
Signal Processing: A Mathematical Approach is designed to show 
how many of the mathematical tools the reader knows can be used to 
understand and employ signal processing techniques in an applied 
environment. Assuming an advanced undergraduate- or graduate-
level understanding of mathematics—including familiarity with Fouri-
er series, matrices, probability, and statistics—this Second Edition: 

 Contains new chapters on convolution and the vector DFT, 
plane-wave propagation, and the BLUE and Kalman �lters

 Expands the material on Fourier analysis to three new chapters 
to provide additional background information

 Presents real-world examples of applications that demonstrate 
how mathematics is used in remote sensing

Featuring problems for use in the classroom or practice, Signal  
Processing: A Mathematical Approach, Second Edition covers 
topics such as Fourier series and transforms in one and several vari-
ables; applications to acoustic and electro-magnetic propagation 
models, transmission and emission tomography, and image recon-
struction; sampling and the limited data problem; matrix methods, 
singular value decomposition, and data compression; optimization 
techniques in signal and image reconstruction from projections; 
autocorrelations and power spectra; high-resolution methods; de-
tection and optimal �ltering; and eigenvector-based methods for  
array processing and statistical �ltering, time-frequency analysis, 
and wavelets.
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Preface

In graduate school, and for the first few years as an assistant professor, my
research was in pure mathematics, mainly topology and functional anal-
ysis. Around 1979 I was drawn, largely by accident, into signal process-
ing, collaborating with friends at the Naval Research Laboratory who were
working on sonar. Initially, I felt that the intersection of the mathematics
that I knew and that they knew was nearly empty. After a while, I began
to realize that the basic tools of signal processing are subjects with which
I was already somewhat familiar, including Fourier series, matrices, and
probability and statistics. Much of the jargon and notation seemed foreign
to me, and I did not know much about the particular applications everyone
else was working on. For a while it seemed that everyone else was speaking
a foreign language. However, my knowledge of the basic mathematical tools
helped me gradually to understand what was going on and, eventually, to
make a contribution.

Signal processing is, in a sense, applied Fourier analysis, applied linear
algebra, and some probability and statistics. I had studied Fourier series
and linear algebra as an undergraduate, and had taught linear algebra
several times. I had picked up some probability and statistics as a professor,
although I had never had a course in that subject. Now I was beginning to
see these tools in a new light; Fourier coefficients arise as measured data in
array processing and tomography, eigenvectors and eigenvalues are used to
locate sonar and radar targets, matrices become images and the singular-
value decomposition provides data compression. For the first time, I saw
Fourier series, matrices and probability and statistics used all at once, in the
analysis of the sampled cross-sensor correlation matrices and the estimation
of power spectra.

In my effort to learn signal processing, I consulted a wide variety of
texts. Each one helped me somewhat, but I found no text that spoke di-
rectly to people in my situation. The texts I read were either too hard,
too elementary, or written in what seemed to me to be a foreign language.
Some texts in signal processing are written by engineers for engineering
students, and necessarily rely only on those mathematical notions their
students have encountered previously. In texts such as [116] basic Fourier
series and transforms are employed, but there is little discussion of matri-
ces and no mention of probability and statistics, hence no random models.

xxiii
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I found the book [121] by Papoulis helpful, although most of the exam-
ples deal with issues of interest primarily to electrical engineers. The books
written by mathematicians tend to treat signal processing as a part of
harmonic analysis or of stochastic processes. Books about Fourier analysis
focus on its use in partial differential equations, or explore rigorously the
mathematical aspects of the subject. I was looking for something different.
It would have helped me a great deal if there had been a book addressed to
people like me, people with a decent mathematical background who were
trying to learn signal processing. My hope is that this book serves that
purpose.

There are many opportunities for mathematically trained people to
make a contribution in signal and image processing, and yet few mathemat-
ics departments offer courses in these subjects to their students, preferring
to leave it to the engineering departments. One reason, I imagine, is that
few mathematics professors feel qualified to teach the subject. My message
here is that they probably already know a good deal of signal processing,
but do not realize that they know it. This book is designed to help them
come to that realization and to encourage them to include signal processing
as a course for their undergraduates.

The situations of interest that serve to motivate much of what is dis-
cussed in this book can be summarized as follows: We have obtained data
through some form of sensing; physical models, often simplified, describe
how the data we have obtained relates to the information we seek; there
usually isn’t enough data and what we have is corrupted by noise, mod-
eling errors, and other distortions. Although applications differ from one
another in their details, they often make use of a common core of mathe-
matical ideas. For example, the Fourier transform and its variants play an
important role in remote sensing, and therefore in many areas of signal and
image processing, as do the language and theory of matrix analysis, itera-
tive optimization and approximation techniques, and the basics of proba-
bility and statistics. This common core provides the subject matter for this
text. Applications of the core material to tomographic medical imaging,
optical imaging, and acoustic signal processing are included in this book.

The term signal processing is used here in a somewhat restrictive sense
to describe the extraction of information from measured data. I believe
that to get information out we must put information in. How to use the
mathematical tools to achieve this is one of the main topics of the book.

This text is designed to provide a bridge to help those with a solid math-
ematical background to understand and employ signal processing tech-
niques in an applied environment. The emphasis is on a small number of
fundamental problems and essential tools, as well as on applications. Cer-
tain topics that are commonly included in textbooks are touched on only
briefly or in exercises or not mentioned at all. Other topics not usually
considered to be part of signal processing, but which are becoming increas-
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ingly important, such as iterative optimization methods, are included. The
book, then, is a rather personal view of the subject and reflects the author’s
interests.

The term signal is not meant to imply a restriction to functions of a
single variable; indeed, most of what we discuss in this text applies equally
to functions of one and several variables and therefore to image process-
ing. However, there are special problems that arise in image processing,
such as edge detection, and special techniques to deal with such prob-
lems; we shall not consider such techniques in this text. Topics discussed
include the following: Fourier series and transforms in one and several vari-
ables; applications to acoustic and electro-magnetic propagation models,
transmission and emission tomography, and image reconstruction; sam-
pling and the limited data problem; matrix methods, singular value de-
composition, and data compression; optimization techniques in signal and
image reconstruction from projections; autocorrelations and power spectra;
high-resolution methods; detection and optimal filtering; eigenvector-based
methods for array processing and statistical filtering, time-frequency anal-
ysis, and wavelets.

The ordering of the first eighteen chapters of the book is not random;
these main chapters should be read in the order of their appearance. The
remaining chapters are ordered randomly and are meant to supplement the
main chapters.

Reprints of my journal articles referenced here are available in pdf for-
mat at my website, http://faculty.uml.edu/cbyrne/cbyrne.html.
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2 Signal Processing: A Mathematical Approach

1.1 Chapter Summary

We begin with an overview of applications of signal processing and the
variety of sensing modalities that are employed. It is typical of remote-
sensing problems that what we want is not what we can measure directly,
and we must obtain our information by indirect means. To illustrate that
point without becoming entangled in the details of any particular applica-
tion, we present a marbles-in-bowls model of remote sensing that, although
simple, still manages to capture the dominate aspects of many real-world
problems.

1.2 Aims and Topics

The term signal processing has broad meaning and covers a wide variety
of applications. In this course we focus on those applications of signal pro-
cessing that can loosely be called remote sensing, although the mathematics
we shall study is fundamental to all areas of signal processing.

In a course in signal processing it is easy to get lost in the details
and lose sight of the big picture. My main objectives here are to present
the most important ideas, techniques, and methods, to describe how they
relate to one another, and to illustrate their uses in several applications.
For signal processing, the most important mathematical tools are Fourier
series and related notions, matrices, and probability and statistics. Most
students with a solid mathematical background have probably encountered
each of these topics in previous courses, and therefore already know some
signal processing, without realizing it.

Our discussion here will involve primarily functions of a single real vari-
able, although most of the concepts will have multi-dimensional versions.
It is not our objective to treat each topic with the utmost mathematical
rigor, and we shall seek to avoid issues that are primarily of mathematical
concern.

1.2.1 The Emphasis in This Book

This text is designed to provide the necessary mathematical background
to understand and employ signal processing techniques in an applied en-
vironment. The emphasis is on a small number of fundamental problems
and essential tools, as well as on applications. Certain topics that are com-
monly included in textbooks are touched on only briefly or in exercises or
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not mentioned at all. Other topics not usually considered to be part of
signal processing, but which are becoming increasingly important, such as
matrix theory and linear algebra, are included.

The term signal is not meant to imply a specific context or a restriction
to functions of time, or even to functions of a single variable; indeed, most
of what we discuss in this text applies equally to functions of one and
several variables and therefore to image processing. However, this is in no
sense an introduction to image processing. There are special problems that
arise in image processing, such as edge detection, and special techniques to
deal with such problems; we shall not consider such techniques in this text.

1.2.2 Topics Covered

Topics discussed in this text include the following: Fourier series and
transforms in one and several variables; applications to acoustic and EM
propagation models, transmission and emission tomography, and image re-
construction; sampling and the limited data problem; matrix methods, sin-
gular value decomposition, and data compression; optimization techniques
in signal and image reconstruction from projections; autocorrelations and
power spectra; high-resolution methods; detection and optimal filtering;
eigenvector-based methods for array processing and statistical filtering;
time-frequency analysis; and wavelets.

1.2.3 Limited Data

As we shall see, it is often the case that the data we measure is not
sufficient to provide a single unique answer to our problem. There may
be many, often quite different, answers that are consistent with what we
have measured. In the absence of prior information about what the answer
should look like, we do not know how to select one solution from the many
possibilities. For that reason, I believe that to get information out we must
put information in. How to do this is one of the main topics of the course.
The example at the end of this chapter will illustrate this point.

1.3 Examples and Modalities

There are a wide variety of problems in which what we want to know
about is not directly available to us and we need to obtain information
by more indirect methods. In this section we present several examples of
remote sensing. The term “modality” refers to the manner in which the
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desired information is obtained. Although the sensing of acoustic and elec-
tromagnetic signals is perhaps the most commonly used method, remote
sensing involves a wide variety of modalities: electromagnetic waves (light,
x-ray, microwave, radio); sound (sonar, ultrasound); radioactivity (positron
and single-photon emission); magnetic resonance (MRI); seismic waves; and
a number of others.

1.3.1 X-ray Crystallography

The patterns produced by the scattering of x-rays passing through var-
ious materials can be used to reveal their molecular structure.

1.3.2 Transmission Tomography

In transmission tomography x-rays are transmitted along line segments
through the object and the drop in intensity along each line is recorded.

1.3.3 Emission Tomography

In emission tomography radioactive material is injected into the body
of the living subject and the photons resulting from the radioactive decay
are detected and recorded outside the body.

1.3.4 Back-Scatter Detectors

There is considerable debate at the moment about the use of so-called
full-body scanners at airports. These are not scanners in the sense of a
CAT scan; indeed, if the images were skeletons there would probably be
less controversy. These are images created by the returns, or backscatter, of
millimeter-wavelength (MMW) radio-frequency waves, or sometimes low-
energy x-rays, that penetrate only the clothing and then reflect back to the
machine.

The controversies are not really about safety to the passenger being
imaged. The MMW imaging devices use about 10, 000 times less energy
than a cell phone, and the x-ray exposure is equivalent to two minutes
of flying in an airplane. At present, the images are fuzzy and faces are
intentionally blurred, but there is some concern that the images will get
sharper, will be permanently stored, and eventually end up on the net.
Given what is already available on the net, the market for these images
will almost certainly be non-existent.
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1.3.5 Cosmic-Ray Tomography

Because of their ability to penetrate granite, cosmic rays are being used
to obtain transmission-tomographic three-dimensional images of the inte-
riors of active volcanos. Where magma has replaced granite there is less
attenuation of the rays, so the image can reveal the size and shape of the
magma column. It is hoped that this will help to predict the size and oc-
currence of eruptions.

In addition to mapping the interior of volcanos, cosmic rays can also be
used to detect the presence of shielding around nuclear material in a cargo
container. The shielding can be sensed by the characteristic scattering by
it of muons from cosmic rays; here neither we nor the objects of interest
are the sources of the probing. This is about as “remote” as sensing can
be.

1.3.6 Ocean-Acoustic Tomography

The speed of sound in the ocean varies with the temperature, among
other things. By transmitting sound from known locations to known re-
ceivers and measuring the travel times we can obtain line integrals of the
temperature function. Using the reconstruction methods from transmission
tomography, we can estimate the temperature function. Knowledge of the
temperature distribution may then be used to improve detection of sources
of acoustic energy in unknown locations.

1.3.7 Spectral Analysis

In our detailed discussion of transmission and remote sensing we shall,
for simplicity, concentrate on signals consisting of a single frequency. Never-
theless, there are many important applications of signal processing in which
the signal being studied has a broad spectrum, indicative of the presence
of many different frequencies. The purpose of the processing is often to
determine which frequencies are present, or not present, and to determine
their relative strengths. The hotter inner body of the sun emits radiation
consisting of a continuum of frequencies. The cooler outer layer absorbs
the radiation whose frequencies correspond to the elements present in that
outer layer. Processing these signals reveals a spectrum with a number of
missing frequencies, the so-called Fraunhofer lines, and provides informa-
tion about the makeup of the sun’s outer layers. This sort of spectral anal-
ysis can be used to identify the components of different materials, making
it an important tool in many applications, from astronomy to forensics.
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1.3.8 Seismic Exploration

Oil companies want to know if it is worth their while drilling in a partic-
ular place. If they go ahead and drill, they will find out, but they would like
to know what is the chance of finding oil without actually drilling. Instead,
they set off explosions and analyze the signals produced by the seismic
waves, which will tell them something about the materials the waves en-
countered. Explosive charges create waves that travel through the ground
and are picked up by sensors. The waves travel at different speeds through
different materials. Information about the location of different materials in
the ground is then extracted from the received signals.

1.3.9 Astronomy

Astronomers know that there are radio waves, visible-light waves, and
other forms of electro-magnetic radiation coming from the sun and distant
regions of space, and they would like to know precisely what is coming
from which regions. They cannot go there to find out, so they set up large
telescopes and antenna arrays and process the signals that they are able to
measure.

1.3.10 Radar

Those who predict the weather use radar to help them see what is going
on in the atmosphere. Radio waves are sent out and the returns are analyzed
and turned into images. The location of airplanes is also determined by
radar. The radar returns from different materials are different from one
another and can be analyzed to determine what materials are present.
Synthetic-aperture radar is used to obtain high-resolution images of regions
of the earth’s surface. The radar returns from different geometric shapes
also differ in strength; by avoiding right angles in airplane design stealth
technology attempts to make the plane invisible to radar.

1.3.11 Sonar

Features on the bottom of the ocean are imaged with sonar, in which
sound waves are sent down to the bottom and the returning waves are
analyzed. Sometimes near or distant objects of interest in the ocean emit
their own sound, which is measured by sensors. The signals received by the
sensors are processed to determine the nature and location of the objects.
Even changes in the temperature at different places in the ocean can be
determined by sending sound waves through the region of interest and
measuring the travel times.
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1.3.12 Gravity Maps

The pull of gravity varies with the density of the material. Features on
the surface of the earth, such as craters from ancient asteroid impacts, can
be imaged by mapping the variations in the pull of gravity, as measured by
satellites.

Gravity, or better, changes in the pull of gravity from one location to
another, was used in the discovery of the crater left behind by the asteroid
strike in the Yucatan that led to the extinction of the dinosaurs. The rocks
and other debris that eventually filled the crater differ in density from
the surrounding material, thereby exerting a slightly different gravitational
pull on other masses. This slight change in pull can be detected by sensitive
instruments placed in satellites in earth orbit. When the intensity of the
pull, as a function of position on the earth’s surface, is displayed as a two-
dimensional image, the presence of the crater is evident.

Studies of the changes in gravitational pull of the Antarctic ice between
2002 and 2005 revealed that Antarctica is losing 36 cubic miles of ice each
year. By way of comparison, the city of Los Angeles uses one cubic mile of
water each year. While this finding is often cited as clear evidence of global
warming, it contradicts some models of climate change that indicate that
global warming may lead to an increase of snowfall, and therefore more ice,
in the polar regions. This does not show that global warming is not taking
place, but only the inadequacies of some models [119].

1.3.13 Echo Cancellation

In a conference call between locations A and B, what is transmitted
from A to B can get picked up by microphones in B, transmitted back
to speakers in A and then retransmitted to B, producing an echo of the
original transmission. Signal processing performed at the transmitter in
A can reduce the strength of the second version of the transmission and
decrease the echo effect.

1.3.14 Hearing Aids

Makers of digital hearing aids include signal processing to enhance the
quality of the received sounds, as well as to improve localization, that is,
the ability of the hearer to tell where the sound is coming from. When a
hearing aid is used, sounds reach the ear in two ways: first, the usual route
directly into the ear, and second, through the hearing aid. Because that part
that passes through the hearing aid is processed, there is a slight delay. In
order for the delay to go unnoticed, the processing must be very fast. When
hearing aids are used in both ears, more sophisticated processing can be
used.
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1.3.15 Near-Earth Asteroids

An area of growing importance is the search for potentially damaging
near-earth asteroids. These objects are initially detected by passive op-
tical observation, as small dots of reflected sunlight; once detected, they
are then imaged by active radar to determine their size, shape, rotation,
path, and other important parameters. Satellite-based infrared detectors
are being developed to find dark asteroids by the heat they give off. Such
satellites, placed in orbit between the sun and the earth, will be able to
detect asteroids hidden from earth-based telescopes by the sunlight.

1.3.16 Mapping the Ozone Layer

Ultraviolet light from the sun is scattered by ozone. By measuring the
amount of scattered UV at various locations on the earth’s surface, and with
the sun in various positions, we obtain values of the Laplace transform of
the function describing the density of ozone, as a function of elevation.

1.3.17 Ultrasound Imaging

While x-ray tomography is a powerful method for producing images
of the interior of patients’ bodies, the radiation involved and the expense
make it unsuitable in some cases. Ultrasound imaging, making use of back-
scattered sound waves, is a popular method of inexpensive preliminary
screening for medical diagnostics, and for examining a developing fetus.

1.3.18 X-ray Vision?

The MIT computer scientist and electrical engineer Dina Katabi and
her students are currently exploring new uses of wireless technologies. By
combining Wi-Fi and vision into what she calls Wi-Vi, she has discovered
a way to detect the number and approximate location of persons within a
closed room and to recognize simple gestures. The scattering of reflected
low-bandwidth wireless signals as they pass through the walls is processed
to eliminate motionless sources of reflection from the much weaker reflec-
tions from moving objects, presumably people.

1.4 The Common Core

The examples just presented look quite different from one another, but
the differences are often more superficial than real. As we begin to use
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mathematics to model these various situations we often discover a common
core of mathematical tools and ideas at the heart of each of these applica-
tions. For example, the Fourier transform and its variants play an impor-
tant role in many areas of signal and image processing, as do the language
and theory of matrix analysis, iterative optimization and approximation
techniques, and the basics of probability and statistics. This common core
provides the subject matter for this book. Applications of the core mate-
rial to tomographic medical imaging, optical imaging, and acoustic signal
processing are among the topics to be discussed in some detail.

Although the applications of interest to us vary in their details, they
have common aspects that can be summarized as follows: the data has been
obtained through some form of sensing; physical models, often simplified,
describe how the data we have obtained relates to the information we seek;
there usually isn’t enough data and what we have is corrupted by noise
and other distortions.

1.5 Active and Passive Sensing

In some signal and image processing applications the sensing is ac-
tive, meaning that we have initiated the process, by, say, sending an x-ray
through the body of a patient, injecting a patient with a radionuclide, trans-
mitting an acoustic signal through the ocean, as in sonar, or transmitting
a radio wave, as in radar. In such cases, we are interested in measuring
how the system, the patient, the quiet submarine, the ocean floor, the rain
cloud, will respond to our probing. In many other applications, the sens-
ing is passive, which means that the object of interest to us provides its
own signal of some sort, which we then detect, analyze, image, or process
in some way. Certain sonar systems operate passively, listening for sounds
made by the object of interest. Optical and radio telescopes are passive,
relying on the object of interest to emit or reflect light, or other electromag-
netic radiation. Night-vision instruments are sensitive to lower-frequency,
infrared radiation.

From the time of Aristotle and Euclid until the middle ages there was an
ongoing debate concerning the active or passive nature of human sight [112].
Those like Euclid, whose interests were largely mathematical, believed that
the eye emitted rays, the extramission theory. Aristotle and others, more
interested in the physiology and anatomy of the eye than in mathematics,
believed that the eye received rays from observed objects outside the body,
the intromission theory. Finally, around 1000 AD, the Arabic mathemati-
cian and natural philosopher Alhazen demolished the extramission theory
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by noting the potential for bright light to hurt the eye, and combined the
mathematics of the extramission theorists with a refined theory of intro-
mission. The extramission theory has not gone away completely, however,
as anyone familiar with Superman’s x-ray vision knows.

1.6 Using Prior Knowledge

An important point to keep in mind when doing signal processing is
that, while the data is usually limited, the information we seek may not be
lost. Although processing the data in a reasonable way may suggest other-
wise, other processing methods may reveal that the desired information is
still available in the data. Figure 1.1 illustrates this point.

The original image on the upper right of Figure 1.1 is a discrete rect-
angular array of intensity values simulating the distribution of the x-ray-
attenuating material in a slice of a head. The data was obtained by taking
the two-dimensional discrete Fourier transform of the original image, and
then discarding, that is, setting to zero, all these spatial frequency values,
except for those in a smaller rectangular region around the origin. Recon-
structing the image from this limited data amounts to solving a large system
of linear equations. The problem is under-determined, so a minimum-norm
solution would seem to be a reasonable reconstruction method. For now,
“norm” means the Euclidean norm.

The minimum-norm solution is shown on the lower right. It is calcu-
lated simply by performing an inverse discrete Fourier transform on the
array of modified discrete Fourier transform values. The original image has
relatively large values where the skull is located, but the least-squares re-
construction does not want such high values; the norm involves the sum
of squares of intensities, and high values contribute disproportionately to
the norm. Consequently, the minimum-norm reconstruction chooses instead
to conform to the measured data by spreading what should be the skull
intensities throughout the interior of the skull. The minimum-norm recon-
struction does tell us something about the original; it tells us about the
existence of the skull itself, which, of course, is indeed a prominent feature
of the original. However, in all likelihood, we would already know about
the skull; it would be the interior that we want to know about.

Using our knowledge of the presence of a skull, which we might have ob-
tained from the minimum-norm reconstruction itself, we construct the prior
estimate shown in the upper left. Now we use the same data as before, and
calculate a minimum-weighted-norm reconstruction, using as the weight
vector the reciprocals of the values of the prior image. This minimum-
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FIGURE 1.1: Extracting information in image reconstruction.

weighted-norm reconstruction, also called the PDFT estimator, is shown
on the lower left; it is clearly almost the same as the original image. The
calculation of the minimum-weighted-norm solution can be done iteratively
using the ART algorithm [143].

When we weight the skull area with the inverse of the prior image,
we allow the reconstruction to place higher values there without having
much of an effect on the overall weighted norm. In addition, the reciprocal
weighting in the interior makes spreading intensity into that region costly,
so the interior remains relatively clear, allowing us to see what is really
present there.

When we try to reconstruct an image from limited data, it is easy to
assume that the information we seek has been lost, particularly when a
reasonable reconstruction method fails to reveal what we want to know. As
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this example, and many others, show, the information we seek is often still
in the data, but needs to be brought out in a more subtle way.

1.7 An Urn Model of Remote Sensing

Most of the signal processing that we shall discuss in this book is re-
lated to the problem of remote sensing, which we might also call indirect
measurement. In such problems we do not have direct access to what we are
really interested in, and must be content to measure something else that is
related to, but not the same as, what interests us. For example, we want
to know what is in the suitcases of airline passengers, but, for practical
reasons, we cannot open every suitcase. Instead, we x-ray the suitcases. A
recent paper [137] describes progress in detecting nuclear material in cargo
containers by measuring the scattering, by the shielding, of cosmic rays;
you can’t get much more remote than that. Before we get into the mathe-
matics of signal processing, it is probably a good idea to consider a model
that, although quite simple, manages to capture many of the important
features of remote-sensing applications. To convince the reader that this is
indeed a useful model, we relate it to the problem of image reconstruction
in single-photon emission computed tomography (SPECT). There seems to
be a tradition in physics of using simple models or examples involving
urns and marbles to illustrate important principles. In keeping with that
tradition, we have here two examples, both involving urns of marbles, to
illustrate various aspects of remote sensing.

1.7.1 An Urn Model

Suppose that there is a box containing a large number of small pieces
of paper, and on each piece is written one of the numbers from j = 1
to j = J . I want to determine, for each j = 1, ..., J , the probability of
selecting a piece of paper with the number j written on it. Unfortunately,
I am not allowed to examine the box. I am allowed, however, to set up a
remote-sensing experiment to help solve my problem.

My assistant sets up J urns, numbered j = 1, ..., J , each containing mar-
bles of various colors. Suppose that there are I colors, numbered i = 1, ..., I.
I am allowed to examine each urn, so I know precisely the probability that
a marble of color i will be drawn from urn j. Out of my view, my assis-
tant removes one piece of paper from the box, takes one marble from the
indicated urn, announces to me the color of the marble, and then replaces
both the piece of paper and the marble. This action is repeated N times,
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at the end of which I have a long list of colors, i = {i1, i2, ..., iN}, where
in denotes the color of the nth marble drawn. This list i is my data, from
which I must determine the contents of the box.

This is a form of remote sensing; what we have access to is related to,
but not equal to, what we are interested in. What I wish I had is the list of
urns used, j = {j1, j2, ..., jN}; instead I have i, the list of colors. Sometimes
data such as the list of colors is called “incomplete data,” in contrast to
the “complete data,” which would be the list j of the actual urn numbers
drawn from the box.

Using our urn model, we can begin to get a feel for the resolution prob-
lem. If all the marbles of one color are in a single urn, all the black marbles
in urn j = 1, all the green in urn j = 2, and so on, the problem is trivial;
when I hear a color, I know immediately which urn contained that marble.
My list of colors is then a list of urn numbers; i = j. I have the complete
data now. My estimate of the number of pieces of paper containing the
urn number j is then simply the proportion of draws that resulted in urn
j being selected.

At the other extreme, suppose two urns have identical contents. Then I
cannot distinguish one urn from the other and I am unable to estimate more
than the total number of pieces of paper containing either of the two urn
numbers. If the two urns have nearly the same contents, we can distinguish
them only by using a very large N . This is the resolution problem.

Generally, the more the contents of the urns differ, the easier the task
of estimating the contents of the box. In remote-sensing applications, these
issues affect our ability to resolve individual components contributing to
the data.

1.7.2 Some Mathematical Notation

To introduce some mathematical notation, let us denote by xj the pro-
portion of the pieces of paper that have the number j written on them. Let
Pij be the proportion of the marbles in urn j that have the color i. Let yi be
the proportion of times the color i occurs in the list of colors. The expected
proportion of times i occurs in the list is E(yi) =

∑J
j=1 Pijxj = (Px)i,

where P is the I by J matrix with entries Pij and x is the J by 1 column
vector with entries xj . A reasonable way to estimate x is to replace E(yi)

with the actual yi and solve the system of linear equations yi =
∑J

j=1 Pijxj ,
i = 1, ..., I. Of course, we require that the xj be nonnegative and sum to
one, so special algorithms may be needed to find such solutions. In a num-
ber of applications that fit this model, such as medical tomography, the
values xj are taken to be parameters, the data yi are statistics, and the xj
are estimated by adopting a probabilistic model and maximizing the likeli-
hood function. Iterative algorithms, such as the expectation maximization
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maximum likelihood (EMML) algorithm, are often used for such problems;
see Chapter 14 for details.

1.7.3 An Application to SPECT Imaging

In single-photon emission computed tomography (SPECT) the patient
is injected with a chemical to which a radioactive tracer has been attached.
Once the chemical reaches its destination within the body the photons
emitted by the radioactive tracer are detected by gamma cameras outside
the body. The objective is to use the information from the detected photons
to infer the relative concentrations of the radioactivity within the patient.

We discretize the problem and assume that the body of the patient
consists of J small volume elements, called voxels, analogous to pixels in
digitized images. We let xj ≥ 0 be the unknown proportion of the radioac-
tivity that is present in the jth voxel, for j = 1, ..., J . There are I detectors,
denoted {i = 1, 2, ..., I}. For each i and j we let Pij be the known prob-
ability that a photon that is emitted from voxel j is detected at detector
i; these probabilities are usually determined by examining the relative po-
sitions in space of voxel j and detector i. We denote by in the detector
at which the nth emitted photon is detected. This photon was emitted at
some voxel, denoted jn; we wish that we had some way of learning what
each jn is, but we must be content with knowing only the in. After N
photons have been emitted, we have as our data the list i = {i1, i2, ..., iN};
this is our incomplete data. We wish we had the complete data, that is, the
list j = {j1, j2, ..., jN}, but we do not. Our goal is to estimate the frequency
with which each voxel emitted a photon, which we assume, reasonably, to
be proportional to the unknown proportions xj , for j = 1, ..., J .

This problem is completely analogous to the urn problem previously
discussed. Any mathematical method that solves one of these problems
will solve the other one. In the urn problem, the colors were announced;
here the detector numbers are announced. There, I wanted to know the
urn numbers; here I want to know the voxel numbers. There, I wanted to
estimate the frequency with which the jth urn was used; here, I want to
estimate the frequency with which the jth voxel is the site of an emission,
which is assumed to be equal to the proportion of the radionuclide within
the jth voxel. In the urn model, two urns with nearly the same contents are
hard to distinguish unless N is very large; here, two neighboring voxels will
be very hard to distinguish (i.e., to resolve) unless N is very large. But in
the SPECT case, a large N means a high dosage, which will be prohibited
by safety considerations. Therefore, we have a built-in resolution problem
in the SPECT case.

Both problems are examples of probabilistic mixtures, in which the mix-
ing probabilities are the xj that we seek. The maximum likelihood (ML)
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method of statistical parameter estimation can be used to solve such prob-
lems. The interested reader should consult the text [42].

1.8 Hidden Markov Models

In the urn model we just discussed, the order of the colors in the list is
unimportant; we could randomly rearrange the colors on the list without
affecting the nature of the problem. The probability that a green marble
will be chosen next is the same, whether a blue or a red marble was just
chosen the previous time. This independence from one selection to another
is fine for modeling certain physical situations, such as emission tomogra-
phy. However, there are other situations in which this independence does
not conform to reality.

In written English, for example, knowing the current letter helps us,
sometimes more, sometimes less, to predict what the next letter will be.
We know that, if the current letter is a “q”, then there is a high probability
that the next one will be a “u”. So what the current letter is affects the
probabilities associated with the selection of the next one.

Spoken English is even tougher. There are many examples in which
the pronunciation of a certain sound is affected, not only by the sound or
sounds that preceded it, but by the sound or sounds that will follow. For
example, the sound of the “e” in the word “bellow” is different from the
sound of the “e” in the word “below”; the sound changes, depending on
whether there is a double “l” or a single “l” following the “e”. Here the
entire context of the letter affects its sound.

Hidden Markov models (HMM) are increasingly important in speech
processing, optical character recognition, and DNA sequence analysis. They
allow us to incorporate dependence on the context into our model. In this
section we illustrate HMM using a modification of the urn model.

Suppose, once again, that we have J urns, indexed by j = 1, ..., J and
I colors of marbles, indexed by i = 1, ..., I. Associated with each of the
J urns is a box, containing a large number of pieces of paper, with the
number of one urn written on each piece. My assistant selects one box, say
the j0th box, to start the experiment. He draws a piece of paper from that
box, reads the number written on it, call it j1, goes to the urn with the
number j1 and draws out a marble. He then announces the color. He then
draws a piece of paper from box number j1, reads the next number, say
j2, proceeds to urn number j2, etc. After N marbles have been drawn, the
only data I have is a list of colors, i = {i1, i2, ..., iN}.
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The transition probability that my assistant will proceed from the urn
numbered k to the urn numbered j is bjk, with

∑J
j=1 bjk = 1. The num-

ber of the current urn is the current state. In an ordinary Markov chain
model, we observe directly a sequence of states governed by the transition
probabilities. The Markov chain model provides a simple formalism for de-
scribing a system that moves from one state into another, as time goes on.
In the hidden Markov model we are not able to observe the states directly;
they are hidden from us. Instead, we have indirect observations, the colors
of the marbles in our urn example.

The probability that the color numbered i will be drawn from the urn
numbered j is aij , with

∑I
i=1 aij = 1, for all j. The colors announced

are the visible states, while the unannounced urn numbers are the hidden
states.

There are several distinct objectives one can have, when using HMM.
We assume that the data is the list of colors, i.

• Evaluation: For given probabilities aij and bjk, what is the proba-
bility that the list i was generated according to the HMM? Here, the
objective is to see if the model is a good description of the data.

• Decoding: Given the model, the probabilities, and the list i, what
list j = {j1, j2, ..., jN} of urns is most likely to be the list of urns
actually visited? Now, we want to infer the hidden states from the
visible ones.

• Learning:We are told that there are J urns and I colors, but are not
told the probabilities aij and bjk. We are given several data vectors i
generated by the HMM; these are the training sets. The objective is
to learn the probabilities.

Once again, the ML approach can play a role in solving these problems [68].
The Viterbi algorithm is an important tool used for the decoding phase (see
[149]).
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2.1 Chapter Summary

We begin with Fourier series and Fourier transforms, which are essen-
tial tools in signal processing. In this chapter we give the formulas for
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Fourier series and Fourier transforms, in both trigonometric and complex-
exponential form, summarize their basic properties, and give several ex-
amples of Fourier-transform pairs. We connect Fourier series to Fourier
transforms using Shannon’s Sampling Theorem. We solve a heat-equation
problem to illustrate the use of Fourier series while introducing fundamen-
tal aspects of inverse problems. We leave to Chapter 26 the more theoretical
details regarding Fourier series and Fourier transforms.

2.2 Fourier Series

Most mathematics students see Fourier series for the first time in a
course on boundary-value problems. There students usually study the wave
equation and the heat equation in two dimensions, using the technique of
separating the space and time variables. Fourier series and Fourier trans-
forms arise as we attempt to satisfy the initial conditions using a superpo-
sition of sine and cosine functions.

Suppose, for concreteness, that we have a function f : [−L,L] → R and
we want to express this function as a Fourier series. The Fourier series for
f , relative to the interval [−L,L], is

f(x) ≈ a0
2

+

∞∑
n=1

an cos
(nπ
L
x
)
+ bn sin

(nπ
L
x
)
, (2.1)

where the Fourier coefficients an and bn are

an =
1

L

∫ L

−L
f(x) cos

(nπ
L
x
)
dx, (2.2)

and

bn =
1

L

∫ L

−L
f(x) sin

(nπ
L
x
)
dx. (2.3)

To obtain the formula for, say, am, the usual approach is to write

f(x) =
a0
2

+

∞∑
n=1

an cos
(nπ
L
x
)
+ bn sin

(nπ
L
x
)
, (2.4)

for |x| ≤ L, multiply both sides of Equation (2.4) by cos
(
mπ
L x
)
, and then
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integrate both sides, integrating term-by-term inside the sum on the right
side of the equation. Orthogonality then gives the desired answer, since we
have

∫ L

−L
cos
(mπ
L
x
)
sin
(nπ
L
x
)
dx = 0,

∫ L

−L
cos
(mπ
L
x
)
cos
(mπ
L
x
)
dx = L,

and

∫ L

−L
sin
(mπ
L
x
)
sin
(mπ
L
x
)
dx = L,

for all m and n, and, for m �= n,

∫ L

−L
cos
(mπ
L
x
)
cos
(nπ
L
x
)
dx = 0,

and

∫ L

−L
sin
(mπ
L
x
)
sin
(nπ
L
x
)
dx = 0.

This derivation of the Fourier coefficients sweeps several important issues
under the rug, so to speak.

We haven’t said anything about the properties of the function f , so
we cannot be sure that the Fourier series converges, for a given x, and
even if it does, we cannot be sure that the sum of the series is f(x). We
also have not said anything about the integrability of the function f , and
have not specified the type of integral being used in Equations (2.2) and
(2.3). Finally, we have not justified integrating an infinite series term-by-
term. These are not issues that are easily dealt with and it is reasonable,
given our aims in this book, to leave those issues under the rug for now
and to rely on the formulas above without further comment. In signal
processing our primary concern is computing with measured data, in the
form of finite-length vectors and matrices. Functions of continuous variables
and infinite sequences guide our thinking, but enter into our calculations
only as members of finite-parameter families.

There are many texts, such as [80], that the reader may consult that ad-
dress the more mathematical aspects of Fourier analysis. The book [101] by
Körner is a highly entertaining journey through many aspects for pure and
applied Fourier analysis, while the small book [51] by Champeney summa-
rizes, without proofs, most of the relevant theorems pertaining to Fourier
series and Fourier transforms. The discussion in Chapter 26 is taken largely
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from [51]. For a sampling of more advanced material on signal processing
and its applications, the reader may consult [3, 87].

At this early stage, it is useful to address the issue of periodicity. Clearly,
the Fourier series itself can be viewed as a function of x with period 2L.
Consequently, many books on the subject assume, from the start, that
the function f is also 2L-periodic. We can, of course, extend the original
function f to the whole real line as a 2L-period function. If f is continuous
on [−L,L], but f(−L) �= f(L), we can preserve continuity of the periodic
extension by first reflecting the function about the point x = L, creating a
function on the interval [−L, 3L] that has the same values at −L and 3L,
and then extending that function as a 4L-periodic function. However, our
concern here is largely with problems that arise in remote sensing, such as
radar, sonar, tomography, and the like, in which the function f of interest
is nonzero only on some finite interval. As we shall see, assuming a periodic
extension at the start may not be a good idea.

2.3 Complex Exponential Functions

The most important functions in signal processing are the complex ex-
ponential functions. Using trigonometric identities it is easy to show that
the function h : R → C defined by

h(x) = cosx+ i sinx,

has the property h(x+y) = h(x)h(y). Therefore, we write it in exponential
form as h(x) = cx, for some (necessarily complex) scalar c. With x = 1 we
have

h(1) = cos 1 + i sin 1 = c.

Applying the Taylor series expansion

et = 1 + t+
t2

2!
+
t3

3!
+ ...,

for t = i we have
ei = cos 1 + i sin 1.

Consequently, we have c = ei and

h(x) = (ei)x = eix.

Because it is simpler to work with exponential functions than with trigono-
metric functions, we use the identities

cosx =
1

2
(eix + e−ix),



Fourier Series and Fourier Transforms 21

and

sinx =
1

2i
(eix − e−ix)

to reformulate Fourier series and Fourier transforms in terms of complex
exponential functions. In place of Equation (2.1) we have

f(x) ≈
∞∑

n=−∞
cne

inπ
L x,

with

cn =
1

2L

∫ L

−L
f(x)e−i

nπ
L xdx. (2.5)

If f is a continuous function, with f(−L) = f(L) (so that it has a contin-
uous 2L-periodic extension), then f is uniquely determined by its Fourier
coefficients [101, Theorem 2.4], even though the Fourier series may not
converge to f(x) for some x.

2.4 Fourier Transforms

Suppose now that f is a complex-valued function defined on the whole
real line. The Fourier transform of f is the function F : R → C given by

F (γ) =

∫ ∞

−∞
f(x)eiγxdx. (2.6)

Given F , the Fourier Inversion Formula tells us how to get back to f(x):

f(x) =
1

2π

∫ ∞

−∞
F (γ)e−iγxdγ. (2.7)

The function f(x) is sometimes called the inverse Fourier transform (IFT)
of F (γ). Note that the formulas in Equations (2.6) and (2.7) are nearly
identical. Because of this, the terminology in other texts may differ from
ours. As was the case with Fourier series, we have again swept several issues
under the rug for now. We have not specified the properties of the function
f that would guarantee the existence of the integrals in Equation (2.6);
indeed, we have not said which definition of integration we must use. Even
when we require that f be sufficiently well behaved, the Fourier transform
function F may not be, and so the inversion formula in Equation (2.7)
may require some interpretation. The functions f(x) and F (γ) are called
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a Fourier-transform pair. The definitions of the FT and IFT just given
may differ slightly from the ones found elsewhere; our definitions are those
of Bochner and Chandrasekharan [13] and Twomey [156]. The differences
are minor and involve only the placement of the quantity 2π and of the
minus sign in the exponent. One sometimes sees the Fourier transform of
the function f denoted f̂ , but we shall not use that notation here.

2.5 Basic Properties of the Fourier Transform

In this section we present the basic properties of the Fourier transform.
Proofs of these assertions are left as exercises.

Let u(x) be the Heaviside function; that is, u(x) = 1 if x ≥ 0, and
u(x) = 0 otherwise. Let χA(x) be the characteristic function of the interval
[−A,A]; that is, χA(x) = 1 for x in [−A,A] and χA(x) = 0 otherwise. Let
sgn(x) be the sign function; that is, sgn(x) = 1 if x ≥ 0, and sgn(x) = −1
if x < 0. The following are basic properties of the Fourier transform.

• Symmetry: The FT of the function F (x) is 2πf(−γ). For example,

the FT of the function f(x) = sin(Ωx)
πx is χΩ(γ), so the FT of g(x) =

χΩ(x) is G(γ) = 2π sin(Ωγ)
πγ .

• Conjugation: The FT of f(−x) is F (γ).
• Scaling: The FT of f(ax) is 1

|a|F (
γ
a ) for any nonzero constant a.

• Shifting: The FT of f(x− a) is eiaγF (γ).

• Modulation: The FT of f(x) cos(γ0x) is
1
2 [F (γ + γ0) + F (γ − γ0)].

• Differentiation: The FT of the nth derivative, f (n)(x), is
(−iγ)nF (γ). The IFT of F (n)(γ) is (ix)nf(x).

• Convolution in x: Let f, F , g,G and h,H be FT pairs, with

h(x) =

∫
f(y)g(x− y)dy, (2.8)

so that h(x) = (f ∗ g)(x) is the convolution of f(x) and g(x). Then
H(γ) = F (γ)G(γ). For example, if we take g(x) = f(−x), then

h(x) =

∫
f(x+ y)f(y)dy =

∫
f(y)f(y − x)dy = rf (x)



Fourier Series and Fourier Transforms 23

is the autocorrelation function associated with f(x) and

H(γ) = |F (γ)|2 = Rf (γ) ≥ 0

is the power spectrum of f(x).

• Convolution in γ: Let f, F , g,G and h,H be FT pairs, with h(x) =
f(x)g(x). Then H(γ) = 1

2π (F ∗G)(γ).
Ex. 2.1 Let F (γ) be the FT of the function f(x). Use the definitions of the
FT and IFT given in Equations (2.6) and (2.7) to establish the following
basic properties of the Fourier transform operation listed above. To establish
the convolution formula calculate H(γ) using Equation (2.8) and switch the
order of integration.

2.6 Some Fourier-Transform Pairs

The exercises in this section introduce the reader to several Fourier-
transform pairs.

Ex. 2.2 Show that the FT of the function f(x) = u(x)e−ax is F (γ) =
1

a−iγ , for every positive constant a, where u(x) is the Heaviside function.

Ex. 2.3 Show that the FT of f(x) = χA(x) is F (γ) = 2 sin(Aγ)
γ . Similarly,

show that the IFT of the function F (γ) = χΓ(γ) is f(x) =
sin Γx
πx .

Ex. 2.4 Show that the IFT of the function F (γ) = 2i/γ is f(x) = sgn(x).
Hint: Write the formula for the inverse Fourier transform of F (γ) as

f(x) =
1

2π

∫ +∞

−∞

2i

γ
cos γxdγ − i

2π

∫ +∞

−∞

2i

γ
sin γxdγ,

which reduces to

f(x) =
1

π

∫ +∞

−∞

1

γ
sin γxdγ,

since the integrand of the first integral is odd. For x ≥ 0 consider the
Fourier transform of the function χx(t). For x < 0 perform the change of
variables u = −x.

Generally, the functions f(x) and F (γ) are complex-valued, so that we
may speak about their real and imaginary parts. The next exercise explores
the connections that hold among these real-valued functions.
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Ex. 2.5 Let f(x) be arbitrary and F (γ) its Fourier transform. Let F (γ) =
R(γ) + iX(γ), where R and X are real-valued functions, and similarly, let
f(x) = f1(x) + if2(x), where f1 and f2 are real-valued. Find relationships
between the pairs R,X and f1,f2.

Definition 2.1 We define the even part of f(x) to be the function

fe(x) =
f(x) + f(−x)

2
,

and the odd part of f(x) to be

fo(x) =
f(x)− f(−x)

2
;

define Fe and Fo similarly for F the FT of f .

Ex. 2.6 Show that F (γ) is real-valued and even if and only if f(x) is real-
valued and even.

Definition 2.2 We say that f is a causal function if f(x) = 0 for all
x < 0.

Definition 2.3 The function X is the Hilbert transform of function R if

X(γ) =
1

π

∫ ∞

−∞

R(α)

γ − α
dα.

Ex. 2.7 Let F (γ) = R(γ) + iX(γ) be the decomposition of F into its real
and imaginary parts. Show that, if f is causal, then R and X are related;
specifically, show that X is the Hilbert transform of R. Hint: If f(x) = 0
for x < 0 then f(x)sgn(x) = f(x). Apply the convolution theorem, then
compare real and imaginary parts.

Definition 2.4 When the Fourier transform function F (γ) is nonzero only
within a bounded interval [−Γ,Γ], we say that F is support-limited, and f
is Γ-band-limited.

Ex. 2.8 Let f(x), F (γ) and g(x), G(γ) be Fourier transform pairs. Use the
conjugation property of Fourier transforms and convolution to establish the
Parseval–Plancherel Equation

〈f, g〉 =
∫
f(x)g(x)dx =

1

2π

∫
F (γ)G(γ)dγ. (2.9)

An important particular case of the Parseval-Plancherel Equation is

||f ||2 = 〈f, f〉 =
∫

|f(x)|2dx =
1

2π

∫
|F (γ)|2dγ. (2.10)
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Ex. 2.9 The one-sided Laplace transform (LT) of f is F given by

F(z) =

∫ ∞

0

f(x)e−zxdx.

Compute F(z) for f(x) = u(x), the Heaviside function. Compare F(−iγ)
with the FT of u.

Ex. 2.10 Show that the Fourier transform of f(x) = e−α
2x2

is F (γ) =√
π
α e−( γ

2α )2 . Hints: Calculate the derivative F ′(γ) by differentiating under
the integral sign in the definition of F and integrating by parts. Then solve
the resulting differential equation, obtaining

F (γ) = Ke−( γ
2α )2 ,

for some constant K to be determined. To determine K, use the Parseval-
Plancherel Equation (2.10) and the change of variables t = 2α2x to write∫

|f(x)|2dx =

∫
e−2α2x2

dx =
1

2α2

∫
e−

t2

2α2 dt,

from which it follows that K =
√
π
α .

2.7 Dirac Deltas

We saw earlier that the F (γ) = χΓ(γ) has for its inverse Fourier trans-
form the function f(x) = sin Γx

πx ; note that f(0) = Γ
π and f(x) = 0 for the

first time when Γx = π or x = π
Γ . For any Γ-band-limited function g(x) we

have G(γ) = G(γ)χΓ(γ), so that, for any x0, we have

g(x0) =

∫ ∞

−∞
g(x)

sin Γ(x− x0)

π(x − x0)
dx.

We describe this by saying that the function f(x) = sin Γx
πx has the sifting

property for all Γ-band-limited functions g(x).
As Γ grows larger, f(0) approaches +∞, while f(x) goes to zero for

x �= 0. The limit is therefore not a function; it is a generalized function
called the Dirac delta function at zero, denoted δ(x). For this reason the
function f(x) = sin Γx

πx is called an approximate delta function. The FT of
δ(x) is the function F (γ) = 1 for all γ. The Dirac delta function δ(x) enjoys
the sifting property for all appropriate g(x); that is,

g(x0) =

∫ ∞

−∞
g(x)δ(x − x0)dx.
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Describing which functions g(x) are appropriate is part of the theory of
generalized functions and is beyond the scope of this text. It follows from
the sifting and shifting properties that the FT of δ(x− x0) is the function
eix0γ .

The formula for the inverse FT now says

δ(x) =
1

2π

∫ ∞

−∞
e−ixγdγ. (2.11)

If we try to make sense of this integral according to the rules of calculus we
get stuck quickly. The problem is that the integral formula doesn’t mean
quite what it does ordinarily and the δ(x) is not really a function, but
an operator on functions; it is sometimes called a distribution. The Dirac
deltas are mathematical fictions, not in the bad sense of being lies or fakes,
but in the sense of being made up for some purpose. They provide helpful
descriptions of impulsive forces, probability densities in which a discrete
point has nonzero probability, or, in array processing, objects far enough
away to be viewed as occupying a discrete point in space.

We shall treat the relationship expressed by Equation (2.11) as a formal
statement, rather than attempt to explain the use of the integral in what
is surely an unconventional manner.

If we move the discussion into the γ domain and define the Dirac delta
function δ(γ) to be the FT of the function that has the value 1

2π for all
x, then the FT of the complex exponential function 1

2π e
−iγ0x is δ(γ − γ0),

visualized as a ”spike” at γ0, that is, a generalized function that has the
value +∞ at γ = γ0 and zero elsewhere. This is a useful result, in that it
provides the motivation for considering the Fourier transform of a signal
s(t) containing hidden periodicities. If s(t) is a sum of complex exponentials
with frequencies −γn, then its Fourier transform will consist of Dirac delta
functions δ(γ − γn). If we then estimate the Fourier transform of s(t) from
sampled data, we are looking for the peaks in the Fourier transform that
approximate the infinitely high spikes of these delta functions.

Ex. 2.11 Use the fact that sgn(x) = 2u(x) − 1 and Exercise 2.4 to show
that f(x) = u(x) has the FT F (γ) = i/γ + πδ(γ).

Ex. 2.12 Let f, F be a FT pair. Let g(x) =
∫ x
−∞ f(y)dy. Show that the

FT of g(x) is G(γ) = πF (0)δ(γ) + iF (γ)
γ . Hint: For the Heaviside function

u(x) we have ∫ x

−∞
f(y)dy =

∫ ∞

−∞
f(y)u(x− y)dy.
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2.8 Convolution Filters

In many remote-sensing problems we want values of a function f(x),
but are only able to measure values of another function, h(x), related to
f(x) in some way. For example, suppose that x is time and f(x) represents
what a speaker says into a telephone. The phone line distorts the signal
somewhat, often attenuating the higher frequencies. What the person at
the other end hears is not f(x), but a related signal function, h(x). For
another example, suppose that f(x, y) is a two-dimensional picture viewed
by someone with poor eyesight. What that person sees is not f(x, y) but
h(x, y), a distorted version of the true f(x, y). In both examples, our goal
is to recover the original undistorted signal or image. To do this, it helps
to model the distortion. Convolution is a useful tool for this purpose.

Often, the function h(x) has Fourier transform

H(γ) = F (γ)G(γ),

so that h(x) is the convolution of the desired function f(x) with another
function g(x). The function G(γ) describes the effects of the measuring sys-
tem, the telephone line in our first example, or the weak eyes in the second
example, or the refraction of light as it passes through the atmosphere, in
optical imaging. If we can use our measurements of h(x) to estimate H(γ)
and if we have some knowledge of the system distortion function, that is,
some knowledge of G(γ) itself, then there is a chance that we can estimate
F (γ), and thereby estimate f(x).

If we apply the Fourier Inversion Formula to H(γ) = F (γ)G(γ), we get

h(x) =
1

2π

∫
F (γ)G(γ)e−iγxdx. (2.12)

The function h(x) that results is h(x) = (f ∗ g)(x), the convolution of the
functions f(x) and g(x), with the latter given by

g(x) =
1

2π

∫
G(γ)e−iγxdx.

Note that, if f(x) = δ(x), then h(x) = g(x). In the image processing
example, this says that, if the true picture f is a single bright spot, then
the blurred image h is g itself. For that reason, the function g is called the
point-spread function of the distorting system.

Convolution filtering refers to the process of converting any given func-
tion, say f(x), into a different function, say h(x), by convolving f(x) with a
fixed function g(x). Since this process can be achieved by multiplying F (γ)
by G(γ) and then inverse Fourier transforming, such convolution filters are
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studied in terms of the properties of the function G(γ), known in this con-
text as the system transfer function, or the optical transfer function (OTF);
when γ is a frequency, rather than a spatial frequency, G(γ) is called the
frequency-response function of the filter. The magnitude function |G(γ)| is
called the modulation transfer function (MTF). The study of convolution
filters is a major part of signal processing. Such filters provide both rea-
sonable models for the degradation that signals undergo, and useful tools
for reconstruction. For an important example of the use of filtering, see
Chapter 27 on Reverberation and Echo-Cancellation.

Let us rewrite Equation (2.12), replacing F (γ) with its definition, as
given by Equation (2.6). Then we have

h(x) =

∫ ( 1

2π

∫
f(t)eiγtdt

)
G(γ)e−iγxdγ. (2.13)

Interchanging the order of integration, we get

h(x) =

∫
f(t)
( 1

2π

∫
G(γ)eiγ(t−x)dγ

)
dt. (2.14)

The inner integral is g(x− t), so we have

h(x) =

∫
f(t)g(x− t)dt; (2.15)

this is the definition of the convolution of the functions f and g.
If we know the nature of the blurring, then we know G(γ), at least

approximately. We can try to remove the blurring by taking measurements
of h(x), estimating H(γ) = F (γ)G(γ), dividing these numbers by the value
of G(γ), and then inverse Fourier transforming. The problem is that our
measurements are always noisy, and typical functions G(γ) have many zeros
and small values, making division by G(γ) dangerous, except for those γ
where the values of G(γ) are not too small. These latter values of γ tend to
be the smaller ones, centered around zero, so that we end up with estimates
of F (γ) itself only for the smaller values of γ. The result is a low-pass
filtering of the object f(x).

To investigate such low-pass filtering, we suppose that G(γ) = 1, for
|γ| ≤ Γ, and G(γ) = 0, otherwise. Then the filter is called the ideal Γ-
low-pass filter. In the far-field propagation model, the variable x is spatial,
and the variable γ is spatial frequency, related to how the function f(x)
changes spatially, as we move x. Rapid changes in f(x) are associated with
values of F (γ) for large γ. For the case in which the variable x is time, the
variable γ becomes frequency, and the effect of the low-pass filter on f(x)
is to remove its higher-frequency components.

One effect of low-pass filtering in image processing is to smooth out
the more rapidly changing features of an image. This can be useful if these
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features are simply unwanted oscillations, but if they are important detail,
such as edges, the smoothing presents a problem. Restoring such wanted
detail is often viewed as removing the unwanted effects of the low-pass filter-
ing; in other words, we try to recapture the missing high-spatial-frequency
values that have been zeroed out. Such an approach to image restoration
is called frequency-domain extrapolation. How can we hope to recover these
missing spatial frequencies, when they could have been anything? To have
some chance of estimating these missing values we need to have some prior
information about the image being reconstructed.

2.9 A Discontinuous Function

Consider the function f(x) = 1
2A , for |x| ≤ A, and f(x) = 0, otherwise.

The Fourier transform of this f(x) is

F (γ) =
sin(Aγ)

Aγ
,

for all real γ �= 0, and F (0) = 1. Note that F (γ) is nonzero throughout the
real line, except for isolated zeros, but that it goes to zero as we go to the
infinities. This is typical behavior. Notice also that the smaller the A, the
slower F (γ) dies out; the first zeros of F (γ) are at |γ| = π

A , so the main
lobe widens as A goes to zero. The function f(x) is not continuous, so its
Fourier transform cannot be absolutely integrable. In this case, the Fourier
Inversion Formula must be interpreted as involving convergence in the L2

norm.

2.10 Shannon’s Sampling Theorem

As one might expect, there are connections between Fourier series and
Fourier transforms, and several different ways to establish these connec-
tions. I believe the simplest way is to use Shannon’s Sampling Theorem.

When the Fourier transform function F (γ) is nonzero only within a
bounded interval [−Γ,Γ], we say that F is support-limited, and f is then
said to be Γ-band-limited. Then F has a Fourier series and the Fourier
coefficients are

cn =
1

2Γ

∫ Γ

−Γ

F (γ)e−i
nπ
Γ γdγ. (2.16)
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Comparing Equations (2.7) and (2.16), we see that

cn =
π

L
f
(nπ
Γ

)
.

This tells us that whenever F is determined by its Fourier coefficients, both
f and F are determined by the values of the inverse Fourier transform
function f at the infinite set of points x = nπ

Γ .
The Fourier coefficients cn and the inverse Fourier transform function f

play similar roles. When F is support-limited, we attempt to represent F as
an infinite sum of the complex exponential functions ei

nπ
Γ γ and the cn are

the complex weights associated with each of these exponential functions.
More generally, when F may not be support-limited, we attempt to express
F (γ) as a sum (an integral) over x of all the complex exponential functions
eixγ , and the complex numbers f(x) are the weight associated with each
exponential function.

In many signal-processing applications the variable x is time and de-
noted t, while the variable γ is frequency, and denoted ω. Then Shannon’s
Sampling Theorem says that, whenever there is a bound on the absolute
value of the frequencies involved in the function f , we can reconstruct f
completely from values (or samples) of f at an infinite discrete set of values
of x whose spacing depends on the bound on the frequencies; the higher
the bound, the smaller the spacing between samples. When our sample
spacing is too large, we get aliasing. Aliasing is what results in the familiar
“strobe-light”effect and why the wagon wheels in cowboy movies appear to
revolve backwards.

If F (γ) is supported on the interval [−Γ,Γ], then F and f are completely
determined by the values of f(x) at the infinite set of points x = nπ

Γ . The
spacing Δ = π

Γ is called the Nyquist spacing.

Ex. 2.13 Let Γ = π, so that Δ = 1, fm = f(m), and gm = g(m). Use
the orthogonality of the functions eimγ on [−π, π] to establish Parseval’s
Equation:

〈f, g〉 =
∑∞

m=−∞ fmgm =

∫ π

−π
F (γ)G(γ)dγ/2π, (2.17)

from which it follows that

〈f, f〉 =
∫ ∞

−∞
|F (γ)|2dγ/2π.

Ex. 2.14 Let f(x) be defined for all real x and let F (γ) be its FT. Let

g(x) =

∞∑
k=−∞

f(x+ 2πk),
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assuming the sum exists. Show that g is a 2π-periodic function. Compute
its Fourier series and use it to derive the Poisson summation formula:

∞∑
k=−∞

f(2πk) =
1

2π

∞∑
n=−∞

F (n).

2.11 What Shannon Does Not Say

It is important to remember that Shannon’s Sampling Theorem tells us
that the doubly infinite sequence of values {f(nΔ)}∞n=−∞ is sufficient to re-
cover exactly the function F (γ) and, thereby, the function f(x). Therefore,
sampling at the rate of twice the highest frequency (in Hertz) is sufficient
only when we have the complete doubly infinite sequence of samples. Of
course, in practice, we never have an infinite number of values of anything,
so the rule of thumb expressed by Shannon’s Sampling Theorem is not
valid. Since we know that we will end up with only finitely many samples,
each additional data value is additional information. There is no reason to
stick to the sampling rate of twice the highest frequency.

2.12 Inverse Problems

In this section we introduce the concept of an inverse problem, using
Fourier series to solve a heat-conduction problem. Many of the problems we
study in applied mathematics are direct problems. For example, we imagine
a ball dropped from a building of known height h and we calculate the time
it takes for it to hit the ground and the impact velocity. Once we make cer-
tain simplifying assumptions about gravity and air resistance, we are able
to solve this problem easily. Using his inverse-square law of universal grav-
itation, Newton was able to show that planets move in ellipses, with the
sun at one focal point. Generally, direct problems conform to the usual
flow of time and seek the effects due to known causes. Problems we call
inverse problems go the other way, seeking the causes of observed effects;
we measure the impact velocity to determine the height h of the build-
ing. Newton solved an inverse problem when he determined that Kepler’s
empirical laws of planetary motion follow from an inverse-square law of
universal gravitation.
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In each of the examples of remote sensing just presented in Chapter 1
we have measured some effects and want to know the causes. In x-ray to-
mography, for example, we observe that the x-rays that passed through the
body of the patient come out weaker than when they went in. We know that
they were weakened, or attenuated, because they were partially absorbed
by the material they had to pass through; we want to know precisely where
the attenuation took place. This is an inverse problem; we are trying to go
back in time, to uncover the causes of the observed effects.

Direct problems have been studied for a long time, while the theory of
inverse problems is still being developed. Generally speaking, direct prob-
lems are easier than inverse problems. Direct problems, at least those cor-
responding to actual physical situations, tend to be well-posed in the sense
of Hadamard, while inverse problems are often ill-posed. A problem is said
to be well-posed if there is a unique solution for each input to the problem
and the solution varies continuously with the input; roughly speaking, small
changes in the input lead to small changes in the solution. If we vary the
height of the building slightly, the time until the ball hits the ground and
its impact velocity will change only slightly. For inverse problems, there
may be many solutions, or none, and slight changes in the data can cause
the solutions to differ greatly. In [7] Bertero and Boccacci give a nice il-
lustration of the difference between direct and inverse problems, using the
heat equation.

Suppose that u(x, t) is the temperature distribution for x in the interval
[0, a] and t ≥ 0. The function u(x, t) satisfies the heat equation

∂2u

∂x2
=

1

D

∂u

∂t
,

where D > 0 is the thermal conductivity. In addition, we adopt the bound-
ary conditions u(x, 0) = f(x), and u(0, t) = u(a, t) = 0, for all t. By
separating the variables, and using Fourier series, we find that, if

f(x) =

∞∑
n=1

fn sin
(nπx

a

)
,

where

fn =
2

a

∫ a

0

f(x) sin
(nπx

a

)
dx,

then

u(x, t) =

∞∑
n=1

fne
−D(πn

a )2t sin
(nπx

a

)
.

The direct problem is to find u(x, t), given f(x). Suppose that we know
f(x) with some finite precision, that is, we know those Fourier coefficients
fn for which |fn| ≥ ε > 0. Because of the decaying exponential factor, fewer
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Fourier coefficients in the expansion of u(x, t) will be above this threshold,
and we can determine u(x, t) with the same precision or better. The solution
to the heat equation tends to be smoother than the input distribution.

The inverse problem is to determine the initial distribution f(x) from
knowledge of u(x, t) at one or more times t > 0. As we just saw, for any
fixed time t > 0, the Fourier coefficients of u(x, t) will die off faster than
the fn do, leaving fewer coefficients above the threshold of ε. This means
we can determine fewer and fewer of the fn as t grows larger. For t beyond
some point, it will be nearly impossible to say anything about f(x).

Once again, the proper interpretation of Equation (2.7) will depend on
the properties of the functions involved. It may happen that one or both of
these integrals will fail to be defined in the usual way and will be interpreted
as the principal value of the integral [80].

2.13 Two-Dimensional Fourier Transforms

The Fourier transform is also defined for functions of several real vari-
ables f(x1, ..., xN ). The multidimensional FT arises in image processing,
scattering, transmission tomography, and many other areas. In this section
we discuss the extension of the definitions of the FT and IFT to functions
of two real variables.

2.13.1 The Basic Formulas

For the complex-valued function f(x, y) of two real variables, the Fourier
transformation is

F (α, β) =

∫ ∫
f(x, y)ei(xα+yβ)dxdy.

Just as in the one-dimensional case, the Fourier transformation that pro-
duced F (α, β) can be inverted to recover the original f(x, y). The Fourier
Inversion Formula in this case is

f(x, y) =
1

4π2

∫ ∫
F (α, β)e−i(αx+βy)dαdβ. (2.18)

It is important to note that this procedure can be viewed as two one-
dimensional Fourier inversions: First, we invert F (α, β), as a function of,
say, β only, to get the function of α and y

g(α, y) =
1

2π

∫
F (α, β)e−iβydβ;
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second, we invert g(α, y), as a function of α, to get

f(x, y) =
1

2π

∫
g(α, y)e−iαxdα.

If we write the functions f(x, y) and F (α, β) in polar coordinates, we ob-
tain alternative ways to implement the two-dimensional Fourier inversion.
We shall consider these other ways in Chapter 11, when we discuss the
tomography problem of reconstructing a function f(x, y) from line-integral
data.

2.13.2 Radial Functions

Now we consider the two-dimensional Fourier-transform pairs in polar
coordinates. We convert to polar coordinates using (x, y) = r(cos θ, sin θ)
and (α, β) = ρ(cosω, sinω). Then

F (ρ, ω) =

∫ ∞

0

∫ π

−π
f(r, θ)eirρ cos(θ−ω)rdrdθ. (2.19)

Say that a function f(x, y) of two variables is a radial function if x2 + y2 =
x21 + y21 implies f(x, y) = f(x1, y1), for all points (x, y) and (x1, y1); that

is, f(x, y) = g(
√
x2 + y2) for some function g of one variable.

Ex. 2.15 Show that if f is radial then its FT F is also radial. Find the
FT of the radial function f(x, y) = 1√

x2+y2
. Hints: Insert f(r, θ) = g(r) in

Equation (2.19) to obtain

F (ρ, ω) =

∫ ∞

0

∫ π

−π
g(r)eirρ cos(θ−ω)rdrdθ

or

F (ρ, ω) =

∫ ∞

0

rg(r)
[ ∫ π

−π
eirρ cos(θ−ω)dθ

]
dr.

Show that the inner integral is independent of ω, and then use the fact that∫ π

−π
eirρ cos θdθ = 2πJ0(rρ),

with J0 the 0th order Bessel function, to get

F (ρ, ω) = H(ρ) = 2π

∫ ∞

0

rg(r)J0(rρ)dr.

The function H(ρ) is called the Hankel transform of g(r). Summarizing,
we say that if f(x, y) is a radial function obtained using g then its Fourier
transform F (α, β) is also a radial function, obtained using the Hankel trans-
form of g.
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2.13.3 An Example

For example, suppose that f(x, y) = 1 for
√
x2 + y2 ≤ R, and f(x, y) =

0, otherwise. Then we have

F (α, β) =

∫ π

−π

∫ R

0

e−i(αr cos θ+βr sin θ)rdrdθ.

In polar coordinates, with α = ρ cosφ and β = ρ sinφ, we have

F (ρ, φ) =

∫ R

0

∫ π

−π
eirρ cos(θ−φ)dθrdr.

The inner integral is well known;∫ π

−π
eirρ cos(θ−φ)dθ = 2πJ0(rρ),

where J0 and Jn denote the 0th order and nth order Bessel functions,
respectively. Using the following identity∫ z

0

tnJn−1(t)dt = znJn(z),

we have

F (ρ, φ) =
2πR

ρ
J1(ρR).

Notice that, since f(x, z) is a radial function, that is, dependent only on
the distance from (0, 0) to (x, y), its Fourier transform is also radial.

The first positive zero of J1(t) is around t = 4, so when we measure
F at various locations and find F (ρ, φ) = 0 for a particular (ρ, φ), we can
estimate R ≈ 4/ρ. So, even when a distant spherical object, like a star,
is too far away to be imaged well, we can sometimes estimate its size by
finding where the intensity of the received signal is zero [101].

In her 1953 Nature paper with R. G. Gosling the British scientist
Rosalind Franklin presented evidence she had obtained from x-ray scat-
tering experiments that corroborated the double-helical structure of the
DNA molecule proposed a short time previously by Crick and Watson. She
showed mathematically that the scattering pattern from a helical structure
would be described by the Bessel functions Jn and noted that the observed
maximal intensities in her photographs corresponded to the zeros of these
Bessel functions.

According to Lightman [111], most historians of science who have stud-
ied the work that led to the discovery of the structure of DNA agree that
the contribution of Rosalind Franklin is understated in Watson’s account in
his book [160]. In 1962 Francis Crick and James Watson shared the Nobel
Prize in Physics with Maurice Wilkins of King’s College, London, who had
worked with Franklin on DNA. Had she not died of cancer in 1958, it is
plausible that Franklin, not Wilkins, would have shared the prize.
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2.14 The Uncertainty Principle

We saw earlier that the Fourier transform of the function f(x) = e−α
2x2

is

F (γ) =

√
π

α
e−( γ

2α )2 .

This Fourier-transform pair illustrates well the general fact that the more
concentrated f(x) is, the more spread out F (γ) is. In particular, it is im-
possible for both f and F to have bounded support. We prove the following
inequality: ∫

x2|f(x)|2dx∫ |f(x)|2dx
∫
γ2|F (γ)|2dγ∫ |F (γ)|2dγ ≥ 1

4
. (2.20)

This inequality is the mathematical version of Heisenberg’s Uncertainty
Principle.

As we shall show in Chapter 19, the Cauchy-Schwarz Inequality holds
in any vector space with an inner product. In the present situation, the
Cauchy-Schwarz Inequality tells us that

∣∣∣ ∫ f(x)g(x)dx
∣∣∣2 ≤

∫
|f(x)|2dx

∫
|g(x)|2dx,

with equality if and only if g(x) = kf(x), for some scalar k. We will need
this in the proof of the inequality (2.20). We’ll also need the Parseval-
Plancherel Equation (2.9), as well as the fact that, for any two complex
numbers z and w, we have

|zw| ≥ 1

2
(zw + zw).

In addition, we assume that

lim
a→+∞(a(|f(a)|2 + |f(−a)|2) = 0,

so that, using integration by parts, we have∫
x

(
d

dx
|f(x)|2

)
dx = −

∫
|f(x)|2dx.

The proof of Inequality (2.20) now follows:

1

2π

∫
x2|f(x)|2dx

∫
γ2|F (γ)|2dγ =

1

2π

∫
|xf(x)|2dx

∫
|γF (γ)|2dγ
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=
1

2π

∫
|xf(x)|2dx

∫
|f ′(x)|2dx ≥

( ∫
|xf ′(x)f(x)|dx

)2
≥
(∫ x

2
[f ′(x)f(x) + f(x)f ′(x)]dx

)2
=

1

4

( ∫
x(

d

dx
|f(x)|2)dx

)2
=
1

4

(∫
|f(x)|2dx

)2
=

1

8π

∫
|f(x)|2dx

∫
|F (γ)|2dγ.

This completes the proof of Inequality (2.20).
The significance of this inequality is made evident when we reformulate

it in terms of the variances of probability densities. Suppose that∫
|f(x)|2dx =

1

2π

∫
|F (γ)|2dγ = 1,

so that we may view |f(x)|2 and 1
2π |F (γ)|2 as probability density functions

associated with random variables X and Y , respectively. From probability
theory we know that the expected values E(X) and E(Y ) are given by

m = E(X) =

∫
x|f(x)|2dx

and

M = E(Y ) =
1

2π

∫
γ|F (γ)|2dγ.

Let
g(x) = f(x+m)eiMx,

so that the Fourier transform of g(x) is

G(γ) = F (γ +M)ei(M−γ)m.

Then, |g(x)|2 = |f(x+m)|2 and |G(γ)|2 = |F (γ +M)|2; we also have∫
x|g(x)|2dx = 0

and ∫
γ|G(γ)|2dγ = 0.

The point here is that we can assume thatm = 0 andM = 0. Consequently,
the variance of X is

var(X) =

∫
x2|f(x)|2dx

and the variance of Y is

var(Y ) =
1

2π

∫
γ2|F (γ)|2dγ.
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The variances measure how spread out the functions |f(x)|2 and |F (γ)|2
are around their respective means. From Inequality (2.20) we know that
the product of these variances is not smaller than 1

4 .

Ex. 2.16 Show, by examining the proof of Inequality (2.20), that if the
inequality is an equation for some f then f ′(x) = kxf(x), so that f(x) =

e−α
2x2

for some α > 0. Hint: What can be said when Cauchy’s Inequality
is an equality?

2.15 Best Approximation

The basic problem here is to estimate F (γ) from finitely many values of
f(x), under the assumption that F (γ) = 0 for |γ| > Γ, for some Γ > 0. Since
we do not have all of f(x), the best we can hope to do is to approximate
F (γ) in some sense. To help us understand how best approximation works,
we consider the orthogonality principle.

2.15.1 The Orthogonality Principle

Imagine that you are standing and looking down at the floor. The point
B on the floor that is closest to the tip of your nose, which we label F ,
is the unique point on the floor such that the vector from B to any other
point A on the floor is perpendicular to the vector from B to F ; that is,
FB · AB = 0. This is a simple illustration of the orthogonality principle.

When two vectors are perpendicular to one another, their dot product
is zero. This idea can be extended to functions. We say that two functions
F (γ) and G(γ) defined on the interval [−Γ,Γ] are orthogonal if∫ Γ

−Γ

F (γ)G(γ)dγ = 0.

Suppose that Gn(γ), n = 0, ..., N − 1, are known functions, and

A(γ) =

N−1∑
n=0

anGn(γ),

for any coefficients an. We want to minimize the approximation error∫ Γ

−Γ

|F (γ)−A(γ)|2dγ,
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over all coefficients an. Suppose that the best choices are an = bn. The
orthogonality principle tells us that the best approximation

B(γ) =

N−1∑
n=0

bnGn(γ)

is such that the function F (γ) − B(γ) is orthogonal to A(γ) − B(γ) for
every choice of the an.

Suppose that we fix m and select an = bn, for n �= m, and am = bm+1.
Then we have ∫ Γ

−Γ

(F (γ)−B(γ))Gm(γ)dγ = 0. (2.21)

We can use Equation (2.21) to help us find the best bn.
From Equation (2.21) we have

∫ Γ

−Γ

F (γ)Gm(γ)dγ =

N−1∑
n=0

bn

∫ Γ

−Γ

Gn(γ)Gm(γ)dγ.

Since we know the Gn(γ), we know the integrals

∫ Γ

−Γ

Gn(γ)Gm(γ)dγ.

If we can learn the values ∫ Γ

−Γ

F (γ)Gm(γ)dγ

from measurements, then we simply solve a system of linear equations to
find the bn.

2.15.2 An Example

Suppose that we have measured the values f(xn), for n = 0, ..., N − 1,
where the xn are arbitrary real numbers. Then, from these measurements,
we can find the best approximation of F (γ) of the form

A(γ) =

N−1∑
n=0

anGn(γ),

if we select Gn(γ) = eiγxn .
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2.15.3 The DFT as Best Approximation

Suppose now that our data values are f(Δn), for n = 0, 1, ..., N − 1,
where we have chosen Δ = π

Γ . We can view the DFT as a best approxima-
tion of the function F (γ) over the interval [−Γ,Γ], in the following sense.
Consider all functions of the form

A(γ) =
N−1∑
n=0

ane
inΔγ ,

where the best coefficients an = bn are to be determined. Now select those
bn for which the approximation error

∫ Γ

−Γ

|F (γ)−A(γ)|2dγ

is minimized. Then it is easily shown that these optimal bn are precisely

bn = Δf(nΔ),

for n = 0, 1, ..., N − 1.

Ex. 2.17 Show that bn = Δf(nΔ), for n = 0, 1, ..., N − 1, are the optimal
coefficients.

The DFT estimate is reasonably accurate when N is large, but when
N is not large there are usually better ways to estimate F (γ), as we shall
see.

In Figure 2.1, the real-valued function f(x) is the solid-line figure in both
graphs. In the bottom graph, we see the true f(x) and a DFT estimate. The
top graph is the MDFT estimator, the result of band-limited extrapolation,
a technique for predicting missing Fourier coefficients that we shall discuss
next.

2.15.4 The Modified DFT (MDFT)

We suppose, as in the previous subsection, that F (γ) = 0, for |γ| > Γ,
and that our data values are f(nΔ), for n = 0, 1, ..., N − 1. It is often
convenient to use a sampling interval Δ that is smaller than π

Γ in order
to obtain more data values. Therefore, we assume now that Δ < π

Γ . Once
again, we seek the function of the form

A(γ) =

N−1∑
n=0

ane
inΔγ ,
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FIGURE 2.1: The non-iterative band-limited extrapolation method
(MDFT) (top) and the DFT (bottom) for N = 64, 30 times over-sampled
data.

defined for |γ| ≤ Γ, for which the error measurement

∫ Γ

−Γ

|F (γ)−A(γ)|2dγ

is minimized.
In the previous example, for which Δ = π

Γ , we have

∫ Γ

−Γ

ei(n−m)Δγdγ = 0,

for m �= n. As the reader will discover in doing Exercise 2.17, this greatly
simplifies the system of linear equations that we need to solve to get the
optimal bn. Now, because Δ �= π

Γ , we have

∫ Γ

−Γ

ei(n−m)Δγdγ =
sin((n−m)ΔΓ)

π(n−m)Δ
,

which is not zero when n �= m. This means that we have to solve a more



42 Signal Processing: A Mathematical Approach

complicated system of linear equations in order to find the bn. It is impor-
tant to note that the optimal bn are not equal to Δf(nΔ) now, so the DFT
is not the optimal approximation. The best approximation in this case we
call the modified DFT (MDFT), given by

FMDFT (γ) = χΓ(γ)

N−1∑
n=0

bne
inΔγ , (2.22)

where χΓ(γ) is the function that is one for |γ| ≤ Γ and zero otherwise.

2.15.5 The PDFT

In the previous subsection, the functions A(γ) were defined for |γ| ≤ Γ.
Therefore, we could have written them as

A(γ) = χΓ(γ)
N−1∑
n=0

ane
inΔγ .

The factor χΓ(γ) serves to incorporate into our approximating function our
prior knowledge that F (γ) = 0 outside the interval [−Γ,Γ]. What can we
do if we have additional prior knowledge about the broad features of F (γ)
that we wish to include?

Suppose that P (γ) ≥ 0 is a prior estimate of |F (γ)|. Now we approxi-
mate F (γ) with functions of the form

C(γ) = P (γ)

N−1∑
n=0

cne
inΔγ .

As we shall see in Chapter 25, the best choices of the cn are the ones that
satisfy the equations

f(mΔ) =
N−1∑
n=0

cnp((n−m)Δ), (2.23)

for m = 0, 1, ..., N − 1, where

p(x) =
1

2π

∫ Γ

−Γ

P (γ)e−ixγdγ

is the inverse Fourier transform of the function P (γ). This best approxima-
tion we call the PDFT [23, 24, 26]. The use of the PDFT was illustrated
in Chapter 1, in the reconstruction of a simulated head slice.
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2.16 Analysis of the MDFT

Let our data be f(xm), m = 1, ...,M , where the xm are arbitrary values
of the variable x. If F (γ) is zero outside [−Γ,Γ], then minimizing the energy
over [−Γ,Γ] subject to data consistency produces an estimate of the form

FMDFT (γ) = χΓ(γ)

M∑
m=1

bm exp(ixmγ),

with the bm satisfying the equations

f(xn) =
M∑
m=1

bm
sin(Γ(xm − xn))

π(xm − xn)
,

for n = 1, ...,M . The matrix SΓ with entries sin(Γ(xm−xn))
π(xm−xn)

we call a sinc
matrix.

2.16.1 Eigenvector Analysis of the MDFT

Although it seems reasonable that incorporating the additional infor-
mation about the support of F (γ) should improve the estimation, it would
be more convincing if we had a more mathematical argument to make.
For that we turn to an analysis of the eigenvectors of the sinc matrix.
Throughout this subsection we make the simplification that xn = n.

Ex. 2.18 The purpose of this exercise is to show that, for an Hermitian
nonnegative-definiteM byM matrix Q, a norm-one eigenvector u1 of Q as-
sociated with its largest eigenvalue, λ1, maximizes the quadratic form a†Qa
over all vectors a with norm one. Let Q = ULU † be the eigenvector decom-
position of Q, where the columns of U are mutually orthogonal eigenvectors
un with norms equal to one, so that U †U = I, and L = diag{λ1, ..., λM} is
the diagonal matrix with the eigenvalues of Q as its entries along the main
diagonal. Assume that λ1 ≥ λ2 ≥ ... ≥ λM . Then maximize

a†Qa =

M∑
n=1

λn |a†un|2,

subject to the constraint

a†a = a†U †Ua =

M∑
n=1

|a†un|2 = 1.

Hint: Show a†Qa is a convex combination of the eigenvalues of Q.
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Ex. 2.19 Show that, for the sinc matrix Q = SΓ, the quadratic form a†Qa
in the previous exercise becomes

a†SΓa =
1

2π

∫ Γ

−Γ

∣∣∣ M∑
n=1

ane
inγ
∣∣∣2dγ.

Show that the norm of the vector a is the square root of the integral

1

2π

∫ π

−π

∣∣∣ M∑
n=1

ane
inγ
∣∣∣2dγ.

Ex. 2.20 ForM = 30 compute the eigenvalues of the matrix SΓ for various
choices of Γ, such as Γ = π

k , for k = 2, 3, ..., 10. For each k arrange the
set of eigenvalues in decreasing order and note the proportion of them that
are not near zero. The set of eigenvalues of a matrix is sometimes called
its eigenspectrum and the nonnegative function χΓ(γ) is a power spectrum;
here is one time in which different notions of a spectrum are related.

2.16.2 The Eigenfunctions of SΓ

Suppose that the vector u1 = (u11, ..., u
1
M )T is an eigenvector of SΓ

corresponding to the largest eigenvalue, λ1. Associate with u1 the eigen-
function

U1(γ) =

M∑
n=1

u1ne
inγ .

Then

λ1 =

∫ Γ

−Γ

|U1(γ)|2dγ/
∫ π

−π
|U1(γ)|2dγ

and U1(γ) is the function of its form that is most concentrated within the
interval [−Γ,Γ].

Similarly, if uM is an eigenvector of SΓ associated with the smallest
eigenvalue λM , then the corresponding eigenfunction UM (γ) is the function
of its form least concentrated in the interval [−Γ,Γ].

Ex. 2.21 On the interval |γ| ≤ π plot the functions |Um(γ)| corresponding
to each of the eigenvectors of the sinc matrix SΓ. Pay particular attention
to the places where each of these functions is zero.
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The eigenvectors of SΓ corresponding to different eigenvalues are orthog-
onal, that is (um)†un = 0 if m is not n. We can write this in terms of
integrals: ∫ π

−π
Un(γ)Um(γ)dγ = 0

if m is not n. The mutual orthogonality of these eigenfunctions is related
to the locations of their roots, which were studied in the previous exercise.

Any Hermitian matrix Q is invertible if and only if none of its eigenval-
ues is zero. With λm and um,m = 1, ...,M , the eigenvalues and eigenvectors
of Q, the inverse of Q can then be written as

Q−1 = (1/λ1)u
1(u1)† + ...+ (1/λM )uM (uM )†.

Ex. 2.22 Show that the MDFT estimator given by Equation (2.22)
FMDFT (γ) can be written as

FMDFT (γ) = χΓ(γ)

M∑
m=1

1

λm
(um)†dUm(γ),

where d = (f(1), f(2), ..., f(M))T is the data vector.

Ex. 2.23 Show that the DFT estimate of F (γ), restricted to the interval
[−Γ,Γ], is

FDFT (γ) = χΓ(γ)
M∑
m=1

(um)†dUm(γ).

Hint: Use the fact that I = UU †.

From these two exercises we can learn why it is that the estimate FMDFT (γ)
resolves better than the DFT. The former makes more use of the eigenfunc-
tions Um(γ) for higher values ofm, since these are the ones for which λm is
closer to zero. Since those eigenfunctions are the ones having most of their
roots within the interval [−Γ,Γ], they have the most flexibility within that
region and are better able to describe those features in F (γ) that are not
resolved by the DFT.
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3.1 Chapter Summary

A basic problem in remote sensing is to determine the nature of a dis-
tant object by measuring signals transmitted by or reflected from that
object. If the object of interest is sufficiently remote, that is, is in the far
field, the data we obtain by sampling the propagating spatio-temporal field
is related, approximately, to what we want by Fourier transformation. In
this chapter we present examples to illustrate the roles played by Fourier
series and Fourier coefficients in the analysis of remote sensing and signal
transmission. We use these examples to motivate several of the computa-
tional problems we shall consider in detail later in the text. We also discuss
two inverse problems involving the Laplace transform.

We consider here a common problem of remote sensing of transmitted or
reflected waves propagating from distant sources. Examples include optical
imaging of planets and asteroids using reflected sunlight, radio-astronomy
imaging of distant sources of radio waves, active and passive sonar, radar
imaging using microwaves, and infrared (IR) imaging to monitor the ocean
temperature. In such situations, as well as in transmission and emission
tomography and magnetic-resonance imaging, what we measure are es-
sentially the Fourier coefficients or values of the Fourier transform of the
function we want to estimate. The image reconstruction problem then be-
comes one of estimating a function from finitely many noisy values of its
Fourier transform.

3.2 Fourier Series and Fourier Coefficients

We suppose that f : [−L,L] → C, and that its Fourier series converges
to f(x) for all x in [−L,L]. In the examples in this chapter, we shall see
how Fourier coefficients can arise as data obtained through measurements.
However, we shall be able to measure only a finite number of the Fourier
coefficients. One issue that will concern us is the effect on the estimation
of f(x) if we use some, but not all, of its Fourier coefficients.

Suppose that we have cn, as defined by Equation (2.5), for n =
0, 1, 2, ..., N . It is not unreasonable to try to estimate the function f(x)
using the discrete Fourier transform (DFT) estimate, which is

fDFT (x) =

N∑
n=0

cne
inπ

L x.
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When we know that f(x) is real-valued, and so c−n = cn, we naturally
assume that we have the values of cn for |n| ≤ N .

3.3 The Unknown Strength Problem

In this example, we imagine that each point x in the interval [−L,L]
is sending out a signal that is a complex-exponential-function signal, also
called a sinusoid, at the frequency ω, each with its own strength f(x); that
is, the signal sent by the point x is

f(x)eiωt.

In our first example, we imagine that the strength function f(x) is unknown
and we want to determine it. It could be the case that the signals originate
at the points x, as with light or radio waves from the sun, or are simply
reflected from the points x, as is sunlight from the moon or radio waves
in radar. Later in this chapter, we shall investigate a related example, in
which the points x transmit known signals and we want to determine what
is received elsewhere.

3.3.1 Measurement in the Far Field

Now let us consider what is received by a point P on the circumference
of a circle centered at the origin and having large radius D. The point P
corresponds to the angle θ as shown in Figure 3.1; we use θ in the interval
[0, π]. It takes a finite time for the signal sent from x at time t to reach P ,
so there is a delay.

We assume that c is the speed at which the signal propagates. Because
D is large relative to L, we make the far-field assumption, which allows us
to approximate the distance from x to P by D − x cos θ. Therefore, what
P receives at time t from x is approximately what was sent from x at time
t− 1

c (D − x cos θ).

Ex. 3.1 Show that, for any point P on the circle of radius D and any
x �= 0, the distance from x to P is always greater than or equal to the
far-field approximation D − x cos θ, with equality if and only if θ = 0 or
θ = π.

At time t, the point P receives from x the signal

f(x)eiω(t−
1
c (D−x cos θ) = eiω(t−

1
cD)f(x)ei

ω cos θ
c x.
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FIGURE 3.1: Far-field measurements.

Because the point P receives signals from all x in [−L,L], the signal that
P receives at time t is

eiω(t−
1
cD)

∫ L

−L
f(x)ei

ω cos θ
c xdx.

Therefore, from measurements in the far field, we obtain the values

∫ L

−L
f(x)ei

ω cos θ
c xdx.

When θ is chosen so that

ω cos θ

c
=

−nπ
L

(3.1)

we have cn.

3.3.2 Limited Data

Note that we will be able to solve Equation (3.1) for θ if and only if we
have

|n| ≤ Lω

πc
.
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This tells us that we can measure only finitely many of the Fourier coeffi-
cients of f(x). It is common in signal processing to speak of the wavelength
of a sinusoidal signal; the wavelength associated with a given ω and c is

λ =
2πc

ω
.

Therefore we can measure 2N+1 Fourier coefficients, whereN is the largest
integer not greater than 2L

λ , which is the length of the interval [−L,L],
measured in units of wavelength λ. We get more Fourier coefficients when
the product Lω is larger; this means that when L is small, we want ω to be
large, so that λ is small and N is large. As we saw previously, using these
finitely many Fourier coefficients to calculate the DFT reconstruction of
f(x) can lead to a poor estimate of f(x), particularly when N is small.

Consider the situation in which the points x are reflecting signals that
are sent to probe the structure of an object described by the function f ,
as in radar. This relationship between the number Lω and the number of
Fourier coefficients we can measure amounts to a connection between the
frequency of the probing signal and the resolution attainable; finer detail
is available only if the frequency is high enough.

The wavelengths used in primitive early radar at the start of World War
II were several meters long. Since resolution is proportional to aperture,
that is, the length of the array measured in units of wavelength, antennas
for such radar needed to be quite large. As Körner notes in [102], the general
feeling at the time was that the side with the shortest wavelength would
win the war. The cavity magnetron, invented during the war by British
scientists, made possible microwave radar having a wavelength of 10 cm,
which could then be mounted easily on planes.

3.3.3 Can We Get More Data?

As we just saw, we can make measurements at any points P in the
far field; perhaps we do not need to limit ourselves to just those angles
that lead to the cn. It may come as somewhat of a surprise, but from the
theory of complex analytic functions we can prove that there is enough
data available to us here to reconstruct f(x) perfectly, at least in principle.
The drawback, in practice, is that the measurements would have to be free
of noise and impossibly accurate. All is not lost, however.

3.3.4 Measuring the Fourier Transform

If θ is chosen so that
ω cos θ

c
=

−nπ
L

,
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then our measurement gives us the Fourier coefficients cn. But we can
select any angle θ and use any P we want. In other words, we can obtain
the values ∫ L

−L
f(x)ei

ω cos θ
c xdx,

for any angle θ. With the change of variable

γ =
ω cos θ

c
,

we can obtain the value of the Fourier transform,

F (γ) =

∫ L

−L
f(x)eiγxdx,

for any γ in the interval [−ω
c ,

ω
c ].

We are free to measure at any P and therefore to obtain values of F (γ)
for any value of γ in the interval [−ω

c ,
ω
c ]. We need to be careful how we

process the resulting data, however.

3.3.5 Over-Sampling

Suppose, for the sake of illustration, that we measure the far-field signals
at points P corresponding to angles θ that satisfy

ω cos θ

c
=

−nπ
2L

,

instead of
ω cos θ

c
=

−nπ
L

.

Now we have twice as many data points and from these new measurements
we can obtain

dn =

∫ L

−L
f(x)e−i

nπ
2L xdx,

for |n| ≤ 2N . We say now that our data is twice over-sampled. Note that
we call it over-sampled because the rate at which we are sampling is higher,
even though the distance between samples is shorter. The values dn are not
simply more of the Fourier coeffcients of f . The question now is: What are
we to do with these extra data values?

The values dn are, in fact, Fourier coefficients, but not of f ; they are
Fourier coefficients of the function g : [−2L, 2L] → C, where g(x) = f(x)
for |x| ≤ L, and g(x) = 0, otherwise. If we simply use the dn as Fourier
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coefficients of the function g(x) and compute the resulting DFT estimate
of g(x),

gDFT (x) =

2N∑
n=−2N

dne
inπ
2L x,

this function estimates f(x) for |x| ≤ L, but it also estimates g(x) = 0 for
the other values of x in [−2L, 2L]. When we graph gDFT (x) for |x| ≤ L
we find that we have no improvement over what we got with the previous
estimate fDFT . The problem is that we have wasted the extra data by
estimating g(x) = 0 where we already knew that it was zero. To make
good use of the extra data we need to incorporate this prior information
about the function g. The MDFT and PDFT algorithms provide estimates
of f(x) that incorporate prior information.

3.3.6 The Modified DFT

The modified DFT (MDFT) estimate was first presented in [22]. For
our example of twice over-sampled data, the MDFT is defined for |x| ≤ L
and has the algebraic form

fMDFT (x) =

2N∑
n=−2N

ane
inπ
2L x, (3.2)

for |x| ≤ L. The coefficients an are not the dn. The an are determined by
requiring that the function fMDFT be consistent with the measured data,
the dn. In other words, we must have

dn =

∫ L

−L
fMDFT (x)e

−inπ
2L xdx. (3.3)

When we insert fMDFT (x) as given in Equation (3.2) into Equation (3.3)
we get a system of 2N+1 linear equations in 2N+1 unknowns, the an. We
then solve this system for the an and use them in Equation (3.2). Figure
2.1 shows the improvement we can achieve using the MDFT. The data used
to construct the graphs in that figure was thirty times over-sampled. We
note here that, had we extended f initially as a 2L-periodic function, it
would be difficult to imagine the function g(x) and we would have a hard
time figuring out what to do with the dn.

In this example we measured twice as much data as previously. We
can, of course, measure even more data, and it need not correspond to the
Fourier coefficients of any function. The potential drawback is that, as we
use more data, the system of linear equations that we must solve to obtain
the MDFT estimate becomes increasingly sensitive to noise and round-off
error in the data. It is possible to lessen this effect by regularization, but
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not to eliminate it entirely. Regularization can be introduced here simply
by multiplying by, say, 1.01, the entries of the main diagonal of the matrix
of the linear system. This makes the matrix less ill-conditioned.

In our example, we used the prior knowledge that f(x) = 0 for |x| > L.
Now, we shall describe in detail the use of other forms of prior knowledge
about f(x) to obtain reconstructions that are better than the DFT.

3.3.7 Other Forms of Prior Knowledge

As we just showed, knowing that we have over-sampled in our measure-
ments can help us improve the resolution in our estimate of f(x). We may
have other forms of prior knowledge about f(x) that we can use. If we know
something about large-scale features of f(x), but not about finer details,
we can use the PDFT estimate, which is a generalization of the MDFT.
In Chapter 1 the PDFT was compared to the DFT in a two-dimensional
example of simulated head slices.

The MDFT estimator can be written as

fMDFT (x) = χL(x)

2N∑
n=−2N

ane
inπ
2L x.

We include the prior information that f(x) is supported on the interval
[−L,L] through the factor χL(x). If we select a function p(x) ≥ 0 that
describes our prior estimate of the shape of |f(x)|, we can then estimate
f(x) using the PDFT estimator, which, in this case of twice over-sampled
data, takes the form

fPDFT (x) = p(x)
2N∑

n=−2N

bne
inπ
2L x.

As with the MDFT estimator, we determine the coefficients bn by requiring
that fPDFT (x) be consistent with the measured data.

There are other things we may know about f(x). We may know that
f(x) is nonnegative, or we may know that f(x) is approximately zero for
most x, but contains very sharp peaks at a few places. In more formal
language, we may be willing to assume that f(x) contains a few Dirac delta
functions in a flat background. There are nonlinear methods, such as the
maximum entropy method, the indirect PDFT (IPDFT), and eigenvector
methods, that can be used to advantage in such cases; these methods are
often called high-resolution methods.
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3.4 Generalizing the MDFT and PDFT

In our discussion so far the data we have obtained are values of the
Fourier transform of the support-limited function f(x). The MDFT and
PDFT can be extended to handle those cases in which the data we have
are more general linear-functional values pertaining to f(x).

Suppose that our data values are finitely many linear-functional values,

dn =

∫ L

−L
f(x)gn(x)dx,

for n = 1, ..., N , where the gn(x) are known functions. The extended MDFT
estimate of f(x) is

fMDFT (x) = χL(x)

N∑
m=1

amgm(x),

where the coefficients am are chosen so that fMDFT is consistent with the
measured data; that is,

dn =

∫ L

−L
fMDFT (x)gn(x)dx,

for each n. To find the am we need to solve a system of N equations in N
unknowns.

The PDFT can be extended in a similar way. The extended PDFT
estimate of f(x) is

fPDFT (x) = p(x)
N∑
m=1

bmgm(x),

where, as previously, the coefficients bm are chosen by forcing the estimate
of f(x) to be consistent with the measured data. Again, we need to solve
a system of N equations in N unknowns to find the coefficients.

For large values of N , setting up and solving the required systems of
linear equations can involve considerable effort. If we discretize the func-
tions f(x) and gn(x), we can obtain good approximations of the extended
MDFT and PDFT using the iterative ART algorithm [142, 143].
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3.5 One-Dimensional Arrays

In this section we consider the reversed situation in which the sources
of the signals are the points on the circumference of the large circle and we
are measuring the received signals at points of the x-axis. The objective is
to determine the relative strengths of the signals coming to us from various
angles.

People with sight in only one eye have a difficult time perceiving depth
in their visual field, unless they move their heads. Having two functioning
ears helps us determine the direction from which sound is coming; blind
people, who are more than usually dependent on their hearing, often move
their heads to get a better sense of where the source of sound is. Snakes
who smell with their tongues often have forked tongues, the better to detect
the direction of the sources of different smells. In certain remote-sensing
situations the sensors respond equally to arrivals from all directions. One
then obtains the needed directionality by using multiple sensors, laid out
in some spatial configuration called the sensor array. The simplest config-
uration is to have the sensors placed in a straight line, as in a sonar towed
array.

Now we imagine that the points P = P (θ) in the far field are the sources
of the signals and we are able to measure the transmissions received at
points x on the x-axis; we no longer assume that these points are confined
to the interval [−L,L] . The P corresponding to the angle θ sends f(θ)eiωt,
where the absolute value of f(θ) is the strength of the signal coming from
P . We allow f(θ) to be complex, so that it has both magnitude and phase,
which means that we do not assume that the signals from the different
angles are in phase with one another; that is, we do not assume that they
all begin at the same time.

In narrow-band passive sonar, for example, we may have hydrophone
sensors placed at various points x and our goal is to determine how much
acoustic energy at a specified frequency is coming from different directions.
There may be only a few directions contributing significant energy at the
frequency of interest, in which case f(θ) is nearly zero for all but a few
values of θ.

3.5.1 Measuring Fourier Coefficients

At time t the point x on the x-axis receives from P = P (θ) what P sent
at time t− (D − x cos θ)/c; so, at time t, x receives from P

eiω(t−D/c)f(θ)ei
ωx
c cos θ.
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Since x receives signals from all the angles, what x receives at time t is

eiω(t−D/c)
∫ π

0

f(θ)ei
ωx
c cos θdθ.

We limit the angle θ to the interval [0, π] because, in this sensing model,
we cannot distinguish receptions from θ and from 2π − θ.

To simplify notation, we shall introduce the variable u = cos θ. We then
have

du

dθ
= − sin(θ) = −

√
1− u2,

so that

dθ = − 1√
1− u2

du.

Now let g(u) be the function

g(u) =
f(arccos(u))√

1− u2
,

defined for u in the interval (−1, 1). Since

∫ π

0

f(θ)ei
ωx
c cos θdθ =

∫ 1

−1

g(u)ei
ωx
c udu,

we find that, from our measurement at x, we obtain G(γ), the value of the
Fourier transform of g(u) at γ, for

γ =
ωx

c
.

Since g(u) is limited to the interval (−1, 1), its Fourier coefficients are

an =
1

2

∫ 1

−1

g(u)e−inπudu.

Therefore, if we select x so that

γ =
ωx

c
= −nπ,

we have an. Consequently, we want to measure at the points x such that

x = −nπc
ω

= −nλ
2
= −nΔ, (3.4)

where λ = 2πc
ω is the wavelength and Δ = λ

2 is the Nyquist spacing.
A one-dimensional array consists of measuring devices placed along a

straight line (the x-axis here). Obviously, there must be some smallest
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bounded interval, say [A,B], that contains all these measuring devices.
The aperture of the array is B−A

λ , the length of the interval [A,B], in
units of wavelength. As we just saw, the aperture is directly related to the
number of Fourier coefficients of the function g(u) that we are measuring,
and therefore, to the accuracy of the DFT reconstruction of g(u). This is
usually described by saying that aperture determines resolution. As we saw,
a one-dimensional array involves an inherent ambiguity, in that we cannot
distinguish a signal from the angle θ from one from the angle 2π − θ. In
practice a two-dimensional configuration of sensors is sometimes used to
eliminate this ambiguity.

In numerous applications, such as astronomy, it is more realistic to
assume that the sources of the signals are on the surface of a large sphere,
rather than on the circumference of a large circle. In such cases, a one-
dimensional array of sensors does not provide sufficient information and
two- or three-dimensional sensor configurations are used.

The number of Fourier coefficients of g(u) that we can measure, and
therefore the resolution of the resulting reconstruction of f(θ), is limited by
the aperture. One way to improve resolution is to make the array of sensors
longer, which is more easily said than done. However, synthetic-aperture
radar (SAR) effectively does this. The idea of SAR is to employ the array
of sensors on a moving airplane. As the plane moves, it effectively creates a
longer array of sensors, a virtual array if you will. The one drawback is that
the sensors in this virtual array are not all present at the same time, as in
a normal array. Consequently, the data must be modified to approximate
what would have been received at other times.

The far-field approximation tells us that, at time t, every point x re-
ceives from P (π2 ) the same signal

eiω(t−D/c)f
(π
2

)
.

Since there is nothing special about the angle π
2 , we can say that the signal

arriving from any angle θ, which originally spread out as concentric circles
of constant value, has flattened out to the extent that, by the time it reaches
our line of sensors, it is essentially constant on straight lines. This suggests
the plane-wave approximation for signals propagating in three-dimensional
space. As we shall see in Chapter 24, these plane-wave approximations are
solutions to the three-dimensional wave equation. Much of array processing
is based on such models of far-field propagation.

As in the examples discussed previously, we do have more measurements
we can take, if we use values of x other than those described by Equation
(3.4). The issue will be what to do with these over-sampled measurements.
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3.5.2 Over-Sampling

One situation in which over-sampling arises naturally occurs in sonar
array processing. Suppose that an array of sensors has been built to operate
at a design frequency of ω0, which means that we have placed sensors a
distance of Δ0 apart in [A,B], where λ0 is the wavelength corresponding
to the frequency ω0 and Δ0 = λ0

2 is the Nyquist spacing for frequency
ω0. For simplicity, we assume that the sensors are placed at points x that
satisfy the equation

x = −nπc
ω0

= −nλ0
2

= −nΔ0,

for |n| ≤ N . Now suppose that we want to operate the sensing at another
frequency, say ω. The sensors cannot be moved, so we must make do with
sensors at the points x determined by the design frequency.

Consider, first, the case in which the second frequency ω is less than
the design frequency ω0. Then its wavelength λ is larger than λ0, and the
Nyquist spacing Δ = λ

2 for ω is larger than Δ0. So we have over-sampled.
The measurements taken at the sensors provide us with the integrals

∫ 1

−1

g(u)ei
nπ
K udu,

where K = ω0

ω > 1. These are Fourier coefficients of the function g(u),
viewed as defined on the interval [−K,K], which is larger than [−1, 1], and
taking the value zero outside [−1, 1]. If we then use the DFT estimate of
g(u), it will estimate g(u) for the values of u within [−1, 1], which is what
we want, as well as for the values of u outside [−1, 1], where we already
know g(u) to be zero. Once again, we can use the MDFT, the modified
DFT, to include the prior knowledge that g(u) = 0 for u outside [−1, 1] to
improve our reconstruction of g(u) and f(θ). In sonar, for the over-sampled
case, the interval [−1, 1] is called the visible region (although audible region
seems more appropriate for sonar), since it contains all the values of u that
can correspond to actual angles of plane-wave arrivals of acoustic energy.
In practice, of course, the measured data may well contain components
that are not plane-wave arrivals, such as localized noises near individual
sensors, or near-field sounds, so our estimate of the function g(u) should
be regularized to allow for these non-plane-wave components.

3.5.3 Under-Sampling

Now suppose that the frequency ω that we want to consider is greater
than the design frequency ω0. This means that the spacing between the
sensors is too large; we have under-sampled. Once again, however, we cannot
move the sensors and must make do with what we have.
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Now the measurements at the sensors provide us with the integrals∫ 1

−1

g(u)ei
nπ
K udu,

where K = ω0

ω < 1. These are Fourier coefficients of the function g(u),
viewed as defined on the interval [−K,K], which is smaller than [−1, 1],
and taking the value zero outside [−K,K]. Since g(u) is not necessarily
zero outside [−K,K], treating it as if it were zero there results in a type
of error known as aliasing, in which energy corresponding to angles whose
u lies outside [−K,K] is mistakenly assigned to values of u that lie within
[−K,K]. Aliasing is a common phenomenon; the strobe-light effect is alias-
ing, as is the apparent backward motion of the wheels of stagecoaches in
cowboy movies. In the case of the strobe light, we are permitted to view
the scene at times too far apart for us to sense continuous, smooth motion.
In the case of the wagon wheels, the frames of the film capture instants of
time too far apart for us to see the true rotation of the wheels.

3.6 Resolution Limitations

As we have seen, in the unknown-strength problem the number of
Fourier coefficients we can measure is limited by the ratio L

λ . Additional
measurements in the far field can provide additional information about the
function f(x), but extracting that information becomes an increasingly ill-
conditioned problem, one more sensitive to noise the more data we gather.

In the line-array problem just considered, there is, in principle, no limit
to the number of Fourier coefficients we can obtain by measuring at the
points nΔ for integer values of n; the limitation here is of a more practical
nature.

In sonar, the speed of sound in the ocean is about 1500 meters per
second, so the wavelength associated with 50 Hz is λ = 30 meters. The
Nyquist spacing is then 15 meters. A towed array is a line array of sensors
towed behind a ship. The length of the array, and therefore the number
of Nyquist-spaced sensors for passive sensing at 50 Hz, is, in principle,
unlimited. In practice, however, cost is always a factor. In addition, when
the array becomes too long, it is difficult to maintain it in a straight-line
position.

Radar imaging uses microwaves with a wavelength of about one inch,
which is not a problem; synthetic-aperture radar can also be used to sim-
ulate a longer array. In radio astronomy, however, the wavelengths can
be more than a kilometer, which is why radio-astronomy arrays have to
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be enormous. For radio-wave imaging at very low frequencies, a sort of
synthetic-aperture approach has been taken, with individual antennas lo-
cated in different parts of the globe.

3.7 Using Matched Filtering

We saw previously that the signal that x receives from P (π2 ) at time t
is the same for all x. If we could turn the x-axis counter-clockwise through
an angle of φ, then the signals received from P (π2 + φ) at time t would be
the same for all x. Of course, we usually cannot turn the array physically
in this way; however, we can steer the array mathematically. This mathe-
matical steering makes use of matched filtering. In certain applications it
is reasonable to assume that only relatively few values of the function f(θ)
are significantly nonzero. Matched filtering is a commonly used method for
dealing with such cases.

3.7.1 A Single Source

To take an extreme case, suppose that f(θ0) > 0 and f(θ) = 0, for all
θ �= θ0. The signal received at time t at x is then

s(x, t) = eiω(t−D/c)f(θ0)ei
ωx
c cos θ0 .

Our objective is to determine θ0.
Suppose that we multiply s(x, t) by e−i

ωx
c cos θ, for arbitrary values of

θ. When one of the arbitrary values is θ = θ0, the product is no longer
dependent on the value of x; that is, the resulting product is the same for
all x. In practice, we can place sensors at some finite number of points x,
and then sum the resulting products over the x. When the arbitrary θ is
not θ0, we are adding up complex exponentials with distinct phase angles,
so destructive interference takes place and the magnitude of the sum is
not large. In contrast, when θ = θ0, all the products are the same and the
sum is relatively large. This is matched filtering, which is commonly used
to determine the true value of θ0.

3.7.2 Multiple Sources

Having only one signal source is the extreme case; having two or more
signal sources, perhaps not far apart in angle, is an important situation, as
well. Then resolution becomes a problem. When we calculate the matched
filter in the single-source case, the largest magnitude will occur when θ =



62 Signal Processing: A Mathematical Approach

θ0, but the magnitudes at other nearby values of θ will not be zero. How
quickly the values fall off as we move away from θ0 will depend on the
aperture of the array; the larger the aperture, the faster the fall-off. When
we have two signal sources near to one another, say θ1 and θ2, the matched-
filter output can have its largest magnitude at a value of θ between the
two angles θ1 and θ2, causing a loss of resolution. Again, having a larger
aperture will improve the resolution.

3.8 An Example: The Solar-Emission Problem

In [15] Bracewell discusses the solar-emission problem. In 1942, it was
observed that radio-wave emissions in the one-meter wavelength range were
arriving from the sun. Were they coming from the entire disk of the sun
or were the sources more localized, in sunspots, for example? The problem
then was to view each location on the sun’s surface as a potential source of
these radio waves and to determine the intensity of emission corresponding
to each location.

For electromagnetic waves the propagation speed is the speed of light
in a vacuum, which we shall take here to be c = 3× 108 meters per second.
The wavelength λ for gamma rays is around one Angstrom, that is, 10−10

meters, which is about the diameter of an atom; for x-rays it is about one
millimicron, or 10−9 meters. The visible spectrum has wavelengths that
are a little less than one micron, that is, 10−6 meters, while infrared radia-
tion (IR), predominantly associated with heat, has a wavelength somewhat
longer. Infrared radiation with a wavelength around 6 or 7 microns can
be used to detect water vapor; we use near IR, with a wavelength near
that of visible light, to change the channels on our TV sets. Shortwave ra-
dio has a wavelength around one millimeter. Microwaves have wavelengths
between one centimeter and one meter; those used in radar imaging have
a wavelength about one inch and can penetrate clouds and thin layers of
leaves. Broadcast radio has a λ running from about 10 meters to 1000 me-
ters. The so-called long radio waves can have wavelengths several thousand
meters long, necessitating clever methods of large-antenna design for radio
astronomy.

The sun has an angular diameter of 30 min. of arc, or one-half of a
degree, when viewed from earth, but the needed resolution was more like
3 min. of arc. Such resolution requires a larger aperture, a radio telescope
1000 wavelengths across, which means a diameter of 1km at a wavelength of
1 meter; in 1942 the largest military radar antennas were less than 5 meters
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across. A solution was found, using the method of reconstructing an object
from line-integral data, a technique that surfaced again in tomography.

3.9 Estimating the Size of Distant Objects

Suppose, in the previous example of the unknown strength problem,
we assume that f(x) = B, for all x in the interval [−L,L], where B > 0
is the unknown brightness constant, and we don’t know L. More realistic,
two-dimensional versions of this problem arise in astronomy, when we want
to estimate the diameter of a distant star.

In this case, the measurement of the signal at the point P gives us

∫ L

−L
f(x) cos

(ω cos θ

c
x
)
dx

= B

∫ L

−L
cos

(
ω cos θ

c
x

)
dx =

2Bc

ω cos θ
sin

(
Lω cos θ

c

)
,

when cos θ �= 0, whose absolute value is then the strength of the signal at P .
Notice that we have zero signal strength at P when the angle θ associated
with P satisfies the equation

sin

(
Lω cos θ

c

)
= 0,

without
cos θ = 0.

But we know that the first positive zero of the sine function is at π, so the
signal strength at P is zero when θ is such that

Lω cos θ

c
= π.

If
Lω

c
≥ π,

then we can solve for L and get

L =
πc

ω cos θ
.

When Lω is too small, there will be no angle θ for which the received signal
strength at P is zero. If the signals being sent are actually broadband,
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meaning that the signals are made up of components at many different
frequencies, not just one ω, which is usually the case, then we might be
able to filter our measured data, keep only the component at a sufficiently
high frequency, and then proceed as before.

But even when we have only a single frequency ω and Lω is too small,
there is something we can do. The received strength at θ = π

2 is

Fc(0) = B

∫ L

−L
dx = 2BL.

If we knew B, this measurement alone would give us L, but we do not
assume that we know B. At any other angle, the received strength is

Fc(γ) =
2Bc

ω cos θ
sin

(
Lω cos θ

c

)
.

Therefore,

Fc(γ)/Fc(0) =
sin(H(θ))

H(θ)
,

where

H(θ) =
Lω cos θ

c
.

From the measured value Fc(γ)/Fc(0) we can solve for H(θ) and then for
L. In actual optical astronomy, atmospheric distortions make these mea-
surements noisy and the estimates have to be performed more carefully.
This issue is discussed in more detail in Chapter 2, in Section 2.13 on
Two-Dimensional Fourier Transforms.

There is a simple relationship involving the intrinsic luminosity of a
star, its distance from earth, and its apparent brightness; knowing any two
of these, we can calculate the third. Once we know these values, we can
figure out how large the visible universe is. Unfortunately, only the appar-
ent brightness is easily determined. As Alan Lightman relates in [111], it
was Henrietta Leavitt’s ground-breaking discovery, in 1912, of the “period-
luminosity” law of variable Cepheid stars that eventually revealed just how
enormous the universe really is. Cepheid stars are found in many parts of
the sky. Their apparent brightness varies periodically. As Leavitt, working
at the Harvard College Observatory, discovered, the greater the intrinsic
luminosity of the star, the longer the period of variable brightness. The
final step of calibration was achieved in 1913 by the Danish astronomer
Ejnar Hertzsprung, when he was able to establish the actual distance to a
relatively nearby Cepheid star, essentially by parallax methods.

There is a wonderful article by Eddington [69], in which he discusses
the use of signal processing methods to discover the properties of the star
Algol. This star, formally Algol (Beta Persei) in the constellation Perseus,
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turns out to be three stars, two revolving around the third, with both of the
first two taking turns eclipsing the other. The stars rotate around their own
axes, as our star, the sun, does, and the speed of rotation can be estimated
by calculating the Doppler shift in frequency, as one side of the star comes
toward us and the other side moves away. It is possible to measure one side
at a time only because of the eclipse caused by the other revolving star.

3.10 The Transmission Problem

Now we change the situation and suppose that we are designing a broad-
casting system, using transmitters at each x in the interval [−L,L].

3.10.1 Directionality

At each x we will transmit f(x)eiωt, where both f(x) and ω are chosen
by us. We now want to calculate what will be received at each point P in
the far field. We may wish to design the system so that the strengths of the
signals received at the various P are not all the same. For example, if we
are broadcasting from Los Angeles, we may well want a strong signal in the
north and south directions, but weak signals east and west, where there are
fewer people to receive the signal. Clearly, our model of a single-frequency
signal is too simple, but it does allow us to illustrate several important
points about directionality in array processing.

3.10.2 The Case of Uniform Strength

For concreteness, we investigate the case in which f(x) = 1 for |x| ≤ L.
In this case, the measurement of the signal at the point P gives us

F (P ) =

∫ L

−L
f(x) cos

(ω cos θ

c
x
)
dx

=

∫ L

−L
cos
(ω cos θ

c
x
)
dx

=
2c

ω cos θ
sin
(Lω cos θ

c

)
,

when cos θ �= 0. The absolute value of F (P ) is then the strength of the
signal at P . In Figures 3.2 through 3.7 we see the plots of the function
1
2LF (P ), for various values of the aperture

A =
Lω

πc
=

2L

λ
.
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FIGURE 3.2: Relative strength at P for A = 0.5.

FIGURE 3.3: Relative strength at P for A = 1.0.
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FIGURE 3.4: Relative strength at P for A = 1.5.

FIGURE 3.5: Relative strength at P for A = 1.8.
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FIGURE 3.6: Relative strength at P for A = 3.2.

FIGURE 3.7: Relative strength at P for A = 6.5.
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3.10.2.1 Beam-Pattern Nulls

Is it possible for the strength of the signal received at some P to be
zero? As we saw in the previous section, to have zero signal strength, that
is, to have F (P ) = 0, we need

sin

(
Lω cos θ

c

)
= 0,

without
cos θ = 0.

Therefore, we need
Lω cos θ

c
= nπ,

for some positive integers n ≥ 1. Notice that this can happen only if

n ≤ Lωπ

c
=

2L

λ
.

Therefore, if 2L < λ, there can be no P with signal strength zero. The
larger 2L is, with respect to the wavelength λ, the more angles at which
the signal strength is zero.

3.10.2.2 Local Maxima

Is it possible for the strength of the signal received at some P to be a
local maximum, relative to nearby points in the far field? We write

F (P ) =
2c

ω cos θ
sin

(
Lω cos θ

c

)
= 2Lsinc (H(θ)),

where

H(θ) =
Lω cos θ

c

and

sinc (H(θ)) =
sinH(θ)

H(θ)
,

for H(θ) �= 0, and equals one for H(θ) = 0. The value of A used previously
is then A = H(0).

Local maxima or minima of F (P ) occur when the derivative of
sinc (H(θ)) equals zero, which means that

H(θ) cosH(θ)− sinH(θ) = 0,

or
tanH(θ) = H(θ).
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If we can solve this equation for H(θ) and then for θ, we will have found
angles corresponding to local maxima of the received signal strength. The
largest value of F (P ) occurs when θ = π

2 , and the peak in the plot of F (P )
centered at θ = π

2 is called the main lobe. The smaller peaks on either side
are called the grating lobes. We can see grating lobes in some of the polar
plots.

3.11 The Laplace Transform and the Ozone Layer

We have seen how values of the Fourier transform can arise as measured
data. The following examples, the first taken from Twomey’s book [156],
show that values of the Laplace transform can arise in this way as well.

3.11.1 The Laplace Transform

The Laplace transform of the function f(x), defined for 0 ≤ x < +∞,
is the function

F(s) =

∫ +∞

0

f(x)e−sxdx.

3.11.2 Scattering of Ultraviolet Radiation

The sun emits ultraviolet (UV) radiation that enters the earth’s atmo-
sphere at an angle θ0 that depends on the sun’s position, and with intensity
I(0). Let the x-axis be vertical, with x = 0 at the top of the atmosphere
and x increasing as we move down to the earth’s surface, at x = X . The
intensity at x is given by

I(x) = I(0)e−kx/ cos θ0 .

Within the ozone layer, the amount of UV radiation scattered in the direc-
tion θ is given by

S(θ, θ0)I(0)e
−kx/ cos θ0Δp,

where S(θ, θ0) is a known parameter, and Δp is the change in the pressure
of the ozone within the infinitesimal layer [x, x+Δx], and so is proportional
to the concentration of ozone within that layer.

3.11.3 Measuring the Scattered Intensity

The radiation scattered at the angle θ then travels to the ground, a
distance of X − x, weakened along the way, and reaches the ground with
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intensity
S(θ, θ0)I(0)e

−kx/ cos θ0e−k(X−x)/ cos θΔp.

The total scattered intensity at angle θ is then a superposition of the in-
tensities due to scattering at each of the thin layers, and is then

S(θ, θ0)I(0)e
−kX/ cos θ0

∫ X

0

e−xβdp,

where

β = k

(
1

cos θ0
− 1

cos θ

)
.

This superposition of intensity can then be written as

S(θ, θ0)I(0)e
−kX/ cos θ0

∫ X

0

e−xβp′(x)dx.

3.11.4 The Laplace Transform Data

Using integration by parts, we get∫ X

0

e−xβp′(x)dx = p(X)e−βX − p(0) + β

∫ X

0

e−βxp(x)dx.

Since p(0) = 0 and p(X) can be measured, our data is then the Laplace
transform value ∫ +∞

0

e−βxp(x)dx;

note that we can replace the upper limit X with +∞ if we extend p(x) as
zero beyond x = X .

The variable β depends on the two angles θ and θ0. We can alter θ as
we measure and θ0 changes as the sun moves relative to the earth. In this
way we get values of the Laplace transform of p(x) for various values of β.
The problem then is to recover p(x) from these values. Because the Laplace
transform involves a smoothing of the function p(x), recovering p(x) from
its Laplace transform is more ill-conditioned than is the Fourier transform
inversion problem.

3.12 The Laplace Transform and Energy Spectral
Estimation

In x-ray transmission tomography, x-ray beams are sent through the
object and the drop in intensity is measured. These measurements are
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then used to estimate the distribution of attenuating material within the
object. A typical x-ray beam contains components with different energy
levels. Because components at different energy levels will be attenuated
differently, it is important to know the relative contribution of each energy
level to the entering beam. The energy spectrum is the function f(E) that
describes the intensity of the components at each energy level E > 0.

3.12.1 The Attenuation Coefficient Function

Each specific material, say aluminum, for example, is associated with
attenuation coefficients, which is a function of energy, which we shall denote
by μ(E). A beam with the single energy E passing through a thickness x of
the material will be weakened by the factor e−μ(E)x. By passing the beam
through various thicknesses x of aluminum and registering the intensity
drops, one obtains values of the absorption function

R(x) =

∫ ∞

0

f(E)e−μ(E)xdE. (3.5)

Using a change of variable, we can write R(x) as a Laplace transform.

3.12.2 The Absorption Function as a Laplace Transform

For each material, the attenuation function μ(E) is a strictly decreasing
function of E, so μ(E) has an inverse, which we denote by g; that is,
g(t) = E, for t = μ(E). Equation (3.5) can then be rewritten as

R(x) =

∫ ∞

0

f(g(t))e−txg′(t)dt.

We see then that R(x) is the Laplace transform of the function r(t) =
f(g(t))g′(t). Our measurements of the intensity drops provide values of
R(x), for various values of x, from which we must estimate the functions
r(t), and, ultimately, f(E).
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4.1 Chapter Summary

All of the techniques discussed in this book deal, in one way or another,
with one fundamental problem: Estimate the values of a function f(x)
from finitely many (usually noisy) measurements related to f(x); here x
can be a multi-dimensional vector, so that f can be a function of more than
one variable. To keep the notation relatively simple here, we shall assume,
throughout this chapter, that x is a real variable, but all of what we shall
say applies to multi-variate functions as well. In this chapter we begin our

73
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discussion of the use of finite-parameter models, a topic to which we shall
return several times throughout this book.

4.2 Finite Fourier Series

In this section we present one of the most useful finite-parameter model,
the finite Fourier series. The notation may seem unusual, but it is chosen
for convenience later, when we discuss the Fast Fourier Transform (FFT).

Let f : [0, N ] → C have Fourier series

f(x) ≈ 1

N

∞∑
k=−∞

Fke
−i 2πk

N x,

where

Fk =

∫ N

0

f(x)ei
2πk
N xdx. (4.1)

Note that

Fk = F

(
2πk

N

)
,

where F (γ) is the Fourier transform of f(x). In order to calculate any Fk
we need all of f(x).

Suppose that we model f(x) on [0, N ] using a finite Fourier series

f(x) ≈ 1

N

N−1∑
k=0

Fke
−i 2πk

N x.

We can still calculate the Fk using Equation (4.1), but now there are other
ways.

Suppose we obtain N values of f(x), say f(xn), for n = 0, 1, ..., N − 1.
Such situations arise, for example, in time-series analysis, where x repre-
sents time and we are able to measure the function f(x) at some finitely
many different times. The function f(x) could represent acoustic pressure
coming from speech, current values of a particular stock on the Stock Ex-
change, the temperature at time x in a particular place, and so on. We may
want to model f(x) to estimate values of f(x) we were unable to measure,
perhaps for prediction, or to break f(x) up into finitely many sinusoidal
components. This latter problem is important in digital sound recording
and speech recognition.
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Once we have the data f(xn), for n = 0, 1, ..., N − 1, we can then get
the Fk by solving a system of N linear equations in N unknowns:

f(xn) =
1

N

N−1∑
k=0

Fke
−i 2πk

N xn . (4.2)

Solving this system typically requires roughly N3 complex multiplications,
which, for many applications in whichN is in the thousands, is prohibitively
expensive and time-consuming. However, if we have the freedom to select
the xn and choose xn = n, then solving the system becomes much simpler,
because of discrete orthogonality.

With xn = n, the solution of the system of linear equations

f(n) =
1

N

N−1∑
k=0

Fke
−i 2πkn

N (4.3)

is

Fk =
N−1∑
n=0

f(n)ei
2πkn

N , (4.4)

for k = 0, 1, ..., N − 1. The proof of this assertion is contained in the fol-
lowing exercises.

Ex. 4.1 Use the formula for the sum of a finite geometric progression to
show that

N−1∑
n=0

eint = ei
(N−1)t

2
sin Nt

2

sin t
2

. (4.5)

Ex. 4.2 Prove the assertion in Equation (4.4) by multiplying both sides of

Equation (4.3) by ei
2πjn
N , and summing over n. Interchange the order of

summation and use Equation (4.5).

The formula in Equation (4.5) is perhaps the most important in sig-
nal processing and we shall encounter it several times later in this book.
It describes coherent summation, the phenomenon of constructive and de-
structive interference, and is the basic formula in sonar and radar. It also
arises in matched filtering, optimal detection theory, and the DFT estima-
tion of the Fourier transform.
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4.3 The DFT and the Finite Fourier Series

In the unknown strength problem we saw that measurements in the
far field could give us finitely many values of the Fourier coefficients of a
support-limited function. Suppose now that f : [0, N ] → C is such an un-
known function, and we have obtained the Fourier-transform values F (2πkN ),
for k = 0, 1, ..., N − 1. It is reasonable to use the DFT to estimate f(x):

f(x) ≈ fDFT (x) =
1

N

N−1∑
k=0

Fke
−i 2πk

N x.

The DFT looks just like the finite Fourier series we discussed previously.
We can calculate the N values of fDFT (x) at the points x = n using the
formula in Equation (4.3):

fDFT (n) =
1

N

N−1∑
k=0

Fke
−i 2πkn

N . (4.6)

Note, however, that the context has changed. Previously, we assumed that
we had actual values of f(x) at the points x = n and we used the finite
Fourier series to model f(x). Now we are assuming that it is finitely many
values of the actual Fourier transform, F (γ), that we have obtained, and
we want to use those values to estimate f(x). What we are getting when
we use Equation (4.6) are not actual values of f(x) itself, but of the DFT
estimator of f(x).

As we noted previously, solving for the Fk using the system described by
Equation (4.2) would require roughly N3 complex multiplications. When
we select xn = n we can solve the system in Equation (4.3) in N2 complex
multiplications. But for very large N , even N2 is too large. Fortunately,
there is the Fast Fourier Transform (FFT), which we shall consider in detail
in Chapter 8. The FFT reduces the computational cost to roughlyN log2N
complex multiplications.

4.4 The Vector DFT

The discussion in the previous sections motivates the definition of
the vector DFT (vDFT). Given any column vector f in CN with entries
f0, f1, ..., fN−1, we define the vector DFT (vDFT) of f to be the complex
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vector F in CN having the entries

Fk =
N−1∑
n=0

fne
i 2πnk

N , (4.7)

for k = 0, 1, ..., N − 1. From our previous discussion, we know that we then
have

fn =
1

N

N−1∑
k=0

Fke
−i 2πnk

N ,

for n = 0, 1, ..., N − 1.
Most texts on signal processing call the vector F the DFT of the vector

f . I think this is bad terminology, as I shall explain. Suppose we have data
f(n), for n = 0, 1, ..., N − 1, and the Fourier transform function F (γ) is
unknown, but known to be supported on the interval [0, 2π]. We want to
estimate F (γ) using the data. One way is to use the DFT estimate,

FDFT (γ) =

N−1∑
n=0

f(n)einγ .

The next step would be to plot our estimate. To do this we select some
finitely many values of γ, say γk, for k = 0, 1, ...,K − 1, and evaluate
FDFT (γk). If we choose K = N and γk = 2πk

N , we get Equation (4.7),

with Fk = F (2πkN ). If we use the FFT, we can calculate all the Fk quickly.
However, the FFT prefers to have N equal to some power of two. If, for
example, we have N = 250, we can trick the FFT by defining f(250) =
f(251) = ... = f(255) = 0, and changing N = 250 to N = 256. The DFT
estimate is still the same function of the continuous variable γ, but now
the FFT will evaluate the DFT at 256 equi-spaced points with the interval
[0, 2π). In fact, if we should want to generate a plot of the DFT that had,
say, 1024 grid points, we could simply augment our original data set with
sufficiently many zero values, and then perform the FFT; this is called
zero-padding. In each case, we calculate a vector F, but the sizes change as
we augment the data with more zero values. To call each of these vectors F
the DFT seems to me to be wrong. Each one is a vDFT of a certain set of
data, original or augmented, while the DFT remains the same function of
the continuous variable γ. It is important to remember that the values Fk
we calculate are not values of the actual F (γ), but of the DFT estimator
of F (γ). This point is sometimes missed in the literature on the subject.
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4.5 The Vector DFT in Two Dimensions

We consider now a complex-valued function f(x, y) of two real variables,
with Fourier transformation

F (α, β) =

∫ ∫
f(x, y)ei(xα+yβ)dxdy.

Suppose that F (α, β) = 0, except for α and β in the interval [0, 2π]; this
means that the function F (α, β) represents a two-dimensional object with
bounded support, such as a picture. Then F (α, β) has a Fourier series
expansion

F (α, β) =

∞∑
m=−∞

∞∑
n=−∞

f(m,n)eimαeinβ (4.8)

for 0 ≤ α ≤ 2π and 0 ≤ β ≤ 2π.
In image processing, F (α, β) is our two-dimensional analogue image,

where α and β are continuous variables. The first step in digital image
processing is to digitize the image, which means forming a two-dimensional
array of numbers Fj,k, for j, k = 0, 1, ..., N − 1. For concreteness, we let the
Fj,k be the values F (2πN j,

2π
N k).

From Equation (4.8) we can write

Fj,k = F

(
2π

N
j,
2π

N
k

)
=

∞∑
m=−∞

∞∑
n=−∞

f(m,n)ei
2π
N jmei

2π
N kn,

for j, k = 0, 1, ..., N − 1.
We can also find coefficients fm,n, for m,n = 0, 1, ..., N − 1, such that

Fj,k = F

(
2π

N
j,
2π

N
k

)
=

N−1∑
m=0

N−1∑
n=0

fm,ne
i 2πN jmei

2π
N kn,

for j, k = 0, 1, ..., N − 1. These fm,n are only approximations of the values
f(m,n), as we shall see.

Just as in the one-dimensional case, we can make use of orthogonality
to find the coefficients fm,n. We have

fm,n =
1

N2

N−1∑
j=0

N−1∑
k=0

F

(
2π

N
jm,

2π

N
kn

)
e−i

2π
N jme−i

2π
N kn, (4.9)

for m,n = 0, 1, ..., N − 1. Now we show how the fm,n can be thought of as
approximations of the f(m,n).
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We know from the Fourier Inversion Formula in two dimensions, Equa-
tion (2.18), that

f(m,n) =
1

4π2

∫ 2π

0

∫ 2π

0

F (α, β)e−i(αm+βn)dαdβ. (4.10)

When we replace the right side of Equation (4.10) with a Riemann sum,
we get

f(m,n) ≈ 1

N2

N−1∑
j=0

N−1∑
k=0

F

(
2π

N
jm,

2π

N
kn

)
e−i

2π
N jme−i

2π
N kn;

the right side is precisely fm,n, according to Equation (4.9).
Notice that we can compute the fm,n from the Fj,k using one-

dimensional vDFTs. For each fixed j we compute the one-dimensional
vDFT

Gj,n =
1

N

N−1∑
k=0

Fj,ke
−i 2πN kn,

for n = 0, 1, ..., N−1. Then for each fixed n we compute the one-dimensional
vDFT

fm,n =

N−1∑
j=0

Gj,ne
−i 2πN jm,

for m = 0, 1, ..., N − 1. From this, we see that estimating f(x, y) by calcu-
lating the two-dimensional vDFT of the values from F (α, β) requires us to
obtain 2N one-dimensional vector DFTs.

Calculating the fm,n from the pixel values Fj,k is the main operation
in digital image processing. The fm,n approximate the spatial frequencies
in the image and modifications to the image, such as smoothing or edge
enhancement, can be made by modifying the values fm,n. Improving the
resolution of the image can be done by extrapolating the fm,n, that is, by
approximating values of f(x, y) other than x = m and y = n. Once we
have modified the fm,n, we return to the new values of Fj,k, so calculating
Fj,k from the fm,n is also an important step in image processing.

In some areas of medical imaging, such as transmission tomography
and magnetic-resonance imaging, the scanners provide the fm,n. Then the
desired digitized image of the patient is the array Fj,k. In such cases, the
fm,n are considered to be approximate values of f(m,n). For more on
the role of the two-dimensional Fourier transform in medical imaging, see
Chapter 11 on transmission tomography.

Even if we managed to have the true values, that is, even if fm,n =
f(m,n), the values Fj,k are not the true values F (2πN m,

2π
N n). The number
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Fj,k is a value of the DFT approximation of F (α, β). This DFT approxi-
mation is the function given by

FDFT (α, β) =

N−1∑
m=0

N−1∑
n=0

fm,ne
iαmeiβn.

The number Fj,k is the value of this approximation at the point α = 2π
N j

and β = 2π
N k. In other words,

Fj,k = FDFT

(
2π

N
j,
2π

N
k

)
,

for j, k = 0, 1, ..., N − 1. How good this discrete image is as an approx-
imation of the true F (α, β) depends primarily on two things: first, how
accurate an approximation of the numbers f(m,n) the numbers fm,n are;
and second, how good an approximation of the function F (α, β) the func-
tion FDFT (α, β) is.

We can easily see now how important the Fast Fourier Transform algo-
rithm is. Without the Fast Fourier Transform to accelerate the calculations,
obtaining a two-dimensional vDFT would be prohibitively expensive.

4.6 The Issue of Units

When we write cosπ = −1, it is with the understanding that π is a
measure of angle, in radians; the function cos will always have an inde-
pendent variable in units of radians. Therefore, when we write cos(xω), we
understand the product xω to be in units of radians. If x is measured in
seconds, then ω is in units of radians per second; if x is in meters, then ω is
in units of radians per meter. When x is in seconds, we sometimes use the
variable ω

2π ; since 2π is then in units of radians per cycle, the variable ω
2π

is in units of cycles per second, or Hertz. When we sample f(x) at values
of x spaced Δ apart, the Δ is in units of x-units per sample, and the recip-
rocal, 1

Δ , which is called the sampling frequency, is in units of samples per
x-units. If x is in seconds, then Δ is in units of seconds per sample, and 1

Δ
is in units of samples per second.
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4.7 Approximation, Models, or Truth?

We mentioned previously that, when we model f(x) using a finite
Fourier series, we may want to analyze f(x) to determine its sinusoidal
components. But does f(x) actually contain these sinusoidal components
in any real sense? An example from Fourier-series expansion will clarify
this issue.

Consider the function f(x) = sinx, for 0 ≤ x ≤ π. The function g(x),
defined by g(x) = f(x), for 0 ≤ x ≤ π, and g(x) = f(−x), for −π ≤ x ≤ 0,
can be extended to a continuous even function with period 2π. The Fourier
series for g(x) is

g(x) =
2

π
− 2

π

∞∑
n=2

1 + cosnπ

n2 − 1
cosnx.

When we restrict our attention to x in the interval [0, π], we have the
function sinx expressed as an infinite sum of cosine functions. It is true,
in a sense, that the sine function on [0, π] is made up of infinitely many
cosines, and any partial sum of this infinite cosine series can be viewed as
an approximation of the function sinx on [0, π]. However, is it really the
kind of truth about the function f(x) that we are seeking?

4.8 Modeling the Data

In time-series analysis, we have some unknown function of time, f(t),
and we measure its values f(tn) at the N sampling points t = tn, n =
1, ..., N . There are several different possible objectives that we may have
at this point.

4.8.1 Extrapolation

We may want to estimate values of f(t) at points t at which we do not
have measurements; these other points may represent time in the future, for
example, and we are trying to predict future values of f(t). In such cases,
it is common to adopt a model for f(t), which is typically some function of
t with finitely many as yet undetermined parameters, such as a polynomial
or a sum of trig functions. We must select our model with care, particularly
if the data is assumed to be noisy, as most data is. Even though we may
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have a large number of measurements, it may be a mistake to model f(t)
with as many parameters as we have data.

We do not really believe that f(t) is a polynomial or a finite Fourier
series. We may not even believe that the model is a good approximation of
f(t) for all values of t. We do believe, however, that adopting such a model
will enable us to carry out our prediction task in a reasonably accurate
way. The task may be something like predicting the temperature at noon
tomorrow, on the basis of noon-time temperatures for the previous five
days.

4.8.2 Filtering the Data

Suppose that the values f(tn) are sampled data from an old recording
of a singer. We may want to clean up this digitized data, in order to be able
to recapture the original sound. Now we may only desire to modify each
of the values f(tn) in some way, to improve the quality. To perform this
restoring task, we may model the data as samples of a finite Fourier series,
or, more generally, as a finite sum of sinusoids in which the frequencies γk
are chosen by us. We then solve for the parameters.

To clean up the sound, we may modify the values of some of the pa-
rameters. For example, we may believe that certain of the frequencies come
primarily from a noise component in the recording. To remove, or at least
diminish, this component, we can reduce the associated coefficients. We
may feel that the original recording technology failed to capture some of
the higher notes sung by the soprano. Then we can increase the values of
those coefficients associated with those frequencies that need to be restored.
Obviously, restoring old recordings of opera singers is more involved than
this, but you get the idea.

The point here is that we need not believe that the entire recording can
be accurately described, or even approximated, by a finite sum of complex
exponential functions. But using a finite sum of sinusoids does give another
way to describe the measured data, and as such, another way to modify
this data, namely by modifying the coefficients of the sinusoids. We do not
need to believe that the entire opera can be accurately approximated by
such a sum in order for this restoring procedure to be helpful.

Note that if our goal is to recapture a high note sung by the soprano, we
do not really need to use samples of the function f(t) that correspond to
times when only the tenor was on stage singing. It would make more sense
to process only those measurements taken right around the time the high
note was sung by the soprano. This is short-time Fourier analysis, an issue
that we deal with when we discuss time-frequency analysis and wavelets.
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4.9 More on Coherent Summation

We begin this section with an exercise.

Ex. 4.3 On a blank sheet of paper, draw a horizontal and vertical axis.
Starting at the origin, draw a vector with length one unit (a unit can be,
say, one inch), in an arbitrary direction. Now, from the tip of the first
vector, draw another vector of length one, again in an arbitrary direction.
Repeat this process several times, using M vectors in all. Now measure the
distance from the origin to the tip of the last vector drawn. Compare this
length with the number M , which would be the distance from the origin to
the tip of the last vector, if all the vectors had had the same direction.

This exercise reveals the important difference between coherent and
incoherent summation, or, if you will, between constructive and destructive
interference. Each of the unit vectors drawn can be thought of as a complex
number eiθm , where θm is its arbitrary angle. The distance from the origin
to the tip of the last vector drawn is then∣∣∣eiθ1 + eiθ2 + ...+ eiθM

∣∣∣.
If all the angles θm are equal, then this distance is M ; in all other cases
the distance is quite a bit less than M . The distinction between coherent
and incoherent summation plays a central role in signal processing, as well
as in quantum physics, as we discuss briefly in the next section.

4.10 Uses in Quantum Electrodynamics

In his experiments with light, Newton discovered the phenomenon of
partial reflection. The proportion of the light incident on a glass surface
that is reflected varies with the thickness of the glass, but the proportion
oscillates between zero and about sixteen percent as the glass thickens. He
tried to explain this puzzling behavior, but realized that he had not ob-
tained a satisfactory explanation. In his beautiful small book “QED: The
Strange Theory of Light and Matter” [71], the physicist Richard Feynman
illustrates how the quantum theory applied to light, quantum electrody-
namics or QED, can be used to unravel many phenomena involving the
interaction of light with matter, including the partial reflection observed by
Newton, the least time principle, the array of colors we see on the surface



84 Signal Processing: A Mathematical Approach

of an oily mud puddle, and so on. He is addressing an audience of non-
physicists, including even some non-scientists, and avoids mathematics as
much as possible. The one mathematical notion that he uses repeatedly is
the addition of two-dimensional vectors pointing in a variety of directions,
that is, coherent and incoherent summation. The vector sum is the proba-
bility amplitude of the event being discussed, and the square of its length
is the probability of the event.

4.11 Using Coherence and Incoherence

Suppose we are given as data the M complex numbers dm = eimγ , for
m = 1, ...,M , and we are asked to find the real number γ. We can exploit
coherent summation to get our answer.

First of all, from the data we have been given, we cannot distinguish γ
from γ + 2π, since, for all integers m

eim(γ+2π) = eimγe2mπi = eimγ(1) = eimγ .

Therefore, we assume, from the beginning, that the γ we want to find lies
in the interval [−π, π). Note that we could have selected any interval of
length 2π, not necessarily [−π, π); if we have no prior knowledge of where
γ is located, the intervals [−π, π) or [0, 2π) are the most obvious choices.

4.11.1 The Discrete Fourier Transform

Now we take any value ω in the interval [−π, π), multiply each of the
numbers dm by e−imω, and sum over m to get

DFTd(ω) =

M∑
m=1

dme
−imω. (4.11)

The sum we denote by DFTd will be called the discrete Fourier transform
(DFT) of the data (column) vector d = (d1, ..., dM )T . We define the column
vector eω to be

eω = (eiω, e2iω, ..., eiMω)T ,

which allows us to write DFTd = e†ωd, where the dagger denotes conjugate
transformation of a matrix or vector.

Rewriting the exponential terms in the sum in Equation (4.11), we
obtain

DFTd(ω) =

M∑
m=1

dme
−imω =

M∑
m=1

eim(γ−ω).
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Performing this calculation for each ω in the interval [−π, π), we obtain the
function DFTd(ω). For each ω, the complex number DFTd(ω) is the sum
ofM complex numbers, each having length one, and angle θm = m(γ−ω).
So long as ω is not equal to γ, these θm are all different, and DFTd(ω) is an
incoherent sum; consequently, |DFTd(ω)| will be smaller thanM . However,
when ω = γ, each θm equals zero, and DFTd(ω) = |DFTd(ω)| = M ; the
reason for putting the minus sign in the exponent e−imω is so that we
get the term γ − ω, which is zero when γ = ω. We find the true γ by
computing the value |DFTd(ω)| for finitely many values of ω, plot the
result and look for the highest value. Of course, it may well happen that
the true value ω = γ is not exactly one of the points we choose to plot;
it may happen that the true γ is half way between two of the plot’s grid
points, for example. Nevertheless, if we know in advance that there is only
one true γ, this approach will give us a good idea of its value.

In many applications, the number M will be quite large, as will be the
number of grid points we wish to use for the plot. This means that the
number DFTd(ω) is a sum of a large number of terms, and that we must
calculate this sum for many values of ω. Fortunately, we can use the FFT
for this.

Ex. 4.4 The Dirichlet kernel of size M is defined as

DM (x) =
∑M

m=−M eimx.

Use Equation (4.5) to obtain the closed-form expression

DM (x) =
sin((M + 1

2 )x)

sin(x2 )
;

note that DM (x) is real-valued.

Ex. 4.5 Obtain the closed-form expressions

M∑
m=N

cosmx = cos

(
M +N

2
x

)
sin(M−N+1

2 x)

sin x
2

(4.12)

and

M∑
m=N

sinmx = sin

(
M +N

2
x

)
sin(M−N+1

2 x)

sin x
2

. (4.13)

Hint: Recall that cosmx and sinmx are the real and imaginary parts of
eimx.
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Ex. 4.6 Obtain the formulas in the previous exercise using the trigonomet-
ric identity

sin

((
n+

1

2

)
x

)
− sin

((
n− 1

2

)
x

)
= 2 sin

(x
2

)
cos(nx).

Ex. 4.7 Graph the function DM (x) for various values of M .

We note in passing that the function DM (x) equals 2M + 1 for x = 0
and equals zero for the first time at x = 2π

2M+1 . This means that the main
lobe of DM (x), the inverted parabola-like portion of the graph centered at
x = 0, crosses the x-axis at x = 2π/(2M + 1) and x = −2π/(2M + 1), so
its height is 2M + 1 and its width is 4π/(2M + 1). As M grows larger the
main lobe of DM (x) gets higher and thinner.

In the exercise that follows we examine the resolving ability of the DFT.
Suppose we haveM equi-spaced samples of a function f(x) having the form

f(x) = eixγ1 + eixγ2 ,

where γ1 and γ2 are in the interval (−π, π). If M is sufficiently large, the
DFT should show two peaks, at roughly the values ω = γ1 and ω = γ2. As
the distance |γ2 − γ1| grows smaller, it will require a larger value of M for
the DFT to show two peaks.

Ex. 4.8 For this exercise, we take γ1 = −α and γ2 = α, for some α in the
interval (0, π). Select a value ofM that is greater than two and calculate the
values f(m) for m = 1, ...,M . Plot the graph of the function |DFTd(ω)| on
(−π, π). Repeat the exercise for various values of M and values of α closer
to zero. Notice how DFTd(0) behaves as α goes to zero. For each fixed value
of M there will be a critical value of α such that, for any smaller values of
α, DFTd(0) will be larger than DFTd(α). This is loss of resolution.

4.12 Complications

In the real world, of course, things are not so simple. In most appli-
cations, the data comes from measurements, and so contains errors, also
called noise. The noise terms that appear in each dm are usually viewed as
random variables, and they may or may not be independent. If the noise
terms are not independent, we say that we have correlated noise. If we know
something about the statistics of the noises, we may wish to process the
data using statistical estimation methods, such as the best linear unbiased
estimator (BLUE).
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4.12.1 Multiple Signal Components

It sometimes happens that there are two or more distinct values of ω
that we seek. For example, suppose the data is

dm = eimα + eimβ ,

for m = 1, ...,M , where α and β are two distinct numbers in the interval
[0, 2π), and we need to find both α and β. Now the function DFTd(ω) will
be

DFTd(ω) =

M∑
m=1

(eimα + eimβ)e−imω =

M∑
m=1

eimαe−imω +

M∑
m=1

eimβe−imω,

so that

DFTd(ω) =

M∑
m=1

eim(α−ω) +
M∑
m=1

eim(β−ω).

So the function DFTd(ω) is the sum of the DFTd(ω) that we would have
obtained separately if we had had only α and only β.

4.12.2 Resolution

If the numbers α and β are well separated in the interval [0, 2π) or M
is very large, the plot of |DFTd(ω)| will show two high values, one near
ω = α and one near ω = β. However, if the M is smaller or the α and β
are too close together, the plot of |DFTd(ω)| may show only one broader
high bump, centered between α and β; this is loss of resolution. How close
is too close will depend on the value of M .

4.12.3 Unequal Amplitudes and Complex Amplitudes

It is also often the case that the two signal components, the one from
α and the one from β, are not equally strong. We could have

dm = Aeimα +Beimβ ,

where A > B > 0. In fact, both A and B could be complex numbers, that
is, A = |A|eiθ1 and B = |B|eiθ2 , so that

dm = |A|eimα+θ1 + |B|eimβ+θ2 .

In stochastic signal processing, the A and B are viewed as random variables;
A and B may or may not be mutually independent.



88 Signal Processing: A Mathematical Approach

4.12.4 Phase Errors

It sometimes happens that the hardware that provides the measured
data is imperfect and instead of giving us the values dm = eimα, we get
dm = eimα+φm . Now each phase error φm depends on m, which makes
matters worse than when we had θ1 and θ2 previously, neither depending
on the index m.

4.13 Undetermined Exponential Models

In our previous discussion, we assumed that the frequencies were known
and only the coefficients needed to be determined. The problem was then
a linear one. It is sometimes the case that we also want to estimate the
frequencies from the data. This is computationally more difficult and is a
nonlinear problem. Prony’s method is one approach to this problem.

The date of publication of [130] is often taken by editors to be a typo-
graphical error and is replaced by 1995; or, since it is not written in En-
glish, perhaps 1895. But the 1795 date is the correct one. The mathematical
problem Prony solved arises also in signal processing, and his method for
solving it is still used today. Prony’s method is also the inspiration for the
eigenvector methods described in Chapter 14.

4.13.1 Prony’s Problem

Prony considers a function of the form

f(x) =

N∑
n=1

ane
γnx, (4.14)

where we allow the an and the γn to be complex. If we take the γn = iωn
to be imaginary, f(x) becomes the sum of complex exponentials, which
we discuss later; if we take γn to be real, then f(x) is the sum of real
exponentials, either increasing or decreasing. The problem is to determine
the number N , the γn, and the an from samples of f(x).

4.13.2 Prony’s Method

Suppose that we have data fm = f(mΔ), for some Δ > 0 and for
m = 1, ...,M , where we assume that M = 2N . We seek a vector c with
entries cj , j = 0, ..., N such that

c0fk+1 + c1fk+2 + c2fk+3 + ...+ cNfk+N+1 = 0, (4.15)
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for k = 0, 1, ...,M − N − 1. So, we want a complex vector c in CN+1

orthogonal to M −N = N other vectors. In matrix-vector notation we are
solving the linear system⎡

⎢⎢⎢⎢⎢⎢⎣

f1 f2 ... fN+1

f2 f3 ... fN+2

.

.

.
fN fN+1 ... fM

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

c0
c1
.
.
.
cN

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
.
.
.
0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

which we write as Fc = 0. Since F †Fc = 0 also, we see that c is an
eigenvector associated with the eigenvalue zero of the hermitian nonnega-
tive definite matrix F †F ; here F † denotes the conjugate transpose of the
matrix F .

Fix a value of k and replace each of the fk+j in Equation (4.15) with
the value given by Equation (4.14) to get

0 =

N∑
n=1

an

⎛
⎝ N∑
j=0

cje
γn(k+j+1)Δ

⎞
⎠

=

N∑
n=1

⎛
⎝aneγn(k+1)Δ

⎛
⎝ N∑
j=0

cj(e
γnΔ)j

⎞
⎠
⎞
⎠ .

Since this is true for each of the N fixed values of k, we conclude that the
inner sum is zero for each n; that is,

N∑
j=0

cj(e
γnΔ)j = 0,

for each n. Therefore, the polynomial

C(z) =

N∑
j=0

cjz
j

has for its roots the N values z = eγnΔ. Once we find the roots of this
polynomial we have the values of eγnΔ. If the γn are real, they are uniquely
determined from the values eγnΔ, whereas, for non-real γn, this is not the
case, as we saw when we studied the complex exponential functions.

Then, we obtain the an by solving a linear system of equations. In prac-
tice we would not know N so would overestimate N somewhat in selecting
M . As a result, some of the an would be zero.
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If we believe that the number N is considerably smaller than M , we do
not assume that 2N = M . Instead, we select L somewhat larger than we
believe N is and then solve the linear system⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1 f2 ... fL+1

f2 f3 ... fL+2

.

.

.

.
fM−L fM−L+1 ... fM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

c0
c1
.
.
.
cL

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
.
.
.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This system has M − L equations and L + 1 unknowns, so is quite over-
determined. We would then use the least-squares approach to obtain the
vector c. Again writing the system as Fc = 0, we note that the matrix
F †F is L+1 by L+1 and has λ = 0 for its lowest eigenvalue; therefore, it
is not invertible. When there is noise in the measurements, this matrix may
become invertible, but will still have at least one very small eigenvalue.

Finding the vector c in either case can be tricky because we are look-
ing for a nonzero solution of a homogeneous system of linear equations.
For a discussion of the numerical issues involved in these calculations, the
interested reader should consult the book by Therrien [153].
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5.1 Chapter Summary

An important example of the use of the DFT is the design of direc-
tional transmitting or receiving arrays of antennas. In this chapter we re-
visit transmission and remote sensing, this time with emphasis on the roles
played by complex exponential functions and the DFT.

5.2 Directional Transmission

Parabolic mirrors behind car headlamps reflect the light from the bulb,
concentrating it directly ahead. Whispering at one focal point of an ellip-
tical room can be heard clearly at the other focal point. When I call to
someone across the street, I cup my hands in the form of a megaphone to
concentrate the sound in that direction. In all these cases the transmitted
signal has acquired directionality. In the case of the elliptical room, not only
does the soft whispering reflect off the walls toward the opposite focal point,
but the travel times are independent of where on the wall the reflections
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occur; otherwise, the differences in time would make the received sound
unintelligible. Parabolic satellite dishes perform much the same function,
concentrating incoming signals coherently. In this chapter we discuss the
use of amplitude and phase modulation of transmitted signals to concen-
trate the signal power in certain directions. Following the lead of Richard
Feynman in [72], we use radio broadcasting as a concrete example of the
use of directional transmission.

Radio broadcasts are meant to be received and the amount of energy
that reaches the receiver depends on the amount of energy put into the
transmission as well as on the distance from the transmitter to the receiver.
If the transmitter broadcasts a spherical wave front, with equal power in all
directions, the energy in the signal is the same over the spherical wavefronts,
so that the energy per unit area is proportional to the reciprocal of the sur-
face area of the front. This means that, for omni-directional broadcasting,
the energy per unit area, that is, the energy supplied to any receiver, falls
off as the distance squared. The amplitude of the received signal is then
proportional to the reciprocal of the distance.

Returning to the example we studied previously, suppose that you own
a radio station in Los Angeles. Most of the population resides along the
north-south coast, with fewer to the east, in the desert, and fewer still to
the west, in the Pacific Ocean. You might well want to transmit the radio
signal in a way that concentrates most of the power north and south. But
how can you do this? The answer is to broadcast directionally. By shaping
the wavefront to have most of its surface area north and south you will have
the broadcast heard by more people without increasing the total energy in
the transmission. To achieve this shaping you can use an array of multiple
antennas.

5.3 Multiple-Antenna Arrays

5.3.1 The Array of Equi-Spaced Antennas

We place 2N + 1 transmitting antennas a distance Δ > 0 apart along
an east-west axis, as shown in Figure 5.1. For convenience, let the locations
of the antennas be nΔ, n = −N, ..., N . To begin with, let us suppose that
we have a fixed frequency ω and each of the transmitting antennas sends
out the same signal fn(t) = 1√

2N+1
cos(ωt). With this normalization the

total energy is independent of N . Let (x, y) be an arbitrary location on
the ground, and let s be the vector from the origin to the point (x, y).
Let θ be the angle measured clockwise from the positive horizontal axis
to the vector s. Let D be the distance from (x, y) to the origin. Then, if
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(x, y) is sufficiently distant from the antennas, the distance from nΔ on
the horizontal axis to (x, y) is approximately D − nΔcos(θ). The signals
arriving at (x, y) from the various antennas will have traveled for different
times and so will be out of phase with one another to a degree that depends
on the location of (x, y).

θ
n

s

0

N

EW

S

FIGURE 5.1: Antenna array and far-field receiver.

5.3.2 The Far-Field Strength Pattern

Since we are concerned only with wavefront shape, we omit for now the
distance-dependence in the amplitude of the received signal. The signal
received at (x, y) is proportional to

f(s, t) =
1√

2N + 1

N∑
n=−N

cos(ω(t− tn)),

where

tn =
1

c
(D − nΔcos(θ))
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and c is the speed of propagation of the signal. Writing

cos(ω(t− tn)) = cos

(
ω

(
t− D

c

)
+ nγ cos(θ)

)

for γ = ωΔ
c , we have

cos(ω(t− tn)) = cos

(
ω

(
t− D

c

))
cos(nγ cos(θ))

− sin

(
ω

(
t− D

c

))
sin(nγ cos(θ)).

Using Equations (4.12) and (4.13), we find that the signal received at (x, y)
is

f(s, t) =
1√

2N + 1
H(θ) cos

(
ω

(
t− D

c

))
(5.1)

for

H(θ) =
sin((N + 1

2 )γ cos(θ))

sin(12γ cos(θ))
;

when the denominator equals zero the signal equals
√
2N + 1 cos(ω(t−D

c )).

5.3.3 Can the Strength Be Zero?

We see from Equation (5.1) that the maximum power is in the north-
south direction. What about the east-west direction? In order to have negli-
gible signal power wasted in the east-west direction, we want the numerator,
but not the denominator, in Equation (5.1) to be zero when θ = 0. This
means that Δ = mλ/(2N + 1), where λ = 2πc/ω is the wavelength and m
is some positive integer less than 2N + 1. Recall that the wavelength for
broadcast radio is tens to hundreds of meters.

Ex. 5.1 Graph the function H(θ) in polar coordinates for various choices
of N and Δ.

Figures 5.2, 5.3, and 5.4 show that transmission patternH(θ) for various
choices of m and N . In Figure 5.2 N = 5 for each plot and the m changes,
illustrating the effect of changing the spacing of the array elements. The
plots in Figure 5.3 differ from those in Figure 5.2 only in that N = 21 now.
In Figure 5.4 we allow the m to be less than one, showing the loss of the
nulls in the east and west directions.
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FIGURE 5.2: Transmission Pattern H(θ): m = 1, 2, 4, 8 and N = 5.



96 Signal Processing: A Mathematical Approach

  25

  50

30

210

60

240

90

270

120

300

150

330

180 0

m = 1, N = 21

  25

  50

30

210

60

240

90

270

120

300

150

330

180 0

m = 2, N = 21

  25

  50

30

210

60

240

90

270

120

300

150

330

180 0

m = 4, N = 21

  25

  50

30

210

60

240

90

270

120

300

150

330

180 0

m = 8, N = 21

FIGURE 5.3: Transmission Pattern H(θ): m = 1, 2, 4, 8 and N = 21.
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FIGURE 5.4: Transmission Pattern H(θ): m = 0.9, 0.5, 0.25, 0.125 and
N = 21.
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5.3.4 Diffraction Gratings

I have just placed on the table next to me a CD, with the shinier side
up. Beyond it is a lamp. The CD acts as a mirror, and I see in the CD
the reflection of the lamp. Every point of the lamp seems to be copied in
a particular point on the surface of the CD, as if the ambient light that
illuminates a particular point of the lamp travels only to a single point on
the CD and then is reflected on into my eye. Each point of the lamp has its
own special point on the CD. We know from basic optics that that point
is such that the angle of incidence equals the angle of reflection, and the
path (apparently) taken by the light beam is the shortest path the light
can take to get from the lamp to the CD and then on to my eye. But how
does the light know where to go?

In fact, what happens is that light beams take many paths from each
particular point on the lamp to the CD and on to my eye. The reason I
see only the one path is that all the other paths require different travel
times, and so light beams on different paths arrive at my eye out of phase
with one another. Only those paths very close to the one I see have travel
times sufficiently similar to avoid this destructive interference. Speaking
a bit more mathematically, if we define the function that associates with
each path the time to travel along that path, then, at the shortest path, the
first derivative of this function, in the sense of the calculus of variations,
is zero. Therefore deviations from the shortest path correspond only to
second-order changes in travel time, not first-order ones, which reduces the
destructive interference.

But, as I look at the CD on the table, I see more than the reflection
of the lamp. I see streaks of color also. There is a window off to the side
and the sun is shining into the room through this window. When I place
my hand between the CD and the window, some of the colored streaks
disappear, and other colored streaks seem to appear. I am not seeing a
direct reflection of the sun; it is off to the side. What is happening is that
the grooves on the surface of the CD are each reflecting sunlight and acting
as little transmitters. Each color in the spectrum corresponds to a particular
frequency ω of light and at just the proper angle the spacing between the
grooves on the CD leads to coherent transmission of the reflected light in
the direction of my eye. The combination of frequency and spacing between
the grooves determines what color I see and at what angle. When I reach
over and tilt the CD off the table, the colors of the streaks change, because
I have changed the spacing of the little transmitters, relative to my eye.
An arrangement like this is called a diffraction grating and has many uses
in physics. For a wonderful, and largely math-free, introduction to these
ideas, see the book by Feynman [71].
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5.4 Phase and Amplitude Modulation

In the previous section the signal broadcast from each of the antennas
was the same. Now we look at what directionality can be obtained by using
different amplitudes and phases at each of the antennas. Let the signal
broadcast from the antenna at nΔ be

fn(t) = |An| cos(ωt− φn) = |An| cos(ω(t− τn)),

for some amplitude |An| > 0 and phase φn = ωτn. Now the signal received
at s is proportional to

f(s, t) =

N∑
n=−N

|An| cos(ω(t− tn − τn)).

If we wish, we can repeat the calculations done earlier to see what the effect
of the amplitude and phase changes is. Using complex notation simplifies
things somewhat.

Let us consider a complex signal; suppose that the signal transmitted
from the antenna at nΔ is gn(t) = |An|eiω(t−τn). Then, the signal received
at location s is proportional to

g(s, t) =

N∑
n=−N

|An|eiω(t−tn−τn).

Then we have
g(s, t) = B(θ)eiω(t−

D
c )

for An = |An|e−iφn , x = ωΔ
c cos(θ), and

B(θ) =

N∑
n=−N

Ane
inx.

Note that the complex amplitude function B(θ) depends on our choices of
N and Δ and takes the form of a finite Fourier series or DFT. We can design
B(θ) to approximate the desired directionality by choosing the appropri-
ate complex coefficients An and selecting the amplitudes |An| and phases
φn accordingly. We can generalize further by allowing the antennas to be
spaced irregularly along the east-west axis, or even distributed irregularly
over a two-dimensional area on the ground.
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5.5 Steering the Array

In our previous discussion, we selected An = 1 and φn = 0 for all
n and saw that the maximum transmitted power was along the north-
to-south axis. Suppose that we want to design a transmitting array that
maximally concentrates signal power in another direction. Theoretically, we
could physically rotate or steer the array until it ran along a different axis,
and then proceed as before, with An = 1 and φn = 0. This is not practical,
in most cases. There is an alternative, fortunately. We can “steer” the array
mathematically.

If An = 1, and

φn = −nΔω
c

cosα,

for some angle α, then, for x = ωΔ
c cos(θ), we have

B(θ) =

N∑
n=−N

einxeiφn =

N∑
n=−N

ein
ωΔ
c (cos θ−cosα).

The maximum absolute value of B(θ) occurs when cos θ = cosα, or when
θ = α or θ = −α. Now the greatest power is concentrated in these di-
rections. The point here is that we have altered the directionality of the
transmission, not by physically moving the array of antennas, but by chang-
ing the phases of the transmitted signals. This approach is sometimes called
phase steering. The same basic idea applies when we are receiving signals,
rather than sending them. In radar and sonar, the array of sensors is steered
mathematically, by modifying the phases of the measured data, to focus
the sensitivity of the detecting array in a particular direction.

5.6 Maximal Concentration in a Sector

In this section we take Δ = πc
ω , so that ωΔ

c = π. Suppose that we want
to concentrate the transmitted power in the directions θ corresponding
to x = ωΔ

c cos(θ) in the sub-interval [a, b] of the interval [−ωΔ
c ,

ωΔ
c ]. Let

u = (A−N , ..., AN )T be the vector of coefficients for the function

B(x) =

N∑
n=−N

Ane
−inx.

We want |B(x)| to be concentrated in the interval a ≤ x ≤ b.
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Ex. 5.2 Show that

1

2π

∫ ωΔ
c

−ωΔ
c

|B(x)|2dx = u†u,

and
1

2π

∫ b

a

|B(x)|2dx = u†Qu,

where Q is the matrix with entries

Qmn =
1

2π

∫ b

a

exp(i(m− n)x) dx.

Maximizing the concentration of power within the interval [a, b] is then
equivalent to finding the vector u that maximizes the ratio u†Qu/u†u.
The matrix Q is positive-definite, all its eigenvalues are positive, and the
optimal u is the eigenvector of Q associated with the largest eigenvalue.
This largest eigenvalue is the desired ratio and is always less than one. As
N increases this ratio approaches one, for any fixed sub-interval [a, b].

5.7 Scattering in Crystallography

When x-rays are passed through certain materials they are scattered,
which means retransmitted in various directions. As W. L. Bragg discov-
ered, by analyzing the distinctive pattern of the scattering the molecular
structure of the material can be determined. This technique was used by
Rosalind Franklin, a physicist at King’s College, London, to analyze DNA
and her work contributed greatly to the discovery, by Francis Crick and
James Watson, of the double-helix structure of that molecule.

In 1964 the British scientist Dorothy Hodgkin won the Nobel Prize for
her extension of this technique to reveal the structure of compounds more
complex than any previously analyzed. Her most important work was on
the structure of cholesterol, vitamin D, penicillin, vitamin B12, and insulin,
where she was able to uncover, by physical methods, chemical features not
encountered before, and thereby to extend the bounds of chemistry itself.
One of Dorothy Hodgkin’s students at Oxford was Margaret Roberts, later
Margaret Thatcher, Prime Minister of Great Britain throughout the 1980’s.

In [101] Körner reveals how surprised he was when he heard that
large amounts of computer time are spent by crystallographers computing
Fourier transforms numerically. He goes on to describe this application.
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The structure to be analyzed consists of some finite number of particles
that will scatter in all directions any electromagnetic radiation that hits
them. A beam of monochromatic light with unit strength and frequency ω
is sent into the structure and the resulting scattered beams are measured
at some number of observation points.

We say that the scattering particles are located in space at the points
rm, m = 1, ...,M , and that the incoming light arrives as a planewave with
wavevector k0. Then the planewave field generated by the incoming light
is

g(s, t) = eiωteik0·s.

What is received at each rm is then

g(rm, t) = eiωteik0·rm .

We observe the scattered signals at s, where the retransmitted signal com-
ing from rm is

f(s, t) = eiωteik0·rmei‖s−rm‖.

When s is sufficiently remote from the scattering particles, the retransmit-
ted signal from rm arrives at s as a planewave with wavevector

km =
ω

c
(s− rm)/‖s− rm‖.

Therefore, at s we receive

u(s, t) = eiωt
M∑
m=1

eikm·s.

The objective is to determine the km, which will then tell us the lo-
cations rm of the scattering particles. To do this, we imagine an infinity
of possible locations r for the particles and define a(r) = 1 if r = rm for
some m, and a(r) = 0 otherwise. More precisely, we define a(r) as a sum of
unit-strength Dirac delta functions supported at the rm, a topic we shall
deal with later. At each r we obtain (in theory) a value of the function
A(k), the Fourier transform of the function a(r).

In practice, the crystallographers cannot measure the complex numbers
A(k), but only the magnitudes |A(k)|; the phase angle of A(k) is lost. This
presents the crystallographers with the phase problem, in which we must
estimate a function from values of the magnitude of its Fourier transform.
For a detailed discussion of the phase problem see Chapter 10.

In 1985, Hauptman and Karle won the Nobel Prize in Chemistry for
developing a new method for finding a(s) from measurements. Their tech-
nique is highly mathematical. It is comforting to know that, although there
is no Nobel Prize in Mathematics, it is still possible to win the prize for
doing mathematics.
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6.1 Chapter Summary

A major application of the Fourier transform is in the study of systems.
We may think of a system as a device that accepts functions as input
and produces functions as output. For example, the differentiation system
accepts a differentiable function f(x) as input and produces its derivative
function f ′(x) as output. If the input is the function f(x) = 5f1(x)+3f2(x),
then the output is 5f ′

1(x) + 3f ′
2(x); the differentiation system is linear.

We shall describe systems algebraically by h = Tf , where f is any input
function, h is the resulting output function from the system, and T is the
operator that represents the operation performed by the system on any
input. For the differentiation system we would write the differentiation
operator as Tf = f ′.
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6.2 Linear Filters

The system operator T is linear if

T (af1 + bf2) = aT (f1) + bT (f2),

for any scalars a and b and functions f1 and f2. We shall be interested only
in linear systems.

6.3 Shift-Invariant Filters

We denote by Sa the system that shifts an input function by a; that is,
if f(x) is the input to system Sa, then f(x − a) is the output. A system
operator T is said to be shift-invariant if

T (Sa(f)) = Sa(T (f)),

which means that, if input f(x) leads to output h(x), then input f(x− a)
leads to output h(x − a); shifting the input just shifts the output. When
the variable x is time, we speak of time-invariant systems. When T is a
shift-invariant linear system operator we say that T is a SILO.

6.4 Some Properties of a SILO

We show first that (Tf)′ = Tf ′. Suppose that h(x) = (Tf)(x). For any
Δx we can write

f(x+Δx) = (S−Δxf)(x)

and

(TS−Δxf)(x) = (S−ΔxTf)(x) = (S−Δxh)(x) = h(x+Δx).

When the input to the system is

1

Δx

(
f(x+Δx)− f(x)

)
,

the output is
1

Δx

(
h(x+Δx)− h(x)

)
.
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Now we take limits, as Δx → 0, so that, assuming continuity, we can
conclude that Tf ′ = h′. We apply this now to the case in which f(x) =
e−ixω for some real constant ω.

Since f ′(x) = −iωf(x) and f(x) = i
ω f

′(x) in this case, we have

h(x) = (Tf)(x) =
i

ω
(Tf ′)(x) =

i

ω
h′(x),

so that
h′(x) = −iωh(x).

Solving this differential equation, we obtain

h(x) = ce−ixω,

for some constant c. Note that since the c may vary when we vary the
selected ω, we must write c = c(ω). The main point here is that, when T is
a SILO and the input function is a complex exponential with frequency ω,
then the output is again a complex exponential with the same frequency
ω, multiplied by a complex number c(ω). This multiplication by c(ω) only
modifies the amplitude and phase of the exponential function; it does not
alter its frequency. So SILOs do not change the input frequencies, but only
modify their strengths and phases.

Ex. 6.1 Let T be a SILO. Show that T is a convolution operator by show-
ing that, for each input function f , the output function h = Tf is the
convolution of f with g, where g(x) is the inverse FT of the function c(ω)
obtained above. Hint: Write the input function f(x) as

f(x) =
1

2π

∫ ∞

−∞
F (ω)e−ixωdω,

and assume that

(Tf)(x) =
1

2π

∫ ∞

−∞
F (ω)(Te−ixω)dω.

Now that we know that a SILO is a convolution filter, the obvious
question to ask is What is g(x)? This is the system identification problem.
One way to solve this problem is to consider what the output is when the
input is the Heaviside function u(x). In that case, we have

h(x) =

∫ ∞

−∞
u(y)g(x− y)dy =

∫ ∞

0

g(x− y)dy =

∫ x

−∞
g(t)dt.

Therefore, h′(x) = g(x).
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6.5 The Dirac Delta

The Dirac delta, denoted δ(x), is not truly a function. Its job is best
described by its sifting property: for any fixed value of x,

f(x) =

∫
f(y)δ(x− y)dy.

In order for the Dirac delta to perform the sifting operator on any f(x) it
would have to be zero, except at x = 0, where it would have to be infinitely
large. It is possible to give a rigorous treatment of the Dirac delta, using
generalized functions, but that is beyond the scope of this course. The Dirac
delta is useful in our discussion of filters, which is why it is used.

6.6 The Impulse-Response Function

We can solve the system identification problem by seeing what the out-
put is when the input is the Dirac delta; as we shall see, the output is g(x);
that is, Tδ = g. Since the SILO T is a convolution operator, we know that

h(x) =

∫ ∞

−∞
δ(y)g(x− y)dy = g(x).

For this reason, the function g(x) is called the impulse-response function
of the system.

6.7 Using the Impulse-Response Function

Suppose now that we take as our input the function f(x), but write it
as

f(x) =

∫
f(y)δ(x− y)dy.

Then, since T is linear, and the integral is more or less a big sum, we have

T (f)(x) =

∫
f(y)T (δ(x− y))dy =

∫
f(y)g(x− y)dy.
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The function on the right side of this equation is the convolution of the
functions f and g, written f ∗ g. This shows, as we have seen, that T
does its job by convolving any input function f with its impulse-response
function g, to get the output function h = Tf = f ∗ g. It is useful to
remember that order does not matter in convolution:∫

f(y)g(x− y)dy =

∫
g(y)f(x− y)dy.

6.8 The Filter Transfer Function

Now let us take as input the complex exponential f(x) = e−ixω, where
ω is fixed. Then the output is

h(x) = T (f)(x) =

∫
e−iyωg(x− y)dy =

∫
g(y)e−i(x−y)ωdy = e−ixωG(ω),

where G(ω) is the Fourier transform of the impulse-response function g(x);
note that G(ω) = c(ω) from Exercise 6.1. This tells us that when the input
to T is a complex exponential function with “frequency” ω, the output is
the same complex exponential function, the “frequency” is unchanged, but
multiplied by a complex number G(ω). This multiplication by G(ω) can
change both the amplitude and phase of the complex exponential, but the
“frequency” ω does not change. In filtering, this function G(ω) is called the
transfer function of the filter, or sometimes the frequency-response function.

6.9 The Multiplication Theorem for Convolution

Now let’s take as input a function f(x), but now write it, using Equation
(2.7), as

f(x) =
1

2π

∫
F (ω)e−ixωdω.

Then, taking the operator inside the integral, we find that the output is

h(x) = T (f)(x) =
1

2π

∫
F (ω)T (e−ixω)dω =

1

2π

∫
e−ixωF (ω)G(ω)dω.

But, from Equation (2.7), we know that

h(x) =
1

2π

∫
e−ixωH(ω)dω.
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This tells us that the Fourier transform H(ω) of the function h = f ∗ g is
simply the product of F (ω) and G(ω); this is the most important property
of convolution.

6.10 Summing Up

It is helpful to take stock of what we have just discovered:

1. if h = T (f) then h′ = T (f ′);

2. T (e−iωx) = G(ω)e−iωx;

3. writing

f(x) =
1

2π

∫
F (ω)e−iωxdω,

we obtain

h(x) = (Tf)(x) =
1

2π

∫
F (ω)T (e−iωx)dω,

so that

h(x) =
1

2π

∫
F (ω)G(ω)e−iωxdω;

4. since we also have

h(x) =
1

2π

∫
H(ω)e−iωxdω,

we can conclude that H(ω) = F (ω)G(ω);

5. if we define g(x) to be (Tδ)(x), then

g(x− y) = (Tδ)(x− y).

Writing

f(x) =

∫
f(y)δ(x− y)dy,

we get

h(x) = (Tf)(x) =

∫
f(y)(Tδ)(x− y)dy =

∫
f(y)g(x− y)dy,

so that h is the convolution of f and g;

6. g(x) is the inverse Fourier transform of G(ω).
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6.11 A Question

Previously, we allowed the operator T to move inside the integral. We
know, however, that this is not always permissible. The differentiation op-
erator T = D, with D(f) = f ′, cannot always be moved inside the integral;
as we learn in advanced calculus, we cannot always differentiate under the
integral sign. This raises the interesting issue of how to represent the differ-
entiation operator as a shift-invariant linear filter. In particular, what is the
impulse-response function? The answer will involve the problem of differ-
entiating the delta function, the Green’s Function method for representing
the inversion of linear differential operators, and generalized functions or
distributions.

6.12 Band-Limiting

Suppose that G(ω) = χΩ(ω). Then, if F (ω) is the Fourier transform of
the input function, the Fourier transform of the output function h(t) will
be

H(ω) =

{
F (ω), if |ω| ≤ Ω ;

0, if |ω| > Ω .

The effect of the filter is to leave values F (ω) unchanged, if |ω| ≤ Ω, and to
replace F (ω) with zero, if |ω| > Ω. This is called band-limiting. Since the
inverse Fourier transform of G(ω) is

g(t) =
sin(Ωt)

πt
,

the band-limiting system can be described using convolution:

h(t) =

∫
f(s)

sin(Ω(t− s))

π(t− s)
ds.
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7.1 Chapter Summary

Many textbooks on signal processing present filters in the context of
infinite sequences. Although infinite sequences are no more realistic than
functions f(t) defined for all times t, they do simplify somewhat the discus-
sion of filtering, particularly when it comes to the impulse response and to
random signals. Systems that have as input and output infinite sequences
are called discrete systems.

7.2 Shifting

We denote by f = {fn}∞n=−∞ an infinite sequence. For a fixed integer
k, the system that accepts f as input and produces as output the shifted
sequence h = {hn = fn−k} is denoted Sk; therefore, we write h = Skf .

111
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7.3 Shift-Invariant Discrete Linear Systems

A discrete system T is linear if

T (af1 + bf2) = aT (f1) + bT (f2),

for any infinite sequences f1 and f2 and scalars a and b. As previously, a
system T is shift-invariant if TSk = SkT . This means that if input f has
output h, then input Skf has output Skh; shifting the input by k just shifts
the output by k.

7.4 The Delta Sequence

The delta sequence δ = {δn} has δ0 = 1 and δn = 0, for n not equal to
zero. Then Sk(δ) is the sequence Sk(δ) = {δn−k}. For any sequence f we
have

fn =

∞∑
m=−∞

fmδn−m =

∞∑
m=−∞

δmfn−m.

This means that we can write the sequence f as an infinite sum of the
sequences Smδ:

f =

∞∑
m=−∞

fmSm(δ). (7.1)

As in the continuous case, we use the delta sequence to understand better
how a shift-invariant discrete linear system T works.

7.5 The Discrete Impulse Response

We let δ be the input to the shift-invariant discrete linear system T ,
and denote the output sequence by g = T (δ). Now, for any input sequence
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f with h = T (f), we write f using Equation (7.1), so that

h = T (f) = T

( ∞∑
m=−∞

fmSmδ

)
=

∞∑
m=−∞

fmTSm(δ)

=
∞∑

m=−∞
fmSmT (δ) =

∞∑
m=−∞

fmSm(g).

Therefore, we have

hn =

∞∑
m=−∞

fmgn−m, (7.2)

for each n. Equation (7.2) is the definition of discrete convolution or the
convolution of sequences. This tells us that the output sequence h = T (f) is
the convolution of the input sequence f with the impulse-response sequence
g; that is, h = T (f) = f ∗ g.

7.6 The Discrete Transfer Function

Associated with each ω in the interval [0, 2π) we have the sequence
eω = {e−inω}∞n=−∞; the minus sign in the exponent is just for notational
convenience later. What happens when we let f = eω be the input to the
system T ? The output sequence h will be the convolution of the sequence
eω with the sequence g; that is,

hn =
∞∑

m=−∞
e−imωgn−m =

∞∑
m=−∞

gme
−i(n−m)ω = e−inω

∞∑
m=−∞

gme
imω .

Defining

G(ω) =

∞∑
m=−∞

gme
imω (7.3)

for 0 ≤ ω < 2π, we can write

hn = e−inωG(ω),

or
h = T (eω) = G(ω)eω.



114 Signal Processing: A Mathematical Approach

This tells us that when eω is the input, the output is a multiple of the
input; the “frequency” ω has not changed, but the multiplication by G(ω)
can alter the amplitude and phase of the complex-exponential sequence.

Notice that Equation (7.3) is the definition of the Fourier series asso-
ciated with the sequence g viewed as a sequence of Fourier coefficients. It
follows that, once we have the function G(ω), we can recapture the original
gn from the formula for Fourier coefficients:

gn =
1

2π

∫ 2π

0

G(ω)e−inωdω.

7.7 Using Fourier Series

For any sequence f = {fn}, we can define the function

F (ω) =

∞∑
n=−∞

fne
inω,

for ω in the interval [0, 2π). Then each fn is a Fourier coefficient of F (ω)
and we have

fn =
1

2π

∫ 2π

0

F (ω)e−inωdω.

It follows that we can write

f =
1

2π

∫ 2π

0

F (ω)eωdω. (7.4)

We interpret this as saying that the sequence f is a superposition of the
individual sequences eω, with coefficients F (ω).

7.8 The Multiplication Theorem for Convolution

Now consider f as the input to the system T , with h = T (f) as output.
Using Equation (7.4), we can write

h = T (f) = T
( 1

2π

∫ 2π

0

F (ω)eωdω
)

=
1

2π

∫ 2π

0

F (ω)T (eω)dω =
1

2π

∫ 2π

0

F (ω)G(ω)eωdω.
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But, applying Equation (7.4) to h, we have

h =
1

2π

∫ 2π

0

H(ω)eωdω.

It follows that H(ω) = F (ω)G(ω), which is analogous to what we found
in the case of continuous systems. This tells us that the system T works
by multiplying the function F (ω) associated with the input by the transfer
function G(ω), to get the function H(ω) associated with the output h =
T (f). In the next section we give an example.

7.9 The Three-Point Moving Average

We consider now the linear, shift-invariant system T that performs the
three-point moving average operation on any input sequence. Let f be any
input sequence. Then the output sequence is h with

hn =
1

3
(fn−1 + fn + fn+1).

The impulse-response sequence is g with g−1 = g0 = g1 = 1
3 , and gn = 0,

otherwise.
To illustrate, for the input sequence with fn = 1 for all n, the output

is hn = 1 for all n. For the input sequence

f = {..., 3, 0, 0, 3, 0, 0, ...},
the output h is again the sequence hn = 1 for all n. If our input is
the difference of the previous two input sequences, that is, the input is
{..., 2,−1,−1, 2,−1,−1, ...}, then the output is the sequence with all en-
tries equal to zero.

The transfer function G(ω) is

G(ω) =
1

3
(eiω + 1 + e−iω) =

1

3
(1 + 2 cosω).

The function G(ω) has a zero when cosω = − 1
2 , or when ω = 2π

3 or ω = 4π
3 .

Notice that the sequence given by

fn =
(
ei

2π
3 n + e−i

2π
3 n
)
= 2 cos

2π

3
n

is the sequence {..., 2,−1,−1, 2,−1,−1, ...}, which, as we have just seen,
has as its output the zero sequence. We can say that the reason the output
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is zero is that the transfer function has a zero at ω = 2π
3 and at ω = 4π

3 =
−2π
3 . Those complex-exponential components of the input sequence that

correspond to values of ω where G(ω) = 0 will be removed in the output.
This is a useful role that filtering can play; we can null out an undesired
complex-exponential component of an input signal by designing G(ω) to
have a root at its frequency ω.

7.10 Autocorrelation

If we take the input to our convolution filter to be the sequence f related
to the impulse-response sequence by

fn = g−n,

then the output sequence is h with entries

hn =
+∞∑

k=−∞
gkgk−n

and H(ω) = |G(ω)|2. The sequence h is called the autocorrelation sequence
for g and |G(ω)|2 is the power spectrum of g.

Autocorrelation sequences have special properties not shared with or-
dinary sequences, as the exercise below shows. The Cauchy Inequality is
valid for infinite sequences: with the length of g defined by

‖g‖ =
( +∞∑
n=−∞

|gn|2
)1/2

and the inner product of any sequences f and g given by

〈f, g〉 =

+∞∑
n=−∞

fngn,

we have
|〈f, g〉| ≤ ‖f‖ ‖g‖,

with equality if and only if g is a constant multiple of f .

Ex. 7.1 Let h be the autocorrelation sequence for g. Show that h−n = hn
and h0 ≥ |hn| for all n.
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7.11 Stable Systems

An infinite sequence f = {fn} is called bounded if there is a constant
A > 0 such that |fn| ≤ A, for all n. The shift-invariant linear system with
impulse-response sequence g = T (δ) is said to be stable [120] if the output
sequence h = {hn} is bounded whenever the input sequence f = {fn} is. In
Exercise 7.2 below we ask the reader to prove that, in order for the system
to be stable, it is both necessary and sufficient that

∞∑
n=−∞

|gn| < +∞.

Given a doubly infinite sequence, g = {gn}+∞
n=−∞, we associate with g its

z-transform, the function of the complex variable z given by

G(z) =

+∞∑
n=−∞

gnz
−n.

Doubly infinite series of this form are called Laurent series and occur in
the representation of functions analytic in an annulus. Note that if we take
z = e−iω then G(z) becomes G(ω) as defined by Equation (7.3). The z-
transform is a somewhat more flexible tool in that we are not restricted to
those sequences g for which the z-transform is defined for z = e−iω.

Ex. 7.2 Show that the shift-invariant linear system with impulse-response
sequence g is stable if and only if

+∞∑
n=−∞

|gn| < +∞.

Hint: If, on the contrary,

+∞∑
n=−∞

|gn| = +∞,

consider as input the bounded sequence f with

fn = g−n/|g−n|
and show that the output h0 = +∞.

Ex. 7.3 Consider the linear system determined by the sequence g0 = 2,
gn = (12 )

|n|, for n �= 0. Show that this system is stable. Calculate the z-
transform of {gn} and determine its region of convergence.
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7.12 Causal Filters

The shift-invariant linear system with impulse-response sequence g is
said to be a causal system if the sequence {gn} is itself causal; that is,
gn = 0 for n < 0. For causal systems the value of the output at n, that
is, hn, depends only on those input values fm for m ≤ n. When the input
is a time series, this says that the value of the output at any given time
depends only on the value of the inputs up to that time, and not on future
values of the input sequence. A number of important filters, such as band-
limiting filters, are not causal and have to be approximated by causal filters
to operate in real time.

Ex. 7.4 Show that the function G(z) = (z − z0)
−1 is the z-transform of a

causal sequence g, where z0 is a fixed complex number. What is the region
of convergence? Show that the resulting linear system is stable if and only
if |z0| < 1.
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8.1 Chapter Summary

Convolution is an important concept in signal processing and occurs
in several distinct contexts. The simplest example of convolution is the
nonperiodic convolution of finite vectors, which is what we do to the co-
efficients when we multiply two polynomials together. In Chapters 6 and
7 we considered the convolution of functions of a continuous variable and
of infinite sequences. The reader may also recall an earlier encounter with
convolution in a course on differential equations. In this chapter we shall
discuss nonperiodic convolution and periodic convolution of vectors, with
particular emphasis on the role of the vector DFT and the FFT algorithm.
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8.2 Nonperiodic Convolution

Recall the algebra problem of multiplying one polynomial by another.
Suppose

A(x) = a0 + a1x+ ...+ aMx
M

and
B(x) = b0 + b1x+ ...+ bNx

N .

Let C(x) = A(x)B(x). With

C(x) = c0 + c1x+ ...+ cM+Nx
M+N ,

each of the coefficients cj , j = 0, ...,M+N, can be expressed in terms of the
am and bn (an easy exercise!). The vector c = (c0, ..., cM+N ) is called the
nonperiodic convolution of the vectors a = (a0, ..., aM ) and b = (b0, ..., bN ).
Nonperiodic convolution can be viewed as a particular case of periodic
convolution, as we shall see.

8.3 The DFT as a Polynomial

Given the complex numbers f0, f1, ..., fN−1, we form the vector f =
(f0, f1, ..., fN−1)

T . The DFT of the vector f is the function

DFTf (ω) =
N−1∑
n=0

fne
inω,

defined for ω in the interval [0, 2π). Because einω = (eiω)n, we can write
the DFT as a polynomial

DFTf (ω) =
N−1∑
n=0

fn(e
iω)n.

If we have a second vector, say d = (d0, d1, ..., dN−1)
T , then we define

DFTd(ω) similarly. When we multiply DFTf (ω) by DFTd(ω), we are mul-
tiplying two polynomials together, so the result is a sum of powers of the
form

c0 + c1e
iω + c2(e

iω)2 + ...+ c2N−2(e
iω)2N−2, (8.1)
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for
cj = f0dj + f1dj−1 + ...+ fjd0.

This is nonperiodic convolution again. In the next section, we consider what
happens when, instead of using arbitrary values of ω, we consider only the
N special values ωk = 2π

N k, k = 0, 1, ..., N − 1. Because of the periodicity
of the complex exponential function, we have

(eiωk)N+j = (eiωk)j ,

for each k. As a result, all the powers higher than N − 1 that showed up in
the previous multiplication in Equation (8.1) now become equal to lower
powers, and the product now only has N terms, instead of the 2N−1 terms
we got previously. When we calculate the coefficients of these powers, we
find that we get more than we got when we did the nonperiodic convolution.
Now what we get is called periodic convolution.

8.4 The Vector DFT and Periodic Convolution

As we just discussed, nonperiodic convolution is another way of look-
ing at the multiplication of two polynomials. This relationship between
convolution on the one hand and multiplication on the other is a funda-
mental aspect of convolution. Whenever we have a convolution we should
ask what related mathematical objects are being multiplied. We ask this
question now with regard to periodic convolution; the answer turns out to
be the vector discrete Fourier transform (vDFT).

8.4.1 The Vector DFT

Let f = (f0, f1, ..., fN−1)
T be a column vector whose entries are N

arbitrary complex numbers. For k = 0, 1, ..., N − 1, we let

Fk =

N−1∑
n=0

fne
2πikn/N = DFTf (ωk). (8.2)

Then we let F = (F0, F1, ..., FN−1)
T be the column vector with the N com-

plex entries Fk. The vector F is called the vector discrete Fourier transform
of the vector f , and we denote it by F = vDFTf .

The entries of the vector F = vDFTf are N equi-spaced values of the
function DFTf (ω). If the Fourier transform F (ω) is zero for ω outside the
interval [0, 2π], and fn = f(n), for n = 0, 1, ..., N − 1, then the entries of
the vector F are N estimated values of F (ω).
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Ex. 8.1 Let fn be real, for each n. Show that FN−k = Fk, for each k.

As we can see from Equation (8.2), there are N multiplications involved
in the calculation of each Fk, and there are N values of k, so it would seem
that, in order to calculate the vector DFT of f , we need N2 multiplications.
In many applications, N is quite large and calculating the vector F using
the definition would be unrealistically time-consuming. The fast Fourier
transform algorithm (FFT), to be discussed later, gives a quick way to
calculate the vector F from the vector f . The FFT, usually credited to
Cooley and Tukey, was discovered in the mid-1960’s and revolutionized
signal and image processing.

8.4.2 Periodic Convolution

Given the N by 1 vectors f and d with complex entries fn and dn,
respectively, we define a third N by 1 vector f ∗ d, the periodic convolution
of f and d, to have the entries

(f ∗ d)n = f0dn + f1dn−1 + ...+ fnd0 + fn+1dN−1 + ...+ fN−1dn+1, (8.3)

for n = 0, 1, ..., N − 1.
Notice that the term on the right side of Equation (8.3) is the sum of

all products of entries, one from f and one from d, where the sum of their
respective indices is either n or n+N . Periodic convolution is illustrated in
Figure 8.1. The first exercise relates the periodic convolution to the vector
DFT.

In the exercises that follow we investigate properties of the vector DFT
and relate it to periodic convolution. It is not an exaggeration to say that
these two exercises are the most important ones in signal processing. The
first exercise establishes for finite vectors and periodic convolution a version
of the multiplication theorems we saw earlier for continuous and discrete
convolution.

Ex. 8.2 Let F = vDFTf and D = vDFTd. Define a third vector E having
for its kth entry Ek = FkDk, for k = 0, ..., N−1. Show that E is the vDFT
of the vector f ∗ d.

The vector vDFTf can be obtained from the vector f by means of
matrix multiplication by a certain matrix G, called the DFT matrix. The
matrix G has an inverse that is easily computed and can be used to go
from F = vDFTf back to the original f . The details are in Exercise 8.3.
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a * b(0) = a(0)b(0) + a(1)b(3) + a(2)b(2) + a(3)b(1)

a * b(1) = a(0)b(1) + a(1)b(0) + a(2)b(3) + a(3)b(2)

Rotate inner disk
clockwise

Multiply  and add

Periodic Convolution

FIGURE 8.1: Periodic convolution of vectors a = (a(0), a(1), a(2), a(3))
and b = (b(0), b(1), b(2), b(3)).

Ex. 8.3 Let G be the N by N matrix whose entries are

Gjk = ei(j−1)(k−1)2π/N .

The matrix G is sometimes called the DFT matrix. Show that the inverse
of G is G−1 = 1

NG
†, where G† is the conjugate transpose of the matrix G.

Then f ∗ d = G−1E = 1
NG

†E.

Every time I have taught this subject I have told my students that, if
they learn nothing else in the course, they should understand the previous
two exercises, which are fundamental in signal processing.
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8.5 The vDFT of Sampled Data

For a doubly infinite sequence {fn| − ∞ < n < ∞}, the function of
F (γ) given by the infinite series

F (γ) =

∞∑
n=−∞

fne
inγ (8.4)

is sometimes called the discrete-time Fourier transform (DTFT) of the
sequence, and the fn are called its Fourier coefficients. The function F (γ)
is 2π-periodic, so we restrict our attention to the interval 0 ≤ γ ≤ 2π. If
we start with a function F (γ), for 0 ≤ γ ≤ 2π, we can find the Fourier
coefficients by

fn =
1

2π

∫ 2π

0

F (γ)e−iγndγ. (8.5)

8.5.1 Superposition of Sinusoids

Equation (8.5) suggests a model for a function of a continuous variable
x:

f(x) =
1

2π

∫ 2π

0

F (γ)e−iγxdγ.

The values fn then can be viewed as fn = f(n), that is, the fn are sampled
values of the function f(x), sampled at the points x = n. The function
F (γ) is now said to be the spectrum of the function f(x). The function
f(x) is then viewed as a superposition of infinitely many simple functions,
namely the complex exponentials or sinusoidal functions e−iγx, for values
of γ that lie in the interval [0, 2π]. The relative contribution of each e−iγx

to f(x) is given by the complex number 1
2πF (γ).

8.5.2 Rescaling

In the model just discussed, we sampled the function f(x) at the points
x = n. In applications, the variable x can have many meanings. In partic-
ular, x is often time, denoted by the variable t. Then the variable γ will
be related to frequency. Depending on the application, the frequencies in-
volved in the function f(t) may be quite large numbers, or quite small ones;
there is no reason to assume that they will all be in the interval [0, 2π]. For
this reason, we have to modify our formulas.
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Suppose that the function g(t) is known to involve only frequencies in
the interval [0, 2πΔ ]. Define f(x) = g(xΔ), so that

g(t) = f(t/Δ) =
1

2π

∫ 2π

0

F (γ)e−iγt/Δdγ.

Introducing the variable ω = γ/Δ, and writing G(ω) = ΔF (ωΔ), we get

g(t) =
1

2π

∫ 2π
Δ

0

G(ω)e−iωtdω.

Now the typical problem is to estimate G(ω) from measurements of g(t).
Note that, using Equation (8.4), the function G(ω) can be written as fol-
lows:

G(ω) = ΔF (ωΔ) = Δ
∞∑

n=−∞
fne

inωΔ,

so that

G(ω) = Δ

∞∑
n=−∞

g(nΔ)ei(nΔ)ω. (8.6)

Note that this is what Shannon’s Sampling Theorem tells us, and shows
that the functions G(ω) and g(t) can be completely recovered from the
infinite sequence of samples {g(nΔ)}, whenever G(ω) is zero outside an
interval of total length 2π

Δ .

8.5.3 The Aliasing Problem

In the previous subsection, we assumed that we knew that the only
frequencies involved in g(t) were in the interval [0, 2πΔ ], and that Δ was our
sampling spacing. Notice that, given our data g(nΔ), it is impossible for
us to distinguish a frequency ω from ω + 2πk

Δ , for any integer k: for any
integers k and n we have

ei(ω+
2πk
Δ )nΔ = eiωnΔe2πikn.

8.5.4 The Discrete Fourier Transform

In practice, we will have only finitely many measurements g(nΔ); even
these will typically be noisy, but we shall overlook this for now. Suppose
our data is g(nΔ), for n = 0, 1, ..., N − 1. For notational simplicity, we let
fn = g(nΔ). It seems reasonable, in this case, to base our estimate Ĝ(ω)
of G(ω) on Equation (8.6) and write

Ĝ(ω) = Δ

N−1∑
n=0

g(nΔ)ei(nΔ)ω. (8.7)
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We shall call Ĝ(ω) the DFT estimate of the function G(ω) and write

GDFT (ω) = Ĝ(ω);

it will be clear from the context that the DFT uses samples of g(t) and
estimates G(ω).

8.5.5 Calculating Values of the DFT

Suppose that we want to evaluate this estimate of G(ω) at the N − 1
points ωk = 2πk

NΔ , for k = 0, 1, ..., N − 1. Then we have

Ĝ(ωk) = Δ

N−1∑
n=0

g(nΔ)ei(nΔ) 2πk
NΔ =

N−1∑
n=0

Δg(nΔ)e2πikn/N .

Notice that this is the vector DFT entry Fk for the choices fn = Δg(nΔ).
To summarize, given the samples g(nΔ), for n = 0, 1, ..., N − 1, we

can get the N values Ĝ( 2πkNΔ) by taking the vector DFT of the vector
f = (Δg(0),Δg(Δ), ...,Δg((N − 1)Δ))T . We would normally use the FFT
algorithm to perform these calculations.

8.5.6 Zero-Padding

Suppose we simply want to graph the DFT estimate GDFT (ω) = Ĝ(ω)
on some uniform grid in the interval [0, 2πΔ ], but want to use more than N
points in the grid. The FFT algorithm always gives us back a vector with
the same number of entries as the one we begin with, so if we want to get,
say,M > N points in the grid, we need to give the FFT algorithm a vector
with M entries. We do this by zero-padding, that is, by taking as our input
to the FFT algorithm the M by 1 column vector

f = (Δg(0),Δg(Δ), ...,Δg((N − 1)Δ), 0, 0, ..., 0)T .

The resulting vector DFT F then has the entries

Fk = Δ
N−1∑
n=0

g(nΔ)e2πikn/M ,

for k = 0, 1, ...,M − 1; therefore, we have Fk = Ĝ(2πk/M).

8.5.7 What the vDFT Achieves

It is important to note that the values Fk we calculate by applying the
FFT algorithm to the sampled data g(nΔ) are not values of the function
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G(ω), but of the estimate, Ĝ(ω). Zero-padding allows us to use the FFT to
see more of the values of Ĝ(ω). It does not improve resolution, but simply
shows us what is already present in the function Ĝ(ω), which we may not
have seen without the zero-padding. The FFT algorithm is most efficient
when N is a power of two, so it is common practice to zero-pad f using as
M the smallest power of two not less than N .

8.5.8 Terminology

In the signal processing literature no special name is given to what we
call hereGDFT (ω), and the vector DFT of the data vector is called the DFT
of the data. This is unfortunate, because the function of the continuous
variable given in Equation (8.7) is the more fundamental entity, the vector
DFT being merely the evaluation of that function at N equi-spaced points.
If we should wish to evaluate the GDFT (ω) at M > N equi-spaced points,
say, for example, for the purpose of graphing the function, we would zero-
pad the data vector, as we just discussed. The resulting vector DFT is not
the same vector as the one obtained prior to zero-padding; it is not even
the same size. But both of these vectors have, as their entries, values of the
same function, GDFT (ω).

8.6 Understanding the Vector DFT

Let g(t) be the signal we are interested in. We sample the signal at
the points t = nΔ, for n = 0, 1, ..., N − 1, to get our data values, which
we label fn = g(nΔ). To illustrate the significance of the vector DFT, we
consider the simplest case, in which the signal g(t) we are sampling is a
single sinusoid.

Suppose that g(t) is a complex exponential function with frequency the
negative of ωm = 2πm/NΔ; the reason for the negative is a technical one
that we can safely ignore at this stage. Then

g(t) = e−i(2πm/NΔ)t,

for some nonnegative integer 0 ≤ m ≤ N − 1. Our data is then

fn = Δg(nΔ) = Δe−i(2πm/NΔ)nΔ = Δe−2πimn/N .

Now we calculate the components Fk of the vector DFT. We have

Fk =

N−1∑
n=0

fne
2πikn/N = Δ

N−1∑
n=0

e2πi(k−m)/N .
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If k = m, then Fm = NΔ, while, according to Equation 4.5, Fk = 0, for k
not equal to m. Let’s try this on a more complicated signal.

Suppose now that our signal has the form

f(t) =

N−1∑
m=0

Ame
−2πimt/NΔ. (8.8)

The data vector is now

fn = Δ

N−1∑
m=0

Ame
−2πimn/N .

The entry Fm of the vector DFT is now the sum of the values it would have
if the signal had consisted only of the single sinusoid e−i(2πm/NΔ)t. As we
just saw, all but one of these values would be zero, and so Fm = NΔAm,
and this holds for each m = 0, 1, ..., N − 1.

Summarizing, when the signal f(t) is a sum of N sinusoids, with the
frequencies ωk = 2πk/NΔ, for k = 0, 1, ..., N−1, and we sample at t = nΔ,
for n = 0, 1, ..., N − 1, the entries Fk of the vector DFT are precisely NΔ
times the corresponding amplitudes Ak. For this particular situation, cal-
culating the vector DFT gives us the amplitudes of the different sinusoidal
components of f(t). We must remember, however, that this applies only
to the case in which f(t) has the form in Equation (8.8). In general, the
entries of the vector DFT are to be understood as approximations, in the
sense discussed above.

As mentioned previously, nonperiodic convolution is really a special case
of periodic convolution. Extend the M + 1 by 1 vector a to an M +N + 1
by 1 vector by appending N zero entries; similarly, extend the vector b to
an M + N + 1 by 1 vector by appending zeros. The vector c is now the
periodic convolution of these extended vectors. Therefore, since we have
an efficient algorithm for performing periodic convolution, namely the Fast
Fourier Transform algorithm (FFT), we have a fast way to do the periodic
(and thereby nonperiodic) convolution and polynomial multiplication.

8.7 The Fast Fourier Transform (FFT)

A fundamental problem in signal processing is to estimate finitely many
values of the function F (ω) from finitely many values of its (inverse) Fourier
transform, f(t). As we have seen, the DFT arises in several ways in that
estimation effort. The Fast Fourier transform (FFT), discovered in 1965 by
Cooley and Tukey, is an important and efficient algorithm for calculating
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the vector DFT [58]. John Tukey has been quoted as saying that his main
contribution to this discovery was the firm and often voiced belief that such
an algorithm must exist.

8.7.1 Evaluating a Polynomial

To illustrate the main idea underlying the FFT, consider the problem of
evaluating a real polynomial P (x) at a point, say x = c. Let the polynomial
be

P (x) = a0 + a1x+ a2x
2 + ...+ a2Kx

2K ,

where a2K might be zero. Performing the evaluation efficiently by Horner’s
method,

P (c) = (((a2Kc+ a2K−1)c+ a2K−2)c+ a2K−3)c+ ...,

requires 2K multiplications, so the complexity is on the order of the degree
of the polynomial being evaluated. But suppose we also want P (−c). We
can write

P (x) = (a0 + a2x
2 + ...+ a2Kx

2K) + x(a1 + a3x
2 + ...+ a2K−1x

2K−2)

or
P (x) = Q(x2) + xR(x2).

Therefore, we have P (c) = Q(c2) + cR(c2) and P (−c) = Q(c2) − cR(c2).
If we evaluate P (c) by evaluating Q(c2) and R(c2) separately, one more
multiplication gives us P (−c) as well. The FFT is based on repeated use of
this idea, which turns out to be more powerful when we are using complex
exponentials, because of their periodicity.

8.7.2 The DFT and Vector DFT

Suppose that the data are the samples {f(nΔ), n = 1, ..., N}, where
Δ > 0 is the sampling increment or sampling spacing. The DFT estimate
of F (ω) is the function FDFT (ω), defined for ω in [−π/Δ, π/Δ], and given
by

FDFT (ω) = Δ

N∑
n=1

f(nΔ)einΔω.

The DFT estimate FDFT (ω) is data consistent; its inverse Fourier-
transform value at t = nΔ is f(nΔ) for n = 1, ..., N . The DFT is sometimes
used in a slightly more general context in which the coefficients are not nec-
essarily viewed as samples of a function f(t).
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Given the complexN -dimensional column vector f = (f0, f1, ..., fN−1)
T ,

define the DFT of vector f to be the function DFTf (ω), defined for ω in
[0, 2π), given by

DFTf (ω) =

N−1∑
n=0

fne
inω.

Let F be the complex N -dimensional vector F = (F0, F1, ..., FN−1)
T , where

Fk = DFTf (2πk/N), k = 0, 1, ..., N−1. So the vector F consists ofN values
of the function DFTf , taken at N equi-spaced points 2π/N apart in [0, 2π).

From the formula for DFTf we have, for k = 0, 1, ..., N − 1,

Fk = F (2πk/N) =

N−1∑
n=0

fne
2πink/N . (8.9)

To calculate a single Fk requires N multiplications; it would seem that to
calculate all N of them would require N2 multiplications. However, using
the FFT algorithm, we can calculate vector F in approximately N log2(N)
multiplications.

8.7.3 Exploiting Redundancy

Suppose that N = 2M is even. We can rewrite Equation (8.9) as follows:

Fk =
M−1∑
m=0

f2me
2πi(2m)k/N +

M−1∑
m=0

f2m+1e
2πi(2m+1)k/N ,

or, equivalently,

Fk =

M−1∑
m=0

f2me
2πimk/M + e2πik/N

M−1∑
m=0

f2m+1e
2πimk/M . (8.10)

Note that if 0 ≤ k ≤M − 1 then

Fk+M =

M−1∑
m=0

f2me
2πimk/M − e2πik/N

M−1∑
m=0

f2m+1e
2πimk/M , (8.11)

so there is no additional computational cost in calculating the second half
of the entries of F, once we have calculated the first half. The FFT is the
algorithm that results when we take full advantage of the savings obtainable
by splitting a DFT calculation into two similar calculations, each half the
size.

We assume now that N = 2L. Notice that if we use Equations (8.10)
and (8.11) to calculate vector F, the problem reduces to the calculation of
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two similar DFT evaluations, both involving half as many entries, followed
by one multiplication for each of the k between 0 and M − 1. We can split
these in half as well. The FFT algorithm involves repeated splitting of the
calculations of DFTs at each step into two similar DFTs, but with half the
number of entries, followed by as many multiplications as there are entries
in either one of these smaller DFTs. We use recursion to calculate the cost
C(N) of computing F using this FFT method. From Equation (8.10) we
see that C(N) = 2C(N/2) + (N/2). Applying the same reasoning to get
C(N/2) = 2C(N/4) + (N/4), we obtain

C(N) = 2C(N/2) + (N/2) = 4C(N/4) + 2(N/2) = ...

= 2LC(N/2L) + L(N/2) = N + L(N/2).

Therefore, the cost required to calculate F is approximately N log2N .
From our earlier discussion of discrete linear filters and convolution, we

see that the FFT can be used to calculate the periodic convolution (or even
the nonperiodic convolution) of finite length vectors.

Finally, let’s return to the original context of estimating the Fourier
transform F (ω) of function f(t) from finitely many samples of f(t). If we
have N equi-spaced samples, we can use them to form the vector f and
perform the FFT algorithm to get vector F consisting of N values of the
DFT estimate of F (ω). It may happen that we wish to calculate more
than N values of the DFT estimate, perhaps to produce a smooth looking
graph. We can still use the FFT, but we must trick it into thinking we have
more data than the N samples we really have. We do this by zero-padding.
Instead of creating the N -dimensional vector f , we make a longer vector by
appending, say, J zeros to the data, to make a vector that has dimension
N + J . The DFT estimate is still the same function of ω, since we have
only included new zero coefficients as fake data; but, the FFT thinks we
have N + J data values, so it returns N + J values of the DFT, at N + J
equi-spaced values of ω in [0, 2π).

8.7.4 The Two-Dimensional Case

Suppose now that we have the data {f(mΔx, nΔy)}, for m = 1, ...,M
and n = 1, ..., N , where Δx > 0 and Δy > 0 are the sample spacings in
the x and y directions, respectively. The DFT of this data is the function
FDFT (α, β) defined by

FDFT (α, β) = ΔxΔy

M∑
m=1

N∑
n=1

f(mΔx, nΔy)e
i(αmΔx+βnΔy),

for |α| ≤ π/Δx and |β| ≤ π/Δy. The two-dimensional FFT produces MN
values of FDFT (α, β) on a rectangular grid of M equi-spaced values of α
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and N equi-spaced values of β. This calculation proceeds as follows. First,
for each fixed value of n, a FFT of theM data points {f(mΔx, nΔy)},m =
1, ...,M is calculated, producing a function, say G(αm, nΔy), of M equi-
spaced values of α and the N equi-spaced values nΔy. Then, for each
of the M equi-spaced values of α, the FFT is applied to the N values
G(αm, nΔy), n = 1, ..., N , to produce the final result.
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9.1 Chapter Summary

We have seen how the Fourier transform arises naturally as we analyze
the signals received in the far field from an array of transmitters or reflec-
tors. In this chapter we describe the role played by the wave equation in
remote sensing, focusing on plane-wave solutions. We shall consider this
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topic in more detail in Chapter 24. We restrict our attention here to single-
frequency, or narrow-band, signals. We begin with a simple illustration of
some of the issues we deal with in greater detail later in this chapter.

9.2 The Bobbing Boats

Imagine a large swimming pool in which there are several toy boats
arrayed in a straight line. Although we use Figure 9.1 for a slightly different
purpose elsewhere, for now we can imagine that the black dots in that figure
represent our toy boats. Far across the pool, someone is slapping the water
repeatedly, generating waves that proceed outward, in essentially concentric
circles, across the pool. By the time the waves reach the boats, the circular
shape has flattened out so that the wavefronts are essentially straight lines.
The straight lines in Figure 9.1 can represent these wavefronts.

As the wavefronts reach the boats, the boats bob up and down. If the
lines of the wavefronts were oriented parallel to the line of the boats, then
the boats would bob up and down in unison. When the wavefronts come
in at some angle, as shown in the figure, the boats will bob up and down
out of sync with one another, generally. By measuring the time it takes for
the peak to travel from one boat to the next, we can estimate the angle of
arrival of the wavefronts. This leads to two questions:

1. Is it possible to get the boats to bob up and down in unison, even
though the wavefronts arrive at an angle, as shown in the figure?

2. Is it possible for wavefronts corresponding to two different angles of
arrival to affect the boats in the same way, so that we cannot tell
which of the two angles is the real one?

We need a bit of mathematical notation. We let the distance from each
boat to the ones on both sides be a constant distance Δ. We assume that
the water is slapped f times per second, so f is the frequency, in units of
cycles per second. As the wavefronts move out across the pool, the distance
from one peak to the next is called the wavelength, denoted λ. The product
λf is the speed of propagation c; so λf = c. As the frequency changes, so
does the wavelength, while the speed of propagation, which depends solely
on the depth of the pool, remains constant. The angle θ measures the tilt
between the line of the wavefronts and the line of the boats, so that θ = 0
indicates that these wavefront lines are parallel to the line of the boats,
while θ = π

2 indicates that the wavefront lines are perpendicular to the line
of the boats.
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FIGURE 9.1: A uniform line array sensing a plane-wave field.



136 Signal Processing: A Mathematical Approach

Ex. 9.1 Let the angle θ be arbitrary, but fixed, and let Δ be fixed. Can we
select the frequency f in such a way that we can make all the boats bob up
and down in unison?

Ex. 9.2 Suppose now that the frequency f is fixed, but we are free to alter
the spacing Δ. Can we choose Δ so that we can always determine the true
angle of arrival?

9.3 Transmission and Remote Sensing

For pedagogical reasons, we shall discuss separately what we shall call
the transmission and the remote-sensing problems, although the two prob-
lems are opposite sides of the same coin, in a sense. In the one-dimensional
transmission problem, it is convenient to imagine the transmitters located
at points (x, 0) within a bounded interval [−A,A] of the x-axis, and the
measurements taken at points P lying on a circle of radius D, centered at
the origin. The radius D is large, with respect to A. It may well be the
case that no actual sensing is to be performed, but rather, we are simply
interested in what the received signal pattern is at points P distant from
the transmitters. Such would be the case, for example, if we were analyzing
or constructing a transmission pattern of radio broadcasts. In the remote-
sensing problem, in contrast, we imagine, in the one-dimensional case, that
our sensors occupy a bounded interval of the x-axis, and the transmitters
or reflectors are points of a circle whose radius is large, with respect to
the size of the bounded interval. The actual size of the radius does not
matter and we are interested in determining the amplitudes of the trans-
mitted or reflected signals, as a function of angle only. Such is the case
in astronomy, far-field sonar or radar, and the like. Both the transmission
and remote-sensing problems illustrate the important role played by the
Fourier transform.

9.4 The Transmission Problem

We identify two distinct transmission problems: the direct problem and
the inverse problem. In the direct transmission problem, we wish to deter-
mine the far-field pattern, given the complex amplitudes of the transmitted
signals. In the inverse transmission problem, the array of transmitters or
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reflectors is the object of interest; we are given, or we measure, the far-field
pattern and wish to determine the amplitudes. For simplicity, we consider
only single-frequency signals.

We suppose that each point x in the interval [−A,A] transmits the
signal f(x)eiωt, where f(x) is the complex amplitude of the signal and
ω > 0 is the common fixed frequency of the signals. LetD > 0 be large, with
respect to A, and consider the signal received at each point P given in polar
coordinates by P = (D, θ). The distance from (x, 0) to P is approximately
D − x cos θ, so that, at time t, the point P receives from (x, 0) the signal
f(x)eiω(t−(D−x cos θ)/c), where c is the propagation speed. Therefore, the
combined signal received at P is

B(P, t) = eiωte−iωD/c
∫ A

−A
f(x)eix

ω cos θ
c dx.

The integral term, which gives the far-field pattern of the transmission, is

F (
ω cos θ

c
) =

∫ A

−A
f(x)eix

ω cos θ
c dx,

where F (γ) is the Fourier transform of f(x), given by

F (γ) =

∫ A

−A
f(x)eixγdx.

How F (ω cos θ
c ) behaves, as a function of θ, as we change A and ω, is dis-

cussed in some detail in the chapter on direct transmission.
Consider, for example, the function f(x) = 1, for |x| ≤ A, and f(x) = 0,

otherwise. The Fourier transform of f(x) is

F (γ) = 2Asinc(Aγ),

where sinc(t) is defined to be

sinc(t) =
sin(t)

t
,

for t �= 0, and sinc(0) = 1. Then F (ω cos θ
c ) = 2A when cos θ = 0, so when

θ = π
2 and θ = 3π

2 . We will have F (ω cos θ
c ) = 0 when Aω cos θ

c = π, or
cos θ = πc

Aω . Therefore, the transmission pattern has no nulls if πc
Aω > 1.

In order for the transmission pattern to have nulls, we need A > λ
2 , where

λ = 2πc
ω is the wavelength. This rather counterintuitive fact, namely that we

need more signals transmitted in order to receive less at certain locations,
illustrates the phenomenon of destructive interference.
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9.5 Reciprocity

For certain remote-sensing applications, such as sonar and radar array
processing and astronomy, it is convenient to switch the roles of sender
and receiver. Imagine that superimposed plane-wave fields are sensed at
points within some bounded region of the interior of the sphere, having
been transmitted or reflected from the points P on the surface of a sphere
whose radius D is large with respect to the bounded region. The reciprocity
principle tells us that the same mathematical relation holds between points
P and (x, 0), regardless of which is the sender and which the receiver.
Consequently, the data obtained at the points (x, 0) are then values of the
inverse Fourier transform of the function describing the amplitude of the
signal sent from each point P .

9.6 Remote Sensing

A basic problem in remote sensing is to determine the nature of a distant
object by measuring signals transmitted by or reflected from that object.
If the object of interest is sufficiently remote, that is, is in the far field, the
data we obtain by sampling the propagating spatio-temporal field is related,
approximately, to what we want by Fourier transformation. The problem
is then to estimate a function from finitely many (usually noisy) values
of its Fourier transform. The application we consider here is a common
one of remote-sensing of transmitted or reflected waves propagating from
distant sources. Examples include optical imaging of planets and asteroids
using reflected sunlight, radio-astronomy imaging of distant sources of radio
waves, active and passive sonar, and radar imaging.

9.7 The Wave Equation

In many areas of remote sensing, what we measure are the fluctuations
in time of an electromagnetic or acoustic field. Such fields are described
mathematically as solutions of certain partial differential equations, such
as the wave equation. A function u(x, y, z, t) is said to satisfy the three-
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dimensional wave equation if

utt = c2(uxx + uyy + uzz) = c2∇2u,

where utt denotes the second partial derivative of u with respect to the time
variable t twice and c > 0 is the (constant) speed of propagation. More
complicated versions of the wave equation permit the speed of propagation
c to vary with the spatial variables x, y, z, but we shall not consider that
here.

We use the method of separation of variables at this point, to get some
idea about the nature of solutions of the wave equation. Assume, for the
moment, that the solution u(t, x, y, z) has the simple form

u(t, x, y, z) = g(t)f(x, y, z).

Inserting this separated form into the wave equation, we get

g′′(t)f(x, y, z) = c2g(t)∇2f(x, y, z)

or
g′′(t)/g(t) = c2∇2f(x, y, z)/f(x, y, z).

The function on the left is independent of the spatial variables, while the
one on the right is independent of the time variable; consequently, they
must both equal the same constant, which we denote −ω2. From this we
have two separate equations,

g′′(t) + ω2g(t) = 0, (9.1)

and

∇2f(x, y, z) +
ω2

c2
f(x, y, z) = 0. (9.2)

Equation (9.2) is the Helmholtz equation.
Equation (9.1) has for its solutions the functions g(t) = cos(ωt) and

sin(ωt), or, in complex form, the complex exponential functions g(t) = eiωt

and g(t) = e−iωt. Functions u(t, x, y, z) = g(t)f(x, y, z) with such time
dependence are called time-harmonic solutions.

In three-dimensional spherical coordinates with r =
√
x2 + y2 + z2 a

radial function u(r, t) satisfies the wave equation if

utt = c2
(
urr +

2

r
ur

)
.

Ex. 9.3 Show that the radial function u(r, t) = 1
rh(r−ct) satisfies the wave

equation for any twice differentiable function h.
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9.8 Plane-Wave Solutions

Suppose that, beginning at time t = 0, there is a localized disturbance.
As time passes, that disturbance spreads out spherically. When the radius
of the sphere is very large, the surface of the sphere appears planar, to
an observer on that surface, who is said then to be in the far field. This
motivates the study of solutions of the wave equation that are constant on
planes; the so-called plane-wave solutions.

Ex. 9.4 Let s = (x, y, z) and u(s, t) = u(x, y, z, t) = eiωteik·s. Show that u
satisfies the wave equation utt = c2∇2u for any real vector k, so long as
||k||2 = ω2/c2. This solution is a plane wave associated with frequency ω
and wavevector k; at any fixed time the function u(s, t) is constant on any
plane in three-dimensional space having k as a normal vector.

In radar and sonar, the field u(s, t) being sampled is usually viewed as
a discrete or continuous superposition of plane-wave solutions with various
amplitudes, frequencies, and wavevectors. We sample the field at various
spatial locations s, for various times t. Here we simplify the situation a
bit by assuming that all the plane-wave solutions are associated with the
same frequency, ω. If not, we can perform an FFT on the functions of time
received at each sensor location s and keep only the value associated with
the desired frequency ω.

9.9 Superposition and the Fourier Transform

In the continuous superposition model, the field is a superposition of
plane-wave solutions

u(s, t) = eiωt
∫
F (k)eik·sdk.

Our measurements at the sensor locations s give us the values

f(s) =

∫
F (k)eik·sdk. (9.3)

The data are then Fourier transform values of the complex function F (k);
F (k) is defined for all three-dimensional real vectors k, but is zero, in the-
ory, at least, for those k whose squared length ||k||2 is not equal to ω2/c2.
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Our goal is then to estimate F (k) from measured values of its Fourier trans-
form. Since each k is a normal vector for its plane-wave field component,
determining the value of F (k) will tell us the strength of the plane-wave
component coming from the direction k.

9.9.1 The Spherical Model

We can imagine that the sources of the plane-wave fields are the points
P that lie on the surface of a large sphere centered at the origin. For each
P , the ray from the origin to P is parallel to some wavevector k. The
function F (k) can then be viewed as a function F (P ) of the points P . Our
measurements will be taken at points s inside this sphere. The radius of
the sphere is assumed to be orders of magnitude larger than the distance
between sensors. The situation is that of astronomical observation of the
heavens using ground-based antennas. The sources of the optical or electro-
magnetic signals reaching the antennas are viewed as lying on a large sphere
surrounding the earth. Distance to the sources is not considered now, and
all we are interested in are the amplitudes F (k) of the fields associated
with each direction k.

9.10 Sensor Arrays

In some applications the sensor locations are essentially arbitrary, while
in others their locations are carefully chosen. Sometimes, the sensors are
collinear, as in sonar towed arrays. Figure 9.1 illustrates a line array.

9.10.1 The Two-Dimensional Array

Suppose now that the sensors are in locations s = (x, y, 0), for various
x and y; then we have a planar array of sensors. Then the dot product s ·k
that occurs in Equation (9.3) is

s · k = xk1 + yk2;

we cannot see the third component, k3. However, since we know the size
of the vector k, we can determine |k3|. The only ambiguity that remains
is that we cannot distinguish sources on the upper hemisphere from those
on the lower one. In most cases, such as astronomy, it is obvious in which
hemisphere the sources lie, so the ambiguity is resolved.

The function F (k) can then be viewed as F (k1, k2), a function of the
two variables k1 and k2. Our measurements give us values of f(x, y), the
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two-dimensional Fourier transform of F (k1, k2). Because of the limitation
||k|| = ω

c , the function F (k1, k2) has bounded support. Consequently, its
Fourier transform cannot have bounded support. As a result, we can never
have all the values of f(x, y), and so cannot hope to reconstruct F (k1, k2)
exactly, even for noise-free data.

9.10.2 The One-Dimensional Array

If the sensors are located at points s having the form s = (x, 0, 0), then
we have a line array of sensors. The dot product in Equation (9.3) becomes

s · k = xk1.

Now the ambiguity is greater than in the planar array case. Once we have
k1, we know that

k22 + k23 =
(ω
c

)2
− k21 ,

which describes points P lying on a circle on the surface of the distant
sphere, with the vector (k1, 0, 0) pointing at the center of the circle. It
is said then that we have a cone of ambiguity. One way to resolve the
situation is to assume k3 = 0; then |k2| can be determined and we have
remaining only the ambiguity involving the sign of k2. Once again, in many
applications, this remaining ambiguity can be resolved by other means.

Once we have resolved any ambiguity, we can view the function F (k) as
F (k1), a function of the single variable k1. Our measurements give us values
of f(x), the Fourier transform of F (k1). As in the two-dimensional case, the
restriction on the size of the vectors k means that the function F (k1) has
bounded support. Consequently, its Fourier transform, f(x), cannot have
bounded support. Therefore, we shall never have all of f(x), and so cannot
hope to reconstruct F (k1) exactly, even for noise-free data.

9.10.3 Limited Aperture

In both the one- and two-dimensional problems, the sensors will be
placed within some bounded region, such as |x| ≤ A, |y| ≤ B for the
two-dimensional problem, or |x| ≤ A for the one-dimensional case. These
bounded regions are the apertures of the arrays. The larger these apertures
are, in units of the wavelength, the better the resolution of the reconstruc-
tions.

In digital array processing there are only finitely many sensors, which
then places added limitations on our ability to reconstruct the field ampli-
tude function F (k).
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9.11 Sampling

In the one-dimensional case, the signal received at the point (x, 0, 0)
is essentially the inverse Fourier transform f(x) of the function F (k1); for
notational simplicity, we write k = k1. The F (k) supported on a bounded
interval |k| ≤ ω

c , so f(x) cannot have bounded support. As we noted earlier,
to determine F (k) exactly, we would need measurements of f(x) on an
unbounded set. But, which unbounded set?

Because the function F (k) is zero outside the interval [−ω
c ,

ω
c ], the func-

tion f(x) is band-limited. The Nyquist spacing in the variable x is therefore

Δx =
πc

ω
.

The wavelength λ associated with the frequency ω is defined to be

λ =
2πc

ω
,

so that

Δx =
λ

2
.

The significance of the Nyquist spacing comes from Shannon’s Sampling
Theorem, which says that if we have the values f(mΔx), for all integers m,
then we have enough information to recover F (k) exactly. In practice, of
course, this is never the case.

9.12 The Limited-Aperture Problem

In the remote-sensing problem, our measurements at points (x, 0, 0) in
the far field give us the values f(x). Suppose now that we are able to take
measurements only for limited values of x, say for |x| ≤ A; then 2A is the
aperture of our antenna or array of sensors. We describe this by saying that
we have available measurements of f(x)h(x), where h(x) = χA(x) = 1,
for |x| ≤ A, and zero otherwise. So, in addition to describing blurring and
low-pass filtering, the convolution-filter model can also be used to model
the limited-aperture problem. As in the low-pass case, the limited-aperture
problem can be attacked using extrapolation, but with the same sort of risks
described for the low-pass case. A much different approach is to increase the
aperture by physically moving the array of sensors, as in synthetic aperture
radar (SAR).
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Returning to the far-field remote-sensing model, if we have Fourier
transform data only for |x| ≤ A, then we have f(x) for |x| ≤ A. Using
h(x) = χA(x) to describe the limited aperture of the system, the point-
spread function is H(γ) = 2Asinc(γA), the Fourier transform of h(x). The
first zeros of the numerator occur at |γ| = π

A , so the main lobe of the
point-spread function has width 2π

A . For this reason, the resolution of such
a limited-aperture imaging system is said to be on the order of 1

A . Since|k| ≤ ω
c , we can write k = ω

c sin θ, where θ denotes the angle between the
positive y-axis and the vector k = (k1, k2, 0); that is, θ points in the direc-
tion of the point P associated with the wavevector k. The resolution, as
measured by the width of the main lobe of the point-spread function H(γ),
in units of k, is 2π

A , but, the angular resolution will depend also on the
frequency ω. Since k = 2π

λ sin θ, a distance of one unit in k may correspond
to a large change in θ when ω is large, but only to a relatively small change
in θ when ω is small. For this reason, the aperture of the array is usually
measured in units of the wavelength; an aperture of A = 5 meters may be
acceptable if the frequency is high, so that the wavelength is small, but not
if the radiation is in the one-meter-wavelength range.

9.13 Resolution

If F (k) = δ(k) and h(x) = χA(x) describes the aperture-limitation of
the imaging system, then the point-spread function is H(γ) = 2Asinc(γA).
The maximum of H(γ) still occurs at γ = 0, but the main lobe of H(γ)
extends from − π

A to π
A ; the point source has been spread out. If the point-

source object shifts, so that F (k) = δ(k− a), then the reconstructed image
of the object is H(k−a), so the peak is still in the proper place. If we know
a priori that the object is a single point source, but we do not know its
location, the spreading of the point poses no problem; we simply look for
the maximum in the reconstructed image. Problems arise when the object
contains several point sources, or when we do not know a priori what we
are looking at, or when the object contains no point sources, but is just a
continuous distribution.

Suppose that F (k) = δ(k − a) + δ(k − b); that is, the object consists
of two point sources. Then Fourier transformation of the aperture-limited
data leads to the reconstructed image

R(k) = 2A
(
sinc(A(k − a)) + sinc(A(k − b))

)
.

If |b − a| is large enough, R(k) will have two distinct maxima, at approx-
imately k = a and k = b, respectively. For this to happen, we need π/A,
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half the width of the main lobe of the function sinc(Ak), to be less than
|b − a|. In other words, to resolve the two point sources a distance |b − a|
apart, we need A ≥ π/|b− a|. However, if |b − a| is too small, the distinct
maxima merge into one, at k = a+b

2 and resolution will be lost. How small
is too small will depend on both A and ω.

Suppose now that F (k) = δ(k − a), but we do not know a priori that
the object is a single point source. We calculate

R(k) = H(k − a) = 2Asinc(A(k − a))

and use this function as our reconstructed image of the object, for all k.
What we see when we look at R(k) for some k = b �= a is R(b), which is
the same thing we see when the point source is at k = b and we look at
k = a. Point-spreading is, therefore, more than a cosmetic problem. When
the object is a point source at k = a, but we do not know a priori that it
is a point source, the spreading of the point causes us to believe that the
object function F (k) is nonzero at values of k other than k = a. When we
look at, say, k = b, we see a nonzero value that is caused by the presence
of the point source at k = a.

Assume now that the object function F (k) contains no point sources,
but is simply an ordinary function of k. If the aperture A is very small, then
the function H(k) is nearly constant over the entire extent of the object.
The convolution of F (k) and H(k) is essentially the integral of F (k), so
the reconstructed object is R(k) =

∫
F (k)dk, for all k. Let’s see what this

means for the solar-emission problem discussed earlier.

9.13.1 The Solar-Emission Problem Revisited

The wavelength of the radiation is λ = 1 meter. Therefore, ω
c = 2π,

and k in the interval [−2π, 2π] corresponds to the angle θ in [0, π]. The sun
has an angular diameter of 30 minutes of arc, which is about 10−2 radians.
Therefore, the sun subtends the angles θ in [π2 −(0.5)·10−2, π2 +(0.5)·10−2],
which corresponds roughly to the variable k in the interval [−3 · 10−2, 3 ·
10−2]. Resolution of 3 minutes of arc means resolution in the variable k of
3 · 10−3. If the aperture is 2A, then to achieve this resolution, we need

π

A
≤ 3 · 10−3,

or
A ≥ π

3
· 103

meters, or A not less than about 1000 meters.
The radio-wave signals emitted by the sun are focused, using a parabolic

radio-telescope. The telescope is pointed at the center of the sun. Because
the sun is a great distance from the earth and the subtended arc is small
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(30 min.), the signals from each point on the sun’s surface arrive at the
parabola nearly head-on, that is, parallel to the line from the vertex to the
focal point, and are reflected to the receiver located at the focal point of
the parabola. The effect of the parabolic antenna is not to discriminate
against signals coming from other directions, since there are none, but to
effect a summation of the signals received at points (x, 0, 0), for |x| ≤ A,
where 2A is the diameter of the parabola. When the aperture is large, the
function h(x) is nearly one for all x and the signal received at the focal
point is essentially ∫

f(x)dx = F (0);

we are now able to distinguish between F (0) and other values F (k). When
the aperture is small, h(x) is essentially δ(x) and the signal received at the
focal point is essentially∫

f(x)δ(x)dx = f(0) =

∫
F (k)dk;

now all we get is the contribution from all the k, superimposed, and all
resolution is lost.

Since the solar emission problem is clearly two-dimensional, and we need
3 min. resolution in both dimensions, it would seem that we would need a
circular antenna with a diameter of about one kilometer, or a rectangular
antenna roughly one kilometer on a side. Eventually, this problem was
solved by converting it into essentially a tomography problem and applying
the same techniques that are today used in CAT scan imaging.

9.13.2 Other Limitations on Resolution

In imaging regions of the earth from satellites in orbit there is a trade-off
between resolution and the time available to image a given site. Satellites in
geostationary orbit, such as weather and TV satellites, remain stationary,
relative to a fixed position on the earth’s surface, but to do so must orbit
22, 000 miles above the earth. If we tried to image the earth from that
height, a telescope like the Hubble Space Telescope would have a resolution
of about 21 feet, due to the unavoidable blurring caused by the optics of
the lens itself. The Hubble orbits 353 miles above the earth, but because
it looks out into space, not down to earth, it only needs to be high enough
to avoid atmospheric distortions. Spy satellites operate in low Earth orbit
(LEO), about 200 miles above the earth, and achieve a resolution of about
2 or 3 inches, at the cost of spending only about 1 or 2 minutes over their
target. The satellites used in the GPS system maintain a medium Earth
orbit (MEO) at a height of about 12, 000 miles, high enough to be seen
over the horizon most of the time, but not so high as to require great
power to send their signals.



Plane-Wave Propagation 147

In the February 2003 issue of Harper’s Magazine there is an article on
“scientific apocalypse” dealing with the search for near-earth asteroids.
These objects are initially detected by passive optical observation, as small
dots of reflected sunlight; once detected, they are then imaged by active
radar to determine their size, shape, rotation and such. Some Russian as-
tronomers are concerned about the near-earth asteroid Apophis 2004 MN4,
which, they say, will pass within 30, 000 km of earth in 2029, and come even
closer in 2036. This is closer to earth than the satellites in geostationary
orbit. As they say, “Stay tuned for further developments.”

9.14 Discrete Data

A familiar topic in signal processing is the passage from functions of
continuous variables to discrete sequences. This transition is achieved by
sampling, that is, extracting values of the continuous-variable function at
discrete points in its domain. Our example of far-field propagation can be
used to explore some of the issues involved in sampling.

Imagine an infinite uniform line array of sensors formed by placing
receivers at the points (nΔ, 0, 0), for some Δ > 0 and all integers n. Then
our data are the values f(nΔ). Because we defined k = ω

c cos θ, it is clear
that the function F (k) is zero for k outside the interval [−ω

c ,
ω
c ].

Our discrete array of sensors cannot distinguish between the signal ar-
riving from θ and a signal with the same amplitude, coming from an angle
α with

ω

c
cosα =

ω

c
cos θ +

2π

Δ
m,

Δ > 0 so that

−ω
c
+

2π

Δ
≥ ω

c
,

or

Δ ≤ πc

ω
=
λ

2
.

The sensor spacing Δs =
λ
2 is the Nyquist spacing.

In the sunspot example, the object function F (k) is zero for k outside of
an interval much smaller than [−ω

c ,
ω
c ]. Knowing that F (k) = 0 for |k| > K,

for some 0 < K < ω
c , we can accept ambiguities that confuse θ with another

angle that lies outside the angular diameter of the object. Consequently,
we can redefine the Nyquist spacing to be

Δs =
π

K
.
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This tells us that when we are imaging a distant object with a small angular
diameter, the Nyquist spacing is greater than λ

2 . If our sensor spacing has

been chosen to be λ
2 , then we have oversampled. In the oversampled case,

band-limited extrapolation methods can be used to improve resolution.

9.14.1 Reconstruction from Samples

From the data gathered at our infinite array we have extracted the
Fourier transform values f(nΔ), for all integers n. The obvious question is
whether or not the data is sufficient to reconstruct F (k). We know that, to
avoid ambiguity, we must have Δ ≤ πc

ω . The good news is that, provided
this condition holds, F (k) is uniquely determined by this data and formu-
las exist for reconstructing F (k) from the data; this is the content of the
Shannon’s Sampling Theorem. Of course, this is only of theoretical interest,
since we never have infinite data. Nevertheless, a considerable amount of
traditional signal-processing exposition makes use of this infinite-sequence
model. The real problem, of course, is that our data is always finite.

9.15 The Finite-Data Problem

Suppose that we build a uniform line array of sensors by placing re-
ceivers at the points (nΔ, 0, 0), for some Δ > 0 and n = −N, ..., N . Then
our data are the values f(nΔ), for n = −N, ..., N . Suppose, as previously,
that the object of interest, the function F (k), is nonzero only for values of
k in the interval [−K,K], for some 0 < K < ω

c . Once again, we must have
Δ ≤ πc

ω to avoid ambiguity; but this is not enough, now. The finite Fourier
data is no longer sufficient to determine a unique F (k). The best we can
hope to do is to estimate the true F (k), using both our measured Fourier
data and whatever prior knowledge we may have about the function F (k),
such as where it is nonzero, if it consists of Dirac delta point sources, or if
it is nonnegative. The data is also noisy, and that must be accounted for
in the reconstruction process.

In certain applications, such as sonar array processing, the sensors are
not necessarily arrayed at equal intervals along a line, or even at the grid
points of a rectangle, but in an essentially arbitrary pattern in two, or even
three, dimensions. In such cases, we have values of the Fourier transform
of the object function, but at essentially arbitrary values of the variable.
How best to reconstruct the object function in such cases is not obvious.
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9.16 Functions of Several Variables

Fourier transformation applies, as well, to functions of several variables.
As in the one-dimensional case, we can motivate the multi-dimensional
Fourier transform using the far-field propagation model. As we noted ear-
lier, the solar emission problem is inherently a two-dimensional problem.

9.16.1 A Two-Dimensional Far-Field Object

Assume that our sensors are located at points s = (x, y, 0) in the x,y-
plane. As discussed previously, we assume that the function F (k) can be
viewed as a function F (k1, k2). Since, in most applications, the distant
object has a small angular diameter when viewed from a great distance –
the sun’s is only 30 minutes of arc – the function F (k1, k2) will be supported
on a small subset of vectors (k1, k2).

9.16.2 Limited Apertures in Two Dimensions

Suppose we have the values of the Fourier transform, f(x, y), for |x| ≤ A
and |y| ≤ A. We describe this limited-data problem using the function
h(x, y) that is one for |x| ≤ A, and |y| ≤ A, and zero, otherwise. Then the
point-spread function is the Fourier transform of this h(x, y), given by

H(α, β) = 4ABsinc(Aα)sinc(Bβ).

The resolution in the horizontal (x) direction is on the order of 1
A , and

1
B in the vertical, where, as in the one-dimensional case, aperture is best
measured in units of wavelength.

Suppose our aperture is circular, with radius A. Then we have Fourier
transform values f(x, y) for

√
x2 + y2 ≤ A. Let h(x, y) equal one, for√

x2 + y2 ≤ A, and zero, otherwise. Then the point-spread function of
this limited-aperture system is the Fourier transform of h(x, y), given by

H(α, β) = 2πA
r J1(rA), with r =

√
α2 + β2. The resolution of this system is

roughly the distance from the origin to the first null of the function J1(rA),
which means that rA = 4, roughly.

For the solar emission problem, this says that we would need a circular
aperture with radius approximately one kilometer to achieve 3 minutes of
arc resolution. But this holds only if the antenna is stationary; a moving
antenna is different! The solar emission problem was solved by using a
rectangular antenna with a large A, but a small B, and exploiting the
rotation of the earth. The resolution is then good in the horizontal, but bad
in the vertical, so that the imaging system discriminates well between two
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distinct vertical lines, but cannot resolve sources within the same vertical
line. Because B is small, what we end up with is essentially the integral
of the function f(x, z) along each vertical line. By tilting the antenna, and
waiting for the earth to rotate enough, we can get these integrals along any
set of parallel lines. The problem then is to reconstruct F (k1, k2) from such
line integrals. This is also the main problem in tomography.

9.17 Broadband Signals

We have spent considerable time discussing the case of a distant point
source or an extended object transmitting or reflecting a single-frequency
signal. If the signal consists of many frequencies, the so-called broadband
case, we can still analyze the received signals at the sensors in terms of time
delays, but we cannot easily convert the delays to phase differences, and
thereby make good use of the Fourier transform. One approach is to filter
each received signal, to remove components at all but a single frequency,
and then to proceed as previously discussed. In this way we can process one
frequency at a time. The object now is described in terms of a function of
both k and ω, with F (k, ω) the complex amplitude associated with the wave
vector k and the frequency ω. In the case of radar, the function F (k, ω) tells
us how the material at P reflects the radio waves at the various frequencies
ω, and thereby gives information about the nature of the material making
up the object near the point P .

There are times, of course, when we do not want to decompose a broad-
band signal into single-frequency components. A satellite reflecting a TV
signal is a broadband point source. All we are interested in is receiving the
broadband signal clearly, free of any other interfering sources. The direc-
tion of the satellite is known and the antenna is turned to face the satellite.
Each location on the parabolic dish reflects the same signal. Because of its
parabolic shape, the signals reflected off the dish and picked up at the focal
point have exactly the same travel time from the satellite, so they combine
coherently, to give us the desired TV signal.
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10.1 Chapter Summary

One of the main problems we consider in this book is the estimation
of a function from finitely many values of its Fourier transform. In such
cases, the data are complex numbers and the function to be estimated is
a complex-valued function. As we mentioned previously, there are certain
cases in which we have a phase problem, where it is not possible to measure
the complex numbers, but only their magnitudes. Estimating the structure
of a crystal from scattering data in x-ray crystallography and optical imag-
ing through a turbulent atmosphere are two examples in which the phase
problem arises. As you might imagine, reconstruction from magnitude-only
data is more difficult than from the full complex data.

In this chapter we describe an algorithm for solving the phase problem
that is based on the MDFT estimator discussed previously. This algorithm
was originally introduced in [30]. The reader is invited to consult [30] for
additional details and examples.
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10.2 Reconstructing from Over-Sampled Complex FT
Data

Let f : [−π, π] → C have Fourier transform

F (γ) =

∫ π

−π
f(x)eiγxdx.

The Fourier series expansion for f(x) is then

f(x) ≈ 1

2π

∞∑
n=−∞

F (n)e−inx.

If we are able to obtain only the values F (n) for |n| ≤ N , then the DFT
estimate of f(x) is

fDFT (x) =
1

2π

N∑
n=−N

F (n)e−inx,

for |x| ≤ π. We denote the data vector by d = (F (−N), ..., F (N))T .
We assume now that f(x) = 0 for x outside the interval V = [−v, v],

for some v with 0 < v < π.

Ex. 10.1 Let S be the 2N + 1 by 2N + 1 matrix with entries

Sm,n =
sin v(n−m)

π(n−m)
,

for m �= n, and Sm,m = v
π . Show that

2π

∫ v

−v
|fDFT (x)|2dx = d†Sd,

and

2π

∫ π

−π
|fDFT (x)|2dx = d†d.

Therefore, the amount of DFT energy outside the interval [−v, v] is∫ π

−π
|fDFT (x)|2dx−

∫ v

−v
|DFT (x)|2dx =

1

2π
(d†d− d†Sd).

The proportion of DFT energy outside V = [−v, v] is then

1− d†Sd
d†d

≥ 1− λmax(S),
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where λmax(S) denotes the largest eigenvalue of the positive-definite sym-
metric matrix S.

When v is close to π or N is large, λmax(S) is near one. The trace of
the matrix S is trace(S)= (2N + 1) vπ , and, as N approaches +∞, roughly
(2N+1) vπ eigenvalues of S have values that are approximately equal to one
and the remainder have values approximately equal to zero. It is curious to
note that, for large values of N , a plot of the eigenvalues of S, in decending
order of size, resembles the graph of the right half of the function χV (x).
This is one case in which an eigenspectrum and a power spectrum are
related.

The lower bound on the proportion of energy outside V will be attained
if d is replaced by an eigenvector of S with eigenvalue λmax(S). Then the
DFT will be maximally concentrated within V , but will be quite smooth
and have little structure. When the function f(x) has structure within the
interval V that we wish to reconstruct, we will need to employ eigenvectors
of S other than the ones associated with the largest eigenvalues of S. One
way to do this is to use the MDFT estimator discussed previously.

The MDFT estimator of the function f(x) is

fMDFT (x) = χV (x)

N∑
n=−N

bne
−inx,

where the vector b of coefficients is b = 1
2πS

−1d. The energy of the function
fMDFT (x) is then∫ v

−v
|fMDFT (x)|2dx = 2πb†Sb =

1

2π
d†S−1d.

Ex. 10.2 Show that
d†S−1d

d†d
≥ 1 ≥ d†Sd

d†d
.

When the data are truly values of F (n) and the function f(x) has reason-
able values and is actually supported on the interval V = [−v, v], then the
energy of the MDFT estimator will not be abnormally large. However, if
the data values are not at least approximately equal to the values F (n),
or f(x) is not supported on the interval V , then the MDFT energy will be
quite large, indicating a mismatch between our data and our assumptions
about f(x). This behavior can actually be put to good use. In some cases,
we may not know V , but do not want to overestimate it; we want V to be
as small as is allowable, but not smaller. We can take a decreasing sequence
of intervals V and stop when we see the MDFT energy begin to explode.
We can also use this behavior to solve the phase problem.
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10.3 The Phase Problem

We suppose now that F (n) = |F (n)|eiφ(n), and we have only the mag-
nitude data, |F (n)|, for |n| ≤ N . If we take arbitrary phase angles θ(n) and
create complex “data”

G(n) = |F (n)|eiθ(n),

for |n| ≤ N , we can then pretend to have the complex FT data for f(x) and
compute the MDFT estimate. Fortunately for us, as the phase angles θ(n)
begin to differ substantially from the true phase angles φ(n), the MDFT
reacts to this mismatch and the MDFT energy increases dramatically. The
idea is then to monitor the MDFT energy as we make choices of phase
angles, attempting to find ones that are approximately correct. In the next
section we present an iterative algorithm to implement this idea.

10.4 A Phase-Retrieval Algorithm

Let θ = (θ(−N), ..., θ(N)) be an arbitrary selection of phase angles and

d(θ) = (|F (−N)|eiθ(−N), ..., |F (N)|eiθ(N))T

our constructed “data” vector having the true magnitudes, but arbitrary
phases. We shall also denote by d(θ) the infinite sequence whose only
nonzero entries are the entries of the finite vector d(θ); the context will
make clear which interpretation we are using. The energy in the resulting
MDFT estimator is

E(θ) =
1

2π
d(θ)†S−1d(θ).

Our objective is to find a choice of angles θ(n) for which E(θ) is not un-
reasonably large, in the hope that the resulting MDFT will be a decent
approximation of the true f(x).

One approach would be to design an iterative algorithm that takes us
from one phase vector θk to a new one, θk+1, in such a way that E(θk) >
E(θk+1). Perhaps a gradient-descent algorithm could be devised to do this.
Instead, we have an iterative algorithm that, at least in our simulations,
achieves much the same result, by a more indirect approach.

Let the Hilbert space H be L2[−π, π] and PV the orthogonal projection
of H onto the subspace L2[−v, v]. For any infinite sequence G = {G(n)},
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denote by F−1G the function

(F−1G)(x) = g(x) =
1

2π

∞∑
n=−∞

G(n)e−inx,

for |x| ≤ π. Then we write G = Fg. Define (AG)(n) = G(n), for |n| ≤ N ,
and (AG)(n) = 0, otherwise. Define (DG)(n) = 0, if G(n) = 0, (DG)(n) =
G(n), for |n| > N , and

(DG)(n) =
|F (n)|
|G(n)|G(n),

otherwise. Then DA = AD as operators.
We begin with an arbitrary phase vector θ0 and use it to define g0 =

PV F−1d(θ0). We let Fg0 = G0. Having found gk and Gk = Fgk, we define
θk+1 by

d(θk+1) = DAGk.

The iterative step is then

gk+1 = PV F−1[(I −A)Fgk +ADFgk].

We can also write
gk+1 = PV F−1d(θk+1).

Note that

gk+1 − gk = PV F−1(DAGk −AGk) = PV F−1ck,

for
ck = DAGk −AGk.

Therefore,

gk+1 = g0 +

k∑
m=0

PV F−1cm = PV F−1ak+1 (10.1)

for

ak+1 = d(θ0) +

k∑
m=0

cm.

It follows then that

ak+1 = ak +DAGk −AGk.

From Equation (10.1) we see that each function gk has the form of an
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MDFT estimator associated with the subset V and the “data” AGk. There-
fore,

Sak = AGk.

The iteration then becomes

ak+1 = ak +DGk −Gk = ak +DSak − Sak.

We iterate using this updating step until convergence to some a∞ and then
take

g∞ = PV F−1a∞

as our final estimate of f(x). The energy at each step is

E(θk) = d(θk)†S−1d(θk),

so we can easily monitor the energy at each stage of the iteration.

10.5 Fienup’s Method

Our algorithm has the iterative step

gk+1 = PV F−1[(I −A)Fgk +ADFgk],
where the operators F and F−1 relate infinite sequences to functions of a
continuous variable. If we choose, instead, to view gk as a finite vector and
these operators as relating finite vectors to one another via the FFT, we
get Fienup’s error-reduction method [76, 77]. In the error-reduction method
what we call here the function gk(x), defined for x in the interval [−π, π],
is discretized and replaced by a vector in CJ , where J > 2N +1. Similarly,
the infinite sequence Fgk is replaced by a vector in CJ and the operator F
is replaced by the FFT.

10.6 Does the Iteration Converge?

The operator PV is an orthogonal projection onto a subspace of H , and
the operator

P = F−1(I −A)F + F−1DAF
is also a projection, but its range is not a convex set; therefore, the useful
convergence theorems about composition of orthogonal projections onto
convex sets do not apply here. All is not lost, however.
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In [108] Levi and Stark define the set-distance error

J(g) = ‖P1g − g‖2 + ‖P2g − g‖2,

for projections P1 and P2, when one of the projections has nonconvex range.
They show that, for the sequence generated by the iterative step gk+1 =
P1P2g

k,
J(gk+1) ≤ J(P2g

k) ≤ J(gk).

In our case, with P1 = PV and P2 = P , we find that gk+1 is at least as
close to being consistent with the magnitude data as gk is, and Pgk+1 is
at least as close to being supported on V as Pgk is.
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11.1 Chapter Summary

Our topic is now transmission tomography. This chapter will provide a
detailed description of how the data is gathered, the mathematical model of
the scanning process, the problem to be solved, the various mathematical
techniques needed to solve this problem, and the manner in which these
techniques are applied, including filtering methods for inverting the two-
dimensional Fourier transform.

According to the Central Slice Theorem, if we have all the line integrals
through the attenuation function f(x, y) then we have the two-dimensional
Fourier transform of f(x, y). To get f(x, y) we need to invert the two-
dimensional Fourier transform.
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11.2 X-ray Transmission Tomography

Although transmission tomography is not limited to scanning living be-
ings, we shall concentrate here on the use of x-ray tomography in medical
diagnosis and the issues that concern us in that application. The mathe-
matical formulation will, of course, apply more generally.

In x-ray tomography, x-rays are transmitted through the body along
many lines. In some, but not all, cases, the lines will all lie in the same plane.
The strength of the x-rays upon entering the body is assumed known, and
the strength upon leaving the body is measured. This data can then be used
to estimate the amount of attenuation the x-ray encountered along that
line, which is taken to be the integral, along that line, of the attenuation
function. On the basis of these line integrals, we estimate the attenuation
function. This estimate is presented to the physician as one or more two-
dimensional images.

11.3 The Exponential-Decay Model

As an x-ray beam passes through the body, it encounters various types
of matter, such as soft tissue, bone, ligaments, air, each weakening the
beam to a greater or lesser extent. If the intensity of the beam upon entry
is Iin and Iout is its lower intensity after passing through the body, then

Iout = Iine
− ∫

L
f ,

where f = f(x, y) ≥ 0 is the attenuation function describing the two-
dimensional distribution of matter within the slice of the body being
scanned and

∫
L
f is the integral of the function f over the line L along

which the x-ray beam has passed. To see why this is the case, imagine the
line L parameterized by the variable s and consider the intensity function
I(s) as a function of s. For small Δs > 0, the drop in intensity from the
start to the end of the interval [s, s + Δs] is approximately proportional
to the intensity I(s), to the attenuation f(s) and to Δs, the length of the
interval; that is,

I(s)− I(s+Δs) ≈ f(s)I(s)Δs.

Dividing by Δs and letting Δs approach zero, we get

I ′(s) = −f(s)I(s).
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Ex. 11.1 Show that the solution to this differential equation is

I(s) = I(0) exp

(
−
∫ u=s

u=0

f(u)du

)
.

Hint: Use an integrating factor.

From knowledge of Iin and Iout, we can determine
∫
L
f . If we know

∫
L
f

for every line in the x, y-plane we can reconstruct the attenuation func-
tion f . In the real world we know line integrals only approximately and
only for finitely many lines. The goal in x-ray transmission tomography
is to estimate the attenuation function f(x, y) in the slice, from finitely
many noisy measurements of the line integrals. We usually have prior in-
formation about the values that f(x, y) can take on. We also expect to find
sharp boundaries separating regions where the function f(x, y) varies only
slightly. Therefore, we need algorithms capable of providing such images.

11.4 Difficulties to Be Overcome

There are several problems associated with this model. The paths taken
by x-ray beams are not exactly straight lines; the beams tend to spread
out. The x-rays are not monochromatic, and their various frequency com-
ponents are attenuated at different rates, resulting in beam hardening, that
is, changes in the spectrum of the beam as it passes through the object.
The beams consist of photons obeying statistical laws, so our algorithms
probably should be based on these laws. How we choose the line segments is
determined by the nature of the problem; in certain cases we are somewhat
limited in our choice of these segments. Patients move; they breathe, their
hearts beat, and, occasionally, they shift position during the scan. Com-
pensating for these motions is an important, and difficult, aspect of the
image reconstruction process. Finally, to be practical in a clinical setting,
the processing that leads to the reconstructed image must be completed in
a short time, usually around fifteen minutes. This time constraint is what
motivates viewing the three-dimensional attenuation function in terms of
its two-dimensional slices.

As we shall see, the Fourier transform and the associated theory of con-
volution filters play important roles in the reconstruction of transmission
tomographic images.

The data we actually obtain at the detectors are counts of detected
photons. These counts are not the line integrals; they are random quan-
tities whose means, or expected values, are related to the line integrals.
The Fourier inversion methods for solving the problem ignore its statistical
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aspects; in contrast, other methods, such as likelihood maximization, are
based on a statistical model that involves Poisson-distributed emissions.

11.5 Reconstruction from Line Integrals

We turn now to the underlying problem of reconstructing attenuation
functions from line-integral data.

11.5.1 The Radon Transform

Our goal is to reconstruct the function f(x, y) ≥ 0 from line-integral
data. Let θ be a fixed angle in the interval [0, π). Form the t, s-axis system
with the positive t-axis making the angle θ with the positive x-axis, as
shown in Figure 11.1. Each point (x, y) in the original coordinate system
has coordinates (t, s) in the second system, where the t and s are given by

t = x cos θ + y sin θ,

and
s = −x sin θ + y cos θ.

If we have the new coordinates (t, s) of a point, the old coordinates are
(x, y) given by

x = t cos θ − s sin θ,

and
y = t sin θ + s cos θ.

We can then write the function f as a function of the variables t and s. For
each fixed value of t, we compute the integral∫

L

f(x, y)ds =

∫
f(t cos θ − s sin θ, t sin θ + s cos θ)ds

along the single line L corresponding to the fixed values of θ and t. We
repeat this process for every value of t and then change the angle θ and
repeat again. In this way we obtain the integrals of f over every line L in
the plane. We denote by rf (θ, t) the integral

rf (θ, t) =

∫
L

f(x, y)ds =

∫
f(t cos θ − s sin θ, t sin θ + s cos θ)ds.

The function rf (θ, t) is called the Radon transform of f .
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θ

FIGURE 11.1: The Radon transform of f at (t, θ) is the line integral of
f along line L.

11.5.2 The Central Slice Theorem

For fixed θ the function rf (θ, t) is a function of the single real variable
t; let Rf (θ, ω) be its Fourier transform. Then

Rf (θ, ω) =

∫
rf (θ, t)e

iωtdt

=

∫ ∫
f(t cos θ − s sin θ, t sin θ + s cos θ)eiωtdsdt

=

∫ ∫
f(x, y)eiω(x cos θ+y sin θ)dxdy

= F (ω cos θ, ω sin θ),

where F (ω cos θ, ω sin θ) is the two-dimensional Fourier transform of the
function f(x, y), evaluated at the point (ω cos θ, ω sin θ); this relationship
is called the Central Slice Theorem. For fixed θ, as we change the value
of ω, we obtain the values of the function F along the points of the line
making the angle θ with the horizontal axis. As θ varies in [0, π), we get all
the values of the function F . Once we have F , we can obtain f using the
formula for the two-dimensional inverse Fourier transform. We conclude
that we are able to determine f from its line integrals. As we shall see,
inverting the Fourier transform can be implemented by combinations of
frequency-domain filtering and back projection.
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11.6 Inverting the Fourier Transform

The Fourier-transform inversion formula for two-dimensional functions
tells us that the function f(x, y) can be obtained as

f(x, y) =
1

4π2

∫ ∫
F (u, v)e−i(xu+yv)dudv. (11.1)

We now derive alternative inversion formulas.

11.6.1 Back Projection

For 0 ≤ θ < π and all real t, let h(θ, t) be any function of the variables
θ and t; for example, it could be the Radon transform. As with the Radon
transform, we imagine that each pair (θ, t) corresponds to one line through
the x, y-plane. For each fixed point (x, y) we assign to this point the average,
over all θ, of the quantities h(θ, t) for every pair (θ, t) such that the point
(x, y) lies on the associated line. The summing process is integration and
the back-projection function at (x, y) is

BPh(x, y) =

∫ π

0

h(θ, x cos θ + y sin θ)dθ.

The operation of back projection will play an important role in what follows
in this chapter.

11.6.2 Ramp Filter, then Back Project

Expressing the double integral in Equation (11.1) in polar coordinates
(ω, θ), with ω ≥ 0, u = ω cos θ, and v = ω sin θ, we get

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)e−i(xu+yv)ωdωdθ,

or

f(x, y) =
1

4π2

∫ π

0

∫ ∞

−∞
F (u, v)e−i(xu+yv)|ω|dωdθ.

Now write
F (u, v) = F (ω cos θ, ω sin θ) = Rf (θ, ω),

where Rf (θ, ω) is the FT with respect to t of rf (θ, t), so that∫ ∞

−∞
F (u, v)e−i(xu+yv)|ω|dω =

∫ ∞

−∞
Rf (θ, ω)|ω|e−iωtdω.
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The function gf(θ, t) defined for t = x cos θ + y sin θ by

gf(θ, x cos θ + y sin θ) =
1

2π

∫ ∞

−∞
Rf (θ, ω)|ω|e−iωtdω (11.2)

is the result of a linear filtering of rf (θ, t) using a ramp filter with transfer
function H(ω) = |ω|. Then,

f(x, y) =
1

2π
BPgf (x, y) =

1

2π

∫ π

0

gf (θ, x cos θ + y sin θ)dθ

gives f(x, y) as the result of a back-projection operator; for every fixed value
of (θ, t) add gf(θ, t) to the current value at the point (x, y) for all (x, y)
lying on the straight line determined by θ and t by t = x cos θ + y sin θ.
The final value at a fixed point (x, y) is then the average of all the values
gf (θ, t) for those (θ, t) for which (x, y) is on the line t = x cos θ + y sin θ.
It is therefore said that f(x, y) can be obtained by filtered back-projection
(FBP) of the line-integral data.

Knowing that f(x, y) is related to the complete set of line integrals by
filtered back-projection suggests that, when only finitely many line integrals
are available, a similar ramp filtering and back-projection can be used to
estimate f(x, y); in the clinic this is the most widely used method for the
reconstruction of tomographic images.

11.6.3 Back Project, then Ramp Filter

There is a second way to recover f(x, y) using back projection and fil-
tering, this time in the reverse order; that is, we back project the Radon
transform and then ramp filter the resulting function of two variables.
We begin with the back-projection operation, as applied to the function
h(θ, t) = rf (θ, t).

We have

BPrf (x, y) =

∫ π

0

rf (θ, x cos θ + y sin θ)dθ.

Replacing rf (θ, t) with

rf (θ, t) =
1

2π

∫ ∞

−∞
Rf (θ, ω)e

−iωtdω,

and inserting
Rf (θ, ω) = F (ω cos θ, ω sin θ),

and
t = x cos θ + y sin θ,
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we get

BPrf (x, y) =

∫ π

0

( 1

2π

∫ ∞

−∞
F (ω cos θ, ω sin θ)e−i(x cos θ+y sin θ)dω

)
dθ.

With u = ω cos θ and v = ω sin θ, this becomes

BPrf (x, y) =

∫ π

0

( 1

2π

∫ ∞

−∞

F (u, v)√
u2 + v2

e−i(xu+yv)|ω|dω
)
dθ,

=

∫ π

0

( 1

2π

∫ ∞

−∞
G(u, v)e−i(xu+yv)|ω|dω

)
dθ

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
G(u, v)e−i(xu+yv)dudv.

This tells us that the back projection of rf (θ, t) is the function g(x, y) whose
two-dimensional Fourier transform is

G(u, v) =
1

2π
F (u, v)/

√
u2 + v2.

Therefore, we can obtain f(x, y) from rf (θ, t) by first back projecting
rf (θ, t) to get g(x, y) and then filtering g(x, y) by forming G(u, v), mul-
tiplying by

√
u2 + v2, and taking the inverse Fourier transform.

11.6.4 Radon’s Inversion Formula

To get Radon’s inversion formula, we need two basic properties of the
Fourier transform. First, if f(x) has Fourier transform F (γ) then the deriva-
tive f ′(x) has Fourier transform −iγF (γ). Second, if F (γ) = sgn(γ), the
function that is γ

|γ| for γ �= 0, and equal to zero for γ = 0, then its inverse

Fourier transform is f(x) = 1
iπx .

Writing Equation (11.2) as

gf (θ, t) =
1

2π

∫ ∞

−∞
ωRf (θ, ω)sgn(ω)e

−iωtdω,

we see that gf is the inverse Fourier transform of the product of the two
functions ωRf(θ, ω) and sgn(ω). Consequently, gf is the convolution of their
individual inverse Fourier transforms, i ∂∂trf (θ, t) and

1
iπt ; that is,

gf(θ, t) =
1

π

∫ ∞

−∞

∂

∂t
rf (θ, s)

1

t− s
ds,

which is the Hilbert transform of the function ∂
∂trf (θ, t), with respect to

the variable t. Radon’s inversion formula is then

f(x, y) =
1

2π

∫ π

0

HT

(
∂

∂t
rf (θ, t)

)
dθ.
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11.7 From Theory to Practice

What we have just described is the theory. What happens in practice?

11.7.1 The Practical Problems

Of course, in reality we never have the Radon transform rf (θ, t) for
all values of its variables. Only finitely many angles θ are used, and, for
each θ, we will have (approximate) values of line integrals for only finitely
many t. Therefore, taking the Fourier transform of rf (θ, t), as a function of
the single variable t, is not something we can actually do. At best, we can
approximate Rf (θ, ω) for finitely many θ. From the Central Slice Theorem,
we can then say that we have approximate values of F (ω cos θ, ω sin θ), for
finitely many θ. This means that we have (approximate) Fourier transform
values for f(x, y) along finitely many lines through the origin, like the
spokes of a wheel. The farther from the origin we get, the fewer values
we have, so the coverage in Fourier space is quite uneven. The low-spatial-
frequencies are much better estimated than higher ones, meaning that we
have a low-pass version of the desired f(x, y). The filtered-back-projection
approaches we have just discussed both involve ramp filtering, in which the
higher frequencies are increased, relative to the lower ones. This too can
only be implemented approximately, since the data is noisy and careless
ramp filtering will cause the reconstructed image to be unacceptably noisy.

11.7.2 A Practical Solution: Filtered Back Projection

We assume, to begin with, that we have finitely many line integrals,
that is, we have values rf (θ, t) for finitely many θ and finitely many t.
For each fixed θ we estimate the Fourier transform, Rf (θ, ω). This step
can be performed in various ways, and we can freely choose the values of
ω at which we perform the estimation. The FFT will almost certainly be
involved in calculating the estimates of Rf (θ, ω).

For each fixed θ we multiply our estimated values of Rf (θ, ω) by |ω| and
then use the FFT again to inverse Fourier transform, to achieve a ramp
filtering of rf (θ, t) as a function of t. Note, however, that when |ω| is large,
we may multiply by a smaller quantity, to avoid enhancing noise. We do
this for each angle θ, to get a function of (θ, t), which we then back project
to get our final image. This is ramp filtering, followed by back projection,
as applied to the finite data we have.

It is also possible to mimic the second approach to inversion, that is, to
back project onto the pixels each rf (θ, t) that we have, and then to perform
a ramp filtering of this two-dimensional array of numbers to obtain the
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final image. In this case, the two-dimensional ramp filtering involves many
applications of the FFT.

There is a third approach. Invoking the Central Slice Theorem, we can
say that we have finitely many approximate values of F (u, v), the Fourier
transform of the attenuation function f(x, y), along finitely many lines
through the origin. The first step is to use these values to estimate the
values of F (u, v) at the points of a rectangular grid. This step involves
interpolation [157]. Once we have (approximate) values of F (u, v) on a
rectangular grid, we perform a two-dimensional FFT to obtain our final
estimate of the (discretized) f(x, y).

11.8 Some Practical Concerns

As computer power increases and scanners become more sophisticated,
there is pressure to include more dimensionality in the scans. This means
going beyond slice-by-slice tomography to fully three-dimensional images,
or even including time as the fourth dimension, to image dynamically. This
increase in dimensionality comes at a cost, however. Besides the increase in
radiation to the patient, there are other drawbacks, such as longer acquisi-
tion time, storing large amounts of data, processing and analyzing this data,
displaying the results, reading and understanding the higher-dimensional
images, and so on.

11.9 Summary

We have seen how the problem of reconstructing a function from line in-
tegrals arises in transmission tomography. The Central Slice Theorem con-
nects the line integrals and the Radon transform to the Fourier transform
of the desired attenuation function. Various approaches to implementing
the Fourier Inversion Formula lead to filtered-back-projection algorithms
for the reconstruction. In x-ray tomography, as well as in PET, viewing the
data as line integrals ignores the statistical aspects of the problem, and in
SPECT, it ignores, as well, the important physical effects of attenuation. To
incorporate more of the physics of the problem, iterative algorithms based
on statistical models have been developed. We consider some of these al-
gorithms in the books [41] and [42].
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12.1 Chapter Summary

When we sample a function f(x) we usually make some error, and the
data we get is not precisely f(nΔ), but contains additive noise, that is,
our data value is really f(nΔ) + noise. Noise is best viewed as random, so
it becomes necessary to treat random sequences f = {fn} in which each
fn is a random variable. The random variables fn and fm may or may
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not be statistically independent. In this chapter we survey several topics
from probability and stochastic processes that are particularly important
in signal processing.

12.2 What Is a Random Variable?

The simplest answer to the question “What is a random variable?”is
“A random variable is a mathematical model”. Imagine that we repeatedly
drop a baseball from eye-level to the floor. Each time, the baseball behaves
the same. If we were asked to describe this behavior with a mathemati-
cal model, we probably would choose to use a differential equation as our
model. Ignoring everything except the force of gravity, we would write

h′′(t) = −32

as the equation describing the downward acceleration due to gravity. Inte-
grating, we have

h′(t) = −32t+ h′(0)

as the velocity of the baseball at time t ≥ 0, and integrating once more,

h(t) = −16t2 + h′(0)t+ h(0)

as the equation of position of the baseball at time t ≥ 0, up to the moment
when it hits the floor. Knowing h(0), the distance from eye-level to the floor,
and knowing that, since we dropped the ball, h′(0) = 0, we can determine
how long it will take the baseball to hit the floor, and the speed with which
it will hit. This analysis will apply every time we drop the baseball. There
will, of course, be slight differences from one drop to the next, depending,
perhaps, on how the ball was held, but these will be so small as to be
insignificant.

Now imagine that, instead of a baseball, we drop a feather. A few rep-
etitions are all that is necessary to convince us that the model used for the
baseball no longer suffices. The factors that we safely ignored with regard
to the baseball, such as air resistance, air currents, and how the object was
held, now become important. The feather does not always land in the same
place, it doesn’t always take the same amount of time to reach the floor,
and doesn’t always land with the same velocity. It doesn’t even fall in a
straight vertical line. How can we possibly model such behavior? Must we
try to describe accurately the air resistance encountered by the feather?
The answer is that we use random variables as our model.
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While we cannot predict exactly the place where the feather will land,
and, of course, we must be careful to specify how we are to determine
“the place” where it does land, we can learn, from a number of trials,
where it tends to land, and we can postulate the probability that it will
land within any given region of the floor. In this way, the place where the
feather will land becomes a random variable with associated probability
density function. Similarly, we can postulate the probability that the time
for the fall will lie within any interval of elapsed time, making the elapsed
time a random variable. Finally, we can postulate the probability that its
velocity vector upon hitting the ground will lie within any given set of
three-dimensional vectors, making the velocity a random vector. On the
basis of these probabilistic models we can proceed to predict the outcome
of the next drop.

It is important to remember that the random variable is the model that
we set up prior to the dropping of the feather, not the outcome of any
particular drop.

12.3 The Coin-Flip Random Sequence

The simplest example of a random sequence is the coin-flip sequence,
which we denote by c = {cn}∞n=−∞. We imagine that, at each “time” n,
a coin is flipped, and cn = 1 if the coin shows heads, and cn = −1 if the
coin shows tails. When we speak of this coin-flip sequence, we refer to this
random model, not to any specific sequence of ones and minus ones; the
random coin-flip sequence is not, therefore, a particular sequence, just as a
random variable is not actually a specific number. Any particular sequence
of ones and minus ones can be thought of as having resulted from such an
infinite number of flips of the coin, and is called a realization of the random
coin-flip sequence.

It will be convenient to allow for the coin to be biased, that is, for
the probabilities of heads and tails to be unequal. We denote by p the
probability that heads occurs and 1− p the probability of tails; the coin is
called unbiased or fair if p = 1/2. To find the expected value of cn, written
E(cn), we multiply each possible value of cn by its probability and sum;
that is,

E(cn) = (+1)p+ (−1)(1− p) = 2p− 1.

If the coin is fair then E(cn) = 0. The variance of the random variable cn,
measuring its tendency to deviate from its expected value, is var(cn) =
E([cn − E(cn)]

2). We have

var(cn) = [+1− (2p− 1)]2p+ [−1− (2p− 1)]2(1− p) = 4p− 4p2.
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If the coin is fair then var(cn) = 1. It is important to note that we do not
change the coin at any time during the generation of a realization of the
random sequence c; in particular, the p does not depend on n.

Also, we assume that the random variables cn are statistically indepen-
dent. This means that, for any N , any choice of “times” n1, ..., nN , and
any values m1, ...,mN in the set {−1, 1}, the probability that cn1 = m1,
cn2 = m2,..., cnN = mN is the product of the individual probabilities. For
example, the probablity that c1 = −1, c2 = +1 and c4 = +1 is (1 − p)p2.

12.4 Correlation

Let u and v be (possibly complex-valued) random variables with ex-
pected values E(u) and E(v), respectively. The covariance between u and
v is defined to be

cov(u, v) = E
(
(u− E(u))(v − E(v))

)
,

and the cross-correlation between u and v is

corr(u, v) = E(uv).

It is easily shown that cov(u, v) = corr(u, v) − E(u)E(v). When u = v
we get cov(u, u) = var(u) and corr(u, u) = E(|u|2). If E(u) = E(v) = 0
then cov(u, v) = corr(u, v). In statistics the “correlation coefficient” is the
quantity cov(u, v) divided by the standard deviations of u and v.

When u and v are independent, we have

E(uv) = E(u)E(v),

and

E
(
(u− E(u))(v − E(v))

)
= E (u− E(u))E

(
(v − E(v))

)
= 0.

To illustrate, let u = cn and v = cn−m. Then, if the coin is fair, E(cn) =
E(cn−m) = 0 and

cov(cn, cn−m) = corr(cn, cn−m) = E(cncn−m).

Because the cn are independent, E(cncn−m) = 0 for m not equal to 0, and
E(|cn|2) = var(cn) = 1. Therefore

cov(cn, cn−m) = corr(cn, cn−m) = 0, form �= 0,
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and
cov(cn, cn) = corr(cn , cn) = 1.

In the next section we shall use the random coin-flip sequence to gen-
erate a wide class of random sequences, obtained by viewing c = {cn} as
the input into a shift-invariant discrete linear filter.

12.5 Filtering Random Sequences

Suppose, once again, that T is a shift-invariant discrete linear filter
with impulse-response sequence g. Now let us take as input, not a particular
sequence, but the random coin-flip sequence c, with p = 0.5. The output will
therefore not be a particular sequence either, but will be another random
sequence, say d. Then, for each n the random variable dn is

dn =

∞∑
m=−∞

cmgn−m =

∞∑
m=−∞

gmcn−m. (12.1)

We compute the correlation corr(dn , dn−m) = E(dndn−m). Using the con-
volution formula Equation (12.1), we find that

corr(dn, dn−m) =
∞∑

k=−∞

∞∑
j=−∞

gkgjcorr(cn−k, cn−m−j).

Since
corr(cn−k , cn−m−j) = 0, for k �= m+ j,

we have

corr(dn, dn−m) =

∞∑
k=−∞

gkgk−m. (12.2)

The expression of the right side of Equation (12.2) is the definition of the
autocorrelation of the non-random sequence g, denoted ρg = {ρg(m)}; that
is,

ρg(m) =

∞∑
k=−∞

gkgk−m. (12.3)

It is important to note that the expected value of dn is

E(dn) =

∞∑
k=−∞

gkE(cn−k) = 0
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and the correlation corr(dn, dn−m) depends only on m; neither quantity
depends on n and the sequence d is therefore called wide-sense stationary.
Let’s consider an example.

12.6 An Example

Take g0 = g1 = 0.5 and gk = 0 otherwise. Then the system is the
two-point moving-average, with

dn = 0.5cn + 0.5cn−1.

In the case of the random-coin-flip sequence c each cn is unrelated to all
other cm; the coin flips are independent. This is no longer the case for the
dn; one effect of the filter g is to introduce correlation into the output. To
illustrate, since d0 and d1 both depend, to some degree, on the value c0,
they are related. Using Equation (12.3) we have

corr(dn , dn) = ρg(0) = g0g0 + g1g1 = 0.25 + 0.25 = 0.5,

corr(dn, dn+1) = ρg(−1) = g0g1 = 0.25,

corr(dn , dn−1) = ρg(+1) = g1g0 = 0.25,

and
corr(dn, dn−m) = ρg(m) = 0, otherwise.

So we see that dn and dn−m are related, for m = −1, 0,+1, but not other-
wise.

12.7 Correlation Functions and Power Spectra

As we have seen, any non-random sequence g = {gn} has its autocor-
relation function defined, for each integer m, by

ρg(m) =

∞∑
k=−∞

gkgk−m.

For a random sequence dn that is wide-sense stationary, its correlation
function is defined to be

ρd(m) = E(dndn−m).
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The power spectrum of g is defined for ω in [−π, π] by

Rg(ω) =
∞∑

m=−∞
ρg(m)eimω.

It is easy to see that
Rg(ω) = |G(ω)|2,

where

G(ω) =
∞∑

n=−∞
gne

inω,

so that Rg(ω) ≥ 0. The power spectrum of the random sequence d = {dn}
is defined as

Rd(ω) =
∞∑

m=−∞
ρd(m)eimω.

Although it is not immediately obvious, we also have Rd(ω) ≥ 0. One way
to see this is to consider

D(ω) =

∞∑
n=−∞

dne
inω

and to calculate

E(|D(ω)|2) =
∞∑

m=−∞
E(dndn−m)eimω = Rd(ω).

Given any power spectrum Rd(ω) ≥ 0 we can construct G(ω) by selecting
an arbitrary phase angle θ and letting

G(ω) =
√
Rd(ω)e

iθ.

We then obtain the non-random sequence g associated with G(ω) using

gn =
1

2π

∫ π

−π
G(ω)e−inωdω.

It follows that ρg(m) = ρd(m) for each m and Rg(ω) = Rd(ω) for each ω.
What we have discovered is that, when the input to the system is the

random-coin-flip sequence c, the output sequence d has a correlation func-
tion ρd(m) that is equal to the autocorrelation of the sequence g. As we just
saw, for any wide-sense stationary random sequence d with expected value
E(dn) constant and correlation function corr(dn, dn−m) independent of n,
there is a shift-invariant discrete linear system T with impulse-response
sequence g, such that ρg(m) = ρd(m) for each m. Therefore, any wide-
sense stationary random sequence d can be viewed as the output of a shift-
invariant discrete linear system, when the input is the random-coin-flip
sequence c = {cn}.
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12.8 The Dirac Delta in Frequency Space

Consider the “function” defined by the infinite sum

δ(ω) =
1

2π

∞∑
n=−∞

einω =
1

2π

∞∑
n=−∞

e−inω. (12.4)

This is a Fourier series in which all the Fourier coefficients are one. The
series doesn’t converge in the usual sense, but still has some uses. In par-
ticular, look what happens when we take

F (ω) =

∞∑
n=−∞

f(n)e−inω,

for π ≤ ω ≤ π, and calculate∫ π

−π
F (ω)δ(ω)dω =

∞∑
n=−∞

1

2π

∫ π

−π
F (ω)e−inωdω.

We have ∫ π

−π
F (ω)δ(ω)dω =

1

2π

∞∑
n=−∞

f(n) = F (0),

where the f(n) are the Fourier coefficients of F (ω). This means that δ(ω)
has the sifting property, just like we saw with the Dirac delta δ(x); that is
why we call it δ(ω). When we shift δ(ω) to get δ(ω − α), we find that∫ π

−π
F (ω)δ(ω − α)dω = F (α).

The “function” δ(ω) is the Dirac delta for ω space.

12.9 Random Sinusoidal Sequences

Consider A = |A|eiθ, with amplitude |A| a positive-valued random vari-
able and phase angle θ a random variable taking values in the interval
[−π, π]; then A is a complex-valued random variable. For a fixed frequency
ω0 we define a random sinusoidal sequence s = {sn} by sn = Ae−inω0 .
We assume that θ has the uniform distribution over [−π, π] so that the
expected value of sn is zero. The correlation function for s is

ρs(m) = E(snsn−m) = E(|A|2)e−imω0
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and the power spectrum of s is

Rs(ω) = E(|A|2)
∞∑

m=−∞
e−im(ω0−ω),

so that, by Equation (12.4), we have

Rs(ω) = 2πE(|A|2)δ(ω − ω0).

We generalize this example to the case of multiple independent sinusoids.
Suppose that, for j = 1, ..., J , we have fixed frequencies ωj and indepen-
dent complex-valued random variables Aj . We let our random sequence be
defined by

sn =
J∑
j=1

Aje
−inωj .

Then the correlation function for s is

ρs(m) =

J∑
j=1

E(|Aj |2)e−imωj

and the power spectrum for s is

Rs(ω) = 2π
J∑
j=1

E(|Aj |2)δ(ω − ωj).

This is the commonly used model of independent sinusoids. The problem of
power spectrum estimation is to determine the values J , the frequencies ωj
and the variances E(|Aj |2) from finitely many samples from one or more
realizations of the random sequence s.

12.10 Random Noise Sequences

Let q = {qn} be an arbitrary wide-sense stationary discrete random se-
quence, with correlation function ρq(m) and power spectrum Rq(ω). We say
that q is white noise if ρq(m) = 0 for m not equal to zero, or, equivalently,
if the power spectrum Rq(ω) is constant over the interval [−π, π]. The in-
dependent sinusoids in additive white noise model is a random sequence of
the form

xn =

J∑
j=1

Aje
−inωj + qn.
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The signal power is defined to be ρs(0), which is the sum of the E(|Aj |2),
while the noise power is ρq(0). The signal-to-noise ratio (SNR) is the ratio
of signal power to noise power.

12.11 Increasing the SNR

It is often the case that the SNR is quite low and it is desirable to process
the data from x to enhance this ratio. The data we have is typically finitely
many values of one realization of x. We say we have fn for n = 1, 2, ..., N ;
we don’t say we have xn because xn is the random variable, not one value
of the random variable. One way to process the data is to estimate ρx(m)
for some small number of integers m around zero, using, for example, the
lag products estimate

ρ̂x(m) =
1

N −m

N−m∑
n=1

fnfn−m,

for m = 0, 1, ...,M < N and ρ̂x(−m) = ρ̂x(m). Because ρq(m) = 0 for m
not equal to zero, we will have ρ̂x(m) approximating ρs(m) for nonzero val-
ues of m, thereby reducing the effect of the noise. Therefore, our estimates
of ρs(m) are relatively noise-free for m �= 0.

12.12 Colored Noise

The additive noise is said to be correlated or non-white if it is not
the case that ρx(m) = 0 for all nonzero m. In this case the noise power
spectrum is not constant, and so may be concentrated in certain regions of
the interval [−π, π].

The next few sections deal with applications of random sequences.

12.13 Spread-Spectrum Communication

In this section we return to the random-coin-flip model, this time al-
lowing the coin to be biased, that is, p need not be 0.5. Let s = {sn} be
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a random sequence, such as sn = Aeinω0 , with E(sn) = μ and correlation
function ρs(m). Define a second random sequence x by

xn = sncn.

The random sequence x is generated from the random signal s by randomly
changing its signs. We can show that

E(xn) = μ(2p− 1)

and, for m not equal to zero,

ρx(m) = ρs(m)(2p− 1)2,

with
ρx(0) = ρs(0) + 4p(1− p)μ2.

Therefore, if p = 1 or p = 0 we get ρx(m) = ρs(m) for all m, but for
p = 0.5 we get ρx(m) = 0 for m not equal to zero. If the coin is unbiased,
then the random sign changes convert the original signal s into white noise.
Generally, we have

Rx(ω) = (2p− 1)2Rs(ω) + (1− (2p− 1)2)(μ2 + ρs(0)),

which says that the power spectrum of x is a combination of the signal
power spectrum and a white-noise power spectrum, approaching the white-
noise power spectrum as p approaches 0.5. If the original signal power spec-
trum is concentrated within a small interval, then the effect of the random
sign changes is to spread that spectrum. Once we know what the particular
realization of the random sequence c is that has been used, we can recap-
ture the original signal from sn = xncn. The use of such a spread spectrum
permits the sending of multiple narrow-band signals, without confusion, as
well as protecting against any narrow-band additive interference.

12.14 Stochastic Difference Equations

The ordinary first-order differential equation y′(t) + ay(t) = f(t), with

initial condition y(0) = 0, has for its solution y(t) = e−at
∫ t
0
easf(s)ds.

One way to look at such differential equations is to consider f(t) to be
the input to a system having y(t) as its output. The system determines
which terms will occur on the left side of the differential equation. In many
applications the input f(t) is viewed as random noise and the output is then
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a continuous-time random process. Here we want to consider the discrete
analog of such differential equations.

We replace the first derivative with the first difference, yn+1−yn and we
replace the input with the random-coin-flip sequence c = {cn}, to obtain
the random difference equation

yn+1 − yn + ayn = cn.

With b = 1− a and 0 < b < 1 we have

yn+1 − byn = cn. (12.5)

The solution is y = {yn} given by

yn = bn−1
n−1∑
k=−∞

b−kck. (12.6)

Comparing this with the solution of the differential equation, we see that
the term bn−1 plays the role of e−at = (e−a)t, so that b = 1 − a is substi-
tuting for e−a. The infinite sum replaces the infinite integral, with b−kck
replacing the integrand easf(s).

The solution sequence y given by Equation (12.6) is a wide-sense sta-
tionary random sequence and its correlation function is

ρy(m) = bm/(1− b2).

Since

bn−1
n−1∑
k=−∞

b−k =
1

1− b

the random sequence (1− b)yn = ayn is an infinite moving-average random
sequence formed from the random sequence c.

We can derive the solution in Equation (12.6) using z-transforms. We
write

Y (z) =

∞∑
n=−∞

ynz
−n,

and

C(z) =

∞∑
n=−∞

cnz
−n.

From Equation (12.5) we have

zY (z)− bY (z) = C(z),

or
Y (z) = C(z)(z − b)−1.
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Expanding in a geometric series, we get

Y (z) = C(z)z−1
(
1 + bz−1 + b2z−2 + ...

)
,

from which the solution given in Equation (12.6) follows immediately.

12.15 Random Vectors and Correlation Matrices

In estimation and detection theory, the task is to distinguish signal
vectors from noise vectors. In order to perform such a task, we need to know
how signal vectors differ from noise vectors. Most frequently, what we have
is statistical information. The signal vectors of interest, which we denote by
s = (s1, ..., sN)

T , typically exhibit some patterns of behavior among their
entries. For example, a constant signal, such as s = (1, 1, ..., 1)T , has all its
entries identical. A sinusoidal signal, such as s = (1,−1, 1,−1, ..., 1,−1)T ,
exhibits a periodicity in its entries. If the signal is a vectorization of a two-
dimensional image, then the patterns will be more difficult to describe,
but will be there, nevertheless. In contrast, a typical noise vector, denoted
q = (q1, ..., qN )T , may have entries that are statistically unrelated to each
other, as in white noise. Of course, what is signal and what is noise depends
on the context; unwanted interference in radio may be viewed as noise, even
though it may be a weather report or a song.

To deal with these notions mathematically, we adopt statistical models.
The entries of s and q are taken to be random variables, so that s and q are
random vectors. Often we assume that the mean values, E(s) and E(q),
are both equal to the zero vector. Then patterns that may exist among
the entries of these vectors are described in terms of correlations. The
noise covariance matrix, which we denote by Q, has for its entries Qmn =

E
(
(qm − E(qm))(qn − E(qn))

)
, for m,n = 1, ..., N . The signal covariance

matrix is defined similarly. If E(qn) = 0 and E(|qn|2) = 1 for each n,
then Q is the noise correlation matrix. Such matrices Q are Hermitian and
nonnegative definite, that is, x†Qx is nonnegative, for every vector x. If Q
is a positive multiple of the identity matrix, then the noise vector q is said
to be a white noise random vector.
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12.16 The Prediction Problem

An important problem in signal processing is the estimation of the next
term in a sequence of numbers from knowledge of the previous values.
This is called the prediction problem. The numbers might be the values at
closing of a certain stock market index; knowing what has happened up
to today, can we predict, with some accuracy, tomorrow’s closing value?
The numbers might describe the position in space of a missile; knowing
where it has been for the past few minutes, can we predict where it will
be for the next few? The numbers might be the noon-time temperature in
New York City on successive days; can we predict tomorrow’s temperature
from our knowledge of the temperatures on previous days? It is helpful, in
weather prediction and elsewhere, to use not only the previous values of the
sequence of interest, but those of related sequences; the recent temperatures
in Pittsburgh might be helpful in predicting tomorrow’s weather in New
York City. In this chapter we begin a discussion of the prediction problem.

12.17 Prediction Through Interpolation

Suppose that our data are the real numbers x1, ..., xm, corresponding
to times t = 1, ...,m. Our goal is to estimate xm+1. One way to do this is
by interpolation.

A function f(t) is said to interpolate the data if f(n) = xn for n =
1, ...,m. Having found such an interpolating function, we can take as our
prediction of xm+1 the number x̂m+1 = f(m + 1). Of course, there are
infinitely many choices for the interpolating function f(t). In our discussion
of Fourier transform estimation, we considered methods of interpolation
that incorporated prior knowledge about the function being sampled, such
as that it was band-limited. In the absence of such additional information
polynomial interpolation is one obvious choice.

Polynomial interpolation involves selecting as the function f(t) the poly-
nomial of least degree that interpolates the data. Given m data points, we
seek a polynomial of degree m − 1. Lagrange’s method is a well-known
procedure for solving this problem.

For k = 1, ...,m, let Lk(t) be the unique polynomial of degree m − 1
with the properties Lk(k) = 1 and Lk(n) = 0 for n = 1, ...,m and n �= k.
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We can write each Lk(t) explicitly, since we know its zeros:

Lk(t) =
(t− 1) · · · (t− (k − 1))(t− (k + 1)) · · · (t−m)

(k − 1) · · · (k − (k − 1))(k − (k + 1)) · · · (k −m)
.

Then the polynomial

Pm(t) =

m∑
k=1

xkLk(t)

is the interpolating polynomial we seek.

Ex. 12.1 Show that for m = 1 the predicted value of x2 is x̂2 = x1, so that

x̂2 − x1 = 0.

This is the “Tomorrow will be like today” prediction.

Ex. 12.2 Show that for m = 2 the predicted value of x3 is x̂3 = 2x2 − x1,
or x̂3 − x2 = (x2 − x1) so that

x̂3 − 2x2 + x1 = 0.

This prediction amounts to assuming the change from today to tomorrow
will be the same as the change from yesterday to today; that is, we assume
a constant slope.

Ex. 12.3 Show that for m = 3 the predicted value of x4 is x̂4 = 3x3 −
3x2 + x1, so that

x̂4 − 3x3 + 3x2 − x1 = 0.

Ex. 12.4 The coefficients in the previous exercises fit a pattern. Using
this pattern, determine the predicted value of x5 for the case of m = 4. In
general, what will be the predicted value of xm+1 based on the m previous
values?

The concept of divided difference plays a significant role in interpola-
tion, as we shall see.

12.18 Divided Differences

The zeroth divided difference of a function f(t) with respect to the point
t0 is f [t0] = f(t0). The first divided difference with respect to the points t0
and t1 is

f [t0, t1] =
f(t1)− f(t0)

t1 − t0
.
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The mth divided difference with respect to the points t0, ..., tm is

f [t0, ..., tm] =
f [t1, ..., tm]− f [t0, ..., tm−1]

tm − t0
.

These quantities are discrete analogs of the derivatives of a function. Indeed,
if f(t) is a polynomial of degree at most m − 1 then the mth divided
difference is zero, for any points t0, ..., tm.

When the points t0, ..., tm are consecutive integers the divided differ-
ences take on a special form. Suppose t0 = 1, t1 = 2, ..., tm = m+ 1. Then,

f [t0, t1] = f(2)− f(1);

f [t0, t1, t2] =
1

2
(f(3)− 2f(2) + f(1));

f [t0, t1, t2, t3] =
1

6
(f(4)− 3f(3) + 3f(2)− f(1))

and so on, with each successive divided difference involving the coefficients
in the expansion of the binomial (a− b)k.

For each fixed value of m ≥ 1 and 1 ≤ n ≤ m, we have f(n) = xn and
f(m + 1) = x̂m+1. According to the previous exercises, for m = 1 we can
write

x̂2 − x1 = 0,

which says that the first divided difference is zero; that is, f [1, 2] = 0. For
m = 2 we have

[x̂3 − x2]− [x2 − x1] = 0,

or f [1, 2, 3] = 0, so the second divided difference is zero. For m = 3

[[x̂4 − x3]− [x3 − x2]]− [[x3 − x2]− [x2 − x1]] = 0,

which says that the third divided difference, f [1, 2, 3, 4], is zero. The in-
terpolation is achieved by assuming that the m data points as well as the
point to be interpolated lie on a polynomial of degree at most m− 1. Un-
der this assumption the mth divided difference with respect to the points
1, 2, ...,m+1 would be zero. The interpolated value can then be calculated
by setting the mth divided difference equal to zero, but replacing xm+1

with the estimate x̂m+1.
The coefficients that occur in these various predictors are those in the

expansion of the binomial (a− b)m. To investigate this matter further, we
define the first difference operator on an arbitrary sequence x = {xn} to
be the operator D such that y = Dx, where y = {yn} is the sequence
with entries yn = xn − xn−1. Notice that the operator D can be written
as D = I − S, where I is the identity operator and S is the shift operator;
that is, Sx = z where z = {zn} is the sequence with entries zn = xn−1.



Random Sequences 185

The kth difference operator is Dk = (I − S)k; expanding this product in
terms of powers of S leads to the binomial coefficients that we saw earlier.

This method of predicting using the interpolating polynomial of degree
m − 1 will be perfectly accurate if the sequence {xn} is formed by taking
values from a polynomial of degreem−1 or less. Typically, our data contains
noise and interpolating the data exactly, while theoretically possible, is not
wise or useful.

The prediction method used here is linear in the sense that our predicted
value is a linear combination of the data values and the coefficients we use
do not involve the data. Another approach, linear predictive coding, is
somewhat different.

12.19 Linear Predictive Coding

Suppose once again that we have the data x1, ..., xm and we want
to predict xm+1. Instead of using a linear combination of all the values
x1, ..., xm, we choose to use as our prediction of xm+1 a linear combination
of xm−p, xm−p+1, ..., xm, where p is a positive integer much smaller than
m. So, our prediction has the form

x̂m+1 = a0xm + a1xm−1 + ...+ apxm−p.

To find the best coefficients a0, ..., ap to use, we imagine trying out each
possible choice of coefficients, using them to predict data values we already
know. Specifically, for each set of coefficients {a0, ..., ap}, we form the pre-
dictions

x̂p+2 = a0xp+1 + a1xp + a2xp−1 + ...+ apx1,

x̂p+3 = a0xp+2 + a1xp+1 + a2xp + ...+ apx2,

and so on, down to

x̂m = a0xm−1 + a1xm−2 + ...+ apxm−(p+1).

Since we already know what the true values are, we can compare the pre-
dicted values with the true ones and then find the choice of coefficients
that minimizes the average squared error. This amounts to finding the
least- squares solution of the system of equations obtained by replacing the
predictions with the true values on the left side of the previous equations:
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⎡
⎢⎢⎢⎢⎢⎢⎣

xp+1 xp ... x1
xp+2 xp+1 ... x2
.
.
.
xm xm−1 ... xm−p−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a0
a1
.
.
.
ap

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

xp+2

xp+3

.

.

.
xm

⎤
⎥⎥⎥⎥⎥⎥⎦
,

which we write as Ga = b. Since m is typically larger than p, this system
is overdetermined. The least-squares solution is

a = (G†G)−1G†b.

The resulting set of coefficients is then used to make a linear combination
of the values xm, ..., xm−p, which is then our predicted value. But note
that although a linear combination of data forms the predicted value, the
coefficients are determined from the data values themselves, so the overall
method is nonlinear.

This method of prediction forms the basis of a data-compression tech-
nique known as linear predictive coding (LPC). In many applications a
long sequence of numbers has a certain amount of local redundancy, and
many of the values can be well predicted from a small number of previous
ones, using the method just described. Instead of transmitting the entire
sequence of numbers, only some of the numbers, along with the coefficients
and occasional outliers, are sent.

The entry in the kth row, nth column of the matrix G†G is

(G†G)kn =

m−p∑
j=1

xp+1−k+jxp+1−n+j .

If we view the data as values of a stationary random process, then the
quantity 1

m−p (G
†G)kn is an estimate of the autocorrelation value rx(n−k).

Similarly, the kth entry of the vector G†b is

(G†b)k =

m−p∑
j=1

xp+1−k+jxp+1+j ,

and 1
m−p (G

†b)k is an estimate of rx(−k), for k = 1, ..., p+1. This brings us

to the problem of predicting the next value for a (possibly nonstationary)
random process.
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12.20 Discrete Random Processes

The most common model used in signal processing is that of a sum of
complex exponential functions plus noise. The noise is viewed as a sequence
of random variables, and the signal components also may involve random
parameters, such as random amplitudes and phase angles. Such models are
best studied as particular cases of discrete random processes.

A discrete random process is an infinite sequence {Xn}+∞
n=−∞ in which

each Xn is a complex-valued random variable. The autocorrelation function
associated with the random process is defined for all index values m and n
by rx(m,n) = E(XmXn), where E(·) is the expectation or expected value
operator. For m = n we get r(n, n) = E(|Xn|2). Generally, we have

variance(Xn) = E(|Xn − E(Xn)|2) = E(|Xn|2)− |E(Xn)|2.

12.20.1 Wide-Sense Stationary Processes

We say that the random process is wide-sense stationary if E(Xn)
is independent of n and rx(m,n) is a function only of the difference,
m − n. Since E(Xn) does not depend on n, it is common to assume
that this constant mean has been subtracted, so that E(Xn) = 0. Then
variance(Xn) = E(|Xn|2), which is independent of n as well. For the re-
mainder of this chapter all random processes will be wide-sense stationary.

For wide-sense stationary processes the autocorrelation function be-
comes rx(k) = E(Xn+kXn), so that rx(0) is the constant variance of the
Xn. The power spectrum Rx(ω) of the random process is defined using the
values rx(k) as its Fourier coeffcients:

Rx(ω) =
∑+∞

k=−∞ rx(k)e
ikω ,

for all ω in the interval [−π, π]. It can be proved that the power spectrum
is a nonnegative function of the form Rx(ω) = |G(ω)|2 and the autocorre-
lation sequence {rx(k)} satisfies the equations

rx(k) =
∑+∞

n=−∞ gk+ngn,

for

G(ω) =
∑+∞

n=−∞ g(n)einω.

In practice we will have actual values Xn = xn, for only finitely many of the
Xn, say for n = 1, ...,m. These can be used to estimate the values rx(k), at



188 Signal Processing: A Mathematical Approach

least for values of k between, say, −M/5 and M/5. For example, we could
estimate rx(k) by averaging all the products of the form xk+mxm that we
can compute from the data. Clearly, as k gets farther away from zero we
have fewer such products, so our average is a less accurate estimate.

Once we have rx(k), |k| ≤ N , we form the N+1 by N+1 autocorrelation
matrix R having the entries Rm,n = rx(m−n). This autocorrelation matrix
is what is used in the design of optimal filtering.

The matrix R is Hermitian, that is, Rn,m = Rm,n, so that R† = R. An
M by M Hermitian matrix H is said to be nonnegative definite if, for all
complex column vectors a = (a1, ..., aM )T , the quadratic form a†Ha is a
nonnegative number and positive definite if such a quadratic form is always
positive, when a is not zero.

Ex. 12.5 Show that the autocorrelation matrix R is nonnegative definite.
Under what conditions can R fail to be positive definite? Hint: Let

A(ω) =
∑N+1

n=1
ane

inω

and express the integral ∫
|A(ω)|2R(ω)dω

in terms of the an and the Rm,n.

In Chapter 13 we shall consider the maximum entropy method for esti-
mating the power spectrum from finitely many values of rx(k).

12.20.2 Autoregressive Processes

We noted previously that the case of a discrete-time signal with addi-
tive random noise provides a good example of a discrete random process;
there are others. One particularly important type is the autoregressive (AR)
process, which is closely related to ordinary linear differential equations.

When a smooth periodic function has noise added the new function
is rough. Imagine, though, a fairly weighty pendulum of a clock, moving
smoothly and periodically. Now imagine that a young child is throwing
small stones at the bob of the pendulum. The movement of the pendulum
is no longer periodic, but it is not rough. The pendulum is moving randomly
in response to the random external disturbance, but not as if a random noise
component has been added to its motion. To model such random processes
we need to extend the notion of an ordinary differential equation. That
leads us to the AR processes.

Recall that an ordinary linearMth order differential equation with con-
stant coefficients has the form

x(M)(t) + c1x
(M−1)(t) + c2x

(M−2)(t) + ...+ cM−1x
′(t) + cMx(t) = f(t),
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where x(m)(t) denotes the mth derivative of the function x(t) and the cm
are constants. In many applications the variable t is time and the function
f(t) is an external effect driving the linear system, with system response
given by the unknown function x(t). How the system responds to a variety
of external drivers is of great interest. It is sometimes convenient to re-
place this continuous formulation with a discrete analog called a difference
equation.

In switching from differential equations to difference equations, we dis-
cretize the time variable and replace the driving function f(t) with fn,
x(t) with xn, the first derivative at time t, x′(t), with the first differ-
ence, xn − xn−1, the second derivative x′′(t) with the second difference,
(xn − xn−1)− (xn−1 − xn−2), and so on. The differential equation is then
replaced by the difference equation

xn − a1xn−1 − a2xn−2 − ...− aMxn−M = fn (12.7)

for some constants am; the negative signs are a technical convenience only.
We now assume that the driving function is a discrete random pro-

cess {fn}, so that the system response becomes a discrete random process,
{Xn}. If we assume that the driver fn is a mean-zero white noise process
that is independent of the {Xn}, then the process {Xn} is called an au-
toregressive (AR) process. What the system does at time n depends partly
on what it has done at the M discrete times prior to time n, as well as
partly on what the external disturbance fn is at time n. Our goal is usu-
ally to determine the constants am; this is system identification. Our data
is typically some number of consecutive measurements of the Xn.

Multiplying both sides of Equation (12.7) by Xn−k, for some k > 0 and
taking the expected value, we obtain

E(XnXn−k)− ...− aME(Xn−MXn−k) = 0,

or
rx(k)− a1rx(k − 1)− ...− aMrx(k −M) = 0.

Taking k = 0, we get

rx(0)− a1rx(−1)− ...− aMrx(−M) = E(|fn|2) = var (fn).

To find the am we use the data to estimate rx(k) at least for k = 0, 1, ...,M .
Then, we use these estimates in the previous linear equations, solving them
for the am.

12.20.3 Linear Systems with Random Input

In our discussion of discrete linear filters, also called time-invariant lin-
ear systems, we noted that it is common to consider as the input to such
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a system a discrete random process, {Xn}. The output is then another
random process {Yn} given by

Yn =

+∞∑
m=−∞

gmXn−m,

for each n.

Ex. 12.6 Show that if the input process is wide-sense stationary then so
is the output. Show that the power spectrum Ry(ω) of the output is

Ry(ω) = |G(ω)|2Rx(ω).

12.21 Stochastic Prediction

In time series analysis, stochastic prediction methods are studied. In
that case the numbers xn are viewed as values of a discrete random process
{Xn}. The coefficients are determined by considering the statistical de-
scription of how the random variable Xm+1 is related to the previous Xn.
The prediction of Xm+1 is a linear combination of the random variables
Xn, n = 1, ...,m,

X̂m+1 = a0Xm + a1Xm−1 + ...+ am−1X1,

with the coefficients determined using the orthogonality principle. Conse-
quently, the coefficients satisfy the system of linear equations

E(Xm+1Xk) = a0E(XmXk) + ...+ am−1E(X1Xk),

for k = 1, 2, ...,m. The expected values in these equations are the autocor-
relations associated with the random process.

12.21.1 Prediction for an Autoregressive Process

Suppose that the random process {Xn} is an Mth order AR process,
so that

Xn − a1Xn−1 − ...− aMXn−M = fn,

where {fn} is a mean-zero white noise process, independent of the {Xn}.
Ex. 12.7 Use our earlier discussion of the relationship between the au-
tocorrelation values rx(k) and the coefficients am to show that the best
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linear predictor for the random variable Xn in terms of the values of
Xn−1, ..., Xn−M is

X̂n = a1Xn−1 + ...+ aMXn−M

and the mean-squared error is

E(|X̂n −Xn|2) = var (fn).

In fact, it can be shown that, because the process is an Mth order AR
process, this is the best linear predictor of Xn in terms of the entire history
of the process.
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13.1 Chapter Summary

It is common to speak of classical, as opposed to modern, signal process-
ing methods. In this chapter we describe briefly the distinction. Then we
discuss entropy maximization, eigenvector methods, and related nonlinear
methods in signal processing. We first encounter infinite series expansions
for functions in calculus when we study Maclaurin and Taylor series. Fourier
series are usually first met in different contexts, such as partial differential
equations and boundary value problems. Laurent expansions come later
when we study functions of a complex variable. There are, nevertheless,
important connections among these different types of infinite series expan-
sions that we consider in this chapter.

13.2 The Classical Methods

In [48] Candy locates the beginning of the classical period of spectral
estimation in Schuster’s use of Fourier techniques in 1898 to analyze sun-
spot data [138]. The role of Fourier techniques grew with the discovery, by
Wiener in the USA and Khintchine in the USSR, of the relation between the
power spectrum and the autocorrelation function. Much of Wiener’s impor-
tant work on control and communication remained classified and became
known only with the publication of his classic text Time Series in 1949
[162]. The book by Blackman and Tukey, Measurement of Power Spectra
[10], provides perhaps the best description of the classical methods. With
the discovery of the FFT by Cooley and Tukey in 1965, all the pieces were
in place for the rapid development of this DFT-based approach to spectral
estimation.

13.3 Modern Signal Processing and Entropy

Until about the middle of the 1970s most signal processing depended al-
most exclusively on the DFT, as implemented using the FFT. Algorithms
such as the Gerchberg-Papoulis bandlimited extrapolation method were
performed as iterative operations on finite vectors, using the FFT at ev-
ery step. Linear filters and related windowing methods involving the FFT
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were also used to enhance the resolution of the reconstructed objects. The
proper design of these filters was an area of interest to quite a number of
researchers, John Tukey among them. Then, around the end of that decade,
interest in entropy maximization began to grow, as researchers began to
wonder if high-resolution methods developed for seismic oil exploration
could be applied successfully in other areas.

John Burg had developed his maximum entropy method (MEM) while
working in the oil industry in the 1960s. He then went to Stanford as a
mature graduate student and received his doctorate in 1975 for a thesis
based largely on his earlier work on MEM [21]. This thesis and a handful
of earlier presentations at meetings [19, 20] fueled the interest in entropy.

It was not only the effectiveness of Burg’s techniques that attracted
the attention of members of the signal-processing community. The classical
methods seemed to some to be ad hoc, and they sought a more intellectu-
ally satisfying basis for spectral estimation. Classical methods start with
the time series data, say xn, for n = 1, ..., N . In the direct approach, slightly
simplified, the data is windowed; that is, xn is replaced with xnwn for some
choice of constants wn. Then, the vDFT is computed, using the FFT, and
the squared magnitudes of the entries of the vDFT provide the desired
estimate of the power spectrum. In the more indirect approach, autocor-
relation values rx(m) are first estimated, for m = 0, 1, ...,M , where M is
some fraction of the data length N . Then, these estimates of rx(m) are
windowed and the vDFT calculated, again using the FFT.

What some people objected to was the use of these windows. After
all, the measured data was xn, not xnwn, so why corrupt the data at the
first step? The classical methods produced answers that depended to some
extent on which window function one used; there had to be a better way.
Entropy maximization was the answer to their prayers.

In 1981 the first of several international workshops on entropy maxi-
mization was held at the University of Wyoming, bringing together most
of the people working in this area. The books [145] and [146] contain the
papers presented at those workshops. As one can see from reading those
papers, the general theme is that a new day has dawned.

13.4 Related Methods

It was soon recognized that maximum entropy methods were closely
related to model-based techniques that had been part of statistical time
series for decades. This realization led to a broader use of autoregressive
(AR) and autoregressive, moving average (ARMA) models for spectral esti-
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mation [129], as well as of eigenvector methods, such as Pisarenko’s method
[126]. What Candy describes as the modern approach to spectral estima-
tion is one based on explicit parametric models, in contrast to the classical
non-parametric approach. The book edited by Don Childers [53] is a col-
lection of journal articles that captures the state-of-the-art at the end of
the 1970s.

In a sense the transition from the classical ways to the modern methods
solved little; the choice of models is as ad hoc as the choice of windows
was before. On the other hand, we do have a wider collection of techniques
from which to choose and we can examine these techniques to see when they
perform well and when they do not. We do not expect one approach to work
in all cases. High-speed computation permits the use of more complicated
parametric models tailored to the physics of a given situation.

Our estimates are intended to be used for some purpose. In medical
imaging a doctor is going to make a diagnosis based in part on what the
image reveals. How good the image needs to be depends on the purpose
for which it is made. Judging the quality of a reconstructed image based
on somewhat subjective criteria, such as how useful it is to a doctor, is
a problem that is not yet solved. Human-observer studies are one way to
obtain this nonmathematical evaluation of reconstruction and estimation
methods. The next step beyond that is to develop computer software that
judges the images or spectra as a human would.

13.5 Entropy Maximization

The problem of estimating the nonnegative function R(ω), for |ω| ≤ π,
from the finitely many Fourier coefficients

r(n) =

∫ π

−π
R(ω) exp(−inω)dω/2π, n = −N, ..., N

is an under-determined problem, meaning that the data alone is insufficient
to determine a unique answer. In such situations we must select one solution
out of the infinitely many that are mathematically possible. The obvious
questions we need to answer are: What criteria do we use in this selection?
How do we find algorithms that meet our chosen criteria? In this chapter
we look at some of the answers people have offered and at one particular
algorithm, Burg’s maximum entropy method (MEM) [19, 20].
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13.6 Estimating Nonnegative Functions

The values r(n) are autocorrelation-function values associated with a
random process having R(ω) for its power spectrum. In many applications,
such as seismic remote sensing, these autocorrelation values are estimates
obtained from relatively few samples of the underlying random process, so
that N is not large. The DFT estimate,

RDFT (ω) =
N∑

n=−N
r(n) exp(inω),

is real-valued and consistent with the data, but is not necessarily nonnega-
tive. For small values of N , the DFT may not be sufficiently resolving to be
useful. This suggests that one criterion we can use to perform our selection
process is to require that the method provide better resolution than the
DFT for relatively small values of N , when reconstructing power spectra
that consist mainly of delta functions.

13.7 Philosophical Issues

Generally speaking, we would expect to do a better job of estimating a
function from data pertaining to that function if we also possess additional
prior information about the function to be estimated and are able to em-
ploy estimation techniques that make use of that additional information.
There is the danger, however, that we may end up with an answer that
is influenced more by our prior guesses than by the actual measured data.
Striking a balance between including prior knowledge and letting the data
speak for itself is a noble goal; how to achieve that is the question. At this
stage, we begin to suspect that the problem is as much philosophical as it
is mathematical.

We are essentially looking for principles of induction that enable us to
extrapolate from what we have measured to what we have not. Unwill-
ing to turn the problem over entirely to the philosophers, a number of
mathematicians and physicists have sought mathematical solutions to this
inference problem, framed in terms of what the most likely answer is, or
which answer involves the smallest amount of additional prior information
[60]. This is not, of course, a new issue; it has been argued for centuries
with regard to the use of what we now call Bayesian statistics; objective
Bayesians allow the use of prior information, but only if it is the “right”
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prior information. The interested reader should consult the books [145] and
[146], containing papers by Ed Jaynes, Roy Frieden, and others originally
presented at workshops on this topic held in the early 1980s.

The maximum entropy method is a general approach to such problems
that includes Burg’s algorithm as a particular case. It is argued that by
maximizing entropy we are, in some sense, being maximally noncommittal
about what we do not know and thereby introducing a minimum of prior
knowledge (some would say prior guesswork) into the solution. In the case
of Burg’s MEM, a somewhat more mathematical argument is available.

Let {Xn}∞n=−∞ be a stationary random process with autocorrelation
sequence r(m) and power spectrum R(ω), |ω| ≤ π. The prediction problem
is the following: Suppose we have measured the values, at “times” prior to
n, of one realization of the process and we want to predict the value of the
process at time n. On average, how much error do we expect to make in
predicting Xn from knowledge of the infinite past? The answer, according
to Szegö’s Theorem [93], is

exp

(∫ π

−π
logR(ω)dω

)
;

the integral ∫ π

−π
logR(ω)dω

is the Burg entropy of the random process [129]. Processes that are very
predictable have low entropy, while those that are quite unpredictable,
or, like white noise, completely unpredictable, have high entropy; to make
entropies comparable, we assume a fixed value of r(0). Given the data r(n),
|n| ≤ N , Burg’s method selects that power spectrum consistent with these
autocorrelation values that corresponds to the most unpredictable random
process.

Other similar procedures are also based on selection through optimiza-
tion. We have seen the minimum norm approach to finding a solution to an
underdetermined system of linear equations, and the minimum expected
squared error approach in statistical filtering, and later we shall see the
maximum likelihood method used in detection. We must keep in mind
that, however comforting it may be to feel that we are on solid philosophi-
cal ground (if such exists) in choosing our selection criteria, if the method
does not work well, we must use something else. As we shall see, the MEM,
like every other reasonable method, works well sometimes and not so well
other times. There is certainly philosophical precedent for considering the
consequences of our choices, as Blaise Pascal’s famous wager about the ex-
istence of God nicely illustrates. As an attentive reader of the books [145]
and [146] will surely note, there is a certain theological tone to some of
the arguments offered in support of entropy maximization. One group of
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authors (reference omitted) went so far as to declare that entropy maxi-
mization was what one did if one cared what happened to one’s data.

The objective of Burg’s MEM for estimating a power spectrum is to
seek better resolution by combining nonnegativity and data-consistency in
a single closed-form estimate. The MEM is remarkable in that it is the only
closed-form (that is, noniterative) estimation method that is guaranteed
to produce an estimate that is both nonnegative and consistent with the
autocorrelation samples. Later we shall consider a more general method,
the inverse PDFT (IPDFT), that is both data-consistent and positive in
most cases.

13.8 The Autocorrelation Sequence {r(n)}
We begin our discussion with important properties of the sequence

{r(n)}. Because R(ω) ≥ 0, the values r(n) are often called autocorrela-
tion values.

Since R(ω) ≥ 0, it follows immediately that r(0) ≥ 0. In addition,
r(0) ≥ |r(n)| for all n:

|r(n)| =
∣∣∣ ∫ π

−π
R(ω) exp(−inω)dω/2π

∣∣∣
≤

∫ π

−π
R(ω)| exp(−inω)|dω/2π = r(0).

In fact, if r(0) = |r(n)| > 0 for some n > 0, then R is a sum of at most
n + 1 delta functions with nonnegative amplitudes. To see this, suppose
that r(n) = |r(n)| exp(iθ) = r(0) exp(iθ). Then,∫ π

−π
R(ω)|1− exp(i(θ + nω))|2dω/2π

=

∫ π

−π
R(ω)(1− exp(i(θ + nω))(1− exp(−i(θ + nω))dω/2π

=

∫ π

−π
R(ω)[2− exp(i(θ + nω))− exp(−i(θ + nω))]dω/2π

=2r(0)− exp(iθ)r(n) − exp(−iθ)r(n) = 2r(0)− r(0)− r(0) = 0.

Therefore, R(ω) > 0 only at the values of ω where |1−exp(i(θ+nω))|2 = 0;
that is, only at ω = n−1(2πk − θ) for some integer k. Since |ω| ≤ π, there
are only finitely many such k.



200 Signal Processing: A Mathematical Approach

This result is important in any discussion of resolution limits. It is
natural to feel that if we have only the Fourier coefficients r(n) for |n| ≤
N then we have only the low frequency information about the function
R(ω). How is it possible to achieve higher resolution? Notice, however,
that in the case just considered, the infinite sequence of Fourier coefficients
is periodic. Of course, we do not know this a priori, necessarily. The fact
that |r(N)| = r(0) does not, by itself, tell us that R(ω) consists solely of
delta functions and that the sequence of Fourier coefficients is periodic.
But, under the added assumption that R(ω) ≥ 0, it does! When we put
in this prior information about R(ω) we find that the data now tells us
more than it did before. This is a good example of the point made in the
Introduction; to get information out we need to put information in.

In discussing the Burg MEM estimate, we shall need to refer to the
concept of minimum-phase vectors. We consider that briefly now.

13.9 Minimum-Phase Vectors

We say that the finite column vector with complex entries
(a0, a1, ..., aN )T is a minimum-phase vector if the complex polynomial

A(z) = a0 + a1z + ...+ aNz
N

has the property that A(z) = 0 implies that |z| > 1; that is, all roots of
A(z) are outside the unit circle. Consequently, the function B(z) given by
B(z) = 1/A(z) is analytic in a disk centered at the origin and including
the unit circle. Therefore, we can write

B(z) = b0 + b1z + b2z
2 + ...,

and taking z = exp(iω), we get

B(exp(iω)) = b0 + b1 exp(iω) + b2 exp(2iω) + ... .

The point here is that B(exp(iω)) is a one-sided trigonometric series, with
only terms corresponding to exp(inω) for nonnegative n.

13.10 Burg’s MEM

The approach is to estimate R(ω) by the function S(ω) > 0 that maxi-
mizes the so-called Burg entropy,

∫ π
−π logS(ω)dω, subject to the data con-

straints.
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The Euler–Lagrange equation from the calculus of variations allows us
to conclude that S(ω) has the form

S(ω) = 1/H(ω)

for

H(ω) =

N∑
n=−N

hne
inω > 0.

From the Fejér–Riesz Theorem 13.2 we know that H(ω) = |A(eiω)|2 for
minimum phase A(z). As we now show, the coefficients an satisfy a system
of linear equations formed using the data r(n).

Given the data r(n), |n| ≤ N , we form the autocorrelation matrix R
with entries Rmn = r(m−n), for −N ≤ m,n ≤ N . Let δ be the column vec-
tor δ = (1, 0, ..., 0)T . Let a = (a0, a1, ..., aN )T be the solution of the system
Ra = δ. Then, Burg’s MEM estimate is the function S(ω) = RMEM (ω)
given by

RMEM (ω) = a0/|A(exp(iω))|2, |ω| ≤ π.

Once we show that a0 ≥ 0, it will be obvious that RMEM (ω) ≥ 0. We also
must show that RMEM is data-consistent; that is,

r(n) =

∫ π

−π
RMEM (ω) exp(−inω)dω/2π =, n = −N, ..., N.

Let us write RMEM (ω) as a Fourier series; that is,

RMEM (ω) =

+∞∑
n=−∞

q(n) exp(inω), |ω| ≤ π.

From the form of RMEM (ω), we have

RMEM (ω)A(exp(iω)) = a0B(exp(iω)). (13.1)

Suppose, as we shall see shortly, that A(z) has all its roots outside the
unit circle, so B(exp(iω)) is a one-sided trigonometric series, with only
terms corresponding to exp(inω) for nonnegative n. Then, multiplying on
the left side of Equation (13.1), and equating coefficients corresponding to
n = 0,−1,−2, ..., we find that, provided q(n) = r(n), for |n| ≤ N , we must
have Ra = δ. Notice that these are precisely the same equations we solve
in calculating the coefficients of an AR process. For that reason the MEM
is sometimes called an autoregressive method for spectral estimation.
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13.10.1 The Minimum-Phase Property

We now show that if Ra = δ then A(z) has all its roots outside the unit
circle. Let r exp(iθ) be a root of A(z). Then, write

A(z) = (z − r exp(iθ))C(z),

where
C(z) = c0 + c1z + c2z

2 + ...+ cN−1z
N−1.

The vector a = (a0, a1, ..., aN )T can be written as a = −r exp(iθ)c + d,
where c = (c0, c1, ..., cN−1, 0)

T and d = (0, c0, c1, ..., cN−1)
T . So, δ = Ra =

−r exp(iθ)Rc+ Rd and

0 = d†δ = −r exp(iθ)d†Rc+ d†Rd,

so that
r exp(iθ)d†Rc = d†Rd.

From the Cauchy Inequality we know that

|d†Rc|2 ≤ (d†Rd)(c†Rc) = (d†Rd)2, (13.2)

where the last equality comes from the special form of the matrix R and
the similarity between c and d.

With
D(ω) = c0e

iω + c1e
2iω...+ cN−1e

iNω

and
C(ω) = c0 + c1e

iω + ...+ cN−1e
i(N−1)ω,

we can easily show that

d†Rd = c†Rc =
1

2π

∫ π

−π
R(ω)|D(ω)|2dω

and

d†Rc =
1

2π

∫ π

−π
R(ω)D(ω)C(ω)dω.

If there is equality in the Cauchy Inequality (13.2), then r = 1 and we
would have

exp(iθ)
1

2π

∫ π

−π
R(ω)D(ω)C(ω)dω =

1

2π

∫ π

−π
R(ω)|D(ω)|2dω.

From the Cauchy Inequality for integrals, we can conclude that

exp(iθ)D(ω)C(ω) = |D(ω)|2
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for all ω for which R(ω) > 0. But,

exp(iω)C(ω) = D(ω).

Therefore, we cannot have r = 1 unless R(ω) consists of a single delta
function; that is, R(ω) = δ(ω − θ). In all other cases we have

|d†Rc|2 < |r|2|d†Rc|2,
from which we conclude that |r| > 1.

13.10.2 Solving Ra = δ Using Levinson’s Algorithm

Because the matrix R is Toeplitz, that is, constant on diagonals, and
positive definite, there is a fast algorithm for solving Ra = δ for a. Instead
of a single R, we let RM be the matrix defined for M = 0, 1, ..., N by

RM =

⎡
⎢⎢⎢⎢⎢⎢⎣

r(0) r(−1) ... r(−M)
r(1) r(0) ... r(−M + 1)
.
.
.

r(M) r(M − 1) ... r(0)

⎤
⎥⎥⎥⎥⎥⎥⎦

so that R = RN . We also let δM be the (M + 1)-dimensional column
vector δM = (1, 0, ..., 0)T . We want to find the column vector aM =
(aM0 , a

M
1 , ..., a

M
M )T that satisfies the equation RMa

M = δM . The point of
Levinson’s algorithm is to calculate aM+1 quickly from aM .

For fixed M find constants α and β so that

δM = RM

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
α

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

aM−1
0

aM−1
1

.

.

.

aM−1
M−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ β

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

aM−1
M−1

aM−1
M−2

.

.

.

aM−1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
α

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
.
.
.
0
γM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ β

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γM

0
.
.
.
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where
γM = r(M)aM−1

0 + r(M − 1)aM−1
1 + ...+ r(1)aM−1

M−1.
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We then have
α+ βγM = 1, αγM + β = 0

or
β = −αγM , α− α|γM |2 = 1,

so
α = 1/(1− |γM |2), β = −γM/(1− |γM |2).

Therefore, the algorithm begins with M = 0, R0 = [r(0)], a00 = r(0)−1. At
each step calculate the γM , solve for α and β and form the next aM .

The MEM resolves better than the DFT when the true power spectrum
being reconstructed is a sum of delta functions plus a flat background.
When the background itself is not flat, performance of the MEM degrades
rapidly; the MEM tends to interpret any nonflat background in terms of
additional delta functions. In the next chapter we consider an extension of
the MEM, called the indirect PDFT (IPDFT), that corrects this flaw.

Why Burg’s MEM and the IPDFT are able to resolve closely spaced
sinusoidal components better than the DFT is best answered by studying
the eigenvalues and eigenvectors of the matrix R; we turn to this topic in
Chapter 14.

13.11 A Sufficient Condition for Positive-Definiteness

If the function

R(ω) =

∞∑
n=−∞

r(n)einω

is nonnegative on the interval [−π, π], then the matrices RM are nonnega-
tive definite for every M . Theorems by Herglotz and by Bochner go in the
reverse direction [2]. Katznelson [99] gives the following result.

Theorem 13.1 Let {f(n)}∞n=−∞ be a sequence of nonnegative real num-
bers converging to zero, with f(−n) = f(n) for each n. If, for each n > 0,
we have

(f(n− 1)− f(n))− (f(n)− f(n+ 1)) > 0,

then there is a nonnegative function R(ω) on the interval [−π, π] with
f(n) = r(n) for each n.

The following figures illustrate the behavior of the MEM. In Figures 13.1,
13.2, and 13.3, the true object has two delta functions at 0.95π and 1.05π.
The data is f(n) for |n| ≤ 10. The DFT cannot resolve the two spikes. The
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SNR is high in Figure 13.1, and the MEM easily resolves them. In Figure
13.2 the SNR is much lower and MEM no longer resolves the spikes.

Ex. 13.1 In Figure 13.3 the SNR is much higher than in Figure 13.1.
Explain why the graph looks as it does.

In Figure 13.4 the true object is a box supported between 0.75π and
1.25π. Here N = 10, again. The MEM does a poor job reconstructing the
box. This weakness in MEM will become a problem in the last two figures,
in which the true object consists of the box with the two spikes added. In
Figure 13.5 we have N = 10, while, in Figure 13.6, N = 25.
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FIGURE 13.1: The DFT and MEM, N = 10, high SNR.
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FIGURE 13.2: The DFT and MEM, N = 10, low SNR.

13.12 The IPDFT

Experience with Burg’s MEM shows that it is capable of resolving
closely spaced delta functions better than the DFT, provided that the back-
ground is flat. When the background is not flat, MEM tends to interpret
the non-flat background as additional delta functions to be resolved. In this
chapter we consider an extension of MEM based on the PDFT that can
resolve in the presence of non-flat background. This method is called the
indirect PDFT (IPDFT) [26].
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FIGURE 13.3: The DFT and MEM, N = 10, very high SNR. What
happened?

13.13 The Need for Prior Information in Nonlinear
Estimation

As we saw previously, the PDFT is a linear method for incorporating
prior knowledge into the estimation of the Fourier transform. Burg’s MEM
is a nonlinear method for estimating a non-negative Fourier transform.

The IPDFT applies to the reconstruction of one-dimensional power
spectra, but the main idea can be used to generate high-resolution methods
for multi-dimensional spectra as well. The IPDFT method is suggested by
considering the MEM equations Ra = δ as a particular case of the equa-
tions that arise in Wiener filter approximation. As in the previous chapter,
we assume that we have the autocorrelation values r(n) for |n| ≤ N , from
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FIGURE 13.4: MEM and DFT for a box object; N = 10.

which we wish to estimate the power spectrum

R(ω) =
+∞∑

n=−∞
r(n)einω , |ω| ≤ π.

13.14 What Wiener Filtering Suggests

In Chapter 20 on Wiener filter approximation, we show that the best
finite length filter approximation of the Wiener filter H(ω) is obtained by
minimizing the integral in Equation (20.3)

∫ π

−π

∣∣∣H(ω)−
L∑

k=−K
fke

ikω
∣∣∣2(Rs(ω) +Ru(ω))dω.
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FIGURE 13.5: The DFT and MEM: two spikes on a large box; N = 10.

The optimal coefficients then must satisfy Equation (20.4):

rs(m) =

L∑
k=−K

fk(rs(m− k) + ru(m− k)), (13.3)

for −K ≤ m ≤ L.
Consider the case in which the power spectrum we wish to estimate

consists of a signal component that is the sum of delta functions and a
noise component that is white noise. If we construct a finite-length Wiener
filter that filters out the signal component and leaves only the noise, then
that filter should be able to zero out the delta-function components. By
finding the locations of those zeros, we can find the supports of the delta
functions. So the approach is to reverse the roles of signal and noise, viewing
the signal as the component called u and the noise as the component called
s in the discussion of the Wiener filter. The autocorrelation function rs(n)
corresponds to the white noise now and so rs(n) = 0 for n �= 0. The terms
rs(n) + ru(n) are the data values r(n), for |n| ≤ N . Taking K = 0 and
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FIGURE 13.6: The DFT and MEM: two spikes on a large box; N = 25.

L = N in Equation (13.3), we obtain

N∑
k=0

fkr(m− k) = 0,

for m = 1, 2, ..., N and

N∑
k=0

fkr(0 − k) = r(0),

which is precisely that same system Ra = δ that occurs in MEM.
This approach reveals that the vector a = (a0, ..., aN )T we find in MEM

can be viewed as a finite-length approximation of the Wiener filter designed
to remove the delta-function component and to leave the remaining flat
white-noise component untouched. The polynomial

A(ω) =

N∑
n=0

ane
inω
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will then have zeros near the supports of the delta functions. What happens
to MEM when the background is not flat is that the filter tries to eliminate
any component that is not white noise and so places the zeros of A(ω) in
the wrong places.

13.15 Using a Prior Estimate

Suppose we take P (ω) ≥ 0 to be our estimate of the background com-
ponent of R(ω); that is, we believe that R(ω) equals a multiple of P (ω)
plus a sum of delta functions. We now ask for the finite length approx-
imation of the Wiener filter that removes the delta functions and leaves
any background component that looks like P (ω) untouched. We then take
rs(n) = p(n), where

P (ω) =

+∞∑
n=−∞

p(n)einω, |ω| ≤ π.

The desired filter is f = (f0, ..., fN)
T satisfying the equations

p(m) =
N∑
k=0

fkr(m − k). (13.4)

Once we have found f we form the polynomial

F (ω) =

N∑
k=0

fke
ikω , |ω| ≤ π.

The zeros of F (ω) should then be near the supports of the delta func-
tion components of the power spectrum R(ω), provided that our original
estimate of the background is not too inaccurate.

In the PDFT it is important to select the prior estimate P (ω) nonzero
wherever the function being reconstructed is nonzero; for the IPDFT the
situation is different. Comparing Equation (13.4) with Equation (2.23), we
see that in the IPDFT the true R(ω) is playing the role previously given to
P (ω), while P (ω) is in the role previously played by the function we wished
to estimate, which, in the IPDFT, is R(ω). It is important, therefore, that
R(ω) not be zero where P (ω) �= 0; that is, we should choose the P (ω) = 0
wherever R(ω) = 0. Of course, we usually do not know the support of R(ω)
a priori. The point is simply that it is better to make P (ω) = 0 than to
make it nonzero, if we have any doubt as to the value of R(ω).
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13.16 Properties of the IPDFT

In our discussion of the MEM, we obtained an estimate for the function
R(ω), not simply a way of locating the delta-function components. As we
shall show, the IPDFT can also be used to estimate R(ω). Although the
resulting estimate is not guaranteed to be nonnegative and data consistent,
it usually is both of these.

For any function G(ω) on [−π, π] with Fourier series

G(ω) =

∞∑
n=−∞

g(n)einω,

the additive causal part of the function G(ω) is

G+(ω) =

∞∑
n=0

g(n)einω.

Any function such as G+ that has Fourier coefficients that are zero for
negative indices is called a causal function. The Equation (13.4) then says
that the two causal functions P+ and (FR)+ have Fourier coefficients that
agree for m = 0, 1, ..., N .

Because F (ω) is a finite causal trigonometric polynomial, we can write

(FR)+(ω) = R+(ω)F (ω) + J(ω),

where

J(ω) =

N−1∑
m=0

(N−m∑
k=1

r(−k)f(m+ k)
)
eimω .

Treating P+ as approximately equal to (FR)+ = R+F +J , we obtain as an
estimate of R+ the function Q = (P+ − J)/F . In order for this estimate of
R+ to be causal, it is sufficient that the function 1/F be causal. This means
that the trigonometric polynomial F (ω) must be minimum phase; that is,
all its roots lie outside the unit circle. In our discussion of the MEM, we
saw that this is always the case for MEM. It is not always the case for the
IPDFT, but it is usually the case in practice; in fact, it was difficult (but
possible) to construct a counterexample. We then construct our IPDFT
estimate of R(ω), which is

RIPDFT (ω) = 2Re(Q(ω))− r(0).

The IPDFT estimate is real-valued and, when 1/F is causal, guaranteed
to be data consistent. Although this estimate is not guaranteed to be non-
negative, it usually is.
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We showed previously that the vector a that solves Ra = δ corresponds
to a polynomialA(z) having all its roots on or outside the unit circle; that is,
it is minimum phase. The IPDFT involves the solution of the system Rf =
p, where p = (p(0), ..., p(N))T is the vector of initial Fourier coefficients of
another power spectrum, P (ω) ≥ 0 on [−π, π]. When P (ω) is constant, we
get p = δ. For the IPDFT to be data-consistent, it is sufficient that the
polynomial F (z) = f0+ ...+ fNz

N be minimum phase. Although this need
not be the case, it is usually observed in practice.

Ex. 13.2 Find conditions on the power spectra R(ω) and P (ω) that cause
F (z) to be minimum phase. Warning: I have not solved this, so it is probably
not an easy exercise.

13.17 Illustrations

The figures below illustrate the IPDFT. The prior function in each case
is the box object supported on the central fourth of the interval [0, 2π]. The
value r(0) has been increased slightly to regularize the matrix inversion.
Figure 13.7 shows the behavior of the IPDFT when the object is only the
box. Contrast this with the behavior of MEM in this case, as seen in Figure
13.4. Figures 13.8 and 13.9 show the abilty of the IPDFT to resolve the two
spikes at 0.95π and 1.05π against the box background. Again, contrast this
with the MEM reconstructions in Figures 13.5 and 13.6. To show that the
IPDFT is actually indicating the presence of the spikes and not just rolling
across the top of the box, we reconstruct two unequal spikes in Figure
13.10. Figure 13.11 shows how the IPDFT behaves when we increase the
number of data points; now, N = 25 and the SNR is very low.

13.18 Fourier Series and Analytic Functions

Suppose that f(z) is analytic in an annulus containing the unit circle
C = {z | |z| = 1}. Then f(z) has a Laurent series expansion

f(z) =

∞∑
n=−∞

fnz
n
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FIGURE 13.7: The DFT and IPDFT: box only, N = 1.

valid for z within that annulus. Substituting z = eiθ, we get f(eiθ), also
written as b(θ), defined for θ in the interval [−π, π] by

b(θ) = f(eiθ) =

∞∑
n=−∞

fne
inθ;

here the Fourier series for b(θ) is derived from the Laurent series for the
analytic function f(z). If f(z) is actually analytic in (1 + ε)D, where
D = {z| |z| < 1} is the open unit disk, then f(z) has a Taylor series ex-
pansion and the Fourier series for b(θ) contains only terms corresponding
to nonnegative n.

13.18.1 An Example

As an example, consider the rational function

f(z) =
1

z − 1
2

− 1

z − 3
= −5

2
/

(
z − 1

2

)
(z − 3). (13.5)
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FIGURE 13.8: The DFT and IPDFT, box and two spikes, N = 10, high
SNR.

In an annulus containing the unit circle this function has the Laurent series
expansion

f(z) =
−1∑

n=−∞
2n+1zn +

∞∑
n=0

(
1

3

)n+1

zn;

replacing z with eiθ, we obtain the Fourier series for the function b(θ) =
f(eiθ) defined for θ in the interval [−π, π].

The function F (z) = 1/f(z) is analytic for all complex z, but because
it has a root inside the unit circle, its reciprocal, f(z), is not analytic in
a disk containing the unit circle. Consequently, the Fourier series for b(θ)
is doubly infinite. We saw in the chapter on complex varables that the
function G(z) = z−a

1−az has |G(eiθ)| = 1. With a = 2 and H(z) = F (z)G(z),
we have

H(z) =
1

5
(z − 3)(z − 2),
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FIGURE 13.9: The DFT and IPDFT, box and two spikes, N = 10,
moderate SNR.

and its reciprocal has the form

1/H(z) =

∞∑
n=0

anz
n.

Because
G(eiθ)/H(eiθ) = 1/F (eiθ),

it follows that
|1/H(eiθ)| = |1/F (eiθ)| = |b(θ)|

and so

|b(θ)| =
∣∣∣ ∞∑
n=0

ane
inθ
∣∣∣.

Multiplication by G(z) permits us to move a root from inside C to outside
C without altering the magnitude of the function’s values on C.
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FIGURE 13.10: The DFT and IPDFT, box and unequal spikes, N = 10,
high SNR.

The relationships between functions defined on C and functions an-
alytic (or harmonic) in D form the core of harmonic analysis [93]. The
factorization F (z) = H(z)/G(z) above is a special case of the inner-outer
factorization for functions in Hardy spaces; the function H(z) is an outer
function, and the functions G(z) and 1/G(z) are inner functions.

13.18.2 Hyperfunctions

The rational function f(z) given by Equation (13.5) is analytic in an
annulus containing the unit circle in its interior. The annulus has width
equal to 2.5, the distance between the roots z = 0.5 and z = 3. Within that
annulus the function has a convergent Laurent expansion, and by setting
z = eiθ we get the Fourier series for the function b(θ) on [−π, π]. But not
every function that has a convergent Fourier series is the restriction to the
unit circle of a function analytic in an annulus containing the unit circle.
To extend the notion that Fourier series are related to Laurent series, we
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FIGURE 13.11: The DFT and IPDFT, box and unequal spikes, N = 25,
very low SNR.

have to entertain the possibility of the width of the annulus shrinking to
zero. This leads to the theory of hyperfunctions, introduced in 1958 by the
Japanese mathematician Mikio Sato [135] (see also [125]). To get a sense
of what is involved without going far into details, we consider the Fourier
series for the Dirac delta function.

The Fourier series for δ(x) is

δ(x) =

∞∑
n=−∞

einx.

Replacing eix with z, we get the Laurent series

−1 +

∞∑
n=0

z−n +

∞∑
n=0

zn.
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The first sum converges for |z| > 1 and

∞∑
n=0

z−n =
1

1− z−n
=

z

z − 1
.

The second sum converges for |z| < 1 and is

∞∑
n=0

zn =
1

1− z
.

The sum of these two functions is

z

z − 1
+

1

1− z
=
z − 1

z − 1
,

so that

−1 +
z

z − 1
+

1

1− z
= 0,

for z �= 1. For z = 1, so that x = 0, the Laurent series sums to +∞. We
can see, therefore, that, in some sense, the Fourier series for δ(x) can be
understood in terms of a Laurent series, but that the associated annulus of
the Laurent series has zero width; there is no actual annulus within which
both halves of the series converge.What we have, instead, are two functions,
one analytic on the inside of the unit circle, and the other analytic on the
outside. Sato’s idea is to consider as a single object, a hyperfunction, the
pair of functions so defined.

13.19 Fejér–Riesz Factorization

Sometimes we start with an analytic function and restrict it to the unit
circle. Other times we start with a function f(eiθ) defined on the unit circle,
or, equivalently, a function of the form b(θ) for θ in [−π, π], and view this
function as the restriction to the unit circle of a function that is analytic
in a region containing the unit circle. One application of this idea is the
Fejér–Riesz factorization theorem:

Theorem 13.2 Let h(eiθ) be a finite trigonometric polynomial

h(eiθ) =
N∑

n=−N
hne

inθ,
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such that h(eiθ) ≥ 0 for all θ in the interval [−π, π]. Then there is

y(z) =

N∑
n=0

ynz
n

with h(eiθ) = |y(eiθ)|2. The function y(z) is unique if we require, in addi-
tion, that all its roots be outside D.

To prove this theorem we consider the function

h(z) =

N∑
n=−N

hnz
n,

which is analytic in an annulus containing the unit circle. The rest of the
proof is contained in the following exercise.

Ex. 13.3 Use the fact that h−n = hn to show that zj is a root of h(z) if
and only if 1/zj is also a root. From the nonnegativity of h(eiθ), conclude
that if h(z) has a root on the unit circle then it has even multiplicity. Take
y(z) to be proportional to the product of factors z− zj for all the zj outside
D; for roots on C, include them with half their multiplicities.

13.20 Burg Entropy

The Fejér–Riesz theorem is used in the derivation of Burg’s maximum
entropy method for spectrum estimation. The problem there is to estimate
a function R(θ) > 0 knowing only the values

rn =
1

2π

∫ π

−π
R(θ)e−inθdθ,

for |n| ≤ N . The approach is to estimate R(θ) by the function S(θ) > 0
that maximizes the so-called Burg entropy,

∫ π
−π logS(θ)dθ, subject to the

data constraints.
The Euler–Lagrange Equation from the calculus of variations allows us

to conclude that S(θ) has the form

S(θ) = 1/

N∑
n=−N

hne
inθ.
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The function

h(θ) =

N∑
n=−N

hne
inθ

is nonnegative, so, by the Fejér–Riesz theorem, it factors as h(θ) = |y(θ)|2.
We then have S(θ)y(θ) = 1/y(θ). Since all the roots of y(z) lie outside D
and none are on C, the function 1/y(z) is analytic in a region containing
C and D so it has a Taylor series expansion in that region. Restricting this
Taylor series to C, we obtain a one-sided Fourier series having zero terms
for the negative indices.

Ex. 13.4 Show that the coefficients yn in y(z) satisfy a system of linear
equations whose coefficients are the rn. Hint: Compare the coefficients of
the terms on both sides of the equation S(θ)y(θ) = 1/y(θ) that correspond
to negative indices.

13.21 Some Eigenvector Methods

Prony’s method shows that information about the signal can sometimes
be obtained from the roots of certain polynomials formed from the data.
Eigenvector methods are similar, as we shall see now.

Eigenvector methods assume the data are correlation values and in-
volve polynomials formed from the eigenvectors of the correlation matrix.
Schmidt’s multiple signal classification (MUSIC) algorithm is one such
method [136]. A related technique used in direction-of-arrival array pro-
cessing is the estimation of signal parameters by rotational invariance tech-
niques (ESPRIT) of Paulraj, Roy, and Kailath [123].

13.22 The Sinusoids-in-Noise Model

We suppose now that the function f(t) being measured is signal plus
noise, with the form

f(t) =

J∑
j=1

|Aj |eiθje−iωjt + n(t) = s(t) + n(t),
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where the phases θj are random variables, independent and uniformly dis-
tributed in the interval [0, 2π), and n(t) denotes the random complex sta-
tionary noise component. Assume that E(n(t)) = 0 for all t and that the
noise is independent of the signal components. We want to estimate J , the
number of sinusoidal components, their magnitudes |Aj | and their frequen-
cies ωj .

13.23 Autocorrelation

The autocorrelation function associated with s(t) is

rs(τ) =

J∑
j=1

|Aj |2e−iωjτ ,

and the signal power spectrum is the Fourier transform of rs(τ),

Rs(ω) =

J∑
j=1

|Aj |2δ(ω − ωj).

The noise autocorrelation is denoted rn(τ) and the noise power spectrum
is denoted Rn(ω). For the remainder of this section we shall assume that
the noise is white noise; that is, Rn(ω) is constant and rn(τ) = 0 for τ �= 0.

We collect samples of the function f(t) and use them to estimate some of
the values of rs(τ). From these values of rs(τ), we estimate Rs(ω), primarily
looking for the locations ωj at which there are delta functions.

We assume that the samples of f(t) have been taken over an interval
of time sufficiently long to take advantage of the independent nature of
the phase angles θj and the noise. This means that when we estimate the

rs(τ) from products of the form f(t+ τ)f(t), the cross terms between one
signal component and another, as well as between a signal component and
the noise, are nearly zero, due to destructive interference coming from the
random phases.

Suppose now that we have the values rf (m) form = −(M−1), ...,M−1,
where M > J , rf (m) = rs(m) for m �= 0, and rf (0) = rs(0) + σ2, for σ2

the variance (or power) of the noise. We form the M by M autocorrelation
matrix R with entries Rm,k = rf (m− k).

Ex. 13.5 Show that the matrix R has the following form:

R =
J∑
j=1

|Aj |2eje†j + σ2I,

where ej is the column vector with entries e−iωjn, for n = 0, 1, ...,M − 1.
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Let u be an eigenvector of R with ‖u‖ = 1 and associated eigenvalue λ.
Then we have

λ = u†Ru =

J∑
j=1

|Aj |2|e†ju|2 + σ2 ≥ σ2.

Therefore, the smallest eigenvalue of R is σ2.
Because M > J , there must be non-zero M -dimensional vectors v that

are orthogonal to all of the ej; in fact, we can say that there are M − J
linearly independent such v. For each such vector v we have

Rv =
J∑
j=1

|Aj |2e†jvej + σ2v = σ2v;

consequently, v is an eigenvector of R with associated eigenvalue σ2.
Let λ1 ≥ λ2 ≥ ... ≥ λM > 0 be the eigenvalues of R and let um be

a norm-one eigenvector associated with λm. It follows from the previous
paragraph that λm = σ2, for m = J + 1, ...,M , while λm > σ2 for m =
1, ..., J . This leads to the MUSIC method for determining the ωj .

13.24 Determining the Frequencies

By calculating the eigenvalues of R and noting how many of them are
greater than the smallest one, we find J . Now we seek the ωj .

For each ω, we let eω have the entries e−iωn, for n = 0, 1, ...,M − 1 and
form the function

T (ω) =

M∑
m=J+1

|e†ωum|2.

This function T (ω) will have zeros at precisely the values ω = ωj, for j =
1, ..., J . Once we have determined J and the ωj , we estimate the magnitudes
|Aj | using Fourier transform estimation techniques already discussed. This
is basically Schmidt’s MUSIC method.

We have made several assumptions here that may not hold in practice
and we must modify this eigenvector approach somewhat. First, the time
over which we are able to measure the function f(t) may not be long enough
to give good estimates of the rf (τ). In that case we may work directly with
the samples of f(t). Second, the smallest eigenvalues will not be exactly
equal to σ2 and some will be larger than others. If the ωj are not well
separated, or if some of the |Aj | are quite small, it may be hard to tell
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what the value of J is. Third, we often have measurements of f(t) that
have errors other than those due to background noise; inexpensive sensors
can introduce their own random phases that can complicate the estimation
process. Finally, the noise may not be white, so that the estimated rf (τ) will
not equal rs(τ) for τ �= 0, as before. If we know the noise power spectrum
or have a decent idea what it is, we can perform a pre-whitening to R,
which will then return us to the case considered above, although this can
be a tricky procedure.

13.25 The Case of Non-White Noise

When the noise power spectrum has a component that is not white
the eigenvalues and eigenvectors of R behave somewhat differently from
the white-noise case. The eigenvectors tend to separate into three groups.
Those in the first group correspond to the smallest eigenvalues and are
approximately orthogonal to both the signal components and the nonwhite
noise component. Those in the second group, whose eigenvalues are some-
what larger than those in the previous group, tend to be orthogonal to the
signal components but to have a sizable projection onto the nonwhite-noise
component. Those in the third group, with the largest eigenvalues, have siz-
able projection onto both the signal and nonwhite noise components. Since
the DFT estimate uses R, as opposed to R−1, the DFT spectrum is deter-
mined largely by the eigenvectors in the third group. The MEM estimator,
which uses R−1, makes most use of the eigenvectors in the first group, but
in the formation of the denominator. In the presence of a nonwhite-noise
component, the orthogonality of those eigenvectors to both the signals and
the nonwhite noise shows up as peaks throughout the region of interest,
masking or distorting the signal peaks we wish to see.

There is a second problem exacerbated by the nonwhite component:
sensitivity of nonlinear and eigenvector methods to phase errors. We have
assumed up to now that the data we have obtained is accurate, but there
isn’t enough of it. In some cases the machinery used to obtain the measured
data may not be of the highest quality; certain applications of sonar make
use of relatively inexpensive hydrophones that will sink into the ocean after
they have been used briefly. In such cases the complex numbers r(n) will be
distorted. Errors in the measurement of their phases are particularly dam-
aging. Techniques for stabilizing high-resolution methods were presented in
[28].
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14.1 Chapter Summary

In Chapter 13 we considered the problem of estimating a nonnegative
function of a continuous variable from finitely many of its Fourier coeffi-
cients. The estimate was again a function of a continuous variable. In such
cases, we would convert the estimate to a finite vector just prior to graph-
ing the estimate. In this chapter we discuss an alternative approach, in
which the nonnegative function to be estimated is discretized at the out-
set. Discrete entropy maximization and related procedures are then used
to reconstruct the nonnegative vector from finitely many linear-functional
values. Unlike the MEM and the IPDFT methods, the algorithms we fo-
cus on here, primarily the multiplicative algebraic reconstruction technique
(MART) and its simultaneous version, the SMART, are iterative.

We begin with the algebraic reconstruction technique (ART), which is
not related to entropy maximization but which will help to motivate its
multiplicative variant, the multiplicative algebraic reconstruction technique
(MART). As we shall see, the MART is an iterative entropy-maximization
method.
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14.2 The Algebraic Reconstruction Technique

The ART, designed originally for the reconstruction of medical images
in computerized tomography [84], is an iterative algorithm for finding a
solution of a consistent system of linear equations, Ax = b, where A is an
arbitrary I by J complex matrix. In the tomography case the vector x is a
vectorization of a two- or three-dimensional discrete image, the vector b is
the vector of measured data, and the matrix A describes the geometry of
the sensing process.

In the ART we begin by choosing an arbitrary starting vector, denoted
x0. Having computed xk, we calculate the next vector, xk+1, using the
formula

xk+1
j = xkj + α−1

i Aij(bi − (Axk)i),

for k = 0, 1, ..., i = k(mod I) + 1, and

αi =
J∑
j=1

|Aij |2.

When Ax = b has a solution the sequence {xk} converges to the solution
of the system closest to the starting vector, x0; when x0 = 0 the sequence
converges to the minimum-two-norm solution.

14.3 The Multiplicative Algebraic Reconstruction
Technique

The images to be reconstructed in transmission or emission tomogra-
phy are necessarily nonnegative. The multiplicative algebraic reconstruc-
tion technique, MART, is a variant of the ART that incorporates the prior
information that the image to be reconstructed is nonnegative [84]. Like
the ART, the MART can be used to solve more general systems of linear
equations, although, for the MART, the matrix and vectors involved must
be nonnegative.

Let P be an I by J matrix with nonnegative entries Pij ≥ 0, such that

sj =
∑I
i=1 Pij > 0, for j = 1, ..., J . Let y be the I-dimensional vector with

entries yi > 0, and suppose that the linear system of equations y = Px has
a nonnegative solution x.
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For the MART we begin with a positive vector x0. Having computed
xk, we calculate the next vector, xk+1, using the formula

xk+1
j = xkj

( yi
(Pxk)i

)m−1
i Pij

, (14.1)

where mi = max{Pij |j = 1, ..., J}, and i = k(mod I) + 1. When there is
a nonnegative solution for y = Px, the sequence {xk} converges to such a
solution. When there are multiple nonnegative solutions, we would like to
know which solution MART gives us; in particular, we want to know how
the solution depends on the starting vector x0. The answer involves the
Kullback–Leibler, or cross-entropy, distance.

14.4 The Kullback–Leibler Distance

For real numbers a > 0 and b > 0 we define the Kullback–Leibler, or
cross-entropy, distance from a to b to be

KL(a, b) = a log
a

b
+ b− a.

It follows from the inequality log t ≤ t − 1, with equality if and only if
t = 1, that KL(a, b) ≥ 0, and KL(a, b) = 0 if and only if a = b. We
also let KL(0, b) = b and KL(a, 0) = +∞. We extend the KL distance to
nonnegative vectors x and z by

KL(x, z) =

J∑
j=1

KL(xj , zj).

Since the function
f(t) = t− 1− log t

is convex, we have the following useful lemma:

Lemma 14.1 Let a be a fixed positive number. If the set {KL(a, b)|b ∈ B}
is bounded, then so is B.

Let x and z be nonnegative vectors, with x+ =
∑J

j=1 xj . Then a simple
calculation shows that

KL(x+, z+) ≤ KL(x, z). (14.2)

When x = u, where uj = 1 for all j, and z is a probability vector, we have

KL(u, z) + J − 1 = −
J∑
j=1

log zj,
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which is the negative of the Burg entropy of the probability vector z. Sim-
ilarly,

KL(z, u)− J + 1 =

J∑
j=1

zj log zj ,

which is the negative of the Shannon entropy of the probability vector z.
When the system y = Px has a nonnegative solution the MART se-

quence converges to the nonnegative solution x for which the Kullback–
Leibler distance KL(x, x0) is minimized. Therefore, when we select x0 = u,
the MART sequence converges to the solution of y = Px maximizing the
Shannon entropy.

14.5 The EMART

We see from Equation (14.1) that the MART is computationally more
complicated than the ART. The EMART [37] is an iterative method that,
like the MART, applies to nonnegative systems of linear equations, while,
like the ART, requires no exponentiation.

Note that we can rewrite the right side of Equation (14.1) as a weighted
geometric mean of two terms:

xk+1
j =

(
xkj

)1−m−1
i Pij

(
xkj

yi
(Pxk)i

)m−1
i Pij

.

In the EMART we exchange the weighted geometric means for weighted
arithmetic means. The iterative step of the EMART is

xk+1
j = (1−m−1

i Pij)x
k
j +m−1

i Pij

(
xkj

yi
(Pxk)i

)
. (14.3)

When the system y = Px has nonnegative solutions, the sequence {xk}
generated by Equation (14.3) converges to a nonnegative solution. Unlike
the ART and MART, we do not know how the solution depends on the
starting vector x0.

14.6 Simultaneous Versions

All of the three methods discussed so far are sequential, in that only a
single equation is used at each step of the iteration. There are simultaneous
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versions of these algorithms that use all of the equations at each step [41].
One reason for their use is that they also converge when the system of
equations is not consistent.

14.6.1 The Landweber Algorithm

The simultaneous version of the ART is the Landweber algorithm [7].
The iterative step of the Landweber algorithm is the following:

xk+1 = xk + γA†(b− (Axk)), (14.4)

with 0 < γ < 2
ρ(A†A)

, and ρ(A†A) is the spectral radius of A†A, which is its

largest eigenvalue, in this case. When Ax = b has solutions the sequence
generated by Equation (14.4) converges to the solution closest to x0 in the
two-norm. When Ax = b has no solutions, the sequence converges to the
minimizer of ‖Ax− b‖2 for which ‖x− x0‖2 is minimized.

14.6.2 The SMART

The simultaneous MART (SMART) is the simultaneous version of the
MART. The iterative step of the SMART is the following:

xk+1
j = xkj exp

(
s−1
j

I∑
i=1

Pij log
yi

(Px)i

)
. (14.5)

When the system y = Px has nonnegative solutions, the sequence generated
by Equation (14.5) converges to the nonnegative solution that minimizes
KL(x, x0), just as the MART does. In addition, when the system y = Px
is inconsistent, that is, has no nonnegative solution, the SMART sequence
converges to the nonnegative minimizer of KL(Px, y) for which KL(x, x0)
is minimized.

14.6.3 The EMML Algorithm

Closely related to the SMART is the EMML algorithm, which is a spe-
cial case of a more general method known in statistics as the EM algorithm.
The iterative step of the EMML algorithm is the following:

xk+1
j = xkj s

−1
j

I∑
i=1

Pij

( yi
(Px)i

)
. (14.6)

When the system y = Px has nonnegative solutions, the sequence gener-
ated by Equation (14.6) converges to a nonnegative solution. When the
system y = Px has no nonnegative solutions, the sequence converges to a
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nonnegative minimizer of KL(y, Px). In neither case can we say precisely
how the limit of the sequence depends on the starting vector, x0.

In the urn model for remote sensing, as discussed in Chapter 1, the
entries of the vector y are yi, the proportion of the trials in which the ith
color was drawn, so that y+ = 1. In addition, we have sj = 1. We want the
solution x to be a probability vector, as well. When sj = 1 for each j and
there are exact nonnegative solutions of y = Px, the solutions provided by
the SMART and the EMML method, although they may be different, will
both be probability vectors. However, when y = Px has no nonnegative
solution, the limit of the SMART sequence will have x+ < 1, while the
limit of the EMML sequence will still be a probability vector. For details
and references concerning the SMART and the EMML algorithm, consult
[41].

14.6.4 Block-Iterative Versions

Simultaneous iterative algorithms tend to converge slowly. Sequential
versions of these algorithms, which typically converge more rapidly, may
make inefficient use of the machine architecture. Block-iterative versions
of these algorithms permit the use of some, but perhaps not all, of the
equations at each step. A block-iterative version of the EMML algorithm
was used to obtain sub-pixel resolution from SAR image data [117].

14.6.5 Convergence of the SMART

We turn now to a proof of convergence of the SMART. Convergence of
the MART and the block-iterative versions of SMART are proved similarly
and we omit these proofs.

We shall assume, for notational convenience, that sj = 1 for all j. As we
have seen, this is sometimes the case in applications, and if it is not true,
we can redefine both P and x to make it happen. Using Equation (14.2),
we have

KL(x, z) ≥ KL(Px, Pz),

for all nonnegative x and z.
We use the alternating minimization formalism of [61]. For each non-

negative x for which

(Px)i =

J∑
j=1

Pijxj

is positive, for each i, we let r(x) and q(x) be the I by J matrices with
entries

r(x)ij = xjPij

( yi
(Px)i

)
,
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and
q(x)ij = xjPij .

The alternating minimization then involves the function

KL(q(x), r(z)) =
I∑
i=1

J∑
j=1

KL(q(x)ij , r(z)ij).

The following Pythagorean identities are central to the proof:

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Px, Pz),

and
KL(q(x), r(z)) = KL(q(z′), r(z)) +KL(x, z′),

where

z′j = zj exp
( I∑
i=1

Pij log
yi

(Pz)i

)
.

It follows, then, that, having calculated xk, we get xk+1 by minimizing
KL(q(x), r(xk)) over all nonnegative x. The remainder of the convergence
proof is contained in the following sequence of exercises.

Ex. 14.1 Use the Pythagorean identities and the fact that

KL(q(x), r(x)) = KL(Px, y)

to show that the sequence {KL(Pxk, y)} is decreasing, and the sequence
{KL(xk, xk+1)} converges to zero.

Ex. 14.2 Show that
J∑
j=1

xkj ≤
I∑
i=1

yi,

so that the sequence {xk} is a bounded sequence.

Ex. 14.3 Let x∗ be any cluster point of the sequence {xk}. Show that
(x∗)′ = x∗.

Ex. 14.4 Let x̂ be a nonnegative minimizer of KL(Px, y). Show that
(x̂)′ = x̂.

Note that, since KL(x, z) is strictly convex in each variable, the vector
P x̂ is unique, even if x̂ is not unique.
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Ex. 14.5 Show that

KL(x̂, xk)−KL(x̂, xk+1) = KL(Pxk+1, y)−KL(P x̂, y)

+KL(P x̂, Pxk) +KL(xk+1, xk)−KL(Pxk+1, Pxk), (14.7)

so that KL(P x̂, Px∗) = 0, the sequence {KL(x̂, xk)} is decreasing, and
KL(x̂, x∗) is finite.

Ex. 14.6 Show that, for any cluster point x∗, KL(Px∗, y) = KL(P x̂, y).

We know now that x∗ is a nonnegative minimizer of KL(Px, y). Replacing
x̂ with x∗, we find that the sequence {KL(x∗, xk)} converges to zero. Since
the right side of Equation (14.7) depends only on P x̂ and not directly on
x̂, so does the left side. Consequently, summing the left side over k, we find
that

KL(x̂, x0)−KL(x̂, x∗)

is independent of the choice of x̂. It follows that x∗ is the nonnegative
minimizer of KL(Px, y) for which KL(x, x0) is minimized.
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15.1 Chapter Summary

Analysis and synthesis in signal processing refers to the effort to study
complicated functions in terms of simpler ones. The basic building blocks
are orthogonal bases and frames.

We begin with signal-processing problems arising in radar. Not only
does radar provide an important illustration of the application of the theory
of Fourier transforms and matched filters, but it also serves to motivate
several of the mathematical concepts we shall encounter in our discussion
of wavelets. The connection between radar signal processing and wavelets
is discussed in some detail in Kaiser’s book [97].

There are applications in which the frequency composition of the signal
of interest will change over time. A good analogy is a piece of music, where
notes at certain frequencies are heard for a while and then are replaced by
notes at other frequencies. We do not usually care what the overall contri-
bution of, say, middle C is to the song, but do want to know which notes are
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to be sounded when and for how long. Analyzing such non-stationary sig-
nals requires tools other than the Fourier transform: the short-time Fourier
transform is one such tool; wavelet expansion is another.

15.2 The Basic Idea

An important theme that runs through most of mathematics, from
the geometry of the early Greeks to modern signal processing, is analy-
sis and synthesis, or, less formally, breaking up and putting back together.
The Greeks estimated the area of a circle by breaking it up into sectors
that approximated triangles. The Riemann approach to integration involves
breaking up the area under a curve into pieces that approximate rectangles
or other simple shapes. Viewed differently, the Riemann approach is first
to approximate the function to be integrated by a step function and then
to integrate the step function.

Along with geometry, Euclid includes a good deal of number theory,
where, again, we find analysis and synthesis. His theorem that every posi-
tive integer is divisible by a prime is analysis; division does the breaking up
and the simple pieces are the primes. The fundamental theorem of arith-
metic, which asserts that every positive integer can be written in a unique
way as the product of powers of primes, is synthesis, with the putting back
together done by multiplication.

15.3 Polynomial Approximation

The individual power functions, xn, are not particularly interesting by
themselves, but when finitely many of them are scaled and added to form a
polynomial, interesting functions can result, as the famous approximation
theorem of Weierstrass confirms [101]:

Theorem 15.1 If f : [a, b] → R is continuous and ε > 0 is given, we can
find a polynomial P such that |f(x)− P (x)| ≤ ε for every x in [a, b].

The idea of building complicated functions from powers is carried a
step further with the use of infinite series, such as Taylor series. The sine
function, for example, can be represented for all real x by the infinite power
series

sinx = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + ....
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The most interesting thing to note about this is that the sine function has
properties that none of the individual power functions possess; for example,
it is bounded and periodic. So we see that an infinite sum of simple functions
can be qualitatively different from the components in the sum. If we take
the sum of only finitely many terms in the Taylor series for the sine function
we get a polynomial, which cannot provide a good approximation of the
sine function for all x; that is, the finite sum does not approximate the sine
function uniformly over the real line. The approximation is better for x
near zero and poorer as we move away from zero. However, for any selected
x and for any ε > 0, there is a positive integer N , depending on the x and
on the ε, with the sum of the first n terms of the series within ε of sinx
for n ≥ N ; that is, the series converges pointwise to sinx for each real x.
In Fourier analysis the trigonometric functions themselves are viewed as
the simple functions, and we try to build more complicated functions as
(possibly infinite) sums of trig functions. In wavelet analysis we have more
freedom to design the simple functions to fit the problem at hand.

15.4 Signal Analysis

When we speak of signal analysis, we often mean that we believe the
signal to be a superposition of simpler signals of a known type and we wish
to know which of these simpler signals are involved and to what extent. For
example, received sonar or radar data may be the superposition of individ-
ual components corresponding to spatially localized targets of interest. As
we shall see in our discussion of the ambiguity function and of wavelets,
we want to tailor the family of simpler signals to fit the physical problem
being considered.

Sometimes it is not the individual components that are significant by
themselves, but groupings of these components. For example, if our received
signal is believed to consist of a lower frequency signal of interest plus a
noise component employing both low and high frequencies, we can remove
some of the noise by performing a low-pass filtering. This amounts to an-
alyzing the received signal to determine what its low-pass and high-pass
components are. We formulate this operation mathematically using the
Fourier transform, which decomposes the received signal f(t) into complex
exponential function components corresponding to different frequencies.

More generally, we may analyze a signal f(t) by calculating certain inner
products 〈f, gn〉 , n = 1, ..., N . We may wish to encode the signal using these
N numbers, or to make a decision about the signal, such as recognizing
a voice. If the signal is a two-dimensional image, say a fingerprint, we
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may want to construct a data-base of these N -dimensional vectors, for
identification. In such a case we are not necessarily claiming that the signal
f(t) is a superposition of the gn(t) in any sense, nor do we necessarily expect
to reconstruct f(t) at some later date from the stored inner products. For
example, one might identify a piece of music using only the upward or
downward progression of the first few notes.

There are many cases, on the other hand, in which we do wish to recon-
struct the signal f(t) from measurements or stored compressed versions.
In such cases we need to consider this when we design the measuring or
compression procedures. For example, we may have values of the signal or
its Fourier transform at some finite number of points and want to recapture
f(t) itself. Even in those cases mentioned previously in which reconstruc-
tion is not desired, such as the fingerprint case, we do wish to be reasonably
sure that similar vectors of inner products correspond to similar signals and
distinct vectors of inner products correspond to distinct signals, within the
obvious limitations imposed by the finiteness of the stored inner products.
The twin processes of analysis and synthesis are dealt with mathematically
using the notions of frames and bases.

15.5 Practical Considerations in Signal Analysis

Perhaps the most basic problem in signal analysis is determining which
sinusoidal components make up a given signal. Let the analog signal f(t)
be given for all real t by

f(t) =

J∑
j=1

Aje
iωjt,

where the Aj are complex amplitudes and the ωj are real numbers. If we
view the variable t as time, then the ωj are frequencies. In theory, we can
determine J , the ωj , and the Aj simply by calculating the Fourier transform
F (ω) of f(t). The function F (ω) will have Dirac delta components at ω = ωj
for each j, and will be zero elsewhere. Obviously, this is not a practical
solution to the problem. The first step in developing a practical approach
is to pass from analog signals, which are functions of the continuous variable
t, to digital signals or sequences, which are functions of the integers.

In theoretical discussions of digital signal processing, analog signals are
converted to discrete signals or sequences by sampling. We begin by choos-
ing a positive sampling spacing Δ > 0 and define the nth entry of the
sequence x = {x(n)} by

x(n) = f(nΔ),
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for all integers n.

15.5.1 The Discrete Model

Notice that, since
eiωjnΔ = ei(ωj+

2π
Δ )nΔ

for all n, we cannot distinguish frequency ωj from ωj+
2π
Δ . We try to select

Δ small enough so that each of the ωj we seek lies in the interval (− π
Δ ,

π
Δ ).

If we fail to make Δ small enough we under-sample, with the result that
some of the ωj will be mistaken for lower frequencies; this is aliasing. Our
goal now is to process the sequence x to determine J , the ωj, and the Aj .
We do this with matched filtering.

Every linear shift-invariant system operates through convolution; as-
sociated with the system is a sequence h, such that, when x is the input
sequence, the output sequence is y, with

y(n) =

∞∑
k=−∞

h(k)x(n− k),

for each integer n. In theoretical matched filtering we design a whole family
of such systems or filters, one for each frequency ω in the interval (− π

Δ ,
π
Δ ).

We then use our sequence x as input to each of these filters and use the
outputs of each to solve our signal-analysis problem.

For each ω in the interval (− π
Δ ,

π
Δ ) and each positive integer K, we

consider the shift-invariant linear filter with h = eK,ω, where

eω(k) =
1

2K + 1
eiωkΔ,

for |k| ≤ K and eK,ω(k) = 0 otherwise. Using x as input to this system, we
find that the output value y(0) is

y(0) =

J∑
j=1

Aj

(
1

2K + 1

K∑
k=−K

ei(ω−ωj)kΔ

)
. (15.1)

Recall the following identity for the Dirichlet kernel:

K∑
k=−K

eikω =
sin((K + 1

2 )ω)

sin(ω2 )
,

for sin(ω2 ) �= 0. As K → +∞, the inner sum in Equation (15.1) goes to
zero for every ω except ω = ωj . Therefore the limit, as K → +∞, of y(0) is
zero, if ω is not equal to any of the ωj , and equals Aj , if ω = ωj. Therefore,
in theory, at least, we can successfully decompose the digital signal into its
constituent parts and distinguish one frequency component from another,
no matter how close together the two frequencies may be.
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It is important to note that, to achieve the perfect analysis described
above, we require noise-free values x(n) and we need to take K to infinity;
in practice, of course, neither of these conditions is realistic. We consider
next the practical matter of having only finitely many values of x(n); we
leave the noisy case for another chapter.

15.5.2 The Finite-Data Problem

In reality we have only finitely many values of x(n), say for n =
−N, ..., N . In matched filtering we can only take K ≤ N . For the choice of
K = N , we get

y(0) =
J∑
j=1

Aj

(
1

2N + 1

N∑
k=−N

ei(ω−ωj)kΔ

)
,

for each fixed ω different from the ωj, and y(0) = Aj for ω = ωj . We can
then write

y(0) =
J∑
j=1

Aj

(
1

2N + 1

sin((ω − ωj)(N + 1
2 )Δ)

sin((ω − ωj)(
Δ
2 ))

)
,

for ω not equal to ωj . The problem we face for finite data is that the y(0)
is not necessarily zero when ω is not one of the ωj .

In our earlier discussion of signal analysis it was shown that, if we are
willing to make a simplifying assumption, we can continue as in the infinite-
data case. The simplifying assumption is that the ωj we seek are J of the
2N +1 frequencies equally spaced in the interval (− π

Δ ,
π
Δ ), beginning with

α1 = − π
Δ + 2π

(2N+1)Δ and ending with α2N+1 = π
Δ . Therefore,

αm = − π

Δ
+

2πm

(2N + 1)Δ
,

for m = 1, ..., 2N + 1.
Having made this simplifying assumption, we then design the matched

filters corresponding to the frequencies αn, for n = 1, ..., 2N + 1. Because

N∑
k=−N

ei(αm−αn)kΔ =

N∑
k=−N

e2πi
m−n
2N+1k

=
sin(2π m−n

2N+1 (N + 1
2 ))

sin(π m−n
2N+1 )

,

it follows that
N∑

k=−N
ei(αm−αn)kΔ = 0,
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for m �= n and it is equal to 2N + 1 when m = n. We conclude that,
provided the frequencies we seek are among the αm, we can determine J
and the ωj . Once we have these pieces of information, we find the Aj simply
by solving a system of linear equations.

15.6 Frames

Although in practice we deal with finitely many measurements or in-
ner product values, it is convenient, in theoretical discussions, to imagine
that the signal f(t) has been associated with an infinite sequence of in-
ner products {〈f, gn〉 , n = 1, 2, ...}. It is also convenient to assume that
||f ||2 =

∫∞
−∞ |f(t)|2dt < +∞; that is, we assume that f is in the Hilbert

space H = L2. The sequence {gn|n = 1, 2, ...} in any Hilbert space H is
called a frame for H if there are positive constants A ≤ B such that, for
all f in H ,

A||f ||2 ≤
∞∑
n=1

|〈f, gn〉|2 ≤ B||f ||2. (15.2)

The inequalities in (15.2) define the frame property. A frame is said to be
tight if A = B.

To motivate this definition, suppose that f = g − h. If g and h are
nearly equal, then f is near zero, so that ||f ||2 is near zero. Consequently,
the numbers |〈f, gn〉|2 are all small, meaning that 〈g, gn〉 is nearly equal to
〈h, gn〉 for each n. Conversely, if 〈g, gn〉 is nearly equal to 〈h, gn〉 for each
n, then the numbers |〈f, gn〉|2 are all small. Therefore, ||f ||2 is small, from
which we conclude that g is close to h. The analysis operator is the one
that takes us from f to the sequence {〈f, gn〉}, while the synthesis operator
takes us from the sequence {〈f, gn〉} to f . This discussion of frames and
related notions is based on the treatment in Christensen’s book [54].

In the case of a finite-dimensional Hilbert space H , any finite set
{gn, n = 1, ..., N} is a frame for the space H of all f that are linear com-
binations of the gn.

Ex. 15.1 An interesting example of a frame in H = R2 is the so-
called Mercedes frame: let g1 = (0, 1), g2 = (−√

3/2,−1/2) and g3 =
(
√
3/2,−1/2). Show that for this frame A = B = 3/2, so the Mercedes

frame is tight.

Ex. 15.2 Let W = U ∪ V be the union of two orthonormal bases for CN ,
U and V . Show that W is a tight frame with A = B = 2.
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For example, consider U = {u1, u2, ..., uN} the usual orthonormal basis
for CN , where all the entries of un are zero, except that unn = 1, and
V = {v1, v2, ..., vN} the Fourier basis, with the mth entry of vn given by

vnm =
1√
N
e2πimn/N .

This particular frame is used often in compressed sensing and compressed
sampling, as discussed in Chapter 22.

The JPEG method for compressing images uses a similar frame that is
the union of a discrete cosine basis and a discrete wavelet basis. The idea is
that most images that we wish to compress can be represented as a linear
combination of relatively few discrete cosine vectors and wavelet vectors.

The frame property in (15.2) provides a necessary condition for stable
application of the decomposition and reconstruction operators. But it does
more than that; it actually provides a reconstruction algorithm. The frame
operator S is given by

Sf =

∞∑
n=1

〈f, gn〉 gn.

The frame property implies that the frame operator is invertible. The dual
frame is the sequence {S−1gn, n = 1, 2, ...}.
Ex. 15.3 Use the definitions of the frame operator S and the dual frame
to obtain the following reconstruction formulas:

f =

∞∑
n=1

〈f, gn〉S−1gn;

and

f =

∞∑
n=1

〈f, S−1gn〉 gn.

If the frame is tight, then the dual frame is { 1
Agn, n = 1, 2, ...}; if the frame

is not tight, inversion of the frame operator is done only approximately.

15.7 Bases, Riesz Bases, and Orthonormal Bases

A set of vectors {gn, n = 1, 2, ...} in H is a basis for H if, for every f in
H , there are unique constants {cn, n = 1, 2, ...} with

f =

∞∑
n=1

cngn.



Analysis and Synthesis 241

A basis is called a Riesz basis if it is also a frame forH . It can be shown that
a frame is a Riesz basis if the removal of any one element causes the loss of
the frame property; since the second inequality in Inequality (15.2) is not
lost, it follows that it is the first inequality that can now be violated for
some f . A basis {gn|n = 1, 2, ...} is an orthonormal basis for H if ||gn|| = 1
for all n and 〈gn, gm〉 = 0 for distinct m and n.

We know that the complex exponentials{
en(t) =

1√
2π
eint, −∞ < n <∞

}
form an orthonormal basis for the Hilbert space L2(−π, π) consisting of
all f supported on (−π, π) with ∫ π−π |f(t)|2dt < +∞. Every such f can be
written as

f(t) =
1√
2π

+∞∑
n=−∞

ane
int,

for

an = 〈f, en〉 =
1√
2π

∫ π

−π
f(t)e−intdt.

Consequently, this is true for every f in L2(−π/2, π/2), although the set of
functions {gn} formed by restricting the {en} to the interval (−π/2, π/2) is
no longer a basis forH = L2(−π/2, π/2). It is still a tight frame with A = 1,
but is no longer normalized, since the norm of gn in L2(−π/2, π/2) is 1/√2.
An orthonormal basis can be characterized as any sequence with ||gn|| = 1
for all n that is a tight frame with A = 1. The sequence {√2g2k, k =
−∞, ...,∞} is an orthonormal basis for L2(−π/2, π/2), as is the sequence
{√2g2k+1, k = −∞, ...,∞}. The sequence {〈f, gn〉 , n = −∞, ...,∞} is re-
dundant; the half corresponding either to the odd n or to the even n suffices
to recover f . Because of this redundancy we can tolerate more inaccuracy
in measuring these values; indeed, this is one of the main attractions of
frames in signal processing.

15.8 Radar Problems

In radar a real-valued function ψ(t) representing a time-varying voltage
is converted by an antenna in transmission mode into a propagating elec-
tromagnetic wave. When this wave encounters a reflecting target an echo
is produced. The antenna, now in receiving mode, picks up the echo f(t),
which is related to the original signal by

f(t) = Aψ(t− d(t)),
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where d(t) is the time required for the original signal to make the round trip
from the antenna to the target and return back at time t. The amplitude A
incorporates the reflectivity of the target as well as attenuation suffered by
the signal. As we shall see shortly, the delay d(t) depends on the distance
from the antenna to the target and, if the target is moving, on its radial
velocity. The main signal-processing problem here is to determine target
range and radial velocity from knowledge of f(t) and ψ(t).

If the target is stationary, at a distance r0 from the antenna, then
d(t) = 2r0/c, where c is the speed of light. In this case the original signal
and the received echo are related simply by

f(t) = Aψ(t− b),

for b = 2r0/c. When the target is moving so that its distance to the an-
tenna, r(t), is time-dependent, the relationship between f and ψ is more
complicated.

Ex. 15.4 Suppose the target is at a distance r0 > 0 from the antenna at
time t = 0, and has radial velocity v, with v > 0 indicating away from the
antenna. Show that the delay function d(t) is now

d(t) = 2
r0 + vt

c+ v

and f(t) is related to ψ(t) according to

f(t) = Aψ

(
t− b

a

)
, (15.3)

for

a =
c+ v

c− v

and

b =
2r0
c− v

.

Show also that if we select A = ( c−vc+v )
1/2 then energy is preserved; that is,

||f || = ||ψ||.

Ex. 15.5 Let Ψ(ω) be the Fourier transform of the signal ψ(t). Show that
the Fourier transform of the echo f(t) in Equation (15.3) is then

F (ω) = AaeibωΨ(aω).

The basic problem is to determine a and b, and therefore the range and
radial velocity of the target, from knowledge of f(t) and ψ(t). An obvious
approach is to do a matched filter.
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15.9 The Wideband Cross-Ambiguity Function

Note that the received echo f(t) is related to the original signal by the
operations of rescaling and shifting. We therefore match the received echo
with all the shifted and rescaled versions of the original signal. For each
a > 0 and real b, let

ψa,b(t) = ψ

(
t− b

a

)
.

The wideband cross-ambiguity function (WCAF) is

Wψf)(b, a) =
1√
a

∫ ∞

−∞
f(t)ψa,b(t)dt.

In the ideal case the values of a and b for which the WCAF takes on its
largest absolute value should be the true values of a and b.

More generally, there will be many individual targets or sources of
echoes, each having their own values of a, b, and A. The resulting received
echo function f(t) is a superposition of the individual functions ψa,b(t),
which, for technical reasons, we write as

f(t) =

∫ ∞

−∞

∫ ∞

0

D(b, a)ψa,b(t)
dadb

a2
. (15.4)

We then have the inverse problem of determining D(b, a) from f(t).
Equation (15.4) provides a representation of the echo f(t) as a super-

position of rescaled translates of a single function, namely the original sig-
nal ψ(t). We shall encounter this representation again in our discussion of
wavelets, where the signal ψ(t) is called the mother wavelet and the WCAF
is called the integral wavelet transform. One reason for discussing radar and
ambiguity functions now is to motivate some of the wavelet theory. Our dis-
cussion here follows closely the treatment in [97], where Kaiser emphasizes
the important connections between wavelets and radar ambiguity functions.

As we shall see when we study wavelets in Chapter 16, we can recover
the signal f(t) from the WCAF using the following inversion formula: at
points t where f(t) is continuous we have

f(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
(Wψf)(b, a)ψ

(
t− b

a

)
dadb

a2
,

with

Cψ =

∫ ∞

−∞

|Ψ(ω)|2
|ω| dω
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for Ψ(ω) the Fourier transform of ψ(t). The obvious conjecture is then that
the distribution function D(b, a) is

D(b, a) =
1

Cψ
(Wψf)(b, a).

However, this is not generally the case. Indeed, there is no particular rea-
son why the physically meaningful function D(b, a) must have the form
(Wψg)(b, a) for some function g. So the inverse problem of estimating
D(b, a) from f(t) is more complicated. One approach mentioned in [97]
involves transmitting more than one signal ψ(t) and estimating D(b, a)
from the echoes corresponding to each of the several different transmitted
signals.

15.10 The Narrowband Cross-Ambiguity Function

The real signal ψ(t) with Fourier transform Ψ(ω) is said to be a nar-
rowband signal if there are constants α and γ such that the conjugate-
symmetric function Ψ(ω) is concentrated on α ≤ |ω| ≤ γ and γ−α

γ+α is nearly

equal to zero, which means that α is very much greater than β = γ−α
2 . The

center frequency is ωc =
γ+α
2 .

Ex. 15.6 Let φ = 2ωcv/c. Show that aωc is approximately equal to ωc+φ.

It follows then that, for ω > 0, F (ω), the Fourier transform of the echo
f(t), is approximately AaeibωΨ(ω + φ). Because the Doppler shift affects
positive and negative frequencies differently, it is convenient to construct a
related signal having only positive frequency components.

Let G(ω) = 2F (ω) for ω > 0 and G(ω) = 0 otherwise. Let g(t) be
the inverse Fourier transform of G(ω). Then, the complex-valued function
g(t) is called the analytic signal associated with f(t). The function f(t) is
the real part of g(t); the imaginary part of g(t) is the Hilbert transform of
f(t). Then, the demodulated analytic signal associated with f(t) is h(t) with
Fourier transformH(ω) = G(ω+ωc). Similarly, let γ(t) be the demodulated
analytic signal associated with ψ(t).

Ex. 15.7 Show that the demodulated analytic signals h(t) and γ(t) are
related by

h(t) = Beiφtγ(t− b) = Bγφ,b(t),
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for B a time-independent constant. Hint: Use the fact that Ψ(ω) = 0 for
0 ≤ ω < α and φ < α.

To determine the range and radial velocity in the narrowband case
we again use the matched filter, forming the narrowband cross-ambiguity
function (NCAF)

Nh(φ, b) = 〈h, γφ,b〉 =

∫ ∞

−∞
h(t)e−iφtγ(t− b)dt.

Ideally, the values of φ and b corresponding to the largest absolute value of
Nh(φ, b) will be the true ones, from which the range and radial velocity can
be determined. For each fixed value of b, the NCAF is the Fourier transform
of the function h(t)γ(t− b), evaluated at ω = −φ; so the NCAF contains
complete information about the function h(t). In Chapter 16 on wavelets
we shall consider the NCAF in a different light, with γ playing the role of a
window function and the NCAF the short-time Fourier transform of h(t),
describing the frequency content of h(t) near the time b.

In the more general case in which the narrowband echo function f(t) is
a superposition of narrowband reflections,

f(t) =

∫ ∞

−∞

∫ ∞

0

D(b, a)ψa,b(t)
dadb

a2
,

we have

h(t) =

∫ ∞

−∞

∫ ∞

0

DNB(b, φ)e
iφtγ(t− b)dφdb,

where DNB(b, φ) is the narrowband distribution of reflecting target points,
as a function of b and φ = 2ωcv/c. The inverse problem now is to estimate
this distribution, given h(t).

15.11 Range Estimation

If the transmitted signal is ψ(t) = eiωt and the target is stationary
at range r, then the echo received is f(t) = Aeiω(t−b), where b = 2r/c.
So our information about r is that we know the value e2iωr/c. Because
of the periodicity of the complex exponential function, this is not enough
information to determine r; we need e2iωr/c for a variety of values of ω. To
obtain these values we can transmit a signal whose frequency changes with
time, such as a chirp of the form

ψ(t) = eiωt
2

with the frequency 2ωt at time t.
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15.12 Time-Frequency Analysis

The inverse Fourier transform formula

f(t) =
1

2π

∫ ∞

−∞
F (ω)e−iωtdω

provides a representation of the function of time f(t) as a superposition of
sinusoids e−iωt with frequencies ω. The value at ω of the Fourier transform

F (ω) =

∫ ∞

−∞
f(t)eiωtdt

is the complex amplitude associated with the sinusoidal component e−iωt.
It quantifies the contribution to f(t) made by that sinusoid, over all of t. To
determine each individual number F (ω) we need f(t) for all t. It is implicit
that the frequency content has not changed over time.

15.13 The Short-Time Fourier Transform

To estimate the frequency content of the signal f(t) around the time
t = b, we could proceed as follows. Multiply f(t) by the function that is
equal to 1

2ε on the interval [b− ε, b+ ε] and zero otherwise. Then take the
Fourier transform. The multiplication step is called windowing.

To see how well this works, consider the case in which f(t) = exp(−iω0t)
for all t. The Fourier transform of the windowed signal is then

exp(i(ω − ω0)b)
sin(ε(ω − ω0))

ε(ω − ω0)
.

This function attains its maximum value of one at ω = ω0. But, the first
zeros of the function are at |ω − ω0| = π

ε , which says that as ε gets smaller
the windowed Fourier transform spreads out more and more around ω =
ω0; that is, better time localization comes at the price of worse frequency
localization. To achieve a somewhat better result we can change the window
function.

The standard normal (or Gaussian) curve is

g(t) =
1√
2π

exp

(
−1

2
t2
)
,
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which has its peak at t = 0 and falls off to zero symmetrically on either
side. For σ > 0, let

gσ(t) =
1

σ
g(t/σ).

Then the function gσ(t− b) is centered at t = b and falls off on either side,
more slowly for large σ, faster for smaller σ. Also we have∫ ∞

−∞
gσ(t− b)dt = 1

for each b and σ > 0. Such functions were used by Gabor [79] for windowing
signals and are called Gabor windows.

Gabor’s idea was to multiply f(t), the signal of interest, by the window
gσ(t− b) and then to take the Fourier transform, obtaining the short-time
Fourier transform (STFT)

Gσb (ω) =

∫ ∞

−∞
f(t)gσ(t− b)eiωtdt.

Since gσ(t − b) falls off to zero on either side of t = b, multiplying by
this window essentially restricts the signal to a neighborhood of t = b.
The STFT then measures the frequency content of the signal, near the
time t = b. The STFT therefore performs a time-frequency analysis of the
signal.

We focus more tightly around the time t = b by choosing a small value
for σ. Because of the uncertainty principle, the Fourier transform of the
window gσ(t− b) grows wider as σ gets smaller; the time-frequency window
remains constant [55]. This causes the STFT to involve greater blurring
in the frequency domain. In short, to get good resolution in frequency, we
need to observe for a longer time; if we focus on a small time interval, we
pay the price of reduced frequency resolution. This is unfortunate because
when we focus on a short interval of time, it is to uncover a part of the signal
that is changing within that short interval, which means it must have high
frequency components within that interval. There is no reason to believe
that the spacing is larger between those high frequencies we wish to resolve
than between lower frequencies associated with longer time intervals. We
would like to have the same resolving capability when focusing on a short
time interval that we have when focusing on a longer one.

15.14 The Wigner–Ville Distribution

In [118] Meyer describes Ville’s approach to determining the instanta-
neous power spectrum of the signal, that is, the energy in the signal f(t)
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that corresponds to time t and frequency ω. The goal is to find a function
Wf (t, ω) having the properties∫

Wf (t, ω)dω/2π = |f(t)|2,

which is the total energy in the signal at time t, and∫
Wf (t, ω)dt = |F (ω)|2,

which is the total energy in the Fourier transform at frequency ω. Because
these two properties do not specify a unique Wf (t, ω), two additional prop-
erties are usually required:∫ ∫

Wf (t, ω)Wg(t, ω)dtdω/2π =
∣∣∣ ∫ f(t)g(t)dt

∣∣∣2
and, for f(t) = gσ(t− b) exp(iαt),

Wf (t, ω) = 2 exp(−σ−2(t− b)2) exp(−σ2(ω − α)2).

The Wigner–Ville distribution of f(t), given by

WVf (t, ω) =

∫ ∞

−∞
f
(
t+

τ

2

)
f
(
t− τ

2

)
exp(−iωτ)dτ,

has all four of the desired properties. The Wigner–Ville distribution is
always real-valued, but its values need not be nonnegative.

In [65] De Bruijn defines the score of a signal f(t) to be H(x, y; f, f),
where

H(x, y; f1, f2) = 2

∫ ∞

−∞
f1(x+ t)f2(x− t)e−4πiytdt.

Ex. 15.8 Relate the narrowband cross-ambiguity function to the De
Bruijn’s score and the Wigner–Ville distribution.
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16.1 Chapter Summary

In this chapter we present an overview of the theory of wavelets, with
particular emphasis on their use in signal processing..

16.2 Background

The fantastic increase in computer power over the last few decades
has made possible, even routine, the use of digital procedures for solving
problems that were believed earlier to be intractable, such as the modeling
of large-scale systems. At the same time, it has created new applications
unimagined previously, such as medical imaging. In some cases the math-
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ematical formulation of the problem is known and progress has come with
the introduction of efficient computational algorithms, as with the Fast
Fourier Transform. In other cases, the mathematics is developed, or per-
haps rediscovered, as needed by the people involved in the applications.
Only later is it realized that the theory already existed, as with the de-
velopment of computerized tomography without Radon’s earlier work on
reconstruction of functions from their line integrals.

It can happen that applications give a theoretical field of mathematics
a rebirth; such seems to be the case with wavelets [95]. Sometime in the
1980s researchers working on various problems in electrical engineering,
quantum mechanics, image processing, and other areas became aware that
what the others were doing was related to their own work. As connections
became established, similarities with the earlier mathematical theory of
approximation in functional analysis were noticed. Meetings began to take
place, and a common language began to emerge around this reborn area,
now called wavelets. One of the most significant meetings took place in June
of 1990, at the University of Massachusetts Lowell. The keynote speaker
was Ingrid Daubechies; the lectures she gave that week were subsequently
published in the book [64].

There are a number of good books on wavelets, such as [97], [11], and
[159]. A recent issue of the IEEE Signal Processing Magazine has an inter-
esting article on using wavelet analysis of paintings for artist identification
[96].

Fourier analysis and synthesis concerns the decomposition, filtering,
compressing, and reconstruction of signals using complex exponential func-
tions as the building blocks; wavelet theory provides a framework in which
other building blocks, better suited to the problem at hand, can be used. As
always, efficient algorithms provide the bridge between theory and practice.

Since their development in the 1980s wavelets have been used for many
purposes. In the discussion to follow, we focus on the problem of analyzing a
signal whose frequency composition is changing over time. As we saw in our
discussion of the narrowband cross-ambiguity function in radar, the need
for such time-frequency analysis has been known for quite a while. Other
methods, such as Gabor’s short time Fourier transform and the Wigner-
Ville distribution, have also been considered for this purpose.

16.3 A Simple Example

Imagine that f(t) is defined for all real t and we have sampled f(t) every
half-second. We focus on the time interval [0, 2). Suppose that f(0) = 1,
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f(0.5) = −3, f(1) = 2 and f(1.5) = 4. We approximate f(t) within the
interval [0, 2) by replacing f(t) with the step function that is 1 on [0, 0.5),
−3 on [0.5, 1), 2 on [1, 1.5), and 4 on [1.5, 2); for notational convenience, we
represent this step function by (1,−3, 2, 4). We can decompose (1,−3, 2, 4)
into a sum of step functions

(1,−3, 2, 4) = 1(1, 1, 1, 1)− 2(1, 1,−1,−1)+ 2(1,−1, 0, 0)− 1(0, 0, 1,−1).

The first basis element, (1, 1, 1, 1), does not vary over a two-second interval.
The second one, (1, 1,−1,−1), is orthogonal to the first, and does not vary
over a one-second interval. The other two, both orthogonal to the previous
two and to each other, vary over half-second intervals. We can think of these
basis functions as corresponding to different frequency components and
time locations; that is, they are giving us a time-frequency decomposition.

Suppose we let φ0(t) be the function that has the value 1 on the interval
[0, 1) and zero elsewhere, and ψ0(t) the function that has the value 1 on the
interval [0, 0.5), the value −1 on the interval [0.5, 1), and zero elsewhere.
Then we say that

φ0(t) = (1, 1, 0, 0),

and
ψ0(t) = (1,−1, 0, 0).

We write

φ−1(t) = (1, 1, 1, 1) = φ0(0.5t) = φ0(2
−1t),

ψ0(t− 1) = (0, 0, 1,−1),

and
ψ−1(t) = (1, 1,−1,−1) = ψ0(0.5t) = ψ0(2

−1t).

So we have the decomposition of (1,−3, 2, 4) as

(1,−3, 2, 4) = 1φ−1(t)− 2ψ−1(t) + 2ψ0(t)− 1ψ0(t− 1).

In what follows we shall be interested in extending these ideas, to find other
functions φ0(t) and ψ0(t) that lead to bases consisting of functions of the
form

ψj,k(t) = ψ0(2
jt− k).

These will be our wavelet bases.
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16.4 The Integral Wavelet Transform

For real numbers b and a �= 0, the integral wavelet transform (IWT) of
the signal f(t) relative to the basic wavelet (or mother wavelet) ψ(t) is

(Wψf)(b, a) = |a|− 1
2

∫ ∞

−∞
f(t)ψ

(
t− b

a

)
dt.

This function is also the wideband cross-ambiguity function in radar. The
function ψ(t) is also called a window function and, like Gaussian functions,
it will be relatively localized in time. However, it must also have properties
quite different from those of Gabor’s Gaussian windows; in particular, we
want ∫ ∞

−∞
ψ(t)dt = 0.

An example is the Haar wavelet ψHaar(t) that has the value +1 for 0 ≤
t < 1

2 , −1 for 1
2 ≤ t < 1, and 0 otherwise.

As the scaling parameter a grows larger the wavelet ψ(t) grows wider,
so choosing a small value of the scaling parameter permits us to focus on a
neighborhood of the time t = b. The IWT then registers the contribution
to f(t) made by components with features on the scale determined by
a, in the neighborhood of t = b. Calculations involving the uncertainty
principle reveal that the IWT provides a flexible time-frequency window
that narrows when we observe high frequency components and widens for
lower frequencies [55].

Given the integral wavelet transform (Wψf)(b, a), it is natural to ask
how we might recover the signal f(t). The following inversion formula an-
swers that question: at points t where f(t) is continuous we have

f(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
(Wψf)(b, a)ψ

(
t− b

a

)
da

a2
db,

with

Cψ =

∫ ∞

−∞

|Ψ(ω)|2
|ω| dω

for Ψ(ω), the Fourier transform of ψ(t).

16.5 Wavelet Series Expansions

The Fourier series expansion of a function f(t) on a finite interval is
a representation of f(t) as a sum of orthogonal complex exponentials. Lo-
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calized alterations in f(t) affect every one of the components of this sum.
Wavelets, on the other hand, can be used to represent f(t) so that local-
ized alterations in f(t) affect only a few of the components of the wavelet
expansion. The simplest example of a wavelet expansion is with respect to
the Haar wavelets.

Ex. 16.1 Let w(t) = ψHaar(t). Show that the functions wjk(t) = w(2jt−k)
are mutually orthogonal on the interval [0, 1], where j = 0, 1, ... and k =
0, 1, ..., 2j − 1.

These functions wjk(t) are the Haar wavelets. Every continuous function
f(t) defined on [0, 1] can be written as

f(t) = c0 +
∞∑
j=0

2j−1∑
k=0

cjkwjk(t)

for some choice of c0 and cjk. Notice that the support of the function wjk(t),
the interval on which it is nonzero, gets smaller as j increases. Therefore,
the components corresponding to higher values of j in the Haar expansion
of f(t) come from features that are localized in the variable t; such features
are transients that live for only a short time. Such transient components
affect all of the Fourier coefficients but only those Haar wavelet coefficients
corresponding to terms supported in the region of the disturbance. This
ability to isolate localized features is the main reason for the popularity of
wavelet expansions.

The orthogonal functions used in the Haar wavelet expansion are them-
selves discontinuous, which presents a bit of a problem when we represent
continuous functions. Wavelets that are themselves continuous, or better
still, differentiable, should do a better job representing smooth functions.

We can obtain other wavelet series expansions by selecting a basic
wavelet ψ(t) and defining ψjk(t) = 2j/2ψ(2jt − k), for integers j and k.
We then say that the function ψ(t) is an orthogonal wavelet if the family
{ψjk} is an orthonormal basis for the space of square-integrable functions
on the real line, the Hilbert space L2(R). This implies that for every such
f(t) there are coefficients cjk so that

f(t) =

∞∑
j=−∞

∞∑
k=−∞

cjkψjk(t),

with convergence in the mean-square sense. The coefficients cjk are found
using the IWT:

cjk = (Wψf)

(
k

2j
,
1

2j

)
.
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It is also of interest to consider wavelets ψ for which {ψjk} form a basis,
but not an orthogonal one, or, more generally, form a frame, in which the
series representations of f(t) need not be unique.

As with Fourier series, wavelet series expansion permits the filtering of
certain components, as well as signal compression. In the case of Fourier
series, we might attribute high frequency components to noise and achieve
a smoothing by setting to zero the coefficients associated with these high
frequencies. In the case of wavelet series expansions, we might attribute to
noise localized small-scale disturbances and remove them by setting to zero
the coefficients corresponding to the appropriate j and k. For both Fourier
and wavelet series expansions we can achieve compression by ignoring those
components whose coefficients are below some chosen level.

16.6 Multiresolution Analysis

One way to study wavelet series expansions is through multiresolution
analysis (MRA) [115]. Let us begin with an example involving band-limited
functions. This example is called the Shannon MRA.

16.6.1 The Shannon Multiresolution Analysis

Let V0 be the collection of functions f(t) whose Fourier transform F (ω)
is zero for |ω| > π; so V0 is the collection of π-band-limited functions.
Let V1 be the collection of functions f(t) whose Fourier transform F (ω) is
zero for |ω| > 2π; so V1 is the collection of 2π-band-limited functions. In
general, for each integer j, let Vj be the collection of functions f(t) whose
Fourier transform F (ω) is zero for |ω| > 2jπ; so Vj is the collection of
2jπ-band-limited functions.

Ex. 16.2 Show that if the function f(t) is in Vj then the function g(t) =
f(2t) is in Vj+1.

We then have a nested sequence of sets of functions {Vj}, with Vj ⊆ Vj+1

for each integer j. The intersection of all the Vj is the set containing only
the zero function. Every function in L2(R) is arbitrarily close to a function
in at least one of the sets Vj ; more mathematically, we say that the union
of the Vj is dense in L2(R). In addition, we have f(t) in Vj if and only if
g(t) = f(2t) is in Vj+1. In general, such a collection of sets of functions
is called a multiresolution analysis for L2(R). Once we have a MRA for
L2(R), how do we get a wavelet series expansion?
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A function φ(t) is called a scaling function or sometimes the father
wavelet for the MRA if the collection of integer translates {φ(t− k)} forms
a basis for V0 (more precisely, a Riesz basis). Then, for each fixed j, the
functions φjk(t) = φ(2jt− k), for integer k, will form a basis for Vj . In the
case of the Shannon MRA, the scaling function is φ(t) = sinπt

πt . But how
do we get a basis for all of L2(R)?

16.6.2 The Haar Multiresolution Analysis

To see how to proceed, it is helpful to return to the Haar wavelets. Let
φHaar(t) be the function that has the value +1 for 0 ≤ t < 1 and zero
elsewhere. Let V0 be the collection of all functions in L2(R) that are linear
combinations of integer translates of φ(t); that is, all functions f(t) that
are constant on intervals of the form [k, k+1), for all integers k. Now V1 is
the collection of all functions g(t) of the form g(t) = f(2t), for some f(t)
in V0. Therefore, V1 consists of all functions in L2(R) that are constant on
intervals of the form [k/2, (k + 1)/2).

Every function in V0 is also in V1 and every function g(t) in V1 can be
written uniquely as a sum of a function f(t) in V0 and a function h(t) in
V1 that is orthogonal to every function in V0. For example, the function
g(t) that takes the value +3 for 0 ≤ t < 1/2, −1 for 1/2 ≤ t < 1, and zero
elsewhere can be written as g(t) = f(t)+h(t), where h(t) has the value +2
for 0 ≤ t < 1/2, −2 for 1/2 ≤ t < 1, and zero elsewhere, and f(t) takes the
value +1 for 0 ≤ t < 1 and zero elsewhere. Clearly, h(t), which is twice the
Haar wavelet function, is orthogonal to all functions in V0.

Ex. 16.3 Show that the function f(t) can be written uniquely as f(t) =
d(t)+e(t), where d(t) is in V−1 and e(t) is in V0 and is orthogonal to every
function in V−1. Relate the function e(t) to the Haar wavelet function.

16.6.3 Wavelets and Multiresolution Analysis

To get an orthogonal wavelet expansion from a general MRA, we write
the set V1 as the direct sum V1 = V0 ⊕W0, so every function g(t) in V1
can be uniquely written as g(t) = f(t) + h(t), where f(t) is a function in
V0 and h(t) is a function in W0, with f(t) and h(t) orthogonal. Since the
scaling function or father wavelet φ(t) is in V1, it can be written as

φ(t) =

∞∑
k=−∞

pkφ(2t− k), (16.1)

for some sequence {pk} called the two-scale sequence for φ(t). This most
important identity is the scaling relation for the father wavelet. The mother
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wavelet is defined using a similar expression

ψ(t) =
∑
k

(−1)kp1−kφ(2t− k). (16.2)

We define

φjk(t) = 2j/2φ(2jt− k) (16.3)

and

ψjk(t) = 2j/2ψ(2jt− k). (16.4)

The collection {ψjk(t), −∞ < j, k <∞} then forms an orthogonal wavelet
basis for L2(R). For the Haar MRA, the two-scale sequence is p0 = p1 = 1
and pk = 0 for the rest.

Ex. 16.4 Show that the two-scale sequence {pk} has the properties

pk = 2

∫
φ(t)φ(2t − k)dt;

∞∑
k=−∞

pk−2mpk = 0,

for m �= 0 and equals 2 when m = 0.

16.7 Signal Processing Using Wavelets

Once we have an orthogonal wavelet basis for L2(R), we can use the
basis to represent and process a signal f(t). Suppose, for example, that f(t)
is band-limited but essentially zero for t not in [0, 1] and we have samples
f( kM ), k = 0, ...,M . We assume that the sampling rate Δ = 1

M is faster
than the Nyquist rate so that the Fourier transform of f(t) is zero outside,
say, the interval [0, 2πM ]. Roughly speaking, the Wj component of f(t),
given by

gj(t) =

2j−1∑
k=0

βjkψjk(t),

with βjk = 〈f(t), ψjk(t)〉, corresponds to the components of f(t) with fre-

quencies ω between 2j−1 and 2j. For 2j > 2πM we have βjk = 0, so
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gj(t) = 0. Let J be the smallest integer greater than log2(2π) + log2(M).
Then, f(t) is in the space VJ and has the expansion

f(t) =

2J−1∑
k=0

αJkφJk(t),

for αJk = 〈f(t), φJk(t)〉. It is common practice, but not universally ap-
proved, to take M = 2J and to estimate the αJk by the samples f( kM ).
Once we have the sequence {αJk}, we can begin the decomposition of f(t)
into components in Vj and Wj for j < J . As we shall see, the algorithms
for the decomposition and subsequent reconstruction of the signal are quite
similar to the FFT.

16.7.1 Decomposition and Reconstruction

The decomposition and reconstruction algorithms both involve the
equation ∑

k

ajkφjk =
∑
m

aj−1
m φ(j−1),m + bj−1

m ψ(j−1),m ; (16.5)

in the decomposition step we know the {ajk} and want the {aj−1
m } and

{bj−1
m }, while in the reconstruction step we know the {aj−1

m } and {bj−1
m }

and want the {ajk}.

Using Equations (16.1) and (16.3), we obtain

φ(j−1),l = 2−1/2
∑
k

pkφj,(k+2l) = 2−1/2
∑
k

pk−2lφjk; (16.6)

using Equations (16.2), (16.3) and (16.4), we get

ψ(j−1),l = 2−1/2
∑
k

(−1)kp1−k+2lφjk. (16.7)

Therefore,

〈φjk , φ(j−1),l〉 = 2−1/2pk−2l; (16.8)

this comes from substituting φ(j−1),l as in Equation (16.6) into the second
term in the inner product. Similarly, we have

〈φjk , ψ(j−1),l〉 = 2−1/2(−1)kp1−k+2l. (16.9)

These relationships are then used to derive the decomposition and recon-
struction algorithms.
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16.7.1.1 The Decomposition Step

To find aj−1
l we take the inner product of both sides of Equation (16.5)

with the function φ(j−1),l. Using Equation (16.8) and the fact that φ(j−1),l

is orthogonal to all the φ(j−1),m except for m = l and is orthogonal to all
the ψ(j−1),m, we obtain

2−1/2
∑
k

ajkpk−2l = aj−1
l ;

similarly, using Equation (16.9), we get

2−1/2
∑
k

ajk(−1)kp1−k+2l = bj−1
l .

The decomposition step is to apply these two equations to get the {aj−1
l }

and {bj−1
l } from the {ajk}.

16.7.1.2 The Reconstruction Step

Now we use Equations (16.6) and (16.7) to substitute into the right
hand side of Equation (16.5). Combining terms, we get

ajk = 2−1/2
∑
l

aj−1
l pk−2l + bj−1

l (−1)kp1−k+2l.

This takes us from the {aj−1
l } and {bj−1

l } to the {ajk}.
We have assumed that we have already obtained the scaling function

φ(t) with the property that {φ(t − k)} is an orthogonal basis for V0. But
how do we actually obtain such functions?

16.8 Generating the Scaling Function

The scaling function φ(t) is generated from the two-scale sequence {pk}
using the following iterative procedure. Start with φ0(t) = φHaar(t), the
Haar scaling function that is 1 on [0, 1] and 0 elsewhere. Now, for each
n = 1, 2, ..., define

φn(t) =

∞∑
k=−∞

pkφn−1(2t− k).

Provided that the sequence {pk} has certain properties to be discussed
below, this sequence of functions converges and the limit is the desired
scaling function.
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The properties of {pk} that are needed can be expressed in terms of
properties of the function

P (z) =
1

2

∞∑
k=−∞

pkz
k.

For the Haar MRA, this function is P (z) = 1
2 (1 + z). We require that

1. P (1) = 1,

2. |P (eiθ)|2 + |P (ei(θ+π))|2 = 1, for 0 ≤ θ ≤ π, and

3. |P (eiθ)| > 0 for −π
2 ≤ θ ≤ π

2 .

16.9 Generating the Two-Scale Sequence

The final piece of the puzzle is the generation of the sequence {pk} itself,
or, equivalently, finding a function P (z) with the properties listed above.
The following example, also used in [11], illustrates Ingrid Daubechies’
method [63].

We begin with the identity

cos2
θ

2
+ sin2

θ

2
= 1

and then raise both sides to an odd power n = 2N − 1. Here we use N = 2,
obtaining

1 = cos6
θ

2
+ 3 cos4

θ

2
sin2

θ

2
+ cos6

(θ + π)

2
+ 3 cos4

(θ + π)

2
sin2

(θ + π)

2
.

We then let

|P (eiθ)|2 = cos6
θ

2
+ 3 cos4

θ

2
sin2

θ

2
,

so that
|P (eiθ)|2 + |P (ei(θ+π))|2 = 1

for 0 ≤ θ ≤ π. Now we have to find P (eiθ). Writing

|P (eiθ)|2 = cos4
θ

2

(
cos2

θ

2
+ 3 sin2

θ

2

)
,

we have

P (eiθ) = cos2
θ

2

(
cos

θ

2
+
√
3i sin

θ

2

)
eiα(θ),
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where the real function α(θ) is arbitrary. Selecting α(θ) = 3 θ2 , we get

P (eiθ) = p0 + p1e
iθ + p2e

2iθ + p3e
3iθ,

for

p0 =
1 +

√
3

4
,

p1 =
3 +

√
3

4
,

p2 =
3−√

3

4
,

p3 =
1−√

3

4
,

and all the other coefficients are zero. The resulting Daubechies’ wavelet is
compactly supported and continuous, but not differentiable [11, 63]. Figure
16.1 shows the scaling function and mother wavelet for N = 2. When larger
values of N are used, the resulting wavelet, often denoted ψN (t), which is
again compactly supported, has approximately N/5 continuous derivatives.

These notions extend to nonorthogonal wavelet bases and to frames.
Algorithms similar to the fast Fourier transform provide the wavelet de-
composition and reconstruction of signals. The recent text by Boggess and
Narcowich [11] is a nice introduction to this fast-growing area; the more
advanced book by Chui [55] is also a good source. Wavelets in the context
of Riesz bases and frames are discussed in Christensen’s book [54]. Appli-
cations of wavelets to medical imaging are found in [127], as well as in the
other papers in that special issue.

16.10 Wavelets and Filter Banks

In [152] Strang and Nguyen take a somewhat different approach to
wavelets, emphasizing the role of filters and matrices. To illustrate one of
their main points, we consider the two-point moving average filter.

The two-point moving average filter transforms an input sequence x =
{x(n)} to output y = {y(n)}, with y(n) = 1

2x(n) +
1
2x(n − 1). The filter

h = {h(k)} has h(0) = h(1) = 1
2 and all the remaining h(n) are zero. This

filter is a finite impulse response (FIR) low-pass filter and is not invertible;
the input sequence with x(n) = (−1)n has output zero. Similarly, the two-
point moving difference filter g = {g(k)}, with g(0) = 1

2 , g(1) = − 1
2 , and

the rest zero, is a FIR high-pass filter, also not invertible. However, if we
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FIGURE 16.1: Daubechies’ scaling function and mother wavelet for N =
2.

perform these filters in parallel, as a filter bank, no information is lost and
the input can be completely reconstructed, with a unit delay. In addition,
the outputs of the two filters contain redundancy that can be removed by
decimation, which is taken here to mean downsampling, that is, throwing
away every other term of a sequence.

The authors treat the more general problem of obtaining perfect recon-
struction of the input from the output of a filter bank of low- and high-pass
filters followed by downsampling. The properties that must be required of
the filters are those we encountered earlier with regard to the two-scale se-
quences for the father and mother wavelets. When the filter operations are
construed as matrix multiplications, the decomposition and reconstruction
algorithms become matrix factorizations.
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16.11 Using Wavelets

We consider the Daubechies mother wavelet ψN (t), for N = 1, 2, ..., and
n = 2N−1. The two-scale sequence {pk} then has nonzero terms p0, ..., pn.
For example, when N = 1, we get the Haar wavelet, with p0 = p1 = 1/2,
and all the other pk = 0.

The wavelet signal analysis usually begins by sampling the signal f(t)
closely enough so that we can approximate the aj+1

k by the samples
f(k/2j+1).

An important aspect of the Daubechies wavelets is the vanishing of
moments. For k = 0, 1, ..., N − 1 we have∫

tkψN (t)dt = 0;

for the Haar case we have only that
∫
ψ1(t)dt = 0. We consider now the

significance of vanishing moments for detection.
For an arbitrary signal f(t) the wavelet coefficients bjk are given by

bjk =

∫
f(t)2j/2ψN (2jt− k)dt.

We focus on N = 2.
The function ψ2(2

jt− k) is supported on the interval [k/2j, (k+ 3)/2j]
so we have

bjk =

∫ 3/2j

0

f(t+ k/2j)ψ2(2
jt)dt.

If f(t) is smooth near t = k/2j, and j is large enough, then

f(t+ k/2j) = f(k/2j) + f ′(k/2j)t+
1

2!
f ′′(k/2j)t2 + · · ·,

and so

bjk � 2j/2

(
f(k/2j)

∫ 3/2j

0

ψ2(2
jt)dt

+ f ′(k/2j)
∫ 3/2j

0

tψ2(2
jt)dt+ f ′′(k/2j)

∫ 3/2j

0

t2ψ2(2
jt)dt

)
.

Since ∫
ψ2(t)dt =

∫
tψ2(t)dt = 0
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and ∫
t2ψ2(t)dt � −1

8

√
3

2π
,

we have

bjk � − 1

16

√
3

2π
2−5j/2f ′′(k/2j).

On the other hand, if f(t) is not smooth near t = k/2j, we expect the bjk
to have a larger magnitude.

Example 1 Suppose that f(t) is piecewise linear. Then f ′′(t) = 0, except
at the places where the lines meet. So we expect the bjk to be zero, except
at the nodes.

Example 2 Let f(t) = t(1− t), for t ∈ [0, 1], and zero elsewhere. We might
begin with the sample values f(k/27) and then consider b6k. Again using
N = 2, we find that b6k � f ′′(k/26) = 2, independent of k, except near the
endpoints t = 0 and t = 1. The discontinuity of f ′(t) at the ends will make
the b6k there larger.

Example 3 Now let g(t) = t2(1 − t)2, for t ∈ [0, 1], and zero elsewhere.
The first derivative is continuous at the endpoints t = 0 and t = 1, but the
second derivative is discontinuous there. Using N = 2, we won’t be able to
detect this discontinuity, but using N = 3 we will.

Example 4 Suppose that f(t) = eiωt. Then we have

bjk = 2−j/2eiωk/2
j

ΨN(ω/2
j),

independent of k, where ΨN denotes the Fourier transform of ψN . If we
plot these values for various j, the maximum is reached when

ω/2j = argmaxΨN ,

from which we can find ω.
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17.1 Chapter Summary

In most signal- and image-processing applications the measured data
includes (or may include) a signal component we want and unwanted com-
ponents called noise. Estimation involves determining the precise nature
and strength of the signal component; deciding if that strength is zero or
not is detection.

Noise often appears as an additive term, which we then try to remove.
If we knew precisely the noisy part added to each data value we would
simply subtract it; of course, we never have such information. How then do
we remove something when we don’t know what it is? Statistics provides a
way out.

The basic idea in statistics is to use procedures that perform well on
average, when applied to a class of problems. The procedures are built
using properties of that class, usually involving probabilistic notions, and
are evaluated by examining how they would have performed had they been
applied to every problem in the class. To use such methods to remove
additive noise, we need a description of the class of noises we expect to
encounter, not specific values of the noise component in any one particular
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instance. We also need some idea about what signal components look like.
In this chapter we discuss solving this noise removal problem using the best
linear unbiased estimation (BLUE). We begin with the simplest case and
then proceed to discuss increasingly complex scenarios.

An important application of the BLUE is in Kalman filtering. The con-
nection between the BLUE and Kalman filtering is best understood by
considering the case of the BLUE with a prior estimate of the signal com-
ponent, and mastering the various matrix manipulations that are involved
in this problem. These calculations then carry over, almost unchanged, to
the Kalman filtering.

Kalman filtering is usually presented in the context of estimating a
sequence of vectors evolving in time. Kalman filtering for image processing
is derived by analogy with the temporal case, with certain parts of the
image considered to be in the “past” of a fixed pixel.

17.2 The Simplest Case

Suppose our data is zj = c+ vj , for j = 1, ..., J , where c is an unknown
constant to be estimated and the vj are additive noise. We assume that
E(vj) = 0, E(vjvk) = 0 for j �= k, and E(‖vj‖2) = σ2

j . So, the additive
noises are assumed to have mean zero and to be independent (or at least
uncorrelated). In order to estimate c, we adopt the following rules:

1. The estimate ĉ is linear in the data z = (z1, ..., zJ)
T ; that is, ĉ = k†z,

for some vector k = (k1, ..., kJ)
T .

2. The estimate is unbiased; E(ĉ) = c. This means
∑J

j=1 kj = 1.

3. The estimate is best in the sense that it minimizes the expected error
squared; that is, E(|ĉ− c|2) is minimized.

Ex. 17.1 Show that the resulting vector k is

ki = σ−2
i /

⎛
⎝ J∑
j=1

σ−2
j

⎞
⎠ ,

and the BLUE estimator of c is then

ĉ =

J∑
i=1

ziσ
−2
i /

⎛
⎝ J∑
j=1

σ−2
j

⎞
⎠ .
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Ex. 17.2 Suppose we have data z1 = c+v1 and z2 = c+v2 and we want to
estimate the constant c. Assume that E(v1) = E(v2) = 0 and E(v1v2) = ρ,
with 0 < |ρ| < 1. Find the BLUE estimate of c.

Ex. 17.3 The concentration of a substance in solution decreases exponen-
tially during an experiment. Noisy measurements of the concentration are
made at times t1 and t2, giving the data

zi = x0e
−ti + vi, i = 1, 2,

where the vi have mean zero, and are uncorrelated. Find the BLUE for the
initial concentration x0.

17.3 A More General Case

Suppose now that our data vector is z = Hx+v. Here, x is an unknown
vector whose value is to be estimated. The random vector v is additive noise
whose mean is E(v) = 0 and whose known covariance matrix Q = E(vv†)
is invertible and not necessarily diagonal. The known matrix H is J by N ,
with J > N . We seek an estimate of the vector x, using the following rules:

1. The estimate x̂ must have the form x̂ = K†z, where the matrix K is
to be determined.

2. The estimate is unbiased; that is, E(x̂) = x.

3. The K is determined as the minimizer of the expected squared error;
that is, once again we minimize E(‖x̂− x‖2).

Ex. 17.4 Show that for the estimator to be unbiased we need K†H = I,
the identity matrix.

Ex. 17.5 Show that

E(‖x̂− x‖2) = traceK†QK.

Hints: Write the left side as

E(trace ((x̂− x)(x̂ − x)†)).

Also use the fact that the trace and expected-value operations commute.
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The problem then is to minimize trace K†QK subject to the constraint
equation K†H = I. We solve this problem using a technique known as
prewhitening.

Since the noise covariance matrix Q is Hermitian and nonnegative def-
inite, we have Q = UDU †, where the columns of U are the (mutually
orthogonal) eigenvectors of Q and D is a diagonal matrix whose diago-
nal entries are the (necessarily nonnegative) eigenvalues of Q; therefore,
U †U = I. We call C = UD1/2U † the Hermitian square root of Q, since
C† = C and C2 = Q. We assume that Q is invertible, so that C is also.
Given the system of equations

z = Hx+ v,

as before, we obtain a new system

y = Gx +w

by multiplying both sides by C−1 = Q−1/2; here, G = C−1H and w =
C−1v. The new noise correlation matrix is

E(ww†) = C−1QC−1 = I,

so the new noise is white. For this reason the step of multiplying by C−1

is called prewhitening.
With J = CK and M = C−1H , we have

K†QK = J†J

and
K†H = J†M.

Our problem then is to minimize trace J†J , subject to J†M = I. Recall
that the trace of the matrix A†A is simply the square of the 2-norm of the
vectorization of A.

Our solution method is to transform the original problem into a simpler
problem, where the answer is obvious.

First, for any given matrices L and M such that J and ML have the
same dimensions, the minimum value of

f(J) = trace[(J† − L†M †)(J −ML)]

is zero and occurs when J =ML.
Now let L = L† = (M †M)−1. The solution is again J = ML, but now

this choice for J has the additional property that J†M = I. So, minimizing
f(J) is equivalent to minimizing f(J) subject to the constraint J†M = I
and both problems have the solution J =ML.
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Now using J†M = I, we expand f(J) to get

f(J) = trace[J†J − J†ML− L†M †J + L†M †ML]

= trace[J†J − L− L† + L†M †ML].

The only term here that involves the unknown matrix J is the first one.
Therefore, minimizing f(J) subject to J†M = I is equivalent to minimizing
trace J†J subject to J†M = I, which is our original problem. Therefore,
the optimal choice for J is J = ML. Consequently, the optimal choice for
K is

K = Q−1HL = Q−1H(H†Q−1H)−1,

and the BLUE estimate of x is

xBLUE = x̂ = K†z = (H†Q−1H)−1H†Q−1z.

The simplest case can be obtained from this more general formula by taking
N = 1, H = (1, 1, ..., 1)T and x = c.

Note that if the noise is white, that is, Q = σ2I, then x̂ = (H†H)−1H†z,
which is the least-squares solution of the equation z = Hx. The effect of
requiring that the estimate be unbiased is that, in this case, we simply
ignore the presence of the noise and calculate the least-squares solution of
the noise-free equation z = Hx.

The BLUE estimator involves nested inversion, making it difficult to
calculate, especially for large matrices. In the exercise that follows, we
discover an approximation of the BLUE that is easier to calculate.

Ex. 17.6 Show that for ε > 0 we have

(H†Q−1H + εI)−1H†Q−1 = H†(HH† + εQ)−1. (17.1)

Hint: Use the identity

H†Q−1(HH† + εQ) = (H†Q−1H + εI)H†.

It follows from Equation (17.1) that

xBLUE = lim
ε→0

H†(HH† + εQ)−1z.

Therefore, we can get an approximation of the BLUE estimate by selecting
ε > 0 near zero, solving the system of linear equations

(HH† + εQ)a = z

for a and taking x = H†a.
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17.4 Some Useful Matrix Identities

In the exercise that follows we consider several matrix identities that
are useful in developing the Kalman filter.

Ex. 17.7 Establish the following identities, assuming that all the products
and inverses involved are defined:

CDA−1B(C−1 −DA−1B)−1 = (C−1 −DA−1B)−1 − C; (17.2)

(A−BCD)−1 = A−1 +A−1B(C−1 −DA−1B)−1DA−1; (17.3)

A−1B(C−1 −DA−1B)−1 = (A−BCD)−1BC; (17.4)

(A−BCD)−1 = (I +GD)A−1, (17.5)

for
G = A−1B(C−1 −DA−1B)−1.

Hints: To get Equation (17.2) use

C(C−1 −DA−1B) = I − CDA−1B.

For the second identity, multiply both sides of Equation (17.3) on the left
by A−BCD and at the appropriate step use Equation (17.2). For Equation
(17.4) show that

BC(C−1 −DA−1B) = B −BCDA−1B = (A−BCD)A−1B.

For Equation (17.5), substitute what G is and use Equation (17.3).

17.5 The BLUE with a Prior Estimate

In Kalman filtering we want to estimate an unknown vector x given
measurements z = Hx+v, but also given a prior estimate y of x. It is the
case there that E(y) = E(x), so we write y = x+w, with w independent
of both x and v and E(w) = 0. The covariance matrix for w we denote by
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E(ww†) = R. We now require that the estimate x̂ be linear in both z and
y; that is, the estimate has the form

x̂ = C†z+D†y,

for matrices C and D to be determined.
Our approach is to apply the BLUE to the combined system of linear

equations
z = Hx+ v and

y = x+w.

In matrix language this combined system becomes u = Jx+n, with uT =
[zT yT ], JT = [HT IT ], and nT = [vT wT ]. The noise covariance matrix
becomes

P =

[
Q 0
0 R

]
.

The BLUE estimate is K†u, with K†J = I. Minimizing the variance, we
find that the optimal K† is

K† = (J†P−1J)−1J†P−1.

The optimal estimate is then

x̂ = (H†Q−1H +R−1)−1(H†Q−1z+R−1y).

Therefore,
C† = (H†Q−1H +R−1)−1H†Q−1

and
D† = (H†Q−1H +R−1)−1R−1.

Using the matrix identities in Equations (17.3) and (17.4) we can rewrite
this estimate in the more useful form

x̂ = y +G(z−Hy),

for

G = RH†(Q+HRH†)−1. (17.6)

The covariance matrix of the optimal estimator is K†PK, which can be
written as

K†PK = (R−1 +H†Q−1H)−1 = (I −GH)R.

In the context of the Kalman filter, R is the covariance of the prior estimate
of the current state, G is the Kalman gain matrix, and K†PK is the pos-
terior covariance of the current state. The algorithm proceeds recursively
from one state to the next in time.
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17.6 Adaptive BLUE

We have assumed so far that we know the covariance matrix Q corre-
sponding to the measurement noise. If we do not, then we may attempt
to estimate Q from the measurements themselves; such methods are called
noise-adaptive. To illustrate, let the innovations vector be e = z − Hy.
Then the covariance matrix of e is S = HRH† + Q. Having obtained an
estimate Ŝ of S from the data, we use Ŝ−HRH† in place of Q in Equation
(17.6).

17.7 The Kalman Filter

So far in this chapter we have focused on the filtering problem: Given
the data vector z, estimate x, assuming that z consists of noisy measure-
ments ofHx; that is, z = Hx+v. An important extension of this problem is
that of stochastic prediction. Shortly, we discuss the Kalman-filter method
for solving this more general problem. One area in which prediction plays
an important role is the tracking of moving targets, such as ballistic mis-
siles, using radar. The range to the target, its angle of elevation, and its
azimuthal angle are all functions of time governed by linear differential
equations. The state vector of the system at time t might then be a vector
with nine components, the three functions just mentioned, along with their
first and second derivatives. In theory, if we knew the initial state perfectly
and our differential equations model of the physics was perfect, that would
be enough to determine the future states. In practice neither of these is
true, and we need to assist the differential equation by taking radar mea-
surements of the state at various times. The problem then is to estimate
the state at time t using both the measurements taken prior to time t and
the estimate based on the physics.

When such tracking is performed digitally, the functions of time are re-
placed by discrete sequences. Let the state vector at time kΔt be denoted
by xk, for k an integer and Δt > 0. Then, with the derivatives in the dif-
ferential equation approximated by divided differences, the physical model
for the evolution of the system in time becomes

xk = Ak−1xk−1 +mk−1.

The matrix Ak−1, which we assume is known, is obtained from the differen-
tial equation, which may have nonconstant coefficients, as well as from the



The BLUE and the Kalman Filter 273

divided difference approximations to the derivatives. The random vector
sequence mk−1 represents the error in the physical model due to the dis-
cretization and necessary simplification inherent in the original differential
equation itself. We assume that the expected value of mk is zero for each
k. The covariance matrix is E(mkm

†
k) =Mk.

At time kΔt we have the measurements

zk = Hkxk + vk,

where Hk is a known matrix describing the nature of the linear measure-
ments of the state vector and the random vector vk is the noise in these
measurements. We assume that the mean value of vk is zero for each k.
The covariance matrix is E(vkv

†
k) = Qk. We assume that the initial state

vector x0 is arbitrary.
Given an unbiased estimate x̂k−1 of the state vector xk−1, our prior

estimate of xk based solely on the physics is

yk = Ak−1x̂k−1.

Ex. 17.8 Show that E(yk − xk) = 0, so the prior estimate of xk is unbi-
ased. We can then write yk = xk +wk, with E(wk) = 0.

17.8 Kalman Filtering and the BLUE

The Kalman filter [98, 81, 56] is a recursive algorithm to estimate the
state vector xk at time kΔt as a linear combination of the vectors zk and
yk. The estimate x̂k will have the form

x̂k = C†
kzk +D†

kyk,

for matrices Ck and Dk to be determined. As we shall see, this estimate
can also be written as

x̂k = yk +Gk(zk −Hkyk),

which shows that the estimate involves a prior prediction step, the yk,
followed by a correction step, in which Hkyk is compared to the measured
data vector zk; such estimation methods are sometimes called predictor-
corrector methods.

In our discussion of the BLUE, we saw how to incorporate a prior
estimate of the vector to be estimated. The trick was to form a larger
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matrix equation and then to apply the BLUE to that system. The Kalman
filter does just that.

The correction step in the Kalman filter uses the BLUE to solve the
combined linear system

zk = Hkxk + vk

and
yk = xk +wk.

The covariance matrix of x̂k−1 − xk−1 is denoted by Pk−1, and we let
Qk = E(wkw

†
k). The covariance matrix of yk − xk is

cov(yk − xk) = Rk =Mk−1 +Ak−1Pk−1A
†
k−1.

It follows from our earlier discussion of the BLUE that the estimate of xk
is

x̂k = yk +Gk(zk −Hyk),

with
Gk = RkH

†
k(Qk +HkRkH

†
k)

−1.

Then, the covariance matrix of x̂k − xk is

Pk = (I −GkHk)Rk.

The recursive procedure is to go from Pk−1 and Mk−1 to Rk, then to Gk,
from which x̂k is formed, and finally to Pk, which, along with the known
matrix Mk, provides the input to the next step. The time-consuming part
of this recursive algorithm is the matrix inversion in the calculation of Gk.
Simpler versions of the algorithm are based on the assumption that the
matrices Qk are diagonal, or on the convergence of the matrices Gk to a
limiting matrix G [56].

There are many variants of the Kalman filter, corresponding to varia-
tions in the physical model, as well as in the statistical assumptions. The
differential equation may be nonlinear, so that the matrices Ak depend on
xk. The system noise sequence {wk} and the measurement noise sequence
{vk} may be correlated. For computational convenience the various func-
tions that describe the state may be treated separately. The model may
include known external inputs to drive the differential system, as in the
tracking of spacecraft capable of firing booster rockets. Finally, the noise
covariance matrices may not be known a priori and adaptive filtering may
be needed. We discuss this last issue briefly in the next section.
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17.9 Adaptive Kalman Filtering

As in [56] we consider only the case in which the covariance matrix
Qk of the measurement noise vk is unknown. As we saw in the discussion
of adaptive BLUE, the covariance matrix of the innovations vector ek =
zk −Hkyk is

Sk = HkRkH
†
k +Qk.

Once we have an estimate for Sk, we estimate Qk using

Q̂k = Ŝk −HkRkH
†
k.

We might assume that Sk is independent of k and estimate Sk = S using
past and present innovations; for example, we could use

Ŝ =
1

k − 1

k∑
j=1

(zj −Hjyj)(zj −Hjyj)
†.

17.10 Difficulties with the BLUE

As we just saw, the best linear unbiased estimate of x, given the ob-
served vector z = Hx+ v, is

xBLUE = (H†Q−1H)−1H†Q−1z, (17.7)

where Q is the invertible covariance matrix of the mean zero noise vector
v and H is a J by N matrix with J ≥ N and H†H invertible. Even if we
know Q exactly, the double inversion in Equation (17.7) makes it difficult
to calculate the BLUE estimate, especially for large vectors z. It is often
the case in practice that we do not know Q precisely and must estimate or
model it. Because good approximations of Q do not necessarily lead to good
approximations ofQ−1, the calculation of the BLUE is further complicated.
For these reasons one may decide to use the least-squares estimate

xLS = (H†H)−1H†z

instead. We are therefore led to consider when the two estimation methods
produce the same answers; that is, when we have

(H†H)−1H† = (H†Q−1H)−1H†Q−1. (17.8)

We turn now to a theorem that answers this question. The proof of this
theorem relies on the results of several exercises, useful in themselves, that
involve basic facts of linear algebra.
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17.11 Preliminaries from Linear Algebra

We begin with some definitions. Let S be a subspace of finite-
dimensional Euclidean space CJ and Q a J by J Hermitian matrix. We
denote by Q(S) the set

Q(S) = {t|there exists s ∈ S with t = Qs}
and by Q−1(S) the set

Q−1(S) = {u|Qu ∈ S}.
Note that the set Q−1(S) is defined whether or not Q is invertible.

We denote by S⊥ the set of vectors u that are orthogonal to every
member of S; that is,

S⊥ = {u|u†s = 0, for every s ∈ S}.
Let H be a J by N matrix. Then CS(H), the column space of H , is the
subspace of CJ consisting of all the linear combinations of the columns of
H . The null space ofH†, denotedNS(H†), is the subspace of CJ containing
all the vectors w for which H†w = 0.

Ex. 17.9 Show that CS(H)⊥ = NS(H†). Hint: If v ∈ CS(H)⊥, then
v†Hx = 0 for all x, including x = H†v.

Ex. 17.10 Show that CS(H) ∩ NS(H†) = {0}. Hint: If y = Hx ∈
NS(H†) consider ||y||2 = y†y.

Ex. 17.11 Let S be any subspace of CJ . Show that if Q is invertible and
Q(S) = S then Q−1(S) = S. Hint: If Qt = Qs then t = s.

Ex. 17.12 Let Q be Hermitian. Show that Q(S)⊥ = Q−1(S⊥) for every
subspace S. If Q is also invertible then Q−1(S)⊥ = Q(S⊥). Find an example
of a non-invertible Q for which Q−1(S)⊥ and Q(S⊥) are different.

We assume that Q is Hermitian and invertible and that the matrixH†H
is invertible. Note that the matrix H†Q−1H need not be invertible under
these assumptions. We shall denote by S an arbitrary subspace of CJ .

Ex. 17.13 Show that Q(S) = S if and only if Q(S⊥) = S⊥. Hint: Use
Exercise 17.12.

Ex. 17.14 Show that if Q(CS(H)) = CS(H) then H†Q−1H is invertible.
Hint: Show that H†Q−1Hx = 0 if and only if x = 0. Recall that Q−1Hx ∈
CS(H), by Exercise 17.12. Then use Exercise 17.10.
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17.12 When Are the BLUE and the LS Estimator the
Same?

We are looking for conditions on Q and H that imply Equation (17.8),
which we rewrite as

H† = (H†Q−1H)(H†H)−1H†Q (17.9)

or
H†Tx = 0

for all x, where
T = I −Q−1H(H†H)−1H†Q.

In other words, we want Tx ∈ NS(H†) for all x. The theorem is the
following:

Theorem 17.1 We have Tx ∈ NS(H†) for all x if and only if we have
Q(CS(H)) = CS(H).

An equivalent form of this theorem was proven by Anderson in [1]; he
attributes a portion of the proof to Magness and McQuire [114]. The proof
we give here is due to Kheifets [100] and is much simpler than Anderson’s
proof. The proof of the theorem is simplified somewhat by first establishing
the result in the next exercise.

Ex. 17.15 Show that if Equation (17.9) holds, then the matrix H†Q−1H
is invertible. Hint: Recall that we have assumed that CS(H†) = CJ when
we assumed that H†H is invertible. From Equation (17.9) it follows that
CS(H†Q−1H) = CJ .

A Proof of Theorem 17.1: Assume first that Q(CS(H)) = CS(H),
which, as we now know, also implies Q(NS(H†)) = NS(H†), as well as
Q−1(CS(H)) = CS(H), Q−1(NS(H†)) = NS(H†), and the invertibility
of the matrix H†Q−1H . Every x ∈ CJ has the form x = Ha+w, for some
a and w ∈ NS(H†). We show that Tx = w, so that Tx ∈ NS(H†) for all
x. We have

Tx = THa+ Tw =

x−Q−1H(H†H)−1H†QHa−Q−1H(H†H)−1H†Qw.

We know that QHa = Hb for some b, so that Ha = Q−1Hb. We also
know that Qw = v ∈ NS(H†), so that w = Q−1v. Then, continuing our
calculations, we have

Tx = x−Q−1Hb− 0 = x−Ha = w,

so Tx ∈ NS(H†).
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Conversely, suppose now that Tx ∈ NS(H†) for all x, which, as we
have seen, is equivalent to Equation (17.9). We show that Q−1(NS(H†) =
NS(H†). First, let v ∈ Q−1(NS(H†)); we show v ∈ NS(H†). We have

H†v = (H†Q−1H)(H†H)−1H†Qv,

which is zero, since H†Qv = 0. So, we have shown that Q−1(NS(H†)) ⊆
NS(H†). To complete the proof, we take an arbitrary member v ofNS(H†)
and show that v is in Q−1(NS(H†)); that is, Qv ∈ NS(H†). We know that
Qv = Ha+w, for w ∈ NS(H†), and

a = (H†H)−1H†Qv,

so that
Ha = H(H†H)−1H†Qv.

Then, using Exercise 17.15, we have

Qv = H(H†H)−1H†Qv+w

= H(H†Q−1H)−1H†Q−1Qv +w

= H(H†Q−1H)−1H†v +w = w.

So Qv = w, which is in NS(H†). This completes the proof.

17.13 A Recursive Approach

In array processing and elsewhere, it sometimes happens that the matrix
Q is estimated from several measurements {vn, n = 1, ..., N} of the noise
vector v as

Q =
1

N

N∑
n=1

vn(vn)†.

Then, the inverses of Q and of H†Q−1H can be obtained recursively, using
the Sherman–Morrison–Woodbury matrix-inversion identity.

Ex. 17.16 The Sherman–Morrison–Woodbury Identity Let B be an
invertible matrix. Show that

(B − uv†)−1 = B−1 + α−1(B−1u)(v†B−1), (17.10)

whenever
α = 1− v†B−1u �= 0.

Show that, if α = 0, then the matrix B − uv† has no inverse.
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Since the matrices involved here are nonnegative definite this denominator
will always be at least one. The idea is to define Q0 = εI, for some ε > 0,
and, for n = 1, ..., N ,

Qn = Qn−1 + vn(vn)†.

Then, Q−1
n can be obtained from Q−1

n−1 and (H†Q−1
n H)−1 from

(H†Q−1
n−1H)−1 using the identity in Equation (17.10).
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18.1 Chapter Summary

In this chapter we consider the problem of deciding whether or not
a particular signal is present in the measured data; this is the detection
problem. The underlying framework for the detection problem is optimal
estimation and statistical hypothesis testing [81].

18.2 The Model of Signal in Additive Noise

The basic model used in detection is that of a signal in additive noise.
The complex data vector is x = (x1, x2, ..., xN )T . We assume that there
are two possibilities:
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Case 1: Noise only
xn = zn, n = 1, ..., N,

or

Case 2: Signal in noise

xn = γsn + zn,

where z = (z1, z2, ..., zN)
T is a complex vector whose entries zn are values

of random variables that we call noise, about which we have only statistical
information (that is to say, information about the average behavior), s =
(s1, s2, ..., sN )T is a complex signal vector that we may know exactly, or at
least for which we have a specific parametric model, and γ is a scalar that
may be viewed either as deterministic or random (but unknown, in either
case). Unless otherwise stated, we shall assume that γ is deterministic.

The detection problem is to decide which case we are in, based on some
calculation performed on the data x. Since Case 1 can be viewed as a
special case of Case 2 in which the value of γ is zero, the detection problem
is closely related to the problem of estimating γ, which we discussed in the
chapter dealing with the best linear unbiased estimator, the BLUE.

We shall assume throughout that the entries of z correspond to random
variables with means equal to zero. What the variances are and whether or
not these random variables are mutually correlated will be discussed next.
In all cases we shall assume that this information has been determined
previously and is available to us in the form of the covariance matrix Q =
E(zz†) of the vector z; the symbol E denotes expected value, so the entries
of Q are the quantities Qmn = E(zmzn). The diagonal entries of Q are
Qnn = σ2

n, the variance of zn. As in Chapter 17, we assume here that Q is
invertible, which is the typical case.

Note that we have adopted the common practice of using the same
symbols, zn, when speaking about the random variables and about the
specific values of these random variables that are present in our data. The
context should make it clear to which we are referring.

In Case 2 we say that the signal power is equal to |γ|2 1
N

∑N
n=1 |sn|2 =

1
N |γ|2s†s and the noise power is 1

N

∑N
n=1 σ

2
n = 1

N tr(Q), where tr(Q) is the
trace of the matrix Q, that is, the sum of its diagonal terms; therefore, the
noise power is the average of the variances σ2

n. The input signal-to-noise
ratio (SNRin) is the ratio of the signal power to that of the noise, prior to
processing the data; that is,

SNRin =
1

N
|γ|2s†s/ 1

N
tr(Q) = |γ|2s†s/tr(Q).
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18.3 Optimal Linear Filtering for Detection

In each case to be considered next, our detector will take the form of a
linear estimate of γ; that is, we shall compute the estimate γ̂ given by

γ̂ =

N∑
n=1

bnxn = b†x,

where b = (b1, b2, ..., bN )T is a vector to be determined. The objective is to
use what we know about the situation to select the optimal b, which will
depend on s and Q.

For any given vector b, the quantity

γ̂ = b†x = γb†s + b†z

is a random variable whose mean value is equal to γb†s and whose variance
is

var(γ̂) = E(|b†z|2) = E(b†zz†b) = b†E(zz†)b = b†Qb.

Therefore, the output signal-to-noise ratio (SNRout) is defined as

SNRout = |γb†s|2/b†Qb.

The advantage we obtain from processing the data is called the gain asso-
ciated with b and is defined to be the ratio of the SNRout to SNRin; that
is,

gain(b) =
|γb†s|2/(b†Qb)

|γ|2(s†s)/tr(Q)
=

|b†s|2 tr(Q)

(b†Qb)(s†s)
.

The best b to use will be the one for which gain(b) is the largest. So,
ignoring the terms in the gain formula that do not involve b, we see that

the problem becomes maximize |b†s|2
b†Qb

, for fixed signal vector s and fixed
noise covariance matrix Q.

The Cauchy Inequality plays a major role in optimal filtering and de-
tection.

Cauchy’s Inequality: For any vectors a and b we have

|a†b|2 ≤ (a†a)(b†b),

with equality if and only if a is proportional to b; that is, there is a scalar
β such that b = βa.
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Ex. 18.1 Use Cauchy’s Inequality to show that, for any fixed vector a, the
choice b = βa maximizes the quantity |b†a|2/b†b, for any constant β.

Ex. 18.2 Use the definition of the covariance matrix Q to show that Q
is Hermitian and that, for any vector y, y†Qy ≥ 0. Therefore, Q is a
nonnegative definite matrix and, using its eigenvector decomposition, can
be written as Q = CC†, for some invertible square matrix C.

Ex. 18.3 Consider now the problem of maximizing |b†s|2/b†Qb. Using
the two previous exercises, show that the solution is b = βQ−1s, for some
arbitrary constant β.

We can now use the results of these exercises to continue our discussion.
We choose the constant β = 1/(s†Q−1s) so that the optimal b has b†s = 1;
that is, the optimal filter b is

b = (1/(s†Q−1s))Q−1s,

and the optimal estimate of γ is

γ̂ = b†x = (1/(s†Q−1s))(s†Q−1x).

The mean of the random variable γ̂ is equal to γb†s = γ, and the variance is
equal to 1/(s†Q−1s). Therefore, the output signal power is |γ|2, the output
noise power is 1/(s†Q−1s), and so the output signal-to-noise ratio (SNRout)
is

SNRout = |γ|2(s†Q−1s).

The gain associated with the optimal vector b is then

maximumgain =
(s†Q−1s) tr(Q)

(s†s)
.

The calculation of the vector C−1x is sometimes called prewhitening since
C−1x = γC−1s + C−1z and the new noise vector, C−1z, has the iden-
tity matrix for its covariance matrix. The new signal vector is C−1s. The
filtering operation that gives γ̂ = b†x can be written as

γ̂ = (1/(s†Q−1s))(C−1s)†C−1x;

the term (C−1s)†C−1x is described by saying that we prewhiten, then do
a matched filter. Now we consider some special cases of noise.
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18.4 The Case of White Noise

We say that the noise is white noise if the covariance matrix is Q = σ2I,
where I denotes the identity matrix, whose entries on the main diagonal
have the value 1 and the other entries have the value 0, and σ > 0 is
the common standard deviation of the zn. This means that the zn are
mutually uncorrelated (independent, in the Gaussian case) and share a
common variance.

In this case the optimal vector b is b = 1
(s†s)s and the gain is N . Notice

that γ̂ now involves only a matched filter. We consider now some special
cases of the signal vectors s.

18.4.1 Constant Signal

Suppose that the vector s is constant; that is, s = 1 = (1, 1, ..., 1)T .
Then, we have

γ̂ =
1

N

N∑
n=1

xn.

This is the same result we found in our discussion of the BLUE, when we
estimated the mean value and the noise was white.

18.4.2 Sinusoidal Signal, Frequency Known

Suppose that

s = e(ω0) = (exp(−iω0), exp(−2iω0), ..., exp(−Niω0))
T ,

where ω0 denotes a known frequency in [−π, π). Then, b = 1
N e(ω0) and

γ̂ =
1

N

N∑
n=1

xn exp(inω0);

so, we see yet another occurrence of the DFT.

18.4.3 Sinusoidal Signal, Frequency Unknown

If we do not know the value of the signal frequency ω0, a reasonable
thing to do is to calculate the γ̂ for each (actually, finitely many) of the
possible frequencies within [−π, π) and base the detection decision on the
largest value; that is, we calculate the DFT as a function of the variable
ω. If there is only a single ω0 for which there is a sinusoidal signal present
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in the data, the values of γ̂ obtained at frequencies other than ω0 provide
estimates of the noise power σ2, against which the value of γ̂ for ω0 can be
compared.

18.5 The Case of Correlated Noise

We say that the noise is correlated if the covariance matrix Q is not a
multiple of the identity matrix. This means either that the zn are mutually
correlated (dependent, in the Gaussian case) or that they are uncorrelated,
but have different variances.

In this case, as we saw previously, the optimal vector b is

b =
1

(s†Q−1s)
Q−1s

and the gain is

maximumgain =
(s†Q−1s) tr(Q)

(s†s)
.

How large or small the gain is depends on how the signal vector s relates
to the matrix Q.

For sinusoidal signals, the quantity s†s is the same, for all values of the
parameter ω; this is not always the case, however. In passive detection of
sources in acoustic array processing, for example, the signal vectors arise
from models of the acoustic medium involved. For far-field sources in an
(acoustically) isotropic deep ocean, planewave models for s will have the
property that s†s does not change with source location. However, for near-
field or shallow-water environments, this is usually no longer the case.

It follows from Exercise 18.3 that the quantity s†Q−1s
s†s achieves its maxi-

mum value when s is an eigenvector of Q associated with its smallest eigen-
value, λN ; in this case, we are saying that the signal vector does not look
very much like a typical noise vector. The maximum gain is then λ−1

N tr(Q).
Since tr(Q) equals the sum of its eigenvalues, multiplying by tr(Q) serves
to normalize the gain, so that we cannot get larger gain simply by having
all the eigenvalues of Q small.

On the other hand, if s should be an eigenvector of Q associated with
its largest eigenvalue, say λ1, then the maximum gain is λ−1

1 tr(Q). If the
noise is signal-like, that is, has one dominant eigenvalue, then tr(Q) is
approximately λ1 and the maximum gain is around one, so we have lost
the maximum gain of N we were able to get in the white-noise case. This
makes sense, in that it says that we cannot significantly improve our ability
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to discriminate between signal and noise by taking more samples, if the
signal and noise are very similar.

18.5.1 Constant Signal with Unequal-Variance
Uncorrelated Noise

Suppose that the vector s is constant; that is, s = 1 = (1, 1, ..., 1)T .
Suppose also that the noise covariance matrix is Q = diag{σ1, ..., σN}.

In this case the optimal vector b has entries

bm =
1

(
∑N

n=1 σ
−1
n )

σ−1
m ,

for m = 1, ..., N , and we have

γ̂ =
1

(
∑N

n=1 σ
−1
n )

N∑
m=1

σ−1
m xm.

This is the BLUE estimate of γ in this case.

18.5.2 Sinusoidal Signal, Frequency Known, in Correlated
Noise

Suppose that

s = e(ω0) = (exp(−iω0), exp(−2iω0), ..., exp(−Niω0))
T ,

where ω0 denotes a known frequency in [−π, π). In this case the optimal
vector b is

b =
1

e(ω0)†Q−1e(ω0)
Q−1e(ω0)

and the gain is

maximumgain =
1

N
[e(ω0)

†Q−1e(ω0)]tr(Q).

How large or small the gain is depends on the quantity q(ω0), where

q(ω) = e(ω)†Q−1e(ω).

The function 1/q(ω) can be viewed as a sort of noise power spectrum,
describing how the noise power appears when decomposed over the various
frequencies in [−π, π). The maximum gain will be large if this noise power
spectrum is relatively small near ω = ω0; however, when the noise is similar
to the signal, that is, when the noise power spectrum is relatively large
near ω = ω0, the maximum gain can be small. In this case the noise power



288 Signal Processing: A Mathematical Approach

spectrum plays a role analogous to that played by the eigenvalues of Q
earlier.

To see more clearly why it is that the function 1/q(ω) can be viewed
as a sort of noise power spectrum, consider what we get when we apply
the optimal filter associated with ω to data containing only noise. The
average output should tell us how much power there is in the component of
the noise that resembles e(ω); this is essentially what is meant by a noise
power spectrum. The result is b†z = (1/q(ω))e(ω)†Q−1z. The expected
value of |b†z|2 is then 1/q(ω).

18.5.3 Sinusoidal Signal, Frequency Unknown, in
Correlated Noise

Again, if we do not know the value of the signal frequency ω0, a rea-
sonable thing to do is to calculate the γ̂ for each (actually, finitely many)
of the possible frequencies within [−π, π) and base the detection decision
on the largest value. For each ω the corresponding value of γ̂ is

γ̂(ω) = [1/(e(ω)†Q−1e(ω))]

N∑
n=1

an exp(inω),

where a = (a1, a2, ..., aN )T satisfies the linear system Qa = x or a = Q−1x.
It is interesting to note the similarity between this estimation procedure and
the PDFT discussed earlier; to see the connection, view [1/(e(ω)†Q−1e(ω))]
in the role of P (ω) and Q its corresponding matrix of Fourier-transform val-
ues. The analogy breaks down when we notice that Q need not be Toeplitz,
as in the PDFT case; however, the similarity is intriguing.

18.6 Capon’s Data-Adaptive Method

When the noise covariance matrix Q is not available, perhaps because
we cannot observe the background noise in the absence of any signals that
may also be present, we may use the signal-plus-noise covariance matrix R
in place of Q.

Ex. 18.4 Show that for
R = |γ|2ss† +Q

maximizing the ratio
|bfb†s|2/b†Rb
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is equivalent to maximizing the ratio

|b†s|2/b†Qb.

In [49] Capon offered a high-resolution method for detecting and re-
solving sinusoidal signals with unknown frequencies in noise. His estimator
has the form

1/e(ω)†R−1e(ω).

The idea here is to fix an arbitrary ω, and then to find the vector b(ω) that
minimizes b(ω)†Rb(ω), subject to b(ω)†e(ω) = 1. The vector b(ω) turns
out to be

b(ω) =
1

e(ω)†R−1e(ω)
R−1e(ω).

Now we allow ω to vary and compute the expected output of the filter b(ω),
operating on the signal plus noise input. This expected output is then

1/e(ω)†R−1e(ω).

The reason that this estimator resolves closely spaced delta functions better
than linear methods such as the DFT is that, when ω is fixed, we obtain an
optimal filter using R as the noise covariance matrix, which then includes
all sinusoids not at the frequency ω in the “noise” component. This is
actually a good thing, since, when we are looking at a frequency ω that
does not correspond to a frequency actually present in the data, we want
the sinusoidal components present at nearby frequencies to be filtered out,
to improve resolution. We lose resolution of two nearby peaks in estimators
like the DFT when the estimator gives a larger value between two actual
peaks than it does at the peaks themselves. Methods such as Capon’s reduce
the estimator’s value between the two peaks.
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19.1 Chapter Summary

Many methods for analyzing measured signals are based on the idea
of matching the data against various potential signals to see which ones
match best. The role of inner products in this matching approach is the
topic of this chapter.

19.2 Cauchy’s Inequality

The matching is done using the complex dot product, e†ωd. In the ideal
case this dot product is large, for those values of ω that correspond to
an actual component of the signal; otherwise it is small. Why this should
be the case is the Cauchy-Schwarz Inequality (or sometimes, depending
on the context, just Cauchy’s Inequality, just Schwarz’s Inequality, or, in
the Russian literature, Bunyakovsky’s Inequality). The proof of Cauchy’s
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Inequality rests on four basic properties of the complex dot product. These
properties can then be used to obtain the more general notion of an inner
product.

19.3 The Complex Vector Dot Product

Let u = (a, b) and v = (c, d) be two vectors in two-dimensional space.
Let u make the angle α > 0 with the positive x-axis and v the angle β > 0.
Let ||u|| = √

a2 + b2 denote the length of the vector u. Then a = ||u|| cosα,
b = ||u|| sinα, c = ||v|| cosβ and d = ||v|| sin β. So u · v = ac + bd =
||u||||v||(cosα cosβ + sinα sinβ = ||u|| ||v|| cos(α − β). Therefore, we have

u · v = ||u|| ||v|| cos θ, (19.1)

where θ = α− β is the angle between u and v. Cauchy’s Inequality is

|u · v| ≤ ||u|| ||v||,
with equality if and only if u and v are parallel.

Cauchy’s Inequality extends to vectors of any size with complex entries.
For example, the complex M -dimensional vectors eω and eθ defined earlier
both have length equal to

√
M and

|e†ωeθ| ≤M,

with equality if and only if ω and θ differ by an integer multiple of π.
From Equation (19.1) we know that the dot product u ·v is zero if and

only if the angle between these two vectors is a right angle; we say then
that u and v are mutually orthogonal. The idea of using the dot product
to measure how similar two vectors are is called matched filtering; it is a
popular method in signal detection and estimation of parameters.

Proof of Cauchy’s Inequality: To prove Cauchy’s Inequality for the
complex vector dot product, we write u · v = |u · v|eiθ . Let t be a real
variable and consider

0 ≤ ||e−iθu− tv||2 = (e−iθu− tv) · (e−iθu− tv)

= ||u||2 − t[(e−iθu) · v + v · (e−iθu)] + t2||v||2
= ||u||2 − t[(e−iθu) · v + (e−iθu) · v] + t2||v||2
= ||u||2 − 2Re(te−iθ(u · v)) + t2||v||2
= ||u||2 − 2Re(t|u · v|) + t2||v||2
= ||u||2 − 2t|u · v|+ t2||v||2.
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This is a nonnegative quadratic polynomial in the variable t, so it can-
not have two distinct real roots. Therefore, the discriminant 4|u · v|2 −
4||v||2||u||2 must be non-positive; that is, |u · v|2 ≤ ||u||2||v||2. This is
Cauchy’s Inequality.

Ex. 19.1 Use Cauchy’s Inequality to show that

||u+ v|| ≤ ||u||+ ||v||;
this is called the triangle inequality.

A careful examination of the proof just presented shows that we did not
explicitly use the definition of the complex vector dot product, but only
some of its properties. This suggested to mathematicians the possibility of
abstracting these properties and using them to define a more general con-
cept, an inner product, between objects more general than complex vectors,
such as infinite sequences, random variables, and matrices. Such an inner
product can then be used to define the norm of these objects and thereby a
distance between such objects. Once we have an inner product defined, we
also have available the notions of orthogonality and best approximation.
We shall address all of these topics shortly.

19.4 Orthogonality

Consider the problem of writing the two-dimensional real vector (3,−2)
as a linear combination of the vectors (1, 1) and (1,−1); that is, we want
to find constants a and b so that (3,−2) = a(1, 1) + b(1,−1). One way to
do this, of course, is to compare the components: 3 = a+ b and −2 = a− b;
we can then solve this simple system for the a and b. In higher dimensions
this way of doing it becomes harder, however. A second way is to make use
of the dot product and orthogonality.

The dot product of two vectors (x, y) and (w, z) in R2 is (x, y) · (w, z) =
xw+yz. If the dot product is zero then the vectors are said to be orthogonal;
the two vectors (1, 1) and (1,−1) are orthogonal. We take the dot product
of both sides of (3,−2) = a(1, 1) + b(1,−1) with (1, 1) to get

1 = (3,−2) ·(1, 1) = a(1, 1) ·(1, 1)+b(1,−1) ·(1, 1) = a(1, 1) ·(1, 1)+0 = 2a,

so we see that a = 1
2 . Similarly, taking the dot product of both sides with

(1,−1) gives

5 = (3,−2) · (1,−1) = a(1, 1) · (1,−1) + b(1,−1) · (1,−1) = 2b,
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so b = 5
2 . Therefore, (3,−2) = 1

2 (1, 1) +
5
2 (1,−1). The beauty of this ap-

proach is that it does not get much harder as we go to higher dimensions.
Since the cosine of the angle θ between vectors u and v is

cos θ = u · v/||u|| ||v||,
where ||u||2 = u · u, the projection of vector v on to the line through the
origin parallel to u is

Proju(v) =
u · v
u · uu.

Therefore, the vector v can be written as

v = Proju(v) + (v − Proju(v)),

where the first term on the right is parallel to u and the second one is
orthogonal to u.

How do we find vectors that are mutually orthogonal? Suppose we begin
with (1, 1). Take a second vector, say (1, 2), that is not parallel to (1, 1) and
write it as we did v earlier, that is, as a sum of two vectors, one parallel
to (1, 1) and the second orthogonal to (1, 1). The projection of (1, 2) onto
the line parallel to (1, 1) passing through the origin is

(1, 1) · (1, 2)
(1, 1) · (1, 1)(1, 1) =

3

2
(1, 1) =

(
3

2
,
3

2

)
so

(1, 2) =

(
3

2
,
3

2

)
+

(
(1, 2)−

(
3

2
,
3

2

))
=

(
3

2
,
3

2

)
+

(
−1

2
,
1

2

)
.

The vectors (− 1
2 ,

1
2 ) = − 1

2 (1,−1) and, therefore, (1,−1) are then orthogo-
nal to (1, 1). This approach is the basis for the Gram-Schmidt method for
constructing a set of mutually orthogonal vectors.

Ex. 19.2 Use the Gram-Schmidt approach to find a third vector in R3

orthogonal to both (1, 1, 1) and (1, 0,−1).

Orthogonality is a convenient tool that can be exploited whenever we
have an inner product defined.

19.5 Generalizing the Dot Product: Inner Products

The proof of Cauchy’s Inequality rests not on the actual definition of
the complex vector dot product, but rather on four of its most basic prop-
erties. We use these properties to extend the concept of the complex vector
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dot product to that of inner product. Later in this chapter we shall give
several examples of inner products, applied to a variety of mathematical
objects, including infinite sequences, functions, random variables, and ma-
trices. For now, let us denote our mathematical objects by u and v and
the inner product between them as 〈u,v〉 . The objects will then be said to
be members of an inner-product space. We are interested in inner products
because they provide a notion of orthogonality, which is fundamental to
best approximation and optimal estimation.

Defining an inner product: The four basic properties that will serve to
define an inner product are:

1. 〈u,u〉 ≥ 0, with equality if and only if u = 0;

2. 〈v,u〉 = 〈u,v〉 ;
3. 〈u,v +w〉 = 〈u,v〉 + 〈u,w〉;
4. 〈cu,v〉 = c〈u,v〉 for any complex number c.

The inner product is the basic ingredient in Hilbert space theory. Using the
inner product, we define the norm of u to be

||u|| =
√

〈u,u〉

and the distance between u and v to be ||u− v||.

The Cauchy–Schwarz Inequality: Because these four properties were
all we needed to prove the Cauchy Inequality for the complex vector dot
product, we obtain the same inequality whenever we have an inner product.
This more general inequality is the Cauchy-Schwarz Inequality:

|〈u,v〉| ≤
√
〈u,u〉

√
〈v,v〉

or
|〈u,v〉| ≤ ||u|| ||v||,

with equality if and only if there is a scalar c such that v = cu. We say
that the vectors u and v are orthogonal if 〈u,v〉 = 0.

19.6 Another View of Orthogonality

We can develop orthogonality and the Cauchy-Schwarz Inequality in
another way. For simplicity, we assume that the inner product is defined
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on a real vector space. From the definition of the norm we have

‖x+ y‖2 = 〈x+ y,x+ y〉 = ‖x‖2 + ‖y‖2 + 2〈x,y〉.
We say that Pythagoras’ Theorem holds for x �= 0 and y �= 0 if

‖x+ y‖2 = 〈x+ y,x + y〉 = ‖x‖2 + ‖y‖2.
Clearly, Pythagoras’ Theorem holds if and only if 〈x,y〉 = 0.

Now, we say that nonzero vectors x and y are orthogonal if

‖x+ y‖ = ‖x− y‖.
It is an easy exercise to show that x �= 0 and y �= 0 are orthogonal if and
only if 〈x,y〉 = 0 and if and only if Pythagoras’ Theorem holds.

For nonzero x and y, let p = γy be the vector in the span of y for
which

‖x− p‖ ≤ ‖x− βy‖,
for all real β. Minimizing the function

f(β) = ‖x− βy‖2

with respect to the variable β, we find that the optimal γ is

γ =
〈x,y〉
‖y‖2 .

A simple calculation shows that the vectors x−p and p are orthogonal, so
that, by Pythagoras’ Theorem,

‖x‖2 = ‖x− p‖2 + ‖p‖2.
It follows, therefore, that

‖x‖ ≥ ‖p‖,
and so

|〈x,y〉| ≤ ‖x‖‖y‖,
with equality if and only if x = p. This is the Cauchy-Schwarz Inequality
once again.

For nonzero vectors in R2 or R3 we know that

x · y = ‖x‖‖y‖ cos(θ),
where θ is the angle between the two vectors when they are viewed as
directed line segments placed so that they have a common starting point.
Using the Cauchy-Schwarz Inequality, we can mimic what happens in R

2

and R3 by defining the angle between nonzero vectors in an arbitrary inner
product space to be

θ(x,y) = arccos
( 〈x,y〉
‖x‖‖y‖

)
.

We turn now to some examples of inner products.
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19.7 Examples of Inner Products

In this section we illustrate the notion of inner product with several
examples.

19.7.1 An Inner Product for Infinite Sequences

Let u = {un} and v = {vn} be infinite sequences of complex numbers.
The inner product is then

〈u,v〉 =
∑

unvn,

and

||u|| =
√∑

|un|2.
The sums are assumed to be finite; the index of summation n is singly or
doubly infinite, depending on the context. The Cauchy-Schwarz Inequality
says that ∣∣∣∑unvn

∣∣∣ ≤√∑ |un|2
√∑

|vn|2.

19.7.2 An Inner Product for Functions

Now suppose that u = f(x) and v = g(x). Then the L2 inner product
is

〈u,v〉 =

∫
f(x)g(x)dx

and the L2 norm of u is

||u|| =
√∫

|f(x)|2dx.

The integrals are assumed to be finite; the limits of integration depend on
the support of the functions involved. The Cauchy-Schwarz Inequality now
says that

∣∣∣ ∫ f(x)g(x)dx
∣∣∣ ≤
√∫

|f(x)|2dx
√∫

|g(x)|2dx.
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19.7.3 An Inner Product for Random Variables

Now suppose that u = X and v = Y are random variables. Then,

〈u,v〉 = E(XY )

and
||u|| =

√
E(|X |2),

which is the standard deviation of X if the mean of X is zero. The expected
values are assumed to be finite. The Cauchy-Schwarz Inequality now says
that

|E(XY )| ≤
√
E(|X |2)

√
E(|Y |2).

If E(X) = 0 and E(Y ) = 0, the random variables X and Y are orthogonal
if and only if they are uncorrelated.

19.7.4 An Inner Product for Complex Matrices

Now suppose that u = A and v = B are complex matrices. Then,

〈u,v〉 = trace(B†A)

and

||u|| =
√
trace(A†A),

where the trace of a square matrix is the sum of the entries on the main
diagonal. This inner product is simply the complex vector dot product
of the vectorized versions of the matrices involved. The Cauchy-Schwarz
Inequality now says that

|trace(B†A)| ≤
√
trace(A†A)

√
trace(B†B).

19.7.5 A Weighted Inner Product for Complex Vectors

Let u and v be complex vectors and let Q be a Hermitian positive-
definite matrix; that is, Q† = Q and u†Qu > 0 for all nonzero vectors u.
The Q-inner product is then

〈u,v〉 = v†Qu

and the Q-norm of u is

||u|| =
√
u†Qu.

We know from the eigenvector decomposition of Q that Q = C†C for some
matrix C. Therefore, the inner product is simply the complex vector dot
product of the vectors Cu and Cv. The Cauchy-Schwarz Inequality says
that

|v†Qu| ≤
√
u†Qu

√
v†Qv.
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19.7.6 A Weighted Inner Product for Functions

Now suppose that u = f(x), v = g(x), and w(x) > 0. Then define

〈u,v〉 =

∫
f(x)g(x)w(x)dx

and

||u|| =
√∫

|f(x)|2w(x)dx.

The integrals are assumed to be finite; the limits of integration depend on
the support of the functions involved. This inner product is simply the L2

inner product of the functions f(x)
√
w(x) and g(x)

√
w(x). The Cauchy-

Schwarz Inequality now says that

∣∣∣ ∫ f(x)g(x)w(x)dx
∣∣∣ ≤
√∫

|f(x)|2w(x)dx
√∫

|g(x)|2w(x)dx.

Once we have an inner product defined, we can speak about orthogonal-
ity and best approximation. Important in that regard is the orthogonality
principle.

19.8 The Orthogonality Principle

Imagine that you are standing and looking down at the floor. The point
B on the floor that is closest to N , the tip of your nose, is the unique
point on the floor such that the vector from B to any other point A on the
floor is perpendicular to the vector from N to B; that is, 〈BN,BA〉 = 0.
This is a simple illustration of the orthogonality principle. Whenever we
have an inner product defined we can speak of orthogonality and apply the
orthogonality principle to find best approximations.

The orthogonality principle: Let u and v1, ...,vN be members of an
inner-product space. For all choices of scalars a1, ..., aN , we can compute
the distance from u to the member a1v

1 + ...aNvN . Then, we minimize
this distance over all choices of the scalars; let b1, ..., bN be this best choice.
The orthogonality principle tells us that the member u− (b1v

1 + ...bNvN )
is orthogonal to the member (a1v

1 + ...+ aNvN )− (b1v
1 + ...bNvN ), that

is,

〈u− (b1v
1 + ...bNv

N ), (a1v
1 + ...+ aNvN )− (b1v

1 + ...bNv
N ) = 0,
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for every choice of scalars an. We can then use the orthogonality principle
to find the best choice b1., , , .bN .

For each fixed index value j in the set {1, ..., N}, let an = bn if j is not
equal to n and aj = bj + 1. Then we have

0 = 〈u− (b1v
1 + ...bNvN ),vj〉,

or

〈u,vj〉 =

N∑
n=1

bn〈vn,vj〉,

for each j. The vn are known, so we can calculate the inner products
〈vn,vj〉 and solve this system of equations for the best bn.

We shall encounter a number of particular cases of the orthogonality
principle in subsequent chapters. The example of the least-squares solution
of a system of linear equations provides a good example of the use of this
principle.

The least-squares solution: Let V a = u be a system of M linear equa-
tions in N unknowns. For n = 1, ..., N let vn be the nth column of the
matrix V . For any choice of the vector a with entries an, n = 1, ..., N , the
vector V a is

V a =

N∑
n=1

anv
n.

Solving V a = u amounts to representing the vector u as a linear combina-
tion of the columns of V .

If there is no solution of V a = u then we can look for the best choice of
coefficients so as to minimize the distance ||u− (a1v

1 + ...+ aNvN )||. The
matrix with entries 〈vn,vj〉 is V †V , and the vector with entries 〈u,vj〉 is
V †u. According to the orthogonality principle, we must solve the system
of equations V †u = V †V a, which leads to the least-squares solution.

Ex. 19.3 Find polynomial functions f(x), g(x) and h(x) that are orthog-
onal in the sense of the L2 inner product on the interval [0, 1] and have
the property that every polynomial of degree two or less can be written as
a linear combination of these three functions.

Ex. 19.4 Show that the functions einx, n an integer, are orthogonal in the
sense of the L2 inner product on the interval [−π, π]. Let f(x) have the
Fourier expansion

f(x) =

∞∑
n=−∞

ane
inx, |x| ≤ π.

Use orthogonality to find the coefficients an.
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We have seen that orthogonality can be used to determine the coeffi-
cients in the Fourier series representation of a function. There are other
useful representations in which orthogonality also plays a role; wavelets is
one example. Let f(x) be defined on some closed interval [a, b]. Suppose
that we change the function f(x) to a new function g(x) by altering the
values for x within a small interval, keeping the remaining values the same:
then all of the Fourier coefficients change. Looked at another way, a local-
ized disturbance in the function f(x) affects all of its Fourier coefficients.
It would be helpful to be able to represent f(x) as a sum of orthogonal
functions in such a way that localized changes in f(x) affect only a small
number of the components in the sum. One way to do this is with wavelets,
as we saw in Chapter 18.
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20.1 Chapter Summary

The vector Wiener filter (VWF) is similar to the BLUE and provides
another method for estimating the vector x given noisy measurements z in
CJ , where

z = Hx+ v,

with x and v independent random vectors and H a known matrix. We shall
assume throughout this chapter that E(v) = 0 and let Q = E(vv†).

When the data is a finite vector composed of signal plus noise the vec-
tor Wiener filter can be used to estimate the signal component, provided
we know something about the possible signals and possible noises. In the-
oretical discussion of filtering signal from signal plus noise, it is traditional
to assume that both components are doubly infinite sequences of random
variables. In this case the Wiener filter is a convolution filter that operates
on the input signal plus noise sequence to produce the output estimate of
the signal-only sequence. The derivation of the Wiener filter is in terms
of the autocorrelation sequences of the two components, as well as their
respective power spectra.

303
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20.2 The Vector Wiener Filter in Estimation

It is common to formulate the VWF in the context of filtering a signal
vector s from signal plus noise. The data is the vector

z = s+ v,

and we want to estimate s. Each entry of our estimate of the vector s will be
a linear combination of the data values; that is, our estimate is ŝ = B†z for
some matrix B to be determined. This B will be called the vector Wiener
filter. To extract the signal from the noise, we must know something about
possible signals and possible noises. We consider several stages of increasing
complexity and correspondence with reality.

20.3 The Simplest Case

Suppose, initially, and unrealistically, that all signals must have the form
s = au, where a is an unknown scalar and u is a known vector. Suppose
that all noises must have the form v = bw, where b is an unknown scalar
and w is a known vector. Then, to estimate s, we must find a. So long as
J ≥ 2, we should be able to solve for a and b. We form the two equations

u†z = au†u+ bu†w

and
w†z = aw†u+ bw†w.

This system of two equations in two unknowns will have a unique solu-
tion unless u and w are proportional, in which case we cannot expect to
distinguish signal from noise.

20.4 A More General Case

We move now to a somewhat more complicated, but still unrealistic,
model. Suppose that all signals must have the form

s =

N∑
n=1

anu
n,
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where the an are unknown scalars and the un are known linearly indepen-
dent vectors. Suppose that all noises must have the form

v =

M∑
m=1

bmwm,

where the bm are unknown scalars and wm are known linearly independent
vectors. Then, to estimate s, we must find the an. So long as J ≥ N +M ,
we should be able to solve for the unique an and bm. However, we usually
do not know a great deal about the signal and the noise, so it is better to
assume that we are in the situation in which the N and M are large and
J < N +M .

Let U be the J by N matrix whose nth column is un and W the J by
M matrix whose mth column is wm. Let V be the J by N +M matrix
whose first N columns contain U and whose last M columns contain W ;
so, V = [U W ]. Let c be the N +M by 1 column vector whose first N
entries are the an and whose last M entries are the bm. We want to solve
z = V c.

The system of linear equations z = V c has too many unknowns when
N +M > J , so we seek the minimum-norm solution. In closed form this
solution is

ĉ = V †(V V †)−1z.

The first N entries of ĉ are our estimates of the an. Once we have these,
we estimate the signal itself by multiplying by the matrix U ; that is, our
estimate of s is

ŝ = UU †(UU † +WW †)−1z.

The matrix V V † = (UU † +WW †) involves what we shall call the signal
correlation matrix UU † and the noise correlation matrix WW †, by analogy
with the statistical terminology.

Consider UU †. The matrix UU † is J by J and the (i, j) entry of UU †

is given by

UU †
ij =

N∑
n=1

uni u
n
j .

The matrix 1
NUU

† has for its entries the average, over all the n = 1, ..., N ,
of the product of the ith and jth entries of the vectors un. Therefore, 1

NUU
†

is statistical information about the signal; it tells us how these products
look, on average, over all members of the family {un}, the ensemble, to use
the statistical word.
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20.5 The Stochastic Case

To pass to a more formal statistical framework, we let the coefficient
vectors a = (a1, a2, ..., aN )T and b = (b1, b2, ..., bM )T be independent ran-
dom white-noise vectors, both with mean zero and covariance matrices
E(aa†) = I and E(bb†) = I. Now the matrices UU † andWW † are defined
statistically;

UU † = E(ss†) = Rs

and
WW † = E(vv†) = Q = Rv.

The estimate of s is the result of applying the vector Wiener filter to the
vector z and is once again given by

ŝ = UU †(UU † +WW †)−1z.

Ex. 20.1 Apply the vector Wiener filter to the simplest problem discussed
earlier in the chapter on the BLUE; let N = 1 and assume that c is a
random variable with mean zero and variance one. It will help to use the
matrix-inversion identity

(Q+ uu†)−1 = Q−1 − (1 + u†Q−1u)−1Q−1uu†Q−1; (20.1)

see also Equation (17.10).

20.6 The VWF and the BLUE

To apply the VWF to the problem considered in the discussion of the
BLUE, let the vector s be Hx. We assume, in addition, that the vector x
is a white-noise vector; that is, E(xx†) = σ2I. Then, Rs = σ2HH†.

In the VWF approach we estimate s using

ŝ = B†z,

where the matrix B is chosen so as to minimize the mean squared error,
E||ŝ− s||2. This is equivalent to minimizing

traceE((B†z− s)(B†z− s)†).
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Expanding the matrix products and using the previous definitions, we see
that we must minimize

trace (B†(Rs +Rv)B −RsB − B†Rs +Rs).

Differentiating with respect to the matrix B using Equations (21.15) and
(21.16), we find

(Rs +Rv)B −Rs = 0,

so that
B = (Rs +Rv)

−1Rs.

Our estimate of the signal component is then

ŝ = Rs(Rs +Rv)
−1z.

With s = Hx, our estimate of s is

ŝ = σ2HH†(σ2HH† +Q)−1z,

and the VWF estimate of x is

x̂ = σ2H†(σ2HH† +Q)−1z.

How does this estimate relate to the one we got from the BLUE?
The BLUE estimate of x is

x̂ = (H†Q−1H)−1H†Q−1z.

From the matrix identity in Equation (17.4), we know that

(H†Q−1H + σ−2I)−1H†Q−1 = σ2H†(σ2HH† +Q)−1.

Therefore, the VWF estimate of x is

x̂ = (H†Q−1H + σ−2I)−1H†Q−1z.

Note that the BLUE estimate is unbiased and unaffected by changes in the
signal strength or the noise strength. In contrast, the VWF is not unbiased
and does depend on the signal-to-noise ratio; that is, it depends on the
ratio σ2/trace (Q). The BLUE estimate is the limiting case of the VWF
estimate, as the signal-to-noise ratio goes to infinity.

The BLUE estimates s = Hx by first finding the BLUE estimate of x
and then multiplying it by H to get the estimate of the signal s.

Ex. 20.2 Show that the mean-squared error in the estimation of s is

E(||ŝ − s||2) = trace (H(H†Q−1H)−1H†).
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The VWF finds the linear estimate of s = Hx that minimizes the mean-
squared error E(||ŝ − s||2). Consequently, the mean squared error in the
VWF is less than that in the BLUE.

Ex. 20.3 Assume that E(xx†) = σ2I. Show that the mean squared error
for the VWF estimate is

E(||ŝ − s||2) = trace (H(H†Q−1H + σ−2I)−1H†).

20.7 Wiener Filtering of Functions

The Wiener filter is often presented in the context of random functions
of, say, time. In this model the signal is s(t) and the noise is q(t), where these
functions of time are viewed as random functions (stochastic processes).
The data is taken to be z(t), a function of t, so that the matrices UU †

and WW † are now infinite matrices; the discrete index j = 1, ..., J is now
replaced by the continuous index variable t. Instead of the finite family
{un, n = 1..., N}, we now have an infinite family of functions u(t) in U . The
entries of UU † are essentially the average values of the products u(t1)u(t2)
over all the members of U . It is often assumed that this average of products
is a function not of t1 and t2 separately, but only of their difference t1− t2;
this is called stationarity. So, aver{u(t1)u(t2)} = rs(t1 − t2) comes from a
function rs(τ) of a single variable. The Fourier transform of rs(τ) is Rs(ω),
the signal power spectrum. The matrix UU † is then an infinite Toeplitz
matrix, constant on each diagonal. The Wiener filtering can actually be
achieved by taking Fourier transforms and multiplying and dividing by
power spectra, instead of inverting infinite matrices. It is also common to
discretize the time variable and to consider the Wiener filter operating on
infinite sequences, as we see in the next section.

20.8 Wiener Filter Approximation: The Discrete
Stationary Case

Suppose now that the discrete stationary random process to be filtered
is the doubly infinite sequence {zn = sn+qn}∞n=−∞, where {sn} is the signal
component with autocorrelation function rs(k) = E(sn+ksn) and power
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spectrum Rs(ω) defined for ω in the interval [−π, π], and {qn} is the noise
component with autocorrelation function rq(k) and power spectrum Rq(ω)
defined for ω in [−π, π]. We assume that for each n the random variables
sn and qn have mean zero and that the signal and noise are independent
of one another. Then the autocorrelation function for the signal-plus-noise
sequence {zn} is

rz(n) = rs(n) + rq(n)

for all n and
Rz(ω) = Rs(ω) +Rq(ω)

is the signal-plus-noise power spectrum.
Let h = {hk}∞k=−∞ be a linear filter with transfer function

H(ω) =

∞∑
k=−∞

hke
ikω ,

for ω in [−π, π]. Given the sequence {zn} as input to this filter, the output
is the sequence

yn =

∞∑
k=−∞

hkzn−k. (20.2)

The goal of Wiener filtering is to select the filter h so that the output se-
quence yn approximates the signal sn sequence as well as possible. Specifi-
cally, we seek h so as to minimize the expected squared error, E(|yn−sn|2),
which, because of stationarity, is independent of n. We have

E(|yn|2) =

∞∑
k=−∞

hk

⎛
⎝ ∞∑
j=−∞

hj(rs(j − k) + rq(j − k))

⎞
⎠

=

∞∑
k=−∞

hk(rz ∗ h)k,

which, by the Parseval Equation (2.17), equals

1

2π

∫
H(ω)Rz(ω)H(ω)dω =

1

2π

∫ ∣∣∣H(ω)|2Rz(ω)dω.

Similarly,

E(snyn) =

∞∑
j=−∞

hjrs(j),

which equals
1

2π

∫
Rs(ω)H(ω)dω,
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and

E(|sn|2) = 1

2π

∫
Rs(ω)dω.

Therefore,

E(|yn − sn|2) = 1

2π

∫
|H(ω)|2Rz(ω)dω − 1

2π

∫
Rs(ω)H(ω)dω

− 1

2π

∫
Rs(ω)H(ω)dω +

1

2π

∫
Rs(ω)dω.

As we shall see shortly, minimizing E(|yn−sn|2) with respect to the function
H(ω) leads to the equation

Rz(ω)H(ω) = Rs(ω),

so that the transfer function of the optimal filter is

H(ω) = Rs(ω)/Rz(ω).

The Wiener filter is then the sequence {hk} of the Fourier coefficients of
this function H(ω).

To prove that this choice of H(ω) minimizes E(|yn−sn|2), we note that
|H(ω)|2Rz(ω)−Rs(ω)H(ω)−Rs(ω)H(ω) +Rs(ω)

= Rz|H(ω)−Rs(ω)/Rz(ω)|2 +Rs(ω)−Rs(ω)
2/Rz(ω).

Only the first term involves the function H(ω).

20.9 Approximating the Wiener Filter

Since H(ω) is a nonnegative function of ω, therefore real-valued, its
Fourier coefficients hk will be conjugate symmetric; that is, h−k = hk. This
poses a problem when the random process zn is a discrete time series, with
zn denoting the measurement recorded at time n. From Equation (20.2)
we see that to produce the output yn corresponding to time n we need the
input for every time, past and future. To remedy this we can obtain the
best causal approximation of the Wiener filter h.

A filter g = {gk}∞k=−∞ is said to be causal if gk = 0 for k < 0; this
means that given the input sequence {zn}, the output

wn =

∞∑
k=−∞

gkzn−k =

∞∑
k=0

gkzn−k
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requires only values of zm up to m = n. To obtain the causal filter g
that best approximates the Wiener filter, we find the coefficients gk that
minimize the quantity E(|yn − wn|2), or, equivalently, we minimize

∫ π

−π

∣∣∣H(ω)−
+∞∑
k=0

gke
ikω
∣∣∣2Rz(ω)dω.

The orthogonality principle tells us that the optimal coefficients must sat-
isfy the equations

rs(m) =

+∞∑
k=0

gkrz(m− k),

for all m. These are the Wiener–Hopf equations [122].
Even having a causal filter does not completely solve the problem, since

we would have to record and store the infinite past. Instead, we can decide
to use a filter f = {fk}∞k=−∞ for which fk = 0 unless −K ≤ k ≤ L for
some positive integers K and L. This means we must store L values and
wait until time n+K to obtain the output for time n. Such a linear filter
is a finite memory, finite delay filter, also called a finite impulse response
(FIR) filter. Given the input sequence {zn} the output of the FIR filter is

vn =

L∑
k=−K

fkzn−k.

To obtain such an FIR filter f that best approximates the Wiener filter,
we find the coefficients fk that minimize the quantity E(|yn − vn|2), or,
equivalently, we minimize

∫ π

−π

∣∣∣H(ω)−
L∑

k=−K
fke

ikω
∣∣∣2Rz(ω)dω. (20.3)

The orthogonality principle tells us that the optimal coefficients must sat-
isfy the equations

rs(m) =

L∑
k=−K

fkrz(m− k), (20.4)

for −K ≤ m ≤ L.
In [31] it was pointed out that the linear equations that arise in Wiener-

filter approximation also occur in image reconstruction from projections,
with the image to be reconstructed playing the role of the power spectrum
to be approximated. The methods of Wiener-filter approximation were then
used to derive linear and nonlinear image-reconstruction procedures.
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20.10 Adaptive Wiener Filters

Once again, we consider a stationary random process zn = sn+vn with
autocorrelation function E(znzn−m) = rz(m) = rs(m) + rv(m). The finite
causal Wiener filter (FCWF) f = (f0, f1, ..., fL)

T is convolved with {zn} to
produce an estimate of sn given by

ŝn =
L∑
k=0

fkzn−k.

With y†
n = (zn, zn−1, ..., zn−L) we can write ŝn = y†

nf . The FCWF f mini-
mizes the expected squared error

J(f) = E(|sn − ŝn|2)
and is obtained as the solution of the equations

rs(m) =

L∑
k=0

fkrz(m− k),

for 0 ≤ m ≤ L. Therefore, to use the FCWF we need the values rs(m) and
rz(m− k) for m and k in the set {0, 1, ..., L}. When these autocorrelation
values are not known, we can use adaptive methods to approximate the
FCWF.

20.10.1 An Adaptive Least-Mean-Square Approach

We assume now that we have z0, z1, ..., zN and p0, p1, ..., pN , where pn
is a prior estimate of sn, but that we do not know the correlation functions
rz and rs.

The gradient of the function J(f) is

∇J(f) = Rzzf − rs,

where Rzz is the square matrix with entries rz(m− n) and rs is the vector
with entries rs(m). An iterative gradient descent method for solving the
system of equations Rzzf = rs is

fτ = fτ−1 − μτ∇J(fτ−1),

for some step-size parameters μτ > 0.
The adaptive least-mean-square (LMS) approach [48] replaces the gra-

dient of J(f) with an approximation of the gradient of the function
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G(f) = |sn − ŝn|2, which is −2(sn − ŝn)yn. Since we do not know sn,
we replace that term with the estimate pn. The iterative step of the LMS
method is

fτ = fτ−1 + μτ (pτ − y†
τ fτ−1)yτ , (20.5)

for L ≤ τ ≤ N . Notice that it is the approximate gradient of the function
|sτ − ŝτ |2 that is used at this step, in order to involve all the data z0, ..., zN
as we iterate from τ = L to τ = N . We illustrate the use of this method in
adaptive interference cancellation.

20.10.2 Adaptive Interference Cancellation (AIC)

Adaptive interference cancellation (AIC) [161] is used to suppress a
dominant noise component vn in the discrete sequence zn = sn + vn. It is
assumed that we have available a good estimate qn of vn. The main idea
is to switch the roles of signal and noise in the adaptive LMS method and
design a filter to estimate vn. Once we have that estimate, we subtract it
from zn to get our estimate of sn.

In the role of zn we use

qn = vn + εn,

where εn denotes a low-level error component. In the role of pn, we take
zn, which is approximately vn, since the signal sn is much lower than the
noise vn. Then, y

†
n = (qn, qn−1, ..., qn−L). The iterative step used to find

the filter f is then

fτ = fτ−1 + μτ (zτ − y†
τ fτ−1)yτ ,

for L ≤ τ ≤ N . When the iterative process has converged to f , we take as
our estimate of sn

ŝn = zn −
L∑
k=0

fkqn−k.

It has been suggested that this procedure be used in computerized tomog-
raphy to correct artifacts due to patient motion [66].

20.10.3 Recursive Least Squares (RLS)

An alternative to the LMS method is to find the least-squares solution
of the system of N − L+ 1 linear equations

pn =

L∑
k=0

fkzn−k,
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for L ≤ n ≤ N . The recursive least squares (RLS) method is a recursive
approach to solving this system.

For L ≤ τ ≤ N let Zτ be the matrix whose rows are y†
n for n = L, ..., τ ,

pTτ = (pL, pL+1, ..., pτ ) and Qτ = Z†
τZτ . The least-squares solution we seek

is
f = Q−1

N Z†
NpN .

Ex. 20.4 Show that Qτ = Qτ−1 + yτy
†
τ , for L < τ ≤ N .

Ex. 20.5 Use the matrix-inversion identity in Equation (20.1) to write
Q−1
τ in terms of Q−1

τ−1.

Ex. 20.6 Using the previous exercise, show that the desired least-squares
solution f is f = fN , where, for L ≤ τ ≤ N we let

fτ = fτ−1 +

(
pτ − y†

τ fτ−1

1 + y†
τQ

−1
τ−1yτ

)
Q−1
τ−1yτ .

Comparing this iterative step with that given by Equation (20.5), we see
that the former gives an explicit value for μτ and uses Q−1

τ−1yτ instead of yτ
as the direction vector for the iterative step. The RMS iteration produces
a more accurate estimate of the FCWF than does the LMS method, but
requires more computation.
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21.1 Chapter Summary

Matrices and their algebraic properties play an ever-increasing role in
signal processing. In this chapter we outline the most important of these
properties. The notation associated with matrix and vector algebra is de-
signed to reduce the number of things we have to think about as we perform
our calculations. This notation can be extended to multi-variable calculus,
as we also show in this chapter.
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21.2 Matrix Inverses

A square matrix A is said to have inverse A−1 provided that

AA−1 = A−1A = I,

where I is the identity matrix. The 2 by 2 matrix A =

[
a b
c d

]
has an

inverse

A−1 =
1

ad− bc

[
d −b
−c a

]
whenever the determinant ofA, det(A) = ad−bc is not zero. More generally,
associated with every complex square matrix is the complex number called
its determinant, which is obtained from the entries of the matrix using
formulas that can be found in any text on linear algebra. The significance of
the determinant is that the matrix is invertible if and only if its determinant
is not zero. This is of more theoretical than practical importance, since no
computer can tell when a number is precisely zero. A matrix A that is not
square cannot have an inverse, but does have a pseudo-inverse, which is
found using the singular-value decomposition.

21.3 Basic Linear Algebra

In this section we discuss systems of linear equations, Gaussian elimi-
nation, and the notions of basic and non-basic variables.

21.3.1 Bases and Dimension

The notions of a basis and of linear independence are fundamental in
linear algebra. Let V be a vector space.

Definition 21.1 A collection of vectors {u1, ..., uN} in V is linearly inde-
pendent if there is no choice of scalars α1, ..., αN , not all zero, such that

0 = α1u
1 + ...+ αNu

N .

Definition 21.2 The span of a collection of vectors {u1, ..., uN} in V is
the set of all vectors x that can be written as linear combinations of the un;
that is, for which there are scalars c1, ..., cN , such that

x = c1u
1 + ...+ cNu

N .
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Definition 21.3 A collection of vectors {w1, ..., wN} in V is called a span-
ning set for a subspace S if the set S is their span.

Definition 21.4 A collection of vectors {u1, ..., uN} in V is called a basis
for a subspace S if the collection is linearly independent and S is their span.

Definition 21.5 A collection of vectors {u1, ..., uN} in an inner product
space V is called orthonormal if ||un||2 = 1, for all n, and 〈um, un〉 = 0,
for m �= n.

Suppose that S is a subspace of V , that {w1, ..., wN} is a spanning set
for S, and {u1, ..., uM} is a linearly independent subset of S. Beginning with
w1, we augment the set {u1, ..., uM} with wj if wj is not in the span of the
um and the wk previously included. At the end of this process, we have
a linearly independent spanning set, and therefore, a basis, for S (Why?).
Similarly, beginning with w1, we remove wj from the set {w1, ..., wN} if wj

is a linear combination of the wk, k = 1, ..., j − 1. In this way we obtain
a linearly independent set that spans S, hence another basis for S. The
following lemma will allow us to prove that all bases for a subspace S have
the same number of elements.

Lemma 21.1 Let W = {w1, ..., wN} be a spanning set for a subspace S in
RI , and V = {v1, ..., vM} a linearly independent subset of S. Then M ≤ N .

Proof: Suppose that M > N . Let B0 = {w1, ..., wN}. To obtain the set
B1, form the set C1 = {v1, w1, ..., wN} and remove the first member of C1

that is a linear combination of members of C1 that occur to its left in the
listing; since v1 has no members to its left, it is not removed. Since W is
a spanning set, v1 is a linear combination of the members of W , so that
some member of W is a linear combination of v1 and the members of W
that precede it in the list; remove the first member of W for which this is
true.

We note that the set B1 is a spanning set for S and has N members.
Having obtained the spanning set Bk, with N members and whose first k
members are vk, ..., v1, we form the set Ck+1 = Bk ∪ {vk+1}, listing the
members so that the first k+1 of them are {vk+1, vk, ..., v1}. To get the set
Bk+1 we remove the first member of Ck+1 that is a linear combination of
the members to its left; there must be one, since Bk is a spanning set, and
so vk+1 is a linear combination of the members of Bk. Since the set V is
linearly independent, the member removed is from the set W . Continuing
in this fashion, we obtain a sequence of spanning sets B1, ..., BN , each with
N members. The set BN is BN = {v1, ..., vN} and vN+1 must then be
a linear combination of the members of BN , which contradicts the linear
independence of V .
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Corollary 21.1 Every basis for a subspace S has the same number of el-
ements.

Ex. 21.1 Let W = {w1, ..., wN} be a spanning set for a subspace S in
RI , and V = {v1, ..., vM} a linearly independent subset of S. Let A be the
matrix whose columns are the vm, B the matrix whose columns are the wn.
Show that there is an N by M matrix C such that A = BC. Prove Lemma
21.1 by showing that, if M > N , then there is a non-zero vector x with
Cx = Ax = 0.

Definition 21.6 The dimension of a subspace S is the number of elements
in any basis.

Lemma 21.2 For any matrix A, the maximum number of linearly inde-
pendent rows equals the maximum number of linearly independent columns.

Proof: Suppose that A is an I by J matrix, and that K ≤ J is the
maximum number of linearly independent columns of A. Select K linearly
independent columns of A and use them as the K columns of an I by K
matrix U . Since every column of A must be a linear combination of these
K selected ones, there is a K by J matrix M such that A = UM . From
AT =MTUT we conclude that every column of AT is a linear combination
of the K columns of the matrix MT . Therefore, there can be at most K
linearly independent columns of AT .

Definition 21.7 The rank of A is the maximum number of linearly inde-
pendent rows or of linearly independent columns of A.

21.3.2 Systems of Linear Equations

Consider the system of three linear equations in five unknowns given by

x1 + 2x2 + 2x4 + x5 = 0

−x1 − x2 + x3 + x4 = 0

x1 + 2x2 − 3x3 − x4 − 2x5 = 0.

This system can be written in matrix form as Ax = 0, with A the coefficient
matrix

A =

⎡
⎣ 1 2 0 2 1
−1 −1 1 1 0
1 2 −3 −1 −2

⎤
⎦ ,
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and x = (x1, x2, x3, x4, x5)
T . Applying Gaussian elimination to this system,

we obtain a second, simpler, system with the same solutions:

x1 − 2x4 + x5 = 0

x2 + 2x4 = 0

x3 + x4 + x5 = 0.

From this simpler system we see that the variables x4 and x5 can be freely
chosen, with the other three variables then determined by this system of
equations. The variables x4 and x5 are then independent, the others de-
pendent. The variables x1, x2 and x3 are then called basic variables. To
obtain a basis of solutions we can let x4 = 1 and x5 = 0, obtaining the
solution x = (2,−2,−1, 1, 0)T , and then choose x4 = 0 and x5 = 1 to
get the solution x = (−1, 0,−1, 0, 1)T . Every solution to Ax = 0 is then a
linear combination of these two solutions. Notice that which variables are
basic and which are non-basic is somewhat arbitrary, in that we could have
chosen as the non-basic variables any two whose columns are independent.

Having decided that x4 and x5 are the non-basic variables, we can write
the original matrix A as A =

[
B N

]
, where B is the square invertible

matrix

B =

⎡
⎣ 1 2 0
−1 −1 1
1 2 −3

⎤
⎦ ,

and N is the matrix

N =

⎡
⎣ 2 1

1 0
−1 −2

⎤
⎦ .

With xB = (x1, x2, x3)
T and xN = (x4, x5)

T we can write

Ax = BxB +NxN = 0,

so that
xB = −B−1NxN .

21.3.3 Real and Complex Systems of Linear Equations

A system Ax = b of linear equations is called a complex system, or a
real system if the entries of A, x and b are complex, or real, respectively.
For any matrix A, we denote by AT and A† the transpose and conjugate
transpose of A, respectively.

Any complex system can be converted to a real system in the following
way. A complex matrix A can be written as A = A1 + iA2, where A1 and
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A2 are real matrices and i =
√−1. Similarly, x = x1+ ix2 and b = b1+ ib2,

where x1, x2, b1 and b2 are real vectors. Denote by Ã the real matrix

Ã =

[
A1 −A2

A2 A1

]
,

by x̃ the real vector

x̃ =

[
x1

x2

]
,

and by b̃ the real vector

b̃ =

[
b1

b2

]
.

Then x satisfies the system Ax = b if and only if x̃ satisfies the system
Ãx̃ = b̃.

Definition 21.8 A square matrix A is symmetric if AT = A and Hermi-
tian if A† = A.

Definition 21.9 A non-zero vector x is said to be an eigenvector of the
square matrix A if there is a scalar λ such that Ax = λx. Then λ is said
to be an eigenvalue of A.

If x is an eigenvector of A with eigenvalue λ, then the matrix A − λI
has no inverse, so its determinant is zero; here I is the identity matrix with
ones on the main diagonal and zeros elsewhere. Solving for the roots of the
determinant is one way to calculate the eigenvalues of A. For example, the
eigenvalues of the Hermitian matrix

B =

[
1 2 + i

2− i 1

]

are λ = 1 +
√
5 and λ = 1 − √

5, with corresponding eigenvectors
u = (

√
5, 2 − i)T and v = (

√
5, i − 2)T , respectively. Then B̃ has the

same eigenvalues, but both with multiplicity two. Finally, the associated
eigenvectors of B̃ are [

u1

u2

]
,

and [−u2
u1

]
,

for λ = 1 +
√
5, and [

v1

v2

]
,

and [−v2
v1

]
,

for λ = 1−√
5.
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21.4 Solutions of Under-determined Systems of Linear
Equations

Suppose that Ax = b is a consistent linear system of M equations in
N unknowns, where M < N . Then there are infinitely many solutions.
A standard procedure in such cases is to find that solution x having the
smallest norm

||x|| =
√√√√ N∑
n=1

|xn|2.

As we shall see shortly, theminimum-norm solution ofAx = b is a vector of
the form x = A†z, where A† denotes the conjugate transpose of the matrix
A. Then Ax = b becomes AA†z = b. Typically, (AA†)−1 will exist, and we
get z = (AA†)−1b, from which it follows that the minimum-norm solution
is x = A†(AA†)−1b. When M and N are not too large, forming the matrix
AA† and solving for z is not prohibitively expensive and time-consuming.
However, in image processing the vector x is often a vectorization of a two-
dimensional (or even three-dimensional) image and M and N can be on
the order of tens of thousands or more. The ART algorithm gives us a fast
method for finding the minimum-norm solution without computing AA†;
see [84] and [42].

We begin by proving that the minimum-norm solution of Ax = b has
the form x = A†z for some M -dimensional complex vector z.

Let the null space of the matrix A be all N -dimensional complex vectors
w with Aw = 0. If Ax = b then A(x +w) = b for all w in the null space
of A. If x = A†z and w is in the null space of A, then

||x+w||2 = ||A†z+w||2 = (A†z+w)†(A†z+w)

= (A†z)†(A†z) + (A†z)†w+w†(A†z) +w†w
= ||A†z||2 + (A†z)†w +w†(A†z) + ||w||2
= ||A†z||2 + ||w||2,

since
w†(A†z) = (Aw)†z = 0†z = 0

and
(A†z)†w = z†Aw = z†0 = 0.

Therefore, ||x+w|| = ||A†z+w|| > ||A†z|| = ||x|| unless w = 0.

Ex. 21.2 Show that if z = (z1, ..., zN)
T is a column vector with complex

entries and H = H† is an N by N Hermitian matrix with complex entries
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then the quadratic form z†Hz is a real number. Show that the quadratic
form z†Hz can be calculated using only real numbers. Let z = x+ iy, with
x and y real vectors and let H = A+ iB, where A and B are real matrices.
Then show that AT = A, BT = −B, xTBx = 0 and finally,

z†Hz =
[
xT yT

] [A −B
B A

] [
x
y

]
.

Use the fact that z†Hz is real for every vector z to conclude that the eigen-
values of H are real.

21.5 Eigenvalues and Eigenvectors

Given N by N complex matrix A, we say that a complex number λ is an
eigenvalue of A if there is a nonzero vector u with Au = λu. The column
vector u is then called an eigenvector of A associated with eigenvalue λ;
clearly, if u is an eigenvector of A, then so is cu, for any constant c �= 0.
If λ is an eigenvalue of A, then the matrix A− λI fails to have an inverse,
since (A − λI)u = 0 but u �= 0. If we treat λ as a variable and compute
the determinant of A − λI, we obtain a polynomial of degree N in λ. Its
roots λ1, ..., λN are then the eigenvalues of A. If ||u||2 = u†u = 1 then
u†Au = λu†u = λ.

It can be shown that it is possible to find a set of N mutually orthogonal
eigenvectors of the Hermitian matrix H ; call them {u1, ...,uN}. The matrix
H can then be written as

H =

N∑
n=1

λnu
n(un)†,

a linear superposition of the dyad matrices un(un)†. We can also write H =
ULU †, where U is the matrix whose nth column is the column vector un

and L is the diagonal matrix with the eigenvalues down the main diagonal
and zero elsewhere.

The matrix H is invertible if and only if none of the λ are zero and its
inverse is

H−1 =
N∑
n=1

λ−1
n un(un)†.

We also have H−1 = UL−1U †.
A Hermitian matrix Q is said to be nonnegative definite (positive defi-

nite) if all the eigenvalues of Q are nonnegative (positive). The matrix Q is
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a nonnegative-definite matrix if and only if there is another matrix C such
that Q = C†C. Since the eigenvalues of Q are nonnegative, the diagonal
matrix L has a square root,

√
L. Using the fact that U †U = I, we have

Q = ULU † = U
√
LU †U

√
LU †;

we then take C = U
√
LU †, so C† = C. Then z†Qz = z†C†Cz = ||Cz||2, so

that Q is positive definite if and only if C is invertible.

Ex. 21.3 Let A be an M by N matrix with complex entries. View A as a
linear function with domain CN , the space of all N -dimensional complex
column vectors, and range contained within C

M , via the expression A(x) =
Ax. Suppose that M > N . The range of A, denoted R(A), cannot be all of
CM . Show that every vector z in CM can be written uniquely in the form
z = Ax+w, where A†w = 0. Show that ‖z‖2 = ‖Ax‖2+‖w‖2, where ‖z‖2
denotes the square of the norm of z. Hint: If z = Ax + w then consider
A†z. Assume A†A is invertible.

21.6 Vectorization of a Matrix

When the complex M by N matrix A is stored in the computer it is
usually vectorized; that is, the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 . . . A1N

A21 A22 . . . A2N

.

.

.
AM1 AM2 . . . AMN

⎤
⎥⎥⎥⎥⎥⎥⎦

becomes

vec(A) = (A11, A21, ..., AM1, A12, A22, ..., AM2, ..., AMN )T .

Ex. 21.4 (a) Show that the complex dot product vec(A)·vec(B) =
vec(B)†vec(A) can be obtained by

vec(A)·vec(B) = trace (AB†) = tr(AB†),

where, for a square matrix C, trace (C) means the sum of the entries along
the main diagonal of C. We can therefore use the trace to define an inner
product between matrices: < A,B >= trace (AB†).
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(b) Show that trace (AA†) ≥ 0 for all A, so that we can use the trace to
define a norm on matrices: ||A||2 = trace (AA†).

Ex. 21.5 Let B = ULD† be an M by N matrix in diagonalized form; that
is, L is an M by N diagonal matrix with entries λ1, ..., λK on its main
diagonal, where K = min(M,N), and U and V are square matrices. Let
the n-th column of U be denoted un and similarly for the columns of V .
Such a diagonal decomposition occurs in the singular value decomposition
(SVD). Show that we can write

B = λ1u
1(v1)† + ...+ λKuK(vK)†.

If B is an N by N Hermitian matrix, then we can take U = V and K =
M = N , with the columns of U the eigenvectors of B, normalized to have
Euclidean norm equal to one, and the λn to be the eigenvalues of B. In
this case we may also assume that U is a unitary matrix; that is, UU † =
U †U = I, where I denotes the identity matrix.

21.7 The Singular Value Decomposition of a Matrix

We have just seen that an N by N Hermitian matrix H can be written
in terms of its eigenvalues and eigenvectors as H = ULU † or as

H =

N∑
n=1

λnu
n(un)†.

The singular value decomposition (SVD) is a similar result that applies to
any rectangular matrix. It is an important tool in image compression and
pseudo-inversion.

21.7.1 The SVD

Let C be any N by K complex matrix. In presenting the SVD of C we
shall assume that K ≥ N ; the SVD of C† will come from that of C. Let
A = C†C and B = CC†; we assume, reasonably, that B, the smaller of the
two matrices, is invertible, so all the eigenvalues λ1, ..., λN of B are positive.
Then, write the eigenvalue/eigenvector decomposition of B as B = ULU †.

Ex. 21.6 Show that the nonzero eigenvalues of A and B are the same.
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Let V be the K by K matrix whose first N columns are those of the
matrix C†UL−1/2 and whose remaining K −N columns are any mutually
orthogonal norm-one vectors that are all orthogonal to each of the first
N columns. Let M be the N by K matrix with diagonal entries Mnn =√
λn for n = 1, ..., N and whose remaining entries are zero. The nonzero

entries of M ,
√
λn, are called the singular values of C. The singular value

decomposition (SVD) of C is C = UMV †. The SVD of C† is C† = VMTU †.

Ex. 21.7 Show that UMV † = C.

Using the SVD of C we can write

C =
N∑
n=1

√
λnu

n(vn)†,

where vn denotes the nth column of the matrix V .
In image processing, matrices such as C are used to represent discrete

two-dimensional images, with the entries of C corresponding to the grey
level or color at each pixel. It is common to find that most of the N singular
values of C are nearly zero, so that C can be written approximately as a
sum of far fewer than N dyads; this is SVD image compression.

21.7.2 An Application in Space Exploration

The Galileo was deployed from the space shuttle Atlantis on October 18,
1989. After a detour around Venus and back past Earth to pick up gravity-
assisted speed, Galileo headed for Jupiter. Its mission included a study of
Jupiter’s moon Europa, and the plan was to send back one high-resolution
photo per minute, at a rate of 134 KB per second, via a huge high-gain
antenna, one with a high degree of directionality that can transmit most of
the limited signal energy in a narrow beam. When the time came to open
the antenna, it stuck. Without the pictures, the mission would be a failure.

There was a much smaller low-gain antenna on board, but the best
transmission rate was going to be ten bits per second, and the directionality
was much less. All that could be done from earth was to reprogram an old
on-board computer to compress the pictures prior to transmission. The
problem was that pictures could be taken much faster than they could be
transmitted to earth; some way to store them prior to transmission was
key. The original designers of the software had long since retired, but the
engineers figured out a way to introduce state-of-the-art image compression
algorithms into the computer. It happened that there was an ancient reel-
to-reel storage device on board that was there only to serve as a backup for
storing atmospheric data. Using this device and the compression methods,
the engineers saved the mission [5].



326 Signal Processing: A Mathematical Approach

21.7.3 Pseudo-Inversion

If N �= K then C cannot have an inverse; it does, however, have a
pseudo-inverse, C∗ = VM∗U †, where M∗ is the matrix obtained from M
by taking the inverse of each of its nonzero entries and leaving the remaining
zeros the same. The pseudo-inverse of C† is

(C†)∗ = (C∗)† = U(M∗)TV † = U(M †)∗V †.

Some important properties of the pseudo-inverse are the following:

1. CC∗C = C,

2. C∗CC∗ = C∗,

3. (C∗C)† = C∗C,

4. (CC∗)† = CC∗.

The pseudo-inverse of an arbitrary I by J matrix G can be used in much
the same way as the inverse of nonsingular matrices to find approximate
or exact solutions of systems of equations Gx = d. The following examples
illustrate this point.

Ex. 21.8 If I > J the system Gx = d probably has no exact solution.
Show that whenever G†G is invertible the pseudo-inverse of G is G∗ =
(G†G)−1G† so that the vector x = G∗d is the least-squares approximate
solution.

Ex. 21.9 If I < J the system Gx = d probably has infinitely many solu-
tions. Show that whenever the matrix GG† is invertible the pseudo-inverse
of G is G∗ = G†(GG†)−1, so that the vector x = G∗d is the exact solution
of Gx = d closest to the origin; that is, it is the minimum-norm solution.

21.8 Singular Values of Sparse Matrices

In image reconstruction from projections the M by N matrix A is usu-
ally quite large and often ε-sparse; that is, most of its elements do not
exceed ε in absolute value, where ε denotes a small positive quantity. In
transmission tomography each column of A corresponds to a single pixel
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in the digitized image, while each row of A corresponds to a line segment
through the object, along which an x-ray beam has traveled. The entries
of a given row of A are nonzero only for those columns whose associated
pixel lies on that line segment; clearly, most of the entries of any given row
of A will then be zero. In emission tomography the I by J nonnegative
matrix P has entries Pij ≥ 0; for each detector i and pixel j, Pij is the
probability that an emission at the jth pixel will be detected at the ith
detector. When a detection is recorded at the ith detector, we want the
likely source of the emission to be one of only a small number of pixels. For
single photon emission tomography (SPECT), a lead collimator is used to
permit detection of only those photons approaching the detector straight
on. In positron emission tomography (PET), coincidence detection serves
much the same purpose. In both cases the probabilities Pij will be zero
(or nearly zero) for most combinations of i and j. Such matrices are called
sparse (or almost sparse). We discuss now a convenient estimate for the
largest singular value of an almost sparse matrix A, which, for notational
convenience only, we take to be real.

In [40] it was shown that if A is normalized so that each row has length
one, then the spectral radius of ATA, which is the square of the largest
singular value of A itself, does not exceed the maximum number of nonzero
elements in any column of A. A similar upper bound on ρ(ATA) can be
obtained for non-normalized, ε-sparse A.

Let A be an M by N matrix. For each n = 1, ..., N , let sn > 0 be
the number of nonzero entries in the nth column of A, and let s be the
maximum of the sn. Let G be the M by N matrix with entries

Gmn = Amn/

(
N∑
l=1

slA
2
ml

)1/2

.

Lent has shown that the eigenvalues of the matrix GTG do not exceed
one [107]. This result suggested the following proposition, whose proof was
given in [40].

Proposition 21.1 Let A be an M by N matrix. For each m = 1, ...,M let
νm =

∑N
n=1A

2
mn > 0. For each n = 1, ..., N let σn =

∑M
m=1 emnνm, where

emn = 1 if Amn �= 0 and emn = 0 otherwise. Let σ denote the maximum
of the σn. Then the eigenvalues of the matrix ATA do not exceed σ. If A
is normalized so that the Euclidean length of each of its rows is one, then
the eigenvalues of ATA do not exceed s, the maximum number of nonzero
elements in any column of A.

Proof: For simplicity, we consider only the normalized case; the proof for
the more general case is similar.
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Let ATAv = cv for some nonzero vector v. We show that c ≤ s. We have
AATAv = cAv and so wTAATw = vTATAATAv = cvTATAv = cwTw,
for w = Av. Then, with emn = 1 if Amn �= 0 and emn = 0 otherwise, we
have (

M∑
m=1

Amnwm

)2

=

(
M∑
m=1

Amnemnwm

)2

≤
(

M∑
m=1

A2
mnw

2
m

)(
M∑
m=1

e2mn

)

=

(
M∑
m=1

A2
mnw

2
m

)
sj ≤

(
M∑
m=1

A2
mnw

2
m

)
s.

Therefore,

wTAATw =

N∑
n=1

(
M∑
m=1

Amnwm

)2

≤
N∑
n=1

(
M∑
m=1

A2
mnw

2
m

)
s,

and

wTAATw = c

M∑
m=1

w2
m = c

M∑
m=1

w2
m

(
N∑
n=1

A2
mn

)

= c

M∑
m=1

N∑
n=1

w2
mA

2
mn.

The result follows immediately.

If we normalize A so that its rows have length one, then the trace of the
matrix AAT is tr(AAT ) = M , which is also the sum of the eigenvalues of
ATA. Consequently, the maximum eigenvalue of ATA does not exceed M ;
Proposition 21.1 improves that upper bound considerably, if A is sparse
and so s << M .

In image reconstruction from projection data that includes scattering we
often encounter matrices A most of whose entries are small, if not exactly
zero. A slight modification of the proof provides us with a useful upper
bound for L, the largest eigenvalue of ATA, in such cases. Assume that the
rows of A have length one. For ε > 0 let s be the largest number of entries
in any column of A whose magnitudes exceed ε. Then we have

L ≤ s+MNε2 + 2ε(MNs)1/2.

The proof of this result is similar to that for Proposition 21.1.



Matrix Theory 329

21.9 Matrix and Vector Differentiation

As we saw previously, the least-squares approximate solution of Ax = b
is a vector x̂ that minimizes the function ||Ax − b||. In our discussion of
band-limited extrapolation we showed that, for any nonnegative-definite
matrix Q, the vector having norm one that maximizes the quadratic form
x†Qx is an eigenvector of Q associated with the largest eigenvalue. In
the chapter on best linear unbiased optimization we seek a matrix that
minimizes a certain function. All of these examples involve what we can
call matrix-vector differentiation, that is, the differentiation of a function
with respect to a matrix or a vector. The gradient of a function of several
variables is a well-known example and we begin there. Since there is some
possibility of confusion, we adopt the notational convention that boldfaced
symbols, such as x, indicate a column vector, while x denotes a scalar.

21.10 Differentiation with Respect to a Vector

Let x = (x1, ..., xN )T be an N -dimensional real column vector. Let
z = f(x) be a real-valued function of the entries of x. The derivative of z
with respect to x, also called the gradient of z, is the column vector

∂z

∂x
= a = (a1, ..., aN )T

with entries

an =
∂z

∂xn
.

Ex. 21.10 Let y be a fixed real column vector and z = f(x) = yTx. Show
that

∂z

∂x
= y.

Ex. 21.11 Let Q be a real symmetric nonnegative-definite matrix, and let
z = f(x) = xTQx. Show that the gradient of this quadratic form is

∂z

∂x
= 2Qx.

Hint: Write Q as a linear combination of dyads involving the eigenvectors.
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Ex. 21.12 Let z = ||Ax− b||2. Show that

∂z

∂x
= 2ATAx− 2ATb.

Hint: Use z = (Ax− b)T (Ax − b).

We can also consider the second derivative of z = f(x), which is the
Hessian matrix of z

H =
∂2z

∂x2
= ∇2f(x)

with entries

Hmn =
∂2z

∂xm∂xn
.

If the entries of the vector z = (z1, ..., zM )T are real-valued functions of
the vector x, the derivative of z is the matrix whose mth column is the
derivative of the real-valued function zm. This matrix is usually called the
Jacobian matrix of z. If M = N the determinant of the Jacobian matrix is
the Jacobian.

Ex. 21.13 Suppose (u, v) = (u(x, y), v(x, y)) is a change of variables from
the Cartesian (x, y) coordinate system to some other (u, v) coordinate sys-
tem. Let x = (x, y)T and z = (u(x), v(x))T .

(a) Calculate the Jacobian for the rectangular coordinate system ob-
tained by rotating the (x, y) system through an angle of θ.

(b) Calculate the Jacobian for the transformation from the (x, y) system
to polar coordinates.

21.11 Differentiation with Respect to a Matrix

Now we consider real-valued functions z = f(A) of a real matrix A. As
an example, for square matrices A we have

z = f(A) = trace (A) =

N∑
n=1

Ann,

the sum of the entries along the main diagonal of A.
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The derivative of z = f(A) is the matrix

∂z

∂A
= B

whose entries are

Bmn =
∂z

∂Amn
.

Ex. 21.14 Show that the derivative of trace (A) is B = I, the identity
matrix.

Ex. 21.15 Show that the derivative of z = trace (DAC) with respect to A
is

∂z

∂A
= DTCT .

Consider the function f defined for all J by J positive-definite symmet-
ric matrices by

f(Q) = − log det(Q).

Proposition 21.2 The gradient of f(Q) is g(Q) = −Q−1.

Proof: Let ΔQ be symmetric. Let γj , for j = 1, 2, ..., J , be the eigenvalues
of the symmetric matrix Q−1/2(ΔQ)Q−1/2. These γj are then real and are
also the eigenvalues of the matrix Q−1(ΔQ). We shall consider ‖ΔQ‖ small,
so we may safely assume that 1 + γj > 0.

Note that

〈Q−1,ΔQ〉 =
J∑
j=1

γj ,

since the trace of any square matrix is the sum of its eigenvalues. Then we
have

f(Q+ΔQ)− f(Q) = − log det(Q+ΔQ) + log det(Q)

= − log det(I +Q−1(ΔQ)) = −
J∑
j=1

log(1 + γj).

From the submultiplicativity of the Frobenius norm we have

‖Q−1(ΔQ)‖/‖Q−1‖ ≤ ‖ΔQ‖ ≤ ‖Q−1(ΔQ)‖‖Q‖.

Therefore, taking the limit as ‖ΔQ‖ goes to zero is equivalent to taking
the limit as ‖γ‖ goes to zero, where γ is the vector whose entries are the
γj .
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To show that g(Q) = −Q−1 note that

lim sup
‖ΔQ‖→0

f(Q+ΔQ)− f(Q)− 〈−Q−1,ΔQ〉
‖ΔQ‖

= lim sup
‖ΔQ‖→0

| − log det(Q+ΔQ) + log det(Q) + 〈Q−1,ΔQ〉|
‖ΔQ‖

≤ lim sup
‖γ‖→0

∑J
j=1 | log(1 + γj)− γj |

‖γ‖/‖Q−1‖

≤ ‖Q−1‖
J∑
j=1

lim
γj→0

γj − log(1 + γj)

|γj | = 0.

We note in passing that the derivative of det(DAC) with respect to A
is the matrix det(DAC)(A−1)T .

Although the trace is not independent of the order of the matrices in a
product, it is independent of cyclic permutation of the factors:

trace (ABC) = trace (CAB) = trace (BCA).

Therefore, the trace is independent of the order for the product of two
matrices:

trace (AB) = trace (BA).

From this fact we conclude that

xTx = trace (xTx) = trace (xxT ).

If x is a random vector with correlation matrix

R = E(xxT ),

then

E(xTx) = E(trace (xxT )) = trace (E(xxT )) = trace (R).

Ex. 21.16 Let z = trace (ATCA). Show that the derivative of z with re-
spect to the matrix A is

∂z

∂A
= CA+ CTA.

Therefore, if C = Q is symmetric, then the derivative is 2QA.
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We have restricted the discussion here to real matrices and vectors. It
often happens that we want to optimize a real quantity with respect to a
complex vector. We can rewrite such quantities in terms of the real and
imaginary parts of the complex values involved, to reduce everything to
the real case just considered. For example, let Q be a Hermitian matrix;
then the quadratic form k†Qk is real, for any complex vector k. As we saw
in Exercise 21.2, we can write the quadratic form entirely in terms of real
matrices and vectors.

If w = u+ iv is a complex number with real part u and imaginary part
v, the function z = f(w) = |w|2 is real-valued. The derivative of z = f(w)
with respect to the complex variable w does not exist. When we write
z = u2+ v2, we consider z as a function of the real vector x = (u, v)T . The
derivative of z with respect to x is the vector (2u, 2v)T .

Similarly, when we consider the real quadratic form k†Qk, we view
each of the complex entries of the N by 1 vector k as two real numbers
forming a two-dimensional real vector. We then differentiate the quadratic
form with respect to the 2N by 1 real vector formed from these real and
imaginary parts. If we turn the resulting 2N by 1 real vector back into an
N by 1 complex vector, we get 2Qk as the derivative; so, it appears as if
the formula for differentiating in the real case carries over to the complex
case.

21.12 Eigenvectors and Optimization

We can use these results concerning differentiation with respect to a
vector to show that eigenvectors solve certain optimization problems.

Consider the problem of maximizing the quadratic form x†Qx, subject
to x†x = 1; here the matrix Q is Hermitian, positive-definite, so that all of
its eigenvalues are positive. We use the Lagrange-multiplier approach, with
the Lagrangian

L(x, λ) = x†Qx− λx†x,

where the scalar variable λ is the Lagrange multiplier. We differentiate
L(x, λ) with respect to x and set the result equal to zero, obtaining

2Qx− 2λx = 0,

or
Qx = λx.

Therefore, x is an eigenvector of Q and λ is its eigenvalue. Since

x†Qx = λx†x = λ,
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we conclude that λ = λ1, the largest eigenvalue of Q, and x = u1, a norm-
one eigenvector associated with λ1.

Now consider the problem of maximizing x†Qx, subject to x†x = 1,
and x†u1 = 0. The Lagrangian is now

L(x, λ, α) = x†Qx− λx†x− αx†u1.

Differentiating with respect to the vector x and setting the result equal to
zero, we find that

2Qx− 2λx− αu1 = 0,

or
Qx = λx+ βu1,

for β = α/2. But, we know that

(u1)†Qx = λ(u1)†x+ β(u1)†u1 = β,

and
(u1)†Qx = (Qu1)†x = λ1(u

1)†x = 0,

so β = 0 and we have
Qx = λx.

Since
x†Qx = λ,

we conclude that x is a norm-one eigenvector of Q associated with the
second-largest eigenvalue, λ = λ2.

Continuing in this fashion, we can show that the norm-one eigenvector
of Q associated with the nth largest eigenvalue λn maximizes the quadratic
form x†Qx, subject to the constraints x†x = 1 and x†um = 0, for m =
1, 2, ..., n− 1.
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22.1 Chapter Summary

Large amounts of data are often redundant and methods for compress-
ing these data sets play an increasingly important role in a number of
applications. The basic idea is to find ways to expand the data vector as
a superposition of known vectors, so that only a few of the coefficients are
nonzero. Much of the research in this field goes under the names compressed
sensing and compressed sampling (CS) [67]. The key notion in CS is sparse-
ness. The JPEG technology uses such an approach to represent images as
a superposition of sinusoids and wavelets. For applications such as medical
imaging, CS provides a means of reducing radiation dosage to the patient
without sacrificing image quality. An important aspect of CS is finding
sparse solutions of underdetermined systems of linear equations, which can
often be accomplished by one-norm minimization. The best reference on
CS to date is probably [16].

335



336 Signal Processing: A Mathematical Approach

22.2 An Overview

In this section we “compress” Justin Romberg’s article [133] that cap-
tures well the essence of compressed sensing and compressed sampling.

In classical data compression, the data vector is first transformed into
a superposition of known basis “signals.” If this basis is well chosen, then
most of the information in the data will be concentrated in a few terms
with relatively large coefficients; the representation of the data is then
said to be sparse with respect to the chosen basis. The data compression is
then achieved by discarding the terms with relatively small coefficients. For
example, vectorized digital photographs often have a sparse representation
with respect to a wavelet basis that measures intensity at different scales.
In this traditional approach, a great deal of data is obtained by sampling
at a very high rate, and then applying a transform and selection process
to produce a much smaller vector of important coefficients. This procedure
of gathering a large amount of data just to produce a much smaller vector
of coefficients, seems wasteful. Compressed sensing attempts to avoid this
wastefulness by integrating the compression step into the sampling process
itself.

Normally, sampling means recording the values of an analog signal at
some discrete set of points. Instead, CS devices provide initial data consist-
ing of “correlations” that is, matched-filter values, between the signal and
a set of known test signals. The big question is: How do we select this set
of test signals? One might think that it is best to use as the test signals the
members of the basis with respect to which the data is sparsely represented.
Certainly, a small number of correlations would suffice to capture the sig-
nal, since the representation is known to be sparse. But we don’t know
which basis members are the important ones, and we would have to obtain
a large number of correlations to find out which ones are the important
ones, defeating the purpose of reducing the sampling effort. The solution,
surprisingly, is to select the test signals at random, making the test signals
quite unlike the basis vectors that produced the sparse representation.

At the final step, an algorithm is then applied to extract the desired
information from this smaller set of correlations. Now we seek a solution
that is consistent with the sampled data and also sparse, with respect to the
original basis. With b the vector of correlations, x a vector of coefficients
in the sparse-representation basis, and A the matrix describing the linear
transformation, we seek a maximally sparse solution of Ax = b. Finding
such a maximally sparse solution is not easy; it is an NP-hard problem. It
has been discovered that finding the minimum one-norm solution is often a
reasonable substitute, which means that the computation can be converted
to a linear-programming problem.
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22.3 Compressed Sensing

The objective in CS is to exploit sparseness to reconstruct a vector f
in RJ from relatively few linear functional measurements [67].

Let U = {u1, u2, ..., uJ} and V = {v1, v2, ..., vJ} be two orthonormal
bases for RJ , with all members of RJ represented as column vectors. For
i = 1, 2, ..., J , let

μi = max
1≤j≤J

{|〈ui, vj〉|}

and
μ(U, V ) = max

1≤i≤J
μi.

We know from Cauchy’s Inequality that

|〈ui, vj〉| ≤ 1,

and from Parseval’s Equation

J∑
j=1

|〈ui, vj〉|2 = ||ui||2 = 1.

Therefore, we have
1√
J

≤ μ(U, V ) ≤ 1.

The quantity μ(U, V ) is the coherence measure of the two bases; the closer
μ(U, V ) is to the lower bound of 1√

J
, the more incoherent the two bases

are. We give an example of incoherent bases for CJ .
Let U = {u1, u2, ..., uJ} be the usual orthonormal basis for CJ , where

all the entries of uj are zero, except that ujj = 1. Let V = {v1, v2, ..., vJ}
be the Fourier basis, with the kth entry of vj given by

vjk =
1√
J
e2πikj/J .

Then it is easy to show that μ(U, V ) = 1√
J
. Clearly, each vector uj has

a maximally sparse representation in the U basis, but not in the V basis.
Similarly, each vj has a maximally sparse representation in the V basis,
but not in the U basis. When J is large, we may well want to estimate
the index j from the measurement of relatively few coefficients of uj in the
V -basis representation. This is compressed sampling.

Let f be a fixed member of RJ ; we expand f in the V basis as

f = x1v
1 + x2v

2 + ...+ xJv
J .
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We say that the coefficient vector x = (x1, ..., xJ ) is s-sparse if s is the
number of nonzero xj .

If s is small, most of the xj are zero, but since we do not know which
ones these are, we would have to compute all the linear functional values

xj = 〈f, vj〉
to recover f exactly. In fact, the smaller s is, the harder it would be to learn
anything from randomly selected xj , since most would be zero. The idea in
CS is to obtain measurements of f with members of a different orthonormal
basis, which we call the U basis. If the members of U are very much like
the members of V , then nothing is gained. But, if the members of U are
quite unlike the members of V , then each inner product measurement

yi = 〈f, ui〉 = fTui

should tell us something about f . If the two bases are sufficiently inco-
herent, then relatively few yi values should tell us quite a bit about f .
Specifically, we have the following result due to Candès and Romberg [46]:
suppose the coefficient vector x for representing f in the V basis is s-sparse.
Select uniformly randomly I ≤ J members of the U basis and compute the
measurements yi = 〈f, ui〉 . Then, if I is sufficiently large, it is highly prob-
able that z = x also solves the problem of minimizing the one-norm

||z||1 = |z1|+ |z2|+ ...+ |zJ |,
subject to the conditions

yi = 〈g, ui〉 = gTui,

for those M randomly selected ui, where

g = z1v
1 + z2v

2 + ...+ zJv
J .

The smaller μ(U, V ) is, the smaller the I is permitted to be without reduc-
ing the probability of perfect reconstruction.

22.4 Sparse Solutions

Suppose that A is a real I by J matrix, with I < J , and that the linear
system Ax = b has infinitely many solutions. For any vector x, we define
the support of x to be the subset S of {1, 2, ..., J} consisting of those j
for which the entries xj �= 0. For any under-determined system Ax = b,
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there will, of course, be at least one solution of minimum support, that is,
for which |S|, the size of the support set S, is minimum. However, finding
such a maximally sparse solution requires combinatorial optimization, and
is known to be computationally difficult. It is important, therefore, to have
a computationally tractable method for finding maximally sparse solutions.
The discussion in this section is based on [16].

22.4.1 Maximally Sparse Solutions

Consider the problem P0: among all solutions x of the consistent sys-
tem b = Ax, find one, call it x̂, that is maximally sparse, that is, has the
minimum number of nonzero entries. Obviously, there will be at least one
such solution having minimal support, but finding one, however, is a com-
binatorial optimization problem and is generally NP-hard. For notational
convenience, we denote by ‖x‖0 the number of nonzero entries of x.

There are two basic questions concerning the problem P0:

1. Can uniqueness of the solution be claimed? Under what conditions?

2. If a candidate for the solution is available, is there a simple test to
determine if it is, in fact, a solution?

Definition 22.1 Let A be an I by J matrix, with I < J . The spark of A
is the smallest number of linearly dependent columns.

We denote the spark of A by sp(A). The definition of the spark of A is
superficially similar to that of the rank of A, but the spark is a more
difficult quantity to calculate. Notice that, if we change the word “columns”
to “rows” in the definition, we may get a different number. For example,
the 5 by 6 matrix

A =

⎡
⎢⎢⎢⎢⎣
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

has a rank of 3 and a spark of 2, although the smallest number of linearly
dependent rows is 1. The rank of the matrix

B =

⎡
⎢⎢⎢⎢⎣
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎦
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is 5, and the spark is 6, while the rank of the matrix

C =

⎡
⎢⎢⎢⎢⎣
1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

is 5 and its spark is 2. The spark is an important notion when seeking
sparse solutions of Ax = b, where we assume that I < J . The spark is not
defined for matrices with I ≥ J .

The following theorem is not difficult to prove.

Theorem 22.1 If Ax = b and ‖x‖0 < sp(A)/2, then x solves P0.

Unfortunately, calculating the spark of a matrix is typically more difficult
than solving P0. There is a simpler way, fortunately. We denote by ak the
kth column of the matrix A.

Definition 22.2 The mutual coherence of the matrix A is

μ(A) = max
1≤k,j≤m,k 
=j

|a†kaj |
‖ak‖2‖aj‖2 .

The matrix A is said to have nearly incoherent columns if μ(A) is nearly
equal to zero. If A were square and orthogonal, then we would have μ(A) =
0. However, we are assuming that A is I by J , with I < J , so that μ(A) > 0.
The following lemma is helpful.

Lemma 22.1 For any matrix A we have

sp(A) ≥ 1 +
1

μ(A)
.

As a consequence, we get the following theorem.

Theorem 22.2 If Ax = b and

‖x‖0 < 1

2

(
1 +

1

μ(A)

)
,

then x solves P0.
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22.4.2 Minimum One-Norm Solutions

A more tractable problem is to seek a minimum one-norm solution,
that is, we can solve the problem P1: minimize

||x||1 =

J∑
j=1

|xj |,

subject to Ax = b. Let x∗ be a solution of P1. Problem P1 can be formulated
as a linear programming problem, so is more easily solved. The big questions
are: when does P1 have a unique solution x∗, and when is x∗ = x̂? The
problem P1 will have a unique solution if and only if A is such that the
one-norm satisfies

||x∗||1 < ||x∗ + v||1,
for all nonzero v in the null space of A. We have the following theorem.

Theorem 22.3 If A is I by J , with full rank and I < J , and Ax = b, with

‖x‖0 < 1

2

(
1 +

1

μ(A)

)
,

then x solves both P0 and P1.

22.4.3 Minimum One-Norm as an LP Problem

The entries of x need not be nonnegative, so the problem is not yet a
linear programming problem. Let

B =
[
A −A] ,

and consider the linear programming problem of minimizing the function

cT z =

2J∑
j=1

zj ,

subject to the constraints z ≥ 0, and Bz = b. Let z∗ be the solution. We
write

z∗ =

[
u∗

v∗

]
.

Then, as we shall see, x∗ = u∗ − v∗ minimizes the one-norm, subject to
Ax = b.

First, we show that u∗jv
∗
j = 0, for each j. If, say, there is a j such that

0 < v∗j < u∗j , then we can create a new vector z by replacing the old u∗j
with u∗j −v∗j and the old v∗j with zero, while maintaining Bz = b. But then,
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since u∗j−v∗j < u∗j+v
∗
j , it follows that c

T z < cT z∗, which is a contradiction.

Consequently, we have ‖x∗‖1 = cT z∗.
Now we select any x with Ax = b. Write uj = xj , if xj ≥ 0, and uj = 0,

otherwise. Let vj = uj − xj , so that x = u− v. Then let

z =

[
u
v

]
.

Then b = Ax = Bz, and cT z = ‖x‖1. Consequently,
‖x∗‖1 = cT z∗ ≤ cT z = ‖x‖1,

and x∗ must be a minimum one-norm solution.

22.4.4 Why the One-Norm?

When a system of linear equations Ax = b is under-determined, we
can find the minimum-two-norm solution that minimizes the square of the
two-norm,

||x||22 =

J∑
j=1

x2j ,

subject to Ax = b. One drawback to this approach is that the two-norm
penalizes relatively large values of xj much more than the smaller ones,
so tends to provide non-sparse solutions. Alternatively, we may seek the
solution for which the one-norm,

||x||1 =

J∑
j=1

|xj |,

is minimized. The one-norm still penalizes relatively large entries xj more
than the smaller ones, but much less than the two-norm does. As a result,
it often happens that the minimum one-norm solution actually solves P0

as well.

22.4.5 Comparison with the PDFT

The PDFT approach to solving the under-determined system Ax = b
is to select weights wj ≥ 0 and then to find the solution x̃ that minimizes
the weighted two-norm given by∑

j∈S
|xj |2wj ,

where S is the support set of w, meaning that S is the set of all j for which
wj > 0. Our intention is to select weights wj so that w

−1
j is reasonably close
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to |x∗j |. Consider, therefore, what happens when S is the support set of x∗

and w−1
j = |x∗j | for j ∈ S. We show that x̃ is also a minimum-one-norm

solution.
To see why this is true, note that, for any x supported on S, we have

‖x‖1 =
∑
j∈S

|xj | =
∑
j∈S

|xj |√
|x∗j |
√
|x∗j |

≤
√√√√∑

j∈S

|xj |2
|x∗j |

√∑
j∈S

|x∗j |.

Therefore,

‖x̃‖1 =
∑
j∈S

|x̃j | ≤
√√√√∑

j∈S

|x̃j |2
|x∗j |

√∑
j∈S

|x∗j |

≤
√√√√∑

j∈S

|x∗j |2
|x∗j |

√∑
j∈S

|x∗j |

=
∑
j∈S

|x∗j | = ‖x∗‖1.

Therefore, x̃ also minimizes the one-norm.

22.4.6 Iterative Reweighting

Let x be the truth. Generally, we want each weight wj to be a good
prior estimate of the reciprocal of |xj |. Because we do not yet know x,
we may take a sequential-optimization approach, beginning with weights
w0
j > 0, finding the PDFT solution using these weights, then using this

PDFT solution to get a (we hope!) better choice for the weights, and so on.
This sequential approach was successfully implemented in the early 1980’s
by Michael Fiddy and his students [74].

In [47], the same approach is taken, but with respect to the one-norm.
Since the one-norm still penalizes larger values disproportionately, balance
can be achieved by minimizing a weighted-one-norm, with weights close to
the reciprocals of the |xj |. Again, not yet knowing x, they employ a sequen-
tial approach, using the previous minimum-weighted-one-norm solution to
obtain the new set of weights for the next minimization. At each step of
the sequential procedure, the previous reconstruction is used to estimate
the true support of the desired solution.

It is interesting to note that an on-going debate among users of the
PDFT concerns the nature of the prior weighting. Does wj approximate
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|xj |−1 or |xj |−2? This is close to the issue treated in [47], the use of a weight
in the minimum-one-norm approach.

It should be noted again that finding a sparse solution is not usually
the goal in the use of the PDFT, but the use of the weights has much the
same effect as using the one-norm to find sparse solutions. To the extent
that the weights approximate the entries of x̂, their use reduces the penalty
associated with the larger entries of an estimated solution.

22.5 Why Sparseness?

One obvious reason for wanting sparse solutions of Ax = b is that we
have prior knowledge that the desired solution is sparse. Such a problem
arises in signal analysis from Fourier-transform data. In other cases, such
as in the reconstruction of locally constant signals, it is not the signal itself,
but its discrete derivative, that is sparse.

22.5.1 Signal Analysis

Suppose that our signal f(t) is known to consist of a small number of
complex exponentials, so that f(t) has the form

f(t) =

J∑
j=1

aje
iωjt,

for some small number of frequencies ωj in the interval [0, 2π). For n =
0, 1, ..., N − 1, let fn = f(n), and let f be the vector in CN with entries fn;
we assume that J is much smaller than N . The discrete (vector) Fourier
transform of f is the vector F having the entries

Fk =
1√
N

N−1∑
n=0

fne
2πikn/N ,

for k = 0, 1, ..., N − 1; we write F = Ef , where E is the N by N matrix
with entries Ekn = 1√

N
e2πikn/N . IfN is large enough, we may safely assume

that each of the ωj is equal to one of the frequencies 2πik and that the
vector F is J-sparse. The question now is: How many values of f(n) do we
need to calculate in order to be sure that we can recapture f(t) exactly?
We have the following theorem [45]:

Theorem 22.4 Let N be prime. Let S be any subset of {0, 1, ..., N − 1}
with |S| ≥ 2J . Then the vector F can be uniquely determined from the
measurements fn for n in S.
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We know that
f = E†F,

where E† is the conjugate transpose of the matrix E. The point here is
that, for any matrix R obtained from the identity matrix I by deleting
N − |S| rows, we can recover the vector F from the measurements Rf .

If J is not prime, then the assertion of the theorem may not hold,
since we can have j = 0modJ , without j = 0. However, the assertion
remains valid for most sets of J frequencies and most subsets S of indices;
therefore, with high probability, we can recover the vector F from Rf . Note
the similarity between this and Prony’s method.

Note that the matrix E is unitary, that is, E†E = I, and, equivalently,
the columns of E form an orthonormal basis for CN . The data vector is

b = Rf = RE†F.

In this example, the vector f is not sparse, but can be represented sparsely
in a particular orthonormal basis, namely as f = E†F , using a sparse vector
F of coefficients. The representing basis then consists of the columns of the
matrix E†. The measurements pertaining to the vector f are the values fn,
for n in S. Since fn can be viewed as the inner product of f with δn, the
nth column of the identity matrix I, that is,

fn = 〈δn, f〉,
the columns of I provide the so-called sampling basis. With A = RE† and
x = F , we then have

Ax = b,

with the vector x sparse. It is important for what follows to note that the
matrix A is random, in the sense that we choose which rows of I to use to
form R.

22.5.2 Locally Constant Signals

Suppose now that the function f(t) is locally constant, its graph con-
sisting of some number of horizontal lines. We discretize the function f(t)
to get the vector f = (f(0), f(1), ..., f(N − 1))T . The discrete derivative
vector is g = (g1, g2, ..., gN−1)

T , with

gn = f(n)− f(n− 1).

Since f(t) is locally constant, the vector g is sparse. The data we will have
will not typically be values f(n). The goal will be to recover f from M
linear functional values pertaining to f , where M is much smaller than N .
We shall assume, from now on, that we have measured, or can estimate,
the value f(0).
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Our M by 1 data vector d consists of measurements pertaining to the
vector f :

dm =

N−1∑
n=0

Hmnfn,

for m = 1, ...,M , where the Hmn are known. We can then write

dm = f(0)
(N−1∑
n=0

Hmn

)
+

N−1∑
k=1

(N−1∑
n=k

Hmn

)
gk.

Since f(0) is known, we can write

bm = dm − f(0)
(N−1∑
n=0

Hmn

)
=

N−1∑
k=1

Amkgk,

where

Amk =

J∑
n=k

Hmn.

The problem is then to find a sparse solution of Ax = g. As in the previous
example, we often have the freedom to select the linear functions, that is,
the values Hmn, so the matrix A can be viewed as random.

22.5.3 Tomographic Imaging

The reconstruction of tomographic images is an important aspect of
medical diagnosis, and one that combines aspects of both of the previous
examples. The data one obtains from the scanning process can often be
interpreted as values of the Fourier transform of the desired image; this is
precisely the case in magnetic-resonance imaging, and approximately true
for x-ray transmission tomography, positron-emission tomography (PET)
and single-photon emission tomography (SPECT). The images one encoun-
ters in medical diagnosis are often approximately locally constant, so the
associated array of discrete partial derivatives will be sparse. If this sparse
derivative array can be recovered from relatively few Fourier-transform val-
ues, then the scanning time can be reduced.

We turn now to the more general problem of compressed sampling.

22.6 Compressed Sampling

Our goal is to recover the vector f = (f1, ..., fJ)
T from I linear func-

tional values of f , where I is much less than J . In general, this is not
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possible without prior information about the vector f . In compressed sam-
pling, the prior information concerns the sparseness of either f itself, or
another vector linearly related to f .

Let U and V be unitary J by J matrices, so that the column vectors
of both U and V form orthonormal bases for C

J . We shall refer to the
bases associated with U and V as the sampling basis and the representing
basis, respectively. The first objective is to find a unitary matrix V so that
f = V x, where x is sparse. Then we want to find a second unitary matrix
U such that, when an I by J matrix R is obtained from U by deleting
rows, the sparse vector x can be determined from the data b = RV x = Ax.
Theorems in compressed sensing describe properties of the matrices U and
V such that, when R is obtained from U by a random selection of the rows
of U , the vector x will be uniquely determined, with high probability, as
the unique solution that minimizes the one-norm.
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23.2 Independent Random Variables

Let X1, ..., XN be N independent real random variables with the same
mean (that is, expected value) μ and same variance σ2. The main conse-
quence of independence is that E(XiXj) = E(Xi)E(Xj) = μ2 for i �= j.
Then, it is easily shown that the sample average

X̄ = N−1
N∑
n=1

Xn

has μ for its mean and σ2/N for its variance.

Ex. 23.1 Prove these two assertions.

23.3 Maximum Likelihood Parameter Estimation

Suppose that the random variable X has a probability density function
p(x; θ), where θ is an unknown parameter. A common problem in statistics
is to estimate θ from independently sampled values of X , say x1, ..., xN . A
frequently used approach is to maximize the function of θ given by

L(θ) = L(θ;x1, ..., xN ) =

N∏
n=1

p(xn; θ).

The function L(θ) is the likelihood function and a value of θ maximizing
L(θ) is a maximum likelihood estimate. We give two examples of maximum
likelihood (ML) estimation.

23.3.1 An Example: The Bias of a Coin

Let θ in the interval [0, 1] be the unknown probability of success on one
trial of a binomial distribution (a coin flip, for example), so that the prob-
ability of k successes in N trials is L(θ; k,N) = N !

k!(N−k)!θ
k(1 − θ)N−k, for

k = 0, 1, ..., N . If we have observed N trials and have recorded k successes,
we can estimate θ by selecting that θ̂ for which L(θ, k,N) is maximized as
a function of θ.

Ex. 23.2 Show that, for the binomial case described above, the maximum
likelihood estimate of θ is θ̂ = k/N .
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23.3.2 Estimating a Poisson Mean

A random variableX taking on only nonnegative integer values is said to
have the Poisson distribution with parameter λ > 0 if, for each nonnegative
integer k, the probability pk that X will take on the value k is given by

pk = e−λλk/k!.

Ex. 23.3 Show that the sequence {pk}∞k=0 sums to one.

Ex. 23.4 Show that the expected value E(X) is λ, where the expected value
in this case is

E(X) =
∞∑
k=0

kpk.

Ex. 23.5 Show that the variance of X is also λ, where the variance of X
in this case is

var(X) =

∞∑
k=0

(k − λ)2pk.

Ex. 23.6 Show that the ML estimate of λ based on N independent samples
is the sample mean.

23.4 Independent Poisson Random Variables

Let Z1, ..., ZN be independent Poisson random variables with expected
value E(Zn) = λn. Let Z be the random vector with Zn as its entries, λ the

vector whose entries are the λn, and λ+ =
∑N

n=1 λn. Then the probability
function for Z is

f(Z|λ) =
N∏
n=1

λznn exp(−λn)/zn! = exp(−λ+)
N∏
n=1

λznn /zn! .

Now let Y =
∑N

n=1 Zn. Then, the probability function for Y is

Prob(Y = y) = Prob(Z1+...+ZN = y) =
∑

z1+...zN=y

exp(−λ+)
N∏
n=1

λznn /zn! .

But, as we shall see shortly, Y is a Poisson random variable with E(Y ) =
λ+, since we have

∑
z1+...zN=y

exp(−λ+)
N∏
n=1

λznn /zn! = exp(−λ+)λy+/y! . (23.1)
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When we observe an instance of y, we can consider the conditional
distribution f(Z|λ, y) of {Z1, ..., ZN}, subject to y = Z1 + ... + ZN . We
have

f(Z|λ, y) = y!

z1!...zN !

( λ1
λ+

)z1
...
(λN
λ+

)zN
.

This is a multinomial distribution. Given y and λ, the conditional expected
value of Zn is then E(Zn|λ, y) = yλn/λ+. To see why Equation (23.1) is
true, we discuss the multinomial distribution.

23.5 The Multinomial Distribution

When we expand the quantity (a1+...+aN )y, we obtain a sum of terms,
each of the form az11 ...a

zN
N , with z1 + ...+ zN = y. How many terms of the

same form are there? There are N variables. We are to select zn of type
n, for each n = 1, ..., N , to get y = z1 + ... + zN factors. Imagine y blank
spaces, to be filled in by various factor types as we do the selection. We
select z1 of these blanks and mark them a1, for type one. We can do that
in
(
y
z1

)
ways. We then select z2 of the remaining blank spaces and enter

a2 in them; we can do this in
(
y−z1
z2

)
ways. Continuing in this way, we find

that we can select the N factor types in(
y

z1

)(
y − z1
z2

)
...

(
y − (z1 + ...+ zN−2)

zN−1

)

ways, or in

y!

z1!(y − z1)!
...

(y − (z1 + ...+ zN−2))!

zN−1!(y − (z1 + ...+ zN−1))!
=

y!

z1!...zN !
.

This tells us in how many different sequences the factor types can be se-
lected. Applying this, we get the multinomial theorem:

(a1 + ...+ aN )y =
∑

z1+...+zN=y

y!

z1!...zN !
az11 ...a

zN
N .

Select an = λn/λ+. Then,

1 = 1y =
( λ1
λ+

+ ...+
λN
λ+

)y
=

∑
z1+...+zN=y

y!

z1!...zN !

( λ1
λ+

)z1
...
(λN
λ+

)zN
.
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From this we get

∑
z1+...zN=y

exp(−λ+)
N∏
n=1

λznn /zn! = exp(−λ+)λy+/y! .

23.6 Characteristic Functions

The Fourier transform shows up in probability theory in the guise of the
characteristic function of a random variable. The characteristic function is
related to, but more general than, the moment-generating function and
serves much the same purposes.

A real-valued random variable X is said to have the probability density
function (pdf) f(x) if, for any interval [a, b], the probability that X takes

its value within this interval is given by the integral
∫ b
a
f(x)dx. To be a

pdf, f(x) must be nonnegative and
∫∞
−∞ f(x)dx = 1. The characteristic

function of X is then

F (ω) =

∫ ∞

−∞
f(x)eixωdx.

The formulas for differentiating the Fourier transform are quite useful in
determining the moments of a random variable.

The expected value of X is

E(X) =

∫ ∞

−∞
xf(x)dx,

and for any real-valued function g(x) the expected value of the random
variable g(X) is

E(g(X)) =

∫ ∞

−∞
g(x)f(x)dx.

The nth moment of X is

E(Xn) =

∫ ∞

−∞
xnf(x)dx;

the variance of X is then var(X)= E(X2) − E(X)2. It follows, therefore,
that the nth moment of the random variable X is given by

E(Xn) = (i)nF (n)(0).
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If we have N real-valued random variables X1, ..., XN , their joint prob-
ability density function is f(x1, ..., xN ) ≥ 0 having the property that, for
any intervals [a1, b1], ..., [aN , bN ], the probability that Xn takes its value
within [an, bn], for each n, is given by the multiple integral

∫ b1

a1

· · ·
∫ bN

aN

f(x1, ..., xN )dx1 · · · dxN .

The joint moments are then

E(Xm1
1 · · ·XmN

N ) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
xm1
1 · · · xmN

N f(x1, ..., xN )dx1 · · · dxN .

The joint moments can be calculated by evaluating at zero the partial
derivatives of the characteristic function of the joint pdf.

The random variables are said to be independent if

f(x1, ..., xN ) = f(x1) · · · f(xN ),

where, in keeping with the convention used in the probability literature,
f(xn) denotes the pdf of the random variable Xn.

If X and Y are independent random variables with probability density
functions f(x) and g(y), then the probability density function for the ran-
dom variable Z = X + Y is (f ∗ g)(z), the convolution of f and g. To see
this, we first calculate the cumulative distribution function

H(z) = Prob (X + Y ≤ z),

which is

H(z) =

∫ +∞

x=−∞

∫ z−x

y=−∞
f(x)g(y)dydx.

Using the change of variable t = x+ y, we get

H(z) =

∫ +∞

x=−∞

∫ z

t=−∞
f(x)g(t− x)dtdx.

The pdf for the random variable Z is h(z) = H ′(z), the derivative of H(z).
Differentiating the inner integral with respect to z, we obtain

h(z) =

∫ +∞

x=−∞
f(x)g(z − x)dx;

therefore, h(z) = (f∗g)(z). It follows that the characteristic function for the
random variable Z = X + Y is the product of the characteristic functions
for X and Y .
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23.7 Gaussian Random Variables

A real-valued random variable X is called Gaussian or normal with
mean μ and variance σ2 if its probabilty density function (pdf) is

f(x) =
1

σ
√
2π

exp
(
− (x− μ)2

2σ2

)
.

In the statistical literature a normal random variable is standard if its mean
is μ = 0 and its variance is σ2 = 1.

23.7.1 Gaussian Random Vectors

Suppose now that Z1, ..., ZN are independent standard normal random
variables. Then, their joint pdf is the function

f(z1, ..., zN) =

N∏
n=1

1√
2π

exp

(
−1

2
z2n

)
=

1

(
√
2π)N

exp

(
−1

2
(z21 + ...+ z2N )

)
.

By taking linear combinations of these random variables, we can obtain a
new set of normal random variables that are no longer independent. For
each m = 1, ...,M let

Xm =
N∑
n=1

AmnZn.

Then E(Xm) = 0.
The covariance matrix associated with the Xm is the matrix R with

entries Rmn = E(XmXn), m, n = 1, 2, ...,M . We have

E(XmXn) =

N∑
k=1

Amk

N∑
j=1

AnjE(ZkZj).

Since the Zn are independent with mean zero, we have E(ZkZj) = 0 for
k �= j and E(Z2

k) = 1. Therefore,

E(XmXn) =

N∑
k=1

AmkAnk,

and the covariance matrix is R = AAT .
Writing X = (X1, ..., XM )T and Z = (Z1, ..., ZN )T , we have X = AZ,

where A is the M by N matrix with entries Amn. Using the standard
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formulas for changing variables, we find that the joint pdf for the random
variables X1, ..., XM is

f(x1, ..., xM ) =
1√

det (R)

1

(
√
2π)N

exp

(
−1

2
xTR−1x

)
,

with x = (x1, ..., xN )T . For the remainder of this chapter, we limit the
discussion to the case of M = N = 2 and use the notation X1 = X ,
X2 = Y and f(x1, x2) = f(x, y). We also let ρ = E(XY )/σ1σ2.

The two-dimensional FT of the function f(x, y), the characteristic func-
tion of the Gaussian random vector X, is

F (α, β) = exp

(
−1

2
(σ2

1α
2 + σ2

2β
2 + 2σ1σ2ραβ)

)
.

Ex. 23.7 Use partial derivatives of F (α, β) to show that E(X2Y 2) =
2σ2

1σ
2
2ρ

2.

Ex. 23.8 Show that E(X2Y 2) = E(X2)E(Y 2) + 2E(XY )2.

23.7.2 Complex Gaussian Random Variables

Let X and Y be independent real Gaussian random variables with
means μx and μy, respectively, and common variance σ2. ThenW = X+iY
is a complex Gaussian random variable with mean μw = E(W ) = μx + iμy
and variance σ2

w = 2σ2.
The results of Exercise 23.7 extend to complex Gaussian random vari-

ables W and V . In the complex case we have

E(|V |2|W |2) = E(|V |2)E(|W |2) + |E(VW )|2.
This is important in optical image processing, where it is called the
Hanbury–Brown Twiss effect and provides the basis for intensity interfer-
ometry [78]. The main point is that we can obtain magnitude information
about E(VW ), but not phase information, by measuring the correlation
between the magnitudes of V and W ; that is, we learn something about
E(VW ) from intensity measurements. Since we have only the magnitude
of E(VW ), we then have a phase problem.

23.8 Using A Priori Information

We know that to get information out we need to put information in; but
how to do it is the problem. One approach that is quite popular within the
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image-reconstruction community is the use of statistical Bayesian methods
and maximum a posteriori (MAP) estimation.

23.9 Conditional Probabilities and Bayes’ Rule

Suppose that A and B are two events with positive probabilities P (A)
and P (B), respectively. The conditional probability of B, given A, is defined
to be P (B|A) = P (A ∩B)/P (A). It follows that Bayes’ Rule holds:

P (A|B) = P (B|A)P (A)/P (B).

To illustrate the use of this rule, we consider the following example.

23.9.1 An Example of Bayes’ Rule

Suppose that, in a certain town, 10 percent of the adults over 50 have
diabetes. The town doctor correctly diagnoses those with diabetes as having
the disease 95 percent of the time. In two percent of the cases he incorrectly
diagnoses those not having the disease as having it. Let D mean that the
patient has diabetes, N that the patient does not have the disease, A that
a diagnosis of diabetes is made, and B that a diagnosis of diabetes is not
made. The probability that he will diagnose a given adult as having diabetes
is given by the rule of total probability:

P (A) = P (A|D)P (D) + P (A|N)P (N).

In this example, we obtain P (A) = 0.113. Now suppose a patient receives a
diagnosis of diabetes. What is the probability that this diagnosis is correct?
In other words, what is P (D|A)? For this we use Bayes’ Rule:

P (D|A) = P (A|D)P (D)/P (A),

which turns out to be 0.84.

23.9.2 Using Prior Probabilities

So far nothing is controversial. The fun begins when we attempt to
broaden the use of Bayes’ Rule to ascribe a priori probabilities to quantities
that are not random. The example used originally by Thomas Bayes in the
eighteenth century is as follows. Imagine a billiard table with a line drawn
across it parallel to its shorter side, cutting the table into two rectangular
regions, the nearer called A and the farther B. Balls are tossed on to the
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table, coming to rest in either of the two regions. Suppose that we are told
only that after N such tosses n of the balls ended up in region A. What is
the probability that the next ball will end up in region A?

At first it would seem that we cannot answer this question unless we
are told the probability of any ball ending up in region A; Bayes argues
differently, however. Let A be the event that a ball comes to rest in region
A, and let P (A) = x be the unknown probability of coming to rest in region
A; we may consider x to be the relative area of region A, although this is
not necessary. Let D be the event that n out of N balls end up in A. Then,

P (D|x) =
(
N

n

)
xn(1− x)N−n.

Bayes then adopts the view that the horizontal line on the table was ran-
domly positioned so that the unknown x can be treated as a random vari-
able. Using Bayes’ Rule, we have

P (x|D) = P (D|x)P (x)/P (D),

where P (x) is the probability density function (pdf) of the random variable
x, which Bayes takes to be uniform over the interval [0, 1]. Therefore, we
have

P (x|D) = c

(
N

n

)
xn(1− x)N−n,

where c is chosen so as to make P (x|D) a pdf.

Ex. 23.9 Use integration by parts or the Beta function to show that(
N

n

)∫ 1

0

xn(1 − x)N−ndx = 1/(N + 1),

and (
N + 1

n+ 1

)∫ 1

0

xn+1(1 − x)N−ndx = 1/(N + 2)

for n = 0, 1, ..., N .

From the exercise we can conclude that c = N + 1; therefore we have the
pdf P (x|D). Now we want to estimate x itself. One way to do this is to
calculate the expected value of this pdf, which, according to the exercise, is
(n+1)/(N +2). So even though we do not know x, we can reasonably say
(n+ 1)/(N + 2) is the probability that the next ball will end up in region
A, given the behavior of the previous N balls.

There is a second way to estimate x; we can find the value of x for which
the pdf reaches its maximum. A quick calculation shows this value to be
n/N . This estimate of x is not the same as the one we calculated using the
expected value but they are close for large N .
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What is controversial here is the decision to treat the positioning of the
line as a random act, whereby x becomes a random variable, as well as
the selection of a specific pdf to govern the random variable x. Even if x
were a random variable, we do not necessarily know its pdf. Bayes takes
the pdf to be uniform over [0, 1], more as an expression of ignorance than
of knowledge. It is this broader use of prior probabilities that is generally
known as Bayesian methods and not the use of Bayes’ Rule itself.

23.10 Maximum A Posteriori Estimation

Bayesian methods provide us with an alternative to maximum likelihood
parameter estimation. Suppose that a random variable (or vector) Z has the
pdf f(z; θ), where θ is a parameter. When we hold z fixed and view f(z; θ)
as a function only of θ, it is called the likelihood function. Having observed
an instance of Z, call it z, we can estimate the parameter θ by selecting
that value for which the likelihood function f(z; θ) has its maximum. This
is the maximum likelihood (ML) estimator. Alternatively, suppose that we
treat θ itself as one value of a random variable Θ having its own pdf, say
g(θ). Then, Bayes’ Rule says that the conditional pdf of Θ, given z, is

g(θ|z) = f(z; θ)g(θ)/f(z),

where

f(z) =

∫
f(z; θ)g(θ)dθ.

The maximum a posteriori (MAP) estimate of θ is the one for which the
function g(θ|z) is maximized. Taking logs and ignoring terms that do not
involve θ, we find that the MAP estimate of θ maximizes the function
log f(z; θ) + log g(θ).

Because the ML estimate maximizes log f(z; θ), the MAP estimate is
viewed as involving a penalty term log g(θ) missing in the ML approach.
This penalty function is based on the prior pdf g(θ). We have flexibility
in selecting g(θ) and often choose g(θ) in a way that expresses our prior
knowledge of the parameter θ.
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23.11 MAP Reconstruction of Images

In emission tomography the parameter θ is actually a vectorized image
that we wish to reconstruct and the observed data constitute z. Our prior
knowledge about θ may be that the true image is near some prior estimate,
say ρ, of the correct answer, in which case g(θ) is selected to peak at ρ
[105]. Frequently our prior knowledge of θ is that the image it represents is
nearly constant locally, except for edges. Then g(θ) is designed to weight
more heavily the locally constant images and less heavily the others [82,
85, 106, 89, 109].

23.12 Penalty-Function Methods

The so-called penalty function that appears in the MAP approach comes
from a prior pdf for θ. This suggests more general methods that involve a
penalty function term that does not necessarily emerge from Bayes’ Rule
[34]. Such methods are well-known in optimization. We are free to estimate
θ as the maximizer of a suitable objective function whether or not that
function is a posterior probability. Using penalty-function methods permits
us to avoid the controversies that accompany Bayesian methods.

23.13 Basic Notions

The covariance between two complex-valued random variables x and y
is

covxy = E((x− E(x))(y − E(y))),

and the correlation coefficient is

ρxy = covxy/
√
E(|x− E(x)|2)

√
E(|y − E(y)|2).

The two random variables are said to be uncorrelated if and only if ρxy = 0.
The covariance matrix of a random vector v is the matrix Q whose entries
are the covariances of all the pairs of entries of v. The vector v is said to be
uncorrelated if Q is diagonal; otherwise, we call v correlated. If the expected
value of each of the entries of v is zero, we also have Q = E(vv†). We saw
in our discussion of the BLUE that when the noise vector v is correlated
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we need to employ the covariance matrix to obtain the best linear unbiased
estimator.

23.14 Generating Correlated Noise Vectors

We can obtain an N by 1 correlated-noise random vector v as follows.
Select a positive integer K, an arbitrary N by K matrix C, and K inde-
pendent standard normal random variables z1, ..., zK ; that is, their means
are equal to zero and their variances are equal to one. Then let z be the
random vector with entries zk. Define v = Cz. Then, we have E(v) = 0
and E(vv†) = CC† = Q. In fact, for the Gaussian case, this is the only way
to obtain a correlated Gaussian random vector. The matrix C producing
the covariance matrix Q is not unique.

23.15 Covariance Matrices

In order for Q to be a covariance matrix, it is necessary and sufficient
that it be Hermitian and nonnegative-definite; that is, Q† = Q and the
eigenvalues of Q are nonnegative. Given any such Q, we can create an N
by 1 noise vector v having Q as its covariance matrix using the eigen-
value/eigenvector decomposition of Q. Then, taking U to be the matrix
whose columns are the orthonormal eigenvectors of Q and L the diagonal
matrix whose diagonal entries are λn, n = 1, ..., N , the eigenvalues of Q, we
have Q = ULU †. For convenience, we assume that λ1 ≥ λ2 ≥ ... ≥ λN > 0.
Let z be a random N by 1 vector whose entries are independent, standard
normal random variables, and let C = U

√
LU †, the Hermitian square root

of Q. Then, v = Cz has Q for its covariance matrix.
If we write this v as

v = (U
√
LU †)z = U(

√
LU †z) = Up,

then p =
√
LU †z is uncorrelated; E(pp†) = L.
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23.16 Principal Component Analysis

We can write the vector v = Up as

v =

N∑
n=1

pnu
n,

so that the entries of v are

vm =
N∑
n=1

Umnpn (23.2)

where un = (u1,n, ..., uN,n)
T is the eigenvector of Q associated with eigen-

value λn. Since the variance of pn is λn, Equation (23.2) decomposes the
vector v into components of decreasing strength. The terms in the sum cor-
responding to the smaller indices describe most of v; they are the principal
components of v. Each pn is a linear combination of the entries of v, and
principal component analysis consists of finding these uncorrelated linear
combinations that best describe the correlated entries of v. The represen-
tation v = Up expresses v as a linear combination of orthonormal vectors
with uncorrelated coefficients. This is analogous to the Karhunen-Loève
expansion for stochastic processes [2].

Principal component analysis has as its goal the approximation of the
covariance matrix Q = E(vv†) by nonnegative-definite matrices of lower
rank. A related area is factor analysis, which attempts to describe the N
by N covariance matrix Q as Q = AA† + D, where A is some N by J
matrix, for some J < N , and D is diagonal. Factor analysis attempts to
account for the correlated components of Q using the lower-rank matrix
AA†. Underlying this is a model for the random vector v:

v = Ax+w,

where both x and w are uncorrelated. The entries of the random vector x
are the common factors that affect each entry of v while those of w are
the special factors, each associated with a single entry of v. Factor analysis
plays an increasingly prominent role in signal and image processing [17] as
well as in the social sciences.

In [151] Gil Strang points out that, from a linear algebra standpoint,
factor analysis raises some questions. As his example shows, the represen-
tation of Q as Q = AA†+D is not unique. The matrix Q does not uniquely
determine the size of the matrix A:
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Q =

⎡
⎢⎢⎣

1 .74 .24 .24
.74 1 .24 .24
.24 .24 1 .74
.24 .24 .74 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
.7 .5
.7 .5
.7 −.5
.7 −.5

⎤
⎥⎥⎦
[
.7 .7 .7 .7
.5 .5 −.5 −.5

]
+ .26I

and

Q =

⎡
⎢⎢⎣
.6

√
.38 0

.6
√
.38 0

.4 0
√
.58

.4 0
√
.58

⎤
⎥⎥⎦
⎡
⎣ .6 .6 .4 .4√

.38
√
.38 0 0

0 0
√
.58

√
.58

⎤
⎦ .26I.

It is also possible to represent Q with different diagonal components D.
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24.1 Chapter Summary

In this chapter we demonstrate how the problem of Fourier-transform
estimation from sampled data arises in the processing of measurements
obtained by sampling electromagnetic- or acoustic-field fluctuations, as in
radar or sonar. We continue the discussion, begun in Chapter 9, of plane-
wave solutions of the wave equation. To illustrate the use of non-plane-wave
solutions we consider the problem of detecting a source of acoustic energy
in a shallow-water environment.

24.2 The Wave Equation

In many areas of remote sensing, what we measure are the fluctuations
in time of an electromagnetic or acoustic field. Such fields are described
mathematically as solutions of certain partial differential equations, such
as the wave equation. A function u(x, y, z, t) is said to satisfy the three-
dimensional wave equation if

utt = c2(uxx + uyy + uzz) = c2∇2u,

where utt denotes the second partial derivative of u with respect to the time
variable t twice and c > 0 is the (constant) speed of propagation. More

365
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complicated versions of the wave equation permit the speed of propagation
c to vary with the spatial variables x, y, z, but we shall not consider that
here.

Using the method of separation of variables, we start with solutions
u(t, x, y, z) having the simple form

u(t, x, y, z) = f(t)g(x, y, z).

Inserting this separated form into the wave equation, we get

f ′′(t)g(x, y, z) = c2f(t)∇2g(x, y, z)

or
f ′′(t)/f(t) = c2∇2g(x, y, z)/g(x, y, z).

The function on the left is independent of the spatial variables, while the
one on the right is independent of the time variable; consequently, they
must both equal the same constant, which we denote −ω2. From this we
have two separate equations,

f ′′(t) + ω2f(t) = 0, (24.1)

and

∇2g(x, y, z) +
ω2

c2
g(x, y, z) = 0. (24.2)

Equation (24.2) is the Helmholtz equation.
Equation (24.1) has for its solutions the functions f(t) = cos(ωt) and

sin(ωt), or, in complex form, the complex exponential functions f(t) = eiωt

and f(t) = e−iωt. Functions u(t, x, y, z) = f(t)g(x, y, z) with such time
dependence are called time-harmonic solutions.

In three-dimensional spherical coordinates with r =
√
x2 + y2 + z2 a

radial function u(r, t) satisfies the wave equation if

utt = c2
(
urr +

2

r
ur

)
.

Radial solutions to the wave equation have the property that at any fixed
time the value of u is the same for all the points on a sphere centered at the
origin; the curves of constant value of u are these spheres, for each fixed
time.

Suppose that at time t = 0 the function h(r, 0) is zero except for r
near zero; that is, initially, there is a localized disturbance centered at the
origin. As time passes that disturbance spreads out spherically. When the
radius of a sphere is very large, the surface of the sphere appears planar,
to an observer on that surface, who is said then to be in the far field. This
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motivates the study of solutions of the wave equation that are constant on
planes; the so-called plane-wave solutions.

We simplify the situation by assuming that all the plane-wave solutions
are associated with the same frequency, ω. In the continuous superposition
model, the field is a superposition of plane waves;

u(s, t) = eiωt
∫
f(k)eik·sdk.

Our measurements at the sensor locations sm give us the values

F (sm) =

∫
f(k)eik·smdk,

form = 1, ...,M . The data are then Fourier transform values of the complex
function f(k); f(k) is defined for all three-dimensional real vectors k, but
is zero, in theory, at least, for those k whose squared length ||k||2 is not
equal to ω2/c2. Our goal is then to estimate f(k) from finitely many values
of its Fourier transform. Since each k is a normal vector for its plane-wave
field component, determining the value of f(k) will tell us the strength of
the plane-wave component coming from the direction k.

The collection of sensors at the spatial locations sm, m = 1, ...,M ,
is called an array, and the size of the array, in units of the wavelength
λ = 2πc/ω, is called the aperture of the array. Generally, the larger the
aperture the better, but what is a large aperture for one value of ω will
be a smaller aperture for a lower frequency. The book by Haykin [88] is a
useful reference, as is the review paper by Wright, Pridham, and Kay [164].

In some applications the sensor locations are essentially arbitrary, while
in others their locations are carefully chosen. Sometimes, the sensors are
collinear, as in sonar towed arrays. Let’s look more closely at the collinear
case.

We assume now that the sensors are equi-spaced along the x-axis, at
locations (mΔ, 0, 0), m = 1, ...,M , where Δ > 0 is the sensor spacing; such
an arrangement is called a uniform line array. This setup was illustrated
in Figure 9.1 in Chapter 9. Our data is then

Fm = F (sm) = F ((mΔ, 0, 0)) =

∫
f(k)eimΔk·(1,0,0)dk.

Since k · (1, 0, 0) = ω
c cos θ, for θ the angle between the vector k and the

x-axis, we see that there is some ambiguity now; we cannot distinguish the
cone of vectors that have the same θ. It is common then to assume that the
wavevectors k have no z-component and that θ is the angle between two
vectors in the x, y-plane, the so-called angle of arrival. The wavenumber
variable k = ω

c cos θ lies in the interval [−ω
c ,

ω
c ], and we imagine that f(k)

is now f(k), defined for |k| ≤ ω
c . The Fourier transform of f(k) is F (s), a
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function of a single real variable s. Our data is then viewed as the values
F (mΔ), for m = 1, ...,M . Since the function f(k) is zero for |k| > ω

c , the

Nyquist spacing in s is πc
ω , which is λ

2 , where λ = 2πc
ω is the wavelength.

To avoid aliasing, which now means mistaking one direction of arrival
for another, we need to select Δ ≤ λ

2 . When we have oversampled, so that

Δ < λ
2 , the interval [−ω

c ,
ω
c ], the so-called visible region, is strictly smaller

than the interval [− π
Δ ,

π
Δ ]. If the model of propagation is accurate, all the

signal component plane waves will correspond to wavenumbers k in the
visible region and the background noise will also appear as a superposition
of such propagating plane waves. In practice, there can be components in
the noise that appear to come from wavenumbers k outside of the visible
region; this means these components of the noise are not due to distant
sources propagating as plane waves, but, perhaps, to sources that are in
the near field, or localized around individual sensors, or coming from the
electronics within the sensors.

Using the relation λω = 2πc, we can calculate the Nyquist spacing
for any particular case of plane-wave array processing. For electromagnetic
waves the propagation speed is the speed of light, which we shall take here
to be c = 3 × 108 meters per second. The wavelength λ for gamma rays
is around one Angstrom, which is 10−10 meters; for x-rays it is about one
millimicron, or 10−9 meters. The visible spectrum has wavelengths that
are a little less than one micron, that is, 10−6 meters. Shortwave radio has
wavelength around one millimeter; broadcast radio has a λ running from
about 10 meters to 1000 meters, while the so-called long radio waves can
have wavelengths several thousand meters long. At the one extreme it is
impractical (if not physically impossible) to place individual sensors at the
Nyquist spacing of fractions of microns, while at the other end, managing
to place the sensors far enough apart is the challenge.

In ocean acoustics it is usually assumed that the speed of propagation
of sound is around 1500 meters per second, although deviations from this
ambient sound speed are significant and since they are caused by such things
as temperature differences in the ocean, can be used to estimate these
differences. At around the frequency ω = 50 Hz, we find sound generated
by man-made machinery, such as motors in vessels, with higher frequency
harmonics sometimes present also; at other frequencies the main sources of
acoustic energy may be wind-driven waves or whales. The wavelength for
50 Hz is λ = 30 meters; sonar will typically operate both above and below
this wavelength. It is sometimes the case that the array of sensors is fixed
in place, so what may be Nyquist spacing for 50 Hz will be oversampling
for 20 Hz.
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It is often the case that we are primarily interested in the values |f(k)|,
not the complex values f(k). Since the Fourier transform of the function
|f(k)|2 is the autocorrelation function obtained by convolving the function
F with F , we can mimic the approach used earlier for power spectrum
estimation to find |f(k)|. We can now employ the nonlinear methods such
as Burg’s MEM and Capon’s maximum-likelihood method.

In array processing, as in other forms of signal and image processing, we
want to remove the noise and enhance the information-bearing component,
the signal. To do this we need some idea of the statistical behavior of
the noise, we need a physically accurate description of what the signals
probably look like, and we need a way to use this information. Much of our
discussion up to now has been about the many ways in which such prior
information can be incorporated in linear and nonlinear procedures. We
have not said much about the important issue of the sensitivity of these
methods to mismatch; that is, what happens when our physical model is
wrong or the statistics of the noise is not what we thought it was? We
did note earlier how Burg’s MEM resolves closely spaced sinusoids when
the background is white noise, but when the noise is correlated, MEM can
degrade rapidly.

Even when the physical model and noise statistics are reasonably ac-
curate, slight errors in the hardware can cause rapid degradation of the
processor. Sometimes acoustic signal processing is performed with sensors
that are designed to be expendable and are therefore less expensive and
more prone to errors than more permanent equipment. Knowing what a
sensor has received is important, but so is knowing when it received it.
Slight phase errors caused by the hardware can go unnoticed when the
data is processed in one manner, but can ruin the performance of another
method.

The information we seek is often stored redundantly in the data and
hardware errors may harm only some of these storage locations, making
robust processing still possible. As we saw in our discussion of eigenvec-
tor methods, information about the frequencies of the complex exponential
components of the signal are stored in the roots of the polynomials ob-
tained from some of the eigenvectors. In [28] it was demonstrated that, in
the presence of correlated noise background, phase errors distort the roots
of some of these polynomials more than others; robust estimation of the
frequencies is still possible if the stable roots are interrogated.

We have focused here exclusively on plane-wave propagation, which re-
sults when the source is far enough away from the sensors and the speed of
propagation is constant. In many important applications these conditions
are violated, and different versions of the wave equation are needed, which
have different solutions. For example, sonar signal processing in environ-
ments such as shallow channels, in which some of the sound reaches the
sensors only after interacting with the ocean floor or the surface, requires
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more complicated parameterized models for solutions of the appropriate
wave equation. Lack of information about the depth and nature of the
bottom can also cause errors in the signal processing. In some cases it is
possible to use acoustic energy from known sources to determine the needed
information.

Array signal processing can be done in passive or active mode. In passive
mode the energy is either reflected off of or originates at the object of
interest: the moon reflects sunlight, while ships generate their own noise.
In the active mode the object of interest does not generate or reflect enough
energy by itself, so the energy is generated by the party doing the sensing:
active sonar is sometimes used to locate quiet vessels, while radar is used
to locate planes in the sky or to map the surface of the earth. Near-earth
asteroids are initially detected by passive optical observation, as small dots
of reflected sunlight; once detected, they are then imaged by active radar
to determine their size, shape, rotation and such.

Previously we considered the array processing problem in the context
of plane-wave propagation. When the environment is more complicated,
the wave equation must be modified to reflect the physics of the situation
and the signal processing modified to incorporate that physics. A good
example of such modification is provided by acoustic signal processing in
shallow water, the subject of the rest of this chapter.

24.3 The Shallow-Water Case

In the shallow-water situation the acoustic energy from the source in-
teracts with the surface and with the bottom of the channel, prior to being
received by the sensors. The nature of this interaction is described by the
wave equation in cylindrical coordinates. The deviation from the ambient
pressure is the function p(t, s) = p(t, r, z, θ), where s = (r, z, θ) is the spa-
tial vector variable, r is the range, z the depth, and θ the bearing angle in
the horizontal. We assume a single frequency, ω, so that

p(t, s) = eiωtg(r, z, θ).

We shall assume cylindrical symmetry to remove the θ dependence; in many
applications the bearing is essentially known or limited by the environment
or can be determined by other means. The sensors are usually positioned
in a vertical array in the channel, with the top of the array taken to be
the origin of the coordinate system and positive z taken to mean positive
depth below the surface. We shall also assume that there is a single source
of acoustic energy located at range rs and depth zs.
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To simplify a bit, we assume here that the sound speed c = c(z) does not
change with range, but only with depth, and that the channel has constant
depth and density. Then, the Helmholtz equation for the function g(r, z) is

∇2g(r, z) + [ω/c(z)]2g(r, z) = 0.

The Laplacian is

∇2g(r, z) = grr(r, z) +
1

r
gr(r, z) + gzz(r, z).

We separate the variables once again, writing

g(r, z) = f(r)u(z).

Then, the range function f(r) must satisfy the differential equation

f ′′(r) +
1

r
f ′(r) = −αf(r),

and the depth function u(z) satisfies the differential equation

u′′(z) + k(z)2u(z) = αu(z),

where α is a separation constant and

k(z)2 = [ω/c(z)]2.

Taking λ2 = α, the range equation becomes

f ′′(r) +
1

r
f ′(r) + λ2f(r) = 0,

which is Bessel’s equation, with Hankel-function solutions. The depth equa-
tion becomes

u′′(z) + (k(z)2 − λ2)u(z) = 0,

which is of Sturm-Liouville type. The boundary conditions pertaining to
the surface and the channel bottom will determine the values of λ for which
a solution exists.

To illustrate the way in which the boundary conditions become involved,
we consider two examples.

24.4 The Homogeneous-Layer Model

We assume now that the channel consists of a single homogeneous layer
of water of constant density, constant depth d, and constant sound speed
c. We impose the following boundary conditions:
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1. Pressure-release surface: u(0) = 0;

2. Rigid bottom: u′(d) = 0.

With γ2 = (k2−λ2), we get cos(γd) = 0, so the permissible values of λ are

λm = (k2 − [(2m− 1)π/2d]2)1/2, m = 1, 2, ....

The normalized solutions of the depth equation are now

um(z) =
√

2/d sin(γmz),

where
γm =

√
k2 − λ2m = (2m− 1)π/2d, m = 1, 2, ....

For each m the corresponding function of the range satisfies the differential
equation

f ′′(r) +
1

r
f ′(r) + λ2mf(r),

which has solution H
(1)
0 (λmr), where H

(1)
0 is the zeroth order Hankel-

function solution of Bessel’s equation. The asymptotic form for this function
is

πiH
(1)
0 (λmr) =

√
2π/λmr exp

(
−i
(
λmr +

π

4

))
.

It is this asymptotic form that is used in practice. Note that when λm is
complex with a negative imaginary part, there will be a decaying exponen-
tial in this solution, so this term will be omitted in the signal processing.

Having found the range and depth functions, we write g(r, z) as a su-
perposition of these elementary products, called the modes:

g(r, z) =

M∑
m=1

AmH
(1)
0 (λmr)um(z),

whereM is the number of propagating modes free of decaying exponentials.
The Am can be found from the original Helmholtz equation; they are

Am = (i/4)um(zs),

where zs is the depth of the source of the acoustic energy. Notice that
the depth of the source also determines the strength of each mode in this
superposition; this is described by saying that the source has excited certain
modes and not others.

The eigenvalues λm of the depth equation will be complex when

k =
ω

c
<

(2m− 1)π

2d
.
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If ω is below the cut-off frequency πc
2d , then all the λm are complex and there

are no propagating modes (M = 0). The number of propagating modes is

M =
1

2
+
ωd

πc
,

which is 1
2 plus the depth of the channel in units of half-wavelengths.

This model for shallow-water propagation is helpful in revealing a num-
ber of the important aspects of modal propagation, but is of limited prac-
tical utility. A more useful and realistic model is the Pekeris waveguide.

24.5 The Pekeris Waveguide

Now we assume that the water column has constant depth d, sound
speed c, and density b. Beneath the water is an infinite half-space with
sound speed c′ > c, and density b′. Figure 24.1 illustrates the situation.

Using the new depth variable v = ωz
c , the depth equation becomes

u′′(v) + λ2u(v) = 0, for 0 ≤ v ≤ ωd

c
,

and

u′′(v) +
(( c

c′
)2

− 1 + λ2
)
u(v) = 0, for

ωd

c
< v.

To have a solution, λ must satisfy the equation

tan(λωd/c) = −(λb/b′)/

√
1−
( c
c′
)2

− λ2,

with

1−
( c
c′
)2

− λ2 ≥ 0.

The trapped modes are those whose corresponding λ satisfies

1 ≥ 1− λ2 ≥
( c
c′
)2
.

The eigenfunctions are

um(v) = sin(λmv), for 0 ≤ v ≤ ωd

c

and

um(v) = exp

(
− v

√
1−
( c
c′
)2

− λ2

)
, for

ωd

c
< v.

Although the Pekeris model has its uses, it still may not be realistic enough
in some cases and more complicated propagation models will be needed.
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FIGURE 24.1: The Pekeris Model.
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24.6 The General Normal-Mode Model

Regardless of the model by which the modal functions are determined,
the general normal-mode expansion for the θ-independent case is

g(r, z) =

M∑
m=1

um(z)sm(r, zs),

where M is the number of propagating modes and sm(r, zs) is the modal
amplitude containing all the information about the source of the sound.

24.6.1 Matched-Field Processing

In plane-wave array processing we write the acoustic field as a superposi-
tion of plane-wave fields and try to find the corresponding amplitudes. This
can be done using a matched filter, although high-resolution methods can
also be used. In the matched-filter approach, we fix a wavevector and then
match the data with the vector that describes what we would have received
at the sensors had there been but a single plane wave present correspond-
ing to that fixed wavevector; we then repeat for other fixed wavevectors.
In more complicated acoustic environments, such as normal-mode propa-
gation in shallow water, we write the acoustic field as a superposition of
fields due to sources of acoustic energy at individual points in range and
depth and then seek the corresponding amplitudes. Once again, this can
be done using a matched filter.

In matched-field processing we fix a particular range and depth and
compute what we would have received at the sensors had the acoustic field
been generated solely by a single source at that location. We then match the
data with this computed vector. We repeat this process for many different
choices of range and depth, obtaining a function of r and z showing the
likely locations of actual sources. As in the plane-wave case, high-resolution
nonlinear methods can also be used.

As in the plane-wave case, the performance of our processing methods
can be degraded by incorrect description of the environment, as well as by
phase errors and the like introduced by the hardware [28]. Once again, it is
necessary to seek out those locations within the data where the information
we seek is less disturbed by such errors [32, 33].

Good sources for more information concerning matched-field processing
are the book by Tolstoy [155] and the papers [4], [18], [70], [91], [92], [139],
[140], [141], [154], and [165].





Chapter 25

Reconstruction in Hilbert Space

25.1 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
25.2 The Basic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
25.3 Fourier-Transform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
25.4 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
25.5 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

25.5.1 Choosing the Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
25.5.2 Choosing the Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

25.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

25.1 Chapter Summary

In many of the examples we have considered in this book, the data has
been finitely many linear-functional values of the function of interest. In this
chapter we consider this problem from a purely mathematical perspective.
We take the function of interest to be a member of a Hilbert space, and
use best approximation to solve the problem.

25.2 The Basic Problem

We want to reconstruct a function f : RD → C from finitely many
linear-functional values pertaining to that function. For example, we may
want to reconstruct f from values f(xn) of f itself, or from Fourier-
transform values F (γn). We adopt the view that f is a member of some
infinite-dimensional Hilbert space H with inner product 〈·, ·〉, and the data
values are

gn = 〈f, hn〉, (25.1)

for n = 1, ..., N , where the hn are known members of the Hilbert space.
For example, suppose f(x) is supported on the interval [a, b] and we have

377
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Fourier-transform data,

gn = F (γn) =

∫ b

a

f(x)eiγnxdx = 〈f, en〉 =
∫ b

a

f(x)en(x)dx,

where en(x) = e−iγnx. Because there are infinitely many solutions to our
problem, we need some approach that singles out one solution. The most
common approach is to select the estimate f̂ of f that minimizes the norm

‖f̂‖ =

√
〈f̂ , f̂〉, subject to f̂ satisfying Equation (25.1); that is,

gn = 〈f̂ , hn〉. (25.2)

We know that every element f of H can be written uniquely as

f =

N∑
m=1

amh
m + u,

where 〈u, hn〉 = 0, for n = 1, ..., N . We may reasonably conclude from this
that the probing or measuring of the function f that resulted in our data
is incapable of telling us anything about u, so that we have no choice but
to take the finite sum as our estimate of f . We then solve the system of
linear equations

gn =

N∑
m=1

am〈hm, hn〉,

for the am. In the case of Fourier-transform data, this approach leads to the
DFT estimator. This argument has been offered several times by researchers
who should know better. There is a flaw in this argument that we can
exploit to obtain better estimates of f . To illustrate the point, we consider
the problem of reconstructing f(x) from Fourier-transform data.

25.3 Fourier-Transform Data

Suppose f(x) is zero outside the interval [a, b] and our data are the
values F (γn), n = 1, ..., N , where F (γ) is the Fourier transform of f(x). It
is reasonable to suppose that f(x) is a member of the Hilbert space L2(a, b)
and the inner product is

〈f, g〉 =
∫ b

a

f(x)g(x)dx. (25.3)
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With hn(x) = en(x) = e−iγnx, we have

gn = F (γn) = 〈f, en〉.

But there are other inner products that we can use to represent the data.
Suppose that p(x) is a bounded positive function on [a, b], bounded away
from zero, with w(x) = p(x)−1, and we define a new inner product on
L2(a, b) by

〈f, g〉w =

∫ b

a

f(x)g(x)w(x)dx. (25.4)

Then we can represent tht data as

gn =

∫ b

a

f(x)en(x)p(x)w(x)dx = 〈f, tn〉w,

with
tn(x) = en(x)p(x).

Arguing just as in the previous section, we may claim that the only reason-
able estimator of f(x) is in the span of the functions tn(x), since we know
that f(x) can be written uniquely as

f(x) =

N∑
m=1

bmt
m(x) + v(x),

where
〈v, tn〉w = 0,

for n = 1, ..., N . The resulting estimator is

f̂(x) = p(x)
N∑
m=1

bme
iγmx,

where the coefficients bm are found by forcing f̂(x) to be consistent with
the inner product data; that is, the bm solve the system of linear equations

gn = 〈f, tn〉w =
N∑
m=1

bm

∫ b

a

p(x)ei(γm−γn)xdx.

The point we are making here is that, even after we have decided which
Hilbert space to use, L2(a, b) in this example, there will still be infinitely
many inner products that can be chosen to represent the data, and there-
fore, infinitely many estimators of f(x), each one arguably the right choice.
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25.4 The General Case

Let H be our chosen ambient Hilbert space, which contains f , with
given inner product 〈·, ·〉. Let T : H → H be a continuous, linear, invertible
operator. The adjoint of T , with respect to the original inner product, is
T †, defined by

〈Tf, g〉 = 〈f, T †g〉.
Define the T -inner product to be

〈f, g〉T = 〈T−1f, T−1g〉.
The adjoint of T , with respect to the T -inner product, is T ∗, defined by

〈Tf, g〉T = 〈f, T ∗g〉T .
Ex. 25.1 Prove that T ∗T = TT †, so that

T ∗ = TT †T−1.

Then the data is

gn = 〈f, hn〉 = 〈Tf, Thn〉T = 〈f, T ∗Thn〉T = 〈f, TT †hn〉T .
Now we consider the reconstruction problem within the Hilbert space en-
dowed with the T -inner product.

With this new inner product, the minimum-norm estimate of f is

f̂ =
N∑
m=1

cmTT
†hm,

with

gn = 〈f̂ , TT †hn〉T =

N∑
m=1

cm〈TT †hm, TT †hn〉T ,

or

gn =

N∑
m=1

cm〈T †hm, T †hn〉.

With G the Gram matrix with entries

Gm,n = 〈T †hm, T †hn〉,
we have to solve the system of linear equations

gn =

N∑
m=1

Gm,ncm,

for n = 1, ..., N .
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25.5 Some Examples

In this section we illustrate the general case with two examples.

25.5.1 Choosing the Inner Product

If the function f(x) to be estimated is support-limited to the interval
[a, b], it is reasonable to assume that f(x) is a member of L2(a, b), with the
inner product given by Equation (25.3). In this case, the operator T is just
the identity operator. The minimum-norm estimator associated with this
usual inner product has the form

f̂(x) =
N∑
m=1

amh
m(x).

As we saw in the case of Fourier-transform data, there may be other inner
products on L2(a, b) that lead to better estimates of f(x); in particular,
the inner product given by Equation (25.4) permits us to incorporate prior
information about the function |f(x)| in the estimate. The minimum-norm
estimate associated with this inner product has the form

f̂(x) = p(x)
N∑
m=1

bmh
m(x).

In this case, the linear operator T is defined by

T (f)(x) =
√
p(x)f(x).

In both cases, the coefficients are determined by making the estimator
consistent with the data; that is, by satisfying Equation (25.2).

25.5.2 Choosing the Hilbert Space

We even have a choice to make in the selection of the Hilbert space
itself. Suppose we know that f(x) is really zero outside the smaller interval
[c, d] ⊆ [a, b]. We can select as H the space L2[c, d], or perhaps the closed
subspace of all members of L2[a, b] that are zero outside [c, d]. If we take
the view that, once we have changed the inner product we have already
changed the Hilbert space, then there are still more Hilbert spaces we may
use.
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25.6 Summary

The flaw in the original argument presented in the first section is that
it assumes that the function f(x) is a member of only one Hilbert space,
with only one inner product and norm to be dealt with, and that the
linear-functional data must be represented using this single inner product.
The minimum-norm solution is determined, once we settle on a particular
Hilbert space and inner product, but we have a great deal of choice in se-
lecting these. This is the stage at which we can incorporate prior knowledge
to improve our estimator of f(x).
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26.1 Chapter Summary

In this appendix we survey, without proofs, some of the basic theorems
concerning Fourier series and Fourier transforms. The discussion here is
taken largely from [134] and [51]. There are many books, such as [80], that
the reader interested in further details may consult. The book [101] is a
delightful, if unconventional, journey through the theory and applications
of Fourier analysis.

26.2 Fourier Series

Let f : [−L,L] → C. The Fourier series associated with the function f
is

f(x) ≈
∞∑

n=−∞
cne

inπ
L x,

with

cn =
1

2L

∫ L

−L
f(x)e−i

nπ
L xdx.

The Nth partial sum is defined to be

SN (x) =

N∑
n=−N

cne
inπ

L x.
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Convergence of the Fourier series involves the behavior of the sequence
{SN(x)} as N → ∞.

It is known that, even if f can be extended to a 2L-periodic function that
is everywhere continuous, there can be values of x, even a non-denumerable
and everywhere dense set of x, at which the Fourier series fails to converge.
However, it was shown by Carleson in 1966 that, under these conditions on
f , the series will converge to f almost everywhere; that is, except on a set
of Lebesgue measure zero.

We can’t expect SN (x) to converge to f(x) for all x, since, if f(x) and
g(x) differ at only finitely many points, they have the same associated
Fourier series. If both f and g are continuous and 2L-periodic, and the
Fourier coefficients are the same, must f = g? The answer is yes, because
of Fejer’s Theorem.

Instead of considering SN (x), we consider

σN (x) =
1

N + 1
(S0(x) + S1(x) + ...+ SN (x)).

We have the following theorem.

Theorem 26.1 (Fejer’s Theorem) Let f have a continuous 2L-periodic
extension. Then the sequence {σN (x)} converges to f(x) uniformly.

Corollary 26.1 If f and g both have continuous 2L-periodic extensions
and their Fourier coefficients agree, then f = g.

Theorem 26.2 If f has a continuous 2L-periodic extension, then

lim
N→∞

∫ L

−L
|f(x)− SN (x)|2dx = 0,

and
1

2L

∫ L

−L
|f(x)|2dx =

∞∑
n=−∞

|cn|2.

Definition 26.1 The function f is said to be Lipschitz continuous, or just
Lipschitz, at x if there are constants M > 0 and δ > 0 such that |x−y| < δ
implies |f(x)− f(y)| < |x− y|.

Theorem 26.3 If f is Lipschitz at x then SN (x) → f(x).

Corollary 26.2 If f is differentiable at x, then SN (x) → f(x).

Proof: Since f is differentiable at x it is also Lipschitz at x.
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26.3 Fourier Transforms

In previous chapters it was our practice to treat the basic formulas for
a Fourier-transform pair,

F (γ) =

∫
f(x)eiγxdx, (26.1)

and

f(x) =
1

2π

∫
F (γ)e−iγxdγ, (26.2)

as formal expressions, rather than as universally valid statements. Theo-
rems concerning the validity of these expressions must always include as-
sumptions about the properties of f and F , and about the nature of the
integrals involved.

In the theory of Riemann integration the two symbols∫ +∞

a

f(x)dx (26.3)

and

lim
b→+∞

∫ b

a

f(x)dx (26.4)

are equivalent; in the theory of Lebesgue integration they are different. In
the Lebesgue theory, the integral in Equation (26.3) involves two approxi-
mations done simultaneously; we approximate the function f by a sequence
of step functions, while at the same time extending the domain of the step
functions to infinity. In Equation (26.4) the two limiting processes are done
sequentially; first approximate f by step functions on [a, b] to get the in-
tegral, and then take the limit, as b approaches infinity. For example, the
function f(x) = sin x

x on [0,+∞) is not Lebesgue integrable, since its pos-
itive and negative parts are not separately Lebesgue integrable, but the
Rieman integral is ∫ +∞

0

sinx

x
dx =

π

2
,

which can be shown using the theory of residues.

Definition 26.2 Let 1 ≤ p < +∞. A function f : R → C is said to be in
the class Lp if f is measurable in the sense of Lebesgue and the Lebesgue
integral ∫ ∞

−∞
|f(x)|pdx
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is finite. Functions f in L1 are said to be absolutely integrable; functions
f in L2 are square integrable.

If f is in L1, then the integral in Equation (26.1) exists for all γ and
defines a bounded, continuous function on the whole of R. If, in addition,
the function F is in L1, then the integral in Equation (26.2) also exists
for all x and defines a bounded, continuous function that is equal, almost
everywhere, to the original f . In general, however, F need not be a member
of L1, and more complicated efforts are needed to give meaning to Equation
(26.2).

If f is in L2, then the limit

F (γ) = lim
A→+∞

(∫ A

−A
f(x)eiγxdx

)

exists, in the L2 sense, and defines the Fourier transform of f as a member
of L2. In addition, the limit

f(x) = lim
A→+∞

( 1

2π

∫ A

−A
F (γ)e−iγxdγ

)

also exists, in the L2 sense, and provides the inversion formula.
In order for the spaces L1 and L2 to be complete as metric spaces, the

members of L1 and L2 are not individual functions, but equivalence classes
of functions. Two functions f and g are equivalent if the function f − g is
equal to zero, except possibly on a set of measure zero. However, we shall
continue to speak of the members of these spaces as functions.

26.4 Functions in the Schwartz Class

As we just discussed, the integrals in Equations (26.1) and (26.2) may
have to be interpreted carefully if they are to be applied to fairly general
classes of functions f(x) and F (γ). In this section we describe a class of
functions for which these integrals can be defined.

If both f(x) and F (γ) are measurable and absolutely integrable then
both functions are continuous. To illustrate some of the issues involved, we
consider the functions in the Schwartz class [80]

A function f(x) is said to be in the Schwartz class, or to be a Schwartz
function, if f(x) is infinitely differentiable and

|x|mf (n)(x) → 0,
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as |x| → +∞. Here f (n)(x) denotes the nth derivative of f(x). An example

of a Schwartz function is f(x) = e−x
2

, with Fourier transform F (γ) =√
πe−γ

2/4. The following proposition tells us that Schwartz functions are
absolutely integrable on the real line, and so the Fourier transform is well
defined.

Proposition 26.1 If f(x) is a Schwartz function, then∫ ∞

−∞
|f(x)|dx < +∞.

Proof: There is a constant M > 0 such that |x|2|f(x)| ≤ 1, for |x| ≥ M .
Then ∫ ∞

−∞
|f(x)|dx ≤

∫ M

−M
|f(x)|dx +

∫
|x|≥M

|x|−2dx < +∞.

If f(x) is a Schwartz function, then so is its Fourier transform. To prove
the Fourier Inversion Formula it is sufficient to show that

f(0) =

∫ ∞

−∞
F (γ)dγ/2π.

Write

f(x) = f(0)e−x
2

+ (f(x)− f(0)e−x
2

) = f(0)e−x
2

+ g(x). (26.5)

Then g(0) = 0, so g(x) = xh(x), where h(x) = g(x)/x is also a Schwartz
function. Then the Fourier transform of g(x) is the derivative of the Fourier
transform of h(x); that is,

G(γ) = H ′(γ).

The function H(γ) is a Schwartz function, so it goes to zero at the infini-
ties. Computing the Fourier transform of both sides of Equation (26.5), we
obtain

F (γ) = f(0)
√
πe−γ

2/4 +H ′(γ).

Therefore,∫ ∞

−∞
F (γ)dγ = 2πf(0) +H(+∞)−H(−∞) = 2πf(0).

To prove the Fourier Inversion Formula, we let K(γ) = F (γ)e−ix0γ , for
fixed x0. Then the inverse Fourier transform of K(γ) is k(x) = f(x+ x0),
and therefore ∫ ∞

−∞
K(γ)dγ = 2πk(0) = 2πf(x0). (26.6)
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26.5 Generalized Fourier Series

Let H be a Hilbert space, with inner product 〈·, ·〉, and {φ1, φ2, ...} an
orthonormal basis for H. Let f be a member of H. Then there are unique
coefficients c1, c2, ... such that the generalized Fourier series converges to f ;
that is,

f(x) =

∞∑
n=1

cnφ
n(x).

The coefficients are given by

cn = 〈f, φn〉.
Let the Nth partial sum of the series be

SN (x) =
N∑
n=1

cnφ
n(x).

Then when we say that the series converges to f we mean that

lim
N→∞

‖f − Sn‖ = 0.

The following exercise shows that the Nth partial sum is also a best ap-
proximation of f .

Ex. 26.1 Let

TN (x) =

N∑
n=1

bnφ
n(x),

for an arbitrary selection of the coefficients bn. Show that

‖f − SN‖ ≤ ‖f − TN‖,
with equality if and only if bn = cn for n = 1, ..., N .

26.6 Wiener Theory

The study of periodic components of functions is one of the main topics
in generalized harmonic analysis [163]. To analyze such functions Norbert
Wiener focused on the autocorrelation function of f , defined by

rf (τ) = lim
T→+∞

1

2T

∫ T

−T
f(t)f(t− τ)dt.
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For example, let

f(t) =
N∑
n=1

ane
iωnt.

Then we have

rf (τ) =
N∑
n=1

|an|2eiωnτ ,

and

|an|2 = lim
T→+∞

1

2T

∫ T

−T
rf (τ)e

−iωnτdτ.

Notice that the Fourier transform of rf (τ) is

Rf (ω) =

N∑
n=1

|an|2δ(ω − ωn),

the power spectrum of the function f . In order to avoid involving delta
functions, Wiener takes a different approach to analyzing the spectrum of
f .

In general, whenever the function rf (τ) exists, the integrated spectrum
of f is the function

S(ω) =

∫ ∞

−∞
rf (τ)

eiωτ − 1

iτ
dτ.

Let’s try to make sense of this definition.
Let G(γ) = χ[0,ω](γ) be the characteristic function of the interval [0, ω].

Then the inverse Fourier transform of G(γ) is

g(x) =
1

2π

e−iωx − 1

−ix =
1

2π

(eiωx − 1

ix

)
.

When the Parseval-Plancherel Equation (2.9) holds, we have

S(ω) = 2π

∫ ∞

−∞
rf (τ)g(τ)dτ =

∫ ω

0

Rf (γ)dγ,

so that S′(ω) = Rf (ω). In such cases, S(ω) is differentiable, S′(ω) = Rf (ω)
is nonnegative, and S′(ω) is the power spectrum or spectral density function
of f . When the function f contains periodic components, the function S(ω)
will have discontinuities, which is why Wiener focuses on S(ω), rather than
on S′(ω).
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27.1 Chapter Summary

A nice application of Dirac delta-function models is the problem of
reverberation and echo cancellation, as discussed in [116]. The received
signal is viewed as a filtered version of the original and we want to remove
the effects of the filter, thereby removing the echo. This leads to the problem
of finding the inverse filter. A version of the echo cancellation problem arises
in telecommunications, as discussed in [147] and [148].

27.2 The Echo Model

Suppose that x(t) is the original transmitted signal and the received
signal is

y(t) = x(t) + αx(t− d),

where d > 0 is the delay present in the echo term. We assume that the echo
term is weaker than the original signal, so we make 0 < α < 1. With the
filter function h(t) defined by

h(t) = δ(t) + αδ(t − d) = δ(t) + αδd(t), (27.1)

where δd(t) = δ(t − d), we can write y(t) as the convolution of x(t) and
h(t); that is,

y(t) = x(t) ∗ h(t).
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A more general model is used to describe reverberation:

h(t) =

K∑
k=0

αkδ(t− dk),

with α0 = 1, d0 = 0, and dk > 0 and 0 < αk < 1 for k = 1, 2, ...,K.
Our goal is to find a second filter, denoted hi(t), the inverse of h(t) in

Equation (27.1), such that

h(t) ∗ hi(t) = δ(t),

and therefore

x(t) = y(t) ∗ hi(t). (27.2)

For now, we use trial and error to find hi(t); later we shall use the Fourier
transform.

27.3 Finding the Inverse Filter

As a first guess, let us try

g1(t) = δ(t)− αδd(t).

Convolving g1(t) with h(t), we get

h(t) ∗ g1(t) = δ(t) ∗ δ(t)− α2δd(t) ∗ δd(t).
We need to find out what δd(t) ∗ δd(t) is.
Ex. 27.1 Use the sifting property of the Dirac delta and the definition of
convolution to show that

δd(t) ∗ δd(t) = δ2d(t).

The Fourier transform of δd(t) is the function exp(idω), so that the
Fourier transform of the convolution of δd(t) with itself is the square of
exp(idω), or exp(i(2d)ω). This tells us again that the convolution of δd(t)
with itself is δ2d(t). Therefore,

h(t) ∗ g1(t) = δ(t)− α2δ2d(t).

We do not quite have what we want, but since 0 < α < 1, the α2 is much
smaller than α.
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Suppose that we continue down this path, and take for our next guess
the filter function g2(t) given by

g2(t) = δ(t)− αδd(t) + α2δ2d(t).

We then find that
h(t) ∗ g2(t) = δ(t) + α3δ3d(t);

the coefficient is α3 now, which is even smaller, and the delay in the echo
term has moved to 3d. We could continue along this path, but a final
solution is beginning to suggest itself.

Suppose that we define

gN (t) =

N∑
n=0

(−1)nαnδnd(t).

It would then follow that

h(t) ∗ gN (t) = δ(t)− (−1)N+1αN+1δ(N+1)d(t).

The coefficient αN+1 goes to zero and the delay goes to infinity, as N → ∞.
This suggests that the inverse filter should be the infinite sum

hi(t) =

∞∑
n=0

(−1)nαnδnd(t). (27.3)

Then Equation (27.2) becomes

x(t) = y(t)− αy(t− d) + α2y(t− 2d)− α3y(t− 3d) + ....

Obviously, to remove the echo completely in this manner we need infinite
memory.

Ex. 27.2 Assume that x(t) = 0 for t < 0. Show that the problem of re-
moving the echo is simpler now.

27.4 Using the Fourier Transform

The Fourier transform of the filter function h(t) in Equation (27.1) is

H(ω) = 1 + α exp(idω).
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If we are to have
h(t) ∗ hi(t) = δ(t),

we must have
H(ω)Hi(ω) = 1,

where Hi(ω) is the Fourier transform of the inverse filter function hi(t) that
we seek. It follows that

Hi(ω) = (1 + α exp(idω))−1.

Recalling the formula for the sum of a geometric progression,

1− r + r2 − r3 + ... =
1

1 + r
,

for |r| < 1, we find that we can write

Hi(ω) = 1− α exp(idω) + α2 exp(i(2d)ω)− α3 exp(i(3d)ω) + ...,

which tells us that hi(t) is precisely as given in Equation (27.3).

27.5 The Teleconferencing Problem

In teleconferencing, each separate room is equipped with microphones
for transmitting to the other rooms and loudspeakers for broadcasting what
the people in the other rooms are saying. For simplicity, consider two rooms,
the transmitting room (TR), in which people are currently speaking, and
the receiving room (RR), where the people are currently listening to the
broadcast from the TR. The RR also has microphones and the problem
arises when the signal broadcast into the RR from the TR reaches the
microphones in the RR and is broadcast back into the TR. If it reaches
the microphones in the TR, it will be re-broadcast to the RR, creating an
echo, or worse.

The signal that reaches a microphone in the RR will depend on the
signals broadcast into the RR from the TR, as well as on the acoustics of
the RR and on the placement of the microphone in the RR; that is, it will
be a filtered version of what is broadcast into the RR. The hope is to be
able to estimate the filter, generate an approximation of what is about to be
re-broadcast, and subtract the estimate prior to re-broadcasting, thereby
reducing to near zero what is re-broadcast back to the TR.

In practice, all signals are viewed as discrete time series, and all filters
are taken to be finite impulse response (FIR) filters. Because the acoustics
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of the RR are not known a priori, the filter that the RR imposes must
be estimated. This is done adaptively, by comparing vectors of samples
of the original transmissions with the filtered version that is about to be
re-broadcast, as described in [148].
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de la vapeur de l’alcool, à différentes températures.”Journal de l’Ecole
Polytechnique (Paris) 1(2), pp. 24–76.

[131] Qian, H. (1990) “Inverse Poisson transformation and shot noise fil-
tering.”Rev. Sci. Instrum. 61, pp. 2088–2091.

[132] Ribés, A., Pillay, R., Schmitt, F., and Lahanier, C. (2008) “Studying
that smile.” IEEE Signal Processing Magazine 25(4), pp. 14–26.

[133] Romberg, J. (2007) “Compressed sensing creates a buzz at ICIAM
’07.” SIAM NEWS, October 2007, p. 7.

[134] Rudin, W. (1953) Principles of Mathematical Analysis. New York:
McGraw-Hill.

[135] Sato, M. (1958) “On the generalization of the concept of a function.”
Proc. Japan Acad. 34, pp. 126–130.

[136] Schmidt, R. (1981) A Signal Subspace Approach to Multiple Emitter
Location and Spectral Estimation. PhD thesis, Stanford University.

[137] Schultz, L., Blanpied, G., Borozdin, K., et al. (2007) “Statistical re-
construction for cosmic ray muon tomography.” IEEE Transactions
on Image Processing 16(8), pp. 1985–1993.



Bibliography 407

[138] Schuster, A. (1898) “On the investigation of hidden periodicities with
application to a supposed 26 day period of meteorological phenom-
ena.”Terrestrial Magnetism 3, pp. 13–41.

[139] Shang, E. (1985) “Source depth estimation in waveguides.”Journal
of the Acoustical Society of America 77, pp. 1413–1418.

[140] Shang, E. (1985) “Passive harmonic source ranging in waveguides by
using mode filter.”Journal of the Acoustical Society of America 78,
pp. 172–175.

[141] Shang, E., Wang, H., and Huang, Z. (1988) “Waveguide characteriza-
tion and source localization in shallow water waveguides using Prony’s
method.”Journal of the Acoustical Society of America 83, pp. 103–106.

[142] Shieh, M., Byrne, C., and Fiddy, M. (2006) “Image reconstruction:
a unifying model for resolution enhancement and data extrapolation:
Tutorial.” Journal of the Optical Society of America A 23(2), pp.
258–266.

[143] Shieh, M., Byrne, C., Testorf, M., and Fiddy, M. (2006) “Iterative
image reconstruction using prior knowledge.” Journal of the Optical
Society of America: A 23(6), pp. 1292–1300.

[144] Shieh, M. and Byrne, C. (2006) “Image reconstruction from limited
Fourier data.” Journal of the Optical Society of America: A 23(11),
pp. 2732–2736.

[145] Smith, C. Ray and Grandy, W.T., eds. (1985) Maximum-Entropy
and Bayesian Methods in Inverse Problems. Dordrecht: Reidel Publ.

[146] Smith, C. Ray and Erickson, G., eds. (1987) Maximum-Entropy and
Bayesian Spectral Analysis and Estimation Problems. Dordrecht: Rei-
del Publ.

[147] Sondhi, M. (2006) “The History of Echo Cancellation.” IEEE Signal
Processing Magazine, September 2006, pp. 95–102.

[148] Sondhi, M., Morgan, D., and Hall, J. (1995) “Stereophonic acoustic
echo cancellation- an overview of the fundamental problem.” IEEE
Signal Processing Letters 2(8), pp. 148–151.

[149] Stark, H. and Woods, J. (2002) Probability and Random Processes,
with Applications to Signal Processing. Upper Saddle River, NJ:
Prentice-Hall.

[150] Stark, H. and Yang, Y. (1998) Vector Space Projections: A Numerical
Approach to Signal and Image Processing, Neural Nets and Optics.
New York: John Wiley and Sons, Inc.



408 Bibliography

[151] Strang, G. (1980) Linear Algebra and Its Applications. New York:
Academic Press.

[152] Strang, G. and Nguyen, T. (1997)Wavelets and Filter Banks. Welles-
ley, MA: Wellesley-Cambridge Press.

[153] Therrien, C. (1992) Discrete Random Signals and Statistical Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall.

[154] Tindle, C., Guthrie, K., Bold, G., Johns, M., Jones, D., Dixon, K.,
and Birdsall, T. (1978) “Measurements of the frequency dependence
of normal modes.”Journal of the Acoustical Society of America 64,
pp. 1178–1185.

[155] Tolstoy, A. (1993) Matched Field Processing for Underwater Acous-
tics. Singapore: World Scientific.

[156] Twomey, S. (1996) Introduction to the Mathematics of Inversion in
Remote Sensing and Indirect Measurement. New York: Dover Publ.

[157] Unser, M. (1999) “Splines: A perfect fit for signal and image process-
ing.” IEEE Signal Processing Magazine 16, pp. 22–38.

[158] Van Trees, H. (1968) Detection, Estimation and Modulation Theory.
New York: John Wiley and Sons, Inc.

[159] Walnut, D. (2002) An Introduction to Wavelets. Boston: Birkhäuser.
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