
Combinatory Linguistics

Combinatory Linguistics

by

Cem Bozşahin

De Gruyter Mouton

ISBN 978-3-11-025170-8
e-ISBN 978-3-11-029687-7

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.dnb.de.

” 2012 Walter de Gruyter GmbH, Berlin/Boston

Printing: Hubert & Co. GmbH & Co. KG, Göttingen
�� Printed on acid-free paper

Printed in Germany

www.degruyter.com

in memory of:

Doğan Bozşahin
Ferhunde Bozşahin

Saliha İdemen
Ferruh İdemen

Preface

This book is about the place and role of combinators in linguistics, and
through it, in cognitive science, computational linguistics and philosophy. It
traces the history of Combinatory Categorial Grammar (CCG) and presents
its linguistic implications. It aims to show how combinatory theories and
models can be built, evaluated and situated in the realm of the four fields.
The introductory remarks in the beginnings of early chapters can hopefully
be excused because of the wide target readership.

The book examines to what extent knowledge of words can be construed
as the knowledge of language, and what that knowledge might look like, at
least on paper. It studies the semantic mechanism that engenders directly in-
terpretable constituents, the combinators, and their limits in a grammar. More
specifically, it investigates the mediating relation between constituents and
their semantics insofar as it arises from combinatory knowledge of words
and syntacticized combinators. It is not about forms or meanings per se.

Its key aspect is to promote the following question as a basic scientific
inquiry of language: why do we see limited dependency and constituency in
natural language syntax? We owe the question to David Hume by a series
of links, some of which are covered in the book. The reader might be puz-
zled by this claim, knowing that Hume had said very little about language.
I believe he avoided it for a good reason, but the question goes back to him
nevertheless, as I try to argue in the book.

It seems that thinking syntax is syntax and semantics is semantics in their
own structure isn’t going to take us too far from the knowledge we have ac-
cumulated on grammars, about what they can and cannot do regarding code-
terminism in forms and meanings, and about the coconspiracy of forms and
meanings. The same goes, I am sure, to thinking discourse is discourse, mor-
phology is morphology etc. The book focuses on the relationship between
syntax and semantics.

Many explanans about syntactic processes become explananda when we
readjust our semantic radar, a term which I use as a metaphor for looking at
semantic objects with a syntactic eye. As all metaphors are, it is somewhat
misleading in the beginning, which I hope becomes less of a metaphor as
we proceed. If we open the radar too wide, we are forced to do syntax with
semantic types, and run the risk of missing the intricate and complex syntac-

viii Preface

tic dependencies, which in turn might miss an opportunity to limit “possible
human languages”. If it is too narrow, we must do semantics with syntac-
tic types, and that might take us to the point of having syntaxes rather than
syntax. Both extremes need auxiliary assumptions to provide a constrained
theory of language.

Many syntactic dependencies turn out to be semantic in nature, and these
dependencies seem to arise from a single resource. This resource is conjec-
tured to be adjacency. The conjecture of semantics arising from order goes
back about a century in mathematics, to Schönfinkel, and almost half a cen-
tury in philosophy, linguistics and cognitive science, to Geach, Ades and
Steedman. The natural meeting point of the two historically independently
motivated theorizing about adjacency, the semantic and the syntactic one
about combinators, is the main story of the book.

In this regard, the book was bound to be a historical account from the
beginning. However, it came to provide, in some detail, ways of theory and
model construction for linguistics and cognitive science in which there is
no degree of freedom from adjacency. This pertinacious course seems to set
up the crucial link between forms and meanings with as little auxiliary as-
sumptions as its progenitors can think of. I believe it sets up creative links
in theorizing about the computational, linguistic, cognitive and philosophical
aspects of grammar. I exemplify these connections one by one.

When we look at combinators as functions they are too powerful, equiv-
alent to the power of a Turing machine. As such they cannot do linguistic
work because natural language constituency narrows down the expressible
semantic dependencies manifested by functions. The linguistic theorizing be-
gins when we syntacticize the combinators and establish some criteria about
which combinator must be in the grammar and which one can materialize in
the lexicon. An explanatory force can be reached if the process reveals predic-
tions about possible constituents, possible grammars and possible lexicons,
without the need for variables and within a limited computational power.
Structure-dependence of natural language strings can be predicted too, rather
than assumed.

Every intermediate constituent will be immediately interpretable, and non-
constituents will be uninterpretable by this process. In other words, being
a constituent, being derivable and being immediately interpretable are three
manifestations of the same property: natural grammars are combinatory type-
dependent. These are the narrow claims of Combinatory Categorial Grammar.

Preface ix

The notion of grammar is trivialized if there is no semantics in it. Some,
like Montague, went as far as claiming that syntax is only a preliminary for
semantics. On the other hand, language would not be worth theorizing about
if the semantics we have in mind for grammars is the semantics out there. All
species do this all the time without language, to mean things as they see fit.
Words would be very unnecessary, as one songwriter put it in the early 90’s.1

Perhaps they are not always there, as in the lyrics of Elizabeth Fraser.2 Sadly,
words are needed for us mortals, and somewhat surprisingly, they are more
or less sufficient, if we take them as personal interrelated histories of what
connects the dots in syntax and compositional semantics, which is embod-
ied in their syntactic combinatory type, as knowledge arising more than the
experience. Herein lies a Humean story.

Although I have tried to keep it to a minimum to compare the present the-
ory with others, for the sake of brevity and focus, the historical perspective
in the book makes unavoidable points of contact with different ways of theo-
rizing about grammars. Some examples are worth noting from the beginning.
(a) Steedman’s and Jacobson’s use of combinators for syntax differs when
it comes to reference and quantifier scope. (b) Kayne claims that structure
determines order, with directionally-constrained syntactic movement being
the key element in explanations. Order determines structure in the combina-
tory theory, and no-movement is the key to explanations. (c) HPSG is another
type-dependent theory of syntax like the one presented in the book. HPSG’s
types are related to each other by subtyping, whose semantics do not nec-
essarily arise from order. (d) Type-logical grammar in particular and Mon-
tague’s use of type-theoretic language in general use semantic types to give
rise to meaningful expressions, that is, to syntax. Order is not necessary or
sufficient for a set-based type’s construal, therefore it need not be the basis
for meaningful expressions. (e) Obviously not all categorial grammars are
combinatory categorial grammars. The telltale signs of the latter kind, which
is the main topic of the book, are no use of phonologically null types, no use
of surface wrap, some use of type combination that goes above function ap-
plication, and the insistence on an order-induced syntax-semantics for every
rule and lexical category, as opposed to for example order and structural unifi-
cation. (f) Dependency grammars take dependency as an asymmetric relation
of words in a string, i.e. as a semantic relation between syntactic objects, but
leave open why there are limited kinds of dependencies, and why these de-
pendencies relate to surface constituency and interpretability in predictable
ways. (g) Chomsky’s program can be seen as a concerted effort to squeeze as

x Preface

much compositional semantics into syntax as possible. The A-over-A princi-
ple, the X-bar model, subjacency, cyclicity, filters, functional categories, main
thematic condition, chains, crash and the process of derivation-by-phase do
to syntactic trees what they cannot do by themselves: constrain the possible
semantic interpretations of the syntactic objects in them hypergrammatically.

The apparent similarities of these theories must be put in context. As Pol-
lard points out frequently, most theories subscribe to some form of syntac-
tocentrism because they conceive the relation between forms and meanings
as indirect. It must be mediated by syntax. The theory covered in the book is
syntactocentric in Pollard’s sense. The syntactocentrism that will be argued
against here is the one that sees semantics as an appendix to syntax. The
theory presented here is neither the first nor the only remaining one on this
stance.

We need only look thirtysomething years before the rise of that kind syn-
tactocentrism to find an alternative foundation for bringing semantics into
syntax. Two historically independent programs, radical lexicalization and
codeterminacy of syntax and semantics, culminate in a theory where adja-
cency is the only fundamental assumption. Two aspects will figure promi-
nently: dependency and constituency. Both will get their interpretation from
a single source, the semantics of order.

For the reader: the book is organized in such a way that the technical ma-
terial that gets in the way of linguistics has been moved to appendices. This
leaves some aspects of combinators, grammars and computing to the appen-
dices (mostly definitions and basic techniques). Linguistic theorizing about
the combinators is in the main text. There is no reference to the appendices
from the main matter, or from appendices to the chapters in the main body.
The back matter might refer to earlier ones. Reading all the appendices in the
given order might help readers who are unfamiliar with some of the terminol-
ogy.

Now to pay some debts old and new academic and personal. This book
started as my I-see-what-they-mean project, although I am not sure about the
end result. It was an attempt at a collective understanding of Moses Schön-
finkel, Mark Steedman, Anna Szabolcsi, Pauline Jacobson, Noam Chom-
sky, Richard Montague, Haskell Curry, Emmon Bach and John Robert Ross,
among others. I hope the reader does not visit my shortcomings on them.

At a more personal level, my first contact with Mark and his theory was
in the years 1992–1994, and since then it has become a major part of my
academic life. I have asked so many questions to Mark that I am slightly

Preface xi

embarrassed I am getting away with an acknowledgment. Before then I was
fortunate to be taught by great teachers, whom I’m honored to list in some-
what chronological order: Türkân Barkın, Metin Ünver, İbrahim Nişancı,
late Esen Özkarahan, Nicholas Findler and Leonard ‘Aryeh’ Faltz. Some
friends and family taught me more on academic affairs than I was able to
acknowledge so far. There is a bit of them in the book but I cannot exactly
point where. Thank you Canuş, née Cihan Bozşahin, Nezih Aytaçlar, Zafer
Aracagök, Uğur Atak, Ragıp Gürkan, Justin Coven, Uttam Sengupta, Halit
Oğuztüzün, Samet Bağçe, Sevil Kıvan, Aynur Demirdirek, Stasinos Konstan-
topoulos, Mark McConville, Harry Halpin, İrem Aktuğ, Mark Ellison and
Stuart Allardyce.

Mark Steedman, Ash Asudeh and Frederick Hoyt provided comments on
much earlier drafts. Umut Özge was less fortunate to have gone through sev-
eral drafts. I owe some sections to discussions with him, and with Ceyhan
Temürcü, Mark Steedman and Aravind Joshi. Elif Gök, Yağmur Sağ, Süley-
man Taşçı, Deniz (Dee!) Zeyrek and Alan Libert suggested corrections and
clarifications for which I am grateful. Finally, special thanks to the Mouton
team, Uri Tadmor, Birgit Sievert, Julie Miess, Angelika Hermann and the re-
viewers for comments and assistance with the manuscript. Livia Kortvelyessy
of Versita helped me get the project going.

I am solely responsible for not heeding good advice of so many good
people.

Contents

List of Tables xvii

1 Introduction 1

2 Order as constituent constructor 9
1 Combinatory syntactic types 9
2 Directionality in grammar: morphology, phonology or syntax? 11
3 Trees and algorithms . 13
4 CCG’s narrow claims in brief 16
5 Type-dependence versus structure-dependence 17
6 Constituency . 22

3 The lexicon, argumenthood and combinators 31
1 Adjacency and arity . 32
2 Words, supercombinators and subcombinators 33
3 Infinitude and learnability-in-principle 36

4 Syntacticizing the combinators 43
1 Unary combinators . 45
2 Binary combinators . 47
3 Ternary combinators . 49
4 Quaternary combinators . 52
5 Powers and combinations . 55
6 Why syntacticize? . 58

5 Combinatory Categorial Grammar 61
1 Combinators and wrapping 61
2 Linguistic categories . 65
3 CCG is nearly context-free 73
4 Invariants of natural language combination 74
5 The BTS system . 82

6 The LF debate 87
1 Steedman’s LF . 89

xiv Contents

2 Szabolcsi’s reflexives . 92
3 Jacobson’s pronouns . 94
4 More on LF: Unary BCWZ, constituency and coordination . . 100

7 Further constraints on possible grammars 107

8 A BTSO system 113

9 The semantic radar 121
1 Boundedness and unboundedness 122
2 Recursive thoughts and recursive expressions 132
3 Grammar, lexicon and the interfaces 137
4 Making CCG’s way through the Dutch impersonal passive . . 142
5 Computationalism and language acquisition 149
6 Stumbling on to knowledge of words 156
7 Functional categories . 163
8 Case, agreement and expletives 170
9 The semantics of scrambling 173
10 Searle and semantics . 177

10 Monadic computation by CCG 183
1 Application . 184
2 Dependency . 190
3 Sequencers . 192
4 The CCG monad . 194
5 Radical lexicalization revisited 198
6 Monadic results and CCG . 200

11 Conclusion 205

Appendices 215

Appendix A: Lambda calculus 217

Appendix B: Combinators 219

Appendix C: Variable elimination 223

Appendix D: Theory of computing 225

Contents xv

Appendix E: Radical lexicalization and syntactic types 229

Appendix F: Dependency structures 233

Notes 235

Bibliography 249
Author and name index . 272
Subject index . 278

List of Tables

1 Basic combinators . 45

2 The syntacticized BTSO system 117

3 Tad’s first words . 150
4 Keren’s first words . 151
5 Growth rates of polynomial and exponential functions 155

6 Phonology-driven encoding of monadic dependencies 193

7 Some well-known combinators 220

Chapter 1
Introduction

On December 7, 1920, Moses Ilyich Schönfinkelmade mathematical history
when he presented to the Göttingen Mathematical Society his results about
variables. It was to be his only work on the topic, which was prepared for
publication by Behmann (Schönfinkel 1920/1924).3 Little would he know
that in this brief seminar he was going to change the course of computing and
linguistics too, two fields which flourished in the remainder of the century.4

He simply eliminated variables—bound variables. In theory, any lambda
term with no free variables is a combinator in Schönfinkel’s sense, and all
the bound variables in it can be eliminated. In practice, two combinators suf-
fice to compute any discretely representable dependency, and that takes us
to language and computing. We shall see that although this is good news
for computing because we can rigorously identify a computable fragment
of functions, it requires much extra effort in linguistics to become a theory
because we will need some empirical criteria and a theory to constrain this
power: we know that human languages do not manifest every computable
dependency.

The list of names who worked on the variable reads as a “who is who” in
mathematics and philosophy: Curry, Frege, Herbrand, Hilbert, Peirce, Rosser,
Skolem, and later, Quine and de Bruijn. They were a concern for the math-
ematician, linguist, logician, philosopher, and the computer scientist. Natu-
rally, discovery of different methods was expected.5

The way Schönfinkel set about to go at it is what made the overarching in-
fluence beyond mathematics. He gave semantics to order, and order alone, by
devising an ingenious way to represent all argument-taking objects uniformly,
something that eluded Frege in his lifetime although he had anticipated it.

Schönfinkel represented a function f of n arguments (1a) as an n-sequence
of one-argument functions (1b). Assuming left-associativity for juxtaposi-
tion, it is now standard practice to write (1b) as (1c), as Schönfinkel did.

(1) a. f (x1,x2, · · ·xn)
b. (· · ·((f x1)x2) · · ·xn)
c. f x1x2 · · ·xn

2 Introduction

This is what we now call Currying. (I must confess that Schönfinkeling
is alive in secret sects.) Haskell Brooks Curry was the first to realize the im-
portance of the technique, and made very frequent use of it in his arguments
(and Schönfinkel faded into oblivion), hence the name. The technique had
been taken for granted mainly because it was so simple.

Its manifestation in language can be easily taken for granted too. It trans-
lates to one-at-a-time word-taking in a surface string such as (2).

(2) ((((((I wonder) who) Kafka) might) have) liked.)

Every parenthesized expression in the example except the outermost one
is syntactically incomplete, yet semantically interpretable, in the sense of be-
ing a function of type λx.m′x, where m′ is a crude way to symbolize the
incrementally assembled semantics of each parenthesis.

For an n-argument object f (x1, . . . ,xn) written in the traditional notation,
we can obtain a variableless representation of f using eta-reduction and com-
binators. Variable-free functions capture the content and its combinatory be-
havior without reference to extraneous objects.

An early comparison of variable-friendly syntax with variable-free syntax
shows us that the aim is not to simply clean up theoretical tools and vo-
cabulary. Its primary motivation is empirical: if a string of objects can have
a variable-free function, then they are immediately interpretable. Taken to
its logical conclusion, it means that any intermediate phrase has instantly
available semantics. For example, the man who Mary loved is taken to arise
from the structure the man who [Mary loved __] in variable-friendly syntax,
where the empty element (a syntactic variable) awaits interpretation. Con-
sequently, the phrase it is part of waits for interpretation too. In variable-free
syntax,Mary loved is semantically λx.Clove′mary′x, which is eta-convertible
to Clove′mary′, where C is one of Curry’s combinators. It does not need any-
thing else to be interpretable. It needs something to become a proposition,
but that is more than being interpretable. By direct import of combinators
to variable-free syntax, we get immediately interpretable intermediate con-
stituents as well. This is the main story of the book.

Variables cannot be eliminated at the expense of lexical proliferation or
loss of semantics. For example, we cannot assume that love above is intran-
sitive, which would give the structure [Mary loved]. That is to say that all
strings are inherently typed as grammatical objects, such as the word loved
(transitive) and its meaning love,′ which is (e,(e, t)). Here I follow the tradi-
tion of writing the meaning of words with primes. The ubiquitous adage The

Introduction 3

meaning of life is life,′ attributed by Carlson (1977) to Barbara Partee and
Terry Parsons, will serve as a convenient base for compositional semantics in
subsequent chapters.

For us to continue giving semantics to any intermediate phrase, the argu-
ment structure of words must be curried too. We can take λxλy.mark′xy to
be equivalent to mark,′ as in Twain marks two fathoms. Such curried abstrac-
tions are required by phonology because we cannot substitute two or more
arguments at the same time.

We would be home and dry if all function-argument dependencies in lan-
guage were that simple, but we know that for example λx. f xx and λx. f x(gx)
are possible configurations, hence simple eta-conversion would not always
work. Some examples are Kinski adored himself, which has the dependen-
cies adore′kinski′kinski,′ and I have read without understanding, which is
(not′understand′ x)(read′ x i′)i′, for some x, for example the books I have read
without understanding.

The problem of capturing dependency, constituency and immediate inter-
pretation is exacerbated by mixed-branching (3a) and right-branching (3b)
demanded by language:

(3) a. (I wonder) (who Kafka might have liked) (and what Wittgenstein
might have written.)

b. I (begin (to (try (to (avoid (reading Kafka before sleep.))))))

The informal notion of constituency I employ here and denote with paren-
theses will be clarified throughout the book, which is inextricably tied to de-
pendency, intonation, informativity and interpretability, and by direct import
of combinators, to syntactic combinability.

Notice the tension between left-to-right curried open interpretations such
as (4a) and the rightward dependencies required by semantics, as in (3b). Both
kinds of branching are reflected in syntax by constituency, for example (4b).

(4) a. (((((((((I begin) to) try) to) avoid) reading) Kafka) before) sleep.)
b. (I begin to try to avoid), (and you should refrain from), (reading

Kafka before sleep.)

The inadequacy of eta-conversion for the semantic side of the constituents
is where Schönfinkel’s combinators come into the picture. For example, the
dependency in λx. f xx is not eta-reducible to f , hence we have no way of cap-
turing the dependencies in Kinski adored himself without variables or combi-
nators. We can eta-normalize λx. f xx to λx.W f x=ηW f , without variables.

4 Introduction

We can say that BSC symbolizes the dependency λx. f (gx)x which we
can observe in the bracketed part of the string the booksx [I have read _x
without understanding _x], without variables.

(5) BSC(not′understand′)(read′)i′ = (not′understand′)(read′ i′)i′

We can also assume that the inner dependency symbolized by the syntactic
variable ‘_x’ is S:

(6) S(not′understand′)read′ = λx.(not′understand′ x)(read′ x)

Given the combinators and the process of eta-normalization, knowing
a word in the combinatory sense becomes the problem of capturing its
predicate-argument dependency structure in direct correspondence with its
syntax and constituent structure, without variables.

Schönfinkel’s method allows us to capture the syntacticization of seman-
tic dependencies with a handful of combinators, all of which are based on
adjacency. Below is the semantic side of the story, where the strings in paren-
theses are interpreted.6

(7) a. (Kafka adored) and Wittgenstein loathed mentors.
B(Tkafka′)adore′ = λx.adore′xkafka′

b. I offered, and (may give), a flower to a policeman. (Steedman
1988)
B2may′give′ = λxλyλ z.may′(give′xyz)

c. He is the man I will (persuade every friend of) (to vote for). (Steed-
man 1996b)
Spefo′tvf ′ = λx.pefo′x(tvf ′x)

d. (What you can) and what you must not base your verdict on (Hoyt
and Baldridge 2008)
O(λQ.?xQx)(you′can′) =?xλP.can′(Pxyou′)

The combinators involved in (7) are all that we need for human languages.
(And they have a common bond; see the conclusion.) This is the conjecture
of CCG. The book attempts to show how CCG builds these dependency and
constituency structures through syntactic types. It pairs phonological strings
with predicate-argument structures in a radically lexicalized manner.

Here is the preview of the syntax of these constituents. We shall see
how the semantically-motivated combinators above lead to the syntactically-
realized ones below, by a direct translation made possible by the semantics
of order. We will need a linguistic theory in addition to this translation be-

Introduction 5

cause the claim is that not all the combinators can materialize as syntac-
tic.

(8) a. Kafka adored

NP (S\NP)/NP
>T

S/(S\NP)
>B

S/NP
b. may give

(S\NP)/(S\NP) (S\NP)/PP/NP
>B2

(S\NP)/PP/NP
c. persuade every friend of to vote for

(S\NP)/VP/NP VP/NP
>S

(S\NP)/NP
d. What you can

S/(S/NP) S/VP
>O

S/(VP/NP)

These examples also show the workings of a syntactic type-driven deriva-
tion. The syntactic types of the meaning-bearing elements do all the work
in derivations. By a common convention dating back to 1930s (Ajdukiewicz
1935), the derivations are shown bottom-up, with leaves on top and the root
at the bottom. Each line is a step of the derivation. Unlike phrase-structure
trees which show a description of structure, these sequences are algorithms
of structure-building by the string. The string span of a derivation shows the
coverage of the substring for the derivation. The combinator that engenders
the derivation is written at the right edge for exposition. In these example
it is the syntacticized version of BTSO, decorated as e.g. (>B). Seman-
tic assembly is immediate (and not always shown), precisely because of the
combinatory source of every syntacticized combinator.

The syntactic types of (8) are related to semantic types of (7) system-
atically. For example, (7a) suggests that Kafka′ is type-raised by T, which
manifests itself as the syntactic type S/(S\NP) in English (8a). It undergoes
Bwith adore′ semantically according to (7a), which materializes syntacti-
cally as the composition of S/(S\NP) and (S\NP)/NP, which is an instance
of syntactic B, X/Y Y/Z → X/Z. Traditional constituents which are familiar
from tree drawings, such as those in (9), will turn out to be a consequence of
the combinatory primitive, function application, decorated as (>) and (<).

6 Introduction

(9) a. Kafka adored Milena

NP (S\NP)/NP NP
>

S\NP
<

S

Kafka
adored Milena

b. I gave a flower to a policeman

(S\NP)/PP/NP NP PP
>

(S\NP)/PP
>

S\NP

gave a flower
to a policeman

It would be tempting to think of slash introduction (directionality) on the
syntactic side as the equivalent of eta-conversion on the semantic side, but
that would be misleading. If it were true, we could do syntax completely
with semantic types. The syntactic type of the word adore above is indeed
equivalent to its eta-normalizable semantics λxλy.adore′xy, i.e. one slash per
lambda-binding, but these slashes depend on surface adjacency, hence e.g.
(S/NP)/NP would be wrong for adore or for any English transitive verb.
Additionally, some lambdas are not syntactic lambdas, e.g. λx.man′x for the
word man, which is eta-normalizable to man′ but its syntax is not N/N or
N\N in English. These aspects show that combinators and their one-to-one
syntacticization do not amount to a linguistic theory. This is where the lin-
guistic theorizing begins for combinators.

Let me finish the preliminaries of the book with an assessment of Schön-
finkel by Quine. I shall return to this quote in the final chapter.

It was letting functions admit functions generally as arguments that Schön-
finkel was able to transcend the bounds of the algebra of classes and re-
lations and so to account completely for quantifiers and their variables, as
could not be done within that algebra. The same expedient carried him, we
see, far beyond the bounds of quantification theory in turn: all set theory was
his province. His C,S,U and application are a marvel of compact power. But
a consequence is that the analysis of the variable, so important a result of
Schönfinkel’s construction, remains all bound up with the perplexities of set
theory. Quine (1967: 357)

The essence of combinators for language is to turn a simple concept like adja-
cency into a scientific tool with clear limits and predictable syntactic and se-

Introduction 7

mantic (im)possibilities, precisely because variables are eliminated to model
adjacency or adjacency-like effects. And without them constituency and de-
pendency can easily tell whether our hypothesis about a certain construction
is right or wrong. That seems desirable for achieving descriptive adequacy
of grammars. There is very little degree of freedom when the entire theory
is based on a single understanding of adjacency. That will hopefully carry an
explanatory force when syntax and semantics are considered together.

The rest of the book is organized as follows. Chapter 2 introduces type-
dependent syntax, where the driving force of the syntactic process, the syn-
tactic type, arises from the semantics of combinators. Chapter 3 presents ar-
gumenthood from the perspective of combinators. This is crucial for lexical
capture of dependencies in the predicate-argument structure. It also suggests
that the lexicon might be the source of undecidability if and when it is rele-
vant. A more revealing aspect of combinators turns out to be what they deliver
about discrete representability, rather than infinitude or decidability. Chap-
ter 4 shows that the syntactic types of combinators cannot be arbitrary, due
to having the same base for syntactic and semantic juxtaposition. Chapter 5
builds a substantive base on these formal foundations to present CCG as a lin-
guistic theory. Chapters 6 through 8 discuss some variations in CCG theory:
logical form (Chapter 6), possible constraints on all grammars (Chapter 7),
and possible extensions of the invariants (Chapter 8). Chapter 9 evaluates
some linguistic, philosophical, computational and cognitive aspects of CCG,
all of which stem from bringing semantics into the explanation. Chapter 10
shows that CCG’s computation must distinguish opaque and transparent pro-
cesses, and that this leads to a syntactic simplification of its primitives to a
single operation rather than two.

In conclusion (Chapter 11) a historical perspective is reiterated where ad-
jacency as the sole hypothesis-forming device is singled out as CCG’s most
unique aspect, rather than variable elimination. This seems to be Schön-
finkel’s legacy.

Chapter 2
Order as constituent constructor

The semantic dependencies in a PADS must manifest themselves transpar-
ently in syntax for them to take part in constituencies and their interpretation,
and for order (therefore adjacency) to remain as the only explanatory device
for the syntax-semantics connection. This process will be called syntacticiza-
tion throughout the book. The result is the embodiment of combinatory be-
havior in complex symbols called syntactic types.

1. Combinatory syntactic types

The notion of syntactic type has been imported to linguistic explanation, to
the best of my knowledge, by Bar-Hillel, Gaifman and Shamir (1960), Mon-
tague (1970) and Gazdar (1981). Gazdar credits Harman (1963) for the first
use of complex symbols in phrase-structure grammars, whereas Bar-Hillel et
al’s and Montague’s use relates to Leśniewski’s and Russell’s types as func-
tions.

Formally speaking, a type is a set of values. For example, we can think of
the grammatical relation subject as a type, in English standing for the set of
values {John, Mary, he, she, it. . .}. We can distinguish it from other types, say
from the type object, which would be in English the set {John, Mary, him, her,
it. . .}. We can also think of types for verbs, such as tv for transitives, which
would be the set {hit, devour, read. . .}, and iv for intransitives, say {arrive,
sleep, read. . .}. These sets can be countably infinite, which makes their finite
representation by a type label even more significant.

Montague’s deployment of a Russell-style type-theoretic language aims to
give rise to meaningful expressions from a semantic type α (his MEα), hence
a simple label such as “subject” above would not do in his framework. His
choice is to syntacticize a denumerable number of types α by building them
into MEαs. Such construal need not be variableless or order-induced.

As atomic labels in a phrase-structure grammar, types would bear no more
significance than distributional notion of a category, such as N, V, A and P,
for nouns, verbs, adjectives and prepositions, which are commonly employed
in linguistics. This was the motivation for Harman (1963) to make complex

10 Order as constituent constructor

symbols first-class citizens of a phrase-structure grammar. In such complex
symbols the notion of structure is assumed, rather than explained by adja-
cency.

What brings surface string generalizations of types from order-predicted
semantics and syntax is the notion of a combinatory syntactic type, as em-
ployed in categorial grammars. For example, we can refine the type “subject”
above as S/(S\NP) for English, which says that any value that takes a right-
ward VP as domain (because the label VP is typewise S\NP), and yield a
sentence as a result, belongs to the set of subjects. The “object” type would
be different, for example S\(S/NP) for English. Although syntaxwise they
differ, they arise from the same semantics, which is that of T, because λP.Pa′

is the semantics underlying this type, which means all functions P in which
a′ participates as an argument, which is a unary application of the combinator
T (1) to a.′7

(1) T
de f
= λxλy.yx

Syntacticization in this particular case refers to how the semantic depen-
dencies engendered byT directly imports to syntactic types such as S/(S\NP)
and S\(S/NP)without further assumption. As shown in Chapter 4 the process
is transparent, but it is not trivial, because syntactic dependencies carry dif-
ferent features than what is borne by semantic objects. For example, English
subject-verb agreement spells the distinction S/(S\NPagr) for subjects and
S\(S/NP) for nonsubjects where “agr” is a feature bundle for agreement. For
Welsh, a strictly VSO language with subject-verb agreement, the distinction
is between S\(S/NPagr) for subjects and S\(S/NP) for nonsubjects. Another
lexical resource, the verb in this case, complements the picture by bearing
the lexical type S/NP/NPagr for a Welsh transitive verb and S/NPagr for an
intransitive. These types are (S\NPagr)/NP and S\NPagr for English.

The type S/(S\NP3s) for the word “Wittgenstein” syntactically de-
notes all functions that can be construed as an English speaker’s knowl-
edge of all things “Wittgenstein” can grammatically do, in semantic terms,
λP.Pwittgenstein′, because it captures the following contrasts.

(2) Wittgenstein adores/*adore westerns.
Does/*do Wittgenstein adore westerns?
Milena writes more letters than Wittgenstein does/*do.
Wittgenstein I am sure takes/*take more notes than he publishes.
Wittgenstein you say is the one who adores/*adore westerns?

Directionality in grammar: morphology, phonology or syntax? 11

They adore/*adores Wittgenstein for that?
Wittgenstein I like/*likes, Russell I doubt.
*?the film which might startle the critics and Wittgenstein would adore
the film which might startle the critics and which Wittgenstein would
adore

We can also symbolize all things that can be predicated over “Wittgen-
stein”, in the syntactic type S\(S/NP) for an English speaker, which also
has the semantics λP.Pwittgenstein′. It takes another lexical resource to turn
this into agreement. Because the English verb does not have (S\NP)/NPagr

for agreement, this possibility is avoided in English syntax. Therefore
the category S\(S/NP) serves an entirely different syntactic function than
S/(S\NP3s) of a subject participant. The knowledge of the word “Wittgen-
stein” is then construed as all possible categories that it can bear, in the form
of syntactic type/predicate-argument structure pairs.

This construal of syntax-semantics correspondence can be compared with
other type-dependent approaches. In Montague’s type system, where order
does not step in to provide an interpretation, the type of a transitive verb
is ((e,(e, t)),(e, t)), which is model-ready for interpretation. In this sense,
Montague’s Intensional Logic is dispensable as he pointed out himself (Mon-
tague 1970), in favor of a model-theoretic interpretation; see e.g. Dowty, Wall
and Peters (1981) for discussion. In our case the type simply refines (or con-
strains) the correspondence of the syntactic type to its PADS. It is part of what
computational linguists call a typed “glue language.”

2. Directionality in grammar: morphology, phonology or syntax?

The term string type descriptor for ‘:=’ in he := S/(S\NP3s) brings to mind
whether we could entertain the possibility that some of these contiguous
strings, namely words in the ordinary sense such as adores are derived com-
binatorially, or taken as axioms (lexical items) of a combinatory system.
The first view is adopted here without elaboration. The second view would
amount to taking ‘:=’ as the lexical type assignment operator. Equivalently
we would be asking whether the word-internal compositional meaning as-
sembly and constituency are mediated by the combinators as well, which is
implicated by the view preferred here. I do not elaborate on it because the
book covers no lexical dependency which refers to a part of another word.

12 Order as constituent constructor

The question brings forth the issue of morphology-phonology interaction
during syntactic type-driven derivation. I will say nothing about these as-
pects in this book, because they need a book-length treatise of their own,
which is upcoming work. Suffice it to say that we need to have a closer look
at Separation Hypothesis in morphology (Beard 1987, 1995), that morpho-
logical and phonological types do form assembly, and syntactic-semantic
types the meaning assembly. Modern morphological theories such as that
of Lieber (1980), McCarthy (1981), Anderson (1992), Halle and Marantz
(1993), Aronoff (1994), Beard (1995) and others need studying from a type-
dependent perspective, to see if combinators are responsible for the meaning
assembly in constructions involving parts of words and phrases.

Thus we will not be concerned whether the derivation of the following
example from Arabic must compose the passive and the causative first, by
B as shown, or whether we apply them one-at-a-time to the stem, which is
also possible with the same type assumptions.

(3) -u- -h- dahika Ahmad Nadeem
PASS CAUS laugh A N

(S/NP/NP)/(S/NP/NP) (S/NP/NP)/(S/NP) S/NP NP NP
: λPλxλy.pass′(Pyx) : λPλxλy.cause′(P(y))x : λx.laugh′x : a′ : n′

>B

-uh- := (S/NP/NP)/(S/NP)
: λPλxλy.pass′(cause′(P(x))y)

>

duhhika := S/NP/NP : λxλy.pass′(cause′(laugh′x)y)
>

duhhika Ahmad := S/NP : λy.pass′(cause′(laugh′a′)y)
>

duhhika Ahmad Nadeem := S : pass′(cause′(laugh′a′)n′)
‘Ahmad was made to laugh by Nadeem.’

Notice also the assumption that morphology and phonology somehow get
it right that -uh- is a templatic infix to the verb stem. Crucially, the direction-
ality of the slashes does not reflect morphology of Arabic. It is a syntactic
constraint with a semantic motivation; in this case for example the passive
looks for lexical verb categories.

We get grammatical derivations the same way in all languages by medi-
ating them only through syntactic types, independent of their morphological
or phonological typology, including for example the templatic morphology
of Arabic, because syntactic dependencies relate to compositional semantics
of words as they are embodied in syntactic types. The combinatory theory
described in the book goes as far as claiming that the types above regulate the
scope of e.g. the passive and the causative, because they are syntactic pro-

Trees and algorithms 13

cesses. They regulate the behavior so that we get pass′(cause′(laugh′a′)n′)
above, not cause′(pass′(laugh′a′)n′), which is what we would also get if we
let morphological types and phonology do the semantics, say by applying the
passive a �→ u to dahika first, and then the geminate causative to /h/. How
these types arise from interfaces morphologically and phonologically is not
covered in the book.

Further empirical support for dissociating syntactic directionality from
morphological or phonological directionality comes from languages such
as Kwakw

,
alawhere some nominal inflections fall on the preceding word,

whatever its category. For example, in Figure 1, -s and -is are suffixes on
lewinux.

wa but they relate syntactically to mestuw-i. Similarly, -ida is a suffix
on the preceding verb to which it bears no syntactic relation. The slashes in
the figure reflect syntactic directionality rather than suffixation or morpho-
logical order.

In summary, the slash can only do syntactic work in a combinatory the-
ory. If it takes on other duties such as morphological order (as it does in some
versions of categorial grammar such as Hoeksema 1985), it cannot simulta-
neously undertake morphological work and afford not to immediately deliver
semantics of some constituents. It would be forced to do that when composing
the preceding word of an inflected nominal in Kwakw

,
alamorphologically and

phonologically because the semantics of the inflections would be unrelated to
the morphological/phonological host. Positing phonologically vacuous types
to remedy the problem would undermine the combinatory base of grammar
because, in the process of syntacticization, only phonologically discernible
elements can be given immediately deliverable semantics by combinators.
Relaxing the directionality interpretation of a combinatory slash to allow syn-
tactic, morphological or phonological order is not a degree of freedom in a
combinatory grammar.

3. Trees and algorithms

The preceding discussion suggests that what we see in a combinatory deriva-
tion is a step-by-step syntactic and semantic assembly, not morphology or
phonology. The style of the presentation wants explaining. Drawing the
derivation in (3) as a tree reveals its strictly binary nature. This is shown
in Figure 2. The same derivation could be drawn using the more familiar tree
notation (Figure 3), but it would be misleading for three reasons.

14 Order as constituent constructor

na
na
q@
si
l

-i
da

iP
g@
l’
w
at
-i

@
le
w
in
ux .

w
a

-s
-i
s

m
es
tu
w
-i

la
-x .
a

m
ig

w
at
-i

gu
id
es

- S
B
J

ex
pe
rt

hu
nt
er

-I
N
S
T
R

-A
R
T

ha
rp
oo
n

P
-O

B
J

se
al

/ A
R
T

-D
E
M

-D
E
M

/A
R
T

-D
E
M

S/
P
P
/N

P
in
s/
N
P

N
P
/N

N
/N

N
((
S/
P
P
)\
(S
/P

P
/N

P
in
s)
)/
N
P

N
P
/N

N
P
P
/N

P
N
P
/N

N
>
B

>
B

N
P
/N

((
S/
P
P
)\
(S
/P

P
/N

P
in
s)
)/
N

P
P

>
>

N
P

(S
/P

P
)\
(S
/P

P
/N

P
in
s)

>

S/
P
P
/N

P
in
s

<

S/
P
P

>
S

‘A
n
ex
pe
rt
hu
nt
er

gu
id
es

th
e
se
al
w
ith

hi
s
ha
rp
oo
n.
’

Figure 1. Kwakw
,
ala’s syntactic bracketing, adapted from Anderson (1992: 19).

Trees and algorithms 15

S

(S/NP/NP)/(S/NP/NP)

-u-

(S/NP/NP)/(S/NP)

-h-

S/NP

dahika

NP

Ahmad

NP

Nadeem

Figure 2. A CCG derivation as a tree.

S (>)

S/NP (>)

S/NP/NP (>)

(S/NP/NP)/(S/NP) (>B)

(S/NP/NP)/(S/NP/NP)

-u-

(S/NP/NP)/(S/NP)

-h-

S/NP

dahika

NP

Ahmad

NP

Nadeem

Figure 3. A CCG derivation as a phrase-marker tree.

First, structure-building in a combinatory derivation crucially depends on
the linear sequence of types, which is explicit in a notation such as (3) but not
in a phrase-structure tree.

Second, the combinatory process must start with the lexical assumptions.
Otherwise there would be no way to achieve the immediate assembly of lex-
ically projected semantics, whereas a tree can be built top-down, bottom-up
or with a mixed strategy. In other words, a combinatory derivation is a con-

16 Order as constituent constructor

structive proof, an algorithm, of the structure-building, whereas a tree is its
description.

Third, there are no intermediate records in a CCG derivation, which also
breaks the ties with logical proofs. There is no sense in which any subtree
would be available for reinterpretation, reuse, retraversal or reinspection.8

For example, after the derivation of duhhika above, we have the substrings
duhhika, Ahmed and Nadeem as remaining work, without any rework or in-
spection. This is most explicit in line drawings, which can be viewed as walls
built around the range of the derivation. I will use the standard linear notation
throughout the book.

4. CCG’s narrow claims in brief

Combinators as syntactic tools must encode and project dependencies just
like they do when they operate on semantic objects. We must preserve this
property throughout syntacticization so that we can claim the same origin
(order) for structure and its interpretation. For example, a binary version of
B, as in B f g = λx. f (gx), suggests that f depends on gwhich depends on
x, whatever x is when it is instantiated. No combinatory rule or dependency
can change the dependence of f and g on x once we obtain λx. f (gx) by B.
Parenthesis-free combinators such as C encode and project dependencies too.
C f ab= f ba, hence the order of the arguments matter to f in this example; it
is a genuine dependency.

The syntactic process of combination might look similar in spirit to depen-
dency grammars such as Tesnière (1959), Hudson (1984), Mel’čuk (1988).
However, the narrower claim is that only the syntactic types bear on con-
stituent structure, and they arise from semantics of order, therefore the pro-
cess of syntacticization is crucial, and adjacency is all we need for it.

Having no degree of freedom from adjacency will force us to entertain nar-
row hypotheses about possible syntactic categories, therefore possible gram-
mars, and about a basic inquiry of linguistics promoted in the preface:

(4) A Humean question for linguistics:
Why do we see limited dependency and constituency in natural lan-
guage syntax?

Here is a brief preview of the limited constituency engendered by the
syntacticized combinators. Although maximal left bracketing is allowed, not

Type-dependence versus structure-dependence 17

all substrings are constituents, for example *(mathematicians in)(ten). Some
constituents are quite unorthodox, such as I know that three and you think that
four mathematicians in ten prefer corduroy. This much is inferrable from the
well-formed fragment of (5c).

(5) a. I know that three mathematicians in ten prefer corduroy.

S/(S\NP) (S\NP)/S′
>B

S/S′

b. I know that three mathematicians in ten prefer corduroy.

S/S′ S′/Sfin
>B

S/Sfin
c. I know that three math. in ten prefer corduroy.

S/Sfin (S/(S\NP))/N N (N\N)/NP
>B2

(S/(S\NP))/N
??

? N
d. I know that three mathematicians in ten prefer corduroy.

(S/(S\NP))/N N (S\NP)/NP NP
>

S/(S\NP)
>B

S/NP
>

S

All constituents are immediately interpretable, and none of the noncon-
stituents are interpretable. These are the combinatory predictions about order-
engendered constituent structure.

5. Type-dependence versus structure-dependence

A further consequence of CCG’s narrow claims is that all natural language
grammars must be type-dependent to be able to deliver all and only the im-
mediately interpretable constituents. Type-dependence as a research program
does not deny the structure-dependence of natural language strings. The main
goal is to explain structure-dependence as arising from something other than
structure, from adjacency and its semantics. Positing a sequential origin for
structure presumes that structure-dependence is an epiphenomenon, and with
it goes the primary use of variables for structure-building.

18 Order as constituent constructor

Perhaps the best known work for variables in syntax is Ross’s (1967) Co-
ordinate Structure Constraint (CSC). His thesis was a bold attempt to con-
strain the syntactic variables. The motivation was to avoid overgeneration of
the semantics of the constructions involving such kind of variables. Putting
together the desire to constrain the semantic behavior, and employing syn-
tactic variables for this task, we can conclude that these variables must range
over structures, rather than strings or words.

Structure-dependence is the hallmark of transformationalism, both in the
theory and in the data. Chomsky’s transformations have changed over the
years, but they have always maintained one property: structure preservation.
According to this theoretical dictum transformations only apply to structured
strings, represented as phrase-markers, to produce structured strings. In terms
of data, assuming structure-dependence is the starting point for the nativist
explanations of language acquisition (Crain and Pietroski 2001).

I will present structure-dependence and type-dependence in their own
terms, and compare their claims. In the examples of structure-dependence
below where the process of question formation pairwise relates a-examples
to b-examples, the relevant relations are structural dominance and structural
locality of labels.

(6) a. Kafka [liked Milena]VP.
a′. John [thinks that Kafka [liked Milena]VP]VP.
a′′.[The lady who I [think Kafka [likes]VP]VP]NP [adored flowers]VP.
b. Did Kafka like Milena?
b′. Does/*did John think that Kafka liked/*likes Milena?
b′′. Did/*do/*does the lady who I think Kafka likes/*like/*liked adore

flowers?

I use the notation []T to represent the syntactic label T of the substring
in brackets. For example, in (6a′), the inner VP is dominated by the outer VP.
In (6a′′), the outermost NP and the last VP are structurally sisters, hence local
to each other. The stars in b′–b′′ examples are meant to indicate that the mean-
ing conveyed by an a-example cannot be questioned like the corresponding
starred b.

If structural dominance were not critical, we would have the starred do’s
in the b-examples as grammatical. If locality were not the determinant for the
sisterhood of the subject, the starred like examples in b’s would be fine too.

A simple inductive heuristic on the position of do or like (“for the choice
of do, use a verb that appears later when the string is longer”), which might

Type-dependence versus structure-dependence 19

work for (6a′′), would not work for (7a). Similarly, a simple label match of
VP by order would not work either (7b–c).
(7) a. The man who sleeps liked the lady who reads Kafka.

b. Kafka [[while sleep]VPing]AdvP dreamed about Milena.
c. *Did Kafka while sleep dreamed about Milena?

These examples are type-dependent as well as being structure-dependent.
For example, we can think of yes-no questions as imposing the following
constraints on do, where the syntactic labels are now combinatory syntactic
types (constraints) rather than distributional categories.

(8) a. [Did]Syn/(Sinf\NP)/NP Kafka like Milena?

b. [Does]Syn/(Sinf\NP)/NP3s
Kafka like Milena?

c. [Do]Syn/(Sinf\NP)/NP¬3s
you like Milena?

With these assumptions, (9a) is ruled out by type-dependence without the
help of structure-dependence. The inner Sinf\NP is not visible to the word
does, and the string think..Milena cannot bear the syntactic type Sinf\NP.

(9) a. *[Does]Syn/(Sinf\NP)/NP3s Kafka [think [adore Milena]Sinf\NP]?
b. Do [you]NP2s

think that [Kafka]S/(S\NP3s)
liked/likes/*like

Milena?
c. liked := (Sfin\NPagr)/NP
d. likes := (Sfin\NP3s)/NP
e. like := (Sfin\NP¬3s)/NP
f. like := (Sinf\NP)/NP

Agreement is always encoded for subjects, as in NP2s for you in (9b), also
(Syn/(Sinf\NP))\((Syn/(Sinf\NP))/NP2s), and for Kafka, as S/(S\NP3s). This
is enforced by the lexical differences in (9c–f).9 As in structure-dependent
accounts, the category of embedded likes cannot project as the type of the
clause headed by think. The critical type-dependent steps are shown below:

(10) Do you think that Kafka likes Milena?

Syn/(Sinf\NP)/NP¬3s (Syn/(Sinf\NP))\ (Sinf\NP)/Sfin Sfin
((Syn/(Sinf\NP))/NP2s)

< >

Syn/(Sinf\NP) Sinf\NP

Notice also that the choice of liked and likes in (9b) is not related transforma-
tionally as in (6a′/b′). They produce different semantics to begin with, which
is a consequence of radical lexicalization. There are no deeper structures, with
surface structures derived from them.

20 Order as constituent constructor

Structure-dependence and type-dependence begin to make different pre-
dictions when we observe that there might be (a) same structures which must
bear different types, and (b) different structures which must bear the same
type. In a type-dependent theory, different types mean differential behavior,
and having the same type means manifesting the same syntactic behavior. The
first kind is CCG’s answer to CSC, without extraneous constraints, principles
or variables. Let me briefly exemplify case (b) before we move to CSC. I will
draw on Turkish data.

Common nouns and adjectives in Turkish are collectively called substan-
tives because they show similar morphological characteristics when used as
nouns, such as the same case, person and number marking. Their common
semantics, that of being a property, which is syntactically NP/NP, is trans-
parently imported to Turkish syntax in structures that widely differ in their
internal structure but behave similarly in syntax.

We can for example form relative clauses which differ structurally in sub-
ject versus nonsubject extraction (11a–b), but both kinds can be headless as
well, in which case they undergo the nominal paradigm in inflections as if
they were noun stems (11c–d).

(11) a. [İstanbul’a gid-en]NP/NP otobüs

Ist-DAT go-REL bus
‘The bus that goes to Istanbul’ Turkish

b. [İstanbul’a git-tiğ-im]NP/NP otobüs

Ist-DAT go-REL.1s bus
‘The bus with which I went to Istanbul’

c. [[İstanbul’a gid-en]NP/NP]NP-ler-i ben gör-me-di-m.

Ist-DAT go-REL-PLU-ACC I see-NEG-PAST-1s
‘I did not see the ones that go to Istanbul.’

d. [[İstanbul’a git-tik]NP/NP]NP-ler-im daha güzel-di.

Ist-DAT go-REL-PLU-POSS.1s more beautiful
‘The ones with which I went to Istanbul looked better.’

In these examples the headless variety cannot be thought of as cases where
biri ‘one’ is deleted. For example, (11a) and (11c) are related and the readings
are quantificational, but if we use biri or şey ‘thing’ in (11c), e.g. Istanbul’a
giden şeyleri ben görmedim (‘I did not see the ones that went to Istanbul’), it
is nonquantificational. Therefore these are different structures. The examples
have the additional property that, independent of the structural source, be

Type-dependence versus structure-dependence 21

they a suffix, a lexically specified adjective (12), or a derived clause such
as a headless relative clause, they can behave as anaphors if their type is a
predicative NP.10 They have a unique semantic function syntactically.

(12) [Zengin]NP/NP kriz-den etkile-n-me-di.

Rich crisis-ABL affect-PASS-NEG-PAST
‘The rich has not been affected by the crisis.’

In other words, Turkish seems to make no distinction in syntactic behavior of
the types NP/NP and NP if the semantic origin of the NP is that of a property,
independent of its internal structure. Compare the clausal structure of these
examples with a nominal NP structure (13).

(13) [Her yeni otobüs-ün koltuğ-u]NP
every new bus-GEN.3s seat-POSS.3s
‘every new bus’s seat’

The other case which differentiates type-dependence from structure-
dependence is when similar structures show differential application in syntax,
as in CSC.

Ross’s solution to CSC, that coordinands are islands of extraction with a
single escape boat, which is to extract across the board (ATB) from each co-
ordinand, and only for constituents with the same grammatical function in ev-
ery coordinand, proved to require transderivational constraints for structure-
dependent theories. No one has come up with an effective and nonarbitrary
solution to such constraints which would keep the problem in the class of re-
cursive languages describable by transformational grammars; see Peters and
Ritchie (1973).

Through the syntacticization of combinators, the CSC becomes a type
constraint without variables, kept well inside recursive languages; in fact it
is nearly context-free. Here is the combinatory solution to the problem, as
worked out mainly by Gazdar (1988) and Steedman (2000b). The type con-
straint is that the coordinands must be like-typed, enforced by the coordina-
tor’s lexical category (X\X)/X in (14).11

(14) a. The cat that [John admires]S/NP and [Mary hates]S/NP
b. *The cat that [John admires]S/NP and [bites Mary]S\NP
c. *The man that [admires John]S\NP and [Mary detests]S/NP
d. The man [that admires John]N\N and [(that) Mary detests]N\N

Steedman (2011: 94)

22 Order as constituent constructor

e. *The cat that [John admires]S/NP and [Mary hates it]S
f. *The cat that [John admires it]S and [Mary hates]S/NP

The similarity of the argument to the structure-dependent explanation, that
coordinands must be like-categories in the structural sense, is illusory; it is
the computation of this constraint that makes structure-dependent theories
Turing-complete, and type-dependent ones (in the combinatory sense) nearly
context-free.

6. Constituency

Combinators as semantic objects cannot be the explanation why we see lim-
ited kinds of type dependencies in syntax. For example, we shall see that
S can hardly be the explanation for the dependencies inMary wanted to love,
although they are certainly describable by S, because S f ga = f a(ga), thus
S(Cwant′)love′mary′ = want′(love′mary′)mary′. But this combinator is pre-
cisely the syntactic explanation for the dependencies in He is the man I will
persuade every friend of to vote for, and both reasons have to do with con-
stituency as we shall later see.

Some dependencies are nonexistent semantically and syntactically, al-
though they are describable by the combinators that operate in syntax. For
example, there is no language in which the pseudo-English expression John
expects that Barry could mean ‘John expects Barry to expect’. Its seman-
tics would be expect′john′(expect′barry′). It is describable by S, C and T:
S(CCjohn′)(Tbarry′)expect,′ which is equivalent to the purported dependen-
cies, expect′(expect′barry′)john′. It will turn out to be a conspiracy of syntac-
tic types of nominals and verbs, therefore not a theoretical impossibility but
lexical improbability. The coconstraining behavior of syntactic types and se-
mantics is a major concern of the book for this reason.

We need an agreed-upon definition of constituency to be able to judge the
effects of semantic dependencies on syntactic grouping.

I will follow an empirical notion of constituency, which is assumed to be
the basis of competence:

(15) Any surface string with compositional semantics that can be put to-
gether phonologically by a native speaker is a constituent.

As an empirical requirement, it says that whenever we observe an intona-
tional grouping which is acceptable by native speakers, we must worry about

Constituency 23

its compositional meaning, and about how to deliver that meaning. As a the-
oretical requirement, it says no more than that every syntactic combination
that mediates the phonology-semantics connection must have a semantic in-
terpretation, otherwise we would just have a mixture of words rather than
constituents, a point which Chomsky (1975: 206–211) was the first to point
out back in 1955.

This definition and its theoretical and empirical aspects seem to be shared
by transformationalism and other frameworks as well. Consider for example
Chomsky’s criteria for phrase-markers, which embody constituency in his
theory ever since its inception.

(16) 1. The rule for conjunction Chomsky (1975: 210)
2. Intrusion of parenthetical expressions
3. Ability to enter transformations
4. Certain intonational features.

Chomsky goes on to argue in the next page that the first and the second
criteria are actually theoretical, and can be subsumed by the third, but the
fourth criterion is not. Therefore we are forced to have at least one theoretical
and one empirical criterion for constituency, which is followed here as well.

In a theory where structures are classified by subtyping, such as HPSG,
constituency is directly built into the theory. Phrasal types are distinguished
from lexical types by subtyping, with the further division of phrasal types
as headed structures and others. Only the subtypes of the type phrase carry
a feature called DAUGHTERS, subtyped as constituent structure (their con-
struc), Pollard and Sag (1994: 31). Because all types have a semantic feature
as well, it is incumbent on an HPSG grammar to show a head for the headed
constituent structures, and no head for others, which establishes a good em-
pirical test for constituency.

The concept is manifest in multistructural theories of grammar such as
LFG, as “order-free composition, requiring that the grammatical relations that
the [grammatical] mapping derives from an arbitrary segment of a sentence
be directly included in the grammatical relations that the mapping derives
from the entire sentence, independently of operations on prior or subsequent
segments,” Bresnan and Kaplan (1982a: xliv). The nature of the mapping is
the theoretical claim, and the inclusion of grammatical relations is the em-
pirical test. LFG culminates the resolution of these multiple constraints on
an independent level, called c(onstituent)-structure, with each level having its
own well-formedness conditions. Their point extends to assigning a syntactic

24 Order as constituent constructor

mapping to the following fragments, just like complete sentences, precisely
because the theory can show how their grammatical relations can be included
in the set of interpretations of the larger segment of which they are a part:

(17) a. There seemed to ... Bresnan and Kaplan (1982a: xlv)
b. ...not told that...
c. ...too difficult to attempt to...
d. ...struck him as crazy...
e.What did he...

In summary, there seems to be a consensus that constituency must have
a theoretical foothold and an empirical testing ground, without which it
seems hard to formulate a grammar. Using a variableless, monostratal, order-
instigated syntax for this task, which is presented here, and its way of han-
dling constituency, naturally brings to mind comparisons to syntax with vari-
ables, most notably with transformationalism, which as its name suggests
needs variables.

Consider the two different analyses of the man whoMary loved, shown be-
low. (18) is an analysis based on Steedman’s Combinatory Categorial Gram-
mar (Ades and Steedman 1982, Steedman 2000b).

(18) the man who Mary loved

(S/(S\NP))/N N (N\N)/(Sfin/NP) S/(S\NP3s) (Sfin\NP)/NP
>B

S/NP
>

N\N
<

N
>

S/(S\NP)

Figure 4 uses a recent version of transformationalism, the Minimalist Pro-
gram, which started with Chomsky (1993, 1995).

The analysis with variables, Figure 4, uses six primitives: move, merge,
agree, check, lexical insertion, and argument structure. The last one ensures
that we get a merge of loved and the syntactic variable -wh, rather than just
loved, as in Mary loved deeply. Its scope is controlled by the governor +wh.
Lexical insertion injects parts of words into the tree, and ensures for example
that there is one copy of Mary.

A structure-dependent but order-inspired theory of structure-building, that
of Phillips (2003), appeals to order as its main thrust of the construction op-
eration, and likewise uses several copies of words (first created then deleted

Constituency 25

merge

the merge

man move [+wh]

who merge

C move [Mary]

Mary agree [T,Mary]
merge

T merge

Mary agree [v,wh]
merge

v merge

loved -wh

Figure 4. Minimalist Program’s primitives.

under identity), plus the operations move, merge and the economy conditions
on structures. It is not monotonically dependent on the syntactic types of the
words in a sequence.

The purpose of the book is to show that (18) uses only one primitive:
Schönfinkel’s juxtaposition. Every syntactic combination is local and adja-
cent. It is meaning-bearing, and phonologically realized. For example, B’s
syntacticization arises from its dependency structure, written after a colon,
which I use for the time being to talk informally about semantics.

(19) X/Y : f Y/Z : g Z : a→ X : f (ga)

We could not conceive a B semantics if the syntactic types were one of
the following in (20). Either adjacency (20a–c) or dependency (20d–e) are
violated in these configurations.

26 Order as constituent constructor

(20) a. *X/Y Y Y/Z → X
b. *Y/Z X/Y Z → X
c. *X/Y Y/Z P/Q Z → X P/Q
d. *X/Y Y/Z Z → Y
e. *X/Y Y/W Z → X

Syntactic types adhere to dependency by virtue of adjacency as well. From
the derivational configuration A B ⇒ C, shown on the left below, which
means the syntactic types A and B given in this order leads to the syntactic
type C, we can also obtain the same result by assuming A=C/B and B=C\A:

(21) A B

C

A= C/B B

C

A C\A =B

C

For example, the English transitive construction ‘NP V NP’ spells a com-
binatory type for the verb as follows: ‘NP V NP’ ⇒ S, hence ‘V NP’
→ S\NP.12 Therefore ‘V’ → (S\NP)/NP. A phonological string α with
the morphological type ‘V’ is known to syntax only by its syntactic type
(S\NP)/NP.13 We write this as:

(22) α := (S\NP)/NP

Other translations are possible, for example (S/NP)\NP for ‘V’, but
this category is easily eliminated by the litmus test of syntax, surface con-
stituency: (23a) is grammatical, therefore its surface constituents must be
derivable with the verbal category assumptions.

(23) a. Obelix (chases relentlessly) and (eats ferociously) the wild boars of
the Armorican forest.

b. eats ferociously

(S/NP)\NP3s (S\NP)\(S\NP)
?

eats ferociously

(S/NP)\NP3s (S/NP)\(S/NP)
<B

c. John fights ferociously.

NP3s S\NP3s (S/NP)\(S/NP)
?

A category such as (S/NP)\NP for transitives would not be consistent or
complete, because we must assume a consistent and complete category for
the adverbial as well. Compare (23b) and (23c). The adverbial assumption in
the first alternative of (23b) would be unworkable with the verbal assumption,
as shown. The second alternative on the right is workable, but it would be in-
sufficient for the constituency in (23c). The remaining potential culprit is the
verbal assumption in (23), which must be revised. The categories (S\NP)/NP

Constituency 27

and (S\NP)\(S\NP), respectively for the verb and the adverb, are consistent
and complete with respect to the observations of constituency above.

The argument structure arises from adjacency too. There is a systematic
relation between a syntactic type such as (S\NP)/NP of love and its depen-
dency representation λxλy.love′xy, which we can eta-normalize without vari-
ables to love′(e,(e,t)). Similarly, the S\NP of the intransitive love and its seman-
tics λx.love′x, which we can normalize to love′(e,t), are codeterminant.

A purported argument structure in the category (S\NP)/NP : λx.love′x is
universally disallowed, only because its eta-normalized version, love,′ which
is variableless, could not give us a complete interpretation of the verb. There
are two syntactic slashes, therefore two syntactic arguments, hence we must
expect two lambdas (perhaps more, as in properties, but at least two, be-
cause of the syntactic type). Although we can associate the variable x with
the ‘/NP’, rightly or wrongly, there would be no semantic counterpart of
‘\NP’ above, which is to say that we have no way of capturing its meaning
because we would have no way of knowing what syntactic objects (words,
phrases) it is argument of by virtue of adjacency. This cannot be the compe-
tent knowledge of the word love, whether it is love′(e,(e,t)) or love

′
(e,t).

14

Both syntax and semantics work by juxtaposition. Indeed, semantics be-
comes immediately available at every step of the derivation because of having
the same primitive. I redraw the derivation of (18) below to show the lock-
step assembly of semantics driven entirely by syntactic types.

(24) the man who Mary loved

(S/(S\NP))/N N (N\N)/(S/NP) S/(S\NP3s) (Sfin\NP)/NP
: λPλQ.(the′x)and′(Px)(Qx) : man′ λPλQλx.and′(Px)(Qx) : λP.Pmary′ : λxλy.loved′xy

>B

S/NP : λy.loved′ymary′
>

N\N : λQλx.and′(loved′xmary′)(Qx)
<

N : λx.and′(loved′xmary′)(man′x)
>

S/(S\NP) : λQ.(the′x)and′(and′(loved′xmary′)(man′x))(Qx)

Notice that the process of lexical insertion into phrase-structural intermediate
records (trees) is replaced by a process of bringing the self-contained type
assignments of the meaning-bearing elements to the surface string. They can-
not be copied, checked or governed, and there can be no late or early inser-
tion. Such devices need structure-builders over and above order, as Phillips’s
(2003) work demonstrated.

It is a prediction of a lexical insertionless theory such as CCG that mor-
phological and phonological assembly interact with grammatical computa-
tion in limited ways, to affect the syntactic types only at the interfaces. This

28 Order as constituent constructor

issue is related for example to Chomsky’s “derivation by phase” (Chomsky
2001). CCG’s conjecture is that a phase has a very limited window of op-
portunity, namely one meaning-bearing item in the string, regulated by its
lexical syntactic type (Steedman 2005b). This makes “phase” synonymous
with ‘a lexical item that can be spotted in a string, one with a syntactic type
and a predicate-argument dependency structure’.

In this sense, the theory of CCG is not derivationalist in its account of
constituency and interpretation, because no condition can be predicated over
derivations if there aren’t any intermediate records to predicate over. Rep-
resentationalism, which is a term commonly used in transformational stud-
ies to show the contrast in their way of management of intermediate results,
such as Brody (1995), Epstein et al. (1998), is not helpful to characterize
CCG either. It can best be characterized as a type-dependent (rather than
structure-dependent), radically lexicalist approach to syntax which relies on
adjacency as the only structure building primitive, and only in places where
structure truly manifests itself: surface constituency and predicate-argument
structure.15

CCG’s principle of adjacency is not an argument of theoretical simplicity
or Occam’s razor. Chomsky’s point on the topic of theory choice is well-
taken:

“Thus it is misleading to say that a better theory is one with a more limited
conceptual structure, and that we prefer the minimal conceptual elaboration,
the least theoretical apparatus. [..] If enrichment of theoretical apparatus and
elaboration of conceptual structure will restrict the class of possible grammars
and the class of sets of derivations generated by admissible grammars, then it
will be a step forward (assuming it to be consistent with the requirement of de-
scriptive adequacy).” Chomsky (1972: 68)

The program of CCG is bringing semantics into the explanation in a com-
pletely syntactic type-driven grammar and its computation. If semantics can
reduce the possible lexical categories hence possible grammars, without fur-
ther auxiliary assumptions, then its role in the explanation might be consid-
ered a complication in the theory for a good reason. (It would be a complica-
tion because the semantic representation is now part of the knowledge we can
collectively call a category, together with the syntactic type.) If a significant
reduction can be shown, then a narrower theory is to be preferred. However,
doing this the CCG way shifts the goals of linguistic theorizing from narrow-
ing down the admissible phrase markers to understanding the limited nature

Constituency 29

of dependency and constituency despite the apparent flexibility in order and
structure. Hence the question is more complex than presented so far.

The insistence on adjacency distinguishes CCG from theories which are
otherwise similar in spirit in adopting lexicalism and the abandonment of
transformations. For example, HPSG had in the past posited empty strings in
the lexicon for topicalization and relativization (Pollard and Sag 1987), then
moved towards the elimination of traces (Pollard and Sag 1994). LFG has
this option too; cf. Kaplan and Bresnan (1995), Kaplan and Zaenen (1995).
Type-logical grammar can assign types to empty strings and retract such as-
sumptions under certain conditions, or stay away from this practice as it sees
fit regarding semantics, e.g. Carpenter (1997).16 CCG has no such degree of
freedom.

The notion of possible grammars can be equated with possible combina-
tory categories when we insist on adjacency and radical lexicalization be-
cause only lexical items can bear categories and the categories contain no
variables. Combinatory constituency is the litmus test for such categories. A
related cousin of juxtaposition called “wrap” does not provide a combinatory
base, as we shall see in §5.1.

Chapter 3
The lexicon, argumenthood and combinators

Let us now see how combinators can capture function-argument configura-
tions as a consequence of juxtaposition, and without variables. This will give
us a variableless lexicon. Then we move on to variableless syntax. First, some
history of the variable.

Peirce’s (1870) elimination of variables predates Frege’s decisive work
on clarifying the notion of variable, and Peirce was apparently unaware of
Frege’s work. Frege’s (1891) variableless technique was to represent for ex-
ample x2 + x as ()2 + (). The notation, as he prophesized, did “not meet
with any acceptance” (Frege 1904:p.114). His currying in Frege (1893) is al-
most identical to what we have now, due to its adoption by Church (1936)
for lambda calculus. Frege’s program aims to distinguish intensions such as
()2+() from extensions (values) such as λx.x2+ x.

The two notations put together did not lend themselves to purely
adjacency-driven models of semantic object manipulation. Schönfinkel had
to appeal to Łukasiewicz-style prefix notation to facilitate variableless com-
bination by adjacency.

However, he did not use Łukasiewicz’s (1929) prefix operator—which
Quine 1967 symbolized as o, to represent x(yz) as oxoyz. He used the paren-
thesized notation instead. Thus Quine (1967) is right to criticize Behmann for
adding the end material to the 1924 paper about the elimination of parenthe-
ses, which Schönfinkel apparently had not intended as his agenda.

It is sometimes useful to make a clarification about the whole practice
of variable elimination. As Curry pointed out frequently (Curry 1929, 1963,
Curry and Feys 1958), combinatory logic concerns itself with the elimination
of variables from elementary theorems, but leaves open the question of their
utility in epitheorems. Thus a foundation is set in which we can safely assume
that bound variables, if used, are used only for expository or efficiency pur-
poses (because of Church-Turing thesis and the equivalence of lambda calculi
and combinators—see Barendregt 1984). Steedman (1988, 1996a) suggests
that bounded constructions (passives, reflexives etc.) are one area in which a
variable-friendly logical form in an otherwise variableless combinatory syn-
tax might have evolutionarily arisen out of pressures for efficient processing.

32 The lexicon, argumenthood and combinators

1. Adjacency and arity

We can now move toward a variableless lexicon in Curry’s sense of elimi-
nating them from fundamental theorems. An n-argument predicate f can be
uniquely represented as f n if we wished. However, the arity declaration of an
object is an intrinsically combinatory property of it, therefore the f n notation
would not do to establish the lexicon-syntax communication by order alone.
Curry and Feys’s (1958) definition of power for combinatory objects reveals
the right combinatory source. We can define the arity of f as a consequence
of juxtaposition. It marks the arity of f as a combinatory prefix.

(1) A(f ,n)
def
=

{
f for n= 0
BnI f for n> 0

(Schönfinkel-Curry arity)

Some manifestations of combinatory arity are exemplified below.

(2) f abcde . . . (f 0)
B1I f abcde . . .= I(f a)bcde . . .= (f a)bcde . . . (f 1)
B2I f abcde . . .= BBBI f abcde . . .= I(f ab)cde . . .= (f ab)cde . . . (f 2)

Because of I, every abstraction is necessarily a function if there are argu-
ments. This is implicit in Schönfinkel’s notation §1(1).17

The notation translates to syntactic argument-taking directly; the power
of B in (1) is the number of slashes of f in its syntactic category. For B3I f ,
we get for example A/B/C/D for f where A is the result type of f , but not
A/(B/C)/D, because the second slash in the latter category would be for the
argument of B, not A. Similarly, if f is a zero-argument function (a constant),
then BII f or I f would not faithfully reflect that it is not necessarily a functor;
it can be say A rather than A/B, hence the first clause of (1).

The reason for going through the trouble of variable-free argument specifi-
cation is to show that argument taking is just another manifestation of seman-
tic dependency, and to show that the adjacency formulation of dependency
finds a natural niche for it in syntax without being orthogonal to, or an aux-
iliary assumption of, phrase structure. All of the combinators’ behavior is
describable solely by the adjacency of functions and arguments. S, B and I

etc. can take their arguments only if they are adjacent. The results are pre-
dictable directly from their adjacency. The dotted material in for example
B f ab · · ·d · · · is “unreachable” to B, therefore uninterpretable by this B. The
object d cannot be an argument of this B, by the virtue of its nonadjacency.
The objects f , a and bmust be the arguments ofB because of their adjacency.

Words, supercombinators and subcombinators 33

The combinators B, S, I etc. are assumed to contain no vacuous abstrac-
tion in their definition, i.e. all and only the arguments are specified. Hence
there is no version of Bwhich is able to reach out and take the d above via
vacuous abstraction, say λx1 · · ·λxn.x1(x2x4) for some n > 3. This is not a
theoretical necessity because by definition any object is a combinator if it has
no free variables, including the ones with spurious abstractions. It is in this
sense that we take them as ‘building blocks’ as Schönfinkel had called them;
all other combinatory definitions are illative.18

Now a single grammatical base, adjacency, explains all behaviors of
argument-taking objects because we know from Curry and Feys (1958) that
combinators have the same power as the lambda calculus. (This is somewhat
tolerable in computing, but it presents problems to a linguistic theory. I say
more on this in the closing words of this chapter.)

The effect of unification of argument-specification and combinatory be-
havior under adjacency might be quite revealing for the radical lexicalization
of natural grammars. Most importantly, we get full interpretability of words
and phrases, which is what argument specification is all about, for free. This
result arises from supercombination, along with finite typeability in the lexi-
con.

2. Words, supercombinators and subcombinators

For the purpose of understanding linguistic argument-taking by combinators,
the relation between combinatory terms and lambda terms requires a closer
look. For example, f (λx.g(hx)) indicates that x is not an argument of f but
of h. If f is the head functor of a word w, then this lambda term suggests
that x is not an argument of w but of some other word which f takes in its
domain. An example of such dependency is the bracketed substring in [what
you can] and what you must not count on.

Assuming λQ.?yQy for the semantics of what for simplicity, following
Hoyt and Baldridge (2008), Groenendijk and Stokhof (1997), the substring
encodes the dependency in (3a), but not (3b).

(3) a. what you can := λP.?ycan′(Pyyou′)
b. *λPλx.?ycan′(Pxyou′)y

In other words, what you can is a one-argument function, not two. The vari-
able y is a nonsyntactic argument of P. (P in this case corresponds to count

34 The lexicon, argumenthood and combinators

on, whose predicate-argument structure λx1λx2.con′x1x2 is opaque to what
and what you can.) The difference arises from the nature of combinators and
supercombinators.

All the combinators we have seen so far are supercombinators, with the
exception ofO and Y, to be defined below. Supercombinators can group their
argument abstractions—lambdas—to the left to leave a lambdaless body. This
seems to be a clear identification of a predicate-argument structure in a cat-
egory, where the lambdas can be seen as the glue language for syntactic ar-
guments. We will have a closer look at Y later because it is crucial for the
debate on syntactic versus semantic recursion.

The opaqueness in what you can arises from O. In combinatory parlance,

this combinator is not a supercombinator : O f gh
def
= f (λx.g(hx)). The se-

mantics of what you can requires this combinator: Owhat′(you′can′), where
what′=λQ.?yQy. A preview of CCG’s syntactic type-driven way of handling
this dependency is given below along with its semantic assembly (4). It makes
use of the syntacticized O rule in (5). I will justify the syntactic types of (5)
in the next chapter.

(4) what you can

S/(S/NP) S/(S\NP) (S\NP)/(S\NP)
: λQ.?yQy : λ f . f you′ : λPλx.can′(Px)

>B

S/(S\NP)
: λP.can′(Pyou′)

>O

S/((S\NP)/NP)
: λP.?ycan′(Pyyou′)

(5) a. X/(Y/Z) : f Y/W : g W/Z : h→ X : f (λx.g(hx)) (O)
b. For some X/Y : h (Y)

X/Y : h ↔ F0 = X/(X/Y) : Y h

(X/Y)/Fn−1 ↔ Fn for n> 0

The significance of supercombinators for our purposes is the following.

(i) Inner lambdas cannot be the arguments of f in (5a), hence the ternary
nature of O, although there is a lambda left on the right-hand side of
its definition. Y is considered unary for the same reason.

Therefore argumenthood is not a simple count of lambdas. It is a struc-
tural property because it requires the knowledge of inclusion asymme-

Words, supercombinators and subcombinators 35

tries. This is one of the reasons why we need the notion of predicate-
argument structure in addition to dependency, leading to PADS.

(ii) Words whose semantics require combinators which are not supercom-
binators can be called subcombinators. Although they may look odd as
words, such as what you can, with O semantics as shown above, they
can in principle be lexicalized. For example, the Turkish equivalent of
that I defended is indeed one word, savunduğum, which also has O

semantics as we shall later see. They necessarily absorb an argument
of their arguments because of an inner lambda abstraction, as in x of

O f gh
def
= f (λx.g(hx)).

Not all subcombinators are finitely typeable.O has finitely many types,
but Y does not (5); notice the recurrence relation in Y. Finite typeabil-
ity seems to be a prerequisite for compositional semantics of words
because it translates to lexical representability.

(iii) The words with subcombinator semantics must be distinguished from
function words whose arguments may be opaque in a different way.
For example, in languages where unbounded relativization is headed
by a relative pronoun, such as that in English, we have the semantics
λPλQλx.and′(Px)(Qx) for the relative marker. Here opaqueness arises
from the fact that x substitutes for a property inQ and a participant in P,
cf. the dog that the cat chased versus *Fido that the cat chased. There
are no inner syntactic lambdas in λPλQλx.and′(Px)(Qx); it is indeed
a supercombinator.

(iv) Words whose semantics demand a lexical use of combinators such as
Ywould be very odd. If there were such words, their combinatory be-
havior could not be read off entirely from their argument types because
the syntactic contexts in which they can occur cannot be known fully
by the native speaker; note the recursive variable F in (5) above. It is
tantamount to saying that knowledge of these words cannot be com-
plete. We can conjecture that no such word exists in natural languages.
Therefore,

(v) The only lexicalizable dependencies that are manifest in natural lan-
guage are the finitely typeable ones. They are describable by super-
combinators and subcombinators. This is a necessary but not sufficient
condition. We shall see examples such as the combinator K. It is a

36 The lexicon, argumenthood and combinators

finitely typeable supercombinator which is very unlikely to be operat-
ing in syntax or in the lexicon.

3. Infinitude and learnability-in-principle

Clearly, a subset of combinators ought to be considered as potential combina-
tory apparatus for a linguistic theory. The dependencies manifested by Y and
K have not been attested in natural languages, and Cmight wreak havoc in
grammar but perhaps not in the lexicon. CCG has a specific answer to this
problem, which I summarize in Chapter 5.

In a way linguistics faces the same amount of problems meeting the com-
binators when physics faced against Roger Penrose’s claim that classical
physics is Turing-computable: none.19 It did not make the Turing machine
a rival theory of classical physics, because it cannot predict anything unless
physicists engage substantive constraints in their theory. Similarly, combina-
tors cannot be a theory of language just because they happen to be the models
of adjacency par excellence. This is where the linguistic theorizing begins for
combinators.

Three issues arise for any linguistic theory aspiring for formal adequacy
and substantive restrictiveness: infinity, decidability and representability of
natural language. The combinatory perspective suggests that, although all
three issues are crucial, representability is the most decisive among the three,
and it is not some informal notion of representability, but Turing repre-
sentability. The reasons are as follows.

The argument for the infinitude of human languages first appealed to
Cartesian creativity and von Humboldtian romanticism, respectively: (a)
there is a universal repertoire of thoughts with infinite ways to express them,
and (b) individual languages materialize as the special manifestations of a
universal human language. Chomsky’s (1966) integration of these two lines
of thought as the cornerstones of his generative grammar “of infinite use of
finite means” carried the finiteness debate into the realm of formal methods.

Generative grammar attempted to enumerate possible grammars, but the
earlier attempts were overshots. Putnam (1961) criticized the basic innova-
tion of generative grammar, transformations, as being able to generate nonre-
cursive languages, and maintaining that human languages are recursive. Put-
nam’s claim had been criticized to be too performance-oriented, but Peters
and Ritchie (1973) argued from the perspective of competence grammars,

Infinitude and learnability-in-principle 37

and could not find a nonarbitrary way of delimiting possible transformational
grammars to guarantee a constrained formalism.

Chomsky’s theorizing shifted away from formal aspects by the early 60s,
and the debate on the undecidability of his formalism faded.20 He claimed
that recursion is the basic trait of human language, for example Chomsky
(2000), Hauser, Chomsky and Fitch (2002). The notion of recursion is most
formally dealt with in mathematics and computing science, and the results
I summarize in §4.1 and §9.2 suggest that what Chomsky seems to have in
mind is everybody’s assumption, that semantic recursion, i.e. recursion by
value, is real for all humans. Syntactic recursion, however, i.e. recursion by a
name or a label, is not necessary for this, and the lack of a Y-like behavior in
any natural language can be taken as the living proof of this result. Y is the
paradoxical combinator of Curry, and without it or its behavioral equivalent
such as Turing’sU, syntactic recursion is not possible, as we shall see in §4.1.

Pullum and Scholz (2009) argue that giving up on recursion is not a mental
block to creativity. After all, 10230 might be the number of possible sentences
in human languages, and it does require a theory to sift through the search
space to identify say English, even though the search space is finite.

I am of course not suggesting that we take the easiest way out to sat-
isfy Gold’s (1967) finding about learnability, by assuming that languages are
learnable because they are finite. In his “text” model where the acquirer faces
the same conditions as the child, only finite languages can be learned. In the
other model, called the “informant”, any grammar up to and including that of
primitive recursive languages can be learned.21 The model requires a decider
to answer whether a string is in the language or not. Gold himself acknowl-
edges that it requires feedback about negative instances “by being corrected
in a way we do not recognize”Gold (1967: 453).

The computationalist scenarios I outline in §9.5 suggest that there is prob-
ably more indirect evidence than what is assumed by the complex innate
knowledge proposals. For example there is the possibility of the child be-
ing wrong about what an utterance means, but being very explicit about the
syntax-semantics connection hypothesis, for example thinking that veggies
means dog′ when the word is uttered when there is a dog around, or that veg-
gies is an act like eating, with a syntactic type such as S/NP rather than NP as
the adult might have intended. The indirect evidence here might be the next
state of affairs where there are veggies but no dogs around, or no potential
for being forced to eat them, such as being pointed in a grocery display while
sitting in a stroller. Infinitude seems to be a secondary concern in this task.

38 The lexicon, argumenthood and combinators

But learning “something more than the data” in the Humean sense does prove
critical; see §9.5 for discussion, where something more is claimed to be the
syntactic type.

Without too much of a worry about finitude, we can readjust the goals of
linguistic theory to understand why we do not see some kinds of dependen-
cies and constituencies in any language, whether they are finite or not. Free
operation in syntax, and the codetermination of syntax and semantics in the
form of a category, seem to suffice for this line of research.

Now let us consider decidability. A weak argument arises from formal
aspects, such as transformationalism not being able to deliver grammars
that always decide. We do not know whether this is the reason why Chom-
sky (1965) entertains the possibility of natural languages being potentially
undecidable.22 One formalization of minimalist grammars, that of Stabler
(1997, 1999), suggests that Chomsky’s recent grammars stay well within re-
cursive languages.

A stronger argument is from languages rather than grammars. A naive ver-
sion of the argument might proceed as follows: human languages are decid-
able because every speaker can decide whether any expression is a sentence
in her language. Differences of opinion would not count because the speak-
ers would have to make up their minds in the first place to be able to agree or
disagree.

What makes them decidable is a meta-theoretical question, but it would
not lead to a theory of language if it fails to engage substantive constraints
in a linguistic theory. Levelt (1974) suggests that one such constraint is the
learnability-in-principle, which amounts to saying that acquirable grammars
are the primitive recursive ones. This is one of the running themes of this
book, and it requires a closer look at substantive constraints on grammars,
which we will narrow down to a theory of possible lexical categories. We
know that a concocted language in which every sentence has an even number
of words is decidable, yet there is no such language and we can be certain
that there will never be. So what is unnatural about this language? Clearly,
no amount of formalization can give us the desired answer, because the very
word natural requires that we situate the formal apparatus in some complex
system with interactions, i.e. a system with substantive constraints.

We can also entertain the possibility that human languages may be
Turing-undecidable but Putnam-Gold decidable. Putnam-Gold (1965) ma-
chines are Turing machines that can change their minds—if you pardon
the expression—as the computation develops. Thus, for a known Turing-

Infinitude and learnability-in-principle 39

undecidable problem, a Putnam-Gold machine can output a “no” before com-
putation begins, and then output a “yes” or another “no” depending on which
state it halts. If it never does, we still have an answer.23 It does not follow
that any undecidable problem can be modeled that way. Take for example the
question:

(6) What is the next real number after π?

The argument of decidability for language must remind us that language is
not posing that kind of a question to us, even though the question may be very
relevant to the semantics out there, where meaning cannot be determined by
language.

This brings us to the final issue, that of finite versus transfinite rep-
resentability. There is another argument of undecidability that we should
take into account in this regard, that of Hintikka (1977). He uses the se-
mantic criterion of synonymy, of interchangeability of any-expressions with
every-expressions in English, which he shows to be not even recursively-
enumerable. Bresnan and Kaplan (1982a: xliv) comment that “If Hintikka’s
argument is correct, then semantics must diverge from syntax in a fundamen-
tal way, as he observes.” Remember also Quine’s (1951) warning that the
notion of synonymy brings with it other problematic concepts such as analyt-
icity.

We could also speculate whether the problem as stated by Hintikka is
Turing-representable in the first place. Bolinger (1968: 234) offers another
linguistic perspective in this regard, which suggests that we might start with
questioning Hintikka’s experiment and its implications for the nature of se-
mantic representation: “Practically speaking, there is no such thing as an
identical synonym. The language demands its money’s worth from every
word it permits to survive.”

Where does synonymy stop, if it exists? (Note that in the work cited above
and in the follow-up Hintikka 1980, the test requires any-substituted sentence
to be grammatical, and contrast in meaning.) In this continuous space of sim-
ilarity, we can also include problems that are not Turing-representable. For
example, if and at what level can we say that a cat is sitting on the mat? At
the folk science level or ordinary language, with some nominal understanding
of sitting, we can test this hypothesis, but at the quantum level? Some of the
quantas of the cat might be communicating with the mat to a level we might
consider touching, but surely not all of them. How that experiment differs
from synonymy experiment is not clear. (See Higginbotham 1982 for another

40 The lexicon, argumenthood and combinators

kind of objection, that taking logical equivalence as a sufficient condition for
sameness of meaning is problematic. Quine’s demonstration of circularity
of analyticity and synonymy presents a conundrum for semantic criteria as
well.)

Thus any criterion of decidability ought to be syntactic and combinatorial,
otherwise we are in a domain much like the real numbers, and we can forget
about a combinatorial base for language.

The moral of the thought experiment is that it pays to keep the prob-
lem combinatorial by sticking to a syntactic criterion of (un)decidability. We
know some realizable classes of formal machines to see what kind of compu-
tational resource management we need to capture the kinds of dependencies
we see in natural languages. We have no such hope as yet for transfinite repre-
sentations which are implicit in (6). The notion of representability is dubious
in that domain.

In this context, limited noncontext-freeness of human languages formally
argued for by Shieber (1985) and Joshi (1985) provides a research agenda
in which the limited nature of the automaton itself is the explanation for the
limited kinds of dependencies, rather than extra assumptions or stipulations.
This also cuts down severely the degrees of freedom in theorizing because
limited computational resources can be called in for help in a hypothesis. In
this way of thinking going in the syntactic route all the way to undecidability
would not change the underlying syntactic machinery, it would just mean that
the source of undecidability might be the lexicon, such as a word with Y or
WWW semantics.

Thus, Turing representability in the abstract is the key to be able to even
talk about the syntactic manifestation of semantic dependencies. Words with
syntactic dependencies are the observables on which we can theorize about
semantics. Decidability and finiteness are secondary issues.

That of course does not entail that the biological substrate of the limited
automaton is the answer to our combinatorial problems. There is a very likely
possibility that the (human) brain is not a sequential computer like the Turing
machine. For all we know, the underlying cognitive mechanism for language
may not be language-specific at all. And this is where the linguistic theo-
rizing stops, in case the warnings of Sandra (1998) about what linguists can
and cannot say about human language processing mechanisms are not clear
enough, with our current level of understanding. Remember the debate in
the 1990s about the psychological reality of traces and empty categories. For
every experiment which proved the reality of such elements (see Zurif 1995,

Infinitude and learnability-in-principle 41

Gibson and Hickok 1993), there was a counter-experiment which proved their
nonexistence (e.g. Pickering and Barry 1991, Pickering 1993).

This takes us back to variables in theorizing. Traces and empty categories
are syntactic variables in need of binding or government. Why eliminate them
when they are so convenient to our understanding of argument-taking? Com-
puting scientists face the same predicament for different reasons. The com-
puting story is quite revealing, but I leave it to programming language theo-
rists to tell that story.24

In this book I will stick to the linguistic story. One of the most striking
empirical observations of the 20th century linguistics is that parsing is a re-
flex. (Try turning it off if you are a skeptic, and imagine someone saying the
ineffable as you try to shut yourself down.)25 It is tempting to say that we
could import computing’s success with variableless interpretation to account
for the reflex-like behavior of knowledge of language in action (the key word
here is like, because the metaphor seems to fail in predictable ways in for
example aphasia and autism).

A less speculative answer is that the kind of combinatorics that is re-
vealed before us in the form of syntacticized combinators sets up a base
on which substantive theories can be built to predict possible linguistic cat-
egories, therefore possible languages. The adjacency base of semantics di-
rectly translates to adjacency syntax when we eliminate variables from fun-
damental theorems.

The interesting turn of variableless theorizing with combinators is that
not only do they suggest a formal source for the combinatory possibilities
in languages, they make the combinations—constituents— directly and im-
mediately interpretable if the ingredients happen to have semantics. That is
the bread and butter of a competence grammar, and we get a modeling tool in
which syntax and semantics coconstrain possible lexical categories to provide
a substantive base.

And everything does have semantics, including the so-called dummies (for
example the it in It seems to rain), the accusative case and function words
such as that, to etc., once we readjust our semantic radar.26 The purpose of
the book is to show an attempt of that model building process in detail.

Chapter 4
Syntacticizing the combinators

The combinators were originally intended to deal with functions. For them to
do syntactic-semantic—i.e. grammatical—work, we need their faithful trans-
lation into syntactic objects so that the semantic dependencies they symbol-
ize are directly imported into syntactic dependencies. This is what I mean by
syntacticizing the combinators.27

The reader might object that what I call “functions” are syntactic objects,
because lambda calculus and variableless combinators seem to manipulate
them by syntactic rules.

They may be called syntactic objects of a domain theory, i.e. a name for
collection of objects, but they would not be the syntactic objects of a linguis-
tic theory. Consider the same problem (levels of abstraction) for the theory of
lambda calculus. It has a direct denotational semantics for any lambda expres-
sion, for example x denotes all values of x in an environment e, λx.M denotes
all values denoted byM when the free occurrences of x inM gets some value,
say a. Lambda terms are its syntactic objects, and sets-as-denotations are its
semantic objects. (See Barendregt 1984, Stoy 1981 for a full treatment of
denotation and its relation to the syntax of lambda calculus.)

We face the same levels of abstraction problem in combinatory linguis-
tics. Although a compositional meaning of the phrase love hurts could be
given as Bhurt′love′ if we wished, this must arise from words as syntactic
objects, since we cannot communicate combinatory thoughts as combinatory
thoughts. (If you are not convinced, try conveying the meaning of love hurts
without words, in a medium in which you must also be able to convey the
meanings of: I believe love hurts. Mary claims I believe love hurts. The man
in the corner claims Mary thinks I believe love hurts. etc.)

This brings us to the ontology of objects in a linguistic theory. CCG’s han-
dling of dependency is different from that of dependency grammars, where it
is taken as an asymmetric relation among words (syntactic objects) in a string.
In CCG, the dependency relation is defined over semantic objects, but since
the observables are syntactic objects, the relation must be mediated by syntac-
tic types. This might be considered a complication in the theory in Chomsky’s
sense noted earlier, but it is for a good reason: it can give us predictions about
surface constituents and their immediate interpretability.

44 Syntacticizing the combinators

We first syntacticize application. The slash ‘/’ is the syntactic counterpart
of function application, which is made explicit in Schönfinkel-Curry arity
§3(1), where the power ofB translates to the number of slashes for arguments.
We writeB1I f as A/B: f . The syntactic type of f states that it is syntactically
a function from B to A.

We can now syntacticize the semantic dependency manifested by juxtapo-
sition f a:

(1) X/Y : f Y : a→ X : f a (application)

‘→’ is the syntactic counterpart of the reduction rule, viz. beta-conversion.
There is no restriction that Y be slashed or slashless. This follows from the
semantics of application, which is (f a) but not necessarily f (Ia).

We write (2) syntactically to mean that the syntactic objects ω1 and ω2,
with categories A/B : f and B : a, capture the semantic dependency f a in their
syntactic types.

(2) ω1 ω2

A/B B
app

A

Argument-taking objects such as f above are curried functions. Thus ev-
ery such f takes one argument at a time. Its syntactic type cannot be slashless
because, if it could, we could write application as (3) as well (a ‘*’ in a rule
decoration indicates ill-formedness).

(3) X : f Y : a→ X : f a (*application)

There is nothing in the ingredients of the rule (3) that says f is the function
and a is the argument, yet the result requires it. The rule is not compositional
as it stands. The X/Y type for B1I f forces a function interpretation on the
syntactic side as well, hence the rule (1).

The syntactic type of BnI f has n slashes as in X/1 · · ·/nY . The last slash
is the one relevant to (1), because the left-associativity of juxtaposition nat-
urally translates to the left-associativity of the slash.28 X/1 · · ·/nY is same as
(X/1 · · ·)/nY .

The application rule cannot be (4a) either because the semantic depen-
dency is f a, not a f . (4b) fails to capture the dependency of f ’s argument
type and a. Z cannot be an arbitrary argument type; it must be Y .

(4) a. Y : a X/Y : f → X : f a (*application)
b. X/Y : f Z : a→ X : f a (*application)

Unary combinators 45

Thus the only syntacticized rule of application that translates the semantic
dependencies to syntactic dependencies without further assumption is (1). We
can write (1) as (5) because of this result, and fully syntacticize it.

(5) X/Y Y → X (application)

Table 1 lists all the combinators which Curry and Feys (1958) considered
more or less basic. Smullyan (1985) retold the story of combinators as talking
birds, presumably anticipating their natural fit with language.29 The names
in the third column are Smullyan’s birds. We shall syntacticize them—and
more—one by one.

Table 1. Basic combinators

I Ix= x Identity bird
Y Yx= y= xy for some y Sage bird

depending on x
K Kxy= x Kestrel
T Txy= yx Thrush
W W f x= f xx Warbler
B Bxyz= x(yz) Bluebird
C Cxyz= xzy Cardinal
S Sxyz= xz(yz) Starling
Φ Φxyzw= x(yw)(zw)
Ψ Ψxyzw= x(yz)(yw)
J Jxyzw= xy(xwz) Jay

1. Unary combinators

The first unary combinator is I. We can syntacticize it as (6). Unary rules are
simple correspondences without combination, which we write with a double
arrow.

(6) X/Y : a↔ X/Y : Ia (I)

At first sight Imight look superfluous because it adds nothing to the inven-
tory of semantic objects or syntactic types. It does crucial work on the lexical
side when we want to ensure that an argument of an object is an argument-

46 Syntacticizing the combinators

taking object itself. On the syntactic type, such constraints translate to requir-
ing a slashed category. For example, f can be typed A/(B/C)/(D/E) if both
arguments are unsaturated functions (remember that currying will take care
of the arity of B and D). Thus the following purported syntacticization of I
does not import the semantic property that whatever a is, Ia is necessarily a
syntactic and semantic function.

(7) X : a↔ X : Ia (*I)

The other unary combinator, Y, which was discovered by Curry, is the
epitome of recursion, and rightfully established him as the father of func-
tional programming by the 1970s.30 For example, YK deletes infinitely many
objects. Curry and Feys (1958) called it the paradoxical combinator because
it captures Russell’s paradox nicely. It is better known as the fixpoint com-
binator, which allows recursive programs to be written without variables or
names. Recall that Y behaves the following way: Yh= h(Yh).

Not surprisingly, Y’s syntacticization fares no better than infinite regress
in semantics, and leads to an infinite schema:

(8) For some X/Y : h (Y)

X/Y : h ↔ F0 = X/(X/Y) : Y h

(X/Y)/Fn−1 ↔ Fn for n> 0

What makes the syntacticized Y syntactically recursive is the recurrence
relation Fi, not having the same result as its argument, as in X/(X/Y). This
observation will be crucial in the following chapters.

We can see the syntactically recursive behavior ofY in (9), for a hypothet-
ical word ω .

(9) ω

X/Y : h
Y

F0 = X/(X/Y) : Y h
Y

F1 = (X/Y)/F0 = (X/Y)/(X/(X/Y)) : h (Y h)
Y

F2 = (X/Y)/F1 = (X/Y)/((X/Y)/(X/(X/Y))) : h (h (Y h))
Y

F3 = (X/Y)/F2 = (X/Y)/((X/Y)/((X/Y)/(X/(X/Y)))) : h (h (h (Y h)))

The property that saves the infinite expansion from unwarranted undecid-
ability is what computing scientists call lazy evaluation, which is to avoid
evaluating an argument in normal-order until it is demanded by its function.

Binary combinators 47

It is a consequence of the Church-Rosser (1936) theorems. No one has iden-
tified a word in any language that requires the second derivation line above.
Thus, although Y can be kept under control by lazy evaluation, no such de-
pendency seems manifest in languages.

2. Binary combinators

Let us now consider Schönfinkel’s binary combinators T and K. T can be
syntacticized as (10). By T’s semantics, viz. Tab= ba, we know that b is the
function and a is the argument.

(10) Y : a X/Y : b→ X : Tab (T)

We cannot have (11) as the syntactic reflexes of T. The overall syntactic
type is that of b, viz. X, which is not guaranteed in (11a). (11b) fails to capture
T semantics because a �= Ta. Twants the function after the argument.

(11) a. Y : a X/Y : b→ Z : Tab (*T)
b. X/Y : b Y : a→ X/(X/Y) : Ta X/Y : b (*T)

T’s syntacticization is completed once the semantic dependencies are di-
rectly reflected in the syntactic types. We can rewrite (10) without semantic
objects from now on:

(12) Y X/Y → X (2T=T)

We can carry over the X/Y of (12) to the right to fully syntacticize the
unary version of T:

(13) Y ↔ X/(X/Y) (1T)

What allows us to do this is the asymmetry of juxtaposition inherent in
Schönfinkel’s interpretation, that the sequence ab is not the same as the se-
quence ba, thus Y X/Y is not the same as X/Y Y . Therefore, carrying over
the Y in (12) to the right, for example as X/Y : b→ X\Y : b, would be wrong,
whereas X/Y : b→ X\Y : λx.bx is fine.31 (The backslash attempts to keep the
relative order of X/Y and Y .) The equivalence of the first case would imply
ab = ba necessarily. The relation must be mediated, and Tab = ba is a way
of doing that.

We can see the effect of importing the mediation to syntactic types in the
following examples: (14a–b) embody T semantics, whereas (14c) does not.

48 Syntacticizing the combinators

(14) a. ω1 ω2

Y X/Y
T

X

b. ω1 ω2

Y X/Y
1T

X/(X/Y)
app

X

c. ω1 ω2

Y X\Y
*T

X

However, there is a systematic relation between the forced T semantics of
the kind in (14a–b), and optional T semantics in (14c). This is shown in (15).
From this perspective, T can be seen as the application of an argument as a
function in one direction, to a function which looks for an argument of that
kind in the other direction.

(15) ω1 ω2

Y: a X\Y: f
1T

X/(X\Y): Ta
app

X: Ta f = f a

It is called type raising for this reason, which necessarily involves applica-
tive configurations:32

(16) X/Y Y → X Y ↔ X\(X/Y)

Y X\Y → X Y ↔ X/(X\Y)

(type raising)

The process is order-preserving, and relaxing this property results in per-
mutation closure (Moortgat 1988a). The optionality of T proves to be a nec-
essary degree of freedom in the account of flexible constituency, as we shall
see in Chapter 5.

K’s syntacticization is straightforward because it does not follow from a
semantic dependency between its arguments:

(17) X : a Y : b→ X : Kab= a (K)

K’s power of deletion is unmatched by any of the combinators in Table 1,
therefore it is not interdefinable by these combinators or juxtaposition. Its
unary version serves to show its formidable powers, by freely deleting the
syntactic dependencies of any Y:

(18) X : a↔ X/Y : Ka= λb.a (1K)

The last binary combinator in Table 1 is W. With semantics W f a= f aa,
it can behave incessantly like Y in certain circumstances such asWWW. By
definition, f requires two arguments. We can syntacticize it as follows:

Ternary combinators 49

(19) (X/Y)/Y : f Y : a→ X : W f a (W)

It would be wrong to syntacticize it as below. (20a) would turn a one-
argument f into a two-argument f . (20b) would not be compositional: there
is no indication that the second argument—Y—is reduced to the first argu-
ment Z, hence the semantic dependency of W is not wholly reflected in the
syntactic types.

(20) a. X/Y : f Y : a→ X/Y/Y : f Y : a Y : a (*W)
b. (X/Y)/Z : f Z : a→ X : W f a (*W)

Carrying over the Y from the left-hand side of (19) to the right-hand side,
and writing the remainder asW capture the semantics ofW (21a), which we
can fully syntacticize as in (21b).

(21) a. (X/Y)/Y : f → X/Y : W f = λa. f aa
b. (X/Y)/Y ↔ X/Y (1W)

The reader will note the lavish use of resources by W, and wasteful K.
When applied to semantic objects, say K f a to waste a, or W f a to bring an-
other a out of a hat, this may look tolerable. But when the objects in question
are syntactic objects, namely words, resource insensitivity takes on a whole
new meaning. We shall see in subsequent chapters that resource sensitivity
does not necessarily follow from adjacency (witness K), therefore exclusion
of W or K from syntax must be scrutinized, rather than assumed because of
their resource insensitivity.

3. Ternary combinators

We now turn to combinators with three arguments. The one with the sim-
plest semantics is B the compositor, which embodies the composition of two
functions: B f ga= f (ga). We can syntacticize it as follows:

(22) X/Y : f Y/Z : g Z : a→ X : f (ga) (B)

Notice that, by definition, f and gmust both be argument-taking objects
because they occupy the functor position. This can be made more explicit
by writing their semantics as B(I f)(Ig)a = f (ga), of which (22) is a direct
translation with slashes.

50 Syntacticizing the combinators

For us to get the same B-dependencies as syntactic dependencies, the fol-
lowing must be eliminated; f must depend on a because it depends on gwhich
depends on a:

(23) X/W : f Y/Z : g Z : a→ X : f (ga) (*B)

B’s syntactic manifestation as (22) is redundant because of the primitive
(juxtaposition). This effect can be seen below where the task of B is done by
two applications of the primitive on the right. This notion of redundancy will
be crucial in Chapter 5 where we choose the free combinators for syntax.

(24) ω1 ω2 ω3

X/Y Y/Z Z
B

X

ω1 ω2 ω3

X/Y Y/Z Z
app

Y
app

X

The following manifestation of B, in which the right edge component
of (22) is carried over to the right-hand side, is nonredundant. We can
take (25b) to be the syntacticization of the semantic dependencies in (25a).

(25) a. X/Y : f Y/Z : g→ X/Z : B f g= λx. f (gx)
b. X/Y Y/Z → X/Z (2B)

The following translations of (22) are wrong, because the redundancy due
to ternary application is purportedly eliminated by carrying over the middle
argument to the right. In B f ga, B’s semantics is lost if g is after a.

(26) a. X/Y : f Z : a→ X/(Y/Z) : f (g) Y/Z : g (*B)
b. X/Y : f Z : a→ X/Z : λx. f x Y : ga (*B)
c. X/Y : f Z : a→ X/(Y/Z) : λg. f (ga) (*B)

The adjacency constraint on f ,g,a in B f ga is violated in the following
example: Z is unreachable to X/Y and Y/Z to be interpreted by them. It would
be a nonadjacency semantics for B.

(27) X/Y : f Y/Z : g W : h Z : a→ X : f (ga) W : h (*B)

Thus the only nonredundant syntacticization of Bwhich preserves the se-
mantic dependencies is (25b). We can produce the unary version from (25b)
as well, which will help us to simplify the syntacticization of other combi-
nators. The right periphery of the left-hand side in (25b) can be carried over
to the right-hand side as long as we maintain the right order of arguments, as
in (28). This is what Curry and Feys (1958) called (B)1.

Ternary combinators 51

(28) X/Y ↔ (X/Z)/(Y/Z) (1B)

Next we consider C, the elementary permutator, with semantics C f ba =
f ab. This combinator swaps the order of arguments for an argument-taking
object f . Although it does not introduce parentheses on the right, C is a de-
pendency encoder, unlike K, which is another parenthesis-free combinator.
The function f depends on the arguments a and b, and their change of order
is significant to f . It can be syntacticized as follows:

(29) (X/Y)/Z : f Y : b Z : a→ X : f ab (C)

The first argument of f must be of the same type as the second argument
in linear order, hence the purported syntacticization in (30) cannot preserve
C-dependencies engendered by the types of arguments and their adjacency.

(30) (X/Z)/Y : f Y : b Z : a→ X : f ab (*C)

(31) ω1 ω2 ω3

(X/Y)/Z Y Z
C

X

ω1 ω2 ω3

(X/Y)/Z Y Z
T

Z/(Z/Y)
B

(X/Y)/(Z/Y)
B

X/Z
app

X

C’s ternary manifestation is behaviorally equal to unary T, binary B,
unary B and application (31). Similarly, its binary version (32a) is equivalent
to the behavior of the same combinators (32b). Unary C is defined in (33).

(32) a. (X/Y)/Z Y → X/Z (2C)
b. ω1 ω2

(X/Y)/Z Y
T

Z/(Z/Y)
B

(X/Y)/(Z/Y)
B

X/Z

(33) (X/Y)/Z ↔ (X/Z)/Y (1C)

The syntacticization of S the substitutor follows a similar line. Unlike B,
the combinator S assumes a two-argument f in S f ga= f a(ga). (Schönfinkel
had called it fusion, which makes the dependency of both functions on the
remaining argument very explicit.)

52 Syntacticizing the combinators

We can faithfully reflect the arity and adjacency of the arguments of S in
the following syntacticization.

(34) (X/Y)/Z : f Y/Z : g Z : a→ X : f a(ga) (S)

We cannot conceive the following configuration as S because it amounts to
having S f aga= f a(ga) for some S. This is different than S f ga= f a(ga).

(35) X/Y/Z : f Z : a Y/Z : g Z : a→ X : f a(ga) (*S)

The following purported syntacticizations of S are wrong because they do
not embody S semantics. The first one violates the dependency of both f and
g on a. The second one violates the adjacency of f and g in S f ga.

(36) a. (X/Y)/Z : f Y/W : g W : a→ X : f a(ga) (*S)
b. (X/Y)/Z : f Z : a Y/Z : g→ X : f a(ga) (*S)

Ternary S’s work can be done by the syntacticized combinatorsW, B and
C. Curry and Feys (1958) note the equivalence S = B(B(BW)C)(BB).
Smullyan (1985) gives a simpler formula, S = B(BW)(BBC). These com-
binators are explicit in the right column of (37).

(37) ω1 ω2 ω3

(X/Y)/Z : f Y/Z : g Z : a
S

X : f a(ga)

ω1 ω2 ω3

(X/Y)/Z : f Y/Z : g Z : a
C

(X/Z)/Y : C f
B

X/Z/Z : B(C f)g
W

X/Z : W(B(C f)g)
app

X : W(B(C f)g)a= f a(ga)

The binary and unary versions of S, derived from (34), are as follows:

(38) (X/Y)/Z Y/Z → X/Z (2S)
(X/Y)/Z ↔ (X/Z)/(Y/Z) (1S)

4. Quaternary combinators

Let us now consider the combinators with four arguments. The first one isΦ,
with the semantics Φ f gha = f (ga)(ha). It can be syntacticized as follows.
Note that f is a two-argument function, and g and hmust be functions.

(39) X/W/Y : f Y/Z : g W/Z : h Z : a→ X : f (ga)(ha) (Φ)

Quaternary combinators 53

It would be wrong to syntacticize it as (40), because the semantics of
Φwould not be ensured on the right-hand side: λy.gy =α λx.gx, but locally
substituting the behaviorally equivalent λy.gy loses the semantics of Φ, viz.
the same a for g and h.

(40) (X/Z)/(W/Z)/(Y/Z) : f Y : g W : h Z : a→
X : λx. f (λx.gx)(λx.hx) [x/a] (*Φ)

Thus the semantics of Φ is intrinsically related to argument sharing, that
is, to S and W. Curry and Feys (1958) give the equivalence Φ = B(BS)B,
and another one necessarily involvingW, both of which symbolize argument
sharing. The correctness of syntactic types in (39) can be checked with the
following derivation involving B and S.

(41) ω1 ω2 ω3 ω4

X/W/Y : f Y/Z : g W/Z : h Z : a
B

X/W/Z : B f g
S

X/Z : S(B f g)h
app

X : S(B f g)ha= B(BS)B f gha= f (ga)(ha)

I enumerate the other arities of Φ for the record. The unary version will
play a crucial role in the next chapter in radically lexicalizing coordination in
all languages, where it will turn out that X, W and Y must be of the same type
for this special role.

(42) a. X/W/Y Y/Z W/Z → X/Z (3Φ)
b. X/W/Y Y/Z → (X/Z)/(W/Z) (2Φ)
c. X/W/Y ↔ (X/Z)/(W/Z)/(Y/Z) (1Φ)

Notice that Φ cannot be just S. For example, the following syntactic typ-
ing cannot be Φ, as the derivation shows. The function f is a two-argument
object, not one.

(43) ω1 ω2 ω3 ω4

X/Y : f Y/W/Z : g W/Z : h Z : a
S

Y/Z : Sgh
app

Y : Sgha
app

X : f (Sgha) = f (ga(ha)) �= f (ga)(ha)

Now we come to a territory which even Curry and Feys (1958) find
unreasonably complex and unwieldy. The combinator Ψ has the semantics

54 Syntacticizing the combinators

Ψ f gab= f (ga)(gb). Clearly,Wmust be involved to get two g’s, and Cmust
be there to account for the ordering ag. They give the following equivalence:
Ψ= B(BW(BC))(BB(BB)). We can syntacticize it accordingly.

(44) X/Y/Y : f Y/Z : g Z : a Z : b→ X : f (ga)(gb) (Ψ)

Ψ looks artificial from a natural language perspective as well. Argument-
sharing has been attested in all languages, for example Mary wants to study,
and John eats and Barry cooks potatoes (whether these are done by S, W or
Φ is the topic of subsequent chapters). Examples of predicate-sharing are un-
heard of. (This is of course not much of an explanation until we show what is
odd about the syntacticizedΨ. That has to wait for another book.)

The predicate-sharing of the kind we see in gapping, for example in (45),
can be conceived as and′(like′chem′kafka′)(like′eng′witt′).

(45) Kafka liked chemistry, and Wittgenstein engineering.

But it requires Φ semantics rather than Ψ, i.e. g and h of Φ are interpretively
related in this construction rather than be identical functions, as Steedman
(2000b: 188) observed.33 The following purported syntacticization of Ψ is
not valid because it fails to capture the semantic dependencies embodied in
Ψ. It is inconsistent about g’s domain type.

(46) X/Y/Y : f Y/Z : g Z : a W : b→ X : f (ga)(gb) (*Ψ)

We can also ask what is preventing (44) from receiving an interpretation
such as f (gb)(ga), rather than f (ga)(gb) as presumed there. After all, both
(ga) and (gb) are syntactically of the type Y . This is a crucial point, and it
relates to our understanding of category as consisting of a syntactic type and
a semantic type. The implication in the syntacticization (44) is that semantics
of f is like (47a) below, whereas f (gb)(ga) requires (47b).

(47) a. X/Y/Y : λ pλq. f pq Y/Z : g Z : a Z : b→ X : f (ga)(gb) (Ψ)
b. X/Y/Y : λ pλq. f qp Y/Z : g Z : a Z : b→ X : f (gb)(ga)

X/Y/Y: λ pλq. f pq and X/Y/Y: λ pλq. f qp are not of the same category al-
though their syntactic types are the same. Conflating the arguments to Y on
the syntactic side without showing the semantic side is unhelpful in this ex-
ample. I will however continue to use this practice when no confusion arises.

I enumerate the lower arities ofΨ for the sake of completeness.

(48) a. X/Y/Y Y/Z Z → X/Z (3Ψ)
b. X/Y/Y Y/Z → (X/Z)/Z (2Ψ)

Powers and combinations 55

c. X/Y/Y ↔ (X/Z)/Z/(Y/Z) (1Ψ)

Next we consider Rosser’s (1935) J, with semantics J f abc = f a(f cb).
Like Ψ, this combinator is also predicate-sharing, which is in this case also
self-embedding. J can be syntacticized as follows.

(49) X/X/Y : f Y : a X : b Y : c → X : f a(f cb) (J)

There is no language in which we have a phrase which would be in pseudo-
English John wants that Barry a book, to mean ‘John wants Barry to want a
book’. The phrase would have the semantics want′(want′book′barry′)john′,
i.e. J(Cwant′)john′book′barry′. This fact will similarly await explanation.
We see no good reason to include J or Ψ in natural language syntax, either
dependency-wise or constituency-wise, and that should do for the time being
in lieu of an explanation.

Notice that for J both the matrix and the embedded f are syntactically
two-argument functions. Note also the C-effect engendered by the order of
the arguments X and Y , to obtain f a(f cb), but not f a(f bc). J is enumerated
in lower arities below.

(50) a. X/X/Y Y X → X/Y (3J)
b. X/X/Y Y → (X/Y)/X (2J)
c. X/X/Y ↔ (X/Y /X)/Y (1J)

We stop at this arity (as Curry and Feys 1958 did) because of two reasons:
(a) Higher arities no longer add to our understanding of syntactically reveal-
ing semantic dependencies—it has already exceeded its limits in four,34 and
(b) we know that S and K are good enough to represent any combination, and
Y is sufficient for recursion (but not necessary; it can be expressed in an SK-
system albeit awkwardly).35 The remaining combinators and arities are rele-
vant to narrowing the kinds of dependencies we see in natural languages. A
computer equipped with an SK-machine can perform any computable func-
tion just fine—see Peyton Jones (1987) for such a virtual machine.36

5. Powers and combinations

The definition of powers (see the appendix) provides a natural generalization
of combinators over functions of various arities. In this section we syntacti-
cize B2 and some combinations of combinators because they are very useful
in defining other generalizations.

56 Syntacticizing the combinators

Recall that Xn+1 =BXXn, hence B2 f gab=BBB f gab= f (gab). There-
fore K2 deletes the two elements in K2 f ab, and S2 makes two copies of
the third argument, rather than one copy by S, because S2 f gh = BSS f gh=
f (gh)(h(gh)).

B2 composes a two-argument function with a one-argument function. It
can be syntacticized as (51).

(51) X/Y Y/Z/W W Z → X (B2)

It will be most useful in binary and unary forms in the chapters to follow.
I list them below.

(52) a. X/Y Y/Z/W W → X/Z (3B2)
b. X/Y Y/Z/W → (X/Z)/W (2B2)
c. X/Y ↔ (X/Z/W)/(Y/Z/W) (1B2)

Some other combinations have been found to be quite useful and thus
deserve a name of their own. One source for them is referentially dependent
words (pronouns), which Jacobson (1999) modeled with a combinator she
called Z (not to be confused with Curry and Feys’s iterator, Zn). Z f ga =
f (ga)a, hence Z = B(BW)B, as Szabolcsi (2003) noted. More simply, Z =
BSC. We can see the SC-effect in its syntacticization:

(53) a. X/Z/Y : f Y/Z : g Z : a→ X : f (ga)a (Z)
b. ω1 ω2 ω3

X/Z/Y : f Y/Z : g Z : a
C

X/Y/Z : C f
S

X/Z : S(C f)g
app

X : S(C f)ga= BSC f ga= f (ga)a

Its lower arities are listed below. 1Z is Jacobson’s (1999) z. (She wrote
Y/Z as YZ .)

(54) a. X/Z/Y Y/Z → X/Z (2Z)
b. X/Z/Y → (X/Z)/(Y/Z) (1Z)

Rosenbloom (1950) christened BB with the name D (Smullyan’s Dove
and Turner’s 1979 B′). Thus D f agb= BB f agb= f a(gb). Object gmust be
a function, and a,b need not be functions. We can syntacticize it accordingly:

(55) X/Y/W : f W : a Y/V : g V : b→ X : f a(gb) (D)

Powers and combinations 57

Its lower arities are listed below so that we can compare them with the
unusual combinator to be tackled next. I write the results of the semantics as
well in preparation of their comparison.

(56) a. X/Y/W : f W : a Y/V : g→ X/V : λx. f a(gx) (3D)
b. X/Y/W : f W : a→ (X/V)/(Y/V) : λgλx. f a(gx) (2D)
c. X/Y/W : f ↔ (X/V)/(Y/V)/W : λyλgλx. f y(gx) (1D)

Now consider O. Its definition is given below.37

(57) O
def
= λ fλgλh. f (λx.g(hx)) O f gh= f (λx.g(hx)) Thus O= CB2B.

The first argument of O is slightly unorthodox because it takes an unsatu-
rated function as an argument. Note also that f (λx.g(hx)) is not necessarily
the same as λx. f (g(hx)).38 Therefore the syntacticized version of Omust in-
clude an orphan argument, Z, as an argument of f , unlike D:

(58) X/(Y/Z) : f Y/W : g W/Z : h→ X : f (λx.g(hx)) (O)

Syntactically, the argument types ofW/Z and Y/Z above must be the same
otherwise we do not capture O’s semantics. The following purported syntac-
ticization is therefore wrong.

(59) X/(Y/V) : f Y/W : g W/Z : h→ X : f (λx.g(hx)) (*O)

I enumerate the lower arities of use for O to show that it is different than
D; cf. (56). 2O is Hoyt and Baldridge’s (2008) D.

(60) a. X/(Y/Z) : f Y/W : g→ X/(W/Z) : λh. f (λx.g(hx)) (2O)
b. X/(Y/Z) : f ↔ X/(W/Z)/(Y/W) : λgλh. f (λx.g(hx)) (1O)

The curious thing about O is that, although it is a combinator (its def-
inition has no free variables), it is not a supercombinator, because g and
h are free in its lambda-abstracted part of the body, λx.g(hx). Its close rel-
ative D is a supercombinator because its lambdas are all grouped to the left.
All combinators in Table 1 are supercombinators, except Y. However, some
expressions with inner lambdas are indeed supercombinators, for example
λxλy.xy(λ z.z)(λw.0).

Notice that, unlike Y, O is finitely typeable. Therefore we must scrutinize
it in the next chapter whether to confine O to the lexicon, or to let it operate
freely in syntax.

Finally, consider another mixture of combinators, BS(BB), equivalently
BSD, with semantics BSD f gab= f a(gab). It is a natural generalization of

58 Syntacticizing the combinators

S over functions with more than one argument. (Other generalizations, such
as f a(gba), are already covered by S.) We can syntacticize it as follows.

(61) (X/Y)/Z : f (Y/W)/Z : g Z : a W : b→ X : f a(gab) (S′′)

The name S′′ is suggested here to reflect its close relation to S and B2. (S′

is spoken for; it is Turner’s 1979 name for Φ.)
The powers of S do not embody linguistically relevant semantic depen-

dencies. S2 f ga = BSS f ga = f (ga)(a(ga)), i.e. a is both a predicate over
g and an argument of g. Likewise, powers of C are unhelpful. C2 =BCC= I.
C3 = BCC2 = C. However S′′ seems quite relevant. We shall see linguistic
examples requiring S′′ in Chapter 5.

The crucial link in the syntactic types of S′′ is the argument types of X
and Y , which must contain the same type, viz. Z, in the right order. Some
purported types for f such as (X/Y)/V or (X/Z)/Y would not be S′′ semantics.
Lower arities of S′′ materialize as follows.

(62) a. (X/Y)/Z (Y/W)/Z Z → X/W (3S′′)
b. (X/Y)/Z (Y/W)/Z → (X/W)/Z (2S′′)
c. (X/Y)/Z ↔ (X/W/Z)/(Y/W/Z) (1S′′)

6. Why syntacticize?

This concludes our syntacticization of the combinators. Whether combinators
or supercombinators, they lend themselves to variable-free syntax in which
all the semantic dependencies are imported into syntactic dependencies, and
no other dependency is engendered by syntax, hence every combination is
solely adjacency-based, including specification of argument-taking, i.e. lexi-
cal categories.

Schönfinkel’s idea appears to be actually necessary to directly import ad-
jacency semantics to adjacency syntax. This result was independently discov-
ered by Curry (1929) and Ades and Steedman (1982). Chomsky (1995) has
claimed that binary merge is virtually conceptually necessary. (Unarymove is
considered virtually conceptually necessary as well, in Chomsky 2005, which
is related to Schönfinkel’s T.) We now know that they are not. T follows
from S and K. Binary merge follows from currying, which is a theorem. The
theorem crucially relies on the prefixed binary juxtaposition of Schönfinkel.
Therefore, Chomsky is right to claim that it is a conceptual necessity, if we

Why syntacticize? 59

take that to mean a theoretical necessity, but wrong to dismiss a need for
scientific justification of it. Combinators show how we can justify it.

The discussion in this chapter might have given the impression that the
practice expounded here is to promote the meaning-to-form direction of trans-
lating semantic types to syntactic types, as opposed to form-to-meaning trans-
lation of for example Chomsky (1970), where the X-bar theory of phrase
structure is mapped onto meanings, or the Klein and Sag (1985) model, where
syntactic categories and phrase structure rules are translated into semantic
types.

This is not the case. The ‘:’ notation embodies lexical codetermination
rather than determination. It is a radical lexicalization and combinatorization
of Bach’s (1976) rule-to-rule hypothesis, by which, rather than Montague-
Bach-style rules, which would make us worry about whether the syntactic one
or the semantic one is the determinant, we only have words with combinatory
categories. By their very nature, they need to be specified uniquely. Thus the
discussion of priority of syntactic rules and semantic rules becomes moot.

The reason for going through the trouble of syntacticizing the combinators
is worth reiterating: they work on semantic objects, functions if you like,
whereas human language observables are syntactic objects, namely words.
Of course there can be other ways to go from semantics to syntax or from
syntax to semantics. The combinatory theory suggests that adjacency is all
we need.

The point of importing all semantic dependencies to syntax and creating
no extra ones is to obtain a purely syntactic type-driven syntax. This aspect is
the main source of confusion in analogies to form-to-meaning and meaning-
to-form approaches. Like all analogies including mine in the preface, it is
misleading, and obscures the true nature of what combinatory syntax does:
it gives us compositional semantics for free, and in lock-step with syntax,
i.e. incrementally. The talk of having “a semantically motivated grammar”
in correspondence theories to hint at the psycholinguistic plausibility (e.g.
left-to-right processing) is unhelpful because there can be no semantically
unmotivated grammar. A grammar without semantics is no grammar.

The combinators covered so far seem to be deterministically translatable
to syntactic types, but they were designed to be that way to begin with. Radi-
cal lexicalism predicts that natural language is one domain in which one-way
determinism cannot hold for all compositional meanings. It does depend on
the word, and the possible languages we get out of these singularities do not
differ in arbitrary ways, due to adjacency being the only primitive on which

60 Syntacticizing the combinators

multiple constraints on language can act, for example the constraints which
manifest themselves in the knowledge of words including predicate-argument
structure, constituent structure, information structure and intonational struc-
ture.

It will turn out that most of the syntactic manifestations of combinators,
and most of the combinators, are only relevant to the lexical items, not to the
freely operating universal rules. I took pains to enumerate them in all arities
so that we can compare the alternatives from a linguistic perspective. This
requires a set of substantive principles to choose which ones go to the lexicon
and which ones stay as freely operating. This is the topic of the next chapter.

Chapter 5
Combinatory Categorial Grammar

Mark Steedman’s Combinatory Categorial Grammar, CCG, is a theory of
syntax-semantics for natural languages in which only the combinators that
directly and solely bear on constituency operate in syntax freely, all others
being radically lexicalized.39 His conjecture so far has been that this is a
BTS system. Free operation arises from noninterdefinability. His counteract-
ing force for this theoretical result is the empirical test of constituency. No
combinator which is syntacticized can do the work of others, and its syntactic
work cannot be done by others.40

CCG is strictly Schönfinkelian because the only primitives of the system
are forward and backward application, which are the syntacticized versions
of Schönfinkel’s juxtaposition. All lexical functions are curried, all syntactic
rules arise from combinators, and every principal functor in syntax schema-
tized below faces only one adjacent syntactic object:

(1) X/· · · · · · → X· · ·
· · · X\· · · → X · · ·

X is called the principal functor. The result type of the binary combination
is uniquely determined by X. This is semantic in origin (but clearly syntacti-
cized), because it amounts to saying that X is the projected result type in the
local configuration of (1). Because this result arises from the semantics and
syntax of combinators as shown in the previous chapter, CCG does not need
an extraneous projection principle; it is predicted by the type-dependence of
radically lexicalized natural language grammars.

1. Combinators and wrapping

By definition, any system that employs surface wrap ceases to be a combina-
tor system, because no combinator can do the work of wrap, and if we assume
that a syntacticized rule does the work of wrap, no combinator can match it
on the semantic side. We would lose the combinatory base of directly and im-
mediately associating an interpretation with every syntactically combinable
constituent.

62 Combinatory Categorial Grammar

This result might be puzzling at first, knowing that C does the equivalent
of wrap, because Cabc = acb. However, this behavior presumes a wrap in-
terpretation only if we think of ab as a holistic unit in syntax or semantics,
which is split by c by being wrapped in them (it is also commonly referred to
as “ab wraps around c”). The syntacticization of C, repeated below, made no
such assumptions. Y and Z are categories of independent syntactic objects.
It would not matter whether we binarize the rule as in the second line. The
string-view of C is provided in (2c), in preparation of its comparison with
wrap.

(2) a. (X/Y)/Z : a Y : b Z : c→ X : acb (C)
b. (X/Y)/Z : a Y : b→ X/Z : λc.acb
c. s1 s2 s3

X/Y/Z: a Y: b Z: c
C

s1s2s3 := X: acb

We must distinguish systems with C, which are combinatory, from sys-
tems with wrap, which are not. So what exactly is syntactic wrap, and why is
wrap not so subversive when done lexically or semantically? Here we must
look to Bach (1980, 1984), Dowty (1996).41 Below is Bach’s (1984) syntactic
formulation of wrap translated to current notation. The slash is modalized to
wrap, following Jacobson (1992).

(3) s1 s2

X/WY: a Y: b
wrap

first(s1)s2 rest(s1) := X: ab

(wrap)

where first(x) means the first element of a list of structures for Bach
(first word for Dowty 1996), and rest(x) means the remainder.

Notice that, semantically speaking, wrap is application, whereas surface-
syntactically there is no combinatory counterpart. Naturally, this cannot be
C. Observe also Bach’s derivation of persuade John to do the dishes as sur-
face wrap:42

(4) persuade to do the dishes John

(S\NP)/WNP/VP VP NP
>

persuade to do the dishes := (S\NP)/WNP
wrap

persuade John to do the dishes := (S\NP)

Combinators and wrapping 63

Let us now consider Dowty’s examples for wrap, the resultatives and verb-
particle pairs: hammer (the metal) flat, let (the dog) loose, look (the word) up,
where discontinuity is shown by parentheses. As he points out, hammer round
does not have the same behavior as hammer flat, therefore we must assume
hammer flat as a lexical item, which necessarily wraps.

The implicit assumption here is that the meaning of hammer flat is some-
thing like hammerflat,′ not hammer′flat.′ The application of hammerflat′ to
metal′ gives us hammerflat′metal,′ stringwise hammer the metal flat, follow-
ing (3), but not (2). This is indeed wrap in the noncombinatory sense because
no combinator can split hammerflat′ into pieces, whereas C can do that to
the sequence hammer′flat′ easily. Similarly, look up as a lexical entry can
be lookup,′ or look′up.′ In the first case, there is no combinator to get look
the word up, hence a combinatory system must assume two semantic ob-
jects look′ and up,′ whereas a wrap system (of type-dependent or structure-
dependent variety) would have more degrees of freedom in lexical options.

Dowty extends this view to phrasal items and the Wackernagel posi-
tion (the second position which clitics universally tend to attach themselves
phonologically), to the so-called nonadjacent phenomena in languages. It was
also the motivation in Bach (1984) to analyze persuade John to do the dishes
as the wrap of John, a syntactically and semantically independent object, in-
side persuade to do the dishes.

This move reintroducesC in addition to wrap for the reasons
just discussed: we must assume that the dependencies arise from
Cpersuade′tdtd′john,′ because they are syntactic phrases. This is the motive
for ‘/W ’ in (4), which turns everything into function application semantics,
i.e. persuade′john′tdtd.′ The surface combination, however, is not C.

Bach’s formulation of wrap is independent of phonology, but Dowty’s in-
terpretation of it is morphophonological, because it assumes that wrap knows
word boundaries. In any case, an “infix here” point must be remembered for
every lexical item, which must be maintained properly throughout phrase
combination, and herein lies another problem. In languages where the no-
tion of word is linear-recursive (such as Turkish and Gusii; see Hankamer
1989, Creider, Hankamer and Wood 1995), this seems to require a finite-state
machine running through word boundaries during the syntactic process, in
addition to the syntax-phonology interface with its own computations of ex-
actly the same nature.

The Wackernagel phenomenon below forces this assumption, where the
focus- and coordination-clitic de necessarily wraps into the second conjunct

64 Combinatory Categorial Grammar

with a recursive first word. This phenomena and its related wrap behavior
must be explained, rather than assumed as knowledge to go with a lexical
slash such as ‘/W ’.

(5) Mehmet bugün gelecek, Ev-de-ki-nin-ki-ler de yarın.
M today come-FUT house-LOC-ki-POSS-ki-PLU FOC tomorrow
lit. ‘Mehmet is coming today, and the ones of who is in the house to-
morrow’
meaning, e.g. ‘The family of the girlfriend of the boy in the house will
come tomorrow.’ Turkish

The semantic (therefore lexical) use of wrap does not threaten the combi-
natory base of CCG, because it amounts to a local use of C rather than wrap.
It has been employed by Szabolcsi (1989) and Steedman (2000a) to handle
for example ditransitive constructions and VSO languages.

Examples (6a–b) are from Szabolcsi, where she assumes for reasons cited
in the paper the category (S\NP)/NP/PP for introduce, rather than the sur-
face word order (S\NP)/PP/NP. Then, because of (6c), we must apply unary
B to VP\(VP/PP) to get (VP/NP)\(VP/PP/NP) first, in the lexicon, and ap-
ply unary C, again in the lexicon, to simulate wrap, which yields lexically the
category (VP/NP)\(VP/NP/PP).

(6) a. John introduced Mary to himself

(S\NP)/NP/PP VP\(VP/PP)

Szabolcsi (1989: 307)

b. John introduced Mary to herself

VP\(VP/PP)
lex B

(VP/NP)\(VP/PP/NP)
lex C

(VP/NP)\(VP/NP/PP)
c. John introduced Mary to himself and Susan to herself.

This way we maintain a type-raised syntactic object in all cases including
reflexives, which is an important part of Szabolcsi’s organization of grammar.

Steedman (1996b, 2000a) puts LF to work in (6). I compare the three
CCG proposals for LF phenomena in Chapter 6. His suggestion for VSO
languages is a category such as (7a) for Welsh, because of (7b–c). This is also
lexical/semantic wrap, not syntactic, because the lambda term of the verb is
Cverb′.

(7) a. VSO verb := S/NP/NPagr: λx1λx2.verb′x2x1

Linguistic categories 65

b. Gwelodd Wyn ef ei hun
Saw Wyn himself
‘Wyn saw himself.’

Awbery (1976: 131)

c. *Gwelodd ef ei hun Wyn
Saw himself Wyn

The treatment of adjacency creates two worlds for combinatory linguistic
categories, one in which adjacency as the sole base looks at possible cat-
egories (i.e. possible languages) by enumerating all adjacency-based cate-
gories, and the other in which adjacency effects and other factors are incorpo-
rated into theories as needed (e.g. Moortgat and Oehrle 1994). Because of the
mediating subtheories in the latter kind of framework and the use of a logical
form in the first one, cotranslatability of the categories in the two categorial
worlds is becoming increasingly difficult. One can see the clear split in Com-
binatory Categorial Grammars and Type-Logical Grammars, although there
are many points of contact and good sources of inspiration both ways (cf.
Morrill 1994, Moortgat 1988b, Carpenter 1997, Moortgat and Oehrle 1994,
Baldridge 2002, Kruijff and Baldridge 2004, Hoyt 2006).43

2. Linguistic categories

What are the solely adjacency-based categories for language? The crux of
the matter is that whatever the nature of these categories is, they are the cat-
egories of syntactic objects. This is an empirical requirement, because the
observables are the syntactic objects, namely words, not the semantic ob-
jects. A category is a hypothesis about what the syntax-semantics connection
of the observables could be. That of course does not prevent categories from
being semantic in nature, as Edmund Husserl (1900) claimed to be the case:

Clearly we may say that if presentations, expressible thoughts of any sort
whatever, are to have their faithful reflections in the sphere of meaning-
intentions, then there must be a semantic form which corresponds to each
presentational form. This is in fact an a priori truth. And if the verbal re-
sources of language are to be a faithful mirror of all meanings possible a
priori, then language must have grammatical forms at its disposal which give
distinct expression, i.e. sensibly distinct symbolization, to all distinguishable
meaning-forms. Logical Investigations vol.II: 55

Many categorial grammarians consider Husserl’s statement to be the birth
of categorial grammar. This is not surprising, because of the implicit com-

66 Combinatory Categorial Grammar

mitment since the early years of categorial grammar to have the substantive
categories associate only with verbal resources, namely words (as opposed to
say with both words and grammar rules). This is an explicit commitment in
Combinatory Categorial Grammar:

(8) Radical Lexicalism:
All language-particular information is in the lexicon.

The term Radical lexicalism is due to Lauri Karttunen (1989). The method
is described in the appendix. Radical lexicalism in light of Husserl’s desider-
ata suggests two manifestations of categories: formal categories and substan-
tive categories. Formal categories are universal generalizations of the sub-
stantive categories, hence they are not different in kind.44 We can think of the
syntacticization of combinators as yielding formal categories, for example
X/Y : f , X : f a and Y : a below for application.

(9) X/Y : f Y : a→ X : f a

Any substantive category can substitute for X and Y above (provided that
the desired adjacency configuration required by the rule is satisfied). This is
not true of substantive categories, say S\NP, where S means “sentence” and
NP means ‘noun phrase’. Only NPs can substitute for NP, to get Kafka, or
The stories of Poe etc.

Similarly, semantically open propositions can be substituted for S/NP to
get The man devoured, or Mary hit, but not *Kafka chemistry where an ob-
ject of category NP (Kafka) attempts to substitute for S/NP. Note that the
sequence Kafka chemistry can be predicational, but this interpretation is par-
asitic on a verb, as in gapping:

(10) Wittgenstein adored engineering, and Kafka chemistry.

Here, the required category is not S/NP for Kafka. It is NP, as the seman-
tics of the sentence proves.

To be able to distinguishWittgenstein adored from adored Wittgenstein in
the Husserlian sense, we must categorize them differently although both are
open propositions semantically. In CCG parlance, the former is S/NP and the
latter is S\NP. The difference in slashes is a forced move of syntacticization.

Unlike the semantically-motivated combinators in which we can choose to
represent all functions in prefix notation, the syntactic objects of languages
vary in directionality. Tagalog is head-initial whereas Turkish is head-final.
English is head-initial (e.g. of the book) and head-medial, as in its basic word

Linguistic categories 67

order SVO. Thus the syntacticization of combinators must consider this as-
pect as well to complete the picture.

We can think of ‘backward application’ as the only other possibility of ap-
plication because there is only one function and one argument in application,
i.e. only one slash:

(11) Y : a X\Y : f → X : f a (<)

The semantic dependencies of application are preserved in this version as
well; the semantic result is f a, not a f . This factoring of order into the cate-
gories is reflected in the name of the rule, viz. ‘<’ for backward application
and ‘>’ for forward application.

Thus the following purported manifestations of application are ruled out
because they do not preserve the semantic dependency instigated by order:

(12) a. X\Y : f Y : a→ X : f a (*>)
b. Y : a X/Y : f → X : f a (*<)

In a configuration where there is more than one slash, for example in the
binarized composition (13a), the possibilities in (13b–d) preserve the seman-
tic dependency of order, but the ones in (13e-h) do not. Thus we can subsume
Steedman’s (2000b) principles of consistency and inheritance, which helped
to eliminate configurations such as (13e–h), by the semantics of order inher-
ent in combinators.45

(13) a. X/Y : f Y/Z : g→ X/Z : B f g (>B)
b. Y\Z : g X\Y : f → X\Z : B f g (<B)
c. X/Y : f Y\Z : g→ X\Z : B f g (>B×)
d. Y/Z : g X\Y : f → X/Z : B f g (<B×)
e. X/Y : f Y\Z : g→ X/Z : B f g (*>B×)
f. Y/Z : g X\Y : f → X\Z : B f g (*<B×)
g. X\Y : f Y/Z : g→ X/Z : B f g (*>B×)
h. Y\Z : g X/Y : f → X\Z : B f g (*<B×)

These restrictions are forced moves in the theory. In (13e–f), the direction-
ality of Y is respected but the directionality of Z is not. In (13g–h), the direc-
tionality of Z is respected but the directionality of Y is not. All directionalities
are respected in (13a–d). Notice that directionality is inherently a syntactic
property of the argument and not the result, as first observed by Steedman
(1991b). Thus there is no directionality of X above, and all directionalities
are accounted for in the logic of the argument from order semantics.

68 Combinatory Categorial Grammar

A backward or forward slash is not necessarily a crossing slash. This infor-
mation needs to be contextualized, for example as ‘/×’ for a crossing forward
slash and ‘/�’ for a harmonic forward slash. A “don’t care” forward slash can
be contextualized too, as ‘/·’. These aspects are relevant in contexts in which
the curried binary configuration involves two or more slashes, as above. Since
there is one slash in application, we can make categories application-only
too, with the most restrictive slash ‘/�’ (likewise for the backward slash). In a
purely applicative system, these modalities exhaust the possibilities for slash
contextualization.

These are the modalized combinatory categories of Baldridge (2002). He
defines the following hierarchy as a way of compiling the knowledge of slash
compatibility:

(14) CCG type lattice for slash modalities (from Baldridge and Kruijff
2003):

·

� ×

�

The dot is the least restrictive modality, the star the most restrictive. The dia-
mond and the cross are partially restrictive and mutually incompatible. Thus
a ‘/�’ slash is only compatible with itself, and ‘/·’ is compatible with all for-
ward slashes (similarly for backward slash). The least restrictive modality is
omitted by convention to avoid further notational clutter.

(15) The ‘\’ is same as ‘\·’. The ‘/’ is same as ‘/·’. (dot omission)

Now we can refine the syntacticized combinators of this section:

(16) a. X/�Y : f Y : a→ X : f a (>)
b. Y : a X\�Y : f → X : f a (<)
c. X/�Y : f Y/�Z : g → X/�Z : B f g (>B)
d. Y\�Z : g X\�Y : f → X\�Z : B f g (<B)
e. X/×Y : f Y\×Z : g→ X\×Z : B f g (>B×)
f. Y/

×
Z : g X\

×
Y : f → X/

×
Z : B f g (<B×)

The goal of introducing the combinatory modalities is to make finer dis-
tinctions in the Husserlian sense, for example to distinguish S/�NP ofWittgen-
stein would adore from S/×NP. The need to distinguish these categories is
forced by the data, under the assumption of adjacency-only syntax:

Linguistic categories 69

(17) The field which I think that Wittgenstein would adore is web engineer-
ing.

We are forced by related data to categorize that as S′/�Sfin:

(18) *The philosopher who I think that would adore Wittgenstein is Russell.

This category disallows the combination of that with would adore Wittgen-
stein, which is the critical difference between (17) and (18). The newly in-
troduced syntacticization in (16) would be in vain if we could not distinguish
*that would adore Wittgenstein from that Wittgenstein would adore. The crit-
ical steps of (17) and (18) are shown below, in which the differing possibility
of (16c) versus (16e) does the critical work. Thus we must distinguish S′/�Sfin
from S′/×Sfin, the latter of which would allow (19b).

(19) a. that Wittgenstein would adore

S′/�Sfin Sfin/�NP
>B

S′/�NP
b. that would adore Wittgenstein

S′/�Sfin Sfin\NP
*** >B×

The star modality is also a forced move, given the adjacency assumption
and Husserl’s desiderata. And’s category must be more refined than (S\�S)/�S
and (S\×S)/×S:

46

(20) a. *player that shoots and he misses

(N\�N)/�(S|NP) S\�NP (S\�S)/�S S
>

S\�S
<B

S\�NP
(Baldridge 2002)

b. *Kafka and he studied chemistry smiled.

S/i(S\iNP) (S\×S)/×S S S\NP
>

S\×S
<B×

S/×(S\×NP)
>

S

Under the present method of syntacticization without extra assumptions
over and above adjacency, both examples would be fine if we did not have
(S\�S)/�S for and, and did not work with the modalized combinators of (16).

70 Combinatory Categorial Grammar

For example, (13f) would allow (20b) as shown in the derivation. The exam-
ples in (20) also demonstrate a convenient generalization of directionality:
the underspecified slash.

(21) ‘|m’ stands for ‘\m’ and ‘/m’, with modality m.(dir. underspecification)
m can be underspecified too, as in (20b)’s Kafka.

We can now distinguish the relative pronouns that and whom by typing
them with the categories (N\�N)/�(S|NP) and (N\�N)/�(S/NP), respectively:

(22) a. the field that [Kafka admired]S/NP
b. the field that [admired Kafka]S\NP
c. *the chemist whom admired Kafka

(N\�N)/�(S/NP) S\NP

The last bit of differentiation to make good on Husserlian categorization
is the difference in like versus likes. As these are related but different words
(in fact, the same lexeme is involved), we would expect their categories to
be related but different. Following Kay (1985), Shieber (1986), we decorate
the basic (nonslashed) categories with features. We abbreviate them to save
space; 3s is short for AGR=3s, where AGR is an agreement feature.

(23) likes := (S\NP3s)/NP
like := (S\NP¬3s)/NP

The feature geometry can in principle be language-particular, and need not
concern us here.47 We shall however make use of common generalizations
such as AGR and FIN(inite). Suffice it to say that we do not need a sophis-
ticated theory such as that of Gazdar et al. (1985), Pollard and Sag (1994),
Calder, Klein and Zeevat (1988) in which unification does nontrivial linguis-
tic work, whereas the working hypothesis of the book is to let syntacticized
combinators do all the work except basic category matching.

The theory also differs from Chomsky (1995) where a universal feature
geometry is attempted. Features can be radically lexicalized just like com-
binatory categories. The process might miss some early generalizations over
categories and features, but so be it. The generalizations that will arise from
order semantics is our present concern. We can attempt to recapture the same
generalizations, and hopefully more, after we flesh out all attested linguis-
tic categories. One such example is the reworking of functional features as
combinatory categories, which we do in §9.7.

Linguistic categories 71

To summarize, the following is the landscape of the syntactic types.

(24) Take F to be a feature geometry (a finite set of features).
Let V ⊆ Fν(V) be a set of valuations of features from some value space
V mapped by ν .
Take B to be a finite set of basic categories (without slashes).
Let S= BV . (All possible feature-decorated basic categories)
Let M = {·, �,×, �}. (The set of modalities)

DefineC (the set of possible syntactic types):
Any member of S is a potential type inC.
If A ∈C and B ∈C, then A |m B ∈C, for some m ∈M, and | ∈ {\,/}.
AB ∈C if A ∈C,B ∈C.
Nothing else is inC.

Explicitly enumerating the countably infinitely many distinguishable cate-
gories is the starting point of sieving some of the categories as unlikely cate-
gories for human languages.

Naturally, Kafka’s category NP is not discriminating enough, thus we can
write NP : kafka′ to distinguish it from NP:wittgenstein.′ Such obvious dis-
tinctions will be abbreviated for the sake of exposition.

The exponent category AB semantically denotes a function from B to A,
and differs from A|B because it does not introduce a syntactic function. It
is the main syntactic source for Jacobson 1999-style combinatory referential
dependencies, and it has predictive powers in that field, for example relating
the extraction domain (N\N)/(S|NP) to the relativization domain (N\N)/SNP

of resumptive pronouns. Its use in CCG so far has been constrained to cases
where B is a basic category.

One final constraint on lexical syntactic types relates to lexical general-
izations, where we can refer to a set of types and pick the ones that satisfy a
constraint. It is the dollar convention of Steedman (2000b).

(25) T$A stands for the finite set of categories TA ($-convention)
such that functions in T are lexical and onto T .
A can be empty.
T$A is empty if T is empty.

For example, S$ for Turkish is {S, S\NP, S\NP\NP, S/(S\NP), . . . }. The set
S/NP$ would be empty. S\$NP for English is the set {S\NP, (S\NP)/NP,
(S\NP)/NP/NP,..}. Categories (S\NP)/PP and S/NP are excluded.

72 Combinatory Categorial Grammar

The claim of CCG is that a grammar solely consists of radically lexi-
calized categories, lexically pairing the combinatory syntactic types deco-
rated with features with a PADS, per word. Any context-free phrase-structure
grammar and linear-indexed grammar can be reduced to its lexicon if we are
willing to translate distributional categories such as N, V, A, P to combinatory
categories. A category is a rule as an intensional device. Practicing linguistics
“without rules” and “with principles” does not change the operative maxim.
Hence Bach’s rule-to-rule hypothesis is relevant to any linguistic theory that
makes use of the notion of computation and Turing representability where the
notion of “rule” is built-in.

This brings us back to the troublesome interaction of feature spaces, rules
and mappings. All mappings leak, unless they are lexical. Even then they are
underdetermined by external meanings, which is why some statistical book-
keeping must be connected to the use of a lexical correspondence. Radical
lexicalization adds to this observation the property that if we radically lex-
icalize all structure-building, then one end of the mapping or rule ought to
be some kind of compositional semantics (logical form, predicate-argument
structure, dependency relations, etc.). Radical lexicalism in this narrow sense
goes back further than Karttunen (1989), who coined the name. In the famous
1960 conference which also included contributions by Chomsky and replies
to and from his critics, Lambek (1961: 169) expressed the program:

For our purpose it will be convenient to think of a phrase structure grammar
as follows: the dictionary assigns to each atomic phrase a finite number of
primitive types. The grammar consists of a finite number of rules of the form
pip j → pk where the pi are primitive types.[fn]
While it seems unlikely that the elimination of grammatical rules in favor of
dictionary entries can be carried out for every phrase structure grammar in
this sense (without making the dictionary infinite), this can be done in many
examples (in fact all that I have tried).

His following suggestion can be taken as the start of the program: “It may
happen that type assignments in a dictionary entry are in a sense stronger than
the explicit rules of a phrase structure grammar”Lambek (1961: 170), which
he illustrates in the remainder of the paper using pronouns and wh-items.48

CCG is nearly context-free 73

3. CCG is nearly context-free

The inadequacy of categorial grammars might have been thought to be true in
1964—with the crucial exception of Lambek (1958, 1961). It became doubt-
ful by the publication of Geach (1972), Shaumyan (1977), Ades and Steed-
man (1982), Joshi (1985) and Oehrle, Bach and Wheeler eds. (1985/1988),
and proven to be wrong by Joshi, Vijay-Shanker and Weir (1991), Vijay-
Shanker and Weir (1994).

The emerging formal class of languages, which Aravind Joshi named
mildly context-sensitive languages (MCSL) in its upper limit, are a super-
class of context-free languages and subclass of context-sensitive languages,
with a well-defined algorithmic substrate (embedded push-down automata).

The least powerful extension of context-freeness is achieved by linear-
indexed grammars (Gazdar 1988), which characterize Linear-indexed Lan-
guages (LILs). Lexicalized tree-adjoining grammars (LTAG; Joshi and Sch-
abes 1992) and CCG are provably linear-indexed (Joshi, Vijay-Shanker and
Weir 1991). The desirable features include (a) polynomial-time parsability
and (b) the constant-growth property of MCSLs, which ensures that all the
languages of this class have strings whose lengths grow linearly, and (c) ef-
ficient parsability. Although all MCSLs are polynomially parsable, they are
not all efficiently parsable, which LILs are. That is why they are the compu-
tationalists’ choice of algorithmic substrate when full coverage of nested and
crossing dependencies is attempted. An example of the latter is shown below.

(26) ..omdat ik1 Cecilia2 de nijlpaarden3 zag1 voeren2,3 Dutch
..because I Cecilia the hippopotamuses saw feed
‘..because I saw Cecilia feed the hippopotamuses.’

We know for example that Shieber’s (1985) Swiss German data and
Huybregts’s (1976) Dutch data such as above are provably above context-
freeness, and properly within the class of nearly context-free languages, for
there are LTAG and CCG grammars for them.

Vijay-Shanker and Weir (1994) and Joshi, Vijay-Shanker and Weir (1991)
proved and exemplified that for every combinatory categorial grammar, there
is a linear-indexed grammar and vice versa. These grammars have nontermi-
nals which can be associated with a stack, and the stack can be passed from/to
the left nonterminal to/from a single nonterminal on the right-hand side of a
rule, which restores our problem of radically lexicalizing CCG grammars be-
cause it suffices to have a single symbol on the left-hand side of every rule.

74 Combinatory Categorial Grammar

Translation to CCG is roughly as follows: CCG categories can be viewed
as their result category plus a stack-valued feature identifying their arguments
and the order of their combination. For example, NP is NP[], and S\NPa/NPb

is S[NPa, NPb] in the stack-equipped nonterminals of a linear-indexed gram-
mar. The ‘/NPb’ must be on top of the stack because it is the first argument
to combine in the CCG category. Thus the stack preserves the relative order
and currying of the CCG category.

The linear order of arguments for example in ‘S\NPa/NPb’ is encoded in
the grammar rule, not in the stack. In this case the linear-indexed rule would
be S[..] → NPa V NPb, if we think of S[.., NPa, NPb] as V’s category. Since
every linear-indexed language has a linear-indexed grammar, radical lexical-
ization up to and including Dutch and Swiss German crossing dependencies
is complete.

I show CCG’s handling of the Swiss German crossing dependencies in
Figure 5. The indices in the figure are meant to facilitate to trace the deriva-
tion of correct semantics. Steedman (2000b) shows the Dutch case. I chose
Swiss German because the requirements seem more strict on the syntactic
and the semantic side. All arguments in a subordinate clause are case-marked
in Swiss German, and they must match the subordinate verbs’ case require-
ments; see Shieber (1985) for discussion. The derivation’s mechanism is the
topic of the next section.49

4. Invariants of natural language combination

CCG claims that there are two kinds of semantic dependencies which have a
direct reflection on syntactic processes: invariants, which need not be stipu-
lated in the grammar of every language (the so-called universal dependen-
cies), and lexicalizable dependencies that need to be part of a language’s
grammar. The syntacticization of semantic dependencies by combinators
serves both resources, thus we need empirical and theoretical grounds to de-
cide whether a dependency is lexicalizable or not, and whether it should be
lexicalized if it is lexicalizable.

An example of forced lexicalization is Inuit’s constraint that ergative NPs
cannot be relativized (Manning 1996). This is something the head of rela-
tivization must enforce, say by requiring a domain of type S\NPabs, because
the language is verb-final and relatively free word order, hence an extraction
domain such as S\NP is clearly possible but not opted for by Inuit. It has

Invariants of natural language combination 75

Ja
n
sä
it
da
s

m
er

d’
ch
in
d

em
H
an
s

es
H
uu
s

lö
nd

hä
lf
e

aa
st
ri
ic
he

w
e

th
e
ch
ild

re
n-
A
C
C
H
an
s-
D
A
T
th
e
ho
us
e-
A
C
C

le
t

he
lp

pa
in
t

N
P
no
m
,1

N
P
ac
c,
2

N
P
da
t,3

N
P
ac
c,
4

(S
\N

P
no
m
,1
\N

P
ac
c,
2
)/

(S
\N

P
no
m
,2
\N

P
da
t,3
)/

S\
N
P
no

m
,3
\N

P
ac
c,
4

(S
\N

P
)

(S
\N

P
)

>
B
×

S\
N
P
no

m
,2
\N

P
da
t,3
\N

P
ac
c,
4

>
B
2 ×

S\
N
P
no
m
,1
\N

P
ac
c,
2
\N

P
da
t,3
\N

P
ac
c,
4

<

S\
N
P
no
m
,1
\N

P
ac
c,
2
\N

P
da
t,3

<

S\
N
P
no
m
,1
\N

P
ac
c,
2

<

S\
N
P
no
m
,1

<
S

‘J
an

sa
ys

th
at
w
e
le
tt
he

ch
ild

re
n
he
lp

H
an
s
pa
in
tt
he

ho
us
e.
’

Sh
ie
be
r
(1
98
5:

ex
5)

Figure 5. Swiss German crossing dependencies in CCG.

76 Combinatory Categorial Grammar

transitive participial forms, which could easily allow ergative NP extraction
if not constrained in the grammar of Inuit.

We can think of Ross’s (1967) Coordinate Structure Constraint, its excep-
tions and exceptions to exceptions, as examples of global asymmetries cap-
tured by invariants without further assumption in the lexicalized grammar, as
shown in §2(14). No special constraint is needed to capture these properties.
The lexical constraint on the coordinator, that it requires like-categories to
maintain the semantics of coordination, is motivated independently of ex-
tractability and nonextractability. There will be no freely operating “rela-
tivization combinator” or “coordination combinator,” and we would expect
constituents that undergo these constructions to be quite opaque to the lexi-
cally licensed meanings of relative markers and coordinators.

The notions of redundancy and opaqueness to syntactic processes, there-
fore flexible constituency, play a decisive role in determining the invariants.
As the discussion in Chapter 4 implied, the kind of work that ternary and qua-
ternary combinators do at their defined arities can be done by lower arities
and application. This was shown for ternary B, C and S syntactically. Simi-
lar results await quaternary combinators. Since we know from Schönfinkel’s
original work that S and K are good enough to capture all effectively com-
putable dependencies (and more), the faithful syntacticization of the combi-
nators without extra assumptions suggests that the same holds for the syntac-
tic variety of other combinators.

S is ternary andK is binary, and we know that ternary S is redundant if we
have binary B, unaryW and unary C. I repeat this result here, from §4(37):

(27) ω1 ω2 ω3

(X/Y)/Z : f Y/Z : g Z : a
S

X : f a(ga)

ω1 ω2 ω3

(X/Y)/Z : f Y/Z : g Z : a
C

(X/Z)/Y : C f
B

X/Z/Z : B(C f)g
W

X/Z : W(B(C f)g)
app

X : W(B(C f)g)a= f a(ga)

Binary B is indispensable for purely adjacency-based solutions to exam-
ples such as (28a). The critical point of the derivation is shown in (28b). It is
also justified by the constituent behavior of the same substring, for example
Who do you believe that Mary likes and John detests?

(28) a. Who do you believe that Mary likes? Szabolcsi (1989)

Invariants of natural language combination 77

b. Who do you believe that Mary likes?

NP (S\NP)/NP
T

S/(S\NP)
B

S/NP

Unary W seems empirically undesirable. Szabolcsi (1989) observes that
we have yet to find a language in which an expression related to the one
below means John turns himself. It would require unaryW as shown.

(29) John turns

NP (S\NP)/NP
W

S\NP
app

S

The point of course is not that the word ‘turn’ might mean ‘turn himself’
in this example, but in a syntacticized system where combinators do their
work by syntactic types, i.e. by being opaque to the lexical meaning of turn,
the rule above would also engender John reads, John devours, to mean John
reads himself and John devours himself. Similarly, a binaryW is problematic.
The same example can be derived by binaryW as follows:

(30) John turns

NP (S\NP)/NP
W

S

Thus we have good empirical reasons not to have W in syntax at all. This
result might appear to make the ternary S nonredundant (see 27). First I note
from Szabolcsi (1989) that binary S is certainly operating in syntax because
we know the existence of languages with parasitic gaps. The crucial involve-
ment of S is shown below.

(31) (articles) which I will file without reading

VP/NP (VP\VP)/Cing Cing/NP
B

(VP\VP)/NP
S

VP/NP
Steedman (1988)

It is S semantics because articles is an argument of both file and read, and
without the first “gap” after file, it is ungrammatical, say *articles which I
will file the folders without reading.50

78 Combinatory Categorial Grammar

Further evidence is from coordination: the articles which I will file with-
out reading and report without contradicting. Now the redundancy of ternary
S follows from the necessity of binary S and application (likewise the redun-
dancy of ternary B, which also follows from binary B and application):

(32) ω1 ω2 ω3

(X/Y)/Z : f Y/Z : g Z : a
S

X/Z : S f g
app

X : S f ga= f a(ga)

What about unary B and unary S operating in syntax? Recall some syn-
tacticized versions of these combinators in order to study what is at stake.

(33) a. X/Y ↔ (X/Z)/(Y/Z) (1B)
b. X/Y ↔ (X\Z)/(Y\Z) (>1B×)
c. (X/Y)/Z ↔ (X/Z)/(Y/Z) (1S)

A revealing empirical argument against unary B came from Szabolcsi
(1989), who suggested that the syntactic behavior of complete constituents
does not necessarily extend to incomplete constituents, which is precisely the
effect of unary B.

Consider the complementizer that, with the category S′/Sfin. We would not
want the incomplete version (S′\NP)/(Sfin\NP) which would be engendered
by unary B:

(34) a. I think that Wittgenstein might have liked Kafka.

VP/S′ S′/Sfin Sfin
app

S′
b. *I think Wittgenstein that might have liked Kafka

S′/Sfin Sfin\NP
B

(S′\NP)/(Sfin\NP)
app

S′\NP

Some complementizers in some languages might choose to make their
version of unary B grammatical, but this would have to be a lexical choice,
not engendered by syntax. In fact, English does just that: the forward variety
of unaryB, viz. (S′/NP)/(Sfin/NP) gives exactly the same semantics as (34a):

Invariants of natural language combination 79

(35) I think that Wittgenstein might have liked Kafka.

S′/Sfin Sfin/NP NP
B

(S′/NP)/(Sfin/NP)
app

S′/NP
app

S′

There must be language-specific constraints on unary B, for example di-
vide by ‘/NP ’ rather than ‘\NP ’ as above, hence it must be lexicalized.51

Now considerWelsh to see the effects of a freely-operating unary S. Welsh
has a strict word order of VSO, which can be characterized as VSS′ when
the argument is a complement clause S′. We can categorize the complement-
taking verb as such:

(36) Dymunai Wyn i Ifor ddarllen llfyr.
Wanted Wyn for Ifor reading (a) book

(S/S′)/NP NP S′

‘Wyn wanted Ifor to read a book.’

Awbery (1976: 37)

A unary Smust be lexically constrained because, although Welsh allows
subject-sharing complements (37a) (i.e. incomplete constituents), the word
order instigated by unary S from complement-taking verbs would be ungram-
matical (37b).52

(37) a. Dymunai Ifor ddarllen llfyr
Wanted Ifor reading (a) book

S/(S′/NP)/NP NP S′/NP
‘Ifor wanted to read a book.’

Awbery (1976: 39)

b. *Dymunai ddarllen llfyr Ifor

(S/S′)/NP S′/NP NP
>S

(S/NP)/(S′/NP)

The Welsh verb must avoid unary S. The modalities cannot help in such
examples to eliminate them. Therefore unary S cannot be syntactically free.

Let us now take stock of what is needed in syntax in terms of dependency
and constituency, and what should be lexically controlled. The combinators
S, K, C, B, W and I play a crucial role in establishing the power of com-
binators to capture any computable semantic dependency. The first two are
Schönfinkel’s primitives, and the last four were Curry’s primitives until he
encountered Schönfinkel’s work in a literature search in 1927. He adopted
K immediately, and considered S to be somewhat artificial.

80 Combinatory Categorial Grammar

William Craig proves in his section §5H of Curry and Feys (1958) that
among this group an S-effect is impossible without B, C or W. Therefore
K can be ignored for the S-effect. A K-effect is impossible with the remain-
der of the group. Without S and K, a B-effect is impossible. A W-effect is
possible without K. Thus {I,K} and {B,S,C,W} form two sets in which
any system that aims at behavioral equivalence to lambda calculus must con-
tain one combinator from each set.

S and B are not interdefinable if we eliminate C and K. Similarly, C and
W are not interdefinable if we eliminate S andB. On what basis do we choose
a set of combinators that always operates on syntax? Szabolcsi offers a formal
criterion in addition to the empirical ones we have seen so far:

(38) The combinators running free in syntax are (a) noninterdefinable, or
(b) compositions of such noninterdefinable combinators. Other derived
combinators are lexicalized. Szabolcsi (1989: 305)

This hypothesis is not sufficient to rule out K and I from syntax. K is not
interdefinable by the remaining five combinators, and without K, I is not in-
terdefinable by BSC either. The criterion therefore is meant to supplement
the empirical reasons rather than replace them.

The following desiderata emerge from interdefinability and from the limits
of dependencies attested in natural languages:

(39) (i) K is not desirable because (a) its lexical effect has not been attested
in languages, (b) its power of deletion is a threat to decidability.

(ii) Any slash is implicitly an I in terms of semantic dependency. I adds
nothing to syntax, but it must play a crucial role in the lexicon.

(iii) B seems inescapable, otherwise we cannot surpass the context-
freeness barrier. Application is good enough for context-free de-
pendencies (Bar-Hillel, Gaifman and Shamir 1960). Without K,
B cannot be defined by SCIW. With IK gone from syntax, the re-
mainder SCW cannot achieve a B-effect.

(iv) Some manifestation of theCW effect is needed, which brings S into
the discussion. This can be done by the sequence BST because
C = B(T(BBT))(BBT) as Church (1940) and Szabolcsi (1989)
noted, and W = ST. It can also be done by BCW because S =
B(B(BW)C)(BB).

Cases (i) and (iv) need empirical support. No language seems to have the
K-like vacuous abstraction exemplified below:

Invariants of natural language combination 81

(40) * WHAT does Mary like Bill? Szabolcsi (1989: 3b)

Notice that this is different than the apparently related German example
below, where wh-in situ is grammatical. There is no vacuous abstraction here,
since wers are one and the same.

(41) Wer glaubst du wer nach hause geht? Crain and Pietroski (2001)
Who do you think who goes home?

The closest example I could think of for vacuous abstraction is the headed
morphological compounds of German (42): “Genitive case endings function
as morphological “glue” when their use would be disallowed in the corre-
sponding noun phrase” Payne (1997: 93).

(42) Bischoff-s-konferenz (Anderson 1985)
bishop-GEN.sg-conference
‘conference of bishops’
* for ‘conference of bishop’

The process is quite productive, and from the perspective of the con-
stituents of the compound, -s- seems like K’s victim, with the semantics
K(b′k′)gen′ = b′k′. The primed semantic objects stand for the semantics of
Bischoff, Konferenz and -s- respectively.

But it could also be that -s- is another lexical item in German, different
than its genitive case marker interpretation, which yields a morphologically-
headed compound as Payne suggested. Thus if we are willing to extend our
notion of lexicon to include objects with categories other than words, we have
an analysis without K. No such freedom seems to exist for what in (40).53

As for the CW effects, we have seen empirical reasons for W not to op-
erate in syntax, therefore it must be lexicalized. The question then is the fol-
lowing: do we lexicalize C, or is it free in syntax in some arity? According
to Szabolcsi’s formal criterion (38), its lexicalization depends on whether we
have T in syntax, because C= B(T(BBT))(BBT).

A freely-operating T, in the truest sense of the term, is redundant in bi-
nary form if the unary version is available (§4.1). And, as we shall see, the
unary version must be available in syntax in a constrained way. These results
altogether suggest that Cmust be lexical.

Empirical reasons complement the picture by suggesting lexicalization
as well. Take for example the VSO language Welsh. The category of
the transitive verb is (S/NP2)/NP1, where NP1 stands for the subject NP
for convenience (Welsh has no morphological case). Unary Cwould yield

82 Combinatory Categorial Grammar

(S/NP1)/NP2, which is equivalent to saying that VOS order would be gram-
matical too, which is not true for Welsh. A binary Cwould yield S/NP1

from the configuration ‘(S/NP2)/NP1 NP2’, which also amounts to licens-
ing VOS for Welsh. Judging from Steele’s (1978) typological study of limited
appearance of alternative word orders, this process must be lexically con-
trolled in all languages.

The occurrence of strict word-order languages suggest that we should not
employ C to understand the free word-order effects of scrambling languages,
unless we are willing to entertain parametric competence grammars where
one set of combinators prevails over others depending on some kind of pa-
rameter setting over the universal repertoire. As there is no initial-state uni-
versal grammar in CCG that “grows into” an adult-state grammar, there is no
room for a parametric combinatory base either, thus the prediction of CCG is
that any C-effect must be specified in the lexicalized grammar of a language.

Next I show that the syntactic common core of CCG, the BTS system, is
computationally well supported. Then we look at the additional assumptions
about combining variable-free syntax with variable-friendly semantics in the
next chapter.

5. The BTS system

Adjacency as an auxiliary assumption was deemed detrimental because com-
binators cannot handle wrap (§1). A C in the lexicon is not wrap because it
does not wrap strings but syntactic and semantic types. Recall Szabolcsi’s
(1989) category (S\NP)/NP/PP for introduce, rather than the surface word
order (S\NP)/PP/NP, which was motivated by binding possibilities, which
required unary C to apply lexically to (VP/NP)\(VP/PP/NP). We may con-
sider this move as the abandonment of some nonconstituent coordination
analysis (43), but this is an issue within reach of combinators, and its resolu-
tion is not our concern here. It is important that it does not violate adjacency.

(43) John announced Mary and introduced Harry to the party crowd.

We take adjacency as a fundamental assumption to look at its full conse-
quences, rather than bring it in when necessary.

The mild context-sensitivity result of Vijay-Shanker and Weir (1994) for
CCG holds only if a bounded use of powers is employed, i.e. Bn and S′′m

for some m,n. Recall that Bn = BBBn−1 and S′′m = BS′′S′′m−1. The second

The BTS system 83

clause of (38) predicts their free operation in syntax because it equivalent to
BXY for some noninterdefinable X and Y , as Szabolcsi observed.

Hoffman (1993) showed that a freely-operatingT gives us the strictly
nonlinear-indexed language {anbncndnen | n ≥ 0}. Current findings on the
adequacy of nearly context-free grammars and the inadequacy of context-free
grammars for linguistic description depend on the bounded use ofB andT.

TheTmust be finitely schematized to maintain near context-freeness,
which can be done by compiling over a radically lexicalized grammar to see
all kinds of argument and result types. Alternatively, it can always be kept
in the lexicon, which by definition would be a finite schematization. Let us
consider both possibilities.

The lexicalT is by definition a unaryT. Recall also that binaryT is ren-
dered redundant by the unaryT and the primitive of the system.

Regarding the possibility of a unaryT-less syntax, it is not possible to
always buildT into the lexical categories of argument encoders such as deter-
miners and case markers. Some languages lack determiners. Moreover, there
are caseless languages, and also languages with morphological case where
we needT in syntax although case is not involved. Consider some Turkish
data in this regard.

(44) [Gelin-e ben-im uyu-duğ-um-u], [damad-a Ahmet’in çalış-tığ-ı-nı]
Bride-DAT I-AGR.1s sleep-COMP-1s-ACC groom-DAT A-AGR.3s work-COMP-3s-ACC
söyle-miş.
tell-PERF
lit. ‘S/he told the bride that I am sleeping and the groom that Ahmet is working.’

The string ben-im uyu-duğ-um-u must be type-raised (byT) and com-
posed (byB) with gelin-e, so that we can account for the unorthodox con-
stituency of Gelin-e ben-im uyu-duğ-um-u in coordination. This is shown be-
low. The second coordinand must do the same for its constituents.

(45) gelin-e ben-im uyu -duğum -u
bride-DAT I-1s sleep -COMP.1s -ACC

NPdat S1s S′1s\S1s (S\NPnom\NPdat)/
(S\NPnom\NPdat\NPacc)\S′

(S\NPnom\NPdat)/(S\NPnom\NPdat\NPacc)
>T

(S\NPnom)/
(S\NPnom\NPdat)

>B

(S\NPnom)/(S\NPnom\NPdat\NPacc)

84 Combinatory Categorial Grammar

LeavingT to the lexical category of a case-marker such as the accusative
case on the nominalized verb, as is done above for uyu, will not always work,
because unmarked clauses must be type-raised as well in certain syntactic
contexts:
(46) Gelin-ce ben-im uyu-duğ-um, damad-ça da Ahmet’in çalış-tığ-ı

Bride-ESS I-AGR.1s sleep-COMP-1s groom-ESS A-AGR.3s work-COMP-3s
bil-in-iyor.
know-PASS-PROG
lit. ‘It is known by the bride that I am sleeping and by the groom that Ahmet is working.’

Unless we lexicalize all Turkish subordinate clauses, which can be case-
marked or unmarked nominalized clauses, Tmust be a lexical rule.54

Another empirical reason for a schematizedT is the word-internal recur-
sion in nominals. The Turkish relativizer suffix -ki can be attached to case-
marked nouns whose case relation is one of possession, time, or place (i.e.,
the genitive and the locative), for example ev-in-ki (house-GEN-ki ‘the one
of the house’) and ev-de-ki (house-LOC-ki ‘the one in the house’).

Its effect is to create a nominal stem on which all inflections can start
again. As Hankamer (1989) noted, there is no upper bound on this process of
relativization (e.g. ev-i-nde-ki-ler-in-ki-ler-de-ki).

It follows that these words must be derived in syntax (otherwise we would
have an infinite lexicon). They can take part in nontraditional constituencies
such as those below, which is possible in CCG only if these words are type-
raised and composed, therefore type raising must be a rule. The critical step
is shown in (47b).

(47) a. [Ev-de-ki-nin-ki adam-a], [salon-da-ki çocuğ-a] sarıl-mış
house-LOC-ki-GEN-ki man-DAT room-LOC-ki child-DAThug-PERF
lit. ‘The one in the house’s one hugged the man, and the one in the
room the child.’
e.g. ‘The friend/acquaintance of the one in the house hugged the
man, and the one in the room the child.’

b. Evdekininki adama

NP (S\NP)/(S\NP\NPdat)
T

S/(S\NP)
B

S/(S\NP\NPdat)

Thus the only theoretical possibility to maintain near context-freeness
of CCG and to have a BTS system, given our current understanding, is to
finitely schematize the unaryT as a universal lexical rule. Every language has

The BTS system 85

a finite vocabulary of argument categories, therefore it seems to be a feasible
solution. Since by this choice we keep B and T in syntax, C can be lexical.
Because we do not keepW or C in syntax, S can be syntactic.

We can now have a look at variable-friendly semantics in relation to
BTS syntax.

Chapter 6
The LF debate

This chapter is about apparently the least adjacency-related and most post-
PADS related aspect of combinatory theorizing: the issue of having a Log-
ical Form (LF) for narrowing down the possible interpretations, without a
concomitant narrowing of possible constituents.55 The issue is also the most
divisive and perplexing.

The reader is referred to better summaries and historical accounts such as
Szabolcsi (1989, 1992, 2003), Jacobson (1999, 2002), Barker and Jacobson
(2007), Steedman (1996a, 2011). I will reiterate their way of handling some
referential-interpretive phenomena, along with some assessment and predic-
tions.

Empirical concerns about constituency force the CCG variants to con-
verge on a BTS syntax, where T must be constrained by the lexicon, either
by type raising all the argument types in the lexicon, or by operating the unary
rule under a limited domain and range, which can be compiled from the lex-
icon. Adding unary BCWZ to this base where B, C and W are constrained
by the lexicon (for example apply unary B to objects only, unary C to two-
or more-complement verbs, unaryW to reflexives, and unary Z, viz. BSC, to
pronouns), is where CCG models begin to differ.

The BTS system alone is variable-free syntax that makes use of bound
variables in epitheorems only (in Curry’s sense; see the discussion in
page 31), related to the predicate-argument dependency structures (PADS).
These are the systems with a logical form, i.e. they employ a lexical use of
unknowns rather than variables. BCWZ systems on the other hand amounts
to variable-free semantics, in addition to variable-free syntax. Binding of
anaphors is handled by combinators as well, such as Jacobson’s Z and a spe-
cial unary B, and Szabolcsi’s W in the lexicon, which eschews Bach-style
wrap, which has no combinatory counterpart.

Jacobson (1999), Steedman (1996a, 2000b, 2011), Szabolcsi (1989) sum-
marize what is at stake for each path. Szabolcsi’s and Jacobson’s arguments
are both methodological, to culminate variable-free syntax with variable-free
semantics, and empirical, for example whether we distinguish John left and
He left syntactically, the first one as a sentence whose denotation is a proposi-
tion, and the second as a function from an individual to a proposition. Steed-

88 The LF debate

man’s argument is from automata-theoretic concerns, to reduce the amount
of nondeterminism engendered by unary rules and eliminating additional re-
source management needs such as a quantifier store, and also from cognitive
science. He contrasts syntax-specific command relations which seem to defy
traditional concepts such as c-command (e.g. an argument can be relativized
independent of its c-commanding position) with the bound-element behavior,
which seems to faithfully maintain such relations (e.g. reflexives and recip-
rocals), suggesting a branching evolutionary pathway at work. Recall Steed-
man’s argument that reference avoids combinators and depends on logical
form, which he suggests might arise out of pressures for speedy processing.56

There is another perspective that seems to call for a closer look at the prob-
lem of LF. The syntactic dependencies engendered by syntactic processes are
strict about the crossing or nesting kind (1a–b). But the semantic dependen-
cies manifested by quantifiers and pronouns can cross and nest (1c–d).

(1) a. A violini which this sonata j is easy to play j oni
b. *A sonatai which this violin j is easy to playi on j

c. Every mani thinks that every boy j said that his j mother loves hisi
dog. (Jacobson 1999)

d. Every mani thinks that every boy j said that hisi mother loves his j
dog.

The lexical predicate-argument structure and the semantic dependencies
it represents, the PADS, must be distinguished from the notion of LF. The
linguistic notion of LF is borrowed from logic, where it meant, through the
works of Frege, Carnap, Russell, early Wittgenstein, Tarski, culminating in
Montague (1974), a pristine form of logical aspects of a sentence cleared off
the surface characteristics such as inflection, agreement, word order, etc.

Chomsky’s (1976) and May’s (1977, 1985) LF is a structural domain at
which not-so-pristine issues such as quantifier movement and semantic re-
analysis are handled, to the extent of having a separate syntax such as in Pe-
setsky (1985, 1995). In logician’s case, nothing intervenes to provide a model
theory for LF (except some model-stage semantic storage and reinterpretive
operations) because scope and predicate locations are all in place, whereas in
transformational linguist’s case conditions must be predicated over LF to get
them, and more significantly, we need covert operations of different kinds to
get the right LF. The closest analogue of such operations in Montague is the
quantifying-in rule, which introduces a prosodic variable to be substituted by
a logical formula.

Steedman’s LF 89

In this sense Chomsky’s (1981) binding conditions A, B, C in (2) can be
looked at from two angles: (a) As theory-internal constraints at some level of
representation, such as LF as an interface, or, as in earlier transformational
accounts, as a constraint on the input and output of transformations, (b) as
desiderata for any theory to account for the syntactic narrowing of reference.
They are roughly reformulated below to avoid theory-specific terminology:

(2) Condition A: An anaphor (reflexive or reciprocal) must be bound in a
minimal tensed domain.
Condition B: A pronoun must be free where an anaphor must be bound.
Condition C: A referring expression must be free everywhere.

We have seen options (a–b) implemented in CCG various ways: (i) the
adoption of LF as a level, without a model-stage extra storage or reinterpre-
tation, with conditions such as LF-command but without any special syntax
associated with it. This is Steedman’s (2011) surface compositionality, which
means every surface constituent is interpretable, with any unresolved refer-
ence in it bound either by tandem deterministic LF operations in the course
of a derivation, or left to discourse. (ii) The LF-less narrowing of syntactic
types in the lexicon by a lexical use of unary combinators (Szabolcsi 1992).
(iii) The traditional Montagovian LF-less model with unary rules and lexi-
cal types for initiating, projecting and binding of bound pronominals, leading
to Jacobson’s (1999) direct compositionality (“direct” in the sense that every
semantic object that is compositionally derived is model-ready).

As the brief descriptions suggest, the proposals conceive different ways
to narrow down possible categories. Let us look at each alternative in some
detail.

1. Steedman’s LF

Steedman (1996b) defines LF-command as a substantive constraint on possi-
ble categories, which is predicated over the LF. It is in this sense that LF is
the only structural level of representation in Steedman’s CCG, all other con-
straints for example on syntactic types and derivational structures are com-
pletely eliminated by radical lexicalization. I provide a newer formulation of
LF-command from Steedman and Baldridge (2011).

90 The LF debate

(3) A node α in a logical form Λ LF-commands a node
β in Λ if the node immediately dominating α domi-
nates β and α does not dominate β .

(LF-command)

The LF unknowns are of the kind ana′x, pro′x, which are nonbranching
pro-terms where x is identical to some element in the LF. In other words,
ana′kinski′kinski′ is (4a) rather than (4b).

(4) a.
ana′kinski′ kinski′

b.

ana′ kinski′
kinski′

His binding theory reduces to one condition, which is similar to Condition C.

(5) No node except the argument in a pro-term can be LF-commanded by
itself. Steedman and Baldridge (2011) (Condition C)

This condition eliminates (6a–b) as possible interpretations of otherwise
grammatical examples. Condition A and Condition B are explained away by
noting that reflexivization is lexicalized (i.e. it requires the lexical category
of a verb), and pronominal binding (of x in pro′x) is not lexicalized.

(6) a. She∗i liked Milenai.
b. I∗ j think she∗i liked Milenai/ j.
c.Milenai liked her∗i/herself.

Thus herself in an example such as (6c) would have access to all the argu-
ments in the LF of λx1λx2.like′x1x2, which means it can only substitute for
x1. If herself has the semantics λPλx.P(ana′x)x, then we get LFs of the sort
in (7) once it combines with the verb.

(7)

like′ ana′milena′
milena′

The analysis of her in (6c) is the main source of variation in Steedman’s
CCG. Although there seems to be a recent consensus that condition B effects
should be left to a discourse model (Jacobson 2007, Steedman 2011), there is
some work done in LF in Steedman’s case to eliminate proliferating readings
in examples such as below. He avoids semantically powerful yet syntactically
innocuous operations such as an extra stack for scope-taking or the semantics-
only type-change, which could in principle dispense with LF for handling this
kind of work.

Steedman’s LF 91

(8) a. Every farmer who owns a donkeyi feeds iti.
b. All the girls admired, but most boys detested, one of the saxophon-

ists. Geach (1972)

Steedman’s (2011) suggestion is that, unlike the deletion accounts of
transformationalism, which deliver too many readings for examples like (8b),
and unlike strict Montagovianism, which would require extra devices on the
semantic side for (8a–b), assuming an LF may give us surface-compositional
readings only, with concomitant syntactic assumptions such as the type-
raising of all arguments but generalized quantification of only the universal
quantifiers.

This is where his LF assumption begins to do more work than reflexiviza-
tion and nonsubject pronominal binding. His Skolem terms, which are LF
terms in need of a scoping universal quantifier, gets the scope information
and the terms of skolemization from LF-command.

Although Steedman’s introduction of Skolem terms in place of nonuniver-
sal NPs gives us only the possible readings in (8), example (9a) is susceptible
to his LF-term binding although there is no Skolem term, hence we need
Condition B effects to rule it out. And, (9b)’s Skolem-term is not sufficient to
eliminate binding in LF to it. We need to call in yet again condition B effects
of discourse to the rescue.

(9) a. Every donkeyi feeds it∗i.
b. A donkeyi feeds it∗i.

Thus Skolem terms and their tight management during the syntactic pro-
cess sometimes need discourse conditions anyway, to find their antecedents.
This is true of “donkey anaphora” as well. Consider (8a) in a context where a
donkey named Balthazar is left to the common goodwill of the village, which
gives us a free interpretation of it.

We have yet to find cases where a quantifier-bindable pronoun can only
have that reading. That would vindicate an exclusively grammatical solution
to pronoun resolution in at least some constructions. We also have examples
like (10), where an antecedent within a quantified NP not c-commanding (or
LF-commanding) the pronoun is possible.

(10) Every professor’si neighbor respects heri. (Postal and Ross
2009:ex.66)

If this were the only reading, it would jeopardize a Skolem-binding solution
of bound anaphora over an LF structure, because the potential antecedents

92 The LF debate

of quantifier-bound pronouns are read off in the theory as the list of LF-
commanding terms.

As it currently stands, Steedman’s LF-Skolem-command account must
leave both bound and free interpretations of (10) to discourse.57

2. Szabolcsi’s reflexives

One useful consequence of assuming an LF-command and pro-terms is that
we can universally rule out subject reflexives such as *sheself without an
appeal to W orZ, thus without having to stipulate this constraint in ev-
ery lexicalized grammar. The LF pred′(ana′x)x satisfies Condition C, but
pred′x(ana′x), which would be engendered by the LF of *sheself, does not:

(11)

pred′ ana′x
x pred′ x

ana′x

Szabolcsi’s (1992) combinatory solution below to the same problem is LF-
less therefore without c-command or its LF equivalent. Her claim is that the
binding theory of (2) follows from combinatory assumptions about syntax-
semantics, including the lexical assumptions about the predicate-argument
structures. The relevant combinatory options are the lexical use of W and B.

(12) a. sheself := *S/(S\NP3s)
b. herself := (S\NP)/((S\NP)/NP): λ fλx. f xx

Example (12a) is an illicit type because the explicit involvement of W for
reflexives presumes that we have a function with two or more arguments in
the predicate-argument structure to begin with, which is inconsistent with
this syntactic type. Assuming that subjects are universally type-raised, like
all arguments, the impossibility follows without further conditions.58 That
explains (13a) but not (13b), as Szabolcsi pointed out.

(13) a. Sheself left. Szabolcsi (1992)
b. *Sheself sees everyone.

The second example would require the category (S/NP)/((S\NP)/NP) for
the nonsubject argument if it were grammatical. This would be different
than (12b), as expected, but (12a) would allow it if we let unary B loose in
syntax (divide 12a by ‘/NP’), which is eliminated for independent reasons.
This takes care of Condition A without an LF, as a consequence of the syntax
and semantics of B andW.

Szabolcsi’s reflexives 93

A further condition is imposed on the lexicon: reflexives must apply to lex-
ical items only, otherwise (14a) would be allowed. Lexicalization is needed
because (14b) must be derivable, which shows that there are syntactically
derived (S\NP)/NP types.

(14) a. *Mary believes that John loves herself. Szabolcsi (1992)
b. Who does Mary believe that John loves?

(S\NP)/S′ S′/S S/(S\NP3s) (Sfin\NP3s)/NP
>B >B

(S\NP)/S S/NP
>B

(S\NP)/NP

I write the lexical constraint (the +LEX feature of the slash in Steedman and
Baldridge 2011), as ‘/�’ or ‘\�’, with the interpretation that an item e.g. α :=
A\�B requires a leftward type B to be lexical to yield A (likewise ‘/�’ for the
rightward variety):

(15) B must be the type of a lexical item (the LEX convention)
in A\�B and A/�B.

Now the string believes that John loves bear the -LEX value, which accounts
for (14) because herself bears the ‘\�’ (+LEX) constraint.

With or without LF, some right-node raising examples are forced to an el-
lipsis analysis under the lexicalization of reflexives. The coordinate structure
below does not bear a lexical type.

(16) Kinski adored and Wittgenstein hated himself.

The LF proposal is forced to a semantic “wrap” (i.e. C) analysis in En-
glish ditransitives, and for VSO languages. I repeat Steedman and Baldridge’s
treatment of reflexives below to elaborate.

(17) Mary saw herself.

S/(S\NP3s) (S\NP)/NP (S\NP3s)\�((S\NP3s)/NP)
: λxλy.see′xy : λPλy.P(ana′y)y

<

S\NP3s: λy.see′(ana′y)y

The innermost lambda abstraction of three or more arguments is unavailable
to the reflexive with its λPλy.P(ana′y)y semantics. We must schematize the
types of herself to get the right semantics for these cases, which is nontrivial
because it involves semantic wrap to get x in between ana′y and y below. This
is harmless computationally because it is done in the lexicon.

94 The LF debate

(18) Mary gave herself a present.

(S\NP)/NP/NP ((S\NP3s)/NP)\�((S\NP3s)/NP/NP)
: λxλyλ z.give′xyz : λPλxλy.P(ana′y)xy

<

(S\NP3s)/NP: λxλy.give′(ana′y)xy

We are similarly forced to an analysis involving semantic wrap in VSO
languages (19a). (For brevity, NP↑ represents a type-raised NP.) First, notice
that the +LEX constraint applies to Welsh reflexives as well, although they
are not string-adjacent to the verb like in English. Note also the knowledge
of LF, where x(ana′x) rather than (ana′x)x is assumed for Welsh, because of
VSO verbs, and also because of (19b).59

(19) a. Gwelodd Wyn ef ei hun
Saw Wyn himself

S/NP/NP3s (S/NP)\(S/NP/NP3s) S\�(S/NP/NP3s)\NP↑

: λx1λx2.see′x2x1 : λ f . f w′ : λPλQ.P(λx.Qx(ana′x))
<

S\�(S/NP/NP3s): λQ.Qw′(ana′w′)
<

S:see′(ana′w′)w′

‘Wyn saw himself.’ Awbery (1976: 131)
b. *Gwelodd ef ei hun Wyn

Saw himself Wyn

The LF-less W semantics and lexical syntactic types for reflexives general-
ize nicely to λPλQ.P(λx.Qxx), as shown below, as an alternative to the LF
account in (19a).

(20) Gwelodd Wyn ef ei hun
Saw Wyn himself

S/NP/NP3s (S/NP)\(S/NP/NP3s) S\�(S/NP/NP3s)\NP↑

: λx1λx2.see′x2x1 : λ f . f w′ : λPλQ.P(λx.Qxx)
<

S\�(S/NP/NP3s): λQ.Qw′w′

<

S:see′w′w′

3. Jacobson’s pronouns

Jacobson’s starting point is that syntactic elements that seem like vari-
ables, for example pronouns, do not necessitate variables in syntax or
semantics. Working with combinatory-syntactic assumptions, she avoids
transformational-style variables from the beginning (the empty categories),

Jacobson’s pronouns 95

and suggests a binding scenario which takes place within the semantics of
a specialized unary Z (specialized to apply to e-type NPs only, hence prop-
erly equipped to bind the right kind of pronouns-as-variables). With the help
of a specialized unary B called g (for ‘Geach’), this move avoids the use of
LF to account for the bound and free interpretations of pronouns. This way
pronouns-as-arguments are forced to yield functions rather than propositions,
therefore they make a finer distinction in possible syntactic types and bear
empirical consequences.

Her narrowing of the possibilities in the grammar-lexicon are roughly as
follows. The reader is referred to Jacobson (1999) for full exposure, and to
Barker and Pryor (2010) for a computational model using monads (i.e. thread-
ing of g-computations with z-computations).

Pronouns are lexically (e,e)-types in her theory, which she translates syn-
tactically as NP.NP Syntactically this is the collection of all functions from
NP types to NP types. I will call them exponent types for easier reference. It
is conceived as a semantic narrowing of an NP with syntactic significance,
because of the distinction from another collection of functions from NPs to
NPs: NP|NP.

The exponent types must be mediated in syntax to force an individual-to-
proposition functional readings of (21a–b), rather than the propositional ones
in (21c–d), because the verbs lexically do not know the distinction. This is a
compelling argument for the syntactic narrowing of type S.

(21) a. He left. (SNP)
b. Kafka adored her. (SNP)
c. John left. (S)
d. Kafka adored Milena. (S)

This Jacobson achieves with a specialized unary B, where Z=NP ; cf. the
syntactically freer one in §4(28).

(22) X|Y: f → XZ |YZ : λgλx. f (gx) (g-Z)

Since this is not syntactic B, the slash can bear any modality, not just ‘\�’
or ‘/�’. We shall see later that this is further corroborated by the data; (38b)
needs to apply this rule when the slash is ‘\�’.

Now we can derive (21b) as a function from individuals to propositions,
syntactically S.NP This is different than deriving it as S|NP with the freer
version of unary B because, syntactically speaking, the expression needs no
arguments.

96 The LF debate

(23) Kafka adored her.

S/(S\NP3s) (S\NP)/NP NPNP
g-NP

(S\NP)NP/NPNP
>

(S\NP)NP
g-NP

SNP/(S\NP3s)NP
>

SNP

Jacobson’s way of handling the pronouns therefore needs no lexical dis-
tinction between a contextually bound but syntactically free use of a pronoun,
and a syntactically-bound pronoun. They both derive functions rather than
propositions. I show the semantics to make this point explicit. Notice that the
variable z below is not a syntactic argument because the syntactic type is not
S|NP.

(24) He left.

NPNP : λx.x S\NP:λy.leave′y
g-NP

SNP\NPNP : λ fλ z.leave′(f z)
<

SNP : λ z.leave′z

The bound pronoun below is where her unaryZ does its binding. This
combinator is specialized in Jacobson’s case to apply to NPs only; cf. the
freer version §4(54).

(25) (X|i NP)| j Y: f → (X|i NP)| j YNP : λgλx. f (gx)x (z-NP)

(26) John loves his mother.

S/(S\NP3s) (S\NP3s)/NP NPNP

: λ f . f j′ : λx1λx2.love′x1x2 : λx3.the-mother-of′x3
z-NP

(S\NP3s)/NPNP

: λgλx.love′(gx)x
>

S\NP3s
: λx.love′(the-mother-of′x)x

>

S: love′(the-mother-of′j′)j′

Notice that the result is a proposition, not a function. (I eschew as Jacobson
does the analysis of English genitives.) If John loves somebody else’s mother,

Jacobson’s pronouns 97

then we would get the function SNPas expected. I leave the mechanism and
its implications for binding to much detailed discussion in Steedman (2011),
Jacobson (1999).

The unary Z assumption carries with it some complications for VSO lan-
guages. For example, Welsh bound anaphora (27) might need syntactic wrap
to apply (25) to the right argument, to the verb’s category S/NP3s/WNP to
get S/NP3s/WNPNP, where the slash subscript ‘W ’ denotes wrap.

(27) Mi newidith Siôn ei feddwl.
PRT change.FUT.3s Sion 3MS mind.INF
‘Siôn will change his mind.’ Welsh; Borsley, Tallerman and Willis
(2007: 52)

Alternatively, we can consider another version of (25), viz. (28).60 Its work is
shown in (29) for the bound-pronoun interpretation.

(28) (X| jNP)|i Y: f → (X|i YNP)| j NP:λxλg. f x(gx) (z′-NP)

(29) Mi newidith Siôn ei feddwl
PRT change.FUT.3s Sion 3MS mind.INF

S/NP/NP3s NP3s NPNP

: λx1λx2.change′x2x1 : s′ : λ z.the-mind-of′z
z′-NP

S/NPNP3s /NP
: λxλg.change′(gx)x

>

S/NPNP3s
: λg.change′(gs′)s′

>

S
: change′(the-mind-of′s′)s′
‘Siôn will change his mind.’

We are forced to get a free reading of ‘his mind’ from the individual-to-
proposition interpretation of ‘Siôn will change’. Its analysis is shown in (30).
This string cannot be made a VP in any movementless theory—but it is in-
deed interpretable in CCG without extra devices, and it seems to suffice that
it be a function so that individuals can take it as an argument to yield a propo-
sition, via the S\(S/NP) type, or as a function to yield another function, via
the SNP\(S\NP)NP type.

98 The LF debate

(30) Mi newidith Siôn ei feddwl
PRT change.FUT.3s Sion 3MS mind.INF

S/NP/NP3s NP3s NPNP

: λx1λx2.change′x2x1 : s′ : λx.the-mind-of′x
>

S/NP
: λx2.change′x2s′

g-NP

SNP/NPNP

: λgλx.change′(gx)s′
>

SNP

: λx.change′(the-mind-of′x)s′

We get the binding conditions that an anaphor inside the subject cannot be
bound by object for free, if we assume the type-dependent solution to pronoun
binding, rather than the structure-dependent solution of the familiar Chom-
skian kind, or Steedman-style LF as the level for binding. Given the NPNP

assumption for a pronoun, we cannot get a proposition (S) reading for the
following example; it must at best be a function from things to propositions:

(31)*Prynodd ei awdur ei hun y llfyr.
buy.PAST.3s 3MS author 3MS self the book

S/NP/NP3s NPNP3s S\(S/NP)
g-NP

(S/NP)NP/NPNP3s
>

(S/NP)NP
g-NP

SNP\(S/NP)NP
<

SNP
*‘Its own author bought the book.’Borsley, Tallerman and Willis (2007: 132)

In summary, the lexical type of a pronoun initiates, g projects, and z closes
off the referential dependency of the bound pronoun, as in monadic com-
putation. The process is an instance of threading the computation as z(g),
as Barker and Pryor (2010) showed. This is not the only monadic aspect of
CCG, as we shall see in Chapter 10.

It seems possible, then, to find a purely type-dependent way to maintain
Chomsky’s binding conditions as desiderata to narrow down the syntactic
types, rather than add some conditions on a structured domain like LF. There-
fore Steedman’s (2011) introduction of structure-dependence on the LF side,

Jacobson’s pronouns 99

on top of type-dependence in syntax-semantics correspondence, can be in-
terpreted as a plea for computational parsimony in parsing, competence and
its evolution, i.e. as a computational (read: empirical) challenge to cognitive
science.

The counter-balance of the challenge is a long list of predictions we get
from exponent types. For example: (a) syntactically differentiating the truly
contextual pronoun binding versus its capture of an antecedent in syntax, so
that for example an oracle can be called in to work depending on parser’s
output when the result is SNP rather than S. (b) The empirically discernible
distinction we get about the meaning of John left versus he left, as pointed out
by Jacobson (1996).61 (c) The prediction of resumptive pronouns as possible
lexical items, because we can systematically relate nonextraction categories
like (N\N)/SNP to extraction categories (N\N)/(S/NP). Note that the g-Z
rule or the z-NP rule does not apply, hence these must be lexically mediated,
which befits resumptive pronouns. (d) Can syntax require a pronoun? Jacob-
son’s NPNP type predicts that it may take part in the domain of locality of a
construction.

I have no knowledge of such a finding, but the Welsh cael “get” passive
comes close:

(32) Cafodd Wyn ei rybuddio.
Got.3s Wyn his warning
‘Wyn was warned.’ Awbery (1976: 210)

Awbery (1976: 47) explains: “The passive sentence has a sentence-initial in-
flected form of cael (get) of the same tense and aspect as the verb of the
active. This is followed by a noun phrase identical to the object of the active.
Then comes a pronoun of the same person, number and gender (if it is 3sg)
as this noun phrase, and an uninflected form of the verb in the active.”

Awbery’s data shows that what is dropped if the noun phrase after cael
is a pronoun is the subject NP, not the possessive pronoun required by the
passive:

(33) Cawsom (ni) ein rhybuddio gan y ferch.
Got.1pl (we) our warning by the girl
‘We were warned by the girl.’ Awbery (1976: 48)

Therefore the pronoun is obligatory, and it is syntactically bound. It can be in
the domain of locality of the head cael.62 The NPNP type’s relation to NP|NP
is predictable too. For example, Turkish headless relatives (34a–b) are indeed

100 The LF debate

pronominal, as the semantics implicated in the glosses show. They are derived
from (NP/NP)\(S\NP) of the relative participle which yields NP/NP for the
relative clause, as in the headed variety (34c–d). (The examples are repeated
from §2(11).)

(34) a. [[[İstanbul’a gid-en]NP/NP]-ler-i]
NPNP

ben gör-me-di-m.

Ist-DAT go-REL-PLU-ACC I see-NEG-PAST-1s
‘I did not see the ones that go to Istanbul.’

b. [[[İstanbul’a git-tik]NP/NP]-ler-im]
NPNP

daha güzel-di.

Ist-DAT go-REL-PLU-POSS.1s more beautiful
‘The ones with which I went to Istanbul looked better.’

c. [İstanbul’a gid-en]NP/NP otobüs

Ist-DAT go-REL bus
‘The bus that goes to Istanbul’

d. [İstanbul’a git-tiğ-im]NP/NP otobüs

Ist-DAT go-REL.1s bus
‘The bus with which I went to Istanbul’

To recapitulate: employing the combinators for variable-free semantics
does not seem to violate the transparent import of order-instigated seman-
tics of combinators to their syntacticization. Doing without them forces us
to make auxiliary assumptions. Moreover, some constituents seem to show
asymmetric behavior regarding the exponent types. I exemplify some of them
in the next section. These are new research agenda for the entire family of
CCG models.

4. More on LF: Unary BCWZ, constituency and coordination

In an LF-less system, we not only need Jacobson’s (1999) unary Z but unary
B as well, to account for multiple pronouns and their binding possibilities.
The first example below is obtained if the verb said undergoes unary Z first
and then unary B, as Jacobson (1999) showed. We get the second example if
the order is reversed.

(35) a. Every mani thinks that every boy j said that his j mother loves hisi
dog. (Jacobson 1999)

More on LF: Unary BCWZ, constituency and coordination 101

b. Every mani thinks that every boy j said that hisi mother loves his j
dog.

Recall the unaryB’s devastating effects on complete constituents, repeated
here:

(36) a. I think that Wittgenstein might have liked Kafka.

VP/S′ S′/Sfin Sfin
b. *I think Wittgenstein that might have liked Kafka

S′/Sfin Sfin\NP
B

(S′\NP)/(Sfin\NP)
app

S′\NP
<

S′

Jacobson’s account avoids this problem by keeping the complete constituents

complete albeit a unary B: the word that undergoes a type-shift to S′NP/SNPfin
by (g-NP) to eliminate (36b).

Likewise, Szabolcsi’s use of unary BCW avoids deriving a noncon-
stituent, by building them into the lexical categories. Therefore a BTS binary
core syntax seems uncontroversial, except for Shaumyan (1977, 1987)-style
combinatory semantics where two expressions are related by combinators, for
example that man I hate him and I hate that man by K. That seems to have
a different agenda than a search for a radically lexicalized adjacency system
for grammar.

Thus the theoretical differences come down to the interpretation of some
empirical issues, repeated below: (i) He lost in (37a) is considered S by
variable-friendly semantics and SNP by variable-free, (ii) the asymmetry of
binding in (37b–c) are attributed to LF conditions in variable-friendly systems
and to lexical generalizations about arguments in variable-free, and (iii) the
lack of respect to LF conditions in nonlocal constructions in (37d–e) and in
relativization are handled by the conspiracy of lexical syntactic and semantic
types in either view. (37f–g) are still divisive, as pointed out earlier.

(37) a. Every mani thinks (that) hei lost and (that) Mary won. Jacobson
(1999)

b. *Sheself left. Szabolcsi (1992)
c. *Sheself sees everyone.
d. A violini which this sonata j is easy to play j oni
e. *A sonatai which this violin j is easy to playi on j

102 The LF debate

f. Every mani thinks that every boy j said that his j mother loves hisi
dog.

g. Every mani thinks that every boy j said that hisi mother loves his j
dog.

The exponent vocabulary for syntactic and semantic types therefore creates
not two incommensurate categorial landscape (that would be the case for
wrap systems), but some degree of freedom.

The treatment of (37a) bears on constituency in an indirect way, in the re-
sult categories of coordination, precisely because opinion is divided about the
category ofHe lost and about the nature of extraction in resumptive pronouns.
Consider the examples below.

(38) a. Every mani loves and no manj marries hisi& j/∗i/∗ j mother.
b. Every mani thinks hei lost and Mary won.

NPNP S\NP (X\�X)/�X S
g-NP >

SNP\NPNP S\�S
< g-NP

SNP SNP\�S
NP

<

SNP

As Jacobson (1999) points out, the NPNP type for pronouns maintains (a) the
across-the-board CSC asymmetry without extra assumption, that it is impos-
sible to bind out of one conjunct in (38a), and possible to bind into just one
in (38b), and (b) that the “like-category constraint” for CSC is not enough if
we do not make the three-way {S, SNP, S|NP} distinction.

The derivation in (38b) maintains the “like category” explanation for co-
ordination without extra assumption. It is not a violation of application-only
modality of the coordinator and, because no new slashes are introduced by
g-NP. We shall see in monadic computation (Chapter 10) that the slash in
unary composition of (22) can indeed be without modality.

Regarding the asymmetry in coordination in relation to pronominal ref-
erence, we can look at the rightward conjuncts with functions rather than
propositions. Interesting possibilities arise in a modalized CCG. Jacobson’s
suggestion of unary composition might appear to make coordinands suscep-
tible to island violations, but it does not. We can maintain the islandhood of
conjuncts by disallowing composition into them using the application-only
modality. Jacobson’s (1999) suggestion to type-raise the S of leftward con-

More on LF: Unary BCWZ, constituency and coordination 103

junct to S/(S\S) to derive (39a) avoids the composition of Mary won with
and (39b).

(39) Every mani thinks Mary won and hei lost

S/(S\S) (X\�X)/�X SNP
g-NP g-NP

SNP/(S\S)NP (X\�X)
NP/�X

NP
>

(S\�S)
NP

>

SNP
(a)

*Every mani thinks he Mary won and would lose.

S/(S\S) (X\�X)/�X S\NP
g-NP g-NP g-NP

SNP/(S\S)NP (X\�X)
NP/�X

NP SNP\NPNP

*** >B

SNP/SNP
(b)

In summary: in exploiting the degrees of freedom afforded by expo-
nent types of Jacobson, lexical generalizations of combinators and variable-
friendly logical forms, we are within the program of radical lexicalization.
The unary combinatory rules have substantive constraints on them, or they
are built into the lexical categories. In other words, they are lexical rules. No
combination rule or lexical rule depends on LF in systems where it is posited
as a level. The empirical coverage of constituency is the same, although some
empirical assumptions, theoretical choices and predictions differ.

Variable-free semantics spells a tightly controlled unary system with an
interlocking choice of constraints on for example pronouns, different kinds
of verb classes, reflexives, relative pronouns, object categories etc. Its highly
nondeterministic type-shifting rules seem to add no more burden than the
result that type-raising must operate as a universal rule anyway; it cannot
be fully lexicalized. Its use of model-stage storage to take care of quanti-
fier scope as done by Cooper (1983) does require another stack, but, as long
as that stack does not interact with the parser’s category stack, having two
stacks does not automatically give us Turing-completeness or a more liberal
computation.63 On the other side, variable-friendly semantics of the LF kind
is forced to posit a model theory over and above what the standard logics
provide, such as for example in Steedman (2011).

104 The LF debate

In both cases, surface compositionality is maintained, for a good reason. It
appears that the logician’s logical form is the cognitive scientist’s and compu-
tational linguist’s predicate-argument structure and dependencies. The notion
of LF is entirely uncontroversial in computational linguistics, to the extent
that it is almost always implicitly assumed, because otherwise the task of
using a grammar in both ways to parse and generate is unreasonably compli-
cated.

This LF is in most cases not Chomsky’s or May’s LF, because no pred-
ication over such a level is bothered to be checked in the first place. Noise
in the data (ambiguity, vagueness, misunderstanding, misperception, miscon-
ception, misattention, misaction etc.) far outweighs the noise that might be
introduced by not checking the LF conditions on the hypotheses.

Cognitive scientists with a computational bend use LF as an approxima-
tion of PADS in learning syntactic categories from PF-PADS pairs where the
category is the hidden variable (after all, it is not observable). To go from
models to PADS in that task is complex, and the search space for the hidden
variable is much less constrained.

Recall also that the Condition A-like innate knowledge, that children
never entertain the possibility of e.g. *sheself, can be subsumed by a con-
spiracy of universal constraints on the lexicon: (a) that all arguments are
type-raised, (b) argument-taking is combinatory knowledge (e.g. knowledge
of W dependency presumes knowledge of curried transitivity, which also
brings in coargumenthood without further assumptions), (c) lexicalizable
variables—pronouns—are not semantic variables but unknowns.

A linguistic representation of semantics can be an uncontroversial as-
sumption, independent of whether we posit a Steedman-style LF without ex-
tra syntax, a Pesetsky (1985)-style LF with its own syntax, or a Montague-
style derivation structure where some scope bookkeeping is sufficient for a
model-theoretic interpretation.

This LF is linguistically interesting to the extent it represents or models
asymmetries, such as scope and binding. There is no language with a sub-
ject reflexive.64 Logically it seems perfectly possible, as say (∀x)(x=mary′⇒
see′xx), which would be a legitimate logical representation forMary saw her-
self, as well as for *sheself saw Mary, and *Herself saw Mary.

Some striking counterexamples to this long-standing observation have
been shown by Postal and Ross (2009). English, Albanian and Greek inverse
reflexives, which are the least oblique (subject) reflexives with clausemate
antecedents, strengthen the need for a linguistic representation because they

More on LF: Unary BCWZ, constituency and coordination 105

require, according to Postal and Ross, the notion of derived subject, a strictly
linguistic concept, as in Relational Grammar (see Blake 1990 for RG con-
cepts).

Consider another case for a linguistic representation. The Turkish plural
marker must be considered polysemous if we want to eschew an LF represen-
tation. We have (40a), in addition to the nonlocative extensional interpretation
of the plural (40b).

(40) a. Yarın akşama Ahmet’lere davetliyim.
Tomorrow night-DAT A-PLU-DAT invited-1s
‘I am invited to Ahmet’s for tomorrow night.’ Turkish

b. Kendini kitaplara verdi.
self-ACC book-PLU-DAT give-PAST
‘S/he gave himself/herself to the books.’

The expression in (40a) is three-way ambiguous: (1) There may be more
than one people at Ahmet’s, with Ahmet being the representative of the group,
(2) there might be only Ahmet at Ahmet’s, or (3) there might be somebody
else, or even no one, at Ahmet’s. In the last case the speaker would know
the place as Ahmet’s, just as s/he would know Mehmet’s, Ayşe’s, Mary’s
as places, thanks to the plural. The first reading is closest to an extensional
interpretation of the plural, but the other two are intensional. That kind of
polysemy-turned-ambiguity might render the idea of radical lexicalization
vacuous, because any marker can be intensional or extensional in this regard:

(41) a. dünyanın tepesi
world-GEN top-POSS
‘the top of the world’ Turkish

b. adamın arabası
man-GEN car-POSS
‘the man’s car’

A Montague-style intensional logic (IL) has room to work from a type say
plu,′ but the core translation of Montague’s IL is disambiguated, therefore
we would need two types or two rules to intensionalize and extensionalize
the plural. A PADS presentation could have one entry to be mapped to Mon-
tague’s intensional-extensional world. Partee and Rooth (1983) show how
type-shifting can relate one grammatical object with many model-theoretic
objects.

106 The LF debate

In regard to the combinatory syntactic knowledge of plurality, there is no
distinction between the intensional and extensional interpretation, hence we
would expect a single category. As a knowledge of the full interpretability of
a meaning-bearing element, we can conceive a two-way IL translation both
of which are disambiguated, or use Partee and Rooth idea to define a function
from one PADS object to a powerset of a finite set of types, which would also
secure a lexical representation along with PADS. This does not directly relate
to meanings out there but to model-theoretic constraints on PADS objects
like plu,′ hence it can be considered part of competence because it is linked
to PADS, which is an essential part of a category. The noncommittal view of
PADS toward truth conditions is also defended on the following grounds.65

Language embodies no particular metaphysics; it embraces both Realism and
Psychologism. However, psychology has the last word. Whatever the seman-
tics of a term, its relation to the world depends on human cognitive capacity.
A word with a Realist semantics would only be coined or maintained in use
by virtue of its associated mental schema. Likewise, whatever the semantics
of a term, it is not mentally represented in isolation. Johnson-Laird
(1983: 204)

The narrow research program pursued here is that, whatever the nature of rep-
resentation of semantics is, it must relate to syntax compositionally, because
it is one end of the syntactic process. Whether it spells a truth-conditional se-
mantics or some kind of mental and social world of thoughts and concepts is
implicated here to be an interface issue; see Chapter 9, in particular §9.3 and
§9.10, for further discussion. The topic is an open debate in cognitive science;
witness a recent target article of Feldman (2010) and subsequent discussion
in the same volume, with responses and criticism by Allen, Partee, Steels and
Steedman.

Chapter 7
Further constraints on possible grammars

A CCG grammar is a finite set of lexicalized category assignments to strings.
The language of the grammar is its closure on the invariants listed in Ta-
ble 2. Thus everything projects from the lexicon, because the invariants do
not encode any language-specific information. It follows that all substantive
constraints must be enforced on the lexicalized syntactic types, because the
syntactic process is completely syntactic type-driven.

A lexical category must therefore capture all the syntactic and semantic
dependencies as knowledge of that string, say a word, since no other knowl-
edge can be added during the syntactic process, and none deleted.

Steedman offers the following principle as a constraint on possible cate-
gories.

(1) The Principle of Categorial Type Transparency: (PCTT)

For a given language, the semantic type of the interpretation together
with a number of language-specific directional parameter settings
uniquely determines the syntactic category of a category. Steedman
(2000b: 36)

The principle works both ways (Steedman calls syntax-to-semantics map-
ping the inverse of (1)). The semantic type of an interpretation is entirely
determined by the syntactic type:

(2) Take T to be the type relation with an inverse. If α has the syntactic
type A and β type B, then T (α ,β) = Tβ | Tα = B|A, for some ‘|’.
If (α ,β) has a basic type A, then T (α ,β) = A. Inversely, T−1(B|A) =
(T−1A,T−1B) = (α ,β), for A(α) and B(β). T

−1(A) =α for a basic type
A(α).

For example, assume the following types for English.

(3) S : t Kafka died.
S : (e, t) Kafka adored
NP : e Kafka
N : (e, t) man

Given these types, S\NP can be (e, t) (functions onto propositions), or
(e,(e, t)) (functions onto functions, where for example the result function

108 Further constraints on possible grammars

wants a discourse participant). We need not eliminate the second variety from
theory (perhaps we cannot), when experience can sort it out. The S/NP can
be (e,(e, t)) (functions onto predicates), or (e, t) (functions onto propositions,
where for example the subject of the action is implicit, say self ′). In the last
case, we can safely assume that the implicit participant is not the syntactic
object, because English subjects are not compatible with ‘/NP’s, therefore
that NP must be the object.

The principle suggests that, given these English-specific pairs, a category
such as S/(S\NP) cannot be anything other than ((e, t), t) if S is t, and a
category such as S\(S/NP) can only be ((e,(e, t)),(e, t)) if S is (e, t).

PCTT is a relation, not a function with an inverse. For example, it is en-
tirely possible that nominals get two categories in a language, say NP : e
(proper names), and NP : (e, t) (properties). Then S\NP’s semantic type can
be (e, t) or ((e, t), t). What it does not allow is this: if X is of type α and Y β ,
then X|Y cannot be anything other than (β ,α). Given a lexical pair of types,
they are functionally dependent on each other.

Take for example N : λx.man′x and S\NP : λx.sleep′x. The x of man′ is
not a syntactic variable. We can deduce this property from the semantic type
of man,′ which is (e, t). The x of sleep′ must be a syntactic variable, which
corresponds to the ‘\NP’ of S\NP. Thus lambdas are not nominally desig-
nated as syntactic or semantic. These properties follow from their lexicalized
syntax translated from dependency semantics via adjacency. N cannot have
a syntactic argument glued (by ‘:’) to a semantic object. S\NP cannot take
place in syntax without a syntactic argument glued to its participant role.

Jacobson’s (1999) pronouns, and proposition versus function distinction
of S can be covered by PCTT as well. Assuming (e,e) for NP,NP as she
does, we are forced to an (e, t) interpretation of S,NP where the e is not a
syntactic argument, because the syntactic type is not S|NP. Since PCTT is
not a function, we are not forced to assume that an S is always t type (that
possibility would rule out a function interpretation of S, such as functions
from individuals to propositions as in pronouns). It can be (e, t).

The use of lambdas as the glue language of the ‘:’ relation in syntax-
semantics correspondence therefore depends on the semantic types. Eta-
normalization can eliminate variables from (e, t) types of various syntactic
functions, e.g. from N : λx.man′x and S\NP : λx.sleep′x, which reveals the
explicit role of the slash in syntactic argument-taking as a reflection of se-
mantic argument-taking. The potential confusion about whether lambdas are

Further constraints on possible grammars 109

syntactic or semantic abstractions can be avoided if we use typed objects all
the time, for example to claim that sleep′ is a one-argument syntactic func-
tion which also happens to be a one-argument semantic function, and man′ is
a zero-argument syntactic function which is a one-argument semantic func-
tion.

Using adjacency formulations of argument-taking over strings makes the
distinction explicit. The Schönfinkel-Curry arity of man is man′, i.e. zero.
The arity of sleep′ is 1, from B1Isleep′.66

Thus the number of syntactic lambdas in the glue language is the power
of B in a semantic object’s prefix. It is the same as the number of argument
slashes in the syntactic type, and no confusion arises.

With PCCT we can eliminate types such as (4) from the space of possible
categories, hence possible grammars.

(4) a. *sleep := S : λx.sleep′x
b. *sleep := (S\NP)/NP : λx.sleep′x

The first example says that all sleeping is syntactically memorized, be-
cause it does not take any syntactic arguments, yet its semantics might suggest
that (a) it does take a syntactic argument since it is a reflection ofB1Isleep′, or
(b) it is a function, in which case what it is a function of is not clear since the
syntactic type is not SX for some X . If it is a property named sleep, as in sleep
causes absenteeism, then it would be fine but inconsistent with other prop-
erties, which are usually of type N or NP, but not S. Only cross-situational
learning can remedy this problem, therefore the argument role/property inter-
pretation must be considered legitimate.

The second example (4b) does not claim that sleep′ cannot be a transitive
verb. PCTT and its combinatory origin (Schönfinkel-Curry arity) simply say
that if it is, then there must be another lambda, otherwise this category cannot
be construed as the knowledge of the word.

Thus the system is conditional on the current assumptions about the syn-
tactic reflection of states of affairs, and needs no universal base such as in
Jackendoff (1997) or Hopper and Thompson (1980) (the latter work assumes
transitivity is universal). There can be a ditransitive sleep predicate as far as
CCG is concerned, a fact which we must be able to discern from its syntactic
behavior.

The syntactic lambdas and the semantic ones can be eliminated by eta-
reduction as we have seen. What cannot be eliminated are the structural un-
knowns of the Logical Form (LF), if we follow the LF-friendly combinatory

110 Further constraints on possible grammars

path. In that sense, Steedman’s unknowns are not the kind of objects that
Schönfinkel’s combinators are designed to eliminate.

Steedman (2000b) offers two more substantive principles, the Principle
of Lexical Head Government (PLHG), and the maxim of Head-Categorial
Uniqueness (HCU). The first principle amounts to saying that lexical cate-
gories must not proliferate just because there are many syntactic contexts in
which a lexical item can take part, such as the word chews in the examples
below, among others.

(5) a. The cat chews the mat.
b. The cat chews itself.
c. the mat which I believe the cat chews
d. The cat chews and the dog scratches the mat.
e. This mat the cat chews all the time.

By the same principle, the passive in the mat was chewed by the cat and
the infinitive in the cat wants to chew the mat involve the same lexical item,
namely chew. These principles do not reduce the space of possible categories,
but they do put constraints on individual grammars, which makes the size of a
grammar a meaningful number. McConville (2006) makes use of this number
to choose among potential competence grammars.

The principles we have covered so far bear on lexical correspondences,
and they reduce the space of possible grammars because by the radical lex-
icalization of the rule-to-rule hypothesis, a particular grammar can only be
read off the lexical syntactic types. We shall see in §9.7 that the theory of
functional categories employed in transformational grammar can also be seen
as providing further constraints on possible syntactic types. The reason why it
is considered a meta-theory for CCG is because functional categories do not
seem to arise from combinatory dependencies, therefore not from a combina-
tory manifestation of adjacency. For example, λP.Pa′ can characterize both
syntactic subjects and syntactic objects with semantics a.′ Their differences
in agreement and finite domains must arise from differences in the syntactic
features of basic categories in a syntactic type. PCTT can only partially help
in these matters, such as distinguishing S/(S\NP) and S\(S/NP), so that a
theory of agreement or binding can make use of the distinction.

Szabolcsi’s (1989, 1992) constraints on the lexicon narrow down the pos-
sible lexical categories, hence, by radical lexicalization, possible grammars.

We can also think of other kinds of substantive constraints on possible
grammars, some of which need not worry a grammar theorist. For example,

Further constraints on possible grammars 111

what could stop a group of people from acquiring a language in which every
sentence ends with the same word? A linguistic theory would be overextend-
ing itself in trying to address such matters when experience can sort it out. It
might be in the Zipfian tail of possible languages.

Chapter 8
A BTSO system

What can be the syntactic roles of the combinators other than BTSCWZ? I
list the remaining set below, along with their equivalences:

(1) Y Yx= y= xy for some y depending on x
Φ Φxyzw= x(yw)(zw) Φ= B(BS)B
Ψ Ψxyzw= x(yz)(yw) Ψ= B(BW(BC))(BB(BB))
J Jxyzw= xy(xwz) J= B(BC)(W(BC(B(BBB))))
O Oxyz= x(λw.y(zw)) O= C(BBB)B

Recall that C= B(T(BBT))(BBT), and W = ST. Thus with the exception
of Y, they must be lexicalized in a BTS system, according to Szabolcsi’s cri-
terion in §5(38). We have seen in §4.1 thatY is not finitely typeable, hence its
finite representability cannot be assumed. Let us look at the finitely typeable
ones. I leave out J because, as explained in §4.4, its behavior has not been
observed in any language.

Recall also that Szabolcsi’s hypothesis is not sufficient to rule out K and I
from syntax. It is a formal restriction. We needed empirical support to elimi-
nate K and I. We also needed empirical support to suggest why B and Smust
operate binarily and not ternarily, which was also not covered by her hypoth-
esis. These efforts can be considered as investigating the empirical import of
Schönfinkel’s fully binarized function-argument notation (currying), an oth-
erwise formal result.

Take for exampleΦ andO.Φ’s semantics is that of coordination. The for-
mal criterion suggests that it is lexicalizable because Φ = B(BS)B. Empiri-
cally it is clear that coordination is lexicalized in languages, because there are
languages which do not have syntactic coordination, for example Hixkaryana
(Derbyshire 1979) and Dyirbal (Dixon 1972). And, every coordinating lan-
guage seems to have a lexical head for it (and, but etc.), or restrict it to certain
tunes. That is, there is always some syntactic object even if it is not a word
to which we can assign the semantics of coordination in the lexicon, in the
manner of Steedman (2000a). Therefore both formal and empirical results
suggest that Φmust be a lexicalized combinator.

Not so for O. By the formal criterion (§5(38)), it can be lexicalized be-
causeO=CB2B, andC is definable byB andT. Empirical facts suggest oth-

114 A BTSO system

erwise. Recall that unlike other combinators, O is a combinator but not a su-
percombinator. This is evident in its definition O f gh= f (λx.g(hx)), with its
unmovable inner lambda abstraction: x is not an argument of O.

This combinator seems to be at odds with lexicalization when we consider
that we are facingO semantics in strings such as what you can (2), which
seems not to be lexicalized, for example what you can and what you should
not do.

(2) what you can

S/(S/NP) S/(S\NP) (S\NP)/(S\NP)
: λQ.?yQy : λ f . f you′ : λPλx.can′(Px)

>B

S/(S\NP)
: λP.can′(Pyou′)

>O

S/((S\NP)/NP)
: λP.?ycan′(Pyyou′)

Does this justify the incorporation of O into syntax? Recall the syntacticiza-
tion of binarizedO, which is at work in (2):

(3) X/(Y/Z) : f Y/W : g→ X/(W/Z) : λh. f (λx.g(hx)) (2O)

Hoyt and Baldridge (2008) provide the following examples from various
languages which cannot be handled by aBTS system, a result which suggests
free operation in syntax. They call such constructions cross-conjunct extrac-
tion, first noted by Pickering and Barry (1993). All bracketed strings in these
examples arise from syntactic and semantic assumptions similar to (2).

(4) a. .. [What you can] and [what you must not] base your verdict on
b. [dat ik haar wil] en [dat ik haar moet] helpen

that I her want and that I her can help
‘..that I want to and that I can help her.’ Dutch

c. [Wen kann ich] und [wen darf ich] noch wählen?
who can I and who may I still choose
‘Whom can I and whom may I still choose?’ German

d. Gandes-te [cui çe] vrei,
consider-IMP.2s-REF.2s who.dat what want.2s
şi [cui çe] poţi, sǎ dai.
and who.dat what can.2s to give.SUB.2s
‘Consider to whom you want and to whom you are able to give
what’ Romanian

A BTSO system 115

e. [Me lo puedes] y [me lo debes] explicar
me it can.2s and me it must.2s explain
‘You can and should explain to me’ Spanish

But, as they note, the same effect can be achieved by having multiple cate-
gories for function words because these kinds of semantic dependencies are
headed by them. The Turkish facts lead to the same conclusion: it is the rela-
tive pronoun that seems to engender such kinds of constituencies.

(5) a. Ben-im uyu-ma-dığı-nı [savun-duğum] ve [ispat et-tiğim] şoför
I-1ssleep-NEG-COMP-ACC defend-REL.1s and proof do-REL.1s driver
‘The driver who I claimed and proved that s/he did not sleep.’

b. *Ben-im uyu-ma-dığı-nı [savun-duğum] ve [ikna ol-duğum] şoför
persuade be-REL.1s

c. savun -duğ-um

S\NPagr\S′acc (NP/NP)\NP’\(S\NP\NP)
O

(NP/NP)\NP’\(S′acc\NP)

The crucial step that distinguishes (5a–b) is shown in (5c). It is the backward
variety of (3). The verb ikna ‘persuade’ requires a dative-marked nominal-
ized clause therefore it cannot yield a like-category with savunduğum, which
needs an accusative-marked complement clause. This information is trans-
parently projected by O.

(6) Y\W : g X\(Y\Z) : f → X\(W\Z) : λh. f (λx.g(hx)) (2O)

Example (5c) might appear to suggest that the derivation can be lexicalized
because a phonological word is syntactically derived, but the coordination
data such as (5b) and (7) show that what takes place is indeed syntax:

(7) Ben-im dava-sı-nı [bil-ip savun]-duğum adam
I-1s law suit-POSS.3s-ACC know-CONV defend-REL.1s man
‘The man whose lawsuit I knew and which I defended.’

The extra categories which allow us to lexicalize theO semantics in these
examples are not well motivated in English or Turkish. Take for exam-
ple the category S/(VP/NP)/(S/NP) for what, which Hoyt and Baldridge
(2008) rightfully consider doubtful, in addition to its well-motivated category
S/(S/NP). The last category is empirically sound, as shown in (8a–b), but the
extra category is not always sound (cf. 8c–d). Thus attempts to keep such data
under the BTS syntax by lexicalizing theO are not very convincing.

116 A BTSO system

(8) a. What did John hit?

S/(S/NP) S/NP
app

S
b. What you can and what you must not do

S/(S/NP) S/VP VP/NP
O

S/(VP/NP)
c. What did John hit?

S/(VP/NP)/(S/NP) S/NP
app

?? S/(VP/NP)
d. What you can and what you must not do

S/(VP/NP)/(S/NP) S/NP VP/NP
app

S/(VP/NP)

We know that O does not satisfy Szabolcsi’s formal criterion for free opera-
tion in a BTS system, because O = C(B2)B, and C = B(T(BBT))(BBT).
We also know that addingO to syntax would not change the automata-
theoretic results because of the possible formulation of O by B and T as
above; Vijay-Shanker and Weir’s (1994) argument for linear-indexed behav-
ior of CCG makes crucial use of these combinators, and only these combina-
tors.

In summary, lexicalizing theO because of these concerns poses an empir-
ical problem to a CCG lexicon, and ignoring the O-constituents would mean
a loss of empirical coverage in syntax.

The binaryO is not redundant in a system of binary B, binary S and the
finite powers of B. Let us look at the formulation of Owithout C to see this
result. O = (B(T(BBT))(BBT))(B2)B. Although binary B is at work in
this definition, it also needs unary T, unary B and unary B2, to yield the O-
semantics for adjacent substrings ω1 and ω2. Thus the O-constituents need
the binary O because some of these combinators are not freely operating.

The BTSO system which emerges from these considerations is listed in
Table 2. I suggest the name orifice for O to symbolize its ‘leaking lambda’
inside the dependencies. All possible directional-modal alternatives of com-
binators are listed for completeness. Only small powers are presented to save
space. Since any lexicon is bounded by a maximum number of arguments,
say n, we can take the required power to be m-1 where m is the maximum of
such n among possible languages, which is by definition some number, rather
than a variable. Steedman (2000b) suggests n=4 for English.

A BTSO system 117

Table 2. The syntacticized BTSO system.

Application X/�Y Y → X >

Y X\�Y → X <

Composition X/�Y Y/�Z → X/�Z >B

Y\�Z X\�Y → X\�Z <B

X/×Y Y\×Z → X\×Z >B×

Y/×Z X\×Y → X/×Z <B×

X/�Y (Y/�Z)|W → (X/�Z)|W >B2

(Y\�Z)|W X\�Y → (X\�Z)|W <B2

X/×Y (Y\×Z)|W → (X\×Z)|W >B2
×

(Y/
×
Z)|W X\

×
Y → (X/

×
Z)|W <B2

×

Type Raising A → T/i(T\iA) >T

A → T\i(T/iA) <T

Substitution (X/�Y)/�Z Y/�Z → X/�Z >S

Y\�Z (X\�Y)\�Z → X\�Z <S

(X/×Y)\×Z Y\×Z → X\×Z >S×

Y/×Z (X\×Y)/×Z → X/×Z <S×

(X/�Y)|Z (Y/�W)|Z → (X/�W)|Z >S′′

(Y\�W)|Z (X\�Y)|Z → (X\�W)|Z <S′′

(X/×Y)|Z (Y\×W)|Z → (X\×W)|Z >S′′
×

(Y/×W)|Z (X\×Y)|Z → (X/×W)|Z <S′′
×

Orifice X/�(Y|Z) Y/�W → X/�(W|Z) >O

Y\�W X\�(Y|Z) → X\�(W|Z) <O

X/×(Y|Z) Y\×W → X\×(W|Z) >O×

Y/×W X\×(Y|Z) → X/×(W|Z) <O×

Legend: > forward
< backward
> Σ× forward crossing Σ
< Σ× backward crossing Σ
A argument types of

class of values T
T value types of

class of arguments A

Modalities:

·

� ×

�

118 A BTSO system

It is a prediction of CCG that all these rules can be potential mergers
in some language. They are not different in kind because they arise from
currying and the adjacency of combinators, but they all manifest a different
kind of syntacticized semantic dependency, including directionality. Thus the
explanation offered by CCG is that syntax can be a reflex-like process be-
cause nothing needs to be remembered in the construction of constituency or
interpretation—i.e. in parsing—when all the possible dependency projections
are factored into the universal rules. Thus every word and phrase projects its
syntax and semantics onto surface constituents, and they do not fall prey to
some grammar-external constraint when taking part in syntax.

We have seen the harmonic composition rules and some substitution rules
at work. Below I exemplify the crucial involvement of most of the remaining
possibilities listed in Table 2.67

(9) a. Den Hund den ich fütterte
the dog that I fed

German

>B×: [ich]S/(S\NP) [fütterte](S\NP)\NP
b. John noticed suddenly the man with the big black briefcase.

<B×: [noticed]VP/NP [suddenly]VP\VP
c. I offered, and may give, a flower to a policeman.

>B2: [may](S\NP)/VP [give](VP/PP)/NP
d. Adam dilenci-ye sadaka, kadın çocuğ-a mendil ver-di usul-ca.

man beggar-DAT alms woman child-DAT napkin gave gently
‘The man gently gave alms to the beggar, and the woman a napkin
to the child.’ Turkish
<B2: [verdi]S\NPnom\NPdat\NPacc [usulca](S\NPnom)|(S\NPnom)

e. Adam dilenci-ye sadaka, kadın çocuğ-a mendil usul-ca ver-di.
>B2

×: [usulca](S\NPnom)|(S\NPnom) [verdi]S\NPnom\NPdat\NPacc
f. <B2

×: [showed](S\NP)/NP/NP [gently](S\NP)\(S\NP)
g. Welke boeken heb je zonder te lezen weggezet?

which books have you without reading away-put
Dutch

>S×: [zonder te lezen](VP/VP)\NP [weggezet]VP\NP
h. He is the man I will persuade every friend of to vote for.

>S: [persuade every friend of](VP/VP)/NP [to vote for]VP/NP
i. Welche Artikel hast du abgelegt ohne zu lesen?

which article have you away-put without reading
German

<S: [abgelegt]VP\NP [ohne zu lesen](VP\VP)\NP

A BTSO system 119

j. What book did you lend without reading and send without under-
standing to Harry?
<S′′

×: [lend](VP/PP)/NP [without reading](VP\VP)/NP
k. Kitab-ı Ahmet’e dergi-yi Ayşe’ye oku-ma-dan ver-di-m

book-ACC A-DAT mag.-ACC A-ACC read-NEG-ABL give-PERF-1S
‘I gave without reading the book to Ahmet and the magazine to
Ayşe.’ Turkish
>S′′

×: [okumadan](VP/VP)\NPacc
[verdim](VP\NPdat)\NPacc

The reader can consult Steedman (1996b, 2000b, 2011), Steedman and
Baldridge (2011), Baldridge (2002), Hoffman (1995), Hoyt and Baldridge
(2008), Szabolcsi (1992), Jacobson (1990, 1999), Prevost (1995), Komagata
(1999), Trechsel (2000), Bozsahin (1998, 2002) and the references cited in
these works for a comprehensive list of syntactic constructions studied in
detail from this perspective, including, gapping, coordination, relativization,
cross-conjunct extraction, control, raising, passives, binding, scope, heavy
NP and dative shift, nesting and crossing dependencies, word order and
its variation, intonation structure, information structure and word structure.
Grammatical organizations that affect a subclass of lexicons en masse, such
as accusativity, ergativity and their interaction with subject-, agent- and topic-
prominence are upcoming work. McConville (2006), Steedman (2006) pro-
vide typological perspectives to CCG.

The discussion in this section gives us a semantically motivated formal
base, which we can take to be language invariant. It is the only resource that
can constrain a free closure of the lexicon in deriving surface strings, to give
us a landscape of possible languages. Possible lexical categories are limited
too, as we have seen in Chapter 6 and Chapter 7.

The choices adopted in the remainder of the book among the possible
CCG options are as follows. We will assume them in the subsequent chapters
where within-school differences are less important than different perspectives
on syntax-semantics.

(i) A freely generating binary BTS system, which makes no reference to
substantive categories.

(ii) No freely generating unary rule. Unary rules are lexical rules—after all
they do not combine, and they are part of radically lexicalized gram-
mars, hence by definition they must refer to substantive categories.

120 A BTSO system

(iii) A proposal to include the binaryO in the system, due to its effects on
constituency.

(iv) No wrap. Therefore, a strictly combinatory system arising from adja-
cency. Recall that C is not surface wrap; it is a combinator and it is
lexicalized.

(v) A linguistic representation of the predicate-argument dependency
structures, the PADS, as the key locus of deciding on the lexicalized
syntactic types. The constructive work of this choice will be more evi-
dent in the next chapter.

The book does not cover matters related to binding and quantifier
scope, therefore it can say nothing about LF as a level. Three main
proposals are discussed in some detail (Chapter 6). The analyses in the
next chapter makes no use of LF as another rule system, or appeal to a
system of constraints on binding.

(vi) No conditions on derivations. All conditions are generalizations and
constraints over the syntactic types in the lexicon.

(vii) Only the basic categories and the slash bear features of relevance to
syntax, i.e. morphosyntactic features. Thus only these features are visi-
ble to syntax. In effect, this is equivalent to saying that unification does
no linguistic work, except to simply match the categories in rule appli-
cation by term unification (see Pareschi and Steedman 1987 for some
discussion). This is in accordance with the agenda of seeing the limits
of order doing all the work in syntax and semantics.

Chapter 9
The semantic radar

A syntactocentric view of the landscape of syntactic constructions suggest
that they fall into classes because their syntactic differences are empirically
discernible. Bounded constructions such as passive, reflexive and control are
clause-bounded, whereas constructions such as relativization and topicaliza-
tion are not (and why the clause?). CCG’s syntacticization of the combinators
as the driving force of the computation of semantic dependencies might sug-
gest that it is likewise syntactocentric in their explanation.

This chapter attempts to show that this assumption would be wrong. The
reason has already been implicated in the radical lexicalization of Bach’s
rule-to-rule hypothesis, so that codetermination of syntactic types and seman-
tic types is the key to understanding why constructions manifest themselves
the way they do. From this perspective, (un)boundedness must be explained,
rather than assumed as some kind of syntactic taxonomy, sometimes with hy-
pergrammatical syntactic principles doing the explaining for their syntactic
distribution (e.g., subjacency, the a-over-a principle, different kinds of traces
and their governance, exceptions to syntactic projection of expletives, chains,
phases, differential linking between the argument structure and dependency
structure, etc.). From the perspective of order-caused combinatory syntax
and semantics, the explanation lies in the syntax-semantics interaction, and
for that we need to see how semantics can shape the syntactic types. The
same conclusion seems inescapable for understanding language acquisition
and “competence” in competence grammars.

This chapter surveys several domains that force us to bring semantics into
play in the explanations. Just how much we must readjust our semantic radar
in the grammar might sound like a grandma’s recipe for cooking: not too
much, not too little. I elaborate in the chapter in more detail. We cannot go
as far deep as concepts, and suggest that semantics completely determines
syntax, or that syntax could work with semantic types. Nor can we stay with
what little information the syntactic types can provide us in lieu of semantics,
and suggest that syntax completely determines semantics, or do semantics
with syntactic objects.

In all the cases we are going to cover, the semantics that must take part in
the process are the individual’s hypotheses about meanings, i.e. the predicate-

122 The semantic radar

argument structures and dependency structures which must arise from (or
feed into) grammars. The construal of these meanings, either by individ-
ual experience or by social construction as suggested by Halliday (1978),
is the real thing, the experience itself, not a hypothesis. The manifestation of
PADS objects in the hypotheses, such as the (e,e) type for pronouns, or (e, t),
((e, t), t), compliment the picture by pinning down their model-theoretic in-
terpretation, but the crucial involvement of the lexical predicate-argument
structures will be the decisive factor for syntactic types.

1. Boundedness and unboundedness

There seems to be two ways that lexicalized predicate-argument structures
(e.g. verbs) can manifest themselves in syntax, assuming that we are confin-
ing ourselves to participant-taking elements, i.e. words with a thematic struc-
ture: (i) heed a local argument, or (ii) heed an argument of an argument. From
the view of order-instigated semantics, there seems to be no other option.

The first option leads to a theory of voice. Our purpose here is to un-
derstand why it is clause-bounded. Their differing possibilities, for example,
why the passive targets objects, the reflexive reduces arguments on them-
selves sparing the subject, and the reciprocal correlates them in the manner
of the reflexive, are of course part of the explanation. Steedman’s LF, Jacob-
son’s type-shifting rules, and Szabolcsi’s constitutive principles of grammar
mentioned in Chapter 6 are combinatory attempts at an explanation. Here I
will concentrate on (un)boundedness, and use the passive as the first example.

1.1. The passive

It is well-known that the passive cannot cross clause boundaries. (1b) attempts
to passivize the embedded predicate of (1a), where the promoted object is not
local. (1c) is an attempt to passivize the matrix predicate while promoting
the embedded object to subject. (1d) passivizes the matrix predicate where
the embedded subject is demoted to a by-phrase. This is not a passivization
of (1a).

(1) a. His closest friend claimed that Kafka loved chemistry.
b. *Chemistry claimed that was loved by Kafka.

Boundedness and unboundedness 123

c. *Chemistry was claimed by his closest friend that Kafka loved.
d. *That Kafka liked chemistry was claimed by Kafka.

A purported “long-distance passive” would be misleading, because it would
in fact be clause-bounded passivization followed by some other syntactic pro-
cess. In (2a–b), the process is topicalization by fronting from the embedded
clause in brackets. It is not the Turkish equivalent of (1b). It is grammat-
ical because, unlike English, Turkish is a pro-drop language and it allows
scrambling to the topic or the postmatrix-verb position from any level of em-
bedding. Example (2c) would be the true long-distance passive where the
matrix verb of (2a) is passivized but the matrix subject reduces the embedded
predicate.

(2) a. Wittgenstein [Kafka’nın kimya-yı sev-diğini]
W K-3s C-ACC like-COMP
bilmiyor-du.
not know-PERF
‘Wittgenstein did not know that Kafka liked chemistry.’ Turkish

b. Kimya-nın, Wittgenstein, [Kafka tarafından sev-il-diğini]
C-3s W K by-3s like-PASS-COMP

bilmiyor-du.
not know-PERF
‘Wittgenstein did not know that chemistry was loved by Kafka.’

c. *[Kimya-nın Wittgenstein tarafından sev-diğini]
C-3s W by-3s like-COMP

bil-in-miyor.
not know-PASS-PERF

We have yet to see examples such as (1b–d) and (2c) to work in any language.
Why is that? It is one thing to say that passive is clause-bounded, and build an
entire model of syntactic computation with that understanding of domain of
locality, and another to explain why it is so. I will sketch an analysis to exem-
plify the order-induced view of the syntax and semantics of the construction.

The simplest description of a morphologically-marked passive is that a
syntactically and semantically transitive verb becomes syntactically intransi-
tive, where the arity reduction causes the participant-type object to show the
morphological signs of a subject (Payne 1997). This will do for our purposes,
which is not to give a full account of the passive but to explain its clause-
boundedness.

124 The semantic radar

Passive is not a universal phenomenon. Washo lacks a passive; see Ja-
cobsen (1979). When attested, it is always lexically headed by a bundle of
features which we can call the passive morpheme. Consequently, no one
expects a universal passivizer anymore (say a transformation; cf. Chomsky
1957, Bresnan 1978, Bach 1980). This leaves lexical categories to do the ex-
plaining for clause-boundedness across languages.

Since passive is voice (it needs participants), it operates on verbal cate-
gories in any language, not just on predicational categories. We need some-
thing of the type S$|NP as a domain, rather than NP$ or S$. The notation uses
the dollar convention of Steedman.

The category schema of the passive, S$|NP, can be verified in languages
where nonverbal predication is possible, including finite (tensed) matrix
clauses. Voice is not possible in such cases (hasta can be NP/NP but not
S\NP):

(3) a. Annem hasta. Turkish
mother.POSS.1s ill
‘My mother is ill.’

b. *Annem hasta-n-dı.
ill-PASS-PERF

for ‘My mother has been taken ill.’

It involves an arity reduction of one argument, where the result type must have
at least one argument left to show subject properties, because every tensed
clause must be fully interpretable. We can revise our domain to involve two
or more participants, i.e. S|NP$i|NP, and range one less, i.e. S|NP$i, where
the common index on the dollar sign means the same member of the lexical
generalization is assumed.

For simplicity I am assuming that the type NP can be made a participant-
type phrase in a language. The important distinction we use here between the
arguments, the participants and the properties does not necessarily need ex-
tra degrees of freedom in a type-dependent radically lexicalized theory as it
does in for example Construction Grammar. Participance can be achieved in
a type-dependent grammar by type-raising all the NP arguments that are onto
S. It suffices for our purposes to note that NP/NP would not be a participant-
type but NP can be when it is type-raised. For example, λx.man′x denotes a
property; the variable x does not have a syntactic correspondent. λx.sleep′x,
however, denotes a predicate because on the syntactic side it corresponds to
an S\NP, therefore its x is a participant. When we type-raise an a′ to λP.Pa′

Boundedness and unboundedness 125

we can see the narrowing of roles by the lexical syntax-semantics correspon-
dence: if P corresponds to a syntactic argument-taking object such as a verb
with S|NP$ type for some ‘|’, then a′ is a participant. If not, then it can be
something else, perhaps a property. (In other words, participance and argu-
menthood arise from lexical distinctions rather than some primitives.) One
way to impose the participant versus property constraint in a computationally
conservative way is to say that NP/NP is not an argument type that is suitable
for type-raising.

We can begin to radically lexicalize the skeletal category of the passive,
(S|NP$i)|(S|NP$i|NP), to encode that subject and object are the participatory
roles involved. (We cannot assume from this category that it is always the out-
ermost ‘|NP’ of the domain which is the object. In Welsh, a VSO language,
that argument is the subject.) Following Steedman and Baldridge (2011), we
get the category for the passive morpheme -en in English. I will assume coin-
dexed slashes for the present discussion without notational clutter.

(4) pass′: -en := (Sen\NP$)\�((S\NP)$/NP) : λPλxn · · ·λx2.Pxn · · ·x2one′

where xn · · ·x2one′ is pointwise match of arity in (S\NP)$/NP.

The PADS Pxn · · ·x2one′ fully characterizes the active verb’s argument struc-
ture with the terms xn, . . . ,x2,one′. P can be λxλy.adore′xy, but not for ex-
ample λy.adore′kafka′y. This follows from the fact that -en applies to lexical
items only (the ‘\�’ constraint, equivalently, LEX). Examples of applying -en
are:

(5) a. written := Sen\NP : λx.write′xone′

b. given := (Sen\NP)/NP : λxλy.give′yxone′

where one′ is a nonpro-term, symbolizing syntactic but not semantic arity
reduction. Because of type correspondence in the syntax-semantics pairing,
one′ can only correspond to the least oblique (maximally LF-commanding)
argument of P, because it applies last.

This PADS and the LEX constraint are not idiosyncrasies of languages
like English and Turkish, where the passive morphologically attaches to the
verb. It is not a question of morphology but grammar. A periphrastic passive
would have a LEX constraint too, to have access to the thematic structure of
the passivized predicate. (We shall see in §4 that there are limited other ways
to conspire for the lexical constraint to ensure access to relevant parts of the
thematic structure, namely the so-called external argument such as in Jaeggli
1986.)

126 The semantic radar

Consider the Welsh cael passive as a case in point. For brevity, and in
relevance to one,′ I will only consider the short passive, where the by-phrase
is not present.

(6) a. Cafodd Wyn ei rybuddio.
Got.3s Wyn his warning
‘Wyn was warned.’ Welsh; Awbery (1976: 210)

I repeat Awbery’s description of the passive, which I used earlier to sug-
gest that a pronoun might be required by syntax: “The passive sentence has
a sentence-initial inflected form of cael (get) of the same tense and aspect as
the verb of the active. This is followed by a noun phrase identical to the object
of the active. Then comes a pronoun of the same person, number and gender
(if it is 3sg) as this noun phrase, and an uninflected form of the verb in the
active” Awbery (1976: 47). The pronoun and cael are obligatory; Awbery’s
data shows that what is dropped if the noun phrase after cael is a pronoun is
the subject NP, not the possessive pronoun required by the passive:

(7) Cawsom (ni) ein rhybuddio gan y ferch.
Got.1pl (we) our warning by the girl
‘We were warned by the girl.’ Awbery (1976: 48)

Cael takes part in constructions not involving the passive, for exampleCafodd
Emyr lyfr (Got Emyr a book). Awbery assumes that this is the same cael,
which I will follow.68

(8) Cafodd Emyr lyfr
got.3s E a book

Sen/NP/NP3s NP NP
>

Sen/NP
>

Sen
It suggests that the possessive pronoun and cael conspire for a passive read-
ing (9).

(9) Cafodd Wyn ein rhybuddio
got.3s W his warning

Sen/NP/NP3s NP S\(Sen/NP)/�(S/NP/NP3s) S/NP/NP
λxλy.get′yx w′ : λPλQ.(Pone′)(Qone′) λxλy.warn′yx

> >

Sen/NP S\(Sen/NP)
: λy.get′yw′ : λQλy.warn′yone′(Qone′)

<

S : warn′(get′one′w′)one′

Boundedness and unboundedness 127

Notice that, for Welsh, the argument order in the lexical specification of
P for ‘ein’ is VSO: λxλy.warn′yx. Note also the +LEX constraint on the
syntactic type of P although it is not morphologically attached.69

From the restriction that the passive applies to lexical verbs, because it
requires access to participants therefore to thematic structure, it follows that
the substitution environment which one′ faces is always of the form (10a)
for a passivizable predicate pred,′ not (10b), which would be the semantic
reflex of (1b–d), because e.g. (10b) would not be an arity reduction of pred′

in P but of some xi. Notice the same (10a) structure of P for English, after
-en seing the thematic structure and doing all but one last reduction, repeated
here as (10c).

(10) a. (λx1.pred
′xn · · ·x2x1)︸ ︷︷ ︸
P

one′

b. λx1.pred′xn · · ·(xione′) · · ·x1
c. pass′(-en):=(Sen\NP$)\�((S\NP)$/NP) : λPλxn · ·λx2.Pxn · ·x2one′

One′ as a PADS object could not substitute inside the xn, . . .x2 or x1, even if
pred′ were a complement-taking verb such as claim, where the complement
clause has its own lambda abstractions, for example λxλy.love′xy in (1).

That is why the passive is bounded. The thematic structure of an argu-
ment is opaque to a predicate. Inner lambdas are opaque to claim or any
complement-taking predicate, therefore nonsubstitutable. This result trans-
lates directly to the syntactic types involved.70 The construction arises from
the interaction of its constraint with the one-at-a-time substitution in syntax
and semantics. This property is not a fortunate convenience of lambda calcu-
lus; any syntax-semantics connection based on order alone ought to negotiate
a similar correspondence.71

The universal semantics of the passive (that it needs predications of partic-
ipatory sort, e.g. verbs) explains why it is clause-bounded: the types of NPs
involved must be functions from participatory types onto S, i.e. type-raised
NPs, to be able to distinguish participatory vs. nonparticipatory events. The
Turkish distinction S\NP versus NP/NP arises from this aspect (3), where
the type NP/NP is not type-raised.

Therefore, the syntactic boundedness of the passive follows from its se-
mantic dependencies and their syntactic reflection: it applies to lexical verbs.
However, the LEX constraint involved in this model is a one-way implica-
tion. For example, the passive and the reflexive are bounded, and they both
arise from the LEX constraint (Steedman and Baldridge 2011). But bound-

128 The semantic radar

edness does not necessarily imply the LEX constraint. Take control, which is
bounded, as shown in (11a), but without the LEX constraint (11b).

(11) a. I can persuade Maryi to persuade the wine taster j to _ j/∗i try
whisky.

b. I want to (seriously challenge)−� (the LEX constraint).

Radical lexicalization predicts that the LEX constraint cannot be the whole
story about boundedness, because some limited degrees of freedom still exist
to conspire for boundedness, which are made available when semantics is
considered as part of the hypothesis space. Upcoming work attempts to work
out the typology of control from a radically lexicalist perspective.

1.2. The relative

Unbounded dependencies follow from similar semantic considerations. Con-
sider relativization, (12).

(12) The field which I can safely claim that Kafka could convince Wittgen-
stein that Russell might like

The kind of PADS that we see in such dependencies seems not to arise
from the predicate-argument structure of a predicate, but from the predicate-
argument structure of the arguments of a predicate. Naturally, we expect the
syntactic types to reflect the difference faithfully.

For example, in reflexivization and passivization, where, given a predi-
cate, say λxλy.pred′xy, they would reduce or equate x or y argument of the
predicate pred,′ hence they can be sensitive to its thematic roles. Unbounded
dependencies seem to leave it to the arguments x and y:

(13) a. Adam-ın oku-duğunu san-dığ-ım kitap Turkish
man-3s read-COMP.3s think-REL-1s book
‘The book which I think the man read’

b. kitab-ı oku-duğunu san-dığ-ım adam
book-ACC read-COMP.3s think-REL-1s man
‘The man who I think read the book’

c. Sen-in kitab-ı oku-duğunu bil-diğini san-dığ-ım
You-2S book-ACC read-COMP.3S know-COMP.3S think-REL-1S

Boundedness and unboundedness 129

adam
man
‘The man who I thought you knew read the book’

The reason I switched to the verb-peripheral language Turkish is to show
that when word order constraints are not there, the semantics of these depen-
dencies seem to know no limits as far as the thematic structure of the embed-
ded verb is concerned. Note also that, to the verb san above, the argument
structure of oku is opaque.

The reason that examples such as (13b) can be ungrammatical in a verb-
medial language like English—see (14)—is not the unavailability of this se-
mantics because of the opaqueness of thematic roles, but the word order of
the language acting as a further constraint on this construction.

(14) *The philosopher who I can safely claim that Kafka could convince
Wittgenstein that would change the world

All verb-medial and verb-peripheral languages show this asymmetry, barring
of course idiosyncratic restrictions (e.g. Inuit only allows ergative NPs to be
extracted, although it is verb-peripheral).72

The path to unboundedness follows the arguments-of-the-arguments track,
limited only by external factors such as agreement in Latin relative pronouns,
and word order constraints. It is thus a conspiracy of semantics and syntax,
and all that we need to capture this aspect is a type-dependent conception of
a category. Unlike the semantics in (10) where one′ cannot be associated with
any xi because it needs access to the thematic roles of pred,′ these dependen-
cies must be blind to thematic roles, and the only way they can do this is to
associate it necessarily with an xi. We get the following semantics of relative
pronouns as a result of that, which seems cross-linguistically generalizable:

(15) relpro′ = λPλQ.(∃x)and′(Px)(Qx)

Notice that x is not a syntactic variable, and it is not an argument of a predi-
cate whose thematic structure is transparently visible; P and Q are opaque to
relpro.′

It follows then that the reason why relativization is an unbounded depen-
dency is because P and Q can have their own syntactic lambdas as well so
that x can be passed down to them indefinitely. That would in turn require the
argument-taking arguments of P, i.e. think-, say-, claim-, tell-like verbs. For
example, here is the unfolding of the PADS for the bracketed fragment of the
string the philosopher [who I claimed that Wittgenstein adored]:

130 The semantic radar

(16) who I claimed that Wittgenstein adored :=

λPλQ.(∃x)and′(Px)(Qx)(claim′(λ z.adore′zwitt′)i′) =β

λQ.(∃x)and′(claim′(λ z.adore′zwitt′)i′x)(Qx) =β

λQ.(∃x)and′(claim′(adore′xwitt′)i′)(Qx)

Radically lexicalizing the semantics of this kind spells the following cat-
egories for English. Assuming similarly semantically inspired categories for
claim-like verbs, the transparent syntacticization of the combinators simply
reflects these dependencies on syntax. The crucial steps are shown in (17c).

(17) a. that := (N\N)/(S|NP) : λPλQ.(∃x)and′(Px)(Qx)
b. whom := (N\N)/(S/NP) : λPλQ.(∃x)and′(Px)(Qx)
c. the philosopher

whom I claimed that Wittgenstein adored

(N\N)/(S/NP) S/(S\NP) (S\NP)/S′ S′/S S/(S\NP3s) (S\NP)/NP
>B

S/NP
>B

S′/NP
>B

(S\NP)/NP
>B

S/NP
>

(N\N)

It would be inconsistent to say that claim is capable of doing (16) above
and has the type (S\NP)/NP, rather than (S\NP)/S′. The lambda argument
of a ‘/NP’ would not be a syntactic lambda (it might be a property, such as
λx.man′x, with a semantic lambda), whereas the semantic counterpart of an S′

would be expected to have thematic structure. This is captured in the syntac-
ticized Bwithout extra assumption; it is not possible to get the Bclaim′adore′

effect of the third line of (17c) syntactically from (S\NP)/NP and S′/NP; we
need (S\NP)/S′ and S′/NP.

It is important to reiterate the universal claim of the type-dependent rad-
ical lexicalization about the syntactic processes. It does not claim that the
passive is universally bounded and the relative is universally unbounded. It
suggests that these behaviors always arise from the transparent projection
of rule-to-rule assumptions of a language in its lexicon. Any behavior that
seems universal is a manifestation of the self-organizing constraint that a nat-
ural grammar would have limited degrees of freedom if it is combinatory,
type-dependent and radically lexicalized.

Boundedness and unboundedness 131

If all languages do something about voice, it is because it seems to arise
from the need to have lexical access to thematic structure, which we showed
as the LEX constraint. If a class of lexical items specify lexical access to
thematic structure, then by definition the thematic structure’s opaque parts are
not relevant to them, which might give rise to bounded behavior. If a class of
predicates allow complements, e.g. say-that, think-that, etc. then unbounded
behavior is possible but not necessary.

This way of thinking predicts that when a phrase is only apparently a
complement but not a syntactic clause, we cannot expect unbounded behav-
ior. Such morphological ambiguity might arise in morphologically rich lan-
guages. Consider (18a), which morphologically seems to include a subordi-
nate clause (18b has the same phonology for the subordinate verb but different
semantics; I disambiguated the examples in morphological glosses). As the
semantics of relativization from such clauses show in (18c-d) respectively,
the first one does not arise from complement semantics; house cannot be an
argument of the embedded show in (18c), precisely because it is not a sub-
ordinate clause but a headless relative, i.e. an NP with no thematic structure
(equivalently: it has no lexically-specified syntactic lambda).73

(18) a. Ahmet Ayşe’nin ev-i göster-diğ-i-ni vur-muş.
A A-3s house-ACC show-REL.3s-ACC shot
‘Ahmet shot the one to whom Ayşe showed the house.’

b. Ahmet Ayşe’nin ev-i göster-diğ-i-ni bil-iyor.
Ahmet Ayse-3s house-ACC show-COMP.3s-ACC knows
‘Ahmet knows that Ayşe showed the house.’

c. Ahmet’in Ayşe’nin göster-diğ-i-ni vur-duğ-u ev
Ahmet-3s Ayse-3s show-REL.3s-ACC shot-REL.3s house
‘The house at which Ahmet shot the one whom Ayşe showed’

d. Ahmet’in Ayşe’nin göster-diğ-i-ni bil-diğ-i ev
AHmet-3s Ayse-3s show-COMP.3s-ACC know-REL.3s house
‘The house which Ahmet knows Ayşe showed’

In summary, if we get the semantics of a construction right, which is to
decide whether the thematic structure (local lambdas) or the opaque structure
(inner lambdas) is responsible for its dependency, and typologize the syntac-
tic aspects of the words accordingly, as PCTT and the rule-to-rule hypothesis
suggest,74 then we get the facts of boundedness and unboundedness in syntax
as the corollaries of a purely adjacency-based system.

132 The semantic radar

Only additional constraints on lexicalized syntactic types can stop the se-
mantics of the construction from manifesting itself in a language, such as the
word order of English eliminating (14), causing the that-t effect, Inuit’s erga-
tive NP ban on relativization, or the Latin relative pronoun’s strictness about
the morphological case of the extracted element.

Syntactocentric proposals such as subjacency, successive cyclicity (of GB)
and slash passing (of GPSG) can be thought of as matters to help us pin down
the syntactic side of (un)boundedness, but the phenomena and the differences
between them do not need extra mechanisms for explanation other than a
type-dependent conception of syntactic category based on adjacency, where
the semantic side uses lambdas as a way of constructing associations with
thematic roles.

2. Recursive thoughts and recursive expressions

Let us have a look at the appeal to extra mechanisms in grammars for the
purpose of understanding other aspects of (un)bounded behavior.75

Daniel Everett (2005, 2009) has argued that the Amazon language Pirahã
stands as a striking counterexample of not having recursion in its grammar be-
cause, among other things, it lacks embedding of phrases. This and other gaps
in Pirahã grammar and lexicon he attributes to the speakers’ cultural choice
of insisting on talking about the immediate experiences of interlocutors only.
This property, according to Everett, weakens Chomsky’s recent claims that
syntactic recursion is a necessary human trait distinguishing the language
faculty (see Hauser, Chomsky and Fitch 2002).

The key concept in this argument appears to be syntactic embedding.
Clearly, Everett could not be claiming that the Pirahã could not entertain re-
cursive semantics as part of their thoughts, such as the semantics of I like
you, I think I like you, I think you think I like you, You think I think you think I
like you, etc., which we might call the immediate-think language of thought,
because these can in principle be part of the immediate experience in his ac-
count.

A further test for this conclusion can be constructed. Bring for example
an English-speaking 10-year-old, who might produce the sentences above,
into an exclusively Pirahã-speaking culture. By Everett’s account and that of
syntactocentrism, which both decide on recursion by the evidence of syntac-
tic recursion, the recursivity of the underlying thoughts in these expressions

Recursive thoughts and recursive expressions 133

is indisputable. In the course of time the child might drop the English-style
embedding syntax, and adopt the Pirahã style—assuming Pirahã syntax is in-
deed nonembedding as Everett claims, see the criticisms by Nevins, Pesetsky
and Rodrigues (2009), Pullum and Scholz (2009). This would not change the
conclusion that the child had recursive thoughts to begin with, as the syntactic
criteria had been observed in the child before.

A reciprocal experiment on hapless children would suggest the same con-
clusion. Take a Pirahã child to England. Just because a Pirahã born-and-bred
child could utter syntactically recursive expressions after enough exposure to
English in an exclusively English-speaking community does not necessarily
mean the child has learned to think recursively in the new community.

The uniquely human trait of recursion that Chomsky appears to refer to is
syntactic recursion, attributed to narrow syntax in Hauser, Chomsky and Fitch
(2002). The thought experiment provided above shows that no one would
doubt the existence of recursive semantics for all humans. We can take it as
common ground and look at its consequences.

What exactly is semantic recursion? Surely the immediate-think language
concocted above does not requireYthink,′ which would require both semantic
and syntactic recursion. Recall the formulation of Y using S and K in fn. 35,
i.e. without syntactic recursion. The K is the crucial element in that defini-
tion for the present discussion. As Craig proved in Curry and Feys (1958),
K cannot be defined by the other combinators discussed so far. Thus we are
either left with the syntacticY to getY effects, or face the empirically fatal
K in syntax, to have syntactic recursion. No data seems to be forthcoming for
either theoretical move.

The knowledge of recursion of the kind the word think symbolizes simply
suggests that people who can entertain think′-like thoughts have a knowledge
of their language manifesting the understanding of λxλP.think′Px, where x
is the thinker and P is the thinkee, which can be another thing of the same
sort, i.e. something onto type t. This knowledge manifests itself in English as
(S\NP)/S′ : λPλx.think′Px. We do not need syntactic recursion for that even
if the category were (S\NP)/S. Syntactic recursion means a freely-operating
Y in syntax or its functional equivalent, not an argument which is of the same
kind as the result.76

Theories such as CCG serve to show that the potential infinity of human
languages, in the sense of having no upper bound on sentence length or on the
number of sentences, does not force us to assume a recursive syntax, as we
have so far managed to live withoutY andK. The language of a CCG gram-

134 The semantic radar

mar is the closure of the YKI-less syntax of Table 2 on the lexical assump-
tions that constitute the CCG grammar. We can assume this property because
of radical lexicalization. Nothing moves and nothing is added or deleted by
the universal rules. Thus Y or K cannot appear out of the blue to yield syn-
tactic recursion, unless they are part of the knowledge of some words, i.e.
embedded in a lexical category, for which we have seen no evidence so far.

Thus it is assumed from the beginning that a language can be potentially
infinite, not because of syntactic recursion but because of closure, that is,
from free operation in syntax. Can we entertain the possibility of finite hu-
man languages? Yes, by taking a finite closure of Table 2, up to a limit on
sentence size, the number of applications of rules or whatever, on a list of
lexical assumptions, and proving that the language in question never exceeds
that limit. That seems to be extensionally doable, but barring the potential in-
fringement of the future speakers’ rights to break that limit, it is intensionally
quite problematic.

If we only stick to the number of sentences that have been spoken in a
language up to a certain time, then any language is vast but finite. Call the
set E, for example English spoken up to September 4, 2009, and a lexicalized
grammar of E would be our theory of that English.

Would that theory be useful in understanding the language manifested in
E? Certainly. It can help us understand why, in the history of gathering the
E-expressions, we have never encountered for example a sentence in which
three arguments are extracted out of an embedded clause, or why arguments
are coindexed indefinitely rather than predicates. We can also wonder why
the finite-French set F which is locked and sealed at some time appears to
have the same properties.77

We can also wonder why we never see in E the intonational phrasing
(Three mathematicians in)(ten prefer corduroy), while we see an abundance
of (All mathematicians prefer) (and some philosophers detest)(corduroy).
This is the true nature of linguistic explanation, and it does not need the infin-
ity assumption to be worthy of interest. It certainly would not need syntactic
recursion either, for the presumed set E is finite.

Thus Hauser, Chomsky and Fitch’s (2002) claim that syntactic recur-
sion is indispensable, and Everett’s (2005) use of that result at face value—
negatively—to conclude that grammars are constrained by cultural aspects
and not by universal aspects, are unwarranted. Any grammar reflects a cul-
tural aspect anyway if two or more people happen to agree that, for them, for
example S\NP : λx.sleep′x provides the same linguistic recipe of express-

Recursive thoughts and recursive expressions 135

ing sleep′-like thoughts in their language. Radical lexicalization predicts that
these constraints have no place in universal syntax, and since there is no other
locus for formulating these constraints (e.g. phases, spell-outs, cycles, other
levels of grammar etc.), they must go in the lexicalized grammar of the lan-
guage. This makes the cultural aspect of grammar a truism.

We can identify the collective cause of constraints that shape the Pirahã
lexicalized grammar as the immediate experience, as Everett (2009) claims.
Such a unique source would be of great interest to grammarians, as well as
anthropologists and ethnolinguists. The prediction of CCG is that Pirahã sur-
face syntax is a closure of that identified grammar on Table 2, not a separate,
parallel or parametric mechanism.

In summary, it is not their purported infinity that makes human languages
worthy of studying scientifically. It is the limited nature of syntactically man-
ifesting the semantic dependencies. In other words, we seem to be facing a
Humean problem in linguistics, not necessarily a Cartesian, Lockeian, or von
Humboldtian problem. They have assumed tabula rasa or the other extreme,
and infinity as creativity par excellence. The truth seems to lie somewhere in
between.

From a cognitive science perspective, we also seem to be facing an old-
Platonic, late-Wittgensteinian and Husserlian problem. Knowledge of lan-
guage can be constructed, as Plato asserted for all kinds of knowledge. But
the construction is up for grabs, rather than drawn from a concept reposi-
tory of the mind. We need the practice of hypothesizing rightly or wrongly
about constructions, which requires the true Platonic skepticism toward such
constructions after knowledge is constructed.

False knowledge of words is knowledge if we think it is true by virtue
of constructability, and as long as we are prepared to think otherwise when
the states of affairs suggest otherwise, as Hume suggested. Recall that, due
to radical lexicalization and the combinatory notion of category, knowledge
of words is the knowledge of language. Any initial bias, such as that con-
ceived as “universal grammar”, serves to narrow down the search space for
the hypotheses about words. It seems to involve a Wittgensteinian play with
nature to sort out enumerable meanings from experience, i.e. from personal
history, and with kin to share subjective experiences, and with limited access
to theories of other minds, as Husserl claimed. Moreover, we cannot assume
that other species which are capable of handling some semantic dependencies
are not able to cope with these things among themselves and with nature. The
fact that they may not (be able to) communicate these to us is irrelevant.78

136 The semantic radar

If any computable semantic dependency were syntacticizable in language,
to epitomize human creativity in the infinite capacity of language, we would
already have a linguistic theory: the Turing machine, with a memory bounded
by some factor depending on the size of the string of words. Somebody has
to come forward with some data beyond near context-freeness to make this a
forced move, rather than some stylistic or idealistic choice.

A somewhat secondary but not unworthy objection to Everett’s (2009)
claim that Pirahã falsifies Chomsky’s conjecture (that recursion is essential)
follows from formal language theory. Hauser, Chomsky and Fitch’s (2002)
argument in general and Chomsky’s early writings in particular (when he had
considered the generative capacity of formal grammars a research agenda
for linguistics, for example Chomsky and Miller 1963) argue from a class
of languages. In a class which is considered adequate for natural languages,
there must be enough automata-theoretic power to do recursion and context-
free dependencies, whether they are attested in every member or not. That is
why we try to identify a class of languages with a characteristic automaton.
It does not follow that all languages in the same class are equally demanding,
so that we might seek recursion in all of them because we have seen it in one
(which Everett appears to think Chomsky argued for, which he did not). Take
{a2n} and {a2

n
}. Both are in the same class (of recursive languages).

This point is secondary because the main impetus of the objection is that
Hauser, Chomsky and Fitch’s (2002) argument about the necessity of syn-
tactic recursion in fact shows the necessity of semantic recursion, and the
arguments about recursive semantics are quite strong. So are the facts that
they may be expressed nonrecursively in syntax. Hixkaryana insists on the
nonembedding manifestation of recursive thoughts, such as ‘He went to Ka-
sawa, because has was wanting to talk with Kaywerye’ or ‘she was picking it
and eating it’ (Pullum and Scholz 2009).

The combinators, and through them adjacency, show that having a syntac-
tic type dominating a tree containing that type does not necessitate syntactic
recursion. We need evidence for a YK syntax or its functional equivalent. No
word or constituent seems to involve these combinators.

We must couch a combinatory system of this sort in a set of interfaces so
that we can accommodate experiential differences, given the limited nature
of syntacticized semantic dependencies.

Grammar, lexicon and the interfaces 137

Milena := S/(S\NP3s) : λ f . fm′

adore := (S\NP)/NP : λxλy.adore′xy

-ed := VPfin\�VP : λ f .past′ f

Milena adored := Sfin/NP : λx.past′(adore′xm′)

Lexicon

Phonological Form Normal Form
(PF) (NF)

Phonetic Form The model world

combinatory projection to
constituents of string := syn:sem

serialization of feature geometry
from string and syn

normalization from syn and sem

realization and intake

inference and valuation

Figure 6. An architecture for linguistic computation.

3. Grammar, lexicon and the interfaces

We need a mechanism to mediate sounds and meanings “out there”, the types
in the linguistic system, and multiple experiences. We must keep in mind
that the kinds of meanings in question here are hypotheses about what strings
mean. They are part of the individual’s grammar. They are not meanings of
the sort that makes The rose saw Kafka, colorless green ideas sleep furiously
orCaptain Haddock is the president of the Society of Sober Sailors to be unac-
ceptable or dubious. This point of clarification cannot be emphasized enough,
as Chomsky does quite frequently, for example Chomsky (2000: 199:fn.18)
as of lately.

The standardly assumed inverted-Y diagram of linguistic architecture in
Figure 6 serves as a good base for adjacency syntax, provided that we put
semantics in the frame and out. I use italics outside the box to symbolize that
what takes place inside is discretely represented, and what is outside is proba-
bly not, e.g. sound and light waves, time- and space-varying images, objects,
air pressure etc. The CCG architecture can be thought of as Figure 6 too. Any
item in the lexicon that has a syntactic type can take part in the combinatory
projection, which is handled by the invariant dependencies of Table 2 without
any intermediaries. That is to say that the grammar is radically lexicalized.79

138 The semantic radar

As implicated by the direct translation of the combinators’ semantic de-
pendencies to their syntacticized counterparts, every constituent gets a syn-
tactic type and an interpretation. The notion of constituency is likewise
syntacto-semantic: anything that can be combined by syntacticized combi-
nators is a constituent, including the traditional ones such as adored Kafka in
Milena adored Kafka, and also Milena adored. Its constituent behavior is at-
testable in syntax:Milena adored and I believe Wittgenstein might have liked
Kafka.

The constituent string which carries a syntactic type and an interpretation
relates to the phonological form and semantics, which form the linguistic
system’s gateway to articulatory and intensional-conceptual interfaces. The
normal form at the linguistic end of the interface is the PADS normalized on
all kinds of conversion, where the applicative structure of the semantics is
revealed. Both have perceptual correlates, speaking and for example world-
and object-tracking. It is clear that in Figure 6 the mediator of the PF-NF
relation is the syntactic type.

The need for PF and NF to communicate with the interfaces to and fro
arises from semantics as well. Steedman (2000a) has shown that some con-
stituencies in English are unaccounted for unless there is a way to commu-
nicate intonational features into syntactic types, and through them to PADS.
That is why normalization (and its reverse, abstraction) must heed both the
syntactic type and semantics. The model world imagined by the speaker-
hearer to which it is anchored outside the linguistic architecture needs no
such linguistic mechanisms. We can safely assume that the referents of the
PADS terms such as she are known to the speaker anyway in a purely ap-
plicative form. For example, the referent of she was Kafka in the utterance
Kafka wrote Milena many letters; she was adored, when uttered by me at
noon February 1, 2010. These terms are abstractions only to the linguistic
systems of the speaker and hearer, which means that the PADS is only one
step away from a model-theoretic interpretation.

It seems clear from Steedman’s (2000a) work that constituency and into-
national phrasing coincide in languages where tunes are at liberty to do syn-
tactic work. (This is not the case in tone languages.) The question is how to
decide which is the determinant, and whether it arises from grammar. These
issues relate to compositionality. First I note that maximal leftward bracketing
allowed by constituency is afforded by CCG. It is not complete left bracket-
ing because of the limited nature of the semantic dependencies, a constraint
which seems to be the source of constituency in natural languages.

Grammar, lexicon and the interfaces 139

(19) a. I know that three mathematicians in ten prefer corduroy.

S/(S\NP) (S\NP)/S′
>B

S/S′

b. I know that three mathematicians in ten prefer corduroy.

S/S′ S′/Sfin
>B

S/Sfin
c. I know that three math. in ten prefer corduroy.

S/Sfin (S/(S\NP))/N N (N\N)/NP
>B2

(S/(S\NP))/N
??

? N
d. I know that three mathematicians in ten prefer corduroy.

(S/(S\NP))/N N (S\NP)/NP NP
>

S/(S\NP)
>B

S/NP
>

S

CCG cannot make a nonconstituent interpretable, in semantics or in informa-
tion structure, thus it makes the narrow claim that constituency is the deter-
minant.

The claim is empirically falsifiable. All legal bracketings are attestable.
Take the kind of constituency exemplified in (19c). The prefix up to and in-
cluding the word three can behave as a constituent: I know that every and you
think that some geometers like Euclid.80 The impossible bracketings are the
impossible constituents (parentheses show intonational phrasing): *(Three
mathematicians in)(ten prefers corduroy), as shown in the latter part of (19c).

Second I note Steedman’s (2000a) observation that, although tunes can
lay over different kinds of syntactic constituents, and in different orders, they
do the same thing to the phrases on which they are superimposed:

(20) a. Well, what about MANNY? Who married HIM? Steedman
(2000b: 98)
Rheme︷ ︸︸ ︷

(ANNA)

Theme︷ ︸︸ ︷
(married MANNY.)

H* L L+H* LH%
b. Well, what about ANNA? Who did SHE marry?

140 The semantic radar

Theme︷ ︸︸ ︷
(ANNA married)

Rheme︷ ︸︸ ︷
(MANNY.)

L+H* LH% H* LL%

Pitch accents are designated by H (for high), L (for low) and their combi-
nations. The tone associated with the stressed syllable is designated by suf-
fixing a ‘*’ to the tone. Following the Pierrehumbert and Hirschberg (1990)
model of English intonation, we can assume a prosodic organization of inter-
mediate phrases (ι) which are grouped into intonational phrases (φ). Interme-
diate phrase boundaries are designated by L and H, which are distinguished
from the intonational phrase boundary tones L% and H%.

Their semantic contribution is crucial to interpretability. Pitch accents on
words are reflected in their syntactic types and in their PADS, such as those
for Anna and married above. This process can be assumed to take place
presyntactically as suggested by Steedman (2000a), by a rule of associating
autosegmental-metrical features with the acoustic correlates of the items in
the surface string (or with visual correlates in sign languages). It engenders
derivations such as those in Figure 7.

Without this communication with phonology, we cannot assume that H*L
is rheme-marking (ρ) and L+H* is theme-marking (θ) in English. This
knowledge has its right place in the PADS therefore it must be communicated
to it, which can only be done by the syntactic types; see the ‘*’ designations
in the derived PADS of strings above, which is used to represent some value
of important information. The fact that these are lexical choices (Turkish has
no L+H*, and L*H is the theme marker; see Özge and Bozsahin 2010) forces
us to assume that the compositional delivery of information structure ought
to rely on the lexicalized syntactic types, that is, on a lexicalized grammar.

The delivery of compositional meanings for such kind of constituents de-
pends on the lexical category of the (intermediate) boundary tones. Without
their semantics, i.e. theme- or rheme-marking as a side effect on the PADS,
the communication from phonology about e.g. stress cannot penetrate the lin-
guistic computation. Many grammatical constituents have been overlooked in
linguistics due to this neglect, such as the following:81

(21) (PENCERE-Yİ Ali), (kapı-yı) (MEHMET kır-dı.) Turkish
Window-ACC A door-ACC M break-PAST
‘Ali broke the window, and Mehmet, the door.’

The example had been rejected on grounds of its claimed oddity in “null
context”, but that is precisely the point of bringing in the external factors

Grammar, lexicon and the interfaces 141

Marcel PROVED L- H%
L+H*

>T

S/(S\NP) (Sθ\NPθ)/NPθ S$ι\S$η (S$φ\S$η)\(S$ι\S$η)
: λ p.pmarcel′ : λxλy.∗prove′ xy : λ f .η ′ f : λ fλg.[H](f g)

>B

Sθ/NPθ
: λx.∗prove′xmarcel′

<

S$φ\S$η

: λ f .[H](η ′ f)
<

Sφ/NPφ
: [H](θ ′(λx.∗prove′xmarcel′))

COMPLETENESS L- L%
H*

>T

Sρ\(Sρ/NPρ) S$ι\S$η (S$φ\S$η)\(S$ι\S$η)
λq.q ∗ cmpness′ : λ f .η ′ f : λ fλg.[S](f g)

<

S$φ\S$η

: λ f .[S](η ′ f)
<

Sφ\(Sφ/NPφ)
: [S](ρ ′(λ p.p ∗ cmpness′))

<
Sφ

: [S](ρ ′(λ p.p ∗ cmpness′))([H](θ ′(λx.∗prove′xmarcel′)))

Sφ : ∗prove′ ∗ cmpness′marcel′

CCG derivation of Marcel proved completeness,
in response toWhat did Marcel prove?

adapted from Steedman (2000a: exx.67-68)

Figure 7. CCG and information structure.

into the linguistic system in limited ways, to see the potential constituencies
demanded by compositional semantics. The example is perfectly gram-
matical, and the following contextualization proves it. Notice that it is not
nonlinguistic recovery from the context or emphatic stress. Note also that
the intonational phrases are delivered as semantically interpretable syntactic
constituents, which are solely responsible for bringing out their information
structure:

(22) a. Ben, kapı-yı ALİ kır-dı zanned-iyor-du-m.
I door-ACC A break-PAST think-IMPF-PAST-1s
‘I thought Ali broke the door.’

142 The semantic radar

b. Hayır, (PENCERE-Yİ L- Ali) H-
H* L*

No window-ACC A
>T >T

Sρ/ S$ι\S$ρ (Sθ\NPθ ,acc)/ S$ι\S$θ

(Sρ\NPρ ,acc) (Sθ\NPθ ,acc\NPθ ,nom)
< <

Sι/(Sι\NPι ,acc) (Sι\NPι ,acc)/(Sι\NPι ,acc\NPι ,nom)
>B

Sι/(Sι\NPι ,acc\NPι ,nom)

(kapı-yı) H- (MEHMET kır-dı.) L- L%
L* H*

door-ACC M break-PAST
< >B×

Sι/ Sι\NPι ,acc
(Sι\NPι ,acc)
CCG derivation of the constituents in (21):

‘No, Ali broke the window, and Mehmet, the door.’

The example also shows that constituent structure, dependency structure, in-
formation structure and functional structure can diverge in various ways, and
the simplest way to bring them together is to have them communicate through
the syntactic type, rather than devise separate mechanisms for each aspect.
The first coordinand above is a nontraditional constituent. The new or im-
portant information is spread over the string, and the functional roles of that
information are not aligned (window is the object and Mehmet is the sub-
ject). Such divergences might suggest multistratal syntax, constraint-ranking
in syntax, or “syntax in LF” where we are forced to do some semantic compu-
tation in LF using distributional syntactic categories (N, V, A, P) and semantic
features in them. No extra mechanism is needed if we have combinatory cat-
egories with limited semantic information, which are kept separately but in
tight relation to syntactic types.

4. Making CCG’s way through the Dutch impersonal passive

It is not surprising that the most striking empirical challenges to radical lex-
icalization arise from semantics, in particular from some semantic criterion
that can be associated with a class of syntactic objects in seemingly con-
flicting ways in constructions, such as in unergativity, unaccusativity, and
telicity. For example Dutch syntax is known to demand from verbs a par-
ticular choice of telicity in auxiliary selection, and another for passivizibility
(Zaenen 1993). The potential cooccurrence of these constructions makes the
problem even more challenging.

Making CCG’s way through the Dutch impersonal passive 143

It should be clear by now that radical lexicalization as a research program
does not mean an easy way out of such problems, such as assuming for Dutch
two lexical entries for the same verb, one used for auxiliary selection and the
other for passivization. Unless there are compelling empirical reasons to have
distinct entries for the verb, most importantly a difference in word meaning,
such formal clutter in the lexicon is unacceptable.

I will summarize the problem from the perspective of construction gram-
mar of Goldberg (1995), who follows Zaenen (1991). The impersonal passive
requires atelic verbs and verb phrases:

(23) a. *Er werd opgestegen.
‘There was taken off.’

Goldberg (1995: 15)

b. Er werd gelopen.
‘There was run.’

c. *?Er werd naar huis gelopen.
‘There was run home.’ Dutch

A class of adverbs apparently related to atelicity can improve judgments:

(24) a. Van Schiphol wordt er de hele dag opgestegen.
‘From Schiphol there is taking off the whole day.’

b. Er werd voordurend naar huis gelopen.
‘There was constantly run home.’ Goldberg (1995: 15)

This aspect seems to contrast with auxiliary selection, which does not
change depending on the adverb’s atelicity, and insists on the verb’s telicity
(atelic verbs select hebben rather than zijn ‘is’):

(25) a. Hij is opgestegen.
‘It has taken off.’

Goldberg (1995: 15)

b. Hij is dagelijks opgestegen.
‘It has taken off daily.’

Goldberg takes these facts to suggest that the semantics of the impersonal
passive cannot depend only on the semantics of the lexical items involved—
particularly verbs. The semantics of the construction itself must play the key
role. I will sketch a radically lexicalist scenario for the same construction to
show that this view may be too pessimistic about the combinatory knowledge
of words and what it can do. My goal is not to carry the analysis to a full
treatment but to show how radically lexicalist thinking, combined with a

144 The semantic radar

combinatory morphemic lexicon (Bozsahin 2002) and the assumption of
structure in words, can provide a solution to the fragment in (23–25).

I will assume for simplicity and ignoring other aspects that the impersonal
passive, the unergative verb and the unaccusative have the following lexical
syntactic types in Dutch (‘atel’ is an abbreviation for TELIC=-, and ‘tel’ for
TELIC=+).82

(26) -EN := (Si, j\NP)\�(Satel∈ i, Ak∈ j\NP)
lop := Satel ∈ i, Ak=atel\NP
opgesteg:= Stel ∈ i, Ak=tel\NP
naar := (S j,tel∈ i\NP)/(SAk∈ j\NP)/NP
dagelijks := (S j,atel∈ i\NP)/(SAk∈ j\NP)

Ak (for Aktionsart) is a complex feature including telicity. The feature
without a label, such as Stel, is VP telicity; it arises from the result type of
the Dutch VP, i.e. S\NP. The lexical choice of adverbs are also shown, where
their passing of the verb’s Aktionsart is projective (index j), and their syntac-
tic choice of VP telicity (index i) is more liberal. The indices are for ease of
exposition; we can think of them as two different features whose value space
is that of the feature TELIC. The two-pathway system is implicit in van Hout
(2000), where she also talks about the event structure of VPs, not just verbs,
and feature checking of telicity by strong case.

It is easy to see how (23a–b) follow from these assumptions. The dubious
nature of (23c) can be explained as well. The first derivation below is illicit,
and the second derivation goes through. (The projection of Ak is not shown
to save space; cf. (26). Note that, in (27a), VP telicity blocks the derivation,
not Ak.)

(27) a. Er werd naar huis lop -EN

(Stel,Ak\NP)/(SAk\NP) Satel\NP (Si\NP)\�(Satel∈ i\NP)
>

Stel,Ak=atel\NP

naar huis gelopen := *

b. Er werd naar huis lop -EN

(Stel,Ak\NP)/(SAk\NP) Satel\NP (Si\NP)\�(Satel∈ i\NP)
>

gelopen := Satel,Ak=atel\NP
>

Stel,Ak=atel\NP

Making CCG’s way through the Dutch impersonal passive 145

The difference is whether the passive gets phrasal or lexical scope. Notice
that we capture the basics of Goldberg’s and Zaenen’s insight, that the con-
struction itself brings something extra to the example, by letting the adverbial
decide the overall telicity rather than the verb, if there is an adverb. Otherwise
it is the verb. This seems consistent with the observation that these cases are
restricted to a certain class of adverbials, i.e. to certain heads of adverbs (naar
is telic, voordurend atelic, etc.)

The potential derivation for the speakers who marginally allow (23c) de-
pends on the lexical scope for the passive as shown in (27b). The possibility
of a phrasal scope however is a forced move in the current state of affairs
because of (24), where it is needed for telic verbs as shown in (28–29) (atelic
verbs continue to prefer the lexical scope for the passive). The Ak feature is
ignored here as it plays no critical role in the derivations.

(28) Van Schiphol wordt er
de hele dag opgesteg -EN

(Satel,Ak\NP)/(SAk\NP) Stel\NP (Si\NP)\�(Satel∈ i\NP)
>

Satel,Ak=tel\NP
<

Satel,Ak=tel\NP

Once again the adverb decides the telicity because of its syntactic type, which
can compose over other adverbs as in the case of (29). This is how the telicity
induced by naar can be shifted to atelicity by voordurend in CCG.

(29) Er werd voordurend naar huis lop -EN

(Satel\NP)/(S\NP) (Stel\NP)/(S\NP) Satel\NP (Si\NP)\�(Satel∈ i\NP)
>B

(Satel\NP)/(S\NP)
<

gelopen:=Satel\NP
>

Satel\NP

The determinant role of the adverbials by which they take any VP but
return telic or atelic VPs depending on their lexical semantics contrasts with
auxiliary selection, where the lexical type of the auxiliary selects the verb
class, e.g. telic for zijn and atelic for hebben. It is a domain restriction, e.g.
(Si\NP)$k/(SAk=tel∈ i\NP)$k for zijn, which also generalizes over arities.

Thus zijn and hebben look at the Aktionsart (Ak) projected from the verb,
whereas the impersonal passive looks at the telicity of the VP with or without
adverbial modification. Without an adverb, the telicity of the VP arises from
the telicity of the verb. With the adverb, the telicity of the VP is the telicity of

146 The semantic radar

the principal adverb. The Aktionsart of the verb is always projected onto the
VP as Ak, without the adverb’s intervention, and telicity is projected as a part
of it. All these properties are preserved in (30). van Hout (2000) corroborates
further for this complex state of affairs which is nevertheless radically lexi-
calizable, that projecting only the event structure of the verb is not enough.

(30) a. Hij
is opgesteg -EN

(S j\NP)$k/(SAk=tel∈ j\NP)$k Stel\NP (Si\NP)\�(Satel∈ i\NP)
>

SAk=tel ∈ j\NP
<

Satel ∈ i,Ak=tel ∈ j\NP
‘It has taken off.’

b. Hij
is dagelijks opgesteg -EN

(S j\NP)$k/(SAk=tel∈ j\NP)$k (Satel, j\NP)/(SAk∈ j\NP) Stel\NP (Si\NP)\�
> (Satel∈ i\NP)

Satel, Ak=tel∈ j\NP
<

Satel∈ i,Ak=tel∈ j\NP
>

Satel∈ i,Ak=tel∈ j\NP
‘It has taken off daily.’

Here is the case where the verb is atelic, and chooses the other auxiliary.
This is of course descriptively speaking because as the syntactic types show,
the auxiliary does the verb-kind selection in the analysis. Notice that the telic
adverbs cannot stop the auxiliary from seeing the verb’s Aktionsart (Ak) fea-
ture (31b). They yield ungrammaticality for independent reasons: the telicity
of the VP. Its interaction or lack of it with the verb’s Aktionsart is resolved
by radical lexicalization.

(31) a. John
heeft de hele nacht lop -EN

(S j\NP)$k/ (Satel,Ak\NP)/(SAk\NP) Satel\NP (Si\NP)\�(Satel∈ i\NP)
(SAk=atel∈ j\NP)$k <

gelopen :=Satel,Ak=atel\NP
>

Satel,Ak=atel\NP
>

Satel,Ak=atel\NP
‘John walked all night.’ van Hout (2000: 247)

b. *John

Making CCG’s way through the Dutch impersonal passive 147

heeft in een uur lop -EN

(S j\NP)$k/ (Stel,Ak\NP)/(SAk\NP) Satel\NP (Si\NP)\�(Satel∈ i\NP)
(SAk=atel∈ j\NP)$k

>B <

Stel,Ak=atel\NP/(Stel,Ak=atel\NP) gelopen :=Satel,Ak=atel\NP

‘*John walked in an hour.’

One loose end in this preliminary analysis is of course incorporating
Dutch scrambling into it to see its effects on the impersonal passive’s scope-
taking, which I leave to further study, as Goldberg, van Hout and Zaenen do.
With phrasal scope versus lexical scope distinctions, it seems possible to work
out a projection scenario where any VP material in CCG’s sense is composed
over as above for the passive, or lexically chosen by it. The phrasal option for
the passive is not a far-fetched theoretical option either; it is the only possi-
bility in Welsh, which has a periphrastic passive (§1), and no morphological
marking on the verb.

In summary, the auxiliary is the head of auxiliary selection, and the ad-
verbial is the head of VP telicity if present, otherwise it is the verb, and the
verb’s telicity always projects. All of these follow from the uniquely lexi-
calizable syntactic and semantic assumptions about the category of heads in
Dutch. Notice also that the assumptions of §1 about the passive, that it needs
to see the thematic structure of the verb, which translates on the syntactic side
to the LEX constraint on the slash as ‘\�’ or ‘/�’, is still adhered to in the cat-
egory of -EN (26) in an indirect way. Its syntactic type is not $-schematized,
therefore it must take a one-argument predicate, whose thematic role is there-
fore visible. This seems consistent with Jaeggli’s (1986) insight that passive
is an external argument absorber. That argument in our Dutch grammar frag-
ment is the syntactic subject of the unergative or unaccusative verb, due to
the S\NP domain for -EN. It must face a verb because of the ‘\�’ constraint,
which prevents it from undergoing composition with adjunct NPs and verbs
in serial verb constructions. Thus all syntactic work is done by the syntactic
types, rather than morphological types and syntactic types such as in Jaeggli
(1986).

We would expect the categories Stel and Satel to arise from lexical seman-
tics, as these are associated with words (naar, voordurend, gelopen, opgesten
etc.), and projected onto syntax from them. For telicity to do the syntactic
work, such features must be reflected on the syntactic types. Just how much
is projected (and how) is a lexical choice, as predicted by the principle of lex-

148 The semantic radar

ical head government (PLHC), such as the verb’s Aktionsart and the VP telic-
ity going their separate ways in Dutch because it is demanded by syntax.83 In
our case, feature percolation can happen if these conceptual-semantic features
were made part of the feature space of the semantic objects in a lexical PADS,
which in turn codetermines the syntactic type. We can presume that this pro-
cess might take place as qualia (Pustejovsky 1991) or Jackendoff (1997)-style
lexical dependency structures. The crucial aspect for the present concerns is
that this is quite a limited interface with conceptual structure, to ultimately
find its way to the syntactic type, and it can only happen at the lexical level
since there is no other level.

Steedman and Baldridge (2011) show that another Construction Grammar
favorite, the way construction (Goldberg 1995), is similarly radically lexical-
izable without any need for extra semantics or syntax over and above lexical
items. The construction is headed by the reflexive his way (or her way etc.):

(32) a. Harry slept his way through the final exam.
b. *Harry slept Barry’s/her/their way through the final exam.

They provide a lexical semantics and a syntactic type for it, which I repeat
below. The participants and their semantics are clear: a lexical verb, a spa-
tiotemporal property and a subject.

(33) -his way := ((S\NP3s)/PPloc)\�(S\NP3s)
: λPλQλy.cause′(iterate′(Py))(result′(Qy))

Radical lexicalization and CCG’s transparent projection give us narrow
opportunities to make predictions and to check our lexical assumptions about
cases where the constructions interact, because nothing can intervene or al-
ter the projection of features and types onto surface syntax, hence we do not
need to worry about the degrees of freedom that might be exploited in some
linking rule or pre- versus postspellout. For example, we can test the lexi-
calized reflexive constraint above (the ‘\�’ type; note the affix assumption
in ‘-his way’, which is the main input to the narrowed slash). Fronting and
node-raising seems unacceptable:

(34) a. *His way Harry slept through the final exam.
b. Harryi slept and Barry j worked his j/∗i way through the final exam.

Thus we do not need assumptions over and above the lexical items and con-
stitutive principles of the lexicon (PCTT, PLHG, etc.) to understand the con-
structions. Construction Grammar’s use of argument roles for constructions,

Computationalism and language acquisition 149

in addition to the participant roles of verbs to explain the phenomenon, forces
one more linking theory into a theory based on mapping principles. Most
linking theories leak, as the gradual transition of LFG, the most worked-out
linking theory, to optimality-theoretic syntax has shown.

5. Computationalism and language acquisition

Adjacency as the sole basis of all hypotheses about the grammar suggests
a computationalist scenario for language acquisition. Here also the kind of
semantics we need is quite shallow, and originally distinct from syntactic
representation.

First a point of clarification about the book’s perspective on cognitive sci-
ence. The term computationalism is yet another source of confusion in cogni-
tive science. There are computational models which are not computationalist,
and noncomputerized models which are computationalist. Computationalism
suggests that the aspects that make a problem computationally easy or diffi-
cult, such as nondeterminism, automata-theoretic resource management, and
algorithmic space and time complexity, are significant factors in for example
the child’s elimination of her hypothesis space in language acquisition. Ef-
ficiency of course cannot be the whole story in this endeavor; it will cause
tension with expressivity as the child grows, and this aspect has to be part of
a model too.

The point can be clarified with an example. Suppose that we are trying
to see the role of homonymy and synonymy in communication. We can start
with some cognitivist primitives, such as “avoid homonymy” or “disprefer
synonymy” to model efficient communication. Or we can show through a
computationalist model that in a group of communicating agents having too
many homonyms and synonyms cause late convergence to a common vocab-
ulary. Such experiments have been conducted by Smith (2003), De Beule,
De Vylder and Belpaeme (2006), Eryılmaz and Bozsahin (2012). The com-
plexity of the task and complexity of life seem to conspire to constrain the
behavior, rather than cognitivist assumptions.

There is another interpretation of computationalism in cognitive science
and psychology, where it is taken as the agenda of treating symbols as relating
to the nature of representations, that is, to their encoding in the mind (see
e.g. Bickhard 1996). Computationalism in the broader sense does not need
this assumption because computationalist models—whether implemented in

150 The semantic radar

a computer or not—are hypotheses about what connects representations to
solutions, not how they are internalized. This is true of connectionism as well,
a field which is unfairly left out of computationalism in wholesale by some
psychologists. Take for example Elman’s (1990) modeling of time, in which
a change of input encoding does reflect on the nature of the problem, yet
solutions live or die by computational properties. Thus there is no conflict in
adopting computationalism as a whole, in addition to interactionism Bickhard
has been advocating.84

Let us look at some alternatives to computationalism, for example a cog-
nitivist treatment of acquisition. It has been argued that nouns are acquired
first (Gentner 1982). That would be a conceptual bias toward names, objects
and their perception, hence their first appearance in child language.

Table 3. Tad’s first words (Gentner 1982) (AmE).

Age (m.)
11 dog 16 eye 19 down
12 duck 18 cow boo
13 daddy bath bottle

yuk hot up
mama cup hi
teh (teddy bear) truck spoon
car 19 kitty bye

14 dipe (diaper) pee pee bowl
toot toot (horn) happy uh oh
owl oops towel

15 keys juice apple
cheese TV teeth

For example, Table 3 shows Tad’s first words starting at 11 months. They
seem to be adult nouns, and whether they are child nouns strictly we have
so far no way of knowing. For example, keys might also mean open, or dipe,
clean. Keren’s first words appear to be similarly reinterpretable (Table 4).

20-22 month-old Mandarin children seem to show no noun-verb bias
(Tardif 1996). This result and a reinterpretation of the results above might
suggest a computationalist perspective, first proposed for machine learning
by Zettlemoyer and Collins (2005), and adopted for languge acquisition by
Steedman and Hockenmaier (2007), Çöltekin and Bozsahin (2007).

Computationalism and language acquisition 151

Table 4. Keren’s first words (Dromi 1987) (Hebrew, Israel).

Age Child’s conven.
m(d) word form
10(12) haw (?) a dog’s bark
11(16) ?aba (aba) Father
11(17) ?imaima (?)
11(18) ham (?) said while eating
12(3) mu (?) a cow’s moo
12(3) ?ia (?) a donkey’s bray
12(8) pil (pil) an elephant
12(11) buba (buba) a doll
12(13) pipi (pipi) urine
12(16) hita (?) going out for a walk
12(18) tiktak (?) sound of clock
12(19) cifcif (?) bird’s tweet
12(20) hupa (?) accom. making sudden

contact w/ground
12(23) dio (dio) giddi up
12(25) hine (hine) here
12(25) ?ein (?ein) all gone
12(25) na?al (na?al) a shoe
12(25) myau (?) a cat’s meow

If we take the problem of language acquisition as manifesting a continu-
ous problem space for words and phrases, and if we assume that the hidden
variable in the task is the syntactic category to be learned, whereas the ob-
servables are a phonological form and the model world, crucially not PADS
or a logical form, then we would expect the child to start off with some prior
probabilities on invariants of combination, and proceed as she manages to
combine rightly or wrongly what she hears as syntactic categories to pair
with predicate-argument structures.

For example, upon hearing eat your veggies, the child might think eat
means eat,′ veg,′ or even dog′ if there is a dog around when the sentence
was uttered. Limited possibilities of combination in CCG, and a conservative
understanding of tracking the world (e.g. Siskind 1995, 1996), will sieve most
of the wrong assumptions as the child experiences more episodes with eating,
dogs and vegetables, eliminating e.g. the hypotheses N: eat′ and S\NP: dog′.

152 The semantic radar

An algorithm is provided for this task by Steedman and Hockenmaier
(2007). My running example of dogs, eating and veggies is fashioned after
theirs. The setup is common to all CCG learners, which dates back to Gold’s
(1967) text model: start with an empty lexicon. For each experience, generate
some hypotheses that lead to its successful parse, and update the lexicon. Re-
peat with the new lexicon. In retrospect, the lexicon will have covered all the
strings the learner has experienced, where “something more” in the Humean
sense is also learned to cover things beyond a token of experience: the syn-
tactic type as the hypothesis.

It is crucial that what is learned is a syntactic type. In a way it symbol-
izes the transfer of experience-specific knowledge to reusable knowledge, or
perhaps impressions to ideas, to use a more familiar Hume terminology. For
example, we can conceive that the passive is learned by exposure, but once
learned, it applies to all argument-taking objects of the right sort because ac-
quiring the passive means obtaining a syntactic type for it, which is relevant
to verbs of similar type.

The working principle here is that the CCG learner collects personal his-
torical information about derivations of strings—i.e. rule and word use—in
the parse-to-learn paradigm, either by adjusting the model parameters (log-
linear models), or by updating its trust on categories (Bayesian models), in the
manner described by Zettlemoyer and Collins (2005), Steedman and Hock-
enmaier (2007), Çöltekin and Bozsahin (2007), Clark and Curran (2007).85

That is, its task is to estimate P(c|e), either by discriminative (log-linear)
models or generative models, where c is a syntactic type and e is the evidence
for it in the form of (PF, PADS) pairs, calculated for example by Bayes’s rule:

(35) P(c |e) =
P(c)P(e |c)

P(e)

The prior probability P(c) is selected by the learner’s history in what she per-
ceives or (rightly or wrongly) understands; it is her current lexicon’s syntactic
distribution. This is not only constrained by experience; universal constraints
filter out some impossible configurations as well.

The Bayesian model sketched so far is not incremental. To estimate the
conditional probability P(E:=e |C:=c), we need to find out which parses
using the current lexicon and the newly introduced hypotheses give us c, and
among them the probability P(E:=e). Some of the earlier experiences will be
related to c as well, hence the need to reparse them to get P(C:=c).

Computationalism and language acquisition 153

Even if we assume that each experience is unique, its subparts are most
likely not all unique (otherwise learning would be very hard if not impos-
sible), therefore subparts of e and several c’s must be considered for each
experience. For example, eat′veg′ might be a new experience when eat′ and
veg′ are not, such as encountering don’t eat all the cookies and I like veggies
before. Zettlemoyer and Collins (2005) use a limited category inventory in
lieu of universal grammar to constrain the possibilities of new categories for
the new experience, and Steedman and Hockenmaier (2007), Çöltekin and
Bozsahin (2007) rely on universal principles such as those in §5.2 and Chap-
ter 7.

We need an iterative method which parses the current experience only with
the help of the current lexicon—the grammar—and the new hypotheses. For
example, we can take a weight w to be the learner’s belief that her hypothe-
sis about a certain category is correct. The following oversimplified formula
from Çöltekin and Bozsahin (2007) is one example of hypothesis revision.
(Log-linear models such as that of Zettlemoyer and Collins 2007 use easily
discernible features of parse trees, e.g. number of lexical entries and number
of applications of a rule, which takes into account the current lexicon and rule
use.)

(36) w= w0(1+αβ (1−w0))

w0 is the probability (or weight) of the lexical hypothesis c before seeing the
input e. If the hypothesis is already in the lexicon, w0 is the weight of the hy-
pothesis in the current lexicon, otherwise an arbitrary initial value is assigned.
New hypotheses can be added although substrings of the current experience
have already been seen. For example, if the child thinks eat:= NP:veg′ and
veggies:=S\NP:eat′ somehow, and the new experience is no veggies, we can
produce no:=S/NP:no′ and veggies:=NP:eat,′ meaning ‘no eating’.

The constant α in (36) is the learning rate, which must be part of an ex-
perimenter’s toolbox. We can assume for the child that it improves with expe-
rience. The β in the formula is the learner’s new evidence that the category c
might help to understand the new experiences. It is calculated as the number
of parses of e in which hypothesis c is used, divided by the total number of
parses of the experience e.86 It gives new support for the category c provided
by e. The higher the number of parses that the hypothesis supports, the higher
the support value will be. If the hypothesis is used by all the possible parses
of the input, the value is 1. The value gets smaller due to the parses that do
not include the hypothesis. The final term in the formula, 1−w0, normalizes

154 The semantic radar

the result so that the new weight is in the range (0,1]. The final weight is
increased with a value directly proportional to the new trust on c, as shown
in (36).

This is inspired by Bayesian hypothesis revision but it is not strictly
Bayesian. Firstly, the implicit assumption is that there is no negative evi-
dence, as the probabilities do not decrease. One can see no increase in the
weight of a hypothesis as less belief in it, compared to its alternatives whose
weight increases. The problem can be alleviated if we can fit a distribution
for P(e) in (35), but this is rather difficult if not impossible.

Secondly, the model has no grounds to distinguish infrequent but correct
hypotheses from incorrect but frequent ones. In the first case, the belief in a
hypothesis would not increase much, and in the second case, it will continue
to increase, albeit slowly.

This weakness is required empirically, because the child is assumed to
operate in what Gold (1967) called the “text” model, where there is no de-
cider for any experience e whether a hypothesis about it is right or wrong. (A
rationalist model for example could take this as a sign that the functional cate-
gories are innate, because their overt manifestation is infrequent in early child
speech.) From an empiricist perspective, especially with the narrow under-
standing of computationalism adhered to in this work, incorrect but frequent
hypotheses (categories) are bonafide members of the lexicalized grammar of
the child, and infrequent but correct hypotheses need more time to materialize
in a parse-to-learn paradigm.

The computationalist twist in such models is that only contiguous sub-
strings (including the substrings of words discussed in Çöltekin and Bozsahin
2007) are allowed to bear types, therefore to carry a meaning, and short
strings are considered more feasible because the algorithms must consider
all such possible pairs, i.e. the powerset of possible PF-PADS mappings, so
that we can be sure the child in the end can potentially manage to bring the
correct pairing to the fore through experience. Such algorithms will show a
bias toward frequent, short or unambiguous strings because these aspects can
be shown to ease the task computationally. For example, the powerset con-
struction is exponential on the size of the set, which is the set of hypotheses.
Only small values are feasible in a learning model, and the contiguity as-
sumption is a simple way of reducing it from O(2n) to O(n2). I repeat Garey
and Johnson’s (1979) numbers for differences in growth rates of functions
as Table 5 (each unit operation is assumed to take one microsecond). Any n
greater than 5 can tell us how these reductions in problem size can play a role.

Computationalism and language acquisition 155

Table 5. Growth rates of some polynomial and exponential functions, from Garey
and Johnson (1979: Fig.1.2)

Time size n
complexity 10 20 30 40 50 60
function

n .00001 .00002 .00003 .00004 .00005 .00006
second second second second second second

n2 .0001 .0004 .0009 .0016 .0025 .0036
second second second second second second

n3 .001 .008 .027 .064 .125 .216
second second second second second second

n5 .1 3.2 24.3 1.7 5.2 13.0
second seconds seconds minutes minutes minutes

2n .001 1.0 17.9 12.7 35.7 366
second second minutes days years centuries

3n .059 58 6.5 3855 2×108 1.3×1013

second minutes years centuries centuries centuries

The computationalist model is falsifiable. The computationalist assump-
tions would be wrong if we can show that the length of the strings, their
ambiguity and their frequency do not play a key role. For example, a nouns-
first cognitivist theory can show one of the following to refute the computa-
tionalist assumptions: (a) some short verbs are not learned early even when
they are frequent and unambiguous, (b) some frequently-used long nouns can
be learned early, (c) infrequent but short nouns can be learned early, and (d)
some ambiguous but short nouns can be learned early. In all these cases, some
strong computationalist assumption would be at risk.

The computationalist view suggests that we take another look at the re-
sults. For example, for both Tad and Keren, long words seem to be rhythmic
repetitions, i.e. they engender no ambiguity as the string becomes longer.
Short nouns can be child verbs too.

Early acquisition of verbs seems possible (Brown 1998). Interestingly, the
verbs that Tzeltal children acquire early seem to be argument-specific there-
fore less ambiguous than opaque verbs. For example, eating tortillas, eating
beans and eating in general (as in a question) are different words in Tzeltal.

156 The semantic radar

Some early-acquired verbs such as those for go, make, come are not
argument-specific, but they are the most frequent verbs in the language.

Brown is not suggesting a verbs-first alternative to the nouns-first proposal
based on these findings. She shows that the amount of nouns and verbs pro-
duced from the early one-word stage and prevocabulary explosion are more
or less the same. This is what we would expect when verbs are specific and/or
frequent, and nouns and verbs are equally rich in morphology, as in Tzeltal.

Computationalist models are possible only if we start with the assump-
tion that the child has access to some semantics, not just to meanings out
there but to some hypothesis about what she thinks they mean, that is, an
access to a PADS.87 The environment and what she hears from it might be
related to that semantics because her attention is directed by adults when she
is spoken to. Evaluating the hypotheses of PF-PADS pairs is feasible if we as-
sume adjacency. With empty categories or with syntactic assumptions on the
child’s understanding (e.g. S, VP etc.) rather than semantic ones, the number
of hypotheses to consider would be prohibitive. One such proposal, which
seems only apparently congenial to computationalism, is Hawkins’s (1994)
processing-based account of establishing the basic word orders in languages.
In his model, as well as in Kayne’s (1994) where movement and empty cate-
gories are bound to come up for consideration at every step of processing, the
number of possibilities for a parser to consider in the parse-to-learn paradigm
is quite unconstrained.

6. Stumbling on to knowledge of words

The process described in the previous section gives us a recipe to devise ex-
plicit tokens of knowledge representation for the child’s potential hypotheses
about the words. Their statistical nature might raise doubts about whether
this way of thinking can live up to the task of explaining why one-word and
two-word stages of children, and the vocabulary explosion that follows soon
afterwards, more or less appear around the same time for most children. The
first thing to note about this doubt is that no-one claims children start tab-
ula rasa; the task-specific knowledge, namely the lexicalized syntactic type,
must have severe constraints on its distribution. This is the task of CCG as
a linguistic theory, in lieu of a biologically determined universal grammar in
generativism. Secondly, now that we can radically lexicalize all the rules of
any natural grammar, that is, we have only the knowledge of words to work

Stumbling on to knowledge of words 157

with in hypothesizing, we must show what the experience can do to the rules
in Shimon Edelman’s sense, and how. In such experiments we are reminded
of the opening words in his personal web site: “rationalists do it by the rules,
empiricists do it to the rules.” In a radically lexicalized combinatory grammar,
a word’s category is the grammar rule because it is an intensional recipe.

This section presents a thought experiment about how a fairly intuitive no-
tion of word as a grammatical-historical object can be read off from the lex-
icon. Radical lexicalization and the experiential-semantic understanding of
“standing on its own in a string” appear to be sufficient for this process. The
experiment is inspired by computational language learning in the manner of
Zettlemoyer and Collins (2005), Steedman and Hockenmaier (2007), which
are inspired by cross-situational learning of Siskind (1995, 1996) and CCG,
which led to similarly inspired computational models of learning string-
meaning correspondences (e.g. Villavicencio 2002, Bos et al. 2004, Steedman
2005a, Fazly, Alishahi and Stevenson 2010, Kwiatkowksi et al. 2010, 2011),
all of which go back in spirit to late-Wittgenstein (1942), Quine (1960) and
Gibson (1966).

The difference of the present experiment from these works is that they
presume the notion of word and suggest a model of how their meanings may
arise from use. I will try to suggest a thought experiment about how words
may arise in the first place. My starting point is to assume that children can
detect patterns in phonological strings. We can take these patterns to be child
morphemes, but we need not start with the morpheme. In a related study,
Çöltekin and Bozsahin (2007) showed that if we start with syllables (i.e. if
only syllables are assumed to be discernible by the child), and run a scenario
similar to Zettlemoyer and Collins (2005) on the Turkish fragment of the
CHILDES database (McWhinnie 2000), we get 71% of the emerging lexical
items (including bound forms) coincide with that of a model which starts with
morphemes, in 24,000 nouns, out of which 56% are inflected. Their syllable
model does not make assumptions about root/stemhood, hence we can ex-
pect more alignments if we incorporate some prosodic cues about uninflected
words, which comprise 44% of the database (Jusczyk, Hohne and Newsome
1999, Thiessen and Saffran 2003 suggest that these cues are at work at very
early stages). This is not a bad start to give rise to meanings of things smaller
than words.

Consider the word veggies. One criterion of Di Sciullo and Williams
(1987) for wordhood in the currently discussed sense is that words are more
generic than phrases. We have no reason to assume that at the first hearing

158 The semantic radar

of this word it would be generic to the child. Assume that the child has
gone through a Quinean series of hypothesis forming where many hypotheses
(most of which might be wrong) have been entertained, much like in Siskind
(1996).88

For example, we can assume that the experience (37) might produce the
correct hypotheses in (38a/a′), as well as those in (38b–c), which are the sit-
uations in which the string eat is not understood as the verb, but the overall
experience still spells some kind of predication, simply indicated here by the
overall result of S. (38d) is another potential set, in which eat’s category is
correct, but veggie and -s are off the mark. We can take (38) to be delivered
by a parsed-to-learn paradigm of acquisition.

(37) Eat veggies.

(38) a. eat:=S/NP:eat′ veggies:=NP:veg′

a′. eat:=S/NP:eat′ veggie:=NP:veg′ -s :=NP\NP:plu′

b. eat:=NP:eat′ veggies:=S\NP: λx.veg′x
c. eat:=NP:veg′ veggies:=S\NP: λx.eat′x
d. eat:=S/NP:eat′ veggie:=NP/NP:plu′ -s := NP:veg′

This experience cannot lead to the hypotheses in (39a–c) because no com-
binator in syntax can combine them to produce a rightly or wrongly inter-
pretable experience. The distribution of syntactic types S, NP/NP, S/NP etc.
are therefore most likely skewed.

(39) a. *eat:=NP:eat′ veggies:= S/NP: veg′

b. *eat:=S\NP:eat′ veggies:= NP: veg′

c. *eat:=S\NP:eat′ veggie:=NP:veg′ -s :=NP\NP:plu′

Note also that a predicate-argument structure is part of the child’s hypothesis
space; it is not the extensional world. For brevity I denoted it with primes.
We do not start with the assumption that the child knows veggies are veggies,
where the only unknown would be whether they are Ns or Vs in syntax. Both
are acquired.

Now consider a second experience, say (40).

(40) No veggies.

This will create more hypotheses about veggies. Let us also take into ac-
count the nonlinguistic surrounding in the manner of Siskind (1995, 1996),
and assume that there is a chocolate bar around when this sentence is uttered.
The child might think that veggies can mean negation (because of no), or that

Stumbling on to knowledge of words 159

it could mean chocolate, veggies, or eating (the last one comes from the pre-
vious experience). We must also allow for the possibility that she might think
“veggies” could mean the noun veggies, or that it could be a verb. Hence as-
suming veggies are veggies would be an oversimplification; both syntactic
options must be entertained even if we assume that she has got the string-
content correspondence right.

Even in this circumscribed world of two experiences only, the child is ex-
ponentially less likely to believe that veggies could mean negation, eating,
plural or chocolate, rather than veggies. The sum of 43 hypotheses is calcu-
lated as follows.89

(41) Experience 1 (Eat veggies)

eat :=S/NP:eat′ veggies :=S\NP:veg′ veggie :=NP :veg′ -s :=NP\NP:plu′

:veg′ :eat′ NP/NP:plu′ NP :veg′

NP :eat′ :plu′veg′ :veg′

:veg′ :plu′eat′

NP :veg′

:eat′

:plu′veg′

:plu′eat′

Experience 2 (No veggies; with chocolate)

no :=S/NP:no′ veggies :=S\NP:no′ veggie :=NP :no′ -s :=NP\NP:plu′

:veg′ :veg′ :veg′ NP :veg′

:choc′ :choc′ :choc′ :choc′

:eat′ NP/NP:plu′

:plu′veg′ :veg′

:plu′choc′ :choc′

:plu′no′

NP :veg′

:eat′

:no′

:choc′

:plu′veg′

:plu′choc′

:plu′no′

14
43 percent of the possibilities, out of a total of 43 chosen above, can re-

late the string veggies to veg′ as a noun or verb. In contrast, the likelihood of
no meaning veg′ is 1

43 , the plural 2
43 . If we keep a local statistic rather than

a global one, there would be a set of 36 hypotheses about the set of forms
{veggie, -s}, and 14

36 percent of it would relate them to veg.′ The total per-
centage of associations where the string veggies does not include veg′ is 22

36 .
That seems high, but it covers four meanings (plural, negation, eat and choco-
late) and four types, which are S\NP, NP, NP/NP and NP\NP. By Siskind’s
(1996) cross-situational inference, and by CCG’s fully lexicalized syntactic

160 The semantic radar

types, the likelihood of veggies covering one of these type-meaning corre-
spondences is severely less than the veggies := veg′ connection. I ignore here
how the plural can come to be associated with veg′ using these assumptions
in parsing. For example veggies can be parsed from veggie := NP/NP:plu′

and -s := NP:veg′, where both hypotheses are wrong but they yield the in-
tended interpretation veggies := NP:plu′veg′; see Steedman and Hockenmaier
(2007), Zettlemoyer and Collins (2005).

Let us add another experience, (42).

(42) Veggies gone.

Before this experience, 8
14 percent of the veggies := veg′ hypotheses con-

sidered this relation to be mediated by NP, 4
14 by S\NP, and 2

14 by NP/NP.
The new experience can bring in the hypotheses in (43) (for simplicity I as-
sume no other factors).

(43) veggies :=S/NP:veg′ gone :=S\NP:veg′ veggie :=NP :veg′ -s :=NP\NP:plu′

:gone′ :gone′ :no′ NP :veg′

:eat′ NP :veg′ NP/NP:veg′ S/NP :gone′

:no′ :gone′ :plu′ :veg′

:plu′veg′ :plu′

NP :veg′

:gone′

:eat′

:no′

:plu′gone′

This time we fortuitously help the child to discern the noun versus verb
hypotheses of veggies, but we make plu′ slightly more susceptible because it
has more opportunities for combination to the left and right. (To be sure, there
are more hypotheses in this three-scene experience, and some of the hypothe-
ses considered are not hypotheses in the parsimonious model of Siskind; my
purpose here is to construe a baseline case by making things bad enough for
the experiment.)

With the addition of seven more {veggies, veggie, -s} := veg′ hypotheses to
the previous 14, the child is 11

21 likely to believe the connection is mediated by
NP, 4

21 by S\NP,
3
21 by S/NP, and

3
21 by NP/NP, in just three scenes. We can

assume that a language model, in the sense the term is used in computational
linguistics, i.e. as a model to pick some product of probabilities in a parse-
to-learn paradigm, will favor the type with higher probability as the primary
representative of the word in grammar.

The NP hypothesis for the word veggies is the top contender after these
three experiences, with a total frequency of 27

55 , in which the correct relations,

Stumbling on to knowledge of words 161

{veggies, veggie} := { S\NP:veg′@ 2
55 , S\NP:eat′@ 2

55 , S\NP:no′@ 1
55 ,

S\NP:choc′@ 1
55 , S\NP:plu′veg′@ 2

55 , S\NP:plu′eat′@ 1
55 ,

S\NP:plu′no′@ 1
55 , S\NP:plu′choc′@ 1

55 ,

S/NP:veg′@ 2
55 , S/NP:gone′@ 2

55 , S/NP:eat′@ 1
55 ,

S/NP:no′@ 1
55 , S/NP:plu′@ 1

55 , S/NP:plu′veg′@ 1
55 ,

NP:veg′@ 9
55 , NP:eat′@ 3

55 , NP:plu′veg′@ 2
55 ,

NP:plu′eat′@ 1
55 , NP:plu′gone′@ 1

55 NP:plu′choc′@ 1
55 ,

NP:plu′no′@ 1
55 , NP:no′@ 4

55 , NP:choc′@ 3
55 ,

NP:gone′@ 1
55

NP\NP:plu′@ 3
55 ,

NP/NP:plu′@ 3
55 , NP/NP:veg′@ 3

55 , NP/NP:choc′@ 1
55

}

Figure 8. The total set of hypotheses about the word veggies after three hypothetical
scenes.

veggies:=NP:veg′ and veggies:=NP:plu′veg′, rank highest, 11
55 , which are ex-

ponentially higher than almost all others. (Figure 8 is the source of these
numbers.)

The plural is 4
10 likely to mean plu,′ which outranks all other alternatives

except veg.′ More experiences with the plural will give more diminishing
returns for assumptions other than plu.′

More important to our present concern is plu′, which is 4
19 likely to arise

from -s, which outranks its competitors except plu′veg′, which is 5
19 per-

cent likely. The outranking hypothesis is associated with the word veggies.
Together they embody a cross-situational parsed-to-learn understanding of
the set {veggies, -s}, along with syntactic types. 75% of -s : plu′ experiences
are mediated by NP\NP. The plural’s possible connections to the hypotheses
about eat in the first experience and no in the second one can only be indirect,
that is, through some wrong assumptions about these words that they meant
veg,′ because otherwise they cannot be adjacent to plu′-assumed words. Its
link to gone in the third experience is more direct because they are adjacent.
This can be observed in -s types of (43). Its relation to the hypotheses about
veggies is more involved, as can be seen from (41) and (43).

Once the NP hypothesis about veggies begins to win out, a Humean
generalization of “something more than the experience” can be assumed to
take place, where the winning strategy of typing plu′ as NP\NP and call-
ing veggie-like things NP can come together in parsing other strings such

162 The semantic radar

as birds and doggies. The types, in other words, conspire to relate certain
bound meanings with certain free meanings once we have sufficient confi-
dence in them. The other types for the plural and the noun would not be
so successful across experiences. They are not winning strategies. This result
comes from the interaction of Siskind’s cross-situational inference and cover-
ing constraints, where the former sieves out the hypotheses by the intersection
of scene meanings, and the latter eliminates some hypotheses by assuming
that all hypotheses of an experience must be derived from the meanings of
the words in an experience (we have somewhat relaxed this assumption but
not much; in experience two there is no word for chocolate but some words
were assumed to mean chocolate.)

Now we can be quite explicit about the form and substance of the lin-
guistic knowledge of words: it is the set of categories it can bear, along with
the owner’s trust on the members of the set, acquired by the parse-to-learn
paradigm. (Keep in mind that, for the purposes of this book, we ignore the as-
pects of morphology and inflection, such as veggie versus veggies, hence this
is only a first approximation). The collection of such knowledge comprises
an individual’s grammar. For the hypothetical child above in particular, the
collection might contain the fragment exemplified in Figure 8.

Notice that the knowledge of the child’s word experience is complete.
(This is a requirement for a computational model of the process, that the cor-
rect solution be on the search path even if it is not very likely at the beginning,
since we know that every child converges on the competent use of a word af-
ter experience.) Her sums add up to 1, for both veggies:=veg′ relation and for
the possible categories of the word veggies. In this circumscribed and delib-
erately simplified world, the NP hypothesis for this word is the top contender
after these three experiences, with a total frequency of 7

14 , in which the correct
relation, veggies:=NP:veg,′ ranks highest, 3

14 .
One attempt to reduce the possible substantive categories in the search

space of acquisition is the theory of functional categories, to which we now
turn. The point of semantics in their case is that we do not need yet another
innate source of knowledge for words, because although their semantics seem
robust across languages, they are quite predictable as lexical items.

Functional categories 163

7. Functional categories

It is common practice in transformationalism to distinguish substantive cate-
gories such as V(erb), N(oun), A(djective) and P(reposition), from functional
categories, such as C(omplementizer), I(nflection) and D(eterminer), among
others. As the distinction has no place in radical lexicalism, one might won-
der whether functional categories are quirky syntactic objects or arise from
semantic dependencies.

The first thing to note about them is that they have a parasitic life. They
depend on substantive categories. A determiner phrase (DP) needs a noun
phrase, an inflectional phrase (IP) needs a tensed domain like root sentences,
a complementizer phrase (CP) needs a clause, etc. We can narrow down our
question to (i) whether these dependencies need combinators, and (ii) why
they materialize in more or less the same way across languages when they
manifest themselves.

Let us start with the last question first. Szabolcsi (1994) establishes the se-
mantic bond across some apparently distinct functional syntactic items. Her
subordinators are generalizations of nominal elements such as the article, the
determiner and the verbal ones such as the complementizer. Their common
function is to make the predicate or the nominal an argument of another pred-
icate. For the nominal domain, say for the article, value-raising the article to
take a noun and look for predicates looking for such arguments is a way to
capture this behavior. Value-raised categories are those in which the result
type (value) is a type-raised category, for example (S/(S\NP))/N, rather than
NP/N. On the semantic side it is accompanied by distributing type raising
to the arguments, for example λPλQ.(∀x)imply′(Px)(Qx) for the quantifier
every.

For the complementizer, it is usually the identity function, λP.P. The dif-
ference seems natural without the need of a universal. Nominals are proper-
ties and arguments, whereas predicates as arguments do not engender another
predication. There would be nothing over which value-raising could operate
and distribute type-raising. We shall see that once we translate functional
distributional categories to combinatory ones, they have nonvacuous but se-
mantically transparent functions such as λP.P.

Regarding the first question, whether we need combinators for functional
categories, we can start with the original motivation for positing functional
categories: the substantive-functional distinction is meant to capture lexical-
universal structures. Functional projections, as the theory goes, always bind

164 The semantic radar

the substantive phrase in the same way, whereas the relations within a sub-
stantive phrase can be language-particular.

Grimshaw (2000) is a summary of the developments and the universal
claims about functional categories (see also Pollock 1989, Haegeman 1998
for more functional categories). Her formulation is a good starting point to
see the possible dependencies, and we can assume a version of it to be part
of a meta-theory for predicting possible lexical category-feature mappings in
CCG. (CCG would be overextending itself to cover cases where the config-
urations are not syntacticized by combinatory dependencies. In this sense, it
needs meta-theories such as this and for example autosegmental phonology.
But we must first be sure that the dependencies are not universal but lexical.)

Among the possible projections Grimshaw reports, the one in (44) is per-
haps the most expected, which summarizes the motivation for the idea of
distinguishing functional heads (C, D, I) from lexical heads (N, V, A, P). In
the text the C-IP head-complement relation is bracketed as [C IP]CP.

(44) CP

C IP

I VP

V DP

D NP

Other possible head-complement configurations according to her are C-VP,
P-DP and P-NP. The impossibility or oddity of some of the configurations
according to Grimshaw, such as I-DP, V-IP, D-DP, C-VP, I-NP arise from
her theory of projecting lexical heads only under the guidance of functional
heads.

VP is a lexical projection in (45a) whereas IP is a functional projection
dominated by it, which is considered illicit. This is impossible according to
Grimshaw because of the functional mismatch in VP and IP, although there
is a categorial match between V and IP, say as [+V -N]. (45b)’s violation
is considered less severe because there is no categorial match in V and DP,
hence an ambiguous extended projection is expected.

(45) a. *VP

V IP

b. ?VP

V DP

Functional categories 165

From the perspective of heads, their combinatory categories can be given
the following first approximation in association with (44).

(46) CP

C=CP/IP IP

I=IP/VP VP

V=VP/DP DP

D=DP/NP NP

Take the category of C, viz. CP/IP. To say that IP is an inflectional pro-
jection (e.g. Sfin) is to categorize the complementizer as S′/Sfin, as we have so
far assumed for example for that, as in I think that she likes me, rather than
S′/S. A category such as S/Sfin does not capture CP/IP either. IP cannot be
an agreement domain typewise because, in the domain of locality of C, that
is, in its lexical category CP/IP, such as S′/Sfin, there is no argument to agree
with. (Structure-wise it can have an agreement element in it such as INFL, in
theories that posit functional categories. Agreement as a type domain cannot
rely on this property. Types are string properties, not tree properties.) Seman-
tically the complementizer translates to λP.P since there are no arguments or
predicates whose dependencies must be heeded.

Consider now the category of I in (46), IP/VP. Positing this category is
the same as saying that all arguments are type-raised in a competence gram-
mar, either lexically or by a lexical rule, so that categories onto IP must heed
agreement, for subject-agreement languages. (Note that this is not a universal,
e.g. Chinese).

We can then follow the influential proposal of George and Kornfilt (1981)
to take finiteness as a corollary of agreement, for both verbs and nouns;
see Kornfilt (1984), Abney (1987). For English it means she in she likes
chocolate bears the category S/(S\NP3s), not just S/(S\NP), and likes bears
(Sfin\NP3s)/NP, not just (S\NP3s)/NP or (S\NP)/NP.

It also means that her in she likes her must not bear such decorations
although it carries morphologically the number and person, e.g. S\(S/NP).
Notice that S\NP is VP whereas S/NP is not, thus what we have captured

166 The semantic radar

lexically is the essence of IP/VP. The agreement domain in English is S\NP.
(For Welsh, which is strictly VSO, the difference in agreement domains and
others can be accounted for by S\(S/NP3s) for subject and S\(S/NP) for non-
subject third-person NPs.) The semantics of the process involves no freely-
operating combinator; it is the semantics of lexical T, for example Joe :=
NP3s : joe′ → S/(S\NP3s) : λP.Pjoe.′

Now consider the substantive category V in (46). It gets a functional in-
terpretation in structure-dependent theories because of its licit configuration
[V-DP]VP, which we could translate as V=VP/DP. In CCG, it amounts to
saying that the DP is a nonagreeing argument because VP is the domain of
agreement, not DP, which we can capture as (S\NPagr)/NP in V’s category
for English. (For Welsh, the category is (S/NP)/NPagr because the first NP is
the subject.)

The mutual dependence of VP and IP on V in distributional-category the-
ories is captured in combinatory categories by the fact that all the arguments
are type-raised, and they can differ in agreement. Thus the V-DP configura-
tion turns out to be a lexical category, viz. (S\NPagr)/NP for English. As V
is a substantive category in everybody’s theory, it follows that its category is
not universal, for example (S\NP)/NP : λxλy.read′xy for the SVO English
and (S/NP)/NP : λxλy.read′yx for the VSO Welsh.

Finally, let us consider the functional category D in (46), which translates
to DP/NP. This conception of NP must be headed by an N rather than a
determiner. Thus we have DP/N in categorial terms. Considered together
with the DP category mentioned earlier, the DP/NP assumption amounts to
saying that all determiners, including quantifiers and names, are type-raised
or value-raised, since DP necessarily functions as an argument (the N-DP
configuration is illicit in functional projection theories as well).

The idea has been around since Russell andMontague (1973) as the theory
of generalized quantifiers. For example, the categories in (47a) handle (47b),
where determiner- and name value-raising (and concomitant differences in
agreement) also handle (47c–e) (assuming Kafka is a name, not a property).
These are shown in (48).

(47) a. every := (S/(S\NP3s))/N3s : λPλQ.(∀x)imply′(Px)(Qx)
every := (S\(S/NP))/N3s : λPλQ.(∀x)imply′(Px)(Qx)
Kafka := S/(S\NP3s) : λP.Pkafka′

Kafka := S\(S/NP) : λP.Pkafka′

b. Every chemist loves Kafka.

Functional categories 167

c. *Every chemists love/loves Kafka.
d. Kafka loves/*love every chemist.
e. *every Kafka

(48) a. Every chemist loves Kafka

(S/(S\NP3s))/N3s N (Sfin\NP3s)/NP S\(S/NP)
>

S/(S\NP3s)
>B

S/NP
<

S
b. *every Kafka

(S/(S\NP3s))/N3s NP

*every Kafka

(S/(S\NP3s))/N3s S/(S\NP)

As expected, the semantics of D cannot be due to a syntactically operating
combinator. (Note that x and kafka′ in (47) are not syntactic variables.) The
differences all lie within the lexical syntactic type restrictions.

Let us now consider some of the impossible configurations which
the functional-category theory rules out by purely formal means. Take
Grimshaw’s I-NP and D-DP. Assume an as yet undetermined projection for
I-NP, say XP. We could categorize I as XP/NP. To be faithful to the seman-
tics of inflection, which ‘I’ stands for, we must obtain an agreement range.
No type for XP can deliver this interpretation. Take XP=S. Then S would not
be an agreement range. Take Sagr for XP. Then the XP of XP/NP must be IP,
but the IP domain requires type raising of all arguments, and IP/NP, which
would be Sagr/NP in the current assumption, would not be type raising.

Now consider D-DP, where D=XP/DP. Since D=DP/NP is possible, we
get XP=DP and DP=NP. The last one is the standard assumption in CCG.
But XP=DP would predict overquantification because D=XP/DP=DP/DP.
The structural equivalent of this assumption would be [D[D NP]DP]DP. This
assumption, XP=DP, cannot capture the semantics of quantification because
there would be no discernible head for DP.

In summary, what is called a functional category is in essence (i) a syn-
tactic restriction on grammatical meanings which narrows down the com-
positional meanings that must be delivered by a competence grammar, and
(ii) a faithful reflection of semantic headness on syntactic types. Functional
categories need not be ordained as special combinatory rules, or special cat-
egories, because they do not engender semantic dependencies that must be
captured by a syntactic combinator. Thus there is nothing special about them

168 The semantic radar

that a lexical category cannot handle; they all belong to the lexicon. They are
special in the sense that they form a closed set, for example, every language
seems to have a universal quantifier, a finite set of determiners (maybe none),
a small set of complementizers, a fixed inventory of case markers etc. But
adpositions and pronouns form a closed class as well, hence this is not their
definitive feature.

The choice of a basic category inventory including the functional ones in-
teracts with accounts of constituency. For example, if complement clauses are
S rather than S′, we would be hard pressed to eliminate (49a) while account-
ing for (49b).90

(49) a. *[I think that Harry]S/(S\NP) and [Barry]S/(S\NP) like Mary.

b. [I think that Harry] and [Barry thinks that Mary] owns the house.

A combinatory theory would be overextending itself if it chooses to elimi-
nate (49a) by some combinatory restriction. The problem does not arise from
the category of that, which is already onto S′, typically assumed to be S′/S or
S′/S′. It is the category of Harry likes Mary as a complement clause, which,
as S, leads to the problem above. If we can type-raise the embedded subject
Harry as S′/(S′\NP), the problem disappears because the conjuncts in (49a)
would not be like-typed for that interpretation:

(50) I think that Harry

S/(S\NP) (S\NP)/S′ S′/S′ S′/(S′\NP)

S/(S′\NP)

Then we have to find an empirical justification for typing the subordinate
verbs to be onto S′ rather than S, e.g. (S′\NP)/NP for like and owns above.
The syntactic aspect of the justification is clear: these are not main clauses.

This may be a good move in English syntax to be able to account for
examples such as the following without further assumption:

(51) the man who I think and Barry claims owns the house

S′/S′ S′/S′ (S′\NP)/NP NP
[S/S′] [S/S′]

>

S′\NP
I write the standard assumptions in square brackets (i.e. if we assume S as a
result, not S′) and the new ones on top to show that it is not the result but the
domain type of substrings such as I think that we should worry about because
either assumption would give us a residue as a function from S′ to something.

Functional categories 169

Further support for a subordinate category such as (S′\NP)/NP for the
subordinate verb, and also for the presence of O in English syntax, comes
from the following example which works with the standard assumptions for
everything else:

(52) the man
who I think and who Barry claims owns the house

>O

(N\N)/(S\NP) S/S′ (N\N)/(S′\NP) (S′\NP)/NP NP
>O >

(N\N)/(S′\NP) S′\NP

(N\N)/(S′\NP)
>

N\N

German and Turkish show that the degree of freedom here is still within a
radically lexicalized grammar: distinct word order in subordinate clauses of
German, in contrast with second-position verbs in main clauses, and distinct
Turkish subordination morphology, where word order for subordinate clauses
is the same as main clauses but morphology differs; the subordinate subject
and the verb must carry overt agreement morphology which is distinct from
main clause agreement morphology. In other words, an external constraint or
rule is not necessary.

The functional categories seem to have in common the semantic prop-
erty that they operate over PADSs in which the predicate is always opaque,
as in the type-raising of arguments, value-raising of properties and partici-
pants, and complementizer semantics. They cannot latch on to a substantive
meaning directly. Radical lexicalization makes this aspect very explicit due
to forced syntax-semantics correspondences in a lexicalized grammar.

The theory of functional categories can be seen as a quest for more re-
fined restrictions on lexicalized syntactic types, and also as an aid in search of
good bootstrappers for learning. Brent (1993) shows how far the idea can go
in computational learning of lexicalized grammars in an unsupervised way,
with a warning that it needs a narrowly constrained theory of possible gram-
mars. The closed set of items does the work of self-supervision. There seems
to be the correlates of these assumptions in the acquisition environment of
the child. We know that children are late in producing function words, but
they seem to zoom in on them early in analyzing utterances (Santelmann and
Jusczyk 1998), and the frequency of function words is consistently higher
than the frequency of content words, both in child-directed speech and in
adult speech, across languages (Shi, Marquis and Gauthier 2006).

170 The semantic radar

8. Case, agreement and expletives

Some other special categories that serve functionally without apparent se-
mantic content shows characteristics similar to that of functional categories.

Any lexical functor that has an argument (say an NP) in its domain of
locality can refer to its consistently discernible features, such as case, agree-
ment, noun class, tone (for tone languages) and locus (for signed nouns).
There would be no basis for the functor to look at a nondiscernible feature,
such as whether it modifies a noun that starts with the phoneme /b/, since
that information cannot be coded in syntactic types.

A list of typical functors can give us an idea about agreement controllers:

(53) a. verbs. e.g. S\NP, (S\NP)/NP
b. adjectives, e.g. N/N
c. nouns, e.g. N/(N\N), N
d. determiners, e.g. (S/(S\NP))/N
e. relative pronouns, e.g. (N\N)/(S/NP)
f. prepositions, e.g. (N\N)/NP
g. adverbials, e.g. (S\NP)\(S\NP)

Examples of agreement involving these functions include: subject and verb
(Portuguese), subject, object and verb (Uralic languages), adjective and noun
(Russian), noun and noun in possessor constructions (Georgian), determiner
and noun (German), relative pronoun and noun (Latin), preposition and object
(Welsh), adverbial and subject (North Caucasian languages). Thus all pos-
sibilities that are allowed by functor types are attested for argument-taking
entities, and they cross-cut the accusative-ergative-split classification of lan-
guages and word orders.

The radical lexicalization of functional categories (§7) suggests that all
these patterns are lexicalizable, and the lexical combinatory categories that
arise out of these considerations clearly distinguish agreeing and nonagreeing
arguments. Take for example some quirky cases of agreement. The combina-
tory nature of the domain of locality and type raising of arguments facilitate
a natural account of what is called “brother-in-law agreement” in Relational
Grammar (Perlmutter 1983), exemplified below.

(54) a.There are/*is cows in the garden. Aissen (1990)
b.There seem to be some bugs in the soup. Perlmutter (1983: ex.65)

Case, agreement and expletives 171

Since this is not triggered by the copula but by the expletive, it follows that
the category of the expletive must take the raising verb as an argument first,
and value-raise it, which provides a domain of locality where all the agree-
ment features, including that of the NP following the copula are available to
the expletive.

We can think of raising verbs as forming a typewise discernible class in
the lexicon. Following Clark (1997), Steedman (2000b), I will consider the
auxiliaries and the copula as raising verbs (55).

(55) The class of raising verbs: (V rz)
are := (S\NP)/(S\NPagr) : λPλx.be′(Px)
might := (S\NP)/(S\NP) : λPλx.might′(Px)
seem := (S\NP)/(Sto-inf\NPagr) : λPλx.seem′(Px)

Raising verbs such as seem follow the same pattern in their dependency struc-
ture. Note however the lexical differences, such as the brother-in-law agree-
ment for the copula and seem. I will collectively refer to them as V rz. Their
common pattern in the PADS is the crucial aspect of the generalization.

A single lexical category for the expletive there is sufficient to handle
brother-in-law agreement, without the necessity to posit another agreement
pattern. As this is lexically triggered by the expletive, it would have no rela-
tion to the object-agreement systems of ergative languages.

All NPs in the locality of the expletive have the same agreement informa-
tion in (56a), which yields the right behavior in (56b–c).

(56) a. There are cows in the garden
<

S/�((S\NPagr)\((S\NPagr)/NPagr)) Vrz,plu (S\NPagr1) (S\NP)
/�Vrz,agr : λPλx.be′(Px) \((S\NPagr1)/NPplu) \(S\NP)

: λPλQ.Q(Pself ′) : λ f . f cows′
>

S/�((S\NPplu)\((S\NPplu)/NPplu))
: λQ.Q(λx1.be′ self ′ x1)

<B

(S\NPagr1)\((S\NPagr1)/NPplu)
>

S
: in′ garden′ (be′ self ′ cows′)

b. There is/*are a cow in the garden.
c. *There is/are.

In other words, there not only equalizes argumenthood in semantics (see its
PADS, where the predicate P is reduced on self ′), it also equalizes agreement
in syntax by underspecification (see its agreement features, which are all agr).

172 The semantic radar

This stands in contrast with the type raising of all other subjects in English,
which all carry an agreement constraint, for example S/(S\NP3s) for she.

Radically lexicalizing the neutralization of agreement also gives us an op-
portunity to account for the following difference, where there’s is another
lexical item:91

(57) a. There’s many people here.
b. *There is many people here.

The expletives are quite idiosyncratic (it is not a neutralizer; cf. 58a–b).
Thus lexical value-raising of the brother NP by the expletive is justifiable
(value-raising is needed to get the right PADS, and the corresponding propo-
sitional type for Q is required by the Principle of Categorial Type Trans-
parency).

(58) a. It is/*are important that we call the cows home.
b. It seems/*seem to rain. There seems/seem to be a problem.
c. *There is himself/herself in the garden.

The predicate-argument structure of there ensures that the brother NP be-
comes the maximally PADS-commanding argument (without a linking or
chain theory), which is consistent with the ungrammaticality of (58c), as-
suming of course a genuine reflexive reading. Because of the universal nature
of binding, we would expect all languages with brother-in-law agreement ex-
pletives to follow (58c).

The argument depends on the assumption that all arguments are type-
raised in competence grammars. We can see the empirical consequences of
this in the following example, where a participant (i.e. type-raised) category
is acceptable but a property is not.

(59) Who’s going to help me do the dishes?
Well, there is John /*man.

S/�((S\NPagr)\((S\NPagr)/NPagr)) (Sbe\NPsg)/NP
/�((Sbe\NPagr)/NPagr) : λx2λx1.be′ x2x1
: λPλQ.Q(Pself ′)

>

S/�((S\NPsg)\((S\NPsg)/NPsg))
: λQ.Q(λx1.be′ self ′ x1)

Notice that the category of the expletive does involve type raising, just like
other subjects, and the copula agrees with the subject, just like other verbs.
We are not setting up a separate expletive syntax, or a special nonthematic

The semantics of scrambling 173

role for the expletive for the verb to worry about. The expletive’s uniqueness
is to take a type-raised brother NP category as an argument so that it will have
lexical access to the domain of locality of that NP. Without this, we could not
claim to have captured the competent knowledge of the expletive, because the
examples below could not be handled. Thus the competent knowledge of the
expletive presumes the knowledge of type raising in the language.

(60) a. There are cows in the garden and mice in the kitchen.
b. *There are cows in the garden and a mouse in the kitchen.

The expletive is the only exception to type raising of subjects, in languages
with expletives. We can conjecture that expletives are acquired quite late, af-
ter many syntactic environments have been encountered, giving enough ex-
posure for type raising of objects to be mastered.

The point of the expletive’s category is that, if we are to account for its
unique agreement behavior and argument-taking, we cannot simply rely on
the presence or absence of thematic roles; we must show a PADS that arises
from syntax like everything else. Its semantics cannot be empty (witness the
PADS in (56a) which includes a substantive component self ′), unless we set
up a special syntax for the expletive. That of course is not the agenda of
radical lexicalization.

9. The semantics of scrambling

The radical lexicalization of functional categories (§7, §8) as part of a the-
ory of feature geometry suggests a clear distinction between agreement and
nonagreement domains of type-raised arguments. We can expect subject-
agreement languages to type-raise the subject in ways that enforce agreement.
Likewise, we can type-raise an accusative NP to an agreement domain if there
is object agreement in the language, as in Uralic languages.

Since type raising is order-preserving, and its liberal variety in syntax
would be devastating because of permutation closure (Moortgat 1988a), we
will not get free word order just because all arguments are type-raised. These
results suggest that free word order must be a conspiracy of more than one
grammatical resource. Steele (1978) clearly shows that it cannot be just case
marking because some languages with morphological case show no sign of
scrambling (e.g. Albanian), and some languages without case allow it (e.g.
Classical Aztec, Garadjari).92 A freely permuting verbal category or some

174 The semantic radar

stylistic (exogrammatical) choice cannot be the answer either because so-
called scrambling languages do impose limits on it, and when it is licensed,
every different order seems to add some information-structural aspect to the
PADS.93

The key point that forces us to keep so-called scrambling in grammar—
therefore do something about its semantics—is that, although there can be
multiple factors to induce a permuted sentence, all the resources involved
relate to grammar: case, morphology, intonation, information structure, an
attempt at the disambiguation of scope, etc.

Take for example the following sentence pairs from a so-called scrambling
language. Example (61a) is ambiguous; there can be more than one car. (61b)
however is not ambiguous.

(61) a. Her çocuk araba-ya bin-di. Turkish
every child car-DAT mount-PAST
‘All children went in the car.’

b. Arabaya her çocuk bindi.

The unambiguity of (61b) is not forced by word order alone. There are pre-
suppositions, for example, that all the children were waiting. If some children
have taken the train, ending the event of train-taking, we are back to an am-
biguous interpretation. A competence grammar should deliver both readings,
which are different semantically to begin with, and an oracle must choose
between them depending on context and intonation.94 The oracle is going to
need some grammatical information to disambiguate, and the delivery of that
information is the grammar’s responsibility. Thus radically lexicalized gram-
mars must deliver different things about different word orders, otherwise the
grammar itself must be the oracle. This would fly in the face of radical lexi-
calism because it amounts to saying that all contextualizations must be lexi-
calized in the grammar, a result which seems theoretically possible but very
unlikely.

A competence grammar of Turkish must also handle the apparent asym-
metry caused when the same process of word order flexibility is repeated
postverbally. In the examples below, we are not forced to think of elabo-
rate alternatives or presuppositions to see that both are ambiguous. Kornfilt
(2005), Kural (1994, 1997) concur with these observations.

(62) a. Bindi her çocuk arabaya. Turkish
b. Bindi arabaya her çocuk.

The semantics of scrambling 175

The postverbal process seems language-specific, suggesting a lexicalized
solution to the syntax-phonology interface, rather than some universal. For
example, a Russian speaker could say Denis udaril Sashu to mean either ‘De-
nis hit Sasha’ or ‘It was Sasha that Denis hit’, but a Turkish speaker would
never use this word order to convey the second reading.

This facilitates a minimal comparison of alternative grammars to see for
example the interaction of the semantics of the accusative case and the cat-
egory of the verb. The Turkish verb must be typed head-final in the lexi-
con to account for the contrast in (61) and (62), otherwise case marking it-
self cannot deliver information about head-finalness of surface word order to
an oracle. The reason is as follows. If we categorize the transitive verbs as
S{|NPnom, |NPacc} to handle all variations on word order, where the set no-
tation indicates arguments in any order (following Baldridge 2002), a back-
ward type-raised accusative cannot be assumed to take the role of indicating
a postverbal order; both orders below would be fine with that type:95

(63) a. her çocuk çukulata-yı sev-di
every child.NOM chocolate-ACC like-PAST

(S/NPacc)/(S/NPacc\NPnom) S\(S/NPacc) S{|NPnom, |NPacc}
<B×

S/(S/NPacc\NPnom)
‘All children liked (the) chocolate.’

b. sev-di çukulata-yı her çocuk

S{|NPnom, |NPacc} S\(S/NPacc) S\(S/NPnom)
<B×

S/NPnom

The verbal category must be revised to fix this. If we assume Turkish is
head final, i.e. the transitive verb is of type S{\NPnom, \NPacc}, then back-
ward type raising cannot derive (63). Forward type raising cannot help with
the asymmetry either because it cannot deliver (63b) in the first place. Now
we must call in another resource, which we must relate to intonation because
we have used up other resources. In a radically lexicalized grammar, this must
arise from a lexical category, which has been identified as the lexical rule for
rightward contraposition by Özge and Bozsahin (2010):

(64) NP → Sβ\(Sβ\NPβ) (β for background) (>T×)

The rule says that all nominals, irrespective of their case, yield a different
kind of sentence when they are backgrounded, to deliver a rheme- or theme-
backgrounded clause. The proposal is purely type-dependent, not position or
structure-dependent, because it simply correlates an exclusively backward-

176 The semantic radar

looking category with backgrounding. The β feature is reflected on the PADS
objects as a side effect, by marking them background rather than more salient
or contrastive. Because of the result’s directionality in (64), it can only com-
bine arguments that are postverbal, which indirectly (i.e. grammatically) as-
sociates postverbalness with backgrounding in Turkish. Thus we have all the
information to be delivered at the interfaces to communicate the informa-
tional differences between (63a) and (63b) via their PADS:

(65) a. her çocuk çukulata-yı sev-di

S/(S\NPnom) (S\NPnom)/(S\NPnom\NPacc) S{\NPnom, \NPacc}
>B

S/(S\NPnom\NPacc)
b. sev-di çukulata-yı her çocuk

S{\NPnom, \NPacc} Sβ\(Sβ\NPβ ,acc) Sβ\(Sβ\NPβ ,nom)
<B

Sβ\NPnom

Now we can clarify the semantics of the accusative case which in some ac-
counts is assumed to be vacuous. It cannot be directly information-structural
or about definiteness, because such matters are not always lexicalizable. Wit-
ness (63a–b), where the accusative NP is not necessarily definite.96 It is not
necessarily a theme or rheme either. Therefore a lexical category for the ac-
cusative marker must be neutral, i.e. it must be λP.P, which by definition
makes P predicational.

What makes P a dependency arising from a transitive verb is its syntac-
tic type, not its predicate-argument structure. It can be indirectly information
structural, as in (64), which presupposes that it has a PADS to begin with so
that an update on that PADS can take place. Since the syntactic type of the
accusative forcibly faces a λP.P semantics, it has no room for substantive
side-effects. It can only pass down the informational features, which must be
put in the PADS and the syntactic type by other items. That is why the ac-
cusative can only be a projector of informational features, rather than being an
instigator. See Özge (2010) for more arguments supporting this conclusion.

Everything in the lexicon must have a PADS, i.e. semantics, otherwise we
cannot account for interactions between the lexical categories. That is, we
cannot create a grammar.

Searle and semantics 177

10. Searle and semantics

Assuming that there must be some kind of semantics in the grammar, and that
the kind of semantics we can put in the grammar must be compositional for
syntax to do its work, we can question whether this semantics is just another
name for syntax, or for formal symbols. The issue relates to the longstanding
argument that syntactic manipulation alone cannot give rise to meaning.

Searle (1980) in his Chinese Room thought experiment sets out to show
that a purely formalist account of the mind is not possible. It relates to our
present concern because he chose language, in particular semantics, to make
his case. The specific claim he was arguing against is strong AI, the claim that
a functional interpretation of the mind counts as a mind. This view according
to Searle is bound to fail in its aspirations because the kind of computation it
envisages is formal, i.e. it operates over symbols with no content, whereas the
mind sets up, he claims, relations between intentional states and the world,
via causal powers of the brain. We must have “the right stuff,” i.e. a human
brain, to have that causal power, according to Searle.

In the same article (and subsequently in 1990a), Searle addresses possible
objections to his claim, which are mainly concerned with what is embodied
in the Chinese room. Searle called them “the system’s reply”, “the robot re-
ply”, “the brain simulator reply”, “other minds” and “other mansions” reply,
and their combination, against which I believe he defends his position quite
convincingly.

Recall also some other criticisms, such as Rey’s (1986) argument that
mental states are species-specific for all species anyway—which to me sug-
gests that ascribing semantics to certain states of a machine ought to be con-
structed by the machines, and the experience cannot be presided over by an
external judge.

Rey’s argument I think brings a Husserlian perspective into the debate
in which we can talk about sharing the subjective experiences of humans
among themselves but most likely not with cats or ants, which leaves open
the possibility that they can do the same thing and do not inform the humans
about it. It amounts to saying that the mental states can be real for all species.
With a stretch of imagination we can grant the same ability to machines that
perceive, act and react. However, I will not follow this line of argument.

It is interesting that the debate continued between Searle, the philosophers,
psychologists and AI researchers, with almost no argument from linguistics
(but cf. Carleton 1984). I offer one in this section from philosophy of linguis-

178 The semantic radar

tics, to question whether the Chinese room as imagined by Searle is possi-
ble. My argument is about what Searle considers computational, and about
the linguistic conception of the same notion, which must, according to many
cognitive scientists, indirectly relate to semantics.

First a summary of Searle’s argument, from a more recent self state-
ment (Searle 2001): imagine a native speaker of English, who has no knowl-
edge of Chinese, locked in a room full of boxes of Chinese symbols (a
database) together with a book of instructions written in English (the pro-
gram), which he can interpret, for manipulating the symbols. More Chinese
symbols are sent in to the room (questions), which the person in the room cor-
rectly answers in Chinese symbols by following the instructions for match-
ing the database symbols and the symbols in questions. The person passes
the Turing (1950) test in communicating Chinese, that is, a native speaker of
Chinese at the other end of the box cannot tell that the answers are not com-
ing from a Chinese speaker. Yet the person in the room does not understand
a word of Chinese. The program and the database add no understanding of
Chinese to the person, though he already knows how to interpret symbols in
one language, namely English. By extension, computers cannot understand
Chinese (or any human language) by purely formal manipulation of symbols.

The linguistic aspect of the experiment I think is as follows: what is Chi-
nese in the Chinese room is the database and the fragments of the program
that contains Chinese symbols and their abstractions (the program is in En-
glish, but it is about Chinese symbol correspondences). The program cannot
be of infinite size (otherwise it would not be a program), therefore the corre-
spondences in the program cannot be phrase-to-phrase matchings, for we can
conjecture that there are potentially countably infinitely many Chinese ex-
pressions. (Or, if we take the infinitude claim to be less critical for language,
as I have argued to be the case in §3.3, then we can say that the competent
speaker’s knowledge of phrase-to-phrase matchings would be too large to fit
into any room.)

Hence the programmust contain finitely characterizable symbols and their
program-internal abstractions, such as calling a group of symbols a certain
kind of category, and certain combinations of categories to be other cate-
gories, and so on and so forth, in other words, a grammar of Chinese. It does
not matter for our current purpose that such a grammar is not necessarily
lexicalized; its finite representability is the key point.

In the thought experiment we must assume that the program contains a
(competence) grammar because we can “suppose also that the programmers

Searle and semantics 179

get so good at writing the programs that from the external point of view—
that is, from the point of view of somebody outside the room in which I
am locked—my answers to the questions are indistinguishable from those of
native Chinese speakers.” (Searle 1980; my emphasis).

Let us now turn to the boxes of Chinese symbols. They would minimally
contain Chinese vocabulary, and perhaps more, such as a large inventory of
expressions based on symbols in the program. This too must be finite to fit
into the room. We thus have a system of grammar and a lexicon housed in the
room.

I claim that the experimental setup is inconsistent because of the forced
assumption of housing a grammar, and not being able to use it for semantic
interpretation. All grammars in any linguistic theory are interpretable because
their product is there solely to provide a full array of phonetic, semantic and
syntactic interpretation. The theories only differ on how they go about getting
these interpretations from a surface string, and how to explain them.

What, then, is the problem with computation in Searle’s program? In the
linguistic sense, the program is not doing computation at all, because compu-
tation is what links the string (the phonological form) and the meaning (say
the PADS) at the interfaces to perceptual and conceptual systems of cogni-
tion. The link is the critical assumption, and needs further refinement.

In the Minimalist Program of Chomsky (1995), computation is conceived
as the operation that links the stages of deriving a surface string, where inter-
mediate results as syntactic objects are kept for later use. It seems to me that
Searle’s choice of natural language computation for his thought experiment
is inspired by an interpretation of Chomsky in an early incarnation.

Chomsky nowadays maintains that the interpretation of the string be-
gins after its features are delivered to spell-out, at which point its access to
lexicon—hence to meaning—is cut off, and the string is ready to be pro-
nounced. More specifically, Searle seems to have in mind what Brody (1995)
later called radical minimalism, where the phonological form is just an inter-
pretation of a single interface, and the semantic interpretation rules and the
lexicon have access only to that interface. This seems to be a more literal
implementation of having a single hole in the box for outside access. This
might appear to suggest that what takes place is essentially formal symbol
manipulation of the morphological or phonological kind.

This is not entirely correct. Interpretable features are always carried within
the intermediate records of syntactic objects. This was true in the pre-spell-
out period of Chomsky as well, under different guises. I am in no position to

180 The semantic radar

defend the Chomskyan view of carrying the semantics along, but clearly we
do need room for these features in a faithful thought experiment of syntactic
rule manipulation.

Moreover, we have seen that syntax and semantics can be derived in lock-
step so that they are available at any time. For this to work in the Chinese
room, semantics must be allowed to enter the room as well rather than ex-
pected to rise in it. Radical lexicalization shows that these meanings will
arise only from the meanings of the words in the string because there are no
intermediaries, and the semantics of common dependencies is invariant.

Therefore the Chinese room as a whole must have access to strings and
meanings outside the room to be able to hypothesize about internalized mean-
ings. Marconi (1997: 137) raises a similar objection: “a meaningless linguis-
tic symbol cannot be made meaningful by being connected, in any way what-
soever, to other uninterpreted symbols.” It appears then that Searle is argu-
ing from one conception of language computation, which is not universally
shared (and might be considered dubious by its practitioners), to show that
syntax suffices to legitimize his picture of the Chinese room.

What takes place in the room is not computation in the computing science
sense either, for that computing is a link too, to link the programs (the form)
with the executable code (the meaning), at the interfaces of the machine to
the programmer’s expressions and intended tasks, the latter of which cannot
be determined by the computational system.

We are reminded of Searle’s (1990b) claim that running the wordstar pro-
gram might as well be undertaken by the wall behind him, since the wall is
complex enough to embody the formal structure of wordstar. This is a gross
oversimplification of computation. Programs execute only when they are in-
terpreted by the “right stuff”, which is in their case a virtual machine instruc-
tion set. If the wall has the right stuff, then surely it can execute wordstar, but
then it would be a brick-implemented computer rather than just a wall. Rey’s
(1986) warning that strong AI is not behavioralist but functionalist makes the
same point. I am not defending strong AI against Searle, but it need be said
that he faces the same oversimplification of rule-following in computation as
he does in syntax.

An uninterpretable program has no semantics—it is not a program,
whereas a program that does nothing has one, with perhaps free interpre-
tation in the programmer’s world. Thus Searle’s criticism of formal symbol
manipulation as the basis of understanding may be directed towards possi-
ble reductionism of some programmers doing nothing but syntax, or for not

Searle and semantics 181

showing anything interesting in the way of semantics in current practice, but
it is not an intrinsic problem of computation.

One might argue that semantics as conceived above is not really semantics
because it is not situated in the external world, but this is precisely the point
in linguistics and computing: language-internal semantics is only a gateway
to the conceptual system, then to the world, where meaning cannot be deter-
mined by language. Language provides a semantic representation over which
external (anchored) meanings can be enumerated. That is, understanding is an
interface problem of connecting internal and external meanings for all kinds
of species, natural or artificial.

Melnyk’s (1996) objection to Searle follows a similar line of thought for
programs. Marconi’s (1997) point about inferential and referential knowledge
of words as lexical competence, independent of whether the doer of symbol
manipulation is natural or artificial, carries the same message: “The genuine
problem is not whether knowledge of meaning can be “reduced” to symbol
manipulation but what kind of symbol-manipulating abilities would count as
knowledge of meaning or understanding of language”Marconi (1997: 137).

If this is the case, then a computational system can in principle be made
to face the same conditions as the child for understanding the connections
between sounds and meanings, once we readjust our semantic radar and in-
corporate compositional meanings into the notion of category.

There is already some progress in the way of breaking the “semantic di-
vide” of a child’s acquisition of language and a computational learning of
human language. Zettlemoyer and Collins (2005) experiment with statistical
learning of grammars (§5) in which the training data (for the machine) are
sound-meaning pairs, and in which syntax is a hidden variable. This is a sys-
tem which takes as a start the assumption that there is no external access to
the internal states of a program such as Searle’s. They use a limited category
space in lieu of a universal grammar to control the search-space problem for
the hypotheses the system generates, and we can assume that the substantive
and formal principles can do the same task for the child in the manner de-
scribed in §5. Therefore, the input to the room must be sound-meaning pairs
in order for computation to take place inside the room, and syntax—more
specifically parsing—is what happens inside.

Led this way, the system learns a fully interpretable grammar, of course
with errors and approximations, but with the possibility of correcting them
by exposure to further data. The crucial computationalist assumptions in their
algorithm are that shorter, contiguous and less ambiguous strings are enter-

182 The semantic radar

tained first, because the system must look at the powerset of alternatives to
guarantee that the correct hypothesis is always among the candidates. With-
out these assumptions, we cannot assume that once hypothesis selection is
down to a single candidate or very few candidates, we are done.

The results are too preliminary to be conclusive, but they point out prin-
cipled directions for discerning the methodological and intrinsic problems of
computing. I conclude that (a) Searle’s Chinese Room is linguistically in-
adequate, and (b) it can be made consistent with bona fide computation, in
which case the unduly pessimistic belief that a computational system cannot
be made to face the same conditions for understanding as humans is not war-
ranted. The key point is having access to semantics as an independent channel
of intake and output, as assumed in the inverted-Y diagram of Figure 6.

In this setting, assuming an opaque computation by the invariants of CCG
helps us narrow down the remedy when learning goes awry: the semantics
of the invariants have no substantive constraint on their PADS. For example,
composing love′ and hurt′ to get Blove′hurt′ can only go wrong if we have
the wrong assumptions about love′ or hurt.′ The semantics of B is invariant.

The opaqueness of the invariants and the transparency of the substantive
assumptions (experiential knowledge) further reveal the nature of computa-
tion in CCG. It is a monad, where these processes are threaded rather than
performed independently.

Chapter 10
Monadic computation by CCG

The possible landscape of substantive categories can be significantly reduced
by considering the codetermination of syntax and semantics under a single
fundamental assumption, adjacency. But it might seem excessive that CCG
makes use of so many invariants as its combinatory base to do that (see Ta-
ble 2 for a long list). The reason I have suggested is that factoring the com-
binations as such makes the grammatical process completely syntactic type-
driven and transparent to the sources of types, to morphology, phonology
and lexical semantics. Nothing needs to be remembered during a type-driven
derivation. This seems to be a prerequisite to work towards understanding
parsing as a reflex.

Nevertheless, one would expect in a purely applicative system that ap-
plication as its primitive would stand out against all others. Recent analyses
indeed suggest computationally distinguishing dependency and application
in CCG. No constraint has been found necessary so far on the syntacticized
combinators B and S, in controlling the projection of features of radically
lexicalized types. (More accurately, all the earlier constraints on combina-
tory rules have been replaced by constraints on lexicalized syntactic types.)
Combinatory dependencies always project all features.

Some constraints seem inescapable for application. It will follow that
combinatory dependencies can be opaque processes whereas application
must be transparent so that we can apply the constraints. These findings reveal
the monadic aspects of CCG, suggesting that CCG’s one-step computation is
a two-stage process, as in monads.

Monads are quirky mathematical objects. They are in fact ubiquitous in
everyday computing. For example, the famous Unix “pipe” (invented by Dou-
glas McIlroy in the 60s) is represented as ‘|’, and it threads a sequence of
computations by chaining their input and output, which is now called the I/O
monad. If n processes agree to take input and produce output in a standard
way (called streams), we can chain them as p1|p2| · · ·|pn.

It is tempting to think of parsing as one long seamless pipe where ev-
ery individual stage pi is some parsing action (i.e. rule use, equivalently, for
CCG, type use). However, this would imply that any intermediate process
is opaque looking from the outside world. This is most likely not true, for

184 Monadic computation by CCG

example we have catches of breath (or rest in signing), intonational phras-
ing, restarts, interjections, turn taking and giving (either voluntary or in-
voluntary), etc. Some stages seem to be available for “repiping”, i.e. we
have p1| · · ·|p j||p j+1 · · ·|| · · ·||pk| · · ·|pn, rather than p1| · · · pk| · · ·|pn,
where ‘||’ represents a joint in the pipe at which some properties must be
transparent.

As the preceding preliminary discussion implies, I believe CCG as a the-
ory has something to say about these “|| joints” where access is needed, and
it has to do with the interaction of the seamless lexical projection of types
onto surface phrases and satisfaction of constraints.97 The applicative struc-
ture and dependencies seem to vary systematically in this regard.

1. Application

The asymmetry of simply projecting all the features in a combinatory rule
and sometimes having to stop the projection in application is forced by the
data. The following four instances among others corroborate the asymmetry
of feature projection.

1.1. Reflexives

Consider again the simple control of grammar-lexicon division in CCG using
the feature LEX, for “lexical”. Steedman and Baldridge (2011) argue that rad-
ically lexicalizing the reflexives forces a feature such as LEX. The category
of the reflexive must look for a lexical verb:

(1) Mary hurt herself

(S\NP)/NP (S\NP)\LEX((S\NP)/NP)
<

S\NP

CCG’s derivations are entirely syntactic type-driven therefore the syntactic
type of herself must bear this feature as +LEX, as above, which we could
also write as ‘\�’ as before. We need this constraint to avoid reflexive in-
terpretations of herself and himself in the example John showed Mary her-
self/himself. They are forced to a different analysis because, unlike true re-
flexives, they must take focal accent (Steedman, p.c.). Therefore application
is subject to the following constraint:

Application 185

(2) X/�Λ1 Y YΛ1 → XΛ2

YΛ1 X\�Λ1 Y → XΛ2

where Λi are variables for the value of LEX.
Λ2 = Λ1 if Λ1 is specified, Λ2 =−LEX otherwise.

It would be projection if Λ2 = Λ1 necessarily. This seems to be the case for
B and S. No special treatment has been reported for them in the literature.
The earlier constraints on combinatory rules, for example those in Steed-
man (1985), have been replaced by the lexical control of slash modalities
since Baldridge (2002). The only remaining constraint which has not yet been
reformulated via modalities is Trechsel’s (2000:630) stipulation on forward
composition for Tzotzil, which is readily translatable to lexical restrictions as
S/�NP for the unaccusative verbs and S/�NP for the unergative verbs.

1.2. Supervised learning

The second example of projection asymmetry arises from a similar special
treatment of application, for the purpose of learning the CCG categories from
annotated data. Hockenmaier, Bierner and Baldridge (2004) report the fol-
lowing from the Penn Treebank:

(NP-SBJ (NP The woman))

(SBAR (WHNP-1 who)

(S (NP-SBJ John)

(VP (VBZ loves)

(NP (-NONE- *T*-1)))

(ADVP deeply))))

They explain: “If a *T* trace is found and appears in complement position
(as determined by the label of its maximal projection), a ‘slash category’ is
passed up to the maximal projection of the sentence in which the trace occurs
(here the S-node), hence signaling an incomplete constituent” Hockenmaier,
Bierner and Baldridge (2004: 176). The passing of the slash category is shown
in bold in the tree below, which is their CCG approximation for the same data.
Its projection stops when the head daughter (e.g. who above) applies.

186 Monadic computation by CCG

(3) NP:NP

NP:NP

the woman

SBAR:NP\NP

WHNP:(NP\NP)/(S/NP)

who

S:S
fw:NP

NP:NP

John

VP:S\NP
fw:NP

VBZ:(S\NP)/NP

loves

NP:NP

T-1

The implicit assumption is that the substring (John loves *T*) is derived
by CCG’s combinatory rules, viz. B here.

(4) John loves

NP (S\NP)/NP
>T

S/(S\NP)
>B

S/NP

In this range this feature always projects, and the head closes off the projec-
tion by application, say with the category (NP\NP)/(S/NP) for who.

No special treatment of projection has been reported for combinator-like
dependencies in wide-coverage parsing models, where large quantities of
similarly annotated data are available for training; see e.g. Hockenmaier and
Steedman (2007) for English, and Çakıcı (2008), Eryiğit, Nivre and Oflazer
(2008) for Turkish.

1.3. Gapping and syntactic abstraction

The third example of a special treatment for application comes from informa-
tion structure and focus projection. Steedman (2000b) has proposed a rule of
decomposition for verb-medial gapping, which in effect does the triple duty

Application 187

of function reabstraction, theme narrowing and the revealing of nonlexical
categories during syntactic derivation:

(5) Xι : left′ → Sι/$ j : θ ′
l left

′ Xι \(Sι/$ j) : λy.left′ (<<)

The rule is a special case of backward abstraction, X → Y X\Y . As be-
fore, intermediate phrases (ι) combine with likewise intermediate phrases to
establish the information structure, following Pierrehumbert and Hirschberg
(1990). θ is for theme-marking, and ρ for rheme-marking. The rule accounts
for verb-medial gapping (6), and avoids anti-gapping; see Steedman (2000b)
for details.

(6) Dexter eats bread,

S
. <<

(S/NP)/NP S\(S/NP/NP)
and Warren, potatoes

<T <T

(S/NP)\(S/NP/NP) S\(S/NP)
<B

S\(S/NP/NP)
Steedman (2000b: 190-1)

No B-abstraction or S-abstraction has been reported for any language.
This is not surprising because the dependencies which are projected by com-
bination rules are functions of lexical specification, whereas reabstraction
cannot “see” lexical specifications to be sensitive to them; note the lambda
term λy.left′ in (5).

It is important to observe that the asymmetry of projection is between the
classes of rules (dependency versus application), not instances. Decompo-
sition seems relevant for both kinds of application. The forward variety of
it must be assumed to maintain a grammatical solution to focus projection
(Özge and Bozsahin 2010):

(7) Xι : right′ → Xι/(Sι\$ j) : λy.right′ Sι\$ j : θ ′
rright

′ (>>)

Interpreted in the context of the question in (8a), the narrowing of focus pro-
jection in (8b) is achieved by (>>), within the intermediate phrase (arabayı
kullanıyor). Note the forced appearance of θ feature in the rightward-revealed
category, for theme. There would be no focus (rheme) narrowing if the context
were What does your mother do? This aspect cannot be controlled lexically
because it is contextual, hence its capture by reabstraction is expected.

188 Monadic computation by CCG

(8) a. Anne-n ne-yi kullan-ıyor?
mother-POSS.2s what-ACC use-IMPF
‘What does your mother drive?’

b.

theme−kontrast︷ ︸︸ ︷
(Annem) H-
my mother

>T

Sθ/(Sθ\NPθ ,nom) S$ι\S$θ

(

rheme︷ ︸︸ ︷
ARABAYI

theme−background︷ ︸︸ ︷
kullanıyor) L-

car-ACC drive-PROG
>T

Sρ/(Sρ\NPρ ,acc) S{\NPnom, S$ι\S$ρ
\NPacc}

>B×

Sρ\NPρ ,nom
<

Sι\NPι ,nom
. >>

(Sι\NPι ,nom)/(Sι\ NPι ,nom) Sι\NPι ,nom : θ ′
rright

′

“My mother drives the car.” Özge and Bozsahin (2010)

Thus the asymmetry between application and the combinatory rules such
as B and S is maintained, and there is no reabstraction asymmetry between
backward and forward application with respect to focus projection.

Before closing this section, I must note that forward abstraction is
new evidence for syntactic abstraction. Backward abstraction might seem
construction-specific, as it serves to only mediate gapping in verb-medial lan-
guages. It has its limits on constituency, for example the following example
cannot have a rightward constituent to reveal, because Steedman’s (2000b)
analysis crucially depends on both subject and the object to be backward
type-raised (i.e. English is considered virtually VSO and lexically SVO to
avoid anti-gapping and other bad effects), which cannot obtain a constituent
in this example, as shown for the string but i can you.

(9) Yippee, you can’t see me, but I can you. Syd Barrett98

but I can you

(S/NP)\(S/NP/NP) (S\NP)/(S\NP) S\(S/NP)
??

However, both Steedman’s backward reveal rule and the forward one above
do something crucial to syntactic types: they engender a mechanism for fo-
cus projection and its narrowing; see Özge and Bozsahin (2010) for some
discussion. Not surprisingly, such processes are not sensitive to lexical ma-
terial (but they are certainly dependent on syntactic properties such as being
an argument versus predicate), hence their reverse process leading to abstrac-

Application 189

tion in syntax seems justifiable. The essence of the rule seems necessary for
incorporating that aspect of the syntactic process.

1.4. Morpholexical constraints

The fourth and final example of an exception to feature projection in ap-
plication is reported for external sandhi, including Welsh soft mutation and
English wanna-contraction. I have in mind Steedman’s (2009) proposal to
handle them in a unique way. Both processes require that we stop the sandhi,
which is a finite-state rule in Steedman’s formulation, under forward applica-
tion, and always project this feature in combinatory rules.

The sandhi rule also seems relevant to backward application. In Turkish
noun incorporation, where a morphologically unmarked preposed argument
is incorporated into the adjacent verb, external sandhi is instigated by the
SOV verb, i.e. by backward application: the incorporated noun is syllabified
with the verb as external sandhi (10a–c), if phonological constraints on sylla-
bles are not violated as in (10d).99 Brackets in these examples denote syllabic
segments. (10e) shows that the morpholexical rule has limited applicability.

(10) a. kitap okumak
..[ta][po]..
book read-INF
‘book reading’

b. taraf oldu
..[ra][fol]..
side be-PAST
‘be part of’

Turkish

c. tuğla presledi
..[lap][res]..
brick pressed
‘brick-pressed’

d. taraf tuttu
..[raf][tut].. (no sandhi)
side took
‘took side’

e. tuğlayı presledi
..[yı][pı].. *[yıp][res]...
brick-ACC pressed (no incorporation; no sandhi)
‘pressed the brick’

In summary, there is something special about application in feature pro-
jection, whereas no special care is needed for combinatory dependencies. All
manifestations of application, the forward and the backward varieties, seem
prone to this asymmetry.

Application is also special theoretically because it cannot be conceived
as a combinator itself for syntax or morphology. Although we can assume

190 Monadic computation by CCG

A
def
= λ fλx. f x, i.e. application as a lambda term without free variables, the

juxtaposition f x is now unaccounted for if we do not take application as a
primitive and employ A in its stead. This would leave no room to syntacticize
or morphologizeA; we would need a primitive of concatenation or affixation.

2. Dependency

In contrast to application, dependency computation seems to be an opaque
process. We can first have a look at some of the limited degrees of freedom
afforded by this result, then exploit it to provide an efficient model of CCG’s
computation.

The invariants in Table 2 combine by application or combination. We can
also think of them as unary type correspondences, which reveals their de-
pendency encoding. I now write the semantics of correspondences as well to
discuss the dependencies. Recall that, in CCG, dependencies manifest them-
selves in the predicate-argument structure, and syntacticization faithfully re-
flects them on syntactic types, as shown in Chapter 4.

I rewrite a fragment of Table 2 as a running example for this chapter. The
first version is obtained by carrying the category of the nonhead term to the
right of the arrow, which leaves the semantic head f as the input to deriving
the right-hand side:

(11) Semantics-driven encoding of dependencies:
X/�Y : f → X/Y : λx. f x (>)
X\�Y : f → X\Y : λx. f x (<)
X/�Y : f → (X/�Z)/(Y/�Z) : λgλx. f (gx) (>B)
X\�Y : f → (X\�Z)\(Y\�Z) : λgλx. f (gx) (<B)
(X/�Y)/�Z : f → (X/�Z)/(Y/�Z) : λgλx. f x(gx) (>S)
(X\�Y)\�Z : f → (X\�Z)\(Y\�Z) : λgλx. f x(gx) (<S)

Here I follow the standard practice in computational linguistics, which dates
back to Partee and Rooth (1983), that categories enter the lexical assignments
at their “lowest type”. In (11), they are the left-hand sides of the arrow. For
example, α := (X/�Z)/(Y/�Z) is a higher-type homonym of α := X/�Y in Partee
and Rooth’s sense. A right arrow for a unary correspondence must be inter-
preted in the current chapter with this assumption in mind.

The correspondences in (11) follow from adjacency because, if we have
the configuration A B⇒ C, we can also get it with A→ C/B and B→ C\A.

Dependency 191

The dependencies in (11) arise from a semantic (head-driven) strategy of
translating the CCG rules in Table 2 to the homonyms of their head function.
For example, in (<B), the head function f is phonologically after g because
Y\�Z: g X\�Y: f → X\�Z. We kept f on the left-hand side of the correspon-
dences in (11), which is the head of the dependency in B f g.

In contrast, the homonyms of the lower types in (12) are motivated by
phonology because it is always the phonologically first category of a combi-
natory rule that is mapped to a homonym, which is guaranteed by adjacency.
It is clear from these correspondences that the first two rows of the phonolog-
ical strategy (12) and the semantic strategy (11) add nothing informative to
the set of categories which are at the parser’s disposal, with the exception of
the phonological translation of (<) in (12), which looks suspiciously like for-
ward type raising (more on this later).100 The last four rows of each strategy
are informative syntactically.

(12) Phonology-driven encoding of dependencies:
X/�Y : f → X/Y : λx. f x (>)
Y : a → X/(X\�Y) : λ f . f a (<)
X/�Y : f → (X/�Z)/(Y/�Z) : λgλx. f (gx) (>B)
Y\�Z : g → (X\�Z)/(X\�Y) : λ fλx. f (gx) (<B)
(X/�Y)/�Z : f → (X/�Z)/(Y/�Z) : λgλx. f x(gx) (>S)
Y\�Z : g → (X\�Z)/((X\�Y)\�Z) : λ fλx. f x(gx) (<S)

Current thinking in linguistics is that phonological cues tune in earlier than
semantics, and they are predictive. This view favors a model of CCG parsing
which uses (12) for dependencies, rather than the binary rules of Table 2, or
the semantically-motivated (11).101

The learning of a syntactic category is the crucial part of acquiring a gram-
mar, which is a hidden variable problem (Zettlemoyer and Collins 2005),
where the input is a pairing of a phonological form and an assumption about
its meaning (the PADS), and the syntactic type is the hidden variable. (12)
suggests that the learner in the parse-to-learn paradigm first has a grip on the
type homonyms of the prefixes of a string to associate right or wrong mean-
ings with parts of it. Thus the string must be available as a structured domain
for analysis, so that we can hypothesize about the syntactic types from the
beginning to the end in a sequential fashion.

All CCG learners operate in the parse-to-learn paradigm, for example
Villavicencio (2002), Bos et al. (2004), Zettlemoyer and Collins (2005), Çöl-
tekin and Bozsahin (2007), Steedman and Hockenmaier (2007), Clark and

192 Monadic computation by CCG

Curran (2007). We have seen the basic idea at work in §9.5. They can be made
to work with (12) to implement the phonological-cues-first idea, provided
that we can thread application and combinatory dependencies to achieve the
pipeline effect of (12), which we will do in the next two sections. Presumably
such parsing models will be easier to train on phonological cues.

The last four rows of (11) and (12) are all nonredundant. The list in Table 6
shows that nonredundancy holds even in the presence of crossing modalities
and powers. The list is a phonological encoding of Table 2.

The phonological encoding may be the most natural monadic computa-
tion by CCG because through it all dependencies begin to look forward in
the string. Notice the main slashes of the higher-type homonyms in Table 6,
which are in the right-hand sides of the arrow. This encoding’s relation to
adjacency is evident (recall that we have no phonologically null type assign-
ments), and this takes us to sequencers in combinatory theory.

Whether we keep the dependencies separate or phonologically or semanti-
cally encode them depends on what use we put them to. In all cases, a freely-
operating T is absent, and this also directly relates to sequencing. This is one
aspect which stands out in a monadic interpretation of CCG.

3. Sequencers

The implication of the results so far is that dependency projection in a pars-
ing configuration can be an opaque process. Although application requires its
ingredients to be visible so that idiosyncratic constraints can be imposed on
it, no such visibility seems required for dependencies. In other words, depen-
dencies can be shunted into a sequencer, whereas application cannot.

The combinatory equivalent of a sequencer is Curry and Feys’s (1958)
composite product, defined as X ·Y ≡ BXY. As they proved, it is equivalent
to a sequencing of X andY,where X ·Y first performs X , thenY, on a sequence
of arguments. For sequencing to work X must be a regular combinator, i.e.
it must not change the order of its first argument. Therefore, T cannot be a

sequencer, because T
def
= λxλy.yx.

Its import for monadic CCG is that T cannot be part of a monad that con-
tains Table 6. Take TB f gh, which reduces to fBgh, and there is no possibil-
ity of reaching a normal form. This would abruptly stop the monad after its
first step. The relevance of this result to efficient computation will be evident
in the next section, but first let us look at what more is at stake with T.

Sequencers 193

Table 6. Phonology-driven encoding of monadic dependencies (cf. Table 2).

X/�Y → (X/�Z)/(Y/�Z) >B

Y\�Z → (X\�Z)/(X\�Y) <B

X/×Y → (X\×Z)/(Y\×Z) >B×

Y/×Z → (X/×Z)/(X\×Y) <B×

X/�Y → ((X/�Z)|W)/((Y/�Z)|W) >B2

(Y\�Z)|W → ((X\�Z)|W)/(X\�Y) <B2

X/×Y → ((X\×Z)|W)/((Y\×Z)|W) >B2
×

(Y/×Z)|W → ((X/×Z)|W)/(X\×Y) <B2
×

(X/�Y)/�Z → (X/�Z)/(Y/�Z) >S

Y\�Z → (X\�Z)/((X\�Y)\�Z) <S

(X/
×
Y)\

×
Z → (X\

×
Z)/(Y\

×
Z) >S×

Y/×Z → (X/×Z)/((X\×Y)/×Z) <S×

(X/�Y)|Z → ((X/�W)|Z)/((Y/�W)|Z) >S′′

(Y\�W)|Z → ((X\�W)|Z)/((X\�Y)|Z) <S′′

(X/×Y)|Z → ((X\×W)|Z)/((Y\×W)|Z) >S′′
×

(Y/×W)|Z → ((X/×W)|Z)/((X\×Y)|Z) <S′′
×

X/�(Y|Z) → (X/�(W|Z))/(Y/�W) >O

Y\�W → (X\�(W|Z))/(X\�(Y|Z)) <O

X/×(Y|Z) → (X\×(W|Z))/(Y\×W) >O×

Y/×W → (X/×(W|Z))/(X\×(Y|Z)) <O×

A set-theoretic formulation makes it easier to see that T is a monoid itself
in a system of binary combination. Recall Lambek’s (1988) definition of type-
raised categories, for example S/(S\N) as N,S where he also noted (NS)S =

N.S Given three functions f ,g and h in space NS we have f ◦ (g ◦ h)⇔ (f ◦
g) ◦ h, where ◦ is binary composition. The identity element of the monoid
is λ fλx.x f for f ∈ N.S The meaning of this result for our present concern
is that the monoid adds further bracketings of the same string, therefore it
is not part of the core system, and it must be controlled lexically to stop the
overgeneration of surface constituency.

The idiosyncrasy of the syntacticized T (type raising) and the argument-
hood requirement on its application (it applies to argument types to yield

194 Monadic computation by CCG

functions from functions that require such kinds of arguments) also suggest
that type raising must continue to operate in a lexically constrained manner.
The alternative, which is to incorporate T as X/(X\Y) in Table 6, leads to
nonmild-context-freeness, as Hoffman (1993) showed. Similarly, the back-
ward variety X\(X/Y) must be avoided. Thus T’s problems with sequencing
are confounded by its uncontrollable power of producing categories indefi-
nitely without advancing the computation, if let to operate freely.

Although lazy evaluation can be called in to force a freely operat-
ing T to terminate in a parsing configuration, the problem withT is not
only effective computability or disruption of sequencing. An implication of
Curry and Feys’s (1958) results is that T is not dependency-encoding but
dependency-preserving: T= CI. Thus T f a= CI f a= Ia f = a f . The combi-
nator C encodes a dependency between the head x and its arguments y and z
in Cxyz, but this is neutralized by I in CI f a. There is no lexical resource in I

to encode a dependency, which by definition needs a head.
It is therefore not surprising that Tmust be part of the lexicalized gram-

mar, either built into the lexical categories or operated as a lexical (unary)
rule, and it must not be in the set of common dependencies that feed into
application. And without T’s disruption of sequencing, other combinators
manifest monadic computation with respect to application.

4. The CCG monad

A monad in Category Theory is a triple (M,η ,μ) where M is the type con-
structor, η is the function to inject values into the monad by monadic type
construction, and μ is the function that threads the computation within the
monad. All monads can be characterized as below, where we need to fix η

and μ to get a particular computation (’→’ here represents a function’s type).

(13) η : κ →Mκ

μ :Mκ → (κ →Mρ)→Mρ

In our case, μ threads dependency and application. The computation engen-
dered by CCG is known as the reader monad or the parser monad in pro-
gramming languages (see Hutton 2007), which we can define as follows:

(14) Let CCG-M=(M,η ,μ), such that
ηc= λx.(c,x) :Mκ , for c,x : κ ,
μ = S. Thus μ a(dU) = Sa(dU) =

The CCG monad 195

λx.ax(dUx) : Mκ → (κ →Mρ)→Mρ ,
where d is the dependency function, U is the set of dependencies in
Table 6, and a is application.

Monadic computation has been known in computing since Wadler (1990)
and Moggi (1991). The monadic nature of function application was pointed
out earlier by Shan (2001), who was also among the first to point out the
relevance of monads to natural language computation. Later, Barker and
Pryor (2010) have shown that Jacobson’s variable-free semantics constitutes
a reader monad as well (her g and z; see §6.3).

The inner workings of the CCGmonad in (14) can be described as follows.
The Mκ types will be pierced into κ types in the monad to do its computa-
tion; note the function type of d, viz. κ → Mρ . The output of the monad is
of type Mρ , which is the sequence containing a singleton result category be-
cause of the uniqueness of the dependencies in Table 6. The abstraction ηc
injects an ordered pair of categories (of type Mκ) into the monad.102 The re-
sult of the process d is a monadic homonym of the left component of x inU ,
depending on the right component of x. In simpler terms, if a left-hand side in
Table 6 matches a left component of the input in the monad, and if the right
component in the input matches the domain type of the homonym of the left
component, then the homonym and the right component is returned as a pair.
Failure is reported as �.

The result of the monad is the result of process a, which can be forward
application of CCG, backward application, a binary use of a common depen-
dency in U (Table 6), or failure, reported as ⊥. Function a applies the result
of (dUx) to the input in x. Thus the knowledge of common dependencies is
kept in the monad as its internal affairs.

Some examples can clarify the mechanism. Assume that we inject into
the monad the sequence (S\NP,S\�S). The evaluation of the process (dUx)
yields ((S\NP)/(S\�S), S\�S) by (<B). Function a becomes the forward ap-
plication of (S\NP)/(S\�S) to S\�S. If the input were (NP, S\NP), the process
(dUx) would return � because no common dependency manifests a leftward
nonfunctor type such as NP. The process (ax�) then becomes backward ap-
plication, where x is the pair (NP, S\NP).

Consider now the input (S/NP, NP). Process (dUx) returns � because
no dependency in U can match NP as the domain type, and (ax�) becomes
forward application. The monad would report failure (⊥) for the ordered pair
(N, (N\N)/NP) because neither d nor a succeeds.

196 Monadic computation by CCG

To avoid confusion of monadic CCG derivations with standard CCG
derivations which decorate rules on the right-hand side of a line of deriva-
tion, I index the monadic derivations on the left-hand side of a line, and write
the monadic combinator that led to the successful application of (14):

(15) a. Wittgenstein loathed and Kafka adored mentors.

S/(S\NP) (S\NP)/NP
>B

S/NP
b. Articles which I will file without reading

VP/NP (VP\VP)/Cing Cing/NP
>B

(VP\VP)/NP
<S×

VP/NP

Example (15a)’s inner workings can be fleshed out as a two-stage process of
one-step computation by CCG-M, as in (16).

(16) Wittgenstein loathed

S/(S\NP) (S\NP)/NP
. 1
(S/NP)/((S\NP)/NP)
. 2

S/NP

It first applies (>B) of Table 6 to S/(S\NP) to get (S/NP)/((S\NP)/NP) by
process d, then forward-applies it to the category of loathed to yield S/NP
by process a. This is binary B as a two-stage process, shown in dotted lines
above.

There is no unary application of the combinatory dependencies by the
monad; the unary dependencies of process d must always thread through pro-
cess a. If allowed unary application would be a dangerous practice because
we know that unary Bmust not operate freely in syntax. I repeat the relevant
examples, where (17b) attempts unary B:

(17) a. I think that Wittgenstein might have liked Kafka

VP/S′ S′/Sfin Sfin
b. *I think Wittgenstein that might have liked Kafka

NP S′/Sfin Sfin\NP
1B

(S′\NP)/(Sfin\NP)

S′\NP

The CCG monad 197

The only monadic dependency that can force (14) to combine ‘that’ with
‘might have liked Kafka’ is (>B×) below (repeated from Table 6):

(18) a. X/×Y → (X\×Z)/(Y\×Z) (>B×)
b. that might have liked Kafka

S′/×Sfin Sfin\NP
>B×

S′\
×
NP

However, this combination requires the lexical assumption S′/×Sfin for the
complementizer, which is empirically inadequate: we cannot derive the fol-
lowing fragment.

(19) the field I think that Kafka liked

S′/×Sfin Sfin/NP
??

We can radically lexicalize the contrast in (18) and (19) in the category of that
without further assumption, which must be S′/�Sfin, as standardly assumed in
CCG:

(20) that Kafka liked

S′/�Sfin Sfin/NP
>B

S′/NP

Likewise, a freely operating unary S is dangerous. Consider the Welsh
examples again, from Awbery (1976: 39). Although the category (S/S′)/NP
is sound for the complement-taking verbs (21a), the word order instigated by
a unary S from this category is ungrammatical (21b). Welsh is strictly VSO,
and the verb must avoid unary S.

(21) a. Dymunai Wyn i Ifor ddarllen llfyr.
Wanted Wyn for Ifor reading (a) book

(S/S′)/NP NP S′

‘Wyn wanted Ifor to read a book.’

Welsh

b. *Dymunai ddarllen llfyr Ifor

(S/S′)/NP S′/NP NP
>S

(S/NP)/(S′/NP)

Thus we can assume dependencies to operate freely within the monad,
where they only serve as an input to binary juxtaposition. The same can
be said about combinators, which no longer decide rule choice and simply
project dependency encoding.

198 Monadic computation by CCG

Combinatory modalities encoded in slashes continue to do nonredundant
work in the syntacticization of monadic dependencies. For example, given the
sequence (S\�NP, S\�S), process (dUx) can only produce ((S\�NP)/(S\�S),
S\�S), not ((S\�NP)/(S\�S), S\�S); cf. the definition of (<B) in Table 6. The
process a of the monad fails because the application (S\�NP)/(S\�S) S\�S
fails. Thus the following expected behavior is respected:

(22) * player that shoots and he misses

(N\�N)/�(S|NP) S\�NP (S\�S)/�S S
>

S\�S
* <B

* S\�NP

Baldridge (2002)

Likewise, the configuration (S\�S, S\�S) fails to make use of the dependency
encoded by (<B) because no left member of Table 6 can match S\�S. There-
fore the relevant monadic relation among the slash modalities is that the input
to the dependency must be a supertype, as before.

5. Radical lexicalization revisited

No combinatory dependency in Table 6 relies on or introduces a star modal-
ity. This move makes all the slash modalities truly lexical because we no
longer need to write the sole combinatory rule of monadic combination, (14),
with modalities. Modalities only encode the differential lexical syntacticiza-
tions of semantic dependencies, for example harmonic versus disharmonic
composition, or no composition.

It is not surprising that the star modality never appears in the repertoire
of common dependencies in Table 6: it does not encode a dependency at all
because it cannot involve a syntactic combinator. This is explicit in a monadic
CCG.

The parsing configurations for imposing the special restrictions on appli-
cation, some of which are listed in §1, are uniquely identifiable in a monadic
CCG as (ax�). This is the condition in which all dependencies fail, and juxta-
position is the only possibility left for combining. This is an important source
of information for the oracle, because it needs a limited window of parsing
contexts, in addition to individual word statistics and some transitional prob-
abilities, to be able to decipher the relevance of special constraints. We can
refine this configuration as (a(X/Y,Y)�) and (a(Y,X\Y)�), to distinguish

Radical lexicalization revisited 199

the unique conditions in which forward and backward application are pos-
sible. These slashes do not need modalities (we can say they bear the least
restrictive type ‘·’) because application is already implicated by �. There-
fore, there is only one primitive of combination, viz. the function μ in the
monad (14).

The cryptic notation of monadic CCG is for a good cause. It manifests the
same dependency as the ternary, binary and unary equivalents in the standard
notation, but embodies (i) phonological precedence, (ii) semantic headness
and (iii) the single slash of combination (the always-forward-looking main
slash without modalities), all in the left-edge of a combination. A comparison
of the alternatives for backward crossing composition below show that this is
indeed the case.

(23) Y/×Z : g X\×Y : f Z : a → X : f (ga) (ternary)
Y/×Z : g X\×Y : f → X/×Z : λx. f (gx) (binary)
Y/×Z : g → (X/×Z)/(X\×Y) (unary)

: λ fλx. f (gx)
(X/

×
Z)/(X\

×
Y) X\

×
Y : f → X/

×
Z : λx. f (gx) (monadic)

: λ fλx. f (gx)
For example, the directionality of all functions and arguments are preserved.
Compare the ternary version with the monadic one. Z’s directionality is for-
ward, Y’s directionality is backward, and X as the result is not associated
with a directionality. All of these are maintained in the monadic version. The
head functor, f , is anticipated in the monadic variety from the phonologically
earlier string.

We can assume for the benefit of the computationalist treatments of lan-
guage acquisition that all three aspects (i–iii) above are conveniently located
in the first category, and that the monadic version can be compiled out from
the standardly assumed binary version.103

All syntactic dependencies are forward-looking in Table 6, as one would
expect from a phonology-driven base for a strict competence grammar. All of
them arise from the semantics of combinators noted on the far right, and all
of them are forward juxtapositions, as expected from the syntactic correlate
of the phonological attachment.

Finally, note that in the CCG monad of (14) the dependency computation
by process d terminates in O(k) time through a naive search algorithm, where
k is the size of the set (a constant) in Table 6, if the set does not containY,K or
I. No data have been forthcoming for a syntacticization of these combinators.

200 Monadic computation by CCG

6. Monadic results and CCG

As is evident from Table 6, the monadic grammar described in this chapter
is functionally equivalent to CCG. It avoids unary use of combinators, and it
is forced to keep T out of the monad, which is similar to CCG’s substantive
constraints on type raising. So what good is a monadic CCG? The monadic
perspective imports several results to CCG, as follows.

The asymmetry of application and dependency in feature projection sug-
gests potentially different treatments of these aspects. The dependencies must
always project (they are the opaque part of the monad) whereas application
can “close off” a projection for a specific feature. These are different kinds
of parsing actions. This is explicit in a monad. The distinction seems crucial
for interfacing parsers with other components of language processing, for ex-
ample with inference systems, learning systems or with systems of discourse
and pragmatics.

Application in CCG can be reduced to a single primitive of parsing action,
viz. juxtaposition, as originally intended by Schönfinkel (1920) for combi-
nators almost a century ago. This potential simplification, at least in theory,
shows that CCG adds no auxiliary assumptions to engendering constituency,
dependency and structure from order alone.

The binary syntax of CCG follows not only from empirical concerns over
unary and ternary B and S, but also from juxtaposition itself. The reason is
as follows. If CCG is indeed monadic, then dependency projection must be
internal to the monad, therefore the dependencies that are shunted into the
monad cannot differ in arity. Nor can they combine by themselves if their
output must feed into a primitive. The only noncombining unary-operating
combinator is T, which does not instigate a dependency, and which is itself a
monoid with severe limitations. We have good mathematical, computational
and linguistic reasons to leave it out of the syntactic combiners. The last two
aspects have been known for quite some time (e.g. Steedman 1987, 2000a,
Komagata 1997, Hoffman 1993, Eisner 1996). The monadic perspective re-
lates the two aspects to the mathematics of sequencing.

We would not expect to see in natural language syntax the kinds of depen-
dencies Smullyan (1985) attributed to his admittedly odd combinator birds:
Finch, Owl, Queer Bird, Quirky Bird, Robin, Turing Bird and Vireo. Like

Monadic results and CCG 201

Thrush (T), they are irregular combinators hence not sequencers. (A combi-
nator is regular if it does not change the order of its first argument.) Although
we can conceive a monadic organization of T (which is a monoid) and the
set of common dependencies in Table 6 (which is a monad), in the form of a
layeredmonad (Filinski 1999), which is to say that T can prepare input to the
monad in (14), or apply unarily to its result, there is no indication that other
spoilers add up to a monad with that layered monad. Considering the fact that
T is part of the minimal apparatus BTSwhich captures the unorthodox but
fully interpretable constituencies, these kind of dependencies do not seem to
be relevant to natural language computation.

Hoyt and Baldridge (2008) derive the binary rules of CCG from unary
B, S and T. Monadic CCG suggests that going the other way, i.e. deriving
the unary dependencies from combinatory rules to factorize dependency and
application is revealing too, theoretically and empirically. For one thing, we
must assume the “derivational oracle” of the same derived meanings to be the
speech data themselves, i.e. tones, tunes, stress and pitch accents. The reasons
are as follows.

Hoyt and Baldridge introduce on the formal side inert slashes to do normal
form parsing, and to derive the CCG rules from unary combinators. They also
need a structural postulate in lieu of a switch to do normal-form versus left-
branching parsing. We would like to be able to assume that the data contains
the right source for disambiguation.

This is a forced assumption in a monadic CCG. Consider an inert-slash
formulation of a homonym of (>B), taken from Hoyt and Baldridge:

(24) X/�Y : f → (X/�
! Z)/(Y/�

! Z) : λgλx. f (gx)

Monadic dependencies are opaque inputs to function application, thus we
would be forced by this rule to introduce the antecedent-government seman-
tics of ‘!’, equivalently the ‘-LEX’ restriction on the slash following Steed-
man’s (1996b) semantics for it adopted by Hoyt and Baldridge. Now we have
to introduce ‘!’ to all (>B) homonyms of X/�Y . The rule above would force
the monadic homonym to always require Z to be nonlexical, hence this con-
straint would not necessarily arise from a lexical category as one would ex-
pect.

An inert slash is fine as an option in the lexicon, but its introduction by
a monadic homonym is problematic. Using the inert slash to avoid spurious
derivations must then be reconsidered in light of the richness in the data.
Take [[John likes]Mary] and [John [likes Mary]]. Normal-form parsers (for

202 Monadic computation by CCG

example that described in Eisner 1996) would eliminate the first alternative
unless it is in a substring such as the lady I believe John likes, but these
derivations are not spurious until we know the context and intonation in which
the utterance took place:

(25) a. Who does John like?
b. Why does John avoid Mary?
a′. [[John likes]Mary]
b′. [John [likes Mary]]

Both bracketings in (25a′–b′) are possible analyses as an answer to the first
question. The first analysis is spurious for the second question. We can as-
sume, following Steedman (2000a), that the intermediate phrase boundary
tones in an answer to the second question would not allow the bracketing
[John likes] anyway. They have their own syntactic type, and in a modalized
CCG, these types could not be composed over; they are S$\�S$.

It is mainly the text data, i.e. information loss, that should make us wary
of spurious derivations. Then we are left with spurious derivations within
an intermediate phrase to worry about, which are related to focus projection
and quantifier scope as well (Prevost 1995, Komagata 1999, Steedman 1999).
Therefore it might be preferable to filter them out only after they are engen-
dered, as done by Vijay-Shanker and Weir (1990), rather than avoid them
syntactically as Eisner (1996) does. We can be aware of these consequences
when we derive the unary dependencies from binary ones, as in the monad.

Monadic grammar might also suggest a principled way to answer the fol-
lowing question: why is the only kind of syntactic abstraction related to the
primitive (juxtaposition)? Why can’t we have B-abstraction, say in the re-
verse direction of (>B) in the universal syntax of CCG?

Nothing can undo or redo a derivation to the extent of reconsidering the
projection of lexically specified semantic dependencies. This is what com-
binators do on the PADS side of the words in the lexicon, which is directly
reflected on their syntactic type. This follows not from a principle or a stip-
ulation, but from the inherent asymmetry of sequencing the processes of de-
pendency projection and application. The asymmetry is explicit in a monadic
grammar.

Finally, let us reconsider the computational problem of language acquisi-
tion (§9.5) from a monadic perspective.

CCG has concentrated so far on head-driven approaches to the acqui-
sition of categories (e.g. Niv 1994, Villavicencio 2002, Zettlemoyer and

Monadic results and CCG 203

Collins 2005, Çöltekin and Bozsahin 2007). A left-dependent monadic gram-
mar forces us to follow a phonological line exemplified in Table 6. Seman-
tics helps to narrow down the hypothesis space, thus the proposed sketch
assumes—following Steedman and Hockenmaier (2007) and Chomsky—that
the root of the problem is grammatical bootstrapping rather than syntactic or
semantic bootstrapping.

The idea of the sketch coincides with a remark by Chomsky, quoted as
personal communication by Hornstein (1995):

The basic point seems to me simple. If a child hears English, they [sic] pick
up the phonetics pretty quickly (in fact, it now turns out that many subtle dis-
tinctions are being made, in language specific ways, as early as six months).
The perceptual apparatus just tunes in. But if you observe what people are
doing with language, it is subject to so many interpretations that you get only
vague cues about LF.

This is entirely consistent with computationalist language acquisition out-
lined in §9.5. Recall that in that way of thinking the so-called universal gram-
mar, in present terms the invariants and the constitutive principles for cate-
gories, sets up the prior probabilities of day one. The child’s confidence in a
category for strings, a posterior probability, is updated by a learning scenario
where possible derivations set the stage for the likelihood, fostered by priors
updated by experience.

Monadic grammar’s contribution to this process is making phonology the
driving force, where the left edge is not necessarily the semantic head as
can be seen in Table 6. In any belief update on categories, we first see the
left edge of a derivation, which is temporally the first part of a combinatory
context. But the whole process cannot depend on phonology, because a left-
dependent has many potential results the resolution of which depends on the
right-dependent (i.e. expectation), and on the child’s beliefs about the cate-
gories, that is, on her lexicon.

The potential result can be ambiguous only if the child’s assumptions
about the strings are ambiguous, because monadic application is always func-
tional, given two adjacent types. Therefore any source of ambiguity must
emanate from lexical types, or forced on the system from the outside, to be
handled by an oracle. The process in between is an algorithm, which I wrote
as the monad CCG-M.

Chapter 11
Conclusion

We started with Schönfinkel, then moved to Chomsky, Curry, Lambek,
Geach, Bach, Montague and Gazdar, and reached Steedman, Szabolcsi and
Jacobson as the progenitors of rule-to-rule semantics in applicative syntax, be
it natural or formal. We ended with Schönfinkel through monadic grammar,
where there is only one rule of syntactic combination. We dealt mostly with
combinatory matters and only occasionally with set-theoretic ones, which de-
serve a book of their own.

Schönfinkel’s ingenious method of variable elimination reveals adjacency
as the sole basis of semantics, which, by virtue of Steedman’s syntacticiza-
tion, is also the sole basis of syntax. Ades and Steedman’s (1982) Adjacency
Corollary is an independent discovery of syntactic interpretability by juxtapo-
sition alone, where they provide the first syntacticization of B. Geach (1972)
is perhaps the first mention of combinators in syntax, where he follows Quine
rather than Schönfinkel in variable elimination. I will come back to this point
shortly.

It seems clear that Steedman’s program is not the elimination of vari-
ables but keeping adjacency as the only base for syntax, which exports di-
rect and immediate interpretability to constituents. His choice of LF as a
level of representation attempts to resolve some unsettling issues of imme-
diate interpretability, namely that of pronouns and scope variation, precisely
because their semantics do not seem to arise according to Steedman from se-
mantics of order alone. The variable-free semantics of Jacobson appears to
have a different agenda, where adjacency in surface structure can be compro-
mised, such as by a potential consideration of wrap for the benefit of (almost)
interpretation-ready semantics, given some model-stage storage for binding
and scope. Here adjacency is a cherished assumption but not a must. The key
issues in the debate appear to be the impact of type-shifting rules on com-
putational efficiency, the predictive force of positing or not positing an LF,
and the unsettled nature of intermediate scope readings and others that fall
between the cracks in scope-taking.

Combinators are not alone in persisting that only order leads to structure in
cognitive science. Elman’s (1990) simple recurrent networks take the notion
of time out of input representations, and predict its structure from sequential

206 Conclusion

representations. The lesson we learned from such kind of connectionism is
not only that symbols need some representational support, but that the inher-
ent asymmetry of sequential representations can change the way we look at
cognitive problems. The same can be said about combinators.

Schönfinkel’s desire to find the foundations of mathematical logic has be-
come a linguistic theory in CCG in which the only primitive is his Schön-
finkelization of argument-taking objects by which not only arguments but
functions can be passed on as values. Curry’s similar aspirations have given
us functional programming par excellence.

Curry’s brief foray into linguistics, Curry (1961), suggested another way
of handling natural language syntax-semantics where a combinatory calculus
drives the logical aspects (he had called it the tectogrammatical level). A sep-
arate syntactic calculus (his phenogrammatical level) works on the surface
structure engendered by words and phrases.104 This line of research culmi-
nated in what is known as Applicative Grammar (Shaumyan 1977, 1987) and
Convergent Grammar (Pollard 2008a).

It is interesting that Chomsky (1961) was in the minority in the famous
symposium that was held in New York in April 14–15 1960, which also in-
cluded papers on mathematics and language by Curry, Halle, Harary, Hock-
ett, Jakobson, Lambek, Mandelbrot, Putnam, Quine and Yngve, among oth-
ers. He suggested contra Curry and many others in the meeting—Lambek
excluded—a unification of grammatical description, rather than having sev-
eral syntaxes. I believe he was right to insist on this approach, although his
own theories took a winding road in the matter. Remember the kernel sen-
tences versus derived ones, the optional versus obligatory transformations,
cyclicity and rule ordering, move-everything versus move and merge, deep
and surface structures versus interfaces. The recent convergence of radical
lexicalism and minimalism suggests that we have now less degrees of free-
dom to hypothesize about possible categories, therefore about possible gram-
mars, and we can import each other’s results.

The amount of semantics we expect to squeeze out from the syntactic
categories is crucial in this debate. If we keep our radar too narrow, as in
Chomskyan transformationalism, it seems that we need to make an array of
auxiliary assumptions. If we open wide, we would have no choice but do
syntax with semantic types, and not even Montague went as far as that. The
middle ground seems to be the rule-to-rule-hypothesis of Bach, which was
implicit in Chomsky’s early writings, which, once radically lexicalized, puts
a natural limit to what kind of semantic types can be put in correspondence

Conclusion 207

with the syntactic ones. It seems that adjacency can serve both ends without
extra assumptions.

It is also worth noting that, if the next simplification in transformation-
alism is the elimination of move, as some practitioners of the theory have
already proposed (Epstein et al. 1998), then what we will get is essentially
some version of categorial grammar, modulo morphology. (Distributed Mor-
phology seems to fill that gap nicely, although its computational properties are
understudied at the moment. Autosegmental morphology of McCarthy 1981
is better-known in this respect; see e.g. Bird and Ellison 1994, Kaplan and
Kay 1994.) Epstein et al. indeed acknowledge that on the semantic side the
states of affairs would look very much like a Montagovian categorial gram-
mar (Epstein et al. 1998: 13), but with some effort to bring in the syntactic in-
structions about compositional semantics as a residue of derivations, namely
the cyclic delivery of partial results. The point of CCG is that semantics is
available at any time.

Four independent developments, namely Chomsky’s formalized notion
of grammar, Lambek’s inauguration of radical lexicalism, Schönfinkel and
Curry’s conception of semantics in order, and Steedman and Szabolcsi’s syn-
tacticization of the same transformed Chomsky’s ‘rule of grammar’ to ‘cate-
gory of a word’, and ‘knowledge of language in grammar’ to ‘knowledge of
words’.

Radical lexicalism as first demonstrated in the 1960 conference by Lam-
bek grew out of the unification of the grammatical description, and its pre-
dictive powers for possible linguistic categories far outweighed the simplicity
and elegance arguments of the multi-level syntactic approaches with “purer”
strata. It is largely a theoretical debate which is not supported computation-
ally.

In turn, computationalism as manifested in the combinatory knowledge
of words puts some flesh in Wittgenstein’s theory of meaning-is-use, by re-
flecting a personal history of word usage, both personally and per word, its
potential misunderstandings, but no misrepresentation of it. Fallible knowl-
edge is genuine knowledge explicitly represented in a category. The result
that it must incorporate some detailed statistical knowledge in tandem with
combinatory knowledge should not be surprising to anyone who has followed
the research in language acquisition, machine learning and computational lin-
guistics.

We can now go back and study Quine’s appraisal of Schönfinkel’s work. I
repeat Quine’s commentary cited in the introduction:

208 Conclusion

It was letting functions admit functions generally as arguments that Schön-
finkel was able to transcend the bounds of the algebra of classes and re-
lations and so to account completely for quantifiers and their variables, as
could not be done within that algebra. The same expedient carried him, we
see, far beyond the bounds of quantification theory in turn: all set theory was
his province. His C,S,U and application are a marvel of compact power. But
a consequence is that the analysis of the variable, so important a result of
Schönfinkel’s construction, remains all bound up with the perplexities of set
theory. Quine (1967: 357)

His own solution to variable elimination, Quine (1966), needed a meta-theory
to avoid the problems he had pointed out, whereas Schönfinkel’s theory was
an object-level theory, which led to direct syntacticizability without levels
or strata. His understandable concerns for set theory are not imported into
this syntacticization, because this is combinatory syntax, not set-theoretic.
Semantic objects are not sets but predicate-argument structures embodying
semantic dependencies, which are structural domains in need of a primitive
for construction.

By direct import from the elimination of variables at object language, con-
stituents are built by syntacticization of the same primitive. This might help
us see the sister theories of CCG such as Construction Grammar (Goldberg
1995, Croft 2001) and Dependency Grammar (Hays 1964, Hudson 1984,
Mel’čuk 1988, Kuhlmann and Nivre 2006) as wanting an explanation why
we have the constructions we observe in languages, and why we see only
certain kinds of dependencies and constituencies. I have exemplified quite
a number of the last kind, ranging from traditional constituents such as VP,
NP etc., but also the unorthodox strings that seem to have immediately inter-
pretable subpieces thanks to combinators, such as I say three mathematicians
in ten and you claim four philosophers in five prefer corduroy, or I can, and
perhaps you will, try to sing ‘Flaming.’

The combinatory process has its limits because it cannot make a compo-
sitionally uninterpretable fragment a constituent. It cannot call a fragment a
constituent and not immediately deliver a compositional meaning for it. I can
you sing is a word salad although some parts of it are not, and I can you
is parasitically interpretable in a gapping environment such as Barrett’s You
can’t see me, but I can you.

Whether that makes it a constituent is hard to tell from a combinatory
perspective, because the point of combinatory semantics arising from order
alone is that each constituent has the stuff to deliver whatever (partial) mean-

Conclusion 209

ing is available. No such doubts arise about the bracketed substring in (three
mathematicians in) ten; it is a nonconstituent.

There are impossible words too, such as those with Y semantics, and sus-
pect words, for example with K semantics. Some dependencies are more un-
likely than suspect, given the other assumptions of a lexicalized grammar.
For example, it is hard to conceive how John expects that Barry could mean
‘John expects Barry to expect’. For it to mean that we need S semantics where
expect′-like verbs can be the targets of parasitic extraction, in pseudo-English
something like expecti from me that I imagined to _i without wishing to _i.
Noun extraction is common, but verb extraction, especially of this kind, is
unattested. The theory aspires to be explanatory by being as specific as it can
about impossible constituents, and showing explicitly how the possible ones
can be constructed. Unlikely ones are a conspiracy of the types in a radically
lexicalized grammar. In a way, the grammar as a whole symbolizes making
sense of the world of words in their possible combination.

CCG’s neo-Humean answer to the natural limit on constituency and de-
pendency is that all syntactic behavior arises from the self-limiting nature of
codetermination of syntax and semantics in a radically lexicalized grammar
which faces limited combinatory possibilities. That is all adjacency can of-
fer with less than a handful of noninter-definable dependency encoders and
a fully lexicalized grammar.105 Furthermore, we get the immediate assembly
of dependency structures for free by the process of syntacticization, and that
should be a good thing.

The emerging BSO family epitomizes composition because it is of the
form λx. f · ·(g · ·x · ·) in binary. The members of the family represent action
orientation (the predicates are known), and object opaqueness (the argument
is abstracted over). They are also known as sequencers. The other family,
T, represents action opaqueness and object orientation because it is of the
form λP.Pobject′. It is not a sequencer, but it is a facilitator of sequencing, as
the monadic perspective showed. Steedman (2002) relates the first family to
action planning, and the second to affordances.

Taken together with the other ingredients of human cognition, most impor-
tantly, awareness of other minds and their affordances, they provide a simple
ground for semantic recursion and its syntactic reflex without entangling our-
selves in the debate about the necessity of syntactic recursion (recall the lack
of theYKI family among the potential candidates for syntacticized dependen-
cies, which means that, at least in theory, syntactic recursion is not necessary
to capture semantic recursion). Therefore, it seems possible that language and

210 Conclusion

other cognitive activity in primates can be related evolutionarily if seriation
is the key.

I will close the book by projecting back in time about adjacency. A
speculation-wary reader might consider this point to be the end of the book.
I will be drawing on some proposals and add a bit of speculation of my own
about whether this alternative foundation for grammar—order and its seman-
tics giving us limited constituency and dependency in syntax, has something
to add to the studies on language evolution.

Perhaps, but with a caveat, and with some hesitation. First we must re-
member that Darwin had called his book The origin of species, not The origin
of life. The diversification and evolution of languages once we have acquired
the hereditary capacity for language with big L appears to be a different mat-
ter than how this seemingly unique capacity came about in the first place;
see for example Knight, Studdert-Kennedy and Hurford (2000) for extensive
discussion, and the ensuing debate. I will concentrate on the emergence of
language with big L.

Take Chomsky’s views on the topic, which suggest no intermediate forms
of language, Bickerton’s (1990) saltational view, Jackendoff and Pinker’s
(2005) Baldwinian adaptationist view, and Deacon’s (1997) Baldwinian view
without a universal grammar. The first three arise from the syntactic structure-
dependence of syntax, and Deacon’s view seems congenial to the emergence
of type-dependence as manifested in all categorial grammars because the
word does most of the work.106 Recall that knowledge of words is not a sim-
ple competence of lexical look-up in the present discussion; it is combinatory
knowledge, that is, a piece of syntax.

Chomsky’s view is not surprising because the phrase structure tree with
possibly empty elements in it seems to be such a unique source (not even
the transformationalist lexicon is constructed from the same source), we can
hardly expect to see some precursors or progeny in other cognitive activities.

Recall also that recursion is everybody’s assumption in semantics, and
syntactic recursion is something we can live without. It is unhelpful to take
syntactic recursion as an empirical fact and build a theory of language on it,
including its evolution (see Hauser, Chomsky and Fitch 2002). Genuine syn-
tactic recursion is depicted in (1a) alongside semantic recursion (1b) to show
the difference. (1a) is a direct syntacticization of Y semantics whereas (1b) is
semantic recursion as a tree. Note also that (1c) is not the same as (1a); one
is an anaphoric dependency and the other is a recursive dependency. It seems
safe to say that no language has demonstrated a dependency of type (1a).

Conclusion 211

(1) a. S

NP VP

V

b. S

NP VP

V S

c. Si

NP VP

V _ i

Bickerton’s (1990, 1996) protolanguage might appear to be similar to
adjacency, perhaps to the applicative fragment without combinatory depen-
dencies, but that fragment also gives us context-free dependencies as Bar-
Hillel, Gaifman and Shamir (1960) proved. Maybe that is what it was, maybe
not. It seems to go over and above what Bickerton intended as protolan-
guage, because we have reasons to believe that context-free dependencies
go a very long way in capturing most of the dependencies we see in today’s
languages; GPSG was one bold attempt at this task (see Gazdar et al. 1985).
The argument-taking fragment sketched in the beginning of the book does not
seem to be the niche for protolanguage either because it arises from the same
base as combinators, which makes it unlikely that the emergence of language
as a combinatory faculty is saltational as Bickerton suggested.107

Although Chomsky, Bickerton and Pinker differ in many ways about the
origins of language, they share the same assumption that universal grammar,
for them being a language-specific set of instructions about syntax, grows
into an adult-state grammar from an initial state. The knowledge in the uni-
versal grammar must include—as of 2009: the syntactic principles, merge,
move, check, select, numerate, empty category governance, functional cat-
egories and their management, syntactic structure-dependence, and several
parameters, either abstract or cognitively realized—the latter variety is en-
dorsed explicitly in popular writing (Baker 2001, Yang 2006). We should
assume that it comes with some allotment for bilingualism and trilingualism,
along with some precautions for potential conflicts among parameter values
or in their order of valuation—recall that there are arguments for a universal
order of parameter setting by Baker.

The computationalist alternative to parameter setting is the exponential
decay of probabilities as experience is accumulated, not over a long period,
but within the confines of a few related experiences, which might give the
appearance of a sudden switch setting, as Steedman and Hockenmaier (2007)
argued. Some proposed sequencing of parameter valuation, such as the pri-
macy of head-directionality in Baker (2001), has a head start in a radically
lexicalized grammar, but not as an on-off switch. It is encoded in every single

212 Conclusion

linguistic hypothesis about syntactic knowledge of words. (Or we can turn
the table around and say that combinatory theory predicts head-directionality
to be the primary parameter in a theory of parameters; the lack of clear trends
in the setting order of other parameters in Baker’s repertoire seems to suggest
that they are more about lexical organization, hence about lexical syntactic
types, e.g. the ergativity parameter and the serial verb parameter.)

This argument for an alternative view begs the following question: How
can we assume every single hypothesis to carry directionality when it is much
more convenient to set it for all of them at once?We can calculate a child’s po-
tential of making sense of the world if she thinks half the verbs she hears are
SVO and the other VSO in a language like English. Insisting on her VSO hy-
potheses would put her at exponentially increasing risks of gawking at moth-
erese. In the English case, VSO is a clear loser and might show a parameter
effect. The survivors happen to have the same head-directionality, without a
parameter. For Turkish, this parameter faces problems. OVS, SVO and VSO
put together are nearly as common as SOV in child language (Slobin and
Bever 1982, Aksu-Koc and Slobin 1985). (Precise numbers are 53%, 37%,
and 10%, for SOV+OSV, SVO+OVS, and VSO+VOS, respectively.) The age
range for this performance is (2;3-3;8). Ekmekçi (1986) reports that, at (1;10),
OV and VO are produced by the child. When children were asked to imitate
motherese word order, they were successful 72% (SOV), 60% (OVS), 46%
(SVO), 43% (OSV) of the time, at mean age (3;3) (Batman-Ratyosyan and
Stromswold 1999). We would expect other parameters to be subsequently
effected by this very flexible parameter value, because of the presumed pri-
macy of head-directionality. The problem of charting the precise timing of
parameter settings would be replaced in computationalist models by the task
of understanding the complex interactions of linguistic hypotheses, assuming
a somewhat uniform motherese topics. Directionality will be there from day
one.

The computationalist perspective is considered to be a resurgent em-
piricism of the Humean kind (but not necessarily the Lockean kind—see
Machery 2006 for some cogent warnings and extended discussion), in which
Hume’s associationism is not taken as the inner cause, but as the source
of toolboxes in a computational mechanism (of resemblance, contiguity and
causation), such as in acquisition and inference. (My personal attempt at these
tasks was Bozsahin and Findler 1992, where we relied on, as in the works
of others cited there and in the models developed later, the Humean con-
straints on the hypothesis space.) Combinators too can be naturalized tool-

Conclusion 213

boxes. Call them spandrels if you like, but crucially, they will be of Dennett’s
(1995) kind, not Gould and Lewontin’s (1979), because they are not neces-
sary mechanisms, just good solutions to a variety of interrelated problems
about sequencing.

Combinatory grammar and its radical lexicalization suggest limited in-
variant combinatorics in lieu of universal grammar. This seems to require a
symbolic base (and seriation) which the language must tap on, and perhaps
only that. Deacon (1988, 1997) has shown a way how indexical here-and-now
knowledge can give rise to internal self-reorganization to lead to symbol sys-
tems. Turing (or discrete) representability seems necessary for that, as argued
in the book.

Steedman (2002) suggests the involvement of BT in planned and coordi-
nated activity in close cousins of ours, crucially without an LF, suggesting
that LF and the syntactic specialization of the combinatory faculty—the syn-
tactic type—might be the source of language. (As I noted earlier, there are
disagreements about LF.)

If language is a specialization of an earlier combinatory trait (and syntactic
types are indeed different than visual, auditory or procedural combinatory
categories), then we can expect adjacency to play the key role in this. That of
course does not imply that there is evolution for grammars, perhaps not even
for language. The selection pressure might be for better symbol processing,
and more of it.

It seems pointless to expect further exploits of seriation by nature, in the
form of syntacticizing the combinators we have so far not seen in natural
language syntax. The combinatory path for language, if true, would have had
to have been opportunistically selected for a long time, two million years or
more.

In this regard, the combinatory view allows us to reassess certain claims
about exaptationism and creative use of language, the latter understood to be
a product of infinitude. There seems to be no forceful argument to treat them
as facts. Exaptationism as an effect (but not as a cause) is already built in to
Darwin’s theory, as opportunistic selection.

We can put in context the proposals about whether language is a case of
exaptation or opportunistic selection. Take for example Yang’s (2006) title,
The infinite gift. As we have seen, infinitude or finitude does not make lin-
guistic theorizing more (or less) exciting, for we will need a theory even if
language is vast but finite. Whatever the size and bounds, that theory must
be about discrete units—words—if the current reasoning in the book shows

214 Conclusion

promise. And for discretely representable linguistic knowledge, giving se-
mantics to order, and order alone, to lead to structures in language seems to
be a scientifically more conservative start. Likewise, given Darwinian adapta-
tionism and opportunistic selection for combinatory traits, rather than Gould-
style exaptationism, it seems that we would earn the language with big L over
a long time, rather than take it as an exapted gift.

Appendices

A: Lambda calculus

This appendix briefly reviews lambda calculus. It is not a general or comprehensive
introduction to the topic. The material covered relates to the main body of the text
and they are used in it frequently.

Lambda terms (equivalently, λ -terms) are well-formed lambda expressions.
They are recursively defined as follows.

λ -words are constructed from the alphabet

x,y,z, · · · for variables,

1,2,a′,b′ for invariables (constants),

λ for abstractor (lambda binding),

(,) for grouping (parentheses).

λ -terms are the set Λ such that

variables and invariables are in Λ,

ifM ∈ Λ then (λx.M) ∈ Λ where x is an arbitrary variable,

ifM,N ∈ Λ then (MN) ∈ Λ.

By convention, we write multiple lambda bindings with a single dot: λx.λy.xy is
written as λxλy.xy.

Also by convention, lambda bindings associate to the right, and juxtaposition
associates to the left. λxλyλ z.xyz is same as λx(λy(λ z((xy)z))).

A variable is free if it is not in the scope of its lambda binding, bound otherwise.
For example, x is free in x+ 2, λy.x and (λx(a′b′))x. It is bound in λx.x and in
λxλy.xy. Within the inner body of the last lambda term, xy, both variables are said
to have free occurrences because there is no lambda binding in the body.

Lambda conversions are operations that denote equivalences among lambda
terms. When used in the direction of eliminating a lambda binding, they are called
reductions. If a lambda is introduced they are called abstractions.

The conversions rely on the property of substitution for bound variables. Eta
conversion shows the behavioral equivalence of the typed objects with and without
variables. Beta conversion is the main mechanism to establish function application
and function abstraction as two sides of the same coin. Alpha conversion shows the
equivalence of bound variables under substitution. Together they define equivalence
in the function treatment of lambda calculus.

substitution M [a/x] stands for substituting a for free occurrences of x inM.

η-conversion λx. f x=η f , if x is not free in f .

218 A: Lambda calculus

β -conversion λx.M(a)=βM [a/x]

α-conversion λx.M =α λy.(M [y/x]), if scopes of variables in λx.M and
λy.(M [y/x]) are the same.

equivalence M = N iff Ma=α ,β ,η Na, for all lambda termsM,N,a.

Read ‘=’ as ‘behaves the same’, not as ‘identical’. From substitution and beta
reduction, we get λx. f x(a) =β f x [a/x], which is the same as f a, hence the associ-
ation of beta with function application and abstraction. By equivalence, λx. f x = f
too, hence the same behavior when f is supplied with a. The condition on eta con-
version ensures that we do not change the behavior of objects; λx.(λy.yx)x, in which
x is free in λy.yx, is not equivalent to λy.yx. Similarly, the condition on alpha con-
version avoids an accidental capture of the same names, for example λx.y �=α λy.y,
and λxλy.xy �=α λyλy.yy.

Normalization refers to the successive application of a conversion until it no
longer applies. For example, the beta normalization of (λxλy.f ′yx)(a′)(b′) is two
applications of beta reduction giving f ′b′a′. The eta normalization of λxλy.f ′yx is
f ′. Some lambda terms have no normal forms because the process may not always
terminate: (λx.xx)(λx.xx) has no beta normal form.

Normal-order evaluation of a lambda term is the application of beta reduction
to the leftmost outermost reducible expression (redex) first. In (λx.x)((λy.y)a′) there
are two redexes, and normal-order chooses to reduce it to (λy.y)a′, i.e. the application
of the second one, without evaluation, to the leftmost redex. The Church-Rosser
theorem establishes the result that two distinct sequences of reductions from the
same lambda term will yield the same normal form if there is one. For the example
above, it is a.′

B: Combinators

This appendix covers some mathematical aspects of combinators. Much of the book
is about turning combinators into linguistic devices for explanation. These aspects
are covered in the main body of the text.

Combinators are lambda terms with no free variables. As such they epitomize
the compositional behavior of functional objects without a need for variables. By a
convention going back to Curry and Feys (1958) they are written as single letters
in bold. No extra notation is needed to describe their behavior. The ones considered
most basic are defined below. The names were given by Curry and Feys.

B
de f
= λ fλgλx. f (gx) (compositor)

S
de f
= λ fλgλx. f x(gx) (substitutor)

C
de f
= λ fλgλx. f xg (elementary permutator)

T
de f
= λ fλg.g f (commutator)

W
de f
= λ fλx. f xx (duplicator)

K
de f
= λ fλg. f (cancellator)

For example, λx.a′xx is equivalent to λx.Wa′x, which is eta-normalizable to
Wa′.

Combinators established computability about a decade before Turing machines.
Their equivalent power can be seen without proof: K can delete any sequential ma-
terial, S can expand and compose sequences, C can swap their order, which are the
basic mechanisms that give the Turing machines their power. In this sense the Tur-
ing model is a formal specification of an algorithm in detail, and combinators are its
global compositional view.

Normal-order evaluation of combinators evaluates the leftmost outermost com-
binator first. For example,

BSC f ga= S(C f)ga= C f a(ga) = f (ga)a
As in the case of lambda calculus, the process may be nonterminating:

WWW evaluates to itself indefinitely.
For the sake of completeness, I list the well-known combinators in Table 7. The

names in the table are from Smullyan’s (1985) tale of combinators as singing birds.
They are in common use as well.

As Curry, Feys and Smullyan note, there are many equivalences between the
combinators. This aspect opens way to linguistic theorizing about which must be
included in the grammar or in the lexicon, therefore they belong to the main body of
the book.

220 B: Combinators

Table 7. Some well-known combinators

I Ix= x Identity bird
Y Yx= y= xy for some y Sage bird

depending on x
U Uxy= y(xxy) Turingbird108

K Kxy= x Kestrel
T Txy= yx Thrush
W W f x= f xx Warbler
B Bxyz= x(yz) Bluebird
C Cxyz= xzy Cardinal
S Sxyz= xz(yz) Starling
Φ Φxyzw= x(yw)(zw)
Ψ Ψxyzw= x(yz)(yw)
J Jxyzw= xy(xwz) Jay

The power of a combinator is a generalization of its behavior. For example,
Bn f composes f with n-argument functions, whereasB composes two one-argument
functions. It is defined as follows:

X0 = I,
X1 = X ,
Xn = BXXn−1 for n> 1, for a combinatory object X .
Therefore, B2 f gab=BBB f gab=B(B f)gab=B f (ga)b= f (gab). Powers are

not distinct combinators, and they serve a crucial role in generalizing the linguistic
notion of arity.

A supercombinator is a combinator in normal form in which all its argument-
taking lambdas (its lambda bindings) can be grouped to the left, i.e. its behavior
can be made fully transparent looking from the outside. The formal definition is as
follows (from Hughes 1984):

Let S = λx1 · · ·λxn.E where E is not a lambda abstraction. S is a supercom-
binator of arity n if (a) S is a combinator, (b) any lambda abstraction in E is a
supercombinator, and (c) n≥ 0.

In other words, if we can group all bindings before E, and leave no free variables
inside E which must be remembered—bound—outside, then we have a supercom-
binator. Almost all the combinators we have seen so far are supercombinators, but
not all combinators are supercombinators. The function λy.y(λx.yx) is not a super-
combinator because y occurs free in the inner lambda term. Supercombinators will
directly relate to the argument-taking behavior of the linguistic notion of ‘head of a
construction’.

Fixpoint combinators stand out of supercombinators because they allow us to
capture recursion without use of names or variables. One such combinator is Y. Its

B: Combinators 221

definition is given below. Note that Y is not a supercombinator. It finds the fixpoint
of any function h, as shown.

Y
def
= λh.(λx.h(x x))(λx.h(x x))

Yh= h (Yh)
It is truly remarkable that with the use of Y, recursion can be achieved with-

out names. I borrow from a classic in the field of programming, Peyton Jones
(1987: §2.4), to tell the story.109

Consider the following definition of the factorial function, where recursion is
explicit due to naming (which is something we cannot do in lambda calculus).

FAC= λn. IF (= n 0) 1 (× n (FAC (− n 1)))
This recursive definition can be turned into self-application without recursion as

below, because of beta conversion. Note that H is not recursive.
Let H= λ fλn. IF (= n 0) 1 (× n (f (− n 1)))
Then FAC= H FAC
because FACn=β H FACn for any natural number n≥ 0

The point of course is to able to recurse without names on any function, not
just the factorial. This is where the combinator Y can help. The factorial can be
defined without recursion or names. The steps below are borrowed from Peyton Jones
(1987: 27). They show that it does the equivalent of the recursive factorial.

FAC= YH, where H is as defined above.
FAC 1=
Y H 1=
H (Y H) 1=
λ fλn. IF (= n 0) 1 (× n (f (− n 1))) (Y H) 1=
λn. IF (= n 0) 1 (× n (Y H (− n 1))) 1=
IF (= 1 0) 1 (× 1 (Y H (− 1 1))) =
× 1 (Y H 0) =
× 1 (H (Y H) 0) =
× 1 ((λ fλn. IF (= n 0) 1 (× n (f (− n 1)))) (Y H) 0) =
× 1 ((λn. IF (= n 0) 1 (× n (Y H (− n 1)))) 0) =
× 1 (IF (= 0 0) 1 (× 0 (Y H (− 0 1)))) =
× 1 1=
1
The problematic property ofY is that it cannot be reduced to a form which cannot

be reduced any further, thus the only way to stop recursion byY is to reach nonrecur-
sive (base) cases, such as reaching the ‘× 1 1’ step above.110 Below is YK’s infinite
expansion. The base cases are an infinite supply of semantic objects following YK.

YK=K(YK) =K(K(YK)) =K(K(K(YK))) = · · ·
In the book I follow the convention of writing a syntacticized combinator with its

arity as a prefixed subscript. The subscript will be omitted when the arity is same as
its combinatory definition, for example 2 for T andK, 3 for B, S etc. Curry and Feys
(1958) use the notation (X)n for the same purpose where n is the arity, but the use of

222 B: Combinators

parentheses for that purpose is somewhat unfortunate because they do so much work
on the right-hand side of the definitions. Other options such as Xn, Xn, X(n), X[n] are
used for other purposes by Curry and Feys (1958). I note the convention for easy
reference:

For a combinatory object X ,
its arity k in a particular use is denoted as kX . (arity-in-use)
Arity is omitted when it is the same as in X’s definition.
For example, 2T is same as T. 2B is binary use of ternary B.

C: Variable elimination

There is nothing any theory can do if a variable is free to vary. The process of variable
elimination therefore relates to bound variables. It can be done in various way, as
Frege, Schönfinkel, Geach and Quine have shown. This appendix is concerned only
with the possibility of variable elimination. (The manner in which it is done bears on
linguistic theory, and is dealt with in the main body.)

First we note that if all bound variables of a function symbolize the applicative
behavior of the function, i.e. if they are used in the order they are lambda-bound, and
only once, then eta conversion can do all the work, as follows.

λx1 · · ·λxn−1λxn. f x1 · · ·xn−1xn equals, by associativity, to
λx1 · · ·λxn−1λxn((f x1 · · ·xn−1)xn) =η

λx1 · · ·λxn−1. f x1 · · ·xn−1 =η

...
λx1. f x1 =η

f
Therefore eta conversion is equivalent to saying that all semantic invariants are

inherently typed. Once we know that f is say a three-argument function with applica-
tive behavior, then writing f 3 or just f is sufficient.

The rest of the dependencies, for example λx. f xx or λx. f (gx), are not eta-
normalizable without the help of combinators. For example, the first one of these
is eta-normalized as λx. f xx = λx.W f x =η W f and the second B f g. Schönfinkel’s
work showed that two suffice for this task, because S can be seen as a mechanism
of pushing the lambda bindings inside, which will eventually reach a base case such
as λx.x, λx.y or λx.a′, which are lambda terms with the simplest body of functions.
These properties follow from the following equivalences.

(λx.MN)a=β S(λx.M)(λx.N)a
hence (λx.MN) = S(λx.M)(λx.N) from equivalence in lambda calculus.

The elimination is completed by the following equivalences:
λx.y=Ky λx.a′ =Ka′

λx.x= I

The equivalences are applicable to any lambda-definable (hence Turing com-
putable) object. For example, λx.MNP is equivalent to λx.(MN)P because of left-
associativity, thus any number of lambda terms can be handled by S. In case of mul-
tiple abstractions such as λxλy.love′xy, we have to apply S-pushing to the innermost
lambda first.

Knowing that I = SKK, we can eliminate all bound variables and write every-
thing in terms of S, K and the invariables. For example, everything except hit′ and
john′ can be eliminated from the following formula.

λx.hit′x john′ =

224 C: Variable elimination

S(λx.hit′x)(λx.john′) =
S(S(λx.hit′)(λx.x))(Kjohn′) =
S(S(Khit′)I)(Kjohn′)=
S(S(Khit′)(SKK))(Kjohn′)
This is a dangerous practice because of K’s powers of deletion. The reader can

verify that the following formula works endlessly to reproduce itself, due to having
both S and K. Some steps are shown.

SS(KI)(SS(KI))(SS(KI)) =
S(SS(KI))(KI(SS(KI)))(SS(KI)) =
SS(KI)(SS(KI))(KI(SS(KI))(SS(KI))) =
...
SS(KI)(SS(KI))(I(SS(KI))) =
SS(KI)(SS(KI))(SS(KI))
...

D: Theory of computing

The theory of computing features quite often in the book because it has empirical and
theoretical consequences for combinatory linguistics. In the first aspect, the children
seem to be facing a computationally tractable problem in language acquisition and
stagewise development. Granted that there have been some warnings about using the
algorithmic complexity theory at face value for this task (e.g. Berwick and Weinberg
1982), the narrower claim of the theory covered in the book is that a performance
grammar is competence grammar because it delivers the immediate assembly of all
constituents and their meanings, partial or full. Theoretically, another aspect of algo-
rithmic computation seems very relevant to natural language: discrete representabil-
ity, without which complexity theory is meaningless. Because Turing (1936) was the
first to give us a view of functions unheard of before, as a step-by-step computing
over a representation, I will refer to it as Turing representability. The appendix covers
these aspects very briefly from a mathematical perspective.

A Turing Machine (TM) is a finite-state abstract machine with an unlimited
supply of sequential memory (usually called “tape”) to which it can write, rewrite
and scan one cell at a time:

tape
. . . a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 . . .

tape head

FSM

A tape cell may contain a symbol ai or it may be blank. The FSM is the finite-
state machine component. Before computation starts, a TM is in the start state of
the FSM with the tape head pointing to the beginning of the input, if any, and the
remaining cells are assumed to be blank. It stops when it reaches a “halt state” in
the FSM (there are many alternative definitions; this one suffices for our purpose of
computing a function).

It has no notion of physical timing; its measure of a problem size is a combination
of the number of states and the number of steps it takes to compute a function. We can
assume that every basic step (read, write, rewrite or move left or right on the current
tape head, and/or change the current state in the FSM) takes a constant time, but
that is in theory unnecessary; it might as well happen simultaneously. What matters
is that taking the next step requires the notion of “next”, and that is either one cell,
one symbol or one state, so that once we take the step we will have moved one step
more than the earlier status in some regard above. These are the bases of complexity
measures in the theory of algorithms.

A configuration of a TM is a collection of its current state, the current pointer
to a cell in the sequential memory, and its memory content. Trailing blank cells are

226 D: Theory of computing

not considered part of the content. Memory content can of course be indefinitely
stretched, which we can capture as a regular expression.

A Deterministic Turing Machine (DTM) is a TM in which every configuration
is uniquely determined by the previous one. This is Turing’s capture of the notion
of function in a step-by-step manner. If there is more than one way to take the steps
of the function, a DTM can simulate these choices by making use of another tape to
keep track of its moves while checking whether they all agree on the result, which
we can keep on yet another tape. This is Turing’s capture of the notion of relation,
which is a function over powersets of inputs and outputs. We know that multi-tape
Turing machines and other variations such as multiple tape heads, nondeterminism,
random-access memory rather than the tape do not gives us more things to compute
than a standard TM (see Hopcroft and Ullman 1979, Lewis and Papadimitriou 1998
for these results).

A TM is said to be nondeterministic (NDTM) if it can make a “guess” of the
solution and check (as a DTM) whether it is indeed a solution. We can take the
guessing stage to be equivalent to putting on another tape the precise sequence of
steps to follow. In this regard we do not get a new class of computation but a new
class of how to do computing, i.e. a complexity measure.

An algorithm is a DTM that always decides, i.e. if it can stop for any input
to make a decision. A nondeterministic algorithm does the same with a NDTM. A
procedure (or heuristic) is a DTM or NDTM that semi-decides, i.e. if they can stop
on some input to make a decision.

Undecidable problems are “functions” for which there is no algorithm (deter-
ministic or nondeterministic). The Halting Problem of the Turing machine in which
a TM takes as input another TM and tries to decide whether it stops on all its inputs,
is one such problem. The problem is at least formulable, but it is not solvable. Some
problems are expressible but not formulable, for example: “what is the next number
after π?”

In the book a problem will be called Turing-representable if it can be written as
a TM (but not necessarily solved by it). For example, the Halting Problem is Turing-
representable as below (from Lewis and Papadimitriou 1998; halts(P,X) means P
halts on input X). It is the diagonal(diagonal) program. The π question is not Turing-
representable.

diagonal(X):
a: if halts(X,X) then goto a else halt.

Turing-representability ties in with another line of development that gave us the un-
derstanding of limits of computability today: the recursion theory. Primitive recur-
sive functions are those which can be defined by identity, succession, composition
and recursion. The successor function succ(n) = n+ 1 is crucial in this definition,
which gives us the link to Turing-representability by providing a notion of “next”.

A computationally tractable problem is one for which there is an algorithm that
works on a polynomial function of the size of the problem for a DTM (i.e. its number

D: Theory of computing 227

of states, the number of steps it must take and the space it must use, as a function of
the Turing-representable input). The complexity class P symbolizes such problems.
Computing scientists sometimes use the term “polynomial time function” to talk
about these problems, and care must be taken not to misunderstand the word time.
It does not measure the physical time or space but abstract time and abstract space,
which are the abstract measures of problem “size” from Turing representations. (In
this sense computation as we know today cannot be a natural law as Chomsky once
suggested.)

A computationally intractable problem is one for which there is a NDTM that
can guess a solution and check its validity in polynomial time. This is a very im-
portant class of complexity, called NP , for “nondeterministically polynomial”. In-
tractable problems, then, have an exponential algorithmic solution, all of which can
be checked in polynomial time individually.

The order of a function limits its behavior on the abstract size of the problem
“from above.” The order of f is g, written f = O(g) by convention, if for some pos-
itive constants c and n0, f (n) ≤ cg(n) for all n > n0. If f is n2 it is O(n3) and also
O(n4) etc. It is O(n2) too, but n4 is not O(n2) or O(n3). This notation allows us to
equate P problems with O(nk) order, for some constant k, and the NP class with
O(kn), where n is the problem size in the Turing sense.

Many interesting problems are NP , e.g. finding the possibility of the truth of a
set of disjunctive logical formulae such as A1∨A2∨A3 and ¬A1∨A2∨A3. If we are
given the truth conditions of Ai, we can check in polynomial time whether the set is
satisfiable (i.e. true in all its clauses). If not, we must check every truth assignment,
which is exponential on the size of the set, therefore computationally intractable.

The fact that we do know this even if generating the entire solution space may
wear us down relates the notion of Turing-representability, algorithms, competence
and performance at the abstract level rather than concrete. This is the significance of
the theory of computing for linguistics. It is an intensional body of knowledge.

In this regard a computational look at language cannot be understood just by
looking at problem complexity, timing or space through the classesP andNP . The
approach and these complexity classes are intrinsically tied to abstract and discrete
representability, which translate to scaling up of the knowledge of competence and
identifying similarly characterizable problems of cognition.

We may compare a computational solution with a noncomputational one to see
the nature of the argument. Consider sorting n quantities, say a sheaf of spaghetti
rods to be sorted by length. A noncomputational solution in the sense of avoiding
a Turing representation might be to conceive them as physical quantities such as
weight, length and solidity. Sorting can be done with a variant of Dewdney’s (1984)
method, which is itself algorithmic and linear. We take the sheaf of spaghetti cut to
different lengths, where length represents itself, i.e. an approximation of the quantity
along which we sort. We bang the sheaf on the table and pick the ones that stick
out progressively. This is in principle instantaneous if we leave the sorted spaghettis

228 D: Theory of computing

in place rather than separate them. In contrast, a computational solution would be
to map the quantities to some representation, say numbers, and solve the problem
as a case of sorting anything that has a discrete representation, which is O(n logn).
In the first case we can claim to have understood gravity, solidity and eye measure-
ment. In the second case we understand the nature of the problem. The first solution
would not scale up even if we assume to have devised a representation of weights
through spaghetti and tables because it is not translatable, it will not work in outer
space, or for gases. We might search for a mapping of any problem so that grav-
ity can solve it by natural laws, but in doing so we would be turning gravity into
a computer, crucially one that works over a representation, which is the mapping
itself. We can compare this approach to the original analog algorithm of Dewdney
for spaghetti sort, which is indeed an algorithm therefore a computational solution
because although it makes use of gravity to sort the spaghetti rods, it iterates on the
broken spaghetties for sorting, hence its complexity measure is not the physical time
associated with gravity but the number of steps. (I am grateful to Mark Steedman for
suggesting a look at Dewdney.)

E: Radical lexicalization and syntactic types

Radical lexicalization refers to the process of rewriting all the rules in a phrase-
structure grammar which do not make reference to a lexical item on the righthand
side, as rules for the lexical items. These rules collectively become the lexical item’s
combinatory category. Two kinds of phrase-structure rules, context-free rules and
linear-indexed rules, can always be given such a treatment.

A linear-indexed grammar (LIG) is a context-free grammar equipped with a
stack such that the lefthand side of rules can push, pop or pass the stack to the
righthand side, and only to one symbol on the right (hence the term “linear”). Such
grammars can generate strictly noncontext-free languages. For example, the gram-
mar below generates {anbncn | n≥ 0} (‘..’ denotes the remainder of the stack ‘[]’).

S[..] → aS[..b]c
S[..] → A[..]
A[..b] → A[..]b
A[] → ε

This appendix shows the radical lexicalization of a context-free grammar. Linear-
indexed grammars are related to CCG hence covered in the main text.

Let us consider the following fragment of a context-free phrase-structure gram-
mar to clarify the process. Exclusive terminals in the second column stand for the
lexicon, and the grammar rules on the left refer to substantive categories S, NP, VP,
V etc.

S → NP VP Det → every
NP → Name N → chemist
NP → Det N Name → Kafka
VP → Viv Viv → arrived
VP → Vtv NP Vtv → adored

First, the information about arity is redundantly specified in this grammar. The
rule VP → Vtv NP specifies that the verb is transitive because there must be an
NP following the verb, and the lexical entry by the preterminal Vtv duplicates that
information. We can take the rule to mean that a transitive verb, once it takes an
NP to the right, yields a VP. That is, V tv=VP/NP in present terms. We could also
write NP=VP\V tv=(S\NP)\((S\NP)/NP), because from the S rule we can write
VP=S\NP.

Similarly, V iv=VP. Because the NP rules have lexical anchors in this grammar
(name and determiner), we can follow the same strategy and arrive atDet=NP/N and
Name=NP. We could also write N=NP\Det if we wished. The S rule has no lexical
anchor, thus we must write it as both NP=S/VP and VP=S\NP. We have arrived at
the following equivalences:

230 E: Radical lexicalization and syntactic types

V tv=VP/NP V iv=VP NP=VP\V tv
NP=S/VP VP=S\NP Det=NP/N
Name=NP N=NP\Det

Hence V tv=(S\NP)/NP V iv=S\NP
NP=(S\NP)\((S\NP)/NP)
NP=S/(S\NP)

We can eliminate the phrase-structure rules in the left column of the phrase-
structure grammar above, and write only the lexical items with their new categories,
to capture the same fragment of English surface syntax:

every := Det = NP/N = (S/(S\NP))/N
chemist := N = NP\Det = NP\(NP/N)
Kafka := Name = NP = S/VP=S/(S\NP) and

(S\NP)\((S\NP)/NP)
arrived := VP = S\NP
adored := VP/NP = (S\NP)/NP

What we cannot eliminate, of course, is the right column because that would
change the empirical coverage of the grammar.

Any context-free phrase-structure grammar and linear-indexed grammar can be
reduced to its lexicon if we are willing to translate the distributional categories such
as N, V, A, P to combinatory categories as above. We can do this because any rule
in these formalisms have one symbol on the left-hand side, with or without a stack,
therefore a functional reading of the rule from right to left is always possible. (LIGs
do not distribute a stack on the right, therefore the compositional reading of a LIG
rule is straightforward too.) Notice also that the redundancy of V tv specification has
disappeared in the course of the translation.

One can argue that the elimination of unwanted ambiguity leads to another am-
biguity, viz. NP=(S\NP)\((S\NP)/NP) and NP=S/(S\NP). We shall see in the text
that the newly introduced ambiguity is not spurious; it relates to case marking.

A combinatory syntactic type can be thought of as a collection of the applicative
translation of all phrase-structure rules as above, plus their combinatory derivatives.
For example, from S/(S\NP) and (S\NP)/NP in this order we also get S/NP because
of composition. They can be thought of as the possible landscape of all types derived
from the lexical items as a closure of the lexicon on combinators. A linguistic theory
will select a subset in some principled way.

An example type is shown below.
likes := (Sfin\NP3s)/NP : λxλy.like′xy

The breakdown of its constituents is in the next page. Additionally, I use a common
index as a simple way to share the common features among syntactic types, for ex-
ample word := Si/(Si\NP3s∈ i). The i here is a shared set of features among which
there is the third-person singular emanating from the NP. To avoid notational clut-
ter, this convention is suppressed when it is not critical to the discussion. Feature
abbreviations are also quite common in the book, to write NP3s to mean NPAGR=3s.

E: Radical lexicalization and syntactic types 231

string︷︸︸︷
likes :=︸ ︷︷ ︸

string
type

descriptor

category︷ ︸︸ ︷
syntactic type︷ ︸︸ ︷

(S fin︸︷︷︸
feature

\NP3s)/NP :

interpretation︷ ︸︸ ︷
λxλy.︸ ︷︷ ︸

correspondence

like′ (e,(e, t))︸ ︷︷ ︸
semantic type

xy

︸ ︷︷ ︸
predicate-argument

structure
When no confusion arises, I will use the term category for the combinatory syn-

tactic type.
A consequence of radical lexicalization is that one end of the rules for the lexical

items is the syntactic type, and, since there is no other loci if lexicalization is strictly
followed, then the other end has to be a predicate-argument structure, which bears
the semantic types. I cover the consequences of this result in the main text.

A semantic type is a narrowing of a predicate-argument object in possible val-
ues. The type e is for things (Montague’s entity), t is for propositions, and (e, t) is
for predicates and properties, that is, for functions from things to propositions. For
example the transitive verb like, with the semantics λxλy.like′xy, has the semantic
type (e,(e, t)). The eta-normalized version like′ is assumed to carry this type along.
Thus, like′ is not of type t, which its bare form might suggest. In that sense, every
semantic object has a type.

F: Dependency structures

Dependency structures may be specified over words in a string in some theories
and over predicate-argument structures in others. This topic belongs to an appendix
because it can be done without combinators. With combinators, it is defined over a
predicate-argument structure, and this narrow view is explained here.

A dependency structure is a relation between two semantic objects. For our
purposes it can be defined as follows.

A function depends on its arguments. (dependency)
Juxtaposition xy means ‘x depends on y’ (juxtaposition)
It arises from a functional interpretation of the concept. (I use a distinction, more

commonly made in computer science and computational linguistics, between func-
tions, predicates and algorithms. The term function refers to opaque properties, such
as arity, dependence and output, whereas the term predicate refers to transparent
properties such as the event class, argument structure and their obliqueness, although,
formally speaking, they are both functions or relations. Algorithms are functions that
do something. I will use this term when we are interested in the task of the function
rather than its dependencies or structures.)

A predicate-argument dependency structure, abbreviated to PADS in the
book, is a predicate-argument structure of dependencies where the leftmost element
is a predicate. For example, john′mary′ is a dependency structure but not a PADS,
and sleep′john′ is a dependency structure and a PADS. As we shall see throughout the
book, PADS is different from the logician’s logical form, from the transformational
linguist’s logical form, from the dependency structures between words of a string,
and frommodel-theoretic objects. It is lexically determined and projected. It depends
on the syntactic type in crucial ways, codetermines it in crucial ways, and it is in-
deed a nonassociative structure: (hurt′love′)mary′ is different than hurt′(love′mary′).
In the first case, mary′ cannot be construed to have an individual relation to the other
elements. Likewise for hurt′ in the second case. The first one might arise from an
expression such asMary thinks that love hurts, and the second one fromMary’s love
hurt John.

For example, in sleep′kafka,′ sleep′ depends on kafka.′ In like′milena′kafka,′

there are two dependency relations: like′ depends on milena,′ and like′milena′ de-
pends on kafka.′ These embeddings follow from the left-associativity of juxtaposi-
tion, which we can show as:

like′ milena′
kafka′

The relation can be abstracted over. For example λx.sleep′x abstracts over the
argument of a dependency, and λ f . f kafka′ over the function.

234 F: Dependency structures

We can take the tree above to signify the obliqueness of the arguments of the
predicate in the prefix. We can say that a leaf node that c-commands another in the
PADS is less oblique.111 That is one of the reasons why we consider PADS to be
a structure rather than a flat list. There would be no obliqueness relation for the
leftmost element of a PADS. For example slept′john′ does not manifest obliqueness.
We can also say that a predicate “sees” its arguments one at a time in PADS: the
elements that c-command the leftmost element in its PADS are its arguments. In the
example below, the arguments of p are a, (bc) and d, not a,b,c and d.

p a b c
d

We shall see in the book a combinatory equivalent of arity and argument struc-
ture specification, without the need of another primitive such as c-command. Order
and its semantics will be doing the work, rather than auxiliary assumptions. Notice
that we have already obtained the result from juxtaposition that obliqueness rela-
tions are asymmetries; no two arguments can c-command each other in the notation
pred′arg′1arg

′
2 · · ·arg

′
n.

Notes

1. Enjoy the silence, Depeche Mode. Lyrics by Martin Gore.
2. Songbooks are not the right sources for Fraser words. They would be reinter-

pretations. Try a live performance or soundtrack of Cocteau Twins, with Liz
Fraser singing her own words in the truest sense.

3. Dissemination by personal contact seems to be the fate of Schönfinkel’s work.
His other paper, the only other work he published, Schönfinkel (1929), was also
prepared for publication by a colleague, Paul Bernays, who was in Göttingen at
the time of the 1920 seminar. Curry’s personal notes reveal that Bernays helped
Behmann with the preparation of the 1924 article as well.

4. Besides the theory of Combinatory Categorial Grammar there is also the sub-
field of Planning in Artificial Intelligence which makes heavy use of the se-
mantics of adjacency, not to mention the most rapidly growing community in
computing, the functional programming community including Lisp, Haskell,
Javascript, Python, Ruby among many others. All of these make use of com-
binators. There is also a real computer architecture called SKIM (Clarke et al.
1980) in which the only primitive instructions are Schönfinkel’s combinators.

5. For independent discovery and rediscovery of the principles involved, see Frege
(1891), Quine (1966), de Bruijn (1972).

6. For brevity, I use pefo′ as an abbreviation for the semantics of persuade every
friend of. Likewise tvf ′ for to vote for. For the semantics of (7d) I follow Hoyt
and Baldridge (2008): the ‘?’ operator is variable-binding for the question Q.
We shall see in the book that the research program of CCG is not to elimi-
nate the variables such as x in this example, although it is certainly doable by
combinators.

7. There is another way to make complex symbols out of simple values. Feature-
based theories of syntax follow this path. For example, we can employ sub-
typing as in HPSG (Pollard and Sag 1994) to define e.g. clausal-subject and
nominal-subject as subtypes of subject above. These types can be made part of
a theory of features for a combinatory system too, as Beavers (2004) and Mc-
Conville (2006) do. They are, however, different from the combinatory syntactic
type in not having a strictly sequent semantics.

8. From a psycholinguistic perspective, the only recourse would be slips and false
starts, in which some new types would be involved rather than a reinspection of
the used types. Thanks to Belma Haznedar for clarification.

9. The entries in (9c–f) must be related because they arise from the same lexeme.
This has to do with syntax-phonology-morphology interface and theory of the
lexicon. These aspects are not covered in the book in detail.

10. It was Göksel (2006) who first observed the anaphoric behavior of the plural

236 Notes

and possessive suffixes.
11. Coordination of unlike categories, such as John is a republican and proud of it,

does not have true coordination semantics: *John is proud of it and a republi-
can. We should also be wary of an accidental capture of coordination by like-
categories: John bought a beer and drank it, versus John drank it and bought a
beer, which has a different meaning. This is an early warning that syntax alone
cannot account for all semantic constraints. Jacobson’s (1999) warning for the
insufficiency of the like-category constraint for CSC and its across the board
consequences arises from another semantic problem, that of reference, and it
raises similar concerns for variable-friendly syntax and semantics; see Chap-
ter 6.

12. I write some of the left-hand sides in single quotes because, strictly speaking,
they are not syntactic types in the combinatory sense; they can be thought of as
the morphological sources of the syntactic types.

13. I will follow in the book a common view that morphological types relate to
form, syntactic types to constituency and semantic types to interpretation. The
distinction is crucial for many theories such as the Separation Hypothesis in
morphology (Beard 1995), in which morphological types do not “see” semantic
types. Distributed Morphology (Halle and Marantz 1993) suggests that it is the
phonological material that cannot see the other kinds of information because it
is inserted after the syntactic process. As all theories agree that syntactic and
semantic types must see each other to do compositional semantics, this issue is
not too critical to combinatory syntactic types, which is our main focus.

14. We are presently assuming that love′ is not innately typed; otherwise we would
know without exposure that it is (e,(e, t)) semantically. This knowledge is ac-
quired. An implication of the present discussion to word acquisition is that the
complete interpretability of words is an intrinsic part of their knowledge, rather
than innateness of e.g. the transitive construction or some universal argument
structure. This knowledge, which we might consider to be the syntactic reflex
of the child’s cognitive burden of attempting to make sense of the world, nar-
rows down the search problem in language acquisition. The relation of the task
to syntactic types is implicit in e.g. Siskind (1995). We shall see more detailed
examples in §9.5.

15. This view has been advocated much earlier, and it was severely underappreci-
ated by the transformational grammarians. Halliday (1966, 1970), Halliday and
Hasan (1976) had not claimed that there is no structure in language, in written
or oral text, only that we should look for it where it really mattered, and where
it can be observed to be at work.

16. A variant of transformationalism such as that of Kayne (1994) in which order
is seen as a reflex of structure might seem similar to CCG in comparison to
other theories mentioned. The two programs are not compatible because CCG’s
conjecture amounts to saying that structure is a reflex of order, an opposite

Notes 237

conclusion with respect to Kayne. Likewise, Hawkins (2001)-style adjacency
effects to explain the category adjacency rely on structural domains minimized
on structural aspects, which presupposes structure-dependence rather than com-
binatory type-dependence. Notice also the crucial use of movement in Kayne’s
hypothesis to claim a universal subject-verb-object word order, which compro-
mises the use of adjacency for syntax and semantics.

17. It was explicit in Curry’s notation before he met Schönfinkel (1920/1924) in
a literature search. Curry (1927) in his personal notes translates for example
Schönfinkel’s Ia to his then-current notation I@a. Curry (1929) notes that, in
(xy) nothing is said if x is not a function, and suggests taking such (xy) to be
equal to Kxy, which we will follow.

18. If f is binary, a purported definition such as f (x1) can be understood to be lossy
only by investigating the “body” of f , which would make use of another argu-
ment, say x2. Similarly, f (x1,x2,x3,x4) could be found to be too liberal if the
body of f makes no use of say x3 and x4.
Both cases treat arity as an illative notion rather than a stipulative property of
f . This may be a better way to proceed in cognitive science rather than the ax-
iomatic approaches to argument-taking commonly assumed in computing and
linguistics, provided that we can manage to keep infinite regress under control
and stay empirically sound at the same time. For example, no language has
manifested a ditransitive sleep predicate where only two arguments are syntac-
tically available, and no language has a syntactically argumentless verb. These
facts want explaining rather than stipulation.

19. Penrose’s more famous conjecture, that the human mind is noncomputable, is
not relevant here because a theory to predict possible languages would not be
a theory to predict possible minds, unless of course we believe language is all
there is to mind.

20. Chomsky (1965: 62): “[..] It is important to realize that the questions presently
being studied are primarily determined by feasibility of mathematical study, and
it is important not to confuse this with the question of empirical significance.”

21. For our purposes, it suffices to note that the primitive recursive languages are
languages of functions as programs which can be written without indefinite
looping such as “repeat” or “while”, and where the notion of “next instance”
plays a crucial role. Not all recursive languages are primitive recursive, for ex-
ample the Ackermann function.

22. Chomsky (1965: 208:fn.37): “This possibility [that the least powerful empiri-
cally adequate theory might turn out to be equivalent in weak or strong gener-
ative capacity to Turing machines] cannot be ruled out a priori, but in fact, it
seems definitely not to be the case. In particular, it seems that, when the theory
of transformational grammar is properly formulated, any such grammar must
meet formal conditions that restrict it to the enumeration of recursive sets.”
Levelt (1974) is more explicit. He equates descriptive adequacy of a theory

238 Notes

with providing linguistic grammars that stay within recursive grammars, and
explanatory adequacy with providing primitive recursive grammars, i.e. there
must be a way to see how the grammar is caused. Thus for Levelt, any grammar
for a natural language must be decidable.

23. Infinite regress is not a concern here because it can be avoided so long as we do
not ask for the entire solution space at once. Consider a Putnam-Gold machine
M1 which takes another Putnam-Gold machine M2 as input. M1 can leave an
initial answer on the result tape, and reconsider its output if similarly operating
M2 changes its output. BothM1 andM2 will have fetchable answers at any time,
although they may both be undecidable. What we cannot have is M1 to ask
whetherM2 has stopped and delivered all its results. The process is reminiscent
of lazy evaluation in programming languages, although they arise from different
concerns.

24. In a nutshell, the most demanding task in the execution of a program is access
to names. As most programming languages allow nested definition of names,
the task is exacerbated by the look-up of names which are not local to the
currently executing subprogram but defined elsewhere. The theory of compil-
ing has found ingenious methods to tackle the problem. The problem becomes
a nonproblem when there are no variables. With this in mind, programming
language design and compiling become the art of translating a programmer’s
specification, which includes variables for the benefit of the programmer, to a
variableless executable code.

25. The statement is attributed to Merrill Garrett by Fodor (1983). Chomsky
(2000: 124) considers it problematic: “The belief that parsing is “easy and
quick,” in one familiar formula—and that the theory of language design must
accommodate this fact—is erroneous; it is not a fact.” He considers it to be a
performance issue, and needlessly complicating a competence grammar since
parsing according to him is not its business. It is not clear to me what Chomsky
means by “design” in a product of evolution, but other conceptions of com-
petence, such as Bresnan and Kaplan’s (1982b) Strong Competence Hypothesis
where the performance grammar just follows the instructions of the competence
grammar, or Steedman’s (2000b) Strict Competence Hypothesis where compe-
tence grammar is the performance grammar, take more burden of proof on their
shoulders than Chomsky, by taking Garrett’s remark as an empirical observa-
tion about grammar. This is essentially the view adopted in Levelt (1974: 236)
as well: “The data for competence research are linguistic judgments, which are
forms of language behavior. It is not clear why just this type of language behav-
ior (linguistic judgment) should have the privilege of leading to a theory.”

26. It should come as no surprise that one of the earliest objections to semantic
vacuousness of some words is from one the most prominent semanticists and
phonologists of the 20th century, Dwight Bolinger (1977).

27. Ades and Steedman (1982) and Szabolcsi (1983) appear to be the first syntacti-

Notes 239

cizations of this kind. Geach (1972) is a syntacticization of composition as well,
from the perspective of set theory, following Quine. Up until Steedman (1985,
1988), Szabolcsi (1987a), CCG developed independently of Schönfinkel’s and
Curry’s combinators.

28. Note that (A/B)/C : f is a two-argument function whereas A/(B/C) : f is a one-
argument function.

29. Smullyan pays homage to Schönfinkel and Curry in the choice of species
as well. The book is dedicated to Curry, an avid bird-watcher. Smullyan
(1985: 241) has his inspector Craig’s trusted friend Fergusson cook up a story
that Schönfinkelmeans “beautiful bird” in German. The Yiddish suffix “-el”
adds a morphological mystery to ornithological logic.

30. The first appearance of the paradoxical combinator in publication is Rosen-
bloom (1950), who called it Θ. Curry had worked on this combinator since
1929.

31. Notice that the mismatch arises from the assumed sameness of semantics for
X/Y and X\Y , viz. b. As explained in the introduction, we can have A→ C/B
and B→ C\A, if we know that A and B in this order derives C, i.e. A B⇒ C.
This equivalence spells the correspondence X/Y: b → X\Y : λa.ba, which can
arise from the configuration Y : a X/Y : b ⇒ X : ba.

32. A system is called applicative if it uses application as the only primitive.
33. The two combinators are obviously related. Curry and Feys (1958) give the

following equivalence: Ψ=Φ(Φ(ΦB))B(KK). The K’s symbolize gapping.
34. Smullyan’s (1985) Eagle (E) takes five arguments, like his Dickcissel and

Dovekie, and they are the least visited birds in his book (also the seven-
argument giant, the Bald Eagle).

35. Y = SSK(S(K(SS(S(SSK))))K). It is cumbersome, but it does the job.
We might go one step further and derive S and K from Barendregt’s (1984)
combinator X, but not without some circularity. Take X = λx.xKSK. Then
XXX=K, and X(XX) = S. The bottom line is, if we want the complete elimi-
nation of variables, we need the S and K somehow; witness KSK in X.

36. Further optimizations are possible, for example using BCS or CDΦ to elim-
inate the unnecessary proliferation of S abstractions; see Curry and Feys
(1958: 188ff), Turner (1979).

37. I suggest the name O to symbolize its internalized lambda, and to acknowledge
that it turned out to be different than D in discussions with Umut Özge, Ja-
son Baldridge and Frederick Hoyt. This combinator was named D by Hoyt and
Baldridge (2008) with the same semantics and syntax covered here. I proposed
to change the name to avoid confusion with Rosenbloom’s (1950)D, which has
different semantics and syntax.

38. Take f to be λy.yb, for some b. Then, for some a, we have λx. f (g(hx))a =β

g(ha)b, but f (λx.g(hx))a=β g(hb)a.
39. The theory began with Ades and Steedman (1982), written in 1979. Steedman

240 Notes

developed the theory in a series of papers (Steedman 1985, 1987, 1988, 1990a,b,
1991a,b, 2000a). Synopses can be found in Steedman (1996b, 2000b), Steed-
man and Baldridge (2011).

40. On a historical note, the interdefinability of combinators was dealt with in a
special section of Curry and Feys (1958), written by William Craig. Smullyan’s
(1985) engagement of a chief inspector of the same name to tackle ornitholog-
ical affairs acknowledges this somewhat neglected contribution. In linguistics,
interdefinability is prominent in Anna Szabolcsi’s (1983, 1987b, 1989, 1992)
work. She was principally involved in bringing S syntax to explanations, which
was identified by Steedman to arise from S semantics.

41. The idea was influential in the structure-dependent theories as well, starting
with early transformations. It is most formally dealt with in Pollard (1984).

42. Bach (1984: 7) defines the semantics of persuade in Montagovian terms: “per-
suade is interpreted as denoting a function from properties to a function form
terms to sets”. The property translates to a VP, and the function from terms to
sets is a transitive verb, i.e. (S\NP)/NP, hence the need for surface wrap.

43. Sometimes the distinction is attributed to proof-theoretic versus model-theoretic
approaches to syntax, but this is slightly misleading. It is true that CCG is a
combinatory theory of adjacency syntax, rather than a set-theory of linguis-
tic constraints. The words are the models though (assuming no words with
Y semantics), because every constraint on a word’s syntactic-semantic behavior
must be reflected in its lexical category, hence any Montague-style valuation in
a model frame can be reduced to truth conditions for sentences. Type-Logical
Grammar leaves some proof-theoretic results, such as the provability of cross-
ing compositions in CCG, to models.

44. That is to say they are not Aristotelian categories. Husserl’s categories are open-
ended, and they do not rely on a set of basic categories determined a priori.

45. Steedman (2000b: 54) defines these principles as follows. Consistency: “All
syntactic combinatory rules must be consistent with the directionality of the
principal function”. Inheritance: “If the category that results from the appli-
cation of a combinatory rule is a function category, then the slash defining
directionality for a given argument in that category will be the same as the
one(s) defining directionality for the corresponding argument(s) in the input
function(s).”

46. The claim here is that (20b) is ungrammatical with the intended coordination
reading but fine as a parenthetical.

47. See Baldridge (2002), Baldridge and Kruijff (2003), Beavers (2004), Mc-
Conville (2006) for comprehensive attempts at a feature geometry for CCG.

48. The stronger sense of radical lexicalization and its effects on constructions and
constituency can be observed when we compare related grammar theories. Con-
sider some cherished Construction Grammar examples below, quoted by Gold-
berg (1995) as part of the crucial data in her book’s opening.

Notes 241

i. I loaded the hay onto the truck. Anderson (1971)

ii. I loaded the truck with the hay.

Example (i) is claimed to semantically differ from (ii) over and above the mean-
ings of the lexical items involved, where (ii) implies full loading in some sense,
and (i) does not. No such difference seems to follow from the same construction
with different lexical items (iii-iv):

iii. I loaded the CD onto the multi-cd player.

iv. I loaded the multi-cd player with the CD.

Moreover, we need to account for the following effect, where fullness or par-
tialness of the readings seem to be restored across the board because of con-
stituency:
v. I loaded the truck with hay and the multi-cd player with CD.

49. There is a prediction of CCG about this construction which awaits research. If
the maximum arity in any lexicon is n, then the power of Bmust be bounded
by n-1 to stay within the class of efficiently parsable linear-indexed grammars,
therefore n+1-sequent verbs of subordination is all it can handle. Steedman
(2000b) suggests that n=4 for English. This issue brings back Shieber’s (1985)
warning that considering the possibility of bounded crossing reduces all linguis-
tic arguments to finite structures. The book has already steered toward that di-
rection by saying that something can be finite but vast, and we would still need a
linguistic theory to sieve through possible structures. Following this route would
not fall into the fallacy of turning to regular expressions as linguistic theories.
The Kolmogorov-Chaitin complexity of describing all and only the possible
structures with them would be prohibitive, and it would not amount to a theory.
We would expect a theory to be much shorter than what it descriptively covers.
Whether finite or infinite in their stringsets, the languages seem to manifest
limited constituency and dependency. A language can be infinite in terms of its
stringset but finite in terms of possible structures, as for example free opera-
tion in syntax (i.e. closure) might suggest. Given these aspects I consider the
infinitude argument secondary in linguistic explanation.

50. Szabolcsi (1983) called it connection—recall Schönfinkel’s name, fusion, for
the same effect. Steedman (1988) related connection to S.

51. Szabolcsi (1989) might appear to introduce unary B to English syntax, but she
does that only for syntactic objects, hence it is a lexicalization of unary B.

52. Having two categories for dymuno ‘want’ in (36–37) is empirically sound; the
same differences can be observed in control verbs of other languages, for exam-
ple English and Turkish: The hair wants cutting, and Wittgenstein wants to like
Russell. They might arise from a single category of want,′ but that is a matter
of argument structure and the lexicon.

242 Notes

53. The ongoing discussion of observing the combinators’ semantics in syntax
must be distinguished from similarly inspired operator-based systems, i.e. sys-
tems which relate two expressions by the use of combinators, such as that of
Shaumyan (1987). For example he notes that That man, I hate him, with the se-
mantics hate′x thatman′i′, where x is presumably the pleonastic use engendered
by him, is related to I hate that man, by K. Its semantics is hate′thatman′i′. I
have nothing to say about such systems except to note that they need some no-
tion of synonymy, and run into the same difficulties that face the any-debate on
undecidability; see §3.3 for Hintikka’s (1977) synonymy argument.

54. A point of clarification: a lexical rule in CCGmeans a unary rule that only refers
to substantive—therefore lexical—categories. It does not mean a rule that gives
us more lexical items.

55. This chapter arose from discussions with Umut Özge. Usual disclaimers apply.
56. Cf. fn. 24, where simplifying the use of bound variables for the benefit of the

programmer is claimed to ease the task of software planning.
57. That discourse is perhaps necessarily involved in such examples is evidenced by

the proposals that can provide their bound interpretation in syntax, such as that
of Pinkal (1991: (12)) “A NP α can bind a pronoun β provided that β is in the
c-command domain of the host quantifier of α’s discourse referent.” Without
an analysis of the English genitive, it is not clear how such examples might be
accounted for by Jacobson’s variable-free semantics.

58. The idea of type-raising all arguments in a grammar seems to go back to Mon-
tague (1973), Lambek (1958, 1961). Montague’s set-theoretic type e is empty.
His subjects must be ((e, t), t). Lambek’s radical lexicalization translates all NP
types in a phrase structure grammar to their grammatical roles, i.e. to their type-
raised variety.

59. In a VSO language we cannot maintain in surface structure that the least oblique
argument is the last one to combine. Keeping this as a universal was one mo-
tivation for Dowty (1996) to abandon the adjacency assumption of CCG and
adopt a surface-wrap analysis.

60. The rule (28) has the same result semantics as z-NP, which can be veri-
fied from its configuration: X/Z/Y: f Z: a Y/Z: g→ X: f (ga)a, where Z=NP,
and f has an inner semantic—lexical—wrap. Crucially, the rule avoids the
unary S semantics of λgλx. f x(gx), against which Jacobson (1999: 136) warns
us to eliminate His∗i mother loves every Englishmani. However, the rule (28)
would produce S/NPNP\NP3s for loves, therefore it would derive Mary loves
him wrongly, unless verb-medial languages by-pass the rule by some ‘same di-
rectionality’ constraint on the |’s, with predictable consequences for OSV lan-
guages such as Hixkaryana. Clearly there are restrictions on the syntactic type
of f , ‘|i’ and ‘| j’ related to the crossover phenomena, which must remain cur-
rently as open questions.

61. For example, tag questions require a pronoun: John will come, won’t he?Welsh

Notes 243

periphrastic passive requires a pronoun as an independent word. Steedman’s
model eschews the use of a distinct syntactic type for pronouns. Therefore in
such constructions, the pronoun is predicted to be the head which can look for
the arguments.

62. The degrees of freedom afforded by CCG in this domain is worth reiterating. As
Steedman’s (2011) LF eschews an exponent type in syntax, it cannot require it in
a syntactic domain of locality. However, an analysis which takes the possessive
pronoun as the head rather than cael is logically possible, and it will avoid an
exponent type in the domains of locality. Such variations await research.

63. This lack of interaction between the parser stack and the quantifier store is
most evident in the recent formulations of Cooper storage, such as in Pollard’s
(2008b) reworking of extended Montague Grammar to Convergent Grammar.
His construal takes as its fundamental assumption the lack of an interaction.

64. To be more precise, there is no subject reflexive that can have an antecedent in
the same clause. There are languages in which a subject “reflexive” can take an
antecedent from a higher clause.

65. We can take the last sentence of the quote to suggest that the number of distinct
PADS objects in a mental grammar is probably less than the number of syntactic
objects, whereas the number of PADS tokens is probably higher, so that they are
forced to recycle among the lexical entries to provide a network of relations.
CCG is not designed to cope with such networks.

66. Notice that, if the string contains a syntactic displacement, say the cat which I
think sleeps is a menace, where the substring ‘sleeps is’ clearly does not embody
an argumenthood relation between the two objects on its either side, the syntax
of the other combinators involved will take care of the semantic dependencies to
get the sleep′ and cat′ argumenthood right. The point of combinatory argument-
encoding in a string of objects is that what cannot be torn apart and displaced
separately is the B1Isleep′ part, which comes from the lexicon.

67. a, b, g, h, i are from Baldridge (2002), c is from Steedman (2000b), and j is
Steedman (p.c.). The use of>O×,<O×,>S′′ and<S′′ awaits further inquiry.

68. I take en to symbolize a syntactic feature such as ∓en, where +en is assumed
for cael.
If we are told that semantically speaking the cael involved in the passive is not
the same as active ‘get’, we can readjust our analysis to Jacobson-style pronouns
and demand the passive cael to look for an NPNP argument rather than NP.

69. The radical lexicalization of the passive using the possessive pronoun is fur-
ther supported by the fact that 3sg form (ei) soft-mutates the uninflected verb,
whereas 3pl (eu) does not (Awbery 1976:p.49). The analysis also coincides with
Awbery’s intuition that the phrase after Wyn in the example is a term of cael:
notice the final dependency structure.

70. The across-the-board claim for the passive in languages of the world is that it is
an operation which targets lexical verbs, and that that might be the reason why

244 Notes

it always targets the least oblique argument for demotion because every lexical
verb has one. However, this line of reasoning does not explain why the passive
promotes certain objects and not others. Our focus here is to work towards an
explanation for its (clause) boundedness.

71. Lexical access to thematic structure does not in itself fully characterize the pas-
sive in relation to the reciprocal, causative and the reflexive. The property is
proposed here as a necessary and insufficient condition to pin down the seman-
tics of the passive.

72. There are exceptions in the verb-medial languages as well. For example, bare
complements make it easier to break the word order constraint: The cat which
I knew (*that) would be a menace is Carlyle; see Steedman (1996b) and
Baldridge (2002) for extensive discussion.

73. Examples such as (18a) are sometimes considered ungrammatical by some
Turkish syntacticians on the grounds that they are odd without a context. Since
there is no such thing as null context, and because a competence grammar must
provide a derivation no matter how unlikely a meaning is if it is grammatical,
we must keep such examples on the agenda. To see that (18a) is grammatical,
consider a case where the topic is Ahmet’s strange shooting practices.

74. For example: use S′ rather than NP if the argument is clausal, use an NP rather
than S′ if the semantics of the construction is participatory therefore lexically
visible, as in the passive.

75. Some of the material in this section arose from discussions with Mark Steed-
man. I present here my recollection and conclusions. Possible misunderstand-
ings are mine.

76. This is true of any kind of computation, not just CCG. For example, a common
practice in programming language compiling is to replace tail recursion with
simple iteration. This optimization cannot be done for nontail recursion, which
would be the true reflection of Y in the syntax of a language.

77. Finitude is certainly not a mental block to creativity. Pullum and Scholz (2009)
suggest that Japanese haiku compositions can continue forever because the pos-
sibilities are finite but vast: up to 1034 haikus, but certainly a lot less number
due to other constraints, but still a vast number.

78. It is quite striking that the two philosophers who sharply differed from their pre-
cursors and contemporaries in ascribing to animals skills that are only different
from humans in degree rather than in kind, Hume and Wittgenstein, essentially
saw a continuous problem space for coordinated action and experience of living
things. These fresh perspectives rightfully established them as the philosophers
dearest to some cognitive scientists.

79. The parts of the lexicon that are not visible to syntactic processes are formal
knowledge of words such as the word-formation rules of Anderson (1992),
Aronoff (1994). They do not necessarily depend on syntactic types. A morpho-
logical theory must explain these processes by giving us a landscape of possible

Notes 245

morphological types.
80. The question of coordination being asymmetrically sensitive to the left or right

conjunct is dealt with in Steedman (2000b) from a CCG perspective.
81. Examples (21–22) are from Özge and Bozsahin (2010).
82. I assume that morphology-phonology at the interfaces handle -en versus ge-V-

en alternation in Dutch passive morphology (including the choice of -d or -t
in place of -en), and yield a morphemic segment which I symbolized as -EN
above. In this process there would be no involvement of its syntactic category,
assuming the Separation Hypothesis of Beard (1995). The syntactic types do the
ordering of combination in the syntactic process. For example, the particle op-
‘up’ in opgestegen might be the source of telicity as van Hout (2000) suggests,
and this would be carried over to syntax by the syntactic type of the lexical item
which we can symbolize as OP-.

83. For purists, we can assume that everything in the lexical conceptual structure is
projected onto PADS but only a few members of the powerset is used by syntax,
which shows the need for a theory of the lexicon although the powerset is in all
likelihood finite.

84. As Rey (1986) reminds us, another computationalist trend, strong AI, is simi-
larly accused wrongly about its aspirations of computationalism, which is func-
tionalism, not behaviorism.

85. All CCG learners work within the parse-to-learn paradigm. The alternative,
which is the learn-to-parse paradigm, seems inconsistent with Garrett’s obser-
vation reported earlier that parsing is a reflex; see Fodor (1998), Steedman and
Hockenmaier (2007) for discussion. No-parse paradigm relies on lexical lookup
of words, and it presumes a more or less disambiguated lexicon for the child,
which does not seem very realistic.

86. In earlier work (Çöltekin and Bozsahin 2007) we called β the likelihood. We
thank Orkan Bayer for pointing out our error.

87. This notion of “having a meaning” is not related to Quine’s use of the same
term for grammars, as Chomsky never tires of pointing out; see e.g. Chomsky
(2000: fn.18:199).

88. To be more precise, Siskind’s cross-situational learning emphasizes the likely
meanings of words rather than possible meanings, the latter of which Quine
argued to be infinitely many. A similar narrowing of word meanings is defended
from a linguistic perspective by Williams (1994).

89. Much of Quine’s possible readings are eliminated by the parsimony principles
of Siskind (1996). The list provided is only a first approximation for this pro-
cess. For example, from Siskind’s principle of exclusivity, the child can con-
clude that chocolate does not mean whatever she assumed for plu′ because in
the first experience there is the plural assumption but no chocolate.

90. I am grateful to Aravind Joshi for related discussion.
91. Thanks to Alan Libert for these examples. I am responsible for the lexicalization

246 Notes

claim.
92. There is something other than case marking and word order that comes to the

rescue in the recovery of grammatical relations: agreement systems and noun
classes; see Steele (1978), Mallinson and Blake (1981). Notice that, in a system
of combinatory syntactic types, these morphological resources narrow down
the syntactic types just like case marking, without different levels of structure
or subsystems.

93. There is a certain myth about scrambling languages. If asked in isolation, a
speaker might say that a legitimately permuted sentence means more or less
the same thing as the unpermuted ones. But this is hardly the right question.
Provide theme or rheme alternatives before the example, and most speakers
would prefer one word order only, if the alternatives are set to elicit that order.
More interestingly, they would reject most of the others as either ungrammatical
or contextually inappropriate, suggesting that there are other semantic reasons
than who-does-what-to-whom.

94. Here I assume a tripartite functional division of labor in parsing, following
Steedman (2000b): (a) a grammar, (b) a parsing algorithm to derive strings us-
ing the grammar, and (c) an oracle to choose between the alternative derivations
and potential ambiguities.

95. These examples might be considered odd in a null context, but certainly not
ungrammatical. They are perfectly interpretable in for example a partitive con-
text in which there was a children’s party where several delicacies were served,
chocolate among them. I deliberately avoided the aorist sever ‘loves’ to rule
out generic readings yet still maintain the indefinite ones. See Özge (2010) for
more examples of indefinite accusatives, and for an argument that, in Turkish
studies so far, pinning down the semantics of definiteness and specificity to the
morphemes has not been very successful.

96. A definite reading can be obtained in response to the question: What did the
kids think of the sweets we served? The indefinite reading may follow from the
question: Can we say that we made all the guests happy? The issue is unset-
tled; see Nakipoğlu (2009), Özge (2010) and references therein for extensive
discussion.

97. For an informative and entertaining exposure to monads and for their relation to
interactions in computation, see Wadler (1997), who relates them to Descartes’s
mind-body problem.

98. From the song Flaming in Pink Floyd’s 1967 album, The Piper at the Gates of
Dawn. Lyrics and music by Syd Barrett.

99. This is similar to French echaînement, for example faux ami [fo][za][mi], but in
the backward direction.

100. The first two correspondences of (11) and the first one in (12) highlight an
equivalence on the semantic side modulo eta-conversion of lambda calculus.

101. It is explicit in any model of CCG that the bootstrapper for acquisition cannot

Notes 247

be just phonological or semantic; it must be grammatical because a lexicalized
syntactic type is the only way to establish the correspondence of a string with
some predicate-argument structure. See Steedman and Hockenmaier (2007) for
discussion.

102. There is a combinatory equivalent of η’s ordered pair constructor (c,x), which
is based on D2 and Zn in Curry and Feys (1958). I eschew it here for shorter
exposition.
μ is commonly formulated as BSC f g= λx. f (gx)x in the reader monads, as in
Shan (2001), which in our case is BSCa(dU) = λx.a(dUx)x. The order of the
dependencies (dUx) and x is not critical in the monad; order is already encoded
in the input by η . BSC does not encode a dependency which is functionally
different than that of S, hence my choice of the better-known combinatory term
for μ in (14).

103. The monadic version coincides with Jacobson’s (1999) use of composition as a
sequence of unary B followed by application, which is generalized in monadic
grammar to apply to all combinators.

104. Another excursion of Curry to linguistics is Curry (1929), where he defends the
grammarian’s view of meaning over the logician’s view of meaning.

105. This is unlike Locke’s naive empiricism. We cannot assume tabula rasa for de-
pendencies. And we must assume a syntactic specialization of combinators.
Hume has always insisted that human beings bring something special to their
understanding, and that they cannot help themselves attributing for example a
causal link when there is no causation. In other words, some things are internal-
ized to the point of a reflex.

106. We owe our current understanding of the Baldwin effect to Simpson (1953).
Baldwin (1896) thought he had found a new cause for selection, which he called
organic selection, in addition to natural selection. Simpson identified it to be
an effect rather than a cause, and coined the name. The Simpsonian view of
Baldwin is what makes Deacon’s proposal tick. There seems to be coextensive
but not separate mechanisms for selection.

107. It seems to be a major point for Bickerton and Chomsky (2000) that human
evolution has more or less stopped—remember Chomsky’s claim that language
is a perfect system, and that only languages as phenotypes may contain imper-
fections. Anthropologists and biologists, not to mention evolutionary linguists
and neuroscientists, consider that to be very unlikely; see Hawks versus Jones
debate at Hawks (2008).

108. Strictly speaking, the Turing bird which Smullyan defined as U would not
be functionally equivalent to the Sage Bird Y named after Curry. We need
the equivalent of Turing’s (1937) definition: U=(λxλy.y(xxy))(λxλy.y(xxy)).
From this we get U f=[(λxλy.y(xxy))(λxλy.y(xxy))] f , which is equivalent to
f ([λxλy.y(xxy)] [λxλy.y(xxy)] f). It gives us a fixpoint combinator: U f =
f (U f). Like Y, U is infinitely typeable. Unlike Y, U is a supercombinator.

248 Notes

109. Smullyan might have been persuaded to call Y Yeşilbaş, Turkish for green duck
(literally ‘green head’), rather than the hapless Sage bird. The common confu-
sion about whether ducks are birds or birds are docks—since we know that
geese and ostriches are ducks—seems fertile ground to breed recursion the
paradoxical way.

110. This is of course true in programming as well. Programmers will remember the
bitter experience of writing recursive programs without base cases, or with base
cases that are not reachable.

111. A simple version of c-command suffices for our purposes: x c-commands y in a
structure if x does not dominate y, and the node immediately dominating x also
dominates y.

Bibliography

Abney, Steven
1987 The English noun phrase in its sentential aspect. Ph.D. diss., MIT,

Cambridge, MA.
Ades, Anthony E. and Mark Steedman

1982 On the order of words. Linguistics and Philosophy 4: 517–558.
Aissen, Judith

1990 Towards a theory of agreement controllers. In Studies in Relational
Grammar 3, Paul M. Postal and Brian D. Joseph (eds.), 279–320. Uni-
versity of Chicago Press.

Ajdukiewicz, Kazimierz
1935 Die syntaktische konnexitat. Studia Philosophica 1: 1–27. English

translation in S. McCall (ed): Polish Logic, Oxford University Press,
1967.

Aksu-Koc, Ayhan A. and Dan I. Slobin
1985 The acquisition of Turkish. In The Crosslinguistic Study of Lan-

guage Acquisition, vol.I: The Data, Dan I. Slobin (ed.). New Jersey:
Lawrence Erlbaum.

Anderson, Stephen R.
1971 On the role of deep structure in semantic interpretation. Foundations

of Language 6: 197–219.

1985 Typological distinctions in word formation. In Language Typology
and Syntactic Description, Timothy Shopen (ed.), vol. III, Grammati-
cal categories in the lexicon, 3–56. Cambridge: Cambridge University
Press.

1992 A-Morphous Morphology. Cambridge Univ. Press.
Aronoff, Mark

1994 Morphology by Itself: Stems and Inflectional Classes. Cambridge,
MA: MIT Press.

Awbery, G.M.
1976 The Syntax of Welsh. Cambridge Univ. Press.

Bach, Emmon
1976 An extension of classical transformational grammar. In Problems in

Linguistic Metatheory: Proceedings of the 1976 Conference at Michi-
gan State University, 183–224. Lansing: Michigan State University.

1980 In defense of passive. Linguistics and Philosophy 3: 297–341.

1984 Some generalizations of categorical grammars. In Varieties of Formal
Semantics, Fred Landman and Frank Veltman (eds.). Dordrecht: Foris.

250 Bibliography

Baker, Mark C.
2001 The Atoms of Language. New York: Basic Books.

Baldridge, Jason
2002 Lexically specified derivational control in Combinatory Categorial

Grammar. Ph.D. diss., University of Edinburgh.
Baldridge, Jason and Geert-Jan Kruijff

2003 Multi-modal Combinatory Categorial Grammar. In Proceedings of
11th Annual Meeting of the European Association for Computational
Linguistics, 211–218. Budapest.

Baldwin, James Mark
1896 A new factor in evolution. The American Naturalist 30: 441–451,536–

553.
Bar-Hillel, Yehoshua, Chaim Gaifman and Eliyahu Shamir

1960 On categorial and phrase structure grammars. The Bulletin of the Re-
search Council of Israel 9F: 1–16.

Barendregt, Henk P.
1984 The Lambda Calculus—Its Syntax and Semantics. North-Holland. 2nd

ed.
Barker, Chris and Pauline Jacobson

2007 Introduction: Direct compositionality. In Direct compositionality,
Chris Barker and Pauline Jacobson (eds.), 1–19. Oxford: Oxford Uni-
versity Press.

Barker, Chris and James Pryor
2010 Seminar in semantics/philosophy of language. Lecture notes, New

York University.
Batman-Ratyosyan, Natalie and Karin Stromswold

1999 What Turkish acquisition tells us about underlying word order and
scrambling. U. Penn Working papers in Linguistics 6 (1): 37–52.

Beard, Robert
1987 Morpheme order in a lexeme/morpheme based morphology. Lingua

72: 73–116.

1995 Lexeme-Morpheme Base Morphology. Albany, NY: SUNY Press.
Beavers, John

2004 Type-inherited Combinatory Categorial Grammar. In Proc. of the 20th
COLING. Geneva.

Berwick, Robert and Amy Weinberg
1982 Parsing efficiency, computational complexity, and the evaluation of

grammatical theories. Linguistic Inquiry 13: 165–192.
Bickerton, Derek

1990 Language and Species. University of Chicago Press.

1996 Language and Human Behavior. University of Washington Press.

Bibliography 251

Bickhard, Mark H.
1996 Troubles with computationalism. In Philosophy of Psychology,

W. O’Donohue and R. Kitchener (eds.), 173–183. London: Sage.
Bird, Steven and T. Mark Ellison

1994 One-level phonology: Autosegmental representations and rules as fi-
nite automata. Computational Linguistics 20 (1): 55–90.

Blake, Barry J.
1990 Relational Grammar. London: Routledge.

Bolinger, Dwight
1968 Aspects of language. New York: Hartcourt, Brace and World.

1977 Meaning and Form. London: Longman.
Borsley, Robert, Maggie Tallerman and David Willis

2007 The Syntax of Welsh. Cambridge: Cambridge University Press.
Bos, Johan, Stephen Clark, Mark Steedman, James R. Curran and Julia Hockenmaier

2004 Wide-coverage semantic representations from a CCG parser. In Pro-
ceedings of the 20th International Conference on Computational Lin-
guistics (COLING ’04), Geneva, 1240–1246. ACL.

Bozsahin, Cem
1998 Deriving the predicate-argument structure for a free word order lan-

guage. In Proceedings of COLING-ACL 1998. Montreal.

2002 The combinatory morphemic lexicon. Computational Linguistics 28
(2): 145–176.

Bozsahin, Cem and Nicholas V. Findler
1992 Memory-based hypothesis formation: Heuristic learning of common-

sense causal relations from text. Cognitive Science 16 (4): 431–454.
Brent, Michael R.

1993 From grammar to lexicon: unsupervised learning of lexical syntax.
Computational Linguistics 19 (2): 243–262.

Bresnan, Joan
1978 A realistic transformational grammar. In Linguistic Structure and

Psychological Reality, Morris Halle, Joan Bresnan and George Miller
(eds.), 1–59. Cambridge, MA: MIT Press.

Bresnan, Joan and Ronald Kaplan
1982a Introduction: Grammars as mental representations of language. In The

Mental Representation of Grammatical Relations, Joan Bresnan (ed.),
xvii–lii. Cambridge, MA: MIT Press.

1982b The Mental Representation of Grammatical Relations. Cambridge,
MA: MIT Press.

Brody, Michael
1995 Lexico-Logical Form: A Radically Minimalist Theory. Cambridge,

MA: MIT Press.

252 Bibliography

Brown, Penelope
1998 Children’s first verbs in Tzeltal: Evidence for an early verb category.

Linguistics 36 (4): 713–753.
Calder, Jonathan, Ewan Klein and Henk Zeevat

1988 Unification categorial grammar. In Proceedings of the 12th Interna-
tional Conference on Computational Linguistics. Budapest.

Carleton, Lawrence R.
1984 Programs, language understanding, and Searle. Synthese 59 (2): 219–

230.
Carlson, Greg

1977 Reference to kinds in English. Ph.D. diss., University of Mas-
sachusetts, Amherst.

Carpenter, Bob
1997 Type-Logical Semantics. Cambridge, MA: MIT Press.

Çakıcı, Ruken
2008 Wide-coverage parsing for Turkish. Ph.D. diss., University of Edin-

burgh.
Çöltekin, Çağrı and Cem Bozsahin

2007 Syllable-based and morpheme-based models of Bayesian word gram-
mar learning from CHILDES database. In Proc. of the 29th Annual
Meeting of the Cognitive Science Society. Nashville, TN.

Chomsky, Noam
1957 Syntactic Structures. The Hague: Mouton.
1961 On the notion “rule of grammar”. In Structure of Language and Its

Mathematical Aspects, Roman Jakobson (ed.), 6–24. American Math-
ematical Society. Proceedings of Symposia in Applied Mathematics,
vol. XII.

1965 Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.
1966 Cartesian Linguistics. New York: Harper and Row.
1970 Remarks on nominalization. In Readings in English Transformational

Grammar, R. Jacobs and P. Rosenbaum (eds.), 184–221. Waltham,
Mass.: Ginn.

1972 Some empirical issues in the theory of transformational grammar. In
Goals of Linguistic Theory, Stanley Peters (ed.). Englewood Cliffs,
NJ: Prentice-Hall.

1975 The Logical Structure of Linguistic Theory. Chicago: University of
Chicago Press.

1976 Conditions on rules of grammar. Linguistic Analysis 2: 303–351.
1981 Lectures on Government and Binding. Dordrecht: Foris.
1993 A minimalist program for linguistic theory. In The View from Building

20, Kenneth Hale and Samuel Jay Keyser (eds.), 1–52. Cambridge,
MA: MIT Press.

Bibliography 253

1995 The Minimalist Program. Cambridge, MA: MIT Press.

2000 New Horizons in the Study of Mind and Language. Cambridge: Cam-
bridge University Press.

2001 Derivation by phase. In Ken Hale: a Life in Language, Michael Ken-
stowicz (ed.), 1–52. Cambridge MA: MIT Press.

2005 Three factors in language design. Linguistic Inquiry 36 (1): 1–22.
Chomsky, Noam and George A. Miller

1963 Introduction to the formal analysis of natural language. In Handbook
of Mathematical Psychology, R. Duncan Luce, Robert Bush and Eu-
gene Galanter (eds.), vol. 2, 269–322. New York: Wiley.

Church, Alonzo
1936 An unsolvable problem of elementary number theory. American Jour-

nal of Mathematics 58: 345–63.

1940 A formulation of the simple theory of types. Journal of Symbolic Logic
5: 56–68.

Church, Alonzo and J. Barkley Rosser
1936 Some properties of conversion. Transactions of the American Mathe-

matical Society 39 (3): 472–82.
Clark, Stephen

1997 Binding and control in categorial grammar. Master’s thesis, University
of Manchester.

Clark, Stephen and James R. Curran
2007 Wide-coverage efficient statistical parsing with CCG and log-linear

models. Computational Linguistics 33 (4): 493–552.
Clarke, T. J.W., P. J.S. Gladstone, C. D. MacLean and A. C. Norman

1980 SKIM - the S, K, I reduction machine. In Proceedings of the 1980
ACM conference on LISP and functional programming, 128–135.
(LFP ’80) New York, NY, USA: ACM.

Cooper, Robin
1983 Quantification and Syntactic Theory. Dordrecht: Reidel.

Crain, Stephen and Paul Pietroski
2001 Nature, nurture and universal grammar. Linguistics and Philosophy

24: 139–186.
Creider, Chet, Jorge Hankamer and Derick Wood

1995 Preset two-head automata and natural language morphology. Interna-
tional Journal of Computer Mathematics 58: 1–18.

Croft, William
2001 Radical Construction Grammar: Syntactic Theory in Typological Per-

spective. Oxford: Oxford University Press.
Curry, Haskell B.

1927 Notes on Schönfinkel. Curry archives.

254 Bibliography

1929 An analysis of logical substitution. American Journal of Mathematics
51: 363–384.

1961 Some logical aspects of grammatical structure. In Structure of Lan-
guage and Its Mathematical Aspects, Roman Jakobson (ed.), 56–68.
American Mathematical Society. Proceedings of Symposia in Applied
Mathematics, vol. XII.

1963 Foundations of Mathematical Logic. McGraw-Hill.
Curry, Haskell B. and Robert Feys

1958 Combinatory Logic. Amsterdam: North-Holland.
De Beule, J., B. De Vylder and T. Belpaeme

2006 A cross-situational learning algorithm for damping homonymy in the
guessing game. In Artificial Life X: Proc. of the Tenth International
Conference on the Simulation and Synthesis of Living Systems, 466–
472.

de Bruijn, N.G.
1972 Lambda calculus notation with nameless dummies. Indagationes

Mathematicae 34: 381–92.
Deacon, Terrence

1988 Human brain evolution I: Evolution of human language circuits. In
Intelligence and Evolutionary Biology, H. Jerison and I. Jerison (eds.).
Berlin: Springer-Verlag.

1997 The Symbolic Species. New York: Norton.
Dennett, Daniel C.

1995 Darwin’s Dangerous Idea: Evolution and the Meanings of Life. New
York: Simon and Schuster.

Derbyshire, Desmond
1979 Hixkaryana. (Lingua Descriptive Studies) Amsterdam: North-

Holland.
Dewdney, A. K.

1984 On the spaghetti computer and other analog gadgets for problem solv-
ing. Scientific American 250 (6): 19–26.

Di Sciullo, Anna Maria and Edwin Williams
1987 On the Definition of Word. Cambridge, MA: MIT Press.

Dixon, R.M.W.
1972 The Dyirbal Language of North Queensland. Cambridge: Cambridge

University Press.
Dowty, David

1996 Non-constituent coordination, wrapping, and Multimodal Categorial
Grammars. In International Congress of Logic, Methodology, and
Philosophy. Florence. August.

Dowty, David, Robert Wall and Stanley Peters
1981 Introduction to Montague Semantics. Dordrecht: Reidel.

Bibliography 255

Dromi, Esther
1987 Early Lexical Development. Cambridge: Cambridge University Press.

Eisner, Jason
1996 Efficient normal-form parsing for Combinatory Categorial Grammar.

In Proceedings of the 34th Annual Meeting of the ACL, 79–86.

Ekmekçi, Fatma
1986 Significance of word order in the acquisition of Turkish. In Studies in

Turkish Linguistics, D.J. Slobin and K. Zimmer (eds.), 253–264.

Elman, Jeffrey
1990 Finding structure in time. Cognitive Science 14: 179–211.

Epstein, Samuel D., Erich Groat, Ruriko Kawashima and Hisatsugu Kitahara
1998 A Derivational Approach to Syntactic Relations. Oxford: Oxford Uni-

versity Press.

Eryılmaz, Kerem and Cem Bozsahin
2012 Lexical redundancy, naming game and self-constrained synonymy. In

Proc. of the 34th Annual Meeting of the Cognitive Science Society.
Sapporo, Japan.

Eryiğit, Gülşen, Joakim Nivre and Kemal Oflazer
2008 Dependency parsing of Turkish. Computational Linguistics 34 (3):

357–389.

Everett, Daniel L.
2005 Cultural constraints on grammar and cognition in Pirahã. Current An-

thropology 46 (4): 621–646.

2009 Pirahã culture and grammar: A response to some criticisms. Language
To appear.

Fazly, Afsaneh, Afra Alishahi and Suzanne Stevenson
2010 A probabilistic computational model of cross-situational word learn-

ing. Cognitive Science 34: 1017–1063.

Feldman, Jerome
2010 Embodied language, best-fit analysis, and formal compositionality.

Physics of Life Reviews Target article.

Filinski, Andrzej
1999 Representing layered monads. In Proc. of the 26th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, 175–
188. San Antonio, Texas.

Fodor, Janet Dean
1998 Parsing to learn. Journal of Psycholinguistic research 27 (3): 339–

374.

Fodor, Jerry
1983 The Modularity of Mind. Cambridge, MA: MIT Press.

256 Bibliography

Frege, Gottlob
1891 Function and concept. In Translations from the Philosophical Writing

of Gottlob Frege, Peter Geach and Max Black (eds.). Oxford: Black-
well. 1966.

1893 Grundgesetze der Arithmetik, Band I. Jena: Verlag Hermann Pohle.

1904 What is a function? In Translations from the Philosophical Writing of
Gottlob Frege, Peter Geach and Max Black (eds.). Oxford: Blackwell.
1966.

Garey, M.R. and D.S. Johnson
1979 Computers and Intractability: A guide to NP-Completeness. San Fran-

cisco: W.H. Freeman.
Gazdar, Gerald

1981 Unbounded dependencies and coordinate structure. Linguistic Inquiry
12: 155–184.

1988 Applicability of indexed grammars to natural languages. In Natural
Language Parsing and Linguistic Theories, Uwe Reyle and Christian
Rohrer (eds.), 69–94. Dordrecht: Reidel.

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum and Ivan Sag
1985 Generalized Phrase Structure Grammar. Oxford: Blackwell.

Geach, Peter
1972 A program for syntax. In Semantics of Natural Language, Donald

Davidson and Gilbert Harman (eds.). Dordrecht: D. Reidel.
Gentner, Dedre

1982 Why nouns are learned before verbs: Linguistic relativity versus natu-
ral partitioning. In Language Development, vol.2: Language, Thought
and Culture, Stan A. Kuczaj II (ed.), 301–334. Hillsdale, New Jersey:
Lawrence Erlbaum.

George, L.M. and Jaklin Kornfilt
1981 Finiteness and boundedness in Turkish. In Binding and Filtering,

F. Heny (ed.), 105–127. Cambridge, MA: MIT Press.
Gibson, Edward and Gregory Hickok

1993 Sentence processing with empty categories. Language and Cognitive
Processes 8: 147–161.

Gibson, James
1966 The Senses Considered as Perceptual Systems. Boston, MA:

Houghton-Mifflin Co.
Göksel, Aslı

2006 Pronominal participles in Turkish and lexical integrity. Lingue e Lin-
guaggio 5 (1): 105–125.

Gold, E. M.
1965 Limiting recursion. J. Symbolic Logic 30: 28–48.

Bibliography 257

1967 Language identification in the limit. Information and Control 16: 447–
474.

Goldberg, Adèle
1995 Constructions: A Construction Grammar Approach to Argument

Structure. Chicago, IL: Chicago University Press.
Gould, Stephen Jay and Richard C. Lewontin

1979 The spandrels of San Marco and the Panglossian paradigm: A critique
of the adaptationist programme. Proc. of the Royal Society of London
B205: 581–598.

Grimshaw, Jane
2000 Locality and extended projection. In Lexical Specification and Inser-

tion, Jane Barbara Grimshaw Peter Coopmans, Martin Everaert (ed.),
115–134. Amsterdam: John Benjamins.

Groenendijk, J. and M. Stokhof
1997 Questions. In Handbook of Logic and Language, Johan van Benthem

and Alice ter Meulen (eds.). Cambridge, MA: MIT Press.
Haegeman, Liliane

1998 Elements of grammar. In Elements of Grammar: Handbook of Gener-
ative Syntax, Liliane Haegeman (ed.). Dordrecht: Kluwer.

Halle, Morris and Alec Marantz
1993 Distributed morphology and the pieces of inflection. In The View from

Building 20: Essays in Linguistics in Honor of Sylvain Bromberger,
Kenneth Hale and Samuel Jay Keyser (eds.). Cambridge, MA: MIT
Press.

Halliday, Michael
1966 Lexis as a linguistic level. In In Memory of J.R. Firth, C.E. Bazell, J.C.

Catford, M.A.K. Halliday and R.H. Robins (eds.), 148–62. Longman.

1970 Language structure and language function. In New Horizons in Lin-
guistics, John Lyons (ed.), 140–165. Harmondsworth: Penguin.

1978 Language as Social Semiotic. London: Edward Arnold.
Halliday, Michael and Ruqaiya Hasan

1976 Cohesion in English. Longman.
Hankamer, Jorge

1989 Morphological parsing and the lexicon. In Lexical Representation and
Process, W. Marslen-Wilson (ed.). Cambridge, MA: MIT Press.

Harman, G.H.
1963 Generative grammars without transformation rules: A defense of

phrase structure. Language 39: 597–616.
Hauser, Marc, Noam Chomsky and W. Tecumseh Fitch

2002 The faculty of language: What is it, who has it, and how did it evolve?
Science 298: 1569–1579.

258 Bibliography

Hawkins, John A.
1994 A Performance Theory of Order and Constituency. Cambridge: Cam-

bridge University Press.

2001 Why are categories adjacent? J. Linguistics 37: 1–34.
Hawks, John

2008 Weblog. http://johnhawks.net/weblog/topics/evolution/selection/
jones-evolution-stopping-2008.html. October 10, 2008.

Hays, David G.
1964 Dependency theory: A formalism and some observations. Language

40: 511–525.
Higginbotham, James

1982 Comments on Hintikka’s paper. Notre Dame Journal of Formal Logic
23 (3): 263–271.

Hintikka, Jaakko
1977 Quantifiers in natural languages: some logical problems II. Linguistics

and Philosophy 1: 153–172.

1980 On the any-thesis and the methodology of linguistics. Linguistics and
Philosophy 4: 101–122.

Hockenmaier, Julia, Gann Bierner and Jason Baldridge
2004 Extending the coverage of a CCG system. Research on Language and

Computation 2: 165–208.
Hockenmaier, Julia and Mark Steedman

2007 CCGbank: A corpus of CCG derivations and dependency structures
extracted from the Penn Treebank. Computational Linguistics 33 (3):
356–396.

Hoeksema, Jack
1985 Categorial Morphology. New York: Garland.

Hoffman, Beryl
1993 The formal consequence of using variables in CCG categories. In

Proceedings of the 31st Annual Meeting of the Association for Com-
putational Linguistics, Columbus, OH, 298–300. San Francisco, CA:
Morgan Kaufmann.

1995 The computational analysis of the syntax and interpretation of “free”
word order in Turkish. Ph.D. diss., University of Pennsylvania.

Hopcroft, John E. and Jeffrey D. Ullman
1979 Introduction to Automata Theory, Languages and Computation. Read-

ing, MA: Addison-Wesley.
Hopper, Paul J. and Sandra A. Thompson

1980 Transitivity in grammar and discourse. Language 56: 251–299.
Hornstein, Norbert

1995 Logical Form: From GB to Minimalism. Oxford: Blackwell.

Bibliography 259

Hoyt, Frederick M.
2006 Negative concord and restructuring in Palestinian Arabic: A compari-

son of TAG and CCG analyses. In Proc. of the 8th Int. Conference on
TAG and Related Formalism. Sydney.

Hoyt, Frederick M. and Jason Baldridge
2008 A logical basis for the D combinator and normal form in CCG. In

Proc. of the Annual Meeting of the ACL. Columbus, OH.
Hudson, Richard A.

1984 Word Grammar. Oxford: Blackwell.
Hughes, R.J.M.

1984 The design and implementation of programming languages. Ph.D.
diss., Oxford.

Husserl, Edmund
1900 Logical Investigations. New York: Humanities Press. 1970 trans. by

J. N. Findlay [Original German edition, 1900-1901.].
Hutton, Graham

2007 Programming in Haskell. Cambridge Univ. Press.
Huybregts, Riny

1976 Overlapping dependencies in Dutch. Utrecht Working Papers in Lin-
guistics 1: 24–65.

Jackendoff, Ray
1997 The Architecture of the Language Faculty. Cambridge, MA: MIT

Press.
Jackendoff, Ray and Stephen Pinker

2005 The nature of the language faculty and its implications for language
evolution. Cognition 97: 211–225.

Jacobsen, W.H. Jr.
1979 Why does Washo lack a passive? In Ergativity, Frans Plank (ed.).

Academic Press.
Jacobson, Pauline

1990 Raising as function composition. Linguistics and Philosophy 13: 423–
476.

1992 Flexible categorial grammars: Questions and prospects. In Formal
Grammar, Robert Levine (ed.), 129–167. Oxford: Oxford University
Press.

1996 The locality of interpretation: the case of binding and coordination. In
proceedings of the 6th Conference on Semantics and Linguistic The-
ory. (Cornell Working Papers in Linguistics) Ithaca NY: Cornell Uni-
versity.

1999 Towards a variable-free semantics. Linguistics and Philosophy 22:
117–184.

260 Bibliography

2002 The (dis)organization of the grammar: 25 years. Linguistics and Phi-
losophy 25: 601–626.

2007 Direct compositionality and variable-free semantics: the case of “Prin-
ciple B” effects. In Direct compositionality, Chris Barker and Pauline
Jacobson (eds.). Oxford: Oxford University Press.

Jaeggli, Osvaldo A.
1986 Passive. Linguistic Inquiry 17 (4): 587–622.

Johnson-Laird, Philip N.
1983 Mental Models. Cambridge, MA: Harvard University Press.

Joshi, Aravind
1985 How much context-sensitivity is necessary for characterizing struc-

tural descriptions: Tree Adjoining Grammars. In Natural Language
Parsing, David Dowty, Lauri Karttunen and Arnold Zwicky (eds.),
206–250. Cambridge: Cambridge University Press.

Joshi, Aravind and Yves Schabes
1992 Tree-adjoining grammars and lexicalized grammars. In Definabil-

ity and Recognizability of Sets of Trees, Maurice Nivat and Andreas
Podelski (eds.). Princeton, NJ: Elsevier.

Joshi, Aravind, K. Vijay-Shanker and David Weir
1991 The convergence of mildly context-sensitive formalisms. In Foun-

dational issues in Natural Language Processing, Peter Sells, Stuart
Shieber and Tom Wasow (eds.), 31–81. Cambridge, MA: MIT Press.

Jusczyk, P. W., E. A. Hohne and M. Newsome
1999 The beginnings of word segmentation by English learning infants.

Cognitive Psychology 39: 159–207.
Kaplan, Ron and Joan Bresnan

1995 Lexical-functional grammar: A formal system for grammatical repre-
sentation. In Formal Issues in Lexical Functional Grammar, Mary
Dalrymple, Ronald Kaplan, John Maxwell and Annie Zaenen (eds.).
Stanford, CA: CSLI Publications.

Kaplan, Ron and Annie Zaenen
1995 Long-distance dependencies, constituent structure, and functional un-

certainty. In Formal Issues in Lexical Functional Grammar, Mary
Dalrymple, Ronald Kaplan, John Maxwell and Annie Zaenen (eds.).
Stanford, CA: CSLI Publications.

Kaplan, Ronald M. and Martin Kay
1994 Regular models of phonological rule systems. Computational Linguis-

tics 20 (3): 331–78.
Karttunen, Lauri

1989 Radical lexicalism. In Alternative Conceptions of Phrase Struc-
ture, Mark Baltin and Anthony Kroch (eds.). Chicago: University of
Chicago Press.

Bibliography 261

Kay, Martin
1985 Parsing in functional unification grammar. In Natural Language Pars-

ing, David Dowty, Lauri Karttunen and Arnold Zwicky (eds.), 251–
278. Cambridge: Cambridge University Press.

Kayne, Richard
1994 The Antisymmetry of Syntax. Cambridge, MA: MIT Press.

Klein, Ewan and Ivan Sag
1985 Type-driven translation. Linguistics and Philosophy 8: 163–201.

Knight, Chris, Michael Studdert-Kennedy and James R. Hurford (eds.)
2000 The Evolutionary Emergence of Language. Cambridge: Cambridge

University Press.
Komagata, Nobo

1997 Efficient parsing for CCGs with generalized type-raised categories. In
Proceedings of the 5th International Workshop on Parsing Technolo-
gies, Boston MA, 135–146. ACL/SIGPARSE.

1999 Information structure in texts: A computational analysis of contextual
appropriateness in English and Japanese. Ph.D. diss., University of
Pennsylvania.

Kornfilt, Jaklin
1984 Case marking, agreement, and empty categories in Turkish. Ph.D.

diss., Harvard University.
2005 Asymmetries between pre-verbal and post-verbal scrambling in Turk-

ish. In The Free Word Order Phenomenon: Its Syntactic Sources and
Diversity, J. Sabel and M. Saito (eds.), 163–179. Berlin/New York:
Mouton de Gruyter.

Kruijff, Geert-Jan M. and Jason Baldridge
2004 Generalizing dimensionality in Combinatory Categorial Grammar. In

Proceedings of the 20th COLING. Geneva, Switzerland.
Kuhlmann, Marco and Joakim Nivre

2006 Mildly non-projective dependency structures. In Proc. of COLING-
ACL, 507–514. Sydney.

Kural, Murat
1994 Postverbal constituents in Turkish. Ms, UCLA.
1997 Postverbal constituents in Turkish and the Linear Correspondence Ax-

iom. Linguistic Inquiry 28 (3): 498–519.
Kwiatkowksi, Tom, Luke Zettlemoyer, Sharon Goldwater and Mark Steedman

2010 Inducing probabilistic CCG grammars from logical form with higher-
order unification. In Proc. of the Conf. on Empirical Methods in Nat-
ural Language Processing. Cambridge, MA.

2011 Lexical generalization in CCG grammar induction for semantic pars-
ing. In Proc. of the Conf. on Empirical Methods in Natural Language
Processing. Edinburgh.

262 Bibliography

Lambek, Joachim
1958 The mathematics of sentence structure. American Mathematical

Monthly 65: 154–170.

1961 On the calculus of syntactic types. In Structure of Language and
Its Mathematical Aspects, Roman Jakobson (ed.), 166–178. American
Mathematical Society. Proceedings of Symposia in Applied Mathe-
matics, vol. XII.

1988 Categorial and categorical grammars. In Categorial Grammars and
Natural Language Structures, Richard T. Oehrle, Emmon Bach and
Deirdre Wheeler (eds.), 297–317. Dordrecht: Reidel.

Levelt, Willem J.M.
1974 Formal grammars and the natural language user: A review. In For-

mal Grammars in Linguistics and Psycholinguistics, W.J.M. Levelt
and A. Barnas (eds.). The Hague: Mouton.

Lewis, Harry R. and Christos H. Papadimitriou
1998 Elements of the Theory of Computation. New Jersey: Prentice-Hall.

Lieber, Rochelle
1980 On the organization of the lexicon. Ph.D. diss., MIT. Published by

Indiana Univ. Linguistics Club, 1981.

Łukasiewicz, Jan
1929 Elementy Logiki Matematycznej. Warsaw: Pwn. English translation

published by Pergamon Press and Pwn, 1963.

Machery, Edouard
2006 Two dogmas of neo-empiricism. Philosophy Compass 4 (1): 398–412.

Mallinson, Graham and Barry Blake
1981 Language Typology. Amsterdam: North Holland.

Manning, Christopher D.
1996 Ergativity: Argument Structure and Grammatical Relations. Stanford,

CA: CSLI.

Marconi, Diego
1997 Lexical Competence. Cambridge, MA: MIT Press.

May, Robert
1977 The grammar of quantification. Ph.D. diss., MIT, Cambridge, MA.

1985 Logical Form. Cambridge, MA: MIT Press.

McCarthy, John J.
1981 A prosodic theory of nonconcatenative morphology. Linguistic In-

quiry 12 (3): 373–418.

McConville, Mark
2006 An inheritance-based theory of the lexicon in Combinatory Categorial

Grammar. Ph.D. diss., University of Edinburgh.

Bibliography 263

McWhinnie, Brian
2000 The CHILDES Project: Tools for Analyzing Talk. Mahwah NJ:

Lawrence Erlbaum.
Melnyk, Andrew

1996 Searle’s abstract argument against strong AI. Synthese 108: 391–419.
Mel’čuk, Igor A.

1988 Dependency Syntax: Theory and Practice. Albany, NY: State Univ. of
New York Press.

Moggi, Eugenio
1991 Notions of computation and monads. Information and Computation

93 (1): 55–92.
Montague, Richard

1970 Universal grammar. Theoria 36: 373–398. Reprinted in Montague
1974, 222-246.

1973 The proper treatment of quantification in ordinary English. In Ap-
proaches to Natural Language, J. Hintikka and P. Suppes (eds.). Dor-
drecht: D. Reidel.

1974 Formal Philosophy: Papers of Richard Montague. New Haven, CT:
Yale University Press. Richmond H. Thomason, ed.

Moortgat, Michael
1988a Categorial Investigations: Logical and Linguistic Aspects of the Lam-

bek Calculus. Dordrecht: Foris.
1988b Mixed composition and discontinuous dependencies. In Categorial

Grammars and Natural Language Structures, Richard T. Oehrle, Em-
mon Bach and Deirdre Wheeler (eds.). Dordrecht: D. Reidel.

Moortgat, Michael and Richard T. Oehrle
1994 Adjacency, dependency and order. In Proceedings of the 9th Amster-

dam Colloquium.
Morrill, Glyn V.

1994 Type Logical Grammar: Categorial Logic of Signs. Dordrecht:
Kluwer.

Nakipoğlu, Mine
2009 The semantics of the Turkish accusative marked definites and the re-

lation between prosodic structure and information structure. Lingua
119 (9): 1253–80.

Nevins, Andrew, David Pesetsky and Cilene Rodrigues
2009 Pirahã exceptionality: A reassessment. Language 85 (2).

Niv, Michael
1994 A psycholinguistically motivated parser for CCG. In Proceedings of

the 32nd Annual Meeting of the Association for Computational Lin-
guistics. Las Cruces, NM, 125–132. San Francisco, CA:Morgan Kauf-
mann.

264 Bibliography

Oehrle, Richard T., Emmon Bach and Deirdre Wheeler eds.
1988 Categorial Grammars and Natural Language Structures. Dordrecht:

D. Reidel. Compilation of the meeting in Tucson, Arizona, June 1985.
Özge, Umut

2010 Information and grammar: A study of Turkish indefinites. Ph.D. diss.,
Middle East Technical University, Informatics Institute.

Özge, Umut and Cem Bozsahin
2010 Intonation in the grammar of Turkish. Lingua 120: 132–175.

Pareschi, Remo and Mark Steedman
1987 A lazy way to chart-parse with categorial grammars. In Proceedings

of the 25th Annual Meeting of the ACL, 81–88.
Partee, Barbara H. and Mats Rooth

1983 Generalized conjunction and type ambiguity. In Meaning, Use, and
Interpretation of Language, Rainer Bauerle, Christoph Schwarze and
Arnim von Stechow (eds.). Berlin: de Gruyter.

Payne, Thomas E.
1997 Describing Morphosyntax. Cambridge: Cambridge Univ. Press.

Peirce, Charles Sanders
1870 Description of a notation for the logic of relatives, resulting from an

amplification of the conceptions of Boole’s calculus of logic. Memoirs
of the American Academy of Sciences 9: 317–78.

Perlmutter, David M.
1983 Personal vs. impersonal constructions. Natural Language and Lin-

guistic Theory 1: 141–200.
Pesetsky, David

1985 Morphology and logical form. Linguistic Inquiry 16 (2): 193–246.

1995 Zero Syntax. Cambridge, MA: MIT Press.
Peters, Stanley and Robert Ritchie

1973 On the generative power of transformational grammars. Information
Science 6: 49–83.

Peyton Jones, Simon L.
1987 The Implementation of Functional Programing Languages. NewYork:

Prentice-Hall.
Phillips, Colin

2003 Linear order and constituency. Linguistic Inquiry 34: 37–90.
Pickering, Martin

1993 Direct association and sentence processing: A reply to Gorrell and to
Gibson and Hickok. Language and Cognitive Processes 8: 168–196.

Pickering, Martin and Guy Barry
1991 Sentence processing without empty categories. Language and Cogni-

tive Processes 6: 229–259.

Bibliography 265

1993 Dependency categorial grammar and coordination. Linguistics 31:
855–902.

Pierrehumbert, Janet and Julia Hirschberg
1990 The meaning of intonational contours in the interpretation of dis-

course. In Intentions in Communication, Philip Cohen, Jerry Morgan
and Martha Pollack (eds.), 271–312. Cambridge, MA: MIT Press.

Pinkal, Manfred
1991 On the syntactic-semantic analysis of bound anaphora. In Fifth Con-

ference of the European Chapter of the Association for Computational
Linguistics (EACL), 45–50. Berlin.

Pollard, Carl
1984 Generalized phrase structure grammars, head grammars, and natural

languages. Ph.D. diss., Stanford University.

2008a Convergent grammar. Lecture notes, 13th ESSLLI, Hamburg.

2008b Cooper storage cures the common cold. NaTALWorkshop, Semantics
and Inference, Nancy.

Pollard, Carl and Ivan Sag
1987 Information-Based Syntax and Semantics, Vol. 1. Stanford, CA: CSLI

Publications.

1994 Head-driven Phrase Structure Grammar. Chicago: University of
Chicago Press.

Pollock, Jean-Yves
1989 Verb movement, UG and the structure of IP. Linguistic Inquiry 20:

365–424.
Postal, Paul M. and John Robert Ross

2009 Inverse reflexives. In Time and Again: Theoretical Perspectives on
Formal Linguistics: in Honor of D. Terrence Langendoen, William D.
Lewis, Simin Karimi, Heidi Harley and Scott O. Farrar (eds.). Ams-
terdam: John Benjamins. Linguistik Aktuell.

Prevost, Scott
1995 A semantics of contrast and information structure for specifying in-

tonation in spoken language generation. Ph.D. diss., University of
Pennsylvania.

Pullum, Geoffrey K. and Barbara Scholz
2009 Recursion and the infinitude claim. In Recursion in Human Language,

Harry van der Hulst (ed.). Mouton de Gruyter.
Pustejovsky, James

1991 The generative lexicon. Computational Linguistics 17 (4): 409–441.
Putnam, Hilary

1961 Some issues in the theory of grammar. In Structure of Language
and Its Mathematical Aspects, Roman Jakobson (ed.), 6–24. American

266 Bibliography

Mathematical Society. Proceedings of Symposia in Applied Mathe-
matics, vol. XII.

1965 Trial and error predicates and the solution of a problem of Mostowski.
J. Symbolic Logic 30: 49–57.

Quine, Willard van Orman
1951 Two dogmas of empiricism. The Philosophical Review 60: 20–43.

1960 Word and Object. Cambridge MA: MIT Press.

1966 Variables explained away. In Selected Logic Papers. New York: Ran-
dom House.

1967 Commentary on Schönfinkel 1924. In From Frege to Gödel, Jean van
Heijenoort (ed.). Cambridge, MA: Harvard Univ. Press.

Rey, Georges
1986 What’s really going on in Searle’s “Chinese room”. Philosophical

Studies 50: 169–185.
Rosenbloom, Paul

1950 The Elements of Mathematical Logic. New York: Dover Publications.
Ross, John Robert

1967 Constraints on variables in syntax. Ph.D. diss., MIT. Published as
Infinite Syntax!, Ablex, Norton, NJ, 1986.

Rosser, J.B.
1935 A mathematical logic without variables. Annals of Mathematics 36:

127–150.
Sandra, Dominiek

1998 What linguists can and can’t tell about the human mind: A reply to
Croft. Cognitive Linguistics 9: 361–378.

Santelmann, Lynn M. and Peter W. Jusczyk
1998 Sensitivity to discontinuous dependencies in language learners: Evi-

dence for limitations in processing space. Cognition 69 (2): 105–134.
Schönfinkel, Moses Ilyich

1920/1924On the building blocks of mathematical logic. In From Frege to Gödel,
Jan van Heijenoort (ed.). Harvard University Press, 1967. Prepared
first for publication by H. Behmann in 1924.

1929 Zum entscheidungsproblem der mathematischen logik. Mathematis-
che Annalen 99: 342–372.

Searle, John R.
1980 Minds, brains and programs. The Behavioral and Brain Sciences 3:

417–424.

1990a Is the brain’s mind a computer program? Scientific American 262 (1):
26–31.

1990b Is the brain’s mind a digital computer? Proc. of American Philosoph-
ical Association 64 (3): 21–37.

Bibliography 267

2001 Chinese Room argument. In The MIT Encyclopedia of the Cognitive
Sciences, Robert A. Wilson and Frank C. Keil (eds.), 115–116. Cam-
bridge, MA: MIT Press.

Shan, Chung-Chieh
2001 Monads for natural language semantics. In Proc. of ESSLLI Student

Session, Kristina Striegnitz (ed.), 285–298. Folli.

Shaumyan, Sebastian
1977 Applicational Grammar as a Semantic Theory of Natural Language.

Edinburgh University Press.

1987 A Semiotic Theory of Language. Indiana University Press.

Shi, R., A. Marquis and B. Gauthier
2006 Segmentation and representation of function words in preverbal

French-learning infants. In Proc. of the 30th Annual Boston University
Conference on Language Development, D. Bamman, T. Magnitskaia
and C. Zaller (eds.), 549–560. Somerville, MA: Cascadilla Press.

Shieber, Stuart
1985 Evidence against the context-freeness of natural language. Linguistics

and Philosophy 8: 333–343.

1986 An Introduction to Unification-based Approaches to Grammar. Stan-
ford: CSLI.

Simpson, George Gaylord
1953 The Baldwin effect. Evolution 7: 110–117.

Siskind, Jeffrey
1995 Grounding language in perception. Artificial Intelligence Review 8:

371–391.

1996 A computational study of cross-situational techniques for learning
word-to-meaning mappings. Cognition 61: 39–91.

Slobin, Dan I. and Thomas G. Bever
1982 Children use canonical sentence schemas: A crosslinguistic study of

word order and inflections. Cognition 12: 229–265.

Smith, A.D.M.
2003 Intelligent meaning creation in a clumpy world helps communication.

Artificial Life 9 (2): 175–190.

Smullyan, Raymond
1985 To Mock a Mockingbird. New York: Knopf.

Stabler, Edward P.
1997 Derivational minimalism. In Logical Aspects of Computational Lin-

guistics (LACL’96), Christian Retoré (ed.), 68–95. (Lecture Notes in
Computer Science 1328) New York: Springer.

268 Bibliography

1999 Remnant movement and complexity. In Constraints and Resources in
Natural Language Syntax and Semantics, Gosse Bouma, Erhard Hin-
richs, Geert-Jan Kruijff and Dick Oehrle (eds.), 299–326. Stanford,
CA: CSLI.

Steedman, Mark
1985 Dependency and coördination in the grammar of Dutch and English.

Language 61 (3): 523–568.
1987 Combinatory grammars and parasitic gaps. Natural Language and

Linguistic Theory 5: 403–439.
1988 Combinators and grammars. In Categorial Grammars and Natural

Language Structures, Richard T. Oehrle, Emmon Bach and Deirdre
Wheeler (eds.). Dordrecht: D. Reidel.

1990a Constituency and coordination in a combinatory grammar. In Alterna-
tive Conceptions of Phrase Structure, Mark R. Baltin and Anthony S.
Kroch (eds.). University of Chicago Press.

1990b Gapping as constituent coordination. Linguistics and Philosophy 13:
207–263.

1991a Structure and intonation. Language 67: 260–298.
1991b Type raising and directionality in combinatory grammar. In Proceed-

ings of the 29th Annual Meeting of the ACL, 71–78.
1996a Does grammar make use of bound variables? In Proc. of the Conf. on

Variable-free Semantics, Michael Böttner and Wolf Thümmel (eds.).
Osnabrück.

1996b Surface Structure and Interpretation. Cambridge, MA: MIT Press.
1999 Quantifier scope alternation in CCG. In Proceedings of the 37th An-

nual Meeting of the Association for Computational Linguistics, Col-
lege Park, MD, 301–308. San Francisco, CA: Morgan Kaufmann.

2000a Information structure and the syntax-phonology interface. Linguistic
Inquiry 31: 649–689.

2000b The Syntactic Process. Cambridge, MA: MIT Press.
2002 Plans, affordances, and combinatory grammar. Linguistics and Phi-

losophy 25: 723–753.
2005a Grammar acquisition in child and machine. In Proc. of the 9th Conf.

on Computational Natural Language Learning. Ann Arbor, MI.
2005b Interfaces and the grammar. In Proceedings of the 24th West

Coast Conference on Formal Linguistics, Vancouver, March 2005,
John Alderete et al. (ed.), 19–33. Somerville, MA: Cascadilla Pro-
ceedings Project.

2006 A Zipfian view of Greenberg 20. Ms., University of Edinburgh.
2009 Welsh syntactic soft mutation without movement or empty categories.

Ms. Univ. of Edinburgh.
2011 Taking Scope. Cambridge, MA: MIT Press.

Bibliography 269

Steedman, Mark and Jason Baldridge
2011 Combinatory Categorial Grammar. In Non-transformational syntax,

R. Borsley and Kirsti Börjars (eds.), 181–224. Oxford: Blackwell.

Steedman, Mark and Julia Hockenmaier
2007 The computational problem of natural language acquisition. Ms., Uni-

versity of Edinburgh.

Steele, Susan
1978 Word order variation: A typological study. In Universals of Human

Language, Joseph Greenberg (ed.). Stanford University Press.

Stoy, J.E.
1981 Denotational Semantics. Cambridge, MA: MIT Press.

Szabolcsi, Anna
1983 ECP in Categorial Grammar. Ms., Max-Planck Institute.

1987a Bound variables in syntax: Are there any? In Proceedings of the 6th
Amsterdam Colloquium, 331–350.

1987b On Combinatory Categorial Grammar. In Proceedings of the Sym-
posium on Logic and Language, Debrecen, 151–162. Budapest:
Akadémiai Kiadó.

1989 Bound variables in syntax: Are there any? In Semantics and Contex-
tual Expression, Renate Bartsch, Johan van Benthem and Peter van
Emde Boas (eds.), 295–318. Dordrecht: Foris.

1992 On combinatory grammar and projection from the lexicon. In Lexical
Matters, Ivan Sag and Anna Szabolcsi (eds.), 241–268. Stanford, CA:
CSLI Publications.

1994 The noun phrase. In The Syntactic Structure of Hungarian, Ferenc
Kiefer and Katalin É Kiss (eds.). (Syntax and semantics) San Diego:
Academic Press.

2003 Binding on the fly: Cross-sentential anaphora in variable-free seman-
tics. In Resource Sensitivity in Binding and Anaphora, Geert-Jan Krui-
jff and Richard T. Oehrle (eds.), 215–229. Dordrecht: Kluwer.

Tardif, Twila
1996 Nouns are not always learned before verbs: Evidence from Mandarin

speakers’ early vocabularies. Developmental Psychology 32 (3): 497–
504.

Tesnière, Lucien
1959 Éléments de Syntaxe Structurale. Paris: Editions Klincksieck.

Thiessen, Erik D. and Jenny R. Saffran
2003 When cues collide: Use of stress and statistical cues to word bound-

aries by 7- to 9-month-old infants. Developmental Psychology 39 (4):
706–716.

270 Bibliography

Trechsel, Frank
2000 A CCG account of Tzotzil pied piping. Natural Language and Lin-

guistic Theory 18: 611–663.
Turing, Alan Mathison

1936 On computable numbers, with an application to the entscheidungspro-
lem. Proc. of the London Mathematical Society 42 (series 2): 230–
265.

1937 Computability and λ -definability. J. of Symbolic Logic 2 (4): 153–
163.

1950 Computing machinery and intelligence. Mind 59 (236): 433–460.
Turner, David A

1979 Another algorithm for bracket abstraction. Journal of Symbolic Logic
44: 267–270.

van Hout, Angeliek
2000 Event semantics in the lexicon-syntax interface. In Events as Gram-

matical Objects, Carol Tenny and James Pustejovsky (eds.), 239–282.
Stanford: CSLI.

Vijay-Shanker, K. and David Weir
1990 Polynomial time parsing of Combinatory Categorial Grammars. In

Proceedings of the 28th Annual Meeting of the Association for Com-
putational Linguistics, Pittsburgh, 1–8. San Francisco, CA: Morgan
Kaufmann.

1994 The equivalence of four extensions of context-free grammar. Mathe-
matical Systems Theory 27: 511–546.

Villavicencio, Aline
2002 The acquisition of a unification-based generalised categorial grammar.

Ph.D. diss., University of Cambridge.
Wadler, Philip

1990 Comprehending monads. In Proc. of ACM Conference on Lisp and
functional programming.

1997 How to declare an imperative. ACM Computing Surveys 29 (3).
Williams, Edwin

1994 Remarks on lexical knowledge. Lingua 92: 7–34.
Wittgenstein, Ludwig

1942 Blue and Brown Books. London: Harper Perennial.
Yang, Charles

2006 The Infinite Gift. New York NY: Scribner.
Zaenen, Annie

1991 Subcategorization and pragmatics. Presentation at CSLI, Stanford.

1993 Unaccusativity in Dutch: Integrating syntax and lexical semantics. In
Semantics and the Lexicon, James Pustejovsky (ed.). Kluwer.

Bibliography 271

Zettlemoyer, Luke and Michael Collins
2005 Learning to map sentences to logical form: Structured classification

with probabilistic categorial grammars. In Proc. of the 21st Conf. on
Uncertainty in Artificial Intelligence. Edinburgh.

2007 Online learning of relaxed CCG grammars for parsing to logical form.
In Proceedings of the Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language
Learning (EMNLP/CoNLL), 678–687. ACL.

Zurif, Edgar B.
1995 Brain regions of relevance to syntactic processing. In An Invitation to

Cognitive Science: Language, Lila R. Gleitman and Mark Liberman
(eds.). MIT Press.

Abney Steven, 165
Ackermann Wilhelm, 237
Ades Anthony, viii, 24, 58, 73, 205,

238, 239
Aissen Judith, 170
Ajdukiewicz Kazimierz, 5
Aksu-Koç Ayhan, 212
Allen James, 106
Anderson Stephen, 14, 81, 241, 244
Aronoff Mark, 12, 244
Awbery Gwen, 65, 79, 94, 99, 126,

197

Bach Emmon, 59, 62, 63, 87, 121,
124, 205, 206, 240

Baker Mark, 211
Baldridge Jason, 4, 33, 57, 65, 68, 69,

89, 90, 93, 114, 115, 119,
125, 127, 148, 175, 184,
185, 198, 201, 235, 239,
240, 243, 244

Baldwin Mark, 247
Bar-Hillel Yehoshua, 9, 80, 81, 211
Barendregt Henk, 31, 43, 239
Barker Chris, 87, 95, 98, 195
Barrett Syd, 188, 208, 246
Barry Guy, 41, 114
Batman-Ratyosyan Natalie, 212
Beard Robert, 12, 236, 245
Beavers John, 235, 240
Behmann Heinrich, 1, 31, 235
Bernays Paul, 235
Berwick Robert, 225
Bickerton Derek, 210, 211, 247
Bickhard Mark, 149
Bird Steven, 207
Blake Barry, 105, 246
Bolinger Dwight, 39, 238
Borsley Robert, 97, 98

Bos Johan, 157, 191
Bozsahin Cem, 119, 140, 144, 149,

150, 152–154, 157, 175,
187, 188, 191, 202, 212,
245

Brent Michael, 169
Bresnan Joan, 23, 24, 29, 39, 124, 238
Brody Michael, 28, 179
Brown Penelope, 155

Çakıcı Ruken, 186
Çöltekin Çağrı, 150, 152–154, 157,

191, 202, 245
Calder Jonathan, 70
Carleton Lawrence, 177
Carlson Greg, 3
Carnap Rudolf, 88
Carpenter Robert, 29, 65
Chaitin Gregory, 241
Chomsky Noam, ix, 18, 23, 24, 28,

36–38, 43, 58, 59, 70, 72,
88, 89, 98, 104, 124, 132,
133, 136, 137, 179, 180,
203, 205–207, 210, 211,
237, 238, 245, 247

Church Alonzo, 31, 47, 81
Clark Stephen, 152, 171, 191
Clarke T., 235
Collins Michael, 150, 152, 153, 157,

160, 181, 191
Cooper Robin, 103
Craig William, 80, 239
Crain Stephen, 18, 81
Creider Chet, 63
Croft William, 208
Curran James, 152, 191
Curry Haskell, 1, 2, 31–33, 37, 44–46,

50, 52–56, 58, 79, 80, 87,
109, 133, 192, 194, 205–

Author and name index

274 Index

207, 219, 221, 222, 235,
237, 239, 240, 247

de Beul J., 149
de Bruijn N., 1, 235
Deacon Terrence, 210, 213
Dennett Daniel, 213
Derbyshire Desmond, 113
Dewdney A., 227, 228
DiScuillo Anna Maria, 157
Dixon R., 113
Dowty David, 11, 62, 242
Dromi Esther, 151

Edelman Shimon, 157
Eisner Jason, 202
Ekmekçi Fatma, 212
Ellison Mark, 207
Elman Jeffrey, 150, 205
Epstein Samuel, 28, 207
Eryigit Gülşen, 186
Eryılmaz Kerem, 149
Everett Daniel, 132, 134–136

Fazly Afsaneh, 157
Feldman Jerome, 106
Feys Robert, 31–33, 45, 46, 50, 52–

56, 80, 133, 192, 194, 219,
221, 222, 239, 240, 247

Filinski Andrzej, 201
Findler Nicholas, 212
Fodor Janet, 245
Fodor Jerry, 238
Fraser Elizabeth, ix, 235
Frege Gottlob, 1, 31, 88, 235

Garey M., 154, 155
Gazdar Gerald, 9, 21, 70, 73
Geach Peter, viii, 73, 91, 205, 239
Gentner Dedre, 150
George Leland, 165
Gibson Edward, 41
Gibson James, 157

Goksel Aslı, 235
Gold Mark, 37, 38, 143, 148, 152,

154, 240
Goldberg Adele, 208
Gore Martin, 235
Gould Stephen, 213
Grimshaw Jane, 164
Groenendijk J., 33

Haegeman Liliane, 164
Halle Morris, 12, 206, 236
Halliday Michael, 122, 236
Hankamer Jorge, 63, 84
Harary Frank, 206
Harman G., 9
Hauser Marc, 37, 132–134, 136, 210
Hawkins John, 156, 237
Hawks John, 247
Hays David, 208
Herbrand Jacques, 1
Hickok Gregory, 41
Higginbotham James, 39
Hilbert David, 1
Hintikka Jaakko, 39, 242
Hirschberg Julia, 29, 140, 187
Hockenmaier Julia, 150, 152, 153,

157, 160, 185, 186, 191,
203, 211, 245, 247

Hockett Charles, 206
Hoeksema Jack, 13
Hoffman Beryl, 83, 119, 194
Hopcroft John, 226
Hopper Paul, 109
Hornstein Norbert, 203
Hoyt Frederick, 4, 33, 57, 65, 114,

115, 119, 201, 235, 239
Hudson Richard, 16, 208
Hughes R., 220
Humboldt Alexander von, 135
Hume David, vii, ix, 16, 38, 135, 152,

209, 212, 244, 247
Husserl Edmund, 65, 66, 68–70, 135,

177, 240

Index 275

Hutton Graham, 194
Huybregts Riny, 73

Jackendoff Ray, 109, 148, 210
Jacobsen W., 124
Jacobson Pauline, 56, 62, 71, 87–90,

95, 97, 99–102, 108, 119,
236, 242, 247

Jaeggli Osvaldo, 125, 147
Jakobson Roman, 206
Johnson D., 154, 155
Johnson-Laird Philip, 106
Joshi Aravind, 40, 73
Jusczyk Peter, 169

Kaplan Ron, 29, 207, 238
Karttunen Lauri, 66, 72
Kay Martin, 70, 207
Kayne Richard, ix, 156, 236
Klein Ewan, 59
Knight Chris, 210
Kolmogorov Andrey, 241
Komagata Nobo, 119, 202
Kornfilt Jaklin, 165, 174
Kruijff Geert-Jan, 65, 240
Kuhlmann Marco, 208
Kural Murat, 174
Kwiatkowksi Tom, 157

Łukasiewicz Jan, 31
Lambek Joachim, 72, 73, 193, 205–

207, 242
Levelt Willem, 38, 237, 238
Lewis Harry, 226
Lewontin Richard, 213
Locke John, 135, 212, 247

Machery Edouard, 212
Mallinson Graham, 246
Mandelbrot Benoit, 206
Manning Christopher, 74, 76
Marantz Alec, 12, 236
Marconi Diego, 180, 181

May Robert, 88
McCarthy John, 207
McConville Mark, 110, 119, 235, 240
McIlroy Douglas, 183
McWhinnie Brian, 157
Melnyk Andrew, 181
Mel’čuk Igor, 16, 208
Moggi Eugenio, 195
Montague Richard, ix, 9, 11, 59, 88,

104, 105, 166, 205, 206,
231, 240, 242, 243

Moortgat Michael, 48, 65, 173
Morrill Glyn, 65

Nakipoğlu Mine, 246
Nevins Andrew, 133
Niv Michael, 202
Nivre Joakim, 208

Özge Umut, 140, 175, 176, 187, 188,
245, 246

Oehrle Richard, 65, 73

Papadimitriou Christos, 226
Pareschi Remo, 120
Partee Barbara, 105, 106, 190
Payne Thomas, 81, 123
Peirce Charles, 1, 31
Penrose Roger, 36, 237
Perlmutter David, 170
Pesetsky David, 88, 104
Peters Stanley, 21, 36
Peyton Jones Simon, 55, 221
Phillips Colin, 24, 27
Pickering Martin, 41, 114
Pierrehumbert Janet, 29, 140, 187
Pietroski Paul, 18, 81
Pinkal Manfred, 242
Pollard Carl, x, 23, 29, 70, 206, 235,

240, 243
Pollock Jean-Yves, 164
Postal Paul, 104
Prevost Scot, 119, 202

276 Index

Pryor James, 95, 98, 195
Pullum Geoffrey, 37, 133, 136, 244
Pustejovsky James, 148
Putnam Hilary, 36, 38, 39, 206, 238

Quine Willard, 1, 6, 31, 39, 40, 157,
205–208, 235, 239, 245

Rey Georges, 177, 180, 245
Rooth Mats, 105, 190
Rosenbloom Paul, 56, 239
Ross John, 18, 76, 104
Rosser Barkley, 1, 47, 55
Russell Bertrand, 9, 46, 88, 166

Sag Ivan, 23, 29, 59, 70, 235
Sandra Dominiek, 40
Santelmann Lynn, 169
Scholz Barbara, 37, 133, 136, 244
Schönfinkel Moses, viii, x, 1–4, 6, 7,

25, 31–33, 44, 47, 51, 58,
61, 76, 80, 109, 110, 113,
200, 205–208, 223, 235,
237, 239, 241, 253, 266

Searle John, 177–180
Shan Chung-Chieh, 195, 247
Shaumyan Sebastian, 73, 101, 206,

242
Shi R., 169
Shieber Stuart, 40, 70, 73–75, 241
Simpson George, 247
Siskind Jeffrey, 151, 157–159, 236,

245
Skolem Thoralf, 1, 91, 92
Slobin Dan, 212
Smith A., 149
Smullyan Raymond, 45, 52, 56, 200,

219, 239, 240, 247, 248
Stabler Edward, 38
Steedman Mark, viii, 4, 21, 24, 28,

31, 54, 58, 64, 67, 71, 73,
74, 78, 87, 89–91, 93, 97,
98, 103, 106, 107, 110, 113,

116, 119, 120, 125, 127,
138–141, 148, 150, 152,
153, 157, 160, 171, 184–
189, 191, 201–203, 205,
209, 211, 213, 238–241,
243–247

Steele Susan, 82, 173, 246
Steels Luc, 106
Stokhof M., 33
Stoy J., 43
Stromswold Karin, 212
Szabolcsi Anna, 56, 64, 77, 78, 80–

82, 87, 89, 92, 93, 101, 110,
119, 163, 238–241

Tardif Twila, 150
Tarski Alfred, 88
Tesnière Lucien, 16
Thompson Sandra, 109
Trechsel Frank, 119, 185
Turing Alan, 22, 31, 36, 38–40, 103,

136, 178, 213, 223, 225,
237, 247

Turner David, 56, 58, 239

Ullman Jeffrey, 226

van Hout Angeliek, 144, 146, 245
Vijay-Shanker K., 73, 82, 83, 116,

202
Villavicencio Aline, 157, 191, 202

Wackernagel Jacob, 63
Wadler Philip, 195, 246
Weinberg Amy, 225
Weir David, 73, 82, 83, 116, 202
Williams Edwin, 157, 245
Wittgenstein Ludwig, 88, 135, 157,

207, 244

Yang Charles, 211, 213
Yngve Victor, 206

Zaenen Annie, 29, 142, 143

Index 277

Zettlemoyer Luke, 150, 152, 153,
157, 160, 181, 191

Zurif Edgar, 41

accusative case, 170, 176
adjacency, viii, x, 6, 7, 205
agreement, 10, 11, 19, 70, 88, 110,

129, 165–167, 169–173,
230, 246

Aktionsart, 144–146, 148
Albanian, 104, 173
algorithm, 5, 16, 73, 149, 182, 199,

203, 219, 225, 226, 246
applicative, system, 48, 68, 138, 183,

184, 206, 211, 223, 230,
239

Arabic, 12
argument sharing, 53
argumenthood, 34, 104, 125, 171,

193, 243
arity, Schönfinkel-Curry, 32, 44, 109
autosegment, 164, 207

Bayesian, 152, 154
boundedness, 31, 121–124, 127, 128,

130, 131, 244

c-command, 88, 91, 92, 234, 242,
248

case marking, 173, 175, 230, 246
categorial grammar, ix, 10, 13, 65,

66, 73, 207
category, 28, 54, 65, 71, 129, 231

distributional, 9, 72, 230
dollar, 71
exponent, 71, 95, 99, 102
formal, 66
functional, 110, 163–167, 169,

170
substantive, 66
type-dependence, 129

causative, 12, 13, 244
codeterminism, vii, x, 22, 59, 121

combinator, 1, 3, 219
A, problem of, 190
B, 4, 16, 25, 32, 33, 44, 45, 49,

50, 51, 76, 78–81, 87, 92,
95, 101, 109, 116, 187,
191, 192, 196, 201, 205,
209, 219, 241

B2, 4, 55, 58
C, 4, 45, 51, 55, 62–64, 79–82,

93, 219
D, 56, 57, 239
fixpoint, 220
I, 32, 45, 113, 134, 199, 223,

237
J, 45, 55, 113
juxtaposition, 1
K, 36, 45, 48, 49, 51, 79–81,

219, 221, 237, 242
O, 4, 5, 34, 57, 113, 114, 116,

239
Φ, 45, 52, 53, 54, 113
Ψ, 45, 54, 55
power of, 32, 220
regular, 192, 201
S, 4, 22, 45, 51, 52, 56, 77–80,

187, 197, 209, 219, 241,
247

S′′, 58, 82, 83, 117, 193
T, 5, 45, 47, 58, 82, 83, 193,

194, 209, 219
U, 37, 220, 247
W, 3, 45, 49, 80, 219
X, 239
Y, 34, 35, 37, 45, 46, 47, 55, 57,

133, 199, 209, 210, 220,
244

Z, 56, 87, 92, 95–97, 100
complexity

computational, 149, 155,

Subject index

280 Index

225–228
Kolmogorov-Chaitin, 241

computation, tractable, 226, 227
computationalism, 37, 40, 73, 149,

220
configuration, 225
constituent, vii, x, 3, 5, 16, 22, 138

CCG, 61, 87, 89, 138, 141, 205,
208

complete, 78, 79, 101
impossible, viii, 13, 17, 101,

116, 188, 201, 209
interpretable, vii, viii, 2, 9, 17,

43, 138, 208
possible, viii, 3, 4, 7, 16, 21–24,

41, 48, 76, 79, 80, 83, 84,
138, 142, 168, 208, 241

test, 23, 24, 26, 28, 29, 102,
236, 240

constraint, 240
computing, 22
extraneous, 20, 106, 118, 120,

135, 152, 169
formal, 89
LEX, 93, 94, 125, 127, 128,

131, 147, 184, 185, 201
local, 50, 76, 183
multiple, 23, 60, 103, 129, 132
nonlocal, 21
semantic, 138, 162, 236
substantive, 36, 38, 89, 103,

107, 110, 125, 182
syntactic, 12, 18, 46, 71, 74, 76,

79, 102, 129, 147, 148,
183, 236, 242

transderivational, 21
type, 21
universal, 104, 107, 110, 120,

130, 156, 184, 200
Construction Grammar, 124, 143,

148, 208, 240
control, 128

Coordinate Structure Constraint
(CSC), 18, 20, 21, 102, 236

coordination, 17, 21, 22, 53, 63, 76,
78, 83, 84, 93, 100, 102,
113, 115, 119, 142, 236,
240, 245

Currying, 2, 3, 31, 44, 46, 58, 61, 68,
74, 104, 113, 118

decidability, 40, 226
dependency, 3, 233

crossing, 73–75, 241
semantic, x, 1, 3, 4, 234
syntactic, vii, 12, 40, 43, 45, 58,

199
Dependency grammar, ix
Deterministic Turing Machine, 226
Distributed Morphology, 207, 236
Dutch, 73, 74, 114, 118, 142–144,

147, 148, 245

empty category, 2, 29, 40, 41, 94,
156, 210, 211

English, 5, 6, 10, 11, 26, 39, 55, 79,
104, 107, 115, 116, 125,
127, 129, 130, 132, 138,
140, 166, 168, 169, 172,
188, 189, 209, 212, 230,
241, 242

ergativity, 74, 76, 119, 129, 132, 170,
171, 212

freedom, degrees of, 13, 16, 29, 40,
48, 63, 81, 102, 103, 122,
124, 128, 130, 148, 190,
206, 243

function, principal, 61
fusion, 51, 241

gapping, 54, 66, 119, 186–188, 208,
239

Generalized Phrase-structure
Grammar (GPSG), 132,
211

Index 281

German, 81, 114, 118, 169
Greek, 104
Gusii, 63
Göttingen, 1, 235

head, 20, 21, 23, 35, 74, 76, 81, 100,
113, 115, 124, 131, 145,
147, 148, 164–167, 186,
190, 194, 199, 203, 243

Head-Categorial Uniqueness (HCU),
110

Head-driven Phrase-structure
Grammar (HPSG), ix, 23,
29, 235

Hume
question, ix, 16, 135, 209

interdefinability, 48, 61, 80, 82, 83,
240

interpretable, immediately, viii, 2, 17
intonation, 3, 22, 23, 60, 119, 134,

138–141, 174, 175, 184

juxtaposition, 7, 25, 27, 29, 31, 32,
44, 47, 48, 50, 58, 61, 197,
200, 202, 205, 217, 233,
234

Kwakw
,
ala, 13, 14

lambda calculus
binding, 217
conventions, 217
conversion, 217

alpha (α), 217
beta (β), 217, 218, 221
eta (η), 6, 217

equivalence, 218
normalization, 218
term, 217

Lexical Functional Grammar (LFG),
23, 29, 149

LF-command, 90
linear-indexed grammar, 73, 229

locality, domain of, 72, 99, 171, 243
logical form (LF), 64, 85, 87–95, 98,

100, 101, 103–105, 109,
120, 142, 203, 205, 213,
243

merge, 24, 25, 58, 206, 211
Mildly Context-sensitive Language

(MCSL), 73
minimalism, 24, 38, 179, 206
monad, 95, 98, 102, 182, 183, 192,

194–203, 205, 209, 246,
247

morphology, 11–13, 26, 27, 81, 123,
125, 127, 131, 132, 147,
156, 162, 169, 173, 174,
179, 183, 189, 190, 207,
235, 236, 244, 245

movement, ix, 24, 25, 58, 97, 134,
156, 206, 207, 211, 237

normal-order evaluation, 218, 219

order, of a function, 227
Orifice, 116, 117
OSV, 212, 242
OVS, 212

passive, 12, 13, 31, 99, 110, 119,
121–128, 130, 142–145,
147, 152, 243–245

phonology, 3, 11–13, 23, 63, 140,
175, 183, 191, 199, 203,
235, 245

predicate sharing, 55
Predicate-argument Dependency

Structure (PADS), 9, 11,
35, 72, 87, 88, 104–106,
120, 122, 125, 127–129,
138, 140, 148, 151, 152,
154, 156, 171–174, 176,
182, 191, 202, 233, 243,
245

282 Index

primitive recursive function, 226
Principle of Categorial Type

Transparency (PCTT),
107–110, 131, 148

Principle of Lexical Head
Government (PLHG), 110,
148

procedure, 226
pronoun, 87–89, 91, 92, 94–100,

102–104, 108, 115, 122,
126, 242, 243

as argument, 95
as variable, 95
resumptive, 71, 102

Radical Lexicalism, 66, 72, 206
radical lexicalization, x, 4, 28, 53, 59,

61, 70, 72, 73, 83, 101,
119, 124, 125, 128, 130,
135, 137, 143, 146, 148,
156, 157, 169, 172, 174,
175, 183, 184, 197, 206,
209, 211, 229

raising verb, 171
recursion

semantic, 34, 37, 133, 136, 209,
210, 221

syntactic, 37, 46, 133, 134, 136,
209, 210, 221

reflexive, 31, 64, 87–89, 92–94, 103,
104, 121, 122, 127, 148,
172, 184, 243, 244

reflexivization, 90, 91, 128
relative pronoun, 70, 103, 129, 132
relativization, 20, 21, 29, 35, 71, 74,

76, 84, 88, 100, 101, 119,
121, 128–132, 170

resource, viii, 49, 74, 76, 119
computational, 40, 88, 149
grammatical, 173–175
insensitivity, 49
lexical, 10, 11, 194
morphological, 246

right-node raising, 83, 84, 93
rule-to-rule hypothesis, 59, 72, 110,

121, 130, 131, 205, 206

semi-decides, 226
Separation Hypothesis, 12, 236, 245
sequencer, 192
seriation, 210, 213
SKIM, 235
slash

modality, 68
underspecification (‘|’), 70, 198

SOV, 189, 212
structure dependence, viii, 17–19, 21,

22, 24, 28, 63, 98, 166,
175, 210, 211, 237, 240

subcombinator, 35
subordinator, 163
supercombinator, 33–36, 57, 58, 114,

220, 221
SVO, 67, 166, 188, 212
Swiss German, 73–75
syntacticization, vii, viii, 4–6, 9, 10,

13, 16, 21, 25, 34, 41,
43–59, 61, 62, 66–70, 74,
76–78, 100, 114, 118, 121,
130, 136, 138, 164, 183,
190, 193, 198, 199, 205,
207–210, 221, 238, 239

syntactocentrism, x, 72

telicity, 142–148, 245
topic prominence, 119
topicalization, 29, 121, 123
transformation, 18, 19, 21, 23, 24, 28,

29, 36–38, 88, 89, 91, 94,
110, 124, 163, 206, 207,
210, 233, 236, 237, 240

Turing Machine, 225
Turing representability, 36, 40, 72,

225, 226
Turkish, 20, 21, 35, 63, 64, 66, 71,

83, 84, 99, 105, 115, 118,

Index 283

119, 123–125, 127–129,
140, 157, 169, 174–176,
186, 189, 212, 241, 244,
246, 247

type, 9, 165
combinatory, 10, 230
distributional, 230
semantic, 231
subtyping, ix
syntactic, 10, 65

type dependence, viii, 11, 17–22, 28,
61, 98, 99, 124, 130, 237

type raising, 5, 48, 64, 83, 84, 87, 91,
92, 94, 102–104, 124, 125,
127, 163, 165–168, 170,
172, 173, 175, 188, 191,
193, 194, 200, 242

Type-logical grammar, ix, 29, 65
Tzeltal, 155, 156

unaccusative, 144, 147, 185
unboundedness, 35, 121, 122,

128–132
undecidable, 226
unergative, 142, 144, 147, 185
unification, ix, 70, 120

universal grammar, 74, 82, 135, 153,
156, 181, 203, 210, 211,
213

vacuous abstraction, 33, 80, 81
value-raising, 163, 166, 171, 172
variable, 3, 87

bound, 217
free, 217

variable-free semantics, 100–103
VOS, 82
VSO, 10, 64, 79, 81, 82, 93, 94, 97,

125, 127, 166, 188, 197,
212, 242

Washo, 124
Welsh, 10, 64, 79–82, 94, 97, 99,

125–127, 147, 166, 170,
189, 197, 242

word order, 64, 66, 76, 79, 82, 83, 88,
119, 129, 132, 156, 169,
170, 173–175, 197, 212,
237, 244, 246

wrap, ix, 29, 61–64, 82, 87, 93, 94,
97, 102, 120, 205, 242

	List of Tables���������������������
	1 Introduction1����������������������
	2 Order as constituent constructor���
	1 Combinatory syntactic types������������������������������������
	2 Directionality in grammar: morphology, phonology or syntax?��
	3 Trees and algorithms�����������������������������
	4 CCG’s narrow claims in brief�������������������������������������
	5 Type-dependence versus structure-dependence��
	6 Constituency���������������������

	3 The lexicon, argumenthood and combinators��
	1 Adjacency and arity����������������������������
	2 Words, supercombinators and subcombinators���
	3 Infinitude and learnability-in-principle���

	4 Syntacticizing the combinators���������������������������������������
	1 Unary combinators��������������������������
	2 Binary combinators���������������������������
	3 Ternary combinators����������������������������
	4 Quaternary combinators�������������������������������
	5 Powers and combinations��������������������������������
	6 Why syntacticize?��������������������������

	5 Combinatory Categorial Grammar���������������������������������������
	1 Combinators and wrapping���������������������������������
	2 Linguistic categories������������������������������
	3 CCG is nearly context-free�����������������������������������
	4 Invariants of natural language combination���
	5 The BTS system�����������������������

	6 The LF debate����������������������
	1 Steedman’s LF����������������������
	2 Szabolcsi’s reflexives�������������������������������
	3 Jacobson’s pronouns����������������������������
	4 More on LF: Unary BCWZ, constituency and coordination��

	7 Further constraints on possible grammars���
	8 A BTSO system����������������������
	9 The semantic radar���������������������������
	1 Boundedness and unboundedness��������������������������������������
	2 Recursive thoughts and recursive expressions���
	3 Grammar, lexicon and the interfaces��
	4 Making CCG’s way through the Dutch impersonal passive��
	5 Computationalism and language acquisition��
	6 Stumbling on to knowledge of words���
	7 Functional categories������������������������������
	8 Case, agreement and expletives���������������������������������������
	9 The semantics of scrambling������������������������������������
	10 Searle and semantics������������������������������

	10 Monadic computation by CCG������������������������������������
	1 Application��������������������
	2 Dependency�������������������
	3 Sequencers�������������������
	4 The CCG monad����������������������
	5 Radical lexicalization revisited���
	6 Monadic results and CCG��������������������������������

	11 Conclusion��������������������
	Appendices�����������������
	Appendix A: Lambda calculus����������������������������������
	Appendix B: Combinators������������������������������
	Appendix C: Variable elimination���������������������������������������
	Appendix D: Theory of computing��������������������������������������
	Appendix E: Radical lexicalization and syntactic types���
	Appendix F: Dependency structures��

	Notes������������
	Bibliography�������������������
	Author and name index����������������������������
	Subject index��������������������

<<
 /ASCII85EncodePages true
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2540 2540]
 /PageSize [595.276 841.890]
>> setpagedevice

