 0, 1, . . . ,m− 1.
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Let us now show the uniqueness, that is, if a function w ∈ C2m(Ω)∩C2m−1(Ω)
satisfies the equation Lma,bw = f and the boundary conditions (11.68), then it must
be given by (11.66). Indeed, with u given by (11.66), the function

v := u− w ∈ C2m(Ω) ∩ C2m−1(Ω),

satisfies the homogeneous equation

Lma,bv = 0

and the boundary conditions for all i = 0, 1, . . . ,m− 1,

Ii(v)(z) := (ca,b −H.R(z))Lia,bv(z)

+

m−i−1∑
j=0

lim
δ→0

∫
∂Ω\{|ξ−1z|<δ}

Lj+ia,b v(ξ)〈∇a,bLm−1−j
a,b εm(ξ, z), dν(ξ)〉

−
m−i−1∑
j=0

∫
∂Ω

Lm−1−j
a,b εm(ξ, z)〈∇b,aLj+ia,b v(ξ), dν(ξ)〉 = 0,

for z ∈ ∂Ω. Applying the Green formula from Theorem 1.4.6 to the function
v ∈ C2m(Ω) ∩C2m−1(Ω) we obtain

0 =

∫
Ω

Lma,bv(z)Lia,bεm(ξ, z)dν(ξ) =

∫
Ω

Lm−i
a,b Lia,bv(z)Lia,bεm(ξ, z)dν(ξ)

=

∫
Ω

Lm−1
a,b v(z)La,bLia,bεm(ξ, z)dν(ξ) −

∫
∂Ω

Lm−1
a,b v(z)〈∇a,bLia,bεm(ξ, z), dν(ξ)〉

+

∫
∂Ω

Lia,bεm(ξ, z)〈∇a,bLm−1
a,b v(z), dν(ξ)〉

= · · ·

= ca,bLia,bv(z)−
m−i−1∑
j=0

∫
∂Ω

Lj+ia,b v(ξ)〈∇a,bLm−1−j
a,b εm(ξ, z), dν(ξ)〉

+
m−i−1∑
j=0

∫
∂Ω

Lm−1−j
a,b εm(ξ, z)〈∇b,aLj+ia,b v(ξ), dν(ξ)〉, i = 0, 1, . . . ,m− 1.

By passing to the limit as z → ∂Ω, we obtain the additional relations

Lia,bv(z) |z∈∂Ω= Ii(v)(z) |z∈∂Ω= 0, i = 0, 1, . . . ,m− 1.

We claim that the boundary value problem

Lma,bv = 0,

Lia,bv |∂Ω= 0, i = 0, 1, . . . ,m− 1,
(11.71)
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has a unique trivial solution. Assuming this for a moment, we would get that
v = u − w ≡ 0, which means that w coincides with u in Ω, so that (11.66) is the
unique solution of the boundary value problem (11.65), (11.68) in Ω.

To show that the boundary value problem (11.71) has a unique solution in
C2m(Ω) ∩ C2m−1(Ω), we denote ṽ := Lm−1

a,b v, and then the statement follows by

induction from the uniqueness in C2(Ω) ∩ C1(Ω) of the problem

La,bṽ = 0, ṽ |∂Ω= 0.

The proof of Theorem 11.3.11 is complete. �

11.4 Hardy inequalities with boundary terms

on stratified groups

In this section we demonstrate how the developed potential theory for the sub-
Laplacian can be used to derive a refinement to Hardy inequalities. The basic
inequality that we are referring to here is inequality (7.4) which says that on a
stratified group G of homogeneous dimension Q ≥ 3, for all u ∈ C∞

0 (G\{0}) and
α > 2−Q we have∫

G

dα|∇Gu|2 dν ≥
(
Q+ α− 2

2

)2 ∫
G

dα
|∇Gd|2
d2

|u|2 dν, (11.72)

and the constant
(
Q+α−2

2

)2
is sharp. We refer to Remark 7.1.2 for a historic

discussion of this and other related inequalities.

We will now derive a version of (11.72) over domains in G in such a way
that the boundary term appears as well, in the case the function does not vanish
on the boundary. Certainly, the following inequality implies (11.72) if we take the
domain Ω in such a way that it contains the support of a compactly supported
function u. As before, d stands for the L-gauge and we also write

∇H = (X1, . . . , XN1)

for the horizontal gradient. A discussion from a point of view of more general
weights was also done in Section 7.7.

Theorem 11.4.1 (Hardy inequality with boundary term). Let Ω ⊂ G be an admis-
sible domain in a stratified group of homogeneous dimension Q ≥ 3 with 0 �∈ ∂Ω.
Let α ∈ R and α > 2−Q. Let u ∈ C1(Ω)

⋂
C(Ω). Then we have∫

Ω

dα|∇Hu|2 dν ≥
(
Q+ α− 2

2

)2 ∫
Ω

dα
|∇Hd|2
d2

|u|2 dν

+
Q+ α− 2

2(Q− 2)

∫
∂Ω

dQ+α−2|u|2〈∇̃d2−Q, dν〉.
(11.73)
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Remark 11.4.2.

1. If u = 0 on ∂Ω then (11.73) reduces to (11.72).

2. The boundary term in (11.73) sometimes can be of different sign. To show

this, take u = e−
R
2 d for R > 0. Green’s first formula in Theorem 1.4.6 allows

us to calculate∫
∂Ω

dQ+α−2e−Rd〈∇̃d2−Q, dν〉

=

∫
Ω

∇̃(dQ+α−2e−Rd)d2−Qdν +
1

βd

∫
Ω

dQ+α−2e−RdLβdd2−Qdν

=

∫
Ω

∇̃(dQ+α−2e−Rd)d2−Qdν

=

N1∑
k=1

∫
Ω

Xk(d
Q+α−2e−Rd)Xkd

2−Qdν

=

N1∑
k=1

∫
Ω

(
(Q + α− 2)dQ+α−2−1e−RdXkd−RdQ+α−2e−RdXkd

)
× (2−Q)d2−Q−1Xkd dν.

Let α = 0, Q = 3, and Ω
⋂
B 1
R

= {∅}, where B 1
R

= {x ∈ G : d(x) < 1
R}.

Then we get∫
∂Ω

de−Rd〈∇̃d−1, dν〉 =
N1∑
k=1

∫
Ω

(Rd−1 − d−2)e−Rd(Xkd)
2 dν > 0

is positive. On the other hand, if u := C = const, then we get∫
∂Ω

dQ+α−2C2〈∇̃d2−Q, dν〉

= C2
N1∑
k=1

∫
Ω

(
(Q+ α− 2)dQ+α−2−1Xkd

)
(2 −Q)d2−Q−1Xkd dν

= −C2(Q + α− 2)(Q− 2)

N1∑
k=1

∫
Ω

dα−2(Xkd)
2dν < 0,

which shows that the boundary term can also be negative.

3. Since it is known that the constant
(
Q+α−2

2

)2
in (11.73) (or rather in (11.72))

is sharp, the local inequality (11.73) gives a refinement to (11.72), and even
more so if the boundary term is positive.

4. Note that in comparison to (11.72), we do not assume in Theorem 11.4.1 that
0 is not in the support of the function u since for α > 2−Q all the integrals
in (11.73) are convergent.
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5. Even if 0 ∈ ∂Ω, the statement of Theorem 11.4.1 remains true if 0 �∈ ∂Ω ∩
suppu.

6. Without the second (boundary) term inequality (11.73) was studied on the
Heisenberg group in [GL90] for a particular choice of d(x), or on Carnot
groups [GK08] for L-gauges d(x). We can refer to these papers as well as to
[GZ01] for other references on this subject. From the point of view of the
boundary term the inequality (11.73) can be thought of as a refinement of
the usual Hardy because, also as it was pointed out in Part 2 of this Remark,
this boundary term in (11.73) can be positive. We call these inequalities local
due to the presence of a contribution from the boundary.

Proof of Theorem 11.4.1. By an argument similar to that in Remark 2.6, Part 3,
without loss of generality we can assume that u is real-valued. In this case, recalling
that

(∇̃u)u =
N1∑
k=1

(Xku)Xku = |∇Hu|2,

the estimate (11.73) reduces to∫
Ω

dα(∇̃u)u dν ≥
(
Q+ α− 2

2

)2 ∫
Ω

dα
(∇̃d)d
d2

u2 dν

+
Q+ α− 2

2(Q− 2)

∫
∂Ω

dQ+α−2u2〈∇̃d2−Q, dν〉,
(11.74)

which we will now prove. Let us set u = dγq for some γ �= 0 to be chosen later.
Then we can calculate

(∇̃u)u = (∇̃dγq)dγq =
N1∑
k=1

Xk(d
γq)Xk(d

γq)

= γ2d2γ−2
N1∑
k=1

(Xkd)
2q2 + 2γd2γ−1q

N1∑
k=1

XkdXkq + d2γ
N1∑
k=1

(Xkq)
2

= γ2d2γ−2((∇̃d)d)q2 + 2γd2γ−1q(∇̃d)q + d2γ(∇̃q)q.
Multiplying both sides of this equality by dα and applying Green’s first formula
from Theorem 1.4.6, we get∫

Ω

dα(∇̃u)udν = γ2
∫
Ω

dα+2γ−2((∇̃d)d) q2dν + γ

α+ 2γ

∫
∂Ω

q2〈∇̃dα+2γ , dν〉

− γ

α+ 2γ

∫
Ω

(Ldα+2γ)q2dν +

∫
Ω

dα+2γ(∇̃q)qdν

≥
∫
Ω

γ2dα+2γ−2((∇̃d)d) q2dν + γ

α+ 2γ

∫
∂Ω

q2〈∇̃dα+2γ , dν〉

− γ

α+ 2γ

∫
Ω

(Ldα+2γ)q2dν. (11.75)
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On the other hand, it can be readily checked that we have

− γ

α+ 2γ
Ldα+2γ = −γ(α+ 2γ +Q− 2)dα+2γ−2(∇̃d)d− γ

2−Qd
α+2γ+Q−2Ld2−Q.

Since q2 = d−2γu2, substituting this into (11.75) we obtain∫
Ω

dα(∇̃u)udν ≥ (−γ2 − γ(α+Q− 2))

∫
Ω

dα
(∇̃d)d
d2

u2dν

− γ

2−Q
∫
Ω

(Ld2−Q)dα+Q−2u2dx+
γ

α+ 2γ

∫
∂Ω

d−2γu2〈∇̃dα+2γ , dν〉.

Recalling that for Q ≥ 3, ε = βdd
2−Q is the fundamental solution of the sub-

Laplacian L, we have∫
Ω

(Ld2−Q)dα+Q−2u2dx = 0, α > 2−Q,

independent of whether 0 belongs to Ω or not, since Ld2−Q = 1
βd
δ in G. It follows

that∫
Ω

dα(∇̃u)udν

≥ (−γ2 − γ(α+Q− 2))

∫
Ω

dα
(∇̃d)d
d2

u2dν +
γ

α+ 2γ

∫
∂Ω

d−2γu2〈∇̃dα+2γ , dν〉.

Taking γ = 2−Q−α
2 , we obtain (11.74). �

As usual, a Hardy inequality implies several uncertainty principles.

Corollary 11.4.3 (Local uncertainty principle with boundary terms). Let Ω ⊂ G

be an admissible domain in a stratified group G of homogeneous dimension Q ≥ 3,
with 0 �∈ ∂Ω. Then for all u ∈ C1(Ω)

⋂
C(Ω) we have(∫

Ω

d2|∇Hd|2|u|2dν
)(∫

Ω

|∇Hu|2dν
)

≥
(
Q− 2

2

)2(∫
Ω

|∇Hd|2|u|2dν
)2

+
1

2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉
(∫

Ω

d2|∇Hd|2|u|2dν
) (11.76)

and(∫
Ω

d2

|∇Hd|2 |u|
2dν

)(∫
Ω

|∇Hu|2dν
)

(11.77)

≥
(
Q− 2

2

)2(∫
Ω

|u|2dν
)2

1

2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉
(∫

Ω

d2

|∇Hd|2 |u|
2dν

)
.
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Proof of Corollary 11.4.3. Again, assuming u is real-valued, and taking α = 0 in
the inequality (11.74) we get(∫

Ω

d2((∇̃d)d)|u|2dν
)(∫

Ω

(∇̃u)udν
)

≥
(
Q− 2

2

)2(∫
Ω

d2((∇̃d)d)|u|2dν
)∫

Ω

(∇̃d)d
d2
|u|2 dν

+
1

2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉
(∫

Ω

d2|∇Hd|2|u|2dν
)

≥
(
Q− 2

2

)2(∫
Ω

((∇̃d)d)|u|2dν
)2

+
1

2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉
(∫

Ω

d2|∇Hd|2|u|2dν
)
,

where we have used the Hölder inequality in the last line. This shows (11.76). The
proof of (11.77) is similar. �

11.5 Green functions on H-type groups

In this section we discuss applications of the described potential theory to the
construction of solutions of boundary value problems. We restrict our attention
to the prototype H-type groups discussed in Section 1.4.10. The examples of the
prototype H-type groups are the Abelian group (Rd; +) and the Heisenberg group
Hd. The fact that will be important for our purposes in this section is that the
fundamental solution to the sub-Laplacian in this setting is explicitly known, see
Theorem 1.4.20. Our presentation in this section follows [GRS17].

Thus, in this section, let G � Rm × Rn be a prototype H-type group and
let L be the sub-Laplacian on G as defined in (1.119). We consider an open set
Ω ⊂ G with piecewise smooth boundary ∂Ω, and study the Dirichlet problem for
the sub-Laplacian {

Lu = f in Ω,

u = φ on ∂Ω.
(11.78)

As discussed in Remark 11.1.7, there are several difficulties in solving such bound-
ary problems in view of the usually present characteristic points.

However, it turns out that there are still a number of cases of interest when
the Dirichlet boundary value problem (11.78) can be solved in the classical sense.
This is achieved by constructing a well-behaved Green function for the problem
(11.78). In view of Jerison’s example discussed in Remark 11.1.7 one wants to
avoid the characteristic points which is not always possible, since even ball-like
bounded domains on (non-Abelian) H-type groups have non-empty collection of
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characteristic points. However, domains that are unbounded may have no char-
acteristic points. Thus, in this section we present such an analysis for so-called
l-wedge and l-strip domains. This includes domains such as half-spaces, quadrant-
spaces and so on.

An important tool for this analysis will be the fundamental solution for the
sub-Laplacian L. More precisely, recalling Theorem 1.4.20, the function

Γ(ξ) := c
(|x|4 + 16|t|2)(2−Q)/4

(11.79)

is the fundamental solution of the sub-Laplacian, that is,

LΓζ = −δζ, (11.80)

where Γζ(ξ) = Γ(ζ−1 ◦ ξ) and δζ is the Dirac distribution at ζ ≡ (y, τ) ∈ G.

Definition 11.5.1 (Green function for Dirichlet sub-Laplacian). We define the
Green function for the Dirichlet sub-Laplacian in Ω by the formula

GΩ(ξ, ζ) := Γ(ζ−1 ◦ ξ)− hζ(ξ),
where hζ(ξ) is a harmonic function, that is,

Lhζ(ξ) = 0 in Ω, (11.81)

having the same boundary values on ∂Ω as the fundamental solution Γζ with pole
at ζ ∈ Ω.

In particular, we have

GΩ(ξ, ζ) = 0, ξ ∈ ∂Ω. (11.82)

11.5.1 Green functions and Dirichlet problem in wedge domains

We first define the class of domains that we will be working in.

Definition 11.5.2 (l-wedge domains). Let 1 ≤ l ≤ m and let G‡ be the l-wedge
space

G
‡ := {ξ = (x1, . . . , xm, t1, . . . , tn) : x1, . . . , xl > 0}.

Let the point ζ = (y, τ) = (y1, y2, . . . , ym, τ1, . . . , τn) lie in this l-wedge space, so
that y1 > 0, . . . , yl > 0. The point ζxk defined by

ζxk := (y1, . . . ,−yk, . . . , ym, τ1, . . . , τn)
is said to be symmetric for the point ζ with respect to the hyperplane xk = 0.
Consecutively, the point

ζxkxs := (y1, . . . ,−yk, . . . ,−ys, . . . , ym, τ1, . . . , τn)
is said to be symmetric for the point ζxk with respect to the hyperplane xs = 0,
and this process can be continued further.
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It is clear that the symmetry indices are invariant under permutations. We
will also use the notation

Γ((ζ(j,l))
−1 ◦ ξ) for j ≤ l,

meaning that we take the sum of the functions Γ((ζ−1
xk1 ···xkj ◦ ξ), j ≤ l, over

all possible combinations of the symmetry arguments xk1 · · ·xkj : here in order to
reduce the number of subindices we write (ζ(j,l))

−1◦ξ for ζ−1
xk1 ···xkj ◦ξ. For example,

if l = 3, j = 2, then

Γ((ζ(2,3))
−1 ◦ ξ) = Γ((ζx1x2)

−1 ◦ ξ) + Γ((ζx1x3)
−1 ◦ ξ) + Γ((ζx3x2)

−1 ◦ ξ),

and if l = 3, j = 3, then

Γ((ζ(3,3))
−1 ◦ ξ) = Γ((ζx1x2x3)

−1 ◦ ξ).

In this notation the Green function for the Dirichlet sub-Laplacian in wedge
domains takes the following form, for any 1 ≤ l ≤ m.

Proposition 11.5.3 (Green function for Dirichlet sub-Laplacian in wedge domains).
Let G‡ be an l-wedge domain for 1 ≤ l ≤ m. Then the function

GG‡(ξ, ζ) = Γ(ζ−1 ◦ ξ) +
l∑

j=1

(−1)jΓ((ζ(j,l))−1 ◦ ξ) (11.83)

is the Green function for the Dirichlet sub-Laplacian in G
‡.

Proof of Proposition 11.5.3. Since any symmetric point ζ(j,l) is not in G‡, for any
j = 1, . . . , l, it follows from (11.80) that

LΓ((ζ(j,l))−1 ◦ ξ) = −δζ(j,l) = 0 in G
‡,

for any ξ ∈ G
‡ and j = 1, . . . , l. Thus, the function

l∑
j=1

(−1)jΓ((ζ(j,l))−1 ◦ ξ)

satisfies condition (11.81), i.e., it is harmonic in G
‡. Now let us verify boundary

condition for the domain G‡, that is, the function GG‡ should become zero at
x1 = 0 and at infinity. Recall that

d(ξ, ζ) :=
(
Γ(ζ−1 ◦ ξ)) 1

2−Q

is an actual distance on G defining a norm (and not only a quasi-norm, see,
e.g., [Cyg81]). Now it is easy to see that the d-distance from any point of the
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hyperplane xk = 0 to the points ζ and ζxk is the same, that is, GG‡ satisfies the
Dirichlet condition at the hyperplanes x1 = 0, . . . , xl = 0 and it is also clear (by
the construction) that the function GG‡ is zero at the infinity. It proves that

GG‡(ξ, ζ) = 0, ξ ∈ ∂G‡,

that is, GG‡ is a Green function according to Definition 11.5.1. �

In the next theorem we will use the anisotropic Hölder space Γα from Defi-
nition 11.3.1. We consider the Dirichlet problem for the sub-Laplacian{

Lu = f in G
‡,

u = φ on ∂G‡.
(11.84)

Theorem 11.5.4 (Dirichlet problem for sub-Laplacian in wedge domain). Let f ∈
Γα(G

‡) for 0 < α < 1, and assume that supp f ⊂ G‡, and that φ ∈ C∞(∂G‡). Then
the boundary value problem (11.84) has a unique solution u ∈ C2(G‡) ∩ C1(G‡)
and it can be represented by the formula

u(ξ) =

∫
G‡
GG‡(ξ, ζ)f(ζ)dν(ζ)−

∫
∂G‡

φ(ζ)〈∇̃GG‡(ξ, ζ), dν(ζ)〉, ξ ∈ G
‡, (11.85)

where

∇̃GG‡ =
m∑
k=1

(XkGG‡)Xk.

Proof of Theorem 11.5.4. Let us take u ∈ C2(G‡) ∩ C1(G‡) and assume that u
tends to zero at infinity. By Remark 1.4.7, Part 2, we can apply Green’s identities
in G‡. Thus, Green’s second formula (1.88) applied to the functions u and v(ζ) =
GG‡(ξ, ζ) yields

u(ξ) =

∫
G‡
GG‡(ξ, ζ)f(ζ)dν(ζ) −

∫
∂G‡

φ(ζ)〈∇̃GG‡(ξ, ζ), dν(ζ)〉.

Here by using the properties of the Green function, we have

GG‡(ξ, ζ) = 0, ζ ∈ ∂G‡,

and, by construction the function GG‡ is symmetric, that is,

GG‡(ξ, ζ) = GG‡(ζ, ξ)

in G‡, so
LζGG‡(ξ, ζ) = −δξ,

where δξ is the Dirac distribution at ξ ∈ G
‡.
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Let us now show that the function defined by (11.85) belongs to C2(G‡) ∩
C1(G‡). Since f ∈ Γα(G

‡) and supp f ⊂ G‡, the volume potential (i.e., the first

term of the right-hand side in (11.85)) belongs to C2(G‡) by Folland’s theorem
(see [Fol75, Theorem 6.1], see also [FS74]). Hörmander’s hypoellipticity theorem
(see [Hör67]) guarantees that every harmonic function is C∞, hence the Dirichlet
double layer potential (the second term of the right-hand side in (11.85)) is in
C2(G‡). On the other hand, since φ ∈ C∞(∂G‡), suppφ ⊂ {x1 = 0, . . . , xl = 0}
and the boundary hyperplanes {x1 = 0}, . . . , {xl = 0} have no characteristic
points, that is, recalling that the characteristic set of G‡ is the set

{x ∈ ∂G‡ : Xk(x) ∈ Tx(∂G‡), k = 1, . . . ,m},
with Tx(∂G

‡) being the tangent space to ∂G‡ at the point x, so we see that
Xk(x0) �∈ Tx{∂G‡} for all x0 ∈ {x1 = 0}, . . . , {xl = 0}

(see [GV00, Section 8] for more discussions on the non-characteristic hy-
perplanes in G). Thus, the Dirichlet double layer potential is continuous on the
boundary by the Kohn–Nirenberg theorem (see [CGN08, Theorem 3.12], which is
a consequence of [KN65, Theorem 4], see also [Der71]-[Der72]). �
Remark 11.5.5. Let us point out some special cases and extensions of Theorem
11.5.4 and Proposition 11.5.3.

1. Let G+ be the half-space.

G
+ = {ξ = (x1, . . . , xm, t1, . . . , tn) : x1 > 0}.

Let the point ζ = (y, τ) = (y1, y2, . . . , ym, τ1, . . . , τn) lie in this half-space, so
that y1 > 0. The point

ζ∗ = (y∗, τ) := (−y1, y2, . . . , ym, τ1, . . . , τn)
is said to be symmetric for the point ζ with respect to the hyperplane x1 = 0.
As a direct consequence of Proposition 11.5.3 we have that the function

GG+(ξ, ζ) = Γ(ζ−1 ◦ ξ)− Γ((ζ∗)−1 ◦ ξ)
is the Green function for the Dirichlet sub-Laplacian in G

+.

Let now f ∈ Γα(G
+), 0 < α < 1, with supp f ⊂ G+, and let φ ∈

C∞(∂G+) with suppφ ⊂ {x1 = 0}, and consider the Dirichlet sub-Laplacian
problem {

Lu = f in G
+,

u = φ on ∂G+.
(11.86)

As a consequence of Theorem 11.5.4 we get that the boundary value problem
(11.86) has a unique solution u ∈ C2(G+)∩C1(G+) and it can be represented
by the formula

u(ξ) =

∫
G+

GG+(ξ, ζ)f(ζ)dν(ζ) −
∫
∂G+

φ(ζ)〈∇̃GG+(ξ, ζ), dν(ζ)〉, ξ ∈ G
+.
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2. Let us point out another consequence for the quadrant-space in G. Let G⊕

be the quadrant-space

G
⊕ := {ξ = (x1, x2, . . . , xm, t1, . . . , tn) : x1 > 0, x2 > 0}.

Let the point ζ = (y, τ) = (y1, y2, . . . , ym, τ1, . . . , τn) lie in this quadrant-
space, so that y1 > 0, y2 > 0. Denote by

ζ∗ = (y∗, τ) := (−y1, y2, . . . , ym, τ1, . . . , τn)
and

ζ = (y, τ) := (y1,−y2, . . . , ym, τ1, . . . , τn)
the symmetric points for ζ with respect to the hyperplanes x1 = 0 and x2 = 0,
respectively. The point

ζ
∗
= (y∗, τ) = (−y1,−y2, . . . , ym, τ1, . . . , τn)

is the symmetric point for ζ∗ with respect to the hyperplane x2 = 0 and
the symmetric point for ζ with respect to the hyperplane x1 = 0. Then as a
direct consequence of Proposition 11.5.3 we have that the function

GG⊕(ξ, ζ) = Γ(ζ−1 ◦ ξ) + Γ((ζ
∗
)−1 ◦ ξ)− Γ((ζ∗)−1 ◦ ξ)− Γ((ζ)−1 ◦ ξ)

is the Green function for the Dirichlet sub-Laplacian in G⊕.
Furthermore, if f ∈ Γα(G

⊕), 0 < α < 1, with supp f ⊂ G⊕, and
φ ∈ C∞(∂G⊕) with suppφ ⊂ {x1 = 0}, then the boundary value problem{

Lu = f in G
⊕,

u = φ on ∂G⊕,

has a unique solution u ∈ C2(G⊕) ∩ C1(G⊕) and it can be represented by
the formula

u(ξ) =

∫
G⊕

GG⊕(ξ, ζ)f(ζ)dν(ζ) −
∫
∂G⊕

φ(ζ)〈∇̃GG⊕(ξ, ζ), dν(ζ)〉, ξ ∈ G
⊕.

3. The statements of Theorem 11.5.4 and Proposition 11.5.3 can be extended in
a straightforward way to shifted l-wedge like spaces, for any a = (a1, . . . , al) ∈
Rl defined by

G
‡
a := {ξ = (x1, . . . , xm, t1, . . . , tn) : x1 > a1, . . . , xl > al}.

In this space the Green function G
G

‡
a
has the same formula as in (11.83) if

we choose the symmetry points now with respect to the hyperplanes {x1 =
a1}, . . . , {xl = al}. In this case Theorem 11.5.4 remains true and can be
obtained by the same argument.
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11.5.2 Green functions and Dirichlet problem in strip domains

Similarly to wedge domain we can carry out a similar analysis in strip domains.

Definition 11.5.6 (l-strip domains). Let 1 ≤ l ≤ m. We define G|= to be the l-strip
space if it is given by

G
|= = {ξ = (x1, . . . , xm, t1, . . . , tn) : a > xl > 0}.

Let the point ζ = (y, τ) = (y1, . . . , ym, τ1, . . . , τn) lie in this l-strip space, so that
a > yl > 0. We will use the notations

ζ+,j := (y1, . . . , yl − 2aj, . . . , ym, τ1, . . . , τn),

and

ζ−,j := (y1, . . . ,−yl + 2aj, . . . , ym, τ1, . . . , τn),

for all j = 0, 1, 2, . . . .

The Green function for the Dirichlet sub-Laplacian in the strip domains takes
the following form, where compared to Proposition 11.5.3 in wedge domains, the
formula is now given by an infinite series.

Proposition 11.5.7 (Green function for Dirichlet sub-Laplacian in strip domains).
Let G‡ be an l-strip domain for 1 ≤ l ≤ m. The function

GG|=(ξ, ζ) =

∞∑
j=−∞

(
Γ(ζ−1

+,j ◦ ξ)− Γ(ζ−1
−,j ◦ ξ)

)
(11.87)

is the Green function for the Dirichlet sub-Laplacian in G|=.

Proof of Proposition 11.5.7. The formula (11.87) consists in the j = 0 term, i.e.,
the term Γ(ζ−1

+,0 ◦ ξ), which corresponds to the fundamental solution, and all the

other terms which are subharmonic functions in G|=. Let us check that traces of
(11.87) vanish on hyperplanes xl = 0 and xl = a. If xl = 0, then (11.87) gives

GG|=(ξ,ζ)|xl=0

=c

∞∑
j=−∞

((
((x1−y1)2+ ···+(−yl+2aj)2+ ···+(xm−ym)2)2+16|t−τ |2)(2−Q)/4

−(((x1−y1)2+ ···+(yl−2aj)2+ ···+(xm−ym)2)2+16|t−τ |2)(2−Q)/4
)
=0.

If xl = a, then (11.87) gives

GG|=(ξ,ζ)|xl=a

=c

∞∑
j=−∞

((
((x1−y1)2+ ···+(a−yl+2aj)2+ ···+(xm−ym)2)2+16|t−τ |2)(2−Q)/4

−(((x1−y1)2+ ···+(a+yl−2aj)2+ ···+(xm−ym)2)2+16|t−τ |2)(2−Q)/4
)
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=c

∞∑
j=0

(
((x1−y1)2+ ···+(a−yl+2aj)2+ ···+(xm−ym)2)2+16|t−τ |2)(2−Q)/4

−c
∞∑
j=1

(
((x1−y1)2+ ···+(a+yl−2aj)2+ ···+(xm−ym)2)2+16|t−τ |2)(2−Q)/4

+c
−∞∑
j=−1

(
((x1−y1)2+ ···+(a−yl+2aj)2+ ···+(xm−ym)2)2+16|t−τ |2)(2−Q)/4

−c
−∞∑
j=0

(
((x1−y1)2+ ···+(a+yl−2aj)2+ ···+(xm−ym)2)2+16|t−τ |2)(2−Q)/4

=0.

Here the first term (j = 0 term) of the first sum is cancelled with the first term
(j = 1 term) of the second sum and the second terms of the first sum is cancelled
with the second term of the second sum and so on, that is, the first two sums give
zero. Similarly, the first term of the third sum is cancelled with the first term of
the last sum and the second term of the third sum is cancelled with the second
term of the last sum and so on, that is, the last two sums also give zero. As a
result, the trace vanishes at xl = a. �

For f ∈ Γα(G
|=), 0 < α < 1, with supp f ⊂ G

|=, and for φ ∈ C∞(∂G|=)
with suppφ ⊂ {xl = 0}⋃{xl = a}, we now consider the Dirichlet problem for the
sub-Laplacian {

Lu = f in G
|=,

u = φ on ∂G|=.
(11.88)

Theorem 11.5.8 (Dirichlet problem for sub-Laplacian in strip domain). Let f ∈
Γα(G

|=), 0 < α < 1, with supp f ⊂ G|=, and let φ ∈ C∞(∂G|=) with suppφ ⊂
{xl = 0}⋃{xl = a}. Then the boundary value problem (11.88) has a unique

solution u ∈ C2(G|=) ∩ C1(G|=) and it can be represented by the formula

u(ξ) =

∫
G|=

GG|=(ξ, ζ)f(ζ)dν(ζ) −
∫
∂G|=

φ(ζ)〈∇̃GG|=(ξ, ζ), dν(ζ)〉, ξ ∈ G
|=,

where

∇̃GG|= =
m∑
k=1

(XkGG|=)Xk.

Proof of Theorem 11.5.8. The proof is almost the same as the proof of Theorem
11.5.4, so we omit it. �
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11.6 p-sub-Laplacian Picone’s inequality

and consequences

In this section, we present Picone’s identities for the p-sub-Laplacian on strati-
fied Lie groups, which implies a generalized Dı́az–Saá inequality for the p-sub-
Laplacian on stratified Lie groups. As consequences, a comparison principle and
uniqueness of a positive solution to nonlinear p-sub-Laplacian equations are de-
rived. The presentation of this section follows the results of [RS17a].

First let us introduce the functional spaces S1,p(Ω).

Definition 11.6.1 (Functional spaces S1,p(Ω) and
◦
S
1,p

(Ω)). We define

S1,p(Ω) := {u : Ω→ R; u, |∇Hu| ∈ Lp(Ω)}.
Consider the functional

Jp(u) :=

(∫
Ω

|∇Hu|pdx
) 1/p

,

then we define the functional class
◦
S
1,p

(Ω) to be the completion of C1
0 (Ω) in the

norm generated by Jp (see, e.g., [CDG93]).

In an admissible domain Ω ⊂ G with smooth boundary ∂Ω we study the
p-sub-Laplacian Dirichlet problem:{

−Lpu = F (x, u), in Ω,

u = 0, on ∂Ω.
(11.89)

Here we assume that

(a) The function F : Ω × R → R is a positive, bounded and measurable, and
there exists a positive constant C > 0 such that

F (x, ρ) ≤ C(ρp−1 + 1)

holds for a.e. x ∈ Ω.

(b) The function

ρ 
→ F (x, ρ)

ρp−1

is strictly decreasing on (0,∞) for a.e. x ∈ Ω.

As usual, if a function u ∈
◦
S
1,p

(Ω) ∩ L∞(Ω) satisfies∫
Ω

|∇Hu|p−2(∇̃u)φdν =

∫
Ω

F (x, u)φdν

for all φ ∈ C∞
0 (Ω), then it is called a weak solution of (11.89).
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Keeping in mind the stratified group discussions in previous sections for any
set Ω ⊂ G we denote, for any 1 < p <∞,

L(u, v) := |∇Hu|p − p |u|
p−2u

f(v)
∇Hu · ∇Hv|∇Hv|p−2 +

f ′(v)|u|p
f2(v)

|∇Hv|p. (11.90)

We also denote

R(u, v) := |∇Hu|p −∇H
( |u|p
f(v)

)
|∇Hv|p−2∇Hv, 1 < p <∞, (11.91)

a.e. in Ω. Here f : R+ → R+ is a locally Lipschitz function such that

(p− 1)|f(t)| p−2
p−1 ≤ f ′(t) (11.92)

holds a.e. in R
+. Then we have the following Picone identity on a stratified Lie

group G.

Lemma 11.6.2 (Picone identity). Under the above assumptions we have

L(u, v) = R(u, v) ≥ 0

a.e. in Ω, where u and v are differentiable real-valued functions and Ω ⊂ G is
any set.

Proof of Lemma 11.6.2. We have the equality

∇H
( |u|p
f(v)

)
=
pf(v)|u|p−2u∇Hu− f ′(v)|u|p∇Hv

f2(v)

=
p|u|p−2u∇Hu

f(v)
− f ′(v)|u|p∇Hv

f2(v)
.

It implies that

R(u, v) = |∇Hu|p −∇H
( |u|p
f(v)

)
|∇Hv|p−2∇Hv

= |∇Hu|p − p|u|p−2u

f(v)
|∇Hv|p−2∇Hu · ∇Hv + f ′(v)|u|p

f2(v)
|∇Hv|p

= L(u, v).

Now it remains to show the non-negativity of R(u, v) (that is, alternatively, of
L(u, v)). Since

p|u|p−2u

f(v)
|∇Hv|p−2∇Hu · ∇Hv ≤ p|u|p−1

f(v)
|∇Hv|p−1|∇Hu|,



11.6. p-sub-Laplacian Picone’s inequality and consequences 495

by applying the Young inequality to the right-hand side of this inequality we obtain

p|u|p−2u

f(v)
|∇Hv|p−2∇Hu · ∇Hv ≤ |∇Hu|p + (p− 1)

|u|p|∇Hv|p
f

p
p−1 (v)

.

Thus, we have

f ′(v)|u|p|∇Hv|p
f2(v)

− (p− 1)
|u|p|∇Hv|p
f

p
p−1 (v)

≤ R(u, v).

By assumption (11.92) we have (p − 1)|f(t)| p−2
p−1 ≤ f ′(t), which means that 0 ≤

R(u, v), completing the proof. �
Lemma 11.6.3. Let 1 < p <∞ and let f : R+ → R+ be a locally Lipschitz function
such that

(p− 1)|f(t)| p−2
p−1 ≤ f ′(t)

holds a.e. in R+. Let Ω ⊂ G be a bounded open set and let v ∈
◦
S
1,p

(Ω) be such
that v ≥ ε > 0. Then for any u ∈ C∞

0 (Ω) we have∫
Ω

|u|p
f(v)

(−Lpv)dx ≤
∫
Ω

|∇Hu|pdx. (11.93)

Proof of Lemma 11.6.3. Let v ∈
◦
S
1,p

(Ω) be such as in the assumptions, that is,
v ≥ ε > 0. Then by the density argument we can choose vk ∈ C1

0 (Ω), k = 1, 2, . . . ,
such that vk >

ε
2 in Ω and vk → v a.e. in Ω. By using Lemma 11.6.2 we have

0 ≤
∫
Ω

R(u, vk)dx,

for each k. That is, ∫
Ω

|u|p
f(vk)

(−Lpvk)dx ≤
∫
Ω

|∇Hu|pdx.

Since Lp is a continuous operator from
◦
S
1,p

(Ω) to S−1,p′(Ω), p′ = p
p−1 , we have

Lpvk → Lpv in S−1,p′(Ω) and f(vk)→ f(v) pointwise since f is a locally Lipschitz
continuous function on (0,∞). Thus, by the Lebesque dominated convergence
theorem and using the fact that f is an increasing function on (0,∞), for any
u ∈ C∞

0 (Ω) we arrive at the inequality∫
Ω

|u|p
f(v)

(−Lpv)dx ≤
∫
Ω

|∇Hu|pdx,

proving (11.93). �
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As a consequence of the Harnack inequality for the general hypoelliptic oper-
ator (see [CDG93, Theorem 3.1]) one has the following strong maximum principle
for the p-sub-Laplacian.

Lemma 11.6.4 (Strong maximum principle for the p-sub-Laplacian). Let 1 < p ≤
Q, let Ω ⊂ G be a bounded open set and let F : Ω × R → R be a measurable
function such that

|F (x, ρ)| ≤ C(ρp−1 + 1)

for all ρ > 0. Let u ∈
◦
S
1,p

(Ω) be a non-negative solution of{ −Lpu = F (x, u), in Ω,
u = 0, on ∂Ω.

Then u ≡ 0 or u > 0 in Ω.

Proof of Lemma 11.6.4. Since u ∈
◦
S
1,p

(Ω) by using the Harnack inequality
[CDG93, Theorem 3.1] for 1 < p ≤ Q there exists a constant CR such that

ess sup
B(x,R)

u ≤ CRess inf
B(x,R)

u

holds for any x ∈ Ω and quasi-ball B(0, R). This means that u ≡ 0 or u > 0
in Ω. �

Combining Lemma 11.6.3 and Lemma 11.6.4 one has the following general-
ized Picone inequality on G, which is a key ingredient for proofs of both a compar-
ison principle and uniqueness of a positive solution to nonlinear p-sub-Laplacian
equations.

Lemma 11.6.5 (Generalized Picone inequality). Let Ω ⊂ G be a bounded open set
and let g : Ω× R→ R be positive, bounded and measurable function such that

g(x, ρ) ≤ C(ρp−1 + 1)

for all ρ > 0. Then we have∫
Ω

|u|p
f(v)

(−Lpv)dx ≤
∫
Ω

|∇Hu|pdx, 1 < p <∞, (11.94)

for all v, u ∈
◦
S
1,p

(Ω) and v(�≡ 0) ≥ 0 a.e. Ω ∈ G such that

−Lpv = g(x, v).

Proof of Lemma 11.6.5. By Lemma 11.6.4 we have v > 0 in Ω. Let

vk(x) := v(x) +
1

k
, k = 1, 2, . . . .
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Then we have Lpvk = Lpv in S−1,p′(Ω), vk → v a.e. in Ω and also f(vk) → f(v)

pointwise in Ω. Let uk ∈ C∞
0 (Ω) be such that uk → u in

◦
S
1,p

(Ω). For the functions
uk and vk Lemma 11.6.3 gives∫

Ω

|uk|p
f(vk)

(−Lpvk)dx ≤
∫
Ω

|∇Huk|pdx.

Now since f(vk)→ f(v) pointwise, by the Fatou lemma we arrive at∫
Ω

|u|p
f(v)

(−Lpv)dx ≤
∫
Ω

|∇Hu|pdx.

This completes the proof. �

Lemma 11.6.5 implies the following comparison type principle:

Theorem 11.6.6 (Comparison principle for p-sub-Laplacian). Let Ω ⊂ G be an
admissible domain. Let 0 < q < p− 1 and let F be a non-negative function such

that F �≡ 0. Let u, v ∈
◦
S
1,p

(Ω) be real-valued functions such that{
−Lpu ≥ F (x)uq, u > 0 in Ω,

−Lpv ≤ F (x)vq , v > 0 in Ω.
(11.95)

Then we have v ≤ u a.e. in Ω.

Proof of Theorem 11.6.6. It follows from (11.95) that

F (x)

(
uq

up−1
− vq

vp−1

)
≤ −Lpu

up−1
+
Lpv
vp−1

.

Multiplying both sides by w = (vp − up)+ and integrating over Ω we have∫
[v>u]

F (x)

(
uq

up−1
− vq

vp−1

)
wdx =

∫
Ω

F (x)

(
uq

up−1
− vq

vp−1

)
wdx

≤
∫
Ω

(−Lpu
up−1

+
Lpv
vp−1

)
wdx.

(11.96)

Moreover, we have∫
Ω

(−Lpu
up−1

+
Lpv
vp−1

)
wdx

=

∫
Ω

|∇Hu|p−2∇Hu · ∇H
( w

up−1

)
dx

−
∫
Ω

|∇Hv|p−2∇Hv · ∇H
( w

vp−1

)
dx
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=

∫
Ω∩[v>u]

|∇Hu|p−2∇Hu · ∇H
(
vp − up
up−1

)
dx

−
∫
Ω∩[v>u]

|∇Hv|p−2∇Hv · ∇H
(
vp − up
vp−1

)
dx

=

∫
Ω∩[v>u]

(
|∇Hu|p−2∇Hu · ∇H

(
vp

up−1

)
− |∇Hv|p

)
dx

+

∫
Ω∩[v>u]

(
|∇Hv|p−2∇Hv · ∇H

(
up

vp−1

)
− |∇Hu|p

)
dx

= I1 + I2,

where

I1 :=

∫
Ω∩[v>u]

(
|∇Hu|p−2∇Hu · ∇H

(
vp

up−1

)
− |∇Hv|p

)
dx

and

I2 :=

∫
Ω∩[v>u]

(
|∇Hv|p−2∇Hv · ∇H

(
up

vp−1

)
− |∇Hu|p

)
dx.

We notice that

I1 =

∫
Ω∩[v>u]

|∇Hu|p−2∇Hu · ∇H
(

vp

up−1

)
dx−

∫
Ω∩[v>u]

|∇Hv|pdx

= −
∫
Ω∩[v>u]

vp

up−1
Lpudx−

∫
Ω∩[v>u]

|∇Hv|pdx ≤ 0.

In the last line we have used Green’s first identity (1.90) and the Picone inequality
(11.94). Similarly, we see that I2 ≤ 0. Thus, we obtain∫

Ω

(−Lpu
up−1

+
Lpv
vp−1

)
wdx ≤ 0.

Consequently, (11.96) implies that∫
Ω∩[v>u]

F (x)

(
uq

up−1
+

vq

vp−1

)
(vp − up)dx ≤ 0.

On the other hand, we have

0 ≤ F (x)
(

uq

up−1
+

vq

vp−1

)
on the set [v > u]. This means that |[v > u]| = 0. �

As another consequence of Lemma 11.6.5 we have the following Dı́az–Saá
inequality on stratified Lie groups.
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Lemma 11.6.7 (Dı́az–Saá inequality). Let Ω be an admissible domain. Let functions

g1 and g2 satisfy the assumption of Theorem 11.6.5. If functions u1, u2 ∈
◦
S
1,p

(Ω)
with u1, u2(�≡ 0) ≥ 0 a.e. Ω ∈ G are such that

−Lpu1 = g1(x, u1) and − Lpu2 = g2(x, u2),

then we have

0 ≤
∫
Ω

(
−Lpu1
up−1
1

+
Lpu2
up−1
2

)
(up1 − up2)dx.

Proof of Lemma 11.6.7. Let functions u1 and u2 satisfy the assumptions. Then by
the inequality (11.94) with f(u) = up−1 as well as for u1 and u2 we have∫

Ω

|u1|p
up−1
2

(−Lpu2)dx ≤
∫
Ω

|∇Hu1|pdx.

Using Green’s first identity (1.90) we get

0 ≤
∫
Ω

(
−Lpu1
up−1
1

+
Lpu2
up−1
2

)
up1dx. (11.97)

Again, by the inequality (11.94) we have∫
Ω

|u2|p
up−1
1

(−Lpu1)dx ≤
∫
Ω

|∇Hu2|pdx.

As above, this implies

0 ≤
∫
Ω

(
Lpu1
up−1
1

− Lpu2
up−1
2

)
up2dx. (11.98)

Now the combination of (11.97) and (11.98) completes the proof. �

The established properties allow one to show the uniqueness of a positive
solution for the equation {

−Lpu = F (x, u), in Ω,

u = 0, on ∂Ω,
(11.99)

where Ω is an admissible domain. For convenience, we recall once again the as-
sumptions on F (x, u):

(a) The function F : Ω×R→ R is a positive, bounded and measurable function
and there exists a positive constant C > 0 such that

F (x, ρ) ≤ C(ρp−1 + 1)

holds for a.e. x ∈ Ω.
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(b) The function

ρ 
→ F (x, ρ)

ρp−1

is strictly decreasing on (0,∞) for a.e. x ∈ Ω.

Theorem 11.6.8 (Uniqueness of positive solutions). There exists at most one pos-
itive weak solution to (11.99) for 1 < p ≤ Q.
Proof of Theorem 11.6.8. First, assuming that u1 and u2 are two different (u1 �≡
u2) non-negative solutions of (11.99) and using Lemma 11.6.4 for these functions
we conclude that u1 > 0 and u2 > 0 in Ω. Then Lemma 11.6.7 implies that

0 ≤
∫
Ω

(
−Lpu1
up−1
1

+
Lpu2
up−1
2

)
(up1 − up2)dx.

Moreover, from the assumption (b) it follows that∫
Ω

(
F (x, u1)

up−1
1

− F (x, u2)

up−1
2

)
(up1 − up2)dx < 0.

On the other hand, we have∫
Ω

(
−Lpu1
up−1
1

+
Lpu2
up−1
2

)
(up1 − up2)dx =

∫
Ω

(
F (x, u1)

up−1
1

− F (x, u2)

up−1
2

)
(up1 − up2)dx,

and this contradicts that both u1 and u2 (u1 �≡ u2) are non-negative solutions of
(11.99). �
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Chapter 12

Hardy and Rellich Inequalities for

Sums of Squares of Vector Fields

In this chapter, we demonstrate how some ideas originating in the analysis on
groups can be applied in related settings without the group structure. In particular,
in Chapter 7 we showed a number of Hardy and Rellich inequalities with weights
expressed in terms of the so-called L-gauge. There, the L-gauge is a homogeneous
quasi-norm on a stratified group which is obtained from the fundamental solution
to the sub-Laplacian. At the same time, in Chapter 11 we used the fundamental
solutions of the sub-Laplacian for the advancement of the potential theory on
stratified groups, and in Section 7.3 fundamental solutions for the p-sub-Laplacian
and their properties were used on polarizable Carnot groups for the derivation of
further Hardy estimates in that setting.

The aim of this chapter is to show that given the existence of a fundamental
solution one can use the ideas from the analysis on groups to establish a number
of Hardy inequalities on spaces without group structure.

Thus, let M be a smooth manifold of dimension n with a volume form dν.
Let {Xk}Nk=1 be a family of real vector fields on M , and denote by L the sum of
their squares:

L :=
N∑
k=1

X2
k . (12.1)

Identifying each vector field X with the derivative in its direction, second-order
differential operators in the form (12.1) have been widely studied in the literature.
For instance, by the well-known Hörmander sums of the squares theorem from
[Hör67], the operator L is locally hypoelliptic if the iterated commutators of the
vector fields {Xk}Nk=1 generate the tangent space at each point. Such operators
have been also investigated under weaker conditions or without the hypoellipticity
property. There are many geometric considerations related to such operators, see,
e.g., the seminal papers of Rothschild and Stein [RS76] and of Nagel, Stein and
Wainger [NSW85].

© The Editor(s) (if applicable) and The Author(s) 2019 
M. Ruzhansky, D. Suragan, Hardy Inequalities on Homogeneous Groups,  
Progress in Mathematics 327, https://doi.org/10.1007/978-3-030-02895-4_13 
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In this chapter our main assumption on the operator L in (12.1) will be
that it has a local fundamental solution. In particular, this is the case when M
is a stratified or a graded group, but the group assumption is, in principle, not
necessary. In what follows we will give other examples of naturally appearing
operators in other contexts having local or global fundamental solutions. The
presentation of this chapters is based on the results obtained in [RS17d].

12.1 Assumptions

We start by formulating assumptions for the presentation in this chapter. Then
we discuss several settings where these assumptions are satisfied. This will include
stratified Lie groups and operators on Rn satisfying the Hörmander commutator
condition.

Let M be a smooth manifold of dimension n with a volume form dν, and let
L be an operator as in (12.1). At a point y ∈ M we will be making the following
assumption that we call (Ay), asking for the existence of a local fundamental
solution at y:

(Ay) For y ∈ M , assume that there is an open set Ty ⊂ M containing y such
that the operator −L has a fundamental solution in Ty, that is, there exists
a function Γy ∈ C2(Ty \ {y}) such that

− LΓy = δy in Ty, (12.2)

where δy is the Dirac δ-distribution at y.

When the point y is fixed, we will often use the notation Γ(x, y) = Γy(x)
or simply Γ(x). Here C2 stands for the space of functions with continuous sec-
ond derivatives with respect to {Xk}Nk=1. We note that among other things the
existence of a fundamental solution implies that L is hypoelliptic.

Sometimes we will strengthen Assumption (Ay) to the following assumption
that we call (A+

y ) asking for the local positivity of the fundamental solution:

(A+
y ) For y ∈M , assume that (Ay) holds and, moreover, we have

Γy(x) > 0 in Ty \ {y}, and 1

Γy
(y) = 0.

The second part of the assumption is usually naturally satisfied since for a
fundamental solution Γy, the quotient 1

Γy
is usually well-defined and is equal to 0

at y since Γy normally blows up at y.

As before, we will be using the notation 〈Xk, dν〉 for the duality product
of the vector field Xk with the volume form dν, that is, since dν is an n-form,
〈Xk, dν〉 is an (n− 1)-form on M .

It will be convenient to use the following notion of admissible domains in
this chapter. We note that this notion here differs from the one in Definition 1.4.4.



12.1. Assumptions 503

However, there should be no confusion since the following definition will be used
in this chapter only.

Definition 12.1.1 (Admissible domains). We will say (in this chapter) that an
open bounded set Ω ⊂ M is an admissible domain if its boundary ∂Ω has no
self-intersections, and if the vector fields {Xk}Nk=1 satisfy the equality

N∑
k=1

∫
Ω

Xkfkdν =

N∑
k=1

∫
∂Ω

fk〈Xk, dν〉, (12.3)

for all fk ∈ C1(Ω)
⋂
C(Ω), k = 1, . . . , N .

We will also say that an admissible domain Ω is strongly admissible with
y ∈ M if assumption (Ay) is satisfied, Ω ⊂ Ty, and (12.3) holds for fk = vXkΓy
for all v ∈ C1(Ω)

⋂
C(Ω).

Although there are several conditions incorporated in the notion of a strongly
admissible domain the examples below will actually show that in a number of
natural settings, any open bounded set with a piecewise smooth boundary without
self-intersections is strongly admissible, see Proposition 12.2.1. The condition that
the boundary ∂Ω has no self-intersections implies that ∂Ω is orientable. For brevity,
we will say that such boundaries are simple.

12.1.1 Examples

Let us now describe several rather general settings when bounded domains with
simple boundaries are strongly admissible in the sense of Definition 12.1.1. More-
over, we discuss also the validity of assumptions (Ay) and (A+

y ).

For the examples (E2) and (E3) below we will need the following definition.

Definition 12.1.2 (Control distance and Hölder spaces). The control distance
dc(x, y) associated to the vector fields Xk is defined as the infimum of T > 0
such that there is a piecewise continuous integral curve γ of X1, . . . , XN such that
γ(0) = x and γ(T ) = y.

The Hölder space Cα(Ω) with respect to the control distance is then defined
for 0 < α ≤ 1 as the space of all functions u for which there is C > 0 such that

|u(x)− u(y)| ≤ Cdαc (x, y)
holds for all x, y ∈ Ω. Then, u ∈ C1,α if Xku ∈ Cα for all k = 1, . . . , N , and the
spaces Cr,α are defined inductively.

Example 12.1.3 (Examples of strongly admissible domains). Let us give several
examples.

(E1) Let M be a stratified Lie group, n ≥ 3, and let {Xk}Nk=1 be left invariant
vector fields giving the first stratum of M . Then for any y ∈M the assump-
tion (A+

y ) is satisfied with Ty =M . Moreover, any open bounded set Ω ⊂M
with a piecewise smooth simple boundary is strongly admissible.



504 Chapter 12. Hardy and Rellich Inequalities for Sums of Squares

(E2) Let M = Rn, n ≥ 3, and let the vector fields Xk, k = 1, . . . , N , N ≤ n, be of
the form

Xk =
∂

∂xk
+

n∑
m=N+1

ak,m(x)
∂

∂xm
, (12.4)

where ak,m(x) are locally C1,α-regular for some 0 < α ≤ 1, where C1,α stands
for the space of functions with Xk-derivatives in the Hölder space Cα with
respect to the control distance defined by these vector fields. Assume also

∂

∂xk
=

∑
1≤i<j≤N

λi,jk (x)[Xi, Xj] (12.5)

for all k = N + 1, . . . , n, with λi,jk ∈ L∞
loc(M). Then for any y ∈ M the

assumption (A+
y ) is satisfied. Moreover, any open bounded set Ω ⊂ M with

a piecewise smooth simple boundary is strongly admissible.

(E3) More generally, letM = Rn, n ≥ 3, and let the vector fieldsXk, k = 1, . . . , N ,
N ≤ n, satisfy the Hörmander commutator condition of step r ≥ 2. Assume
that all Xk, k = 1, . . . , N , belong to Cr,α(U) for some 0 < α ≤ 1 and U ⊂M ,
and if r = 2 we assume α = 1. Then for any y ∈ M the assumption (A+

y )
is satisfied. Moreover, if Xk’s are in the form (12.4), then any open bounded
set Ω ⊂M with a piecewise smooth simple boundary is strongly admissible.

Some remarks are in order.

Remark 12.1.4.

1. In Example (E1), the validity of Assumption (A+
y ) for any y follows from

(1.74) and (1.75). The equality of (12.3) for (E1) and the strong admissibility
for any domain with piecewise smooth simple boundary follows from Theorem
1.4.5.

2. In Example (E2), the existence of a local fundamental solution, that is (Ay)
for any y ∈ M was shown by Manfredini [Man12]. While the positivity of
Γy does not seem to be explicitly stated there, see Sánchez-Calle [SC84], or
Fefferman and Sánchez-Calle [FSC86] for the positivity, thus assuring that
Assumption (A+

y ) holds. The validity of (12.3) and the strong admissibility
for any domain with piecewise smooth simple boundary will follow from
Theorem 12.2.1.

3. Condition (12.5) implies that the collection of vector fields {Xk}Nk=1 satisfies
Hörmander’s commutator condition of step two.

4. The condition (12.4) on the vector fields in (E2) and (E3) is not restrictive.
In fact, by a change of variables one can show that any collection of linearly
independent vector fields which are locally Cr,α-regular (r ∈ N) can be trans-
formed to a collection of the same regularity which satisfies condition (12.4),
see Manfredini [Man12, page 975].
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5. In Example (E3), the validity of condition (A+
y ) was studied by Bramanti,

Brandolini, Manfredini and Pedroni [BBMP17, Theorem 4.8 and Theorem
5.9]. The validity of (12.3) and the strong admissibility for any domain with
piecewise smooth simple boundary will follow from Theorem 12.2.1.

6. Assumptions (Ay) or (A
+
y ) hold also in some other settings. The subject of the

existence of local and global fundamental solutions for L is well studied when
L is a hypoelliptic operator, see, e.g., [Man12, BLU04, FSC86, SC84, OR73]
for more general and detailed discussions.

7. For both Examples (E2) and (E3) let us give the following explicit example:
In R3 let N = 2 and let

X1 =
∂

∂x1
+ a(x)

∂

∂x3
,

X2 =
∂

∂x2
+ b(x)

∂

∂x3
,

be vector fields with coefficients

a(x) = x2(1 + |x2|), b(x) = −x1(1 + |x1|).
Clearly, these coefficients are not smooth. Then

[X1, X2] = −2(1 + |x1|+ |x2|) ∂

∂x3
.

The vector fields X1, X2 are C1,1 and satisfy Hörmander’s commutator con-
dition of step two, so that assumptions of Example (E2) hold. Replacing |x1|,
|x2| with x1|x1|, x2|x2| we get C2,1 vector fields, satisfying assumptions of
Example (E3).

These examples and the corresponding sub-Laplacian L = X2
1 + X2

2

were studied in [BBMP17, Section 6]. Other explicit examples can be built
from the so-called Δλ-Laplacians, see, e.g., [KS16].

12.2 Divergence formula

For this, there is no need to make any assumptions on the step to which Hörman-
der’s commutator condition is satisfied, whether it is satisfied or not, or on the
existence of fundamental solutions as in (Ay). Thus, let us formulate this property
as a general statement which shall be of interest on its own. The assumption for
smoothness on Xk can be reduced here, e.g., to ak,m ∈ C1.

Theorem 12.2.1 (Divergence formula). Let Ω ⊂ Rn be an open bounded domain
with a piecewise smooth boundary that has no self-intersections. Let Xk, k =
1, . . . , N , be C1 vector fields in the form

Xk =
∂

∂xk
+

n∑
m=N+1

ak,m(x)
∂

∂xm
. (12.6)
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Let fk ∈ C1(Ω)
⋂
C(Ω), k = 1, . . . , N . Then for each k = 1, . . . , N, we have∫

Ω

Xkfkdν =

∫
∂Ω

fk〈Xk, dν〉. (12.7)

Consequently, we also have the divergence type formula∫
Ω

N∑
k=1

Xkfkdν =

∫
∂Ω

N∑
k=1

fk〈Xk, dν〉. (12.8)

If y ∈ R
n is such that (Ay) is satisfied, then we can also take fk = vXkΓy in

formulae above, for all v ∈ C1(Ω)
⋂
C(Ω).

Formula (12.8) is exactly the one needed for the admissibility of a domain
in Definition 12.1.1. For a discussion of other related versions of the divergence
formula in the literature see Remark 1.4.7. The proof of Theorem 12.2.1 is similar
to that of Theorem 1.4.5.

Proof of Theorem 12.2.1. For any function f we calculate the following differenti-
ation formula

df =

N∑
k=1

∂f

∂xk
dxk +

n∑
m=N+1

∂f

∂xm
dxm

=

N∑
k=1

Xkfdxk −
N∑
k=1

n∑
m=N+1

ak,m(x)
∂f

∂xm
dxk +

n∑
m=N+1

∂f

∂xm
dxm

=

N∑
k=1

Xkfdxk +

n∑
m=N+1

∂f

∂xm
(−

N∑
k=1

ak,m(x)dxk + dxm)

=
N∑
k=1

Xkfdxk +
n∑

m=N+1

∂f

∂xm
θm,

where we denote

θm := −
N∑
k=1

ak,m(x)dxk + dxm, m = N + 1, . . . , n. (12.9)

That is, we have

df =

N∑
k=1

Xkfdxk +

n∑
m=N+1

∂f

∂xm
θm. (12.10)

It is simple to see that

〈Xs, dxj〉 = ∂

∂xs
dxj = δsj , 1 ≤ s ≤ N, 1 ≤ j ≤ n,
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where δsj is the Kronecker delta. Moreover, we have

〈Xs, θm〉 =
〈

∂

∂xs
+

n∑
g=N+1

as,g(x)
∂

∂xg
,−

N∑
k=1

ak,m(x)dxk + dxm

〉

= −
N∑
k=1

(
∂

∂xs
ak,m(x)

)
dxk −

N∑
k=1

ak,m(x)
∂

∂xs
dxk +

∂

∂xs
dxm

−
N∑
k=1

n∑
g=N+1

as,g(x)

(
∂

∂xg
ak,m(x)

)
dxk −

N∑
k=1

n∑
g=N+1

as,g(x)ak,m(x)
∂

∂xg
dxk

+

n∑
g=N+1

as,g(x)
∂

∂xg
dxm

= −
N∑
k=1

(
∂

∂xs
ak,m(x)

)
dxk −

N∑
k=1

ak,m(x)δsk

−
N∑
k=1

n∑
g=N+1

as,g(x)

(
∂

∂xg
ak,m(x)

)
dxk +

n∑
g=N+1

as,g(x)δgm

= −
N∑
k=1

n∑
g=N+1

as,g(x)

(
∂

∂xg
ak,m(x)

)
dxk −

N∑
k=1

(
∂

∂xs
ak,m(x)

)
dxk

= −
N∑
k=1

[ n∑
g=N+1

as,g(x)

(
∂

∂xg
ak,m(x)

)
+

∂

∂xs
ak,m(x)

]
dxk.

That is, we have

〈Xs, dxj〉 = δsj ,

for s = 1, . . . , N, j = 1, . . . , n, and

〈Xs, θm〉 =
N∑
k=1

Ck(s,m)dxk,

for s = 1, . . . , N, m = N + 1, . . . , n, where we denote

Ck(s,m) := −
n∑

g=N+1

as,g(x)
∂

∂xg
ak,m(x) − ∂

∂xs
ak,m(x).

We have

dν := dν(x) =

N∧
j=1

dxj =

N∧
j=1

dxj

n∧
m=N+1

dxm =

N∧
j=1

dxj

n∧
m=N+1

θm,



508 Chapter 12. Hardy and Rellich Inequalities for Sums of Squares

so that

〈Xk, dν(x)〉 =
N∧

j=1,j 	=k
dxj

n∧
m=N+1

θm. (12.11)

Therefore, by using formula (12.10) we get

d(fs〈Xs, dν(x)〉)
= dfs ∧ 〈Xs, dν(x)〉

=

N∑
k=1

Xkfsdxk ∧ 〈Xs, dν(x)〉 +
n∑

m=N+1

∂fs
∂xm

θm ∧ 〈Xs, dν(x)〉

=
N∑
k=1

Xkfsdxk ∧
N∧
j=1,
j 	=k

dxj

n∧
m=N+1

θm +
n∑

m=N+1

∂fs
∂xm

θm ∧
N∧
j=1,
j 	=k

dxj

n∧
m=N+1

θm.

The first term in the last line is equal to Xsfsdν(x) and the second term is zero
by the wedge product rules. Therefore, we obtain

d(〈fsXs, dν(x)〉) = Xsfsdν(x), s = 1, . . . , N. (12.12)

Now using the Stokes theorem (see, e.g., [DFN84, Theorem 26.3.1]) we obtain
(12.7). Taking a sum over k we also obtain (12.8) for all fk ∈ C1(Ω)

⋂
C(Ω).

As in the classical case, the formula (12.7) is still valid for the fundamental
solution of L since Γ can be estimated by a distance function associated to {Xk}
(see, e.g., [Man12, Proposition 4.8]), or [FSC86, SC84] for such estimates in a more
general setting. �

12.3 Green’s identities for sums of squares

Similar to Theorem 1.4.6 the divergence formula in Theorem 12.2.1 implies the
corresponding Green identities.

Theorem 12.3.1 (Green’s identities). Let M be a smooth manifold of dimension n
with a volume form dν and let L be an operator as in (12.1). Let Ω ⊂ M be an
admissible domain.

1. Green’s first identity: If v ∈ C1(Ω)
⋂
C(Ω) and u ∈ C2(Ω)

⋂
C1(Ω) then we

have ∫
Ω

(
(∇̃v)u+ vLu

)
dν =

∫
∂Ω

v〈∇̃u, dν〉, (12.13)

where

∇̃u =
N∑
k=1

(Xku)Xk. (12.14)
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2. Green’s second identity: If u, v ∈ C2(Ω)
⋂
C1(Ω) then we have∫

Ω

(uLv − vLu)dν =

∫
∂Ω

(u〈∇̃v, dν〉 − v〈∇̃u, dν〉). (12.15)

Moreover, if Ω is strongly admissible, we can put u = Γ in (12.13), and u = Γ or
v = Γ in (12.15).

As in Remark 1.4.7, Part 1, the notation (12.14) implies that for functions u
and v we have(

∇̃v
)
u = ∇̃vu =

N∑
k=1

(Xkv) (Xku) =
N∑
k=1

XkvXku =
(
∇̃u

)
v (12.16)

is a scalar.

Proof of Theorem 12.3.1. Taking fk = vXku, we get

N∑
k=1

Xkfk = (∇̃v)u + vLu.

Since Ω is admissible we can use (12.3), so that we obtain∫
Ω

(
∇̃vu+ vLu

)
dν =

∫
Ω

N∑
k=1

Xkfkdν

=

∫
∂Ω

N∑
k=1

〈fkXk, dν〉

=

∫
∂Ω

N∑
k=1

〈vXkuXk, dν〉

=

∫
∂Ω

v〈∇̃u, dν〉.

This proves (12.13). Then by rewriting (12.13) for interchanged functions u and v
we have ∫

Ω

(
(∇̃u)v + uLv

)
dν =

∫
∂Ω

u〈∇̃v, dν〉,∫
Ω

(
(∇̃v)u + vLu

)
dν =

∫
∂Ω

v〈∇̃u, dν〉.

By subtracting the second identity from the first one and using (∇̃u)v = (∇̃v)u
in view of (12.16), we obtain (12.15).

If Ω is strongly admissible, we can put Γ for u or v as stated since (12.3)
holds in these cases as well. �
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Remark 12.3.2. It is crucial that Green’s identities are valid for the fundamental
solution Γ. In the classical (Euclidean) case Green’s identities are valid for the
fundamental solution of the Laplacian and this fact is of fundamental importance
in the classical theory as well.

12.3.1 Consequences of Green’s identities

Let us now record several useful consequences of Theorem 12.3.1. Setting v = 1
we obtain the following analogue of Gauss’ mean value type formulae:

Corollary 12.3.3 (Gauss’ mean value formulae). Let Ω ⊂ M be an admissible
domain. Then we have

Lu ≥ 0 in Ω =⇒
∫
∂Ω

〈∇̃u, dν〉 ≥ 0

and

Lu ≤ 0 in Ω =⇒
∫
∂Ω

〈∇̃u, dν〉 ≤ 0.

Consequently, we also have

Lu = 0 in Ω =⇒
∫
∂Ω

〈∇̃u, dν〉 = 0.

Also, for a fixed x ∈ Ω, taking v = 1 and u(y) = Γ(x, y) in (12.13) we obtain:

Corollary 12.3.4. Let Ω ⊂ M be a strongly admissible domain such that Ω ⊂ Ty
for all y ∈ Ω, and let x ∈ Ω. Then we have∫

∂Ω

〈∇̃Γ(x, y), dν(y)〉 = −1,

where ∇̃Γ(x, y) = ∇̃yΓ(x, y) refers to the notation (12.14) with derivatives taken
with respect to the variable y.

The assumption of Ω ⊂ Ty for all y ∈ Ω in Corollary 12.3.4 just assures that
the family of Γy is defined over y ∈ Ω.

Corollary 12.3.5 (Representation formulae). Let us assume the conditions of Corol-
lary 12.3.4. Taking v in (12.15) to be the fundamental solution Γ we obtain the
following representation formulae.

1. Let u ∈ C2(Ω)
⋂
C1(Ω). Then for all x ∈ Ω we have

u(x) = −
∫
Ω

Γ(x, y)Lu(y)dν(y)

−
∫
∂Ω

u(y)〈∇̃Γ(x, y), dν(y)〉 +
∫
∂Ω

Γ(x, y)〈∇̃u(y), dν(y)〉.
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2. Let u ∈ C2(Ω)
⋂
C1(Ω) and Lu = 0 on Ω. Then for all x ∈ Ω we have

u(x) = −
∫
∂Ω

u(y)〈∇̃Γ(x, y), dν(y)〉 +
∫
∂Ω

Γ(x, y)〈∇̃u(y), dν(y)〉.

3. Let u ∈ C2(Ω)
⋂
C1(Ω) and

u(x) = 0, x ∈ ∂Ω.

Then for all x ∈ Ω we have

u(x) = −
∫
Ω

Γ(x, y)Lu(y)dν(y) +
∫
∂Ω

Γ(x, y)〈∇̃u(y), dν(y)〉.

4. Let u ∈ C2(Ω)
⋂
C1(Ω) and

N∑
j=1

Xju〈Xj , dν〉 = 0 on ∂Ω.

Then for all x ∈ Ω we have

u(x) = −
∫
Ω

Γ(x, y)Lu(y)dν(y) −
∫
∂Ω

u(y)〈∇̃Γ(x, y), dν(y)〉.

12.3.2 Differential forms, perimeter and surface measures

In this section we briefly describe the relation between the forms 〈Xj , dν〉, perime-
ter measure, and the surface measure on the boundary ∂Ω. In this we follow [RS17c]
where this topic was discussed in the setting of stratified groups, and we would
like to thank Nicola Garofalo and Valentino Magnani for discussions.

Definition 12.3.6 (Perimeter measure). Let Ω ⊂M be an open set with a piecewise
smooth boundary. The perimeter measure on ∂Ω is defined by

σH(∂Ω) = sup

{
N∑
i=1

∫
∂Ω

ψi〈Xi, dν〉 : ψ = (ψ1, . . . , ψN1), |ψ| ≤ 1, ψ ∈ C1

}
.

Then we have the following simple proof of the divergence formula in Theorem
12.2.1.

Proposition 12.3.7 (Divergence formula). Let X be a vector field and let 〈X, dν〉
be the contraction of the volume form dν = dx1 ∧ · · · ∧ dxn by X. Then we have∫

Ω

Xϕdν =

∫
∂Ω

ϕ〈X, dν〉. (12.17)
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Proof of Proposition 12.3.7. Let LX denote the Lie derivative with respect to the
vector field X . The Cartan formula for LX gives

LX = d ıX + ıX d, where ıXdν = 〈X, dν〉.

Then we have∫
Ω

Xϕdν =

∫
Ω

div (ϕX)dν =

∫
Ω

LϕXdν =

∫
Ω

d(ıϕXdν) =

∫
∂Ω

ϕ〈X, dν〉,

showing (12.17). �
Proposition 12.3.8 (Relation between forms, perimeter and surface measures). Let
〈·, ·〉E denote the Euclidean scalar product. Then the perimeter measure dσH and
the surface measure dS on ∂Ω are related by∫

∂Ω

ϕ〈v,Xj〉EdS =

∫
∂Ω

ϕ
〈v,Xj〉E(∑N
j=1〈v,Xj〉2E

) 1
2

dσH =

∫
∂Ω

ϕ〈Xj , dν〉, (12.18)

for all outer unit vectors v and all ϕ ∈ C∞(∂Ω).

Moreover, if g denotes the vector space spanned by {Xj}Nj=1 and Xj are
orthonormal on g, then for any fj ∈ C∞(∂Ω) we have∫

∂Ω

N∑
j=1

fj〈Xj , dν〉 =
∫
∂Ω

〈X, vH〉g dσH , (12.19)

where X =
∑N

j=1 fjXj and vH =
∑N
j=1〈v,Xj〉EXj .

Proof of Proposition 12.3.8. For an outer unit vector v on ∂Ω let us write

|vH | :=
⎛⎝ N∑
j=1

〈v,Xj〉2E

⎞⎠1/2

and |vH |j := 〈v,Xj〉E
|vH | .

If dS is the surface measure on ∂Ω, we have

dσH = |vH |dS,

and all these relations are well defined because the perimeter measure of the set
of characteristic points of a smooth domain Ω is zero. We can now calculate∫

Ω

Xjϕdν =

∫
Ω

div(ϕXj)dν =

∫
∂Ω

ϕ ıXj (dν) =

∫
∂Ω

ϕ〈v,Xj〉EdS

=

∫
∂Ω

ϕ
〈v,Xj〉E
|vH | |vH |dS =

∫
∂Ω

ϕ|vH |j dσH ,



12.4. Local Hardy inequalities 513

giving one equality in (12.18). Combining this with (12.17) we obtain∫
∂Ω

ϕ〈Xj , dν〉 =
∫
∂Ω

ϕ|vH |j dσH , (12.20)

the other equality in (12.18). Let us now assume that Xj are orthonormal on g,
and let

X =

N∑
j=1

fjXj .

We write

vH =

N∑
j=1

〈v,Xj〉EXj

for a vector v with |vH | = 1. Then we have

〈X, vH〉g =

N∑
j=1

fj |vH |j .

Now, applying (12.20) with ϕ = fj and summing over j, we get∫
∂Ω

N∑
j=1

fj〈Xj , dν〉 =
∫
∂Ω

〈X, vH〉g dσH , X =
N∑
j=1

fjXj ,

which gives (12.19). �

12.4 Local Hardy inequalities

In this section we describe local versions of the Hardy inequality including bound-
ary terms. The weights are formulated in terms of the fundamental solution and
the proof relies on Green’s first formula from Theorem 12.3.1. As usual, we denote

∇X = (X1, . . . , XN).

Theorem 12.4.1 (Local Hardy inequality with boundary terms). Let y ∈ M be
such that (A+

y ) holds with the fundamental solution Γ = Γy in Ty. Let Ω ⊂ Ty be
a strongly admissible domain such that y �∈ ∂Ω. Let α ∈ R, α > 2 − β, β > 2 and

R ≥ e supΩΓ
1

2−β . Then for all u ∈ C1(Ω)
⋂
C(Ω) we have∫

Ω

Γ
α

2−β |∇Xu|2 dν ≥
(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β |∇XΓ

1
2−β |2|u|2 dν

+
β + α− 2

2(β − 2)

∫
∂Ω

Γ
α

2−β−1|u|2〈∇̃Γ, dν〉,
(12.21)
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as well as its further refinement∫
Ω

Γ
α

2−β |∇Xu|2 dν ≥
(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β |∇XΓ

1
2−β |2|u|2 dν

+
1

4

∫
Ω

Γ
α−2
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
1

2(β − 2)

∫
∂Ω

Γ
α

2−β−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
β + α− 2

2(β − 2)

∫
∂Ω

Γ
α

2−β−1|u|2〈∇̃Γ, dν〉.

(12.22)

Remark 12.4.2.

1. If u = 0 on the boundary ∂Ω, for example when suppu ⊂ Ω, then (12.21) can
be regarded as a usual Hardy inequality (without boundary term). Inequality
(12.22) can be regarded as a further refinement of (12.21) since it includes
further positive interior terms as well as further boundary terms.

2. Even if y ∈ ∂Ω, the estimates (12.21) and (12.22) of Theorem 12.4.1 remain
true if y �∈ ∂Ω ∩ suppu.

3. In (12.21) the boundary term can be positive, see Remark 11.4.2, Part 2, i.e.,
we sometimes have

β + α− 2

2(β − 2)

∫
∂Ω

Γ
α

2−β−1|u|2〈∇̃Γ, dν〉 ≥ 0, (12.23)

for some u.

4. In the setting of Example (E1), i.e., when M is a stratified group, and Xj ’s
are the vectors from the first stratum, then (12.21) is equivalent to (11.73) in
Theorem 11.4.1, where this inequality was expressed in terms of the L-gauge
d, taking β = Q ≥ 3, and d(x) = Γ(x, 0)

1
2−Q , where Q is the homogeneous

dimension of the group. For example, with α = 0 we get∫
Ω

|∇Xu|2 dν ≥
(
Q− 2

2

)2 ∫
Ω

|∇Xd|2
d2

|u|2 dν

+
1

2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉,
(12.24)

with the sharp constant
(
Q−2
2

)2
.

Proof of Theorem 12.4.1. In the proof and in the subsequent analysis we follow
[RS17d].
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First, let us prove (12.21). By an argument of Remark 2.1.2, Part 3, we can
assume that u is real-valued. In this case, recalling that

(∇̃u)u =
N∑
k=1

(Xku)Xku = |∇Xu|2,

inequality (12.21) reduces to∫
Ω

Γ
α

2−β (∇̃u)u dν ≥
(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β (∇̃Γ 1

2−β )Γ
1

2−β u2 dν

+
β + α− 2

2(β − 2)

∫
∂Ω

Γ
α

2−β−1u2〈∇̃Γ, dν〉,
(12.25)

which we will now prove. Setting

u = dγq (12.26)

for some real-valued functions d > 0, q, and a constant γ �= 0 to be chosen later,
we have

(∇̃u)u = (∇̃dγq)dγq

=

N∑
k=1

Xk(d
γq)Xk(d

γq)

= γ2d2γ−2
N∑
k=1

(Xkd)
2q2 + 2γd2γ−1q

N∑
k=1

XkdXkq + d2γ
N∑
k=1

(Xkq)
2

= γ2d2γ−2((∇̃d)d)q2 + 2γd2γ−1q(∇̃d)q + d2γ(∇̃q)q.
Multiplying both sides of this equality by dα and applying Green’s first formula
from Theorem 12.3.1 to the second term in the last line we observe that

2γ

∫
Ω

dα+2γ−1q(∇̃d)qdν =
γ

α+ 2γ

∫
Ω

(∇̃dα+2γ)q2dν =
γ

α+ 2γ

∫
Ω

(∇̃q2)dα+2γdν

= − γ

α+ 2γ

∫
Ω

q2Ldα+2γdν +
γ

α+ 2γ

∫
∂Ω

q2〈∇̃dα+2γ , dν〉,

where we note that later on we will choose γ so that dα+2γ = Γ, and hence
Theorem 12.3.1 is applicable. Consequently, we get∫

Ω

dα(∇̃u)udν = γ2
∫
Ω

dα+2γ−2((∇̃d)d) q2dν + γ

α+ 2γ

∫
Ω

(∇̃dα+2γ)q2dν

+

∫
Ω

dα+2γ(∇̃q)qdν

= γ2
∫
Ω

dα+2γ−2((∇̃d)d) q2dν + γ

α+ 2γ

∫
∂Ω

q2〈∇̃dα+2γ , dν〉

− γ

α+ 2γ

∫
Ω

q2Ldα+2γdν +

∫
Ω

dα+2γ(∇̃q)qdν
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≥ γ2
∫
Ω

dα+2γ−2((∇̃d)d) q2dν + γ

α+ 2γ

∫
∂Ω

q2〈∇̃dα+2γ , dν〉

− γ

α+ 2γ

∫
Ω

q2Ldα+2γdν, (12.27)

since d > 0 and (∇̃q)q = |∇Xq|2 ≥ 0. On the other hand, it can be readily checked
that for a vector field X we have

γ

α+ 2γ
X2(dα+2γ) = γX(dα+2γ−1Xd) =

γ

2− βX(dα+2γ+β−2X(d2−β))

=
γ

2− β (α+ 2γ + β − 2)dα+2γ+β−3(Xd)X(d2−β) +
γ

2− β d
α+2γ+β−2X2(d2−β)

= γ(α+ 2γ + β − 2)dα+2γ−2(Xd)2 +
γ

2− β d
α+2γ+β−2X2(d2−β).

Consequently, we get the equality

− γ

α+ 2γ
Ldα+2γ = −γ(α+ 2γ + β − 2)dα+2γ−2(∇̃d)d− γ

2− β d
α+2γ+β−2Ld2−β .

(12.28)
Since q2 = d−2γu2 in view of (12.26), substituting (12.28) into (12.27) we obtain∫

Ω

dα(∇̃u)udν ≥ (−γ2 − γ(α+ β − 2))

∫
Ω

dα−2((∇̃d)d)u2dν

− γ

2− β
∫
Ω

(Ld2−β)dα+β−2u2dx +
γ

α+ 2γ

∫
∂Ω

d−2γu2〈∇̃dα+2γ , dν〉.

Taking d = Γ
1

2−β , β > 2, concerning the second term we observe that for α > 2−β
and β > 2 we have ∫

Ω

(LΓ)Γα+β−2
2−β u2dx = 0, (12.29)

since Γ = Γy is the fundamental solution to L. Indeed, the above equality is clear
when y is outside of Ω. If y belongs to Ω we have∫

Ω

(LΓ)Γα+β−2
2−β u2dx = Γ

α+β−2
2−β (y)u2(y) = 0,

since conditions α > 2 − β and β > 2 imply that α+β−2
2−β < 0, and since 1

Γ (y) = 0

by (A+
y ). Thus, with d = Γ

1
2−β , β > 2, we get∫

Ω

Γ
α

2−β (∇̃u)u dν ≥ (−γ2 − γ(α+ β − 2))

∫
Ω

Γ
α−2
2−β (∇̃Γ 1

2−β )Γ
1

2−β u2 dν

+
γ

α+ 2γ

∫
∂Ω

Γ− 2γ
2−β u2〈∇̃Γα+2γ

2−β , dν〉.

Taking γ = 2−β−α
2 , we obtain (12.25). Finally, we note that with this γ, we have

dα+2γ = Γ, so that the use of Theorem 12.3.1 is justified.
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Let us now prove (12.22), with the proof similar to the above proof of (12.21).
Recalling that

(∇̃u)u =

N∑
k=1

(Xku)Xku = |∇Xu|2,

inequality (12.22) reduces to∫
Ω

Γ
α

2−β (∇̃u)u dν ≥
(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β (∇̃Γ 1

2−β )Γ
1

2−β u2 dν

+
1

4

∫
Ω

Γ
α−2
2−β (∇̃Γ 1

2−β )Γ
1

2−β

(
ln

R

Γ
1

2−β

)−2

u2dν

+
1

2(β − 2)

∫
∂Ω

Γ
α

2−β−1

(
ln

R

Γ
1

2−β

)−1

u2〈∇̃Γ, dν〉

+
β + α− 2

2(β − 2)

∫
∂Ω

Γ
α

2−β−1u2〈∇̃Γ, dν〉,

(12.30)

which we will now prove. Let us recall the first part of (12.27) as∫
Ω

dα(∇̃u)udν

= γ2
∫
Ω

dα+2γ−2((∇̃d)d) q2dν + γ

α+ 2γ

∫
Ω

(∇̃dα+2γ)q2dν +

∫
Ω

dα+2γ(∇̃q)qdν

= γ2
∫
Ω

dα+2γ−2((∇̃d)d) q2dν + γ

α+ 2γ

∫
∂Ω

q2〈∇̃dα+2γ , dν〉

− γ

α+ 2γ

∫
Ω

q2Ldα+2γdν +

∫
Ω

dα+2γ(∇̃q)qdν. (12.31)

Since q2 = d−2γu2, substituting (12.28) into (12.31) we obtain∫
Ω

dα(∇̃u)udν = (− γ2 − γ(α+ β − 2))

∫
Ω

dα−2((∇̃d)d)u2dν

− γ

2− β
∫
Ω

(Ld2−β)dα+β−2u2dx

+
γ

α+ 2γ

∫
∂Ω

d−2γu2〈∇̃dα+2γ , dν〉 +
∫
Ω

dα+2γ(∇̃q)qdν.

Using (12.29), with d = Γ
1

2−β , β > 2, we obtain∫
Ω

Γ
α

2−β (∇̃u)u dν = (−γ2 − γ(α+ β − 2))

∫
Ω

Γ
α−2
2−β (∇̃Γ 1

2−β )Γ
1

2−β u2 dν

+
γ

α+ 2γ

∫
∂Ω

Γ− 2γ
2−β u2〈∇̃Γα+2γ

2−β , dν〉+
∫
Ω

dα+2γ(∇̃q)qdν.
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Taking γ = 2−β−α
2 we obtain∫

Ω

Γ
α

2−β (∇̃u)u dν =

(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β (∇̃Γ 1

2−β )Γ
1

2−β u2 dν (12.32)

+
β + α− 2

2(β − 2)

∫
∂Ω

Γ
α

2−β−1u2〈∇̃Γ, dν〉+
∫
Ω

Γ(∇̃q)qdν.

Let us now take

q =

(
ln

R

Γ
1

2−β

)1/2

ϕ,

that is,

ϕ =

(
ln

R

Γ
1

2−β

)− 1
2

Γ− 2−β−α
2(2−β) u.

A straightforward computation shows that

∫
Ω

Γ(∇̃q)qdν =

N∑
j=1

∫
Ω

Γ

(
Xj

(
ln

R

Γ
1

2−β

) 1
2

ϕ+

(
ln

R

Γ
1

2−β

) 1
2

Xjϕ

)2

dν

=
1

4

∫
Ω

Γ
−β
2−β (∇̃Γ 1

2−β )Γ
1

2−β

(
ln

R

Γ
1

2−β

)−1

ϕ2dν

−
∫
Ω

Γ1− 1
2−β ϕ(∇̃Γ 1

2−β )ϕdν +

∫
Ω

Γ ln
R

Γ
1

2−β
(∇̃ϕ)ϕdν

=
1

4

∫
Ω

Γ
−β
2−β (∇̃Γ 1

2−β )Γ
1

2−β

(
ln

R

Γ
1

2−β

)−1

ϕ2dν

+
1

2(β − 2)

∫
Ω

(∇̃Γ)ϕ2dν +

∫
Ω

Γ ln
R

Γ
1

2−β
(∇̃ϕ)ϕdν

=
1

4

∫
Ω

Γ
−β
2−β (∇̃Γ 1

2−β )Γ
1

2−β

(
ln

R

Γ
1

2−β

)−1

ϕ2dν

+
1

2(β − 2)

∫
Ω

LΓϕ2dν +
1

2(β − 2)

∫
∂Ω

ϕ2〈∇̃Γ, dν〉

+

∫
Ω

Γ ln
R

Γ
1

2−β
(∇̃ϕ)ϕdν. (12.33)

Since the second integral term of the right-hand side vanishes and the last integral
term is positive from (12.33) we obtain that∫

Ω

Γ(∇̃q)qdν ≥ 1

4

∫
Ω

Γ
−β
2−β (∇̃Γ 1

2−β )Γ
1

2−β

(
ln

R

Γ
1

2−β

)−1

ϕ2dν

+
1

2(β − 2)

∫
∂Ω

ϕ2〈∇̃Γ, dν〉
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=
1

4

∫
Ω

Γ
α−2
2−β (∇̃Γ 1

2−β )Γ
1

2−β

(
ln

R

Γ
1

2−β

)−2

u2dν

+
1

2(β − 2)

∫
∂Ω

Γ
α

2−β−1

(
ln

R

Γ
1

2−β

)−1

u2〈∇̃Γ, dν〉. (12.34)

Finally, (12.32) and (12.34) imply (12.30). �

12.5 Anisotropic Hardy inequalities via

Picone identities

In this section we discuss the anisotropic versions of local Hardy inequalities for
general (real-valued) vector fields as in the previous sections. As in the most of this
chapter, such weighted anisotropic Hardy type inequalities will also include the
boundary terms, which of course disappear if one works with functions supported
in the interior of the considered domain. The analysis is based on the anisotropic
Picone type identities, analogous to those described in Section 6.10.1. As con-
sequences, we also recover some of the Hardy type inequalities of the Euclidean
space described earlier in the setting of the stratified groups. The presentation of
this section is based on [RSS18c].

Throughout this and further sections, let M be a smooth manifold of dimen-
sion n equipped with a volume form dν, and let {Xk}Nk=1, N ≤ n, be a family of
real vector fields.

We start with the following weighted anisotropic Hardy type inequalities in
admissible domains in the sense of Definition 12.1.1.

Theorem 12.5.1 (Weighted anisotropic Hardy type inequality). Let Ω ⊂ M be an
admissible domain. Let Wi(x), Hi(x) be non-negative functions for i = 1, . . . , N ,
such that for v ∈ C1(Ω)

⋂
C(Ω) satisfying v > 0 a.e. in Ω, we have

−Xi(Wi(x)|Xiv|pi−2Xiv) ≥ Hi(x)v
pi−1, i = 1, . . . , N. (12.35)

Then, for all non-negative functions u ∈ C2(Ω)
⋂
C1(Ω) and the positive function

v ∈ C1(Ω)
⋂
C(Ω) satisfying (12.35), we have

N∑
i=1

∫
Ω

Wi(x)|Xiu|pidν ≥
N∑
i=1

∫
Ω

Hi(x)|u|pidν (12.36)

+

N∑
i=1

∫
∂Ω

upi

vpi−1
〈∇̃i

(
Wi(x)|Xiv|pi−2Xiv

)
, dν〉,

where ∇̃if = XifXi and pi > 1, for i = 1, . . . , N .

Before proving this inequality let us formulate several of its consequences,
recovering and extending a number of known results, see Remark 12.5.3. In these
examples of the weighted anisotropic Hardy type inequalities onM we express the
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weights in terms of the fundamental solution Γ = Γy(x) in the assumption Ay. For
brevity, we can just denote it by Γ, if we fix some y ∈ M and the corresponding
Ty and Γy.

Corollary 12.5.2 (Anisotropic Hardy inequalities and fundamental solutions). Let
Ω ⊂M be an admissible domain. Then we have the following estimates.

(1) Let α ∈ R, 1 < pi < β + α, i = 1, . . . , N, and γ > −1, β > 2. Then for all
u ∈ C∞

0 (Ω\{0}) we have

N∑
i=1

∫
Ω

Γ
α

2−β |XiΓ
1

2−β |γ |Xiu|pidν

≥
N∑
i=1

(
β + α− pi

pi

)pi ∫
Ω

Γ
α−pi
2−β |XiΓ

1
2−β |pi+γ |u|pidν.

(12.37)

(2) Let α, γ ∈ R and α �= 0, β > 2. Then for any u ∈ C1
0 (Ω) we have

N∑
i=1

∫
Ω

Γ
γ+pi
2−β |Xiu|pidν

≥
N∑
i=1

Ci(α, γ, pi)
pi

∫
Ω

Γ
γ

2−β |XiΓ
1

2−β |pi |u|pidν,
(12.38)

where Ci(α, γ, pi) :=
(α−1)(pi−1)−γ−1

pi
, pi > 1, and i = 1, . . . , N .

(3) Let α ∈ R, β > 2, 1 < pi < β + α for i = 1, . . . , N . Then for all u ∈ C∞
0 (Ω)

we have
N∑
i=1

∫
Ω

Γ
α

2−β |Xiu|pidν

≥
N∑
i=1

Ci(β, α, pi)

∫
Ω

Γ
α

2−β
|XiΓ

1
2−β |pi(

1 + Γ
pi

(pi−1)(2−β)
)pi |u|pidν, (12.39)

where Ci(β, α, pi) :=
(
β+α−pi
pi−1

)pi−1

(β + α).

(4) Let α ∈ R, β > 2, 1 < pi < β + α for i = 1, . . . , N . Then for all u ∈ C∞
0 (Ω)

we have
N∑
i=1

∫
Ω

(
1 + Γ

pi
(pi−1)(2−β)

)α(pi−1)

|Xiu|pidν

≥
N∑
i=1

Ci(β, pi, α)

∫
Ω

|XiΓ
1

2−β |pi(
1 + Γ

pi
(pi−1)(2−β)

)(1−pi)(1−α) |u|pidν,
(12.40)

where Ci(β, pi, α) := β
(
pi(α−1)
pi−1

)pi−1

.
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(5) Let β > 2, a, b > 0 and α, γ,m ∈ R. If αγ > 0 and m ≤ β−2
2 . Then for all

u ∈ C∞
0 (Ω) we have∫

Ω

(a+ bΓ
α

2−β )γ

Γ
2m
2−β

|∇Xu|2dν

≥ C(β,m)2
∫
Ω

(a+ bΓ
α

2−β )γ

Γ
2m+2
2−β

|∇XΓ
1

2−β |2|u|2dν

+ C(β,m)αγb

∫
Ω

(a+ bΓ
α

2−β )γ−1

Γ
2m−α+2

2−β
|∇XΓ

1
2−β |2|u|2dν, (12.41)

where C(β,m) := β−2m−2
2 and ∇X = (X1, . . . , XN ).

Remark 12.5.3.

1. In Theorem 12.5.1, if u vanishes on the boundary ∂Ω and if pi = p, then we
have the two-weighted Hardy type inequalities for general vector fields of the
form ∫

Ω

W (x)|∇Xu|pdν ≥
∫
Ω

H(x)|u|pdν, (12.42)

where ∇X := (X1, . . . , XN).

2. Inequality (12.37) is an analogue of the result of Wang and Niu [WN08], but
now for general vector fields. Also, by taking γ = 0 and pi = 2 we have the
following inequality∫

Ω

Γ
α

2−β |∇Xu|2dν ≥
N∑
i=1

(
β + α− 2

2

)2 ∫
Ω

Γ
α−2
2−β |∇XΓ

1
2−β |2|u|2dν, (12.43)

for all u ∈ C∞
0 (Ω) and where ∇X = (X1, . . . , XN ), which gives (12.21)

without the boundary term.

3. Inequality (12.38) recovers the result of D’Ambrosio in [D’A05, Theorem 2.7].

4. A Carnot group version of inequality (12.39) was established by Goldstein,
Kombe and Yener in [GKY17].

5. The Carnot and Euclidean versions of inequality (12.40) were established in
[GKY17] and [Skr13], respectively.

6. The Carnot and Euclidean versions of inequality (12.41) were established in
[GKY17] and [GM11], respectively.

As in the setting of stratified groups let us first present the anisotropic Picone
type identity, now for general vector fields.

Lemma 12.5.4 (Anisotropic Picone identity for general vector fields). Let Ω ⊂ M
be an open set. Let u, v be differentiable a.e. in Ω, v > 0 a.e. in Ω and u ≥ 0.
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Define

R(u, v) :=

N∑
i=1

|Xiu|pi −
N∑
i=1

Xi

(
upi

vpi−1

)
|Xiv|pi−2Xiv, (12.44)

L(u, v) :=

N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2

XivXiu

(12.45)

+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi ,

where pi > 1, i = 1, . . . , N . Then

L(u, v) = R(u, v) ≥ 0. (12.46)

In addition, we have L(u, v) = 0 a.e. in Ω if and only if u = cv a.e. in Ω with a
positive constant c > 0.

Proof of Lemma 12.5.4. A direct calculation yields

R(u, v) =
N∑
i=1

|Xiu|pi −
N∑
i=1

Xi

(
upi

vpi−1

)
|Xiv|pi−2Xiv

=

N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2XivXiu+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi

= L(u, v),

which gives the equality in (12.46). Now we restate L(u, v) in a different form,
with the aim to show that L(u, v) ≥ 0. Thus, we write

L(u, v) =

N∑
i=1

|Xiu|pi −
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−1|Xiu|+

N∑
i=1

(pi − 1)
upi

vpi
|Xiv|pi

+

N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2 (|Xiv||Xiu| −XivXiu)

= S1 + S2,

where

S1 :=

N∑
i=1

pi

[
1

pi
|Xiu|pi + pi − 1

pi

((u
v
|Xiv|

)pi−1
) pi
pi−1

]

−
N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−1|Xiu|,
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and

S2 :=

N∑
i=1

pi
upi−1

vpi−1
|Xiv|pi−2 (|Xiv||Xiu| −XivXiu) .

Since
|Xiv||Xiu| ≥ XivXiu,

we have S2 ≥ 0. To check that S1 ≥ 0 we will use Young’s inequality for a ≥ 0
and b ≥ 0 stating that

ab ≤ api

pi
+
bqi

qi
, (12.47)

where pi > 1, qi > 1, and 1
pi

+ 1
qi

= 1 for i = 1, . . . , N . The equality in (12.47)

holds if and only if api = bqi , i.e., if a = b
1

pi−1 . By setting

a := |Xiu| and b :=
(u
v
|Xiv|

)pi−1

in (12.47), we get

pi|Xiu|
(u
v
|Xiv|

)pi−1

≤ pi
[
1

pi
|Xiu|pi + pi − 1

pi

((u
v
|Xiv|

)pi−1
) pi
pi−1

]
. (12.48)

This implies S1 ≥ 0 which proves that L(u, v) = S1 + S2 ≥ 0.

It is straightforward to see that u = cv implies R(u, v) = 0.

Now let us show that L(u, v) = 0 implies u = cv. Due to u(x) ≥ 0 and
L(u, v)(x0) = 0, x0 ∈ Ω, we consider the two cases u(x0) > 0 and u(x0) = 0. For
the case u(x0) > 0 we conclude from L(u, v)(x0) = 0 that S1 = 0 and S2 = 0.
Then S1 = 0 yields

|Xiu| = u

v
|Xiv|, i = 1, . . . , N, (12.49)

and S2 = 0 implies

|Xiv||Xiu| −XivXiu = 0, i = 1, . . . , N. (12.50)

The combination of (12.49) and (12.50) gives

Xiu

Xiv
=
u

v
= c, with c �= 0, i = 1, . . . , N. (12.51)

Let us denote
Ω∗ := {x ∈ Ω : u(x) = 0}.

If Ω∗ �= Ω, then suppose that x0 ∈ ∂Ω∗. So there exists a sequence xk /∈ Ω∗

such that xk → x0. In particular, u(xk) �= 0, and hence by the first case we have
u(xk) = cv(xk). Passing to the limit we get u(x0) = cv(x0). Since u(x0) = 0 and
v(x0) �= 0, we get that c = 0. But then by the first case again, since u = cv and
u �= 0 in Ω\Ω∗, it is impossible that c = 0. This contradiction implies that Ω∗ = Ω.
It completes the proof of Lemma 12.5.4. �
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The established anisotropic Picone identity can be used to prove Theorem
12.5.1.

Proof of Theorem 12.5.1. In the following calculation, we will use the following
properties: anisotropic Picone type identity (12.46), then we apply the divergence
theorem and the hypothesis (12.35), respectively, finally yielding (12.36). Thus,
we obtain

0 ≤
∫
Ω

N∑
i=1

Wi(x)L(u, v)dν =

∫
Ω

N∑
i=1

Wi(x)R(u, v)dν

=

N∑
i=1

∫
Ω

Wi(x)|Xiu|pidν −
N∑
i=1

∫
Ω

Xi

(
upi

vpi−1

)
Wi(x)|Xiv|pi−2Xivdν

=

N∑
i=1

∫
Ω

Wi(x)|Xiu|pidν +
N∑
i=1

∫
Ω

upi

vpi−1
Xi

(
Wi(x)|Xiv|pi−2Xiv

)
dν

−
N∑
i=1

∫
∂Ω

upi

vpi−1
〈∇̃i

(
Wi(x)|Xiv|pi−2Xiv

)
, dν〉

≤
N∑
i=1

∫
Ω

Wi(x)|Xiu|pidν −
N∑
i=1

∫
Ω

Hi(x)u
pidν

−
N∑
i=1

∫
∂Ω

upi

vpi−1
〈∇̃i

(
Wi(x)|Xiv|pi−2Xiv

)
, dν〉,

where ∇̃if = XifXi. The proof of Theorem 12.5.1 is complete. �

Finally, we prove Corollary 12.5.2.

Proof of Corollary 12.5.2. Part (1). Consider the functions Wi and v such that

Wi = dα|Xid|γ and v = Γ
ψ

2−β = dψ, (12.52)

where, to abbreviate the calculation, we denote

d := Γ
1

2−β and ψ := −β + α− pi
pi

.

Now we plug (12.52) in (12.35) to determine the candidate for the function Hi.
For this, we first prepare several calculations. We can readily find

Xiv = ψdψ−1Xid,

|Xiv|pi−2 = |ψ|pi−2d(ψ−1)(pi−2)|Xid|pi−2,

Wi|Xiv|pi−2Xiv = |ψ|pi−2ψdα+(ψ−1)(pi−1)|Xid|γ+pi−2Xid.
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Also, we get

N∑
i=1

X2
i d
α =

N∑
i=1

Xi(XiΓ
α

2−β ) =

N∑
i=1

Xi

(
α

2− βΓ
α+β−2
2−β XiΓ

)

=
α(α + β − 2)

(2 − β)2 Γ
α+2β−4

2−β
N∑
i=1

|XiΓ|2 + α

2− βΓ
α+β−2
2−β

N∑
i=1

X2
i Γ

=
α(α + β − 2)

(2 − β)2 dα+2β−4
N∑
i=1

|Xid
2−β |2

= α(α + β − 2)dα−2
N∑
i=1

|Xid|2. (12.53)

We observe that
∑N

i=1X
2
i Γ = 0 outside y, since Γ = Γy is the fundamental solution

for L. Also, we have

Xi|Xid|γ = Xi((Xid)
2)γ/2 = γ|Xid|γ−2XidX

2
i d

= γ(β − 1)d−1|Xid|γXid.
(12.54)

In the last line, we have used (12.53) with α = 1. Using (12.53) and (12.54), we
compute

Xi(Wi|Xiv|pi−2Xiv)

= |ψ|pi−2ψXi

(
dα+(ψ−1)(pi−1)|Xid|γ+pi−2Xid

)
= |ψ|pi−2ψ

(
(α+ (ψ − 1)(pi − 1))dα+(ψ−1)(pi−1)−1|Xid|γ+pi

)
+ |ψ|pi−2ψ

(
(γ + pi − 2)(β − 1)dα+(ψ−1)(pi−1)−1|Xid|γ+pi

)
+ |ψ|pi−2ψ

(
(β − 1)dα+(ψ−1)(pi−1)−1|Xid|γ+pi

)
= |ψ|pi−2ψ (−ψ + (γ + pi − 2)(β − 1)) dα−pi+ψ(pi−1)|Xid|γ+pi
= −|ψ|pidα−pi |Xid|γ+pivpi−1

+ |ψ|pi−2ψ(γ + pi − 2)(β − 1)dα−pi |Xid|γ+pivpi−1.

If we put back the value of ψ, we get

−Xi(Wi|Xiv|pi−2Xiv)

=

∣∣∣∣β + α− pi
pi

∣∣∣∣pi dα−pi |Xid|γ+pivpi−1

+

∣∣∣∣β + α− pi
pi

∣∣∣∣pi−2(
β + α− pi

pi

)
(γ + pi − 2)(β − 1)dα−pi |Xid|γ+pivpi−1
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≥
∣∣∣∣β + α− pi

pi

∣∣∣∣pi dα−pi |Xid|γ+pivpi−1 ≥ Hi(x)v
pi−1,

the last inequality being the desired one. So having satisfied the hypothesis, we
plug the values of these functions Wi and

Hi =

∣∣∣∣β + α− pi
pi

∣∣∣∣pi Γα−pi
2−β |XiΓ

1
2−β |γ+pi ,

in (12.36), which completes the proof of Part (1).

Part (2) can be proved by the same approach as the previous case by con-
sidering the functions

Wi = Γ
γ+pi
2−β and v = Γ

− (α−1)(pi−1)−γ−1

(2−β)pi .

Part (3) can be proved by the same approach as the previous cases by con-
sidering the functions

Wi = Γ
α

2−β and v =
(
1 + Γ

pi
(pi−1)(2−β)

)−β+α−pi
pi

.

Part (4) can be proved by the same approach as the previous case by con-
sidering the functions

Wi =
(
1 + Γ

pi
(pi−1)(2−β)

)α(pi−1)

and v =
(
1 + Γ

pi
(pi−1)(2−β)

)1−α
.

Part (5) can be proved by the same approach for pi = 2, i = 1, . . . , N, as the
previous cases by considering the functions

W =
(a+ bΓ

α
2−β )γ

Γ
2m
2−β

and v = Γ− β−2m−2
2(2−β) .

This completes the proof of Corollary 12.5.2. �

12.6 Local uncertainty principles

As usual, Hardy inequalities imply uncertainty principles, and we now formulate
such consequences of Theorem 12.4.1 and Theorem 12.5.1.

Corollary 12.6.1 (Local uncertainty principles for sums of squares). Let y ∈M be
such that (A+

y ) holds with the fundamental solution Γ = Γy in Ty. Let Ω ⊂ Ty be

an admissible domain and let β > 2. Then for all u ∈ C1(Ω)
⋂
C(Ω) we have∫

Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
∫
Ω

|∇Xu|2dν

≥
(
β − 2

2

)2(∫
Ω

|∇XΓ
1

2−β |2|u|2dν
)2

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν, (12.55)
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and also∫
Ω

Γ
2

2−β

|∇XΓ
1

2−β |2
|u|2dν

∫
Ω

|∇Xu|2dν (12.56)

≥
(
β − 2

2

)2 (∫
Ω

|u|2dν
)2

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β

|∇XΓ
1

2−β |2
|u|2dν.

Remark 12.6.2.

1. As in Remark 12.4.2, Part 3, the last (boundary) terms in (12.55) and (12.56)
can also be positive, thus providing refined uncertainty principles with respect
to the boundary conditions.

2. One can readily check that (12.55) extends the classical Hardy inequality.
Indeed, in the case of M = Rn and Xk = ∂

∂xk
, k = 1, . . . , n, taking α = 0

and β = n ≥ 3, the fundamental solution for the Laplacian is given by
Γ(x) = Cn|x|2−n for some constant Cn and |x|E being the Euclidean norm,
so that (12.55) reduces to the classical Hardy inequality∫

Rn

|∇u(x)|2dx ≥
(
n− 2

2

)2 ∫
Rn

|u(x)|2
|x|2E

dx, n ≥ 3, (12.57)

where ∇ is the standard gradient in Rn, u ∈ C∞
0 (Rn\{0}), and the con-

stant
(
n−2
2

)2
is known to be sharp. The constant Cn does not enter (12.57)

due to the scaling invariance of the inequality (12.55) with respect to the
multiplication of Γ by positive constants.

3. Further to the Euclidean example (12.57), with Γ
1

2−β (x) = C|x|E we have

|∇Γ 1
2−β | = C, and hence both (12.55) and (12.56) reduce to the classical

uncertainty principle for Ω ⊂ Rn if u = 0 on ∂Ω (for example, for u ∈
C∞

0 (Ω)):∫
Ω

|x|2E |u(x)|2dx
∫
Ω

|∇u(x)|2dx ≥
(
n− 2

2

)2(∫
Ω

|u(x)|2dx
)2

, n ≥ 3.

4. In the example of stratified Lie groups with β = Q ≥ 3 being the homo-

geneous dimension of the group, and Γ
1

2−β (x) = d(x) being the L-gauge,
inequality (12.55) reduces to∫

Ω

d2|∇Xd|2|u|2dν
∫
Ω

|∇Xu|2dν

≥
(
Q− 2

2

)2(∫
Ω

|∇Xd|2|u|2dν
)2

+
1

2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉
∫
Ω

d2|∇Xd|2|u|2dν,

which gives inequality (12.24).
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Proof of Corollary 12.6.1. Taking α = 0 in inequality (12.21) we get∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
∫
Ω

|∇Xu|2dν

≥
(
β − 2

2

)2 ∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
∫
Ω

|∇XΓ
1

2−β |2
Γ

2
2−β

|u|2 dν

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

≥
(
β − 2

2

)2(∫
Ω

|∇XΓ
1

2−β |2|u|2dν
)2

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν,

where we have used the Hölder inequality in the last line. This shows (12.55). The
proof of (12.56) is similar. �

Inequality (12.22) also implies the following refinement of Corollary 12.6.1.

Corollary 12.6.3 (Refined local uncertainty principles for sums of squares). Let
y ∈ M be such that (A+

y ) holds with the fundamental solution Γ = Γy in Ty.
Let Ω ⊂ Ty, y �∈ ∂Ω, be an admissible domain and let β > 2. Then for all u ∈
C1(Ω)

⋂
C(Ω) we have∫

Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
∫
Ω

|∇Xu|2dν

≥
(
β − 2

2

)2(∫
Ω

|∇XΓ
1

2−β |2|u|2dν
)2

+
1

4

∫
Ω

|∇XΓ
1

2−β |2
Γ

2
2−β

(
ln

R

Γ
1

2−β

)−2

|u|2dν
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

+
1

2(β − 2)

∫
∂Ω

Γ−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν, (12.58)

and also∫
Ω

Γ
2

2−β

|∇XΓ
1

2−β |2
|u|2dν

∫
Ω

|∇Xu|2dν

≥
(
β − 2

2

)2(∫
Ω

|u|2dν
)2

+
1

4

∫
Ω

|∇XΓ
1

2−β |2
Γ

2
2−β

(
ln

R

Γ
1

2−β

)−2

|u|2dν
∫
Ω

Γ
2

2−β

|∇XΓ
1

2−β |2
|u|2dν
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+
1

2(β − 2)

∫
∂Ω

Γ−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β

|∇XΓ
1

2−β |2
|u|2dν

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β

|∇XΓ
1

2−β |2
|u|2dν. (12.59)

Proof of Corollary 12.6.3. Taking α = 0 in inequality (12.22) we get∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
∫
Ω

|∇Xu|2dν

≥
(
β − 2

2

)2 ∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
∫
Ω

|∇XΓ
1

2−β |2
Γ

2
2−β

|u|2 dν

+
1

4

∫
Ω

|∇XΓ
1

2−β |2
Γ

2
2−β

(
ln

R

Γ
1

2−β

)−2

|u|2dν
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

+
1

2(β − 2)

∫
∂Ω

Γ−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

≥
(
β − 2

2

)2(∫
Ω

|∇XΓ
1

2−β |2|u|2dν
)2

+
1

4

∫
Ω

|∇XΓ
1

2−β |2
Γ

2
2−β

(
ln

R

Γ
1

2−β

)−2

|u|2dν
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

+
1

2(β − 2)

∫
∂Ω

Γ−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν

+
1

2

∫
∂Ω

Γ−1|u|2〈∇̃Γ, dν〉
∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν,

where we have used the Hölder inequality. This shows (12.58). The proof of (12.59)
is similar. �
Remark 12.6.4.

1. In the Euclidean case M = R
n with β = n ≥ 3, we have Γ

1
2−β (x) = C|x|E is

a constant multiple of the Euclidean distance, so that |∇Γ 1
2−β | = C. Conse-

quently both (12.58) and (12.59) reduce to the improved uncertainty principle
for Ω ⊂ Rn if u = 0 on ∂Ω (for example, usually one takes u ∈ C∞

0 (Ω)):∫
Ω

|x|2|u(x)|2dx
∫
Ω

|∇u(x)|2dx

≥
(
n− 2

2

)2(∫
Ω

|u(x)|2dx
)2

+
1

4

∫
Ω

1

|x|2
(
ln
R

|x|
)−2

|u(x)|2dν
∫
Ω

|x|2|u(x)|2dν, n ≥ 3.
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2. In the Example of stratified Lie groups with β = Q ≥ 3 being the homo-

geneous dimension of the group G, and Γ
1

2−β (x) = d(x) being the L-gauge,
inequality (12.58) reduces to∫

Ω

d2|∇Xd|2|u|2dν
∫
Ω

|∇Xu|2dν

≥
(
Q− 2

2

)2(∫
Ω

|∇Xd|2|u|2dν
)2

+
1

4

∫
Ω

|∇Xd|2
d2

(
ln
R

d

)−2

|u|2dν
∫
Ω

d2|∇Xd|2|u|2dν

+
1

2(Q− 2)

∫
∂Ω

dQ−2

(
ln
R

d

)−1

|u|2〈∇̃d2−Q, dν〉
∫
Ω

d2|∇Xd|2|u|2dν

+
1

2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉
∫
Ω

d2|∇Xd|2|u|2dν.

Again, if u ∈ C∞
0 (G), the last terms disappear, and one obtains the improved

uncertainty principle on stratified Lie groups compared to the statement of
Corollary 11.4.3.

Theorem 12.5.1 also implies the following uncertainty principles:

Corollary 12.6.5 (Further uncertainty inequalities). Let Ω ⊂ M be an admissible
domain. Let β > 2. Then we have the following uncertainty inequalities:

(1) For all u ∈ C∞
0 (Ω) we have

β2

4

(∫
Ω

|u|2dν
)2

≤
(∫

Ω

|∇XΓ
1

2−β |−2|∇Xu|2dν
)(∫

Ω

Γ
2

2−β |u|2dν
)
.

(12.60)

(2) For all u ∈ C∞
0 (Ω) we have(∫

Ω

|∇Xu|2dν
)(∫

Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
)
≥ β2

4

(∫
Ω

|∇XΓ
1

2−β |2|u|2dν
)2

.

(12.61)

(3) For all u ∈ C∞
0 (Ω) we have(∫

Ω

|∇Xu|2dν
)(∫

Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν
)

≥ (β − 1)2

4

(∫
Ω

Γ− 1
2−β |∇XΓ

1
2−β |2|u|2dν

)2

.

(12.62)

The Carnot group versions of these uncertainty principles in were established
in [Kom10] and [GKY17], and in our proof we follow [RSS18c].
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Proof of Corollary 12.6.5. Part (1). In Theorem 12.5.1, by letting

W (x) = |∇XΓ
1

2−β |−2 and v = e−αΓ
2

2−β

with α ∈ R, we obtain the inequality

−4α2

∫
Ω

Γ
2

2−β |u|2dν + 2αβ

∫
Ω

|u|2dν −
∫
Ω

|∇XΓ
1

2−β |−2|∇Xu|2dν ≤ 0.

This inequality is of the form aα2 + bα+ c ≤ 0, if we denote by

a := −4
∫
Ω

Γ
2

2−β |u|2dν, b := 2β

∫
Ω

|u|2dν,
and

c := −
∫
Ω

|∇XΓ
1

2−β |−2|∇Xu|2dν.

Thus, we must have b2 − 4ac ≤ 0 which proves (12.60).

Part (2). Setting

W = 1 and v = e−αΓ
2

2−β

with α ∈ R, we obtain∫
Ω

|∇Xu|2dν ≥ 2αβ

∫
Ω

|∇XΓ
1

2−β |2|u|2dν − 4α2

∫
Ω

Γ
2

2−β |∇XΓ
1

2−β |2|u|2dν.

Using the same technique as in Part (1) we prove (12.61).

We can prove Part (3) by the same approach, considering the pair

W = 1 and v = e−αΓ
1

2−β
.

The proof is complete. �

12.7 Local Rellich inequalities

In this section we present local refined versions of Rellich inequalities with ad-
ditional boundary terms on the right-hand side, in the way analogous to Hardy
inequalities and uncertainty principles in the previous sections. As before, we use
the notation

∇X = (X1, . . . , XN).

Theorem 12.7.1 (Local Rellich inequalities for sums of squares). Let y ∈ M be
such that (A+

y ) holds with the fundamental solution Γ = Γy in Ty. Let Ω ⊂ Ty be
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a strongly admissible domain such that y �∈ ∂Ω. Let α ∈ R, β > α > 4− β, β > 2

and R ≥ e supΩΓ
1

2−β . Then for all u ∈ C2(Ω)
⋂
C1(Ω) we have

∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν ≥ (β + α− 4)2(β − α)2

16

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
(β + α− 4)2(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉

+
(β + α− 4)(β − α)

4
C(u), (12.63)

as well as its further refinement∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν

≥ (β + α− 4)2(β − α)2
16

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
(β + α− 4)(β − α)

8

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
(β + α− 4)(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
(β + α− 4)2(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉

+
(β + α− 4)(β − α)

4
C(u), (12.64)

where

C(u) := α− 2

2− β
∫
∂Ω

u2Γ
α−2
2−β−1〈∇̃Γ, dν〉 − 2

∫
∂Ω

Γ
α−2
2−β u〈∇̃u, dν〉.

Proof of Theorem 12.7.1. Let us prove (12.63) first. A direct calculation shows
that

LΓα−2
2−β =

N∑
k=1

X2
kΓ

α−2
2−β = (α− 2)

N∑
k=1

Xk

(
Γ
α−3
2−βXkΓ

1
2−β

)

= (α− 2)(α− 3)Γ
α−4
2−β

N∑
k=1

∣∣∣XkΓ
1

2−β
∣∣∣2 + (α− 2)Γ

α−3
2−β

N∑
k=1

Xk

(
XkΓ

1
2−β

)
= (α− 2)(α− 3)Γ

α−4
2−β

N∑
k=1

∣∣∣XkΓ
1

2−β
∣∣∣2 + α− 2

2− β Γ
α−3
2−β

N∑
k=1

Xk

(
Γ
β−1
2−βXkΓ

)
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= (α− 2)(α− 3)Γ
α−4
2−β

N∑
k=1

∣∣∣XkΓ
1

2−β
∣∣∣2

+
(α− 2)(β − 1)

2− β Γ
α−3
2−β Γ−1

N∑
k=1

(XkΓ
1

2−β )(XkΓ)

+
α− 2

2− βΓ
β+α−4
2−β LΓ = (α− 2)(α− 3)Γ

α−4
2−β

N∑
k=1

∣∣∣XkΓ
1

2−β
∣∣∣2

+ (α− 2)(β − 1)Γ
α−4
2−β

N∑
k=1

(XkΓ
1

2−β )(XkΓ
1

2−β ) +
α− 2

2− β Γ
β+α−4
2−β LΓ

= (β + α− 4)(α− 2)Γ
α−4
2−β |∇XΓ

1
2−β |2 + α− 2

2− βΓ
β+α−4
2−β LΓ,

that is, we have

LΓα−2
2−β = (β + α− 4)(α− 2)Γ

α−4
2−β |∇XΓ

1
2−β |2 + α− 2

2− βΓ
β+α−4
2−β LΓ. (12.65)

As in the proof of Theorem 12.4.1 we can assume that u is real-valued.
Multiplying both sides of (12.65) by u2 and integrating over Ω, since Γ is the
fundamental solution of L and β + α− 4 > 0, we obtain∫

Ω

u2LΓα−2
2−β dν = (β + α− 4)(α− 2)

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2u2 dν. (12.66)

On the other hand, by using Green’s second formula (12.15) we have∫
Ω

u2LΓα−2
2−β dν =

∫
Ω

Γ
α−2
2−β Lu2 dν +

∫
∂Ω

u2〈∇̃Γα−2
2−β , dν〉 −

∫
∂Ω

Γ
α−2
2−β 〈∇̃u2, dν〉

=

∫
Ω

Γ
α−2
2−β (2uLu+ 2|∇Xu|2) dν + C(u), (12.67)

where

C(u) := α− 2

2− β
∫
∂Ω

u2Γ
α−2
2−β−1〈∇̃Γ, dν〉 −

∫
∂Ω

2Γ
α−2
2−β u〈∇̃u, dν〉.

Combining (12.66) and (12.67) we obtain

−2
∫
Ω

Γ
α−2
2−β uLudν + (β + α− 4)(α− 2)

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2 u2dν

= 2

∫
Ω

Γ
α−2
2−β |∇Xu|2dν + C(u).

(12.68)
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By using (12.21) we have

− 2

∫
Ω

Γ
α−2
2−β uLudν + (β + α− 4)(α− 2)

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2 |u|2dν

≥ 2

(
β + α− 4

2

)2 ∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
β + α− 4

β − 2

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉+ C(u).

It follows that

−
∫
Ω

Γ
α−2
2−β uLudν ≥

(
β + α− 4

2

)(
β − α
2

)∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
β + α− 4

2(β − 2)

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉+ 1

2
C(u).

(12.69)

On the other hand, for any ε > 0, Hölder’s and Young’s inequalities give

−
∫
Ω

Γ
α−2
2−β uLudν ≤

(∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2dν

)1/2
(∫

Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν

)1/2

≤ ε
∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2dν + 1

4ε

∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν.

(12.70)

Inequalities (12.70) and (12.69) imply that∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν ≥ (−4ε2 + (β + α− 4)(β − α)ε) ∫

Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
2(β + α− 4)ε

β − 2

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉+ 2εC(u).

Taking ε = (β+α−4)(β−α)
8 , we obtain∫

Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν

≥ (β + α− 4)2(β − α)2
16

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
(β + α− 4)2(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉+ (β + α− 4)(β − α)

4
C(u),

which proves (12.63).
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Let us now prove (12.64). From (12.68), if we use (12.22), we get

− 2

∫
Ω

Γ
α−2
2−β uLudν + (β + α− 4)(α− 2)

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2 |u|2dν

≥ 2

(
β + α− 4

2

)2 ∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
1

2

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
1

(β − 2)

∫
∂Ω

Γ
α−2
2−β−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
β + α− 4

β − 2

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉+ C(u).

It follows that

−
∫
Ω

Γ
α−2
2−β uLudν ≥

(
β + α− 4

2

)(
β − α
2

)∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
1

4

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
1

2(β − 2)

∫
∂Ω

Γ
α−2
2−β−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
β + α− 4

2(β − 2)

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉+ 1

2
C(u). (12.71)

Inequalities (12.70) and (12.71) imply that∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν ≥ (−4ε2 + (β + α− 4)(β − α)ε) ∫

Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+ ε

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
2ε

(β − 2)

∫
∂Ω

Γ
α−2
2−β−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
2(β + α− 4)ε

β − 2

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉+ 2εC(u).

Taking ε = (β+α−4)(β−α)
8 , we obtain∫

Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν

≥ (β + α− 4)2(β − α)2
16

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν
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+
(β + α− 4)(β − α)

8

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
(β + α− 4)(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
(β + α− 4)2(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉+ (β + α− 4)(β − α)

4
C(u).

This completes the proof of Theorem 12.7.1. �

By a modification and refinement of the proof of Theorem 12.7.1 we can
obtain another alternative of an improved Rellich inequality with boundary terms.

Theorem 12.7.2 (Refined local Rellich inequalities for sums of squares). Let y ∈M
be such that (A+

y ) holds with the fundamental solution Γ = Γy in Ty. Let Ω ⊂ Ty

be a strongly admissible domain such that y �∈ ∂Ω. Let α ∈ R, β > α > 8−β
3 , β > 2

and R ≥ e supΩΓ
1

2−β . Then for all u ∈ C2(Ω)
⋂
C1(Ω) we have∫

Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν ≥ (β − α)2

4

∫
Ω

Γ
α−2
2−β |∇Xu|2dν

+
(β + 3α− 8)(β + α− 4)(β − α)

8(β − 2)

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉

+
(β + α− 4)(β − α)

4
C(u), (12.72)

and its further refinement∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν

≥ (β − α)2
4

∫
Ω

Γ
α−2
2−β |∇Xu|2dν

+
(β + 3α− 8)(β − α)

16

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
(β + 3α− 8)(β − α)

8(β − 2)

∫
∂Ω

Γ
α−2
2−β−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
(β + 3α− 8)(β + α− 4)(β − α)

8(β − 2)

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉

+
(β + α− 4)(β − α)

4
C(u), (12.73)

where

C(u) := α− 2

2− β
∫
∂Ω

u2Γ
α−2
2−β−1〈∇̃Γ, dν〉 − 2

∫
∂Ω

Γ
α−2
2−β u〈∇̃u, dν〉.
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Proof of Theorem 12.7.2. Let us first prove (12.72). Let us rewrite (12.68) in the
form

1

2
C(u) +

∫
Ω

Γ
α−2
2−β |∇Xu|2dν (12.74)

= −
∫
Ω

Γ
α−2
2−β uLudν + (β + α− 4)(α− 2)

2

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2 |u|2dν.

Also recalling (12.70) we have

−
∫
Ω

Γ
α−2
2−β uLudν ≤ ε

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2dν + 1

4ε

∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν.

(12.75)
Inequalities (12.75) and (12.74) imply that

1

2
C(u) +

∫
Ω

Γ
α−2
2−β |∇Xu|2dν

≤
(
(β + α− 4)(α− 2)

2
+ ε

)∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν

+
1

4ε

∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν. (12.76)

The already obtained inequality (12.63) can be rewritten as

16

(β + α− 4)2(β − α)2
∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν − 4

(β + α− 4)(β − α)C(u)

− 4

(β − α)(β − 2)

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉 ≥

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν.

Combining this with (12.76) we obtain

1

2
C(u) +

(
(β + α− 4)(α− 2)

2
+ ε

)
4

(β + α− 4)(β − α)C(u)

+

(
(β + α− 4)(α− 2)

2
+ ε

)
4

(β − α)(β − 2)

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉

+

∫
Ω

Γ
α−2
2−β |∇Xu|2dν

≤
(

16ε

(β + α− 4)2(β − α)2 +
8(α− 2)

(β + α− 4)(β − α)2 +
1

4ε

)
×
∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν.
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Taking ε = (β+α−4)(β−α)
8 this implies

(β+α−4)(β−α)
4

C(u) + (β+3α−8)(β+α−4)(β−α)
8(β − 2)

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉

+
(β − α)2

4

∫
Ω

Γ
α−2
2−β |∇Xu|2dν ≤

∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν,

which shows (12.72).

Let us now prove (12.73). Inequality (12.64) can be rewritten as

16

(β + α− 4)2(β − α)2
∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν − 16

(β + α− 4)2(β − α)2D

≥
∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2 dν,

where

D :=
(β + α− 4)(β − α)

8

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2

(
ln

R

Γ
1

2−β

)−2

|u|2dν

+
(β + α− 4)(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β−1

(
ln

R

Γ
1

2−β

)−1

|u|2〈∇̃Γ, dν〉

+
(β + α− 4)2(β − α)

4(β − 2)

∫
∂Ω

Γ
α−2
2−β−1|u|2〈∇̃Γ, dν〉+ (β + α− 4)(β − α)

4
C(u).

Combining it with (12.76) we obtain

1

2
C(u) +

(
(β + α− 4)(α− 2)

2
+ ε

)
16

(β + α− 4)2(β − α)2D +

∫
Ω

Γ
α−2
2−β |∇Xu|2dν

≤
(

16ε

(β + α− 4)2(β − α)2 +
8(α− 2)

(β + α− 4)(β − α)2 +
1

4ε

)∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν.

Taking ε = (β+α−4)(β−α)
8 we obtain

(β − α)2
8

C(u) + β + 3α− 8

2(β + α− 4)
D +

(β − α)2
4

∫
Ω

Γ
α−2
2−β |∇Xu|2dν

≤
∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν,

completing the proof. �
Remark 12.7.3. Let us formulate several consequences of the described estimates
for the setting of functions u ∈ C∞

0 (Ω), so that we have C(u) = 0. Thus if M =
G is a stratified group of homogeneous dimension Q ≥ 3, we take β = Q, so
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that Γ
1

2−β (x) = d(x) is the L-gauge on the group G. Then the above estimates
give refinements compared to known estimates, as, e.g., in Kombe [Kom10], with
respect to the inclusion of boundary terms. Thus, for all u ∈ C∞

0 (Ω), we have that

1. Estimate (12.63) is reduced to∫
Ω

dα

|∇Xd|2 |Lu|
2dν ≥ (Q+ α− 4)2(Q − α)2

16

∫
Ω

dα−4|∇Xd|2|u|2 dν,

for Q > α > 4−Q.

2. Estimate (12.64) is reduced to∫
Ω

dα

|∇Xd|2 |Lu|
2dν ≥ (Q+ α− 4)2(Q− α)2

16

∫
Ω

dα−4|∇Xd|2|u|2 dν

+
(Q+α−4)(Q−α)

8

∫
Ω

dα−4|∇Xd|2
(
ln
R

d

)−2

|u|2dν,

for Q > α > 4−Q.

3. Estimate (12.72) is reduced to∫
Ω

dα

|∇Xd|2 |Lu|
2dν ≥ (Q− α)2

4

∫
Ω

dα−2|∇Xu|2dν,

for Q > α > 8−Q
3 .

4. Estimate (12.73) is reduced to∫
Ω

dα

|∇Xd|2 |Lu|
2dν ≥ (Q− α)2

4

∫
Ω

dα−2|∇Xu|2dν

+
(Q+3α−8)(Q−α)

16

∫
Ω

dα−4|∇Xd|2
(
ln
R

d

)−2

|u|2dν,

for Q > α > 8−Q
3 .

For unweighted versions (with α = 0) inequalities (12.63)–(12.64) work under the
condition Q ≥ 5 which is usually appearing in Rellich inequalities, while (12.72)–
(12.73) work for homogeneous dimensions Q ≥ 9.
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12.8 Rellich inequalities via Picone identities

In this section we discuss weighted Rellich inequalities in the spirit of Hardy in-
equalities from Section 12.5, relying on an appropriate version of Picone identities.

Theorem 12.8.1 (Weighted anisotropic Rellich type inequality). Let Ω ⊂M be an
admissible domain. Let Wi(x) ∈ C2(Ω) and Hi(x) ∈ L1

loc(Ω) be the non-negative
weight functions. Let v > 0, v ∈ C2(Ω)

⋂
C1(Ω) with

X2
i

(
Wi(x)|X2

i v|pi−2X2
i v
) ≥ Hi(x)v

p−1 and −X2
i v > 0, (12.77)

a.e. in Ω, for all i = 1, . . . , N . Then for every 0 ≤ u ∈ C2(Ω)
⋂
C1(Ω) we have

the following inequality

N∑
i=1

∫
Ω

Hi(x)|u|pidν ≤
N∑
i=1

∫
Ω

Wi(x)|X2
i u|pidν (12.78)

+

N∑
i=1

∫
∂Ω

Wi(x)|X2
i v|pi−2X2

i v〈∇̃i
(

upi

vpi−1

)
, dν〉

−
N∑
i=1

∫
∂Ω

(
upi

vpi−1

)
〈∇̃i(Wi(x)|X2

i v|pi−2X2
i v), dν〉,

where 1 < pi < N for i = 1, . . . , N , and ∇̃iu = XiuXi.

The proof of Theorem 12.8.1 will rely on first establishing an appropriate
version of the second-order Picone identity. Before giving its formulation and the
proofs, let us make some remarks and also formulate several of its consequences.

Remark 12.8.2.

1. A Carnot group version of Theorem 12.8.1 was obtained by Goldstein, Kombe
and Yener in [GKY18]. In our exposition for general vector fields we follow
[RSS18c], also allowing one to include boundary terms into the inequality.

2. Note that the function v from the assumption (12.77) appears in the bound-
ary terms (12.78), which seems a new effect unlike known particular cases of
Theorem 12.8.1.

As a consequence of Theorem 12.8.1 we can obtain several Rellich type in-
equalities involving the sum of squares operator.

Corollary 12.8.3 (Rellich inequalities for sums of squares). Let Ω ⊂ M be an
admissible domain, and let the operator L is the sum of squares of vector fields:

L :=
N∑
i=1

X2
i .

Then we have the following estimates:
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(1) Let β > 2, α ∈ R, β + α > 4 and β > α. Then we have∫
Ω

Γ
α

2−β

|∇XΓ
1

2−β |2
|Lu|2dν ≥ (β + α− 4)2(β − α)2

16

∫
Ω

Γ
α−4
2−β |∇XΓ

1
2−β |2|u|2dν,

for all u ∈ C∞
0 (Ω\{0}).

(2) Let 1 < p < ∞ and 2 − β < α < min{(β − 2)(p − 1), (β − 2)}. Then for all
u ∈ C∞

0 (Ω\{0}) we have∫
Ω

Γ
α+2p−2

2−β

|∇XΓ
1

2−β |2p−2
|Lu|pdν ≥ C(β, α, p)p

∫
Ω

Γ
α−2
2−β |∇XΓ

1
2−β |2|u|pdν, (12.79)

where C(β, α, p) := (β+α−2)
p

(β−2)(p−1)−α
p .

Proof of Corollary 12.8.3. To prove Part (1), we take γ = −β+α−4
2 , and choose

the functions W (x) and v such that

W (x) =
Γ

α
2−β

|XiΓ
1

2−β |2
and v = Γ

γ
2−β ,

and apply Theorem 12.8.1.

To prove Part (2), we set

W (x) =
Γ
α+2p−2

2−β

|∇XΓ
1

2−β |2p−2
and v = γ−

β+α−2
p(2−β) ,

and apply Theorem 12.8.1. �

Now let us prove the following anisotropic (second-order) Picone type iden-
tity, extending its horizontal version in Lemma 6.10.4. Then, as a consequence, we
obtain Theorem 12.8.1.

Lemma 12.8.4 (Second-order Picone identity). Let Ω ⊂ G be an open set. Let u, v
be twice differentiable a.e. in Ω and satisfying the following conditions:

u ≥ 0, v > 0, X2
i v < 0 a.e. in Ω.

Let pi > 1, i = 1, . . . , N . Then we have

L1(u, v) = R1(u, v) ≥ 0, (12.80)

where

R1(u, v) :=
N∑
i=1

|X2
i u|pi −

N∑
i=1

X2
i

(
upi

vpi−1

)
|X2

i v|pi−2X2
i v,
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and

L1(u, v) :=

N∑
i=1

|X2
i u|pi −

N∑
i=1

pi

(u
v

)pi−1

X2
i uX

2
i v|X2

i v|pi−2

+

N∑
i=1

(pi − 1)
(u
v

)pi |X2
i v|pi

−
N∑
i=1

pi(pi − 1)
upi−2

vpi−1
|X2

i v|pi−2X2
i v
(
Xiu− u

v
Xiv

)2
.

Proof of Lemma 12.8.4. A direct computation yields
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which gives the equality in (12.80). By Young’s inequality we have

upi−1

vpi−1
X2
i uX

2
i v|X2

i v|pi−2 ≤ |X
2
i u|pi
pi

+
1

qi

upi

vpi
|X2

i v|pi , i = 1, . . . , N,
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arrive at
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This completes the proof of Lemma 12.8.4. �
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Proof of Theorem 12.8.1. Let us give a brief outline of the following proof as it is
similar to the proof of Theorem 12.5.1: we start by using the Picone type identity
(12.80), then we apply an analogue of Green’s second formula and the hypothesis
(12.77), respectively. Finally, we arrive at (12.78) by using Hi(x) ≥ 0. Summariz-
ing, we have
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In the last line, we have used (12.77) which leads to (12.78). �
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[DHK97] P. Drábek, H.P. Heinig, and A. Kufner. Higher-dimensional Hardy in-
equality. In General inequalities, 7 (Oberwolfach, 1995), volume 123 of
Internat. Ser. Numer. Math., pages 3–16. Birkhäuser, Basel, 1997.
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∇̃, 53

∇H , horizontal gradient, 47

∇m
H , 277

∇γ , 358

A = EE
∗, 38

admissible domain, 50, 503

angle function, 374, 380

anisotropic p-sub-Laplacian, 314

anisotropic Hölder spaces, 463

approximation of identity, 25

Baouendi–Grushin

distance, 359

operator and vector fields, 358

Bessel kernel, 255

Bessel potential, 249

Bessel–Riesz kernels, 419

Bessel–Riesz operators, 419

generalized, 432

boundary value problem

Dirichlet, 452

Kac, 464, 467, 474, 477

Neumann, 453

Robin, 454

C
∗, 354

C, Coulomb potential operator, 396

Caffarelli–Kohn–Nirenberg inequality

classical, 175

extended, 186

for Euclidean decomposition, 276

fractional, 203

fractional, critical, 212

horizontal, 272, 295, 302

horizontal, with boundary term, 365

Lp, 177

Lp, higher-order, 181

Lp, horizontal, higher-order, 277

new type, 184

Campanato space, 445

characteristic point, 456

characteristic set, 456

comparison principle for p-sub-Laplacian,
497

control distance, 503

convolution, 23

convolution Hardy inequality, 248

critical, 255

coordinate functions on the group, 28

Coulomb potential operator, 396

(−Δp,|·|)s, fractional p-sub-Laplacian, 191
D, double layer, 459

Δγ , 358

Dı́az–Saá inequality, 499

dilations, 13

distribution function, 21

divH , horizontal divergence, 47

divergence formula, 50, 505, 511

domain

admissible, 50, 503

half-space, 489

l-strip, 491

l-wedge, 486

of class C1, 456

quadrant-space, 490

strongly admissible, 503

double layer potential, 459

E, Euler operator, 36

εa,b, 65

embeddings

horizontal, 296

Engel group, 379
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Euler operator, 36

an identity, 171

lower bound, 398

Pythagorean relation, 398

Euler semigroup, 42

Euler–Hilbert–Sobolev spaces, 407

embeddings, 407

Euler–Sobolev spaces, 406

exponential mapping, 12

formulae for invariant derivatives, 28

fractional p-sub-Laplacian, 191

fractional Caffarelli–Kohn–Nirenberg
inequality, 203

critical, 212

fractional Gagliardo–Nirenberg inequality,
202

fractional integral operator, 436

fractional Sobolev inequality, 196

fractional Sobolev spaces, 192

weighted, 203

functional spaces S1,p(Ω),
◦
S

1,p

(Ω), 493

fundamental solutions

for p-sub-Laplacian, 60

on H-type groups, 69

on complex affine group, 355

on Heisenberg group, 65

on stratified groups, 47

G
+, half-space, 374

Γα, anisotropic Hölder spaces, 463

Gagliardo seminorm, 192

Gagliardo–Nirenberg inequality, 444

fractional, 202

Gauss’ mean value formula, 54, 510

for p-harmonic functions, 57

Gesztesy and Littlejohn inequality, 84

graded group, 230, 249

Green function, 486

Green’s identities, 53, 508

for p-sub-Laplacian, 56

group

Abelian, 14

Carnot, homogeneous, 46

Carnot, polarizable, 60

complex affine, 354

Engel, 379

graded, 14

H-type, prototype, 68

Heisenberg, 14, 62

homogeneous, 14

nilpotent, 12

stratified, 14, 46

upper triangular, 15

Hölder spaces

anisotropic, 463

for control distance, 503

Haar measure, 12

half residue, 474

half-space, G+, 374

Hardy identity

L2(G), 71

L2(G), weighted, 76

Lp(G), weighted, 79

Hardy inequality

anisotropic, 519

critical, 94, 98

critical, Q = 2, 111

critical, global, 229

critical, local, 229

critical, remainder estimates, 118

critical, subcritical, 109

for Baouendi–Grushin vector fields, 359

for convolution, 248, 255

for fractional powers of sub-Laplacian,
228

fractional, 193, 406

generalised weights, boundary, 363

geometric, L2, 374, 382

geometric, L2, Engel group, 379

geometric, L2, Heisenberg group, 378

geometric, Lp, 380, 385

homogeneous weights, 240

horizontal, 308

horizontal, L2, 288

horizontal, L2, refined, 289

horizontal, Lp, 273

horizontal, Lp, weighted, 279

horizontal, anisotropic, 319

horizontal, critical, 280

horizontal, weighted, 273
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integral form, 237, 244

L-gauge, boundary term, 366

L2(G), weighted, 77

local, for sums of squares, 513

logarithmic, 100

Lp, classical, 71

Lp, remainder estimate, 348

Lp, with L-gauge, 332
Lp(G), weighted, 79, 104

many-particle, 325

maximal, 266

metric measure spaces, 239

on complex affine group, 355

on homogeneous group, 71

on open sets, 408

on quasi-balls, 110

one-dimensional, 225

original, 237

radial, weighted, 92

remainder estimates, 103, 118

remainder estimates, Q = 2, 116

stability, 121, 123

stability, critical, 125

super weights, 80

two-weight, 85

two-weight, Lp, 341

two-weight, Lp, remainder estimate,
346

two-weight, polarizable Carnot group,
343

two-weight, special cases, 343

with L-gauge, polarizable Carnot
groups, 335

with boundary terms, 481

with exponential weights, 328

with multiple singularities, 321

with superweights, 80, 83

Hardy–Littlewood maximal operator, 422

Hardy–Littlewood–Sobolev inequality, 262

reversed, 264

Hardy–Rellich identities

Lp-weighted, higher-order, 153

Hardy–Rellich inequality, 144

higher-order, 146

horizontal, 292

horizontal, p-sub-Laplacian, 304

two-parameter, 283

weighted Lp, higher-order, 154

weighted Lp, uncertainty principle, 155

Hardy–Riesz inequalities, xiv

Hardy–Sobolev inequality, 228

on graded groups, 230

H
β(G), Euler–Hilbert–Sobolev, 407

heat kernel, 249

Heisenberg group, 63

quaternionic, 66

Heisenberg–Pauli–Weyl uncertainty
principle, 397, 402

homogeneous

degree, 26

dimension, 15

quasi-norm, 48

homogeneous Carnot group, 46

homogeneous functions and operators, 19

horizontal

divergence, 47

embeddings, 296

gradient, 47

p-Laplacian, 47

horizontal Picone identity, 314, 317

hypoellipticity, 47

Iα,γ , Bessel–Riesz operators, 419

inner quasi-radius, 214

integral Hardy inequality, 237, 244

Iρ̃,γ , generalized Bessel–Riesz operator,
432

Kac boundary value problem, 463

Kac’s principle of not feeling the
boundary, 463

Kα,γ , Bessel–Riesz kernels, 419

Kohn-Laplacian, 65

extended, 472

Komatsu-non-negative operator, 39

L-gauge, 48
La,b, 64

Lp, p-sub-Laplacian, 304

L̂1,p(Ω), 408

Landau–Kolmogorov inequality, 233

Lk,p(G), Euler–Sobolev space, 406

LMp,φ, generalized Morrey spaces, 421



570 Index

LMp,φ, Campanato space, 445

LMp,q, Morrey spaces, 421

Lorentz spaces, 409

Lorentz–Zygmund spaces, 409

Lp, p-sub-Laplacian, 47

Lp,q,λ(G), Lorentz–Zygmund, 409

Lp,q(G), Lorentz type spaces, 409

Lp,q,λ, Lp,q,λ1,λ2(G), Lorentz–Zygmund
type spaces, 410

Lp,ρ, weighted p-sub-Laplacian, 306

L|·|,Q,p,q(G), Lorentz type spaces, 409

Lyapunov inequality

Euclidean, 213

for Riesz potential, 224

for weighted Riesz potentials, 222

fractional p-sub-Laplacian, 215

fractional p-sub-Laplacian system, 218

p-Laplacian, 213

M , Hardy–Littlewood maximal operator,
422

M, momentum operator, 390, 392

maximum principle for p-sub-Laplacian,
496

Minkowski inequality, 242

momentum operator, 390, 392

Morrey spaces, 421

generalized, 421

Newton potential for sub-Laplacian, 464

generalized, 466

trace, 464, 467, 474, 477

nilpotent Lie group and algebra, 12

Olsen inequality, 435

for Bessel–Riesz operators, 440

for fractional integral operators, 439

P , position operator, 390, 392

p-sub-Laplacian

anisotropic, 314

fractional, 191

Peetre inequality, 20

perimeter measure, 511

Picone identity, 314, 494

anisotropic, 521

second-order, 317, 541

Picone inequality, 496

Plemelj jump relations, 459

Poincaré inequality, 408

horizontal, critical, 283

polar decomposition, 22

special case, 21

polynomials, 27

Taylor, 30

position operator, 390, 392

position-momentum identities, 394

Pythagorean inequality, 395, 398

quasi-norm, 16, 17, 48

quaternion Heisenberg group, 66

quaternions, 65

R, radial derivative, 35

R̃, Rellich operator, 130

radial derivative R, 35

rearrangement, 21

Rellich identity

Lp, 137

Rellich identity for R̃
critical, higher-order, 160

Rellich inequalities

for sums of squares, 540

Rellich inequality

classical, 129

for sub-Laplacian with drift, 349

for sums of squares, 531

for sums of squares, refined, 536

horizontal, 279, 292

horizontal, anisotropic, 320

horizontal, for sub-Laplacian with
drift, 310

identity, L2, 131

identity, Lp, 137

L2, generalized weights, boundary, 368

L2, weighted, with L-gauge, 339
Lp, generalized weights, boundary, 369

Lp, higher-order, weighted, 155

Lp, weighted, with L-gauge, 337
on homogeneous groups, L2, 131

on homogeneous groups, L2-weighted,
134

on homogeneous groups, Lp, 138

on homogeneous groups, Lp-weighted,
139
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stability, 141

weighted, anisotropic, 540

weighted, higher-order, 150

weighted, iterated, 149

Rellich inequality for R̃
critical, 158

critical, higher-order, 162

Rellich operator R̃, 130

representation formulae for functions

polarizable Carnot groups, 61

stratified groups, 55

Rg, generator of dilations, 398

Riesz kernel, 226

Riesz potential, 221, 249

first eigenvalue, 223

Rockland operator, 249

Schur test, 230, 254

simple boundary, 503

single layer potential, 457

continuity, 458

Sj ,S0, single layer, 457

Sobolev inequality

classical, 164

fractional, 196

Sobolev spaces

fractional, 192

fractional, weighted, 203

Sobolev type inequality, 164

horizontal, 299

horizontal, L2, 300

weighted, 170

Sobolev type spaces

horizontal weights, 295

Sobolev–Lorentz–Zygmund spaces, 409

Stein–Weiss inequality, 262

graded groups, 263

step

of a nilpotent group, 12

of a stratified group, 46

stratified group, 46

free, 49

representation formulae for functions,
55

Stubbe type remainder estimate, 172

sub-Laplacian, 46

with drift, 57

super weights, 80

Taylor

formula, 32, 33

polynomials, 30

Tρ, fractional integral operator, 436

triangle inequality, 18

reverse, 20

Trudinger–Moser inequality, 229

uncertainty principle

a logarithmic version, 231

critical, 97

for sums of squares, 526

for sums of squares, refined, 528

Hardy–Rellich, weighted Lp,
higher-order, 155

Heisenberg–Kennard, 395

Heisenberg–Pauli–Weyl, 179, 397, 402

Heisenberg–Pauli–Weyl, horizontal,
274, 297

Heisenberg–Pauli–Weyl, weighted, with
boundary term, 367

logarithmic, 101

on complex affine group, 357

on homogeneous groups, 75

two-weight, polarizable Carnot group,
345

two-weight, special cases, 345

with boundary terms, 484

with multiple singularities, 323

uniqueness of positive solutions, 500

W 1Lp,q,λ(G), W 1
0Lp,q,λ(G),

Sobolev–Lorentz–Zygmund spaces, 410

Young’s inequality, 23

for weak-Lp spaces, 23
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