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1 Introduction

Synchronic and diachronic linguistics are typically pursued as separate disci-
plines, with little to no overlap. Nevertheless, it is not possible for either to be
truly agnostic about the form of the other. This is necessarily true because syn-
chronic theories are not theories about attested languages, but theories about
possible languages. Therefore, any possible language, undergoing any series of
diachronic changes, must always end up as another member of the set of possible
synchronic languages. Conversely, a theory of the end state of diachronic change
is necessarily a theory of a synchronic grammar at some point in time. The ac-
tuators of change must also be latently present in some way within synchronic
states, just as the speakers of daughter languages must have been learners of
mother languages.

In this work I will demonstrate how deeply held assumptions about the cor-
rect representations of synchronic grammars delimit an associated theory of di-
achrony, and how standard assumptions about the units of change disallow cer-
tain synchronic states. I will argue that it is necessary to reconsider the operative
units within both domains, and that in doing so we are likely to gain new insights
into how linguistic structures change and, by extension, how they fail to change,
i.e., exhibit stable variation.

The goal of this work is to determine what types of mental structures may
be sufficient, and, possibly, necessary in order to capture certain linguistic phe-
nomena at a computational level of description (in the sense of Marr 1982). The
approach is twofold: 1) to test a number of proposed structures and mechanisms
by implementing them in simple computational models; and 2) to test the ex-
planatory adequacy of a number of existing models by transforming their imple-
mentations into theoretical constructs. The first method is likely to be familiar
to many readers; the second, however, is somewhat novel, and requires some
explanation. In the simplest terms, it is the reverse of the first: taking imple-
mented functions and deriving the theoretical linguistic entity that the function
implements. This requires determining whether a specific implementational de-
tail is incidental (with no repercussions beyond the implementational level), or
whether there are hidden ramifications to that choice at the level of linguistic the-
ory (the computational level). There is a second aspect to this analysis as well.



1 Introduction

Models, to be useful, as well as tractable, must be simplifications of what are ex-
tremely complex systems. The simplifications, however, must be of the right kind
to ensure that the model is still informative about the phenomenon of interest.
That is, the model must be able to “scale up”. There is no algorithm, however, by
which we can establish scalability ahead of time in building our toymodels. Thus,
it is critical that anymodel be made consistent with what is knownmore globally
about the phenomenon of interest (what I will refer to as “imposing boundary
conditions”), and not just the small piece it was designed to explain.

As a series of models are developed and tested, they will be assessed as to
whether or not they meet the relevant boundary conditions in an internally con-
sistent, theoretically motivated way. This higher-level model analysis will reveal
the covert representational corollaries of various modeling choices, providing
insight, in turn, into both sufficient and necessary components of a working the-
ory of language stability and change. This approach is also an illustration of the
utility of an intensively fine-grained local analysis in approaching the largest
and most general of theoretical questions. Although the phenomena modeled are
phonetic and phonological ones, the methodology is applicable to any domain of
linguistics.

This book is organized as follows. In the remainder of this chapter the repre-
sentational issues that apply in both the synchronic and the diachronic domains
are introduced. Chapter 2 describes the basic architecture fromwhich the models
are built. To begin with, three general types of phenomena are modeled: a gradi-
ent context-free process, a gradient context-dependent process, and a categorical
context-dependent process. Simulations for all three demonstrate that iterated
processes without check lead to collapse, or unbounded category shift. Further-
more, production modeled as random selection of unnormalized perceptual in-
puts leads to sub-category mismatch. Chapter 3 makes explicit links between
these general model types and specific linguistic phenomena, namely, word fre-
quency effects, vowel lengthening, and vowel nasalization. In Chapter 4, artic-
ulatory targets are introduced to the basic model in order to check unbounded
shift. A set of models with targets of various kinds are analyzed in depth. The
set is generated by selecting parameters along two dimensions: whether produc-
tion tokens are stored or generated (state/process); and whether more than one
level of representation is used (category/sub-category). In this chapter it is shown
that only two models from this set satisfy the criteria of being both representa-
tionally consistent and bounded. The possible states for each of the two models
is then fully derived. These results are related to existing models, and the types
of sound change that they are capable of capturing. In Chapter 5, it is shown
that the typical implementational simplification, in which perception and pro-
duction tokens are equated, is not only implausible, but obscures a fundamental
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1.1 Abstract representations

flaw in the mechanism for change. Iterative change no longer follows once an
explicit mapping between acoustic values and articulatory gestures is required.
Chapter 6 is devoted to a type of change not previously modeled: the genesis of
a new phoneme category. Adopting a theory in which the mapping from percep-
tion to production is taken to be inherently ambiguous, I offer a proposal for an
implemented model in which variable sub-lexical segmentation results in mixed
representations. Change in the model is taken to be change in the distribution
of already existing variants. The work is summarized in Chapter 7, where other
types of sound change, and future avenues of research, are briefly discussed.

1.1 Abstract representations

One of the basic representational divisions that can be made in a theory of cog-
nition is between what is stored in memory versus what is not stored, and thus
must be computed (or generated). The choice about what aspects of a linguistic
pattern to treat as stored versus generated will determine, to quite a large ex-
tent, what we take to be the possible dimensions of synchronic variation cross-
linguistically, as well as the possible diachronic outcomes. This will be the focus
of Chapter 4, where I will also show that this choice can imply a number of other
representational assumptions. In this section, I preview that analysis by decon-
structing some of the most basic units of phonological theory.

It should be noted that mainstream synchronic linguistics is heavily biased
towards conceptualizing phenomena as generating processes: “vowel nasaliza-
tion”, “final de-voicing”, “initial aspiration”, etc.1 This is directly linked to a con-
ception of mental representations as maximally abstract. In other words, only
unpredictable information should be stored (such as the arbitrary sound units
associated with a given lexical item), while all predictable information should be
derived. Although this view may have originated with Chomsky & Halle (1968),
it has also been explicitly advocated for much more recently in various theo-
ries of underspecification (e.g., Archangeli 1988; Steriade 1995). More commonly,
however, it is an unexpressed assumption that the analysis that maximizes the
predictive power of the grammar is the preferred one.2

For example, the pronunciation of the word lamb in English can be written
with the following series of phonetic symbols: [læ̃m], where the diacritic over

1Even if these are merely terminological conveniences, they color the way we think about, and
model, these phenomena.

2Within Optimality Theory, this pressure is, in a sense, even stronger, because all possible words
must be filtered through the grammar (not just the selected URs). However, Lexicon Optimiza-
tion allows for known lexical items to be generated from faithful inputs allowing for some
predictability to be retained in the lexicon (Prince & Smolensky 2004: Ch. 9).

3
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the vowel indicates nasalization. The property of nasalization, however, is pre-
dictable in English, and only occurs when vowels are produced in proximity to
nasal consonants, like [m]. The lexical entry for lamb is therefore denoted as
/læm/, without the nasalization. Concomitantly, a pronunciation rule must be
internalized by the native English speaker, a rule that stipulates that any vow-
els adjacent to nasal consonants must become nasalized. Under this theory, the
lexical item /læm/ is first retrieved, and then transformed to [læ̃m] via the appli-
cation of this rule.

This hypothesis in fact implies that the lexical entry is comprised of a string
of smaller units, the phonemes /l/, /æ/, and /m/, that are concatenated together
in order to produce the word. The currently standard view of phonological struc-
ture is that there exists an entire hierarchy of abstract units wherein larger units
are successively built from smaller ones: phonemes from features, syllables from
phonemes, words from syllables, etc. At each level, the units of the previous level
undergo rules affecting their realization. The unit of interest in a particular anal-
ysis will depend on the phenomenon of interest. But that unit cannot exist inde-
pendently of the rest of the hierarchy. Consider the dual nature of the phoneme
/æ/ as part of an abstract category /æ/, but also as part of the word lamb. The
variant, or allophone, of the phoneme that occurs in that word is nasalized. How-
ever, the rule that nasalizes the /æ/ is assumed to operate at a more abstract level,
i.e., before any nasal, in any word and, in fact, on any vowel. See (1.1).

(1.1) /vowel/→ [nasalized vowel]/__ [nasal]

Many phonemes can be said to have multiple phonological allophones, and all
phonemes have at least multiple phonetic allophones. In the word tag [tʰæˑɡ˺],
for example, the first sound can be characterized as the aspirated allophone of /t/
that is generated whenever a voiceless plosive occurs in the onset of a stressed
syllable; the second sound is the lengthened allophone of /æ/ that is generated
whenever a vowel precedes a voiced obstruent; and the third sound is the unre-
leased allophone of /ɡ/ that is generated whenever a plosive occurs in word-final
position.

A consequence of abstract representations that do not match produced surface
forms is that a normalization procedure is required on the perception side for
successful recognition and retrieval. The actually heard [læ̃m] does notmatch the
stored representation /læm/, andmust be converted by somehow subtracting out,
or “compensating” for, the predictable nasality. As far as I am aware, there is no
standard notation for formalizing the input (or perception) side of the allophonic
relationship. Therefore, I use the special symbol↪ to denote the inference of the
underlying form in (1.2), the inverse of (1.1).

4



1.2 Actuation

(1.2) [nasalized vowel][nasal] ↪ /vowel//nasal/

Once performed, the recovered form should be identical to the stored category.
Thus, from the generative perspective, category matching is trivial, and the diffi-
cult part of speech recognition is the normalization process. Note that the more
rules there are, and the more complex their interaction, the more complicated
the normalization procedure becomes.3

1.2 Actuation

A commonly described sound change is one in which a sound that was previ-
ously an allophone becomes a phoneme in its own right (phoneme split). Vowel
nasalization is considered to be allophonic in English, and was also allophonic
at some point in the history of French. The allophonic rule entailed that a word
like /bɔn/ would be pronounced as [bɔ̃n]. According to the classical view, loss
of nasal consonants like the one in [bɔ̃n], resulted in words like [bɔ̃], where the
nasalized variant was no longer predictable (e.g., Hajek 1997). In theory, a min-
imal pair was now possible where the only difference between the word pairs
was whether the vowel was oral or nasal, e.g., [bɔ̃] versus [bɔ].

This story creates a paradox within the constraints of the representational
framework just described. If nasalization is predictable, then it is added by rule
to an abstract underlying form, such as /bɔn/. If the final nasal is dropped by
the speaker, then there should be no nasalization on the vowel, and no way to
arrive at a phonemically nasalized vowel.4 If the final nasal is not dropped by
the speaker, but fails to be heard by the listener, a different problem arises. A
listener provided with the input sequence [bɔ̃] ought to infer, based on their
native language competence, that they failed to hear a nasal consonant that was
actually produced, given that vowels are only ever nasalized preceding a nasal
consonant. In fact, they ought to be able to infer, based on the conversational

3The real speech perception problem, of course, is much more difficult than simply accounting
for all the phonetic and phonological predictability. There are numerous other factors that
affect the realization of a given utterance, such as vocal tract length, speaking rate, ambient
noise, speaker sex, speech community, register, etc. At minimum, normalization of all these
factors requires a complex non-linear function, and is unlikely to have a unique solution.

4In fact, it is possible to achieve the necessary outcome if the nasal is dropped by the speaker
only after the allophonic rule has been applied. This move, however, requires a theory of se-
rially ordered rules in the first place, and, in the second, raises other difficulties in terms of
theoretical constraints on the ordering of those rules, and what types of rules are allowed to
occur before or after others.

5



1 Introduction

context and their knowledge of lexical items, that the target was bon, and thus
correct for any performance errors in production or perception.

The causality in this story can be reversed, where the loss of the nasal, rather
than being the actuating event, merely reveals (to the linguist) that the nasalized
vowel has already become phonemic (e.g., Janda & Joseph 2003). This “covert
change” approach, however, merely pushes the explanation back a step – how
did the vowel become phonemically nasal? And in either story the Actuation
Problem (Weinreich et al. 1968) remains unsolved. What is required is a mech-
anism by which predictability can be lost at the allophonic level. Furthermore,
the mechanism itself must be predictable; that is, it must either always apply
(yet only occasionally lead to sound change), or it must apply under specific
well-understood conditions.

1.3 Less-abstract representations

Even within a maximally abstract system it will be necessary to deal with mul-
tiple representational levels in a way that is obscured by the notational conven-
tions used above. For example, a phoneme split was said to require predictability
to be lost at the allophonic level. But, in fact, what is really needed is the loss of
predictability at a hyper-allophonic level, such as that expressed in (1.1) – which
will be symbolized as [�̃� ] going forward. And because neither phonemes, allo-
phones, or hyper-allophones exist in isolation, whatever mechanism is proposed
must act through the medium of actual words. Furthermore, sound change has
been observed to be gradual from a phonetic point of view, such that relatively
small differences in pronunciation can be seen to incrementally increase across
speakers of different ages in a “sound change in progress”. These small differ-
ences are reflected in what may be stable differences between different dialects,
between male and female speakers, between speakers of higher socioeconomic
and lower socioeconomic status, etc. It is now widely accepted, in fact, that the
pool of phonetic variants that exists across a heterogeneous population of speak-
ers provides the basis for future sound changes (e.g., Guy 2008).

For these reasons, an alternative framework in which mental representations
are far closer to actually produced forms, retaining significant detail at both the
acoustic and phonetic levels, has arisen in the study of sound change. Exemplar
models were first developed in the field of psychology, in order to reflect a num-
ber of insights about human memory and categorization. Rather than having
clear, definable boundaries, many mental categories seemed to function much
more as though they were a reflection of their current members (e.g., Rosch 1977).
Categorization of novel itemswas less a question of logical inference, than of sim-
ilarity to known instances. Furthermore, many dimensions of similarity were

6



1.3 Less-abstract representations

potentially implicated, not all of which were relevant from a taxonomic point
of view (Nosofsky 1988; Luce 1986). Within linguistics, exemplar models have
been invoked to account for a host of factors known to affect both word recogni-
tion and production, but which are not expressable within a maximally abstract
generative framework. Among these are the pervasive effects of word frequency
(Bybee 2001), the familiar-speaker effect in word priming, as well as the persis-
tence of sub-phonemic detail (Tilsen 2009), and the influence of socio-indexical
variables on what are typically assumed to be more abstract, grammatical levels
of processing (see Docherty & Foulkes 2014 for review).

The term “exemplar” is meant to indicate that representations being stored in
memory are of individual, specific experiences. For example, each time you hear
the word lamb over the course of your lifetime, spoken by any of a number of
different people, in any number of different contexts, an exemplar that resides
within the category associated with the word lamb is created. Just as a minimal
representational framework implies the necessity of a normalization procedure, a
“maximal” representational framework suggests that normalization of the acous-
tic signal may not be necessary at all. Since previous experiences of the word
lamb share many similarities, among them that fact that that there is some de-
gree of nasalization on the vowel, they are likely to provide the closest matches
to any new token that also contains a nasalized vowel of this type. No reversal
of nasalization is required (cf. Johnson 1997). Classification occurs by discover-
ing the cloud to which a new token bears the closest over-all similarity in this
space. However, because speech is so variable, in ways that listeners seem quite
sensitive to, this mental space is a very high-dimensional one. As a result, the
similarity computation is likely to be quite complex.

Because the relationship between the acoustic speech signal and the structural
units of language is a non-linear, many-to-many mapping, there must always
be a theoretical trade-off of this kind. For an easy classification algorithm, gen-
erative theory requires complex pre-processing in the form of a normalization
procedure. For little to no pre-processing, exemplar theory requires a complex
classification algorithm. In themodelingwork that followswewill adopt the non-
trivial assumption that classification is perfect – that all tokens are recognized as
members of their intended category. The complexity, however, will surface in the
transformation between what is perceived (and subsequently stored), and what
is produced (based on what is stored). Nominally, all the models in this work are
exemplar models. However, they are really much more general-purpose models.
In the limit, all tokens can belong to a single category, or all categories contain a
single token each. The question of normalization will remain central because it
depends on exactly how abstract the representations are, and there will always
be a trade-off between what is stored and what is computed.

7





2 The basic model

One of the earliest exemplar models within linguistics, Goldinger (1996) (adapt-
ing Hintzman 1984), was designed to capture the effect of past experience on cur-
rent perception. In this model, new tokens are experienced and added to mem-
ory in the following way. First, the n-dimensional similarity between a novel
(“probe”) token and all members of a given category is calculated. The overall de-
gree of similarity will determine whether a given probe is recognized or not. The
similarity matrix is, in turn, used to create an “echo” of the probe: the average
of the values of each stored token, along each dimension, weighted by the simi-
larity of that token to the probe. This echo, rather than the probe itself, is what
is then added to memory. These properties allow the model to simulate the phe-
nomenon whereby listeners often mistakenly “remember” tokens that are partic-
ularly “good”, or prototypical, members of a category, evenwhen they have never
actually experienced those tokens. Goldinger’s model also introduced a produc-
tion component – a seemingly minimal extension in which a stored echo can be
selected for “readout”. Goldinger is explicit about assuming that the articulations
needed to produce a given auditory token can be accurately reconstructed from
the acoustics of that token (and thus directly “read out” from the stored percep-
tion token). This assumption would be implicitly adopted in most of the work
that followed.

2.1 Feedback loop

The standard perception-production loop model, as well as the application to
sound change per se, appears to have originated with Pierrehumbert (2001). Pro-
duction in this model starts with random selection from a store of perceived to-
kens. Each production, in turn, is then perceived (either by the original speaker,
or by an interlocutor with an identical exemplar space) and then stored. Then
the process begins again. In this way, small perturbations (noise or articulatory
biases in production; perceptual biases or error in perception) accumulate in
the exemplar cloud, leading to gradual shifts in the category as a whole. The
perception-production loop that will form the basis for the models discussed in
this book is schematized in Figure 2.1.



2 The basic model

Exemplar	Cloud	

Produc0on	Bias	

Percep0on	Bias	

Figure 2.1: Perception-Production Feedback Loop

The basic exemplar model includes three additional mechanisms that are nec-
essary for generating useful results. The first of these is what is typically con-
ceptualized as an error term. This allows for variation to persist, and provides
the necessary stochastic element needed for achieving multiple outcomes. The
second is entrenchment, which prevents categories from losing cohesion and
dispersing along the dimensions of variation. The third mechanism is memory
decay, privileging more recent perceptions in memory, and preventing the cate-
gory from simply getting larger and larger. Figure 2.2 is a schematic of the basic
algorithm for the models that will be implemented and run below. Mathematical
details will be provided in the following section and the Appendices.

2.2 Entrenchment

Category consolidation, or variance reduction, has been motivated as an effect
of practice, or motor tuning (e.g. Saltzman & Munhall 1989). Implementationally,
it is necessary to prevent the category expansion in both directions that would
result from consistent production error, and the additional expansion that would
occur in the biasing direction. The general equation for entrenchment that will
be used in this paper is the following (based on Pierrehumbert 2001):

(2.1) 𝐸(𝑥𝑖) = 𝜖( ̄𝑥 − 𝑥𝑖)

where 𝜖 is a constant between 0 and 1, 𝑥𝑖 is the current location of token i along
some dimension x, and 𝑥 is the current category mean along that dimension.
Figure 2.3 illustrates the evolution of a single exemplar cloud generated from
the model outlined in Figure 2.2. In each sub-figure the different colors indicate
the same distribution at initialization (white), and after a certain fixed number of
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2.2 Entrenchment

Baseline Perception-Production Model (one dimensional)

(a) Initialize cloud

• assign values to a cloud of n tokens (randomly generated from a
normal distribution of mean 𝜇 and variance 𝜎2)

• assign each token an age (a time at which it was produced)

(b) Randomly select a token for production

• add the production bias, moving the token a small amount in the
biasing direction

• add the error term, moving the token a small amount in either
direction

• add entrenchment, moving the token a small amount closer to
the category mean

(c) Store

• add the new token value to the cloud

• remove one of the oldest tokens from the cloud

(d) Return to Step (b)

Figure 2.2: Baseline Model Specification

model iterations (black). Unless otherwise stated, all models are assumed to be
one-dimensional along x. Individual tokens are given as counts over successively
binned x values.

Figure 2.3a shows how the distribution as a whole shifts in the direction of the
production bias over time (measured in iterations of the perception-production
loop). Figure 2.3b shows the result of running the same model, minus the en-
trenchment term, over the same number of iterations. The biasing shift still oc-
curs, but with increasing variance along the biased dimension. See Appendix A
for the specific parameter values used in these, and the following, simulations.

11



2 The basic model

2.3 Memory decay

Without memory decay, categories can only spread without shifting. The older
the tokens, the more times, on average, they will have been chosen as production
targets, reinforcing the initial conditions of the cloud. Figure 2.3c is an illustra-
tion of this effect for the same model and starting conditions as the previous
two simulations, but with the memory decay term removed. No tokens were
discarded. The skew in the direction of the production bias (implemented as an
incrementally decreasing function) can be seen in the left tail of the distribution,
but older tokens keep the category anchored at the right. There are a number
of ways in which a memory decay term can be implemented. In these and the
following models, the total number of tokens is kept constant by removing one
of the oldest tokens each time a new token is added.1
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Figure 2.3: Basic Iterative Model: Starting distribution (white); Distri-
bution after 8000 iterations (black). Note that y-axis range in c) is about
10 times larger than in a) and b).

2.4 The collapse problem

As illustrated in Figure 2.3a, the basic exemplar model with a single unidirec-
tional bias can produce cohesive movement of an entire cloud of exemplars in the
direction of the bias. What will be demonstrated in this section is that this shift is
unbounded, leading ultimately to category collapse andmerger. This could easily
be inferred from the fact that the basic model contains only one force that acts
in a consistent direction, with nothing to oppose it. However, it is worthwhile to

1There are other ways to keep the number of category members constant. The token furthest
from the mean could be discarded on each iteration, for example. This would act to increase
the entrenchment effect, further reducing variation. However, the purpose here is not only to
keep the number of tokens constant, but to allow a domino effect to develop by increasing the
probability that a token will be chosen again with each biasing iteration.
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2.4 The collapse problem

actually run the simulations for a number of reasons. Unambiguously establish-
ing the results for general classes of phenomena will allow us to see immediately
what the model predicts for the linguistic phenomena that map to each of those
classes. Running actual simulations will also force us to consider the question
of whether exemplar models are to be evaluated only at convergence, and what
the relationship is between model time and real time, in terms of experiences of
instances of speech. Finally, the specific ways in which the models fail will be
informative regarding the mental representations they are meant to instantiate.

The three classes of phenomena to bemodeled in this section are the following:
a context-free process; and two context-dependent processes, one gradient, and
one categorical. For all of the three basic models, a production bias, B, will be
implemented for a given token i, as a fixed percentage reduction (𝛼) in the value
of 𝑥𝑖 along dimension x. See Eq. (2.2).2

(2.2) 𝐵(𝑥𝑖) = −𝑥𝑖𝛼

After the production bias applies, the biased tokenwill be added back to the cloud
from which it was originally drawn. It will be useful to express the value of a
given token on any iteration as a function of the original non-biased token that
gave rise to it. For one such original token, 𝑥𝑖, we can label its biased daughter as
𝑥𝑖(+1), and calculate its biased value to be 𝑥𝑖(1−𝛼) along dimension x. If, on some
subsequent iteration, this daughter token 𝑥𝑖(+1) is chosen for production, it will
be subject to the same biasing force, resulting in the granddaughter, 𝑥𝑖(+2), with
value 𝑥𝑖(+2) = 𝑥𝑖(+1)(1 − 𝛼) = 𝑥𝑖(1 − 𝛼)2. Proceeding to the general case, we can
express the value of any token, on any given model iteration, as a function of the
value of its originator token (𝑥𝑜), and the number of generations, n, by which the
current token is removed from that originator. See Eq. (2.3).

(2.3) 𝑥𝑜(+𝑛) = 𝑥𝑜 (1 − 𝛼)𝑛

2.4.1 Model 1: Context-free iterativity

In Model 1, the bias function applies to all tokens. Therefore, the linear bias term
in (2.3) will cause the entire category to shift in the biasing direction over time.
The following simulations compare the behavior of a low-frequency category,

2The production bias in Pierrehumbert (2001) is a constant that applies regardless of the current
token value. Making the bias proportional results in less reduction for tokens that already have
small values, thus fixing the percentage of reduction, rather than the absolute value, for all
tokens.
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2 The basic model

to a high-frequency category, one whose tokens are produced, and thus expe-
rienced, more often. All simulations begin with the same starting distributions:
a high-frequency category with 800 tokens, and a low-frequency category with
200 tokens. Steps were taken to make the distributions of the two categories as
close as possible.3 See Figure 2.4.
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Figure 2.4: Starting Distribution. White bars: High-frequency category.
Black bars: Low-frequency category.

Because these models rely on random processes, the outcome is not guaran-
teed to be identical each time the model is run. To evaluate models of this kind,
one conducts a number of independent identical “experiments” (trials) that con-
sist of running the model with the same starting conditions, and the same param-
eters, for the same number of iterations. Results are then averaged over the set of
trials. In the first set of simulations, 500 model trials were run for 1000 iterations
each. On each model iteration one token was produced, selected stochastically
from among all possible tokens (making it 4 times more likely to be chosen from
the high-frequency than the low-frequency category). That token was biased ac-
cording to Eq. (2.2) and then added back to the category fromwhich it originated.

The mean category value along x for each category was calculated at the end
of each of the 500 trials, and converted to a z-score. A boxplot of the difference
between the means of the two categories on each trial is shown in Figure 2.5a.
In 44% of trials the difference was negative (low-frequency mean larger than

3The high-frequency category was generated by randomly sampling 800 tokens from a normal
distribution with mean of 50𝑥 and a standard deviation of 2𝑥 . The low-frequency category was
then created by sampling 200 tokens from the high-frequency category: 50 tokens from each
quartile.
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2.4 The collapse problem

high-frequency), and in 56% it was positive. The mean difference over all 500
trials was close to zero: 0.031 (or 16% of the initial distribution standard devi-
ation). Thus we do not see a consistent difference in the two categories after
an arbitrarily selected number of iterations. Intuitively, we might have expected
the higher-frequency category to have moved further along x, and have a lower
value, because tokens from that category are produced more often, and thus
multiply-biased. However, it is also the case that, if frequency of occurrence is
expressed in number of tokens, and sampling for production is random, then pro-
ducing a token that had undergone biasing fewer times is also more likely in high
than in low frequency categories. This is simply because there are more tokens,
which lowers the probability of selecting any individual token, and thus lowers
the probability of selecting the daughter of any individual token, relative to the
low-frequency category.
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Figure 2.5: Simulation of Iterative Biasing for H(igh) frequency cate-
gory versus L(ow) frequency category

The difference in the number of tokens in each category also results in a differ-
ence in variance across the different trials. The variance is larger for the lower-
frequency category due to undersampling; because fewer tokens are produced
from the low-frequency category in a given trial, and the tokens are selected
randomly, the likelihood that the sample will be significantly different from trial
to trial is greater (Sóskuthy 2014 finds a similar effect using a parameterized ex-
emplar model). Variance compounds over iterations, such that the variance be-
tween independent model runs after 10,000 iterations is greater than after 5000
iterations. Figure 2.6 illustrates the across-trial variance for the two categories at
successive intervals, after 500, 1000, 1500, and 2000 iterations.
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Figure 2.6: Average z-scored value for High (white) versus Low (gray)
frequency categories at 4 equally spaced intervals of model time, each
500 model iterations in duration (1 epoch). Each boxplot shows the
results of 10 independent trials at each of the successive epochs.

Different implementational choices and assumptions will produce somewhat
different results. If the two categories contain the same constant number of to-
kens, but the high-frequency category is still 4 times more likely to be produced
on any given iteration, then the high-frequency category will have a consistently
lower value along x than the low-frequency category. The results of the equal-
tokens simulations are shown in Figure 2.5b. This is because the inertia from the
larger number of few-times-biased tokens is missing. These specific results also
depend on the ratio of frequencies of the two categories, as well as a number of
other parameter settings. Those dependencieswill be discussed further in Section
3.1, when this model is linked to the linguistic phenomenon of frequency-based
word reduction. For now, I turn to the behavior of the model in the limit.

The means of both categories steadily decrease as a function of the number
of model iterations. Although the amount of biasing becomes steadily smaller
as token values become smaller, biasing is unbounded. That is, the model does
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2.4 The collapse problem

not converge on a stable state. Convergence can be imposed by specifying a mini-
mumvalue on x beyondwhich tokens cannot be reduced. This results in a skewed
distribution with a narrow peak at the threshold value and a small rightward tail
due to the normally distributed error term. The thresholded model clearly illus-
trates that all categories, whether high or low frequency, will eventually end up
at exactly the same minimum value, collapsing any difference between them.

2.4.2 Context-dependent iterativity

In the previous model all tokens of each category were subjected to the same pro-
duction bias – the context in which the tokens were produced did not matter. The
next two models are context-dependent models. In these models the production
bias only applies to a subset of tokens, those produced in the biasing context. As
before, production tokens are chosen at random; they are then produced in either
a biasing or non-biasing context, with a certain fixed probability. Regardless of
production context, however, all tokens are added back to the same originating
category.

2.4.2.1 Model 2: Gradient context-dependent bias

Model 2 implements a gradient production bias, similar to the one used in Model
1, but with an increasing, rather than decreasing, function of 𝑥 . On each iteration,
the randomly selected token has probability p (< 0.5) of increasing by a fixed per-
centage (𝛼) of its current value. As before, the category is initialized by sampling
from a normal distribution, and all tokens begin with non-biased values. Because
there is only one cloud in perception, the only time a difference between biased
and non-biased tokens can be observed is at the moment of production. There-
fore, model outputs will be given in terms of an observed random sample of fixed
size at some cycle, n, of the model.

The iterativity of the perception-production loop allows for tokens to be biased
multiple times, but also for tokens to remain persistently non-biased, the more
so the larger the category is in terms of stored exemplars, and the smaller the
value of p. To understand model behavior it is useful to think of each iteration as
involving four possible outcomes. In the first, a relatively low-valued token (the
outcome of a series of productions occurring more often in non-biasing contexts)
is chosen for production, but this time in a biasing context, thus increasing its
value along x. The second possibility is that the same token is chosen for produc-
tion in a non-biasing context, such that its value remains more or less unchanged
(still relatively low). The third and fourth possibilities involve selecting a rela-
tively high-valued token (the outcome of a series of productions occurring more
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2 The basic model

often in the biasing context) and either producing it in a non-biasing context (no
increase along x), or a biasing context (additional increase along x).

The last type of outcome ensures that a subset of tokens will continue to in-
crease without bound. Despite the fact that the second type of outcome ensures
the persistence of low-valued tokens, the category as awholewill move unbound-
edly rightward along x. This is due to the combined effect of memory decay and
entrenchment. For 𝑝 < 0.5, the overall mean of the distribution will always be
closer to the lower-valued side of the distribution, and will initially act to oppose
the increase due to production bias. However, as higher-valued tokens are added
to the category, they seed even higher-valued daughter tokens, generating an ex-
ponentially increasing subset of tokens. This is the relationship expressed in Eq.
(2.3), reformulated here, for a positive bias, as 𝑥𝑜(+𝑛) = 𝑥𝑜(1 + 𝛼). As this subset
of tokens moves right, it will drag the rest of the distribution with it. Figure 2.7
illustrates this effect via comparison of the observed distribution after a model
run of 1,000 iterations, versus 5,000 iterations.
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Figure 2.7: Observed distribution (800 tokens). White: productions in
non-biasing context. Black: productions in biasing context.

As expected, the same unboundedness problem arises as was seen in Model
1. With the addition of a threshold (ceiling or floor value along x) the sub-distri-
butions merge, neutralizing the difference between biased and non-biased con-
texts.4 It will also be shown that keeping all tokens in the same category, re-
gardless of history, results in another type of problem – what I will call context
mismatch. Context mismatch will be discussed when this model is linked to the
linguistic phenomenon of vowel lengthening in Section 3.2.

4Tupper (2014) attributes a merged outcome such as this to perfect categorization accuracy, i.e.,
failure to discard ambiguous tokens.
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2.4 The collapse problem

2.4.2.2 Model 3: Categorical context-dependent bias

Model 3 implements a binary production bias, albeit with an error term thatmain-
tains a small amount of variance. All tokens produced in the biasing context are
initialized with a mean at the [+] value on dimension x, while all tokens pro-
duced in the non-biasing context are initialized at the [−] value. See Figure 2.8a.
As before, all tokens belong to the same category; the different colors are for
illustrative purposes only, allowing us to track the production context during
the observation cycle. Because the bias is uni-directional, and biasing is categor-
ical, all tokens quickly shift to the biased [+] value. Once a token has a value
of /+/ it cannot be biased further, nor can it be “un-biased”. This is shown in
Figure 2.8b, where we can see that previously biased tokens remain at [+] even
if they are subsequently produced in a non-biasing context (white bars at [+]
location). This model is, in fact, bounded, because there is no iterativity for the
binary feature. However, like the previous twomodels, it results in neutralization
of the difference between the different contexts. Binary-valued features that dis-
tinguish between contrastive sound units within a language are widely used in
phonological theory. This connection will be discussed when the model is linked
to the linguistic phenomenon of vowel nasalization in Section 3.3.
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Figure 2.8: Quasi-binary feature. Two variants with equal contextual
frequency.
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3 The linguistic phenomena

The general context-free and context-dependent processes modeled in the previ-
ous chapter will now be mapped to specific linguistic phenomena. This chapter
will show more concretely what the implementational and conceptual issues are
in developing exemplar models based on tokens of experienced speech. I will also
begin to examine the proper interpretation of model results with respect to ex-
isting theories and, conversely, the proper implementation of specific theoretical
hypotheses within an exemplar framework.

3.1 Model 1: Word frequency

In laboratory speech, as well as spoken corpora, it has been repeatedly demon-
strated that words that are more commonly used are shorter in duration than
comparable words that are less common (e.g., Bybee 2001; 2002; 2006). Further-
more, it has been shown that as frequency increases, the average duration of
a given word monotonically decreases (controlling for other factors). The di-
achronic counterpart of this phenomenon is the observation that more frequent
words tend to “lead”, meaning that a change that will later spread throughout all,
or most, words of a language is first observed to take place in high-frequency
words (e.g., Phillips 1984). Such changes are often themselves reductive in na-
ture, either being the direct result of, or influenced by, a reduction in the tempo-
ral, and/or spatial, extent of the articulation of the given sounds (such as segment
shortening, segment loss, assimilatory feature changes, or feature centralization).

Competing explanations for frequency-based reduction can be separated into
listener-based and speaker-based approaches. In the former, more reduced forms
are assumed to be easier/more efficient for speakers to produce, and are thus hy-
pothesized to be the default production mode. However, in the case where the
meaning is unclear, or there is greater than normal ambiguity, the speaker ex-
erts more effort in articulation, lengthening and strengthening speech sounds in
order to facilitate speech recognition for the listener (e.g., Aylett & Turk 2004).
Because words that are highly predictable in context are easier to recover, such
words can be safely reduced, whereas less predictable words must be produced



3 The linguistic phenomena

more carefully. In the absence of other factors, the marginal probability of a
given word provides an estimate of its likelihood; thus low-frequency words will
be produced with less reduction in order to facilitate their recovery relative to
high-frequency words. A speaker-based approach, on the other hand, attributes
frequency effects to automatic consequences of speech production. Either high-
frequency words have higher resting activation levels on average, leading to
faster retrieval, and thus more rapid articulation (e.g., Gahl et al. 2012), or in-
creased practice with higher-frequency words leads to greater fluency, resulting
in shorter, more efficient articulation (e.g., Bybee 2002).

Pierrehumbert (2001) adopts a speaker-based motivation for reduction, mod-
eling the effect as a production bias that shortens each token by the same small
fixed amount whenever it is produced. Although a model containing both high
and low frequency categories was not actually implemented in Pierrehumbert
(2001), the paper suggests that this simple bias can account both for synchronic
differences in word duration, as well as reductive changes, over time.

The more often tokens are produced from a given category, the more chances
there will be for initially unreduced tokens to be reduced multiple times. Thus,
it might seem to follow that higher-frequency categories will shift further left-
ward than lower-frequency categories over the same period of time. However,
as we saw in Section 2.4.1, the relative average durations of a lower- and higher-
frequency word category depend on whether the frequency difference is imple-
mented as a difference in token numbers, or a difference in average activation.
Furthermore, given enough time (= number of productions), all categories will
end up at the same minimum duration. In other words, the model will converge
on this one stable state from any starting point. This is the inevitable result of
a model with an unopposed force acting, and thus is not particularly surprising
(Baker et al. 2011 make a similar observation about gradual-accumulation theo-
ries of change in general). However, it raises an important issue regarding the
determination of synchronic versus diachronic time in exemplar models.

Computational models are typically only evaluated at convergence. This is in
part because there is usually no explicit theory about how time within a model
corresponds to real time (or to time in some other model). Exemplar models,
however, explicitly map iterations to real-world events, namely, the perception
and storage of speech tokens. This requires that literally any stage of the model
be a possible synchronic state – at least an instantaneous one. This property also
makes it possible, in principle, that the state of the model at convergence (or the
fact that the model fails to converge) is irrelevant to evaluation. This is the case
if it can be shown that convergence does not occur within the lifetime of the
speaker. If the model parameters are chosen in a specific way, collapse may be
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3.2 Model 2: Vowel lengthening

avoidable within whatever is taken to be an average lifetime. An illustration of
what is required to determine these parameters is provided in Appendix B. This
line of enquiry uncovers a further prediction of this general model. It must be
the case that all words become more reduced over time, regardless of the specific
parameter values.

The iterative model strongly implies that the frequency effect must arise in
the lifetime of the speaker, and only after they have had sufficient exposure to a
given (high frequency) category. I will define this timespan as the time it takes
a category of some frequency f, with a reduction bias of 𝛼 , to reach a degree of
reduction, 𝛿𝑛𝑓 , that is expressed as a proportion of the original duration. I will call
this amount of real time an epoch, and I will define the number of productions
of category f during an epoch as 𝑛𝑓 . Then, by definition:

𝑑𝑛𝑓 = 𝑑0 − 𝛿𝑛𝑓 𝑑0.

Sincewe know that a frequency effect is observable, atminimum, in young adults,
this epoch cannot be longer than around 20 years. Unless f decreases drastically
(in fact, we might expect it to increase at this life stage), then multiple epochs
remain in the lives of these speakers, and a decrease comparable to the origi-
nal frequency effect should be expected to occur in each one of them. Thus, we
should find that word durations should get steadily shorter over the lifetime. Of
course, there is a hard limit on how much a word can be reduced. If I predict that
some words will hit this limit within the given time frame then the frequency
effect should actually be lost in the subset of words that have reached this limit.
I am not aware of any evidence that frequency effects vary over time, but this
lack may be due to the fact that previous studies have not specifically looked for
such effects.

3.2 Model 2: Vowel lengthening

Context-dependence is the norm in language, especially in the domain of sound
structure. Speech sounds exist in a high-dimensional space, and almost any
change in context produces some measurable difference in a sound’s pronun-
ciation along one of those dimensions. These effects, however, are usually pre-
dictable, and so can be modeled using a fixed bias. Vowel lengthening before
voiced obstruents in word-final position provides a simple instantiation of a
context-dependent phenomenon that applies to the duration dimension. It has
been noted for well over a 100 years that vowels before final voiced obstruents in
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English are “very long” (Sweet 1880: 59), and laboratory studies have consistently
found significant vowel duration differences between voiced-voiceless minimal
pairs like bad and bat (e.g., Peterson & Lehiste 1960; Chen 1970). Furthermore,
perceptual experiments find that vowel duration is a sufficient cue to the “voic-
ing” on the final obstruent, whether that segment is actually voiced or not (e.g.,
Raphael 1972; Klatt 1976). As it is conventionally described, vowel lengthening
is an allophonic process whereby vowels produced in the lengthening context
(before voiced obstruents) are lengthened by some degree, while vowels not pro-
duced in the lengthening context remain unchanged.

However, the results of the Model 2 simulation show that, over time, “short”
tokens get longer, and “long” tokens get even longer, and eventually all tokens
are maximally long whether they’re produced in pre-voiced or pre-voiceless con-
texts. Furthermore, it is not possible to guarantee, at any intermediate stage, that
tokens produced in the biasing (voiced) context will be consistently longer than
tokens produced in the non-biasing (voiceless) context. Because of the different
possible histories of each token, the single category contains both tokens that
are very long (all ancestors produced in biasing context), and very short (all an-
cestors produced in non-biasing contexts). If a particularly short token is chosen
(at random) for production in a voiced context it won’t be as long, even after
lengthening, as other tokens in that context have been in the past (on previous
iterations). Likewise, if a particularly long token is chosen to be produced in a
voiceless context it will be longer than other tokens in that context have tended
to be. We know that listeners develop expectations about what they should be
hearing based on context, and can detect when the variant differs from expec-
tation (e.g., Krakow et al. 1988; Gaskell & Marslen-Wilson 1996). This mismatch
between token and context is therefore a problem for the basic exemplar model.

However, all these effects can be seen to arise out of the fact that all tokens
are taken from, and added back to, the same undifferentiated cloud. If tokens of
the two allophones were stored separately, then these problems could presum-
ably be eliminated. Let us consider what that would entail. From the perspective
of theoretical linguistics, allophones, by definition, have no independent repre-
sentational status. They exist only at the surface, only as the realization of a
phoneme to which some rule, or process, has applied.1 We are perfectly free to

1Note that this model is entirely implemented at the phoneme level, allowing the presumed
forces to act directly on their targets. Although exemplar models often assume a word-level
representation (explicitly or implicitly), most are actually implemented at the phoneme level,
and lack explicit mechanisms for connecting the two (although seeWedel (2012) for a model of
an indirect biasing relationship). Mechanisms such as frequency-based reduction and contrast
maintenance are defined with respect to the word level. Implementing them at the sub-lexical
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adopt the hypothesis that allophones do, in fact, have separate representational
status, and create a model in which “lengthened” allophones are only selected
from the “lengthened” (sub) category, and only “unlengthened” allophones from
the “unlengthened” (sub) category.2 This would eliminate the context-mismatch
problem. A paradox arises, however, if we continue to apply the lengthening
bias to the lengthened tokens. By creating a category for these allophones we
are effectively encoding their context: this category consists of tokens that oc-
cur before voiced obstruents. Applying lengthening to such a token implies that
the token was originally unlengthened (non-biased). It also implies that the con-
textual information was discarded when the token was stored, and so must be
added during production. A model with both explicit representational structure
incorporating a biasing context, and an actual biasing process, is a strange hy-
brid. This incompatibility between modeling a phenomenon as both stored and
generated will be discussed in more depth in Chapter 4.

3.3 Model 3: Vowel nasalization

While phonemes are taken to be the basic phonological unit for many purposes,
most phonological rules that operate at the level of individual phonemes, in fact,
affect only a subset of that phoneme’s features. Classically, phonemes are taken
to be decomposable into a universal set of discrete features, and can be uniquely
defined by a specific matrix of values over those features. These features are
usually assumed not just to be discrete, but to be binary in nature, taking on
only one of two possible values, [+] or [−]. Thus a partial feature matrix might
consist of

[
−nasal
+coronal
−del.rel

] ,

for example, which matches the phonemes /t/, /d/ and /s/, among others.
Whether considered to be phonetic or phonological, nasalization is a process

level not only obscures the fact that a mapping between the levels is necessary, but eliminates
a fundamental property of abstraction: the more abstract the unit, the larger the category, and
the more, and more varied, the tokens. The phoneme category /æ/ encompasses more than just
tokens extracted from the words tag and tack, but from a large number of words, such as cat,
lack, sag, package, etc. Any changes at the level of the individual word are only one small part
of what affects the realization of a given phoneme. Thus, establishing that a phoneme-level
effect follows from a word-level interaction requires a significantly more complex model than
is usually implemented.

2This is implemented as the State Model in Chapter 4.
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that changes the [−nasal] specification to [+nasal]. In English this rule applies
to all vowels occurring in the context of a following nasal consonant (e.g., [læb]
vs. [læ̃m]). Thus it is analogous, in all respects other than binarity, to the vowel
lengthening example simulated in Model 2, and similarly results in context mis-
match. What Model 3 demonstrates more transparently, however, is that the
eventual outcome is neutralization of the distinction between the two allophones.
Once a given token is produced in a nasal context for the first time, all its daugh-
ter tokens will also be nasal, even when produced in an oral context ([læ̃b]). Neu-
tralization occurs because the process of nasalization is uni-directional; nasalized
tokens produced in oral contexts are not “oralized”. In other words, there is only
one bias, and only one biasing context, and under those circumstances the basic
exemplar model will result in biased variants in all contexts.

The nasalization rule, in addition to illustrating a binary process, introduces
a biasing dimension other then duration. This is important because duration is
significantly simpler than most phonetic variables. Additionally, duration pos-
sesses what may be a unique property: it is invariant under the transformation
from production to perception (in the absence of error).3 Thus, an architecture
that can derive the correct results for phonological processes acting on duration
is not guaranteed to do the same for other phonological dimensions.

Vowel nasalization seems to be quite well-understood, and to have a straight-
forward explanation. It arises through an inherent property of normally pro-
duced speech: coarticulation. The articulation for the nasal consonant, which
involves lowering the velum so that air can flow through the nasal cavity, is initi-
ated before the articulation of the preceding vowel is fully completed. As a result,
the velum is open for some portion of the end of the vowel, meaning that nasal
airflow occurs, which, by definition, means that the vowel is partially nasalized.
The evolution from partial to full nasalization seems to be exactly what the basic
exemplar model should account for: a gradual increase of nasalization through
an iterative process in which already nasalized (biased) tokens are subject to addi-
tional nasalization (biasing) as produced tokens are converted into stored tokens,
which are once again converted into production tokens. Yet we have already seen
that the context-dependent version of the basic exemplar model results in a sin-
gle degenerate outcome.

In fact, there is a deeper representational problem related to the source of the
bias. The degree of vowel nasalization corresponds more or less directly to the
extent of the vowel during which nasal airflow is present. Thus, it is a question

3There is, however, potential ambiguity in attributing duration differences to inherent duration,
versus differences in speaking rate or prosodic contexts. See Chapter 7.
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3.3 Model 3: Vowel nasalization

only of how early the velum is lowered. For nasalization to increase incremen-
tally, the velum lowering must occur earlier and earlier. There is, however, no
mechanism in the basic exemplar model to accomplish this. The root of the prob-
lem is the lack of an explicit production to perception mapping. That mapping
will be the focus of Chapter 5. For now the focus will be on the production side,
and the argument will be that, on empirical grounds, articulatory parameters can-
not depend solely on the free evolution of perceptual categories. Chapter 4 will
also show that explicit articulatory targets can be used to prevent the collapse
and merger problem shared by Models 1–3.
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4.1 Contrast maintenance

In many implemented exemplar models that include production, unbounded it-
erative biasing is prevented via the elimination of tokens that fall in the ambigu-
ous region between two existing categories (Wedel 2004; 2007; 2012; Blevins &
Wedel 2009; Tupper 2014). If the categories are taken to be words, then discard-
ing ambiguous tokens acts to maintain a meaning distinction that relies on a
minimal sound distinction along the given phonetic dimension. The idea that
sound changes which result in homophony are dispreferred in some way, has
existed within historical linguistics for a long time (e.g. Martinet 1955). In re-
cent years this notion has been revived and quantified as an inverse correlation
between the probability of a sound change that neutralizes contrast x, and the
number of words that are differentiated only by contrast x. This is known as the
functional load of the contrast1 (Surendran & Niyogi 2006; Wedel et al. 2013). In
Wedel (2012), contrast maintenance (homophone avoidance) is implemented as
a storage probability that is proportional to goodness of fit. Tokens that are less
prototypical members of both categories have a lower probability of being re-
tained in either category. Thus, as ambiguous tokens are lost, the two categories
are effectively pushed apart. Functional load can be modeled as a weighting fac-
tor in this type of model, increasing the probability that ambiguous forms will
be discarded, and effectively strengthening the contrast maintenance effect for
certain words (Sóskuthy 2015).

The existence of a second contrasting category along the biasing dimension
will prevent the biased category from moving past a certain point, allowing the
basic exemplar models of the previous chapter to converge. The assumption of
such a category, however, limits the types of sound changes that can be modeled;
in particular, a sound change in which a new category is formed, presumably
from the biased variants of an existing category. It is exactly this change that is
adopted as the modeling gold standard in this book. Therefore, we will have to

1There are many other ways one might define functional load. However, it turns out that a
simple minimal pair count seems to be the most useful of these.



4 Modeling stability & change

consider what other forces can achieve stability, forces that, if general, must be
included in all models, whether they are implementationally necessary or not.2

In this chapter I will analyze, in detail, the consequences of adding production
targets to the basic exemplar models of Chapter 2. In doing so I will arrive at
a subset of models that meet the two criteria of boundedness and theoretical
coherence. The full range of possible outcomes for this set of models will then
be derived, setting the stage for an investigation of what type of architecture
would be sufficient (and possibly necessary) to produce (under the appropriate
conditions) the genesis of a new phoneme category.

It should be noted at this point that it is widely acknowledged that sociolin-
guistic factors play a central role in language change. A class of “innovators” may
be required, aided by a class of “early adopters” in the actuation and spread of a
change (Milroy &Milroy 1985). Change may require those with less social power
to pay more attention to the speech of those with more power, leading to in-
correct inferences about the source of phonetic variation (e.g. Garrett & Johnson
2013). Changemay require systematic differences between individual speakers in
their analysis of ambiguous data, the degree to which they compensate for pho-
netic biases, or some other facet of speech processing (e.g. Beddor 2009; Yu 2013).
This paper does not explicitly address these aspects of sound change in that it
focuses on the mental grammar of a single individual. The approach taken here,
however, is not incompatible, nor inconsistent, with a theory of sound change
that includes socio-indexical variables.

4.2 Articulatory targets

Many of the set of proposed universal phonological features specify articulatory
parameters, such as where in the mouth the tongue tip makes contact during
the production of the sound. Explicit targets of this kind are often assumed to
be unnecessary in exemplar modeling, where categories are taken to be emer-
gent – dependent only the interaction of competing forces. This assumption is
aided by the practice of treating the initial distribution of tokens as arbitrary and
independent of themodel. A number of works have demonstrated that from a sin-
gle global pressure, such as avoidance of homophony, structured categories can

2A goodness-of-fit function that doesn’t directly reference contrast is possible in this scenario.
However, it will not produce the desired effect for a single category. If prototypicality is deter-
mined by distance from the category mean, then what is acceptable will change as the mean of
the category changes, which will occur because of the constant phonetic bias. Therefore, the
category will move unboundedly. On the other hand, if prototypicality depends on some fixed
value, then the category will not be able to shift beyond the specified limit of “goodness”.
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evolve (de Boer 2000; Wedel 2007; Sóskuthy 2013). However, sound categories,
once established, are unlikely to be determined solely by the number of con-
trasts in a given language. If this were the case, then a category would be defined
only by its individual members (the label /p/, for example, would be completely
arbitrary, and contain no information about the use of the lips in the produc-
tion of the sound). Furthermore, we would not expect the consistent phonetic
differences that are found in the production of phonologically identical sounds
across different languages (Keating 1985). Distributions would also be predicted
to spread out on dimensions lacking a contrastive segment distinction. Although
there is evidence that the absence of contrast leads to greater variation in pro-
nunciation along that dimension (e.g. Choi 1995), this variation is not unlimited.
Baker et al. (2011), for example, found a number of differences in how speakers
produced American English “r” sounds. However, those differences resulted in
little to no acoustic difference between productions. Despite the fact that English
does not contrast different types of rhotic segments, productions do not expand
to fill that large phonetic space.

4.3 Soft targets

From a purely implementational perspective, production targets offer a mecha-
nism for avoiding unbounded shift and neutralization. Fixed targets, however,
will prevent any kind of change, and render the exemplar architecture superflu-
ous. In this section, what amounts to a semi-fixed target is adopted: a force that
acts to keep tokens at a fixed location, but from which they can be perturbed to
some degree by the usual biasing forces.

The semi-fixed, or “soft”, duration target is expressed in (4.1), where 𝛽 is a
constant between 0 and 1 that determines the strength of the target, and N is the
location of the target along the biasing dimension x.

(4.1) 𝐼 (𝑥𝑖) = 𝛽(𝑁 − 𝑥𝑖)

When the category is instantiated with a mean at N (𝑧 = 0), 𝐼 (𝑥𝑖) can be concep-
tualized as a type of inertia, acting to keep tokens in place. The further a token
moves from the target, the stronger the force pulling it back. This has the desired
effect of boundingmovement in either direction, while still allowing the category
to shift as a whole. If I is the only force acting, then the tokens will eventually
settle at the equilibrium point N, where the change in 𝑥 is 0. N can also be char-
acterized as the optimum of a function with a positive derivative when x is less
than N, and a negative derivative, when x is greater than N. Regardless of the
location of x, it is always being pushed in the direction of N.
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4 Modeling stability & change

The Soft Target model is built directly from the gradient context-dependent
model of Section 3.2. Tokens selected randomly to occur in a biasing context
are subjected to a bias that increases their value along dimension x by a small
percentage (𝛼) of their current value:

(4.2) 𝐿(𝑥𝑖) = 𝛼𝑥𝑖
Figure 4.1 shows the effect of adding a soft target to Model 2. Change is con-

strained relative to the basic model. This model is also theoretically interpretable;
there is a single category, with a single production target corresponding to the
non-biased segment, and the biasing process applies to all tokens of this category
with equal probability. These properties will become important as I continue to
explore the modeling space in the following sections.
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Figure 4.1: Soft-Target Model with increasing bias function. White: to-
kens produced in non-biasing contexts. Black: tokens produced in bias-
ing contexts. z-normed x dimension. Observation occurs after 10,000
model cycles.

For positive x, the difference between (4.2) and (4.1) is effectively between a
monotonically increasing function with an optimum at 0, and a non-monotonic
function with an optimum at N. Theoretically speaking, however, the former ex-
presses a process, while the latter expresses a state (cf. Hyman 1975). process
will be taken to refer to what would be considered an allophonic rule in genera-
tive phonology, and to which the term “lengthening” (or “shortening”) can prop-
erly apply. At the segment level (S), the general process model instantiates the
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following linguistic relationship: /𝑆/ → [𝑆𝐵]/__B, where B stands for the bias-
ing context, and [𝑆𝐵] stands for the allophonic variant that occurs in that context.
Using the same notation, a state model instantiates the following relationship:
/𝑆𝐵/ → [𝑆𝐵] in context B. This indicates that 𝑆𝐵 is stored, or underlying, rather
than generated. A given state could consist of “long”, or “lengthened”, tokens
but does not properly involve “lengthening”.

4.4 Model space

The original lengthening model in Section 2.4.2.1 is a process model. As we saw
previously, a process model that lacks a production target is unbounded, produc-
ing no stable outcomes. As will be shown in Section 4.5.2, adding a soft target to
this model will result in stable outcomes for a certain range of parameter values.
The analogous state model can be created by implementing the bias term itself
as a soft target, as in (4.3) (cf. Sóskuthy 2013).

(4.3) 𝐿(𝑥𝑖) = 𝛼(𝐿 − 𝑥𝑖)

This model, with one target for non-biased tokens and one for biased tokens, can
also be shown to produce stable outcomes. The no-target processmodel, the soft-
target process model, and the state model, however, differ with respect to their
theoretical consistency and thus linguistic interpretability.

Model 2, from Section 2.4.2.1, re-labelled as Model A in Table 4.1, is a linguis-
tically interpretable model. There is a single category from which tokens are
selected at random, either to be produced in biasing contexts, in which case they
are lengthened, or to be produced in non-biasing contexts, in which case they are
unchanged. Model B, with a soft target at the location of the non-biased, under-
lying category, is also consistent. All tokens feel a pull towards this underlying
target, but those that happen to be produced in a biasing context are also subject
to a force that lengthens them during production. Model C, however, the state
model, is not theoretically consistent.

Table 4.1: Single-Category Model Space

Stable Consistent

A Process 𝛼(1 + 𝑥) No Target – N Y
B Process 𝛼(1 + 𝑥) Target 𝛽(𝑁 − 𝑥) (Y) Y
C State 𝛼(𝐿 − 𝑥) Target 𝛽(𝑁 − 𝑥) Y N
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In Model C, all tokens have a target at N, but tokens produced in a biasing
context have an additional, conflicting target at L. Because there is only a sin-
gle category in Model C, biased tokens are generated from the same pool as
non-biased tokens, therefore the second target, L, exists without an underlying
category with which that target can be associated. With the distribution initial-
ized at N, the effect is for biased tokens to be moved an arbitrarily small distance,
𝛼(𝐿 − 𝑥), towards that second target during production.3 Of the three models,
only Model B is both stable (bounded) and theoretically consistent.

Model C, however, can be made theoretically consistent by introducing a sec-
ond level of representations. If the parent category can be split into two sub-
categories, then each target can be associated with a different sub-category. This
isModel G in Table 4.2, which is the 2-level model analog of Table 4.1. The remain-
ing models in this table are all theoretically problematic in different ways. Model
D is the two sub-category counterpart of Model B. While Model B is theoretically
consistent, the introduction of a separate sub-category for biased tokens inModel
D creates a representational paradox: a category with no target, to which length-
ening continuously applies. Model D is also unbounded. Model E re-creates the
two-target paradox of Model C. Finally, F is the hybrid process+state model.4

Table 4.2: 2-Level Model Space

biased non-biased Stable Consistent

D Process 𝛼(1 + 𝑥) Target 𝛽(𝑁 − 𝑥) N N
E 2-State 𝛽(𝑁 − 𝑥); 𝛼(𝐿 − 𝑥) Target 𝛽(𝑁 − 𝑥) Y N
F Process+ State 𝛼(1 + 𝑥); 𝛼(𝐿 − 𝑥) Target 𝛽(𝑁 − 𝑥) Y N
G State 𝛼(𝐿 − 𝑥) Target 𝛽(𝑁 − 𝑥) Y Y

3As a process, incrementality has a straightforward interpretation: a given token is shifted, or
lengthened, by a fixed proportion of its current length. But in a statemodel, inwhich all tokens
are initialized at one target, it is not clear what mechanism would shift certain tokens only a
small amount towards another target. Although, superficially, this effect is similar to that of the
entrenchment force, 𝜀(𝑥 −𝑥), which pushes the tokens of a given category closer together, they
are different in important ways. The use of the category mean in the entrenchment function
stands in for the sum of the forces that act between individual tokens, maintaining category
cohesion (the same effect can be achieved by averaging over multiple tokens in production, e.g.
Pierrehumbert 2001;Wedel 2006). The soft target, or inertia force, on the other hand, references
a fixed target location that is specified independently of the current distribution.

4If double specifications are possible (e.g. process + state), then the total set of possible models
includes the Single-Category process+state model, and the set of non-biased No-Target mod-
els, among others. However, these other models all contain a superset of the representational
inconsistencies already described, and therefore are not included.
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Only two viable candidates emerge from the full set of model: a pure process
model with a single target, (B), and a pure state model (G). In general terms,
these results show us that process and state models are incompatible with one
another. If biased tokens have a separate representational status, this implies
that only tokens from this sub-category should be chosen to be produced in bi-
ased contexts. Furthermore, since the biased sub-category has a target at L, those
tokens will already be appropriately longer than their non-biased counterparts
(with a target at N ). Therefore, there is no motivation for lengthening them fur-
ther. Effectively, this would be equivalent to a phonological rule of the form:

(4.4) Process + State: /𝑆𝐵/ → [𝑆𝐵𝐵 ]/__B
Although (4.4) is linguistically ill-formed, it is equivalent to the feedback loop at
the heart of the basic exemplar model.5 Cumulativity of small differences is only
possible if the bias effects in production (contextually determined allophony) are
stored (state), rather than being stripped away during perception. Storage of
allophonic detail implies that the biasing context itself is discarded, or at least
not used to recover the underlying form. In production, however, the process
model requires knowledge of the context that triggers biasing. In other words,
the allophonic rule is available in production, but not in perception.6

Another way to characterize this theoretical incompatibility is that a process
model implies that normalization takes place, while a state model implies that
it does not. Thus, inconsistency results when either the production or percep-
tion stage of a given model assumes normalization, while the other doesn’t. In
the Pure Process Model (B), all tokens are drawn from the same distribution in
production, with a target, or underlying specification, at N. Lengthening applies
as an allophonic rule, but in perception all tokens are drawn back to the same
underlying target at N, whether they are lengthened or not. Thus, the inertial
force acts to partially normalize the effect of lengthening. Complete normaliza-
tion (fixed target) would prevent change entirely. In the Pure State Model (G),
on the other hand, normalization fails to occur in the sense that “lengthened”
tokens are assigned to their own sub-category, and no allophonic rules apply.

5It should be noted that, as far as I am aware, no one has actually proposed the context-
dependent exemplar models in Chapter 2. They are what I take to be the logical extension
of the context-free exemplar model of Pierrehumbert (2001).

6The alternative is that both the unnormalized surface forms and their production context are
stored, or incorporated into the category label in some way. Even if so, it is still not clear why
an allophonic rule would continue to apply. Furthermore, if prior specification of complex
sub-structure is required (and, in the limit, a unique category for every token), the exemplar
framework does not seem to offer much, if anything, in terms of explanatory power.
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Again, the state aspect is only partial. The fact that these are sub-categories
rather than completely independent categories introduces a connection between
the biased and non-biased tokens which implies that the relationship between
them is known, and therefore that the allophonic transformation is known. Two
entirely independent categories would preclude change entirely.

4.5 Consistent and convergent models of sound change

This section is devoted to an exhaustive analysis of the end states of the two the-
oretically consistent and bounded models: the Pure Process Model (B), and the
Pure State Model (G). These results will be provided in the form of two parame-
ters: the category means along the dimension x, and the difference between the
means of the biased and non-biased sub-distributions. Because it is not possible
to guarantee that simulations will fully sample the space of possible outcomes,
stable states will be explicitly derived as a function of model parameters. The
derivation will be given in abbreviated terms in the text, with the full details
provided in the appendices. Following Sóskuthy (2013; 2015), the percentage of
tokens produced in a biasing context (bias proportion) will act as the independent
variable. The term “attractor” will also be adopted in reference to a soft target, in
order to facilitate comparison to that work.

4.5.1 State Model: Sub-categories

The Pure State Model contains one target for biased tokens, and a distinct tar-
get for non-biased tokens. Figure 4.2 provides an illustration of the forces acting
at some model time t, on exemplar categories modeled as normal functions. As
will be shown below, the means of both sub-categories can be guaranteed to lie
somewhere between the two targets at N and L. Each sub-category is subject to
the inertia associated with its own target, acting to pull the two apart. Member-
ship in a superset category is implemented via the entrenchment force, which
pulls both in the direction of the global mean, and thus towards one another.7 In
this illustration, the relative number of tokens produced in biasing versus non-
biasing contexts is represented by the heights of the normal curves. Because the
proportion of biasing contexts is less than 50% in this example, the global mean
(indicated by the dashed line) is closer to the mean of the non-biased distribution.

7Sóskuthy (2013) links sub-categories by applying phonetic biasing probabilistically to both, but
with the biased sub-category more strongly weighted.
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Figure 4.2: Schematic of forces for Pure State Model

The equations for each of the model forces have been given previously, but are
repeated here for ease of reference: (4.5) Entrenchment, (4.6) Inertia (attractor)
at N, and (4.7) Inertia (attractor) at L. A small random error term is also included
in all models.

(4.5) 𝐸(𝑥𝑖) = 𝜖(𝑥 − 𝑥𝑖)

(4.6) 𝐼 (𝑥𝑖) = 𝛽(𝑁 − 𝑥𝑖)

(4.7) 𝐿(𝑥𝑖) = 𝛼(𝐿 − 𝑥𝑖)

In order to estimate the behavior of this model under various conditions I will
make the simplifying assumption that each sub-category is specified by a normal
curve with variable mean, but fixed standard deviation. This allows us to use the
mean of each sub-category as a proxy for its global behavior. To determine the
stable model outputs, I use the fact that forces must balance at this equilibrium
point, meaning that no further changes occur in the location of the means. There-
fore, the sum of all forces is set to zero. 𝑥𝐸 is defined as the location of the global

mean at equilibrium, while 𝑥𝐵𝐸 and 𝑥𝑁𝐵𝐸 are the equilibrium means of the biased
and non-biased sub-categories, respectively.

The first step is to prove that there is no way for the mean of either sub-
category (and therefore, the global mean) to have a value less than N, or greater
than L. This follows from the mathematical form of the inertial, or attractor,
forces. For values greater than the attractor location, the force is leftward, but
for values smaller than the attractor location, the force is rightward, thus always
acting to push the distribution precisely to the attractor location. If the sub-
categories were completely independent (no global entrenchment), then they
would always stabilize at their respective attractor locations. Entrenchment al-
lows the sub-categories to be perturbed from their attractors, but only in the
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direction of the other sub-category. Thus, we can be confident that they will
end up at equilibrium somewhere between N and L. The exact location will de-
pend on the parameters 𝛼 (the strength of the attractor at L), 𝛽 (the strength of
the attractor at N ), 𝜀 (the strength of the entrenchment force), and 𝑝 (the bias
proportion: the percentage of the category consisting of biased tokens; in other
words, the percentage of tokens produced in a biasing context).

The equilibrium location for the non-biased sub-category is determined by the
point at which global entrenchment (2.1) is perfectly balanced by the attractor at
N (4.1). Using the equilibrium location of the mean to stand in for the entire
sub-category:

𝛽 (𝑁 − 𝑥𝑁𝐵𝐸 ) + 𝜀 (𝑥𝐸 − 𝑥𝑁𝐵𝐸 ) = 0.
Therefore,

𝛽 (𝑥𝑁𝐵𝐸 − 𝑁) = 𝜀 (𝑥𝐸 − 𝑥𝑁𝐵𝐸 ) .
For the biased distribution, it is the attractor at L (4.3) that will be balanced by

global entrenchment (2.1): 𝛼(𝑥𝐵𝐸 − 𝐿) = 𝜀(𝑥𝐸 − 𝑥𝐵𝐸 ). In order to solve for the three

quantities, 𝑥𝐵𝐸 , 𝑥𝑁𝐵𝐸 , and 𝑥𝐸 , we need a third equation linking them. This is given
by the equation that expresses the global mean as a weighted average of the two
sub-category means.

(4.8) 𝑥𝐸 = (1 − 𝑝)𝑥𝑁𝐵𝐸 + 𝑝𝑥𝐵𝐸
I can now solve for each of the quantities in turn by substitution. Appendix C
shows the full derivation, and demonstrates that the global mean at equilibrium,
𝑥𝐸 , can be expressed in the following terms:

(4.9) 𝑥𝐸 = (1 − 𝑝)𝛽𝑁 (𝛼 + 𝜀) + 𝑝𝛼𝐿(𝛽 + 𝜀)
(𝛽 + 𝜀)(𝛼 + 𝜀) − (𝛼 + 𝜀)(1 − 𝑝)𝜀 − (𝛽 + 𝜀)𝑝𝜀

as a function of the set of model parameters (𝛼, 𝛽, 𝑁 , 𝐿, 𝑝), the location of the
global mean at equilibrium. The other quantity of interest is the distance between
the sub-category means, which can be expressed as a function of 𝑥𝐸 :

(4.10) Δ𝑥𝐸 ≡ 𝑥𝐵𝐸 − 𝑥𝑁𝐵𝐸 = 𝛼𝐿 + 𝜀𝑥𝐸
𝛼 + 𝜀 − 𝛽𝑁 + 𝜀𝑥𝐸

𝛽 + 𝜀
Keeping all other variables constant, I can now derive the behavior of these two
quantities as a function of the bias proportion, p.
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The change in 𝑥𝐸 that results from a change in p is given by taking the partial
derivative of Eq. (4.9). This turns out to be somewhat unwieldy to calculate in
general form. In the special case when all forces have the same strength (𝛼 = 𝛽 =
𝜀), I can show that Eq. (4.9) reduces to 𝑥𝐸 = 𝑁 + 𝑝(𝐿 − 𝑁). Therefore, the global
category mean is a positive linear function of p, and the change in the location
of that mean is constant: 𝜕𝑥𝐸/𝜕𝑝 = 𝐿 − 𝑁 .

For other cases, it’s possible to determine the general behavior of 𝜕𝑥𝐸/𝜕𝑝 even
without an exact solution. Assume that the equilibrium state for a given 𝑝 = 𝑝𝑗
has already been determined. Now increase p to 𝑝𝑘 . Eq. (4.8) entails that if 𝑝𝑘 > 𝑝𝑗
(an increase in bias proportion), then the global mean will shift closer to the bi-
ased sub-category. Because the strength of the entrenchment force depends on
the distance from the global mean, this shift will, in turn, cause the entrenchment
force on the non-biased sub-category to increase. Because the attractor at N and
the entrenchment force are taken to be perfectly balanced at 𝑝 = 𝑝𝑗 , an increase
in the latter will result in a shift of the non-biased sub-category toward the biased
one. At the same time, the entrenchment force on the biased sub-category will de-
crease commensurately. In this case, a decrease in the entrenchment force causes
the balance to shift in favor of the attractor at L, meaning the biased sub-category
will also shift in the rightward direction. Because the sub-categories shift in the
same direction, the equilibrium point for the global mean is also guaranteed to
shift in that direction, and thus to increase as p increases: 𝜕𝑥𝐸/𝜕𝑝 > 0.

In the special case where 𝛼 = 𝛽 = 𝜀, I can use the result that 𝜕𝑥𝐸/𝜕𝑝 =
𝐿 − 𝑁 , and determine that 𝜕Δ𝑥𝐸/𝜕𝑝 = 0. Therefore, the distance between the
two sub-categories remains constant in this case. The general form of the partial
derivative of (4.10) with respect to p, 𝜕Δ𝑥𝐸/𝜕𝑝, can be written as a function of
the partial derivative of 𝑥𝐸 with respect to p (𝜕𝑥𝐸/𝜕𝑝):

(4.11)
𝜕Δ𝑥𝐸
𝜕𝑝 = 𝜕𝑥𝐸

𝜕𝑝 𝜀 [ 1
𝛼 + 𝜀 −

1
𝛽 + 𝜀 ]

Since I know that 𝜕𝑥𝐸/𝜕𝑝 is always positive, the sign of 𝜕Δ𝑥𝐸/𝜕𝑝 is determined by
the sign of 1/(𝛼 + 𝜀) − 1/(𝛽 + 𝜀). The sign of 1/(𝛼 + 𝜀) − 1/(𝛽 + 𝜀) is determined
by the relative sizes of the quantities 𝛼 + 𝜀, and 𝛽 + 𝜀. Therefore, if 𝛼 > 𝛽 then
𝜕Δ𝑥𝐸/𝜕𝑝 < 0; and if 𝛼 > 𝛽 , then 𝜕Δ𝑥𝐸/𝜕𝑝 < 0.

4.5.2 Process Model: Single category

The Pure Process Model contains a single category, and a single target for that
category. Tokens are selected at random, with probability p, to be produced in the
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4 Modeling stability & change

biasing context. This model is identical to the Soft Target Model described in Sec-
tion 4.3 (Figure 4.1). It will be shown in this section that the Process Model is only
stable for certain parameter values. The behavior of the global mean, and the av-
erage separation between biased and non-biased productions, will be derived as
before. The same simplifying assumption that the category can be approximated
as a normal distributionwith fixed variance will also bemade. However, it should
be noted that this assumption is less justified for the one-category model due to
the fact that biased and non-biased variants will separate, creating a lumpier dis-
tribution, and likely an increase in variance.

The derivational steps in this analysis are given graphically in Figure 4.3. Panel
1 is a snapshot of the model at some time, 𝑡 , when the global mean is located
at location 𝑥𝑡 along x. Both biased and non-biased tokens are sampled from this
distribution, at different rates. This relationship is indicated by the darker normal
curve (subset of tokens subjected to bias during production) within the lighter
one (subset of tokens non-biased during production).

The production value of any token at any time t can be calculated, as long as
its current value, and the category mean, are known. All tokens are subject to the
attractor at N. And all tokens are subject to the entrenchment force acting to pull
them closer to the current category mean (which will be greater than, or equal to,
N ). Additionally, a proportion p of randomly selected tokens undergo a length-
ening process, moving away from the rest of the distribution during production.

Panels 2–4 of Figure 4.3 take us sequentially through the application of forces.
Panel 2 isolates the effect of applying the attractor and lengthening forces. The
attractor affects all tokens equally, because all tokens are equally far from N on
average. Lengthening, applied only to a subset of tokens, splits the distribution
apart. Before entrenchment applies, the mean values for the observed produc-

tions (𝑥𝐵𝑡
′
, mean of biased productions in Panel 2; 𝑥𝑁𝐵𝑡

′
, mean of non-biased

productions in Panel 2), can each be given as a function of the global mean at
time 𝑡 , 𝑥𝑡 :

(4.12) 𝑥𝐵𝑡
′
= 𝑥𝑡(1 + 𝛼) + 𝛽(𝑁 − 𝑥𝑡)

(4.13) 𝑥𝑁𝐵𝑡
′
= 𝑥𝑡 + 𝛽(𝑁 − 𝑥𝑡)
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Figure 4.3: Schematic of forces for process model

Applying entrenchment does not affect the global mean, only the absolute loca-
tions of the sub-distribution means, and their separation. Therefore, the mean
in Panel 3 is identical to the mean from Panel 2. This mean (𝑥𝑡 ′) is given by the
weighted average of the means of the observed production variants:

(4.14) 𝑥𝑡 ′ = (1 − 𝑝)𝑥𝑁𝐵𝑡
′
+ 𝑝𝑥𝐵𝑡

′

Equilibrium is achieved when continued iterations fail to change the locations of
the means. This means that they should be unaffected by successive iterations of

biasing. 𝑥𝐸′ = 𝑥𝐸 , 𝑥𝐵
′
= 𝑥𝐵, and 𝑥𝑁𝐵′ = 𝑥𝑁𝐵. Therefore,
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4 Modeling stability & change

(4.15) 𝑥𝐸 = (1 − 𝑝)𝑥𝑁𝐵𝐸
′
+ 𝑝𝑥𝐵𝐸

′

and from Eq. (4.12) and (4.13),

(4.16) 𝑥𝐸 = (1 − 𝑝){𝑥𝐸 + 𝛽(𝑁 − 𝑥𝐸)} + 𝑝{𝑥𝐸(1 + 𝛼) + 𝛽(𝑁 − 𝑥𝐸)}

Solving for 𝑥𝐸 gives

(4.17) 𝑥𝐸 = 𝛽𝑁
𝛽 − 𝑝𝛼

See Appendix D for the full derivation.
The behavior of the global mean as a function of pwill depend onwhich region

of parameter space we are in: 𝑝𝛼 < 𝛽 , or 𝑝𝛼 > 𝛽 . For 𝑝𝛼 < 𝛽 , the denominator
in (4.17) is positive. Therefore, as p increases (but 𝑝𝛼 stays smaller than 𝛽), the
denominator decreases, and the global mean increases (𝜕𝑥𝐸/𝜕𝑝 > 0). In the limit,
as 𝑝𝛼 goes to 𝛽 , the equilibrium mean goes to infinity, and lengthening is un-
bounded. For 𝑝𝛼 > 𝛽 , the denominator is negative, which also means that the
mean is negative, and the only equilibrium point is negative. Since negative du-
ration values aren’t possible, there is no well-defined equilibrium in the range in
which 𝑝𝛼 > 𝛽 . The process model is thus only stable if the lengthening strength
(𝛼) is not too great, and the percentage of biasing contexts (𝑝) is not too large,
relative to the attractor strength (𝛽).

To calculate the second quantity of interest, the dependence of sub-distribution
separation on p, the effect of entrenchment must be included. Entrenchment acts
to bring all tokens back towards the global mean by an amount proportional to
their distance from that mean (Panel 3 of Figure 4.3):

(4.18) 𝑥𝐵
′′
= 𝑥𝐵

′
+ 𝜀 (𝑥′ − 𝑥𝐵

′
)

(4.19) 𝑥𝑁𝐵′′ = 𝑥𝑁𝐵′ + 𝜀 (𝑥′ − 𝑥𝑁𝐵′)

The separation between the two production variants after entrenchment applies
(Δ𝑥′′) can be determined by taking the difference between Equations (4.18) and
(4.19):

(4.20) Δ𝑥′′ ≡ 𝑥𝐵
′′
− 𝑥𝑁𝐵′′ = (1 − 𝜀) (𝑥𝐵

′
− 𝑥𝑁𝐵′)
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The final separation depends only on the separation prior to the application of
entrenchment (Δ𝑥′ in Panel 2), and the strength of the entrenchment term, 𝜀.
Because the sub-distributions only exist at production, no cumulativity in sepa-
ration is possible (see Panel 4). Therefore, at all times t, the separation in Panel
2, prior to entrenchment, will always be given by the lengthening factor: 𝛼𝑥𝑡 .
Therefore, at equilibrium, when 𝑥𝑡 = 𝑥𝐸 , the average distance between the two
production sub-distributions is given by

(4.21) Δ𝑥𝐸 = (1 − 𝜖)(𝛼𝑥𝐸).

In the stable parameter range (𝑝𝛼 > 𝛽), where 𝑥𝐸 increases as p increases, the
separation of the sub-distributions also increases, but more slowly, by a factor of
(1 − 𝜖)𝛼 .

4.6 Change between stable states

Most work in the exemplar framework models either change or stability, but not
both. That is to say, only one stable state is possible, and themodel either starts in
that state, in which case it remains there for all time, or inevitably arrives in that
state from any other starting conditions. In Garrett & Johnson (2013) there are
two different modes of processing,8 resulting in essentially two different models:
one in which normalization occurs, which is stable, and one in which normaliza-
tion is “turned off”, leading to change (the latter model is not implemented, but
would lead to unbounded shift without an additional mechanism). Kirby (2014) is
similar in that two different outcomes are possible, one for a “misparsing” mode,
and one for accurate parsing (in the “misparsing” mode, merger is prevented by
a stage of hypothesis selection in which a Bayesian learner updates phonetic cue
weights so as to optimize categorization accuracy).

“Agent-based” models (not all implemented using exemplar representations)
use the interaction among one or more groups of speakers to be the driving
mechanism, either of the evolution of language itself, or of the evolution of pre-
existing variants (which may be parameters, or entire grammars). Systems are
taken to be stable within individual speakers, that is, without bias. Thus there
is no mechanism via which a truly novel form can arise, only ways in which an
existing distribution can evolve within a heterogeneous population (Niyogi &

8These are likened to “speech” and “non-speech” processing modes (Liberman et al. 1967); indi-
vidual speakers may switch between the two modes, or different speakers may operate consis-
tently in one or the other mode (e.g. Yu 2013).
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Berwick 1997; de Boer 2000; Nowak et al. 2001; Steels 2005; Baxter et al. 2006;
Oudeyer 2006; Fagyal et al. 2010; Stanford & Kenny 2013; Pierrehumbert et al.
2014). Models that rely on simple “self-organizing” principles, such as random
selection, or mis-classification, are usually designed to demonstrate that a single
optimal state will be reached from any starting position (Wedel 2006; Ettlinger
2007; Wedel 2007; Blevins & Wedel 2009; Tupper 2014; Wedel & Fatkullin 2017).
Some additional mechanism would be needed to change such systems further.
Effectively, actuation is achieved either through speaker contact (in which adop-
tion of already existing variants may occur), or by initializing the model in an
unstable state.

As far as I am aware, Sóskuthy (2013) and Sóskuthy (2015) are unique in the
literature in that they capture both change and stability within a single model.
Actuation occurs via a completely speaker-internal mechanism that is an integral
component of the model: allophone frequency. Model 1 in Section 2.4.1 was an
instantiation of frequency of use as an instigator of change, in the successive
reduction of highly frequentwords. In thatmodel, frequencywas a fixed property
of a given word type. But changes in word frequency, as well as in the relative
proportion of contextual variants, are possible for independent reasons. Words
go in and out of style, and the frequency of use of any given word is expected to
change over time. In turn, changes in frequency at the word level also affect the
frequency of occurrence of the phonemes that make up the word. A change in
allophone frequency could also result if the words affected happened to contain
the same allophonic environment.

The model of vowel lengthening in Sóskuthy (2013) was the basis for the gra-
dient context-dependent model first introduced in Section 2.4.2. This model was
gradually developed, first into a set of possible models implementing at least one
soft target, then into a subset of those that were both stable and theoretically
consistent. The remaining two models were then implemented with frequency
of allophonic environment (bias proportion) as the actuator of change. Sóskuthy
(2013) is actually closest to Model E (Section 4.4), as a two-target state model.
The vowel-level category is modeled as a mixture of Gaussians, namely the sub-
category of variants that occur in the lengthening context and the sub-category
of variants that occur in the non-lengthening context. Instead of global entrench-
ment, the link to the superset category is implemented by applying lengthening
stochastically to tokens chosen from both sub-categories, but with the “long” sub-
category more strongly weighted. Additionally, a “centering bias”, implemented
as an attractor at N, is used to prevent unbounded dispersion.9 The mathemati-

9This is necessary to counteract the contrast maintenance pressure that pushes categories away
from one another, via elimination of ambiguous tokens (Wedel 2012 and Blevins &Wedel 2009).
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cal form of the attractor function is equivalent to the soft target first introduced
in Section 4.3: an inertial force that applies when tokens are perturbed from an
underlyingly specified position, acting to pull them back towards that position.
This results, functionally, in two targets for the biased sub-category (one at N
and one at L).10

Sóskuthy’s model therefore differs from the Pure State Model implemented in
Section 4.5.1. The actual model behavior, however, turns out to be quite similar.
As we saw in the previous section, changes in bias proportion – how often the
biasing context occurs relative to the non-biasing context – act to shift the model
from one stable state to another. The global mean of the vowel category always
increases with increasing p, but the separation between the “lengthened” and
“unlengthened” variants can increase, decrease, or stay the same, depending on
other model parameters.11 Under the assumption that parameter values are fixed
for a given speaker, only one of those outcomes will actually be possible for each
individual.

4.7 Phoneme split

Existing exemplar models of change are actually models of phonetic, rather than
phonological, change. The framework offers the possibility that low-level syn-
chronic variation, like phonetic nasalization, can successively accumulate, lead-
ing to large-scale change. However, the basic framework does not, in and of
itself, offer a solution to the actuation problem at the phonological level. We
know that new phonological categories can form over time, and this seems to
happen when phonetic allophones achieve independence from their parent cate-
gories. Thus, the outcome in which lengthened vowels become contrastive long
vowels, and nasalized vowels become contrastive nasal vowels, is of particular
interest. It has been proposed that phoneme genesis is triggered by a subset of
phonetic variants that have shifted sufficiently far from the rest of the distribu-
tion (Janda & Joseph 2003; Janda 2008). This is essentially what is assumed in
Wedel (2012), with phonemic contrast equated to the emergence of a bi-modal
distribution. However, as we saw in the state model of Section 4.5.1, “long” to-
kens can never get longer than their attractor at L, and the distance between

10Sóskuthy (2015) employs a similar architecture. There is an explicit target for only the biased
sub-category, but all tokens are affected by the same centering force. In this model, hard thresh-
olds at 0 and 1 act to force both distributions back towards the center, similarly to how a target
attracts tokens from either direction. These attractors are critical to achieving stable states in
both models.

11In Sóskuthy’s models there is a somewhat more complex dependence on p.
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the two sub-categories is similarly constrained by the distance between the two
attractors. This is problematic if phonetic exaggeration or “enhancement” is nec-
essary to initiate a new phonological category. The process model seems to offer
more potential for phonological change if lengthening can be somehow turned
off right after biased tokens achieve sufficient separation from the non-biased
part of the distribution. In fact, what is needed to model phoneme split with the
current set of models is precisely a mechanism that will enact the necessary rep-
resentational changes needed to convert a process model (allophony) to a state
model (contrast).12

In addition to the question of how the transition from process to state can
occur, there is the separate question of the level at which the state is specified.
Features, such as [voice], or [nasal], are usually considered to be the universal
atoms from which all phonemes are constructed. However, a given rule, or pro-
cess, acts over some set of phonemes within a given language. Each individual
phoneme consists of a unique matrix of feature values, but the phoneme class
is specified by the subset of feature values that all members share (comprising a
natural class). In principle, any combination of feature values for any subset of
features could be a natural class that is linguistically relevant in some language.
Yet the number of such classes that are actually used, or active, within a given
language is much smaller. Furthermore, the existence, or activity, of a particular
natural class within a language is identified only by the fact that all and only
the phonemes that belong to that class behave identically with respect to some
rule. It is uncontroversial that the rule must be learned by the speaker of the lan-
guage, and therefore, which natural class is associated with the rule must also be
learned. Thus, it is not unlikely that the natural class itself is learned, or formed,
at the time the rule is learned. This view is further supported by the possible
existence of “unnatural” classes (e.g. Mielke 2008).

12Going from a state to a process model, on the other hand, requires that independent cate-
gories become linked through the inference of a predictable relationship between them. In one
sense, phoneme merger is clearly the opposite of phoneme split in that the former reduces the
number of independent categories, while the latter increases them. However, phoneme merger
is not equivalent to (re-)establishing an allophonic relationship. As far as I am aware, merger is
taken to be the result of phonetic overlap among distinct categories (that may or may not share
allophones) involving the wholesale replacement of one category with another occupying the
exact same phonetic space. A change from a state to a process, therefore, may be a different
kind of change, and perhaps one that has no exact correspondent in the standard taxonomy of
sound change. This is an intriguing avenue for future work.
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In the case of vowel lengthening, the relevant class of segments that undergo
the rule consists of the natural class that specifies all and only vowels. The class of
segments that act as the trigger, or environment, for the rule is the set of all non-
continuant non-nasal voiced segments. In both the state and process models
this sub-category is explicitly represented, and in fact, the models are initialized
with this representation.13 This assumption begs the sound change question to
a large extent. If there was a prior period in which no rule of vowel lengthening
existed, then the more interesting question might be where it came from in the
first place? In other words, how did precisely this natural class, this sub-category
of phonological units, become linguistically active in this language. Because this
is the starting point for these models, however, there is no mechanism for gen-
erating new allophonic relationships, or for eliminating them altogether.14

How abstract categories are formed in the first place, how many, with what
kinds of sub-structures, are questions that are far from being definitively an-
swered (see, among others, Peperkamp et al. 2006; Dillon et al. 2013; Feldman
et al. 2009; McMurray & Jongman 2011; Goldsmith & Xanthos 2009). It is reason-
able to expect that greater knowledge of how categories are formed will lead to
greater insight into how sound changes occur, and what kinds of sound changes
are possible. It is beyond the scope of this paper to propose a general theory of
category formation. However, in the next chapter, I will explore some models
in which the basic units to which forces apply are distinct from the featural de-
scription of the linguistic phenomenon. In Chapters 5 and 6 I will also modify, or
replace, many of the assumptions explicitly laid out in Chapters 1–4, including
the very definition of phoneme split.

13It is worth noting that [vowels before everything else] does not actually comprise a natural class
due to its disjoint nature, consisting of the union of the following natural classes: [vowels before
continuants], [vowels before nasals], and [vowels before voiceless non-continuants]. In descrip-
tions of the phenomenon, the comparison class is typically non-continuants that are voiceless,
and this is likely to be assumed as the relevant second sub-category for modeling purposes.

14Treating sub-categorization as a phonetic, rather than a phonemic, distinction does not solve
this problem if the necessary structure is still stipulated, and the prior existence of the allo-
phonic rule is assumed (e.g. Dillon et al. 2013).
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5 The relationship between perception
and production

In themodels examined to this point, the tokens of perception have been assumed
to be identical to the tokens of production. This assumption obscures the fact that
targets in production are necessary in order for sounds to be produced at all, i.e.,
that read-out of a stored set of acoustic values is not possible. It also conflates
biases that act in production with those that act in perception, requiring them
to act on the same units. Furthermore, this assumption requires that complex
articulatory dynamics be uniquely and transparently realized acoustically. For a
dimension like segment duration, this assumption may not be too unreasonable.
However, the correspondence between articulation and acoustics is well known
to be a many-to-many mapping. Invariant cues to abstract phonemes have failed
to be discovered in either domain.

Starting at least with Goldinger (1996), it has been assumed that experienced
exemplars are stored as motor plans without intermediate processing. While this
may be adopted largely as an implementational convenience, it is based on the
assumption that the true details of the mapping will not significantly affect the
mechanism of change, or the model outcomes (see Pierrehumbert 2001). Perhaps
the most critical assumption is that they will not affect the feedback loop that is
the driving mechanism of such models. However, as this chapter will demon-
strate, a non-trivial perception-to-production mapping is not just an additive
factor that can be slotted into existing models, but a shift in perspective that af-
fects all aspects of modeling, up to and including what we take to be the source
of sound change itself. The following sections will make these ramifications ex-
plicit for three cases representing three different types of phonetic bias (two of
which have been previously modeled): vowel lengthening (duration-based tar-
gets); vowel nasalization (sequencing of different articulators); and velar palatal-
ization (sequencing of different targets for the same articulator).



5 The relationship between perception and production

5.1 Duration-based targets

The lack of motivation for a process by which a production, at some random
point along the relevant dimension, is moved only a small amount towards its
target, was mentioned briefly in Section 4.4. Failure to completely achieve a tar-
get may not seem paradoxical at first glance, because it suggests a well-known
articulatory phenomenon, known as “undershoot”, in which targets fail to be
completely achieved (e.g. Lindblom 1963). But this is not an equivalent process.1

Undershoot can occur if over-all speech rate is rapid, not allowing enough time
to overcome the inertia inherent in the physical articulators, or if sequential tar-
gets involving the same articulator (e.g. tongue body) are far apart in the mouth.
A duration target, however, cannot be undershot in the same way. In the first
place, segment duration per se is not specified on individual articulators or their
configurations. Furthermore, duration is not absolute. Thus, although a faster
speaking rate will lead to shorter vowel durations, it will also shorten all seg-
ments in all contexts, meaning that the relative difference between vowel dura-
tions in pre-voiced versus pre-voiceless contexts will not necessarily be affected
(unless duration values are at floor or ceiling). A speaking rate transformation
effectively changes the location of the target itself in absolute terms; it does not
affect the speaker’s ability to reach that target for any given token. Length-based
features are arguably better modeled by targets that are a function of speaking
rate.

With respect to the effect of frequency on duration, the mechanism, and its in-
teraction with speaking rate, remains somewhat unclear. In models of frequency
effects, speaking rate does not seem to be considered. Yet the parallels between
the two are clear. The conceptualization of frequency of use as repeated prac-
tice suggests that there exists a maximally fluent, or optimal, production target.
While increased frequency should not reduce any word below that target, in-
creased speaking rate might. If frequency of use translates to higher resting acti-
vation, on the other hand, and higher resting activation leads to faster production,
successive shortening should only occur if listeners fail to normalize for speaking

1The centering bias in Wedel (2012) is characterized as a lenition bias towards the center of
each segment dimension. Because Wedel’s categories lack underlying targets (they are ran-
domly generated and evolve as poor, or ambiguous, tokens are discarded), his lenition bias is
the mechanism that prevents categories from dispersing indefinitely. For a two-dimensional
phonetic vowel space composed of the first and second formant frequencies, a centralizing
bias is fairly consistent with undershoot. However, this bias is implemented as a fixed attrac-
tor location, rather than a process that shifts the vowel formants a small amount towards the
center of formant space on each production. This suggests that there is a target, or ideal, vowel
location from which all vowels are perturbed by other forces.

50



5.2 Coordination of independent articulators

rate; and if they fail to normalize for speaking rate, then the stored distribution
will reflect the typical variance in speaking rate. This issue will be taken up in
Chapter 6, with two different implementations of the frequency effect.

5.2 Coordination of independent articulators

In the vowel nasalization example of Section 3.3 it was assumed that nasalization
occurred when a given vowel token was produced adjacent to a nasal consonant,
transforming from completely oral ([−𝑛𝑎𝑠𝑎𝑙]), to completely nasal ([+𝑛𝑎𝑠𝑎𝑙]). This
simulation was useful for illustrating the context mismatch that would result
from nasalized tokens being produced in a non-nasal context (which occurs
whether nasality is considered binary or not). Our current purpose, however,
is to consider how an articulatory phenomenon like nasality could be modeled
iteratively with the classic perception-production loop.

In most exemplar models “phonetic bias” is taken to apply without limit, and
without regard to input values. That is, lengthening will occur regardless of how
long the vowel already is, provided it occurs in a pre-voiced context. For the
phenomenon of vowel nasalization this requires some partial nasalization that
applies whenever a vowel is produced preceding a nasal consonant, a partial
nasalization that is additive in nature. This is schematized in (5.1).

(5.1) Nasalization(𝑉 ) → 𝑉+𝑁

Nasalization(𝑉+𝑁 ) → 𝑉+2𝑁

Nasalization(𝑉+2𝑁 ) → 𝑉+3𝑁

But this type of acoustic cumulativity is only possible under a very specific, and
unlikely, production model.

As first described in Section 3.3, phonetic vowel nasalization is the product
of the coarticulation that occurs throughout normal speech. Sounds are not pro-
duced in strict sequence but overlap considerably with their neighbors. In the
case of a vowel-nasal sequence, the velum, or soft palate, is raised in anticipation
of the nasal segment before the vowel gesture has completed, resulting in air-
flow through the nasal cavity during at least part of the vowel’s production. To
represent the articulatory side of this phenomenon, and draw a clear distinction
between perceived tokens and their correspondents in production, I will make
use of the representational tools of Articulatory Phonology (AP) (Ohala et al.
1986; Browman & Goldstein 1990).

In AP, the abstract representational units of speech are taken to be analogous
to musical scores, which indicate the coordination and ordering of a series of

51



5 The relationship between perception and production

physical movements (articulatory gestures). Those gestures involve a set of ac-
tive articulators – the tongue, velum, glottis, etc. – usually in relation to a set of
passive articulator locations – the teeth, lips, hard palate, etc. Scores consist of a
series of target locations for each active articulator (e.g. the alveolar ridge behind
the teeth), and timing relations between those movements (e.g. begin movement
of tongue tip at midpoint of open glottis gesture). Figure 5.1a depicts a gestural
score for nasal coarticulation, based on the specific sequence /æm/. Time is rep-
resented along the x-axis, and the active articulators are shown on the y-axis
(tb =Tongue Body; vel = velum). The box adjacent to each active articulator rep-
resents the time span during which that articulator is activated: gradually mov-
ing towards it target position, then away to a subsequent target, or resting state.
The interval during which the boxes overlap indicates the period when the two
articulators are active at the same time. This overlap, indicated by the space be-
tween the dotted lines in Figure 5.1a, is the source of the vowel nasalization of
interest.

/æ/ /m/

narrow pharyngeal

wideVEL

TB

(a) Nasalization of under-
lyingly oral vowel token

narrow pharyngeal

/æ̃/

VEL

TB

(b) Underlyingly nasalized
vowel token (unnormal-
ized)

narrow pharyngeal

/æ̃/ /m/

VEL

TB

wide

(c) Nasalization of under-
lyingly nasal vowel token

Figure 5.1: Coarticulation involving different articulators

The gestural score indicated in Figure 5.1a produces the acoustic realization
[æ̃m]. The vocalic portion of this token, if stored without normalization, is repre-
sented by /æ̃/. The two different types of brackets are used here in exactly their
usual sense: square brackets indicate a surface form, an instance of speech, while
forward slashes indicate an underlying form, a form used to generate a speech
act. Before such an acoustic token can be produced, however, it must be con-
verted to an articulatory representation. This is shown in Figure 5.1b. Note that,
despite the fact that the nasalization is now a property of the vowel itself, the
same two articulatory gestures are still required in production.

At some still later model cycle, when the token represented in Figure 5.1b is
chosen for production in the identical nasal context, the combined articulatory
score is realized as Figure 5.1c. Under error-free perception and production, the
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5.3 Competing targets for the same articulator

velum gesture associated with the vowel (indicated by diagonal fill lines), and the
velum gesture associated with the nasal will overlap completely. And because
there is only one velum, there will be only one velum gesture. Acoustically, this
will result in exactly the same amount of nasality on the vowel as before ([æ̃]).
The feedback loop is, in fact, halted after a single iteration. The only way that the
vowel could become successively more nasalized is if the velum were to begin
raising earlier and earlier in time – in other words, if a successive change in the
timing relationship were to occur.2 But a change of this nature requires indepen-
dent motivation. In other words, the iterative result does not come for free when
the acoustic-articulatory mapping is no longer an identity relation.

5.3 Competing targets for the same articulator

The final case of perception-to-production mapping considered here is one that
contains conflicting consecutive specifications for a single articulator. A com-
mon phenomenon of this type is palatalization, which involves the tongue shift-
ing towards the hard palate (either forward or backward) due to the influence of
a following or preceding segment (Guion 1998; Keating & Lahiri 1993). Palatal-
ization often occurs in sequences of obstruent consonants and high vowels. For
example, in the articulation of the sequence /ki/, the articulatory target of the /k/
is the velum, or soft palate, where the tongue body makes contact, briefly creat-
ing a complete closure in the oral cavity. The articulatory target for the vowel is
closer to the hard palate, where the tongue body should reach its highest point,
but without making contact. As a result of the upcoming tongue body specifica-
tion for the /i/, the tongue position for the /k/ is shifted forwards – away from
the soft palate, and towards the hard palate. The result is a “blend”, something
that is in between where the two gestures would be in isolation (Ohala et al. 1986;
Zsiga 2000).

The blended production for the palatalized velar is depicted in Figure 5.2a. At
the bottom of the figure, the boxes represent temporal extent as before, this time
of the single Tongue Body articulator. Diagonal fill lines represent the duration
when the /k/ target is active, and the semi-opaque white, the duration of the
active /i/ articulation. Above, the trajectory of the highest point of the tongue
body relative to the two target locations is indicated by the dotted line. The

2Differences in the amount of velar opening and degree of velar airflow can be found among
different types of nasalized vowels (Bell-Berti 1993; Hajek &Maeda 2000). But this is a property
of a given vowel. There is no reason for the greater degree of velar opening for a low vowel,
for example, to be increased further each time that vowel is produced preceding a nasal.
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5 The relationship between perception and production

tongue body is assumed to start from a resting position that places its highest
point somewhere in between the hard and soft palates. With the start of the /k/
gesture, movement of the tongue body is initiated towards the soft palate. How-
ever, because the gesture of the following /i/ is anticipated, a shift in direction
takes place before this target is reached, causing both targets to be only partially
achieved (the solid curves indicate the target trajectories for each segment in
isolation).

Hard Palate

/k/ /i/

TB

So. Palate

Res1ng posi1on

(a) /k+i/

/kj/ /i/

TB

Hard Palate

So. Palate
/kj/ target

(b) /kʲ+i/

Figure 5.2: Coarticulation involving the same articulator. The dark solid
lines represent the trajectories of each segment in isolation. The dotted
line represents the actual trajectory. The Tongue Body (tb) is taken to
start and finish in a resting position in between the two targets.

I will take the acoustic counterpart to this production token to correspond to
a sequence of partially palatalized velar and high front vowel, [kʲ], [i]. The artic-
ulatory representation associated with the acoustic representation /kʲ/ contains
a tb gesture located at the minimum of the dotted curve in Figure 5.2a. On a
subsequent production cycle in which this token is produced in the context of a
following /i/ (/kʲ+i/), the “palatalizing bias” will result in something like the dot-
ted curve in Figure 5.2b. Effectively, the strength of the bias has been reduced.
This is because the amount of bias depends on the distance between the two tar-
gets, and the target of the /kʲ/ is closer to the target of the /i/. In fact, it may now
be possible to reach both targets via a slight modification in the gestural timing.
In other words, there is no clear necessity of (continuously) shifting the target lo-
cation for the obstruent closer to the hard palate, resulting in successively more
palatalized tokens.

There is actually more than one plausible acoustic interpretation of the output
of Figure 5.2a, and thus more than one articulatory mapping for tokens derived
from the original production of the /k+i/ sequence. The target locations of both
the consonant and the vowel may be altered, or the perceived boundary between
the two segments may be shifted, or both. Figure 5.3 depicts a scenario in which
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5.4 Misperception & misarticulation

the entire sequence has been stored as an exemplar of the original /k/ category: a
composite segment consisting of two sequenced targets.3 This particular type of
mapping is of considerable interest because it is not structure-preserving at the
phoneme level. If the perception-to-production mapping itself is the cause of the
loss or the gain of a phoneme, then phoneme split may be possible without an
independent change that eliminates conditioning context – it may, in fact, follow
directly from a merger of the allophone with the allophonic context.

/k͡ʲi/

TB

Res&ng posi&on

Hard Palate

So5 Palate

/k͡
ʲi/

ta
rg

et
s

Figure 5.3: Possible production token derived from perception token
[kʲi]

5.4 Misperception & misarticulation

A well-established tradition in laboratory phonology attributes phonetic and
phonological sound change to mishearing and misspeaking on the part of in-
dividual speakers and listeners (Ohala 1981a,b; 1983; 1990). Many such changes
are traced to coarticulation in production, which can create perceptual ambigu-
ity, and the possibility that what the listener recovers is not what the speaker
intended. In certain theories of change, the rarity of sound change is attributed
to the fact that most speech takes place in a mode where speakers provide suffi-
cient cues for listeners, and listeners accurately reverse the effects of coarticula-
tion. Only rarely do listeners switch to a “non-speech” mode, in which they take
the perceived forms at face value, or randomly decide to keep a poor category
exemplar, rather than discard it (e.g. Lindblom 1990; Garrett & Johnson 2013).
In other theories, discrepancies between speaker and listener are more common,
and the rarity of language-wide change is attributed to the listener’s access to
other sources of information about the “correct” form of a word (and/or the low

3Using the IPA to represent acoustic correspondents is not ideal, due not only to the conflation of
acoustic and articulatory information, but because it is not fine-grained enough to capture all
the relevant differences among the gestural scores. The composite analysis could alternatively
be represented as /kʲ/ (as opposed to the original /kʲ/+/i/). A change in both targets might look
like /kʲ/+/ɪ/. Other possibilities include: /k/+/j/+/i/, /k/+/j/, /k͡j/.
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5 The relationship between perception and production

likelihood of other speakers adopting and spreading an individual’s novel vari-
ant, e.g. Ohala 1981a).

Perception biases emerge when segment x is more likely to be misheard as seg-
ment y, than segment y to be misheard as segment x. Production biases, in some
cases, can be attributed to the masking of overlapping articulatory gestures in
rapid or casual speech. These biases are of the same kind as those adopted in the
preceding models. Yet a fundamental aspect of the nature of these misanalyses
has been lost in implementation. Even in models that explicitly invoke the Evo-
lutionary Phonology framework (see Blevins 2004), the mechanism is typically
realized at a very coarse grain.4 For example, the model in Wedel & Fatkullin
(2017) (also described in Blevins & Wedel 2009) is driven by misperception er-
ror (or “variant trading”); this occurs as a binary decision between neighboring
lexical categories. As already discussed, Garrett & Johnson (2013) implement an
all-or-nothing normalization mechanism.5 In Kirby (2014), “misparsing” is more
gradient; for any given token, a random amount of the target segment may be
mis-attributed to the preceding segment. However, the misparsing doesn’t de-
pend on the phonetic properties of the input, and different outcomes are only
possible by “turning off” the misparsing. Morley (2014) uses a bi-directional mis-
perception term in amodel of velar palatalization, but misperception only applies
to feature parsing, and is segment preserving.

In the next chapter a new model of vowel nasalization is developed, guided
by the goal of avoiding the theoretical and implementational pitfalls laid out in
this, and preceding, chapters. This model will contain an explicit listener analy-
sis stage in which each token is parsed into its constituent units and the num-
ber of possible units is not fixed. Neither misparsing nor multiple processing
modes is required because the input is not assumed to come pre-segmented at
the phoneme level. Therefore, surface variation is directly reflected in underlying
variation and change in one leads to change in the other.

4Although de Boer (2000) uses a non-trivial mapping from acoustic data to production targets,
it is not a model of sound change, but of structure emergence in vowel systems. In a similar
type of model, Oudeyer (2006) relies on the same units (neurons) being used in perception and
production. However, thismapping ismediated by the distributed nature of the representations
(over a network of neurons), and the fact that neurons are “tuned” by experienced input, via a
non-linear activation function.

5Although they make an explicit distinction between a word-level perceptual token space, and
a segment-level production token space, no transformation algorithm is provided. They also
suggest that the articulatory “speech” mode is sometimes available for perception, so the ex-
act relationship between the two “modes” of processing is somewhat unclear. In practice, the
models seem to be implemented using a single abstract phonetic dimension.

56



6 Phoneme split

In this chapter I will develop a model of phoneme split, or genesis, using the
phenomenon of vowel nasalization as a case study. The model will be based
on the analyses of the preceding chapters: the metric of success will be repre-
sentational consistency and stability, with the ability to achieve multiple stable
states under different parameter settings. The relevant parameters will also be
required to serve as testable hypotheses about possible actuation mechanisms.
The first of two model variants, the No-Phoneme Model, will contain explicit
representations only at the word level, and will be used primarily to illustrate
a particular implementation of the frequency effect. The subsequent model, the
Multiple-Parse Model, will add a sub-lexical level of analysis. The major innova-
tion of this model will be an explicit, non-one-to-one, perception-to-production
mapping in which the likelihood of a given analysis depends on the phonetic
properties of the input. Additionally, no analysis is taken to be more “correct”
than any other, just as the set of possible sub-lexical units is not taken to be
determined ahead of time.

6.1 Representations I

It has been well-established in both perception and production that there is a
negative correlation between degree of vowel nasalization and strength of nasal
consonant (e.g. Kawasaki 1978; Cohn 1990). This is consistent with the hypoth-
esis that the final nasal is more likely to be lost, the more nasalized the preced-
ing vowel becomes. A possible explanation can be found in a listener-oriented
theory of change, where speakers strive to preserve acoustic cues for ease of lis-
tener comprehension. Strong nasal cues on the vowel predict the upcoming nasal,
which means that speakers may expend less effort to preserve the actual nasal,
allowing it to erode. As with other proposals, the question that still remains to be
answered is how the vowel came to have such strong nasal cues in the first place
(presumably stronger than the typical range of phonetic nasalization observed
cross-linguistically).

A different perspective will be adopted here, building on the observation of
Beddor (2009) that the negative correlation between vowel nasality and conso-
nant nasality follows directly from a single articulatory parameter: the degree
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of overlap of the vowel and nasal gestures. The more overlap, the greater the
extent of nasalization on the vowel, and the shorter the duration of the purely
consonantal nasal, and vice versa (see Figure 5.1a). It will be assumed that suc-
cessful production requires stored articulatory targets, and that these must be
inferred from acoustic inputs. For simplicity, only a single word type will be
modeled, that consisting of a tongue body gesture followed by a velum gesture
(e.g. am). The production-perception mapping will take place over three pho-
netic variables: duration of tongue body gesture, duration of velum gesture, and
duration of gestural overlap (𝑥𝑉 , 𝑥𝑁 , 𝑥𝑂). Categorization will occur at the level
of the word, and does not require decomposition into phonemes. Thus, these
models will not assume that there exists an allophonic process of vowel nasal-
ization. The initial distributions for all tokens will be generated by independent
sampling from three separate normal distributions, corresponding to 𝑥𝑉 , 𝑥𝑁 , and
𝑥𝑂 , respectively.

In Chapter 4 we saw that (soft) targets were needed to constrain the basic
exemplar model of change. What this did was effectively force an independent
production component into a model which otherwise equated acoustic and ar-
ticulatory representations. In the current set of models this is not necessary, im-
plementationally, or conceptually, because each acoustic token has its own pro-
duction target. This is depicted schematically in Figure 6.1, where stored articu-
latory parameters (represented by temporally overlapping articulatory gestures)
are realized as acoustic tokens during production (dark patterned rectangles rep-
resenting sound frequency information over time), and acoustic tokens are, in
their turn, transformed into stored articulatory parameters during perception.
At the word level, this is a state model; the articulatory variables are stored
without normalization. At the gestural level, however, there is the possibility of
an implicit process model in the fact that the overlap dimension represents the
concatenation of two units, as well as the source of nasalization. I will return to
this point below.

As Section 4.5 showed, the two-attractor (state model) had a limited range of
output states: the entire distribution always stabilizes at some point intermediate
between the two attractors. Furthermore, that model contained no mechanism
for changing the attractor locations, or introducing new attractors. The current
model effectively explodes the number of attractors (or underlying representa-
tions) to the number of tokens within a category. This allows for more complex
model dynamics. It also allows for changes to occur to the attractors themselves,
via independent forces that act, not at the level of the word (or at the level of the
phoneme), but at the level of the gestural variables. Individual tokens of a given
word category can thus be altered, with the possibility, but not the guarantee,
that such changes can spread throughout the entire distribution of tokens.
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Produc'on

Percep'on

Figure 6.1: Graphical depiction of an explicit mapping between articu-
latory representations and acoustic representations

6.2 Frequency I

The first iteration of the phoneme-split model uses a frequency-based attractor
as the actuator of change. Based on the assumption that frequency-based reduc-
tion is the result of increased fluency, and that to be fluent is to produce some
(nearly) ideal balance of efficiency and intelligibility, an optimal degree of gestu-
ral overlap, T, is defined. Relative word frequency is implemented as a parameter
(𝛽 ; 0 < 𝛽 < 1) that controls the degree to which each token of the category is
shifted towards the target, T, during production. Thus, for a stored production
token consisting of the duration triple (𝑥𝑉𝑖 , 𝑥𝑁𝑖 , 𝑥𝑂𝑖 ), a fluency effect applies to
the ultimate realization of 𝑥𝑂𝑖 , the gestural overlap value, in the following way:

(6.1) Fluency ∶ 𝑥𝑂′
𝑖 = 𝑥𝑂𝑖 + 𝛽(𝑇 − 𝑥𝑂𝑖 )

Because the absolute duration of the optimal gestural overlap will depend on the
durations of the gestures for each specific token, 𝑇 is expressed as a function of
𝑥𝑁𝑖 . In the case where 𝑇 = 𝑥𝑁𝑖 , the fluency pressure always acts to increase 𝑥𝑂𝑖
(as long as 𝑥𝑂𝑖 ≠ 𝑥𝑁𝑖 ), because the duration of overlap can never be larger than
the duration of the nasal gesture (assuming also that 𝑥𝑉𝑖 is always greater than
𝑥𝑁𝑖 ).
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6.3 Speaking rate

As has already been demonstrated several times, a single attractor results in a
single possible outcome. With only the frequency attractor acting on produc-
tions, maximal fluency is the only possible outcome, regardless of the value of 𝛽 .
Implementationally, a force is needed to counter-act the fluency effect. For a flu-
ency target at maximal overlap, that opposing force must act to decrease overlap.
However, in the general case, it may be desirable to include a force that can ei-
ther increase or decrease the relevant parameter values. In fact, regardless of the
implementational requirements for a successful model, there are clear theoretical
reasons to include a bi-directional force affecting articulatory durations.

Changes in speaking rate, of course, strongly influence the absolute duration
of speech sounds. Furthermore, there are similarities between the reduction ef-
fects observed in fast speech, and those observed with high-frequency words.
Therefore, whatever drives changes in speaking rate is clearly relevant in amodel
of change in which duration plays a role. Equally important is the fact that
changes in speaking rate are not all increases in speed, and the effect of slowed
speech in potentially disrupting cumulative change cannot be selectively ignored.

Changes in speaking rate have been shown to affect both the absolute duration
as well as the timing between sequential speech units (Stetson 1928; Hardcastle
1985), and therefore are taken to affect all of (𝑥𝑉 , 𝑥𝑁 , 𝑥𝑂) in the phoneme-split
model. I will adopt the view here that changes in speaking rate are governed by
forces largely external to the mechanisms of sound change, and that changes in
rate can therefore be modeled as a stochastic process.1

Changes in speaking rate, affecting word duration, are modeled in the follow-
ing way. At production, a value is randomly selected from a normal distribution
centered about 0. This value represents the force (E) that will act on that token:
either to expand it (if positive), or to compress it (if negative). Expansion results
in longer words, corresponding to slower speaking rates, and compression re-
sults in shorter words, corresponding to faster speaking rates. Each articulatory
parameter is independently subjected to this force. The degree to which a given
gesture is actually expanded or compressed depends on how inherently elastic
it is. This elasticity is implemented as a parameter that controls the steepness of

1There is a strand of research that assumes that changes in speaking rate, specifically decreases
in speaking rate, are driven by a desire to enhance or exaggerate a given phonological contrast
(e.g. Beckman et al. 2011). Although slowed speaking rate often occurs under conditions in
which speakers are deliberately hyper-articulating their speech, I assume that decreases in
speaking rate can also occur independently; that is, that speakers can control their rate of
speech, e.g. when asked to match the beat of a metronome, without consciously trying to
produce more intelligible speech.
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a logistic curve. For example, the effect of force E acting on the overlap variable
(𝑥𝑂 ) is given in Equation (6.2):

(6.2) SpeakingRate ∶ 𝑥𝑂′′
𝑖 = 𝐴

(1 + 𝑒𝑘𝐸)
A is a normalization factor, and is set to 2𝑥𝑍 ′

𝑖 for all variables (Z ). This has the
effect of making the adjusted length depend on the current length, with 𝐸 = 0 re-
sulting in no change. Note that for decreases in speaking rate, overlap should
decrease – pulling the two gestures apart, and thus lengthening the word –,
while for increases in speaking rate, overlap should increase. Therefore, the de-
pendence of overlap on expansion degree is expressed as a positive exponential,
while the dependence of the other two duration parameters is expressed as a neg-
ative exponential. For these simulations all three articulatory variables were set
to the same elasticity (𝑘 = 1).

6.4 No-Phoneme Phoneme-Split Model

In order to understand the behavior of the phoneme-split models, we first create
a version with only the speaking rate mechanism included. Figure 6.2 shows
the outcome that the speaking rate distribution (E distribution) selects for, given
a particular starting distribution of tokens. The three articulatory parameters
are plotted separately, in different colors. This model also assumes error-free
mapping of acoustics to articulation, outside of a small error term in production.
Entrenchment and memory decay apply as in previous models.
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Figure 6.2: Phoneme-Split Model: Speaking rate only
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With appropriately chosen constants, the speaking rate force is capable of dis-
rupting the influence of the frequency-based attractor. This allows the equilib-
rium state of the model to vary as a function of word frequency (𝛽). For 𝑇 = 𝑥𝑁𝑖 ,
the fluency effect acts consistently to increase gestural overlap (𝑇 = 𝑥𝑁𝑖 ). If it is
too weak (𝛽 too small), then the speaking rate equilibrium shown in Figure 6.2
prevails. If it is strong enough, then it is able to shift the overlap distribution to
larger values (rightward). This is possible because the speaking rate transform
depends on the current value of the overlap parameter for any given token (ex-
pressed in the variable A of Eq. 6.2). Figure 6.3 shows the output of the model
with both speaking rate and frequency bias, run for three different values of 𝛽 .
Note that the number of model iterations is essentially arbitrary. Because the
number is large (10,000), there is a reasonable expectation that a stable state has
been reached, but no tests of convergence were performed. In this section I am
more concerned with the qualitative behavior of the model, and comparisons in
which all but one aspect of the simulations are kept constant.
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Figure 6.3: No-Phoneme Phoneme-Split Model (Frequency Attractor).
Each model run for 10,000 cycles with identical starting conditions.

The No-Phoneme Phoneme-Split model predicts that words with higher fre-
quencies should be produced, on average, with vowels that are more nasalized
(larger degree of overlap between gestures), than lower frequency words. It also
shows that it is possible to achieve stable phonetic change from a change in word
frequency. The model implements a theory of nasal vowel genesis as an emer-
gent property of gradient effects acting directly on articulatory parameters. Only
in the special case where overlap is roughly equivalent to nasal duration, would
the data likely be analyzed (by a linguist) as the result of phoneme split. This
state in the model, however, has no special status. And distributions that appear
intermediate with regard to the average ratio of overlap duration to velum ges-
ture duration can be stable. Conceptualizing phoneme split in this way allows
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us to avoid the actuation paradox that requires the loss of the conditioning envi-
ronment, but the retention of the conditioned allophone (see Section 1.2). In fact,
as there are no phoneme-level representations in this model, there are no allo-
phones, and no conditioning environments, in the classical sense. Therefore, this
model is also a demonstration that phoneme-level representations are not nec-
essary (nor is any misperception/misarticulation pressure of the kind discussed
in the previous chapter), to achieve a working model with the generally correct
behavior.

The source of the nasalization effect in this model is the coordination between
the tongue body and velum gestures. This parameter, however, is part of the
underlying specification of each word token. The No-Phoneme model is thus
a state model. Arguably, a state model represents a change that has already
taken place, in which a process of nasalization has been reinterpreted as a static
property of a unitary representation. In the next sections I will turn to a process
model of vowel nasalization, returning to the misperception/misarticulation ac-
tuation mechanism. This will also involve introducing a sub-lexical level of rep-
resentation, and revisiting the implementation of word frequency.

6.5 Parsing and misparsing

In order to recover the meaning of a given speech signal, it is necessary, at mini-
mum, to identify the individual lexical items present. This, in turn, requires deter-
mining where one word ends and the next begins. The highly context-sensitive
nature of acoustic cues, as well as the lack of consistent silence, or other markers,
of the boundaries betweenwords or sounds, make this a computationally difficult
task. And this is not just an acquisition problem. Signal parsing, or segmentation,
is something that must be carried out every time speech is perceived.

That segmentation of some kind must also take place at the sub-lexical level
is evidenced by a large literature on what are known as “trading relations”, in
which the value along a given phonetic dimension that separates two members
of a phonemic contrast is shown to vary depending on the values of the other
phonetic cues present. And those other cues that influence the boundary location
are not just those that occurwithin the segment itself. For example, a given phone
([t]) may be ambiguous as to whether it belongs with a preceding or following
word (e.g. great ship [ɡɹe͡ɪt#ʃɪp] versus gray chip [ɡɹe͡ɪ#t͡ʃɪp]), and the actual word
sequence that is heard will depend on the durations of the surrounding segments;
longer durations of [e͡ɪ] increase the likelihood of gray over great, while shorter
durations of [ʃ] increase the likelihood of chip over ship. An acoustic cue (such as
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silence itself) may also be ambiguous as to whether it originates from a phoneme
(/t/) or a break between words (great ship versus gray ship [ɡɹe͡ɪ#ʃɪp]; longer du-
rations of silence increase the likelihood of great over gray (Repp et al. 1978). An
acoustic feature may also be ambiguous as to whether it belongs to a preceding
segment, a following segment, or both ([ɹa͡ɪpbɛɹiz] as either right berries or ripe
berries, Gow 2003).

In all of the preceding examples the ambiguity exists because of the existence
of multiple real-word alternatives. Without those alternatives, or competitors,
phonetically ambiguous input quickly becomes perceptually unambiguous (e.g.
Warren 1970; Ganong 1980). The strong susceptibility of low-level perception to
high-level expectations also speaks to the amount of noise, or essentially un-
predictable variability, in the acoustic realization of a given abstract category.
Speech perception involves the complex integration of multiple cues, each of
which, in isolation, may be relatively uninformative, in order to arrive at a single
parse, a single percept, of what is heard. This percept is presumably the best al-
ternative among those available to the listener (see Davis & Johnsrude 2007 for a
review of the literature). Although speech perception appears extremely robust
due to the fact that the meaning intended by the speaker is usually recoverable
by the listener, that robustness is a property of the entire set of cues available,
not of acoustic features alone, and certainly not of individual acoustic features.
Rather than conceptualizing sound change as the relatively rare event in which
the listener mishears, or the speaker misspeaks, it may be the case that what we
typically think of as the “changed” variants are already present within the dis-
tribution of stored tokens, as one of multiple possible parses of each inherently
ambiguous input signal.

6.6 Multiple parses

The classical way in which sound change is conceptualized is based on the as-
sumption that there exists a unique, correct, sub-lexical representation for each
word. It is meaningless to speak of phoneme-level “errors” unless this is the case.
Consider the following hypothetical example (where 𝑥 > 𝑦 indicates an histori-
cal change from x to y):

(6.3) anpa > ampa

(6.3) is a common type of change known as nasal place assimilation. In this ex-
ample, the coronal feature of the nasal /𝑛/ is assimilated to (or replaced by) the
labial feature of the following /𝑝/. Speakers of a language that undergoes this
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change presumably had an earlier allophonic rule specifying that /𝑛/’s preced-
ing stops take on the place features of that stop. Therefore, the change could only
have occurred if they uncharacteristically failed to account for this rule, or they
made the “wrong” choice for a production that was especially strongly assimi-
lated. In either case, listeners are assumed to parse their acoustic input into a
sequence of discrete phones, deciding for each segment whether to normalize or
accept at face value. Thus, for a change from /anpa/ to /ampa/ to have actually
occurred in the way it is denoted here, it must be the case that listeners used
to routinely segment continuous acoustic tokens of this word into the sequence
of units /a/, /n/, /p/, /a/, until they switched to segmenting those tokens into the
sequence /a/, /m/, /p/, /a/.

Of course, we know that a discrete series of abstract symbols (either [anpa]
or [ampa]) is not present in the acoustic signal in any objective sense. The ab-
stract notation also implies that this change occurs once, simultaneously, for all
words, and for all word tokens. However, adopting the hypothesis that multiple
experienced instances of speech are stored implies that change would have to
occur over individual tokens. In fact, the multiple-parse hypothesis is a logical
consequence of the basic tenet of the exemplar framework. The conflation of per-
ception and production that we saw in the exemplar models of Chapters 2 and 4
is borrowed directly from the standard generative notation. Once a transforma-
tion from perceptual tokens to production tokens is required, it becomes clear
that 1) parsing is necessary in the first place, and 2) it must occur for each expe-
rienced token. Recognizing that acoustic tokens are inherently ambiguous with
respect to their decomposition into discrete units suggests, in turn, that variable
parses might be the norm rather than the exception.2

In the nasal assimilation example, there are two obvious alternative parses,
differing in whether they contain the phoneme /𝑛/ or /𝑚/, thus the word-level
category anpa is hypothesized to be composed of at least some tokens specified
with production targets for /𝑛/, and some for /𝑚/. However, additional possible
parses exist if we do not assume the available phoneme inventory a priori. In
fact, if we allow all universally possible segments into the analysis space, then
we avoid the actuation paradox of the classical diachronic approach. As the next
section will show, this re-framing of the change question allows synchronic vari-
ation to be linked to diachronic change in a way that is not dependent on either
stopping or starting the model at a critical point in time.

2This is closely related to the proposal that stored lexical items can havemore than one represen-
tation (see e.g. Hooper 1976; Janda 2008; Bybee 2001). Split representations are also assumed to
be the outcome of discontinuous articulatory change in the model of Garrett & Johnson (2013).
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6.7 Representations II

The Multiple-Parse model adds a process component to the No-Phoneme model.
The process is implemented at the level of the articulatory gesture, but conceptu-
ally requires the existence of abstract categories intermediate between the word
and the gesture. As before, the change occurs in the distribution of variants that
already exist, rather than in the genesis of entirely novel forms. This aspect bears
some similarity to the proposal in Baker et al. (2011), based on misanalysis of the
signal, but the current model is not abrupt, nor does it require “extreme” variants
to be adopted.

The conversion from perception to production is the locus of sub-lexical pars-
ing, mapping every continuous acoustic token into a series of categorical units.
In principle, these units can consist of any contiguous set as long as it is phonet-
ically plausible, and exhaustively parses the input signal. However, in the case
of vowel nasalization, I will be concerned with two particular possibilities: the
one-sublexical-unit analysis, and the two-sublexical-unit analysis. These are of
special interest, of course, because they bear considerable similarity to the clas-
sical analyses of the phenomenon before change (two units), and after change
(one unit). However, it is important to be very careful in how these units are
described, because the traditional notational system essentially forces an analy-
sis more general than the word level. In order not to assume generalization, and
remain representationally consistent, the following notation will be adopted for
the two sub-lexical parses of the word in question (am): /�̃�𝑎𝑚/ (Analysis 1), and
/𝑉𝑎𝑚/ + /𝑁𝑎𝑚/ (Analysis 2). The desired implication is that only after general-
ization across multiple words could something similar to the abstract categories
/𝑉/ and /𝑉/ + /𝑁/ arise.

For the articulatory parameters already defined, a single-unit parse means that
all three values will be stored on the production side. /�̃�𝑎𝑚/ is a 3-dimensional
cloud, and entrenchment applies over each dimension. Note that this is what was
assumed for all tokens in the No-Phoneme Model, which therefore implicitly as-
sumed a single-unit analysis. The two-unit parse, however, is explicitly a process
analysis, entailing that one token is drawn from a one-dimensional /𝑉𝑎𝑚/ cloud,
one from a one-dimensional /𝑁𝑎𝑚/ cloud, with concatenation occurring at the
time of production. In other words, the overlap between the two gestures is not
stored, but determined online.
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6.8 Multiple-Parse Phoneme-Split Model

Either analysis is possible for any given token, but, critically, depends on the
acoustic properties of that token. In this set of simulations it will be assumed
that word-level categorization is correct, and that the three duration quantities
(𝑥𝑉𝑖 , 𝑥𝑁𝑖 , 𝑥𝑂𝑖 ) are accurately recovered in perception, although this is not critical.3

Analysis 1, the single-segment analysis, is more likely to be selected, the more
highly overlapped the gestures that produced that token, while Analysis 2, the 2-
segments-in-sequence analysis, is more likely for less overlapped gestures. The
specific dependence is on the quantity 𝑄𝑖 = 𝑥𝑂𝑖 /𝑥𝑁𝑖 . Larger values of 𝑥𝑂𝑖 lead
to larger values of 𝑄𝑖, as do smaller values of 𝑥𝑁𝑖 . Selecting for large Q thus se-
lects both for larger overlap and shorter word durations. That duration should
correlate with number of constituents is a reasonable hypothesis. It can also be
hypothesized that articulatory gestures will tend to be more tightly coordinated
within, than across, segments, if shared constituency promotes greater merger.4

The probability of Analysis 1, 𝑃(𝑎 = 1), depends on Q in the following way (6.4).

(6.4) 𝑃(𝑎 = 1) = 𝐴𝑒−𝑏(1−𝑄) − 𝐶

Probability increases with increasing Q because of the negative exponential in
(6.4). The largest possible value for Q is 1, therefore 1 − 𝑄 is always positive.
When 𝑄 = 1 , 𝑃(𝑎 = 1) reaches its maximum at 𝐴 − 𝐶 . How quickly the proba-
bility decreases as a function of decreasing Q is controlled by the variable b. The
larger b, the larger the negative exponential, and the more quickly 𝑃(𝑎 = 1) de-
creases, selecting for larger mean Q values (and fewer tokens). See Appendix E
for additional details.

If Analysis 1 is chosen in perception, based on the value of 𝑃(𝑎 = 1), then all
three values of the token are stored. If Analysis 2 is chosen, then the duration
of the tongue body gesture (𝑥𝑉𝑖 ), and the duration of the velum gesture (𝑥𝑁𝑖 ), are
each stored in separate categories, and the overlap value is discarded. Figure 6.4
provides a schematic depiction of these relationships. Note that the dimensions
are not accurately represented here; two dimensions are used for all categories to
make the membership relationships easier to see. Individual tokens are drawn as
schematic gestural scores: extent represents time, and fill type represents active

3If the error term is symmetrical, then it will have no qualitative effect on the model dynamics.
4I am not aware of evidence for this specific relationship, but there is evidence for different types
of gestural coordination across different domains: between the onset and nucleus of a syllable,
versus the nucleus and coda (Browman &Goldstein 1988; Byrd 1996); and within, versus across,
morpheme boundaries (Cho 2001).
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articulator. Where the two bars appear together, horizontal alignment indicates
the stored gestural overlap parameter. The thin lines drawn between tokens of
different sub-categories indicate that they are stored together, and will be pro-
duced together. However, overlap must be determined separately because it is
not stored as part of the experienced token. Entrenchment happens only within
individual sub-lexical categories.5

“am”

!"#$

"#$ %#$

Figure 6.4: Schematic depiction of the relationships between the word-
level category (am) and the sub-lexical level categories of its con-
stituents. Production-side representations.

Tokens are chosen randomly for production from among all stored values.
Once selected, the token is subject to the same speaking rate transformation used
in the No-Phoneme model. The overlap degree for an Analysis-2 token defaults
to a fixed percentage of the current average value of 𝑥𝑁 (with some variance).
There is no phonetic bias in this model. The selection bias that drives the feed-
back loop resides in the choice of underlying analysis – the parsing of the input
signal. Equation 6.4 selects for large values of 𝑥𝑂 , and for small values of 𝑥𝑁 ,
both of which will increase the size of Q, and thus increase the probability of
Analysis 1. There is no cumulativity such that these values grow more extreme,
but there is a constant pressure to sort tokens with the largest overlap proportion
into this sub-lexical category. Thus, if an independent mechanism resulted in an
increase in Q for some tokens, those tokens would raise the average Q value of
the /�̃�𝑎𝑚/ sub-category.

5If entrenchment at the word level is added it will have the effect of pushing values back towards
the means of the Analysis 2 categories, since the model is initialized with those values, and
the Analysis 2 parse is always more likely.
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A mechanism that shortens word duration will have this effect: shortening
𝑥𝑁 (and 𝑥𝑉 ), and lengthening 𝑥𝑂 . If higher frequency is taken to result in faster
productions, then an increase in frequency will lead both to more /�̃�𝑎𝑚/ catego-
rizations, and to a higher Q value for the category on average. For the simula-
tions reported below, frequency was implemented as a negative perturbation to
the mean value of the expansion force distribution. As a result, higher frequency
(higher resting activation) results in shorter words, and thus shorter tongue body
and velum gestures (and longer overlap) under all speaking rates. This implemen-
tation will be discussed in more detail in the following section.

Figure 6.5 shows the model results as a function of frequency. Each point is
the result of running the model for 10,000 iterations. Mean values for the three
duration parameters, as well as the proportion overlap (Q) are given for each of
the categories - Panel 1: word-level; Panel 2: Analysis 1 tokens; Panel 3: Analysis
2 tokens. Note that the overlap proportion in Panel 3 shows the constraint that
overlap proportion stay fixed with respect to 𝑥𝑁 . Whereas, in Panel 2, as resting
activation (frequency) increases, the proportion overlap increases. Because the
number of tokens parsed into the /�̃�𝑎𝑚/ category also increases with increas-
ing resting activation (from approximately 31% to 50%), the overlap proportion
increases for the word-level category as a whole (Panel 1).

6.9 Frequency II

In the No-Phoneme Phoneme-Split model, frequency was implemented as a fixed
attractor on overlap duration (Section 6.2). The assumptionwas that there existed
an optimal (most fluent) production of a given word with precisely the degree
of gestural overlap given by the attractor target. At the same time, in order to
generate productions that more closely resembled nasal vowels, it was necessary
to set the target quite high – in the reported simulations it was set to the entire
duration of the accompanying velum gesture. However, it is not clear why the
optimal production of the 2-gesture word should exhibit such a large degree of
overlap. And, in general, there is no clear reason for greater practice, or increased
fluency, to always result in shortened, or reduced, articulations, especially to the
point where distinctiveness may be lost at the word and/or phoneme level. Yet
this seems to be the case with frequency effects. It has been shown, for example,
that individual segments within high-frequency words are shorter, and that they
are more likely to exhibit “deletions” (dropping, or masking of a consonant, or
unstressed vowel, e.g. Bell et al. 2003; Raymond et al. 2006; Bybee 2003). The
realizations of segments in higher-frequency words tend also to be less extreme,
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Figure 6.5: Multiple-ParseModel: Results as a function of resting activa-
tion (word frequency). Each point corresponds to the mean after 10,000
model iterations. Mean articulatory durations are plotted in black. Pro-
portion overlap (𝑄 = 𝑥𝑂/𝑥𝑁 ) is plotted in red. Panel 1: all word tokens;
Panel 2: Analysis-1 tokens only; Panel 3: Analysis-2 tokens only.

or more “centralized”, perhaps failing to reach the usual articulatory target (e.g.
Munson & Solomon 2004; Scarborough 2004; Gahl 2008).

The listener-based account of frequency effects explains these phenomena as
a consequence of contextual predictability. It is actually the less predictable, less
easy to access, more confusable, forms that are produced with particular care
(hyper-articulated) by the speaker in order to aid intelligibility (e.g. Aylett & Turk
2004). In the absence of that pressure, articulations are reduced to the degree
possible, facilitating the task of the speaker. Factors that have been shown to
affect predictability, as well as word form, include sentence, or discourse, context,
bigram frequency, and unigram frequency, among others. Nevertheless, there are
a number of results that are not compatible with a strictly listener-based theory,
studies that have shown that speakers do not always alter their productions in
such a way as to facilitate listener comprehension (see Turnbull 2015 for a review
of the literature).

As mentioned briefly in Section 3.1, the speaker-based approach attributes fre-
quency effects to automatic production-sidemechanisms. This is usually couched
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in terms of activation levels, within some kind of lexical network model where
different representations “compete” in both perception and production (e.g. Mc-
Clelland & Rumelhart 1981; Dell 1986). In terms of word retrieval, the successful
candidate is the one that achieves a given threshold of activation first. Every time
a word is accessed, or produced, it is activated to this level. Repeated activations,
within some time period, are taken to result in some level of residual activation
that persists even when the word is not selected. This “resting” activation level
is naturally higher in higher frequency words, giving them a head start against
lower-frequency competitors.

The resting-activation account is in line with results establishing that higher-
frequency words are produced earlier than lower-frequency ones in a variety of
tasks, such as picture naming, and word or sentence reading – even with delays.
Higher-frequency words also lead to faster response times in lexical decision and
other speeded response tasks, as well as to greater accuracy in word recognition
(e.g. Howes& Solomon 1951; Balota &Chumbley 1985; Luce 1986;Marslen-Wilson
1990). However, it is not at all obvious that higher resting activation alone can
account for articulatory or temporal reduction (hypo-articulation).

In fact, it has been argued both that a higher activation level should lead to
hyper-articulation (e.g. Baese-Berk & Goldrick 2009), and that it should lead to
hypo-articulation (e.g. Gahl et al. 2012).6 In works that adopt the latter position,
the connection seems to be assumed. For example, Gahl et al. (2012: 79) write
that “Production-based accounts ... would lead one to expect that words that are
retrieved quickly tend to be phonetically reduced – provided that fast retrieval
speed translates into fast production speed” (emphasis mine).

The fact that there does not appear to be a well-worked out mechanism for
this result raises the possibility that we have yet to find the right model for
frequency. Empirically, however, the correlation between shorter/faster produc-
tions and higherword frequency seems quite robust. In theMultiple-ParseModel,
a frequency-based increase in production speed is taken to be an additive effect,
acting to effectively shift the speaking rate distribution. If I continue to assume
that speaking rate acts independently of other model forces, then words will con-
tinue to be pulled in both directions, expanding or compressing in turn. Subject
to the same large positive force, both low and high frequency words will be pro-
duced more slowly, and will thus be longer than if no force had applied. However,
the high-frequency word will be somewhat shorter than its low frequency coun-
terpart, due to the difference in its resting state. The same will be found under
compression (unless floor is reached).

6Note that different results were obtained in these studies, one based on laboratory data, and
one on conversational corpus data.
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The dependence on frequency (resting activation) in Figure 6.5 shows the ef-
fect of progressively shifting the speaking rate distribution; shorter averageword
durations result in shorter 𝑥𝑁 , and longer 𝑥𝑂 , and thus lead to a greater propor-
tion of Analysis 1 tokens.7 This shift is not unbounded, because speaking rate
is a bi-directional force; high-frequency words can also be lengthened, just not
lengthened quite as much as their lower-frequency counterparts. Note that the
frequency effect in this model acts on all tokens, both stored and generated. In
the latter case, we must assume that some type of motor plan involving the con-
catenation of /𝑉𝑎𝑚/ and /𝑁𝑎𝑚/ is associated with a resting activation value that
affects the duration of the resulting word.

6.10 Actuation

As in the No-Phoneme Phoneme Split model, there is no single moment at which
a sound change occurs in the Multiple-Parse Phoneme-Split Model. Every in-
stance of perception involves a decision about parsing which is based on exist-
ing synchronic variation. And every available parse is a possibility at any time,
for any token; it is the probabilities of those parses which change over time. Al-
though the nasal vowel parse is assumed in the sense that it is one possible analy-
sis for a given token, this model, in fact, avoids many limiting assumptions about
the nature of sound change inherent to the classical view. For example, the /V+N/
analysis is not privileged, beyond having a higher probability of selection, given
the starting distribution. Additional analyses can be added to the set of parsing
hypotheses, if motivated by general-purpose properties of speech perception. It
is consistently the word level at which all forces act in this model, and at the level
of articulatory gesture that changes are realized. In particular, this model does
not rely on the allophonic level at which the synchronic rule, and the diachronic
change, are assumed to occur. As a result, the normalization/lack of normaliza-
tion question becomes a basic element of speech processing: the analysis that
must occur when perceptual values are transformed into production values.

If classification occurs at the word level, and words have articulatory represen-
tations something like gestural scores, then it is not necessary to first identify
a series of abstract phonemes in order to identify individual words. Thus, the
problem of “compensating” for (the feature of) nasalization at the level of the

7Because the duration of overlap cannot exceed the length of the shortest gesture, the longest
absolute overlap durations can only occur with the longest word tokens, thus there is also some
selection pressure towards longer 𝑥𝑁 inherent in the 𝑥𝑂 measure. Reducing the length of 𝑥𝑁
will therefore eliminate some of the largest 𝑥𝑂 tokens.
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phoneme disappears. The ambiguity remains regarding the proper articulatory
realization of a given acoustic input, but there is no longer a unique, correct sub-
lexical analysis. The possible analyses available to the listener, based on their
phonetic experience, should always include, at minimum, both the “normalized”
option, as well as the “unnormalized” one.

In the specific simulations reported in the previous section, the average per-
centage of the velum lowering gesture that occurred simultaneously with the
tongue body gesture varied from 30%, for the lowest-frequency word, to about
50% for the highest-frequency word. It was also the case that absolute gesture du-
rations were considerably shorter at higher frequencies. These results describe a
diachronic change under the scenario in which a single word comes to be used
more, or less, frequently over time. Under the scenario in which frequencies are
fixed, but there exists a set of words with a range of different frequencies, these
results describe a synchronic distribution. The model thus generates at least two
testable predictions: 1) that a difference in the degree of vowel nasalization should
be observed across words of different frequencies (provided the relevant phono-
logical context is sufficiently similar among those words), and 2) that the highest-
frequency words should approximate the degree of vowel nasalization observed
in languages that are described as having phonemically nasal vowels. In other
words, no exaggeration, or enhancement, of the effect is required in this model.
Lexicon-wide change is assumed to start with change at the individual word
level.

It is widely acknowledged that change (of certain kinds, at least) happens on a
word by word basis (e.g. Phillips 1984; Bybee 2002; Pierrehumbert 2002), and that
some words can be “further along” in the change than others. With regards to
nasalized vowels in particular, Malécot (1960) offers evidence that the distinction
between English words like cap and camp is primarily that between a nasal and
oral vowel ([kæp] vs. [kæ̃p]), rather than the presence versus absence of a nasal
consonant ([kæp] vs. [kæ̃mp]). The English segmental inventory is not usually
analyzed as containing an abstract nasal vowel (although see Solé 1992 for an ar-
gument that nasal vowels are phonologically specified). Nevertheless, individual
tokens, or individual words, or even classes of words, may have phonetic realiza-
tions that are indistinguishable from those generated from an underlying nasal
vowel.
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7.1 Of words, phonemes and allophones

The aim of Chapter 6 was to develop an explanatory model of a specific type of
sound change: phoneme split, or phoneme genesis. Yet, in the course of devel-
oping that model, the change being modeled itself underwent a certain kind of
transformation. When phoneme split was first introduced in Section 1.2 it was
described as allophone becoming phoneme. The implication, particularly in the
case of vowel nasalization, was that a completely new phoneme category had
to be created, something that had not been previously modeled. The classical
representations for the synchronic and diachronic rules are given below.

(7.1) /𝑉/ → [�̃� ]/__𝑁

(7.2) (a) /𝑉𝑁/ > /�̃� /
(b) [�̃� ] > /�̃� /

In scenario (7.2 a), the loss of the nasal context (N) is the precipitating event,
critical to the emergence of the phoneme. In scenario (7.2 b) the loss of the nasal
context is irrelevant; the phoneme arises through some other mechanism.

Immediately, the actuation problem arises – the problem of determining why
phoneme split sometimes happens and sometimes does not (Weinreich et al.
1968). If the conditioning context can be lost without phoneme genesis, then it
cannot be the loss alone that creates the phoneme (7.2 a). But if the loss of con-
text is irrelevant and coincidental, then contextually predictable phonemes are
possible and we have no way to determine, or predict, the status of such sounds
(7.2 b).

The solution to this impasse suggested by the Multiple-Parse Model is that
phonemes are nothing other than hypotheses made by individual listener/speak-
ers about how to break up word-level units, hypotheses that may change from
moment to moment and from token to token. Once such a hypothesis is made
it acquires its own representational reality – at least for that listener/speaker.
Because allophonic relationships only exist as corollaries of a given phonemic
analysis, they are automatically generated under one hypothesis, and automati-
cally missing under the other.
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However, even under the “allophonic” analysis, allophones never actually sur-
face in this model. The process that generates what linguists would label as an
allophone does not occur at the same representational level as the phoneme; it
occurs in the region shared between two adjacent phonemes.1 It is predictable in
the sense that nasality is predictable when the velum is lowered. But it is mean-
ingless to talk about bigram predictability – the predictability of vowel nasality
from the subsequent nasal – because the listener does not hear a sequence of
phones. Under one parsing of the input, nasality will be attributed to gestural
overlap between adjacent phonemes, under another it will be attributed to gestu-
ral overlap within a single phoneme. In either case it will be entirely predictable.

The sound change in question, therefore, does not actually involve the gen-
eration of a new phoneme category. If I assume that all possible hypotheses are
entertained for all ambiguous inputs, then all phonemes exist at all times, and it is
only their probabilities that might change over time.2 This reframing avoids the
representational paradoxes discussed earlier. Actuation now pertains to factors
that affect the probability distribution over the hypothesis space. Such factors
are likely to be numerous, and undoubtedly include aspects of language process-
ing not explored here. In the same vein, the vowel nasalization model is not to
be taken as applicable to all types of sound change, nor even as a model of all
aspects of vowel nasalization change. In the next two sections some other factors
are briefly discussed, along with possible extensions of the current work.

7.2 Additional implications & future work

The Multiple-Parse Model is a model of the internal dynamics of a single word
category in isolation. In this model the assumption is that sub-lexical categories
are derived from words, rather than the other way around (see, e.g. Beckman &
Edwards 2000). Once such categories arise, however, they are expected to exert
influence in the other direction (English orthography is likely to produce a simi-
lar effect). Even without the influence of explicit phoneme categories, we expect
word-level representations to be linked in some way that reflects their similar-

1Incidentally, this reveals another hidden assumption of the generative notation: the fact that
coarticulation appears to only affect one of the segments involved. Nasalization occurs on
the vowel, but vocalization should also occur on the nasal. This bias is most likely based in
perception, but articulation-wise, the allophonic relationship may be relatively symmetric.

2This does not preclude the merger of phonetic values in the pronunciation of two sounds
that were previously distinct (e.g. the so-called pin/pen merger in certain dialects of American
English).
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ity to each other. Therefore, the evolution of a given word cannot truly occur in
isolation.

Sound change is typically taken to refer to change at the phoneme level. In
the Multiple-Parse Model change is taken to occur at a less abstract level: sub-
lexical, but specific to an individual word. I assume that a generalization stage
is necessary, likely requiring multiple, semi-independent changes at the word
level.3 The dynamics of such a model are not trivial, and require, among other
constraints, that the phoneme-to-word feedback bias be strong enough to allow
generalization to occur across all words containing that phoneme, but not so
strong as to prevent changes at the level of the individual word.

One interesting consequence of adopting the position that word categories
precede phoneme categories, is that phonetic regularities must begin as states
(stored articulatory variables), rather than processes (the result of combining
two or more linguistic units), in the infant learner. Processes are potentially in-
ferred gradually, over sufficient amounts of variable data (e.g. Bates & Goodman
1997), but individual state representations might persist, as process ones do in
the simulations of the previous section.

The opposite course of development might be expected to occur in the do-
main of morphology, where explicit concatenation requires a process model, but
state analyses become available over time. In fact, the “competition” between
the Analysis-1 parse and the Analysis-2 parse bears a high degree of similarity
to dual-route theories of morphology (e.g. Caramazza et al. 1988; Frauenfelder
& Schreuder 1992). Classically, transparent morphological alternations are as-
sumed to be rule-based, analogously to allophonic alternations. However, it is
evident from the historical record that morphological affixations that were once
productive can fall out of use, resulting in a few artifactual forms that are un-
likely to be decomposed into their constituents by modern speakers. Addition-
ally, some highly frequent forms, although transparently decomposable, may be-
have as though they have unique lexical entries (e.g. Baayen et al. 1997.4) This
parallelism does not seem to be coincidental, and is especially relevant to allo-
phonic alternations that occur precisely at morpheme boundaries.

Morphophonological alternations are, in fact, often taken to comprise the best
evidence of an active phonological rule. This is because the morphological pro-
cess involved is assumed to be productive. That is, it is assumed to be a process.
Yet, the change that led to the phonological alternation may only have come

3Not to mention the spread of change to all members of a speech community, which I assume
is another necessary stage of change, but well beyond the scope of the present work.

4See Levelt et al. 1999 for a review of frequency-based storage, and Burani & Caramazza 1987;
Baayen 1993 for further discussion of factors affecting morphological storage.
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7 Discussion & conclusions

about due to representations becoming more state-like, as is implied by the be-
havior of the Multiple-Parse Model. If this is on the right track, then truly phono-
logical, truly productive alternations may only arise when state and process
representations are balanced in such a way as to preserve this tension. Deter-
mining the necessary conditions for this to happen presents an interesting area
for future research.

7.3 Types of sound change

In the modeling of sound change, the term “phonetic bias” seems to have been
used as a cover term to refer to phonetically-based sound change of more or
less any kind. Thus it has been (or can be) applied to word reduction, vowel
lengthening, vowel nasalization, and nasal place assimilation (or loss), among
others. However, there is no a priori reason to expect all phonetically-based
sound change to operate in the same way. And part of an ultimate theory of
sound change will include a taxonomy both of the source of a given change, as
well as its actuation mechanism.

The Multiple-Parse Model of vowel nasalization presented in Chapter 6 is
based on the hypothesis that coarticulatory nasalization is not best analyzed as
a phonetic bias; that is, as a constant pressure acting in a fixed direction. In-
stead, the source of nasalization is taken to be an inherent property of motor
planning involving the temporal overlap between adjacent articulatory gestures.
Synchronically, overlap degree is assumed to vary as a function of speaking rate,
among potentially many factors, all of them contributing to a stable distribution
with a certain degree of variance. In the implemented model, a change in the rest-
ing activation of a word-level category acts to shift both the absolute durations of
the articulatory parameters, as well as the proportion of overlap. Words become
shorter, with a higher degree of overlap, as resting activation increases. This fol-
lows from the assumption that activation level directly affects not only the speed
with which words are accessed and initiated, but also the speed at which articu-
lation unfolds. The utility of this model is only as good as this assumption, and
will need to be revised if our understanding of the frequency effect changes.5

However, actuation is achievable by any mechanism that can shift the overlap
distribution as a whole.

5The correlation between speaking rate and degree of coarticulation, as well as the correlation
between word-frequency and degree of coarticulation, appear to be quite robust. It is less clear,
however, what the exact mechanism is that mediates between activation level and degree of
coarticulation. Without this link, we run the risk of modeling an epiphenomenon, rather than
the phenomenon itself.
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7.3 Types of sound change

The Multiple-Parse Model, of course, is meant to be not just a model of vowel
nasalization, but of all linguistic phenomena that are functionally equivalent to
vowel nasalization. Establishing this class is not trivial, and I will only hypothe-
size here that phenomena involving articulatory overlap, articulatory blending,
and articulatory masking will generally be possible to model in this way. True
phonetic biases can also be incorporated into the general model. Consonants oc-
curring before other consonants (rather than vowels) can be considered to be in a
perceptually disadvantaged position. This is especially true for stops, since most
of the cues to their identity actually occur in the transitions to a following vowel
(e.g. Liberman et al. 1954), but likely holds to some extent for most consonants.
Articulatorily, the velum gesture attributed to the nasal in a word like camp will
be overlapped to some extent not only with the preceding vowel, but also with
the following consonant. The overlap with the preceding vowel is highly audible,
while the overlap with the following stop is much less so, due to the complete
closure in the oral cavity. The stop context, relative to a vowel context (such as
in the word camo), can be thought of as biasing for nasal deletion (or a nasal
vowel). This can be implemented as a factor that raises the probability of the
single-segment parse.6

Velar palatalization was briefly discussed in Section 5.3 as an example of ges-
ture blending. Faster productions will result in more overlap between consonant
and vowel, which should merge the two gestures more completely, as well as
render the combined production shorter. Both phonetic properties should lead to
an increase in the probability of the single-segment analysis. The many different
ways in which palatalization can be realized in different languages (e.g. k>t͡ʃ, k>kʲ,
kj>kʲ, etc.) suggests a number of possible influencing factors, as well as an inher-
ently larger space of possible parses. One such parse results in a two-segment
analysis, with an intermediate tongue position for the consonantal gesture (see
Figure 5.2b); another results in a single-segment analysis with a complex two-
target gesture (see Figure 5.3). Perceptual asymmetries have been found with
respect to the rate of misidentification of [ki] sequences in noise and fast speech
(as [ti] and [t͡ʃi], most commonly) suggesting that phonetic bias plays a role in
this change (Guion 1998; Chang et al. 2001).

6In fact, the word-final context modeled in Chapter 6 does not constitute a homogeneous pho-
netic environment. Unless the target word is in absolute phrase-final position it will be fol-
lowed by another word, beginning with either a consonant or a vowel. Because the two differ-
ent possibilities consist of different perceptual environments, segment loss might only occur
in the former, resulting in a type of liaison (e.g. Tranel 1981). There is also some evidence to
suggest that changes restricted to specific words can be attributed to their historically higher
occurrence rates in the perceptually disadvantaged environment (e.g. Brown&Raymond 2012).
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7 Discussion & conclusions

In contrast, the phenomenon of vowel lengthening (Section 3.2) does not ap-
pear to be the direct result of overlap, blending, or masking. There is, however,
no consensus in the literature regarding the phonetic source of this effect. In fact,
there is not even agreement about whether the process is one of lengthening be-
fore voiced obstruents, or shortening before voiceless ones (Gimson 1970; Wells
1982). Of the hypotheses proposed, most have an articulatory basis (e.g. Belasco
1958; Delattre 1962; Chen 1970; Lisker 1974; Klatt 1976; Moreton 2004; Schwartz
2010), but auditory/perceptual accounts have been offered as well (e.g. Lisker
1957; Javkin 1977; Kluender et al. 1988). None of these have been firmly estab-
lished empirically, and strong arguments have been made against many of them.
Without some idea of what the mechanism for the actual increase (or decrease)
in length is, it is not possible to produce an insightful model. Work in progress
suggests, in fact, that the apparent lengthening effect may be epiphenomenal:
the result of partial temporal compensation, resulting from an upper limit on the
duration of voiced obstruents (Morley & Smith in prep.). If this is correct then
it suggests another type of misparsing that can occur when multiple sources af-
fect the same phonetic dimension in roughly the same way. In the case of vowel
length, contributing sources include phrase-final lengthening, lengthening due
to slowed speaking rate, and greater length due to an inherently longer vowel,
creating ambiguity as to how the observed duration should be attributed.7

Other kinds of change, such as transphonologization, or chain shifting, suggest
yet other potential sources, but it is beyond the scope of this book to speculate
about their exact nature. However, given a hypothesis regarding the source of the
phenomenon and the representational level at which it acts, it is possible to create
an implemented model. Such a model may, or may not, bear much resemblance
to those proposed in this work, yet the basic questions about the relationship
between theory and model, and between model and implementation will remain
the same.

7.4 Summary & conclusions

Computational models allow us to run experiments with language that are not
possible in the real world, such as those at the timescale of diachronic change.
They present a powerful and useful tool for making explicit tests of our current

7This theory requires that some type of normalization be carried out – even if it is just a com-
parison between neighboring segments. If pure duration is the dimension of contrast, then it
is hard to see how segments could be classified as “long” or “short” unless speaking rate, at
minimum, is taken into account.
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theories. Computational models can be used to establish existence proofs, demon-
strating that it is possible to solve a problem in a particular way. On the flip side,
modeling requires extensive simplification of the complex factors at play in lan-
guage use and comprehension and there is never any guarantee that the simplifi-
cations have not altered the problem to the point that the results no longer shed
light on the phenomenon of interest. Implemented models are often tailored to
specific problems, and may prove to be inconsistent with other known aspects
of language. In order to get a model to run, there are various implementational
choices that must be made, choices that may, in fact, contain hidden theoretical
assumptions. Thus, the interpretation of modeling results, just like the interpre-
tation of the more traditional type of experimental results, must include serious
consideration of potential confounds.

The purpose of the present work has been to bring the theoretical issues to the
fore via explicit links between different implementational approaches and the
types of representational structures they embody. In this way a number of repre-
sentational inconsistencies, or paradoxes, were uncovered. Themore transparent
of these were the cases in which tokens were assigned two different underlying
representations, or where an explicitly separate (i.e. stored) category was also
subject to a process, giving the phenomenon a hybrid state-process status. In
fact, there may be a paradox lurking in applying a process (e.g. knowing that
tokens should be lengthened in a particular context) but failing to account for
the effects of that process (lengthening) when adding the produced token back
to the perceptual exemplar cloud.

Two apparent successes of the basic iterative exemplar model – accounting for
frequency-based lenition, and phonetic similarity effects – were called into ques-
tion. Section 2.4.1 demonstrated that, depending on the specifics of how word
frequency is represented, successive reduction of tokens does not necessarily
produce the observed negative correlation between frequency and word length.
Retention of fine-grained phonetic detail (without retention of production con-
text) was shown to actually disrupt predictable phonetic allophony. Depending
on other representational decisions, the result was either a single variant that
occurred in all contexts, multiple variants that occurred unpredictably, or a con-
tinuously moving target (Section 2.4.2).

Developing exemplar models that make the right kinds of predictions requires
some force for constraining the powerful iterativity mechanism of the percep-
tion-production feedback loop. This is often accomplished in practice by filter-
ing out tokens that fall between two existing, contrastive categories. But in the
absence of contrast, something else is required to keep the categories bounded.
There seems to be a commonmisconception that exemplar models do not require
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underlying representations, or targets. But models may in fact implement what
amounts functionally to a soft target, or attractor, even if it is not identified as
such (Section 4.3). Such a target may, in fact, be necessary to produce bounded
behavior.

Furthermore, the standard assumption of an identitymapping between percep-
tion and production obscures the complexity of the speech processing problem.
In fact, differences between what speakers intend to produce, and what listen-
ers perceive, are likely to play a large role in diachronic change that arises from
synchronic variation, the very thing these models are trying to explain. Nor is it
the case that iterative application of an articulation-based bias (such as anticipa-
tory feature spread) can be assumed to lead to cumulativity on the acoustic side
(Chapter 5). To produce the type of gradual increase that is desired, a change in
the relative timing of articulators may be required. The explanation as to why
such a change would occur is the answer to the actuation question itself.

A proposal was offered in Chapter 6 for one way to account for phoneme
genesis arising from allophonic split. The model was designed in a way that pri-
oritized representational consistency, capturing both change and stability, and
implementing a plausible mechanism for change at both local and global scales.
The “correct” sub-lexical representations were not assumed, and therefore, nei-
ther was the allophonic rule (or production bias). Instead, the equivalent of an
articulatory representation was decided independently for each token. Feedback
occurred in the dependence of the parsing probabilities on the values of the ar-
ticulatory parameters. In the reported simulations there was only one choice
to be made by the speaker/listener, whether to store or generate the degree
of overlap between the two articulatory gestures. Stability was achieved by a
general-purpose force (speaking rate), acting bi-directionally, to both lengthen
and shorten tokens. Different stable states resulted from different resting activa-
tion levels, which affected the rapiditywithwhich thewordswere produced. This
result hinged on two properties of the model: the dependence of the speaking
rate effect on word duration (longer tokens were lengthened more than shorter
tokens for the same decrease in rate), and the implementation of resting acti-
vation as a shift in the mean of the speaking rate distribution. Numerous other
implementational choices are possible, but only a small fraction of them lead
to a theoretically coherent, cognitively plausible, empirically adequate outcome.
Thus, the existence proof embodied in the Multiple-Parse Model has merit in and
of itself. The results also raise the possibility that certain consistently intractable
problems in the study of change and actuation may be artifacts of the overt and
covert assumptions of the traditional notational system.
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7.4 Summary & conclusions

On the one hand, the work in this book represents relatively minor variations
on existing proposals and models: the basic exemplar architecture in which sub-
phonemic detail is retained; the role of word frequency in sound change; ambigu-
ity in surface forms as the driver of variation; etc. Its primary innovation may be
in bringing together and explicitly implementing those elements. Yet, the result is
a radical re-conceptualization of basic phonological tenets. I have suggested that
1) phoneme split is neither phoneme creation, nor allophone loss, 2) neither allo-
phonic rules nor phonemic inventories actually exist as traditionally described,
and 3) phonological rules as we typically understand them may only arise under
restricted conditions, requiring morphological antecedents and a more explicit
stage of learner generalization. This conceptual shift was largely a consequence
of forcing diachronic and synchronic representations to match, revealing that
questions about how sound categories change are really questions about what
sound categories are – how they are mentally represented –, and that neither
question can be adequately answered without the other.
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Appendix A: Model parameters:
Chapters 1–4

For each of the basic exemplar models for which simulations were run, the fol-
lowing parameter values were used:

Table A.1: Simulation parameter values

𝜀 𝜎error 𝛼 p 𝛽 𝜎 N

Baseline Model (Chapter 2) 0.3 𝜎 0.1 – – 2 –
Model 1: Context-Free (Section 2.4.1) 0.3 𝜎 0.5𝜎 – – 2 –
Model 2: Context-Dep. (Gradient) (Section 2.4.2.1) 0.3 𝜎 0.1 0.25 – 2 –
Model 3: Context-Dep. (Discrete) (Section 2.4.2.2) 0.3 𝜎 – 0.5 – 2 –
Soft-Target Model (Section 4.3) 0.3 𝜎 0.1 0.25 0.6 2 50





Appendix B: The frequency effect

This material is supplemental to Chapters 2.4.1 and 3.1 of the main text.
The iterative model implies that the frequency effect must arise in the lifetime

of the speaker, and only after they have had sufficient exposure to a given (high
frequency) category. This may happen very quickly. However, the less time it
takes, the more opportunities there will be for lower-frequency categories to
“catch up”. Therefore, in order to give the best chance to the basic model, I will
assume the largest possible time period in which the effect could arise: the age
of the experimental population for which frequency effects are found. As the
pool of participants for psychology and linguistics experiments is most often
university undergraduates, I will take 20 years to be the maximum amount of
time necessary to produce a reduction in duration comparable to what has been
reported in the literature.

I don’t know how many model iterations correspond to 20 years. But I will
define the number of productions during this time, for a word of frequency f,
as 𝑛𝑓 , and the proportion by which it is reduced, as 𝛿𝑛𝑓 , from an initial average

duration of 𝑑0. This period of time will be called an epoch (e).

(B.1) 𝑑𝑛𝑓 = 𝑑0 − 𝛿𝑛𝑓 𝑑0
To simplify the problem, I will consider a scenario in which there is only a sin-
gle token belonging to each category, located at the category mean, which is
replaced, each time production occurs, by a token reduced by a fixed proportion
of the current duration. With this simplification all categories will reduce faster,
since it is always the most reduced token that is chosen in production. However,
since all measures are comparisons between categories of different frequencies
(rather than absolute values), this should not affect the result. Low and high
frequency categories are also of exactly the same size token-wise in this sim-
plified scenario, and only update-rate differentiates them. Equalizing low- and
high -frequency categories in this way does affect the outcome, as we saw in Sec-
tion 2.4.1, but it advantages the basic model by ensuring that higher-frequency
words are always shorter than lower-frequency ones.



B The frequency effect

In the simplified scenario, each generation is exponentially more reduced than
the last. From Eq (2.3): 𝑥𝑜(+𝑛) = 𝑥𝑜 (1 − 𝛼)𝑛, I can derive Eq. (B.4), which expresses
the duration, after 1 epoch, for a word category of frequency f, and an initial
average duration of 𝑑0. Rewriting Eq. (2.3) in terms of these variables:

(B.2) 𝑑𝑛𝑓 = 𝑑0(1 − 𝛼)𝑛𝑓

Substituting in from Eq. (B.1):

(B.3) 𝑑0 − 𝛿𝑛𝑓 𝑑0 = 𝑑0(1 − 𝛼)𝑛𝑓

And,

(B.4) 𝛿𝑛𝑓 = 1 − (1 − 𝛼)𝑛𝑓

We don’t know what the amount of reduction over 1 epoch is. But we do have
an idea of the size of the frequency effect: word duration as a function of fre-
quency (log frequency is typically what is plotted in order to make the frequency
distribution closer to Normal, see e.g. Gahl et al. 2012). If I assume a linear rela-
tion between word duration and log frequency, then for each unit change in log
frequency, the difference in word duration should be equal to a constant value
(b). Thus, the predicted difference in duration between a low frequency and high
frequency word is related to the difference in frequencies by the following for-
mula:

(B.5)
Δ𝑑𝑒

log(𝑓𝐿) − log(𝑓𝐻 )
= 𝑏

If speakers/listeners begin at birth with equal experience of all words – meaning,
none – then the differences in duration that accrue over the course of an epoch
will be due entirely to the amount of reduction that occurs over that epoch. By the
time that one epoch has passed, the higher frequency word of any pair will have
reduced more than its counterpart. Assuming that the two words in question are
otherwise identical, for our purposes, that they have the same original duration,
then the difference in absolute duration at that time will be given by:

(B.6) Δ𝑑𝑒 = 𝛿𝑛𝐿 − 𝛿𝑛𝐻
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Combining (B.5) and (B.6),

(B.7) 𝛿𝑛𝐿 − 𝛿𝑛𝐻 = 𝑏 [log ( 𝑓𝐿𝑓𝐻
)]

Substituting in Eq. (B.4):

(B.8) 1 − (1 − 𝛼)𝑛𝐿 − [1 − (1 − 𝛼)𝑛𝐻 ] = 𝑏 [log ( 𝑓𝐿𝑓𝐻
)]

Simplifying:

(B.9) (1 − 𝛼)𝑛𝐻 − (1 − 𝛼)𝑛𝐿 = 𝑏 [log ( 𝑓𝐿𝑓𝐻
)]

The higher the frequency of a given word, the more times it should be pro-
duced within a given time period. And if reduction is proportional to the log
frequency, with every production resulting in a given amount of reduction, then
the number of productions should also be proportional to log frequency.

(B.10) 𝑛𝑓 = rlog(𝑓 )

Substituting (B.10) into (B.9):

(B.11) (1 − 𝛼)rlog(𝑓𝐻 ) − (1 − 𝛼)rlog(𝑓𝐿) = 𝑏 [log ( 𝑓𝐿𝑓𝐻
)]

Assuming that it is possible to find values for 𝛼 and r that satisfy Eq. (B.11) for
all frequencies, the additional reduction that will occur over the lifetime of the
speaker can then be determined.

If 1 epoch corresponds to about 20 years, then there will be about 4 over the
lifetime of an individual. If I assume a constant rate of production for each cat-
egory proportional to its frequency, then lifetime (E) average reduction is given
by 𝛿𝐸𝑓 = 1 − (1 − 𝛼)4𝑛𝑓 , which can be rewritten as:

(B.12) 𝛿𝐸𝑓 = 1 − (1 − 𝛼)4 rlog(𝑓 )

With the necessary constants, I can now determine the difference in reduction
between the same two word categories after 4 epochs. If I assume that there
exists a floor beyond which words cannot reduce further, then I will need to
determine if any words are predicted to reach floor in the lifetime of the speaker,

89



B The frequency effect

and what effect that will have on the behavior of the frequency dependence –
either entirely neutralizing the duration difference between certain words, or
decreasing that difference to some extent.

The exact predictions of the linearly biased frequency model will depend on
a host of implementational details. As already discussed in the text, the choice
of whether lower-frequency categories should have proportionally fewer tokens
than higher-frequency categories will affect the outcome. Other parameters that
have the potential to alter the outcome include whether or not each individual
experience is automatically added to memory – or only a certain minimum num-
ber, or some average of recent experience – and how quickly older memories
decay, being replaced by new experiences. It may be possible, if unlikely, that
at least one set of parameter values exists that will prevent any words reaching
floor within the lifetime of the speaker. However, under any parameter settings,
all words are predicted to continue reducing over the lifetime of the speaker. This
prediction is empirically testable.
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Appendix C: Derivation of State Model

This material is supplemental to Section 4.5.1 of the main text.
For the Pure State Model (G), with 2-targets, each sub-category is subject to

two forces: entrenchment, and inertia. Under the simplifying assumption that
each sub-category can be treated as a Normal distribution with constant vari-
ance, the equilibrium locations of the sub-category means can be derived in the
following way. At equilibrium the entrenchment force is balanced by the iner-
tial force due to each sub-category’s attractor. The location of the sub-category
mean is the location at which the displacement that would occur due to the en-
trenchment force is exactly counteracted by the displacement that would occur
due to the inertia force. For the non-biased sub-category this equilibrium occurs
under the following conditions:

(C.1) 𝛽 (𝑥𝑁𝐵𝐸 − 𝑁) = 𝜀 (𝑥𝐸 − 𝑥𝑁𝐵𝐸 )

For the biased sub-category, equilibrium occurs when:

(C.2) 𝛼 (𝑥𝐵𝐸 − 𝐿) = 𝜀 (𝑥𝐸 − 𝑥𝐵𝐸 )

Because the entrenchment force depends on the global mean, so too do the two
equilibrium equations. In turn, the global mean can be expressed as a function of
the sub-category means (where the proportion of biased tokens is given by p):

(C.3) 𝑥𝐸 = (1 − 𝑝)𝑥𝑁𝐵𝐸 + 𝑝𝑥𝐵𝐸
With three equations, we can solve for the three distribution means. Solving for

𝑥𝑁𝐵𝐸 in Eq. (C.1):

(C.4) 𝑥𝑁𝐵𝐸 = 𝛽𝑁 + 𝜀𝑥𝐸
𝛽 + 𝜀



C Derivation of State Model

Solving for 𝑥𝐵𝐸 in Eq. (C.2):

(C.5) 𝑥𝐵𝐸 = 𝛼𝐿 + 𝜀𝑥𝐸
𝛼 + 𝜀

Substituting these two values into Eq. (C.3):

(C.6) 𝑥𝐸 = (1 − 𝑝)𝛽𝑁 + 𝜀𝑥𝐸
𝛽 + 𝜀 + 𝑝𝛼𝐿 + 𝜀𝑥𝐸

𝛼 + 𝜀
Solving for 𝑥𝐸 as a function of p, and collecting terms:

(C.7) 𝑥𝐸 = (1 − 𝑝)𝛽𝑁
𝛽 + 𝜀 + (1 − 𝑝)𝜀𝑥𝐸

𝛽 + 𝜀 + 𝑝𝛼𝐿
𝛼 + 𝜀 +

𝑝𝜀𝑥𝐸
𝛼 + 𝜀

(C.8) 𝑥𝐸 − (1 − 𝑝)𝜀𝑥𝐸
𝛽 + 𝜀 − 𝑝𝜀𝑥𝐸

𝛼 + 𝜀 = (1 − 𝑝)𝛽𝑁
𝛽 + 𝜀 + 𝑝𝛼𝐿

𝛼 + 𝜀

(C.9)
𝑥𝐸(𝛽 + 𝜀)(𝛼 + 𝜀) − (𝛼 + 𝜀)(1 − 𝑝)𝜀𝑥𝐸 − (𝛽 + 𝜀)𝑝𝜀𝑥𝐸

(𝛽 + 𝜀)(𝛼 + 𝜀)
=(1 − 𝑝)𝛽𝑁

𝛽 + 𝜀 + 𝑝𝛼𝐿
𝛼 + 𝜀

(C.10)
𝑥𝐸(𝛽 + 𝜀)(𝛼 + 𝜀) − (𝛼 + 𝜀)(1 − 𝑝)𝜀𝑥𝐸 − (𝛽 + 𝜀)𝑝𝜀𝑥𝐸

(𝛽 + 𝜀)(𝛼 + 𝜀)
=(1 − 𝑝)𝛽𝑁 (𝛼 + 𝜀) + 𝑝𝛼𝐿(𝛽 + 𝜀)

(𝛼 + 𝜀)(𝛽 + 𝜀)

(C.11) 𝑥𝐸 [(𝛽 + 𝜀)(𝛼 + 𝜀) − (𝛼 + 𝜀)(1 − 𝑝)𝜀 − (𝛽 + 𝜀)𝑝𝜀]
=(1 − 𝑝)𝛽𝑁 (𝛼 + 𝜀) + 𝑝𝛼𝐿(𝛽 + 𝜀)

(C.12) 𝑥𝐸 = (1 − 𝑝)𝛽𝑁 (𝛼 + 𝜀) + 𝑝𝛼𝐿(𝛽 + 𝜀)
(𝛽 + 𝜀)(𝛼 + 𝜀) − (𝛼 + 𝜀)(1 − 𝑝)𝜀 − (𝛽 + 𝜀)𝑝𝜀
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Eq. (C.12) is a complex function of 𝛼, 𝛽, 𝜀, 𝑁 , 𝐿, and p, the derivative of which
is not trivially calculated. For known values of 𝛼, 𝛽, 𝜀, 𝑁 , and L , 𝑥𝐸(𝑝) can be
determined exactly. The general behavior of this function, however, can be un-
derstood via the following chain of reasoning.

For a given 𝑝 = 𝑝𝑖 (for 𝑝𝑖 < 1), the equilibrium location of the global mean can
be found using Eq. (C.12). Now imagine that p increases from 𝑝𝑖 to 𝑝𝑗 . This will
result in the global mean moving closer to the biased sub-category (Eq. (C.3)).
A change in the global mean will cause a change in the entrenchment force for
both sub-categories. It will increase for the non-biased sub-category, which is
now farther from the global mean; and it will decrease in exactly the same degree
for the biased sub-category, which is now closer to the global mean.

Because inertia does not depend on p, the lefthand sides of Eqs. (C.1) and (C.2)
will remain constant. Thus, the non-biased sub-categorywill shift in the direction
of the mean – rightward – as a result of the increase in p. The decrease in the
entrenchment force on the biased sub-category, conversely, will cause a shift
away from the mean, and towards the attractor at L. This is also a rightward
shift, however. The net effect will be to perturb the sub-categories from their
former equilibrium locations to points farther to the right, and closer to L. As
p increases, 𝑥𝐸 will always increase (as long as both sub-categories are located
between N and L).

The distance between the means of the two sub-categories can also be written
as a function of p. Once equilibrium has been reached, the separation can be
derived from Eqs. (C.1) and (C.2):

(C.13) Δ𝑥𝐸 ≡ 𝑥𝐵𝐸 − 𝑥𝑁𝐵𝐸 = 𝛼𝐿 + 𝜀𝑥𝐸
𝛼 + 𝜀 − 𝛽𝑁 + 𝜀𝑥𝐸

𝛽 + 𝜀
Collecting terms and simplifying:

(C.14) = 𝛼𝐿
𝛼 + 𝜀 −

𝛽𝑁
𝛽 + 𝜀 +

𝜀𝑥𝐸
𝛼 + 𝜀 −

𝜀𝑥𝐸
𝛽 + 𝜀

(C.15) = 𝛼𝐿
𝛼 + 𝜀 −

𝛽𝑁
𝛽 + 𝜀 + 𝜀𝑥𝐸 [

1
𝛼 + 𝜀 −

1
𝛽 + 𝜀 ]
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C Derivation of State Model

The change in sub-category separation as a function of changing p is thus given
by:

(C.16)
𝜕Δ𝑥𝐸
𝜕𝑝 = 𝜕𝑥𝐸

𝜕𝑝 𝜀 [ 1
𝛼 + 𝜀 −

1
𝛽 + 𝜀 ]

In order to determine
𝜕Δ𝑥𝐸
𝜕𝑝 , we must be able to calculate

𝜕𝑥𝐸
𝜕𝑝 . For the special case

in which all forces have the same strength (𝛼 = 𝛽 = 𝜀), it is straightforward to
calculate the derivative of Eq. (C.12):

(C.17) 𝑥𝐸 = 2𝛼2𝑁 + 𝑝(2𝛼2𝐿 − 2𝛼2𝑁)
4𝛼2 − 2𝛼2

Collecting terms and simplifying:

(C.18) 𝑥𝐸 = 2𝛼2[𝑁 + 𝑝𝐿 − 𝑝𝑁]
2𝛼2[2 − 1]

(C.19) 𝑥𝐸 = 𝑁 + 𝑝(𝐿 − 𝑁)

This gives the expected behavior; for 𝑝 = 0, there is only the non-biased distri-
bution, which is stable at N, and for 𝑝 = 1, there is only the biased distribution,
which is stable at L. For equal numbers of biased and non-biased variants, each
sub-category stabilizes at the same distance from its attractor, and the global
mean is halfway between the two. The change in the global category mean as a
function of p is a positive, fixed value: 𝐿 − 𝑁 , the derivative of (C.19). Plugging
this value for 𝜕𝑥𝐸/𝜕𝑝 into Eq. (C.16) gives:

(C.20)
𝜕Δ𝑥𝐸
𝜕𝑝 = (𝐿 − 𝑁)𝛼 [ 1

2𝛼 − 1
2𝛼 ] = 0

Thus, while the overall category mean gets larger as p increases, the separation
between the categories remains constant.

In the general case, the separation between the two sub-categories will show
different behavior for different parameter values. Because 𝜕𝑥𝐸/𝜕𝑝 > 0, the sign
of 𝜕Δ𝑥𝐸/𝜕𝑝 depends on the 𝜀[1/(𝛼 + 𝜀) − 1/(𝛽 + 𝜀)] term. When 𝛼 < 𝛽 , the
separation increases with increasing p. This follows from the fact that 𝜕Δ𝑥𝐸/𝜕𝑝
is positive only when 𝜀[1/(𝛼 + 𝜀) − 1/(𝛽 + 𝜀)] > 0. For 𝜀[1/(𝛼 + 𝜀) − 1/(𝛽 + 𝜀)]
to be greater than zero it must be the case that 1/(𝛼 + 𝜀) > 1/(𝛽 + 𝜀). This, in

94



turn, requires that 𝛼 < 𝛽 . By the same reasoning, the separation decreases as a
function of increasing p when 𝛼 > 𝛽 . Finally, the separation remains constant
when 𝛼 = 𝛽 , because this entails that 𝜀[1/(𝛼 + 𝜀) − 1/(𝛽 + 𝜀)] = 0, verifying the
result in Eq. (C.20).
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Appendix D: Derivation of Process
Model

This material is supplemental to Section 4.5.2 of the main text.
For the Pure Process Model, there is a single category, and all tokens are sub-

ject to the same inertial force, in proportion to their distance from the single
attractor at N. Additionally, a proportion p of randomly selected tokens undergo
a lengthening process, moving away from the rest of the distribution during pro-
duction. The simplifying assumption, that each sub-distribution can be treated
as a Normal distribution with constant variance, is adopted. To derive the model
behavior I will look at the contribution of the different forces in stages. This
derivation references the stages depicted in Figure 4.3.

First I apply the lengthening process, at time 𝑡 , to tokens drawn from a distri-
bution with a global mean of 𝑥𝑡 . These tokens are simultaneously subjected to an
inertial force. Eq. (D.1) gives the mean of the biased sub-distribution at time t,

(D.1) 𝑥𝐵𝑡
′
= 𝑥𝑡(1 + 𝛼) + 𝛽(𝑁 − 𝑥𝑡)

and Eq. (D.2) gives the means of the non-biased sub-distribution at time t.

(D.2) 𝑥𝑁𝐵𝑡
′
= 𝑥𝑡 + 𝛽(𝑁 − 𝑥𝑡)

On average, a proportion p of the distribution will be lengthened, thus the loca-
tion of the global mean, after lengthening and inertia apply, can be expressed
as

(D.3) 𝑥𝑡 ′ = (1 − 𝑝)𝑥𝑁𝐵𝑡
′
+ 𝑝𝑥𝐵𝑡

′

Entrenchment must also be applied in order to determine the final outcome, but
entrenchment does not affect the location of the global mean, only the locations
of the sub-distribution means, and their separation. To see this, I can compare
the global mean before and after entrenchment applies. After entrenchment, the
means of each sub-distribution are given by:



D Derivation of Process Model

(D.4) 𝑥𝐵𝑡
′′
= 𝑥𝐵𝑡

′
− 𝜀 (𝑥𝑡 ′ − 𝑥𝐵𝑡

′
)

(D.5) 𝑥𝑁𝐵𝑡
′′
= 𝑥𝑁𝐵𝑡

′
− 𝜀 (𝑥𝑡 ′ − 𝑥𝑁𝐵𝑡

′
)

Substituting into Eq. (D.3), gives

(D.6) 𝑥″
𝑡 = (1 − 𝑝) [𝑥𝑁𝐵𝑡

′
− 𝜀 (𝑥𝑡 ′ − 𝑥𝑁𝐵𝑡

′
)] + 𝑝 [𝑥𝐵𝑡

′
− 𝜀 (𝑥′𝑡 − 𝑥𝐵𝑡

′
)]

Simplifying and collecting terms:

(D.7) = 𝑥𝑡 ′ − 𝜀(1 − 𝑝) (𝑥𝑡 ′ − 𝑥𝑁𝐵𝑡
′
) − 𝑝𝜀 (𝑥𝑡 ′ − 𝑥𝐵𝑡

′
)

(D.8) = 𝑥𝑡 ′ + 𝜀(1 − 𝑝)𝑥𝑁𝐵𝑡
′
− [𝜀(1 − 𝑝) + 𝑝𝜀] 𝑥𝑡 ′ + 𝑝𝜀𝑥𝐵𝑡

′

(D.9) = 𝑥𝑡 ′ − 𝜀𝑥𝑡 ′ + 𝜀 [(1 − 𝑝)𝑥𝑁𝐵𝑡
′
+ 𝑝𝑥𝐵𝑡

′
]

The term (1 − 𝑝)𝑥𝑁𝐵𝑡
′
+ 𝑝𝑥𝐵𝑡

′
is equivalent to 𝑥𝑡 ′ by Eq. (D.3). Therefore

(D.10) 𝑥𝑡 ′′ = 𝑥𝑡 ′ − 𝜀𝑥𝑡 ′ + 𝜀𝑥𝑡 ′ = 𝑥𝑡 ′

Because it does not depend on entrenchment, the global mean at equilibrium can
be determined directly from (D.1) and (D.2). Equilibrium occurs when the two
sub-distributions are also at equilibrium, and the global mean stops changing:

𝑥𝐸 = 𝑥𝐸′, 𝑥𝑁𝐵𝐸
′
= 𝑥𝑁𝐵𝐸 , and 𝑥𝐵𝐸

′
= 𝑥𝐵𝐸 . Therefore,

(D.11) 𝑥𝐸 = (1 − 𝑝)𝑥𝑁𝐵𝐸
′
+ 𝑝𝑥𝐵𝐸

′

Substituting in Eqs. (D.1) and (D.2):

(D.12) 𝑥𝐸 = [𝑥𝐸 + 𝛽(𝑁 − 𝑥𝐸)] − 𝑝[𝑥𝐸 + 𝛽(𝑁 − 𝑥𝐸)] + 𝑝[𝑥𝐸 + 𝑥𝐸𝛼 + 𝛽(𝑁 − 𝑥𝐸)]
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Simplifying and collecting terms:

(D.13) 𝑥𝐸 = 𝑥𝐸 + 𝛽(𝑁 − 𝑥𝐸) + 𝑝𝑥𝐸𝛼 − 𝑝[𝑥𝐸 + 𝛽(𝑁 − 𝑥𝐸)] + 𝑝[𝑥𝐸 − 𝛽(𝑁 − 𝑥𝐸)]

(D.14) 𝑥𝐸 = 𝑥𝐸 + 𝛽(𝑁 − 𝑥𝐸) + 𝑝𝑥𝐸𝛼

(D.15) 𝑥𝐸 = 𝑥𝐸(1 − 𝛽 + 𝑝𝛼) + 𝛽𝑁

(D.16) 𝑥𝐸(1 − 1 + 𝛽 − 𝑝𝛼) = 𝛽𝑁

(D.17) 𝑥𝐸 = 𝛽𝑁
𝛽 − 𝑝𝛼

For the case when 𝑝𝛼 < 𝛽 , the denominator in (D.17) is positive. As p increases
(but 𝑝𝛼 remains smaller than 𝛽), the denominator decreases, and the global mean
increases. As 𝑝𝛼 approaches 𝛽 , the global mean goes to infinity; lengthening is
unbounded. For 𝑝𝛼 > 𝛽 the only stable point is negative, and thus there is nowell-
defined equilibrium. The process model is thus only stable if the lengthening
strength is not too great, and the percentage of biasing contexts is not too large.

To calculate the dependence of the sub-distribution separation on p, the effect
of entrenchment must be included. The equilibrium separation is defined as:

(D.18) Δ𝑥𝐸′′ ≡ 𝑥𝐵𝐸
′′
− 𝑥𝑁𝐵𝐸

′′

And

(D.19) 𝑥𝐵𝐸
′′
= 𝑥𝐵𝐸

′
+ 𝜀 (𝑥𝐸′ − 𝑥𝐵𝐸

′
)

(D.20) 𝑥𝑁𝐵𝐸
′′
= 𝑥𝑁𝐵𝐸

′
+ 𝜀 (𝑥𝐸′ − 𝑥𝑁𝐵𝐸

′
)
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D Derivation of Process Model

Therefore,

(D.21) 𝑥𝐵𝐸
′′
− 𝑥𝑁𝐵𝐸

′′
= 𝑥𝐵𝐸

′
− 𝑥𝑁𝐵𝐸

′
+ 𝜀 (𝑥𝐸′ − 𝑥𝐵𝐸

′
) − 𝜀 (𝑥𝐸′ − 𝑥𝑁𝐵𝐸

′
)

Collecting terms:

(D.22) = 𝑥𝐵𝐸
′
− 𝑥𝑁𝐵𝐸

′
− 𝜀 (𝑥𝐵𝐸

′
− 𝑥𝑁𝐵𝐸

′
)

and

(D.23) Δ𝑥𝐸′′ = (1 − 𝜀) (𝑥𝐵𝐸
′
− 𝑥𝑁𝐵𝐸

′
)

The observed separation at equilibrium depends on the separation due to prior
model forces. From Eqs. (D.1) and (D.2),

(D.24) 𝑥𝐵𝐸
′
− 𝑥𝑁𝐵𝐸

′
= 𝑥𝐸(1 + 𝛼) + 𝛽(𝑁 − 𝑥𝐸) − [𝑥𝐸 + 𝛽(𝑁 − 𝑥𝐸)]

This reduces to 𝛼𝑥𝐸 . Note that this is exactly the amount that biased tokens are
shifted away from the mean at equilibrium. Because this is a process model, the
separation created by the lengthening bias only exists transiently, and it is not
possible for any specific subset of tokens to continue to increase their separation
from the rest of the distribution. Therefore, the prior separation between the sub-
distribution means is always given by the lengthening bias applied to that mean.
And the total separation, by

(D.25) Δ𝑥𝐸 = (1 − 𝜖)(𝛼𝑥𝐸).

In the stable parameter range, where 𝑥𝐸 increases as p increases, the separation
of the sub-distributions also increases, but more slowly, by a factor of 𝛼(1 − 𝜖).
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Appendix E: Nasalization model
parameters

The following parameters were identical for the two models:

• The entrenchment strength is set to 𝜀 = 0.2
• The production error on each articulatory dimension is drawn from the
distribution 𝒩 (0, 0.25𝜎𝑥𝑍 ), where 𝜎𝑥𝑍 indicates the standard deviation of
the current distribution of stored tokens on dimension 𝑥𝑍

• Speaking Rate:

– Expansion force (E) is a random variable distributed according to
𝒩 (0, 0.25).

– The speaking rate transformation lengthens or shortens a given du-
ration parameter, according to the following dependence on E:

(E.1) 𝑥𝑂′
𝑖 = 2𝑥𝑂𝑖

(1 + 𝑒𝑘𝑂𝐸)

(E.2) 𝑥𝑉 ′
𝑖 = 2𝑥𝑉𝑖

(1 + 𝑒−𝑘𝑉 𝐸)

(E.3) 𝑥𝑁 ′
𝑖 = 2𝑥𝑁𝑖

(1 + 𝑒−𝑘𝑁 𝐸)

For these simulations all gestures are set to the same elasticity (𝑘𝑂 = 𝑘𝑁 =
𝑘𝑉 = 1).

• Model outputs are reported after 10,000 iterations

• 𝑥𝑂𝑖 is never allowed to fall below 0, or to exceed the shorter of the two
values (𝑥𝑁𝑖 , 𝑥𝑉𝑖 )



E Nasalization model parameters

• The duration of 𝑥𝑉𝑖 is never allowed to fall below 50 ms, or to exceed 600
ms

• The duration of 𝑥𝑁𝑖 is never allowed to fall below 25 ms, or to exceed 500
ms

E.1 No-Phoneme Model

The fluency attractor affects overlap duration according to the following formula:

(E.4) 𝑥𝑂′
𝑖 = 𝑥𝑂𝑖 + 𝛽(𝑇 − 𝑥𝑂𝑖 )

The target overlap duration for these simulations is set at 𝑇 = 𝑥𝑁𝑖 . 𝛽 parameter-
izes frequency on a scale between 0 and 1.

E.2 Multiple-Parse Model

• Resting activation acts as a perturbation to the expansion force, E. The
mean of the expansion function is shifted 1/4 of a standard deviation for
each unit of f, where f parameterizes frequency:

𝐸′ = 𝐸 − 𝑓 (0.25𝜎𝐸)

• The overlap duration for Analysis 2 tokens is a random variable distributed
according to 𝒩 (0.25𝑥𝑁 , 𝜎𝑥𝑁 )

• The probability of Analysis 1 is given by:

(E.5) 𝑃(𝑎 = 1) = 𝐴𝑒−𝑏(1−𝑄) − 𝐶

where 𝑄 = 𝑥𝑂𝑖 /𝑥𝑁𝑖 . For all simulations, the constants are set to: 𝐴 = 1,
𝑏 = 2, and 𝐶 = 0.
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Sound structure and sound change

Research in linguistics, as in most other scientific domains, is usually approached in a
modular way – narrowing the domain of inquiry in order to allow for increased depth
of study. This is necessary and productive for a topic as wide-ranging and complex as
human language. However, precisely because language is a complex system, tied to per-
ception, learning, memory, and social organization, the assumption of modularity can
also be an obstacle to understanding language at a deeper level.

The methodological focus of this work is on computational modeling, highlighting
two aspects of modeling work that receive relatively little attention: the formal map-
ping from model to theory, and the scalability of demonstration models. A series of
implemented models of sound change are analyzed in this way. As theoretical incon-
sistencies are discovered, possible solutions are proposed, incrementally constructing a
set of sufficient properties for a working model. Because internal theoretical consistency
is enforced, this model corresponds to an explanatorily adequate theory. And because
explicit links between modules are required, this is a theory, not only of sound change,
but of many aspects of phonological competence.
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