
8th International Conference, POST 2019
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019
Prague, Czech Republic, April 6–11, 2019, Proceedings

Principles of Security
and TrustLN

CS
 1

14
26

AR
Co

SS
Flemming Nielson
David Sands (Eds.)

Lecture Notes in Computer Science 11426

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Flemming Nielson • David Sands (Eds.)

Principles of Security
and Trust
8th International Conference, POST 2019
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019
Prague, Czech Republic, April 6–11, 2019
Proceedings

Editors
Flemming Nielson
Technical University of Denmark
Kongens Lyngby, Denmark

David Sands
Chalmers University of Technology
Gothenburg, Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-17137-7 ISBN 978-3-030-17138-4 (eBook)
https://doi.org/10.1007/978-3-030-17138-4

Library of Congress Control Number: 2019936300

LNCS Sublibrary: SL4 – Security and Cryptology

© The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7362-6176
https://orcid.org/0000-0001-6221-0503
https://doi.org/10.1007/978-3-030-17138-4
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 22nd ETAPS! This is the first time that ETAPS took place in the Czech
Republic in its beautiful capital Prague.

ETAPS 2019 was the 22nd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security.

Organizing these conferences in a coherent, highly synchronized conference pro-
gram enables participation in an exciting event, offering the possibility to meet many
researchers working in different directions in the field and to easily attend talks of
different conferences. ETAPS 2019 featured a new program item: the Mentoring
Workshop. This workshop is intended to help students early in the program with advice
on research, career, and life in the fields of computing that are covered by the ETAPS
conference. On the weekend before the main conference, numerous satellite workshops
took place and attracted many researchers from all over the globe.

ETAPS 2019 received 436 submissions in total, 137 of which were accepted,
yielding an overall acceptance rate of 31.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2019 featured the unifying invited speakers Marsha Chechik (University of
Toronto) and Kathleen Fisher (Tufts University) and the conference-specific invited
speakers (FoSSaCS) Thomas Colcombet (IRIF, France) and (TACAS) Cormac
Flanagan (University of California at Santa Cruz). Invited tutorials were provided by
Dirk Beyer (Ludwig Maximilian University) on software verification and Cesare
Tinelli (University of Iowa) on SMT and its applications. On behalf of the ETAPS
2019 attendants, I thank all the speakers for their inspiring and interesting talks!

ETAPS 2019 took place in Prague, Czech Republic, and was organized by Charles
University. Charles University was founded in 1348 and was the first university in
Central Europe. It currently hosts more than 50,000 students. ETAPS 2019 was further
supported by the following associations and societies: ETAPS e.V., EATCS (European
Association for Theoretical Computer Science), EAPLS (European Association for
Programming Languages and Systems), and EASST (European Association of Soft-
ware Science and Technology). The local organization team consisted of Jan Vitek and
Jan Kofron (general chairs), Barbora Buhnova, Milan Ceska, Ryan Culpepper, Vojtech
Horky, Paley Li, Petr Maj, Artem Pelenitsyn, and David Safranek.

The ETAPS SC consists of an Executive Board, and representatives of the
individual ETAPS conferences, as well as representatives of EATCS, EAPLS, and
EASST. The Executive Board consists of Gilles Barthe (Madrid), Holger Hermanns
(Saarbrücken), Joost-Pieter Katoen (chair, Aachen and Twente), Gerald Lüttgen
(Bamberg), Vladimiro Sassone (Southampton), Tarmo Uustalu (Reykjavik and
Tallinn), and Lenore Zuck (Chicago). Other members of the SC are: Wil van der Aalst
(Aachen), Dirk Beyer (Munich), Mikolaj Bojanczyk (Warsaw), Armin Biere (Linz),
Luis Caires (Lisbon), Jordi Cabot (Barcelona), Jean Goubault-Larrecq (Cachan),
Jurriaan Hage (Utrecht), Rainer Hähnle (Darmstadt), Reiko Heckel (Leicester),
Panagiotis Katsaros (Thessaloniki), Barbara König (Duisburg), Kim G. Larsen
(Aalborg), Matteo Maffei (Vienna), Tiziana Margaria (Limerick), Peter Müller
(Zurich), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Dave Parker (Birmingham), Andrew M. Pitts (Cambridge), Dave Sands (Gothenburg),
Don Sannella (Edinburgh), Alex Simpson (Ljubljana), Gabriele Taentzer (Marburg),
Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas Vojnar (Brno), Heike Wehrheim
(Paderborn), Anton Wijs (Eindhoven), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2019. Finally, a big thanks to Jan and Jan and their local
organization team for all their enormous efforts enabling a fantastic ETAPS in Prague!

February 2019 Joost-Pieter Katoen
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

This volume contains the papers presented at POST 2019, the 8th Conference on
Principles of Security and Trust, held April 11, 2019, in Prague, Czech Republic, as
part of ETAPS. Principles of Security and Trust is a broad forum related to all theo-
retical and foundational aspects of security and trust, and thus welcomes papers of
many kinds: new theoretical results, practical applications of existing foundational
ideas, and innovative approaches stimulated by pressing practical problems; as well as
systemization-of-knowledge papers, papers describing tools, and position papers.
POST was created in 2012 to combine and replace a number of successful and
long-standing workshops in this area: Automated Reasoning and Security Protocol
Analysis (ARSPA), Formal Aspects of Security and Trust (FAST), Security in Con-
currency (SecCo), and the Workshop on Issues in the Theory of Security (WITS).
A subset of these events met jointly as an event affiliated with ETAPS 2011 under the
name “Theory of Security and Applications” (TOSCA).

There were 27 submissions to POST 2019. Each submission was reviewed by at
least three Program Committee members, who in some cases solicited the help of
outside experts to review the papers. We employed a double-blind reviewing process
with a rebuttal phase. Electronic discussion was used to decide which papers to select
for the program. The committee decided to accept ten papers (37%). The papers are
organized in topical sections named: Covert Channels and Information Flow; Privacy
and Protocols; Distributed Systems.

We would like to thank the members of the Program Committee, the additional
reviewers, the POST Steering Committee, the ETAPS Steering Committee, and the
local Organizing Committee, who all contributed to the success of POST 2019. We
also thank all authors of submitted papers for their interest in POST and congratulate
the authors of accepted papers.

February 2019 Flemming Nielson
David Sands

Organization

Program Committee

Owen Arden UC Santa Cruz, USA
Aslan Askarov Aarhus University, Denmark
Musard Balliu KTH Royal Institute of Technology, Sweden
Chiara Bodei University of Pisa, Italy
Veronique Cortier CNRS, Loria, France
Pierpaolo Degano University of Pisa, Italy
Dieter Gollmann Hamburg University of Technology, Germany
Joshua Guttman Worcester Polytechnic Institute, USA
Justin Hsu University of Pennsylvania, USA
Michael Huth Imperial College London, UK
Heiko Mantel TU Darmstadt, Germany
Fabio Martinelli IIT-CNR, Italy
Flemming Nielson Technical University of Denmark, Denmark
Christian W. Probst Unitec Institute of Technology, New Zealand
Peter Ryan University of Luxembourg, Luxembourg
Andrei Sabelfeld Chalmers University of Technology, Sweden
David Sands Chalmers University of Technology, Sweden
Carsten Schürmann IT University of Copenhagen, Denmark
Alwen Tiu The Australian National University, Australia
Mingsheng Ying University of Technology, Sydney, Australia

Additional Reviewers

Bartoletti, Massimo
Beckert, Bernhard
Busi, Matteo
Callia D’Iddio, Andrea
Costa, Gabriele
Dietrich, Sven
Galletta, Letterio
Gheri, Lorenzo
Hamann, Tobias
Isemann, Raphael
Jacomme, Charlie
Lallemand, Joseph
Liu, Junyi
Lluch Lafuente, Alberto

Mercaldo, Francesco
Mestel, David
Miculan, Marino
Pedersen, Mathias
Rafnsson, Willard
Rakotonirina, Itsaka
Saracino, Andrea
Vazquez Sandoval, Itzel
Wang, Qisheng
Weber, Alexandra
Yautsiukhin, Artsiom
Zheng, Haofan
Zhou, Li

Contents

Foundations for Parallel Information Flow Control Runtime Systems. 1
Marco Vassena, Gary Soeller, Peter Amidon, Matthew Chan,
John Renner, and Deian Stefan

A Formal Analysis of Timing Channel Security via Bucketing 29
Tachio Terauchi and Timos Antonopoulos

A Dependently Typed Library for Static Information-Flow
Control in IDRIS. 51

Simon Gregersen, Søren Eller Thomsen, and Aslan Askarov

Achieving Safety Incrementally with Checked C. 76
Andrew Ruef, Leonidas Lampropoulos, Ian Sweet, David Tarditi,
and Michael Hicks

WysI: A DSL for Verified Secure Multi-party Computations 99
Aseem Rastogi, Nikhil Swamy, and Michael Hicks

Generalised Differential Privacy for Text Document Processing 123
Natasha Fernandes, Mark Dras, and Annabelle McIver

Symbolic Verification of Distance Bounding Protocols 149
Alexandre Debant and Stéphanie Delaune

On the Formalisation of R-Protocols and Commitment Schemes 175
David Butler, David Aspinall, and Adrià Gascón

Orchestrating Layered Attestations . 197
John D. Ramsdell, Paul D. Rowe, Perry Alexander, Sarah C. Helble,
Peter Loscocco, J. Aaron Pendergrass, and Adam Petz

Verifying Liquidity of Bitcoin Contracts . 222
Massimo Bartoletti and Roberto Zunino

Author Index . 249

Foundations for Parallel Information Flow
Control Runtime Systems

Marco Vassena1(B), Gary Soeller2, Peter Amidon2, Matthew Chan3,
John Renner2, and Deian Stefan2(B)

1 Chalmers University, Gothenburg, Sweden
vassena@chalmers.se

2 UC San Diego, San Diego, USA
deian@cs.ucsd.edu

3 Awake Security, Sunnyvale, USA

Abstract. We present the foundations for a new dynamic information
flow control (IFC) parallel runtime system, LIOPAR. To our knowledge,
LIOPAR is the first dynamic language-level IFC system to (1) support
deterministic parallel thread execution and (2) eliminate both internal-
and external-timing covert channels that exploit the runtime system.
Most existing IFC systems are vulnerable to external timing attacks
because they are built atop vanilla runtime systems that do not account
for security—these runtime systems allocate and reclaim shared resources
(e.g., CPU-time and memory) fairly between threads at different secu-
rity levels. While such attacks have largely been ignored—or, at best,
mitigated—we demonstrate that extending IFC systems with parallelism
leads to the internalization of these attacks. Our IFC runtime system
design addresses these concerns by hierarchically managing resources—
both CPU-time and memory—and making resource allocation and recla-
mation explicit at the language-level. We prove that LIOPAR is secure,
i.e., it satisfies progress- and timing-sensitive non-interference, even when
exposing clock and heap-statistics APIs.

1 Introduction

Language-level dynamic information flow control (IFC) is a promising approach
to building secure software systems. With IFC, developers specify application-
specific, data-dependent security policies. The language-level IFC system—often
implemented as a library or as part of a language runtime system—then enforces
these policies automatically, by tracking and restricting the flow of information
throughout the application. In doing so, IFC can ensure that different application
components—even when buggy or malicious—cannot violate data confidentiality
or integrity.

This work was supported in part by the CONIX Research Center, one of six centers
in JUMP, a Semiconductor Research Corporation program sponsored by DARPA and
by gifts from Cisco and Fujitsu. This work was partly done while Marco Vassena and
Matthew Chan were at UCSD.

c© The Author(s) 2019
F. Nielson and D. Sands (Eds.): POST 2019, LNCS 11426, pp. 1–28, 2019.
https://doi.org/10.1007/978-3-030-17138-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17138-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-17138-4_1

2 M. Vassena et al.

The key to making language-level IFC practical lies in designing real-world
programming language features and abstractions without giving up on security.
Unfortunately, many practical language features are at odds with security. For
example, even exposing language features as simple as -statements can expose
users to timing attacks [42,64]. Researchers have made significant strides towards
addressing these challenges—many IFC systems now support real-world fea-
tures and abstractions safely [10,15,20,34,43,50,51,54,55,59,60,62,67,68]. To
the best of our knowledge, though, no existing language-level dynamic IFC sup-
ports parallelism. Yet, many applications rely on parallel thread execution. For
example, modern Web applications typically handle user requests in parallel, on
multiple CPU cores, taking advantage of modern hardware. Web applications
built atop state-of-the-art dynamic IFC Web frameworks (e.g., Jacqueline [67],
Hails [12,13], and LMonad [45]), unfortunately, do not handle user requests in
parallel—the language-level IFC systems that underlie them (e.g., Jeeves [68]
and LIO [54]) do not support parallel thread execution.

In this paper we show that extending most existing IFC systems—even con-
current IFC systems such as LIO—with parallelism is unsafe. The key insight
is that most IFC systems do not prevent sensitive computations from affecting
public computations; they simply prevent public computations from observing
such sensitive effects. In the sequential and concurrent setting, such effects are
only observable to attackers external to the program and thus outside the scope
of most IFC systems. However, when computations execute in parallel, they are
essentially external to one another and thus do not require an observer external
to the system—they can observe such effects internally.

Consider a program consisting of three concurrent threads: two public
threads—p0 and p1—and a secret thread—s0. On a single core, language-level
IFC can ensure that p0 and p1 do not learn anything secret by, for example,
disallowing them from observing the return values (or lack thereof) of the secret
thread. Systems such as LIO are careful to ensure that public threads cannot
learn secrets even indirectly (e.g., via covert channels that abuse the runtime sys-
tem scheduler). But, secret threads can leak information to an external observer
that monitors public events (e.g., messages from public threads) by influencing
the behavior of the public threads. For example, s0 can terminate (or not) based
on a secret and thus affect the amount of time p0 and p1 spend executing on
the CPU—if s0 terminated, the runtime allots the whole CPU to public threads,
otherwise it only allots, say, two thirds of the CPU to the public threads; this
allows an external attacker to trivially infer the secret (e.g., by measuring the
rate of messages written to a public channel). Unfortunately, such external tim-
ing attacks manifest internally to the program when threads execute in parallel,
on multiple cores. Suppose, for example, that p0 and s0 are co-located on a core
and run in parallel to p1. By terminating early (or not) based on a secret, s0
affects the CPU time allotted to p0, which can be measured by p1. For example,
p1 can count the number of messages sent from p0 on a public channel—the
number of p0 writes indirectly leaks whether or not s0 terminated.

Foundations for Parallel Information Flow Control Runtime Systems 3

We demonstrate that such attacks are feasible by building several proof-
of-concept programs that exploit the way the runtime system allocates and
reclaims shared resources to violate LIO’s security guarantees. Then, we design a
new dynamic parallel language-level IFC runtime system called LIOPAR, which
extends LIO to the parallel setting by changing how shared runtime system
resources—namely CPU-time and memory—are managed. Ordinary runtime
systems (e.g., GHC for LIO) fairly balance resources between threads; this means
that allocations or reclamations for secret LIO threads directly affect resources
available for public LIO threads. In contrast, LIOPAR makes resource manage-
ment explicit and hierarchical. When allocating new resources on behalf of a
thread, the LIOPAR runtime does not “fairly” steal resources from all threads.
Instead, LIOPAR demands that the thread requesting the allocation explicitly
gives up a portion of its own resources. Similarly, the runtime does not auto-
matically relinquish the resources of a terminated thread—it requires the parent
thread to explicitly reclaim them.

Nevertheless, automatic memory management is an integral component of
modern language runtimes—high-level languages (e.g., Haskell and thus LIO)
are typically garbage collected, relieving developers from manually reclaiming
unused memory. Unfortunately, even if memory is hierarchically partitioned,
some garbage collection (GC) algorithms, such as GHC’s stop-the-world GC,
may introduce timing covert channels [46]. Inspired by previous work on real-time
GCs (e.g., [3,5,6,16,44,48]), we equip LIOPAR with a per-thread, interruptible
garbage collector. This strategy is agnostic to the particular GC algorithm used:
our hierarchical runtime system only demands that the GC runs within the
memory confines of individual threads and their time budget.

In sum, this paper makes three contributions:

� We observe that several external timing attacks manifest internally in the
presence of parallelism and demonstrate that LIO, when compiled to run on
multiple cores, is vulnerable to such attacks (Sect. 2).

� In response to these attacks, we propose a novel parallel runtime system
design that safely manages shared resources by enforcing explicit and hier-
archical resource allocation and reclamation (Sect. 3). To our knowledge,
LIOPAR is the first parallel language-level dynamic IFC runtime system to
address both internal and external timing attacks that abuse the runtime
system scheduler, memory allocator, and GC.

� We formalize the LIOPAR hierarchical runtime system (Sect. 4) and prove
that it satisfies progress- and timing-sensitive non-interference (Sect. 5); we
believe that this is the first general purpose dynamic IFC runtime system to
provide such strong guarantees in the parallel setting [64].

Neither our attack nor our defense is tied to LIO or GHC—we focus on LIO
because it already supports concurrency. We believe that extending any existing
language-level IFC system with parallelism will pose the same set of challenges—
challenges that can be addressed using explicit and hierarchical resource
management.

4 M. Vassena et al.

2 Internal Manifestation of External Attacks

In this section we give a brief overview of LIO and discuss the implications
of shared, finite runtime system resources on security. We demonstrate several
external timing attacks against LIO that abuse two such resources—the thread
scheduler and garbage collector—and show how running LIO threads in parallel
internalizes these attacks.

2.1 Overview of the Concurrent LIO Information Flow Control
System

At a high level, the goal of an IFC system is to track and restrict the flow
of information according to a security policy—almost always a form of non-
interference [14]. Informally, this policy ensures confidentiality, i.e., secret data
should not leak to public entities, and integrity, i.e., untrusted data should not
affect trusted entities.

To this end, LIO tracks the flow of information at a coarse-granularity, by
associating labels with threads. Implicitly, the thread label classifies all the values
in its scope and reflects the sensitivity of the data that it has inspected. Indeed,
LIO “raises” the label of a thread to accommodate for reading yet more sensitive
data. For example, when a public thread reads secret data, its label is raised to
secret—this reflects the fact that the rest of the thread computation may depend
on sensitive data. Accordingly, LIO uses the thread’s current label or program
counter label to restrict its communication. For example, a secret thread can
only communicate with other secret threads.

In LIO, developers can express programs that manipulate data of varying
sensitivity—for example programs that handle both public and secret data—by
forking multiple threads, at run-time, as necessary. However, naively implement-
ing concurrency in an IFC setting is dangerous: concurrency can amplify and
internalize the termination covert channel [1,58], for example, by allowing public
threads to observe whether or not secret threads terminated. Moreover, concur-
rency often introduces internal timing covert channels wherein secret threads
leak information by influencing the scheduling behavior of public threads. Both
classes of covert channels are high-bandwidth and easy to exploit.

Stefan et al. [54] were careful to ensure that LIO does not expose these
termination and timing covert channels internally. LIO ensures that even if secret
threads terminate early, loop forever, or otherwise influence the runtime system
scheduler, they cannot leak information to public threads. But, secret threads do
affect public threads with those actions and thus expose timing covert channels
externally—public threads just cannot detect it. In particular, LIO disallows
public threads from (1) directly inspecting the return values (and thus timing
and termination behavior) of secret threads, without first raising their program
counter label, and (2) observing runtime system resource usage (e.g., elapsed
time or memory availability) that would indirectly leak secrets.

LIO prevents public threads from measuring CPU-time usage directly—
LIO does not expose a clock API—and indirectly—threads are scheduled fairly

Foundations for Parallel Information Flow Control Runtime Systems 5

in a round-robin fashion [54]. Similarly, LIO prevents threads from measur-
ing memory usage directly—LIO does not expose APIs for querying heap
statistics—and indirectly, through garbage collection cycles (e.g., induced by
secret threads) [46]—GHC’s stop-the-world GC stops all threads. Like other IFC
systems, the security guarantees of LIO are weaker in practice because its formal
model does not account for the GC and assumes memory to be infinite [54,55].

2.2 External Timing Attacks to Runtime Systems

Since secret threads can still influence public threads by abusing the sched-
uler and GC, LIO is vulnerable to external timing and termination attacks, i.e.,
attacks that leak information to external observers. To illustrate this, we craft
several LIO programs consisting of two threads: a public thread p that writes
to the external channel observed by the attacker and a secret thread s, which
abuses the runtime to influence the throughput of the public thread. The secret
thread can leak in many ways, for example, thread s can:

1. fork bomb, i.e., fork thousands of secret threads that will be interleaved with
p and thus decrease its write throughput;

2. terminate early to relinquish theCPUto p and thus double itswrite throughput;
3. exhaust all memory to crash the program, and thus stop p from further writing

to the channel;
4. force a garbage collection which, because of GHC’s stop-the-world GC, will

intermittently stop p from writing to the channel.

These attacks abuse the runtime’s automatic allocation and reclamation of
shared resources, i.e., CPU time and memory. In particular, attack 1 hinges on
the runtime allocating CPU time for the new secret threads, thus reducing the
CPU time allotted to the public thread. Dually, attack 2 relies on it reclaiming
the CPU time of terminated threads—it reassigns it to public threads. Simi-
larly, attacks 3 and 4 force the runtime to allocate all the available memory and
preemptively reassign CPU time to the GC, respectively.

These attacks are not surprising, but, with the exception of the GC-
based attack [46], they are novel in the IFC context. Moreover these attacks
are not exhaustive—there are other ways to exploit the runtime system—
nor optimized—our implementation leaks sensitive data at a rate of roughly
2bits/second1. Nevertheless, they are feasible and—because they abuse the
runtime—they are effective against language-level external-timing mitigation
techniques, including [54,71]. The attacks are also feasible on other systems—
similar attacks that abuse the GC have been demonstrated for both the V8 and
JVM runtimes [46].

1 A more assiduous attacker could craft similar attacks that leak at higher bit-rates.

6 M. Vassena et al.

Fig. 1. In this attack three threads run in parallel, colluding to leak secret secret. The
two public threads write to a public output channel; the relative number of messages
written on the channel by each thread directly leaks the secret (as inferred by p1). To
affect the rate that p0 can write, s0 conditionally terminates—which will free up time
on core c0 for p0 to execute.

2.3 Internalizing External Timing Attacks

LIO, like almost all IFC systems, considers external timing out of scope for its
attacker model. Unfortunately, when we run LIO threads on multiple cores, in
parallel, the allocation and reclamation of resources on behalf of secret threads
is indirectly observable by public threads. Unsurprisingly, some of the above
external timing attacks manifest internally—a thread running on a parallel core
acts as an “external” attacker. To demonstrate the feasibility of such attacks, we
describe two variants of the aforementioned scheduler-based attacks which leak
sensitive information internally to public threads.

Secret threads can leak information by relinquishing CPU time, which the
runtime reclaims and unsafely redistributes to public threads running on the
same core. Our attack program consists of three threads: two public threads—p0
and p1—and a secret thread—s0. Figure 1 shows the pseudo-code for this attack.
Note that the threads are secure in isolation, but leak the value of secret when
executed in parallel, with a round robin scheduler. In particular, threads p0 and
s0 run concurrently on core c0 using half of the CPU time each, while p1 runs in
parallel alone on core c1 using all the CPU time. Both public threads repeatedly
write their respective thread IDs to a public channel. The secret thread, on the
other hand, loops forever or terminates depending on secret. Intuitively, when
the secret thread terminates, the runtime system redirects its CPU time to p0,
causing both p1 and p0 to write at the same rate. In converse, when the secret
thread does not terminate early, p0 is scheduled in a round-robin fashion with
s0 on the same core and can thus only write half as fast as p1. More specifically:

� If secret = true, thread s0 terminates and the runtime system assigns all
the CPU time of core c0 to public thread p0, which then writes at the same
rate as thread p1 on core c1. Then, p0 writes as many times as p1, which then
returns true.

Foundations for Parallel Information Flow Control Runtime Systems 7

� If secret = false, secret thread s0 loops and public thread p0 shares the
CPU time on core c0 with it. Then, p0 writes messages at roughly half the rate
of thread p1, which writes more often—it has all the CPU time on c1—and
thus returns false.2

Secret LIO threads can also leak information by allocating many secret
threads on a core with public threads—this reduces the CPU-time available
to the public threads. For example, using the same setting with three threads
from before, the secret thread forks a spinning thread on core c1 by replacing
command terminate with command fork (forever skip) c1 in the code of
thread s0 in Fig. 1. Intuitively, if secret is false, then p1 writes more often
than p0 before, otherwise the write rate of p1 decreases—it shares core c1 with
the child thread of s0—and p0 writes as often as p1.

Not all external timing attacks can be internalized, however. In particular,
GHC’s approach to reclaiming memory via a stop-the-world GC simultaneously
stops all threads on all cores, thus the relative write rate of public threads remain
constant. Interestingly, though, implementing LIO on runtimes (e.g., Node.js as
proposed by Heule et al. [17]) with modern parallel garbage collectors that do not
always stop the world would internalize the GC-based external timing attacks.
Similarly, abusing GHC’s memory allocation to exhaust all memory crashes all
the program threads and, even though it cannot be internalized, it still results
in information leakage.

3 Secure, Parallel Runtime System

To address the external and internal timing attacks, we propose a new dynamic
IFC runtime system design. Fundamentally, today’s runtime systems are vulner-
able because they automatically allocate and reclaim resources that are shared
across threads of varying sensitivity. However, the automatic allocation and
reclamation is not in itself a problem—it is only a problem because the run-
time steals (and grants) resources from (and to) differently-labeled threads.

Our runtime system, LIOPAR, explicitly partitions CPU-time and memory
among threads—each thread has a fixed CPU-time and memory budget or quota.
This allows resource management decisions to be made locally, for each thread,
independent of the other threads in the system. For example, the runtime sched-
uler of LIOPAR relies on CPU-time partitioning to ensure that threads always
run for a fixed amount of time, irrespective of the other threads running on the
same core. Similarly, in LIOPAR, the memory allocator and garbage collector rely
on memory partitioning to be able to allocate and collect memory on behalf of
a thread without being influenced or otherwise influencing other threads in the
system. Furthermore, partitioning resources among threads enables fine-grained
control of resources: LIOPAR exposes secure primitives to (i) measure resource
usage (e.g., time and memory) and (ii) elicit garbage collection cycles.

2 The attacker needs to empirically find parameter n, so that p1 writes roughly twice
as much as thread p0 with half CPU time on core c0.

8 M. Vassena et al.

The LIOPAR runtime does not automatically balance resources between
threads. Instead, LIOPAR makes resource management explicit at the language
level. When forking a new thread, for example, LIOPAR demands that the par-
ent thread give up part of its CPU-time and memory budgets to the children.
Indeed, LIOPAR even manages core ownership or capabilities that allow threads
to fork threads across cores. This approach ensures that allocating new threads
does not indirectly leak any information externally or to other threads. Dually,
the LIOPAR runtime does not re-purpose unused memory or CPU-time, even
when a thread terminates or “dies” abruptly—parent threads must explicitly
kill their children when they wish to reclaim their resources.

To ensure that CPU-time and memory can always be reclaimed, LIOPAR

allows threads to kill their children at any time. Unsurprisingly, this feature
requires restricting the LIOPAR floating-label approach more than that of LIO—
LIOPAR threads cannot raise their current label if they have already forked other
threads. As a result, in LIOPAR threads form a hierarchy—children threads are
always at least as sensitive as their parent—and thus it is secure to expose an
API to allocate and reclaim resources.

Attacks Revisited. LIOPAR enforces security against reclamation-based attacks
because secret threads cannot automatically relinquish their resources. For exam-
ple, our hierarchical runtime system stops the attack in Fig. 1: even if secret
thread s0 terminates (secret = true), the throughput of public thread p0
remains constant—LIOPAR does not reassign the CPU time of s0 to p0, but keeps
s0 spinning until it gets killed. Similarly, LIOPAR protects against allocation-
based attacks because secret threads cannot steal resources owned by other public
threads. For example, the fork-bomb variant of the previous attack fails because
LIOPAR aborts command fork (forever skip) c1—thread s0 does not own the
core capability c1—and thus the throughput of p1 remains the same. In order
to substantiate these claims, we first formalize the design of the hierarchical
runtime system (Sect. 4) and establish its security guarantees (Sect. 5).

Trust Model. This work addresses attacks that exploit runtime system resource
management — in particular memory and CPU-time. We do not address attacks
that exploit other shared runtime system state (e.g., event loops [63], lazy eval-
uation [7,59]), shared operating system state (e.g., file system locks [24], events
and I/O [22,32]), or shared hardware (e.g., caches, buses, pipelines and hard-
ware threads [11,47]) Though these are valid concerns, they are orthogonal and
outside the scope of this paper.

4 Hierarchical Calculus

In this section we present the formal semantics of LIOPAR. We model LIOPAR

as a security monitor that executes simply typed λ-calculus terms extended
with LIO security primitives on an abstract machine in the style of Sestoft [53].
The security monitor reduces secure programs and aborts the execution of leaky
programs.

Foundations for Parallel Information Flow Control Runtime Systems 9

Fig. 2. Sequential LIOPAR.

10 M. Vassena et al.

Semantics. The state of the monitor, written (Δ, pc, N | t ,S), stores the state
of a thread under execution and consists of a heap Δ that maps variables to
terms, the thread’s program counter label pc, the set N containing the identifiers
of the thread’s children, the term currently under reduction t and a stack of
continuations S . Figure 2 shows the interesting rules of the sequential small-step
operational semantics of the security monitor. The notation s �μ s ′ denotes a
transition of the machine in state s that reduces to state s ′ in one step with
thread parameters μ = (h, cl).3 Since we are interested in modeling a system
with finite resources, we parameterize the transition with the maximum heap
size h ∈ N. Additionally, the clearance label cl represents an upper bound over
the sensitivity of the thread’s floating counter label pc. Rule [App1] begins a
function application. Since our calculus is call-by-name, the function argument
is saved as a thunk (i.e., an unevaluated expression) on the heap at fresh location
x and the indirection is pushed on the stack for future lookups.4 Note that the
rule allocates memory on the heap, thus the premise |Δ| < h forbids a heap
overflow, where the notation |Δ| denotes the size of the heap Δ, i.e., the number
of bindings that it contains.5 To avoid overflows, a thread can measure the
size of its own heap via primitive size (Sect. 4.2). If t1 evaluates to a function,
e.g., λy .t , rule [App2] starts evaluating the body, in which the bound variable
y is substituted with the heap-allocated argument x , i.e., t [x / y]. When the
evaluation of the function body requires the value of the argument, variable x is
looked up in the heap (rule [Var]). In the next paragraph we present the rules
of the basic security primitives. The other sequential rules are available in the
extended version of this paper.

Security Primitives. A labeled value Labeled � t◦ of type Labeled τ consists
of term t of type τ and a label �, which reflects the sensitivity of the content.
The annotation t◦ denotes that term t is closed and does not contain any free
variable, i.e., fv(t) = ∅. We restrict the syntax of labeled values with closed
terms for security reasons. Intuitively, LIOPAR allocates free variables inside a
secret labeled values on the heap, which then leaks information to public threads
with its size. For example, a public thread could distinguish between two secret
values, e.g., Labeled H x with heap Δ = [x �→ 42], and Labeled H 0 with heap
Δ = ∅, by measuring the size of the heap. To avoid that, labeled values are
closed and the size of the heap of a thread at a certain security level, is not
affected by data labeled at different security levels. A term of type LIO τ is
a secure computation that performs side effects and returns a result of type τ .
Secure computations are structured using standard monadic constructs return t ,
which embeds term t in the monad, and bind, written t1>>=t2, which sequentially

3 We use record notation, i.e., μ.h and μ.cl , to access the components of μ.
4 The calculus does not feature lazy evaluation. Laziness, because of sharing, intro-

duces a covert channel, which has already been considered in previous work [59].
5 To simplify reasoning, our generic memory model is basic and assumes a uniform

size for all the objects stored in the heap. We believe that it is possible to refine our
generic model with more accurate memory models (e.g., GHC’s tagless G-machine
(STG) [23], the basis for GHC’s runtime [39]), but leave this to future work.

Foundations for Parallel Information Flow Control Runtime Systems 11

composes two monadic actions, the second of which takes the result of the first as
an argument. Rule [Bind1] deconstructs a computation t1>>=t2 into term t1 to be
reduced first and pushes on the stack the continuation >>=t2 to be invoked after
term t1.6 Then, the second rule [Bind2] pops the topmost continuation placed
on the stack (i.e., >>=t2) and evaluates it with the result of the first computation
(i.e., t2 t1), which is considered complete when it evaluates to a monadic value,
i.e., to syntactic form return t1. The runtime monitor secures the interaction
between computations and labeled values. In particular, secure computations can
construct and inspect labeled values exclusively with monadic primitives label
and unlabel respectively. Rules [Label1] and [Unlabel1] are straightforward
and follow the pattern seen in the other rules. Rule [Label2] generates a labeled
value at security level �, subject to the constraint pc � � � cl , which prevents
a computation from labeling values below the program counter label pc or above
the clearance label cl .7 The rule computes the closure of the content, i.e., closed
term t◦, by recursively substituting every free variable in term t with its value in
the heap, written Δ∗(t). Rule [Unlabel2] extracts the content of a labeled value
and taints the program counter label with its label, i.e., it rises it to pc � �, to
reflect the sensitivity of the data that is now in scope. The premise pc � � � cl
ensures that the program counter label does not float over the clearance cl . Thus,
the run-time monitor prevents the program counter label from floating above the
clearance label (i.e., pc � cl always holds).

The calculus also includes concurrent primitives to allocate resources when
forking threads (fork and spawn in Sect. 4.1), reclaim resources and measure
resource usage (kill , size, and time in Sect. 4.2), threads synchronization and
communication (wait , send and receive in the extended version of this paper).

4.1 Core Scheduler

In this section, we extend LIOPAR with concurrency, which enables (i) interleaved
execution of threads on a single core and (ii) simultaneous execution on κ cores.
To protect against attacks that exploit the automatic management of shared
finite resource (e.g., those in Sect. 2.3), LIOPAR maintains a resource budget for
each running thread and updates it as threads allocate and reclaim resources.
Since κ threads execute at the same time, those changes must be coordinated in
order to preserve the consistency of the resource budgets and guarantee deter-
ministic parallelism. For this reason, the hierarchical runtime system is split in
two components: (i) the core scheduler, which executes threads on a single core,
ensures that they respect their resource budgets and performs security checks,
and (ii) the top-level parallel scheduler, which synchronizes the execution on mul-
tiple cores and reassigns resources by updating the resource budgets according
to the instructions of the core schedulers. We now introduce the core scheduler
and describe the top-level parallel scheduler in Sect. 4.3.

6 Even though the stack size is unbounded in this model, we could account for its
memory usage by explicitly allocating it on the heap, in the style of Yang et al. [66].

7 The labels form a security lattice (L , �, �).

12 M. Vassena et al.

Fig. 3. Concurrent LIOPAR.

Syntax. Figure 3 presents the core scheduler, which has access to the global state
Σ = (T,B,H , θ, ω), consisting of a thread pool map T , which maps a thread id
to the corresponding thread’s current state, the time budget map B, a memory
budget map H , core capabilities map θ, and the global clock ω. Using these maps,
the core scheduler ensures that thread n: (i) performs B(n) uninterrupted steps
until the next thread takes over, (ii) does not grow its heap above its maximum
heap size H (n), and (iii) has exclusive access to the free core capabilities θ(n).
Furthermore, each thread id n records the initial current label when the thread
was created (n.pc), its clearance (n.cl), and the core where it runs (n.k), so that

Foundations for Parallel Information Flow Control Runtime Systems 13

the runtime system can enforce security. Notice that thread ids are opaque to
threads—they cannot forge them nor access their fields.

Hierarchical Scheduling. The core scheduler performs deterministic and hier-
archical scheduling—threads lower in the hierarchy are scheduled first, i.e., par-
ent threads are scheduled before their children. The scheduler manages a core
run queue Q , which is structured as a binary tree with leaves storing thread ids
and residual time budgets. The notation nb indicates that thread n can run for
b more steps before the next thread runs. When a new thread is spawned, the
scheduler creates a subtree with the parent thread on the left and the child on
the right. The scheduler can therefore find the thread with the highest priority
by following the left spine of the tree and backtracking to the right if a thread has
no residual budget.8 We write Q [〈nb〉] to mean the first thread encountered via
this traversal is n with budget b. As a result, given the slice Q [〈n1+b〉], thread
n is the next thread to run, and Q [〈n0〉] occurs only if all threads in the queue
have zero residual budget. We overload this notation to represent tree updates: a
rule Q [〈n1+b〉] → Q [〈nb〉] finds the next thread to run in queue Q and decreases
its budget by one.

Semantics. Figure 3 formally defines the transition Q
(n,s,e)−−−−→Σ Q ′, which

represents an execution step of the core scheduler that schedules thread n in
core queue Q , executes it with global state Σ = (T,B,H , θ, ω) and updates the
queue to Q ′. Additionally, the core scheduler informs the parallel scheduler of
the final state s of the thread and requests on its behalf to update the global
state by means of event message e. In rule [Step], the scheduler retrieves the
next thread in the schedule, i.e., Q [〈n1+b〉] and its state in the thread pool
from the global state, i.e., Σ.T (n) = s. Then, it executes the thread for one
sequential step with its memory budget and clearance, i.e., s �μ s ′ with μ =
(Σ .H (n),n.cl), sends the empty event ε to the parallel scheduler, and decrements
the thread’s residual budget in the final queue, i.e., Q [〈nb〉]. In rule [Fork],
thread n creates a new thread t with initial label �L and clearance �H, such
that �L � �H and pc � �L. The child thread runs on the same core of
the parent thread, i.e., n.k , with fresh id n ′, which is then added to the set of
children, i.e., {n ′} ∪ N . Since parent and child threads do not share memory,
the core scheduler must copy the portion of the parent’s private heap reachable
by the child’s thread, i.e., Δ′; we do this by copying the bindings of the variables
that are transitively reachable from t , i.e., fv∗(t ,Δ), from the parent’s heap
Δ. The parent thread gives h2 of its memory budget Σ .H (n) to its child. The
conditions |Δ| � h1 and |Δ′| � h2, ensure that the heaps do not overflow their
new budgets. Similarly, the core scheduler splits the residual time budget of

8 When implemented, this procedure might introduce a timing channel that leaks
the number of threads running on the core. In practice, techniques from real time
schedulers can be used to protect against such timing channels. The model of LIOPAR

does not capture the execution time of the runtime system itself and thus this issue
does not arise in the security proofs.

14 M. Vassena et al.

the parent into b1 and b2 and informs the parallel scheduler about the new
thread and its resources with event fork(Δ′,n ′, t , b2, h2), and lastly updates the
tree Q by replacing the leaf 〈n1+b1+b2〉 with the two-leaves tree 〈〈nb1〉|〈n ′b2〉〉,
so that the child thread will be scheduled immediately after the parent has
consumed its remaining budget b1, as explained above. Rule [Spawn] is similar
to [Fork], but consumes core capability resources instead of time and memory.
In this case, the core scheduler checks that the parent thread owns the core
where the child is scheduled and the core capabilities assigned to the child, i.e.,
θ(n) = {k } ∪ K1 ∪ K2 for some set K2, and informs the parallel scheduler with
event spawn(Δ′,n ′, t ,K1). Rule [Stuck] performs busy waiting by consuming
the time budget of the scheduled thread, when it is stuck and cannot make any
progress—the premises of the rule enumerate the conditions under which this
can occur (see the extended version of this paper for details). Lastly, in rule
[ContextSwitch] all the threads scheduled in the core queue have consumed
their time budget, i.e., Q [〈n0〉] and the core scheduler resets their residual budget
using the budget map Σ.B. In the rule, the notation Q [〈nb

i 〉] selects the i-th leaf,
where i ∈ {1 . . |Q |} and |Q | denotes the number of leaves of tree Q and symbol
◦ denotes the thread identifier of the core scheduler, which updates a dummy
thread that simply spins during a context-switch or whenever the core is unused.

4.2 Resource Reclamation and Observations

The calculus presented so far enables threads to manage their time, memory and
core capabilities hierarchically, but does not provide any primitive to reclaim
their resources. This section rectifies this by introducing (i) a primitive to kill a
thread and return its resources back to the owner and (ii) a primitive to elicit a
garbage collection cycle and reclaim unused memory. Furthermore, we demon-
strate that the runtime system presented in this paper is robust against timing
attacks by exposing a timer API allowing threads to access a global clock.9

Intuitively, it is secure to expose this feature because LIOPAR ensures that the
time spent executing high threads is fixed in advanced, so timing measurements
of low threads remain unaffected. Lastly, since memory is hierarchically par-
titioned, each thread can securely query the current size of its private heap,
enabling fine-grained control over the garbage collector.

Kill. A parent thread can reclaim the resources given to its child thread n ′, by
executing kill n ′. If the child thread has itself forked or spawned other threads,
they are transitively killed and their resources returned to the parent thread.
The concurrent rule [Kill2] in Fig. 4 initiates this process, which is completed
by the parallel scheduler via event kill(n ′). Note that the rule applies only when
the thread killed is a direct child of the parent thread—that is when the parent’s
children set has shape {n ′} ∪ N for some set N . Now that threads can unre-
strictedly reclaim resources by killing their children, we must revise the primitive
9 An external attacker can take timing measurements using network communications.

An attacker equipped with an internal clock is equally powerful but simpler to
formalize [46].

Foundations for Parallel Information Flow Control Runtime Systems 15

Fig. 4. LIOPAR with resource reclamation and observation primitives.

unlabel , since the naive combination of kill and unlabel can result in information
leakage. This will happen if a public thread forks another public thread, then
reads a secret value (raising its label to secret), and based on that decides to
kill the child. To close the leak, we modify the rule [Unlabel2] by adding the
highlighted premise, causing the primitive unlabel to fail whenever the parent
thread’s label would float above the initial current label of one of its children.

Garbage Collection. Rule [GC] extends LIOPAR with a time-sensitive hierar-
chical garbage collector via the primitive gc t . The rule elicits a garbage collec-
tion cycle which drops entries that are no longer needed from the heap, and then
evaluates t . The sub-heap Δ′ includes the portion of the current heap that is
(transitively) reachable from the free variables in scope (i.e. those present in the
term, fv∗(t ,Δ) or on the stack fv∗(S ,Δ)). After collection, the thread resumes
and evaluates term t under compacted private heap Δ′.10 In rule [App-GC], a
collection is automatically triggered when the thread’s next memory allocation
would overflow the heap.
10 In practice a garbage collection cycle takes time that is proportional to the size of

the memory used by the thread. That does not hinder security as long as the garbage
collector runs on the thread’s time budget.

16 M. Vassena et al.

Resource Observations. All threads in the system share a global fine-grained
clock ω, which is incremented by the parallel scheduler at each cycle (see below).
Rule [Time] gives all threads unrestricted access to the clock via monadic prim-
itive time.

4.3 Parallel Scheduler

This section extends LIOPAR with deterministic parallelism, which allows to
execute κ threads simultaneously on as many cores. To this end, we introduce
the top-level parallel scheduler, which coordinates simultaneous changes to the
global state by updating the resource budgets of the threads in response core
events (e.g., fork, spawn, and kill) and ticks the global clock.

Fig. 5. Top-level parallel scheduler.

Semantics. Figure 5 formalizes the operational semantics of the parallel sched-
uler, which reduces a configuration c = 〈Σ,Φ〉 consisting of global state Σ and

Foundations for Parallel Information Flow Control Runtime Systems 17

core map Φ mapping each core to its run queue, to configuration c′ in one step,
written c ↪→ c′, through rule [Parallel] only. The rule executes the threads
scheduled on each of the κ cores, which all step at once according to the con-
current semantics presented in Sects. 4.1–4.2, with the same current global state
Σ. Since the execution of each thread can change Σ concurrently, the top-level
parallel scheduler reconciles those actions by updating Σ sequentially and deter-
ministically.11 First, the scheduler updates the thread pool map T and core
map Φ with the final state obtained by running each thread in isolation, i.e.,
T ′ = Σ.T [ni �→ si] and Φ′ = Φ[i �→ Qi] for i ∈ {1 . . κ}. Then, it collects all
concurrent events generated by the κ threads together with their thread id, sorts
the events according to type, i.e., sort [(n1, e1), ..., (nκ, eκ)], and computes the
updated configuration by processing the events in sequence.12 In particular, new
threads are created first (event spawn(·) and fork(·)), and then killed (event
kill(·))—the ordering between events of the same type is arbitrary and assumed
to be fixed. Trivial events (ε) do not affect the configuration and thus their order-
ing is irrelevant. The function 〈〈es〉〉c computes a final configuration by processing
a list of events in order, accumulating configuration updates (next(·) updates the
current configuration by one event-step): 〈〈(n, e) : es〉〉c = 〈〈es〉〉next(n,e,c). When
no more events need processing, the configuration is returned 〈〈[]〉〉c = c.

Event Processing. Figure 5 defines function next(n, e, c), which takes a thread
identifier n, the event e that thread n generated, the current configuration and
outputs the configuration obtained by performing the thread’s action. The empty
event ε is trivial and leaves the state unchanged. Event (n1, fork(Δ,n2, t , b, h))
indicates that thread n1 forks thread t with identifier n2, sub-heap Δ, time bud-
get b and maximum heap size h. The scheduler deducts these resources from the
parent’s budgets, i.e., B ′ = B[n1 �→ B(n1) − b] and H ′ = H [n1 �→ H (n1) − h]
and assigns them to the child, i.e., B ′[n2 �→ b] and H ′[n2 �→ h].13 The new child
shares the core with the parent—it has no core capabilities i.e., θ′ = θ[n2 �→ ∅]—
and so the core map is left unchanged. Lastly, the scheduler adds the child to
the thread pool and initializes its state, i.e., T [n2 �→ (Δ,n2.�L, ∅ | t , [])]. The
scheduler handles event (n1, spawn(Δ,n2, t ,K)) similarly. The new thread t
gets scheduled on core n2.k , i.e., Φ[n2.k �→ 〈nB0

2 〉], where the thread takes all
the time and memory resources of the core, i.e., B[n2 �→ B0] and H [n2 �→ H0],
and extra core capabilities K , i.e., θ′[n2 �→ K]. For simplicity, we assume that
all cores execute B0 steps per-cycle and feature a memory of size H0. Event
(n,kill(n ′)) informs the scheduler that thread n wishes to kill thread n ′. The
scheduler leaves the global state unchanged if the parent thread has already been
killed by the time this event is handled, i.e., when the guard n �∈ Dom(T) is
true—the resources of the child n ′ will have been reclaimed by another ancestor.

11 Non-deterministic updates would make the model vulnerable to refinement attacks
[40].

12 Since the clock only needs to be incremented, we could have left it out from the
configuration c = 〈T ′, B,H , θ, Σ.ω + 1, Φ′〉; function 〈〈es〉〉c does not use nor change
its value.

13 Notice that |Δ| < h by rule [Fork].

18 M. Vassena et al.

Otherwise, the scheduler collects the identifiers of the descendants of n ′ that are
alive (N = �{n ′}�T)—they must be killed (and reclaimed) transitively. The set
N is computed recursively by �N�T , using the thread pool T , i.e., �∅�T = ∅,
�{n }�T = {n } ∪ �T (n).N�T and �N1 ∪ N2�

T = �N1�
T ∪ �N2�

T . The scheduler
then increases the time and memory budget of the parent with the sum of the
budget of all its descendants scheduled on the same core, i.e.,

∑
i ∈ N,i.k=n.k B(i)

(resp.
∑

i ∈ N,i.k=n.k H (i))—descendants running on other cores do not share
those resources. The scheduler reassigns to the parent thread their core capabil-
ities, which are split between capabilities explicitly assigned but not in use, i.e.,⋃

i ∈ N θ(i) and core capabilities assigned and in use by running threads, i.e.,
{i.k | i ∈ N, i.k �= n.k }. Lastly, the scheduler removes the killed threads from
each core, written Φ(i) \ N , by pruning the leaves containing killed threads and
reassigning their leftover time budget to their parent, see the extended version
of this paper for details.

5 Security Guarantees

In this section we show that LIOPAR satisfies a strong security condition that
ensures timing-agreement of threads and rules out timing covert channels. In
Sect. 5.1, we describe our proof technique based on term erasure, which has
been used to verify security guarantees of functional programming languages
[30], IFC libraries [8,17,54,56,61], and an IFC runtime system [59]. In Sect. 5.2,
we formally prove security, i.e., progress- and timing-sensitive non-interference,
a strong form of non-interference [14], inspired by Volpano and Smith [64]—
to our knowledge, it is considered here for the first time in the context of
parallel runtime systems. Works that do not address external timing channels
[59,62] normally prove progress-sensitive non-interference, wherein the number
of execution steps of a program may differ in two runs based on a secret. This
condition is insufficient in the parallel setting: both public and secret threads
may step simultaneously on different cores and any difference in the number
of execution steps would introduce external and internal timing attacks. Sim-
ilar to previous works on secure multi-threaded systems [36,52], we establish
a strong low-bisimulation property of the parallel scheduler, which guarantees
that attacker-indistinguishable configurations execute in lock-step and remain
indistinguishable. Theorem 1 and Corollary 1 use this property to ensure that
any two related parallel programs execute in exactly the same number of steps.

5.1 Erasure Function

The term erasure technique relies on an erasure function, written εL(·), which
rewrites secret data above the attacker’s level L to special term •, in all the
syntactic categories: values, terms, heaps, stacks, global states and configura-
tions.14 Once the erasure function is defined, the core of the proof technique
14 For ease of exposition, we use the two-point lattices {L,H }, where H �� L is the

only disallowed flow. Neither our proofs nor our model rely on this particular lattice.

Foundations for Parallel Information Flow Control Runtime Systems 19

consists of proving an essential commutativity relationship between the erasure
function and reduction steps: given a step c ↪→ c′, there must exist a reduction
that simulates the original reduction between the erased configurations, i.e.,
εL(c) ↪→ εL(c′). Intuitively, if the configuration c leaked secret data while step-
ping to c′, that data would be classified as public in c′ and thus would remain
in εL(c′)— but such secret data would be erased by εL(c) and the property
would not hold. The erasure function leaves ground values, e.g., (), unchanged
and on most terms it acts homomorphically, e.g., εL(t1 t2) = εL(t1) εL(t2).
The interesting cases are for labeled values, thread configurations, and resource
maps. The erasure function removes the content of secret labeled values, i.e.,
εL(Labeled H t◦) = Labeled H •, and erases the content recursively other-
wise, i.e., εL(Labeled L t◦) = Labeled L εL(t)◦. The state of a thread is erased
per-component, homomorphically if the program counter label is public, i.e.,
εL(Δ,L, N, | t ,S) = (εL(Δ),L, N | εL(t), εL(S)), and in full otherwise, i.e.,
εL(Δ,H , N, | t ,S) = (•, •, • | •, •).

Resource Erasure. Since LIOPAR manages resources explicitly, the simulation
property above requires to define the erasure function for resources as well. The
erasure function should preserve information about the resources (e.g., time,
memory, and core capabilities) of public threads, since the attacker can explicitly
assign resources (e.g., with fork and swap) and measure them (e.g., with size).
But what about the resources of secret threads? One might think that such
information is secret and thus it should be erased—intuitively, a thread might
decide to assign, say, half of its time budget to its secret child depending on
secret information. However, public threads can also assign (public) resources
to a secret thread when forking: even though these resources currently belong
to the secret child, they are temporary—the public parent might reclaim them
later. Thus, we cannot associate the sensitivity of the resources of a thread
with its program counter label when resources are managed hierarchically, as
in LIOPAR. Instead, we associate the security level of the resources of a secret
thread with the sensitivity of its parent: the resources of a secret thread are
public information whenever the program counter label of the parent is public
and secret information otherwise. Furthermore, since resource reclamation is
transitive, the erasure function cannot discard secret resources, but must rather
redistribute them to the hierarchically closest set of public resources, as when
killing them.

Time Budget. First, we project the identifiers of public threads from the thread
pool T : DomL(T) = {nL | n ∈ Dom(T) ∧ T (n).pc ≡ L}, where notation
nL indicates that the program counter label of thread n is public. Then, the
set P =

⋃
n ∈ DomL(T){n } ∪ T (n).N contains the identifiers of all the public

threads and their immediate children.15 The resources of threads n ∈ P are
public information. However, the program counter label of a thread n ∈ P is not
necessarily public, as explained previously. Hence P can be disjointly partitioned

15 The id of the spinning thread on each free core is also public, i.e., ◦k ∈ P for
k ∈ {1 . . κ}.

20 M. Vassena et al.

by program counter label: P = PL ∪ PH , where PL = {nL | n ∈ P } and
PH = {nH | n ∈ P }. Erasure of the budget map then proceeds on this
partition, leaving the budget of the public threads untouched, and summing the
budget of their secret children threads to the budgets of their descendants, which
are instead omitted. In symbols, εL(B) = BL ∪ BH , where BL = {nL �→ B(nL) |
nL ∈ PL} and BH = {nH �→ B(nH) +

∑
i ∈ �{nH }�T B(i) | nH ∈ PH }.

Queue Erasure. The erasure of core queues follows the same intuition, pre-
serving public and secret threads n ∈ P and trimming all other secret threads
nH �∈ P . Since queues annotate thread ids with their residual time budgets,
the erasure function must reassign the budgets of all secret threads n ′

H �∈ P
to their closest ancestor n ∈ P on the same core. The ancestor n ∈ P could
be either (i) another secret thread on the same core, i.e., nH ∈ P , or, (ii) the
spinning thread of that core, ◦ ∈ P if there is no other thread n ∈ P on that
core—the difference between these two cases lies on whether the original thread
n ′ was forked or spawned on that core. More formally, if the queue contains no
thread n ∈ P , then the function replaces the queue altogether with the spinning
thread and returns the residual budgets of the threads to it, i.e., εL(Q) = 〈◦B〉 if
ni �∈ P and B =

∑
bi, for each leaf Q [〈nbi

i 〉] where i ∈ {1 . . |Q |}. Otherwise,
the core contains at least a thread nH ∈ P and the erasure function returns the
residual time budget of its secret descendants, i.e., εL(Q) = Q ↓L by combining
the effects of the following mutually recursive functions:

〈nb〉↓L= 〈nb〉
〈Q1,Q2〉↓L= (Q1 ↓L) � (Q2 ↓L)

〈nb1
1H〉 � 〈nb2

2H〉 = 〈nb1+b2
1H 〉

Q1 � Q2 = 〈Q1,Q2〉
The interesting case is 〈nb1

1H〉 � 〈nb2
2H〉, which reassigns the budget of the child

(the right leaf 〈nb2
2H〉) to the parent (the left leaf 〈nb1

1H〉), by rewriting the subtree
into 〈nb1+b2

1H 〉.

5.2 Timing-Sensitive Non-interference

The proof of progress- and timing-sensitive non-interference relies on two funda-
mental properties, i.e., determinacy and simulation of parallel reductions. Deter-
minacy requires that the reduction relation is deterministic.

Proposition 1 (Determinism). If c1 ↪→ c2 and c1 ↪→ c3 then c2 ≡ c3.

The equivalence in the statement denotes alpha-equivalence, i.e., up to the
choice of variable names. We now show that the parallel scheduler preserves
L-equivalence of parallel configurations.

Definition 1 (L-equivalence). Two configurations c1 and c2 are indistin-
guishable from an attacker at security level L, written c1 ≈L c2, if and only
if εL(c1) ≡ εL(c2).

Proposition 2 (Parallel simulation). If c ↪→ c′, then εL(c) ↪→ εL(c′).

Foundations for Parallel Information Flow Control Runtime Systems 21

By combining determinism (Proposition 1) and parallel simulation (Proposition
2), we prove progress-insensitive non-interference, which assumes progress of
both configurations.

Proposition 3 (Progress-insensitive non-interference). If c1 ↪→ c′
1, c2 ↪→

c′
2 and c1 ≈L c2, then c′

1 ≈L c′
2.

In order to lift this result to be progress-sensitive, we first prove timing-sensitive
progress. Intuitively, if a valid configuration steps then any low equivalent parallel
configuration also steps.16

Proposition 4 (Timing-sensitive progress). Given a valid configuration c1
and a parallel reduction step c1 ↪→ c′

1 and c1 ≈L c2, then there exists c′
2, such

that c2 ↪→ c′
2.

Using progress-insensitive non-interference, i.e., Proposition 3 and timing-
sensitive progress, i.e., Proposition 4 in combination, we obtain a strong L-
bisimulation property between configurations and prove progress- and timing-
sensitive non-interference.

Theorem 1 (Progress- and timing-sensitive non-interference). For all
valid configurations c1 and c2, if c1 ↪→ c′

1 and c1 ≈L c2, then there exists a
configuration c′

2, such that c2 ↪→ c′
2 and c′

1 ≈L c′
2.

The following corollary instantiates the non-interference security theorem from
above for a given LIOPAR parallel program, that explicitly rules out leaks via
timing channels. In the following, the notation ↪→u denotes u reduction steps of
the parallel scheduler.

Corollary 1. Given a well-typed LIOPAR program t of type Labeled τ1 →
LIO τ2 and two closed secrets t◦

1 , t◦
2 :: τ1, let si = ([],L, ∅, | t (Labeled H t◦

i), []),
ci = (Ti, B,H , θ, 0, Φi), where Ti = [nL �→ si, ◦j �→ s◦], B = [nL �→ B0, ◦j �→ 0],
H = [nL �→ H0, ◦j �→ H0], θ = [nL �→ {2 . . κ}, ◦j �→ ∅], Φi = [1 �→ 〈si〉, 2 �→
〈◦2〉, ..., κ �→ 〈◦κ〉], for i ∈ {1, 2}, j ∈ {1 . . κ} and thread identifier nL such
that n.k = 1 and n.cl = H . If c1 ↪→u c′

1, then there exists configuration c′
2,

such that c2 ↪→u c′
2 and c′

1 ≈L c′
2.

To conclude, we show that the timing-sensitive security guarantees of LIOPAR

extend to concurrent single-core programs by instantiating Corollary 1 with
κ = 1.

6 Limitations

Implementation. Implementing LIOPAR is a serious undertaking that requires
a major redesign of GHC’s runtime system. Conventional runtime systems freely
16 A configuration is valid if satisfies several basic properties, e.g., it does not contain

special term •. See the extended version of this paper for details.

22 M. Vassena et al.

share resources among threads to boost performance and guarantee fairness. For
instance, in GHC, threads share heap objects to save memory space and execu-
tion time (when evaluating expressions). In contrast, LIOPAR strictly partitions
resources to enforce security—threads at different security labels cannot share
heap objects. As a result, the GHC memory allocator must be adapted to isolate
threads’ private heap, so that allocation and collection can occur independently
and in parallel. Similarly, the GHC “fair” round robin scheduler must be heavily
modified to keep track of and manage threads’ time budget, to preemptively
perform a context switch when their time slice is up.

Programming Model. Since resource management is explicit, building appli-
cations atop LIOPAR introduces new challenges—the programmer must explic-
itly choose resource bounds for each thread. If done poorly, threads can spend
excessive amounts of time sitting idle when given too much CPU time, or garbage
collecting when not given enough heap space. The problem of tuning resource
allocation parameters is not unique to LIOPAR—Yang and Mazières’ [66] pro-
pose to use GHC profiling mechanisms to determine heap size while the real-
time garbage collector by Henriksson [16] required the programmer to specify the
worst case execution time, period, and worst-case allocation of each high-priority
thread. Das and Hoffmann [9] demonstrate a more automatic approach—they
apply machine learning techniques to statically determine upper bounds on exe-
cution time and heap usage of OCaml programs. Similar techniques could be
applied to LIOPAR in order to determine the most efficient resource partitions.
Moreover, this challenge is not unique to real-time systems or LIOPAR; choosing
privacy parameters in differential privacy, for example, shares many similari-
ties [21,29].

The LIOPAR programming model is also likely easier to use in certain applica-
tion domains—e.g., web applications where the tail latency of a route can inform
the thread bounds, or embedded systems where similar latency requirements are
the norm. Nevertheless, in order to simplify programming with LIOPAR, we
intend to introduce privileges (and thus declassification) similar to LIO [12,56]
or COWL [57].

Coarse-grained, floating-label systems such as LIO and LIOPAR can suffer
label creep, wherein the current computation gets tainted to a point where it
cannot perform any useful writes [55]. Sequential LIO [56] addresses label creep
through a primitive, toLabeled, which executes a computation (that may raise
the current label) in a separate context and restores the current label upon its
termination. Similar to concurrent LIO [54], LIOPAR relies on fork to address
label creep and not toLabeled—the latter exposes the termination covert-
channel [54]. Even though LIOPAR has a more restricted floating-label semantics
than concurrent LIO, LIOPAR also supports parallel execution, garbage collec-
tion, and new APIs for getting heap statistics, counting elapsed time, and killing
threads.

Foundations for Parallel Information Flow Control Runtime Systems 23

7 Related Work

There is substantial work on language-level IFC systems [10,15,20,34,43,50,51,
54,55,67,68]. Our work builds on these efforts in several ways. Firstly, LIOPAR

extends the concurrent LIO IFC system [54] with parallelism—to our knowl-
edge, this is the first dynamic IFC system to support parallelism and address the
internalization of external timing channels. Previous static IFC systems implic-
itly allow for parallelism, e.g., Muller and Chong’s [41], several works on IFC
π-calculi [18,19,25], and Rafnsson et al. [49] recent foundations for composable
timing-sensitive interactive systems. These efforts, however, do not model run-
time system resource management. Volpano and Smith [64] enforce a timing
agreement condition, similar to ours, but for a static concurrent IFC system.
Mantel et al. [37] and Li et al. [31] prove non-interference for static, concurrent
systems, using rely-guarantee reasoning.

Unlike most of these previous efforts, our hierarchical runtime system also
eliminates classes of resource-based external timing channels, such as memory
exhaustion and garbage collection. Pedersen and Askarov [46], however, were
the first to identify automatic memory management to be a source of covert
channels for IFC systems and demonstrate the feasibility of attacks against both
V8 and the JVM. They propose a sequential static IFC language with labeled-
partitioned memory and a label-aware timing-sensitive garbage collector, which
is vulnerable to external timing attacks and satisfies only termination-insensitive
non-interference.

Previous work on language-based systems—namely [35,66]—identify mem-
ory retention and memory exhaustion as a source of denial-of-service (DOS)
attacks. Memory retention and exhaustion can also be used as covert channels.
In addressing those covert channels, LIOPAR also addresses the DOS attacks
outlined by these efforts. Indeed, our work generalizes Yang and Mazières’ [66]
region-based allocation framework with region-based garbage collection and hier-
archical scheduling.

Our LIOPAR design also borrows ideas from the secure operating system com-
munity. Our explicit hierarchical memory management is conceptually similar to
HiStar’s container abstraction [69]. In HiStar, containers—subject to quotas, i.e.,
space limits—are used to hierarchically allocate and deallocate objects. LIOPAR

adopts this idea at the language-level and automates the allocation and reclama-
tion. Moreover, we hierarchically partition CPU-time; Zeldovich et al. [69], how-
ever, did observe that their container abstraction can be repurposed to enforce
CPU quotas. Deterland [65] splits time into ticks to address internal timing chan-
nels and mitigate external timing ones. Deterland builds on Determinator [4], an
OS that executes parallel applications deterministically and efficiently. LIOPAR

adopts many ideas from these systems—both the deterministic parallelism and
ticks (semantic steps)—to the language-level. Deterministic parallelism at the
language-level has also been explored previous to this work [27,28,38], but, dif-
ferent from these efforts, LIOPAR also hierarchically manages resources to elim-
inate classes of external timing channels.

24 M. Vassena et al.

Fabric [33,34] and DStar [70] are distributed IFC systems. Though we believe
that our techniques would scale beyond multi-core systems (e.g., to data cen-
ters), LIOPAR will likely not easily scale to large distributed systems like Fabric
and DStar. Different from Fabric and DStar, however, LIOPAR addresses both
internal and external timing channels that result from running code in parallel.

Our hierarchical resource management approach is not unique—other coun-
termeasures to external timing channels have been studied. Hu [22], for exam-
ple, mitigates both timing channels in the VAX/VMM system [32] using “fuzzy
time”—an idea recently adopted to browsers [26]. Askarov et al.’s [2] mitigate
external timing channels using predicative black-box mitigation, which delays
events and thus bound information leakage. Rather than using noise as in the
fuzzy time technique, however, they predict the schedule of future events. Some
of these approaches have also been adopted at the language-level [46,54,71]. We
find these techniques largely orthogonal: they can be used alongside our tech-
niques to mitigate timing channels we do not eliminate.

Real-time systems—when developed with garbage collected languages [3,5,6,
16]—face similar challenges as this work. Blelloch and Cheng [6] describe a real-
time garbage collector (RTGC) for multi-core programs with provable resource
bounds—LIOPAR enforces resource bounds instead. A more recent RTGC cre-
ated by Auerbach et al. [3] describes a technique to “tax” threads into con-
tributing to garbage collection as they utilize more resources. Henricksson [16]
describes a RTGC capable of enforcing hard and soft deadlines, once given upper
bounds on space and time resources used by threads. Most similarly to LIOPAR,
Pizlo et al. [48] implement a hierarchical RTGC algorithm that independently
collects partitioned heaps.

8 Conclusion

Language-based IFC systems built atop off-the-shelf runtime systems are vulner-
able to resource-based external-timing attacks. When these systems are extended
with thread parallelism these attacks become yet more vicious—they can be car-
ried out internally. We presented LIOPAR, the design of the first dynamic IFC
hierarchical runtime system that supports deterministic parallelism and elimi-
nate s both resource-based internal- and external-timing covert channels. To our
knowledge, LIOPAR is the first parallel system to satisfy progress- and timing-
sensitive non-interference.

References

1. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008.
LNCS, vol. 5283, pp. 333–348. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88313-5 22

2. Askarov, A., Zhang, D., Myers, A.C.: Predictive black-box mitigation of timing
channels. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, pp. 297–307. ACM (2010)

https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.1007/978-3-540-88313-5_22

Foundations for Parallel Information Flow Control Runtime Systems 25

3. Auerbach, J., et al.: Tax-and-spend: democratic scheduling for real-time garbage
collection. In: Proceedings of the 8th ACM International Conference on Embedded
Software, pp. 245–254. ACM (2008)

4. Aviram, A., Weng, S.-C., Hu, S., Ford, B.: Efficient system-enforced deterministic
parallelism. Commun. ACM 55(5), 111–119 (2012)

5. Baker Jr., H.G.: List processing in real time on a serial computer. Commun. ACM
21(4), 280–294 (1978)

6. Blelloch, G.E., Cheng, P.: On bounding time and space for multiprocessor garbage
collection. ACM SIGPLAN Not. 34, 104–117 (1999)

7. Buiras, P., Russo, A.: Lazy programs leak secrets. In: Riis Nielson, H., Gollmann,
D. (eds.) NordSec 2013. LNCS, vol. 8208, pp. 116–122. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41488-6 8

8. Buiras, P., Vytiniotis, D., Russo, A.: HLIO: mixing static and dynamic typing for
information-flow control in Haskell. In: ACM SIGPLAN International Conference
on Functional Programming. ACM (2015)

9. Das, A., Hoffmann, J.: ML for ML: learning cost semantics by experiment. In:
Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 190–207.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 11

10. Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A.:
FlowFence: practical data protection for emerging IoT application frameworks. In:
USENIX Security Symposium, pp. 531–548 (2016)

11. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptographic Eng.
8, 1–27 (2016)

12. Giffin, D.B., et al.: Hails: protecting data privacy in untrusted web applications.
J. Comput. Secur. 25(4–5), 427–461 (2017)

13. Giffin, D.B., et al.: Hails: protecting data privacy in untrusted web applications. In:
Proceedings of the Symposium on Operating Systems Design and Implementation.
USENIX (2012)

14. Goguen, J.A., Meseguer, J.: Unwinding and inference control, pp. 75–86, April
1984

15. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow
in JavaScript and its APIs. In: Proceedings of the 29th Annual ACM Symposium
on Applied Computing, pp. 1663–1671. ACM (2014)

16. Henriksson, R.: Scheduling garbage collection in embedded systems. Ph.D. thesis,
Department of Computer Science (1998)

17. Heule, S., Stefan, D., Yang, E.Z., Mitchell, J.C., Russo, A.: IFC inside: retrofitting
languages with dynamic information flow control. In: Focardi, R., Myers, A. (eds.)
POST 2015. LNCS, vol. 9036, pp. 11–31. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46666-7 2

18. Honda, K., Vasconcelos, V., Yoshida, N.: Secure information flow as typed pro-
cess behaviour. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 180–199.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46425-5 12

19. Honda, K., Yoshida, N.: A uniform type structure for secure information flow.
ACM Trans. Program. Lang. Syst. (TOPLAS) 29(6), 31 (2007)

20. Hritcu, C., Greenberg, M., Karel, B., Pierce, B.C., Morrisett, G.: All your IFCEx-
ception are belong to us. In: 2013 IEEE Symposium on Security and Privacy (SP),
pp. 3–17. IEEE (2013)

21. Hsu, J., et al.: Differential privacy: an economic method for choosing epsilon. In:
Proceedings of the 2014 IEEE 27th Computer Security Foundations Symposium,
CSF 2014, pp. 398–410. IEEE Computer Society, Washington, DC (2014)

https://doi.org/10.1007/978-3-642-41488-6_8
https://doi.org/10.1007/978-3-662-54577-5_11
https://doi.org/10.1007/978-3-662-46666-7_2
https://doi.org/10.1007/978-3-662-46666-7_2
https://doi.org/10.1007/3-540-46425-5_12

26 M. Vassena et al.

22. Hu, W.-M.: Reducing timing channels with fuzzy time. J. Comput. Secur. 1(3–4),
233–254 (1992)

23. Jones, S.L.P.: Implementing lazy functional languages on stock hardware: the
spineless tagless G-machine. J. Funct. Program. 2, 127–202 (1992)

24. Kemmerer, R.A.: Shared resource matrix methodology: an approach to identifying
storage and timing channels. ACM Trans. Comput. Syst. (TOCS) 1(3), 256–277
(1983)

25. Kobayashi, N.: Type-based information flow analysis for the π-calculus. Acta Infor-
matica 42(4–5), 291–347 (2005)

26. Kohlbrenner, D., Shacham, H.: Trusted browsers for uncertain times. In: USENIX
Security Symposium, pp. 463–480 (2016)

27. Kuper, L., Newton, R.R.: LVars: lattice-based data structures for deterministic
parallelism. In: Proceedings of the 2nd ACM SIGPLAN Workshop on Functional
High-Performance Computing, pp. 71–84. ACM (2013)

28. Kuper, L., Todd, A., Tobin-Hochstadt, S., Newton, R.R.: Taming the parallel effect
zoo: extensible deterministic parallelism with LVish. ACM SIGPLAN Not. 49(6),
2–14 (2014)

29. Lee, J., Clifton, C.: How much is enough? Choosing ε for differential privacy. In:
Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 325–340. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24861-0 22

30. Li, P., Zdancewic, S.: Arrows for secure information flow. Theoret. Comput. Sci.
411(19), 1974–1994 (2010)

31. Li, X., Mantel, H., Tasch, M.: Taming message-passing communication in com-
positional reasoning about confidentiality. In: Chang, B.-Y.E. (ed.) APLAS 2017.
LNCS, vol. 10695, pp. 45–66. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-71237-6 3

32. Lipner, S., Jaeger, T., Zurko, M.E.: Lessons from VAX/SVS for high-assurance
VM systems. IEEE Secur. Priv. 10(6), 26–35 (2012)

33. Liu, J., Arden, O., George, M.D., Myers, A.C.: Fabric: building open distributed
systems securely by construction. J. Comput. Secur. 25(4–5), 367–426 (2017)

34. Liu, J., George, M.D., Vikram, K., Qi, X., Waye, L., Myers, A.C.: Fabric: a plat-
form for secure distributed computation and storage. In: Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles. ACM (2009)

35. Liu, J., Myers, A.C.: Defining and enforcing referential security. In: Abadi, M.,
Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 199–219. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54792-8 11

36. Mantel, H., Sabelfeld, A.: A unifying approach to the security of distributed and
multi-threaded programs. J. Comput. Secur. 11(4), 615–676 (2003)

37. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and guarantees for composi-
tional noninterference. In: 2011 IEEE 24th Computer Security Foundations Sym-
posium, pp. 218–232, June 2011

38. Marlow, S., Newton, R., Peyton Jones, S.: A monad for deterministic parallelism.
ACM SIGPLAN Not. 46(12), 71–82 (2012)

39. Marlow, S., Peyton Jones, S.: Making a fast curry: push/enter vs. eval/apply for
higher-order languages. J. Funct. Program. 16(4–5), 415–449 (2006)

40. McCullough, D.: Specifications for multi-level security and a hook-up. In: 1987
IEEE Symposium on Security and Privacy (SP), p. 161, April 1987

41. Muller, S., Chong, S.: Towards a practical secure concurrent language. In: Proceed-
ings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Languages, Systems, Languages, and Applications, pp. 57–74. ACM Press,
New York, October 2012

https://doi.org/10.1007/978-3-642-24861-0_22
https://doi.org/10.1007/978-3-319-71237-6_3
https://doi.org/10.1007/978-3-319-71237-6_3
https://doi.org/10.1007/978-3-642-54792-8_11

Foundations for Parallel Information Flow Control Runtime Systems 27

42. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif 3.0: Java infor-
mation flow, July 2006

43. Nadkarni, A., Andow, B., Enck, W., Jha, S.: Practical DIFC enforcement on
android. In: USENIX Security Symposium, pp. 1119–1136 (2016)

44. North, S.C., Reppy, J.H.: Concurrent garbage collection on stock hardware. In:
Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, pp. 113–133. Springer, Heidelberg
(1987). https://doi.org/10.1007/3-540-18317-5 8

45. Parker, J.L.: LMonad: information flow control for Haskell web applications. Ph.D.
thesis, University of Maryland, College Park (2014)

46. Pedersen, M.V., Askarov, A.: From trash to treasure: timing-sensitive garbage col-
lection. In: Proceedings of the 38th IEEE Symposium on Security and Privacy.
IEEE (2017)

47. Percival, C.: Cache missing for fun and profit (2005)
48. Pizlo, F., Hosking, A.L., Vitek, J.: Hierarchical real-time garbage collection. In:

Proceedings of the 2007 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, LCTES 2007, pp. 123–133. ACM,
New York (2007)

49. Rafnsson, W., Jia, L., Bauer, L.: Timing-sensitive noninterference through com-
position. In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 3–25.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 1

50. Roy, I., Porter, D.E., Bond, M.D., McKinley, K.S., Witchel, E.: Laminar: practical
fine-grained decentralized information flow control, vol. 44. ACM (2009)

51. Russo, A.: Functional pearl: two can keep a secret, if one of them uses Haskell.
ACM SIGPLAN Not. 50, 280–288 (2015)

52. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
In: Proceedings of the 13th IEEE Workshop on Computer Security Foundations,
CSFW 2000, p. 200. IEEE Computer Society, Washington, DC (2000)

53. Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231–264
(1997)

54. Stefan, D., Russo, A., Buiras, P., Levy, A., Mitchell, J.C., Mazières, D.: Addressing
covert termination and timing channels in concurrent information flow systems. In:
International Conference on Functional Programming (ICFP). ACM SIGPLAN,
September 2012

55. Stefan, D., Russo, A., Mazières, D., Mitchell, J.C.: Flexible dynamic information
flow control in the presence of exceptions. J. Funct. Program. 27 (2017)

56. Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dynamic information
flow control in Haskell. In: Haskell Symposium. ACM SIGPLAN, September 2011

57. Stefan, D., et al.: Protecting users by confining JavaScript with COWL. In:
USENIX Symposium on Operating Systems Design and Implementation. USENIX
Association (2014)

58. Tsai, T.-C., Russo, A., Hughes, J.: A library for secure multi-threaded information
flow in Haskell. In: 20th IEEE Computer Security Foundations Symposium, CSF
2007, pp. 187–202. IEEE (2007)

59. Vassena, M., Breitner, J., Russo, A.: Securing concurrent lazy programs against
information leakage. In: 30th IEEE Computer Security Foundations Symposium,
CSF 2017, Santa Barbara, CA, USA, 21–25 August 2017, pp. 37–52 (2017)

60. Vassena, M., Buiras, P., Waye, L., Russo, A.: Flexible manipulation of labeled val-
ues for information-flow control libraries. In: Askoxylakis, I., Ioannidis, S., Katsikas,
S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 538–557. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45744-4 27

https://doi.org/10.1007/3-540-18317-5_8
https://doi.org/10.1007/978-3-662-54455-6_1
https://doi.org/10.1007/978-3-319-45744-4_27

28 M. Vassena et al.

61. Vassena, M., Russo, A.: On formalizing information-flow control libraries. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, PLAS 2016, pp. 15–28. ACM, New York (2016)

62. Vassena, M., Russo, A., Buiras, P., Waye, L.: MAC a verified static information-
flow control library. J. Log. Algebraic Methods Program. (2017)

63. Vila, P., Köpf, B.: Loophole: timing attacks on shared event loops in chrome. In:
USENIX Security Symposium (2017)

64. Volpano, D., Smith, G.: Eliminating covert flows with minimum typings. In: Pro-
ceedings of the 10th IEEE Workshop on Computer Security Foundations, CSFW
1997, p. 156. IEEE Computer Society, Washington, DC (1997)

65. Wu, W., Zhai, E., Wolinsky, D.I., Ford, B., Gu, L., Jackowitz, D.: Warding off tim-
ing attacks in Deterland. In: Conference on Timely Results in Operating Systems,
Monterey, CS, US (2015)

66. Yang, E.Z., Mazières, D.: Dynamic space limits for Haskell. In: Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2014, pp. 588–598. ACM, New York (2014)

67. Yang, J., Hance, T., Austin, T.H., Solar-Lezama, A., Flanagan, C., Chong, S.: Pre-
cise, dynamic information flow for database-backed applications. ACM SIGPLAN
Not. 51, 631–647 (2016)

68. Yang, J., Yessenov, K., Solar-Lezama, A.: A language for automatically enforcing
privacy policies. ACM SIGPLAN Not. 47, 85–96 (2012)

69. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
flow explicit in HiStar. In: Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation, pp. 263–278. USENIX Association (2006)

70. Zeldovich, N., Boyd-Wickizer, S., Mazieres, D.: Securing distributed systems with
information flow control. NSDI 8, 293–308 (2008)

71. Zhang, D., Askarov, A., Myers, A.C.: Predictive mitigation of timing channels in
interactive systems. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security, pp. 563–574. ACM (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Formal Analysis of Timing Channel
Security via Bucketing

Tachio Terauchi1(B) and Timos Antonopoulos2

1 Waseda University, Tokyo, Japan
terauchi@waseda.jp

2 Yale University, New Haven, USA
timos.antonopoulos@yale.edu

Abstract. This paper investigates the effect of bucketing in security
against timing channel attacks. Bucketing is a technique proposed to
mitigate timing-channel attacks by restricting a system’s outputs to only
occur at designated time intervals, and has the effect of reducing the pos-
sible timing-channel observations to a small number of possibilities. How-
ever, there is little formal analysis on when and to what degree bucketing
is effective against timing-channel attacks. In this paper, we show that
bucketing is in general insufficient to ensure security. Then, we present
two conditions that can be used to ensure security of systems against
adaptive timing channel attacks. The first is a general condition that
ensures that the security of a system decreases only by a limited degree
by allowing timing-channel observations, whereas the second condition
ensures that the system would satisfy the first condition when bucketing
is applied and hence becomes secure against timing-channel attacks. A
main benefit of the conditions is that they allow separation of concerns
whereby the security of the regular channel can be proven independently
of concerns of side-channel information leakage, and certain conditions
are placed on the side channel to guarantee the security of the whole
system. Further, we show that the bucketing technique can be applied
compositionally in conjunction with the constant-time-implementation
technique to increase their applicability. While we instantiate our contri-
butions to timing channel and bucketing, many of the results are actually
quite general and are applicable to any side channels and techniques that
reduce the number of possible observations on the channel.

1 Introduction

Side-channel attacks aim to recover a computer system’s secret information by
observing the target system’s side channels such as cache, power, timing and
electromagnetic radiation [11,15–17,21,23–25,31,36]. They are well recognized
as a serious threat to the security of computer systems. Timing-channel (or
simply timing) attacks are a class of side-channel attacks in which the adversary
makes observations on the system’s running time. Much research has been done
to detect and prevent timing attacks [1,3,4,6,7,9,18,20,22,26,27,30,41].

c© The Author(s) 2019
F. Nielson and D. Sands (Eds.): POST 2019, LNCS 11426, pp. 29–50, 2019.
https://doi.org/10.1007/978-3-030-17138-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17138-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-17138-4_2

30 T. Terauchi and T. Antonopoulos

Bucketing is a technique proposed for mitigating timing attacks
[7,14,26,27,41]. It restricts the system’s outputs to only occur at designated time
intervals. Therefore, bucketing has the effect of reducing the possible timing-
channel observations to a small number of possibilities. This is at some cost
of system’s performance because outputs must be delayed to the next bucket
time. Nonetheless, in comparison to the constant-time implementation technique
[1,3,6,9,20,22] which restricts the system’s running time to be independent of
secrets, bucketing is often said to be more efficient and easier to implement as it
allows running times to vary depending on secrets [26,27].1 For example, buck-
eting may be implemented in a blackbox-style by a monitor that buffers and
delays outputs [7,41].

In this paper, we formally study the effect of bucketing on security against
adaptive timing attacks. To this end, first, we give a formal notion of secu-
rity against adaptive side-channel-observing adversaries, called (f, ε)-security.
Roughly, (f, ε)-security says that the probability that an adversary can recover
the secret by making at most f(n) many queries to the system is bounded by
ε(n), where n is the security parameter.

Next, we show that bucketing alone is in general insufficient to guarantee
security against adaptive side-channel attacks by presenting a counterexample
that has only two timing observations and yet is efficiently attackable. This
motivates a search for conditions sufficient for security. We present a condition,
called secret-restricted side-channel refinement (SRSCR), which roughly says that
a system is secure if there are sufficiently large subsets of secrets such that
(1) the system’s side channel reveals no more information than the regular chan-
nel on the subsets and (2) the system is secure on the subsets against adversaries
who only observe the regular channel. The degree of security (i.e., f and ε) is
proportional to that against regular-channel-only-observing adversaries and the
size of the subsets.

Because of the insufficiency of bucketing mentioned above, applying bucket-
ing to an arbitrary system may not lead to a system that satisfies SRSCR (for
good f and ε). To this end, we present a condition, called low-input side-channel
non-interference (LISCNI). We show that applying bucketing to a system that
satisfies the condition would result in a system that satisfies SRSCR. There-
fore, LISCNI is a sufficient condition for security under the bucketing technique.
Roughly, LISCNI says that (1) the side-channel observation does not depend on
attacker-controlled inputs (but may depend on secrets) and (2) the system is
secure against adversaries who only observe the regular channel. The degree of
security is proportional to that against regular-channel-only-observing adver-
saries and the granularity of buckets. A main benefit of the conditions SRSCR
and LISCNI is that they allow separation of concerns whereby the security of
the regular channel can be proven independently of concerns of side-channel

1 Sometimes, the terminology “constant-time implementation” is used to mean even
stricter requirements, such as requiring control flows to be secret independent [3,9].
In this paper, we use the terminology for a more permissive notion in which only
the running time is required to be secret independent.

A Formal Analysis of Timing Channel Security via Bucketing 31

information leakage, and certain conditions are placed on the side channel to
guarantee the security of the whole system.

Finally, we show that the bucketing technique can be applied in a compo-
sitional manner with the constant-time implementation technique. Specifically,
we show that when a system is a sequential composition of components in which
one component is constant-time and the other component LISCNI, the whole
system can be made secure by applying bucketing only to the non-constant-time
part. We show that the combined approach is able to ensure security of some
non-constant-time systems that cannot be made secure by applying bucketing
to the whole system. We summarize the main contributions below.

– A formal notion of security against adaptive side-channel-observing adver-
saries, called (f, ε)-security. (Sect. 2)

– A counterexample which shows that bucketing alone is insufficient for security
against adaptive side-channel attacks. (Sect. 2.1)

– A condition SRSCR which guarantees (f, ε)-security. (Sect. 3.1)
– A condition LISCNI which guarantees that the system satisfying it becomes

one that satisfies SRSCR and therefore becomes (f, ε)-secure after suitable
bucketing is applied. (Sect. 3.2)

– A compositional approach that combines bucketing and the constant-time
technique. (Sect. 3.3)

While the paper focuses on timing channels and bucketing, many of the results
are actually quite general and are applicable to side channels other than timing
channels. Specifically, aside from the compositional bucketing result that exploits
the “additive” nature of timing channels (cf. Sect. 3.3), the results are applicable
to any side channels and techniques that reduce the number of possible side-
channel observations

The rest of the paper is organized as follows. Section 2 formalizes the setting,
and defines (f, ε)-security which is a formal notion of security against adaptive
side-channel attacks. We also show that bucketing is in general insufficient to
guarantee security of systems against adaptive side-channel attacks. Section 3
presents sufficient conditions for ensuring (f, ε)-security: SRSCR and LISCNI.
We show that they facilitate proving the security of systems by allowing system
designers to prove the security of regular channels separately from the concern
of side channels. We also show that the LISCNI condition may be used in com-
bination with the constant-time implementation technique in a compositional
manner so as to prove the security of systems that are neither constant-time nor
can be made secure by (globally) applying bucketing. Section 4 discusses related
work. Section 5 concludes the paper with a discussion on future work.

2 Security Against Adaptive Side-Channel Attacks

Formally, a system (or, program) is a tuple (rc, sc,S, I,Orc,Osc) where rc and
sc are indexed families of functions (indexed by the security parameter) that

32 T. Terauchi and T. Antonopoulos

represent the regular-channel and side-channel input-output relation of the sys-
tem, respectively. S is a security-parameter-indexed family of sets of secrets (or,
high inputs) and I is a security-parameter-indexed family of sets of attacker-
controlled inputs (or, low inputs). A security parameter is a natural number that
represents the size of secrets, and we write Sn for the set of secrets of size n and
In for the set of corresponding attacker-controlled inputs. Each indexed function
rcn (respectively scn) is a function from Sn × In to Orc

n (resp. Osc
n), where Orc

and Osc are indexed families of sets of possible regular-channel and side-channel
outputs, respectively. For (s, v) ∈ Sn × In, we write rcn(s, v) (resp. scn(s, v))
for the regular-channel (resp. side-channel) output given the secret s and the
attacker-controlled input v.2 For a system C = (rc, sc,S, I,Orc,Osc), we often
write rc〈C〉 for rc, sc〈C〉 for sc, S〈C〉 for S, I〈C〉 for I, Orc〈C〉 for Orc, and
Osc〈C〉 for Osc. We often omit “〈C〉” when it is clear from the context.

For a system C and s ∈ Sn, we write Cn(s) for the oracle which, given
v ∈ In, returns a pair of outputs (o1, o2) ∈ Orc

n × Osc
n such that rcn(s, v) = o1

and scn(s, v) = o2. An adversary A is an algorithm that attempts to discover
the secret by making some number of oracle queries. As standard, we assume
that A has the full knowledge of the system. For i ∈ N, we write ACn(s)(i) for
the adversary A that makes at most i oracle queries to Cn(s). We impose no
restriction on how the adversary chooses the inputs to the oracle. Importantly,
he may choose the inputs based on the outputs of previous oracle queries. Such
an adversary is said to be adaptive [25].

Also, for generality, we intentionally leave the computation class of adver-
saries unspecified. The methods presented in this paper work for any computa-
tion class, including the class of polynomial time randomized algorithms and the
class of resource-unlimited randomized algorithms. The former is the standard
for arguing the security of cryptography algorithms, and the latter ensures infor-
mation theoretic security. In what follows, unless specified otherwise, we assume
that the computation class of adversaries is the class of resource-unlimited ran-
domized algorithms.

As standard, we define security as the bound on the probability that an
adversary wins a certain game. Let f be a function from N to N. We define
WinA(n, f) to be the event that the following game outputs true.

s ← Sn

s′ ← ACn(s)(f(n))
Output s = s′

Here, the first line selects s uniformly at random from Sn. We note that, while
we restrict to deterministic systems, the adversary algorithm A may be prob-
abilistic and also the secret s is selected randomly. Therefore, the full range of
probabilities is possible for the event WinA(n, f). Now, we are ready to give the
definition of (f, ε)-security.

2 We restrict to deterministic systems in this paper. Extension to probabilistic systems
is left for future work.

A Formal Analysis of Timing Channel Security via Bucketing 33

Definition 1 ((f, ε)-security). Let f : N → N and ε : N → R be such that 0 <
ε(n) ≤ 1 for all n ∈ N. We say that a system is (f, ε)-secure if there exists N ∈ N

such that for all adversaries A and n ≥ N , it holds that Pr[WinA(n, f)] < ε(n).

Roughly, (f, ε)-secure means that, for all sufficiently large n, there is no attack
that is able to recover secrets in f(n) number of queries with the probability of
success ε(n).

By abuse of notation, we often implicitly treat an expression e on the security
parameter n as the function λn∈N.e. Therefore, for example, (n, ε)-secure means
that there is no attack that is able to recover secrets in n many queries with the
probability of success ε(n), and (f, 1)-secure means that there is no attack that
makes at most f(n) number of queries and is always successful. Also, by abuse
of notation, we often write ε ≤ ε′ when ε(n) ≤ ε′(n) for all sufficiently large n,
and likewise for ε < ε′.

Fig. 1. Timing insecure login program

Example 1 (Leaky Login). Consider the program shown in Fig. 1 written in a
C-like language. The program is an abridged version of the timing insecure login
program from [6]. Here, pass is the secret and guess is the attacker-controlled
input, each represented as a length n bit array. We show that there is an efficient
adaptive timing attack against the program that recovers the secret in a linear
number of queries.

We formalize the program as the system C where for all n ∈ N,

– Sn = In = {0, 1}n;
– Orc

n = {true, false} and Osc
n = {i ∈ N | i ≤ n};

– For all (s, v) ∈ Sn × In, rcn(s, v) = true if s = v and rcn(s, v) = false if
s 	= v; and

– For all (s, v) ∈ Sn × In, scn(s, v) = (argmaxi s�i = v�i).

Here, a�i denotes the length i prefix of a. Note that sc expresses the timing-
channel observation, as its output corresponds to the number of times the loop
iterated.

For a secret s ∈ Sn, the adversary ACn(s)(n) efficiently recovers s as follows.
He picks an arbitrary v1 ∈ In as the initial guess. By seeing the timing-channel
output scn(s, v1), he would be able to discover at least the first bit of s, s[0],
because s[0] = v1[0] if and only if scn(s, v1) > 0. Then, he picks an arbitrary

34 T. Terauchi and T. Antonopoulos

v2 ∈ {0, 1}n satisfying v2[0] = s[0], and by seeing the timing-channel output, he
would be able to discover at least up to the second bit of s. Repeating the process
n times, he will recover all n bits of s. Therefore, the system is not (n, ε)-secure
for any ε. This is an example of an adaptive attack since the adversary crafts
the next input by using the knowledge of previous observations. �

Example 2 (Bucketed Leaky Login). Next, we consider the security of the pro-
gram from Example 1 but with bucketing applied. Here, we assume a constant
number of buckets, k, such that the program returns its output at time intervals
i · n/k for i ∈ {j ∈ N | j ≤ k}.3 (For simplicity, we assume that n is divisible by
k.) The bucketed program can be formalized as the system where

– rc, sc, I, Orc are as in Example 1;
– For all n ∈ N, Osc

n = {i ∈ N | i ≤ k}; and
– For all n ∈ N and (s, v) ∈ Sn × In, scn(s, v) = bkt(argmaxi s�i = v�i, n/k)

where bkt(i, j) is the smallest a ∈ N such that i ≤ a · j. It is easy to see that
the system is not constant-time for any k > 1. Nonetheless, we can show that
the system is (f, ε)-secure where f(n) = 2n/k − (N + 1) and ε(n) = 1 − N−1

2n/k for
any 1 ≤ N < 2n/k. Note that as k approaches 1 (and hence the system becomes
constant-time), f approaches 2n − (N + 1) and ε approaches 1 − N−1

2n , which
match the security bound of the ideal login program that only leaks whether
the input guess matched the password or not. We will show that the approach
presented in Sect. 3.1 can be used to derive such a bound. �

2.1 Insufficiency of Bucketing

We show that bucketing is in general insufficient to guarantee the security of
systems against adaptive side-channel attacks. In fact, we show that bucket-
ing with even just two buckets is insufficient. (Two is the minimum number
of buckets that can be used to show the insufficiency because having only one
bucket implies that the system is constant-time and therefore is secure.) More
generally, our result applies to any side channels, and it shows that there are
systems with just two possible side-channel outputs and completely secure (i.e.,
non-interferent [19,37]) regular channel that is efficiently attackable by side-
channel-observing adversaries.

Consider the system such that, for all n ∈ N,

– Sn = {0, 1}n and In = {i ∈ N | i ≤ n};
– Orc

n = {•} and Osc
n = {0, 1};

– For all (s, v) ∈ Sn × In, rcn(s, v) = •; and
– For all (s, v) ∈ Sn × In, scn(s, v) = s[v].

Note that the regular channel rc only has one possible output and therefore
is non-interferent. The side channel sc has just two possible outputs. The side
channel, given an attacker-controlled input v ∈ In, reveals the v-th bit of s.
3 A similar analysis can be done for any strictly sub-linear number of buckets.

A Formal Analysis of Timing Channel Security via Bucketing 35

It is easy to see that the system is linearly attackable. That is, for any secret
s ∈ Sn, the adversary may recover the entire n bits of s by querying with each
of the n-many possible attacker-controlled inputs. Therefore, the system is not
(n, ε)-secure for any ε. Note that the side channel is easily realizable as a timing
channel, for example, by having a branch with the branch condition “s[v] = 0”
and different running times for the branches.

We remark that the above attack is not adaptive. Therefore, the counterex-
ample actually shows that bucketing can be made ineffective by just allowing
multiple non-adaptive side-channel observations. We also remark that the coun-
terexample shows that some previously proposed measures are insufficient. For
example, the capacity measure [5,28,33,39] would not be able to detect the vul-
nerability of the example, because the measure is equivalent to the log of the
number of possible outputs for deterministic systems.

3 Sufficient Conditions for Security Against Adaptive
Side-Channel Attacks

In this section, we present conditions that guarantee the security of systems
against adaptive side-channel-observing adversaries. The condition SRSCR pre-
sented in Sect. 3.1 guarantees that systems that satisfy it are secure, whereas
the condition LISCNI presented in Sect. 3.2 guarantees that systems that satisfy
it become secure once bucketing is applied. We shall show that the conditions
facilitate proving (f, ε)-security of systems by separating the concerns of regular
channels from those of side channels. In addition, we show in Sect. 3.3 that the
LISCNI condition may be used in combination with constant-time implementa-
tion techniques in a compositional manner so as to prove the security of systems
that are neither constant-time nor can be made secure by (globally) applying
bucketing.

3.1 Secret-Restricted Side-Channel Refinement Condition

We present the secret-restricted side-channel refinement condition (SRSCR).
Informally, the idea here is to find large subsets of secrets S′ ⊆ P(Sn) such
that for each S′′ ∈ S′, the secrets are difficult for an adversary to recover by
only observing the regular channel, and that the side channel reveals no more
information than the regular channel for those sets of secrets. Then, because S′

is large, the entire system is also ensured to be secure with high probability. We
adopt refinement order [29,38], which had been studied in quantitative infor-
mation flow research, to formalize the notion of “reveals no more information”.
Roughly, a channel C1 is said to be a refinement of a channel C2 if, for every
attacker-controlled input, every pair of secrets that C2 can distinguish can also
be distinguished by C1.

We write O• for the indexed family of sets such that O•
n = {•} for all n ∈ N.

Also, we write sc• for the indexed family of functions such that sc•
n(s, v) = • for

all n ∈ N and (s, v) ∈ Sn×In. For C = (rc, sc,S, I,Orc,Osc), we write C• for the
system (rc, sc•,S, I,Orc,O•). We define the notion of regular-channel security.

36 T. Terauchi and T. Antonopoulos

Definition 2 (Regular-channel (f, ε)-security). We say that the C is
regular-channel (f, ε)-secure if C• is (f, ε)-secure.

Roughly, regular-channel security says that the system is secure against attacks
that only observe the regular channel output.

Let us fix a system C = (rc, sc,S, I,Orc,Osc). For an indexed family of sets
of sets of secrets S′ (i.e., S′

n ⊆ P(Sn) for each n), we write S′′ ≺ S′ when S′′

is an indexed family of sets of secrets such that S′′
n ∈ S′

n for each n. Note that
such S′′ satisfies S′′

n ⊆ Sn for each n. Also, for S′′ ≺ S′, we write C|S′′ for the
system that is equal to C except that its secrets are restricted to S′′, that is,
(rc, sc, S′′, I,Orc,Osc). Next, we formalize the SRSCR condition.

Definition 3 (Secret-Restricted Side-Channel Refinement). Let f : N →
N, ε : N → (0, 1], and 0 < r ≤ 1. We say that the system C = (rc, sc,S, I,Orc,
Osc) satisfies the secret-restricted side-channel refinement condition with f , ε,
and r, written SRSCR(f, ε, r), if there exists an indexed family of sets of sets of
secrets Sres such that Sres

n ⊆ P(Sn) for all n ∈ N, and:

(1) For all n ∈ N, r ≤ |⋃ Sres
n |/|Sn|;

(2) For all S′′ ≺ Sres , C|S′′ is regular-channel (f, ε)-secure; and
(3) For all n ∈ N, S ∈ Sres

n , v ∈ In and s1, s2 ∈ S, it holds that scn(s1, v) 	=
scn(s2, v) ⇒ rcn(s1, v) 	= rcn(s2, v).

Condition (2) says that the system is regular-channel (f, ε)-secure when
restricted to any subset of secrets S′′ ≺ Sres . Condition (3) says that the sys-
tem’s side channel reveals no more information than its regular channel for the
restricted secret subsets. Condition (1) says that the ratio of the restricted set
over the entire space of secrets is at least r.4

We informally describe why SRSCR is a sufficient condition for security. The
condition guarantees that, for the restricted secrets Sres , the attacker gains
no additional information by observing the side-channel compared to what he
already knew by observing the regular channel. Then, because r is a bound on
the probability that a randomly selected secret falls in Sres , the system is secure
provided that r is suitably large and the system is regular-channel secure. The
theorem below formalizes the above intuition.

Theorem 1 (SRSCR Soundness). Suppose C satisfies SRSCR(f, ε, r). Then,
C is (f, ε′)-secure, where ε′ = 1 − r(1 − ε).

Proof. Let Sres be an indexed family of sets of secret subsets that satisfies con-
ditions (1), (2), and (3) of SRSCR(f, ε, r). By condition (2), for all sufficiently
large n and adversaries A, Pr[Win•,res

A (n, f)] < ε(n) where Win•,res
A (n, f) is the

modified game in which the oracle Cn(s) always outputs • as its side-channel
output and the secret s is selected randomly from

⋃
Sres
n (rather than from Sn).

4 It is easy to relax the notion to be asymptotic so that the conditions need to hold
only for n ≥ N for some N ∈ N.

A Formal Analysis of Timing Channel Security via Bucketing 37

For any n, the probability that a randomly selected element from Sn is in⋃
Sres
n is at least r by condition (1). That is, Pr[s ∈ ⋃

Sres
n | s ← Sn] ≥ r.

Also, Pr[¬Win•,res
A (n, f)] > 1 − ε(n) (for sufficiently large n) for any A by the

argument above. Therefore, by condition (3), for sufficiently large n,

Pr[¬WinA(n, f)] ≥ Pr[s ∈ Sres
n | s ←

⋃
Sn] · Pr[¬Win•,res

A (n, f)] > r · (1 − ε(n))

Therefore, Pr[WinA(n, f)] < 1 − r(1 − ε(n)) for sufficiently large n.
�
As a special case where the ratio r is 1, Theorem 1 implies that if a system
satisfies SRSCR(f, ε, 1) then it is (f, ε)-secure.

Example 3. Recall the bucketed leaky login program from Example 2. We show
that the program satisfies the SRSCR condition. For each n, a ∈ {0, 1}n, and
0 ≤ i < k, let Sa,i

n ⊆ Sn be the set of secrets whose sub-bits from i · n/k to
(i + 1) · n/k − 1 may differ but the remaining n − n/k bits are a (and therefore
same). That is,

Sa,i
n = {s ∈ Sn | s[0, . . . , i · n/k − 1] = a[0, . . . , i · n/k − 1]

and s[(i + 1) · n/k, . . . , n − 1] = a[(i + 1) · n/k, . . . , n − 1]}
Let Sres be the indexed family of sets of sets of secrets such that Sres

n =
{Sa,i

n | a ∈ {0, 1}n} for some i. Then, the system satisfies conditions (1), (2),
and (3) of SRSCR(f, ε, r) with r = 1, f(n) = 2n/k − (N + 1), and ε = 1 − N−1

2n/k

for any 1 ≤ N < 2n/k. Note that (1) is satisfied with r = 1 because Sn =
⋃

Sres
n ,

and (2) is satisfied because |Sa,i
n | = 2n/k and (f, ε) matches the security of the

ideal login program without side channels for the set of secrets of size 2n/k. To
see why (3) is satisfied, note that for any v ∈ In and s ∈ Sa,i

n , scn(s, v) = i
if s 	= v, and scn(s, v) = k if s = v. Hence, for any v ∈ In and s1, s2 ∈ Sa,i

n ,
scn(s1, v) 	= scn(s2, v) ⇒ rcn(s1, v) 	= rcn(s2, v). Therefore, by Theorem 1, it
follows that bucketed leaky login program is (f, ε)-secure. Note that the bound
matches the one given in Example 2. �

To effectively apply Theorem 1, one needs to find suitable subsets of secrets
Sres on which the system’s regular channel is (f, ε)-secure and the side channel
satisfies the refinement relation with respect to the regular channel. As also
observed in prior works [29,38], the refinement relation is a 2-safety property [13,
35] for which there are a number of effective verification methods [2,6,10,32,34].
For instance, self-composition [3,4,8,35] is a well-known technique that can be
used to verify arbitrary 2-safety properties.

We note that a main benefit of Theorem 1 is separation of concerns whereby
the security of regular channel can be proven independently of side channels, and
the conditions required for side channels can be checked separately. For instance,
a system designer may prove the regular-channel (f, ε)-security by an elaborate
manual reasoning, while the side-channel conditions are checked, possibly auto-
matically, by established program verification methods such as self composition.

38 T. Terauchi and T. Antonopoulos

Remarks. We make some additional observations regarding the SRSCR condi-
tion. First, while Theorem 1 derives a sound security bound, the bound may
not be the tightest one. Indeed, when the adversary’s error probability (i.e., the
“ε” part of (f, ε)-security) is 1, the bucketed leaky login program can be shown
to be actually (k(2n/k − 2), 1)-secure, whereas the bound derived in Example 3
only showed that it is (2n/k − 2, 1)-secure. That is, there is a factor k gap in the
bounds. Intuitively, the gap occurs for the example because the buckets partition
a secret into k number of n/k bit blocks, and while an adversary needs to recover
the bits of every block in order to recover the entire secret, the analysis derived
the bound by assessing only the effort required to recover bits from one of the
blocks. Extending the technique to enable tighter analyses is left for future work.

Secondly, the statement of Theorem 1 says that when regular channel of the
system is (f, ε)-secure for certain subsets of secrets, then the whole system is
(f, ε′)-secure under certain conditions. This may give an impression that only
the adversary-success probability parameter (i.e., ε) of (f, ε)-security is affected
by the additional consideration of side channels, leaving the number of oracle
queries parameter (i.e., f) unaffected. However, as also seen in Example 2, the
two parameters are often correlated so that smaller f implies smaller ε and
vice versa. Therefore, Theorem 1 suggests that the change in the probability
parameter (i.e., from ε to ε′) may need to be compensated by a change in the
degree of security with respect to the number of oracle queries.

Finally, condition (2) of SRSCR stipulates that the regular channel is (f, ε)-
secure for each restricted family of sets of secrets S′′ ≺ Sres rather than the
entire space of secrets S. In general, a system can be less secure when secrets are
restricted because the adversary has a smaller space of secrets to search. Indeed,
in the case when the error probability is 1, the regular channel of the bucketed
leaky login program can be shown to be (2n − 2, 1)-secure, but when restricted
to each S′′ ≺ Sres used in the analysis of Example 3, it is only (2n/k − 2, 1)-
secure. That is, there is an implicit correlation between the sizes of the restricted
subsets and the degree of regular-channel security. Therefore, finding Sres such
that each S′′ ∈ Sres

n is large and satisfies the conditions is important for deriving
good security bounds, even when the ratio |⋃ Sres

n |/|Sn| is large as in the analysis
of the bucketed leaky login program.

3.2 Low-Input Side-Channel Non-Interference Condition

While SRSCR facilitates proving security of systems by separating regular chan-
nels from side channels, it requires one to identify suitable subsets of secrets
Sres that satisfy the conditions. This can be a hurdle to applying the proof
method. To this end, this section presents a condition, called low-input side-
channel non-interference (LISCNI), which guarantees that a system satisfying
it becomes secure after applying bucketing (or other techniques) to reduce the
number of side-channel outputs. Unlike SRSCR, the condition does not require
identifying secret subsets. Roughly, the condition stipulates that the regular
channel is secure (for the entire space of secrets) and that the side-channel out-
puts are independent of attacker-controlled inputs.

A Formal Analysis of Timing Channel Security via Bucketing 39

We show that the system satisfying the condition becomes a system satisfying
SRSCR once bucketing is applied, where the degree of security (i.e., the param-
eters f , ε, r of SRSCR) will be proportional to the degree of regular-channel
security and the granularity of buckets. Roughly, this holds because for a system
whose side-channel outputs are independent of attacker-controlled inputs, buck-
eting is guaranteed to partition the secrets into a small number of sets (relative
to the bucket granularity) such that for each of the sets, the side channel cannot
distinguish the secrets in the set, and the regular-channel security transfers to a
certain degree to the case when the secrets are restricted to the ones in the set.

As we shall show next, while the condition is not permissive enough to prove
security of the leaky login program (cf. Examples 1, 2 and 3), it covers interesting
scenarios such as fast modular exponentiation (cf. Example 4). Also, as we shall
show in Sect. 3.3, the condition may be used compositionally in combination
with the constant-time implementation technique [1,3,9,22] to further widen its
applicability.

Definition 4 (Low-Input Side-Channel Non-Interference). Let f : N →
N and ε : N → (0, 1]. We say that the system C satisfies the low-input side-
channel non-interference condition with f and ε, written LISCNI(f, ε), if the
following conditions are satisfied:

(1) C is regular-channel (f, ε)-secure; and
(2) For all n ∈ N, s ∈ Sn, and v1, v2 ∈ In, it holds that scn(s, v1) = scn(s, v2).

Condition (2) says that the side-channel outputs are independent of low inputs
(i.e., attacker-controlled inputs). We note that this is non-interference with
respect to low inputs, whereas the usual notion of non-interference says that
the outputs are independent of high inputs (i.e., secrets) [19,37].5

The LISCNI condition ensures the security of systems after bucketing is
applied. We next formalize the notion of “applying bucketing”.

Definition 5 (Bucketing). Let C be a system and k ∈ N such that k > 0.
The system C after k-bucketing is applied, written Bktk(C), is a system C ′ that
satisfies the following:

(1) rc〈C ′〉 = rc〈C〉, S〈C ′〉 = S〈C〉, I〈C ′〉 = I〈C〉, and Orc〈C ′〉 = Orc〈C〉;
(2) For all n ∈ N, Osc〈C ′〉n = {�1, . . . , �k} where �i 	= �j for each i 	= j; and
(3) For all n ∈ N, s1, s2 ∈ Sn and v1, v2 ∈ In, sc〈C〉n(s1, v1) = sc〈C〉n(s2, v2) ⇒

sc〈C ′〉n(s1, v2) = sc〈C ′〉n(s2, v2).

Roughly, k-bucketing partitions the side channel outputs into k number of buck-
ets. We note that our notion of “bucketing” is quite general in that it does not
specify how the side channel outputs are partitioned into the buckets. Indeed, as
we shall show next, the security guarantee derived by LISCNI only requires the
fact that side channel outputs are partitioned into a small number of buckets.

5 As with SRSCR, it is easy to relax the notion to be asymptotic so that condition (2)
only needs to hold for large n.

40 T. Terauchi and T. Antonopoulos

This makes our results applicable to any techniques (beyond the usual bucket-
ing technique for timing channels [7,14,26,27,41]) that reduce the number of
possible side-channel outputs.

Below states that a system satisfying the LISCNI condition becomes one that
satisfies the SRSCR condition after suitable bucketing is applied.

Theorem 2 (LISCNI Soundness). Suppose that C satisfies LISCNI(f, ε). Let
k > 0 be such that k · ε ≤ 1. Then, Bktk(C) satisfies SRSCR(f, k · ε, 1/k).

Proof. Let C ′ = Bktk(C). By condition (2) of k-bucketing and condition (2) of
LISCNI(f, ε), we have that for all n ∈ N, s ∈ Sn and v1, v2 ∈ In, sc〈C ′〉n(s, v1) =
sc〈C ′〉n(s, v2). Therefore, by k-bucketing, there must be an indexed family of
sets of secrets S′ such that for all n, (a) S′

n ⊆ Sn, (b) |S′
n| ≥ |Sn|/k, and (c) for

all s1, s2 ∈ S′
n and v1, v2 ∈ In, sc〈C ′〉n(s1, v1) = sc〈C ′〉n(s2, v2). Note that such

S′ can be found by, for each n, choosing a bucket into which a maximal number
of secrets fall. We define an indexed family of sets of sets of secrets Sres to be
such that Sres

n is the singleton set {S′
n} for each n.

We show that C ′ satisfies conditions (1), (2), and (3) of SRSCR(f, k · ε, 1/k)
with the restricted secret subsets Sres defined above. Firstly, (1) is satisfied
because |S′

n| ≥ |Sn|/k. Also, (3) is satisfied because of property (c) above (i.e.,
the side channel is non-interferent for the subset).

It remains to show that (2) is satisfied. That is, C ′|S′ is regular-channel
(f, k · ε)-secure. For contradiction, suppose that C ′|S′ is not regular-channel
(f, k · ε)-secure, that is, there exists a regular-channel attack A that queries (the
regular channel of) C ′|S′ at most f(n) many times and successfully recovers the
secret with probability at least k ·ε(n). Then, we can construct a regular-channel
adversary for C which simply runs A (on any secret from Sn). Note that the
adversary makes at most f(n) many queries. We argue that the probability that
the adversary succeeds in recovering the secret is at least ε. That is, we show
that Pr[Win•

A(n, f)] ≥ ε(n) (for sufficiently large n) where Win•
A(n, f) is the

modified game in which the oracle always outputs • as its side-channel output.
To see this, note that the probability that a secret randomly selected from

Sn is in S′
n is at least 1/k, that is, Pr[s ∈ S′

n | s ← Sn] ≥ 1/k. Also, A’s regular-
channel attack succeeds with probability at least k · ε given a randomly chosen
secret from S′

n, that is, Pr[Win•,res
A (n, f)] ≥ k · ε(n) where Win•,res

A (n, f) is the
modified game in which the oracle always outputs • as its side-channel output
and the secret is selected randomly from S′

n (rather than from Sn). Therefore,
for sufficiently large n, we have:

Pr[Win•
A(n, f)] ≥ Pr[s ∈ S′

n | s ← Sn] ·Pr[Win•,res
A (n, f)] ≥ 1/k ·(k ·ε(n)) = ε(n)

This contradicts condition (1) of LISCNI(f, ε) which says that C is regular-
channel (f, ε)-secure. Therefore, C ′|S′ is regular-channel (f, k · ε)-secure.
�

As a corollary of Theorems 1 and 2, we have the following.

Corollary 1. Suppose that C satisfies LISCNI(f, ε). Let k > 0 be such that k·ε ≤
1. Then, Bktk(C) is (f, ε′)-secure where ε′ = 1 − 1/k + ε.

A Formal Analysis of Timing Channel Security via Bucketing 41

Note that as k approaches 1 (and hence the system becomes constant-time),
the security bound of Bktk(C) approaches (f, ε), matching the regular-channel
security of C. As with Theorem 1, Theorem 2 may give an impression that
the conditions only affect the adversary-success probability parameter (i.e., ε)
of (f, ε)-security, leaving the number of queries parameter (i.e., f) unaffected.
However, as also remarked in Sect. 3.1, the two parameters are often correlated
so that a change in one can affect the other. Also, like SRSCR, LISCNI separates
the concerns regarding regular channels from those regarding side channels. A
system designer may check the security of the regular channel while disregarding
the side channel, and separately prove the condition on the side channel.

Fig. 2. Fast modular exponentiation

Example 4 (Fast Modular Exponentiation). Fast modular exponentiation is an
operation that is often found in cryptography algorithms such as RSA [23,30].
Figure 2 shows its implementation written in a C-like language. It computes
yx mod m where x is the secret represented as a length n bit array and y is an
attacker controlled-input. The program is not constant-time (assuming that then
and else branches in the loop have different running times), and effective timing
attacks have been proposed for the program [23,30].

However, assuming that running time of the operation (a * y) % m is inde-
pendent of y, it can be seen that the program satisfies the LISCNI condition.6

Under the assumption, the program can be formalized as the system C where,
for all n ∈ N,

– Sn = In = {0, 1}n;
– Orc

n = Osc
n = N;

– For all (s, v) ∈ Sn × In, rcn(s, v) = vs mod m; and
– For all (s, v) ∈ Sn × In, scn(s, v) = timet · num(s, 1) + timef · num(s, 0).

6 This is admittedly an optimistic assumption. Indeed, proposed timing attacks exploit
the fact that the running time of the operation can depend on y [23,30]. Here, we
assume that the running time of the operation is made independent of y by some
means (e.g., by adopting the constant-time implementation technique).

42 T. Terauchi and T. Antonopoulos

Here, num(s, b) = |{i ∈ N | i < n ∧ s[i] = b}| for b ∈ {0, 1}, and timet (resp.
timef) is the running time of the then (resp. else) branch.

Let the computation class of adversaries be the class of randomized poly-
nomial time algorithms. Then, under the standard computational assumption
that inverting modular exponentiation is hard, one can show that C satisfies
LISCNI(f, ε) for any f and negligible ε. This follows because the side-channel
outputs are independent of low inputs, and the regular-channel is (f, ε)-secure
for any f and negligible ε under the assumption.7 Therefore, it can be made
(f, ε)-secure for any f and negligible ε by applying bucketing. �

Remarks. We make some additional observations regarding the LISCNI condi-
tion. First, similar to condition (3) of SRSCR, the low-input independence condi-
tion of LISCNI (condition (2)) is a 2-safety property and is amenable to various
verification methods proposed for the class of properties. In fact, because the
condition is essentially side-channel non-interference but with respect to low
inputs instead of high inputs, it can be checked by the methods for checking
ordinary side-channel non-interference by reversing the roles of high inputs and
low inputs [1,3,6,9,20].

Secondly, we note that the leaky login program from Example 1 does not
satisfy LISCNI. This is because the program’s side channel is not non-interferent
with respect to low inputs. Indeed, given any secret s ∈ Sn, one can vary the
running times by choosing low inputs v, v′ ∈ In with differing lengths of match-
ing prefixes, that is, (argmaxi s�i = v�i) 	= (argmaxi s�i = v′�i). Nevertheless, as
we have shown in Examples 2 and 3, the program becomes secure once bucketing
is applied. In fact, it becomes one that satisfies SRSCR as shown in Example 3.
Ideally, we would like to find a relatively simple condition (on systems before
bucketing is applied) that covers many systems that would become secure by
applying bucketing. However, finding such a condition that covers a system like
the leaky login program may be non-trivial. Indeed, predicting that the leaky
login program become secure after applying bucketing appears to require more
subtle analysis of interaction between low inputs and high inputs. (In fact, it
can be shown that arbitrarily partitioning the side-channel outputs to a small
number of buckets does not ensure security for this program.) Extending the
technique to cover such scenarios is left for future work.

3.3 Combining Bucketing and Constant-Time Implementation
Compositionally

We show that the LISCNI condition may be applied compositionally with the
constant-time implementation technique (technically, we will only apply the con-
dition (2) of LISCNI compositionally). As we shall show next, the combined app-
roach is able to ensure security of some non-constant-time systems that cannot
7 The latter holds because (f, ε)-security is asymptotic and the probability that any

regular-channel adversary of the computation class may correctly guess the secret for
this system is negligible (under the computational hardness assumption). Therefore,
a similar analysis can be done for any sub-polynomial number of buckets.

A Formal Analysis of Timing Channel Security via Bucketing 43

be made sure by applying bucketing globally to the whole system. We remark
that, in contrast to those of the previous sections of the paper, the results of this
section are more specialized to the case of timing channels. First, we formalize
the notion of constant-time implementation.

Fig. 3. A non-constant-time program that cannot be made secure by globally applying
bucketing.

Definition 6 (Constant-Time). Let f : N → N and ε : N → (0, 1]. We say
that a system C satisfies the constant-time condition (or, timing-channel non-
interference) with f and ε, written CT(f, ε), if the following is satisfied:

(1) C is regular-channel (f, ε)-secure; and
(2) For all n ∈ N, v ∈ In, and s1, s2 ∈ Sn, scn(s1, v) = scn(s2, v).

Note that CT requires that the side channel is non-interferent (with respect to
secrets). The following theorem is immediate from the definition, and states that
CT is a sufficient condition for security.

Theorem 3 (CT Soundness). If C satisfies CT(f, ε), then C is (f, ε)-secure.

To motivate the combined application of CT and LISCNI, let us consider the
following example which is neither constant-time nor can be made secure by
(globally) applying bucketing.

Example 5. Figure 3 shows a simple, albeit contrived, program that we will use
to motivate the combined approach. Here, sec is a n-bit secret and inp is a
n-bit attacker-controlled input. Both sec and inp are interpreted as unsigned
n-bit integers where − and > are the usual unsigned integer subtraction and
comparison operations. The regular channel always outputs true and hence is
non-interferent. Therefore, only the timing channel is of concern.

The program can be formalized as Ccomp where for all n ∈ N,

– Sn = In = {0, 1}n;
– Orc

n = {•};
– Osc

n = {i ∈ N | i ≤ 2n+1};
– For all (s, v) ∈ Sn × In, rcn(s, v) = •; and
– For all (s, v) ∈ Sn × In, scn(s, v) = s + v.

44 T. Terauchi and T. Antonopoulos

Note that the side channel outputs the sum of the high input and the low input.
It is easy to see that the system is not constant-time (i.e., not CT(f, ε) for any
f and ε). Furthermore, the system is not secure as is, because an adversary can
immediately recover the secret by querying with any input and subtracting the
input from the side-channel output.

Also, it is easy to see that the system does not satisfy LISCNI(f, ε) for any f
and ε either, because its side-channel outputs are not independent of low inputs.
In fact, we can show that arbitrarily applying bucketing (globally) to the system
does not guarantee security. To see this, let us consider applying bucketing with
just two buckets whereby the buckets partition the possible running times in two
halves so that running times less than or equal to 2n fall into the first bucket
and those greater than 2n fall into the other bucket. After applying bucketing,
the system is C ′ where

– rc〈C ′〉, S〈C ′〉, I〈C ′〉, and Orc〈C ′〉 are same as those of Ccomp;
– For all n ∈ N, Osc〈C ′〉n = {0, 1}; and
– For all n ∈ N and (s, v) ∈ Sn × In, sc〈C ′〉n(s, v) = 0 if s + v ≤ 2n, and
sc〈C ′〉n(s, v) = 1 otherwise.

We show that there exists an efficient adaptive attack against C ′. Let s ∈
Sn. The adversary A recovers s by only making linearly many queries via the
following process. First, A queries with the input v1 = 2n−1. By observing the
side-channel output, A will know whether 0 ≤ s ≤ 2n−1 (i.e., the side-channel
output was 0) or 2n−1 < s ≤ 2n (i.e., the side-channel output was 1). In the
former case, A picks the input v2 = 2n−1 + 2n−2 for the next query, and in
the latter case, he picks v2 = 2n−2. Continuing the process in a binary search
manner and reducing the space of possible secrets by 1/2 in each query, A is
able to hone in on s within n many queries. Therefore, C ′ is not (n, ε)-secure for
any ε. �

Next, we present the compositional bucketing approach. Roughly, our com-
positionality theorem (Theorem 4) states that the sequential composition of a
constant-time system with a system whose side channel is non-interferent with
respect to low inputs can be made secure by applying bucketing to only the
non-constant-time component. As with LISCNI, the degree of security of the
composed system is relative to the that of the regular channel and the granular-
ity of buckets.

To state the compositionality theorem, we explicitly separate the conditions
on side channels of CT and LISCNI from those on regular channels and introduce
terminologies that only refer to the side-channel conditions. Let us fix C. We
say that C satisfies CTsc, if it satisfies condition (2) of CT, that is, for all n ∈ N,
v ∈ In, and s1, s2 ∈ Sn, scn(s1, v) = scn(s2, v). Also, we say that C satisfies
LISCNIsc if it satisfies condition (2) of LISCNI, that is, for all n ∈ N, s ∈ Sn,
and v1, v2 ∈ In, scn(s, v1) = scn(s, v2). Next, we define sequential composition
of systems.

Definition 7 (Sequential Composition). Let C† and C‡ be systems such
that S〈C†〉 = S〈C‡〉, I〈C†〉 = I〈C‡〉, and for all n ∈ N, Osc〈C‡〉n ⊆ N and

A Formal Analysis of Timing Channel Security via Bucketing 45

Osc〈C‡〉n ⊆ N. The sequential composition of C† with C‡, written C†;C‡, is the
system C such that

– S〈C〉 = S(C†) and I〈C〉 = I(C†); and
– For all n ∈ N and (s, v) ∈ Sn × In, sc〈C ′〉n(s, v) = sc〈C†〉n(s, v) +

sc〈C‡〉n(s, v).

We note that the definition of sequential composition specifically targets the
case when the side channel is a timing channel, and says that the side-channels
outputs are numeric values and that the side-channel output of the composed
system is the sum of those of the components. Also, the definition leaves the
composition of regular channels open, and allows the regular channel of the
composed system to be any function from Sn × In. We are now ready to state
the compositionality theorem.

Theorem 4 (Compositionality). Let C† be a system that satisfies LISCNIsc

and C‡ be a system that satisfies CTsc. Suppose that Bktk(C†);C‡ is regular-
channel (f, ε)-secure where k · ε ≤ 1. Then, Bktk(C†);C‡ is (f, ε′)-secure, where
ε′ = 1 − 1/k + ε.

Proof. By Theorem 1, it suffices to show that Bktk(C†);C‡ satisfies SRSCR(f, k ·
ε, 1/k). By an argument similar to the proof of Theorem 2, there must be an
indexed family of sets of secrets S′ such that, for all n ∈ N, (a) S′

n ⊆ Sn,
(b) |S′

n| ≥ |Sn|/k, and (c) for all s1, s2 ∈ S′
n and v1, v2 ∈ In,

sc〈Bktk(C†)〉n(s1, v1) = sc〈Bktk(C†)〉n(s2, v2). We define an indexed family of
sets of sets of secrets Sres to be such that Sres

n is the singleton set {S′
n} for each

n.
We show that C = Bktk(C†);C‡ satisfies conditions (1), (2), and (3) of

SRSCR(f, k ·ε, 1/k) with the restricted secret subsets Sres defined above. Firstly,
(1) is satisfied because |S′

n| ≥ |Sn|/k. Also, because Bktk(C†);C‡ is regular-
channel (f, ε)-secure, we can show that (2) is satisfied by an argument similar
to the one in the proof of Theorem 2.

It remains to show that (3) is satisfied. It suffices to show that for all n ∈ N,
v ∈ In, and s1, s2 ∈ S′

n, sc〈C〉n(s1, v) = sc〈C〉n(s2, v). That is, the side channel
of the composed system is non-interferent (with respect to high inputs) for the
subset S′. By the definition of the sequential composition, for all v ∈ In and
s ∈ Sn, sc〈C〉n(s, v) = sc〈Bktk(C†)〉n(s, v) + sc〈C‡〉n(s, v). Therefore, for all
v ∈ In and s1, s2 ∈ S′

n,

sc〈C〉n(s1, v) = sc〈Bktk(C†)〉n(s1, v) + sc〈C‡〉n(s1, v)
= sc〈Bktk(C†)〉n(s2, v) + sc(C‡)n(s2, v)
= sc〈C〉n(s2, v)

because sc〈C‡〉n(s1, v) = sc〈C‡〉n(s2, v) by CTsc of C‡, and sc〈Bktk(C†)〉n(s1, v)
= sc〈Bktk(C†)〉n(s2, v) by (c) above.
�

We note that the notion of sequential composition is symmetric. Therefore,
Theorem 4 implies that the composing the components in the reverse order, that
is, C‡;Bktk(C†), is also secure provided that its regular channel is secure.

46 T. Terauchi and T. Antonopoulos

The compositionality theorem suggests the following compositional app-
roach to ensuring security. Given a system C that is a sequential composi-
tion of a component whose side channel outputs are independent of high inputs
(i.e., satisfies CTsc) and a component whose side channel outputs are indepen-
dent of low inputs (i.e., satisfies LISCNIsc), we can ensure the security of C by
proving its regular-channel security and applying bucketing only to the non-
constant-time component.

Example 6. Let us apply compositional bucketing to the system Ccomp from
Example 5. Recall that the system is neither constant-time nor applying buck-
eting to the whole system ensures its security. The system can be seen as the
sequential composition Ccomp = C†;C‡ where C† and C‡ satisfy the following:

– S and I are as in Ccomp;
– For all n ∈ N, Osc〈C†〉n = Osc〈C‡〉n = {i ∈ N | i ≤ 2n}; and
– For all n ∈ N and (s, v) ∈ Sn × In, sc〈C†〉n(s, v) = s and sc〈C‡〉n(s, v) = v.

Note that C‡ satisfies CTsc as its side-channel outputs are high-input inde-
pendent, and, C† satisfies LISCNIsc as its side-channel outputs are low-input
independent. By applying bucketing only to the component C†, we obtain the
system Bktk(C†);C‡. The regular-channel of Bktk(C†);C‡ (i.e., that of Ccomp) is
(f, ε)-secure for any f and negligible ε because it is non-interferent (with respect
to high inputs) and the probability that an adversary may recover a secret for
such a system is at most 1/|Sn|.8 Therefore, by Theorem 4, Bktk(C†);C‡ is
(f, ε)-secure for any f and negligible ε. �

The above example shows that compositional bucketing can be used to ensure
security of non-constant-time systems that cannot be made secure by a whole-
system bucketing. It is interesting to observe that the constant-time condition,
CTsc, requires the side-channel outputs to be independent of high inputs but
allows dependency on low inputs, while LISCNIsc is the dual and says that the
side-channel outputs are independent of low inputs but may depend on high
inputs. Our compositionality theorem (Theorem 4) states that a system consist-
ing of such parts can be made secure by applying bucketing only to the part
that satisfies the latter condition.

It is easy to see that sequentially composing components that satisfy CTsc

results in a system that satisfies CTsc, and likewise, sequentially composing com-
ponents that satisfy LISCNIsc results in a system that satisfies LISCNIsc. There-
fore, such compositions can be used freely in conjunction with the compositional
bucketing technique of this section. We also conjecture that components that are
made secure by compositional bucketing can themselves be sequentially com-
posed to form a secure system (possibly with some decrease in the degree of
security). We leave a more detailed investigation for future work.

8 Therefore, a similar analysis can be done for any strictly sub-exponential number of
buckets.

A Formal Analysis of Timing Channel Security via Bucketing 47

4 Related Work

As remarked in Sect. 1, much research has been done on defending against tim-
ing attacks and more generally side channel attacks. For instance, there have
been experimental evaluation on the effectiveness of bucketing and other timing-
channel mitigation schemes [14,18], and other works have proposed information-
theoretic methods for formally analyzing the security of (deterministic and prob-
abilistic) systems against adaptive adversaries [12,25].

However, few prior works have formally analyzed the effect of bucketing on
timing channel security (or similar techniques for other side channels) against
adaptive adversaries. Indeed, to our knowledge, the only prior work to do so are
the series of works by Köpf et al. [26,27] who investigated the effect of bucketing
applied to blinded cryptography algorithms. They show that applying bucket-
ing to a blinded cryptography algorithm whose regular channel is IND-CCA2
secure results in an algorithm that is IND-CCA2 secure against timing-channel-
observing adversaries. In addition, they show bounds on information leaked by
such bucketed blinded cryptography algorithms in terms of quantitative informa-
tion flow [5,28,33,39,40]. By contrast, we analyze the effect of applying bucketing
to general systems, show that bucketing is in general insufficient against adaptive
adversaries, and present novel conditions that guarantee security against such
adversaries. (In fact, the results of [26,27] may be seen as an instance of our
LISCNI condition because blinding makes the behavior of cryptographic algo-
rithms effectively independent of attacker-controlled inputs.) Also, our results
are given in the form of (f, ε)-security, which can provide precise bounds on the
number of queries needed by adaptive adversaries to recover secrets.

Next, we compare our work with the works on constant-time implementations
(i.e., timing-channel non-interference) [1,3,6,9,20,22]. The previous works have
proposed methods for verifying that the given system is constant-time [3,6,9,20]
or transforming it to one that is constant-time [1,22]. As we have also discussed
in this paper (cf. Theorem 3), it is easy to see that the constant-time condition
directly transfers the regular-channel-only security to the security for the case
with timing channels. By contrast, security implied by bucketing is less straight-
forward. In this paper, we have shown that bucketing is in general insufficient
to guarantee the security of systems even when their regular channel is perfectly
secure. And, we have presented results that show that, under certain condi-
tions, the regular-channel-only security can be transferred to the side-channel-
observing case to certain degrees. Because there are advantages of bucketing
such as efficiency and ease of implementation [7,14,26,27,41], we hope that our
results will contribute to a better understanding of the bucketing technique and
foster further research on the topic.

5 Conclusion and Future Work

In this paper, we have presented a formal analysis of the effectiveness of the buck-
eting technique against adaptive timing-channel-observing adversaries. We have

48 T. Terauchi and T. Antonopoulos

shown that bucketing is in general insufficient against such adversaries, and pre-
sented two novel conditions, SRSCR and LISCNI, that guarantee security against
such adversaries. SRSCR states that a system that satisfies it is secure, whereas
LISCNI states that the a system that satisfies it becomes secure when bucketing
is applied. We have shown that both conditions facilitate proving the security of
systems against adaptive side-channel-observing adversaries by allowing a sys-
tem designer to prove the security of the system’s regular channel separately
from the concerns of its side-channel behavior. By doing so, the security of the
regular-channel is transferred, to certain degrees, to the full side-channel-aware
security. We have also shown that the LISCNI condition can be used in con-
junction with the constant-time implementation technique in a compositional
manner to further increase its applicability. We have formalized our results via
the notion of (f, ε)-security, which gives precise bounds on the number of queries
needed by adaptive adversaries to recover secrets.

While we have instantiated our results to timing channel and bucketing, many
of the results are actually quite general and are applicable to side channels other
than timing channels. Specifically, aside from the compositional bucketing result
that exploits the “additive” nature of timing channels, the results are applicable
to any side channels and techniques that reduce the number of possible side-
channel observations.

As future work, we would like to extend our results to probabilistic systems.
Currently, our results are limited to deterministic systems, and such an extension
would be needed to assess the effect of bucketing when it is used together with
countermeasure techniques that involve randomization. We would also like to
improve the conditions and the security bounds thereof to be able to better
analyze systems such as the leaky login program shown in Examples 1, 2 and 3.
Finally, we would like to extend the applicability of the compositional bucketing
technique by considering more patterns of compositions, such as sequentially
composing components that themselves have been made secure by compositional
bucketing.

Acknowledgements. We thank the anonymous reviewers for useful comments. This
work was supported by JSPS KAKENHI Grant Numbers 17H01720 and 18K19787,
JSPS Core-to-Core Program, A.Advanced Research Networks, JSPS Bilateral Collab-
oration Research, and Office of Naval Research (ONR) award #N00014-17-1-2787.

References

1. Agat, J.: Transforming out timing leaks. In: POPL (2000)
2. Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Strub, P.: A relational logic for

higher-order programs. In: PACMPL, vol. 1, issue ICFP (2017)
3. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying

constant-time implementations. In: USENIX Security Symposium (2016)
4. Almeida, J.B., Barbosa, M., Pinto, J.S., Vieira, B.: Formal verification of side-

channel countermeasures using self-composition. Sci. Comput. Program. 78(7),
796–812 (2013)

A Formal Analysis of Timing Channel Security via Bucketing 49

5. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: CSF (2012)

6. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:
Decomposition instead of self-composition for proving the absence of timing chan-
nels. In: PLDI (2017)

7. Askarov, A., Zhang, D., Myers, A.C.: Predictive black-box mitigation of timing
channels. In: CCS (2010)

8. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)

9. Barthe, G., Grégoire, B., Laporte, V.: Secure compilation of side-channel counter-
measures: the case of cryptographic “constant-time”. In: CSF (2018)

10. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL (2004)

11. Blot, A., Yamamoto, M., Terauchi, T.: Compositional synthesis of leakage resilient
programs. In: POST (2017)

12. Boreale, M., Pampaloni, F.: Quantitative information flow under generic leakage
functions and adaptive adversaries. Logical Methods Comput. Sci. 11(4:5), 1–31
(2015)

13. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

14. Dantas, Y.G., Gay, R., Hamann, T., Mantel, H., Schickel, J.: An evaluation of
bucketing in systems with non-deterministic timing behavior. In: Janczewski, L.J.,
Kuty�lowski, M. (eds.) SEC 2018. IAICT, vol. 529, pp. 323–338. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99828-2 23

15. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool for the
static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1), 4 (2015)

16. Eldib, H., Wang, C.: Synthesis of masking countermeasures against side channel
attacks. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 114–130.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 8

17. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

18. Gay, R., Mantel, H., Sudbrock, H.: An empirical bandwidth analysis of interrupt-
related covert channels. IJSSE 6(2), 1–22 (2015)

19. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy (1982)

20. Hedin, D., Sands, D.: Timing aware information flow security for a JavaCard-like
bytecode (2005)

21. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

22. Kobayashi, N., Shirane, K.: Type-based information analysis for low-level lan-
guages. In: APLAS (2002)

23. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

24. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

25. Köpf, B., Basin, D.A.: Automatically deriving information-theoretic bounds for
adaptive side-channel attacks. J. Comput. Secur. 19(1), 1–31 (2011)

https://doi.org/10.1007/978-3-319-99828-2_23
https://doi.org/10.1007/978-3-319-08867-9_8
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25

50 T. Terauchi and T. Antonopoulos

26. Köpf, B., Dürmuth, M.: A provably secure and efficient countermeasure against
timing attacks. In: CSF (2009)

27. Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryp-
tography under timing attacks. In: CSF (2010)

28. Malacaria, P.: Assessing security threats of looping constructs. In: POPL (2007)
29. Malacaria, P.: Algebraic foundations for quantitative information flow. Math.

Struct. Comput. Sci. 25(2), 404–428 (2015)
30. Pasareanu, C.S., Phan, Q., Malacaria, P.: Multi-run side-channel analysis using

symbolic execution and max-SMT. In: CSF (2016)
31. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and

counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

32. Reynolds, J.C.: The Craft of Programming. Prentice Hall International Series in
Computer Science. Prentice Hall, London (1981)

33. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

34. Sousa, M., Dillig, I.: Cartesian Hoare logic for verifying k-safety properties. In:
PLDI (2016)

35. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). https://doi.org/10.1007/11547662 24

36. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptol. 23(1), 37–71 (2010)

37. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. J. Comput. Secur. 4(2/3), 167–187 (1996)

38. Yasuoka, H., Terauchi, T.: Quantitative information flow - verification hardness
and possibilities. In: CSF (2010)

39. Yasuoka, H., Terauchi, T.: On bounding problems of quantitative information flow.
J. Comput. Secur. 19(6), 1029–1082 (2011)

40. Yasuoka, H., Terauchi, T.: Quantitative information flow as safety and liveness
hyperproperties. Theor. Comput. Sci. 538, 167–182 (2014)

41. Zhang, D., Askarov, A., Myers, A.C.: Language-based control and mitigation of
timing channels. In: PLDI (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/11547662_24
http://creativecommons.org/licenses/by/4.0/

A Dependently Typed Library for Static
Information-Flow Control in Idris

Simon Gregersen(B), Søren Eller Thomsen, and Aslan Askarov

Aarhus University, Aarhus, Denmark
{gregersen,sethomsen,askarov}@cs.au.dk

Abstract. Safely integrating third-party code in applications while pro-
tecting the confidentiality of information is a long-standing problem.
Pure functional programming languages, like Haskell, make it possible to
enforce lightweight information-flow control through libraries like MAC
by Russo. This work presents DepSec, a MAC inspired, dependently
typed library for static information-flow control in Idris. We showcase
how adding dependent types increases the expressiveness of state-of-the-
art static information-flow control libraries and how DepSec matches a
special-purpose dependent information-flow type system on a key exam-
ple. Finally, we show novel and powerful means of specifying statically
enforced declassification policies using dependent types.

Keywords: Information-flow control · Dependent types · Idris

1 Introduction

Modern software applications are increasingly built using libraries and code from
multiple third parties. At the same time, protecting confidentiality of informa-
tion manipulated by such applications is a growing, yet long-standing problem.
Third-party libraries could in general have been written by anyone and they are
usually run with the same privileges as the main application. While powerful,
such privileges open up for abuse.

Traditionally, access control [7] and encryption have been the main means
for preventing data dissemination and leakage, however, such mechanisms fall
short when third-party code needs access to sensitive information to provide its
functionality. The key observation is that these mechanisms only place restric-
tions on the access to information but not its propagation. Once information is
accessed, the accessor is free to improperly transmit or leak the information in
some form, either by intention or error.

Language-based Information-Flow Control [36] is a promising technique for
enforcing information security. Traditional enforcement techniques analyze how
information at different security levels flows within a program ensuring that
information flows only to appropriate places, suppressing illegal flows. To achieve
this, most information-flow control tools require the design of new languages,
compilers, or interpreters (e.g. [12,17,22,23,26,29,39]). Despite a large, growing
c© The Author(s) 2019
F. Nielson and D. Sands (Eds.): POST 2019, LNCS 11426, pp. 51–75, 2019.
https://doi.org/10.1007/978-3-030-17138-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17138-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-17138-4_3

52 S. Gregersen et al.

body of work on language-based information-flow security, there has been little
adoption of the proposed techniques. For information-flow policies to be enforced
in such systems, the whole system has to be written in new languages – an
inherently expensive and time-consuming process for large software systems.
Moreover, in practice, it might very well be that only small parts of an application
are governed by information-flow policies.

Pure functional programming languages, like Haskell, have something to offer
with respect to information security as they strictly separate side-effect free and
side-effectful code. This makes it possible to enforce lightweight information-flow
control through libraries [11,20,34,35,42] by constructing an embedded domain-
specific security sub-language. Such libraries enforce a secure-by-construction
programming model as any program written against the library interface is not
capable of leaking secrets. This construction forces the programmer to write
security-critical code in the sub-language but otherwise allows them to freely
interact and integrate with non-security critical code written in the full language.
In particular, static enforcement libraries like MAC [34] are appealing as no
run-time checks are needed and code that exhibits illegal flows is rejected by
the type checker at compile-time. Naturally, the expressiveness of Haskell’s type
system sets the limitation on which programs can be deemed secure and which
information flow policies can be guaranteed.

Dependent type theories [24,31] are implemented in many programming lan-
guages such as Coq [13], Agda [32], Idris [8], and F∗ [44]. Programming lan-
guages that implement such theories allow types to dependent on values. This
enables programmers to give programs a very precise type and increased confi-
dence in its correctness.

In this paper, we show that dependent types provide a direct and natural
way of expressing precise data-dependent security policies. Dependent types can
be used to represent rich security policies in environments like databases and
data-centric web applications where, for example, new classes of users and new
kinds of data are encountered at run-time and the security level depends on
the manipulated data itself [23]. Such dependencies are not expressible in less
expressive systems like MAC. Among other things, with dependent types, we
can construct functions where the security level of the output depends on an
argument:

getPassword : (u : Username) -> Labeled u String

Given a user name u, getPassword retrieves the corresponding password and
classifies it at the security level of u. As such, we can express much more precise
security policies that can depend on the manipulated data.

Idris is a general-purpose functional programming language with full-
spectrum dependent types, that is, there is no restrictions on which values may
appear in types. The language is strongly influenced by Haskell and has, among
others, inherited its strict encapsulation of side-effects. Idris essentially asks the
question: “What if Haskell had full dependent types?” [9]. This work, essentially,
asks:

A Dependently Typed Library for Static Information-Flow Control in Idris 53

“What if MAC had full dependent types?”

We address this question using Idris because of its positioning as a general-
purpose language rather than a proof assistant. All ideas should be portable to
equally expressive systems with full dependent types and strict monadic encap-
sulation of side-effects.

In summary, the contributions of this paper are as follows.

– We present DepSec, a MAC inspired statically enforced dependently typed
information-flow control library for Idris.

– We show how adding dependent types strictly increases the expressiveness
of state-of-the-art static information-flow control libraries and how DepSec
matches the expressiveness of a special-purpose dependent information-flow
type system on a key example.

– We show how DepSec enables and aids the construction of policy-
parameterized functions that abstract over the security policy.

– We show novel and powerful means to specify statically-ensured declassifica-
tion using dependent types for a wide variety of policies.

– We show progress-insensitive noninterference [1] for the core library in a
sequential setting.

Outline. The rest of the paper proceeds through a presentation of the DepSec
library (Sect. 2); a conference manager case study (Sect. 3) and the introduction
of policy-parameterized functions (Sect. 4) both showcasing the expressiveness
of DepSec; means to specify statically-ensured declassification policies (Sect. 5);
soundness of the core library (Sect. 6); and related work (Sect. 7).

All code snippets presented in the following are extracts from the source
code. All source code is implemented in Idris 1.3.1. and available at

https://github.com/simongregersen/DepSec.

1.1 Assumptions and Threat Model

In the rest of this paper, we require that code is divided up into trusted code,
written by someone we trust, and untrusted code, written by a potential attacker.
The trusted computing base (TCB) has no restrictions, but untrusted code does
not have access to modules providing input/output behavior, the data construc-
tors of the domain specific language and a few specific functions related to
declassification. In Idris, this means that we specifically do not allow access
to IO functions and unsafePerformIO. In DepSec, constructors and functions
marked with a TCB comment are inaccessible to untrusted code. Throughout the
paper we will emphasize when this is the case.

We require that all definitions made by untrusted code are total, that is,
defined for all possible inputs and are guaranteed to terminate. This is necessary
if we want to trust proofs given by untrusted code. Otherwise, it could construct
an element of the empty type from which it could prove anything:

https://github.com/simongregersen/DepSec

54 S. Gregersen et al.

empty : Void
empty = empty

In Idris, this can be checked using the --total compiler flag. Furthermore, we
do not consider concurrency nor any internal or termination covert channels.

2 The DepSec Library

In information-flow control, labels are used to model the sensitivity of data. Such
labels usually form a security lattice [14] where the induced partial ordering �
specifies allowed flows of information and hence the security policy. For example,
�1 � �2 specifies that data with label �1 is allowed to flow to entities with
label �2. In DepSec, labels are represented by values that form a verified join
semilattice implemented as Idris interfaces1. That is, we require proofs of the
lattice properties when defining an instance of JoinSemilattice.

interface JoinSemilattice a where
join : a -> a -> a
associative :
(x, y, z : a) -> x `join` (y `join` z) = (x `join` y) `join` z

commutative : (x, y : a) -> x `join` y = y `join` x
idempotent : (x : a) -> x `join` x = x

Dependent function types (often referred to as Π types) in Idris can express
such requirements. If A is a type and B is a type indexed by a value of type A
then (x : A) -> B is the type of functions that map arguments x of type A to
values of type B x.

A lattice induces a partial ordering, which gives a direct way to express flow
constraints. We introduce a verified partial ordering together with an implemen-
tation of this for JoinSemilattice. That is, to define an instance of the Poset
interface we require a concrete instance of an associated data type leq as well
as proofs of necessary algebraic properties of leq.

interface Poset a where
leq : a -> a -> Type
reflexive : (x : a) -> x `leq` x
antisymmetric : (x, y : a) -> x `leq` y -> y `leq` x -> x = y
transitive : (x, y, z : a) -> x `leq` y -> y `leq` z -> x `leq` z

implementation JoinSemilattice a => Poset a where
leq x y = (x `join` y = y)
...

This definition allows for generic functions to impose as few restrictions as pos-
sible on the user while being able to exploit the algebraic structure in proofs, as
will become evident in Sects. 3 and 4. For the sake of the following case stud-
ies, we also have a definition of a BoundedJoinSemilattice requiring a least
element Bottom of an instance of JoinSemilattice and a proof of the element
being the unit.
1 Interfaces in Idris are similar to type classes in Haskell.

A Dependently Typed Library for Static Information-Flow Control in Idris 55

Fig. 1. Type signature of the core DepSec API.

The Core API. Figure 1 presents the type signature of DepSec’s core API.
Notice that names beginning with a lower case letter that appear as a param-
eter or index in a type declaration will be automatically bound as an implicit
argument in Idris, and the auto annotation on implicit arguments means that
Idris will attempt to fill in the implicit argument by searching the calling context
for an appropriate value.

Abstract data type Labeled � a denotes a value of type a with sensitivity
level �. We say that Labeled � a is indexed by � and parameterized by a. Abstract
data type DIO � a denotes a secure computation that handles values with sen-
sitivity level � and results in a value of type a. It is internally represented as
a wrapper around the regular IO monad that, similar to the one in Haskell,
can be thought of as a state monad where the state is the entire world. Notice
that both data constructors MkLabeled and MkDIO are not available to untrusted
code as this would allow pattern matching and uncontrolled unwrapping of pro-
tected entities. As a consequence, we introduce functions label and unlabel
for labeling and unlabeling values. Like Rajani and Garg [33], but unlike MAC,
the type signature of label imposes no lattice constraints on the computation
context. This does not leak information as, if l � l′ and a computation c has
type DIO l′ (Labeled l V) for any type V , then there is no way for the labeled
return value of c to escape the computation context with label l′.

56 S. Gregersen et al.

As in MAC, the API contains a function plug that safely integrates sensitive
computations into less sensitive ones. This avoids the need for nested computa-
tions and label creep, that is, the raising of the current label to a point where the
computation can no longer perform useful tasks [34,47]. Finally, we also have
functions run and lift that are only available to trusted code for unwrapping
of the DIO � monad and lifting of the IO monad into the DIO � monad.

Labeled Resources. Data type Labeled � a is used to denote a labeled Idris
value with type a. This is an example of a labeled resource [34]. By itself, the
core library does not allow untrusted code to perform any side effects but we
can safely incorporate, for example, file access and mutable references as other
labeled resources. Figure 2 presents type signatures for files indexed by security
levels used for secure file handling while mutable references are available in the
accompanying source code. Abstract data type SecFile � denotes a secure file
with sensitivity level �. As for Labeled � a, the data constructor MkSecFile is
not available to untrusted code.

The function readFile takes as input a secure file SecFile l' and returns a
computation with sensitivity level l that returns a labeled value with sensitivity
level l'. Notice that the l � l' flow constraint is required to enforce the no
read-up policy [7]. That is, the result of the computation returned by readFile
only involves data with sensitivity at most l. The function writeFile takes as
input a secure file SecFile l'' and a labeled value of sensitivity level l', and it
returns a computation with sensitivity level l that returns a labeled value with
sensitivity level l''. Notice that both the l � l' and l' � l'' flow constraints
are required, essentially enforcing the no write-down policy [7], that is, the file
never receives data more sensitive than its sensitivity level.

Finally, notice that the standard library functions for reading and writing
files in Idris used to implement the functions in Fig. 2 do not raise exceptions.
Rather, both functions return an instance of the sum type Either. We stay
consistent with Idris’ choice for this instead of adding exception handling as
done in MAC.

Fig. 2. Type signatures for secure file handling.

A Dependently Typed Library for Static Information-Flow Control in Idris 57

3 Case Study: Conference Manager System

This case study showcases the expressiveness of DepSec by reimplementing
a conference manager system with a fine-grained data-dependent security pol-
icy introduced by Lourenço and Caires [23]. Lourenço and Caires base their
development on a minimal λ-calculus with references and collections and they
show how secure operations on relevant scenarios can be modelled and analysed
using dependent information flow types. Our reimplementation demonstrates
how DepSec matches the expressiveness of such a special-purpose built depen-
dent type system on a key example.

In this scenario, a user is either a regular user, an author user, or a program
committee (PC) member. The conference manager contains information about
the users, their submissions, and submission reviews. This data is stored in lists
of references to records, and the goal is to statically ensure, by typing, the
confidentiality of the data stored in the conference manager system. As such,
the security policy is:

– A registered user’s information is not observable by other users.
– The content of a paper can be seen by its authors as well as its reviewers.
– Comments to the PC of a submission’s review can only be seen by other

members that are also reviewers of that submission.
– The only authors that are allowed to see the grade and the review of the

submission are those that authored that submission.

To achieve this security policy, Lourenço and Caires make use of indexed
security labels [22]. The security level U is partitioned into a number of security
compartments such that U (uid) represents the compartment of the registered
user with id uid . Similarly, the security level A is indexed such that A(uid , sid)
stands for the compartment of data belonging to author uid and their submission
sid , and PC is indexed such that PC (uid , sid) stands for data belonging to the
PC member with user id uid assigned to review the submission with id sid .
Furthermore, levels � and ⊥ are introduced such that, for example, U (⊥) �
U (uid) � U (�). Now, the security lattice is defined using two equations:

∀uid , sid . U (uid) � A(uid , sid) (1)
∀uid1 , uid2 , sid . A(uid1 , sid) � PC (uid2 , sid) (2)

Lourenço and Caires are able to type a list of submissions with a dependent sum
type that assigns the content of the paper the security level A(uid , sid), where
uid and sid are fields of the record. For example, if a concrete submission with
identifier 2 was made by the user with identifier 1, the content of the paper gets
classified at security level A(1 , 2). In consequence, A(1 , 2) � PC (n, 2) for any
uid n and the content of the paper is only observable by its assigned reviewers.
Similar types are given for the list of user information and the list of submission
reviews, enforcing the security policy described in the above.

To express this policy in DepSec, we introduce abstract data types
Id and Compartment (cf. Fig. 3) followed by an implementation of the
BoundedJoinSemilattice interface that satisfies Eqs. (1) and (2).

58 S. Gregersen et al.

Fig. 3. Abstract data types for the conference manager sample security lattice.

Fig. 4. Conference manager types encoded with DepSec.

Using the above, the required dependent sum types can easily be encoded
with DepSec in Idris as presented in Fig. 4. With these typings in place, imple-
menting the examples from Lourenço and Caires [23] is straightforward. For
example, the function viewAuthorPapers takes as input a list of submissions
and a user identifier uid1 from which it returns a computation that returns a
list of submissions authored by the user with identifier uid1. Notice that uid
denotes the automatically generated record projection function that retrieves the
field uid of the record, and that (x: A ** B) is notation for a dependent pair
(often referred to as a Σ type) where A and B are types and B may depend on x.

viewAuthorPapers : Submissions
-> (uid1 : Id)
-> DIO Bottom (List (sub : Submission ** uid1 = (uid sub)))

The addCommentSubmission operation is used by the PC members to add com-
ments to the submissions. The function takes as input a list of reviews, a user
identifier of a PC member, a submission identifier, and a comment with label
A uid1 sid1. It returns a computation that updates the PC_only field in the
review of the paper with identifier sid1.

addCommentSubmission : Reviews -> (uid1 : Id) -> (sid1 : Id)
-> Labeled (A uid1 sid1) String
-> DIO Bottom ()

A Dependently Typed Library for Static Information-Flow Control in Idris 59

Notice that to implement this specific type signature, up-classification is neces-
sary to assign the comment with type Labeled (A uid1 sid1) String to a field with
type Labeled (PC uid sid1) String. This can be achieved soundly with the relabel
primitive introduced by Vassena et al. [47] as A uid1 sid1 � PC uid sid1. We
include this primitive in the accompanying source code together with several
other examples. The entire case study amounts to about 300 lines of code where
half of the lines implement and verify the lattice.

4 Policy-Parameterized Functions

A consequence of using a dependently typed language, and the design of
DepSec, is that functions can be defined such that they abstract over the secu-
rity policy while retaining precise security levels. This makes it possible to reuse
code across different applications and write other libraries on top of DepSec.
We can exploit the existence of a lattice join, the induced poset, and their
verified algebraic properties to write such functions.

Fig. 5. Reading two files to a string labeled with the join of the labels of the files.

Figure 5 presents the function readTwoFiles that is parameterized by a
bounded join semilattice. It takes two secure files with labels l and l' as input
and returns a computation that concatenates the contents of the two files labeled
with the join of l and l'. To implement this, we make use of the unlabel and
readFile primitives from Figs. 1 and 2, respectively. This computation unla-
bels the contents of the files and returns the concatenation of the contents if no
file error occurred. Notice that pure is the Idris function for monadic return,
corresponding to the return function in Haskell. Finally, this computation is
plugged into the surrounding computation. Notice how the usage of readFile

60 S. Gregersen et al.

and unlabel introduces several proof obligations, namely ⊥ � l, l', l� l' and
l, l' � l� l'. When working on a concrete lattice these obligations are usually
fulfilled by Idris’ automatic proof search but, currently, such proofs need to be
given manually in the general case. All obligations follow immediately from the
algebraic properties of the bounded semilattice and are given in three auxiliary
lemmas leq_bot_x, join_x_xy, and join_y_xy available in the accompanying
source code (amounting to 10 lines of code).

Writing functions operating on a fixed number of resources is limiting. How-
ever, the function in Fig. 5 can easily be generalized to a function working on an
arbitrary data structure containing files with different labels from an arbitrary
lattice. Similar to the approach taken by Buiras et al. [11] that hide the label
of a labeled value using a data type definition, we hide the label of a secure file
with a dependent pair

GenFile : Type -> Type
GenFile label = (l : label ** SecFile l)

that abstracts away the concrete sensitivity level of the file. Moreover, we intro-
duce a specialized join function

joinOfFiles : BoundedJoinSemilattice label
=> List (GenFile label)
-> label

that folds the join function over a list of file sensitivity labels. Now, it is pos-
sible to implement a function that takes as input a list of files, reads the files,
and returns a computation that concatenates all their contents (if no file error
occurred) where the return value is labeled with the join of all their sensitivity
labels.

readFiles : BoundedJoinSemilattice a
=> (files: (List (GenFile a)))
-> DIO Bottom (Labeled (joinOfFiles files)

(Either (List FileError) String))

When implementing this, one has to satisfy non-trivial proof obligations as, for
example, that l � joinOfFiles(files) for all secure files f ∈ files where the label
of f is l. While provable (in 40 lines of code in our development), if equality
is decidable for elements of the concrete lattice we can postpone such proof
obligations to a point in time where it can be solved by reflexivity of equality.
By defining a decidable lattice order

decLeq : JoinSemilattice a => DecEq a => (x, y : a) -> Dec (x `leq` y)
decLeq x y = decEq (x `join` y) y

we can get such a proof “for free” by inserting a dynamic check of whether the flow
is allowed. With this, a readFiles' function with the exact same functionality as
the original readFiles function can be implemented with minimum effort. In the
below, prf is the proof that the label l of file may flow to joinOfFiles files.

A Dependently Typed Library for Static Information-Flow Control in Idris 61

readFiles' : BoundedJoinSemilattice a => DecEq a
=> (files: (List (GenFile a)))
-> DIO Bottom (Labeled (joinOfFiles files)

(Either (List FileError) String))
readFiles' files =
...
case decLeq l (joinOfFiles files) of

Yes prf => ...
No _ => ...

The downside of this is the introduction of a negative case, the No-case, that
needs handling even though it will never occur if joinOfFiles is implemented
correctly.

In combination with GenFile, decLeq can be used to implement several other
interesting examples. For instance, a function that reads all files with a sensitivity
label below a certain label to a string labeled with that label. The accompanying
source code showcases multiple such examples that exploit decidable equality.

5 Declassification

Realistic applications often release some secret information as part of their
intended behavior; this action is known as declassification.

In DepSec, trusted code may declassify secret information without adher-
ing to any security policy as trusted code has access to both the DIO � a and
Labeled � a data constructors. However, only giving trusted code the power
of declassification is limiting as we want to allow the use of third-party code
as much as possible. The main challenge we address is how to grant untrusted
code the right amount of power such that declassification is only possible in the
intended way.

Sabelfeld and Sands [38] identify four dimensions of declassification: what,
who, where, and when. In this section, we present novel and powerful means for
static declassification with respect to three of the four dimensions and illustrate
these with several examples. To statically enforce different declassification poli-
cies we take the approach of Sabelfeld and Myers [37] and use escape hatches,
a special kind of functions. In particular, we introduce the notion of a hatch
builder ; a function that creates an escape hatch for a particular resource and
which can only be used when a certain condition is met. Such an escape hatch
can therefore be used freely by untrusted code.

5.1 The what Dimension

Declassification policies related to the what dimension place restrictions on
exactly “what” and “how much” information is released. It is in general diffi-
cult to statically predict how data to be declassified is manipulated or changed
by programs [35] but exploiting dependent types can get us one step closer.

To control what information is released, we introduce the notion of a predicate
hatch builder only available to trusted code for producing hatches for untrusted
code.

62 S. Gregersen et al.

predicateHatchBuilder : Poset lt => {l, l' : lt} -> {D, E : Type}
-> (d : D)
-> (P : D -> E -> Type)
-> (d : D ** Labeled l (e : E ** P d e)

-> Labeled l' E) -- TCB

Intuitively, the hatch builder takes as input a data structure d of type D followed
by a predicate P upon d and something of type E. It returns a dependent pair
of the initial data structure and a declassification function from sensitivity level
l to l'. To actually declassify a labeled value e of type E one has to provide a
proof that P d e holds. Notice that this proof may be constructed in the context
of the sensitivity level l that we are declassifying from.

The reason for parameterizing the predicate P by a data structure of type D
is to allow declassification to be restricted to a specific context or data structure.
This is used in the following example of an auction system, in which only the
highest bid of a specific list of bids can be declassified.

Example. Consider a two point lattice where L � H, H �� L and an auction system
where participants place bids secretly. All bids are labeled H and are put into a
data structure BidLog. In the end, we want only the winning bid to be released
and hence declassified to label L. To achieve this, we define a declassification
predicate HighestBid.

HighestBid : BidLog -> Bid -> Type
HighestBid = \log, b => (Elem (label b) log, MaxBid b log)

Informally, given a log log of labeled bids and a bid b, the predicate states
that the bid is in the log, Elem (label b) log, and that it is the maximum bid,
MaxBid b log. We apply predicateHatchBuilder to a log of bids and the
HighestBid predicate to obtain a specialized escape hatch of type BidHatch
that enforces the declassification policy defined by the predicate.

BidHatch : Type
BidHatch = (log : BidLog ** Labeled H (b : Bid ** HighestBid log b)

-> Labeled L Bid)

This hatch can be used freely by untrusted code when implementing the auction
system. By constructing a function

getMaxBid : (r : BidLog) -> DIO H (b : Bid ** HighestBid r b)

untrusted code can plug the resulting computation into an L context and declas-
sify the result value using the argument hatch function.

auction : BidHatch -> DIO L (Labeled L Bid)
auction ([] ** _) = pure $ label ("no bids", 0)
auction (r :: rs ** hatch) =

do max <- plug (getMaxBid (r :: rs))
let max' : Labeled L Bid = hatch max
...

A Dependently Typed Library for Static Information-Flow Control in Idris 63

To show the HighestBid predicate (which in our implementation comprises 40
lines of code), untrusted code will need a generalized unlabel function that
establishes the relationship between label and the output of unlabel. The only
difference is its return type: a computation that returns a value and a proof that
when labeling this value we will get back the initial input. This definition poses
no risk to soundness as the proof is protected by the computation sensitivity
level.

unlabel' : Poset lt => {l,l': lt}
-> {auto flow: l `leq` l'}
-> (labeled: Labeled l a)
-> DIO l' (c : a ** label c = labeled)

Limiting Hatch Usage. Notice how escape hatches, generally, can be used an
indefinite number of times. The Control.ST library [10] provides facilities for
creating, reading, writing, and destroying state in the type of Idris functions
and, especially, allows tracking of state change in a function type. This allows
us to limit the number of times a hatch can be used. Based on a concept of
resources, a dependent type STrans tracks how resources change when a function
is invoked. Specifically, a value of type STrans m returnType in_res out_res
represents a sequence of actions that manipulate state where m is an underlying
computation context in which the actions will be executed, returnType is the
return type of the sequence, in_res is the required list of resources available
before executing the sequence, and out_res is the list of resources available
after executing the sequence.

To represent state transitions more directly, ST is a type level function that
computes an appropriate STrans type given a underlying computation context,
a result type, and a list of actions, which describe transitions on resources.
Actions can take multiple forms but the one we will make use of is of the form
lbl ::: ty_in :-> ty_out that expresses that the resource lbl begins in state
ty_in and ends in state ty_out. By instantiating ST with DIO l as the under-
lying computation context:

DIO' : l -> (ty : Type) -> List (Action ty) -> Type
DIO' l = ST (DIO l)

and use it together with a resource Attempts, we can create a function limit
that applies its first argument f to its second argument arg with Attempts (S n)
as its initial required state and Attempts n as the output state.

limit : (f : a -> b) -> (arg : a)
-> DIO' l b [attempts ::: Attempts (S n) :-> Attempts n]

That is, we encode that the function consumes “an attempt.” With the limit
function it is possible to create functions where users are forced, by typing, to
specify how many times it is used.

As an example, consider a variant of an example by Russo et al. [35] where
we construct a specialized hatch passwordHatch that declassifies the boolean
comparison of a secret number with an arbitrary number.

64 S. Gregersen et al.

passwordHatch : (labeled : Labeled H Int)
-> (guess : Int)
-> DIO' l Bool [attempts ::: Attempts (S n) :-> Attempts n]

passwordHatch (MkLabeled v) = limit (\g => g == v)

To use this hatch, untrusted code is forced to specify how many times it is used.

pwCheck : Labeled H Int
-> DIO' L () [attempts ::: Attempts (3 + n) :-> Attempts n]

pwCheck pw =
do x1 <- passwordHatch pw 1

x2 <- passwordHatch pw 2
x3 <- passwordHatch pw 3
x4 <- passwordHatch pw 4 -- type error!
...

5.2 The who and when Dimensions

To handle declassification policies related to who may declassify information
and when declassification may happen we introduce the notion of a token hatch
builder only available to trusted code for producing hatches for untrusted code
to use.

tokenHatchBuilder : Poset labelType => {l, l' : labelType} -> {E, S : Type}
-> (Q : S -> Type)
-> (s : S ** Q s) -> Labeled l E -> Labeled l' E -- TCB

The hatch builder takes as input a predicate Q on something of type S and returns
a declassification function from sensitivity level l to l' given that the user can
prove the existence of some s such that Q s holds. As such, by limiting when
and how untrusted can obtain a value that satisfy predicate Q, we can construct
several interesting declassification policies.

The rest of this section discusses how predicate hatches can be used for time-
based and authority-based control of declassification; the use of the latter is
demonstrated on a case study.

Time-Based Hatches. To illustrate the idea of token hatches for the when
dimension of declassification, consider the following example. Let Time be an
abstract data type with a data constructor only available to trusted code and
tick : DIO l Time a function that returns the current system time wrapped in
the Time data type such that this is the only way for untrusted code to construct
anything of type Time. Notice that this does not expose an unrestricted timer
API as untrusted code can not inspect the actual value.

Now, we instantiate the token hatch builder with a predicate that demands
the existence of a Time token that is greater than some specific value.

TimeHatch : Time -> Type
TimeHatch t = (t' ** t <= t' = True) -> Labeled H Nat -> Labeled L Nat

A Dependently Typed Library for Static Information-Flow Control in Idris 65

As such, TimeHatch t can only be used after a specific point in time t has passed
as only then untrusted code will be able to satisfy the predicate.

timer : Labeled H Nat -> TimeHatch t -> DIO L ()
timer secret {t} timeHatch =
do time <- tick

case decEq (t <= time) True of
Yes prf =>

let declassified : Labeled L Nat = timeHatch (time ** prf) secret
...

No _ => ...

Authority-Based Hatches. The Decentralized Labeling Model (DLM) [27] marks
data with a set of principals who owns the information. While executing a pro-
gram, the program is given authority, that is, it is authorized to act on behalf of
some set of principals. Declassification simply makes a copy of the released data
and marks it with the same set of principals but excludes the authorities.

Similarly to Russo et al. [35], we adapt this idea such that it works on a
security lattice of Principals, assign authorities with security levels from the
lattice, and let authorities declassify information at that security level.

To model this, we define the abstract data type Authority with a data con-
structor available only to trusted code so that having an instance of Authority s
corresponds to having the authority of the principal s. Notice how assignment of
authorities to pieces of code consequently is a part of the trusted code. Now, we
instantiate the token hatch builder with a predicate that demands the authority
of s to declassify information at that level.

authHatch : { l, l' : Principal }
-> (s ** (l = s, Authority s))
-> Labeled l a -> Labeled l' a

authHatch {l} = tokenHatchBuilder (\s => (l = s, Authority s))

That is, authHatch makes it possible to declassify information at level l to l'
given an instance of the Authority l data type.

Example. Consider the scenario of an online dating service that has the distin-
guishing feature of allowing its users to specify the visibility of their profiles at a
fine-grained level. To achieve this, the service allows users to provide a discovery
agent that controls their visibility. Consider a user, Bob, whose implementation
of the discovery agent takes as input his own profile and the profile of another
user, say Alice. The agent returns a possibly side-effectful computation that
returns an option type indicating whether Bob wants to be discovered by Alice.
If that is the case, a profile is returned by the computation with the information
about Bob that he wants Alice to be able to see. When Alice searches for can-
didate matches, her profile is run against the discovery agents of all candidates
and the result is added to her browsing queue.

To implement this dating service, we define the record type ProfileInfo A
that contains personal information related to principal A.

66 S. Gregersen et al.

record ProfileInfo (A : Principal) where
constructor MkProfileInfo
name : Labeled A String
gender : Labeled A String
birthdate : Labeled A String
...

The interesting part of the dating service is the implementation of discovery
agents. Figure 6 presents a sample discovery agent that matches all profiles with
the opposite gender and only releases information about the name and gender.
The discovery agent demands the authority of A and takes as input two profiles
a : ProfileInfo A and b : ProfileInfo B. The resulting computation secu-
rity level is B so to incorporate information from a into the result, declassification
is needed. This is achieved by providing authHatch with the authority proof of
A. The discovery agent sampleDiscoverer in Fig. 6 unlabels B’s gender, declas-
sifies and unlabels A’s gender and name, and compares the two genders. If the
genders match, a profile with type ProfileInfo B only containing the name and
gender of A is returned. Otherwise, Nothing is returned indicating that A does
not want to be discovered. Notice that Refl is the constructor for the built-in
equality type in Idris and it is used to construct the proof of equality between
principals required by the hatch.

Fig. 6. A discovery agent that matches with all profiles of the opposite gender and
only releases the name and gender.

6 Soundness

Recent works [46,47] present a mechanically-verified model of MAC and show
progress-insensitive noninterference (PINI) for a sequential calculus. We use this
work as a starting point and discuss necessary modification in the following.
Notice that this work does not consider any declassification mechanisms and
neither do we; we leave this as future work.

The proof relies on the two-steps erasure technique, an extension of the term
erasure [21] technique that ensures that the same public output is produced if

A Dependently Typed Library for Static Information-Flow Control in Idris 67

secrets are erased before or after program execution. The technique relies on a
type-driven erasure function ε�A on terms and configurations where �A denotes
the attacker security level. A configuration consists of an �-indexed compart-
mentalized store Σ and a term t. A configuration 〈Σ, t〉 is erased by erasing t
and by erasing Σ pointwise, i.e. ε�A(Σ) = λ�.ε�A(Σ(�)). On terms, the function
essentially rewrites data and computations above �A to a special • value. The full
definition of the erasure function is available in the full version of this paper [15].
From this definition, the definition of low-equivalence of configurations follows.

Definition 1. Let c1 and c2 be configurations. c1 and c2 are said to be �A-
equivalent, written c1 ≈�A c2, if and only if ε�A(c1) ≡ ε�A(c2).

After defining the erasure function, the noninterference theorem follows from
showing a single-step simulation relationship between the erasure function and
a small-step reduction relation: erasing sensitive data from a configuration and
then taking a step is the same as first taking a step and then erasing sensitive
data. This is the content of the following proposition.

Proposition 1. If c1 ≈�A c2, c1 → c′
1, and c2 → c′

2 then c′
1 ≈�A c′

2.

The main theorem follows by repeated applications of Proposition 1.

Theorem 1 (PINI). If c1 ≈�A c2, c1 ⇓ c′
1, and c2 ⇓ c′

2 then c′
1 ≈�A c′

2.

Both the statement and the proof of noninterference for DepSec are mostly
similar to the ones for MAC and available in the full version of this paper [15].
Nevertheless, one has to be aware of a few subtleties.

First, one has to realize that even though dependent types in a language like
Idris may depend on data, the data itself is not a part of a value of a dependent
type. Recall the type Vect n Nat of vectors of length n with components of type
Nat and consider the following program.

length : Vect n a -> Nat
length {n = n} xs = n

This example may lead one to believe that it is possible to extract data from a
dependent type. This is not the case. Both n and a are implicit arguments to the
length function that the compiler is able to infer. The actual type is

length : {n : Nat} -> {a : Type} -> Vect n a -> Nat

As a high-level dependently typed functional programming language, Idris is
elaborated to a low-level core language based on dependent type theory [9]. In the
elaboration process, such implicit arguments are made explicit when functions
are defined and inferred when functions are invoked. This means that in the
underlying core language, only explicit arguments are given. Our modeling given
in the full version of this paper reflects this fact soundly.

Second, to model the extended expressiveness of DepSec, we extend both
the semantics and the type system with compile-time pure-term reduction and

68 S. Gregersen et al.

higher-order dependent types. These definitions are standard (defined for Idris
by Brady [9]) and available in the full version of our paper. Moreover, as types
now become first-class terms, the definition of ε�A has to be extended to cover
the new kinds of terms. As before, primitive types are unaffected by the era-
sure function, but dependent and indexed types, such as the type DIO, have
to be erased homomorphically, e.g., ε�A (DIO � τ : Type) � DIO ε�A(�) ε�A(τ).
The intuition of why this is sensible comes from the observation that indexed
dependent types considered as terms may contain values that will have to be
erased. This is purely a technicality of the proof. If defined otherwise, the era-
sure function would not commute with capture-avoiding substitution on terms,
ε�A(t[v/x]) = ε�A(t)[ε�A(v)/x], which is vital for the remaining proof.

7 Related Work

Security Libraries. The pioneering and formative work by Li and Zdancewic [20]
shows how arrows [18], a generalization of monads, can provide information-flow
control without runtime checks as a library in Haskell. Tsai et al. [45] further
extend this work to handle side-effects, concurrency, and heterogeneous labels.
Russo et al. [35] eliminate the need for arrows and implement the security library
SecLib in Haskell based solely on monads. Rather than labeled values, this work
introduces a monad which statically label side-effect free values. Furthermore, it
presents combinators to dynamically specify and enforce declassification policies
that bear a resemblance to the policies that DepSec are able to enforce statically.

The security library LIO [41,42] dynamically enforces information-flow con-
trol in both sequential and concurrent settings. Stefan et al. [40] extend the
security guarantees of this work to also cover exceptions. Similar to this work,
Stefan et al. [42] present a simple API for implementing secure conference review-
ing systems in LIO with support for data-dependent security policies.

Inspired by the design of SecLib and LIO, Russo [34] introduces the secu-
rity library MAC. The library statically enforces information-flow control in
the presence of advanced features like exceptions, concurrency, and mutable
data structures by exploiting Haskell’s type system to impose flow constraints.
Vassena and Russo [46], Vassena et al. [47] show progress-insensitive noninter-
ference for MAC in a sequential setting and progress-sensitive noninterference
in a concurrent setting, both using the two-steps erasure technique.

The flow constraints enforcing confidentiality of read and write operations
in DepSec are identical to those of MAC. This means that the examples from
MAC that do not involve concurrency can be ported directly to DepSec. To the
best of our knowledge, data-dependent security policies like the one presented in
Sect. 3 cannot be expressed and enforced in MAC, unlike LIO that allows such
policies to be enforced dynamically. DepSec allows for such security policies to
be enforced statically. Moreover, Russo [34] does not consider declassification.
To address the static limitations of MAC, HLIO [11] takes a hybrid approach
by exploiting advanced features in Haskell’s type-system like singleton types
and constraint polymorphism. Buiras et al. [11] are able to statically enforce

A Dependently Typed Library for Static Information-Flow Control in Idris 69

information-flow control while allowing selected security checks to be deferred
until run-time.

Dependent Types for Security. Several works have considered the use of depen-
dent types to capture the nature of data-dependent security policies. Zheng and
Myers [51,52] proposed the first dependent security type system for dealing with
dynamic changes to runtime security labels in the context of Jif [29], a full-fledged
IFC-aware compiler for Java programs, where similar to our work, operations on
labels are modeled at the level of types. Zhang et al. [50] use dependent types in
a similar fashion for the design of a hardware description language for timing-
sensitive information-flow security.

A number of functional languages have been developed with dependent type
systems and used to encode value-dependent information flow properties, e.g.
Fine [43]. These approaches require the adoption of entirely new languages and
compilers where DepSec is embedded in an already existing language. Morgen-
stern and Licata [25] encode an authorization and IFC-aware programming lan-
guage in Agda. However, their encoding does not consider side-effects. Nanevski
et al. [30] use dependent types to verify information flow and access control
policies in an interactive manner.

Lourenço and Caires [23] introduce the notion of dependent information-flow
types and propose a fine-grained type system; every value and function have
an associated security level. Their approach is different to the coarse-grained
approach taken in our work where only some computations and values have
associated security labels. Rajani and Garg [33] show that both approaches are
equally expressive for static IFC techniques and Vassena et al. [48] show the
same for dynamic IFC techniques.

Principles for Information Flow. Bastys et al. [6] put forward a set of informal
principles for information flow security definitions and enforcement mechanisms:
attacker-driven security, trust-aware enforcement, separation of policy annota-
tions and code, language-independence, justified abstraction, and permissiveness.

DepSec follows the principle of trust-aware enforcement, as we make clear
the boundary between the trusted and untrusted components in the program.
Additionally, the design of our declassification mechanism follows the principle of
separation of policy annotations and code. The use of dependent types increases
the permissiveness of our enforcement as we discuss throughout the paper. While
our approach is not fully language-independent, we posit that the approach
may be ported to other programming languages with general-purpose dependent
types.

Declassification Enforcement. Our hatch builders are reminiscent of downgrad-
ing policies of Li and Zdancewic [19]. For example, similar to them, DepSec’s
declassification policies naturally express the idea of delimited release [36]
that provides explicit characterization of the declassifying computation. Here,
DepSec’s policies can express a broad range of policies that can be expressed

70 S. Gregersen et al.

through predicates, an improvement over simple expression-based enforcement
mechanisms for delimited release [4,5,36].

An interesting point in the design of declassification policies is robust declas-
sification [49] that demands that untrusted components must not affect infor-
mation release. Qualified robustness [2,28] generalizes this notion by giving
untrusted code a limited ability to affect information release through the intro-
duction of an explicit endorsement operation. Our approach is orthogonal to both
notions of robustness as the intent is to let the untrusted components declassify
information but only under very controlled circumstances while adhering to the
security policy.

8 Conclusion and Future Work

In this paper, we have presented DepSec – a library for statically enforced
information-flow control in Idris. Through several case studies, we have show-
cased how the DepSec primitives increase the expressiveness of state-of-the-art
information-flow control libraries and how DepSec matches the expressiveness
of a special-purpose dependent information-flow type system on a key example.
Moreover, the library allows programmers to implement policy-parameterized
functions that abstract over the security policy while retaining precise security
levels.

By taking ideas from the literature and by exploiting dependent types, we
have shown powerful means of specifying statically enforced declassification poli-
cies related to what, who, and when information is released. Specifically, we have
introduced the notion of predicate hatch builders and token hatch builders that
rely on the fulfillment of predicates and possession of tokens for declassification.
We have also shown how the ST monad [10] can be used to limit hatch usage
statically.

Finally, we have discussed the necessary means to show progress-insensitive
noninterference in a sequential setting for a dependently typed information-flow
control library like DepSec.

Future Work. There are several avenues for further work. Integrity is vital in
many security policies and is not considered in MAC nor DepSec. It will be
interesting to take integrity and the presence of concurrency into the dependently
typed setting and consider internal and termination covert channels as well. It
also remains to prove our declassification mechanisms sound. Here, attacker-
centric epistemic security conditions [3,16] that intuitively express many declas-
sification policies may be a good starting point.

Acknowledgements. Thanks are due to Mathias Vorreiter Pedersen, Bas Spitters,
Alejandro Russo, and Marco Vassena for their valuable insights and the anonymous
reviewers for their comments on this paper. This work is partially supported by DFF
project 6108-00363 from The Danish Council for Independent Research for the Nat-
ural Sciences (FNU), Aarhus University Research Foundation, and the Concordium
Blockchain Research Center, Aarhus University, Denmark.

A Dependently Typed Library for Static Information-Flow Control in Idris 71

References

1. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008.
LNCS, vol. 5283, pp. 333–348. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88313-5_22

2. Askarov, A., Myers, A.C.: Attacker control and impact for confidentiality and
integrity. Log. Methods Comput. Sci. 7(3) (2011). https://doi.org/10.2168/LMCS-
7(3:17)2011

3. Askarov, A., Sabelfeld, A.: Gradual release: unifying declassification, encryption
and key release policies. In: 2007 IEEE Symposium on Security and Privacy (S&P
2007), Oakland, California, USA, 20–23 May 2007, pp. 207–221. IEEE Computer
Society (2007). https://doi.org/10.1109/SP.2007.22

4. Askarov, A., Sabelfeld, A.: Localized delimited release: combining the what and
where dimensions of information release. In: Hicks, M.W. (ed.) Proceedings of the
2007 Workshop on Programming Languages and Analysis for Security, PLAS 2007,
San Diego, California, USA, 14 June 2007, pp. 53–60. ACM (2007). https://doi.
org/10.1145/1255329.1255339

5. Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for
dynamic languages. In: Proceedings of the 22nd IEEE Computer Security Foun-
dations Symposium, CSF 2009, Port Jefferson, New York, USA, 8–10 July 2009,
pp. 43–59. IEEE Computer Society (2009). https://doi.org/10.1109/CSF.2009.22

6. Bastys, I., Piessens, F., Sabelfeld, A.: Prudent design principles for information
flow control. In: Proceedings of the 13th Workshop on Programming Languages
and Analysis for Security, pp. 17–23. ACM (2018)

7. Bell, D.E., La Padula, L.J.: Secure computer system: unified exposition and multics
interpretation. Technical report. MITRE Corp., Bedford, MA (1976)

8. Brady, E.: IDRIS—systems programming meets full dependent types. In: Jhala,
R., Swierstra, W. (eds.) Proceedings of the 5th ACM Workshop Programming
Languages meets Program Verification, PLPV 2011, Austin, TX, USA, 29 January
2011, pp. 43–54. ACM (2011). https://doi.org/10.1145/1929529.1929536

9. Brady, E.: Idris, a general-purpose dependently typed programming language:
design and implementation. J. Funct. Program. 23(5), 552–593 (2013). https://
doi.org/10.1017/S095679681300018X

10. Brady, E.: State machines all the way down, January 2016. http://idris-lang.org/
drafts/sms.pdf

11. Buiras, P., Vytiniotis, D., Russo, A.: HLIO: mixing static and dynamic typing for
information-flow control in Haskell. In: Fisher, K., Reppy, J.H. (eds.) Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2015, Vancouver, BC, Canada, 1–3 September 2015, pp. 289–301. ACM
(2015). https://doi.org/10.1145/2784731.2784758

12. Chapman, R., Hilton, A.: Enforcing security and safety models with an information
flow analysis tool. In: McCormick, J.W., Sward, R.E. (eds.) Proceedings of the
2004 Annual ACM SIGAda International Conference on Ada: The Engineering of
Correct and Reliable Software for Real-Time & Distributed Systems Using Ada
and Related Technologies 2004, Atlanta, GA, USA, 14 November 2004, pp. 39–46.
ACM (2004). https://doi.org/10.1145/1032297.1032305

13. Coquand, T., Huet, G.P.: The calculus of constructions. Inf. Comput. 76(2/3),
95–120 (1988). https://doi.org/10.1016/0890-5401(88)90005-3

https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.2168/LMCS-7(3:17)2011
https://doi.org/10.2168/LMCS-7(3:17)2011
https://doi.org/10.1109/SP.2007.22
https://doi.org/10.1145/1255329.1255339
https://doi.org/10.1145/1255329.1255339
https://doi.org/10.1109/CSF.2009.22
https://doi.org/10.1145/1929529.1929536
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
http://idris-lang.org/drafts/sms.pdf
http://idris-lang.org/drafts/sms.pdf
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/1032297.1032305
https://doi.org/10.1016/0890-5401(88)90005-3

72 S. Gregersen et al.

14. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Commun. ACM 20(7), 504–513 (1977). https://doi.org/10.1145/359636.359712

15. Gregersen, S., Thomsen, S.E., Askarov, A.: A dependently typed library for static
information-flow control in Idris (2019). arXiv:1902.06590

16. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1), 5:1–5:47 (2008). https://doi.org/10.1145/1410234.1410239

17. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information
flow in Javascript and its APIs. In: Cho, Y., Shin, S.Y., Kim, S., Hung, C., Hong,
J. (eds.) Symposium on Applied Computing, SAC 2014, Gyeongju, Republic of
Korea, 24–28 March 2014, pp. 1663–1671. ACM (2014). https://doi.org/10.1145/
2554850.2554909

18. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1–3), 67–
111 (2000). https://doi.org/10.1016/S0167-6423(99)00023-4

19. Li, P., Zdancewic, S.: Downgrading policies and relaxed noninterference. In:
Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2005, Long Beach,
California, USA, 12–14 January 2005, pp. 158–170. ACM (2005). https://doi.org/
10.1145/1040305.1040319

20. Li, P., Zdancewic, S.: Encoding information flow in Haskell. In: 19th IEEE
Computer Security Foundations Workshop (CSFW-19 2006), Venice, Italy, 5–7
July 2006, p. 16. IEEE Computer Society (2006). https://doi.org/10.1109/CSFW.
2006.13

21. Li, P., Zdancewic, S.: Arrows for secure information flow. Theor. Comput. Sci.
411(19), 1974–1994 (2010). https://doi.org/10.1016/j.tcs.2010.01.025

22. Liu, J., George, M.D., Vikram, K., Qi, X., Waye, L., Myers, A.C.: Fabric: a platform
for secure distributed computation and storage. In: Matthews, J.N., Anderson, T.E.
(eds.) Proceedings of the 22nd ACM Symposium on Operating Systems Principles
2009, SOSP 2009, Big Sky, Montana, USA, 11–14 October 2009, pp. 321–334. ACM
(2009). https://doi.org/10.1145/1629575.1629606

23. Lourenço, L., Caires, L.: Dependent information flow types. In: Rajamani, S.K.,
Walker, D. (eds.) Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2015, Mumbai, India,
15–17 January 2015, pp. 317–328. ACM (2015). https://doi.org/10.1145/2676726.
2676994

24. Martin-Löf, P., Sambin, G.: Intuitionistic Type Theory, vol. 9. Bibliopolis, Naples
(1984)

25. Morgenstern, J., Licata, D.R.: Security-typed programming within dependently
typed programming. In: Hudak, P., Weirich, S. (eds.) Proceeding of the 15th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2010, Bal-
timore, Maryland, USA, 27–29 September 2010, pp. 169–180. ACM (2010). https://
doi.org/10.1145/1863543.1863569

26. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Appel,
A.W., Aiken, A. (eds.) Proceedings of the 26th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 1999, San Antonio, TX,
USA, 20–22 January 1999, pp. 228–241. ACM (1999). https://doi.org/10.1145/
292540.292561

27. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol. 9(4), 410–442 (2000). https://doi.org/10.1145/
363516.363526

https://doi.org/10.1145/359636.359712
http://arxiv.org/abs/1902.06590
https://doi.org/10.1145/1410234.1410239
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1145/1040305.1040319
https://doi.org/10.1145/1040305.1040319
https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1016/j.tcs.2010.01.025
https://doi.org/10.1145/1629575.1629606
https://doi.org/10.1145/2676726.2676994
https://doi.org/10.1145/2676726.2676994
https://doi.org/10.1145/1863543.1863569
https://doi.org/10.1145/1863543.1863569
https://doi.org/10.1145/292540.292561
https://doi.org/10.1145/292540.292561
https://doi.org/10.1145/363516.363526
https://doi.org/10.1145/363516.363526

A Dependently Typed Library for Static Information-Flow Control in Idris 73

28. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification. In:
17th IEEE Computer Security Foundations Workshop (CSFW-17 2004), Pacific
Grove, CA, USA, 28–30 June 2004, pp. 172–186. IEEE Computer Society (2004).
https://doi.org/10.1109/CSFW.2004.9

29. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif 3.0: Java infor-
mation flow, July 2006

30. Nanevski, A., Banerjee, A., Garg, D.: Verification of information flow and access
control policies with dependent types. In: 32nd IEEE Symposium on Security and
Privacy, S&P 2011, Berkeley, California, USA, 22–25 May 2011, pp. 165–179. IEEE
Computer Society (2011). https://doi.org/10.1109/SP.2011.12

31. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type
Theory: An Introduction. Clarendon Press, New York (1990)

32. Norell, U.: Towards a Practical Programming Language Based on Dependent Type
Theory, vol. 32. Citeseer (2007)

33. Rajani, V., Garg, D.: Types for information flow control: labeling granularity and
semantic models. In: 31st IEEE Computer Security Foundations Symposium, CSF
2018, Oxford, United Kingdom, 9–12 July 2018, pp. 233–246. IEEE Computer
Society (2018). https://doi.org/10.1109/CSF.2018.00024

34. Russo, A.: Functional pearl: two can keep a secret, if one of them uses Haskell. In:
Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, Vancouver, BC, Canada, 1–3 September 2015, pp. 280–
288 (2015). https://doi.org/10.1145/2784731.2784756

35. Russo, A., Claessen, K., Hughes, J.: A library for light-weight information-flow
security in Haskell. In: Gill, A. (ed.) Proceedings of the 1st ACM SIGPLAN Sym-
posium on Haskell, Haskell 2008, Victoria, BC, Canada, 25 September 2008, pp.
13–24. ACM (2008). https://doi.org/10.1145/1411286.1411289

36. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003). https://doi.org/10.1109/JSAC.2002.806121

37. Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Futatsugi,
K., Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 174–191.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-37621-7_9

38. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In:
18th IEEE Computer Security Foundations Workshop (CSFW-18 2005), Aix-en-
Provence, France, 20–22 June 2005, pp. 255–269. IEEE Computer Society (2005).
https://doi.org/10.1109/CSFW.2005.15

39. Simonet, V.: Flow Caml in a nutshell. In: Hutton, G. (ed.) Proceedings of the first
APPSEM-II Workshop, Nottingham, United Kingdom, March 2003

40. Stefan, D., Mazières, D., Mitchell, J.C., Russo, A.: Flexible dynamic informa-
tion flow control in the presence of exceptions. J. Funct. Program. 27, e5 (2017).
https://doi.org/10.1017/S0956796816000241

41. Stefan, D., Russo, A., Buiras, P., Levy, A., Mitchell, J.C., Mazières, D.: Addressing
covert termination and timing channels in concurrent information flow systems.
In: Thiemann, P., Findler, R.B. (eds.) ACM SIGPLAN International Conference
on Functional Programming, ICFP 2012, Copenhagen, Denmark, 9–15 September
2012, pp. 201–214. ACM (2012). https://doi.org/10.1145/2364527.2364557

42. Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dynamic information
flow control in Haskell. In: Claessen, K. (ed.) Proceedings of the 4th ACM SIG-
PLAN Symposium on Haskell, Haskell 2011, Tokyo, Japan, 22 September 2011,
pp. 95–106. ACM (2011). https://doi.org/10.1145/2034675.2034688

https://doi.org/10.1109/CSFW.2004.9
https://doi.org/10.1109/SP.2011.12
https://doi.org/10.1109/CSF.2018.00024
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1007/978-3-540-37621-7_9
https://doi.org/10.1109/CSFW.2005.15
https://doi.org/10.1017/S0956796816000241
https://doi.org/10.1145/2364527.2364557
https://doi.org/10.1145/2034675.2034688

74 S. Gregersen et al.

43. Swamy, N., Chen, J., Chugh, R.: Enforcing stateful authorization and information
flow policies in Fine. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp.
529–549. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-
6_28

44. Swamy, N., Chen, J., Fournet, C., Strub, P., Bhargavan, K., Yang, J.: Secure dis-
tributed programming with value-dependent types. In: Chakravarty, M.M.T., Hu,
Z., Danvy, O. (eds.) Proceeding of the 16th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2011, Tokyo, Japan, 19–21 September
2011, pp. 266–278. ACM (2011). https://doi.org/10.1145/2034773.2034811

45. Tsai, T., Russo, A., Hughes, J.: A library for secure multi-threaded information
flow in Haskell. In: 20th IEEE Computer Security Foundations Symposium, CSF
2007, Venice, Italy, 6–8 July 2007, pp. 187–202. IEEE Computer Society (2007).
https://doi.org/10.1109/CSF.2007.6

46. Vassena, M., Russo, A.: On formalizing information-flow control libraries. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, PLAS@CCS 2016, Vienna, Austria, 24 October 2016, pp. 15–28 (2016).
https://doi.org/10.1145/2993600.2993608

47. Vassena, M., Russo, A., Buiras, P., Waye, L.: MAC a verified static information-
flow control library. J. Log. Algebr. Methods Program. 95, 148–180 (2018).
http://www.sciencedirect.com/science/article/pii/S235222081730069X

48. Vassena, M., Russo, A., Garg, D., Rajani, V., Stefan, D.: From fine- to coarse-
grained dynamic information flow control and back. PACMPL 3(POPL), 76:1–
76:31 (2019). https://doi.org/10.1145/2694344.2694372

49. Zdancewic, S., Myers, A.C.: Robust declassification. In: 14th IEEE Computer Secu-
rity Foundations Workshop (CSFW-14 2001), Cape Breton, Nova Scotia, Canada,
11–13 June 2001, pp. 15–23. IEEE Computer Society (2001). https://doi.org/10.
1109/CSFW.2001.930133

50. Zhang, D., Wang, Y., Suh, G.E., Myers, A.C.: A hardware design language
for timing-sensitive information-flow security. In: Özturk, Ö., Ebcioglu, K.,
Dwarkadas, S. (eds.) Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS 2015, Istanbul, Turkey, 14–18 March 2015, pp. 503–516. ACM (2015). https://
doi.org/10.1145/2694344.2694372

51. Zheng, L., Myers, A.C.: Dynamic security labels and noninterference (extended
abstract). In: Dimitrakos, T., Martinelli, F. (eds.) Formal Aspects in Security and
Trust. IFIP, vol. 173, pp. 27–40. Springer, Boston (2005). https://doi.org/10.1007/
0-387-24098-5_3

52. Zheng, L., Myers, A.C.: Dynamic security labels and static information flow con-
trol. Int. J. Inf. Secur. 6(2–3), 67–84 (2007). https://doi.org/10.1007/s10207-007-
0019-9

https://doi.org/10.1007/978-3-642-11957-6_28
https://doi.org/10.1007/978-3-642-11957-6_28
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1109/CSF.2007.6
https://doi.org/10.1145/2993600.2993608
http://www.sciencedirect.com/science/article/pii/S235222081730069X
https://doi.org/10.1145/2694344.2694372
https://doi.org/10.1109/CSFW.2001.930133
https://doi.org/10.1109/CSFW.2001.930133
https://doi.org/10.1145/2694344.2694372
https://doi.org/10.1145/2694344.2694372
https://doi.org/10.1007/0-387-24098-5_3
https://doi.org/10.1007/0-387-24098-5_3
https://doi.org/10.1007/s10207-007-0019-9
https://doi.org/10.1007/s10207-007-0019-9

A Dependently Typed Library for Static Information-Flow Control in Idris 75

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Achieving Safety Incrementally
with Checked C

Andrew Ruef1(B), Leonidas Lampropoulos1,2, Ian Sweet1, David Tarditi3,
and Michael Hicks1

1 University of Maryland, College Park, USA
{awruef,llampro,ins,mwh}@cs.umd.edu

2 University of Pennsylvania, Philadelphia, USA
3 Microsoft Research, Kirkland, USA

dtarditi@microsoft.com

Abstract. Checked C is a new effort working toward a memory-safe C.
Its design is distinguished from that of prior efforts by truly being an
extension of C: Every C program is also a Checked C program. Thus, one
may make incremental safety improvements to existing codebases while
retaining backward compatibility. This paper makes two contributions.
First, to help developers convert existing C code to use so-called checked
(i.e., safe) pointers, we have developed a preliminary, automated porting
tool. Notably, this tool takes advantage of the flexibility of Checked C’s
design: The tool need not perfectly classify every pointer, as required
of prior all-or-nothing efforts. Rather, it can make a best effort to con-
vert more pointers accurately, without letting inaccuracies inhibit com-
pilation. However, such partial conversion raises the question: If safety
violations can still occur, what sort of advantage does using Checked
C provide? We draw inspiration from research on migratory typing to
make our second contribution: We prove a blame property that renders
so-called checked regions blameless of any run-time failure. We formalize
this property for a core calculus and mechanize the proof in Coq.

1 Introduction

Vulnerabilities that compromise memory safety are at the heart of many attacks.
Spatial safety, one aspect of memory safety, is ensured when any pointer deref-
erence is always within the memory allocated to that pointer. Buffer overruns
violate spatial safety, and still constitute a common cause of vulnerability. During
2012–2018, buffer overruns were the source of 9.7% to 18.4% of CVEs reported
in the NIST vulnerability database [27], constituting the leading single cause of
CVEs.

The source of memory unsafety starts with the language definitions of C and
C++, which render out-of-bounds pointer dereferences “undefined.” Traditional
compilers assume they never happen. Many efforts over the last 20 years have
aimed for greater assurance by proving that accesses are in bounds, and/or pre-
venting out-of-bounds accesses from happening via inserted dynamic checks [1–
10,12,15,16,18,22,25,26,29]. This paper focuses on Checked C, a new, freely
c© The Author(s) 2019
F. Nielson and D. Sands (Eds.): POST 2019, LNCS 11426, pp. 76–98, 2019.
https://doi.org/10.1007/978-3-030-17138-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17138-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-17138-4_4

Achieving Safety Incrementally with Checked C 77

available1 language design for a memory-safe C [11], currently focused on spa-
tial safety. Checked C draws substantial inspiration from prior safe-C efforts but
differs in two key ways, both of which focus on backward compatibility with,
and incremental improvement of, regular C code.

Mixing Checked and Legacy Pointers. First, as outlined in Sect. 2, Checked
C permits intermixing checked (safe) pointers and legacy pointers. The for-
mer come in three varieties: pointers to single objects Ptr<τ>; pointers to
arrays Array ptr<τ>, and NUL-terminated arrays Nt array ptr<τ>. The lat-
ter two have an associated clause that describes their known length in terms
of constants and other program variables. The specified length is used to either
prove pointer dereferences are safe or, barring that, serves as the basis of dynamic
checks inserted by the compiler.

Importantly, checked pointers are represented as in normal C—no changes
to pointer structure (e.g., by “fattening” a pointer to include its bounds) are
imposed. As such, interoperation with legacy C is eased. Moreover, the fact that
checked and legacy pointers can be intermixed in the same module eases the port-
ing process, including porting via automated tools. For example, CCured [26]
works by automatically classifying existing pointers and compiling them for
safety. This classification is necessarily conservative. For example, if a function
f(p) is mostly called with safe pointers, but once with an unsafe one (e.g., a
“wild” pointer in CCured parlance, perhaps constructed from an int), then the
classification of p as unsafe will propagate backwards, poisoning the classifica-
tion of the safe pointers, too. The programmer will be forced to change the code
and/or pay a higher cost for added (but unnecessary) run-time checks.

On the other hand, in the Checked C setting, if a function uses a pointer safely
then its parameter can be typed that way. It is then up to a caller whose pointer
arguments cannot also be made safe to insert a local cast. Section 5 presents
a preliminary, whole-program analysis called checked-c-convert that utilizes the
extra flexibility afforded by mixing pointers to partially convert a C program
to a Checked C program. On a benchmark suite of five programs totaling more
than 200K LoC, we find that thousands of pointer locations are made more
precise than would have been if using a more conservative algorithm like that
of CCured. The checked-c-convert tool is distributed with the publicly available
Checked C codebase.

Avoiding Blame with Checked Regions. An important question is what “safety”
means in a program with a mix of checked and unchecked pointers. In such a
program, safety violations are still possible. How, then, does one assess that a
program is safer due to checking some, but not all, of its pointers? Providing a
formal answer to this question constitutes the core contribution of this paper.

Unlike past safe-C efforts, Checked C specifically distinguishes parts of the
program that are and may not be fully “safe.” So-called checked regions differ
from unchecked ones in that they can only use checked pointers—dereference

1 https://github.com/Microsoft/checkedc.

https://github.com/Microsoft/checkedc

78 A. Ruef et al.

or creation of unchecked pointers, unsafe casts, and other potentially dangerous
constructs are disallowed. Using a core calculus for Checked C programs called
CoreChkC, defined in Sect. 3, we prove in Sect. 4 these restrictions are sufficient
to ensure that checked code cannot be blamed. That is, checked code is internally
safe, and any run-time failure can be attributed to unchecked code, even if that
failure occurs in a checked region. This proof has been fully mechanized in the
Coq proof assistant.2 Our theorem fills a gap in the literature on migratory typing
for languages that, like Checked C, use an erasure semantics, meaning that no
extra dynamic checks are inserted at checked/unchecked code boundaries [14].
Moreover, our approach is lighter weight than the more sophisticated techniques
used by the RustBelt project [17], and constitutes a simpler first step toward a
safe, mixed-language design. We say more in Sect. 6.

2 Overview of Checked C

We begin by describing the approach to using Checked C and presenting a brief
overview of the language extensions, using the example in Fig. 1. For more about
the language see Elliott et al. [11]. The approach works as follows:

1. Programmers start with an existing unsafe C program and annotated header
files for existing C libraries. The annotations describe the expected behavior
of functions with respect to bounds.

2. The programmers run a porting tool that modifies the unsafe C program to
use the Checked C extensions. The tool identifies simple cases where Ptr

can be used. This lets the programmers focus on pointers that need bounds
declarations or that are used unsafely.

3. The programmers add bounds declarations and checked regions to the remain-
ing code. The programmers work incrementally, which lets the program be
compiled and tested as it gradually becomes safer.

4. The programmers use a C compiler extended to handle the Checked C exten-
sion to compile the program. The compiler inserts runtime null and bounds
checks and optimizes them out if it can.

5. At runtime, if a null check or bounds check fails, a runtime error is signaled
and the process is terminated.

The programmers repeat steps 3–5 until as much code as possible (ideally, the
entire program) has been made safe.

Checked Pointers. As mentioned in the introduction, Checked C supports
three varieties of checked (safe) pointers: pointers to single objects Ptr<τ>;
pointers to arrays Array ptr<τ>, and NUL-terminated arrays Nt array ptr<τ>.
The dat field of struct buf, defined in Fig. 1(b), is an Array ptr<char>; its
length is specified by sz field in the same struct, as indicated by the count

annotation. Nt array ptr<τ> types are similar. The q argument of the alloc buf

2 https://github.com/plum-umd/checkedc/tree/master/coq.

https://github.com/plum-umd/checkedc/tree/master/coq

Achieving Safety Incrementally with Checked C 79

1 void copy(
2 char∗ dst : byte count(n),
3 const char∗ src : byte count(n),
4 size t n);

(a) copy prototype

1 struct buf
2 {
3 Array ptr<char> dat
4 : count(sz−1);
5 unsigned int len ;/∗ len≤ sz ∗/
6 unsigned int sz ;
7 };

(b) Type definition

1 static char region [MAX]; // unchecked
2 static unsigned int idx = 0;
3

4 Checked void alloc buf(
5 Ptr<struct buf> q,
6 Array ptr<const char> src : count(len) ,
7 unsigned int len)
8 {
9 if (len > q→ sz) {

10 if (idx < MAX && len ≤MAX − idx) {
11 Unchecked {
12 q→ dat = ®ion[idx];
13 q→ sz = len;
14 }
15 idx += len;
16 } else {
17 bug(”out of region memory”);
18 }
19 }
20 copy(q→ buf, src , len) ;
21 q→ len = len;
22 }

(c) Code with checked and unchecked pointers

Fig. 1. Example Checked C code (slightly simplified for readability)

function in Fig. 1(c) is Ptr<struct buf>. This function overwrites the contents of
q with those in the second argument src, an array whose length is specified by the
third argument, len. Variables with checked pointer types or containing checked
pointers must be initialized when they are declared.

Checked Arrays. Checked C also supports a checked array type, which is des-
ignated by prefixing the dimension of an array declaration with the keyword
Checked. For example, int arr Checked[5] declares a 5-element integer array

where accesses are always bounds checked. A checked array of τ implicitly con-
verts to an Array ptr<τ> when accessing it. In our example, the array region has
an unchecked array type because the Checked keyword is omitted.

Checked and Unchecked Regions. Returning to alloc buf : If q→ dat is too small
(len > q→ sz) to hold the contents of src , the function allocates a block from
the static region array, whose free area starts at index idx. Designating a
checked Array ptr<char> from a pointer into the middle of the (unchecked)
region array is not allowed in checked code, so it must be done within the desig-
nated Unchecked block. Within such blocks the programmer has the full freedom
of C, along with the ability to create and use checked pointers. Checked code,
as designated by the Checked annotation (e.g., as on the alloc buf function or
on a block nested within unchecked code) may not use unchecked pointers or
arrays. It also may not define or call functions without prototypes and variable
argument functions.

80 A. Ruef et al.

Interface Types. Once alloc buf has allocated q→ dat it calls copy to transfer the
data into it, from src. Checked C permits normal C functions, such as those in
an existing library, to be given an interface type. This is the type that Checked C
code should use in a checked region. In an unchecked region, either the original
type or the interface type may be used. This allows the function to be called
with unchecked types or checked types. For copy, this type is shown in Fig. 1(a).

Interface types can also be attached to definitions within a Checked C file,
not just prototypes declared for external libraries. Doing so permits the same
function to be called from an unchecked region (with either checked or unchecked
types) or a checked region (there it will always have the checked type). For exam-
ple, if we wanted alloc buf to be callable from unchecked code with unchecked
pointers, we could define its prototype as

1 void alloc buf (
2 struct buf ∗q : itype (Ptr<struct buf>),
3 const char ∗src : itype (Array ptr<const char>) count(len),
4 unsigned int len) ;

Implementation Details. Checked C is implemented as an extension to the
Clang/ LLVM compiler.3 The clang front-end inserts run-time checks for the
evaluation of lvalue expressions whose results are derived from checked pointers
and that will be used to access memory. Accessing a Ptr<τ> requires a null
check, while accessing an Array ptr<τ> requires both null and bounds checks.
The code for these checks is handed to the LLVM backend, which will remove
checks if it can prove they will always pass. In general, such checks are the only
source of Checked C run-time overhead. Preliminary experiments on some small,
pointer-intensive benchmarks show running time overhead to be around 8.6%,
on average [11].

3 Formalism: CORECHKC

This section presents a formal language CoreChkC that models the essence
of Checked C. The language is designed to be simple but nevertheless highlight
Checked C’s key features: checked and unchecked pointers, and checked and
unchecked code blocks. We prove our key theoretical result—checked code cannot
be blamed for a spatial safety violation—in the next section.

3.1 Syntax

The syntax of CoreChkC is presented in Fig. 2. Types τ classify word-
sized objects while types ω also include multi-word objects. The type ptrmω
types a pointer, where m identifies its mode: mode c identifies a Checked C safe
pointer, while mode u represents an unchecked pointer. In other words ptrcτ is
a checked pointer type Ptr<τ> while ptruτ is an unchecked pointer type τ∗.
3 https://github.com/Microsoft/checkedc-clang.

https://github.com/Microsoft/checkedc-clang

Achieving Safety Incrementally with Checked C 81

Mode m ::= c | u
Word types τ ::= int | ptrmω
Types ω ::= τ | struct T | array n τ
Expressions e ::= nτ | x | let x = e1 in e2 | malloc@ω | (τ)e

| e1 + e2 | &e→f | ∗e | ∗e1 = e2 | unchecked e
Structdefs D ∈ T ⇀ fs
Fields fs ::= τ f | τ f; fs

Fig. 2. CoreChkC Syntax

Multiword types ω include struct records, and arrays of type τ having size n,
i.e., ptrcarray n τ represents a checked array pointer type Array ptr<τ> with
bounds n. We assume structs are defined separately in a map D from struct
names to their constituent field definitions.

Programs are represented as expressions e; we have no separate class of pro-
gram statements, for simplicity. Expressions include (unsigned) integers nτ and
local variables x. Constant integers n are annotated with type τ to indicate
their intended type. As in an actual implementation, pointers in our formalism
are represented as integers. Annotations help formalize type checking and the
safety property it provides; they have no effect on the semantics except when τ
is a checked pointer, in which case they facilitate null and bounds checks. Vari-
ables x, introduced by let-bindings let x = e1 in e2, can only hold word-sized
objects, so all structs can only be accessed by pointers.

Checked pointers are constructed using malloc@ω, where ω is the
type (and size) of the allocated memory. Thus, malloc@int produces a
pointer of type ptrcint while malloc@(array 10 int) produces one of type
ptrc(array 10 int). Unchecked pointers can only be produced by the cast oper-
ator, (τ)e, e.g., by doing (ptruint)malloc@int. Casts can also be used to coerce
between integer and pointer types and between different multi-word types.

Pointers are read via the ∗ operator, and assigned to via the = operator. To
read or write struct fields, a program can take the address of that field and read
or write that address, e.g., x→f is equivalent to ∗(&x→f). To read or write an
array, the programmer can use pointer arithmetic to access the desired element,
e.g., x[i] is equivalent to ∗(x + i).

By default, CoreChkC expressions are assumed to be checked. Expression
e in unchecked e is unchecked, giving it additional freedom: Checked pointers
may be created via casts, and unchecked pointers may be read or written.

Design Notes. CoreChkC leaves out many interesting C language features. We
do not include an operation for freeing memory, since this paper is concerned
about spatial safety, not temporal safety. CoreChkC models statically sized
arrays but supports dynamic indexes; supporting dynamic sizes is interesting but
not meaningful enough to justify the complexity it would add to the formalism.
Making ints unsigned simplifies handling pointer arithmetic. We do not model

82 A. Ruef et al.

Heap H ∈ Z ⇀ Z × τ
Result r ::= e | Null | Bounds
Contexts E ::= | let x = E in e | E + e | n + E

| &E→f | (τ)E | ∗E | ∗E = e | ∗n=E | unchecked E

Fig. 3. Semantics definitions

control operators or function calls, whose addition would be straightforward.4

CoreChkC does not have a checked e expression for nesting within unchecked
expressions, but supporting it would be easy.

3.2 Semantics

Figure 4 defines the small-step operational semantics for CoreChkC expressions
in the form of judgment H; e −→m H; r. Here, H is a heap, which is a partial
map from integers (representing pointer addresses) to type-annotated integers
nτ . Annotation m is the mode of evaluation, which is either c for checked mode
or u for unchecked mode. Finally, r is a result, which is either an expression e,
Null (indicating a null pointer dereference), or Bounds (indicating an out-of-
bounds array access). An unsafe program execution occurs when the expression
reaches a stuck state—the program is not an integer nτ , and yet no rule applies.
Notably, this could happen if trying to dereference a pointer n that is actually
invalid, i.e., H(n) is undefined.

The semantics is defined in the standard manner using evaluation contexts E.
We write E[e0] to mean the expression that results from substituting e0 into the
“hole” () of context E. Rule C-Exp defines normal evaluation. It decomposes an
expression e into a context E and expression e0 and then evaluates the latter via
H; e0 � H ′; e′

0, discussed below. The evaluation mode m is constrained by the
mode(E) function, also given in Fig. 4. The rule and this function ensure that
when evaluation occurs within e in some expression unchecked e, then it does
so in unchecked mode u; otherwise it may be in checked mode c. Rule C-Halt

halts evaluation due to a failed null or bounds check.
The rules prefixed with E- are those of the computation semantics H; e0 �

H ′; e′
0. The semantics is implicitly parameterized by struct map D. The rest of

this section provides additional details for each rule, followed by a discussion of
CoreChkC’s type system.

Rule E-Binop produces an integer n3 that is the sum of arguments n1 and
n2. As mentioned earlier, the annotations τ on literals nτ indicate the type the
program has ascribed to n. When a type annotation is not a checked pointer,
the semantics ignores it. In the particular case of E-Binop for example, addition

4 Function calls f(e′) can be modeled by let x = e1 in e2, where we can view
x as function f ’s parameter, e2 as its body, and e1 as its actual argument. Calls
to unchecked functions from checked code can thus be simulated by having an
unchecked e expression for e2.

Achieving Safety Incrementally with Checked C 83

E-Binop H;nτ1
1 + nτ2

2 � H;nτ3
3 where n3 = n1 + n2

τ1=ptrc(array l τ) ∧ n1 �= 0 ⇒
τ3 = ptrc(array (l − n2) τ)

τ1 �= ptrc(array l τ) ⇒ τ3 = τ1

E-Cast H; (τ)nτ ′ � H;nτ

E-Deref H; ∗nτ � H;nτ1
1 where nτ1

1 = H(n)
∀ l τ ′. τ = ptrc(array l τ ′) ⇒ l > 0

E-Assign H; ∗nτ =nτ1
1 � H ′;nτ1

1 where H(n) defined
∀ l τ ′. τ = ptrc(array l τ ′) ⇒ l > 0
H ′ = H[n
→ nτ1

1]
E-Amper H; &nτ→fi � H;nτ0

0 where τ = ptrm′
struct T

D(T) = τ1f1; ...; τkfk for 1 ≤ i ≤ k
m′ �= c ∨ n �= 0 ⇒

n0 = n + i ∧ τ0 = ptrm′
τi

E-Malloc H; malloc@ω � H ′, nptrcω
1 where

sizeof(ω) = k and k > 0
n1...nk consecutive
n1 �= 0 and H(n1)...H(nk) undefined
τ1, ..., τk = types(D, ω)
H ′ = H[n1
→ 0τ1]...[nk
→ 0τk]

E-Let H; let x = nτ in e � H; e[x
→ nτ]
E-Unchecked H; unchecked nτ � H;nτ

X-DerefOOB H; ∗nτ � H; Bounds where τ = ptrc(array 0 τ1)
X-AssignOOB H; ∗nτ =nτ1

1 � H; Bounds where τ = ptrc(array 0 τ1)
X-DerefNull H; ∗0τ � H; Null where τ = ptrcω

X-AssignNull H; ∗0τ =nτ ′
1 � H; Null where τ = ptrc(array l τ1)

X-AmperNull H; &0τ→fi � H; Null where τ = ptrcstruct T

X-BinopNull H; 0τ + nτ ′ � H; Null where τ = ptrc(array l τ1)

C-Exp
e = E[e0] m = mode(E) ∨ m = u

H; e0 � H ′; e′
0 e′ = E[e′

0]
H; e −→m H ′; e′

C-Halt
e = E[e0] m = mode(E) ∨ m = u

H; e0 � H ′; r where r = Null or r = Bounds

H; e −→m H ′; r

mode() = c
mode(unchecked E) = u
mode(let x = E in e) =

mode(E + e) =
mode(n + E) =
mode(&E→f) =
mode((τ)E) =
mode(∗E) =
mode(∗E = e) =
mode(∗n=E) = mode(E)

Fig. 4. Operational semantics

nτ1
1 +nτ2

2 ignores τ1 and τ2 when τ1 is not a checked pointer, and simply annotates
the result with it. However, when τ is a checked pointer, the rules use it to
model bounds checks; in particular, dereferencing nτ where τ is ptrc(array l τ0)
produces Bounds when l = 0 (more below). As such, when n1 is a non-zero,
checked pointer to an array and n2 is an int, result n3 is annotated as a pointer

84 A. Ruef et al.

to an array with its bounds suitably updated.5 Checked pointer arithmetic on 0
is disallowed; see below.

Rules E-Deref and E-Assign confirm the bounds of checked array pointers:
the length l must be positive for the dereference to be legal. The rule permits the
program to proceed for non-checked or non-array pointers (but the type system
will forbid them).

Rule E-Amper takes the address of a struct field, according to the type
annotation on the pointer, as long the pointer is not zero or not checked.

Rule E-Malloc allocates a checked pointer by finding a string of free heap
locations and initializing each to 0, annotated to the appropriate type. Here,
types(D,ω) returns k types, where these are the types of the corresponding
memory words; e.g., if ω is a struct then these are the types of its fields (looked
up in D), while if ω is an array of length k containing values of type τ , then
we will get back k τ ’s. We require k �= 0 or the program is stuck (a situation
precluded by the type system).

Rule E-Let uses a substitution semantics for local variables; notation e[x �→
nτ] means that all occurrences of x in e should be replaced with nτ .

Rule E-Unchecked returns the result of an unchecked block.
Rules with prefix X- describe failures due to bounds checks and null checks

on checked pointers. These are analogues to the E-Assign, E-Deref, E-Binop,
and E-Amper cases. The first two rules indicate a bounds violation for size-zero
array pointers. The next two indicate an attempt to dereference a null pointer.
The last two indicate an attempt to construct a checked pointer from a null
pointer via field access or pointer arithmetic.

3.3 Typing

The typing judgment Γ ;σ �m e : τ says that expression e has type τ under
environment Γ and scope σ when in mode m. A scope σ is an additional envi-
ronment consisting of a set of literals; it is used to type cyclic structures (in
Rule T-PtrC, below) that may arise during program evaluation. The heap H
and struct map D are implicit parameters of the judgment; they do not appear
because they are invariant in derivations. unchecked expressions are typed in
mode u; otherwise we may use either mode.

Γ maps variables x to types τ , and is used in rules T-Var and T-Let as
usual. Rule T-Base ascribes type τ to literal nτ . This is safe when τ is int
(always). If τ is an unchecked pointer type, a dereference is only allowed by
the type system to be in unchecked code (see below), and as such any sort of
failure (including a stuck program) is not a safety violation. When n is 0 then
τ can be anything, including a checked pointer type, because dereferencing n
would (safely) produce Null. Finally, if τ is ptrc(array 0 τ ′) then dereferencing
n would (safely) produce Bounds.

5 Here, l−n2 is natural number arithmetic: if n2 > l then l−n2 = 0. This would have
to be adjusted if the language contained subtraction, or else bounds information
would be unsound.

Achieving Safety Incrementally with Checked C 85

T-Var
x : τ ∈ Γ

Γ ;σ �m x : τ

T-VConst
nτ ∈ σ

Γ ;σ �m nτ : τ

T-Let
Γ ;σ �m e1 : τ1 Γ, x : τ1;σ �m e2 : τ

Γ ;σ �m let x = e1 in e2 : τ

T-Base
τ = int ∨ τ = ptr

uω ∨ n = 0 ∨
τ = ptr

c(array 0 τ ′)
Γ ;σ �m nτ : τ

T-PtrC
τ = ptr

cω τ0, ..., τj−1 = types(D, ω)
Γ ;σ, nτ �m H(n + k) : τk 0 ≤ k < j

Γ ;σ �m nτ : τ

T-Amper
Γ ;σ �m e : ptrm

struct T
D(T) = ...; τf f ; ...

Γ ;σ �m &e→f : ptrmτf

T-BinopInt
Γ ;σ �m e1 : int
Γ ;σ �m e2 : int

Γ ;σ �m e1 + e2 : int

T-Malloc
sizeof(ω) > 0

Γ ;σ �m malloc@ω : ptrcω

T-Unchecked
Γ ;σ �u e : τ

Γ ;σ �m unchecked e : τ

T-Cast
m = c ⇒ τ �= ptr

cω (for any ω) Γ ;σ �m e : τ ′

Γ ;σ �m (τ)e : τ

T-Deref

Γ ;σ �m e : ptrm′
ω

ω = τ ∨ ω = array n τ
m′ = u ⇒ m = u

Γ ;σ �m ∗e : τ

T-Index

Γ ;σ �m e1 : ptrm′
(array n τ)

Γ ;σ �m e2 : int
m′ = u ⇒ m = u

Γ ;σ �m ∗(e1 + e2) : τ

T-Assign

Γ ;σ �m e1 : ptrm′
ω Γ ;σ �m e2 : τ

ω = τ ∨ ω = array n τ
m′ = u ⇒ m = u

Γ ;σ �m ∗e1 = e2 : τ

T-IndAssign

Γ ;σ �m e1 : ptrm′
(array n τ)

Γ ;σ �m e2 : int Γ ;σ �m e3 : τ
m′ = u ⇒ m = u

Γ ;σ �m ∗(e1 + e2)= e3 : τ

Fig. 5. Typing

Rule T-PtrC is perhaps the most interesting rule of CoreChkC. It ensures
checked pointers of type ptrcω are consistent with the heap, by confirming the
pointed-to heap memory has types consistent with ω, recursively. When doing
this, we extend σ with nτ to properly handle cyclic heap structures; σ is used
by RuleT-VConst.

To make things more concrete, consider the following program that constructs
a cyclic cons cell, using a standard single-linked list representation:

D(node) = int val ; ptrc struct node

let p = malloc@struct node in ∗(&p→next) = p

86 A. Ruef et al.

After executing the program above, the heap would look something like the
following, where n is the integer value of p. That is, the n-th location of the
heap contains 0 (the default value for field val picked by malloc), while the
(n + 1)-th location, which corresponds to field next , contains the literal n.

Heap . . . 0 n . . .

Loc n

How can we type the pointer nptrcstruct node in this heap without getting an
infinite typing judgment?

Γ ;σ �c nptrcstruct node : ptrcstruct node

That’s where the scope comes in, to break the recursion. In particular, using
Rule T-PtrC and struct node’s definition, we would need to prove two things:

Γ ;σ, nptrcstruct node �c H(n + 0) : int
and

Γ ;σ, nptrcstruct node �c H(n + 1) : ptrcstruct node

Since H(n+ 0) = 0, as malloc zeroes out its memory, we can trivially prove the
first goal using Rule T-Base. However, the second goal is almost exactly what
we set out to prove in the first place! If not for the presence of the scope σ, the
proof the n is typeable would be infinite! However, by adding nptrcstruct node to
the scope, we are essentially assuming it is well-typed to type its contents, and
the desired result follows by Rule T-VConst.6

A key feature of T-PtrC is that it effectively confirms that all pointers
reachable from the given one are consistent; it says nothing about other parts of
the heap. So, if a set of checked pointers is only reachable via unchecked pointers
then we are not concerned whether they are consistent, since they cannot be
directly dereferenced by checked code.

Back to the remaining rules, T-Amper and T-BinopInt are unsurprising.
Rule T-Malloc produces checked pointers so long as the pointed-to type ω is
not zero-sized, i.e., is not array 0 τ . Rule T-Unchecked introduces unchecked
mode, relaxing access rules. Rule T-Cast enforces that checked pointers cannot
be cast targets in checked mode.

Rules T-Deref and T-Assign type pointer accesses. These rules require un-
checked pointers only be dereferenced in unchecked mode. Rule T-Index permits
6 For readers familiar with coinduction [28], this proof technique is similar: to prove

a coinductive property P one would assume P but need to use it productively in a
subterm; similarly here, we can assume a pointer is well-typed when we attempt to
type heap locations that are reachable from it.

Achieving Safety Incrementally with Checked C 87

reading a computed pointer to an array, and rule T-IndAssign permits writing
to one. These rules are not strong enough to permit updating a pointer to an
array after performing arithmetic on it. In general, Checked C’s design permits
overcoming such limitations through selective use of casts in unchecked code.
(That said, our implementation is more flexible in this particular case.)

4 Checked Code Cannot Be Blamed

Our main formal result is that well-typed programs will never fail with a spatial
safety violation that is due to a checked region of code, i.e., checked code cannot
be blamed. This section presents the main result and outlines its proof. We have
mechanized the full proof using the Coq proof assistant. The development is
roughly 3500 lines long, including comments. It is freely available at https://
github.com/plum-umd/checkedc/tree/master/coq.

4.1 Progress and Preservation

The blame theorem is proved using the two standard syntactic type-safety
notions of Progress and Preservation, adapted for CoreChkC. Progress indi-
cates that a (closed) well-typed program either is a value, can take a step (in
either mode), or else is stuck in unchecked code. A program is in unchecked
mode if its expression e only type checks in mode u, or its (unique) context E
has mode u.

Theorem 1 (Progress). If · �m e : τ (under heap H) then one of the following
holds:

– e is an integer nτ

– There exists H ′, m′, and r such that H; e −→m′
H ′; r where r is either some

e′, Null, or Bounds.
– m = u or e = E[e′′] and mode(E) = u for some E, e′′.

Preservation indicates that if a well-typed program in checked mode takes a
checked step then the resulting program is also well-typed in checked mode.

Theorem 2 (Preservation). If Γ ; · �c e : τ (under a heap H) and H; e −→c

H ′; r (for some H ′, r), then and r = e′ implies H � H ′ and Γ ; · �c e′ : τ (under
heap H ′).

We write H � H ′ to mean that for all nτ if · �c nτ : τ under H then
· �c nτ : τ under H ′ as well.

The proofs of both theorems are by induction on the typing derivation. The
Preservation proof is the most delicate, particularly ensuring H � H ′ despite
the creation or modification of cyclic data structures. Crucial to the proof were
two lemmas dealing with the scope, weakening and strengthening.

The first lemma, scope weakening, allows us to arbitrarily extend a scope
with any literal nτ0

0 .

https://github.com/plum-umd/checkedc/tree/master/coq
https://github.com/plum-umd/checkedc/tree/master/coq

88 A. Ruef et al.

Lemma 1 (Weakening). If Γ ;σ �m nτ : τ then Γ ;σ, nτ0
0 �m nτ : τ , for all

nτ0
0 .

Intuitively, this lemma holds because if a proof of Γ ;σ �m nτ : τ relies on
the rule T-VConst, then that nτ1

1 ∈ σ for some nτ1
1 . But then nτ1

1 ∈ (σ, nτ0
0) as

well. Importantly, the scope σ is a set of nτ and not a map from n to τ . As such,
if n′τ ′

is already present in σ, adding n′τ ′
0 will not clobber it. Allowing the same

literal to have multiple types is of practical importance. For example a pointer
n to a struct could be annotated with the type of the struct, or the type of the
first field of the struct, or int; all may safely appear in the environment.

Consider the proof that nptrcstruct node is well typed for the heap given in
Sect. 3.3. After applying Rule T-PtrC, we used the fact that nptrcstruct node ∈
σ, nptrcstruct node to prove that the next field of the struct is well typed. If we
were to replace σ with another scope σ, nτ0

0 for some typed literal nτ0
0 (and

as a result any scope that is a superset of σ), the inclusion nptrcstruct node ∈
σ, nτ0

0 , nptrcstruct node still holds and our pointer is still well-typed.
Conversely, the second lemma, scope strengthening, allows us to remove a

literal from a scope, if that literal is well typed in an empty context.

Lemma 2 (Strengthening). If Γ ;σ �m nτ1
1 : τ1 and Γ ; · �m nτ2

2 : τ2, then
Γ ;σ\{nτ2

2 } �m nτ1
1 : τ1.

Informally, if the fact that nτ2
2 is in the scope is used in the proof of well-

typedness of nτ1
1 to prove that nτ2

2 is well-typed for some scope σ, then we can
just use the proof that it is well-typed in an empty scope, along with weakening,
to reach the same conclusion.

Looking back again at the proof of the previous section, we know that

Γ ; · �c n : ptrcstruct node
and

Γ ;σ, nptrcstruct node �c &n→next : ptrcstruct node

While the proof of the latter fact relies on nptrcstruct node being in scope, that
would not be necessary if we knew (independently) that it was well-typed. That
would essentially amount to unrolling the proof by one step.

4.2 Blame

With progress and preservation we can prove a blame theorem: Only unchecked
code can be blamed as the ultimate reason for a stuck program.

Theorem 3 (Checked code cannot be blamed). Suppose · �c e : τ (under
heap H) and there exists Hi, mi, and ei for 1 ≤ i ≤ k such that H; e −→m1

H1; e1 −→m2 ... −→mk Hk; ek. If Hk; ek is stuck then the source of the issue is
unchecked code.

Achieving Safety Incrementally with Checked C 89

Proof. Suppose · �c ek : τ (under heap Hk). By Progress, the only way the
Hk; ek can be stuck is if ek = E[e′′] and mode(E) = u; i.e., the term’s redex is
in unchecked code. Otherwise Hk; ek is not well typed, i.e., · ��c ek : τ (under
heap Hk). As such, one of the steps of the evaluation was in unchecked code,
i.e., there must exist some i where 1 ≤ i ≤ k and mi = u. This is because, by
Preservation, a well-typed program in checked mode that takes a checked step
always leads to a well-typed program in checked mode.

This theorem means that a code reviewer can focus on unchecked code regions,
trusting that checked ones are safe.

5 Porting Assistance

Porting legacy code to use Checked C’s features can be tedious and time con-
suming. To assist the process, we developed a source-to-source translator called
checked-c-convert that discovers some safely-used pointers and rewrites them to
be checked. This algorithm is based on one used by CCured [26], but exploits
Checked C’s allowance of mixing checked and unchecked pointers to make less
conservative decisions.

The checked-c-convert translator works by (1) traversing a program’s
abstract syntax tree (AST) to generate constraints based on pointer variable
declaration and use; (2) solving those constraints; and (3) rewriting the program.
These rewrites consist of promoting some declared pointer types to be checked,
some parameter types to be bounds-safe interfaces, and inserting some casts.
checked-c-convert aims to produce a well-formed Checked C program whose
changes from the original are minimal and unsurprising. A particular challenge
is to preserve syntactic structure of the program. A rewritten program should be
recognizable by the author and it should be usable as a starting point for both
the development of new features and additional porting. The checked-c-convert
tool is implemented as a clang libtooling application and is freely available.

5.1 Constraint Logic and Solving

The basic approach is to infer a qualifier qi for each defined pointer variable
i. Inspired by CCured’s approach [26], qualifiers can be either PTR, ARR and
UNK , ordered as a lattice PTR < ARR < UNK . Those variables with inferred
qualifier PTR can be rewritten into Ptr<τ> types, while those with UNK are
left as is. Those with the ARR qualifier are eligible to have Array ptr<τ> type.
For the moment we only signal this fact in a comment and do not rewrite because
we cannot always infer proper bounds expressions.

90 A. Ruef et al.

Qualifiers are introduced at each pointer variable declaration, i.e., parameter,
variable, field, etc. Constraints are introduced as a pointer is used, and take one
of the following forms:

qi = PTR qi �= PTR
qi = ARR qi �= ARR
qi = UNK qi �= UNK
qi = qj qi = ARR ⇒ qj = ARR

qi = UNK ⇒ qj = UNK

An expression that performs arithmetic on a pointer with qualifier qi, either
via + or [], introduces a constraint qi = ARR. Assignments between pointers
introduce aliasing constraints of the form qi = qj . Casts introduce implication
constraints based on the relationship between the sizes of the two types. If the
sizes are not comparable, then both constraint variables in an assignment-based
cast are constrained to UNK via an equality constraint. One difference from
CCured is the use of negation constraints, which are used to fix a constraint
variable to a particular Checked C type (e.g., due to an existing Ptr<τ> anno-
tation). These would cause problems for CCured, as they might introduce unre-
solvable conflicts. But Checked C’s allowance of checked and unchecked code can
resolve them using explicit casts and bounds-safe interfaces, as discussed below.

One problem with unification-based analysis is that a single unsafe use might
“pollute” the constraint system by introducing an equality constraint to UNK
that transitively constrains unified qualifiers to UNK as well. For example, cast-
ing a struct pointer to a unsigned char buffer to write to the network would cause
all transitive uses of that pointer to be unchecked. The tool takes advantage of
Checked C’s ability to mix checked and unchecked pointers to solve this prob-
lem. In particular, constraints for each function are solved locally, using separate
qualifier variables for each external function’s declared parameters.

5.2 Algorithm

Our modular algorithm runs as follows:

1. The AST for every compilation unit is traversed and constraints are generated
based on the uses of pointer variables. Each pointer variable x that appears
at a physical location in the program is given a unique constraint variable qi

at the point of declaration. Uses of x are identified with the constraint vari-
able created at the point of declaration. A distinction is made for parameter
and return variables depending on if the associated function definition is a
declaration or a definition:

– Declaration: There may be multiple declarations. The constraint variables
for the parameters and return values in the declarations are all constrained
to be equal to each other. At call sites, the constraint variables used
for a function’s parameters and return values come from those in the
declaration, not the definition (unless there is no declaration).

Achieving Safety Incrementally with Checked C 91

– Definition: There will only be one definition. These constraint variables
are not constrained to be equal to the variables in the declarations. This
enables modular (per function) reasoning.

2. After the AST is traversed, the constraints are solved using a fast, unification-
focused algorithm [26]. The result is a set of satisfying assignments for con-
straint variables qi.

3. Then, the AST is re-traversed. At each physical location associated with a
constraint variable, a re-write decision is made based on the value of the con-
straint variable. These physical locations are variable declaration statements,
either as members of a struct, function variable declarations, or parameter
variable declarations. There is a special case, which is any constraint variable
appearing at a parameter position, either at a function declaration/definition,
or, a call site. That case is discussed in more detail next.

4. All of the re-write decisions are then applied to the source code.

5.3 Resolving Conflicts

Defining distinct constraint variables for function declarations, used at call-sites,
and function definitions, used within that function, can result in conflicting solu-
tions. If there is a conflict, then the declaration’s solution is safer than the defini-
tion, or the definition’s is safer than the declaration’s. Which case we are in can
be determined by considering the relationship between the variables’ valuations
in the qualifier lattice. There are three cases:

– No imbalance: In this case, the re-write is made based on the value of the
constraint variable in the solution to the unification.

– Declaration (caller) is safer than definition (callee): In this case, there is
nothing to do for the function, since the function does unknown things with
the pointer. This case will be dealt with at the call site by inserting a cast.

– Decalaration (caller) is less safe than definition (callee): In this case, there
are call sites that are unsafe, but the function itself is fine. We can re-write
the function declaration and definition with a bounds-safe interface.

Example: caller is safer than callee: Consider a function that makes unsafe use
of the parameter within the body of the function, but a callee of the function
passes an argument that is only ever used safely.

1 void f(int ∗a) {
2 ∗(int ∗∗)a = a;
3 }
4

5 void caller (void) {
6 int q = 0;
7 int ∗p = &q;
8 f(p);
9 }

92 A. Ruef et al.

Here, we cannot make a safe since its use is outside Checked C’s type system.
Relying on a unification-only approach, this fact would poison all arguments
passed to f too, i.e., p in caller. This is unfortunate, since p is used safely inside
of caller. Our algorithm remedies this situation by doing the conversion and
inserting a cast:

1

2 void caller (void) {
3 int q = 0;
4 Ptr<int> p = &q;
5 f ((int∗)p);
6 }

The presence of the cast indicates to the programmer that perhaps there is
something in f that should be investigated.

Example: caller less safe than callee: Now consider a function that makes safe
use of the parameter within the body of the function, but a caller of the function
might perform casts or other unsafe operations on an argument it passes.

1 void f(int ∗a) {
2 ∗a = 0;
3 }
4

5 void caller (void) {
6 int q = 0;
7 f1(&q);
8 f1 (((int∗) 0x8f8000));
9 }

If considered in isolation, the function f is safe and the parameter could
be rewritten to Ptr< int>. However, it is used from an unsafe context. In an
approach with pure unification, like CCured, this unsafe use at the call-site would
pollute the classification at the definition. Our algorithm considers solutions and
call sites and definitions independently. Here, the uses of f in caller are less
safe than those in the f’s definition so the rewriter would insert a bounds-safe
interface for f:

1 void f(int ∗a : itype (Ptr<int>)) {
2 ∗a = 0;
3 }

The itype syntax indicates that a can be supplied by the caller as either an
int∗ or a Ptr<τ>, but the function body will treat a as a Ptr<τ>. (See Sect. 2
for more on interface types.)

This approach has advantages and disadvantages. It favors making the fewest
number of modifications across a project. An alternative to using interface types
would be to change the parameter type to a Ptr<τ> directly, and then insert
casts at each call site. This would tell the programmer where potentially bogus
pointer values were, but would also increase the number of changes made. Our

Achieving Safety Incrementally with Checked C 93

approach does not immediately tell the programmer where the pointer changes
need to be made. However, the Checked C compiler will do that if the program-
mer takes a bounds-safe interface and manually converts it into a non-interface
Ptr<τ> type. Every location that would require a cast will fail to type check,

signaling to the programmer to have a closer look.

Table 1. Number of pointer declarations converted through automated porting

Program # of * % Ptr Arr. Unk. Casts(Calls) Ifcs(Funcs) LOC

zlib 1.2.8 4514 46% 5% 49% 8 (300) 464 (1188) 17388

sqlite 3.18.1 34230 38% 3% 59% 2096 (29462) 9132 (23305) 106806

parson 1132 35% 1% 64% 3 (378) 340 (454) 2320

lua 5.3.4 15114 23% 1% 76% 175 (1443) 784 (2708) 13577

libtiff 4.0.6 34518 26% 1% 73% 495 (1986) 1916 (5812) 62439

5.4 Experimental Evaluation

We carried out a preliminary experimental evaluation of the efficacy of checked-
c-convert. To do so, we ran it on five targets—programs and libraries—and
recorded how many pointer types the rewriter converted and how many casts
were inserted. We chose these targets as they constitute legacy code used in
commodity systems, and in security-sensitive contexts.

Running checked-c-convert took no more than 30 min to run, for each target.
Table 1 contains the results. The first and last column indicate the target, its
version, and the lines of code it contains (per cloc). The second column (# of
*) counts the number of pointer definitions or declarations in the program, i.e.,
places that might get rewritten when porting. The next three columns (% Ptr,
Arr., Unk.) indicate the percentages of these that were determined to be PTR,
ARR, or UNK, respectively, where only those in % Ptr induce a rewriting
action. The results show that a fair number of variables can be automatically
rewritten as safe, single pointers (Ptr<τ>). After investigation, there are usually
two reasons that a pointer cannot be replaced with a Ptr<τ>: either some
arithmetic is performed on the pointer, or it is passed as a parameter to a
library function for which a bounds-safe interface does not exist.

The next two columns (Casts(Calls), Ifcs(Funcs)) examine how our rewrit-
ing algorithm takes advantage of Checked C’s support for incremental conver-
sion. In particular, column 6 (Casts(Calls)) counts how many times we cast a
safe pointer at the call site of a function deemed to use that pointer unsafely; in
parentheses we indicate the total number of call sites in the program. Column 7
(Ifcs(Funcs)) counts how often a function definition or declaration has its type
rewritten to use an interface type, where the total declaration/definition count is
in parentheses. This rewriting occurs when the function itself uses at least one of
its parameters safely, but at least one caller provides an argument that is deemed

94 A. Ruef et al.

unsafe. Both columns together represent an improvement in precision, compared
to unification-only, due to Checked C’s focus on backward compatibility.

This experiment represents the first step a developer would take to adopting
Checked C into their project. The values converted into Ptr<τ> by the re-writer
need never be considered again during the rest of the conversion or by subsequent
software assurance/bug finding efforts.

6 Related Work

There has been substantial prior work that aims to address the vulnerability
presented by C’s lack of memory safety. A detailed discussion of how this work
compares to Checked C can be found in Elliott et al. [11]. Here we discuss
approaches for automating C safety, as that is most related to work on our
rewriting algorithm. We also discuss prior work generally on migratory typing,
which aims to support backward compatible migration of an untyped/less-typed
program to a statically typed one.

Security Mitigations. The lack of memory safety in C and C++ has serious prac-
tical consequences, especially for security, so there has been extensive research
toward addressing it automatically. One approach is to attempt to detect mem-
ory corruption after it has happened or prevent an attacker from exploiting
a memory vulnerability. Approaches deployed in practice include stack canaries
[31], address space layout randomization (ASLR) [34], data-execution prevention
(DEP), and control-flow integrity (CFI) [1]. These defenses have led to an esca-
lating series of measures and counter-measures by attackers and defenders [32].
These approaches do not prevent data modification or data disclosure attacks,
and they can be defeated by determined attackers who use those attacks. By
contrast, enforcing memory safety avoids these issues.

Memory-Safe C. Another important line of prior work aims to enforce memory
safety for C; here we focus on projects that aim to do so (mostly) automatically
in a way related to our rewriting algorithm. CCured [26] is a source-to-source
rewriter that transforms C programs to be safe automatically. CCured’s goal is
end-to-end soundness for the entire program. It uses a whole-program analysis
that divides pointers into fat pointers (which allow pointer arithmetic and unsafe
casts) and thin pointers (which do not). The use of fat pointers causes problems
interoperating with existing libraries and systems, making the CCured approach
impractical when that is necessary. Other systems attempt to overcome the limi-
tations of fat pointers by storing the bounds information in a separate metadata
space [24,25] or within unused bits in 64-bit pointers [19] (though this approach
is unsound [13]). These approaches can add substantial overhead; e.g., Soft-
bound’s overhead for spatial safety checking is 67%. Deputy [38] uses backward-
compatible pointer representations with types similar to those in Checked C.
It supports inference local to a function, but resorts to manual annotations at
function and module boundaries. None of these systems permit intermixing safe

Achieving Safety Incrementally with Checked C 95

and unsafe pointers within a module, as Checked C does, which means that
some code simply needs to be rewritten rather than included but clearly marked
within Unchecked blocks.

Migratory Typing. Checked C is closely related to work supporting migratory
typing [35] (aka gradual typing [30]). In that setting, portions of a program
written in a dynamically typed language can be annotated with static types.
For Checked C, legacy C plays the role of the dynamically typed language and
checked regions play the role of statically typed portions. In migratory typing,
one typically proves that a fully annotated program is statically type-safe. What
about mixed programs? They can be given a semantics that checks static types
at boundary crossings [21]. For example, calling a statically typed function from
dynamically typed code would induce a dynamic check that the passed-in argu-
ment has the specified type. When a function is passed as an argument, this
check must be deferred until the function is called. The delay prompted research
on proving blame: Even if a failure were to occur within static code, it could
be blamed on bogus values provided by dynamic code [36]. This semantics is,
however, slow [33], so many languages opt for what Greenman and Felleisen [14]
term the erasure semantics: No checks are added and no notion of blame is
proved, i.e., failures in statically typed code are not formally connected to errors
in dynamic code. Checked C also has erasure semantics, but Theorem 3 is able
to lay blame with the unchecked code.

Rust. Rust [20] is a programming language, like C, that supports zero-cost
abstractions, but like Checked C, aims to be safe. Rust programs may have
designated unsafe blocks in which certain rules are relaxed, potentially allowing
run-time failures. As with Checked C, the question is how to reason about the
safety of a program that contains any amount of unsafe code. The RustBelt
project [17] proposes to use a semantic [23], rather than syntactic [37], account
of soundness, in which (1) types are given meaning according to what terms
inhabit them; (2) type rules are sound when interpreted semantically; and (3)
semantic well typing implies safe execution. With this approach, unsafe code can
be (manually) proved to inhabit the semantic interpretation of its type, in which
case its use by type-checked code will be safe.

We view our approach as complementary to that of RustBelt, perhaps con-
stituting the first step in mixed-language safety assurance. In particular, we
employ a simple, syntactic proof that checked code is safe and unchecked code
can always be blamed for a failure—no proof about any particular unsafe code
is required. Stronger assurance that programs are safe despite using mixed code
could employ the (more involved and labor-intensive) RustBelt approach.

7 Conclusions and Future Work

This paper has presented CoreChkC, a core formalism for Checked C, an exten-
sion to C aiming to provide spatial safety. CoreChkC models Checked C’s safe

96 A. Ruef et al.

(checked) and unsafe (legacy) pointers; while these pointers can be intermixed,
use of legacy pointers is severely restricted in checked regions of code. We prove
that these restrictions are efficacious: checked code cannot be blamed in the sense
that any spatial safety violation must be directly or indirectly due to an unsafe
operation outside a checked region. Our formalization and proof are mechanized
in the Coq proof assistant; this mechanization is available at https://github.
com/plum-umd/checkedc/tree/master/coq.

The freedom to intermix safe and legacy pointers in Checked C programs
affords flexibility when porting legacy code. We show this is true for automated
porting as well. A whole-program rewriting algorithm we built is able to make
more pointers safe than it would if pointer types were all-or-nothing; we do this
by taking advantage of Checked C’s allowed casts and interface types. The tool
implementing this algorithm, checked-c-convert, is distributed with Checked C
at https://github.com/Microsoft/checkedc-clang.

As future work, we are interested in formalizing other aspects of Checked
C, notably its subsumption algorithm and support for flow-sensitive typing (to
handle pointer arithmetic), to prove that these aspects of the implementation are
correct. We are also interested in expanding support for the rewriting algorithm,
by using more advanced static analysis techniques to infer numeric bounds suit-
able for re-writing array types. Finally, we hope to automatically infer regions
of code that could be enclosed within checked regions.

Acknowledgments. We would like to thank the anonymous reviewers for helpful
comments on drafts of this paper, and Sam Elliott for contributions to the portions
of the design and implementation of Checked C presented in this paper. This research
was funded in part by the U.S. National Science Foundation under grants CNS-1801545
and EDU-1319147.

References

1. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity. In: ACM
Conference on Computer and Communications Security (2005)

2. Akritidis, P., Costa, M., Castro, M., Hand, S.: Baggy bounds checking: an efficient
and backwards-compatible defense against out-of-bounds errors. In: Proceedings
of the 18th Conference on USENIX Security Symposium (2009)

3. Austin, T.M., Breach, S.E., Sohi, G.S.: Efficient detection of all pointer and array
access errors. In: SIGPLAN Not., vol. 29, no. 6, June 1994

4. Baratloo, A., Singh, N., Tsai, T.: Transparent run-time defense against stack
smashing attacks. In: Proceedings of the Annual Conference on USENIX Annual
Technical Conference (2000)

5. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: an efficient approach
to combat a broad range of memory error exploits. In: Proceedings of the 12th
Conference on USENIX Security Symposium, vol. 12 (2003)

6. Condit, J., Hackett, B., Lahiri, S.K., Qadeer, S.: Unifying type checking and prop-
erty checking for low-level code. In: POPL 2009: Proceedings of the 36th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
Association for Computing Machinery, New York (2009)

https://github.com/plum-umd/checkedc/tree/master/coq
https://github.com/plum-umd/checkedc/tree/master/coq
https://github.com/Microsoft/checkedc-clang

Achieving Safety Incrementally with Checked C 97

7. Condit, J., Harren, M., Anderson, Z., Gay, D., Necula, G.C.: Dependent types for
low-level programming. In: Proceedings of European Symposium on Programming
(ESOP 2007) (2007)

8. Cowan, C., et al.: Stackguard: automatic adaptive detection and prevention of
buffer-overflow attacks. In: Proceedings of the 7th Conference on USENIX Security
Symposium, vol. 7 (1998)

9. Dhurjati, D., Adve, V.: Backwards-compatible array bounds checking for C with
very low overhead. In: Proceedings of the 28th International Conference on Soft-
ware Engineering (2006)

10. Duck, G.J., Yap, R.H.C.: Heap bounds protection with low fat pointers. In: Pro-
ceedings of the 25th International Conference on Compiler Construction (2016)

11. Elliott, A.S., Ruef, A., Hicks, M., Tarditi, D.: Checked C: Making C safe by exten-
sion. In: Proceedings of the IEEE Conference on Secure Development (SecDev),
September 2018

12. Frantzen, M., Shuey, M.: StackGhost: hardware facilitated stack protection. In:
Proceedings of the 10th Conference on USENIX Security Symposium, vol. 10
(2001)

13. Gil, R., Okhravi, H., Shrobe, H.: There’s a hole in the bottom of the C: on the
effectiveness of allocation protection. In: Proceedings of the IEEE Conference on
Secure Development (SecDev), September 2018

14. Greenman, B., Felleisen, M.: A spectrum of type soundness and performance. Proc.
ACM Program. Lang. 2(ICFP) (2018)

15. Grossman, D., Hicks, M., Jim, T., Morrisett, G.: Cyclone: a type-safe dialect of C.
C/C++ Users J. 23(1), 112–139 (2005)

16. Jones, R.W.M., Kelly, P.H.J.: Backwards-compatible bounds checking for arrays
and pointers in C programs. In: Kamkar, M., Byers, D. (eds.) Third International
Workshop on Automated Debugging. Linkoping Electronic Conference Proceed-
ings, Linkoping University Electronic Press, May 1997. http://www.ep.liu.se/ea/
cis/1997/009/

17. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: securing the founda-
tions of the rust programming language. Proc. ACM Program. Lang. 2(POPL), 66
(2017)

18. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program
shepherding. In: Proceedings of the 11th USENIX Security Symposium, pp.
191–206. USENIX Association, Berkeley (2002). http://dl.acm.org/citation.cfm?
id=647253.720293

19. Kwon, A., Dhawan, U., Smith, J.M., Knight Jr., T.F., DeHon, A.: Low-fat pointers:
compact encoding and efficient gate-level implementation of fat pointers for spatial
safety and capability-based security. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & #38; Communications Security, CCS 2013, pp. 721–
732. ACM, New York (2013). https://doi.org/10.1145/2508859.2516713, http://
doi.acm.org/10.1145/2508859.2516713

20. Matsakis, N.D., Klock II, F.S.: The rust language. In: ACM SIGAda Annual Con-
ference on High Integrity Language Technology (2014)

21. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs.
In: POPL (2007)

22. Microsoft Corporation: Control flow guard (2016). https://msdn.microsoft.com/
en-us/library/windows/desktop/mt637065(v=vs.85).aspx. Accessed April 27 2016

23. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17(3), 348–375 (1978)

http://www.ep.liu.se/ea/cis/1997/009/
http://www.ep.liu.se/ea/cis/1997/009/
http://dl.acm.org/citation.cfm?id=647253.720293
http://dl.acm.org/citation.cfm?id=647253.720293
https://doi.org/10.1145/2508859.2516713
http://doi.acm.org/10.1145/2508859.2516713
http://doi.acm.org/10.1145/2508859.2516713
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx

98 A. Ruef et al.

24. Intel memory protection extensions (MPX) (2018). https://software.intel.com/en-
us/isa-extensions/intel-mpx

25. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: SoftBound: highly com-
patible and complete spatial memory safety for C. In: Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (2009)

26. Necula, G.C., Condit, J., Harren, M., McPeak, S., Weimer, W.: CCured: type-
safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. (TOPLAS)
27(3), 477–526 (2005)

27. NIST vulnerability database. https://nvd.nist.gov. Accessed 17 May 2017
28. Sangiorgi, D., Rutten, J.: Advanced Topics in Bisimulation and Coinduction, vol.

52. Cambridge University Press, Cambridge (2011)
29. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: a fast

address sanity checker. In: Proceedings of the 2012 USENIX Conference on Annual
Technical Conference (2012)

30. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Workshop on
Scheme and Functional Programming (2006)

31. Steffen, J.L.: Adding run-time checking to the Portable C Compiler. Softw. Pract.
Exper. 22(4), 305–316 (1992)

32. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: Pro-
ceedings of the 2013 IEEE Symposium on Security and Privacy (2013)

33. Takikawa, A., Feltey, D., Greenman, B., New, M.S., Vitek, J., Felleisen, M.: Is
sound gradual typing dead? In: POPL (2016)

34. PaX Team: http://pax.grsecurity.net/docs/aslr.txt (2001)
35. Tobin-Hochstadt, S., et al.: Migratory typing: ten years later. In: 2nd Summit

on Advances in Programming Languages (SNAPL 2017), vol. 71, pp. 17:1–17:17
(2017)

36. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Castagna, G.
(ed.) ESOP 2009. LNCS, vol. 5502, pp. 1–16. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00590-9 1

37. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (1994)

38. Zhou, F., et al.: SafeDrive: safe and recoverable extensions using language-based
techniques. In: 7th Symposium on Operating System Design and Implementation
(OSDI 2006). USENIX Association, Seattle (2006)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://software.intel.com/en-us/isa-extensions/intel-mpx
https://software.intel.com/en-us/isa-extensions/intel-mpx
https://nvd.nist.gov
http://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1
http://creativecommons.org/licenses/by/4.0/

Wys�: A DSL for Verified Secure
Multi-party Computations

Aseem Rastogi1(B), Nikhil Swamy2, and Michael Hicks3

1 Microsoft Research, Bangalore, India
aseemr@microsoft.com

2 Microsoft Research, Redmond, USA
nswamy@microsoft.com

3 University of Maryland, College Park, USA
mwh@cs.umd.edu

Abstract. Secure multi-party computation (MPC) enables a set of
mutually distrusting parties to cooperatively compute, using a crypto-
graphic protocol, a function over their private data. This paper presents
Wys�, a new domain-specific language (DSL) for writing mixed-mode
MPCs. Wys� is an embedded DSL hosted in F�, a verification-oriented,
effectful programming language. Wys� source programs are essentially
F� programs written in a custom MPC effect, meaning that the program-
mers can use F�’s logic to verify the correctness and security properties
of their programs. To reason about the distributed runtime semantics of
these programs, we formalize a deep embedding of Wys�, also in F�. We
mechanize the necessary metatheory to prove that the properties veri-
fied for the Wys� source programs carry over to the distributed, multi-
party semantics. Finally, we use F�’s extraction to extract an interpreter
that we have proved matches this semantics, yielding a partially verified
implementation. Wys� is the first DSL to enable formal verification of
MPC programs. We have implemented several MPC protocols in Wys�,
including private set intersection, joint median, and an MPC-based card
dealing application, and have verified their correctness and security.

1 Introduction

Secure multi-party computation (MPC) enables two or more parties to compute
a function f over their private inputs xi so that parties don’t see each others’
inputs, but rather only see the output f(x1, ..., xn). Using a trusted third party
to compute f would achieve this goal, but in fact we can achieve it using one
of a variety of cryptographic protocols carried out only among the participants
[12,26,58,65]. One example use of MPC is private set intersection (PSI): the
xi could be individuals’ personal interests, and the function f computes their
intersection, revealing which interests the group has in common, but not any
interests that they don’t. MPC has also been used for auctions [18], detecting
tax fraud [16], managing supply chains [33], privacy preserving statistical anal-
ysis [31], and more recently for machine learning tasks [19,21,30,38,44].
c© The Author(s) 2019
F. Nielson and D. Sands (Eds.): POST 2019, LNCS 11426, pp. 99–122, 2019.
https://doi.org/10.1007/978-3-030-17138-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17138-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-17138-4_5

100 A. Rastogi et al.

Typically, cryptographic protocols expect f to be specified as a boolean
or arithmetic circuit. Programming directly with circuits and cryptography is
painful, so starting with the Fairplay project [40] many researchers have designed
higher-level domain-specific languages (DSLs) for programming MPCs [6,14,17,
19,23,27,29,34,37,39,45,48,49,52,56,61]. These DSLs compile source code to
circuits which are then given to the underlying cryptographic protocol. While
doing this undoubtedly makes it easier to program MPCs, these languages still
have several drawbacks regarding both security and usability.

This paper presents Wys�, a new MPC DSL that addresses several problems
in prior DSLs. Unlike most previous MPC DSLs, Wys� is not a standalone
language, but is rather an embedded DSL hosted in F� [59], a full-featured,
verification-oriented, effectful programming language. Wys� has the following
two distinguishing elements:

1. A program logic for MPC (Sects. 2 and 3). In their most general form, MPC
applications are mixed-mode: they consist of parties performing (potentially dif-
ferent) local, in-clear computations (e.g. I/O, preprocessing inputs) interleaved
with joint, secure computations. Wys� is the first MPC DSL to provide a pro-
gram logic to formally reason about the correctness and security of such applica-
tions, e.g., to prove that the outputs will not reveal too much information about
a party’s inputs [41].1

To avoid reasoning about separate programs for each party, Wys� builds on
the basic programming model of the Wysteria MPC DSL [52] that allows applica-
tions to be written as a single specification. Wys� presents a shallow embedding
of the Wysteria programming model in F�. When writing Wys� source pro-
grams, programmers essentially write F� programs in a new Wys effect, against
a library of MPC combinators. The pre- and postcondition specifications on
the combinators encode a program logic for MPC. The logic provides observ-
able traces—a novel addition to the Wysteria semantics—which programmers
can use to specify security properties such as delimited release [55]. Since Wys�

programs are F� programs, F� computes verification conditions (VCs) for them
which are discharged using Z3 [2] as usual.

We prove the soundness of the program logic—that the properties proven
about the Wys� source programs carry over when these programs are run by
multiple parties in a distributed manner—also in F�. The proof connects the
pre- and postconditions of the Wys� combinators to their distributed semantics
in two steps. First, we implement the combinators in F�, proving the validity
of their pre- and postconditions against their implementation. Next, we reason
about this implementation and the distributed runtime semantics through a deep
embedding of Wys� in F�. Essentially, we deep-embed the Wys� combinator
abstract syntax trees (ASTs) as an F� datatype and formalize two operational
semantics for them: a conceptual single-threaded semantics that models their

1 Our attacker model is the “honest-but-curious” model where the attackers are the
participants themselves, who play their roles in the protocol faithfully, but are moti-
vated to infer as much as they can about the other participants’ secrets by observing
the protocol. Section 2.3 makes the security model of Wys� more precise.

Wys�: A DSL for Verified Secure Multi-party Computations 101

F� implementation, and the actual distributed semantics that models the multi-
party runs of the programs. We prove, in F�, that the single-threaded semantics
is sound with respect to the distributed semantics (Sect. 3). While we use F�, the
program logic is general and it should be possible to embed it in other verification
frameworks (e.g., in Coq, in the style of Hoare Type Theory [46]).

2. A full-featured, partially verified implementation (Sect. 3). Wys�’s imple-
mentation is, in part, formally verified. The hope is that formal verification
will reduce the occurrence of security threatening bugs, as it has in prior
work [15,36,50,63,64].

We define an interpreter in F� that operates over the Wys� ASTs produced
by a custom F� extraction for the Wys effect. While the local computations are
executed locally by the interpreter, the interpreter compiles secure-computation
ASTs to circuits, on the fly, and executes them using the Goldreich, Micali and
Wigderson (GMW) multi-party computation protocol [26]. The Wys� AST (and
hence the interpreter) does not “bake in” standard F� constructs like numbers
and lists. Rather, inherited language features appear abstractly in the AST, and
their semantics is handled by a foreign function interface (FFI). This permits
Wys� programs to take advantage of existing code and libraries available in F�.

To prove the interpreter behaves correctly, we prove, in F�, that it correctly
implements the formalized distributed semantics. The circuit library and the
GMW implementation are not verified—while it is possible to verify the circuit
library [4], verifying a GMW implementation is an open research question. But the
stage is set for verified versions to be plugged into the Wys� codebase. We char-
acterize the Trusted Computing Base (TCB) of the Wys� toolchain in Sect. 3.5.

Using Wys� we have implemented several programs, including PSI, joint
median, and a card dealing application (Sect. 4). For PSI and joint median
we implement two versions: a straightforward one and an optimized one that
improves performance but increases the number of adversary-observable events.
We formally prove that the optimized and unoptimized versions are equivalent,
both functionally and w.r.t. privacy of parties’ inputs. Our card dealing appli-
cation relies on Wys�’s support for secret shares [57]. We formally prove that
the card dealing algorithm always deals a fresh card.

In sum, Wys� constitutes the first DSL that supports proving security and
correctness properties about MPC programs, which are executed by a partially
verified implementation of a full-featured language. No prior DSL provides these
benefits (Sect. 5). The Wys� implementation, example programs, and proofs
are publicly available on Github at https://github.com/FStarLang/FStar/tree/
stratified_last/examples/wysteria.2

2 Verifying and Deploying Wys� Programs

We illustrate the main concepts of Wys� by showing, in several stages, how
to program, optimize, and verify the two-party joint median example [32,53].
2 This development was done on an older F� version, but the core ideas of what we

present here apply to the present version as well.

https://github.com/FStarLang/FStar/tree/stratified_last/examples/wysteria
https://github.com/FStarLang/FStar/tree/stratified_last/examples/wysteria

102 A. Rastogi et al.

In this example, two parties, Alice and Bob, each have a set of n distinct, locally
sorted integers, and they want to compute the median of the union of their sets
without revealing anything else; our running example fixes n = 2, for simplicity.

2.1 Secure Computations with as_sec

In Wys�, as in its predecessor Wysteria [52], an MPC is written as a single
specification that executes in one of the two computation modes. The primary
mode is called sec mode. In it, a computation is carried out using an MPC
protocol among multiple principals. Here is the joint median in Wys�:

1 let median a b in_a in_b =
2 as_sec {a, b} (fun () → let cmp = fst (reveal in_a) > fst (reveal in_b) in
3 let x3 = if cmp then fst (reveal in_a) else snd (reveal in_a) in
4 let y3 = if cmp then snd (reveal in_b) else fst (reveal in_b) in
5 if x3 > y3 then y3 else x3)

The four arguments to median are, respectively, principal identifiers for Alice and
Bob, and Alice and Bob’s secret inputs expressed as tuples. In Wys�, values
specific to each principal are sealed with the principal’s name (which appears in
the sealed container’s type). As such, the types of in_a and in_b are, respectively,
sealed {a} (int ∗ int) and sealed {b} (int ∗ int). The as_sec ps f construct indicates
that thunk f should be run in sec mode among principals in the set ps. In this
mode, the code has access to the secrets of the principals ps, which it can reveal
using the reveal coercion. As we will see later, the type of reveal ensures that
parties cannot reveal each others’ inputs outside sec mode.3 Also note that the
code freely uses standard F� library functions like fst and snd. The example
extends naturally to n > 2 [3].

To run this program, both Alice and Bob would start a Wys� interpreter
at their host and direct it to run the median function Upon reaching the as_sec
thunk, the interpreters coordinate with each other to compute the result using
the underlying MPC protocol. Section 2.5 provides more details.

2.2 Optimizing median with as_par

Although median gets the job done, it can be inefficient for large n. However,
it turns out if we reveal the result of comparison on line 2 to both the parties,
then the computation on line 3 (resp. line 4) can be performed locally by Alice
(resp. Bob) without the need of cryptography. Doing so can massively improve
performance: previous work [32] has observed a 30× speedup for n = 64.

This optimized variant is a mixed-mode computation, where participants per-
form some local computations interleaved with small, jointly evaluated secure
computations. Wys�’s second computation mode, par mode, supports such
mixed-mode computations. The construct as_par ps f states that each princi-
pal in ps should locally execute the thunk f, simultaneously; any principal not in
3 The runtime representation of sealed a v at b’s host is an opaque constant •

(Sect. 2.5).

Wys�: A DSL for Verified Secure Multi-party Computations 103

the set ps simply skips the computation. Within f, while running in par mode,
principals may engage in secure computations via as_sec.

Here is an optimized version of median using as_par:

1 let median_opt a b in_a in_b =
2 let cmp = as_sec {a, b} (fun () → fst (reveal in_a) > fst (reveal in_b)) in
3 let x3 = as_par {a} (fun () → if cmp then fst (reveal in_a) else snd (reveal (in_a))) in
4 let y3 = as_par {b} (fun () → if cmp then snd (reveal in_b) else fst (reveal (in_b))) in
5 as_sec {a, b} (fun () → if reveal x3 > reveal y3 then reveal y3 else reveal x3)

The secure computation on line 2 only computes cmp and returns the result
to both the parties. Line 3 is then a par mode computation involving only Alice
in which she discards one of her inputs based on cmp. Similarly, on line 4, Bob
discards one of his inputs. Finally, line 5 compares the remaining inputs using
as_sec and returns the result as the final median.

One might wonder whether the par mode is necessary. Could we program the
local parts of a mixed-mode program in normal F�, and use a special compiler to
convert the sec mode parts to circuits and pass them to a GMW MPC service?
We could, but it would complicate both writing MPCs and formally reasoning
that the whole computation is correct and secure. In particular, programmers
would need to write one program for each party that performs a different local
computation (as in median_opt). The potential interleaving among local compu-
tations and their synchronization behavior when securely computing together
would be a source of possible error and thus must be considered in any proof.
For example, Alice’s code might have a bug in it that prevents it from reach-
ing a synchronization point with Bob, to do a GMW-based MPC. For Wys�,
the situation is much simpler. Programmers may write and maintain a single
program. This program can be formally reasoned about directly using a SIMD-
style, “single-threaded” semantics, per the soundness result from Sect. 3.4. This
semantics permits reasoning about the coordinated behavior of multiple princi-
pals, without worry about the effects of interleavings or wrong synchronizations.
Thanks to par mode, invariants about coordinated local computations are directly
evident since we can soundly assume the lockstep behavior (e.g., loop iterations
in the PSI example in Sect. 4).

2.3 Embedding a Type System for Wys� in F�

Designing high-level, multi-party computations is relatively easy using Wyste-
ria’s abstractions. Before trying to run such a computation, we might wonder:

1. Is it realizable? For example, does a computation that is claimed to be exe-
cuted only by some principals ps (e.g., using an as_par ps or an as_sec ps) only
ever access data belonging to ps?

2. Is it correct? For example, does median_opt correctly compute the median of
Alice and Bob’s inputs?

3. Is it secure? For example, do the optimizations in median_opt, which produce
more visible outputs, potentially leak more about the inputs?

104 A. Rastogi et al.

By embedding Wys� in F� and leveraging its extensible, monadic, dependent
type-and-effect system, we address each of these three questions. We define a new
indexed monad called Wys for computations that use MPC combinators as_sec
and as_par. Using Wys along with the sealed type, we can ensure that protocols
are realizable. Using F�’s capabilities for formal verification, we can reason about
a computation’s correctness. By characterizing observable events as part of Wys,
we can define trace properties of MPC programs to reason about their security.

To elaborate on the last: we are interested in application-level security prop-
erties, assuming that the underlying cryptographic MPC protocol (GMW [26]
in our implementation) is secure. In particular, the Wys monad models the ideal
behavior of sec mode—a secure computation reveals only the final output and
nothing else. Thus the programmer could reason, for example, that optimized
MPC programs reveal no more than their unoptimized versions. To relate the
proofs over ideal functionality to the actual implementation, as is standard, we
rely on the security of the cryptographic protocol and the composition theo-
rem [20] to postulate that the implementation securely realizes the ideal speci-
fication.

The Wys monad. The Wys monad provides several features. First, all DSL code
is typed in this monad, encapsulating it from the rest of F�. Within the monad,
computations and their specifications can make use of two kinds of ghost state:
modes and traces. The mode of a computation indicates whether the compu-
tation is running in an as_par or in an as_sec context. The trace of a com-
putation records the sequence and nesting structure of outputs of the jointly
executed as_sec expressions—the result of a computation and its trace consti-
tute its observable behavior. The Wys monad is, in essence, the product of a
reader monad on modes and a writer monad on traces [43,62].

Formally, we define the following F� types for modes and traces. A mode
Mode m ps is a pair of a mode tag (either Par or Sec) and a set of principals
ps. A trace is a forest of trace element (telt) trees. The leaves of the trees record
messages TMsg x that are received as the result of executing an as_sec thunk. The
tree structure represented by the TScope ps t nodes record the set of principals
that are able to observe the messages in the trace t.

type mtag = Par | Sec
type mode = Mode: m:mtag → ps:prins → mode
type telt = TMsg : x:α → telt | TScope: ps:prins → t:list telt → telt
type trace = list telt

Every Wys� computation e has a monadic computation type Wys t pre post.
The type indicates that e is in the Wys monad (so it may perform multi-party
computations); t is its result type; pre is a precondition on the mode in which e
may be executed; and post is a postcondition relating the computation’s mode, its
result value, and its trace of observable events. When run in a context with mode
m satisfying the precondition predicate pre m, e may produce the trace tr, and if
and when it returns, the result is a t-typed value v validating post m v tr. The style
of indexing a monad with a computation’s pre- and postcondition is a standard
technique [7,47,59]—we defer the definition of the monad’s bind and return to

Wys�: A DSL for Verified Secure Multi-party Computations 105

the actual implementation and focus instead on specifications of Wys� specific
combinators. We describe as_sec, reveal, and as_par, and how we give them types
in F�, leaving the rest to the online technical report [54]. By convention, any
free variables in the type signatures are universally prenex quantified.

Defining as_sec in Wys�

1 val as_sec: ps:prins → f:(unit → Wys a pre post) → Wys a
2 (requires (fun m → m=Mode Par ps ∧ pre (Mode Sec ps)))
3 (ensures (fun m r tr → tr=[TMsg r] ∧ ∃t. post (Mode Sec ps) r t)))

The type of as_sec is dependent on the first parameter, ps. Its second argu-
ment f is the thunk to be evaluated in sec mode. The result’s computation type
has the form Wys a (requires φ) (ensures ψ), for some precondition and postcondi-
tion predicates φ and ψ, respectively. We use the requires and ensures keywords
for readability—they are not semantically significant.

The precondition of as_sec is a predicate on the mode m of the computation
in whose context as_sec ps f is called. For all the ps to jointly execute f, we require
all of them to transition to perform the as_sec ps f call simultaneously, i.e., the
current mode must be Mode Par ps. We also require the precondition pre of f to
be valid once the mode has transitioned to Mode Sec ps—line 2 says just this.

The postcondition of as_sec is a predicate relating the initial mode m, the
result r:a, and the trace tr of the computation. Line 3 states that the trace
of a secure computation as_sec ps f is just a singleton [TMsg r], reflecting that
its execution reveals only result r. Additionally, it ensures that the result r is
related to the mode in which f is run (Mode Sec ps) and some trace t according to
post, the postcondition of f. The API models the “ideal functionality” of secure
computation protocols (such as GMW) where the participants only observe the
final result.

Defining reveal in Wys�. As discussed earlier, a value v of type sealed ps t encap-
sulates a t value that can be accessed by calling reveal v. This call should only
succeed under certain circumstances. For example, in par mode, Bob should not
be able to reveal a value of type sealed {Alice} int. The type of reveal makes the
access control rules clear:

val unseal: sealed ps α →Ghost α

val reveal: x:sealed ps α →Wys α

(requires (fun m →m.mode=Par =⇒ m.ps ⊆ ps ∧ m.mode=Sec =⇒ m.ps ∩ ps �= ∅))
(ensures (fun m r tr → r=unseal x ∧ tr=[]))

The unseal function is a Ghost function, meaning that it can only be used in
specifications for reasoning purposes. On the other hand, reveal can be called
in the concrete Wys� programs. Its precondition says that when executing in
Mode Par ps’, all current participants must be listed in the seal, i.e., ps’ ⊆ ps.
However, when executing in Mode Sec ps’, only a subset of current participants is
required: ps’ ∩ ps �= ∅. This is because the secure computation is executed jointly
by all of ps’, so it can access any of their individual data. The postcondition of
reveal relates the result r to the argument x using the unseal function.

106 A. Rastogi et al.

Defining as_par in Wys�

1 val as_par: ps:prins → (unit →Wys a pre post) →Wys (sealed ps a)
2 (requires (fun m →m.mode=Par ∧ ps ⊆ m.ps ∧ can_seal ps a ∧ pre (Mode Par ps)))
3 (ensures (fun m r tr → ∃t. tr=[TScope ps t] ∧ post (Mode Par ps) (unseal r) t)))

The type of as_par enforces the current mode to be Par, and ps to be a subset
of current principals. Importantly, the API scopes the trace t of f to model the
fact that any observables of f are only visible to the principals in ps. Note that
as_sec did not require such scoping, as there ps and the set of current principals
in m are the same. The can_seal predicate enforces that a is a zero-order type
(i.e. closures cannot be sealed), and that in case a is already a sealed type, its
set of principals is a subset of ps.

2.4 Correctness and Security Verification

Using the Wys monad and the sealed type, we can write down precise types for our
median and median_opt programs, proving various useful properties. We discuss
the statements of the main lemmas and the overall proof structure. By program-
ming the protocols as a single specification using the high-level abstractions
provided by Wys�, our proofs are relatively straightforward—in all the proofs
of this section, F� required no additional hints. In particular, we rely heavily on
the view that both parties execute (different fragments of) the same code, thus
avoiding the unwieldy task of reasoning about low-level message passing.

Correctness and Security of median. We first define a pure specification of median
of two int tuples:

let median_of (x1, x2) (y1, y2) = let (_, m, _, _) = sort x1 x2 y1 y2 in m

Further, we capture the preconditions using the following predicate:

let median_pre (x1, x2) (y1, y2) = x1 < x2 ∧ y1 < y2 ∧ distinct x1 x2 y1 y2

Using these, we prove the following top-level specification for median:

val median: in_a:sealed {a} (int ∗ int) → in_b:sealed {b} (int ∗ int) → Wys int
(requires (fun m → m = Mode Par {a, b})) (∗ should be called in the Par mode ∗)
(ensures (fun m r tr → let in_a, in_b = unseal in_a, unseal in_b in

(median_pre in_a in_b =⇒ r = median_of in_a in_b) ∧
(∗ functional correctness ∗)

tr = [TMsg r])) (∗ trace is just the final value ∗)
This signature establishes that when Alice and Bob simultaneously execute

median (in Par mode), with secrets in_a and in_b, then, if and when the protocol
terminates, (a) if their inputs satisfy the precondition median_pre, then the result
is the joint median of their inputs and (b) the observable trace consists only of
the final result, as there is but a single as_sec thunk in median, i.e., it is secure.

Correctness and Security of median_opt. The security proof of median_opt is par-
ticularly interesting, because the program intentionally reveals more than just

Wys�: A DSL for Verified Secure Multi-party Computations 107

the final result, i.e., the output of the first comparison. We would like to verify
that this additional information does not compromise the privacy of the parties’
inputs. To do this, we take the following approach.

First, we characterize the observable trace of median_opt as a pure,
specification-only function. Then, using relational reasoning, we prove a nonin-
teference with delimited release property [55] on these traces. Essentially we prove
that, for two runs of median_opt where Bob’s inputs and the output median are
the same, the observable traces are also the same irrespective of Alice’s inputs.
Thus, from Alice’s perspective, the observable trace does not reveal more to
Bob than what the output already does. We prove this property symmetrically
for Bob.

We start by defining a trace function for median_opt:

let opt_trace a b (x1, _) (y1, _) r = [
TMsg (x1 > y1); (∗ observable from the first as_sec ∗)
TScope {a} []; TScope {b} []; (∗ observables from two local as_par ∗)
TMsg r] (∗ observable from the final as_sec ∗)

A trace will have four elements: output of the first as_sec computation, two
empty scoped traces for the two local as_par computations, and the final output.

Using this function, we prove correctness of median_opt, thus:

val median_opt: in_a:sealed {a} (int ∗ int) → in_b:sealed {b} (int ∗ int) → Wys int
(requires (fun m → m = Mode Par {a, b})) (∗ should be called in the Par mode ∗)
(ensures (fun m r tr → let in_a = unseal in_a in let in_b = unseal in_b in

(median_pre in_a in_b =⇒ r = median_of in_a in_b) ∧
(∗ functional correctness ∗)

tr = opt_trace a b in_a in_b r
(∗ opt_trace precisely describes the observable trace ∗)

The delimited release property is then captured by the following lemma:

val median_opt_is_secure_for_alice: a:prin → b:prin
→ in_a1:(int ∗ int) → in_a2:(int ∗ int) → in_b:(int ∗ int) (∗ possibly diff a1, a2 ∗)
→ Lemma (requires (median_pre in_a1 in_b ∧ median_pre in_a2 in_b ∧

median_of in_a1 in_b = median_of in_a2 in_b)) (∗ but same median ∗)
(ensures (opt_trace a b in_a1 in_b (median_of in_a1 in_b) = (∗ ensures .. ∗)

opt_trace a b in_a2 in_b (median_of in_a2 in_b))) (∗ .. same trace ∗)

The lemma proves that for two runs of median_opt where Bob’s input and
the final output remain same, but Alice’s inputs vary arbitrarily, the observable
traces are the same. As such, no more information about information leaks about
Alice’s inputs via the traces than what is already revealed by the output. We
also prove a symmetrical lemma median_opt_is_secure_for_bob.

In short, because the Wys monad provides programmers with the observable
traces in the logic, they can then be used to prove properties, relational or
otherwise, in the pure fragment of F� outside the Wys monad. We present more
examples and their verification details in Sect. 4.

108 A. Rastogi et al.

Fig. 1. Architecture of an Wys� deployment

2.5 Deploying Wys� Programs

Having defined a proved-secure MPC program in Wys�, how do we run it? Doing
so requires the following steps (Fig. 1). First, we run the F� compiler in a special
mode that extracts the Wys� code (say psi.fst), into the Wys� AST as a data
structure (in psi.ml). Except for the Wys� specific nodes (as_sec, as_par, etc.),
the rest of the program is extracted into FFI nodes that indicate the use of, or
calls into, functionality provided by F� itself.

The next step is for each party to run the extracted AST using the Wys�

interpreter. This interpreter is written in F� and we have proved (see Sect. 3.5)
that it implements a deep embedding of the Wys� semantics, also specified in
F� (Figs. 5 and 6, Sect. 3). The interpreter is extracted to OCaml by the usual
F� extraction. Each party’s interpreter executes the AST locally until it reaches
an as_sec ps f node, where the interpreter’s back-end compiles f, on-the-fly, for
particular values of the secrets in f’s environment, to a boolean circuit. First-
order, loop-free code can be compiled to a circuit; Wys� provides specialized
support for several common combinators (e.g., fst, snd, list combinators such as
List.intersect, List.mem, List.nth etc.).

The circuit is handed to a library by Choi et al. [22] that implements the
GMW [26] MPC protocol. Running the GMW protocol involves the parties in ps
generating and communicating (XOR-based) secret shares [57] for their secret
inputs, and then cooperatively evaluating the boolean circuit for f over them.
While our implementation currently uses the GMW protocol, it should be pos-
sible to plugin other MPC protocols as well.

One obvious question is how both parties are able to get this process off
the ground, given that they don’t know some of the inputs (e.g., other parties’
secrets). The sealed abstraction helps here. Recall that for median, the types of
the inputs are of the form sealed {a} (int ∗ int) and sealed {b} (int ∗ int). When the
program is run on Alice’s host, the former will be a pair of Alice’s values, whereas
the latter will be an opaque constant (which we denote as •). The reverse will

Wys�: A DSL for Verified Secure Multi-party Computations 109

Fig. 2. Wys� syntax

be true on Bob’s host. When the circuit is constructed, each principal links their
non-opaque inputs to the relevant input wires of the circuit. Similarly, the output
map component of each party is derived from their output wires in the circuit,
and thus, each party only gets to see their own output.

3 Formalizing and Implementing Wys�

In the previous section, we presented examples of verifying properties about
Wys� programs using F�’s logic. However, these programs are not executed using
the F� (single-threaded) semantics; they have a distributed semantics involving
multiple parties. So, how do the properties that we verify using F� carry over?

In this section, we present the metatheory that answers this question. First,
we formalize the Wys� single-threaded (ST) semantics, that faithfully models
the F� semantics of the Wys� API presented in Sect. 2. Next, we formalize the
distributed (DS) semantics that multiple parties use to run Wys� programs.
Then we prove the former is sound with respect to the latter, so that properties
proved of programs under ST apply when run under DS. We have mechanized
the proof of this theorem in F�.

3.1 Syntax

Figure 2 shows the complete syntax of Wys�. Principals and principal sets are
first-class values, and are denoted by p and s respectively. Constants in the lan-
guage also include () (unit), booleans (� and ⊥), and FFI constants c. Expres-
sions e include the regular forms for functions, applications, let bindings, etc.
and the Wys�-specific constructs. Among the ones that we have not seen in
Sect. 2, expression mkmap e1 e2 creates a map from principals in e1 (which is a
principal set) to the value computed by e2. project e1 e2 projects the value of
principal e1 from the map e2, and concat e1 e2 concatenates the two maps. The
maps are used if an as_sec computation returns different outputs to the parties.

Host language (i.e., F�) constructs are also part of the syntax of Wys�,
including constants c for strings, integers, lists, tuples, etc. Likewise, host lan-
guage functions/primitives can be called from Wys�—ffi f ē is the invocation of
a host-language function f with arguments ē. The FFI confers two benefits. First,
it simplifies the core language while still allowing full consideration of security
relevant properties. Second, it helps the language scale by incorporating many
of the standard features, libraries, etc. from the host language.

110 A. Rastogi et al.

Map m ::= · | m[p �→ v]
Value v ::= p | s | () | � | ⊥ | m | v | (L, λx.e) | (L, fix f.λx.e) | sealed s v | •
Mode M ::= Par s | Sec s

Context E ::= 〈〉 | as par 〈〉 e | as par v 〈〉 | as sec 〈〉 e | as sec v 〈〉 | . . .
Frame F ::= (M, L, E, T)
Stack X ::= · | F, X

Environment L ::= · | L[x �→ v]
Trace element t ::= TMsg v | TScope s T

Trace T ::= · | t, T
Configuration C ::= M ;X;L;T ; e

Par component P ::= · | P [p �→ C]
Sec component S ::= · | S[s �→ C]

Protocol π ::= P ;S

Fig. 3. Runtime configuration syntax

S-aspar
e1 = as par s (L1, λx.e) M = Par s1

s ⊆ s1 X1 = (M ;L; seal s 〈〉;T), X
M ;X;L;T ; e1 → Par s;X1;L1[x �→ ()]; ·; e

S-parret
X = (M1;L1; seal s 〈〉;T1), X1

can seal s v T2 = append T1 [TScope s T]
M ;X;L;T ; v → M1;X1;L1;T2; sealed s v

S-assec
e1 = as sec s (L1, λx.e) M = Par s

X1 = (M ;L; 〈〉 T), X
M ;X;L;T ; e1 → Sec s;X1;L1[x �→ ()]; ·; e

S-secret
M = Sec X = (M1;L1; 〈〉;T), X1

T1 = append T [TMsg v]
M ;X;L; ·; v → M1;X1;L1;T1; v

Fig. 4. Wys� ST semantics (selected rules)

3.2 Single-Threaded Semantics

We formalize the semantics in the style of Hieb and Felleisen [24], where the
redex is chosen by (standard, not shown) evaluation contexts E, which prescribe
left-to-right, call-by-value evaluation order. The ST semantics, a model of the F�

semantics and the Wys� API, defines a judgment C → C ′ that represents a single
step of an abstract machine (Fig. 4). Here, C is a configuration M ;X;L;T ; e.
This five-tuple consists of a mode M , a stack X, a local environment L, a trace
T , and an expression e. The syntax for these elements is given in Fig. 3. The value
form v represents the host language (FFI) values. The stack and environment
are standard; trace T and mode M were discussed in the previous section.

For space reasons, we focus on the two main Wys� constructs as_par and
as_sec. Our technical report [54] shows other Wys� specific constructs.

Rules S-aspar and S-parret (Fig. 4) reduce an as_par expression once its
arguments are fully evaluated—its first argument s is a principal set, while the
second argument (L1, λx.e) is a closure where L1 captures the free variables of
thunk λx.e. S-aspar first checks that the current mode M is Par and contains
all the principals from the set s. It then pushes a seal s 〈〉 frame on the stack, and

Wys�: A DSL for Verified Secure Multi-party Computations 111

P-par
C � C′

P [p �→ C];S −→ P [p �→ C′];S

∀p ∈ s. P [p].e = as sec s (Lp, λx.e)
s �∈ dom(S) L = combine L̄p

P ;S −→ P ;S[s �→ Sec s; ·;L[x �→ ()]; ·; e] P-enter

P-sec
C → C′

P ;S[s �→ C] −→ P ;S[s �→ C′]

P-exit
S[s] = Sec s; ·;L;T ; v

P ′ = ∀p ∈ s. P [p �→ P [p] � (slice v p v)] S′ = S \ s

P ;S −→ P ′;S′

Fig. 5. Distributed semantics, multi-party rules

L-aspar1
e1 = as par s (L1, λx.e) p ∈ s

X1 = (M ;L; seal s 〈〉;T), X
Par p;X;L;T ; e1 � Par p;X1;L1[x �→ ()]; ·; e

L-parret
X = (M ;L1; seal s 〈〉;T1), X1

T2 = append T1 T v1 = sealed s v

Par p;X;L;T ; v � Par p;X1;L1;T2; v1

L-aspar2
p �∈ s

Par p;X;L;T ; as par s (L1, λx.e) � Par p;X;L;T ; sealed s •

Fig. 6. Distributed semantics, selected local rules (the mode M is always Par p)

starts evaluating e under the environment L1[x �→ ()]. The rule S-asparret pops
the frame and seals the result, so that it is accessible only to the principals in s.
The rule also creates a trace element TScope s T , essentially making observations
during the reduction of e (i.e., T) visible only to principals in s.

Turning to as_sec, the rule S-assec checks the precondition of the API, and
the rule S-assecret generates a trace observation TMsg v, as per the post-
condition of the API. As mentioned before, as_sec semantics models the ideal,
trusted third-party semantics of secure computations where the participants only
observe the final output. We can confirm that the rules implement the types of
as_par and as_sec shown in Sect. 2.

3.3 Distributed Semantics

In the DS semantics, principals evaluate the same program locally and asyn-
chronously until they reach a secure computation, at which point they synchro-
nize to jointly perform the computation. The semantics consists of two parts: (a)
a judgment of the form π −→ π′ (Fig. 5), where a protocol π is a tuple (P ;S)
such that P maps each principal to its local configuration and S maps a set of
principals to the configuration of an ongoing, secure computation; and (b) a local
evaluation judgment C � C ′ (Fig. 6) to model how a single principal behaves
while in par mode.

Rule P-Par in Fig. 5 models a single party taking a step, per the local eval-
uation rules. Figure 6 shows these rules for as_par. (See technical report [54]
for more local evaluation rules.) A principal either participates in the as_par

112 A. Rastogi et al.

computation, or skips it. Rules L-aspar1 and L-parret handle the case when
p ∈ s, and so, the principal p participates in the computation. The rules closely
mirror the corresponding ST semantics rules in Fig. 4. One difference in the rule
L-asparret is that the trace T is not scoped. In the DS semantics, traces only
contain TMsg elements; i.e., a trace is the (flat) list of secure computation out-
puts observed by that active principal. If p 	∈ s, then the principal skips the
computation with the result being a sealed value containing the opaque con-
stant • (rule L-aspar2). The contents of the sealed value do not matter, since
the principal will not be allowed to unseal the value anyway.

As should be the case, there are no local rules for as_sec—to perform a secure
computation parties need to combine their data and jointly do the computation.
Rule P-enter in Fig. 5 handles the case when principals enter a secure compu-
tation. It requires that all the principals p ∈ s must have the expression form
as_sec s (Lp, λx.e), where Lp is their local environment associated with the clo-
sure. Each party’s local environment contains its secret values (in addition to
some public values). Conceptually, a secure computation combines these environ-
ments, thereby producing a joint view, and evaluates e under the combination.
We define an auxiliary combine function for this purpose:

combine_v (•, v) = v
combine_v (v, •) = v
combine_v (sealed s v1, sealed s v2) = sealed s (combine_v v1 v2)
...

The rule P-enter combines the principals’ environments, and creates a new
entry in the S map. The principals are now waiting for the secure computation
to finish. Rule P-sec models a stepping rule inside the sec mode.

The rule P-exit applies when a secure computation has completed and
returns results to the waiting principals. If the secure computation terminates
with value v, each principal p gets the value slice_v p v. The slice_v function is
analogous to combine, but in the opposite direction—it strips off the parts of v
that are not accessible to p:

slice_v p (sealed s v) = sealed s •, if p �∈ s
slice_v p (sealed s v) = sealed s (slice_v p v), if p ∈ s
...

In the rule P-exit, the � notation is defined as:
M ;X;L;T ;_ � v = M ;X;L; append T [TMsg v]; v
That is, the returned value is also added to the principal’s trace to note their

observation of the value.

3.4 Metatheory

Our goal is to show that the ST semantics faithfully represents the semantics of
Wys� programs as they are executed by multiple parties, i.e., according to the
DS semantics. We do this by proving simulation of the ST semantics by the DS
semantics, and by proving confluence of the DS semantics. Our F� development
mechanizes all the metatheory presented in this section.

Wys�: A DSL for Verified Secure Multi-party Computations 113

Simulation. We define a slice s C function that returns the corresponding protocol
πC for an ST configuration C. In the P component of πC , each principal p ∈ s is
mapped to their slice of the protocol. For slicing values, we use the same slice_v
function as before. Traces are sliced as follows:

slice_tr p (TMsg v) = [TMsg (slice_v p v)]
slice_tr p (TScope s T) = slice_tr p T, if p ∈ s
slice_tr p (TScope s T) = [], if p �∈ s

The slice of an expression (e.g., the source program) is itself. For all other
components of C, slice functions are defined analogously.

We say that C is terminal if it is in Par mode and is fully reduced to a value
(i.e. when C = _;X;_;_; e, e is a value and X is empty). Similarly, a protocol
π = (P, S) is terminal if S is empty and all the local configurations in P are
terminal. The simulation theorem is then the following:

Theorem 1 (Simulation of ST by DS). Let s be the set of all principals. If
C1 →∗ C2, and C2 is terminal, then there exists some derivation (slice s C1) −→∗

(slice s C2) such that (slice s C2) is terminal.

To state confluence, we first define the notion of strong termination.

Definition 1 (Strong termination). If all possible runs of protocol π termi-
nate at πt, we say π strongly terminates in πt, written π ⇓ πt.

Our confluence result then says:

Theorem 2 (Confluence of DS). If π −→∗ πt and πt is terminal, then π ⇓ πt.

Combining the two theorems, we get a corollary that establishes the sound-
ness of the ST semantics w.r.t. the DS semantics:

Corollary 1 (Soundness of ST semantics). Let s be the set of all principals.
If C1 →∗ C2, and C2 is terminal, then (slice s C1) ⇓ (slice s C2).

Now suppose that for a Wys� source program, we prove in F� a postcondi-
tion that the result is sealed alice n, for some n > 0. By the soundness of the ST
semantics, we can conclude that when the program is run in the DS semantics,
it may diverge, but if it terminates, alice’s output will also be sealed alice n, and
for all other principals their outputs will be sealed alice •. Aside from the corre-
spondence on results, our semantics also covers correspondence on traces. Thus
the correctness and security properties that we prove about a Wys� program
using F�’s logic, hold for the program that actually runs.

3.5 Implementation

The formal semantics presented in the prior section is mechanized as an induc-
tive type in F�. This style is useful for proving properties, but does not directly
translate to an implementation. Therefore, we implement an interpretation func-
tion step in F� and prove that it corresponds to the rules; i.e., that for all input

114 A. Rastogi et al.

configurations C, step(C) = C ′ implies that C → C ′ according to the semantics.
Then, the core of each principal’s implementation is an F� stub function tstep
that repeatedly invokes step on the AST of the source program (produced by the
F� extractor run in a custom mode), unless the AST is an as_sec node. Functions
step and tstep are extracted to OCaml by the standard F� extraction process.

Local evaluation is not defined for the as_sec node, so the stub implements
what amounts to P-enter and P-exit from Fig. 5. When the stub notices the
program has reached an as_sec expression, it calls into a circuit library we have
written that converts the AST of the second argument of as_sec to a boolean
circuit. This circuit and the encoded inputs are communicated to a co-hosted
server that implements the GMW MPC protocol [22]. The server evaluates the
circuit, coordinating with the GMW servers of the other principals, and sends
back the result. The circuit library decodes the result and returns it to the
stub. The stub then carries on with the local evaluation. Our FFI interface
currently provides a form of monomorphic, first-order interoperability between
the (dynamically typed) interpreter and the host language.

Our F� formalization of the Wys� semantics, including the AST specification,
is 1900 lines of code. This formalization is used both by the metatheory as well
as by the (executable) interpreter. The metatheory that connects the ST and
DS semantics (Sect. 3) is 3000 lines. The interpreter and its correctness proof
are another 290 lines of F� code. The interpreter step function is essentially
a big switch-case on the current expression, that calls into the functions from
the semantics specification. The tstep stub is another 15 lines. The size of the
circuit library, not including the GMW implementation, is 836 lines. The stub,
the implementation of GMW, the circuit library, and F� toolchain (including the
custom Wys� extraction mode) are part of our Trusted Computing Base (TCB).

4 Applications

In addition to joint median, presented in Sect. 2, we have implemented and
proved properties of two other MPC applications, dealing for online card games
and private set intersection (PSI).

Card Dealing. We have implemented an MPC-based card dealing application in
Wys�. Such an application can play the role of the dealer in a game of online
poker, thereby eliminating the need to trust the game portal for card dealing.
The application relies on Wys�’s support for secret shares [57]. Using secret
shares, the participating parties can share a value in a way that none of the
parties can observe the actual value individually (each party’s share consists of
some random-looking bytes), but they can recover the value by combining their
shares in sec mode.

In the application, the parties maintain a list of secret shares of already
dealt cards (the number of already dealt cards is public information). To deal a
new card, each party first generates a random number locally. The parties then
perform a secure computation to compute the sum of their random numbers
modulo 52, let’s call it n. The output of the secure computation is secret shares

Wys�: A DSL for Verified Secure Multi-party Computations 115

of n. Before declaring n as the newly dealt card, the parties needs to ensure
that the card n has not already been dealt. To do so, they iterate over the list of
secret shares of already dealt cards, and for each element of the list, check that it
is different from n. The check is performed in a secure computation that simply
combines the shares of n, combines the shares of the list element, and checks the
equality of the two values. If n is different from all the previously dealt cards,
it is declared to be the new card, else the parties repeat the protocol by again
generating a fresh random number each.

Wys� provides the following API for secret shares:

type Sh: Type →Type
type can_sh: Type →Type
assume Cansh_int: can_sh int

val v_of_sh: sh:Sh α →Ghost α

val ps_of_sh: sh:Sh α →Ghost prins

val mk_sh: x:α →Wys (Sh α)
(requires (fun m →m.mode = Sec ∧ can_sh α))
(ensures (fun m r tr → v_of_sh r = x ∧ ps_of_sh r = m.ps ∧ tr = [])

val comb_sh: x:Sh α →Wys α (requires (fun m →m.mode = Sec ∧ ps_of_sh x = m.ps))
(ensures (fun m r tr → v_of_sh x = r ∧ tr = [])

Type Sh α types the shares of values of type α. Our implementation currently
supports shares of int values only; the can_sh predicate enforces this restriction
on the source programs. Extending secret shares support to other types (such as
pairs) should be straightforward (as in [52]). Functions v_of_sh and ps_of_sh are
marked Ghost, meaning that they can only be used in specifications for reasoning
purposes. In the concrete code, shares are created and combined using the mk_sh
and comb_sh functions. Together, the specifications of these functions enforce
that the shares are created and combined by the same set of parties (through
ps_of_sh), and that comb_sh recovers the original value (through v_of_sh). The
Wys� interpreter transparently handles the low-level details of extracting shares
from the GMW implementation of Choi et al. (mk_sh), and reconstituting the
shares back (comb_sh).

In addition to implementing the card dealing application in Wys�, we have
formally verified that the returned card is fresh. The signature of the function
that checks for freshness of the newly dealt card is as follows (abc is the set of
three parties in the computation):

val check_fresh: l:list (Sh int){∀ s’. mem s’ l =⇒ ps_of_sh s’ = abc}
→ s:Sh int{ps_of_sh s = abc}
→ Wys bool (requires (fun m → m = Mode Par abc))

(ensures (fun _ r _ → r ⇐⇒ (∀ s’. mem s’ l =⇒ not (v_of_sh s’ = v_of_sh s))))

The specification says that the function takes two arguments: l is the list of
secret shares of already dealt cards, and s is the secret shares of the newly dealt
card. The function returns a boolean r that is true iff the concrete value (v_of_sh)
of s is different from the concrete values of all the elements of the list l. Using
F�, we verify that the implementation of check_fresh meets this specification.

116 A. Rastogi et al.

PSI. Consider a dating application that enables its users to compute their com-
mon interests without revealing all of them. This is an instance of the more
general private set intersection (PSI) problem [28].

We implement a straightforward version of PSI in Wys�:

let psi a b (input_a:sealed {a} (list int)) (input_b:sealed {b} (list int)) (l_a:int) (l_b:int) =
as_sec {a,b} (fun () → List.intersect (reveal input_a) (reveal input_b) l_a l_b)

where the input sets are expressed as lists with public lengths.
Huang et al. [28] provide an optimized PSI algorithm that performs much

better when the density of common elements in the two sets is high. We imple-
ment their algorithm in Wys�. The optimized version consists of two nested
loops – an outer loop for Alice’s set and an inner loop for Bob’s – where an
iteration of the inner loop compares the current element of Alice’s set with the
current element of Bob’s. The nested loops are written using as_par so that both
Alice and Bob execute the loops in lockstep (note that the set sizes are public),
while the comparison in the inner loop happens using as_sec. Instead of naive
l_a ∗ l_b comparisons, Huang et al. [28] observe that once an element of Alice’s
set ax matches an element of Bob’s set bx, the inner loop can return immedi-
ately, skipping the comparisons of ax with the rest of Bob’s set. Furthermore, bx
can be removed from Bob’s set, excluding it from any further comparisons with
other elements in Alice’s set. Since there are no repeats in the input sets, all the
excluded comparisons are guaranteed to be false. We show the full code and its
performance comparison with psi in the technical report [54].

As with the median example from Sect. 2, the optimized PSI intentionally
reveals more for performance gains. As such, we would like to verify that the
optimizations do not reveal more about parties’ inputs. We take the following
stepwise refinement approach. First, we characterize the trace of the optimized
implementation as a pure function trace_psi_opt la lb (omitted for space reasons),
and show that the trace of psi_opt is precisely trace_psi_opt la lb.

Then, we define an intermediate PSI implementation that has the same
nested loop structure, but performs l_a ∗ l_b comparisons without any opti-
mizations. We characterize the trace of this intermediate implementation as the
pure function trace_psi, and show that it precisely captures the trace.

To show that trace_psi does not reveal more than the intersection of the input
sets, we prove the following lemma.

Ψ la0 la1 lb0 lb1
def
= (∗ possibly diff input sets, but with ∗)

la0 ∩ lb0 = la1 ∩ lb1 ∧ (∗ intersections the same ∗)
length la0 = length la1 ∧ length lb0 = length lb1 (∗ lengths the same ∗)

val psi__interim_is_secure: la0:_ → lb0:_ → la1:_ → lb1:_ → Lemma
(requires (Ψ la0 la1 lb0 lb1))
(ensures (permutation (trace_psi la0 lb0) (trace_psi la1 lb1)))

Wys�: A DSL for Verified Secure Multi-party Computations 117

The lemma essentially says that for two runs on same length inputs, if the
output is the same, then the resulting traces are permutation of each other.4
We can reason about the traces of psi_interim up to permutation because Alice
has no prior knowledge of the choice of representation of Bob’s set (Bob can
shuffle his list), so cannot learn anything from a permutation of the trace.5 This
establishes the security of psi_interim.

Finally, we can connect psi_interim to psi_opt by showing that there exists
a function f, such that for any trace tr=trace_psi la lb, the trace of psi_opt,
trace_psi_opt la lb, can be computed by f (length la) (length lb) tr. In other words,
the trace produced by the optimized implementation can be computed using a
function of information already available to Alice (or Bob) when she (or he)
observes a run of the secure, unoptimized version psi_interim la lb. As such, the
optimizations do not reveal further information.

5 Related Work

Source MPC Verification. While the verification of the underlying crypto proto-
cols has received some attention [4,5], verification of the correctness and security
properties of MPC source programs has remained largely unexplored, surpris-
ingly so given that the goal of MPC is to preserve the privacy of secret inputs.
The only previous work that we know of is Backes et al. [9] who devise an applied
pi-calculus based abstraction for MPC, and use it for formal verification. For an
auction protocol that computes the min function, their abstraction comprises
about 1400 lines of code. Wys�, on the other hand, enables direct verification
of the higher-level MPC source programs, and not their models, and in addition
provides a partially verified toolchain.

Wysteria. Wys�’s computational model is based on the programming abstrac-
tions of a previous MPC DSL, Wysteria [52]. Wys�’s realization as an embedded
DSL in F� makes important advances. In particular, Wys� (a) enhances the
Wysteria semantics to include a notion of observable traces, and provides the
novel capability to prove security and correctness properties about mixed-mode
MPC source programs, (b) expands the programming constructs available by
drawing on features and libraries of F�, and (c) adds assurance via a (partially)
proved-correct interpreter.

VerifiedMPC Toolchain. Almeida et al. [4] build a verified toolchain consisting of
(a) a verified circuit compiler from (a subset of) C to boolean circuits, and (b) a
verified implementation of Yao’s [65] garbled circuits protocol for 2-party MPC.
They use CompCert [36] for the former, and EasyCrypt [11] for the latter. These
are significant advances, but there are several distinctions from our work. The
MPC programs in their toolchain are not mixed-mode, and thus it cannot express

4 Holding Bob’s (resp. Alice’s) inputs fixed and varying Alice’s (resp. Bob’s) inputs,
as done for median in Sect. 2.4, is covered by this more general property.

5 We could formalize this observation using a probabilistic, relational variant of F� [10].

118 A. Rastogi et al.

examples like median_opt and the optimized PSI. Their framework does not
enable formal verification of source programs like Wys� does. It may be possible
to use other frameworks for verifying C programs (e.g. Frama-C [1]), but it is
inconvenient as one has to work in the subset of C that falls in the intersection
of these tools. Wys� is also more general as it supports general n-party MPC;
e.g., the card dealing application in Sect. 4 has 3 parties. Nevertheless, Wys�

may use their verified Yao implementation for the special case of 2 parties.

MPC DSLs and DSL Extensions. In addition to Wysteria several other MPC
DSLs have been proposed in the literature [14,17,27,29,34,37,39,48,49,52,56,61].
Most of these languages have standalone implementations, and the (usability/s-
calability) drawbacks that come with them. Like Wys�, a few are implemented as
language extensions. Launchbury et al. [35] describe a Haskell-embedded DSL for
writing low-level “share protocols” on a multi-server “SMC machine”. OblivC [66]
is an extension to C for two-party MPC that annotates variables and condition-
als with an obliv qualifier to identify private inputs; these programs are compiled
by source-to-source translation. The former is essentially a shallow embedding,
and the latter is compiler-based; Wys� is unique in that it combines a shal-
low embedding to support source program verification and a deep embedding
to support a non-standard target semantics. Recent work [19,21] compiles to
cryptographic protocols that include both arithmetic and boolean circuits; the
compiler decides which fragments of the program fall into which category. It
would be interesting work to integrate such a backend in Wys�.

Mechanized Metatheory. Our verification results are different from a typical
verification result that might either mechanize metatheory for an idealized lan-
guage [8], or might prove an interpreter or compiler correct w.r.t. a formal seman-
tics [36]—we do both. We mechanize the metatheory of Wys� establishing the
soundness of the conceptual ST semantics w.r.t. the actual DS semantics, and
mechanize the proof that the interpreter implements the correct DS semantics.

General DSL Implementation Strategies. DSLs (for MPC or other purposes) are
implemented in various ways, such as by developing a standalone compiler/in-
terpreter, or by shallow or deep embedding in a host language. Our approach
bears relation to the approach taken in LINQ [42], which embeds a query lan-
guage in normal C# programs, and implements these programs by extracting
the query syntax tree and passing it to a provider to implement for a particular
backend. Other researchers have embedded DSLs in verification-oriented host
languages (e.g., Bedrock [13] in Coq [60]) to permit formal proofs of DSL pro-
grams. Low� [51] is a shallow embedding of a small, sequential, well-behaved
subset of C in F� that extracts to C using a F�-to-C compiler. Low� has been
used to verify and implement several cryptographic constructions. Fromherz et
al. [25] present a deep embedding of a subset of x64 assembly in F� that allows
efficient verification of assembly and its interoperation with C code generated
from Low�. They design (and verify) a custom VC generator for the deeply
embedded DSL, that allows for the proofs of assembly crypto routines to scale.

Wys�: A DSL for Verified Secure Multi-party Computations 119

6 Conclusions

This paper has presented Wys�, the first DSL to enable formal verification of
efficient source MPC programs as written in a full-featured host programming
language, F�. The paper presented examples such as joint median, card dealing,
and PSI, and showed how the DSL enables their correctness and security proofs.
Wys� implementation, examples, and proofs are publicly available on Github.

Acknowledgments. We would like to thank the anonymous reviewers, Catalin
Hriţcu, and Matthew Hammer for helpful comments on drafts of this paper. This
research was funded in part by the U.S. National Science Foundation under grants
CNS-1563722, CNS-1314857, and CNS-1111599.

References

1. Frama-c. https://frama-c.com/
2. Z3 theorem prover. z3.codeplex.com
3. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the kth-ranked ele-

ment. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 40–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3_3

4. Almeida, J.B., et al.: A fast and verified software stack for secure function eval-
uation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017 (2017)

5. Almeida, J.B., et al.: Verified implementations for secure and verifiable computa-
tion (2014)

6. Araki, T., et al.: Generalizing the SPDZ compiler for other protocols. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018 (2018)

7. Atkey, R.: Parameterised notions of computation. J. Funct. Program. 19, 335–376
(2009). https://doi.org/10.1017/S095679680900728X. http://journals.cambridge.
org/article_S095679680900728X

8. Aydemir, B.E., et al.: Mechanized metatheory for the masses: the PoplMark
challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp.
50–65. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868_4

9. Backes, M., Maffei, M., Mohammadi, E.: Computationally sound abstraction and
verification of secure multi-party computations. In: IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2010) (2010)

10. Barthe, G., Fournet, C., Grégoire, B., Strub, P., Swamy, N., Béguelin, S.Z.: Prob-
abilistic relational verification for cryptographic implementations. In: The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2014, San Diego, CA, USA, 20–21 January 2014, pp. 193–206 (2014).
https://doi.org/10.1145/2535838.2535847

11. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9_5

https://frama-c.com/
http://z3.codeplex.com
https://doi.org/10.1007/978-3-540-24676-3_3
https://doi.org/10.1007/978-3-540-24676-3_3
https://doi.org/10.1017/S095679680900728X
http://journals.cambridge.org/article_S095679680900728X
http://journals.cambridge.org/article_S095679680900728X
https://doi.org/10.1007/11541868_4
https://doi.org/10.1145/2535838.2535847
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5

120 A. Rastogi et al.

12. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
STOC (1990)

13. Bedrock, a coq library for verified low-level programming. http://plv.csail.mit.edu/
bedrock/

14. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: CCS (2008)

15. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y.: Implement-
ing TLS with verified cryptographic security. In: IEEE Symposium on Security &
Privacy, Oakland, pp. 445–462 (2013). http://www.ieee-security.org/TC/SP2013/
papers/4977a445.pdf

16. Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the Estonian Tax and Customs
Board Evaluated a tax fraud detection system based on secure multi-party compu-
tation. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 227–234.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_14

17. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5_13

18. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4_20

19. Büscher, N., Demmler, D., Katzenbeisser, S., Kretzmer, D., Schneider, T.: HyCC:
compilation of hybrid protocols for practical secure computation. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018 (2018)

20. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

21. Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: EzPC: pro-
grammable, efficient, and scalable secure two-party computation for machine learn-
ing. Cryptology ePrint Archive, Report 2017/1109 (2017). https://eprint.iacr.org/
2017/1109

22. Choi, S.G., Hwang, K.W., Katz, J., Malkin, T., Rubenstein, D.: Secure multi-party
computation of Boolean circuits with applications to privacy in on-line market-
places (2011). http://eprint.iacr.org/

23. Crockett, E., Peikert, C., Sharp, C.: Alchemy: a language and compiler for homo-
morphic encryption made easy. In: Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2018 (2018)

24. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theoret. Comput. Sci. 103(2), 235–271 (1992)

25. Fromherz, A., Giannarakis, N., Hawblitzel, C., Parno, B., Rastogi, A., Swamy,
N.: A verified, efficient embedding of a verifiable assembly language. In: 46th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2019
(2019)

26. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: STOC
(1987)

27. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations
in ANSI C. In: CCS (2012)

28. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS (2012)

29. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX (2011)

http://plv.csail.mit.edu/bedrock/
http://plv.csail.mit.edu/bedrock/
http://www.ieee-security.org/TC/SP2013/papers/4977a445.pdf
http://www.ieee-security.org/TC/SP2013/papers/4977a445.pdf
https://doi.org/10.1007/978-3-662-47854-7_14
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/s001459910006
https://eprint.iacr.org/2017/1109
https://eprint.iacr.org/2017/1109
http://eprint.iacr.org/

Wys�: A DSL for Verified Secure Multi-party Computations 121

30. Juvekar, C., Vaikuntanathan, V., Chandrakasani, A.: GAZELLE: a low latency
framework for secure neural network inference. In: USENIX Security 2018 (2018)

31. Kamm, L.: Privacy-preserving statistical analysis using secure multi-party compu-
tation. Ph.D. thesis, University of Tartu (2015)

32. Kerschbaum, F.: Automatically optimizing secure computation. In: CCS (2011)
33. Kerschbaum, F., et al.: Secure collaborative supply-chain management. Computer

44(9), 38–43 (2011)
34. Laud, P., Randmets, J.: A domain-specific language for low-level secure multiparty

computation protocols. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS 2015 (2015)

35. Launchbury, J., Diatchki, I.S., DuBuisson, T., Adams-Moran, A.: Efficient lookup-
table protocol in secure multiparty computation. In: ICFP (2012)

36. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

37. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient RAM-model
secure computation. In: IEEE Symposium on Security and Privacy, Oakland (2014)

38. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
MiniONN transformations. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017 (2017)

39. Malka, L.: VMCrypt: modular software architecture for scalable secure computa-
tion. In: CCS (2011)

40. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay: a secure two-party compu-
tation system. In: USENIX Security (2004)

41. Mardziel, P., Hicks, M., Katz, J., Hammer, M., Rastogi, A., Srivatsa, M.: Knowl-
edge inference for optimizing and enforcing secure computations. In: Proceedings
of the Annual Meeting of the US/UK International Technology Alliance (2013)

42. Meijer, E., Beckman, B., Bierman, G.: LINQ: reconciling object, relations and xml
in the .net framework. In: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2006, p. 706. ACM, New York
(2006). https://doi.org/10.1145/1142473.1142552

43. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4

44. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: IEEE S&P (2017)

45. Mood, B., Gupta, D., Carter, H., Butler, K.R.B., Traynor, P.: Frigate: a validated,
extensible, and efficient compiler and interpreter for secure computation. In: IEEE
EuroS&P (2016)

46. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: depen-
dent types for imperative programs. In: Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming, ICFP (2008)

47. Nanevski, A., Morrisett, J.G., Birkedal, L.: Hoare type theory, poly-
morphism and separation. J. Funct. Program. 18(5–6), 865–911 (2008).
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf

48. Nielsen, J.D.: Languages for secure multiparty computation and towards strongly
typed macros. Ph.D. thesis (2009)

49. Nielsen, J.D., Schwartzbach, M.I.: A domain-specific programming language for
secure multiparty computation. In: PLAS (2007)

50. PolarSSL verification kit (2015). http://trust-in-soft.com/polarssl-verification-kit/
51. Protzenko, J., et al.: Verified low-level programming embedded in F* (ICFP) (2017)

https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1016/0890-5401(91)90052-4
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf
http://trust-in-soft.com/polarssl-verification-kit/

122 A. Rastogi et al.

52. Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: a programming language for
generic, mixed-mode multiparty computations. In: Proceedings of the 2014 IEEE
Symposium on Security and Privacy (2014)

53. Rastogi, A., Mardziel, P., Hammer, M., Hicks, M.: Knowledge inference for opti-
mizing secure multi-party computation. In: PLAS (2013)

54. Rastogi, A., Swamy, N., Hicks, M.: WYS*: a DSL for verified secure multi-party
computations (2019). https://arxiv.org/abs/1711.06467

55. Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Futatsugi,
K., Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 174–191.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-37621-7_9

56. Schropfer, A., Kerschbaum, F., Muller, G.: L1 - an intermediate language for
mixed-protocol secure computation. In: COMPSAC (2011)

57. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
58. Shamir, A., Rivest, R.L., Adleman, L.M.: Mental poker. In: Klarner, D.A. (ed.)

The Mathematical Gardner, pp. 37–43. Springer, Boston (1981). https://doi.org/
10.1007/978-1-4684-6686-7_5

59. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: POPL
(2016)

60. The Coq Development Team: The Coq proof assistant. http://coq.inria.fr
61. VIFF, the virtual ideal functionality framework. http://viff.dk/
62. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)

AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-59451-5_2. http://dl.acm.org/citation.cfm?id=647698.734146

63. Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of a
type-safe operating system. In: Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2010 (2010)

64. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of ACM SIGPLAN 2011 Conference on Programming
Language Design and Implementation (2011)

65. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS (1986)
66. Zahur, S., Evans, D.: Obliv-C: a language for extensible data-oblivious computa-

tion. Unpublished (2015). http://oblivc.org/downloads/oblivc.pdf

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://arxiv.org/abs/1711.06467
https://doi.org/10.1007/978-3-540-37621-7_9
https://doi.org/10.1007/978-1-4684-6686-7_5
https://doi.org/10.1007/978-1-4684-6686-7_5
http://coq.inria.fr
http://viff.dk/
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2
http://dl.acm.org/citation.cfm?id=647698.734146
http://oblivc.org/downloads/oblivc.pdf
http://creativecommons.org/licenses/by/4.0/

Generalised Differential Privacy for Text
Document Processing

Natasha Fernandes1,2(B), Mark Dras1, and Annabelle McIver1

1 Macquarie University, Sydney, Australia
natasha.fernandes@hdr.mq.edu.au

2 Inria, Paris-Saclay and École Polytechnique, Palaiseau, France

Abstract. We address the problem of how to “obfuscate” texts by
removing stylistic clues which can identify authorship, whilst preserving
(as much as possible) the content of the text. In this paper we combine
ideas from “generalised differential privacy” and machine learning tech-
niques for text processing to model privacy for text documents. We define
a privacy mechanism that operates at the level of text documents repre-
sented as “bags-of-words”—these representations are typical in machine
learning and contain sufficient information to carry out many kinds of
classification tasks including topic identification and authorship attribu-
tion (of the original documents). We show that our mechanism satisfies
privacy with respect to a metric for semantic similarity, thereby provid-
ing a balance between utility, defined by the semantic content of texts,
with the obfuscation of stylistic clues. We demonstrate our implemen-
tation on a “fan fiction” dataset, confirming that it is indeed possible
to disguise writing style effectively whilst preserving enough informa-
tion and variation for accurate content classification tasks. We refer the
reader to our complete paper [15] which contains full proofs and further
experimentation details.

Keywords: Generalised differential privacy · Earth Mover’s metric ·
Natural language processing · Author obfuscation

1 Introduction

Partial public release of formerly classified data incurs the risk that more infor-
mation is disclosed than intended. This is particularly true of data in the form
of text such as government documents or patient health records. Nevertheless
there are sometimes compelling reasons for declassifying data in some kind of
“sanitised” form—for example government documents are frequently released as
redacted reports when the law demands it, and health records are often shared
to facilitate medical research. Sanitisation is most commonly carried out by hand
but, aside from the cost incurred in time and money, this approach provides no
guarantee that the original privacy or security concerns are met.

We acknowledge the support of the Australian Research Council Grant DP140101119.

c© The Author(s) 2019
F. Nielson and D. Sands (Eds.): POST 2019, LNCS 11426, pp. 123–148, 2019.
https://doi.org/10.1007/978-3-030-17138-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17138-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-17138-4_6

124 N. Fernandes et al.

To encourage researchers to focus on privacy issues related to text documents
the digital forensics community PAN@Clef ([41], for example) proposed a number
of challenges that are typically tackled using machine learning. In this paper our
aim is to demonstrate how to use ideas from differential privacy to address some
aspects of the PAN@Clef challenges by showing how to provide strong a priori
privacy guarantees in document disclosures.

We focus on the problem of author obfuscation, namely to automate the pro-
cess of changing a given document so that as much as possible of its original
substance remains, but that the author of the document can no longer be identi-
fied. Author obfuscation is very difficult to achieve because it is not clear exactly
what to change that would sufficiently mask the author’s identity. In fact author
properties can be determined by “writing style” with a high degree of accuracy:
this can include author identity [28] or other undisclosed personal attributes such
as native language [33,51], gender or age [16,27]. These techniques have been
deployed in real world scenarios: native language identification was used as part
of the effort to identify the anonymous perpetrators of the 2014 Sony hack [17],
and it is believed that the US NSA used author attribution techniques to uncover
the identity of the real humans behind the fictitious persona of Bitcoin “creator”
Satoshi Nakamoto.1

Our contribution concentrates on the perspective of the “machine learner”
as an adversary that works with the standard “bag-of-words” representation of
documents often used in text processing tasks. A bag-of-words representation
retains only the original document’s words and their frequency (thus forgetting
the order in which the words occur). Remarkably this representation still con-
tains sufficient information to enable the original authors to be identified (by a
stylistic analysis) as well as the document’s topic to be classified, both with a
significant degree of accuracy.2 Within this context we reframe the PAN@Clef
author obfuscation challenge as follows:

Given an input bag-of-words representation of a text document, pro-
vide a mechanism which changes the input without disturbing its topic
classification, but that the author can no longer be identified.

In the rest of the paper we use ideas inspired by dX -privacy [9], a metric-based
extension of differential privacy, to implement an automated privacy mechanism
which, unlike current ad hoc approaches to author obfuscation, gives access to
both solid privacy and utility guarantees.3

1 https://medium.com/cryptomuse/how-the-nsa-caught-satoshi-nakamoto-
868affcef595.

2 This includes, for example, the character n-gram representation used for author
identification in [29].

3 Our notion of utility here is similar to other work aiming at text privacy, such
as [32,53].

https://medium.com/cryptomuse/how-the-nsa-caught-satoshi-nakamoto-868affcef595
https://medium.com/cryptomuse/how-the-nsa-caught-satoshi-nakamoto-868affcef595

Generalised Differential Privacy for Text Document Processing 125

We implement a mechanism K which takes b, b′ bag-of-words inputs and
produces “noisy” bag-of-words outputs determined by K(b),K(b′) with the fol-
lowing properties:

Privacy: If b, b′ are classified to be “similar in topic” then, depending on a
privacy parameter ε the outputs determined by K(b) and K(b′) are
also “similar to each other”, irrespective of authorship.

Utility: Possible outputs determined by K(b) are distributed according to a
Laplace probability density function scored according to a semantic
similarity metric.

In what follows we define semantic similarity in terms of the classic Earth
Mover’s distance used in machine learning for topic classification in text doc-
ument processing.4 We explain how to combine this with dX -privacy which
extends privacy for databases to other unstructured domains (such as texts).

In Sect. 2 we set out the details of the bag-of-words representation of docu-
ments and define the Earth Mover’s metric for topic classification. In Sect. 3 we
define a generic mechanism which satisfies “EdX -privacy” relative to the Earth
Mover’s metric EdX and show how to use it for our obfuscation problem. We
note that our generic mechanism is of independent interest for other domains
where the Earth Mover’s metric applies. In Sect. 4 we describe how to imple-
ment the mechanism for data represented as real-valued vectors and prove its
privacy/utility properties with respect to the Earth Mover’s metric; in Sect. 5 we
show how this applies to bags-of-words. Finally in Sect. 6 we provide an experi-
mental evaluation of our obfuscation mechanism, and discuss the implications.

Throughout we assume standard definitions of probability spaces [18]. For a
set A we write DA for the set of (possibly continuous) probability distributions
over A. For η ∈ DA, and A ⊆ A a (measurable) subset we write η(A) for the
probability that (wrt. η) a randomly selected a is contained in A. In the special
case of singleton sets, we write η{a}. If mechanism K: α→Dα, we write K(a)(A)
for the probability that if the input is a, then the output will be contained in A.

2 Documents, Topic Classification and Earth Moving

In this section we summarise the elements from machine learning and text pro-
cessing needed for this paper. Our first definition sets out the representation
for documents we shall use throughout. It is a typical representation of text
documents used in a variety of classification tasks.

Definition 1. Let S be the set of all words (drawn from a finite alphabet). A
document is defined to be a finite bag over S, also called a bag-of-words. We
denote the set of documents as BS, i.e. the set of (finite) bags over S.

4 In NLP, this distance measure is known as the Word Mover’s distance. We use the
classic Earth Mover’s here for generality.

126 N. Fernandes et al.

Once a text is represented as a bag-of-words, depending on the processing
task, further representations of the words within the bag are usually required.
We shall focus on two important representations: the first is when the task is
semantic analysis for eg. topic classification, and the second is when the task
is author identification. We describe the representation for topic classification
in this section, and leave the representation for author identification for Sects. 5
and 6.

2.1 Word Embeddings

Machine learners can be trained to classify the topic of a document, such as
“health”, “sport”, “entertainment”; this notion of topic means that the words
within documents will have particular semantic relationships to each other.
There are many ways to do this classification, and in this paper we use a tech-
nique that has as a key component “word embeddings”, which we summarise
briefly here.

A word embedding is a real-valued vector representation of words where the
precise representation has been experimentally determined by a neural network
sensitive to the way words are used in sentences [38]. Such embeddings have
some interesting properties, but here we only rely on the fact that when the
embeddings are compared using a distance determined by a pseudometric5 on
R

n, words with similar meanings are found to be close together as word embed-
dings, and words which are significantly different in meaning are far apart as
word embeddings.

Definition 2. An n-dimensional word embedding is a mapping Vec : S → R
n.

Given a pseudometric dist on R
n we define a distance on words distVec :

S×S→R≥ as follows:

distVec(w1, w2) := dist(Vec(w1),Vec(w2)) .

Observe that the property of a pseudometric on R
n carries over to S.

Lemma 1. If dist is a pseudometric on R
n then distVec is also a pseudometric

on S.

Proof. Immediate from the definition of a pseudometric: i.e. the triangle equality
and the symmetry of distVec are inherited from dist.

Word embeddings are particularly suited to language analysis tasks, including
topic classification, due to their useful semantic properties. Their effectiveness
depends on the quality of the embedding Vec, which can vary depending on the
size and quality of the training data. We provide more details of the particular

5 Recall that a pseudometric satisfies both the triangle inequality and symmetry; but
different words could be mapped to the same vector and so distVec(w1, w2) = 0 no
longer implies that w1 = w2.

Generalised Differential Privacy for Text Document Processing 127

embeddings in Sect. 6. Topic classifiers can also differ on the choice of underlying
metric dist, and we discuss variations in Sect. 3.2.

In addition, once the word embedding Vec has been determined, and the
distance dist has been selected for comparing “word meanings”, there are a
variety of semantic similarity measures that can be used to compare documents,
for us bags-of-words. In this work we use the “Word Mover’s Distance”, which
was shown to perform well across multiple text classification tasks [31].

The Word Mover’s Distance is based on the classic Earth Mover’s Dis-
tance [43] used in transportation problems with a given distance measure. We
shall use the more general Earth Mover’s definition with dist6 as the underlying
distance measure between words. We note that our results can be applied to
problems outside of the text processing domain.

Let X,Y ∈ BS; we denote by X the tuple 〈xa1
1 , xa2

2 , . . . , xak

k 〉, where ai is the
number of times that xi occurs in X. Similarly we write Y = 〈yb1

1 , yb2
2 , . . . , ybl

l 〉;
we have

∑
i ai = |X| and

∑
j bj = |Y |, the sizes of X and Y respectively. We

define a flow matrix F ∈ R
k×l
≥0 where Fij represents the (non-negative) amount

of flow from xi ∈ X to yj ∈ Y .

Definition 3 (Earth Mover’s Distance). Let dS be a (pseudo)metric over S.
The Earth Mover’s Distance with respect to dS , denoted by EdS , is the solution
to the following linear optimisation:

EdS (X,Y) := min
∑

xi∈X

∑

yj∈Y

dS(xi, yj)Fij , subject to: (1)

k∑

i=1

Fij =
bj

|Y | and
l∑

j=1

Fij =
ai

|X| , Fij ≥ 0, 1 ≤ i ≤ k, 1 ≤ j ≤ l (2)

where the minimum in (1) is over all possible flow matrices F subject to the
constraints (2). In the special case that |X| = |Y |, the solution is known to
satisfy the conditions of a (pseudo)metric [43] which we call the Earth Mover’s
Metric.

In this paper we are interested in the special case |X| = |Y |, hence we use
the term Earth Mover’s metric to refer to EdS .

We end this section by describing how texts are prepared for machine learning
tasks, and how Definition 3 is used to distinguish documents. Consider the text
snippet “The President greets the press in Chicago”. The first thing is to remove
all “stopwords” – these are words which do not contribute to semantics, and
include things like prepositions, pronouns and articles. The words remaining are
those that contain a great deal of semantic and stylistic traits.7

6 In our experiments we take dist to be defined by the Euclidean distance.
7 In fact the way that stopwords are used in texts turn out to be characteristic features

of authorship. Here we follow standard practice in natural language processing to
remove them for efficiency purposes and study the privacy of what remains. All of
our results apply equally well had we left stopwords in place.

128 N. Fernandes et al.

Bag b1

President,

greets,

press,

Chicago

Chief

Illinois

speaks

media

President

greets

press

Chicago

d1
d2

d3

d4

Bag b2

Chief,

speaks,

media,

Illinois

Fig. 1. Earth Mover’s metric between sample documents.

In this case we obtain the bag:

b1 := 〈President1, greets1, press1, Chicago1〉 .

Consider a second bag: b2 := 〈Chief1, speaks1,media1, Illinois1〉, corresponding
to a different text. Figure 1 illustrates the optimal flow matrix which solves the
optimisation problem in Definition 3 relative to dS . Here each word is mapped
completely to another word, so that Fi,j = 1/4 when i = j and 0 otherwise. We
show later that this is always the case between bags of the same size. With these
choices we can compute the distance between b1, b2:

EdS (b1, b2) =
1
4
(dS(President,Chief) + dS(greets, speaks)+

dS(press,media) + dS(Chicago, Illinois)) (3)
= 2.816 .

For comparison, consider the distance between b1 and b2 to a third docu-
ment, b3 := 〈Chef1,breaks1, cooking1, record1〉. Using the same word embedding
metric,8 we find that EdS (b1, b3) = 4.121 and EdS (b2, b3) = 3.941. Thus b1, b2
would be classified as semantically “closer” to each other than to b3, in line with
our own (linguistic) interpretation of the original texts.

3 Differential Privacy and the Earth Mover’s Metric

Differential Privacy was originally defined with the protection of individuals’
data in mind. The intuition is that privacy is achieved through “plausible deni-
ability”, i.e. whatever output is obtained from a query, it could have just as

8 We use the same word2vec-based metric as per our experiments; this is described in
Sect. 6.

Generalised Differential Privacy for Text Document Processing 129

easily have arisen from a database that does not contain an individual’s details,
as from one that does. In particular, there should be no easy way to distinguish
between the two possibilities. Privacy in text processing means something a lit-
tle different. A “query” corresponds to releasing the topic-related contents of
the document (in our case the bag-of-words)—this relates to the utility because
we would like to reveal the semantic content. The privacy relates to investing
individual documents with plausible deniability, rather than individual authors
directly. What this means for privacy is the following. Suppose we are given two
documents b1, b2 written by two distinct authors A1, A2, and suppose further
that b1, b2 are changed through a privacy mechanism so that it is difficult or
impossible to distinguish between them (by any means). Then it is also difficult
or impossible to determine whether the authors of the original documents are A1

or A2, or some other author entirely. This is our aim for obfuscating authorship
whilst preserving semantic content.

Our approach to obfuscating documents replaces words with other words,
governed by probability distributions over possible replacements. Thus the type
of our mechanism is BS →D(BS), where (recall) D(BS) is the set of probability
distributions over the set of (finite) bags of S. Since we are aiming to find a
careful trade-off between utility and privacy, our objective is to ensure that
there is a high probability of outputting a document with a similar topic as
the input document. As explained in Sect. 2, topic similarity of documents is
determined by the Earth Mover’s distance relative to a given (pseudo)metric
on word embeddings, and so our privacy definition must also be relative to the
Earth Mover’s distance.

Definition 4 (Earth Mover’s Privacy). Let X be a set, and dX be a
(pseudo)metric on X and let EdX be the Earth Mover’s metric on BX rela-
tive to dX . Given ε ≥ 0, a mechanism K : BX → D(BX) satisfies εEdX -privacy
iff for any b, b′ ∈ BX and Z ⊆ BX :

K(b)(Z) ≤ eεEdX (b,b′)K(b′)(Z) . (4)

Definition 4 tells us that when two documents are measured to be very close,
so that εEdX (b, b′) is close to 0, then the multiplier eεEdX (b,b′) is approximately
1 and the outputs K(b) and K(b′) are almost identical. On the other hand the
more that the input bags can be distinguished by EdX , the more their outputs
are likely to differ. This flexibility is what allows us to strike a balance between
utility and privacy; we discuss this issue further in Sect. 5 below.

Our next task is to show how to implement a mechanism that can be proved
to satisfy Definition 4. We follow the basic construction of Dwork et al. [12] for
lifting a differentially private mechanism K: X → DX to a differentially private
mechanism K�: X N →DX N on vectors in X N . (Note that, unlike a bag, a vector
imposes a fixed order on its components.) Here the idea is to apply K indepen-
dently to each component of a vector v ∈ X N to produce a random output
vector, also in X N . In particular the probability of outputting some vector v′ is

130 N. Fernandes et al.

the product:
K�(v){v′} =

∏

1≤i≤N

K(vi){v′
i} . (5)

Thanks to the compositional properties of differential privacy when the under-
lying metric on X satisfies the triangle inequality, it’s possible to show that the
resulting mechanism K� satisfies the following privacy mechanism [13]:

K�(v)(Z) ≤ eMdX (v,v′)K�(v′)(Z) , (6)

where MdX (v, v′) :=
∑

1≤i≤N dX (vi, v
′
i), the Manhattan metric relative to dX .

However Definition 4 does not follow from (6), since Definition 4 operates on
bags of size N , and the Manhattan distance between any vector representation
of bags is greater than N × EdX . Remarkably however, it turns out that K�

–the mechanism that applies K independently to each item in a given bag– in
fact satisfies the much stronger Definition 4, as the following theorem shows,
provided the input bags have the same size as each other.

Theorem 1. Let dX be a pseudo-metric on X and let K : X → DX be a
mechanism satisfying εdX -privacy, i.e.

K(x)(Z) ≤ eεdX (x,x′)K(x′)(Z) , for all x, x′ ∈ X , Z ⊆ X . (7)

Let K� : BX → D(BX) be the mechanism obtained by applying K indepen-
dently to each element of X for any X ∈ BX . Denote by K�↓N the restriction
of K� to bags of fixed size N . Then K�↓N satisfies εNEdX -privacy.

Proof (Sketch). The full proof is given in our complete paper [15]; here we sketch
the main ideas.

Let b, b′ be input bags, both of size N , and let c a possible output bag (of K�).
Observe that both output bags determined by K�(b1),K�(b2) and c also have size
N . We shall show that (4) is satisfied for the set containing the singleton element
c and multiplier εN , from which it follows that (4) is satisfied for all sets Z.

By Birkhoff-von Neumann’s theorem [26], in the case where all bags have the
same size, the minimisation problem in Definition 3 is optimised for transporta-
tion matrix F where all values Fij are either 0 or 1/N . This implies that the
optimal transportation for EdX (b, c) is achieved by moving each word in the bag
b to a (single) word in bag c. The same is true for EdX (b′, c) and EdX (b, b′).
Next we use a vector representation of bags as follows. For bag b, we write b for
a vector in X N such that each element in b appears at some bi.

Next we fix b and b′ to be vector representations of respectively b, b′ in X N

such that the optimal transportation for EdX (b, b′) is

EdX (b, b′) = 1/N×
∑

1≤i≤N

dX (bi, b
′
i) = MdX (b, b′)/N . (8)

The final fact we need is to note that there is a relationship between K�

acting on bags of size N and K� which acts on vectors in X N by applying K

Generalised Differential Privacy for Text Document Processing 131

independently to each component of a vector: it is characterised in the following
way. Let b, c be bags and let b, c be any vector representations. For permutation
σ ∈ {1 . . . N} → {1 . . . N} write cσ to be the vector with components permuted
by σ, so that cσ

i = cσ(i). With these definitions, the following equality between
probabilities holds:

K�(b){c} =
∑

σ

K�(b){cσ} , (9)

where the summation is over all permutations that give distinct vector represen-
tations of c. We now compute directly:

K�(b){c}
=

∑
σ K�(b){cσ} “(9) for b, c”

≤ ∑
σ eεMd(b,b′)K�(b′){cσ} “(6) for b, b′, c”

= eεNEd(b,b′)∑
σ K�(b′){cσ} “Arithmetic and (8)”

= eεNEd(b,b′)K�(b′){c} , “(9) for b′, c”

as required.

3.1 Application to Text Documents

Recall the bag-of-words

b2 := 〈Chief1, speaks1,media1, Illinois1〉 ,

and assume we are provided with a mechanism K satisfying the standard εdX -
privacy property (7) for individual words. As in Theorem 1 we can create a
mechanism K∗ by applying K independently to each word in the bag, so that, for
example the probability of outputting b3 = 〈Chef1,breaks1, cooking1, record1〉 is
determined by (9):

K�(b2)({b3}) =
∑

σ

∏

1≤i≤4

K(b2i){b3i
σ} .

By Theorem 1, K� satisfies 4εEdS -privacy. Recalling (3) that EdS (b1, b2) =
2.816, we deduce that if ε ∼ 1/16 then the output distributions K�(b1) and
K�(b2) would differ by the multiplier e2.816×4/16 ∼ 2.02; but if ε ∼ 1/32 those
distributions differ by only 1.42. In the latter case it means that the outputs of
K� on b1 and b2 are almost indistinguishable.

The parameter ε depends on the randomness implemented in the basic mech-
anism K; we investigate that further in Sect. 4.

3.2 Properties of Earth Mover’s Privacy

In machine learning a number of “distance measures” are used in classification
or clustering tasks, and in this section we explore some properties of privacy
when we vary the underlying metrics of an Earth Mover’s metric used to classify
complex objects.

132 N. Fernandes et al.

Let v, v′ ∈ R
n be real-valued n-dimensional vectors. We use the following

(well-known) metrics. Recall in our applications we have looked at bags-of-words,
where the words themselves are represented as n-dimensional vectors.9

1. Euclidean: ‖v−v′‖ :=
√∑

1≤i≤n(vi − v′
i)2

2. Manhattan: �v−v′
 :=
∑

1≤i≤n |vi − v′
i|

Note that the Euclidean and Manhattan distances determine pseudometrics on
words as defined at Definition 2 and proved at Lemma 1.

Lemma 2. If dX ≤ dX ′ (point-wise), then EdX ≤ EdX′ (point-wise).

Proof. Trivial, by contradiction. If dX ≤ dX ′ and Fij , F
�
ij are the minimal flow

matrices for EdX , EdX′ respectively, then F �
ij is a (strictly smaller) minimal solu-

tion for EdX which contradicts the minimality of Fij.

Corollary 1. If dX ≤ dX ′ (point-wise), then EdX -privacy implies EdX′ -privacy.

This shows that, for example, E‖·‖-privacy implies E	·
-privacy, and indeed
any distance measure d which exceeds the Euclidean distance then E‖·‖-privacy
implies Ed-privacy.

We end this section by noting that Definition 4 satisfies post-processing ; i.e.
that privacy does not decrease under post processing. We write K;K ′ for the
composition of mechanisms K,K ′ : BX → D(BX), defined:

(K;K ′)(b)(Z) :=
∑

b′:BX
K(b)({b′})×K ′(b′)(Z) . (10)

Lemma 3 [Post processing]. If K,K ′:BX → D(BX) and K is εEdX -private for
(pseudo)metric d on X then K;K ′ is εEdX -private.

3D plot Contour diagram

Fig. 2. Laplace density function Lap2ε in R
2

9 As we shall see, in the machine learning analysis documents are represented as bags of
n-dimensional vectors (word embeddings), where each bag contains N such vectors.

Generalised Differential Privacy for Text Document Processing 133

4 Earth Mover’s Privacy for Bags of Vectors in R
n

In Theorem 1 we have shown how to promote a privacy mechanism on com-
ponents to EdX -privacy on a bag of those components. In this section we show
how to implement a privacy mechanism satisfying (7), when the components
are represented by high dimensional vectors in R

n and the underlying metric is
taken Euclidean on R

n, which we denote by ‖ · ‖.
We begin by summarising the basic probabilistic tools we need. A probability

density function (PDF) over some domain D is a function φ : D → [0, 1] whose
value φ(z) gives the “relative likelihood” of z. The probability density function is
used to compute the probability of an outcome “z ∈ A”, for some region A ⊆ D
as follows: ∫

A

φ(x) dx . (11)

In differential privacy, a popular density function used for implementing
mechanisms is the Laplacian, defined next.

Definition 5. Let n ≥ 0 be an integer ε > 0 be a real, and v ∈R
n. We define

the Laplacian probability density function in n-dimensions:

Lapn
ε (v) := cε

n×e−ε‖v‖ ,

where ‖v‖ =
√

(v2
1 + · · · + v2

n), and cε
n is a real-valued constant satisfying the

integral equation 1 =
∫

. . .
∫
Rn Lapn

ε (v)dv1 . . . dvn.

When n = 1, we can compute cε
1 = ε/2, and when n = 2, we have that

cε
2 = ε2/2π.

In privacy mechanisms, probability density functions are used to produce
a “noisy” version of the released data. The benefit of the Laplace distribution
is that, besides creating randomness, the likelihood that the released value is
different from the true value decreases exponentially. This implies that the utility
of the data release is high, whilst at the same time masking its actual value.
In Fig. 2 the probability density function Lap2ε(v) depicts this situation, where
we see that the highest relative likelihood of a randomly selected point on the
plane being close to the origin, with the chance of choosing more distant points
diminishing rapidly. Once we are able to select a vector v′ in R

n according to
Lapn

ε , we can “add noise” to any given vector v as v+v′, so that the true value
v is highly likely to be perturbed only a small amount.

In order to use the Laplacian in Definition 5, we need to implement it. Andrés
et al. [4] exhibited a mechanism for Lap2ε(v), and here we show how to extend
that idea to the general case. The main idea of the construction for Lap2ε(v) uses
the fact that any vector on the plane can be represented by spherical coordinates
(r, θ), so that the probability of selecting a vector distance no more than r from
the origin can be achieved by selecting r and θ independently. In order to obtain a
distribution which overall is equivalent to Lap2ε(v), Andrés et al. computed that r
must be selected according to a well-known distribution called the “Lambert W”
function, and θ is selected uniformly over the unit circle. In our generalisation

134 N. Fernandes et al.

to Lapn
ε (v), we observe that the same idea is valid [6]. Observe first that every

vector in R
n can be expressed as a pair (r, p), where r is the distance from the

origin, and p is a point in Bn, the unit hypersphere in R
n. Now selecting vectors

according to Lapn
ε (v) can be achieved by independently selecting r and p, but

this time r must be selected according to the Gamma distribution, and p must
be selected uniformly over Bn. We set out the details next.

Definition 6. The Gamma distribution of (integer) shape n and scale δ > 0 is
determined by the probability density function:

Gamn
δ (r) :=

rn−1e−r/δ

δn(n−1!)
. (12)

Definition 7. The uniform distribution over the surface of the unit hypersphere
Bn is determined by the probability density function:

Uniformn(v) :=
Γ (n

2)
nπn/2

if v ∈ Bn else 0 , (13)

where Bn := {v ∈ R
n | ‖v‖ = 1}, and Γ (α) :=

∫ ∞
0

xα−1e−x dx is the “Gamma
function”.

With Definitions 6 and 7 we are able to provide an implementation of a
mechanism which produces noisy vectors around a given vector in R

n according
to the Laplacian distribution in Definition 5. The first task is to show that our
decomposition of Lapn

ε is correct.

Lemma 4. The n-dimensional Laplacian Lapn
ε (v) can be realised by selecting

vectors represented as (r, p), where r is selected according to Gamn
1/ε(r) and p is

selected independently according to Uniformn(p).

Proof (Sketch). The proof follows by changing variables to spherical coordinates
and then showing that

∫
A

Lapn
ε (v) dv can be expressed as the product of inde-

pendent selections of r and p.
We use a spherical-coordinate representation of v as:

r := ‖v‖ , and
v1 := r cos θ1 , v2 := r sin θ1 cos θ2 , . . . vn := r sin θ1 sin θ2 . . . , sin θn−2 sin θn−1 .

Next we assume for simplicity that A is a hypersphere of radius R; with that
we can reason:

∫
A
Lapn

ε (v) dv
= ∫

‖v‖≤R
cε

n×e−ε|v| dv

“Definition 5; A is a hypersphere”

=
∫

‖v‖≤R
cε

n×e−ε
√

v2
1+···+v2

n dv

“‖v‖ =
√

v2
1 + · · · + v2

n”

= ∫
r≤R

∫
Aθ

cε
n×e−εr ∂(z1,z2,...,zn)

∂(r,θ1,...,θn−1)
drdθ1 . . . dθn−1

“Change of variables to spherical coordinates; see below (14)”

= ∫
r≤R

∫
Aθ

cε
n×e−εrrn−1 sinn−2 θ1 sinn−3 θ2 . . . sin2 θn−3 sin θn−2 drdθ1 . . . dθn−1 .

“See below (14)”

Generalised Differential Privacy for Text Document Processing 135

Now rearranging we can see that this becomes a product of two integrals.
The first

∫
r≤R

e−εrrn−1 is over the radius, and is proportional to the integral
of the Gamma distribution Definition 6; and the second is an integral over the
angular coordinates and is proportional to the surface of the unit hypersphere,
and corresponds to the PDF at (7). Finally, for the “see below’s” we are using
the “Jacobian”:

∂(z1, z2, . . . , zn)
∂(r, θ1, . . . , θn−1)

= rn−1 sinn−2 θ1 sinn−3 θ2 . . . (14)

(For full details, see our complete paper [15].)

We can now assemble the facts to demonstrate the n-Dimensional Laplacian.

Theorem 2 (n-Dimensional Laplacian). Given ε > 0 and n ∈ Z
+, let

K : Rn → DR
n be a mechanism that, given a vector x ∈ R

n outputs a noisy
value as follows:

x
K�−→ x + x′

where x′ is represented as (r, p) with r ≥ 0, distributed according to Gamn
1/ε(r) and

p ∈ Bn distributed according to Uniformn(p). Then K satisfies (7) from Theorem
1, i.e. K satisfies ε‖ · ‖-privacy where ‖ · ‖ is the Euclidean metric on R

n.

Proof (Sketch). Let z, y ∈ R
n. We need to show that for any (measurable) set

A ⊆ R
n that:

K(z)(A)/K(y)(A) ≤ eε||z−y|| . (15)

However (15) follows provided that the probability densities of respectively K(z)
and K(y) satisfy it. By Lemma 4 the probability density of K(z), as a function
of x is distributed as Lapn

ε (z−x); and similarly for the probability density of
K(y). Hence we reason:

Lapn
ε (z−x)/Lapn

ε (y−x)
= cε

n×e−ε‖z−x‖/cε
n×e−ε‖y−x‖ “Definition 5”

= e−ε‖z−x‖ × eε‖y−x‖ “Arithmetic”

≤ eε‖z−y‖ , “Triangle inequality; s �→ es is monotone”

as required.

Theorem 2 reduces the problem of adding Laplace noise to vectors in R
n to

selecting a real value according to the Gamma distribution and an independent
uniform selection of a unit vector. Several methods have been proposed for gen-
erating random variables according to the Gamma distribution [30] as well as for
the uniform selection of vectors on the unit n-sphere [35]. The uniform selection
of a unit vector has also been described in [35]; it avoids the transformation to
spherical coordinates by selecting n random variables from the standard normal
distribution to produce vector v ∈ R

n, and then normalising to output v
|v| .

136 N. Fernandes et al.

4.1 Earth Mover’s Privacy in BR
n

Using the n-dimensional Laplacian, we can now implement an algorithm for
εNE‖·‖-privacy. Algorithm 1 takes a bag of n-dimensional vectors as input and
applies the n-dimensional Laplacian mechanism described in Theorem 2 to each
vector in the bag, producing a noisy bag of n-dimensional vectors as output.
Corollary 2 summarises the privacy guarantee.

Algorithm 1. Earth Mover’s Privacy Mechanism
Require: vector v, dimension n, epsilon ε
1: procedure GenerateNoisyVector(v, n, ε)
2: r ← Gamma(n, 1

ε
)

3: u ← U(n)
4: return v + ru
5: end procedure

Require: bag X, dimension n, epsilon ε
1: procedure GeneratePrivateBag(X, n, ε)
2: Z ← ()
3: for all x ∈ X do
4: z ← GenerateNoisyVector(x, n, ε)
5: add z to Z
6: end for
7: return Z
8: end procedure

Corollary 2. Algorithm 1 satisfies εNE‖·‖-privacy, relative to any two bags in
BR

n of size N .

Proof. Follows from Theorems 1 and 2.

4.2 Utility Bounds

We prove a lower bound on the utility for this algorithm, which applies for high
dimensional data representations. Given an output element x, we define Z to
be the set of outputs within distance Δ > 0 from x. Recall that the distance
function is a measure of utility, therefore Z = {z | E‖·‖(x, z) ≤ Δ} represents
the set of vectors within utility Δ of x. Then we have the following:

Theorem 3. Given an input bag b consisting of N n-dimensional vectors, the
mechanism defined by Algorithm 1 outputs an element from Z = {z | E‖·‖(b, z) ≤
Δ} with probability at least

1 − e−εNΔen−1(εNΔ) ,

whenever εNΔ ≤ n/e. (Recall that ek(α) =
∑

0≤i≤k
αi

i! , the sum of the first k+1
terms in the series for eα.)

Generalised Differential Privacy for Text Document Processing 137

Proof (Sketch). Let b ∈ (Rn)N be a (fixed) vector representation of the bag b. For
v ∈ (Rn)N , let v◦ ∈ BR

n be the bag comprising the N components if v. Observe
that NE‖·‖(b, v◦) ≤ M‖·‖(b, v), and so

ZM = {v | M‖·‖(b, v) ≤ NΔ} ⊆ {v | E‖·‖(b, v◦) ≤ Δ} = ZE . (16)

Thus the probability of outputting an element of Z is the same as the probability
of outputting ZE, and by (16) that is at least the probability of outputting an
element from ZM by applying a standard n-dimensional Laplace mechanism to
each of the components of b. We can now compute:

Probability of outputting an element in ZE

≥ ∫
. . .

∫
v∈ZM

∏
1≤i≤N Lapn

ε (bi−vi)dv1 . . . dvN

“(16)”

= ∫
. . .

∫
v∈ZM

∏
1≤i≤N cε

ne−ε‖bi−vi‖dv1 . . . dvN .
“Lemma 4”

The result follows by completing the multiple integrals and applying some approx-
imations, whilst observing that the variables in the integration are n-dimensional
vector valued. (The details appear in our complete paper [15].)

We note that in our application word embeddings are typically mapped to vectors
in R

300, thus we would use n ∼ 300 in Theorem 3.

5 Text Document Privacy

In this section we bring everything together, and present a privacy mechanism
for text documents; we explore how it contributes to the author obfuscation
task described above. Algorithm 2 describes the complete procedure for taking a
document as a bag-of-words, and outputting a “noisy” bag-of-words. Depending
on the setting of parameter ε, the output bag will be likely to be classified to be
on a similar topic as the input.

Algorithm 2 uses a function Vec to turn the input document into a bag of
word embeddings; next Algorithm 1 produces a noisy bag of word embeddings,
and, in a final step the inverse Vec−1 is used to reconstruct an actual bag-of-words
as output. In our implementation of Algorithm 2, described below, we compute
Vec−1(x) to be the word w that minimises the Euclidean distance ‖z −Vec(w)‖.
The next result summarises the privacy guarantee for Algorithm 2.

Theorem 4. Algorithm 2 satisfies εNEdS -privacy, where dS = distVec. That
is to say: given input documents (bags) b, b′ both of size N , and c a possible
output bag, define the following quantities as follows: k := E‖·‖(Vec�(b),Vec�(b′)),
pr(b, c) and pr(b′, c) are the respective probabilities that c is output given the input
was b or b′. Then:

pr(b, c) ≤ eεNk × pr(b′, c) .

138 N. Fernandes et al.

Algorithm 2. Document privacy mechanism
Require: Bag-of-words b, dimension n, epsilon ε, Word embedding Vec : S → R

n

1: procedure GenerateNoisyBagOfWords(b, n, ε,Vec)
2: X ← Vec�(b)
3: Z ← GeneratePrivateBag(X, n, ε)
4: return (Vec−1)�(Z)
5: end procedure

Note that Vec� : BS→BR
n applies Vec to each word in a bag b, and (Vec−1)� : BRn→BS

reverses this procedure as a post-processing step; this involves determining the word
w that minimises the Euclidean distance ‖z − Vec(w)‖ for each z in Z.

Proof. The result follows by appeal to Theorem 2 for privacy on the word embed-
dings; the step to apply Vec−1 to each vector is a post-processing step which by
Lemma 3 preserves the privacy guarantee.

Although Theorem 4 utilises ideas from differential privacy, an interesting
question to ask is how it contributes to the PAN@Clef author obfuscation task,
which recall asked for mechanisms that preserve content but mask features that
distinguish authorship. Algorithm 2 does indeed attempt to preserve content (to
the extent that the topic can still be determined) but it does not directly “remove
stylistic features”.10 So has it, in fact, disguised the author’s characteristic style?
To answer that question, we review Theorem 4 and interpret what it tells us in
relation to author obfuscation.

The theorem implies that it is indeed possible to make the (probabilistic)
output from two distinct documents b, b′ almost indistinguishable by choosing ε
to be extremely small in comparison with N×E‖·‖(Vec�(b),Vec�(b′)). However,
if E‖·‖(Vec�(b),Vec�(b′)) is very large – meaning that b and b′ are on entirely
different topics, then ε would need to be so tiny that the noisy output document
would be highly unlikely to be on a topic remotely close to either b or b′ (recall
Lemma 3).

This observation is actually highlighting the fact that, in some circumstances,
the topic itself is actually a feature that characterises author identity. (First-hand
accounts of breaking the world record for highest and longest free fall jump
would immediately narrow the field down to the title holder.) This means that
any obfuscating mechanism would, as for Algorithm 2, only be able to obfuscate
documents so as to disguise the author’s identity if there are several authors
who write on similar topics. And it is in that spirit, that we have made the first
step towards a satisfactory obfuscating mechanism: provided that documents are
similar in topic (i.e. are close when their embeddings are measured by E‖·‖) they
can be obfuscated so that it is unlikely that the content is disturbed, but that
the contributing authors cannot be determined easily.

10 Although, as others have noted [53], the bag-of-words representation already removes
many stylistic features. We note that our privacy guarantee does not depend on this
side-effect.

Generalised Differential Privacy for Text Document Processing 139

We can see the importance of the “indistinguishability” property wrt. the
PAN obfuscation task. In stylometry analysis the representation of words for
eg. author classification is completely different to the word embeddings which
have used for topic classification. State-of-the-art author attribution algorithms
represent words as “character n-grams” [28] which have been found to capture
stylistic clues such as systematic spelling errors. A character 3-gram for example
represents a given word as the complete list of substrings of length 3. For example
character 3-gram representations of “color” and “colour” are:

· “color” �→ |[“col”, “olo”, “lor”]|
· “colour” �→ |[“col”, “olo”, “lou”, “our”]|
For author identification, any output from Algorithm 2 would then need to

be further transformed to a bag of character n-grams, as a post processing step;
by Lemma 3 this additional transformation preserves the privacy properties of
Algorithm 2. We explore this experimentally in the next section.

6 Experimental Results

Document Set. The PAN@Clef tasks and other similar work have used a variety
of types of text for author identification and author obfuscation. Our desiderata
are that we have multiple authors writing on one topic (so as to minimise the
ability of an author identification system to use topic-related cues) and to have
more than one topic (so that we can evaluate utility in terms of accuracy of topic
classification). Further, we would like to use data from a domain where there are
potentially large quantities of text available, and where it is already annotated
with author and topic.

Given these considerations, we chose “fan fiction” as our domain. Wikipedia
defines fan fiction as follows: “Fan fiction . . . is fiction about characters or
settings from an original work of fiction, created by fans of that work rather
than by its creator.” This is also the domain that was used in the PAN@Clef
2018 author attribution challenge,11 although for this work we scraped our own
dataset. We chose one of the largest fan fiction sites and the two largest “fan-
doms” there;12 these fandoms are our topics. We scraped the stories from these
fandoms, the largest proportion of which are for use in training our topic classi-
fication model. We held out two subsets of size 20 and 50, evenly split between
fandoms/topics, for the evaluation of our privacy mechanism.13 We follow the
evaluation framework of [28]: for each author we construct an known-author
text and an unknown-author snippet that we have to match to an author on
11 https://pan.webis.de/clef18/pan18-web/author-identification.html.
12 https://www.fanfiction.net/book/, with the two largest fandoms being Harry Potter

(797,000 stories) and Twilight (220,000 stories).
13 Our Algorithm 2 is computationally quite expensive, because each word w =

Vec−1(x) requires the calculation of Euclidean distance with respect to the whole
vocabulary. We thus use relatively small evaluation sets, as we apply the algorithm
to them for multiple values of ε.

https://pan.webis.de/clef18/pan18-web/author-identification.html
https://www.fanfiction.net/book/

140 N. Fernandes et al.

the basis of the known-author texts. (See Appendix in our complete paper [15]
for more detail.)

Word Embeddings. There are sets of word embeddings trained on large datasets
that have been made publicly available. Most of these, however, are already
normalised, which makes them unsuitable for our method. We therefore use
the Google News word2vec embeddings as the only large-scale unnormalised
embeddings available. (See Appendix in our complete paper [15] for more detail.)

Inference Mechanisms. We have two sorts of machine learning inference mecha-
nisms: our adversary mechanism for author identification, and our utility-related
mechanism for topic classification. For each of these, we can define inference
mechanisms both within the same representational space or in a different rep-
resentational space. As we noted above, in practice both author identification
adversary and topic classification will use different representations, but examin-
ing same-representation inference mechanisms can give an insight into what is
happening within that space.

Different-Representation Author Identification. For this we use the algorithm
by [28]. This algorithm is widely used: it underpins two of the winners of PAN
shared tasks [25,47]; is a common benchmark or starting point for other meth-
ods [19,39,44,46]; and is a standard inference attacker for the PAN shared task
on authorship obfuscation.14 It works by representing each text as a vector of
space-separated character n-gram counts, and comparing repeatedly sampled
subvectors of known-author texts and snippets using cosine similarity. We use as
a starting point the code from a reproducibility study [40], but have modified it
to improve efficiency. (See Appendix in our complete paper [15] for more details.)

Different-Representation Topic Classification. Here we choose fastText [7,22], a
high-performing supervised machine learning classification system. It also works
with word embeddings; these differ from word2vec in that they are derived from
embeddings over character n-grams, learnt using the same skipgram model as
word2vec. This means it is able to compute representations for words that do
not appear in the training data, which is helpful when training with relatively
small amounts of data; also useful when training with small amounts of data is
the ability to start from pretrained embeddings trained on out-of-domain data
that are then adapted to the in-domain (here, fan fiction) data. After training,
the accuracy on a validation set we construct from the data is 93.7% (see [15]
for details).

Same-Representation Author Identification. In the space of our word2vec embed-
dings, we can define an inference mechanism that for an unknown-author snippet
chooses the closest known-author text by Euclidean distance.

14 http://pan.webis.de/clef17/pan17-web/author-obfuscation.html.

http://pan.webis.de/clef17/pan17-web/author-obfuscation.html

Generalised Differential Privacy for Text Document Processing 141

Same-Representation Topic Classification. Similarly, we can define an inference
mechanism that considers the topic classes of neighbours and predicts a class
for the snippet based on that. This is essentially the standard k “Nearest Neigh-
bours” technique (k-NN) [21], a non-parametric method that assigns the major-
ity class of the k nearest neighbours. 1-NN corresponds to classification based on
a Voronoi tesselation of the space, has low bias and high variance, and asymp-
totically has an error rate that is never more than twice the Bayes rate; higher
values of k have a smoothing effect. Because of the nature of word embeddings,
we would not expect this classification to be as accurate as the fastText classifi-
cation above: in high-dimensional Euclidean space (as here), almost all points are
approximately equidistant. Nevertheless, it can give an idea about how a snip-
pet with varying levels of noise added is being shifted in Euclidean space with
respect to other texts in the same topic. Here, we use k = 5. Same-representation
author identification can then be viewed as 1-NN with author as class.

Table 1. Number of correct predictions of author/topic in the 20-author set (left)
and 50-author set (right), using 1-NN for same-representation author identification
(SRauth), 5-NN for same-representation topic classification (SRtopic), the Koppel
algorithm for different-representation author identification (DRauth) and fastText for
different-representation topic classification (DRtopic).

20-author set
ε SRauth SRtopic DRauth DRtopic

none 12 16 15 18
30 8 18 16 18
25 8 18 14 17
20 5 11 11 16
15 2 11 12 17
10 0 15 11 19

50-author set
ε SRauth SRtopic DRauth DRtopic

none 19 36 27 43
30 19 37 29 43
25 17 34 24 41
20 12 28 19 42
15 9 22 13 42
10 1 24 10 43

Results: Table 1 contains the results for both document sets, for the unmodified
snippets (“none”) or with the privacy mechanism of Algorithm 2 applied with
various levels of ε: we give results for ε between 10 and 30, as at ε = 40 the text
does not change, while at ε = 1 the text is unrecognisable. For the 20-author set,
a random guess baseline would give 1 correct author prediction, and 10 correct
topic predictions; for the 50-author set, these values are 1 and 25 respectively.

Performance on the unmodified snippets using different-representation infer-
ence mechanisms is quite good: author identification gets 15/20 correct for the
20-author set and 27/50 for the 50-author set; and topic classification 18/20
and 43/50 (comparable to the validation set accuracy, although slightly lower,
which is to be expected given that the texts are much shorter). For various levels
of ε, with our different-representation inference mechanisms we see broadly the
behaviour we expected: the performance of author identification drops, while
topic classification holds roughly constant. Author identification here does not
drop to chance levels: we speculate that this is because (in spite of our choice

142 N. Fernandes et al.

of dataset for this purpose) there are still some topic clues that the algorithm
of [28] takes advantage of: one author of Harry Potter fan fiction might prefer to
write about a particular character (e.g. Severus Snape), and as these character
names are not in our word2vec vocabulary, they are not replaced by the privacy
mechanism.

In our same-representation author identification, though, we do find per-
formance starting relatively high (although not as high as the different-
representation algorithm) and then dropping to (worse than) chance, which is the
level we would expect for our privacy mechanism. The k-NN topic classification,
however, shows some instability, which is probably an artefact of the problems
it faces with high-dimensional Euclidean spaces. (Refer to our complete arXiv
paper [15] for a sample of texts and nearest neighbours.)

7 Related Work

Author Obfuscation. The most similar work to ours is by Weggenmann and
Kerschbaum [53] who also consider the author obfuscation problem but apply
standard differential privacy using a Hamming distance of 1 between all docu-
ments. As with our approach, they consider the simplified utility requirement of
topic preservation and use word embeddings to represent documents. Our app-
roach differs in our use of the Earth Mover’s metric to provide a strong utility
measure for document similarity.

An early work in this area by Kacmarcik et al. [23] applies obfuscation by
modifying the most important stylometric features of the text to reduce the
effectiveness of author attribution. This approach was used in Anonymouth [36],
a semi-automated tool that provides feedback to authors on which features to
modify to effectively anonymise their texts. A similar approach was also followed
by Karadhov et al. [24] as part of the PAN@Clef 2017 task.

Other approaches to author obfuscation, motivated by the PAN@Clef task,
have focussed on the stronger utility requirement of semantic sensibility [5,8,34].
Privacy guarantees are therefore ad hoc and are designed to increase misclassi-
fication rates by the author attribution software used to test the mechanism.

Most recently there has been interest in training neural networks models
which can protect author identity whilst preserving the semantics of the original
document [14,48]. Other related deep learning methods aim to obscure other
author attributes such as gender or age [10,32]. While these methods produce
strong empirical results, they provide no formal privacy guarantees. Importantly,
their goal also differs from the goal of our paper: they aim to obscure properties
of authors in the training set (with the intention of the author-obscured learned
representations being made available), while we assume that an adversary may
have access to raw training data to construct an inference mechanism with full
knowledge of author properties, and in this context aim to hide the properties
of some other text external to the training set.

Generalised Differential Privacy for Text Document Processing 143

Machine Learning and Differential Privacy. Outside of author attribution, there
is quite a body of work on introducing differential privacy to machine learn-
ing: [13] gives an overview of a classical machine learning setting; more recent
deep learning approaches include [1,49]. However, these are generally applied in
other domains such as image processing: text introduces additional complexity
because of its discrete nature, in contrast to the continuous nature of neural
networks. A recent exception is [37], which constructs a differentially private
language model using a recurrent neural network; the goal here, as for instances
above, is to hide properties of data items in the training set.

Generalised Differential Privacy. Also known as dX -privacy [9], this definition
was originally motivated by the problem of geo-location privacy [4]. Despite its
generality, dX -privacy has yet to find significant applications outside this domain;
in particular, there have been no applications to text privacy.

Text Document Privacy. This typically refers to the sanitisation or redaction of
documents either to protect the identity of individuals or to protect the confi-
dentiality of their sensitive attributes. For example, a medical document may be
modified to hide specifics in the medical history of a named patient. Similarly,
a classified document may be redacted to protect the identity of an individual
referred to in the text.

Most approaches to sanitisation or redaction rely on first identifying sensitive
terms in the text, and then modifying (or deleting) only these terms to produce
a sanitised document. Abril et al. [2] proposed this two-step approach, focussing
on identification of terms using NLP techniques. Cumby and Ghani [11] pro-
posed k-confusability, inspired by k-anonymity [50], to perturb sensitive terms
in a document so that its (utility) class is confusable with at least k other classes.
Their approach requires a complete dataset of similar documents for computing
(mis)classification probabilities. Anandan et al. [3] proposed t-plausibility which
generalises sensitive terms such that any document could have been generated
from at least t other documents. Sánchez and Batet [45] proposed C-sanitisation,
a model for both detection and protection of sensitive terms (C) using informa-
tion theoretic guarantees. In particular, a C-sanitised document should contain
no collection of terms which can be used to infer any of the sensitive terms.

Finally, there has been some work on noise-addition techniques in this area.
Rodriguez-Garcia et al. [42] propose semantic noise, which perturbs sensitive
terms in a document using a distance measure over the directed graph repre-
senting a predefined ontology.

Whilst these approaches have strong utility, our primary point of difference is
our insistence on a differential privacy-based guarantee. This ensures that every
output document could have been produced from any input document with some
probability, giving the strongest possible notion of plausible-deniability.

144 N. Fernandes et al.

8 Conclusions

We have shown how to combine representations of text documents with gener-
alised differential privacy in order to implement a privacy mechanism for text
documents. Unlike most other techniques for privacy in text processing, ours
provides a guarantee in the style of differential privacy. Moreover we have demon-
strated experimentally the trade off between utility and privacy.

This represents an important step towards the implementation of privacy
mechanisms that could produce readable summaries of documents with a pri-
vacy guarantee. One way to achieve this goal would be to reconstruct readable
documents from the bag-of-words output that our mechanism currently pro-
vides. A range of promising techniques for reconstructing readable texts from
bag-of-words have already produced some good experimental results [20,52,54].
In future work we aim to explore how techniques such as these could be applied
as a final post processing step for our mechanism.

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, CCS
2016, pp. 308–318. ACM, New York (2016). https://doi.org/10.1145/2976749.
2978318

2. Abril, D., Navarro-Arribas, G., Torra, V.: On the declassification of confidential
documents. In: Torra, V., Narakawa, Y., Yin, J., Long, J. (eds.) MDAI 2011. LNCS
(LNAI), vol. 6820, pp. 235–246. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22589-5 22

3. Anandan, B., Clifton, C., Jiang, W., Murugesan, M., Pastrana-Camacho, P., Si,
L.: t-Plausibility: generalizing words to desensitize text. Trans. Data Priv. 5(3),
505–534 (2012)

4. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-
indistinguishability: differential privacy for location-based systems. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security,
pp. 901–914. ACM (2013)

5. Bakhteev, O., Khazov, A.: Author masking using sequence-to-sequence models—
notebook for PAN at CLEF 2017. In: Cappellato, L., Ferro, N., Goeuriot,
L., Mandl, T. (eds.) CLEF 2017 Evaluation Labs and Workshop – Working
Notes Papers, Dublin, Ireland, 11–14 September. CEUR-WS.org, September 2017.
http://ceur-ws.org/Vol-1866/

6. Boisbunon, A.: The class of multivariate spherically symmetric distributions. Uni-
versité de Rouen, Technical report 5, 2012 (2012)

7. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information (2016). arXiv preprint: arXiv:1607.04606

8. Castro, D., Ortega, R., Muñoz, R.: Author masking by sentence transformation—
notebook for PAN at CLEF 2017. In: Cappellato, L., Ferro, N., Goeuriot,
L., Mandl, T. (eds.) CLEF 2017 Evaluation Labs and Workshop – Working
Notes Papers, Dublin, Ireland, 11–14 September. CEUR-WS.org, September 2017.
http://ceur-ws.org/Vol-1866/

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1007/978-3-642-22589-5_22
https://doi.org/10.1007/978-3-642-22589-5_22
http://ceur-ws.org/Vol-1866/
http://arxiv.org/abs/1607.04606
http://ceur-ws.org/Vol-1866/

Generalised Differential Privacy for Text Document Processing 145

9. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broaden-
ing the scope of differential privacy using metrics. In: De Cristofaro, E., Wright,
M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39077-7 5

10. Coavoux, M., Narayan, S., Cohen, S.B.: Privacy-preserving neural representations
of text. In: Proceedings of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, Brussels, Belgium, pp. 1–10. Association for Compu-
tational Linguistics, October–November 2018. http://www.aclweb.org/anthology/
D18-1001

11. Cumby, C., Ghani, R.: A machine learning based system for semi-automatically
redacting documents. In: Proceedings of the Twenty-Third Conference on Innova-
tive Applications of Artificial Intelligence (IAAI) (2011)

12. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

13. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends R© Theor. Comput. Sci. 9(3–4), 211–407 (2014)

14. Emmery, C., Manjavacas, E., Chrupa�la, G.: Style obfuscation by invariance (2018).
arXiv preprint: arXiv:1805.07143

15. Fernandes, N., Dras, M., McIver, A.: Generalised differential privacy for text doc-
ument processing. CoRR abs/1811.10256 (2018). http://arxiv.org/abs/1811.10256

16. Manuel, F., Pardo, R., Rosso, P., Potthast, M., Stein, B.: Overview of the 5th
author profiling task at PAN 2017: gender and language variety identification in
Twitter. In: Cappellato, L., Ferro, N., Goeuriot, L., Mandl, T. (eds.) Working
Notes Papers of the CLEF 2017 Evaluation Labs. CEUR Workshop Proceedings,
vol. 1866. CLEF and CEUR-WS.org, September 2017. http://ceur-ws.org/Vol-
1866/

17. Global, T.: Native Language Identification (NLI) Establishes Nationality of Sony’s
Hackers as Russian. Technical report, Taia Global, Inc. (2014)

18. Grimmett, G., Stirzaker, D.: Probability and Random Processes, 2nd edn. Oxford
Science Publications, Oxford (1992)

19. Halvani, O., Winter, C., Graner, L.: Authorship Verification based on Compression-
Models. CoRR abs/1706.00516 (2017). http://arxiv.org/abs/1706.00516

20. Hasler, E., Stahlberg, F., Tomalin, M., de Gispert, A., Byrne, B.: A comparison
of neural models for word ordering. In: Proceedings of the 10th International Con-
ference on Natural Language Generation, pp. 208–212. Association for Computa-
tional Linguistics (2017). https://doi.org/10.18653/v1/W17-3531. http://aclweb.
org/anthology/W17-3531

21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. SSS, 2nd edn. Springer, New York (2009).
https://doi.org/10.1007/978-0-387-84858-7

22. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification (2016). arXiv preprint: arXiv:1607.01759

23. Kacmarcik, G., Gamon, M.: Obfuscating document stylometry to preserve author
anonymity. In: ACL, pp. 444–451 (2006)

24. Karadzhov, G., Mihaylova, T., Kiprov, Y., Georgiev, G., Koychev, I., Nakov, P.:
The case for being average: a mediocrity approach to style masking and author
obfuscation. In: Jones, G.J.F., et al. (eds.) CLEF 2017. LNCS, vol. 10456, pp.
173–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65813-1 18

https://doi.org/10.1007/978-3-642-39077-7_5
http://www.aclweb.org/anthology/D18-1001
http://www.aclweb.org/anthology/D18-1001
https://doi.org/10.1007/11681878_14
http://arxiv.org/abs/1805.07143
http://arxiv.org/abs/1811.10256
http://ceur-ws.org/Vol-1866/
http://ceur-ws.org/Vol-1866/
http://arxiv.org/abs/1706.00516
https://doi.org/10.18653/v1/W17-3531
http://aclweb.org/anthology/W17-3531
http://aclweb.org/anthology/W17-3531
https://doi.org/10.1007/978-0-387-84858-7
http://arxiv.org/abs/1607.01759
https://doi.org/10.1007/978-3-319-65813-1_18

146 N. Fernandes et al.

25. Khonji, M., Iraqi, Y.: A slightly-modified GI-based author-verifier with lots of
features (ASGALF). In: Working Notes for CLEF 2014 Conference (2014). http://
ceur-ws.org/Vol-1180/CLEF2014wn-Pan-KonijEt2014.pdf

26. König, D.: Theorie der endlichen und unendlichen Graphen. Akademische Verlags
Gesellschaft, Leipzig (1936)

27. Koppel, M., Argamon, S., Shimoni, A.R.: Automatically categorizing written texts
by author gender. Lit. Linguist. Comput. 17(4), 401–412 (2002). https://doi.org/
10.1093/llc/17.4.401

28. Koppel, M., Schler, J., Argamon, S.: Authorship attribution in the wild. Lang.
Resour. Eval. 45(1), 83–94 (2011)

29. Koppel, M., Winter, Y.: Determining if two documents are written by the same
author. JASIST 65(1), 178–187 (2014). https://doi.org/10.1002/asi.22954

30. Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods, vol.
706. Wiley, New York (2013)

31. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings
to document distances. In: Proceedings of the 32nd International Conference on
Machine Learning, pp. 957–966 (2015)

32. Li, Y., Baldwin, T., Cohn, T.: Towards robust and privacy-preserving text rep-
resentations. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics. Short Papers, vol. 2, pp. 25–30. Association for Com-
putational Linguistics (2018). http://aclweb.org/anthology/P18-2005

33. Malmasi, S., Dras, M.: Native language identification with classifier stacking and
ensembles. Comput. Linguist. 44(3), 403–446 (2018). https://doi.org/10.1162/
coli a 00323

34. Mansoorizadeh, M., Rahgooy, T., Aminiyan, M., Eskandari, M.: Author Obfusca-
tion using WordNet and language models—notebook for PAN at CLEF 2016. In:
Balog, K., Cappellato, L., Ferro, N., Macdonald, C. (eds.) CLEF 2016 Evaluation
Labs and Workshop – Working Notes Papers, Évora, Portugal, 5–8 September.
CEUR-WS.org, September 2016. http://ceur-ws.org/Vol-1609/

35. Marsaglia, G., et al.: Choosing a point from the surface of a sphere. Ann. Math.
Stat. 43(2), 645–646 (1972)

36. McDonald, A.W.E., Afroz, S., Caliskan, A., Stolerman, A., Greenstadt, R.: Use
fewer instances of the letter “i”: toward writing style anonymization. In: Fischer-
Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 299–318. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31680-7 16

37. McMahan, H.B., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private
recurrent language models. In: International Conference on Learning Representa-
tions (2018). https://openreview.net/forum?id=BJ0hF1Z0b

38. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781 (2013). http://arxiv.org/abs/
1301.3781

39. Potha, N., Stamatatos, E.: An improved Impostors method for authorship verifi-
cation. In: Jones, G.J.F., Lawless, S., Gonzalo, J., Kelly, L., Goeuriot, L., Mandl,
T., Cappellato, L., Ferro, N. (eds.) CLEF 2017. LNCS, vol. 10456, pp. 138–144.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65813-1 14

40. Potthast, M., et al.: Who wrote the web? Revisiting influential author identification
research applicable to information retrieval. In: Ferro, N., et al. (eds.) ECIR 2016.
LNCS, vol. 9626, pp. 393–407. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30671-1 29

http://ceur-ws.org/Vol-1180/CLEF2014wn-Pan-KonijEt2014.pdf
http://ceur-ws.org/Vol-1180/CLEF2014wn-Pan-KonijEt2014.pdf
https://doi.org/10.1093/llc/17.4.401
https://doi.org/10.1093/llc/17.4.401
https://doi.org/10.1002/asi.22954
http://aclweb.org/anthology/P18-2005
https://doi.org/10.1162/coli_a_00323
https://doi.org/10.1162/coli_a_00323
http://ceur-ws.org/Vol-1609/
https://doi.org/10.1007/978-3-642-31680-7_16
https://openreview.net/forum?id=BJ0hF1Z0b
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-3-319-65813-1_14
https://doi.org/10.1007/978-3-319-30671-1_29
https://doi.org/10.1007/978-3-319-30671-1_29

Generalised Differential Privacy for Text Document Processing 147

41. Potthast, M., Rangel, F., Tschuggnall, M., Stamatatos, E., Rosso, P., Stein, B.:
Overview of PAN’17: author identification, author profiling, and author obfusca-
tion. In: Jones, G.J.F., et al. (eds.) CLEF 2017. LNCS, vol. 10456, pp. 275–290.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65813-1 25

42. Rodriguez-Garcia, M., Batet, M., Sánchez, D.: Semantic noise: privacy-protection
of nominal microdata through uncorrelated noise addition. In: 2015 IEEE 27th
International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1106–
1113. IEEE (2015)

43. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for
image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

44. Ruder, S., Ghaffari, P., Breslin, J.G.: Character-level and Multi-channel Con-
volutional Neural Networks for Large-scale Authorship Attribution. CoRR
abs/1609.06686 (2016). http://arxiv.org/abs/1609.06686

45. Sánchez, D., Batet, M.: C-sanitized: a privacy model for document redaction and
sanitization. J. Assoc. Inf. Sci. Technol. 67(1), 148–163 (2016)

46. Sapkota, U., Bethard, S., Montes, M., Solorio, T.: Not all character N-grams are
created equal: a study in authorship attribution. In: Proceedings of the 2015 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Denver, Colorado, pp. 93–102. Asso-
ciation for Computational Linguistics, May–June 2015. http://www.aclweb.org/
anthology/N15-1010

47. Seidman, S.: Authorship verification using the imposters method. In: Work-
ing Notes for CLEF 2013 Conference (2013). http://ceur-ws.org/Vol-1179/
CLEF2013wn-PAN-Seidman2013.pdf

48. Shetty, R., Schiele, B., Fritz, M.: A4NT: author attribute anonymity by adversarial
training of neural machine translation. In: 27th USENIX Security Symposium, pp.
1633–1650. USENIX Association (2018)

49. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, CCS
2015, pp. 1310–1321. ACM, New York (2015). https://doi.org/10.1145/2810103.
2813687

50. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl. Based Syst. 10(5), 557–570 (2002)

51. Tetreault, J., Blanchard, D., Cahill, A.: A report on the first native language
identification shared task. In: Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications, Atlanta, Georgia, pp. 48–57.
Association for Computational Linguistics, June 2013. http://www.aclweb.org/
anthology/W13-1706

52. Wan, S., Dras, M., Dale, R., Paris, C.: Improving grammaticality in statistical sen-
tence generation: introducing a dependency spanning tree algorithm with an argu-
ment satisfaction model. In: Proceedings of the 12th Conference of the European
Chapter of the ACL (EACL 2009), pp. 852–860. Association for Computational
Linguistics (2009). http://aclweb.org/anthology/E09-1097

53. Weggenmann, B., Kerschbaum, F.: SynTF: synthetic and differentially private
term frequency vectors for privacy-preserving text mining (2018). arXiv preprint:
arXiv:1805.00904

54. Zhang, Y., Clark, S.: Discriminative syntax-based word ordering for text
generation. Comput. Linguist. 41(3), 503–538 (2015). https://doi.org/10.1162/
COLI a 00229

https://doi.org/10.1007/978-3-319-65813-1_25
http://arxiv.org/abs/1609.06686
http://www.aclweb.org/anthology/N15-1010
http://www.aclweb.org/anthology/N15-1010
http://ceur-ws.org/Vol-1179/CLEF2013wn-PAN-Seidman2013.pdf
http://ceur-ws.org/Vol-1179/CLEF2013wn-PAN-Seidman2013.pdf
https://doi.org/10.1145/2810103.2813687
https://doi.org/10.1145/2810103.2813687
http://www.aclweb.org/anthology/W13-1706
http://www.aclweb.org/anthology/W13-1706
http://aclweb.org/anthology/E09-1097
http://arxiv.org/abs/1805.00904
https://doi.org/10.1162/COLI_a_00229
https://doi.org/10.1162/COLI_a_00229

148 N. Fernandes et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Symbolic Verification of Distance
Bounding Protocols

Alexandre Debant(B) and Stéphanie Delaune

Univ Rennes, CNRS, IRISA, Rennes, France
{alexandre.debant,stephanie.delaune}@irisa.fr

Abstract. With the proliferation of contactless applications, obtaining
reliable information about distance is becoming an important security
goal, and specific protocols have been designed for that purpose. These
protocols typically measure the round trip time of messages and use this
information to infer a distance. Formal methods have proved their useful-
ness when analysing standard security protocols such as confidentiality
or authentication protocols. However, due to their abstract communica-
tion model, existing results and tools do not apply to distance bounding
protocols.

In this paper, we consider a symbolic model suitable to analyse dis-
tance bounding protocols, and we propose a new procedure for analysing
(a bounded number of sessions of) protocols in this model. The proce-
dure has been integrated in the Akiss tool and tested on various distance
bounding and payment protocols (e.g. MasterCard, NXP).

1 Introduction

In recent years, contactless communications have become ubiquitous. They are
used in various applications such as access control cards, keyless car entry sys-
tems, payments, and many other applications which often require some form of
authentication, and rely for this on security protocols. In addition, contactless
systems aims to prevent against relay attacks in which an adversary mount an
attack by simply forwarding messages he receives: ensuring physical proximity
is a new security concern for all these applications.

Formal modelling and analysis techniques are well-adapted for verifying secu-
rity protocols, and nowadays several verification tools exist, e.g. ProVerif [8],
Tamarin [28]. They aim at discovering logical attacks, and therefore consider
a symbolic model in which cryptographic primitives are abstracted by function
symbols. Since its beginning in 80s, a lot of progress has been done in this area,
and it is now a common good practice to formally analyse protocols using sym-
bolic techniques in order to spot flaws possibly before their deployment, as it
was recently done e.g. in TLS 1.3 [7,17], or for an avionic protocol [9].

This work has been partially supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grant
agreement No 714955-POPSTAR).

c© The Author(s) 2019
F. Nielson and D. Sands (Eds.): POST 2019, LNCS 11426, pp. 149–174, 2019.
https://doi.org/10.1007/978-3-030-17138-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17138-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-17138-4_7

150 A. Debant and S. Delaune

These symbolic techniques are based on the so-called Dolev Yao model [20]. In
such a model, the attacker is supposed to control the entire network. He can send
any message he is able to build using his current knowledge, and this message
will reach its final destination instantaneously. This model is accurate enough to
analyse many security protocols, e.g. authentication protocols, e-voting proto-
cols, . . . However, to analyse protocols that aim to prevent against relay attacks,
some features need to be modelled in a more faithful way. Among them:

– network topology : any pair of nodes can communicate but depending on their
distance, exchanging messages take more or less time. We will simply assume
that the time needed is proportional to the distance between the two agents,
and that messages can not travel faster than the speed of the light.

– timing constraints: protocols that aim to prevent against relay attacks typi-
cally rely on a rapid phase in which time measurements are performed. Our
framework will allow us to model these time measurements through the use
of timestamps put on each action.

There are some implications on the attacker model. Since communications
take time, it may be interesting to consider several malicious nodes. We will
assume that malicious nodes collaborate but again messages can not travel (even
between malicious nodes) faster than the speed of the light.

Akiss in a Nutshell. The procedure we present in this paper builds on previ-
ous work by Chadha et al. [12], and its implementation in the tool Akiss. Akiss
allows automated analysis of privacy-type properties (modelling as equivalences)
when restricted to a bounded number of sessions. Cryptographic primitives may
be defined through arbitrary convergent equational theories that have the finite
variant property. This class includes standard cryptographic primitives as well
as less commonly supported primitives such as blind signatures and zero knowl-
edge proofs. Termination of the procedure is guaranteed for subterm convergent
theories, but also achieved in practice on several examples outside this class.

The procedure behind Akiss is based on an abstract modelling of symbolic
traces into first-order Horn clauses: each symbolic trace is translated into a set
of Horn clauses called seed statements, and a dedicated resolution procedure is
applied on this set to construct a set of statements which have a simple form:
the so-called solved statements. Once the saturation of the set of seed statements
is done, it is possible to decide, based solely on those solved statements, whether
processes under study are equivalent or not.

Even if we are considering reachability properties (here authentication with
physical proximity), in order to satisfy timing constraints, we may need to con-
sider recipes that are discarded when performing a classical reachability analysis.
Typically, in a classical reachability analysis, there is no need to consider two
recipes that deduce the same message. The main advantage of Akiss is the fact
that, since its original goal is to deal with equivalence, it considers more (actu-
ally almost all possible) recipes when performing the security analysis. Moreover,
even if the tool has been designed to deal with equivalence-based properties, the
first part of the Akiss procedure consists in computing a knowledge base which is

Symbolic Verification of Distance Bounding Protocols 151

in fact a finite representation of all possible traces (including recipes) executable
by the process under study. We build on this saturation procedure in this work.

Our Contributions. We design a new procedure for verifying reachability prop-
erties for protocols written in a calculus sharing many similarities with the one
introduced in [19], and that gives us a way to model faithfully distance bound-
ing protocols. Our procedure follows the general structure of the original one
described in [12]. We first model protocols as traces (see Sect. 3), and then trans-
late them into Horn clauses (see Sect. 4). A direct generalisation would consist
of keeping the saturation procedure unchanged, and simply modifying the algo-
rithm to check the satisfiability of our additional timing constraints at the end.
However, as discussed in Sect. 5, such a procedure would not be complete for
our purposes. We therefore completely redesign the update function used dur-
ing the saturation procedure using a new strategy to forbid certain steps that
would otherwise systematically yield to non-termination in our final algorithm.
Showing these statements are indeed unnecessary requires essential changes in
the proofs of completeness of the original procedure.

This new saturation procedure yields an effective method for checking reacha-
bility properties in our calculus (see Sect. 6). Although termination of saturation
is not guaranteed in theory, we have implemented our procedure and we have
demonstrated its effectiveness on various examples. We report on our implemen-
tation and the various case studies we have performed in Sect. 7.

As we were unable to formally establish completeness of the procedure as
implemented in the original Akiss tool (due to some mismatches between the
procedure described in [12] and its implementation), we decided to bring the
theory closer to the practice, and this explains several differences between our
seed statements and those described originally in [12].

A full version of this paper including proofs is available at [18].

2 Background

We start by providing some background regarding distance bounding protocols.
For illustrative purposes, we present a slightly simplified version of the TREAD
protocol [2] together with the attack discovered by [26] (relying on the Tamarin
prover). This protocol will be used along the paper as a running example.

2.1 Distance Bounding Protocols

Distance bounding protocols are cryptographic protocols that enable a verifier V
to establish an upper bound on the physical distance to a prover P . They are
typically based on timing the delay between sending out a challenge and receiv-
ing back the corresponding response. The first distance bounding protocol was
proposed by Brands and Chaum [10], and since then various protocols have
been proposed. In general, distance bounding protocols are made of two or three
phases, the second one being a rapid phase during which the time measurement is
performed. To improve accuracy, this challenge/response exchange during which

152 A. Debant and S. Delaune

skv, pk(skp) skp, pk(skv)

σ = (γ, skp)

aenc(γ, σ , pk(skv))

m

c

h(c, m, γ)

skv, pk(skp) ski, pk(skv) ski, pk(skv)

σ = (γ, skp)

aenc(γ, σ , pk(ski))aenc(γ, σ , pk(skv))

m

c

h(c, m, γ)

Fig. 1. TREAD protocol (left) and a mafia fraud attack (right)

the measurement is performed is repeated several times, and often performed
at the bit level. Symbolic analysis does not allow us to reason at this level, and
thus the rapid phase will be abstracted by a single challenge/response exchange,
and operations done at bit level will be abstracted too.

For illustration purposes, we consider the TREAD protocol. As explained
before, we ignore several details that are irrelevant to our symbolic security
analysis, and we obtain the protocol described in Fig. 1. First, the prover gener-
ates a nonce γ, and computes the signature σ with his own key. This signature
is sent to V encrypted with the public key of V . Upon reception, the verifier
decrypts the message and checks the signature. Then, the verifier sends a nonce
m, and starts the rapid phase during which he sends a challenge c to the prover.
The protocol ends successfully if the answer given by the prover is correct and
arrived before a predefined threshold.

2.2 Attacks on Distance Bounding Protocols

Typically, an attack occurs when a verifier is deceived into believing it is co-
located with a given prover whereas it is not. Attacker may replay, relay and build
new messages, as well as predict some timed challenges. Since the introduction of
distance bounding protocols, various kinds of attacks have emerged, e.g. distance
fraud, mafia fraud, distance hijacking attack, . . . For instance, a distance fraud
only consider a dishonest prover who tries to authenticate remotely, whereas
a distance hijacking scenario allows the dishonest prover to take advantage of
honest agents in the neighbourhood of the verifier.

The TREAD protocol is vulnerable to a mafia fraud attack: an honest veri-
fier v may end successfully a session with an honest prover p thinking that this
prover p is in his vicinity whereas p is actually far away. The attack is described
in Fig. 1. After learning γ and a signature σ = sign(γ, skp), the malicious agent
i will be able to impersonate p. At the end, the verifier v will finish his session
correctly thinking that he is playing with p (who is actually far away).

Symbolic Verification of Distance Bounding Protocols 153

2.3 Symbolic Security Analysis

The first symbolic framework developed to analyse distance bounding protocols
is probably the one proposed in [27]. Since then, several formal symbolic models
have been proposed: e.g. a model based on multiset rewriting rules has been
proposed in [5], another one based on strand spaces is available in [31]. However,
these models do not come with a procedure allowing one to analyse distance
bounding protocols in an automatic way. Recently, some attempts have been
done to rely on existing automatic verification tools, e.g. ProVerif [13,19] or
Tamarin [26]. Those tools typically consider an unbounded number of sessions,
and some approximations are therefore performed to tackle this problem well-
known to be undecidable [21].

Here, following the long line of research on symbolic verification for a bounded
number of sessions which is a problem well-known to be decidable [29,32] and
for which automatic verification tools have been developed (e.g. OFMC [6],
Akiss [12]), we aim to extend this approach to distance bounding protocols.

3 A Security Model Dealing with Time and Location

We assume that our cryptographic protocols are modelled using a simple process
calculus sharing some similarities with the applied-pi calculus [1], and strongly
inspired by the calculus introduced in [19].

3.1 Term Algebra

As usual in symbolic models, we represent messages using a term algebra. We
consider a set N of names split into two disjoint sets: the set Npub of public
names which contains the set A of agent names, and the set Npriv of private
names. We consider the set X of message variables, denoted x, y, . . ., as well as
a set W of handles: W = {w1,w2, . . .}. Variables in X model arbitrary data
expected by the protocol, while variables in W are used to store messages learnt
by the attacker. Given a signature Σ, i.e. a finite set of function symbols together
with their arity, and a set of atomic data At, we denote T (Σ,At) the set of terms
built from At using function symbols in Σ. Given a term u, we denote st(u) the
set of the subterms occurring in u, and vars(u) the set of variables occurring
in u. A term u is ground when vars(u) = ∅. Then, we associate an equational
theory E to the signature Σ which consists of a finite set of equations of the
form u = v with u, v ∈ T (Σ,X), and induces an equivalence relation over terms
denoted =E.

Example 1. Σex = {aenc, adec, pk, sign, getmsg, check, ok, 〈 〉, proj1, proj2, h}
allows us to model the cryptographic primitives used in the TREAD proto-
col presented in Sect. 2. The function symbols aenc and adec of arity 2 model
asymmetric encryption, whereas sign, getmsg, check, and ok are used to model
signature. The term pk(sk) represents the public key associated to the private
key sk. We have function symbols to model pairs and projections, as well as a

154 A. Debant and S. Delaune

function h of arity 3 to model hashes. The equational theory Eex associated to
the signature Σex is the relation induced by:

check(sign(x, y), pk(y)) = ok proj1(〈x, y〉) = x adec(aenc(x, pk(y)), y) = x
getmsg(sign(x, y)) = x proj2(〈x, y〉) = y

We consider equational theories that can be represented by a convergent rewrite
system, i.e. we assume that there is a confluent and terminating rewrite system
such that:

u =E v ⇔ u↓ = v↓ for any termsu and v

where t↓ denotes the normal form of t. Moreover, we assume that such a
rewrite system has the finite variant property as introduced in [16]. This means
that given a sequence t1, . . . , tn of terms, it is possible to compute a finite
set of substitutions, denoted variants(t1, . . . , tn), such that for any substitu-
tion ω, there exist σ ∈ variants(t1, . . . , tn) and τ such that: t1ω↓, . . . , tnω↓ =
(t1σ)↓τ, . . . , (tnσ)↓τ . Many equational theories enjoy this property, e.g. sym-
metric/asymmetric encryptions, signatures and blind signatures, as well as zero-
knowledge proofs.

Moreover, this finite variant property implies the existence of a finite and
complete set of unifiers and gives us a way to compute it effectively. Given a
set U of equations between terms, a unifier (modulo a rewrite system R) is a
substitution σ such that sσ↓ = s′σ↓ for any equation s = s′ in U . A set S of
unifiers is said to be complete for U if for any unifier σ, there exists θ ∈ S and τ
such that σ = τ ◦θ. We denote csuR(U) such a set. We will rely on these notions
of variants and csu in our procedure (see Sect. 4).

Example 2. The finite variant property is satisfied by the rewrite system Rex

obtained by orienting from left to right equations in Eex.
Let U = {check(tσ, pk(skp)) = ok} with tσ = proj2(adec(x, skv)). We have

that {θ} with θ = {x → aenc(〈x1, sign(x2, skp)〉, pk(skv))} is a complete set
of unifiers for U (modulo Rex). Now, considering the variants, let σ1 = {x →
aenc(x1, pk(skv))}, σ2 = {x → aenc(〈x1, x2〉, pk(skv))} and id be the identity
substitution, we have that {id , σ1, σ2} is a finite and complete set of variants
(modulo Rex) for the sequence (x, tσ).

An attacker builds her own messages by applying function symbols to terms
she already knows and which are available through variables in W. Formally, a
computation done by the attacker is a recipe, i.e. a term in T (Σ,W ∪Npub∪R

+).

3.2 Timing Constraints

To model time, we will use non-negative real numbers R
+, and we may allow

various operations (e.g. +, −, ×, . . .). A time expression is constructed induc-
tively by applying arithmetic symbols to time expressions starting with the initial
set R

+ and an infinite set Z of time variables. Then, a timing constraint is typi-
cally of the form t1 ∼ t2 with ∼∈ {<,≤,=}. We do not constraint the operators

Symbolic Verification of Distance Bounding Protocols 155

since our procedure is generic in this respect provided we have a way to decide
whether a set of timing constraints is satisfiable or not. In practice, our tool (see
Sect. 7) will only be able to consider simple linear timing constraints.

Example 3. When modelling distance bounding protocols, we will typically con-
sider a timing constraint of the form z2−z1 < t with z1, z2 ∈ Z and t ∈ R

+. This
constraint expresses that the time elapsed between the emission of a challenge
and the receipt of the corresponding answer is at most t.

3.3 Process Algebra

We assume that cryptographic protocols are modelled using a simple process
algebra. Following [12], we only consider a minimalistic core calculus. In partic-
ular, we do not introduce the new operator and we do not explicitly model the
parallel operator. Since we only consider a bounded number of sessions (i.e. a
calculus with no replication), this is at no loss of expressivity. We can simply
assume that fresh names are generated from the beginning and parallel compo-
sition can be added as syntactic sugar to denote the set of all interleavings.

Syntax. We model a protocol as a finite set of traces. A trace T is a finite
sequence (possibly empty and denoted ε in this case) of pairs, i.e. T =
(a1, a1).(an, an) where each ai ∈ A, and ai is an action of the form:

outz(u) inz(x) [v = v′] [z := v] [[t1 ∼ t2]]

with x ∈ X , u, v, v′ ∈ T (Σ,N ∪R
+ ∪X), z ∈ Z, and t1 ∼ t2 a timing constraint.

As usual, we have output and input actions. An input action acts as a binding
construct for both x and z, whereas an output action acts as a binding construct
for z only. For sake of clarity, we will omit the time variable z when we do not care
of the precise time at which the input (resp. output) action has been performed.
As usual, our calculus allows one to perform some tests on received messages, and
it is also possible to extract a timestamp from a received message and perform
some tests on this extracted value using timing constraints. Typically, this will
allow us to model an agent that will stop executing the protocol in case an
answer arrives too late.

We assume the usual definitions of free and bound variables for traces, and
we assume that each variable is at most bound once. Note that, in the constructs
presented above, the variables z, x are bound. Given a set V of variables, a trace
is locally closed w.r.t. V if for any agent a, the trace obtained by considering
actions executed by agent a does not contain free variables among those in V.
Such an assumption, sometimes called origination [6,15], is always satisfied when
considering traces obtained by interleaving actions of a protocol. Therefore, we
will only consider traces that are locally closed w.r.t. both X and Z.

Contrary to the calculus introduced in [19] which assumes that there is at
most one timer per thread, we are more flexible. This generalisation is not
mandatory to analyse our case studies but it allows us to present our result
on traces and greatly simplifies the theoretical development.

156 A. Debant and S. Delaune

Example 4. Following our syntax, the trace corresponding to the role of the
verifier played by v with p is modelled as follows:

Tex = (v, in(x)). (v, [check(tσ, pk(skp)) = ok]). (v, [tγ = getmsg(tσ)]).
(v, out(m)).
(v, outz1(c)). (v, inz2(y)). (v, [y = h(c,m, tγ)]). (v, [[z2 − z1 < 2 × t0]])

where tγ = proj1(adec(x, skv)), tσ = proj2(adec(x, skv)), x, y ∈ X , z1, z2 ∈ Z,
m, c, skv, skp ∈ Npriv, and t0 ∈ R

+ is a fixed threshold.

Of course, when performing a security analysis, other traces have to be con-
sidered. Typically, we may want to consider several instances of each role, and
we will have to generate traces corresponding to all the possible interleavings of
the actions composing these roles.

Semantics. The semantics of a trace is given in terms of a labeled transition sys-
tem over configurations of the form (T ;Φ; t), and is parametrised by a topology
reflecting the fact that interactions between agents depend on their location.

Definition 1. A topology is a tuple T0 = (A0,M0, Loc0) where A0 ⊆ A is the
finite set of agents composing the system, M0 ⊆ A0 represents those that are
malicious, and Loc0 : A0 → R

3 defines the position of each agent in the space.

In our model, the distance between two agents is given by the time it takes
for a message to travel from one to another. We have that:

DistT0(a, b) =
‖Loc0(a) − Loc0(b)‖

c0
for any a, b ∈ A0

with ‖·‖ : R
3 → R the Euclidean norm and c0 the transmission speed. We

suppose, from now on, that c0 is a constant for all agents, and thus an agent a
can recover, at time t + DistT0(a, b), any message emitted by the agent b before
t ∈ R

+.

Definition 2. Given a topology T0 = (A0,M0, Loc0), a configuration over T0

is a tuple (T ;Φ; t) where T is a trace locally closed w.r.t. X and Z composed of
actions (a, a) with a ∈ A0, t ∈ R

+, and Φ = {w1
a1,t1−−−→ u1, . . . ,wn

an,tn−−−→ un} is
an extended frame, i.e. a substitution such that wi ∈ W, ui ∈ T (Σ,N ∪ R

+),
ai ∈ A0 and ti ∈ R

+ for 1 ≤ i ≤ n.

Intuitively, T represents the trace that still remains to be executed; Φ rep-
resents the messages that have been outputted so far; and t is the global time.

Example 5. Continuing Example 4, we consider the topology T0 =
(A0,M0, Loc0) depicted on the right where A0 = {p, v, i}, and M0 = {i}.

Symbolic Verification of Distance Bounding Protocols 157

v

i

p
t0

The precise location of each agent is not rele-
vant, only the distance between them matters. Here
DistT0(v, i) < t0 whereas DistT0(v, p) ≥ t0.

A possible configuration is K0 = (Tex;Φ0; 0)
with

Φ0 = {w1
i,0−−→ pk(skv), w2

i,0−−→ ski, w3
p,0−−→ aenc(〈γ, sign(γ, skp)〉, pk(ski))}.

We have that v is playing the verifier’s role with p (who is far away). We do not
consider any prover’s role but we assume that p (acting as a prover) has started
a session with i and thus the corresponding encryption (here γ ∈ Npriv) has
been added to the knowledge of the attacker (handle w3). We also assume that
ski ∈ Npriv, the private key of the agent i ∈ M0, is known by the attacker. A
more realistic configuration would include other instances of the prover and the
verifier roles and will probably give more knowledge to the attacker. This simple
configuration is actually sufficient to retrieve the attack presented in Sect. 2.2.
We write �Φ� t

a for the restriction of Φ to the agent a at time t, i.e.:

�Φ� t
a =

{
wi

ai,ti−−−→ ui | (wi
ai,ti−−−→ ui) ∈ Φ and ai = a and ti ≤ t

}
.

Our labeled transition system is given in Fig. 2 and relies on labels
 which
can be either equal to the unobservable τ action or of the form (a, a) with a ∈ A,
and a ∈ {test, eq} ∪ {in(u), out(u) | u ∈ T (Σ,N ∪ R

+)} ∪ {let(v) | v ∈ R
+}. The

TIM rule allows time to elapse and is labeled with τ (often omitted for sake
of simplicity). The OUT rule allows an output action to be executed, and the
outputted term will be added to the frame. Rule EQ is used to perform some
tests, and those tests are evaluated modulo the equational theory. Then, the LET
rule allows us to evaluate a term that is supposed to contain a real number, and
could then be used in a timing constraint through the variable z. Then, we have
a rule to evaluate a timing constraint. The IN rule allows an agent a to execute
an input: the received message u has been sent at time tb by an agent b who
was in possession of the message at that time. In case b is a malicious agent, i.e.
b ∈ M0, the message u may have been forged through a recipe R, and b has to
be in possession of all the necessary information at that time. The variable z is
used to store the time at which this action has been executed.

Example 6. Continuing Example 5, we may consider the following execution
which aims to mimic the trace developed in Sect. 2:

K0 −→T0

v,in(taenc)−−−−−−→T0

v,eq−−→T0

v,eq−−→T0

v,out(m)−−−−−→T0 Krapid

The first arrow corresponds to an application of the rule TIM with delay
δ0 ≥ DistT0(p, i) + DistT0(i, v). Then, the IN rule is triggered considering that
the message taenc = aenc(〈γ, sign(γ, skp)〉, pk(skv)) is sent by i at time ti such
that DistT0(p, i) ≤ ti ≤ δ0 − DistT0(i, v). Such a message taenc can indeed be
forged by i at time ti (using recipe R = aenc(adec(w3,w2),w1)) and thus be

158 A. Debant and S. Delaune

(T ;Φ; t) τ
T0 (T ;Φ; t + δ) δ ≥ 0

((a, outz(u)).T ;Φ; t)
a,out(u)

T0 (T{z t};Φ w
a,t

u }; t) w ∈ W
((a, [u = v]).T ;Φ; t)

a,eq
T0 (T ;Φ; t) u = v

((a, [z := v].T ;Φ; t)
a,let(v)

T0 (T{z v };Φ; t) v ∈ R
+

((a, t1 ∼ t2).T ;Φ; t)
a,test

T0 (T ;Φ; t) t1 ∼ t2

((a, inz(x)).T ;Φ; t)
a,in(u)

T0 (T{x u, z t};Φ; t)

Fig. 2. Semantics of our calculus

received by v at time δ0. Then, tests performed by v are evaluated successfully,
v outputs m, and we reach the configuration Krapid = (Trapid;Φrapid; δ0) where:

– Trapid = (v, outz1(c)).(v, inz2(y)).(v, [y = h(c,m, γ)]).(v, [[z2 − z1 < 2t0]]), and

– Φrapid = Φ0 � {w4
v,δ0−−→ m}.

We can pursue this execution as follows:

Krapid
v,out(c)−−−−−→T0−→T0

v,in(h(c,m,γ))−−−−−−−−−→T0

v,eq−−→T0

((v, [[δ0 + 2DistT0(v, i) − δ0 < 2t0]]);Φrapid � {w5
v,δ0−−→ c}; δ0 + 2DistT0(v, i))

The second arrow is an application of the rule TIM with delay 2DistT0(v, i)
so that h(c,m, γ) can be received by v at time δ0 + 2DistT0(v, i). Since
DistT0(v, i) < t0, the timing constraint is true and the last action can be
executed.

The goal of this paper is to propose a new procedure for analysing a bounded
number of sessions of distance bounding protocols. Once the topology is fixed,
the existence of an attack can be directly encoded as a reachability property
considering a finite set of traces. The following sections are thus dedicated to
the study of the following problem:

Input: A trace T locally closed w.r.t. X and Z, t0 ∈ R
+, and a topology T0.

Output: Do there exist
1, . . . ,
n, Φ, and t such that (T ; ∅; t0)
�1...,�n−−−−→T0

(ε;Φ; t)?

4 Modelling Using Horn Clauses

Following the approach developed in Akiss [12], our procedure is based on
an abstract modelling of a trace in first-order Horn clauses. Our set of seed

Symbolic Verification of Distance Bounding Protocols 159

((a, outz(u)).T ;φ)
a,out(u)

(T ;φ {w u}) w ∈ W
((a, [u = v]).T ;φ)

a,eq
(T ;φ) u = v

((a, [z := v].T ;φ)
a,let(v)

(T ;φ)

((a, t1 ∼ t2).T ;φ)
a,test

(T ;φ)

((a, inz(x)).T ;φ)
a,in(u)

(T{x u};φ) u = Rφ R

Fig. 3. Relaxed semantics

statements is more in line with what has been implemented in Akiss for optimi-
sation purposes rather than what is presented in [12].

4.1 Preliminaries

We consider symbolic runs which are finite sequences of pairs with possibly a
run variable typically denoted y at its ends. We have that each pair (a, a) is such
that a ∈ A and a is an action of the form (with u ∈ T (Σ,N ∪ R

+ ∪ X)):

out(u) in(u) eq test let(u).

Excluding the special variable y, a symbolic run (a1, a1).(an, an), only
contains variables from the set X . We say that it is locally closed if whenever a
variable x occurs in an output action (resp. let action) aj , then there exists an
input action ai occurring before (i.e. i < j) such that ai = aj and x ∈ vars(ai).
Symbolic runs are often denoted w,w′, . . ., and we write w � w′ when the
sequence w is a prefix of w′. Given a symbolic run w0 whose sequence of outputs
is out(u1) · . . . · out(un), we denote φ(w0) = {w1 → u1, . . . ,wn → un}.

We also consider symbolic recipes which are terms in T (Σ,W ∪ Npub ∪ Y)
where Y is a set of recipe variables disjoint from X and W. We use capital letters
X, Y , and Z to range over Y.

Example 7. We consider the following symbolic run:

w0 = (v, in(aenc(〈x′, sign(x′, skp)〉, pk(skv)))).(v, eq).(v, eq).
(v, out(m)).(v, out(c)).(v, in(h(c,m, x′))).(v, eq)

We have that φ(w0) = {w1 → m,w2 → c}.

Our logic is based on two predicates expressing deduction and reachability
without taking into account timing constraints. More formally, given a configura-
tion (T ;Φ; t), its untimed counterpart is (T ;φ) where φ is the untimed counterpart
of Φ, i.e. a frame of the form: φ = {w1 → u1, . . . ,wn → un}. The relaxed semantics
over untimed configurations is given in Fig. 3. Since time variables (from Z) are

160 A. Debant and S. Delaune

not instantiated during a relaxed execution, in an untimed configuration (T ;φ),
the trace T is only locally closed w.r.t. X . Our predicates are:

– a reachability predicate: rw holds when the run w is executable.
– a deduction predicate: kw(R, u) holds if the message u can be built using the

recipe R ∈ T (Σ,Npub ∪ R
+ ∪ W) by an attacker using the outputs available

after the execution of w (if this execution is possible).

Formally, we have that:

– (T0;φ0) |= r�1,...,�n if there exists (Tn;φn) such that (T0;φ0)
�1...�n (Tn;φn)

– (T0;φ0) |= k�1,...,�n(R, u) if for all (Tn;φn) such that (T0;φ0)
�1...�n (Tn;φn)

we have that Rφn↓ = u.

This semantics is extended as usual to first-order formulas built using the
usual connectives (e.g. conjunction, quantification, ...)

Example 8. The frame φ0 below is the untimed counterpart of Φ0:

φ0 = {w1 → pk(skv), w2 → ski, w3 → aenc(〈γ, sign(γ, skp)〉, pk(ski))}.

We have that (Tex;φ0)
tr (ε;φfinal) where φfinal is the untimed counterpart

of Φfinal = Φrapid � {w5
v,δ0−−→ c}, and tr is the same sequence of labels as the one

developed in Example 6, i.e.

(v, in(taenc))(v, eq)(v, eq)(v, out(m))(v, out(c))(v, in(h(c,m, γ)))(v, eq)(v, test).

4.2 Seed Statements

We consider particular Horn clauses which we call statements.

Definition 3. A statement is a Horn clause: H ⇐ kw1(X1, u1), . . . , kwn

(Xn, un) with H ∈ {rw0 , kw0(R, u)} and such that:

– w0, . . . , wn are symbolic runs locally closed, wi � w0 for any i ∈ {1, . . . , n};
– u, u1, . . . , un are terms in T (Σ,N ∪ R

+ ∪ X);
– R ∈ T (Σ,Npub ∪ R

+ ∪ W ∪ {X1, . . . , Xn}) � Y, and X1, . . . , Xn are distinct
variables from Y.

When H = kw0(R, u), we assume in addition that vars(u) ⊆ vars(u1, . . . , un)
and R({Xi → ui} � φ(w0))↓ = u.

In the above definition, we implicitly assume that all variables are universally
quantified, i.e., all statements are ground. By abuse of language we sometimes
call σ a grounding substitution for a statement H ⇐ (B1, . . . , Bn) when σ
is grounding for each of the atomic formulas H,B1, . . . , Bn. The skeleton of
a statement f , denoted skl(f), is the statement where recipes are removed.

Symbolic Verification of Distance Bounding Protocols 161

r 1στ ·...· nστ ⇐ {k 1στ ·...· j−1στ (Xj , xjστ)}j∈Rcv(n)

σ ∈ csuR({vk = vk}k∈Eq(n))
τ ∈ variantsR(1 nσ)

k 1στ ·...· mστ y(w|Snd(m)|, umστ) ⇐ {k 1στ ·...· j−1στ (Xj , xjστ)}j∈Rcv(m)

m ∈ Snd(n)
σ ∈ csuR({vk = vk}k∈Eq(m))
τ ∈ variantsR(1 mσ)

ky(c, c) ⇐
c ∈ C

ky(f(Y1, . . . , Yk), f(y1, . . . , yk)τ) ⇐ {ky(Yj , yjτ)}j∈{1,...,k}
f ∈ Σ k
τ ∈ variantsR(f(y1, . . . , yk))

Fig. 4. Seed statements seed(T, C)

Our definition of statement is in line with the original one proposed in [12]
but we state an additional invariant used to establish the completeness of our
procedure.

In order to define our set of seed statements, we have to fix some naming
conventions. Given a trace T of the form (a1, a1).(a2, a2).(an, an), we assume
w.l.o.g. the following naming conventions:

1. if ai is a receive action, then ai = inzi(xi), and
i = (ai, in(xi));
2. if ai is a send action, then ai = outzi(ui), and
i = (ai, out(ui));
3. if ai is a test action, then ai = [vi = v′

i], and
i = (ai, eq);
4. if ai is a let action, then ai = [z′

i := vi], and
i = (ai, let(vi)).
5. if ai is a timing constraint then ai = [[ti ∼ t′i]], and
i = (ai, test).

For each m ∈ {0, . . . , n}, the sets Rcv(m), Snd(m), Eq(m), Let(m), and
Test(m) respectively denote the set of indexes of the receive, send, equality,
let, and test actions amongst a1, . . . , am. We denote by |S| the cardinality of S.

Given a set C ⊆ Npub ∪ R
+, the set of seed statements associated to T and C,

denoted seed(T, C), is defined in Fig. 4. If C = Npub ∪ R
+, then seed(T, C) is

said to be the set of seed statements associated to T and in this case we write
seed(T) as a shortcut for seed(T,Npub ∪ R

+). When computing seed statements,
we compute complete sets of unifiers and complete sets of variants modulo R.
This allows us to get rid of the rewrite system in the remainder of our procedure
and then only consider unification modulo the empty equational theory. In this
case, it is well-known that (when it exists) csu∅(U) is uniquely defined up to
some variable renaming, and we write mgu(u1, u2) instead of csu∅({u1 = u2}).

162 A. Debant and S. Delaune

Example 9. Let T+
ex = T0 ·Tex with T0 = (i, out(pk(skv))).(i, out(ski)).(p, out(u))

and u = aenc(〈γ, sign(γ, skp)〉, pk(ski)). The set seed(T+
ex , ∅) contains among oth-

ers the statement f1, f2, f3, and f4 given below:

rT0·w0·(v,test) ⇐ kT0(X1, aenc(〈x′, sign(x′, skp)〉, pk(skv))), kT0·w5
0
(X2, h(c,m, x′));

kT0·y(w3, u) ⇐ ;
ky(adec(Y1, Y2), adec(y1, y2)) ⇐ ky(Y1, y1), ky(Y2, y2); and its variant
ky(adec(Y1, Y2), y3) ⇐ ky(Y1, aenc(y3, pk(y2))), ky(Y2, y2)

where w0 is given in Example 7, and w5
0 is the prefix of w0 of size 5.

Statement f1 expresses that the trace is executable (in the relaxed semantics)
as soon as we are able to deduce the two terms requested in input, f2 says that the
attacker knows the term u as soon as T0 has been executed. The two remaining
statements model the fact that an attacker can apply the decryption algorithm
on any terms he knows (statement f3), and this will give him access to the
plaintext when the right key is used (statement f4).

4.3 Soundness and Completeness

We now show that as far as the timing constraints are ignored, the set seed(T)
is a sound and complete abstraction of a trace. Moreover, we have to ensure
that the proof tree witnessing the existence of a given predicate in H(seed(T))
matches with the relaxed execution we have considered. This is mandatory to
establish the completeness of our procedure.

Definition 4. Given a set K of statements, H(K) is the smallest set of ground
facts such that:

Let Bi = kwi
(Xi, ui) for i ∈ {1, . . . , n}, and w0 the world associated to H with

v1, . . . , vk′ the terms occurring in input in w0. We say that such an instance of

Conseq matches with exec = (T ; ∅)
�1,...,�p

(S;φ) using R1, . . . , Rk as input
recipes if w0σ �
1, . . . ,
p, and there exist R̂1, . . . , R̂k′ such that:

– R̂j({Xi → ui | 1 ≤ i ≤ n} � φ(w0))↓ = vj for j ∈ {1, . . . , k′}; and
– R̂jσ = Ri for j ∈ {1, . . . , k′}.

This notion of matching is extended to a proof tree π as expected, meaning
that all the instances of Conseq used in π satisfy the property.

Actually, the completeness of our procedure will be established w.r.t. a subset
of recipes, namely uniform recipes. We establish that an execution of a trace T0

which only involves uniform recipes has a counterpart in H(seed(T0)) which is
uniform too.

Symbolic Verification of Distance Bounding Protocols 163

Definition 5. Given a frame φ, a recipe R is uniform w.r.t. φ if for any
R1, R2 ∈ st(R) such that R1φ↓ = R2φ↓, we have that R1 = R2.

Given a set K of statements, we say that a set {π1, . . . , πn} of proof trees in
H(K) is uniform if for any kw(R1, t) and kw(R2, t) that occur in {π1, . . . , πn},
we have that R1 = R2.

We are now able to state our soundness and completeness result.

Theorem 1. Let T0 be a trace locally closed w.r.t. X .

– (T0; ∅) |= g for any g ∈ seed(T0) ∪ H(seed(T0));

– If exec = (T0; ∅)
�1,...,�p

(S;φ) with input recipes R1, . . . , Rk that are uniform
w.r.t. φ then
1. r�1,...,�p ∈ H(seed(T0)); and
2. if Rφ↓ = u for some recipe R uniform w.r.t. φ then k�1,...,�p(R, u) ∈

H(seed(T0)).
Moreover, we may assume that the proof tree witnessing these facts are uni-
form and match with exec using R1, . . . , Rk as input recipes.

5 Saturation

At a high level, our procedure consists of two steps:

1. a saturation procedure which constructs a set of solved statements from the
set seed(T); and

2. an algorithm which uses the solved statements obtained by saturation to
check whether timing constraints are satisfied. This is needed to ensure that
the execution obtained at step 1 is truly executable in our timed model.

5.1 Saturation Procedure

We start by describing our saturation procedure. It manipulates a set of state-
ments called a knowledge base.

Definition 6. Given a statement f = (H ⇐ B1, . . . , Bn),

– f is said to be solved if Bi = kwi
(Xi, xi) with xi ∈ X for all i ∈ {1, . . . , n}.

– f is said to be well-formed if whenever it is solved and H = kw(R, u), we
have that u �∈ X .

A set of well-formed statements is called a knowledge base. If K is a knowledge
base, solved(K) = {f ∈ K | f is solved}.

We restrict the use of the resolution rule and we only apply it on a selected
atom. To formalise this, we assume a selection function sel which returns ⊥ when
applied on a solved statement, and an atom kw(X, t) with t �∈ X when applied
on an unsolved statement. Resolution must be performed on this selected atom.

164 A. Debant and S. Delaune

Example 10. Applying resolution between f4 and f2 (see Example 9), we obtain:

kT0·y(adec(w3, Y2), 〈γ, sign(γ, skp)〉) ⇐ kT0·y(Y2, ski).

Then, we will derive kT0·y(adec(w3,w2), 〈γ, sign(γ, skp)〉) ⇐ and this solved state-
ment (with others) will be used to perform resolution on f1 leading (after several
resolution steps) to the statement:

rT0·w0·(v,test) ⇐ kT0(X
′
1, x

′), kT0(X
′
2, sign(x

′, skp)), kT0·w5
0
(X ′

3, x
′)

Ultimately, we will derive rT0·w0σ′·(v,test) ⇐ with σ′ = {x′ → γ}.

During saturation, the statement obtained by resolution is given to an update
function which decides whether it has to be added or not into the knowledge
base (possibly after some transformations). In original Akiss, many deduction
statements are discarded during the saturation procedure. This is useful to avoid
non-termination issues and it is not a problem since there is no need to derive
the same term (from the deduction point of view) in more than one way. Now,
considering that messages need time to reach a destination, a same message
emitted twice at two different locations deserves more attention.

Example 11. Let T = (a1, out(k)).(a2, out(k)).(b, inz(x)).(b, [x = k]).(b, z < 2),
and T0 be a topology such that DistT0(a1, b) = 10 while DistT0(a2, b) = 1. The
configuration (T ; ∅; 0) is executable but only considering w2 as an input recipe
for x. The recipe w1 that produces the exact same term k is not an option (even
if it is outputted before w2) since the agent a1 who outputs it is far away from b.

Whereas the original Akiss procedure will typically discard the statement
k(w2, k) ⇐ (by replacing it with an identical statement), we will keep it.

As illustrated by Example 11, we therefore need to consider more recipes
(even if they deduce the same message) to accommodate timing constraints, but
we have to do this in a way that does not break termination (in practice). To
tackle this issue, we modified the canonicalization rule, as well as the update
function to allow more deduction statements to be added in the knowledge base.

Definition 7. The canonical form f⇓ of a statement f = (H ⇐ B1, . . . , Bn) is
the statement obtained by applying the Remove rule given below as many times
as possible.

Remove
H ⇐ kw(X, t), kw(Y, t), B1, . . . , Bn with X /∈ vars(H)

H ⇐ kw(Y, t), B1, . . . , Bn

The intuition is that there is no need to consider several recipes (here X
and Y) to deduce the same term t when such a recipe does not occur in the head
of the statement.

Then, the update of K by f denoted K � {f}, is defined to be K if either
skl(f⇓) is not in normal form; or f⇓ is solved but not well-formed. Otherwise,
K�{f} = K∪{f⇓}. To initiate our saturation procedure, we start with the initial

Symbolic Verification of Distance Bounding Protocols 165

knowledge base Kinit(S) associated to a set S of statements (typically seed(T, C)
for some well-chosen C). Given a set S of statements, the initial knowledge base
associated to S, denoted Kinit(S), is defined to be the empty knowledge base
updated by the set S, i.e. Kinit(S) = (((∅ � f1) � f2) � . . . fn where f1, . . . , fn

is an enumeration of the statements in S. In return, the saturation procedure
produces a set sat(K) which is actually a knowledge base.

Then, we can establish the soundness of our saturation procedure. This is
relatively straightforward and follows the same lines as the original proof.

Proposition 1. Let T0 be a trace locally closed w.r.t. X , K = sat(Kinit(T0)).
We have that (T0; ∅) |= g for any g ∈ solved(K) ∪ H(solved(K)).

5.2 Completeness

Completeness is more involved. Indeed, we can not expect to retrieve all the
recipes associated to a given term. To ensure termination (in practice) of our
procedure, we discard some statements when updating the knowledge base, and
we have to justify that those statements are indeed useless. Actually, we show
that considering uniform recipes is sufficient when looking for an attack trace.

However, the notion of uniform recipe does not allow one to do the proof
by induction. We therefore consider a more restricted notion that we call asap
recipes. The idea is to deduce a term as soon as possible but this may depend
on the agent who is performing the computation. We also rely on an ordering
relation which is independent of the agent who is performing the computation,
and which is compatible with our notion of asap w.r.t. any agent.

Given a relaxed execution exec = (T ; ∅)
�1,...,�n (S;φ) with input recipes

R1, . . . , Rk, we define the following relations:

– R <in
exec w when
i = a, in(u) with input recipe R and
j = a, out(uj) with

output recipe w for some agent a with i < j;
– R′ <sub

exec R when R′ is a strict subterm of R.

Then, <exec is the smallest transitive relation over recipes built on dom(φ) that
contains <in

exec and <sub
exec. As usual, we denote ≤exec the reflexive closure of <exec.

Given a timed execution exec = (T0; ∅; t0)
�1,...,�n−−−−−→ (S;Φ; t) with Φ =

{w1
a1,t1−−−→ u1, . . . ,wn

an,tn−−−→ un}, we denote by agent(wi) (resp. time(wi)) the
agent ai (resp. the time ti). The relation <a

exec over dom(Φ) × dom(Φ) with
a ∈ A is defined as follows: w <a

exec w
′ when:

– either time(w) + DistT (agent(w), a) < time(w′) + DistT (agent(w′), a);
– or time(w) + DistT (agent(w), a) = time(w′) + DistT (agent(w′), a), and the

output w occurs before w′ in the execution exec.

166 A. Debant and S. Delaune

This order is extended on recipes as follows: R <a
exec R′ when:

1. either multiW(R) <a
exec multiW(R′) where multiW(R) is the multiset of vari-

ables W occurring in R ordered using the multiset extension of <a
exec on

variables;
2. or multiW(R) = multiW(R′) and |R| < |R′| where |R| is the size (number of

symbols) occurring in R;
3. or multiW(R) = multiW(R′), |R| = |R′|, and |steq(R)| < |steq(R′)| where

steq(R) = {(S, S′) ∈ st(R) × st(R) | S �= S′ and SΦ↓ = S′Φ↓} is the set of
pairs of distinct syntactic subterms of R that deduce the same term.

We have that <a
exec is a well-founded order for any a ∈ A which is compatible

with <exec, i.e. R <exec R′ implies R <a
exec R′ for any agent a.

We are now able to introduce our notion of asap recipe.

Definition 8. Let T = (A,M, Loc) be a topology, and exec = (T0; ∅; t0)
�1,...,�n−−−−−→

(S;Φ; t) be an execution. A recipe R is asap w.r.t. a ∈ A and exec if:

– either R ∈ Npub ∪ R
+ ∪ W and �R′ such that R′ <exec R and R′Φ↓ = RΦ↓;

– or R = f(R1, . . . , Rk) with f ∈ Σ and �R′ such that R′ <a
exec R and

R′Φ↓ = RΦ↓.

We may note that our definition of being asap takes care about honest agents
who are not allowed to forge messages from their knowledge using recipes not in
W ∪Npub ∪R

+. Hence, a recipe R ∈ W is not necessarily replaced by a recipe R′

even if R <a
exec R′ and R′Φ↓ = RΦ↓. Actually, such a recipe R′ is not necessarily

an alternative to R when a �∈ M0.
Then, we can establish completeness of our saturation procedure w.r.t. these

asap recipes.

Theorem 2. Let K = solved(sat(Kinit(T0))). Let exec = (T0; ∅; t0)
�1,...,�p−−−−−→

(S;Φ; t) be an execution with input recipes R1, . . . , Rk forged by b1, . . . , bk and
such that each Rj with j ∈ {1, . . . , k} is asap w.r.t. bj and exec. We have that:

– r�1,...,�p ∈ H(K) with a proof tree matching exec and R1, . . . , Rk;
– ku0(R,Rφ↓) ∈ H(K) with a proof tree matching exec and R1, . . . , Rk whenever

u0 =
1, . . . ,
q−1 for some q ∈ Rcv(p) and R is asap w.r.t. b|Rcv(q)| and exec.

Proof (sketch). We have that asap recipes are uniform and we can therefore
apply Theorem 1. This allows us to obtain a proof tree in H(seed(T0)). Then,
by induction on the proof tree, we lift it from H(seed(T0)) to H(K). The dif-
ficult part is when the statement obtained by resolution is not directly added
in the knowledge base. It may have been modified by the rule Remove or even
discarded by the update operator. In both cases, we derive a contradiction with
the fact that we are considering asap recipes. ��

Symbolic Verification of Distance Bounding Protocols 167

Example 12. Considering the relaxed execution starting from (T0 · Tex, ∅) by
performing the three outputs followed by the untimed version of the execution
described in Example 6, we reach (ε, φ) using recipes R1 = aenc(adec(w3,w2),w1)
and R2 = h(w5,w4, proj1(adec(w3,w2))). Let K be the set of solved statements
obtained by saturation, we have that rT0·w0σ′·(v,test) ∈ H(K) (see Example 10).
Note that the symbolic run T0 · w0σ

′ · (v, test) coincides with the labels used
in the execution trace. Here, the proof tree is reduced to a leaf, and choosing
R̂1 = R1, R̂2 = R2, gives us the matching we are looking for.

6 Algorithm

In this section, we first present our algorithm to verify whether a given timed
configuration can be fully executed, and then discuss its correctness.

6.1 Description

Our procedure is given in Algorithm1. We start with the set K of solved state-
ments obtained by applying our saturation procedure on the trace T . We con-
sider each reachability statement in K, and after instantiating the remaining
variables with fresh constants using a bijection ρ, we compute for each input
(ai, in(vi)) occurring in
′

1 . . . ,
′
n all the possible recipes that may lead to the

term viρ and store them in the set Li. Actually, thanks to our soundness result
(Proposition 1), we know that these recipes deduce the requested terms, and it
only remains to check that the timing constraints are satisfied (lines 10–11).

We consider a trace T of the form (a1, a1).(a2, a2).(an, an) locally closed
w.r.t. X and Z and we assume the naming convention given in Sect. 4.2. More-
over, we denote by orig(j) the index of the action in the trace T that performed

Algorithm 1. Test for checking whether (T, ∅, t0) is executable in T0

1: procedure Reachability(K, t0, T0)
2: for all r�′

1,...,�′
n

⇐ kw1(X1, x1), . . . , kwm(Xn, xm) ∈ K do
3: let c1, . . . , cq be fresh public names such that
4: ρ : vars(�′

1, . . . , �
′
n) → {c1, . . . , ck} is a bijection

5: for all i ∈ Rcv(n) do
6: if �′

i = (ai, in(vi)) then Li = {R | k�′
1ρ...�′

i−1ρ(R, viρ) ∈ H(K)}
7: end for
8: Let {i1, . . . , ip} = Rcv(n) such that i1 < i2 < . . . < ip
9: for all Li1 × . . . × Lip ∈ Li1 × . . . × Lip do

10: Let ψ = Timing((T ; ∅; t0), Li1ρ−1 . . . Lipρ−1, vi1 , . . . , vip).
11: if ψ satisfiable then return true end if
12: end for
13: end for
14: return false
15: end procedure

168 A. Debant and S. Delaune

the jth output, i.e. orig(j) is the minimal k such that |Snd(k)| = j. The func-
tion Timing takes as inputs the initial configuration, the recipes used to feed the
inputs occurring in the trace, and the terms corresponding to these inputs. Note
that all these terms may still contain variables from Z. This function computes
a formula that represents all the timing constraints that have to be satisfied
to ensure the executability of the trace in our timed model. More formally,
Timing((T ; ∅; t0)), Ri1 . . . Rip , ui1 . . . uip) is the conjunction of the formulas:

1. z1 = t0, and zi ≤ zi+1 for any 1 ≤ i < n;
2. ti ∼ t′i for any i ∈ Test(n) with ai = [[ti ∼ t′i]];
3. z′

i = vi{xj → uj | j ∈ Rcv(i)}↓ for any i ∈ Let(n);
4. For any i ∈ Rcv(n), we consider the formula:

– zorig(j) + DistT0(aorig(j), ai) ≤ zi if Ri = wj ;
– otherwise, we consider:

∨
b∈M0

(∧
{j|wj∈vars(Ri)}

zorig(j) + DistT0(aorig(j), b) ≤ zi − DistT0(b, ai)
)

The last step of our algorithm consists in checking whether the resulting
formula ψ is satisfiable or not, i.e. whether there exists a mapping from vars(ψ)
to R

+ such that the formula ψ is true. Of course, even if our procedure is generic
w.r.t. to timing constraints, the procedure to check the satisfiability of ψ will
depend on the constraints we consider. Actually, all the formulas encountered
during our case studies are quite simple: they are expressed by equations of
the form z′ − z ≤ t, and we therefore rely on the well-known Floyd-Warshall
algorithm to solve them. When needed, we may rely on the simplex algorithm
to solve more general linear constraints.

6.2 Termination Issues

First, we may note that to obtain an effective saturation procedure, it is impor-
tant to start with a finite set of seed statements. Our set seed(T) is infinite but
as it was proved in [12], we can restrict ourselves to perform saturation using the
finite set seed(T, CT) where CT contains the public names and the real numbers
occurring in the trace T . More formally, we have that:

Lemma 1. Let CT be the finite set of public names and real numbers occurring
in T , and Call = Npub ∪ R

+. We have that:

sat(Kinit(seed(T, Call))) = sat(Kinit(seed(T, CT))) ∪ {ky(c, c) ⇐ | c ∈ Call}.

Nevertheless, the saturation may not terminate. We could probably avoid
some non-termination issues by improving our update operator. However, ensur-
ing termination in theory is a rather difficult problem (the proof of termination
for the original Akiss procedure for subterm convergent theories is quite com-
plex [12] – more than 20 pages). We would like to mention that we never encoun-
tered non-termination issues in practice on our case studies.

Symbolic Verification of Distance Bounding Protocols 169

Another issue is that, when computing the set Li, we need to compute all the
recipes R such that kw(R, u) ∈ H(K) for a given term u. This can be achieved
using a simple backward search and will terminate since K only contains solved
statements that are well-formed. The naive recursive algorithm will therefore
consider terms u1, . . . , un that are strict subterms of the initial term u. Note
that statements that are not well-formed are discarded by our update operator:
ensuring completeness of our saturation procedure when discarding statements
that are not well-formed is the challenging part of our completeness proof.

6.3 Correctness of Our Algorithm

We consider a topology T0 and a configuration (T ; ∅; t0) built on top of T0 and
such that T is locally closed w.r.t. both X and Z.

Theorem 3. Let CT ⊆ Npub � R
+ be the finite set of public names and real

numbers occurring in T . Let K = solved(sat(Kinit(seed(T, CT)))). We have that:

– if Reachability(K, t0, T0) holds then (T ; ∅; t) is executable in T0;
– if (T ; ∅; t0) is executable in T0 then Reachability(K, t0, T0) holds.

Soundness (item 1 above) is relatively straightforward. Item 2 is more
involved. Of course, our algorithm does not consider all the possible recipes
for inputs. Some recipes are discarded from our analysis. Actually, it is suffi-
cient to focus our attention on asap recipes. To justify that this is not an issue
regarding completeness, we first establish the following result.

Lemma 2. Let exec = K0
�1,...,�n−−−−−→T0 (S;Φ; t) be an execution. We may assume

w.l.o.g. that exec involves input recipes R1, . . . , Rk forged by agents b1, . . . , bk

and Ri is asap w.r.t. bi and exec for each i ∈ {1, . . . , k}.

Then, we may apply Theorem 2 (item 1) on this “asap execution” and deduce
the existence of f = r�′

1,...,�′
n

⇐ kw1(X1, x1), . . . , kwm
(Xm, xm) in K and a sub-

stitution σ witnessing the fact that r�1,...,�n = r�′
1σ,...,�′

nσ ∈ H(K). Moreover, we
know that f and σ match with exec and R1, . . . , Rk. Considering the symbolic
recipes R̂1, . . . , R̂k witnessing this matching, and instantiating their variables
with adequate fresh constants (using ρ), we can show that R̂1ρ, . . . , R̂kρ are
recipes that allow to perform the timed execution
′

1ρ, . . . ,
′
nρ. Note that thanks

the strong relationship we have between R1, . . . , Rk and R̂1, . . . , R̂k (by defi-
nition of matching, Ri = R̂iσ), we know that the resulting timing constraints
gathered in the formula ψ due to inputs are less restrictive, and the other ones
are essentially unchanged. This allows us to ensure that the formula ψ will be
satisfiable. Now, applying Lemma 2, we can assume w.l.o.g. that recipes involved
in such a trace are asap, and thus according to Theorem 2 will be considered by
our procedure, and put in Li1 , . . . , Lip at line 6 of Algorithm 1.

170 A. Debant and S. Delaune

7 Implementation and Case Studies

We validate our approach by integrating our procedure in Akiss [12], and success-
fully used it on several case studies. All files related to the tool implementation
and case studies are available at

http://people.irisa.fr/Alexandre.Debant/akiss-db.html.

7.1 Integration in Akiss

Our syntax is very close to the one presented in Sect. 3. For sake of simplicity,
we sometimes omit timestamps on input/output actions. Regarding our timing
constraints, our syntax only allows linear expressions of the form z1 − z2 ∼ z3
with zi ∈ Z ∪R

+ and ∼ ∈ {=, <,≤}. These expressions are enough to model all
our case studies. To ease the specification of protocols our tool support parallel
composition of traces (T1 || T2). This operator is syntactic sugar and can be
translated to sets of traces in a straightforward way.

To mitigate the potential exponential blowup caused by this translation, we
always favour let, equality, and test actions, as well as output actions when
no timestamp occur on it. The second optimisation consists in executing input
actions (without timestamps) in a raw. These optimisations will allow us to
reduce the number of traces that have to be considered during our analysis, and
are well-known to be sound when verifying reachability properties [4,30].

Example 13. Let P = (a, in(x1)).(a, in(x2).(a, out(u)) || (b, in(x3)).(b, out(v)).
Computing naively all the possible interleavings will give us 10 traces to analyse.
The first optimisation will allow us to reduce this number to 3, and together with
the second optimisation, this number falls to 2.

7.2 Case Studies

In this section we demonstrate that our tool can be effectively used to analyse
distance bounding protocols and payment protocols. Our experiments have been
done on a standard laptop and the results obtained confirm termination of the
saturation procedure when analysing various protocols (× stands for attack, �
means that the protocol has been proved secure). We indicate the number of
roles (running in parallel) we consider and the number of traces (due to all the
possible interleaving of the roles) that have been analysed by the tool in order
to conclude. Our algorithm stops as soon as an attack is found, and thus the
number of possible interleavings is not relevant in this case.

We only consider two distinct topologies: one to analyse mafia fraud scenarios
(2 honest agents far away with a malicious agent close to each honest agent) and
one to analyse distance hijacking for which 3 agents are considered (malicious
agent in the neighbourhood of the verifier on which the security property is
encoded is not allowed). This may seem restrictive but it has been shown to be

http://people.irisa.fr/Alexandre.Debant/akiss-db.html

Symbolic Verification of Distance Bounding Protocols 171

sufficient to capture all the possible attacks [19]. Our results are consistent with
the ones obtained in [13,14,19,26].

Distance Bounding Protocols. As explained in Sect. 2 on the TREAD proto-
col, we ignore several details that are irrelevant to a security analysis performed
in the symbolic model. Moreover, our procedure is not yet able to support the
exclusive-or operator and thus it has been modelled in an abstract way when
analysing the protocols BC and Swiss-Knife. When no attack was found for 2
roles, we consider more roles (and thus more traces). The fact that the perfor-
mances degrade when considering additional roles is not surprising and is clearly
correlated with the number of traces that have to be considered.

Payment Protocols. We have also analysed three payment protocols (and
some of their variants) w.r.t. mafia fraud – the only relevant scenario for this
kind of application (see [13]). It happens that these protocols are more complex to
analyse than traditional distance bounding protocols. They often involve more
complex messages, and a larger number of message exchanges. Moreover, in
protocols MasterCard RRP and NXP, the threshold is not fixed in advance but
received during the protocol execution. Due to this, these protocols fall outside
the class of protocols that can be analysed by [19,26]. To our knowledge only
[13] copes with this issue by proposing a security analysis in two steps: they first
establish that the value of the threshold can not be manipulated by the attacker,
and then analyse the protocol considering a fixed threshold. Such a protocol can
be encoded in a natural way in our calculus using the let instruction [z := v]
that allows one to extract a timing information from a message. We analysed
these protocols considering one instance of each role.

Protocol Mafia fraud Distance hijacking

roles/tr time status roles/tr time status

TREAD-Asym [2] 2/− 1 s × 2/− 1 s ×
SPADE [11] 2/− 2 s × 2/− 4 s ×
TREAD-Sym [2] 4/7500 18 min � 2/− 1 s ×
BC [10] 4/5635 37 min � 2/− 1 s ×
Swiss-Knife [25] 3/1080 25 s � 3/7470 4 min �
HK [23] 3/20 1 s � 3/20 1 s �

4/3360 58 s � 4/3360 47 s �
5/30240 14 min � 5/30240 12 min �

8 Conclusion

We presented a novel procedure for reasoning about distance bounding protocols
which has been integrated in the Akiss tool. Even though termination is not
guaranteed, the tool did terminate on all practical examples that we have tested.

172 A. Debant and S. Delaune

Protocol # tr time status

NXP [24] 126 4 s �
MasterCard RRP [22] 35 6min �
PaySafe [14] 4 308 s �
PaySafe-V2 [14] − 26 s ×
PaySafe-V3 [14] − 149 s ×

Directions for future work include improving performances of our tool and
this can be achieved by parallelising our algorithm (each trace can actually be
analysed independently) and/or proposing new techniques to reduce the number
of interleavings. Another interesting direction would be to add the exclusive-or
operator which is often used in distance bounding protocols. This will require a
careful analysis of the completeness proof developed in [3] to check whether their
resolution strategy is compatible with the changes done here to accommodate
timing constraints.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proceedings of the 28th Symposium on Principles of Programming Languages
(POPL 2001), pp. 104–115. ACM Press (2001)

2. Avoine, G., et al.: A terrorist-fraud resistant and extractor-free anonymous
distance-bounding protocol. In: Proceedings of the 12th ACM Asia Conference
on Computer and Communications Security (AsiaCCS 2017), pp. 800–814. ACM
(2017)

3. Baelde, D., Delaune, S., Gazeau, I., Kremer, S.: Symbolic verification of privacy-
type properties for security protocols with XOR. In: 2017 IEEE 30th Computer
Security Foundations Symposium (CSF), pp. 234–248. IEEE (2017)

4. Baelde, D., Delaune, S., Hirschi, L.: A reduced semantics for deciding trace equiv-
alence. Log. Methods Comput. Sci. 13(2), 1–48 (2017)

5. Basin, D., Capkun, S., Schaller, P., Schmidt, B.: Formal reasoning about physical
properties of security protocols. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(2), 16
(2011)

6. Basin, D.A., Mödersheim, S., Viganò, L.: OFMC: a symbolic model checker for
security protocols. Int. J. Inf. Secur. 4(3), 181–208 (2005)

7. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: Proceedings of the 38th IEEE
Symposium on Security and Privacy (S&P 2017), pp. 483–502 (2017)

8. Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and ProVerif. Found. Trends Priv. Secur. 1(1–2), 1–135 (2016)

9. Blanchet, B.: Symbolic and computational mechanized verification of the
ARINC823 avionic protocols. In: Proceedings of the 30th IEEE Computer Security
Foundations Symposium (CSF 2017), pp. 68–82. IEEE (2017)

10. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48285-7 30

https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/3-540-48285-7_30

Symbolic Verification of Distance Bounding Protocols 173

11. Bultel, X., Gambs, S., Gerault, D., Lafourcade, P., Onete, C., Robert, J.: A prover-
anonymous and terrorist-fraud resistant distance-bounding protocol. In: Proceed-
ings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, WISEC 2016, Darmstadt, Germany, 18–22 July 2016, pp. 121–133. ACM
(2016)

12. Chadha, R., Cheval, V., Ciobâcă, Ş., Kremer, S.: Automated verification of equiv-
alence properties of cryptographic protocol. ACM Trans. Comput. Logic 23(4),
23:1–23:32 (2016)

13. Chothia, T., de Ruiter, J., Smyth, B.: Modelling and analysis of a hierarchy of dis-
tance bounding attacks. In: Proceedings of the 27th USENIX Security Symposium
(USENIX 2018), pp. 1563–1580. USENIX Association (2018)

14. Chothia, T., Garcia, F.D., de Ruiter, J., van den Breekel, J., Thompson, M.: Relay
cost bounding for contactless EMV payments. In: Böhme, R., Okamoto, T. (eds.)
FC 2015. LNCS, vol. 8975, pp. 189–206. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47854-7 11

15. Comon-Lundh, H., Cortier, V., Zălinescu, E.: Deciding security properties for cryp-
tographic protocols. Application to key cycles. ACM Trans. Comput. Logic 11(2),
9 (2010)

16. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3 22

17. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehen-
sive symbolic analysis of TLS 1.3. In: Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS 2017), pp. 1773–1788 (2017)

18. Debant, A., Delaune, S.: Symbolic verification of distance bounding protocols.
Research report, Univ Rennes, CNRS, IRISA, France, February 2019

19. Debant, A., Delaune, S., Wiedling, C.: A symbolic framework to analyse physical
proximity in security protocols. In: Proceedings of the 38th IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018). LIPICS (2018)

20. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. theory
29(2), 198–208 (1983)

21. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Undecidability of bounded secu-
rity protocols. In: Proceedings of the Workshop on Formal Methods and Security
Protocols (FMSP 1999), Trento, Italy (1999)

22. EMVCo: EMV contactless specifications for payment systems, version 2.6 (2016)
23. Hancke, G.P., Kuhn, M.G.: An RFID distance bounding protocol. In: Proceedings

of the 1st International Conference on Security and Privacy for Emerging Areas in
Communications Networks (SECURECOMM 2005), pp. 67–73. IEEE (2005)

24. Janssens, P.: Proximity check for communication devices. US Patent 9,805,228, 31
October 2017

25. Kim, C.H., Avoine, G., Koeune, F., Standaert, F.-X., Pereira, O.: The Swiss-Knife
RFID distance bounding protocol. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008.
LNCS, vol. 5461, pp. 98–115. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00730-9 7

26. Mauw, S., Smith, Z., Toro-Pozo, J., Trujillo-Rasua, R.: Distance-bounding pro-
tocols: verification without time and location. In: Proceedings of the 39th IEEE
Symposium on Security and Privacy (S&P 2018), pp. 152–169 (2018)

https://doi.org/10.1007/978-3-662-47854-7_11
https://doi.org/10.1007/978-3-662-47854-7_11
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/978-3-642-00730-9_7
https://doi.org/10.1007/978-3-642-00730-9_7

174 A. Debant and S. Delaune

27. Meadows, C., Poovendran, R., Pavlovic, D., Chang, L., Syverson, P.: Distance
bounding protocols: authentication logic analysis and collusion attacks. In: Pooven-
dran, R., Roy, S., Wang, C. (eds.) Secure Localization and Time Synchronization
for Wireless Sensor and Ad Hoc Networks. ADIS, vol. 30, pp. 279–298. Springer,
Boston (2007). https://doi.org/10.1007/978-0-387-46276-9 12

28. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

29. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proceedings of the 8th ACM Conference on Computer and
Communications Security (CCS 2001). ACM Press (2001)

30. Mödersheim, S., Viganò, L., Basin, D.A.: Constraint differentiation: search-space
reduction for the constraint-based analysis of security protocols. J. Comput. Secur.
18(4), 575–618 (2010)

31. Nigam, V., Talcott, C., Aires Urquiza, A.: Towards the automated verification
of cyber-physical security protocols: bounding the number of timed intruders. In:
Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016.
LNCS, vol. 9879, pp. 450–470. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45741-3 23

32. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions
and composed keys is NP-complete. Theoret. Comput. Sci. 299(1–3), 451–475
(2003)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-0-387-46276-9_12
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-319-45741-3_23
https://doi.org/10.1007/978-3-319-45741-3_23
http://creativecommons.org/licenses/by/4.0/

On the Formalisation of Σ-Protocols
and Commitment Schemes

David Butler1,2(B), David Aspinall1,2, and Adrià Gascón1,3

1 The Alan Turing Institute, London, UK
dbutler@turing.ac.uk

2 University of Edinburgh, Edinburgh, UK
3 University of Warwick, Coventry, UK

Abstract. There is a fundamental relationship between Σ-protocols
and commitment schemes whereby the former can be used to construct
the latter. In this work we provide the first formal analysis in a proof
assistant of such a relationship and in doing so formalise Σ-protocols
and commitment schemes and provide proofs of security for well known
instantiations of both primitives.

Every definition and every theorem presented in this paper has been
checked mechanically by the Isabelle/HOL proof assistant.

Keywords: Commitment schemes · Σ-protocols · Formal verification ·
Isabelle/HOL

1 Introduction

In [8], Damgard elegantly showed how Σ-protocols can be used to construct
commitment schemes that are perfectly hiding and computationally binding and
thus showed how these two fundamental cryptographic primitives are linked. The
properties of the resulting commitment scheme rely on the security of the under-
lying Σ-protocol. The relationship between the two is natural as Σ-protocols can
be considered the building block for zero knowledge, and it is well known that
commitment schemes and zero knowledge protocols are strongly related [9].

When properties of fundamental primitives are linked in such a way it is
interesting to study them formally using a proof assistant to more deeply under-
stand the nature of the relationship. In fact the proof provided of the security
of the construction of commitment schemes from Σ-protocols in [8] is brief; thus
to study it formally one has to consider the properties in more detail.

To achieve such a goal one must first formalise both primitives and then show
the desired relations between them with respect to the individual formalisations
for either primitive. To formalise and instantiate a primitive using a proof assis-
tant one must first formalise the security definitions, then define the protocol

This work was supported by The Alan Turing Institute under the EPSRC grant
EP/N510129/1.

c© The Author(s) 2019
F. Nielson and D. Sands (Eds.): POST 2019, LNCS 11426, pp. 175–196, 2019.
https://doi.org/10.1007/978-3-030-17138-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17138-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-17138-4_8

176 D. Butler et al.

that realises the primitive and then provide proofs in the proof assistant that
show the defined security properties are met by the protocol.

As well as providing a deeper insight and more rigorous proof for properties
in cryptography, formalisations also provide an increased confidence in crypto-
graphic proofs. This increased level of rigour was called for by Halevi in 2005
[12], where it was proposed to approach the problem formally. One aspect of this
approach is that security definitions are formally defined in an abstract way and
then instantiated for different protocols that hold those security properties. The
advantage of the abstract definitions is a human checker only needs to check
these definitions for consistency with the literature to have confidence in the
whole collection of proof. This is exactly the goal of this work.

In this paper, motivated by understanding the connection betweenΣ-protocols
and commitment schemes we use the proof assistant Isabelle/HOL to formally
reason about the two fundamental primitives and then show how a Σ-protocol
can be used to construct a commitment scheme. Specifically we formally prove,
with respect to our abstract definitions of commitment schemes, how the Schnorr
Σ-protocol can be used to construct a perfectly hiding and computationally
binding commitment scheme. In the process of achieving this we prove various
Σ-protocols and commitment schemes secure in their own right.

To the best of our knowledge this is the first time the connection between
Σ-protocols and commitment schemes has been considered using a proof assis-
tant. Σ-protocols were considered in [5] and [2] and the Pedersen commitment
scheme has been considered formally using EasyCrypt in [17]. We leave a dis-
cussion of the comparison of Isabelle/CryptHOL and EasyCrypt to Sect. 10.

Our formal proofs can be found at [1].

Contributions

– We provide abstract frameworks from which to reason about commitment
schemes and Σ-protocols. We formalise this in Isabelle/HOL, but the struc-
ture could be used in other proof assistants.

– We instantiate this abstract framework to provide proofs of security for both
primitives; the Pedersen commitment scheme, the Schnorr Σ-protocol and a
second Σ-protocol based on the equality of discrete logs assumption.

– We use both the abstract frameworks to formally show how a commitment
scheme can be constructed using the Schnorr Σ-protocol (following the work
of [9]) and prove it secure with respect to our commitment scheme framework.
In doing so we formally demonstrate the relationship between Σ-protocols and
commitment schemes.

– To complete the proofs described, two other contributions were made. First,
we had to define the discrete logarithm assumption in Isabelle; a notion that
can be used by others in future proofs. Second, the adversary used to break
this assumption, for a contradiction, outputs the division of two elements in
a field. For technical reasons this is non trivial to do in Isabelle therefore we
were required to develop a method to do this. This method, and its associated

On the Formalisation of Σ-Protocols and Commitment Schemes 177

proofs, can now be used by others completing cryptographic proofs inside
Isabelle.

– All our protocols are shown secure in both the concrete and asymptotic cases.

Outline. In Sect. 2 we outline the structure of our formalisation and in Sect. 3
introduce the relevant theory of Isabelle/HOL and the main parts of CryptHOL
[15]. In Sects. 4 and 6 we introduce our formalisation of Σ-protocols and com-
mitment schemes receptively. Sections 5 and 7 show how we instantiate these
abstract frameworks for the Schnorr and Pedersen protocols. We show how we
link the two in Sect. 8 and how we construct a commitment scheme using the
Schnorr Σ-protocol. Finally we conclude and discuss related work and provide
a comparison with EasyCrypt in Sects. 9 and 10.

2 Formalisation Overview

In this section we first outline the structure of our formalisation and then discuss
the process of instantiating the abstract frameworks to achieve formal proof in
Isabelle. Then we discuss the proof method for the asymptotic security setting.

2.1 Outline of Formalisation

We begin our formalisation by abstractly defining the security properties
required for both commitment schemes and Σ-protocols. This part of the for-
malisation is defined over abstract types, giving the flexibility for it to be instan-
tiated for any protocol; this allows us to have confidence in the proof’s integrity
when considering a range of different protocols. The abstract nature of the for-
malisation will also allow others to use the definitions of security and structure
we provide to prove security of other commitment schemes and Σ-protocols.
Another benefit is we can prove some technical lemmas at the abstract level
and have them at our disposal in any instantiation, thus reducing the workload
for future proofs. A final advantage of the abstract definitions is that a human
checker only needs to verify these definitions for consistency with the literature
to have confidence in the whole collection of proof.

We instantiate the abstract frameworks to prove security of the Pedersen
commitment scheme, the Schnorr Σ-protocol and a second Σ-protocol that uses
a relation for the equality of discrete logarithms. Finally we use the algorithms
that define the Schnorr protocol to construct a commitment scheme (as shown
in [8]) and prove it secure with respect to our commitment scheme definitions
using the properties obtained from the Σ-protocol proofs.

The work flow of this paper can be seen in Fig. 1 where an arrow implies the
use of one theory (a formalised file in Isabelle) to achieve the next. For example
we prove the ‘Schnorr commitment’ secure with respect to the ‘Abstract Com-
mitments’ definitions and using the algorithms and properties of the ‘Schnorr’
protocol.

178 D. Butler et al.

Fig. 1. The structure of the formalisation in Isabelle

2.2 Instantiating the Abstract Frameworks

At a technical level Isabelle’s module system (called locales) allows the user to
prove theorems abstractly, relative to given assumptions. These theorems can be
reused in situations where the assumptions themselves are theorems. In our case
locales allow us to define properties of security relative to fixed constants and
then instantiate these definitions for explicit protocols and prove the security
properties as theorems.

The overall process of instantiation can be seen as a step-by-step process
given below:

1. We fix, with abstract types, the probabilistic programs (algorithms) that
make up a primitive (e.g. key gen, commit , verify , for commitment schemes
see Fig. 6) in a locale then proceed to make the definitions of security with
respect these fixed constants (e.g. define the hiding property). This can be
considered as the formal specification requirements of the primitive.

2. To instantiate a protocol we must explicitly define the above fixed constants.
To do this we make all types concrete and define the probabilistic programs
that describe the protocol.

3. We are then able to utilise Isabelle’s locale structure by importing the abstract
framework using the sublocale command. Not only must the explicit defini-
tions be of the correct type when importing a locale, one must also dismiss
any assumptions that come with the locale. This means that our instantia-
tion is a valid commitment scheme or Σ-protocol and allows us to refer to the
security definitions made in the abstract framework and prove the properties
using the explicit definitions of the instantiated protocol.

2.3 Asymptotic Security

In our formalisation we first consider security in the concrete setting. Here we
assume the security parameter, n, is implicit in all algorithms that parametrise
the framework. We then move to prove security in the asymptotic setting utilising
Isabelle’s module system. More details about this part of our formalisation are
given in Sect. 8.1. We note the asymptotic setting is not considered in EasyCrypt
proofs, the machinery available in Isabelle however makes it possible.

On the Formalisation of Σ-Protocols and Commitment Schemes 179

3 CryptHOL and Isabelle Background

In this section we briefly introduce the Isabelle notion we use throughout and
then highlight and discuss some important aspects of CryptHOL. For more detail
on CryptHOL see [6]. The full formalisation is available at [14].

3.1 Isabelle Notation

The notations we use in this paper resemble closely the syntax of Isabelle/HOL
(Isabelle). For function application we write f(x, y) in an uncurried form for ease
of reading instead of f x y as in the λ-calculus. To indicate that term t has type
τ we write t :: τ . Isabelle uses the symbol ⇒ for the function type, so a ⇒ b
is the type of functions that takes an input of type a and outputs an element
of type b. The type ‘a denotes an abstract type. The implication arrow −→ is
used to separate assumptions from conclusions inside a closed HOL statement.
We use ⊗ to denote multiplication in a group and ∗ for multiplication in a field.

3.2 CryptHOL

CryptHOL [6] is a framework for reasoning about cryptography in the computa-
tional model that is embedded inside the Isabelle/HOL theorem prover. It allows
the prover to write probabilistic programs and reason about them. The compu-
tational model is based on probability theory and in particular uses probabilistic
programs to define security—this can be seen for the construction of games in the
game-based setting or the real and ideal views in the simulation-based setting.

To build the probabilistic programming framework CryptHOL uses the exist-
ing probability theory formalised inside Isabelle to define discrete probability
distributions called sub probability mass functions (of type spmf). These can be
thought of as probability mass functions with the property they do not have to
sum to one—we can lose some probability mass. This allows us to model failure
events and assertions.

Writing Probabilistic Programs. CryptHOL provides some, easy-to-read,
Haskell-style do notation to write probabilistic programs where do{x ← p; f(x)}
is the probabilistic program that samples from the distribution p and returns the
spmf produced by f . We can also return an spmf using the monad operation
return. See Fig. 2 for an example.

Proofs of security are mainly completed by manipulating the appropriate
probabilistic programs. While the proofs that each manipulation is valid are not
always accessible to non-experts, the effect of each manipulation can be easily
seen and recognised as they are explicitly written in the do notation.

180 D. Butler et al.

Failure Events and Assertions. We often have to reason about failure events.
For example we must ensure the adversary in the hiding game (Fig. 6) outputs
two valid messages for the game to proceed. Such events are handled using
assertion statements

assert(b) = if b then return() else ⊥
and the TRY p ELSE q construct. For example TRY do {p} ELSE q would
distribute the probability mass not assigned by p to the distribution according
to q. Picking up on our example of the hiding game; if the adversary fails to
output two valid messages, the assertion fails and the ELSE branch is invoked
resulting in the adversary not winning the hiding game.

Sampling. Sampling from sets is important in cryptography. CryptHOL gives
an operation uniform which returns a uniform distribution over a finite set. We
use two cases of this function extensively: by sample uniform(q), where q is a
natural, we denote the uniform sampling from the set {.. < q} and by coin we
denote the uniform sampling from the set {True, False}—a coin flip.

Using sampling we are able to illustrate one difference in thought process
and rigour required in a formal proof compared to a pen-and-paper proof. One
time pads (OTPs) are used extensively in protocols. Often their properties are
employed without thought or explanation in paper proofs as they are consid-
ered to be a simple construct. However there are some more subtle issues that
sometimes need to be considered.

map((λb. (x ∗ b) mod q), (sample uniform(q))) = sample uniform(q) (1)

Equation 1 shows the traditional OTP for multiplication in a field; a uniform
sample, b, from a set of q elements, multiplied to an input, x, taken modulo q
is the same as a uniform sample. However this property is only valid if x and q
are coprime. This follows, in the finite field, from Fermat’s Little Theorem; thus
formally we have to work much harder to use such a lemma. In short, formalising
a proof demonstrates many areas where a paper proof falls short in detail.

Probabilities. We must also be able to reason about the probability of events
occurring. So, P[Q = x] denotes the subprobability mass the spmf Q assigns to
the event x. We also introduce the notation � which denotes the binding of a
sample without the need for the do notation. This can be seen in Theorem 3
where the bound variable e is sampled from challenge and given to S2.

Negligible Functions. To reason about security in the asymptotic case we
must consider negligible functions. These were formalised as a part of CryptHOL.
A function, f :: (nat ⇒ real) is said to be negligible if

(∀c > 0. f ∈ o(λx.inverse(xc)))

where o is the little o notation. We discuss the use of such functions in our proofs
in Sect. 8.1.

On the Formalisation of Σ-Protocols and Commitment Schemes 181

4 Formalising Σ-Protocols

In this section we show how we formally define Σ-protocols and their security
properties—it is with respect to these definitions that we prove security of the
Schnorr protocol and a variant of it for equality of discrete logs in Sect. 5. For
more details on the Σ-protocols see [9].

4.1 Definition of Σ-protocols

We first consider a binary relation R; for some (h,w) that satisfies R, w is a
witness of h. For example, the discrete log relation is formalised as follows

RDL(h,w) = (h = gw ∧ w < |G|) (2)

where g is a generator of the cyclic group G.
A Σ-protocol is a two party protocol run between a prover (P) and a verifier

(V). In the protocol h is a common input to both P and V and w a private
input to P such that R(h,w) is true. We define the structure of a Σ-protocol as
follows:

Definition 1. A Σ-protocol has the following three part form:

1. Initial message: P sends message a, created with randomness r.
2. Challenge: V sends P a challenge, e.
3. Response: P responds with z to convince the verifier who either accepts or

rejects.

A conversation can be seen as the tuple (a, e, z).

Formally we model this as four abstract probabilistic programs whose types
are given below. The inputs to relation R are h, of type ‘pub input and w, of
type ‘witness.

init :: ‘pub input ⇒ ‘witness ⇒ (‘rand × ‘msg) spmf (3)

challenge :: ‘challenge spmf (4)

response :: ‘rand ⇒ ‘witness ⇒ ‘challenge ⇒ ‘response spmf (5)

check :: ‘pub input ⇒ ‘msg ⇒ ‘challenge ⇒ ‘response ⇒ bool spmf (6)

The challenge sent by V is defined as a random sampling (see [9]) therefore
it needs no inputs here.

It is interesting to note, unlike many paper based definitions, none of our
algorithms in the formalisation need take random coins as input. This is because
they are already probabilistic programs and thus not deterministic by definition.

The three properties that define a Σ-protocol are completeness, spe-
cial soundness and honest verifier zero-knowledge (HVZK). Special soundness
ensures the prover cannot prove a false statement and HVZK says the verifier
learns nothing of the witness that it cannot learn from the output of the verifi-
cation and the public input.

182 D. Butler et al.

Definition 2. Assume the protocol run between P and V has the above form
then it is said to be a Σ-protocol if the following properties hold:

– Completeness: if P and V follow the protocol on public input h and private
input w such that R(h,w) is satisfied, then V always accepts.

complete(h,w) ≡ R(h,w) −→ P[complete game(h,w) = True] = 1

– Special soundness: there exists an adversary, A such that when given a pair
of accepting conversations (on public input h) (a, e, z) and (a, e′, z′) where
e �= e′ it can compute w such that R(h,w) is satisfied.

s soundness(h,w) ≡
∃A. R(h,w) −→ P[s soundness game(h,w ,A) = True] = 1

– Honest verifier Zero-Knowledge: There exists a simulator S that on input
h and challenge e outputs an accepting conversation (a, e, z) with the same
probability distribution as the real conversations (real view) between P and
V on input (h,w).

HVZK (h,w) ≡ R(h,w) −→ (real view(h,w) = challenge � (λe.S(h, e)))

In the literature the adversary for the special soundness definition and the
simulator in the HVZK definition must run in polynomial time. There are chal-
lenges in formalising this notion, therefore we visually verify that the adversaries
we construct for special soundness run in polynomial time and do not provide a
formalisation of this property.

We define the probabilistic program complete game to run the components
of the protocol in an honest way. In particular we define a probabilistic program
that takes as input (h,w), and then runs the four probabilistic programs of the
protocol as would be done in the protocol, finally outputting the output of check.

The probabilistic program s soundness game is slightly more subtle. The
game takes as input (h,w,A) and must construct two accepting views to give to
the adversary. The condition on these views is that the challenge in the second
view must be different to that of the first. On paper this is easy to reason about
as it can be considered to be intuitive but formally we must work harder. We
define a new probabilistic program, snd challenge(e), that outputs a challenge
different from the original. For example, for the Schnorr protocol the challenge
is a uniform sample from the field. Consequently the second challenge must
uniformly sample from all elements of the field modulo the first challenge p,

snd challenge(q , p) = uniform({.. < q} − {p}) (7)

We must then prove all properties we required of challenge with respect to
the new definition.

In the honest verifier zero knowledge property the real view is a probabilistic
program that defines the real view (i.e., the protocol) transcript of the execution,

On the Formalisation of Σ-Protocols and Commitment Schemes 183

that is (a, e, z). Intuitively if one can simulate the real view then we know there is
no leakage of data, in this case the witness, during an execution of the protocol.
We note that unlike previous work on the simulation based proof method [7]
in MPC where the real view could only be defined in the instantiation due to
different protocol structures, here we can define it solely from the algorithms
used in the Σ-protocol. Both the special soundness game and the definition of
the real view can be seen in Fig. 2.

Having made the above definitions we can define Σ-protocols formally as
follows.

Definition 3

Σ-protocol(h,w) = complete(h,w) ∧ s soundness(h,w) ∧ HVZK (h,w)

Referring back to the diagram in Fig. 1 we can see we have completed the
work for the ‘Abstract Σ-protocol’ box.

special soundness game(h,w , A) = do { real view(h,w) = do {
(r , a) init(h,w (;) r , a) init(h,w);
e challenge; e challenge;
z response(r ,w , e); z response(r ,w , e);
e′ snd challenge(e); return(a, e, z)}
z′ response(r ,w , e ′);
w′ A(h, (a, e, z), (a, e′, z′));
return(w = w ′)}

Fig. 2. Definitions of the special soundness game and the real view for Σ-protocols.

5 Formalising the Schnorr Σ-Protocol

In this section we describe the proof of security of the Schnorr Σ-protocol. We
also formalise the proof of security for a second Σ-protocol that is based on the
equality of discrete logs [9]. The relation for this protocol can be seen in Eq. 8,
where g′ is a second generator of the cyclic group G.

R((h, h′), w) = {h = gw ∧ h′ = g′w ∧ w < |G|} (8)

In the interest of space here we only detail the formalisation of the Schnorr
protocol. Here we provide more details of the formalisation than in other parts
of the paper as well as a higher level commentary.

5.1 The Schnorr Σ-protocol

The Schnorr protocol uses a cyclic group G with generator g and considers the
discrete log relation, RDL, that can be seen in Eq. 2. The protocol is given in Fig. 3.
The notation $←− denotes uniform sampling while we use ←− to denote assignment.

184 D. Butler et al.

refiireVrevorP
(h, w) h

r
$
Zq

a gr initial msg: a
a

challenge: e
e

$
Zq

z (w · e + r) mod |G| response: z
z

check: a · he = gz

accepts or rejects

Fig. 3. The Schnorr Σ-protocol.

We consider the three properties that define a Σ-protocol in turn.
Completeness comes directly by unfolding the definitions and proving the

identity gr ⊗ (gw)e = gr+w∗e. This is trivial, but provides Isabelle with a hint as
to how to rewrite the definitions to dismiss the completeness proof.

Theorem 1. Assume RDL(h,w) then

P[completeness game(h,w) = True] = 1

Secondly we must prove special soundness. To prove this we must construct
an adversary that can extract the witness from two correct executions of the
protocol. The special soundness adversary is given in Fig. 4.

Ass(h, c1, c2) = do {
let (a, e, z) = c1;
let (a′, e′, z′) = c2;
return(if e > e ′ then (z − z ′) ∗ (fst(bezw((e − e ′), |G|)) mod |G|)

else (z ′ − z) ∗ (fst(bezw((e ′ − e), |G|)) mod |G|))}

Fig. 4. The adversary used to prove special soundness for the Schnorr Σ-protocol. Note
the output is equivalent to z−z′

e−e′ . In the proof of Theorem 2 we have a = a′ for the
messages given to the adversary.

We highlight an important contribution of our work here. The output of
Ass appears complex but actually is equivalent to Ass outputting z−z′

e−e′ in the
field. The output uses Bezout’s function (bezw) for finding a pair of witnesses
for Bezout’s theorem to realise the inverse of e− e′. This function is given in the
Isabelle number theory library.

The reason we could not define the adversary as outputting a simple division
is worthy of some technical discussion. The inputs to the division are of type
natural and thus any output from the division is also required to be of the same
type as we are working in a field. However the output type of a division on
naturals in Isabelle is a real number. Thus we must work around to output the

On the Formalisation of Σ-Protocols and Commitment Schemes 185

correct value as a natural. The condition on e > e′ is such that the denominator
is never negative as we are working with naturals. While this may look like an
unnatural solution to the issue it is an effective one, and the work we provide
here can be used by others when this problem arises again (it almost certainly
will as division in a field is not uncommon in cryptography!). To allow us to work
with an adversary defined in such a way we must prove lemmas of the form:

Lemma 1. Assume a, b, w, y < |G|, a �= b and w �= 0 then

w = (if (a > b) then((w ∗ a + y) − (w ∗ b + y)) ∗ fst(bezw((a − b), |G |) (9)
else((w ∗ b + y) − (w ∗ a + y)) ∗ fst(bezw((b − a), |G |)

The proof of Lemma 1 is quite involved however lemmas we require for other
instances follow a similar proof method. We also prove a general lemma to com-
pute divisions in a finite field, this is given in Lemma 2.

Lemma 2. Assume gcd(a, |G|) = 1 then

[a ∗ fst(bezw(a, |G |)) = 1](mod |G |)
To apply statements such as Lemma 1 we often have to employ congruence
rules. These allow the simplifier to use the context, in particular here on facts
pertaining to the bound variables in the probabilistic programs that are required
as assumptions. Using these methods we can prove special soundness.

Theorem 2. Assume R(h,w) then we have

P[specical soundness game(h,w,Ass) = True] = 1

Finally we must prove honest verifier zero knowledge. This requires us to
define the real view of the protocol and show that there exists a simulator that
takes as input the public input and a challenge and outputs a view that is
indistinguishable from (equal as probability distributions) the real view. This
technique follows the technique of simulation based proofs that was formally
introduced in Isabelle in [7]. The probabilistic program defining the simulator
along with the unfolded definition of the real view is given in Fig. 5.

To show HVZK we prove the two views are equal. That is,

Theorem 3. Assume RDL(h,w) then we have

real view(h,w) = (challenge � (λe. S(h, e)))

In the definitions given in Fig. 5 the number of random samples is different
in each view. We note that the extra sampling for the simulation comes from the
challenge which, by definition is sampled before being given to the simulator.
To prove honest verifier zero knowledge we manipulate the real view into a form
where we can use Eq. 10, that describes a one time pad for addition in the field.

map(λb. (y + b) mod q, uniform(q)) = uniform(q) (10)

186 D. Butler et al.

real view(h, w) = do { S(h, e) = do {
r uniform(|G|); c uniform(|G|);
let(r , a) = (r , gr); let a = gc ⊗ (he)−1 ;
c uniform(|G|); return (a, e, z)}
let z = (w ∗ c + r) mod |G|;
return (a, c, z)}

Fig. 5. The unfolded real view and simulator for the Schnorr protocol

To do this we must prove some basic identities about groups that provide Isabelle
with hints as to rewrite the probabilistic programs. After proving the three
properties we can show that the Schnorr protocol satisfies the definition of a
Σ-protocol.

Theorem 4. For the Schnorr Σ-protocol we have

Σ-protocol(h,w).

6 Formalising Commitment Schemes

In this section we introduce our formalisation of commitment schemes and their
security properties. Commitment schemes are a cryptographic primitive, run
between a committer C and a verifier V , that allow the committer to commit to
a chosen message, while keeping it private, and at a later time reveal the message
that was committed to. For more details on commitment schemes we refer the
reader to [20].

There are three phases to a commitment scheme:

1. Key generation, The key generation algorithm generates keys and sends them
to both P and V respectively.

2. Commitment phase, The committer sends the verifier its committed value
(or commitment), c, for the message m—the committer also computes an
opening value, d, for the commitment that will be used to convince the verifier
in the next stage.

3. Verification phase, The committer sends the verifier the message m and an
opening value, d, with which the verifier can verify that the original committed
message was m.

We formally model the three phases by fixing the types of three probabilistic
programs (key gen, commit , verify), seen in the locale given in Fig. 6.

The key generation algorithm outputs the keys available to the committer
(ck) and the verifier (vk) respectively. If all the keys are public then we have
ck = vk. We also fix two predicates abstractly which are needed in concrete
instances later; valid msg checks if a message is valid or not and A cond provides
the conditions that we require from an adversary in the binding game. A paper
proof can easily dismiss the adversary as failing if these conditions are not met,

On the Formalisation of Σ-Protocols and Commitment Schemes 187

locale abstract com = correct game m = do {
fixes key gen :: (‘ck × ‘vk) spmf (ck, vk) key gen;
and commit :: ‘ck ⇒ ‘plain ⇒ (‘com × ‘open) spmf (c, d) commit(ck, m);
and verify :: ‘vk ⇒ ‘plain ⇒ ‘com ⇒ ‘open ⇒ bool spmf b verify(vk, m, c, d);
and valid msg :: ‘plain ⇒ bool return b}
and A cond :: ‘com ⇒ ‘plain ⇒ ‘open ⇒ ‘plain ⇒ ‘open ⇒ bool

binding game A = TRY do { hiding game (A1, A2) = TRY do {
(ck, vk) key gen; (ck, vk) key gen;
(c, m, d, m′, d′) A(ck); ((m0, m1), σ) A1(vk);

assert(A cond(c, m, d, m′, d′)); assert(valid msg(m0) ∧ valid msg(m1));
b verify(vk ,m, c, d); b coin;
b′ verify(vk ,m ′, c, d ′); (c, d) commit(ck, (if b then m1 else m2));
return(b ∧ b′)} ELSE return False b′ A2(c, σ);

return(b = b′)} ELSE coin

Fig. 6. Abstract commitment scheme locale and definitions.

however formally we must catch this in the semantics. In fact these predicates
serve another purpose too; they allow us to use the properties captured by the
predicates in our reasoning at a later point in the proof. For example, for m to
be a valid message we may require m ∈ G, this fact is then known to Isabelle
for later use (e.g when applying Eq. 11).

6.1 Properties of Commitment Schemes

There are two main properties associated with commitment schemes: the hiding
and binding properties. We note we consider a third property of correctness also,
the need for this is explained at the end of the section.

Hiding. Intuitively, the hiding property is that no adversary can distinguish two
committed messages. To define the hiding property we define the hiding game
between an adversary, A, and a benign challenger. The formal game can be seen
in Fig. 6. The game asks the adversary to output two messages, one of which
is committed to by the challenger and the corresponding commitment handed
back to the adversary. The adversary is then asked to guess which message
was committed to. The adversary wins the game if they correctly output which
message was committed and handed to them.

Using the hiding game we can define the hiding advantage.

Definition 4. The hiding advantage is the probability an adversary has of win-
ning the hiding game.

hiding advantage(A) ≡ P[hiding game(A) = True]

Using this we can define perfect hiding, which holds for the Pedersen com-
mitment scheme.

Definition 5. For perfect hiding we require

perfect hiding(A) ≡ (hiding advantage(A) =
1
2

)

188 D. Butler et al.

Binding. The binding property ensures that the committer cannot change her
mind and change the message she has committed to. Again a security game is
used (see Fig. 6). We challenge the adversary to bind two messages (m,m′) and
two opening values (d, d′) to the same commitment c.

Similar to the hiding property we define the binding advantage:

Definition 6. The binding advantage is the probability an adversary has of win-
ning the binding game.

binding advantage(A) ≡ P[binding game(A) = True]

To show computational binding we must show the binding advantage is a
negligible function with respect to the security parameter. This result can only
be shown in the asymptotic setting as it requires an explicit security parameter.
In the concrete setting we can show a reduction to a known hard problem (for the
Pedersen scheme this is the discrete logarithm problem). We can then extend
to the asymptotic setting. See Sect. 8.1 for more details on our proofs in the
asymptotic setting.

Correctness. There is one subtlety to the binding definition meaning we must
consider correctness also. If the verifier always outputs false, the binding property
is met as the adversary will never win the game.

Correctness is the property that, assuming honest parties, a commitment
will be verified as true by the verifier. Analogously to the hiding and binding
properties we use the correctness game to define correctness.

Definition 7

correct(m) ≡ (P[correct game(m) = True] = 1)

7 The Pedersen Commitment Scheme

In this section we discuss our formalisation of the Pedersen commitment scheme.
We do not discuss the proofs in detail, but instead provide the formal results
and a discussion of the interesting aspects learned from the proof.

The protocol, given in Fig. 7, is run using a cyclic group of prime order G
with generator g.

Intuitively, the hiding property is observed because the message, m, is not
sent explicitly, but is masked by the uniform sample, gd (in gd.pkm). Conse-
quently the verifier cannot distinguish between two committed messages. The
property of binding is more subtle. If the adversary can bind two messages to
the same committed value, then the adversary can also compute the discrete log
of pk, which is in violation of the discrete log assumption which is considered
hard. Correctness is immediate; the committed value, c, is gd.pkm, the verifier
accepts the message if (m, d), sent by the committer is such that gd.pkm = c.

On the Formalisation of Σ-Protocols and Commitment Schemes 189

pk
$

G

Committer Verifier

Commitment Phase

d
$
Zq

c gd.pkm c
c

Verification Phase
(m,d)

(m, d)
checks gd.pkm = c
accepts or rejects

Fig. 7. The Pedersen commitment protocol.

7.1 Formal Proofs for the Pedersen Protocol

We fix a finite cyclic group, G, with generator, g, and order, |G| and explicitly
define the probabilistic programs that define the protocol.

Perfect Hiding. Lemma 3 shows that we have perfect hiding for the Pedersen
commitment scheme.

Lemma 3. For the Pedersen commitment scheme we have

P[(hiding game(A)) = True] =
1
2

The security of the hiding property comes from applying the OTP lemma:

c ∈ carrier G ⇒ map((λx. gx ⊗ c), (uniform(|G |))) = (11)
map((λx. gx), uniform(|G |))).

The work needed to apply the one time pad Lemma is in showing that c ∈
carrier G. To do this requires the use of some congruence lemmas as the property
of membership of the carrier group arises from conditions on bound variables.
Applying the one time pad Lemma shows the value given to the adversary is
independent of mb. Consequently the output from the adversary can be nothing
more than a guess, in other words, the adversary may as well flip a coin to decide
its output.

Computational Binding and Correctness. To prove the binding property
we show a reduction to the discrete logarithm assumption. Hardness assumptions
are a cornerstone of cryptography so we take a moment to consider how it may
be formal used. One can follow a similar pattern for defining other hardness
assumptions, for example see how the DDH assumption is defined in [16].

190 D. Butler et al.

We first define the task of the adversary and then the advantage associated
to the adversary. In the case of the discrete log assumption we simply provide
the adversary with gx where x is uniformly sampled and ask it to output x. We
formalise such a situation as a game between the adversary and a challenger in
Fig. 8.

dis log game(A) = do {
x sample uniform(|G|);
let h = gx;
x′ A(h);
return(x = x ′)}

Fig. 8. The discrete log game.

We then define the associated advantage of the adversary when playing this
game—the probability of it winning the game.

Definition 8. dis log advantage(A) ≡ P[(dis log game(A)) = True]

To prove binding we construct an adversary, dis log A, using the adversary A
that plays the binding game and show it has the same advantage against the
discrete log game as A has against the binding game. Our adversary here takes
a similar form as that used in the proof of special soundness for the Schnorr
protocol. Using this we can show Lemma 4 which easily shows Theorem 5.

Lemma 4
bind game(A) = dis log game(dis log A(A))

Theorem 5

bind advantage(A) = dis log advantage(A)

Finally we prove the correctness of the Pedersen scheme. This result comes
easily after proving some group identities in Isabelle.

Theorem 6. We have

P[(correct game(m)) = True] = 1.

8 Using Σ-Protocols to Construct Commitment Schemes

In [8], it was shown how commitment schemes can be constructed from Σ-
protocols. One can use the components of a Σ-protocol, for a relation R, to
form a commitment scheme as follows:

Key Generation. The keys are generated such that the verifier receives (h,w) ∈ R
that satisfy R and the committer receives only h.

On the Formalisation of Σ-Protocols and Commitment Schemes 191

Commit. The committer runs the simulator on their key h and the message, m,
they wish to commit. That is they run

(a, e, z) ← S(h,m)

and sends a to the verifier and keeps e and z as the opening values.

Verify. In the verification stage the prover sends e and z to the verifier who uses
the check algorithm of the Σ-protocol to confirm that (a, e, z) is an accepting
conversation, with respect to the private key w.

We recall that in the Commit stage we have e = m. The resulting commit-
ment scheme can be shown to be perfectly hiding and computationally binding.
Intuitively perfect hiding comes from the fact that the simulation is perfect (the
simulated and real views are equal) and that the initial message is not dependent
on the challenge. Binding holds as if a prover could output two sets of opening
values, (e, z) and (e′, z′), for one commitment a such that e �= e′ then (a, e, z)
and (a, e′, z) would both be accepting conversations and by the special sound-
ness property we could compute w, but this contradicts the hardness assumption
on R. We formally prove these results in Isabelle for the commitment scheme
constructed from the Schnorr Σ-protocol.

To formalise this in Isabelle we again explicitly define the constants required
for commitment schemes. We define these using the constants defined for the
Schnorr Σ-protocol. This requires us to import both locales (for commitment
schemes and Σ-protocols) and prove all assumptions relating to them. We are
then able to prove perfect hiding, computational binding and correctness of the
resulting commitment scheme. In the concrete setting we show a reduction of
the binding property to the discrete logarithm assumption.

Theorem 7. For the commitment scheme constructed from the Schnorr protocol
we have

P[correct game(m) = True] = 1

P[hiding game(A) = True] =
1
2

P[bind game(A) = True] = P[dis log(dis log A(A)) = True]

This result has taken an instantiated Σ-protocol, used its components to
instantiate a commitment scheme and proven this secure with respect the defi-
nitions we formalised for commitment schemes.

8.1 Asymptotic Case

So far in our formalisation the security parameter has been assumed to be
implicit in all algorithms (probabilistic programs). In this section we show how
we formalise proofs in the asymptotic setting using as an example the commit-
ment scheme we have just constructed using the Schnorr Σ-protocol. In our
formalisation we provide proofs in the asymptotic setting for all instantiations.

192 D. Butler et al.

The asymptotic setting is particularly interesting in the case of commitment
schemes as we can consider computational binding; a full proof will show the
adversary has only negligible chance of winning the binding game.

To realise such a proof we parametrise over the family of cyclic groups, specif-
ically we change the type from ‘grp cyclic group to nat ⇒ ‘grp cyclic group.
Thus the cyclic group is parametrised by the security parameter—a natural.
After importing the concrete setting parametrically for all n, all algorithms now
depend explicitly on the security parameter. Moreover, due to Isabelle’s mod-
ule structure we are able to use results proven in the concrete setting in our
newly constructed asymptotic setting. It is worth noting that results from the
concrete setting can only be used once it has been proven that the import is
valid, something the user is required to do when importing a module.

The properties, in the asymptotic case, for correctness and hiding can be
seen in Theorem 8. Superficially, the only difference is the security parameter
is an input to every statement and function. At a deeper level the proof uses
the equivalent theorems from the concrete setting and the module machinery to
dismiss the proof.

Theorem 8. In the asymptotic case, for security parameter, n, we have:

– P[correct game(n,msg) = True] = 1
– P[hiding game(n, (A(n))) = True] = 1

2 .

The more interesting case is the proof of computational binding as we are
required to show the binding advantage is negligible. In the concrete setting
(Theorem 7) we showed we could construct an adversary that had the same
advantage against the discrete log problem as the binding game. In the asymp-
totic setting we are able to assume that the discrete logarithm assumption holds;
that an adversary only has a negligible chance of winning the discrete log game.
Using this we can prove that the binding advantage too is negligible. This is
shown in Theorem 9.

Theorem 9

negligible (λn. bind advantage n (A n)) ⇐⇒
negligible (λn. dis log advantage n (dis log A n (A n)))

Our formalisation provides proofs in the asymptotic case for all relevant
properties presented in this paper in a similar manner as described above. We
refer the reader to our formalisation for more details.

9 Conclusions

In this work we have demonstrated that commitment schemes and Σ-protocols
can be formally proved secure in the computational model using a general
abstract framework. Our work uses Isabelle/HOL and its modularity mecha-
nisms, but in principle could be replicated in other interactive theorem provers.

On the Formalisation of Σ-Protocols and Commitment Schemes 193

The abstract frameworks can be used by others to formalise new commitment
schemes and Σ-protocols. The advantages of reasoning back to the same general
framework is that one can be sure the correct properties and definitions are being
considered. This consistency is not always apparent in informal cryptographic
proofs. We suggest that cryptographic advances should be monitored within a
formal framework where one is required to use the exact definitions set out for-
mally (the proof could be done on pen and paper) or provide a formal proof that
the chosen definitions are equivalent. This will help alleviate the abundance of
small differences in definitional approaches which undermine the field.

At the present state-of-the-art, prototyping this approach in an interactive
theorem prover seems essential as it allows one to explore the reasoning and
definition principles which are most effective in the domain. Eventually we may
hope that bespoke foundational reasoning tools could be built which may be
more usable by applied cryptographers (as is the aim of EasyCrypt, although it
is not foundational).

One major advantage of our framework being implemented in Isabelle is
that we can benefit from the vast infrastructure that comes with a well devel-
oped theorem prover, in contrast with custom made tools. We benefit from the
interactive nature of Isabelle meaning users have flexibility but also the high
level of automation and many proof engines available.

While CryptHOL and thus our framework still require a high level of specific
interactive theorem proving knowledge to use, new features are being developed
that make it more usable by the working cryptographer. For example recent
work in Isabelle [19], monad normalisation, has made handling the commuting
of samplings, a previously technical and subtle exercise, more simple. As more
features like this automate the intricate details needed in proofs the barrier to
entry to using CryptHOL will be significantly reduced.

Future Work. The frameworks we provide here can be used and instantiated to
give formal proofs of new commitment schemes and Σ-protocols. Both of these
primitives are used to provide security in the malicious model, consequently we
see this work as a building block to further formal proofs here.

10 Related Work

Little work has been done on formalising the computational model, compared to
the symbolic model. It is challenging as it requires mathematical reasoning about
probabilities and failure events, besides logic. The CertiCrypt [3] tool built in
Coq helped to capture the reasoning principles that were implemented directly
in the dedicated interactive EasyCrypt tool [4]. Again in Coq, the Foundational
Cryptographic Framework [18] provides a definitional language for probabilistic
programs, a theory that is used to reason about programs, and a library of tactics
for game-based proofs.

194 D. Butler et al.

CryptHOL [6], formalised in Isabelle, has been used in the game-based setting
[16], as well as the simulation-based paradigm [7]. Isabelle is a foundational
framework that relies on a set of accepted consistent axioms [10,13] and thus
provides a high guarantee of correctness in proofs.

The Pedersen commitment scheme has been proved secure in EasyCrypt
in [17]. One noticeable difference between the proof effort required is in the
construction of the adversary used to prove computational binding. We had to
work hard in Isabelle to give the output of the adversary in the binding game
as a division of two elements in the finite field. We are required to prove extra
properties of the Bezout function whereas the division can be easily expressed
in EasyCrypt.

10.1 Comparison with EasyCrypt

EasyCrypt is considered the state of the art in terms of proof assistants for cryp-
tography; it was designed as a dedicated tool for the working cryptographer. It
has a larger user base than CryptHOL, partially due to it having been devel-
oped a number of years before and its greater support and documentation. The
barrier to entry to using EasyCrypt is lower in comparison to Isabelle. We argue
however that there is room for more than one proof assistant when considering
cryptographic proof; in fact we suggest that it is essential to the development
of formal proof in this area. Growth in an area of research is rarely achieved by
considering only one approach; different proof assistants allow for different proof
styles and thus different insights into the cryptographic proofs at a fundamental
level.

One such difference in approach is the ability to follow paper proofs explicitly.
Isabelle’s deep and extensive foundations in mathematical logic meaning there
is a large amount of machinery available to the user when completing proofs.
This allows one to more closely follow the proof method given in the paper
proof. In EasyCrypt sometimes this is not possible. For example in [11] the
authors had to prove on paper that the security definitions they formalised were
equivalent to the traditional definitions in the literature. At a technical level this
is because the proof technique in EasyCrypt is often to reduce proofs to showing
properties about the equivalence of programs. This is not necessarily a weakness
of EasyCrypt, as it allows for new insights into proof techniques but it highlights
a difference between the two systems.

Finally, when using CryptHOL in Isabelle all proofs are checked with respect
the same logical core. That is, the whole CryptHOL framework resides within
Isabelle. However, some fundamental properties in EasyCrypt are outsourced
to be proven in Coq. Thus one could consider the approach of CryptHOL and
Isabelle to be more foundational.

Acknowledgements. We are grateful to Andreas Lochbihler for providing and con-
tinuing to develop CryptHOL and for his kind help given with using it.

On the Formalisation of Σ-Protocols and Commitment Schemes 195

References

1. https://github.com/alan-turing-institute/Crypto-Commit-Sigma-Isabelle
2. Bacelar Almeida, J., Barbosa, M., Bangerter, E., Barthe, G., Krenn, S., Zanella

Béguelin, S.: Full proof cryptography: verifiable compilation of efficient zero-
knowledge protocols. In: ACM Conference on Computer and Communications
Security, pp. 488–500. ACM (2012)

3. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. In: POPL, pp. 90–101. ACM (2009)

4. Barthe, G., Grégoire, B., Heraud, S., Zanella Béguelin, S.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 5

5. Barthe, G., Hedin, D., Zanella Béguelin, S., Grégoire, B., Heraud, S.: A machine-
checked formalization of sigma-protocols. In: CSF, pp. 246–260. IEEE Computer
Society (2010)

6. Basin, D.A., Lochbihler, A., Sefidgar, S.R.: CryptHOL: game-based proofs in
higher-order logic. IACR Cryptology ePrint Archive, p. 753 (2017)

7. Butler, D., Aspinall, D., Gascón, A.: How to simulate it in Isabelle: towards for-
mal proof for secure multi-party computation. In: Ayala-Rincón, M., Muñoz, C.A.
(eds.) ITP 2017. LNCS, vol. 10499, pp. 114–130. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66107-0 8

8. Damgard, I.: On Σ-protocols. Lecture Notes, University of Aarhus, Department
for Computer Science (2002)

9. Damg̊ard, I.: Commitment schemes and zero-knowledge protocols. In: Damg̊ard,
I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 63–86. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48969-X 3

10. Gordon, M.J.C., Melham, T.F.: Introduction to HOL a Theorem Proving Environ-
ment for Higher Order Logic. Cambridge University Press, New York (1993)

11. Haagh, H., Karbyshev, A., Oechsner, S., Spitters, B., Strub, P.-Y.: Computer-aided
proofs for multiparty computation with active security. In: CSF, pp. 119–131. IEEE
Computer Society (2018)

12. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. IACR
Cryptology ePrint Archive 2005:181 (2005)

13. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. In: Urban, C.,
Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 234–252. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22102-1 16

14. Lochbihler, A.: CryptHOL. Archive of Formal Proofs (2017)
15. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order

logic. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 503–531. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1 20

16. Lochbihler, A., Sefidgar, S.R., Bhatt, B.: Game-based cryptography in HOL.
Archive of Formal Proofs (2017)

17. Metere, R., Dong, C.: Automated cryptographic analysis of the Pedersen commit-
ment scheme. In: Rak, J., Bay, J., Kotenko, I., Popyack, L., Skormin, V., Szczy-
piorski, K. (eds.) MMM-ACNS 2017. LNCS, vol. 10446, pp. 275–287. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65127-9 22

18. Petcher, A., Morrisett, G.: The foundational cryptography framework. In: Focardi,
R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 53–72. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46666-7 4

https://github.com/alan-turing-institute/Crypto-Commit-Sigma-Isabelle
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-319-66107-0_8
https://doi.org/10.1007/978-3-319-66107-0_8
https://doi.org/10.1007/3-540-48969-X_3
https://doi.org/10.1007/978-3-319-22102-1_16
https://doi.org/10.1007/978-3-662-49498-1_20
https://doi.org/10.1007/978-3-319-65127-9_22
https://doi.org/10.1007/978-3-662-46666-7_4

196 D. Butler et al.

19. Schneider, J., Eberl, M., Lochbihler, A.: Monad normalisation. Archive of Formal
Proofs (2017)

20. Smart, N.P.: Cryptography Made Simple. Information Security and Cryptography.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21936-3. https://www.
cs.umd.edu/∼waa/414-F11/IntroToCrypto

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-21936-3
https://www.cs.umd.edu/~waa/414-F11/IntroToCrypto
https://www.cs.umd.edu/~waa/414-F11/IntroToCrypto
http://creativecommons.org/licenses/by/4.0/

Orchestrating Layered Attestations

John D. Ramsdell1(B), Paul D. Rowe1, Perry Alexander2, Sarah C. Helble3,
Peter Loscocco4, J. Aaron Pendergrass3, and Adam Petz2

1 The MITRE Corporation, Bedford, USA
ramsdell@mitre.org

2 The University of Kansas, Lawrence, USA
3 John Hopkins University Applied Physics Laboratory, Laurel, USA

4 National Security Agency, Fort Meade, USA

Abstract. We present Copland, a language for specifying layered
attestations. Layered attestations provide a remote appraiser with struc-
tured evidence of the integrity of a target system to support a trust
decision. The language is designed to bridge the gap between formal anal-
ysis of attestation security guarantees and concrete implementations. We
therefore provide two semantic interpretations of terms in our language.
The first is a denotational semantics in terms of partially ordered sets of
events. This directly connects Copland to prior work on layered attes-
tation. The second is an operational semantics detailing how the data
and control flow are executed. This gives explicit implementation guid-
ance for attestation frameworks. We show a formal connection between
the two semantics ensuring that any execution according to the oper-
ational semantics is consistent with the denotational event semantics.
This ensures that formal guarantees resulting from analyzing the event
semantics will hold for executions respecting the operational semantics.
All results have been formally verified with the Coq proof assistant.

1 Introduction

It is common to ask a particular target system whether it is trustworthy enough
to engage in a given activity. Remote attestation is a useful technique to support
such trust decisions in a wide variety of contexts. Fundamentally, remote attes-
tation consists in generating evidence of a system’s integrity via measurements,
and reporting the evidence to a remote party for appraisal. Depending on their
interpretation of the evidence, the remote appraiser can adjust their decision
according to the level of risk they are willing to assume.

Others have recognized the insufficiency of coarse-grained measurements in
supporting trust decisions [8,10,20,22]. Integrity evidence is typically either too
broad or too narrow to provide useful information to an appraiser. Very broad
evidence—such as patch levels for software—easily allows compromises to go
undetected by attestation. Very narrow evidence—such as a combined hash of
the complete trusted computing base—does not allow for natural variation across
systems and over time.
c© The Author(s) 2019
F. Nielson and D. Sands (Eds.): POST 2019, LNCS 11426, pp. 197–221, 2019.
https://doi.org/10.1007/978-3-030-17138-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17138-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-17138-4_9

198 J. D. Ramsdell et al.

An alternative approach is to build a global picture of system integrity by
measuring a subset of system components and reasoning about their integrity
individually and as a coherent whole. This approach can give an appraiser a more
nuanced view of the target system’s state because it can isolate integrity viola-
tions, telling the appraiser exactly which portions of the system can or cannot
be trusted. We call this approach layered attestation because protected isola-
tion frequently built into systems (e.g. hypervisor-enforced separation of virtual
machines) allows the attestation to build the global picture of integrity from the
bottom up, one layer at a time. A layered attestation whose structure mimics
the layered dependency structure of a target system can provide strong trust
guarantees. In prior work, we have formally proved that “bottom-up” strate-
gies for layered attestation force an adversary to either corrupt well-protected
components or work within small time-of-check-time-of-use windows [17,18].

The “bottom-up” principle has been embodied in many attestation systems
(e.g. [2,6,7,10,22]). A common tactic in these papers is to design the target
system and the attestation protocol in tandem to ensure the structure of the
attestation corresponds to the structure of the system. This results in solutions
that are too rigid and overly prescriptive. The solutions do not translate to other
systems with different structures.

In previous work, members of our team have taken a different approach. Maat
is a policy-based measurement and attestation (M&A) framework which provides
a centralized, pluggable service to gather and report integrity measurements [16].
Maat listens for attestation requests and can act as both an appraiser and an
attester, depending on the needs of the current scenario. After a request for
appraisal is received, the Maat instance on the appraiser system contacts and
negotiates with the attesting system’s Maat instance to agree upon the set of
evidence that must be provided for the scenario. Thus Maat provides a flexible
set of capabilities that can be tailored to the needs of any given situation. It is
therefore a much more extensible attestation framework.

In early development of Maat, the negotiation was entirely based on a set of
well-known UUIDs and was limited in flexibility, especially when Maat instances
did not share a core set of measurement capabilities. We discovered that this
approach to negotiation severely limited the extensibility of Maat. It is not suf-
ficient to have a flexible set of attestation mechanisms—a flexible language for
specifying layered attestations is crucial. This paper introduces such a language.

Contribution. We present Copland, a language and formal system for
orchestrating layered attestations. Copland provides domain specific syntax for
specifying attestation protocols, an operational semantics for guiding implemen-
tations, and a denotational semantics for reasoning and negotiation. We designed
Copland with Maat in mind aiming to address three main requirements.

First, it must be flexible enough to accommodate the wide diversity of capa-
bilities offered by Maat. Copland is parametric with respect to the basic actions
that generate and process evidence (i.e. measurement and bundling). Since we
cannot expect all platforms and architectures to have the same set of capabili-
ties, Copland focuses instead on specifying the ways in which these pieces fit

Orchestrating Layered Attestations 199

together. Copland programs, which we call phrases or terms, are built out of
a small set of operators designed to orchestrate the activities of measurement
agents across several layers of a target system.

Second, the language must have an unambiguous execution semantics. We
provide a formal, operational semantics allowing a target to know precisely how
to manage the flow of control and data throughout the attestation. This oper-
ational semantics serves as a correctness constraint for implementations, and
generates traces of events that record the order in which actions occurred.

Finally, it must enable static analysis to determine the trust properties guar-
anteed by alternative phrases. For this purpose we provide a denotational seman-
tics relating phrases to a partially ordered set of events. This semantics is explic-
itly designed to connect with our prior work on analytic principles of layered
attestation [17,18]. By applying those principles in static analysis, both target
and appraiser can write policies determining which phrases may be used in which
situations based on the trust guarantees they provide.

Critically, we prove a strong connection between the operational execution
semantics and the denotational event semantics. We show that any trace gener-
ated by the operational semantics is a linearization of the event partial ordering
given by the denotational semantics. This ensures that any trust conclusions
made from the event partial order are guaranteed to hold over the concrete exe-
cution. In particular, our previous work [17,18] characterizes what an adversary
must do to avoid detection given a specific partial order of events, identifying
strategies to force an adversary to work quickly in short time-of-check-time-
of-use windows, or dig deeper into more protected layers of the system. This
connection is particularly important in light of the flexibility of the language.
Since our basic tenet is that a more constrained language is inherently of less
value, it is crucial that we provide a link to analytic techniques that help people
distinguish between good and bad ways to perform a layered attestations. We
discuss this connection to our previous work in much more detail in Sect. 7.

Phrases

denotational operational

Event Poset constrains Small-Step

Fig. 1. Semantic relations

Figure 1 depicts the connections among our various contributions. It also
provides a useful outline of the paper. Section 3 describes the syntax of Copland
corresponding to the apex of the triangle in Fig. 1. Section 4 introduces events.
Events are the foundation for both semantic notions depicted in Fig. 1. Each
semantic notion constrains the event ordering in its own way. The denotational
semantics of the left leg of the triangle is presented in Sect. 5, and the operational

200 J. D. Ramsdell et al.

semantics of the right leg is given in Sect. 6. The crucial theorem connecting the
two semantic notions is sketched in Sect. 7.

All lemmas and theorems stated in this paper have been formally verified
using the Coq proof assistant [1]. The Coq proofs are available at https://ku-
sldg.github.io/copland/. The notation used in this paper closely follows the Coq
proofs. The tables in Appendix B link figures and formulas with their definitions
in the Coq proofs.

Before jumping into the formal details of the syntax and semantics of Cop-
land, however, we present a sequence of simple examples designed to give the
reader a feel for the language and its purpose.

2 Examples of Layered Attestations

Consider an example of a corporate gateway that appraises machines before
allowing them to join the corporate network. A simple attestation might entail
a request for the machine to perform an asset inventory to ensure all software is
up-to-date. For purposes of exposition, we may view this as an abstract userspace
measurement USM that takes an argument list ā1 of the enterprise software to
inventory. We can express a request for a particular target p to perform this
measurement with the following Copland phrase:

@p USM ā1 (1)

This says the measurement capability identifiable as USM should be executed at
location identified by p using arguments ā1. The request results in evidence of
the form Up(ξ) indicating the type of measurement performed, the target of the
measurement p, and any previously generated evidence (in this case the empty
evidence ξ) it received and combined with the newly generated evidence.

If the company is concerned with the assets in the inventory being under-
mined by a rootkit in the operating system kernel, it might require additional
evidence that no such rootkit exists. This could be done by asking for a ker-
nel integrity measurement KIM to be taken of the place p in addition to the
userspace measurement. The request could be made with the following phrase:

@p (KIM p ā2
(⊥,⊥)∼ USM ā1) (2)

In this notation, KIM p ā2 represents a request for the KIM measurement capa-

bility to be applied to the target place p with arguments ā2. The symbol
(�,r)∼

indicates the two measurements may be taken concurrently. The annotation �
defines how evidence accumulated so far is transformed for use by the phrase on
the left, and r for the one on the right. In the case of (⊥,⊥), no evidence is sent
in either direction. The evidence resulting from the two composed measurements
has the form Kp

p(ξ) ‖ Up(ξ), where ‖ indicates the measurements were invoked
concurrently.

If the enterprise has configured their machines to have two layers of different
privilege levels (say by virtualization), then they may wish to request that the

https://ku-sldg.github.io/copland/
https://ku-sldg.github.io/copland/

Orchestrating Layered Attestations 201

kernel measurement be taken from a more protected location q. This results in
the following request.

@q (KIM p ā2
(⊥,⊥)∼ @p USM ā1) (3)

Notice the kernel measurement target is still the kernel at p, but the request is
now being made of the measurement capability located at q. The kernel measure-
ment of p taken from q and the request for p to take a userspace measurement
of its own environment can occur concurrently. The resulting evidence has the
form Kp

q(ξ) ‖ Up(ξ), where the subscript q indicates the kernel measurement was
taken from the vantage point of q, and the superscript p indicates the location
of the kernel measurer’s target. The subscript p in the second occurrence of the
@ sign indicates that the userspace measurement is taken from location p.

Finally, consider two more changes to the request that makes the evidence
more convincing. By measuring the kernel at p before the userspace measurement
occurs, the appraiser can learn that the kernel was uncompromised at the time of
the userspace measurement. This bottom-up strategy is common in approaches
to layered attestation [17,22]. Additionally, an appraiser may wish each piece of
evidence to be signed as a rudimentary chain of evidence. These can both be
specified with the following phrase.

@q ((KIM p ā2 → SIG)
(⊥,⊥)≺ @p (USM ā1 → SIG)) (4)

In this phrase, the ≺ symbol is used to request that the term on the left complete
its execution before starting execution of the term on the right. The → symbol
routes data from the term on the left to the term on the right, similar to function
composition. In this case evidence coming from KIM and USM is routed to two
separate instances of a digital signature primitive. Since these signatures occur
at two different locations, they will use two different signing keys. The resulting
evidence has the form [[Kp

q(ξ)]]q ;; [[Up(ξ)]]p, where ;; indicates the evidence was
generated in sequence, and the square brackets represent signatures using the
private key associated with the location identified by the subscript.

Copland provides a level of flexibility and explicitness that can be lever-
aged for more than the prescription of the evidence to be gathered. Using this
common semantics, appraisers and attesters have the ability to negotiate spe-
cific measurement agents and targets to utilize to prove integrity. For example, if
the measurement requested is computationally intensive, an attester may prefer
to provide a cached version of the evidence. The appraiser may be willing to
accept this cached version, depending on local policy. In this scenario, a negoti-
ation would take place between the two systems to determine an agreeable set
of terms. The appraiser could begin by requesting that Eq. (4) be performed by
the target, which would then counter with a different phrase specifying cached
instead of fresh measurement. Depending on the implementation, this difference
could utilize an entirely separate measurement primitive (e.g., C USM instead
of USM) or merely a separate set of arguments to the primitive. The ability to
specify the collection of previously generated evidence is especially important
when gathering evidence created via a measured boot.

202 J. D. Ramsdell et al.

The actions taken to appraise evidence can also be defined by phrases and
negotiated before the attestation takes place. If the target is willing to perform
a measurement action but doesn’t trust the appraiser with the result, the two
parties could agree upon a mutually trusted third party to act as the appraiser.

3 Phrases

We begin with the basic syntax of phrases in Copland. Figure 2 defines the
grammar of phrases (T) parameterized by atomic actions (A) and the type (E) of
evidence they produce when evaluated. Figure 3 defines phrase evaluation. Each
phrase specifies what measurements are taken, various operations on evidence,
and where measurements and operations are performed. Phrases also specify
orderings and dependencies among measurements and operations.

A CPY | USM ā | KIM P ā | SIG | HSH | · · ·
T A | @P T | (T T) | (T π≺ T) | (T π∼ T)
E ξ | UP (E) | KP

P (E) | [[E]]P | #P E | (E ;; E) | (E ‖ E) | · · ·
where π = (π1, π2) is a pair of splitting functions.

Fig. 2. Phrase and evidence grammar

The atomic phrases either produce evidence via measurement, or trans-
form evidence via computation. Some actions, like USM ā, perform measure-
ments of their associated place, while others, such as KIM q ā, measure another
place. A userspace measurement, USM ā, measures the local environment. The
term @p USM ā requests that place p perform some measurement USM ā of its
userspace. Such measurements may range from a simple file hash to complex
run time analysis of an application. A kernel integrity measurement, KIM q ā,
measures another place. The term @p KIM q ā requests that p perform a kernel
measurement on place q. Such measurements measure one place from another
and perform integrity measurements such as LKIM [14]. Starting from a trusted
place p, @p KIM q ā can gather evidence for establishing trust in q and transi-
tively construct chains of trusted enclaves.

The Copland phrase @p t corresponds to the essential function of remote
attestation—making a request of place p to execute a protocol term t. Places cor-
respond with attestation managers that are capable of responding to attestation
requests. Places may be as simple as an IoT device that returns a single value
on request or as complicated as a full SELinux installation capable of complex
protocol execution.

Evidence produced by @p USM ā and @p KIM q ā have types Up(e) and Kq
p(e)

respectively where p is the place performing measurement, q is the target place,
and e is the type of incoming evidence. Place p is obtained from context specified
by the @p t phrase invoking KIM q ā. Notice that we work with dependent types.

Orchestrating Layered Attestations 203

The phrases (t1 → t2), (t1
π≺ t2), and (t1

π∼ t2) specify sequential and paral-
lel composition of subterms. Phrase (t1 → t2) evaluates two terms in sequence,
passing the evidence output by the first term as input to the second term. The
phrase (t1

π≺ t2) is similar in that the first term runs to completion before the
second term begins. It differs in that evidence is not sent from the first term
as input to the second term. Instead, each term receives some filtered version
of the evidence accumulated thus far from the parent phrase. This evidence is
split between the two subterms according to the splitting functions π = (π1, π2)
that specify the filter used before passing evidence to each subterm. The result-
ing evidence has the form (e1 ;; e2) indicating evidence gathered in sequence.
Finally, (t1

π∼ t2) specifies its two subterms execute in parallel with data split-
ting specified by π = (π1, π2). The evidence term (e1 ‖ e2) captures that subterm
evaluation occurs in parallel.

Two common filters are identity and empty. id e = e returns its argument,
producing a copy of the filtered evidence while ⊥ e = ξ always returns empty
evidence regardless of input. For example, π = (⊥,⊥) passes empty evidence
to both subterms, π = (⊥, id) sends all evidence to the right subterm, and
π = (id , id) sends all evidence to both subterms.

A collection of operator terms specifies various operations over evidence. SIG,
HSH, and CPY generate a signature, a hash and a copy of evidence previously
gathered. The evidence forms generated by SIG and HSH are [[e]]p and #p e,
respectively. A place identifies itself in a hash by including its identity in the
data being hashed. Unlike a cryptographic signature, this serves only to identify
the entity performing the hash. It does not provide protection against forgery.
Our choice to use hashes in this way is not critical to achieving the Copland
design goals. Replacing it with more standard hashes would cause no problem.
Other operator terms are anticipated, but these are sufficient for this exposition
and for most phrases used in our examples.

E(CPY, p, e) = e

E(USM ā, p, e) = Up(e)

E(KIM q ā, p, e) = Kq
p(e)

E(SIG, p, e) = [[e]]p
E(HSH, p, e) = #p e

E(@q t, p, e) = E(t, q, e)
E(t1 t2, p, e) = E(t2, p, E(t1, p, e))

E(t1 π≺ t2, p, e) = E(t1, p, π1(e)) ;; E(t2, p, π2(e)) where π = (π1, π2)

E(t1 π∼ t2, p, e) = E(t1, p, π1(e)) ‖ E(t2, p, π2(e)) where π = (π1, π2)

Fig. 3. Evidence semantics

204 J. D. Ramsdell et al.

4 Events

Events are observable effects associated with phrase execution. For example,
a userspace measurement event occurs when a USM term executes; a remote
request event occurs when @p t begins executing; and a sequence of split and
join events occur when the various sequential and parallel composition terms
execute. The events resulting from executing a phrase characterize that phrase.

The events associated with a subphrase t1 within phrase t0 is determined by
the position in t0 at which the subphrase occurs. For example, the term (t → t)
has two occurrences of t that will be associated with some events. It is essential
that the set of events associated with the left occurrence is disjoint from the set
of events associated with the right occurrence. For this reason, each event has
an associated natural number that is unique to that event.

[t]i+1
i ∈ T i+1

i if t is atomic

[@p t]j+1
i ∈ T j+1

i if t ∈ T j
i+1

[t1 t2]ki ∈ T k
i if t1 ∈ T j

i and t2 ∈ T k
j

[t1
π≺ t2]k+1

i ∈ T k+1
i if t1 ∈ T j

i+1 and t2 ∈ T k
j

[t1
π∼ t2]k+1

i ∈ T k+1
i if t1 ∈ T j

i+1 and t2 ∈ T k
j

Fig. 4. Annotated terms

Annotated terms enable the generation of a unique number for each event in
the Coq proofs. An annotated term, [t]ji , adds bounds, i and j to term t, where
i and j are natural numbers. By construction each event related to [t]ji has a
unique natural number k such that i ≤ k < j. The set of all annotated terms is
defined by T̄ =

⋃∞
i,j=0 T j

i , where T j
i is defined in Fig. 4. The number of events

associated with [t]ji is j − i.
As examples, two terms from T̄ are:

[[KIM p ā]10 → [SIG]21]
2
0 [@p [USM ā]21]

3
0

The annotations on KIM and SIG indicate that the event associated with KIM
is numbered 0 while the event associated with SIG is numbered 1. The entire
sequence term includes numbers for both KIM and SIG. Similarly the @p USM ā
term allocates the number 1 for USM, and adds 0 and 2 for a request and reply
event respectively associated with @p t. For details of annotation generation, see
Fig. 9 in Appendix A, which presents a simple function that translates terms
into annotated terms.

Figure 5 presents event syntax while Fig. 6 relates phrases to events. The
relation between annotated term t, place p, evidence e, and the associated event
v, is written t �p

e v. Given some term t and current evidence e in place p, t �p
e v

relates event v to t in p. Note that each event has a natural number whose
purpose is to uniquely identify the event as required by the Coq proofs.

Orchestrating Layered Attestations 205

V CPY(N, P, E) | USM(N, P, L, E, E) | KIM(N, P, L, E, E)
| SIG(N, P, E, E) | HSH(N, P, E, E) | REQ(N, P, P, E)
| RPY(N, P, P, E) | SPLIT(N, P, E, E, E) | JOIN(N, P, E, E, E)

Fig. 5. Event grammar

[CPY]i+1
i �p

e CPY(i, p, e)
[USM ā]i+1

i �p
e USM(i, p, ā, e,Up(e))

[KIM q ā]i+1
i �p

e KIM(i, p, ā, e,Kq
p(e))

[SIG]i+1
i �p

e SIG(i, p, e, [[e]]p)
[HSH]i+1

i �p
e HSH(i, p, e,#p e)

[@q t]ji �p
e REQ(i, p, q, e)

[@q t]ji �p
e v if t �q

e v

[@q t]ji �p
e RPY(j − 1, p, q, Ē(t, q, e))

[t1 t2]ji �p
e v if t1 �p

e v

[t1 t2]ji �p
e v if t2 �

p

Ē(t1,p,e)
v

[t1
π≺ t2]ji �p

e SPLIT(i, p, e, π1(e), π2(e))
[t1

π≺ t2]ji �p
e v if t1 �

p
π1(e)

v

[t1
π≺ t2]ji �p

e v if t2 �
p
π2(e)

v

[t1
π≺ t2]ji �p

e JOIN(j − 1, p, e1, e2, e1 ;; e2)
where e1 = Ē(t1, p, π1(e)) and e2 = Ē(t2, p, π2(e))

[t1
π∼ t2]ji �p

e SPLIT(i, p, e, π1(e), π2(e))
[t1

π∼ t2]ji �p
e v if t1 �

p
π1(e)

v

[t1
π∼ t2]ji �p

e v if t2 �
p
π2(e)

v

[t1
π∼ t2]ji �p

e JOIN(j − 1, p, e1, e2, e1 ‖ e2)
where e1 = Ē(t1, p, π1(e)) and e2 = Ē(t2, p, π2(e))

Fig. 6. Events of terms

Each atomic term has exactly one associated event that records execution
details of the term including resulting evidence. Each @p t term is associated
with a request event, a reply event, and the events associated with term t. Each
(t1 → t2) term is associated with the events of its subterms. Both (t1

π≺ t2)
and (t1

π∼ t2) are associated with the events of their subterms as well as a split
and a join event. The evidence function Ē is the same as E except it applies to
annotated terms instead of terms.

Essential properties of the annotations are expressed in Lemmas 1–3. In each
lemma, let ι be a projection from an event to its number.

206 J. D. Ramsdell et al.

Lemma 1. [t]ji �p
e v implies i ≤ ι(v) < j.

Each event associated with a term has a number in the range of the term’s
annotation. This is critical to the way that subterm annotations are composed
to form term annotations.

Lemma 2. t �p
e v1 and t �p

e v2 and ι(v1) = ι(v2) implies v1 = v2.

Event numbers are unique to events. If two events have the same number,
they must be the same event.

Lemma 3. i ≤ k < j implies for some v, [t]ji �p
e v and ι(v) = k.

There is an event associated with every number in an annotation range. There
are no unassigned numbers in the range of an annotation.

5 Partial Order Semantics

The previous mapping of phrases to evidence types defines a denotational seman-
tics for evaluation. The t �p

e v relation defines visible events that result when
a phrase executes. Here we add a partial order to define correct orderings of
events associated with an execution. In Definition 5, we define strict partial order
R(t, p, e) over the set {v | t �p

e v}, for some term t, place p, and initial evidence e.
It defines requirements on any event trace produced by evaluating t at p with e.

The relation R(t, p, e) is defined by first introducing a language for repre-
senting strict partial orders, then representing semantics of language terms as
event partial orders. The grammar defining the objects used to represent strict
partial orders is

O ← V | (O � O) | (O �� O).

Events are ordered with the precedes relation. We write o :v ≺ v′ when event
v precedes another v′ in partial order o. We write v ∈ o if event v occurs in o.

Definition 4 (Precedes). o : v ≺ v′ is the smallest relation such that:

1. o = o1 � o2 implies v ∈ o1 and v′ ∈ o2 or o1 : v ≺ v′ or o2 : v ≺ v′

2. o = o1 �� o2 implies o1 : v ≺ v′ or o2 : v ≺ v′

The set of events associated with o is the set {v | v ∈ o}, and o represents
the poset that orders that set.

If o1 and o2 represent disjoint posets, then o1 � o2 represents the poset that
respects the orders in o1 and o2 and for which every event in o1 is before every
event in o2. Therefore, � is called the before operator. Additionally, o1 �� o2
represents the poset which simply retains the orders in both o1 and o2, and so ��
is called the merge operator. When applied to mutually disjoint posets, � and
�� are associative.

Orchestrating Layered Attestations 207

Definition 5 (Strict Partial Order)

R(t, p, e)(v, v′) = V(t, p, e) : v ≺ v′

where V(t, p, e) is defined in Fig. 7.

The definition of V(t, p, e) is carefully crafted so that the posets combined by� and �� are disjoint.
For the phrase @q USM ā, the strict partial order term starting with 0 is

Example 6. V([@q [USM ā]21]
3
0, p, e) = REQ(0, . . .) � USM(1, . . .) � RPY(2, . . .).

V([CPY]i+1
i , p, e) = CPY(i, p, e)

V([USM ā]i+1
i , p, e) = USM(i, p, ā, e,Up(e))

V([KIM q ā]i+1
i , p, e) = KIM(i, p, ā, e,Kq

p(e))
V([SIG]i+1

i , p, e) = SIG(i, p, e, [[e]]p)
V([HSH]i+1

i , p, e) = HSH(i, p, e,#p e)
V([@q t]ji , p, e) = REQ(i, p, q, e) � V(t, q, e) � RPY(j − 1, p, q, Ē(t, q, e))

V([t1 t2]ji , p, e) = V(t1, p, e) � V(t2, p, Ē(t1, p, e))
V([t1

π≺ t2]ji , p, e) = SPLIT(i, p, e, π1(e), π2(e)) � V(t1, p, π1(e)) � V(t2, p, π2(e))�
JOIN(j − 1, p, e1, e2, e1 ;; e2)

where e1 = Ē(t1, p, π1(e)) and e2 = Ē(t2, p, π2(e))
V([t1

π∼ t2]ji , p, e) = SPLIT(i, p, e, π1(e), π2(e)) � (V(t1, p, π1(e)) �� V(t2, p, π2(e)))�
JOIN(j − 1, p, e1, e2, e1 ‖ e2)

where e1 = Ē(t1, p, π1(e)) and e2 = Ē(t2, p, π2(e))

Fig. 7. Event semantics

The R(t, p, e) relation is verified to be both irreflexive and transitive, demon-
strating it is a strict partial order.

Lemma 7 (Irreflexive). ¬V(t, p, e) : v ≺ v.

Lemma 8 (Transitive). V(t, p, e) : v1 ≺ v2 and V(t, p, e) : v2 ≺ v3 implies
V(t, p, e) : v1 ≺ v3.

Evaluating t is shown to include v if and only if v is associated with t.
This ensures that all events associated with t are accounted for in the evaluation
relation and that the evaluation relation does not introduce events not associated
with t. Thus R(t, p, e) is a strict partial order for the set {v | t �p

e v}.

Lemma 9 (Correspondence). v ∈ V(t, p, e) iff t �p
e v.

Figure 7 defines event semantics in terms of the term being processed, the
place managing execution, and the initial evidence. Measurement terms and
evidence operations trivially translate into their corresponding atomic events
whose output is the corresponding measurement or calculated result.

208 J. D. Ramsdell et al.

Simple sequential execution t = (t1 → t2) is defined using the canonical
method where output evidence from the first operation is used as input to the
second. The before operator (�) ensures that all events from t1 complete in the
order specified by R(t, p, e) before events from t2 start. Note the appearance of
evidence semantics in the definition to calculate event output in the canonical
fashion.

Sequential execution with data splitting t = (t1
π≺ t2) is defined by again

using the before operator to ensure t1 events complete as specified by R(t, p, e)
before events from t2 begin. The distinction from simple sequential execution is
using π1 and π2 from π to split evidence between t1 and t2. The SPLIT event
routes evidence to t1 and t2 while JOIN composes results indicating sequential
execution.

Parallel execution with data splitting (t1
π∼ t2) is defined using split and

join events. Again π1 and π2 determine how evidence is routed to the composed
posets. The merge operator (��) specifies parallel composition while respecting
the orders specified for t1 and t2. The final � operator ensures that both posets
are ordered before JOIN.

The @p t operation responsible for making requests of other places is defined
using communication events. The protocol term @q t evaluated by p results in
an event poset where: (i) p and q synchronize on a request for q to perform t; (ii)
q runs t; (iii) p and q synchronize on the reply back to p sending the resulting
evidence. The before operator (�) ensures that each sequential step completes
before moving to the next.

Definition 10. The output evidence associated with an event is the right-most
evidence used to construct the event.

Lemma 11. V(t, p, e) always has a unique maximal event emax, and the output
of emax is Ē(t, p, e).

Lemma 11 shows that evaluating a term with the evidence semantics of Fig. 3
produces the same evidence as evaluating the same term with the event seman-
tics of Fig. 7. Every annotated term has a unique maximal event as defined by
V(t, p, e) implying that each finite sequence of events must have a last event.
The evidence associated with that maximal event represents evidence produced
by any event sequence satisfying the partial order. Additionally, that evidence
is equal to the evidence produced by Ē(t, p, e) for the same term, place and
evidence. Lemma 11 proves that evaluating t in place p results in the same evi-
dence using both the evidence and event semantics. Specifically, that Ē(t, p, e)
and V(t, p, e) are weakly bisimilar, producing the same result.

6 Small-Step Semantics

The small-step semantics for Copland is defined as a labeled transition system
whose states represent protocol execution states and whose labels represent events
interacting with the execution environment. The single-step transition relation is

Orchestrating Layered Attestations 209

s1
�� s2, where s1 and s2 are states and � is either an event or τ denoting a silent

transition. The transition s1
�� s2 says that a system in state s1 will transition in

one step to state s2 engaging in the observable event, v, or no event when � = τ .
The relation s1

c�∗ s2 is the reflexive, transitive closure of the single-step relation.
c is called an event trace and is the sequence of events resulting from each state
transition. The transition s1

c�∗ s2 says that a system in state s1 will transition
to state s2 in zero or more steps engaging in the event sequence c.

The grammar defining the set of states, S, is

S ← C(T̄ , P,E) | D(P,E) | A(N, P, S) | LS(S, T̄)
| BS�(N, S, T̄ , P,E) | BSr(N, E, S) | BP(N, S, S),

where P is the syntactic category for places, E is for evidence, and T̄ is for
annotated terms. The transition relation for phrases is presented in Fig. 8.

State C(t, p, e) is a configuration state defining the start of evaluating t at
p with initial evidence e. Its complement is the stop state D(p, e′) defining the
end of evaluation in p with final evidence e′. Assertion C(t, p, e)

c�∗ D(p, e′)
represents evaluating t at p resulting in evidence e′ and event trace c.

A configuration for an atomic term transitions in one step to a done state
containing measured or computed evidence after executing an event. For exam-
ple, the state C([USM ā]i+1

i , p, e) transitions to D(p,Up(e)) after the single event
USM(i, p, ā, e,Up(e)) performs the represented measurement. Similarly, the state
C([CPY]i+1

i , p, e) transitions to D(p, e) after the single event CPY(i, p, e) copies
the evidence.

The state A(j − 1, p, s) occurs while evaluating an [@q t]ji term and is used
to remember the number to be used to construct a reply event and the place
to send the result of evaluating t at q after the reply event. A configuration
state C(@q t, p, e) starts the evaluation of @q t by p and transitions immediately
to A(j − 1, p, C(t, q, e)) after executing the request event REQ(i, p, q, e). The
nested state C(t, q, e) represents remote term execution. Evaluation proceeds
with A(j − 1, p, s) transitioning to A(j − 1, p, s′) when s

v� s′. Any event v

associated with s
v� s′ is also associated with the transition A(j − 1, p, s) v�

A(j − 1, p, s′) and will contribute to the trace. When a state A(j −1, p,D(q, e′))
results, remote execution completes and the result of q evaluating t as requested
by p is D(p, e′) after event RPY(j − 1, p, q, e′).

The state LS(s1, t2) is associated with evaluating (t1 → t2). State s1 repre-
sents the current state of term t1 and t2 is the second term waiting for evalua-
tion. The state C([t1 → t2]

j
i , p, s) transitions to LS(C(t1, p, e), t2) representing t1

ready for evaluation and t2 waiting. The annotation is ignored in this transition
because the transitions are silent. Subsequent transitions evaluate C(t1, p, e) until
reaching state LS(D(p, e1), t2) after producing event trace v1. This state silently
transitions to C(t2, p, e1) configuring t2 for evaluation using e1 as initial evidence.
t2 evaluates in a similar fashion resulting in e2 and trace v2. State D(p, e2) is the
final state with e2 as evidence having engaged in the concatenation of v1 and v2,
v1 ∗ v2.

210 J. D. Ramsdell et al.

For atomic terms:

C([CPY]i+1
i , p, e) v D(p, e) [v = CPY(i, p, e)]

C([USM ā]i+1
i , p, e) v D(p,Up(e)) [v = USM(i, p, ā, e,Up(e))]

C([KIM q ā]i+1
i , p, e) v D(p,Kq

p(e)) [v = KIM(i, p, ā, e,Kq
p(e))]

C([SIG]i+1
i , p, e) v D(p, [[e]]p) [v = SIG(i, p, e, [[e]]p)]

C([HSH]i+1
i , p, e) v D(p,#p e) [v = HSH(i, p, e,#p e)]

For @q t:

C([@q t]ji , p, e) v A(j − 1, p, C(t, q, e)) [v = REQ(i, p, q, e)]

A(i, p, s1)
v A(i, p, s2) if s1

v
s2

A(i, p, D(q, e)) v D(p, e) [v = RPY(i, p, q, e)]

For t1 t2:

C([t1 t2]ji , p, e) τ LS(C(t1, p, e), t2)

LS(s1, t2) v LS(s2, t2) if s1
v

s2

LS(D(p, e), t) τ C(t, p, e)

For t1
s≺ t2:

C([t1 s≺ t2]ji , p, e) v BS�(j − 1, C(t1, p, π1(e)), t2, p, π2(e))

[v = SPLIT(i, p, e, π1(e), π2(e))]

BS�(i, s1, t, p, e) v BS�(i, s2, t, p, e) if s1
v

s2

BS�(i, D(p, e), t, p′, e′) τ BSr(i, e, C(t, p′, e′))

BSr(i, e, s1)
v BSr(i, e, s2) if s1

v
s2

BSr(i, e1, D(p, e2))
v D(p, e1 ;; e2) [v = JOIN(i, p, e1, e2, e1 ;; e2)]

For t1
s∼ t2:

C([t1 s∼ t2]ji , p, e) v BP(j − 1, C(t1, p, π1(e)), C(t2, p, π2(e)))

[v = SPLIT(i, p, e, π1(e), π2(e))]

BP(i, S, s1)
v BP(i, S, s2) if s1

v
s2

BP(i, s1, S)
v BP(i, s2, S) if s1

v
s2

BP(i, D(p, e1), D(p, e2))
v D(p, e1 ‖ e2) [v = JOIN(i, p, e1, e2, e1 ‖ e2)]

Fig. 8. Labeled transition system

States BS�(j − 1, s, t, p, e) and BSr(j − 1, e, s) are associated with evalu-
ating the left and right subterms of [t1

π≺ t2]
j
i respectively. Recall that t1

π≺
t2 differs from t1 → t2 because the initial evidence for t1

π≺ t2 is split
between t1 and t2 and the resulting evidence is the sequential composition

Orchestrating Layered Attestations 211

of evidence from t1 and t2. The configuration state C([t1
π≺ t2]

j
i , p, e) transi-

tions immediately to BS�(j − 1, C(t1, p, π1(e)), t2, p, π2(e)) after the split event
SPLIT(i, p, e, π1(e), π2(e)), where π = (π1, π2). This state captures the initial
configuration of t1 ready to evaluate with evidence π1(e) along with t2 wait-
ing to execute with evidence π2(e) after t1 completes. Evaluation proceeds
with state BS�(j − 1, s, t2, p, π2(e)) transitioning to BS�(j − 1, s′, t2, p, π2(e))
after event v when s

v� s′. After one or more such transitions a state
BS�(j−1,D(p, e′

1), t, p, e2) is reached after event sequence v1 indicating that eval-
uating t1 has ended and t2 should begin. This state transitions to BSr(j−1, e′

1, s)
with s initially C(t2, p, π2(e)) and e′

1 being the evidence from t1. This state will
transition repeatedly until a state BSr(j − 1, e′

1,D(p, e′
2)) results after trace v2

representing completion of t2. Both t1 and t2 are complete with evidence e′
1 and

e′
2 and evidence must be composed. The final state transitions to D(p, e1 ;; e2)

after the join event JOIN(j − 1, p, e1, e2, e1 ;; e2) where en = Ē(tn, p, πn(e)).
State BP(j − 1, s1, s2) is associated with parallel evaluation of t1 and t2.

The configuration state C([t1
π∼ t2]

j
i , p, e) immediately transitions to BP(j −

1, C(t1, p, π1(e)), C(t2, p, π2(e))) after the split event SPLIT(i, p, e, π1(e), π2(e)).
Note that in the state BP(j−1, C(t1, p, π1(e)), C(t2, p, π2(e))) configuration states
for both t1 and t2 can evaluate. More generally in any state BP(j − 1, s1, s2)
evaluating either s1 and s2 may cause the state to transition. When evaluation
reaches a term of the form BP(j − 1,D(p, e′

1),D(p, e′
2)) both term evaluations

are complete. This final state transitions to D(p, e1 ‖ e2) after the join event
JOIN(j − 1, p, e1, e2, e1 ‖ e2).

We prove Correctness, Progress, and Termination with respect to this transi-
tion system. Correctness defines congruence between the small-step operational
semantics and the denotational evidence semantics. Specifically, if the multi-step
evaluation relation maps state C(t, p, e) to D(p, e′) then Ē(t, p, e) = e′.

Lemma 12 (Correctness). If C(t, p, e)
c�∗ D(p, e′) then Ē(t, p, e) = e′.

Progress states that every state is either a stop state of the form D(p, e) or it
can be evaluated. With the Progress lemma we know that there exist no “stuck”
states in the operational semantics.

Lemma 13 (Progress). Either s1 = D(p, e) for some p and e or s1
v� s2 for

some v and s2.

Termination states that any configuration state will transition to a done state
of the form D(p, e) in a finite number of steps. This is a strong condition that
assures evaluation of any well-formed term will terminate.

Lemma 14 (Termination). For some n, C(t, p, e)
c�n D(p, e′).

7 Proof Summary

The ordering of events is a critically important property of attestation systems.
Even when measurement events properly execute individually, their ordering

212 J. D. Ramsdell et al.

is what establishes trust chains. If a component performs measurement before
being measured, any trust in that component and subsequent components is lost.

Figure 1 shows phrases denoted as event posets and defined operationally as
a labeled transition system. The event posets define legal orderings of events
in traces while the LTS defines traces associated with phrase evaluation. The
remaining theoretical result is proving that the small-step semantics produces
traces compatible with the partial order semantics.

To present event sequences we use the classical notation 〈v1, v2, . . . , vn〉 for
sequence construction and c ↓ i to select the ith element from sequence c. The
concatenation of c1 and c2 is c1 ∗ c2. Event v is earlier than event v′ in trace c,
written v �c v′, iff there exists an i and j such that i < j and c ↓ i = v and
c ↓ j = v′.

The main correctness theorem states that if some term t evaluates to evidence
e′ after trace c and two events v and v′ from c are ordered by the event semantics,
then that order is guaranteed in c. Said differently, if the event semantics con-
strains two events, then the small-step LTS semantics respects that constraint.
This theorem is stated formally in Theorem 15.

Theorem 15 (Correctness). If C(t, p, e)
c�∗ D(p, e′) and V(t, p, e) : v ≺ v′,

then v �c v′.

The proof is done in two steps using a big-step semantics defining traces
for individual phrases as an intermediary. The inductive structure of the big-
step semantics more closely matches the inductive structure of the partial order
semantics, easing the proofs about the relation between the two.

The intermediate big-step semantics is specified as a relation between anno-
tated term t, place p, evidence e, and trace c, written t �p

e c. The structure of
the definition is similar to the structure of the � relation in Fig. 6. Most cases
of the definition are straightforward event sequences taken from the small-step
semantics.

For atomic actions, the associated sequence is a single event implementing
the action. As an illustrative example, USM ā is associated with

[USM ā]i+1
i �p

e 〈USM(i, p, ā, e,Up(e))〉.

For remote actions, @q t, the associated trace starts with a request event followed
by the trace c executed remotely and ending with a reply event:

[@q t]ji �p
e 〈REQ(i, p, q, e)〉 ∗ c ∗ 〈RPY(j − 1, p, q, Ē(t, q, e))〉 if t �q

e c.

For sequential actions, (t1 → t2), the associated trace starts with the trace c1
associated with t1 and ends with the trace c2 associated with t2 starting with
evidence e1 from c1:

[t1 → t2]
j
i �p

e c1 ∗ c2 if t1 �p
e c1 and t2 �p

e1
c2,

where e1 = Ē(t1, p, e).

Orchestrating Layered Attestations 213

For sequential branching, (t1
π≺ t2), the associated trace starts with a split event

and continues with trace c1 associated with t1 starting with π1(e) followed by
trace c2 associated with t2 starting with π2(e):

[(t1
π≺ t2)]

j
i �p

e 〈v1〉 ∗ c1 ∗ c2 ∗ 〈v2〉 if t1 �p
π1(e)

c1 and t2 �p
π2(e)

c2,

where
v1 = SPLIT(i, p, e, π1(e), π2(e))
v2 = JOIN(j − 1, p, e1, e2, e1 ;; e2)
e1 = Ē(t1, p, π1(e))
e2 = Ē(t2, p, π2(e)).

The case for parallel branching, (t1
π∼ t2), requires additional work to capture

parallel execution semantics using trace interleaving. We write il(c, c′, c′′) to
assert that trace c is a result of interleaving c′ with c′′.

Definition 16 (Interleave). il(c, c′, c′′) is the smallest relation such that

1. il(c, 〈〉, c) and il(c, c, 〈〉);
2. il(〈v〉 ∗ c, 〈v〉 ∗ c′, c′′) if il(c, c′, c′′); and
3. il(〈v〉 ∗ c, c′, 〈v〉 ∗ c′′) if il(c, c′, c′′).

When c is an interleaving of c′ and c′′, v1 �c′ v2 implies v1 �c v2 and v1 �c′′

v2 implies v1 �c v2, but the order of events in c is otherwise unconstrained.
With interleaving defined, the trace for (t1

π∼ t2) begins with a split operation
and continues with an interleaving of c1 and c2 associated with t1 and t2 starting
with π1(e) and π2(e) respectively. The trace ends with a join event when both
interleaved traces end:

[t1
π∼ t2]

j
i �p

e 〈v1〉 ∗ c ∗ 〈v2〉 if t1 �p
π1(e)

c′, t2 �p
π2(e)

c′′, and il(c, c′, c′′),

where
v1 = SPLIT(i, p, e, π1(e), π2(e))
v2 = JOIN(j − 1, p, e1, e2, e1 ‖ e2)
e1 = Ē(t1, p, π1(e))
e2 = Ē(t2, p, π2(e)).

The following two lemmas show that every trace in the big-step semantics
contains the correct events. Lemma 17 asserts that the right number of events
occurs and Lemma 18 asserts that all events do in fact occur in the trace.

Lemma 17. [t]ji �p
e c implies the length of c is j − i.

Lemma 18. t �p
e c implies t �p

e v iff for some i, v = c ↓ i.

The first step in the proof of Theorem 15 is to show that a trace of the small-
step semantics is also a trace of the big-step semantics as shown in Lemma 19.
The lemma asserts that any trace c resulting from evaluating t is also related to
t in the big-step semantics.

214 J. D. Ramsdell et al.

Lemma 19. C(t, p, e)
c�∗ D(p, e′) implies t �p

e c.

The next step is to show that if c is a trace of the big-step semantics, then
that trace is compatible with the partial order semantics.

Lemma 20. If t �p
e c and V(t, p, e) : v ≺ v′, then v �c v′.

The proof of Theorem 15 follows from a transitive composition of Lemmas 19
and 20.

The real value of Theorem 15 is that it triangulates specifications, imple-
mentations, and formal analysis as depicted in Fig. 1. On one hand, the opera-
tional semantics is immediately implementable. This allows us to explicitly test
and experiment with alternative options as specified in Copland. On the other
hand, however, simple testing is not sufficient to understand the trust properties
provided by alternative options. It is better to offer potential users the ability
to analyze Copland phrases to establish (or refute) desired trust properties.
This is the primary purpose of the event poset semantics. Our prior work on the
analytic principles of layered attestation [17,18] is based on partially ordered
sets of measurement and processing events. That work details how to charac-
terize what an adversary would have to do in order to escape detection by a
given collection of events. In particular, it establishes the fact that bottom-up
strategies for measurement and evidence bundling force an adversary to perform
either recent or deep corruptions. Recent corruptions must occur within a small
time window, so it intuitively raises the bar for an adversary. Similarly, deep
corruptions burrow into lower (and presumably better protected) systems layers
also raising the bar for the adversary.

Although the event posets in Copland’s denotational semantics are some-
what richer than those in [17,18], the reasoning principles can easily be adapted
to this richer setting. This enables a verification methodology in which Copland
phrases are compiled to event posets, then analyzed according to these princi-
ples. In this way, the relative strength of Copland phrases could be directly
compared according to the trust properties they guarantee. Theorem 15 ensures
that any conclusions made on the basis of this static analysis must also hold
for dynamic executions conforming to the operational semantics. It essentially
transfers formal guarantees into the world of concrete implementations. We are
currently exploring methods to more explicitly leverage such formal analysis to
help Maat users write local policies based on the relative strength of Copland
phrases.

8 Related Work

The concept of adapting an attestation to the layered structure of a target sys-
tem is not new. The concept is already present in attestation systems like trusted
boot [15] and Integrity Measurement Architecture (IMA) [19] which leverage a

Orchestrating Layered Attestations 215

layered architecture to create static, boot-time or load-time measurements of sys-
tem components. Other solutions have designed layered architectures to enable
attestation of the runtime state of a system [10,22]. A major focus is on informa-
tion flow integrity properties since this allows fine-grained, local measurements
to be composed without having to measure the entire system [20]. The main
contrast between this line of research and our work is that they fix the structure
of an attestation based on the structure of the target architecture, whereas in
our work, we support extensible attestation specifications that can be altered to
suit many different architectures and many different contexts for trust decisions.

Coker et al. [4] present a general approach for using virtualization to achieve
a layered architecture, and it presents generic principles for remote attestation
suggesting the possibility of diverse, policy-based orchestrations of attestations.
These principles have recently been extended in [13] in the context of cloud
systems built with Trusted Platform Modules (TPMs) and virtual TPMs [9].

Several implementations of measurement and attestation (M&A) frameworks
have been proposed to address the need for a central service to manage policies
for the orchestration and collection of integrity evidence. The Maat framework,
as described in Sect. 2, is being utilized by the authors as a testing ground for
Copland. Maat provides a pluggable interface for Attestation Service Providers
(ASPs), functional units of measurement which are executed by Attestation
Protocol Blocks (APBs) after a negotiation between an attester and appraiser
machine [16]. Another architecture, given in [8], implements a policy mechanism
designed to allow the appraiser to ask for different conditions to be satisfied by
the target for different types of interactions. The main focus is on determining
suitability of the target system to handle sensitive data. Negotiation between
systems and frameworks, and the supporting policy specification, are examples
of places where Copland can be leveraged to provide a common language and
understanding of attestation guarantees.

Another line of research has focused on hardware/software co-design for
embedded devices to enable remote attestation on platforms that are constrained
in various ways [2,6,7]. For example, the absence of a TPM can increase an adver-
sary’s ability to forge evidence. A careful co-design of hardware and software
allows them to tailor attestation protocols to the particular structure of a target
device. More recently, Multiple-Tier Remote Attestation (MTRA) extends this
work with a protocol that is specifically targeted for the attestation of hetero-
geneous IoT networks [21]. This protocol uses a preparation stage to configure
attestations where more-capable devices (those with TPMs, for example) pro-
vide a makeshift root of trust for less-capable devices and measurement of the
entire network is distributed across the more-capable devices. We believe that
Copland would be beneficial in specifying the complex set of actions required
of these heterogeneous networks.

Finally, there has been some work on the semantics of attestation. Datta
et al. [5] introduces a formal logic for trusted computing systems. Its semantics
is similar to our operational semantics in that it works as a transition system
on state configurations. The underlying programming language was designed

216 J. D. Ramsdell et al.

specifically for the logic, and is considerably more complex than Copland.
It was not designed to be used by implementations as part of a negotiation.
Also, it seems the logic has only been applied to static measurements such as
trusted boot. We also previously developed a formal approach to the seman-
tics of dynamic measurement [17,18]. In this work we characterize the benefit
of a bottom-up measurement strategy as constraining the adversary to corrupt
quickly or deeply. These results are obtained based on a partial order of events
consisting of measurements and evidence bundling. As discussed above, this basis
is similar to our partially ordered event semantics. We explicitly provide such a
semantics to leverage the formal results that can be obtained by such analysis.
While our set of events is richer, we expect the methods of this line of research
to apply.

9 Conclusion and Ongoing Work

Copland serves as a basis for discussing the formal properties of attestation
protocols under composition. We have described the denotational semantics of
Copland by mapping phrases to evidence and to partially ordered event sets
describing events associated with a phrase and constraints on event ordering.
While the denotational semantics does not specify unique traces, it specifies
event orderings mandatory for believing evidence resulting from evaluation.

We have described the operational semantics of Copland by associating
phrases with a labeled transition system. States capture evidence and order exe-
cution while labels on transitions describe resulting events. The transitive closure
of the LTS transition function describes traces associated with LTS execution.

We then show the small-step semantics generates traces that obey partial
orderings specified by the denotational semantics. Furthermore, we show those
orderings are preserved under protocol composition. This result is vital to the
correctness of attestation outcomes whose validity is equally dependent on result-
ing evidence and the proper ordering of evidence gathering events.

Beyond the correctness proof, the most impactful contribution of Copland
semantics is a foundation for testing and experimenting with layered attesta-
tion protocols, pushing the bounds of complexity and diversity of application.
We are actively exploring advanced attestation scenarios between Maat Attesta-
tion Managers (AMs). Recall from the introduction that Maat is a policy-based
measurement and attestation (M&A) framework which provides a centralized,
pluggable service to gather and report integrity measurements [16]. The Maat
team is leveraging Copland to test attestation scenarios involving the configu-
ration of multiple instances of Maat in multi-realm and multi-party scenarios. In
addition to its application to traditional Linux platforms, the Maat framework
has been applied to IoT device platforms, where different configurations due to
limited resources were explored [3]. We believe frameworks such as Maat pro-
vide a rich testing ground for the application of Copland as the basis of policy
specification and negotiation across many kinds of system architectures, and are
feeding the lessons learned in this application back into the on-going Copland
research.

Orchestrating Layered Attestations 217

The authors are also using Copland as an implementation language for
remote attestation protocols in other systems. A collection of Copland inter-
preters written in Haskell, F# and CakeML [12] running on Linux, Windows 10
and seL4 [11] provide a mechanism for executing Copland phrases. Each inter-
preter forms the core of an AM that receives phrases, calls the interpreter, and
returns evidence. Additionally, the AMs maintain and protect keys associated
places and policies mapping USM and KIM instances to specific implementa-
tions. Policies are critically important as they describe details of measurers held
abstract within a phrase. Policies will eventually play a central role in negotiat-
ing attestation protocols among the various AMs implementing complex, layered
attestations. A common JSON exchange format allows exchange of phrases and
evidence among AMs running on different systems.

Of particular note, the CakeML interpreter targeting the seL4 platform will
be formally verified with respect to the formal Copland semantics. CakeML
implements a formally verified fragment of ML in the HOL4 proof system while
seL4 provides a verified microkernel with VMM support. Verifying the Copland
CakeML implementation and individual Copland phrases requires embedding
the CakeML semantics in Coq. The Copland implementation will then be ver-
ified with respect to the formal semantics. Additionally, the Coq semantics sup-
ports proof search techniques for synthesizing Copland phrases. Running the
CakeML implementation on the seL4 platform with formally synthesized phrases
provides a verified attestation platform that may be retargeted to any environ-
ment supporting seL4.

As we continue exploring the richness of layered attestation we are also devel-
oping type systems and static checkers that determine correctness of specific
protocols and protocol interpreters and compilers that produce provably correct
results relative to Copland semantics. We are considering extensions to Cop-
land that include nonces, lambda expressions, keys, and TPM interactions to
represent a richer set of protocols. Without this formal semantics, it would be
impossible to consider the correctness of such extensions.

A Annotated Terms

As noted in Sect. 4, when t is annotated by i and j, we write [t]ji . The annotations
are used in the Coq proofs to construct sequences of unique events associated
with collecting the evidence specified by the term.

218 J. D. Ramsdell et al.

anno(i,CPY) = (i + 1, [CPY]i+1
i)

anno(i,KIM p ā) = (i + 1, [KIM p ā]i+1
i)

anno(i,USM ā) = (i + 1, [USM ā]i+1
i)

anno(i, SIG) = (i + 1, [SIG]i+1
i)

anno(i,HSH) = (i + 1, [HSH]i+1
i)

anno(i,@p t) =
let (j, a) anno(i + 1, t) in
anno(j + 1, [@p a]j+1

i)
anno(i, t1 t2) =

let (j, a1) anno(i, t1) in
let (k, a2) anno(j, t2) in
anno(k, [a1 a2]ki)

anno(i, t1
s≺ t2) =

let (j, a1) anno(i + 1, t1) in
let (k, a2) anno(j, t2) in
anno(k + 1, [a1

s≺ a2]k+1
i)

anno(i, t1
s∼ t2) =

let (j, a1) anno(i + 1, t1) in
let (k, a2) anno(j, t2) in
anno(k + 1, [a1

s∼ a2]k+1
i)

Fig. 9. Term annotation

Terms are annotated using the function displayed in Fig. 9. An annotated
term for t = KIM p ā → SIG is

anno(0, t) = (2, [[KIM p ā]10 → [SIG]21]
2
0),

and when t = @p USM ā,

anno(0, t) = (3, [@p [USM ā]21]
3
0).

Lemma 21. anno(i, t) ∈ Ti.

B Coq Cross Reference

Table 1 matches the contents of a figure with its definition in the Coq proofs.
Table 2 does the same for lemmas, definitions, and the theorem.

Table 1. Coq figure cross reference

Fig. 2: Term.Term Fig. 3: Term.eval Fig. 4: Term.well founded

Fig. 5: Term.Ev Fig. 6: Term.events Fig. 7: Term system.ev evsys

Fig. 8: LTS.step Fig. 9: Term.anno

Orchestrating Layered Attestations 219

Table 2. Coq cross reference

Lem. 1: Term.event range

Lem. 2: Term.events injective

Lem. 3: Term.events range event

Def. 4: Event system.prec

Lem. 7: Event system.evsys irreflexive

Lem. 8: Event system.evsys transitive

Lem. 9: Term system.evsys events

Def. 10: Term system.out ev

Lem. 11: Term system.max eval

Lem. 12: LTS.steps preserve eval

Lem. 13: LTS.never stuck

Lem. 14: LTS.steps to stop

Thm. 15: Main.ordered

Def. 16: Trace.shuffle

Lem. 17: Trace.trace length

Lem. 18: Trace.trace events

Lem. 19: Main.lstar trace

Lem. 20: Trace.trace order

References

1. The Coq proof assistant reference manual (2018). Version 8.0. http://coq.inria.fr
2. Carpent, X., Tsudik, G., Rattanavipanon, N.: ERASMUS: efficient remote attes-

tation via self-measurement for unattended settings. In: 2018 Design, Automation
& Test in Europe Conference & Exhibition, DATE 2018, Dresden, Germany, 19–23
March 2018, pp. 1191–1194 (2018)

3. Clemens, J., Paul, R., Sherrell, B.: Runtime state verification on resource-
constrained platforms. In: Military Communications Conference (MILCOM) 2018,
October 2018

4. Coker, G., et al.: Principles of remote attestation. Int. J. Inf. Secur. 10(2), 63–81
(2011)

5. Datta, A., Franklin, J., Garg, D., Kaynar, D.: A logic of secure systems and its
application to trusted computing. In: 2009 30th IEEE Symposium on Security and
Privacy, pp. 221–236. IEEE (2009)

6. Eldefrawy, K., Rattanavipanon, N., Tsudik, G.: HYDRA: hybrid design for remote
attestation (using a formally verified microkernel). In: Proceedings of the 10th
ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec
2017, Boston, MA, USA, 18–20 July 2017, pp. 99–110 (2017)

7. Francillon, A., Nguyen, Q., Rasmussen, K.B., Tsudik, G.: A minimalist approach
to remote attestation. In: Design, Automation & Test in Europe Conference &
Exhibition, DATE 2014, Dresden, Germany, 24–28 March 2014, pp. 1–6 (2014)

http://coq.inria.fr

220 J. D. Ramsdell et al.

8. Gopalan, A., Gowadia, V., Scalavino, E., Lupu, E.: Policy driven remote attes-
tation. In: Prasad, R., Farkas, K., Schmidt, A.U., Lioy, A., Russello, G., Luccio,
F.L. (eds.) MobiSec 2011. LNICSSITE, vol. 94, pp. 148–159. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30244-2 13

9. Trusted Computing Group: TPM Main Specification Level 2 version 1.2 (2011)
10. Jaeger, T., Sailer, R., Shankar, U.: PRIMA: policy-reduced integrity measurement

architecture. In: Proceedings of the 11th ACM Symposium on Access Control Mod-
els and Technologies, SACMAT 2006, Lake Tahoe, California, USA, 7–9 June 2006,
pp. 19–28 (2006)

11. Klein, G., et al.: seL4: formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010)

12. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2014, pp. 179–191. ACM, New
York (2014)

13. Lauer, H., Ahmad Salehi, S., Rudolph, C., Nepal, S.: User-centered attestation for
layered and decentralized systems. In: Workshop on Decentralized IoT Security
and Standards (DISS) 2018, February 2018

14. Loscocco, P., Wilson, P.W., Aaron Pendergrass, J., Durward McDonell, C.: Linux
kernel integrity measurement using contextual inspection. In: Proceedings of the
2nd ACM Workshop on Scalable Trusted Computing, STC 2007, Alexandria, VA,
USA, 2 November 2007, pp. 21–29 (2007)

15. Maliszewski, R., Sun, N., Wang, S., Wei, J., Qiaowei, R.: Trusted boot (tboot).
http://sourceforge.net/p/tboot/wiki/Home/

16. Pendergrass, A., Helble, S., Clemens, J., Loscocco, P.: A platform service for remote
integrity measurement and attestation. In: Military Communications Conference
(MILCOM) 2018, October 2018

17. Rowe, P.D.: Bundling evidence for layered attestation. In: Franz, M., Papadimi-
tratos, P. (eds.) Trust 2016. LNCS, vol. 9824, pp. 119–139. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45572-3 7

18. Rowe, P.D.: Confining adversary actions via measurement. In: Kordy, B., Ekstedt,
M., Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp. 150–166. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46263-9 10

19. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of
a TCG-based integrity measurement architecture. In: Proceedings of the 13th
USENIX Security Symposium, San Diego, CA, USA, 9–13 August 2004, pp. 223–
238 (2004)

20. Shi, E., Perrig, A., van Doorn, L.: BIND: a fine-grained attestation service for
secure distributed systems. In: 2005 IEEE Symposium on Security and Privacy
(S&P 2005), Oakland, CA, USA, 8–11 May 2005, pp. 154–168 (2005)

21. Tan, H., Tsudik, G., Jha, S.: MTRA: multiple-tier remote attestation in IoT net-
works. In: 2017 IEEE Conference on Communications and Network Security (CNS).
IEEE, October 2017

22. Xu, W., Ahn, G.-J., Hu, H., Zhang, X., Seifert, J.-P.: DR@FT: efficient
remote attestation framework for dynamic systems. In: Gritzalis, D., Preneel, B.,
Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 182–198. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15497-3 12

https://doi.org/10.1007/978-3-642-30244-2_13
http://sourceforge.net/p/tboot/wiki/Home/
https://doi.org/10.1007/978-3-319-45572-3_7
https://doi.org/10.1007/978-3-319-46263-9_10
https://doi.org/10.1007/978-3-642-15497-3_12

Orchestrating Layered Attestations 221

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Verifying Liquidity of Bitcoin Contracts

Massimo Bartoletti1(B) and Roberto Zunino2

1 Università degli Studi di Cagliari, Cagliari, Italy
bart@unica.it

2 Università degli Studi di Trento, Trento, Italy

Abstract. A landmark security property of smart contracts is liquidity :
in a non-liquid contract, it may happen that some funds remain frozen.
The relevance of this issue is witnessed by a recent liquidity attack to
the Ethereum Parity Wallet, which has frozen ∼160M USD within the
contract, making this sum unredeemable by any user. We address the
problem of verifying liquidity of Bitcoin contracts. Focussing on BitML,
a contracts DSL with a computationally sound compiler to Bitcoin, we
study various notions of liquidity. Our main result is that liquidity of
BitML contracts is decidable, in all the proposed variants. To prove this,
we first transform the infinite-state semantics of BitML into a finite-
state one, which focusses on the behaviour of any given set of contracts,
abstracting the context moves. With respect to the chosen contracts, this
abstraction is sound and complete. Our decision procedure for liquidity is
then based on model-checking the finite space of states of the abstraction.

Keywords: Bitcoin · Smart contracts · Verification

1 Introduction

Decentralized ledgers like Bitcoin and Ethereum [19,32] enable the trustworthy
execution of smart contracts—computer protocols which regulate the exchange
of assets among mutually untrusted users. The underlying protocols used to
update the ledger (which defines the state of each contract) ensure that, even
without trusted intermediaries, the execution of contracts is correct with respect
to the contract rules. However, it may happen that the rules themselves are not
correct with respect to the behaviour expected by the users. Indeed, all the
attacks to smart contracts successfully carried out so far, which have plundered
or frozen millions of USD in Ethereum [1–3,8,27,30], exploit some discrepancy
between the intended and the actual behaviour of a contract.

To counteract these attacks, the research community has recently started to
formalize smart contracts and their security properties [22–24], and to develop
automated verification tools based on these models [21,27,31,35]. As a matter
of fact, most of this research is targeted to Ethereum, the most widespread (and
attacked) platform for smart contracts: for this reason, the security properties
addressed by current tools focus on specific features of Solidity, the high-level lan-
guage for smart contracts in Ethereum. For instance, some vulnerability patterns
c© The Author(s) 2019
F. Nielson and D. Sands (Eds.): POST 2019, LNCS 11426, pp. 222–247, 2019.
https://doi.org/10.1007/978-3-030-17138-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17138-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-17138-4_10

Verifying Liquidity of Bitcoin Contracts 223

checked by these tools are reentrancy and mishandled exceptions, whose peculiar
implementation in Solidity has led to attacks, like to one to the DAO [1]. Only
a few tools verify general security properties of smart contracts, that would be
meaningful also outside the realm of Ethereum. Among these works, [35] checks
a property called liquidity, which holds when the contract always admits a trace
where its balance is decreased (so, the funds stored within the contract do not
remain frozen). This has been inspired from a recent attack to Ethereum [2],
which has frozen ∼160M USD within a contract, exploiting a bug in a library.
While being capable of classifying this particular contract as non-liquid, any
contract where the adversary can lock some funds and redeem them at a later
moment would be classified as liquid. Stronger notions of liquidity may rule out
these unsafe contracts, e.g. by checking that funds are never frozen for all possi-
ble strategies of the adversary. Studying liquidity in a more general setting would
be important for various reasons. First, taking into account adversaries would
allow to detect more security issues w.r.t. those checked by the current verifi-
cation tools. Second, platform-agnostic notions of liquidity could be applied to
the forthcoming blockchain technologies, e.g. [20,34]. Third, studying liquidity
in simpler settings than Ethereum could simplify the verification problem, which
is undecidable in Turing-powerful languages like those supported by Ethereum.

Contributions. We study several notions of liquidity for smart contracts, in
a general setting where their behaviour is defined as a transition system. We
then consider the special case where contracts are expressed in BitML, a high-
level DSL for smart contracts which compiles into Bitcoin [14]. In such setting,
we develop a verification technique for liquidity of smart contracts. We can
summarise our main contributions as follows:

1. We formalize a notion of liquidity (Definition 2), and we illustrate several
meaningful variants. Our notion of liquidity takes into account both the con-
tract and the strategy that a participant follows to perform contract actions.
Roughly, a strategy is liquid when following it ensures that funds do not
remain frozen within the contract, even in the presence of adversaries.

2. We introduce an abstraction of the semantics of BitML which is finite-state
(Theorem 1), and sound and complete w.r.t. the concrete (infinite-state)
semantics, given a set of contracts under observation (Theorems 2 and 3).

3. We devise a verification technique for liquidity in BitML. Our technique can
establish whether a strategy is liquid for a given contract, and also to syn-
thesise a liquid strategy, when it exists (Theorem 4).

Our finite-state abstraction is general-purpose: verifying liquidity is only one
of its possible applications (some other applications are discussed in Sect. 6).

Related Works. Several recent works study security issues related to Ethereum
smart contracts. A few papers address EVM, the bytecode language which is the
target of compilation of Solidity. Among them, [27] introduces an operational
semantics of a simplified version of EVM, and develops Oyente, a tool to detect
some vulnerability patterns of EVM contracts through symbolic execution. Secu-
rify [35] checks vulnerability patterns by analysing dependency graphs extracted

224 M. Bartoletti and R. Zunino

from EVM code. As mentioned before, this tool also addresses a form of liquidity,
which essentially assumes a cooperating adversary. EtherTrust [21] is a frame-
work for the static verification of EVM contracts, which can establish e.g. the
absence of reentrancy vulnerabilities. This tool is based on the detailed formali-
sation of EVM provided in [22], which is validated against the official Ethereum
test suite. The work [23] introduces an executable semantics of EVM, specified
in the K framework. The tool in [18] translates Solidity and EVM code into F∗,
and use its verification tools to detect vulnerabilities of contracts; further, the
tool verifies the equivalence between a Solidity program and an alleged compila-
tion of it into EVM. The work [24] verifies EVM code through the Isabelle/HOL
proof assistant [33], proving that, upon an invocation of a specific contract, only
its owner can decrease the balance.

Smart contracts in Bitcoin have a completely different flavour compared to
Ethereum, since they are usually expressed as cryptographic protocols, rather
than as programs. Despite the limited expressiveness of the scripts in Bit-
coin transactions [10], several kinds of contracts for Bitcoin have been pro-
posed [9]: they range from lotteries [6,7,13,29], to general multiparty compu-
tations [4,17,26], to contingent payments [11,28], etc. All these works focus on
proving the security of a fixed contract, unlike the above-mentioned works on
Ethereum, where the goal is to verify arbitrary contracts. As far as we know, only
a couple of works pursue this goal for Bitcoin. The tool in [25] analyses Bitcoin
scripts, in order to find under which conditions the enclosing transaction can be
redeemed. Compared to [25], our work verifies contracts spanning among many
transactions, rather than single scripts. The work [5] models contracts as timed
automata, and then uses the Uppaal model checker [16] to verify their proper-
ties. The contracts modelled as in [5] cannot be directly translated to Bitcoin,
while in our approach we can exploit the BitML compiler to translate contracts
to standard Bitcoin transactions. Note also that the properties considered in [5]
are specific to the modelled contract, while in this work we are interested in
verifying general properties of contracts, like liquidity.

2 Overview

In this section we briefly overview BitML; we then give some intuition about
liquidity and our verification technique. Because of space limits, we refer to [14]
for a detailed treatment of BitML, and to [12] for a more gentle introduction.

We assume a set of participants, ranged over by A,B, . . ., and a set of names,
of two kinds: x, y, . . . denote deposits of B, while a, b, . . . denote secrets. We write
x (resp. a) for a finite sequence of deposit (resp. secrets) names.

2.1 BitML in a Nutshell

BitML is a domain-specific language for Bitcoin smart contracts, which allows
participants to exchange cryptocurrency according to pre-agreed contract rules.
In BitML, any participant can broadcast a contract advertisement {G}C , where

Verifying Liquidity of Bitcoin Contracts 225

G ::= precondition

A persistent deposit

| A volatile deposit

| A committed secret

| G | G′ composition

C ::= i∈I Di contract

D ::= guarded contract

A transfer balance to A

| v C split balance (|v| = |C |)
| A D wait A’s authorization

| t D wait until time t

| C collect deposits/secrets

Fig. 1. Syntax of BitML contracts and preconditions.

p ::= predicate

truth

| p ∧ p conjunction

| ¬p negation

| E ◦ E (◦ ∈ {=, <})

E ::= expression

N 32-bit constant

| |a| length of a secret

| E ◦ E (◦ ∈ {+, −})

Fig. 2. Syntax of predicates.

C is the actual contract, specifying the rules to transfer bitcoins (B), while G is
a set of preconditions to its execution.

Preconditions (Fig. 1, left) may require participants to deposit some B in
the contract (either upfront or at runtime), or to commit to some secret. More
in detail, A:! v @x requires A to own vB in a deposit x, and to spend it for
stipulating a contract C . Instead, A:? v @x only requires A to pre-authorize
the spending of x, which can be gathered by the contract at run-time. The
precondition A:secret a requires A to commit to a secret a before C starts.

After {G}C has been advertised, each participant can choose whether to
accept it, or not. When all the preconditions G have been satisfied, and all
the involved participants have accepted, the contract C becomes stipulated. The
contract starts its execution with a balance, initially set to the sum of the !-
deposits required by its preconditions. Running C will affect this balance, when
participants deposit/withdraw funds to/from the contract.

A contract C is a choice among zero or more branches. Each branch is a
guarded contract (Fig. 1, right) which enables an action, and possibly proceeds
with a continuation C ′. The guarded contract withdraw A transfers the whole
balance to A, while split v1 → C1 | · · · | vn → Cn decomposes the contract
into n parallel components Ci, each one with balance vi. The guarded contract
putx & reveala if p atomically performs the following: (i) spend all the ?-
deposits x, adding their values to the contract balance; (ii) check that all the
secrets a have been revealed and satisfy the predicate p (Fig. 2). When enabled,
the above-mentioned actions can be fired by anyone, at anytime. To restrict who
can execute actions and when, one can use the decoration A :D, which requires
the authorization of A, and the decoration after t :D, which requires to wait
until time t.

226 M. Bartoletti and R. Zunino

A Basic Example. As a first example, we express in BitML the timed commit-
ment [6], a basic protocol to construct more complex contracts, like e.g. lotteries
and other games [7]. In the timed commitment, a participant A wants to choose
a secret, and promises to reveal it before some time t. The contract ensures that
if A does not reveal the secret in time, then she will pay a penalty of 1B to B
(e.g., the opponent player in a game). In BitML, this is modelled as follows:

{A:! 1 @x | A:secret a} (reveal a. withdraw A + after t : withdraw B)

The precondition requires A to pay upfront 1B, and to commit to a secret
a. The contract (hereafter, named TC) is a non-deterministic choice between
two branches. Only A can choose the first branch, by performing reveal a (syn-
tactic sugar for put [] & reveal a if true). Subsequently, anyone can transfer 1B
to A. Only after t, if the reveal has not been fired, any participant can fire
withdraw B in the second branch, moving 1B to B. So, before t, A has the option
to reveal a (avoiding the penalty), or to keep it secret (paying the penalty). If
no branch is taken by t, the first one who fires its withdraw gets 1B.

2.2 BitML Semantics

We briefly recall from [14] the semantics of BitML. The semantics is a labelled
transition system between configurations of the following form:
– {G}C , representing the advertisement of contract C with preconditions G;
– 〈C, v〉x , representing a stipulated contract, holding a current balance of vB.

The name x uniquely identifies the contract in a configuration;
– 〈A, v〉x representing a fund of vB owned by A, and with unique name x;
– A[χ], representing A’s authorizations to perform some operation χ. We refer

to [14] for the syntax of authorizations (some of them are exemplified below);
– {A : a#N}, representing that A has committed to a random secret a with

(secret) length N ;
– A : a#N , representing that A has revealed her secret a (with its length N).
– Γ | Δ is the parallel composition of two configurations (with identity 0);
– Γ | t is a timed configuration, where t ∈ N is a global time.

We now illustrate the BitML semantics by examples; when time is immaterial,
we only show the steps of the untimed semantics. We omit labels on transitions.

Deposits. When A owns a deposit 〈A, v〉x, she can use it in various ways: she
can divide the deposit into two smaller deposits, or join it with another deposit
of hers to form a larger one; the deposit can also be transferred to another
participant, or destroyed. For instance, to donate a deposit x to B, A must first
issue the authorization A[x � B]; then, anyone can transfer the money to B:

〈A, v〉x | · · · −→ 〈A, v〉x | A[x � B] | · · · −→ 〈B, v〉y | · · · (y fresh)

We assume that whenever a participant authorizes an operation on some
deposit x, then she is also authorising a self-donation A[x � A] of such deposit.1

1 This assumption, while helpful to simplify the subsequent technical development,
does not allow an adversary to steal money; at worst, the adversary can use the
authorization to transfer the money back to the original owner.

Verifying Liquidity of Bitcoin Contracts 227

Advertisement. Any participant can advertise a new contract C (with precon-
ditions G). This is obtained by performing the step Γ −→ Γ | {G}C .

Stipulation. Stipulation turns a contract advertisement into an active contract.
For instance, let G = A:! 1 @x | A:? 1 @ y | A:secret a . Given a contract C ,
the stipulation of {G}C is done in a few steps:

〈A, 1〉x | 〈A, 1〉y | {G}C −→∗ 〈A, 1〉y | 〈C, 1〉z | {A : a#N}

Above, the funds in the deposit x are transferred to the newly created contract,
to fulfill the precondition A:! 1 @x. Instead, the deposit y remains in the con-
figuration, to be possibly spent after some time. The component {A : a#N}
represents the secret committed to by A, with its length N .

Withdraw. Executing withdraw A terminates the contract, and transfers its
whole balance to A by creating a fresh deposit owned by A:

〈withdraw A + C ′, v〉x −→ 〈A, v〉y (y fresh)

Above, withdraw A is executed as a branch within a choice: as usual, taking a
branch discards the other ones (denoted as C ′).

Split. The split primitive can be used to spawn several new concurrent con-
tracts, dividing the balance among them. For instance:

〈(split v1 → C1 | v2 → C2), v1 + v2〉x −→ 〈C1, v1〉y | 〈C2, v2〉z (y, z fresh)

Put & Reveal. A prefix put z & reveal a if p can be fired when the previ-
ously committed secret a (satisfying the predicate p) has been revealed, and the
deposit z is available in the configuration. For instance:

〈put z & reveal a if |a| = N. C, v〉x | 〈A, v′〉z | {A : a#N}
−→ 〈put z & reveal a if |a| = N. C, v〉x | 〈A, v′〉z | A : a#N

−→ 〈C, v + v′〉y | A : a#N

In the first step, A reveals her secret a. In the second step, any participant
fires the prefix; doing so rakes the deposit z within the contract.

Authorizations. When a branch is decorated by A : · · · it can be taken only
after A has provided her authorization. For instance:

〈A : withdraw B + A : withdraw C , v〉x

−→ 〈A : withdraw B + A : withdraw C , v〉x | A[x � A : withdraw B] −→ 〈B, v〉y

In the first step, A authorizes to take the branch withdraw B . After that,
any participant can fire such branch.

228 M. Bartoletti and R. Zunino

Time. We always allow time t to advance by a delay δ > 0, through a transition
Γ | t −→ Γ | t + δ. Advancing time can enable branches decorated with after t.
For instance, if t0 + δ ≥ t, we have the following computation:

〈(after t : withdraw B) + C ′, v〉x | t0

−→ 〈(after t : withdraw B) + C ′, v〉x | t0 + δ −→ 〈B, v〉y | t0 + δ

Runs and Strategies. A run R is a (possibly infinite) sequence:

Γ0 | t0
�0−→ Γ1 | t1

�1−→ · · ·

where �i are the transition labels, Γ0 contains only deposits, and t0 = 0. If R is
finite, we write ΓR for its last untimed configuration, and δR for its last time. A
strategy ΣA is a PPTIME algorithm which allows A to select which actions to
perform (possibly, time delays), among those permitted by the BitML semantics.
The choice among these actions is controlled by the adversary strategy ΣAdv ,
which acts on behalf of all the dishonest participants. Given the strategies of all
participants (including Adv), there is a unique run conforming to all of them.

2.3 Liquidity

A desirable property of smart contracts is liquidity, which requires that the
contract balance is always eventually transferred to some participant. In a non-
liquid contract, funds can be frozen forever, unavailable to anyone, hence effec-
tively destroyed. There are many possible flavours of liquidity, depending e.g. on
which participants are assumed to be honest, and on which are their strategies.
The simplest form of liquidity is to consider the case where everyone cooperates:
i.e. a contract is liquid if there exists some strategy for each participant such that
no funds are ever frozen. However, this notion does not capture the essence of
smart contracts, i.e. to allow mutually untrusted participants to safely interact.

For instance, consider the following contract, where A and B contribute 1B
each for a donation of 2B to either C or D (we omit the preconditions for brevity):

A :B : withdraw C + A :B : withdraw D

In order to unlock the funds, A and B must agree on the recipient of the donation,
by giving their authorization on the same branch. This contract would be liquid
only by assuming the cooperation between A and B: indeed, A alone cannot
guarantee that the 2B will eventually be donated, as B can choose a different
recipient, or even refuse to give any authorization. Consequently, unless A trusts
B, it makes sense to consider this contract as non-liquid, from the point of view
of A (and for similar reasons, also from that of B).

Consider now the timed commitment contract discussed before:

reveal a. withdraw A + after t : withdraw B

Verifying Liquidity of Bitcoin Contracts 229

This contract is liquid from A’s point of view (even if B is dishonest), because A
can reveal the secret and then redeem the funds from the contract. The timed
commitment is also liquid from B’s point of view: if A does not reveal the secret
(making the first branch stuck), the funds in the contract can be redeemed
through the second branch, after time t.

In a mutual timed commitment contract, where A and B have to exchange
their secrets or pay a 1B penalty, achieving liquidity is a bit more challenging.
We first consider a wrong attempt:

reveal a. reveal b. split (1B → withdraw A | 1B → withdraw B)
+ after t : withdraw B

Intuitively, A has only the following strategies, according to when she decides
to reveal her secret a: (i) A chooses to reveal a unconditionally, and to perform
the reveal a action. This strategy is not liquid: indeed, if B does not reveal
b, the contract is stuck. (ii) A chooses to reveal a only after B has revealed b.
This strategy is not liquid: indeed, if B chooses not to reveal b, the contract
will never advance. (iii) A chooses to wait until B reveals secret b, or until time
t′ ≥ t, whichever comes first. If b was revealed, A reveals a, and splits the
contract balance between A and B. Otherwise, if the deadline t′ is expired, A
transfers the whole balance to B. Note that, although this strategy is liquid, it
is not satisfactory for A, since in the second case she will lose money.

This example highlights a crucial point: participants’ strategies have to be
taken into account when defining liquidity. Indeed, the mere fact that a liquid
strategy exists does not imply that it is the ideal strategy for the honest partic-
ipant. To fix this issue, we revise the mutual timed commitment as follows:

reveal a.
(
reveal b. split (1B → withdraw A | 1B → withdraw B)

+ after t′ : withdraw A
)

+ after t : withdraw B

where t < t′. Now, A has a liquid strategy where she does not pay the penalty.
First, A reveals a before time t. After that, if B reveals b, then A can execute the
split, transferring 1B to herself and 1B to B (note that this does not require
B’s cooperation); otherwise, after time t′, A can withdraw 2B by executing the
withdraw A in the after t′ : · · · branch.

These examples, albeit elementary, show that detecting if a strategy is liquid
for a contract is not straightforward, in general. The problem of determining
a liquid strategy for a given contract seems even more demanding. Automatic
techniques for the verification and inference of liquid strategies can be useful
tools for the developers of smart contracts.

2.4 Verifying Liquidity

One of the main contributions of this paper is a verification technique for the
liquidity of BitML contracts. Our technique is based on a more general result,

230 M. Bartoletti and R. Zunino

i.e. a strict correspondence between the semantics of BitML in [14] (hereafter,
called concrete semantics) and a new abstract semantics, which is finite-state
(Theorem 1). Our abstraction is a correct and complete approximation of the
concrete semantics with respect to a given set of contracts (Theorems 2 and
3). To obtain a finite-state abstraction, we need to cope with three sources
of infiniteness of the concrete semantics of BitML: the unbounded passing of
time, the advertisement/stipulation of new contracts, and the operations on
deposits. Our abstraction replaces the time t in concrete configurations with a
finite number of time intervals T = [t0, t1), and it disables the transitions to
advertise new contracts. Further, the only operations on deposits allowed by
the abstract semantics are the ones for transferring them to contracts and for
destroying them. The latter is needed e.g. to properly model the situation where
a participant spends a ?-deposit.

The intended use of our abstraction is to start from a configuration containing
an arbitrary (but finite) set of contracts, and then analyse their possible evolu-
tions in the presence of an honest participant and an adversary. This produces a
finite set of (finite) traces, which we can model-check for liquidity. Soundness and
completeness of the abstraction are exploited to prove that liquidity is decidable
(Theorem 4). The computational soundness of the BitML compiler [14] guar-
antees that if a contract is verified to be liquid according to our analysis, this
property is preserved when executing it on Bitcoin.

3 Liquidity

In this section we formalise a notion of liquidity of contracts, and we suggest
some possible variants. Aiming at generality, liquidity is parameterised over (i)
a set X of contract names, uniquely identifying the contracts under observation;
(ii) a participant A (with her strategy ΣA), which we assume to be the only
honest participant in the system. Roughly, we want that the funds stored within
the contracts X are eventually transferred to some participant, in any run con-
forming to A’s strategy. The actual definition is a bit more complex, because the
other participants may play against A, e.g. avoiding to reveal their secrets, or to
give their authorizations for some branch.

We start by introducing an auxiliary partial function origR0
(R, x) that, given

a contract name x and an extension R of a run R0, determines the ancestor y of
x in the last configuration of R0, if any. Intuitively, origR0

(R, x) = y means that
y has evolved into R, eventually leading to x (and possibly to other contracts).

In BitML, there are only two ways to make a contract evolve into another
contract. First, a split can spawn new contracts, e.g.:

〈split (v1 → C1 | v2 → C2), v1 + v2〉x
split(x)−−−−−→ 〈C1, v1〉y1 | 〈C2, v2〉y2

Here, both y1 and y2 have x as ancestor. Second, put&reveal reduces as follows:

〈put z & reveal a.C, v〉x | 〈A, v′〉z | · · · put(z,a,x)−−−−−−−→ 〈C, v + v′〉y | · · ·
In this case, the ancestor of y is x.

Verifying Liquidity of Bitcoin Contracts 231

origR0
(R0, x) = x if x ∈ cn(ΓR0)

origR0
(R′ �

Γ, x) =
origR0

(R′, x) if x ∈ cn(R′)

origR0
(R′, y) if

x ∈ cn(R′ �
Γ) \ cn(R′) and

(� = split(y) or � = put(z,a, y))

Fig. 3. Origin of a contract name within a run.

Definition 1. Let R be a run extending some run R0, and let x be a contract
name. We define origR0

(R, x) by induction on the length of R in Fig. 3, where
cn(Γ) denotes the set of contract names in Γ.

Example 1. Let R0 be a run with last configuration ΓR0 = 〈C1, v〉y | 〈A, v〉z ,
and let R be the following extension of R0, where the contracts C1 and C2 are
immaterial, but for the fact that they enable the displayed moves:

〈C1, v〉y | 〈A, v〉z −→ 〈C1, v〉y | 〈A, v〉z | {G}C2 −→∗ 〈C1, v〉y | 〈C2, v〉x

split(x)−−−−−→ 〈C1, v〉y | 〈C ′
2, v〉x′

split(y)−−−−−→ 〈C ′
1, v

′〉y′ | 〈C ′′
1 , v − v′〉y′′ | 〈C ′

2, v〉x′

We have that origR0
(R, y′) = origR0

(R, y′′) = y, since the corresponding con-
tracts have been obtained through a split of the ancestor y, which was in the
last configuration of R0. Instead, origR0

(R, x′) is undefined, because its ancestor
x is not in R0. Further, origR0

(R, y) = y, while origR0
(R, x) is undefined.

We now formalise liquidity. Assume that we want to observe a single contract
x, occurring in the last configuration of some run R0 (note that x has been
stipulated at some point during R0). A participant A wants to know if the
strategy ΣA allows her to make x evolve so that funds are never frozen within the
contract. We require that A can do this without the help of the other participants,
which therefore we model as a single adversary Adv. More precisely, we say that
x is liquid for A when, after any extension R of R0, ΣA can choose a sequence
of moves so to make all the descendant contracts of x terminate, transferring
their funds to some participant (possibly not A). Note that such moves can not
reveal secrets of other participants, or generate authorizations for them: A must
be able to unfreeze the funds on her own, using her strategy. By contrast, R
can also involve such moves, but it must conform to A’s strategy. The actual
definition of liquidity generalises the above to sets X0 of contract names.

Definition 2 (Liquidity). Let A be an honest participant, with strategy ΣA ,
let R0 be a run, and let X0 be a set of contract names in ΓR0 . We say that X0

is liquid w.r.t. ΣA in R0 if, for all finite extensions R of R0 conforming to ΣA

and to some ΣAdv , there exists an extension R′ = R
�1−→ · · · �n−→ of R such that:

∀i ∈ 1..n : �i ∈ ΣA(R �1−→ · · · �i−1−−−→) (1)

232 M. Bartoletti and R. Zunino

x ∈ cn(ΓR′) =⇒ origR0
(R′, x)
∈ X0 (2)

Condition (1) requires that all the moves after R can be taken by A alone,
conforming to her strategy. Condition (2) checks that R′ no longer contains
descendants of the contracts X0: since in BitML active contracts always store
some funds, this is actually equivalent to checking that funds are not frozen.

We remark that, although Definition 2 is instantiated on BitML, the basic
concepts it relies upon (runs, strategies, termination of contracts) are quite gen-
eral. Hence, our notion of liquidity, as well as the variants proposed below, can be
applied to other languages for smart contracts, using their transition semantics.

Example 2. Recall the timed commitment contract TC from Sect. 2. Assume
that A’s strategy is to wait until time t − 1 (i.e., one time unit before the
deadline), then reveal the secret and fire withdraw A . Let R0 be a run with final
configuration 〈TC , 1B〉x | {A : a#N}, for some length N . We have that {x} is
liquid w.r.t. ΣA in R0, while it is not liquid w.r.t. the strategy where A does not
reveal the secret, or reveals it without firing withdraw A . Indeed, under these
strategies A alone cannot make x terminate.

Example 3. Consider the following two contracts, which both require as precon-
dition that A put a deposit of 2B and commits to a secret a, and where p is an
arbitrary predicate on a:

C1 = reveal a if p. withdraw A + reveal a if¬p. withdraw B

C2 = split 1B → reveal a if p. withdraw A

| 1B → reveal a if¬p. withdraw B

Assume that A’s strategy is to reveal the secret, and then fire any enabled
withdraw. Under this strategy, C1 is liquid, because one of the reveal branches
is enabled, and the corresponding withdraw is fired, transferring 2B either to A
or to B. Instead, no strategy of A can make C2 liquid. If A does not reveal the
secret, then the 2B are frozen; otherwise, if A reveals the secret, then only one
of the two descendents of C2 can fire the reveal, and so 1B remains frozen.

Example 4 (Lottery). Consider a lottery between two players. The preconditions
require A and B to commit to one secret each (a and b, respectively), and to put
a deposit of 3B each (1B as a bet, and 2B as a penalty for dishonest behaviour):

Lottery(Win) = split
(

2B → (reveal b if 0 ≤ |b| ≤ 1. withdraw B) + (after t : withdraw A)
| 2B → (reveal a. withdraw A) + (after t : withdraw B)
| 2B → Win

)

Win = reveal a b if |a| = |b|. withdraw A

+ reveal a b if |a|
= |b|. withdraw B

The contract splits the balance in three parts, of 2B each. The first part allows
B to reveal b and then redeem 2B; otherwise, after the deadline A can redeem

Verifying Liquidity of Bitcoin Contracts 233

B’s penalty (as in the timed commitment). Similarly, the second part allows A
to redeem 2B by revealing a. To determine the winner we compare the secrets,
in the subcontract Win : A wins if the secrets have the same length, otherwise
B wins. This lottery is fair, since: (i) if both players are honest, then they will
reveal their secrets within the deadlines (redeeming 2B each), and then they will
have a 1/2 probability of winning2; (ii) if a player is dishonest, not revealing the
secret, then the other player has a positive payoff, since she can redeem 4B.

Although fair, Lottery(Win) is non-liquid w.r.t. any strategy of A. Indeed,
if B does not reveal his secret, then the 2B stored in the Win subcontract are
frozen. We can recover liquidity by replacing Win with the following:

Win2 = Win + (after t′ : reveal a. withdraw A)
+ (after t′ : reveal b. withdraw B)

where t′ > t. In this case, even if B does not reveal b, A can use a strategy firing
any enabled withdraw at time t′, to unfreeze the 2B stored in Win2.

We now present some variants of the notion of liquidity presented before.

Multiparty Liquidity. A straightforward generalisation of liquidity is to
assume a set of honest participants (rather than just one). In this case, we
can extend Definition 2 by requiring that the run R conforms to the strategies
of all honest participants, and the moves in (1) can be taken by any honest
participant.

We illustrate this notion through the following escrow contract between two
participants A and B, where the precondition requires A to deposit 1B:

Escrow = A : withdraw B + B : withdraw A + A :Resolve + B :Resolve

Resolve = split(0.1B → withdraw M

| 0.9B → M : withdraw A + M : withdraw B)

After the contract has been stipulated, A can choose to pay B, by authorizing
the first branch. Similarly, B can allow A to take her money back, by authorizing
the second branch. If they do not agree, any of them can invoke a mediator M
to resolve the dispute, invoking a Resolve branch. There, the 1B deposit is split
in two parts: 0.1B go to the mediator, while 0.9B are assigned either to A and
B, depending on M’s choice.

Assuming that only A is honest, this contract does not admit any liquid
strategy for A, according to Definition 2. This is because B can invoke the
mediator, who can refuse to act, freezing the funds within the contract. Similarly,
B alone has no liquid strategy, as well as M. Instead, Escrow admits a liquid
multiparty strategy for any pair of honest participants. For instance, if A and M
are honest, their strategies could be the following. A chooses whether to authorize

2 Note that B could increase his probability to win the lottery by choosing a secret
with length N > 1. However, doing so will make B lose his 2B deposit in the first
part of split, and so B’s average payoff would be negative.

234 M. Bartoletti and R. Zunino

the first branch or not; in the first case, she fires withdraw B ; otherwise, if B gives
his authorization within a certain deadline, then A withdraws 1B; if not, after
the deadline A invokes M. The strategy of M is to authorize some participant to
redeem the 0.9B, and to fire all the withdraw within Resolve.

Strategyless Liquidity. Another variant of liquidity can be obtained by
inspecting only the contract, neglecting A’s strategy. In this case, we consider
the contract as liquid when there exists some strategy of A which satisfies the
constraints in Definition 2. For instance, the contract B : withdraw A is non-
liquid from A’s point of view, according to this notion, while it would be liquid
for B.

Quantitative Liquidity. Definition 2 requires that no funds remain frozen
within the contract. However, in some cases A could accept the fact that a
portion of the funds remain frozen, especially when these funds would be ideally
assigned to other participants. Following this intuition, we could define a contract
v-liquid w.r.t. ΣA if at least v bitcoins are guaranteed to be redeemable. If the
contract uses only !-deposits, the special case where v is the sum of all these
deposits corresponds to the notion in Definition 2. For instance, Lottery(Win)
from Example 4 is non-liquid for any strategy of A, but it is 4B-liquid if A’s
strategy is to reveal her secret, and perform all the enabled withdraw. Instead,
Lottery(Win2) is 6B-liquid, and then also liquid, under this strategy.

A refinement of this variant could require that at least vB are transferred
to A, rather than to any participant. Under this notion, both Lottery(Win)
and Lottery(Win2) would be 2B-liquid for A. Further, Lottery(Win2) would be
4B-liquid in case A wins the lottery.

Liquidity with Unknown Secrets. All the notions of liquidity proposed so
far depend on the initial run R0, which contains the lengths of the committed
secrets. For instance, consider the run ending with the following configuration:

{B : b#0} | 〈(reveal b if |b| = 1. B : withdraw A) + withdraw A , 1B〉x

Since the length of b is zero, the reveal branch cannot be taken, so A has a
liquid strategy (e.g., fire the withdraw A). Instead, in an alternative initial run
where B chooses a secret of length 1, A has no liquid strategy, since B can reveal
the secret and then deny his authorization, freezing 1B.

In practice, when A performs the liquidity analysis, she does not know the
secrets of other participants. To be safe, A should use a worst-case analysis, which
would regard the contract (reveal b if |b| = 1. B : withdraw A) + withdraw A
as non-liquid. We can obtain such worst-case analysis by verifying liquidity (in
the flavour of Definition 2) for all possible choices of the lengths of Adv’s secrets.
Although there is an infinite set of such lengths, each contract only checks a
finite set of if conditions. Hence, the infinite set of lengths can be partitioned
into a finite set of regions, which can be used as samples for the analysis. In this
way, the basic liquidity analysis is performed a finite number of times.

Similar worst-case analyses can be obtained for all the other above-mentioned
variants of liquidity. An average-case analysis can be obtained by assuming to

Verifying Liquidity of Bitcoin Contracts 235

know the probability distribution of A’s secrets lengths, partitioning secrets
lengths like in the worst-case analysis.

Other Variants. Mixing multiparty and strategyless liquidity, we obtain the
notion of liquidity used in [35], in the context of Ethereum smart contracts.
This notion considers a contract liquid if there exists a collaborative strategy of
all participants that never freezes funds. Other variants may take into account
the time when funds become liquid, the payoff of strategies (e.g., ruling out
irrational adversaries), or fairness issues. Note indeed that Definition 2 already
assumes a sort of fairness, by effectively forbidding the adversary to interfere
when the honest participant attempts to unfreeze some funds. Technically, this
is implemented in item (1) of Definition 2, requiring that the moves �1 . . . �n are
performed atomically. Atomicity might be realistic in some settings, but not in
others. For instance, in Ethereum a sequence �1 . . . �n of method calls can be
performed atomically: this requires to deploy a new contract with a suitable
method which performs the calls �1 . . . �n in sequence, and then to invoke it.
BitML, instead, does not allow participants to perform an atomic sequence of
moves: an honest participant could start to perform the sequence, but at some
point in the middle the adversary interferes. To make the contract liquid, the
honest participant must still have a way to unfreeze the funds from the contract.
Of course, the adversary could interfere once again, and so on. This could lead
to an infinite trace where each attempt by the honest player is hindered by
the adversary. However, this is not an issue in BitML, for the following reason.
Since the moves �1 . . . �n make the contract terminate, we can safely assume that
each of these moves makes the contract progress (as moves which do not affect
the contract can be avoided). Since a BitML contract can not progress forever
without terminating (and unfreezing its funds), the honest participant just needs
to be able to make a step at a time (with possible interferences by the adversary,
which may affect the choice of the next step). Defining liquidity beyond BitML
and Ethereum may require to rule out unfair runs, where the adversary prevents
honest participants to perform the needed sequences of moves.

4 A Finite-State Semantics of BitML

The concrete BitML semantics is infinite-state because participants can always
create new contracts and deposits, and can advance the current time (a natural
number). In this section we introduce an abstract semantics for BitML, which
focuses on both these features so to reduce the state space to a finite one. More
specifically, for a concrete configuration Γ | t:

– we abstract Γ as an abstract configuration αX(Γ), where X is the (finite)
set of contract names under observation. Roughly, αX(Γ) represents only the
part of Γ needed to run the contracts X, discarding the other parts;

– we abstract t as a time interval αT(t) = [t0, t1), where t0, t1 ∈ T ∪ {0,+∞}.
The parameter T is a finite set of naturals, which intuitively represents all
the deadlines occurring in the contracts X.

236 M. Bartoletti and R. Zunino

αX,Z(〈C, v〉x) =

{
〈C, v〉x if x ∈ X

0 otherwise
αX,Z({A : a#N}) =

{
{A : a#N} if a ∈ Z

0 otherwise

αX,Z(〈A, v〉x) =

{
〈A, v〉x if x ∈ Z

0 otherwise
αX,Z(A : a#N) =

{
A : a#N if a ∈ Z

0 otherwise

αX,Z(A[χ]) =

⎧⎪⎨
⎪⎩
A[χ] if χ = x � D and x ∈ X

A[x, 0 � y�] if χ = x � B and x ∈ Z

0 otherwise

αX,Z({G}C) = 0 αX,Z(Δ | Δ′) = αX,Z(Δ) | αX,Z(Δ′)

Fig. 4. Abstraction of configurations.

We start by defining the abstraction of configurations.

Definition 3 (Abstraction of configurations). We define the function
αX,Z on concrete configurations in Fig. 4, where y� denotes a fixed name not
present in any concrete configuration. We write αX(Γ) for αX,N(X,Γ)(Γ), where:

N(X,Γ) = {z | ∃x,C, v, Γ ′ : Γ = 〈C, v〉x | Γ ′ ∧ x ∈ X ∧ z ∈ dn(C) ∪ sn(C)}

where we denote with dn(C) the set of deposit names in some put within C , and
with sn(C) the set of secrets names in some reveal within C .

The abstraction removes from Γ all the deposits not in Z, all the (committed
or revealed) secrets not in Z, and all the authorizations enabling branches of
some contracts not in Z. All the other authorizations—but the deposit autho-
rizations, which are handled in a special way—are removed. This is because,
in the concrete semantics, deposits move into fresh ones which are no longer
relevant for the contracts X. Note that if we precisely tracked such irrelevant
deposits and their authorizations, our abstract semantics would become infinite-
state. To cope with this issue, the abstract semantics will render deposit moves
as “destroy” moves, removing the now irrelevant deposits from the configura-
tion. As anticipated in Sect. 2.2, an authorization of a deposit move can only
be performed after a “self-donate” authorization A[x � A], which lets A transfer
the funds in x to another of her deposits. Our abstraction maps such A[x � A]
into an “abstract destroy” authorization A[x, 0 � y�]. In this way, in abstract
configurations, deposits can be destroyed when, in concrete configurations, they
are no longer relevant.

The abstraction of time αT is parameterised over a finite set of naturals T,
which partitions N into a finite set of non-overlapping intervals3. Each time t is
abstracted as αT(t), which is the unique interval containing t.

3 A specific choice of T, which considers all the deadlines in the contracts X under
observation, is defined later on (Definition 8).

Verifying Liquidity of Bitcoin Contracts 237

Definition 4 (Abstraction of time). Let T ∈ ℘fin(N). We define the function
αT : N → ℘(N) as αT(t) = [t0, t1) where:

t0 = max ({t′ ∈ T | t′ ≤ t} ∪ {0}) t1 = min ({t′ ∈ T | t′ > t0} ∪ {+∞})

Lemma 1. If T ∈ ℘fin(N), then: (i) ∀t ∈ N : t ∈ αT(t); (ii) ran αT is finite.

Abstract Semantics. We now describe the abstract semantics of BitML (the
detailed formalisation is deferred to Definition 7 in Appendix A). An abstract
configuration is a term of the form Γ | T, where Γ is a concrete untimed con-
figuration, and T ∈ ran αT . We then define the relation →� between abstract
configurations by differences w.r.t. the concrete relation −→:

1. the rule to advertise contracts is removed.
2. the rules for deposits are replaced by two rules, which authorize and perform

the destroy of deposits. In these rules we use the fixed name y�, unlike the
fresh names in the concrete semantics, so to avoid infinite branching.

3. the rule for delays is replaced by a new rule, which allows for transitions
Γ | T

δ−→� Γ | T ′. The delay δ is the least positive integer which makes T (in
the earliest moment) step to T ′, i.e. δ = min T ′ − min T.

4. the rule for making a contract 〈withdraw A , v〉x reduce to a deposit 〈A, v〉y

is replaced so that 〈withdraw A , v〉x reduces to 0 (the empty configuration).
5. the rule for making branches after t :D evolve is adapted to time intervals.

The new rule requires that the current time interval T is later than t.

Abstract Runs. Given an arbitrary abstract configuration Γ0 | T0, an abstract
run R� is a (possibly infinite) sequence Γ0 | T0 →� Γ1 | T1 →� · · · . While concrete
runs always start (at time 0) from configurations which contain only deposits,
abstract runs can start from arbitrary configurations.

Abstract Strategies. An abstract strategy Σ#
A is a PPTIME algorithm which

allows A to select which actions to perform, among those permitted by the
abstract semantics. Conformance between abstract runs and strategies is defined
similarly to the concrete case [14].

Concretisation of Strategies. Each abstract strategy Σ#
A can be transformed

into a concrete strategy ΣA = γ(Σ#
A) as follows. The transformation is param-

eterised over a concrete run R0 and a set of contract names X0 ⊆ cn(ΓR0):
intuitively, R0 is the concrete counterpart of the initial abstract configuration
Γ0 | T0, and X0 is the set of contracts under observation. The strategy ΣA

receives as input a concrete run R, and it must output the next actions. If R is a
prefix of R0, the next move is chosen as in R0. The case where R is not an exten-
sion of R0 is immaterial. Assuming that R extends R0, we first abstract the part
of R exceeding R0, so to obtain an abstract run R�. This is done by abstracting
every configuration in the run: times are abstracted with αT0 , while untimed
configurations are abstracted with αX , where X is the set of the descendants of
X0 in the configuration at hand. The moves of R are mapped to abstract moves

238 M. Bartoletti and R. Zunino

in a natural way: moves not affecting the descendents of X0, nor their relevant
deposits or secrets, are not represented in the abstract run. Once the abstract run
R� has been constructed, we apply Σ#

A (R�) to obtain the next abstract actions.
ΣA(R) is defined as the concretisation of these actions. The concretisation of the
adversary strategy Σ#

Adv can be defined in a similar way.

Theorem 1. Starting from any abstract configuration, the relation →� is finitely
branching, and it admits a finite number of runs.

A direct consequence of Theorem 1 is that the abstract semantics is finite-
state, and that each abstract run is finite. This makes the abstract LTS amenable
to model checking.

Correspondence Between the Semantics. We now establish a correspon-
dence between the abstract and the concrete semantics of BitML. Assume that
we have a concrete run R0, representing the computation done so far. We want
to observe the behaviour of a set of contracts X0 in ΓR0 (the last untimed con-
figuration of R0). To this purpose, we run the abstract semantics, starting from
an initial configuration Γ �

0 , whose untimed component is αX0(ΓR0). The time
component is obtained by abstracting the last time δR0 in the concrete run.
The parameter T0 used to abstract time is any finite superset of the deadlines
occurring in contracts X0 within ΓR0 . Hereafter we denote this set of deadlines
as ticksX0(ΓR0) (see Definition 8 in Appendix A).

When the contracts in X0 evolve, the run R0 is extended to a run R, which
contains the descendents of X0, i.e. those contracts whose origin belongs to X0.
These descendents are denoted with descR0(R,X0).

Definition 5. For all concrete runs R0,R such that R extends R0, and set of
deposit names X0, we define the set of deposit names descR0(R,X0) as follows:

descR0(R,X0) =
{
x

∣
∣ ∃Γ ′, C , v : ΓR = 〈C, v〉x | Γ ′ and origR0

(R, x) ∈ X0

}

The following theorem states that the abstract semantics is a sound approx-
imation of the concrete one. Every abstract run (conforming to A’s abstract
strategy Σ#

A) has a corresponding concrete run (conforming to the concrete
strategy derived from Σ#

A). More precisely, each configuration Γ � | T in the
abstract run has a corresponding configuration in the concrete run, containing
the concretization Γ of Γ �, besides a term Δ containing the parts unrelated to
X0. Further, each move in the abstract run corresponds to an analogous move
in the concrete run.

Theorem 2 (Soundness). Let R0 be a concrete run, let X0 ⊆ cn(ΓR0), let
Z0 ⊇ N(X0, ΓR0), let T0 ∈ ℘fin(N), let Γ �

0 = αX0,Z0(ΓR0) | αT0(ΓR0). Let Σ#
A

and Σ#
Adv be the abstract strategies of A and of Adv, and let ΣA = γ(Σ#

A) and
ΣAdv = γ(Σ#

Adv) be the corresponding concrete strategies. For each abstract run
Γ �
0 →∗

� Γ � | T conforming to Σ#
A and Σ#

Adv , there exists a concrete run:

R = R0 −→∗ Γ | Δ | min T

Verifying Liquidity of Bitcoin Contracts 239

such that: (i) R conforms to ΣA and ΣAdv ; (ii) Δ contains all the subterms of ΓR0

which are mapped to 0 when evaluating αX0,Z0(ΓR0); (iii) αX,Z0(Γ | Δ) = Γ �,
where X = descR0(R,X0); (iv) αT0(min T) = T; (v) the labels in R are the same
as in R�, except for the occurrences of y�.

Note that soundness only guarantees the existence of some concrete runs,
which are a strict subset of all the possible concrete runs. For instance, the concrete
semantics also allows the non-observed part Δ to progress, and it contains con-
figurations with a time t
= min T, for any T in any abstract run. Still, these con-
crete runs have an abstract counterpart, as established by the following complete-
ness result (Theorem 3). This is almost dual to our soundness result (Theorem 2).
Completeness maps concrete configurations to abstract ones using our abstraction
functions for untimed configurations and time. Moreover, this run correspondence
holds when the concrete strategy of A is derived from an abstract strategy, while
no such restriction is required for the adversary strategy.

Theorem 3 (Completeness). Let R0 be a concrete run, let X0 ⊆ cn(ΓR0), let
Z0 ⊇ N(X0, ΓR0), let T0 ⊇ ticksX0(ΓR0), and let Γ �

0 = αX0,Z0(ΓR0) | αT0(ΓR0).
Let Σ#

A be the abstract strategy of A, and let ΣA = γ(Σ#
A) be the corresponding

concrete strategy. For each concrete run R = R0 →∗ Γ | t conforming to ΣA and
to some ΣAdv , there exists an abstract run:

R� = Γ �
0 →∗

� αX,Z0(Γ) | αT0(t)

such that: (i) R� conforms to Σ#
A and to some Σ#

Adv ; (ii) X = descR0(R,X0);

(iii) if R = R0 −→∗ Γ ′ | t′ �−→ · · · and � ∈ ΣA(R0 −→∗ Γ ′ | t′), then there exists �′

such that R� = Γ �
0 →∗

� Γ � = αX′,Z0(Γ
′) | αT0(t

′)
�′
−→� · · · where �′ ∈ Σ#

A (Γ �
0 →∗

�

Γ �) and X ′ = descR0(R0 −→∗ Γ ′ | t′,X0).

Example 5. Let C = reveal a.withdraw A + put y.withdraw B , and let R be
the following concrete run, where the prefix · · · is immaterial (for simplicity, we
also omit labels, times, and participants’ strategies):

· · · −→ 〈C, 1B〉x | 〈B, 1B〉y | 〈A, 2B〉z | {A : a#10} = Γ0

−→ 〈C, 1B〉x | 〈B, 1B〉y | 〈A, 2B〉z | {A : a#10} | B[y � B]

−→ 〈C, 1B〉x | 〈B, 1B〉y | 〈A, 2B〉z | {A : a#10} | B[y � B] | B[y � C]

−→ 〈C, 1B〉x | 〈B, 1B〉y | 〈A, 2B〉z | A : a#10 | B[y � B] | B[y � C]

−→ 〈withdraw A , 1B〉x′ | 〈B, 1B〉y | 〈A, 2B〉z | A : a#10 | B[y � B] | B[y � C] = Γ

−→ 〈withdraw A , 1B〉x′ | 〈C, 1B〉y′ | 〈A, 2B〉z | A : a#10 | B[y � B] | B[y � C]

−→ 〈A, 1B〉x′′ | 〈C, 1B〉y′ | 〈A, 2B〉z | A : a#10 | B[y � B] | B[y � C]

By Theorem 3, this concrete run has the following corresponding abstract run
w.r.t. X0 = {x}. The initial configuration Γ0 is abstracted w.r.t. X0 and Z0 =
N(X0, Γ0) = {a, y}. This causes deposit z to be neglected in the abstraction.

240 M. Bartoletti and R. Zunino

〈C, 1B〉x | 〈B, 1B〉y | {A : a#10} = Γ �
0

→� 〈C, 1B〉x | 〈B, 1B〉y | {A : a#10} | B[y, 0 � y�]
→� 〈C, 1B〉x | 〈B, 1B〉y | A : a#10 | B[y, 0 � y�]

→� 〈withdraw A , 1B〉x′ | 〈B, 1B〉y | A : a#10 | B[y, 0 � y�] = Γ �

→� 〈withdraw A , 1B〉x′ | A : a#10
→� A : a#10

We now compare the two runs. The concrete authorization for a self-donate
of y is abstracted as an authorization for destroying y. Instead, the concrete
authorization for donating y to C has no abstract counterpart. The concrete
reveal of secret a and the subsequent contract move have identical abstract
moves, which reach the abstract configuration Γ �. Technically, Γ � is the result
of abstracting the concrete configuration Γ w.r.t. X ′ = {x′} and Z0: here, we
no longer abstract w.r.t. X0, but instead use the set of its descendents X ′. By
contrast, the set Z0 is unchanged. Note that, if we instead abstracted with respect
to X0, we would discard the contract x′, in which case we could not perform the
abstract step, because the abstract semantics does not discard x′. Similarly, if we
instead used Z ′ = N(X ′, Γ) = ∅ we would discard the secret a and the deposit
y, invalidating the abstract steps. When Γ performs the next move (a donation)
this is abstracted as a destroy move. Finally, the last concrete withdraw move
is mapped to an abstract withdraw move, which does not create the deposit x′′.

5 Verifying Liquidity

In this section we devise a verification technique for liquidity of BitML contracts,
exploiting our abstract semantics. The first step is to give an abstract counterpart
of liquidity: this is done in Definition 6, which mimics Definition 2, replacing
concrete objects with abstract ones.

Definition 6 (Abstract liquidity). Let A be an honest participant, with
abstract strategy Σ#

A , let R
�
0 be an abstract run, and let X0 be a set of con-

tract names in ΓR�
0
. We say that X0 is �-liquid w.r.t. Σ#

A in R
�
0 if for all exten-

sions R� of R�
0 conforming to Σ#

A and to some Σ#
Adv , there exists an extension

Ṙ� = R� �1−→ · · · �n−→ of R� such that:

∀i ∈ 1..n : �i ∈ Σ#
A (R� �1−→� · · · �i−1−−−→�) (3)

x ∈ cn(Γ
Ṙ�) =⇒ origR�

0
(Ṙ� , x)
∈ X0 (4)

To verify liquidity of a set of contracts X0 in a concrete run R0, we will choose
R

�
0 to be the run containing a single configuration Γ �

0 , obtained by abstracting
with αX0 the last configuration of R0. In such case, the condition (4) above can
be simplified by just requiring that cn(Γ

Ṙ�) = ∅.

Verifying Liquidity of Bitcoin Contracts 241

The following lemma states that abstract and concrete liquidity are equiva-
lent. For this, it suffices that the abstraction is performed with respect to the
contract names X0, and to the set of deadlines occurring in the contracts X0.

Lemma 2 (Abstract vs. concrete liquidity). Let R0 be a concrete run,
let X0 ⊆ cn(ΓR0), and let T0 = ticksX0(ΓR0). Let Γ �

0 = αX0(ΓR0) | αT0(δR0).
Let Σ#

A be an abstract strategy (w.r.t. T0 and Γ �
0), and let ΣA = γR0(Σ

#
A). Let

R
�
0 = Γ �

0 (i.e., the run with no moves). Then:

X0 is liquid w.r.t. ΣA inR0 ⇐⇒ X0 is �-liquid w.r.t. Σ#
A inR

�
0.

The following lemma states that if a contract is liquid w.r.t. some concrete
strategy, then is also liquid w.r.t. some abstract strategy, and vice versa. Intu-
itively, this holds since if it is possible to make a contract evolve with a sequence
of moves conforming to any concrete strategy, then the same moves can be also
be generated by an abstract strategy.

Lemma 3. Let R0 be a concrete run, and let X0 ⊆ cn(ΓR0). X0 is liquid w.r.t.
some ΣA in R0 iff X0 is liquid w.r.t. γ(Σ#

A) in R0, for some Σ#
A .

Our main technical result follows. It states that liquidity is decidable, and
that it is possible to automatically infer liquid strategies for a given contract.

Theorem 4 (Decidability of liquidity). Liquidity is decidable. Furthermore,
for any R0 and X0, it is decidable whether there exists a strategy ΣA such that
X0 is liquid w.r.t. ΣA in R0. If such strategy exists, then it can be automatically
inferred given R0 and X0.

Proof. Let A be an honest participant with strategy ΣA , let R0 be a concrete
run, and let X0 be a set of contract names in ΓR0 . By Lemma 3, X0 is liquid
w.r.t. ΣA iff there exists some abstract strategy Σ#

A such that X0 is liquid w.r.t.
Σ′

A = γ(Σ#
A). By Lemma 2, X0 is liquid w.r.t. Σ′

A iff X0 is �-liquid w.r.t. Σ#
A .

By Theorem 1, the abstract semantics is finite, and so the possible abstract
strategies are finite. Therefore, �-liquidity is decidable, and consequently also
liquidity is decidable. Note that this procedure also finds a liquid strategy, if
there exists one. ��

6 Conclusions

We have developed a theory of liquidity for smart contracts, and a verification
technique which is sound and complete for contracts expressed in BitML. Our
finite-state abstraction can be applied, besides liquidity, to verify other proper-
ties of smart contracts. For instance, we could decide whether a strategy allows
a participant to always terminate a contract within a certain deadline. Addi-
tionally, we could infer a strategy which guarantees that the contract terminates
before a certain time (if any such strategy exists), or infer the strategy that ter-
minates in the shortest time, etc. Although our theory is focussed on BitML, the

242 M. Bartoletti and R. Zunino

various notions of liquidity we have proposed could be applied to more expressive
languages for smart contracts, like e.g. Solidity (the high-level language used by
Ethereum). To the best of our knowledge, the only form of liquidity verified so
far in Ethereum is the “strategyless multiparty” variant, which only requires the
existence of a cooperative strategy to unfreeze funds (this property is analysed,
e.g., by the Securify tool [35]). Since Ethereum contracts are Turing-powerful,
verifying their liquidity is not possible in a sound and complete manner; instead,
the reduced expressiveness of BitML makes liquidity decidable in that setting.

Acknowledgements. Massimo Bartoletti is partially supported by Aut. Reg. of Sar-
dinia projects Sardcoin and Smart collaborative engineering. Roberto Zunino is par-
tially supported by MIUR PON Distributed Ledgers for Secure Open Communities.

A Appendix

Lemma 4. Let R0,R1,R2 be such that R1 extends R0 and R2 extends R1. Then:

origR0
(R1, origR1

(R2, x)) = origR0
(R2, x)

Proof of Lemma 4 (sketch). By induction on R1.

Definition 7 (Abstract semantics). Let T ∈ ℘fin(N). An abstract configu-
ration is a term of the form Γ | T, where Γ is a concrete untimed configuration,
and T ∈ ranαT . We then define the relation →� between abstract configurations
by differences w.r.t. the concrete relation −→:

1. the rule [C-Advertise] is removed.
2. the rules for deposits are replaced by the following two rules:

〈A, v〉x | Γ
A:x,0,y�−−−−−→� 〈A, v〉x | A[x, 0 � y�] | Γ

[Dep-AbsAuthDestroy]

〈A, v〉x | A[x, 0 � y�] | Γ
destroy(x,y�)−−−−−−−−→� Γ

[Dep-AbsDestroy]

3. the rule [Delay] is replaced by the following:

δ = min T ′ − min T > 0

Γ | T
δ−→� Γ | T ′

[AbsDelay]

4. the rule [C-Withdraw] is replaced by the following:

〈withdraw A , v〉y | Γ
withdraw(A,v,y)−−−−−−−−−−→ 0

[C-AbsWithdraw]

Verifying Liquidity of Bitcoin Contracts 243

5. the rule [Timeout] is replaced by the following:

D ≡ after t1 : · · · : after tm :D ′ D ′
≡ after t′ : · · ·
〈D, v〉x | Γ

�−→� Γ ′ x ∈ cv(�) min T ≥ t1, . . . , tm

〈D + C, v〉x | Γ | T
�−→� Γ ′ | T

[AbsTimeout]

Definition 8. We define the function ticks from contracts to ℘fin(N) as follows:

ticks (
∑

i∈I Di) =
⋃

i∈I

ticks (Di) ticks (A :D) = ticks (D)

ticks (withdraw A) = ∅ ticks (after t :D) = {t} ∪ ticks (D)

ticks (split v → C) =
⋃

ticks (C) ticks (putx & reveala if p.C) = ticks (C)

Then, for any set of names X, we define the function ticksX from concrete
untimed configurations to ℘fin(N) as follows:

ticksX({G}C) = ∅
ticksX(〈C, v〉x) =

{
ticks (C) ifx ∈ X

∅ otherwise

ticksX(〈A, v〉) = ticksX(A[χ]) = ticksX({A : a#N}) = ticksX(A : a#N) = ∅
ticksX(Γ | Γ ′) = ticksX(Γ) ∪ ticksX(Γ ′)

Lemma 5. If R = R0 −→∗ Γ | t, then ticksX0(ΓR0) ⊇ ticksdescR0 (R,X0)(Γ).

Proof of Lemma 5 (sketch). When a move is performed, a contract becomes
syntactically smaller, hence the set of deposit names and secret names within
the contract becomes a subset.

Definition 9 (Abstract strategies). For any T ∈ ℘fin(N) and initial abstract
configuration Γ0 | T0 with T0 ∈ ranαT , we define an abstract strategy Σ#

A

as a PPTIME algorithm which takes as input an abstract run starting from
Γ0 | T0 and a randomness source, and gives as output a finite sequence of actions.
Abstract strategies are subject to same constraints imposed to concrete ones.

Note that, since Σ#
A can only output moves according to the abstract seman-

tics, it can only choose delays δ which jump from an interval T to a subsequent
interval T ′, i.e. δ = min T ′ − min T.

Proof of Theorem 1 (sketch). The theorem immediately follows from the
definition of our abstract semantics, which, compared to the concrete semantics,
removes or abstracts all the BitML rules which can violate the statement. More
precisely, using rule induction we observe that each abstract step makes the
configuration syntactically “smaller”, ensuring termination. Further, we have a
finite amount of rules, and each rule can only cause a finite amount of branches.

Proof of Theorem 2 (sketch). Essentially, the concrete run can perform the
same moves of the abstract run, with the following minor changes. The abstract

244 M. Bartoletti and R. Zunino

rules for destroying deposits (and the related authorizations) involve the name
y�, which are replaced by fresh names y in the concrete run. Further, abstract
delay moves change the abstract time T to T ′: in the concrete run, instead, we
make time move from min T to min T ′. This makes the concrete and abstract
timeout rules to agree on which branches after t :D are enabled.

Proof of Theorem 3 (sketch). Each concrete move corresponds to zero or
more abstract moves: in the latter case, the concrete and abstract moves are
related as follows: (i) contract moves are unchanged; (ii) all authorizations are
unchanged, but for A : x,B (generated by [Dep-AuthDonate]) which is abstracted
as A : x, 0, y�; (iii) deposit moves affecting a set Y of deposits are transformed
to a sequence of [Dep-AbsDestroy] moves, destroying those deposits in Y which are
present in the abstract configuration; (iv) reveal moves are unchanged; (v) delay
moves are mapped to delay moves (not necessarily of the same duration).

Proof of Lemma 2. See [15].

Proof of Lemma 3 (sketch). The lemma holds since Σ#
A can be defined in

terms of ΣA , in such a way to preserve the following invariant: each conforming
run to Σ#

A can be transformed into a concrete run conforming to ΣA . Upon
receiving a (conforming) abstract run, if some descendent of X0 is still present,
Σ#

A computes a corresponding concrete run and queries Σ#
A with it, learning the

next concrete moves. Since X0 is liquid, the concrete strategy eventually must
perform a move which is relevant for the contracts X0, and that move can then
be chosen by Σ#

A . If such move is then taken by the abstract adversary, the
invariant is clearly preserved. If instead the adversary takes another move, we
can extend the concrete run accordingly, and still preserve the invariant.

Liquidity for Finite LTS. We now give an alternative characterization of
liquidity, which corresponds to Definition 2 on transition systems with finite
traces, like the one obtained through the abstraction introduced in Sect. 4.

Definition 10 (Maximal run). We say that a run R is maximal w.r.t. a set
of strategies Σ when R

�−→ implies �
∈ Σ(R).

Definition 11 (Liquidity for finite LTS). Assume that A is the only honest
participant, with strategy Σ#

A . We say that X0 is �fin -liquid w.r.t. Σ#
A in R

�
0

when, for all extensions R� of R�
0 conforming to Σ#

A (and to some Σ#
Adv), if R�

is maximal w.r.t. ΣA , ΣAdv and x ∈ cn(ΓR�), then origR�
0
(R�, x)
∈ X0.

Lemma 6. X0 is �-liquid w.r.t. Σ#
A in R

�
0 iff X0 is �fin -liquid w.r.t. Σ#

A in R
�
0.

Proof. For the “only if part”, assume that X0 is �-liquid w.r.t. Σ#
A in R

�
0, and

let R� be a maximal extension (w.r.t. Σ#
A , Σ#

Adv) of R�
0 conforming to Σ#

A , Σ#
Adv .

By Definition 6, condition (3) can only hold for Ṙ� = R�. Hence, for all x ∈
cn(ΓR�), by condition (4) it follows that origR�

0
(R�, x)
∈ X0.

Verifying Liquidity of Bitcoin Contracts 245

For the “if part”, assume that X0 is �fin -liquid w.r.t. Σ#
A in R

�
0, and let R�

be an extension of R�
0 conforming to Σ#

A , Σ#
Adv . There are two cases:

– If R� is maximal w.r.t. Σ#
A , Σ#

Adv , then by Definition 11 it follows that x ∈
cn(ΓR�) implies origR�

0
(R�, x)
∈ X0. Hence, conditions (3)–(4) of Definition 6

follow by choosing Ṙ� = R�.
– If R� is not maximal w.r.t. Σ#

A , Σ#
Adv , let Ṙ� be the longest extension of

R� made only by moves conforming to Σ#
A . Let Σ̇#

Adv be the strategy which
(i) is equal to Σ#

Adv on the prefix R�, (ii) permits A’s action on the exten-
sion, (iii) forbids any action after Ṙ� . By this construction, Ṙ� is maximal
w.r.t. Σ#

A , Σ̇#
Adv . So, by Definition 11 we have origR�

0
(Ṙ� , x)
∈ X0 for all

x ∈ cn(Γ
Ṙ�). Conditions (3)–(4) of Definition 6 follow by choosing Ṙ� . ��

References

1. Understanding the DAO attack, June 2016. http://www.coindesk.com/
understanding-dao-hack-journalists/

2. Parity Wallet security alert, July 2017. https://paritytech.io/blog/security-alert.
html

3. A Postmortem on the Parity Multi-Sig library self-destruct, November 2017.
https://goo.gl/Kw3gXi

4. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair two-party
computations via Bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014. LNCS, vol. 8438, pp. 105–121. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44774-1 8

5. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Modeling Bit-
coin contracts by timed automata. In: Legay, A., Bozga, M. (eds.) FORMATS
2014. LNCS, vol. 8711, pp. 7–22. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10512-3 2

6. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: IEEE S & P, pp. 443–458 (2014). First appeared
on Cryptology ePrint Archive. http://eprint.iacr.org/2013/784

7. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. Commun. ACM 59(4), 76–84 (2016)

8. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum Smart
Contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

9. Atzei, N., Bartoletti, M., Cimoli, T., Lande, S., Zunino, R.: SoK: unraveling bitcoin
smart contracts. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804,
pp. 217–242. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6 9

10. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of Bitcoin transac-
tions. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 541–560.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6 29

http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://paritytech.io/blog/security-alert.html
https://paritytech.io/blog/security-alert.html
https://goo.gl/Kw3gXi
https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/978-3-319-10512-3_2
https://doi.org/10.1007/978-3-319-10512-3_2
http://eprint.iacr.org/2013/784
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-319-89722-6_9
https://doi.org/10.1007/978-3-662-58387-6_29

246 M. Bartoletti and R. Zunino

11. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 261–280.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3 14

12. Bartoletti, M., Cimoli, T., Zunino, R.: Fun with Bitcoin smart contracts. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 432–449. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03427-6 32

13. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on Bitcoin. In:
Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 231–247. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 15

14. Bartoletti, M., Zunino, R.: BitML: a calculus for Bitcoin smart contracts. In: ACM
SIGSAC CCS, pp. 83–100. ACM (2018)

15. Bartoletti, M., Zunino, R.: Verifying liquidity of Bitcoin contracts. Cryptology
ePrint Archive, Report 2018/1125 (2018). https://eprint.iacr.org/2018/1125

16. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In:
Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–
236. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7.
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

17. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

18. Bhargavan, K., et al.: Formal verification of smart contracts. In: PLAS (2016)
19. Buterin, V.: Ethereum: a next generation smart contract and decentralized appli-

cation platform (2013). https://github.com/ethereum/wiki/wiki/White-Paper
20. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-

tine agreements for cryptocurrencies. In: Symposium on Operating Systems Prin-
ciples, pp. 51–68 (2017)

21. Grishchenko, I., Maffei, M., Schneidewind, C.: Foundations and tools for the static
analysis of Ethereum smart contracts. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10981, pp. 51–78. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96145-3 4

22. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of Ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST
2018. LNCS, vol. 10804, pp. 243–269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89722-6 10

23. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the Ethereum
Virtual Machine. In: IEEE Computer Security Foundations Symposium (CSF),
pp. 204–217. IEEE Computer Society (2018)

24. Hirai, Y.: Defining the Ethereum Virtual Machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

25. Klomp, R., Bracciali, A.: On symbolic verification of Bitcoin’s script language. In:
Garcia-Alfaro, J., Herrera-Joancomart́ı, J., Livraga, G., Rios, R. (eds.) DPM/CBT
-2018. LNCS, vol. 11025, pp. 38–56. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00305-0 3

26. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations.
In: ACM CCS, pp. 30–41 (2014)

27. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: ACM CCS, pp. 254–269 (2016)

https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-030-03427-6_32
https://doi.org/10.1007/978-3-319-70278-0_15
https://eprint.iacr.org/2018/1125
https://doi.org/10.1007/978-3-540-30080-9_7
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
https://doi.org/10.1007/978-3-662-44381-1_24
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-3-030-00305-0_3
https://doi.org/10.1007/978-3-030-00305-0_3

Verifying Liquidity of Bitcoin Contracts 247

28. Maxwell, G.: The first successful zero-knowledge contingent payment (2016).
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-
announcement/

29. Miller, A., Bentov, I.: Zero-collateral lotteries in Bitcoin and Ethereum. In:
EuroS&P Workshops, pp. 4–13 (2017)

30. Miller, A., Cai, Z., Jha, S.: Smart contracts and opportunities for formal methods.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 280–299.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-6 22

31. Mythril (2018). https://github.com/ConsenSys/mythril
32. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://

bitcoin.org/bitcoin.pdf
33. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for High-

erorderlogic, vol. 2283. Springer Science & Business Media, Heidelberg (2002).
https://doi.org/10.1007/3-540-45949-9

34. Rocket, T.: Snowflake to avalanche: a novel metastable consensus protocol family
for cryptocurrencies (2018). https://avalanchelabs.org/avalanche.pdf

35. Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev,
M.T.: Securify: practical security analysis of smart contracts. In: ACM CCS, pp.
67–82 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://doi.org/10.1007/978-3-030-03427-6_22
https://github.com/ConsenSys/mythril
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/3-540-45949-9
https://avalanchelabs.org/avalanche.pdf
http://creativecommons.org/licenses/by/4.0/

Author Index

Alexander, Perry 197
Amidon, Peter 1
Antonopoulos, Timos 29
Askarov, Aslan 51
Aspinall, David 175

Bartoletti, Massimo 222
Butler, David 175

Chan, Matthew 1

Debant, Alexandre 149
Delaune, Stéphanie 149
Dras, Mark 123

Fernandes, Natasha 123

Gascón, Adrià 175
Gregersen, Simon 51

Helble, Sarah C. 197
Hicks, Michael 76, 99

Lampropoulos, Leonidas 76
Loscocco, Peter 197

McIver, Annabelle 123

Pendergrass, J. Aaron 197
Petz, Adam 197

Ramsdell, John D. 197
Rastogi, Aseem 99
Renner, John 1
Rowe, Paul D. 197
Ruef, Andrew 76

Soeller, Gary 1
Stefan, Deian 1
Swamy, Nikhil 99
Sweet, Ian 76

Tarditi, David 76
Terauchi, Tachio 29
Thomsen, Søren Eller 51

Vassena, Marco 1

Zunino, Roberto 222

	ETAPS Foreword
	Preface
	Organization
	Contents
	Foundations for Parallel Information Flow Control Runtime Systems
	1 Introduction
	2 Internal Manifestation of External Attacks
	2.1 Overview of the Concurrent LIO Information Flow Control System
	2.2 External Timing Attacks to Runtime Systems
	2.3 Internalizing External Timing Attacks

	3 Secure, Parallel Runtime System
	4 Hierarchical Calculus
	4.1 Core Scheduler
	4.2 Resource Reclamation and Observations
	4.3 Parallel Scheduler

	5 Security Guarantees
	5.1 Erasure Function
	5.2 Timing-Sensitive Non-interference

	6 Limitations
	7 Related Work
	8 Conclusion
	References

	A Formal Analysis of Timing Channel Security via Bucketing
	1 Introduction
	2 Security Against Adaptive Side-Channel Attacks
	2.1 Insufficiency of Bucketing

	3 Sufficient Conditions for Security Against Adaptive Side-Channel Attacks
	3.1 Secret-Restricted Side-Channel Refinement Condition
	3.2 Low-Input Side-Channel Non-Interference Condition
	3.3 Combining Bucketing and Constant-Time Implementation Compositionally

	4 Related Work
	5 Conclusion and Future Work
	References

	A Dependently Typed Library for Static Information-Flow Control in Idris
	1 Introduction
	1.1 Assumptions and Threat Model

	2 The DepSec Library
	3 Case Study: Conference Manager System
	4 Policy-Parameterized Functions
	5 Declassification
	5.1 The what Dimension
	5.2 The who and when Dimensions

	6 Soundness
	7 Related Work
	8 Conclusion and Future Work
	References

	Achieving Safety Incrementally with Checked C
	1 Introduction
	2 Overview of Checked C
	3 Formalism: CORECHKC
	3.1 Syntax
	3.2 Semantics
	3.3 Typing

	4 Checked Code Cannot Be Blamed
	4.1 Progress and Preservation
	4.2 Blame

	5 Porting Assistance
	5.1 Constraint Logic and Solving
	5.2 Algorithm
	5.3 Resolving Conflicts
	5.4 Experimental Evaluation

	6 Related Work
	7 Conclusions and Future Work
	References

	Wys: A DSL for Verified Secure Multi-party Computations
	1 Introduction
	2 Verifying and Deploying Wys Programs
	2.1 Secure Computations with assec
	2.2 Optimizing median with aspar
	2.3 Embedding a Type System for Wys in F
	2.4 Correctness and Security Verification
	2.5 Deploying Wys Programs

	3 Formalizing and Implementing Wys
	3.1 Syntax
	3.2 Single-Threaded Semantics
	3.3 Distributed Semantics
	3.4 Metatheory
	3.5 Implementation

	4 Applications
	5 Related Work
	6 Conclusions
	References

	Generalised Differential Privacy for Text Document Processing
	1 Introduction
	2 Documents, Topic Classification and Earth Moving
	2.1 Word Embeddings

	3 Differential Privacy and the Earth Mover's Metric
	3.1 Application to Text Documents
	3.2 Properties of Earth Mover's Privacy

	4 Earth Mover's Privacy for Bags of Vectors in Rn
	4.1 Earth Mover's Privacy in BRn
	4.2 Utility Bounds

	5 Text Document Privacy
	6 Experimental Results
	7 Related Work
	8 Conclusions
	References

	Symbolic Verification of Distance Bounding Protocols
	1 Introduction
	2 Background
	2.1 Distance Bounding Protocols
	2.2 Attacks on Distance Bounding Protocols
	2.3 Symbolic Security Analysis

	3 A Security Model Dealing with Time and Location
	3.1 Term Algebra
	3.2 Timing Constraints
	3.3 Process Algebra

	4 Modelling Using Horn Clauses
	4.1 Preliminaries
	4.2 Seed Statements
	4.3 Soundness and Completeness

	5 Saturation
	5.1 Saturation Procedure
	5.2 Completeness

	6 Algorithm
	6.1 Description
	6.2 Termination Issues
	6.3 Correctness of Our Algorithm

	7 Implementation and Case Studies
	7.1 Integration in Akiss
	7.2 Case Studies

	8 Conclusion
	References

	On the Formalisation of -Protocols and Commitment Schemes
	1 Introduction
	2 Formalisation Overview
	2.1 Outline of Formalisation
	2.2 Instantiating the Abstract Frameworks
	2.3 Asymptotic Security

	3 CryptHOL and Isabelle Background
	3.1 Isabelle Notation
	3.2 CryptHOL

	4 Formalising -Protocols
	4.1 Definition of -protocols

	5 Formalising the Schnorr -Protocol
	5.1 The Schnorr -protocol

	6 Formalising Commitment Schemes
	6.1 Properties of Commitment Schemes

	7 The Pedersen Commitment Scheme
	7.1 Formal Proofs for the Pedersen Protocol

	8 Using -Protocols to Construct Commitment Schemes
	8.1 Asymptotic Case

	9 Conclusions
	10 Related Work
	10.1 Comparison with EasyCrypt

	References

	Orchestrating Layered Attestations
	1 Introduction
	2 Examples of Layered Attestations
	3 Phrases
	4 Events
	5 Partial Order Semantics
	6 Small-Step Semantics
	7 Proof Summary
	8 Related Work
	9 Conclusion and Ongoing Work
	A Annotated Terms
	B Coq Cross Reference
	References

	Verifying Liquidity of Bitcoin Contracts
	1 Introduction
	2 Overview
	2.1 BitML in a Nutshell
	2.2 BitML Semantics
	2.3 Liquidity
	2.4 Verifying Liquidity

	3 Liquidity
	4 A Finite-State Semantics of BitML
	5 Verifying Liquidity
	6 Conclusions
	A Appendix
	References

	Author Index

