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ETAPS Foreword

Welcome to the 22nd ETAPS! This is the first time that ETAPS took place in the Czech
Republic in its beautiful capital Prague.

ETAPS 2019 was the 22nd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security.

Organizing these conferences in a coherent, highly synchronized conference pro-
gram enables participation in an exciting event, offering the possibility to meet many
researchers working in different directions in the field and to easily attend talks of
different conferences. ETAPS 2019 featured a new program item: the Mentoring
Workshop. This workshop is intended to help students early in the program with advice
on research, career, and life in the fields of computing that are covered by the ETAPS
conference. On the weekend before the main conference, numerous satellite workshops
took place and attracted many researchers from all over the globe.

ETAPS 2019 received 436 submissions in total, 137 of which were accepted,
yielding an overall acceptance rate of 31.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2019 featured the unifying invited speakers Marsha Chechik (University of
Toronto) and Kathleen Fisher (Tufts University) and the conference-specific invited
speakers (FoSSaCS) Thomas Colcombet (IRIF, France) and (TACAS) Cormac
Flanagan (University of California at Santa Cruz). Invited tutorials were provided by
Dirk Beyer (Ludwig Maximilian University) on software verification and Cesare
Tinelli (University of Iowa) on SMT and its applications. On behalf of the ETAPS
2019 attendants, I thank all the speakers for their inspiring and interesting talks!

ETAPS 2019 took place in Prague, Czech Republic, and was organized by Charles
University. Charles University was founded in 1348 and was the first university in
Central Europe. It currently hosts more than 50,000 students. ETAPS 2019 was further
supported by the following associations and societies: ETAPS e.V., EATCS (European
Association for Theoretical Computer Science), EAPLS (European Association for
Programming Languages and Systems), and EASST (European Association of Soft-
ware Science and Technology). The local organization team consisted of Jan Vitek and
Jan Kofron (general chairs), Barbora Buhnova, Milan Ceska, Ryan Culpepper, Vojtech
Horky, Paley Li, Petr Maj, Artem Pelenitsyn, and David Safranek.



The ETAPS SC consists of an Executive Board, and representatives of the
individual ETAPS conferences, as well as representatives of EATCS, EAPLS, and
EASST. The Executive Board consists of Gilles Barthe (Madrid), Holger Hermanns
(Saarbrücken), Joost-Pieter Katoen (chair, Aachen and Twente), Gerald Lüttgen
(Bamberg), Vladimiro Sassone (Southampton), Tarmo Uustalu (Reykjavik and
Tallinn), and Lenore Zuck (Chicago). Other members of the SC are: Wil van der Aalst
(Aachen), Dirk Beyer (Munich), Mikolaj Bojanczyk (Warsaw), Armin Biere (Linz),
Luis Caires (Lisbon), Jordi Cabot (Barcelona), Jean Goubault-Larrecq (Cachan),
Jurriaan Hage (Utrecht), Rainer Hähnle (Darmstadt), Reiko Heckel (Leicester),
Panagiotis Katsaros (Thessaloniki), Barbara König (Duisburg), Kim G. Larsen
(Aalborg), Matteo Maffei (Vienna), Tiziana Margaria (Limerick), Peter Müller
(Zurich), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Dave Parker (Birmingham), Andrew M. Pitts (Cambridge), Dave Sands (Gothenburg),
Don Sannella (Edinburgh), Alex Simpson (Ljubljana), Gabriele Taentzer (Marburg),
Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas Vojnar (Brno), Heike Wehrheim
(Paderborn), Anton Wijs (Eindhoven), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2019. Finally, a big thanks to Jan and Jan and their local
organization team for all their enormous efforts enabling a fantastic ETAPS in Prague!

February 2019 Joost-Pieter Katoen
ETAPS SC Chair

ETAPS e.V. President
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TACAS Preface

TACAS 2019 was the 25th edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems conference series.
TACAS 2019 was part of the 22nd European Joint Conferences on Theory and Practice
of Software (ETAPS 2019). The conference was held at the Orea Hotel Pyramida in
Prague, Czech Republic, during April 6–11, 2019.

Conference Description. TACAS is a forum for researchers, developers, and users
interested in rigorously based tools and algorithms for the construction and analysis of
systems. The conference aims to bridge the gaps between different communities with
this common interest and to support them in their quest to improve the utility, relia-
bility, flexibility, and efficiency of tools and algorithms for building systems. TACAS
2019 solicited four types of submissions:

– Research papers, identifying and justifying a principled advance to the theoretical
foundations for the construction and analysis of systems, where applicable sup-
ported by experimental validation.

– Case-study papers, reporting on case studies and providing information about the
system being studied, the goals of the study, the challenges the system poses to
automated analysis, research methodologies and approaches used, the degree to
which goals were attained, and how the results can be generalized to other problems
and domains.

– Regular tool papers, presenting a new tool, a new tool component, or novel
extensions to an existing tool, with an emphasis on design and implementation
concerns, including software architecture and core data structures, practical
applicability, and experimental evaluations.

– Tool-demonstration papers (short), focusing on the usage aspects of tools.

Paper Selection. This year, 164 papers were submitted to TACAS, among which
119 were research papers, 10 case-study papers, 24 regular tool papers, and 11 were
tool-demonstration papers. After a rigorous review process, with each paper reviewed
by at least three Program Committee members, followed by an online discussion, the
Program Committee accepted 29 research papers, 2 case-study papers, 11 regular tool
papers, and 8 tool-demonstration papers (50 papers in total).

Artifact-Evaluation Process. The main novelty of TACAS 2019 was that, for the
first time, artifact evaluation was compulsory for all regular tool papers and tool
demonstration papers. For research papers and case-study papers, artifact evaluation
was optional. The artifact evaluation process was organized as follows:

– Regular tool papers and tool demonstration papers. The authors of the 35
submitted papers of these categories of papers were required to submit an artifact
alongside their paper submission. Each artifact was evaluated independently by
three reviewers. Out of the 35 artifact submissions, 28 were successfully evaluated,
which corresponds to an acceptance rate of 80%. The AEC used a two-phase



reviewing process: Reviewers first performed an initial check to see whether the
artifact was technically usable and whether the accompanying instructions were
consistent, followed by a full evaluation of the artifact. The main criterion for
artifact acceptance was consistency with the paper, with completeness and docu-
mentation being handled in a more lenient manner as long as the artifact was useful
overall. The reviewers were instructed to check whether results are consistent with
what is described in the paper. Inconsistencies were to be clearly pointed out and
explained by the authors. In addition to the textual reviews, reviewers also proposed
a numeric value about (potentially weak) acceptance/rejection of the artifact. After
the evaluation process, the results of the artifact evaluation were summarized and
forwarded to the discussion of the papers, so as to enable the reviewers of the papers
to take the evaluation into account. In all but three cases, tool papers whose artifacts
did not pass the evaluation were rejected.

– Research papers and case-study papers. For this category of papers, artifact
evaluation was voluntary. The authors of each of the 25 accepted papers were
invited to submit an artifact immediately after the acceptance notification. Owing to
the short time available for the process and acceptance of the artifact not being
critical for paper acceptance, there was only one round of evaluation for this
category, and every artifact was assigned to two reviewers. The artifacts were
evaluated using the same criteria as for tool papers. Out of the 18 submitted artifacts
of this phase, 15 were successfully evaluated (83% acceptance rate) and were
awarded the TACAS 2019 AEC badge, which is added to the title page of the
respective paper if desired by the authors.

TOOLympics. TOOLympics 2019 was part of the celebration of the 25th anniver-
sary of the TACAS conference. The goal of TOOLympics is to acknowledge the
achievements of the various competitions in the field of formal methods, and to
understand their commonalities and differences. A total of 24 competitions joined
TOOLympics and were presented at the event. An overview and competition reports of
11 competitions are included in the third volume of the TACAS 2019 proceedings,
which are dedicated to the 25th anniversary of TACAS. The extra volume contains a
review of the history of TACAS, the TOOLympics papers, and the papers of the annual
Competition on Software Verification.

Competition on Software Verification. TACAS 2019 also hosted the 8th Interna-
tional Competition on Software Verification (SV-COMP), chaired and organized by
Dirk Beyer. The competition again had high participation: 31 verification systems with
developers from 14 countries were submitted for the systematic comparative evalua-
tion, including three submissions from industry. The TACAS proceedings includes the
competition report and short papers describing 11 of the participating verification
systems. These papers were reviewed by a separate Program Committee (PC); each
of the papers was assessed by four reviewers. Two sessions in the TACAS program
(this year as part of the TOOLympics event) were reserved for the presentation of the
results: the summary by the SV-COMP chair and the participating tools by the
developer teams in the first session, and the open jury meeting in the second session.

Acknowledgments. We would like to thank everyone who helped to make TACAS
2019 successful. In particular, we would like to thank the authors for submitting their
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papers to TACAS 2019. We would also like to thank all PC members, additional
reviewers, as well as all members of the artifact evaluation committee (AEC) for their
detailed and informed reviews and, in the case of the PC and AEC members, also for
their discussions during the virtual PC and AEC meetings. We also thank the Steering
Committee for their advice. Special thanks go to the Organizing Committee of ETAPS
2019 and its general chairs, Jan Kofroň and Jan Vitek, to the chair of the ETAPS 2019
executive board, Joost-Pieter Katoen, and to the publication team at Springer.

April 2019 Tomáš Vojnar (PC Chair)
Lijun Zhang (PC Chair)

Marius Mikucionis (Tools Chair)
Radu Grosu (Use-Case Chair)
Dirk Beyer (SV-COMP Chair)

Ondřej Lengál (AEC Chair)
Ernst Moritz Hahn (AEC Chair)
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Preface

The celebration of the 25th anniversary of TACAS, the International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, was part of the
22nd European Joint Conferences on Theory and Practice of Software (ETAPS 2019).
The celebration event was held in Prague, Czech Republic, during April 6–7, 2019.

This year, the TACAS proceedings consist of three volumes, and the third volume is
dedicated to the 25th anniversary of TACAS. This extra volume contains a review
of the history of TACAS, the TOOLympics papers, and the papers of the annual
Competition on Software Verification.

The goal of TOOLympics 2019, as part of the celebration of the 25th anniversary
of the TACAS conference, was to acknowledge the achievements of the various
competitions in the field of formal methods, and to understand their commonalities and
differences. A total of 24 competitions joined TOOLympics and were presented
at the event. An overview and competition reports of 11 competitions are included
in the proceedings.

We would like to thank all organizers of competitions in the field of formal
methods, in particular those that presented their competition as part of TOOLympics.
We would also like to thank the ETAPS 2019 Organizing Committee for accommo-
dating TOOLympics, especially its general chairs, Jan Kofroň and Jan Vitek, the chair
of the ETAPS 2019 executive board, Joost-Pieter Katoen, and the team at Springer for
the flexible publication schedule.

April 2019 Dirk Beyer
Marieke Huisman
Fabrice Kordon
Bernhard Steffen



A Short History of TACAS

Introduction

The International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) celebrated its 25th anniversary this year. As three of the
original co-founders of the meeting, we are proud of this milestone, and also a bit
surprised by it! Back in the 1993–1994 timeframe, when we were formulating plans for
TACAS, we had no other aspirations than to have an interesting, well-run event
interested in the theory and practice of analysis and verification tools. That said, we feel
something of an obligation to record the course TACAS has followed over the years.
That is the purpose of this note: to give a brief history of the conference, and to
highlight some of the decisions that were made as it evolved.

Pre-history

The idea for TACAS was hatched on a tennis court in Elounda, Greece, during the
1993 Computer-Aided Verification (CAV) Conference. CAV was a relatively young
meeting at the time in a field (automated verification) that was experiencing explosive
growth. The three of us were playing doubles with another CAV attendee, Ed
Brinksma; the four of us would go on to be the founding members of the TACAS
Steering Committee. Immediately after the match we fell to talking about CAV, how
great it was to have a conference devoted to verification, but how some topics, espe-
cially ones devoted to software, and to system analysis and not necessarily verification,
were not on the table. This conversation turned to what another meeting might look
like, and thus was the seed for what became TACAS, an event addressing tools for the
construction and analysis of systems. (Perhaps interestingly, our original idea of a name
for the conference was Tools, Algorithms and Methodologies – TAM. We decided to
drop “methodologies” from the title in order to clearly emphasize the tool aspect.)

In subsequent meetings and e-mail exchanges we fleshed out the idea of the con-
ference. We wanted to support papers about tools on equal footing with typical research
papers and to further increase the awareness of tools by making case studies and tool
demonstrations part of the main conference with dedicated topical parts. At the time,
other conferences we were familiar with did not have demos, or if they did, they took
place during breaks and social events, meaning the audiences were small.

By scheduling demos during regular conference sessions, we were able to ensure
good attendance, and by providing the typical 15 pages for (regular) tool papers and
case study papers, and four pages for tool-demo papers, we also gave tool builders an
opportunity to present their tool and give something citable for others who wanted to
reference the work. In fact, the most highly cited TACAS paper of all time is the 2008



tool-demo paper for the Z3 SMT solver by Leonardo de Mourna and Nikolaj Bjørner,
whose citation count just passed 5,000.

The Early Years

TACAS began its life as a workshop, rather than a conference, although all its pro-
ceedings were published by Springer in its Lecture Notes in Computer Science series.

The first meeting of TACAS took place May 19–20, 1995, in Aarhus, Denmark as a
workshop to the TAPSOFT conference series. Both TAPSOFT and our TACAS
workshop were hosted by the prominent BRICS research center. The workshop featured
13 accepted papers and Springer published the proceedings in its Lecture Notes in
Computer Science (LNCS) series. The Program Committee was chaired by the four
Steering Committee members (the three of us, plus Ed Brinksma) and Tiziana Margaria.

The next meeting, March 27–29, 1996, in Passau, Germany, featured 30 papers
(including 11 tool-demo papers) and lasted three days, rather than two.

The final workshop instance of TACAS occurred in Enschede, The Netherlands on
April 2–4, 1997, and had 28 papers.

ETAPS

In 1994 during a TAPSOFT business meeting in Aarhus, negotiations began to inte-
grate several European software-focused conferences into a consortium of co-located
meetings. The resulting amalgam was christened the Joint European Conferences on
Theory and Practice of Software (ETAPS), and has become a prominent meeting in
early spring in Europe since its initial iteration in 1998.

TACAS had been a workshop until 1997, but starting in 1998 it became a con-
ference and was one of the five founding conferences of ETAPS, along with the
European Symposium on Programming (ESOP), Foundations of Software Systems and
Computational Structures (FoSSaCS), Fundamental Aspects of Software Engineering
(FASE), and Compiler Construction (CC). This step in the development of TACAS
helped cement its status as a premiere venue for system analysis and verification tools,
although the increased overhead associated with coordinating its activities with four
other conferences presented challenges. The increased exposure, however, did lead to a
significant growth in submissions and also in accepted papers. In 1998, the first iter-
ation of ETAPS was held in Lisbon, Portugal; the TACAS program featured 29 pre-
sentations. Figure 1 shows a group of people during the 10 years of TACAS celebration
in 2004. By 2007, the 10th incarnation of ETAPS, which was held in Braga, Portugal,
the program featured 57 presentations (several of these were invited contributions,
while others were tool-demo papers). Negotiating this increased presence of TACAS
within ETAPS required tact and diplomacy, and it is a testament to the bona fide skills
of both the TACAS and ETAPS organizers that this was achievable.

xiv A Short History of TACAS



As part of becoming a conference and a part of ETAPS, TACAS also institution-
alized some of the informal practices that it had used in its early, workshop-based
existence. The Steering Committee structure was formalized, with the three of us and
Ed Brinksma becoming the official members. (After several years of service, Ed
Brinksma left the Steering Committee to pursue leadership positions in Dutch and,
subsequently, German universities and research institutions. Joost-Pieter Katoen took
Brinksma’s place; when he then left to assume leadership of ETAPS, Holger Hermanns
ascended to the TACAS Steering Committee. Lenore Zuck and, currently, Dirk Beyer
have also held ad hoc positions on the Steering Committee.)

The conference also standardized its approach to Program Committee leadership,
with two co-chairs being selected each year, and with a dedicated tool chair for
overseeing tool submissions and demonstractions. Today, similar committee structures
can be found at other conferences as well, but they were less common when TACAS
adopted them.

Fig. 1. 10 years of TACAS celebration in 2004 in Barcelona, Spain. From left to right: Andreas
Podelski, Joost-Pieter Katoen, Lenore Zuck, Bernhard Steffen, Tiziana Margaria, Ed Brinksma, Hubert
Garavel, Susanne Graf, Kim Larsen, Nicolas Halbwachs, Wang Yi, and John Hatcliff

A Short History of TACAS xv



Subsequent Developments

Since joining ETAPS, TACAS has experimented with its programmatic aspects. In
recent years, the conference has started to increase the emphasis of the four paper
categories by explicitly providing four categories of paper submission: regular, tool,
case study, and demo. Starting in 2012, it also started to include tool competitions,
most notably SV-COMP led by Dirk Beyer, which have proved popular with the
community and have attracted increasing numbers of competitors. The conference has
also modified its submission and reviewing processes over the years.

At ETAPS 2014 in Grenoble we celebrated the 20th anniversary of TACAS. During
this celebration, awards for the most influential papers in the first 20 years of TACAS
were given. The regular-paper category went to Armin Biere, Alessandro Cimatti,
Edmund Clarke, and Yunshan Zhu for their 1999 paper “Symbolic Model Checking
Without BDDs,” and the tool-demo category went to the “Z3: An Efficient SMT
Solver” presented by Leonardo de Mourna and Nikolaj Bjørner in 2008. Figure 2
shows Armin Biere, Alessandro Cimatti, and Leonardo de Mourna during the
award ceremony.

Fig. 2. Most Influencial Paper Award Ceremony at the 20 Years of TACAS celebration in 2014. From
left to right Rance Cleaveland, Bernhard Steffen, Armin Biere, Alessandro Cimatti, Leonardo de
Mourna, Holger Hermanns, and Kim Larsen

xvi A Short History of TACAS



Reflections

As we noted at the beginning of this text, we had no idea when we started TACAS in
1995 that it would become the venue that it is 25 years later. Most of the credit
should go to the authors who submitted their work to the conference, to the hard work
of the Program Committee chairs and members who reviewed and selected papers for
presentation at the conference, to the tool-demo chairs who oversaw the selection of
tool demonstrations, and to the local arrangements organizers who ensured the
technical infrastructure at conference venues could handle the requirements of
tool demonstrators.

That said, we do think that some of the organizational strategies adopted by TACAS
have helped its success as well. Here we comment on a few of these.

– Compact Steering Committee. The TACAS Steering Committee has always had
four to five members. This is in contrast to other conferences, which may have ten
or more members. The small size of the TACAS committee has enabled greater
participation on the part of the individual members.

– Steering Committee � Program Committee. Unusually, and because the Steering
Committee is small in number, Steering Committee members serve on the Program
Committee each year. This has sometimes been controversial, but it does ensure
institutional memory on the PC so that decisions made one year (about the defi-
nition of double-submission, for instance) can be recalled in later years.

– PC Co-chairs. As mentioned earlier, TACAS has two people leading the Program
Committee, as well as a tool chair. Originally, this decision was based on the fact
that, because TACAS had multiple submission tracks (regular, tool, case study, and
tool demo), the PC chairing responsibilities were more complex. Subsequently,
though, our observation is that having two leaders can lead to load-sharing and also
good decision-making. This is particularly fruitful for dealing with conflicts, as one
chair can oversee the papers where the other has a conflict.

This LNCS volume is devoted to the TACAS 25th anniversary event, TOOLympics,
which comprises contributions from 16 tool competitions. The maturity of these
challenges, as well of the participating tools impressively demonstrates the progress
that has been made in the past 25 years. Back in 1994 we would never have imagined
the power of today’s tools with SAT solvers capable of dealing with hundreds of
thousands of variables, powerful SMT solvers, and complex verification tools that
make careful use of the power of these solvers. The progress is really impressive, as is
still the gap toward true program verification of industrial scale. This requires a better
understanding of the developed methods, algorithms, and technologies, the impact of
particular heuristics, and, in particular, the interdependencies between them. TOO-
Lympics aims at fostering the required interdisciplinary, problem-oriented cooperation,
and as the founders of TACAS, we look forward to observing the results of this
cooperation in forthcoming editions of TACAS.

A Short History of TACAS xvii



Finally, we would like to thank Alfred Hofmann and his team at Springer for the
continuous support in particular during the early phases. Without this support, TACAS
would never have developed in the way it did.

February 2019 Rance Cleaveland
Kim Larsen

Bernhard Steffen
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Abstract. Evaluation of scientific contributions can be done in many
different ways. For the various research communities working on the
verification of systems (software, hardware, or the underlying involved
mechanisms), it is important to bring together the community and to
compare the state of the art, in order to identify progress of and new chal-
lenges in the research area. Competitions are a suitable way to do that.

The first verification competition was created in 1992 (SAT
competition), shortly followed by the CASC competition in 1996.
Since the year 2000, the number of dedicated verification competi-
tions is steadily increasing. Many of these events now happen regularly,
gathering researchers that would like to understand how well their
research prototypes work in practice. Scientific results have to be repro-
ducible, and powerful computers are becoming cheaper and cheaper,
thus, these competitions are becoming an important means for advanc-
ing research in verification technology.

TOOLympics 2019 is an event to celebrate the achievements of
the various competitions, and to understand their commonalities and
differences. This volume is dedicated to the presentation of the 16
competitions that joined TOOLympics as part of the celebration of the
25th anniversary of the TACAS conference.

https://tacas.info/toolympics.php

c© The Author(s) 2019
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1 Introduction

Over the last years, our society’s dependency on digital systems has been steadily
increasing. At the same time, we see that also the complexity of such systems
is continuously growing, which increases the chances of such systems behav-
ing unreliably, with many undesired consequences. In order to master this
complexity, and to guarantee that digital systems behave as desired, software
tools are designed that can be used to analyze and verify the behavior of digital
systems. These tools are becoming more prominent, in academia as well as in
industry. The range of these tools is enormous, and trying to understand which
tool to use for which system is a major challenge. In order to get a better grip
on this problem, many different competitions and challenges have been created,
aiming in particular at better understanding the actual profile of the different
tools that reason about systems in a given application domain.

The first competitions started in the 1990s (e.g., SAT and CASC). After the
year 2000, the number of competitions has been steadily increasing, and currently
we see that there is a wide range of different verification competitions. We believe
there are several reasons for this increase in the number of competitions in the
area of formal methods:

• increased computing power makes it feasible to apply tools to large bench-
mark sets,

• tools are becoming more mature,
• growing interest in the community to show practical applicability of

theoretical results, in order to stimulate technology transfer,
• growing awareness that reproducibility and comparative evaluation of results

is important, and
• organization and participation in verification competitions is a good way to

get scientific recognition for tool development.

We notice that despite the many differences between the different
competitions and challenges, there are also many similar concerns, in particular
from an organizational point of view:

• How to assess adequacy of benchmark sets, and how to establish suitable
input formats? And what is a suitable license for a benchmark collection?

• How to execute the challenges (on-site vs. off-site, on controlled resources vs.
on individual hardware, automatic vs. interactive, etc.)?

• How to evaluate the results, e.g., in order to obtain a ranking?
• How to ensure fairness in the evaluation, e.g., how to avoid bias in the

benchmark sets, how to reliably measure execution times, and how to handle
incorrect or incomplete results?

• How to guarantee reproducibility of the results?
• How to achieve and measure progress of the state of the art?
• How to make the results and competing tools available so that they can be

leveraged in subsequent events?
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Therefore, as part of the celebration of 25 years of TACAS we organized
TOOLympics, as an occasion to bring together researchers involved in compe-
tition organization. It is a goal of TOOLympics to discuss similarities and dif-
ferences between the participating competitions, to facilitate cross-community
communication to exchange experiences, and to discuss possible cooperation con-
cerning benchmark libraries, competition infrastructures, publication formats,
etc. We hope that the organization of TOOLympics will put forward the best
practices to support competitions and challenges as useful and successful events.

In the remainder of this paper, we give an overview of all competitions
participating in TOOLympics, as well as an outlook on the future of competi-
tions. Table 1 provides references to other papers (also in this volume) providing
additional perspective, context, and details about the various competitions.
There are more competitions in the field, e.g., ARCH-COMP [1], ICLP Comp,
MaxSAT Evaluation, Reactive Synthesis Competition [57], QBFGallery [73],
and SyGuS-Competition.

2 Overview of all Participating Competitions

A competition is an event that is dedicated to fair comparative evaluation of a
set of participating contributions at a given time. This section shows that such
participating contributions can be of different forms: tools, result compilations,
counterexamples, proofs, reasoning approaches, solutions to a problem, etc.

Table 1 categorizes the TOOLympics competitions. The first column names
the competition (and the digital version of this article provides a link to the
competition web site). The second column states the year of the first edition of
the competition, and the third column the number of editions of the competition.
The next two columns characterize the way the participating contributions are
evaluated: Most of the competitions are evaluating automated tools that do not
require user interaction and the experiments are executed by benchmarking
environments, such as BenchExec [29], BenchKit [69], or StarExec [92].
However, some competitions require a manual evaluation, due to the nature of
the competition and its evaluation criteria. The next two columns show where
and when the results of the competition is determined: on-site during the event or
off-site before the event takes place. Finally, the last column provides references
to the reader to look up more details about each of the competitions.

The remainder of this section introduces the various competitions of
TOOLympics 2019.

2.1 CASC: The CADE ATP System Competition

Organizer: Geoff Sutcliffe (Univ. of Miami, USA)
Webpage: http://www.tptp.org

The CADE ATP System Competition (CASC) [107] is held at each CADE and
IJCAR conference. CASC evaluates the performance of sound, fully automatic,
classical logic Automated Theorem Proving (ATP) systems. The evaluation is

http://www.tptp.org
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Table 1. Categorization of the competitions participating in TOOLympics 2019;
planned competition Rodeo not contained in the table; CHC-COMP report not yet
published (slides available: https://chc-comp.github.io/2018/chc-comp18.pdf)
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CASC 1996 23 ● ● [97–109,116]

[78,79,93–96,110–115,117]

CHC-COMP 2018 2 ● ●

CoCo 2012 8 ● ● [3,4,76]

CRV 2014 4 ● ● [12–14,41,81,82]

MCC 2011 9 ● ● [2,64–68,70–72]

QComp 2019 1 ● ● [47]

REC 2006 5 ● ● [36–39,42]

RERS 2010 9 ● ● ● [43,44,48–50,59–61]

SAT 1992 12 ● ● [5,6,15,16,58,86]

SL-COMP 2014 3 ● ● [84,85]

SMT-COMP 2005 13 ● ● [7–11,33–35]

SV-COMP 2012 8 ● ● [17–23]

termCOMP 2004 16 ● ● [45,46,74,118]

Test-Comp 2019 1 ● ● [24]

VerifyThis 2011 8 ● ● [27,32,40,51–56]

in terms of: the number of problems solved, the number of problems solved
with a solution output, and the average runtime for problems solved; in the con-
text of: a bounded number of eligible problems, chosen from the TPTP Problem
Library, and specified time limits on solution attempts. CASC is the longest run-
ning of the various logic solver competitions, with the 25th event to be held in
2020. This longevity has allowed the design of CASC to evolve into a sophis-
ticated and stable state. Each year’s experiences lead to ideas for changes and
improvements, so that CASC remains a vibrant competition. CASC provides an
effective public evaluation of the relative capabilities of ATP systems. Addition-
ally, the organization of CASC is designed to stimulate ATP research, motivate
development and implementation of robust ATP systems that are useful and
easily deployed in applications, provide an inspiring environment for personal
interaction between ATP researchers, and expose ATP systems within and
beyond the ATP community.

https://chc-comp.github.io/2018/chc-comp18.pdf
http://www.tptp.org/
https://chc-comp.github.io/
http://project-coco.uibk.ac.at/
https://www.rv-competition.org/
https://mcc.lip6.fr/
http://qcomp.org/
http://rec.gforge.inria.fr/
http://rers-challenge.org/
https://www.satcompetition.org/
https://sl-comp.github.io/
http://www.smtcomp.org
https://sv-comp.sosy-lab.org/
http://termination-portal.org/wiki/Termination_Competition
https://test-comp.sosy-lab.org/
http://www.pm.inf.ethz.ch/research/verifythis.html
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2.2 CHC-COMP: Competition on Constrained Horn Clauses

Organizers: Grigory Fedyukovich (Princeton Univ., USA), Arie Gurfinkel
(Univ. of Waterloo, Canada), and Philipp Rümmer (Uppsala Univ., Sweden)
Webpage: https://chc-comp.github.io/

Constrained Horn Clauses (CHC) is a fragment of First Order Logic (FOL)
that is sufficiently expressive to describe many verification, inference, and
synthesis problems including inductive invariant inference, model checking of
safety properties, inference of procedure summaries, regression verification, and
sequential equivalence. The CHC competition (CHC-COMP) compares state-of-
the-art tools for CHC solving with respect to performance and effectiveness on
a set of publicly available benchmarks. The winners among participating solvers
are recognized by measuring the number of correctly solved benchmarks as well
as the runtime. The results of CHC-COMP 2019 will be announced in the HCVS
workshop affiliated with ETAPS.

2.3 CoCo: Confluence Competition

Organizers: Aart Middeldorp (Univ. of Innsbruck, Austria), Julian Nagele
(Queen Mary Univ. of London, UK), and Kiraku Shintani (JAIST, Japan)
Webpage: http://project-coco.uibk.ac.at/

The Confluence Competition (CoCo) exists since 2012. It is an annual competi-
tion of software tools that aim to (dis)prove confluence and related (undecidable)
properties of a variety of rewrite formalisms automatically. CoCo runs live in a
single slot at a conference or workshop and is executed on the cross-community
competition platform StarExec. For each category, 100 suitable problems are
randomly selected from the online database of confluence problems (COPS). Par-
ticipating tools must answer YES or NO within 60 s, followed by a justification
that is understandable by a human expert; any other output signals that the tool
could not determine the status of the problem. CoCo 2019 features new categories
on commutation, confluence of string rewrite systems, and infeasibility problems.

2.4 CRV: Competition on Runtime Verification

Organizers: Ezio Bartocci (TU Wien, Austria), Yliès Falcone (Univ. Grenoble
Alpes/CNRS/INRIA, France), and Giles Reger (Univ. of Manchester, UK)
Webpage: https://www.rv-competition.org/

Runtime verification (RV) is a class of lightweight scalable techniques for
the analysis of system executions. We consider here specification-based anal-
ysis, where executions are checked against a property expressed in a formal
specification language.

https://chc-comp.github.io/
http://project-coco.uibk.ac.at/
https://www.rv-competition.org/
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The core idea of RV is to instrument a software/hardware system so that
it can emit events during its execution. These events are then processed by
a monitor that is automatically generated from the specification. During the
last decade, many important tools and techniques have been developed. The
growing number of RV tools developed in the last decade and the lack of standard
benchmark suites as well as scientific evaluation methods to validate and test
new techniques have motivated the creation of a venue dedicated to comparing
and evaluating RV tools in the form of a competition.

The Competition on Runtime Verification (CRV) is an annual event, held
since 2014, and organized as a satellite event of the main RV conference. The
competition is in general organized in different tracks: (1) offline monitoring,
(2) online monitoring of C programs, and (3) online monitoring of Java programs.
Over the first three years of the competition 14 different runtime verification
tools competed on over 100 different benchmarks1.

In 2017 the competition was replaced by a workshop aimed at reflecting on
the experiences of the last three years and discussing future directions. A sugges-
tion of the workshop was to held a benchmark challenge focussing on collecting
new relevant benchmarks. Therefore, in 2018 a benchmark challenge was held
with a track for Metric Temporal Logic (MTL) properties and an Open track. In
2019 CRV will return to a competition comparing tools, using the benchmarks
from the 2018 challenge.

2.5 MCC: The Model Checking Contest

Organizers: Fabrice Kordon (Sorbonne Univ., CNRS, France), Hubert Garavel
(Univ. Grenoble Alpes/INRIA/CNRS, Grenoble INP/LIG, France), Lom
Messan Hillah (Univ. Paris Nanterre, CNRS, France), Francis Hulin-Hubard
(CNRS, Sorbonne Univ., France), Löıg Jezequel (Univ. de Nantes, CNRS,
France), and Emmanuel Paviot-Adet (Univ. de Paris, CNRS, France)
Webpage: https://mcc.lip6.fr/

Since 2011, the Model Checking Contest (MCC) is an annual competition of
software tools for model checking. Tools are confronted to an increasing bench-
mark set gathered from the whole community (currently, 88 parameterized mod-
els totalling 951 instances) and may participate in various examinations: state
space generation, computation of global properties, computation of 16 queries
with regards to upper bounds in the model, evaluation of 16 reachability formu-
las, evaluation of 16 CTL formulas, and evaluation of 16 LTL formulas.

For each examination and each model instance, participating tools are pro-
vided with up to 3600 s of runtime and 16 GB of memory. Tool answers are
analyzed and confronted to the results produced by other competing tools to
detect diverging answers (which are quite rare at this stage of the competition,
and lead to penalties).

1 https://gitlab.inria.fr/crv14/benchmarks

https://mcc.lip6.fr/
https://gitlab.inria.fr/crv14/benchmarks
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For each examination, golden, silver, and bronze medals are attributed to the
three best tools. CPU usage and memory consumption are reported, which is also
valuable information for tool developers. Finally, numerous charts to compare
pair of tools’ performances, or quantile plots stating global performances are
computed. Performances of tools on models (useful when they contain scaling
parameters) are also provided.

2.6 QComp: The Comparison of Tools for the Analysis of
Quantitative Formal Models

Organizers: Arnd Hartmanns (Univ. of Twente, Netherlands) and Tim
Quatmann (RWTH Aachen Univ., Germany)
Webpage: http://qcomp.org

Quantitative formal models capture probabilistic behaviour, real-time aspects,
or general continuous dynamics. A number of tools support their automatic
analysis with respect to dependability or performance properties. QComp 2019
is the first competition among such tools. It focuses on stochastic formalisms
from Markov chains to probabilistic timed automata specified in the JANI
model exchange format, and on probabilistic reachability, expected-reward, and
steady-state properties. QComp draws its benchmarks from the new Quantita-
tive Verification Benchmark Set. Participating tools, which include probabilistic
model checkers and planners as well as simulation-based tools, are evaluated in
terms of performance, versatility, and usability.

2.7 REC: The Rewrite Engines Competition

Organizers: Francisco Durán (Univ. of Malaga, Spain) and Hubert Garavel
(Univ. Grenoble Alpes/INRIA/CNRS, Grenoble INP/LIG, France)
Webpage: http://rec.gforge.inria.fr/

Term rewriting is a simple, yet expressive model of computation, which finds
direct applications in specification and programming languages (many of which
embody rewrite rules, pattern matching, and abstract data types), but also
indirect applications, e.g., to express the semantics of data types or concurrent
processes, to specify program transformations, to perform computer-aided verifi-
cation. The Rewrite Engines Competition (REC) was created under the aegis of
the Workshop on Rewriting Logic and its Applications (WRLA) to serve three
main goals:

1. being a forum in which tool developers and potential users of term rewrite
engines can share experience;

2. bringing together the various language features and implementation
techniques used for term rewriting; and

3. comparing the available term rewriting languages and tools in their common
features.

Earlier editions of the Rewrite Engines Competition have been held in 2006,
2008, 2010, and 2018.

http://qcomp.org
http://rec.gforge.inria.fr/
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2.8 RERS: Rigorous Examination of Reactive System

Organizers: Falk Howar (TU Dortmund, Germany), Markus Schordan (LLNL,
USA), Bernhard Steffen (TU Dortmund, Germany), and Jaco van de Pol (Univ.
of Aarhus, Denmark)
Webpage: http://rers-challenge.org/

Reactive systems appear everywhere, e.g., as Web services, decision support
systems, or logical controllers. Their validation techniques are as diverse as
their appearance and structure. They comprise various forms of static analysis,
model checking, symbolic execution, and (model-based) testing, often tailored to
quite extreme frame conditions. Thus it is almost impossible to compare these
techniques, let alone to establish clear application profiles as a means for
recommendation. Since 2010, the RERS Challenge aims at overcoming this situa-
tion by providing a forum for experimental profile evaluation based on specifically
designed benchmark suites.

These benchmarks are automatically synthesized to exhibit chosen
properties, and then enhanced to include dedicated dimensions of difficulty, rang-
ing from conceptual complexity of the properties (e.g., reachability, full safety,
liveness), over size of the reactive systems (a few hundred lines to millions of
them), to exploited language features (arrays, arithmetic at index pointer, and
parallelism). The general approach has been described in [89,90], while vari-
ants to introduce highly parallel benchmarks are discussed in [87,88,91]. RERS
benchmarks have been used also by other competitions, like MCC or SV-COMP,
and referenced in a number of research papers as a means of evaluation not only
in the context of RERS [31,62,75,77,80,83].

In contrast to the other competitions described in this paper, RERS is
problem-oriented and does not evaluate the power of specific tools but rather
tool usage that ideally makes use of a number of tools and methods. The
goal of RERS is to help revealing synergy potential also between seemingly
quite separate technologies like, e.g., source-code-based (white-box) approaches
and purely observation/testing-based (black-box) approaches. This goal is also
reflected in the awarding scheme: besides the automatically evaluated question-
naires for achievements and rankings, RERS also features the Methods Combi-
nation Award for approaches that explicitly exploit cross-tool/method synergies.

2.9 Rodeo for Production Software Verification Tools
Based on Formal Methods

Organizer: Paul E. Black (NIST, USA)
Webpage: https://samate.nist.gov/FMSwVRodeo/

Formal methods are not widely used in the United States. The US govern-
ment is now more interested because of the wide variety of FM-based tools
that can handle production-sized software and because algorithms are orders of
magnitude faster. NIST proposes to select production software for a test suite
and to hold a periodic Rodeo to assess the effectiveness of tools based on for-
mal methods that can verify large, complex software. To select software, we will

http://rers-challenge.org/
https://samate.nist.gov/FMSwVRodeo/
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develop tools to measure structural characteristics, like depth of recursion or
number of states, and calibrate them on others’ benchmarks. We can then scan
thousands of applications to select software for the Rodeo.

2.10 SAT Competition

Organizer: Marijn Heule (Univ. of Texas at Austin, USA), Matti Järvisalo
(Univ. of Helsinki, Finland), and Martin Suda (Czech Technical Univ., Czechia)
Webpage: https://www.satcompetition.org/

SAT Competition 2018 is the twelfth edition of the SAT Competition series,
continuing the almost two decades of tradition in SAT competitions and related
competitive events for Boolean Satisfiability (SAT) solvers. It was organized as
part of the 2018 FLoC Olympic Games in conjunction with the 21th Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT
2018), which took place in Oxford, UK, as part of the 2018 Federated Logic
Conference (FLoC). The competition consisted of four tracks, including a main
track, a “no-limits” track with very few requirements for participation, and
special tracks focusing on random SAT and parallel solving. In addition to
the actual solvers, each participant was required to also submit a collection of
previously unseen benchmark instances, which allowed the competition to only
use new benchmarks for evaluation. Where applicable, verifiable certificates were
required both for the “satisfiable” and “unsatisfiable” answers; the general time
limit was 5000 s per benchmark instance and the solvers were ranked using the
PAR-2 scheme, which encourages solving many benchmarks but also rewards
solving the benchmarks fast. A detailed overview of the competition, including
summary of the results, will appear in the JSAT special issue on SAT 2018
Competitions and Evaluations.

2.11 SL-COMP: Competition of Solvers for Separation Logic

Organizer: Mihaela Sighireanu (Univ. of Paris Diderot, France)
Webpage: https://sl-comp.github.io/

SL-COMP aims at bringing together researchers interested in improving the
state of the art of automated deduction methods for Separation Logic (SL).
The event took place twice until now and collected more than 1K problems for
different fragments of SL. The input format of problems is based on the SMT-LIB
format and therefore fully typed; only one new command is added to SMT-LIB’s
list, the command for the declaration of the heap’s type. The SMT-LIB theory
of SL comes with ten logics, some of them being combinations of SL with lin-
ear arithmetic. The competition’s divisions are defined by the logic fragment,
the kind of decision problem (satisfiability or entailment), and the presence of
quantifiers. Until now, SL-COMP has been run on the StarExec platform,
where the benchmark set and the binaries of participant solvers are freely avail-
able. The benchmark set is also available with the competition’s documentation
on a public repository in GitHub.

https://www.satcompetition.org/
https://sl-comp.github.io/
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2.12 SMT-COMP

Organizer: Matthias Heizmann (Univ. of Freiburg, Germany), Aina Niemetz
(Stanford Univ., USA), Giles Reger (Univ. of Manchester, UK), and Tjark Weber
(Uppsala Univ., Sweden)
Webpage: http://www.smtcomp.org

Satisfiability Modulo Theories (SMT) is a generalization of the satisfiability
decision problem for propositional logic. In place of Boolean variables, SMT
formulas may contain terms that are built from function and predicate symbols
drawn from a number of background theories, such as arrays, integer and real
arithmetic, or bit-vectors. With its rich input language, SMT has applications
in software engineering, optimization, and many other areas.

The International Satisfiability Modulo Theories Competition (SMT-COMP)
is an annual competition between SMT solvers. It was instituted in 2005,
and is affiliated with the International Workshop on Satisfiability Modulo
Theories. Solvers are submitted to the competition by their developers, and
compete against each other in a number of tracks and divisions. The main goals
of the competition are to promote the community-designed SMT-LIB format, to
spark further advances in SMT, and to provide a useful yardstick of performance
for users and developers of SMT solvers.

2.13 SV-COMP: Competition on Software Verification

Organizer: Dirk Beyer (LMU Munich, Germany)
Webpage: https://sv-comp.sosy-lab.org/

The 2019 International Competition on Software Verification (SV-COMP) is the
8th edition in a series of annual comparative evaluations of fully-automatic tools
for software verification. The competition was established and first executed in
2011 and the first results were presented and published at TACAS 2012 [17].
The most important goals of the competition are the following:

1. Provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers.

2. Establish a repository of software-verification tasks that is publicly available
for free as standard benchmark suite for evaluating verification software2.

3. Establish standards that make it possible to compare different verification
tools, including a property language and formats for the results, especially
witnesses.

4. Accelerate the transfer of new verification technology to industrial practice.

The benchmark suite for SV-COMP 2019 [23] consists of nine categories
with a total of 10 522 verification tasks in C and 368 verification tasks in Java.
A verification task (benchmark instance) in SV-COMP is a pair of a program M

2 https://github.com/sosy-lab/sv-benchmarks

http://www.smtcomp.org
https://sv-comp.sosy-lab.org/
https://github.com/sosy-lab/sv-benchmarks
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and a property φ, and the task for the solver (here: verifier) is to verify the state-
mentM |= φ, that is, thebenchmarkedverifier should returnfalseandaviolation
witness that describes a property violation [26,30], or true and a correctness wit-
ness that contains invariants to re-establish the correctness proof [25]. The ranking
is computed according to a scoring schema that assigns a positive score (1 and 2)
to correct results and a negative score (−16 and−32) to incorrect results, for tasks
with and without property violations, respectively. The sum of CPU time of the
successfully solved verification tasks is the tie-breaker if two verifiers have the same
score. The results are also illustrated using quantile plots.3

The 2019 competition attracted 31 participating teams from 14 countries.
This competition included Java verification for the first time, and this track
had four participating verifiers. As before, the large jury (one representative
of each participating team) and the organizer made sure that the competition
follows high quality standards and is driven by the four important principles of
(1) fairness, (2) community support, (3) transparency, and (4) technical accuracy.

2.14 termComp: The Termination and Complexity Competition

Organizer: Akihisa Yamada (National Institute of Informatics, Japan)
Steering Committee: Jürgen Giesl (RWTH Aachen Univ., Germany), Albert
Rubio (Univ. Politècnica de Catalunya, Spain), Christian Sternagel (Univ. of
Innsbruck, Austria), Johannes Waldmann (HTWK Leipzig, Germany), and
Akihisa Yamada (National Institute of Informatics, Japan)
Webpage: http://termination-portal.org/wiki/Termination Competition

The termination and complexity competition (termCOMP) focuses on auto-
mated termination and complexity analysis for various kinds of programming
paradigms, including categories for term rewriting, integer transition systems,
imperative programming, logic programming, and functional programming. It
has been organized annually after a tool demonstration in 2003. In all categories,
the competition also welcomes the participation of tools providing certifiable
output. The goal of the competition is to demonstrate the power and advances
of the state-of-the-art tools in each of these areas.

2.15 Test-Comp: Competition on Software Testing

Organizer: Dirk Beyer (LMU Munich, Germany)
Webpage: https://test-comp.sosy-lab.org/

The 2019 International Competition on Software Testing (Test-Comp) [24] is the
1st edition of a series of annual comparative evaluations of fully-automatic tools
for software testing. The design of Test-Comp is very similar to the design of
SV-COMP, with the major difference that the task for the solver (here: tester)

3 https://sv-comp.sosy-lab.org/2019/results/

http://termination-portal.org/wiki/Termination_Competition
https://test-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/2019/results/
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is to generate a test suite, which is validated against a coverage property, that
is, the ranking is based on the coverage that the resulting test-suites achieve.

There are several new and powerful tools for automatic software testing
around, but they were difficult to compare before the competition [28]. The
reason had been that so far no established benchmark suite of test tasks was
available and many concepts were only validated in research prototypes. Now
the test-case generators support a standardized input format (for C programs
as well as for coverage properties). The overall goals of the competition are:

• Provide a snapshot of the state-of-the-art in software testing to the
community. This means to compare, independently from particular paper
projects and specific techniques, different test-generation tools in terms of
precision and performance.

• Increase the visibility and credits that tool developers receive. This means
to provide a forum for presentation of tools and discussion of the latest
technologies, and to give the students the opportunity to publish about the
development work that they have done.

• Establish a set of benchmarks for software testing in the community. This
means to create and maintain a set of programs together with coverage
criteria, and to make those publicly available for researchers to be used free
of charge in performance comparisons when evaluating a new technique.

2.16 VerifyThis

Organizers 2019: Carlo A. Furia (Univ. della Svizzera Italiana, Switzerland)
and Claire Dross (AdaCore, France)
Steering Committee: Marieke Huisman (Univ. of Twente, Netherlands),
Rosemary Monahan (National Univ. of Ireland at Maynooth, Ireland), and Peter
Müller (ETH Zurich, Switzerland)
Webpage: http://www.pm.inf.ethz.ch/research/verifythis.html

The aims of the VerifyThis competition are:

• to bring together those interested in formal verification,
• to provide an engaging, hands-on, and fun opportunity for discussion, and
• to evaluate the usability of logic-based program verification tools in a

controlled experiment that could be easily repeated by others.

The competition offers a number of challenges presented in natural language
and pseudo code. Participants have to formalize the requirements, implement a
solution, and formally verify the implementation for adherence to the specification.

There are no restrictions on the programming language and verification
technology used. The correctness properties posed in problems will have the
input-output behaviour of programs in focus. Solutions will be judged for cor-
rectness, completeness, and elegance.

VerifyThis is an annual event. Earlier editions were held at FoVeOos (2011),
FM (2012), and since 2015 annually at ETAPS.

http://www.pm.inf.ethz.ch/research/verifythis.html
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3 On the Future of Competitions

In this paper, we have provided an overview of the wide spectrum of
different competitions and challenges. Each competition can be distinguished
by its specific problem profile, characterized by analysis goals, resource and
infrastructural constraints, application areas, and dedicated methodologies.
Despite their differences, these competitions and challenges also have many
similar concerns, related to, e.g., (1) benchmark selection, maintenance, and
archiving, (2) evaluation and rating strategies, (3) publication and replicability
of results, as well as (4) licensing issues.

TOOLympics aims at leveraging the potential synergy by supporting a
dialogue between competition organizers about all relevant issues. Besides
increasing the mutual awareness about shared concerns, this also comprises:

• the potential exchange of benchmarks (ideally supported by dedicated
interchange formats), e.g., from high-level competitions like VerifyThis,
SV-COMP, and RERS to more low-level competitions like SMT-COMP,
CASC, or the SAT competition,

• the detection of new competition formats or the aggregation of existing
competition formats to establish a better coverage of verification problem
areas in a complementary fashion, and

• the exchange of ideas to motivate new participants, e.g., by lowering the
entrance hurdle.

There have been a number of related initiatives with the goal of increasing
awareness for the scientific method of evaluating tools in a competition-based
fashion, like the COMPARE workshop on Comparative Empirical Evaluation
of Reasoning Systems [63], the Dagstuhl seminar on Evaluating Software Ver-
ification Systems in 2014 [27], the FLoC Olympics Games 20144 and 20185,
and the recent Lorentz Workshop on Advancing Verification Competitions as a
Scientific Method6. TOOLympics aims at joining forces with all these initiatives
in order to establish a comprehensive hub where tool developers, users, partic-
ipants, and organizers may meet and discuss current issues, share experiences,
compose benchmark libraries (ideally classified in a way that supports cross
competition usage), and develop ideas for future directions of competitions.

Finally, it is important to note that competitions have resulted in significant
progress in the research areas that they belong to, respectively. Typically, new
techniques and theories have been developed, and tools have become much
stronger and more mature. This sometimes means that a disruption in the way
that the competitions are handled is needed, in order to adapt the competition
to these evolutions. It is our hope that platforms such as TOOLympics facilitate
and improve this process.

4 https://vsl2014.at/olympics/
5 https://www.floc2018.org/floc-olympic-games/
6 https://www.lorentzcenter.nl/lc/web/2019/1091/info.php3?wsid=1091

https://vsl2014.at/olympics/
https://www.floc2018.org/floc-olympic-games/
https://www.lorentzcenter.nl/lc/web/2019/1091/info.php3?wsid=1091
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29. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y, https://www.sosy-lab.org/research/
pub/2019-STTT.Reliable Benchmarking Requirements and Solutions.pdf

30. Beyer, D., Wendler, P.: Reuse of verification results: Conditional model checking,
precision reuse, and verification witnesses. In: Proc. SPIN, LNCS, vol. 7976, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39176-7 1

31. Beyer, D., Stahlbauer, A.: BDD-based software verification. Int. J. Softw. Tools
Technol. Transfer 16(5), 507–518 (2014)

32. Bormer, T., Brockschmidt, M., Distefano, D., Ernst, G., Filliâtre, J.C., Grig-
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1 Introduction

The Confluence Competition (CoCo)1 is an annual competition of software tools
that aim to prove or disprove confluence and related (undecidable) properties
of a variety of rewrite formalisms automatically. Initiated in 2012, CoCo runs
live in a single slot at a conference or workshop and is executed on the cross-
community competition platform StarExec [1]. For each category, 100 suitable
problems are randomly selected from the online database of confluence problems
(COPS). Participating tools must answer YES or NO within 60 s, followed by a
justification that is understandable by a human expert; any other output signals
that the tool could not determine the status of the problem. CoCo 2019 features
new categories on commutation, infeasibility problems, and confluence of string
rewrite systems.

Confluence provides a general notion of determinism and has been conceived
as one of the central properties of rewriting. A rewrite system R is a set of
directed equations, so called rewrite rules, which induces a rewrite relation →R
on terms. We provide a simple example.

Example 1. Consider the rewrite system R consisting of the rules

0 + y → y 0 × y → y

s(x) + y → s(x + y) s(x) × y → (x × y) + y

1 http://project-coco.uibk.ac.at/.
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Fig. 1. Confluence.

which can be viewed as a specification of addition and multiplication over natural
numbers in unary notation. Computing 2 × (1 + 2) amounts to evaluating the
term s = s(s(0)) × (s(0) + s(s(0))). This is done by matching a subterm with the
left-hand side of a rewrite rule, and if matching succeeds, replacing that subterm
by the right-hand side of the rule after applying the matching substitution to its
variables. For instance, the subterm s(0)+ s(s(0)) of s matches the left-hand side
of the rule s(x)+y → s(x+y), with matching substitution {x �→ 0, y �→ s(s(0))}.
Hence the subterm can be replaced by s(0 + s(s(0))). It follows that s rewrites
(in a single step) to the term t = s(s(0))× s(0+ s(s(0))). Continuing this process
from t eventually results in the term s(s(s(s(s(s(0)))))). This term cannot be
simplified further. Such terms are called normal forms.

In the above example there are several ways to evaluate the term s. The
choice does not matter since all maximal rewrite sequences terminate in the
same normal form, which is readily checked. This property not only holds for the
term s, but for all terms that can be constructed from the symbols in the rules.
Confluence is the property that guarantees this. A rewrite system R is confluent
if the inclusion ∗

R← · →∗
R ⊆ →∗

R · ∗
R← holds. Here →∗

R denotes the transitive
reflexive closure of the one-step rewrite relation →R, ∗

R← denotes the inverse
of →∗

R, and · denotes relational composition. A more graphical definition of
confluence is presented in Fig. 1. The precise notions of rewrite rules, associated
rewrite steps, and terms to be rewritten vary from formalism to formalism.

2 Categories

In recent years the focus in confluence research has shifted towards the develop-
ment of automatable techniques for confluence proofs. To stimulate these devel-
opments the Confluence Competition has been set up in 2012. Since its creation
with 4 tools competing in 2 categories, CoCo has grown steadily and will feature
the following 12 categories in 2019:

TRS/CPF-TRS The two original categories are about confluence of first-order
term rewriting. CPF-TRS is a category for certified confluence proofs, where
participating tools must generate certificates that are checked by an indepen-
dent certifier.



Confluence Competition 2019 27

CTRS/CPF-CTRS These two categories, introduced respectively in 2014 and
2015, are concerned (certified) confluence of conditional term rewriting, a
formalism in which rewrite rules come equipped with conditions that are
evaluated recursively using the rewrite relation.

HRS This category, introduced in 2015, deals with confluence of higher-order
rewriting, i.e., rewriting with binders and functional variables.

GCR This category is about ground confluence of many-sorted term rewrite
systems and was also introduced in 2015.

NFP/UNC/UNR These three categories, introduced in 2016, are about prop-
erties of first-order term rewrite systems related to unique normal forms,
namely, the normal form property (NFP), unique normal forms with respect
to conversion (UNC), and unique normal forms with respect to reduction
(UNR).

COM This new category is about commutation of first-order rewrite systems.
INF This new category is about infeasibility problems.
SRS This new category is concerned with confluence of string rewriting.

The new categories are described in detail in Sect. 5. Descriptions of the other
categories can be found in the CoCo 2015 [2] and 2018 [3] reports, and on the
CoCo website (see Footnote 1). The underlying problem format is the topic of
the next section.

3 Confluence Problems

Tools participating in CoCo are given problems from the database of confluence
problems (COPS)2 in a format suitable for the category in which the tools par-
ticipate. Besides commutation and infeasibility problems, which are described in
Sect. 5, four different formats are supported: TRS, CTRS, MSTRS, and HRS.
As these formats were simplified recently, we present the official syntax below in
four subsections.

In addition to the format, tags are used to determine suitable problems for
CoCo categories. For instance, for the CTRS category, selected problems must
have the 3 ctrs and oriented tags. Such tags are automatically computed when
problems are submitted to COPS. Detailed information on COPS, including a
description of the tagging mechanism, can be found in [4].

3.1 TRS Format

The format for first-order rewrite systems comes in two versions: a basic version
and an extended version. The latter contains an additional signature declaration
which is used to define function symbols that do not appear in the rewrite rules.

2 https://cops.uibk.ac.at/.

https://cops.uibk.ac.at/
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The basic format is a simplification of the old TPDB format,3 according to
the following grammar:

trs ::= [(VAR idlist )] (RULES rulelist ) [(COMMENT string )]

idlist ::= ε | id idlist

rulelist ::= ε | rule rulelist

rule ::= term -> term

term ::= id | id () | id (termlist )

termlist ::= term | term , termlist

Here string is any sequence of characters and id is any nonempty sequence
of characters not containing whitespace, the characters (, ), ", ,, |, \, and the
sequences ->, ==, COMMENT, VAR, and RULES. In (VAR idlist) the variables of the
TRS are declared. If this is missing, the TRS is ground. Symbols (id ) appearing
in the (RULES rulelist) declaration that were not declared as variables are func-
tion symbols. If they appear multiple times, they must be used with the same
number (arity) of arguments. Here is an example of the basic format, COPS #1:

(VAR x y)

(RULES

f(x,y) -> x

f(x,y) -> f(x,g(y))

g(x) -> h(x)

F(g(x),x) -> F(x,g(x))

F(h(x),x) -> F(x,h(x))

)

(COMMENT

doi:10.1007/BFb0027006

[1] Example 6

submitted by: Takahito Aoto, Junichi Yoshida, and Yoshihito Toyama

)

In the extended format, a signature declaration specifying the set of function
symbols and their arities is added. In this format, every symbol appearing in
the rules must be declared as a function symbol or a variable. Formally, the trs

declaration in the basic format is replaced by

trs ::= [(VAR idlist )] (SIG funlist ) (RULES rulelist )

[(COMMENT string )]

funlist ::= ε | fun funlist

fun ::= (id int )

where int is a nonempty sequence of digits. An example of the extended format
is provided by COPS #557:

3 https://www.lri.fr/∼marche/tpdb/format.html.

https://www.lri.fr/~marche/tpdb/format.html
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(VAR x y z)

(SIG (f 2) (a 0) (b 0) (c 0))

(RULES

a -> b

f(x,a) -> f(b,b)

f(b,x) -> f(b,b)

f(f(x,y),z) -> f(b,b)

)

(COMMENT

[111] Example 1 with additional constant c

submitted by: Franziska Rapp

)

3.2 CTRS Format

The format for first-order conditional rewrite systems is a simplification of the
old TPDB format (see Footnote 3), according to the following grammar:

ctrs ::= (CONDITIONTYPE ctype ) [(VAR idlist )] (RULES rulelist )

[(COMMENT string )]

ctype ::= SEMI-EQUATIONAL | JOIN | ORIENTED

idlist ::= ε | id idlist

rulelist ::= ε | rule rulelist

rule ::= term -> term | term -> term ‘|’ condlist

condlist ::= cond | cond , condlist

cond ::= term == term

term ::= id | id () | id (termlist )

termlist ::= term | term , termlist

The restrictions on id and string are the same as in the TRS format. The
ctype declaration specifies the semantics of the conditions in the rewrite rules:
conversion (↔∗) for semi-equational CTRSs, joinability (↓) for join CTRSs, and
reachability (→∗) for oriented CTRSs. An example of the CTRS format is pro-
vided by COPS #488:

(CONDITIONTYPE ORIENTED)

(VAR w x y z)

(RULES

plus(0, y) -> y

plus(s(x), y) -> s(plus(x, y))

fib(0) -> pair(0, s(0))

fib(s(x)) -> pair(z, w) | fib(x) == pair(y, z), plus(y, z) == w

)

(COMMENT

doi:10.4230/LIPIcs.RTA.2015.223

[89] Example 1

submitted by: Thomas Sternagel

)
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3.3 MSTRS Format

The format for many-sorted term rewrite systems is a modification of the TRS
format, according to the following grammar:

trs ::= (SIG funlist ) (RULES rulelist ) [(COMMENT string )]

funlist ::= fun | fun funlist

fun ::= (id sort )

sort ::= idlist -> id

idlist ::= ε | id idlist

rulelist ::= ε | rule rulelist

rule ::= term -> term

term ::= id | id () | id (termlist )

termlist ::= term | term , termlist

The restriction on id is the same as in the TRS format. Every term must be
a well-typed term according the signature declared in (SIG funlist). Symbols
(id ) not declared in funlist are variables (which can take any sort). We provide
an example (COPS #646):

(SIG

(+ Nat Nat -> Nat)

(s Nat -> Nat)

(0 -> Nat)

(node Nat Tree Tree -> Tree)

(leaf Nat -> Tree)

(sum Tree -> Nat)

)

(RULES

sum(leaf(x)) -> x

sum(node(x,yt,zt)) -> +(x,+(sum(yt),sum(zt)))

+(x,0) -> x

+(x,s(y)) -> s(+(x,y))

node(x,yt,zt) -> node(x,zt,yt)

)

(COMMENT

[125] Example 13

submitted by: Takahito Aoto

)

3.4 HRS Format

This format deals with higher-order rewrite systems (HRSs) described by Mayr
and Nipkow [5] with small modifications detailed below the typing rules. The
format follows the same style as the first-order formats, adding type declarations
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to variables and function symbols as well as syntax for abstraction and applica-
tion according to the following grammar:

hrs ::= signature (RULES rulelist ) [(COMMENT string )]

signature ::= (VAR sig ) (FUN sig ) | (FUN sig ) (VAR sig )

sig ::= ε | id : type sig

type ::= type -> type | id | (type )

rulelist ::= ε | rule | rule , rulelist

rule ::= term -> term

term ::= id | term (termlist ) | term term | \idlist.term | (term )

termlist ::= term | term , termlist

idlist ::= id | id idlist

In (FUN sig) the function symbols of the HRS are declared, while (VAR sig)

declares the types of the variables that are used in the rules. An identifier must
not occur in both the (FUN sig) and (VAR sig) sections, but all identifiers that
occur in the (RULES rulelist) section must occur in one of them. To save paren-
theses the following standard conventions are used: In type , -> associates to the
right. For terms, application associates to the left, while abstraction associates to
the right. Moreover abstractions extend as far to the right as possible, i.e., appli-
cation binds stronger than abstraction. The algebraic notation term(termlist)

is syntactic sugar for nested application, i.e., t(u,...,v) is syntactic sugar for
(... (t u) ...) v; note that due to left-associativity of application, s t(u,v)

= (s t)(u,v) = (((s t) u) v). Finally, the expression \x ... y.s abbreviates
\x. ... \y.s. Terms must be typable according to the following rules:

x : σ ∈ VAR

x : σ

f : σ ∈ FUN

f : σ

t : σ → τ u : σ

t u : τ

x : σ ∈ VAR t : τ

\x.t : σ → τ

Terms are modulo αβη. In the interest of user-friendliness and readability
we demand that the rules are given in β-normal form, but do not impose any
restrictions concerning η. Note that the list of variables declared in (VAR sig) is
not exhaustive, fresh variables of arbitrary type are available to construct terms.
Left- and right-hand sides of a rewrite rule must be of the same base type, but
we do not demand that free variables appearing on the right also occur on the
left. An example of the HRS format is provided by COPS #747:
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(FUN

app : arrab -> a -> b

lam : (Va -> b) -> arrab

var : Va -> a

)

(VAR

x : Va

M : a -> b

N : a

L : arrab

)

(RULES

app(lam(\x.M (var x)), N) -> M N,

lam(\x.app(L, (var x))) -> L

)

(COMMENT

simply-typed lambda calculus with beta/eta in the style of [137,138]

submitted by: Makoto Hamana

)

4 Competition

Since 2012 a total of 17 tools participated in CoCo. Many of the tools participated
in multiple categories. The proceedings of the International Workshop on Con-
fluence4 contain (short) descriptions of the contenders. For each category, 100
problems are randomly selected from COPS. Problem selection for CoCo 2019
is subject to the following constraints. For the TRS, CPF-TRS, NFP, UNC,
and UNR categories, problems in TRS format are selected. The problems for
the SRS category are further restricted to those having the srs tag. For the
CTRS and CPF-CTRS categories, problems must be in CTRS format and have
the tags 3 ctrs and oriented, since participating tools handle only oriented
CTRSs of type 3. In an oriented CTRS the conditions in the rules are inter-
preted as reachability and type 3 is a syntactic restriction on the distribution of
variables in rewrite rules which ensure that rewriting does not introduce fresh
variables [6]. For the GCR category, eligible problems must be in TRS or MSTRS
format. Being in HRS format is a prerequisite for problems to be selected for
the HRS category. For the new COM and INF categories, problems must have
the commutation and infeasibility tags, respectively. The respective formats
are described in the next section. New in 2019 is the possibility for tool authors
to submit secret problems just before the competition. These will be included in
the selected problems.

Earlier editions of CoCo only considered problems stemming from the litera-
ture. This restriction was put in place to avoid bias towards one particular tool

4 http://cl-informatik.uibk.ac.at/iwc/index.php.

http://cl-informatik.uibk.ac.at/iwc/index.php
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or technique. Since both COPS and CoCo have grown and diversified consid-
erably since their inception, this restriction has become hard to maintain in a
meaningful way, while at the same time losing its importance. Consequently it
has been dropped for CoCo 2019. Further selection details are available from the
CoCo website.

Since 2013 CoCo is executed on the cross-community competition platform
StarExec [1]. Each tool has access to a single node and is given 60 s per problem.
For a given problem, tools must answer YES or NO, followed by a justification
that is understandable by a human expert; any other output signals that the
tool could not determine the status of the problem. The possibility in StarExec
to reserve a large number of computing nodes allows to complete CoCo within
a single slot of a workshop or conference. This live event of CoCo is shared with
the audience via the LiveView [4] tool which continuously polls new results from
StarExec while the competition is running. A screenshot of the LiveView of CoCo
2018 is shown in Fig. 2. New is the realtime display of YES/NO conflicts. Since
all categories deal with undecidable problems, and developing software tools is
error-prone, conflicts appear once a while. In the past they were identified after
the live competition finished, now action by the SC can be taken before winners
are announced. As can be seen from the screenshot, in last year’s competition
there was a YES/NO conflict in the HRS category, which led to lively discussion
about the semantics of the HRS format. After each competition, the results are
made available from the results page.5

Fig. 2. Part of the LiveView of CoCo 2018 upon completion.

5 http://project-coco.uibk.ac.at/results/.

http://project-coco.uibk.ac.at/results/
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The certification categories (CPF-TRS and CPF-CTRS) are there to ensure
that tools produce correct answers. In these categories tools have to produce
certified (non-)confluence proofs with their answers. The predominant approach
to achieve this uses a combination of confluence prover and independent certifier.
First the confluence prover analyses confluence as usual, restricting itself to
criteria supported by the certifier. If it is successful the prover prints its proof in
the certification problem format (CPF),6 which is then checked by the certifier.
To ensure correctness of this check, soundness of the certifier is mechanized in
a proof assistant like Isabelle/HOL. So far only one certifier has participated in
CoCo: CeTA.7

5 New Categories in 2019

5.1 Commutation

TRSs R and S commute if the inclusion ∗
R← · →∗

S ⊆ →∗
S · ∗

R← holds. Commuta-
tion is an important generalization of confluence: Apart from direct applications
in rewriting, e.g. for confluence,8 standardization, normalization, and relative
termination, commutation is the basis of many results in computer science, like
correctness of program transformations [7], and bisimulation up-to [8].

Currently, commutation is supported by the tools CoLL [9] and FORT [10].
The former supports commutation versions of three established confluence tech-
niques: development closedness [11], rule labeling [12], and an adaption of a con-
fluence modulo result by Jouannaud and Kirchner [13]. The latter is a decision
tool for the first-order theory of rewriting based on tree automata techniques,
but restricted to left-linear right-ground TRSs.

Commutation problems consist of two TRSs R and S. The question to be
answered is whether these commute. To ensure compatibility of the signatures of
the involved TRSs, we rename function symbols and variables in S on demand.
Before we describe this precisely, we give an example of a commutation problem
that illustrates the problem.

Consider COPS #82 (consisting of the rewrite rules f(a) → f(f(a)) and
f(x) → f(a)) and COPS #80 (consisting of a → f(a, b) and f(a, b) → f(b, a)).
Since function symbol f is unary in COPS #82 and binary in COPS #80, it is
renamed to f′ in COPS #80:

6 http://cl-informatik.uibk.ac.at/software/cpf/.
7 http://cl-informatik.uibk.ac.at/software/ceta/.
8 The union of confluent, pairwise commuting rewrite systems is confluent.

http://cl-informatik.uibk.ac.at/software/cpf/
http://cl-informatik.uibk.ac.at/software/ceta/
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(PROBLEM COMMUTATION)

(COMMENT COPS 82 80)

(VAR x)

(RULES

f(a) -> f(f(a))

f(x) -> f(a)

)

(VAR )

(RULES

a -> f’(a,b)

f’(a,b) -> f’(b,a)

)

The correct answer of this commutation problem is YES since the critical peak
of R and S makes a decreasing diagram [12]. In COPS this problem is given as

(PROBLEM COMMUTATION)

(COPS 82 80)

(COMMENT this comment will be removed)

and an inlining tool generates the earlier problem before it is passed to tools
participating in the commutation category. In general, commutation problems
are incorporated into COPS as follows:

(PROBLEM COMMUTATION)

(COPS number1 number2 )

(COMMENT string )

where number1 and number2 refer to existing problems in TRS format. The
(COMMENT string) declaration is optional. To ensure that their union is a proper
TRS, the inlining tool renames function symbols in COPS #number2 that appear
as variable or as function symbol with a different arity in COPS #number1 by
adding a prime (′). The same holds for variables in COPS #number2 that occur
as function symbol in COPS #number1 .

5.2 Infeasibility Problems

Infeasibility problems originate from different sources. Critical pairs in a condi-
tional rewrite system are equipped with conditions. If no satisfying substitution
for the variables in the conditions exists, the critical pair is harmless and can be
ignored when analyzing confluence of the rewrite system in question. In this case
the critical pair is said to be infeasible [14, Definition 7.1.8]. Sufficient conditions
for infeasibility of conditional critical pairs are reported in [15,16].

Another source of infeasibility problems is the dependency graph in termi-
nation analysis of rewrite systems [17]. An edge from dependency pair �1 → r1
to dependency pair �2 → r2 exists in the dependency graph if two substitutions
σ and τ can be found such that r1σ rewrites to �2τ . (By renaming the variables
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in the dependency pairs apart, a single substitution suffices.) If no substitutions
exists, there is no edge, which may ease the task of proving termination of the
underlying rewrite system [18,19].

We give two examples. The first one stems from the conditional critical pair
between the two conditional rewrite rules in COPS #547:

(PROBLEM INFEASIBILITY)

(COMMENT COPS 547)

(CONDITIONTYPE ORIENTED)

(VAR x)

(RULES

f(x) -> a | x == a

f(x) -> b | x == b

)

(VAR x)

(CONDITION x == a, x == b)

The correct answer of this infeasibility problem is YES since no term in the
underlying conditional rewrite system rewrites to both a and b. In COPS this
problem is given as

(PROBLEM INFEASIBILITY)

(COPS 547)

(VAR x)

(CONDITION x == a, x == b)

(COMMENT

doi:10.4230/LIPIcs.FSCD.2016.29

[90] Example 3

submitted by: Raul Gutierrez and Salvador Lucas

)

and an inlining tool generates the earlier problem before it is passed to tools
participating in the infeasibility category.

The second example is a special case since the condition in the infeasibility
problem contains no variables:

(PROBLEM INFEASIBILITY)

(COMMENT COPS 47)

(VAR x)

(RULES

F(x,x) -> A

G(x) -> F(x,G(x))

C -> G(C)

)

(CONDITION G(A) == A)
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has YES as correct answer since the term G(A) does not rewrite to A. This answer
can be used to conclude that the underlying rewrite system is not confluent.
Again, in COPS this problem is rendered as

(PROBLEM INFEASIBILITY)

(COPS 47)

(CONDITION G(A) == A)

(COMMENT this comment will be removed)

In general, infeasibility problems are incorporated into COPS as follows:

(PROBLEM INFEASIBILITY)

(COPS number )

(VAR idlist )

(CONDITION condlist )

(COMMENT string )

where

condlist ::= cond | cond , condlist

cond ::= term == term

has the same syntax as the conditional part of a conditional rewrite rule and
number refers to an existing problem in CTRS or TRS format. If it is a CTRS then
the semantics of == is the same as declared in the (CONDITIONTYPE ctype) declara-
tion of the CTRS; if it is a TRS then the semantics of == is ORIENTED (reachability,
→∗). Variables declared in idlist are used as variables in condlist . The (VAR

idlist) declaration can be omitted if the terms in condlist are ground. Com-
mon function symbols occurring in COPS #number and condlist have the same
arity. Moreover, function symbols in COPS #number do not occur as variables
in (VAR idlist) and function symbols in condlist do not occur as variables in
COPS #number .

5.3 String Rewriting

String rewrite systems (SRSs) are special TRSs in which terms are strings. To
ensure that the infrastructure developed for TRSs can be reused, we use the
TRS format with the restriction that all function symbols are unary. So a string
rule ab → ba is rendered as a(b(x)) → b(a(x)) where x is a variable. A concrete
example (COPS #442) is given below:
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(VAR x)

(RULES

f(f(x)) -> x

f(x) -> f(f(x))

)

(COMMENT

doi:10.4230/LIPIcs.RTA.2015.257

[81] Example 1

)

The correct answer of this problem is YES since the addition of the redundant
rules [20] f(x) -> f(f(f(x))) and f(x) -> x makes the critical pairs of the
SRS development closed [11].

The SRS category has been established to stimulate further research on con-
fluence of string rewriting. In the Termination Competition9 there is an active
community developing powerful techniques for (relative) termination of SRSs.
We anticipate that these are beneficial when applied to confluence analysis.

6 Outlook

In the near future we plan to merge CoCo with COPS and CoCoWeb,10 a con-
venient web interface to execute the tools that participate in CoCo without local
installation, to achieve a single entry point for confluence problems, tools, and
competitions. Moreover, the submission interface of COPS will be extended with
functionality to support submitters of new problems as well as the CoCo SC.
We anticipate that in the years ahead new categories will be added to CoCo.
Natural candidates are rewriting modulo AC and nominal rewriting.
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Abstract. We review the first five years of the international Compe-
tition on Runtime Verification (CRV), which began in 2014. Runtime
verification focuses on verifying system executions directly and is a use-
ful lightweight technique to complement static verification techniques.
The competition has gone through a number of changes since its intro-
duction, which we highlight in this paper.

1 Introduction

Runtime verification (RV) is a class of lightweight scalable techniques for the
analysis of system executions [5,7,17,18]. The field of RV is broad and encom-
passes many techniques. The competition has considered a significant subset
of techniques concerned with the analysis of user-provided specifications, where
executions are checked against a property expressed in a formal specification
language. The core idea of RV is to instrument a software/hardware system so
that it can emit events during its execution. The sequence of such events (the
so-called trace) is then processed by a monitor that is automatically generated
from the specification. One usually distinguishes online from offline monitoring,
depending on whether the monitor runs with the system or post-mortem (and
thus collects events from a trace).

In 2014, we observed that, in spite of the growing number of RV tools devel-
oped over the previous decade, there was a lack of standard benchmark suites as
well as scientific evaluation methods to validate and test new techniques. This
observation motivated the promotion of a venue1 dedicated to comparing and
evaluating RV tools in the form of a competition. The Competition on Run-
time Verification (CRV) was established as a yearly event in 2014 and has been
organized as a satellite event of the RV conference since then [4,6,19,32,33].

1 https://www.rv-competition.org/.
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Over the last five years, the competition has helped to shape the development
of new tools and evaluation methods but the broad objectives of the competitions
remain the same. CRV aims to:

– stimulate the development of new efficient and practical runtime verification
tools and the maintenance of the already developed ones;

– produce benchmark suites for runtime verification tools, by sharing case stud-
ies and programs that researchers and developers can use in the future to test
and to validate their prototypes;

– discuss the metrics employed for comparing the tools;
– compare different aspects of the tools running with different benchmarks and

evaluating them using different criteria;
– enhance the visibility of presented tools among different communities (ver-

ification, software engineering, distributed computing and cyber-security)
involved in monitoring.

Related Work. Over the last two decades, we have witnessed the establishment
of several software tool competitions [1,3,9,22–24,34] with the goal of advancing
the state-of-the-art in the computer-aided verification technology.

In particular, in the area of software verification, there are three related
competitions: SV-COMP [9], VerifyThis [23] and the RERS Challenge [22].

SV-COMP targets tools for software model checking, while CRV is dedicated
to monitoring tools analyzing only a single program’s execution using runtime
and offline verification techniques. While in software model checking the veri-
fication process is separated from the program execution, runtime verification
tools introduce instead an overhead for the monitored program and they consume
memory resources affecting the execution of the program itself. As a consequence
CRV assigns a score to both the overhead and the memory utilization. Another
related series of competitions are VerifyThis [23] and the Rigorous Examina-
tion of Reactive Systems (RERS) challenge [22] that provide to the participants
verification problems to be solved. On the contrary of CRV format, these com-
petitions are problem centred and focus on the problem solving skills of the
participants rather than on the tool characteristics and performance.

In the remainder of this paper, we discuss the early years of the competi-
tion during 2014–2016 (Sect. 2), the activities held in 2017 and 2018 that have
shifted the focus of the competition (Sect. 3), and what the future holds for the
competition in 2019 and beyond (Sect. 4).

2 The Early Years: 2014–2016

The early competition was organized into three different tracks: (1) offline
monitoring, (2) online monitoring of C programs, and (3) online monitoring
of Java programs. The competition spanned over several months before the
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announcement of results during the conference. The competition consisted of
the following steps:

1. Registration collected information about participants.
2. Benchmark Phase. In this phase, participants submitted benchmarks to

be considered for inclusion in the competition.

Table 1. Participants in CRV between 2014 and 2016.

Offline Track Online C Track Online Java Track

AgMon [26] E-ACSL [14] JavaMOP [25]

BeepBeep3 [20] MarQ [2] JUnitRV [13]

Breach RiTHM-1 [29] Larva [10]

CRL [31] RTC [28] MarQ [2]

LogFire [21] RV-Monitor [27] Mufin [12]

MonPoly [8] TimeSquare [11] RV-Monitor [27]

MarQ [2]

OCLR-Check [16]

OptySim [15]

RiTHM-2 [29]

RV-Monitor [27]

3. Clarification Phase. The benchmarks resulting from the previous phase
were made available to participants. This phase gave participants an oppor-
tunity to seek clarifications from the authors of each benchmark. Only bench-
marks that had all clarifications dealt with by the end of this phase were
eligible for the next phase.

4. Monitor Phase. In this phase, participants were asked to produce monitors
for the eligible benchmarks. Monitors had to be runnable via a script on a
Linux system. Monitor code should be generated from the participant’s tool
(therefore the tool had to be installable on a Linux system).

5. Evaluation Phase. Submissions from the previous phase were collected and
executed, with relevant data collected to compute scores as described later.
Participants were given an opportunity to test their submissions on the eval-
uation system. The outputs produced during the evaluation phase were made
available after the competition.

Input Formats. The competition organizers fixed input formats for traces in the
offline track. These were based on XML, JSON, and CSV and evolved between
the first and second years of the competition based on feedback from participants.
The CSV format proved the most popular for its simplicity and is now used by
many RV tools. See the competition report from 2015 [19] for details.
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Participants. Over the first three years of the competition 14 different RV tools
competed in the competition in the different tracks. These are summarized in
Table 1. One of these tools, Mufin, was written specifically in response to the
competition and all tools were extended or modified to handle the challenges
introduced by the competition.

Benchmarks. Benchmarks, as submitted by the participants, should adhere to
requirements that ensured compliance with the later phases of the competi-
tion. This also ensured uniformity between benchmarks and was also the first
step in building a benchmark repository dedicated to Runtime Verification. A
benchmark contains two packages: a program/source package and a specification
package. The program/source package includes the traces or the source of the
program as well as scripts to compile and run it. In these early years of the com-
petition, we chose to focus on closed, terminating and deterministic programs.
The specification package includes an informal and a formal description (in some
logical formalism), the instrumentation information (i.e., what in the program
influences the truth-value of the specification), and the verdict (i.e., how the
specification evaluates w.r.t. the program or trace).

In these three competitions, over 100 benchmarks were submitted and eval-
uated. All benchmarks are available from the competition website2 organized in
a repository for each year.

Evaluation Criteria/Scores. Submissions from the participants were evaluated
on correctness and performance. For this purpose, we designed an algorithm that
uses as inputs (i) the verdicts produced by each tool over each benchmark (ii) the
execution time and memory consumption in doing so, and produces as output a
score reflecting the evaluation of the tool regarding correctness and performance
(the higher, the better). Correctness criteria included (i) finding the expected
verdict, absence of crash, and the possibility of expressing the benchmark spec-
ification in the tool formalism. Performance criteria were based on the classical
time and memory overheads (lower is better) with the addition that the score of
a participant accounts for the performance of the other participants (e.g., given
the execution time of a participant, more points would be given if the other
participants performed poorly) using the harmonic mean. Tools were evaluated
against performance, only when they produced a correct result (negative points
were given to incorrect results). A benchmark score was assigned for each tool
against each submitted benchmark, and the tool final score was the sum of all its
benchmark scores. A participant could decide not to compete on a benchmark
and would get a zero score for this benchmark.

Experimental Environment, Availability, Reproducibility, Quality. Git-based
repositories and wiki pages were provided to the participants to share their
benchmarks and submissions. This facilitated the communication and ensured
transparency. To run the experiments, we used DataMill [30], to ensure robust

2 https://www.rv-competition.org/benchmarks/.

https://www.rv-competition.org/benchmarks/
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and reproducible experiments. We selected the most powerful and general-
purpose machine and evaluated all submissions on this machine. DataMill
ensured flexibility and fairness in the experiments. Benchmarks could be setup
and submitted via a Web interface and then be scheduled for execution. DataMill
ensured that only one monitor was running on the machine at a time, in addition
to a minimalist operating system, cleaned between each experiments. Execution
times and memory consumption measures were obtained by averaging 10 execu-
tions. Results were available through the Web interface.

Table 2. Winners of CRV between 2014 and 2016.

Year Offline Track Online C Track Online Java Track

2014 MarQ RiTHM-1 MarQ & JavaMOP (joint)

2015 LogFire E-ACSL Mufin

2016 MarQ - Mufin

Winners. Table 2 indicates the winners in each track in each year. The detailed
results are available from the competition website and associated reports [4,6,
19]. In 2014, the scores in the Online Java track were so close that a joint winner
was announced. In 2016, only one participant entered the C track and the track
was not run. (We note that, more tools have been developed for monitoring Java
programs thanks to the AspectJ support for instrumentation.)

Issues. The early years of the competition were successful in encouraging RV
tool developers to agree on common formats but the number of participants
dropped in each year with two main issues identified:

1. The amount of work required to enter was high. This was mainly due to
the need to translate each benchmark into the specification language of the
entered tool. Common specification languages would address this problem
but there was no agreement on such languages at the time.

2. It was not clear how good the benchmarks were at differentiating tools. More
work was required to understand which benchmarks were useful for evaluating
RV tools.

The next two years of activities addressed these issues as described below.

3 Shifting Focus: 2017–2018

In 2017, the competition was replaced by a workshop (called RV-CuBES) [33]
aimed at reflecting on the experiences of the last three years and discussing future
directions. A workshop was chosen over a competition as there was strong feed-
back from participants in 2016 that the format of the competition should be
revised (mainly to reduce the amount of work required by participants). It was
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decided that this was a good opportunity to reassess the format of the competi-
tion in an open setting. The workshop attracted 12 tool description papers and
5 position papers and led to useful discussion at the 2017 RV conference. A full
account can be found in the associated report.

A suggestion of the workshop was to hold a benchmark challenge focusing on
collecting relevant new benchmarks. Therefore, in 2018 a benchmark challenge
was held with a track for Metric Temporal Logic (MTL) properties and an
Open track. The purpose of the MTL track was to see what happened when
participants were restricted to a single input language whilst the Open track
gave full freedom on the choice of the specification language.

There were two submissions in the MTL track and seven in the Open track.
The submissions in the Open track were generally in much more expressive lan-
guages than MTL and no two submissions used the same specification language.
All submissions were evaluated by a panel of experts and awarded on qualities
in three categories: (1) correctness and reliability (2) realism and challenge and
(3) utility in evaluation. As a result of the evaluation two benchmark sets were
identified for use in future competitions (see below).

4 Back to the Future

The 2019 competition is now in its initial stages and will return to a competition
comparing tools, using the benchmarks from the 2018 challenge. The competition
will use two specification languages: MTL and a future-time first-order temporal
logic. We have chosen to fix two specification languages (with differing levels of
expressiveness) to reduce the overall work for participants. Standardising the
specification language of the competition has been a goal of the competition
from the start and the benchmark challenge has allowed us to pick two good
candidates. MTL was chosen as it can be considered a ‘smallest shared’ specifi-
cation language in terms of expressiveness and usage. Similarly, the future-time
first-order temporal logic was chosen as it can be considered a ‘largest shared’
specification language in terms of expressiveness and usage.

Beyond 2019, there are many opportunities to take the competition in dif-
ferent directions. For example, a key issue in RV is that of specifications. Thus,
when organizing a competition, one may wonder whether a competition could
also focus on evaluating aspects related to specifications (e.g., expressiveness,
succinctness and elegance of specifications). Moreover, in so far, the competi-
tion has neglected the area of hardware monitoring, and the comparison of tools
in such domains remains an open question. We note that there have been less
research efforts on monitoring hardware where instrumentation aspects are more
challenging. The main reasons for common specification languages not being used
in the early years stemmed from two facts: (i) a main research activity in RV con-
sists in developing new languages to have alternative representation of problems
(ii) the monitoring algorithm of an RV tool is often closely coupled to the input
language. Hence, a challenge is to rely on a shared specification language whilst
encouraging research that explores the relationship between input language and
performance or usability.
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control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
360–364. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 27

9. Beyer, D.: Software verification and verifiable witnesses - (report on SV-COMP
2015). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 31

10. Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-time
java programs (tool paper). In: Van Hung, D., Krishnan, P. (eds.) Seventh IEEE
International Conference on Software Engineering and Formal Methods, SEFM
2009, Hanoi, Vietnam, 23–27 November 2009, pp. 33–37. IEEE Computer Society
(2009). https://doi.org/10.1109/SEFM.2009.13. ISBN 978-0-7695-3870-9

11. DeAntoni, J., Mallet, F.: TimeSquare: treat your models with logical time. In:
Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30561-0 4

12. Decker, N., Harder, J., Scheffel, T., Schmitz, M., Thoma, D.: Runtime monitoring
with union-find structures. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016.
LNCS, vol. 9636, pp. 868–884. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49674-9 54

https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-319-11164-3_1
https://doi.org/10.1007/978-3-319-11164-3_1
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1007/978-3-642-30561-0_4
https://doi.org/10.1007/978-3-662-49674-9_54
https://doi.org/10.1007/978-3-662-49674-9_54


48 E. Bartocci et al.

13. Decker, N., Leucker, M., Thoma, D.: jUnitRV–adding runtime verification to jUnit.
In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 459–464.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4 34

14. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for static
and dynamic analysis of C programs. In: Proceedings of SAC 2013: The 28th
Annual ACM Symposium on Applied Computing, pp. 1230–1235. ACM, March
2013

15. Dı́az, A., Merino, P., Salmeron, A.: Obtaining models for realistic mobile network
simulations using real traces. IEEE Commun. Lett. 15(7), 782–784 (2011)

16. Dou, W., Bianculli, D., Briand, L.: A model-driven approach to offline trace check-
ing of temporal properties with OCL. Technical report SnT-TR-2014-5, Interdis-
ciplinary Centre for Security, Reliability and Trust (2014)

17. Falcone, Y.: You should better enforce than verify. In: Barringer, H., et al. (eds.)
RV 2010. LNCS, vol. 6418, pp. 89–105. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16612-9 9

18. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In:
Broy, M., Peled, D.A., Kalus, G. (eds.) Engineering Dependable Software Systems.
NATO Science for Peace and Security Series, D: Information and Communication
Security, vol. 34, pp. 141–175. IOS Press (2013)
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7 Université de Nantes, LS2N, UMR CNRS 6597, 44321 Nantes, France
8 Institut für Informatik, Universität Rostock, 18051 Rostock, Germany
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1 Introduction

The primary goal of the Model Checking Contest (MCC) is to evaluate model-
checking tools that are dedicated to the formal analysis of concurrent systems,
in which several processes run simultaneously, communicate and synchronize
together. The Model Checking Contest has been actively growing since its first
edition in 2011, attracting key people sharing a formal methods background, but
with diverse knowledge and application areas.

Table 1. All the 26 tools which participated over the 9 editions of the Model Checking
Contest (the 2019 edition is not yet completed when this paper is written). Years of
Involvement are noted with a colored cell.

Contributors of models to the benchmarks, tools developers, and the orga-
nizers of the MCC are actively involved in meaningful activities that foster the
growth of the MCC year after year:

– they contribute to the elaboration of the benchmark by regularly providing
specifications to be processed. We currently have 88 models, many having
scaling parameters for a total of 951 instances;
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– they enrich their tools with new features and strategies, often using inputs
from previous editions of the MCC.

So far, all editions of the MCC have been using the standardized description
format for Petri nets to describe the analyzed systems: PNML [24]. PNML is
an ISO/IEC standard that is suitable to describe concurrent systems. The MCC
could appear as being a “Petri net-oriented” competition. However, we observe
that several tools coming from other communities were able to read and exploit
this input format with non-Petri net-based verification engines in a very effi-
cient way. We observe a regular arriving of new tools together with others that
participate for many years. Table 1 summarizes the participating tools over the
years.

This year we propose the following examinations: state space generation,
computation of global properties, computation of 16 queries with regards to
upper bounds in the model, evaluation of 16 reachability formulas, evaluation
of 16 CTL formulas, and evaluation of 16 LTL formulas. Since such formulas
are randomly generated, having severals of them to be processed reduces the
possibility of a bias induced by such a generation (e.g. a single “easy” formula
that would change the classification of tools) Details on organizational issues of
the recent editions of the MCC are presented in [28].

Results are usually presented during the Petri Net conference, and, for the
25th TACAS anniversary, during the TOOLympics. Developer teams usually
submit their tools about 2 months before the presentation of results. Then,
several phases are operated by the organizers:

1. the “qualification phase” that is processed on a reduced set of models and with
a limited time confinement; its objective is to check for the interoperability
of tools with the execution environment so that no mistake could result in a
misuse of the tool or its results;

2. the contest itself where tools are operated on the full benchmark with the
real time confinement;

3. once all results are processed, they can be analyzed by the developers for
last minute validity checks, this last phase ends when results are officially
published.

Usually, we present the results of the MCC1 alongside the Petri Net confer-
ence in June. For the 2019 edition of the MCC, we are joining the TOOLympics
to celebrate TACAS’s 25th anniversary. The goal is also to enable discussions
between organizers and participants of all the verification competitions involved
in this event.

1 See the full history of results on https://mcc.lip6.fr.

https://mcc.lip6.fr
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2 Participating Tools

This section presents a short description of all the tools which identified the
MCC as a target and were able to provide a short description of their tools and
the features they will experiment this year. Note that more participating tools
have shown interest in the MCC, but their authors could not provide such a
description. This is the case of enPAC2 for its first participation this year.

2.1 GreatSPN

GreatSPN [3] is an open source framework3 for modeling and analyzing Petri
nets, which includes several tools accessible either through a common graphical
interface [2], with a mode of interaction that was recently re-designed to support
teaching [5], or through in-line commands for expert users. With GreatSPN the
user can draw Petri nets (place/transition nets, colored nets and their stochas-
tic variations) interactively, can compute (and visualize) the RG explicitly or
symbolically, can analyze net properties (both qualitative and stochastic), can
solve stochastic and Ordinary differential equations/Stochastic differential equa-
tions (ODE/SDE) systems, and can model-check CTL logic properties as well
as performing stochastic model checking for properties defined using automata
(the CSLTA logic), and other advanced features. Among the various tools, the
framework offers a symbolic model checker called RGMEDD. This tool generates
the state space of a Petri net using Multivalued Decision Diagrams (MDD) and
implements a CTL model checker with counter-example generation. The imple-
mentation of the MDD data structure is based on the highly-optimized Meddly
library [7].

Main Features of GreatSPN. The symbolic model checker of GreatSPN
participates in the MCC’2019 competition for StateSpace generation, deadlock
search and CTL model checking for both P/T and colored nets. The model
evaluation strategy consists of the following main steps:

1. Translation phase: a set of support tools convert the PNML model, the
NUPN4 metadata and the CTL formulas into the internal format of Great-
SPN. Colored (symmetric) models are unfolded to their corresponding P/T
models.

2. Property computation phase: several model properties are determined, includ-
ing the set of minimal P-semiflows, the basis of the P-flows, the place bounds
derived from the P-semiflows and the bounds derived using an ILP solver.

3. Variable order determination: a set of heuristics try to determine a reasonable
set of (static) variable orders for the encoding of the input model. Multiple
variable orders can be used at once.

2 https://github.com/tvtaqa/enPAC.
3 https://github.com/greatspn/SOURCES.
4 NUPN [22] stands for Nested Unit Petri Nets, this is a way to carry out structural

and hierarchical information about the structure of the modeled system.

https://github.com/tvtaqa/enPAC
https://github.com/greatspn/SOURCES
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4. State space generation: the reachability set (RS) is generated using MDDs,
employing a set of different techniques (provided by the Meddly library): event
saturation with chaining, on-the-fly saturation and coverability set generation
(which allows to detect infinite state spaces for a class of models).

5. Property assessment : deadlock and CTL properties are then determined start-
ing from the generated RS. No attempt at model reduction or formula sim-
plification are actually implemented.

The pipeline of GreatSPN is optimized for compact MDD generation (StateS-
pace examinations). Currently, neither LTL nor CTL∗ are implemented.

Main Strength of GreatSPN. We believe that GreatSPN is fairly good in
both building the state space (using the highly optimized saturation implemen-
tations of Meddly) and in finding a reasonably good variable order for the encod-
ing a given model. In our experience, the variable order has a large impact on
the tool performance. GreatSPN implements a large library of heuristics [6] to
generate candidate variable orders, with about 30 base algorithms, plus several
transformation heuristics (generate a new order given a starting one). This col-
lection of algorithms allows the tool to generate a pool of orders among which a
meta-heuristic can choose.

A second strength, again related to variable order, is the availability of a
library of several metrics, i.e. heuristic functions that tries to evaluate the good-
ness of a variable order without building the MDD. Metrics are crucial in the
design of reliable meta-heuristics.

In the two past years, GreatSPN was ranked gold for the StateSpace exami-
nation as wall as gold and bronze for the UpperBound examination.

New Features Introduced in GreatSPN for the MCC’2019. Over the
last years we collected a large experience in variable order evaluation, which
ended in the design of a new highly correlating metric [4] called iRank that will
be used in the MCC’2019.

The iRank metric combines the count of the unique and non-productive spans
of the incidence matrix (SOUPS), which accounts for places that affects many
levels of the MDD, with an estimate of the number of variable dependencies to be
recorded by the MDD at each single level (for a given order). This last estimate
is extracted from the basis of the P-flows. The iRank metric shows very high
correlation between its value and the final MDD size: on a test benchmark [4]
iRank got a correlation of 0.96, while the previously best known metrics (SOUPS

and PTS) had a correlation of 0.77 and 0.67, respectively. As a consequence,
GreatSPN should have a very high chance of taking a good variable order as
a first guess for a very large number of models. For the MCC’2019 the tool
also features a new multiple order evaluation strategy, that selects and builds
the MDD for more than one variable order, further reducing the probability of
selecting a bad order.
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For now the technique is sequential and single-threaded. We believe that this
strategy make the tool very robust in handling general Petri net models, avoiding
the risk of sticking to an unlucky (but not impossible) choice for the MDD order.

2.2 ITS-Tools

ITS-tools [34] is a model-checker supporting both multiple solution engines and
multiple formalisms using an intermediate pivot called the Guarded Action Lan-
guage (GAL). Both colored models and P/T models are translated to GAL. GAL
models are more expressive than Petri nets, and support arithmetic and hierar-
chical descriptions. ITS-Tools is composed of a user-friendly front-end embedded
in Eclipse, and of a command line solution back-end.

Main Features of ITS-Tools. ITS-Tools uses a powerful symbolic solution
engine based on Hierarchical Set Decision Diagrams (SDD) [16]. SDD are shared
decision diagrams where edges are labeled with a set of values. Since decision
diagrams compactly represent a set, this allows to introduce hierarchy in the
representation, and enables sharing of substructures of the diagram (different
edges of the SDD labeled by the same set share their representation).

While this adds a new problem (find a good decomposition of the system) to
the classical problem of variable ordering in DD, in many cases there exist SDD
representations that are an order of magnitude smaller than the equivalent flat
DD. This allows the tool to scale to very large state space sizes. The engine ben-
efits greatly from modular decomposition of the model, either using NUPN [22]
information or inferring hierarchy automatically (using Louvain decomposition).
All examinations are supported on this symbolic engine.

ITS-tools further leverages two additional solution engines: LTSmin (which
is also competing) and features powerful partial order reduction methods, and a
SAT modulo theory (SMT) engine currently only used for reachability queries.
A new component was introduced in 2018 that performs structural reductions
of the input Petri net, using variants of classical pre/post agglomerations rules.

The combination of these complementary engines helps us to solve more
problems from diverse categories of models.

Main Strength of ITS-Tools. The main strength of ITS-tools is its overall
robustness and capacity to scale well to very large state spaces. The symbolic
engine, developed over the course of a decade includes state of the art data
structures and algorithms, specialized and tuned for model-checking.

For place bounds and reachability queries the combination of structural
reductions with three solution engines (LTSmin+POR, SDD, SMT) covers a
large set of models. For CTL, ITS-tools operate a translation to a forward CTL
formula when possible, and use variants of constrained saturation to deal with
EU and EG operators. ITS-Tools use a general yet precise symbolic invert to deal
with predecessor relationships when translation to forward form is not feasible.
The symbolic invert computes predecessor relationships, and needs to deal with
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models that are “lossy” (e.g. assign zero to a variable, what are the predeces-
sor states?). It starts with an over-approximation computed by supposing that
the Cartesian product of variable domains are all reachable states. If necessary
(i.e. not for Petri nets) this approximation is refined by intersecting with the
reachable set of states computed forward.

For LTL, ITS-tools rely on Spot [21] to translate the properties to Büchi
variants, then use the LTSmin engine (with POR) or our SLAP hybrid algorithm
[20] to perform the emptiness check. This algorithm leverages both the desirable
on-the-fly properties of explicit techniques and the support for very large Kripke
structures (state spaces) thanks to the symbolic SDD back-end. All symbolic
operations benefit from state-of-the-art saturation variants when it is possible.

Over the last four editions of the MCC, ITS-Tools was always in the podium
for the StateSpace examination (bronze to gold), the UpperBound examination
(bronze and silver). It was 3 times in the podium (bronze and silver) for the
Reachability formulas and CTL formulas (bronze and silver) as well as in the
LTL formulas (bronze and silver).

New Features Introduced in ITS-Tools for the MCC’2019. Recent devel-
opment in the tool focused on improving variable order choices, leveraging recent
work by the GreatSPN team, and improving automatic decomposition heuristics
(using Louvain modularity as a general scalable solution). Further developments
concern improvements of the structural reductions, and integration of structural
reductions at formula level for CTL leveraging recent work by Tapaal team.

Further information on the tool, as well as sources and installation procedure,
is available from http://ddd.lip6.fr.

2.3 LoLA

LoLA (A Low Level Analyser, [36]) is a model checker for Petri nets. It supports
place/transition nets as well as high-level Petri nets. Input may be given in
a dedicated LoLA format (place/transition nets), or in the markup language
PNML (both net classes). Supported properties include the temporal logics LTL
and CTL as well as queries for upper bounds for token counts on places.

LoLA is an open source tool written in C++. It is being developed since
1998. It is available at http://service-technology.org/tools. It is purely based on
command-line interaction and can be integrated as a backend tool for a modeling
platform.

Main Features of LoLA. LoLA mainly uses standard explicit model checking
algorithms for verification. At several stages, however, elements of Petri net
theory (the state equation, invariants, siphons and traps, conflict clusters) are
employed for acceleration of the algorithms. Theorems of Petri net theory are
used in a portfolio approach in addition to the state space based model checking
procedures wherever applicable. LoLA can apply several state space reduction
methods, including partial order reduction (the stubborn set method), symmetry

http://ddd.lip6.fr
http://service-technology.org/tools
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reduction, the sweep-line method, Karp/Miller graph construction, and bloom
filtering. It has several available methods for coding markings (states).

Inputs and results can be exchanged via the UNIX standard streams. In
addition, LoLA can provide results in a structured way using the JSON format.

Main Strength of LoLA. LoLA offers one of the largest collections of stubborn
set dialects. For many classes of properties, a dedicated stubborn set method is
applied. In addition, several classes of simple queries are solved using dedicated
search routines instead of the generic model checking procedure. Assignment of
a correct stubborn set dialect is based on a categorisation of the query. If more
than one dialect is available, command-line parameters can be used to select
one.

For symmetry reduction, LoLA automatically computes a generating set of
the automorphism group of the Petri net graph representation. This way, the
user does not need to exhibit the symmetries in the model in any way, and the
largest possible number of symmetries is used. LoLA computes the symmetries
such that the given query is preserved by the reduction.

LoLA uses a large set of rewriting rules for simplifying queries. It can detect
more than 100 tautologies of the temporal logics LTL and CTL. Moreover, it
uses the Petri net state equation, invariants, and traps for checking whether an
atomic proposition is always true or false.

When the sweep-line method is applied, LoLA automatically computes a
progress measure that is a pre-requisite for applying that method. The method
can thus be applied in push-button style.

The way LoLA offers the reported features includes several original ideas and
methods. Many reduction techniques can be combined, making LoLA one of the
most competitive model checking tools for Petri nets.

New Features Introduced in LoLA for the MCC’2019. For the
MCC’2019, LoLA will extend its portfolios for several property classes. We add
an evaluation of the state equation to properties where reachability or invariance
of some state predicate is sufficient or necessary for the original query. Further-
more, we shall run two state space explorations in parallel for queries where more
than one stubborn set dialect is available. This way, we aim at exploiting the
fact that some properties have a stubborn set dialect that performs extremely
well for satisfiable queries, and another dialect that works better for unsatisfiable
queries. To avoid competition between the two searches concerning memory, the
search speculating for satisfaction (i.e. profiting from the on-the-fly model check-
ing effect) gets a severe memory restriction. It will be killed upon overflow on the
assigned memory thus eventually leaving all available memory to the search that
speculates for violation (and needs to explore all of the reduced state space).



58 E. Amparore et al.

2.4 LTSmin

LTSmin5 [27] has competed in the MCC since 2015. Already in the first editions,
LTSmin participated in several subcategories, while since 2017 LTSmin competes
in all subcategories, except for colored Petri nets, and reporting the number of
fireable transitions in the marking graph.

For the MCC of this year, LTSmin only competes in the StateSpace and
UpperBounds categories, as the tool is now equipped with a fully parallelized
symbolic saturation algorithm for computing the state space. Otherwise the tool
is relatively unchanged compared to last year, so we restrict the tool to only
demonstrate the new techniques.

Main Features of LTSmin. LTSmin has been designed as a language inde-
pendent model checker. This allowed us to reuse algorithms that were already
used for other languages, such as Promela and mCRL2. For the MCC, we only
needed to implement a PNML front-end and translate the MCC formula syntax.
Improvements to the model checking algorithms, like handling integers in atomic
formulas, can now in principle also be used in other languages.

LTSmin’s main interface is called the Partitioned Interface to the Next-State
function (PINS) [27]. Each PINS language front-end needs to implement the
next-state function. It must also provide the initial state, and a dependency
matrix (see below). The multi-core explicit-state and multi-core symbolic model
checking back-ends of LTSmin use this information to compute the state space
on-the-fly, i.e. new states and atomic predicates are only computed when neces-
sary for the algorithm.

A key part of LTSmin are its dependency matrices. Dependency matrices
must be precomputed statically by the front-end, and are extensively used dur-
ing reachability analysis and model checking. An example Petri net, with its
dependency matrix, is given in Fig. 1. Here transition t1 does not depend on p3 or
p1 in any way. Also for properties, a dependency matrix (computed by LTSmin)
indicates on which variables each atomic predicate depends. For instance, the
dependency matrix of some invariant is shown in Fig. 2. This invariant demon-
strates LTSmin’s native property syntax. A finer analysis that distinguishes read-
and write-dependencies [30] pays off, in particular for 1-safe Petri nets.

Main Strength of LTSmin. LTSmin competes using the symbolic back-end
pnml2lts-sym6, handling enormous state spaces by employing decision diagrams.
However, good variable orders are essential. LTSmin provides several algorithms
to compute good variable orders, which operate on the transition dependency
matrix, for instance Sloan’s algorithm [31] for profile and wavefront reduc-
tion. LTSmin computes the marking graph symbolically and outputs its size.

5 http://ltsmin.utwente.nl.
6 http://ltsmin.utwente.nl/assets/man/pnml2lts-sym.html.

http://ltsmin.utwente.nl
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To compete in the UpperBounds category, LTSmin maintains the maximum
sum of all tokens in all places over the marking graph. This can be restricted to
a given set of places (using, e.g., -maxsum= p1 + p2 + p3).

p4

p2 p5

p3 p1

t1

t3t2 t4 t5

t6

⎛
⎜⎜⎜⎜⎜⎜⎝

p1 p2 p3 p4 p5

t1 0 1 0 1 1
t2 0 1 1 0 0
t3 0 1 1 0 0
t4 1 0 0 0 1
t5 1 0 0 0 1
t6 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 1. Example model: Petri net (left) and dependency matrix (right)

AG(1 ≤ p2 + p3 ∧ 1 ≤ p5 + p1)
( p1 p2 p3 p4 p5

1 ≤ p2 + p3 0 1 1 0 0
1 ≤ p5 + p1 1 0 0 0 1

)

Fig. 2. Example invariant property and the dependency matrix on its atomic
predicates

LTSmin is unique in the application of multi-core algorithms for symbolic
model checking. In particular, both high-level algorithms (exploring the mark-
ing graph, and traversing the parse tree of the invariant), as well as low-level
algorithms (decision diagram operations) are parallelized. This form of true con-
currency allows LTSmin to benefit from the four CPU cores made available in
the MCC, instead of a portfolio approach.

New Features Introduced in LTSmin for the MCC 2019. LTSmin is
now equipped with a fully multi-core on-the-fly symbolic saturation algorithm
as described in [19]. Saturation is an efficient exploration order for comput-
ing the set of reachable states symbolically. In the past, attempt to parallelize
saturation only resulted in limited speedup. LTSmin now implements on-the-
fly symbolic saturation using the Sylvan multi-core decision diagram package.
Using the benchmarks of the MCC, we demonstrate in [19] speedups of around
3× with 4 workers, which is the configuration used in the MCC. For some models
we obtained superlinear speedups, even scaling to a machine with 48 cores.
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2.5 SMART

SMART (Stochastic Model-checking Analyzer for Reliability and Timing) is an
open-source7 software package to study complex discrete-state systems. The
SMART input language supports different types of models (non-deterministic or
stochastic), described in various ways (including Petri nets, Markov chains, and
Kripke structures) and with various types of queries (including temporal logic,
probabilistic temporal logic, and performance measures). Models are analyzed
with various back-end solution engines, including explicit and symbolic model
checking, numerical solution for probabilistic model checking, and simulation.

Main Features of SMART. SMART supports Petri nets with inhibitor arcs,
transition guards, and marking-dependent arc cardinalities. The input language
allows users to define arrays of places and transitions, for building large Petri
nets with regular structure. A specialized translation tool is used to convert
PNML models into the SMART input language.

For symbolic model checking, SMART uses Multivalued Decision Diagrams
(MDDs). Each Petri net place (or perhaps a set of places) is mapped to a single
MDD variable. A heuristic is used to determine a variable order, as the choice
of variable order is often critical to MDD efficiency. On-the-fly saturation [15] is
used to generate the state space, with MDDs used to encode sets of states, and
an appropriate representation used for the transition relations (either Matrix
Diagrams [32] or a specialized implicit representation).

Main Strength of SMART. SMART uses MEDDLY: Multivalued and Edge-
valued Decision Diagram LibrarY [7], an open-source MDD library8, as its
symbolic model checking engine. The library supports MDDs, EV+MDDs, and
EV∗MDDs natively, along with manipulation algorithms needed for CTL model
checking, including saturation. Saturation is often orders of magnitude faster
than a traditional breadth-first iteration for building the state space. Constrained
saturation [37] can be used for efficient CTL model checking.

New Features Introduced in SMART for the MCC 2019. Gradual
improvements have been made to SMART and MEDDLY over many years.
The recent focus has been on eliminating bottlenecks caused by construction
and storage of the Petri net transition relations, by moving to a more efficient
representation utilizing implicit nodes that do not need to be updated as the
state space grows. Another important area of research has been variable order-
ing heuristics, including the development of SOUPS (sum of unique productive
spans) [33] as an estimate for the cost of transition firings.

7 https://smart.cs.iastate.edu.
8 https://asminer.github.io/meddly/.

https://smart.cs.iastate.edu
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2.6 TAPAAL

TAPAAL [18] is a tool suite for verification of Petri nets and their extensions
where tokens can be associated with timing features (timed-arc Petri net model)
or with colors (colored Petri nets in the style supported by MCC competition).
The acronym TAPAAL stands for Timed-Arc Petri nets developed at AAL-
borg university. The tool development started 10 years ago and the current tool
release consists of a powerful GUI providing user-friendly, compositional editing
of Petri nets (see screenshot at Fig. 3) and a number of standalone verification
engines supporting CTL verification of colored (untimed) Petri nets, reacha-
bility analysis of timed-arc Petri nets with discrete time semantics, including
a workflow analysis tool, and a continuous time verification engine. The tool
suite also allows to export timed-arc Petri nets as timed automata that can be
opened and verified in the tool UPPAAL [8]. TAPAAL supports the import and
export of Petri nets in the PNML standard, including the parsing of queries in
the XML standard introduced by the MCC competition. The currently released
version 3.4.3 of TAPAAL (available at www.tapaal.net) won two gold medals
in the reachability and CTL category and one silver medal in upper-bounds at
MCC’18.

Fig. 3. Screenshot of TAPAAL GUI

Main Features of TAPAAL. The colored (untimed) verification engine of
TAPAAL called verifypn [25] is the one that participates at MCC and it relies
on a preprocessing of both the Petri net model as well as the verified query.
The subformulas of CTL queries are recursively analysed [12] with the use of
state-equations and linear programming techniques in order to discover easy-
to-solve subqueries to reduce the overall query size. This allows us to answer
the query on a substantial number of models without even exploring the state-
space (in fact 22% of all CTL propositions in MCC’17 can be answered solely
by the approximation techniques [12]), or it can reduce a CTL query into a pure
reachability question on which a specialized verification method can be used

www.tapaal.net
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(about 50% of the MCC’17 queries can be reduced to simple reachability [12]).
At the same time, the Petri net model is reduced by a continuously updated set
of structural reduction rules so that we can eliminate uninteresting concurrency
or unimportant parts of the net (relative to the asked query).

As documented in [13], a substantial reduction in the net size can be achieved
and this technique often combines well with partial order techniques based on
stubborn sets that are as well implemented in TAPAAL. The tool also sup-
ports siphon-trap based algorithms for the detection of deadlock freedom. More
recently a trace abstraction refinement [14] has been added to the engine and
employed at MCC’18. The verification of colored Petri nets is achieved by a self-
contained unfolder implemented in the verifypn engine in combination with
over-approximation by state-equations applied for a given query on the col-
ored net before its unfolding. Furthermore the tool employs a state-of-the-art
dependency-graph technique for verification of CTL properties, utilizing the so-
called certain zero optimization [17]. Another critical component is an efficient
successor-generator, which paired with a compressing, time and memory-efficient
state-storage data structure PTrie [26] gives verifypn a competitive advantage
in MCC.

Main Strength of TAPAAL. The success of verifypn at MCC’18 can to
a large degree be attributed to the plethora of techniques with an efficient,
internalized implementation. Among the most beneficial techniques are over-
approximation of colored Petri nets, structural reductions combined with stub-
born set reductions, recursive query simplification algorithms and a symbolic
method in the form of trace abstraction refinement. Furthermore, efficiency of
the basic components of the successor-generator and the state-compression tech-
niques provide a backbone of the tool.

New Features Introduced in TAPAAL for the MCC’2019. The main
focus for 2019 is the expansion and generalization of net reduction-rules imple-
mented in verifypn. Furthermore, discussions with the developers of the tool
LoLA provided an inspiration to further optimizations for the upper-bounds
category, utilizing linear over-approximation of place bounds.

2.7 TINA.tedd

TINA (TIme Petri Net Analyzer) [11] is a toolbox for the editing and analysis
of various extensions of Petri nets and Time Petri nets developed at LAAS-
CNRS. It provides a wide range of tools for state space generation, structural
analysis, model checking, or simulation. For its third participation to the MCC,
we selected a single symbolic tool from TINA, called tedd, to compete in the
StateSpace category.
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Main Features of TINA.tedd. We provide a new symbolic analysis tool for
Petri nets that uses a mix between logic-based approaches (decision diagrams);
structural reductions; and a new symbolic technique where sets of markings are
represented using linear systems of equations. We give more details about the
latter below.

At its core, tedd is a symbolic state-space generation tool built on top of
our own implementation of Hierarchical Set Decision Diagrams (SDD) [16]. In
the context of the MCC, we can use state space generation to answer all the
questions from the StateSpace examination, that is computing the number of
markings of an input net; its number of transitions; and the maximum number
of tokens in a marking and in a place. The core capabilities of tedd, based on
SDD, has shown competitive performances, on par with most of the symbolic
tools present in the previous MCC contests.

The tool can accept models in the PNML format and provides a large col-
lection of options for selecting good variable orders. A variable order module
provides a rich choice of order computing algorithms based on net traversals and
the structural analysis of the net (semi-flows, flows, etc.). In each case, a force [1]
heuristics can be used to improve any given order. Hierarchical orders, which are
a characteristic of SDD, are also available but have been seldom used so far. An
order-grading method allows to choose for each model a variable ordering likely
to work. Colored models are also supported using a separate tool that unfolds
high-level nets into simpler PT nets. tedd also provides some limited support
for reachability properties – such as finding dead states and transitions – and
can be used with other decision diagrams libraries. At the moment, we provide
access to a BDD library for safe nets as well as to the pnmc tool [23].

Main Strength of TINA.tedd. What sets tedd apart from other symbolic
tools in the competition is the use of a novel state space generation technique
based on structural reductions coupled with methods for counting sets of mark-
ings. This approach is explained in detail in [10] and was first experimented
during MCC’2018, using a limited set of reductions. To the best of our knowl-
edge, tedd is the only tool implementing such an approach.

Briefly, we enrich the notion of structural reduction (as found e.g. in [9]) by
keeping track of the relationships between the reachable markings of an (initial)
Petri net, N1, and those of its reduced (final) version, N2, using a system of linear
equations with integer coefficients Q. We call Q a set of reduction equations.

We provide an automatic system for finding and applying structural reduc-
tions on nets. Our reductions are tailored so that the state space of N1 can be
faithfully reconstructed from that of N2 and the reduction equations, Q. Intu-
itively, variables in Q include the places found in N1 and N2. The reduction
equations provide a relation between markings of the two nets in the follow-
ing sense: when setting variables in Q to values given by a marking of N2, the
set of non-negative, integer solutions to the resulting system all correspond to
markings of N1 (and reciprocally).
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Reductions can be applied in succession, giving an irreducible net Ni and
a final set of reduction equations Qi. In particular, when Ni is totally reduced
(Ni has an empty set of places), the state space of N1 corresponds exactly to the
solutions of system Qi. In some sense, Qi acts as a symbolic, “equational”, repre-
sentation of the reachable markings. This gives a very compact representation of
the set of reachable markings that manages to preserve good complexity results
for a large class of problems (e.g. finding whether a given marking is reachable,
or computing the maximal possible marking for a place). This approach can also
be useful when a net is only partially reduced. Then the markings of the residual
net is computed symbolically (as an SDD) which, together with the reduction
equations, provides a hybrid representation of the reachable markings of N .

New Features Introduced for the MCC’2019. This is the first edition of
the MCC where we will experiment with an extended set of reductions improving
upon those presented in [10]. With these new reductions, we are able to totally
reduce about 25% of all the instances used in the previous MCC benchmarks.
More generally, reductions have a positive impact on about half of the instances.
In particular, based on the benchmark provided by the MCC’2018, we are able to
compute results for 22 new instances for which no tool was ever able to compute
a marking count during the competition.

This year, we will also use more powerful methods for counting markings in
the case of totally reducible nets. Indeed, when a net is totally reduced, it is
enough to compute the number of non-negative integer solutions to its system
of reduction equations. There exist several methods for solving this problem,
which amounts to computing the number of integer points in a convex polytope.
Actually, this has been a hot topic of research in the last decade and some tools
are purposely available for this task, notably LattE [29] and barvinok [35].
TINA.tedd is able to interface with these tools in order to compute the number
of reachable markings in a net. With some adjustments, implemented in tedd,
similar techniques can also be used for computing the number of transitions.

This approach, based on “geometric techniques”, is extremely powerful when
the number of variables – the number of places in the net – is low. (We restrict
its use to nets with less than 50 places in the MCC.) To overcome this limitation,
we have recently started experiments with our own counting method, based on
a recursion-solving approach, and implemented in a dedicated package called
polycount. The work on polycount is still preliminary though, since we cannot
count transitions in all cases yet.

3 Conclusion

Through the dedication of its related communities, the Model Checking Contest
has been achieving the following objectives over the past decade:

– gathering a large set of diverse, complex, and centralized benchmarks com-
posed of concurrent systems formal descriptions;
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– providing the environments and frameworks for the emergence of systematic,
rigorous and reproducible means to assess model-checking tools;

– fostering the progress of the research and development efforts of model-
checking tools to increase their capabilities.

Like the other existing scientific contests, the MCC also aims at identifying
the theoretical approaches that are the most fruitful in practice, to possibly
enable the research field to figure out which techniques, under specific conditions,
best handle particular types of analyses on the systems under consideration.

As the MCC gains maturity, existing organizational challenges shift focus,
and new ones appear. Among the former, is how to appropriately increase the
benchmark for known models whose current instances are now easily solved,
along with the way we generate temporal-logic formulas for them. Another one
is creating the provisions to better balance the scoring weights between parame-
terized models (with regards the number of instances deduced from their scaling
parameter) on the one hand, between known and surprise models on the other.
Among the new challenges, is what incentives the competition could provide
to keep attracting newcomers, i.e., first-time participating tools. Another one is
the inclusion of some known verdicts of all previous analyses on each instance
of the existing models during the past editions, and allow the competing tools
to reliably access this information to speed up and increase efficiency in new
analyses.

Finally, we observed a dramatic increase of the tool’s confidence (and proba-
bly reliability) since this measure was introduced in 2015. Between two editions
of the MCC, previous results are used as a testbench for increasing the quality of
these tools and developers even exchange their tricks and algorithms. Therefore,
we can state that this event benefits to the whole community.
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1 Introduction

Classic verification is concerned with functional, qualitative properties of models
of systems or software: Can this assertion ever be violated? Will the server always
eventually answer a request? To evaluate aspects of dependability (e.g. safety,
reliability, availability or survivability) and performance (e.g. response times,
throughput, or power consumption), however, quantitative properties must be
checked on quantitative models that incorporate probabilities, real-time aspects,
or general continuous dynamics. Over the past three decades, many modelling
languages for mathematical formalisms such as Markov chains or timed automata
have been specified for use by quantitative verification tools that automatically
check or compute values such as expected accumulated rewards or PCTL formu-
lae. Applications include probabilistic programs, safety-critical and fault-tolerant
systems, biological processes, queueing systems, privacy, and security.

As a research field matures, developers of algorithms and tools face increas-
ing challenges in comparing their work with the state of the art: the number of
incompatible modelling languages grows, benchmarks and case studies become
scattered and hard to obtain, and the tool prototypes used by others disappear.
At the same time, it is hard to motivate spending effort on engineering generic,
user-friendly, well-documented tools. In several areas, tool competitions have suc-
cessfully addressed these challenges: they improve the visibility of existing tools,
motivate engineering effort, and push for standardised interfaces, languages, and
benchmarks. Examples include ARCH-COMP [29] for hybrid systems, the Inter-
national Planning Competition [18] for planners, the SAT Competition [51] for
satisfiability solvers, and SV-COMP [8] for software verification.

In this paper, we present QComp 2019: the first, friendly competition among
quantitative verification tools. As the first event of its kind, its scope is inten-
tionally limited to five stochastic formalisms based on Markov chains and to
basic property types. It compares the performance, versatility, and usability of
four general-purpose probabilistic model checkers, one general-purpose statistical
model checker, and four specialised tools (including two probabilistic planners).
All competition data is available at qcomp.org. As a friendly competition in a
spirit similar to ARCH-COMP and the RERS challenge [52], QComp’s focus is
less on establishing a ranking among tools, but rather on gathering a community
to agree on common formats, challenges, and evaluation criteria. To this end,
QComp is complemented by a new collection of benchmarks, the Quantitative
Verification Benchmark Set (QVBS, [46]). All models in the QVBS are avail-
able in their original modelling language as well as the Jani model exchange
format [15]. While Jani is intended as the standard format for QComp, not
all tools implement support for it yet and were thus executed only on those
benchmarks for which they support the original modelling language.

Quantitative verification is rich in formalisms, modelling languages, types of
properties, and verification approaches, of which we give an overview in Sect. 2.
We summarise the selections made by QComp among all of these options as well
as the overall competition design in Sect. 3. The authors of the participating tools
describe the features and capabilities of their tools in Sect. 4; we then compare

http://qcomp.org/competition/2019/
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their usability and versatility in Sect. 5. Finally, Sect. 6 contains the technical
setup and results of the performance comparison, followed by an outlook on the
next edition of QComp, based on the lessons learned in this round, in Sect. 7.

DTMC

MDP

PTA

CTMC

CTMDP

MA

STA

SHA

LTS

TA

HA

PHA
+continuous

probability

+contin.
dynamics

+

-

real
time

nondeter
minism

discrete
probabilities

exponential
res.  times

Key. SHA stochastic hybrid automata [28]
PHA probabilistic hybrid automata [70]
STA stochastic timed automata [9]
HA hybrid automata
PTA probabilistic timed automata [59]
MA Markov automata [25]
TA timed automata
MDP Markov decision processes
CTMDP continuous-time MDP
LTS labelled transition systems
DTMC discrete-time Markov chains
CTMC continuous-time Markov chains

Fig. 1. The family tree of automata-based quantitative formalisms

2 The Quantitative Verification Landscape

Quantitative verification is a wide field that overlaps with safety and fault toler-
ance, performance evaluation, real-time systems, simulation, optimisation, and
control theory. In this section, we give an overview of the formalisms, modelling
languages, property types, and verification methods considered for QComp.

2.1 Semantic Formalisms

The foundation of every formal verification approach is a formalism: a mathe-
matically well-defined class of objects that form the semantics of any concrete
model. Most modelling languages or higher-level formalisms eventually map to
some extension of automata: states (that may contain relevant structure) and
transitions (that connect states, possibly with several annotations). In Fig. 1, we
list the automata-based formalisms supported by Jani, and graphically show
their relationships (with a higher-up formalism being an extension of the lower-
level formalisms it is connected to). LTS are included as the most basic non-
quantitative automata formalism; TA then add the quantity of (continuous)
time, while DTMC and CTMC provide probabilistic behaviour. The list is clearly
not exhaustive: for example, every formalism is a 1- or 1.5-player game, and the
list could be extended by games with two or more players that capture com-
petitive behaviour among actors with possibly conflicting goals. It also does not
include higher-level formalisms such as Petri nets or dataflow that often provide
extra information for verification compared to their automata semantics.
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2.2 Modelling Languages

Modelling complex systems using the formalisms listed above directly would
be cumbersome. Instead, domain experts use (textual or graphical) modelling
languages to compactly describe large automata. Aside from providing a con-
crete human-writable and machine-readable syntax for a formalism, modelling
languages typically add at least discrete variables and some form of compo-
sitionality. The current benchmarks in the QVBS were originally specified in
the Galileo format [72] for fault trees, the GreatSPN format [1] for generalised
stochastic Petri nets, the process algebra-based high-level modelling language
Modest [36], the PGCL specification for probabilistic programs [32], PPDDL
for probabilistic planning domains [77], and the lower-level guarded-command
PRISM language [57]. For all benchmarks, the QVBS provides a translation to
the tool-independent JSON-based Jani model exchange format [15]. The purpose
of Jani is to establish a standard human-readable (though not easily human-
writable) format for quantitiative verification that simplifies the implementation
of new tools and fosters model exchange and tool interoperability. Many other
quantitative modelling languages not yet represented in the QVBS exist such as
Uppaal’s XML format [7] for timed automata or those supported by Möbius [19].

2.3 Properties

Models are verified w.r.t. properties that specify a requirement or a query for a
value of interest. The basic property types for stochastic models are probabilistic
reachability (the probability to eventually reach a goal state), expected accumu-
lated rewards (or costs; the expected reward sum until reaching a goal state), and
steady-state values (the steady-state probability to be in certain states or the
long-run average reward). In case of formalisms with nondeterminism, properties
ask for the minimum or maximum value over all resolutions of nondeterminism.
Probabilistic reachability and expected rewards can be bounded by a maximum
number of transitions taken, by time, or by accumulated reward; we can then
query for e.g. the maximum probability to reach a goal within a cost budget.
We refer to properties that query for probabilities as probabilistic, to those that
deal with expected rewards as reward-based, and to steady-state properties.

From these basic properties, logics can be constructed that allow the expres-
sion of nested quantitative requirements, e.g. that with probability 1, we must
reach a state within n steps from which the probability of eventually reaching
an unsafe state is less than 10−9. Examples are CSL [5] for CTMC, PTCTL [59]
for PTA, rPATL [17] for stochastic games, and STL [61] for hybrid systems.
Another interesting class of properties are multi-objective tradeoffs [26], which
query for Pareto-optimal strategies balancing multiple goals.

2.4 Verification Methods and Results

The two main quantitative verification approaches are probabilistic model check-
ing and statistical model checking a.k.a. Monte Carlo simulation. Probabilistic
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planners use ideas similar to probabilistic model checking, but focus on heuristics
and bounding methods to avoid the state space explosion problem.

Probabilistic model checking [4] is to explore a model’s state space followed by or
interleaved with a numeric analysis, e.g. using value iteration, to compute prob-
abilities or reward values. It aims for results with hard guarantees, i.e. precise
statements about the relationship between the computed result and the actual
value. For example, a probabilistic model checker may guarantee that the actual
probability is definitely within ε = ±10−3 of the reported value. Due to the need
for state space exploration, these tools face the state space explosion problem
and their applicability to large models is typically limited by available memory.

Statistical model checking (SMC, [49,78]) is Monte Carlo simulation on formal
models: generate n executions of the model, determine how many of them sat-
isfy the property or calculate the reward of each, and return the average as an
estimate for the property’s value. SMC is thus not directly applicable to models
with nondeterminism and provides only statistical guarantees, for example that
P(|p̂−p| > ε) < δ where p is the (unknown) actual probability, p̂ is the estimate,
and 1 − δ is the confidence that the result is ε-correct. As ε and δ decrease, n
grows. SMC is attractive as it only requires constant memory independent of the
size of the state space. Compared to model checking, it replaces the state space
explosion problem by a runtime explosion problem when faced with rare events:
it is desirable that ε � p, but since n depends quadratically on ε for a fixed
δ (e.g. in the Okamoto bound [63]), n becomes prohibitively large as p reaches
around 10−4. Rare event simulation [68] provides methods to tackle this problem
at the cost of higher memory usage, lack of automation, or lower generality.

Probabilistic planning uses MDP heuristic search algorithms, e.g. [10,11], that
try to avoid the state space explosion problem by computing values only for
a small fraction of the states, just enough to answer the considered property.
Heuristics—admissible approximations of the optimal values—are used to ini-
tialise the value function, which is subsequently updated until the value for the
initial state has provably converged. The order of updates depends on the cur-
rent values; this sometimes allows to prove states to not be part of any optimal
solution before actually visiting all of their descendants. Such states can safely
be ignored. Many heuristic search algorithms assume a specific class of MDP. To
apply them to general MDP, they need to be wrapped in FRET iterations [54]:
between calls to the search algorithm, FRET eliminates end components from
the subgraph of the state space induced by optimal actions w.r.t. the current
values. FRET-π [71] is a variant that only picks a single optimal path to the goal.

Results. The answer to a property may be a concrete number that is in some
relation to the actual value (e.g. within ±10−3 of the actual value). However,
properties—such as PCTL formulae—may also ask qualitative questions, i.e.
whether the value of interest is above or below a certain constant bound. In that
case, there is an opportunity for algorithms to terminate early: they may not
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have computed a value close to the actual one yet, but the current approximation
may already be sufficient to prove or disprove the bound. In the case of models
with nondeterminism, those choices can be seen as scheduling freedom, and a
user may be more interested in an optimal or sufficient strategy than in the
actual value, i.e. in a way to resolve the nondeterministic choices to achieve the
optimal or a sufficient probability or reward. Further types of quantitative results
include quantiles [73], Pareto curves in multi-objective scenarios, and a function
in terms of some model parameter in case of parametric model checking.

3 Decisions and Competition Setup

Seeing the wide range of options in quantitative verification described in the
previous section, and taking into account that QComp 2019 was the first event
of its kind, several decisions had to be made to limit its scope. The first was
to build on Jani and the QVBS: only benchmarks available in Jani and sub-
mitted to the QVBS with a description and extensive metadata would become
part of the QComp performance evaluation. We further limited the formalisms to
DTMC, CTMC, MDP, MA and PTA (cf. Fig. 1). We thus included only stochas-
tic formalisms, excluding in particular TA and HA. This is because stochastic
formalisms provide more ways to exploit approximations and trade precision for
runtime and memory than non-stochastic ones where verification is rather “qual-
itative with more complicated states”. Second, we only included formalisms sup-
ported by at least two participating tools, which ruled out STA, PHA and SHA.
For the same reason, we restricted to the basic properties listed at the begin-
ning of Sect. 2.3. While many competitions focus on performance, producing an
overall ranking of tools w.r.t. their total runtime over all benchmarks, QComp
equally considers versatility and usability (see Sect. 5). For the performance com-
parison, many technical decisions (such as comparing quantitative results with
an a priori fixed precision and not considering comparisons or asking for strate-
gies) were made as explained in Sect. 6. In particular, the set of benchmarks was
determined based on the wishes of the participants and announced a priori; not
expecting tool authors to dubiously tweak their tools for the selected bench-
marks is in line with the friendly nature of QComp 2019. The entire competition
was then performed offline: participants submitted benchmarks and tools, the
performance comparison was done by the organisers on a central server accord-
ing to tool setup instructions and scripts provided by the participants, and the
evaluation of versatility and usability is based on submitted tool descriptions.

4 Participating Tools

QComp is open to every tool that can check a significant subset of the mod-
els and properties of the QVBS. In particular, a participating tool need not
support all model types, the Jani format, or all included kinds of properties.
For example, a tool specialising in the analysis of stochastic Petri nets is not
expected to solve Jani DTMC models. Nine tools were submitted to QComp
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Table 1. Tool capabilities
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ePMC � � � � � � � � �
mcsta � � � � � � � � � � � � � � � � �
PRISM � � � � � � � � � � � �
P-TUM � � � �
Storm � � � � � � � � � � � � � � � � � � � (�) (�)

DFTRES � (�) � � (�) (�)

modes � � � � � � � � (�) (�) (�) (�) (�) (�) (�) (�) (�)

MFPL � � (�)

PFD (�) � (�) (�)

2019: DFTRES [69] (by Enno Ruijters), ePMC [40] (by Ernst Moritz Hahn),
mcsta [42] and modes [14] (by Arnd Hartmanns), Modest FRET-π LRTDP (by
Michaela Klauck, MFPL for short), PRISM [57] (by Joachim Klein and David
Parker), PRISM-TUMheuristics (by Jan Křet́ınský, P-TUM for short), Probabilis-
tic Fast Downward [71] (by Marcel Steinmetz, PFD for short), and Storm [23]
(by Christian Hensel). We summarise the tools’ capabilities w.r.t. the supported
modelling languages, formalisms, and properties in Table 1. We only include
the property types most used in the QComp benchmarks; P, Pr, and Pt refer
to unbounded, reward-bounded, and time-bounded reachability probabilities,
respectively; E indicates expected accumulated rewards, and S steady-state prob-
abilities. A (�) entry signifies limited support as described in the tool-specific
sections below.

4.1 Model Checkers

QComp 2019 included four general-purpose probabilistic model checkers that
handle a variety of formalisms and property types as well as the more specialised
PRISM-TUMheuristics tool focused on unbounded probabilistic properties.

ePMC (formerly iscasMC [40]) is mainly written in Java, with some
performance-critical parts in C. It runs on 64-bit Linux, Mac OS, and Win-
dows. ePMC particularly targets extensibility: it consists of a small core while
plugins provide the ability to parse models, model-check properties of certain
types, perform graph-based analyses, or integrate BDD packages [24]. In this
way, ePMC can easily be extended for special purposes or experiments with-
out affecting the stability of other parts. It supports the PRISM language and
Jani as input, DTMC, CTMC, MDP, and stochastic games as formalisms, and
PCTL* and reward-based properties. ePMC particularly targets the analysis
of complex linear time properties [39] and the efficient analysis of stochastic
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parity games [41]. It has been extended to support multi-objective model check-
ing [37] and bisimulation minimisation [38] for interval MDP. It also has exper-
imental support for parametric Markov models [31,60]. Specialised branches
of ePMC can model check quantum Markov chains [27] and epistemic prop-
erties of multi-agent systems [30]. The tool is available in source code form at
github.com/liyi-david/ePMC.

mcsta is the explicit-state model checker of the Modest Toolset [42]. It is
implemented in C# and works on Windows as well as on Linux and Mac OS via
the Mono runtime. Built on common infrastructure in the Modest Toolset, it sup-
ports Modest, xSADF [44] and Jani as input languages, and has access to a fast
state space exploration engine that compiles models to bytecode. mcsta computes
unbounded and reward-bounded reachability probabilities and expected accumu-
lated rewards on MDP and MA, and additionally time-bounded probabilities on
MA. By default, it uses value iteration and Unif+ [16]; for probabilistic reacha-
bility, it can use interval iteration [33] instead. mcsta supports PTA via digital
clocks [58] and STA via a safe overapproximation [35]. It can analyse DTMC and
CTMC, but treats them as (special cases of) MDP and MA, respectively, and
thus cannot achieve the performance of dedicated algorithms. To deal with very
large models, mcsta provides two methods to efficiently use secondary storage:
by default, it makes extensive use of memory-mapped files; alternatively, given
a model-specific partitioning formula, it can do a partitioned analysis [43]. For
reward-bounded properties with large bounds (including time bounds in PTA),
mcsta implements two unfolding-free techniques based on modified value itera-
tion and state elimination [34]. The Modest Toolset, including mcsta, is available
as a cross-platform binary package at modestchecker.net. mcsta is a command-
line tool; when invoked with -?, it prints a list of all parameters with brief
explanations. The download includes example Modest models with mcsta com-
mand lines. Modest is documented in [36] and on the toolset’s website.

PRISM [57] is a probabilistic model checker for DTMC, CTMC, MDP, PTA,
and variants annotated with rewards. Models are by default specified in the
PRISM language, but other formats, notably PEPA [50], SBML (see sbml.org),
and sparse matrix files, can be imported. Properties are specified in a language
based on temporal logic which subsumes PCTL, CSL, LTL, and PCTL*; it
also includes extensions for rewards, multi-objective specifications, and strat-
egy synthesis. PRISM incorporates a wide selection of analysis techniques. Many
are iterative numerical methods such as Gauss-Seidel, value iteration, interval
iteration [33], and uniformisation, with multiple variants. Others include lin-
ear programming, graph-based algorithms, quantitative abstraction refinement,
and symmetry reduction. Their implementations are partly symbolic (typically
using binary decision diagrams) and partly explicit (often using sparse matri-
ces). PRISM also supports statistical and parametric model checking. It can be
run from a graphical user interface (featuring a model editor, simulator, and
graph plotting), the command line, or Java-based APIs. It is primarily written
in Java, with some C++, and works on Linux, Mac OS, and Windows. PRISM
is open source under the GPL v2.0. It has been connected to many other tools

https://github.com/liyi-david/ePMC
https://www.mono-project.com/
http://www.modestchecker.net/
http://sbml.org/
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using language translators, model generators, and the HOA format [3]. The tool’s
website at prismmodelchecker.org provides binary downloads for all major plat-
forms, extensive documentation, tutorials, case studies, and developer resources.

PRISM-TUMheuristics is an explicit-state model checker for DTMC, CTMC,
and MDP. It is implemented in Java and works cross-platform. It uses PRISM
as a library for model parsing and exploration, and hence handles models in the
PRISM language, with Jani support planned. It supports probabilistic reach-
ability, safety, propositional until, and step-bounded reachability properties on
MDP and DTMC as well as unbounded reachability for CTMC. At its heart,
PRISM-TUMheuristics uses the ideas of [12] to only partially explore state spaces:
states which are hardly reached can be omitted from computation if one is only
interested in an approximate solution. Sound upper and lower bounds guide the
exploration and value propagation, focusing the computation on relevant parts
of the state space. Depending on the model’s structure, this can yield significant
speed-ups. The tool and its source code are available at prism.model.in.tum.de.

Storm [23] features the analysis of DTMC, CTMC, MDP, and MA. It
supports PRISM and Jani models, dynamic fault trees [74], probabilistic
programs [32], and stochastic Petri nets [1]. Storm analyses PCTL and CSL
properties plus extensions of these logics with rewards, including time- and
reward-bounded reachability, expected rewards, conditional probabilities, and
steady-state rewards. It includes multi-objective model checking [45,65], param-
eter synthesis [22,64], and counterexample generation [21]. Storm allows for
explicit-state and fully symbolic (binary decision diagram-based) model checking
as well as mixtures of these approaches. It implements many analysis techniques,
e.g. bisimulation minimisation, sound value iteration [66], Unif+ [16], learning-
based exploration [12], and game-based abstraction [56]. Dedicated libraries like
Eigen, Gurobi, and Z3 [62] are used to carry out sophisticated solving tasks. A
command-line interface, a C++ API, and a Python API provide flexible access
to the tool’s features. Storm and its documentation (including detailed instal-
lation instructions) are available at stormchecker.org. It can be compiled from
source (Linux and Mac OS), installed via Homebrew (Mac OS), or used from a
Docker container (all platforms).

4.2 Statistical Model Checkers

Two simulation-based tools participated in QComp 2019: the DFTRES rare
event simulator for fault trees, and the general-purpose statistical model
checker modes.

DFTRES is the dynamic fault tree rare event simulator [69]: a statistical
model checker for dynamic fault trees that uses importance sampling with the
Path-ZVA algorithm [67]. It is implemented in Java and works cross-platform. It
supports the Galileo format [72] by using DFTCalc [2] as a converter, and a subset
of Jani for CTMC and MA provided any nondeterminism is spurious. Path-ZVA
allows for efficient analysis of rare event models while requiring only a modest
amount of memory. This algorithm is optimised for steady-state properties, but
also supports probabilistic reachability (currently implemented for time-bounded

http://www.prismmodelchecker.org/
http://prism.model.in.tum.de/
http://eigen.tuxfamily.org
http://www.gurobi.com
http://www.stormchecker.org/
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properties). Simulations run in parallel on all available processor cores, resulting
in a near-linear speedup on multi-core systems. DFTRES is a command-line tool;
its source code is available at github.com/utwente-fmt/DFTRES, with instruc-
tions provided in a README file. Galileo format support requires the installation
of DFTCalc, available at fmt.ewi.utwente.nl/tools/dftcalc, and its dependencies.

modes [14] is the Modest Toolset’s statistical model checker. It shares the
input languages, supported property types, fast state space exploration, cross-
platform support, and documentation with mcsta. modes supports all formalisms
that can be specified in Jani. It implements methods that address SMC’s limita-
tion to purely stochastic models and the rare event problem. On nondeterministic
models, modes provides lower (upper) bounds for maximum (minimum) reach-
ability probabilities via lightweight scheduler sampling [20]. For rare events, it
implements automated importance splitting methods [13]. Simulation is easy to
parallelise, and modes achieves near-linear speedup on multi-core systems and
networked computer clusters. It offers multiple statistical methods including con-
fidence intervals, the Okamoto bound [63], and the SPRT [75]. Unless overridden
by the user, it automatically selects the best method per property.

4.3 Probabilistic Planners

The probabilistic planners that participated in QComp 2019 consider the analy-
sis of maximum reachability in MDP specifically. They both incorporate FRET-
π, but differ in the MDP heuristic search algorithm and the heuristic used.

Modest FRET-π LRTDP implements FRET-π with LRTDP to solve maxi-
mum probabilistic reachability on MDP. It is implemented within the Modest
Toolset and motivated by an earlier performance comparison between planning
algorithms usable for model checking purposes [53]. LRTDP [11] is an asyn-
chronous heuristic search dynamic programming optimisation of value itera-
tion that does not have to consider the entire state space and that converges
faster than value iteration because not all values need to be converged (or even
updated) before terminating. The tool supports the same input languages as
mcsta and modes, and runs on the same platforms. Modest FRET-π LRTDP is
available as a binary download at dgit.cs.uni-saarland.de that includes a detailed
README file. When invoked on the command line with parameter -help, it prints
a list of all command-line parameters with brief explanations.

Probabilistic Fast Downward [71] is an extension of the classical heuristic plan-
ner Fast Downward [48]. It supports expected accumulated rewards and maxi-
mum probabilistic reachability on MDP specified in PPDDL [77]. Limited Jani
support is provided by a translation to PPDDL [53]. Probabilistic Fast Downward
features a wide range of algorithms, including two variants of FRET [54,71] com-
plemented by various heuristic search algorithms such as LRTDP [11], HDP [10],
and other depth-first heuristic search algorithms [71]. Due to being based on
Fast Downward, plenty of state-of-the-art classical planning heuristics are read-
ily available. To make them usable for MDP, Probabilistic Fast Downward
supports different methods to determinise probabilistic actions, notably the all-
outcomes determinisation [76]. The code is a mixture of C++ and Python, and

https://github.com/utwente-fmt/DFTRES
https://fmt.ewi.utwente.nl/tools/dftcalc
https://dgit.cs.uni-saarland.de/Michaela/modest-fret-pi-lrtdp
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should compile and run on all common systems. The tool version that partici-
pated in QComp 2019 has some functionality removed but also adds performance
enhancements. Both versions can be downloaded at fai.cs.uni-saarland.de, and
include README files detailing how to build and run the tool. The configura-
tion used for QComp 2019 was FRET-π with HDP [10] search and the h1-
heuristic [47] via the all-outcomes determinisation to obtain an underapproxi-
mation of the states that cannot reach the goal with positive probability.

5 Versatility and Usability Evaluation

Once a tool achieves a base level of performance, its versatility and usability may
arguably become more important to its acceptance among domain experts than
its performance. As versatility, we consider the support for modelling languages
and formalisms, for different and complementary analysis engines, and config-
urability (e.g. to make runtime–precision tradeoffs). Usability is determined by
the tool’s documentation, the availability of a graphical interface, its installation
process, supported platforms, and similar aspects. A user-friendly tool achieves
consistently good performance with few non-default configuration settings.

Versatility. The five general-purpose tools—ePMC, mcsta, modes, PRISM, and
Storm—support a range of modelling languages, formalisms, and properties (cf.
Table 1 and Sect. 4). In terms of languages, Storm is clearly the most versatile
tool. Those based on the Modest Toolset and ePMC connect to many languages
via Jani. mcsta and modes implement analysis methods for all of the formalisms
supported by Jani (cf. Fig. 1) while Storm still covers all of those considered in
QComp. PRISM only lacks support for MA. However, on the formalisms that
they support, PRISM and Storm implement the widest range of properties, fol-
lowed by ePMC. These three tools in particular support many properties not
considered in QComp 2019 such as LTL, PCTL*, multi-objective queries, and
parametric model checking. PRISM and Storm also implement many algorithms
for the user to choose from that provide different tradeoffs and performance char-
acteristics; Probabilistic Fast Downward is similar in this regard when it comes
to planning algorithms and heuristics. While modes is limited to deterministic
MDP, MA and PTA when exact results are required as in QComp, it can tackle
the nondeterminism via lightweight scheduler sampling to provide bounds.

Usability. The most usable among all tools is clearly PRISM: it provides extensive
online documentation, a graphical user interface, and binary downloads for all
platforms that only depend on Java. The Modest Toolset is less documented and
contains command-line tools only, but again ships cross-platform binaries that
only require the Mono runtime on non-Windows systems. All in all, the tools
based on the Modest Toolset and those mainly implemented in Java (ePMC,
DFTRES, PRISM, and PRISM-TUMheuristics) provide the widest platform sup-
port. Storm is notably not available for Windows, and Fast Downward partly
works cross-platform but is only supported for Linux. The default way to install

https://fai.cs.uni-saarland.de/software.html#probabilistic
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Storm, and the only way to install DFTRES, ePMC, PRISM-TUMheuristics, and
Probabilistic Fast Downward, is to compile from source code. Storm in particular
requires a large number of dependencies in a long build process, which however is
well-documented on its website. All tools come with a default analysis configura-
tion adequate for QComp except for Probabilistic Fast Downward, which requires
the explicit selection of a specific engine and heuristics. The performance evalua-
tion results in Sect. 6.2 highlight that PRISM and Storm can benefit significantly
from using non-default configuration settings tuned by experts to the individual
benchmarks, with mcsta showing moderate improvements with simpler tuning.

6 Performance Evaluation

To evaluate the performance of the participating tools, they were executed on
benchmark instances—a model, fixed values for the model’s parameters, and a
property—taken from the QVBS. Prior to the performance evaluation, all partic-
ipants submitted a wishlist of (challenging) instances, from which the organisers
chose a final set of 100 for the competition: 18 DTMC, 18 CTMC, 36 MDP,
20 MA and 8 PTA instances covering 40 unbounded and 22 bounded proba-
babilistic reachability, 32 expected-reward, and 6 steady-state properties. The
selection favoured models selected by multiple participants while aiming for a
good balance in terms of formalisms, modelling languages, and property types.
As a baseline, every tool should have a good number of supported instances
included; still, some tools that were particularly restricted in terms of languages
and property types (such as DFTRES and Probabilistic Fast Downward) could
only check up to 10 of them. By taking every participant’s wishlist into account,
QComp naturally included instances that a certain tool would do well on (sug-
gested by the participant who submitted the tool) as well as instances that it
was not expected to perform best with (suggested by the authors of other tools).

After finalisation of the benchmark instances, participants submitted tool
packages: installation instructions for the tool (or the tool itself) and a script
to generate a Json file (or the file itself) containing, for every instance, up to
two command lines to invoke the tool. One of them was required to run the tool
in its default configuration, while the other could use instance-specific parame-
ters to tweak the tool for maximum performance. The performance evaluation
was then done by the organisers on one central computer: a standard desktop
machine with an Intel Core i7-920 CPU and 12 GB of RAM running 64-bit
Ubuntu Linux 18.04. Tools were given 30 min per instance. The choice for a
rather modest machine was intentional: the slower CPU increased the perfor-
mance differentiation for moderately-challenging instances, and the moderate
amount of memory allowed for some evaluation of memory efficiency by observ-
ing the number of out-of-memory results. In particular, a tool’s actual memory
usage is not a good measure of quality since the ideal tool will make use of all
available memory to speed up the verification as much as possible on challenging
instances.
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6.1 The Precision Challenge

Almost all properties queried for a value, with only few asking whether a prob-
ability is equal to 1. Participants were required to submit a script that extracts
the value of an instance’s property from the tool output. Since quantitative
verification tools can often trade precision for performance, QComp required a
tool’s result ri for instance i to be within [0.999 · vi, 1.001 · vi] with vi being
the instance’s property’s correct result—i.e. we required a relative error of at
most 10−3. We chose this value as a tradeoff between the advantages of model
checkers (which easily achieve high precision but quickly run out of memory on
large state spaces) and simulation-based tools (which easily handle large state
spaces but quickly run out of time when a high precision is required).

Reference Results. Unfortunately, the actual result for a property is difficult to
obtain: tools that scale to large models use inexact floating-point arithmetic, and
any tool result may be affected by tool bugs. At the same time, it does not make
sense to report performance data when a tool provides an incorrect result as this
may be due to an error that drastically reduces or increases the analysis time.
QComp 2019 adopted the following pragmatic approach: the organisers used
the “most trustworthy” analysis approach available (usually an exact-arithmetic
solver for small and a model checker using a sound iterative numerical method for
large models) to produce reference results for all selected instances. Participants
were then invited to use any other tool to try and refute the correctness of those
results, and would discuss the result or benchmark in case of refutation. In the
end, only one of the reference results was shown to be incorrect, and this was
due to a model translation error that could be corrected before the competition.

Sound and Unsound Model Checking. Practical quantitative model checkers
typically use iterative numerical algorithms relying on floating-point arith-
metic. Here, certain algorithms can ensure error bounds (such as interval iter-
ation [6,12,33] and sound value iteration [66] for probabilistic reachability, and
uniformisation for time-bounded reachability in CTMC). The most common
approaches, e.g. value iteration for probabilistic reachability with the standard
termination criterion, however provide “good enough” results for many models
encountered in practice but may also be widely off for others. It is clearly unfair
to compare the runtimes of tools that provide proper precision guarantees against
tools without such guarantees where the result happens to be just close enough
to the reference value, perhaps even after heavy parameter tweaking to find the
sweet spot between runtime and precision. For QComp 2019, since it is the first
of its kind and a friendly event, participants agreed to avoid such parameter
tweaking. In particular, for iterative methods with an “unsound” convergence
check, all participants agreed on using a relative error threshold of ε = 10−6 for
checking convergence.
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6.2 Performance Results

The QComp 2019 performance evaluation produced a large amount of data,
which is available at qcomp.org; we here summarise the outcomes in comparative
plots. In all of them, we use a logarithmic scale for runtime.

Configurations. mcsta, modes, PRISM and Storm provided instance-specific tool
parameters that significantly changed their performance characteristics. All three
model checkers switched to an exact-arithmetic or sound iterative method for
models with known numerical issues (i.e. the haddad-monmege model). Other
than that, mcsta was run with some runtime checks disabled (as was modes),
and its disk-based methods were disabled for models with relatively small state
spaces. On PTA, it was configured to compress linear chains of states, and to
use state elimination for time-bounded properties. PRISM was configured to use
the best-performing of its four main analysis engines for every instance. This
typically meant switching from the default “hybrid” engine to “sparse” for added
speed when the state space does not result in memory issues, and to “mtbdd” for

Fig. 2. Quantile plots for the general-purpose model checkers (default configuration)

Fig. 3. Quantile plots for the general-purpose model checkers (specific configurations)

http://qcomp.org/competition/2019/
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larger models with regularity. A Gauss-Seidel variant of each analysis method
was used for acyclic models. Storm’s specific configurations were set in a similar
way to use the fastest out of its four main engines (“sparse”, “hybrid”, “dd”, and
“dd” with symbolic bisimulation minimisation) for every instance. Observe that
the specific configurations of PRISM and Storm could only be obtained by testing
all available engines a priori, which cannot be expected from normal users.

modes by default rejects models with nondeterminism, and runs until the
required error is met with 95% confidence, often hitting the 30-minute timeout.
In the specific configurations, modes was instructed to resolve nondeterminism
ad hoc, and to return the current estimate irrespective of statistical error after
28 min. It can thus solve more instances (where the nondeterminism is spurious,
and where the statistical method is too strict), but risks returning incorrect
results (when nondeterminism is relevant, or the error is too large).

Quantile Plots. We first compare the performance of the general-purpose model
checkers by means of quantile plots in Figs. 2 and 3. Each plot only considers the
instances that are supported by all of the tools shown in the plot; this is to avoid
unsupported instances having a similar visual effect to timeouts and errors. 58
instances are supported by all three of ePMC, mcsta and Storm, while still 43
instances (those in the PRISM language) are also supported by PRISM. The
plots’ legends indicate the number of correctly solved benchmarks for each tool
(i.e. where no timeouts or error occurred and the result was relatively correct
up to 10−3). A point 〈x, y〉 on the line of a tool in this type of plot signifies
that the individual runtime for the x-th fastest instance solved by the tool was
y seconds.

We see that PRISM and Storm are the fastest tools for most of the common
instances in the default configuration, closely followed by mcsta. The perfor-
mance of PRISM and Storm improves significantly by selecting instance-specific
analysis engines, with Storm taking a clear lead. PRISM solves the largest number
of instances in default configuration while Storm leads in specific configurations.

Scatter Plots. In Figs. 4, 5 and 6, we show scatter plots for all tools that compare
their performance over all individual instances to the best-performing other tool
for each instance. These plots provide more detailed information compared to
the previous quantile plots since they compare the performance on individual
instances. A point 〈x, y〉 states that the runtime of the plot’s tool on one instance
was x seconds while the best runtime on the same instance among all other tools
was y seconds. Thus points above the solid diagonal line indicate instances where
the plot’s tool was the fastest; it was more than ten times faster than any other
tool on points above the dotted line. Points on the vertical “TO”, “ERR” and
“INC” lines respectively indicate instances where the plot’s tool encountered a
timeout, reported an error (such as nondeterminism not being supported or a
crash due to running out of memory), or returned an incorrect result (w.r.t. the
relative 10−3 precision). Points on the horizontal “n/a” line indicate instances
that none of the other tools was able to solve. The “default” plots used the default
configuration for all tools, while the “specific” plots used the specific per-instance
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Fig. 4. Runtime of specific tools compared with the best results (1/3)
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Fig. 5. Runtime of specific tools compared with the best results (2/3)
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configurations for all tools. We do not show plots for the specific configurations
of the four specialised tools since they are not significantly different.

Overall, we see that every tool is the fastest for some instances. PRISM
(default), Storm (specific) and modes in particular can solve several models that
no other tool can. The specialised and simulation-based tools may not win in
terms of overall performance (except for Probabilistic Fast Downward, on the few
instances that it supports), but they all solve certain instances uniquely—which
is precisely the purpose of a specialised tool, after all. The selected instances
contain a few where unsound model checkers are expected to produce incorrect
results, in particular the haddad-monmege model from [33]; we see this clearly
in the plots for ePMC, mcsta and Storm. PRISM aborts with an error when a
numeric method does not “converge” within 10000 iterations, which is why such
instances appear on the “ERR” line for PRISM. ePMC and mcsta do not yet
implement exact or sound iterative methods, which is why they keep incorrect
results in the specific configurations. The difference between default and specific
configurations for modes is different, as explained; it shows that several instances
are spuriously nondeterministic, and several results are good enough at a higher
statistical error, but many instances also turn from errors to incorrect results.

Fig. 6. Runtime of specific tools compared with the best results (3/3)

7 Conclusion and Outlook

QComp 2019 achieved its goal of assembling a community of tool authors, moti-
vating the collection of a standardised benchmark set in the form of the QVBS,
and sparking discussions about properly comparing quantitative verifiers. It also
improved Jani tool support and resulted in a set of reusable scripts for batch



The 2019 Comparison of Tools for the Analysis 87

benchmarking and plotting. Throughout this process, some lessons for changes
and requests for additions to the next instance of QComp surfaced:

– The issue that caused most discussion was the problem of how to treat tools
that use “unsound” methods as explained in Sect. 6.1. In the future, we plan
to provide several tracks, e.g. one where exact results up to some precision are
required without per-instance tweaking of parameters, and one that allows
fast but “imprecise” results with a nuanced penalty depending on the error.

– The evaluation of default and specific configurations provided important
insights, but might not be continued; we expect tools to use the QComp
2019 results as a push to implement heuristics to choose good defaults
automatically.

– The current versatility and usability evaluation was very informal and needs
to move to clear pre-announced criteria that tool authors can plan for.

– The only addition to formalisms requested by participants is stochastic games,
e.g. as in PRISM-games [55]; however, these first need standardisation and
Jani support. In terms of properties, LTL is supported by several tools and
will be included in the next edition of QComp. Other desirable properties
include multi-objective queries, and the generation of strategies instead of
just values.

– Finally, all benchmarks of QComp 2019 were known a priori. As QComp
slowly transitions from a “friendly” to a more “competitive” event, the inclu-
sion of obfuscated or a priori unknown benchmarks needs to be considered.
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Abstract. Term rewriting is a simple, yet expressive model of com-
putation, which finds direct applications in specification and program-
ming languages (many of which embody rewrite rules, pattern match-
ing, and abstract data types), but also indirect applications, e.g., to
express the semantics of data types or concurrent processes, to specify
program transformations, to perform computer-aided verification, etc.
The Rewrite Engines Competition (REC) was created under the aegis
of the Workshop on Rewriting Logic and its Applications (WRLA) to
serve three main goals: (i) being a forum in which tool developers and
potential users of term rewrite engines can share experience; (ii) bringing
together the various language features and implementation techniques
used for term rewriting; and (iii) comparing the available term rewriting
languages and tools in their common features. The present article pro-
vides a retrospective overview of the four editions of the Rewrite Engines
Competition (2006, 2008, 2010, and 2018) and traces their evolution over
time.

1 Introduction

When searching Google for “rewrite engine”, most of the references are about
Apache web servers and rewrite engines for URLs. Such engines perform string
rewriting, which is a particular case of term rewriting [1,3], a very general model
of computation based on the repeated application of simplification rules. Despite
its simplicity, term rewriting has shown itself a suitable paradigm for express-
ing fundamental concepts of logics, mathematics, and computer science (e.g.,
concurrency, communication, interaction, etc.).

Beyond such theoretical aspects, the ideas of term rewriting influenced the
design of specification and programming languages, many of which incorporate
algebraic terms and rewrite rules. Software implementations of term rewriting
have been developed including, of course, rewrite engines, but also a large variety
of tools for compiler construction, program transformation, and formal verifica-
tion by theorem proving or model checking.

In order to evaluate and compare the various rewrite engines available, a
software competition named REC (Rewrite Engines Competition) was created
c© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 93–100, 2019.
https://doi.org/10.1007/978-3-030-17502-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17502-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-17502-3_6


94 F. Durán and H. Garavel

in 2006. Organized together with WRLA (Workshop on Rewriting Logic and
its Applications), REC provides a forum for sharing experiences among tool
developers and potential users. Four editions of this competition have taken
place so far: REC1 (2006), REC2 (2008), REC3 (2010), and REC4 (2018).

The present article, which is part of the TOOLympics project to celebrate
the 25th anniversary of the TACAS conference by gathering numerous software
competitions at ETAPS, provides a retrospective overview of past editions of the
REC competition. Section 2 summarizes the developments of the competition;
Sect. 3 lists all tools that have been assessed, and Sect. 4 presents the collection
of benchmarks accumulated during the successive editions; finally, Sect. 5 draws
perspectives for future editions of the REC competition.

2 Evolution of REC Competitions

In the mid-2000’s, it became manifest that the term-rewriting community was
lacking a comparative study of the different rewrite engines available. The fol-
lowing excerpt, quoted from [11], articulates the motivation for such a study:

“The idea of organizing a rewrite competition arose from noticing various
applications of rewriting in different areas and by different categories of
researchers, many of them manifesting a genuine and explicit interest in
term rewriting. We believe that many of us can benefit from such rewrite
engine competitions, provided that they are fair and explicitly state what
was tested in each case. For example, users of rewrite engine can more
informatively select the right rewrite engine for their particular applica-
tion. On the other hand, for rewrite engine developers, such events give
them ideas on how to improve their tools and what to prioritize, as well
as a clearer idea of how their engine compares to others.”

It was not clear, however, how to conduct such a study. The abstract and gen-
eral nature of term rewriting has given birth to a great diversity in software
implementations. General-purpose rewrite engines differ in the various forms of
rewriting they support (conditional, nondeterministic, context-sensitive, etc.).
Many other rewrite engines are specialized for particular problems and embed-
ded into programming languages, theorem provers, environments for compiler
construction and program transformation, etc. (see Sect. 3 for examples).

REC1 [11] faced such doubts about the right approach to follow and decided
to focus on efficiency, measured in terms of CPU time and memory use. Only two
tools participated in this first edition of the competition, organized together with
WRLA 2006. A collection of benchmarks, namely term rewrite systems sorted
in four categories (see Sect. 4), was produced. Each benchmark was translated
by hand into the input language of each participating tool, and revised by tool
developers to make sure this code was optimal for their tools.

REC2 [15] expanded on the ideas of REC1, with a double goal: (i) broaden
the comparison by assessing the efficiency of a larger number of rewrite engines—
indeed, five tools participated in REC2; and (ii) being a showcase for the
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term-rewriting community, with a dedicated session at WRLA 2008, where all
participating tools were presented by their developers, who exposed the features
and strengths of each tool and discussed the outcomes of the competition. Tool
developers actively participated in the whole process of REC2, not merely for
adapting competition benchmarks to the tools, but also for exchanging views on
how to organize the competition and present its results. As a result of fruitful
discussions, several changes were implemented, such as the design of a common
language for expressing the benchmarks (see Sect. 4 below).

REC3 [14] followed the same approach as REC2, with a greater emphasis on
automation and a larger set of term-rewriting benchmarks—including problems
related to program transformation, a key application area of term rewriting. The
developers of all the participating tools were involved in this competition, orga-
nized together with WRLA 2010. The reported results indicate the computation
time spent by each tool on each benchmark.

REC4 [17] was the result of a long-term effort undertaken in 2015 and pre-
sented at WRLA 2018. The competition’s scope was broadened away from tra-
ditional rewrite engines to include functional and object-oriented languages. As
a consequence, REC4 did not consider particular features implemented only in
some tools, but focused instead on basic features common to all tools, namely
term rewrite systems that are confluent and terminating, with free construc-
tors and conditional rules. Tool execution and comparison of results was fully
automated, making it unnecessary to include tool developers directly in the
competition—although they were contacted by email, in case of problems, before
the presentation of the results. A Top-5 podium was produced to indicate which
tools can tackle the most problems within a given amount of time and memory.

3 Tools Assessed

So far, not fewer than 18 tools have been assessed during the REC competitions,
as shown by Table 1. This table lists which tools participated in which editions of
the competition. Not all tools have been assessed in all editions, as it happened,
e.g., for prominent tools such as ELAN [4] and ASF+SDF [6], the development
of which halted before or just after REC1.

It is worth pointing out the versatility of term rewriting and the diversity of
its implementations. It is used in both specification and programming languages.
These languages can be algebraic (e.g., CafeOBJ, LOTOS, Maude, mCRL2,
Stratego/XT, etc.), functional (e.g., Clean, Haskell, LNT, OCaml, SML, etc.),
or object-oriented (e.g., Rascal, Scala, Tom, etc.), and certain languages combine
several of these traits, such as Opal, which is both algebraic and functional, or
OCaml, which is both functional and object-oriented. Some languages also sup-
port higher-order programming (e.g., Haskell, OCaml), while others have built-in
support for concurrency (e.g., LOTOS, LNT, Maude, mCRL2, etc.). Implemen-
tations encompass compilers and interpreters, certain languages (e.g., OCaml or
Rascal) offering both, while other approaches (e.g., Tom) enable term rewrite
systems to be embedded in general-purpose languages such as C or Java. Finally,
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Table 1. Languages and tools considered in the Rewrite Engines Competitions

language (tool) web site rec1 rec2 rec3 rec4

ASF+SDF [6] http://www.meta-environment.org × × ×
CafeOBJ [12] http://cafeobj.org ×
Clean [26] http://clean.cs.ru.nl ×
Haskell (GHC) [22] http://www.haskell.org ×
LNT (CADP) [8,16] http://cadp.inria.fr ×
Lotos (CADP) [16,19] http://cadp.inria.fr ×
Maude [9] http://maude.cs.illinois.edu × × × ×
mCRL2 [18] http://www.mcrl2.org ×
OCaml [21] http://www.ocaml.org ×
Opal (OCS) [25] http://github.com/TU-Berlin/opal ×
Rascal [5] http://www.rascal-mpl.org ×
Scala [24] http://www.scala-lang.org ×
SML (MLton) [23] http://www.mlton.org ×
SML (SML/NJ) [23] http://www.smlnj.org ×
Stratego/XT [7] http://www.metaborg.org × × ×
TermWare [13] http://gradsoft.ua/index eng.html ×
Tom [2] http://tom.loria.fr × × ×
TXL [10] http://txl.ca ×

some implementations (ASF/SDF, Stratego/XT, etc.) provide rich environments
for language design, including support for lexical/syntactic analysis, construction
and traversal of abstract syntax trees, as well as program transformations.

4 REC Benchmarks

As a byproduct of the efforts made in organizing the four REC competitions, a
collection of benchmarks has been progressively accumulated1.

REC1 [11] set up the foundations of this collection, by gathering 41 term
rewrite systems, split into four distinct categories: unconditional term rewrite
systems (in which no rewrite rule has Boolean premises), conditional term rewrite
systems (in which some rewrite rules have Boolean premises), rewriting mod-
ulo axioms (in which rewriting relies on certain axioms, such as commutativ-
ity and/or associativity), and rewriting modulo strategies (in which rewriting is
context sensitive, guided by local strategies). Several REC1 benchmarks were
derived from generic benchmarks parameterized by variables (e.g., the param-
eter of function computing the factorial of a natural number, the length of a
list to be sorted, etc.) by giving particular values to these variables. Follow-
ing the terminology used for the Model Checking Contest [20], we distinguish
1 These are available from http://rec.gforge.inria.fr.

http://www.meta-environment.org
http://cafeobj.org
http://clean.cs.ru.nl
http://www.haskell.org
http://cadp.inria.fr
http://cadp.inria.fr
http://maude.cs.illinois.edu
http://www.mcrl2.org
http://www.ocaml.org
http://github.com/TU-Berlin/opal
http://www.rascal-mpl.org
http://www.scala-lang.org
http://www.mlton.org
http://www.smlnj.org
http://www.metaborg.org
http://gradsoft.ua/index_eng.html
http://tom.loria.fr
http://txl.ca
http://rec.gforge.inria.fr
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between models, which are generic benchmarks, and instances, which are bench-
marks derived from generic benchmarks by giving actual values to parameters;
the remaining benchmarks, which are not parameterized, are counted both as
models and instances.

REC2 [15] brought a significant evolution: in REC1, each benchmark was
specified in the input language of each tool, which was only feasible as the num-
ber of tools was small. REC2 introduced, to express its benchmarks, a common
language, which we name REC-2008 and which was inspired by the TPDB lan-
guage used at that time by the Termination Competition (the Confluence Com-
petition uses a similar language). Several tools were adapted to accept this new
language REC-2008 as input; for the other tools, translation was done manually.

REC3 [14] pursued in the same vein as REC2, while increasing the number of
instances. REC3 also tried to expand the scope of the competition by introduc-
ing a separate collection of benchmarks meant for program transformation and
expressed in an imperative language named TIL; however, this initiative was left
with no follow-through.

REC4 [17], in order to address a larger set of specification and program-
ming languages, introduced a new language REC-2017 derived from REC-2008
with additional restrictions ensuring that benchmarks are deterministic (hence,
confluent), terminating, and free from equations between constructors. Conse-
quently, the 3rd and 4th categories (rewriting modulo equations and rewriting
modulo strategies) were removed, and the 1st and 2nd categories (uncondi-
tional and conditional rewriting) were merged into a single one, as most lan-
guages do not make such a distinction. The remaining REC-2008 benchmarks
were upgraded to the REC-2017 language, and many new, significantly complex
benchmarks were added to the collection. To provide for an objective compar-
ison, scripts were developed to translate REC-2017 specifications to the input
languages of all tools under assessment.

Table 2 gives a quantitative overview of the evolution of the REC benchmark
collection; each cells having the form “(m) n” denotes m models and n instances.

Table 2. Benchmarks considered in the Rewrite Engines Competitions

category rec1 rec2 rec3 rec4

source language tool-specific rec-2008 rec-2008 rec-2017

unconditional term rewrite systems (5) 7 (5) 12 (7) 26 (19) 43

conditional term rewrite systems (9) 25 (8) 18 (6) 17 (24) 42

rewriting modulo equations (4) 9 (4) 6 (4) 6 (0) 0

rewriting modulo strategies (0) 0 (1) 1 (1) 3 (0) 0

total (18) 41 (18) 37 (18) 52 (43) 85
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5 Conclusion

Term rewriting is a fundamental topic with many applications, as illustrated by
the multiplicity of term-rewriting implementations in compilers and interpreters.

The Rewrite Engines Competitions (REC), the evolutions of which have been
reviewed in the present article, stimulate the research interest in this field. One
main lesson to be retained from these competitions is that performance of term
rewriting significantly differs across implementations: there is room for enhance-
ments and, following the latest REC competition (2018), three developer teams
already reported plans to improve their tools to take into account the REC
results.

Future REC competitions should address at least two points: (i) more lan-
guages should be assessed, inviting recent tools in the competition and keeping in
mind that some tools may disappear if they are no longer maintained; (ii) more
benchmarks should be considered, which will require dedicated effort to develop
new benchmarks, given the lack of large, computationally intensive term rewrit-
ing systems freely available on the Web, and the subtle semantic differences that
exist between the various flavours of term rewrite systems.
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Abstract. This paper covers the Rigorous Examination of Reactive Sys-
tems (RERS) Challenge 2019. For the first time in the history of RERS,
the challenge features industrial tracks where benchmark programs that
participants need to analyze are synthesized from real-world models.
These new tracks comprise LTL, CTL, and Reachability properties. In
addition, we have further improved our benchmark generation infras-
tructure for parallel programs towards a full automation. RERS 2019
is part of TOOLympics, an event that hosts several popular challenges
and competitions. In this paper, we highlight the newly added industrial
tracks and our changes in response to the discussions at and results of
the last RERS Challenge in Cyprus.

Keywords: Benchmark generation · Program verification ·
Temporal logics · LTL · CTL · Property-preservation · Obfuscation ·
Synthesis

1 Introduction

The Rigorous Examination of Reactive Systems (RERS) Challenge is an annual
event concerned with software verification tasks—called benchmarks—on which
participants can test the limits of their tools. In its now 9th iteration, the
RERS Challenge continues to expand both its underlying benchmark gener-
ator infrastructure and the variety of its tracks. This year, RERS is part of
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TOOLympics [2]. As during previous years [9,12,13], RERS 2019 features tracks
on sequential and parallel programs in programming/specification languages
such as Java, C99, Promela [11], and (Nested-Unit) Petri nets [8,19]. Proper-
ties that participants have to analyze range from reachability queries over linear
temporal logic (LTL) formulae [20] to computational tree logic (CTL) proper-
ties [6]. Participants only need to submit their “true”/“false” answers to these
tasks. As a new addition in 2019, we enrich RERS with industrial tracks in which
benchmarks are based on real-world models.

The main goals of RERS1 are:

1. Encourage the combination of methods from different (and usually discon-
nected) research fields for better software verification results.

2. Provide a framework for an automated comparison based on differently
tailored benchmarks that reveal the strengths and weaknesses of specific
approaches.

3. Initiate a discussion about better benchmark generation, reaching out across
the usual community barriers to provide benchmarks useful for testing and
comparing a wide variety of tools.

One aspect that makes RERS unique in comparison to other competitions
or challenges on software verification is its automated benchmark synthesis: The
RERS generator infrastructure allows the organizers to distribute new and chal-
lenging verification tasks each year while knowing the correct solution to these
tasks. Contrarily, in similar events such as the Software Verification Competition
(SV-COMP) [3] which focuses on programs written in C and reachability queries,
benchmarks are hand-selected by a committee and most of them are used again
for subsequent challenge iterations. That the solutions to these problems are
already known does not harm because, e.g. SV-COMP, does not merely focus on
the answers to the posed problems, but also on details of how they are achieved.
To attain this, SV-COMP features a centralized evaluation approach along with
resource constraints where participants submit their tools instead of just their
answers to the verification tasks. During this evaluation phase, which builds on
quite an elaborate competition infrastructure, obtained counterexample traces
are also evaluated automatically [4].

The situation is quite different for the Model Checking Contest (MCC) [16], a
verification competition that is concerned with the analysis of Petri nets, where
the correct solutions to the selected verification tasks are not always known to
the competition organizers. In such cases, the MCC evaluation is often based
on majority voting concerning the submissions by participants, an approach
also followed by a number of other competitions despite the fact that this may
penalize tools of exceptional analysis power. In contrast, the synthesis procedure
of verification tasks for RERS also generates the corresponding provably correct
solutions using a correctness-by-construction approach. Both SV-COMP and
MCC have therefore added RERS benchmarks to their problem portfolio.

1 As stated online at http://www.rers-challenge.org/2019/.

http://www.rers-challenge.org/2019/
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As stated above, RERS aims to foster the combination of different methods,
and this includes the combination of different tools. During last year’s RERS
Challenge for example, one participant applied three different available tools in
order to generate his submission2 and thereby won the Method Combination
Award within RERS3. In order to host an unmonitored and free-style challenge
such as RERS on a regular basis—one where just the “true”/“false” answers
need to be submitted—an automated benchmark synthesis is a must.

Potential criticism of such a synthesis approach might be that the generated
verification tasks are not directly connected to any real-world problem: Their size
might be realistic, however their inherent structure might be not. This criticism
very much reflects a perspective where RERS benchmarks are structurally com-
pared to handwritten code. On the other hand, being synthesized from temporal
constraints, RERS benchmarks very much reflect the structure that arises in gen-
erative or requirements-driven programming. In order to be close to industrial
practice, RERS 2019 also provides benchmarks via a combination of synthesis
with real-world models. For this endeavor, we collaborated with ASML, a large
Dutch semiconductor company.

When developing controller software, over time updates and version changes
inevitably turn originally well-documented solutions into legacy software, which
typically should preserve the original controller behavior. RERS 2019 addresses
this phenomenon by generating legacy-like software from models via a number
of property-preserving transformations that are provided by the RERS infras-
tructure [22]. This results in correct ‘obfuscated’ (legacy) implementations of the
real-world models provided by ASML.

The parallel benchmarks of the last RERS challenge were built on top of
well-known initial systems, dining philosophers of various sizes. As a next step
towards a fully automated benchmark generation process, we created the initial
system in a randomized fashion this year. The subsequent property-preserving
parallel decomposition process, which may result in benchmarks of arbitrary
degrees of parallelism, remained untouched [23]. For RERS 2020 we plan to use
the more involved synthesis approach presented in [15] in order to be able to
also guarantee benchmark hardness.

Moreover, in response to participants’ requests, we implemented a generator
that creates candidates for branching time properties for the parallel bench-
marks. The idea is to syntactically transform available LTL properties into
semantically ‘close’ CTL formulae. This turns out to provide interesting CTL
formulae for the benchmarks systems. These formulae’s validity has, of course,
to be validated via model checking as the generation process is not (cannot be)
semantics preserving.

In the following, the detailed observations from RERS 2018 are described
in Sect. 2. Section 3 then summarizes improvements within the parallel tracks
of RERS that we implemented for the 2019 challenge, before Sect. 4 introduces

2 Details at http://www.rers-challenge.org/2018/index.php?page=results.
3 The reward structure of RERS is described in previous papers such as [12].

http://www.rers-challenge.org/2018/index.php?page=results
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the new industrial tracks with their dedicated benchmark construction. Our
conclusions and outlook to future work can be found in Sect. 5.

2 Lessons Learned: The Sequential Tracks of RERS 2018

For RERS 2018, we received four contributions to the Sequential Reachability
track and two contributions to the Sequential LTL track. Detailed results are
published online.4 The tools that participants used for the challenge are quite
heterogeneous: Their profiles range from explicit-state model checking over trace
abstraction techniques to a combination of active automata learning with model
checking [5,10,14,18,25]. During the preparations for the new sequential and
industrial tracks, we started a closer investigation on lessons we might learn
from the results of the RERS 2018 challenge in addition to the valuable feedback
collected during the RERS 2018 meeting in Limassol.
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Fig. 1. Reachability results. (Color figure online)

In Fig. 1, the results of the participants of the reachability challenge are
visualized. The blue bars indicate how many properties have not been addressed
by the respective participant for a problem. Hence, these blue bars point to
potential opportunities for achieving better challenge results for each tool. It is
observable that the amount of green bars is decreasing with increasing problem
size and difficulty. This shows that less unreachable errors are detected with
increased problem size. In contrast, the purple bars still show a fair number of
results for reachable errors.

4 http://www.rers-challenge.org/2018/index.php?page=results.
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It is obvious that showing the absence of a certain error requires a more com-
plicated proof than demonstrating that it is reachable. Therefore, the observed
result is not unexpected. To investigate this further, the blue bars are split up
into the corresponding categories from which the unsolved properties originate.
An orange bar shows the number of unreported reachable errors. A yellow bar
shows the number of unreported unreachable errors. In most cases, the yellow
bar is comparable in size to the blue bar for a problem. On the one hand, this is
evidence which demonstrates that proving unreachable errors is still a hard chal-
lenge no matter which approach has been applied. On the other hand, the charts
indicate that participating tools scale quite well also on the larger problems for
demonstrating the existence of errors.
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Fig. 2. LTL results. (Color figure online)

We found a similar situation in the LTL track results reported in Fig. 2. In this
figure a purple bar indicates that a LTL formula holds. This proof requires a deep
understanding of major parts of the complete execution graph. This is therefore
the counterpart for proving an error unreachable. As expected, it appears to be
much easier for tools to disprove an LTL formula on the given examples the
same way as it seems significantly easier to prove error reachability. With a few
exceptions, the blue bars indicating unreported properties for a given problem
are comparable in height with the orange bars for LTL formulae expected to hold
on the given instance. We want to highlight that the tools which participated in
RERS 2018 demonstrated a good scalability for disproving LTL formulae across
the different problem sizes.

Based on the results handed in to RERS 2018, we observe some maturity
in tools disproving LTL formulae and finding errors, which are both charac-
terized by having single paths as witnesses. We appreciate this trend because a
lacking scalability of verification tools was a major motivation to start the RERS
challenge.

As a next step, we intend to motivate future participants to further investi-
gate the direction of proving LTL formulae and error unreachability on systems.
These properties require more complex proofs as it is not possible to verify the
answer with a single violating execution path. Instead it is required to create
a deeper understanding of all possible execution paths in order to give a sound
answer. There is a higher chance to make a mistake and give a wrong answer
resulting in a penalty.
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With RERS 2019, we therefore want to encourage people to invest into cor-
responding verification tools by valuing that verifiable properties are more com-
plicated to analyze than refutable ones. In the future we will award two points
for each correct report of an unreachable error or a satisfied LTL formula in the
competition-based ranking. The achievement reward system remains unchanged.

3 Improvements in the Parallel Tracks for RERS 2019

The initial model used for the RERS 2018 tracks on parallel programs was
chosen to be the Dining Philosophers Problem in order to feature a well-known
system [13]. With the goal to reflect the properties of this system as best as
possible, the corresponding LTL and CTL properties were designed manually.
To streamline our generation approach and minimize the amount of manual work
involved, we decided to further automate these steps for RERS 2019.

In [15], a new workflow for the generation of parallel benchmarks was pre-
sented that fully automates the generation process while ensuring certain hard-
ness guarantees of the corresponding verification/refutation tasks. Due to time
constraints, we could not fully integrate this new approach into our generation
pipeline for RERS 2019. Instead, we combined new and existing approaches to
achieve a full automation (Fig. 3). Our workflow for RERS’19 therefore does not
yet guarantee the formal hardness properties presented in [15]. On the other
hand, it integrates the generation of CTL properties, an aspect that was not
discussed in [15].
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Input to the overall workflow (Fig. 3) is a benchmark profile that contains
metadata such as the number of desired verifiable/refutable LTL/CTL proper-
ties, number of parallel components in the final code, and similar characteristics.
The generation of a parallel benchmark starts with a labeled transition system
(LTS). We chose to randomly generate these for RERS’19, based on parame-
ters in the input benchmark profile. Alternatively, one could choose an existing
system modeled as an LTS if its size still permits to model check it efficiently.

3.1 Property Generation

Given the initial LTS, we randomly select verifiable and refutable properties
based on certain LTL patterns. This process is called property mining in Fig. 3
and was previously used to generate the parallel benchmarks of RERS’16 [9] and
some of RERS’17 [12].

As a new addition to the automated workflow, we implemented a generation
of CTL formulae based on the following idea:

– Syntactically transform an LTL formula φl to a CTL formula φc. This yields
structurally interesting CTL properties but is not guaranteed to preserve the
semantics.

– Check φc on the input model. This step compensates for the lack of property
preservation of the first step.

– Possibly negate φc and then apply de Morgan-like rules to eliminate the
leading negation operator in case the ratio of satisfied and violated properties
does not match the desired characteristics. This works for CTL, as in contrast
to LTL, formulae or their negations are guaranteed to hold (law of excluded
middle).

We realized the transformation from an LTL formula to a corresponding CTL
formula by prepending an A (‘always’) to every LTL operator which requires
the formula to hold on every successor state. For a state to satisfy AGφ for
example, φ has to hold in every state on every path starting in the given state.
Additionally, we introduced a diamond operator for every transition label that
is not negated in the LTL formula and a box for every negated label as detailed
below. The transformation was implemented as follows where the LTL formula
to the left of the arrow is replaced by the CTL formula to the right of the arrow.5

Gφ → AGφ
Fφ → AFφ

φUψ → A(φUψ)
φWψ → A(φWψ)

a → 〈a〉true
¬a → [a]false

5 For more details on the syntax of the LTL and CTL properties, see http://rers-
challenge.org/2019/index.php?page=problemDescP.

http://rers-challenge.org/2019/index.php?page=problemDescP
http://rers-challenge.org/2019/index.php?page=problemDescP
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The diamond operator 〈a〉φ holds in a state iff the state has at least one
outgoing transition labeled with an a whose target state satisfies φ. In this
case 〈a〉true holds in a state if it has an outgoing transition labeled with a
because every state satisfies ‘true’. The box operator [a]φ holds in a state iff
every outgoing transition labeled with an a satisfies φ. The negation of an atomic
proposition a was replaced by [a]false which is only satisfied by a state which
has no outgoing transitions labeled with an a.

Based on the previously mentioned steps, we can automatically generate
LTL and CTL properties that are given to participants of the challenge as a
questionnaire (see Fig. 3). Similarly, the corresponding solution is extracted and
kept secret by the challenge organizers until the submission deadline has passed
and the results of the challenge are announced.

3.2 Expansion and Translation of the Input Model

In order to synthesize challenging verification tasks and provide parallel pro-
grams, we expand the initial LTS based on property-preserving parallel decom-
positions [23] (see top and right-hand side of Fig. 3). The corresponding pro-
cedure works on modal transition systems (MTSs) [17], an extension of LTSs.
This parallel decomposition can be iterated. During this expansion procedure,
the alphabet of the initial system is extended by artificial transition labels. More
details including examples can be found in [13,21].

As a last step, the final model of the now parallel program is encoded in
different target languages such as Promela or as a Nested-Unit Petri net [8] in
the standard PNML format6. The final code or model specification is presented
to participants of the challenge along with the questionnaire that contains the
corresponding LTL/CTL properties.

Please note the charm of verifying branching time properties: As CTL is
closed under negation, proving whether a formula is satisfied or violated can in
both cases be accomplished using standard model checking, and in both cases
one can construct witnesses in terms of winning strategies. Thus there is not
such a strong discrepancy between proving and refuting properties as in LTL.

4 Industrial Tracks

RERS 2019 includes tracks that are based on industrial embedded control sys-
tems provided by ASML. ASML is the world’s leading provider of lithography
systems for the semiconductor industry. Lithography systems are very complex
high-tech systems that are designed to expose patterns on silicon wafers. This
processing must not only be able to deliver exceptionally reliable results with an
extremely high output on a 24/7 basis, it must do so while also being extremely
precise. With patterns becoming smaller and smaller, ASML TWINSCAN lithog-
raphy systems incorporate an increasing amount of control software to compen-
sate for nano-scale physical effects.
6 ISO/IEC 15909-2: https://www.iso.org/standard/43538.html.

https://www.iso.org/standard/43538.html
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To deal with the increasing amount of software, ASML employs a component-
based software architecture. It consists of components that interact via explicitly
specified interfaces, establishing a formalized contract between those compo-
nents. Such formal interface specifications not only include syntactic signatures
of the functions of an interface, but also their behavioural constraints in terms
of interface protocols. Furthermore, non-functional aspects, such as timing, can
be described.

Formal interface specifications enable the full potential of a component-
based software architecture. They allow components to be developed, analyzed,
deployed and maintained in isolation. This is achieved using enabling techniques,
among which are model checking (to prove interface compliance), observers (to
check interface compliance), armoring (to separate error handling from compo-
nent logic) and test generation (to increase test coverage).

For newly developed components, ASML specifies the corresponding interface
protocols. However, components developed in the past often do not have such
interface protocol specification yet. ASML aims to obtain behavioral interface
specifications for such components. Model inference techniques help to obtain
such specifications in an effective way [1]. Such techniques include, for instance,
static analysis exploiting information in the source code, passive learning based
on execution logs, active automata learning querying the running component,
and combinations of these techniques.

ASML collaborates with ESI7 in a research project on the development of
an integrated tool suite for model inference to (semi-automatically) infer inter-
face protocols from existing software components. This tool suite is applied and
validated in the industrial context of ASML. Recently, this tool suite has been
applied to 218 control software components of ASML’s TWINSCAN lithography
machines [26]. 118 components could be learned in an hour or less. The tech-
niques failed to successfully infer the interface protocols of the remaining 100
components.

Obtaining the best performing techniques to infer behavioral models for these
components is the goal of the ASML-based industrial tracks of RERS 2019.
Any model inference technique, including source code analyzers, passive learn-
ing, (model-based) testers and (test-based) modelers including active automata
learning, and free-style approaches, or combinations of techniques can be used.
The best submissions to the challenge might be used by ASML and ESI and
incorporated into their tool suite.

4.1 ASML Components for RERS

For the RERS challenge, ASML disclosed information about roughly a hundred
TWINSCAN components. We decided to select 30 among them to generate
challenging benchmark problems for RERS 2019, and three additional ones that
are used for training problems. Using these components allows participants to

7 ESI is a TNO Joint Innovation Centre, a collaboration between the Netherlands
Organisation for Applied Scientific Research (TNO), industry, and academia.
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apply their tools and techniques on components of industrial size and complexity,
evaluating their real-world applicability and performance.

For the disclosed components, Mealy machine (MM) models and (generated)
Java and C++ source-code exist. The generation of benchmarks for the RERS
challenge is based on the MM models. This allows us to open the industrial tracks
also to tools that analyze C programs. The Java code of the challenge is gen-
erated by the organizers as described later in Sect. 4.4 and does not represent
the originally generated Java code provided by ASML. This prevents partici-
pants from exploiting potential structural patterns in this original Java code
(such structural information does not exist in legacy components). Furthermore,
an execution log is provided for each component. Each execution log contains
a selected number of logged traces, provided by ASML, representing behavior
exhibited by either a unit or integration test.

The remainder of this section provides a brief overview of how properties are
generated for these benchmarks and how code is generated using the obfusca-
tion infrastructure from previous sequential RERS tracks. Figure 4 presents an
overview of the corresponding benchmark generation workflow that is described
in the following.
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Fig. 4. Workflow of the benchmark generation for the new industrial tracks.

4.2 Generation of CTL Properties

We compute CTL formulae from Mealy machines using conformance testing
algorithms. We generate a small set of traces that characterizes each state.
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Using this, we can define for each state q a CTL state formula σq that char-
acterizes part of its behavior. If i1/o1, i2/o2 is an IO sequence of state q, then
formula σq takes the form

EX(i1 ∧ EX(o1 ∧ EX(i2 ∧ EXo2))).

These characterizing formulae are the basis for CTL properties, e.g., of the form

AG(σ1 ∨ σ2 ∨ . . . ∨ σn),
AG(σ1 ⇒ EX(i ∧ EXo ∧ σ2)), or
AG(σ1 ⇒ EFσ3),

where i and o denote symbols from the set of inputs and outputs of the Mealy
machine model, respectively. Additionally, we generate CTL formulae that do
not hold in the model using the same approach.

4.3 LTL and Reachability Properties

Regarding the new ASML-based benchmarks, we used a property mining app-
roach for the generation of LTL properties. By mining we mean that properties
are extracted from the model without altering this model. As a first step, we
temporarily discard all error transitions from the input Mealy machine (MM)
(see Fig. 4): In line with the benchmark definition used in former editions of the
RERS tracks on sequential programs, our LTL properties only constrain infi-
nite paths. This nicely reflects the fact that controllers or protocols are typically
meant to continuously run in order to react on arising input.

Having discarded all error transitions, our approach first generates random
properties from relevant patterns according to [7]. A model checker is then used
to determine whether or not the generated properties hold on the given input
model. We iterate this process until we find a desired ratio between satisfied and
violated properties. This mining approach is very similar to the previous LTL
generation in RERS (cf. [22]), with the exception that no properties are used for
synthesizing a MM. Because we have never altered the original MM with regard
to its infinite paths, all extracted LTL properties that are satisfied characterize
the input/output behavior of the given real-world model.

Similar to the former editions of RERS, the new industrial tracks also pro-
vides reachability tasks (“Is the error labeled x reachable?”). This generation
process is disjoint with the LTL track generation. While we discarded all error
transitions from the input model during conversion from the input model to code
in the LTL track generation, we select real errors from the given input model and
map them to unique error states before code generation during the reachability
task generation. This way, all included errors are taken from a real system and
are not synthetical. The same input models are used for the generation of the
benchmarks for the reachability track and the LTL track. There are just slightly
different pre-processes in place that address the handling of error transition dur-
ing generation. Using real error paths is again in contrast to the benchmark
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synthesis of RERS that was applied during previous years where reachability
tasks were artificially added to (already artificial) input models.

As depicted in the top-left corner of Fig. 4, the initial MM model is complete,
meaning that each input symbol that is not supported in a certain state is rep-
resented by an error transition leading to a sink state. We randomly select some
of those error transitions and reroute them so that they each lead to a distinct
error state. At the same time, we introduce unreachable error states to the MM
and enumerate both the reachable and unreachable error states. The resulting
reachability vector is reported back to the challenge organizer as part of the
Questionnaire Solution (Fig. 4). The error states are then rendered as guarded
“verifier errors” in the final program (see Sect. 4.4). Unsupported transitions
that were not selected for the reachability tasks are rendered as “invalid input”,
in line with the previous RERS tracks on sequential programs.

4.4 Obfuscation and Code Generation

The obfuscation and code generation steps are reused from the existing RERS
benchmark generator of the sequential tracks. As described in Fig. 4 and in
Section 11 and Section 12 of [22], the translation from the initial MM to the final
code is divided into smaller steps, which are implemented as individual modules.

As shown in the right-hand side of Fig. 4, the partial MM is first expanded
as done before. Additional states which are clones of existing states are added
such that they are unreachable. Next, a discrimination tree is constructed using
different kinds of variables as properties on the nodes and constraints on these
variables on the outgoing edges of the decision tree. Based on the choice of
these variables, the current complexity of the synthetic RERS benchmarks is
controllable. It may range from plain encodings using only integer variables to
encode the subtrees, to options with string variables, arithmetic operations and
array variables in the same fashion as it was done in the past for RERS.

Next, the automaton is randomly mapped to the leaf nodes of the decision
tree. The constraints collected along a path from the decision tree root to a
leaf is used to encode a state of the automaton associated with that leaf. The
automaton transitions are encoded based on the decision tree encoding. The
now completely encoded problem is translated into the target language. While
ASML normally generates C++ code from its automaton models, we decided
to maintain the old RERS tradition of providing a Java and a C encoding for
each problem. The underlying MM is maintained during this obfuscation and
encoding step as it has been in the previous editions of RERS.

5 Conclusion and Outlook

With the addition of industrial tracks where benchmarks are based on real-world
models, RERS 2019 combined the strength of automated synthesis with the rel-
evance of actively used software. Due to these new tracks based on a collabora-
tion with the company ASML, the variety of different tasks that participants of
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RERS can address has again expanded. Independently of this new addition, we
further improved our generation infrastructure and realized a fully-automated
synthesis of parallel programs that feature intricate dependencies between their
components.

In the future, we intend to fully integrate the approach presented in [15] into
our infrastructure in order to guarantee formal hardness properties also for vio-
lated formulae. Future work might include equivalence-checking tasks between
a model and its implementation, for example based on the systems provided by
ASML. Furthermore, we intend to provide benchmark problems for weak bisim-
ulation checking [24] for the RERS 2020 challenge. As a longer-term goal, we
continue our work towards an open-source generator infrastructure that allows
tool developers to generate their own benchmarks.
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1 Introduction

Separation Logic (SL) is an established and fairly popular Hoare logic for
imperative, heap-manipulating programs, introduced nearly fifteen years ago by
Reynolds [20,24,25]. Its high expressivity, its ability to generate compact proofs,
and its support for local reasoning, and its support for local reasoning have moti-
vated the development of tools for automatic reasoning about programs using
SL. A rather exhaustive list of the past and present tools using SL may be found
at [19].

These tools seek to establish memory safety properties and/or infer shape
properties of the heap at a scale of millions of lines of code. They intensively use
(semi-)decision procedures for checking satisfiability and entailment problems in
SL. Therefore, the development of effective solvers for such problems became a
challenge which led to both theoretical results on decidability and complexity of
these problems for different fragments of SL and to publicly available tools. To
understand the capabilities of these solvers and to motivate their improvement
by comparison on a common benchmark, we initiated in 2014 the SL-COMP
competition, inspired by the success of SMT-COMP for solvers on first order
theories.

This paper presents the history of this competition and its organization for
the round at TOOLympics 2019. Section 2 describes the main stages of the com-
petition. Each stage is detailed in a separate section as follows: benchmark’s
definition in Sect. 3, the participants in Sect. 4 and the running infrastructure in
Sect. 5. We conclude the paper in Sect. 6 by a discussion on the impact of the
competition and its perspectives.

2 Competition’s Stages

2.1 A Short History

The first edition of SL-COMP took place at FLoC 2014 Olympic Games, as
an unofficial event associated with the SMT-COMP 2014 competition [31]. The
organization details and the achievements of this edition are presented in details
in [26]. This was an opportunity to collect from participants about 600 problems
on different fragments of SL, to involve six solvers, to lay the foundations of a
common input format and to set up a discussion list involving teams developing
solvers or verification tools based on SL. Being attached to SMT-COMP allowed
to benefit from the experience of SMT-COMP’s organizer, David Cok, in setting
competition’s rules and the execution platform StarExec, as well as in running
the competition and publishing the results.

The results of the first edition led to interesting discussions on the mailing list,
mainly on the input format chosen, the layout of divisions and the frequency of
running the competition. These discussions have converged in defining a working
group on the input format and fixed a sparse rhythm of the competition, mainly
aligned with FLoC venues.
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Therefore, the second edition took place at FLoC 2018 and was associated
with the first workshop on Automated Deduction for Separation Logics (ADSL).
The organization of the competition followed the stages described in the next
section and was disconnected from SMT-COMP. The organizer, Mihaela Sighire-
anu, exploited the experience acquired with the first edition in running the com-
petition on StarExec. The competition involved ten solvers which ran on 1K
problems split over ten newly defined divisions. More precisely, the benchmark
set included the set of problems of the 2014 edition and new problems provided
by the participants. The problems were specified in the new input format which
is aligned with the latest version of SMT-LIB, as detailed in [15] and summarized
in Sect. 3.2. The competition’s results have been presented during a session of
ADSL, which gave the opportunity of a live discussion on the different aspects
of organization. The results are available on the competition web site [27].

The TOOLympics edition is a rerun of the second edition with two major
changes: a new solver has been included and some benchmark instances have
been fixed. The remainder of this paper will present the organization of this
edition and the participants involved.

2.2 Organization Process

The competition has a short organization period, three months on average. This
is possible due to the fact that material used in the competition (the bench-
mark set, the definition of the input format, the parsers for input and the pre-
processing tools) are publicly available on StarExec and on a shared development
repository [22] maintained by the participants and by the organizer.

The competition is launched by a call for benchmarks and participants which
also fixes the competition timeline. The call is sent on the competition mailing
list sl-comp@googlegroups.com.

New solvers are invited to send a short presentation (up to two pages) includ-
ing the team, the sub-fragment of SL dealt, the main bibliography and the web-
site. In addition, each solver has a corresponding person in the team, which is
responsible of preparing the solver for running the competition. This preparation
ensures that the input format is supported and that the solver is registered in the
execution platform in the divisions of the competition it asked to compete. The
organizer creates a subspace on the execution platform for each participant and
assigns the permission to the solver’s correspondent for this space. She may help
the incomer to prepare the solver by providing insights on the use of the execu-
tion platform, the input format and the pre-processors from the competition’s
input format to the solver’s format.

The benchmark problems are collected from the community and participants.
Until now, we did not limit the number of benchmark instances proposed by
participants in each category in order to improve our benchmark set. However,
this may change in the future, as discussed on Sect. 3. The benchmark set may
change during the competition due to reaction of competitors, but it is fixed
starting with the pre-final run.
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The competition is run in three steps. The first step is a training period
where the solver’s correspondent runs the solver on the execution platform and
the existing benchmark set. During this step, the benchmark set may be changed
as well as the solver’s binary. The second step is a pre-final run, launched by the
organizer using the binaries of solvers published on the execution platform. The
results of this pre-final run are available for all solvers’ representatives, which
may allow to compare results and have a first view on competitors’ achievements.
The organizer contacts each correspondent to be sure that the results of this run
are accepted. The last step is the final run, which determines the final result.
The binaries of solvers submitted to the final run may be different from the ones
used in the pre-final run.

The final run of the competition takes place one week before the event at
which the competition’s results are presented. However, the results are available
as soon as possible on the competition’s web site.

3 Benchmark Set

The current competition’s benchmark set contains more than 1K problems, (pre-
cisely 1286 problems), which cover several fragments of Separation Logic. 25%
of these problems are satisfiability checking problems. This section outlines the
main features of this benchmark set, including the fragments covered, the input
format, and the divisions established for this edition. A detailed description of
the input theory and format is [15].

3.1 Separation Logic Theory

The input theory is a multi-sorted second order logic over a signature Σ =
(Σs, Σf), where the set of sorts Σs includes two (non necessarily disjoint) subsets
of sorts representing locations of the heap, Σs

Loc, respectively heap’s data, Σs
Data.

For each sort Loc in Σs
Loc, the set of operations includes a constant symbol nilLoc

modeling the null location. The heap’s type τ is an injection from location sorts
in Σs

Loc to data sorts in Σs
Data. We also assume that the signature Σ includes the

Boolean signature and an equality function for each sort.
Let Vars be a countable set of first-order variables, each xσ ∈ Vars having

an associated sort σ. The Ground Separation Logic SLg is the set of formulae
generated by the following syntax:

ϕ := φ | emp | t �→ u | ϕ1 ∗ ϕ2 | ϕ1 −−∗ ϕ2 | ¬ϕ1 | ϕ1 ∧ ϕ2 | ∃xσ . ϕ1(x) (1)

where φ is a Σ-formula, and t, u are Σ-terms of sorts in Σs
Loc and Σs

Data respec-
tively, such that they are related by the heap’s type τ . As usual, we write
∀xσ . ϕ(x) for ¬∃xσ . ¬ϕ(x). We omit specifying the sorts of variables and
functions when they are clear from the context.

The special atomic formulas of SLg are the so-called spatial atoms: emp spec-
ifies an empty heap, t �→ u specifies a heap consisting of one allocated cell whose
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address is t and whose value is u. The operator “∗” is the separating conjunction
denoting that the sub-heaps specified by its operands have disjoint locations. The
operator “−−∗” is the separating implication operator, also called magic wand. A
formula containing only spatial atoms combined using separating conjunction
and implication is called spatial. Formulas without spatial atoms and separating
operators are called pure.

The full separation logic SL contains formulas with spatial predicate atoms
of the form P σ1...σn(t1, . . . , tn), where each ti is a first-order term of sort σi,
for i = 1, . . . , n. The predicates P σ1...σn belong to a finite set P of second-
order variables and have associated a tuple of parameter sorts σ1, . . . , σn ∈ Σs.
Second-order variables P σ1...σn ∈ P are defined using a set of rules of the form:

P (x1, . . . , xn) ← φP (x1, . . . , xn), (2)

where φP is a formula possibly containing predicate atoms and having free vari-
ables in x1, . . . , xn. The semantics of predicate atoms is defined by the least fixed
point of the function defined by these rules.

An example of a formula specifying a heap with at least two singly linked
list cells at locations x and y is:

x �→ node(1, y) ∗ y �→ node(1, z) ∗ ls(z, nil) ∧ z 
= x (3)

where Σs = {Int, Loc,Data} and the function node has parameters of sort Int
and Loc and its type is Data. The predicate ls is defined by the following rules:

ls(h, f) ← h = f ∧ emp (4)
ls(h, f) ← ∃x, i . h 
= f ∧ x �→ node(i, x) ∗ ls(x, f) (5)

and specifies a possible empty heap storing a singly linked list of Data starting
at the location denoted by h and whose last cell contains the location denoted
by f . More complex examples of formulas and predicate definitions are provided
in [15,26].

3.2 Input Format

The input format of the competition has been changed between the first and the
second edition, but it was always based on the SMT-LIB format [2]. The syntax
and semantics of this format were discussed and agreed in the public mailing
group.

Signature encoding: Following this format, the new functions of SL theory are
declared in a “theory” file SepLogicTyped.smt2 as follows:

(theory SepLogicTyped

:funs ((emp Bool)
(sep Bool Bool Bool :left-assoc)
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(wand Bool Bool Bool :right-assoc)
(par (L D) (pto L D Bool))
(par (L) (nil L))
)

)

Observe that pto and nil are polymorphic functions, with sort parameters L
(for location sort) and D (for data sort). There is no restriction on the choice of
location and data sorts. However, each problem shall fix them using a special
command, not included in SMT-LIB, declare-heap. For example, to encode the
example given in Eq. 3, we declare an uninterpreted sort Loc and a sort Data as
a datatype as follows:

(declare-sort Loc 0)

(declare-datatype Data ((node (d Int) (next U))))

(declare-heap (Loc Data))

The last declaration fixes the type of the heap model.
The predicate definitions are written into SMT-LIB format using the recursive

function definition introduced in version 2.6. For instance, the definition of the
list segment from Eqs. 4 and 5 is written into SMT-LIB as follows (based on the
above declarations of Loc and Data):

(define-fun-rec ls ((h Loc) (f Loc)) Bool
(or (and emp (= h f))

(exists ((x Loc) (d Int))
(and (distinct h f) (sep (pto h (node d x)) (ls x f))))

)
)

Problem format: Each benchmark file is organized as follows:

– Preamble information required by the SMT-LIB format: the sub-logic of SL
theory (see Sect. 3.3), the team which proposed the problem, the kind (crafted,
application, etc.) and the status (sat or unsat) of the problem.

– A list of declarations for the sorts for locations and data, for the type of
the heap (the declare-heap command), for the second order predicates, and
for the free variables used in the problem’s formulae. Notice that the input
format is strongly typed. At the end of the declarations, a checking command
check-unsat may appear to trigger for some solvers the checking for models
of predicate declarations.

– One or two assertions (command assert) introducing the formulas used in
the satisfiability respectively entailment problem.

– The file ends with a checking satisfiability command check-unsat. Notice
that checking the validity of the entailment A ⇒ B is encoded by satisfiability
checking of its negation A ∧ ¬B.
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3.3 Divisions

The main difficulty that faces automatic reasoning using SL is that the logic,
due to its expressiveness, does not have very nice decidability properties [1]. For
this reason, most program verification tools use incomplete heuristics to solve
the satisfiability and entailment problems in SL or restrict the logic employed to
decidable fragments. Overviews of decidable results for SL are available in [8,26].

Each benchmark instance of SL-COMP refers to one of the sub-logics of the
multi-sorted Separation Logic. These sub-logics identify fragments which are
handled by at least two participants or have been identified to be of interest
during the discussion for the organization of the round.

The sub-logics are named using groups of letters, in a way similar to SMT-
LIB format. These letters have been chosen to evoke the restrictions used by the
sub-logics:

– QF for the restriction to quantifier free formulas;
– SH for the so-called “symbolic heap fragment” where formulas are restricted

to (Boolean and separating) conjunctions of atoms and do not contain magic
wand; moreover, pure atoms are only equality or dis-equality atoms;

– LS where the only predicate allowed is the acyclic list segment, ls, defined in
Eqs. 4 and 5;

– ID for the fragment with user defined predicates;
– LID for the fragment of linear user defined predicates, i.e., only one recursive

call for all rules of a predicate is allowed;
– B for the ground fragment allowing any Boolean combination of atoms.

Moreover, the existing fragments defined in SMT-LIB are used to further restrict
the theory signature. For example, LIA denotes the signature for linear integer
arithmetics.

Table 1. Divisions at SL-COMP and the participants enrolled

Division size Solvers enrolled

qf_bsl_sat 46 CVC4-SL

qf_bsllia_sat 24 CVC4-SL

qf_shid_entl 312 Cyclist-SL, Harrsh, S2S, Sleek, Slide, Songbird, Spen
qf_shid_sat 99 Harrsh, S2S, Sleek, SlSat
qf_shidlia_entl 75 ComSPEN, S2S
qf_shidlia_sat 33 ComSPEN, S2S
qf_shlid_entl 60 ComSPEN, Cyclist-SL, Harrsh, S2S, Spen
qf_shls_entl 296 Asterix, ComSPEN, Cyclist-SL, Harrsh, S2S, Spen
qf_shls_sat 110 Asterix, ComSPEN, Cyclist-SL, Harrsh, S2S, Spen
shid_entl 73 Cyclist-SL, S2S, Sleek, Songbird
shidlia_entl 181 S2S, Songbird
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The current round of the competition has eleven divisions, named by con-
catenation of the name of the logic and the kind of problem solved (sat or entl).
Table 1 provides the names of these divisions and the number of problems in each
division:

– qf_bsl_sat and qf_bsllia_sat divisions include satisfiability problems for
quantifier free formulas in the ground logic using respectively none or LIA
logic for pure formulas.

– qf_shid_entl and qf_shid_sat divisions include entailment respectively
satisfiability problems for the symbolic heap fragment with user defined
predicates.

– qf_shidlia_entl and qf_shidlia_sat divisions include entailment respec-
tively satisfiability problems for the quantifier free, symbolic heap fragment
with user defined predicates and linear arithmetics included in pure formulas
even in the predicate definitions.

– qf_shlid_entl division includes a subset of problems of division
qf_shid_entl where the predicates are “linear” and compositional [10]. This
fragment is of interest because the entailment problem has an efficient decision
procedure.

– qf_shls_entl and qf_shls_sat divisions include entailment respectively
satisfiability problems for the quantifier free symbolic heap fragment with
only ls predicate atoms.

– shid_entl division contains entailment problems for quantified formulas in
the symbolic heap fragment with general predicate definitions and no other
logic theories than Boolean.

– shidlia_entl divisions extends the problems in shid_entl with constraints
from linear integer arithmetics.

3.4 Selection Process

The benchmark set was built mainly from the contributions of participants.
Some of these problems come from academic software analysis or verification
tools based on SL (e.g., SmallFoot [30], Hip [5]). We did not received any
problem issued from industrial tools. The problems were collected in the input
format submitted by the participants and then translated into the input format
of the competition. With the objective of increasing the size of the benchmark
set, we did not limit the number of problems submitted by a participant. In this
way, the edition 2018 has seen an increase of 100% in the size of the benchmark
set. However in the future we could consider a change in the regulations to find
a fair balance between teams. By using the meta-information in the preamble of
each file, we are able to track the team which proposed the problem.

Notice that each problem has been examined by the organizer to ensure that
the input format is respected and that it passed the parsing and type checking.
However, the organizer accepts the status of the problem proposed until it is
signaled incorrect by another team. In this case, a round of discussion is initiated
to find an agreement on the status included in the file. Notice that the status
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(sat or unsat) shall be known because it is important for the computation of
the final result. The status of each problem was checked before the competition
using at least two solvers and it did not change during the competition.

4 Participants

Eleven solvers are enrolled for this edition of the competition after its public
announcement. Table 1 summarizes the enrollment of each solver in the divisions
presented in the previous section.

4.1 Asterix

Asterix is presented in details in [21]. It was submitted by Juan Navarro Perez
(at the time at University College London, UK, now at Google) and Andrey
Rybalchenko (at the time at TU Munich, Germany, now at Microsoft Research
Cambridge, UK). The solver deals with the satisfiability and entailment check-
ing in the QF_SHLS fragment. For this, it implements a model-based approach.
The procedure relies on SMT solving technology (Z3 solver is used) to untangle
potential aliasing between program variables. It has at its core a matching func-
tion that checks whether a concrete valuation is a model of the input formula
and, if so, generalizes it to a larger class of models where the formula is also
valid.

Asterix was the winner of divisions qf_shls_sat and qf_shls_entl for
both editions.

4.2 ComSPEN

The theoretical bases of ComSPEN have been presented in [11]. The develop-
ment team is composed of Taolue Chen (University of London, UK), Chong
Gao and Zhilin Wu (State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences).

The solver deals with both satisfiability and entailment problems in a frag-
ment included in logic QF_SHIDLIA and which extends QF_SHLID with integer
linear arithmetics in predicate definitions. The underlaying technique for sat-
isfiability checking of a formula ϕ is to define an abstraction, Abs(ϕ), where
Boolean variables are introduced to encode the spatial part of ϕ, together with
quantifier-free formulae to represent the transitive closure of the data constraints
in the predicate atoms. Checking satisfiability of ϕ is then reduced to checking
satisfiability of Abs(ϕ), which can be solved by the state-of-the-art SMT solvers
(e.g., Z3), with an NP upper-bound. For the entailment problem ϕ � ψ, if ϕ and
ψ are satisfiable, the procedure builds graphs for each formula and tries to build
a graph isomorphism between them.

ComSPEN is implemented in C++. It uses the libraries Z3 and boost. The
input format is the Spen’s format, which requires a pre-processor for the compe-
tition’s input format. Results are not available for ComSPEN because the 2019
edition is the first one for it.
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4.3 Cyclist-SL

Cyclist-SL [4,7] was submitted by Nikos Gorogiannis (Middlesex University
London, UK) in 2014. The solver deals with the entailment checking for the
QF_SLID fragment. It is an instantiation of the theorem prover Cyclist-SL
for the case of Separation Logic with inductive definitions. The solver builds
derivation trees and uses induction to cut infinite paths in these trees that satisfy
some soundness condition. For the Separation Logic, Cyclist-SL replaces the
rule of weakening used in first-order theorem provers with the frame rule of SL.

Cyclist-SL won the division qf_slid_entl in 2014 and was at the second
place in the same division in 2018.

4.4 CVC4-SL

CVC4 has a decision procedure described in [23] for the fragment QF_BSL. The
solver CVC4-SL has been submitted by Andrew Reynolds (The University of
Iowa, USA). Although this fragment is not supported by other solvers, two divi-
sions were created for it because this fragment is the only one including the
separating wand operator. CVC4-SL [6] participated in the 2018 edition and
trivially won the two divisions.

4.5 Harrsh

Harrsh [17] was submitted by Jens Katelaan (TU Wien, Austria), the devel-
opment team including Florian Zuleger from the same institute and Christoph
Matheja and Thomas Noll (RWTH Aachen University, Germany). Harrsh deals
with the fragment QF_SHID for both satisfiability and entailment checking. The
decision procedures use a novel automaton model, so-called heap automata [16],
which works directly on the structure of symbolic heaps. A heap automaton
examines a SID bottom-up, starting from the non-recursive base case. At each
stage of this analysis, a heap automaton remembers a fixed amount of informa-
tion. Heap automata enjoy a variety of closure properties (intersection, union
and complementation).

Harrsh is licensed under the MIT license and available on GitHub [12].
Harrsh was implemented in Scala and runs on the JVM. Harrsh has its own
input format, but also supports both Cyclist-SL input format and the SL-
COMP input format. Many SL-COMP entailment problems violate the syntactic
restrictions of predicate definitions required by Harrsh. For this reason, the
solver comes with a preprocessor that is able to transform many (but not all)
benchmark’s problems in the division qf_shid_entl into equivalent, Harrsh
compatible specifications.

Harrsh entered SL-COMP in 2018 and competed in divisions qf_shls_sat
and qf_shid_sat with encouraging results. Compared to all other participants,
Harrsh has the disadvantage that it runs on the JVM: On simple problems,
more than 99% of the runtime of Harrsh is spent starting and shutting down
the JVM.
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4.6 S2S

S2S is a solver submitted by Quang Loc Le (Teesside University, Middlesbrough,
UK). It supports separation logic extended with string and arithmetic con-
straints, which correspond to all divisions of SL-COMP except ones based on
QF_BSL. The solver is built around a generic framework to construct a forest of
disjoint cyclic reduction trees for an input, either an entailment or a satisfia-
bility problem. The implementation is done in Ocaml, from scratch. It contains
three main components: front end with parsers, the proof systems and backend
with SMT solvers (Z3). For the front end, the solver supports several formats,
including the one of SL-COMP. The solver implements three concrete cyclic proof
systems. The first system is a satisfiability solver in separation logic with general
inductive predicates and arithmetic (fragment SLIDLIA). The second one is an
entailment solver in the same fragment of separation logic above. Its implementa-
tion is the extension of a cyclic proof system with lemma synthesis [18]. The last
system is a satisfiability solver for string logics. In all these three systems, any
input of the leaf node evaluation method could be transformed into Presburger
arithmetic and discharged efficiently by Z3.

In SL-COMP’2018, S2S won division qf_shlid_entl and qf_shidlia_sat.

4.7 Sleek

Sleek [5,28] participated in all editions of SL-COMP, the submitters at edition
2018 being Benjamin Lee and Wei-Ngan Chin (NUS, Singapore). The solver
deals with the satisfiability and entailment checking for the QF_SHID fragment.
It is an (incomplete but) automatic prover, that builds a proof tree for the input
problem by using the classical inference rules and the frame rule of SL. It also
uses a database of lemmas for the inductive definitions in order to discharge the
proof obligations on the spatial formulas. The proof obligations on pure formulas
are discharged by external provers like CVC4, Mona, or Z3.

Sleek was the winner of the division qf_shid_entl in edition 2014, and was
in the third position in the same division in edition 2018.

4.8 Slide

Slide [14,29] was submitted by Adam Rogalewicz (FIT, Brno University of Tech-
nology, Czechia), the development team including Michal Cyprian and Tomas
Vojnar from the same institute and Radu Iosif (Verimag, University Greno-
ble Alpes & CNRS, France). The solver deals with the entailment problem in
the decidable sub-fragment of QF_SLID defined in [13]. The main principle of
SLIDE is a reduction of entailment problems in SL into inclusion problems of
tree automata. For the problems in the fragment identified in [13], the decision
procedure implemented in Slide is EXPTIME-hard. More precisely, the proof
method for checking ϕ ⇒ ψ relies on converting ϕ and ψ into two tree automata
Aϕ resp. Aψ, and checking the tree language inclusion of the automaton Aϕ in
the automaton Aψ.
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Slide takes an input in its own input format, which can be generated by the
dedicated SL-COMP preprocessor. The reduction from the system of predicates
into tree automata and the join operator is implemented in Python3. The result
of the reduction are input files for the VATA tree automata library, which is
used as a backend for the inclusion tests.

Slide participated in both past editions of SL-COMP. In 2018 edition, Slide
solved 61 of 312 problems in division qf_shid_entl, 7 of 60 problems in division
qf_shlid_entl, and 15 of 73 problems in division shid_entl. The number of
solved problems is related to the fact that Slide is a prototype implementation,
where our primary goal was to show the advantages of automata techniques. In
order to cover more problems, one have to implement a new top-level parser,
which would split the input entailment query into a set of subsequent queries,
for which the automata-based technique can be used.

4.9 SlSat

SlSat [3] was submitted at SL-COMP’2014 by Nikos Gorogiannis (Middlesex
University London, UK) and Juan Navarro Perez (at the time at UCL, UK,
now at Google). The solver deals with the satisfiability problem for the QF_SLID
fragment. The decision procedure is based on a fixed point computation of a
constraint, called the “base” of an inductive predicate definition. This constraint
is a conjunction of equalities and dis-equalities between a set of free variables
built also by the fixed point computation from the set of inductive definitions.

SlSat was at the second position in division qf_slid_sat in edition 2014,
and won this division at edition 2018.

4.10 Songbird

Songbird [32] was submitted by Quang-Trung Ta (National University of Sin-
gapore) and the development team includes Ton-Chanh Le (Stevens Institute of
Technology, USA), Thanh-Toan Nguyen, Siau-Cheng Khoo, and Wei-Ngan Chin
(National University of Singapore, Singapore). Songbird targets SHIDLIA frag-
ment. It employs mathematical induction to prove entailments involving user-
defined predicates. In addition, Songbird is also equipped with powerful proof
techniques, which include a mutual induction proof system [35] and a lemma
synthesis framework [36].

Songbird is implemented in OCaml and uses Z3 as the underlying SMT
solver for the first-order logic formula which contains equality and linear arith-
metic constraints. The input syntax of Songbird is described in [32].

Songbird integrated SL-COMP at the 2018 edition, and was the first in
four divisions: qf_shid_entl, qf_shidlia_entl, shid_entl, shidlia_entl. It
can also solve 100% of the problems in other two divisions qf_shls_entl and
qf_shls_sat, but the runtime is slower than the best provers of these divisions.
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4.11 Spen

Spen [9,33] was submitted by Mihaela Sighireanu (IRIF, University Paris
Diderot & CNRS, France) and the development team includes Constantin Enea
from the same institute, Ondrej Lengal and Tomas Vojnar (FIT, Brno University
of Technology, Czechia). The solver deals with satisfiability and entailment prob-
lems for the fragments QF_SHLID and QF_SHLS. The decision procedures call the
MiniSAT solver on a Boolean abstraction of the SL formulas to check their satis-
fiability and to “normalize” the formulas by inferring its implicit (dis)equalities.
The core of the algorithm checking if ϕ ⇒ ψ is valid searches a mapping from
the atoms of ψ to sub-formulas of ϕ. This search uses the membership test in
tree automata to recognize in sub-formulas of ϕ some unfolding of the inductive
definitions used in ψ.

Spen is written in C and C++ and is open source [33]. It is based on
the VATA library for tree automata. Spen won the division qf_shlid_entl
at edition 2014 and was in the second position in divisions qf_shls_entl and
qf_shls_sat in both editions.

5 Running the Competition

SL-COMP uses the StarExec platform [34] and requires several features provided
by this platform. The pre-processing phase allows to translate each problem
into the input format of the solver without time penalties. It is used by most
of the solvers and some pre-processors are provided by SL-COMP’s organizer,
freely available on the competition GitHub repository [22]. The competition did
not use the scrambling of benchmark’s problems because the names used for
inductive definitions defined in the files of some divisions are important for the
solvers. Each benchmark file includes only one problem. The incremental feature
was not used and is not supported by most of the competing solvers.

StarExec imposes a time and space limit on each attempt of a solver to solve
a given problem. For the 2014 edition, the CPU time was limited to 2400 s
and the memory (RAM) limit was 100 GB. To gain some time in running the
competition, the 2018 edition used by default a timeout of 600 s and 4 GB of
memory; if the time was exceeded, timeouts of 2400 then 3600 were tried. Even
with these bigger timeouts, some jobs did have CPU timeout or reached the
memory limit. To simplify the running, the new edition will use a memory limit
of 100 GB and a timeout of 3600 s.

The participants trained their solvers on the platform and provided feedback
where the expected result of a problem did not match their result. Several bench-
mark’s problems and solvers were fixed during this period. One training run was
executed before the official run to provide insights about the global results and
to do a final check of the benchmark set.

The participants at each divisions are ordered according to the rules fixed for
SMT-COMP’14 edition. The best solver is the one with, in order: (a) the least
number of incorrect answers, (b) the largest number of correctly solved prob-
lems, and (c) the smallest time taken in solving the correctly solved problems.
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Note that solvers are allowed to respond “unknown” or to time-out on a given
benchmark’s problem without penalty (other than not being able to count that
problem as a success).

StarExec requires that a public version of a solver be made available on
StarExec as a condition of participating in a competition. This allows users of
StarExec to rerun a competition if so desired. More importantly, it allows users
to upload a new set of problems of interest in their application domain and to
try the various solvers against those problems. This feature was very useful for
SL-COMP at edition 2018, because some solvers reused the binaries submitted in
2014. The results of the competition are provided on the competition web page
with a link to the CSV files generated by StarExec. We are also archiving the
results of previous editions in the GitHub.

6 Impact and Perspectives

The SL-COMP initiative fulfilled its goals: an interesting suite of SL problems
is publicly available in a common format and the maturity of solvers submitted
for this competition has been proven.

Moreover, we achieved to propose a common format for SL which is based on
a mature and maintained format for first-order theories, SMT-LIB. This format
reveals the features required by the existing solvers, e.g., the strong typing of
formulas, the kind of inductive definitions handled, etc.

The participation at SL-COMP allowed to measure solvers against competi-
tors and therefore to improve solvers during the competition and in meantime.
Moreover, the existing benchmark set includes challenging problems for the com-
petitors because about half (6 over 11) of the divisions are completely solved.
Five divisions include problems not yet dealt: qf_bsl_sat has 2 problems (5%),
qf_shid_entl has 11 problems (4%), qf_shid_sat has 26 problems (27%),
shid_entl has 3 problems (5%) and shid_sat has 29 problems (17%).

A community interested in such tools has been identified and informed about
the status of the existing solvers. This community could benefit from improving
the tools built on the top of decision procedures for SL.

The SMT-COMP community discovered the status of the solvers for SL and
became interested in this theory, as is demonstrated by the participation of
CVC4, one of the most complete solver of SMT-COMP.

We expect that the 2019 edition of SL-COMP will enforce these results.
The perspectives mainly concern improvement of the organization process as

the size of the competition (number of solvers and benchmark set) increases.
First of all, we are trying to reach a consensus for a good cadence of this

competition. Yearly competitions could be very exciting for the first years, but
may focus on engineering improvements rather than fundamental work. We feel
that a good cadence is alternating a competition year with a year of benchmark
set evaluation and improvement.

With the experience of the current competition, the benchmark set has to be
improved also. As mentioned above, we have to balance the number of problems
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coming from the same team in each division in order to reach a fair comparison
criterium. For each problem, it would be interesting to attach a coefficient which
is taken into account in the scoring system and thus obtain a better evaluation
of each solver. A classic way to assign a difficulty level is to take into account
the size of the formulas and of the inductive definitions used in the problem.

Finally, we should intensify the exchanges with related competitions in soft-
ware verification and automated proving. Such competitions may benefit from
SL-COMP results in terms of automation, and may provide interesting bench-
mark sets. For this, the results of SL-COMP should be made available in forms
that allows to understood the state of the art of SL solvers and the contribution
of each participating solver to this state of the art. We should also provide, in
addition to the StarExec platform, other means to reproduce the results of each
edition. For example, virtual machines may be archived with the sources and
binaries of participants for each edition of the competition.
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Abstract. This report describes the 2019 Competition on Software
Verification (SV-COMP), the 8th edition of a series of comparative
evaluations of fully automatic software verifiers for C programs, and now
also for Java programs. The competition provides a snapshot of the current
state of the art in the area, and has a strong focus on replicability
of its results. The repository of benchmark verification tasks now sup-
ports a new, more flexible format for task definitions (based on YAML),
which was a precondition for conveniently benchmarking Java programs
in the same controlled competition setting that was successfully applied in
the previous years. The competition was based on 10 522 verification tasks
for C programs and 368 verification tasks for Java programs. Each verifi-
cation task consisted of a program and a property (reachability, memory
safety, overflows, termination). SV-COMP 2019 had 31 participating
verification systems from 14 countries.

1 Introduction

Software verification is an increasingly important research area, and the annual
Competition on Software Verification (SV-COMP)1 is the showcase of the state
of the art in the area, in particular, of the effectiveness and efficiency that is
currently achieved by tool implementations of the most recent ideas, concepts,
and algorithms for fully automatic verification. Every year, the SV-COMP project
consists of two parts: (1) The collection of verification tasks and their partitioning
into categories has to take place before the actual experiments start, and requires
quality-assurance work on the source code in order to ensure a high-quality
evaluation. It is important that the SV-COMP verification tasks reflect what
the research and development community considers interesting and challenging
for evaluating the effectivity (soundness and completeness) and efficiency (per-
formance) of state-of-the-art verification tools. (2) The actual experiments of
the comparative evaluation of the relevant tool implementations is performed
by the organizer of SV-COMP. Since SV-COMP shall stimulate and showcase
new technology, it is necessary to explore and define standards for a reliable and
reproducible execution of such a competition: we use BenchExec [19], a mod-
ern framework for reliable benchmarking and resource measurement, to run the
experiments, and verification witnesses [14,15] to validate the verification results.
1 https://sv-comp.sosy-lab.org
c© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 133–155, 2019.
https://doi.org/10.1007/978-3-030-17502-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17502-3_9&domain=pdf
http://orcid.org/0000-0003-4832-7662
https://sv-comp.sosy-lab.org
https://doi.org/10.1007/978-3-030-17502-3_9
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As for every edition, this SV-COMP report describes the (updated) rules
and definitions, presents the competition results, and discusses other interesting
facts about the execution of the competition experiments. Also, we need to
measure the success of SV-COMP by evaluating whether the main objectives of
the competition are achieved (cf. [10]):

1. provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers,

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

3. establish standards that make it possible to compare different verification
tools, including a property language and formats for the results, and

4. accelerate the transfer of new verification technology to industrial practice.

As for (1), there were 31 participating software systems from 14 countries, repre-
senting a broad spectrum of technologies (cf. Table 5). SV-COMP is considered
an important event in the research community, and increasingly also in indus-
try. As for (2), the total set of verification tasks written in C increased in size
from 8 908 tasks to 10 522 tasks from 2017 to 2019, and in addition, 368 tasks
written in Java were added for 2019. Still, SV-COMP has an ongoing focus
on collecting and constructing verification tasks to ensure even more diversity,
as witnessed by the issue tracker2 and by the pull requests3 in the GitHub
project. As for (3), the largest step forward was to establish a exchangeable
standard format for verification witnesses. This means that verification results
are fully counted only if they can be independently validated. As for (4), we
continuously receive positive feedback from industry. Colleagues from industry
reported to us that they observe SV-COMP in order to know about the newest
and best available verification tools. Moreover, since SV-COMP 2017 there are
also a few participating systems from industry.

Related Competitions. It is well-understood that competitions are an impor-
tant evaluation method, and there are other competitions in the field of software
verification: RERS4 [40] and VerifyThis5 [41]. While SV-COMP performs repli-
cable experiments in a controlled environment (dedicated resources, resource
limits), the RERS Challenges give more room for exploring combinations of
interactive with automatic approaches without limits on the resources, and the
VerifyThis Competition focuses on evaluating approaches and ideas rather than
on fully automatic verification. The termination competition termCOMP6 [33]
concentrates on termination but considers a broader range of systems, including
logic and functional programs. This year, SV-COMP is part of TOOLympics [6].
A more comprehensive list of other competitions is provided in the report on

2 https://github.com/sosy-lab/sv-benchmarks/issues
3 https://github.com/sosy-lab/sv-benchmarks/pulls
4 http://rers-challenge.org
5 http://etaps2016.verifythis.org
6 http://termination-portal.org/wiki/Termination_Competition

https://github.com/sosy-lab/sv-benchmarks/issues
https://github.com/sosy-lab/sv-benchmarks/pulls
http://rers-challenge.org
http://etaps2016.verifythis.org
http://termination-portal.org/wiki/Termination_Competition
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SV-COMP 2014 [9]. There are other large benchmark collections as well (e.g., by
SPEC7), but the sv-benchmark suite8 is (a) free of charge and (b) tailored to the
state of the art in software verification. There is a certain flow of benchmark sets
between benchmark repositories: For example, the sv-benchmark suite contains
programs that were used in RERS9 or in termCOMP10 before.

2 Procedure

The overall competition organization did not change in comparison to the past
editions [7–12]. SV-COMP is an open competition, where all verification tasks are
known before the submission of the participating verifiers, which is necessary due
to the complexity of the C language. During the benchmark submission phase, new
verification tasks were collected, classified, and added to the existing benchmark
suite (i.e., SV-COMP uses an accumulating benchmark suite), during the training
phase, the teams inspected the verification tasks and trained their verifiers (also,
the verification tasks received fixes and quality improvement), and during the
evaluation phase, verification runs were preformed with all competition
candidates, and the system descriptions were reviewed by the competition jury.
The participants received the results of their verifier directly via e-mail, and after
a few days of inspection, the results were publicly announced on the competition
web site. The Competition Jury consisted again of the chair and one member of
each participating team. Team representatives of the jury are listed in Table 4.

3 Definitions, Formats, and Rules

License Requirements. Starting 2018, SV-COMP required that the verifier
must be publicly available for download and has a license that

(i) allows replication and evaluation by anybody (including results publication),
(ii) does not restrict the usage of the verifier output (log files, witnesses), and
(iii) allows any kind of (re-)distribution of the unmodified verifier archive.

Verification Tasks. The definition of verification tasks was not changed and
we refer to previous reports for more details [9,12]. The validation of the results
based on verification witnesses [14,15] was done exactly as in the previous years
(2017, 2018), mandatory for both answers True or False; the only change was
that an additional new, execution-based witness validator [16] was used. A few
categories were excluded from validation if the validators did not sufficiently
support a certain kind of program or property.

Categories, Properties, Scoring Schema, and Ranking. The categories are
listed in Tables 6 and 7 and described in detail on the competition web site.11

7 https://www.spec.org
8 https://github.com/sosy-lab/sv-benchmarks
9 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/eca-rers2012/

README.txt
10 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/

termination-restricted-15/README.txt
11 https://sv-comp.sosy-lab.org/2019/benchmarks.php

https://www.spec.org
https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/eca-rers2012/README.txt
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/eca-rers2012/README.txt
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/termination-restricted-15/README.txt
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/termination-restricted-15/README.txt
https://sv-comp.sosy-lab.org/2019/benchmarks.php
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Fig. 1. Category structure for SV-COMP 2019; category C-FalsificationOverall
contains all verification tasks of C-Overall without Termination; Java-Overall contains
all Java verification tasks
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Table 1. Properties used in SV-COMP 2019 (G valid-memcleanup is new)

Formula Interpretation

G ! call(foo()) A call to function foo is not reachable on any finite execution.
G valid-free All memory deallocations are valid (counterexample: invalid free).

More precisely: There exists no finite execution of the program
on which an invalid memory deallocation occurs.

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program on which an invalid pointer dereference occurs.

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists
no finite execution of the program on which the program lost
track of some previously allocated memory.

G valid-memcleanup All allocated memory is deallocated before the program
terminates. In addition to valid-memtrack: There exists
no finite execution of the program on which the program
terminates but still points to allocated memory.
(Comparison to Valgrind: This property can be violated even
if Valgrind reports ‘still reachable’.)

F end All program executions are finite and end on proposition end,
which marks all program exits (counterexample: infinite loop).
More precisely: There exists no execution of the program on
which the program never terminates.

Table 2. Scoring schema for SV-COMP 2019 (unchanged since 2017 [12])

Reported result Points Description

Unknown 0 Failure to compute verification result
False correct +1 Violation of property in program was correctly found

and a validator confirmed the result based on a witness
False incorrect −16 Violation reported but property holds (false alarm)
True correct +2 Program correctly reported to satisfy property

and a validator confirmed the result based on a witness
True correct unconfirmed +1 Program correctly reported to satisfy property,

but the witness was not confirmed by a validator
True incorrect −32 Incorrect program reported as correct (wrong proof)

Figure 1 shows the category composition. For the definition of the properties
and the property format, we refer to the 2015 competition report [10]. All specifica-
tions are available in the directory c/properties/ of the benchmark repository.
Table 1 lists the properties and their syntactical representation as overview.
Property G valid-memcleanup was used for the first time in SV-COMP 2019.

The scoring schema is identical for SV-COMP 2017–2019: Table 2 provides the
overview and Fig. 2 visually illustrates the score assignment for one property. The
scoring schema still contains the special rule for unconfirmed correct results for
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TASK

VERIFIERtrue-unreach

VERIFIER

false-unreach

WITNESS_VALIDATOR

true

0unknown

-16

false

2true (witness confirmed)

1unconfirmed (false, unknown, or ressources exhausted)

0invalid (error in witness syntax)

-32
true

0
unknown

WITNESS_VALIDATOR

false 0invalid (error in witness syntax)

0unconfirmed (true, unknown, or ressources exhausted)

1false (witness confirmed)

Fig. 2. Visualization of the scoring schema for the reachability property

expected result True that was introduced in the transitioning phase: one point is
assigned if the answer matches the expected result but the witness was not con-
firmed. Starting with SV-COMP 2020, the single-point rule will be dropped, i.e.,
points are only assigned if the results got validated or no validator was available.

The ranking was again decided based on the sum of points (normalized for
meta categories) and for equal sum of points according to success run time, which
is the total CPU time over all verification tasks for which the verifier reported a
correct verification result. Opt-out from Categories and Score Normalization for
Meta Categories was done as described previously [8] (page 597).

4 New Format for Task Definitions

Technically, we need a verification task (a pair of a program and a specification
to verify) to feed as input to the verifier, and an expected result against which
we check the answer that the verifier returns. We changed the format of how
these tasks are specified for SV-COMP 2019: The C track is still based on the
old format, while the Java track already uses the new format.

Recap: Old Format. Previously, the above-mentioned three components were
specified in the file name of the program. For example, consider the file name
c/ntdrivers/floppy_true-unreach-call_true-valid-memsafety.i.cil.c,
which encodes the program, the specification (consisting of two properties), and
two expected results (one for each property) in the following way:

• Program: The program file is identified using the file name
floppy_true-unreach-call_true-valid-memsafety.i.cil.c in directory
c/ntdrivers/. The original program was named as floppy (see [17]).

• Specification: The program comes with a specification that consists of two
properties unreach-call and valid-memsafety thus, the two verification
tasks (floppy, unreach-call) and (floppy, valid-memsafety) are defined.

• Expected results: The expected result for both verification tasks is true.

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/ntdrivers/floppy_true-unreach-call_true-valid-memsafety.i.cil.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/ntdrivers/floppy_true-unreach-call_true-valid-memsafety.i.cil.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/ntdrivers/
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/properties/unreach-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/properties/valid-memsafety.prp
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1 format_version: ’1.0’
2

3 # old file name: floppy_true−unreach−call_true−valid−memsafety.i.cil.c
4 input_files: ’floppy.i.cil−3.c’
5

6 properties:
7 − property_file: ../properties/unreach−call.prp
8 expected_verdict: true
9 − property_file: ../properties/valid−memsafety.prp

10 expected_verdict: true

Fig. 3. Example task definition for program floppy.i.cil-3.c

This format was used for eight years of SV-COMP, because it is easy to understand
and use. However, whenever a new property should be added to the specification
of a given program, the program’s file name needs to be changed, which has
negative impact on traceability and maintenance. From SV-COMP 2020 onwards,
the repository will use the following new format for all tracks.

Explicit Task-Definition Files. All the above-discussed information is stored
in an extra file that contains a structured definition of the verification tasks
for a program. For each program, the repository contains the program file and a
task-definition file. The above program is available under the name
floppy.i.cil-3.c and comes with its task-definition file floppy.i.cil-3.yml.
Figure 3 shows this task definition.

The task definition uses the YAML format as underlying structured data
format. It contains a version id of the format (line 1) and can contain comments
(line 3). The field input_files specifies the input program (example:
‘floppy.i.cil-3.c’), which is either one file or a list of files. The field
properties lists all properties of the specification for this program. Each
property has a field property_file that specifies the property file (example:
../properties/unreach-call.prp) and a field expected_verdict that speci-
fies the expected result (example: true).

5 Including Java Programs

The first seven editions of SV-COMP considered only programs written in C. In
2019, the competition was extended to include a Java track. Some of the Java
programs existed already in the repository, and many other Java programs were
contributed by the community [29]. Currently, most of the programs are from
the regression-test suites from the verifiers that participate in the Java track;
the goal is to substantially increase the benchmark set over the next years.

In principle, the same definitions and rules as for the C track apply, but some
technical details need to be slightly adapted for Java programs. Most prominently,
the classes of a Java program cannot be inlined into one Java file, which is solved by
using the new task-definition format, which allows lists of input files. This required
an extension of BenchExec that is present in version 1.1712 and higher.
12 https://github.com/sosy-lab/benchexec/releases/tag/1.17

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ntdrivers/floppy.i.cil-3.yml
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/properties/unreach-call.prp
https://github.com/sosy-lab/benchexec/releases/tag/1.17
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CHECK( init(main()), LTL(G ! call(__VERIFIER_error())) )

(a) Property c/properties/unreach-call.prp
CHECK( init(Main.main()), LTL(G assert) )

(b) Property java/properties/assert.prp

Fig. 4. Standard reachability property in comparison for C and for Java

The property for reachability is also slightly different, as shown in Fig. 4: The
function call to the start of the program is Main.main() instead of main(), and
the verifiers check that proposition assert is always true, instead of checking that
__VERIFIER_error() is never called. The new proposition assert is false where
a Java assert statement fails, i.e., the exception AssertionError is thrown.

The rules for the C track specify a function __VERIFIER_nondet_X() for
each type X from the set {bool, char, int, float, double, loff_t, long,
pchar, pointer, pthread_t, sector_t, short, size_t, u32, uchar, uint, ulong,
unsigned, ushort} (no side effects, pointer for void *, etc.) that all return an
arbitrary, nondeterministic value (‘input’ value) of the respective type that may
differ for different invocations. Similarly for the Java track: we use a Java class
named org.sosy_lab.sv_benchmarks.Verifier with the following parameter-
less static methods: nondetBoolean, nondetByte, nondetChar, nondetShort,
nondetInt, nondetLong, nondetFloat, nondetDouble, and nondetString. Each
of those methods creates a value of the respective type using functionality from
java.util.Random. The earlier proposal [29] to use the array of arguments that
is passed to the main method to obtain nondeterministic values was not followed.
The SV-COMP community found that the explicitly defined methods are better
for the competition, and also closer to practice.

Finally, the static method assume(boolean) in the same class can be
used to assume a certain value range. The implementation halts using
Runtime.getRuntime().halt(1). It was proposed [29] to omit this method but
in the end the community decided to include it.

6 Reproducibility

It is important that all SV-COMP experiments can be independently replicated,
and that the results can be reproduced. Therefore, all major components that are
used for the competition need to be publicly available. Figure 5 gives an overview
over the components that contribute to the reproducible setup of SV-COMP, and
Table 3 provides the details. We refer to a previous report [11] for a description of
all components of the SV-COMP organization and how it is ensured that all parts
are publicly available for maximal replicability.

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/java/common/org/sosy_lab/sv_benchmarks/Verifier.java
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(a) Verification Tasks
(public git: 'svcomp19')

(e) Verification Run
(BenchExec 1.17)

(b) Benchmark Definitions
(public git: 'svcomp19')

(c) Tool-Info Modules
(public git: '1.17')

(d) Verifier Archives
(public git: 'svcomp19')

FALSE UNKNOWN TRUE(f) Violation
Witness

(f) Correctness
Witness

Fig. 5. Setup: SV-COMP components and the execution flow

Table 3. Publicly available components for replicating SV-COMP 2019

Component Fig. 5 Repository Version

Verification Tasks (a) github.com/sosy-lab/sv-benchmarks svcomp19
Benchmark Definitions (b) github.com/sosy-lab/sv-comp svcomp19
Tool-Info Modules (c) github.com/sosy-lab/benchexec 1.17
Verifier Archives (d) gitlab.com/sosy-lab/sv-comp/archives-2019 svcomp19
Benchmarking (e) github.com/sosy-lab/benchexec 1.17
Witness Format (f) github.com/sosy-lab/sv-witnesses svcomp19

Since SV-COMP 2018, we use a more transparent way of making the verifier
archives publicly available. All verifier archives are now stored in a public Git
repository. We chose GitLab to host the repository for the verifier archives due
to its generous repository size limit of 10GB (we could not use GitHub, because
it has a strict size limit of 100MB per file, and recommends to keep the repository
under 1GB). An overview table with information about all participating systems
is provided in Table 4 and on the competition web site13.

In addition to providing the components to replicate the experiments,
SV-COMP also makes the raw results available in the XML-based exchange
format in which BenchExec [20] delivers the data, and also publishes all
verification witnesses [13].

7 Results and Discussion

For the eighth time, the competition experiments represent the state of the art in
fully automatic software-verification tools. The report shows the improvements
compared to last year, in terms of effectiveness (number of verification tasks
that can be solved, correctness of the results, as accumulated in the score) and
efficiency (resource consumption in terms of CPU time). The results that are
presented in this article were inspected and approved by the participating teams.

13 https://sv-comp.sosy-lab.org/2019/systems.php

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp19/c
https://github.com/sosy-lab/sv-comp/tree/svcomp19/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/1.17/benchexec/tools
https://gitlab.com/sosy-lab/sv-comp/archives-2019/tree/svcomp19/2019
https://github.com/sosy-lab/benchexec/tree/svcomp19
https://github.com/sosy-lab/sv-witnesses/tree/svcomp19
https://sv-comp.sosy-lab.org/2019/systems.php
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Table 4. Competition candidates with tool references and representing jury members

Participant Ref. Jury member Affiliation

2LS [49,61] Peter Schrammel U. of Sussex, UK
AProVE [34,38] Jera Hensel RWTH Aachen, Germany
CBMC [46] Michael Tautschnig Amazon Web Services, UK
CBMC-Path [44] Kareem Khazem U. College London, UK
CPA-BAM-BnB [1,64] Vadim Mutilin ISP RAS, Russia
CPA-Lockator [2] Pavel Andrianov ISP RAS, Russia
CPA-Seq [18,30] Marie-Christine Jakobs LMU Munich, Germany
DepthK [58,60] Omar Alhawi U. of Manchester, UK
DIVINE-explicit [5,62] Vladimír Štill Masaryk U., Czechia
DIVINE-SMT [47,48] Henrich Lauko Masaryk U., Czechia
ESBMC-kind [31,32] Mikhail R. Gadelha U. of Southampton, UK
JayHorn [42,43] Philipp Rümmer Uppsala U., Sweden
JBMC [27,28] Lucas Cordeiro U. of Manchester, UK
JPF [3,63] Cyrille Artho KTH, Sweden
Lazy-CSeq [50] Omar Inverso Gran Sasso Science Inst., Italy
Map2Check [57,59] Herbert Rocha Federal U. of Roraima, Brazil
PeSCo [56] Cedric Richter U. of Paderborn, Germany
Pinaka [24] Eti Chaudhary IIT Hyderabad, India
PredatorHP [39,45] Veronika Šoková BUT, Brno, Czechia
Skink [21] Franck Cassez Macquarie U., Australia
Smack [36,55] Zvonimir Rakamaric U. of Utah, USA
SPF [51,53] Willem Visser Stellenbosch U., South Africa
Symbiotic [22,23] Marek Chalupa Masaryk U., Czechia
UAutomizer [37] Matthias Heizmann U. of Freiburg, Germany
UKojak [52] Alexander Nutz U. of Freiburg, Germany
UTaipan [35] Daniel Dietsch U. of Freiburg, Germany
VeriAbs [25] Priyanka Darke Tata Consultancy Services, India
VeriFuzz [26] R. K. Medicherla Tata Consultancy Services, India
VIAP [54] Pritom Rajkhowa Hong Kong UST, China
Yogar-CBMC [65,66] Liangze Yin Nat. U. of Defense Techn., China
Yogar-CBMC-Par. [67] Haining Feng Nat. U. of Defense Techn., China

Participating Verifiers. Table 4 provides an overview of the participating
verification systems and Table 5 lists the features and technologies that are used
in the verification tools.

Computing Resources. The resource limits were the same as in the previous
competitions [11]: Each verification run was limited to 8 processing units (cores),
15GB of memory, and 15min of CPU time. The witness validation was limited
to 2 processing units, 7GB of memory, and 1.5min of CPU time for violation
witnesses and 15min of CPU time for correctness witnesses. The machines for run-
ning the experiments are part of a compute cluster that consists of 168 machines;
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Table 5. Technologies and features that the competition candidates offer
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CPA-Lockator ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPA-Seq ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DepthK ✓ ✓ ✓ ✓

DIVINE-explicit ✓ ✓ ✓

DIVINE-SMT ✓ ✓ ✓

ESBMC-kind ✓ ✓ ✓ ✓

JayHorn ✓ ✓ ✓ ✓ ✓ ✓

JBMC ✓ ✓ ✓
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Map2Check ✓ ✓
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Pinaka ✓ ✓ ✓

PredatorHP ✓

Skink ✓ ✓ ✓ ✓

Smack ✓ ✓ ✓ ✓ ✓ ✓

SPF ✓ ✓ ✓

Symbiotic ✓ ✓ ✓

UAutomizer ✓ ✓ ✓ ✓ ✓ ✓ ✓

UKojak ✓ ✓ ✓ ✓ ✓
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VeriAbs ✓ ✓ ✓ ✓ ✓

VeriFuzz ✓ ✓ ✓

VIAP

Yogar-CBMC ✓ ✓ ✓ ✓ ✓

Yogar-CBMC-Par. ✓ ✓ ✓ ✓ ✓
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each verification run was executed on an otherwise completely unloaded, dedi-
cated machine, in order to achieve precise measurements. Each machine had one
Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of 3.4GHz,
33GB of RAM, and a GNU/Linux operating system (x86_64-linux, Ubuntu 18.04
with Linux kernel 4.15). We used BenchExec [19] to measure and control com-
puting resources (CPU time, memory, CPU energy) and VerifierCloud14 to
distribute, install, run, and clean-up verification runs, and to collect the results.

One complete verification execution of the competition consisted of 418 bench-
marks (each verifier on each selected category according to the opt-outs), summing
up to 178 674 verification runs. The total consumed CPU time was 461 days for
one complete competition run for verification (without validation). Witness-based
result validation required 2 645 benchmarks (combinations of verifier, category
with witness validation, and a set of validators) summing up to 517 175 validation
runs. Each tool was executed several times, in order to make sure no installation
issues occur during the execution. Including pre-runs, the infrastructure managed
a total of 5 880 071 runs and consumed 15 years and 182 days of CPU time.

Quantitative Results. Table 6 presents the quantitative overview over all
tools and all categories. The head row mentions the category, the maximal
score for the category, and the number of verification tasks. The tools are listed
in alphabetical order; every table row lists the scores of one verifier. We indicate
the top three candidates by formatting their scores in bold face and in larger font
size. An empty table cell means that the verifier opted-out from the respective
main category (perhaps participating in subcategories only, restricting the
evaluation to a specific topic). More information (including interactive tables,
quantile plots for every category, and also the raw data in XML format) is
available on the competition web site.15

Table 7 reports the top three verifiers for each category. The run time (column
‘CPUTime’) refers to successfully solved verification tasks (column ‘SolvedTasks’).
The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of verification
tasks for which the verifier reported wrong results: reporting an error path when
the property holds (incorrect False) and claiming that the program fulfills the
property although it actually contains a bug (incorrect True), respectively.

Discussion of Scoring Schema. The verification community considers compu-
tation of correctness proofs to be more difficult than computing error paths: ac-
cording to Table 2, an answerTrue yields 2 points (confirmed witness) and 1 point
(unconfirmed witness), while an answer False yields 1 point (confirmed witness).
This can have consequences for the final ranking, as discussed in the report of
SV-COMP 2016 [11]. The data from SV-COMP 2019 draw a different picture.

Table 8 shows the mean and median values for resource consumption
regarding CPU time and energy consumption: the first column lists the five best
verifiers of category C-Overall, the second to fifth columns report the CPU time
and CPU energy (mean and median) for results True, and the sixth to ninth

14 https://vcloud.sosy-lab.org
15 https://sv-comp.sosy-lab.org/2019/results

https://vcloud.sosy-lab.org
https://sv-comp.sosy-lab.org/2019/results
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Table 6. Quantitative overview over all results; empty cells mark opt-outs
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2LS 2397 129 0 280 1279 119 733 4174
AProVE 2476
CBMC 2781 60 613 227 827 0 1432 4341
CBMC-Path 1657 -59 -150 192 535 -151 81 1587
CPA-BAM-BnB 1185
CPA-Lockator -441
CPA-Seq 4299 349 996 431 1785 1073 2823 9329
DepthK 986 -113 420 39 37 -1182 129 159
DIVINE-explicit 1413 25 493 0 0 2 200 1547
DIVINE-SMT 1778 -158 339 0 0 0 -339 726
ESBMC-kind 3404 -208 404 224 826 714 1916 3636
JayHorn 247
JBMC 470
JPF 290
Lazy-CSeq 1245
Map2Check 38 8
PeSCo 4239 2313 8466
Pinaka 218 561
PredatorHP 416
Skink

Smack

SPF 365
Symbiotic 3143 426 0 331 1153 555 1828 6129
UAutomizer 3264 -163 270 449 3001 1020 1050 6727
UKojak 2195 -211 0 396 0 818 1060 2595
UTaipan 3012 -91 271 438 0 962 1024 4188
VeriAbs 4638 1061
VeriFuzz 1132 123
VIAP

Yogar-CBMC 1277
Yogar-CBMC-Par.
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Table 7. Overview of the top-three verifiers for each category (CPU time in h, rounded
to two significant digits)

Rank Verifier Score CPU Solved False Wrong
Time Tasks Alarms Proofs

ReachSafety
1 VeriAbs 4638 110 2 811
2 CPA-Seq 4299 60 2 519
3 PeSCo 4239 58 2 431 2

MemSafety
1 Symbiotic 426 .030 299
2 PredatorHP 416 .61 296
3 CPA-Seq 349 .55 256

ConcurrencySafety
1 Yogar-CBMC 1277 .31 1 026
2 Lazy-CSeq 1245 3.0 1 006
3 CPA-Seq 996 13 830

NoOverflows
1 UAutomizer 449 .94 306
2 UTaipan 438 .96 302
3 CPA-Seq 431 .59 283

Termination
1 UAutomizer 3001 13 1 662
2 AProVE 2476 33 1 004
3 CPA-Seq 1785 15 1 319

SoftwareSystems
1 CPA-BAM-BnB 1185 9.1 1 572 7
2 CPA-Seq 1073 28 1 447
3 VeriAbs 1061 24 1 407

C-FalsificationOverall
1 CPA-Seq 2823 40 2 129
2 PeSCo 2313 53 2 105 8
3 ESBMC-kind 1916 15 1 753 14

C-Overall
1 CPA-Seq 9329 120 6 654
2 PeSCo 8466 120 6 466 8 1
3 UAutomizer 6727 85 5 454 5 10
Java-Overall
1 JBMC 470 2.7 331
2 SPF 365 .27 337 4 2
3 JPF 290 .15 331 6
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Table 8. Necessary effort to compute results False versus True (measurement values
rounded to two significant digits)

Result True False

CPU Time (s) CPU Energy (J) CPU Time (s) CPU Energy (J)
mean median mean median mean median mean median

CPA-Seq 67 9.5 690 82 58 14 560 120
PeSCo 56 19 540 160 77 26 680 220
UAutomizer 56 17 540 140 58 19 570 180
Symbiotic 4.8 .25 57 2.9 19 .45 210 5.5
CBMC 8.6 .20 91 2.3 21 .24 180 2.8
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Fig. 6. Quantile functions for category C-Overall. Each quantile function illustrates the
quantile (x-coordinate) of the scores obtained by correct verification runs below a certain
run time (y-coordinate). More details were given previously [8]. A logarithmic scale is
used for the time range from 1 s to 1000 s, and a linear scale is used for the time range
between 0 s and 1 s.

columns for resultsFalse. The mean and median are taken over successfully solved
verification tasks; the CPU time is reported in seconds and the CPU energy in joule
(BenchExec reads and accumulates the energy measurements of Intel CPUs using
the tool CPU Energy Meter16).

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [8] because these visualizations make it easier to under-
stand the results of the comparative evaluation. The web site15 includes such
a plot for each category; as example, we show the plot for category C-Overall

16 https://github.com/sosy-lab/cpu-energy-meter

https://github.com/sosy-lab/cpu-energy-meter


148 D. Beyer

Table 9. Alternative rankings; quality is given in score points (sp), CPU time in
hours (h), energy in kilojoule (kJ), wrong results in errors (E), rank measures in errors
per score point (E/sp), joule per score point (J/sp), and score points (sp)

Rank Verifier Quality CPU CPU Solved Wrong Rank
Time Energy Tasks Results Measure

(sp) (h) (kJ) (E)

Correct Verifiers (E/sp)
1 CPA-Seq 9 329 120 4 300 2 811 0 .0000
2 Symbiotic 6 129 9.7 390 2 519 0 .0000
3 PeSCo 8 466 120 3 900 2 431 9 .0011
worst .3836

Green Verifiers (J/sp)
1 Symbiotic 6 129 9.7 390 299 0 64
2 CBMC 4 341 11 380 296 14 88
3 DIVINE-explicit 1 547 4.4 180 256 10 120
worst 4 200

New Verifiers (sp)
1 PeSCo 8 466 120 3 900 1 026 9 8 466
2 CBMC-Path 1 587 8.9 380 1 006 69 1 587

(all verification tasks) in Fig. 6. A total of 13 verifiers participated in category
C-Overall, for which the quantile plot shows the overall performance over all cate-
gories (scores for meta categories are normalized [8]). A more detailed discussion
of score-based quantile plots, including examples of what insights one can obtain
from the plots, is provided in previous competition reports [8,11].

Alternative Rankings. The community suggested to report a couple of alter-
native rankings that honor different aspects of the verification process as comple-
ment to the official SV-COMP ranking. Table 9 is similar to Table 7, but contains
the alternative ranking categories Correct, Green, and New Verifiers. Column
‘Quality’ gives the score in score points, column ‘CPU Time’ the CPU usage of
successful runs in hours, column ‘CPU Energy’ the CPU usage of successful runs
in kilojoule, column ‘Solved Tasks’ the number of correct results, column ‘Wrong
results’ the sum of false alarms and wrong proofs in number of errors, and column
‘Rank Measure’ gives the measure to determine the alternative rank.

Correct Verifiers—Low Failure Rate. The right-most columns of Table 7 report
that the verifiers achieve a high degree of correctness (all top three verifiers in
the C track have less than 1% wrong results). The winners of category C-Overall
and Java-Overall produced not a single wrong answer.

The first category in Table 9 uses a failure rate as rank measure:
number of incorrect results

total score , the number of errors per score point (E/sp). We use E as
unit for number of incorrect results and sp as unit for total score. The total score is
used as tie-breaker to distinguish the rank of error-free verifiers.
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Table 10. Confirmation rate of verification witnesses in SV-COMP 2019

Result True False

Total Confirmed Unconf. Total Confirmed Unconf.

CPA-Seq 4 417 3 968 90% 449 2 859 2 686 94% 173
PeSCo 4 176 3 814 91% 362 2 823 2 652 94% 171
UAutomizer 4 244 4 199 99% 45 1 523 1 255 82% 268
Symbiotic 2 430 2 381 98% 49 1 451 1 214 84% 237
CBMC 1 813 1 702 94% 111 1 975 1 248 63% 727
UTaipan 3 015 2 936 97% 79 915 653 71% 262
2LS 2 072 2 045 99% 27 1 419 945 67% 474
ESBMC-kind 3 679 3 556 97% 123 2 141 1 753 82% 388
UKojak 2 070 2 038 98% 32 553 548 99% 5
CBMC-Path 1 206 1 162 96% 44 897 670 75% 727
DIVINE-explicit 693 673 97% 20 768 353 46% 415
DIVINE-SMT 645 626 97% 19 943 601 64% 342
DepthK 612 602 98% 10 1 938 1 370 71% 568

Green Verifiers—Low Energy Consumption. Since a large part of the cost of
verification is given by the energy consumption, it might be important to also
consider the energy efficiency. The second category in Table 9 uses the energy
consumption per score point as rank measure: total CPU energy

total score , with the unit J/sp.

New Verifiers—High Quality. To acknowledge the achievements of verifiers
that participate for the first time in SV-COMP, the third category in Table 9
uses the quality in score points as rank measure, that is, the official SV-COMP
rank measure, but the subject systems reduced to verifiers that participate for the
first time. The Java track consists exclusively of new verifiers, so the new-verifiers
ranking is the same as the official ranking.

Verifiable Witnesses. For SV-COMP, it is not sufficient to answer with just
True or False: each answer should be accompanied by a verification witness.
All verifiers in categories that required witness validation support the common
exchange format for violation and correctness witnesses. We used four indepen-
dently developed witness-based result validators [14–16].

The majority of witnesses that the verifiers produced can be confirmed by
the results-validation process. Interestingly, the confirmation rate for the True
results is significantly higher than for the False results. Table 10 shows the
confirmed versus unconfirmed results: the first column lists the verifiers of cate-
gory C-Overall, the three columns for result True reports the total, confirmed,
and unconfirmed number of verification tasks for which the verifier answered
with True, respectively, and the three columns for result False reports the total,
confirmed, and unconfirmed number of verification tasks for which the verifier
answered with False, respectively. More information (for all verifiers) is given in
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the detailed tables on the competition web site15, cf. also the report on the demo
category for correctness witnesses from SV-COMP 2016 [11]. Result validation is
an important topic also in other competitions (e.g., in the SAT competition [4]).

8 Conclusion

SV-COMP 2019, the 8th edition of the Competition on Software Verification,
attracted 31 participating teams from 14 countries (see Fig. 7 for the develop-
ment). SV-COMP continues to offer the broadest overview of the state of the art
in automatic software verification. For the first time, the competition included
Java verification; this track had four participating verifiers. The competition
does not only execute the verifiers and collect results, but also tries to validate
the verification results, based on the latest versions of four independently
developed results validators. The number of verification tasks was increased
to 10 522 in C and to 368 in Java. As before, the large jury and the organizer
made sure that the competition follows the high quality standards of the TACAS
conference, in particular with respect to the important principles of fairness,
community support, and transparency.
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Abstract. The termination and complexity competition (termCOMP)
focuses on automated termination and complexity analysis for various
kinds of programming paradigms, including categories for term rewriting,
integer transition systems, imperative programming, logic programming,
and functional programming. In all categories, the competition also wel-
comes the participation of tools providing certifiable output. The goal of
the competition is to demonstrate the power and advances of the state-
of-the-art tools in each of these areas.

1 Introduction

Termination and complexity analysis have attracted a lot of research since the early
days of computer science. In particular, termination for the rewritingmodel of com-
putation is essential for methods in equational reasoning: the word problem [18]
asks for convertibility with respect to a rewrite system, and some instances can be
solved by a completion procedure where termination needs to be checked in each
step [34].Termrewriting is the basis of functional programming [42],which, in turn,
is the basis of automated theorem proving [13]. As early examples for the impor-
tance of termination in other domains and models of computation we mention that
completion is used in symbolic computation for the construction of Gröbner Bases
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for polynomial ideals [15], and that boundedness of Petri Nets can be modeled by
termination of vector addition systems, which is decidable [33].

Both termination and complexity (or resource consumption) are very relevant
properties for many computation systems and keep being the focus of interest
in newly emerging technologies. For instance, complexity analyzers are applied
to analyze large Java programs in order to detect vulnerabilities [45].

Another particularly interesting example are smart contracts in blockchains,
which are becoming very popular. Providing tools for analyzing their termi-
nation and bounding their resource consumption is critical [2]. For example,
transactions that run out-of-gas in the Ethereum blockchain platform throw an
exception, their effect is reverted, and the gas consumed up to that point is lost.

Deciding the (uniform) termination problem is to determine whether a given
program has only finite executions for all possible inputs. Termination is a well-
known undecidable property for programs written in any Turing complete lan-
guage, and any complexity analyzer must include termination analysis as well.
Despite this challenging undecidable scenario, powerful automatic tools for many
different formalisms are available nowadays.

History of termCOMP. After a tool demonstration at the Termination Work-
shop 2003 (Valencia) organized by Albert Rubio, the community decided to
hold an annual termination competition and to collect benchmarks in order to
spur the development of tools and new termination techniques. Since 2004 the
competition, known as termCOMP, has been organized annually, with usually
between 10 and 20 tools participating in the different categories on termination,
complexity, and/or certification. The actual organizers of the competition have
been Claude Marché (from 2004 to 2007), René Thiemann (from 2008 to 2013),
Johannes Waldmann (from 2014 to 2017), and Akihisa Yamada (since 2018).
Recent competitions have been executed live during the main conferences of the
field (at FLoC 2018, FSCD 2017, WST 2016, CADE 2015, VSL 2014, RDP 2013,
IJCAR 2012, RTA 2011, and FLoC 2010). Information on all termination and
complexity competitions is available from http://termination-portal.org/.

Computational resources for the execution of the competition have been pro-
vided by LRI, Université Paris-Sud (from 2004 to 2007) and by the University of
Innsbruck (from 2008 to 2013). Since 2014, the competition runs on StarExec, a
cross-community service at the University of Iowa for the evaluation of automated
tools based on formal reasoning. It provides a single piece of storage and computing
infrastructure to the communities in computational logicdeveloping such tools [48].

From 2014 to 2017, competition results were presented using a separate web
application star-exec-presenter developed at HTWK Leipzig [40], giving both an
aggregated view of results, as well as detailed results per category. Additionally,
it provides options for sorting and selecting subsets of benchmarks and solvers
according to various criteria, as well as for comparing results of various compe-
titions and/or test runs. This helps to estimate progress and to detect inconsis-
tencies. Since 2018, starexec-master [50] (the successor of star-exec-presenter) is
in use (see Fig. 1 in Sect. 2).

http://termination-portal.org/
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Competition Benchmarks. The benchmarks used to run the competition on are
collected in the Termination Problem Data Base (TPDB for short), which was
originally created by Claude Marché, Albert Rubio, and Hans Zantema, and
later on maintained, extended, and reorganized by René Thiemann, Johannes
Waldmann, and Akihisa Yamada. Many researchers have contributed with new
benchmarks over the years. The current version of TPDB (10.6) contains a total
of 43,112 benchmarks and extends over 674 MByte (uncompressed).

The termination competitions started with categories on termination of string
rewrite systems (SRSs) and term rewrite systems (TRSs). Apart from stan-
dard rewriting, there were also categories based on adding strategies and exten-
sions like equational, innermost, or context-sensitive rewriting. Further cate-
gories were introduced afterwards, including, for instance, higher-order rewriting
(since 2010) and cycle rewriting (since 2015). Categories on complexity analysis
of rewrite systems were added in 2008.

Regarding analysis tools for programming languages, a category on termina-
tion of logic programs was already part of the competition in 2004. Categories for
other programming paradigms were introduced later: since 2007 there is a cate-
gory for functional (Haskell) programs, since 2009 termination of Java programs
is also considered, and since 2014 C programs are handled as well. Moreover,
back-end languages like integer transition systems (ITSs) or integer term rewrit-
ing are part of termCOMP since 2014. Last but not least, complexity analysis
categories for some of these languages have also been included recently.

Finally, the first certification categories on rewriting were included in 2007
and have been extended to some other languages and formalisms over the years.

Overview. In the remainder of this paper we will

• describe the organization of termCOMP in its 2019 edition (Sect. 2),
• give a detailed account of the categories in the used benchmark collection

(Sect. 3),
• and give an overview on the tools and techniques at the previous termCOMP

2018 (Sect. 4).

2 Organization of the Competition

In 2019 we plan to run the competition on StarExec again. Each tool will be run
on all benchmarks of the categories it is registered for, with a wall-clock timeout
of 300 s per example. Tools are expected to give an answer in the first line of
their standard output, followed by a justification for their answer.

In termination categories, the expected answers are YES (indicating termina-
tion), NO (indicating nontermination), and MAYBE (indicating that the tool had
to give up). Each YES or NO answer will score one point, unless it turns out to
be incorrect. Each incorrect answer scores −10 points.

In complexity categories, an answer specifies either or both upper- and lower-
bound (worst-case) complexity. The score of an answer is the sum of the scores
for the upper-bound and lower-bound, each of which depends on the number of
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other participants. Details of the answer format and scoring scheme are available
at http://cbr.uibk.ac.at/competition/rules.php.

In contrast to previous years, we will not run the competition live but before
the TACAS conference takes place. We reserve about two weeks for resolving
technical issues, analyzing conflicting answers, and debugging. If participants
fail to agree on the treatment of conflicts, the steering committee will finally
decide which answer will be penalized.

The competition results will be presented using the starexec-master web front
end [50], see Fig. 1.

Fig. 1. The starexec-master web front end summarizing the 2018 competition

3 Categories

Benchmarks are grouped in the TPDB according to the underlying computa-
tional model (rewriting or programming) and to the aim of the analysis (ter-
mination or complexity). This organization results in the following three meta
categories since termCOMP 2014: termination of rewriting , termination of pro-
grams, and complexity analysis. (A further split of complexity analysis into two
meta categories “complexity of rewriting” and “complexity of programs” might
be considered in the future if there are categories concerning the complexity of
several different programming languages.)

http://cbr.uibk.ac.at/competition/rules.php
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Roughly speaking, the two termination meta categories cover, on the one
hand, termination of different flavors of rewriting according to various strategies
(termination of rewriting), and on the other hand, termination of actual pro-
gramming languages as well as related formalisms (termination of programs).

Which categories of a given meta category are actually run during a com-
petition depends on the registered participants. Any category with at least two
participants is run as part of its associated meta category. Of course, it is desir-
able to have as many participants as possible and therefore all developers of ter-
mination and complexity analysis tools are strongly encouraged to participate in
the competition. In addition, as a special case, all those categories having only a
single participant are collected into the auxiliary demonstration meta category.
(While demonstration categories are not considered for computing scores and
are thus not part of a competition in terms of awards or medals, this at least
allows us to make unique tools visible to the outside world.)

Independent of their respective meta categories, there are several categories
that come also in a special certified variant (marked by below). Before 2007,
the standard approach of participating tools was to give some textual justifica-
tion for their answers. However, there was no consensus on the format or the
amount of detail for such justifications. Automated termination and complexity
tools are rather complex programs. They are typically tuned for efficiency using
sophisticated data structures and often have short release cycles facilitating the
quick integration of new techniques. So, why should we trust such tools? Certifi-
cation is the answer to this question. Tools that participate in certified categories
are required to produce their justifications in a common format, the certification
problem format, or CPF [46] for short. Justifications in this format are usually
called certificates. To make sure that certificates are correct, certified categories
employ a certifier—an automated tool that is able to rigorously validate a given
certificate. For recent editions of termCOMP this certifier is CeTA [6,49], short
for “certified tool assertions”. Its reliability is due to the fact that its correctness
has been established using the proof assistant Isabelle/HOL [43]. In the past,
other certifiers like CoLoR/Rainbow [11] and CiME/Coccinelle [17], formalized in
Coq [8], were used as well.

3.1 Termination of Rewriting

There are many different flavors of term rewriting and strategies for applying
rewrite rules. Many of those have their own categories.

For standard term rewrite systems, there are categories for plain rewrit-
ing (TRS Standard ), relative rewriting (TRS Relative ), rewriting modulo
equational theories (TRS Equational ), conditional term rewriting (TRS Condi-
tional), context-sensitive rewriting (TRS Context Sensitive), innermost rewriting
(TRS Innermost ), and outermost rewriting (TRS Outermost ). There is also
a category for higher-order rewriting systems (HRS (union beta)).

Concerning string rewrite systems, there are categories for plain rewriting
(SRS Standard ), relative rewriting (SRS Relative ), and cycle rewriting (Cycle
Rewriting).
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3.2 Termination of Programs

Regarding programming languages and related formalisms, there are categories
for C programs (C), C programs restricted to integers (C Integer), Java Bytecode
(Java Bytecode), Prolog programs (Prolog), Haskell programs (Haskell), integer
transition systems (Integer Transition Systems), and innermost rewriting with
integer term rewrite systems (Integer TRS Innermost). Concerning termination
of C programs, there is an “overlap” with the SV-COMP competition,1 where
however the focus of the two competitions is different, since SV-COMP consid-
ers all kinds of verification tasks for C programs, whereas termCOMP considers
termination of all kinds of programming languages. Usually, SV-COMP runs in
winter and termCOMP runs in summer, such that in each of the competitions
the new current state-of-the-art of C termination analysis is represented.

3.3 Complexity Analysis

With respect to complexity analysis, there are categories for integer transition
systems (Complexity: ITS), C programs restricted to integers (Complexity: C Inte-
ger), runtime complexity of term rewrite systems (Runtime Complexity: TRS ),
runtime complexity of innermost rewriting (Runtime Complexity: TRS Innermost

), and derivational complexity of term rewrite systems (Derivational Complex-
ity: TRS ).

4 Tools and Techniques

In this section, we give an overview on the tools that participated in the last
edition, termCOMP 2018, of the competition and highlight the main techniques
used by these tools.

4.1 Termination of Rewriting

In 2018, eight tools participated in categories devoted to term rewriting. On
the one hand, some tools are specifically designed for certain variants of rewrit-
ing (e.g., MultumNonMulta only handles string rewrite systems, whereas Wanda,
SOL, and SizeChangeTool are mainly designed for higher-order rewriting). On the
other hand, the tools AProVE, TTT2 , NaTT, and MU-TERM participated in cate-
gories for many different variants of term rewrite systems. To prove termination
of TRSs, the tools use both classical reduction orderings as well as more recent
powerful improvements like dependency pairs [3], matrix interpretations [20],
match-bounds [26], etc. To generate the required orderings automatically, the
tools typically apply existing SAT and SMT solvers.

More precisely, AProVE [27] and TTT2 [39] implement the dependency pair
framework [28,30] which performs termination proofs in a modular way and
allows the tool to apply different termination techniques for each sub-proof.
1 See https://sv-comp.sosy-lab.org.

https://sv-comp.sosy-lab.org
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NaTT [51] combines the dependency pair framework with the weighted path
order [52]. MU-TERM [1] is particularly suitable for TRSs with modified
reduction relations (like innermost, context-sensitive, equational, or conditional
rewriting). The goal of the tool MultumNonMulta [31] is to demonstrate the power
of a few selected methods based on matrix interpretations for termination anal-
ysis of string rewrite systems. WANDA [35] implements higher-order termination
techniques based on dependency pairs [38] and higher-order orderings [32], and
applies an external first-order termination tool (AProVE) as a back-end [25]. The
tool SOL [29] uses an extended notion of reducibility [9] for termination proofs of
rules derived from second-order algebraic theories. Finally, SizeChangeTool [10]
extends the size-change termination principle [41] to higher-order rewriting.

4.2 Termination of Programs

In 2018, two tools (AProVE and UltimateAutomizer) participated in the cate-
gory for termination of full C programs (which may include low-level memory
operations). For C programs that only operate on integers, in addition to the
two tools above, the tool VeryMax participated as well. The categories for ter-
mination of other programming languages (Java, Haskell, and Prolog) were only
run as a demonstration, since in that year, only the tool AProVE analyzed their
termination.

For all of these programming languages, AProVE uses an approach to trans-
form the original program into a simple back-end language (an integer transition
system or a combination of ITSs and TRSs) and to prove termination of the
resulting back-end system instead [47]. In contrast, the tool UltimateAutomizer
[16] uses a generalization of program paths to Büchi Automata in order to remove
terminating paths. VeryMax [12] is based on a framework which allows to com-
bine conditional termination proofs obtained using Max-SMT solvers in order to
generate an (unconditional) termination proof of the program.

Termination of ITSs was analyzed by the tools VeryMax, iRankFinder, and
Ctrl. Moreover, Ctrl and AProVE also analyzed termination of systems that com-
bine ITSs and TRSs. Here, iRankFinder [19] generates lexicographic combinations
of ranking functions and ranks transitions incrementally [7]. Ctrl [37] and AProVE
prove termination of TRSs extended by built-in integers by suitable adaptions
of termination techniques for ordinary TRSs [24,36].

4.3 Complexity Analysis

Complexity of ITSs and of C programs on integers was analyzed by CoFloCo
and AProVE, where AProVE applies two integrated sub-tools KoAT and LoAT
to infer upper and lower runtime bounds for integer programs, respectively. The
tool CoFloCo [21] uses a modeling with cost relations to infer amortized cost
bounds, whereas KoAT [14] infers both upper runtime and size bounds for parts
of the program in an alternating way. Lower bounds on the worst-case runtime
are inferred by LoAT [23] by simplifying programs using an adaption of ranking
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functions for lower bounds, and by a subsequent inference of asymptotic lower
bounds for the resulting simplified programs.

Runtime complexity of TRSs was analyzed by AProVE and TCT . While run-
time complexity only considers evaluations that start with basic terms (where
“algorithms” are applied to “data objects”), TCT also analyzed derivational com-
plexity of arbitrary evaluations in corresponding demonstration categories. For
complexity analysis, both AProVE and TCT [5] use techniques which originate
from termination analysis of TRSs and which are adapted in order to infer upper
bounds on the number of evaluation steps [4,44]. Moreover, the tools also infer
lower bounds on the (worst-case) runtime using an extension of the concept of
loops in order to detect rules that are guaranteed to result in certain asymptotic
lower bounds [22].

5 Conclusion

In this short paper, we gave a brief summary of the termination and complexity
competition (termCOMP), described its organization and its different categories,
and presented an overview on recent tools that participated in the competition.
The competition is always open to introduce new categories in order to reflect
the continuing development in the area. It also welcomes the submission of new
termination and complexity problems, especially problems that come from appli-
cations. Thus, it strives to remain the main competition in the field of automated
termination and complexity analysis.
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19. Doménech, J.J., Genaim, S.: iRankFinder. In: Lucas, S. (ed.) WST 2018, p. 83
(2018). http://wst2018.webs.upv.es/wst2018proceedings.pdf

20. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termi-
nation of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008). https://
doi.org/10.1007/s10817-007-9087-9

21. Flores-Montoya, A.: Upper and lower amortized cost bounds of programs expressed
as cost relations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 254–273. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 16

22. Frohn, F., Giesl, J., Hensel, J., Aschermann, C., Ströder, T.: Lower bounds for
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Abstract. Tool competitions are a special form of comparative evalua-
tion, where each tool has a team of developers or supporters associated
that makes sure the tool is properly configured to show its best pos-
sible performance. Tool competitions have been a driving force for the
development of mature tools that represent the state of the art in several
research areas. This paper describes the International Competition on
Software Testing (Test-Comp), a comparative evaluation of automatic
tools for software test generation. Test-Comp 2019 is presented as part
of TOOLympics 2019, a satellite event of the conference TACAS.

1 Introduction

Software testing is as old as software development itself, because the easiest
way to find out if the software works is to test it. In the last few decades the
tremendous breakthrough of theorem provers and satisfiability-modulo-theory
(SMT) solvers have led to the development of efficient tools for automatic
test-case generation. For example, symbolic execution and the idea to use it for
test-case generation [14] exists for more than 40 years, efficient implementations
(e.g., Klee [8]) had to wait for the availability of mature constraint solvers.
On the other hand, with the advent of automatic software model checking, the
opportunity to extract test cases from counterexamples arose (see Blast [5]
and JPF [16]). In the following years, many techniques from the areas of model
checking and program analysis were adapted for the purpose of test-case
generation and several strong hybrid combinations have been developed [9].

There are several powerful software test generators available [9], but they are
very difficult to compare. For example, a recent study [6] first had to develop
a framework that supports to run test-generation tools on the same program
source code and to deliver test cases in a common format for validation.
Furthermore, there is no widely distributed benchmark suite available and
neither input programs nor output test suites follow a standard format.
In software verification, the competition SV-COMP [4] helped to overcome
the problem: the competition community developed standards for defining
nondeterministic functions and a language to write specifications (so far for C
and Java programs) and established a standard exchange format for the output
(witnesses). The competition also helped to adequately give credits to PhD
students and PostDocs for their engineering efforts and technical contributions.
c© The Author(s) 2019
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A competition event with high visibility can foster the transfer of theoretical and
conceptual advancements in software testing into practical tools, and would also
give credits and benefits to students who spend considerable amounts of time
developing testing algorithms and software packages (achieving a high rank in
the testing competition improves the CV).

Test-Comp is designed to compare automatic state-of-the-art software testers
with respect to effectiveness and efficiency. This comprises a preparation phase
in which a set of benchmark programs is collected and classified (according to
application domain, kind of bug to find, coverage criterion to fulfill, theories
needed), in order to derive competition categories. After the preparation phase,
the tools are submitted, installed, and applied to the set of benchmark instances.

Test-Comp uses the benchmarking framework BenchExec [7], which is
already successfully used in other competitions, most prominently, all compe-
titions that run on the StarExec infrastructure [15]. Similar to SV-COMP, the
test generators in Test-Comp are applied to programs in a fully automatic way.
The results are collected via the BenchExec results format, and transformed
into tables and plots in several formats.

Competition Goals. In summary, the goals of Test-Comp are the following:

• Provide a snapshot of the state-of-the-art in software testing to the
community. This means to compare, independently from particular paper
projects and specific techniques, different test-generation tools in terms of
effectiveness and performance.

• Increase the visibility and credits that tool developers receive. This means
to provide a forum for presentation of tools and discussion of the latest
technologies, and to give the students the opportunity to publish about the
development work that they have done.

• Establish a set of benchmarks for software testing in the community. This
means to create and maintain a set of programs together with coverage
criteria, and to make those publicly available for researchers to be used in
performance comparisons when evaluating a new technique.

• Establish standards for software test generation. This means, most promi-
nently, to develop a standard for marking input values in programs, define
an exchange format for test suites, and agree on a specification language for
test-coverage criteria.

Related Competitions. In other areas, there are several established com-
petitions. For example, there are three competitions in the area of software
verification: (i) a competition on automatic verifiers under controlled resources
(SV-COMP [3]), (ii) a competition on verifiers with arbitrary environments
(RERS [12]), and (iii) a competition on (interactive) verification
(VerifyThis [13]). In software testing, there are several competition-like events,
for example, the IEEE International Contest on Software Testing, the Software
Testing World Cup, and the Israel Software Testing World Cup. Those contests
are organized as on-site events, where teams of people interact with certain
testing platforms in order to achieve a certain coverage of the software under test.
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There is no comparative evaluation of automatic test-generation tools in a
controlled environment. Test-Comp is meant to close this gap. The results of the
first edition of Test-Comp will be presented as part of the TOOLympics 2019
event [1], where 16 competitions in the area of formal methods are presented.

2 Organizational Classification

The competition Test-Comp is designed according to the model of SV-COMP [2],
the International Competition on Software Verification. Test-Comp shares the
following organizational principles:

• Automatic: The tools are executed in a fully automated environment,
without any user interaction.

• Off-site: The competition takes place independently from a conference
location, in order to flexibly allow organizational changes.

• Reproducible: The experiments are controlled and reproducible, that is, the
resources are limited, controlled, measured, and logged.

• Jury: The jury is the advisory board of the competition, is responsible
for qualification decisions on tools and benchmarks, and serves as program
committee for the reviewing and selection of papers to be published.

• Training: The competition flow includes a training phase during which the
participants get a chance to train their tools on the potential benchmark
instances and during which the organizer ensures a smooth competition run.

3 Competition Schedule

Schedule. A typical Test-Comp schedule has the following deadlines and phases:

• Call for Participation: The organizer announces the competition on the
mailing list.1

• Registration of Participation / Training Phase: The tool developers
register for participation and submit a first version of their tool together with
documentation to the competition. The tool can later be updated and is used
for pre-runs by the organizer and for qualification assessment by the jury.
Preliminary results are reported to the tool developers, and made available
to the jury.

• Final-Version Submission / Evaluation Phase: The tool developers
submit the final versions of their tool. The benchmarks are executed using
the submitted tools and the experimental results are reported to the authors.
Final results are reported to the tool developers for inspection and approval.

• Results Announced: The organizer announces the results on the competi-
tion web site.

• Publication: The competition organizer writes the competition report, the
tool developers write the tool description and participation reports. The jury
reviews the papers and the competition report.

1 https://groups.google.com/forum/#!forum/test-comp

https://groups.google.com/forum/#!forum/test-comp
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4 Participating Tools

The following tools for automatic software test generation participate in the first
edition of Test-Comp (the list provides the tester name, the representing jury
member, the affiliation, and the URL of the project web site):

• CoVeriTest, Marie-Christine Jakobs, LMU Munich, Germany
https://cpachecker.sosy-lab.org/

• CPA/Tiger-MGP, Sebastian Ruland, TU Darmstadt, Germany
https://www.es.tu-darmstadt.de/testcomp19

• ESBMC-bkind, Rafael Menezes, Federal University of Amazonas, Brazil
http://www.esbmc.org/

• ESBMC-falsif, Mikhail Gadelha, University of Southampton, UK
http://www.esbmc.org/

• FairFuzz, Caroline Lemieux, University of California at Berkeley, USA
https://github.com/carolemieux/afl-rb

• KLEE, Cristian Cadar, Imperial College London, UK
http://klee.github.io/

• PRTest, Thomas Lemberger, LMU Munich, Germany
https://github.com/sosy-lab/tbf

• Symbiotic, Martina Vitovská, Masaryk University, Czechia
https://github.com/staticafi/symbiotic

• VeriFuzz, Raveendra Kumar Medicherla, Tata Consultancy Services, India
https://www.tcs.com/creating-a-system-of-systems

5 Rules and Definitions

Test Task. A test task is a pair of an input program (program under test) and
a test specification. A test run is a non-interactive execution of a test generator
on a single test task, in order to generate a test suite according to the test
specification. A test suite is a sequence of test cases, given as a directory of files
according to the format for exchangeable test-suites.2

Execution of a Test Generator. Figure 1 illustrates the process of executing
one test generator on the benchmark suite. One test run for a test generator gets
as input (i) a program from the benchmark suite and (ii) a test specification (find
bug, or coverage criterion), and returns as output a test suite (i.e., a set of test
vectors). The test generator is contributed by the competition participant. The
test runs are executed centrally by the competition organizer. The test validator
takes as input the test suite from the test generator and validates it by executing
the program on all test cases: for bug finding it checks if the bug is exposed and
for coverage it reports the coverage using the GNU tool gcov.3

2 Test-suite format: https://gitlab.com/sosy-lab/software/test-format/
3 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

https://cpachecker.sosy-lab.org/
https://www.es.tu-darmstadt.de/testcomp19
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Fig. 1. Flow of the Test-Comp execution for one test generator

Table 1. Coverage specifications used in Test-Comp 2019

Formula Interpretation

COVER EDGES(@CALL(__VERIFIER error)) The test suite contains at least one test
that executes function __VERIFIER error.

COVER EDGES(@DECISIONEDGE) The test suite contains tests such that
all branches of the program are executed.

Test Specification. The specification for testing a program is given to
the test generator as input file (either properties/coverage-error-call.prp or
properties/coverage-branches.prp for Test-Comp 2019).

The definition init(main()) is used to define the initial states of the pro-
gram by a call of function main (with no parameters). The definition FQL(f)
specifies that coverage definition f should be achieved. The FQL (FShell query
language [11]) coverage definition COVER EDGES(@DECISIONEDGE) means that all
branches should be covered, COVER EDGES(@BASICBLOCKENTRY) means that all
statements should be covered, and COVER EDGES(@CALL(__VERIFIER error))
means that function __VERIFIER error should be called. A complete specifica-
tion looks like: COVER( init(main()), FQL(COVER EDGES(@DECISIONEDGE)) ).

Table 1 lists the two FQL formulas that are used in test specifications of Test-
Comp 2019. The first describes a formula that is typically used for bug finding: the
test generator should find a test case that executes a certain error function. The
second describes a formula that is used to obtain a standard test suite for quality
assurance: the test generator should find a test suite for branch coverage.

Setup. The competition runs on an otherwise unloaded, dedicated compute
cluster composed of 168 machines with Intel Xeon E3-1230 v5 CPUs, with 8
processing units each, a frequency of 3.4 GHz, and 33 GB memory. Each test
run will be started on such a machine with a GNU/Linux operating system
(x86 64-linux, Ubuntu 18.04); there are three resource limits for each test run:

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/properties/coverage-error-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp19/c/properties/coverage-branches.prp
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• a memory limit of 15 GB (14.6 GiB) of RAM,
• a runtime limit of 15 min of CPU time, and
• a limit to 8 processing units of a CPU.

Further technical parameters of the competition machines are available in the
repository that also contains the benchmark definitions.4

License Requirements for Submitted Tester Archives. The testers need
to be publicly available for download as binary archive under a license that allows
the following (cf. [4]):

• replication and evaluation by anybody (including results publication),
• no restriction on the usage of the verifier output (log files, witnesses), and
• any kind of (re-)distribution of the unmodified verifier archive.

Qualification. Before a tool or person can participate in the competition, the
jury evaluates the following qualification criteria.

Tool. A test tool is qualified to participate as competition candidate if the tool
is (a) publicly available for download and fulfills the above license requirements,
(b) works on the GNU/Linux platform (more specifically, it must run on an x86 64
machine), (c) is installable with user privileges (no root access required, except for
required standard Ubuntu packages) and without hard-coded absolute paths for
access to libraries and non-standard external tools, (d) succeeds for more than
50 % of all training programs to parse the input and start the test process (a tool
crash during the test-generation phase does not disqualify), and (e) produces test
suites that adhere to the exchange format (see above).

Person. A person (participant) is qualified as competition contributor for a
competition candidate if the person (a) is a contributing designer/developer of
the submitted competition candidate (witnessed by occurrence of the person’s
name on the tool’s project web page, a tool paper, or in the revision logs) or (b) is
authorized by the competition organizer (after the designer/developer was
contacted about the participation).

6 Categories and Scoring Schema

Error Coverage. The first category is to show the abilities to discover bugs.
The programs in the benchmark set contain programs that contain a bug.

Evaluation by scores and runtime. Every run will be started by a batch script,
which produces for every tool and every test task (a C program) one of the
following scores:

+1 point: program under test is executed on all generated test cases and
the bug is found (i.e., specified function was called)

0 points: all other cases

4 https://gitlab.com/sosy-lab/test-comp/bench-defs/

https://gitlab.com/sosy-lab/test-comp/bench-defs/
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The participating test-generation tools are ranked according to the sum of
points. Tools with the same sum of points are ranked according to success-runtime.
The success-runtime for a tool is the total CPU time over all benchmarks for which
the tool reported a correct verification result.

Branch Coverage. The second category is to cover as many branches as possible.
The coverage criterion was chosen because many test-generation tools support this
standard criterion by default. Other coverage criteria can be reduced to branch
coverage by transformation [10].

Evaluation by scores and runtime. Every run will be started by a batch script,
which produces for every tool and every test task (a C program) the coverage (as
reported by gcov; value between 0 and 1) of branches of the program that are
covered by the generated test cases. The score is the returned coverage.

+c points: program under test is executed on all generated tests and
c is the coverage value as measured with the tool gcov

0 points: all other cases

The participating verification tools are ranked according to the cumulative
coverage. Tools with the same coverage are ranked according to success-runtime.
The success-runtime for a tool is the total CPU time over all benchmarks for which
the tool reported a correct verification result.

7 Benchmark Programs

The first edition of Test-Comp is based on programs written in the programming
language C. The input programs are taken from the largest and most diverse
open-source repository of software verification tasks5, which is also used by
SV-COMP [4]. We selected all programs for which the following properties were
satisfied (cf. issue on GitHub6):

1. compiles with gcc, if a harness for the special methods is provided,
2. should contain at least one call to a nondeterministic function,
3. does not rely on nondeterministic pointers,
4. does not have expected result ‘false’ for property ‘termination’, and
5. has expected result ‘false’ for property ‘unreach-call’ (only for category Error

Coverage).

This selection yields a total of 2 356 test tasks, namely 636 test tasks for category
Error Coverage and 1 720 test tasks for category Code Coverage.7 The final set of
benchmark programs might be obfuscated in order to avoid overfitting.
5 https://github.com/sosy-lab/sv-benchmarks
6 https://github.com/sosy-lab/sv-benchmarks/pull/774
7 https://test-comp.sosy-lab.org/2019/benchmarks.php

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/pull/774
https://test-comp.sosy-lab.org/2019/benchmarks.php
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8 Conclusion and Future Plans

This report gave an overview of the organizational aspects of the International
Competition on Software Testing (Test-Comp). The competition attracted nine
participating teams from six countries. At the time of writing of this article,
the execution of the benchmarks of the first edition of Test-Comp was just fin-
ished. Unfortunately, the results could not be processed on time for publication.
The feedback from the testing community was positive, and the competition on
software testing will be held annually from now on. The plan for next year is to
extend the competition to more categories of programs and to more tools.
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Abstract. VerifyThis is a series of competitions that aims to evaluate
the current state of deductive tools to prove functional correctness of
programs. Such proofs typically require human creativity, and hence it
is not possible to measure the performance of tools independently of the
skills of its user. Similarly, solutions can be judged by humans only. In
this paper, we discuss the role of the human in the competition setup
and explore possible future changes to the current format. Regarding
the impact of VerifyThis on deductive verification research, a survey
conducted among the previous participants shows that the event is a
key enabler for gaining insight into other approaches, and that it fosters
collaboration and exchange.

Keywords: VerifyThis · Program verification ·
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1 Introduction

The VerifyThis program verification is held in 2019 for the 8th time; earlier
editions were held at FoVeOOS 2011 [6], FM 2012 [15,20], Dagstuhl (April
2014) [4], and ETAPS 2015–2018 [16–18,21], the next event takes place as part
of TOOLympics at ETAPS 2019 [2]. On the VerifyThis webpage1 the aim of the
competition is formulated as follows:

– to bring together those interested in formal verification, and to provide
an engaging, hands-on, and fun opportunity for discussion, and

1 See http://www.pm.inf.ethz.ch/research/verifythis.html.
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– to evaluate the usability of logic-based program verification tools in a
controlled experiment that could be easily repeated by others.

The competition will offer a number of challenges presented in natural lan-
guage and pseudo code. Participants have to formalize the requirements,
implement a solution, and formally verify the implementation for adher-
ence to the specification.
There are no restrictions on the programming language and verification
technology used. The correctness properties posed in problems will have
the input-output behaviour of programs in focus. Solutions will be judged
for correctness, completeness, and elegance.

What we would like to emphasise up-front is that VerifyThis is different
from most other competitions of formal method tools at TOOLympics2 at
ETAPS 2019, see the TOOLympics proceedings [2] (this volume) for more details
on each of them. Typically, the other events run a (large) number of benchmarks
as batch jobs to determine the winner from values that are obtained from the
invocations (like the runtimes or the number of successes) in a fully mechanised
way.3 Moreover, often they target both proving and disproving examples. There
are also other TOOLympics competitions in which software verification tools are
compared: SV-COMP [3] and RERS [23], which are both off-site events focussing
on automatically checkable system properties that do not require user input.

In contrast, VerifyThis deliberately takes the user into the loop, and only
considers proving correctness. VerifyThis challenges are developed under the
assumption that there is currently no technique available out there that can run
the problem in a widely accepted input specification format out of the box. Part
of the challenge – and in many cases also the key to a successful solution – is
to find a suitable logical encoding of the desired property, and to come up with
smartly-encoded sufficiently strong annotations, i.e., specification engineering.
Understanding the problem is essential for solving the challenges, the human
factor can thus definitely not be removed.

In this paper, we discuss the current set-up of the competition, and our expe-
riences from the past editions (Sect. 2). In addition, we also critically reflect on
the current organisation, and discuss whether it still matches the competition’s
aims. For this purpose, we have investigated feedback and experiences from ear-
lier participants (Sect. 3). From the participants’ feedback and our experiences,
we conclude that VerifyThis indeed is an engaging and fun experience. How-
ever, it is less clear whether the current setup indeed evaluates the capabilities
of the tools used, or if also other things are measured. Therefore, in Sect. 4 we
make several suggestions of possible changes to the setup that could make the
measuring aspects of the competition more precise.

2 https://tacas.info/toolympics.php.
3 A notable exception are the evaluation-based rewards of the RERS [23] competition

where submitted approaches and solutions are reviewed and ranked by the challenge
organisers.

https://tacas.info/toolympics.php
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2 Previous Editions

The format of the competition has been rather stable since its first edition
(see [19] for the reflections of the organisers after the first VerifyThis edition),
with fine-tuning changes made whenever it was felt that this was appropriate. In
this section we discuss: who are the organisers, how do we define the challenges,
who are participating, what side events do we organise, and what are the results
of the competition.

Organisers. The first editions of VerifyThis were run by the same group of organ-
isers (Marieke Huisman, Rosemary Monahan, and Vladimir Klebanov (until
2014), and Peter Müller (since 2015)). Since 2016, this part of the organisation
has changed a bit. The original organisers created a steering committee, which
invites a new pair of organisers every year. They work in close collaboration
with one or more steering committee members to define the challenges, and are
fully responsible for judging the solutions. There are several advantages to the
approach: it ensures that there are sufficient fresh ideas, it avoids a repeated bias
on a single technique, it widens the community, and it allows the steering com-
mittee members to also participate themselves. The two organisers are always
selected with the following criteria in mind: they should be familiar with the
area of program verification; at least one of them should have been participating
in an earlier edition of VerifyThis; and they should be from different groups, in
order to involve the community as a whole as much as possible.

Challenges. To involve the community in the competition since 2012 a call for
challenges has been published widely – and the submitted challenges regularly
form the basis for one of the challenges set during the competition.

There is a wide variety of program verification tools used by the participants,
and no particular input programming (or specification) language has been set.
Therefore, problems are either presented in a standard well-known programming
language or in pseudo code, and no obligatory formal specification is given,
neither in logics nor in a particular specification language. If a natural language
specification is given, it is formulated as precisely as possible, showcasing the
problem with exemplary situations. Good challenges move the participants out
of their comfort zone: they do not immediately know how to solve it, and will
have to think about how to use their tool to actually solve the challenge.

Challenges are inherently “real”. If a person is expected to look into a problem
and understand it, the problem cannot be a generated routine that only exposes
a challenge for verification tools, but it must have a sensible purpose beyond
verification. Typical problems are algorithmically challenging routines, which
are (possibly simplified) real-world snippets from larger code bases.

The competition typically consists of three challenges and the participants
have 90 minutes to work on each one. The first is usually a relatively simple warm-
up challenge – often involving a computation on the elements of an array. The
other two challenges are typically more involved. Often one of them is about a
complicated heap-based data structure that for example requires reasoning about
operations on a binary tree. Since 2015, the third challenge typically deals with
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concurrency – however, as not all tools participating in the competition support
reasoning about concurrency, the challenge is always set up in such a way that
it also has a sequential version. As an illustration of the kind of effort required
at VerifyThis, a solved, automatically provable by most tools solution to the
warm-up challenge from the FoVeOOS’11 competition [6] is shown in Fig. 1.

The maximum element property of the following array traversing procedure has to be
shown:

int max(int[] a) {

int x = 0, y = |a| - 1;

while(x != y)

if(a[x] <= a[y]) x++; else y--;

return x;

}

where |·| stands for array length. Under the assumption (precondition) of a non-null and
non-empty input array a, i.e. a �= null ∧ |a| > 0, the procedure correctness assertion
(postcondition) can be expressed as ∀0≤i<|a| a[i] ≤ a[r], where r is the procedure
result. The required while loop invariants to show this property are 0 ≤ x ≤ y < |a|,
∀0≤i≤x a[i] ≤ a[x] ∨ a[i] ≤ a[y] and ∀y<j<|a| a[j] ≤ a[x] ∨ a[j] ≤ a[y] with the y − x
termination measure. Teams express the procedure and specification in their tool’s
specific notation, in particular, the loop invariants can take different equivalent forms,
many of which are more compact, yet might be more difficult to read, see [6] for the
complete range of solutions.

Fig. 1. Search by elimination VerifyThis challenge from FoVeOOS’11 competition.

At the end of the 90 minutes, all teams are asked to submit their solutions
(also if they are only partial) to the organisers by email. These are the versions
that will be judged. However, teams sometimes also send a more complete version
later, as a kind of evidence how close they were to the full solution. This happens
in particular if somebody completes the challenges in the break right after the
challenge was finished.

The full collection of earlier challenges (with links to polished solutions) is
available from the VerifyThis webpage. This collection also serves as a bench-
mark set (beyond the competitions) in the program verification community, in
particular because it enables comparison in verification efforts and approaches
for different verification tools.

Participants & Tools. Over the years, the number of participants in VerifyThis
has grown slightly. The very first editions of the competition had about 6 to
8 teams participating; the more recent ones had 10 to 12 teams participating.
Most teams are “developer teams”, i.e., their members are actively working on
the development of the tool (sometimes even during the competition). However,
we have also had several non-developer teams participating, and in particu-
lar Dafny [28] is widely used. We specifically encourage participation of stu-
dents/PhD candidates. The most remarkable participation was a Dafny team at
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ETAPS 2016 which was formed by Bachelor students from the Technical Univer-
sity of Eindhoven (where ETAPS was located that year). They had read about
the competition, and then taught themselves the basics of Dafny to participate
in the competition. Many of the participants joined the competition multiple
times: in general they find the competition quite engaging, and will try to come
back the next year.

Most of the tools are deductive program verifiers, which have explicit sup-
port for imperative programming constructs (in contrast to theorem provers
for mathematical logic) and explicit support for assertion languages of vari-
ous flavours. There are major differences in the way proofs are developed and
checked, in the degree of automation, and the programming and specification fea-
tures. Nevertheless, the common aim of these deductive tools is full-functional
correctness proofs. We have also had several tools used in the competition that
fall outside of this classification, such as the bounded model checkers CIVL [32]
and CMBC [27], the model checker mCRL2 [9], the interactive theorem prover
Isabelle [30], and the termination prover AProVE [13].

Table 1 below gives an overview of all the tools that participated in the
competition, the number of times a team participated using the tool, and how
many times a team using the tool actually won a first prize or first student prize.

Side Events. As VerifyThis is an on-site competition, it means that it also
provides an opportunity for the program verification community to meet and
exchange ideas, establish and improve personal contacts, and to see, experience
and learn from each other’s tools. To encourage this exchange, we organise sev-
eral side events around the competition.

Since several years, before the competition itself starts, we therefore have
an invited tutorial on one of the program verification tools. So far, we have
tutorials about Dafny (Rustan Leino), Why3 (Jean-Christophe Filliâtre), and
Viper (Alexander J. Summers). We encourage the presenter to explain the main
characteristics of the tool, and to provide a challenge for the audience, so they get
hands-on experience with the tool. This tutorials are open to non-competition
participants as well, though typically it attracts only a few extra attendees.

Furthermore, on the evening of the competition, we organise a dinner for
all participants, where they can talk about their experiences during the day.
Usually, almost all participants join for the dinner, and there is a good, bonding
atmosphere.

Finally, the next day the judges (usually, the organisers who set the chal-
lenges) talk with all teams privately to evaluate their solutions. The versions
submitted by email form the basis for the discussion, and participants are given
the chance to explain their formalisation and which parts of the challenges they
have solved. Judges ask for clarifications and general questions (cf. Sect. 4.2).
Experience has shown that for the judges these discussions are very helpful for
understanding the solutions and the taken approaches, and thus for judging
them. As teams use different tools, without the explanation, the solutions are
much harder to understand and assess, and the judges might miss aspects of the
solutions.
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Table 1. Overview of tools with teams participating in VerifyThisa

Tool # of teams
participating

# of prizes won
Overall/Student/Feature

AProVE [13] 1

AutoProof [35] 1

CBMC [27] 1

CIVL [32] 3 F:1

Dafny [28] 12

ESC/Java [8] 1

F* [34] 1

Frama-C [24] 2

Isabelle [30] 1 O:1

jStar [10] 1

KeY [1] 7

KIV [11] 5 S:3

mCRL2 [9] 2 F:1

MoCHi [26] 1

PAT [33] 1

Spark/Ada/GNATprove [14] 1 F:1

VCC [7] 1

VerCors [5] 5

VeriFast [22] 4 O:2

Viper [29] 2 F:1

Why3 [12] 9 O:2, S:4, F:1
aPlease note that prizes have not been awarded every year, and sometimes two
prizes have been awarded in a single category.

In parallel, the participants meet among themselves and present their solu-
tions amongst each other. As all participants have been intensively thinking
about the same problem the day before, these discussions really help to gain
insights into how other program verification tools work, and their relative
strengths and weaknesses. This session occasionally is also attended by other
conference participants.

Competition Results. In most editions of VerifyThis prizes have been awarded
(see Table 1 for an overview). The prizes that are usually awarded are:

– best overall team,
– best student team, and
– distinguished tool feature.

Occasionally, the judges have decided to award a second prize in some cate-
gory, or to hand out two prizes (this happened in particular in the category of



182 G. Ernst et al.

distinguished tool feature). Thanks to our sponsors, we usually have been able
to hand out not only a certificate, but also a financial reward. No further order
on the participating teams is given.

In addition, in some years we have also had a prize for the best submitted
challenge, or the tool used by most teams. However, even though related to the
competition, these prizes are not for the competition effort itself, and are not
further discussed here.

Judging is done by considering the following aspects of the submitted
solution:

– How close is the solution to a complete solution, i.e., how much work will it
be to finish verification of the code w.r.t. the implementation?

– Did the team capture all the relevant properties to be verified in the specifi-
cation?

– How understandable and accessible are the specifications?

In general, the judges do not penalise the use of auxiliary annotations such as
loop invariants or intermediate assertions. Because of the time constraint, a tool
requiring many auxiliary annotations, already has a drawback. Often the judges
find it relatively straightforward to decide about a winner (and are relieved that
no further ordering on teams is required). In some cases, the decision required
more discussion, and careful re-examining of the submitted solutions.

3 The Impact of VerifyThis

In order to asses the impact of VerifyThis we conducted an online survey among
all previous participants. The survey consisted of three parts: (1) General ques-
tions, such as number of times participated, the current position, participation as
student and/or developer, (2) an assessment of recent advances and the state-
of-the-art of deductive verification tools relative to several categories of tool
qualities and features, and (3) the participant’s personal take-away from the
competition, including the impact it had on his/her research and career, as well
as feedback to the organisers. The questionnaire is included in Appendix A.

For the second part, we asked the participants more specifically for their
opinion about: which progress in recent years they considered most important,
which aspects could have the most impact if they were improved, and how this is
reflected in the development of the participants’ own verification tools. We were
interested specifically in the following categories, with an additional possibility
of submitting free form responses.

– Expressiveness and ease of use of specification languages
– Proof automation and guidance
– Integration with static analysis techniques (e.g. invariant inference)
– Verification debugging and counterexample generation
– Specification and proof refactoring
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Fig. 2. Background of participants who took part in our questionnaire

Results. We received 16 responses from the approximately 80 previous partici-
pants that we contacted. Figure 2 shows the distribution of their current posi-
tions, respectively, whether they are tool developers, and how many times they
have participated. Note that there is one response of a person having not par-
ticipated in the competition itself (but presumably in the side events).

Figure 3 shows the responses on the current state of verification tools
w.r.t. the five categories, ranked on a scale with four items. Based on the
responses, the participants agree that advances in all of these categories have
been made, and significantly so in expressiveness, automation, and debugging.
However, no participant felt that a major breakthrough had been achieved in
any of the categories. Additional remarkable improvements that were mentioned
in the free-form responses were proof support for safety and liveness properties,
the automation of separation logic, and integration of tools into development
environments.

Regarding potential impact if major breakthroughs were to be achieved, the
most common answer was proof automation, followed by debugging capabilities,
and further advances in the expressiveness of specification languages. Integration
of static analysis into deductive tools was typically considered of minor impor-
tance. The free-form answers furthermore mentioned ease of use and graphical
interfaces, maturity and predictability of tools, integration into development pro-
cess and existing codebases. One answer suggested to address different properties
separately, i.e., separate functional specifications from canonical concerns such
as memory safety and race-freedom.

Participants who are also developers indicated a number of improvements
to their tools related to all of the above categories, partly in response to the
experience of the competition. The majority of completely new features was
related to expressiveness of specification languages, and one mention of each
proof automation and debugging, respectively. One free-form answer mentioned,
however, that major investments into all of the categories are planned.

Another result from the survey is that verification challenges serve as bench-
marks or regression tests of the tools, with five answers indicating 9 or more
challenges to be used in this way, and seven answers indicating between 3 and 6
challenges used.
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Fig. 3. Participants’ assessment on the current state of deductive verification tools

All participants of the survey stated that they had enjoyed solving the chal-
lenges, and almost all indicated they particularly liked the exchange between
colleagues and learning about how other tools tackle challenges. The participants
were less excited about the Jury discussions (9 answers) and the presentation
sessions (7 answers with a suggestion that these should be more formally orga-
nized). An additional free-form response appreciated the publications associated
with the competitions that summarize the results and discuss the solutions.
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Fig. 4. Participants’ personal benefit from the VerifyThis events

Participating in the competition lead to personal take-away regarding the
following aspects: getting an overview and learning about state-of-the-art tech-
niques and tools, improving one’s own ability in specification and verification,
improving one’s own tools for day-to-day use, and establishing academic contacts
or collaborative research. The results are shown in Fig. 4: The most common and
greatest benefit, as indicated by the participants, is thereby to obtain a better
insight into other approaches.

We have received several suggestions to improve future instalments.
Some answers were related to potential off-line participation (reminiscent of
VSComp [25]), potentially for a subset of the challenges to facilitate participa-
tion. One response suggested to release a “prepare for this” exercise beforehand,
and one response suggested to release a more difficult off-line challenge. There
was the suggestion to release partial information on the nature of the challenges
in advance, i.e., which tool and library features would be helpful, to ease prepa-
ration. We were also encouraged to increase the variety of verification problems.

Discussion. The feedback from the participants sheds some light into the mostly
academic perspective on the state-of-the-art and recent advances in deductive
verification tools.

The response rate of 20% was less than what we had hoped for. However,
clearly many of the younger participants of the earlier instalments are likely to
have completed their degrees and thus moved to another institution or industry.

Since the answers to the three tool-related questions had the same format,
we can attempt to investigate how well current research is aligned with those
aspects that are thought to be critical. Of the 66 data points for the question on
improvements made to the tools, there were 34 indications of “no investment”
to a particular aspect, and of these the majority of 26 answers is related to
integration with static analysis, debugging, and proof maintenance. While the
latter two features have been identified to have critical importance in industrial
context [31], they seem to be less important in academic verification projects,
which are often at a smaller scale w.r.t. the software being built, as well as the
team involved. Integration with static analysis, on the other hand, is arguably
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a less active research area, and from personal communication we can report
scepticism on the usefulness of e.g., automatically inferred invariants.

Similarly, considering the motivation of improving the tools’ capabilities,
almost all of the answers relate to personal benefit to the developers (and aca-
demic users), i.e., related to solving the competitions better and to support
ongoing research. Only three (free-form) answers were related to other stake-
holders (industry, customers, non-experts).

The personal impact of VerifyThis was overwhelmingly positive, with 7 replies
indicating that participation was the key enabler for the respective category. We
would also remark that 7 of 11 participants mentioned that improvements to
their tools were inspired by features of other tools observed at the competition.

Outlook. The more general question with respect to the impact of VerifyThis is
in which way can VerifyThis be understood as a controlled experiment? Which
measurements can be taken for a systematic better assessment of the potential
and improvements of modern verification tools over time? Given the diversity
in approaches, tools, and levels of experience of the participants in relation to
their (relatively) small numbers of participants and the great effort to develop
challenges and solutions, it is not likely that events like VerifyThis can arrive at
statistically sound scientific conclusions any time soon.

However, it is possible to keep track of some descriptive measures, similarly
to the data obtained by this survey, as a proxy that would provide an ongoing
and semi-rigorous evaluation that is independent of the individual challenges and
VerifyThis instalments. We therefore plan to conduct similar surveys on a routine
basis as part of the competition event. This will provide a more thorough, up-to-
date, and ongoing assessment of the field, in addition to the results reported here.

4 The Human Factor

The feedback from Sect. 3 is very encouraging and suggests that VerifyThis has
succeeded as a community event, i.e., having achieved its first goal. However, it
is much less clear in which sense the current format of the competition including
the evaluation and summarization done in the corresponding publications, con-
stitutes to an experimental assessment of the usability of verification tools, i.e.,
the quality of user guidance, and feedback in case of failed verification attempts,
to tackle real verification problems? How do we even measure this?

As mentioned before, the crucial aspect in this discussion is that VerifyThis
takes the human into the loop. In fact, there are several ways in which the
outcome of a task depends on the person(s) performing the task, i.e., where the
human factor becomes visible, namely, through the abilities of the participants
during the competition to solve the challenge using their respective tools, as well
as through the ability of the judges to compensate for the varying tool contexts
and the need to be objective about the quality of (often partial) solutions.



VerifyThis – Verification Competition with a Human Factor 187

4.1 The Human Factor in the Competition

Most competitions in the area of formal methods are unsupervised, i.e., fully
automated tools are run on a batch of challenges without human interaction
and the ranking is determined from the results that they produce (and, possibly,
their runtimes/memory consumption). VerifyThis is a supervised competition
since challenges are not submitted to a fully automatic analysis.

One aspect in the success of solving a particular problem, at a high-level,
is the experience of a competition participant with respect to the problem’s
characteristics (e.g., whether it involves pointer structures, concurrency, . . . ).
This determines how hard or easy one may find it to come up with suitable
invariants, for example, or to employ clever approaches that lend themselves to
an elegant solution, mathematically.

As an example, even a seemingly trivial property like sortedness can be for-
malised in different ways, either stating that any element is not greater than
its successor (a[i] ≤ a[i + 1] for all i < |a| − 1), or stating that any element is
not greater than all succeeding elements (a[i] ≤ a[j] for all i < j < |a|). Note
that in order to derive the second formulation from the first one, an explicit
induction is needed, and hence the second one is strictly more “powerful” when
one may assume, e.g., a sorted input. Depending on the challenge, choosing the
right encoding may be the enabling key to a successful verification. In general,
finding the ideal encoding, the ideal function contract or the ideal loop invariant
can require a considerable amount of creativity and ingenuity.

Another aspect is that such intuition must be formalized into a concrete rep-
resentation of the specification within the confines of the deductive verification
tool. This task is usually more than a straightforward logical encoding of natural
language properties. Not only could logical choices (as the one above) critically
affect whether the automation can find a proof (at all resp. within a reasonable
time limit). Even benign things like the order of conjuncts can make a significant
difference. As a consequence, effective use of a verification tool may require sig-
nificant and detailed knowledge of the internal mechanics of the tool itself and
the verification infrastructure it is built on.

The central question regarding the goal of the VerifyThis competition is,
hence, whether it is

– a competition in which humans compete about their capabilities to perform
difficult verification tasks verification, or

– a competition in which the capabilities, strengths or weaknesses of the par-
ticipating verification tools come to light.

The conciliatory answer to this is that VerifyThis combines both, as these charac-
ters are inherently entangled by the nature of the field itself: Deductive program
verification for challenging, algorithmic problems with heavyweight properties is
far from begin a push-button technology–and probably always will be for suf-
ficiently complex challenges. Human and tool must play together to succeed.
Moreover, in all but trivial cases, a challenge will not be solved in one go, but
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requires an iterative process towards the final solution. The design of the Veri-
fyThis competition reflects these aspects and thus mirrors reality in this respect.
The human factor is not added per se as an on-top feature to the competition,
but arises as an integral part of the specification and verification process. Fur-
thermore, the human factor brings to light the qualities of a verification tool in
the interactive process. For instance,

– usability and intuitiveness, in particular of the provided error messages,
– degree of automation,
– responsiveness (how easy is it to try a slightly changed specification),
– facilities to debug failed verification attempts, e.g. by producing counterex-

amples for failing specifications,
– the quality of counterexamples and their presentation,
– and the quality of a tool’s specification libraries

all manifest themselves through the human factor. To measure these aspects,
the human operator needs to be involved in the process and its evaluation.
The in-vitro character of the competition emphasizes the human factor since it
takes much experience to successfully interact with the tool under the tight time
constraints.

How can the competition and the challenges be designed to control the influ-
ence of the human factor?

Ideally, one would like to separate the abilities of the human expert from the
usability and performance of a tool when assessing the solution of a challenge.
Due to the mentioned entanglement, this is difficult. Even worse, missing expe-
rience or unfamiliarity with a particular part of the verification system or type
of specification, may be a showstopper for a team during the competition time.
Several ideas for the design of the competition have emerged that would allow
one to control the role of the human in the process, in particular by reducing its
impact.

Reduce the need for human creativity: If crucial proof-guiding annotations
(e.g. invariants) cannot be found, a solution to a challenge may become stuck
in early stages. To mitigate this factor, the challenge description could contain
logical formulations of such annotations. These hints could also be provided
in a closed envelope, to be opened at the discretion of the team only, or half
way through the time available for the challenge. This challenge scheme where
part of the solution is given away, suggests itself particularly for the warm-up
challenge where the solution is usually not so particular to the applied verification
technology.

As an alternative, instead of an algorithm-driven challenge, we could provide
a specification and ask to provide a verifiable implementation.

Reduce the need for experience: Experience with program verification in gen-
eral and with a particular verification tool have a prominent impact on the results
of the competition. To lessen this effect, one of the challenges could be solved by
ad-hoc teams composed during the competition. This has the potential to bring
together different experience levels and tool expertises, and would also provide
a great opportunity for knowledge transfer.
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Decouple tools from their users: Verification tools may have a tendency to
be (over)fitted to the specification and verification style of their developers.
To lighten this bias, we could do a cross-validation experiment, where teams
are asked to reproduce a solution of another team, in their own specification
methodology using their own technique.

Another possible cross-validation experiment is to reserve one of the chal-
lenges as a competition of tool A vs. tool B (judged separately). This can be
incorporated into the tutorial session, where both these tools could be presented
but the audience is leveraged for a more systematical evaluation. Such an effort
could also be done off-line, similarly to the Isabelle competition4.

4.2 The Human Factor in the Judging

There is a second human factor involved with supervised competitions: Judging
cannot be automated to the same degree as it can with unsupervised competi-
tions. For the latter, ranking schemes can still be biased for particular tools or
approaches, but at least the criteria are defined a priori. Manually crafted solu-
tions are usually not comparable by pre-definable metrics, and require careful
examination. Therefore, for the judges, the most intensive activity of the com-
petition with substantial time urgency is the evaluation process to arrive at the
prize decision: the complete judging for all the teams and their solutions takes
just one (long) day. This activity is certainly receptive to the judges’ subjective
views and tastes, and thus another human factor.

The judges have to consider all the possible specification and verification
aspects in the solutions – parts that have been done, parts that could have been
done, and parts that were only completed to a certain degree, as well as the
automation level and tool support aspects. At the same time, the teams being
interviewed concentrate on the best and completed parts of their solution. Both
sides also tend to have a technology specific view – the teams look at the solution
and possible improvements from the point of view of their tool and method,
while the judges, even though staying impartial, would have their own expertise
and tool bias. This is especially true considering that the judging committee is
now different every competition instance and coming with their own expertise,
expectations, and often first time experience approach.

Defining objective criteria: In this context, one of the ideas that we would
like to implement in the future instalment of the competition to reduce the
biases and to optimize the judging process is a challenge solution form that the
teams should fill in along with the submission. The form would include generic
questions about the solution completeness, e.g.,

– “Have you specified the main functional property?”,
– “To what degree were you able to prove it?”,
– “Have you specified/proved the termination/memory safety/non-inter-

ference/. . . properties?”,

4 See https://competition.isabelle.systems.

https://competition.isabelle.systems
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– “Are the proofs automatic? If not, what is the user interaction effort?”,
– “Is the incompleteness of your solution due to insufficient proof guidance (e.g.,

too weak invariants), or due to tool or method shortcomings?”,
– “Estimate how much time you would need to complete the task?”, etc.

Systematic judging process: Such questions would also give the teams the
chance to preliminary self-evaluate the solution before the discussion and prepare
some answers up-front. To not occupy the challenge solving time, this form can
be easily filled in between the challenge closing time and the judging, nevertheless
it should be obligatory.

A structured interview after the competition also helps to mitigate the human
factor and use it to our advantage: By explicitly querying about the usability
and interaction support of the tool (e.g., guided by the usability issues listed
in Sect. 4.1), both weaknesses and strengths can be learned by inspecting the
impact of the human factor during the competition. This feedback can then again
help developers to improve the user experience of their tools. One question that
was typically asked previously during judging was “which tool feature did you
find most helpful”, in order to determine the corresponding prize.

Another possibility is to integrate the judging and the team presentations
into a single event. This opens up the opportunity to involve all participants
in the judgement process through consensus (e.g. a voting or scoring scheme),
thereby avoiding potential bias of the judges on the competition’s outcome.

These suggestions can help in answering questions related to completeness of
solutions and usability of the tool. It still remains difficult to check whether a
given solution does in fact formalize the requirements adequately, i.e., whether it
is a correct solution. Answering this question is highly non-trivial as it involves
not only understanding the specification language of the tool, but also its meta-
theory and verification approach and what is, semantically, implied by proving
a particular statement. An example for this was last year’s third concurrency
challenge, which involved a lock-free data structure [17]: How fine-grained is the
concurrency model of the tool? How do the synchronization primitives work?
Such aspects can be illuminated in the dialogue between the judges and the
participants only.

Finally, one criterion where the human factor is intentionally brought into
the judging process is “elegance”. While elegance affects the ranking much less
than completeness and correctness of solutions, it may serve as a tie-breaker, and
is often recognized by singling out certain solutions in the competition reports.

5 Conclusion

We set out to reflect on the organisation of VerifyThis, discussed the compe-
tition’s format and impact to come up with several concrete ideas to improve
future events.

The survey in Sect. 3 showed that VerifyThis leads to an intense exchange
between participants, allowing them to gain a unique overview of the state-of-
the-art and establishing academic collaboration. The personal contact between
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the participants is thereby a major strength of VerifyThis. VerifyThis has also
led to concrete improvements to the verification tools including a few completely
novel features.

In Sect. 4 we illustrated that the human factor in the competition is inherent
both in solving the challenges as well as in the judging. Human interaction (e.g.,
by providing a suitable encoding in the specification or by providing auxiliary
annotations) is indispensable in deductive program verification of sophisticated
properties. The human factor can thus not be fully eliminated from the com-
petition – nor should it be. The discussion led to a few suggestions responding
to the involved human factor: We identified a number of possible modifications
of the modalities of the challenges regarding the composition of the teams and
the design of the challenges. To mitigate the influence of the human factor in
the judging, we suggest to aid the process by questionnaires filled out by the
participants themselves.

Finally, we think it is important to widen our reach for a more diverse set of
tools that implement different approaches, such as software model checkers and
tools to synthesise specifications and programs that are correct by construction,
as attempted in Dagstuhl in 2014 [4].

The VerifyThis competition enriches the portfolio of the TOOLympics as it
differs from other competitions by explicitly incorporating the tool’s user into
the process.

Acknowledgement. We thank Microsoft Research, Amazon Web Services, Galois,
and Formal Methods Europe for their support and generous sponsorship of VerifyThis
over the last years. We thank Rosemary Monahan for suggestions to improve the com-
petition format and feedback on the manuscript.

A Survey Questions

As part of the celebration 20’s anniversary of TACAS, we are writing an article
on the VerifyThis competition. In contrast to previous publications on the series
(which emphasized the practical technical aspects), we would now like to focus
on the higher-level perspective that relates the competition to the field, the
community, as well as your personal view.

A.1 General Questions

– How many times have you participated? [1–6]
– What is your current position? [Undergraduate, PhD/MSc, Postdoc, Aca-

demic, Other...]
– Have you participated as a student? [Yes, No, Both]
– Have you participated as a tool developer? [Yes, No]
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A.2 Tool Improvement

– Which improvements in deductive verification tools do you think have been
achieved in the recent years?
Scale: [Stayed the same, Minor improvements, Significant improvements,
Major breakthroughs that have or will change the field]
Categories:

• Expressiveness and ease of use of specification languages
• Proof automation and guidance
• Integration with static analysis techniques (invariant inference, shape

analysis, ...)
• Verification debugging and counterexample generation
• Specification and proof refactoring

– Which tool aspects do you think could have the most impact if they were
improved?
Scale: [No impact/irrelevant, Minor impact, Significant impact, Major break-
throughs that would change the field]
Categories: (as above)

– Are there any other future improvements that you think need to happen?
– If you are a developer: Which changes to the tool were improved or imple-

mented as response to the experience at the competition?
Scale: [No investment, Minor improvements, Significant improvements, Novel
feature previously not present]
Categories: (as above)

– Are there any other future improvements that you would like to add to your
tool?

– If you are a developer: What was the motivation for adding new features?
• Missing feature required solve certain competition challenges
• For research unrelated to the competition
• Improvements to the verification process
• Other: . . .

A.3 Personal Take-Away

– How did you benefit from participation?
Scale: [Did not benefit, Minor benefit, Significant benefit, Major benefit that
was primarily enabled through participating at VerifyThis]
Categories

• Learn about state-of-the-art techniques and tools
• Improve own ability in specification and verification
• Improve own tool in day-to-day use
• Establish academic contacts or collaborative research

– How many of the VerifyThis challenges from the past serve currently as a
benchmark/test in the development of your tool?
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– Which aspects of the event did you particularly enjoy?
• The challenge problems & solving them
• Presentation sessions among the participants
• Discussions with the jury
• Exchange with colleagues
• Leaning how other approaches tackle things
• Other: . . .

– How could future instalments be improved?
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Abstract. We gave CBMC the ability to explore and model check single
program paths, as opposed to its default whole-program model-checking
behaviour. This means that CBMC, when invoked with the --paths flag,
symbolically executes one program path at a time—saving unexplored
paths for later—and attempts to prove properties for only that path. By
doing this repeatedly for each path that CBMC encounters, CBMC can
detect property violations in a scalable and incremental way.

Implementing single-path exploration raises the question of which
order the paths should be explored in. Our implementation makes it easy
for researchers to implement and investigate alternative path exploration
strategies. Our competition contribution uses a breadth-first strategy,
where diverging paths are each pushed onto a queue at program decision
points, and the path to explore next is gotten by dequeueing the oldest
path to have been added.

1 Overview

CBMC Path is an extension to the C Bounded Model Checker. The original
CBMC tool was first described in [1] and is also competing in this year’s SV-
COMP (as previously described in [3]). CBMC symbolically executes C programs
up to a user-defined loop unrolling bound. It generates a bit-precise encoding
of the unrolled program, annotated with assertions that are the negation of
properties the user wishes to verify. Such an encoding is satisfiable if the original
program violates the properties. Thus, CBMC can be used to demonstrate that
bugs occur when the program is run up to the unwinding bound for some input.

The original CBMC tool generates a single formula describing the disjunction
of all program paths, dispatching this entire formula off to a SAT solver. The
solver thus decides whether a bug exists at any point in the entire program. In
contrast, CBMC Path dispatches the formula for a single program path to the
SAT solver, checking whether that path violates any properties before continuing
to execute and dispatch subsequent program paths. As with CBMC, the SAT
solver used in CBMC Path for SV-COMP is MiniSat 2.2.0 [2].

K. Khazem—Juror.
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The intermediate representation that CBMC uses has no control-flow struc-
tures. Instead, GOTO statements explicitly define control flow. Furthermore, all
functions in the intermediate representation have a single return point, at the
end of the function. Thus, program paths that diverge—either due to an explicit
conditional in the original code or an unrolled loop—eventually reunite at a
later point in code. The treatment of these join points is an important difference
between CBMC and CBMC Path.

CBMC Path is merged into the main CBMC codebase; users activate it by
passing the --paths flag to CBMC in addition to the other options that they
wish to use. Since it is a fairly focussed change to the codebase, we describe only
the aspects that differ from CBMC’s default mode in this report.

2 Architecture

The changes that CBMC Path makes to the original codebase are confined to the
symbolic execution phase. There are three main changes, illustrated in Fig. 1:

– the symbolic execution (symex) state, including the path taken so far, can
now be saved. This means that the symex process as a whole can be paused
and subsequently resumed from a saved state.

– The symex code now has the option to avoid merging two divergent program
paths at their join point. When combined with the above point, this means
that CBMC Path can save both divergent paths at their branch point, execute
one of the paths, and then continue executing past the join point without
considering the other branch at all.

– The top-level symex code now maintains a worklist of symex states (partially-
executed paths), rather than a single state that lives through execution of
the entire target program. The top-level symex code includes a loop that
repeatedly pops the worklist and executes the popped state until it reaches a
branch point (conditional goto), at which point the states corresponding to
each branch are pushed onto the worklist. When combined with the above
two points, this means that control returns to the top-level each time a pair
of divergent paths in the target program are saved onto the worklist. The
top-level code then decides which path to continue executing, and pops that
path from the worklist.

Program paths are thus pushed to and popped from the worklist until one of
the paths has been executed to the end of the program; at this point, the top-
level code dispatches its formula to the SAT solver, before continuing to execute
the remaining paths.

The decision of which path should be resumed can be expressed as a list-
popping strategy. We have so far implemented the last-in, first-out (LIFO) and
first-in, first-out (FIFO) disciplines. LIFO explores the program depth-first, com-
pleting a single path before starting to explore any others; this strategy uses
memory efficiently (since only a single full path is maintained in memory), but
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takes far longer to cover a variety of program paths. FIFO expands the explored-
instruction frontier of all program paths in a round-robin manner; this achieves
excellent coverage at the (considerable) expense of keeping all paths in memory
until each of them reaches the end of the program. The user can choose the
strategy as an argument to the --paths option. For SV-COMP, we chose to use
FIFO for all benchmarks, since the modest size of the benchmarks means that
memory use was rarely a problem. The strategy system is designed to be easily
extensible to encourage researchers to experiment with the different trade-offs
of more sophisticated path-popping strategies.

3 Motivation, Strengths, and Weaknesses

CBMC Path shares many of the strengths and weaknesses that CBMC has com-
pared to other tools, which are discussed in the CBMC system report. In this
section, we focus on a comparison with CBMC.

CBMC Path is aimed at users wishing to discover bugs quickly and effi-
ciently, while being not so suited to proving program correctness. By only model-
checking individual program paths, each SAT solver call returns much more
quickly, ensuring that bugs along those paths are discovered without having to
wait for the rest of the program to be encoded and checked. In addition, CBMC
Path can be parsimonious in its memory usage, since the formulas dispatched
to the solver are much smaller. These qualities make CBMC Path complemen-
tary to whole-program bug-finding or correctness-proving tools. The intended
use-case is that CBMC Path is used to quickly find bugs of the low-hanging
fruit variety, so that users can avoid model-checking the entire program only to
discover an error residing a few lines into the program entry-point.

The overhead of saving and resuming paths, and of multiple calls to the SAT
solver, means that CBMC Path will always take significantly longer to check

1 if(x > y)

2 GOTO 3;

3 GOTO 2;

4 3: ret = 1;

5 GOTO 1;

6 2: ret = 0;

7 1: return;

Fig. 1. The program above (in CBMC’s intermediate representation) illustrates the
difference between CBMC’s and CBMC Path’s exploration strategies. CBMC executes
all seven lines. At the join point (line 7), CBMC creates a disjunction representing
both paths. In contrast, at line 1, CBMC Path pauses symbolic execution and saves
two paths onto the top-level worklist: one path whose program counter is line 3, and
another whose program counter is line 4. The top-level workloop then chooses a path
from the worklist to resume executing.
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an entire program than CBMC does. Proving absence of property violations
always requires checking the entire program, so CBMC is expected to outperform
CBMC Path on most SV-COMP benchmarks. On the other hand, CBMC Path
usually has a lower maximum memory use than CBMC when using the LIFO
strategy, since both the in-memory symbolic state and the formulas dispatched
to the solver are smaller at all times. This means that CBMC Path can still
be useful for proving correctness, specifically when used on large programs that
require more-than-available system memory under CBMC. CBMC Path is most
useful when used for finding bugs, since it will often find a property violation
before CBMC has had a chance to fully explore the program. In addition, the
user experience is often more encouraging using CBMC Path, since results are
displayed incrementally. This is an important contrast to tools which terminate
due to memory exhaustion before displaying any results at all. We view CBMC
Path as complimentary to CBMC, and hope that developers use them both to
their respective strengths.

This year (CBMC Path’s SV-COMP debut), CBMC outperformed CBMC
Path on most benchmarks. For small SV-COMP benchmarks, the time that
CBMC spends in the solver for the entire program is less than the path pushing
and popping overhead. We hope to introduce more sophisticated path strategies
that will mitigate this overhead for future competitions.

4 Tool Setup

The competition submission is based on CBMC version 5.10, with additional
patches. The archive of the competition binary is available at https://gitlab.
com/sosy-lab/sv-comp/archives-2019/raw/svcomp19/2019/cbmc-path.zip.

To process a benchmark FOO.c (with properties in FOO.prp), the wrapper
cbmc-path.py should be invoked as follows:

cbmc -path.py --graphml -cex witness.cex \

--propertyfile FOO.prp --32 FOO.c

for all categories with a 32-bit memory model; for those with a 64-bit memory
model, --32 should be replaced by --64.

Participation. CBMC Path competes in all categories.

Output. The last line of output produced by cbmc is one of TRUE, FALSE,
FALSE(no-overflow), FALSE(valid-free), FALSE(valid-deref), or FALSE(valid-
memtrack). Absence of such a final line is treated as UNKNOWN by the wrapper
script.

https://gitlab.com/sosy-lab/sv-comp/archives-2019/raw/svcomp19/2019/cbmc-path.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2019/raw/svcomp19/2019/cbmc-path.zip
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5 Software Project

CBMC Path is fully merged into the original CBMC codebase. It is maintained
by Daniel Kroening with patches supplied by the community. It is made publicly
available under a BSD-style license. The source code and binaries for popular
platforms are available at http://www.cprover.org/cbmc.

Acknowledgements. We would like to thank the reviewers for their feedback and
Mark R. Tuttle for his assistance with this work.
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Abstract. DIVINE is an LLVM-based verification tool focusing on anal-
ysis of real-world C and C++ programs. Such programs often interact
with their environment, for example via inputs from users or network.
When these programs are analyzed, it is desirable that the verification
tool can deal with inputs symbolically and analyze runs for all inputs. In
DIVINE, it is now possible to deal with input data via symbolic computa-
tion instrumented into the original program at the level of LLVM bitcode.
Such an instrumented program maintains symbolic values internally and
operates directly on them. Instrumentation allows us to enhance the tool
with support for symbolic data without substantial modifications of the
tool itself. Namely, this competition contribution uses SMT formulae for
representation of input data.

1 Verification Approach and Software Architecture

DIVINE is an explicit-state model checker primarily designed to detect bugs in
multithreaded programs [6]. Testing of multithreaded programs is a known hard
problem because of nondeterminism in the execution caused by thread interleav-
ings. To deal with control flow nondeterminism, DIVINE exhaustively explores all
relevant executions of the multithreaded program. Unfortunately, this explicit
approach fails to deal with data nondeterminism caused by communication with
the environment. In order to verify a program with inputs, DIVINE would need
to examine all the possible inputs of the program. This would cause enormous
state-space explosion and would be unmanageable in reasonable time and space.

The traditional way to cope with input values during verification is to rep-
resent them symbolically – i.e., to perform symbolic execution on the program.
In DIVINE it would be sufficient to extend the LLVM interpreter to work with
input values symbolically and adapt the exploration algorithm to work with
symbolic states, similarly as other tools do [2,3,5]. However, this would make
the core of the verification procedure more complicated and possibly slow it

This work has been partially supported by the Czech Science Foundation grant No. 18-
02177S and by Red Hat, Inc.
H. Lauko—SV-COMP jury member.
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down, introduce bugs and/or reduce maintainability and extensibility. Hence,
we have decided to shift the responsibility for symbolic values from the verifier
to the verified program [4]. Instead of (re-)interpreting instructions symbolically,
we translate symbolic instructions into equivalent explicit code which performs
the computation symbolically. The transformation performs a dependency anal-
ysis on symbolic values of the program and translates symbolic instructions. By
providing a set of symbolic operations as a library, we obtain a program that
manipulates symbolic values. The method is further described in Fig. 1.

Interpretation-based Compilation-based
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Fig. 1. Comparison of interpretation-based approach and compilation-based
approaches. All manipulations of symbolic values are denoted by red color. In both
cases, the virtual machine generates transitions in the state space and passes them
to the model checker (MC), which performs safety analysis. In the compilation-
based approach, symbolic operations are instrumented into the program, while in the
interpretation-based one, they are the responsibility of the VM. (Color figure online)

In order to maintain efficiency we do not transform the entire program, but
only the parts that might come into contact with symbolic values. As shown in
Fig. 2, the program is analyzed starting from input points, and all downstream
operations are augmented (s add, s eq), but concrete computation remains
unchanged (fun). The transformed program uses a special operation called lift,
which takes a concrete value and returns a symbolic one. The result of lifting *
represents an arbitrary input value.

In comparison to standard programs, a program with symbolic values might
not have deterministic control flow. When a program contains a branch which
depends on a symbolic value, both outcomes might be possible.1 To capture such
behavior in the transformed program, we introduce a nondeterministic choice and
execute both branches. We take advantage of the fact that DIVINE is already
capable of handling nondeterminism. Further, in the taken path we constrain
values by extending a path condition (see Fig. 3).
1 Given a symbolic value x and a branch with condition x < 5, the condition can be
both true and false. The program makes a nondeterministic choice and extends the
path condition with x < 5 or x ≥ 5 respectively.
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a:int ← input()

b:int ← fun(7)

c:int ← add(a, b)

d:bool ← eq(a, b)

a:s_int ← lift (*)

b:int ← fun (7)

c:s_int ← s_add(a, lift(b))

d:s_bool ← s_eq(a, lift(b))

Fig. 2. Transformation to the program working with symbolic values (right).

a:s_int ← lift (*)

b:s_int ← lift (*)

c:s_int ← s_add(a, b)

if nondet ()

assume(c < 5)

d:s_int ← s_mul(c, 3)

+

?2?1true

true

a

b

c

true

c < 5

×

3

d

Fig. 3. The transformed program builds term trees that represent symbolic values. The
boxes correspond to symbolic variables while the circles are the concrete representation
of terms. Question marks denote unconstrained nullary symbols. Gray boxes represent
path condition constraints.

In the program, symbolic data are represented as term trees – see Fig. 3.
Exploring the state space, DIVINE extracts term trees from program states in
the model checking algorithm, and checks for the feasibility by querying SMT
solver (Z3) for satisfiability of extracted path condition. Moreover, DIVINE needs
to recognize when it has reached a repeated state. This can not be done by a
simple comparison of states, because different symbolic states may represent the
same set of concrete states. Hence, to check equality of states, we also utilize the
SMT solver. To precisely model program arithmetic, we use the bitvector theory.

2 Strengths and Weaknesses

In comparison to bounded model checkers, DIVINE’s strength is sound verifi-
cation – it explores a whole state-space and uses formulae in bitvector theory
to precisely represent symbolic values. However DIVINE produced a few wrong
results in the competition, these should not be possible in theory and likely stem
from implementation errors in the verification tool.

Our compilation-based approach has allowed us to increase modularity of
the tool. It is easy to change the representation of symbolic values, the verifica-
tion algorithm and even the entire verifier while preserving the transformation.
Another upside is that the implementation of symbolic operations is subject to
checks performed by the verifier.
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On the other hand, the current implementation is only a proof of concept.
Our primary goal was to show that a compilation-based approach may compete
with interpretation-based approaches even though it increases the size of the
verified program and therefore possibly also verification complexity. Currently,
the transformation can only handle scalar values, hence verification of programs
with symbolic memory is not yet possible.

3 Tool Setup and Configuration

The verifier archive can be found on the SV-COMP 2019 page2 under the name
DIVINE-SMT. In case the binary distribution does not work on your system,
we also provide a source distribution and build instructions at https://divine.fi.
muni.cz/2019/sv-comp-smt.

It is usually sufficient to run divine as follows: divine check --symbolic
--svcomp TESTCASE.c. This command runs DIVINE with the SMT-based repre-
sentation of symbolic data described in this paper and with SV-COMP-specific
instrumentation.

For SV-COMP benchmarks, additional settings are handled by the
divine-svc wrapper.3 The only option used for DIVINE-SMT is --32 for 32
bit categories. The wrapper sets DIVINE options based on the property file and
the benchmark. In particular, it enables symbolic mode if any nondetermism is
found, sequential mode if no threads are found, and it sets which errors should be
reported based on the property file. It also generates witness files. More details
can be found on the aforementioned distribution page.

DIVINE participates in all categories, but it can only produce non-unknown
results for the error reachability and memory safety categories.

4 Software Project and Contributors

The project home page is https://divine.fi.muni.cz. Many people have con-
tributed to DIVINE, including Petr Ročkai, Henrich Lauko and Vladimı́r Štill.
DIVINE is open source software distributed under the ISC license.

References

1. Beyer, D.: Automatic verification of c and java programs: Sv-comp 2019. In: Beyer,
D., Huisman, M., Kordon, F., Steen, B. (eds.) TACAS 2019, Part III. LNCS, vol.
11429, pp. 133–155. Springer, Cham (2019)

2. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In: Operating Systems Design
and Implementation, pp. 209–224. USENIX Association (2008)

2 https://sv-comp.sosy-lab.org/2019/systems.php.
3 To be found in the main directory of the binary archive, or in the tools directory of
the source distribution. Usage: divine-svc DIVINE BINARY PROP FILE [OPTIONS]

TESTCASE.c.

https://divine.fi.muni.cz/2019/sv-comp-smt
https://divine.fi.muni.cz/2019/sv-comp-smt
https://divine.fi.muni.cz
https://sv-comp.sosy-lab.org/2019/systems.php


208 H. Lauko et al.

3. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2
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Abstract. ESBMC v6.0 employs a k-induction algorithm to both fal-
sify and prove safety properties in C programs. We have developed a
new interval-invariant generator that pre-processes the program, infer-
ring invariants based on intervals and introducing them in the program as
assumptions. Our experiments show that ESBMC v6.0 using k -induction
can prove up to 7% more programs when the invariant generation is
enabled.

1 Overview

The k-induction algorithm is an effective verification technique implemented in
various software model checkers with the goal of proving partial correctness over
a large number of different programs and properties [1–3]. Typical k-induction-
based verifiers use iterative deepening and repeatedly unwind the program to
produce the verification results; its incremental nature means that it always
finds the smallest falsification [2]. In SV-COMP’19, we have implemented a new
interval-invariant generator that runs as a pre-processing step in ESBMC [4]. In
this implementation, invariants based on intervals are automatically introduced
in the program as assumptions and, although the implementation has some lim-
itations in keeping track of the relations between variables (i.e., our abstract
domain is non-relational), it significantly strengthens the k -induction algorithm
results; in particular, we have observed that the use of invariants increases the
number of correct proofs by about 7% over the SV-COMP benchmarks.
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2 Verification Approach

ESBMC uses a k -induction algorithm [2] to verify and falsify properties over
C programs. Let a given C program P under verification be a finite transition
system M , where we define:

– I(sn) and T (sn, sn+1) as the formulae over program’s state variable set si
constraining the initial states and transition relations of M ;

– φ(s) as the formula encoding states satisfying a required safety property;
– ψ(s) as the formula encoding states satisfying the completeness threshold, i.e.

states corresponding to termination. ψ(s) will contain unwindings no deeper
than the maximum number of loop-iterations occurring in the program.

Note that, in our notation, termination and error are mutually exclusive:
φ(s)∧ψ(s) is by construction unsatisfiable; s is a deadlock state if T (s, s′)∨φ(s)
is unsatisfiable.

In each step k of the k-induction algorithm, three checks are performed: the
base case B(k), the forward condition F (k) and the inductive step S(k) [2].
B(k) is the standard bounded model checking and it is satisfiable iff P has a
counterexample of length k or less:

B(k) = I(s1) ∧
k−1∧

i=1

T (si, si+1) ∧
k∨

i=1

¬φ(si). (1)

The forward condition checks for termination, i.e. whether the completeness
threshold ψ(s) must hold for the current k. If F (k) is unsatisfiable, P has ter-
minated:

F (k) = I(s1) ∧
k−1∧

i=1

T (si, si+1) ∧ ¬ψ(sk). (2)

No safety property φ(s) is checked in F (k) as they were checked for the
current k in the base case. Finally, the inductive condition S(k) is unsatisfiable
if, whenever φ(s) holds for k unwindings, it also holds after the next unwinding
of P :

S(k) = ∃n ∈ N
+.

n+k−1∧

i=n

(φ(si) ∧ T ′(si, si+1)) ∧ ¬φ(sn+k). (3)

Here T ′(si, si+1) is the transition relation after havocking the loop variables [2].
Through B(k), F (k), and S(k), the k -induction algorithm at a given k is:

kind(P, k) =

⎧
⎪⎨

⎪⎩

P contains a bug, if B(k) is satisfiable,

P is correct, if B(k) ∨ [F (k) ∧ S(k)] is unsatisfiable,

kind(P, k + 1), otherwise.

(4)

2.1 Invariant Inference Based on Interval Analysis

Our major new feature is a new interval invariant generator for integer vari-
ables; it computes for every integer variable a lower and an upper bound of
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possible values. These intervals are injected into the program as assumptions
(constraints) to address a limitation of the k -induction: when trying to check
S(k), the inductive step may find spurious counterexamples if the T ′(si, si+1)
over-approximation is unconstrained. This is because we havoc the variables that
are written in a loop, i.e. all loop variables are assigned non-deterministic values.
The effect can be seen in Eq. (3): the inductive step checks if whenever φ holds
for k − 1 unwindings, it also holds in the current unwinding of the system. In
Eq. (3), the state space is only constrained using the properties in the program;
these are (usually) not strong enough to prove program correctness.

Several authors address this problem by generating program invariants to rule
out unreachable regions of the state space, either as a pre-processing step where
invariants are introduced in the program before verification [3], or during the
verification itself [1,5]. Similarly to Rocha et al. [3], we perform a static analysis
prior to loop unwinding and (over-)estimate the range that a variable can assume.
In contrast to Rocha et al., we do not rely on external tools to infer polyhedral
constraints (e.g., ax + by ≤ c, where a, b, and c are constants and x and y are
variables) over C programs. Instead, we implement a “rectangular” invariant
generation based on interval analysis (e.g. a ≤ x ≤ b) as a pre-processing step
of the verification, i.e., before the program is symbolically executed and the
resulting formulae are checked by an SMT solver.

Here we use the abstract-interpretation component from CPROVER [6]. This
implements an abstract domain based on expressions over intervals; these con-
straints associate each variable with an upper and lower bound. The algorithm
starts by assuming an unbounded interval for each variable in the program and
follows the reachable instructions from the main function while updates the inter-
vals, merging them if necessary. When loops are found, an widening operation
is applied, in order to accelerate the generation process [7].

Our tool generates new invariants ϕ(sn) and changes Eq. (3) to use them as
assumptions during verification, such that the new inductive step is defined as:

S′(k) = ∃n ∈ N
+. ϕ(sn) ∧

n+k−1∧

i=n

(φ(si) ∧ T ′(si, si+1)) ∧ ¬φ(sn+k). (5)

The k -induction algorithm of Eq. (4) now uses the inductive step from Eq. (5)
to participate in all categories with C programs of SV-COMP’19.

3 Strengths and Weaknesses

We have observed that the use of invariants increases the number of correct
proofs in ESBMC by about 7%. This, however, comes at a cost: due to bugs
in the invariant generator, the number of incorrect proofs is trebled if these
invariants are used. In particular, we do not track intervals of variables changed
through pointers and nor if the intervals are defined in terms of other variables.
For this we would need a relational analysis that can keep track of relations
between variables. As a result, with the interval invariants enabled, ESBMC
becomes a (better) bug-finding tool rather than one delivering proofs of guaran-
teed soundness.
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In SV-COMP’19, ESBMC correctly claims 3556 benchmarks correct and finds
existing errors in 1753. Sadly, it also finds unexpected errors for 14 benchmarks
and fails to find the expected errors in another 41, which impacts its over-
all performance. The failures are mostly concentrated in the MemSafety and
ConcurrencySafety categories and are mainly due to: (1) our non-relational
abstract domain, (2) an internal bug in ESBMC (since corrected) which did
not track variables going out of scope, and (3) an incomplete modelling of
some pthread functions. ESBMC’s performance has improved greatly since
SV-COMP’18 (v4.60): the number of errors detected has increased by 36% and
the number of correct-true results increased by 32%. The biggest improvements
are reflected in the categories ReachSafety and FalsificationOverall.

4 Tool Setup and Configuration

In order to run our esbmc-wrapper.py script1, one must set the architecture (i.e.,
32 or 64-bit), the competition strategy (k -induction, falsification or incremental
BMC), the property file path, and the benchmark path, as:

esbmc-wrapper.py [-h] [-a {32,64}] [-p PROPERTY_FILE]

[-s {kinduction,falsi,incr}]

[benchmark]

where -a sets the architecture, -p sets the property file path, and -s sets the
strategy, in this case, kinduction for k -induction.

Internally, by choosing the k -induction strategy, the following options are
set for every property when executing ESBMC-kind: --no-div-by-zero-check,
which disables the division by zero check (required by SV-COMP);
--k-induction, which enables the k -induction; --floatbv, which enables
floating-point SMT encoding; --unlimited-k-steps, which removes the upper
limit of iteration steps in the k -induction algorithm; --witness-output,
which sets the witness output path; --force-malloc-success, which sets
that all dynamic allocations succeed (also an SV-COMP requirement); and
--interval-analysis, which enables the invariant generation. In addition,
ESBMC-kind sets further options depending on the property that needs to be
checked: --no-pointer-check and --no-bounds-check for reachability verifi-
cation; --memory-leak-check for memory verification; and --overflow-check
for overflow verification. The Benchexec tool info module is named esbmc.py and
the benchmark definition file is esbmc-kind.xml. For SV-COMP’19, ESBMC-
kind uses Boolector v2.4.1 [8] and competes in all categories with C programs.

5 Software Project

The ESBMC source code is available for downloading at https://github.com/

esbmc/esbmc, while self-contained binaries for ESBMC v6.0 64-bit can be
1 https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/esbmc-kind
.zip.

https://github.com/esbmc/esbmc
https://github.com/esbmc/esbmc
https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/esbmc-kind.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/esbmc-kind.zip
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downloaded from https://github.com/esbmc/esbmc/releases. ESBMC is publicly
available under the terms of the Apache License 2.0. Instructions for building
ESBMC from source are given in the file BUILDING (including the description
of all dependencies). ESBMC is a joint project with the Federal University of
Amazonas (Brazil), University of Southampton (UK), University of Manchester
(UK), and University of Stellenbosch (South Africa).
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Abstract. JayHorn is a model checker for verifying sequential Java pro-
grams annotated with assertions expressing safety conditions. JayHorn
uses the Soot library to read Java bytecode and translate it to the
Jimple three-address format, then converts the Jimple code in several
stages to a set of constrained Horn clauses, and solves the Horn clauses
using solvers like SPACER and Eldarica. JayHorn uses a novel, invariant-
based representation of heap data-structures, and is therefore particu-
larly useful for analyzing programs with unbounded data-structures and
unbounded run-time. JayHorn is open source and distributed under MIT
license (https://github.com/jayhorn/jayhorn).

1 The JayHorn Approach

JayHorn is a model checker for verifying the absence of assertion violations in
sequential Java programs by automatically inferring program annotations that
are sufficient to witness program safety. Annotations are quantifier-free formulas
in first-order logic modulo relevant theories like LIA. The choice of annotations
is inspired by refinement types [1] and liquid types [7], and consists of:

– for each method m, a pre-condition pre_m defining conditions under which
the method can be invoked, and a post-condition post_m stating the effect of
the method in terms of the method parameters, the method result, possible
exceptions, and certain ghost variables encoding the state of the heap;

– for each control location l, a state invariant loc_l describing the possible
values of local variables that are in scope;

– for each class C, an instance invariant inv_C describing possible values of
object fields and the dynamic object type.

The sufficiency of annotations is characterized by a set of constrained Horn
constraints expressing that state invariants in a method body are ensured by the
method pre-condition and preserved by all statements in the method body, that
methods establish their post-conditions, and that updating the fields of an object
preserves the instance invariant inv_C; more details are provided in [4]. Given the
complete set of conditions on the annotations, the actual annotation inference
c© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 214–218, 2019.
https://doi.org/10.1007/978-3-030-17502-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17502-3_16&domain=pdf
https://github.com/jayhorn/jayhorn
https://doi.org/10.1007/978-3-030-17502-3_16
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can be carried out with the help of off-the-shelf Horn solvers, like SPACER [5],
which uses a variant of PDR/IC3, and Eldarica [3], which uses CEGAR.

The representation of heap data-structures using instance invariants in gen-
eral over-approximates the program behavior, since instance invariants have to
hold for the possible states of all objects of some class (as well as all elements of
encoded arrays), at any point during program execution, and they cannot refer
to local variables or to fields of other objects. The encoding (and JayHorn) is
therefore incomplete, and it is easy to construct correct Java programs that can-
not be verified using any choice of annotations [4]. To prevent incorrect answers,
JayHorn applies a counterexample validation step whenever the generated Horn
clauses are found to be unsatisfiable (see Sect. 2).
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Fig. 1. Architectural overview of JayHorn.

2 Architecture of JayHorn (Fig. 1)

Program Transformations: In its default configuration, JayHorn takes Java byte-
code as input and checks if Java assert can be violated. JayHorn accepts any
input that is supported by the Soot framework [8]: Java class files, Jar archives,
or Android apk. For code that is not annotated with assert statements, Jay-
Horn also provides an option to guard possible NullPointerExceptions, Array-
IndexOutOfBoundsExceptions, and ClassCastExceptions with assertions.

Soot is used to translate Java bytecode to the simplified Jimple three-address
format, followed by a set of transformations to further simplify a program, among
them elimination of exception handling and implicit exceptional control-flow;
replacement of switch statements by if statements; and de-virtualization of
method calls in the input program. We can test the correctness (or soundness) of
these steps by comparing input/output behavior of the original and transformed
code. Since this step is crucial for the soundness of the overall system, we employ
Randoop [6] to automate this test.

On the simplified input program, JayHorn performs one abstraction step
to eliminate arrays, again implemented as a bytecode transformation in Soot.
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Arrays in Java are objects, so there are a few subtleties that makes it harder to
handle them. For example, access to the length field of an array is not a regular
field access but a special bytecode instruction. To simplify the later generation
of Horn clauses, we transform arrays into real objects, and introduce a get and
put method to access the array elements.

The next step is the replacement of all heap accesses with push/pull instruc-
tions that copy all fields of an object in a single step to/from local variables [4],
preparing the ground for the later representation of heap using invariants. The
placement of push/pull is optimized to use as few statements as possible, this
way reducing the size of generated constraints, and minimizing the effect of later
over-approximations.

Horn Clause Generation: The transformed simplified Java program is then
encoded as a set of constrained Horn clauses, using uninterpreted predicates
to represent the annotations from Sect. 1. The encoding is mostly standard, and
follows the rules given in [2]. The push/pull instructions are replaced with
assertions and assumptions of the corresponding instance invariant inv_C [4].

In order to mitigate incompleteness due to the instance invariants, JayHorn
implements number of refinements of the basic encoding, extending the set of
programs that can be captured using instance invariants. Flow-sensitive instance
invariants rely on a separate static analysis to determine which pushes a pull
instruction can read from, and can this way distinguish different object states.
Vector references enrich references with additional information about an object,
for instance the dynamic type, the allocation site, or values of immutable fields.

Counterexample Validation: Since the encoding of programs using instance
invariants over-approximates program behavior, there is a possibility of spurious
assertion violations. JayHorn therefore implements a separate counterexample
validation step with a precise, but bounded representation of heap (i.e., an under-
approximate program encoding). This step is applied when the encoding with
instance invariants leads to an inconclusive result. If neither over-approximate
nor under-approximate encoding are able to infer a conclusive result, JayHorn
reports UNKNOWN as overall verification result.

3 Weaknesses and Strengths

Weaknesses: The development of JayHorn is ongoing, and at this point several
key Java features are not fully supported yet, including (i) strings; (ii) enums;
(iii) bounded integer data-types; (iv) floating-point data-types; (v) reflection
and dynamic loading; (vi) concurrency. The JayHorn model of the Java API is
rudimentary, so that JayHorn assumes arbitrary behavior for most API functions.
Some parts of JayHorn also need more optimization to reduce the run-time of the
tool, in particular some of the program transformation steps. The Horn encoding
could be optimized to use fewer relation symbols with smaller arity.
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Strengths: Due to way heap is encoded, JayHorn is particularly suitable for the
analysis of relatively shallow properties of programs with unbounded iteration,
unbounded recursion, or unbounded heap data-structures; examples illustrating
the capabilities of JayHorn are given in [4].

SV-COMP 2019: The mentioned features make JayHorn a relatively bad match
for the Java benchmarks used in SV-COMP 2019, which are predominantly
regression tests checking the correct handling of language features and of the
Java string API. A large fraction of the benchmarks (the MinePump family) relies
on correct handling of enums, and could therefore not be solved by JayHorn. Only
a few of the SV-COMP benchmarks contain unboundedness in the form of loops,
recursion, or heap data-structures.

JayHorn gave a wrong answer for two benchmarks in the competition. The
program UnsatAddition02 was incorrectly classified as correct (true), since Jay-
Horn assumes unbounded integers. synchronized was incorrectly reported to
be incorrect (false) due to an incomplete model of the synchronized construct,
JayHorn does not support concurrency yet.

The results in the competition are overall promising, but do not represent a
typical application scenario of JayHorn. The JayHorn team plans to address this
for 2020 by submitting further benchmarks to SV-COMP, and by completing
Java support of JayHorn, in particular fully supporting strings.

4 Download and Use of JayHorn

JayHorn is fully implemented in Java, and uses the libraries mentioned in Fig. 1.
The version submitted to SV-COMP 2019 is JayHorn version 0.6.1 In the config-
uration used in the competition,2 JayHorn only applies the Horn solver Eldarica.
Since Eldarica is itself implemented in Scala, this means that no native code was
used in JayHorn in the competition. The Benchexec tool info module is called
jayhorn.py and the benchmark definition file jayhorn.xml. JayHorn competes
in the Java category.

To run JayHorn 0.6, it is enough to download the Jar file jayhorn.jar from
the link below, and run it on bytecode:

wget https://raw.githubusercontent.com/jayhorn/jayhorn/devel/ \

jayhorn/src/test/resources/horn-encoding/classics/UnsatMccarthy91.java

wget https://github.com/jayhorn/jayhorn/releases/download/v0.6/jayhorn.jar

mkdir tmp

javac UnsatMccarthy91.java -d tmp

java -Xss40m -Xmx3000m -jar jayhorn.jar -inline-size 10 -solution -j tmp

1 https://github.com/jayhorn/jayhorn/releases/tag/v0.6.
2 Java options -Xss40m -Xmx3000m, JayHorn options -inline-size 10.

https://github.com/jayhorn/jayhorn/releases/tag/v0.6
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Abstract. JBMC is a bounded model checking tool for verifying Java
bytecode. It is built on top of the CPROVER framework. JBMC pro-
cesses Java bytecode together with a model of the standard Java libraries.
It checks a set of desired properties, such as assertions and absence of
uncaught exceptions, under given bounds on loops, recursion and data
structures. Internally, it uses the same bounded model checking engine
as its sibling tool CBMC and discharges the generated verification con-
ditions with the help of MiniSAT 2.2.1.

1 Overview

JBMC is a bounded model checker based on Boolean Satisfiability (SAT) and
Satisfiability Modulo Theories (SMT), which allows the verification of Java
programs [3]. JBMC inherits memory model, symbolic execution engine and
SAT/SMT backends of its sibling tool CBMC [2]. In particular, JBMC consists
of a frontend for parsing Java bytecode and a Java operational model (JOM),
which is an exact but verification-friendly model of the standard Java libraries.
Thus, JBMC supports Java bytecode and can verify programs that make use
of classes, inheritance, polymorphism, arrays, bit-level operations and floating-
point arithmetic using CBMC’s verification engine.

JBMC can reason about array bound violations, unintended arithmetic over-
flows, and other kinds of functional and runtime errors. However, as with other
bounded model checkers, JBMC is in general incomplete, i.e., can only be used
to find property violations up to a given bound k but not to prove properties,
unless we know an upper bound on the depth of the state space by checking
whether all loops have been fully unrolled; this is accomplished by inserting a
so-called unwinding assertion at the end of each loop and recursion to check for
termination.

JBMC natively supports MiniSAT as its main solver to discharge verification
conditions (VCs) and check for their satisfiability, but can also be used with other
incremental SAT solvers such as Glucose. For SV-COMP 2019, however, JBMC
c© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 219–223, 2019.
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Fig. 1. JBMC architecture. Grey rectangles represent input and output while white
rectangles represent the JBMC main verification steps.

does not use incremental bounded model checking to verify Java programs with
(multiple) loops, i.e., it does not check the VCs in iteration k + 1 by building
upon the work done for iteration k [5].

2 Architecture

JBMC’s architecture is illustrated in Fig. 1. JBMC accepts Java bytecode class
files or JAR files as input together with the JOM to parse the Java bytecode
and translate it into the CPROVER control-flow graph representation, which
is called a GOTO program; this transformation simplifies the Java bytecode
representation (e.g., replacement of switch and while by if and goto statements)
as well as lowering of exceptional control flow.

The GOTO Symex component performs a symbolic execution of the program,
which thus handles dynamic memory allocation, encoding of virtual method dis-
patch, unrolling of the loops and unfolding of recursive method calls. In particu-
lar, JBMC uses two functions that compute the constraints C (i.e., assumptions
and variable assignments) and properties P (i.e., built-in and user-defined asser-
tions); it automatically generates safety conditions that check for null derefer-
ence, array bounds errors, type cast errors and other kinds of functional and
runtime errors. Both functions accumulate the control-flow predicates at each
program point and use these predicates to guard both the constraints and the
properties, so that they properly reflect the Java bytecode’s semantics. JBMC’s
VC generator then derives the VCs from these; the resulting bit-vector formula
(i.e., C ∧ ¬P ) is then passed on to the configured SAT solver to check for sat-
isfiability. If this formula is satisfiable, then JBMC produces a counterexample;
otherwise, if the formula is unsatisfiable, then a successful verification result is
reported.
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3 Features

JBMC uses an abstract representation of the standard Java libraries, called the
Java operational model (JOM), which consists of simplified models of the most
common classes from java.lang and a few from java.util ; these models remove
verification-irrelevant performance optimizations (e.g., in the implementation of
container classes), exploit declarative specifications (using assume statement)
and functions that are built into the CPROVER framework (e.g., for array and
string manipulation).

JBMC also implements a solver for strings to determine the satisfiability of a
set of constraints involving strings [4]. Specifically, our string solver implements a
decision procedure for string operations that are typically used by Java programs,
such as concatenation, search, extract and conversions to other data types. This
decision procedure uses incremental SAT solving to lazily instantiate quantifiers.

JBMC also provides API classes that allow users to define non-deterministic
verification harnesses and stub functions as used in the SV-COMP benchmarks.
The API1 contains such methods for primitive data-types (e.g. nondetDouble())
and strings (e.g. nondetString()). The API also provides an assume(condition)
method, which advises JBMC to ignore paths that do not satisfy a user-specified
condition. JBMC is able to check for array bounds, division by zero, unintended
arithmetic overflows, runtime errors in Java (e.g. illegal memory access) and
user-specified assertions.

Current development efforts include improving support for regular expres-
sions, multi-threaded programs and enabling output of VCs using the SMT-LIB
format to be checked by SMT solvers such as Z3, CVC4, Boolector, MathSAT
and Yices.

4 Strengths and Weaknesses

JBMC does not produce any incorrect result for any of the Java verification tasks
available in SV-COMP 2019 [1]; it correctly claims 139 benchmarks correct and
finds existing errors in 192. However, JBMC crashes (and returns unknown) in 37
benchmarks due to time or memory exhaustion, or due to missing models of the
Java standard library. JBMC can handle most Java basic features (e.g., inheri-
tance, polymorphism and exceptions) and strings manipulations (but regexes are
not fully supported yet). However, JBMC’s concurrency support is still limited
and there is no support for Java 8 lambdas, reflection and Java Native Interface
(JNI). As its sibling CBMC, JBMC can only prove bounded programs unless an
upper bound is known on the depth of the state space, which is not generally
the case. Lastly, our JOM does not cover the entire Java standard library.

1 https://github.com/diffblue/java-models-library/blob/master/src/main/java/org/
sosy lab/sv benchmarks/Verifier.java.

https://github.com/diffblue/java-models-library/blob/master/src/main/java/org/sosy_lab/sv_benchmarks/Verifier.java
https://github.com/diffblue/java-models-library/blob/master/src/main/java/org/sosy_lab/sv_benchmarks/Verifier.java
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Fig. 2. Illustrative Java code extracted from SV-COMP 2019 (StringValueOf08).

5 Tool Setup

The competition submission is based on JBMC version 5.10.2 For the competi-
tion, JBMC is called from a wrapper script.3 The wrapper script compiles the
.java source files in the given benchmark directories and then invokes the jbmc
binary repeatedly with increasing values for the unwinding bound until the prop-
erty has been refuted (answering false) or the program has been fully unwound
without finding a property violation (answering true). See the wrapper script for
the relevant command line options given to JBMC. As an example, we can run
the JBMC wrapper script to check for a reachability property in the program
shown in Fig. 2 by executing the following command:

./jbmc --propertyfile <path-to-sv-benchmarks>/properties/assert.prp
<path-to-sv-benchmarks>/java/jbmc-regression/StringValueOf08

where assert.prp indicates the specification to be verified for
StringValueOf08. Note that this program invokes in line 4 a non-deterministic
method (Verifier.nondetString();) to produce an arbitrary string value; this
method is provided by SV-COMP in org.sosy lab.sv benchmarks.Verifier. The
JOM (core-models.jar) is also part of the submission archive. If a verification
task uses a Java library method that is not part of the JOM then the wrapper
script returns unknown. The Benchexec tool info module is called jbmc.py and
the benchmark definition file jbmc.xml. The competition submission of JBMC
uses MiniSAT 2.2.1 as SAT backend. JBMC competes in the Java category.

6 Software Project

JBMC is maintained by Peter Schrammel together with numerous contribu-
tors4 from the community. It is publicly available under a BSD-style license.
The source code is available at http://www.github.com/diffblue/cbmc in the
jbmc directory. Instructions for building JBMC from source are given in the file
COMPILING.md.
2 Executable available at https://gitlab.com/sosy-lab/sv-comp/archives/tags/svco

mp19.
3 Can be built from https://github.com/diffblue/cprover-sv-comp/tree/svcomp19.
4 https://github.com/diffblue/cbmc/graphs/contributors.

http://www.github.com/diffblue/cbmc
https://gitlab.com/sosy-lab/sv-comp/archives/tags/svcomp19
https://gitlab.com/sosy-lab/sv-comp/archives/tags/svcomp19
https://github.com/diffblue/cprover-sv-comp/tree/svcomp19
https://github.com/diffblue/cbmc/graphs/contributors
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Abstract. This paper gives a brief overview of Java Pathfinder, or
jpf-core. We describe the architecture of JPF, its strengths, and how
it was set up for SV-COMP 2019.
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1 Verification Approach

Java Pathfinder (JPF) is a framework for Java bytecode analysis [13]. At the
core of the system is an explicit-state model checker [4], often just called JPF
(but officially called jpf-core). This core can be extended to allow a variety of
other analyses, most notably there is an extension for doing symbolic execution,
called Symbolic Pathfinder [9]. Here however we focus only on the core system,
i.e., on the explicit-state model checker.

JPF is a mature system with its first version released in the late 1990s. It was
first open-sourced by NASA in 2004 and since around 2016 it is a community
project hosted on GitHub [12]. It is based around the core algorithms for doing
on-the-fly explicit state model checking, similar to SPIN. Unlike SPIN however,
it does not support temporal logic property checking by itself. Instead, this
functionality can be added as an extension; the core system used here only
checks for uncaught exceptions (which include assertion violations).

2 Software Architecture

The main architectural component of JPF is a Java virtual machine (JVM),
implemented in Java. This component supports functionality for executing byte-
code as well as backtracking over already executed code. Additionally a finger-
print of each state of the JVM (using hash-compaction [5]) is stored to allow
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Java Pathfinder
SUT

Model classes
JPF VM

Native peer classes

Host JVM

Fig. 1. Architecture of JPF

state-matching and to keep the analysis linear in the size of the state-space of the
program being analyzed. Another optimization to allow for the efficient analysis
of concurrent programs is a form of partial-order reduction that groups bytecode
together in a transition as long as they cannot have any visible effect on other
threads. Note that both the hash-compaction and the implementation of partial-
order reduction (JPF group instructions that can only have a local effect into
the same transition, but this is based on heuristics) used can cause behaviours
to be missed during analysis and for this reason JPF is only a bug-finding tool,
not a verification tool.

At its core, JPF treats any source of non-determinism as a choice; com-
mon choices are scheduling choices and non-deterministic choices over a range
of values, e.g., whether a network is available or not [3]. In the context of SV-
COMP, symbolic inputs were always treated as entirely non-deterministic choices
when using jpf-core.

Java Pathfinder itself is written in Java and therefore runs on the standard
JVM, called host JVM (see Fig. 1). The system under test (SUT) is run inside
the JPF VM, and cannot directly interact with the host VM. This allows JPF to
capture the full address space of the program, and revert any changes in memory
when backtracking the state of the SUT during the state space search. However,
this approach cannot handle native methods, which execute unmanaged code
(written in C or C++) that is not supervised by JPF. Changes to memory
by native methods, or other side effects thereof, are not visible to JPF. To
overcome this limitation, JPF allows model classes to be defined, which replace
the standard library classes with custom code. With this mechanism, a class with
native methods can be replaced with a Java-based model class that does not use
native code. Such model classes are fully managed by JPF. Sometimes, though,
it is necessary to access native code, for example, to perform input/output. To
achieve this, JPF supports native peer classes, which are executed directly on
the host VM. This means that any built-in library functionality (such as I/O)
is available to native peer classes. Furthermore, native peers have access to low-
level data structures inside the JPF VM, and thus can read and modify the state
of model classes or any other classes that are managed by the JPF VM.

Java Pathfinder is highly extensible and modular. Its VM can handle dif-
ferent platforms and instructions sets (such as Java bytecode and Dalvik code
for Android), use different state space exploration strategies and schedulers, and
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also allows listeners to receive notifications of program state changes or execu-
tion actions, allowing users to build run-time monitoring algorithms on top of
JPF. JPF extensions are vital to expand its capabilities, and allow it to handle
features like the verification of distributed systems [7,11], generating missing
native code on the fly [10], or monitor temporal-logic properties [8].

3 Discussion of Strengths and Weaknesses
of the Approach

As expected, JPF performed very well on examples with simple non-
deterministic inputs such as Boolean parameters. In this case, the state space is
small enough that an exhaustive search is easy, and there is no need to track path
conditions (which are implemented by the Symbolic Pathfinder extension [9]).
It is therefore also unsurprising that JPF did poorly in some cases where a con-
straint solver is required to analyze the full state space effectively. An example
would be assert3 in the jbmc-regression suite where an error occurs when the
input satisfies the constraint i ≥ 1000 ∧ i ≤ 1000. JPF will only enumerate the
inputs for small ranges of values. Because the range of i is not directly specified,
but indirectly derived through constraints, JPF does not analyze this variable
and therefore misses this error. Finally, there were a few cases where JPF did
not conclude its analysis due to missing model classes or native peers.

Java Pathfinder would really excel when analyzing simple to moderately com-
plex concurrent applications, and applications using advanced functionality like
input/output and network communication. In the 2019 benchmark set, no con-
current applications were present, so JPF is not fully utilized in this preliminary
evaluation. The addition of networked applications would require additional con-
figuration information, so it is therefore not clear how soon the benchmark suite
can be extended with such additional, realistic applications. Examples that have
been successfully verified by JPF in the past include a WebDAV client [2], and
scp client [6], and HTTP servers [1,7].

4 Tool Setup and Configuration

Java Pathfinder is available on GitHub [12]; the submitted compiled version
is archived under https://gitlab.com/sosy-lab/SV-COMP/archives-2019/blob/
master/2019/jpf.zip.

Java Pathfinder (jpf-core) has no external dependencies; JUnit is necessary
to run the unit tests, but not to build and use jpf-core.

JPF is compiled with ./gradlew build.
We used the default values for all options, except that cg.enumerate random

was changed to true from the default configuration, because this option forces
JPF to explore all possible values for random choices.1 This setting was necessary
1 JPF will explore all outcomes for Boolean choices, and a set of predefined corner
cases for choices on integers.

https://gitlab.com/sosy-lab/SV-COMP/archives-2019/blob/master/2019/jpf.zip
https://gitlab.com/sosy-lab/SV-COMP/archives-2019/blob/master/2019/jpf.zip
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to enable JPF to explore non-deterministic inputs. It is not enabled by default
because JPF is normally used to analyze concurrency.

JPF participated in all Java benchmarks.

5 Software Project and Contributors

The project is managed by the Java Pathfinder group. Contact person is Cyrille
Artho (artho@kth.se). JPF is available under the Apache License, version 2.0
and hosted on GitHub [12].

Acknowledgements. We thank all contributors who have participated in the devel-
opment of JPF over the last 20 years.

We would also like to thank Peter Schrammel and Dirk Beyer for their support,
and for providing the scripts and configuration files for the competition.
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Abstract. PeSCo is a tool for predicting a (likely best) sequential com-
bination of verifiers on a given verification task and then running it. The
approach is based on machine learning, more precisely on learning rank-
ings of verifiers on verification tasks (where the ordering of verifiers is
based on the SV-COMP scoring schema). The learning part employs
Support Vector Machines; as base verifiers we use CPAchecker in 6
different configurations.

1 Verification Approach

Composing verification techniques in sequence has in the past been a promising
approach in the annual software verification competition SV-COMP. Especially
in 20181, the software verification framework CPAchecker [3], using a composi-
tion of analyses, was able to outperform competitors in category ReachSafety.
However, the analysis sequence is often predefined and fixed. In other words,
a problem instance might pass through a sequence of unsuccessful verification
configurations until it is processed by the right technique or exceeds a time limit.

Our competition contribution utilizes the sequential setting of CPAchecker
(more precisely, of CPA-Seq), but predicts the order of verification tools
viz. configurations. For this, we applied an extension of our rank prediction
approach introduced in [7]. Basically, for a given verification task we predict an
ordering of CPAchecker configurations, and then sequentially run these con-
figurations. Configurations are ordered with respect to their (likely) performance
on the verification task.

The prediction employs machine learning. For the learning, we extract fea-
tures of verification tasks via an encoding of programs as graphs combining
concepts of control-flow and program dependence graphs with abstract syntax
trees. Features represent certain graph substructures of programs, where the
depth of substructures considered is configurable.

1 sv-comp.sosy-lab.org/2018/results/results-verified/.
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To obtain the execution order for a new problem instance, the Ranking by
pairwise comparison (RPC) [9] framework is employed utilizing kernelized Sup-
port Vector Machines (SVM) [11] as base learners. By employing SVMs, we
are able to choose a kernel function2 (similar to Weisfeiler-Lehman kernels [12])
that is specifically designed for graph substructures. However, the function pro-
posed in [7] needed to be computed between the input instance X (the graph
of a verification task) and every training sample Y , which can be quite costly
in practice. As a consequence, we have re-implemented this approach and now
compute Weisfeiler-Lehman-based features of single graphs. This significantly
improves the performance of prediction.

2 Software Architecture

Our tool contribution PeSCo embeds a Planning step in the restart algorithm
employed in the verification framework CPAchecker [3]. The restart algo-
rithm [10] is used in a sequential combination of verifiers to let the next verifier
start on already computed (partial) results of previous verifiers, in particular
when the previous verifier could not solve the verification problem. However,
instead of executing a fixed list of verification techniques, our algorithm plans
an execution order dependent on the verification task to be solved. Our approach
consists of the following steps.

Training. To train our rank predictor, we employ rankings obtained by exe-
cuting 5 CPAchecker configurations on the verification tasks of SV-COMP
2018. Similar to CPA-Seq [10] from 2018, we use Value Analysis [5], Value
Analysis + CEGAR [5], Predicate Analysis [4], k-Induction [1] and Bounded
Model Checking [6]. In addition, we introduced and carried out training with
a special UNKNOWN configuration. This extension will allow our prediction pro-
cedure to cut off an analysis when it will most probably fail.

Planning. As can be seen in Fig. 1, we utilize the preprocessor and control
flow automaton (CFA) construction implemented in CPAchecker. Instead
of passing the CFA directly to an analysis, we first query our rank predic-
tion process. The prediction process starts by building an intermediate graph
representation. This is followed by a feature extraction and the final ranking
procedure (details in [7]). If a prediction is not achievable in a certain time
frame, we fall back to the standard CPA-Seq.

Execution. After planning a sequential composition, we can apply the analyses
in the given order. If an analysis fails or exceeds its time limit, we switch to
the next configuration. On reaching the UNKNOWN configuration, we exit the
verification sequence. Instead of leaving the overall process, specialized tech-
niques will be applied in the following situations: For recursive programs we
facilitate Block Abstraction Memoization (BAM) [8,13] and Binary Decision
Diagrams (BDD) [2] are used for concurrent programs. Witnesses are written
as generated by the verifiers.

2 Kernels are similar to a similarity functions between feature vectors.
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Despite the fact that our implementation is only dependent on Java 8, we
need MathSAT 53 to run individual configurations. Furthermore, parser frontend
for C programs are used according to CPAchecker.

C program with
specification

FeatureExtraction

Analysis I Analysis II UNKNOWN Analysis III Analysis IV

BAM

if-recurrent

BDD

if-concurrent

PDGCFA

< <

RPC

Fig. 1. Architecture of PeSCo implemented within CPAchecker. The dotted box
represent the Restart Algorithm enhanced by our rank prediction. Hence, Analysis II
receives partial results of Analysis I for a restart of the verification. The rank prediction
utilizes the control flow automaton extended by data and control dependencies (PDG).

3 Strengths and Weaknesses

In contrast to traditional compositional approaches, PeSCo adapts to the given
tasks. As a result, our tool is able to decrease the runtime by skipping techniques
that do not fit to the given verification task. More importantly, the adapta-
tion allows us to omit analyses which introduce failures. Consequently, PeSCo
improves the number of correct results in a given time frame.

Nevertheless, learning the optimal ranking requires time and intro-
duces uncertainty to the verification process. Experiments on 1148 tasks in
ReachSafety-ECA show that optimal rankings on a large number of similar pro-
grams with different requirements are difficult to predict. Still, the results of
SV-COMP 2019 show that PeSCo can effectively verify a number of C pro-
grams in that category.

Due to the prediction process, PeSCo is furthermore limited to the configura-
tions that occur during training. Since we trained our predictor with the version
of CPAchecker employed in SV-COMP 2018, we perform slightly worse than
the improved 2019 version of CPA-Seq.
3 mathsat.fbk.eu.

http://mathsat.fbk.eu
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4 Tool Setup and Configuration

PeSCo is fully integrated in the official source code of CPAchecker. Thus,
it can be downloaded as a fork: https://github.com/cedricrupb/cpachecker. We
use Revision b8d6131 for the competition. To compile the tool, ant should be
executed on the checkout folder. After this step, our tool requires Java 8 and
MathSAT 5 as external tools. To verify a test program, CPAchecker is exe-
cuted with the following command line:

$ scripts/cpa.sh -svcomp19-pesco -benchmark -heap 10000M -stack
↪→ 2048k -timelimit 900s -spec prop.spc program.c

For programs expecting a 64 Bit model, add the parameter -64. PeSCo partici-
pates in category ReachSafety, Falsification and Overall. The correspond-
ing specification can be found in the checkout folder under
config/specification/sv-comp-reachability.spc.

5 Software Project and Contributors

Being an extension of the CPAchecker project, PeSCo is developed as an
open-source project by a research group from Paderborn University. Contri-
butors were so far Mike Czech, Marie-Christine Jakobs, Cedric Richter and Heike
Wehrheim. We would furthermore like to thank Eyke Hüllermeier for machine
learning expertise and his contribution to the prediction process. We aso thank
the CPAchecker team for allowing us to use their tool.
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Abstract. Many modern-day solvers offer functionality for incremental
SAT solving, which preserves the state of the solver across invocations.
This is beneficial when multiple, closely related SAT queries need to
be fed to the solver. Pinaka is a symbolic execution engine which makes
aggressive use of incremental SAT solving coupled with eager state infea-
sibility checks. It is built on top of the CProver/Symex framework. Pinaka
supports both Breadth First Search and Depth First Search as state
exploration strategies along with partial and full incremental modes. For
SVCOMP 2019, Pinaka is configured to use partial incremental mode
with Depth First Search strategy.

Keywords: Symbolic execution · Incremental solving ·
Software bug detection

1 Verification Technique

Pinaka extends symbolic execution with incremental solving coupled with eager
infeasibility checks. A pure symbolic execution [6] engine builds a logical for-
mula representing a potential execution path using symbolic values which may
then be passed on to theorem-provers/solvers. An UNSAT outcome from the
solver implies that the verification condition will not be violated along that path,
whereas a SAT outcome provides a scenario leading to failure of an assertion dur-
ing an execution along that path. The number of paths in a program blow-up
exponentially as the number of branches increases. Pinaka, being a single-path
symbolic execution engine, never merges two paths (i.e., diamonds). It employs
eager infeasibility checks to avoid unnecessary exploration. Rather than making
queries to the solver only when a path encounters an assertion, a query is made
everytime a branch is encountered to check its feasibility. Infeasible branches are
not explored further. These eager checks help Pinaka tremendously in reducing
its search efforts. Pinaka is further powered by incremental solving [5] offered by
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many state-of-the-art solvers such as MiniSAT [3]. Incremental Solving greatly
benefits our technique by reducing the overhead encountered due to eager infea-
sibility checks. Pinaka has Depth First Search (DFS) and Breadth First Search
(BFS) as its search strategies. It offers two different modes of operation: Partial
Incremental (PI) Mode and Full Incremental (FI) Mode.

b1

s1

b2

s3 s4

s2

Fig. 1. Branching state
in a program graph

In PI mode, a single solver instance is maintained
along a search path. In the event that a branch is encoun-
tered, only a partial path is encoded from the current
point to the previous point from which a query was made
along the current path. For example, in Fig. 1, a query
would be made at b1. If both s1 and s2 are feasible, s2
is put in a queue and the current solver instance is used
to further explore the path starting from s1. When b2
is encountered, only the path from s1 to b2 is encoded
and added in the current solver instance before making
a query. If both the branches at b2 are infeasible, a new
solver instance is created and a path from the initial
state to another symbolic state (e.g., s2) in the queue
is encoded and the path along that symbolic state is
explored further. Essentially, a new solver instance is cre-
ated every-time a backtrack happens. Using BFS in PI
mode is very memory consuming because for every sym-
bolic state in the queue, a corresponding solver instance
is retained. Running Pinaka with this combination is not
recommended.

In FI mode, a single solver instance is retained throughout. In Fig. 1, if b1 →
s1 is a feasible branch, a new activation variable ab1s1 is created. Let φb1b2 be
the encoding of the path from b1 to b2. When b2 is encountered, ab1s1 ⇒ φb1b2

is added in the solver, and ab1s1 is added as an assumption to enforce the path.
Since the underlying SAT solvers integrated with Pinaka do not allow popping of
a stack, upon backtrack, ¬ab1s1 is set as an assumption to disable the constraints
generated by this fragment of the path.

FI mode is beneficial when the input program does not have too many paths.
Otherwise, the solver becomes quite slow over time with a large memory foot-
print. For a large program with too many paths, the benefit of a lower memory
footprint and speed of PI mode outweighs its overhead of instantiating a new
solver instance on every backtrack.

while(x<3)
{
if (y < 0 )
{ x=x+1; }

}

Fig. 2. Handling
loops

Loops are handled just like branches. Consider the pro-
gram fragment given in Fig. 2. Assume that along some path
where (x1 = 1) ∧ (y3 = −1) the loop is encountered. Branch
x1 >= 3 is infeasible along this path and will not be explored.
Since x1 < 3 is feasible, it is explored further by unrolling
this iteration on-the-fly. Therefore, the path will further add
y3 < 0. Since it is feasible, x2 = x1+1 is added and feasibility
of x2 < 3 will be checked. After one more unrolling x3 < 3
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will be found infeasible, thus guaranteeing termination of the loop along this
path. Note that, along a path having y3 = 2, the loop will be non-terminating
for that path. In this case, Pinaka may not terminate. Function calls, including
recursion, are handled in a similar fashion by inlining a call on-the-fly. Therefore,
even though Pinaka provides an option of --unwind NUM to specify an unwinding
limit, it does not mandate that a loop unwinding limit is specified. If a user-given
unwinding limit is not sufficient to reach an assertion violation, it declares the
program as safe, which may be unsound. To ensure soundness, we run it with-
out any loop unwinding limit. For unsafe programs, upon encountering the first
assertion violation, Pinaka terminates and reports a failure. For safe programs,
however, Pinaka terminates only if all the paths of the program are terminating.

2 Architecture

Pinaka 0.1 is built upon the CProver [2]+ Symex [10] framework1. Taking a C
program as input, it makes use of CProver framework APIs to convert the input
C program to a GOTO program. CProver APIs further come into play for pre-
processing of GOTO-programs, witness generation, transformation passes such
as setting the rounding-mode for floating-point operations, handling complex
data types, etc. Pinaka implements PI and FI mode and eager infeasibility checks
along with BFS/DFS exploration. Apart from DFS, none of those features are
present in Symex [10]. Additionally, we make use of our forked version of the
Symex repository in which we fix many bugs, especially for handling recur-
sive procedures and ternary operators. As of now Pinaka only supports some
MiniSAT-like solvers (i.e., Glucose [4], MapleSAT [7]) and not SMT solvers.
Once a program has been verified, a verification successful/failed outcome is
generated along with the appropriate witness (Fig. 3).

CProver/Symex
Framework

Pinaka

Solver

Framework Stack

C Program Verification
Outcome

GOTO Program

Fig. 3. Architectural overview of Pinaka

1 Note the specific Symex version used on which Pinaka is built.
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3 Strengths and Weaknesses

Modulo the soundness of the CProver/Symex framework and the back-end solver,
Pinaka’s technique is sound. In addition, if CProver/Symex do not have any over-
approximation in modeling the C constructs, then a bug reported by Pinaka
would indeed be a bug.

As explained in Sect. 1, Pinaka can potentially be non-terminating if for some
input value there is a non-terminating path. However, termination of verifica-
tion process guarantees the termination of the underlying program (modulo the
approximations introduced in modeling by CProver/Symex) if the program is
declared safe by Pinaka. A notable strength of Pinaka lies in its speed. A major-
ity of Pinaka’s verification outcomes were obtained under a mere limit of 10 s. A
clear display of the same can be seen in the ReachSafety-Floats category, where
Pinaka came in second with 1500 s CPU time [9], as compared to other tools
that share a similar score but require 4 to 10 times more CPU time.

One major weakness of the current version Pinaka is a lack of techniques
for loop invariants. Even with eager infeasibility checks and incremental solv-
ing, there is still a need for more loop-directed abstraction based approaches.
Furthermore, support for handling multi-dimensional arrays is still lacking.

4 Tool Setup and Configuration

Pinaka 0.1 is available for download at https://github.com/sbjoshi/Pinaka. The
repository contains a description of Pinaka’s working along with all the necessary
configuration files required to run Pinaka SVCOMP style. All the instructions
are listed in a stepwise manner in the README.md file. Although Pinaka is
built on top of the CProver/Symex framework, the binary itself is sufficient and
the tool does not require any additional pre-requisites. Pinaka has been tested
on Ubuntu 18.04.

Pinaka 0.1 submitted for SVCOMP 2019 runs DFS in PI Mode as for
SVCOMP benchmarks we found this combination the best. No loop unwinding
limit was specified to retain soundness. For SVCOMP’19 [1,9] it uses Glucose-
Syrup (Glucose-4.1) [4] as its solver back-end. Tool’s default search strategy,
i.e., DFS may be overridden by providing --bfs option. Similarly, a default of
FI mode may also be overridden by providing --partial-incremental option.
Other additional options may be explored from the --help menu. The set of
global parameters passed to the tool are: (1) --graphml-witness: to specify
the witness file to be generated, (2) --propertyfile: to specify the property
file, (3) --32/--64: to define the architecture to be used. Pinaka 0.1 partici-
pated in all ReachSafety subcategories except ReachSafety-Sequentialized, and
also participated in NoOverflows and Termination meta-categories in SVCOMP
2019.

https://github.com/sbjoshi/Pinaka
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5 Software Project and Contributors

Pinaka is a result of very heavy code rewriting and refactoring of VerifOx [8]
(developed by Saurabh Joshi) with a lot of feature additions and bug fixes.
Pinaka is developed at Indian Institute of Technology, Hyderabad, India. It is
available at https://github.com/sbjoshi/Pinaka under BSD License. The authors
acknowledge the financial support from DST, India under SERB ECR 2017
grant.
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Yannic Noller1, Corina S. Păsăreanu2,3, Aymeric Fromherz2,
Xuan-Bach D. Le2, and Willem Visser4(B)

1 Humboldt-Universität zu Berlin, Berlin, Germany
2 Carnegie Mellon University Silicon Valley, Moffett Field, USA

3 NASA Ames Research Center, Mountain View, USA
4 Stellenbosch University, Stellenbosch, South Africa

visserw@sun.ac.za

Abstract. This paper describes the benchmark entry for Symbolic
Pathfinder, a symbolic execution tool for Java bytecode. We give a brief
description of the tool and we describe the particular run configuration
that was used in the SV-COMP competition. Furthermore, we comment
on the competition results and we outline some directions for future
work.

1 Verification Approach

Symbolic Pathfinder (SPF) is a program analysis tool for Java bytecode; the
tool is based on symbolic execution. In this approach, programs are executed
on symbolic inputs representing multiple concrete inputs. Values of variables
are represented as numeric constraints, generated from the analysis of the code
structure, i.e. conditionals and other statements in the program. These con-
straints are then solved using different constraint solvers (both off-the-shelf and
built-in-house) to generate test inputs that are guaranteed to reach those parts
of the code.

The current implementation handles the following:

– Inputs of type boolean, int, long, float, double
– Input data structures, using lazy initialization [5]
– Preconditions [5]
– Multi-threading (via Java PathFinder exploration)
– Mixed symbolic/concrete execution mode [9]
– Symbolic arrays [3]
– Inputs of type String – work in progress [1].

SPF can also be used for probabilistic analysis by leveraging model counting
over symbolic constraints [2,4], and for automated program repair [6,7]. Most
recent work explores combinations of SPF with AFL-style fuzzing [8] and further
differential analysis for regression problems.
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2 Software Architecture

SPF is described in detail in a journal article [10] (however, as it is an active
project, it is being updated with new features all the time). We depict the current
tool architecture in Fig. 1. The input to the tool is a Java bytecode program and a
configuration file that specifies different options for analysis (as discussed below).
The output is a set of test sequences that execute different paths through the
code. The output also lists the errors that were found (e.g. exceptions, assert
violations) together with various statistics about the analysis.

Fig. 1. Symbolic PathFinder overview.

Symbolic execution is implemented by a “non-standard” interpretation of
bytecodes. The symbolic information is propagated via attributes associated with
program variables, operands, etc. The analysis can start from any point in the
program and it can perform mixed concrete/symbolic execution. SPF relies on
jpf-core’s search engine to explore different paths through the code. The default
search strategy is depth-first search. State matching (as implemented in jpf-core)
is usually turned off during symbolic execution.

SPF uses several constraint solvers and decision procedures, most notably
Z3 and Z3bitvector, which are available from https://github.com/Z3Prover/z3.
SPF implements both incremental and non-incremental constraint solving.

3 Discussion of Strengths and Weaknesses
of the Approach

The competition results are provided on the SV-COMP website. The results
indicate that SPF outperforms the other tools in terms of correct answers (337),
cpu time (1300 s) and energy (13000 J). However, SPF also reported 6 incorrect
results, which penalized the overall final score. While the incorrect true results
are due to the bounded nature of the analysis, the incorrect false results are
due mainly to the string analysis, with the exception of one result which was

https://github.com/Z3Prover/z3
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due to an error in jpf-core which has since been corrected. The string solver
was incorrectly specified and tested (i.e. the path to the string solver is hard
coded in the current implementation but we provided no string solver for the
competition).

In the future we plan to test SPF on the competition string examples using
either ABC or Z3str and to robustify the implementation. We also plan to con-
tribute to the competition by adding more interesting benchmarks, particularly
related to input data structures.

4 Tool Setup and Configuration

Symbolic PathFinder is available at https://github.com/SymbolicPathFinder/
jpf-symbc. It requires Java 8 and Java PathFinder, which available at https://
github.com/javapathfinder/jpf-core.

For this competition we used the version with the timestamp Mon Nov 19
09:51:16 CET 2018, which refers to the date when we pulled the artifacts from
the GitHub repository and generated the jpf-symbc jar archive.

To run SPF, the user needs to download Symbolic PathFinder and Java
PathFinder (default branches) and create a file .jpf/site.properties in the
home directory. The site.properties file should contain the following lines
(the users should modify to point to the location of jpf-core and jpf-symbc
on their computer):

jpf-core = ${user.home}/workspace/jpf-core
jpf-symbc = ${user.home}/workspace/jpf-symbc
extensions = ${jpf-core},${jpf-symbc}

The user then creates a *.jpf configuration file (described in detail below).
For the competition we modified the SPF tool to handle the non-deterministic
constructs required by the competition.

4.1 Example Configuration

We give here an example configuration that can be used to run the SPF tool; this
is the default configuration, that we used in the competition. The explanation
for the different options is given in parenthesis.

– target=test.Main (specify the target application)
– classpath=/.. (path to your class example)
– sourcepath=/.. (path to the source of your example)

– symbolic.dp=z3bitvector (specify the decision procedure)
– symbolic.bvlength=64 (specify the bitvector length)

– symbolic.min_int=-100 (specify various min max values)
– symbolic.max_int=100

https://github.com/SymbolicPathFinder/jpf-symbc
https://github.com/SymbolicPathFinder/jpf-symbc
https://github.com/javapathfinder/jpf-core
https://github.com/javapathfinder/jpf-core
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– symbolic.min_double=-100.0
– symbolic.max_double=100.0

– symbolic.debug=true (print debug information)
– search.depth_limit=15 (specify search limit)

– symbolic.lazy=on (handling symbolic arrays)
– symbolic.arrays=true

– symbolic.strings=true (specify string analysis)
– symbolic.string_dp=ABC (specify string solver).

SPF also has the option of running the constraint solving incrementally.
Note however that we did not use the string solving and the incremental solving
options in the competition as we did not have enough time to prepare and test
those features, as we were entered late in the competition.

5 Software Project and Contributors

Information about the project and contributors can be found at the project
webpage: https://github.com/SymbolicPathFinder/jpf-symbc. For more infor-
mation please contact the authors of this paper.
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Abstract. VeriFuzz is a program aware fuzz testing tool, which com-
bines the power of feedback-driven evolutionary fuzz testing with static
analysis. VeriFuzz deploys lightweight static analysis to extract meaning-
ful information about program behavior that can aid fuzzing based test-
input generation to achieve coverage goals quickly. We use constraint-
solver to generate an initial population of test-inputs. VeriFuzz could
generate the maximum number of counterexamples for reachsafety cat-
egory benchmarks in SV-COMP 2019 and in Test-Comp 2019 [16]. (All
the terms in typewriter font are competition specific. See [15].)

1 Introduction

VeriFuzz is a coverage driven automated test-input generation tool based on grey-
box fuzzing [5]. The idea of grey-box fuzzing is to use lightweight instrumentation
to observe behaviors exhibited during a test run. This information is used while
fuzzing for new test-inputs that might exhibit new behaviors. For VeriFuzz, the
behavior of interest is code coverage. VeriFuzz relies on evolutionary algorithms
to generate newer test-inputs from an initial population of test-inputs. Central to
an evolutionary algorithm is the selection of best-fit candidates from a population
and generate offspring by applying crossover and mutating operations on them.
The newer offspring are checked for their fitness against a goal. The population
evolves by adding the fit offspring to the existing population. In an automated
testing, a candidate test-input plays the role of an individual in a population. The
new test-inputs are generated from a selected test-input by repeatedly applying
mutation operations, for example, by flipping byte at a random position. The
fitness of a generated test-input is determined by the code coverage during its
run [11,18].

State-of-the-art grey-box fuzzers such as afl-fuzz [19], though simple to use,
have several key shortcomings. (a) The fuzzer is aware of neither the program
structure nor the input structure. This leads to the generation of a large set
of redundant test-inputs with respect to code coverage. (b) For programs that

R. K. Medicherla—Jury Member.

c© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 244–249, 2019.
https://doi.org/10.1007/978-3-030-17502-3_22
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does complex validations on their input, the fuzzer finds it hard to generate a
test-input that satisfies such validation conditions [13]. Finding a suitable initial
population of test-inputs for such programs requires the analysis of validation
conditions. (c) For programs with unbounded loops, the fuzzer may get stuck
forever without generating any new test-inputs. There are several approaches
proposed in the literature to address some of these shortcomings [1,7,12,13].
However, all these approaches address each concern separately.

2 Our Approach

In order to alleviate the problems described in Sect. 1, our approach analyses
and transforms the subject program. The analysis information is then passed to
the enhanced mutation engine of afl-fuzz for fuzzing the transformed program.
The following are the key steps of our approach.

Efficient Instrumentation: To measure the coverage due to a run on a test-
input, the subject program is instrumented. However, instrumentation adds a
significant overhead to the program execution, impacting the fuzzer’s execution
speed. We have optimized the instrumentation overhead by placing the probes
either true or false branches of each conditional statement in the program. Our
scheme is efficient to implement and preserves the coverage measure though it
is sub-optimal than instrumentation schemes proposed in literature [7].

Loop Bounding: Certain class of programs, for example, reactive programs,
during their execution, either does not terminate or crash upon reaching the
error location1. In order to handle such non-terminating programs, our approach
transforms the program loops by replacing the condition in their loop heads with
a known bound. This bound is increased dynamically during the fuzzer run till
it finds an input that can take program execution to an error location or the
budgeted time elapses.

Novel Initial Test Population Generation: Grey-box fuzzers find it hard to
generate test-inputs that can take program execution to cover the program blocks
that are guarded by complex checks [10,13]. If the initial test-input population
can take program execution through some of the complex checks, fuzzing such
inputs is likely to generate test-inputs that can pass through other complex
checks [17]. In order to create such initial test-input population, our approach
first flattens the program by unrolling the loops up to a certain bound. Then, a
program path is chosen that contains such complex checks and path constraints
are generated along that path. The constraints are solved to create an initial
test-input population.

Program Analysis to Assist Mutation: For programs that read input only
within restricted range values, it is possible to fine-tune the fuzzer’s mutation
operators to choose values within this restricted ranges. In order to determine

1 Program statement where error function VERIFIER error() is called.
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the ranges of input values that can reach the error locations, our approach stat-
ically determines the input value ranges of the program using k -path interval
analysis [9]. For a given program, this analysis determines the conservative over
approximate ranges of input values that may reach any given program point. We
have enhanced the mutation engine of the fuzzer such that it accepts the input
value ranges at the error location in the program and generates inputs that have
values within the given ranges.

Algorithmic Selection of Strategies: All the aforementioned techniques are
generic enough to use across the programs. However, in order to optimize the
given resource budgets in the competition, we have selectively applied a subset of
techniques to a specific class of programs. For example, loop bounding technique
is applied to programs where syntactic unbounded loop structures are detected.
In order to identify and map the best performing set of techniques to all bench-
mark programs, we have grouped them into a finite set of classes and formulated
it as multi-label classification problem. The classifier model is developed using
a non-parametric supervised learning based approach [6]. The model has been
trained using nine syntactic structures of a C program and a subset of techniques
as classification labels. The benchmark programs from SV-COMP 2018 [14] were
used as training and validation set. We have used the decision tree classifier for
this multi-label classification [2].

3 Tool Architecture and Flow

Figure 1 shows the architecture of the VeriFuzz tool. It consists of a fuzzing
engine and an analysis engine. The core fuzzing engine is built on top of the state-
of-art grey-box fuzzer afl-fuzz v2.52b [19]. The program analysis, instrumentation
and transformation components of the analysis engine are implemented using the
PRISM, a TCS in-house program analysis framework [8]. The initial input gen-
eration component uses CBMC v5.10 [3] as path-constraint solver. The program
classification component uses an offline trained model and scikit-learn v.0.19.2
to access the model. The implementation is in C, Java, and Python languages.

The input to the tool is a program P and a safety property φ. In the first
step, the syntactic features are extracted and the class of the program is deter-
mined using a program classification module. This class information is used in
subsequent steps. In the second step, the program Pi is generated using an instru-
mentation and transformation module. This step also emits the transformed pro-
grams for witness generation (Pw) and initial test-input generation modules.
In the next step, the program is analysed to determine input ranges. These input
ranges are used to formulate the fuzzing engine parameters Fi. Subsequently,
initial test-input population Ti is generated using the initial input generation
module. The fuzz engine is then invoked with Pi, Fi, and Ti as inputs.

As a first step of the fuzzing engine, the program Pi and a harness program
that implemented VERIFIER * functions are compiled together using gcc to
generate the executable program Pe. The core fuzzer begins with Ti as its initial
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Fig. 1. VeriFuzz architecture.

population, executes Pe, and measures the coverage. A test-input from the pop-
ulation is selected and mutated several times to generate newer test-inputs Tg.
The program Pe is repeatedly executed with each test-input tg ∈ Tg and cover-
age is measured. The fitness check step compares the code coverage due run on
each tg with the historical code coverage and determines whether tg should be
added to the population or not. This process is repeated until the core fuzzer
finds a crashing test-input tc that causes the program run to reach the error
location or the time budget is elapsed. The tc and Pw are passed to a witness
generation program to generate error-witness.

4 Strengths and Weaknesses

The core strength of VeriFuzz is its ability to find a test-input that can cause
the program execution to reach the error locations quickly. The tool participated
both in SV-COMP and Test-Comp [16]. In SV-COMP, VeriFuzz could identify
1264 out of 1458 reachsafety FALSE benchmarks with 67 s as mean time per
verification task. Whereas in Test-Comp, it could identify bugs in 592 out
of 636 benchmarks. VeriFuzz could generate test-inputs that can, on an average,
cover 70% branches in 1720 benchmarks.

VeriFuzz explores the concrete program paths randomly and redundantly due
to its evolutionary approach. Therefore it may not always discover a test-input
that cause the execution to reach an error location.

5 Tool Configuration and Setup

The VeriFuzz tool for testing SV-COMP benchmarks is available at the URL
https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/verifuzz
.zip. Its Test-Comp 2019 variant is available at the URL https://gitlab.com/sosy-
lab/test-comp/archives-2019/blob/master/2019/verifuzz.zip. The benchexec

https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/verifuzz.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/verifuzz.zip
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/master/2019/verifuzz.zip
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/master/2019/verifuzz.zip
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tool-info module is verifuzz.py and the benchmark description file is verifuzz.xml.
To install and run the tool, follow the instructions provided in README.txt
with the tool. A sample run command is as follows:
./scripts/verifuzz.py --propertyFile unreach-call.prp example.c

6 Software Project and Contributors

VeriFuzz is developed by the authors at TCS Research. We would like to thank
B. Chimdyalwar and S. Kumar from VeriAbs [4] team for the help in the under-
standing of k -path interval analysis.
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Abstract. VIAP (Verifier for Integer Assignment Programs) is an auto-
mated system for verifying safety properties of procedural programs with
integer assignments and loops. It is based on a translation from of a
program to a set of first-order axioms with quantification over natural
numbers, and currently makes use of SymPy as the algebraic simplifier
and the SMT solver Z3 as the theorem prover. Our first version of the
system competed at SV-COMP 2018. This paper describes VIAP 1.1,
a new version that makes use of our newly developed recurrence solver.
As a result, VIAP 1.1. is able to verify many programs that were out of
reach for the older version VIAP 1.0.

Keywords: Automatic program verification · First-order logic ·
Mathematical induction · Recurrences · SMT · Arithmetic

1 Introduction

VIAP (Verifier for Integer Assignment Programs) is an automated system for
verifying safety properties of procedural programs with integer assignments and
loops. It translates a given program to a set of first-order axioms with natural
number quantification using an algorithm proposed by Lin [1]. An earlier ver-
sion of VIAP competed at SV-COMP 2018, and is described in [2,3]. A key
feature of Lin’s translation is that loops are translated to a set of recurrence
relations. Then, VIAP simplifies those axioms by using a Python library for
symbolic computation systems, SymPy [4], to compute the closed-form solutions
of recurrence relations. SymPy is equipped with function rsolve() to compute
closed-form solution of recurrence relation. The translation of the loop body gen-
erates recurrence relations which are either simple non-conditional, conditional
or mutual in nature. But rsolve() can find the closed form solution only for
certain class of simple non-conditional recurrence relations. This motivated us
to design a recurrence solver (RS) that goes beyond what the rsolve() function
can do in SymPy, and integrate it with our system. The new system, VIAP 1.1,
is the one that will compete at this year’s SV-COMP. VIAP 1.1 continues to
use SymPy for simplifying algebraic expressions, and the SMT solver Z3 [5] as
c© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 250–255, 2019.
https://doi.org/10.1007/978-3-030-17502-3_23
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the underlying theorem prover without ever explicitly generating loop invariants.
Because of the new recurrence solver, VIAP 1.1 can solve many more benchmarks
that were previously out of the reach of VIAP 1.0.

To illustrate how our system works, consider the simple program below:

int x=0,y=0;
while (x<100) { if (x < 50){ y++; } else { y--; } x++; }
assert(y==0);

With some simple simplifications, the translation outlined in [1] would gen-
erate the following axioms:

x1 = x2(N), y1 = y2(N),
∀n.x2(n + 1) = x2(n) + 1, x2(0) = 0,
∀n.y2(n + 1) = ite(x2(n) < 50, y2(n) + 1, y2(n) − 1), y2(0) = 0,
¬(x2(N) < 100),∀n.n < N → x2(n) < 100.

Here, x1 and y1 denote the output values of x and y, respectively, and x2(n)
and y2(n) denote the values of x and y during the n-th iteration of the loop,
respectively. The conditional expression ite(c, e1, e2) has value e1 if c holds and
e2 otherwise. Also N is a natural number constant, and the last two axioms say
that it is exactly the number of iterations the loop executes before exiting.

There are two recurrence relations in the above axioms. Both the recurrence
relations are passed to RS. It first solves x2(n) which yields the closed-form
solution x2(n) = n which can then be used to simplify the recurrence relations
for y2(n) into

y2(0) = 0, y2(n + 1) = ite(n < 50, y2(n) + 1, y2(n) − 1).

Then RS tries to solve the above simplified conditional recurrence relations, and
returns the following closed-form solution:

y2(n) = ite(0 ≤ n < 50, n, 50 − n).

After computing the closed-form solutions for x2() and y2() by RS, VIAP elim-
inates them, and produces the following axioms:

x1 = N ∧ y1 = ite(0 ≤ N < 50, N, 100 − N), N ≥ 100),
∀n.n < N → n < 100.

The translation of assertion results y1 == 0. With this set of axioms, SMT
solvers like Z3 can then be made to prove the assertion. Similarly, when an
assertion like assert(y==1) is made to prove using above set of axioms, then
Z3 will return following counterexample:

[y1 = 0, N = 100, x1 = 100].

Using this counterexample, VIAP constructs the violation witness.



252 P. Rajkhowa and F. Lin

2 VIAP Architecture

VIAP is implemented in Python 2. VIAP has been developed in a modular
fashion, and its architecture is layered into two parts:

– Front-End: The system accepts a program written in C (C99 language) as
input and translates it to first order axioms. The recurrence solver solves the
recurrence relations generated during the translation if closed-form solutions
are available.

– Back-End: The system takes the set of translated first-order axioms and
translates all the axioms to equations compatible with Z3 (Version 4.5) by pre-
processing them using SymPy (Version 1.1.1). Then the proof engine applies
different strategies and tries to prove post-conditions in Z3 [2].

Translation. Given a program P , and a language X, our system generates a set
of first-order axioms denoted by ΠX

P that captures the changes of P on X. Here,
a language means a set of functions and predicate symbols. For ΠX

P to be correct,
X needs to include all program variables in P as well as any functions and
predicates that can be changed by P . The axioms in the set ΠX

P are generated
inductively on the structure of P . The algorithm is described in detail in [1]
and an implementation is explained in [2]. The inductive cases of translations
are given in the table provided in the supplementary information1. We have
extended our translation programs with arrays; the extension is described in
detail in [3].

Recurrence Solver (RS). The main objective of this module is to find closed-
form solutions of recurrence relations generated from the translation of the loop
body. Our recurrence solver (RS)2 takes a set of recurrence relation(s) and other
constraints, returns a set of closed-form solutions it found for some of the recur-
rences and the remaining recurrences relations and constraints simplified using
the computed closed-form solutions. It uses SymPy [4] (V 1.1.1) as the base
solver. The RS classifies input recurrence relation(s) into three major categories
(1. non-conditional 2. mutual and 3. conditional recurrences relation) and applies
the following corresponding sub-solver and tries to find closed form solution(s).

– The Non-Conditional Recurrence Solver (NCRS): RS applies this sub solver
to the non-conditional recurrence relation(s) of the form of either

X(n + 1) = f(X(n), n),

where f(x, y) is a polynomial function of x and y
or

X(n + 1) = X(n) + f(n) + A1F1(n) + · · · + AkFk(n),

where f(n) is a polynomial function in n, Ai’s are constants, and Fi’s are
function symbols.

1 https://github.com/VerifierIntegerAssignment/VIAP ARRAY/blob/master/
Document/Inductive Translation.pdf.

2 https://github.com/VerifierIntegerAssignment/recSolver.

https://github.com/VerifierIntegerAssignment/VIAP_ARRAY/blob/master/Document/Inductive_Translation.pdf
https://github.com/VerifierIntegerAssignment/VIAP_ARRAY/blob/master/Document/Inductive_Translation.pdf
https://github.com/VerifierIntegerAssignment/recSolver
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– The Mutual Recurrence Solver (MRS): RS applies this sub solver to a set σ
of the mutual recurrence relations where each σ ∈ σ is the form of

Xi(n + 1) = A ∗ (X1(n) + . . . + Xh(n)) + Ci, for 1 ≤ i ≤ h,

where A and Ci are constants.
– The Conditional Recurrence Solver (CRS): RS applies this sub solver to

conditional recurrence relation(s) of the form

X(n + 1) = ite(θ1, f1(X(n), n), ite(θ2, f2(X(n), n) . . . , fh+1(X(n), n))),

where θ1, θ2, . . . , θh are Boolean expressions, and f1(x, y), f2(x, y), . . . ,
fh+1(x, y) are polynomial functions of x and y.

Instantiation: Instantiation is one of the most important phases of the pre-
processing of axioms before the resulting set of formulae is passed on an SMT-
solver according to some proof strategies. The objective is to help an SMT solver
like Z3 to reason with quantifiers. There are two strategies (1) Instantiating
arrays and (2) Instantiating array indices applied to an array element assign-
ment that occurs inside a loop. More details are provide in the supplementary
information3.

Proof Strategies: As the semantics of P are precisely encoded as ΠX
P , the goal

is to prove that α ∧ ΠX
P |= β, where α is a set of assumption(s) and β is the

set of assertion(s) to prove. We work in a refutation-based proof schema, i.e.,
in order to prove that a formula is valid in a background theory T, we show
that α ∧ ΠX

P ∧ ¬β is T-unsatisfiable. In VIAP, we implemented two different
strategies whose details can be found in our previous work [2].

3 Strength and Weaknesses

VIAP supports user assertions, including reachability of labels in the C-code.
In SV-COMP 2019, these checks are only enabled for ReachSafety-Arrays,
ReachSafety-Loops and ReachSafety-Recursive sub-categories of ReachSafety
category. VIAP translates a program to a set of axioms and then uses off-the-
shelf systems like SymPy and Z3 to prove properties about the program. The
advantage (strength) of this approach comes with a clean separation between
the translation (semantics) and the use of the translation in proving the proper-
ties (computation). The translation part is stable. But as more efficient provers
become available, the capabilities of the system improve. This is seen in our
newer version of VIAP that we entered in this year’s competition: by having a
more powerful system for computing closed-form solutions of recurrences, the
new system becomes more efficient and can prove many properties that our

3 https://github.com/VerifierIntegerAssignment/VIAP ARRAY/blob/master/
Document/TranslatonInsRules.pdf.

https://github.com/VerifierIntegerAssignment/VIAP_ARRAY/blob/master/Document/TranslatonInsRules.pdf
https://github.com/VerifierIntegerAssignment/VIAP_ARRAY/blob/master/Document/TranslatonInsRules.pdf
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previous system were not able to. However, VIAP provides little or no support
for translation and reasoning about dynamic linked data structures or programs
with floating points. We are working in the direction to strengthen our front-
and backhand to handle all types of the program so that we can participate
in all the sub-categories of ReachSafety in the future edition of SV-COMP.
The SVCOMP’19 results show that VIAP can effectively verify a number C
programs from those categories. VIAP came in first in the ReachSafety-Arrays
and ReachSafety-Recursive sub-category. The major disadvantage of the method
which translates loop body to the recurrence relation is that if they failed to find
closed form solution, then they unable to find suitable invariant as a result they
failed to complete the proof. When VIAP fails to come up with a closed-form
solution, it falls back to simple induction using Z3. There is clearly a need of
better way to do induction and we are working on it. In terms of closed-form
solution, in general it is undecidable whether a recurrence has a closed-form
solution or not.

4 Tool Setup and Configuration

The version of VIAP (version 1.1) submitted to SV-COMP 20194 is provided
as a set of binaries and libraries for Linux x86-64 architecture. The options for
running the tool are:

./viap_tool.py --spec=SPEC INPUT

SPEC is the property file, and INPUT is a C file. The output of
VIAP is “VIAP OUTPUT True” when the program is safe. When a coun-
terexample is found, it outputs “VIAP OUTPUT False” and a file named
errorWitness.graphml that contains the witness of error-path is generated in
the VIAP root folder. If VIAP is unable find any result it outputs “UNKNOWN”.

5 Software Project and Contributors

VIAP is an open-source project, mainly developed by Pritom Rajkhowa and
Professor Fangzhen Lin of the Hong Kong University of Science and Technology.
We are grateful to the developers of Z3 and SymPy for making their systems
available for open use.

Acknowledgments. We are very thankful to the anonymous reviewers for their help-
ful comments on an earlier version of this paper.

4 https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/viap.zip.
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